code
stringlengths
31
1.05M
apis
list
extract_api
stringlengths
97
1.91M
from typing import AnyStr, ByteString, Callable, List, Sequence, TypeVar, Union import numpy as np ReturnType = TypeVar("ReturnType") dtype_dict = { "float": "FLOAT", "double": "DOUBLE", "float32": "FLOAT", "float64": "DOUBLE", "int8": "INT8", "int16": "INT16", "int32": "INT32", "int64": "INT64", "uint8": "UINT8", "uint16": "UINT16", "uint32": "UINT32", "uint64": "UINT64", "bool": "BOOL", "str": "STRING", } allowed_devices = {"CPU", "GPU"} allowed_backends = {"TF", "TFLITE", "TORCH", "ONNX"} def numpy2blob(tensor: np.ndarray) -> tuple: """Convert the numpy input from user to `Tensor`.""" try: if tensor.dtype.num == np.dtype("str").num: dtype = dtype_dict["str"] blob = "".join([string + "\0" for string in tensor.flat]) else: dtype = dtype_dict[str(tensor.dtype)] blob = tensor.tobytes() except KeyError: raise TypeError(f"RedisAI doesn't support tensors of type {tensor.dtype}") shape = tensor.shape return dtype, shape, blob def blob2numpy( value: ByteString, shape: Union[list, tuple], dtype: str, mutable: bool ) -> np.ndarray: """Convert `BLOB` result from RedisAI to `np.ndarray`.""" mm = {"FLOAT": "float32", "DOUBLE": "float64"} dtype = mm.get(dtype, dtype.lower()) if dtype == 'string': a = np.array(value.decode().split('\0')[:-1], dtype='str') elif mutable: a = np.fromstring(value, dtype=dtype) else: a = np.frombuffer(value, dtype=dtype) return a.reshape(shape) def list2dict(lst): """Convert the list from RedisAI to a dict.""" if len(lst) % 2 != 0: raise RuntimeError("Can't unpack the list: {}".format(lst)) out = {} for i in range(0, len(lst), 2): key = lst[i].decode().lower() val = lst[i + 1] if key != "blob" and isinstance(val, bytes): val = val.decode() out[key] = val return out def recursive_bytetransform(arr: List[AnyStr], target: Callable[..., ReturnType]) -> list[ReturnType]: """ Recurse value, replacing each element of b'' with the appropriate element. Function returns the same array after inplace operation which updates `arr` """ for ix in range(len(arr)): obj = arr[ix] if isinstance(obj, list): recursive_bytetransform(obj, target) else: arr[ix] = target(obj) return arr def listify(inp: Union[str, Sequence[str]]) -> Sequence[str]: """Wrap the ``inp`` with a list if it's not a list already.""" return (inp,) if not isinstance(inp, (list, tuple)) else inp
[ "typing.TypeVar", "numpy.dtype", "numpy.frombuffer", "numpy.fromstring" ]
[((114, 135), 'typing.TypeVar', 'TypeVar', (['"""ReturnType"""'], {}), "('ReturnType')\n", (121, 135), False, 'from typing import AnyStr, ByteString, Callable, List, Sequence, TypeVar, Union\n'), ((1477, 1510), 'numpy.fromstring', 'np.fromstring', (['value'], {'dtype': 'dtype'}), '(value, dtype=dtype)\n', (1490, 1510), True, 'import numpy as np\n'), ((1533, 1566), 'numpy.frombuffer', 'np.frombuffer', (['value'], {'dtype': 'dtype'}), '(value, dtype=dtype)\n', (1546, 1566), True, 'import numpy as np\n'), ((701, 716), 'numpy.dtype', 'np.dtype', (['"""str"""'], {}), "('str')\n", (709, 716), True, 'import numpy as np\n')]
import numpy as np from path import Path import scipy.misc from collections import Counter import matplotlib.pyplot as plt class KittiRawLoader(object): def __init__(self, dataset_dir, static_frames_file=None, img_height=128, img_width=416, min_speed=2, get_gt=False): dir_path = Path(__file__).realpath().dirname() test_scene_file = dir_path/'test_scenes.txt' self.from_speed = static_frames_file is None if static_frames_file is not None: static_frames_file = Path(static_frames_file) self.collect_static_frames(static_frames_file) with open(test_scene_file, 'r') as f: test_scenes = f.readlines() self.test_scenes = [t[:-1] for t in test_scenes] self.dataset_dir = Path(dataset_dir) self.img_height = img_height self.img_width = img_width self.cam_ids = ['02', '03'] #self.date_list = ['2011_09_26', '2011_09_28', '2011_09_29', '2011_09_30', '2011_10_03'] self.date_list = ['2011_09_26', '2011_09_28', '2011_09_29', '2011_09_30'] self.min_speed = min_speed self.get_gt = get_gt self.collect_train_folders()#make self.scenes #public def collect_scenes(self, drive):#drive 当前路径 train_scenes = [] for c in self.cam_ids: oxts = sorted((drive/'oxts'/'data').files('*.txt'))#list scene_data = {'cid': c, 'dir': drive, 'speed': [], 'frame_id': [], 'rel_path': drive.name + '_' + c} for n, f in enumerate(oxts): metadata = np.genfromtxt(f) speed = metadata[8:11] scene_data['speed'].append(speed) scene_data['frame_id'].append('{:010d}'.format(n)) sample = self.load_image(scene_data, 0) if sample is None: return [] scene_data['P_rect'] = self.get_P_rect(scene_data, sample[1], sample[2]) scene_data['intrinsics'] = scene_data['P_rect'][:,:3] train_scenes.append(scene_data) return train_scenes #public #generator using yield rather than return def get_scene_imgs(self, scene_data): def construct_sample(scene_data, i, frame_id): sample = [self.load_image(scene_data, i)[0], frame_id] if self.get_gt: sample.append(self.generate_depth_map(scene_data, i)) return sample if self.from_speed: cum_speed = np.zeros(3) for i, speed in enumerate(scene_data['speed']): cum_speed += speed speed_mag = np.linalg.norm(cum_speed) if speed_mag > self.min_speed: frame_id = scene_data['frame_id'][i] yield construct_sample(scene_data, i, frame_id) cum_speed *= 0 else: # from static frame file drive = str(scene_data['dir'].name) for (i,frame_id) in enumerate(scene_data['frame_id']): if (drive not in self.static_frames.keys()) or (frame_id not in self.static_frames[drive]): yield construct_sample(scene_data, i, frame_id) #private def collect_static_frames(self, static_frames_file): with open(static_frames_file, 'r') as f: frames = f.readlines() self.static_frames = {} for fr in frames: if fr == '\n': continue date, drive, frame_id = fr.split(' ') curr_fid = '%.10d' % (np.int(frame_id[:-1])) if drive not in self.static_frames.keys(): self.static_frames[drive] = [] self.static_frames[drive].append(curr_fid) #private def collect_train_folders(self): self.scenes = [] for date in self.date_list: drive_set = (self.dataset_dir/date).dirs() for dr in drive_set: if dr.name[:-5] not in self.test_scenes: self.scenes.append(dr) #private def get_P_rect(self, scene_data, zoom_x, zoom_y): #print(zoom_x, zoom_y) calib_file = scene_data['dir'].parent/'calib_cam_to_cam.txt' filedata = self.read_raw_calib_file(calib_file) P_rect = np.reshape(filedata['P_rect_' + scene_data['cid']], (3, 4)) P_rect[0] *= zoom_x P_rect[1] *= zoom_y return P_rect def load_image(self, scene_data, tgt_idx): img_file = scene_data['dir']/'image_{}'.format(scene_data['cid'])/'data'/scene_data['frame_id'][tgt_idx]+'.png' if not img_file.isfile(): return None img = scipy.misc.imread(img_file) zoom_y = self.img_height/img.shape[0] zoom_x = self.img_width/img.shape[1] img = scipy.misc.imresize(img, (self.img_height, self.img_width)) return img, zoom_x, zoom_y def read_raw_calib_file(self, filepath): # From https://github.com/utiasSTARS/pykitti/blob/master/pykitti/utils.py """Read in a calibration file and parse into a dictionary.""" data = {} with open(filepath, 'r') as f: for line in f.readlines(): key, value = line.split(':', 1) # The only non-float values in these files are dates, which # we don't care about anyway try: data[key] = np.array([float(x) for x in value.split()]) except ValueError: pass return data #called by get_scene_imgs def generate_depth_map(self, scene_data, tgt_idx): # compute projection matrix velodyne->image plane def sub2ind(matrixSize, rowSub, colSub): m, n = matrixSize return rowSub * (n-1) + colSub - 1 R_cam2rect = np.eye(4) calib_dir = scene_data['dir'].parent cam2cam = self.read_raw_calib_file(calib_dir/'calib_cam_to_cam.txt') velo2cam = self.read_raw_calib_file(calib_dir/'calib_velo_to_cam.txt') velo2cam = np.hstack((velo2cam['R'].reshape(3,3), velo2cam['T'][..., np.newaxis])) velo2cam = np.vstack((velo2cam, np.array([0, 0, 0, 1.0]))) P_rect = scene_data['P_rect'] R_cam2rect[:3,:3] = cam2cam['R_rect_00'].reshape(3,3) P_velo2im = np.dot(np.dot(P_rect, R_cam2rect), velo2cam) velo_file_name = scene_data['dir']/'velodyne_points'/'data'/'{}.bin'.format(scene_data['frame_id'][tgt_idx]) # load velodyne points and remove all behind image plane (approximation) # each row of the velodyne data is forward, left, up, reflectance velo = np.fromfile(velo_file_name, dtype=np.float32).reshape(-1, 4) velo[:,3] = 1 velo = velo[velo[:, 0] >= 0, :] # project the points to the camera velo_pts_im = np.dot(P_velo2im, velo.T).T velo_pts_im[:, :2] = velo_pts_im[:,:2] / velo_pts_im[:,-1:] # check if in bounds # use minus 1 to get the exact same value as KITTI matlab code velo_pts_im[:, 0] = np.round(velo_pts_im[:,0]) - 1 velo_pts_im[:, 1] = np.round(velo_pts_im[:,1]) - 1 val_inds = (velo_pts_im[:, 0] >= 0) & (velo_pts_im[:, 1] >= 0) val_inds = val_inds & (velo_pts_im[:,0] < self.img_width) & (velo_pts_im[:,1] < self.img_height) velo_pts_im = velo_pts_im[val_inds, :] # project to image depth = np.zeros((self.img_height, self.img_width)).astype(np.float32) depth[velo_pts_im[:, 1].astype(np.int), velo_pts_im[:, 0].astype(np.int)] = velo_pts_im[:, 2] # find the duplicate points and choose the closest depth inds = sub2ind(depth.shape, velo_pts_im[:, 1], velo_pts_im[:, 0]) dupe_inds = [item for item, count in Counter(inds).items() if count > 1] for dd in dupe_inds: pts = np.where(inds == dd)[0] x_loc = int(velo_pts_im[pts[0], 0]) y_loc = int(velo_pts_im[pts[0], 1]) depth[y_loc, x_loc] = velo_pts_im[pts, 2].min() depth[depth < 0] = 0 return depth
[ "numpy.eye", "numpy.fromfile", "collections.Counter", "numpy.zeros", "numpy.genfromtxt", "path.Path", "numpy.linalg.norm", "numpy.reshape", "numpy.int", "numpy.array", "numpy.where", "numpy.dot", "numpy.round" ]
[((869, 886), 'path.Path', 'Path', (['dataset_dir'], {}), '(dataset_dir)\n', (873, 886), False, 'from path import Path\n'), ((4336, 4395), 'numpy.reshape', 'np.reshape', (["filedata['P_rect_' + scene_data['cid']]", '(3, 4)'], {}), "(filedata['P_rect_' + scene_data['cid']], (3, 4))\n", (4346, 4395), True, 'import numpy as np\n'), ((5884, 5893), 'numpy.eye', 'np.eye', (['(4)'], {}), '(4)\n', (5890, 5893), True, 'import numpy as np\n'), ((614, 638), 'path.Path', 'Path', (['static_frames_file'], {}), '(static_frames_file)\n', (618, 638), False, 'from path import Path\n'), ((2567, 2578), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (2575, 2578), True, 'import numpy as np\n'), ((6382, 6408), 'numpy.dot', 'np.dot', (['P_rect', 'R_cam2rect'], {}), '(P_rect, R_cam2rect)\n', (6388, 6408), True, 'import numpy as np\n'), ((6898, 6923), 'numpy.dot', 'np.dot', (['P_velo2im', 'velo.T'], {}), '(P_velo2im, velo.T)\n', (6904, 6923), True, 'import numpy as np\n'), ((7123, 7150), 'numpy.round', 'np.round', (['velo_pts_im[:, 0]'], {}), '(velo_pts_im[:, 0])\n', (7131, 7150), True, 'import numpy as np\n'), ((7182, 7209), 'numpy.round', 'np.round', (['velo_pts_im[:, 1]'], {}), '(velo_pts_im[:, 1])\n', (7190, 7209), True, 'import numpy as np\n'), ((1662, 1678), 'numpy.genfromtxt', 'np.genfromtxt', (['f'], {}), '(f)\n', (1675, 1678), True, 'import numpy as np\n'), ((2702, 2727), 'numpy.linalg.norm', 'np.linalg.norm', (['cum_speed'], {}), '(cum_speed)\n', (2716, 2727), True, 'import numpy as np\n'), ((3616, 3637), 'numpy.int', 'np.int', (['frame_id[:-1]'], {}), '(frame_id[:-1])\n', (3622, 3637), True, 'import numpy as np\n'), ((6227, 6251), 'numpy.array', 'np.array', (['[0, 0, 0, 1.0]'], {}), '([0, 0, 0, 1.0])\n', (6235, 6251), True, 'import numpy as np\n'), ((6709, 6754), 'numpy.fromfile', 'np.fromfile', (['velo_file_name'], {'dtype': 'np.float32'}), '(velo_file_name, dtype=np.float32)\n', (6720, 6754), True, 'import numpy as np\n'), ((7481, 7524), 'numpy.zeros', 'np.zeros', (['(self.img_height, self.img_width)'], {}), '((self.img_height, self.img_width))\n', (7489, 7524), True, 'import numpy as np\n'), ((7914, 7934), 'numpy.where', 'np.where', (['(inds == dd)'], {}), '(inds == dd)\n', (7922, 7934), True, 'import numpy as np\n'), ((395, 409), 'path.Path', 'Path', (['__file__'], {}), '(__file__)\n', (399, 409), False, 'from path import Path\n'), ((7831, 7844), 'collections.Counter', 'Counter', (['inds'], {}), '(inds)\n', (7838, 7844), False, 'from collections import Counter\n')]
import json import logging import numpy as np import pathlib import pickle import random from sklearn.preprocessing import LabelEncoder import torch import torch.utils.data class TranscribedDataset(): le = None sos = '<sos>' eos = '<eos>' pad = '<pad>' unk = '<unk>' @classmethod def init_vocabulary(cls, transcriptions): cls.le = LabelEncoder() tokens = [cls.sos, cls.eos, cls.unk, cls.pad] + \ [c for t in transcriptions for c in t] cls.le.fit(tokens) @classmethod def get_label_encoder(cls): if cls.le is None: raise ValueError('Vocabulary not initialized.') return cls.le @classmethod def get_token_id(cls, token): return cls.get_label_encoder().transform([token])[0] @classmethod def vocabulary_size(cls): return len(cls.get_label_encoder().classes_) @classmethod def caption2tensor(cls, capt): le = cls.get_label_encoder() capt = [c if c in le.classes_ else cls.unk for c in capt] capt = [cls.sos] + capt + [cls.eos] return torch.Tensor(le.transform(capt)) class Flickr8KData(torch.utils.data.Dataset, TranscribedDataset): @classmethod def init_vocabulary(cls, dataset): transcriptions = [sd[2] for sd in dataset.split_data] TranscribedDataset.init_vocabulary(transcriptions) def __init__(self, root, feature_fname, meta_fname, split='train', language='en', downsampling_factor=None): self.root = root self.split = split self.feature_fname = feature_fname self.language = language if language == 'en': self.text_key = 'raw' elif language == 'jp': self.text_key = 'raw_jp' else: raise ValueError('Language {} not supported.'.format(language)) self.root = root self.split = split self.language = language root_path = pathlib.Path(root) # Loading label encoder module_path = pathlib.Path(__file__).parent with open(module_path / 'label_encoders.pkl', 'rb') as f: self.__class__.le = pickle.load(f)[language] # Loading metadata with open(root_path / meta_fname) as fmeta: metadata = json.load(fmeta)['images'] # Loading mapping from image id to list of caption id self.image_captions = {} with open(root_path / 'flickr_audio' / 'wav2capt.txt') as fwav2capt: for line in fwav2capt: audio_id, image_id, text_id = line.split() text_id = int(text_id[1:]) self.image_captions[image_id] = self.image_captions.get(image_id, []) + [(text_id, audio_id)] # Creating image, caption pairs self.split_data = [] for image in metadata: if image['split'] == self.split: fname = image['filename'] for text_id, audio_id in self.image_captions[fname]: # In the reduced dataset containing only sentences with # translations, removed sentences are replaced by 'None' to # keep the index of the sentence fixed, so that we can # still retrieve them based on text_id. # TODO: find a nicer way to handle this if image['sentences'][text_id] is not None: if self.text_key in image['sentences'][text_id]: self.split_data.append(( fname, audio_id, image['sentences'][text_id][self.text_key])) # Downsampling if downsampling_factor is not None: num_examples = int(len(self.split_data) // downsampling_factor) self.split_data = random.sample(self.split_data, num_examples) # image and audio feature data image = torch.load(root_path / 'resnet_features.pt') self.image = dict(zip(image['filenames'], image['features'])) audio = torch.load(root_path / feature_fname) self.audio = dict(zip(audio['filenames'], audio['features'])) def __getitem__(self, index): sd = self.split_data[index] image = self.image[sd[0]] audio = self.audio[sd[1]] text = self.caption2tensor(sd[2]) return dict(image_id=sd[0], audio_id=sd[1], image=image, text=text, audio=audio, gloss=sd[2]) def __len__(self): return len(self.split_data) def get_config(self): return dict(feature_fname=self.feature_fname, label_encoder=self.get_label_encoder(), language=self.language) def evaluation(self): """Returns image features, audio features, caption features, and a boolean array specifying whether a caption goes with an image.""" audio = [] text = [] image = [] matches = [] image2idx = {} for sd in self.split_data: # Add image if sd[0] in image2idx: image_idx = image2idx[sd[0]] else: image_idx = len(image) image2idx[sd[0]] = image_idx image.append(self.image[sd[0]]) # Add audio and text audio.append(self.audio[sd[1]]) text.append(sd[2]) matches.append((len(audio) - 1, image_idx)) correct = torch.zeros(len(audio), len(image)).bool() for i, j in matches: correct[i, j] = True return dict(image=image, audio=audio, text=text, correct=correct) def is_slt(self): return self.language != 'en' def split_sentences(self, sentences): if self.language == 'jp': return sentences else: return [s.split() for s in sentences] class LibriSpeechData(torch.utils.data.Dataset, TranscribedDataset): @classmethod def init_vocabulary(cls, dataset): transcriptions = [m['trn'] for m in dataset.metadata] TranscribedDataset.init_vocabulary(transcriptions) def __init__(self, root, feature_fname, meta_fname, split='train', downsampling_factor=None): # 'val' set in flickr8k corresponds to 'dev' in librispeech if split == 'val': split = 'dev' self.root = root self.split = split self.feature_fname = feature_fname root_path = pathlib.Path(root) with open(root_path / meta_fname) as fmeta: self.metadata = json.load(fmeta) self.num_lines = self.metadata[-1]['audio_end'] if downsampling_factor is not None: num_examples = len(self.metadata) // downsampling_factor self.metadata = random.sample(self.metadata, num_examples) # filter examples based on split meta = [] for ex in self.metadata: if ex['split'] == self.split: meta.append(ex) self.metadata = meta # load audio features self.audio = np.memmap(root_path / feature_fname, dtype='float64', mode='r', shape=(self.num_lines, 39)) def __getitem__(self, index): sd = self.metadata[index] audio = torch.from_numpy(self.audio[sd['audio_start']:sd['audio_end']]) text = self.caption2tensor(sd['trn']) return dict(audio_id=sd['fileid'], text=text, audio=audio) def __len__(self): return len(self.metadata) def get_config(self): return dict(feature_fname=self.feature_fname, label_encoder=self.get_label_encoder()) def evaluation(self): """Returns audio features with corresponding caption""" audio = [] text = [] for ex in self.metadata: text.append(ex['trn']) a = torch.from_numpy(self.audio[ex['audio_start']:ex['audio_end']]) audio.append(a) return dict(audio=audio, text=text) def batch_audio(audios, max_frames=2048): """Merge audio captions. Truncate to max_frames. Pad with 0s.""" mfcc_lengths = [len(cap[:max_frames, :]) for cap in audios] mfcc = torch.zeros(len(audios), max(mfcc_lengths), audios[0].size(1)) for i, cap in enumerate(audios): end = mfcc_lengths[i] mfcc[i, :end] = cap[:end] return mfcc.permute(0, 2, 1), torch.tensor(mfcc_lengths) def batch_text(texts): """Merge captions (from tuple of 1D tensor to 2D tensor). Pad with pad token.""" char_lengths = [len(cap) for cap in texts] chars = torch.Tensor(len(texts), max(char_lengths)).long() chars.fill_(Flickr8KData.get_token_id(Flickr8KData.pad)) for i, cap in enumerate(texts): end = char_lengths[i] chars[i, :end] = cap[:end] return chars, torch.tensor(char_lengths) def batch_image(images): return torch.stack(images, 0) def collate_fn(data, max_frames=2048): images, texts, audios = zip(* [(datum['image'], datum['text'], datum['audio']) for datum in data]) # Merge images (from tuple of 3D tensor to 4D tensor). images = batch_image(images) mfcc, mfcc_lengths = batch_audio(audios, max_frames=max_frames) chars, char_lengths = batch_text(texts) return dict(image=images, audio=mfcc, text=chars, audio_len=mfcc_lengths, text_len=char_lengths) def collate_fn_speech(data, max_frames=2048): texts, audios = zip(* [(datum['text'], datum['audio']) for datum in data]) mfcc, mfcc_lengths = batch_audio(audios, max_frames=max_frames) chars, char_lengths = batch_text(texts) return dict(audio=mfcc, text=chars, audio_len=mfcc_lengths, text_len=char_lengths) def flickr8k_loader(root, meta_fname, language, feature_fname, split='train', batch_size=32, shuffle=False, max_frames=2048, downsampling_factor=None): return torch.utils.data.DataLoader( dataset=Flickr8KData(root=root, feature_fname=feature_fname, meta_fname=meta_fname, split=split, language=language, downsampling_factor=downsampling_factor), batch_size=batch_size, shuffle=shuffle, num_workers=0, collate_fn=lambda x: collate_fn(x, max_frames=max_frames)) def librispeech_loader(root, meta_fname, feature_fname, split='train', batch_size=32, shuffle=False, max_frames=2048, downsampling_factor=None): return torch.utils.data.DataLoader( dataset=LibriSpeechData(root=root, feature_fname=feature_fname, meta_fname=meta_fname, split=split, downsampling_factor=downsampling_factor), batch_size=batch_size, shuffle=shuffle, num_workers=0, collate_fn=lambda x: collate_fn_speech(x, max_frames=max_frames))
[ "json.load", "torch.stack", "random.sample", "torch.load", "sklearn.preprocessing.LabelEncoder", "pathlib.Path", "pickle.load", "numpy.memmap", "torch.tensor", "torch.from_numpy" ]
[((9024, 9046), 'torch.stack', 'torch.stack', (['images', '(0)'], {}), '(images, 0)\n', (9035, 9046), False, 'import torch\n'), ((370, 384), 'sklearn.preprocessing.LabelEncoder', 'LabelEncoder', ([], {}), '()\n', (382, 384), False, 'from sklearn.preprocessing import LabelEncoder\n'), ((1977, 1995), 'pathlib.Path', 'pathlib.Path', (['root'], {}), '(root)\n', (1989, 1995), False, 'import pathlib\n'), ((3981, 4025), 'torch.load', 'torch.load', (["(root_path / 'resnet_features.pt')"], {}), "(root_path / 'resnet_features.pt')\n", (3991, 4025), False, 'import torch\n'), ((4112, 4149), 'torch.load', 'torch.load', (['(root_path / feature_fname)'], {}), '(root_path / feature_fname)\n', (4122, 4149), False, 'import torch\n'), ((6604, 6622), 'pathlib.Path', 'pathlib.Path', (['root'], {}), '(root)\n', (6616, 6622), False, 'import pathlib\n'), ((7210, 7306), 'numpy.memmap', 'np.memmap', (['(root_path / feature_fname)'], {'dtype': '"""float64"""', 'mode': '"""r"""', 'shape': '(self.num_lines, 39)'}), "(root_path / feature_fname, dtype='float64', mode='r', shape=(self\n .num_lines, 39))\n", (7219, 7306), True, 'import numpy as np\n'), ((7418, 7481), 'torch.from_numpy', 'torch.from_numpy', (["self.audio[sd['audio_start']:sd['audio_end']]"], {}), "(self.audio[sd['audio_start']:sd['audio_end']])\n", (7434, 7481), False, 'import torch\n'), ((8528, 8554), 'torch.tensor', 'torch.tensor', (['mfcc_lengths'], {}), '(mfcc_lengths)\n', (8540, 8554), False, 'import torch\n'), ((8959, 8985), 'torch.tensor', 'torch.tensor', (['char_lengths'], {}), '(char_lengths)\n', (8971, 8985), False, 'import torch\n'), ((2050, 2072), 'pathlib.Path', 'pathlib.Path', (['__file__'], {}), '(__file__)\n', (2062, 2072), False, 'import pathlib\n'), ((3880, 3924), 'random.sample', 'random.sample', (['self.split_data', 'num_examples'], {}), '(self.split_data, num_examples)\n', (3893, 3924), False, 'import random\n'), ((6703, 6719), 'json.load', 'json.load', (['fmeta'], {}), '(fmeta)\n', (6712, 6719), False, 'import json\n'), ((6921, 6963), 'random.sample', 'random.sample', (['self.metadata', 'num_examples'], {}), '(self.metadata, num_examples)\n', (6934, 6963), False, 'import random\n'), ((8006, 8069), 'torch.from_numpy', 'torch.from_numpy', (["self.audio[ex['audio_start']:ex['audio_end']]"], {}), "(self.audio[ex['audio_start']:ex['audio_end']])\n", (8022, 8069), False, 'import torch\n'), ((2178, 2192), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (2189, 2192), False, 'import pickle\n'), ((2305, 2321), 'json.load', 'json.load', (['fmeta'], {}), '(fmeta)\n', (2314, 2321), False, 'import json\n')]
import os import csv import six import pandas as pd import numpy as np from ..core import STReader, SortOrder, find_conversion from ..core import csv_headers, col_population, pop_na, col_timestamps, col_node_ids # TODO: Won't work with a non-population column csv file. Update so that if there is no populations then it will # do a lookup by node_id only. def write_csv(path, spiketrain_reader, mode='w', sort_order=SortOrder.none, include_header=True, include_population=True, units='ms', **kwargs): path_dir = os.path.dirname(path) if path_dir and not os.path.exists(path_dir): os.makedirs(path_dir) conv_factor = find_conversion(spiketrain_reader.units, units) with open(path, mode=mode) as f: if include_population: # Saves the Population column csv_writer = csv.writer(f, delimiter=' ') if include_header: csv_writer.writerow(csv_headers) for spk in spiketrain_reader.spikes(sort_order=sort_order): csv_writer.writerow([spk[0]*conv_factor, spk[1], spk[2]]) else: # Don't write the Population column csv_writer = csv.writer(f, delimiter=' ') if include_header: csv_writer.writerow([c for c in csv_headers if c != col_population]) for spk in spiketrain_reader.spikes(sort_order=sort_order): csv_writer.writerow([spk[0]*conv_factor, spk[2]]) class CSVSTReader(STReader): def __init__(self, path, sep=' ', **kwargs): self._n_spikes = None self._populations = None try: # check to see if file contains headers with open(path, 'r') as csvfile: sniffer = csv.Sniffer() has_headers = sniffer.has_header(csvfile.read(1024)) except Exception: has_headers = True self._spikes_df = pd.read_csv(path, sep=sep, header=0 if has_headers else None) if not has_headers: self._spikes_df.columns = csv_headers[0::2] if col_population not in self._spikes_df.columns: pop_name = kwargs.get(col_population, pop_na) self._spikes_df[col_population] = pop_name # TODO: Check all the necessary columns exits self._spikes_df = self._spikes_df[csv_headers] @property def populations(self): if self._populations is None: self._populations = self._spikes_df['population'].unique() return self._populations def to_dataframe(self, node_ids=None, populations=None, time_window=None, sort_order=SortOrder.none, **kwargs): selected = self._spikes_df.copy() mask = True if populations is not None: if isinstance(populations, six.string_types) or np.isscalar(populations): mask &= selected[col_population] == populations else: mask &= selected[col_population].isin(populations) if node_ids is not None: node_ids = [node_ids] if np.isscalar(node_ids) else node_ids mask &= selected[col_node_ids].isin(node_ids) if time_window is not None: mask &= (selected[col_timestamps] >= time_window[0]) & (selected[col_timestamps] <= time_window[1]) if isinstance(mask, pd.Series): selected = selected[mask] if sort_order == SortOrder.by_time: selected.sort_values(by=col_timestamps, inplace=True) elif sort_order == SortOrder.by_id: selected.sort_values(by=col_node_ids, inplace=True) selected.index = pd.RangeIndex(len(selected.index)) return selected def get_times(self, node_id, population=None, time_window=None, **kwargs): selected = self._spikes_df.copy() mask = (selected[col_node_ids] == node_id) if population is not None: mask &= (selected[col_population] == population) if time_window is not None: mask &= (selected[col_timestamps] >= time_window[0]) & (selected[col_timestamps] <= time_window[1]) return np.array(self._spikes_df[mask][col_timestamps]) def nodes(self, populations=None): selected = self._spikes_df.copy() mask = True if populations is not None: if isinstance(populations, six.string_types) or np.isscalar(populations): mask = selected[col_population] == populations else: mask = selected[col_population].isin(populations) if isinstance(mask, pd.Series): selected = selected[mask] return list(selected.groupby(by=[col_population, col_node_ids]).indices.keys()) def n_spikes(self, population=None): return len(self.to_dataframe(populations=population)) def time_range(self, populations=None): selected = self._spikes_df.copy() if populations is not None: if isinstance(populations, six.string_types) or np.isscalar(populations): mask = selected[col_population] == populations else: mask = selected[col_population].isin(populations) selected = selected[mask] return selected[col_timestamps].agg([np.min, np.max]).values def spikes(self, node_ids=None, populations=None, time_window=None, sort_order=SortOrder.none, **kwargs): selected = self._spikes_df.copy() mask = True if populations is not None: if isinstance(populations, six.string_types) or np.isscalar(populations): mask &= selected[col_population] == populations else: mask &= selected[col_population].isin(populations) if node_ids is not None: node_ids = [node_ids] if np.isscalar(node_ids) else node_ids mask &= selected[col_node_ids].isin(node_ids) if time_window is not None: mask &= (selected[col_timestamps] >= time_window[0]) & (selected[col_timestamps] <= time_window[1]) if isinstance(mask, pd.Series): selected = selected[mask] if sort_order == SortOrder.by_time: selected.sort_values(by=col_timestamps, inplace=True) elif sort_order == SortOrder.by_id: selected.sort_values(by=col_node_ids, inplace=True) indicies = selected.index.values for indx in indicies: yield tuple(self._spikes_df.iloc[indx]) def __len__(self): if self._n_spikes is None: self._n_spikes = len(self._spikes_df) return self._n_spikes
[ "os.makedirs", "csv.writer", "pandas.read_csv", "numpy.isscalar", "os.path.dirname", "os.path.exists", "csv.Sniffer", "numpy.array" ]
[((536, 557), 'os.path.dirname', 'os.path.dirname', (['path'], {}), '(path)\n', (551, 557), False, 'import os\n'), ((616, 637), 'os.makedirs', 'os.makedirs', (['path_dir'], {}), '(path_dir)\n', (627, 637), False, 'import os\n'), ((1913, 1974), 'pandas.read_csv', 'pd.read_csv', (['path'], {'sep': 'sep', 'header': '(0 if has_headers else None)'}), '(path, sep=sep, header=0 if has_headers else None)\n', (1924, 1974), True, 'import pandas as pd\n'), ((4110, 4157), 'numpy.array', 'np.array', (['self._spikes_df[mask][col_timestamps]'], {}), '(self._spikes_df[mask][col_timestamps])\n', (4118, 4157), True, 'import numpy as np\n'), ((582, 606), 'os.path.exists', 'os.path.exists', (['path_dir'], {}), '(path_dir)\n', (596, 606), False, 'import os\n'), ((840, 868), 'csv.writer', 'csv.writer', (['f'], {'delimiter': '""" """'}), "(f, delimiter=' ')\n", (850, 868), False, 'import csv\n'), ((1183, 1211), 'csv.writer', 'csv.writer', (['f'], {'delimiter': '""" """'}), "(f, delimiter=' ')\n", (1193, 1211), False, 'import csv\n'), ((1746, 1759), 'csv.Sniffer', 'csv.Sniffer', ([], {}), '()\n', (1757, 1759), False, 'import csv\n'), ((2803, 2827), 'numpy.isscalar', 'np.isscalar', (['populations'], {}), '(populations)\n', (2814, 2827), True, 'import numpy as np\n'), ((3049, 3070), 'numpy.isscalar', 'np.isscalar', (['node_ids'], {}), '(node_ids)\n', (3060, 3070), True, 'import numpy as np\n'), ((4356, 4380), 'numpy.isscalar', 'np.isscalar', (['populations'], {}), '(populations)\n', (4367, 4380), True, 'import numpy as np\n'), ((4983, 5007), 'numpy.isscalar', 'np.isscalar', (['populations'], {}), '(populations)\n', (4994, 5007), True, 'import numpy as np\n'), ((5535, 5559), 'numpy.isscalar', 'np.isscalar', (['populations'], {}), '(populations)\n', (5546, 5559), True, 'import numpy as np\n'), ((5781, 5802), 'numpy.isscalar', 'np.isscalar', (['node_ids'], {}), '(node_ids)\n', (5792, 5802), True, 'import numpy as np\n')]
"""MIT License Copyright (c) 2022 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import numpy as np import cv2 import matplotlib.pyplot as plt class Estimator: def __init__(self,enhance=False,leftProjMat=[],rightProjMat=[]): """ to_enchance = To enchange images before processing left_C_mat = Left camera matrix left_T_vec = Left camera translation vector right_T_vec = Right camera translation vector """ self.to_enhance = enhance # Decomposing the Projection Matrixs self.left_C_mat, _,self.left_T_vec, _, _, _, _ = cv2.decomposeProjectionMatrix(leftProjMat) _, _,self.right_T_vec, _, _, _, _ = cv2.decomposeProjectionMatrix(rightProjMat) def enhance(self,image): """ To preprocess the image with differnt algorithms # Gaussian Blur to remove the noise # Gamma Equilization # Histogram filter to equilize the lights """ image = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY) smoothen_image = cv2.GaussianBlur(image,(5,5),0.1) gamma=0.75 lookUpTable = np.empty((1,256), np.uint8) for i in range(256): lookUpTable[0,i] = np.clip(pow(i / 255.0, gamma) * 255.0, 0, 255) gamma_equilized_image = cv2.LUT(smoothen_image, lookUpTable) clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(4,4)) histogram_filtered_image = clahe.apply(gamma_equilized_image) return histogram_filtered_image def estimate(self,rightimage ,leftimage,depth=False): """ Using Stereo SGBM to calculate disparity map and traditional approach to calculate depth Input: leftimage = Left image matrix rightimage = Right image matrix depth = To calculate depth Output: Disparity map and depth map of the input image """ if self.to_enhance: leftimage = self.enhance(leftimage) rightimage = self.enhance(rightimage) # Calculating Depth Map using Stereo SGBM stereo = cv2.StereoSGBM_create(numDisparities=16*6, blockSize=15,P1=4000,P2=15000, mode=cv2.STEREO_SGBM_MODE_SGBM_3WAY) disparity_map = stereo.compute(leftimage,rightimage) if depth: disparity = disparity_map f = self.left_C_mat[0][0] b = self.right_T_vec[0] - self.left_T_vec[0] # Avoid instability and division by zero disparity_map[disparity_map == 0.0] = 0.1 disparity_map[disparity_map == -1.0] = 0.1 depth_map = np.ones(disparity_map.shape) depth_map = f * b / (disparity_map+0.00000001) return disparity,depth_map return disparity_map[:,95:]
[ "cv2.GaussianBlur", "cv2.cvtColor", "numpy.empty", "numpy.ones", "cv2.LUT", "cv2.createCLAHE", "cv2.decomposeProjectionMatrix", "cv2.StereoSGBM_create" ]
[((1590, 1632), 'cv2.decomposeProjectionMatrix', 'cv2.decomposeProjectionMatrix', (['leftProjMat'], {}), '(leftProjMat)\n', (1619, 1632), False, 'import cv2\n'), ((1677, 1720), 'cv2.decomposeProjectionMatrix', 'cv2.decomposeProjectionMatrix', (['rightProjMat'], {}), '(rightProjMat)\n', (1706, 1720), False, 'import cv2\n'), ((2009, 2048), 'cv2.cvtColor', 'cv2.cvtColor', (['image', 'cv2.COLOR_BGR2GRAY'], {}), '(image, cv2.COLOR_BGR2GRAY)\n', (2021, 2048), False, 'import cv2\n'), ((2073, 2109), 'cv2.GaussianBlur', 'cv2.GaussianBlur', (['image', '(5, 5)', '(0.1)'], {}), '(image, (5, 5), 0.1)\n', (2089, 2109), False, 'import cv2\n'), ((2157, 2185), 'numpy.empty', 'np.empty', (['(1, 256)', 'np.uint8'], {}), '((1, 256), np.uint8)\n', (2165, 2185), True, 'import numpy as np\n'), ((2324, 2360), 'cv2.LUT', 'cv2.LUT', (['smoothen_image', 'lookUpTable'], {}), '(smoothen_image, lookUpTable)\n', (2331, 2360), False, 'import cv2\n'), ((2386, 2437), 'cv2.createCLAHE', 'cv2.createCLAHE', ([], {'clipLimit': '(2.0)', 'tileGridSize': '(4, 4)'}), '(clipLimit=2.0, tileGridSize=(4, 4))\n', (2401, 2437), False, 'import cv2\n'), ((3169, 3288), 'cv2.StereoSGBM_create', 'cv2.StereoSGBM_create', ([], {'numDisparities': '(16 * 6)', 'blockSize': '(15)', 'P1': '(4000)', 'P2': '(15000)', 'mode': 'cv2.STEREO_SGBM_MODE_SGBM_3WAY'}), '(numDisparities=16 * 6, blockSize=15, P1=4000, P2=\n 15000, mode=cv2.STEREO_SGBM_MODE_SGBM_3WAY)\n', (3190, 3288), False, 'import cv2\n'), ((3772, 3800), 'numpy.ones', 'np.ones', (['disparity_map.shape'], {}), '(disparity_map.shape)\n', (3779, 3800), True, 'import numpy as np\n')]
# coding: utf-8 import os import shutil import pickle import librosa import argparse import pandas as pd import numpy as np from glob import glob from tqdm import tqdm from PIL import Image from facenet_pytorch import MTCNN, InceptionResnetV1 import torch from transformers import BertTokenizer, BertModel from torch.utils.data import Dataset, DataLoader class MDataPreLoader(Dataset): def __init__(self, args): self.working_dir = args.working_dir self.df = args.df self.annotation_dict = { "Negative": 0, "Neutral": 1, "Positive": 2 } # toolkits path self.openface2Path = args.openface2Path # bert tokenizer_class = BertTokenizer if args.language == 'cn': self.pretrainedBertPath = 'pretrained_model/bert_cn' self.tokenizer = tokenizer_class.from_pretrained('pretrained_model/bert_cn') else: self.pretrainedBertPath = 'pretrained_model/bert_en' self.tokenizer = tokenizer_class.from_pretrained('pretrained_model/bert_en', do_lower_case=True) def __len__(self): return len(self.df) def __getVideoEmbedding(self, video_path, tmp_dir, pool_size=3): faces_feature_dir = os.path.join(tmp_dir, 'Faces') os.mkdir(faces_feature_dir) cmd = self.openface2Path + ' -f ' + video_path + ' -out_dir ' + faces_feature_dir os.system(cmd) # read features features, local_features = [], [] df_path = glob(os.path.join(faces_feature_dir, '*.csv')) if len(df_path) > 0: df_path = df_path[0] df = pd.read_csv(df_path) for i in range(len(df)): local_features.append(np.array(df.loc[i][df.columns[5:]])) if (i + 1) % pool_size == 0: features.append(np.array(local_features).mean(axis=0)) local_features = [] if len(local_features) != 0: features.append(np.array(local_features).mean(axis=0)) return np.array(features) def __getAudioEmbedding(self, video_path, audio_path): # use ffmpeg to extract audio cmd = 'ffmpeg -i ' + video_path + ' -f wav -vn ' + \ audio_path + ' -loglevel quiet' os.system(cmd) # get features y, sr = librosa.load(audio_path) # using librosa to get audio features (f0, mfcc, cqt) hop_length = 512 # hop_length smaller, seq_len larger f0 = librosa.feature.zero_crossing_rate(y, hop_length=hop_length).T # (seq_len, 1) mfcc = librosa.feature.mfcc(y=y, sr=sr, hop_length=hop_length, htk=True).T # (seq_len, 20) cqt = librosa.feature.chroma_cqt(y=y, sr=sr, hop_length=hop_length).T # (seq_len, 12) return np.concatenate([f0, mfcc, cqt], axis=-1) def __getTextEmbedding(self, text): # directory is fine tokenizer = BertTokenizer.from_pretrained(self.pretrainedBertPath) model = BertModel.from_pretrained(self.pretrainedBertPath) # add_special_tokens will add start and end token input_ids = torch.tensor([tokenizer.encode(text, add_special_tokens=True)]) with torch.no_grad(): last_hidden_states = model(input_ids)[0] # Models outputs are now tuples return last_hidden_states.squeeze().numpy() def __preTextforBert(self, text): tokens_a = self.tokenizer.tokenize(text,invertable=True) tokens = ["[CLS]"] + tokens_a + ["[SEP]"] segment_ids = [0] * len(tokens) input_ids = self.tokenizer.convert_tokens_to_ids(tokens) input_mask = [1] * len(input_ids) input_ids = np.expand_dims(input_ids, 1) input_mask = np.expand_dims(input_mask, 1) segment_ids = np.expand_dims(segment_ids, 1) text_bert = np.concatenate([input_ids, input_mask, segment_ids], axis=1) return text_bert def __getitem__(self, index): tmp_dir = os.path.join(self.working_dir, f'Processed/tmp-{index}') if not os.path.exists(tmp_dir): os.makedirs(tmp_dir) video_id, clip_id, text, label, annotation, mode, _ = self.df.loc[index] cur_id = video_id + '$_$' + clip_id # video video_path = os.path.join(self.working_dir, 'Raw', video_id, clip_id + '.mp4') embedding_V = self.__getVideoEmbedding(video_path, tmp_dir) seq_V = embedding_V.shape[0] # audio audio_path = os.path.join(tmp_dir, 'tmp.wav') embedding_A = self.__getAudioEmbedding(video_path, audio_path) seq_A = embedding_A.shape[0] # text embedding_T = self.__getTextEmbedding(text) text_bert = self.__preTextforBert(text) seq_T = embedding_T.shape[0] ret = { 'id': cur_id, 'audio': embedding_A, 'vision': embedding_V, 'raw_text': text, 'text': embedding_T, 'text_bert': text_bert, 'audio_lengths': seq_A, 'vision_lengths': seq_V, 'annotations': annotation, 'classification_labels': self.annotation_dict[annotation], 'regression_labels': label, 'mode': mode } # clear tmp dir to save space shutil.rmtree(tmp_dir) return ret class MDataPre(): def __init__(self, args): self.working_dir = args.working_dir # padding self.padding_mode = 'zeros' self.padding_location = 'back' def __padding(self, feature, MAX_LEN): """ mode: zero: padding with 0 normal: padding with normal distribution location: front / back """ assert self.padding_mode in ['zeros', 'normal'] assert self.padding_location in ['front', 'back'] length = feature.shape[0] if length >= MAX_LEN: return feature[:MAX_LEN, :] if self.padding_mode == "zeros": pad = np.zeros([MAX_LEN - length, feature.shape[-1]]) elif self.padding_mode == "normal": mean, std = feature.mean(), feature.std() pad = np.random.normal(mean, std, (MAX_LEN-length, feature.shape[1])) feature = np.concatenate([pad, feature], axis=0) if(self.padding_location == "front") else \ np.concatenate((feature, pad), axis=0) return feature def __paddingSequence(self, sequences): if len(sequences) == 0: return sequences feature_dim = sequences[0].shape[-1] lens = [s.shape[0] for s in sequences] # confirm length using (mean + std) final_length = int(np.mean(lens) + 3 * np.std(lens)) # padding sequences to final_length final_sequence = np.zeros([len(sequences), final_length, feature_dim]) for i, s in enumerate(sequences): if len(s) != 0: final_sequence[i] = self.__padding(s, final_length) return final_sequence def __collate_fn(self, batch): ret = {k: [] for k in batch[0].keys()} for b in batch: for k,v in b.items(): ret[k].append(v) return ret def run(self): output_path = os.path.join(self.working_dir, 'Processed/features.pkl') # load last point if os.path.exists(output_path): with open(output_path, 'rb') as f: data = pickle.load(f) last_row_idx = len(data['id']) else: data = {"id": [], "raw_text": [], "audio": [], "vision": [], "text": [], "text_bert": [], "audio_lengths": [], "vision_lengths": [], "annotations": [], "classification_labels": [], "regression_labels": [], "mode": []} last_row_idx = 0 args.df = pd.read_csv(os.path.join(self.working_dir, 'label.csv'), dtype={'clip_id': str, 'video_id': str, 'text': str}) args.df = args.df[last_row_idx:] dataloader = DataLoader(MDataPreLoader(args), batch_size=64, num_workers=8, shuffle=False, collate_fn=self.__collate_fn) isEnd = False try: with tqdm(dataloader) as td: for batch_data in td: for k, v in batch_data.items(): data[k].extend(v) isEnd = True except Exception as e: print(e) finally: try: if isEnd: # padding for item in ['audio', 'vision', 'text', 'text_bert']: data[item] = self.__paddingSequence(data[item]) # data['mode'] = list(args.df['mode']) # split train, valid, test inx_dict = { mode + '_index': [i for i, v in enumerate(data['mode']) if v == mode] for mode in ['train', 'valid', 'test'] } data.pop('mode') final_data = {k: {} for k in ['train', 'valid', 'test']} for mode in ['train', 'valid', 'test']: indexes = inx_dict[mode + '_index'] for item in data.keys(): if isinstance(data[item], list): final_data[mode][item] = [data[item][v] for v in indexes] else: final_data[mode][item] = data[item][indexes] data = final_data except Exception as e: print(e) finally: with open(output_path, 'wb') as wf: pickle.dump(data, wf, protocol = 4) print('Features are saved in %s!' %output_path) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--working_dir', type=str, default='/home/sharing/disk3/dataset/multimodal-sentiment-dataset/StandardDatasets/MOSEI', help='path to datasets') parser.add_argument('--language', type=str, default="en", help='en / cn') parser.add_argument('--openface2Path', type=str, default="/home/iyuge2/ToolKits/OpenFace/build/bin/FeatureExtraction", help='path to FeatureExtraction tool in openface2') return parser.parse_args() if __name__ == "__main__": args = parse_args() dp = MDataPre(args) dp.run()
[ "os.mkdir", "pickle.dump", "argparse.ArgumentParser", "pandas.read_csv", "numpy.mean", "pickle.load", "numpy.random.normal", "shutil.rmtree", "torch.no_grad", "librosa.feature.mfcc", "os.path.join", "numpy.std", "os.path.exists", "transformers.BertModel.from_pretrained", "librosa.feature.zero_crossing_rate", "librosa.feature.chroma_cqt", "tqdm.tqdm", "os.system", "librosa.load", "transformers.BertTokenizer.from_pretrained", "numpy.concatenate", "os.makedirs", "numpy.zeros", "numpy.expand_dims", "numpy.array" ]
[((10167, 10192), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (10190, 10192), False, 'import argparse\n'), ((1269, 1299), 'os.path.join', 'os.path.join', (['tmp_dir', '"""Faces"""'], {}), "(tmp_dir, 'Faces')\n", (1281, 1299), False, 'import os\n'), ((1308, 1335), 'os.mkdir', 'os.mkdir', (['faces_feature_dir'], {}), '(faces_feature_dir)\n', (1316, 1335), False, 'import os\n'), ((1434, 1448), 'os.system', 'os.system', (['cmd'], {}), '(cmd)\n', (1443, 1448), False, 'import os\n'), ((2079, 2097), 'numpy.array', 'np.array', (['features'], {}), '(features)\n', (2087, 2097), True, 'import numpy as np\n'), ((2313, 2327), 'os.system', 'os.system', (['cmd'], {}), '(cmd)\n', (2322, 2327), False, 'import os\n'), ((2367, 2391), 'librosa.load', 'librosa.load', (['audio_path'], {}), '(audio_path)\n', (2379, 2391), False, 'import librosa\n'), ((2816, 2856), 'numpy.concatenate', 'np.concatenate', (['[f0, mfcc, cqt]'], {'axis': '(-1)'}), '([f0, mfcc, cqt], axis=-1)\n', (2830, 2856), True, 'import numpy as np\n'), ((2950, 3004), 'transformers.BertTokenizer.from_pretrained', 'BertTokenizer.from_pretrained', (['self.pretrainedBertPath'], {}), '(self.pretrainedBertPath)\n', (2979, 3004), False, 'from transformers import BertTokenizer, BertModel\n'), ((3021, 3071), 'transformers.BertModel.from_pretrained', 'BertModel.from_pretrained', (['self.pretrainedBertPath'], {}), '(self.pretrainedBertPath)\n', (3046, 3071), False, 'from transformers import BertTokenizer, BertModel\n'), ((3719, 3747), 'numpy.expand_dims', 'np.expand_dims', (['input_ids', '(1)'], {}), '(input_ids, 1)\n', (3733, 3747), True, 'import numpy as np\n'), ((3769, 3798), 'numpy.expand_dims', 'np.expand_dims', (['input_mask', '(1)'], {}), '(input_mask, 1)\n', (3783, 3798), True, 'import numpy as np\n'), ((3821, 3851), 'numpy.expand_dims', 'np.expand_dims', (['segment_ids', '(1)'], {}), '(segment_ids, 1)\n', (3835, 3851), True, 'import numpy as np\n'), ((3873, 3933), 'numpy.concatenate', 'np.concatenate', (['[input_ids, input_mask, segment_ids]'], {'axis': '(1)'}), '([input_ids, input_mask, segment_ids], axis=1)\n', (3887, 3933), True, 'import numpy as np\n'), ((4013, 4069), 'os.path.join', 'os.path.join', (['self.working_dir', 'f"""Processed/tmp-{index}"""'], {}), "(self.working_dir, f'Processed/tmp-{index}')\n", (4025, 4069), False, 'import os\n'), ((4305, 4370), 'os.path.join', 'os.path.join', (['self.working_dir', '"""Raw"""', 'video_id', "(clip_id + '.mp4')"], {}), "(self.working_dir, 'Raw', video_id, clip_id + '.mp4')\n", (4317, 4370), False, 'import os\n'), ((4513, 4545), 'os.path.join', 'os.path.join', (['tmp_dir', '"""tmp.wav"""'], {}), "(tmp_dir, 'tmp.wav')\n", (4525, 4545), False, 'import os\n'), ((5321, 5343), 'shutil.rmtree', 'shutil.rmtree', (['tmp_dir'], {}), '(tmp_dir)\n', (5334, 5343), False, 'import shutil\n'), ((7284, 7340), 'os.path.join', 'os.path.join', (['self.working_dir', '"""Processed/features.pkl"""'], {}), "(self.working_dir, 'Processed/features.pkl')\n", (7296, 7340), False, 'import os\n'), ((7378, 7405), 'os.path.exists', 'os.path.exists', (['output_path'], {}), '(output_path)\n', (7392, 7405), False, 'import os\n'), ((1538, 1578), 'os.path.join', 'os.path.join', (['faces_feature_dir', '"""*.csv"""'], {}), "(faces_feature_dir, '*.csv')\n", (1550, 1578), False, 'import os\n'), ((1659, 1679), 'pandas.read_csv', 'pd.read_csv', (['df_path'], {}), '(df_path)\n', (1670, 1679), True, 'import pandas as pd\n'), ((2529, 2589), 'librosa.feature.zero_crossing_rate', 'librosa.feature.zero_crossing_rate', (['y'], {'hop_length': 'hop_length'}), '(y, hop_length=hop_length)\n', (2563, 2589), False, 'import librosa\n'), ((2622, 2687), 'librosa.feature.mfcc', 'librosa.feature.mfcc', ([], {'y': 'y', 'sr': 'sr', 'hop_length': 'hop_length', 'htk': '(True)'}), '(y=y, sr=sr, hop_length=hop_length, htk=True)\n', (2642, 2687), False, 'import librosa\n'), ((2720, 2781), 'librosa.feature.chroma_cqt', 'librosa.feature.chroma_cqt', ([], {'y': 'y', 'sr': 'sr', 'hop_length': 'hop_length'}), '(y=y, sr=sr, hop_length=hop_length)\n', (2746, 2781), False, 'import librosa\n'), ((3227, 3242), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (3240, 3242), False, 'import torch\n'), ((4085, 4108), 'os.path.exists', 'os.path.exists', (['tmp_dir'], {}), '(tmp_dir)\n', (4099, 4108), False, 'import os\n'), ((4122, 4142), 'os.makedirs', 'os.makedirs', (['tmp_dir'], {}), '(tmp_dir)\n', (4133, 4142), False, 'import os\n'), ((6040, 6087), 'numpy.zeros', 'np.zeros', (['[MAX_LEN - length, feature.shape[-1]]'], {}), '([MAX_LEN - length, feature.shape[-1]])\n', (6048, 6087), True, 'import numpy as np\n'), ((6287, 6325), 'numpy.concatenate', 'np.concatenate', (['[pad, feature]'], {'axis': '(0)'}), '([pad, feature], axis=0)\n', (6301, 6325), True, 'import numpy as np\n'), ((6388, 6426), 'numpy.concatenate', 'np.concatenate', (['(feature, pad)'], {'axis': '(0)'}), '((feature, pad), axis=0)\n', (6402, 6426), True, 'import numpy as np\n'), ((8061, 8104), 'os.path.join', 'os.path.join', (['self.working_dir', '"""label.csv"""'], {}), "(self.working_dir, 'label.csv')\n", (8073, 8104), False, 'import os\n'), ((6204, 6269), 'numpy.random.normal', 'np.random.normal', (['mean', 'std', '(MAX_LEN - length, feature.shape[1])'], {}), '(mean, std, (MAX_LEN - length, feature.shape[1]))\n', (6220, 6269), True, 'import numpy as np\n'), ((6719, 6732), 'numpy.mean', 'np.mean', (['lens'], {}), '(lens)\n', (6726, 6732), True, 'import numpy as np\n'), ((7477, 7491), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (7488, 7491), False, 'import pickle\n'), ((8511, 8527), 'tqdm.tqdm', 'tqdm', (['dataloader'], {}), '(dataloader)\n', (8515, 8527), False, 'from tqdm import tqdm\n'), ((1755, 1790), 'numpy.array', 'np.array', (['df.loc[i][df.columns[5:]]'], {}), '(df.loc[i][df.columns[5:]])\n', (1763, 1790), True, 'import numpy as np\n'), ((6739, 6751), 'numpy.std', 'np.std', (['lens'], {}), '(lens)\n', (6745, 6751), True, 'import numpy as np\n'), ((10034, 10067), 'pickle.dump', 'pickle.dump', (['data', 'wf'], {'protocol': '(4)'}), '(data, wf, protocol=4)\n', (10045, 10067), False, 'import pickle\n'), ((2025, 2049), 'numpy.array', 'np.array', (['local_features'], {}), '(local_features)\n', (2033, 2049), True, 'import numpy as np\n'), ((1873, 1897), 'numpy.array', 'np.array', (['local_features'], {}), '(local_features)\n', (1881, 1897), True, 'import numpy as np\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Jun 18 18:05:40 2018 Dataset Object CHECK MAX DISBALANCE OPN REPLICATION FOR MULTICLASS @author: ereyes """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np class Dataset(object): """ Constructor """ def __init__(self, data_array, data_label, batch_size): self.batch_counter = -1 self.batch_counter_eval = -1 self.batch_size = batch_size self.data_array = data_array self.data_label = data_label def _merge_with_dataset(self, array, labels): self.data_label = np.concatenate((self.data_label, labels)) self.data_array = np.concatenate((self.data_array, array)) def get_batch_images(self): batch, _ = self.get_batch() return batch def _check_first_call(self, counter): if counter == -1: return 0 return counter def get_batch(self): self.batch_counter = self._check_first_call(self.batch_counter) if self.batch_counter + self.batch_size < self.data_array.shape[0]: batch_image = self.data_array[ self.batch_counter:self.batch_counter + self.batch_size, ...] batch_label = self.data_label[ self.batch_counter:self.batch_counter + self.batch_size, ...] self.batch_counter += self.batch_size # print(get_batch.batch_counter) else: self.batch_counter = 0 self.shuffle_data() batch_image = self.data_array[ self.batch_counter:self.batch_counter + self.batch_size, ...] batch_label = self.data_label[ self.batch_counter:self.batch_counter + self.batch_size, ...] self.batch_counter += self.batch_size return batch_image, batch_label def get_batch_eval(self): self.batch_counter_eval = self._check_first_call(self.batch_counter_eval) # print(self.batch_counter_eval) if self.batch_counter_eval + self.batch_size < self.data_array.shape[0]: batch_image = self.data_array[ self.batch_counter_eval:self.batch_counter_eval + self.batch_size, ...] batch_label = self.data_label[ self.batch_counter_eval:self.batch_counter_eval + self.batch_size, ...] self.batch_counter_eval += self.batch_size # print(get_batch.batch_counter) else: left_samples = self.data_array.shape[0] - self.batch_counter_eval batch_image = self.data_array[ self.batch_counter_eval:self.batch_counter_eval + left_samples, ...] batch_label = self.data_label[ self.batch_counter_eval:self.batch_counter_eval + left_samples, ...] self.batch_counter_eval = 0 return batch_image, batch_label def shuffle_data(self): idx = np.arange(self.data_array.shape[0]) np.random.shuffle(idx) self.data_array = self.data_array[idx, ...] self.data_label = self.data_label[idx, ...] # TODO: change both values for uique functions (AVOID CODE REPLICATION) # TODO: recursively? replicate_data should be? # TODO: min_lbl_count changes on very iteration, it should stay the same or shuffle # of replicate_data cannot be def balance_data_by_replication(self): max_disbalance = self.get_max_disbalance() max_lbl_count, min_lbl_count = self.get_max_min_label_count() max_lbl, min_lbl = self.get_max_min_label() if max_disbalance == 0: return while max_disbalance != 0: if min_lbl_count > max_disbalance: self.replicate_data(min_lbl, max_disbalance) # max_disbalance = 0 else: self.replicate_data(min_lbl, min_lbl_count) # max_disbalance -= min_lbl_count max_disbalance = self.get_max_disbalance() # self.balance_data_by_replication() return def get_max_disbalance(self): max_label_count, min_label_count = self.get_max_min_label_count() return max_label_count - min_label_count def get_max_min_label_count(self): max_label, min_label = self.get_max_min_label() max_label_count = np.where(self.data_label == max_label)[0].shape[0] min_label_count = np.where(self.data_label == min_label)[0].shape[0] return max_label_count, min_label_count def get_max_min_label(self): labels = np.unique(self.data_label) labels_count = [] for j in range(labels.shape[0]): label_j_count = np.where(self.data_label == labels[j])[0].shape[0] labels_count.append(label_j_count) labels_count = np.array(labels_count) max_label = labels[np.where(labels_count == np.max(labels_count))[0][0]] min_label = labels[np.where(labels_count == np.min(labels_count))[0][0]] return max_label, min_label def replicate_data(self, label, samples_number): # print("%i samples replicated of class %i" %(samples_number,label)) label_idx = np.where(self.data_label == label)[0] # np.random.shuffle(label_idx) label_idx = label_idx[0:samples_number] replicated_data_array = self.data_array[label_idx, ...] self._merge_with_dataset(replicated_data_array, label) def get_array_from_label(self, label): label_idx = np.where(self.data_label == label)[0] return self.data_array[label_idx]
[ "numpy.random.shuffle", "numpy.concatenate", "numpy.max", "numpy.where", "numpy.array", "numpy.arange", "numpy.min", "numpy.unique" ]
[((2965, 3000), 'numpy.arange', 'np.arange', (['self.data_array.shape[0]'], {}), '(self.data_array.shape[0])\n', (2974, 3000), True, 'import numpy as np\n'), ((3003, 3025), 'numpy.random.shuffle', 'np.random.shuffle', (['idx'], {}), '(idx)\n', (3020, 3025), True, 'import numpy as np\n'), ((4385, 4411), 'numpy.unique', 'np.unique', (['self.data_label'], {}), '(self.data_label)\n', (4394, 4411), True, 'import numpy as np\n'), ((4596, 4618), 'numpy.array', 'np.array', (['labels_count'], {}), '(labels_count)\n', (4604, 4618), True, 'import numpy as np\n'), ((647, 688), 'numpy.concatenate', 'np.concatenate', (['(self.data_label, labels)'], {}), '((self.data_label, labels))\n', (661, 688), True, 'import numpy as np\n'), ((711, 751), 'numpy.concatenate', 'np.concatenate', (['(self.data_array, array)'], {}), '((self.data_array, array))\n', (725, 751), True, 'import numpy as np\n'), ((4936, 4970), 'numpy.where', 'np.where', (['(self.data_label == label)'], {}), '(self.data_label == label)\n', (4944, 4970), True, 'import numpy as np\n'), ((5219, 5253), 'numpy.where', 'np.where', (['(self.data_label == label)'], {}), '(self.data_label == label)\n', (5227, 5253), True, 'import numpy as np\n'), ((4178, 4216), 'numpy.where', 'np.where', (['(self.data_label == max_label)'], {}), '(self.data_label == max_label)\n', (4186, 4216), True, 'import numpy as np\n'), ((4249, 4287), 'numpy.where', 'np.where', (['(self.data_label == min_label)'], {}), '(self.data_label == min_label)\n', (4257, 4287), True, 'import numpy as np\n'), ((4488, 4526), 'numpy.where', 'np.where', (['(self.data_label == labels[j])'], {}), '(self.data_label == labels[j])\n', (4496, 4526), True, 'import numpy as np\n'), ((4666, 4686), 'numpy.max', 'np.max', (['labels_count'], {}), '(labels_count)\n', (4672, 4686), True, 'import numpy as np\n'), ((4741, 4761), 'numpy.min', 'np.min', (['labels_count'], {}), '(labels_count)\n', (4747, 4761), True, 'import numpy as np\n')]
import networkx as nx import matplotlib.pyplot as plt import pylab import pickle import numpy as np import common def draw_transition_table(transition_table, cluster_centers, meanscreen, tsne ,color, black_edges=None, red_edges=None, title=None): G = nx.DiGraph() edge_colors = [] if red_edges is not None: for e in red_edges: G.add_edges_from([e], weight=np.round(transition_table[e[0],e[1]]*100)/100) edge_colors.append('red') if black_edges is not None: if red_edges is not None: black_edges = list(set(black_edges)-set(red_edges)) for e in black_edges: G.add_edges_from([e], weight=np.round(transition_table[e[0],e[1]]*100)/100) edge_colors.append('black') edge_labels=dict([((u,v,),d['weight']) for u,v,d in G.edges(data=True)]) node_labels = {node:node for node in G.nodes()}; counter=0 for key in node_labels.keys(): node_labels[key] = counter counter+=1 if title is None: fig = plt.figure('SMDP') fig.clear() else: fig = plt.figure(title) plt.scatter(tsne[:,0],tsne[:,1],s= np.ones(tsne.shape[0])*2,facecolor=color, edgecolor='none') pos = cluster_centers[:,0:2] nx.draw_networkx_edge_labels(G,pos,edge_labels=edge_labels,label_pos=0.65,font_size=9) nx.draw_networkx_labels(G, pos, labels=node_labels,font_color='w',font_size=8) nx.draw(G,pos,cmap=plt.cm.brg,edge_color=edge_colors) ######Present images on nodes ax = plt.subplot(111) plt.axis('off') trans = ax.transData.transform trans2 = fig.transFigure.inverted().transform cut = 1.01 xmax = cut * max(tsne[:,0]) ymax = cut * max(tsne[:,1]) xmin = cut * min(tsne[:,0]) ymin = cut * min(tsne[:,1]) plt.xlim(xmin, xmax) plt.ylim(ymin, ymax) h = 70.0 w = 70.0 counter= 0 for node in G: xx, yy = trans(pos[node]) # axes coordinates xa, ya = trans2((xx, yy)) # this is the image size piesize_1 = (300.0 / (h*80)) piesize_2 = (300.0 / (w*80)) p2_2 = piesize_2 / 2 p2_1 = piesize_1 / 2 a = plt.axes([xa - p2_2, ya - p2_1, piesize_2, piesize_1]) G.node[node]['image'] = meanscreen[counter] #display it a.imshow(G.node[node]['image']) a.set_title(node_labels[counter]) #turn off the axis from minor plot a.axis('off') counter+=1 plt.draw() def draw_transition_table_no_image(transition_table,cluster_centers): G = nx.DiGraph() G2 = nx.DiGraph() # print transition_table.sum(axis=1) transition_table = (transition_table.transpose()/transition_table.sum(axis=1)).transpose() transition_table[np.isnan(transition_table)]=0 # print(transition_table) # transition_table = (transition_table.transpose()/transition_table.sum(axis=1)).transpose() # print transition_table # print transition_table.sum(axis=0) # assert(np.all(transition_table.sum(axis=0)!=0)) transition_table[transition_table<0.1]=0 pos = cluster_centers[:,0:2] m,n = transition_table.shape for i in range(m): for j in range(n): if transition_table[i,j]!=0: G.add_edges_from([(i, j)], weight=np.round(transition_table[i,j]*100)/100) G2.add_edges_from([(i, j)], weight=np.round(transition_table[i,j]*100)/100) values = cluster_centers[:,2] red_edges = [] edges_sizes =[] for i in range(n): trans = transition_table[i,:] indices = (trans!=0) index = np.argmax(cluster_centers[indices,2]) counter = 0 for j in range(len(indices)): if indices[j]: if counter == index: ind = j break else: counter+=1 edges_sizes.append(ind) red_edges.append((i,ind)) # print(red_edges) # sizes = 3000*cluster_centers[:,3] sizes = np.ones_like(values)*500 edge_labels=dict([((u,v,),d['weight']) for u,v,d in G.edges(data=True)]) edge_colors = ['black' for edge in G.edges()] # edge_colors = ['black' if not edge in red_edges else 'red' for edge in G.edges()] node_labels = {node:node for node in G.nodes()}; counter=0 for key in node_labels.keys(): # node_labels[key] = np.round(100*cluster_centers[counter,3])/100 node_labels[key] = counter counter+=1 fig = plt.figure() nx.draw_networkx_edge_labels(G,pos,edge_labels=edge_labels,label_pos=0.65,font_size=9) nx.draw_networkx_labels(G, pos, labels=node_labels,font_color='w',font_size=8) nx.draw(G,pos, node_color = values,cmap=plt.cm.brg, node_size=np.round(sizes),edge_color=edge_colors,edge_cmap=plt.cm.Reds) ######Present images on nodes # plt.show() # def test(): gamename = 'breakout' #breakout pacman transition_table = pickle.load(file('/home/tom/git/graying_the_box/data/'+gamename+'/120k' + '/knn/' + 'transition_table.bin')) cluster_centers = pickle.load(file('/home/tom/git/graying_the_box/data/'+gamename+'/120k' + '/knn/' + 'cluster_centers.bin')) cluster_std = pickle.load(file('/home/tom/git/graying_the_box/data/'+gamename+'/120k' + '/knn/' + 'cluster_std.bin')) cluster_med = pickle.load(file('/home/tom/git/graying_the_box/data/'+gamename+'/120k' + '/knn/' + 'cluster_med.bin')) cluster_min = pickle.load(file('/home/tom/git/graying_the_box/data/'+gamename+'/120k' + '/knn/' + 'cluster_min.bin')) cluster_max = pickle.load(file('/home/tom/git/graying_the_box/data/'+gamename+'/120k' + '/knn/' + 'cluster_max.bin')) meanscreen = pickle.load(file('/home/tom/git/graying_the_box/data/'+gamename+'/120k' + '/knn/' + 'meanscreen.bin')) cluster_time = pickle.load(file('/home/tom/git/graying_the_box/data/'+gamename+'/120k' + '/knn/' + 'cluster_time.bin')) tsne = common.load_hdf5('lowd_activations', 'data/' + 'breakout' + '/'+'120k/') q_hdf5 = common.load_hdf5('qvals', 'data/' + 'breakout' + '/'+'120k/') num_frames = 120000 V = np.zeros(shape=(num_frames)) for i in range(0,num_frames): V[i] = max(q_hdf5[i]) V = V/V.max() draw_transition_table(transition_table,cluster_centers,meanscreen,cluster_time,tsne,V) plt.show() # test() # stdscreen = pickle.load(file('/home/tom/git/graying_the_box/data/'+gamename+'/120k' + '/knn/' + 'stdscreen.bin')) # # # a = 1 # b = 0 # c = 0 # screen = a*meanscreen + c*stdscreen # facecolor = self.color, # edgecolor='none',picker=5) # draw_transition_table_no_image(transition_table,cluster_centers) # transition_table = pickle.load(file('/home/tom/git/graying_the_box/data/seaquest/120k' + '/knn/' + 'transition_table.bin')) # transition_table[transition_table<0.1]=0 # cluster_centers = pickle.load(file('/home/tom/git/graying_the_box/data/seaquest/120k' + '/knn/' + 'cluster_centers.bin')) # pos2 = np.zeros(shape=(cluster_centers.shape[0],2)) # pos2[:,0] = cluster_time[:,0] # pos2[:,1] = cluster_centers[:,1] # plt.figure() # nx.draw_networkx_edge_labels(G2,pos2,edge_labels=edge_labels,label_pos=0.8,font_size=8) # nx.draw_networkx_labels(G2, pos2, labels=node_labels,font_color='w',font_size=8) # nx.draw(G2,pos2, node_color = values,cmap=plt.cm.brg, node_size=np.round(sizes),edge_color=edge_colors,edge_cmap=plt.cm.Reds)
[ "numpy.argmax", "matplotlib.pyplot.axes", "numpy.ones", "numpy.isnan", "matplotlib.pyplot.figure", "networkx.draw_networkx_labels", "networkx.draw_networkx_edge_labels", "numpy.round", "matplotlib.pyplot.draw", "common.load_hdf5", "matplotlib.pyplot.show", "numpy.ones_like", "matplotlib.pyplot.ylim", "networkx.draw", "networkx.DiGraph", "matplotlib.pyplot.subplot", "matplotlib.pyplot.xlim", "numpy.zeros", "matplotlib.pyplot.axis" ]
[((257, 269), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (267, 269), True, 'import networkx as nx\n'), ((1258, 1353), 'networkx.draw_networkx_edge_labels', 'nx.draw_networkx_edge_labels', (['G', 'pos'], {'edge_labels': 'edge_labels', 'label_pos': '(0.65)', 'font_size': '(9)'}), '(G, pos, edge_labels=edge_labels, label_pos=\n 0.65, font_size=9)\n', (1286, 1353), True, 'import networkx as nx\n'), ((1349, 1434), 'networkx.draw_networkx_labels', 'nx.draw_networkx_labels', (['G', 'pos'], {'labels': 'node_labels', 'font_color': '"""w"""', 'font_size': '(8)'}), "(G, pos, labels=node_labels, font_color='w', font_size=8\n )\n", (1372, 1434), True, 'import networkx as nx\n'), ((1432, 1488), 'networkx.draw', 'nx.draw', (['G', 'pos'], {'cmap': 'plt.cm.brg', 'edge_color': 'edge_colors'}), '(G, pos, cmap=plt.cm.brg, edge_color=edge_colors)\n', (1439, 1488), True, 'import networkx as nx\n'), ((1531, 1547), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(111)'], {}), '(111)\n', (1542, 1547), True, 'import matplotlib.pyplot as plt\n'), ((1552, 1567), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (1560, 1567), True, 'import matplotlib.pyplot as plt\n'), ((1800, 1820), 'matplotlib.pyplot.xlim', 'plt.xlim', (['xmin', 'xmax'], {}), '(xmin, xmax)\n', (1808, 1820), True, 'import matplotlib.pyplot as plt\n'), ((1825, 1845), 'matplotlib.pyplot.ylim', 'plt.ylim', (['ymin', 'ymax'], {}), '(ymin, ymax)\n', (1833, 1845), True, 'import matplotlib.pyplot as plt\n'), ((2478, 2488), 'matplotlib.pyplot.draw', 'plt.draw', ([], {}), '()\n', (2486, 2488), True, 'import matplotlib.pyplot as plt\n'), ((2569, 2581), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (2579, 2581), True, 'import networkx as nx\n'), ((2591, 2603), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (2601, 2603), True, 'import networkx as nx\n'), ((4504, 4516), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (4514, 4516), True, 'import matplotlib.pyplot as plt\n'), ((4521, 4616), 'networkx.draw_networkx_edge_labels', 'nx.draw_networkx_edge_labels', (['G', 'pos'], {'edge_labels': 'edge_labels', 'label_pos': '(0.65)', 'font_size': '(9)'}), '(G, pos, edge_labels=edge_labels, label_pos=\n 0.65, font_size=9)\n', (4549, 4616), True, 'import networkx as nx\n'), ((4612, 4697), 'networkx.draw_networkx_labels', 'nx.draw_networkx_labels', (['G', 'pos'], {'labels': 'node_labels', 'font_color': '"""w"""', 'font_size': '(8)'}), "(G, pos, labels=node_labels, font_color='w', font_size=8\n )\n", (4635, 4697), True, 'import networkx as nx\n'), ((5935, 6009), 'common.load_hdf5', 'common.load_hdf5', (['"""lowd_activations"""', "('data/' + 'breakout' + '/' + '120k/')"], {}), "('lowd_activations', 'data/' + 'breakout' + '/' + '120k/')\n", (5951, 6009), False, 'import common\n'), ((6021, 6084), 'common.load_hdf5', 'common.load_hdf5', (['"""qvals"""', "('data/' + 'breakout' + '/' + '120k/')"], {}), "('qvals', 'data/' + 'breakout' + '/' + '120k/')\n", (6037, 6084), False, 'import common\n'), ((6125, 6151), 'numpy.zeros', 'np.zeros', ([], {'shape': 'num_frames'}), '(shape=num_frames)\n', (6133, 6151), True, 'import numpy as np\n'), ((6332, 6342), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6340, 6342), True, 'import matplotlib.pyplot as plt\n'), ((1040, 1058), 'matplotlib.pyplot.figure', 'plt.figure', (['"""SMDP"""'], {}), "('SMDP')\n", (1050, 1058), True, 'import matplotlib.pyplot as plt\n'), ((1103, 1120), 'matplotlib.pyplot.figure', 'plt.figure', (['title'], {}), '(title)\n', (1113, 1120), True, 'import matplotlib.pyplot as plt\n'), ((2181, 2235), 'matplotlib.pyplot.axes', 'plt.axes', (['[xa - p2_2, ya - p2_1, piesize_2, piesize_1]'], {}), '([xa - p2_2, ya - p2_1, piesize_2, piesize_1])\n', (2189, 2235), True, 'import matplotlib.pyplot as plt\n'), ((2763, 2789), 'numpy.isnan', 'np.isnan', (['transition_table'], {}), '(transition_table)\n', (2771, 2789), True, 'import numpy as np\n'), ((3611, 3649), 'numpy.argmax', 'np.argmax', (['cluster_centers[indices, 2]'], {}), '(cluster_centers[indices, 2])\n', (3620, 3649), True, 'import numpy as np\n'), ((4019, 4039), 'numpy.ones_like', 'np.ones_like', (['values'], {}), '(values)\n', (4031, 4039), True, 'import numpy as np\n'), ((4757, 4772), 'numpy.round', 'np.round', (['sizes'], {}), '(sizes)\n', (4765, 4772), True, 'import numpy as np\n'), ((1161, 1183), 'numpy.ones', 'np.ones', (['tsne.shape[0]'], {}), '(tsne.shape[0])\n', (1168, 1183), True, 'import numpy as np\n'), ((391, 435), 'numpy.round', 'np.round', (['(transition_table[e[0], e[1]] * 100)'], {}), '(transition_table[e[0], e[1]] * 100)\n', (399, 435), True, 'import numpy as np\n'), ((679, 723), 'numpy.round', 'np.round', (['(transition_table[e[0], e[1]] * 100)'], {}), '(transition_table[e[0], e[1]] * 100)\n', (687, 723), True, 'import numpy as np\n'), ((3298, 3336), 'numpy.round', 'np.round', (['(transition_table[i, j] * 100)'], {}), '(transition_table[i, j] * 100)\n', (3306, 3336), True, 'import numpy as np\n'), ((3390, 3428), 'numpy.round', 'np.round', (['(transition_table[i, j] * 100)'], {}), '(transition_table[i, j] * 100)\n', (3398, 3428), True, 'import numpy as np\n')]
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=import-error,no-name-in-module,no-member from test.utils import LinearOpr import megengine as mge import megengine.module as M import numpy as np from megengine.core.tensor import dtype from megengine.core.tensor.dtype import _builtin_quant_dtypes from megengine.module.quant_dequant import QuantStub from megengine.quantization.quantize import quantize_qat from megengine.quantization.utils import create_qparams from megengine.traced_module.fake_quant import FakeQuantize from .test_caffe import _test_convert_result from .tm_utils import get_traced_module max_err = 1e-6 def get_qat_net(inp_dtype, net, num_inp=1, shape=(1, 16, 32, 32)): qat_net = quantize_qat(net) inps = [] for _ in range(num_inp): data1 = mge.tensor(np.random.random(shape)) * 16 data1 = data1.astype(inp_dtype) inp1 = mge.tensor(dtype.convert_from_qint8(data1.numpy())) inp1.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp1.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] inps.append(inp1) return qat_net, inps def get_qat_inputs_quint8(inp_dtype, num_inp=1, shape=(1, 16, 384, 512)): inps = [] for _ in range(num_inp): data1 = mge.tensor(np.random.random(shape)) * 16 data1 = data1.astype(inp_dtype) inp1 = mge.tensor(dtype.convert_from_quint8(data1.numpy())) inp1.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp1.qparams.zero_point = mge.tensor(dtype.get_zero_point(inp_dtype)) inp1.qparams.dtype_meta = dtype._builtin_quant_dtypes["quint8"] inps.append(inp1) return inps def test_linear(): net = LinearOpr() inp_dtype = dtype.qint8(16.0 / 128.0) qat_net, inps = get_qat_net(inp_dtype, net, shape=(10, 100)) traced_module, tm_result = get_traced_module(qat_net, inps[0]) inp = inps[0].astype(inp_dtype) _test_convert_result(inp, traced_module, tm_result, max_err, require_quantize=False) def test_add(): class ElemwiseOpr(M.Module): def __init__(self,): super().__init__() self.data = np.ones((2, 3, 224, 224)).astype(np.float32) self.data1 = np.random.random((1, 3, 1, 1)).astype(np.float32) self.add1 = M.Elemwise("add") self.add2 = M.Elemwise("add") self.add3 = M.Elemwise("add") scale = mge.tensor((16.0 / 128.0)) self.quant_stub = QuantStub() self.quant_stub.act_fake_quant = FakeQuantize( _builtin_quant_dtypes["qint8"] ) self.quant_stub.act_fake_quant.set_qparams( create_qparams( dtype_meta=_builtin_quant_dtypes["qint8"], scale=scale, zero_point=None, ) ) self.quant_stub1 = QuantStub() self.quant_stub1.act_fake_quant = FakeQuantize( _builtin_quant_dtypes["qint8"] ) self.quant_stub1.act_fake_quant.set_qparams( create_qparams( dtype_meta=_builtin_quant_dtypes["qint8"], scale=scale, zero_point=None, ) ) def forward(self, a): n = self.quant_stub(mge.tensor(np.float32(10))) data1 = self.quant_stub1(mge.tensor(self.data1)) x = self.add1(a, n) y = self.add2(a, data1) z = self.add3(x, y) return z net = ElemwiseOpr() inp_dtype = dtype.qint8(16.0 / 128.0) qat_net, inps = get_qat_net(inp_dtype, net, shape=(1, 3, 1, 1)) traced_module, tm_result = get_traced_module(qat_net, inps[0]) print(traced_module.flatten().graph) inp = inps[0].astype(inp_dtype) _test_convert_result( inp, traced_module, tm_result, max_err, require_quantize=False, split_conv_relu=True, ) def test_det_model(): net = mge.load("models_fire_det.fix_batch.fuse_scale_cpu.pkl") inp_dtype = dtype.qint8(16.0 / 128.0) qat_net, inps = get_qat_net(inp_dtype, net, shape=(1, 3, 512, 512)) traced_module, tm_result = get_traced_module(qat_net, inps[0]) inp = inps[0].astype(inp_dtype) _test_convert_result(inp, traced_module, tm_result, max_err, require_quantize=False) def test_snpe_model_8f(): model = "8w16f_backbone.tm" net = mge.load(model) print(net.flatten().graph) inp_dtype = dtype.quint8(16.0 / 128.0, 128) inps = get_qat_inputs_quint8(inp_dtype, num_inp=2, shape=(1, 16, 384, 512)) tm_result = dict(zip(net.graph.outputs, net(*inps))) _test_convert_result( inps, net, tm_result, max_err, input_data_type="quint8", input_scales=inps[0].qparams.scale, input_zero_points=inps[0].qparams.zero_point, require_quantize=False, param_fake_quant=True, split_conv_relu=True, input_name=["inp", "prev"], )
[ "megengine.core.tensor.dtype.get_scale", "megengine.quantization.quantize.quantize_qat", "megengine.tensor", "numpy.float32", "numpy.ones", "megengine.core.tensor.dtype.get_zero_point", "megengine.core.tensor.dtype.qint8", "test.utils.LinearOpr", "megengine.core.tensor.dtype.quint8", "megengine.module.quant_dequant.QuantStub", "numpy.random.random", "megengine.quantization.utils.create_qparams", "megengine.module.Elemwise", "megengine.traced_module.fake_quant.FakeQuantize", "megengine.load" ]
[((1033, 1050), 'megengine.quantization.quantize.quantize_qat', 'quantize_qat', (['net'], {}), '(net)\n', (1045, 1050), False, 'from megengine.quantization.quantize import quantize_qat\n'), ((2023, 2034), 'test.utils.LinearOpr', 'LinearOpr', ([], {}), '()\n', (2032, 2034), False, 'from test.utils import LinearOpr\n'), ((2051, 2076), 'megengine.core.tensor.dtype.qint8', 'dtype.qint8', (['(16.0 / 128.0)'], {}), '(16.0 / 128.0)\n', (2062, 2076), False, 'from megengine.core.tensor import dtype\n'), ((3910, 3935), 'megengine.core.tensor.dtype.qint8', 'dtype.qint8', (['(16.0 / 128.0)'], {}), '(16.0 / 128.0)\n', (3921, 3935), False, 'from megengine.core.tensor import dtype\n'), ((4348, 4404), 'megengine.load', 'mge.load', (['"""models_fire_det.fix_batch.fuse_scale_cpu.pkl"""'], {}), "('models_fire_det.fix_batch.fuse_scale_cpu.pkl')\n", (4356, 4404), True, 'import megengine as mge\n'), ((4421, 4446), 'megengine.core.tensor.dtype.qint8', 'dtype.qint8', (['(16.0 / 128.0)'], {}), '(16.0 / 128.0)\n', (4432, 4446), False, 'from megengine.core.tensor import dtype\n'), ((4781, 4796), 'megengine.load', 'mge.load', (['model'], {}), '(model)\n', (4789, 4796), True, 'import megengine as mge\n'), ((4844, 4875), 'megengine.core.tensor.dtype.quint8', 'dtype.quint8', (['(16.0 / 128.0)', '(128)'], {}), '(16.0 / 128.0, 128)\n', (4856, 4875), False, 'from megengine.core.tensor import dtype\n'), ((1298, 1324), 'megengine.core.tensor.dtype.get_scale', 'dtype.get_scale', (['inp_dtype'], {}), '(inp_dtype)\n', (1313, 1324), False, 'from megengine.core.tensor import dtype\n'), ((1772, 1798), 'megengine.core.tensor.dtype.get_scale', 'dtype.get_scale', (['inp_dtype'], {}), '(inp_dtype)\n', (1787, 1798), False, 'from megengine.core.tensor import dtype\n'), ((1845, 1876), 'megengine.core.tensor.dtype.get_zero_point', 'dtype.get_zero_point', (['inp_dtype'], {}), '(inp_dtype)\n', (1865, 1876), False, 'from megengine.core.tensor import dtype\n'), ((2613, 2630), 'megengine.module.Elemwise', 'M.Elemwise', (['"""add"""'], {}), "('add')\n", (2623, 2630), True, 'import megengine.module as M\n'), ((2655, 2672), 'megengine.module.Elemwise', 'M.Elemwise', (['"""add"""'], {}), "('add')\n", (2665, 2672), True, 'import megengine.module as M\n'), ((2697, 2714), 'megengine.module.Elemwise', 'M.Elemwise', (['"""add"""'], {}), "('add')\n", (2707, 2714), True, 'import megengine.module as M\n'), ((2736, 2760), 'megengine.tensor', 'mge.tensor', (['(16.0 / 128.0)'], {}), '(16.0 / 128.0)\n', (2746, 2760), True, 'import megengine as mge\n'), ((2793, 2804), 'megengine.module.quant_dequant.QuantStub', 'QuantStub', ([], {}), '()\n', (2802, 2804), False, 'from megengine.module.quant_dequant import QuantStub\n'), ((2850, 2894), 'megengine.traced_module.fake_quant.FakeQuantize', 'FakeQuantize', (["_builtin_quant_dtypes['qint8']"], {}), "(_builtin_quant_dtypes['qint8'])\n", (2862, 2894), False, 'from megengine.traced_module.fake_quant import FakeQuantize\n'), ((3209, 3220), 'megengine.module.quant_dequant.QuantStub', 'QuantStub', ([], {}), '()\n', (3218, 3220), False, 'from megengine.module.quant_dequant import QuantStub\n'), ((3267, 3311), 'megengine.traced_module.fake_quant.FakeQuantize', 'FakeQuantize', (["_builtin_quant_dtypes['qint8']"], {}), "(_builtin_quant_dtypes['qint8'])\n", (3279, 3311), False, 'from megengine.traced_module.fake_quant import FakeQuantize\n'), ((1121, 1144), 'numpy.random.random', 'np.random.random', (['shape'], {}), '(shape)\n', (1137, 1144), True, 'import numpy as np\n'), ((1594, 1617), 'numpy.random.random', 'np.random.random', (['shape'], {}), '(shape)\n', (1610, 1617), True, 'import numpy as np\n'), ((2997, 3088), 'megengine.quantization.utils.create_qparams', 'create_qparams', ([], {'dtype_meta': "_builtin_quant_dtypes['qint8']", 'scale': 'scale', 'zero_point': 'None'}), "(dtype_meta=_builtin_quant_dtypes['qint8'], scale=scale,\n zero_point=None)\n", (3011, 3088), False, 'from megengine.quantization.utils import create_qparams\n'), ((3415, 3506), 'megengine.quantization.utils.create_qparams', 'create_qparams', ([], {'dtype_meta': "_builtin_quant_dtypes['qint8']", 'scale': 'scale', 'zero_point': 'None'}), "(dtype_meta=_builtin_quant_dtypes['qint8'], scale=scale,\n zero_point=None)\n", (3429, 3506), False, 'from megengine.quantization.utils import create_qparams\n'), ((3724, 3746), 'megengine.tensor', 'mge.tensor', (['self.data1'], {}), '(self.data1)\n', (3734, 3746), True, 'import megengine as mge\n'), ((2469, 2494), 'numpy.ones', 'np.ones', (['(2, 3, 224, 224)'], {}), '((2, 3, 224, 224))\n', (2476, 2494), True, 'import numpy as np\n'), ((2539, 2569), 'numpy.random.random', 'np.random.random', (['(1, 3, 1, 1)'], {}), '((1, 3, 1, 1))\n', (2555, 2569), True, 'import numpy as np\n'), ((3670, 3684), 'numpy.float32', 'np.float32', (['(10)'], {}), '(10)\n', (3680, 3684), True, 'import numpy as np\n')]
# System import os import sys from pprint import pprint as pp import argparse import logging import multiprocessing as mp from functools import partial from time import time import shutil # Externals import yaml import numpy as np import pandas as pd import torch import torch.nn as nn from torch_scatter import scatter_add import scipy as sp from sklearn.cluster import DBSCAN # Locals # sys.path.append('GraphLearning/src') from GraphLearning.src.trainers import get_trainer from Seeding.src.utils.data_utils import load_config_dir, load_summaries, get_seed_data_loader if torch.cuda.is_available(): DEVICE='cuda' else: DEVICE='cpu' def load_triplets(test_loader, filelist): graph_dataset = test_loader.dataset graph_indices = np.array([g.i for g in graph_dataset]) filelist = np.array(filelist) graph_names = filelist[graph_indices] return graph_dataset, graph_names def save_triplet_hitlist(triplet_data, threshold, output_dir): e, graph_name, o = triplet_data g_ID = np.load(graph_name[:-4] + "_ID.npz", allow_pickle=True)["I"] triplet_preds = np.hstack([g_ID[:,e[0,o > threshold]], g_ID[:,e[1,o > threshold]]]).T # triplet_IDs = np.hstack([g_ID[:,e[0,:]].T, g_ID[:,e[1,:]].T])[:,[0,1,3]] # triplet_preds = triplet_IDs[o > threshold] o_preds = np.hstack([o[o > threshold], o[o > threshold]]).T # print(triplet_preds.shape, o_preds.shape) triplet_list = np.c_[triplet_preds.astype(np.int64), o_preds] filename = os.path.join(output_dir, os.path.splitext(os.path.basename(graph_name))[0]) np.save(filename, triplet_list) def get_edge_scores(load_path, triplet_artifacts, n_tasks, task): """ - Takes config info for triplet training dataset (different from doublet training dataset), - Runs the dataset through the trained doublet network, - Returns edge scores with same indices as edge network input """ # Load configs config = load_config_dir(triplet_artifacts) logging.info('Inferring triplets on model configuration:') logging.info(config) # Find the best epoch summaries = load_summaries(config) best_idx = summaries.valid_loss.idxmin() summaries.loc[[best_idx]] # Build the trainer and load best checkpoint task_gpu = 0 if DEVICE=='cuda' else None trainer = get_trainer(output_dir=config['output_dir'], gpu=task_gpu, **config['trainer']) trainer.build_model(optimizer_config=config['optimizer'], **config['model']) best_epoch = summaries.epoch.loc[best_idx] trainer.load_checkpoint(checkpoint_id=best_epoch) logging.info("With weight system:") logging.info(trainer.model) logging.info("On device:") logging.info(trainer.device) # Load the test dataset test_loader, filelist = get_seed_data_loader(load_path, n_tasks, task) # Apply the model test_preds, test_targets = trainer.device_predict(test_loader) print("Graph prediction complete") #GET Hit ID data here and GRAPH NAMES graph_dataset, graph_names = load_triplets(test_loader, filelist) return test_preds, graph_dataset, graph_names def combine_event(event_name, split_names): """ Concatenates the triplet list of each subgraph """ total_triplets = np.empty((0,3)) for i in np.where(split_names[:,0] == event_name)[0]: triplet_list = np.load(str(split_names[i,0]) + "_" + str(split_names[i,1]), allow_pickle=True) total_triplets = np.append(total_triplets, triplet_list, axis=0) return total_triplets def cluster(e_csr_bi, epsilon): clustering = DBSCAN(eps=epsilon, metric="precomputed", min_samples=1).fit_predict(e_csr_bi) track_labels = np.vstack([np.unique(e_csr_bi.tocoo().row), clustering[np.unique(e_csr_bi.tocoo().row)]]) track_labels = pd.DataFrame(track_labels.T) track_labels.columns = ["hit_id", "track_id"] # Add TrackML scoring here and print return track_labels def convert_to_bidirectional(e_csr): # Invert to treat score as an inverse distance e_csr.data = 1 - e_csr.data e_csr_bi = sp.sparse.coo_matrix((np.hstack([e_csr.tocoo().data, e_csr.tocoo().data]), np.hstack([np.vstack([e_csr.tocoo().row, e_csr.tocoo().col]), np.vstack([e_csr.tocoo().col, e_csr.tocoo().row])]))) return e_csr_bi def triplets_to_doublets(triplet_edges, triplet_scores, label_cut): e_doublet_coo = sp.sparse.coo_matrix((triplet_edges.max()+1, triplet_edges.max()+1)) dok = sp.sparse.dok_matrix((e_doublet_coo.shape), dtype=e_doublet_coo.dtype) dok._update(zip(zip(triplet_edges[:,0], triplet_edges[:,1]), [1]*triplet_edges.shape[0])) # Could be converted to actual scores e_csr = dok.tocsr() return e_csr def save_labels(track_labels, event_name, output_dir): label_filename = os.path.join(output_dir, event_name) np.save(label_filename, track_labels) # def recombine_triplet_graphs(split_names, graph_dataset, test_preds, n_phi_segments): # # for file_base in np.unique(split_names[:,0]): # # Needs to load data as in combine_event() # total_e = np.empty((2,0), dtype="int64") # total_o = np.empty(0, dtype="float64") # total_hid = np.empty((2,0), dtype="int64") # total_pid = np.empty((1,0), dtype="int64") # total_X = np.empty((0,7), dtype="float64") # for i in np.where(split_names[:,0] == file_base)[0]: # e_trip = graph_dataset[i].edge_index.numpy() # scores = test_preds[i].numpy() # hid = np.load(split_names[i,0] + "_" + split_names[i,1] + "_ID.npz", allow_pickle=True)["I"] # pid = np.load(split_names[i,0] + "_" + split_names[i,1] + "_ID.npz", allow_pickle=True)["pid"] # total_e = np.append(total_e, e_trip + total_hid.shape[1], axis=1) # total_o = np.append(total_o, scores) # total_hid = np.append(total_hid, hid, axis=1) # total_pid = np.append(total_pid, pid) # X = graph_dataset[i].x.numpy() # X[:,1] = X[:,1] - n_phi_segments + 1 + delta*int(split_names[i,1]) #Is this right?? # X[X[:,1] < (-n_phi_segments), 1] += 2*n_phi_segments # X[X[:,1] > n_phi_segments, 1] -= 2*n_phi_segments # X[:,1] = X[:,1] / n_phi_segments # Renormalise # X[:,4] = X[:,4] - n_phi_segments + 1 + delta*int(split_names[i,1]) #Is this right?? # X[X[:,4] < (-n_phi_segments), 1] += 2*n_phi_segments # X[X[:,4] > n_phi_segments, 1] -= 2*n_phi_segments # X[:,4] = X[:,4] / n_phi_segments # Renormalise # total_X = np.vstack([total_X, graph_dataset[i].x.numpy()]) # return total_X, total_e, total_o, total_hid, total_pid def process_event(event_name, split_names, output_dir, label_cut, epsilon): # Recombine triplet graphs by loading all files in event total_triplets = combine_event(event_name, split_names) triplet_edges = total_triplets[:,:2].T.astype(dtype='int64') triplet_scores = total_triplets[:,2].T # Convert triplets to doublets e_csr = triplets_to_doublets(triplet_edges, triplet_scores, label_cut) # Cluster and produce track list e_csr_bi = convert_to_bidirectional(e_csr) # Save track labels track_labels = cluster(e_csr_bi, epsilon) save_labels(track_labels, event_name, output_dir) def process_data(save_path, load_path, triplet_artifacts, label_threshold, epsilon, n_tasks, task): logging.info("Running inference on triplet graphs") # Calculate edge scores from best doublet model checkpoint edge_scores, graph_dataset, graph_names = get_edge_scores(load_path, triplet_artifacts, n_tasks, task) triplet_data = np.array([[gi.edge_index.numpy(), graph_name, oi.numpy()] for gi, graph_name, oi in zip(graph_dataset, graph_names, edge_scores)]) logging.info("Inference complete") # SAVE TRIPLET HITLIST temp_dir = os.path.join(save_path, "temp") if not os.path.exists(temp_dir): os.makedirs(temp_dir, exist_ok=True) with mp.Pool(processes=None) as pool: process_fn = partial(save_triplet_hitlist, threshold=label_threshold, output_dir=temp_dir) pool.map(process_fn, triplet_data) logging.info("All files saved") if task == 0: # IS THIS THE CORRECT LENGTH??? triplet_data_length = len(triplet_data) while(len(os.listdir(temp_dir)) < triplet_data_length): print("Waiting") time.sleep(10) # Want to wait until all files a # RELOAD FILELIST AND SPLIT filelist = os.listdir(temp_dir) split_names = np.array([[os.path.join(temp_dir,file[:-6]), file[-5:]] for file in filelist]) event_names = np.unique(split_names[:,0]) with mp.Pool(processes=None) as pool: process_fn = partial(process_event, split_names = split_names, output_dir=save_path, label_cut=label_threshold, epsilon=epsilon) pool.map(process_fn, event_names) if os.path.exists(temp_dir): shutil.rmtree(temp_dir, ignore_errors=False) def main(args, force=False): """ Main function """ tic = time() save_path = os.path.join(args.data_storage_path, 'labels') load_path = os.path.join(args.data_storage_path, 'triplet_graphs') artifact_path = os.path.join(args.artifact_storage_path, 'triplet_gnn') os.makedirs(save_path, exist_ok=True) # Setup logging log_format = '%(asctime)s %(levelname)s %(message)s' log_level = logging.DEBUG #if args.verbose else logging.INFO logging.basicConfig(level=log_level, format=log_format) logging.info('Initialising') process_data(save_path, load_path, artifact_path, args.label_threshold, args.epsilon, args.n_tasks, args.task) logging.info('Processing finished') if __name__ == '__main__': main()
[ "numpy.load", "numpy.empty", "GraphLearning.src.trainers.get_trainer", "shutil.rmtree", "os.path.join", "numpy.unique", "sklearn.cluster.DBSCAN", "pandas.DataFrame", "os.path.exists", "numpy.append", "scipy.sparse.dok_matrix", "Seeding.src.utils.data_utils.load_summaries", "functools.partial", "numpy.save", "os.path.basename", "numpy.hstack", "torch.cuda.is_available", "multiprocessing.Pool", "os.listdir", "Seeding.src.utils.data_utils.load_config_dir", "os.makedirs", "logging.basicConfig", "Seeding.src.utils.data_utils.get_seed_data_loader", "time.time", "logging.info", "numpy.where", "numpy.array", "time.time.sleep" ]
[((579, 604), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (602, 604), False, 'import torch\n'), ((755, 793), 'numpy.array', 'np.array', (['[g.i for g in graph_dataset]'], {}), '([g.i for g in graph_dataset])\n', (763, 793), True, 'import numpy as np\n'), ((809, 827), 'numpy.array', 'np.array', (['filelist'], {}), '(filelist)\n', (817, 827), True, 'import numpy as np\n'), ((1607, 1638), 'numpy.save', 'np.save', (['filename', 'triplet_list'], {}), '(filename, triplet_list)\n', (1614, 1638), True, 'import numpy as np\n'), ((1977, 2011), 'Seeding.src.utils.data_utils.load_config_dir', 'load_config_dir', (['triplet_artifacts'], {}), '(triplet_artifacts)\n', (1992, 2011), False, 'from Seeding.src.utils.data_utils import load_config_dir, load_summaries, get_seed_data_loader\n'), ((2016, 2074), 'logging.info', 'logging.info', (['"""Inferring triplets on model configuration:"""'], {}), "('Inferring triplets on model configuration:')\n", (2028, 2074), False, 'import logging\n'), ((2079, 2099), 'logging.info', 'logging.info', (['config'], {}), '(config)\n', (2091, 2099), False, 'import logging\n'), ((2143, 2165), 'Seeding.src.utils.data_utils.load_summaries', 'load_summaries', (['config'], {}), '(config)\n', (2157, 2165), False, 'from Seeding.src.utils.data_utils import load_config_dir, load_summaries, get_seed_data_loader\n'), ((2350, 2429), 'GraphLearning.src.trainers.get_trainer', 'get_trainer', ([], {'output_dir': "config['output_dir']", 'gpu': 'task_gpu'}), "(output_dir=config['output_dir'], gpu=task_gpu, **config['trainer'])\n", (2361, 2429), False, 'from GraphLearning.src.trainers import get_trainer\n'), ((2618, 2653), 'logging.info', 'logging.info', (['"""With weight system:"""'], {}), "('With weight system:')\n", (2630, 2653), False, 'import logging\n'), ((2658, 2685), 'logging.info', 'logging.info', (['trainer.model'], {}), '(trainer.model)\n', (2670, 2685), False, 'import logging\n'), ((2690, 2716), 'logging.info', 'logging.info', (['"""On device:"""'], {}), "('On device:')\n", (2702, 2716), False, 'import logging\n'), ((2721, 2749), 'logging.info', 'logging.info', (['trainer.device'], {}), '(trainer.device)\n', (2733, 2749), False, 'import logging\n'), ((2808, 2854), 'Seeding.src.utils.data_utils.get_seed_data_loader', 'get_seed_data_loader', (['load_path', 'n_tasks', 'task'], {}), '(load_path, n_tasks, task)\n', (2828, 2854), False, 'from Seeding.src.utils.data_utils import load_config_dir, load_summaries, get_seed_data_loader\n'), ((3283, 3299), 'numpy.empty', 'np.empty', (['(0, 3)'], {}), '((0, 3))\n', (3291, 3299), True, 'import numpy as np\n'), ((3830, 3858), 'pandas.DataFrame', 'pd.DataFrame', (['track_labels.T'], {}), '(track_labels.T)\n', (3842, 3858), True, 'import pandas as pd\n'), ((4685, 4753), 'scipy.sparse.dok_matrix', 'sp.sparse.dok_matrix', (['e_doublet_coo.shape'], {'dtype': 'e_doublet_coo.dtype'}), '(e_doublet_coo.shape, dtype=e_doublet_coo.dtype)\n', (4705, 4753), True, 'import scipy as sp\n'), ((5016, 5052), 'os.path.join', 'os.path.join', (['output_dir', 'event_name'], {}), '(output_dir, event_name)\n', (5028, 5052), False, 'import os\n'), ((5062, 5099), 'numpy.save', 'np.save', (['label_filename', 'track_labels'], {}), '(label_filename, track_labels)\n', (5069, 5099), True, 'import numpy as np\n'), ((7632, 7683), 'logging.info', 'logging.info', (['"""Running inference on triplet graphs"""'], {}), "('Running inference on triplet graphs')\n", (7644, 7683), False, 'import logging\n'), ((8019, 8053), 'logging.info', 'logging.info', (['"""Inference complete"""'], {}), "('Inference complete')\n", (8031, 8053), False, 'import logging\n'), ((8105, 8136), 'os.path.join', 'os.path.join', (['save_path', '"""temp"""'], {}), "(save_path, 'temp')\n", (8117, 8136), False, 'import os\n'), ((8412, 8443), 'logging.info', 'logging.info', (['"""All files saved"""'], {}), "('All files saved')\n", (8424, 8443), False, 'import logging\n'), ((9384, 9390), 'time.time', 'time', ([], {}), '()\n', (9388, 9390), False, 'from time import time\n'), ((9412, 9458), 'os.path.join', 'os.path.join', (['args.data_storage_path', '"""labels"""'], {}), "(args.data_storage_path, 'labels')\n", (9424, 9458), False, 'import os\n'), ((9475, 9529), 'os.path.join', 'os.path.join', (['args.data_storage_path', '"""triplet_graphs"""'], {}), "(args.data_storage_path, 'triplet_graphs')\n", (9487, 9529), False, 'import os\n'), ((9557, 9612), 'os.path.join', 'os.path.join', (['args.artifact_storage_path', '"""triplet_gnn"""'], {}), "(args.artifact_storage_path, 'triplet_gnn')\n", (9569, 9612), False, 'import os\n'), ((9618, 9655), 'os.makedirs', 'os.makedirs', (['save_path'], {'exist_ok': '(True)'}), '(save_path, exist_ok=True)\n', (9629, 9655), False, 'import os\n'), ((9807, 9862), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'log_level', 'format': 'log_format'}), '(level=log_level, format=log_format)\n', (9826, 9862), False, 'import logging\n'), ((9867, 9895), 'logging.info', 'logging.info', (['"""Initialising"""'], {}), "('Initialising')\n", (9879, 9895), False, 'import logging\n'), ((10018, 10053), 'logging.info', 'logging.info', (['"""Processing finished"""'], {}), "('Processing finished')\n", (10030, 10053), False, 'import logging\n'), ((1034, 1089), 'numpy.load', 'np.load', (["(graph_name[:-4] + '_ID.npz')"], {'allow_pickle': '(True)'}), "(graph_name[:-4] + '_ID.npz', allow_pickle=True)\n", (1041, 1089), True, 'import numpy as np\n'), ((1120, 1191), 'numpy.hstack', 'np.hstack', (['[g_ID[:, e[0, o > threshold]], g_ID[:, e[1, o > threshold]]]'], {}), '([g_ID[:, e[0, o > threshold]], g_ID[:, e[1, o > threshold]]])\n', (1129, 1191), True, 'import numpy as np\n'), ((1337, 1384), 'numpy.hstack', 'np.hstack', (['[o[o > threshold], o[o > threshold]]'], {}), '([o[o > threshold], o[o > threshold]])\n', (1346, 1384), True, 'import numpy as np\n'), ((3312, 3353), 'numpy.where', 'np.where', (['(split_names[:, 0] == event_name)'], {}), '(split_names[:, 0] == event_name)\n', (3320, 3353), True, 'import numpy as np\n'), ((3485, 3532), 'numpy.append', 'np.append', (['total_triplets', 'triplet_list'], {'axis': '(0)'}), '(total_triplets, triplet_list, axis=0)\n', (3494, 3532), True, 'import numpy as np\n'), ((8148, 8172), 'os.path.exists', 'os.path.exists', (['temp_dir'], {}), '(temp_dir)\n', (8162, 8172), False, 'import os\n'), ((8182, 8218), 'os.makedirs', 'os.makedirs', (['temp_dir'], {'exist_ok': '(True)'}), '(temp_dir, exist_ok=True)\n', (8193, 8218), False, 'import os\n'), ((8228, 8251), 'multiprocessing.Pool', 'mp.Pool', ([], {'processes': 'None'}), '(processes=None)\n', (8235, 8251), True, 'import multiprocessing as mp\n'), ((8282, 8359), 'functools.partial', 'partial', (['save_triplet_hitlist'], {'threshold': 'label_threshold', 'output_dir': 'temp_dir'}), '(save_triplet_hitlist, threshold=label_threshold, output_dir=temp_dir)\n', (8289, 8359), False, 'from functools import partial\n'), ((8787, 8807), 'os.listdir', 'os.listdir', (['temp_dir'], {}), '(temp_dir)\n', (8797, 8807), False, 'import os\n'), ((8935, 8963), 'numpy.unique', 'np.unique', (['split_names[:, 0]'], {}), '(split_names[:, 0])\n', (8944, 8963), True, 'import numpy as np\n'), ((9221, 9245), 'os.path.exists', 'os.path.exists', (['temp_dir'], {}), '(temp_dir)\n', (9235, 9245), False, 'import os\n'), ((3623, 3679), 'sklearn.cluster.DBSCAN', 'DBSCAN', ([], {'eps': 'epsilon', 'metric': '"""precomputed"""', 'min_samples': '(1)'}), "(eps=epsilon, metric='precomputed', min_samples=1)\n", (3629, 3679), False, 'from sklearn.cluster import DBSCAN\n'), ((8675, 8689), 'time.time.sleep', 'time.sleep', (['(10)'], {}), '(10)\n', (8685, 8689), False, 'from time import time\n'), ((8977, 9000), 'multiprocessing.Pool', 'mp.Pool', ([], {'processes': 'None'}), '(processes=None)\n', (8984, 9000), True, 'import multiprocessing as mp\n'), ((9035, 9152), 'functools.partial', 'partial', (['process_event'], {'split_names': 'split_names', 'output_dir': 'save_path', 'label_cut': 'label_threshold', 'epsilon': 'epsilon'}), '(process_event, split_names=split_names, output_dir=save_path,\n label_cut=label_threshold, epsilon=epsilon)\n', (9042, 9152), False, 'from functools import partial\n'), ((9259, 9303), 'shutil.rmtree', 'shutil.rmtree', (['temp_dir'], {'ignore_errors': '(False)'}), '(temp_dir, ignore_errors=False)\n', (9272, 9303), False, 'import shutil\n'), ((1569, 1597), 'os.path.basename', 'os.path.basename', (['graph_name'], {}), '(graph_name)\n', (1585, 1597), False, 'import os\n'), ((8588, 8608), 'os.listdir', 'os.listdir', (['temp_dir'], {}), '(temp_dir)\n', (8598, 8608), False, 'import os\n'), ((8841, 8874), 'os.path.join', 'os.path.join', (['temp_dir', 'file[:-6]'], {}), '(temp_dir, file[:-6])\n', (8853, 8874), False, 'import os\n')]
# Import required stuff from cvxpy import * import numpy as np import matplotlib.pyplot as plt # In this problem, we need both y.txt and beta.txt, so read them from input files. # Please note that the path has to be changed accordingly before running. with open('/home/akilesh/Desktop/Akilesh_opt/y.txt') as f: y = [] for line in f: line = line.split() # to deal with blank if line: # lines (ie skip them) line = [float(i) for i in line] y.append(line) with open('/home/akilesh/Desktop/Akilesh_opt/beta0.txt') as f: betaorg = [] for line in f: line = line.split() # to deal with blank if line: # lines (ie skip them) line = [float(i) for i in line] betaorg.append(line) # Define 100 logarithmically spaced values from 10^1 to 10^-2. lvals = np.logspace(-2, 1, 100) mseList = [] # List for storing MSEs as we vary the lambda. changepointsList = [] # List for storing changepoint as we vary the lambda. lvalsList = [] # List for storing beta computed as we vary the lambda. for val in lvals: # As in prev problem, beta is the variable. beta = Variable(1, 100) error = sum_squares(y - beta) error = error/2 obj = Minimize(error + val*tv(beta)) prob = Problem(obj) prob.solve() # to compute mse for a particular lambda. # Threshold is defined as 10^-8. mse = 0 thresh = 0.00000001 changepoints = 0 # Iterate over points for i in range(0, 100): req = (beta[i].value - betaorg[i][0]) a = abs(req).value # Compute MSE. mse = mse + req ** 2 # If abs. value is greater than thresh if(a > thresh): changepoints = changepoints + 1 # Appending stuff to corresponding list mse = mse / 100 mseList.append(mse) changepointsList.append(changepoints) lvalsList.append(val) #print(mseList) # For plotting - mse vs lambda. plt.subplot(211) plt.plot(lvalsList, mseList) plt.xlabel('lambda ') plt.ylabel('mse') plt.title(' mse vs lambda ') # For plotting - changepoints vs lambda. plt.subplot(212) plt.plot(lvalsList, changepointsList) plt.xlabel('lambda ') plt.ylabel(' changepoints') plt.title(' changepoints vs lambda ') plt.tight_layout() plt.show()
[ "matplotlib.pyplot.title", "matplotlib.pyplot.subplot", "matplotlib.pyplot.show", "matplotlib.pyplot.plot", "numpy.logspace", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.tight_layout" ]
[((865, 888), 'numpy.logspace', 'np.logspace', (['(-2)', '(1)', '(100)'], {}), '(-2, 1, 100)\n', (876, 888), True, 'import numpy as np\n'), ((1869, 1885), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(211)'], {}), '(211)\n', (1880, 1885), True, 'import matplotlib.pyplot as plt\n'), ((1886, 1914), 'matplotlib.pyplot.plot', 'plt.plot', (['lvalsList', 'mseList'], {}), '(lvalsList, mseList)\n', (1894, 1914), True, 'import matplotlib.pyplot as plt\n'), ((1915, 1936), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""lambda """'], {}), "('lambda ')\n", (1925, 1936), True, 'import matplotlib.pyplot as plt\n'), ((1937, 1954), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""mse"""'], {}), "('mse')\n", (1947, 1954), True, 'import matplotlib.pyplot as plt\n'), ((1955, 1983), 'matplotlib.pyplot.title', 'plt.title', (['""" mse vs lambda """'], {}), "(' mse vs lambda ')\n", (1964, 1983), True, 'import matplotlib.pyplot as plt\n'), ((2026, 2042), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(212)'], {}), '(212)\n', (2037, 2042), True, 'import matplotlib.pyplot as plt\n'), ((2043, 2080), 'matplotlib.pyplot.plot', 'plt.plot', (['lvalsList', 'changepointsList'], {}), '(lvalsList, changepointsList)\n', (2051, 2080), True, 'import matplotlib.pyplot as plt\n'), ((2081, 2102), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""lambda """'], {}), "('lambda ')\n", (2091, 2102), True, 'import matplotlib.pyplot as plt\n'), ((2103, 2130), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['""" changepoints"""'], {}), "(' changepoints')\n", (2113, 2130), True, 'import matplotlib.pyplot as plt\n'), ((2131, 2168), 'matplotlib.pyplot.title', 'plt.title', (['""" changepoints vs lambda """'], {}), "(' changepoints vs lambda ')\n", (2140, 2168), True, 'import matplotlib.pyplot as plt\n'), ((2170, 2188), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (2186, 2188), True, 'import matplotlib.pyplot as plt\n'), ((2189, 2199), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2197, 2199), True, 'import matplotlib.pyplot as plt\n')]
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import logging from decimal import Decimal from functools import partial from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union import geohash as geohash_lib import numpy as np import pandas as pd from flask_babel import gettext as _ from geopy.point import Point from pandas import DataFrame, NamedAgg, Series, Timestamp from superset.constants import NULL_STRING, PandasAxis, PandasPostprocessingCompare from superset.exceptions import QueryObjectValidationError from superset.utils.core import ( DTTM_ALIAS, PostProcessingBoxplotWhiskerType, PostProcessingContributionOrientation, TIME_COMPARISION, ) NUMPY_FUNCTIONS = { "average": np.average, "argmin": np.argmin, "argmax": np.argmax, "count": np.ma.count, "count_nonzero": np.count_nonzero, "cumsum": np.cumsum, "cumprod": np.cumprod, "max": np.max, "mean": np.mean, "median": np.median, "nansum": np.nansum, "nanmin": np.nanmin, "nanmax": np.nanmax, "nanmean": np.nanmean, "nanmedian": np.nanmedian, "nanpercentile": np.nanpercentile, "min": np.min, "percentile": np.percentile, "prod": np.prod, "product": np.product, "std": np.std, "sum": np.sum, "var": np.var, } DENYLIST_ROLLING_FUNCTIONS = ( "count", "corr", "cov", "kurt", "max", "mean", "median", "min", "std", "skew", "sum", "var", "quantile", ) ALLOWLIST_CUMULATIVE_FUNCTIONS = ( "cummax", "cummin", "cumprod", "cumsum", ) PROPHET_TIME_GRAIN_MAP = { "PT1S": "S", "PT1M": "min", "PT5M": "5min", "PT10M": "10min", "PT15M": "15min", "PT30M": "30min", "PT1H": "H", "P1D": "D", "P1W": "W", "P1M": "M", "P3M": "Q", "P1Y": "A", "1969-12-28T00:00:00Z/P1W": "W", "1969-12-29T00:00:00Z/P1W": "W", "P1W/1970-01-03T00:00:00Z": "W", "P1W/1970-01-04T00:00:00Z": "W", } def _flatten_column_after_pivot( column: Union[float, Timestamp, str, Tuple[str, ...]], aggregates: Dict[str, Dict[str, Any]], ) -> str: """ Function for flattening column names into a single string. This step is necessary to be able to properly serialize a DataFrame. If the column is a string, return element unchanged. For multi-element columns, join column elements with a comma, with the exception of pivots made with a single aggregate, in which case the aggregate column name is omitted. :param column: single element from `DataFrame.columns` :param aggregates: aggregates :return: """ if not isinstance(column, tuple): column = (column,) if len(aggregates) == 1 and len(column) > 1: # drop aggregate for single aggregate pivots with multiple groupings # from column name (aggregates always come first in column name) column = column[1:] return ", ".join([str(col) for col in column]) def validate_column_args(*argnames: str) -> Callable[..., Any]: def wrapper(func: Callable[..., Any]) -> Callable[..., Any]: def wrapped(df: DataFrame, **options: Any) -> Any: if options.get("is_pivot_df"): # skip validation when pivot Dataframe return func(df, **options) columns = df.columns.tolist() for name in argnames: if name in options and not all( elem in columns for elem in options.get(name) or [] ): raise QueryObjectValidationError( _("Referenced columns not available in DataFrame.") ) return func(df, **options) return wrapped return wrapper def _get_aggregate_funcs( df: DataFrame, aggregates: Dict[str, Dict[str, Any]], ) -> Dict[str, NamedAgg]: """ Converts a set of aggregate config objects into functions that pandas can use as aggregators. Currently only numpy aggregators are supported. :param df: DataFrame on which to perform aggregate operation. :param aggregates: Mapping from column name to aggregate config. :return: Mapping from metric name to function that takes a single input argument. """ agg_funcs: Dict[str, NamedAgg] = {} for name, agg_obj in aggregates.items(): column = agg_obj.get("column", name) if column not in df: raise QueryObjectValidationError( _( "Column referenced by aggregate is undefined: %(column)s", column=column, ) ) if "operator" not in agg_obj: raise QueryObjectValidationError( _("Operator undefined for aggregator: %(name)s", name=name,) ) operator = agg_obj["operator"] if callable(operator): aggfunc = operator else: func = NUMPY_FUNCTIONS.get(operator) if not func: raise QueryObjectValidationError( _("Invalid numpy function: %(operator)s", operator=operator,) ) options = agg_obj.get("options", {}) aggfunc = partial(func, **options) agg_funcs[name] = NamedAgg(column=column, aggfunc=aggfunc) return agg_funcs def _append_columns( base_df: DataFrame, append_df: DataFrame, columns: Dict[str, str] ) -> DataFrame: """ Function for adding columns from one DataFrame to another DataFrame. Calls the assign method, which overwrites the original column in `base_df` if the column already exists, and appends the column if the name is not defined. :param base_df: DataFrame which to use as the base :param append_df: DataFrame from which to select data. :param columns: columns on which to append, mapping source column to target column. For instance, `{'y': 'y'}` will replace the values in column `y` in `base_df` with the values in `y` in `append_df`, while `{'y': 'y2'}` will add a column `y2` to `base_df` based on values in column `y` in `append_df`, leaving the original column `y` in `base_df` unchanged. :return: new DataFrame with combined data from `base_df` and `append_df` """ return base_df.assign( **{target: append_df[source] for source, target in columns.items()} ) @validate_column_args("index", "columns") def pivot( # pylint: disable=too-many-arguments,too-many-locals df: DataFrame, index: List[str], aggregates: Dict[str, Dict[str, Any]], columns: Optional[List[str]] = None, metric_fill_value: Optional[Any] = None, column_fill_value: Optional[str] = NULL_STRING, drop_missing_columns: Optional[bool] = True, combine_value_with_metric: bool = False, marginal_distributions: Optional[bool] = None, marginal_distribution_name: Optional[str] = None, flatten_columns: bool = True, reset_index: bool = True, ) -> DataFrame: """ Perform a pivot operation on a DataFrame. :param df: Object on which pivot operation will be performed :param index: Columns to group by on the table index (=rows) :param columns: Columns to group by on the table columns :param metric_fill_value: Value to replace missing values with :param column_fill_value: Value to replace missing pivot columns with. By default replaces missing values with "<NULL>". Set to `None` to remove columns with missing values. :param drop_missing_columns: Do not include columns whose entries are all missing :param combine_value_with_metric: Display metrics side by side within each column, as opposed to each column being displayed side by side for each metric. :param aggregates: A mapping from aggregate column name to the the aggregate config. :param marginal_distributions: Add totals for row/column. Default to False :param marginal_distribution_name: Name of row/column with marginal distribution. Default to 'All'. :param flatten_columns: Convert column names to strings :param reset_index: Convert index to column :return: A pivot table :raises QueryObjectValidationError: If the request in incorrect """ if not index: raise QueryObjectValidationError( _("Pivot operation requires at least one index") ) if not aggregates: raise QueryObjectValidationError( _("Pivot operation must include at least one aggregate") ) if columns and column_fill_value: df[columns] = df[columns].fillna(value=column_fill_value) aggregate_funcs = _get_aggregate_funcs(df, aggregates) # TODO (villebro): Pandas 1.0.3 doesn't yet support NamedAgg in pivot_table. # Remove once/if support is added. aggfunc = {na.column: na.aggfunc for na in aggregate_funcs.values()} # When dropna = False, the pivot_table function will calculate cartesian-product # for MultiIndex. # https://github.com/apache/superset/issues/15956 # https://github.com/pandas-dev/pandas/issues/18030 series_set = set() if not drop_missing_columns and columns: for row in df[columns].itertuples(): for metric in aggfunc.keys(): series_set.add(str(tuple([metric]) + tuple(row[1:]))) df = df.pivot_table( values=aggfunc.keys(), index=index, columns=columns, aggfunc=aggfunc, fill_value=metric_fill_value, dropna=drop_missing_columns, margins=marginal_distributions, margins_name=marginal_distribution_name, ) if not drop_missing_columns and len(series_set) > 0 and not df.empty: for col in df.columns: series = str(col) if series not in series_set: df = df.drop(col, axis=PandasAxis.COLUMN) if combine_value_with_metric: df = df.stack(0).unstack() # Make index regular column if flatten_columns: df.columns = [ _flatten_column_after_pivot(col, aggregates) for col in df.columns ] # return index as regular column if reset_index: df.reset_index(level=0, inplace=True) return df @validate_column_args("groupby") def aggregate( df: DataFrame, groupby: List[str], aggregates: Dict[str, Dict[str, Any]] ) -> DataFrame: """ Apply aggregations to a DataFrame. :param df: Object to aggregate. :param groupby: columns to aggregate :param aggregates: A mapping from metric column to the function used to aggregate values. :raises QueryObjectValidationError: If the request in incorrect """ aggregates = aggregates or {} aggregate_funcs = _get_aggregate_funcs(df, aggregates) if groupby: df_groupby = df.groupby(by=groupby) else: df_groupby = df.groupby(lambda _: True) return df_groupby.agg(**aggregate_funcs).reset_index(drop=not groupby) @validate_column_args("columns") def sort(df: DataFrame, columns: Dict[str, bool]) -> DataFrame: """ Sort a DataFrame. :param df: DataFrame to sort. :param columns: columns by by which to sort. The key specifies the column name, value specifies if sorting in ascending order. :return: Sorted DataFrame :raises QueryObjectValidationError: If the request in incorrect """ return df.sort_values(by=list(columns.keys()), ascending=list(columns.values())) @validate_column_args("columns") def rolling( # pylint: disable=too-many-arguments df: DataFrame, rolling_type: str, columns: Optional[Dict[str, str]] = None, window: Optional[int] = None, rolling_type_options: Optional[Dict[str, Any]] = None, center: bool = False, win_type: Optional[str] = None, min_periods: Optional[int] = None, is_pivot_df: bool = False, ) -> DataFrame: """ Apply a rolling window on the dataset. See the Pandas docs for further details: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.rolling.html :param df: DataFrame on which the rolling period will be based. :param columns: columns on which to perform rolling, mapping source column to target column. For instance, `{'y': 'y'}` will replace the column `y` with the rolling value in `y`, while `{'y': 'y2'}` will add a column `y2` based on rolling values calculated from `y`, leaving the original column `y` unchanged. :param rolling_type: Type of rolling window. Any numpy function will work. :param window: Size of the window. :param rolling_type_options: Optional options to pass to rolling method. Needed for e.g. quantile operation. :param center: Should the label be at the center of the window. :param win_type: Type of window function. :param min_periods: The minimum amount of periods required for a row to be included in the result set. :param is_pivot_df: Dataframe is pivoted or not :return: DataFrame with the rolling columns :raises QueryObjectValidationError: If the request in incorrect """ rolling_type_options = rolling_type_options or {} columns = columns or {} if is_pivot_df: df_rolling = df else: df_rolling = df[columns.keys()] kwargs: Dict[str, Union[str, int]] = {} if window is None: raise QueryObjectValidationError(_("Undefined window for rolling operation")) if window == 0: raise QueryObjectValidationError(_("Window must be > 0")) kwargs["window"] = window if min_periods is not None: kwargs["min_periods"] = min_periods if center is not None: kwargs["center"] = center if win_type is not None: kwargs["win_type"] = win_type df_rolling = df_rolling.rolling(**kwargs) if rolling_type not in DENYLIST_ROLLING_FUNCTIONS or not hasattr( df_rolling, rolling_type ): raise QueryObjectValidationError( _("Invalid rolling_type: %(type)s", type=rolling_type) ) try: df_rolling = getattr(df_rolling, rolling_type)(**rolling_type_options) except TypeError as ex: raise QueryObjectValidationError( _( "Invalid options for %(rolling_type)s: %(options)s", rolling_type=rolling_type, options=rolling_type_options, ) ) from ex if is_pivot_df: agg_in_pivot_df = df.columns.get_level_values(0).drop_duplicates().to_list() agg: Dict[str, Dict[str, Any]] = {col: {} for col in agg_in_pivot_df} df_rolling.columns = [ _flatten_column_after_pivot(col, agg) for col in df_rolling.columns ] df_rolling.reset_index(level=0, inplace=True) else: df_rolling = _append_columns(df, df_rolling, columns) if min_periods: df_rolling = df_rolling[min_periods:] return df_rolling @validate_column_args("columns", "drop", "rename") def select( df: DataFrame, columns: Optional[List[str]] = None, exclude: Optional[List[str]] = None, rename: Optional[Dict[str, str]] = None, ) -> DataFrame: """ Only select a subset of columns in the original dataset. Can be useful for removing unnecessary intermediate results, renaming and reordering columns. :param df: DataFrame on which the rolling period will be based. :param columns: Columns which to select from the DataFrame, in the desired order. If left undefined, all columns will be selected. If columns are renamed, the original column name should be referenced here. :param exclude: columns to exclude from selection. If columns are renamed, the new column name should be referenced here. :param rename: columns which to rename, mapping source column to target column. For instance, `{'y': 'y2'}` will rename the column `y` to `y2`. :return: Subset of columns in original DataFrame :raises QueryObjectValidationError: If the request in incorrect """ df_select = df.copy(deep=False) if columns: df_select = df_select[columns] if exclude: df_select = df_select.drop(exclude, axis=1) if rename is not None: df_select = df_select.rename(columns=rename) return df_select @validate_column_args("columns") def diff( df: DataFrame, columns: Dict[str, str], periods: int = 1, axis: PandasAxis = PandasAxis.ROW, ) -> DataFrame: """ Calculate row-by-row or column-by-column difference for select columns. :param df: DataFrame on which the diff will be based. :param columns: columns on which to perform diff, mapping source column to target column. For instance, `{'y': 'y'}` will replace the column `y` with the diff value in `y`, while `{'y': 'y2'}` will add a column `y2` based on diff values calculated from `y`, leaving the original column `y` unchanged. :param periods: periods to shift for calculating difference. :param axis: 0 for row, 1 for column. default 0. :return: DataFrame with diffed columns :raises QueryObjectValidationError: If the request in incorrect """ df_diff = df[columns.keys()] df_diff = df_diff.diff(periods=periods, axis=axis) return _append_columns(df, df_diff, columns) @validate_column_args("source_columns", "compare_columns") def compare( # pylint: disable=too-many-arguments df: DataFrame, source_columns: List[str], compare_columns: List[str], compare_type: Optional[PandasPostprocessingCompare], drop_original_columns: Optional[bool] = False, precision: Optional[int] = 4, ) -> DataFrame: """ Calculate column-by-column changing for select columns. :param df: DataFrame on which the compare will be based. :param source_columns: Main query columns :param compare_columns: Columns being compared :param compare_type: Type of compare. Choice of `absolute`, `percentage` or `ratio` :param drop_original_columns: Whether to remove the source columns and compare columns. :param precision: Round a change rate to a variable number of decimal places. :return: DataFrame with compared columns. :raises QueryObjectValidationError: If the request in incorrect. """ if len(source_columns) != len(compare_columns): raise QueryObjectValidationError( _("`compare_columns` must have the same length as `source_columns`.") ) if compare_type not in tuple(PandasPostprocessingCompare): raise QueryObjectValidationError( _("`compare_type` must be `difference`, `percentage` or `ratio`") ) if len(source_columns) == 0: return df for s_col, c_col in zip(source_columns, compare_columns): if compare_type == PandasPostprocessingCompare.DIFF: diff_series = df[s_col] - df[c_col] elif compare_type == PandasPostprocessingCompare.PCT: diff_series = ( ((df[s_col] - df[c_col]) / df[c_col]).astype(float).round(precision) ) else: # compare_type == "ratio" diff_series = (df[s_col] / df[c_col]).astype(float).round(precision) diff_df = diff_series.to_frame( name=TIME_COMPARISION.join([compare_type, s_col, c_col]) ) df = pd.concat([df, diff_df], axis=1) if drop_original_columns: df = df.drop(source_columns + compare_columns, axis=1) return df @validate_column_args("columns") def cum( df: DataFrame, operator: str, columns: Optional[Dict[str, str]] = None, is_pivot_df: bool = False, ) -> DataFrame: """ Calculate cumulative sum/product/min/max for select columns. :param df: DataFrame on which the cumulative operation will be based. :param columns: columns on which to perform a cumulative operation, mapping source column to target column. For instance, `{'y': 'y'}` will replace the column `y` with the cumulative value in `y`, while `{'y': 'y2'}` will add a column `y2` based on cumulative values calculated from `y`, leaving the original column `y` unchanged. :param operator: cumulative operator, e.g. `sum`, `prod`, `min`, `max` :param is_pivot_df: Dataframe is pivoted or not :return: DataFrame with cumulated columns """ columns = columns or {} if is_pivot_df: df_cum = df else: df_cum = df[columns.keys()] operation = "cum" + operator if operation not in ALLOWLIST_CUMULATIVE_FUNCTIONS or not hasattr( df_cum, operation ): raise QueryObjectValidationError( _("Invalid cumulative operator: %(operator)s", operator=operator) ) if is_pivot_df: df_cum = getattr(df_cum, operation)() agg_in_pivot_df = df.columns.get_level_values(0).drop_duplicates().to_list() agg: Dict[str, Dict[str, Any]] = {col: {} for col in agg_in_pivot_df} df_cum.columns = [ _flatten_column_after_pivot(col, agg) for col in df_cum.columns ] df_cum.reset_index(level=0, inplace=True) else: df_cum = _append_columns(df, getattr(df_cum, operation)(), columns) return df_cum def geohash_decode( df: DataFrame, geohash: str, longitude: str, latitude: str ) -> DataFrame: """ Decode a geohash column into longitude and latitude :param df: DataFrame containing geohash data :param geohash: Name of source column containing geohash location. :param longitude: Name of new column to be created containing longitude. :param latitude: Name of new column to be created containing latitude. :return: DataFrame with decoded longitudes and latitudes """ try: lonlat_df = DataFrame() lonlat_df["latitude"], lonlat_df["longitude"] = zip( *df[geohash].apply(geohash_lib.decode) ) return _append_columns( df, lonlat_df, {"latitude": latitude, "longitude": longitude} ) except ValueError as ex: raise QueryObjectValidationError(_("Invalid geohash string")) from ex def geohash_encode( df: DataFrame, geohash: str, longitude: str, latitude: str, ) -> DataFrame: """ Encode longitude and latitude into geohash :param df: DataFrame containing longitude and latitude data :param geohash: Name of new column to be created containing geohash location. :param longitude: Name of source column containing longitude. :param latitude: Name of source column containing latitude. :return: DataFrame with decoded longitudes and latitudes """ try: encode_df = df[[latitude, longitude]] encode_df.columns = ["latitude", "longitude"] encode_df["geohash"] = encode_df.apply( lambda row: geohash_lib.encode(row["latitude"], row["longitude"]), axis=1, ) return _append_columns(df, encode_df, {"geohash": geohash}) except ValueError as ex: raise QueryObjectValidationError(_("Invalid longitude/latitude")) from ex def geodetic_parse( df: DataFrame, geodetic: str, longitude: str, latitude: str, altitude: Optional[str] = None, ) -> DataFrame: """ Parse a column containing a geodetic point string [Geopy](https://geopy.readthedocs.io/en/stable/#geopy.point.Point). :param df: DataFrame containing geodetic point data :param geodetic: Name of source column containing geodetic point string. :param longitude: Name of new column to be created containing longitude. :param latitude: Name of new column to be created containing latitude. :param altitude: Name of new column to be created containing altitude. :return: DataFrame with decoded longitudes and latitudes """ def _parse_location(location: str) -> Tuple[float, float, float]: """ Parse a string containing a geodetic point and return latitude, longitude and altitude """ point = Point(location) return point[0], point[1], point[2] try: geodetic_df = DataFrame() ( geodetic_df["latitude"], geodetic_df["longitude"], geodetic_df["altitude"], ) = zip(*df[geodetic].apply(_parse_location)) columns = {"latitude": latitude, "longitude": longitude} if altitude: columns["altitude"] = altitude return _append_columns(df, geodetic_df, columns) except ValueError as ex: raise QueryObjectValidationError(_("Invalid geodetic string")) from ex @validate_column_args("columns") def contribution( df: DataFrame, orientation: Optional[ PostProcessingContributionOrientation ] = PostProcessingContributionOrientation.COLUMN, columns: Optional[List[str]] = None, rename_columns: Optional[List[str]] = None, ) -> DataFrame: """ Calculate cell contibution to row/column total for numeric columns. Non-numeric columns will be kept untouched. If `columns` are specified, only calculate contributions on selected columns. :param df: DataFrame containing all-numeric data (temporal column ignored) :param columns: Columns to calculate values from. :param rename_columns: The new labels for the calculated contribution columns. The original columns will not be removed. :param orientation: calculate by dividing cell with row/column total :return: DataFrame with contributions. """ contribution_df = df.copy() numeric_df = contribution_df.select_dtypes(include=["number", Decimal]) # verify column selections if columns: numeric_columns = numeric_df.columns.tolist() for col in columns: if col not in numeric_columns: raise QueryObjectValidationError( _( 'Column "%(column)s" is not numeric or does not ' "exists in the query results.", column=col, ) ) columns = columns or numeric_df.columns rename_columns = rename_columns or columns if len(rename_columns) != len(columns): raise QueryObjectValidationError( _("`rename_columns` must have the same length as `columns`.") ) # limit to selected columns numeric_df = numeric_df[columns] axis = 0 if orientation == PostProcessingContributionOrientation.COLUMN else 1 numeric_df = numeric_df / numeric_df.values.sum(axis=axis, keepdims=True) contribution_df[rename_columns] = numeric_df return contribution_df def _prophet_parse_seasonality( input_value: Optional[Union[bool, int]] ) -> Union[bool, str, int]: if input_value is None: return "auto" if isinstance(input_value, bool): return input_value try: return int(input_value) except ValueError: return input_value def _prophet_fit_and_predict( # pylint: disable=too-many-arguments df: DataFrame, confidence_interval: float, yearly_seasonality: Union[bool, str, int], weekly_seasonality: Union[bool, str, int], daily_seasonality: Union[bool, str, int], periods: int, freq: str, ) -> DataFrame: """ Fit a prophet model and return a DataFrame with predicted results. """ try: # pylint: disable=import-error,import-outside-toplevel from prophet import Prophet prophet_logger = logging.getLogger("prophet.plot") prophet_logger.setLevel(logging.CRITICAL) prophet_logger.setLevel(logging.NOTSET) except ModuleNotFoundError as ex: raise QueryObjectValidationError(_("`prophet` package not installed")) from ex model = Prophet( interval_width=confidence_interval, yearly_seasonality=yearly_seasonality, weekly_seasonality=weekly_seasonality, daily_seasonality=daily_seasonality, ) if df["ds"].dt.tz: df["ds"] = df["ds"].dt.tz_convert(None) model.fit(df) future = model.make_future_dataframe(periods=periods, freq=freq) forecast = model.predict(future)[["ds", "yhat", "yhat_lower", "yhat_upper"]] return forecast.join(df.set_index("ds"), on="ds").set_index(["ds"]) def prophet( # pylint: disable=too-many-arguments df: DataFrame, time_grain: str, periods: int, confidence_interval: float, yearly_seasonality: Optional[Union[bool, int]] = None, weekly_seasonality: Optional[Union[bool, int]] = None, daily_seasonality: Optional[Union[bool, int]] = None, ) -> DataFrame: """ Add forecasts to each series in a timeseries dataframe, along with confidence intervals for the prediction. For each series, the operation creates three new columns with the column name suffixed with the following values: - `__yhat`: the forecast for the given date - `__yhat_lower`: the lower bound of the forecast for the given date - `__yhat_upper`: the upper bound of the forecast for the given date :param df: DataFrame containing all-numeric data (temporal column ignored) :param time_grain: Time grain used to specify time period increments in prediction :param periods: Time periods (in units of `time_grain`) to predict into the future :param confidence_interval: Width of predicted confidence interval :param yearly_seasonality: Should yearly seasonality be applied. An integer value will specify Fourier order of seasonality. :param weekly_seasonality: Should weekly seasonality be applied. An integer value will specify Fourier order of seasonality, `None` will automatically detect seasonality. :param daily_seasonality: Should daily seasonality be applied. An integer value will specify Fourier order of seasonality, `None` will automatically detect seasonality. :return: DataFrame with contributions, with temporal column at beginning if present """ # validate inputs if not time_grain: raise QueryObjectValidationError(_("Time grain missing")) if time_grain not in PROPHET_TIME_GRAIN_MAP: raise QueryObjectValidationError( _("Unsupported time grain: %(time_grain)s", time_grain=time_grain,) ) freq = PROPHET_TIME_GRAIN_MAP[time_grain] # check type at runtime due to marhsmallow schema not being able to handle # union types if not periods or periods < 0 or not isinstance(periods, int): raise QueryObjectValidationError(_("Periods must be a positive integer value")) if not confidence_interval or confidence_interval <= 0 or confidence_interval >= 1: raise QueryObjectValidationError( _("Confidence interval must be between 0 and 1 (exclusive)") ) if DTTM_ALIAS not in df.columns: raise QueryObjectValidationError(_("DataFrame must include temporal column")) if len(df.columns) < 2: raise QueryObjectValidationError(_("DataFrame include at least one series")) target_df = DataFrame() for column in [column for column in df.columns if column != DTTM_ALIAS]: fit_df = _prophet_fit_and_predict( df=df[[DTTM_ALIAS, column]].rename(columns={DTTM_ALIAS: "ds", column: "y"}), confidence_interval=confidence_interval, yearly_seasonality=_prophet_parse_seasonality(yearly_seasonality), weekly_seasonality=_prophet_parse_seasonality(weekly_seasonality), daily_seasonality=_prophet_parse_seasonality(daily_seasonality), periods=periods, freq=freq, ) new_columns = [ f"{column}__yhat", f"{column}__yhat_lower", f"{column}__yhat_upper", f"{column}", ] fit_df.columns = new_columns if target_df.empty: target_df = fit_df else: for new_column in new_columns: target_df = target_df.assign(**{new_column: fit_df[new_column]}) target_df.reset_index(level=0, inplace=True) return target_df.rename(columns={"ds": DTTM_ALIAS}) def boxplot( df: DataFrame, groupby: List[str], metrics: List[str], whisker_type: PostProcessingBoxplotWhiskerType, percentiles: Optional[ Union[List[Union[int, float]], Tuple[Union[int, float], Union[int, float]]] ] = None, ) -> DataFrame: """ Calculate boxplot statistics. For each metric, the operation creates eight new columns with the column name suffixed with the following values: - `__mean`: the mean - `__median`: the median - `__max`: the maximum value excluding outliers (see whisker type) - `__min`: the minimum value excluding outliers (see whisker type) - `__q1`: the median - `__q1`: the first quartile (25th percentile) - `__q3`: the third quartile (75th percentile) - `__count`: count of observations - `__outliers`: the values that fall outside the minimum/maximum value (see whisker type) :param df: DataFrame containing all-numeric data (temporal column ignored) :param groupby: The categories to group by (x-axis) :param metrics: The metrics for which to calculate the distribution :param whisker_type: The confidence level type :return: DataFrame with boxplot statistics per groupby """ def quartile1(series: Series) -> float: return np.nanpercentile(series, 25, interpolation="midpoint") def quartile3(series: Series) -> float: return np.nanpercentile(series, 75, interpolation="midpoint") if whisker_type == PostProcessingBoxplotWhiskerType.TUKEY: def whisker_high(series: Series) -> float: upper_outer_lim = quartile3(series) + 1.5 * ( quartile3(series) - quartile1(series) ) return series[series <= upper_outer_lim].max() def whisker_low(series: Series) -> float: lower_outer_lim = quartile1(series) - 1.5 * ( quartile3(series) - quartile1(series) ) return series[series >= lower_outer_lim].min() elif whisker_type == PostProcessingBoxplotWhiskerType.PERCENTILE: if ( not isinstance(percentiles, (list, tuple)) or len(percentiles) != 2 or not isinstance(percentiles[0], (int, float)) or not isinstance(percentiles[1], (int, float)) or percentiles[0] >= percentiles[1] ): raise QueryObjectValidationError( _( "percentiles must be a list or tuple with two numeric values, " "of which the first is lower than the second value" ) ) low, high = percentiles[0], percentiles[1] def whisker_high(series: Series) -> float: return np.nanpercentile(series, high) def whisker_low(series: Series) -> float: return np.nanpercentile(series, low) else: whisker_high = np.max whisker_low = np.min def outliers(series: Series) -> Set[float]: above = series[series > whisker_high(series)] below = series[series < whisker_low(series)] return above.tolist() + below.tolist() operators: Dict[str, Callable[[Any], Any]] = { "mean": np.mean, "median": np.median, "max": whisker_high, "min": whisker_low, "q1": quartile1, "q3": quartile3, "count": np.ma.count, "outliers": outliers, } aggregates: Dict[str, Dict[str, Union[str, Callable[..., Any]]]] = { f"{metric}__{operator_name}": {"column": metric, "operator": operator} for operator_name, operator in operators.items() for metric in metrics } return aggregate(df, groupby=groupby, aggregates=aggregates) def resample( df: DataFrame, rule: str, method: str, time_column: str, fill_value: Optional[Union[float, int]] = None, ) -> DataFrame: """ resample a timeseries dataframe. :param df: DataFrame to resample. :param rule: The offset string representing target conversion. :param method: How to fill the NaN value after resample. :param time_column: existing columns in DataFrame. :param fill_value: What values do fill missing. :return: DataFrame after resample :raises QueryObjectValidationError: If the request in incorrect """ df = df.set_index(time_column) if method == "asfreq" and fill_value is not None: df = df.resample(rule).asfreq(fill_value=fill_value) else: df = getattr(df.resample(rule), method)() return df.reset_index()
[ "pandas.DataFrame", "functools.partial", "numpy.nanpercentile", "pandas.NamedAgg", "flask_babel.gettext", "geopy.point.Point", "geohash.encode", "prophet.Prophet", "superset.utils.core.TIME_COMPARISION.join", "pandas.concat", "logging.getLogger" ]
[((28618, 28785), 'prophet.Prophet', 'Prophet', ([], {'interval_width': 'confidence_interval', 'yearly_seasonality': 'yearly_seasonality', 'weekly_seasonality': 'weekly_seasonality', 'daily_seasonality': 'daily_seasonality'}), '(interval_width=confidence_interval, yearly_seasonality=\n yearly_seasonality, weekly_seasonality=weekly_seasonality,\n daily_seasonality=daily_seasonality)\n', (28625, 28785), False, 'from prophet import Prophet\n'), ((31909, 31920), 'pandas.DataFrame', 'DataFrame', ([], {}), '()\n', (31918, 31920), False, 'from pandas import DataFrame, NamedAgg, Series, Timestamp\n'), ((5994, 6034), 'pandas.NamedAgg', 'NamedAgg', ([], {'column': 'column', 'aggfunc': 'aggfunc'}), '(column=column, aggfunc=aggfunc)\n', (6002, 6034), False, 'from pandas import DataFrame, NamedAgg, Series, Timestamp\n'), ((20222, 20254), 'pandas.concat', 'pd.concat', (['[df, diff_df]'], {'axis': '(1)'}), '([df, diff_df], axis=1)\n', (20231, 20254), True, 'import pandas as pd\n'), ((22659, 22670), 'pandas.DataFrame', 'DataFrame', ([], {}), '()\n', (22668, 22670), False, 'from pandas import DataFrame, NamedAgg, Series, Timestamp\n'), ((24881, 24896), 'geopy.point.Point', 'Point', (['location'], {}), '(location)\n', (24886, 24896), False, 'from geopy.point import Point\n'), ((24973, 24984), 'pandas.DataFrame', 'DataFrame', ([], {}), '()\n', (24982, 24984), False, 'from pandas import DataFrame, NamedAgg, Series, Timestamp\n'), ((28349, 28382), 'logging.getLogger', 'logging.getLogger', (['"""prophet.plot"""'], {}), "('prophet.plot')\n", (28366, 28382), False, 'import logging\n'), ((34281, 34335), 'numpy.nanpercentile', 'np.nanpercentile', (['series', '(25)'], {'interpolation': '"""midpoint"""'}), "(series, 25, interpolation='midpoint')\n", (34297, 34335), True, 'import numpy as np\n'), ((34396, 34450), 'numpy.nanpercentile', 'np.nanpercentile', (['series', '(75)'], {'interpolation': '"""midpoint"""'}), "(series, 75, interpolation='midpoint')\n", (34412, 34450), True, 'import numpy as np\n'), ((5943, 5967), 'functools.partial', 'partial', (['func'], {}), '(func, **options)\n', (5950, 5967), False, 'from functools import partial\n'), ((9094, 9142), 'flask_babel.gettext', '_', (['"""Pivot operation requires at least one index"""'], {}), "('Pivot operation requires at least one index')\n", (9095, 9142), True, 'from flask_babel import gettext as _\n'), ((9230, 9286), 'flask_babel.gettext', '_', (['"""Pivot operation must include at least one aggregate"""'], {}), "('Pivot operation must include at least one aggregate')\n", (9231, 9286), True, 'from flask_babel import gettext as _\n'), ((14195, 14238), 'flask_babel.gettext', '_', (['"""Undefined window for rolling operation"""'], {}), "('Undefined window for rolling operation')\n", (14196, 14238), True, 'from flask_babel import gettext as _\n'), ((14301, 14324), 'flask_babel.gettext', '_', (['"""Window must be > 0"""'], {}), "('Window must be > 0')\n", (14302, 14324), True, 'from flask_babel import gettext as _\n'), ((14772, 14826), 'flask_babel.gettext', '_', (['"""Invalid rolling_type: %(type)s"""'], {'type': 'rolling_type'}), "('Invalid rolling_type: %(type)s', type=rolling_type)\n", (14773, 14826), True, 'from flask_babel import gettext as _\n'), ((19272, 19341), 'flask_babel.gettext', '_', (['"""`compare_columns` must have the same length as `source_columns`."""'], {}), "('`compare_columns` must have the same length as `source_columns`.')\n", (19273, 19341), True, 'from flask_babel import gettext as _\n'), ((19469, 19534), 'flask_babel.gettext', '_', (['"""`compare_type` must be `difference`, `percentage` or `ratio`"""'], {}), "('`compare_type` must be `difference`, `percentage` or `ratio`')\n", (19470, 19534), True, 'from flask_babel import gettext as _\n'), ((21551, 21616), 'flask_babel.gettext', '_', (['"""Invalid cumulative operator: %(operator)s"""'], {'operator': 'operator'}), "('Invalid cumulative operator: %(operator)s', operator=operator)\n", (21552, 21616), True, 'from flask_babel import gettext as _\n'), ((27128, 27189), 'flask_babel.gettext', '_', (['"""`rename_columns` must have the same length as `columns`."""'], {}), "('`rename_columns` must have the same length as `columns`.')\n", (27129, 27189), True, 'from flask_babel import gettext as _\n'), ((30939, 30962), 'flask_babel.gettext', '_', (['"""Time grain missing"""'], {}), "('Time grain missing')\n", (30940, 30962), True, 'from flask_babel import gettext as _\n'), ((31067, 31133), 'flask_babel.gettext', '_', (['"""Unsupported time grain: %(time_grain)s"""'], {'time_grain': 'time_grain'}), "('Unsupported time grain: %(time_grain)s', time_grain=time_grain)\n", (31068, 31133), True, 'from flask_babel import gettext as _\n'), ((31396, 31441), 'flask_babel.gettext', '_', (['"""Periods must be a positive integer value"""'], {}), "('Periods must be a positive integer value')\n", (31397, 31441), True, 'from flask_babel import gettext as _\n'), ((31585, 31645), 'flask_babel.gettext', '_', (['"""Confidence interval must be between 0 and 1 (exclusive)"""'], {}), "('Confidence interval must be between 0 and 1 (exclusive)')\n", (31586, 31645), True, 'from flask_babel import gettext as _\n'), ((31734, 31777), 'flask_babel.gettext', '_', (['"""DataFrame must include temporal column"""'], {}), "('DataFrame must include temporal column')\n", (31735, 31777), True, 'from flask_babel import gettext as _\n'), ((31848, 31890), 'flask_babel.gettext', '_', (['"""DataFrame include at least one series"""'], {}), "('DataFrame include at least one series')\n", (31849, 31890), True, 'from flask_babel import gettext as _\n'), ((5209, 5284), 'flask_babel.gettext', '_', (['"""Column referenced by aggregate is undefined: %(column)s"""'], {'column': 'column'}), "('Column referenced by aggregate is undefined: %(column)s', column=column)\n", (5210, 5284), True, 'from flask_babel import gettext as _\n'), ((5458, 5517), 'flask_babel.gettext', '_', (['"""Operator undefined for aggregator: %(name)s"""'], {'name': 'name'}), "('Operator undefined for aggregator: %(name)s', name=name)\n", (5459, 5517), True, 'from flask_babel import gettext as _\n'), ((15007, 15123), 'flask_babel.gettext', '_', (['"""Invalid options for %(rolling_type)s: %(options)s"""'], {'rolling_type': 'rolling_type', 'options': 'rolling_type_options'}), "('Invalid options for %(rolling_type)s: %(options)s', rolling_type=\n rolling_type, options=rolling_type_options)\n", (15008, 15123), True, 'from flask_babel import gettext as _\n'), ((20147, 20198), 'superset.utils.core.TIME_COMPARISION.join', 'TIME_COMPARISION.join', (['[compare_type, s_col, c_col]'], {}), '([compare_type, s_col, c_col])\n', (20168, 20198), False, 'from superset.utils.core import DTTM_ALIAS, PostProcessingBoxplotWhiskerType, PostProcessingContributionOrientation, TIME_COMPARISION\n'), ((22979, 23006), 'flask_babel.gettext', '_', (['"""Invalid geohash string"""'], {}), "('Invalid geohash string')\n", (22980, 23006), True, 'from flask_babel import gettext as _\n'), ((23700, 23753), 'geohash.encode', 'geohash_lib.encode', (["row['latitude']", "row['longitude']"], {}), "(row['latitude'], row['longitude'])\n", (23718, 23753), True, 'import geohash as geohash_lib\n'), ((23911, 23942), 'flask_babel.gettext', '_', (['"""Invalid longitude/latitude"""'], {}), "('Invalid longitude/latitude')\n", (23912, 23942), True, 'from flask_babel import gettext as _\n'), ((25417, 25445), 'flask_babel.gettext', '_', (['"""Invalid geodetic string"""'], {}), "('Invalid geodetic string')\n", (25418, 25445), True, 'from flask_babel import gettext as _\n'), ((28560, 28596), 'flask_babel.gettext', '_', (['"""`prophet` package not installed"""'], {}), "('`prophet` package not installed')\n", (28561, 28596), True, 'from flask_babel import gettext as _\n'), ((35718, 35748), 'numpy.nanpercentile', 'np.nanpercentile', (['series', 'high'], {}), '(series, high)\n', (35734, 35748), True, 'import numpy as np\n'), ((35819, 35848), 'numpy.nanpercentile', 'np.nanpercentile', (['series', 'low'], {}), '(series, low)\n', (35835, 35848), True, 'import numpy as np\n'), ((5792, 5852), 'flask_babel.gettext', '_', (['"""Invalid numpy function: %(operator)s"""'], {'operator': 'operator'}), "('Invalid numpy function: %(operator)s', operator=operator)\n", (5793, 5852), True, 'from flask_babel import gettext as _\n'), ((26730, 26827), 'flask_babel.gettext', '_', (['"""Column "%(column)s" is not numeric or does not exists in the query results."""'], {'column': 'col'}), '(\'Column "%(column)s" is not numeric or does not exists in the query results.\'\n , column=col)\n', (26731, 26827), True, 'from flask_babel import gettext as _\n'), ((35405, 35525), 'flask_babel.gettext', '_', (['"""percentiles must be a list or tuple with two numeric values, of which the first is lower than the second value"""'], {}), "('percentiles must be a list or tuple with two numeric values, of which the first is lower than the second value'\n )\n", (35406, 35525), True, 'from flask_babel import gettext as _\n'), ((4331, 4382), 'flask_babel.gettext', '_', (['"""Referenced columns not available in DataFrame."""'], {}), "('Referenced columns not available in DataFrame.')\n", (4332, 4382), True, 'from flask_babel import gettext as _\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Trains a neural network for bird classification. For usage information, call with --help. Author: <NAME> """ from __future__ import print_function import sys import os import io from argparse import ArgumentParser try: import cPickle as pickle except ImportError: import pickle import numpy as np import theano import theano.tensor as T floatX = theano.config.floatX import lasagne from progress import progress import config import data import model import augment def opts_parser(): descr = "Trains a neural network for bird classification." parser = ArgumentParser(description=descr) parser.add_argument('modelfile', metavar='MODELFILE', type=str, help='File to save the learned weights to (.npz format)') parser.add_argument('--dataset', type=str, default='birdclef', help='Name of the dataset to use (default: %(default)s)') parser.add_argument('--validate', action='store_true', default=False, help='Monitor validation loss (disabled by default)') parser.add_argument('--no-validate', action='store_false', dest='validate', help='Disable monitoring validation loss (disabled by default)') parser.add_argument('--save-errors', action='store_true', default=False, help='If given, save error log in {MODELFILE%%.npz}.err.npz.') parser.add_argument('--keep-state', action='store_true', default=False, help='If given, save the complete training state after each epoch ' 'in {MODELFILE%%.npz}.state, and load it to continue from ' 'there if the script is restarted.') parser.add_argument('--vars', metavar='FILE', action='append', type=str, default=[os.path.join(os.path.dirname(__file__), 'defaults.vars')], help='Reads configuration variables from a FILE of KEY=VALUE ' 'lines. Can be given multiple times, settings from later ' 'files overriding earlier ones. Will read defaults.vars, ' 'then files given here.') parser.add_argument('--var', metavar='KEY=VALUE', action='append', type=str, help='Set the configuration variable KEY to VALUE. Overrides ' 'settings from --vars options. Can be given multiple times.') return parser def get_state(network, updates): return ([p.get_value() for p in updates.keys()] + lasagne.layers.get_all_param_values(network, trainable=False)) def restore_state(network, updates, state): for p, s in zip(updates.keys(), state): p.set_value(s) lasagne.layers.set_all_param_values( network, state[len(updates):], trainable=False) def save_model(modelfile, network, cfg): np.savez(modelfile, **{'param%d' % i: p for i, p in enumerate( lasagne.layers.get_all_param_values(network))}) write = 'wb' if sys.version_info[0] == 2 else 'w' with io.open(modelfile + '.vars', write) as f: f.writelines('%s=%s\n' % kv for kv in cfg.items()) def main(): # parse command line parser = opts_parser() options = parser.parse_args() modelfile = options.modelfile # read configuration files and immediate settings cfg = {} for fn in options.vars: cfg.update(config.parse_config_file(fn)) cfg.update(config.parse_variable_assignments(options.var)) # prepare dataset datadir = os.path.join(os.path.dirname(__file__), os.path.pardir, 'datasets', options.dataset) print("Preparing training data feed...") with io.open(os.path.join(datadir, 'filelists', 'train')) as f: filelist = [l.rstrip() for l in f if l.rstrip()] train_feed, train_formats = data.prepare_datafeed(filelist, datadir, 'train', cfg) # If told so, we plot some mini-batches on screen. if cfg.get('plot_datafeed'): import matplotlib.pyplot as plt for batch in data.run_datafeed(train_feed, cfg): plt.matshow(np.log(batch['spect'][0]).T, aspect='auto', origin='lower', cmap='hot', interpolation='nearest') plt.colorbar() plt.title(str(batch['label'][0])) plt.show() # We start the mini-batch generator and augmenter in one or more # background threads or processes (unless disabled). bg_threads = cfg['bg_threads'] bg_processes = cfg['bg_processes'] if not bg_threads and not bg_processes: # no background processing: just create a single generator batches = data.run_datafeed(train_feed, cfg) elif bg_threads: # multithreading: create a separate generator per thread batches = augment.generate_in_background( [data.run_datafeed(feed, cfg) for feed in data.split_datafeed(train_feed, bg_threads, cfg)], num_cached=bg_threads * 2) elif bg_processes: # multiprocessing: single generator is forked along with processes batches = augment.generate_in_background( [data.run_datafeed(train_feed, cfg)] * bg_processes, num_cached=bg_processes * 25, in_processes=True) # If told so, we benchmark the creation of a given number of mini-batches. if cfg.get('benchmark_datafeed'): print("Benchmark: %d mini-batches of %d items " % (cfg['benchmark_datafeed'], cfg['batchsize']), end='') if bg_threads: print("(in %d threads): " % bg_threads) elif bg_processes: print("(in %d processes): " % bg_processes) else: print("(in main thread): ") import time import itertools t0 = time.time() next(itertools.islice(batches, cfg['benchmark_datafeed'], cfg['benchmark_datafeed']), None) t1 = time.time() print (t1 - t0) return # - prepare validation data generator if options.validate: print("Preparing validation data feed...") with io.open(os.path.join(datadir, 'filelists', 'valid')) as f: filelist_val = [l.rstrip() for l in f if l.rstrip()] val_feed, val_formats = data.prepare_datafeed(filelist_val, datadir, 'valid', cfg) if bg_threads or bg_processes: multi = bg_threads or bg_processes val_feed = data.split_datafeed(val_feed, multi, cfg) def run_val_datafeed(): if bg_threads or bg_processes: return augment.generate_in_background( [data.run_datafeed(feed, cfg) for feed in val_feed], num_cached=multi, in_processes=bool(bg_processes)) else: return data.run_datafeed(val_feed, cfg) print("Preparing training function...") # instantiate neural network input_vars = {name: T.TensorType(str(np.dtype(dtype)), (False,) * len(shape))(name) for name, (dtype, shape) in train_formats.items()} input_shapes = {name: shape for name, (dtype, shape) in train_formats.items()} network = model.architecture(input_vars, input_shapes, cfg) print("- %d layers (%d with weights), %f mio params" % (len(lasagne.layers.get_all_layers(network)), sum(hasattr(l, 'W') for l in lasagne.layers.get_all_layers(network)), lasagne.layers.count_params(network, trainable=True) / 1e6)) print("- weight shapes: %r" % [ l.W.get_value().shape for l in lasagne.layers.get_all_layers(network) if hasattr(l, 'W') and hasattr(l.W, 'get_value')]) cost_vars = dict(input_vars) # prepare for born-again-network, if needed if cfg.get('ban'): network2 = model.architecture(input_vars, input_shapes, cfg) with np.load(cfg['ban'], encoding='latin1') as f: lasagne.layers.set_all_param_values( network2, [f['param%d' % i] for i in range(len(f.files))]) cost_vars['pseudo_label'] = lasagne.layers.get_output( network2, deterministic=True) # load pre-trained weights, if needed if cfg.get('init_from'): param_values = [] for fn in cfg['init_from'].split(':'): with np.load(fn, encoding='latin1') as f: param_values.extend(f['param%d' % i] for i in range(len(f.files))) lasagne.layers.set_all_param_values(network, param_values) del param_values # create cost expression outputs = lasagne.layers.get_output(network, deterministic=False) cost = T.mean(model.cost(outputs, cost_vars, 'train', cfg)) if cfg.get('l2_decay', 0): cost_l2 = lasagne.regularization.regularize_network_params( network, lasagne.regularization.l2) * cfg['l2_decay'] else: cost_l2 = 0 # prepare and compile training function params = lasagne.layers.get_all_params(network, trainable=True) initial_eta = cfg['initial_eta'] eta_decay = cfg['eta_decay'] eta_decay_every = cfg.get('eta_decay_every', 1) eta_cycle = tuple(map(float, str(cfg['eta_cycle']).split(':'))) if eta_cycle == (0,): eta_cycle = (1,) # so eta_cycle=0 equals disabling it patience = cfg.get('patience', 0) trials_of_patience = cfg.get('trials_of_patience', 1) patience_criterion = cfg.get('patience_criterion', 'valid_loss' if options.validate else 'train_loss') momentum = cfg['momentum'] first_params = params[:cfg['first_params']] first_params_eta_scale = cfg['first_params_eta_scale'] if cfg['learn_scheme'] == 'nesterov': learn_scheme = lasagne.updates.nesterov_momentum elif cfg['learn_scheme'] == 'momentum': learn_scheme = lasagne.update.momentum elif cfg['learn_scheme'] == 'adam': learn_scheme = lasagne.updates.adam else: raise ValueError('Unknown learn_scheme=%s' % cfg['learn_scheme']) eta = theano.shared(lasagne.utils.floatX(initial_eta)) if not first_params or first_params_eta_scale == 1: updates = learn_scheme(cost + cost_l2, params, eta, momentum) else: grads = theano.grad(cost + cost_l2, params) updates = learn_scheme(grads[len(first_params):], params[len(first_params):], eta, momentum) if first_params_eta_scale > 0: updates.update( learn_scheme(grads[:len(first_params)], first_params, eta * first_params_eta_scale, momentum)) print("Compiling training function...") train_fn = theano.function(list(input_vars.values()), cost, updates=updates, on_unused_input='ignore') # prepare and compile validation function, if requested if options.validate: print("Compiling validation function...") outputs_test = lasagne.layers.get_output(network, deterministic=True) cost_test = T.mean(model.cost(outputs_test, input_vars, 'valid', cfg)) if isinstance(outputs_test, (list, tuple)): outputs_test = outputs_test[0] val_fn = theano.function([input_vars[k] for k in val_formats], [cost_test, outputs_test], on_unused_input='ignore') # restore previous training state, or create fresh training state state = {} if options.keep_state: statefile = modelfile[:-len('.npz')] + '.state' if os.path.exists(statefile): print("Restoring training state...") state = np.load(modelfile[:-len('.npz')] + '.state', encoding='latin1') restore_state(network, updates, state['network']) epochs = cfg['epochs'] epochsize = cfg['epochsize'] batches = iter(batches) if options.save_errors: errors = state.get('errors', []) if first_params and cfg['first_params_log']: first_params_hist = [] if options.keep_state and os.path.exists(modelfile[:-4] + '.hist.npz'): with np.load(modelfile[:-4] + '.hist.npz') as f: first_params_hist = list(zip(*(f['param%d' % i] for i in range(len(first_params))))) if patience > 0: best_error = state.get('best_error', np.inf) best_state = state.get('best_state') or get_state(network, updates) patience = state.get('patience', patience) trials_of_patience = state.get('trials_of_patience', trials_of_patience) epoch = state.get('epoch', 0) del state # run training loop print("Training:") for epoch in range(epoch, epochs): # actual training err = 0 for batch in progress( range(epochsize), min_delay=.5, desc='Epoch %d/%d: Batch ' % (epoch + 1, epochs)): err += train_fn(**next(batches)) if not np.isfinite(err): print("\nEncountered NaN loss in training. Aborting.") sys.exit(1) if first_params and cfg['first_params_log'] and (batch % cfg['first_params_log'] == 0): first_params_hist.append(tuple(param.get_value() for param in first_params)) np.savez(modelfile[:-4] + '.hist.npz', **{'param%d' % i: param for i, param in enumerate(zip(*first_params_hist))}) # report training loss print("Train loss: %.3f" % (err / epochsize)) if options.save_errors: errors.append(err / epochsize) # compute and report validation loss, if requested if options.validate: import time t0 = time.time() # predict in mini-batches val_err = 0 val_batches = 0 preds = [] truth = [] for batch in run_val_datafeed(): e, p = val_fn(**batch) val_err += np.sum(e) val_batches += 1 preds.append(p) truth.append(batch['label']) t1 = time.time() # join mini-batches preds = np.concatenate(preds) if len(preds) > 1 else preds[0] truth = np.concatenate(truth) if len(truth) > 1 else truth[0] # show results print("Validation loss: %.3f" % (val_err / val_batches)) from eval import evaluate results = evaluate(preds, truth) print("Validation error: %.3f" % (1 - results['accuracy'])) print("Validation MAP: %.3f" % results['map']) print("(took %.2f seconds)" % (t1 - t0)) if options.save_errors: errors.append(val_err / val_batches) errors.append(1 - results['accuracy']) errors.append(results['map']) # update learning rate and/or apply early stopping, if needed if patience > 0: if patience_criterion == 'train_loss': cur_error = err / epochsize elif patience_criterion == 'valid_loss': cur_error = val_err / val_batches elif patience_criterion == 'valid_error': cur_error = 1 - results['accuracy'] elif patience_criterion == 'valid_map': cur_error = 1 - results['map'] if cur_error <= best_error: best_error = cur_error best_state = get_state(network, updates) patience = cfg['patience'] else: patience -= 1 if patience == 0: if eta_decay_every == 'trial_of_patience' and eta_decay != 1: eta.set_value(eta.get_value() * lasagne.utils.floatX(eta_decay)) restore_state(network, updates, best_state) patience = cfg['patience'] trials_of_patience -= 1 print("Lost patience (%d remaining trials)." % trials_of_patience) if trials_of_patience == 0: break if eta_decay_every != 'trial_of_patience' and eta_decay != 1 and \ (epoch + 1) % eta_decay_every == 0: eta.set_value(eta.get_value() * lasagne.utils.floatX(eta_decay)) if eta_cycle[epoch % len(eta_cycle)] != 1: eta.set_value(eta.get_value() * lasagne.utils.floatX(eta_cycle[epoch % len(eta_cycle)])) # store current training state, if needed if options.keep_state: state = {} state['epoch'] = epoch + 1 state['network'] = get_state(network, updates) if options.save_errors: state['errors'] = errors if patience > 0: state['best_error'] = best_error state['best_state'] = best_state state['patience'] = patience state['trials_of_patience'] = trials_of_patience with open(statefile, 'wb') as f: pickle.dump(state, f, -1) del state # for debugging: print memory use and break into debugger #import resource, psutil #print("Memory usage: %.3f MiB / %.3f MiB" % # (resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024., # psutil.Process().memory_info()[0] / float(1024**2))) #import pdb; pdb.set_trace() # save final network print("Saving final model") save_model(modelfile, network, cfg) if options.save_errors: np.savez(modelfile[:-len('.npz')] + '.err.npz', np.asarray(errors).reshape(epoch + 1, -1)) if __name__ == "__main__": main()
[ "numpy.load", "config.parse_config_file", "numpy.sum", "argparse.ArgumentParser", "model.cost", "pickle.dump", "lasagne.regularization.regularize_network_params", "lasagne.layers.get_output", "os.path.join", "data.run_datafeed", "model.architecture", "os.path.dirname", "os.path.exists", "numpy.isfinite", "matplotlib.pyplot.colorbar", "data.split_datafeed", "io.open", "lasagne.layers.count_params", "lasagne.layers.set_all_param_values", "lasagne.layers.get_all_param_values", "lasagne.layers.get_all_params", "data.prepare_datafeed", "matplotlib.pyplot.show", "numpy.asarray", "itertools.islice", "eval.evaluate", "theano.grad", "sys.exit", "numpy.concatenate", "numpy.log", "lasagne.layers.get_all_layers", "theano.function", "numpy.dtype", "lasagne.utils.floatX", "time.time", "config.parse_variable_assignments" ]
[((628, 661), 'argparse.ArgumentParser', 'ArgumentParser', ([], {'description': 'descr'}), '(description=descr)\n', (642, 661), False, 'from argparse import ArgumentParser\n'), ((3855, 3909), 'data.prepare_datafeed', 'data.prepare_datafeed', (['filelist', 'datadir', '"""train"""', 'cfg'], {}), "(filelist, datadir, 'train', cfg)\n", (3876, 3909), False, 'import data\n'), ((7403, 7452), 'model.architecture', 'model.architecture', (['input_vars', 'input_shapes', 'cfg'], {}), '(input_vars, input_shapes, cfg)\n', (7421, 7452), False, 'import model\n'), ((8837, 8892), 'lasagne.layers.get_output', 'lasagne.layers.get_output', (['network'], {'deterministic': '(False)'}), '(network, deterministic=False)\n', (8862, 8892), False, 'import lasagne\n'), ((9214, 9268), 'lasagne.layers.get_all_params', 'lasagne.layers.get_all_params', (['network'], {'trainable': '(True)'}), '(network, trainable=True)\n', (9243, 9268), False, 'import lasagne\n'), ((2550, 2611), 'lasagne.layers.get_all_param_values', 'lasagne.layers.get_all_param_values', (['network'], {'trainable': '(False)'}), '(network, trainable=False)\n', (2585, 2611), False, 'import lasagne\n'), ((3060, 3095), 'io.open', 'io.open', (["(modelfile + '.vars')", 'write'], {}), "(modelfile + '.vars', write)\n", (3067, 3095), False, 'import io\n'), ((3455, 3501), 'config.parse_variable_assignments', 'config.parse_variable_assignments', (['options.var'], {}), '(options.var)\n', (3488, 3501), False, 'import config\n'), ((3553, 3578), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (3568, 3578), False, 'import os\n'), ((4114, 4148), 'data.run_datafeed', 'data.run_datafeed', (['train_feed', 'cfg'], {}), '(train_feed, cfg)\n', (4131, 4148), False, 'import data\n'), ((4721, 4755), 'data.run_datafeed', 'data.run_datafeed', (['train_feed', 'cfg'], {}), '(train_feed, cfg)\n', (4738, 4755), False, 'import data\n'), ((5874, 5885), 'time.time', 'time.time', ([], {}), '()\n', (5883, 5885), False, 'import time\n'), ((6029, 6040), 'time.time', 'time.time', ([], {}), '()\n', (6038, 6040), False, 'import time\n'), ((6368, 6426), 'data.prepare_datafeed', 'data.prepare_datafeed', (['filelist_val', 'datadir', '"""valid"""', 'cfg'], {}), "(filelist_val, datadir, 'valid', cfg)\n", (6389, 6426), False, 'import data\n'), ((8038, 8087), 'model.architecture', 'model.architecture', (['input_vars', 'input_shapes', 'cfg'], {}), '(input_vars, input_shapes, cfg)\n', (8056, 8087), False, 'import model\n'), ((8310, 8365), 'lasagne.layers.get_output', 'lasagne.layers.get_output', (['network2'], {'deterministic': '(True)'}), '(network2, deterministic=True)\n', (8335, 8365), False, 'import lasagne\n'), ((8709, 8767), 'lasagne.layers.set_all_param_values', 'lasagne.layers.set_all_param_values', (['network', 'param_values'], {}), '(network, param_values)\n', (8744, 8767), False, 'import lasagne\n'), ((8911, 8955), 'model.cost', 'model.cost', (['outputs', 'cost_vars', '"""train"""', 'cfg'], {}), "(outputs, cost_vars, 'train', cfg)\n", (8921, 8955), False, 'import model\n'), ((10337, 10370), 'lasagne.utils.floatX', 'lasagne.utils.floatX', (['initial_eta'], {}), '(initial_eta)\n', (10357, 10370), False, 'import lasagne\n'), ((10524, 10559), 'theano.grad', 'theano.grad', (['(cost + cost_l2)', 'params'], {}), '(cost + cost_l2, params)\n', (10535, 10559), False, 'import theano\n'), ((11248, 11302), 'lasagne.layers.get_output', 'lasagne.layers.get_output', (['network'], {'deterministic': '(True)'}), '(network, deterministic=True)\n', (11273, 11302), False, 'import lasagne\n'), ((11494, 11604), 'theano.function', 'theano.function', (['[input_vars[k] for k in val_formats]', '[cost_test, outputs_test]'], {'on_unused_input': '"""ignore"""'}), "([input_vars[k] for k in val_formats], [cost_test,\n outputs_test], on_unused_input='ignore')\n", (11509, 11604), False, 'import theano\n'), ((11847, 11872), 'os.path.exists', 'os.path.exists', (['statefile'], {}), '(statefile)\n', (11861, 11872), False, 'import os\n'), ((3410, 3438), 'config.parse_config_file', 'config.parse_config_file', (['fn'], {}), '(fn)\n', (3434, 3438), False, 'import config\n'), ((3715, 3758), 'os.path.join', 'os.path.join', (['datadir', '"""filelists"""', '"""train"""'], {}), "(datadir, 'filelists', 'train')\n", (3727, 3758), False, 'import os\n'), ((4307, 4321), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {}), '()\n', (4319, 4321), True, 'import matplotlib.pyplot as plt\n'), ((4380, 4390), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4388, 4390), True, 'import matplotlib.pyplot as plt\n'), ((5899, 5978), 'itertools.islice', 'itertools.islice', (['batches', "cfg['benchmark_datafeed']", "cfg['benchmark_datafeed']"], {}), "(batches, cfg['benchmark_datafeed'], cfg['benchmark_datafeed'])\n", (5915, 5978), False, 'import itertools\n'), ((6590, 6631), 'data.split_datafeed', 'data.split_datafeed', (['val_feed', 'multi', 'cfg'], {}), '(val_feed, multi, cfg)\n', (6609, 6631), False, 'import data\n'), ((8101, 8139), 'numpy.load', 'np.load', (["cfg['ban']"], {'encoding': '"""latin1"""'}), "(cfg['ban'], encoding='latin1')\n", (8108, 8139), True, 'import numpy as np\n'), ((9006, 9095), 'lasagne.regularization.regularize_network_params', 'lasagne.regularization.regularize_network_params', (['network', 'lasagne.regularization.l2'], {}), '(network, lasagne.\n regularization.l2)\n', (9054, 9095), False, 'import lasagne\n'), ((11330, 11380), 'model.cost', 'model.cost', (['outputs_test', 'input_vars', '"""valid"""', 'cfg'], {}), "(outputs_test, input_vars, 'valid', cfg)\n", (11340, 11380), False, 'import model\n'), ((12368, 12412), 'os.path.exists', 'os.path.exists', (["(modelfile[:-4] + '.hist.npz')"], {}), "(modelfile[:-4] + '.hist.npz')\n", (12382, 12412), False, 'import os\n'), ((14123, 14134), 'time.time', 'time.time', ([], {}), '()\n', (14132, 14134), False, 'import time\n'), ((14519, 14530), 'time.time', 'time.time', ([], {}), '()\n', (14528, 14530), False, 'import time\n'), ((14867, 14889), 'eval.evaluate', 'evaluate', (['preds', 'truth'], {}), '(preds, truth)\n', (14875, 14889), False, 'from eval import evaluate\n'), ((6220, 6263), 'os.path.join', 'os.path.join', (['datadir', '"""filelists"""', '"""valid"""'], {}), "(datadir, 'filelists', 'valid')\n", (6232, 6263), False, 'import os\n'), ((6981, 7013), 'data.run_datafeed', 'data.run_datafeed', (['val_feed', 'cfg'], {}), '(val_feed, cfg)\n', (6998, 7013), False, 'import data\n'), ((8545, 8575), 'numpy.load', 'np.load', (['fn'], {'encoding': '"""latin1"""'}), "(fn, encoding='latin1')\n", (8552, 8575), True, 'import numpy as np\n'), ((12431, 12468), 'numpy.load', 'np.load', (["(modelfile[:-4] + '.hist.npz')"], {}), "(modelfile[:-4] + '.hist.npz')\n", (12438, 12468), True, 'import numpy as np\n'), ((13290, 13306), 'numpy.isfinite', 'np.isfinite', (['err'], {}), '(err)\n', (13301, 13306), True, 'import numpy as np\n'), ((13395, 13406), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (13403, 13406), False, 'import sys\n'), ((14382, 14391), 'numpy.sum', 'np.sum', (['e'], {}), '(e)\n', (14388, 14391), True, 'import numpy as np\n'), ((14583, 14604), 'numpy.concatenate', 'np.concatenate', (['preds'], {}), '(preds)\n', (14597, 14604), True, 'import numpy as np\n'), ((14657, 14678), 'numpy.concatenate', 'np.concatenate', (['truth'], {}), '(truth)\n', (14671, 14678), True, 'import numpy as np\n'), ((17475, 17500), 'pickle.dump', 'pickle.dump', (['state', 'f', '(-1)'], {}), '(state, f, -1)\n', (17486, 17500), False, 'import pickle\n'), ((1868, 1893), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (1883, 1893), False, 'import os\n'), ((4174, 4199), 'numpy.log', 'np.log', (["batch['spect'][0]"], {}), "(batch['spect'][0])\n", (4180, 4199), True, 'import numpy as np\n'), ((4909, 4937), 'data.run_datafeed', 'data.run_datafeed', (['feed', 'cfg'], {}), '(feed, cfg)\n', (4926, 4937), False, 'import data\n'), ((7133, 7148), 'numpy.dtype', 'np.dtype', (['dtype'], {}), '(dtype)\n', (7141, 7148), True, 'import numpy as np\n'), ((7527, 7565), 'lasagne.layers.get_all_layers', 'lasagne.layers.get_all_layers', (['network'], {}), '(network)\n', (7556, 7565), False, 'import lasagne\n'), ((7660, 7712), 'lasagne.layers.count_params', 'lasagne.layers.count_params', (['network'], {'trainable': '(True)'}), '(network, trainable=True)\n', (7687, 7712), False, 'import lasagne\n'), ((7812, 7850), 'lasagne.layers.get_all_layers', 'lasagne.layers.get_all_layers', (['network'], {}), '(network)\n', (7841, 7850), False, 'import lasagne\n'), ((16686, 16717), 'lasagne.utils.floatX', 'lasagne.utils.floatX', (['eta_decay'], {}), '(eta_decay)\n', (16706, 16717), False, 'import lasagne\n'), ((18057, 18075), 'numpy.asarray', 'np.asarray', (['errors'], {}), '(errors)\n', (18067, 18075), True, 'import numpy as np\n'), ((2949, 2993), 'lasagne.layers.get_all_param_values', 'lasagne.layers.get_all_param_values', (['network'], {}), '(network)\n', (2984, 2993), False, 'import lasagne\n'), ((4967, 5015), 'data.split_datafeed', 'data.split_datafeed', (['train_feed', 'bg_threads', 'cfg'], {}), '(train_feed, bg_threads, cfg)\n', (4986, 5015), False, 'import data\n'), ((6788, 6816), 'data.run_datafeed', 'data.run_datafeed', (['feed', 'cfg'], {}), '(feed, cfg)\n', (6805, 6816), False, 'import data\n'), ((5226, 5260), 'data.run_datafeed', 'data.run_datafeed', (['train_feed', 'cfg'], {}), '(train_feed, cfg)\n', (5243, 5260), False, 'import data\n'), ((7608, 7646), 'lasagne.layers.get_all_layers', 'lasagne.layers.get_all_layers', (['network'], {}), '(network)\n', (7637, 7646), False, 'import lasagne\n'), ((16162, 16193), 'lasagne.utils.floatX', 'lasagne.utils.floatX', (['eta_decay'], {}), '(eta_decay)\n', (16182, 16193), False, 'import lasagne\n')]
import unittest import numpy as np from neurolib.utils.parameterSpace import ParameterSpace class TestParameterSpace(unittest.TestCase): def test_parameterspace_init(self): # init from list par = ParameterSpace(["a", "b"], [[3], [3]]) # init from dict par = ParameterSpace({"a": [1, 2], "b": [1, 2]}) # init from dict with numpy arrays par = ParameterSpace({"a": np.zeros((3)), "b": np.ones((33)),}) def test_parameterspace_kind(self): # 'point' par = ParameterSpace(["a", "b"], [[10], [3.0]]) self.assertEqual(par.kind, "point") # 'bound' par = ParameterSpace(["a", "b"], [[3.0, 5.0], [0.0, 3.0]]) self.assertEqual(par.kind, "bound") # 'grid' par = ParameterSpace(["a", "b"], [[3.0, 3.5, 5.0], [0.0, 3.0]]) self.assertEqual(par.kind, "grid") def test_parameterspace_attributes(self): par = ParameterSpace(["a", "b"], [[10], [3.0]]) par.a par["a"] par.b par["c"] = [1, 2, 3] def test_conversions(self): par = ParameterSpace({"a": [1, 2], "b": [1, 2]}) par.named_tuple_constructor par.named_tuple par.dict() print(par)
[ "numpy.zeros", "neurolib.utils.parameterSpace.ParameterSpace", "numpy.ones" ]
[((218, 256), 'neurolib.utils.parameterSpace.ParameterSpace', 'ParameterSpace', (["['a', 'b']", '[[3], [3]]'], {}), "(['a', 'b'], [[3], [3]])\n", (232, 256), False, 'from neurolib.utils.parameterSpace import ParameterSpace\n'), ((297, 339), 'neurolib.utils.parameterSpace.ParameterSpace', 'ParameterSpace', (["{'a': [1, 2], 'b': [1, 2]}"], {}), "({'a': [1, 2], 'b': [1, 2]})\n", (311, 339), False, 'from neurolib.utils.parameterSpace import ParameterSpace\n'), ((529, 570), 'neurolib.utils.parameterSpace.ParameterSpace', 'ParameterSpace', (["['a', 'b']", '[[10], [3.0]]'], {}), "(['a', 'b'], [[10], [3.0]])\n", (543, 570), False, 'from neurolib.utils.parameterSpace import ParameterSpace\n'), ((648, 700), 'neurolib.utils.parameterSpace.ParameterSpace', 'ParameterSpace', (["['a', 'b']", '[[3.0, 5.0], [0.0, 3.0]]'], {}), "(['a', 'b'], [[3.0, 5.0], [0.0, 3.0]])\n", (662, 700), False, 'from neurolib.utils.parameterSpace import ParameterSpace\n'), ((777, 834), 'neurolib.utils.parameterSpace.ParameterSpace', 'ParameterSpace', (["['a', 'b']", '[[3.0, 3.5, 5.0], [0.0, 3.0]]'], {}), "(['a', 'b'], [[3.0, 3.5, 5.0], [0.0, 3.0]])\n", (791, 834), False, 'from neurolib.utils.parameterSpace import ParameterSpace\n'), ((939, 980), 'neurolib.utils.parameterSpace.ParameterSpace', 'ParameterSpace', (["['a', 'b']", '[[10], [3.0]]'], {}), "(['a', 'b'], [[10], [3.0]])\n", (953, 980), False, 'from neurolib.utils.parameterSpace import ParameterSpace\n'), ((1102, 1144), 'neurolib.utils.parameterSpace.ParameterSpace', 'ParameterSpace', (["{'a': [1, 2], 'b': [1, 2]}"], {}), "({'a': [1, 2], 'b': [1, 2]})\n", (1116, 1144), False, 'from neurolib.utils.parameterSpace import ParameterSpace\n'), ((419, 430), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (427, 430), True, 'import numpy as np\n'), ((439, 450), 'numpy.ones', 'np.ones', (['(33)'], {}), '(33)\n', (446, 450), True, 'import numpy as np\n')]
import json import os import random from unittest.mock import patch import cv2 import numpy as np import pytest import albumentations as A import albumentations.augmentations.functional as F from albumentations.core.serialization import SERIALIZABLE_REGISTRY, shorten_class_name from albumentations.core.transforms_interface import ImageOnlyTransform from .conftest import skipif_no_torch from .utils import ( OpenMock, check_all_augs_exists, get_dual_transforms, get_image_only_transforms, get_transforms, set_seed, ) TEST_SEEDS = (0, 1, 42, 111, 9999) @pytest.mark.parametrize( ["augmentation_cls", "params"], get_transforms( custom_arguments={ A.Crop: {"y_min": 0, "y_max": 10, "x_min": 0, "x_max": 10}, A.CenterCrop: {"height": 10, "width": 10}, A.CropNonEmptyMaskIfExists: {"height": 10, "width": 10}, A.RandomCrop: {"height": 10, "width": 10}, A.RandomResizedCrop: {"height": 10, "width": 10}, A.RandomSizedCrop: {"min_max_height": (4, 8), "height": 10, "width": 10}, A.CropAndPad: {"px": 10}, A.Resize: {"height": 10, "width": 10}, }, except_augmentations={ A.RandomCropNearBBox, A.RandomSizedBBoxSafeCrop, A.FDA, A.HistogramMatching, A.PixelDistributionAdaptation, A.Lambda, A.TemplateTransform, }, ), ) @pytest.mark.parametrize("p", [0.5, 1]) @pytest.mark.parametrize("seed", TEST_SEEDS) @pytest.mark.parametrize("always_apply", (False, True)) def test_augmentations_serialization(augmentation_cls, params, p, seed, image, mask, always_apply): aug = augmentation_cls(p=p, always_apply=always_apply, **params) serialized_aug = A.to_dict(aug) deserialized_aug = A.from_dict(serialized_aug) set_seed(seed) aug_data = aug(image=image, mask=mask) set_seed(seed) deserialized_aug_data = deserialized_aug(image=image, mask=mask) assert np.array_equal(aug_data["image"], deserialized_aug_data["image"]) assert np.array_equal(aug_data["mask"], deserialized_aug_data["mask"]) AUGMENTATION_CLS_PARAMS = [ [ A.ImageCompression, { "quality_lower": 10, "quality_upper": 80, "compression_type": A.ImageCompression.ImageCompressionType.WEBP, }, ], [A.JpegCompression, {"quality_lower": 10, "quality_upper": 80}], [A.HueSaturationValue, {"hue_shift_limit": 70, "sat_shift_limit": 95, "val_shift_limit": 55}], [A.RGBShift, {"r_shift_limit": 70, "g_shift_limit": 80, "b_shift_limit": 40}], [A.RandomBrightnessContrast, {"brightness_limit": 0.5, "contrast_limit": 0.8}], [A.Blur, {"blur_limit": 3}], [A.MotionBlur, {"blur_limit": 3}], [A.MedianBlur, {"blur_limit": 3}], [A.GaussianBlur, {"blur_limit": 3}], [A.GaussNoise, {"var_limit": (20, 90), "mean": 10, "per_channel": False}], [A.CLAHE, {"clip_limit": 2, "tile_grid_size": (12, 12)}], [A.RandomGamma, {"gamma_limit": (10, 90)}], [A.Cutout, {"num_holes": 4, "max_h_size": 4, "max_w_size": 4}], [A.CoarseDropout, {"max_holes": 4, "max_height": 4, "max_width": 4}], [A.RandomSnow, {"snow_point_lower": 0.2, "snow_point_upper": 0.4, "brightness_coeff": 4}], [ A.RandomRain, { "slant_lower": -5, "slant_upper": 5, "drop_length": 15, "drop_width": 2, "drop_color": (100, 100, 100), "blur_value": 3, "brightness_coefficient": 0.5, "rain_type": "heavy", }, ], [A.RandomFog, {"fog_coef_lower": 0.2, "fog_coef_upper": 0.8, "alpha_coef": 0.11}], [ A.RandomSunFlare, { "flare_roi": (0.1, 0.1, 0.9, 0.6), "angle_lower": 0.1, "angle_upper": 0.95, "num_flare_circles_lower": 7, "num_flare_circles_upper": 11, "src_radius": 300, "src_color": (200, 200, 200), }, ], [ A.RandomShadow, { "shadow_roi": (0.1, 0.4, 0.9, 0.9), "num_shadows_lower": 2, "num_shadows_upper": 4, "shadow_dimension": 8, }, ], [ A.PadIfNeeded, {"min_height": 512, "min_width": 512, "border_mode": cv2.BORDER_CONSTANT, "value": (10, 10, 10)}, ], [ A.Rotate, { "limit": 120, "interpolation": cv2.INTER_CUBIC, "border_mode": cv2.BORDER_CONSTANT, "value": (10, 10, 10), }, ], [ A.SafeRotate, { "limit": 120, "interpolation": cv2.INTER_CUBIC, "border_mode": cv2.BORDER_CONSTANT, "value": (10, 10, 10), }, ], [ A.ShiftScaleRotate, { "shift_limit": 0.2, "scale_limit": 0.2, "rotate_limit": 70, "interpolation": cv2.INTER_CUBIC, "border_mode": cv2.BORDER_CONSTANT, "value": (10, 10, 10), }, ], [ A.ShiftScaleRotate, { "shift_limit_x": 0.3, "shift_limit_y": 0.4, "scale_limit": 0.2, "rotate_limit": 70, "interpolation": cv2.INTER_CUBIC, "border_mode": cv2.BORDER_CONSTANT, "value": (10, 10, 10), }, ], [ A.OpticalDistortion, { "distort_limit": 0.2, "shift_limit": 0.2, "interpolation": cv2.INTER_CUBIC, "border_mode": cv2.BORDER_CONSTANT, "value": (10, 10, 10), }, ], [ A.GridDistortion, { "num_steps": 10, "distort_limit": 0.5, "interpolation": cv2.INTER_CUBIC, "border_mode": cv2.BORDER_CONSTANT, "value": (10, 10, 10), }, ], [ A.ElasticTransform, { "alpha": 2, "sigma": 25, "alpha_affine": 40, "interpolation": cv2.INTER_CUBIC, "border_mode": cv2.BORDER_CONSTANT, "value": (10, 10, 10), }, ], [A.CenterCrop, {"height": 10, "width": 10}], [A.RandomCrop, {"height": 10, "width": 10}], [A.CropNonEmptyMaskIfExists, {"height": 10, "width": 10}], [A.RandomSizedCrop, {"min_max_height": (4, 8), "height": 10, "width": 10}], [A.Crop, {"x_max": 64, "y_max": 64}], [A.ToFloat, {"max_value": 16536}], [A.Normalize, {"mean": (0.385, 0.356, 0.306), "std": (0.129, 0.124, 0.125), "max_pixel_value": 100.0}], [A.RandomBrightness, {"limit": 0.4}], [A.RandomContrast, {"limit": 0.4}], [A.RandomScale, {"scale_limit": 0.2, "interpolation": cv2.INTER_CUBIC}], [A.Resize, {"height": 64, "width": 64}], [A.SmallestMaxSize, {"max_size": 64, "interpolation": cv2.INTER_CUBIC}], [A.LongestMaxSize, {"max_size": 128, "interpolation": cv2.INTER_CUBIC}], [A.RandomGridShuffle, {"grid": (5, 5)}], [A.Solarize, {"threshold": 32}], [A.Posterize, {"num_bits": 1}], [A.Equalize, {"mode": "pil", "by_channels": False}], [A.MultiplicativeNoise, {"multiplier": (0.7, 2.3), "per_channel": True, "elementwise": True}], [ A.ColorJitter, {"brightness": [0.2, 0.3], "contrast": [0.7, 0.9], "saturation": [1.2, 1.7], "hue": [-0.2, 0.1]}, ], [ A.Perspective, { "scale": 0.5, "keep_size": False, "pad_mode": cv2.BORDER_REFLECT_101, "pad_val": 10, "mask_pad_val": 100, "fit_output": True, "interpolation": cv2.INTER_CUBIC, }, ], [A.Sharpen, {"alpha": [0.2, 0.5], "lightness": [0.5, 1.0]}], [A.Emboss, {"alpha": [0.2, 0.5], "strength": [0.5, 1.0]}], [A.RandomToneCurve, {"scale": 0.2}], [ A.CropAndPad, { "px": 10, "keep_size": False, "sample_independently": False, "interpolation": cv2.INTER_CUBIC, "pad_cval_mask": [10, 20, 30], "pad_cval": [11, 12, 13], "pad_mode": cv2.BORDER_REFLECT101, }, ], [ A.Superpixels, {"p_replace": (0.5, 0.7), "n_segments": (20, 30), "max_size": 25, "interpolation": cv2.INTER_CUBIC}, ], [ A.Affine, { "scale": 0.5, "translate_percent": 0.7, "translate_px": None, "rotate": 33, "shear": 21, "interpolation": cv2.INTER_CUBIC, "cval": 25, "cval_mask": 1, "mode": cv2.BORDER_REFLECT, "fit_output": True, }, ], [ A.Affine, { "scale": {"x": [0.3, 0.5], "y": [0.1, 0.2]}, "translate_percent": None, "translate_px": {"x": [10, 200], "y": [5, 101]}, "rotate": [333, 360], "shear": {"x": [31, 38], "y": [41, 48]}, "interpolation": 3, "cval": [10, 20, 30], "cval_mask": 1, "mode": cv2.BORDER_REFLECT, "fit_output": True, }, ], [ A.PiecewiseAffine, { "scale": 0.33, "nb_rows": (10, 20), "nb_cols": 33, "interpolation": 2, "mask_interpolation": 1, "cval": 10, "cval_mask": 20, "mode": "edge", "absolute_scale": True, "keypoints_threshold": 0.1, }, ], [A.ChannelDropout, dict(channel_drop_range=(1, 2), fill_value=1)], [A.ChannelShuffle, {}], [A.Downscale, dict(scale_min=0.5, scale_max=0.75, interpolation=cv2.INTER_LINEAR)], [A.Flip, {}], [A.FromFloat, dict(dtype="uint8", max_value=1)], [A.HorizontalFlip, {}], [A.ISONoise, dict(color_shift=(0.2, 0.3), intensity=(0.7, 0.9))], [A.InvertImg, {}], [A.MaskDropout, dict(max_objects=2, image_fill_value=10, mask_fill_value=20)], [A.NoOp, {}], [A.RandomResizedCrop, dict(height=20, width=30, scale=(0.5, 0.6), ratio=(0.8, 0.9))], [A.FancyPCA, dict(alpha=0.3)], [A.RandomRotate90, {}], [A.ToGray, {}], [A.ToSepia, {}], [A.Transpose, {}], [A.VerticalFlip, {}], [A.RingingOvershoot, dict(blur_limit=(7, 15), cutoff=(np.pi / 5, np.pi / 2))], [A.UnsharpMask, {"blur_limit": 3, "sigma_limit": 0.5, "alpha": 0.2, "threshold": 15}], [A.AdvancedBlur, dict(blur_limit=(3, 5), rotate_limit=(60, 90))], [A.PixelDropout, {"dropout_prob": 0.1, "per_channel": True, "drop_value": None}], [A.PixelDropout, {"dropout_prob": 0.1, "per_channel": False, "drop_value": None, "mask_drop_value": 15}], ] AUGMENTATION_CLS_EXCEPT = { A.FDA, A.HistogramMatching, A.PixelDistributionAdaptation, A.Lambda, A.RandomCropNearBBox, A.RandomSizedBBoxSafeCrop, A.GridDropout, A.GlassBlur, A.TemplateTransform, } @pytest.mark.parametrize( ["augmentation_cls", "params"], check_all_augs_exists(AUGMENTATION_CLS_PARAMS, AUGMENTATION_CLS_EXCEPT) ) @pytest.mark.parametrize("p", [0.5, 1]) @pytest.mark.parametrize("seed", TEST_SEEDS) @pytest.mark.parametrize("always_apply", (False, True)) def test_augmentations_serialization_with_custom_parameters( augmentation_cls, params, p, seed, image, mask, always_apply ): aug = augmentation_cls(p=p, always_apply=always_apply, **params) serialized_aug = A.to_dict(aug) deserialized_aug = A.from_dict(serialized_aug) set_seed(seed) aug_data = aug(image=image, mask=mask) set_seed(seed) deserialized_aug_data = deserialized_aug(image=image, mask=mask) assert np.array_equal(aug_data["image"], deserialized_aug_data["image"]) assert np.array_equal(aug_data["mask"], deserialized_aug_data["mask"]) @pytest.mark.parametrize( ["augmentation_cls", "params"], check_all_augs_exists(AUGMENTATION_CLS_PARAMS, AUGMENTATION_CLS_EXCEPT) ) @pytest.mark.parametrize("p", [0.5, 1]) @pytest.mark.parametrize("seed", TEST_SEEDS) @pytest.mark.parametrize("always_apply", (False, True)) @pytest.mark.parametrize("data_format", ("yaml",)) def test_augmentations_serialization_to_file_with_custom_parameters( augmentation_cls, params, p, seed, image, mask, always_apply, data_format ): with patch("builtins.open", OpenMock()): aug = augmentation_cls(p=p, always_apply=always_apply, **params) filepath = "serialized.{}".format(data_format) A.save(aug, filepath, data_format=data_format) deserialized_aug = A.load(filepath, data_format=data_format) set_seed(seed) aug_data = aug(image=image, mask=mask) set_seed(seed) deserialized_aug_data = deserialized_aug(image=image, mask=mask) assert np.array_equal(aug_data["image"], deserialized_aug_data["image"]) assert np.array_equal(aug_data["mask"], deserialized_aug_data["mask"]) @pytest.mark.parametrize( ["augmentation_cls", "params"], get_transforms( custom_arguments={ A.Crop: {"y_min": 0, "y_max": 10, "x_min": 0, "x_max": 10}, A.CenterCrop: {"height": 10, "width": 10}, A.CropNonEmptyMaskIfExists: {"height": 10, "width": 10}, A.RandomCrop: {"height": 10, "width": 10}, A.RandomResizedCrop: {"height": 10, "width": 10}, A.RandomSizedCrop: {"min_max_height": (4, 8), "height": 10, "width": 10}, A.CropAndPad: {"px": 10}, A.Resize: {"height": 10, "width": 10}, A.RandomSizedBBoxSafeCrop: {"height": 10, "width": 10}, }, except_augmentations={ A.RandomCropNearBBox, A.FDA, A.HistogramMatching, A.PixelDistributionAdaptation, A.Lambda, A.CoarseDropout, A.CropNonEmptyMaskIfExists, A.ElasticTransform, A.GridDistortion, A.RandomGridShuffle, A.GridDropout, A.MaskDropout, A.OpticalDistortion, A.TemplateTransform, }, ), ) @pytest.mark.parametrize("p", [0.5, 1]) @pytest.mark.parametrize("seed", TEST_SEEDS) @pytest.mark.parametrize("always_apply", (False, True)) def test_augmentations_for_bboxes_serialization( augmentation_cls, params, p, seed, image, albumentations_bboxes, always_apply ): aug = augmentation_cls(p=p, always_apply=always_apply, **params) serialized_aug = A.to_dict(aug) deserialized_aug = A.from_dict(serialized_aug) set_seed(seed) aug_data = aug(image=image, bboxes=albumentations_bboxes) set_seed(seed) deserialized_aug_data = deserialized_aug(image=image, bboxes=albumentations_bboxes) assert np.array_equal(aug_data["image"], deserialized_aug_data["image"]) assert np.array_equal(aug_data["bboxes"], deserialized_aug_data["bboxes"]) @pytest.mark.parametrize( ["augmentation_cls", "params"], get_transforms( custom_arguments={ A.Crop: {"y_min": 0, "y_max": 10, "x_min": 0, "x_max": 10}, A.CenterCrop: {"height": 10, "width": 10}, A.CropNonEmptyMaskIfExists: {"height": 10, "width": 10}, A.RandomCrop: {"height": 10, "width": 10}, A.RandomResizedCrop: {"height": 10, "width": 10}, A.RandomSizedCrop: {"min_max_height": (4, 8), "height": 10, "width": 10}, A.CropAndPad: {"px": 10}, A.Resize: {"height": 10, "width": 10}, }, except_augmentations={ A.RandomCropNearBBox, A.FDA, A.HistogramMatching, A.PixelDistributionAdaptation, A.Lambda, A.CoarseDropout, A.CropNonEmptyMaskIfExists, A.ElasticTransform, A.GridDistortion, A.RandomGridShuffle, A.GridDropout, A.MaskDropout, A.OpticalDistortion, A.RandomSizedBBoxSafeCrop, A.TemplateTransform, }, ), ) @pytest.mark.parametrize("p", [0.5, 1]) @pytest.mark.parametrize("seed", TEST_SEEDS) @pytest.mark.parametrize("always_apply", (False, True)) def test_augmentations_for_keypoints_serialization(augmentation_cls, params, p, seed, image, keypoints, always_apply): aug = augmentation_cls(p=p, always_apply=always_apply, **params) serialized_aug = A.to_dict(aug) deserialized_aug = A.from_dict(serialized_aug) set_seed(seed) aug_data = aug(image=image, keypoints=keypoints) set_seed(seed) deserialized_aug_data = deserialized_aug(image=image, keypoints=keypoints) assert np.array_equal(aug_data["image"], deserialized_aug_data["image"]) assert np.array_equal(aug_data["keypoints"], deserialized_aug_data["keypoints"]) @pytest.mark.parametrize( ["augmentation_cls", "params", "call_params"], [[A.RandomCropNearBBox, {"max_part_shift": 0.15}, {"cropping_bbox": [-59, 77, 177, 231]}]], ) @pytest.mark.parametrize("p", [0.5, 1]) @pytest.mark.parametrize("seed", TEST_SEEDS) @pytest.mark.parametrize("always_apply", (False, True)) def test_augmentations_serialization_with_call_params( augmentation_cls, params, call_params, p, seed, image, always_apply ): aug = augmentation_cls(p=p, always_apply=always_apply, **params) annotations = {"image": image, **call_params} serialized_aug = A.to_dict(aug) deserialized_aug = A.from_dict(serialized_aug) set_seed(seed) aug_data = aug(**annotations) set_seed(seed) deserialized_aug_data = deserialized_aug(**annotations) assert np.array_equal(aug_data["image"], deserialized_aug_data["image"]) def test_from_float_serialization(float_image): aug = A.FromFloat(p=1, dtype="uint8") serialized_aug = A.to_dict(aug) deserialized_aug = A.from_dict(serialized_aug) aug_data = aug(image=float_image) deserialized_aug_data = deserialized_aug(image=float_image) assert np.array_equal(aug_data["image"], deserialized_aug_data["image"]) @pytest.mark.parametrize("seed", TEST_SEEDS) def test_transform_pipeline_serialization(seed, image, mask): aug = A.Compose( [ A.OneOrOther( A.Compose( [ A.Resize(1024, 1024), A.RandomSizedCrop(min_max_height=(256, 1024), height=512, width=512, p=1), A.OneOf( [ A.RandomSizedCrop(min_max_height=(256, 512), height=384, width=384, p=0.5), A.RandomSizedCrop(min_max_height=(256, 512), height=512, width=512, p=0.5), ] ), ] ), A.Compose( [ A.Resize(1024, 1024), A.RandomSizedCrop(min_max_height=(256, 1025), height=256, width=256, p=1), A.OneOf([A.HueSaturationValue(p=0.5), A.RGBShift(p=0.7)], p=1), ] ), ), A.SomeOf( [ A.HorizontalFlip(p=1), A.Transpose(p=1), A.HueSaturationValue(p=0.5), A.RandomBrightnessContrast(p=0.5), ], 2, replace=False, ), ] ) serialized_aug = A.to_dict(aug) deserialized_aug = A.from_dict(serialized_aug) set_seed(seed) aug_data = aug(image=image, mask=mask) set_seed(seed) deserialized_aug_data = deserialized_aug(image=image, mask=mask) assert np.array_equal(aug_data["image"], deserialized_aug_data["image"]) assert np.array_equal(aug_data["mask"], deserialized_aug_data["mask"]) @pytest.mark.parametrize( ["bboxes", "bbox_format", "labels"], [ ([(20, 30, 40, 50)], "coco", [1]), ([(20, 30, 40, 50, 99), (10, 40, 30, 20, 9)], "coco", [1, 2]), ([(20, 30, 60, 80)], "pascal_voc", [2]), ([(20, 30, 60, 80, 99)], "pascal_voc", [1]), ([(0.2, 0.3, 0.4, 0.5)], "yolo", [2]), ([(0.2, 0.3, 0.4, 0.5, 99)], "yolo", [1]), ], ) @pytest.mark.parametrize("seed", TEST_SEEDS) def test_transform_pipeline_serialization_with_bboxes(seed, image, bboxes, bbox_format, labels): aug = A.Compose( [ A.OneOrOther( A.Compose([A.RandomRotate90(), A.OneOf([A.HorizontalFlip(p=0.5), A.VerticalFlip(p=0.5)])]), A.Compose([A.Rotate(p=0.5), A.OneOf([A.HueSaturationValue(p=0.5), A.RGBShift(p=0.7)], p=1)]), ), A.SomeOf( [ A.HorizontalFlip(p=1), A.Transpose(p=1), A.HueSaturationValue(p=0.5), A.RandomBrightnessContrast(p=0.5), ], n=5, ), ], bbox_params={"format": bbox_format, "label_fields": ["labels"]}, ) serialized_aug = A.to_dict(aug) deserialized_aug = A.from_dict(serialized_aug) set_seed(seed) aug_data = aug(image=image, bboxes=bboxes, labels=labels) set_seed(seed) deserialized_aug_data = deserialized_aug(image=image, bboxes=bboxes, labels=labels) assert np.array_equal(aug_data["image"], deserialized_aug_data["image"]) assert np.array_equal(aug_data["bboxes"], deserialized_aug_data["bboxes"]) @pytest.mark.parametrize( ["keypoints", "keypoint_format", "labels"], [ ([(20, 30, 40, 50)], "xyas", [1]), ([(20, 30, 40, 50, 99), (10, 40, 30, 20, 9)], "xy", [1, 2]), ([(20, 30, 60, 80)], "yx", [2]), ([(20, 30, 60, 80, 99)], "xys", [1]), ], ) @pytest.mark.parametrize("seed", TEST_SEEDS) def test_transform_pipeline_serialization_with_keypoints(seed, image, keypoints, keypoint_format, labels): aug = A.Compose( [ A.OneOrOther( A.Compose([A.RandomRotate90(), A.OneOf([A.HorizontalFlip(p=0.5), A.VerticalFlip(p=0.5)])]), A.Compose([A.Rotate(p=0.5), A.OneOf([A.HueSaturationValue(p=0.5), A.RGBShift(p=0.7)], p=1)]), ), A.SomeOf( n=2, transforms=[ A.HorizontalFlip(p=1), A.Transpose(p=1), A.HueSaturationValue(p=0.5), A.RandomBrightnessContrast(p=0.5), ], replace=False, ), ], keypoint_params={"format": keypoint_format, "label_fields": ["labels"]}, ) serialized_aug = A.to_dict(aug) deserialized_aug = A.from_dict(serialized_aug) set_seed(seed) aug_data = aug(image=image, keypoints=keypoints, labels=labels) set_seed(seed) deserialized_aug_data = deserialized_aug(image=image, keypoints=keypoints, labels=labels) assert np.array_equal(aug_data["image"], deserialized_aug_data["image"]) assert np.array_equal(aug_data["keypoints"], deserialized_aug_data["keypoints"]) @pytest.mark.parametrize( ["augmentation_cls", "params"], get_image_only_transforms( except_augmentations={A.HistogramMatching, A.FDA, A.PixelDistributionAdaptation, A.TemplateTransform}, ), ) @pytest.mark.parametrize("seed", TEST_SEEDS) def test_additional_targets_for_image_only_serialization(augmentation_cls, params, image, seed): aug = A.Compose([augmentation_cls(always_apply=True, **params)], additional_targets={"image2": "image"}) image2 = image.copy() serialized_aug = A.to_dict(aug) deserialized_aug = A.from_dict(serialized_aug) set_seed(seed) aug_data = aug(image=image, image2=image2) set_seed(seed) deserialized_aug_data = deserialized_aug(image=image, image2=image2) assert np.array_equal(aug_data["image"], deserialized_aug_data["image"]) assert np.array_equal(aug_data["image2"], deserialized_aug_data["image2"]) @pytest.mark.parametrize("seed", TEST_SEEDS) @pytest.mark.parametrize("p", [1]) def test_lambda_serialization(image, mask, albumentations_bboxes, keypoints, seed, p): def vflip_image(image, **kwargs): return F.vflip(image) def vflip_mask(mask, **kwargs): return F.vflip(mask) def vflip_bbox(bbox, **kwargs): return F.bbox_vflip(bbox, **kwargs) def vflip_keypoint(keypoint, **kwargs): return F.keypoint_vflip(keypoint, **kwargs) aug = A.Lambda(name="vflip", image=vflip_image, mask=vflip_mask, bbox=vflip_bbox, keypoint=vflip_keypoint, p=p) serialized_aug = A.to_dict(aug) deserialized_aug = A.from_dict(serialized_aug, lambda_transforms={"vflip": aug}) set_seed(seed) aug_data = aug(image=image, mask=mask, bboxes=albumentations_bboxes, keypoints=keypoints) set_seed(seed) deserialized_aug_data = deserialized_aug(image=image, mask=mask, bboxes=albumentations_bboxes, keypoints=keypoints) assert np.array_equal(aug_data["image"], deserialized_aug_data["image"]) assert np.array_equal(aug_data["mask"], deserialized_aug_data["mask"]) assert np.array_equal(aug_data["bboxes"], deserialized_aug_data["bboxes"]) assert np.array_equal(aug_data["keypoints"], deserialized_aug_data["keypoints"]) def test_serialization_v2_conversion_without_totensor(): current_directory = os.path.dirname(os.path.abspath(__file__)) files_directory = os.path.join(current_directory, "files") transform_1_1_0 = A.load(os.path.join(files_directory, "transform_v1.1.0_without_totensor.json")) with open(os.path.join(files_directory, "output_v1.1.0_without_totensor.json")) as f: output_1_1_0 = json.load(f) np.random.seed(42) image = np.random.randint(low=0, high=255, size=(256, 256, 3), dtype=np.uint8) random.seed(42) transformed_image = transform_1_1_0(image=image)["image"] assert transformed_image.tolist() == output_1_1_0 @skipif_no_torch def test_serialization_v2_conversion_with_totensor(): current_directory = os.path.dirname(os.path.abspath(__file__)) files_directory = os.path.join(current_directory, "files") transform_1_1_0 = A.load(os.path.join(files_directory, "transform_v1.1.0_with_totensor.json")) with open(os.path.join(files_directory, "output_v1.1.0_with_totensor.json")) as f: output_1_1_0 = json.load(f) np.random.seed(42) image = np.random.randint(low=0, high=255, size=(256, 256, 3), dtype=np.uint8) random.seed(42) transformed_image = transform_1_1_0(image=image)["image"] assert transformed_image.numpy().tolist() == output_1_1_0 def test_serialization_v2_without_totensor(): current_directory = os.path.dirname(os.path.abspath(__file__)) files_directory = os.path.join(current_directory, "files") transform = A.load(os.path.join(files_directory, "transform_serialization_v2_without_totensor.json")) with open(os.path.join(files_directory, "output_v1.1.0_without_totensor.json")) as f: output_1_1_0 = json.load(f) np.random.seed(42) image = np.random.randint(low=0, high=255, size=(256, 256, 3), dtype=np.uint8) random.seed(42) transformed_image = transform(image=image)["image"] assert transformed_image.tolist() == output_1_1_0 @skipif_no_torch def test_serialization_v2_with_totensor(): current_directory = os.path.dirname(os.path.abspath(__file__)) files_directory = os.path.join(current_directory, "files") transform = A.load(os.path.join(files_directory, "transform_serialization_v2_with_totensor.json")) with open(os.path.join(files_directory, "output_v1.1.0_with_totensor.json")) as f: output_1_1_0 = json.load(f) np.random.seed(42) image = np.random.randint(low=0, high=255, size=(256, 256, 3), dtype=np.uint8) random.seed(42) transformed_image = transform(image=image)["image"] assert transformed_image.numpy().tolist() == output_1_1_0 def test_custom_transform_with_overlapping_name(): class HorizontalFlip(ImageOnlyTransform): pass assert SERIALIZABLE_REGISTRY["HorizontalFlip"] == A.HorizontalFlip assert SERIALIZABLE_REGISTRY["tests.test_serialization.HorizontalFlip"] == HorizontalFlip def test_serialization_v2_to_dict(): transform = A.Compose([A.HorizontalFlip()]) transform_dict = A.to_dict(transform)["transform"] assert transform_dict == { "__class_fullname__": "Compose", "p": 1.0, "transforms": [{"__class_fullname__": "HorizontalFlip", "always_apply": False, "p": 0.5}], "bbox_params": None, "keypoint_params": None, "additional_targets": {}, } @pytest.mark.parametrize( ["class_fullname", "expected_short_class_name"], [ ["albumentations.augmentations.transforms.HorizontalFlip", "HorizontalFlip"], ["HorizontalFlip", "HorizontalFlip"], ["some_module.HorizontalFlip", "some_module.HorizontalFlip"], ], ) def test_shorten_class_name(class_fullname, expected_short_class_name): assert shorten_class_name(class_fullname) == expected_short_class_name @pytest.mark.parametrize("seed", TEST_SEEDS) @pytest.mark.parametrize("p", [1]) def test_template_transform_serialization(image, template, seed, p): template_transform = A.TemplateTransform(name="template", templates=template, p=p) aug = A.Compose([A.Flip(), template_transform, A.Blur()]) serialized_aug = A.to_dict(aug) deserialized_aug = A.from_dict(serialized_aug, lambda_transforms={"template": template_transform}) set_seed(seed) aug_data = aug(image=image) set_seed(seed) deserialized_aug_data = deserialized_aug(image=image) assert np.array_equal(aug_data["image"], deserialized_aug_data["image"])
[ "albumentations.Lambda", "numpy.random.seed", "albumentations.Resize", "albumentations.Flip", "albumentations.Rotate", "numpy.random.randint", "albumentations.TemplateTransform", "albumentations.load", "pytest.mark.parametrize", "albumentations.HorizontalFlip", "os.path.join", "albumentations.RGBShift", "albumentations.from_dict", "albumentations.Blur", "os.path.abspath", "albumentations.save", "albumentations.core.serialization.shorten_class_name", "random.seed", "albumentations.augmentations.functional.bbox_vflip", "albumentations.to_dict", "albumentations.augmentations.functional.keypoint_vflip", "albumentations.RandomSizedCrop", "albumentations.VerticalFlip", "json.load", "albumentations.HueSaturationValue", "albumentations.RandomBrightnessContrast", "albumentations.Transpose", "albumentations.augmentations.functional.vflip", "albumentations.FromFloat", "numpy.array_equal", "albumentations.RandomRotate90" ]
[((1467, 1505), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""p"""', '[0.5, 1]'], {}), "('p', [0.5, 1])\n", (1490, 1505), False, 'import pytest\n'), ((1507, 1550), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""seed"""', 'TEST_SEEDS'], {}), "('seed', TEST_SEEDS)\n", (1530, 1550), False, 'import pytest\n'), ((1552, 1606), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""always_apply"""', '(False, True)'], {}), "('always_apply', (False, True))\n", (1575, 1606), False, 'import pytest\n'), ((11113, 11151), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""p"""', '[0.5, 1]'], {}), "('p', [0.5, 1])\n", (11136, 11151), False, 'import pytest\n'), ((11153, 11196), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""seed"""', 'TEST_SEEDS'], {}), "('seed', TEST_SEEDS)\n", (11176, 11196), False, 'import pytest\n'), ((11198, 11252), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""always_apply"""', '(False, True)'], {}), "('always_apply', (False, True))\n", (11221, 11252), False, 'import pytest\n'), ((11979, 12017), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""p"""', '[0.5, 1]'], {}), "('p', [0.5, 1])\n", (12002, 12017), False, 'import pytest\n'), ((12019, 12062), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""seed"""', 'TEST_SEEDS'], {}), "('seed', TEST_SEEDS)\n", (12042, 12062), False, 'import pytest\n'), ((12064, 12118), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""always_apply"""', '(False, True)'], {}), "('always_apply', (False, True))\n", (12087, 12118), False, 'import pytest\n'), ((12120, 12169), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""data_format"""', "('yaml',)"], {}), "('data_format', ('yaml',))\n", (12143, 12169), False, 'import pytest\n'), ((14108, 14146), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""p"""', '[0.5, 1]'], {}), "('p', [0.5, 1])\n", (14131, 14146), False, 'import pytest\n'), ((14148, 14191), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""seed"""', 'TEST_SEEDS'], {}), "('seed', TEST_SEEDS)\n", (14171, 14191), False, 'import pytest\n'), ((14193, 14247), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""always_apply"""', '(False, True)'], {}), "('always_apply', (False, True))\n", (14216, 14247), False, 'import pytest\n'), ((16018, 16056), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""p"""', '[0.5, 1]'], {}), "('p', [0.5, 1])\n", (16041, 16056), False, 'import pytest\n'), ((16058, 16101), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""seed"""', 'TEST_SEEDS'], {}), "('seed', TEST_SEEDS)\n", (16081, 16101), False, 'import pytest\n'), ((16103, 16157), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""always_apply"""', '(False, True)'], {}), "('always_apply', (False, True))\n", (16126, 16157), False, 'import pytest\n'), ((16768, 16940), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (["['augmentation_cls', 'params', 'call_params']", "[[A.RandomCropNearBBox, {'max_part_shift': 0.15}, {'cropping_bbox': [-59, \n 77, 177, 231]}]]"], {}), "(['augmentation_cls', 'params', 'call_params'], [[A.\n RandomCropNearBBox, {'max_part_shift': 0.15}, {'cropping_bbox': [-59, \n 77, 177, 231]}]])\n", (16791, 16940), False, 'import pytest\n'), ((16943, 16981), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""p"""', '[0.5, 1]'], {}), "('p', [0.5, 1])\n", (16966, 16981), False, 'import pytest\n'), ((16983, 17026), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""seed"""', 'TEST_SEEDS'], {}), "('seed', TEST_SEEDS)\n", (17006, 17026), False, 'import pytest\n'), ((17028, 17082), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""always_apply"""', '(False, True)'], {}), "('always_apply', (False, True))\n", (17051, 17082), False, 'import pytest\n'), ((17989, 18032), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""seed"""', 'TEST_SEEDS'], {}), "('seed', TEST_SEEDS)\n", (18012, 18032), False, 'import pytest\n'), ((19778, 20123), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (["['bboxes', 'bbox_format', 'labels']", "[([(20, 30, 40, 50)], 'coco', [1]), ([(20, 30, 40, 50, 99), (10, 40, 30, 20,\n 9)], 'coco', [1, 2]), ([(20, 30, 60, 80)], 'pascal_voc', [2]), ([(20, \n 30, 60, 80, 99)], 'pascal_voc', [1]), ([(0.2, 0.3, 0.4, 0.5)], 'yolo',\n [2]), ([(0.2, 0.3, 0.4, 0.5, 99)], 'yolo', [1])]"], {}), "(['bboxes', 'bbox_format', 'labels'], [([(20, 30, 40,\n 50)], 'coco', [1]), ([(20, 30, 40, 50, 99), (10, 40, 30, 20, 9)],\n 'coco', [1, 2]), ([(20, 30, 60, 80)], 'pascal_voc', [2]), ([(20, 30, 60,\n 80, 99)], 'pascal_voc', [1]), ([(0.2, 0.3, 0.4, 0.5)], 'yolo', [2]), ([\n (0.2, 0.3, 0.4, 0.5, 99)], 'yolo', [1])])\n", (19801, 20123), False, 'import pytest\n'), ((20174, 20217), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""seed"""', 'TEST_SEEDS'], {}), "('seed', TEST_SEEDS)\n", (20197, 20217), False, 'import pytest\n'), ((21409, 21659), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (["['keypoints', 'keypoint_format', 'labels']", "[([(20, 30, 40, 50)], 'xyas', [1]), ([(20, 30, 40, 50, 99), (10, 40, 30, 20,\n 9)], 'xy', [1, 2]), ([(20, 30, 60, 80)], 'yx', [2]), ([(20, 30, 60, 80,\n 99)], 'xys', [1])]"], {}), "(['keypoints', 'keypoint_format', 'labels'], [([(20,\n 30, 40, 50)], 'xyas', [1]), ([(20, 30, 40, 50, 99), (10, 40, 30, 20, 9)\n ], 'xy', [1, 2]), ([(20, 30, 60, 80)], 'yx', [2]), ([(20, 30, 60, 80, \n 99)], 'xys', [1])])\n", (21432, 21659), False, 'import pytest\n'), ((21697, 21740), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""seed"""', 'TEST_SEEDS'], {}), "('seed', TEST_SEEDS)\n", (21720, 21740), False, 'import pytest\n'), ((23223, 23266), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""seed"""', 'TEST_SEEDS'], {}), "('seed', TEST_SEEDS)\n", (23246, 23266), False, 'import pytest\n'), ((23904, 23947), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""seed"""', 'TEST_SEEDS'], {}), "('seed', TEST_SEEDS)\n", (23927, 23947), False, 'import pytest\n'), ((23949, 23982), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""p"""', '[1]'], {}), "('p', [1])\n", (23972, 23982), False, 'import pytest\n'), ((28545, 28811), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (["['class_fullname', 'expected_short_class_name']", "[['albumentations.augmentations.transforms.HorizontalFlip',\n 'HorizontalFlip'], ['HorizontalFlip', 'HorizontalFlip'], [\n 'some_module.HorizontalFlip', 'some_module.HorizontalFlip']]"], {}), "(['class_fullname', 'expected_short_class_name'], [[\n 'albumentations.augmentations.transforms.HorizontalFlip',\n 'HorizontalFlip'], ['HorizontalFlip', 'HorizontalFlip'], [\n 'some_module.HorizontalFlip', 'some_module.HorizontalFlip']])\n", (28568, 28811), False, 'import pytest\n'), ((28990, 29033), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""seed"""', 'TEST_SEEDS'], {}), "('seed', TEST_SEEDS)\n", (29013, 29033), False, 'import pytest\n'), ((29035, 29068), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""p"""', '[1]'], {}), "('p', [1])\n", (29058, 29068), False, 'import pytest\n'), ((1797, 1811), 'albumentations.to_dict', 'A.to_dict', (['aug'], {}), '(aug)\n', (1806, 1811), True, 'import albumentations as A\n'), ((1835, 1862), 'albumentations.from_dict', 'A.from_dict', (['serialized_aug'], {}), '(serialized_aug)\n', (1846, 1862), True, 'import albumentations as A\n'), ((2024, 2089), 'numpy.array_equal', 'np.array_equal', (["aug_data['image']", "deserialized_aug_data['image']"], {}), "(aug_data['image'], deserialized_aug_data['image'])\n", (2038, 2089), True, 'import numpy as np\n'), ((2101, 2164), 'numpy.array_equal', 'np.array_equal', (["aug_data['mask']", "deserialized_aug_data['mask']"], {}), "(aug_data['mask'], deserialized_aug_data['mask'])\n", (2115, 2164), True, 'import numpy as np\n'), ((11472, 11486), 'albumentations.to_dict', 'A.to_dict', (['aug'], {}), '(aug)\n', (11481, 11486), True, 'import albumentations as A\n'), ((11510, 11537), 'albumentations.from_dict', 'A.from_dict', (['serialized_aug'], {}), '(serialized_aug)\n', (11521, 11537), True, 'import albumentations as A\n'), ((11699, 11764), 'numpy.array_equal', 'np.array_equal', (["aug_data['image']", "deserialized_aug_data['image']"], {}), "(aug_data['image'], deserialized_aug_data['image'])\n", (11713, 11764), True, 'import numpy as np\n'), ((11776, 11839), 'numpy.array_equal', 'np.array_equal', (["aug_data['mask']", "deserialized_aug_data['mask']"], {}), "(aug_data['mask'], deserialized_aug_data['mask'])\n", (11790, 11839), True, 'import numpy as np\n'), ((14472, 14486), 'albumentations.to_dict', 'A.to_dict', (['aug'], {}), '(aug)\n', (14481, 14486), True, 'import albumentations as A\n'), ((14510, 14537), 'albumentations.from_dict', 'A.from_dict', (['serialized_aug'], {}), '(serialized_aug)\n', (14521, 14537), True, 'import albumentations as A\n'), ((14737, 14802), 'numpy.array_equal', 'np.array_equal', (["aug_data['image']", "deserialized_aug_data['image']"], {}), "(aug_data['image'], deserialized_aug_data['image'])\n", (14751, 14802), True, 'import numpy as np\n'), ((14814, 14881), 'numpy.array_equal', 'np.array_equal', (["aug_data['bboxes']", "deserialized_aug_data['bboxes']"], {}), "(aug_data['bboxes'], deserialized_aug_data['bboxes'])\n", (14828, 14881), True, 'import numpy as np\n'), ((16367, 16381), 'albumentations.to_dict', 'A.to_dict', (['aug'], {}), '(aug)\n', (16376, 16381), True, 'import albumentations as A\n'), ((16405, 16432), 'albumentations.from_dict', 'A.from_dict', (['serialized_aug'], {}), '(serialized_aug)\n', (16416, 16432), True, 'import albumentations as A\n'), ((16614, 16679), 'numpy.array_equal', 'np.array_equal', (["aug_data['image']", "deserialized_aug_data['image']"], {}), "(aug_data['image'], deserialized_aug_data['image'])\n", (16628, 16679), True, 'import numpy as np\n'), ((16691, 16764), 'numpy.array_equal', 'np.array_equal', (["aug_data['keypoints']", "deserialized_aug_data['keypoints']"], {}), "(aug_data['keypoints'], deserialized_aug_data['keypoints'])\n", (16705, 16764), True, 'import numpy as np\n'), ((17353, 17367), 'albumentations.to_dict', 'A.to_dict', (['aug'], {}), '(aug)\n', (17362, 17367), True, 'import albumentations as A\n'), ((17391, 17418), 'albumentations.from_dict', 'A.from_dict', (['serialized_aug'], {}), '(serialized_aug)\n', (17402, 17418), True, 'import albumentations as A\n'), ((17562, 17627), 'numpy.array_equal', 'np.array_equal', (["aug_data['image']", "deserialized_aug_data['image']"], {}), "(aug_data['image'], deserialized_aug_data['image'])\n", (17576, 17627), True, 'import numpy as np\n'), ((17688, 17719), 'albumentations.FromFloat', 'A.FromFloat', ([], {'p': '(1)', 'dtype': '"""uint8"""'}), "(p=1, dtype='uint8')\n", (17699, 17719), True, 'import albumentations as A\n'), ((17741, 17755), 'albumentations.to_dict', 'A.to_dict', (['aug'], {}), '(aug)\n', (17750, 17755), True, 'import albumentations as A\n'), ((17779, 17806), 'albumentations.from_dict', 'A.from_dict', (['serialized_aug'], {}), '(serialized_aug)\n', (17790, 17806), True, 'import albumentations as A\n'), ((17920, 17985), 'numpy.array_equal', 'np.array_equal', (["aug_data['image']", "deserialized_aug_data['image']"], {}), "(aug_data['image'], deserialized_aug_data['image'])\n", (17934, 17985), True, 'import numpy as np\n'), ((19407, 19421), 'albumentations.to_dict', 'A.to_dict', (['aug'], {}), '(aug)\n', (19416, 19421), True, 'import albumentations as A\n'), ((19445, 19472), 'albumentations.from_dict', 'A.from_dict', (['serialized_aug'], {}), '(serialized_aug)\n', (19456, 19472), True, 'import albumentations as A\n'), ((19634, 19699), 'numpy.array_equal', 'np.array_equal', (["aug_data['image']", "deserialized_aug_data['image']"], {}), "(aug_data['image'], deserialized_aug_data['image'])\n", (19648, 19699), True, 'import numpy as np\n'), ((19711, 19774), 'numpy.array_equal', 'np.array_equal', (["aug_data['mask']", "deserialized_aug_data['mask']"], {}), "(aug_data['mask'], deserialized_aug_data['mask'])\n", (19725, 19774), True, 'import numpy as np\n'), ((20996, 21010), 'albumentations.to_dict', 'A.to_dict', (['aug'], {}), '(aug)\n', (21005, 21010), True, 'import albumentations as A\n'), ((21034, 21061), 'albumentations.from_dict', 'A.from_dict', (['serialized_aug'], {}), '(serialized_aug)\n', (21045, 21061), True, 'import albumentations as A\n'), ((21261, 21326), 'numpy.array_equal', 'np.array_equal', (["aug_data['image']", "deserialized_aug_data['image']"], {}), "(aug_data['image'], deserialized_aug_data['image'])\n", (21275, 21326), True, 'import numpy as np\n'), ((21338, 21405), 'numpy.array_equal', 'np.array_equal', (["aug_data['bboxes']", "deserialized_aug_data['bboxes']"], {}), "(aug_data['bboxes'], deserialized_aug_data['bboxes'])\n", (21352, 21405), True, 'import numpy as np\n'), ((22579, 22593), 'albumentations.to_dict', 'A.to_dict', (['aug'], {}), '(aug)\n', (22588, 22593), True, 'import albumentations as A\n'), ((22617, 22644), 'albumentations.from_dict', 'A.from_dict', (['serialized_aug'], {}), '(serialized_aug)\n', (22628, 22644), True, 'import albumentations as A\n'), ((22856, 22921), 'numpy.array_equal', 'np.array_equal', (["aug_data['image']", "deserialized_aug_data['image']"], {}), "(aug_data['image'], deserialized_aug_data['image'])\n", (22870, 22921), True, 'import numpy as np\n'), ((22933, 23006), 'numpy.array_equal', 'np.array_equal', (["aug_data['keypoints']", "deserialized_aug_data['keypoints']"], {}), "(aug_data['keypoints'], deserialized_aug_data['keypoints'])\n", (22947, 23006), True, 'import numpy as np\n'), ((23521, 23535), 'albumentations.to_dict', 'A.to_dict', (['aug'], {}), '(aug)\n', (23530, 23535), True, 'import albumentations as A\n'), ((23559, 23586), 'albumentations.from_dict', 'A.from_dict', (['serialized_aug'], {}), '(serialized_aug)\n', (23570, 23586), True, 'import albumentations as A\n'), ((23756, 23821), 'numpy.array_equal', 'np.array_equal', (["aug_data['image']", "deserialized_aug_data['image']"], {}), "(aug_data['image'], deserialized_aug_data['image'])\n", (23770, 23821), True, 'import numpy as np\n'), ((23833, 23900), 'numpy.array_equal', 'np.array_equal', (["aug_data['image2']", "deserialized_aug_data['image2']"], {}), "(aug_data['image2'], deserialized_aug_data['image2'])\n", (23847, 23900), True, 'import numpy as np\n'), ((24393, 24502), 'albumentations.Lambda', 'A.Lambda', ([], {'name': '"""vflip"""', 'image': 'vflip_image', 'mask': 'vflip_mask', 'bbox': 'vflip_bbox', 'keypoint': 'vflip_keypoint', 'p': 'p'}), "(name='vflip', image=vflip_image, mask=vflip_mask, bbox=vflip_bbox,\n keypoint=vflip_keypoint, p=p)\n", (24401, 24502), True, 'import albumentations as A\n'), ((24521, 24535), 'albumentations.to_dict', 'A.to_dict', (['aug'], {}), '(aug)\n', (24530, 24535), True, 'import albumentations as A\n'), ((24559, 24620), 'albumentations.from_dict', 'A.from_dict', (['serialized_aug'], {'lambda_transforms': "{'vflip': aug}"}), "(serialized_aug, lambda_transforms={'vflip': aug})\n", (24570, 24620), True, 'import albumentations as A\n'), ((24884, 24949), 'numpy.array_equal', 'np.array_equal', (["aug_data['image']", "deserialized_aug_data['image']"], {}), "(aug_data['image'], deserialized_aug_data['image'])\n", (24898, 24949), True, 'import numpy as np\n'), ((24961, 25024), 'numpy.array_equal', 'np.array_equal', (["aug_data['mask']", "deserialized_aug_data['mask']"], {}), "(aug_data['mask'], deserialized_aug_data['mask'])\n", (24975, 25024), True, 'import numpy as np\n'), ((25036, 25103), 'numpy.array_equal', 'np.array_equal', (["aug_data['bboxes']", "deserialized_aug_data['bboxes']"], {}), "(aug_data['bboxes'], deserialized_aug_data['bboxes'])\n", (25050, 25103), True, 'import numpy as np\n'), ((25115, 25188), 'numpy.array_equal', 'np.array_equal', (["aug_data['keypoints']", "deserialized_aug_data['keypoints']"], {}), "(aug_data['keypoints'], deserialized_aug_data['keypoints'])\n", (25129, 25188), True, 'import numpy as np\n'), ((25337, 25377), 'os.path.join', 'os.path.join', (['current_directory', '"""files"""'], {}), "(current_directory, 'files')\n", (25349, 25377), False, 'import os\n'), ((25610, 25628), 'numpy.random.seed', 'np.random.seed', (['(42)'], {}), '(42)\n', (25624, 25628), True, 'import numpy as np\n'), ((25641, 25711), 'numpy.random.randint', 'np.random.randint', ([], {'low': '(0)', 'high': '(255)', 'size': '(256, 256, 3)', 'dtype': 'np.uint8'}), '(low=0, high=255, size=(256, 256, 3), dtype=np.uint8)\n', (25658, 25711), True, 'import numpy as np\n'), ((25716, 25731), 'random.seed', 'random.seed', (['(42)'], {}), '(42)\n', (25727, 25731), False, 'import random\n'), ((26010, 26050), 'os.path.join', 'os.path.join', (['current_directory', '"""files"""'], {}), "(current_directory, 'files')\n", (26022, 26050), False, 'import os\n'), ((26277, 26295), 'numpy.random.seed', 'np.random.seed', (['(42)'], {}), '(42)\n', (26291, 26295), True, 'import numpy as np\n'), ((26308, 26378), 'numpy.random.randint', 'np.random.randint', ([], {'low': '(0)', 'high': '(255)', 'size': '(256, 256, 3)', 'dtype': 'np.uint8'}), '(low=0, high=255, size=(256, 256, 3), dtype=np.uint8)\n', (26325, 26378), True, 'import numpy as np\n'), ((26383, 26398), 'random.seed', 'random.seed', (['(42)'], {}), '(42)\n', (26394, 26398), False, 'import random\n'), ((26660, 26700), 'os.path.join', 'os.path.join', (['current_directory', '"""files"""'], {}), "(current_directory, 'files')\n", (26672, 26700), False, 'import os\n'), ((26937, 26955), 'numpy.random.seed', 'np.random.seed', (['(42)'], {}), '(42)\n', (26951, 26955), True, 'import numpy as np\n'), ((26968, 27038), 'numpy.random.randint', 'np.random.randint', ([], {'low': '(0)', 'high': '(255)', 'size': '(256, 256, 3)', 'dtype': 'np.uint8'}), '(low=0, high=255, size=(256, 256, 3), dtype=np.uint8)\n', (26985, 27038), True, 'import numpy as np\n'), ((27043, 27058), 'random.seed', 'random.seed', (['(42)'], {}), '(42)\n', (27054, 27058), False, 'import random\n'), ((27320, 27360), 'os.path.join', 'os.path.join', (['current_directory', '"""files"""'], {}), "(current_directory, 'files')\n", (27332, 27360), False, 'import os\n'), ((27591, 27609), 'numpy.random.seed', 'np.random.seed', (['(42)'], {}), '(42)\n', (27605, 27609), True, 'import numpy as np\n'), ((27622, 27692), 'numpy.random.randint', 'np.random.randint', ([], {'low': '(0)', 'high': '(255)', 'size': '(256, 256, 3)', 'dtype': 'np.uint8'}), '(low=0, high=255, size=(256, 256, 3), dtype=np.uint8)\n', (27639, 27692), True, 'import numpy as np\n'), ((27697, 27712), 'random.seed', 'random.seed', (['(42)'], {}), '(42)\n', (27708, 27712), False, 'import random\n'), ((29163, 29224), 'albumentations.TemplateTransform', 'A.TemplateTransform', ([], {'name': '"""template"""', 'templates': 'template', 'p': 'p'}), "(name='template', templates=template, p=p)\n", (29182, 29224), True, 'import albumentations as A\n'), ((29310, 29324), 'albumentations.to_dict', 'A.to_dict', (['aug'], {}), '(aug)\n', (29319, 29324), True, 'import albumentations as A\n'), ((29348, 29427), 'albumentations.from_dict', 'A.from_dict', (['serialized_aug'], {'lambda_transforms': "{'template': template_transform}"}), "(serialized_aug, lambda_transforms={'template': template_transform})\n", (29359, 29427), True, 'import albumentations as A\n'), ((29569, 29634), 'numpy.array_equal', 'np.array_equal', (["aug_data['image']", "deserialized_aug_data['image']"], {}), "(aug_data['image'], deserialized_aug_data['image'])\n", (29583, 29634), True, 'import numpy as np\n'), ((12501, 12547), 'albumentations.save', 'A.save', (['aug', 'filepath'], {'data_format': 'data_format'}), '(aug, filepath, data_format=data_format)\n', (12507, 12547), True, 'import albumentations as A\n'), ((12575, 12616), 'albumentations.load', 'A.load', (['filepath'], {'data_format': 'data_format'}), '(filepath, data_format=data_format)\n', (12581, 12616), True, 'import albumentations as A\n'), ((12798, 12863), 'numpy.array_equal', 'np.array_equal', (["aug_data['image']", "deserialized_aug_data['image']"], {}), "(aug_data['image'], deserialized_aug_data['image'])\n", (12812, 12863), True, 'import numpy as np\n'), ((12879, 12942), 'numpy.array_equal', 'np.array_equal', (["aug_data['mask']", "deserialized_aug_data['mask']"], {}), "(aug_data['mask'], deserialized_aug_data['mask'])\n", (12893, 12942), True, 'import numpy as np\n'), ((24123, 24137), 'albumentations.augmentations.functional.vflip', 'F.vflip', (['image'], {}), '(image)\n', (24130, 24137), True, 'import albumentations.augmentations.functional as F\n'), ((24190, 24203), 'albumentations.augmentations.functional.vflip', 'F.vflip', (['mask'], {}), '(mask)\n', (24197, 24203), True, 'import albumentations.augmentations.functional as F\n'), ((24256, 24284), 'albumentations.augmentations.functional.bbox_vflip', 'F.bbox_vflip', (['bbox'], {}), '(bbox, **kwargs)\n', (24268, 24284), True, 'import albumentations.augmentations.functional as F\n'), ((24345, 24381), 'albumentations.augmentations.functional.keypoint_vflip', 'F.keypoint_vflip', (['keypoint'], {}), '(keypoint, **kwargs)\n', (24361, 24381), True, 'import albumentations.augmentations.functional as F\n'), ((25288, 25313), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (25303, 25313), False, 'import os\n'), ((25407, 25478), 'os.path.join', 'os.path.join', (['files_directory', '"""transform_v1.1.0_without_totensor.json"""'], {}), "(files_directory, 'transform_v1.1.0_without_totensor.json')\n", (25419, 25478), False, 'import os\n'), ((25593, 25605), 'json.load', 'json.load', (['f'], {}), '(f)\n', (25602, 25605), False, 'import json\n'), ((25961, 25986), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (25976, 25986), False, 'import os\n'), ((26080, 26148), 'os.path.join', 'os.path.join', (['files_directory', '"""transform_v1.1.0_with_totensor.json"""'], {}), "(files_directory, 'transform_v1.1.0_with_totensor.json')\n", (26092, 26148), False, 'import os\n'), ((26260, 26272), 'json.load', 'json.load', (['f'], {}), '(f)\n', (26269, 26272), False, 'import json\n'), ((26611, 26636), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (26626, 26636), False, 'import os\n'), ((26724, 26809), 'os.path.join', 'os.path.join', (['files_directory', '"""transform_serialization_v2_without_totensor.json"""'], {}), "(files_directory,\n 'transform_serialization_v2_without_totensor.json')\n", (26736, 26809), False, 'import os\n'), ((26920, 26932), 'json.load', 'json.load', (['f'], {}), '(f)\n', (26929, 26932), False, 'import json\n'), ((27271, 27296), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (27286, 27296), False, 'import os\n'), ((27384, 27462), 'os.path.join', 'os.path.join', (['files_directory', '"""transform_serialization_v2_with_totensor.json"""'], {}), "(files_directory, 'transform_serialization_v2_with_totensor.json')\n", (27396, 27462), False, 'import os\n'), ((27574, 27586), 'json.load', 'json.load', (['f'], {}), '(f)\n', (27583, 27586), False, 'import json\n'), ((28217, 28237), 'albumentations.to_dict', 'A.to_dict', (['transform'], {}), '(transform)\n', (28226, 28237), True, 'import albumentations as A\n'), ((28923, 28957), 'albumentations.core.serialization.shorten_class_name', 'shorten_class_name', (['class_fullname'], {}), '(class_fullname)\n', (28941, 28957), False, 'from albumentations.core.serialization import SERIALIZABLE_REGISTRY, shorten_class_name\n'), ((25494, 25562), 'os.path.join', 'os.path.join', (['files_directory', '"""output_v1.1.0_without_totensor.json"""'], {}), "(files_directory, 'output_v1.1.0_without_totensor.json')\n", (25506, 25562), False, 'import os\n'), ((26164, 26229), 'os.path.join', 'os.path.join', (['files_directory', '"""output_v1.1.0_with_totensor.json"""'], {}), "(files_directory, 'output_v1.1.0_with_totensor.json')\n", (26176, 26229), False, 'import os\n'), ((26821, 26889), 'os.path.join', 'os.path.join', (['files_directory', '"""output_v1.1.0_without_totensor.json"""'], {}), "(files_directory, 'output_v1.1.0_without_totensor.json')\n", (26833, 26889), False, 'import os\n'), ((27478, 27543), 'os.path.join', 'os.path.join', (['files_directory', '"""output_v1.1.0_with_totensor.json"""'], {}), "(files_directory, 'output_v1.1.0_with_totensor.json')\n", (27490, 27543), False, 'import os\n'), ((28175, 28193), 'albumentations.HorizontalFlip', 'A.HorizontalFlip', ([], {}), '()\n', (28191, 28193), True, 'import albumentations as A\n'), ((29247, 29255), 'albumentations.Flip', 'A.Flip', ([], {}), '()\n', (29253, 29255), True, 'import albumentations as A\n'), ((29277, 29285), 'albumentations.Blur', 'A.Blur', ([], {}), '()\n', (29283, 29285), True, 'import albumentations as A\n'), ((19121, 19142), 'albumentations.HorizontalFlip', 'A.HorizontalFlip', ([], {'p': '(1)'}), '(p=1)\n', (19137, 19142), True, 'import albumentations as A\n'), ((19164, 19180), 'albumentations.Transpose', 'A.Transpose', ([], {'p': '(1)'}), '(p=1)\n', (19175, 19180), True, 'import albumentations as A\n'), ((19202, 19229), 'albumentations.HueSaturationValue', 'A.HueSaturationValue', ([], {'p': '(0.5)'}), '(p=0.5)\n', (19222, 19229), True, 'import albumentations as A\n'), ((19251, 19284), 'albumentations.RandomBrightnessContrast', 'A.RandomBrightnessContrast', ([], {'p': '(0.5)'}), '(p=0.5)\n', (19277, 19284), True, 'import albumentations as A\n'), ((20665, 20686), 'albumentations.HorizontalFlip', 'A.HorizontalFlip', ([], {'p': '(1)'}), '(p=1)\n', (20681, 20686), True, 'import albumentations as A\n'), ((20708, 20724), 'albumentations.Transpose', 'A.Transpose', ([], {'p': '(1)'}), '(p=1)\n', (20719, 20724), True, 'import albumentations as A\n'), ((20746, 20773), 'albumentations.HueSaturationValue', 'A.HueSaturationValue', ([], {'p': '(0.5)'}), '(p=0.5)\n', (20766, 20773), True, 'import albumentations as A\n'), ((20795, 20828), 'albumentations.RandomBrightnessContrast', 'A.RandomBrightnessContrast', ([], {'p': '(0.5)'}), '(p=0.5)\n', (20821, 20828), True, 'import albumentations as A\n'), ((18225, 18245), 'albumentations.Resize', 'A.Resize', (['(1024)', '(1024)'], {}), '(1024, 1024)\n', (18233, 18245), True, 'import albumentations as A\n'), ((18271, 18344), 'albumentations.RandomSizedCrop', 'A.RandomSizedCrop', ([], {'min_max_height': '(256, 1024)', 'height': '(512)', 'width': '(512)', 'p': '(1)'}), '(min_max_height=(256, 1024), height=512, width=512, p=1)\n', (18288, 18344), True, 'import albumentations as A\n'), ((18796, 18816), 'albumentations.Resize', 'A.Resize', (['(1024)', '(1024)'], {}), '(1024, 1024)\n', (18804, 18816), True, 'import albumentations as A\n'), ((18842, 18915), 'albumentations.RandomSizedCrop', 'A.RandomSizedCrop', ([], {'min_max_height': '(256, 1025)', 'height': '(256)', 'width': '(256)', 'p': '(1)'}), '(min_max_height=(256, 1025), height=256, width=256, p=1)\n', (18859, 18915), True, 'import albumentations as A\n'), ((20399, 20417), 'albumentations.RandomRotate90', 'A.RandomRotate90', ([], {}), '()\n', (20415, 20417), True, 'import albumentations as A\n'), ((20507, 20522), 'albumentations.Rotate', 'A.Rotate', ([], {'p': '(0.5)'}), '(p=0.5)\n', (20515, 20522), True, 'import albumentations as A\n'), ((21932, 21950), 'albumentations.RandomRotate90', 'A.RandomRotate90', ([], {}), '()\n', (21948, 21950), True, 'import albumentations as A\n'), ((22040, 22055), 'albumentations.Rotate', 'A.Rotate', ([], {'p': '(0.5)'}), '(p=0.5)\n', (22048, 22055), True, 'import albumentations as A\n'), ((22230, 22251), 'albumentations.HorizontalFlip', 'A.HorizontalFlip', ([], {'p': '(1)'}), '(p=1)\n', (22246, 22251), True, 'import albumentations as A\n'), ((22273, 22289), 'albumentations.Transpose', 'A.Transpose', ([], {'p': '(1)'}), '(p=1)\n', (22284, 22289), True, 'import albumentations as A\n'), ((22311, 22338), 'albumentations.HueSaturationValue', 'A.HueSaturationValue', ([], {'p': '(0.5)'}), '(p=0.5)\n', (22331, 22338), True, 'import albumentations as A\n'), ((22360, 22393), 'albumentations.RandomBrightnessContrast', 'A.RandomBrightnessContrast', ([], {'p': '(0.5)'}), '(p=0.5)\n', (22386, 22393), True, 'import albumentations as A\n'), ((18441, 18515), 'albumentations.RandomSizedCrop', 'A.RandomSizedCrop', ([], {'min_max_height': '(256, 512)', 'height': '(384)', 'width': '(384)', 'p': '(0.5)'}), '(min_max_height=(256, 512), height=384, width=384, p=0.5)\n', (18458, 18515), True, 'import albumentations as A\n'), ((18549, 18623), 'albumentations.RandomSizedCrop', 'A.RandomSizedCrop', ([], {'min_max_height': '(256, 512)', 'height': '(512)', 'width': '(512)', 'p': '(0.5)'}), '(min_max_height=(256, 512), height=512, width=512, p=0.5)\n', (18566, 18623), True, 'import albumentations as A\n'), ((18950, 18977), 'albumentations.HueSaturationValue', 'A.HueSaturationValue', ([], {'p': '(0.5)'}), '(p=0.5)\n', (18970, 18977), True, 'import albumentations as A\n'), ((18979, 18996), 'albumentations.RGBShift', 'A.RGBShift', ([], {'p': '(0.7)'}), '(p=0.7)\n', (18989, 18996), True, 'import albumentations as A\n'), ((20428, 20451), 'albumentations.HorizontalFlip', 'A.HorizontalFlip', ([], {'p': '(0.5)'}), '(p=0.5)\n', (20444, 20451), True, 'import albumentations as A\n'), ((20453, 20474), 'albumentations.VerticalFlip', 'A.VerticalFlip', ([], {'p': '(0.5)'}), '(p=0.5)\n', (20467, 20474), True, 'import albumentations as A\n'), ((20533, 20560), 'albumentations.HueSaturationValue', 'A.HueSaturationValue', ([], {'p': '(0.5)'}), '(p=0.5)\n', (20553, 20560), True, 'import albumentations as A\n'), ((20562, 20579), 'albumentations.RGBShift', 'A.RGBShift', ([], {'p': '(0.7)'}), '(p=0.7)\n', (20572, 20579), True, 'import albumentations as A\n'), ((21961, 21984), 'albumentations.HorizontalFlip', 'A.HorizontalFlip', ([], {'p': '(0.5)'}), '(p=0.5)\n', (21977, 21984), True, 'import albumentations as A\n'), ((21986, 22007), 'albumentations.VerticalFlip', 'A.VerticalFlip', ([], {'p': '(0.5)'}), '(p=0.5)\n', (22000, 22007), True, 'import albumentations as A\n'), ((22066, 22093), 'albumentations.HueSaturationValue', 'A.HueSaturationValue', ([], {'p': '(0.5)'}), '(p=0.5)\n', (22086, 22093), True, 'import albumentations as A\n'), ((22095, 22112), 'albumentations.RGBShift', 'A.RGBShift', ([], {'p': '(0.7)'}), '(p=0.7)\n', (22105, 22112), True, 'import albumentations as A\n')]
from time import perf_counter as clock import subprocess import random import numpy # Constants STEP = 1000 * 100 # the size of the buffer to fill the table, in rows SCALE = 0.1 # standard deviation of the noise compared with actual # values NI_NTIMES = 1 # The number of queries for doing a mean (non-idx cols) # COLDCACHE = 10 # The number of reads where the cache is considered 'cold' # WARMCACHE = 50 # The number of reads until the cache is considered 'warmed' # READ_TIMES = WARMCACHE+50 # The number of complete calls to DB.query_db() # COLDCACHE = 50 # The number of reads where the cache is considered 'cold' # WARMCACHE = 50 # The number of reads until the cache is considered 'warmed' # READ_TIMES = WARMCACHE+50 # The number of complete calls to DB.query_db() MROW = 1000 * 1000 # Test values COLDCACHE = 5 # The number of reads where the cache is considered 'cold' WARMCACHE = 5 # The number of reads until the cache is considered 'warmed' READ_TIMES = 10 # The number of complete calls to DB.query_db() # global variables rdm_cod = ['lin', 'rnd'] prec = 6 # precision for printing floats purposes def get_nrows(nrows_str): powers = {'k': 3, 'm': 6, 'g': 9} try: return int(float(nrows_str[:-1]) * 10 ** powers[nrows_str[-1]]) except KeyError: raise ValueError( "value of nrows must end with either 'k', 'm' or 'g' suffixes.") class DB: def __init__(self, nrows, rng, userandom): global step, scale self.step = STEP self.scale = SCALE self.rng = rng self.userandom = userandom self.filename = '-'.join([rdm_cod[userandom], nrows]) self.nrows = get_nrows(nrows) def get_db_size(self): sout = subprocess.Popen("sync;du -s %s" % self.filename, shell=True, stdout=subprocess.PIPE).stdout line = [l for l in sout][0] return int(line.split()[0]) def print_mtime(self, t1, explain): mtime = clock() - t1 print(f"{explain}: {mtime:.6f}") print(f"Krows/s: {self.nrows / 1000 / mtime:.6f}") def print_qtime(self, colname, ltimes): qtime1 = ltimes[0] # First measured time qtime2 = ltimes[-1] # Last measured time print(f"Query time for {colname}: {qtime1:.6f}") print(f"Mrows/s: {self.nrows / MROW / qtime1:.6f}") print(f"Query time for {colname} (cached): {qtime2:.6f}") print(f"Mrows/s (cached): {self.nrows / MROW / qtime2:.6f}") def norm_times(self, ltimes): "Get the mean and stddev of ltimes, avoiding the extreme values." lmean = ltimes.mean() lstd = ltimes.std() ntimes = ltimes[ltimes < lmean + lstd] nmean = ntimes.mean() nstd = ntimes.std() return nmean, nstd def print_qtime_idx(self, colname, ltimes, repeated, verbose): if repeated: r = "[REP] " else: r = "[NOREP] " ltimes = numpy.array(ltimes) ntimes = len(ltimes) qtime1 = ltimes[0] # First measured time ctimes = ltimes[1:COLDCACHE] cmean, cstd = self.norm_times(ctimes) wtimes = ltimes[WARMCACHE:] wmean, wstd = self.norm_times(wtimes) if verbose: print("Times for cold cache:\n", ctimes) # print "Times for warm cache:\n", wtimes hist1, hist2 = numpy.histogram(wtimes) print(f"Histogram for warm cache: {hist1}\n{hist2}") print(f"{r}1st query time for {colname}: {qtime1:.{prec}f}") print(f"{r}Query time for {colname} (cold cache): " f"{cmean:.{prec}f} +- {cstd:.{prec}f}") print(f"{r}Query time for {colname} (warm cache): " f"{wmean:.{prec}f} +- {wstd:.{prec}f}") def print_db_sizes(self, init, filled, indexed): table_size = (filled - init) / 1024 indexes_size = (indexed - filled) / 1024 print(f"Table size (MB): {table_size:.3f}") print(f"Indexes size (MB): {indexes_size:.3f}") print(f"Full size (MB): {table_size + indexes_size:.3f}") def fill_arrays(self, start, stop): arr_f8 = numpy.arange(start, stop, dtype='float64') arr_i4 = numpy.arange(start, stop, dtype='int32') if self.userandom: arr_f8 += numpy.random.normal(0, stop * self.scale, size=stop - start) arr_i4 = numpy.array(arr_f8, dtype='int32') return arr_i4, arr_f8 def create_db(self, dtype, kind, optlevel, verbose): self.con = self.open_db(remove=1) self.create_table(self.con) init_size = self.get_db_size() t1 = clock() self.fill_table(self.con) table_size = self.get_db_size() self.print_mtime(t1, 'Insert time') self.index_db(dtype, kind, optlevel, verbose) indexes_size = self.get_db_size() self.print_db_sizes(init_size, table_size, indexes_size) self.close_db(self.con) def index_db(self, dtype, kind, optlevel, verbose): if dtype == "int": idx_cols = ['col2'] elif dtype == "float": idx_cols = ['col4'] else: idx_cols = ['col2', 'col4'] for colname in idx_cols: t1 = clock() self.index_col(self.con, colname, kind, optlevel, verbose) self.print_mtime(t1, 'Index time (%s)' % colname) def query_db(self, niter, dtype, onlyidxquery, onlynonidxquery, avoidfscache, verbose, inkernel): self.con = self.open_db() if dtype == "int": reg_cols = ['col1'] idx_cols = ['col2'] elif dtype == "float": reg_cols = ['col3'] idx_cols = ['col4'] else: reg_cols = ['col1', 'col3'] idx_cols = ['col2', 'col4'] if avoidfscache: rseed = int(numpy.random.randint(self.nrows)) else: rseed = 19 # Query for non-indexed columns numpy.random.seed(rseed) base = numpy.random.randint(self.nrows) if not onlyidxquery: for colname in reg_cols: ltimes = [] random.seed(rseed) for i in range(NI_NTIMES): t1 = clock() results = self.do_query(self.con, colname, base, inkernel) ltimes.append(clock() - t1) if verbose: print("Results len:", results) self.print_qtime(colname, ltimes) # Always reopen the file after *every* query loop. # Necessary to make the benchmark to run correctly. self.close_db(self.con) self.con = self.open_db() # Query for indexed columns if not onlynonidxquery: for colname in idx_cols: ltimes = [] numpy.random.seed(rseed) rndbase = numpy.random.randint(self.nrows, size=niter) # First, non-repeated queries for i in range(niter): base = rndbase[i] t1 = clock() results = self.do_query(self.con, colname, base, inkernel) #results, tprof = self.do_query( # self.con, colname, base, inkernel) ltimes.append(clock() - t1) if verbose: print("Results len:", results) self.print_qtime_idx(colname, ltimes, False, verbose) # Always reopen the file after *every* query loop. # Necessary to make the benchmark to run correctly. self.close_db(self.con) self.con = self.open_db() ltimes = [] # Second, repeated queries # for i in range(niter): # t1=time() # results = self.do_query( # self.con, colname, base, inkernel) # results, tprof = self.do_query(self.con, colname, base, inkernel) # ltimes.append(time()-t1) # if verbose: # print "Results len:", results # self.print_qtime_idx(colname, ltimes, True, verbose) # Print internal PyTables index tprof statistics #tprof = numpy.array(tprof) #tmean, tstd = self.norm_times(tprof) # print "tprof-->", round(tmean, prec), "+-", round(tstd, prec) # print "tprof hist-->", \ # numpy.histogram(tprof) # print "tprof raw-->", tprof # Always reopen the file after *every* query loop. # Necessary to make the benchmark to run correctly. self.close_db(self.con) self.con = self.open_db() # Finally, close the file. self.close_db(self.con) def close_db(self, con): con.close() if __name__ == "__main__": import sys import getopt try: import psyco psyco_imported = 1 except: psyco_imported = 0 usage = """usage: %s [-T] [-P] [-v] [-f] [-k] [-p] [-m] [-c] [-q] [-i] [-I] [-S] [-x] [-z complevel] [-l complib] [-R range] [-N niter] [-n nrows] [-d datadir] [-O level] [-t kind] [-s] col -Q [suplim] -T use Pytables -P use Postgres -v verbose -f do a profile of the run (only query functionality & Python 2.5) -k do a profile for kcachegrind use (out file is 'indexed_search.kcg') -p use "psyco" if available -m use random values to fill the table -q do a query (both indexed and non-indexed versions) -i do a query (just indexed one) -I do a query (just in-kernel one) -S do a query (just standard one) -x choose a different seed for random numbers (i.e. avoid FS cache) -c create the database -z compress with zlib (no compression by default) -l use complib for compression (zlib used by default) -R select a range in a field in the form "start,stop" (def "0,10") -N number of iterations for reading -n sets the number of rows (in krows) in each table -d directory to save data (default: data.nobackup) -O set the optimization level for PyTables indexes -t select the index type: "medium" (default) or "full", "light", "ultralight" -s select a type column for operations ('int' or 'float'. def all) -Q do a repeteated query up to 10**value \n""" % sys.argv[0] try: opts, pargs = getopt.getopt( sys.argv[1:], 'TPvfkpmcqiISxz:l:R:N:n:d:O:t:s:Q:') except: sys.stderr.write(usage) sys.exit(1) # default options usepytables = 0 usepostgres = 0 verbose = 0 doprofile = 0 dokprofile = 0 usepsyco = 0 userandom = 0 docreate = 0 optlevel = 0 kind = "medium" docompress = 0 complib = "zlib" doquery = False onlyidxquery = False onlynonidxquery = False inkernel = True avoidfscache = 0 #rng = [-10, 10] rng = [-1000, -1000] repeatquery = 0 repeatvalue = 0 krows = '1k' niter = READ_TIMES dtype = "all" datadir = "data.nobackup" # Get the options for option in opts: if option[0] == '-T': usepytables = 1 elif option[0] == '-P': usepostgres = 1 elif option[0] == '-v': verbose = 1 elif option[0] == '-f': doprofile = 1 elif option[0] == '-k': dokprofile = 1 elif option[0] == '-p': usepsyco = 1 elif option[0] == '-m': userandom = 1 elif option[0] == '-c': docreate = 1 elif option[0] == '-q': doquery = True elif option[0] == '-i': doquery = True onlyidxquery = True elif option[0] == '-I': doquery = True onlynonidxquery = True elif option[0] == '-S': doquery = True onlynonidxquery = True inkernel = False elif option[0] == '-x': avoidfscache = 1 elif option[0] == '-z': docompress = int(option[1]) elif option[0] == '-l': complib = option[1] elif option[0] == '-R': rng = [int(i) for i in option[1].split(",")] elif option[0] == '-N': niter = int(option[1]) elif option[0] == '-n': krows = option[1] elif option[0] == '-d': datadir = option[1] elif option[0] == '-O': optlevel = int(option[1]) elif option[0] == '-t': if option[1] in ('full', 'medium', 'light', 'ultralight'): kind = option[1] else: print("kind should be either 'full', 'medium', 'light' or " "'ultralight'") sys.exit(1) elif option[0] == '-s': if option[1] in ('int', 'float'): dtype = option[1] else: print("column should be either 'int' or 'float'") sys.exit(1) elif option[0] == '-Q': repeatquery = 1 repeatvalue = int(option[1]) # If not database backend selected, abort if not usepytables and not usepostgres: print("Please select a backend:") print("PyTables: -T") print("Postgres: -P") sys.exit(1) # Create the class for the database if usepytables: from pytables_backend import PyTables_DB db = PyTables_DB(krows, rng, userandom, datadir, docompress, complib, kind, optlevel) elif usepostgres: from postgres_backend import Postgres_DB db = Postgres_DB(krows, rng, userandom) if not avoidfscache: # in order to always generate the same random sequence numpy.random.seed(20) if verbose: if userandom: print("using random values") if onlyidxquery: print("doing indexed queries only") if psyco_imported and usepsyco: psyco.bind(db.create_db) psyco.bind(db.query_db) if docreate: if verbose: print("writing %s rows" % krows) db.create_db(dtype, kind, optlevel, verbose) if doquery: print("Calling query_db() %s times" % niter) if doprofile: import pstats import cProfile as prof prof.run( 'db.query_db(niter, dtype, onlyidxquery, onlynonidxquery, ' 'avoidfscache, verbose, inkernel)', 'indexed_search.prof') stats = pstats.Stats('indexed_search.prof') stats.strip_dirs() stats.sort_stats('time', 'calls') if verbose: stats.print_stats() else: stats.print_stats(20) elif dokprofile: from cProfile import Profile import lsprofcalltree prof = Profile() prof.run( 'db.query_db(niter, dtype, onlyidxquery, onlynonidxquery, ' 'avoidfscache, verbose, inkernel)') kcg = lsprofcalltree.KCacheGrind(prof) ofile = open('indexed_search.kcg', 'w') kcg.output(ofile) ofile.close() elif doprofile: import hotshot import hotshot.stats prof = hotshot.Profile("indexed_search.prof") benchtime, stones = prof.run( 'db.query_db(niter, dtype, onlyidxquery, onlynonidxquery, ' 'avoidfscache, verbose, inkernel)') prof.close() stats = hotshot.stats.load("indexed_search.prof") stats.strip_dirs() stats.sort_stats('time', 'calls') stats.print_stats(20) else: db.query_db(niter, dtype, onlyidxquery, onlynonidxquery, avoidfscache, verbose, inkernel) if repeatquery: # Start by a range which is almost None db.rng = [1, 1] if verbose: print("range:", db.rng) db.query_db(niter, dtype, onlyidxquery, onlynonidxquery, avoidfscache, verbose, inkernel) for i in range(repeatvalue): for j in (1, 2, 5): rng = j * 10 ** i db.rng = [-rng / 2, rng / 2] if verbose: print("range:", db.rng) # if usepostgres: # os.system( # "echo 1 > /proc/sys/vm/drop_caches;" # " /etc/init.d/postgresql restart") # else: # os.system("echo 1 > /proc/sys/vm/drop_caches") db.query_db(niter, dtype, onlyidxquery, onlynonidxquery, avoidfscache, verbose, inkernel)
[ "numpy.random.seed", "getopt.getopt", "cProfile.Profile", "numpy.histogram", "numpy.random.randint", "numpy.arange", "hotshot.stats.load", "numpy.random.normal", "cProfile.close", "pytables_backend.PyTables_DB", "pstats.Stats", "psyco.bind", "random.seed", "hotshot.Profile", "subprocess.Popen", "postgres_backend.Postgres_DB", "time.perf_counter", "sys.exit", "lsprofcalltree.KCacheGrind", "numpy.array", "sys.stderr.write", "cProfile.run" ]
[((3019, 3038), 'numpy.array', 'numpy.array', (['ltimes'], {}), '(ltimes)\n', (3030, 3038), False, 'import numpy\n'), ((4202, 4244), 'numpy.arange', 'numpy.arange', (['start', 'stop'], {'dtype': '"""float64"""'}), "(start, stop, dtype='float64')\n", (4214, 4244), False, 'import numpy\n'), ((4262, 4302), 'numpy.arange', 'numpy.arange', (['start', 'stop'], {'dtype': '"""int32"""'}), "(start, stop, dtype='int32')\n", (4274, 4302), False, 'import numpy\n'), ((4729, 4736), 'time.perf_counter', 'clock', ([], {}), '()\n', (4734, 4736), True, 'from time import perf_counter as clock\n'), ((6074, 6098), 'numpy.random.seed', 'numpy.random.seed', (['rseed'], {}), '(rseed)\n', (6091, 6098), False, 'import numpy\n'), ((6114, 6146), 'numpy.random.randint', 'numpy.random.randint', (['self.nrows'], {}), '(self.nrows)\n', (6134, 6146), False, 'import numpy\n'), ((10778, 10842), 'getopt.getopt', 'getopt.getopt', (['sys.argv[1:]', '"""TPvfkpmcqiISxz:l:R:N:n:d:O:t:s:Q:"""'], {}), "(sys.argv[1:], 'TPvfkpmcqiISxz:l:R:N:n:d:O:t:s:Q:')\n", (10791, 10842), False, 'import getopt\n'), ((13701, 13712), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (13709, 13712), False, 'import sys\n'), ((13836, 13921), 'pytables_backend.PyTables_DB', 'PyTables_DB', (['krows', 'rng', 'userandom', 'datadir', 'docompress', 'complib', 'kind', 'optlevel'], {}), '(krows, rng, userandom, datadir, docompress, complib, kind, optlevel\n )\n', (13847, 13921), False, 'from pytables_backend import PyTables_DB\n'), ((14158, 14179), 'numpy.random.seed', 'numpy.random.seed', (['(20)'], {}), '(20)\n', (14175, 14179), False, 'import numpy\n'), ((14378, 14402), 'psyco.bind', 'psyco.bind', (['db.create_db'], {}), '(db.create_db)\n', (14388, 14402), False, 'import psyco\n'), ((14411, 14434), 'psyco.bind', 'psyco.bind', (['db.query_db'], {}), '(db.query_db)\n', (14421, 14434), False, 'import psyco\n'), ((1784, 1874), 'subprocess.Popen', 'subprocess.Popen', (["('sync;du -s %s' % self.filename)"], {'shell': '(True)', 'stdout': 'subprocess.PIPE'}), "('sync;du -s %s' % self.filename, shell=True, stdout=\n subprocess.PIPE)\n", (1800, 1874), False, 'import subprocess\n'), ((2038, 2045), 'time.perf_counter', 'clock', ([], {}), '()\n', (2043, 2045), True, 'from time import perf_counter as clock\n'), ((3437, 3460), 'numpy.histogram', 'numpy.histogram', (['wtimes'], {}), '(wtimes)\n', (3452, 3460), False, 'import numpy\n'), ((4352, 4412), 'numpy.random.normal', 'numpy.random.normal', (['(0)', '(stop * self.scale)'], {'size': '(stop - start)'}), '(0, stop * self.scale, size=stop - start)\n', (4371, 4412), False, 'import numpy\n'), ((4476, 4510), 'numpy.array', 'numpy.array', (['arr_f8'], {'dtype': '"""int32"""'}), "(arr_f8, dtype='int32')\n", (4487, 4510), False, 'import numpy\n'), ((5331, 5338), 'time.perf_counter', 'clock', ([], {}), '()\n', (5336, 5338), True, 'from time import perf_counter as clock\n'), ((10876, 10899), 'sys.stderr.write', 'sys.stderr.write', (['usage'], {}), '(usage)\n', (10892, 10899), False, 'import sys\n'), ((10908, 10919), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (10916, 10919), False, 'import sys\n'), ((14026, 14060), 'postgres_backend.Postgres_DB', 'Postgres_DB', (['krows', 'rng', 'userandom'], {}), '(krows, rng, userandom)\n', (14037, 14060), False, 'from postgres_backend import Postgres_DB\n'), ((14737, 14871), 'cProfile.run', 'prof.run', (['"""db.query_db(niter, dtype, onlyidxquery, onlynonidxquery, avoidfscache, verbose, inkernel)"""', '"""indexed_search.prof"""'], {}), "(\n 'db.query_db(niter, dtype, onlyidxquery, onlynonidxquery, avoidfscache, verbose, inkernel)'\n , 'indexed_search.prof')\n", (14745, 14871), True, 'import cProfile as prof\n'), ((14934, 14969), 'pstats.Stats', 'pstats.Stats', (['"""indexed_search.prof"""'], {}), "('indexed_search.prof')\n", (14946, 14969), False, 'import pstats\n'), ((5955, 5987), 'numpy.random.randint', 'numpy.random.randint', (['self.nrows'], {}), '(self.nrows)\n', (5975, 5987), False, 'import numpy\n'), ((6257, 6275), 'random.seed', 'random.seed', (['rseed'], {}), '(rseed)\n', (6268, 6275), False, 'import random\n'), ((6958, 6982), 'numpy.random.seed', 'numpy.random.seed', (['rseed'], {}), '(rseed)\n', (6975, 6982), False, 'import numpy\n'), ((7009, 7053), 'numpy.random.randint', 'numpy.random.randint', (['self.nrows'], {'size': 'niter'}), '(self.nrows, size=niter)\n', (7029, 7053), False, 'import numpy\n'), ((15282, 15291), 'cProfile.Profile', 'Profile', ([], {}), '()\n', (15289, 15291), False, 'from cProfile import Profile\n'), ((15304, 15415), 'cProfile.run', 'prof.run', (['"""db.query_db(niter, dtype, onlyidxquery, onlynonidxquery, avoidfscache, verbose, inkernel)"""'], {}), "(\n 'db.query_db(niter, dtype, onlyidxquery, onlynonidxquery, avoidfscache, verbose, inkernel)'\n )\n", (15312, 15415), True, 'import cProfile as prof\n'), ((15460, 15492), 'lsprofcalltree.KCacheGrind', 'lsprofcalltree.KCacheGrind', (['prof'], {}), '(prof)\n', (15486, 15492), False, 'import lsprofcalltree\n'), ((6344, 6351), 'time.perf_counter', 'clock', ([], {}), '()\n', (6349, 6351), True, 'from time import perf_counter as clock\n'), ((7202, 7209), 'time.perf_counter', 'clock', ([], {}), '()\n', (7207, 7209), True, 'from time import perf_counter as clock\n'), ((15704, 15742), 'hotshot.Profile', 'hotshot.Profile', (['"""indexed_search.prof"""'], {}), "('indexed_search.prof')\n", (15719, 15742), False, 'import hotshot\n'), ((15775, 15886), 'cProfile.run', 'prof.run', (['"""db.query_db(niter, dtype, onlyidxquery, onlynonidxquery, avoidfscache, verbose, inkernel)"""'], {}), "(\n 'db.query_db(niter, dtype, onlyidxquery, onlynonidxquery, avoidfscache, verbose, inkernel)'\n )\n", (15783, 15886), True, 'import cProfile as prof\n'), ((15925, 15937), 'cProfile.close', 'prof.close', ([], {}), '()\n', (15935, 15937), True, 'import cProfile as prof\n'), ((15958, 15999), 'hotshot.stats.load', 'hotshot.stats.load', (['"""indexed_search.prof"""'], {}), "('indexed_search.prof')\n", (15976, 15999), False, 'import hotshot\n'), ((6465, 6472), 'time.perf_counter', 'clock', ([], {}), '()\n', (6470, 6472), True, 'from time import perf_counter as clock\n'), ((7436, 7443), 'time.perf_counter', 'clock', ([], {}), '()\n', (7441, 7443), True, 'from time import perf_counter as clock\n'), ((13163, 13174), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (13171, 13174), False, 'import sys\n'), ((13387, 13398), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (13395, 13398), False, 'import sys\n')]
import numpy as np import pandas as pd from tqdm import tqdm def bootstrap(x, iter=int(1E6), return_samples=False): """ Performs a simple bootstrap resampling method on an array of data. Parameters ---------- x : numpy array A one-dimensional numpy array containing values you wish to bootstrap. If this array is < 10 values long, a warning will be raised that the sampling distribution is small and the resulting resampled distribution may not capture the full data generating distribution iter: integer Number of iterations to perform. Default is 10^6 return_samples : bool If true, a pandas DataFrame of the resampled distributions will be returned. Returns ------- statistics : dict Dictionary of statistics of the resampled distribution. This includes details about the originally supplied data as well as the mean value, standard deviation, and confidence intervals. """ means = np.empty(iter) dfs = [] for i in tqdm(range(iter), desc='Performing bootstrap sampling'): resamp = np.random.choice(x, size=len(x), replace=True) means[i] = resamp.mean() if return_samples: _df = pd.DataFrame([]) _df['value'] = resamp _df['iter'] = i + 1 dfs.append(_df) # Compute confidence intervals of the means. mean_val = means.mean() bounds_ci = {'99%': (0.5, 99.5), '95%': (2.5, 97.5), '90%': (5, 95), '75%': (12.5, 87.5), '50%': (25, 75), '25%': (37.5, 62.5), '10%': (45, 55), '5%': (47.5, 52.5), '1%': (49.5, 50.5)} cis = {} for k, v in bounds_ci.items(): bounds = np.percentile(means, v) cis[k] = bounds statistics['original_data'] = x statistics['resampled_means'] = means statistics['mean_value'] = mean_val statistics['confidence_intervals'] = cis if return_samples: _df = pd.concat(dfs, sort=False) return [statistics, _df] else: return statistics
[ "numpy.percentile", "numpy.empty", "pandas.concat", "pandas.DataFrame" ]
[((1029, 1043), 'numpy.empty', 'np.empty', (['iter'], {}), '(iter)\n', (1037, 1043), True, 'import numpy as np\n'), ((1739, 1762), 'numpy.percentile', 'np.percentile', (['means', 'v'], {}), '(means, v)\n', (1752, 1762), True, 'import numpy as np\n'), ((1989, 2015), 'pandas.concat', 'pd.concat', (['dfs'], {'sort': '(False)'}), '(dfs, sort=False)\n', (1998, 2015), True, 'import pandas as pd\n'), ((1271, 1287), 'pandas.DataFrame', 'pd.DataFrame', (['[]'], {}), '([])\n', (1283, 1287), True, 'import pandas as pd\n')]
# -*- coding: utf-8 -*- """@package Methods.Machine.LamSlotWind.plot_winding Plot the Lamination's Winding Methods @date Created on Tue Dec 16 16:39:48 2014 @copyright (C) 2014-2015 EOMYS ENGINEERING. @author pierre_b @todo Matrix Zs*Qs for display (cf doc database/articles/electrical machines/ analytical modelling of electrical machines/modeling of AC windings) """ from matplotlib.lines import Line2D from matplotlib.pyplot import axis, legend, plot, subplots, title from numpy import array, linspace, meshgrid from pyleecan.Functions.Winding.comp_wind_sym import comp_wind_sym from pyleecan.Functions.Winding.gen_phase_list import gen_color, gen_name def plot_winding(self, wind_mat=None, all_slot=False): """Plot the Winding in a matplotlib fig Parameters ---------- self : LamSlotWind A: LamSlotWind object wind_mat : numpy.ndarray Winding Matrix, if None will call comp_connection_mat (Default value = None) all_slot : bool True if we plot all slot and false when plotting only needed one(sym) Returns ------- None """ # We compute the wind_mat only if needed if wind_mat is None: wind_mat = self.winding.comp_connection_mat(self.slot.Zs) # Number of point on rad and tan direction Nrad, Ntan = self.winding.get_dim_wind() Zs = self.slot.Zs # Number of slot # Number of Slot to plot if all_slot: # Every Slot Nplot = Zs else: # Only the needed one (sym) Nperw = comp_wind_sym(wind_mat)[0] # Symmetry of the winding Nplot = Zs // Nperw qs = wind_mat.shape[3] # Number of phase # Symbole for pole qs_color = gen_color(self.winding.qs) qs_name = gen_name(self.winding.qs) # Schematic slot without ratio Wt = 0.5 W0 = 0.5 H = 1 # Coordinate of the First Slot (center on 0) Slot_tan = array( [-Wt / 2 - W0 / 2, -W0 / 2, -W0 / 2, W0 / 2, W0 / 2, W0 / 2 + Wt / 2] ) Slot_rad = [0, 0, H, H, 0, 0] # Duplicate the Slot along tan direction (angular abscissa ) x = list() y = list() for i in range(0, Nplot): x.extend((Slot_tan + (Wt + W0) * i).tolist()) y.extend(Slot_rad) # Plot the Schematics Slots fig, ax = subplots() plot(x, y, "r-") # First Winding Grid (Coordinate of the winding mark) range_x = linspace(-W0 / 2, W0 / 2, Ntan + 1, endpoint=False) range_y = linspace(0, H, Nrad + 1, endpoint=False) # We don't want the first and last point of the linespace Grid_x, Grid_y = meshgrid(range_x[1:], range_y[1:]) # Plot the Winding Grid point by point by reading wind_mat for Zs in range(0, Nplot): # For "every" Slot for q in range(0, qs): # For every phase for r in range(0, Nrad): # For every rad layer for theta in range(0, Ntan): # For every tan layer if wind_mat[r, theta, Zs, q] != 0: # Add the correct mark at the correct coordinates if wind_mat[r, theta, Zs, q] > 0: plot( Grid_x[r][theta] + Zs * (Wt + W0), Grid_y[r][theta], color=qs_color[q], linewidth=0, marker="+", markeredgewidth=3, markersize=20, ) else: plot( Grid_x[r][theta] + Zs * (Wt + W0), Grid_y[r][theta], color=qs_color[q], linewidth=0, marker="x", markeredgewidth=3, markersize=20, ) if self.is_stator: Lam_Name = "Stator" else: Lam_Name = "Rotor" if all_slot or Nperw == 1: title(Lam_Name + "'s Winding (every slot)") else: title(Lam_Name + "'s Winding (periodicity 1/" + str(Nperw) + ")") axis("equal") ax.get_yaxis().set_visible(False) # Legend qs sym_leg = list() # Symbol label_leg = list() # Text for q in range(0, qs): # Positive mark sym_leg.append( Line2D( [], [], color=qs_color[q], linewidth=0, marker="+", markeredgewidth=3, markersize=20, ) ) label_leg.append(qs_name[q] + "+") for q in range(0, qs): # Negative mark sym_leg.append( Line2D( [], [], color=qs_color[q], linewidth=0, marker="x", markeredgewidth=3, markersize=20, ) ) label_leg.append(qs_name[q] + "-") legend(sym_leg, label_leg, ncol=2) fig.show()
[ "matplotlib.pyplot.title", "numpy.meshgrid", "matplotlib.pyplot.plot", "pyleecan.Functions.Winding.gen_phase_list.gen_name", "pyleecan.Functions.Winding.comp_wind_sym.comp_wind_sym", "matplotlib.lines.Line2D", "matplotlib.pyplot.legend", "matplotlib.pyplot.axis", "pyleecan.Functions.Winding.gen_phase_list.gen_color", "numpy.array", "numpy.linspace", "matplotlib.pyplot.subplots" ]
[((1670, 1696), 'pyleecan.Functions.Winding.gen_phase_list.gen_color', 'gen_color', (['self.winding.qs'], {}), '(self.winding.qs)\n', (1679, 1696), False, 'from pyleecan.Functions.Winding.gen_phase_list import gen_color, gen_name\n'), ((1711, 1736), 'pyleecan.Functions.Winding.gen_phase_list.gen_name', 'gen_name', (['self.winding.qs'], {}), '(self.winding.qs)\n', (1719, 1736), False, 'from pyleecan.Functions.Winding.gen_phase_list import gen_color, gen_name\n'), ((1876, 1952), 'numpy.array', 'array', (['[-Wt / 2 - W0 / 2, -W0 / 2, -W0 / 2, W0 / 2, W0 / 2, W0 / 2 + Wt / 2]'], {}), '([-Wt / 2 - W0 / 2, -W0 / 2, -W0 / 2, W0 / 2, W0 / 2, W0 / 2 + Wt / 2])\n', (1881, 1952), False, 'from numpy import array, linspace, meshgrid\n'), ((2255, 2265), 'matplotlib.pyplot.subplots', 'subplots', ([], {}), '()\n', (2263, 2265), False, 'from matplotlib.pyplot import axis, legend, plot, subplots, title\n'), ((2270, 2286), 'matplotlib.pyplot.plot', 'plot', (['x', 'y', '"""r-"""'], {}), "(x, y, 'r-')\n", (2274, 2286), False, 'from matplotlib.pyplot import axis, legend, plot, subplots, title\n'), ((2360, 2411), 'numpy.linspace', 'linspace', (['(-W0 / 2)', '(W0 / 2)', '(Ntan + 1)'], {'endpoint': '(False)'}), '(-W0 / 2, W0 / 2, Ntan + 1, endpoint=False)\n', (2368, 2411), False, 'from numpy import array, linspace, meshgrid\n'), ((2426, 2466), 'numpy.linspace', 'linspace', (['(0)', 'H', '(Nrad + 1)'], {'endpoint': '(False)'}), '(0, H, Nrad + 1, endpoint=False)\n', (2434, 2466), False, 'from numpy import array, linspace, meshgrid\n'), ((2550, 2584), 'numpy.meshgrid', 'meshgrid', (['range_x[1:]', 'range_y[1:]'], {}), '(range_x[1:], range_y[1:])\n', (2558, 2584), False, 'from numpy import array, linspace, meshgrid\n'), ((4193, 4206), 'matplotlib.pyplot.axis', 'axis', (['"""equal"""'], {}), "('equal')\n", (4197, 4206), False, 'from matplotlib.pyplot import axis, legend, plot, subplots, title\n'), ((5035, 5069), 'matplotlib.pyplot.legend', 'legend', (['sym_leg', 'label_leg'], {'ncol': '(2)'}), '(sym_leg, label_leg, ncol=2)\n', (5041, 5069), False, 'from matplotlib.pyplot import axis, legend, plot, subplots, title\n'), ((4060, 4103), 'matplotlib.pyplot.title', 'title', (['(Lam_Name + "\'s Winding (every slot)")'], {}), '(Lam_Name + "\'s Winding (every slot)")\n', (4065, 4103), False, 'from matplotlib.pyplot import axis, legend, plot, subplots, title\n'), ((1502, 1525), 'pyleecan.Functions.Winding.comp_wind_sym.comp_wind_sym', 'comp_wind_sym', (['wind_mat'], {}), '(wind_mat)\n', (1515, 1525), False, 'from pyleecan.Functions.Winding.comp_wind_sym import comp_wind_sym\n'), ((4404, 4501), 'matplotlib.lines.Line2D', 'Line2D', (['[]', '[]'], {'color': 'qs_color[q]', 'linewidth': '(0)', 'marker': '"""+"""', 'markeredgewidth': '(3)', 'markersize': '(20)'}), "([], [], color=qs_color[q], linewidth=0, marker='+', markeredgewidth=\n 3, markersize=20)\n", (4410, 4501), False, 'from matplotlib.lines import Line2D\n'), ((4757, 4854), 'matplotlib.lines.Line2D', 'Line2D', (['[]', '[]'], {'color': 'qs_color[q]', 'linewidth': '(0)', 'marker': '"""x"""', 'markeredgewidth': '(3)', 'markersize': '(20)'}), "([], [], color=qs_color[q], linewidth=0, marker='x', markeredgewidth=\n 3, markersize=20)\n", (4763, 4854), False, 'from matplotlib.lines import Line2D\n'), ((3093, 3232), 'matplotlib.pyplot.plot', 'plot', (['(Grid_x[r][theta] + Zs * (Wt + W0))', 'Grid_y[r][theta]'], {'color': 'qs_color[q]', 'linewidth': '(0)', 'marker': '"""+"""', 'markeredgewidth': '(3)', 'markersize': '(20)'}), "(Grid_x[r][theta] + Zs * (Wt + W0), Grid_y[r][theta], color=qs_color[q],\n linewidth=0, marker='+', markeredgewidth=3, markersize=20)\n", (3097, 3232), False, 'from matplotlib.pyplot import axis, legend, plot, subplots, title\n'), ((3542, 3681), 'matplotlib.pyplot.plot', 'plot', (['(Grid_x[r][theta] + Zs * (Wt + W0))', 'Grid_y[r][theta]'], {'color': 'qs_color[q]', 'linewidth': '(0)', 'marker': '"""x"""', 'markeredgewidth': '(3)', 'markersize': '(20)'}), "(Grid_x[r][theta] + Zs * (Wt + W0), Grid_y[r][theta], color=qs_color[q],\n linewidth=0, marker='x', markeredgewidth=3, markersize=20)\n", (3546, 3681), False, 'from matplotlib.pyplot import axis, legend, plot, subplots, title\n')]
#!/usr/bin/env python3 import sys sys.path.append('./lib') import argparse import os import datetime import numpy as np import time import pickle import torch from torch import optim from param_stamp import get_param_stamp, get_param_stamp_from_args import evaluate from lib.encoder import Classifier from lib.vae_models import AutoEncoder import lib.callbacks as cb from lib.train import train_cl from lib.continual_learner import ContinualLearner from lib.exemplars import ExemplarHandler from lib.replayer import Replayer RESULT_DIR = './results' parser = argparse.ArgumentParser('./main.py', description='Run individual continual learning experiment.') parser.add_argument('--get-stamp', action='store_true') parser.add_argument('--no-gpus', action='store_false', dest='cuda') parser.add_argument('--gpuID', type=int, nargs='+', default=[0, 1, 2, 3], help='GPU #') parser.add_argument('--savepath', type=str, default='./results', dest='savepath') parser.add_argument('--vis-cross-methods', action='store_true', dest='cross_methods', help='draw plots for cross methods') parser.add_argument('--vis-cross-methods-type', nargs='+', default=['spider'], dest='cross_methods_type', help='alternatives=[\'spider\', \'bar\']') parser.add_argument('--vis-cross-tasks', action='store_true', dest='cross_tasks', help='draw plots for cross tasks') parser.add_argument('--matrices', type=str, nargs='+', default=['ACC', 'BWT', 'FWT', 'Overall ACC']) parser.add_argument('--seed', type=int, default=7) parser.add_argument('--factor', type=str, default='clutter', dest='factor') parser.add_argument('--cumulative', type=int, default=0, dest='cul') parser.add_argument('--bce', action='store_true') parser.add_argument('--tasks', type=int, default=9) parser.add_argument('--dataset', type=str, default='OpenLORIS-Object', dest='dataset') parser.add_argument('--fc-layers', type=int, default=3, dest='fc_lay') parser.add_argument('--fc-units', type=int, default=400, metavar="N") parser.add_argument('--fc-drop', type=float, default=0.) parser.add_argument('--fc-bn', type=str, default="no") parser.add_argument('--fc-nl', type=str, default="relu", choices=["relu", "leakyrelu"]) parser.add_argument('--iters', type=int, default=3000) parser.add_argument('--lr', type=float, default=0.0001) parser.add_argument('--batch', type=int, default=32) parser.add_argument('--optimizer', type=str, choices=['adam', 'adam_reset', 'sgd'], default='adam') parser.add_argument('--feedback', action="store_true") replay_choices = ['offline', 'exact', 'generative', 'none', 'current', 'exemplars'] parser.add_argument('--replay', type=str, default='none', choices=replay_choices) parser.add_argument('--distill', action='store_true') parser.add_argument('--temp', type=float, default=2., dest='temp') parser.add_argument('--z_dim', type=int, default=100) parser.add_argument('--g-z-dim', type=int, default=100) parser.add_argument('--g-fc-lay', type=int) parser.add_argument('--g-fc-uni', type=int) parser.add_argument('--g-iters', type=int) parser.add_argument('--lr-gen', type=float) parser.add_argument('--ewc', action='store_true') parser.add_argument('--lambda', type=float, default=5240., dest="ewc_lambda") parser.add_argument('--fisher-n', type=int) parser.add_argument('--online', action='store_true') parser.add_argument('--gamma', type=float, default=1.) parser.add_argument('--emp-fi', action='store_true') parser.add_argument('--si', action='store_true') parser.add_argument('--c', type=float, default=0.3, dest="si_c") parser.add_argument('--epsilon', type=float, default=0.2, dest="epsilon") parser.add_argument('--icarl', action='store_true') parser.add_argument('--use-exemplars', action='store_true') parser.add_argument('--add-exemplars', action='store_true') parser.add_argument('--budget', type=int, default=2500, dest="budget") parser.add_argument('--herding', action='store_true') parser.add_argument('--norm-exemplars', action='store_true') parser.add_argument('--log-per-task', action='store_true') parser.add_argument('--loss-log', type=int, default=200, metavar="N") parser.add_argument('--prec-log', type=int, default=200, metavar="N") parser.add_argument('--prec-n', type=int, default=1024) parser.add_argument('--sample-log', type=int, default=500, metavar="N") parser.add_argument('--sample-n', type=int, default=64) def run(args): result_path = os.path.join('./benchmarks/results', args.savepath) savepath = result_path + '/' + str(datetime.datetime.now().strftime('%Y-%m-%d %H-%M-%S')) + '.csv' if not os.path.exists(result_path): print('no exist the path and create one ...') os.makedirs(result_path, exist_ok=True) # Set default arguments args.lr_gen = args.lr if args.lr_gen is None else args.lr_gen args.g_iters = args.iters if args.g_iters is None else args.g_iters args.g_fc_lay = args.fc_lay if args.g_fc_lay is None else args.g_fc_lay args.g_fc_uni = args.fc_units if args.g_fc_uni is None else args.g_fc_uni # -if [log_per_task], reset all logs if args.log_per_task: args.prec_log = args.iters args.loss_log = args.iters args.sample_log = args.iters # -if [iCaRL] is selected, select all accompanying options if hasattr(args, "icarl") and args.icarl: args.use_exemplars = True args.add_exemplars = True # -if EWC or SI is selected together with 'feedback', give error if args.feedback and (args.ewc or args.si or args.icarl): raise NotImplementedError("EWC, SI and iCaRL are not supported with feedback connections.") # -if binary classification loss is selected together with 'feedback', give error if args.feedback and args.bce: raise NotImplementedError("Binary classification loss not supported with feedback connections.") if not os.path.isdir(RESULT_DIR): os.mkdir(RESULT_DIR) # If only want param-stamp, get it printed to screen and exit if hasattr(args, "get_stamp") and args.get_stamp: _ = get_param_stamp_from_args(args=args) exit() # Use cuda? cuda = torch.cuda.is_available() and args.cuda device = "cuda" if cuda else "cpu" gpu_devices = None if args.gpuID == None: if torch.cuda.device_count() > 1: gpu_devices = ','.join([str(id) for id in range(torch.cuda.device_count())]) print('==> training with CUDA (GPU id: ' + gpu_devices + ') ... <==') else: gpu_devices = ','.join([str(id) for id in args.gpuID]) os.environ['CUDA_VISIBLE_DEVICES'] = gpu_devices print('==> training with CUDA (GPU id: ' + str(args.gpuID) + ') ... <==') # Set random seeds np.random.seed(args.seed) torch.manual_seed(args.seed) if cuda: torch.cuda.manual_seed(args.seed) if args.factor == 'sequence': args.tasks = 12 # -------------------------------------------------------------------------------------------------# # ----------------# # ----- DATA -----# # ----------------# # Prepare data for OpenLORIS-Object if args.dataset == 'OpenLORIS-Object': with open('./benchmarks/data/OpenLORIS-Object/' + args.factor + '.pk', 'rb') as f: ((train_datasets, test_datasets), config, classes_per_task) = pickle.load(f) else: with open('./benchmarks/data/' + args.dataset + '/' + args.dataset + '.pk', 'rb') as f: ((train_datasets, test_datasets), config, classes_per_task) = pickle.load(f) if args.cul == 1: for i in range(1, len(train_datasets)): train_datasets[i].imgs.extend(train_datasets[i - 1].imgs) train_datasets[i].labels.extend(train_datasets[i - 1].labels) # -------------------------------------------------------------------------------------------------# # ------------------------------# # ----- MODEL (CLASSIFIER) -----# # ------------------------------# # Define main model (i.e., classifier, if requested with feedback connections) if args.feedback: model = AutoEncoder( image_size=config['size'], image_channels=config['channels'], classes=config['classes'], fc_layers=args.fc_lay, fc_units=args.g_fc_uni, z_dim=args.z_dim, fc_drop=args.fc_drop, fc_bn=True if args.fc_bn == "yes" else False, fc_nl=args.fc_nl, ).to(device) model.lamda_pl = 1. # --> to make that this VAE is also trained to classify else: model = Classifier( image_size=config['size'], image_channels=config['channels'], classes=config['classes'], fc_layers=args.fc_lay, fc_units=args.fc_units, fc_drop=args.fc_drop, fc_nl=args.fc_nl, fc_bn=True if args.fc_bn == "yes" else False, excit_buffer=False, binaryCE=args.bce ).to(device) # Define optimizer (only include parameters that "requires_grad") model.optim_list = [{'params': filter(lambda p: p.requires_grad, model.parameters()), 'lr': args.lr}] model.optim_type = args.optimizer if model.optim_type in ("adam", "adam_reset"): model.optimizer = optim.Adam(model.optim_list, betas=(0.9, 0.999)) elif model.optim_type == "sgd": model.optimizer = optim.SGD(model.optim_list) else: raise ValueError("Unrecognized optimizer, '{}' is not currently a valid option".format(args.optimizer)) # ----------------------------------# # ----- CL-STRATEGY: EXEMPLARS -----# # ----------------------------------# # Store in model whether, how many and in what way to store exemplars if isinstance(model, ExemplarHandler) and (args.use_exemplars or args.add_exemplars or args.replay == "exemplars"): model.memory_budget = args.budget model.norm_exemplars = args.norm_exemplars model.herding = args.herding # -----------------------------------# # ----- CL-STRATEGY: ALLOCATION -----# # -----------------------------------# # Elastic Weight Consolidation (EWC) if isinstance(model, ContinualLearner): model.ewc_lambda = args.ewc_lambda if args.ewc else 0 if args.ewc: model.fisher_n = args.fisher_n model.gamma = args.gamma model.online = args.online model.emp_FI = args.emp_fi # Synpatic Intelligence (SI) if isinstance(model, ContinualLearner): model.si_c = args.si_c if args.si else 0 if args.si: model.epsilon = args.epsilon # -------------------------------------------------------------------------------------------------# # -------------------------------# # ----- CL-STRATEGY: REPLAY -----# # -------------------------------# # Use distillation loss (i.e., soft targets) for replayed data? (and set temperature) if isinstance(model, Replayer): model.replay_targets = "soft" if args.distill else "hard" model.KD_temp = args.temp # If needed, specify separate model for the generator train_gen = True if (args.replay == "generative" and not args.feedback) else False if train_gen: # -specify architecture generator = AutoEncoder( image_size=config['size'], image_channels=config['channels'], fc_layers=args.g_fc_lay, fc_units=args.g_fc_uni, z_dim=args.z_dim, classes=config['classes'], fc_drop=args.fc_drop, fc_bn=True if args.fc_bn == "yes" else False, fc_nl=args.fc_nl, ).to(device) # -set optimizer(s) generator.optim_list = [ {'params': filter(lambda p: p.requires_grad, generator.parameters()), 'lr': args.lr_gen}] generator.optim_type = args.optimizer if generator.optim_type in ("adam", "adam_reset"): generator.optimizer = optim.Adam(generator.optim_list, betas=(0.9, 0.999)) elif generator.optim_type == "sgd": generator.optimizer = optim.SGD(generator.optim_list) else: generator = None # ---------------------# # ----- REPORTING -----# # ---------------------# # Get parameter-stamp (and print on screen) param_stamp = get_param_stamp( args, model.name, verbose=True, replay=True if (not args.replay == "none") else False, replay_model_name=generator.name if (args.replay == "generative" and not args.feedback) else None, ) # -define [precision_dict] to keep track of performance during training for storing and for later plotting in pdf precision_dict = evaluate.initiate_precision_dict(args.tasks) precision_dict_exemplars = evaluate.initiate_precision_dict(args.tasks) if args.use_exemplars else None # ---------------------# # ----- CALLBACKS -----# # ---------------------# # Callbacks for reporting on and visualizing loss generator_loss_cbs = [ cb._VAE_loss_cb(log=args.loss_log, model=model if args.feedback else generator, tasks=args.tasks, iters_per_task=args.iters if args.feedback else args.g_iters, replay=False if args.replay == "none" else True) ] if (train_gen or args.feedback) else [None] solver_loss_cbs = [ cb._solver_loss_cb(log=args.loss_log, model=model, tasks=args.tasks, iters_per_task=args.iters, replay=False if args.replay == "none" else True) ] if (not args.feedback) else [None] # Callbacks for evaluating and plotting generated / reconstructed samples sample_cbs = [ cb._sample_cb(log=args.sample_log, config=config, test_datasets=test_datasets, sample_size=args.sample_n, iters_per_task=args.iters if args.feedback else args.g_iters) ] if (train_gen or args.feedback) else [None] # Callbacks for reporting and visualizing accuracy eval_cb = cb._eval_cb( log=args.prec_log, test_datasets=test_datasets, precision_dict=None, iters_per_task=args.iters, test_size=args.prec_n, classes_per_task=classes_per_task ) # -pdf / reporting: summary plots (i.e, only after each task) eval_cb_full = cb._eval_cb( log=args.iters, test_datasets=test_datasets, precision_dict=precision_dict, iters_per_task=args.iters, classes_per_task=classes_per_task ) eval_cb_exemplars = cb._eval_cb( log=args.iters, test_datasets=test_datasets, classes_per_task=classes_per_task, precision_dict=precision_dict_exemplars, iters_per_task=args.iters, with_exemplars=True, ) if args.use_exemplars else None # -collect them in <lists> eval_cbs = [eval_cb, eval_cb_full] eval_cbs_exemplars = [eval_cb_exemplars] # --------------------# # ----- TRAINING -----# # --------------------# print("--> Training:") # Keep track of training-time start = time.time() # Train model train_cl( model, train_datasets, test_datasets, replay_mode=args.replay, classes_per_task=classes_per_task, iters=args.iters, batch_size=args.batch, savepath=savepath, generator=generator, gen_iters=args.g_iters, gen_loss_cbs=generator_loss_cbs, sample_cbs=sample_cbs, eval_cbs=eval_cbs, loss_cbs=generator_loss_cbs if args.feedback else solver_loss_cbs, eval_cbs_exemplars=eval_cbs_exemplars, use_exemplars=args.use_exemplars, add_exemplars=args.add_exemplars, ) # -------------------------------------------------------------------------------------------------# # --------------------# # -- VISUALIZATION ---# # --------------------# matrices_names = args.matrices method_names = [] if args.cul == 1: method_names.append('Cumulative') elif args.cul == 0: method_names.append('Naive') if args.replay == 'current': method_names.append('LwF') if args.online and args.ewc: method_names.append('Online EWC') if args.si: method_names.append('SI') if args.replay == "generative" and not args.feedback and not args.distill: method_names.append('DGR') if args.replay == "generative" and not args.feedback and args.distill: method_names.append('DGR with distillation') if args.replay == "generative" and args.feedback and args.distill: method_names.append('DGR with feedback') if args.ewc and not args.online: method_names.append('EWC') print('The selected methods are:', method_names) print('The selected performance matrices are:', matrices_names) if args.cross_methods: print('==> Drawing results for cross selected-methods ... <==') if 'spider' in args.cross_methods_type: spider = True if 'bar' in args.cross_methods_type: bar = True if args.cross_tasks: print('==> Drawing results for cross tasks ... <==') if __name__ == '__main__': args = parser.parse_args() run(args)
[ "os.mkdir", "numpy.random.seed", "argparse.ArgumentParser", "torch.cuda.device_count", "pickle.load", "lib.train.train_cl", "param_stamp.get_param_stamp_from_args", "os.path.join", "lib.encoder.Classifier", "sys.path.append", "lib.callbacks._VAE_loss_cb", "os.path.exists", "datetime.datetime.now", "lib.vae_models.AutoEncoder", "torch.manual_seed", "param_stamp.get_param_stamp", "torch.cuda.manual_seed", "lib.callbacks._solver_loss_cb", "evaluate.initiate_precision_dict", "torch.optim.Adam", "torch.cuda.is_available", "lib.callbacks._sample_cb", "lib.callbacks._eval_cb", "os.makedirs", "os.path.isdir", "time.time", "torch.optim.SGD" ]
[((35, 59), 'sys.path.append', 'sys.path.append', (['"""./lib"""'], {}), "('./lib')\n", (50, 59), False, 'import sys\n'), ((564, 666), 'argparse.ArgumentParser', 'argparse.ArgumentParser', (['"""./main.py"""'], {'description': '"""Run individual continual learning experiment."""'}), "('./main.py', description=\n 'Run individual continual learning experiment.')\n", (587, 666), False, 'import argparse\n'), ((4370, 4421), 'os.path.join', 'os.path.join', (['"""./benchmarks/results"""', 'args.savepath'], {}), "('./benchmarks/results', args.savepath)\n", (4382, 4421), False, 'import os\n'), ((6663, 6688), 'numpy.random.seed', 'np.random.seed', (['args.seed'], {}), '(args.seed)\n', (6677, 6688), True, 'import numpy as np\n'), ((6693, 6721), 'torch.manual_seed', 'torch.manual_seed', (['args.seed'], {}), '(args.seed)\n', (6710, 6721), False, 'import torch\n'), ((12078, 12285), 'param_stamp.get_param_stamp', 'get_param_stamp', (['args', 'model.name'], {'verbose': '(True)', 'replay': "(True if not args.replay == 'none' else False)", 'replay_model_name': "(generator.name if args.replay == 'generative' and not args.feedback else None)"}), "(args, model.name, verbose=True, replay=True if not args.\n replay == 'none' else False, replay_model_name=generator.name if args.\n replay == 'generative' and not args.feedback else None)\n", (12093, 12285), False, 'from param_stamp import get_param_stamp, get_param_stamp_from_args\n'), ((12443, 12487), 'evaluate.initiate_precision_dict', 'evaluate.initiate_precision_dict', (['args.tasks'], {}), '(args.tasks)\n', (12475, 12487), False, 'import evaluate\n'), ((13742, 13916), 'lib.callbacks._eval_cb', 'cb._eval_cb', ([], {'log': 'args.prec_log', 'test_datasets': 'test_datasets', 'precision_dict': 'None', 'iters_per_task': 'args.iters', 'test_size': 'args.prec_n', 'classes_per_task': 'classes_per_task'}), '(log=args.prec_log, test_datasets=test_datasets, precision_dict=\n None, iters_per_task=args.iters, test_size=args.prec_n,\n classes_per_task=classes_per_task)\n', (13753, 13916), True, 'import lib.callbacks as cb\n'), ((14015, 14174), 'lib.callbacks._eval_cb', 'cb._eval_cb', ([], {'log': 'args.iters', 'test_datasets': 'test_datasets', 'precision_dict': 'precision_dict', 'iters_per_task': 'args.iters', 'classes_per_task': 'classes_per_task'}), '(log=args.iters, test_datasets=test_datasets, precision_dict=\n precision_dict, iters_per_task=args.iters, classes_per_task=\n classes_per_task)\n', (14026, 14174), True, 'import lib.callbacks as cb\n'), ((14729, 14740), 'time.time', 'time.time', ([], {}), '()\n', (14738, 14740), False, 'import time\n'), ((14763, 15250), 'lib.train.train_cl', 'train_cl', (['model', 'train_datasets', 'test_datasets'], {'replay_mode': 'args.replay', 'classes_per_task': 'classes_per_task', 'iters': 'args.iters', 'batch_size': 'args.batch', 'savepath': 'savepath', 'generator': 'generator', 'gen_iters': 'args.g_iters', 'gen_loss_cbs': 'generator_loss_cbs', 'sample_cbs': 'sample_cbs', 'eval_cbs': 'eval_cbs', 'loss_cbs': '(generator_loss_cbs if args.feedback else solver_loss_cbs)', 'eval_cbs_exemplars': 'eval_cbs_exemplars', 'use_exemplars': 'args.use_exemplars', 'add_exemplars': 'args.add_exemplars'}), '(model, train_datasets, test_datasets, replay_mode=args.replay,\n classes_per_task=classes_per_task, iters=args.iters, batch_size=args.\n batch, savepath=savepath, generator=generator, gen_iters=args.g_iters,\n gen_loss_cbs=generator_loss_cbs, sample_cbs=sample_cbs, eval_cbs=\n eval_cbs, loss_cbs=generator_loss_cbs if args.feedback else\n solver_loss_cbs, eval_cbs_exemplars=eval_cbs_exemplars, use_exemplars=\n args.use_exemplars, add_exemplars=args.add_exemplars)\n', (14771, 15250), False, 'from lib.train import train_cl\n'), ((4536, 4563), 'os.path.exists', 'os.path.exists', (['result_path'], {}), '(result_path)\n', (4550, 4563), False, 'import os\n'), ((4627, 4666), 'os.makedirs', 'os.makedirs', (['result_path'], {'exist_ok': '(True)'}), '(result_path, exist_ok=True)\n', (4638, 4666), False, 'import os\n'), ((5809, 5834), 'os.path.isdir', 'os.path.isdir', (['RESULT_DIR'], {}), '(RESULT_DIR)\n', (5822, 5834), False, 'import os\n'), ((5844, 5864), 'os.mkdir', 'os.mkdir', (['RESULT_DIR'], {}), '(RESULT_DIR)\n', (5852, 5864), False, 'import os\n'), ((5998, 6034), 'param_stamp.get_param_stamp_from_args', 'get_param_stamp_from_args', ([], {'args': 'args'}), '(args=args)\n', (6023, 6034), False, 'from param_stamp import get_param_stamp, get_param_stamp_from_args\n'), ((6078, 6103), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (6101, 6103), False, 'import torch\n'), ((6743, 6776), 'torch.cuda.manual_seed', 'torch.cuda.manual_seed', (['args.seed'], {}), '(args.seed)\n', (6765, 6776), False, 'import torch\n'), ((9086, 9134), 'torch.optim.Adam', 'optim.Adam', (['model.optim_list'], {'betas': '(0.9, 0.999)'}), '(model.optim_list, betas=(0.9, 0.999))\n', (9096, 9134), False, 'from torch import optim\n'), ((12519, 12563), 'evaluate.initiate_precision_dict', 'evaluate.initiate_precision_dict', (['args.tasks'], {}), '(args.tasks)\n', (12551, 12563), False, 'import evaluate\n'), ((14211, 14400), 'lib.callbacks._eval_cb', 'cb._eval_cb', ([], {'log': 'args.iters', 'test_datasets': 'test_datasets', 'classes_per_task': 'classes_per_task', 'precision_dict': 'precision_dict_exemplars', 'iters_per_task': 'args.iters', 'with_exemplars': '(True)'}), '(log=args.iters, test_datasets=test_datasets, classes_per_task=\n classes_per_task, precision_dict=precision_dict_exemplars,\n iters_per_task=args.iters, with_exemplars=True)\n', (14222, 14400), True, 'import lib.callbacks as cb\n'), ((6219, 6244), 'torch.cuda.device_count', 'torch.cuda.device_count', ([], {}), '()\n', (6242, 6244), False, 'import torch\n'), ((7265, 7279), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (7276, 7279), False, 'import pickle\n'), ((7460, 7474), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (7471, 7474), False, 'import pickle\n'), ((9197, 9224), 'torch.optim.SGD', 'optim.SGD', (['model.optim_list'], {}), '(model.optim_list)\n', (9206, 9224), False, 'from torch import optim\n'), ((11725, 11777), 'torch.optim.Adam', 'optim.Adam', (['generator.optim_list'], {'betas': '(0.9, 0.999)'}), '(generator.optim_list, betas=(0.9, 0.999))\n', (11735, 11777), False, 'from torch import optim\n'), ((12774, 12991), 'lib.callbacks._VAE_loss_cb', 'cb._VAE_loss_cb', ([], {'log': 'args.loss_log', 'model': '(model if args.feedback else generator)', 'tasks': 'args.tasks', 'iters_per_task': '(args.iters if args.feedback else args.g_iters)', 'replay': "(False if args.replay == 'none' else True)"}), "(log=args.loss_log, model=model if args.feedback else\n generator, tasks=args.tasks, iters_per_task=args.iters if args.feedback\n else args.g_iters, replay=False if args.replay == 'none' else True)\n", (12789, 12991), True, 'import lib.callbacks as cb\n'), ((13113, 13261), 'lib.callbacks._solver_loss_cb', 'cb._solver_loss_cb', ([], {'log': 'args.loss_log', 'model': 'model', 'tasks': 'args.tasks', 'iters_per_task': 'args.iters', 'replay': "(False if args.replay == 'none' else True)"}), "(log=args.loss_log, model=model, tasks=args.tasks,\n iters_per_task=args.iters, replay=False if args.replay == 'none' else True)\n", (13131, 13261), True, 'import lib.callbacks as cb\n'), ((13432, 13608), 'lib.callbacks._sample_cb', 'cb._sample_cb', ([], {'log': 'args.sample_log', 'config': 'config', 'test_datasets': 'test_datasets', 'sample_size': 'args.sample_n', 'iters_per_task': '(args.iters if args.feedback else args.g_iters)'}), '(log=args.sample_log, config=config, test_datasets=\n test_datasets, sample_size=args.sample_n, iters_per_task=args.iters if\n args.feedback else args.g_iters)\n', (13445, 13608), True, 'import lib.callbacks as cb\n'), ((8032, 8297), 'lib.vae_models.AutoEncoder', 'AutoEncoder', ([], {'image_size': "config['size']", 'image_channels': "config['channels']", 'classes': "config['classes']", 'fc_layers': 'args.fc_lay', 'fc_units': 'args.g_fc_uni', 'z_dim': 'args.z_dim', 'fc_drop': 'args.fc_drop', 'fc_bn': "(True if args.fc_bn == 'yes' else False)", 'fc_nl': 'args.fc_nl'}), "(image_size=config['size'], image_channels=config['channels'],\n classes=config['classes'], fc_layers=args.fc_lay, fc_units=args.\n g_fc_uni, z_dim=args.z_dim, fc_drop=args.fc_drop, fc_bn=True if args.\n fc_bn == 'yes' else False, fc_nl=args.fc_nl)\n", (8043, 8297), False, 'from lib.vae_models import AutoEncoder\n'), ((8453, 8738), 'lib.encoder.Classifier', 'Classifier', ([], {'image_size': "config['size']", 'image_channels': "config['channels']", 'classes': "config['classes']", 'fc_layers': 'args.fc_lay', 'fc_units': 'args.fc_units', 'fc_drop': 'args.fc_drop', 'fc_nl': 'args.fc_nl', 'fc_bn': "(True if args.fc_bn == 'yes' else False)", 'excit_buffer': '(False)', 'binaryCE': 'args.bce'}), "(image_size=config['size'], image_channels=config['channels'],\n classes=config['classes'], fc_layers=args.fc_lay, fc_units=args.\n fc_units, fc_drop=args.fc_drop, fc_nl=args.fc_nl, fc_bn=True if args.\n fc_bn == 'yes' else False, excit_buffer=False, binaryCE=args.bce)\n", (8463, 8738), False, 'from lib.encoder import Classifier\n'), ((11111, 11377), 'lib.vae_models.AutoEncoder', 'AutoEncoder', ([], {'image_size': "config['size']", 'image_channels': "config['channels']", 'fc_layers': 'args.g_fc_lay', 'fc_units': 'args.g_fc_uni', 'z_dim': 'args.z_dim', 'classes': "config['classes']", 'fc_drop': 'args.fc_drop', 'fc_bn': "(True if args.fc_bn == 'yes' else False)", 'fc_nl': 'args.fc_nl'}), "(image_size=config['size'], image_channels=config['channels'],\n fc_layers=args.g_fc_lay, fc_units=args.g_fc_uni, z_dim=args.z_dim,\n classes=config['classes'], fc_drop=args.fc_drop, fc_bn=True if args.\n fc_bn == 'yes' else False, fc_nl=args.fc_nl)\n", (11122, 11377), False, 'from lib.vae_models import AutoEncoder\n'), ((11856, 11887), 'torch.optim.SGD', 'optim.SGD', (['generator.optim_list'], {}), '(generator.optim_list)\n', (11865, 11887), False, 'from torch import optim\n'), ((4461, 4484), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (4482, 4484), False, 'import datetime\n'), ((6310, 6335), 'torch.cuda.device_count', 'torch.cuda.device_count', ([], {}), '()\n', (6333, 6335), False, 'import torch\n')]
# pylint: disable-msg=W0401,W0511,W0611,W0612,W0614,R0201,E1102 """Tests suite for MaskedArray & subclassing. :author: <NAME> :contact: pierregm_at_uga_dot_edu """ from __future__ import division, absolute_import, print_function __author__ = "<NAME>" import warnings import pickle import operator import itertools from functools import reduce import numpy as np import numpy.ma.core import numpy.core.fromnumeric as fromnumeric import numpy.core.umath as umath from numpy.testing import TestCase, run_module_suite, assert_raises from numpy import ndarray from numpy.compat import asbytes, asbytes_nested from numpy.ma.testutils import ( assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal, ) from numpy.ma.core import ( MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros, ) pi = np.pi class TestMaskedArray(TestCase): # Base test class for MaskedArrays. def setUp(self): # Base data definition. x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.]) y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.]) a10 = 10. m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1] xm = masked_array(x, mask=m1) ym = masked_array(y, mask=m2) z = np.array([-.5, 0., .5, .8]) zm = masked_array(z, mask=[0, 1, 0, 0]) xf = np.where(m1, 1e+20, x) xm.set_fill_value(1e+20) self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf) def test_basicattributes(self): # Tests some basic array attributes. a = array([1, 3, 2]) b = array([1, 3, 2], mask=[1, 0, 1]) assert_equal(a.ndim, 1) assert_equal(b.ndim, 1) assert_equal(a.size, 3) assert_equal(b.size, 3) assert_equal(a.shape, (3,)) assert_equal(b.shape, (3,)) def test_basic0d(self): # Checks masking a scalar x = masked_array(0) assert_equal(str(x), '0') x = masked_array(0, mask=True) assert_equal(str(x), str(masked_print_option)) x = masked_array(0, mask=False) assert_equal(str(x), '0') x = array(0, mask=1) self.assertTrue(x.filled().dtype is x._data.dtype) def test_basic1d(self): # Test of basic array creation and properties in 1 dimension. (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d self.assertTrue(not isMaskedArray(x)) self.assertTrue(isMaskedArray(xm)) self.assertTrue((xm - ym).filled(0).any()) fail_if_equal(xm.mask.astype(int), ym.mask.astype(int)) s = x.shape assert_equal(np.shape(xm), s) assert_equal(xm.shape, s) assert_equal(xm.dtype, x.dtype) assert_equal(zm.dtype, z.dtype) assert_equal(xm.size, reduce(lambda x, y:x * y, s)) assert_equal(count(xm), len(m1) - reduce(lambda x, y:x + y, m1)) assert_array_equal(xm, xf) assert_array_equal(filled(xm, 1.e20), xf) assert_array_equal(x, xm) def test_basic2d(self): # Test of basic array creation and properties in 2 dimensions. (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d for s in [(4, 3), (6, 2)]: x.shape = s y.shape = s xm.shape = s ym.shape = s xf.shape = s self.assertTrue(not isMaskedArray(x)) self.assertTrue(isMaskedArray(xm)) assert_equal(shape(xm), s) assert_equal(xm.shape, s) assert_equal(xm.size, reduce(lambda x, y:x * y, s)) assert_equal(count(xm), len(m1) - reduce(lambda x, y:x + y, m1)) assert_equal(xm, xf) assert_equal(filled(xm, 1.e20), xf) assert_equal(x, xm) def test_concatenate_basic(self): # Tests concatenations. (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d # basic concatenation assert_equal(np.concatenate((x, y)), concatenate((xm, ym))) assert_equal(np.concatenate((x, y)), concatenate((x, y))) assert_equal(np.concatenate((x, y)), concatenate((xm, y))) assert_equal(np.concatenate((x, y, x)), concatenate((x, ym, x))) def test_concatenate_alongaxis(self): # Tests concatenations. (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d # Concatenation along an axis s = (3, 4) x.shape = y.shape = xm.shape = ym.shape = s assert_equal(xm.mask, np.reshape(m1, s)) assert_equal(ym.mask, np.reshape(m2, s)) xmym = concatenate((xm, ym), 1) assert_equal(np.concatenate((x, y), 1), xmym) assert_equal(np.concatenate((xm.mask, ym.mask), 1), xmym._mask) x = zeros(2) y = array(ones(2), mask=[False, True]) z = concatenate((x, y)) assert_array_equal(z, [0, 0, 1, 1]) assert_array_equal(z.mask, [False, False, False, True]) z = concatenate((y, x)) assert_array_equal(z, [1, 1, 0, 0]) assert_array_equal(z.mask, [False, True, False, False]) def test_concatenate_flexible(self): # Tests the concatenation on flexible arrays. data = masked_array(list(zip(np.random.rand(10), np.arange(10))), dtype=[('a', float), ('b', int)]) test = concatenate([data[:5], data[5:]]) assert_equal_records(test, data) def test_creation_ndmin(self): # Check the use of ndmin x = array([1, 2, 3], mask=[1, 0, 0], ndmin=2) assert_equal(x.shape, (1, 3)) assert_equal(x._data, [[1, 2, 3]]) assert_equal(x._mask, [[1, 0, 0]]) def test_creation_ndmin_from_maskedarray(self): # Make sure we're not losing the original mask w/ ndmin x = array([1, 2, 3]) x[-1] = masked xx = array(x, ndmin=2, dtype=float) assert_equal(x.shape, x._mask.shape) assert_equal(xx.shape, xx._mask.shape) def test_creation_maskcreation(self): # Tests how masks are initialized at the creation of Maskedarrays. data = arange(24, dtype=float) data[[3, 6, 15]] = masked dma_1 = MaskedArray(data) assert_equal(dma_1.mask, data.mask) dma_2 = MaskedArray(dma_1) assert_equal(dma_2.mask, dma_1.mask) dma_3 = MaskedArray(dma_1, mask=[1, 0, 0, 0] * 6) fail_if_equal(dma_3.mask, dma_1.mask) x = array([1, 2, 3], mask=True) assert_equal(x._mask, [True, True, True]) x = array([1, 2, 3], mask=False) assert_equal(x._mask, [False, False, False]) y = array([1, 2, 3], mask=x._mask, copy=False) assert_(np.may_share_memory(x.mask, y.mask)) y = array([1, 2, 3], mask=x._mask, copy=True) assert_(not np.may_share_memory(x.mask, y.mask)) def test_creation_with_list_of_maskedarrays(self): # Tests creating a masked array from a list of masked arrays. x = array(np.arange(5), mask=[1, 0, 0, 0, 0]) data = array((x, x[::-1])) assert_equal(data, [[0, 1, 2, 3, 4], [4, 3, 2, 1, 0]]) assert_equal(data._mask, [[1, 0, 0, 0, 0], [0, 0, 0, 0, 1]]) x.mask = nomask data = array((x, x[::-1])) assert_equal(data, [[0, 1, 2, 3, 4], [4, 3, 2, 1, 0]]) self.assertTrue(data.mask is nomask) def test_asarray(self): (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d xm.fill_value = -9999 xm._hardmask = True xmm = asarray(xm) assert_equal(xmm._data, xm._data) assert_equal(xmm._mask, xm._mask) assert_equal(xmm.fill_value, xm.fill_value) assert_equal(xmm._hardmask, xm._hardmask) def test_asarray_default_order(self): # See Issue #6646 m = np.eye(3).T self.assertFalse(m.flags.c_contiguous) new_m = asarray(m) self.assertTrue(new_m.flags.c_contiguous) def test_asarray_enforce_order(self): # See Issue #6646 m = np.eye(3).T self.assertFalse(m.flags.c_contiguous) new_m = asarray(m, order='C') self.assertTrue(new_m.flags.c_contiguous) def test_fix_invalid(self): # Checks fix_invalid. with np.errstate(invalid='ignore'): data = masked_array([np.nan, 0., 1.], mask=[0, 0, 1]) data_fixed = fix_invalid(data) assert_equal(data_fixed._data, [data.fill_value, 0., 1.]) assert_equal(data_fixed._mask, [1., 0., 1.]) def test_maskedelement(self): # Test of masked element x = arange(6) x[1] = masked self.assertTrue(str(masked) == '--') self.assertTrue(x[1] is masked) assert_equal(filled(x[1], 0), 0) def test_set_element_as_object(self): # Tests setting elements with object a = empty(1, dtype=object) x = (1, 2, 3, 4, 5) a[0] = x assert_equal(a[0], x) self.assertTrue(a[0] is x) import datetime dt = datetime.datetime.now() a[0] = dt self.assertTrue(a[0] is dt) def test_indexing(self): # Tests conversions and indexing x1 = np.array([1, 2, 4, 3]) x2 = array(x1, mask=[1, 0, 0, 0]) x3 = array(x1, mask=[0, 1, 0, 1]) x4 = array(x1) # test conversion to strings str(x2) # raises? repr(x2) # raises? assert_equal(np.sort(x1), sort(x2, endwith=False)) # tests of indexing assert_(type(x2[1]) is type(x1[1])) assert_(x1[1] == x2[1]) assert_(x2[0] is masked) assert_equal(x1[2], x2[2]) assert_equal(x1[2:5], x2[2:5]) assert_equal(x1[:], x2[:]) assert_equal(x1[1:], x3[1:]) x1[2] = 9 x2[2] = 9 assert_equal(x1, x2) x1[1:3] = 99 x2[1:3] = 99 assert_equal(x1, x2) x2[1] = masked assert_equal(x1, x2) x2[1:3] = masked assert_equal(x1, x2) x2[:] = x1 x2[1] = masked assert_(allequal(getmask(x2), array([0, 1, 0, 0]))) x3[:] = masked_array([1, 2, 3, 4], [0, 1, 1, 0]) assert_(allequal(getmask(x3), array([0, 1, 1, 0]))) x4[:] = masked_array([1, 2, 3, 4], [0, 1, 1, 0]) assert_(allequal(getmask(x4), array([0, 1, 1, 0]))) assert_(allequal(x4, array([1, 2, 3, 4]))) x1 = np.arange(5) * 1.0 x2 = masked_values(x1, 3.0) assert_equal(x1, x2) assert_(allequal(array([0, 0, 0, 1, 0], MaskType), x2.mask)) assert_equal(3.0, x2.fill_value) x1 = array([1, 'hello', 2, 3], object) x2 = np.array([1, 'hello', 2, 3], object) s1 = x1[1] s2 = x2[1] assert_equal(type(s2), str) assert_equal(type(s1), str) assert_equal(s1, s2) assert_(x1[1:1].shape == (0,)) def test_matrix_indexing(self): # Tests conversions and indexing x1 = np.matrix([[1, 2, 3], [4, 3, 2]]) x2 = array(x1, mask=[[1, 0, 0], [0, 1, 0]]) x3 = array(x1, mask=[[0, 1, 0], [1, 0, 0]]) x4 = array(x1) # test conversion to strings str(x2) # raises? repr(x2) # raises? # tests of indexing assert_(type(x2[1, 0]) is type(x1[1, 0])) assert_(x1[1, 0] == x2[1, 0]) assert_(x2[1, 1] is masked) assert_equal(x1[0, 2], x2[0, 2]) assert_equal(x1[0, 1:], x2[0, 1:]) assert_equal(x1[:, 2], x2[:, 2]) assert_equal(x1[:], x2[:]) assert_equal(x1[1:], x3[1:]) x1[0, 2] = 9 x2[0, 2] = 9 assert_equal(x1, x2) x1[0, 1:] = 99 x2[0, 1:] = 99 assert_equal(x1, x2) x2[0, 1] = masked assert_equal(x1, x2) x2[0, 1:] = masked assert_equal(x1, x2) x2[0, :] = x1[0, :] x2[0, 1] = masked assert_(allequal(getmask(x2), np.array([[0, 1, 0], [0, 1, 0]]))) x3[1, :] = masked_array([1, 2, 3], [1, 1, 0]) assert_(allequal(getmask(x3)[1], array([1, 1, 0]))) assert_(allequal(getmask(x3[1]), array([1, 1, 0]))) x4[1, :] = masked_array([1, 2, 3], [1, 1, 0]) assert_(allequal(getmask(x4[1]), array([1, 1, 0]))) assert_(allequal(x4[1], array([1, 2, 3]))) x1 = np.matrix(np.arange(5) * 1.0) x2 = masked_values(x1, 3.0) assert_equal(x1, x2) assert_(allequal(array([0, 0, 0, 1, 0], MaskType), x2.mask)) assert_equal(3.0, x2.fill_value) def test_copy(self): # Tests of some subtle points of copying and sizing. n = [0, 0, 1, 0, 0] m = make_mask(n) m2 = make_mask(m) self.assertTrue(m is m2) m3 = make_mask(m, copy=1) self.assertTrue(m is not m3) x1 = np.arange(5) y1 = array(x1, mask=m) assert_equal(y1._data.__array_interface__, x1.__array_interface__) self.assertTrue(allequal(x1, y1.data)) assert_equal(y1._mask.__array_interface__, m.__array_interface__) y1a = array(y1) self.assertTrue(y1a._data.__array_interface__ == y1._data.__array_interface__) self.assertTrue(y1a.mask is y1.mask) y2 = array(x1, mask=m) self.assertTrue(y2._data.__array_interface__ == x1.__array_interface__) self.assertTrue(y2._mask.__array_interface__ == m.__array_interface__) self.assertTrue(y2[2] is masked) y2[2] = 9 self.assertTrue(y2[2] is not masked) self.assertTrue(y2._mask.__array_interface__ != m.__array_interface__) self.assertTrue(allequal(y2.mask, 0)) y3 = array(x1 * 1.0, mask=m) self.assertTrue(filled(y3).dtype is (x1 * 1.0).dtype) x4 = arange(4) x4[2] = masked y4 = resize(x4, (8,)) assert_equal(concatenate([x4, x4]), y4) assert_equal(getmask(y4), [0, 0, 1, 0, 0, 0, 1, 0]) y5 = repeat(x4, (2, 2, 2, 2), axis=0) assert_equal(y5, [0, 0, 1, 1, 2, 2, 3, 3]) y6 = repeat(x4, 2, axis=0) assert_equal(y5, y6) y7 = x4.repeat((2, 2, 2, 2), axis=0) assert_equal(y5, y7) y8 = x4.repeat(2, 0) assert_equal(y5, y8) y9 = x4.copy() assert_equal(y9._data, x4._data) assert_equal(y9._mask, x4._mask) x = masked_array([1, 2, 3], mask=[0, 1, 0]) # Copy is False by default y = masked_array(x) assert_equal(y._data.ctypes.data, x._data.ctypes.data) assert_equal(y._mask.ctypes.data, x._mask.ctypes.data) y = masked_array(x, copy=True) assert_not_equal(y._data.ctypes.data, x._data.ctypes.data) assert_not_equal(y._mask.ctypes.data, x._mask.ctypes.data) def test_copy_immutable(self): # Tests that the copy method is immutable, GitHub issue #5247 a = np.ma.array([1, 2, 3]) b = np.ma.array([4, 5, 6]) a_copy_method = a.copy b.copy assert_equal(a_copy_method(), [1, 2, 3]) def test_deepcopy(self): from copy import deepcopy a = array([0, 1, 2], mask=[False, True, False]) copied = deepcopy(a) assert_equal(copied.mask, a.mask) assert_not_equal(id(a._mask), id(copied._mask)) copied[1] = 1 assert_equal(copied.mask, [0, 0, 0]) assert_equal(a.mask, [0, 1, 0]) copied = deepcopy(a) assert_equal(copied.mask, a.mask) copied.mask[1] = False assert_equal(copied.mask, [0, 0, 0]) assert_equal(a.mask, [0, 1, 0]) def test_str_repr(self): a = array([0, 1, 2], mask=[False, True, False]) assert_equal(str(a), '[0 -- 2]') assert_equal(repr(a), 'masked_array(data = [0 -- 2],\n' ' mask = [False True False],\n' ' fill_value = 999999)\n') a = np.ma.arange(2000) a[1:50] = np.ma.masked assert_equal( repr(a), 'masked_array(data = [0 -- -- ..., 1997 1998 1999],\n' ' mask = [False True True ..., False False False],\n' ' fill_value = 999999)\n' ) def test_pickling(self): # Tests pickling a = arange(10) a[::3] = masked a.fill_value = 999 a_pickled = pickle.loads(a.dumps()) assert_equal(a_pickled._mask, a._mask) assert_equal(a_pickled._data, a._data) assert_equal(a_pickled.fill_value, 999) def test_pickling_subbaseclass(self): # Test pickling w/ a subclass of ndarray a = array(np.matrix(list(range(10))), mask=[1, 0, 1, 0, 0] * 2) a_pickled = pickle.loads(a.dumps()) assert_equal(a_pickled._mask, a._mask) assert_equal(a_pickled, a) self.assertTrue(isinstance(a_pickled._data, np.matrix)) def test_pickling_maskedconstant(self): # Test pickling MaskedConstant mc = np.ma.masked mc_pickled = pickle.loads(mc.dumps()) assert_equal(mc_pickled._baseclass, mc._baseclass) assert_equal(mc_pickled._mask, mc._mask) assert_equal(mc_pickled._data, mc._data) def test_pickling_wstructured(self): # Tests pickling w/ structured array a = array([(1, 1.), (2, 2.)], mask=[(0, 0), (0, 1)], dtype=[('a', int), ('b', float)]) a_pickled = pickle.loads(a.dumps()) assert_equal(a_pickled._mask, a._mask) assert_equal(a_pickled, a) def test_pickling_keepalignment(self): # Tests pickling w/ F_CONTIGUOUS arrays a = arange(10) a.shape = (-1, 2) b = a.T test = pickle.loads(pickle.dumps(b)) assert_equal(test, b) def test_single_element_subscript(self): # Tests single element subscripts of Maskedarrays. a = array([1, 3, 2]) b = array([1, 3, 2], mask=[1, 0, 1]) assert_equal(a[0].shape, ()) assert_equal(b[0].shape, ()) assert_equal(b[1].shape, ()) def test_topython(self): # Tests some communication issues with Python. assert_equal(1, int(array(1))) assert_equal(1.0, float(array(1))) assert_equal(1, int(array([[[1]]]))) assert_equal(1.0, float(array([[1]]))) self.assertRaises(TypeError, float, array([1, 1])) with warnings.catch_warnings(): warnings.simplefilter('ignore', UserWarning) assert_(np.isnan(float(array([1], mask=[1])))) a = array([1, 2, 3], mask=[1, 0, 0]) self.assertRaises(TypeError, lambda:float(a)) assert_equal(float(a[-1]), 3.) self.assertTrue(np.isnan(float(a[0]))) self.assertRaises(TypeError, int, a) assert_equal(int(a[-1]), 3) self.assertRaises(MAError, lambda:int(a[0])) def test_oddfeatures_1(self): # Test of other odd features x = arange(20) x = x.reshape(4, 5) x.flat[5] = 12 assert_(x[1, 0] == 12) z = x + 10j * x assert_equal(z.real, x) assert_equal(z.imag, 10 * x) assert_equal((z * conjugate(z)).real, 101 * x * x) z.imag[...] = 0.0 x = arange(10) x[3] = masked assert_(str(x[3]) == str(masked)) c = x >= 8 assert_(count(where(c, masked, masked)) == 0) assert_(shape(where(c, masked, masked)) == c.shape) z = masked_where(c, x) assert_(z.dtype is x.dtype) assert_(z[3] is masked) assert_(z[4] is not masked) assert_(z[7] is not masked) assert_(z[8] is masked) assert_(z[9] is masked) assert_equal(x, z) def test_oddfeatures_2(self): # Tests some more features. x = array([1., 2., 3., 4., 5.]) c = array([1, 1, 1, 0, 0]) x[2] = masked z = where(c, x, -x) assert_equal(z, [1., 2., 0., -4., -5]) c[0] = masked z = where(c, x, -x) assert_equal(z, [1., 2., 0., -4., -5]) assert_(z[0] is masked) assert_(z[1] is not masked) assert_(z[2] is masked) def test_oddfeatures_3(self): # Tests some generic features atest = array([10], mask=True) btest = array([20]) idx = atest.mask atest[idx] = btest[idx] assert_equal(atest, [20]) def test_filled_w_object_dtype(self): a = np.ma.masked_all(1, dtype='O') assert_equal(a.filled('x')[0], 'x') def test_filled_w_flexible_dtype(self): # Test filled w/ flexible dtype flexi = array([(1, 1, 1)], dtype=[('i', int), ('s', '|S8'), ('f', float)]) flexi[0] = masked assert_equal(flexi.filled(), np.array([(default_fill_value(0), default_fill_value('0'), default_fill_value(0.),)], dtype=flexi.dtype)) flexi[0] = masked assert_equal(flexi.filled(1), np.array([(1, '1', 1.)], dtype=flexi.dtype)) def test_filled_w_mvoid(self): # Test filled w/ mvoid ndtype = [('a', int), ('b', float)] a = mvoid((1, 2.), mask=[(0, 1)], dtype=ndtype) # Filled using default test = a.filled() assert_equal(tuple(test), (1, default_fill_value(1.))) # Explicit fill_value test = a.filled((-1, -1)) assert_equal(tuple(test), (1, -1)) # Using predefined filling values a.fill_value = (-999, -999) assert_equal(tuple(a.filled()), (1, -999)) def test_filled_w_nested_dtype(self): # Test filled w/ nested dtype ndtype = [('A', int), ('B', [('BA', int), ('BB', int)])] a = array([(1, (1, 1)), (2, (2, 2))], mask=[(0, (1, 0)), (0, (0, 1))], dtype=ndtype) test = a.filled(0) control = np.array([(1, (0, 1)), (2, (2, 0))], dtype=ndtype) assert_equal(test, control) test = a['B'].filled(0) control = np.array([(0, 1), (2, 0)], dtype=a['B'].dtype) assert_equal(test, control) # test if mask gets set correctly (see #6760) Z = numpy.ma.zeros(2, numpy.dtype([("A", "(2,2)i1,(2,2)i1", (2,2))])) assert_equal(Z.data.dtype, numpy.dtype([('A', [('f0', 'i1', (2, 2)), ('f1', 'i1', (2, 2))], (2, 2))])) assert_equal(Z.mask.dtype, numpy.dtype([('A', [('f0', '?', (2, 2)), ('f1', '?', (2, 2))], (2, 2))])) def test_filled_w_f_order(self): # Test filled w/ F-contiguous array a = array(np.array([(0, 1, 2), (4, 5, 6)], order='F'), mask=np.array([(0, 0, 1), (1, 0, 0)], order='F'), order='F') # this is currently ignored self.assertTrue(a.flags['F_CONTIGUOUS']) self.assertTrue(a.filled(0).flags['F_CONTIGUOUS']) def test_optinfo_propagation(self): # Checks that _optinfo dictionary isn't back-propagated x = array([1, 2, 3, ], dtype=float) x._optinfo['info'] = '???' y = x.copy() assert_equal(y._optinfo['info'], '???') y._optinfo['info'] = '!!!' assert_equal(x._optinfo['info'], '???') def test_fancy_printoptions(self): # Test printing a masked array w/ fancy dtype. fancydtype = np.dtype([('x', int), ('y', [('t', int), ('s', float)])]) test = array([(1, (2, 3.0)), (4, (5, 6.0))], mask=[(1, (0, 1)), (0, (1, 0))], dtype=fancydtype) control = "[(--, (2, --)) (4, (--, 6.0))]" assert_equal(str(test), control) # Test 0-d array with multi-dimensional dtype t_2d0 = masked_array(data = (0, [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], 0.0), mask = (False, [[True, False, True], [False, False, True]], False), dtype = "int, (2,3)float, float") control = "(0, [[--, 0.0, --], [0.0, 0.0, --]], 0.0)" assert_equal(str(t_2d0), control) def test_flatten_structured_array(self): # Test flatten_structured_array on arrays # On ndarray ndtype = [('a', int), ('b', float)] a = np.array([(1, 1), (2, 2)], dtype=ndtype) test = flatten_structured_array(a) control = np.array([[1., 1.], [2., 2.]], dtype=np.float) assert_equal(test, control) assert_equal(test.dtype, control.dtype) # On masked_array a = array([(1, 1), (2, 2)], mask=[(0, 1), (1, 0)], dtype=ndtype) test = flatten_structured_array(a) control = array([[1., 1.], [2., 2.]], mask=[[0, 1], [1, 0]], dtype=np.float) assert_equal(test, control) assert_equal(test.dtype, control.dtype) assert_equal(test.mask, control.mask) # On masked array with nested structure ndtype = [('a', int), ('b', [('ba', int), ('bb', float)])] a = array([(1, (1, 1.1)), (2, (2, 2.2))], mask=[(0, (1, 0)), (1, (0, 1))], dtype=ndtype) test = flatten_structured_array(a) control = array([[1., 1., 1.1], [2., 2., 2.2]], mask=[[0, 1, 0], [1, 0, 1]], dtype=np.float) assert_equal(test, control) assert_equal(test.dtype, control.dtype) assert_equal(test.mask, control.mask) # Keeping the initial shape ndtype = [('a', int), ('b', float)] a = np.array([[(1, 1), ], [(2, 2), ]], dtype=ndtype) test = flatten_structured_array(a) control = np.array([[[1., 1.], ], [[2., 2.], ]], dtype=np.float) assert_equal(test, control) assert_equal(test.dtype, control.dtype) def test_void0d(self): # Test creating a mvoid object ndtype = [('a', int), ('b', int)] a = np.array([(1, 2,)], dtype=ndtype)[0] f = mvoid(a) assert_(isinstance(f, mvoid)) a = masked_array([(1, 2)], mask=[(1, 0)], dtype=ndtype)[0] assert_(isinstance(a, mvoid)) a = masked_array([(1, 2), (1, 2)], mask=[(1, 0), (0, 0)], dtype=ndtype) f = mvoid(a._data[0], a._mask[0]) assert_(isinstance(f, mvoid)) def test_mvoid_getitem(self): # Test mvoid.__getitem__ ndtype = [('a', int), ('b', int)] a = masked_array([(1, 2,), (3, 4)], mask=[(0, 0), (1, 0)], dtype=ndtype) # w/o mask f = a[0] self.assertTrue(isinstance(f, mvoid)) assert_equal((f[0], f['a']), (1, 1)) assert_equal(f['b'], 2) # w/ mask f = a[1] self.assertTrue(isinstance(f, mvoid)) self.assertTrue(f[0] is masked) self.assertTrue(f['a'] is masked) assert_equal(f[1], 4) # exotic dtype A = masked_array(data=[([0,1],)], mask=[([True, False],)], dtype=[("A", ">i2", (2,))]) assert_equal(A[0]["A"], A["A"][0]) assert_equal(A[0]["A"], masked_array(data=[0, 1], mask=[True, False], dtype=">i2")) def test_mvoid_iter(self): # Test iteration on __getitem__ ndtype = [('a', int), ('b', int)] a = masked_array([(1, 2,), (3, 4)], mask=[(0, 0), (1, 0)], dtype=ndtype) # w/o mask assert_equal(list(a[0]), [1, 2]) # w/ mask assert_equal(list(a[1]), [masked, 4]) def test_mvoid_print(self): # Test printing a mvoid mx = array([(1, 1), (2, 2)], dtype=[('a', int), ('b', int)]) assert_equal(str(mx[0]), "(1, 1)") mx['b'][0] = masked ini_display = masked_print_option._display masked_print_option.set_display("-X-") try: assert_equal(str(mx[0]), "(1, -X-)") assert_equal(repr(mx[0]), "(1, -X-)") finally: masked_print_option.set_display(ini_display) # also check if there are object datatypes (see gh-7493) mx = array([(1,), (2,)], dtype=[('a', 'O')]) assert_equal(str(mx[0]), "(1,)") def test_mvoid_multidim_print(self): # regression test for gh-6019 t_ma = masked_array(data = [([1, 2, 3],)], mask = [([False, True, False],)], fill_value = ([999999, 999999, 999999],), dtype = [('a', '<i4', (3,))]) assert_(str(t_ma[0]) == "([1, --, 3],)") assert_(repr(t_ma[0]) == "([1, --, 3],)") # additional tests with structured arrays t_2d = masked_array(data = [([[1, 2], [3,4]],)], mask = [([[False, True], [True, False]],)], dtype = [('a', '<i4', (2,2))]) assert_(str(t_2d[0]) == "([[1, --], [--, 4]],)") assert_(repr(t_2d[0]) == "([[1, --], [--, 4]],)") t_0d = masked_array(data = [(1,2)], mask = [(True,False)], dtype = [('a', '<i4'), ('b', '<i4')]) assert_(str(t_0d[0]) == "(--, 2)") assert_(repr(t_0d[0]) == "(--, 2)") t_2d = masked_array(data = [([[1, 2], [3,4]], 1)], mask = [([[False, True], [True, False]], False)], dtype = [('a', '<i4', (2,2)), ('b', float)]) assert_(str(t_2d[0]) == "([[1, --], [--, 4]], 1.0)") assert_(repr(t_2d[0]) == "([[1, --], [--, 4]], 1.0)") t_ne = masked_array(data=[(1, (1, 1))], mask=[(True, (True, False))], dtype = [('a', '<i4'), ('b', 'i4,i4')]) assert_(str(t_ne[0]) == "(--, (--, 1))") assert_(repr(t_ne[0]) == "(--, (--, 1))") def test_object_with_array(self): mx1 = masked_array([1.], mask=[True]) mx2 = masked_array([1., 2.]) mx = masked_array([mx1, mx2], mask=[False, True]) assert_(mx[0] is mx1) assert_(mx[1] is not mx2) assert_(np.all(mx[1].data == mx2.data)) assert_(np.all(mx[1].mask)) # check that we return a view. mx[1].data[0] = 0. assert_(mx2[0] == 0.) class TestMaskedArrayArithmetic(TestCase): # Base test class for MaskedArrays. def setUp(self): # Base data definition. x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.]) y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.]) a10 = 10. m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1] xm = masked_array(x, mask=m1) ym = masked_array(y, mask=m2) z = np.array([-.5, 0., .5, .8]) zm = masked_array(z, mask=[0, 1, 0, 0]) xf = np.where(m1, 1e+20, x) xm.set_fill_value(1e+20) self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf) self.err_status = np.geterr() np.seterr(divide='ignore', invalid='ignore') def tearDown(self): np.seterr(**self.err_status) def test_basic_arithmetic(self): # Test of basic arithmetic. (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d a2d = array([[1, 2], [0, 4]]) a2dm = masked_array(a2d, [[0, 0], [1, 0]]) assert_equal(a2d * a2d, a2d * a2dm) assert_equal(a2d + a2d, a2d + a2dm) assert_equal(a2d - a2d, a2d - a2dm) for s in [(12,), (4, 3), (2, 6)]: x = x.reshape(s) y = y.reshape(s) xm = xm.reshape(s) ym = ym.reshape(s) xf = xf.reshape(s) assert_equal(-x, -xm) assert_equal(x + y, xm + ym) assert_equal(x - y, xm - ym) assert_equal(x * y, xm * ym) assert_equal(x / y, xm / ym) assert_equal(a10 + y, a10 + ym) assert_equal(a10 - y, a10 - ym) assert_equal(a10 * y, a10 * ym) assert_equal(a10 / y, a10 / ym) assert_equal(x + a10, xm + a10) assert_equal(x - a10, xm - a10) assert_equal(x * a10, xm * a10) assert_equal(x / a10, xm / a10) assert_equal(x ** 2, xm ** 2) assert_equal(abs(x) ** 2.5, abs(xm) ** 2.5) assert_equal(x ** y, xm ** ym) assert_equal(np.add(x, y), add(xm, ym)) assert_equal(np.subtract(x, y), subtract(xm, ym)) assert_equal(np.multiply(x, y), multiply(xm, ym)) assert_equal(np.divide(x, y), divide(xm, ym)) def test_divide_on_different_shapes(self): x = arange(6, dtype=float) x.shape = (2, 3) y = arange(3, dtype=float) z = x / y assert_equal(z, [[-1., 1., 1.], [-1., 4., 2.5]]) assert_equal(z.mask, [[1, 0, 0], [1, 0, 0]]) z = x / y[None,:] assert_equal(z, [[-1., 1., 1.], [-1., 4., 2.5]]) assert_equal(z.mask, [[1, 0, 0], [1, 0, 0]]) y = arange(2, dtype=float) z = x / y[:, None] assert_equal(z, [[-1., -1., -1.], [3., 4., 5.]]) assert_equal(z.mask, [[1, 1, 1], [0, 0, 0]]) def test_mixed_arithmetic(self): # Tests mixed arithmetics. na = np.array([1]) ma = array([1]) self.assertTrue(isinstance(na + ma, MaskedArray)) self.assertTrue(isinstance(ma + na, MaskedArray)) def test_limits_arithmetic(self): tiny = np.finfo(float).tiny a = array([tiny, 1. / tiny, 0.]) assert_equal(getmaskarray(a / 2), [0, 0, 0]) assert_equal(getmaskarray(2 / a), [1, 0, 1]) def test_masked_singleton_arithmetic(self): # Tests some scalar arithmetics on MaskedArrays. # Masked singleton should remain masked no matter what xm = array(0, mask=1) self.assertTrue((1 / array(0)).mask) self.assertTrue((1 + xm).mask) self.assertTrue((-xm).mask) self.assertTrue(maximum(xm, xm).mask) self.assertTrue(minimum(xm, xm).mask) def test_masked_singleton_equality(self): # Tests (in)equality on masked singleton a = array([1, 2, 3], mask=[1, 1, 0]) assert_((a[0] == 0) is masked) assert_((a[0] != 0) is masked) assert_equal((a[-1] == 0), False) assert_equal((a[-1] != 0), True) def test_arithmetic_with_masked_singleton(self): # Checks that there's no collapsing to masked x = masked_array([1, 2]) y = x * masked assert_equal(y.shape, x.shape) assert_equal(y._mask, [True, True]) y = x[0] * masked assert_(y is masked) y = x + masked assert_equal(y.shape, x.shape) assert_equal(y._mask, [True, True]) def test_arithmetic_with_masked_singleton_on_1d_singleton(self): # Check that we're not losing the shape of a singleton x = masked_array([1, ]) y = x + masked assert_equal(y.shape, x.shape) assert_equal(y.mask, [True, ]) def test_scalar_arithmetic(self): x = array(0, mask=0) assert_equal(x.filled().ctypes.data, x.ctypes.data) # Make sure we don't lose the shape in some circumstances xm = array((0, 0)) / 0. assert_equal(xm.shape, (2,)) assert_equal(xm.mask, [1, 1]) def test_basic_ufuncs(self): # Test various functions such as sin, cos. (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d assert_equal(np.cos(x), cos(xm)) assert_equal(np.cosh(x), cosh(xm)) assert_equal(np.sin(x), sin(xm)) assert_equal(np.sinh(x), sinh(xm)) assert_equal(np.tan(x), tan(xm)) assert_equal(np.tanh(x), tanh(xm)) assert_equal(np.sqrt(abs(x)), sqrt(xm)) assert_equal(np.log(abs(x)), log(xm)) assert_equal(np.log10(abs(x)), log10(xm)) assert_equal(np.exp(x), exp(xm)) assert_equal(np.arcsin(z), arcsin(zm)) assert_equal(np.arccos(z), arccos(zm)) assert_equal(np.arctan(z), arctan(zm)) assert_equal(np.arctan2(x, y), arctan2(xm, ym)) assert_equal(np.absolute(x), absolute(xm)) assert_equal(np.angle(x + 1j*y), angle(xm + 1j*ym)) assert_equal(np.angle(x + 1j*y, deg=True), angle(xm + 1j*ym, deg=True)) assert_equal(np.equal(x, y), equal(xm, ym)) assert_equal(np.not_equal(x, y), not_equal(xm, ym)) assert_equal(np.less(x, y), less(xm, ym)) assert_equal(np.greater(x, y), greater(xm, ym)) assert_equal(np.less_equal(x, y), less_equal(xm, ym)) assert_equal(np.greater_equal(x, y), greater_equal(xm, ym)) assert_equal(np.conjugate(x), conjugate(xm)) def test_count_func(self): # Tests count assert_equal(1, count(1)) assert_equal(0, array(1, mask=[1])) ott = array([0., 1., 2., 3.], mask=[1, 0, 0, 0]) res = count(ott) self.assertTrue(res.dtype.type is np.intp) assert_equal(3, res) ott = ott.reshape((2, 2)) res = count(ott) assert_(res.dtype.type is np.intp) assert_equal(3, res) res = count(ott, 0) assert_(isinstance(res, ndarray)) assert_equal([1, 2], res) assert_(getmask(res) is nomask) ott = array([0., 1., 2., 3.]) res = count(ott, 0) assert_(isinstance(res, ndarray)) assert_(res.dtype.type is np.intp) assert_raises(ValueError, ott.count, axis=1) def test_minmax_func(self): # Tests minimum and maximum. (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d # max doesn't work if shaped xr = np.ravel(x) xmr = ravel(xm) # following are true because of careful selection of data assert_equal(max(xr), maximum(xmr)) assert_equal(min(xr), minimum(xmr)) assert_equal(minimum([1, 2, 3], [4, 0, 9]), [1, 0, 3]) assert_equal(maximum([1, 2, 3], [4, 0, 9]), [4, 2, 9]) x = arange(5) y = arange(5) - 2 x[3] = masked y[0] = masked assert_equal(minimum(x, y), where(less(x, y), x, y)) assert_equal(maximum(x, y), where(greater(x, y), x, y)) assert_(minimum(x) == 0) assert_(maximum(x) == 4) x = arange(4).reshape(2, 2) x[-1, -1] = masked assert_equal(maximum(x), 2) def test_minimummaximum_func(self): a = np.ones((2, 2)) aminimum = minimum(a, a) self.assertTrue(isinstance(aminimum, MaskedArray)) assert_equal(aminimum, np.minimum(a, a)) aminimum = minimum.outer(a, a) self.assertTrue(isinstance(aminimum, MaskedArray)) assert_equal(aminimum, np.minimum.outer(a, a)) amaximum = maximum(a, a) self.assertTrue(isinstance(amaximum, MaskedArray)) assert_equal(amaximum, np.maximum(a, a)) amaximum = maximum.outer(a, a) self.assertTrue(isinstance(amaximum, MaskedArray)) assert_equal(amaximum, np.maximum.outer(a, a)) def test_minmax_reduce(self): # Test np.min/maximum.reduce on array w/ full False mask a = array([1, 2, 3], mask=[False, False, False]) b = np.maximum.reduce(a) assert_equal(b, 3) def test_minmax_funcs_with_output(self): # Tests the min/max functions with explicit outputs mask = np.random.rand(12).round() xm = array(np.random.uniform(0, 10, 12), mask=mask) xm.shape = (3, 4) for funcname in ('min', 'max'): # Initialize npfunc = getattr(np, funcname) mafunc = getattr(numpy.ma.core, funcname) # Use the np version nout = np.empty((4,), dtype=int) try: result = npfunc(xm, axis=0, out=nout) except MaskError: pass nout = np.empty((4,), dtype=float) result = npfunc(xm, axis=0, out=nout) self.assertTrue(result is nout) # Use the ma version nout.fill(-999) result = mafunc(xm, axis=0, out=nout) self.assertTrue(result is nout) def test_minmax_methods(self): # Additional tests on max/min (_, _, _, _, _, xm, _, _, _, _) = self.d xm.shape = (xm.size,) assert_equal(xm.max(), 10) self.assertTrue(xm[0].max() is masked) self.assertTrue(xm[0].max(0) is masked) self.assertTrue(xm[0].max(-1) is masked) assert_equal(xm.min(), -10.) self.assertTrue(xm[0].min() is masked) self.assertTrue(xm[0].min(0) is masked) self.assertTrue(xm[0].min(-1) is masked) assert_equal(xm.ptp(), 20.) self.assertTrue(xm[0].ptp() is masked) self.assertTrue(xm[0].ptp(0) is masked) self.assertTrue(xm[0].ptp(-1) is masked) x = array([1, 2, 3], mask=True) self.assertTrue(x.min() is masked) self.assertTrue(x.max() is masked) self.assertTrue(x.ptp() is masked) def test_addsumprod(self): # Tests add, sum, product. (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d assert_equal(np.add.reduce(x), add.reduce(x)) assert_equal(np.add.accumulate(x), add.accumulate(x)) assert_equal(4, sum(array(4), axis=0)) assert_equal(4, sum(array(4), axis=0)) assert_equal(np.sum(x, axis=0), sum(x, axis=0)) assert_equal(np.sum(filled(xm, 0), axis=0), sum(xm, axis=0)) assert_equal(np.sum(x, 0), sum(x, 0)) assert_equal(np.product(x, axis=0), product(x, axis=0)) assert_equal(np.product(x, 0), product(x, 0)) assert_equal(np.product(filled(xm, 1), axis=0), product(xm, axis=0)) s = (3, 4) x.shape = y.shape = xm.shape = ym.shape = s if len(s) > 1: assert_equal(np.concatenate((x, y), 1), concatenate((xm, ym), 1)) assert_equal(np.add.reduce(x, 1), add.reduce(x, 1)) assert_equal(np.sum(x, 1), sum(x, 1)) assert_equal(np.product(x, 1), product(x, 1)) def test_binops_d2D(self): # Test binary operations on 2D data a = array([[1.], [2.], [3.]], mask=[[False], [True], [True]]) b = array([[2., 3.], [4., 5.], [6., 7.]]) test = a * b control = array([[2., 3.], [2., 2.], [3., 3.]], mask=[[0, 0], [1, 1], [1, 1]]) assert_equal(test, control) assert_equal(test.data, control.data) assert_equal(test.mask, control.mask) test = b * a control = array([[2., 3.], [4., 5.], [6., 7.]], mask=[[0, 0], [1, 1], [1, 1]]) assert_equal(test, control) assert_equal(test.data, control.data) assert_equal(test.mask, control.mask) a = array([[1.], [2.], [3.]]) b = array([[2., 3.], [4., 5.], [6., 7.]], mask=[[0, 0], [0, 0], [0, 1]]) test = a * b control = array([[2, 3], [8, 10], [18, 3]], mask=[[0, 0], [0, 0], [0, 1]]) assert_equal(test, control) assert_equal(test.data, control.data) assert_equal(test.mask, control.mask) test = b * a control = array([[2, 3], [8, 10], [18, 7]], mask=[[0, 0], [0, 0], [0, 1]]) assert_equal(test, control) assert_equal(test.data, control.data) assert_equal(test.mask, control.mask) def test_domained_binops_d2D(self): # Test domained binary operations on 2D data a = array([[1.], [2.], [3.]], mask=[[False], [True], [True]]) b = array([[2., 3.], [4., 5.], [6., 7.]]) test = a / b control = array([[1. / 2., 1. / 3.], [2., 2.], [3., 3.]], mask=[[0, 0], [1, 1], [1, 1]]) assert_equal(test, control) assert_equal(test.data, control.data) assert_equal(test.mask, control.mask) test = b / a control = array([[2. / 1., 3. / 1.], [4., 5.], [6., 7.]], mask=[[0, 0], [1, 1], [1, 1]]) assert_equal(test, control) assert_equal(test.data, control.data) assert_equal(test.mask, control.mask) a = array([[1.], [2.], [3.]]) b = array([[2., 3.], [4., 5.], [6., 7.]], mask=[[0, 0], [0, 0], [0, 1]]) test = a / b control = array([[1. / 2, 1. / 3], [2. / 4, 2. / 5], [3. / 6, 3]], mask=[[0, 0], [0, 0], [0, 1]]) assert_equal(test, control) assert_equal(test.data, control.data) assert_equal(test.mask, control.mask) test = b / a control = array([[2 / 1., 3 / 1.], [4 / 2., 5 / 2.], [6 / 3., 7]], mask=[[0, 0], [0, 0], [0, 1]]) assert_equal(test, control) assert_equal(test.data, control.data) assert_equal(test.mask, control.mask) def test_noshrinking(self): # Check that we don't shrink a mask when not wanted # Binary operations a = masked_array([1., 2., 3.], mask=[False, False, False], shrink=False) b = a + 1 assert_equal(b.mask, [0, 0, 0]) # In place binary operation a += 1 assert_equal(a.mask, [0, 0, 0]) # Domained binary operation b = a / 1. assert_equal(b.mask, [0, 0, 0]) # In place binary operation a /= 1. assert_equal(a.mask, [0, 0, 0]) def test_noshink_on_creation(self): # Check that the mask is not shrunk on array creation when not wanted a = np.ma.masked_values([1., 2.5, 3.1], 1.5, shrink=False) assert_equal(a.mask, [0, 0, 0]) def test_mod(self): # Tests mod (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d assert_equal(mod(x, y), mod(xm, ym)) test = mod(ym, xm) assert_equal(test, np.mod(ym, xm)) assert_equal(test.mask, mask_or(xm.mask, ym.mask)) test = mod(xm, ym) assert_equal(test, np.mod(xm, ym)) assert_equal(test.mask, mask_or(mask_or(xm.mask, ym.mask), (ym == 0))) def test_TakeTransposeInnerOuter(self): # Test of take, transpose, inner, outer products x = arange(24) y = np.arange(24) x[5:6] = masked x = x.reshape(2, 3, 4) y = y.reshape(2, 3, 4) assert_equal(np.transpose(y, (2, 0, 1)), transpose(x, (2, 0, 1))) assert_equal(np.take(y, (2, 0, 1), 1), take(x, (2, 0, 1), 1)) assert_equal(np.inner(filled(x, 0), filled(y, 0)), inner(x, y)) assert_equal(np.outer(filled(x, 0), filled(y, 0)), outer(x, y)) y = array(['abc', 1, 'def', 2, 3], object) y[2] = masked t = take(y, [0, 3, 4]) assert_(t[0] == 'abc') assert_(t[1] == 2) assert_(t[2] == 3) def test_imag_real(self): # Check complex xx = array([1 + 10j, 20 + 2j], mask=[1, 0]) assert_equal(xx.imag, [10, 2]) assert_equal(xx.imag.filled(), [1e+20, 2]) assert_equal(xx.imag.dtype, xx._data.imag.dtype) assert_equal(xx.real, [1, 20]) assert_equal(xx.real.filled(), [1e+20, 20]) assert_equal(xx.real.dtype, xx._data.real.dtype) def test_methods_with_output(self): xm = array(np.random.uniform(0, 10, 12)).reshape(3, 4) xm[:, 0] = xm[0] = xm[-1, -1] = masked funclist = ('sum', 'prod', 'var', 'std', 'max', 'min', 'ptp', 'mean',) for funcname in funclist: npfunc = getattr(np, funcname) xmmeth = getattr(xm, funcname) # A ndarray as explicit input output = np.empty(4, dtype=float) output.fill(-9999) result = npfunc(xm, axis=0, out=output) # ... the result should be the given output assert_(result is output) assert_equal(result, xmmeth(axis=0, out=output)) output = empty(4, dtype=int) result = xmmeth(axis=0, out=output) assert_(result is output) assert_(output[0] is masked) def test_count_mean_with_matrix(self): m = np.ma.array(np.matrix([[1,2],[3,4]]), mask=np.zeros((2,2))) assert_equal(m.count(axis=0).shape, (1,2)) assert_equal(m.count(axis=1).shape, (2,1)) #make sure broadcasting inside mean and var work assert_equal(m.mean(axis=0), [[2., 3.]]) assert_equal(m.mean(axis=1), [[1.5], [3.5]]) def test_eq_on_structured(self): # Test the equality of structured arrays ndtype = [('A', int), ('B', int)] a = array([(1, 1), (2, 2)], mask=[(0, 1), (0, 0)], dtype=ndtype) test = (a == a) assert_equal(test, [True, True]) assert_equal(test.mask, [False, False]) b = array([(1, 1), (2, 2)], mask=[(1, 0), (0, 0)], dtype=ndtype) test = (a == b) assert_equal(test, [False, True]) assert_equal(test.mask, [True, False]) b = array([(1, 1), (2, 2)], mask=[(0, 1), (1, 0)], dtype=ndtype) test = (a == b) assert_equal(test, [True, False]) assert_equal(test.mask, [False, False]) def test_ne_on_structured(self): # Test the equality of structured arrays ndtype = [('A', int), ('B', int)] a = array([(1, 1), (2, 2)], mask=[(0, 1), (0, 0)], dtype=ndtype) test = (a != a) assert_equal(test, [False, False]) assert_equal(test.mask, [False, False]) b = array([(1, 1), (2, 2)], mask=[(1, 0), (0, 0)], dtype=ndtype) test = (a != b) assert_equal(test, [True, False]) assert_equal(test.mask, [True, False]) b = array([(1, 1), (2, 2)], mask=[(0, 1), (1, 0)], dtype=ndtype) test = (a != b) assert_equal(test, [False, True]) assert_equal(test.mask, [False, False]) def test_eq_w_None(self): # Really, comparisons with None should not be done, but check them # anyway. Note that pep8 will flag these tests. # With partial mask a = array([1, 2], mask=[0, 1]) assert_equal(a == None, False) assert_equal(a.data == None, False) assert_equal(a.mask == None, False) assert_equal(a != None, True) # With nomask a = array([1, 2], mask=False) assert_equal(a == None, False) assert_equal(a != None, True) # With complete mask a = array([1, 2], mask=True) assert_equal(a == None, False) assert_equal(a != None, True) # Fully masked, even comparison to None should return "masked" a = masked assert_equal(a == None, masked) def test_eq_w_scalar(self): a = array(1) assert_equal(a == 1, True) assert_equal(a == 0, False) assert_equal(a != 1, False) assert_equal(a != 0, True) def test_numpyarithmetics(self): # Check that the mask is not back-propagated when using numpy functions a = masked_array([-1, 0, 1, 2, 3], mask=[0, 0, 0, 0, 1]) control = masked_array([np.nan, np.nan, 0, np.log(2), -1], mask=[1, 1, 0, 0, 1]) test = log(a) assert_equal(test, control) assert_equal(test.mask, control.mask) assert_equal(a.mask, [0, 0, 0, 0, 1]) test = np.log(a) assert_equal(test, control) assert_equal(test.mask, control.mask) assert_equal(a.mask, [0, 0, 0, 0, 1]) class TestMaskedArrayAttributes(TestCase): def test_keepmask(self): # Tests the keep mask flag x = masked_array([1, 2, 3], mask=[1, 0, 0]) mx = masked_array(x) assert_equal(mx.mask, x.mask) mx = masked_array(x, mask=[0, 1, 0], keep_mask=False) assert_equal(mx.mask, [0, 1, 0]) mx = masked_array(x, mask=[0, 1, 0], keep_mask=True) assert_equal(mx.mask, [1, 1, 0]) # We default to true mx = masked_array(x, mask=[0, 1, 0]) assert_equal(mx.mask, [1, 1, 0]) def test_hardmask(self): # Test hard_mask d = arange(5) n = [0, 0, 0, 1, 1] m = make_mask(n) xh = array(d, mask=m, hard_mask=True) # We need to copy, to avoid updating d in xh ! xs = array(d, mask=m, hard_mask=False, copy=True) xh[[1, 4]] = [10, 40] xs[[1, 4]] = [10, 40] assert_equal(xh._data, [0, 10, 2, 3, 4]) assert_equal(xs._data, [0, 10, 2, 3, 40]) assert_equal(xs.mask, [0, 0, 0, 1, 0]) self.assertTrue(xh._hardmask) self.assertTrue(not xs._hardmask) xh[1:4] = [10, 20, 30] xs[1:4] = [10, 20, 30] assert_equal(xh._data, [0, 10, 20, 3, 4]) assert_equal(xs._data, [0, 10, 20, 30, 40]) assert_equal(xs.mask, nomask) xh[0] = masked xs[0] = masked assert_equal(xh.mask, [1, 0, 0, 1, 1]) assert_equal(xs.mask, [1, 0, 0, 0, 0]) xh[:] = 1 xs[:] = 1 assert_equal(xh._data, [0, 1, 1, 3, 4]) assert_equal(xs._data, [1, 1, 1, 1, 1]) assert_equal(xh.mask, [1, 0, 0, 1, 1]) assert_equal(xs.mask, nomask) # Switch to soft mask xh.soften_mask() xh[:] = arange(5) assert_equal(xh._data, [0, 1, 2, 3, 4]) assert_equal(xh.mask, nomask) # Switch back to hard mask xh.harden_mask() xh[xh < 3] = masked assert_equal(xh._data, [0, 1, 2, 3, 4]) assert_equal(xh._mask, [1, 1, 1, 0, 0]) xh[filled(xh > 1, False)] = 5 assert_equal(xh._data, [0, 1, 2, 5, 5]) assert_equal(xh._mask, [1, 1, 1, 0, 0]) xh = array([[1, 2], [3, 4]], mask=[[1, 0], [0, 0]], hard_mask=True) xh[0] = 0 assert_equal(xh._data, [[1, 0], [3, 4]]) assert_equal(xh._mask, [[1, 0], [0, 0]]) xh[-1, -1] = 5 assert_equal(xh._data, [[1, 0], [3, 5]]) assert_equal(xh._mask, [[1, 0], [0, 0]]) xh[filled(xh < 5, False)] = 2 assert_equal(xh._data, [[1, 2], [2, 5]]) assert_equal(xh._mask, [[1, 0], [0, 0]]) def test_hardmask_again(self): # Another test of hardmask d = arange(5) n = [0, 0, 0, 1, 1] m = make_mask(n) xh = array(d, mask=m, hard_mask=True) xh[4:5] = 999 xh[0:1] = 999 assert_equal(xh._data, [999, 1, 2, 3, 4]) def test_hardmask_oncemore_yay(self): # OK, yet another test of hardmask # Make sure that harden_mask/soften_mask//unshare_mask returns self a = array([1, 2, 3], mask=[1, 0, 0]) b = a.harden_mask() assert_equal(a, b) b[0] = 0 assert_equal(a, b) assert_equal(b, array([1, 2, 3], mask=[1, 0, 0])) a = b.soften_mask() a[0] = 0 assert_equal(a, b) assert_equal(b, array([0, 2, 3], mask=[0, 0, 0])) def test_smallmask(self): # Checks the behaviour of _smallmask a = arange(10) a[1] = masked a[1] = 1 assert_equal(a._mask, nomask) a = arange(10) a._smallmask = False a[1] = masked a[1] = 1 assert_equal(a._mask, zeros(10)) def test_shrink_mask(self): # Tests .shrink_mask() a = array([1, 2, 3], mask=[0, 0, 0]) b = a.shrink_mask() assert_equal(a, b) assert_equal(a.mask, nomask) def test_flat(self): # Test that flat can return all types of items [#4585, #4615] # test simple access test = masked_array(np.matrix([[1, 2, 3]]), mask=[0, 0, 1]) assert_equal(test.flat[1], 2) assert_equal(test.flat[2], masked) self.assertTrue(np.all(test.flat[0:2] == test[0, 0:2])) # Test flat on masked_matrices test = masked_array(np.matrix([[1, 2, 3]]), mask=[0, 0, 1]) test.flat = masked_array([3, 2, 1], mask=[1, 0, 0]) control = masked_array(np.matrix([[3, 2, 1]]), mask=[1, 0, 0]) assert_equal(test, control) # Test setting test = masked_array(np.matrix([[1, 2, 3]]), mask=[0, 0, 1]) testflat = test.flat testflat[:] = testflat[[2, 1, 0]] assert_equal(test, control) testflat[0] = 9 assert_equal(test[0, 0], 9) # test 2-D record array # ... on structured array w/ masked records x = array([[(1, 1.1, 'one'), (2, 2.2, 'two'), (3, 3.3, 'thr')], [(4, 4.4, 'fou'), (5, 5.5, 'fiv'), (6, 6.6, 'six')]], dtype=[('a', int), ('b', float), ('c', '|S8')]) x['a'][0, 1] = masked x['b'][1, 0] = masked x['c'][0, 2] = masked x[-1, -1] = masked xflat = x.flat assert_equal(xflat[0], x[0, 0]) assert_equal(xflat[1], x[0, 1]) assert_equal(xflat[2], x[0, 2]) assert_equal(xflat[:3], x[0]) assert_equal(xflat[3], x[1, 0]) assert_equal(xflat[4], x[1, 1]) assert_equal(xflat[5], x[1, 2]) assert_equal(xflat[3:], x[1]) assert_equal(xflat[-1], x[-1, -1]) i = 0 j = 0 for xf in xflat: assert_equal(xf, x[j, i]) i += 1 if i >= x.shape[-1]: i = 0 j += 1 # test that matrices keep the correct shape (#4615) a = masked_array(np.matrix(np.eye(2)), mask=0) b = a.flat b01 = b[:2] assert_equal(b01.data, array([[1., 0.]])) assert_equal(b01.mask, array([[False, False]])) def test_assign_dtype(self): # check that the mask's dtype is updated when dtype is changed a = np.zeros(4, dtype='f4,i4') m = np.ma.array(a) m.dtype = np.dtype('f4') repr(m) # raises? assert_equal(m.dtype, np.dtype('f4')) # check that dtype changes that change shape of mask too much # are not allowed def assign(): m = np.ma.array(a) m.dtype = np.dtype('f8') assert_raises(ValueError, assign) b = a.view(dtype='f4', type=np.ma.MaskedArray) # raises? assert_equal(b.dtype, np.dtype('f4')) # check that nomask is preserved a = np.zeros(4, dtype='f4') m = np.ma.array(a) m.dtype = np.dtype('f4,i4') assert_equal(m.dtype, np.dtype('f4,i4')) assert_equal(m._mask, np.ma.nomask) class TestFillingValues(TestCase): def test_check_on_scalar(self): # Test _check_fill_value set to valid and invalid values _check_fill_value = np.ma.core._check_fill_value fval = _check_fill_value(0, int) assert_equal(fval, 0) fval = _check_fill_value(None, int) assert_equal(fval, default_fill_value(0)) fval = _check_fill_value(0, "|S3") assert_equal(fval, asbytes("0")) fval = _check_fill_value(None, "|S3") assert_equal(fval, default_fill_value(b"camelot!")) self.assertRaises(TypeError, _check_fill_value, 1e+20, int) self.assertRaises(TypeError, _check_fill_value, 'stuff', int) def test_check_on_fields(self): # Tests _check_fill_value with records _check_fill_value = np.ma.core._check_fill_value ndtype = [('a', int), ('b', float), ('c', "|S3")] # A check on a list should return a single record fval = _check_fill_value([-999, -12345678.9, "???"], ndtype) self.assertTrue(isinstance(fval, ndarray)) assert_equal(fval.item(), [-999, -12345678.9, asbytes("???")]) # A check on None should output the defaults fval = _check_fill_value(None, ndtype) self.assertTrue(isinstance(fval, ndarray)) assert_equal(fval.item(), [default_fill_value(0), default_fill_value(0.), asbytes(default_fill_value("0"))]) #.....Using a structured type as fill_value should work fill_val = np.array((-999, -12345678.9, "???"), dtype=ndtype) fval = _check_fill_value(fill_val, ndtype) self.assertTrue(isinstance(fval, ndarray)) assert_equal(fval.item(), [-999, -12345678.9, asbytes("???")]) #.....Using a flexible type w/ a different type shouldn't matter # BEHAVIOR in 1.5 and earlier: match structured types by position #fill_val = np.array((-999, -12345678.9, "???"), # dtype=[("A", int), ("B", float), ("C", "|S3")]) # BEHAVIOR in 1.6 and later: match structured types by name fill_val = np.array(("???", -999, -12345678.9), dtype=[("c", "|S3"), ("a", int), ("b", float), ]) fval = _check_fill_value(fill_val, ndtype) self.assertTrue(isinstance(fval, ndarray)) assert_equal(fval.item(), [-999, -12345678.9, asbytes("???")]) #.....Using an object-array shouldn't matter either fill_val = np.ndarray(shape=(1,), dtype=object) fill_val[0] = (-999, -12345678.9, asbytes("???")) fval = _check_fill_value(fill_val, object) self.assertTrue(isinstance(fval, ndarray)) assert_equal(fval.item(), [-999, -12345678.9, asbytes("???")]) # NOTE: This test was never run properly as "fill_value" rather than # "fill_val" was assigned. Written properly, it fails. #fill_val = np.array((-999, -12345678.9, "???")) #fval = _check_fill_value(fill_val, ndtype) #self.assertTrue(isinstance(fval, ndarray)) #assert_equal(fval.item(), [-999, -12345678.9, asbytes("???")]) #.....One-field-only flexible type should work as well ndtype = [("a", int)] fval = _check_fill_value(-999999999, ndtype) self.assertTrue(isinstance(fval, ndarray)) assert_equal(fval.item(), (-999999999,)) def test_fillvalue_conversion(self): # Tests the behavior of fill_value during conversion # We had a tailored comment to make sure special attributes are # properly dealt with a = array(asbytes_nested(['3', '4', '5'])) a._optinfo.update({'comment':"updated!"}) b = array(a, dtype=int) assert_equal(b._data, [3, 4, 5]) assert_equal(b.fill_value, default_fill_value(0)) b = array(a, dtype=float) assert_equal(b._data, [3, 4, 5]) assert_equal(b.fill_value, default_fill_value(0.)) b = a.astype(int) assert_equal(b._data, [3, 4, 5]) assert_equal(b.fill_value, default_fill_value(0)) assert_equal(b._optinfo['comment'], "updated!") b = a.astype([('a', '|S3')]) assert_equal(b['a']._data, a._data) assert_equal(b['a'].fill_value, a.fill_value) def test_fillvalue(self): # Yet more fun with the fill_value data = masked_array([1, 2, 3], fill_value=-999) series = data[[0, 2, 1]] assert_equal(series._fill_value, data._fill_value) mtype = [('f', float), ('s', '|S3')] x = array([(1, 'a'), (2, 'b'), (pi, 'pi')], dtype=mtype) x.fill_value = 999 assert_equal(x.fill_value.item(), [999., asbytes('999')]) assert_equal(x['f'].fill_value, 999) assert_equal(x['s'].fill_value, asbytes('999')) x.fill_value = (9, '???') assert_equal(x.fill_value.item(), (9, asbytes('???'))) assert_equal(x['f'].fill_value, 9) assert_equal(x['s'].fill_value, asbytes('???')) x = array([1, 2, 3.1]) x.fill_value = 999 assert_equal(np.asarray(x.fill_value).dtype, float) assert_equal(x.fill_value, 999.) assert_equal(x._fill_value, np.array(999.)) def test_fillvalue_exotic_dtype(self): # Tests yet more exotic flexible dtypes _check_fill_value = np.ma.core._check_fill_value ndtype = [('i', int), ('s', '|S8'), ('f', float)] control = np.array((default_fill_value(0), default_fill_value('0'), default_fill_value(0.),), dtype=ndtype) assert_equal(_check_fill_value(None, ndtype), control) # The shape shouldn't matter ndtype = [('f0', float, (2, 2))] control = np.array((default_fill_value(0.),), dtype=[('f0', float)]).astype(ndtype) assert_equal(_check_fill_value(None, ndtype), control) control = np.array((0,), dtype=[('f0', float)]).astype(ndtype) assert_equal(_check_fill_value(0, ndtype), control) ndtype = np.dtype("int, (2,3)float, float") control = np.array((default_fill_value(0), default_fill_value(0.), default_fill_value(0.),), dtype="int, float, float").astype(ndtype) test = _check_fill_value(None, ndtype) assert_equal(test, control) control = np.array((0, 0, 0), dtype="int, float, float").astype(ndtype) assert_equal(_check_fill_value(0, ndtype), control) # but when indexing, fill value should become scalar not tuple # See issue #6723 M = masked_array(control) assert_equal(M["f1"].fill_value.ndim, 0) def test_fillvalue_datetime_timedelta(self): # Test default fillvalue for datetime64 and timedelta64 types. # See issue #4476, this would return '?' which would cause errors # elsewhere for timecode in ("as", "fs", "ps", "ns", "us", "ms", "s", "m", "h", "D", "W", "M", "Y"): control = numpy.datetime64("NaT", timecode) test = default_fill_value(numpy.dtype("<M8[" + timecode + "]")) assert_equal(test, control) control = numpy.timedelta64("NaT", timecode) test = default_fill_value(numpy.dtype("<m8[" + timecode + "]")) assert_equal(test, control) def test_extremum_fill_value(self): # Tests extremum fill values for flexible type. a = array([(1, (2, 3)), (4, (5, 6))], dtype=[('A', int), ('B', [('BA', int), ('BB', int)])]) test = a.fill_value assert_equal(test['A'], default_fill_value(a['A'])) assert_equal(test['B']['BA'], default_fill_value(a['B']['BA'])) assert_equal(test['B']['BB'], default_fill_value(a['B']['BB'])) test = minimum_fill_value(a) assert_equal(test[0], minimum_fill_value(a['A'])) assert_equal(test[1][0], minimum_fill_value(a['B']['BA'])) assert_equal(test[1][1], minimum_fill_value(a['B']['BB'])) assert_equal(test[1], minimum_fill_value(a['B'])) test = maximum_fill_value(a) assert_equal(test[0], maximum_fill_value(a['A'])) assert_equal(test[1][0], maximum_fill_value(a['B']['BA'])) assert_equal(test[1][1], maximum_fill_value(a['B']['BB'])) assert_equal(test[1], maximum_fill_value(a['B'])) def test_fillvalue_individual_fields(self): # Test setting fill_value on individual fields ndtype = [('a', int), ('b', int)] # Explicit fill_value a = array(list(zip([1, 2, 3], [4, 5, 6])), fill_value=(-999, -999), dtype=ndtype) aa = a['a'] aa.set_fill_value(10) assert_equal(aa._fill_value, np.array(10)) assert_equal(tuple(a.fill_value), (10, -999)) a.fill_value['b'] = -10 assert_equal(tuple(a.fill_value), (10, -10)) # Implicit fill_value t = array(list(zip([1, 2, 3], [4, 5, 6])), dtype=ndtype) tt = t['a'] tt.set_fill_value(10) assert_equal(tt._fill_value, np.array(10)) assert_equal(tuple(t.fill_value), (10, default_fill_value(0))) def test_fillvalue_implicit_structured_array(self): # Check that fill_value is always defined for structured arrays ndtype = ('b', float) adtype = ('a', float) a = array([(1.,), (2.,)], mask=[(False,), (False,)], fill_value=(np.nan,), dtype=np.dtype([adtype])) b = empty(a.shape, dtype=[adtype, ndtype]) b['a'] = a['a'] b['a'].set_fill_value(a['a'].fill_value) f = b._fill_value[()] assert_(np.isnan(f[0])) assert_equal(f[-1], default_fill_value(1.)) def test_fillvalue_as_arguments(self): # Test adding a fill_value parameter to empty/ones/zeros a = empty(3, fill_value=999.) assert_equal(a.fill_value, 999.) a = ones(3, fill_value=999., dtype=float) assert_equal(a.fill_value, 999.) a = zeros(3, fill_value=0., dtype=complex) assert_equal(a.fill_value, 0.) a = identity(3, fill_value=0., dtype=complex) assert_equal(a.fill_value, 0.) def test_shape_argument(self): # Test that shape can be provides as an argument # GH issue 6106 a = empty(shape=(3, )) assert_equal(a.shape, (3, )) a = ones(shape=(3, ), dtype=float) assert_equal(a.shape, (3, )) a = zeros(shape=(3, ), dtype=complex) assert_equal(a.shape, (3, )) def test_fillvalue_in_view(self): # Test the behavior of fill_value in view # Create initial masked array x = array([1, 2, 3], fill_value=1, dtype=np.int64) # Check that fill_value is preserved by default y = x.view() assert_(y.fill_value == 1) # Check that fill_value is preserved if dtype is specified and the # dtype is an ndarray sub-class and has a _fill_value attribute y = x.view(MaskedArray) assert_(y.fill_value == 1) # Check that fill_value is preserved if type is specified and the # dtype is an ndarray sub-class and has a _fill_value attribute (by # default, the first argument is dtype, not type) y = x.view(type=MaskedArray) assert_(y.fill_value == 1) # Check that code does not crash if passed an ndarray sub-class that # does not have a _fill_value attribute y = x.view(np.ndarray) y = x.view(type=np.ndarray) # Check that fill_value can be overridden with view y = x.view(MaskedArray, fill_value=2) assert_(y.fill_value == 2) # Check that fill_value can be overridden with view (using type=) y = x.view(type=MaskedArray, fill_value=2) assert_(y.fill_value == 2) # Check that fill_value gets reset if passed a dtype but not a # fill_value. This is because even though in some cases one can safely # cast the fill_value, e.g. if taking an int64 view of an int32 array, # in other cases, this cannot be done (e.g. int32 view of an int64 # array with a large fill_value). y = x.view(dtype=np.int32) assert_(y.fill_value == 999999) def test_fillvalue_bytes_or_str(self): # Test whether fill values work as expected for structured dtypes # containing bytes or str. See issue #7259. a = empty(shape=(3, ), dtype="(2)3S,(2)3U") assert_equal(a["f0"].fill_value, default_fill_value(b"spam")) assert_equal(a["f1"].fill_value, default_fill_value("eggs")) class TestUfuncs(TestCase): # Test class for the application of ufuncs on MaskedArrays. def setUp(self): # Base data definition. self.d = (array([1.0, 0, -1, pi / 2] * 2, mask=[0, 1] + [0] * 6), array([1.0, 0, -1, pi / 2] * 2, mask=[1, 0] + [0] * 6),) self.err_status = np.geterr() np.seterr(divide='ignore', invalid='ignore') def tearDown(self): np.seterr(**self.err_status) def test_testUfuncRegression(self): # Tests new ufuncs on MaskedArrays. for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate', 'sin', 'cos', 'tan', 'arcsin', 'arccos', 'arctan', 'sinh', 'cosh', 'tanh', 'arcsinh', 'arccosh', 'arctanh', 'absolute', 'fabs', 'negative', 'floor', 'ceil', 'logical_not', 'add', 'subtract', 'multiply', 'divide', 'true_divide', 'floor_divide', 'remainder', 'fmod', 'hypot', 'arctan2', 'equal', 'not_equal', 'less_equal', 'greater_equal', 'less', 'greater', 'logical_and', 'logical_or', 'logical_xor', ]: try: uf = getattr(umath, f) except AttributeError: uf = getattr(fromnumeric, f) mf = getattr(numpy.ma.core, f) args = self.d[:uf.nin] ur = uf(*args) mr = mf(*args) assert_equal(ur.filled(0), mr.filled(0), f) assert_mask_equal(ur.mask, mr.mask, err_msg=f) def test_reduce(self): # Tests reduce on MaskedArrays. a = self.d[0] self.assertTrue(not alltrue(a, axis=0)) self.assertTrue(sometrue(a, axis=0)) assert_equal(sum(a[:3], axis=0), 0) assert_equal(product(a, axis=0), 0) assert_equal(add.reduce(a), pi) def test_minmax(self): # Tests extrema on MaskedArrays. a = arange(1, 13).reshape(3, 4) amask = masked_where(a < 5, a) assert_equal(amask.max(), a.max()) assert_equal(amask.min(), 5) assert_equal(amask.max(0), a.max(0)) assert_equal(amask.min(0), [5, 6, 7, 8]) self.assertTrue(amask.max(1)[0].mask) self.assertTrue(amask.min(1)[0].mask) def test_ndarray_mask(self): # Check that the mask of the result is a ndarray (not a MaskedArray...) a = masked_array([-1, 0, 1, 2, 3], mask=[0, 0, 0, 0, 1]) test = np.sqrt(a) control = masked_array([-1, 0, 1, np.sqrt(2), -1], mask=[1, 0, 0, 0, 1]) assert_equal(test, control) assert_equal(test.mask, control.mask) self.assertTrue(not isinstance(test.mask, MaskedArray)) def test_treatment_of_NotImplemented(self): # Check that NotImplemented is returned at appropriate places a = masked_array([1., 2.], mask=[1, 0]) self.assertRaises(TypeError, operator.mul, a, "abc") self.assertRaises(TypeError, operator.truediv, a, "abc") class MyClass(object): __array_priority__ = a.__array_priority__ + 1 def __mul__(self, other): return "My mul" def __rmul__(self, other): return "My rmul" me = MyClass() assert_(me * a == "My mul") assert_(a * me == "My rmul") # and that __array_priority__ is respected class MyClass2(object): __array_priority__ = 100 def __mul__(self, other): return "Me2mul" def __rmul__(self, other): return "Me2rmul" def __rdiv__(self, other): return "Me2rdiv" __rtruediv__ = __rdiv__ me_too = MyClass2() assert_(a.__mul__(me_too) is NotImplemented) assert_(all(multiply.outer(a, me_too) == "Me2rmul")) assert_(a.__truediv__(me_too) is NotImplemented) assert_(me_too * a == "Me2mul") assert_(a * me_too == "Me2rmul") assert_(a / me_too == "Me2rdiv") def test_no_masked_nan_warnings(self): # check that a nan in masked position does not # cause ufunc warnings m = np.ma.array([0.5, np.nan], mask=[0,1]) with warnings.catch_warnings(): warnings.filterwarnings("error") # test unary and binary ufuncs exp(m) add(m, 1) m > 0 # test different unary domains sqrt(m) log(m) tan(m) arcsin(m) arccos(m) arccosh(m) # test binary domains divide(m, 2) # also check that allclose uses ma ufuncs, to avoid warning allclose(m, 0.5) class TestMaskedArrayInPlaceArithmetics(TestCase): # Test MaskedArray Arithmetics def setUp(self): x = arange(10) y = arange(10) xm = arange(10) xm[2] = masked self.intdata = (x, y, xm) self.floatdata = (x.astype(float), y.astype(float), xm.astype(float)) self.othertypes = np.typecodes['AllInteger'] + np.typecodes['AllFloat'] self.othertypes = [np.dtype(_).type for _ in self.othertypes] self.uint8data = ( x.astype(np.uint8), y.astype(np.uint8), xm.astype(np.uint8) ) def test_inplace_addition_scalar(self): # Test of inplace additions (x, y, xm) = self.intdata xm[2] = masked x += 1 assert_equal(x, y + 1) xm += 1 assert_equal(xm, y + 1) (x, _, xm) = self.floatdata id1 = x.data.ctypes._data x += 1. assert_(id1 == x.data.ctypes._data) assert_equal(x, y + 1.) def test_inplace_addition_array(self): # Test of inplace additions (x, y, xm) = self.intdata m = xm.mask a = arange(10, dtype=np.int16) a[-1] = masked x += a xm += a assert_equal(x, y + a) assert_equal(xm, y + a) assert_equal(xm.mask, mask_or(m, a.mask)) def test_inplace_subtraction_scalar(self): # Test of inplace subtractions (x, y, xm) = self.intdata x -= 1 assert_equal(x, y - 1) xm -= 1 assert_equal(xm, y - 1) def test_inplace_subtraction_array(self): # Test of inplace subtractions (x, y, xm) = self.floatdata m = xm.mask a = arange(10, dtype=float) a[-1] = masked x -= a xm -= a assert_equal(x, y - a) assert_equal(xm, y - a) assert_equal(xm.mask, mask_or(m, a.mask)) def test_inplace_multiplication_scalar(self): # Test of inplace multiplication (x, y, xm) = self.floatdata x *= 2.0 assert_equal(x, y * 2) xm *= 2.0 assert_equal(xm, y * 2) def test_inplace_multiplication_array(self): # Test of inplace multiplication (x, y, xm) = self.floatdata m = xm.mask a = arange(10, dtype=float) a[-1] = masked x *= a xm *= a assert_equal(x, y * a) assert_equal(xm, y * a) assert_equal(xm.mask, mask_or(m, a.mask)) def test_inplace_division_scalar_int(self): # Test of inplace division (x, y, xm) = self.intdata x = arange(10) * 2 xm = arange(10) * 2 xm[2] = masked x //= 2 assert_equal(x, y) xm //= 2 assert_equal(xm, y) def test_inplace_division_scalar_float(self): # Test of inplace division (x, y, xm) = self.floatdata x /= 2.0 assert_equal(x, y / 2.0) xm /= arange(10) assert_equal(xm, ones((10,))) def test_inplace_division_array_float(self): # Test of inplace division (x, y, xm) = self.floatdata m = xm.mask a = arange(10, dtype=float) a[-1] = masked x /= a xm /= a assert_equal(x, y / a) assert_equal(xm, y / a) assert_equal(xm.mask, mask_or(mask_or(m, a.mask), (a == 0))) def test_inplace_division_misc(self): x = [1., 1., 1., -2., pi / 2., 4., 5., -10., 10., 1., 2., 3.] y = [5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.] m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1] xm = masked_array(x, mask=m1) ym = masked_array(y, mask=m2) z = xm / ym assert_equal(z._mask, [1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1]) assert_equal(z._data, [1., 1., 1., -1., -pi / 2., 4., 5., 1., 1., 1., 2., 3.]) xm = xm.copy() xm /= ym assert_equal(xm._mask, [1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1]) assert_equal(z._data, [1., 1., 1., -1., -pi / 2., 4., 5., 1., 1., 1., 2., 3.]) def test_datafriendly_add(self): # Test keeping data w/ (inplace) addition x = array([1, 2, 3], mask=[0, 0, 1]) # Test add w/ scalar xx = x + 1 assert_equal(xx.data, [2, 3, 3]) assert_equal(xx.mask, [0, 0, 1]) # Test iadd w/ scalar x += 1 assert_equal(x.data, [2, 3, 3]) assert_equal(x.mask, [0, 0, 1]) # Test add w/ array x = array([1, 2, 3], mask=[0, 0, 1]) xx = x + array([1, 2, 3], mask=[1, 0, 0]) assert_equal(xx.data, [1, 4, 3]) assert_equal(xx.mask, [1, 0, 1]) # Test iadd w/ array x = array([1, 2, 3], mask=[0, 0, 1]) x += array([1, 2, 3], mask=[1, 0, 0]) assert_equal(x.data, [1, 4, 3]) assert_equal(x.mask, [1, 0, 1]) def test_datafriendly_sub(self): # Test keeping data w/ (inplace) subtraction # Test sub w/ scalar x = array([1, 2, 3], mask=[0, 0, 1]) xx = x - 1 assert_equal(xx.data, [0, 1, 3]) assert_equal(xx.mask, [0, 0, 1]) # Test isub w/ scalar x = array([1, 2, 3], mask=[0, 0, 1]) x -= 1 assert_equal(x.data, [0, 1, 3]) assert_equal(x.mask, [0, 0, 1]) # Test sub w/ array x = array([1, 2, 3], mask=[0, 0, 1]) xx = x - array([1, 2, 3], mask=[1, 0, 0]) assert_equal(xx.data, [1, 0, 3]) assert_equal(xx.mask, [1, 0, 1]) # Test isub w/ array x = array([1, 2, 3], mask=[0, 0, 1]) x -= array([1, 2, 3], mask=[1, 0, 0]) assert_equal(x.data, [1, 0, 3]) assert_equal(x.mask, [1, 0, 1]) def test_datafriendly_mul(self): # Test keeping data w/ (inplace) multiplication # Test mul w/ scalar x = array([1, 2, 3], mask=[0, 0, 1]) xx = x * 2 assert_equal(xx.data, [2, 4, 3]) assert_equal(xx.mask, [0, 0, 1]) # Test imul w/ scalar x = array([1, 2, 3], mask=[0, 0, 1]) x *= 2 assert_equal(x.data, [2, 4, 3]) assert_equal(x.mask, [0, 0, 1]) # Test mul w/ array x = array([1, 2, 3], mask=[0, 0, 1]) xx = x * array([10, 20, 30], mask=[1, 0, 0]) assert_equal(xx.data, [1, 40, 3]) assert_equal(xx.mask, [1, 0, 1]) # Test imul w/ array x = array([1, 2, 3], mask=[0, 0, 1]) x *= array([10, 20, 30], mask=[1, 0, 0]) assert_equal(x.data, [1, 40, 3]) assert_equal(x.mask, [1, 0, 1]) def test_datafriendly_div(self): # Test keeping data w/ (inplace) division # Test div on scalar x = array([1, 2, 3], mask=[0, 0, 1]) xx = x / 2. assert_equal(xx.data, [1 / 2., 2 / 2., 3]) assert_equal(xx.mask, [0, 0, 1]) # Test idiv on scalar x = array([1., 2., 3.], mask=[0, 0, 1]) x /= 2. assert_equal(x.data, [1 / 2., 2 / 2., 3]) assert_equal(x.mask, [0, 0, 1]) # Test div on array x = array([1., 2., 3.], mask=[0, 0, 1]) xx = x / array([10., 20., 30.], mask=[1, 0, 0]) assert_equal(xx.data, [1., 2. / 20., 3.]) assert_equal(xx.mask, [1, 0, 1]) # Test idiv on array x = array([1., 2., 3.], mask=[0, 0, 1]) x /= array([10., 20., 30.], mask=[1, 0, 0]) assert_equal(x.data, [1., 2 / 20., 3.]) assert_equal(x.mask, [1, 0, 1]) def test_datafriendly_pow(self): # Test keeping data w/ (inplace) power # Test pow on scalar x = array([1., 2., 3.], mask=[0, 0, 1]) xx = x ** 2.5 assert_equal(xx.data, [1., 2. ** 2.5, 3.]) assert_equal(xx.mask, [0, 0, 1]) # Test ipow on scalar x **= 2.5 assert_equal(x.data, [1., 2. ** 2.5, 3]) assert_equal(x.mask, [0, 0, 1]) def test_datafriendly_add_arrays(self): a = array([[1, 1], [3, 3]]) b = array([1, 1], mask=[0, 0]) a += b assert_equal(a, [[2, 2], [4, 4]]) if a.mask is not nomask: assert_equal(a.mask, [[0, 0], [0, 0]]) a = array([[1, 1], [3, 3]]) b = array([1, 1], mask=[0, 1]) a += b assert_equal(a, [[2, 2], [4, 4]]) assert_equal(a.mask, [[0, 1], [0, 1]]) def test_datafriendly_sub_arrays(self): a = array([[1, 1], [3, 3]]) b = array([1, 1], mask=[0, 0]) a -= b assert_equal(a, [[0, 0], [2, 2]]) if a.mask is not nomask: assert_equal(a.mask, [[0, 0], [0, 0]]) a = array([[1, 1], [3, 3]]) b = array([1, 1], mask=[0, 1]) a -= b assert_equal(a, [[0, 0], [2, 2]]) assert_equal(a.mask, [[0, 1], [0, 1]]) def test_datafriendly_mul_arrays(self): a = array([[1, 1], [3, 3]]) b = array([1, 1], mask=[0, 0]) a *= b assert_equal(a, [[1, 1], [3, 3]]) if a.mask is not nomask: assert_equal(a.mask, [[0, 0], [0, 0]]) a = array([[1, 1], [3, 3]]) b = array([1, 1], mask=[0, 1]) a *= b assert_equal(a, [[1, 1], [3, 3]]) assert_equal(a.mask, [[0, 1], [0, 1]]) def test_inplace_addition_scalar_type(self): # Test of inplace additions for t in self.othertypes: with warnings.catch_warnings(record=True) as w: warnings.filterwarnings("always") (x, y, xm) = (_.astype(t) for _ in self.uint8data) xm[2] = masked x += t(1) assert_equal(x, y + t(1)) xm += t(1) assert_equal(xm, y + t(1)) assert_equal(len(w), 0, "Failed on type=%s." % t) def test_inplace_addition_array_type(self): # Test of inplace additions for t in self.othertypes: with warnings.catch_warnings(record=True) as w: warnings.filterwarnings("always") (x, y, xm) = (_.astype(t) for _ in self.uint8data) m = xm.mask a = arange(10, dtype=t) a[-1] = masked x += a xm += a assert_equal(x, y + a) assert_equal(xm, y + a) assert_equal(xm.mask, mask_or(m, a.mask)) assert_equal(len(w), 0, "Failed on type=%s." % t) def test_inplace_subtraction_scalar_type(self): # Test of inplace subtractions for t in self.othertypes: with warnings.catch_warnings(record=True) as w: warnings.filterwarnings("always") (x, y, xm) = (_.astype(t) for _ in self.uint8data) x -= t(1) assert_equal(x, y - t(1)) xm -= t(1) assert_equal(xm, y - t(1)) assert_equal(len(w), 0, "Failed on type=%s." % t) def test_inplace_subtraction_array_type(self): # Test of inplace subtractions for t in self.othertypes: with warnings.catch_warnings(record=True) as w: warnings.filterwarnings("always") (x, y, xm) = (_.astype(t) for _ in self.uint8data) m = xm.mask a = arange(10, dtype=t) a[-1] = masked x -= a xm -= a assert_equal(x, y - a) assert_equal(xm, y - a) assert_equal(xm.mask, mask_or(m, a.mask)) assert_equal(len(w), 0, "Failed on type=%s." % t) def test_inplace_multiplication_scalar_type(self): # Test of inplace multiplication for t in self.othertypes: with warnings.catch_warnings(record=True) as w: warnings.filterwarnings("always") (x, y, xm) = (_.astype(t) for _ in self.uint8data) x *= t(2) assert_equal(x, y * t(2)) xm *= t(2) assert_equal(xm, y * t(2)) assert_equal(len(w), 0, "Failed on type=%s." % t) def test_inplace_multiplication_array_type(self): # Test of inplace multiplication for t in self.othertypes: with warnings.catch_warnings(record=True) as w: warnings.filterwarnings("always") (x, y, xm) = (_.astype(t) for _ in self.uint8data) m = xm.mask a = arange(10, dtype=t) a[-1] = masked x *= a xm *= a assert_equal(x, y * a) assert_equal(xm, y * a) assert_equal(xm.mask, mask_or(m, a.mask)) assert_equal(len(w), 0, "Failed on type=%s." % t) def test_inplace_floor_division_scalar_type(self): # Test of inplace division for t in self.othertypes: with warnings.catch_warnings(record=True) as w: warnings.filterwarnings("always") (x, y, xm) = (_.astype(t) for _ in self.uint8data) x = arange(10, dtype=t) * t(2) xm = arange(10, dtype=t) * t(2) xm[2] = masked x //= t(2) xm //= t(2) assert_equal(x, y) assert_equal(xm, y) assert_equal(len(w), 0, "Failed on type=%s." % t) def test_inplace_floor_division_array_type(self): # Test of inplace division for t in self.othertypes: with warnings.catch_warnings(record=True) as w: warnings.filterwarnings("always") (x, y, xm) = (_.astype(t) for _ in self.uint8data) m = xm.mask a = arange(10, dtype=t) a[-1] = masked x //= a xm //= a assert_equal(x, y // a) assert_equal(xm, y // a) assert_equal( xm.mask, mask_or(mask_or(m, a.mask), (a == t(0))) ) assert_equal(len(w), 0, "Failed on type=%s." % t) def test_inplace_division_scalar_type(self): # Test of inplace division for t in self.othertypes: with warnings.catch_warnings(record=True) as w: warnings.filterwarnings("always") (x, y, xm) = (_.astype(t) for _ in self.uint8data) x = arange(10, dtype=t) * t(2) xm = arange(10, dtype=t) * t(2) xm[2] = masked # May get a DeprecationWarning or a TypeError. # # This is a consequence of the fact that this is true divide # and will require casting to float for calculation and # casting back to the original type. This will only be raised # with integers. Whether it is an error or warning is only # dependent on how stringent the casting rules are. # # Will handle the same way. try: x /= t(2) assert_equal(x, y) except (DeprecationWarning, TypeError) as e: warnings.warn(str(e)) try: xm /= t(2) assert_equal(xm, y) except (DeprecationWarning, TypeError) as e: warnings.warn(str(e)) if issubclass(t, np.integer): assert_equal(len(w), 2, "Failed on type=%s." % t) else: assert_equal(len(w), 0, "Failed on type=%s." % t) def test_inplace_division_array_type(self): # Test of inplace division for t in self.othertypes: with warnings.catch_warnings(record=True) as w: warnings.filterwarnings("always") (x, y, xm) = (_.astype(t) for _ in self.uint8data) m = xm.mask a = arange(10, dtype=t) a[-1] = masked # May get a DeprecationWarning or a TypeError. # # This is a consequence of the fact that this is true divide # and will require casting to float for calculation and # casting back to the original type. This will only be raised # with integers. Whether it is an error or warning is only # dependent on how stringent the casting rules are. # # Will handle the same way. try: x /= a assert_equal(x, y / a) except (DeprecationWarning, TypeError) as e: warnings.warn(str(e)) try: xm /= a assert_equal(xm, y / a) assert_equal( xm.mask, mask_or(mask_or(m, a.mask), (a == t(0))) ) except (DeprecationWarning, TypeError) as e: warnings.warn(str(e)) if issubclass(t, np.integer): assert_equal(len(w), 2, "Failed on type=%s." % t) else: assert_equal(len(w), 0, "Failed on type=%s." % t) def test_inplace_pow_type(self): # Test keeping data w/ (inplace) power for t in self.othertypes: with warnings.catch_warnings(record=True) as w: warnings.filterwarnings("always") # Test pow on scalar x = array([1, 2, 3], mask=[0, 0, 1], dtype=t) xx = x ** t(2) xx_r = array([1, 2 ** 2, 3], mask=[0, 0, 1], dtype=t) assert_equal(xx.data, xx_r.data) assert_equal(xx.mask, xx_r.mask) # Test ipow on scalar x **= t(2) assert_equal(x.data, xx_r.data) assert_equal(x.mask, xx_r.mask) assert_equal(len(w), 0, "Failed on type=%s." % t) class TestMaskedArrayMethods(TestCase): # Test class for miscellaneous MaskedArrays methods. def setUp(self): # Base data definition. x = np.array([8.375, 7.545, 8.828, 8.5, 1.757, 5.928, 8.43, 7.78, 9.865, 5.878, 8.979, 4.732, 3.012, 6.022, 5.095, 3.116, 5.238, 3.957, 6.04, 9.63, 7.712, 3.382, 4.489, 6.479, 7.189, 9.645, 5.395, 4.961, 9.894, 2.893, 7.357, 9.828, 6.272, 3.758, 6.693, 0.993]) X = x.reshape(6, 6) XX = x.reshape(3, 2, 2, 3) m = np.array([0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0]) mx = array(data=x, mask=m) mX = array(data=X, mask=m.reshape(X.shape)) mXX = array(data=XX, mask=m.reshape(XX.shape)) m2 = np.array([1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1]) m2x = array(data=x, mask=m2) m2X = array(data=X, mask=m2.reshape(X.shape)) m2XX = array(data=XX, mask=m2.reshape(XX.shape)) self.d = (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) def test_generic_methods(self): # Tests some MaskedArray methods. a = array([1, 3, 2]) assert_equal(a.any(), a._data.any()) assert_equal(a.all(), a._data.all()) assert_equal(a.argmax(), a._data.argmax()) assert_equal(a.argmin(), a._data.argmin()) assert_equal(a.choose(0, 1, 2, 3, 4), a._data.choose(0, 1, 2, 3, 4)) assert_equal(a.compress([1, 0, 1]), a._data.compress([1, 0, 1])) assert_equal(a.conj(), a._data.conj()) assert_equal(a.conjugate(), a._data.conjugate()) m = array([[1, 2], [3, 4]]) assert_equal(m.diagonal(), m._data.diagonal()) assert_equal(a.sum(), a._data.sum()) assert_equal(a.take([1, 2]), a._data.take([1, 2])) assert_equal(m.transpose(), m._data.transpose()) def test_allclose(self): # Tests allclose on arrays a = np.random.rand(10) b = a + np.random.rand(10) * 1e-8 self.assertTrue(allclose(a, b)) # Test allclose w/ infs a[0] = np.inf self.assertTrue(not allclose(a, b)) b[0] = np.inf self.assertTrue(allclose(a, b)) # Test allclose w/ masked a = masked_array(a) a[-1] = masked self.assertTrue(allclose(a, b, masked_equal=True)) self.assertTrue(not allclose(a, b, masked_equal=False)) # Test comparison w/ scalar a *= 1e-8 a[0] = 0 self.assertTrue(allclose(a, 0, masked_equal=True)) # Test that the function works for MIN_INT integer typed arrays a = masked_array([np.iinfo(np.int_).min], dtype=np.int_) self.assertTrue(allclose(a, a)) def test_allany(self): # Checks the any/all methods/functions. x = np.array([[0.13, 0.26, 0.90], [0.28, 0.33, 0.63], [0.31, 0.87, 0.70]]) m = np.array([[True, False, False], [False, False, False], [True, True, False]], dtype=np.bool_) mx = masked_array(x, mask=m) mxbig = (mx > 0.5) mxsmall = (mx < 0.5) self.assertFalse(mxbig.all()) self.assertTrue(mxbig.any()) assert_equal(mxbig.all(0), [False, False, True]) assert_equal(mxbig.all(1), [False, False, True]) assert_equal(mxbig.any(0), [False, False, True]) assert_equal(mxbig.any(1), [True, True, True]) self.assertFalse(mxsmall.all()) self.assertTrue(mxsmall.any()) assert_equal(mxsmall.all(0), [True, True, False]) assert_equal(mxsmall.all(1), [False, False, False]) assert_equal(mxsmall.any(0), [True, True, False]) assert_equal(mxsmall.any(1), [True, True, False]) def test_allany_onmatrices(self): x = np.array([[0.13, 0.26, 0.90], [0.28, 0.33, 0.63], [0.31, 0.87, 0.70]]) X = np.matrix(x) m = np.array([[True, False, False], [False, False, False], [True, True, False]], dtype=np.bool_) mX = masked_array(X, mask=m) mXbig = (mX > 0.5) mXsmall = (mX < 0.5) self.assertFalse(mXbig.all()) self.assertTrue(mXbig.any()) assert_equal(mXbig.all(0), np.matrix([False, False, True])) assert_equal(mXbig.all(1), np.matrix([False, False, True]).T) assert_equal(mXbig.any(0), np.matrix([False, False, True])) assert_equal(mXbig.any(1), np.matrix([True, True, True]).T) self.assertFalse(mXsmall.all()) self.assertTrue(mXsmall.any()) assert_equal(mXsmall.all(0), np.matrix([True, True, False])) assert_equal(mXsmall.all(1), np.matrix([False, False, False]).T) assert_equal(mXsmall.any(0), np.matrix([True, True, False])) assert_equal(mXsmall.any(1), np.matrix([True, True, False]).T) def test_allany_oddities(self): # Some fun with all and any store = empty((), dtype=bool) full = array([1, 2, 3], mask=True) self.assertTrue(full.all() is masked) full.all(out=store) self.assertTrue(store) self.assertTrue(store._mask, True) self.assertTrue(store is not masked) store = empty((), dtype=bool) self.assertTrue(full.any() is masked) full.any(out=store) self.assertTrue(not store) self.assertTrue(store._mask, True) self.assertTrue(store is not masked) def test_argmax_argmin(self): # Tests argmin & argmax on MaskedArrays. (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d assert_equal(mx.argmin(), 35) assert_equal(mX.argmin(), 35) assert_equal(m2x.argmin(), 4) assert_equal(m2X.argmin(), 4) assert_equal(mx.argmax(), 28) assert_equal(mX.argmax(), 28) assert_equal(m2x.argmax(), 31) assert_equal(m2X.argmax(), 31) assert_equal(mX.argmin(0), [2, 2, 2, 5, 0, 5]) assert_equal(m2X.argmin(0), [2, 2, 4, 5, 0, 4]) assert_equal(mX.argmax(0), [0, 5, 0, 5, 4, 0]) assert_equal(m2X.argmax(0), [5, 5, 0, 5, 1, 0]) assert_equal(mX.argmin(1), [4, 1, 0, 0, 5, 5, ]) assert_equal(m2X.argmin(1), [4, 4, 0, 0, 5, 3]) assert_equal(mX.argmax(1), [2, 4, 1, 1, 4, 1]) assert_equal(m2X.argmax(1), [2, 4, 1, 1, 1, 1]) def test_clip(self): # Tests clip on MaskedArrays. x = np.array([8.375, 7.545, 8.828, 8.5, 1.757, 5.928, 8.43, 7.78, 9.865, 5.878, 8.979, 4.732, 3.012, 6.022, 5.095, 3.116, 5.238, 3.957, 6.04, 9.63, 7.712, 3.382, 4.489, 6.479, 7.189, 9.645, 5.395, 4.961, 9.894, 2.893, 7.357, 9.828, 6.272, 3.758, 6.693, 0.993]) m = np.array([0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0]) mx = array(x, mask=m) clipped = mx.clip(2, 8) assert_equal(clipped.mask, mx.mask) assert_equal(clipped._data, x.clip(2, 8)) assert_equal(clipped._data, mx._data.clip(2, 8)) def test_compress(self): # test compress a = masked_array([1., 2., 3., 4., 5.], fill_value=9999) condition = (a > 1.5) & (a < 3.5) assert_equal(a.compress(condition), [2., 3.]) a[[2, 3]] = masked b = a.compress(condition) assert_equal(b._data, [2., 3.]) assert_equal(b._mask, [0, 1]) assert_equal(b.fill_value, 9999) assert_equal(b, a[condition]) condition = (a < 4.) b = a.compress(condition) assert_equal(b._data, [1., 2., 3.]) assert_equal(b._mask, [0, 0, 1]) assert_equal(b.fill_value, 9999) assert_equal(b, a[condition]) a = masked_array([[10, 20, 30], [40, 50, 60]], mask=[[0, 0, 1], [1, 0, 0]]) b = a.compress(a.ravel() >= 22) assert_equal(b._data, [30, 40, 50, 60]) assert_equal(b._mask, [1, 1, 0, 0]) x = np.array([3, 1, 2]) b = a.compress(x >= 2, axis=1) assert_equal(b._data, [[10, 30], [40, 60]]) assert_equal(b._mask, [[0, 1], [1, 0]]) def test_compressed(self): # Tests compressed a = array([1, 2, 3, 4], mask=[0, 0, 0, 0]) b = a.compressed() assert_equal(b, a) a[0] = masked b = a.compressed() assert_equal(b, [2, 3, 4]) a = array(np.matrix([1, 2, 3, 4]), mask=[0, 0, 0, 0]) b = a.compressed() assert_equal(b, a) self.assertTrue(isinstance(b, np.matrix)) a[0, 0] = masked b = a.compressed() assert_equal(b, [[2, 3, 4]]) def test_empty(self): # Tests empty/like datatype = [('a', int), ('b', float), ('c', '|S8')] a = masked_array([(1, 1.1, '1.1'), (2, 2.2, '2.2'), (3, 3.3, '3.3')], dtype=datatype) assert_equal(len(a.fill_value.item()), len(datatype)) b = empty_like(a) assert_equal(b.shape, a.shape) assert_equal(b.fill_value, a.fill_value) b = empty(len(a), dtype=datatype) assert_equal(b.shape, a.shape) assert_equal(b.fill_value, a.fill_value) # check empty_like mask handling a = masked_array([1, 2, 3], mask=[False, True, False]) b = empty_like(a) assert_(not np.may_share_memory(a.mask, b.mask)) b = a.view(masked_array) assert_(np.may_share_memory(a.mask, b.mask)) def test_put(self): # Tests put. d = arange(5) n = [0, 0, 0, 1, 1] m = make_mask(n) x = array(d, mask=m) self.assertTrue(x[3] is masked) self.assertTrue(x[4] is masked) x[[1, 4]] = [10, 40] self.assertTrue(x[3] is masked) self.assertTrue(x[4] is not masked) assert_equal(x, [0, 10, 2, -1, 40]) x = masked_array(arange(10), mask=[1, 0, 0, 0, 0] * 2) i = [0, 2, 4, 6] x.put(i, [6, 4, 2, 0]) assert_equal(x, asarray([6, 1, 4, 3, 2, 5, 0, 7, 8, 9, ])) assert_equal(x.mask, [0, 0, 0, 0, 0, 1, 0, 0, 0, 0]) x.put(i, masked_array([0, 2, 4, 6], [1, 0, 1, 0])) assert_array_equal(x, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ]) assert_equal(x.mask, [1, 0, 0, 0, 1, 1, 0, 0, 0, 0]) x = masked_array(arange(10), mask=[1, 0, 0, 0, 0] * 2) put(x, i, [6, 4, 2, 0]) assert_equal(x, asarray([6, 1, 4, 3, 2, 5, 0, 7, 8, 9, ])) assert_equal(x.mask, [0, 0, 0, 0, 0, 1, 0, 0, 0, 0]) put(x, i, masked_array([0, 2, 4, 6], [1, 0, 1, 0])) assert_array_equal(x, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ]) assert_equal(x.mask, [1, 0, 0, 0, 1, 1, 0, 0, 0, 0]) def test_put_nomask(self): # GitHub issue 6425 x = zeros(10) z = array([3., -1.], mask=[False, True]) x.put([1, 2], z) self.assertTrue(x[0] is not masked) assert_equal(x[0], 0) self.assertTrue(x[1] is not masked) assert_equal(x[1], 3) self.assertTrue(x[2] is masked) self.assertTrue(x[3] is not masked) assert_equal(x[3], 0) def test_put_hardmask(self): # Tests put on hardmask d = arange(5) n = [0, 0, 0, 1, 1] m = make_mask(n) xh = array(d + 1, mask=m, hard_mask=True, copy=True) xh.put([4, 2, 0, 1, 3], [1, 2, 3, 4, 5]) assert_equal(xh._data, [3, 4, 2, 4, 5]) def test_putmask(self): x = arange(6) + 1 mx = array(x, mask=[0, 0, 0, 1, 1, 1]) mask = [0, 0, 1, 0, 0, 1] # w/o mask, w/o masked values xx = x.copy() putmask(xx, mask, 99) assert_equal(xx, [1, 2, 99, 4, 5, 99]) # w/ mask, w/o masked values mxx = mx.copy() putmask(mxx, mask, 99) assert_equal(mxx._data, [1, 2, 99, 4, 5, 99]) assert_equal(mxx._mask, [0, 0, 0, 1, 1, 0]) # w/o mask, w/ masked values values = array([10, 20, 30, 40, 50, 60], mask=[1, 1, 1, 0, 0, 0]) xx = x.copy() putmask(xx, mask, values) assert_equal(xx._data, [1, 2, 30, 4, 5, 60]) assert_equal(xx._mask, [0, 0, 1, 0, 0, 0]) # w/ mask, w/ masked values mxx = mx.copy() putmask(mxx, mask, values) assert_equal(mxx._data, [1, 2, 30, 4, 5, 60]) assert_equal(mxx._mask, [0, 0, 1, 1, 1, 0]) # w/ mask, w/ masked values + hardmask mxx = mx.copy() mxx.harden_mask() putmask(mxx, mask, values) assert_equal(mxx, [1, 2, 30, 4, 5, 60]) def test_ravel(self): # Tests ravel a = array([[1, 2, 3, 4, 5]], mask=[[0, 1, 0, 0, 0]]) aravel = a.ravel() assert_equal(aravel._mask.shape, aravel.shape) a = array([0, 0], mask=[1, 1]) aravel = a.ravel() assert_equal(aravel._mask.shape, a.shape) a = array(np.matrix([1, 2, 3, 4, 5]), mask=[[0, 1, 0, 0, 0]]) aravel = a.ravel() assert_equal(aravel.shape, (1, 5)) assert_equal(aravel._mask.shape, a.shape) # Checks that small_mask is preserved a = array([1, 2, 3, 4], mask=[0, 0, 0, 0], shrink=False) assert_equal(a.ravel()._mask, [0, 0, 0, 0]) # Test that the fill_value is preserved a.fill_value = -99 a.shape = (2, 2) ar = a.ravel() assert_equal(ar._mask, [0, 0, 0, 0]) assert_equal(ar._data, [1, 2, 3, 4]) assert_equal(ar.fill_value, -99) # Test index ordering assert_equal(a.ravel(order='C'), [1, 2, 3, 4]) assert_equal(a.ravel(order='F'), [1, 3, 2, 4]) def test_reshape(self): # Tests reshape x = arange(4) x[0] = masked y = x.reshape(2, 2) assert_equal(y.shape, (2, 2,)) assert_equal(y._mask.shape, (2, 2,)) assert_equal(x.shape, (4,)) assert_equal(x._mask.shape, (4,)) def test_sort(self): # Test sort x = array([1, 4, 2, 3], mask=[0, 1, 0, 0], dtype=np.uint8) sortedx = sort(x) assert_equal(sortedx._data, [1, 2, 3, 4]) assert_equal(sortedx._mask, [0, 0, 0, 1]) sortedx = sort(x, endwith=False) assert_equal(sortedx._data, [4, 1, 2, 3]) assert_equal(sortedx._mask, [1, 0, 0, 0]) x.sort() assert_equal(x._data, [1, 2, 3, 4]) assert_equal(x._mask, [0, 0, 0, 1]) x = array([1, 4, 2, 3], mask=[0, 1, 0, 0], dtype=np.uint8) x.sort(endwith=False) assert_equal(x._data, [4, 1, 2, 3]) assert_equal(x._mask, [1, 0, 0, 0]) x = [1, 4, 2, 3] sortedx = sort(x) self.assertTrue(not isinstance(sorted, MaskedArray)) x = array([0, 1, -1, -2, 2], mask=nomask, dtype=np.int8) sortedx = sort(x, endwith=False) assert_equal(sortedx._data, [-2, -1, 0, 1, 2]) x = array([0, 1, -1, -2, 2], mask=[0, 1, 0, 0, 1], dtype=np.int8) sortedx = sort(x, endwith=False) assert_equal(sortedx._data, [1, 2, -2, -1, 0]) assert_equal(sortedx._mask, [1, 1, 0, 0, 0]) def test_sort_2d(self): # Check sort of 2D array. # 2D array w/o mask a = masked_array([[8, 4, 1], [2, 0, 9]]) a.sort(0) assert_equal(a, [[2, 0, 1], [8, 4, 9]]) a = masked_array([[8, 4, 1], [2, 0, 9]]) a.sort(1) assert_equal(a, [[1, 4, 8], [0, 2, 9]]) # 2D array w/mask a = masked_array([[8, 4, 1], [2, 0, 9]], mask=[[1, 0, 0], [0, 0, 1]]) a.sort(0) assert_equal(a, [[2, 0, 1], [8, 4, 9]]) assert_equal(a._mask, [[0, 0, 0], [1, 0, 1]]) a = masked_array([[8, 4, 1], [2, 0, 9]], mask=[[1, 0, 0], [0, 0, 1]]) a.sort(1) assert_equal(a, [[1, 4, 8], [0, 2, 9]]) assert_equal(a._mask, [[0, 0, 1], [0, 0, 1]]) # 3D a = masked_array([[[7, 8, 9], [4, 5, 6], [1, 2, 3]], [[1, 2, 3], [7, 8, 9], [4, 5, 6]], [[7, 8, 9], [1, 2, 3], [4, 5, 6]], [[4, 5, 6], [1, 2, 3], [7, 8, 9]]]) a[a % 4 == 0] = masked am = a.copy() an = a.filled(99) am.sort(0) an.sort(0) assert_equal(am, an) am = a.copy() an = a.filled(99) am.sort(1) an.sort(1) assert_equal(am, an) am = a.copy() an = a.filled(99) am.sort(2) an.sort(2) assert_equal(am, an) def test_sort_flexible(self): # Test sort on flexible dtype. a = array( data=[(3, 3), (3, 2), (2, 2), (2, 1), (1, 0), (1, 1), (1, 2)], mask=[(0, 0), (0, 1), (0, 0), (0, 0), (1, 0), (0, 0), (0, 0)], dtype=[('A', int), ('B', int)]) test = sort(a) b = array( data=[(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 2), (1, 0)], mask=[(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 1), (1, 0)], dtype=[('A', int), ('B', int)]) assert_equal(test, b) assert_equal(test.mask, b.mask) test = sort(a, endwith=False) b = array( data=[(1, 0), (1, 1), (1, 2), (2, 1), (2, 2), (3, 2), (3, 3), ], mask=[(1, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 1), (0, 0), ], dtype=[('A', int), ('B', int)]) assert_equal(test, b) assert_equal(test.mask, b.mask) def test_argsort(self): # Test argsort a = array([1, 5, 2, 4, 3], mask=[1, 0, 0, 1, 0]) assert_equal(np.argsort(a), argsort(a)) def test_squeeze(self): # Check squeeze data = masked_array([[1, 2, 3]]) assert_equal(data.squeeze(), [1, 2, 3]) data = masked_array([[1, 2, 3]], mask=[[1, 1, 1]]) assert_equal(data.squeeze(), [1, 2, 3]) assert_equal(data.squeeze()._mask, [1, 1, 1]) data = masked_array([[1]], mask=True) self.assertTrue(data.squeeze() is masked) def test_swapaxes(self): # Tests swapaxes on MaskedArrays. x = np.array([8.375, 7.545, 8.828, 8.5, 1.757, 5.928, 8.43, 7.78, 9.865, 5.878, 8.979, 4.732, 3.012, 6.022, 5.095, 3.116, 5.238, 3.957, 6.04, 9.63, 7.712, 3.382, 4.489, 6.479, 7.189, 9.645, 5.395, 4.961, 9.894, 2.893, 7.357, 9.828, 6.272, 3.758, 6.693, 0.993]) m = np.array([0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0]) mX = array(x, mask=m).reshape(6, 6) mXX = mX.reshape(3, 2, 2, 3) mXswapped = mX.swapaxes(0, 1) assert_equal(mXswapped[-1], mX[:, -1]) mXXswapped = mXX.swapaxes(0, 2) assert_equal(mXXswapped.shape, (2, 2, 3, 3)) def test_take(self): # Tests take x = masked_array([10, 20, 30, 40], [0, 1, 0, 1]) assert_equal(x.take([0, 0, 3]), masked_array([10, 10, 40], [0, 0, 1])) assert_equal(x.take([0, 0, 3]), x[[0, 0, 3]]) assert_equal(x.take([[0, 1], [0, 1]]), masked_array([[10, 20], [10, 20]], [[0, 1], [0, 1]])) # assert_equal crashes when passed np.ma.mask self.assertIs(x[1], np.ma.masked) self.assertIs(x.take(1), np.ma.masked) x = array([[10, 20, 30], [40, 50, 60]], mask=[[0, 0, 1], [1, 0, 0, ]]) assert_equal(x.take([0, 2], axis=1), array([[10, 30], [40, 60]], mask=[[0, 1], [1, 0]])) assert_equal(take(x, [0, 2], axis=1), array([[10, 30], [40, 60]], mask=[[0, 1], [1, 0]])) def test_take_masked_indices(self): # Test take w/ masked indices a = np.array((40, 18, 37, 9, 22)) indices = np.arange(3)[None,:] + np.arange(5)[:, None] mindices = array(indices, mask=(indices >= len(a))) # No mask test = take(a, mindices, mode='clip') ctrl = array([[40, 18, 37], [18, 37, 9], [37, 9, 22], [9, 22, 22], [22, 22, 22]]) assert_equal(test, ctrl) # Masked indices test = take(a, mindices) ctrl = array([[40, 18, 37], [18, 37, 9], [37, 9, 22], [9, 22, 40], [22, 40, 40]]) ctrl[3, 2] = ctrl[4, 1] = ctrl[4, 2] = masked assert_equal(test, ctrl) assert_equal(test.mask, ctrl.mask) # Masked input + masked indices a = array((40, 18, 37, 9, 22), mask=(0, 1, 0, 0, 0)) test = take(a, mindices) ctrl[0, 1] = ctrl[1, 0] = masked assert_equal(test, ctrl) assert_equal(test.mask, ctrl.mask) def test_tolist(self): # Tests to list # ... on 1D x = array(np.arange(12)) x[[1, -2]] = masked xlist = x.tolist() self.assertTrue(xlist[1] is None) self.assertTrue(xlist[-2] is None) # ... on 2D x.shape = (3, 4) xlist = x.tolist() ctrl = [[0, None, 2, 3], [4, 5, 6, 7], [8, 9, None, 11]] assert_equal(xlist[0], [0, None, 2, 3]) assert_equal(xlist[1], [4, 5, 6, 7]) assert_equal(xlist[2], [8, 9, None, 11]) assert_equal(xlist, ctrl) # ... on structured array w/ masked records x = array(list(zip([1, 2, 3], [1.1, 2.2, 3.3], ['one', 'two', 'thr'])), dtype=[('a', int), ('b', float), ('c', '|S8')]) x[-1] = masked assert_equal(x.tolist(), [(1, 1.1, asbytes('one')), (2, 2.2, asbytes('two')), (None, None, None)]) # ... on structured array w/ masked fields a = array([(1, 2,), (3, 4)], mask=[(0, 1), (0, 0)], dtype=[('a', int), ('b', int)]) test = a.tolist() assert_equal(test, [[1, None], [3, 4]]) # ... on mvoid a = a[0] test = a.tolist() assert_equal(test, [1, None]) def test_tolist_specialcase(self): # Test mvoid.tolist: make sure we return a standard Python object a = array([(0, 1), (2, 3)], dtype=[('a', int), ('b', int)]) # w/o mask: each entry is a np.void whose elements are standard Python for entry in a: for item in entry.tolist(): assert_(not isinstance(item, np.generic)) # w/ mask: each entry is a ma.void whose elements should be # standard Python a.mask[0] = (0, 1) for entry in a: for item in entry.tolist(): assert_(not isinstance(item, np.generic)) def test_toflex(self): # Test the conversion to records data = arange(10) record = data.toflex() assert_equal(record['_data'], data._data) assert_equal(record['_mask'], data._mask) data[[0, 1, 2, -1]] = masked record = data.toflex() assert_equal(record['_data'], data._data) assert_equal(record['_mask'], data._mask) ndtype = [('i', int), ('s', '|S3'), ('f', float)] data = array([(i, s, f) for (i, s, f) in zip(np.arange(10), 'ABCDEFGHIJKLM', np.random.rand(10))], dtype=ndtype) data[[0, 1, 2, -1]] = masked record = data.toflex() assert_equal(record['_data'], data._data) assert_equal(record['_mask'], data._mask) ndtype = np.dtype("int, (2,3)float, float") data = array([(i, f, ff) for (i, f, ff) in zip(np.arange(10), np.random.rand(10), np.random.rand(10))], dtype=ndtype) data[[0, 1, 2, -1]] = masked record = data.toflex() assert_equal_records(record['_data'], data._data) assert_equal_records(record['_mask'], data._mask) def test_fromflex(self): # Test the reconstruction of a masked_array from a record a = array([1, 2, 3]) test = fromflex(a.toflex()) assert_equal(test, a) assert_equal(test.mask, a.mask) a = array([1, 2, 3], mask=[0, 0, 1]) test = fromflex(a.toflex()) assert_equal(test, a) assert_equal(test.mask, a.mask) a = array([(1, 1.), (2, 2.), (3, 3.)], mask=[(1, 0), (0, 0), (0, 1)], dtype=[('A', int), ('B', float)]) test = fromflex(a.toflex()) assert_equal(test, a) assert_equal(test.data, a.data) def test_arraymethod(self): # Test a _arraymethod w/ n argument marray = masked_array([[1, 2, 3, 4, 5]], mask=[0, 0, 1, 0, 0]) control = masked_array([[1], [2], [3], [4], [5]], mask=[0, 0, 1, 0, 0]) assert_equal(marray.T, control) assert_equal(marray.transpose(), control) assert_equal(MaskedArray.cumsum(marray.T, 0), control.cumsum(0)) class TestMaskedArrayMathMethods(TestCase): def setUp(self): # Base data definition. x = np.array([8.375, 7.545, 8.828, 8.5, 1.757, 5.928, 8.43, 7.78, 9.865, 5.878, 8.979, 4.732, 3.012, 6.022, 5.095, 3.116, 5.238, 3.957, 6.04, 9.63, 7.712, 3.382, 4.489, 6.479, 7.189, 9.645, 5.395, 4.961, 9.894, 2.893, 7.357, 9.828, 6.272, 3.758, 6.693, 0.993]) X = x.reshape(6, 6) XX = x.reshape(3, 2, 2, 3) m = np.array([0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0]) mx = array(data=x, mask=m) mX = array(data=X, mask=m.reshape(X.shape)) mXX = array(data=XX, mask=m.reshape(XX.shape)) m2 = np.array([1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1]) m2x = array(data=x, mask=m2) m2X = array(data=X, mask=m2.reshape(X.shape)) m2XX = array(data=XX, mask=m2.reshape(XX.shape)) self.d = (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) def test_cumsumprod(self): # Tests cumsum & cumprod on MaskedArrays. (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d mXcp = mX.cumsum(0) assert_equal(mXcp._data, mX.filled(0).cumsum(0)) mXcp = mX.cumsum(1) assert_equal(mXcp._data, mX.filled(0).cumsum(1)) mXcp = mX.cumprod(0) assert_equal(mXcp._data, mX.filled(1).cumprod(0)) mXcp = mX.cumprod(1) assert_equal(mXcp._data, mX.filled(1).cumprod(1)) def test_cumsumprod_with_output(self): # Tests cumsum/cumprod w/ output xm = array(np.random.uniform(0, 10, 12)).reshape(3, 4) xm[:, 0] = xm[0] = xm[-1, -1] = masked for funcname in ('cumsum', 'cumprod'): npfunc = getattr(np, funcname) xmmeth = getattr(xm, funcname) # A ndarray as explicit input output = np.empty((3, 4), dtype=float) output.fill(-9999) result = npfunc(xm, axis=0, out=output) # ... the result should be the given output self.assertTrue(result is output) assert_equal(result, xmmeth(axis=0, out=output)) output = empty((3, 4), dtype=int) result = xmmeth(axis=0, out=output) self.assertTrue(result is output) def test_ptp(self): # Tests ptp on MaskedArrays. (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d (n, m) = X.shape assert_equal(mx.ptp(), mx.compressed().ptp()) rows = np.zeros(n, np.float) cols = np.zeros(m, np.float) for k in range(m): cols[k] = mX[:, k].compressed().ptp() for k in range(n): rows[k] = mX[k].compressed().ptp() assert_equal(mX.ptp(0), cols) assert_equal(mX.ptp(1), rows) def test_add_object(self): x = masked_array(['a', 'b'], mask=[1, 0], dtype=object) y = x + 'x' assert_equal(y[1], 'bx') assert_(y.mask[0]) def test_sum_object(self): # Test sum on object dtype a = masked_array([1, 2, 3], mask=[1, 0, 0], dtype=np.object) assert_equal(a.sum(), 5) a = masked_array([[1, 2, 3], [4, 5, 6]], dtype=object) assert_equal(a.sum(axis=0), [5, 7, 9]) def test_prod_object(self): # Test prod on object dtype a = masked_array([1, 2, 3], mask=[1, 0, 0], dtype=np.object) assert_equal(a.prod(), 2 * 3) a = masked_array([[1, 2, 3], [4, 5, 6]], dtype=object) assert_equal(a.prod(axis=0), [4, 10, 18]) def test_meananom_object(self): # Test mean/anom on object dtype a = masked_array([1, 2, 3], dtype=np.object) assert_equal(a.mean(), 2) assert_equal(a.anom(), [-1, 0, 1]) def test_trace(self): # Tests trace on MaskedArrays. (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d mXdiag = mX.diagonal() assert_equal(mX.trace(), mX.diagonal().compressed().sum()) assert_almost_equal(mX.trace(), X.trace() - sum(mXdiag.mask * X.diagonal(), axis=0)) assert_equal(np.trace(mX), mX.trace()) def test_dot(self): # Tests dot on MaskedArrays. (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d fx = mx.filled(0) r = mx.dot(mx) assert_almost_equal(r.filled(0), fx.dot(fx)) assert_(r.mask is nomask) fX = mX.filled(0) r = mX.dot(mX) assert_almost_equal(r.filled(0), fX.dot(fX)) assert_(r.mask[1,3]) r1 = empty_like(r) mX.dot(mX, out=r1) assert_almost_equal(r, r1) mYY = mXX.swapaxes(-1, -2) fXX, fYY = mXX.filled(0), mYY.filled(0) r = mXX.dot(mYY) assert_almost_equal(r.filled(0), fXX.dot(fYY)) r1 = empty_like(r) mXX.dot(mYY, out=r1) assert_almost_equal(r, r1) def test_dot_shape_mismatch(self): # regression test x = masked_array([[1,2],[3,4]], mask=[[0,1],[0,0]]) y = masked_array([[1,2],[3,4]], mask=[[0,1],[0,0]]) z = masked_array([[0,1],[3,3]]) x.dot(y, out=z) assert_almost_equal(z.filled(0), [[1, 0], [15, 16]]) assert_almost_equal(z.mask, [[0, 1], [0, 0]]) def test_varstd(self): # Tests var & std on MaskedArrays. (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d assert_almost_equal(mX.var(axis=None), mX.compressed().var()) assert_almost_equal(mX.std(axis=None), mX.compressed().std()) assert_almost_equal(mX.std(axis=None, ddof=1), mX.compressed().std(ddof=1)) assert_almost_equal(mX.var(axis=None, ddof=1), mX.compressed().var(ddof=1)) assert_equal(mXX.var(axis=3).shape, XX.var(axis=3).shape) assert_equal(mX.var().shape, X.var().shape) (mXvar0, mXvar1) = (mX.var(axis=0), mX.var(axis=1)) assert_almost_equal(mX.var(axis=None, ddof=2), mX.compressed().var(ddof=2)) assert_almost_equal(mX.std(axis=None, ddof=2), mX.compressed().std(ddof=2)) for k in range(6): assert_almost_equal(mXvar1[k], mX[k].compressed().var()) assert_almost_equal(mXvar0[k], mX[:, k].compressed().var()) assert_almost_equal(np.sqrt(mXvar0[k]), mX[:, k].compressed().std()) def test_varstd_specialcases(self): # Test a special case for var nout = np.array(-1, dtype=float) mout = array(-1, dtype=float) x = array(arange(10), mask=True) for methodname in ('var', 'std'): method = getattr(x, methodname) self.assertTrue(method() is masked) self.assertTrue(method(0) is masked) self.assertTrue(method(-1) is masked) # Using a masked array as explicit output with warnings.catch_warnings(): warnings.simplefilter('ignore') method(out=mout) self.assertTrue(mout is not masked) assert_equal(mout.mask, True) # Using a ndarray as explicit output with warnings.catch_warnings(): warnings.simplefilter('ignore') method(out=nout) self.assertTrue(np.isnan(nout)) x = array(arange(10), mask=True) x[-1] = 9 for methodname in ('var', 'std'): method = getattr(x, methodname) self.assertTrue(method(ddof=1) is masked) self.assertTrue(method(0, ddof=1) is masked) self.assertTrue(method(-1, ddof=1) is masked) # Using a masked array as explicit output method(out=mout, ddof=1) self.assertTrue(mout is not masked) assert_equal(mout.mask, True) # Using a ndarray as explicit output method(out=nout, ddof=1) self.assertTrue(np.isnan(nout)) def test_varstd_ddof(self): a = array([[1, 1, 0], [1, 1, 0]], mask=[[0, 0, 1], [0, 0, 1]]) test = a.std(axis=0, ddof=0) assert_equal(test.filled(0), [0, 0, 0]) assert_equal(test.mask, [0, 0, 1]) test = a.std(axis=0, ddof=1) assert_equal(test.filled(0), [0, 0, 0]) assert_equal(test.mask, [0, 0, 1]) test = a.std(axis=0, ddof=2) assert_equal(test.filled(0), [0, 0, 0]) assert_equal(test.mask, [1, 1, 1]) def test_diag(self): # Test diag x = arange(9).reshape((3, 3)) x[1, 1] = masked out = np.diag(x) assert_equal(out, [0, 4, 8]) out = diag(x) assert_equal(out, [0, 4, 8]) assert_equal(out.mask, [0, 1, 0]) out = diag(out) control = array([[0, 0, 0], [0, 4, 0], [0, 0, 8]], mask=[[0, 0, 0], [0, 1, 0], [0, 0, 0]]) assert_equal(out, control) def test_axis_methods_nomask(self): # Test the combination nomask & methods w/ axis a = array([[1, 2, 3], [4, 5, 6]]) assert_equal(a.sum(0), [5, 7, 9]) assert_equal(a.sum(-1), [6, 15]) assert_equal(a.sum(1), [6, 15]) assert_equal(a.prod(0), [4, 10, 18]) assert_equal(a.prod(-1), [6, 120]) assert_equal(a.prod(1), [6, 120]) assert_equal(a.min(0), [1, 2, 3]) assert_equal(a.min(-1), [1, 4]) assert_equal(a.min(1), [1, 4]) assert_equal(a.max(0), [4, 5, 6]) assert_equal(a.max(-1), [3, 6]) assert_equal(a.max(1), [3, 6]) class TestMaskedArrayMathMethodsComplex(TestCase): # Test class for miscellaneous MaskedArrays methods. def setUp(self): # Base data definition. x = np.array([8.375j, 7.545j, 8.828j, 8.5j, 1.757j, 5.928, 8.43, 7.78, 9.865, 5.878, 8.979, 4.732, 3.012, 6.022, 5.095, 3.116, 5.238, 3.957, 6.04, 9.63, 7.712, 3.382, 4.489, 6.479j, 7.189j, 9.645, 5.395, 4.961, 9.894, 2.893, 7.357, 9.828, 6.272, 3.758, 6.693, 0.993j]) X = x.reshape(6, 6) XX = x.reshape(3, 2, 2, 3) m = np.array([0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0]) mx = array(data=x, mask=m) mX = array(data=X, mask=m.reshape(X.shape)) mXX = array(data=XX, mask=m.reshape(XX.shape)) m2 = np.array([1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1]) m2x = array(data=x, mask=m2) m2X = array(data=X, mask=m2.reshape(X.shape)) m2XX = array(data=XX, mask=m2.reshape(XX.shape)) self.d = (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) def test_varstd(self): # Tests var & std on MaskedArrays. (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d assert_almost_equal(mX.var(axis=None), mX.compressed().var()) assert_almost_equal(mX.std(axis=None), mX.compressed().std()) assert_equal(mXX.var(axis=3).shape, XX.var(axis=3).shape) assert_equal(mX.var().shape, X.var().shape) (mXvar0, mXvar1) = (mX.var(axis=0), mX.var(axis=1)) assert_almost_equal(mX.var(axis=None, ddof=2), mX.compressed().var(ddof=2)) assert_almost_equal(mX.std(axis=None, ddof=2), mX.compressed().std(ddof=2)) for k in range(6): assert_almost_equal(mXvar1[k], mX[k].compressed().var()) assert_almost_equal(mXvar0[k], mX[:, k].compressed().var()) assert_almost_equal(np.sqrt(mXvar0[k]), mX[:, k].compressed().std()) class TestMaskedArrayFunctions(TestCase): # Test class for miscellaneous functions. def setUp(self): x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.]) y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.]) m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1] xm = masked_array(x, mask=m1) ym = masked_array(y, mask=m2) xm.set_fill_value(1e+20) self.info = (xm, ym) def test_masked_where_bool(self): x = [1, 2] y = masked_where(False, x) assert_equal(y, [1, 2]) assert_equal(y[1], 2) def test_masked_equal_wlist(self): x = [1, 2, 3] mx = masked_equal(x, 3) assert_equal(mx, x) assert_equal(mx._mask, [0, 0, 1]) mx = masked_not_equal(x, 3) assert_equal(mx, x) assert_equal(mx._mask, [1, 1, 0]) def test_masked_equal_fill_value(self): x = [1, 2, 3] mx = masked_equal(x, 3) assert_equal(mx._mask, [0, 0, 1]) assert_equal(mx.fill_value, 3) def test_masked_where_condition(self): # Tests masking functions. x = array([1., 2., 3., 4., 5.]) x[2] = masked assert_equal(masked_where(greater(x, 2), x), masked_greater(x, 2)) assert_equal(masked_where(greater_equal(x, 2), x), masked_greater_equal(x, 2)) assert_equal(masked_where(less(x, 2), x), masked_less(x, 2)) assert_equal(masked_where(less_equal(x, 2), x), masked_less_equal(x, 2)) assert_equal(masked_where(not_equal(x, 2), x), masked_not_equal(x, 2)) assert_equal(masked_where(equal(x, 2), x), masked_equal(x, 2)) assert_equal(masked_where(not_equal(x, 2), x), masked_not_equal(x, 2)) assert_equal(masked_where([1, 1, 0, 0, 0], [1, 2, 3, 4, 5]), [99, 99, 3, 4, 5]) def test_masked_where_oddities(self): # Tests some generic features. atest = ones((10, 10, 10), dtype=float) btest = zeros(atest.shape, MaskType) ctest = masked_where(btest, atest) assert_equal(atest, ctest) def test_masked_where_shape_constraint(self): a = arange(10) try: test = masked_equal(1, a) except IndexError: pass else: raise AssertionError("Should have failed...") test = masked_equal(a, 1) assert_equal(test.mask, [0, 1, 0, 0, 0, 0, 0, 0, 0, 0]) def test_masked_where_structured(self): # test that masked_where on a structured array sets a structured # mask (see issue #2972) a = np.zeros(10, dtype=[("A", "<f2"), ("B", "<f4")]) am = np.ma.masked_where(a["A"] < 5, a) assert_equal(am.mask.dtype.names, am.dtype.names) assert_equal(am["A"], np.ma.masked_array(np.zeros(10), np.ones(10))) def test_masked_otherfunctions(self): assert_equal(masked_inside(list(range(5)), 1, 3), [0, 199, 199, 199, 4]) assert_equal(masked_outside(list(range(5)), 1, 3), [199, 1, 2, 3, 199]) assert_equal(masked_inside(array(list(range(5)), mask=[1, 0, 0, 0, 0]), 1, 3).mask, [1, 1, 1, 1, 0]) assert_equal(masked_outside(array(list(range(5)), mask=[0, 1, 0, 0, 0]), 1, 3).mask, [1, 1, 0, 0, 1]) assert_equal(masked_equal(array(list(range(5)), mask=[1, 0, 0, 0, 0]), 2).mask, [1, 0, 1, 0, 0]) assert_equal(masked_not_equal(array([2, 2, 1, 2, 1], mask=[1, 0, 0, 0, 0]), 2).mask, [1, 0, 1, 0, 1]) def test_round(self): a = array([1.23456, 2.34567, 3.45678, 4.56789, 5.67890], mask=[0, 1, 0, 0, 0]) assert_equal(a.round(), [1., 2., 3., 5., 6.]) assert_equal(a.round(1), [1.2, 2.3, 3.5, 4.6, 5.7]) assert_equal(a.round(3), [1.235, 2.346, 3.457, 4.568, 5.679]) b = empty_like(a) a.round(out=b) assert_equal(b, [1., 2., 3., 5., 6.]) x = array([1., 2., 3., 4., 5.]) c = array([1, 1, 1, 0, 0]) x[2] = masked z = where(c, x, -x) assert_equal(z, [1., 2., 0., -4., -5]) c[0] = masked z = where(c, x, -x) assert_equal(z, [1., 2., 0., -4., -5]) assert_(z[0] is masked) assert_(z[1] is not masked) assert_(z[2] is masked) def test_round_with_output(self): # Testing round with an explicit output xm = array(np.random.uniform(0, 10, 12)).reshape(3, 4) xm[:, 0] = xm[0] = xm[-1, -1] = masked # A ndarray as explicit input output = np.empty((3, 4), dtype=float) output.fill(-9999) result = np.round(xm, decimals=2, out=output) # ... the result should be the given output self.assertTrue(result is output) assert_equal(result, xm.round(decimals=2, out=output)) output = empty((3, 4), dtype=float) result = xm.round(decimals=2, out=output) self.assertTrue(result is output) def test_round_with_scalar(self): # Testing round with scalar/zero dimension input # GH issue 2244 a = array(1.1, mask=[False]) assert_equal(a.round(), 1) a = array(1.1, mask=[True]) assert_(a.round() is masked) a = array(1.1, mask=[False]) output = np.empty(1, dtype=float) output.fill(-9999) a.round(out=output) assert_equal(output, 1) a = array(1.1, mask=[False]) output = array(-9999., mask=[True]) a.round(out=output) assert_equal(output[()], 1) a = array(1.1, mask=[True]) output = array(-9999., mask=[False]) a.round(out=output) assert_(output[()] is masked) def test_identity(self): a = identity(5) self.assertTrue(isinstance(a, MaskedArray)) assert_equal(a, np.identity(5)) def test_power(self): x = -1.1 assert_almost_equal(power(x, 2.), 1.21) self.assertTrue(power(x, masked) is masked) x = array([-1.1, -1.1, 1.1, 1.1, 0.]) b = array([0.5, 2., 0.5, 2., -1.], mask=[0, 0, 0, 0, 1]) y = power(x, b) assert_almost_equal(y, [0, 1.21, 1.04880884817, 1.21, 0.]) assert_equal(y._mask, [1, 0, 0, 0, 1]) b.mask = nomask y = power(x, b) assert_equal(y._mask, [1, 0, 0, 0, 1]) z = x ** b assert_equal(z._mask, y._mask) assert_almost_equal(z, y) assert_almost_equal(z._data, y._data) x **= b assert_equal(x._mask, y._mask) assert_almost_equal(x, y) assert_almost_equal(x._data, y._data) def test_power_w_broadcasting(self): # Test power w/ broadcasting a2 = np.array([[1., 2., 3.], [4., 5., 6.]]) a2m = array(a2, mask=[[1, 0, 0], [0, 0, 1]]) b1 = np.array([2, 4, 3]) b2 = np.array([b1, b1]) b2m = array(b2, mask=[[0, 1, 0], [0, 1, 0]]) ctrl = array([[1 ** 2, 2 ** 4, 3 ** 3], [4 ** 2, 5 ** 4, 6 ** 3]], mask=[[1, 1, 0], [0, 1, 1]]) # No broadcasting, base & exp w/ mask test = a2m ** b2m assert_equal(test, ctrl) assert_equal(test.mask, ctrl.mask) # No broadcasting, base w/ mask, exp w/o mask test = a2m ** b2 assert_equal(test, ctrl) assert_equal(test.mask, a2m.mask) # No broadcasting, base w/o mask, exp w/ mask test = a2 ** b2m assert_equal(test, ctrl) assert_equal(test.mask, b2m.mask) ctrl = array([[2 ** 2, 4 ** 4, 3 ** 3], [2 ** 2, 4 ** 4, 3 ** 3]], mask=[[0, 1, 0], [0, 1, 0]]) test = b1 ** b2m assert_equal(test, ctrl) assert_equal(test.mask, ctrl.mask) test = b2m ** b1 assert_equal(test, ctrl) assert_equal(test.mask, ctrl.mask) def test_where(self): # Test the where function x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.]) y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.]) m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1] xm = masked_array(x, mask=m1) ym = masked_array(y, mask=m2) xm.set_fill_value(1e+20) d = where(xm > 2, xm, -9) assert_equal(d, [-9., -9., -9., -9., -9., 4., -9., -9., 10., -9., -9., 3.]) assert_equal(d._mask, xm._mask) d = where(xm > 2, -9, ym) assert_equal(d, [5., 0., 3., 2., -1., -9., -9., -10., -9., 1., 0., -9.]) assert_equal(d._mask, [1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0]) d = where(xm > 2, xm, masked) assert_equal(d, [-9., -9., -9., -9., -9., 4., -9., -9., 10., -9., -9., 3.]) tmp = xm._mask.copy() tmp[(xm <= 2).filled(True)] = True assert_equal(d._mask, tmp) ixm = xm.astype(int) d = where(ixm > 2, ixm, masked) assert_equal(d, [-9, -9, -9, -9, -9, 4, -9, -9, 10, -9, -9, 3]) assert_equal(d.dtype, ixm.dtype) def test_where_object(self): a = np.array(None) b = masked_array(None) r = b.copy() assert_equal(np.ma.where(True, a, a), r) assert_equal(np.ma.where(True, b, b), r) def test_where_with_masked_choice(self): x = arange(10) x[3] = masked c = x >= 8 # Set False to masked z = where(c, x, masked) assert_(z.dtype is x.dtype) assert_(z[3] is masked) assert_(z[4] is masked) assert_(z[7] is masked) assert_(z[8] is not masked) assert_(z[9] is not masked) assert_equal(x, z) # Set True to masked z = where(c, masked, x) assert_(z.dtype is x.dtype) assert_(z[3] is masked) assert_(z[4] is not masked) assert_(z[7] is not masked) assert_(z[8] is masked) assert_(z[9] is masked) def test_where_with_masked_condition(self): x = array([1., 2., 3., 4., 5.]) c = array([1, 1, 1, 0, 0]) x[2] = masked z = where(c, x, -x) assert_equal(z, [1., 2., 0., -4., -5]) c[0] = masked z = where(c, x, -x) assert_equal(z, [1., 2., 0., -4., -5]) assert_(z[0] is masked) assert_(z[1] is not masked) assert_(z[2] is masked) x = arange(1, 6) x[-1] = masked y = arange(1, 6) * 10 y[2] = masked c = array([1, 1, 1, 0, 0], mask=[1, 0, 0, 0, 0]) cm = c.filled(1) z = where(c, x, y) zm = where(cm, x, y) assert_equal(z, zm) assert_(getmask(zm) is nomask) assert_equal(zm, [1, 2, 3, 40, 50]) z = where(c, masked, 1) assert_equal(z, [99, 99, 99, 1, 1]) z = where(c, 1, masked) assert_equal(z, [99, 1, 1, 99, 99]) def test_where_type(self): # Test the type conservation with where x = np.arange(4, dtype=np.int32) y = np.arange(4, dtype=np.float32) * 2.2 test = where(x > 1.5, y, x).dtype control = np.find_common_type([np.int32, np.float32], []) assert_equal(test, control) def test_choose(self): # Test choose choices = [[0, 1, 2, 3], [10, 11, 12, 13], [20, 21, 22, 23], [30, 31, 32, 33]] chosen = choose([2, 3, 1, 0], choices) assert_equal(chosen, array([20, 31, 12, 3])) chosen = choose([2, 4, 1, 0], choices, mode='clip') assert_equal(chosen, array([20, 31, 12, 3])) chosen = choose([2, 4, 1, 0], choices, mode='wrap') assert_equal(chosen, array([20, 1, 12, 3])) # Check with some masked indices indices_ = array([2, 4, 1, 0], mask=[1, 0, 0, 1]) chosen = choose(indices_, choices, mode='wrap') assert_equal(chosen, array([99, 1, 12, 99])) assert_equal(chosen.mask, [1, 0, 0, 1]) # Check with some masked choices choices = array(choices, mask=[[0, 0, 0, 1], [1, 1, 0, 1], [1, 0, 0, 0], [0, 0, 0, 0]]) indices_ = [2, 3, 1, 0] chosen = choose(indices_, choices, mode='wrap') assert_equal(chosen, array([20, 31, 12, 3])) assert_equal(chosen.mask, [1, 0, 0, 1]) def test_choose_with_out(self): # Test choose with an explicit out keyword choices = [[0, 1, 2, 3], [10, 11, 12, 13], [20, 21, 22, 23], [30, 31, 32, 33]] store = empty(4, dtype=int) chosen = choose([2, 3, 1, 0], choices, out=store) assert_equal(store, array([20, 31, 12, 3])) self.assertTrue(store is chosen) # Check with some masked indices + out store = empty(4, dtype=int) indices_ = array([2, 3, 1, 0], mask=[1, 0, 0, 1]) chosen = choose(indices_, choices, mode='wrap', out=store) assert_equal(store, array([99, 31, 12, 99])) assert_equal(store.mask, [1, 0, 0, 1]) # Check with some masked choices + out ina ndarray ! choices = array(choices, mask=[[0, 0, 0, 1], [1, 1, 0, 1], [1, 0, 0, 0], [0, 0, 0, 0]]) indices_ = [2, 3, 1, 0] store = empty(4, dtype=int).view(ndarray) chosen = choose(indices_, choices, mode='wrap', out=store) assert_equal(store, array([999999, 31, 12, 999999])) def test_reshape(self): a = arange(10) a[0] = masked # Try the default b = a.reshape((5, 2)) assert_equal(b.shape, (5, 2)) self.assertTrue(b.flags['C']) # Try w/ arguments as list instead of tuple b = a.reshape(5, 2) assert_equal(b.shape, (5, 2)) self.assertTrue(b.flags['C']) # Try w/ order b = a.reshape((5, 2), order='F') assert_equal(b.shape, (5, 2)) self.assertTrue(b.flags['F']) # Try w/ order b = a.reshape(5, 2, order='F') assert_equal(b.shape, (5, 2)) self.assertTrue(b.flags['F']) c = np.reshape(a, (2, 5)) self.assertTrue(isinstance(c, MaskedArray)) assert_equal(c.shape, (2, 5)) self.assertTrue(c[0, 0] is masked) self.assertTrue(c.flags['C']) def test_make_mask_descr(self): # Test make_mask_descr # Flexible ntype = [('a', np.float), ('b', np.float)] test = make_mask_descr(ntype) assert_equal(test, [('a', np.bool), ('b', np.bool)]) # Standard w/ shape ntype = (np.float, 2) test = make_mask_descr(ntype) assert_equal(test, (np.bool, 2)) # Standard standard ntype = np.float test = make_mask_descr(ntype) assert_equal(test, np.dtype(np.bool)) # Nested ntype = [('a', np.float), ('b', [('ba', np.float), ('bb', np.float)])] test = make_mask_descr(ntype) control = np.dtype([('a', 'b1'), ('b', [('ba', 'b1'), ('bb', 'b1')])]) assert_equal(test, control) # Named+ shape ntype = [('a', (np.float, 2))] test = make_mask_descr(ntype) assert_equal(test, np.dtype([('a', (np.bool, 2))])) # 2 names ntype = [(('A', 'a'), float)] test = make_mask_descr(ntype) assert_equal(test, np.dtype([(('A', 'a'), bool)])) def test_make_mask(self): # Test make_mask # w/ a list as an input mask = [0, 1] test = make_mask(mask) assert_equal(test.dtype, MaskType) assert_equal(test, [0, 1]) # w/ a ndarray as an input mask = np.array([0, 1], dtype=np.bool) test = make_mask(mask) assert_equal(test.dtype, MaskType) assert_equal(test, [0, 1]) # w/ a flexible-type ndarray as an input - use default mdtype = [('a', np.bool), ('b', np.bool)] mask = np.array([(0, 0), (0, 1)], dtype=mdtype) test = make_mask(mask) assert_equal(test.dtype, MaskType) assert_equal(test, [1, 1]) # w/ a flexible-type ndarray as an input - use input dtype mdtype = [('a', np.bool), ('b', np.bool)] mask = np.array([(0, 0), (0, 1)], dtype=mdtype) test = make_mask(mask, dtype=mask.dtype) assert_equal(test.dtype, mdtype) assert_equal(test, mask) # w/ a flexible-type ndarray as an input - use input dtype mdtype = [('a', np.float), ('b', np.float)] bdtype = [('a', np.bool), ('b', np.bool)] mask = np.array([(0, 0), (0, 1)], dtype=mdtype) test = make_mask(mask, dtype=mask.dtype) assert_equal(test.dtype, bdtype) assert_equal(test, np.array([(0, 0), (0, 1)], dtype=bdtype)) # test that nomask is returned when m is nomask. bools = [True, False] dtypes = [MaskType, np.float] msgformat = 'copy=%s, shrink=%s, dtype=%s' for cpy, shr, dt in itertools.product(bools, bools, dtypes): res = make_mask(nomask, copy=cpy, shrink=shr, dtype=dt) assert_(res is nomask, msgformat % (cpy, shr, dt)) def test_mask_or(self): # Initialize mtype = [('a', np.bool), ('b', np.bool)] mask = np.array([(0, 0), (0, 1), (1, 0), (0, 0)], dtype=mtype) # Test using nomask as input test = mask_or(mask, nomask) assert_equal(test, mask) test = mask_or(nomask, mask) assert_equal(test, mask) # Using False as input test = mask_or(mask, False) assert_equal(test, mask) # Using another array w / the same dtype other = np.array([(0, 1), (0, 1), (0, 1), (0, 1)], dtype=mtype) test = mask_or(mask, other) control = np.array([(0, 1), (0, 1), (1, 1), (0, 1)], dtype=mtype) assert_equal(test, control) # Using another array w / a different dtype othertype = [('A', np.bool), ('B', np.bool)] other = np.array([(0, 1), (0, 1), (0, 1), (0, 1)], dtype=othertype) try: test = mask_or(mask, other) except ValueError: pass # Using nested arrays dtype = [('a', np.bool), ('b', [('ba', np.bool), ('bb', np.bool)])] amask = np.array([(0, (1, 0)), (0, (1, 0))], dtype=dtype) bmask = np.array([(1, (0, 1)), (0, (0, 0))], dtype=dtype) cntrl = np.array([(1, (1, 1)), (0, (1, 0))], dtype=dtype) assert_equal(mask_or(amask, bmask), cntrl) def test_flatten_mask(self): # Tests flatten mask # Standard dtype mask = np.array([0, 0, 1], dtype=np.bool) assert_equal(flatten_mask(mask), mask) # Flexible dtype mask = np.array([(0, 0), (0, 1)], dtype=[('a', bool), ('b', bool)]) test = flatten_mask(mask) control = np.array([0, 0, 0, 1], dtype=bool) assert_equal(test, control) mdtype = [('a', bool), ('b', [('ba', bool), ('bb', bool)])] data = [(0, (0, 0)), (0, (0, 1))] mask = np.array(data, dtype=mdtype) test = flatten_mask(mask) control = np.array([0, 0, 0, 0, 0, 1], dtype=bool) assert_equal(test, control) def test_on_ndarray(self): # Test functions on ndarrays a = np.array([1, 2, 3, 4]) m = array(a, mask=False) test = anom(a) assert_equal(test, m.anom()) test = reshape(a, (2, 2)) assert_equal(test, m.reshape(2, 2)) def test_compress(self): # Test compress function on ndarray and masked array # Address Github #2495. arr = np.arange(8) arr.shape = 4, 2 cond = np.array([True, False, True, True]) control = arr[[0, 2, 3]] test = np.ma.compress(cond, arr, axis=0) assert_equal(test, control) marr = np.ma.array(arr) test = np.ma.compress(cond, marr, axis=0) assert_equal(test, control) def test_compressed(self): # Test ma.compressed function. # Address gh-4026 a = np.ma.array([1, 2]) test = np.ma.compressed(a) assert_(type(test) is np.ndarray) # Test case when input data is ndarray subclass class A(np.ndarray): pass a = np.ma.array(A(shape=0)) test = np.ma.compressed(a) assert_(type(test) is A) # Test that compress flattens test = np.ma.compressed([[1],[2]]) assert_equal(test.ndim, 1) test = np.ma.compressed([[[[[1]]]]]) assert_equal(test.ndim, 1) # Test case when input is MaskedArray subclass class M(MaskedArray): pass test = np.ma.compressed(M(shape=(0,1,2))) assert_equal(test.ndim, 1) # with .compressed() overridden class M(MaskedArray): def compressed(self): return 42 test = np.ma.compressed(M(shape=(0,1,2))) assert_equal(test, 42) class TestMaskedFields(TestCase): def setUp(self): ilist = [1, 2, 3, 4, 5] flist = [1.1, 2.2, 3.3, 4.4, 5.5] slist = ['one', 'two', 'three', 'four', 'five'] ddtype = [('a', int), ('b', float), ('c', '|S8')] mdtype = [('a', bool), ('b', bool), ('c', bool)] mask = [0, 1, 0, 0, 1] base = array(list(zip(ilist, flist, slist)), mask=mask, dtype=ddtype) self.data = dict(base=base, mask=mask, ddtype=ddtype, mdtype=mdtype) def test_set_records_masks(self): base = self.data['base'] mdtype = self.data['mdtype'] # Set w/ nomask or masked base.mask = nomask assert_equal_records(base._mask, np.zeros(base.shape, dtype=mdtype)) base.mask = masked assert_equal_records(base._mask, np.ones(base.shape, dtype=mdtype)) # Set w/ simple boolean base.mask = False assert_equal_records(base._mask, np.zeros(base.shape, dtype=mdtype)) base.mask = True assert_equal_records(base._mask, np.ones(base.shape, dtype=mdtype)) # Set w/ list base.mask = [0, 0, 0, 1, 1] assert_equal_records(base._mask, np.array([(x, x, x) for x in [0, 0, 0, 1, 1]], dtype=mdtype)) def test_set_record_element(self): # Check setting an element of a record) base = self.data['base'] (base_a, base_b, base_c) = (base['a'], base['b'], base['c']) base[0] = (pi, pi, 'pi') assert_equal(base_a.dtype, int) assert_equal(base_a._data, [3, 2, 3, 4, 5]) assert_equal(base_b.dtype, float) assert_equal(base_b._data, [pi, 2.2, 3.3, 4.4, 5.5]) assert_equal(base_c.dtype, '|S8') assert_equal(base_c._data, asbytes_nested(['pi', 'two', 'three', 'four', 'five'])) def test_set_record_slice(self): base = self.data['base'] (base_a, base_b, base_c) = (base['a'], base['b'], base['c']) base[:3] = (pi, pi, 'pi') assert_equal(base_a.dtype, int) assert_equal(base_a._data, [3, 3, 3, 4, 5]) assert_equal(base_b.dtype, float) assert_equal(base_b._data, [pi, pi, pi, 4.4, 5.5]) assert_equal(base_c.dtype, '|S8') assert_equal(base_c._data, asbytes_nested(['pi', 'pi', 'pi', 'four', 'five'])) def test_mask_element(self): "Check record access" base = self.data['base'] base[0] = masked for n in ('a', 'b', 'c'): assert_equal(base[n].mask, [1, 1, 0, 0, 1]) assert_equal(base[n]._data, base._data[n]) def test_getmaskarray(self): # Test getmaskarray on flexible dtype ndtype = [('a', int), ('b', float)] test = empty(3, dtype=ndtype) assert_equal(getmaskarray(test), np.array([(0, 0), (0, 0), (0, 0)], dtype=[('a', '|b1'), ('b', '|b1')])) test[:] = masked assert_equal(getmaskarray(test), np.array([(1, 1), (1, 1), (1, 1)], dtype=[('a', '|b1'), ('b', '|b1')])) def test_view(self): # Test view w/ flexible dtype iterator = list(zip(np.arange(10), np.random.rand(10))) data = np.array(iterator) a = array(iterator, dtype=[('a', float), ('b', float)]) a.mask[0] = (1, 0) controlmask = np.array([1] + 19 * [0], dtype=bool) # Transform globally to simple dtype test = a.view(float) assert_equal(test, data.ravel()) assert_equal(test.mask, controlmask) # Transform globally to dty test = a.view((float, 2)) assert_equal(test, data) assert_equal(test.mask, controlmask.reshape(-1, 2)) test = a.view((float, 2), np.matrix) assert_equal(test, data) self.assertTrue(isinstance(test, np.matrix)) def test_getitem(self): ndtype = [('a', float), ('b', float)] a = array(list(zip(np.random.rand(10), np.arange(10))), dtype=ndtype) a.mask = np.array(list(zip([0, 0, 0, 0, 0, 0, 0, 0, 1, 1], [1, 0, 0, 0, 0, 0, 0, 0, 1, 0])), dtype=[('a', bool), ('b', bool)]) # No mask self.assertTrue(isinstance(a[1], MaskedArray)) # One element masked self.assertTrue(isinstance(a[0], MaskedArray)) assert_equal_records(a[0]._data, a._data[0]) assert_equal_records(a[0]._mask, a._mask[0]) # All element masked self.assertTrue(isinstance(a[-2], MaskedArray)) assert_equal_records(a[-2]._data, a._data[-2]) assert_equal_records(a[-2]._mask, a._mask[-2]) def test_setitem(self): # Issue 4866: check that one can set individual items in [record][col] # and [col][record] order ndtype = np.dtype([('a', float), ('b', int)]) ma = np.ma.MaskedArray([(1.0, 1), (2.0, 2)], dtype=ndtype) ma['a'][1] = 3.0 assert_equal(ma['a'], np.array([1.0, 3.0])) ma[1]['a'] = 4.0 assert_equal(ma['a'], np.array([1.0, 4.0])) # Issue 2403 mdtype = np.dtype([('a', bool), ('b', bool)]) # soft mask control = np.array([(False, True), (True, True)], dtype=mdtype) a = np.ma.masked_all((2,), dtype=ndtype) a['a'][0] = 2 assert_equal(a.mask, control) a = np.ma.masked_all((2,), dtype=ndtype) a[0]['a'] = 2 assert_equal(a.mask, control) # hard mask control = np.array([(True, True), (True, True)], dtype=mdtype) a = np.ma.masked_all((2,), dtype=ndtype) a.harden_mask() a['a'][0] = 2 assert_equal(a.mask, control) a = np.ma.masked_all((2,), dtype=ndtype) a.harden_mask() a[0]['a'] = 2 assert_equal(a.mask, control) def test_element_len(self): # check that len() works for mvoid (Github issue #576) for rec in self.data['base']: assert_equal(len(rec), len(self.data['ddtype'])) class TestMaskedView(TestCase): def setUp(self): iterator = list(zip(np.arange(10), np.random.rand(10))) data = np.array(iterator) a = array(iterator, dtype=[('a', float), ('b', float)]) a.mask[0] = (1, 0) controlmask = np.array([1] + 19 * [0], dtype=bool) self.data = (data, a, controlmask) def test_view_to_nothing(self): (data, a, controlmask) = self.data test = a.view() self.assertTrue(isinstance(test, MaskedArray)) assert_equal(test._data, a._data) assert_equal(test._mask, a._mask) def test_view_to_type(self): (data, a, controlmask) = self.data test = a.view(np.ndarray) self.assertTrue(not isinstance(test, MaskedArray)) assert_equal(test, a._data) assert_equal_records(test, data.view(a.dtype).squeeze()) def test_view_to_simple_dtype(self): (data, a, controlmask) = self.data # View globally test = a.view(float) self.assertTrue(isinstance(test, MaskedArray)) assert_equal(test, data.ravel()) assert_equal(test.mask, controlmask) def test_view_to_flexible_dtype(self): (data, a, controlmask) = self.data test = a.view([('A', float), ('B', float)]) assert_equal(test.mask.dtype.names, ('A', 'B')) assert_equal(test['A'], a['a']) assert_equal(test['B'], a['b']) test = a[0].view([('A', float), ('B', float)]) self.assertTrue(isinstance(test, MaskedArray)) assert_equal(test.mask.dtype.names, ('A', 'B')) assert_equal(test['A'], a['a'][0]) assert_equal(test['B'], a['b'][0]) test = a[-1].view([('A', float), ('B', float)]) self.assertTrue(isinstance(test, MaskedArray)) assert_equal(test.dtype.names, ('A', 'B')) assert_equal(test['A'], a['a'][-1]) assert_equal(test['B'], a['b'][-1]) def test_view_to_subdtype(self): (data, a, controlmask) = self.data # View globally test = a.view((float, 2)) self.assertTrue(isinstance(test, MaskedArray)) assert_equal(test, data) assert_equal(test.mask, controlmask.reshape(-1, 2)) # View on 1 masked element test = a[0].view((float, 2)) self.assertTrue(isinstance(test, MaskedArray)) assert_equal(test, data[0]) assert_equal(test.mask, (1, 0)) # View on 1 unmasked element test = a[-1].view((float, 2)) self.assertTrue(isinstance(test, MaskedArray)) assert_equal(test, data[-1]) def test_view_to_dtype_and_type(self): (data, a, controlmask) = self.data test = a.view((float, 2), np.matrix) assert_equal(test, data) self.assertTrue(isinstance(test, np.matrix)) self.assertTrue(not isinstance(test, MaskedArray)) class TestOptionalArgs(TestCase): def test_ndarrayfuncs(self): # test axis arg behaves the same as ndarray (including mutliple axes) d = np.arange(24.0).reshape((2,3,4)) m = np.zeros(24, dtype=bool).reshape((2,3,4)) # mask out last element of last dimension m[:,:,-1] = True a = np.ma.array(d, mask=m) def testaxis(f, a, d): numpy_f = numpy.__getattribute__(f) ma_f = np.ma.__getattribute__(f) # test axis arg assert_equal(ma_f(a, axis=1)[...,:-1], numpy_f(d[...,:-1], axis=1)) assert_equal(ma_f(a, axis=(0,1))[...,:-1], numpy_f(d[...,:-1], axis=(0,1))) def testkeepdims(f, a, d): numpy_f = numpy.__getattribute__(f) ma_f = np.ma.__getattribute__(f) # test keepdims arg assert_equal(ma_f(a, keepdims=True).shape, numpy_f(d, keepdims=True).shape) assert_equal(ma_f(a, keepdims=False).shape, numpy_f(d, keepdims=False).shape) # test both at once assert_equal(ma_f(a, axis=1, keepdims=True)[...,:-1], numpy_f(d[...,:-1], axis=1, keepdims=True)) assert_equal(ma_f(a, axis=(0,1), keepdims=True)[...,:-1], numpy_f(d[...,:-1], axis=(0,1), keepdims=True)) for f in ['sum', 'prod', 'mean', 'var', 'std']: testaxis(f, a, d) testkeepdims(f, a, d) for f in ['min', 'max']: testaxis(f, a, d) d = (np.arange(24).reshape((2,3,4))%2 == 0) a = np.ma.array(d, mask=m) for f in ['all', 'any']: testaxis(f, a, d) testkeepdims(f, a, d) def test_count(self): # test np.ma.count specially d = np.arange(24.0).reshape((2,3,4)) m = np.zeros(24, dtype=bool).reshape((2,3,4)) m[:,0,:] = True a = np.ma.array(d, mask=m) assert_equal(count(a), 16) assert_equal(count(a, axis=1), 2*ones((2,4))) assert_equal(count(a, axis=(0,1)), 4*ones((4,))) assert_equal(count(a, keepdims=True), 16*ones((1,1,1))) assert_equal(count(a, axis=1, keepdims=True), 2*ones((2,1,4))) assert_equal(count(a, axis=(0,1), keepdims=True), 4*ones((1,1,4))) assert_equal(count(a, axis=-2), 2*ones((2,4))) assert_raises(ValueError, count, a, axis=(1,1)) assert_raises(ValueError, count, a, axis=3) # check the 'nomask' path a = np.ma.array(d, mask=nomask) assert_equal(count(a), 24) assert_equal(count(a, axis=1), 3*ones((2,4))) assert_equal(count(a, axis=(0,1)), 6*ones((4,))) assert_equal(count(a, keepdims=True), 24*ones((1,1,1))) assert_equal(count(a, axis=1, keepdims=True), 3*ones((2,1,4))) assert_equal(count(a, axis=(0,1), keepdims=True), 6*ones((1,1,4))) assert_equal(count(a, axis=-2), 3*ones((2,4))) assert_raises(ValueError, count, a, axis=(1,1)) assert_raises(ValueError, count, a, axis=3) # check the 'masked' singleton assert_equal(count(np.ma.masked), 0) # check 0-d arrays do not allow axis > 0 assert_raises(ValueError, count, np.ma.array(1), axis=1) def test_masked_array(): a = np.ma.array([0, 1, 2, 3], mask=[0, 0, 1, 0]) assert_equal(np.argwhere(a), [[1], [3]]) def test_append_masked_array(): a = np.ma.masked_equal([1,2,3], value=2) b = np.ma.masked_equal([4,3,2], value=2) result = np.ma.append(a, b) expected_data = [1, 2, 3, 4, 3, 2] expected_mask = [False, True, False, False, False, True] assert_array_equal(result.data, expected_data) assert_array_equal(result.mask, expected_mask) a = np.ma.masked_all((2,2)) b = np.ma.ones((3,1)) result = np.ma.append(a, b) expected_data = [1] * 3 expected_mask = [True] * 4 + [False] * 3 assert_array_equal(result.data[-3], expected_data) assert_array_equal(result.mask, expected_mask) result = np.ma.append(a, b, axis=None) assert_array_equal(result.data[-3], expected_data) assert_array_equal(result.mask, expected_mask) def test_append_masked_array_along_axis(): a = np.ma.masked_equal([1,2,3], value=2) b = np.ma.masked_values([[4, 5, 6], [7, 8, 9]], 7) # When `axis` is specified, `values` must have the correct shape. assert_raises(ValueError, np.ma.append, a, b, axis=0) result = np.ma.append(a[np.newaxis,:], b, axis=0) expected = np.ma.arange(1, 10) expected[[1, 6]] = np.ma.masked expected = expected.reshape((3,3)) assert_array_equal(result.data, expected.data) assert_array_equal(result.mask, expected.mask) def test_default_fill_value_complex(): # regression test for Python 3, where 'unicode' was not defined assert_(default_fill_value(1 + 1j) == 1.e20 + 0.0j) ############################################################################### if __name__ == "__main__": run_module_suite()
[ "numpy.ma.core.make_mask", "numpy.ma.core.fix_invalid", "numpy.arctan2", "numpy.sum", "numpy.ravel", "numpy.ma.core.make_mask_descr", "numpy.ma.core.empty_like", "numpy.ma.core.greater_equal", "numpy.ma.testutils.assert_equal_records", "numpy.ones", "numpy.argsort", "numpy.arange", "numpy.exp", "numpy.ma.core.sometrue", "numpy.ma.core.masked_greater", "numpy.diag", "numpy.conjugate", "numpy.maximum.reduce", "numpy.ma.core.reshape", "numpy.may_share_memory", "numpy.ma.core.empty", "numpy.ma.__getattribute__", "numpy.add.reduce", "numpy.ma.core.masked_less_equal", "numpy.identity", "numpy.maximum.outer", "warnings.catch_warnings", "numpy.ma.core.arctan2", "numpy.add.accumulate", "numpy.ma.core.allclose", "datetime.datetime.now", "numpy.ma.core.MaskedArray.cumsum", "numpy.less_equal", "numpy.minimum", "numpy.ma.core.less", "numpy.ma.core.shape", "numpy.ma.core.max", "numpy.ma.core.less_equal", "numpy.cosh", "numpy.ma.core.divide", "numpy.greater_equal", "numpy.ma.core.count", "numpy.ma.masked_values", "numpy.ma.masked_all", "numpy.ma.core.log", "numpy.ma.core.identity", "numpy.ma.core.tan", "numpy.ma.core.flatten_structured_array", "numpy.ma.core.ravel", "numpy.ma.append", "numpy.ma.array", "numpy.ma.core.minimum_fill_value", "numpy.ma.core.equal", "numpy.array", "numpy.ma.core.transpose", "numpy.ma.core.abs", "functools.reduce", "numpy.ma.core.filled", "numpy.sinh", "numpy.minimum.outer", "numpy.ma.core.minimum.outer", "numpy.ma.core.allequal", "numpy.ma.core.arctan", "numpy.trace", "numpy.ma.core.array", "numpy.ma.core.sin", "numpy.geterr", "numpy.angle", "numpy.ma.where", "numpy.greater", "numpy.isnan", "numpy.ma.core.tanh", "numpy.ma.core.anom", "numpy.ma.testutils.fail_if_equal", "numpy.transpose", "itertools.product", "numpy.arccos", "numpy.ma.testutils.assert_", "numpy.ma.testutils.assert_equal", "copy.deepcopy", "numpy.ma.core.outer", "numpy.ma.compress", "numpy.ma.core.exp", "numpy.divide", "numpy.ma.core.masked_equal", "numpy.ma.arange", "numpy.mod", "numpy.not_equal", "numpy.ma.core.maximum_fill_value", "numpy.argwhere", "numpy.ma.core.argsort", "numpy.ma.core.mask_or", "numpy.all", "numpy.matrix", "numpy.ma.masked_equal", "numpy.dtype", "numpy.ma.core.not_equal", "numpy.find_common_type", "numpy.ma.core.repeat", "numpy.ma.core.MaskedArray", "numpy.eye", "numpy.ma.core.multiply.outer", "numpy.ma.core.inner", "numpy.ma.compressed", "numpy.ma.core.arccos", "numpy.maximum", "numpy.ma.core.masked_less", "numpy.ma.core.resize", "numpy.empty", "numpy.ma.core.sum", "numpy.iinfo", "numpy.shape", "numpy.product", "numpy.sin", "numpy.ma.testutils.assert_mask_equal", "numpy.ma.core.isMaskedArray", "numpy.ndarray", "numpy.ma.core.choose", "numpy.ma.core.diag", "warnings.simplefilter", "numpy.ma.MaskedArray", "numpy.equal", "numpy.finfo", "numpy.ma.core.sort", "numpy.tan", "numpy.ma.core.min", "numpy.ma.core.mvoid", "numpy.ma.core.masked_not_equal", "numpy.ma.core.default_fill_value", "numpy.ma.core.power", "pickle.dumps", "numpy.compat.asbytes", "numpy.ma.core.cos", "numpy.testing.assert_raises", "numpy.ma.core.masked_print_option.set_display", "numpy.ma.core.add.accumulate", "numpy.ma.core.sinh", "numpy.ma.core.sqrt", "numpy.ma.core.masked_where", "numpy.random.uniform", "numpy.ma.core.cosh", "numpy.log", "numpy.ma.testutils.assert_almost_equal", "numpy.ma.core.maximum", "numpy.zeros", "numpy.errstate", "numpy.ma.core.conjugate", "numpy.ma.core.where", "numpy.ma.core.take", "numpy.ma.core.putmask", "numpy.compat.asbytes_nested", "numpy.ma.core.getmask", "numpy.ma.core.add", "numpy.ma.core.greater", "numpy.ma.core.arcsin", "numpy.ma.core.mod", "numpy.absolute", "numpy.ma.core.add.reduce", "numpy.ma.core.subtract", "numpy.round", "numpy.multiply", "numpy.ma.testutils.assert_array_equal", "numpy.testing.run_module_suite", "numpy.ma.core.arccosh", "numpy.ma.testutils.assert_not_equal", "numpy.ma.core.getmaskarray", "numpy.arcsin", "numpy.ma.core.maximum.outer", "numpy.ma.core.zeros", "numpy.reshape", "numpy.ma.core.log10", "numpy.less", "numpy.add", "numpy.tanh", "numpy.ma.masked_where", "numpy.ma.core.masked_values", "numpy.ma.core.put", "numpy.asarray", "numpy.ma.core.masked_array", "numpy.ma.core.alltrue", "numpy.ma.core.ones", "numpy.sort", "numpy.ma.core.angle", "numpy.ma.core.asarray", "numpy.cos", "numpy.arctan", "numpy.ma.core.concatenate", "numpy.concatenate", "numpy.ma.core.masked_greater_equal", "numpy.ma.core.minimum", "numpy.ma.core.product", "numpy.ma.core.absolute", "warnings.filterwarnings", "numpy.seterr", "numpy.subtract", "numpy.ma.core.multiply", "numpy.where", "numpy.ma.ones", "numpy.ma.core.flatten_mask", "numpy.take", "numpy.random.rand", "numpy.ma.core.arange", "numpy.sqrt" ]
[((166569, 166613), 'numpy.ma.array', 'np.ma.array', (['[0, 1, 2, 3]'], {'mask': '[0, 0, 1, 0]'}), '([0, 1, 2, 3], mask=[0, 0, 1, 0])\n', (166580, 166613), True, 'import numpy as np\n'), ((166700, 166738), 'numpy.ma.masked_equal', 'np.ma.masked_equal', (['[1, 2, 3]'], {'value': '(2)'}), '([1, 2, 3], value=2)\n', (166718, 166738), True, 'import numpy as np\n'), ((166745, 166783), 'numpy.ma.masked_equal', 'np.ma.masked_equal', (['[4, 3, 2]'], {'value': '(2)'}), '([4, 3, 2], value=2)\n', (166763, 166783), True, 'import numpy as np\n'), ((166796, 166814), 'numpy.ma.append', 'np.ma.append', (['a', 'b'], {}), '(a, b)\n', (166808, 166814), True, 'import numpy as np\n'), ((166919, 166965), 'numpy.ma.testutils.assert_array_equal', 'assert_array_equal', (['result.data', 'expected_data'], {}), '(result.data, expected_data)\n', (166937, 166965), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((166970, 167016), 'numpy.ma.testutils.assert_array_equal', 'assert_array_equal', (['result.mask', 'expected_mask'], {}), '(result.mask, expected_mask)\n', (166988, 167016), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((167026, 167050), 'numpy.ma.masked_all', 'np.ma.masked_all', (['(2, 2)'], {}), '((2, 2))\n', (167042, 167050), True, 'import numpy as np\n'), ((167058, 167076), 'numpy.ma.ones', 'np.ma.ones', (['(3, 1)'], {}), '((3, 1))\n', (167068, 167076), True, 'import numpy as np\n'), ((167090, 167108), 'numpy.ma.append', 'np.ma.append', (['a', 'b'], {}), '(a, b)\n', (167102, 167108), True, 'import numpy as np\n'), ((167186, 167236), 'numpy.ma.testutils.assert_array_equal', 'assert_array_equal', (['result.data[-3]', 'expected_data'], {}), '(result.data[-3], expected_data)\n', (167204, 167236), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((167241, 167287), 'numpy.ma.testutils.assert_array_equal', 'assert_array_equal', (['result.mask', 'expected_mask'], {}), '(result.mask, expected_mask)\n', (167259, 167287), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((167302, 167331), 'numpy.ma.append', 'np.ma.append', (['a', 'b'], {'axis': 'None'}), '(a, b, axis=None)\n', (167314, 167331), True, 'import numpy as np\n'), ((167336, 167386), 'numpy.ma.testutils.assert_array_equal', 'assert_array_equal', (['result.data[-3]', 'expected_data'], {}), '(result.data[-3], expected_data)\n', (167354, 167386), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((167391, 167437), 'numpy.ma.testutils.assert_array_equal', 'assert_array_equal', (['result.mask', 'expected_mask'], {}), '(result.mask, expected_mask)\n', (167409, 167437), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((167491, 167529), 'numpy.ma.masked_equal', 'np.ma.masked_equal', (['[1, 2, 3]'], {'value': '(2)'}), '([1, 2, 3], value=2)\n', (167509, 167529), True, 'import numpy as np\n'), ((167536, 167582), 'numpy.ma.masked_values', 'np.ma.masked_values', (['[[4, 5, 6], [7, 8, 9]]', '(7)'], {}), '([[4, 5, 6], [7, 8, 9]], 7)\n', (167555, 167582), True, 'import numpy as np\n'), ((167658, 167711), 'numpy.testing.assert_raises', 'assert_raises', (['ValueError', 'np.ma.append', 'a', 'b'], {'axis': '(0)'}), '(ValueError, np.ma.append, a, b, axis=0)\n', (167671, 167711), False, 'from numpy.testing import TestCase, run_module_suite, assert_raises\n'), ((167726, 167767), 'numpy.ma.append', 'np.ma.append', (['a[np.newaxis, :]', 'b'], {'axis': '(0)'}), '(a[np.newaxis, :], b, axis=0)\n', (167738, 167767), True, 'import numpy as np\n'), ((167782, 167801), 'numpy.ma.arange', 'np.ma.arange', (['(1)', '(10)'], {}), '(1, 10)\n', (167794, 167801), True, 'import numpy as np\n'), ((167881, 167927), 'numpy.ma.testutils.assert_array_equal', 'assert_array_equal', (['result.data', 'expected.data'], {}), '(result.data, expected.data)\n', (167899, 167927), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((167932, 167978), 'numpy.ma.testutils.assert_array_equal', 'assert_array_equal', (['result.mask', 'expected.mask'], {}), '(result.mask, expected.mask)\n', (167950, 167978), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((168256, 168274), 'numpy.testing.run_module_suite', 'run_module_suite', ([], {}), '()\n', (168272, 168274), False, 'from numpy.testing import TestCase, run_module_suite, assert_raises\n'), ((2048, 2127), 'numpy.array', 'np.array', (['[1.0, 1.0, 1.0, -2.0, pi / 2.0, 4.0, 5.0, -10.0, 10.0, 1.0, 2.0, 3.0]'], {}), '([1.0, 1.0, 1.0, -2.0, pi / 2.0, 4.0, 5.0, -10.0, 10.0, 1.0, 2.0, 3.0])\n', (2056, 2127), True, 'import numpy as np\n'), ((2127, 2202), 'numpy.array', 'np.array', (['[5.0, 0.0, 3.0, 2.0, -1.0, -4.0, 0.0, -10.0, 10.0, 1.0, 0.0, 3.0]'], {}), '([5.0, 0.0, 3.0, 2.0, -1.0, -4.0, 0.0, -10.0, 10.0, 1.0, 0.0, 3.0])\n', (2135, 2202), True, 'import numpy as np\n'), ((2322, 2346), 'numpy.ma.core.masked_array', 'masked_array', (['x'], {'mask': 'm1'}), '(x, mask=m1)\n', (2334, 2346), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((2360, 2384), 'numpy.ma.core.masked_array', 'masked_array', (['y'], {'mask': 'm2'}), '(y, mask=m2)\n', (2372, 2384), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((2397, 2428), 'numpy.array', 'np.array', (['[-0.5, 0.0, 0.5, 0.8]'], {}), '([-0.5, 0.0, 0.5, 0.8])\n', (2405, 2428), True, 'import numpy as np\n'), ((2438, 2472), 'numpy.ma.core.masked_array', 'masked_array', (['z'], {'mask': '[0, 1, 0, 0]'}), '(z, mask=[0, 1, 0, 0])\n', (2450, 2472), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((2486, 2508), 'numpy.where', 'np.where', (['m1', '(1e+20)', 'x'], {}), '(m1, 1e+20, x)\n', (2494, 2508), True, 'import numpy as np\n'), ((2692, 2708), 'numpy.ma.core.array', 'array', (['[1, 3, 2]'], {}), '([1, 3, 2])\n', (2697, 2708), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((2721, 2753), 'numpy.ma.core.array', 'array', (['[1, 3, 2]'], {'mask': '[1, 0, 1]'}), '([1, 3, 2], mask=[1, 0, 1])\n', (2726, 2753), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((2762, 2785), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['a.ndim', '(1)'], {}), '(a.ndim, 1)\n', (2774, 2785), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((2794, 2817), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['b.ndim', '(1)'], {}), '(b.ndim, 1)\n', (2806, 2817), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((2826, 2849), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['a.size', '(3)'], {}), '(a.size, 3)\n', (2838, 2849), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((2858, 2881), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['b.size', '(3)'], {}), '(b.size, 3)\n', (2870, 2881), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((2890, 2917), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['a.shape', '(3,)'], {}), '(a.shape, (3,))\n', (2902, 2917), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((2926, 2953), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['b.shape', '(3,)'], {}), '(b.shape, (3,))\n', (2938, 2953), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((3029, 3044), 'numpy.ma.core.masked_array', 'masked_array', (['(0)'], {}), '(0)\n', (3041, 3044), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((3091, 3117), 'numpy.ma.core.masked_array', 'masked_array', (['(0)'], {'mask': '(True)'}), '(0, mask=True)\n', (3103, 3117), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((3185, 3212), 'numpy.ma.core.masked_array', 'masked_array', (['(0)'], {'mask': '(False)'}), '(0, mask=False)\n', (3197, 3212), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((3259, 3275), 'numpy.ma.core.array', 'array', (['(0)'], {'mask': '(1)'}), '(0, mask=1)\n', (3264, 3275), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((3760, 3785), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xm.shape', 's'], {}), '(xm.shape, s)\n', (3772, 3785), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((3794, 3825), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xm.dtype', 'x.dtype'], {}), '(xm.dtype, x.dtype)\n', (3806, 3825), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((3834, 3865), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['zm.dtype', 'z.dtype'], {}), '(zm.dtype, z.dtype)\n', (3846, 3865), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((4007, 4033), 'numpy.ma.testutils.assert_array_equal', 'assert_array_equal', (['xm', 'xf'], {}), '(xm, xf)\n', (4025, 4033), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((4092, 4117), 'numpy.ma.testutils.assert_array_equal', 'assert_array_equal', (['x', 'xm'], {}), '(x, xm)\n', (4110, 4117), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((5645, 5669), 'numpy.ma.core.concatenate', 'concatenate', (['(xm, ym)', '(1)'], {}), '((xm, ym), 1)\n', (5656, 5669), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((5809, 5817), 'numpy.ma.core.zeros', 'zeros', (['(2)'], {}), '(2)\n', (5814, 5817), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((5877, 5896), 'numpy.ma.core.concatenate', 'concatenate', (['(x, y)'], {}), '((x, y))\n', (5888, 5896), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((5905, 5940), 'numpy.ma.testutils.assert_array_equal', 'assert_array_equal', (['z', '[0, 0, 1, 1]'], {}), '(z, [0, 0, 1, 1])\n', (5923, 5940), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((5949, 6004), 'numpy.ma.testutils.assert_array_equal', 'assert_array_equal', (['z.mask', '[False, False, False, True]'], {}), '(z.mask, [False, False, False, True])\n', (5967, 6004), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((6017, 6036), 'numpy.ma.core.concatenate', 'concatenate', (['(y, x)'], {}), '((y, x))\n', (6028, 6036), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((6045, 6080), 'numpy.ma.testutils.assert_array_equal', 'assert_array_equal', (['z', '[1, 1, 0, 0]'], {}), '(z, [1, 1, 0, 0])\n', (6063, 6080), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((6089, 6144), 'numpy.ma.testutils.assert_array_equal', 'assert_array_equal', (['z.mask', '[False, True, False, False]'], {}), '(z.mask, [False, True, False, False])\n', (6107, 6144), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((6430, 6463), 'numpy.ma.core.concatenate', 'concatenate', (['[data[:5], data[5:]]'], {}), '([data[:5], data[5:]])\n', (6441, 6463), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((6472, 6504), 'numpy.ma.testutils.assert_equal_records', 'assert_equal_records', (['test', 'data'], {}), '(test, data)\n', (6492, 6504), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((6586, 6627), 'numpy.ma.core.array', 'array', (['[1, 2, 3]'], {'mask': '[1, 0, 0]', 'ndmin': '(2)'}), '([1, 2, 3], mask=[1, 0, 0], ndmin=2)\n', (6591, 6627), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((6636, 6665), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x.shape', '(1, 3)'], {}), '(x.shape, (1, 3))\n', (6648, 6665), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((6674, 6708), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x._data', '[[1, 2, 3]]'], {}), '(x._data, [[1, 2, 3]])\n', (6686, 6708), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((6717, 6751), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x._mask', '[[1, 0, 0]]'], {}), '(x._mask, [[1, 0, 0]])\n', (6729, 6751), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((6881, 6897), 'numpy.ma.core.array', 'array', (['[1, 2, 3]'], {}), '([1, 2, 3])\n', (6886, 6897), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((6934, 6964), 'numpy.ma.core.array', 'array', (['x'], {'ndmin': '(2)', 'dtype': 'float'}), '(x, ndmin=2, dtype=float)\n', (6939, 6964), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((6973, 7009), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x.shape', 'x._mask.shape'], {}), '(x.shape, x._mask.shape)\n', (6985, 7009), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((7018, 7056), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xx.shape', 'xx._mask.shape'], {}), '(xx.shape, xx._mask.shape)\n', (7030, 7056), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((7190, 7213), 'numpy.ma.core.arange', 'arange', (['(24)'], {'dtype': 'float'}), '(24, dtype=float)\n', (7196, 7213), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((7264, 7281), 'numpy.ma.core.MaskedArray', 'MaskedArray', (['data'], {}), '(data)\n', (7275, 7281), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((7290, 7325), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['dma_1.mask', 'data.mask'], {}), '(dma_1.mask, data.mask)\n', (7302, 7325), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((7342, 7360), 'numpy.ma.core.MaskedArray', 'MaskedArray', (['dma_1'], {}), '(dma_1)\n', (7353, 7360), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((7369, 7405), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['dma_2.mask', 'dma_1.mask'], {}), '(dma_2.mask, dma_1.mask)\n', (7381, 7405), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((7422, 7463), 'numpy.ma.core.MaskedArray', 'MaskedArray', (['dma_1'], {'mask': '([1, 0, 0, 0] * 6)'}), '(dma_1, mask=[1, 0, 0, 0] * 6)\n', (7433, 7463), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((7472, 7509), 'numpy.ma.testutils.fail_if_equal', 'fail_if_equal', (['dma_3.mask', 'dma_1.mask'], {}), '(dma_3.mask, dma_1.mask)\n', (7485, 7509), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((7523, 7550), 'numpy.ma.core.array', 'array', (['[1, 2, 3]'], {'mask': '(True)'}), '([1, 2, 3], mask=True)\n', (7528, 7550), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((7559, 7600), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x._mask', '[True, True, True]'], {}), '(x._mask, [True, True, True])\n', (7571, 7600), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((7613, 7641), 'numpy.ma.core.array', 'array', (['[1, 2, 3]'], {'mask': '(False)'}), '([1, 2, 3], mask=False)\n', (7618, 7641), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((7650, 7694), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x._mask', '[False, False, False]'], {}), '(x._mask, [False, False, False])\n', (7662, 7694), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((7707, 7749), 'numpy.ma.core.array', 'array', (['[1, 2, 3]'], {'mask': 'x._mask', 'copy': '(False)'}), '([1, 2, 3], mask=x._mask, copy=False)\n', (7712, 7749), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((7815, 7856), 'numpy.ma.core.array', 'array', (['[1, 2, 3]'], {'mask': 'x._mask', 'copy': '(True)'}), '([1, 2, 3], mask=x._mask, copy=True)\n', (7820, 7856), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((8109, 8128), 'numpy.ma.core.array', 'array', (['(x, x[::-1])'], {}), '((x, x[::-1]))\n', (8114, 8128), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((8137, 8191), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['data', '[[0, 1, 2, 3, 4], [4, 3, 2, 1, 0]]'], {}), '(data, [[0, 1, 2, 3, 4], [4, 3, 2, 1, 0]])\n', (8149, 8191), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((8200, 8260), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['data._mask', '[[1, 0, 0, 0, 0], [0, 0, 0, 0, 1]]'], {}), '(data._mask, [[1, 0, 0, 0, 0], [0, 0, 0, 0, 1]])\n', (8212, 8260), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((8301, 8320), 'numpy.ma.core.array', 'array', (['(x, x[::-1])'], {}), '((x, x[::-1]))\n', (8306, 8320), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((8329, 8383), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['data', '[[0, 1, 2, 3, 4], [4, 3, 2, 1, 0]]'], {}), '(data, [[0, 1, 2, 3, 4], [4, 3, 2, 1, 0]])\n', (8341, 8383), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((8586, 8597), 'numpy.ma.core.asarray', 'asarray', (['xm'], {}), '(xm)\n', (8593, 8597), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((8606, 8639), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xmm._data', 'xm._data'], {}), '(xmm._data, xm._data)\n', (8618, 8639), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((8648, 8681), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xmm._mask', 'xm._mask'], {}), '(xmm._mask, xm._mask)\n', (8660, 8681), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((8690, 8733), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xmm.fill_value', 'xm.fill_value'], {}), '(xmm.fill_value, xm.fill_value)\n', (8702, 8733), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((8742, 8783), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xmm._hardmask', 'xm._hardmask'], {}), '(xmm._hardmask, xm._hardmask)\n', (8754, 8783), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((8941, 8951), 'numpy.ma.core.asarray', 'asarray', (['m'], {}), '(m)\n', (8948, 8951), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((9159, 9180), 'numpy.ma.core.asarray', 'asarray', (['m'], {'order': '"""C"""'}), "(m, order='C')\n", (9166, 9180), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((9654, 9663), 'numpy.ma.core.arange', 'arange', (['(6)'], {}), '(6)\n', (9660, 9663), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((9912, 9934), 'numpy.ma.core.empty', 'empty', (['(1)'], {'dtype': 'object'}), '(1, dtype=object)\n', (9917, 9934), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((9988, 10009), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['a[0]', 'x'], {}), '(a[0], x)\n', (10000, 10009), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((10083, 10106), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (10104, 10106), False, 'import datetime\n'), ((10245, 10267), 'numpy.array', 'np.array', (['[1, 2, 4, 3]'], {}), '([1, 2, 4, 3])\n', (10253, 10267), True, 'import numpy as np\n'), ((10281, 10309), 'numpy.ma.core.array', 'array', (['x1'], {'mask': '[1, 0, 0, 0]'}), '(x1, mask=[1, 0, 0, 0])\n', (10286, 10309), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((10323, 10351), 'numpy.ma.core.array', 'array', (['x1'], {'mask': '[0, 1, 0, 1]'}), '(x1, mask=[0, 1, 0, 1])\n', (10328, 10351), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((10365, 10374), 'numpy.ma.core.array', 'array', (['x1'], {}), '(x1)\n', (10370, 10374), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((10606, 10629), 'numpy.ma.testutils.assert_', 'assert_', (['(x1[1] == x2[1])'], {}), '(x1[1] == x2[1])\n', (10613, 10629), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((10638, 10662), 'numpy.ma.testutils.assert_', 'assert_', (['(x2[0] is masked)'], {}), '(x2[0] is masked)\n', (10645, 10662), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((10671, 10697), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x1[2]', 'x2[2]'], {}), '(x1[2], x2[2])\n', (10683, 10697), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((10706, 10736), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x1[2:5]', 'x2[2:5]'], {}), '(x1[2:5], x2[2:5])\n', (10718, 10736), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((10745, 10771), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x1[:]', 'x2[:]'], {}), '(x1[:], x2[:])\n', (10757, 10771), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((10780, 10808), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x1[1:]', 'x3[1:]'], {}), '(x1[1:], x3[1:])\n', (10792, 10808), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((10853, 10873), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x1', 'x2'], {}), '(x1, x2)\n', (10865, 10873), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((10924, 10944), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x1', 'x2'], {}), '(x1, x2)\n', (10936, 10944), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((10976, 10996), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x1', 'x2'], {}), '(x1, x2)\n', (10988, 10996), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((11030, 11050), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x1', 'x2'], {}), '(x1, x2)\n', (11042, 11050), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((11169, 11209), 'numpy.ma.core.masked_array', 'masked_array', (['[1, 2, 3, 4]', '[0, 1, 1, 0]'], {}), '([1, 2, 3, 4], [0, 1, 1, 0])\n', (11181, 11209), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((11286, 11326), 'numpy.ma.core.masked_array', 'masked_array', (['[1, 2, 3, 4]', '[0, 1, 1, 0]'], {}), '([1, 2, 3, 4], [0, 1, 1, 0])\n', (11298, 11326), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((11483, 11505), 'numpy.ma.core.masked_values', 'masked_values', (['x1', '(3.0)'], {}), '(x1, 3.0)\n', (11496, 11505), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((11514, 11534), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x1', 'x2'], {}), '(x1, x2)\n', (11526, 11534), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((11612, 11644), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['(3.0)', 'x2.fill_value'], {}), '(3.0, x2.fill_value)\n', (11624, 11644), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((11658, 11691), 'numpy.ma.core.array', 'array', (["[1, 'hello', 2, 3]", 'object'], {}), "([1, 'hello', 2, 3], object)\n", (11663, 11691), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((11705, 11741), 'numpy.array', 'np.array', (["[1, 'hello', 2, 3]", 'object'], {}), "([1, 'hello', 2, 3], object)\n", (11713, 11741), True, 'import numpy as np\n'), ((11860, 11880), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['s1', 's2'], {}), '(s1, s2)\n', (11872, 11880), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((11889, 11919), 'numpy.ma.testutils.assert_', 'assert_', (['(x1[1:1].shape == (0,))'], {}), '(x1[1:1].shape == (0,))\n', (11896, 11919), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((12011, 12044), 'numpy.matrix', 'np.matrix', (['[[1, 2, 3], [4, 3, 2]]'], {}), '([[1, 2, 3], [4, 3, 2]])\n', (12020, 12044), True, 'import numpy as np\n'), ((12058, 12096), 'numpy.ma.core.array', 'array', (['x1'], {'mask': '[[1, 0, 0], [0, 1, 0]]'}), '(x1, mask=[[1, 0, 0], [0, 1, 0]])\n', (12063, 12096), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((12110, 12148), 'numpy.ma.core.array', 'array', (['x1'], {'mask': '[[0, 1, 0], [1, 0, 0]]'}), '(x1, mask=[[0, 1, 0], [1, 0, 0]])\n', (12115, 12148), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((12162, 12171), 'numpy.ma.core.array', 'array', (['x1'], {}), '(x1)\n', (12167, 12171), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((12350, 12379), 'numpy.ma.testutils.assert_', 'assert_', (['(x1[1, 0] == x2[1, 0])'], {}), '(x1[1, 0] == x2[1, 0])\n', (12357, 12379), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((12388, 12415), 'numpy.ma.testutils.assert_', 'assert_', (['(x2[1, 1] is masked)'], {}), '(x2[1, 1] is masked)\n', (12395, 12415), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((12424, 12456), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x1[0, 2]', 'x2[0, 2]'], {}), '(x1[0, 2], x2[0, 2])\n', (12436, 12456), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((12465, 12499), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x1[0, 1:]', 'x2[0, 1:]'], {}), '(x1[0, 1:], x2[0, 1:])\n', (12477, 12499), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((12508, 12540), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x1[:, 2]', 'x2[:, 2]'], {}), '(x1[:, 2], x2[:, 2])\n', (12520, 12540), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((12549, 12575), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x1[:]', 'x2[:]'], {}), '(x1[:], x2[:])\n', (12561, 12575), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((12584, 12612), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x1[1:]', 'x3[1:]'], {}), '(x1[1:], x3[1:])\n', (12596, 12612), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((12663, 12683), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x1', 'x2'], {}), '(x1, x2)\n', (12675, 12683), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((12738, 12758), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x1', 'x2'], {}), '(x1, x2)\n', (12750, 12758), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((12793, 12813), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x1', 'x2'], {}), '(x1, x2)\n', (12805, 12813), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((12849, 12869), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x1', 'x2'], {}), '(x1, x2)\n', (12861, 12869), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((13016, 13050), 'numpy.ma.core.masked_array', 'masked_array', (['[1, 2, 3]', '[1, 1, 0]'], {}), '([1, 2, 3], [1, 1, 0])\n', (13028, 13050), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((13190, 13224), 'numpy.ma.core.masked_array', 'masked_array', (['[1, 2, 3]', '[1, 1, 0]'], {}), '([1, 2, 3], [1, 1, 0])\n', (13202, 13224), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((13392, 13414), 'numpy.ma.core.masked_values', 'masked_values', (['x1', '(3.0)'], {}), '(x1, 3.0)\n', (13405, 13414), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((13423, 13443), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x1', 'x2'], {}), '(x1, x2)\n', (13435, 13443), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((13521, 13553), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['(3.0)', 'x2.fill_value'], {}), '(3.0, x2.fill_value)\n', (13533, 13553), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((13681, 13693), 'numpy.ma.core.make_mask', 'make_mask', (['n'], {}), '(n)\n', (13690, 13693), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((13707, 13719), 'numpy.ma.core.make_mask', 'make_mask', (['m'], {}), '(m)\n', (13716, 13719), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((13766, 13786), 'numpy.ma.core.make_mask', 'make_mask', (['m'], {'copy': '(1)'}), '(m, copy=1)\n', (13775, 13786), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((13838, 13850), 'numpy.arange', 'np.arange', (['(5)'], {}), '(5)\n', (13847, 13850), True, 'import numpy as np\n'), ((13864, 13881), 'numpy.ma.core.array', 'array', (['x1'], {'mask': 'm'}), '(x1, mask=m)\n', (13869, 13881), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((13890, 13956), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['y1._data.__array_interface__', 'x1.__array_interface__'], {}), '(y1._data.__array_interface__, x1.__array_interface__)\n', (13902, 13956), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((14012, 14077), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['y1._mask.__array_interface__', 'm.__array_interface__'], {}), '(y1._mask.__array_interface__, m.__array_interface__)\n', (14024, 14077), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((14093, 14102), 'numpy.ma.core.array', 'array', (['y1'], {}), '(y1)\n', (14098, 14102), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((14273, 14290), 'numpy.ma.core.array', 'array', (['x1'], {'mask': 'm'}), '(x1, mask=m)\n', (14278, 14290), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((14693, 14716), 'numpy.ma.core.array', 'array', (['(x1 * 1.0)'], {'mask': 'm'}), '(x1 * 1.0, mask=m)\n', (14698, 14716), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((14793, 14802), 'numpy.ma.core.arange', 'arange', (['(4)'], {}), '(4)\n', (14799, 14802), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((14839, 14855), 'numpy.ma.core.resize', 'resize', (['x4', '(8,)'], {}), '(x4, (8,))\n', (14845, 14855), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((14977, 15009), 'numpy.ma.core.repeat', 'repeat', (['x4', '(2, 2, 2, 2)'], {'axis': '(0)'}), '(x4, (2, 2, 2, 2), axis=0)\n', (14983, 15009), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((15018, 15060), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['y5', '[0, 0, 1, 1, 2, 2, 3, 3]'], {}), '(y5, [0, 0, 1, 1, 2, 2, 3, 3])\n', (15030, 15060), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((15074, 15095), 'numpy.ma.core.repeat', 'repeat', (['x4', '(2)'], {'axis': '(0)'}), '(x4, 2, axis=0)\n', (15080, 15095), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((15104, 15124), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['y5', 'y6'], {}), '(y5, y6)\n', (15116, 15124), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((15178, 15198), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['y5', 'y7'], {}), '(y5, y7)\n', (15190, 15198), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((15236, 15256), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['y5', 'y8'], {}), '(y5, y8)\n', (15248, 15256), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((15289, 15321), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['y9._data', 'x4._data'], {}), '(y9._data, x4._data)\n', (15301, 15321), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((15330, 15362), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['y9._mask', 'x4._mask'], {}), '(y9._mask, x4._mask)\n', (15342, 15362), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((15376, 15415), 'numpy.ma.core.masked_array', 'masked_array', (['[1, 2, 3]'], {'mask': '[0, 1, 0]'}), '([1, 2, 3], mask=[0, 1, 0])\n', (15388, 15415), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((15463, 15478), 'numpy.ma.core.masked_array', 'masked_array', (['x'], {}), '(x)\n', (15475, 15478), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((15487, 15541), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['y._data.ctypes.data', 'x._data.ctypes.data'], {}), '(y._data.ctypes.data, x._data.ctypes.data)\n', (15499, 15541), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((15550, 15604), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['y._mask.ctypes.data', 'x._mask.ctypes.data'], {}), '(y._mask.ctypes.data, x._mask.ctypes.data)\n', (15562, 15604), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((15617, 15643), 'numpy.ma.core.masked_array', 'masked_array', (['x'], {'copy': '(True)'}), '(x, copy=True)\n', (15629, 15643), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((15652, 15710), 'numpy.ma.testutils.assert_not_equal', 'assert_not_equal', (['y._data.ctypes.data', 'x._data.ctypes.data'], {}), '(y._data.ctypes.data, x._data.ctypes.data)\n', (15668, 15710), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((15719, 15777), 'numpy.ma.testutils.assert_not_equal', 'assert_not_equal', (['y._mask.ctypes.data', 'x._mask.ctypes.data'], {}), '(y._mask.ctypes.data, x._mask.ctypes.data)\n', (15735, 15777), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((15896, 15918), 'numpy.ma.array', 'np.ma.array', (['[1, 2, 3]'], {}), '([1, 2, 3])\n', (15907, 15918), True, 'import numpy as np\n'), ((15931, 15953), 'numpy.ma.array', 'np.ma.array', (['[4, 5, 6]'], {}), '([4, 5, 6])\n', (15942, 15953), True, 'import numpy as np\n'), ((16125, 16168), 'numpy.ma.core.array', 'array', (['[0, 1, 2]'], {'mask': '[False, True, False]'}), '([0, 1, 2], mask=[False, True, False])\n', (16130, 16168), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((16186, 16197), 'copy.deepcopy', 'deepcopy', (['a'], {}), '(a)\n', (16194, 16197), False, 'from copy import deepcopy\n'), ((16206, 16239), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['copied.mask', 'a.mask'], {}), '(copied.mask, a.mask)\n', (16218, 16239), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((16327, 16363), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['copied.mask', '[0, 0, 0]'], {}), '(copied.mask, [0, 0, 0])\n', (16339, 16363), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((16372, 16403), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['a.mask', '[0, 1, 0]'], {}), '(a.mask, [0, 1, 0])\n', (16384, 16403), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((16422, 16433), 'copy.deepcopy', 'deepcopy', (['a'], {}), '(a)\n', (16430, 16433), False, 'from copy import deepcopy\n'), ((16442, 16475), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['copied.mask', 'a.mask'], {}), '(copied.mask, a.mask)\n', (16454, 16475), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((16515, 16551), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['copied.mask', '[0, 0, 0]'], {}), '(copied.mask, [0, 0, 0])\n', (16527, 16551), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((16560, 16591), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['a.mask', '[0, 1, 0]'], {}), '(a.mask, [0, 1, 0])\n', (16572, 16591), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((16634, 16677), 'numpy.ma.core.array', 'array', (['[0, 1, 2]'], {'mask': '[False, True, False]'}), '([0, 1, 2], mask=[False, True, False])\n', (16639, 16677), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((16934, 16952), 'numpy.ma.arange', 'np.ma.arange', (['(2000)'], {}), '(2000)\n', (16946, 16952), True, 'import numpy as np\n'), ((17295, 17305), 'numpy.ma.core.arange', 'arange', (['(10)'], {}), '(10)\n', (17301, 17305), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((17409, 17447), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['a_pickled._mask', 'a._mask'], {}), '(a_pickled._mask, a._mask)\n', (17421, 17447), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((17456, 17494), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['a_pickled._data', 'a._data'], {}), '(a_pickled._data, a._data)\n', (17468, 17494), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((17503, 17542), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['a_pickled.fill_value', '(999)'], {}), '(a_pickled.fill_value, 999)\n', (17515, 17542), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((17759, 17797), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['a_pickled._mask', 'a._mask'], {}), '(a_pickled._mask, a._mask)\n', (17771, 17797), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((17806, 17832), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['a_pickled', 'a'], {}), '(a_pickled, a)\n', (17818, 17832), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((18061, 18111), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['mc_pickled._baseclass', 'mc._baseclass'], {}), '(mc_pickled._baseclass, mc._baseclass)\n', (18073, 18111), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((18120, 18160), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['mc_pickled._mask', 'mc._mask'], {}), '(mc_pickled._mask, mc._mask)\n', (18132, 18160), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((18169, 18209), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['mc_pickled._data', 'mc._data'], {}), '(mc_pickled._data, mc._data)\n', (18181, 18209), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((18309, 18397), 'numpy.ma.core.array', 'array', (['[(1, 1.0), (2, 2.0)]'], {'mask': '[(0, 0), (0, 1)]', 'dtype': "[('a', int), ('b', float)]"}), "([(1, 1.0), (2, 2.0)], mask=[(0, 0), (0, 1)], dtype=[('a', int), ('b',\n float)])\n", (18314, 18397), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((18462, 18500), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['a_pickled._mask', 'a._mask'], {}), '(a_pickled._mask, a._mask)\n', (18474, 18500), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((18509, 18535), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['a_pickled', 'a'], {}), '(a_pickled, a)\n', (18521, 18535), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((18640, 18650), 'numpy.ma.core.arange', 'arange', (['(10)'], {}), '(10)\n', (18646, 18650), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((18746, 18767), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', 'b'], {}), '(test, b)\n', (18758, 18767), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((18885, 18901), 'numpy.ma.core.array', 'array', (['[1, 3, 2]'], {}), '([1, 3, 2])\n', (18890, 18901), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((18914, 18946), 'numpy.ma.core.array', 'array', (['[1, 3, 2]'], {'mask': '[1, 0, 1]'}), '([1, 3, 2], mask=[1, 0, 1])\n', (18919, 18946), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((18955, 18983), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['a[0].shape', '()'], {}), '(a[0].shape, ())\n', (18967, 18983), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((18992, 19020), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['b[0].shape', '()'], {}), '(b[0].shape, ())\n', (19004, 19020), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((19029, 19057), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['b[1].shape', '()'], {}), '(b[1].shape, ())\n', (19041, 19057), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((19546, 19578), 'numpy.ma.core.array', 'array', (['[1, 2, 3]'], {'mask': '[1, 0, 0]'}), '([1, 2, 3], mask=[1, 0, 0])\n', (19551, 19578), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((19937, 19947), 'numpy.ma.core.arange', 'arange', (['(20)'], {}), '(20)\n', (19943, 19947), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((20007, 20029), 'numpy.ma.testutils.assert_', 'assert_', (['(x[1, 0] == 12)'], {}), '(x[1, 0] == 12)\n', (20014, 20029), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((20062, 20085), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['z.real', 'x'], {}), '(z.real, x)\n', (20074, 20085), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((20094, 20122), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['z.imag', '(10 * x)'], {}), '(z.imag, 10 * x)\n', (20106, 20122), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((20221, 20231), 'numpy.ma.core.arange', 'arange', (['(10)'], {}), '(10)\n', (20227, 20231), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((20442, 20460), 'numpy.ma.core.masked_where', 'masked_where', (['c', 'x'], {}), '(c, x)\n', (20454, 20460), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((20469, 20496), 'numpy.ma.testutils.assert_', 'assert_', (['(z.dtype is x.dtype)'], {}), '(z.dtype is x.dtype)\n', (20476, 20496), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((20505, 20528), 'numpy.ma.testutils.assert_', 'assert_', (['(z[3] is masked)'], {}), '(z[3] is masked)\n', (20512, 20528), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((20537, 20564), 'numpy.ma.testutils.assert_', 'assert_', (['(z[4] is not masked)'], {}), '(z[4] is not masked)\n', (20544, 20564), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((20573, 20600), 'numpy.ma.testutils.assert_', 'assert_', (['(z[7] is not masked)'], {}), '(z[7] is not masked)\n', (20580, 20600), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((20609, 20632), 'numpy.ma.testutils.assert_', 'assert_', (['(z[8] is masked)'], {}), '(z[8] is masked)\n', (20616, 20632), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((20641, 20664), 'numpy.ma.testutils.assert_', 'assert_', (['(z[9] is masked)'], {}), '(z[9] is masked)\n', (20648, 20664), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((20673, 20691), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x', 'z'], {}), '(x, z)\n', (20685, 20691), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((20775, 20807), 'numpy.ma.core.array', 'array', (['[1.0, 2.0, 3.0, 4.0, 5.0]'], {}), '([1.0, 2.0, 3.0, 4.0, 5.0])\n', (20780, 20807), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((20815, 20837), 'numpy.ma.core.array', 'array', (['[1, 1, 1, 0, 0]'], {}), '([1, 1, 1, 0, 0])\n', (20820, 20837), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((20872, 20887), 'numpy.ma.core.where', 'where', (['c', 'x', '(-x)'], {}), '(c, x, -x)\n', (20877, 20887), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((20896, 20938), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['z', '[1.0, 2.0, 0.0, -4.0, -5]'], {}), '(z, [1.0, 2.0, 0.0, -4.0, -5])\n', (20908, 20938), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((20969, 20984), 'numpy.ma.core.where', 'where', (['c', 'x', '(-x)'], {}), '(c, x, -x)\n', (20974, 20984), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((20993, 21035), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['z', '[1.0, 2.0, 0.0, -4.0, -5]'], {}), '(z, [1.0, 2.0, 0.0, -4.0, -5])\n', (21005, 21035), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((21040, 21063), 'numpy.ma.testutils.assert_', 'assert_', (['(z[0] is masked)'], {}), '(z[0] is masked)\n', (21047, 21063), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((21072, 21099), 'numpy.ma.testutils.assert_', 'assert_', (['(z[1] is not masked)'], {}), '(z[1] is not masked)\n', (21079, 21099), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((21108, 21131), 'numpy.ma.testutils.assert_', 'assert_', (['(z[2] is masked)'], {}), '(z[2] is masked)\n', (21115, 21131), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((21221, 21243), 'numpy.ma.core.array', 'array', (['[10]'], {'mask': '(True)'}), '([10], mask=True)\n', (21226, 21243), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((21260, 21271), 'numpy.ma.core.array', 'array', (['[20]'], {}), '([20])\n', (21265, 21271), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((21337, 21362), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['atest', '[20]'], {}), '(atest, [20])\n', (21349, 21362), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((21418, 21448), 'numpy.ma.masked_all', 'np.ma.masked_all', (['(1)'], {'dtype': '"""O"""'}), "(1, dtype='O')\n", (21434, 21448), True, 'import numpy as np\n'), ((21594, 21660), 'numpy.ma.core.array', 'array', (['[(1, 1, 1)]'], {'dtype': "[('i', int), ('s', '|S8'), ('f', float)]"}), "([(1, 1, 1)], dtype=[('i', int), ('s', '|S8'), ('f', float)])\n", (21599, 21660), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((22190, 22234), 'numpy.ma.core.mvoid', 'mvoid', (['(1, 2.0)'], {'mask': '[(0, 1)]', 'dtype': 'ndtype'}), '((1, 2.0), mask=[(0, 1)], dtype=ndtype)\n', (22195, 22234), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((22748, 22833), 'numpy.ma.core.array', 'array', (['[(1, (1, 1)), (2, (2, 2))]'], {'mask': '[(0, (1, 0)), (0, (0, 1))]', 'dtype': 'ndtype'}), '([(1, (1, 1)), (2, (2, 2))], mask=[(0, (1, 0)), (0, (0, 1))], dtype=ndtype\n )\n', (22753, 22833), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((22892, 22942), 'numpy.array', 'np.array', (['[(1, (0, 1)), (2, (2, 0))]'], {'dtype': 'ndtype'}), '([(1, (0, 1)), (2, (2, 0))], dtype=ndtype)\n', (22900, 22942), True, 'import numpy as np\n'), ((22951, 22978), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', 'control'], {}), '(test, control)\n', (22963, 22978), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((23030, 23076), 'numpy.array', 'np.array', (['[(0, 1), (2, 0)]'], {'dtype': "a['B'].dtype"}), "([(0, 1), (2, 0)], dtype=a['B'].dtype)\n", (23038, 23076), True, 'import numpy as np\n'), ((23085, 23112), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', 'control'], {}), '(test, control)\n', (23097, 23112), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((24046, 24075), 'numpy.ma.core.array', 'array', (['[1, 2, 3]'], {'dtype': 'float'}), '([1, 2, 3], dtype=float)\n', (24051, 24075), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((24142, 24181), 'numpy.ma.testutils.assert_equal', 'assert_equal', (["y._optinfo['info']", '"""???"""'], {}), "(y._optinfo['info'], '???')\n", (24154, 24181), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((24225, 24264), 'numpy.ma.testutils.assert_equal', 'assert_equal', (["x._optinfo['info']", '"""???"""'], {}), "(x._optinfo['info'], '???')\n", (24237, 24264), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((24381, 24438), 'numpy.dtype', 'np.dtype', (["[('x', int), ('y', [('t', int), ('s', float)])]"], {}), "([('x', int), ('y', [('t', int), ('s', float)])])\n", (24389, 24438), True, 'import numpy as np\n'), ((24454, 24546), 'numpy.ma.core.array', 'array', (['[(1, (2, 3.0)), (4, (5, 6.0))]'], {'mask': '[(1, (0, 1)), (0, (1, 0))]', 'dtype': 'fancydtype'}), '([(1, (2, 3.0)), (4, (5, 6.0))], mask=[(1, (0, 1)), (0, (1, 0))],\n dtype=fancydtype)\n', (24459, 24546), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((24748, 24918), 'numpy.ma.core.masked_array', 'masked_array', ([], {'data': '(0, [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], 0.0)', 'mask': '(False, [[True, False, True], [False, False, True]], False)', 'dtype': '"""int, (2,3)float, float"""'}), "(data=(0, [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], 0.0), mask=(False,\n [[True, False, True], [False, False, True]], False), dtype=\n 'int, (2,3)float, float')\n", (24760, 24918), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((25410, 25450), 'numpy.array', 'np.array', (['[(1, 1), (2, 2)]'], {'dtype': 'ndtype'}), '([(1, 1), (2, 2)], dtype=ndtype)\n', (25418, 25450), True, 'import numpy as np\n'), ((25466, 25493), 'numpy.ma.core.flatten_structured_array', 'flatten_structured_array', (['a'], {}), '(a)\n', (25490, 25493), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((25512, 25562), 'numpy.array', 'np.array', (['[[1.0, 1.0], [2.0, 2.0]]'], {'dtype': 'np.float'}), '([[1.0, 1.0], [2.0, 2.0]], dtype=np.float)\n', (25520, 25562), True, 'import numpy as np\n'), ((25567, 25594), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', 'control'], {}), '(test, control)\n', (25579, 25594), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((25603, 25642), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.dtype', 'control.dtype'], {}), '(test.dtype, control.dtype)\n', (25615, 25642), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((25681, 25741), 'numpy.ma.core.array', 'array', (['[(1, 1), (2, 2)]'], {'mask': '[(0, 1), (1, 0)]', 'dtype': 'ndtype'}), '([(1, 1), (2, 2)], mask=[(0, 1), (1, 0)], dtype=ndtype)\n', (25686, 25741), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((25757, 25784), 'numpy.ma.core.flatten_structured_array', 'flatten_structured_array', (['a'], {}), '(a)\n', (25781, 25784), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((25803, 25873), 'numpy.ma.core.array', 'array', (['[[1.0, 1.0], [2.0, 2.0]]'], {'mask': '[[0, 1], [1, 0]]', 'dtype': 'np.float'}), '([[1.0, 1.0], [2.0, 2.0]], mask=[[0, 1], [1, 0]], dtype=np.float)\n', (25808, 25873), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((25902, 25929), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', 'control'], {}), '(test, control)\n', (25914, 25929), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((25938, 25977), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.dtype', 'control.dtype'], {}), '(test.dtype, control.dtype)\n', (25950, 25977), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((25986, 26023), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.mask', 'control.mask'], {}), '(test.mask, control.mask)\n', (25998, 26023), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((26151, 26239), 'numpy.ma.core.array', 'array', (['[(1, (1, 1.1)), (2, (2, 2.2))]'], {'mask': '[(0, (1, 0)), (1, (0, 1))]', 'dtype': 'ndtype'}), '([(1, (1, 1.1)), (2, (2, 2.2))], mask=[(0, (1, 0)), (1, (0, 1))],\n dtype=ndtype)\n', (26156, 26239), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((26269, 26296), 'numpy.ma.core.flatten_structured_array', 'flatten_structured_array', (['a'], {}), '(a)\n', (26293, 26296), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((26315, 26405), 'numpy.ma.core.array', 'array', (['[[1.0, 1.0, 1.1], [2.0, 2.0, 2.2]]'], {'mask': '[[0, 1, 0], [1, 0, 1]]', 'dtype': 'np.float'}), '([[1.0, 1.0, 1.1], [2.0, 2.0, 2.2]], mask=[[0, 1, 0], [1, 0, 1]],\n dtype=np.float)\n', (26320, 26405), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((26430, 26457), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', 'control'], {}), '(test, control)\n', (26442, 26457), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((26466, 26505), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.dtype', 'control.dtype'], {}), '(test.dtype, control.dtype)\n', (26478, 26505), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((26514, 26551), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.mask', 'control.mask'], {}), '(test.mask, control.mask)\n', (26526, 26551), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((26644, 26688), 'numpy.array', 'np.array', (['[[(1, 1)], [(2, 2)]]'], {'dtype': 'ndtype'}), '([[(1, 1)], [(2, 2)]], dtype=ndtype)\n', (26652, 26688), True, 'import numpy as np\n'), ((26708, 26735), 'numpy.ma.core.flatten_structured_array', 'flatten_structured_array', (['a'], {}), '(a)\n', (26732, 26735), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((26754, 26808), 'numpy.array', 'np.array', (['[[[1.0, 1.0]], [[2.0, 2.0]]]'], {'dtype': 'np.float'}), '([[[1.0, 1.0]], [[2.0, 2.0]]], dtype=np.float)\n', (26762, 26808), True, 'import numpy as np\n'), ((26817, 26844), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', 'control'], {}), '(test, control)\n', (26829, 26844), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((26853, 26892), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.dtype', 'control.dtype'], {}), '(test.dtype, control.dtype)\n', (26865, 26892), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((27063, 27071), 'numpy.ma.core.mvoid', 'mvoid', (['a'], {}), '(a)\n', (27068, 27071), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((27229, 27296), 'numpy.ma.core.masked_array', 'masked_array', (['[(1, 2), (1, 2)]'], {'mask': '[(1, 0), (0, 0)]', 'dtype': 'ndtype'}), '([(1, 2), (1, 2)], mask=[(1, 0), (0, 0)], dtype=ndtype)\n', (27241, 27296), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((27309, 27338), 'numpy.ma.core.mvoid', 'mvoid', (['a._data[0]', 'a._mask[0]'], {}), '(a._data[0], a._mask[0])\n', (27314, 27338), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((27499, 27566), 'numpy.ma.core.masked_array', 'masked_array', (['[(1, 2), (3, 4)]'], {'mask': '[(0, 0), (1, 0)]', 'dtype': 'ndtype'}), '([(1, 2), (3, 4)], mask=[(0, 0), (1, 0)], dtype=ndtype)\n', (27511, 27566), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((27683, 27719), 'numpy.ma.testutils.assert_equal', 'assert_equal', (["(f[0], f['a'])", '(1, 1)'], {}), "((f[0], f['a']), (1, 1))\n", (27695, 27719), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((27728, 27751), 'numpy.ma.testutils.assert_equal', 'assert_equal', (["f['b']", '(2)'], {}), "(f['b'], 2)\n", (27740, 27751), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((27923, 27944), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['f[1]', '(4)'], {}), '(f[1], 4)\n', (27935, 27944), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((27981, 28068), 'numpy.ma.core.masked_array', 'masked_array', ([], {'data': '[([0, 1],)]', 'mask': '[([True, False],)]', 'dtype': "[('A', '>i2', (2,))]"}), "(data=[([0, 1],)], mask=[([True, False],)], dtype=[('A', '>i2',\n (2,))])\n", (27993, 28068), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((28122, 28156), 'numpy.ma.testutils.assert_equal', 'assert_equal', (["A[0]['A']", "A['A'][0]"], {}), "(A[0]['A'], A['A'][0])\n", (28134, 28156), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((28400, 28467), 'numpy.ma.core.masked_array', 'masked_array', (['[(1, 2), (3, 4)]'], {'mask': '[(0, 0), (1, 0)]', 'dtype': 'ndtype'}), '([(1, 2), (3, 4)], mask=[(0, 0), (1, 0)], dtype=ndtype)\n', (28412, 28467), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((28696, 28751), 'numpy.ma.core.array', 'array', (['[(1, 1), (2, 2)]'], {'dtype': "[('a', int), ('b', int)]"}), "([(1, 1), (2, 2)], dtype=[('a', int), ('b', int)])\n", (28701, 28751), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((28882, 28920), 'numpy.ma.core.masked_print_option.set_display', 'masked_print_option.set_display', (['"""-X-"""'], {}), "('-X-')\n", (28913, 28920), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((29186, 29225), 'numpy.ma.core.array', 'array', (['[(1,), (2,)]'], {'dtype': "[('a', 'O')]"}), "([(1,), (2,)], dtype=[('a', 'O')])\n", (29191, 29225), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((29363, 29500), 'numpy.ma.core.masked_array', 'masked_array', ([], {'data': '[([1, 2, 3],)]', 'mask': '[([False, True, False],)]', 'fill_value': '([999999, 999999, 999999],)', 'dtype': "[('a', '<i4', (3,))]"}), "(data=[([1, 2, 3],)], mask=[([False, True, False],)],\n fill_value=([999999, 999999, 999999],), dtype=[('a', '<i4', (3,))])\n", (29375, 29500), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((29755, 29872), 'numpy.ma.core.masked_array', 'masked_array', ([], {'data': '[([[1, 2], [3, 4]],)]', 'mask': '[([[False, True], [True, False]],)]', 'dtype': "[('a', '<i4', (2, 2))]"}), "(data=[([[1, 2], [3, 4]],)], mask=[([[False, True], [True, \n False]],)], dtype=[('a', '<i4', (2, 2))])\n", (29767, 29872), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((30059, 30148), 'numpy.ma.core.masked_array', 'masked_array', ([], {'data': '[(1, 2)]', 'mask': '[(True, False)]', 'dtype': "[('a', '<i4'), ('b', '<i4')]"}), "(data=[(1, 2)], mask=[(True, False)], dtype=[('a', '<i4'), ('b',\n '<i4')])\n", (30071, 30148), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((30308, 30447), 'numpy.ma.core.masked_array', 'masked_array', ([], {'data': '[([[1, 2], [3, 4]], 1)]', 'mask': '[([[False, True], [True, False]], False)]', 'dtype': "[('a', '<i4', (2, 2)), ('b', float)]"}), "(data=[([[1, 2], [3, 4]], 1)], mask=[([[False, True], [True, \n False]], False)], dtype=[('a', '<i4', (2, 2)), ('b', float)])\n", (30320, 30447), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((30642, 30746), 'numpy.ma.core.masked_array', 'masked_array', ([], {'data': '[(1, (1, 1))]', 'mask': '[(True, (True, False))]', 'dtype': "[('a', '<i4'), ('b', 'i4,i4')]"}), "(data=[(1, (1, 1))], mask=[(True, (True, False))], dtype=[('a',\n '<i4'), ('b', 'i4,i4')])\n", (30654, 30746), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((30953, 30985), 'numpy.ma.core.masked_array', 'masked_array', (['[1.0]'], {'mask': '[True]'}), '([1.0], mask=[True])\n', (30965, 30985), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((30999, 31023), 'numpy.ma.core.masked_array', 'masked_array', (['[1.0, 2.0]'], {}), '([1.0, 2.0])\n', (31011, 31023), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((31035, 31079), 'numpy.ma.core.masked_array', 'masked_array', (['[mx1, mx2]'], {'mask': '[False, True]'}), '([mx1, mx2], mask=[False, True])\n', (31047, 31079), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((31088, 31109), 'numpy.ma.testutils.assert_', 'assert_', (['(mx[0] is mx1)'], {}), '(mx[0] is mx1)\n', (31095, 31109), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((31118, 31143), 'numpy.ma.testutils.assert_', 'assert_', (['(mx[1] is not mx2)'], {}), '(mx[1] is not mx2)\n', (31125, 31143), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((31302, 31324), 'numpy.ma.testutils.assert_', 'assert_', (['(mx2[0] == 0.0)'], {}), '(mx2[0] == 0.0)\n', (31309, 31324), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((31475, 31554), 'numpy.array', 'np.array', (['[1.0, 1.0, 1.0, -2.0, pi / 2.0, 4.0, 5.0, -10.0, 10.0, 1.0, 2.0, 3.0]'], {}), '([1.0, 1.0, 1.0, -2.0, pi / 2.0, 4.0, 5.0, -10.0, 10.0, 1.0, 2.0, 3.0])\n', (31483, 31554), True, 'import numpy as np\n'), ((31554, 31629), 'numpy.array', 'np.array', (['[5.0, 0.0, 3.0, 2.0, -1.0, -4.0, 0.0, -10.0, 10.0, 1.0, 0.0, 3.0]'], {}), '([5.0, 0.0, 3.0, 2.0, -1.0, -4.0, 0.0, -10.0, 10.0, 1.0, 0.0, 3.0])\n', (31562, 31629), True, 'import numpy as np\n'), ((31749, 31773), 'numpy.ma.core.masked_array', 'masked_array', (['x'], {'mask': 'm1'}), '(x, mask=m1)\n', (31761, 31773), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((31787, 31811), 'numpy.ma.core.masked_array', 'masked_array', (['y'], {'mask': 'm2'}), '(y, mask=m2)\n', (31799, 31811), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((31824, 31855), 'numpy.array', 'np.array', (['[-0.5, 0.0, 0.5, 0.8]'], {}), '([-0.5, 0.0, 0.5, 0.8])\n', (31832, 31855), True, 'import numpy as np\n'), ((31865, 31899), 'numpy.ma.core.masked_array', 'masked_array', (['z'], {'mask': '[0, 1, 0, 0]'}), '(z, mask=[0, 1, 0, 0])\n', (31877, 31899), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((31913, 31935), 'numpy.where', 'np.where', (['m1', '(1e+20)', 'x'], {}), '(m1, 1e+20, x)\n', (31921, 31935), True, 'import numpy as np\n'), ((32051, 32062), 'numpy.geterr', 'np.geterr', ([], {}), '()\n', (32060, 32062), True, 'import numpy as np\n'), ((32071, 32115), 'numpy.seterr', 'np.seterr', ([], {'divide': '"""ignore"""', 'invalid': '"""ignore"""'}), "(divide='ignore', invalid='ignore')\n", (32080, 32115), True, 'import numpy as np\n'), ((32149, 32177), 'numpy.seterr', 'np.seterr', ([], {}), '(**self.err_status)\n', (32158, 32177), True, 'import numpy as np\n'), ((32322, 32345), 'numpy.ma.core.array', 'array', (['[[1, 2], [0, 4]]'], {}), '([[1, 2], [0, 4]])\n', (32327, 32345), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((32361, 32396), 'numpy.ma.core.masked_array', 'masked_array', (['a2d', '[[0, 0], [1, 0]]'], {}), '(a2d, [[0, 0], [1, 0]])\n', (32373, 32396), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((32405, 32440), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['(a2d * a2d)', '(a2d * a2dm)'], {}), '(a2d * a2d, a2d * a2dm)\n', (32417, 32440), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((32449, 32484), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['(a2d + a2d)', '(a2d + a2dm)'], {}), '(a2d + a2d, a2d + a2dm)\n', (32461, 32484), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((32493, 32528), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['(a2d - a2d)', '(a2d - a2dm)'], {}), '(a2d - a2d, a2d - a2dm)\n', (32505, 32528), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((33707, 33729), 'numpy.ma.core.arange', 'arange', (['(6)'], {'dtype': 'float'}), '(6, dtype=float)\n', (33713, 33729), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((33767, 33789), 'numpy.ma.core.arange', 'arange', (['(3)'], {'dtype': 'float'}), '(3, dtype=float)\n', (33773, 33789), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((33817, 33870), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['z', '[[-1.0, 1.0, 1.0], [-1.0, 4.0, 2.5]]'], {}), '(z, [[-1.0, 1.0, 1.0], [-1.0, 4.0, 2.5]])\n', (33829, 33870), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((33874, 33918), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['z.mask', '[[1, 0, 0], [1, 0, 0]]'], {}), '(z.mask, [[1, 0, 0], [1, 0, 0]])\n', (33886, 33918), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((33954, 34007), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['z', '[[-1.0, 1.0, 1.0], [-1.0, 4.0, 2.5]]'], {}), '(z, [[-1.0, 1.0, 1.0], [-1.0, 4.0, 2.5]])\n', (33966, 34007), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((34011, 34055), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['z.mask', '[[1, 0, 0], [1, 0, 0]]'], {}), '(z.mask, [[1, 0, 0], [1, 0, 0]])\n', (34023, 34055), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((34069, 34091), 'numpy.ma.core.arange', 'arange', (['(2)'], {'dtype': 'float'}), '(2, dtype=float)\n', (34075, 34091), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((34127, 34181), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['z', '[[-1.0, -1.0, -1.0], [3.0, 4.0, 5.0]]'], {}), '(z, [[-1.0, -1.0, -1.0], [3.0, 4.0, 5.0]])\n', (34139, 34181), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((34184, 34228), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['z.mask', '[[1, 1, 1], [0, 0, 0]]'], {}), '(z.mask, [[1, 1, 1], [0, 0, 0]])\n', (34196, 34228), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((34315, 34328), 'numpy.array', 'np.array', (['[1]'], {}), '([1])\n', (34323, 34328), True, 'import numpy as np\n'), ((34342, 34352), 'numpy.ma.core.array', 'array', (['[1]'], {}), '([1])\n', (34347, 34352), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((34556, 34586), 'numpy.ma.core.array', 'array', (['[tiny, 1.0 / tiny, 0.0]'], {}), '([tiny, 1.0 / tiny, 0.0])\n', (34561, 34586), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((34873, 34889), 'numpy.ma.core.array', 'array', (['(0)'], {'mask': '(1)'}), '(0, mask=1)\n', (34878, 34889), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((35210, 35242), 'numpy.ma.core.array', 'array', (['[1, 2, 3]'], {'mask': '[1, 1, 0]'}), '([1, 2, 3], mask=[1, 1, 0])\n', (35215, 35242), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((35251, 35281), 'numpy.ma.testutils.assert_', 'assert_', (['((a[0] == 0) is masked)'], {}), '((a[0] == 0) is masked)\n', (35258, 35281), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((35290, 35320), 'numpy.ma.testutils.assert_', 'assert_', (['((a[0] != 0) is masked)'], {}), '((a[0] != 0) is masked)\n', (35297, 35320), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((35329, 35360), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['(a[-1] == 0)', '(False)'], {}), '(a[-1] == 0, False)\n', (35341, 35360), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((35371, 35401), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['(a[-1] != 0)', '(True)'], {}), '(a[-1] != 0, True)\n', (35383, 35401), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((35524, 35544), 'numpy.ma.core.masked_array', 'masked_array', (['[1, 2]'], {}), '([1, 2])\n', (35536, 35544), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((35576, 35606), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['y.shape', 'x.shape'], {}), '(y.shape, x.shape)\n', (35588, 35606), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((35615, 35650), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['y._mask', '[True, True]'], {}), '(y._mask, [True, True])\n', (35627, 35650), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((35685, 35705), 'numpy.ma.testutils.assert_', 'assert_', (['(y is masked)'], {}), '(y is masked)\n', (35692, 35705), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((35737, 35767), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['y.shape', 'x.shape'], {}), '(y.shape, x.shape)\n', (35749, 35767), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((35776, 35811), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['y._mask', '[True, True]'], {}), '(y._mask, [True, True])\n', (35788, 35811), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((35957, 35974), 'numpy.ma.core.masked_array', 'masked_array', (['[1]'], {}), '([1])\n', (35969, 35974), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((36008, 36038), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['y.shape', 'x.shape'], {}), '(y.shape, x.shape)\n', (36020, 36038), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((36047, 36075), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['y.mask', '[True]'], {}), '(y.mask, [True])\n', (36059, 36075), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((36129, 36145), 'numpy.ma.core.array', 'array', (['(0)'], {'mask': '(0)'}), '(0, mask=0)\n', (36134, 36145), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((36312, 36340), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xm.shape', '(2,)'], {}), '(xm.shape, (2,))\n', (36324, 36340), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((36349, 36378), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xm.mask', '[1, 1]'], {}), '(xm.mask, [1, 1])\n', (36361, 36378), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((37893, 37939), 'numpy.ma.core.array', 'array', (['[0.0, 1.0, 2.0, 3.0]'], {'mask': '[1, 0, 0, 0]'}), '([0.0, 1.0, 2.0, 3.0], mask=[1, 0, 0, 0])\n', (37898, 37939), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((37950, 37960), 'numpy.ma.core.count', 'count', (['ott'], {}), '(ott)\n', (37955, 37960), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((38020, 38040), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['(3)', 'res'], {}), '(3, res)\n', (38032, 38040), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((38090, 38100), 'numpy.ma.core.count', 'count', (['ott'], {}), '(ott)\n', (38095, 38100), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((38109, 38143), 'numpy.ma.testutils.assert_', 'assert_', (['(res.dtype.type is np.intp)'], {}), '(res.dtype.type is np.intp)\n', (38116, 38143), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((38152, 38172), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['(3)', 'res'], {}), '(3, res)\n', (38164, 38172), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((38187, 38200), 'numpy.ma.core.count', 'count', (['ott', '(0)'], {}), '(ott, 0)\n', (38192, 38200), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((38251, 38276), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['[1, 2]', 'res'], {}), '([1, 2], res)\n', (38263, 38276), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((38332, 38359), 'numpy.ma.core.array', 'array', (['[0.0, 1.0, 2.0, 3.0]'], {}), '([0.0, 1.0, 2.0, 3.0])\n', (38337, 38359), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((38370, 38383), 'numpy.ma.core.count', 'count', (['ott', '(0)'], {}), '(ott, 0)\n', (38375, 38383), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((38434, 38468), 'numpy.ma.testutils.assert_', 'assert_', (['(res.dtype.type is np.intp)'], {}), '(res.dtype.type is np.intp)\n', (38441, 38468), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((38477, 38521), 'numpy.testing.assert_raises', 'assert_raises', (['ValueError', 'ott.count'], {'axis': '(1)'}), '(ValueError, ott.count, axis=1)\n', (38490, 38521), False, 'from numpy.testing import TestCase, run_module_suite, assert_raises\n'), ((38698, 38709), 'numpy.ravel', 'np.ravel', (['x'], {}), '(x)\n', (38706, 38709), True, 'import numpy as np\n'), ((38724, 38733), 'numpy.ma.core.ravel', 'ravel', (['xm'], {}), '(xm)\n', (38729, 38733), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((39027, 39036), 'numpy.ma.core.arange', 'arange', (['(5)'], {}), '(5)\n', (39033, 39036), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((39451, 39466), 'numpy.ones', 'np.ones', (['(2, 2)'], {}), '((2, 2))\n', (39458, 39466), True, 'import numpy as np\n'), ((39486, 39499), 'numpy.ma.core.minimum', 'minimum', (['a', 'a'], {}), '(a, a)\n', (39493, 39499), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((39628, 39647), 'numpy.ma.core.minimum.outer', 'minimum.outer', (['a', 'a'], {}), '(a, a)\n', (39641, 39647), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((39782, 39795), 'numpy.ma.core.maximum', 'maximum', (['a', 'a'], {}), '(a, a)\n', (39789, 39795), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((39924, 39943), 'numpy.ma.core.maximum.outer', 'maximum.outer', (['a', 'a'], {}), '(a, a)\n', (39937, 39943), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((40170, 40214), 'numpy.ma.core.array', 'array', (['[1, 2, 3]'], {'mask': '[False, False, False]'}), '([1, 2, 3], mask=[False, False, False])\n', (40175, 40214), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((40227, 40247), 'numpy.maximum.reduce', 'np.maximum.reduce', (['a'], {}), '(a)\n', (40244, 40247), True, 'import numpy as np\n'), ((40256, 40274), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['b', '(3)'], {}), '(b, 3)\n', (40268, 40274), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((41873, 41900), 'numpy.ma.core.array', 'array', (['[1, 2, 3]'], {'mask': '(True)'}), '([1, 2, 3], mask=True)\n', (41878, 41900), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((43161, 43221), 'numpy.ma.core.array', 'array', (['[[1.0], [2.0], [3.0]]'], {'mask': '[[False], [True], [True]]'}), '([[1.0], [2.0], [3.0]], mask=[[False], [True], [True]])\n', (43166, 43221), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((43231, 43274), 'numpy.ma.core.array', 'array', (['[[2.0, 3.0], [4.0, 5.0], [6.0, 7.0]]'], {}), '([[2.0, 3.0], [4.0, 5.0], [6.0, 7.0]])\n', (43236, 43274), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((43309, 43383), 'numpy.ma.core.array', 'array', (['[[2.0, 3.0], [2.0, 2.0], [3.0, 3.0]]'], {'mask': '[[0, 0], [1, 1], [1, 1]]'}), '([[2.0, 3.0], [2.0, 2.0], [3.0, 3.0]], mask=[[0, 0], [1, 1], [1, 1]])\n', (43314, 43383), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((43410, 43437), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', 'control'], {}), '(test, control)\n', (43422, 43437), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((43446, 43483), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.data', 'control.data'], {}), '(test.data, control.data)\n', (43458, 43483), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((43492, 43529), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.mask', 'control.mask'], {}), '(test.mask, control.mask)\n', (43504, 43529), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((43570, 43644), 'numpy.ma.core.array', 'array', (['[[2.0, 3.0], [4.0, 5.0], [6.0, 7.0]]'], {'mask': '[[0, 0], [1, 1], [1, 1]]'}), '([[2.0, 3.0], [4.0, 5.0], [6.0, 7.0]], mask=[[0, 0], [1, 1], [1, 1]])\n', (43575, 43644), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((43671, 43698), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', 'control'], {}), '(test, control)\n', (43683, 43698), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((43707, 43744), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.data', 'control.data'], {}), '(test.data, control.data)\n', (43719, 43744), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((43753, 43790), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.mask', 'control.mask'], {}), '(test.mask, control.mask)\n', (43765, 43790), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((43804, 43832), 'numpy.ma.core.array', 'array', (['[[1.0], [2.0], [3.0]]'], {}), '([[1.0], [2.0], [3.0]])\n', (43809, 43832), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((43842, 43916), 'numpy.ma.core.array', 'array', (['[[2.0, 3.0], [4.0, 5.0], [6.0, 7.0]]'], {'mask': '[[0, 0], [0, 0], [0, 1]]'}), '([[2.0, 3.0], [4.0, 5.0], [6.0, 7.0]], mask=[[0, 0], [0, 0], [0, 1]])\n', (43847, 43916), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((43968, 44032), 'numpy.ma.core.array', 'array', (['[[2, 3], [8, 10], [18, 3]]'], {'mask': '[[0, 0], [0, 0], [0, 1]]'}), '([[2, 3], [8, 10], [18, 3]], mask=[[0, 0], [0, 0], [0, 1]])\n', (43973, 44032), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((44065, 44092), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', 'control'], {}), '(test, control)\n', (44077, 44092), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((44101, 44138), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.data', 'control.data'], {}), '(test.data, control.data)\n', (44113, 44138), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((44147, 44184), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.mask', 'control.mask'], {}), '(test.mask, control.mask)\n', (44159, 44184), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((44225, 44289), 'numpy.ma.core.array', 'array', (['[[2, 3], [8, 10], [18, 7]]'], {'mask': '[[0, 0], [0, 0], [0, 1]]'}), '([[2, 3], [8, 10], [18, 7]], mask=[[0, 0], [0, 0], [0, 1]])\n', (44230, 44289), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((44322, 44349), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', 'control'], {}), '(test, control)\n', (44334, 44349), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((44358, 44395), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.data', 'control.data'], {}), '(test.data, control.data)\n', (44370, 44395), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((44404, 44441), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.mask', 'control.mask'], {}), '(test.mask, control.mask)\n', (44416, 44441), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((44548, 44608), 'numpy.ma.core.array', 'array', (['[[1.0], [2.0], [3.0]]'], {'mask': '[[False], [True], [True]]'}), '([[1.0], [2.0], [3.0]], mask=[[False], [True], [True]])\n', (44553, 44608), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((44618, 44661), 'numpy.ma.core.array', 'array', (['[[2.0, 3.0], [4.0, 5.0], [6.0, 7.0]]'], {}), '([[2.0, 3.0], [4.0, 5.0], [6.0, 7.0]])\n', (44623, 44661), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((44696, 44787), 'numpy.ma.core.array', 'array', (['[[1.0 / 2.0, 1.0 / 3.0], [2.0, 2.0], [3.0, 3.0]]'], {'mask': '[[0, 0], [1, 1], [1, 1]]'}), '([[1.0 / 2.0, 1.0 / 3.0], [2.0, 2.0], [3.0, 3.0]], mask=[[0, 0], [1, 1\n ], [1, 1]])\n', (44701, 44787), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((44807, 44834), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', 'control'], {}), '(test, control)\n', (44819, 44834), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((44843, 44880), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.data', 'control.data'], {}), '(test.data, control.data)\n', (44855, 44880), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((44889, 44926), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.mask', 'control.mask'], {}), '(test.mask, control.mask)\n', (44901, 44926), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((44967, 45058), 'numpy.ma.core.array', 'array', (['[[2.0 / 1.0, 3.0 / 1.0], [4.0, 5.0], [6.0, 7.0]]'], {'mask': '[[0, 0], [1, 1], [1, 1]]'}), '([[2.0 / 1.0, 3.0 / 1.0], [4.0, 5.0], [6.0, 7.0]], mask=[[0, 0], [1, 1\n ], [1, 1]])\n', (44972, 45058), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((45078, 45105), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', 'control'], {}), '(test, control)\n', (45090, 45105), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((45114, 45151), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.data', 'control.data'], {}), '(test.data, control.data)\n', (45126, 45151), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((45160, 45197), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.mask', 'control.mask'], {}), '(test.mask, control.mask)\n', (45172, 45197), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((45211, 45239), 'numpy.ma.core.array', 'array', (['[[1.0], [2.0], [3.0]]'], {}), '([[1.0], [2.0], [3.0]])\n', (45216, 45239), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((45249, 45323), 'numpy.ma.core.array', 'array', (['[[2.0, 3.0], [4.0, 5.0], [6.0, 7.0]]'], {'mask': '[[0, 0], [0, 0], [0, 1]]'}), '([[2.0, 3.0], [4.0, 5.0], [6.0, 7.0]], mask=[[0, 0], [0, 0], [0, 1]])\n', (45254, 45323), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((45375, 45471), 'numpy.ma.core.array', 'array', (['[[1.0 / 2, 1.0 / 3], [2.0 / 4, 2.0 / 5], [3.0 / 6, 3]]'], {'mask': '[[0, 0], [0, 0], [0, 1]]'}), '([[1.0 / 2, 1.0 / 3], [2.0 / 4, 2.0 / 5], [3.0 / 6, 3]], mask=[[0, 0],\n [0, 0], [0, 1]])\n', (45380, 45471), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((45495, 45522), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', 'control'], {}), '(test, control)\n', (45507, 45522), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((45531, 45568), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.data', 'control.data'], {}), '(test.data, control.data)\n', (45543, 45568), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((45577, 45614), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.mask', 'control.mask'], {}), '(test.mask, control.mask)\n', (45589, 45614), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((45655, 45751), 'numpy.ma.core.array', 'array', (['[[2 / 1.0, 3 / 1.0], [4 / 2.0, 5 / 2.0], [6 / 3.0, 7]]'], {'mask': '[[0, 0], [0, 0], [0, 1]]'}), '([[2 / 1.0, 3 / 1.0], [4 / 2.0, 5 / 2.0], [6 / 3.0, 7]], mask=[[0, 0],\n [0, 0], [0, 1]])\n', (45660, 45751), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((45775, 45802), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', 'control'], {}), '(test, control)\n', (45787, 45802), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((45811, 45848), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.data', 'control.data'], {}), '(test.data, control.data)\n', (45823, 45848), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((45857, 45894), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.mask', 'control.mask'], {}), '(test.mask, control.mask)\n', (45869, 45894), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((46028, 46099), 'numpy.ma.core.masked_array', 'masked_array', (['[1.0, 2.0, 3.0]'], {'mask': '[False, False, False]', 'shrink': '(False)'}), '([1.0, 2.0, 3.0], mask=[False, False, False], shrink=False)\n', (46040, 46099), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((46148, 46179), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['b.mask', '[0, 0, 0]'], {}), '(b.mask, [0, 0, 0])\n', (46160, 46179), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((46239, 46270), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['a.mask', '[0, 0, 0]'], {}), '(a.mask, [0, 0, 0])\n', (46251, 46270), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((46334, 46365), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['b.mask', '[0, 0, 0]'], {}), '(b.mask, [0, 0, 0])\n', (46346, 46365), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((46426, 46457), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['a.mask', '[0, 0, 0]'], {}), '(a.mask, [0, 0, 0])\n', (46438, 46457), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((46589, 46644), 'numpy.ma.masked_values', 'np.ma.masked_values', (['[1.0, 2.5, 3.1]', '(1.5)'], {'shrink': '(False)'}), '([1.0, 2.5, 3.1], 1.5, shrink=False)\n', (46608, 46644), True, 'import numpy as np\n'), ((46652, 46683), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['a.mask', '[0, 0, 0]'], {}), '(a.mask, [0, 0, 0])\n', (46664, 46683), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((46845, 46856), 'numpy.ma.core.mod', 'mod', (['ym', 'xm'], {}), '(ym, xm)\n', (46848, 46856), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((46974, 46985), 'numpy.ma.core.mod', 'mod', (['xm', 'ym'], {}), '(xm, ym)\n', (46977, 46985), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((47222, 47232), 'numpy.ma.core.arange', 'arange', (['(24)'], {}), '(24)\n', (47228, 47232), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((47245, 47258), 'numpy.arange', 'np.arange', (['(24)'], {}), '(24)\n', (47254, 47258), True, 'import numpy as np\n'), ((47687, 47725), 'numpy.ma.core.array', 'array', (["['abc', 1, 'def', 2, 3]", 'object'], {}), "(['abc', 1, 'def', 2, 3], object)\n", (47692, 47725), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((47760, 47778), 'numpy.ma.core.take', 'take', (['y', '[0, 3, 4]'], {}), '(y, [0, 3, 4])\n', (47764, 47778), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((47787, 47809), 'numpy.ma.testutils.assert_', 'assert_', (["(t[0] == 'abc')"], {}), "(t[0] == 'abc')\n", (47794, 47809), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((47818, 47836), 'numpy.ma.testutils.assert_', 'assert_', (['(t[1] == 2)'], {}), '(t[1] == 2)\n', (47825, 47836), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((47845, 47863), 'numpy.ma.testutils.assert_', 'assert_', (['(t[2] == 3)'], {}), '(t[2] == 3)\n', (47852, 47863), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((47932, 47974), 'numpy.ma.core.array', 'array', (['[1 + 10.0j, 20 + 2.0j]'], {'mask': '[1, 0]'}), '([1 + 10.0j, 20 + 2.0j], mask=[1, 0])\n', (47937, 47974), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((47979, 48009), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xx.imag', '[10, 2]'], {}), '(xx.imag, [10, 2])\n', (47991, 48009), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((48069, 48117), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xx.imag.dtype', 'xx._data.imag.dtype'], {}), '(xx.imag.dtype, xx._data.imag.dtype)\n', (48081, 48117), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((48126, 48156), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xx.real', '[1, 20]'], {}), '(xx.real, [1, 20])\n', (48138, 48156), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((48217, 48265), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xx.real.dtype', 'xx._data.real.dtype'], {}), '(xx.real.dtype, xx._data.real.dtype)\n', (48229, 48265), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((49633, 49693), 'numpy.ma.core.array', 'array', (['[(1, 1), (2, 2)]'], {'mask': '[(0, 1), (0, 0)]', 'dtype': 'ndtype'}), '([(1, 1), (2, 2)], mask=[(0, 1), (0, 0)], dtype=ndtype)\n', (49638, 49693), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((49726, 49758), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', '[True, True]'], {}), '(test, [True, True])\n', (49738, 49758), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((49767, 49806), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.mask', '[False, False]'], {}), '(test.mask, [False, False])\n', (49779, 49806), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((49819, 49879), 'numpy.ma.core.array', 'array', (['[(1, 1), (2, 2)]'], {'mask': '[(1, 0), (0, 0)]', 'dtype': 'ndtype'}), '([(1, 1), (2, 2)], mask=[(1, 0), (0, 0)], dtype=ndtype)\n', (49824, 49879), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((49912, 49945), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', '[False, True]'], {}), '(test, [False, True])\n', (49924, 49945), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((49954, 49992), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.mask', '[True, False]'], {}), '(test.mask, [True, False])\n', (49966, 49992), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((50005, 50065), 'numpy.ma.core.array', 'array', (['[(1, 1), (2, 2)]'], {'mask': '[(0, 1), (1, 0)]', 'dtype': 'ndtype'}), '([(1, 1), (2, 2)], mask=[(0, 1), (1, 0)], dtype=ndtype)\n', (50010, 50065), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((50098, 50131), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', '[True, False]'], {}), '(test, [True, False])\n', (50110, 50131), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((50140, 50179), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.mask', '[False, False]'], {}), '(test.mask, [False, False])\n', (50152, 50179), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((50321, 50381), 'numpy.ma.core.array', 'array', (['[(1, 1), (2, 2)]'], {'mask': '[(0, 1), (0, 0)]', 'dtype': 'ndtype'}), '([(1, 1), (2, 2)], mask=[(0, 1), (0, 0)], dtype=ndtype)\n', (50326, 50381), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((50414, 50448), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', '[False, False]'], {}), '(test, [False, False])\n', (50426, 50448), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((50457, 50496), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.mask', '[False, False]'], {}), '(test.mask, [False, False])\n', (50469, 50496), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((50509, 50569), 'numpy.ma.core.array', 'array', (['[(1, 1), (2, 2)]'], {'mask': '[(1, 0), (0, 0)]', 'dtype': 'ndtype'}), '([(1, 1), (2, 2)], mask=[(1, 0), (0, 0)], dtype=ndtype)\n', (50514, 50569), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((50602, 50635), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', '[True, False]'], {}), '(test, [True, False])\n', (50614, 50635), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((50644, 50682), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.mask', '[True, False]'], {}), '(test.mask, [True, False])\n', (50656, 50682), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((50695, 50755), 'numpy.ma.core.array', 'array', (['[(1, 1), (2, 2)]'], {'mask': '[(0, 1), (1, 0)]', 'dtype': 'ndtype'}), '([(1, 1), (2, 2)], mask=[(0, 1), (1, 0)], dtype=ndtype)\n', (50700, 50755), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((50788, 50821), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', '[False, True]'], {}), '(test, [False, True])\n', (50800, 50821), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((50830, 50869), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.mask', '[False, False]'], {}), '(test.mask, [False, False])\n', (50842, 50869), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((51073, 51099), 'numpy.ma.core.array', 'array', (['[1, 2]'], {'mask': '[0, 1]'}), '([1, 2], mask=[0, 1])\n', (51078, 51099), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((51108, 51138), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['(a == None)', '(False)'], {}), '(a == None, False)\n', (51120, 51138), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((51147, 51182), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['(a.data == None)', '(False)'], {}), '(a.data == None, False)\n', (51159, 51182), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((51191, 51226), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['(a.mask == None)', '(False)'], {}), '(a.mask == None, False)\n', (51203, 51226), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((51235, 51264), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['(a != None)', '(True)'], {}), '(a != None, True)\n', (51247, 51264), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((51299, 51324), 'numpy.ma.core.array', 'array', (['[1, 2]'], {'mask': '(False)'}), '([1, 2], mask=False)\n', (51304, 51324), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((51333, 51363), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['(a == None)', '(False)'], {}), '(a == None, False)\n', (51345, 51363), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((51372, 51401), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['(a != None)', '(True)'], {}), '(a != None, True)\n', (51384, 51401), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((51443, 51467), 'numpy.ma.core.array', 'array', (['[1, 2]'], {'mask': '(True)'}), '([1, 2], mask=True)\n', (51448, 51467), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((51476, 51506), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['(a == None)', '(False)'], {}), '(a == None, False)\n', (51488, 51506), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((51515, 51544), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['(a != None)', '(True)'], {}), '(a != None, True)\n', (51527, 51544), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((51643, 51674), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['(a == None)', 'masked'], {}), '(a == None, masked)\n', (51655, 51674), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((51720, 51728), 'numpy.ma.core.array', 'array', (['(1)'], {}), '(1)\n', (51725, 51728), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((51737, 51763), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['(a == 1)', '(True)'], {}), '(a == 1, True)\n', (51749, 51763), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((51772, 51799), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['(a == 0)', '(False)'], {}), '(a == 0, False)\n', (51784, 51799), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((51808, 51835), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['(a != 1)', '(False)'], {}), '(a != 1, False)\n', (51820, 51835), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((51844, 51870), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['(a != 0)', '(True)'], {}), '(a != 0, True)\n', (51856, 51870), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((52001, 52053), 'numpy.ma.core.masked_array', 'masked_array', (['[-1, 0, 1, 2, 3]'], {'mask': '[0, 0, 0, 0, 1]'}), '([-1, 0, 1, 2, 3], mask=[0, 0, 0, 0, 1])\n', (52013, 52053), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((52190, 52196), 'numpy.ma.core.log', 'log', (['a'], {}), '(a)\n', (52193, 52196), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((52205, 52232), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', 'control'], {}), '(test, control)\n', (52217, 52232), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((52241, 52278), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.mask', 'control.mask'], {}), '(test.mask, control.mask)\n', (52253, 52278), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((52287, 52324), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['a.mask', '[0, 0, 0, 0, 1]'], {}), '(a.mask, [0, 0, 0, 0, 1])\n', (52299, 52324), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((52341, 52350), 'numpy.log', 'np.log', (['a'], {}), '(a)\n', (52347, 52350), True, 'import numpy as np\n'), ((52359, 52386), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', 'control'], {}), '(test, control)\n', (52371, 52386), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((52395, 52432), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.mask', 'control.mask'], {}), '(test.mask, control.mask)\n', (52407, 52432), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((52441, 52478), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['a.mask', '[0, 0, 0, 0, 1]'], {}), '(a.mask, [0, 0, 0, 0, 1])\n', (52453, 52478), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((52601, 52640), 'numpy.ma.core.masked_array', 'masked_array', (['[1, 2, 3]'], {'mask': '[1, 0, 0]'}), '([1, 2, 3], mask=[1, 0, 0])\n', (52613, 52640), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((52654, 52669), 'numpy.ma.core.masked_array', 'masked_array', (['x'], {}), '(x)\n', (52666, 52669), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((52678, 52707), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['mx.mask', 'x.mask'], {}), '(mx.mask, x.mask)\n', (52690, 52707), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((52721, 52769), 'numpy.ma.core.masked_array', 'masked_array', (['x'], {'mask': '[0, 1, 0]', 'keep_mask': '(False)'}), '(x, mask=[0, 1, 0], keep_mask=False)\n', (52733, 52769), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((52778, 52810), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['mx.mask', '[0, 1, 0]'], {}), '(mx.mask, [0, 1, 0])\n', (52790, 52810), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((52824, 52871), 'numpy.ma.core.masked_array', 'masked_array', (['x'], {'mask': '[0, 1, 0]', 'keep_mask': '(True)'}), '(x, mask=[0, 1, 0], keep_mask=True)\n', (52836, 52871), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((52880, 52912), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['mx.mask', '[1, 1, 0]'], {}), '(mx.mask, [1, 1, 0])\n', (52892, 52912), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((52955, 52986), 'numpy.ma.core.masked_array', 'masked_array', (['x'], {'mask': '[0, 1, 0]'}), '(x, mask=[0, 1, 0])\n', (52967, 52986), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((52995, 53027), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['mx.mask', '[1, 1, 0]'], {}), '(mx.mask, [1, 1, 0])\n', (53007, 53027), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((53095, 53104), 'numpy.ma.core.arange', 'arange', (['(5)'], {}), '(5)\n', (53101, 53104), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((53145, 53157), 'numpy.ma.core.make_mask', 'make_mask', (['n'], {}), '(n)\n', (53154, 53157), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((53171, 53203), 'numpy.ma.core.array', 'array', (['d'], {'mask': 'm', 'hard_mask': '(True)'}), '(d, mask=m, hard_mask=True)\n', (53176, 53203), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((53272, 53316), 'numpy.ma.core.array', 'array', (['d'], {'mask': 'm', 'hard_mask': '(False)', 'copy': '(True)'}), '(d, mask=m, hard_mask=False, copy=True)\n', (53277, 53316), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((53385, 53425), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xh._data', '[0, 10, 2, 3, 4]'], {}), '(xh._data, [0, 10, 2, 3, 4])\n', (53397, 53425), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((53434, 53475), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xs._data', '[0, 10, 2, 3, 40]'], {}), '(xs._data, [0, 10, 2, 3, 40])\n', (53446, 53475), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((53484, 53522), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xs.mask', '[0, 0, 0, 1, 0]'], {}), '(xs.mask, [0, 0, 0, 1, 0])\n', (53496, 53522), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((53673, 53714), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xh._data', '[0, 10, 20, 3, 4]'], {}), '(xh._data, [0, 10, 20, 3, 4])\n', (53685, 53714), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((53723, 53766), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xs._data', '[0, 10, 20, 30, 40]'], {}), '(xs._data, [0, 10, 20, 30, 40])\n', (53735, 53766), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((53775, 53804), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xs.mask', 'nomask'], {}), '(xs.mask, nomask)\n', (53787, 53804), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((53859, 53897), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xh.mask', '[1, 0, 0, 1, 1]'], {}), '(xh.mask, [1, 0, 0, 1, 1])\n', (53871, 53897), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((53906, 53944), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xs.mask', '[1, 0, 0, 0, 0]'], {}), '(xs.mask, [1, 0, 0, 0, 0])\n', (53918, 53944), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((53989, 54028), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xh._data', '[0, 1, 1, 3, 4]'], {}), '(xh._data, [0, 1, 1, 3, 4])\n', (54001, 54028), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((54037, 54076), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xs._data', '[1, 1, 1, 1, 1]'], {}), '(xs._data, [1, 1, 1, 1, 1])\n', (54049, 54076), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((54085, 54123), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xh.mask', '[1, 0, 0, 1, 1]'], {}), '(xh.mask, [1, 0, 0, 1, 1])\n', (54097, 54123), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((54132, 54161), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xs.mask', 'nomask'], {}), '(xs.mask, nomask)\n', (54144, 54161), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((54233, 54242), 'numpy.ma.core.arange', 'arange', (['(5)'], {}), '(5)\n', (54239, 54242), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((54251, 54290), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xh._data', '[0, 1, 2, 3, 4]'], {}), '(xh._data, [0, 1, 2, 3, 4])\n', (54263, 54290), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((54299, 54328), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xh.mask', 'nomask'], {}), '(xh.mask, nomask)\n', (54311, 54328), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((54425, 54464), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xh._data', '[0, 1, 2, 3, 4]'], {}), '(xh._data, [0, 1, 2, 3, 4])\n', (54437, 54464), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((54473, 54512), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xh._mask', '[1, 1, 1, 0, 0]'], {}), '(xh._mask, [1, 1, 1, 0, 0])\n', (54485, 54512), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((54559, 54598), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xh._data', '[0, 1, 2, 5, 5]'], {}), '(xh._data, [0, 1, 2, 5, 5])\n', (54571, 54598), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((54607, 54646), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xh._mask', '[1, 1, 1, 0, 0]'], {}), '(xh._mask, [1, 1, 1, 0, 0])\n', (54619, 54646), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((54661, 54723), 'numpy.ma.core.array', 'array', (['[[1, 2], [3, 4]]'], {'mask': '[[1, 0], [0, 0]]', 'hard_mask': '(True)'}), '([[1, 2], [3, 4]], mask=[[1, 0], [0, 0]], hard_mask=True)\n', (54666, 54723), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((54750, 54790), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xh._data', '[[1, 0], [3, 4]]'], {}), '(xh._data, [[1, 0], [3, 4]])\n', (54762, 54790), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((54799, 54839), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xh._mask', '[[1, 0], [0, 0]]'], {}), '(xh._mask, [[1, 0], [0, 0]])\n', (54811, 54839), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((54871, 54911), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xh._data', '[[1, 0], [3, 5]]'], {}), '(xh._data, [[1, 0], [3, 5]])\n', (54883, 54911), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((54920, 54960), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xh._mask', '[[1, 0], [0, 0]]'], {}), '(xh._mask, [[1, 0], [0, 0]])\n', (54932, 54960), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((55007, 55047), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xh._data', '[[1, 2], [2, 5]]'], {}), '(xh._data, [[1, 2], [2, 5]])\n', (55019, 55047), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((55056, 55096), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xh._mask', '[[1, 0], [0, 0]]'], {}), '(xh._mask, [[1, 0], [0, 0]])\n', (55068, 55096), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((55180, 55189), 'numpy.ma.core.arange', 'arange', (['(5)'], {}), '(5)\n', (55186, 55189), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((55230, 55242), 'numpy.ma.core.make_mask', 'make_mask', (['n'], {}), '(n)\n', (55239, 55242), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((55256, 55288), 'numpy.ma.core.array', 'array', (['d'], {'mask': 'm', 'hard_mask': '(True)'}), '(d, mask=m, hard_mask=True)\n', (55261, 55288), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((55341, 55382), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xh._data', '[999, 1, 2, 3, 4]'], {}), '(xh._data, [999, 1, 2, 3, 4])\n', (55353, 55382), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((55557, 55589), 'numpy.ma.core.array', 'array', (['[1, 2, 3]'], {'mask': '[1, 0, 0]'}), '([1, 2, 3], mask=[1, 0, 0])\n', (55562, 55589), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((55626, 55644), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['a', 'b'], {}), '(a, b)\n', (55638, 55644), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((55670, 55688), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['a', 'b'], {}), '(a, b)\n', (55682, 55688), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((55800, 55818), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['a', 'b'], {}), '(a, b)\n', (55812, 55818), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((55965, 55975), 'numpy.ma.core.arange', 'arange', (['(10)'], {}), '(10)\n', (55971, 55975), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((56023, 56052), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['a._mask', 'nomask'], {}), '(a._mask, nomask)\n', (56035, 56052), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((56065, 56075), 'numpy.ma.core.arange', 'arange', (['(10)'], {}), '(10)\n', (56071, 56075), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((56261, 56293), 'numpy.ma.core.array', 'array', (['[1, 2, 3]'], {'mask': '[0, 0, 0]'}), '([1, 2, 3], mask=[0, 0, 0])\n', (56266, 56293), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((56330, 56348), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['a', 'b'], {}), '(a, b)\n', (56342, 56348), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((56357, 56385), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['a.mask', 'nomask'], {}), '(a.mask, nomask)\n', (56369, 56385), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((56587, 56616), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.flat[1]', '(2)'], {}), '(test.flat[1], 2)\n', (56599, 56616), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((56625, 56659), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.flat[2]', 'masked'], {}), '(test.flat[2], masked)\n', (56637, 56659), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((56851, 56890), 'numpy.ma.core.masked_array', 'masked_array', (['[3, 2, 1]'], {'mask': '[1, 0, 0]'}), '([3, 2, 1], mask=[1, 0, 0])\n', (56863, 56890), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((56970, 56997), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', 'control'], {}), '(test, control)\n', (56982, 56997), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((57168, 57195), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', 'control'], {}), '(test, control)\n', (57180, 57195), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((57228, 57255), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test[0, 0]', '(9)'], {}), '(test[0, 0], 9)\n', (57240, 57255), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((57352, 57522), 'numpy.ma.core.array', 'array', (["[[(1, 1.1, 'one'), (2, 2.2, 'two'), (3, 3.3, 'thr')], [(4, 4.4, 'fou'), (5,\n 5.5, 'fiv'), (6, 6.6, 'six')]]"], {'dtype': "[('a', int), ('b', float), ('c', '|S8')]"}), "([[(1, 1.1, 'one'), (2, 2.2, 'two'), (3, 3.3, 'thr')], [(4, 4.4, 'fou'\n ), (5, 5.5, 'fiv'), (6, 6.6, 'six')]], dtype=[('a', int), ('b', float),\n ('c', '|S8')])\n", (57357, 57522), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((57699, 57730), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xflat[0]', 'x[0, 0]'], {}), '(xflat[0], x[0, 0])\n', (57711, 57730), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((57739, 57770), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xflat[1]', 'x[0, 1]'], {}), '(xflat[1], x[0, 1])\n', (57751, 57770), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((57779, 57810), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xflat[2]', 'x[0, 2]'], {}), '(xflat[2], x[0, 2])\n', (57791, 57810), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((57819, 57848), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xflat[:3]', 'x[0]'], {}), '(xflat[:3], x[0])\n', (57831, 57848), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((57857, 57888), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xflat[3]', 'x[1, 0]'], {}), '(xflat[3], x[1, 0])\n', (57869, 57888), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((57897, 57928), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xflat[4]', 'x[1, 1]'], {}), '(xflat[4], x[1, 1])\n', (57909, 57928), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((57937, 57968), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xflat[5]', 'x[1, 2]'], {}), '(xflat[5], x[1, 2])\n', (57949, 57968), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((57977, 58006), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xflat[3:]', 'x[1]'], {}), '(xflat[3:], x[1])\n', (57989, 58006), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((58015, 58049), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xflat[-1]', 'x[-1, -1]'], {}), '(xflat[-1], x[-1, -1])\n', (58027, 58049), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((58615, 58641), 'numpy.zeros', 'np.zeros', (['(4)'], {'dtype': '"""f4,i4"""'}), "(4, dtype='f4,i4')\n", (58623, 58641), True, 'import numpy as np\n'), ((58655, 58669), 'numpy.ma.array', 'np.ma.array', (['a'], {}), '(a)\n', (58666, 58669), True, 'import numpy as np\n'), ((58688, 58702), 'numpy.dtype', 'np.dtype', (['"""f4"""'], {}), "('f4')\n", (58696, 58702), True, 'import numpy as np\n'), ((58971, 59004), 'numpy.testing.assert_raises', 'assert_raises', (['ValueError', 'assign'], {}), '(ValueError, assign)\n', (58984, 59004), False, 'from numpy.testing import TestCase, run_module_suite, assert_raises\n'), ((59172, 59195), 'numpy.zeros', 'np.zeros', (['(4)'], {'dtype': '"""f4"""'}), "(4, dtype='f4')\n", (59180, 59195), True, 'import numpy as np\n'), ((59208, 59222), 'numpy.ma.array', 'np.ma.array', (['a'], {}), '(a)\n', (59219, 59222), True, 'import numpy as np\n'), ((59241, 59258), 'numpy.dtype', 'np.dtype', (['"""f4,i4"""'], {}), "('f4,i4')\n", (59249, 59258), True, 'import numpy as np\n'), ((59316, 59351), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['m._mask', 'np.ma.nomask'], {}), '(m._mask, np.ma.nomask)\n', (59328, 59351), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((59598, 59619), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['fval', '(0)'], {}), '(fval, 0)\n', (59610, 59619), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((60912, 60962), 'numpy.array', 'np.array', (["(-999, -12345678.9, '???')"], {'dtype': 'ndtype'}), "((-999, -12345678.9, '???'), dtype=ndtype)\n", (60920, 60962), True, 'import numpy as np\n'), ((61505, 61593), 'numpy.array', 'np.array', (["('???', -999, -12345678.9)"], {'dtype': "[('c', '|S3'), ('a', int), ('b', float)]"}), "(('???', -999, -12345678.9), dtype=[('c', '|S3'), ('a', int), ('b',\n float)])\n", (61513, 61593), True, 'import numpy as np\n'), ((61873, 61909), 'numpy.ndarray', 'np.ndarray', ([], {'shape': '(1,)', 'dtype': 'object'}), '(shape=(1,), dtype=object)\n', (61883, 61909), True, 'import numpy as np\n'), ((63080, 63099), 'numpy.ma.core.array', 'array', (['a'], {'dtype': 'int'}), '(a, dtype=int)\n', (63085, 63099), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((63108, 63140), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['b._data', '[3, 4, 5]'], {}), '(b._data, [3, 4, 5])\n', (63120, 63140), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((63212, 63233), 'numpy.ma.core.array', 'array', (['a'], {'dtype': 'float'}), '(a, dtype=float)\n', (63217, 63233), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((63242, 63274), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['b._data', '[3, 4, 5]'], {}), '(b._data, [3, 4, 5])\n', (63254, 63274), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((63369, 63401), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['b._data', '[3, 4, 5]'], {}), '(b._data, [3, 4, 5])\n', (63381, 63401), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((63468, 63515), 'numpy.ma.testutils.assert_equal', 'assert_equal', (["b._optinfo['comment']", '"""updated!"""'], {}), "(b._optinfo['comment'], 'updated!')\n", (63480, 63515), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((63562, 63597), 'numpy.ma.testutils.assert_equal', 'assert_equal', (["b['a']._data", 'a._data'], {}), "(b['a']._data, a._data)\n", (63574, 63597), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((63606, 63651), 'numpy.ma.testutils.assert_equal', 'assert_equal', (["b['a'].fill_value", 'a.fill_value'], {}), "(b['a'].fill_value, a.fill_value)\n", (63618, 63651), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((63741, 63781), 'numpy.ma.core.masked_array', 'masked_array', (['[1, 2, 3]'], {'fill_value': '(-999)'}), '([1, 2, 3], fill_value=-999)\n', (63753, 63781), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((63823, 63873), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['series._fill_value', 'data._fill_value'], {}), '(series._fill_value, data._fill_value)\n', (63835, 63873), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((63932, 63984), 'numpy.ma.core.array', 'array', (["[(1, 'a'), (2, 'b'), (pi, 'pi')]"], {'dtype': 'mtype'}), "([(1, 'a'), (2, 'b'), (pi, 'pi')], dtype=mtype)\n", (63937, 63984), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((64086, 64122), 'numpy.ma.testutils.assert_equal', 'assert_equal', (["x['f'].fill_value", '(999)'], {}), "(x['f'].fill_value, 999)\n", (64098, 64122), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((64285, 64319), 'numpy.ma.testutils.assert_equal', 'assert_equal', (["x['f'].fill_value", '(9)'], {}), "(x['f'].fill_value, 9)\n", (64297, 64319), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((64389, 64407), 'numpy.ma.core.array', 'array', (['[1, 2, 3.1]'], {}), '([1, 2, 3.1])\n', (64394, 64407), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((64503, 64536), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x.fill_value', '(999.0)'], {}), '(x.fill_value, 999.0)\n', (64515, 64536), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((65466, 65500), 'numpy.dtype', 'np.dtype', (['"""int, (2,3)float, float"""'], {}), "('int, (2,3)float, float')\n", (65474, 65500), True, 'import numpy as np\n'), ((65782, 65809), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', 'control'], {}), '(test, control)\n', (65794, 65809), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((66059, 66080), 'numpy.ma.core.masked_array', 'masked_array', (['control'], {}), '(control)\n', (66071, 66080), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((66089, 66129), 'numpy.ma.testutils.assert_equal', 'assert_equal', (["M['f1'].fill_value.ndim", '(0)'], {}), "(M['f1'].fill_value.ndim, 0)\n", (66101, 66129), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((66923, 67016), 'numpy.ma.core.array', 'array', (['[(1, (2, 3)), (4, (5, 6))]'], {'dtype': "[('A', int), ('B', [('BA', int), ('BB', int)])]"}), "([(1, (2, 3)), (4, (5, 6))], dtype=[('A', int), ('B', [('BA', int), (\n 'BB', int)])])\n", (66928, 67016), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((67278, 67299), 'numpy.ma.core.minimum_fill_value', 'minimum_fill_value', (['a'], {}), '(a)\n', (67296, 67299), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((67566, 67587), 'numpy.ma.core.maximum_fill_value', 'maximum_fill_value', (['a'], {}), '(a)\n', (67584, 67587), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((68957, 68995), 'numpy.ma.core.empty', 'empty', (['a.shape'], {'dtype': '[adtype, ndtype]'}), '(a.shape, dtype=[adtype, ndtype])\n', (68962, 68995), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((69304, 69330), 'numpy.ma.core.empty', 'empty', (['(3)'], {'fill_value': '(999.0)'}), '(3, fill_value=999.0)\n', (69309, 69330), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((69338, 69371), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['a.fill_value', '(999.0)'], {}), '(a.fill_value, 999.0)\n', (69350, 69371), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((69384, 69422), 'numpy.ma.core.ones', 'ones', (['(3)'], {'fill_value': '(999.0)', 'dtype': 'float'}), '(3, fill_value=999.0, dtype=float)\n', (69388, 69422), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((69430, 69463), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['a.fill_value', '(999.0)'], {}), '(a.fill_value, 999.0)\n', (69442, 69463), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((69476, 69515), 'numpy.ma.core.zeros', 'zeros', (['(3)'], {'fill_value': '(0.0)', 'dtype': 'complex'}), '(3, fill_value=0.0, dtype=complex)\n', (69481, 69515), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((69523, 69554), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['a.fill_value', '(0.0)'], {}), '(a.fill_value, 0.0)\n', (69535, 69554), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((69567, 69609), 'numpy.ma.core.identity', 'identity', (['(3)'], {'fill_value': '(0.0)', 'dtype': 'complex'}), '(3, fill_value=0.0, dtype=complex)\n', (69575, 69609), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((69617, 69648), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['a.fill_value', '(0.0)'], {}), '(a.fill_value, 0.0)\n', (69629, 69648), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((69777, 69794), 'numpy.ma.core.empty', 'empty', ([], {'shape': '(3,)'}), '(shape=(3,))\n', (69782, 69794), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((69804, 69831), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['a.shape', '(3,)'], {}), '(a.shape, (3,))\n', (69816, 69831), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((69846, 69875), 'numpy.ma.core.ones', 'ones', ([], {'shape': '(3,)', 'dtype': 'float'}), '(shape=(3,), dtype=float)\n', (69850, 69875), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((69885, 69912), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['a.shape', '(3,)'], {}), '(a.shape, (3,))\n', (69897, 69912), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((69927, 69959), 'numpy.ma.core.zeros', 'zeros', ([], {'shape': '(3,)', 'dtype': 'complex'}), '(shape=(3,), dtype=complex)\n', (69932, 69959), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((69969, 69996), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['a.shape', '(3,)'], {}), '(a.shape, (3,))\n', (69981, 69996), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((70138, 70184), 'numpy.ma.core.array', 'array', (['[1, 2, 3]'], {'fill_value': '(1)', 'dtype': 'np.int64'}), '([1, 2, 3], fill_value=1, dtype=np.int64)\n', (70143, 70184), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((70271, 70297), 'numpy.ma.testutils.assert_', 'assert_', (['(y.fill_value == 1)'], {}), '(y.fill_value == 1)\n', (70278, 70297), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((70486, 70512), 'numpy.ma.testutils.assert_', 'assert_', (['(y.fill_value == 1)'], {}), '(y.fill_value == 1)\n', (70493, 70512), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((70767, 70793), 'numpy.ma.testutils.assert_', 'assert_', (['(y.fill_value == 1)'], {}), '(y.fill_value == 1)\n', (70774, 70793), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((71102, 71128), 'numpy.ma.testutils.assert_', 'assert_', (['(y.fill_value == 2)'], {}), '(y.fill_value == 2)\n', (71109, 71128), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((71263, 71289), 'numpy.ma.testutils.assert_', 'assert_', (['(y.fill_value == 2)'], {}), '(y.fill_value == 2)\n', (71270, 71289), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((71680, 71711), 'numpy.ma.testutils.assert_', 'assert_', (['(y.fill_value == 999999)'], {}), '(y.fill_value == 999999)\n', (71687, 71711), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((71895, 71933), 'numpy.ma.core.empty', 'empty', ([], {'shape': '(3,)', 'dtype': '"""(2)3S,(2)3U"""'}), "(shape=(3,), dtype='(2)3S,(2)3U')\n", (71900, 71933), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((72397, 72408), 'numpy.geterr', 'np.geterr', ([], {}), '()\n', (72406, 72408), True, 'import numpy as np\n'), ((72417, 72461), 'numpy.seterr', 'np.seterr', ([], {'divide': '"""ignore"""', 'invalid': '"""ignore"""'}), "(divide='ignore', invalid='ignore')\n", (72426, 72461), True, 'import numpy as np\n'), ((72495, 72523), 'numpy.seterr', 'np.seterr', ([], {}), '(**self.err_status)\n', (72504, 72523), True, 'import numpy as np\n'), ((74182, 74204), 'numpy.ma.core.masked_where', 'masked_where', (['(a < 5)', 'a'], {}), '(a < 5, a)\n', (74194, 74204), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((74597, 74649), 'numpy.ma.core.masked_array', 'masked_array', (['[-1, 0, 1, 2, 3]'], {'mask': '[0, 0, 0, 0, 1]'}), '([-1, 0, 1, 2, 3], mask=[0, 0, 0, 0, 1])\n', (74609, 74649), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((74665, 74675), 'numpy.sqrt', 'np.sqrt', (['a'], {}), '(a)\n', (74672, 74675), True, 'import numpy as np\n'), ((74796, 74823), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', 'control'], {}), '(test, control)\n', (74808, 74823), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((74832, 74869), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.mask', 'control.mask'], {}), '(test.mask, control.mask)\n', (74844, 74869), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((75066, 75103), 'numpy.ma.core.masked_array', 'masked_array', (['[1.0, 2.0]'], {'mask': '[1, 0]'}), '([1.0, 2.0], mask=[1, 0])\n', (75078, 75103), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((75494, 75521), 'numpy.ma.testutils.assert_', 'assert_', (["(me * a == 'My mul')"], {}), "(me * a == 'My mul')\n", (75501, 75521), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((75530, 75558), 'numpy.ma.testutils.assert_', 'assert_', (["(a * me == 'My rmul')"], {}), "(a * me == 'My rmul')\n", (75537, 75558), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((76142, 76173), 'numpy.ma.testutils.assert_', 'assert_', (["(me_too * a == 'Me2mul')"], {}), "(me_too * a == 'Me2mul')\n", (76149, 76173), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((76182, 76214), 'numpy.ma.testutils.assert_', 'assert_', (["(a * me_too == 'Me2rmul')"], {}), "(a * me_too == 'Me2rmul')\n", (76189, 76214), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((76223, 76255), 'numpy.ma.testutils.assert_', 'assert_', (["(a / me_too == 'Me2rdiv')"], {}), "(a / me_too == 'Me2rdiv')\n", (76230, 76255), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((76399, 76438), 'numpy.ma.array', 'np.ma.array', (['[0.5, np.nan]'], {'mask': '[0, 1]'}), '([0.5, np.nan], mask=[0, 1])\n', (76410, 76438), True, 'import numpy as np\n'), ((77079, 77089), 'numpy.ma.core.arange', 'arange', (['(10)'], {}), '(10)\n', (77085, 77089), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((77102, 77112), 'numpy.ma.core.arange', 'arange', (['(10)'], {}), '(10)\n', (77108, 77112), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((77126, 77136), 'numpy.ma.core.arange', 'arange', (['(10)'], {}), '(10)\n', (77132, 77136), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((77716, 77738), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x', '(y + 1)'], {}), '(x, y + 1)\n', (77728, 77738), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((77763, 77786), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xm', '(y + 1)'], {}), '(xm, y + 1)\n', (77775, 77786), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((77882, 77917), 'numpy.ma.testutils.assert_', 'assert_', (['(id1 == x.data.ctypes._data)'], {}), '(id1 == x.data.ctypes._data)\n', (77889, 77917), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((77926, 77950), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x', '(y + 1.0)'], {}), '(x, y + 1.0)\n', (77938, 77950), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((78096, 78122), 'numpy.ma.core.arange', 'arange', (['(10)'], {'dtype': 'np.int16'}), '(10, dtype=np.int16)\n', (78102, 78122), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((78185, 78207), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x', '(y + a)'], {}), '(x, y + a)\n', (78197, 78207), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((78216, 78239), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xm', '(y + a)'], {}), '(xm, y + a)\n', (78228, 78239), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((78434, 78456), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x', '(y - 1)'], {}), '(x, y - 1)\n', (78446, 78456), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((78481, 78504), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xm', '(y - 1)'], {}), '(xm, y - 1)\n', (78493, 78504), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((78659, 78682), 'numpy.ma.core.arange', 'arange', (['(10)'], {'dtype': 'float'}), '(10, dtype=float)\n', (78665, 78682), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((78745, 78767), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x', '(y - a)'], {}), '(x, y - a)\n', (78757, 78767), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((78776, 78799), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xm', '(y - a)'], {}), '(xm, y - a)\n', (78788, 78799), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((79003, 79025), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x', '(y * 2)'], {}), '(x, y * 2)\n', (79015, 79025), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((79052, 79075), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xm', '(y * 2)'], {}), '(xm, y * 2)\n', (79064, 79075), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((79235, 79258), 'numpy.ma.core.arange', 'arange', (['(10)'], {'dtype': 'float'}), '(10, dtype=float)\n', (79241, 79258), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((79321, 79343), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x', '(y * a)'], {}), '(x, y * a)\n', (79333, 79343), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((79352, 79375), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xm', '(y * a)'], {}), '(xm, y * a)\n', (79364, 79375), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((79646, 79664), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x', 'y'], {}), '(x, y)\n', (79658, 79664), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((79690, 79709), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xm', 'y'], {}), '(xm, y)\n', (79702, 79709), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((79857, 79881), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x', '(y / 2.0)'], {}), '(x, y / 2.0)\n', (79869, 79881), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((79896, 79906), 'numpy.ma.core.arange', 'arange', (['(10)'], {}), '(10)\n', (79902, 79906), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((80098, 80121), 'numpy.ma.core.arange', 'arange', (['(10)'], {'dtype': 'float'}), '(10, dtype=float)\n', (80104, 80121), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((80184, 80206), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x', '(y / a)'], {}), '(x, y / a)\n', (80196, 80206), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((80215, 80238), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xm', '(y / a)'], {}), '(xm, y / a)\n', (80227, 80238), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((80601, 80625), 'numpy.ma.core.masked_array', 'masked_array', (['x'], {'mask': 'm1'}), '(x, mask=m1)\n', (80613, 80625), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((80639, 80663), 'numpy.ma.core.masked_array', 'masked_array', (['y'], {'mask': 'm2'}), '(y, mask=m2)\n', (80651, 80663), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((80693, 80752), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['z._mask', '[1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1]'], {}), '(z._mask, [1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1])\n', (80705, 80752), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((80761, 80856), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['z._data', '[1.0, 1.0, 1.0, -1.0, -pi / 2.0, 4.0, 5.0, 1.0, 1.0, 1.0, 2.0, 3.0]'], {}), '(z._data, [1.0, 1.0, 1.0, -1.0, -pi / 2.0, 4.0, 5.0, 1.0, 1.0, \n 1.0, 2.0, 3.0])\n', (80773, 80856), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((80910, 80970), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xm._mask', '[1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1]'], {}), '(xm._mask, [1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1])\n', (80922, 80970), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((80979, 81074), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['z._data', '[1.0, 1.0, 1.0, -1.0, -pi / 2.0, 4.0, 5.0, 1.0, 1.0, 1.0, 2.0, 3.0]'], {}), '(z._data, [1.0, 1.0, 1.0, -1.0, -pi / 2.0, 4.0, 5.0, 1.0, 1.0, \n 1.0, 2.0, 3.0])\n', (80991, 81074), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((81179, 81211), 'numpy.ma.core.array', 'array', (['[1, 2, 3]'], {'mask': '[0, 0, 1]'}), '([1, 2, 3], mask=[0, 0, 1])\n', (81184, 81211), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((81268, 81300), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xx.data', '[2, 3, 3]'], {}), '(xx.data, [2, 3, 3])\n', (81280, 81300), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((81309, 81341), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xx.mask', '[0, 0, 1]'], {}), '(xx.mask, [0, 0, 1])\n', (81321, 81341), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((81395, 81426), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x.data', '[2, 3, 3]'], {}), '(x.data, [2, 3, 3])\n', (81407, 81426), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((81435, 81466), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x.mask', '[0, 0, 1]'], {}), '(x.mask, [0, 0, 1])\n', (81447, 81466), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((81507, 81539), 'numpy.ma.core.array', 'array', (['[1, 2, 3]'], {'mask': '[0, 0, 1]'}), '([1, 2, 3], mask=[0, 0, 1])\n', (81512, 81539), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((81598, 81630), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xx.data', '[1, 4, 3]'], {}), '(xx.data, [1, 4, 3])\n', (81610, 81630), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((81639, 81671), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xx.mask', '[1, 0, 1]'], {}), '(xx.mask, [1, 0, 1])\n', (81651, 81671), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((81713, 81745), 'numpy.ma.core.array', 'array', (['[1, 2, 3]'], {'mask': '[0, 0, 1]'}), '([1, 2, 3], mask=[0, 0, 1])\n', (81718, 81745), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((81759, 81791), 'numpy.ma.core.array', 'array', (['[1, 2, 3]'], {'mask': '[1, 0, 0]'}), '([1, 2, 3], mask=[1, 0, 0])\n', (81764, 81791), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((81800, 81831), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x.data', '[1, 4, 3]'], {}), '(x.data, [1, 4, 3])\n', (81812, 81831), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((81840, 81871), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x.mask', '[1, 0, 1]'], {}), '(x.mask, [1, 0, 1])\n', (81852, 81871), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((82004, 82036), 'numpy.ma.core.array', 'array', (['[1, 2, 3]'], {'mask': '[0, 0, 1]'}), '([1, 2, 3], mask=[0, 0, 1])\n', (82009, 82036), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((82064, 82096), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xx.data', '[0, 1, 3]'], {}), '(xx.data, [0, 1, 3])\n', (82076, 82096), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((82105, 82137), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xx.mask', '[0, 0, 1]'], {}), '(xx.mask, [0, 0, 1])\n', (82117, 82137), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((82180, 82212), 'numpy.ma.core.array', 'array', (['[1, 2, 3]'], {'mask': '[0, 0, 1]'}), '([1, 2, 3], mask=[0, 0, 1])\n', (82185, 82212), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((82236, 82267), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x.data', '[0, 1, 3]'], {}), '(x.data, [0, 1, 3])\n', (82248, 82267), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((82276, 82307), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x.mask', '[0, 0, 1]'], {}), '(x.mask, [0, 0, 1])\n', (82288, 82307), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((82348, 82380), 'numpy.ma.core.array', 'array', (['[1, 2, 3]'], {'mask': '[0, 0, 1]'}), '([1, 2, 3], mask=[0, 0, 1])\n', (82353, 82380), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((82439, 82471), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xx.data', '[1, 0, 3]'], {}), '(xx.data, [1, 0, 3])\n', (82451, 82471), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((82480, 82512), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xx.mask', '[1, 0, 1]'], {}), '(xx.mask, [1, 0, 1])\n', (82492, 82512), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((82554, 82586), 'numpy.ma.core.array', 'array', (['[1, 2, 3]'], {'mask': '[0, 0, 1]'}), '([1, 2, 3], mask=[0, 0, 1])\n', (82559, 82586), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((82600, 82632), 'numpy.ma.core.array', 'array', (['[1, 2, 3]'], {'mask': '[1, 0, 0]'}), '([1, 2, 3], mask=[1, 0, 0])\n', (82605, 82632), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((82641, 82672), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x.data', '[1, 0, 3]'], {}), '(x.data, [1, 0, 3])\n', (82653, 82672), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((82681, 82712), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x.mask', '[1, 0, 1]'], {}), '(x.mask, [1, 0, 1])\n', (82693, 82712), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((82848, 82880), 'numpy.ma.core.array', 'array', (['[1, 2, 3]'], {'mask': '[0, 0, 1]'}), '([1, 2, 3], mask=[0, 0, 1])\n', (82853, 82880), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((82908, 82940), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xx.data', '[2, 4, 3]'], {}), '(xx.data, [2, 4, 3])\n', (82920, 82940), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((82949, 82981), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xx.mask', '[0, 0, 1]'], {}), '(xx.mask, [0, 0, 1])\n', (82961, 82981), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((83024, 83056), 'numpy.ma.core.array', 'array', (['[1, 2, 3]'], {'mask': '[0, 0, 1]'}), '([1, 2, 3], mask=[0, 0, 1])\n', (83029, 83056), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((83080, 83111), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x.data', '[2, 4, 3]'], {}), '(x.data, [2, 4, 3])\n', (83092, 83111), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((83120, 83151), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x.mask', '[0, 0, 1]'], {}), '(x.mask, [0, 0, 1])\n', (83132, 83151), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((83192, 83224), 'numpy.ma.core.array', 'array', (['[1, 2, 3]'], {'mask': '[0, 0, 1]'}), '([1, 2, 3], mask=[0, 0, 1])\n', (83197, 83224), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((83286, 83319), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xx.data', '[1, 40, 3]'], {}), '(xx.data, [1, 40, 3])\n', (83298, 83319), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((83328, 83360), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xx.mask', '[1, 0, 1]'], {}), '(xx.mask, [1, 0, 1])\n', (83340, 83360), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((83402, 83434), 'numpy.ma.core.array', 'array', (['[1, 2, 3]'], {'mask': '[0, 0, 1]'}), '([1, 2, 3], mask=[0, 0, 1])\n', (83407, 83434), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((83448, 83483), 'numpy.ma.core.array', 'array', (['[10, 20, 30]'], {'mask': '[1, 0, 0]'}), '([10, 20, 30], mask=[1, 0, 0])\n', (83453, 83483), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((83492, 83524), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x.data', '[1, 40, 3]'], {}), '(x.data, [1, 40, 3])\n', (83504, 83524), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((83533, 83564), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x.mask', '[1, 0, 1]'], {}), '(x.mask, [1, 0, 1])\n', (83545, 83564), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((83694, 83726), 'numpy.ma.core.array', 'array', (['[1, 2, 3]'], {'mask': '[0, 0, 1]'}), '([1, 2, 3], mask=[0, 0, 1])\n', (83699, 83726), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((83755, 83799), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xx.data', '[1 / 2.0, 2 / 2.0, 3]'], {}), '(xx.data, [1 / 2.0, 2 / 2.0, 3])\n', (83767, 83799), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((83806, 83838), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xx.mask', '[0, 0, 1]'], {}), '(xx.mask, [0, 0, 1])\n', (83818, 83838), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((83881, 83919), 'numpy.ma.core.array', 'array', (['[1.0, 2.0, 3.0]'], {'mask': '[0, 0, 1]'}), '([1.0, 2.0, 3.0], mask=[0, 0, 1])\n', (83886, 83919), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((83941, 83984), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x.data', '[1 / 2.0, 2 / 2.0, 3]'], {}), '(x.data, [1 / 2.0, 2 / 2.0, 3])\n', (83953, 83984), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((83991, 84022), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x.mask', '[0, 0, 1]'], {}), '(x.mask, [0, 0, 1])\n', (84003, 84022), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((84063, 84101), 'numpy.ma.core.array', 'array', (['[1.0, 2.0, 3.0]'], {'mask': '[0, 0, 1]'}), '([1.0, 2.0, 3.0], mask=[0, 0, 1])\n', (84068, 84101), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((84163, 84208), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xx.data', '[1.0, 2.0 / 20.0, 3.0]'], {}), '(xx.data, [1.0, 2.0 / 20.0, 3.0])\n', (84175, 84208), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((84213, 84245), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xx.mask', '[1, 0, 1]'], {}), '(xx.mask, [1, 0, 1])\n', (84225, 84245), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((84287, 84325), 'numpy.ma.core.array', 'array', (['[1.0, 2.0, 3.0]'], {'mask': '[0, 0, 1]'}), '([1.0, 2.0, 3.0], mask=[0, 0, 1])\n', (84292, 84325), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((84336, 84377), 'numpy.ma.core.array', 'array', (['[10.0, 20.0, 30.0]'], {'mask': '[1, 0, 0]'}), '([10.0, 20.0, 30.0], mask=[1, 0, 0])\n', (84341, 84377), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((84383, 84425), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x.data', '[1.0, 2 / 20.0, 3.0]'], {}), '(x.data, [1.0, 2 / 20.0, 3.0])\n', (84395, 84425), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((84431, 84462), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x.mask', '[1, 0, 1]'], {}), '(x.mask, [1, 0, 1])\n', (84443, 84462), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((84589, 84627), 'numpy.ma.core.array', 'array', (['[1.0, 2.0, 3.0]'], {'mask': '[0, 0, 1]'}), '([1.0, 2.0, 3.0], mask=[0, 0, 1])\n', (84594, 84627), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((84655, 84700), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xx.data', '[1.0, 2.0 ** 2.5, 3.0]'], {}), '(xx.data, [1.0, 2.0 ** 2.5, 3.0])\n', (84667, 84700), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((84706, 84738), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xx.mask', '[0, 0, 1]'], {}), '(xx.mask, [0, 0, 1])\n', (84718, 84738), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((84795, 84837), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x.data', '[1.0, 2.0 ** 2.5, 3]'], {}), '(x.data, [1.0, 2.0 ** 2.5, 3])\n', (84807, 84837), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((84844, 84875), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x.mask', '[0, 0, 1]'], {}), '(x.mask, [0, 0, 1])\n', (84856, 84875), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((84933, 84956), 'numpy.ma.core.array', 'array', (['[[1, 1], [3, 3]]'], {}), '([[1, 1], [3, 3]])\n', (84938, 84956), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((84969, 84995), 'numpy.ma.core.array', 'array', (['[1, 1]'], {'mask': '[0, 0]'}), '([1, 1], mask=[0, 0])\n', (84974, 84995), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((85019, 85052), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['a', '[[2, 2], [4, 4]]'], {}), '(a, [[2, 2], [4, 4]])\n', (85031, 85052), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((85150, 85173), 'numpy.ma.core.array', 'array', (['[[1, 1], [3, 3]]'], {}), '([[1, 1], [3, 3]])\n', (85155, 85173), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((85186, 85212), 'numpy.ma.core.array', 'array', (['[1, 1]'], {'mask': '[0, 1]'}), '([1, 1], mask=[0, 1])\n', (85191, 85212), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((85236, 85269), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['a', '[[2, 2], [4, 4]]'], {}), '(a, [[2, 2], [4, 4]])\n', (85248, 85269), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((85278, 85316), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['a.mask', '[[0, 1], [0, 1]]'], {}), '(a.mask, [[0, 1], [0, 1]])\n', (85290, 85316), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((85374, 85397), 'numpy.ma.core.array', 'array', (['[[1, 1], [3, 3]]'], {}), '([[1, 1], [3, 3]])\n', (85379, 85397), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((85410, 85436), 'numpy.ma.core.array', 'array', (['[1, 1]'], {'mask': '[0, 0]'}), '([1, 1], mask=[0, 0])\n', (85415, 85436), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((85460, 85493), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['a', '[[0, 0], [2, 2]]'], {}), '(a, [[0, 0], [2, 2]])\n', (85472, 85493), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((85591, 85614), 'numpy.ma.core.array', 'array', (['[[1, 1], [3, 3]]'], {}), '([[1, 1], [3, 3]])\n', (85596, 85614), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((85627, 85653), 'numpy.ma.core.array', 'array', (['[1, 1]'], {'mask': '[0, 1]'}), '([1, 1], mask=[0, 1])\n', (85632, 85653), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((85677, 85710), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['a', '[[0, 0], [2, 2]]'], {}), '(a, [[0, 0], [2, 2]])\n', (85689, 85710), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((85719, 85757), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['a.mask', '[[0, 1], [0, 1]]'], {}), '(a.mask, [[0, 1], [0, 1]])\n', (85731, 85757), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((85815, 85838), 'numpy.ma.core.array', 'array', (['[[1, 1], [3, 3]]'], {}), '([[1, 1], [3, 3]])\n', (85820, 85838), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((85851, 85877), 'numpy.ma.core.array', 'array', (['[1, 1]'], {'mask': '[0, 0]'}), '([1, 1], mask=[0, 0])\n', (85856, 85877), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((85901, 85934), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['a', '[[1, 1], [3, 3]]'], {}), '(a, [[1, 1], [3, 3]])\n', (85913, 85934), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((86032, 86055), 'numpy.ma.core.array', 'array', (['[[1, 1], [3, 3]]'], {}), '([[1, 1], [3, 3]])\n', (86037, 86055), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((86068, 86094), 'numpy.ma.core.array', 'array', (['[1, 1]'], {'mask': '[0, 1]'}), '([1, 1], mask=[0, 1])\n', (86073, 86094), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((86118, 86151), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['a', '[[1, 1], [3, 3]]'], {}), '(a, [[1, 1], [3, 3]])\n', (86130, 86151), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((86160, 86198), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['a.mask', '[[0, 1], [0, 1]]'], {}), '(a.mask, [[0, 1], [0, 1]])\n', (86172, 86198), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((95177, 95447), 'numpy.array', 'np.array', (['[8.375, 7.545, 8.828, 8.5, 1.757, 5.928, 8.43, 7.78, 9.865, 5.878, 8.979, \n 4.732, 3.012, 6.022, 5.095, 3.116, 5.238, 3.957, 6.04, 9.63, 7.712, \n 3.382, 4.489, 6.479, 7.189, 9.645, 5.395, 4.961, 9.894, 2.893, 7.357, \n 9.828, 6.272, 3.758, 6.693, 0.993]'], {}), '([8.375, 7.545, 8.828, 8.5, 1.757, 5.928, 8.43, 7.78, 9.865, 5.878,\n 8.979, 4.732, 3.012, 6.022, 5.095, 3.116, 5.238, 3.957, 6.04, 9.63, \n 7.712, 3.382, 4.489, 6.479, 7.189, 9.645, 5.395, 4.961, 9.894, 2.893, \n 7.357, 9.828, 6.272, 3.758, 6.693, 0.993])\n', (95185, 95447), True, 'import numpy as np\n'), ((95620, 95742), 'numpy.array', 'np.array', (['[0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1,\n 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0]'], {}), '([0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1,\n 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0])\n', (95628, 95742), True, 'import numpy as np\n'), ((95857, 95878), 'numpy.ma.core.array', 'array', ([], {'data': 'x', 'mask': 'm'}), '(data=x, mask=m)\n', (95862, 95878), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((96000, 96122), 'numpy.array', 'np.array', (['[1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1,\n 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1]'], {}), '([1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1,\n 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1])\n', (96008, 96122), True, 'import numpy as np\n'), ((96243, 96265), 'numpy.ma.core.array', 'array', ([], {'data': 'x', 'mask': 'm2'}), '(data=x, mask=m2)\n', (96248, 96265), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((96528, 96544), 'numpy.ma.core.array', 'array', (['[1, 3, 2]'], {}), '([1, 3, 2])\n', (96533, 96544), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((97004, 97027), 'numpy.ma.core.array', 'array', (['[[1, 2], [3, 4]]'], {}), '([[1, 2], [3, 4]])\n', (97009, 97027), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((97321, 97339), 'numpy.random.rand', 'np.random.rand', (['(10)'], {}), '(10)\n', (97335, 97339), True, 'import numpy as np\n'), ((97628, 97643), 'numpy.ma.core.masked_array', 'masked_array', (['a'], {}), '(a)\n', (97640, 97643), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((98186, 98254), 'numpy.array', 'np.array', (['[[0.13, 0.26, 0.9], [0.28, 0.33, 0.63], [0.31, 0.87, 0.7]]'], {}), '([[0.13, 0.26, 0.9], [0.28, 0.33, 0.63], [0.31, 0.87, 0.7]])\n', (98194, 98254), True, 'import numpy as np\n'), ((98313, 98409), 'numpy.array', 'np.array', (['[[True, False, False], [False, False, False], [True, True, False]]'], {'dtype': 'np.bool_'}), '([[True, False, False], [False, False, False], [True, True, False]],\n dtype=np.bool_)\n', (98321, 98409), True, 'import numpy as np\n'), ((98463, 98486), 'numpy.ma.core.masked_array', 'masked_array', (['x'], {'mask': 'm'}), '(x, mask=m)\n', (98475, 98486), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((99210, 99278), 'numpy.array', 'np.array', (['[[0.13, 0.26, 0.9], [0.28, 0.33, 0.63], [0.31, 0.87, 0.7]]'], {}), '([[0.13, 0.26, 0.9], [0.28, 0.33, 0.63], [0.31, 0.87, 0.7]])\n', (99218, 99278), True, 'import numpy as np\n'), ((99337, 99349), 'numpy.matrix', 'np.matrix', (['x'], {}), '(x)\n', (99346, 99349), True, 'import numpy as np\n'), ((99362, 99458), 'numpy.array', 'np.array', (['[[True, False, False], [False, False, False], [True, True, False]]'], {'dtype': 'np.bool_'}), '([[True, False, False], [False, False, False], [True, True, False]],\n dtype=np.bool_)\n', (99370, 99458), True, 'import numpy as np\n'), ((99512, 99535), 'numpy.ma.core.masked_array', 'masked_array', (['X'], {'mask': 'm'}), '(X, mask=m)\n', (99524, 99535), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((100393, 100414), 'numpy.ma.core.empty', 'empty', (['()'], {'dtype': 'bool'}), '((), dtype=bool)\n', (100398, 100414), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((100430, 100457), 'numpy.ma.core.array', 'array', (['[1, 2, 3]'], {'mask': '(True)'}), '([1, 2, 3], mask=True)\n', (100435, 100457), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((100669, 100690), 'numpy.ma.core.empty', 'empty', (['()'], {'dtype': 'bool'}), '((), dtype=bool)\n', (100674, 100690), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((101863, 102133), 'numpy.array', 'np.array', (['[8.375, 7.545, 8.828, 8.5, 1.757, 5.928, 8.43, 7.78, 9.865, 5.878, 8.979, \n 4.732, 3.012, 6.022, 5.095, 3.116, 5.238, 3.957, 6.04, 9.63, 7.712, \n 3.382, 4.489, 6.479, 7.189, 9.645, 5.395, 4.961, 9.894, 2.893, 7.357, \n 9.828, 6.272, 3.758, 6.693, 0.993]'], {}), '([8.375, 7.545, 8.828, 8.5, 1.757, 5.928, 8.43, 7.78, 9.865, 5.878,\n 8.979, 4.732, 3.012, 6.022, 5.095, 3.116, 5.238, 3.957, 6.04, 9.63, \n 7.712, 3.382, 4.489, 6.479, 7.189, 9.645, 5.395, 4.961, 9.894, 2.893, \n 7.357, 9.828, 6.272, 3.758, 6.693, 0.993])\n', (101871, 102133), True, 'import numpy as np\n'), ((102242, 102364), 'numpy.array', 'np.array', (['[0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1,\n 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0]'], {}), '([0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1,\n 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0])\n', (102250, 102364), True, 'import numpy as np\n'), ((102418, 102434), 'numpy.ma.core.array', 'array', (['x'], {'mask': 'm'}), '(x, mask=m)\n', (102423, 102434), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((102475, 102510), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['clipped.mask', 'mx.mask'], {}), '(clipped.mask, mx.mask)\n', (102487, 102510), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((102684, 102740), 'numpy.ma.core.masked_array', 'masked_array', (['[1.0, 2.0, 3.0, 4.0, 5.0]'], {'fill_value': '(9999)'}), '([1.0, 2.0, 3.0, 4.0, 5.0], fill_value=9999)\n', (102696, 102740), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((102902, 102935), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['b._data', '[2.0, 3.0]'], {}), '(b._data, [2.0, 3.0])\n', (102914, 102935), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((102942, 102971), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['b._mask', '[0, 1]'], {}), '(b._mask, [0, 1])\n', (102954, 102971), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((102980, 103012), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['b.fill_value', '(9999)'], {}), '(b.fill_value, 9999)\n', (102992, 103012), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((103021, 103050), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['b', 'a[condition]'], {}), '(b, a[condition])\n', (103033, 103050), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((103123, 103161), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['b._data', '[1.0, 2.0, 3.0]'], {}), '(b._data, [1.0, 2.0, 3.0])\n', (103135, 103161), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((103167, 103199), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['b._mask', '[0, 0, 1]'], {}), '(b._mask, [0, 0, 1])\n', (103179, 103199), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((103208, 103240), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['b.fill_value', '(9999)'], {}), '(b.fill_value, 9999)\n', (103220, 103240), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((103249, 103278), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['b', 'a[condition]'], {}), '(b, a[condition])\n', (103261, 103278), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((103292, 103363), 'numpy.ma.core.masked_array', 'masked_array', (['[[10, 20, 30], [40, 50, 60]]'], {'mask': '[[0, 0, 1], [1, 0, 0]]'}), '([[10, 20, 30], [40, 50, 60]], mask=[[0, 0, 1], [1, 0, 0]])\n', (103304, 103363), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((103437, 103476), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['b._data', '[30, 40, 50, 60]'], {}), '(b._data, [30, 40, 50, 60])\n', (103449, 103476), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((103485, 103520), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['b._mask', '[1, 1, 0, 0]'], {}), '(b._mask, [1, 1, 0, 0])\n', (103497, 103520), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((103534, 103553), 'numpy.array', 'np.array', (['[3, 1, 2]'], {}), '([3, 1, 2])\n', (103542, 103553), True, 'import numpy as np\n'), ((103601, 103644), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['b._data', '[[10, 30], [40, 60]]'], {}), '(b._data, [[10, 30], [40, 60]])\n', (103613, 103644), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((103653, 103692), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['b._mask', '[[0, 1], [1, 0]]'], {}), '(b._mask, [[0, 1], [1, 0]])\n', (103665, 103692), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((103764, 103802), 'numpy.ma.core.array', 'array', (['[1, 2, 3, 4]'], {'mask': '[0, 0, 0, 0]'}), '([1, 2, 3, 4], mask=[0, 0, 0, 0])\n', (103769, 103802), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((103838, 103856), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['b', 'a'], {}), '(b, a)\n', (103850, 103856), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((103914, 103940), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['b', '[2, 3, 4]'], {}), '(b, [2, 3, 4])\n', (103926, 103940), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((104039, 104057), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['b', 'a'], {}), '(b, a)\n', (104051, 104057), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((104168, 104196), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['b', '[[2, 3, 4]]'], {}), '(b, [[2, 3, 4]])\n', (104180, 104196), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((104323, 104409), 'numpy.ma.core.masked_array', 'masked_array', (["[(1, 1.1, '1.1'), (2, 2.2, '2.2'), (3, 3.3, '3.3')]"], {'dtype': 'datatype'}), "([(1, 1.1, '1.1'), (2, 2.2, '2.2'), (3, 3.3, '3.3')], dtype=\n datatype)\n", (104335, 104409), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((104505, 104518), 'numpy.ma.core.empty_like', 'empty_like', (['a'], {}), '(a)\n', (104515, 104518), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((104527, 104557), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['b.shape', 'a.shape'], {}), '(b.shape, a.shape)\n', (104539, 104557), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((104566, 104606), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['b.fill_value', 'a.fill_value'], {}), '(b.fill_value, a.fill_value)\n', (104578, 104606), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((104658, 104688), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['b.shape', 'a.shape'], {}), '(b.shape, a.shape)\n', (104670, 104688), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((104697, 104737), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['b.fill_value', 'a.fill_value'], {}), '(b.fill_value, a.fill_value)\n', (104709, 104737), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((104792, 104842), 'numpy.ma.core.masked_array', 'masked_array', (['[1, 2, 3]'], {'mask': '[False, True, False]'}), '([1, 2, 3], mask=[False, True, False])\n', (104804, 104842), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((104855, 104868), 'numpy.ma.core.empty_like', 'empty_like', (['a'], {}), '(a)\n', (104865, 104868), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((105070, 105079), 'numpy.ma.core.arange', 'arange', (['(5)'], {}), '(5)\n', (105076, 105079), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((105120, 105132), 'numpy.ma.core.make_mask', 'make_mask', (['n'], {}), '(n)\n', (105129, 105132), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((105145, 105161), 'numpy.ma.core.array', 'array', (['d'], {'mask': 'm'}), '(d, mask=m)\n', (105150, 105161), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((105363, 105398), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x', '[0, 10, 2, -1, 40]'], {}), '(x, [0, 10, 2, -1, 40])\n', (105375, 105398), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((105594, 105646), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x.mask', '[0, 0, 0, 0, 0, 1, 0, 0, 0, 0]'], {}), '(x.mask, [0, 0, 0, 0, 0, 1, 0, 0, 0, 0])\n', (105606, 105646), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((105714, 105767), 'numpy.ma.testutils.assert_array_equal', 'assert_array_equal', (['x', '[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]'], {}), '(x, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9])\n', (105732, 105767), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((105778, 105830), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x.mask', '[1, 0, 0, 0, 1, 1, 0, 0, 0, 0]'], {}), '(x.mask, [1, 0, 0, 0, 1, 1, 0, 0, 0, 0])\n', (105790, 105830), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((105903, 105926), 'numpy.ma.core.put', 'put', (['x', 'i', '[6, 4, 2, 0]'], {}), '(x, i, [6, 4, 2, 0])\n', (105906, 105926), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((106002, 106054), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x.mask', '[0, 0, 0, 0, 0, 1, 0, 0, 0, 0]'], {}), '(x.mask, [0, 0, 0, 0, 0, 1, 0, 0, 0, 0])\n', (106014, 106054), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((106123, 106176), 'numpy.ma.testutils.assert_array_equal', 'assert_array_equal', (['x', '[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]'], {}), '(x, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9])\n', (106141, 106176), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((106187, 106239), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x.mask', '[1, 0, 0, 0, 1, 1, 0, 0, 0, 0]'], {}), '(x.mask, [1, 0, 0, 0, 1, 1, 0, 0, 0, 0])\n', (106199, 106239), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((106312, 106321), 'numpy.ma.core.zeros', 'zeros', (['(10)'], {}), '(10)\n', (106317, 106321), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((106334, 106372), 'numpy.ma.core.array', 'array', (['[3.0, -1.0]'], {'mask': '[False, True]'}), '([3.0, -1.0], mask=[False, True])\n', (106339, 106372), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((106449, 106470), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x[0]', '(0)'], {}), '(x[0], 0)\n', (106461, 106470), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((106523, 106544), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x[1]', '(3)'], {}), '(x[1], 3)\n', (106535, 106544), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((106637, 106658), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x[3]', '(0)'], {}), '(x[3], 0)\n', (106649, 106658), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((106737, 106746), 'numpy.ma.core.arange', 'arange', (['(5)'], {}), '(5)\n', (106743, 106746), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((106787, 106799), 'numpy.ma.core.make_mask', 'make_mask', (['n'], {}), '(n)\n', (106796, 106799), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((106813, 106860), 'numpy.ma.core.array', 'array', (['(d + 1)'], {'mask': 'm', 'hard_mask': '(True)', 'copy': '(True)'}), '(d + 1, mask=m, hard_mask=True, copy=True)\n', (106818, 106860), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((106918, 106957), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xh._data', '[3, 4, 2, 4, 5]'], {}), '(xh._data, [3, 4, 2, 4, 5])\n', (106930, 106957), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((107026, 107059), 'numpy.ma.core.array', 'array', (['x'], {'mask': '[0, 0, 0, 1, 1, 1]'}), '(x, mask=[0, 0, 0, 1, 1, 1])\n', (107031, 107059), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((107162, 107183), 'numpy.ma.core.putmask', 'putmask', (['xx', 'mask', '(99)'], {}), '(xx, mask, 99)\n', (107169, 107183), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((107192, 107230), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xx', '[1, 2, 99, 4, 5, 99]'], {}), '(xx, [1, 2, 99, 4, 5, 99])\n', (107204, 107230), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((107300, 107322), 'numpy.ma.core.putmask', 'putmask', (['mxx', 'mask', '(99)'], {}), '(mxx, mask, 99)\n', (107307, 107322), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((107331, 107376), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['mxx._data', '[1, 2, 99, 4, 5, 99]'], {}), '(mxx._data, [1, 2, 99, 4, 5, 99])\n', (107343, 107376), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((107385, 107428), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['mxx._mask', '[0, 0, 0, 1, 1, 0]'], {}), '(mxx._mask, [0, 0, 0, 1, 1, 0])\n', (107397, 107428), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((107483, 107539), 'numpy.ma.core.array', 'array', (['[10, 20, 30, 40, 50, 60]'], {'mask': '[1, 1, 1, 0, 0, 0]'}), '([10, 20, 30, 40, 50, 60], mask=[1, 1, 1, 0, 0, 0])\n', (107488, 107539), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((107570, 107595), 'numpy.ma.core.putmask', 'putmask', (['xx', 'mask', 'values'], {}), '(xx, mask, values)\n', (107577, 107595), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((107604, 107648), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xx._data', '[1, 2, 30, 4, 5, 60]'], {}), '(xx._data, [1, 2, 30, 4, 5, 60])\n', (107616, 107648), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((107657, 107699), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xx._mask', '[0, 0, 1, 0, 0, 0]'], {}), '(xx._mask, [0, 0, 1, 0, 0, 0])\n', (107669, 107699), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((107768, 107794), 'numpy.ma.core.putmask', 'putmask', (['mxx', 'mask', 'values'], {}), '(mxx, mask, values)\n', (107775, 107794), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((107803, 107848), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['mxx._data', '[1, 2, 30, 4, 5, 60]'], {}), '(mxx._data, [1, 2, 30, 4, 5, 60])\n', (107815, 107848), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((107857, 107900), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['mxx._mask', '[0, 0, 1, 1, 1, 0]'], {}), '(mxx._mask, [0, 0, 1, 1, 1, 0])\n', (107869, 107900), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((108006, 108032), 'numpy.ma.core.putmask', 'putmask', (['mxx', 'mask', 'values'], {}), '(mxx, mask, values)\n', (108013, 108032), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((108041, 108080), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['mxx', '[1, 2, 30, 4, 5, 60]'], {}), '(mxx, [1, 2, 30, 4, 5, 60])\n', (108053, 108080), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((108142, 108190), 'numpy.ma.core.array', 'array', (['[[1, 2, 3, 4, 5]]'], {'mask': '[[0, 1, 0, 0, 0]]'}), '([[1, 2, 3, 4, 5]], mask=[[0, 1, 0, 0, 0]])\n', (108147, 108190), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((108226, 108272), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['aravel._mask.shape', 'aravel.shape'], {}), '(aravel._mask.shape, aravel.shape)\n', (108238, 108272), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((108285, 108311), 'numpy.ma.core.array', 'array', (['[0, 0]'], {'mask': '[1, 1]'}), '([0, 0], mask=[1, 1])\n', (108290, 108311), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((108347, 108388), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['aravel._mask.shape', 'a.shape'], {}), '(aravel._mask.shape, a.shape)\n', (108359, 108388), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((108494, 108528), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['aravel.shape', '(1, 5)'], {}), '(aravel.shape, (1, 5))\n', (108506, 108528), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((108537, 108578), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['aravel._mask.shape', 'a.shape'], {}), '(aravel._mask.shape, a.shape)\n', (108549, 108578), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((108637, 108689), 'numpy.ma.core.array', 'array', (['[1, 2, 3, 4]'], {'mask': '[0, 0, 0, 0]', 'shrink': '(False)'}), '([1, 2, 3, 4], mask=[0, 0, 0, 0], shrink=False)\n', (108642, 108689), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((108873, 108909), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['ar._mask', '[0, 0, 0, 0]'], {}), '(ar._mask, [0, 0, 0, 0])\n', (108885, 108909), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((108918, 108954), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['ar._data', '[1, 2, 3, 4]'], {}), '(ar._data, [1, 2, 3, 4])\n', (108930, 108954), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((108963, 108995), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['ar.fill_value', '(-99)'], {}), '(ar.fill_value, -99)\n', (108975, 108995), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((109201, 109210), 'numpy.ma.core.arange', 'arange', (['(4)'], {}), '(4)\n', (109207, 109210), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((109269, 109298), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['y.shape', '(2, 2)'], {}), '(y.shape, (2, 2))\n', (109281, 109298), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((109308, 109343), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['y._mask.shape', '(2, 2)'], {}), '(y._mask.shape, (2, 2))\n', (109320, 109343), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((109353, 109380), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x.shape', '(4,)'], {}), '(x.shape, (4,))\n', (109365, 109380), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((109389, 109422), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x._mask.shape', '(4,)'], {}), '(x._mask.shape, (4,))\n', (109401, 109422), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((109481, 109535), 'numpy.ma.core.array', 'array', (['[1, 4, 2, 3]'], {'mask': '[0, 1, 0, 0]', 'dtype': 'np.uint8'}), '([1, 4, 2, 3], mask=[0, 1, 0, 0], dtype=np.uint8)\n', (109486, 109535), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((109555, 109562), 'numpy.ma.core.sort', 'sort', (['x'], {}), '(x)\n', (109559, 109562), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((109571, 109612), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['sortedx._data', '[1, 2, 3, 4]'], {}), '(sortedx._data, [1, 2, 3, 4])\n', (109583, 109612), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((109621, 109662), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['sortedx._mask', '[0, 0, 0, 1]'], {}), '(sortedx._mask, [0, 0, 0, 1])\n', (109633, 109662), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((109682, 109704), 'numpy.ma.core.sort', 'sort', (['x'], {'endwith': '(False)'}), '(x, endwith=False)\n', (109686, 109704), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((109713, 109754), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['sortedx._data', '[4, 1, 2, 3]'], {}), '(sortedx._data, [4, 1, 2, 3])\n', (109725, 109754), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((109763, 109804), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['sortedx._mask', '[1, 0, 0, 0]'], {}), '(sortedx._mask, [1, 0, 0, 0])\n', (109775, 109804), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((109831, 109866), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x._data', '[1, 2, 3, 4]'], {}), '(x._data, [1, 2, 3, 4])\n', (109843, 109866), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((109875, 109910), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x._mask', '[0, 0, 0, 1]'], {}), '(x._mask, [0, 0, 0, 1])\n', (109887, 109910), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((109924, 109978), 'numpy.ma.core.array', 'array', (['[1, 4, 2, 3]'], {'mask': '[0, 1, 0, 0]', 'dtype': 'np.uint8'}), '([1, 4, 2, 3], mask=[0, 1, 0, 0], dtype=np.uint8)\n', (109929, 109978), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((110017, 110052), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x._data', '[4, 1, 2, 3]'], {}), '(x._data, [4, 1, 2, 3])\n', (110029, 110052), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((110061, 110096), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x._mask', '[1, 0, 0, 0]'], {}), '(x._mask, [1, 0, 0, 0])\n', (110073, 110096), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((110141, 110148), 'numpy.ma.core.sort', 'sort', (['x'], {}), '(x)\n', (110145, 110148), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((110223, 110275), 'numpy.ma.core.array', 'array', (['[0, 1, -1, -2, 2]'], {'mask': 'nomask', 'dtype': 'np.int8'}), '([0, 1, -1, -2, 2], mask=nomask, dtype=np.int8)\n', (110228, 110275), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((110294, 110316), 'numpy.ma.core.sort', 'sort', (['x'], {'endwith': '(False)'}), '(x, endwith=False)\n', (110298, 110316), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((110325, 110371), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['sortedx._data', '[-2, -1, 0, 1, 2]'], {}), '(sortedx._data, [-2, -1, 0, 1, 2])\n', (110337, 110371), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((110384, 110445), 'numpy.ma.core.array', 'array', (['[0, 1, -1, -2, 2]'], {'mask': '[0, 1, 0, 0, 1]', 'dtype': 'np.int8'}), '([0, 1, -1, -2, 2], mask=[0, 1, 0, 0, 1], dtype=np.int8)\n', (110389, 110445), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((110464, 110486), 'numpy.ma.core.sort', 'sort', (['x'], {'endwith': '(False)'}), '(x, endwith=False)\n', (110468, 110486), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((110495, 110541), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['sortedx._data', '[1, 2, -2, -1, 0]'], {}), '(sortedx._data, [1, 2, -2, -1, 0])\n', (110507, 110541), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((110550, 110594), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['sortedx._mask', '[1, 1, 0, 0, 0]'], {}), '(sortedx._mask, [1, 1, 0, 0, 0])\n', (110562, 110594), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((110698, 110734), 'numpy.ma.core.masked_array', 'masked_array', (['[[8, 4, 1], [2, 0, 9]]'], {}), '([[8, 4, 1], [2, 0, 9]])\n', (110710, 110734), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((110761, 110800), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['a', '[[2, 0, 1], [8, 4, 9]]'], {}), '(a, [[2, 0, 1], [8, 4, 9]])\n', (110773, 110800), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((110813, 110849), 'numpy.ma.core.masked_array', 'masked_array', (['[[8, 4, 1], [2, 0, 9]]'], {}), '([[8, 4, 1], [2, 0, 9]])\n', (110825, 110849), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((110876, 110915), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['a', '[[1, 4, 8], [0, 2, 9]]'], {}), '(a, [[1, 4, 8], [0, 2, 9]])\n', (110888, 110915), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((110954, 111019), 'numpy.ma.core.masked_array', 'masked_array', (['[[8, 4, 1], [2, 0, 9]]'], {'mask': '[[1, 0, 0], [0, 0, 1]]'}), '([[8, 4, 1], [2, 0, 9]], mask=[[1, 0, 0], [0, 0, 1]])\n', (110966, 111019), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((111046, 111085), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['a', '[[2, 0, 1], [8, 4, 9]]'], {}), '(a, [[2, 0, 1], [8, 4, 9]])\n', (111058, 111085), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((111094, 111139), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['a._mask', '[[0, 0, 0], [1, 0, 1]]'], {}), '(a._mask, [[0, 0, 0], [1, 0, 1]])\n', (111106, 111139), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((111152, 111217), 'numpy.ma.core.masked_array', 'masked_array', (['[[8, 4, 1], [2, 0, 9]]'], {'mask': '[[1, 0, 0], [0, 0, 1]]'}), '([[8, 4, 1], [2, 0, 9]], mask=[[1, 0, 0], [0, 0, 1]])\n', (111164, 111217), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((111244, 111283), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['a', '[[1, 4, 8], [0, 2, 9]]'], {}), '(a, [[1, 4, 8], [0, 2, 9]])\n', (111256, 111283), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((111292, 111337), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['a._mask', '[[0, 0, 1], [0, 0, 1]]'], {}), '(a._mask, [[0, 0, 1], [0, 0, 1]])\n', (111304, 111337), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((111363, 111525), 'numpy.ma.core.masked_array', 'masked_array', (['[[[7, 8, 9], [4, 5, 6], [1, 2, 3]], [[1, 2, 3], [7, 8, 9], [4, 5, 6]], [[7,\n 8, 9], [1, 2, 3], [4, 5, 6]], [[4, 5, 6], [1, 2, 3], [7, 8, 9]]]'], {}), '([[[7, 8, 9], [4, 5, 6], [1, 2, 3]], [[1, 2, 3], [7, 8, 9], [4,\n 5, 6]], [[7, 8, 9], [1, 2, 3], [4, 5, 6]], [[4, 5, 6], [1, 2, 3], [7, 8,\n 9]]])\n', (111375, 111525), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((111721, 111741), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['am', 'an'], {}), '(am, an)\n', (111733, 111741), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((111836, 111856), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['am', 'an'], {}), '(am, an)\n', (111848, 111856), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((111951, 111971), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['am', 'an'], {}), '(am, an)\n', (111963, 111971), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((112058, 112230), 'numpy.ma.core.array', 'array', ([], {'data': '[(3, 3), (3, 2), (2, 2), (2, 1), (1, 0), (1, 1), (1, 2)]', 'mask': '[(0, 0), (0, 1), (0, 0), (0, 0), (1, 0), (0, 0), (0, 0)]', 'dtype': "[('A', int), ('B', int)]"}), "(data=[(3, 3), (3, 2), (2, 2), (2, 1), (1, 0), (1, 1), (1, 2)], mask=[\n (0, 0), (0, 1), (0, 0), (0, 0), (1, 0), (0, 0), (0, 0)], dtype=[('A',\n int), ('B', int)])\n", (112063, 112230), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((112275, 112282), 'numpy.ma.core.sort', 'sort', (['a'], {}), '(a)\n', (112279, 112282), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((112295, 112467), 'numpy.ma.core.array', 'array', ([], {'data': '[(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 2), (1, 0)]', 'mask': '[(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 1), (1, 0)]', 'dtype': "[('A', int), ('B', int)]"}), "(data=[(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 2), (1, 0)], mask=[\n (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 1), (1, 0)], dtype=[('A',\n int), ('B', int)])\n", (112300, 112467), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((112504, 112525), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', 'b'], {}), '(test, b)\n', (112516, 112525), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((112534, 112565), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.mask', 'b.mask'], {}), '(test.mask, b.mask)\n', (112546, 112565), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((112582, 112604), 'numpy.ma.core.sort', 'sort', (['a'], {'endwith': '(False)'}), '(a, endwith=False)\n', (112586, 112604), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((112617, 112789), 'numpy.ma.core.array', 'array', ([], {'data': '[(1, 0), (1, 1), (1, 2), (2, 1), (2, 2), (3, 2), (3, 3)]', 'mask': '[(1, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 1), (0, 0)]', 'dtype': "[('A', int), ('B', int)]"}), "(data=[(1, 0), (1, 1), (1, 2), (2, 1), (2, 2), (3, 2), (3, 3)], mask=[\n (1, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 1), (0, 0)], dtype=[('A',\n int), ('B', int)])\n", (112622, 112789), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((112830, 112851), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', 'b'], {}), '(test, b)\n', (112842, 112851), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((112860, 112891), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.mask', 'b.mask'], {}), '(test.mask, b.mask)\n', (112872, 112891), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((112956, 113000), 'numpy.ma.core.array', 'array', (['[1, 5, 2, 4, 3]'], {'mask': '[1, 0, 0, 1, 0]'}), '([1, 5, 2, 4, 3], mask=[1, 0, 0, 1, 0])\n', (112961, 113000), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((113117, 113142), 'numpy.ma.core.masked_array', 'masked_array', (['[[1, 2, 3]]'], {}), '([[1, 2, 3]])\n', (113129, 113142), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((113206, 113249), 'numpy.ma.core.masked_array', 'masked_array', (['[[1, 2, 3]]'], {'mask': '[[1, 1, 1]]'}), '([[1, 2, 3]], mask=[[1, 1, 1]])\n', (113218, 113249), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((113367, 113397), 'numpy.ma.core.masked_array', 'masked_array', (['[[1]]'], {'mask': '(True)'}), '([[1]], mask=True)\n', (113379, 113397), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((113532, 113802), 'numpy.array', 'np.array', (['[8.375, 7.545, 8.828, 8.5, 1.757, 5.928, 8.43, 7.78, 9.865, 5.878, 8.979, \n 4.732, 3.012, 6.022, 5.095, 3.116, 5.238, 3.957, 6.04, 9.63, 7.712, \n 3.382, 4.489, 6.479, 7.189, 9.645, 5.395, 4.961, 9.894, 2.893, 7.357, \n 9.828, 6.272, 3.758, 6.693, 0.993]'], {}), '([8.375, 7.545, 8.828, 8.5, 1.757, 5.928, 8.43, 7.78, 9.865, 5.878,\n 8.979, 4.732, 3.012, 6.022, 5.095, 3.116, 5.238, 3.957, 6.04, 9.63, \n 7.712, 3.382, 4.489, 6.479, 7.189, 9.645, 5.395, 4.961, 9.894, 2.893, \n 7.357, 9.828, 6.272, 3.758, 6.693, 0.993])\n', (113540, 113802), True, 'import numpy as np\n'), ((113911, 114033), 'numpy.array', 'np.array', (['[0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1,\n 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0]'], {}), '([0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1,\n 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0])\n', (113919, 114033), True, 'import numpy as np\n'), ((114268, 114306), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['mXswapped[-1]', 'mX[:, -1]'], {}), '(mXswapped[-1], mX[:, -1])\n', (114280, 114306), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((114356, 114400), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['mXXswapped.shape', '(2, 2, 3, 3)'], {}), '(mXXswapped.shape, (2, 2, 3, 3))\n', (114368, 114400), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((114460, 114504), 'numpy.ma.core.masked_array', 'masked_array', (['[10, 20, 30, 40]', '[0, 1, 0, 1]'], {}), '([10, 20, 30, 40], [0, 1, 0, 1])\n', (114472, 114504), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((114917, 114981), 'numpy.ma.core.array', 'array', (['[[10, 20, 30], [40, 50, 60]]'], {'mask': '[[0, 0, 1], [1, 0, 0]]'}), '([[10, 20, 30], [40, 50, 60]], mask=[[0, 0, 1], [1, 0, 0]])\n', (114922, 114981), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((115312, 115341), 'numpy.array', 'np.array', (['(40, 18, 37, 9, 22)'], {}), '((40, 18, 37, 9, 22))\n', (115320, 115341), True, 'import numpy as np\n'), ((115498, 115528), 'numpy.ma.core.take', 'take', (['a', 'mindices'], {'mode': '"""clip"""'}), "(a, mindices, mode='clip')\n", (115502, 115528), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((115544, 115618), 'numpy.ma.core.array', 'array', (['[[40, 18, 37], [18, 37, 9], [37, 9, 22], [9, 22, 22], [22, 22, 22]]'], {}), '([[40, 18, 37], [18, 37, 9], [37, 9, 22], [9, 22, 22], [22, 22, 22]])\n', (115549, 115618), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((115715, 115739), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', 'ctrl'], {}), '(test, ctrl)\n', (115727, 115739), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((115780, 115797), 'numpy.ma.core.take', 'take', (['a', 'mindices'], {}), '(a, mindices)\n', (115784, 115797), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((115813, 115887), 'numpy.ma.core.array', 'array', (['[[40, 18, 37], [18, 37, 9], [37, 9, 22], [9, 22, 40], [22, 40, 40]]'], {}), '([[40, 18, 37], [18, 37, 9], [37, 9, 22], [9, 22, 40], [22, 40, 40]])\n', (115818, 115887), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((116038, 116062), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', 'ctrl'], {}), '(test, ctrl)\n', (116050, 116062), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((116071, 116105), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.mask', 'ctrl.mask'], {}), '(test.mask, ctrl.mask)\n', (116083, 116105), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((116158, 116206), 'numpy.ma.core.array', 'array', (['(40, 18, 37, 9, 22)'], {'mask': '(0, 1, 0, 0, 0)'}), '((40, 18, 37, 9, 22), mask=(0, 1, 0, 0, 0))\n', (116163, 116206), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((116222, 116239), 'numpy.ma.core.take', 'take', (['a', 'mindices'], {}), '(a, mindices)\n', (116226, 116239), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((116289, 116313), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', 'ctrl'], {}), '(test, ctrl)\n', (116301, 116313), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((116322, 116356), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.mask', 'ctrl.mask'], {}), '(test.mask, ctrl.mask)\n', (116334, 116356), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((116747, 116786), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xlist[0]', '[0, None, 2, 3]'], {}), '(xlist[0], [0, None, 2, 3])\n', (116759, 116786), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((116795, 116831), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xlist[1]', '[4, 5, 6, 7]'], {}), '(xlist[1], [4, 5, 6, 7])\n', (116807, 116831), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((116840, 116880), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xlist[2]', '[8, 9, None, 11]'], {}), '(xlist[2], [8, 9, None, 11])\n', (116852, 116880), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((116889, 116914), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xlist', 'ctrl'], {}), '(xlist, ctrl)\n', (116901, 116914), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((117425, 117503), 'numpy.ma.core.array', 'array', (['[(1, 2), (3, 4)]'], {'mask': '[(0, 1), (0, 0)]', 'dtype': "[('a', int), ('b', int)]"}), "([(1, 2), (3, 4)], mask=[(0, 1), (0, 0)], dtype=[('a', int), ('b', int)])\n", (117430, 117503), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((117557, 117596), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', '[[1, None], [3, 4]]'], {}), '(test, [[1, None], [3, 4]])\n', (117569, 117596), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((117671, 117700), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', '[1, None]'], {}), '(test, [1, None])\n', (117683, 117700), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((117827, 117882), 'numpy.ma.core.array', 'array', (['[(0, 1), (2, 3)]'], {'dtype': "[('a', int), ('b', int)]"}), "([(0, 1), (2, 3)], dtype=[('a', int), ('b', int)])\n", (117832, 117882), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((118411, 118421), 'numpy.ma.core.arange', 'arange', (['(10)'], {}), '(10)\n', (118417, 118421), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((118461, 118502), 'numpy.ma.testutils.assert_equal', 'assert_equal', (["record['_data']", 'data._data'], {}), "(record['_data'], data._data)\n", (118473, 118502), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((118511, 118552), 'numpy.ma.testutils.assert_equal', 'assert_equal', (["record['_mask']", 'data._mask'], {}), "(record['_mask'], data._mask)\n", (118523, 118552), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((118630, 118671), 'numpy.ma.testutils.assert_equal', 'assert_equal', (["record['_data']", 'data._data'], {}), "(record['_data'], data._data)\n", (118642, 118671), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((118680, 118721), 'numpy.ma.testutils.assert_equal', 'assert_equal', (["record['_mask']", 'data._mask'], {}), "(record['_mask'], data._mask)\n", (118692, 118721), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((119105, 119146), 'numpy.ma.testutils.assert_equal', 'assert_equal', (["record['_data']", 'data._data'], {}), "(record['_data'], data._data)\n", (119117, 119146), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((119155, 119196), 'numpy.ma.testutils.assert_equal', 'assert_equal', (["record['_mask']", 'data._mask'], {}), "(record['_mask'], data._mask)\n", (119167, 119196), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((119215, 119249), 'numpy.dtype', 'np.dtype', (['"""int, (2,3)float, float"""'], {}), "('int, (2,3)float, float')\n", (119223, 119249), True, 'import numpy as np\n'), ((119583, 119632), 'numpy.ma.testutils.assert_equal_records', 'assert_equal_records', (["record['_data']", 'data._data'], {}), "(record['_data'], data._data)\n", (119603, 119632), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((119641, 119690), 'numpy.ma.testutils.assert_equal_records', 'assert_equal_records', (["record['_mask']", 'data._mask'], {}), "(record['_mask'], data._mask)\n", (119661, 119690), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((119799, 119815), 'numpy.ma.core.array', 'array', (['[1, 2, 3]'], {}), '([1, 2, 3])\n', (119804, 119815), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((119860, 119881), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', 'a'], {}), '(test, a)\n', (119872, 119881), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((119890, 119921), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.mask', 'a.mask'], {}), '(test.mask, a.mask)\n', (119902, 119921), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((119935, 119967), 'numpy.ma.core.array', 'array', (['[1, 2, 3]'], {'mask': '[0, 0, 1]'}), '([1, 2, 3], mask=[0, 0, 1])\n', (119940, 119967), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((120012, 120033), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', 'a'], {}), '(test, a)\n', (120024, 120033), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((120042, 120073), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.mask', 'a.mask'], {}), '(test.mask, a.mask)\n', (120054, 120073), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((120087, 120194), 'numpy.ma.core.array', 'array', (['[(1, 1.0), (2, 2.0), (3, 3.0)]'], {'mask': '[(1, 0), (0, 0), (0, 1)]', 'dtype': "[('A', int), ('B', float)]"}), "([(1, 1.0), (2, 2.0), (3, 3.0)], mask=[(1, 0), (0, 0), (0, 1)], dtype=\n [('A', int), ('B', float)])\n", (120092, 120194), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((120249, 120270), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', 'a'], {}), '(test, a)\n', (120261, 120270), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((120279, 120310), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.data', 'a.data'], {}), '(test.data, a.data)\n', (120291, 120310), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((120405, 120458), 'numpy.ma.core.masked_array', 'masked_array', (['[[1, 2, 3, 4, 5]]'], {'mask': '[0, 0, 1, 0, 0]'}), '([[1, 2, 3, 4, 5]], mask=[0, 0, 1, 0, 0])\n', (120417, 120458), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((120477, 120538), 'numpy.ma.core.masked_array', 'masked_array', (['[[1], [2], [3], [4], [5]]'], {'mask': '[0, 0, 1, 0, 0]'}), '([[1], [2], [3], [4], [5]], mask=[0, 0, 1, 0, 0])\n', (120489, 120538), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((120578, 120609), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['marray.T', 'control'], {}), '(marray.T, control)\n', (120590, 120609), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((120846, 121116), 'numpy.array', 'np.array', (['[8.375, 7.545, 8.828, 8.5, 1.757, 5.928, 8.43, 7.78, 9.865, 5.878, 8.979, \n 4.732, 3.012, 6.022, 5.095, 3.116, 5.238, 3.957, 6.04, 9.63, 7.712, \n 3.382, 4.489, 6.479, 7.189, 9.645, 5.395, 4.961, 9.894, 2.893, 7.357, \n 9.828, 6.272, 3.758, 6.693, 0.993]'], {}), '([8.375, 7.545, 8.828, 8.5, 1.757, 5.928, 8.43, 7.78, 9.865, 5.878,\n 8.979, 4.732, 3.012, 6.022, 5.095, 3.116, 5.238, 3.957, 6.04, 9.63, \n 7.712, 3.382, 4.489, 6.479, 7.189, 9.645, 5.395, 4.961, 9.894, 2.893, \n 7.357, 9.828, 6.272, 3.758, 6.693, 0.993])\n', (120854, 121116), True, 'import numpy as np\n'), ((121289, 121411), 'numpy.array', 'np.array', (['[0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1,\n 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0]'], {}), '([0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1,\n 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0])\n', (121297, 121411), True, 'import numpy as np\n'), ((121526, 121547), 'numpy.ma.core.array', 'array', ([], {'data': 'x', 'mask': 'm'}), '(data=x, mask=m)\n', (121531, 121547), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((121669, 121791), 'numpy.array', 'np.array', (['[1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1,\n 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1]'], {}), '([1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1,\n 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1])\n', (121677, 121791), True, 'import numpy as np\n'), ((121912, 121934), 'numpy.ma.core.array', 'array', ([], {'data': 'x', 'mask': 'm2'}), '(data=x, mask=m2)\n', (121917, 121934), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((123619, 123640), 'numpy.zeros', 'np.zeros', (['n', 'np.float'], {}), '(n, np.float)\n', (123627, 123640), True, 'import numpy as np\n'), ((123656, 123677), 'numpy.zeros', 'np.zeros', (['m', 'np.float'], {}), '(m, np.float)\n', (123664, 123677), True, 'import numpy as np\n'), ((123949, 124000), 'numpy.ma.core.masked_array', 'masked_array', (["['a', 'b']"], {'mask': '[1, 0]', 'dtype': 'object'}), "(['a', 'b'], mask=[1, 0], dtype=object)\n", (123961, 124000), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((124029, 124053), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['y[1]', '"""bx"""'], {}), "(y[1], 'bx')\n", (124041, 124053), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((124062, 124080), 'numpy.ma.testutils.assert_', 'assert_', (['y.mask[0]'], {}), '(y.mask[0])\n', (124069, 124080), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((124160, 124216), 'numpy.ma.core.masked_array', 'masked_array', (['[1, 2, 3]'], {'mask': '[1, 0, 0]', 'dtype': 'np.object'}), '([1, 2, 3], mask=[1, 0, 0], dtype=np.object)\n', (124172, 124216), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((124262, 124312), 'numpy.ma.core.masked_array', 'masked_array', (['[[1, 2, 3], [4, 5, 6]]'], {'dtype': 'object'}), '([[1, 2, 3], [4, 5, 6]], dtype=object)\n', (124274, 124312), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((124441, 124497), 'numpy.ma.core.masked_array', 'masked_array', (['[1, 2, 3]'], {'mask': '[1, 0, 0]', 'dtype': 'np.object'}), '([1, 2, 3], mask=[1, 0, 0], dtype=np.object)\n', (124453, 124497), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((124548, 124598), 'numpy.ma.core.masked_array', 'masked_array', (['[[1, 2, 3], [4, 5, 6]]'], {'dtype': 'object'}), '([[1, 2, 3], [4, 5, 6]], dtype=object)\n', (124560, 124598), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((124739, 124779), 'numpy.ma.core.masked_array', 'masked_array', (['[1, 2, 3]'], {'dtype': 'np.object'}), '([1, 2, 3], dtype=np.object)\n', (124751, 124779), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((125525, 125550), 'numpy.ma.testutils.assert_', 'assert_', (['(r.mask is nomask)'], {}), '(r.mask is nomask)\n', (125532, 125550), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((125662, 125683), 'numpy.ma.testutils.assert_', 'assert_', (['r.mask[1, 3]'], {}), '(r.mask[1, 3])\n', (125669, 125683), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((125696, 125709), 'numpy.ma.core.empty_like', 'empty_like', (['r'], {}), '(r)\n', (125706, 125709), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((125745, 125771), 'numpy.ma.testutils.assert_almost_equal', 'assert_almost_equal', (['r', 'r1'], {}), '(r, r1)\n', (125764, 125771), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((125949, 125962), 'numpy.ma.core.empty_like', 'empty_like', (['r'], {}), '(r)\n', (125959, 125962), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((126000, 126026), 'numpy.ma.testutils.assert_almost_equal', 'assert_almost_equal', (['r', 'r1'], {}), '(r, r1)\n', (126019, 126026), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((126105, 126158), 'numpy.ma.core.masked_array', 'masked_array', (['[[1, 2], [3, 4]]'], {'mask': '[[0, 1], [0, 0]]'}), '([[1, 2], [3, 4]], mask=[[0, 1], [0, 0]])\n', (126117, 126158), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((126165, 126218), 'numpy.ma.core.masked_array', 'masked_array', (['[[1, 2], [3, 4]]'], {'mask': '[[0, 1], [0, 0]]'}), '([[1, 2], [3, 4]], mask=[[0, 1], [0, 0]])\n', (126177, 126218), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((126225, 126255), 'numpy.ma.core.masked_array', 'masked_array', (['[[0, 1], [3, 3]]'], {}), '([[0, 1], [3, 3]])\n', (126237, 126255), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((126346, 126391), 'numpy.ma.testutils.assert_almost_equal', 'assert_almost_equal', (['z.mask', '[[0, 1], [0, 0]]'], {}), '(z.mask, [[0, 1], [0, 0]])\n', (126365, 126391), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((127664, 127689), 'numpy.array', 'np.array', (['(-1)'], {'dtype': 'float'}), '(-1, dtype=float)\n', (127672, 127689), True, 'import numpy as np\n'), ((127705, 127727), 'numpy.ma.core.array', 'array', (['(-1)'], {'dtype': 'float'}), '(-1, dtype=float)\n', (127710, 127727), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((129161, 129219), 'numpy.ma.core.array', 'array', (['[[1, 1, 0], [1, 1, 0]]'], {'mask': '[[0, 0, 1], [0, 0, 1]]'}), '([[1, 1, 0], [1, 1, 0]], mask=[[0, 0, 1], [0, 0, 1]])\n', (129166, 129219), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((129313, 129347), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.mask', '[0, 0, 1]'], {}), '(test.mask, [0, 0, 1])\n', (129325, 129347), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((129441, 129475), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.mask', '[0, 0, 1]'], {}), '(test.mask, [0, 0, 1])\n', (129453, 129475), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((129569, 129603), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.mask', '[1, 1, 1]'], {}), '(test.mask, [1, 1, 1])\n', (129581, 129603), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((129727, 129737), 'numpy.diag', 'np.diag', (['x'], {}), '(x)\n', (129734, 129737), True, 'import numpy as np\n'), ((129746, 129774), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['out', '[0, 4, 8]'], {}), '(out, [0, 4, 8])\n', (129758, 129774), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((129789, 129796), 'numpy.ma.core.diag', 'diag', (['x'], {}), '(x)\n', (129793, 129796), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((129805, 129833), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['out', '[0, 4, 8]'], {}), '(out, [0, 4, 8])\n', (129817, 129833), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((129842, 129875), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['out.mask', '[0, 1, 0]'], {}), '(out.mask, [0, 1, 0])\n', (129854, 129875), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((129890, 129899), 'numpy.ma.core.diag', 'diag', (['out'], {}), '(out)\n', (129894, 129899), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((129918, 130003), 'numpy.ma.core.array', 'array', (['[[0, 0, 0], [0, 4, 0], [0, 0, 8]]'], {'mask': '[[0, 0, 0], [0, 1, 0], [0, 0, 0]]'}), '([[0, 0, 0], [0, 4, 0], [0, 0, 8]], mask=[[0, 0, 0], [0, 1, 0], [0, 0, 0]]\n )\n', (129923, 130003), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((130031, 130057), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['out', 'control'], {}), '(out, control)\n', (130043, 130057), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((130167, 130196), 'numpy.ma.core.array', 'array', (['[[1, 2, 3], [4, 5, 6]]'], {}), '([[1, 2, 3], [4, 5, 6]])\n', (130172, 130196), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((130871, 131150), 'numpy.array', 'np.array', (['[8.375j, 7.545j, 8.828j, 8.5j, 1.757j, 5.928, 8.43, 7.78, 9.865, 5.878, \n 8.979, 4.732, 3.012, 6.022, 5.095, 3.116, 5.238, 3.957, 6.04, 9.63, \n 7.712, 3.382, 4.489, 6.479j, 7.189j, 9.645, 5.395, 4.961, 9.894, 2.893,\n 7.357, 9.828, 6.272, 3.758, 6.693, 0.993j]'], {}), '([8.375j, 7.545j, 8.828j, 8.5j, 1.757j, 5.928, 8.43, 7.78, 9.865, \n 5.878, 8.979, 4.732, 3.012, 6.022, 5.095, 3.116, 5.238, 3.957, 6.04, \n 9.63, 7.712, 3.382, 4.489, 6.479j, 7.189j, 9.645, 5.395, 4.961, 9.894, \n 2.893, 7.357, 9.828, 6.272, 3.758, 6.693, 0.993j])\n', (130879, 131150), True, 'import numpy as np\n'), ((131322, 131444), 'numpy.array', 'np.array', (['[0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1,\n 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0]'], {}), '([0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1,\n 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0])\n', (131330, 131444), True, 'import numpy as np\n'), ((131559, 131580), 'numpy.ma.core.array', 'array', ([], {'data': 'x', 'mask': 'm'}), '(data=x, mask=m)\n', (131564, 131580), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((131702, 131824), 'numpy.array', 'np.array', (['[1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1,\n 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1]'], {}), '([1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1,\n 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1])\n', (131710, 131824), True, 'import numpy as np\n'), ((131945, 131967), 'numpy.ma.core.array', 'array', ([], {'data': 'x', 'mask': 'm2'}), '(data=x, mask=m2)\n', (131950, 131967), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((133217, 133296), 'numpy.array', 'np.array', (['[1.0, 1.0, 1.0, -2.0, pi / 2.0, 4.0, 5.0, -10.0, 10.0, 1.0, 2.0, 3.0]'], {}), '([1.0, 1.0, 1.0, -2.0, pi / 2.0, 4.0, 5.0, -10.0, 10.0, 1.0, 2.0, 3.0])\n', (133225, 133296), True, 'import numpy as np\n'), ((133296, 133371), 'numpy.array', 'np.array', (['[5.0, 0.0, 3.0, 2.0, -1.0, -4.0, 0.0, -10.0, 10.0, 1.0, 0.0, 3.0]'], {}), '([5.0, 0.0, 3.0, 2.0, -1.0, -4.0, 0.0, -10.0, 10.0, 1.0, 0.0, 3.0])\n', (133304, 133371), True, 'import numpy as np\n'), ((133473, 133497), 'numpy.ma.core.masked_array', 'masked_array', (['x'], {'mask': 'm1'}), '(x, mask=m1)\n', (133485, 133497), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((133511, 133535), 'numpy.ma.core.masked_array', 'masked_array', (['y'], {'mask': 'm2'}), '(y, mask=m2)\n', (133523, 133535), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((133668, 133690), 'numpy.ma.core.masked_where', 'masked_where', (['(False)', 'x'], {}), '(False, x)\n', (133680, 133690), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((133699, 133722), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['y', '[1, 2]'], {}), '(y, [1, 2])\n', (133711, 133722), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((133731, 133752), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['y[1]', '(2)'], {}), '(y[1], 2)\n', (133743, 133752), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((133828, 133846), 'numpy.ma.core.masked_equal', 'masked_equal', (['x', '(3)'], {}), '(x, 3)\n', (133840, 133846), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((133855, 133874), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['mx', 'x'], {}), '(mx, x)\n', (133867, 133874), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((133883, 133916), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['mx._mask', '[0, 0, 1]'], {}), '(mx._mask, [0, 0, 1])\n', (133895, 133916), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((133930, 133952), 'numpy.ma.core.masked_not_equal', 'masked_not_equal', (['x', '(3)'], {}), '(x, 3)\n', (133946, 133952), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((133961, 133980), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['mx', 'x'], {}), '(mx, x)\n', (133973, 133980), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((133989, 134022), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['mx._mask', '[1, 1, 0]'], {}), '(mx._mask, [1, 1, 0])\n', (134001, 134022), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((134103, 134121), 'numpy.ma.core.masked_equal', 'masked_equal', (['x', '(3)'], {}), '(x, 3)\n', (134115, 134121), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((134130, 134163), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['mx._mask', '[0, 0, 1]'], {}), '(mx._mask, [0, 0, 1])\n', (134142, 134163), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((134172, 134202), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['mx.fill_value', '(3)'], {}), '(mx.fill_value, 3)\n', (134184, 134202), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((134294, 134326), 'numpy.ma.core.array', 'array', (['[1.0, 2.0, 3.0, 4.0, 5.0]'], {}), '([1.0, 2.0, 3.0, 4.0, 5.0])\n', (134299, 134326), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((135134, 135165), 'numpy.ma.core.ones', 'ones', (['(10, 10, 10)'], {'dtype': 'float'}), '((10, 10, 10), dtype=float)\n', (135138, 135165), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((135182, 135210), 'numpy.ma.core.zeros', 'zeros', (['atest.shape', 'MaskType'], {}), '(atest.shape, MaskType)\n', (135187, 135210), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((135227, 135253), 'numpy.ma.core.masked_where', 'masked_where', (['btest', 'atest'], {}), '(btest, atest)\n', (135239, 135253), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((135262, 135288), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['atest', 'ctest'], {}), '(atest, ctest)\n', (135274, 135288), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((135352, 135362), 'numpy.ma.core.arange', 'arange', (['(10)'], {}), '(10)\n', (135358, 135362), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((135545, 135563), 'numpy.ma.core.masked_equal', 'masked_equal', (['a', '(1)'], {}), '(a, 1)\n', (135557, 135563), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((135572, 135627), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.mask', '[0, 1, 0, 0, 0, 0, 0, 0, 0, 0]'], {}), '(test.mask, [0, 1, 0, 0, 0, 0, 0, 0, 0, 0])\n', (135584, 135627), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((135791, 135839), 'numpy.zeros', 'np.zeros', (['(10)'], {'dtype': "[('A', '<f2'), ('B', '<f4')]"}), "(10, dtype=[('A', '<f2'), ('B', '<f4')])\n", (135799, 135839), True, 'import numpy as np\n'), ((135853, 135886), 'numpy.ma.masked_where', 'np.ma.masked_where', (["(a['A'] < 5)", 'a'], {}), "(a['A'] < 5, a)\n", (135871, 135886), True, 'import numpy as np\n'), ((135895, 135944), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['am.mask.dtype.names', 'am.dtype.names'], {}), '(am.mask.dtype.names, am.dtype.names)\n', (135907, 135944), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((136991, 137064), 'numpy.ma.core.array', 'array', (['[1.23456, 2.34567, 3.45678, 4.56789, 5.6789]'], {'mask': '[0, 1, 0, 0, 0]'}), '([1.23456, 2.34567, 3.45678, 4.56789, 5.6789], mask=[0, 1, 0, 0, 0])\n', (136996, 137064), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((137280, 137293), 'numpy.ma.core.empty_like', 'empty_like', (['a'], {}), '(a)\n', (137290, 137293), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((137325, 137367), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['b', '[1.0, 2.0, 3.0, 5.0, 6.0]'], {}), '(b, [1.0, 2.0, 3.0, 5.0, 6.0])\n', (137337, 137367), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((137376, 137408), 'numpy.ma.core.array', 'array', (['[1.0, 2.0, 3.0, 4.0, 5.0]'], {}), '([1.0, 2.0, 3.0, 4.0, 5.0])\n', (137381, 137408), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((137416, 137438), 'numpy.ma.core.array', 'array', (['[1, 1, 1, 0, 0]'], {}), '([1, 1, 1, 0, 0])\n', (137421, 137438), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((137473, 137488), 'numpy.ma.core.where', 'where', (['c', 'x', '(-x)'], {}), '(c, x, -x)\n', (137478, 137488), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((137497, 137539), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['z', '[1.0, 2.0, 0.0, -4.0, -5]'], {}), '(z, [1.0, 2.0, 0.0, -4.0, -5])\n', (137509, 137539), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((137570, 137585), 'numpy.ma.core.where', 'where', (['c', 'x', '(-x)'], {}), '(c, x, -x)\n', (137575, 137585), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((137594, 137636), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['z', '[1.0, 2.0, 0.0, -4.0, -5]'], {}), '(z, [1.0, 2.0, 0.0, -4.0, -5])\n', (137606, 137636), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((137641, 137664), 'numpy.ma.testutils.assert_', 'assert_', (['(z[0] is masked)'], {}), '(z[0] is masked)\n', (137648, 137664), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((137673, 137700), 'numpy.ma.testutils.assert_', 'assert_', (['(z[1] is not masked)'], {}), '(z[1] is not masked)\n', (137680, 137700), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((137709, 137732), 'numpy.ma.testutils.assert_', 'assert_', (['(z[2] is masked)'], {}), '(z[2] is masked)\n', (137716, 137732), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((137987, 138016), 'numpy.empty', 'np.empty', (['(3, 4)'], {'dtype': 'float'}), '((3, 4), dtype=float)\n', (137995, 138016), True, 'import numpy as np\n'), ((138061, 138097), 'numpy.round', 'np.round', (['xm'], {'decimals': '(2)', 'out': 'output'}), '(xm, decimals=2, out=output)\n', (138069, 138097), True, 'import numpy as np\n'), ((138273, 138299), 'numpy.ma.core.empty', 'empty', (['(3, 4)'], {'dtype': 'float'}), '((3, 4), dtype=float)\n', (138278, 138299), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((138524, 138548), 'numpy.ma.core.array', 'array', (['(1.1)'], {'mask': '[False]'}), '(1.1, mask=[False])\n', (138529, 138548), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((138597, 138620), 'numpy.ma.core.array', 'array', (['(1.1)'], {'mask': '[True]'}), '(1.1, mask=[True])\n', (138602, 138620), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((138671, 138695), 'numpy.ma.core.array', 'array', (['(1.1)'], {'mask': '[False]'}), '(1.1, mask=[False])\n', (138676, 138695), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((138713, 138737), 'numpy.empty', 'np.empty', (['(1)'], {'dtype': 'float'}), '(1, dtype=float)\n', (138721, 138737), True, 'import numpy as np\n'), ((138801, 138824), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['output', '(1)'], {}), '(output, 1)\n', (138813, 138824), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((138838, 138862), 'numpy.ma.core.array', 'array', (['(1.1)'], {'mask': '[False]'}), '(1.1, mask=[False])\n', (138843, 138862), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((138880, 138907), 'numpy.ma.core.array', 'array', (['(-9999.0)'], {'mask': '[True]'}), '(-9999.0, mask=[True])\n', (138885, 138907), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((138943, 138970), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['output[()]', '(1)'], {}), '(output[()], 1)\n', (138955, 138970), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((138984, 139007), 'numpy.ma.core.array', 'array', (['(1.1)'], {'mask': '[True]'}), '(1.1, mask=[True])\n', (138989, 139007), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((139025, 139053), 'numpy.ma.core.array', 'array', (['(-9999.0)'], {'mask': '[False]'}), '(-9999.0, mask=[False])\n', (139030, 139053), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((139089, 139118), 'numpy.ma.testutils.assert_', 'assert_', (['(output[()] is masked)'], {}), '(output[()] is masked)\n', (139096, 139118), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((139161, 139172), 'numpy.ma.core.identity', 'identity', (['(5)'], {}), '(5)\n', (139169, 139172), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((139421, 139455), 'numpy.ma.core.array', 'array', (['[-1.1, -1.1, 1.1, 1.1, 0.0]'], {}), '([-1.1, -1.1, 1.1, 1.1, 0.0])\n', (139426, 139455), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((139467, 139522), 'numpy.ma.core.array', 'array', (['[0.5, 2.0, 0.5, 2.0, -1.0]'], {'mask': '[0, 0, 0, 0, 1]'}), '([0.5, 2.0, 0.5, 2.0, -1.0], mask=[0, 0, 0, 0, 1])\n', (139472, 139522), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((139532, 139543), 'numpy.ma.core.power', 'power', (['x', 'b'], {}), '(x, b)\n', (139537, 139543), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((139552, 139611), 'numpy.ma.testutils.assert_almost_equal', 'assert_almost_equal', (['y', '[0, 1.21, 1.04880884817, 1.21, 0.0]'], {}), '(y, [0, 1.21, 1.04880884817, 1.21, 0.0])\n', (139571, 139611), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((139619, 139657), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['y._mask', '[1, 0, 0, 0, 1]'], {}), '(y._mask, [1, 0, 0, 0, 1])\n', (139631, 139657), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((139694, 139705), 'numpy.ma.core.power', 'power', (['x', 'b'], {}), '(x, b)\n', (139699, 139705), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((139714, 139752), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['y._mask', '[1, 0, 0, 0, 1]'], {}), '(y._mask, [1, 0, 0, 0, 1])\n', (139726, 139752), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((139780, 139810), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['z._mask', 'y._mask'], {}), '(z._mask, y._mask)\n', (139792, 139810), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((139819, 139844), 'numpy.ma.testutils.assert_almost_equal', 'assert_almost_equal', (['z', 'y'], {}), '(z, y)\n', (139838, 139844), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((139853, 139890), 'numpy.ma.testutils.assert_almost_equal', 'assert_almost_equal', (['z._data', 'y._data'], {}), '(z._data, y._data)\n', (139872, 139890), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((139915, 139945), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x._mask', 'y._mask'], {}), '(x._mask, y._mask)\n', (139927, 139945), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((139954, 139979), 'numpy.ma.testutils.assert_almost_equal', 'assert_almost_equal', (['x', 'y'], {}), '(x, y)\n', (139973, 139979), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((139988, 140025), 'numpy.ma.testutils.assert_almost_equal', 'assert_almost_equal', (['x._data', 'y._data'], {}), '(x._data, y._data)\n', (140007, 140025), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((140118, 140162), 'numpy.array', 'np.array', (['[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]'], {}), '([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])\n', (140126, 140162), True, 'import numpy as np\n'), ((140171, 140209), 'numpy.ma.core.array', 'array', (['a2'], {'mask': '[[1, 0, 0], [0, 0, 1]]'}), '(a2, mask=[[1, 0, 0], [0, 0, 1]])\n', (140176, 140209), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((140223, 140242), 'numpy.array', 'np.array', (['[2, 4, 3]'], {}), '([2, 4, 3])\n', (140231, 140242), True, 'import numpy as np\n'), ((140256, 140274), 'numpy.array', 'np.array', (['[b1, b1]'], {}), '([b1, b1])\n', (140264, 140274), True, 'import numpy as np\n'), ((140289, 140327), 'numpy.ma.core.array', 'array', (['b2'], {'mask': '[[0, 1, 0], [0, 1, 0]]'}), '(b2, mask=[[0, 1, 0], [0, 1, 0]])\n', (140294, 140327), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((140344, 140436), 'numpy.ma.core.array', 'array', (['[[1 ** 2, 2 ** 4, 3 ** 3], [4 ** 2, 5 ** 4, 6 ** 3]]'], {'mask': '[[1, 1, 0], [0, 1, 1]]'}), '([[1 ** 2, 2 ** 4, 3 ** 3], [4 ** 2, 5 ** 4, 6 ** 3]], mask=[[1, 1, 0],\n [0, 1, 1]])\n', (140349, 140436), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((140534, 140558), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', 'ctrl'], {}), '(test, ctrl)\n', (140546, 140558), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((140567, 140601), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.mask', 'ctrl.mask'], {}), '(test.mask, ctrl.mask)\n', (140579, 140601), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((140689, 140713), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', 'ctrl'], {}), '(test, ctrl)\n', (140701, 140713), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((140722, 140755), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.mask', 'a2m.mask'], {}), '(test.mask, a2m.mask)\n', (140734, 140755), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((140843, 140867), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', 'ctrl'], {}), '(test, ctrl)\n', (140855, 140867), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((140876, 140909), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.mask', 'b2m.mask'], {}), '(test.mask, b2m.mask)\n', (140888, 140909), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((140926, 141018), 'numpy.ma.core.array', 'array', (['[[2 ** 2, 4 ** 4, 3 ** 3], [2 ** 2, 4 ** 4, 3 ** 3]]'], {'mask': '[[0, 1, 0], [0, 1, 0]]'}), '([[2 ** 2, 4 ** 4, 3 ** 3], [2 ** 2, 4 ** 4, 3 ** 3]], mask=[[0, 1, 0],\n [0, 1, 0]])\n', (140931, 141018), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((141069, 141093), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', 'ctrl'], {}), '(test, ctrl)\n', (141081, 141093), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((141102, 141136), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.mask', 'ctrl.mask'], {}), '(test.mask, ctrl.mask)\n', (141114, 141136), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((141170, 141194), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', 'ctrl'], {}), '(test, ctrl)\n', (141182, 141194), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((141203, 141237), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.mask', 'ctrl.mask'], {}), '(test.mask, ctrl.mask)\n', (141215, 141237), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((141311, 141390), 'numpy.array', 'np.array', (['[1.0, 1.0, 1.0, -2.0, pi / 2.0, 4.0, 5.0, -10.0, 10.0, 1.0, 2.0, 3.0]'], {}), '([1.0, 1.0, 1.0, -2.0, pi / 2.0, 4.0, 5.0, -10.0, 10.0, 1.0, 2.0, 3.0])\n', (141319, 141390), True, 'import numpy as np\n'), ((141390, 141465), 'numpy.array', 'np.array', (['[5.0, 0.0, 3.0, 2.0, -1.0, -4.0, 0.0, -10.0, 10.0, 1.0, 0.0, 3.0]'], {}), '([5.0, 0.0, 3.0, 2.0, -1.0, -4.0, 0.0, -10.0, 10.0, 1.0, 0.0, 3.0])\n', (141398, 141465), True, 'import numpy as np\n'), ((141567, 141591), 'numpy.ma.core.masked_array', 'masked_array', (['x'], {'mask': 'm1'}), '(x, mask=m1)\n', (141579, 141591), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((141605, 141629), 'numpy.ma.core.masked_array', 'masked_array', (['y'], {'mask': 'm2'}), '(y, mask=m2)\n', (141617, 141629), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((141676, 141697), 'numpy.ma.core.where', 'where', (['(xm > 2)', 'xm', '(-9)'], {}), '(xm > 2, xm, -9)\n', (141681, 141697), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((141706, 141797), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['d', '[-9.0, -9.0, -9.0, -9.0, -9.0, 4.0, -9.0, -9.0, 10.0, -9.0, -9.0, 3.0]'], {}), '(d, [-9.0, -9.0, -9.0, -9.0, -9.0, 4.0, -9.0, -9.0, 10.0, -9.0,\n -9.0, 3.0])\n', (141718, 141797), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((141815, 141846), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['d._mask', 'xm._mask'], {}), '(d._mask, xm._mask)\n', (141827, 141846), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((141859, 141880), 'numpy.ma.core.where', 'where', (['(xm > 2)', '(-9)', 'ym'], {}), '(xm > 2, -9, ym)\n', (141864, 141880), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((141889, 141978), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['d', '[5.0, 0.0, 3.0, 2.0, -1.0, -9.0, -9.0, -10.0, -9.0, 1.0, 0.0, -9.0]'], {}), '(d, [5.0, 0.0, 3.0, 2.0, -1.0, -9.0, -9.0, -10.0, -9.0, 1.0, \n 0.0, -9.0])\n', (141901, 141978), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((141995, 142054), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['d._mask', '[1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0]'], {}), '(d._mask, [1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0])\n', (142007, 142054), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((142067, 142092), 'numpy.ma.core.where', 'where', (['(xm > 2)', 'xm', 'masked'], {}), '(xm > 2, xm, masked)\n', (142072, 142092), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((142101, 142192), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['d', '[-9.0, -9.0, -9.0, -9.0, -9.0, 4.0, -9.0, -9.0, 10.0, -9.0, -9.0, 3.0]'], {}), '(d, [-9.0, -9.0, -9.0, -9.0, -9.0, 4.0, -9.0, -9.0, 10.0, -9.0,\n -9.0, 3.0])\n', (142113, 142192), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((142283, 142309), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['d._mask', 'tmp'], {}), '(d._mask, tmp)\n', (142295, 142309), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((142352, 142379), 'numpy.ma.core.where', 'where', (['(ixm > 2)', 'ixm', 'masked'], {}), '(ixm > 2, ixm, masked)\n', (142357, 142379), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((142388, 142451), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['d', '[-9, -9, -9, -9, -9, 4, -9, -9, 10, -9, -9, 3]'], {}), '(d, [-9, -9, -9, -9, -9, 4, -9, -9, 10, -9, -9, 3])\n', (142400, 142451), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((142460, 142492), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['d.dtype', 'ixm.dtype'], {}), '(d.dtype, ixm.dtype)\n', (142472, 142492), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((142539, 142553), 'numpy.array', 'np.array', (['None'], {}), '(None)\n', (142547, 142553), True, 'import numpy as np\n'), ((142566, 142584), 'numpy.ma.core.masked_array', 'masked_array', (['None'], {}), '(None)\n', (142578, 142584), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((142762, 142772), 'numpy.ma.core.arange', 'arange', (['(10)'], {}), '(10)\n', (142768, 142772), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((142856, 142875), 'numpy.ma.core.where', 'where', (['c', 'x', 'masked'], {}), '(c, x, masked)\n', (142861, 142875), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((142884, 142911), 'numpy.ma.testutils.assert_', 'assert_', (['(z.dtype is x.dtype)'], {}), '(z.dtype is x.dtype)\n', (142891, 142911), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((142920, 142943), 'numpy.ma.testutils.assert_', 'assert_', (['(z[3] is masked)'], {}), '(z[3] is masked)\n', (142927, 142943), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((142952, 142975), 'numpy.ma.testutils.assert_', 'assert_', (['(z[4] is masked)'], {}), '(z[4] is masked)\n', (142959, 142975), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((142984, 143007), 'numpy.ma.testutils.assert_', 'assert_', (['(z[7] is masked)'], {}), '(z[7] is masked)\n', (142991, 143007), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((143016, 143043), 'numpy.ma.testutils.assert_', 'assert_', (['(z[8] is not masked)'], {}), '(z[8] is not masked)\n', (143023, 143043), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((143052, 143079), 'numpy.ma.testutils.assert_', 'assert_', (['(z[9] is not masked)'], {}), '(z[9] is not masked)\n', (143059, 143079), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((143088, 143106), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x', 'z'], {}), '(x, z)\n', (143100, 143106), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((143148, 143167), 'numpy.ma.core.where', 'where', (['c', 'masked', 'x'], {}), '(c, masked, x)\n', (143153, 143167), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((143176, 143203), 'numpy.ma.testutils.assert_', 'assert_', (['(z.dtype is x.dtype)'], {}), '(z.dtype is x.dtype)\n', (143183, 143203), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((143212, 143235), 'numpy.ma.testutils.assert_', 'assert_', (['(z[3] is masked)'], {}), '(z[3] is masked)\n', (143219, 143235), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((143244, 143271), 'numpy.ma.testutils.assert_', 'assert_', (['(z[4] is not masked)'], {}), '(z[4] is not masked)\n', (143251, 143271), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((143280, 143307), 'numpy.ma.testutils.assert_', 'assert_', (['(z[7] is not masked)'], {}), '(z[7] is not masked)\n', (143287, 143307), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((143316, 143339), 'numpy.ma.testutils.assert_', 'assert_', (['(z[8] is masked)'], {}), '(z[8] is masked)\n', (143323, 143339), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((143348, 143371), 'numpy.ma.testutils.assert_', 'assert_', (['(z[9] is masked)'], {}), '(z[9] is masked)\n', (143355, 143371), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((143433, 143465), 'numpy.ma.core.array', 'array', (['[1.0, 2.0, 3.0, 4.0, 5.0]'], {}), '([1.0, 2.0, 3.0, 4.0, 5.0])\n', (143438, 143465), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((143473, 143495), 'numpy.ma.core.array', 'array', (['[1, 1, 1, 0, 0]'], {}), '([1, 1, 1, 0, 0])\n', (143478, 143495), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((143530, 143545), 'numpy.ma.core.where', 'where', (['c', 'x', '(-x)'], {}), '(c, x, -x)\n', (143535, 143545), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((143554, 143596), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['z', '[1.0, 2.0, 0.0, -4.0, -5]'], {}), '(z, [1.0, 2.0, 0.0, -4.0, -5])\n', (143566, 143596), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((143627, 143642), 'numpy.ma.core.where', 'where', (['c', 'x', '(-x)'], {}), '(c, x, -x)\n', (143632, 143642), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((143651, 143693), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['z', '[1.0, 2.0, 0.0, -4.0, -5]'], {}), '(z, [1.0, 2.0, 0.0, -4.0, -5])\n', (143663, 143693), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((143698, 143721), 'numpy.ma.testutils.assert_', 'assert_', (['(z[0] is masked)'], {}), '(z[0] is masked)\n', (143705, 143721), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((143730, 143757), 'numpy.ma.testutils.assert_', 'assert_', (['(z[1] is not masked)'], {}), '(z[1] is not masked)\n', (143737, 143757), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((143766, 143789), 'numpy.ma.testutils.assert_', 'assert_', (['(z[2] is masked)'], {}), '(z[2] is masked)\n', (143773, 143789), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((143803, 143815), 'numpy.ma.core.arange', 'arange', (['(1)', '(6)'], {}), '(1, 6)\n', (143809, 143815), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((143903, 143947), 'numpy.ma.core.array', 'array', (['[1, 1, 1, 0, 0]'], {'mask': '[1, 0, 0, 0, 0]'}), '([1, 1, 1, 0, 0], mask=[1, 0, 0, 0, 0])\n', (143908, 143947), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((143985, 143999), 'numpy.ma.core.where', 'where', (['c', 'x', 'y'], {}), '(c, x, y)\n', (143990, 143999), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((144013, 144028), 'numpy.ma.core.where', 'where', (['cm', 'x', 'y'], {}), '(cm, x, y)\n', (144018, 144028), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((144037, 144056), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['z', 'zm'], {}), '(z, zm)\n', (144049, 144056), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((144104, 144139), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['zm', '[1, 2, 3, 40, 50]'], {}), '(zm, [1, 2, 3, 40, 50])\n', (144116, 144139), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((144152, 144171), 'numpy.ma.core.where', 'where', (['c', 'masked', '(1)'], {}), '(c, masked, 1)\n', (144157, 144171), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((144180, 144215), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['z', '[99, 99, 99, 1, 1]'], {}), '(z, [99, 99, 99, 1, 1])\n', (144192, 144215), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((144228, 144247), 'numpy.ma.core.where', 'where', (['c', '(1)', 'masked'], {}), '(c, 1, masked)\n', (144233, 144247), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((144256, 144291), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['z', '[99, 1, 1, 99, 99]'], {}), '(z, [99, 1, 1, 99, 99])\n', (144268, 144291), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((144384, 144412), 'numpy.arange', 'np.arange', (['(4)'], {'dtype': 'np.int32'}), '(4, dtype=np.int32)\n', (144393, 144412), True, 'import numpy as np\n'), ((144522, 144569), 'numpy.find_common_type', 'np.find_common_type', (['[np.int32, np.float32]', '[]'], {}), '([np.int32, np.float32], [])\n', (144541, 144569), True, 'import numpy as np\n'), ((144578, 144605), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', 'control'], {}), '(test, control)\n', (144590, 144605), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((144779, 144808), 'numpy.ma.core.choose', 'choose', (['[2, 3, 1, 0]', 'choices'], {}), '([2, 3, 1, 0], choices)\n', (144785, 144808), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((144879, 144921), 'numpy.ma.core.choose', 'choose', (['[2, 4, 1, 0]', 'choices'], {'mode': '"""clip"""'}), "([2, 4, 1, 0], choices, mode='clip')\n", (144885, 144921), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((144992, 145034), 'numpy.ma.core.choose', 'choose', (['[2, 4, 1, 0]', 'choices'], {'mode': '"""wrap"""'}), "([2, 4, 1, 0], choices, mode='wrap')\n", (144998, 145034), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((145147, 145185), 'numpy.ma.core.array', 'array', (['[2, 4, 1, 0]'], {'mask': '[1, 0, 0, 1]'}), '([2, 4, 1, 0], mask=[1, 0, 0, 1])\n', (145152, 145185), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((145203, 145241), 'numpy.ma.core.choose', 'choose', (['indices_', 'choices'], {'mode': '"""wrap"""'}), "(indices_, choices, mode='wrap')\n", (145209, 145241), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((145303, 145342), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['chosen.mask', '[1, 0, 0, 1]'], {}), '(chosen.mask, [1, 0, 0, 1])\n', (145315, 145342), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((145402, 145479), 'numpy.ma.core.array', 'array', (['choices'], {'mask': '[[0, 0, 0, 1], [1, 1, 0, 1], [1, 0, 0, 0], [0, 0, 0, 0]]'}), '(choices, mask=[[0, 0, 0, 1], [1, 1, 0, 1], [1, 0, 0, 0], [0, 0, 0, 0]])\n', (145407, 145479), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((145568, 145606), 'numpy.ma.core.choose', 'choose', (['indices_', 'choices'], {'mode': '"""wrap"""'}), "(indices_, choices, mode='wrap')\n", (145574, 145606), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((145668, 145707), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['chosen.mask', '[1, 0, 0, 1]'], {}), '(chosen.mask, [1, 0, 0, 1])\n', (145680, 145707), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((145918, 145937), 'numpy.ma.core.empty', 'empty', (['(4)'], {'dtype': 'int'}), '(4, dtype=int)\n', (145923, 145937), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((145955, 145995), 'numpy.ma.core.choose', 'choose', (['[2, 3, 1, 0]', 'choices'], {'out': 'store'}), '([2, 3, 1, 0], choices, out=store)\n', (145961, 145995), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((146152, 146171), 'numpy.ma.core.empty', 'empty', (['(4)'], {'dtype': 'int'}), '(4, dtype=int)\n', (146157, 146171), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((146191, 146229), 'numpy.ma.core.array', 'array', (['[2, 3, 1, 0]'], {'mask': '[1, 0, 0, 1]'}), '([2, 3, 1, 0], mask=[1, 0, 0, 1])\n', (146196, 146229), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((146247, 146296), 'numpy.ma.core.choose', 'choose', (['indices_', 'choices'], {'mode': '"""wrap"""', 'out': 'store'}), "(indices_, choices, mode='wrap', out=store)\n", (146253, 146296), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((146358, 146396), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['store.mask', '[1, 0, 0, 1]'], {}), '(store.mask, [1, 0, 0, 1])\n', (146370, 146396), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((146476, 146553), 'numpy.ma.core.array', 'array', (['choices'], {'mask': '[[0, 0, 0, 1], [1, 1, 0, 1], [1, 0, 0, 0], [0, 0, 0, 0]]'}), '(choices, mask=[[0, 0, 0, 1], [1, 1, 0, 1], [1, 0, 0, 0], [0, 0, 0, 0]])\n', (146481, 146553), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((146692, 146741), 'numpy.ma.core.choose', 'choose', (['indices_', 'choices'], {'mode': '"""wrap"""', 'out': 'store'}), "(indices_, choices, mode='wrap', out=store)\n", (146698, 146741), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((146844, 146854), 'numpy.ma.core.arange', 'arange', (['(10)'], {}), '(10)\n', (146850, 146854), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((146941, 146970), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['b.shape', '(5, 2)'], {}), '(b.shape, (5, 2))\n', (146953, 146970), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((147097, 147126), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['b.shape', '(5, 2)'], {}), '(b.shape, (5, 2))\n', (147109, 147126), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((147237, 147266), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['b.shape', '(5, 2)'], {}), '(b.shape, (5, 2))\n', (147249, 147266), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((147375, 147404), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['b.shape', '(5, 2)'], {}), '(b.shape, (5, 2))\n', (147387, 147404), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((147456, 147477), 'numpy.reshape', 'np.reshape', (['a', '(2, 5)'], {}), '(a, (2, 5))\n', (147466, 147477), True, 'import numpy as np\n'), ((147538, 147567), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['c.shape', '(2, 5)'], {}), '(c.shape, (2, 5))\n', (147550, 147567), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((147802, 147824), 'numpy.ma.core.make_mask_descr', 'make_mask_descr', (['ntype'], {}), '(ntype)\n', (147817, 147824), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((147833, 147885), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', "[('a', np.bool), ('b', np.bool)]"], {}), "(test, [('a', np.bool), ('b', np.bool)])\n", (147845, 147885), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((147959, 147981), 'numpy.ma.core.make_mask_descr', 'make_mask_descr', (['ntype'], {}), '(ntype)\n', (147974, 147981), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((147990, 148022), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', '(np.bool, 2)'], {}), '(test, (np.bool, 2))\n', (148002, 148022), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((148091, 148113), 'numpy.ma.core.make_mask_descr', 'make_mask_descr', (['ntype'], {}), '(ntype)\n', (148106, 148113), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((148271, 148293), 'numpy.ma.core.make_mask_descr', 'make_mask_descr', (['ntype'], {}), '(ntype)\n', (148286, 148293), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((148312, 148372), 'numpy.dtype', 'np.dtype', (["[('a', 'b1'), ('b', [('ba', 'b1'), ('bb', 'b1')])]"], {}), "([('a', 'b1'), ('b', [('ba', 'b1'), ('bb', 'b1')])])\n", (148320, 148372), True, 'import numpy as np\n'), ((148381, 148408), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', 'control'], {}), '(test, control)\n', (148393, 148408), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((148486, 148508), 'numpy.ma.core.make_mask_descr', 'make_mask_descr', (['ntype'], {}), '(ntype)\n', (148501, 148508), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((148640, 148662), 'numpy.ma.core.make_mask_descr', 'make_mask_descr', (['ntype'], {}), '(ntype)\n', (148655, 148662), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((148847, 148862), 'numpy.ma.core.make_mask', 'make_mask', (['mask'], {}), '(mask)\n', (148856, 148862), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((148871, 148905), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.dtype', 'MaskType'], {}), '(test.dtype, MaskType)\n', (148883, 148905), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((148914, 148940), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', '[0, 1]'], {}), '(test, [0, 1])\n', (148926, 148940), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((148991, 149022), 'numpy.array', 'np.array', (['[0, 1]'], {'dtype': 'np.bool'}), '([0, 1], dtype=np.bool)\n', (148999, 149022), True, 'import numpy as np\n'), ((149038, 149053), 'numpy.ma.core.make_mask', 'make_mask', (['mask'], {}), '(mask)\n', (149047, 149053), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((149062, 149096), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.dtype', 'MaskType'], {}), '(test.dtype, MaskType)\n', (149074, 149096), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((149105, 149131), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', '[0, 1]'], {}), '(test, [0, 1])\n', (149117, 149131), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((149260, 149300), 'numpy.array', 'np.array', (['[(0, 0), (0, 1)]'], {'dtype': 'mdtype'}), '([(0, 0), (0, 1)], dtype=mdtype)\n', (149268, 149300), True, 'import numpy as np\n'), ((149316, 149331), 'numpy.ma.core.make_mask', 'make_mask', (['mask'], {}), '(mask)\n', (149325, 149331), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((149340, 149374), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.dtype', 'MaskType'], {}), '(test.dtype, MaskType)\n', (149352, 149374), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((149383, 149409), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', '[1, 1]'], {}), '(test, [1, 1])\n', (149395, 149409), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((149542, 149582), 'numpy.array', 'np.array', (['[(0, 0), (0, 1)]'], {'dtype': 'mdtype'}), '([(0, 0), (0, 1)], dtype=mdtype)\n', (149550, 149582), True, 'import numpy as np\n'), ((149598, 149631), 'numpy.ma.core.make_mask', 'make_mask', (['mask'], {'dtype': 'mask.dtype'}), '(mask, dtype=mask.dtype)\n', (149607, 149631), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((149640, 149672), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.dtype', 'mdtype'], {}), '(test.dtype, mdtype)\n', (149652, 149672), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((149681, 149705), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', 'mask'], {}), '(test, mask)\n', (149693, 149705), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((149890, 149930), 'numpy.array', 'np.array', (['[(0, 0), (0, 1)]'], {'dtype': 'mdtype'}), '([(0, 0), (0, 1)], dtype=mdtype)\n', (149898, 149930), True, 'import numpy as np\n'), ((149946, 149979), 'numpy.ma.core.make_mask', 'make_mask', (['mask'], {'dtype': 'mask.dtype'}), '(mask, dtype=mask.dtype)\n', (149955, 149979), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((149988, 150020), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.dtype', 'bdtype'], {}), '(test.dtype, bdtype)\n', (150000, 150020), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((150295, 150334), 'itertools.product', 'itertools.product', (['bools', 'bools', 'dtypes'], {}), '(bools, bools, dtypes)\n', (150312, 150334), False, 'import itertools\n'), ((150582, 150637), 'numpy.array', 'np.array', (['[(0, 0), (0, 1), (1, 0), (0, 0)]'], {'dtype': 'mtype'}), '([(0, 0), (0, 1), (1, 0), (0, 0)], dtype=mtype)\n', (150590, 150637), True, 'import numpy as np\n'), ((150690, 150711), 'numpy.ma.core.mask_or', 'mask_or', (['mask', 'nomask'], {}), '(mask, nomask)\n', (150697, 150711), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((150720, 150744), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', 'mask'], {}), '(test, mask)\n', (150732, 150744), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((150760, 150781), 'numpy.ma.core.mask_or', 'mask_or', (['nomask', 'mask'], {}), '(nomask, mask)\n', (150767, 150781), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((150790, 150814), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', 'mask'], {}), '(test, mask)\n', (150802, 150814), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((150861, 150881), 'numpy.ma.core.mask_or', 'mask_or', (['mask', '(False)'], {}), '(mask, False)\n', (150868, 150881), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((150890, 150914), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', 'mask'], {}), '(test, mask)\n', (150902, 150914), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((150980, 151035), 'numpy.array', 'np.array', (['[(0, 1), (0, 1), (0, 1), (0, 1)]'], {'dtype': 'mtype'}), '([(0, 1), (0, 1), (0, 1), (0, 1)], dtype=mtype)\n', (150988, 151035), True, 'import numpy as np\n'), ((151051, 151071), 'numpy.ma.core.mask_or', 'mask_or', (['mask', 'other'], {}), '(mask, other)\n', (151058, 151071), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((151090, 151145), 'numpy.array', 'np.array', (['[(0, 1), (0, 1), (1, 1), (0, 1)]'], {'dtype': 'mtype'}), '([(0, 1), (0, 1), (1, 1), (0, 1)], dtype=mtype)\n', (151098, 151145), True, 'import numpy as np\n'), ((151154, 151181), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', 'control'], {}), '(test, control)\n', (151166, 151181), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((151303, 151362), 'numpy.array', 'np.array', (['[(0, 1), (0, 1), (0, 1), (0, 1)]'], {'dtype': 'othertype'}), '([(0, 1), (0, 1), (0, 1), (0, 1)], dtype=othertype)\n', (151311, 151362), True, 'import numpy as np\n'), ((151582, 151631), 'numpy.array', 'np.array', (['[(0, (1, 0)), (0, (1, 0))]'], {'dtype': 'dtype'}), '([(0, (1, 0)), (0, (1, 0))], dtype=dtype)\n', (151590, 151631), True, 'import numpy as np\n'), ((151648, 151697), 'numpy.array', 'np.array', (['[(1, (0, 1)), (0, (0, 0))]'], {'dtype': 'dtype'}), '([(1, (0, 1)), (0, (0, 0))], dtype=dtype)\n', (151656, 151697), True, 'import numpy as np\n'), ((151714, 151763), 'numpy.array', 'np.array', (['[(1, (1, 1)), (0, (1, 0))]'], {'dtype': 'dtype'}), '([(1, (1, 1)), (0, (1, 0))], dtype=dtype)\n', (151722, 151763), True, 'import numpy as np\n'), ((151918, 151952), 'numpy.array', 'np.array', (['[0, 0, 1]'], {'dtype': 'np.bool'}), '([0, 0, 1], dtype=np.bool)\n', (151926, 151952), True, 'import numpy as np\n'), ((152040, 152100), 'numpy.array', 'np.array', (['[(0, 0), (0, 1)]'], {'dtype': "[('a', bool), ('b', bool)]"}), "([(0, 0), (0, 1)], dtype=[('a', bool), ('b', bool)])\n", (152048, 152100), True, 'import numpy as np\n'), ((152116, 152134), 'numpy.ma.core.flatten_mask', 'flatten_mask', (['mask'], {}), '(mask)\n', (152128, 152134), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((152153, 152187), 'numpy.array', 'np.array', (['[0, 0, 0, 1]'], {'dtype': 'bool'}), '([0, 0, 0, 1], dtype=bool)\n', (152161, 152187), True, 'import numpy as np\n'), ((152196, 152223), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', 'control'], {}), '(test, control)\n', (152208, 152223), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((152350, 152378), 'numpy.array', 'np.array', (['data'], {'dtype': 'mdtype'}), '(data, dtype=mdtype)\n', (152358, 152378), True, 'import numpy as np\n'), ((152394, 152412), 'numpy.ma.core.flatten_mask', 'flatten_mask', (['mask'], {}), '(mask)\n', (152406, 152412), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((152431, 152471), 'numpy.array', 'np.array', (['[0, 0, 0, 0, 0, 1]'], {'dtype': 'bool'}), '([0, 0, 0, 0, 0, 1], dtype=bool)\n', (152439, 152471), True, 'import numpy as np\n'), ((152480, 152507), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', 'control'], {}), '(test, control)\n', (152492, 152507), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((152589, 152611), 'numpy.array', 'np.array', (['[1, 2, 3, 4]'], {}), '([1, 2, 3, 4])\n', (152597, 152611), True, 'import numpy as np\n'), ((152624, 152644), 'numpy.ma.core.array', 'array', (['a'], {'mask': '(False)'}), '(a, mask=False)\n', (152629, 152644), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((152660, 152667), 'numpy.ma.core.anom', 'anom', (['a'], {}), '(a)\n', (152664, 152667), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((152720, 152738), 'numpy.ma.core.reshape', 'reshape', (['a', '(2, 2)'], {}), '(a, (2, 2))\n', (152727, 152738), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((152920, 152932), 'numpy.arange', 'np.arange', (['(8)'], {}), '(8)\n', (152929, 152932), True, 'import numpy as np\n'), ((152973, 153008), 'numpy.array', 'np.array', (['[True, False, True, True]'], {}), '([True, False, True, True])\n', (152981, 153008), True, 'import numpy as np\n'), ((153057, 153090), 'numpy.ma.compress', 'np.ma.compress', (['cond', 'arr'], {'axis': '(0)'}), '(cond, arr, axis=0)\n', (153071, 153090), True, 'import numpy as np\n'), ((153099, 153126), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', 'control'], {}), '(test, control)\n', (153111, 153126), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((153142, 153158), 'numpy.ma.array', 'np.ma.array', (['arr'], {}), '(arr)\n', (153153, 153158), True, 'import numpy as np\n'), ((153174, 153208), 'numpy.ma.compress', 'np.ma.compress', (['cond', 'marr'], {'axis': '(0)'}), '(cond, marr, axis=0)\n', (153188, 153208), True, 'import numpy as np\n'), ((153217, 153244), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', 'control'], {}), '(test, control)\n', (153229, 153244), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((153354, 153373), 'numpy.ma.array', 'np.ma.array', (['[1, 2]'], {}), '([1, 2])\n', (153365, 153373), True, 'import numpy as np\n'), ((153389, 153408), 'numpy.ma.compressed', 'np.ma.compressed', (['a'], {}), '(a)\n', (153405, 153408), True, 'import numpy as np\n'), ((153606, 153625), 'numpy.ma.compressed', 'np.ma.compressed', (['a'], {}), '(a)\n', (153622, 153625), True, 'import numpy as np\n'), ((153713, 153741), 'numpy.ma.compressed', 'np.ma.compressed', (['[[1], [2]]'], {}), '([[1], [2]])\n', (153729, 153741), True, 'import numpy as np\n'), ((153749, 153775), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.ndim', '(1)'], {}), '(test.ndim, 1)\n', (153761, 153775), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((153791, 153820), 'numpy.ma.compressed', 'np.ma.compressed', (['[[[[[1]]]]]'], {}), '([[[[[1]]]]])\n', (153807, 153820), True, 'import numpy as np\n'), ((153829, 153855), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.ndim', '(1)'], {}), '(test.ndim, 1)\n', (153841, 153855), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((154018, 154044), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.ndim', '(1)'], {}), '(test.ndim, 1)\n', (154030, 154044), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((154235, 154257), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', '(42)'], {}), '(test, 42)\n', (154247, 154257), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((155793, 155824), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['base_a.dtype', 'int'], {}), '(base_a.dtype, int)\n', (155805, 155824), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((155833, 155876), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['base_a._data', '[3, 2, 3, 4, 5]'], {}), '(base_a._data, [3, 2, 3, 4, 5])\n', (155845, 155876), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((155886, 155919), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['base_b.dtype', 'float'], {}), '(base_b.dtype, float)\n', (155898, 155919), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((155928, 155980), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['base_b._data', '[pi, 2.2, 3.3, 4.4, 5.5]'], {}), '(base_b._data, [pi, 2.2, 3.3, 4.4, 5.5])\n', (155940, 155980), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((155990, 156023), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['base_c.dtype', '"""|S8"""'], {}), "(base_c.dtype, '|S8')\n", (156002, 156023), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((156319, 156350), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['base_a.dtype', 'int'], {}), '(base_a.dtype, int)\n', (156331, 156350), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((156359, 156402), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['base_a._data', '[3, 3, 3, 4, 5]'], {}), '(base_a._data, [3, 3, 3, 4, 5])\n', (156371, 156402), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((156412, 156445), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['base_b.dtype', 'float'], {}), '(base_b.dtype, float)\n', (156424, 156445), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((156454, 156504), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['base_b._data', '[pi, pi, pi, 4.4, 5.5]'], {}), '(base_b._data, [pi, pi, pi, 4.4, 5.5])\n', (156466, 156504), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((156514, 156547), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['base_c.dtype', '"""|S8"""'], {}), "(base_c.dtype, '|S8')\n", (156526, 156547), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((157063, 157085), 'numpy.ma.core.empty', 'empty', (['(3)'], {'dtype': 'ndtype'}), '(3, dtype=ndtype)\n', (157068, 157085), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((157582, 157600), 'numpy.array', 'np.array', (['iterator'], {}), '(iterator)\n', (157590, 157600), True, 'import numpy as np\n'), ((157613, 157664), 'numpy.ma.core.array', 'array', (['iterator'], {'dtype': "[('a', float), ('b', float)]"}), "(iterator, dtype=[('a', float), ('b', float)])\n", (157618, 157664), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((157714, 157750), 'numpy.array', 'np.array', (['([1] + 19 * [0])'], {'dtype': 'bool'}), '([1] + 19 * [0], dtype=bool)\n', (157722, 157750), True, 'import numpy as np\n'), ((157874, 157910), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.mask', 'controlmask'], {}), '(test.mask, controlmask)\n', (157886, 157910), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((157989, 158013), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', 'data'], {}), '(test, data)\n', (158001, 158013), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((158128, 158152), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', 'data'], {}), '(test, data)\n', (158140, 158152), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((158720, 158764), 'numpy.ma.testutils.assert_equal_records', 'assert_equal_records', (['a[0]._data', 'a._data[0]'], {}), '(a[0]._data, a._data[0])\n', (158740, 158764), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((158773, 158817), 'numpy.ma.testutils.assert_equal_records', 'assert_equal_records', (['a[0]._mask', 'a._mask[0]'], {}), '(a[0]._mask, a._mask[0])\n', (158793, 158817), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((158911, 158957), 'numpy.ma.testutils.assert_equal_records', 'assert_equal_records', (['a[-2]._data', 'a._data[-2]'], {}), '(a[-2]._data, a._data[-2])\n', (158931, 158957), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((158966, 159012), 'numpy.ma.testutils.assert_equal_records', 'assert_equal_records', (['a[-2]._mask', 'a._mask[-2]'], {}), '(a[-2]._mask, a._mask[-2])\n', (158986, 159012), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((159172, 159208), 'numpy.dtype', 'np.dtype', (["[('a', float), ('b', int)]"], {}), "([('a', float), ('b', int)])\n", (159180, 159208), True, 'import numpy as np\n'), ((159222, 159275), 'numpy.ma.MaskedArray', 'np.ma.MaskedArray', (['[(1.0, 1), (2.0, 2)]'], {'dtype': 'ndtype'}), '([(1.0, 1), (2.0, 2)], dtype=ndtype)\n', (159239, 159275), True, 'import numpy as np\n'), ((159468, 159504), 'numpy.dtype', 'np.dtype', (["[('a', bool), ('b', bool)]"], {}), "([('a', bool), ('b', bool)])\n", (159476, 159504), True, 'import numpy as np\n'), ((159543, 159596), 'numpy.array', 'np.array', (['[(False, True), (True, True)]'], {'dtype': 'mdtype'}), '([(False, True), (True, True)], dtype=mdtype)\n', (159551, 159596), True, 'import numpy as np\n'), ((159609, 159645), 'numpy.ma.masked_all', 'np.ma.masked_all', (['(2,)'], {'dtype': 'ndtype'}), '((2,), dtype=ndtype)\n', (159625, 159645), True, 'import numpy as np\n'), ((159676, 159705), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['a.mask', 'control'], {}), '(a.mask, control)\n', (159688, 159705), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((159718, 159754), 'numpy.ma.masked_all', 'np.ma.masked_all', (['(2,)'], {'dtype': 'ndtype'}), '((2,), dtype=ndtype)\n', (159734, 159754), True, 'import numpy as np\n'), ((159785, 159814), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['a.mask', 'control'], {}), '(a.mask, control)\n', (159797, 159814), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((159853, 159905), 'numpy.array', 'np.array', (['[(True, True), (True, True)]'], {'dtype': 'mdtype'}), '([(True, True), (True, True)], dtype=mdtype)\n', (159861, 159905), True, 'import numpy as np\n'), ((159918, 159954), 'numpy.ma.masked_all', 'np.ma.masked_all', (['(2,)'], {'dtype': 'ndtype'}), '((2,), dtype=ndtype)\n', (159934, 159954), True, 'import numpy as np\n'), ((160009, 160038), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['a.mask', 'control'], {}), '(a.mask, control)\n', (160021, 160038), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((160051, 160087), 'numpy.ma.masked_all', 'np.ma.masked_all', (['(2,)'], {'dtype': 'ndtype'}), '((2,), dtype=ndtype)\n', (160067, 160087), True, 'import numpy as np\n'), ((160142, 160171), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['a.mask', 'control'], {}), '(a.mask, control)\n', (160154, 160171), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((160502, 160520), 'numpy.array', 'np.array', (['iterator'], {}), '(iterator)\n', (160510, 160520), True, 'import numpy as np\n'), ((160533, 160584), 'numpy.ma.core.array', 'array', (['iterator'], {'dtype': "[('a', float), ('b', float)]"}), "(iterator, dtype=[('a', float), ('b', float)])\n", (160538, 160584), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((160634, 160670), 'numpy.array', 'np.array', (['([1] + 19 * [0])'], {'dtype': 'bool'}), '([1] + 19 * [0], dtype=bool)\n', (160642, 160670), True, 'import numpy as np\n'), ((160881, 160914), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test._data', 'a._data'], {}), '(test._data, a._data)\n', (160893, 160914), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((160923, 160956), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test._mask', 'a._mask'], {}), '(test._mask, a._mask)\n', (160935, 160956), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((161135, 161162), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', 'a._data'], {}), '(test, a._data)\n', (161147, 161162), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((161470, 161506), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.mask', 'controlmask'], {}), '(test.mask, controlmask)\n', (161482, 161506), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((161655, 161702), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.mask.dtype.names', "('A', 'B')"], {}), "(test.mask.dtype.names, ('A', 'B'))\n", (161667, 161702), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((161711, 161742), 'numpy.ma.testutils.assert_equal', 'assert_equal', (["test['A']", "a['a']"], {}), "(test['A'], a['a'])\n", (161723, 161742), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((161751, 161782), 'numpy.ma.testutils.assert_equal', 'assert_equal', (["test['B']", "a['b']"], {}), "(test['B'], a['b'])\n", (161763, 161782), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((161902, 161949), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.mask.dtype.names', "('A', 'B')"], {}), "(test.mask.dtype.names, ('A', 'B'))\n", (161914, 161949), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((161958, 161992), 'numpy.ma.testutils.assert_equal', 'assert_equal', (["test['A']", "a['a'][0]"], {}), "(test['A'], a['a'][0])\n", (161970, 161992), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((162001, 162035), 'numpy.ma.testutils.assert_equal', 'assert_equal', (["test['B']", "a['b'][0]"], {}), "(test['B'], a['b'][0])\n", (162013, 162035), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((162156, 162198), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.dtype.names', "('A', 'B')"], {}), "(test.dtype.names, ('A', 'B'))\n", (162168, 162198), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((162207, 162242), 'numpy.ma.testutils.assert_equal', 'assert_equal', (["test['A']", "a['a'][-1]"], {}), "(test['A'], a['a'][-1])\n", (162219, 162242), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((162251, 162286), 'numpy.ma.testutils.assert_equal', 'assert_equal', (["test['B']", "a['b'][-1]"], {}), "(test['B'], a['b'][-1])\n", (162263, 162286), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((162489, 162513), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', 'data'], {}), '(test, data)\n', (162501, 162513), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((162709, 162736), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', 'data[0]'], {}), '(test, data[0])\n', (162721, 162736), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((162745, 162776), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test.mask', '(1, 0)'], {}), '(test.mask, (1, 0))\n', (162757, 162776), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((162915, 162943), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', 'data[-1]'], {}), '(test, data[-1])\n', (162927, 162943), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((163085, 163109), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', 'data'], {}), '(test, data)\n', (163097, 163109), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((163555, 163577), 'numpy.ma.array', 'np.ma.array', (['d'], {'mask': 'm'}), '(d, mask=m)\n', (163566, 163577), True, 'import numpy as np\n'), ((164876, 164898), 'numpy.ma.array', 'np.ma.array', (['d'], {'mask': 'm'}), '(d, mask=m)\n', (164887, 164898), True, 'import numpy as np\n'), ((165196, 165218), 'numpy.ma.array', 'np.ma.array', (['d'], {'mask': 'm'}), '(d, mask=m)\n', (165207, 165218), True, 'import numpy as np\n'), ((165639, 165687), 'numpy.testing.assert_raises', 'assert_raises', (['ValueError', 'count', 'a'], {'axis': '(1, 1)'}), '(ValueError, count, a, axis=(1, 1))\n', (165652, 165687), False, 'from numpy.testing import TestCase, run_module_suite, assert_raises\n'), ((165695, 165738), 'numpy.testing.assert_raises', 'assert_raises', (['ValueError', 'count', 'a'], {'axis': '(3)'}), '(ValueError, count, a, axis=3)\n', (165708, 165738), False, 'from numpy.testing import TestCase, run_module_suite, assert_raises\n'), ((165786, 165813), 'numpy.ma.array', 'np.ma.array', (['d'], {'mask': 'nomask'}), '(d, mask=nomask)\n', (165797, 165813), True, 'import numpy as np\n'), ((166234, 166282), 'numpy.testing.assert_raises', 'assert_raises', (['ValueError', 'count', 'a'], {'axis': '(1, 1)'}), '(ValueError, count, a, axis=(1, 1))\n', (166247, 166282), False, 'from numpy.testing import TestCase, run_module_suite, assert_raises\n'), ((166290, 166333), 'numpy.testing.assert_raises', 'assert_raises', (['ValueError', 'count', 'a'], {'axis': '(3)'}), '(ValueError, count, a, axis=3)\n', (166303, 166333), False, 'from numpy.testing import TestCase, run_module_suite, assert_raises\n'), ((166631, 166645), 'numpy.argwhere', 'np.argwhere', (['a'], {}), '(a)\n', (166642, 166645), True, 'import numpy as np\n'), ((3560, 3577), 'numpy.ma.core.isMaskedArray', 'isMaskedArray', (['xm'], {}), '(xm)\n', (3573, 3577), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((3735, 3747), 'numpy.shape', 'np.shape', (['xm'], {}), '(xm)\n', (3743, 3747), True, 'import numpy as np\n'), ((3896, 3925), 'functools.reduce', 'reduce', (['(lambda x, y: x * y)', 's'], {}), '(lambda x, y: x * y, s)\n', (3902, 3925), False, 'from functools import reduce\n'), ((3947, 3956), 'numpy.ma.core.count', 'count', (['xm'], {}), '(xm)\n', (3952, 3956), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((4061, 4078), 'numpy.ma.core.filled', 'filled', (['xm', '(1e+20)'], {}), '(xm, 1e+20)\n', (4067, 4078), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((4581, 4606), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xm.shape', 's'], {}), '(xm.shape, s)\n', (4593, 4606), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((4760, 4780), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xm', 'xf'], {}), '(xm, xf)\n', (4772, 4780), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((4841, 4860), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x', 'xm'], {}), '(x, xm)\n', (4853, 4860), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((5039, 5061), 'numpy.concatenate', 'np.concatenate', (['(x, y)'], {}), '((x, y))\n', (5053, 5061), True, 'import numpy as np\n'), ((5063, 5084), 'numpy.ma.core.concatenate', 'concatenate', (['(xm, ym)'], {}), '((xm, ym))\n', (5074, 5084), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((5107, 5129), 'numpy.concatenate', 'np.concatenate', (['(x, y)'], {}), '((x, y))\n', (5121, 5129), True, 'import numpy as np\n'), ((5131, 5150), 'numpy.ma.core.concatenate', 'concatenate', (['(x, y)'], {}), '((x, y))\n', (5142, 5150), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((5173, 5195), 'numpy.concatenate', 'np.concatenate', (['(x, y)'], {}), '((x, y))\n', (5187, 5195), True, 'import numpy as np\n'), ((5197, 5217), 'numpy.ma.core.concatenate', 'concatenate', (['(xm, y)'], {}), '((xm, y))\n', (5208, 5217), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((5240, 5265), 'numpy.concatenate', 'np.concatenate', (['(x, y, x)'], {}), '((x, y, x))\n', (5254, 5265), True, 'import numpy as np\n'), ((5267, 5290), 'numpy.ma.core.concatenate', 'concatenate', (['(x, ym, x)'], {}), '((x, ym, x))\n', (5278, 5290), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((5562, 5579), 'numpy.reshape', 'np.reshape', (['m1', 's'], {}), '(m1, s)\n', (5572, 5579), True, 'import numpy as np\n'), ((5611, 5628), 'numpy.reshape', 'np.reshape', (['m2', 's'], {}), '(m2, s)\n', (5621, 5628), True, 'import numpy as np\n'), ((5691, 5716), 'numpy.concatenate', 'np.concatenate', (['(x, y)', '(1)'], {}), '((x, y), 1)\n', (5705, 5716), True, 'import numpy as np\n'), ((5745, 5782), 'numpy.concatenate', 'np.concatenate', (['(xm.mask, ym.mask)', '(1)'], {}), '((xm.mask, ym.mask), 1)\n', (5759, 5782), True, 'import numpy as np\n'), ((5836, 5843), 'numpy.ma.core.ones', 'ones', (['(2)'], {}), '(2)\n', (5840, 5843), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((7766, 7801), 'numpy.may_share_memory', 'np.may_share_memory', (['x.mask', 'y.mask'], {}), '(x.mask, y.mask)\n', (7785, 7801), True, 'import numpy as np\n'), ((8058, 8070), 'numpy.arange', 'np.arange', (['(5)'], {}), '(5)\n', (8067, 8070), True, 'import numpy as np\n'), ((8865, 8874), 'numpy.eye', 'np.eye', (['(3)'], {}), '(3)\n', (8871, 8874), True, 'import numpy as np\n'), ((9083, 9092), 'numpy.eye', 'np.eye', (['(3)'], {}), '(3)\n', (9089, 9092), True, 'import numpy as np\n'), ((9307, 9336), 'numpy.errstate', 'np.errstate', ([], {'invalid': '"""ignore"""'}), "(invalid='ignore')\n", (9318, 9336), True, 'import numpy as np\n'), ((9357, 9405), 'numpy.ma.core.masked_array', 'masked_array', (['[np.nan, 0.0, 1.0]'], {'mask': '[0, 0, 1]'}), '([np.nan, 0.0, 1.0], mask=[0, 0, 1])\n', (9369, 9405), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((9429, 9446), 'numpy.ma.core.fix_invalid', 'fix_invalid', (['data'], {}), '(data)\n', (9440, 9446), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((9459, 9518), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['data_fixed._data', '[data.fill_value, 0.0, 1.0]'], {}), '(data_fixed._data, [data.fill_value, 0.0, 1.0])\n', (9471, 9518), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((9529, 9576), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['data_fixed._mask', '[1.0, 0.0, 1.0]'], {}), '(data_fixed._mask, [1.0, 0.0, 1.0])\n', (9541, 9576), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((9792, 9807), 'numpy.ma.core.filled', 'filled', (['x[1]', '(0)'], {}), '(x[1], 0)\n', (9798, 9807), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((10488, 10499), 'numpy.sort', 'np.sort', (['x1'], {}), '(x1)\n', (10495, 10499), True, 'import numpy as np\n'), ((10501, 10524), 'numpy.ma.core.sort', 'sort', (['x2'], {'endwith': '(False)'}), '(x2, endwith=False)\n', (10505, 10524), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((11451, 11463), 'numpy.arange', 'np.arange', (['(5)'], {}), '(5)\n', (11460, 11463), True, 'import numpy as np\n'), ((13981, 14002), 'numpy.ma.core.allequal', 'allequal', (['x1', 'y1.data'], {}), '(x1, y1.data)\n', (13989, 14002), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((14657, 14677), 'numpy.ma.core.allequal', 'allequal', (['y2.mask', '(0)'], {}), '(y2.mask, 0)\n', (14665, 14677), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((14877, 14898), 'numpy.ma.core.concatenate', 'concatenate', (['[x4, x4]'], {}), '([x4, x4])\n', (14888, 14898), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((14925, 14936), 'numpy.ma.core.getmask', 'getmask', (['y4'], {}), '(y4)\n', (14932, 14936), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((18721, 18736), 'pickle.dumps', 'pickle.dumps', (['b'], {}), '(b)\n', (18733, 18736), False, 'import pickle\n'), ((19361, 19374), 'numpy.ma.core.array', 'array', (['[1, 1]'], {}), '([1, 1])\n', (19366, 19374), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((19390, 19415), 'warnings.catch_warnings', 'warnings.catch_warnings', ([], {}), '()\n', (19413, 19415), False, 'import warnings\n'), ((19429, 19473), 'warnings.simplefilter', 'warnings.simplefilter', (['"""ignore"""', 'UserWarning'], {}), "('ignore', UserWarning)\n", (19450, 19473), False, 'import warnings\n'), ((22022, 22066), 'numpy.array', 'np.array', (["[(1, '1', 1.0)]"], {'dtype': 'flexi.dtype'}), "([(1, '1', 1.0)], dtype=flexi.dtype)\n", (22030, 22066), True, 'import numpy as np\n'), ((23650, 23693), 'numpy.array', 'np.array', (['[(0, 1, 2), (4, 5, 6)]'], {'order': '"""F"""'}), "([(0, 1, 2), (4, 5, 6)], order='F')\n", (23658, 23693), True, 'import numpy as np\n'), ((27014, 27046), 'numpy.array', 'np.array', (['[(1, 2)]'], {'dtype': 'ndtype'}), '([(1, 2)], dtype=ndtype)\n', (27022, 27046), True, 'import numpy as np\n'), ((27123, 27174), 'numpy.ma.core.masked_array', 'masked_array', (['[(1, 2)]'], {'mask': '[(1, 0)]', 'dtype': 'ndtype'}), '([(1, 2)], mask=[(1, 0)], dtype=ndtype)\n', (27135, 27174), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((28189, 28247), 'numpy.ma.core.masked_array', 'masked_array', ([], {'data': '[0, 1]', 'mask': '[True, False]', 'dtype': '""">i2"""'}), "(data=[0, 1], mask=[True, False], dtype='>i2')\n", (28201, 28247), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((29062, 29106), 'numpy.ma.core.masked_print_option.set_display', 'masked_print_option.set_display', (['ini_display'], {}), '(ini_display)\n', (29093, 29106), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((31160, 31190), 'numpy.all', 'np.all', (['(mx[1].data == mx2.data)'], {}), '(mx[1].data == mx2.data)\n', (31166, 31190), True, 'import numpy as np\n'), ((31208, 31226), 'numpy.all', 'np.all', (['mx[1].mask'], {}), '(mx[1].mask)\n', (31214, 31226), True, 'import numpy as np\n'), ((32734, 32755), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['(-x)', '(-xm)'], {}), '(-x, -xm)\n', (32746, 32755), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((32768, 32796), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['(x + y)', '(xm + ym)'], {}), '(x + y, xm + ym)\n', (32780, 32796), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((32809, 32837), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['(x - y)', '(xm - ym)'], {}), '(x - y, xm - ym)\n', (32821, 32837), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((32850, 32878), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['(x * y)', '(xm * ym)'], {}), '(x * y, xm * ym)\n', (32862, 32878), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((32891, 32919), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['(x / y)', '(xm / ym)'], {}), '(x / y, xm / ym)\n', (32903, 32919), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((32932, 32963), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['(a10 + y)', '(a10 + ym)'], {}), '(a10 + y, a10 + ym)\n', (32944, 32963), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((32976, 33007), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['(a10 - y)', '(a10 - ym)'], {}), '(a10 - y, a10 - ym)\n', (32988, 33007), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((33020, 33051), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['(a10 * y)', '(a10 * ym)'], {}), '(a10 * y, a10 * ym)\n', (33032, 33051), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((33064, 33095), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['(a10 / y)', '(a10 / ym)'], {}), '(a10 / y, a10 / ym)\n', (33076, 33095), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((33108, 33139), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['(x + a10)', '(xm + a10)'], {}), '(x + a10, xm + a10)\n', (33120, 33139), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((33152, 33183), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['(x - a10)', '(xm - a10)'], {}), '(x - a10, xm - a10)\n', (33164, 33183), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((33196, 33227), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['(x * a10)', '(xm * a10)'], {}), '(x * a10, xm * a10)\n', (33208, 33227), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((33240, 33271), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['(x / a10)', '(xm / a10)'], {}), '(x / a10, xm / a10)\n', (33252, 33271), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((33284, 33313), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['(x ** 2)', '(xm ** 2)'], {}), '(x ** 2, xm ** 2)\n', (33296, 33313), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((33382, 33412), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['(x ** y)', '(xm ** ym)'], {}), '(x ** y, xm ** ym)\n', (33394, 33412), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((34523, 34538), 'numpy.finfo', 'np.finfo', (['float'], {}), '(float)\n', (34531, 34538), True, 'import numpy as np\n'), ((34606, 34625), 'numpy.ma.core.getmaskarray', 'getmaskarray', (['(a / 2)'], {}), '(a / 2)\n', (34618, 34625), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((34659, 34678), 'numpy.ma.core.getmaskarray', 'getmaskarray', (['(2 / a)'], {}), '(2 / a)\n', (34671, 34678), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((36285, 36298), 'numpy.ma.core.array', 'array', (['(0, 0)'], {}), '((0, 0))\n', (36290, 36298), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((36541, 36550), 'numpy.cos', 'np.cos', (['x'], {}), '(x)\n', (36547, 36550), True, 'import numpy as np\n'), ((36552, 36559), 'numpy.ma.core.cos', 'cos', (['xm'], {}), '(xm)\n', (36555, 36559), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((36582, 36592), 'numpy.cosh', 'np.cosh', (['x'], {}), '(x)\n', (36589, 36592), True, 'import numpy as np\n'), ((36594, 36602), 'numpy.ma.core.cosh', 'cosh', (['xm'], {}), '(xm)\n', (36598, 36602), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((36625, 36634), 'numpy.sin', 'np.sin', (['x'], {}), '(x)\n', (36631, 36634), True, 'import numpy as np\n'), ((36636, 36643), 'numpy.ma.core.sin', 'sin', (['xm'], {}), '(xm)\n', (36639, 36643), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((36666, 36676), 'numpy.sinh', 'np.sinh', (['x'], {}), '(x)\n', (36673, 36676), True, 'import numpy as np\n'), ((36678, 36686), 'numpy.ma.core.sinh', 'sinh', (['xm'], {}), '(xm)\n', (36682, 36686), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((36709, 36718), 'numpy.tan', 'np.tan', (['x'], {}), '(x)\n', (36715, 36718), True, 'import numpy as np\n'), ((36720, 36727), 'numpy.ma.core.tan', 'tan', (['xm'], {}), '(xm)\n', (36723, 36727), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((36750, 36760), 'numpy.tanh', 'np.tanh', (['x'], {}), '(x)\n', (36757, 36760), True, 'import numpy as np\n'), ((36762, 36770), 'numpy.ma.core.tanh', 'tanh', (['xm'], {}), '(xm)\n', (36766, 36770), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((36810, 36818), 'numpy.ma.core.sqrt', 'sqrt', (['xm'], {}), '(xm)\n', (36814, 36818), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((36857, 36864), 'numpy.ma.core.log', 'log', (['xm'], {}), '(xm)\n', (36860, 36864), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((36905, 36914), 'numpy.ma.core.log10', 'log10', (['xm'], {}), '(xm)\n', (36910, 36914), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((36937, 36946), 'numpy.exp', 'np.exp', (['x'], {}), '(x)\n', (36943, 36946), True, 'import numpy as np\n'), ((36948, 36955), 'numpy.ma.core.exp', 'exp', (['xm'], {}), '(xm)\n', (36951, 36955), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((36978, 36990), 'numpy.arcsin', 'np.arcsin', (['z'], {}), '(z)\n', (36987, 36990), True, 'import numpy as np\n'), ((36992, 37002), 'numpy.ma.core.arcsin', 'arcsin', (['zm'], {}), '(zm)\n', (36998, 37002), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((37025, 37037), 'numpy.arccos', 'np.arccos', (['z'], {}), '(z)\n', (37034, 37037), True, 'import numpy as np\n'), ((37039, 37049), 'numpy.ma.core.arccos', 'arccos', (['zm'], {}), '(zm)\n', (37045, 37049), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((37072, 37084), 'numpy.arctan', 'np.arctan', (['z'], {}), '(z)\n', (37081, 37084), True, 'import numpy as np\n'), ((37086, 37096), 'numpy.ma.core.arctan', 'arctan', (['zm'], {}), '(zm)\n', (37092, 37096), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((37119, 37135), 'numpy.arctan2', 'np.arctan2', (['x', 'y'], {}), '(x, y)\n', (37129, 37135), True, 'import numpy as np\n'), ((37137, 37152), 'numpy.ma.core.arctan2', 'arctan2', (['xm', 'ym'], {}), '(xm, ym)\n', (37144, 37152), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((37175, 37189), 'numpy.absolute', 'np.absolute', (['x'], {}), '(x)\n', (37186, 37189), True, 'import numpy as np\n'), ((37191, 37203), 'numpy.ma.core.absolute', 'absolute', (['xm'], {}), '(xm)\n', (37199, 37203), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((37226, 37248), 'numpy.angle', 'np.angle', (['(x + 1.0j * y)'], {}), '(x + 1.0j * y)\n', (37234, 37248), True, 'import numpy as np\n'), ((37246, 37267), 'numpy.ma.core.angle', 'angle', (['(xm + 1.0j * ym)'], {}), '(xm + 1.0j * ym)\n', (37251, 37267), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((37286, 37318), 'numpy.angle', 'np.angle', (['(x + 1.0j * y)'], {'deg': '(True)'}), '(x + 1.0j * y, deg=True)\n', (37294, 37318), True, 'import numpy as np\n'), ((37316, 37347), 'numpy.ma.core.angle', 'angle', (['(xm + 1.0j * ym)'], {'deg': '(True)'}), '(xm + 1.0j * ym, deg=True)\n', (37321, 37347), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((37366, 37380), 'numpy.equal', 'np.equal', (['x', 'y'], {}), '(x, y)\n', (37374, 37380), True, 'import numpy as np\n'), ((37382, 37395), 'numpy.ma.core.equal', 'equal', (['xm', 'ym'], {}), '(xm, ym)\n', (37387, 37395), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((37418, 37436), 'numpy.not_equal', 'np.not_equal', (['x', 'y'], {}), '(x, y)\n', (37430, 37436), True, 'import numpy as np\n'), ((37438, 37455), 'numpy.ma.core.not_equal', 'not_equal', (['xm', 'ym'], {}), '(xm, ym)\n', (37447, 37455), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((37478, 37491), 'numpy.less', 'np.less', (['x', 'y'], {}), '(x, y)\n', (37485, 37491), True, 'import numpy as np\n'), ((37493, 37505), 'numpy.ma.core.less', 'less', (['xm', 'ym'], {}), '(xm, ym)\n', (37497, 37505), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((37528, 37544), 'numpy.greater', 'np.greater', (['x', 'y'], {}), '(x, y)\n', (37538, 37544), True, 'import numpy as np\n'), ((37546, 37561), 'numpy.ma.core.greater', 'greater', (['xm', 'ym'], {}), '(xm, ym)\n', (37553, 37561), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((37584, 37603), 'numpy.less_equal', 'np.less_equal', (['x', 'y'], {}), '(x, y)\n', (37597, 37603), True, 'import numpy as np\n'), ((37605, 37623), 'numpy.ma.core.less_equal', 'less_equal', (['xm', 'ym'], {}), '(xm, ym)\n', (37615, 37623), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((37646, 37668), 'numpy.greater_equal', 'np.greater_equal', (['x', 'y'], {}), '(x, y)\n', (37662, 37668), True, 'import numpy as np\n'), ((37670, 37691), 'numpy.ma.core.greater_equal', 'greater_equal', (['xm', 'ym'], {}), '(xm, ym)\n', (37683, 37691), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((37714, 37729), 'numpy.conjugate', 'np.conjugate', (['x'], {}), '(x)\n', (37726, 37729), True, 'import numpy as np\n'), ((37731, 37744), 'numpy.ma.core.conjugate', 'conjugate', (['xm'], {}), '(xm)\n', (37740, 37744), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((37824, 37832), 'numpy.ma.core.count', 'count', (['(1)'], {}), '(1)\n', (37829, 37832), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((37858, 37876), 'numpy.ma.core.array', 'array', (['(1)'], {'mask': '[1]'}), '(1, mask=[1])\n', (37863, 37876), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((38821, 38828), 'numpy.ma.core.max', 'max', (['xr'], {}), '(xr)\n', (38824, 38828), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((38830, 38842), 'numpy.ma.core.maximum', 'maximum', (['xmr'], {}), '(xmr)\n', (38837, 38842), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((38865, 38872), 'numpy.ma.core.min', 'min', (['xr'], {}), '(xr)\n', (38868, 38872), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((38874, 38886), 'numpy.ma.core.minimum', 'minimum', (['xmr'], {}), '(xmr)\n', (38881, 38886), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((38910, 38939), 'numpy.ma.core.minimum', 'minimum', (['[1, 2, 3]', '[4, 0, 9]'], {}), '([1, 2, 3], [4, 0, 9])\n', (38917, 38939), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((38973, 39002), 'numpy.ma.core.maximum', 'maximum', (['[1, 2, 3]', '[4, 0, 9]'], {}), '([1, 2, 3], [4, 0, 9])\n', (38980, 39002), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((39049, 39058), 'numpy.ma.core.arange', 'arange', (['(5)'], {}), '(5)\n', (39055, 39058), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((39128, 39141), 'numpy.ma.core.minimum', 'minimum', (['x', 'y'], {}), '(x, y)\n', (39135, 39141), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((39189, 39202), 'numpy.ma.core.maximum', 'maximum', (['x', 'y'], {}), '(x, y)\n', (39196, 39202), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((39383, 39393), 'numpy.ma.core.maximum', 'maximum', (['x'], {}), '(x)\n', (39390, 39393), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((39590, 39606), 'numpy.minimum', 'np.minimum', (['a', 'a'], {}), '(a, a)\n', (39600, 39606), True, 'import numpy as np\n'), ((39738, 39760), 'numpy.minimum.outer', 'np.minimum.outer', (['a', 'a'], {}), '(a, a)\n', (39754, 39760), True, 'import numpy as np\n'), ((39886, 39902), 'numpy.maximum', 'np.maximum', (['a', 'a'], {}), '(a, a)\n', (39896, 39902), True, 'import numpy as np\n'), ((40034, 40056), 'numpy.maximum.outer', 'np.maximum.outer', (['a', 'a'], {}), '(a, a)\n', (40050, 40056), True, 'import numpy as np\n'), ((40442, 40470), 'numpy.random.uniform', 'np.random.uniform', (['(0)', '(10)', '(12)'], {}), '(0, 10, 12)\n', (40459, 40470), True, 'import numpy as np\n'), ((40723, 40748), 'numpy.empty', 'np.empty', (['(4,)'], {'dtype': 'int'}), '((4,), dtype=int)\n', (40731, 40748), True, 'import numpy as np\n'), ((40890, 40917), 'numpy.empty', 'np.empty', (['(4,)'], {'dtype': 'float'}), '((4,), dtype=float)\n', (40898, 40917), True, 'import numpy as np\n'), ((42174, 42190), 'numpy.add.reduce', 'np.add.reduce', (['x'], {}), '(x)\n', (42187, 42190), True, 'import numpy as np\n'), ((42192, 42205), 'numpy.ma.core.add.reduce', 'add.reduce', (['x'], {}), '(x)\n', (42202, 42205), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((42228, 42248), 'numpy.add.accumulate', 'np.add.accumulate', (['x'], {}), '(x)\n', (42245, 42248), True, 'import numpy as np\n'), ((42250, 42267), 'numpy.ma.core.add.accumulate', 'add.accumulate', (['x'], {}), '(x)\n', (42264, 42267), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((42384, 42401), 'numpy.sum', 'np.sum', (['x'], {'axis': '(0)'}), '(x, axis=0)\n', (42390, 42401), True, 'import numpy as np\n'), ((42403, 42417), 'numpy.ma.core.sum', 'sum', (['x'], {'axis': '(0)'}), '(x, axis=0)\n', (42406, 42417), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((42471, 42486), 'numpy.ma.core.sum', 'sum', (['xm'], {'axis': '(0)'}), '(xm, axis=0)\n', (42474, 42486), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((42509, 42521), 'numpy.sum', 'np.sum', (['x', '(0)'], {}), '(x, 0)\n', (42515, 42521), True, 'import numpy as np\n'), ((42523, 42532), 'numpy.ma.core.sum', 'sum', (['x', '(0)'], {}), '(x, 0)\n', (42526, 42532), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((42555, 42576), 'numpy.product', 'np.product', (['x'], {'axis': '(0)'}), '(x, axis=0)\n', (42565, 42576), True, 'import numpy as np\n'), ((42578, 42596), 'numpy.ma.core.product', 'product', (['x'], {'axis': '(0)'}), '(x, axis=0)\n', (42585, 42596), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((42619, 42635), 'numpy.product', 'np.product', (['x', '(0)'], {}), '(x, 0)\n', (42629, 42635), True, 'import numpy as np\n'), ((42637, 42650), 'numpy.ma.core.product', 'product', (['x', '(0)'], {}), '(x, 0)\n', (42644, 42650), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((42708, 42727), 'numpy.ma.core.product', 'product', (['xm'], {'axis': '(0)'}), '(xm, axis=0)\n', (42715, 42727), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((46806, 46815), 'numpy.ma.core.mod', 'mod', (['x', 'y'], {}), '(x, y)\n', (46809, 46815), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((46817, 46828), 'numpy.ma.core.mod', 'mod', (['xm', 'ym'], {}), '(xm, ym)\n', (46820, 46828), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((46884, 46898), 'numpy.mod', 'np.mod', (['ym', 'xm'], {}), '(ym, xm)\n', (46890, 46898), True, 'import numpy as np\n'), ((46932, 46957), 'numpy.ma.core.mask_or', 'mask_or', (['xm.mask', 'ym.mask'], {}), '(xm.mask, ym.mask)\n', (46939, 46957), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((47013, 47027), 'numpy.mod', 'np.mod', (['xm', 'ym'], {}), '(xm, ym)\n', (47019, 47027), True, 'import numpy as np\n'), ((47366, 47392), 'numpy.transpose', 'np.transpose', (['y', '(2, 0, 1)'], {}), '(y, (2, 0, 1))\n', (47378, 47392), True, 'import numpy as np\n'), ((47394, 47417), 'numpy.ma.core.transpose', 'transpose', (['x', '(2, 0, 1)'], {}), '(x, (2, 0, 1))\n', (47403, 47417), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((47440, 47464), 'numpy.take', 'np.take', (['y', '(2, 0, 1)', '(1)'], {}), '(y, (2, 0, 1), 1)\n', (47447, 47464), True, 'import numpy as np\n'), ((47466, 47487), 'numpy.ma.core.take', 'take', (['x', '(2, 0, 1)', '(1)'], {}), '(x, (2, 0, 1), 1)\n', (47470, 47487), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((47569, 47580), 'numpy.ma.core.inner', 'inner', (['x', 'y'], {}), '(x, y)\n', (47574, 47580), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((47662, 47673), 'numpy.ma.core.outer', 'outer', (['x', 'y'], {}), '(x, y)\n', (47667, 47673), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((48681, 48705), 'numpy.empty', 'np.empty', (['(4)'], {'dtype': 'float'}), '(4, dtype=float)\n', (48689, 48705), True, 'import numpy as np\n'), ((48857, 48882), 'numpy.ma.testutils.assert_', 'assert_', (['(result is output)'], {}), '(result is output)\n', (48864, 48882), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((48966, 48985), 'numpy.ma.core.empty', 'empty', (['(4)'], {'dtype': 'int'}), '(4, dtype=int)\n', (48971, 48985), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((49046, 49071), 'numpy.ma.testutils.assert_', 'assert_', (['(result is output)'], {}), '(result is output)\n', (49053, 49071), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((49084, 49112), 'numpy.ma.testutils.assert_', 'assert_', (['(output[0] is masked)'], {}), '(output[0] is masked)\n', (49091, 49112), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((49181, 49208), 'numpy.matrix', 'np.matrix', (['[[1, 2], [3, 4]]'], {}), '([[1, 2], [3, 4]])\n', (49190, 49208), True, 'import numpy as np\n'), ((54524, 54545), 'numpy.ma.core.filled', 'filled', (['(xh > 1)', '(False)'], {}), '(xh > 1, False)\n', (54530, 54545), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((54972, 54993), 'numpy.ma.core.filled', 'filled', (['(xh < 5)', '(False)'], {}), '(xh < 5, False)\n', (54978, 54993), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((55713, 55745), 'numpy.ma.core.array', 'array', (['[1, 2, 3]'], {'mask': '[1, 0, 0]'}), '([1, 2, 3], mask=[1, 0, 0])\n', (55718, 55745), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((55843, 55875), 'numpy.ma.core.array', 'array', (['[0, 2, 3]'], {'mask': '[0, 0, 0]'}), '([0, 2, 3], mask=[0, 0, 0])\n', (55848, 55875), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((56174, 56183), 'numpy.ma.core.zeros', 'zeros', (['(10)'], {}), '(10)\n', (56179, 56183), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((56539, 56561), 'numpy.matrix', 'np.matrix', (['[[1, 2, 3]]'], {}), '([[1, 2, 3]])\n', (56548, 56561), True, 'import numpy as np\n'), ((56684, 56722), 'numpy.all', 'np.all', (['(test.flat[0:2] == test[0, 0:2])'], {}), '(test.flat[0:2] == test[0, 0:2])\n', (56690, 56722), True, 'import numpy as np\n'), ((56791, 56813), 'numpy.matrix', 'np.matrix', (['[[1, 2, 3]]'], {}), '([[1, 2, 3]])\n', (56800, 56813), True, 'import numpy as np\n'), ((56922, 56944), 'numpy.matrix', 'np.matrix', (['[[3, 2, 1]]'], {}), '([[3, 2, 1]])\n', (56931, 56944), True, 'import numpy as np\n'), ((57049, 57071), 'numpy.matrix', 'np.matrix', (['[[1, 2, 3]]'], {}), '([[1, 2, 3]])\n', (57058, 57071), True, 'import numpy as np\n'), ((58115, 58140), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xf', 'x[j, i]'], {}), '(xf, x[j, i])\n', (58127, 58140), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((58423, 58442), 'numpy.ma.core.array', 'array', (['[[1.0, 0.0]]'], {}), '([[1.0, 0.0]])\n', (58428, 58442), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((58473, 58496), 'numpy.ma.core.array', 'array', (['[[False, False]]'], {}), '([[False, False]])\n', (58478, 58496), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((58760, 58774), 'numpy.dtype', 'np.dtype', (['"""f4"""'], {}), "('f4')\n", (58768, 58774), True, 'import numpy as np\n'), ((58911, 58925), 'numpy.ma.array', 'np.ma.array', (['a'], {}), '(a)\n', (58922, 58925), True, 'import numpy as np\n'), ((58948, 58962), 'numpy.dtype', 'np.dtype', (['"""f8"""'], {}), "('f8')\n", (58956, 58962), True, 'import numpy as np\n'), ((59102, 59116), 'numpy.dtype', 'np.dtype', (['"""f4"""'], {}), "('f4')\n", (59110, 59116), True, 'import numpy as np\n'), ((59289, 59306), 'numpy.dtype', 'np.dtype', (['"""f4,i4"""'], {}), "('f4,i4')\n", (59297, 59306), True, 'import numpy as np\n'), ((59691, 59712), 'numpy.ma.core.default_fill_value', 'default_fill_value', (['(0)'], {}), '(0)\n', (59709, 59712), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((59785, 59797), 'numpy.compat.asbytes', 'asbytes', (['"""0"""'], {}), "('0')\n", (59792, 59797), False, 'from numpy.compat import asbytes, asbytes_nested\n'), ((59872, 59903), 'numpy.ma.core.default_fill_value', 'default_fill_value', (["b'camelot!'"], {}), "(b'camelot!')\n", (59890, 59903), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((61952, 61966), 'numpy.compat.asbytes', 'asbytes', (['"""???"""'], {}), "('???')\n", (61959, 61966), False, 'from numpy.compat import asbytes, asbytes_nested\n'), ((62984, 63015), 'numpy.compat.asbytes_nested', 'asbytes_nested', (["['3', '4', '5']"], {}), "(['3', '4', '5'])\n", (62998, 63015), False, 'from numpy.compat import asbytes, asbytes_nested\n'), ((63176, 63197), 'numpy.ma.core.default_fill_value', 'default_fill_value', (['(0)'], {}), '(0)\n', (63194, 63197), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((63310, 63333), 'numpy.ma.core.default_fill_value', 'default_fill_value', (['(0.0)'], {}), '(0.0)\n', (63328, 63333), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((63437, 63458), 'numpy.ma.core.default_fill_value', 'default_fill_value', (['(0)'], {}), '(0)\n', (63455, 63458), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((64163, 64177), 'numpy.compat.asbytes', 'asbytes', (['"""999"""'], {}), "('999')\n", (64170, 64177), False, 'from numpy.compat import asbytes, asbytes_nested\n'), ((64360, 64374), 'numpy.compat.asbytes', 'asbytes', (['"""???"""'], {}), "('???')\n", (64367, 64374), False, 'from numpy.compat import asbytes, asbytes_nested\n'), ((64572, 64587), 'numpy.array', 'np.array', (['(999.0)'], {}), '(999.0)\n', (64580, 64587), True, 'import numpy as np\n'), ((66612, 66639), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', 'control'], {}), '(test, control)\n', (66624, 66639), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((66786, 66813), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['test', 'control'], {}), '(test, control)\n', (66798, 66813), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((67090, 67116), 'numpy.ma.core.default_fill_value', 'default_fill_value', (["a['A']"], {}), "(a['A'])\n", (67108, 67116), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((67156, 67188), 'numpy.ma.core.default_fill_value', 'default_fill_value', (["a['B']['BA']"], {}), "(a['B']['BA'])\n", (67174, 67188), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((67228, 67260), 'numpy.ma.core.default_fill_value', 'default_fill_value', (["a['B']['BB']"], {}), "(a['B']['BB'])\n", (67246, 67260), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((67330, 67356), 'numpy.ma.core.minimum_fill_value', 'minimum_fill_value', (["a['A']"], {}), "(a['A'])\n", (67348, 67356), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((67391, 67423), 'numpy.ma.core.minimum_fill_value', 'minimum_fill_value', (["a['B']['BA']"], {}), "(a['B']['BA'])\n", (67409, 67423), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((67458, 67490), 'numpy.ma.core.minimum_fill_value', 'minimum_fill_value', (["a['B']['BB']"], {}), "(a['B']['BB'])\n", (67476, 67490), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((67522, 67548), 'numpy.ma.core.minimum_fill_value', 'minimum_fill_value', (["a['B']"], {}), "(a['B'])\n", (67540, 67548), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((67618, 67644), 'numpy.ma.core.maximum_fill_value', 'maximum_fill_value', (["a['A']"], {}), "(a['A'])\n", (67636, 67644), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((67679, 67711), 'numpy.ma.core.maximum_fill_value', 'maximum_fill_value', (["a['B']['BA']"], {}), "(a['B']['BA'])\n", (67697, 67711), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((67746, 67778), 'numpy.ma.core.maximum_fill_value', 'maximum_fill_value', (["a['B']['BB']"], {}), "(a['B']['BB'])\n", (67764, 67778), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((67810, 67836), 'numpy.ma.core.maximum_fill_value', 'maximum_fill_value', (["a['B']"], {}), "(a['B'])\n", (67828, 67836), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((68209, 68221), 'numpy.array', 'np.array', (['(10)'], {}), '(10)\n', (68217, 68221), True, 'import numpy as np\n'), ((68544, 68556), 'numpy.array', 'np.array', (['(10)'], {}), '(10)\n', (68552, 68556), True, 'import numpy as np\n'), ((69115, 69129), 'numpy.isnan', 'np.isnan', (['f[0]'], {}), '(f[0])\n', (69123, 69129), True, 'import numpy as np\n'), ((69159, 69182), 'numpy.ma.core.default_fill_value', 'default_fill_value', (['(1.0)'], {}), '(1.0)\n', (69177, 69182), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((71976, 72003), 'numpy.ma.core.default_fill_value', 'default_fill_value', (["b'spam'"], {}), "(b'spam')\n", (71994, 72003), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((72046, 72072), 'numpy.ma.core.default_fill_value', 'default_fill_value', (['"""eggs"""'], {}), "('eggs')\n", (72064, 72072), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((72240, 72294), 'numpy.ma.core.array', 'array', (['([1.0, 0, -1, pi / 2] * 2)'], {'mask': '([0, 1] + [0] * 6)'}), '([1.0, 0, -1, pi / 2] * 2, mask=[0, 1] + [0] * 6)\n', (72245, 72294), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((72314, 72368), 'numpy.ma.core.array', 'array', (['([1.0, 0, -1, pi / 2] * 2)'], {'mask': '([1, 0] + [0] * 6)'}), '([1.0, 0, -1, pi / 2] * 2, mask=[1, 0] + [0] * 6)\n', (72319, 72368), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((73699, 73745), 'numpy.ma.testutils.assert_mask_equal', 'assert_mask_equal', (['ur.mask', 'mr.mask'], {'err_msg': 'f'}), '(ur.mask, mr.mask, err_msg=f)\n', (73716, 73745), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((73908, 73927), 'numpy.ma.core.sometrue', 'sometrue', (['a'], {'axis': '(0)'}), '(a, axis=0)\n', (73916, 73927), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((73950, 73968), 'numpy.ma.core.sum', 'sum', (['a[:3]'], {'axis': '(0)'}), '(a[:3], axis=0)\n', (73953, 73968), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((73994, 74012), 'numpy.ma.core.product', 'product', (['a'], {'axis': '(0)'}), '(a, axis=0)\n', (74001, 74012), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((74038, 74051), 'numpy.ma.core.add.reduce', 'add.reduce', (['a'], {}), '(a)\n', (74048, 74051), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((76452, 76477), 'warnings.catch_warnings', 'warnings.catch_warnings', ([], {}), '()\n', (76475, 76477), False, 'import warnings\n'), ((76491, 76523), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""error"""'], {}), "('error')\n", (76514, 76523), False, 'import warnings\n'), ((76580, 76586), 'numpy.ma.core.exp', 'exp', (['m'], {}), '(m)\n', (76583, 76586), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((76599, 76608), 'numpy.ma.core.add', 'add', (['m', '(1)'], {}), '(m, 1)\n', (76602, 76608), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((76683, 76690), 'numpy.ma.core.sqrt', 'sqrt', (['m'], {}), '(m)\n', (76687, 76690), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((76703, 76709), 'numpy.ma.core.log', 'log', (['m'], {}), '(m)\n', (76706, 76709), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((76722, 76728), 'numpy.ma.core.tan', 'tan', (['m'], {}), '(m)\n', (76725, 76728), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((76741, 76750), 'numpy.ma.core.arcsin', 'arcsin', (['m'], {}), '(m)\n', (76747, 76750), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((76763, 76772), 'numpy.ma.core.arccos', 'arccos', (['m'], {}), '(m)\n', (76769, 76772), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((76785, 76795), 'numpy.ma.core.arccosh', 'arccosh', (['m'], {}), '(m)\n', (76792, 76795), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((76843, 76855), 'numpy.ma.core.divide', 'divide', (['m', '(2)'], {}), '(m, 2)\n', (76849, 76855), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((76941, 76957), 'numpy.ma.core.allclose', 'allclose', (['m', '(0.5)'], {}), '(m, 0.5)\n', (76949, 76957), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((78270, 78288), 'numpy.ma.core.mask_or', 'mask_or', (['m', 'a.mask'], {}), '(m, a.mask)\n', (78277, 78288), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((78830, 78848), 'numpy.ma.core.mask_or', 'mask_or', (['m', 'a.mask'], {}), '(m, a.mask)\n', (78837, 78848), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((79406, 79424), 'numpy.ma.core.mask_or', 'mask_or', (['m', 'a.mask'], {}), '(m, a.mask)\n', (79413, 79424), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((79556, 79566), 'numpy.ma.core.arange', 'arange', (['(10)'], {}), '(10)\n', (79562, 79566), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((79584, 79594), 'numpy.ma.core.arange', 'arange', (['(10)'], {}), '(10)\n', (79590, 79594), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((79932, 79943), 'numpy.ma.core.ones', 'ones', (['(10,)'], {}), '((10,))\n', (79936, 79943), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((81557, 81589), 'numpy.ma.core.array', 'array', (['[1, 2, 3]'], {'mask': '[1, 0, 0]'}), '([1, 2, 3], mask=[1, 0, 0])\n', (81562, 81589), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((82398, 82430), 'numpy.ma.core.array', 'array', (['[1, 2, 3]'], {'mask': '[1, 0, 0]'}), '([1, 2, 3], mask=[1, 0, 0])\n', (82403, 82430), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((83242, 83277), 'numpy.ma.core.array', 'array', (['[10, 20, 30]'], {'mask': '[1, 0, 0]'}), '([10, 20, 30], mask=[1, 0, 0])\n', (83247, 83277), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((84116, 84157), 'numpy.ma.core.array', 'array', (['[10.0, 20.0, 30.0]'], {'mask': '[1, 0, 0]'}), '([10.0, 20.0, 30.0], mask=[1, 0, 0])\n', (84121, 84157), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((85098, 85136), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['a.mask', '[[0, 0], [0, 0]]'], {}), '(a.mask, [[0, 0], [0, 0]])\n', (85110, 85136), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((85539, 85577), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['a.mask', '[[0, 0], [0, 0]]'], {}), '(a.mask, [[0, 0], [0, 0]])\n', (85551, 85577), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((85980, 86018), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['a.mask', '[[0, 0], [0, 0]]'], {}), '(a.mask, [[0, 0], [0, 0]])\n', (85992, 86018), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((97406, 97420), 'numpy.ma.core.allclose', 'allclose', (['a', 'b'], {}), '(a, b)\n', (97414, 97420), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((97566, 97580), 'numpy.ma.core.allclose', 'allclose', (['a', 'b'], {}), '(a, b)\n', (97574, 97580), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((97691, 97724), 'numpy.ma.core.allclose', 'allclose', (['a', 'b'], {'masked_equal': '(True)'}), '(a, b, masked_equal=True)\n', (97699, 97724), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((97885, 97918), 'numpy.ma.core.allclose', 'allclose', (['a', '(0)'], {'masked_equal': '(True)'}), '(a, 0, masked_equal=True)\n', (97893, 97918), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((98082, 98096), 'numpy.ma.core.allclose', 'allclose', (['a', 'a'], {}), '(a, a)\n', (98090, 98096), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((99703, 99734), 'numpy.matrix', 'np.matrix', (['[False, False, True]'], {}), '([False, False, True])\n', (99712, 99734), True, 'import numpy as np\n'), ((99841, 99872), 'numpy.matrix', 'np.matrix', (['[False, False, True]'], {}), '([False, False, True])\n', (99850, 99872), True, 'import numpy as np\n'), ((100059, 100089), 'numpy.matrix', 'np.matrix', (['[True, True, False]'], {}), '([True, True, False])\n', (100068, 100089), True, 'import numpy as np\n'), ((100201, 100231), 'numpy.matrix', 'np.matrix', (['[True, True, False]'], {}), '([True, True, False])\n', (100210, 100231), True, 'import numpy as np\n'), ((103960, 103983), 'numpy.matrix', 'np.matrix', (['[1, 2, 3, 4]'], {}), '([1, 2, 3, 4])\n', (103969, 103983), True, 'import numpy as np\n'), ((104975, 105010), 'numpy.may_share_memory', 'np.may_share_memory', (['a.mask', 'b.mask'], {}), '(a.mask, b.mask)\n', (104994, 105010), True, 'import numpy as np\n'), ((105425, 105435), 'numpy.ma.core.arange', 'arange', (['(10)'], {}), '(10)\n', (105431, 105435), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((105543, 105582), 'numpy.ma.core.asarray', 'asarray', (['[6, 1, 4, 3, 2, 5, 0, 7, 8, 9]'], {}), '([6, 1, 4, 3, 2, 5, 0, 7, 8, 9])\n', (105550, 105582), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((105664, 105704), 'numpy.ma.core.masked_array', 'masked_array', (['[0, 2, 4, 6]', '[1, 0, 1, 0]'], {}), '([0, 2, 4, 6], [1, 0, 1, 0])\n', (105676, 105704), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((105857, 105867), 'numpy.ma.core.arange', 'arange', (['(10)'], {}), '(10)\n', (105863, 105867), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((105951, 105990), 'numpy.ma.core.asarray', 'asarray', (['[6, 1, 4, 3, 2, 5, 0, 7, 8, 9]'], {}), '([6, 1, 4, 3, 2, 5, 0, 7, 8, 9])\n', (105958, 105990), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((106073, 106113), 'numpy.ma.core.masked_array', 'masked_array', (['[0, 2, 4, 6]', '[1, 0, 1, 0]'], {}), '([0, 2, 4, 6], [1, 0, 1, 0])\n', (106085, 106113), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((106999, 107008), 'numpy.ma.core.arange', 'arange', (['(6)'], {}), '(6)\n', (107005, 107008), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((108407, 108433), 'numpy.matrix', 'np.matrix', (['[1, 2, 3, 4, 5]'], {}), '([1, 2, 3, 4, 5])\n', (108416, 108433), True, 'import numpy as np\n'), ((113022, 113035), 'numpy.argsort', 'np.argsort', (['a'], {}), '(a)\n', (113032, 113035), True, 'import numpy as np\n'), ((113037, 113047), 'numpy.ma.core.argsort', 'argsort', (['a'], {}), '(a)\n', (113044, 113047), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((114545, 114582), 'numpy.ma.core.masked_array', 'masked_array', (['[10, 10, 40]', '[0, 0, 1]'], {}), '([10, 10, 40], [0, 0, 1])\n', (114557, 114582), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((114706, 114758), 'numpy.ma.core.masked_array', 'masked_array', (['[[10, 20], [10, 20]]', '[[0, 1], [0, 1]]'], {}), '([[10, 20], [10, 20]], [[0, 1], [0, 1]])\n', (114718, 114758), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((115050, 115100), 'numpy.ma.core.array', 'array', (['[[10, 30], [40, 60]]'], {'mask': '[[0, 1], [1, 0]]'}), '([[10, 30], [40, 60]], mask=[[0, 1], [1, 0]])\n', (115055, 115100), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((115123, 115146), 'numpy.ma.core.take', 'take', (['x', '[0, 2]'], {'axis': '(1)'}), '(x, [0, 2], axis=1)\n', (115127, 115146), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((115169, 115219), 'numpy.ma.core.array', 'array', (['[[10, 30], [40, 60]]'], {'mask': '[[0, 1], [1, 0]]'}), '([[10, 30], [40, 60]], mask=[[0, 1], [1, 0]])\n', (115174, 115219), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((116447, 116460), 'numpy.arange', 'np.arange', (['(12)'], {}), '(12)\n', (116456, 116460), True, 'import numpy as np\n'), ((120682, 120713), 'numpy.ma.core.MaskedArray.cumsum', 'MaskedArray.cumsum', (['marray.T', '(0)'], {}), '(marray.T, 0)\n', (120700, 120713), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((122986, 123015), 'numpy.empty', 'np.empty', (['(3, 4)'], {'dtype': 'float'}), '((3, 4), dtype=float)\n', (122994, 123015), True, 'import numpy as np\n'), ((123284, 123308), 'numpy.ma.core.empty', 'empty', (['(3, 4)'], {'dtype': 'int'}), '((3, 4), dtype=int)\n', (123289, 123308), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((125267, 125279), 'numpy.trace', 'np.trace', (['mX'], {}), '(mX)\n', (125275, 125279), True, 'import numpy as np\n'), ((127747, 127757), 'numpy.ma.core.arange', 'arange', (['(10)'], {}), '(10)\n', (127753, 127757), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((128242, 128271), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['mout.mask', '(True)'], {}), '(mout.mask, True)\n', (128254, 128271), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((128509, 128519), 'numpy.ma.core.arange', 'arange', (['(10)'], {}), '(10)\n', (128515, 128519), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((128956, 128985), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['mout.mask', '(True)'], {}), '(mout.mask, True)\n', (128968, 128985), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((134397, 134417), 'numpy.ma.core.masked_greater', 'masked_greater', (['x', '(2)'], {}), '(x, 2)\n', (134411, 134417), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((134499, 134525), 'numpy.ma.core.masked_greater_equal', 'masked_greater_equal', (['x', '(2)'], {}), '(x, 2)\n', (134519, 134525), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((134577, 134594), 'numpy.ma.core.masked_less', 'masked_less', (['x', '(2)'], {}), '(x, 2)\n', (134588, 134594), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((134673, 134696), 'numpy.ma.core.masked_less_equal', 'masked_less_equal', (['x', '(2)'], {}), '(x, 2)\n', (134690, 134696), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((134753, 134775), 'numpy.ma.core.masked_not_equal', 'masked_not_equal', (['x', '(2)'], {}), '(x, 2)\n', (134769, 134775), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((134828, 134846), 'numpy.ma.core.masked_equal', 'masked_equal', (['x', '(2)'], {}), '(x, 2)\n', (134840, 134846), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((134903, 134925), 'numpy.ma.core.masked_not_equal', 'masked_not_equal', (['x', '(2)'], {}), '(x, 2)\n', (134919, 134925), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((134948, 134994), 'numpy.ma.core.masked_where', 'masked_where', (['[1, 1, 0, 0, 0]', '[1, 2, 3, 4, 5]'], {}), '([1, 1, 0, 0, 0], [1, 2, 3, 4, 5])\n', (134960, 134994), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((135395, 135413), 'numpy.ma.core.masked_equal', 'masked_equal', (['(1)', 'a'], {}), '(1, a)\n', (135407, 135413), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((139249, 139263), 'numpy.identity', 'np.identity', (['(5)'], {}), '(5)\n', (139260, 139263), True, 'import numpy as np\n'), ((139337, 139350), 'numpy.ma.core.power', 'power', (['x', '(2.0)'], {}), '(x, 2.0)\n', (139342, 139350), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((142627, 142650), 'numpy.ma.where', 'np.ma.where', (['(True)', 'a', 'a'], {}), '(True, a, a)\n', (142638, 142650), True, 'import numpy as np\n'), ((142676, 142699), 'numpy.ma.where', 'np.ma.where', (['(True)', 'b', 'b'], {}), '(True, b, b)\n', (142687, 142699), True, 'import numpy as np\n'), ((143851, 143863), 'numpy.ma.core.arange', 'arange', (['(1)', '(6)'], {}), '(1, 6)\n', (143857, 143863), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((144425, 144455), 'numpy.arange', 'np.arange', (['(4)'], {'dtype': 'np.float32'}), '(4, dtype=np.float32)\n', (144434, 144455), True, 'import numpy as np\n'), ((144477, 144497), 'numpy.ma.core.where', 'where', (['(x > 1.5)', 'y', 'x'], {}), '(x > 1.5, y, x)\n', (144482, 144497), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((144838, 144860), 'numpy.ma.core.array', 'array', (['[20, 31, 12, 3]'], {}), '([20, 31, 12, 3])\n', (144843, 144860), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((144951, 144973), 'numpy.ma.core.array', 'array', (['[20, 31, 12, 3]'], {}), '([20, 31, 12, 3])\n', (144956, 144973), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((145064, 145085), 'numpy.ma.core.array', 'array', (['[20, 1, 12, 3]'], {}), '([20, 1, 12, 3])\n', (145069, 145085), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((145271, 145293), 'numpy.ma.core.array', 'array', (['[99, 1, 12, 99]'], {}), '([99, 1, 12, 99])\n', (145276, 145293), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((145636, 145658), 'numpy.ma.core.array', 'array', (['[20, 31, 12, 3]'], {}), '([20, 31, 12, 3])\n', (145641, 145658), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((146024, 146046), 'numpy.ma.core.array', 'array', (['[20, 31, 12, 3]'], {}), '([20, 31, 12, 3])\n', (146029, 146046), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((146325, 146348), 'numpy.ma.core.array', 'array', (['[99, 31, 12, 99]'], {}), '([99, 31, 12, 99])\n', (146330, 146348), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((146770, 146801), 'numpy.ma.core.array', 'array', (['[999999, 31, 12, 999999]'], {}), '([999999, 31, 12, 999999])\n', (146775, 146801), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((148141, 148158), 'numpy.dtype', 'np.dtype', (['np.bool'], {}), '(np.bool)\n', (148149, 148158), True, 'import numpy as np\n'), ((148536, 148567), 'numpy.dtype', 'np.dtype', (["[('a', (np.bool, 2))]"], {}), "([('a', (np.bool, 2))])\n", (148544, 148567), True, 'import numpy as np\n'), ((148690, 148720), 'numpy.dtype', 'np.dtype', (["[(('A', 'a'), bool)]"], {}), "([(('A', 'a'), bool)])\n", (148698, 148720), True, 'import numpy as np\n'), ((150048, 150088), 'numpy.array', 'np.array', (['[(0, 0), (0, 1)]'], {'dtype': 'bdtype'}), '([(0, 0), (0, 1)], dtype=bdtype)\n', (150056, 150088), True, 'import numpy as np\n'), ((150354, 150403), 'numpy.ma.core.make_mask', 'make_mask', (['nomask'], {'copy': 'cpy', 'shrink': 'shr', 'dtype': 'dt'}), '(nomask, copy=cpy, shrink=shr, dtype=dt)\n', (150363, 150403), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((150416, 150466), 'numpy.ma.testutils.assert_', 'assert_', (['(res is nomask)', '(msgformat % (cpy, shr, dt))'], {}), '(res is nomask, msgformat % (cpy, shr, dt))\n', (150423, 150466), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((151395, 151415), 'numpy.ma.core.mask_or', 'mask_or', (['mask', 'other'], {}), '(mask, other)\n', (151402, 151415), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((151785, 151806), 'numpy.ma.core.mask_or', 'mask_or', (['amask', 'bmask'], {}), '(amask, bmask)\n', (151792, 151806), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((151974, 151992), 'numpy.ma.core.flatten_mask', 'flatten_mask', (['mask'], {}), '(mask)\n', (151986, 151992), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((154958, 154992), 'numpy.zeros', 'np.zeros', (['base.shape'], {'dtype': 'mdtype'}), '(base.shape, dtype=mdtype)\n', (154966, 154992), True, 'import numpy as np\n'), ((155062, 155095), 'numpy.ones', 'np.ones', (['base.shape'], {'dtype': 'mdtype'}), '(base.shape, dtype=mdtype)\n', (155069, 155095), True, 'import numpy as np\n'), ((155196, 155230), 'numpy.zeros', 'np.zeros', (['base.shape'], {'dtype': 'mdtype'}), '(base.shape, dtype=mdtype)\n', (155204, 155230), True, 'import numpy as np\n'), ((155298, 155331), 'numpy.ones', 'np.ones', (['base.shape'], {'dtype': 'mdtype'}), '(base.shape, dtype=mdtype)\n', (155305, 155331), True, 'import numpy as np\n'), ((155461, 155521), 'numpy.array', 'np.array', (['[(x, x, x) for x in [0, 0, 0, 1, 1]]'], {'dtype': 'mdtype'}), '([(x, x, x) for x in [0, 0, 0, 1, 1]], dtype=mdtype)\n', (155469, 155521), True, 'import numpy as np\n'), ((156080, 156134), 'numpy.compat.asbytes_nested', 'asbytes_nested', (["['pi', 'two', 'three', 'four', 'five']"], {}), "(['pi', 'two', 'three', 'four', 'five'])\n", (156094, 156134), False, 'from numpy.compat import asbytes, asbytes_nested\n'), ((156604, 156654), 'numpy.compat.asbytes_nested', 'asbytes_nested', (["['pi', 'pi', 'pi', 'four', 'five']"], {}), "(['pi', 'pi', 'pi', 'four', 'five'])\n", (156618, 156654), False, 'from numpy.compat import asbytes, asbytes_nested\n'), ((156825, 156868), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['base[n].mask', '[1, 1, 0, 0, 1]'], {}), '(base[n].mask, [1, 1, 0, 0, 1])\n', (156837, 156868), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((156881, 156923), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['base[n]._data', 'base._data[n]'], {}), '(base[n]._data, base._data[n])\n', (156893, 156923), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((157107, 157125), 'numpy.ma.core.getmaskarray', 'getmaskarray', (['test'], {}), '(test)\n', (157119, 157125), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((157148, 157218), 'numpy.array', 'np.array', (['[(0, 0), (0, 0), (0, 0)]'], {'dtype': "[('a', '|b1'), ('b', '|b1')]"}), "([(0, 0), (0, 0), (0, 0)], dtype=[('a', '|b1'), ('b', '|b1')])\n", (157156, 157218), True, 'import numpy as np\n'), ((157296, 157314), 'numpy.ma.core.getmaskarray', 'getmaskarray', (['test'], {}), '(test)\n', (157308, 157314), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((157337, 157407), 'numpy.array', 'np.array', (['[(1, 1), (1, 1), (1, 1)]'], {'dtype': "[('a', '|b1'), ('b', '|b1')]"}), "([(1, 1), (1, 1), (1, 1)], dtype=[('a', '|b1'), ('b', '|b1')])\n", (157345, 157407), True, 'import numpy as np\n'), ((159331, 159351), 'numpy.array', 'np.array', (['[1.0, 3.0]'], {}), '([1.0, 3.0])\n', (159339, 159351), True, 'import numpy as np\n'), ((159408, 159428), 'numpy.array', 'np.array', (['[1.0, 4.0]'], {}), '([1.0, 4.0])\n', (159416, 159428), True, 'import numpy as np\n'), ((163677, 163702), 'numpy.ma.__getattribute__', 'np.ma.__getattribute__', (['f'], {}), '(f)\n', (163699, 163702), True, 'import numpy as np\n'), ((164028, 164053), 'numpy.ma.__getattribute__', 'np.ma.__getattribute__', (['f'], {}), '(f)\n', (164050, 164053), True, 'import numpy as np\n'), ((165241, 165249), 'numpy.ma.core.count', 'count', (['a'], {}), '(a)\n', (165246, 165249), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((165276, 165292), 'numpy.ma.core.count', 'count', (['a'], {'axis': '(1)'}), '(a, axis=1)\n', (165281, 165292), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((165330, 165351), 'numpy.ma.core.count', 'count', (['a'], {'axis': '(0, 1)'}), '(a, axis=(0, 1))\n', (165335, 165351), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((165387, 165410), 'numpy.ma.core.count', 'count', (['a'], {'keepdims': '(True)'}), '(a, keepdims=True)\n', (165392, 165410), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((165451, 165482), 'numpy.ma.core.count', 'count', (['a'], {'axis': '(1)', 'keepdims': '(True)'}), '(a, axis=1, keepdims=True)\n', (165456, 165482), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((165522, 165558), 'numpy.ma.core.count', 'count', (['a'], {'axis': '(0, 1)', 'keepdims': '(True)'}), '(a, axis=(0, 1), keepdims=True)\n', (165527, 165558), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((165597, 165614), 'numpy.ma.core.count', 'count', (['a'], {'axis': '(-2)'}), '(a, axis=-2)\n', (165602, 165614), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((165836, 165844), 'numpy.ma.core.count', 'count', (['a'], {}), '(a)\n', (165841, 165844), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((165871, 165887), 'numpy.ma.core.count', 'count', (['a'], {'axis': '(1)'}), '(a, axis=1)\n', (165876, 165887), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((165925, 165946), 'numpy.ma.core.count', 'count', (['a'], {'axis': '(0, 1)'}), '(a, axis=(0, 1))\n', (165930, 165946), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((165982, 166005), 'numpy.ma.core.count', 'count', (['a'], {'keepdims': '(True)'}), '(a, keepdims=True)\n', (165987, 166005), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((166046, 166077), 'numpy.ma.core.count', 'count', (['a'], {'axis': '(1)', 'keepdims': '(True)'}), '(a, axis=1, keepdims=True)\n', (166051, 166077), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((166117, 166153), 'numpy.ma.core.count', 'count', (['a'], {'axis': '(0, 1)', 'keepdims': '(True)'}), '(a, axis=(0, 1), keepdims=True)\n', (166122, 166153), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((166192, 166209), 'numpy.ma.core.count', 'count', (['a'], {'axis': '(-2)'}), '(a, axis=-2)\n', (166197, 166209), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((166395, 166414), 'numpy.ma.core.count', 'count', (['np.ma.masked'], {}), '(np.ma.masked)\n', (166400, 166414), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((166510, 166524), 'numpy.ma.array', 'np.ma.array', (['(1)'], {}), '(1)\n', (166521, 166524), True, 'import numpy as np\n'), ((168100, 168128), 'numpy.ma.core.default_fill_value', 'default_fill_value', (['(1 + 1.0j)'], {}), '(1 + 1.0j)\n', (168118, 168128), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((3518, 3534), 'numpy.ma.core.isMaskedArray', 'isMaskedArray', (['x'], {}), '(x)\n', (3531, 3534), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((3968, 3998), 'functools.reduce', 'reduce', (['(lambda x, y: x + y)', 'm1'], {}), '(lambda x, y: x + y, m1)\n', (3974, 3998), False, 'from functools import reduce\n'), ((4511, 4528), 'numpy.ma.core.isMaskedArray', 'isMaskedArray', (['xm'], {}), '(xm)\n', (4524, 4528), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((4555, 4564), 'numpy.ma.core.shape', 'shape', (['xm'], {}), '(xm)\n', (4560, 4564), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((4641, 4670), 'functools.reduce', 'reduce', (['(lambda x, y: x * y)', 's'], {}), '(lambda x, y: x * y, s)\n', (4647, 4670), False, 'from functools import reduce\n'), ((4696, 4705), 'numpy.ma.core.count', 'count', (['xm'], {}), '(xm)\n', (4701, 4705), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((4806, 4823), 'numpy.ma.core.filled', 'filled', (['xm', '(1e+20)'], {}), '(xm, 1e+20)\n', (4812, 4823), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((7877, 7912), 'numpy.may_share_memory', 'np.may_share_memory', (['x.mask', 'y.mask'], {}), '(x.mask, y.mask)\n', (7896, 7912), True, 'import numpy as np\n'), ((11118, 11129), 'numpy.ma.core.getmask', 'getmask', (['x2'], {}), '(x2)\n', (11125, 11129), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((11131, 11150), 'numpy.ma.core.array', 'array', (['[0, 1, 0, 0]'], {}), '([0, 1, 0, 0])\n', (11136, 11150), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((11235, 11246), 'numpy.ma.core.getmask', 'getmask', (['x3'], {}), '(x3)\n', (11242, 11246), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((11248, 11267), 'numpy.ma.core.array', 'array', (['[0, 1, 1, 0]'], {}), '([0, 1, 1, 0])\n', (11253, 11267), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((11352, 11363), 'numpy.ma.core.getmask', 'getmask', (['x4'], {}), '(x4)\n', (11359, 11363), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((11365, 11384), 'numpy.ma.core.array', 'array', (['[0, 1, 1, 0]'], {}), '([0, 1, 1, 0])\n', (11370, 11384), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((11416, 11435), 'numpy.ma.core.array', 'array', (['[1, 2, 3, 4]'], {}), '([1, 2, 3, 4])\n', (11421, 11435), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((11560, 11592), 'numpy.ma.core.array', 'array', (['[0, 0, 0, 1, 0]', 'MaskType'], {}), '([0, 0, 0, 1, 0], MaskType)\n', (11565, 11592), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((12949, 12960), 'numpy.ma.core.getmask', 'getmask', (['x2'], {}), '(x2)\n', (12956, 12960), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((12962, 12994), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 1, 0]]'], {}), '([[0, 1, 0], [0, 1, 0]])\n', (12970, 12994), True, 'import numpy as np\n'), ((13092, 13108), 'numpy.ma.core.array', 'array', (['[1, 1, 0]'], {}), '([1, 1, 0])\n', (13097, 13108), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((13136, 13150), 'numpy.ma.core.getmask', 'getmask', (['x3[1]'], {}), '(x3[1])\n', (13143, 13150), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((13152, 13168), 'numpy.ma.core.array', 'array', (['[1, 1, 0]'], {}), '([1, 1, 0])\n', (13157, 13168), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((13250, 13264), 'numpy.ma.core.getmask', 'getmask', (['x4[1]'], {}), '(x4[1])\n', (13257, 13264), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((13266, 13282), 'numpy.ma.core.array', 'array', (['[1, 1, 0]'], {}), '([1, 1, 0])\n', (13271, 13282), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((13317, 13333), 'numpy.ma.core.array', 'array', (['[1, 2, 3]'], {}), '([1, 2, 3])\n', (13322, 13333), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((13359, 13371), 'numpy.arange', 'np.arange', (['(5)'], {}), '(5)\n', (13368, 13371), True, 'import numpy as np\n'), ((13469, 13501), 'numpy.ma.core.array', 'array', (['[0, 0, 0, 1, 0]', 'MaskType'], {}), '([0, 0, 0, 1, 0], MaskType)\n', (13474, 13501), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((19171, 19179), 'numpy.ma.core.array', 'array', (['(1)'], {}), '(1)\n', (19176, 19179), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((19214, 19222), 'numpy.ma.core.array', 'array', (['(1)'], {}), '(1)\n', (19219, 19222), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((19253, 19267), 'numpy.ma.core.array', 'array', (['[[[1]]]'], {}), '([[[1]]])\n', (19258, 19267), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((19302, 19314), 'numpy.ma.core.array', 'array', (['[[1]]'], {}), '([[1]])\n', (19307, 19314), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((22329, 22352), 'numpy.ma.core.default_fill_value', 'default_fill_value', (['(1.0)'], {}), '(1.0)\n', (22347, 22352), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((23718, 23761), 'numpy.array', 'np.array', (['[(0, 0, 1), (1, 0, 0)]'], {'order': '"""F"""'}), "([(0, 0, 1), (1, 0, 0)], order='F')\n", (23726, 23761), True, 'import numpy as np\n'), ((33438, 33450), 'numpy.add', 'np.add', (['x', 'y'], {}), '(x, y)\n', (33444, 33450), True, 'import numpy as np\n'), ((33452, 33463), 'numpy.ma.core.add', 'add', (['xm', 'ym'], {}), '(xm, ym)\n', (33455, 33463), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((33490, 33507), 'numpy.subtract', 'np.subtract', (['x', 'y'], {}), '(x, y)\n', (33501, 33507), True, 'import numpy as np\n'), ((33509, 33525), 'numpy.ma.core.subtract', 'subtract', (['xm', 'ym'], {}), '(xm, ym)\n', (33517, 33525), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((33552, 33569), 'numpy.multiply', 'np.multiply', (['x', 'y'], {}), '(x, y)\n', (33563, 33569), True, 'import numpy as np\n'), ((33571, 33587), 'numpy.ma.core.multiply', 'multiply', (['xm', 'ym'], {}), '(xm, ym)\n', (33579, 33587), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((33614, 33629), 'numpy.divide', 'np.divide', (['x', 'y'], {}), '(x, y)\n', (33623, 33629), True, 'import numpy as np\n'), ((33631, 33645), 'numpy.ma.core.divide', 'divide', (['xm', 'ym'], {}), '(xm, ym)\n', (33637, 33645), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((35034, 35049), 'numpy.ma.core.maximum', 'maximum', (['xm', 'xm'], {}), '(xm, xm)\n', (35041, 35049), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((35080, 35095), 'numpy.ma.core.minimum', 'minimum', (['xm', 'xm'], {}), '(xm, xm)\n', (35087, 35095), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((36801, 36807), 'numpy.ma.core.abs', 'abs', (['x'], {}), '(x)\n', (36804, 36807), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((36848, 36854), 'numpy.ma.core.abs', 'abs', (['x'], {}), '(x)\n', (36851, 36854), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((36896, 36902), 'numpy.ma.core.abs', 'abs', (['x'], {}), '(x)\n', (36899, 36902), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((38293, 38305), 'numpy.ma.core.getmask', 'getmask', (['res'], {}), '(res)\n', (38300, 38305), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((39149, 39159), 'numpy.ma.core.less', 'less', (['x', 'y'], {}), '(x, y)\n', (39153, 39159), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((39210, 39223), 'numpy.ma.core.greater', 'greater', (['x', 'y'], {}), '(x, y)\n', (39217, 39223), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((39248, 39258), 'numpy.ma.core.minimum', 'minimum', (['x'], {}), '(x)\n', (39255, 39258), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((39281, 39291), 'numpy.ma.core.maximum', 'maximum', (['x'], {}), '(x)\n', (39288, 39291), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((39311, 39320), 'numpy.ma.core.arange', 'arange', (['(4)'], {}), '(4)\n', (39317, 39320), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((40396, 40414), 'numpy.random.rand', 'np.random.rand', (['(12)'], {}), '(12)\n', (40410, 40414), True, 'import numpy as np\n'), ((42297, 42305), 'numpy.ma.core.array', 'array', (['(4)'], {}), '(4)\n', (42302, 42305), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((42344, 42352), 'numpy.ma.core.array', 'array', (['(4)'], {}), '(4)\n', (42349, 42352), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((42447, 42460), 'numpy.ma.core.filled', 'filled', (['xm', '(0)'], {}), '(xm, 0)\n', (42453, 42460), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((42684, 42697), 'numpy.ma.core.filled', 'filled', (['xm', '(1)'], {}), '(xm, 1)\n', (42690, 42697), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((42848, 42873), 'numpy.concatenate', 'np.concatenate', (['(x, y)', '(1)'], {}), '((x, y), 1)\n', (42862, 42873), True, 'import numpy as np\n'), ((42875, 42899), 'numpy.ma.core.concatenate', 'concatenate', (['(xm, ym)', '(1)'], {}), '((xm, ym), 1)\n', (42886, 42899), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((42926, 42945), 'numpy.add.reduce', 'np.add.reduce', (['x', '(1)'], {}), '(x, 1)\n', (42939, 42945), True, 'import numpy as np\n'), ((42947, 42963), 'numpy.ma.core.add.reduce', 'add.reduce', (['x', '(1)'], {}), '(x, 1)\n', (42957, 42963), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((42990, 43002), 'numpy.sum', 'np.sum', (['x', '(1)'], {}), '(x, 1)\n', (42996, 43002), True, 'import numpy as np\n'), ((43004, 43013), 'numpy.ma.core.sum', 'sum', (['x', '(1)'], {}), '(x, 1)\n', (43007, 43013), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((43040, 43056), 'numpy.product', 'np.product', (['x', '(1)'], {}), '(x, 1)\n', (43050, 43056), True, 'import numpy as np\n'), ((43058, 43071), 'numpy.ma.core.product', 'product', (['x', '(1)'], {}), '(x, 1)\n', (43065, 43071), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((47069, 47094), 'numpy.ma.core.mask_or', 'mask_or', (['xm.mask', 'ym.mask'], {}), '(xm.mask, ym.mask)\n', (47076, 47094), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((47519, 47531), 'numpy.ma.core.filled', 'filled', (['x', '(0)'], {}), '(x, 0)\n', (47525, 47531), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((47533, 47545), 'numpy.ma.core.filled', 'filled', (['y', '(0)'], {}), '(y, 0)\n', (47539, 47545), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((47612, 47624), 'numpy.ma.core.filled', 'filled', (['x', '(0)'], {}), '(x, 0)\n', (47618, 47624), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((47626, 47638), 'numpy.ma.core.filled', 'filled', (['y', '(0)'], {}), '(y, 0)\n', (47632, 47638), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((49212, 49228), 'numpy.zeros', 'np.zeros', (['(2, 2)'], {}), '((2, 2))\n', (49220, 49228), True, 'import numpy as np\n'), ((52105, 52114), 'numpy.log', 'np.log', (['(2)'], {}), '(2)\n', (52111, 52114), True, 'import numpy as np\n'), ((58333, 58342), 'numpy.eye', 'np.eye', (['(2)'], {}), '(2)\n', (58339, 58342), True, 'import numpy as np\n'), ((60474, 60488), 'numpy.compat.asbytes', 'asbytes', (['"""???"""'], {}), "('???')\n", (60481, 60488), False, 'from numpy.compat import asbytes, asbytes_nested\n'), ((60677, 60698), 'numpy.ma.core.default_fill_value', 'default_fill_value', (['(0)'], {}), '(0)\n', (60695, 60698), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((60735, 60758), 'numpy.ma.core.default_fill_value', 'default_fill_value', (['(0.0)'], {}), '(0.0)\n', (60753, 60758), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((61119, 61133), 'numpy.compat.asbytes', 'asbytes', (['"""???"""'], {}), "('???')\n", (61126, 61133), False, 'from numpy.compat import asbytes, asbytes_nested\n'), ((61776, 61790), 'numpy.compat.asbytes', 'asbytes', (['"""???"""'], {}), "('???')\n", (61783, 61790), False, 'from numpy.compat import asbytes, asbytes_nested\n'), ((62124, 62138), 'numpy.compat.asbytes', 'asbytes', (['"""???"""'], {}), "('???')\n", (62131, 62138), False, 'from numpy.compat import asbytes, asbytes_nested\n'), ((64061, 64075), 'numpy.compat.asbytes', 'asbytes', (['"""999"""'], {}), "('999')\n", (64068, 64075), False, 'from numpy.compat import asbytes, asbytes_nested\n'), ((64260, 64274), 'numpy.compat.asbytes', 'asbytes', (['"""???"""'], {}), "('???')\n", (64267, 64274), False, 'from numpy.compat import asbytes, asbytes_nested\n'), ((64456, 64480), 'numpy.asarray', 'np.asarray', (['x.fill_value'], {}), '(x.fill_value)\n', (64466, 64480), True, 'import numpy as np\n'), ((64823, 64844), 'numpy.ma.core.default_fill_value', 'default_fill_value', (['(0)'], {}), '(0)\n', (64841, 64844), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((64874, 64897), 'numpy.ma.core.default_fill_value', 'default_fill_value', (['"""0"""'], {}), "('0')\n", (64892, 64897), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((64927, 64950), 'numpy.ma.core.default_fill_value', 'default_fill_value', (['(0.0)'], {}), '(0.0)\n', (64945, 64950), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((65335, 65372), 'numpy.array', 'np.array', (['(0,)'], {'dtype': "[('f0', float)]"}), "((0,), dtype=[('f0', float)])\n", (65343, 65372), True, 'import numpy as np\n'), ((65828, 65874), 'numpy.array', 'np.array', (['(0, 0, 0)'], {'dtype': '"""int, float, float"""'}), "((0, 0, 0), dtype='int, float, float')\n", (65836, 65874), True, 'import numpy as np\n'), ((68605, 68626), 'numpy.ma.core.default_fill_value', 'default_fill_value', (['(0)'], {}), '(0)\n', (68623, 68626), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((68925, 68943), 'numpy.dtype', 'np.dtype', (['[adtype]'], {}), '([adtype])\n', (68933, 68943), True, 'import numpy as np\n'), ((73864, 73882), 'numpy.ma.core.alltrue', 'alltrue', (['a'], {'axis': '(0)'}), '(a, axis=0)\n', (73871, 73882), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((74138, 74151), 'numpy.ma.core.arange', 'arange', (['(1)', '(13)'], {}), '(1, 13)\n', (74144, 74151), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((74718, 74728), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (74725, 74728), True, 'import numpy as np\n'), ((77379, 77390), 'numpy.dtype', 'np.dtype', (['_'], {}), '(_)\n', (77387, 77390), True, 'import numpy as np\n'), ((80277, 80295), 'numpy.ma.core.mask_or', 'mask_or', (['m', 'a.mask'], {}), '(m, a.mask)\n', (80284, 80295), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((86336, 86372), 'warnings.catch_warnings', 'warnings.catch_warnings', ([], {'record': '(True)'}), '(record=True)\n', (86359, 86372), False, 'import warnings\n'), ((86395, 86428), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""always"""'], {}), "('always')\n", (86418, 86428), False, 'import warnings\n'), ((86868, 86904), 'warnings.catch_warnings', 'warnings.catch_warnings', ([], {'record': '(True)'}), '(record=True)\n', (86891, 86904), False, 'import warnings\n'), ((86927, 86960), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""always"""'], {}), "('always')\n", (86950, 86960), False, 'import warnings\n'), ((87076, 87095), 'numpy.ma.core.arange', 'arange', (['(10)'], {'dtype': 't'}), '(10, dtype=t)\n', (87082, 87095), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((87190, 87212), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x', '(y + a)'], {}), '(x, y + a)\n', (87202, 87212), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((87229, 87252), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xm', '(y + a)'], {}), '(xm, y + a)\n', (87241, 87252), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((87521, 87557), 'warnings.catch_warnings', 'warnings.catch_warnings', ([], {'record': '(True)'}), '(record=True)\n', (87544, 87557), False, 'import warnings\n'), ((87580, 87613), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""always"""'], {}), "('always')\n", (87603, 87613), False, 'import warnings\n'), ((88028, 88064), 'warnings.catch_warnings', 'warnings.catch_warnings', ([], {'record': '(True)'}), '(record=True)\n', (88051, 88064), False, 'import warnings\n'), ((88087, 88120), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""always"""'], {}), "('always')\n", (88110, 88120), False, 'import warnings\n'), ((88236, 88255), 'numpy.ma.core.arange', 'arange', (['(10)'], {'dtype': 't'}), '(10, dtype=t)\n', (88242, 88255), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((88350, 88372), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x', '(y - a)'], {}), '(x, y - a)\n', (88362, 88372), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((88389, 88412), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xm', '(y - a)'], {}), '(xm, y - a)\n', (88401, 88412), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((88686, 88722), 'warnings.catch_warnings', 'warnings.catch_warnings', ([], {'record': '(True)'}), '(record=True)\n', (88709, 88722), False, 'import warnings\n'), ((88745, 88778), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""always"""'], {}), "('always')\n", (88768, 88778), False, 'import warnings\n'), ((89198, 89234), 'warnings.catch_warnings', 'warnings.catch_warnings', ([], {'record': '(True)'}), '(record=True)\n', (89221, 89234), False, 'import warnings\n'), ((89257, 89290), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""always"""'], {}), "('always')\n", (89280, 89290), False, 'import warnings\n'), ((89406, 89425), 'numpy.ma.core.arange', 'arange', (['(10)'], {'dtype': 't'}), '(10, dtype=t)\n', (89412, 89425), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((89520, 89542), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x', '(y * a)'], {}), '(x, y * a)\n', (89532, 89542), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((89559, 89582), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xm', '(y * a)'], {}), '(xm, y * a)\n', (89571, 89582), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((89850, 89886), 'warnings.catch_warnings', 'warnings.catch_warnings', ([], {'record': '(True)'}), '(record=True)\n', (89873, 89886), False, 'import warnings\n'), ((89909, 89942), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""always"""'], {}), "('always')\n", (89932, 89942), False, 'import warnings\n'), ((90207, 90225), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x', 'y'], {}), '(x, y)\n', (90219, 90225), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((90242, 90261), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xm', 'y'], {}), '(xm, y)\n', (90254, 90261), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((90470, 90506), 'warnings.catch_warnings', 'warnings.catch_warnings', ([], {'record': '(True)'}), '(record=True)\n', (90493, 90506), False, 'import warnings\n'), ((90529, 90562), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""always"""'], {}), "('always')\n", (90552, 90562), False, 'import warnings\n'), ((90678, 90697), 'numpy.ma.core.arange', 'arange', (['(10)'], {'dtype': 't'}), '(10, dtype=t)\n', (90684, 90697), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((90794, 90817), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x', '(y // a)'], {}), '(x, y // a)\n', (90806, 90817), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((90834, 90858), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xm', '(y // a)'], {}), '(xm, y // a)\n', (90846, 90858), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((91200, 91236), 'warnings.catch_warnings', 'warnings.catch_warnings', ([], {'record': '(True)'}), '(record=True)\n', (91223, 91236), False, 'import warnings\n'), ((91259, 91292), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""always"""'], {}), "('always')\n", (91282, 91292), False, 'import warnings\n'), ((92732, 92768), 'warnings.catch_warnings', 'warnings.catch_warnings', ([], {'record': '(True)'}), '(record=True)\n', (92755, 92768), False, 'import warnings\n'), ((92791, 92824), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""always"""'], {}), "('always')\n", (92814, 92824), False, 'import warnings\n'), ((92940, 92959), 'numpy.ma.core.arange', 'arange', (['(10)'], {'dtype': 't'}), '(10, dtype=t)\n', (92946, 92959), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((94394, 94430), 'warnings.catch_warnings', 'warnings.catch_warnings', ([], {'record': '(True)'}), '(record=True)\n', (94417, 94430), False, 'import warnings\n'), ((94453, 94486), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""always"""'], {}), "('always')\n", (94476, 94486), False, 'import warnings\n'), ((94544, 94585), 'numpy.ma.core.array', 'array', (['[1, 2, 3]'], {'mask': '[0, 0, 1]', 'dtype': 't'}), '([1, 2, 3], mask=[0, 0, 1], dtype=t)\n', (94549, 94585), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((94640, 94686), 'numpy.ma.core.array', 'array', (['[1, 2 ** 2, 3]'], {'mask': '[0, 0, 1]', 'dtype': 't'}), '([1, 2 ** 2, 3], mask=[0, 0, 1], dtype=t)\n', (94645, 94686), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((94703, 94735), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xx.data', 'xx_r.data'], {}), '(xx.data, xx_r.data)\n', (94715, 94735), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((94752, 94784), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xx.mask', 'xx_r.mask'], {}), '(xx.mask, xx_r.mask)\n', (94764, 94784), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((94866, 94897), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x.data', 'xx_r.data'], {}), '(x.data, xx_r.data)\n', (94878, 94897), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((94914, 94945), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x.mask', 'xx_r.mask'], {}), '(x.mask, xx_r.mask)\n', (94926, 94945), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((97356, 97374), 'numpy.random.rand', 'np.random.rand', (['(10)'], {}), '(10)\n', (97370, 97374), True, 'import numpy as np\n'), ((97504, 97518), 'numpy.ma.core.allclose', 'allclose', (['a', 'b'], {}), '(a, b)\n', (97512, 97518), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((97754, 97788), 'numpy.ma.core.allclose', 'allclose', (['a', 'b'], {'masked_equal': '(False)'}), '(a, b, masked_equal=False)\n', (97762, 97788), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((99771, 99802), 'numpy.matrix', 'np.matrix', (['[False, False, True]'], {}), '([False, False, True])\n', (99780, 99802), True, 'import numpy as np\n'), ((99909, 99938), 'numpy.matrix', 'np.matrix', (['[True, True, True]'], {}), '([True, True, True])\n', (99918, 99938), True, 'import numpy as np\n'), ((100128, 100160), 'numpy.matrix', 'np.matrix', (['[False, False, False]'], {}), '([False, False, False])\n', (100137, 100160), True, 'import numpy as np\n'), ((100270, 100300), 'numpy.matrix', 'np.matrix', (['[True, True, False]'], {}), '([True, True, False])\n', (100279, 100300), True, 'import numpy as np\n'), ((104889, 104924), 'numpy.may_share_memory', 'np.may_share_memory', (['a.mask', 'b.mask'], {}), '(a.mask, b.mask)\n', (104908, 104924), True, 'import numpy as np\n'), ((114153, 114169), 'numpy.ma.core.array', 'array', (['x'], {'mask': 'm'}), '(x, mask=m)\n', (114158, 114169), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((115360, 115372), 'numpy.arange', 'np.arange', (['(3)'], {}), '(3)\n', (115369, 115372), True, 'import numpy as np\n'), ((115383, 115395), 'numpy.arange', 'np.arange', (['(5)'], {}), '(5)\n', (115392, 115395), True, 'import numpy as np\n'), ((127489, 127507), 'numpy.sqrt', 'np.sqrt', (['mXvar0[k]'], {}), '(mXvar0[k])\n', (127496, 127507), True, 'import numpy as np\n'), ((128074, 128099), 'warnings.catch_warnings', 'warnings.catch_warnings', ([], {}), '()\n', (128097, 128099), False, 'import warnings\n'), ((128117, 128148), 'warnings.simplefilter', 'warnings.simplefilter', (['"""ignore"""'], {}), "('ignore')\n", (128138, 128148), False, 'import warnings\n'), ((128338, 128363), 'warnings.catch_warnings', 'warnings.catch_warnings', ([], {}), '()\n', (128361, 128363), False, 'import warnings\n'), ((128381, 128412), 'warnings.simplefilter', 'warnings.simplefilter', (['"""ignore"""'], {}), "('ignore')\n", (128402, 128412), False, 'import warnings\n'), ((128474, 128488), 'numpy.isnan', 'np.isnan', (['nout'], {}), '(nout)\n', (128482, 128488), True, 'import numpy as np\n'), ((129100, 129114), 'numpy.isnan', 'np.isnan', (['nout'], {}), '(nout)\n', (129108, 129114), True, 'import numpy as np\n'), ((129662, 129671), 'numpy.ma.core.arange', 'arange', (['(9)'], {}), '(9)\n', (129668, 129671), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((133012, 133030), 'numpy.sqrt', 'np.sqrt', (['mXvar0[k]'], {}), '(mXvar0[k])\n', (133019, 133030), True, 'import numpy as np\n'), ((134378, 134391), 'numpy.ma.core.greater', 'greater', (['x', '(2)'], {}), '(x, 2)\n', (134385, 134391), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((134453, 134472), 'numpy.ma.core.greater_equal', 'greater_equal', (['x', '(2)'], {}), '(x, 2)\n', (134466, 134472), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((134561, 134571), 'numpy.ma.core.less', 'less', (['x', '(2)'], {}), '(x, 2)\n', (134565, 134571), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((134630, 134646), 'numpy.ma.core.less_equal', 'less_equal', (['x', '(2)'], {}), '(x, 2)\n', (134640, 134646), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((134732, 134747), 'numpy.ma.core.not_equal', 'not_equal', (['x', '(2)'], {}), '(x, 2)\n', (134741, 134747), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((134811, 134822), 'numpy.ma.core.equal', 'equal', (['x', '(2)'], {}), '(x, 2)\n', (134816, 134822), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((134882, 134897), 'numpy.ma.core.not_equal', 'not_equal', (['x', '(2)'], {}), '(x, 2)\n', (134891, 134897), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((136014, 136026), 'numpy.zeros', 'np.zeros', (['(10)'], {}), '(10)\n', (136022, 136026), True, 'import numpy as np\n'), ((136028, 136039), 'numpy.ones', 'np.ones', (['(10)'], {}), '(10)\n', (136035, 136039), True, 'import numpy as np\n'), ((139381, 139397), 'numpy.ma.core.power', 'power', (['x', 'masked'], {}), '(x, masked)\n', (139386, 139397), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((144073, 144084), 'numpy.ma.core.getmask', 'getmask', (['zm'], {}), '(zm)\n', (144080, 144084), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((146641, 146660), 'numpy.ma.core.empty', 'empty', (['(4)'], {'dtype': 'int'}), '(4, dtype=int)\n', (146646, 146660), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((157531, 157544), 'numpy.arange', 'np.arange', (['(10)'], {}), '(10)\n', (157540, 157544), True, 'import numpy as np\n'), ((157546, 157564), 'numpy.random.rand', 'np.random.rand', (['(10)'], {}), '(10)\n', (157560, 157564), True, 'import numpy as np\n'), ((160451, 160464), 'numpy.arange', 'np.arange', (['(10)'], {}), '(10)\n', (160460, 160464), True, 'import numpy as np\n'), ((160466, 160484), 'numpy.random.rand', 'np.random.rand', (['(10)'], {}), '(10)\n', (160480, 160484), True, 'import numpy as np\n'), ((163381, 163396), 'numpy.arange', 'np.arange', (['(24.0)'], {}), '(24.0)\n', (163390, 163396), True, 'import numpy as np\n'), ((163426, 163450), 'numpy.zeros', 'np.zeros', (['(24)'], {'dtype': 'bool'}), '(24, dtype=bool)\n', (163434, 163450), True, 'import numpy as np\n'), ((165073, 165088), 'numpy.arange', 'np.arange', (['(24.0)'], {}), '(24.0)\n', (165082, 165088), True, 'import numpy as np\n'), ((165118, 165142), 'numpy.zeros', 'np.zeros', (['(24)'], {'dtype': 'bool'}), '(24, dtype=bool)\n', (165126, 165142), True, 'import numpy as np\n'), ((165296, 165308), 'numpy.ma.core.ones', 'ones', (['(2, 4)'], {}), '((2, 4))\n', (165300, 165308), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((165354, 165364), 'numpy.ma.core.ones', 'ones', (['(4,)'], {}), '((4,))\n', (165358, 165364), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((165415, 165430), 'numpy.ma.core.ones', 'ones', (['(1, 1, 1)'], {}), '((1, 1, 1))\n', (165419, 165430), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((165486, 165501), 'numpy.ma.core.ones', 'ones', (['(2, 1, 4)'], {}), '((2, 1, 4))\n', (165490, 165501), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((165561, 165576), 'numpy.ma.core.ones', 'ones', (['(1, 1, 4)'], {}), '((1, 1, 4))\n', (165565, 165576), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((165618, 165630), 'numpy.ma.core.ones', 'ones', (['(2, 4)'], {}), '((2, 4))\n', (165622, 165630), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((165891, 165903), 'numpy.ma.core.ones', 'ones', (['(2, 4)'], {}), '((2, 4))\n', (165895, 165903), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((165949, 165959), 'numpy.ma.core.ones', 'ones', (['(4,)'], {}), '((4,))\n', (165953, 165959), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((166010, 166025), 'numpy.ma.core.ones', 'ones', (['(1, 1, 1)'], {}), '((1, 1, 1))\n', (166014, 166025), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((166081, 166096), 'numpy.ma.core.ones', 'ones', (['(2, 1, 4)'], {}), '((2, 1, 4))\n', (166085, 166096), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((166156, 166171), 'numpy.ma.core.ones', 'ones', (['(1, 1, 4)'], {}), '((1, 1, 4))\n', (166160, 166171), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((166213, 166225), 'numpy.ma.core.ones', 'ones', (['(2, 4)'], {}), '((2, 4))\n', (166217, 166225), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((4465, 4481), 'numpy.ma.core.isMaskedArray', 'isMaskedArray', (['x'], {}), '(x)\n', (4478, 4481), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((4717, 4747), 'functools.reduce', 'reduce', (['(lambda x, y: x + y)', 'm1'], {}), '(lambda x, y: x + y, m1)\n', (4723, 4747), False, 'from functools import reduce\n'), ((6278, 6296), 'numpy.random.rand', 'np.random.rand', (['(10)'], {}), '(10)\n', (6292, 6296), True, 'import numpy as np\n'), ((6335, 6348), 'numpy.arange', 'np.arange', (['(10)'], {}), '(10)\n', (6344, 6348), True, 'import numpy as np\n'), ((13076, 13087), 'numpy.ma.core.getmask', 'getmask', (['x3'], {}), '(x3)\n', (13083, 13087), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((14741, 14751), 'numpy.ma.core.filled', 'filled', (['y3'], {}), '(y3)\n', (14747, 14751), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((20149, 20161), 'numpy.ma.core.conjugate', 'conjugate', (['z'], {}), '(z)\n', (20158, 20161), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((20337, 20361), 'numpy.ma.core.where', 'where', (['c', 'masked', 'masked'], {}), '(c, masked, masked)\n', (20342, 20361), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((20391, 20415), 'numpy.ma.core.where', 'where', (['c', 'masked', 'masked'], {}), '(c, masked, masked)\n', (20396, 20415), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((33339, 33345), 'numpy.ma.core.abs', 'abs', (['x'], {}), '(x)\n', (33342, 33345), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((33354, 33361), 'numpy.ma.core.abs', 'abs', (['xm'], {}), '(xm)\n', (33357, 33361), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((34919, 34927), 'numpy.ma.core.array', 'array', (['(0)'], {}), '(0)\n', (34924, 34927), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((48326, 48354), 'numpy.random.uniform', 'np.random.uniform', (['(0)', '(10)', '(12)'], {}), '(0, 10, 12)\n', (48343, 48354), True, 'import numpy as np\n'), ((60802, 60825), 'numpy.ma.core.default_fill_value', 'default_fill_value', (['"""0"""'], {}), "('0')\n", (60820, 60825), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((76036, 76061), 'numpy.ma.core.multiply.outer', 'multiply.outer', (['a', 'me_too'], {}), '(a, me_too)\n', (76050, 76061), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((87291, 87309), 'numpy.ma.core.mask_or', 'mask_or', (['m', 'a.mask'], {}), '(m, a.mask)\n', (87298, 87309), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((88451, 88469), 'numpy.ma.core.mask_or', 'mask_or', (['m', 'a.mask'], {}), '(m, a.mask)\n', (88458, 88469), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((89621, 89639), 'numpy.ma.core.mask_or', 'mask_or', (['m', 'a.mask'], {}), '(m, a.mask)\n', (89628, 89639), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((90030, 90049), 'numpy.ma.core.arange', 'arange', (['(10)'], {'dtype': 't'}), '(10, dtype=t)\n', (90036, 90049), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((90078, 90097), 'numpy.ma.core.arange', 'arange', (['(10)'], {'dtype': 't'}), '(10, dtype=t)\n', (90084, 90097), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((91380, 91399), 'numpy.ma.core.arange', 'arange', (['(10)'], {'dtype': 't'}), '(10, dtype=t)\n', (91386, 91399), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((91428, 91447), 'numpy.ma.core.arange', 'arange', (['(10)'], {'dtype': 't'}), '(10, dtype=t)\n', (91434, 91447), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((92071, 92089), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x', 'y'], {}), '(x, y)\n', (92083, 92089), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((92265, 92284), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xm', 'y'], {}), '(xm, y)\n', (92277, 92284), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((93573, 93595), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['x', '(y / a)'], {}), '(x, y / a)\n', (93585, 93595), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((93768, 93791), 'numpy.ma.testutils.assert_equal', 'assert_equal', (['xm', '(y / a)'], {}), '(xm, y / a)\n', (93780, 93791), False, 'from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal\n'), ((98019, 98036), 'numpy.iinfo', 'np.iinfo', (['np.int_'], {}), '(np.int_)\n', (98027, 98036), True, 'import numpy as np\n'), ((117254, 117268), 'numpy.compat.asbytes', 'asbytes', (['"""one"""'], {}), "('one')\n", (117261, 117268), False, 'from numpy.compat import asbytes, asbytes_nested\n'), ((117302, 117316), 'numpy.compat.asbytes', 'asbytes', (['"""two"""'], {}), "('two')\n", (117309, 117316), False, 'from numpy.compat import asbytes, asbytes_nested\n'), ((122697, 122725), 'numpy.random.uniform', 'np.random.uniform', (['(0)', '(10)', '(12)'], {}), '(0, 10, 12)\n', (122714, 122725), True, 'import numpy as np\n'), ((136815, 136859), 'numpy.ma.core.array', 'array', (['[2, 2, 1, 2, 1]'], {'mask': '[1, 0, 0, 0, 0]'}), '([2, 2, 1, 2, 1], mask=[1, 0, 0, 0, 0])\n', (136820, 136859), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((137840, 137868), 'numpy.random.uniform', 'np.random.uniform', (['(0)', '(10)', '(12)'], {}), '(0, 10, 12)\n', (137857, 137868), True, 'import numpy as np\n'), ((158308, 158326), 'numpy.random.rand', 'np.random.rand', (['(10)'], {}), '(10)\n', (158322, 158326), True, 'import numpy as np\n'), ((158328, 158341), 'numpy.arange', 'np.arange', (['(10)'], {}), '(10)\n', (158337, 158341), True, 'import numpy as np\n'), ((19509, 19529), 'numpy.ma.core.array', 'array', (['[1]'], {'mask': '[1]'}), '([1], mask=[1])\n', (19514, 19529), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((21778, 21799), 'numpy.ma.core.default_fill_value', 'default_fill_value', (['(0)'], {}), '(0)\n', (21796, 21799), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((21833, 21856), 'numpy.ma.core.default_fill_value', 'default_fill_value', (['"""0"""'], {}), "('0')\n", (21851, 21856), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((21890, 21913), 'numpy.ma.core.default_fill_value', 'default_fill_value', (['(0.0)'], {}), '(0.0)\n', (21908, 21913), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((65163, 65186), 'numpy.ma.core.default_fill_value', 'default_fill_value', (['(0.0)'], {}), '(0.0)\n', (65181, 65186), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((65529, 65550), 'numpy.ma.core.default_fill_value', 'default_fill_value', (['(0)'], {}), '(0)\n', (65547, 65550), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((65580, 65603), 'numpy.ma.core.default_fill_value', 'default_fill_value', (['(0.0)'], {}), '(0.0)\n', (65598, 65603), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((65632, 65655), 'numpy.ma.core.default_fill_value', 'default_fill_value', (['(0.0)'], {}), '(0.0)\n', (65650, 65655), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((90946, 90964), 'numpy.ma.core.mask_or', 'mask_or', (['m', 'a.mask'], {}), '(m, a.mask)\n', (90953, 90964), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n'), ((118834, 118847), 'numpy.arange', 'np.arange', (['(10)'], {}), '(10)\n', (118843, 118847), True, 'import numpy as np\n'), ((118972, 118990), 'numpy.random.rand', 'np.random.rand', (['(10)'], {}), '(10)\n', (118986, 118990), True, 'import numpy as np\n'), ((119305, 119318), 'numpy.arange', 'np.arange', (['(10)'], {}), '(10)\n', (119314, 119318), True, 'import numpy as np\n'), ((119375, 119393), 'numpy.random.rand', 'np.random.rand', (['(10)'], {}), '(10)\n', (119389, 119393), True, 'import numpy as np\n'), ((119450, 119468), 'numpy.random.rand', 'np.random.rand', (['(10)'], {}), '(10)\n', (119464, 119468), True, 'import numpy as np\n'), ((164825, 164838), 'numpy.arange', 'np.arange', (['(24)'], {}), '(24)\n', (164834, 164838), True, 'import numpy as np\n'), ((93891, 93909), 'numpy.ma.core.mask_or', 'mask_or', (['m', 'a.mask'], {}), '(m, a.mask)\n', (93898, 93909), False, 'from numpy.ma.core import MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros\n')]
import unittest from align.jaccard import * from align.roc import * import numpy as np from PIL import Image class JaccardIndexTest(unittest.TestCase): def setUp(self): self.y_true = np.ones((10, 3, 100, 100)) self.y_pred = np.zeros((10, 3, 100, 100)) self.y_pred[1] = np.ones((3,100,100)) def test_jaccard(self): scores = jaccard_index(self.y_true, self.y_pred) assert scores.mean() == 0.1 precision_recalls = precision_recall(self.y_true, self.y_pred, iou=0.05) print ("[email protected]:{}".format(compute_ap(precision_recalls))) print("[email protected]:0.95:0.05={}".format(compute_map(self.y_true, self.y_pred))) def test_jaccard_2(self): y_true = np.array(Image.open('data/label.png').convert('L'), dtype=np.float32)[np.newaxis,...] / 255. y_pred = np.array(Image.open('data/generation.png').convert('L'), dtype=np.float32)[np.newaxis,...] / 255. print('Jaccard Index: {}'.format(jaccard_index(y_true, y_pred))) print("[email protected]:0.95:0.05={}".format(compute_map(y_true, y_pred))) if __name__ == '__main__': unittest.main()
[ "unittest.main", "numpy.zeros", "numpy.ones", "PIL.Image.open" ]
[((1114, 1129), 'unittest.main', 'unittest.main', ([], {}), '()\n', (1127, 1129), False, 'import unittest\n'), ((197, 223), 'numpy.ones', 'np.ones', (['(10, 3, 100, 100)'], {}), '((10, 3, 100, 100))\n', (204, 223), True, 'import numpy as np\n'), ((246, 273), 'numpy.zeros', 'np.zeros', (['(10, 3, 100, 100)'], {}), '((10, 3, 100, 100))\n', (254, 273), True, 'import numpy as np\n'), ((299, 321), 'numpy.ones', 'np.ones', (['(3, 100, 100)'], {}), '((3, 100, 100))\n', (306, 321), True, 'import numpy as np\n'), ((736, 764), 'PIL.Image.open', 'Image.open', (['"""data/label.png"""'], {}), "('data/label.png')\n", (746, 764), False, 'from PIL import Image\n'), ((846, 879), 'PIL.Image.open', 'Image.open', (['"""data/generation.png"""'], {}), "('data/generation.png')\n", (856, 879), False, 'from PIL import Image\n')]
import theano import theano.tensor as T import numpy as np from itertools import chain, izip from learntools.libs.logger import log_me from learntools.libs.auc import auc from learntools.model.mlp import ConvolutionalMLP from learntools.model.theano_utils import make_shared from learntools.model import Model, gen_batches_by_size from learntools.model.math import sigmoid class ConvEmotiv(Model): @log_me('...building ConvEmotiv') def __init__(self, prepared_data, batch_size=30, L1_reg=0., L2_reg=0., field_width=20, ds_factor=2, rng_seed=42, dropout_p=0.5, learning_rate=0.02, **kwargs): """ Args: prepared_data : (Dataset, [int], [int]) a tuple that holds the data to be used, the row indices of the training set, and the row indices of the validation set batch_size : int The size of the batches used to train """ # 1: Organize data into batches ds, train_idx, valid_idx = prepared_data input_size = ds.get_data('eeg').shape[1] self._xs = make_shared(ds.get_data('eeg'), name='eeg') self._ys = make_shared(ds.get_data('condition'), to_int=True, name='condition') self.train_batches = gen_batches_by_size(train_idx, batch_size) self.valid_batches = gen_batches_by_size(valid_idx, batch_size) # 2: Connect the model rng = np.random.RandomState(rng_seed) t_dropout = T.scalar('dropout') classifier = ConvolutionalMLP(rng=rng, n_in=input_size, size=[input_size], n_out=2, field_width=field_width, ds_factor=ds_factor, dropout=t_dropout) input_idxs = T.ivector('input_idxs') classifier_input = self._xs[input_idxs] classifier_input.name = 'classifier_input' pY = classifier.instance(classifier_input) true_y = self._ys[input_idxs] true_y.name = 'true_y' # 3: Create theano functions loss = -T.mean(T.log(pY)[T.arange(input_idxs.shape[0]), true_y]) loss.name = 'loss' subnets = [classifier] cost = ( loss + L1_reg * sum([net.L1 for net in subnets]) + L2_reg * sum([net.L2_sqr for net in subnets]) ) cost.name = 'overall_cost' # compute parameter updates training_updates = [] params = list(chain.from_iterable(net.params for net in subnets)) deltas = [T.grad(cost, param) for param in params] update_parameters = [(param, param - learning_rate * delta) for param, delta in izip(params, deltas)] training_updates += update_parameters common_args = { 'inputs': [input_idxs], 'outputs': [loss, pY[:, 1] - pY[:, 0], input_idxs], 'allow_input_downcast': True, } self._tf_valid = theano.function(givens={t_dropout: 0.}, **common_args) self._tf_train = theano.function( updates=training_updates, givens={t_dropout: dropout_p}, **common_args) def evaluate(self, idxs, pred): y = self._ys.owner.inputs[0].get_value(borrow=True)[idxs] return auc(y[:len(pred)], pred, pos_label=1) def validate(self, idxs, **kwargs): res = self._tf_valid(idxs) return res[:3] def train(self, idxs, **kwargs): res = self._tf_train(idxs) return res[:3]
[ "itertools.chain.from_iterable", "theano.tensor.log", "learntools.model.mlp.ConvolutionalMLP", "learntools.libs.logger.log_me", "theano.function", "learntools.model.gen_batches_by_size", "theano.tensor.ivector", "numpy.random.RandomState", "theano.tensor.grad", "itertools.izip", "theano.tensor.arange", "theano.tensor.scalar" ]
[((407, 439), 'learntools.libs.logger.log_me', 'log_me', (['"""...building ConvEmotiv"""'], {}), "('...building ConvEmotiv')\n", (413, 439), False, 'from learntools.libs.logger import log_me\n'), ((1281, 1323), 'learntools.model.gen_batches_by_size', 'gen_batches_by_size', (['train_idx', 'batch_size'], {}), '(train_idx, batch_size)\n', (1300, 1323), False, 'from learntools.model import Model, gen_batches_by_size\n'), ((1353, 1395), 'learntools.model.gen_batches_by_size', 'gen_batches_by_size', (['valid_idx', 'batch_size'], {}), '(valid_idx, batch_size)\n', (1372, 1395), False, 'from learntools.model import Model, gen_batches_by_size\n'), ((1442, 1473), 'numpy.random.RandomState', 'np.random.RandomState', (['rng_seed'], {}), '(rng_seed)\n', (1463, 1473), True, 'import numpy as np\n'), ((1494, 1513), 'theano.tensor.scalar', 'T.scalar', (['"""dropout"""'], {}), "('dropout')\n", (1502, 1513), True, 'import theano.tensor as T\n'), ((1536, 1675), 'learntools.model.mlp.ConvolutionalMLP', 'ConvolutionalMLP', ([], {'rng': 'rng', 'n_in': 'input_size', 'size': '[input_size]', 'n_out': '(2)', 'field_width': 'field_width', 'ds_factor': 'ds_factor', 'dropout': 't_dropout'}), '(rng=rng, n_in=input_size, size=[input_size], n_out=2,\n field_width=field_width, ds_factor=ds_factor, dropout=t_dropout)\n', (1552, 1675), False, 'from learntools.model.mlp import ConvolutionalMLP\n'), ((1844, 1867), 'theano.tensor.ivector', 'T.ivector', (['"""input_idxs"""'], {}), "('input_idxs')\n", (1853, 1867), True, 'import theano.tensor as T\n'), ((3038, 3093), 'theano.function', 'theano.function', ([], {'givens': '{t_dropout: 0.0}'}), '(givens={t_dropout: 0.0}, **common_args)\n', (3053, 3093), False, 'import theano\n'), ((3118, 3210), 'theano.function', 'theano.function', ([], {'updates': 'training_updates', 'givens': '{t_dropout: dropout_p}'}), '(updates=training_updates, givens={t_dropout: dropout_p}, **\n common_args)\n', (3133, 3210), False, 'import theano\n'), ((2540, 2590), 'itertools.chain.from_iterable', 'chain.from_iterable', (['(net.params for net in subnets)'], {}), '(net.params for net in subnets)\n', (2559, 2590), False, 'from itertools import chain, izip\n'), ((2610, 2629), 'theano.tensor.grad', 'T.grad', (['cost', 'param'], {}), '(cost, param)\n', (2616, 2629), True, 'import theano.tensor as T\n'), ((2768, 2788), 'itertools.izip', 'izip', (['params', 'deltas'], {}), '(params, deltas)\n', (2772, 2788), False, 'from itertools import chain, izip\n'), ((2148, 2157), 'theano.tensor.log', 'T.log', (['pY'], {}), '(pY)\n', (2153, 2157), True, 'import theano.tensor as T\n'), ((2158, 2187), 'theano.tensor.arange', 'T.arange', (['input_idxs.shape[0]'], {}), '(input_idxs.shape[0])\n', (2166, 2187), True, 'import theano.tensor as T\n')]
from __future__ import print_function, division """ @ About : @ Author : <NAME> @ ref. : https://labrosa.ee.columbia.edu/matlab/rastamat/ """ import warnings import librosa import scipy.fftpack as fft import numpy as np import spectrum from scipy import signal def specgram(x, nfft=256, fs=8000, window=np.array([]), overlap=None): """ input: x - input audio_array nfft - # fft points [default : 256] fs - sampling frequency [default : 8000] window - window to FFT analysis [default : hanning(nfft)] overlap - overlap for FFT analysis ( overlap = window_length - hop_length ) [default : nfft/2] """ nsamples = x.shape[0] if type(window) == int: window = np.hanning(window) if overlap == None: overlap = np.ceil(nfft/2).astype(int) if window.shape[0] == 0: window = np.hanning(nfft); if (nsamples <= nfft): raise AssertionError("expected nframes > nfft.") # compute window offsets win_size = window.shape[0]; if win_size > nfft: nfft = win_size warnings.warn("fft points adjusted to win_size as win_size > nfft") win_step = win_size - overlap # build matrix of windowed data slices offset = list(range(0,(nsamples-win_size), win_step)) npad = (nsamples - offset[-1])+1 if npad > 0: x = np.concatenate((x,np.zeros(npad))) S = [] for i in offset: S.append((x[i:i+win_size]*window)[np.newaxis,:]) S=np.concatenate(S) S = np.fft.fft(S,nfft) # extract the positive frequency components ret_n = int(nfft/2); if nfft%2==1: ret_n = int((nfft+1)/2); S = S[:, 0:ret_n]; f = np.array(range(ret_n))*fs/nfft; t = np.array(offset)/fs; return (S, f, t) def powspec(x, fs = 8000, winlen_in_sec = 0.025, hoplen_in_sec = 0.010, dither = 0 ): """ pow_spec, e = powspec(x, sr, winlen_in_sec, hoplen_in_sec, dither) where x : audio array sr : sampling rate winlen_in_sec : window length for audio analysis () compute the powerspectrum and frame energy of the input signal. basically outputs a power spectrogram each column represents a power spectrum for a given frame each row represents a frequency """ # sec2sample win_length = int(np.round(winlen_in_sec * fs)) hop_length = int(np.round(hoplen_in_sec * fs)) # next power of two of window length is NFFT nfft = int(np.power(2, np.ceil(np.log2(winlen_in_sec * fs)))) specgm,f,t = specgram(x, nfft=nfft, fs=fs, overlap = win_length-hop_length, window=np.hamming(win_length)) pow_spec = np.power(np.abs(specgm), 2) if dither: pow_spec = np.add(pow_spec, win_length) # Calculate log energy - after windowing e = np.log(np.sum(pow_spec, axis = 0)) return pow_spec, e def hz2bark(f): """ @About: Converts frequencies Hertz (Hz) to Bark It uses; Traunmueller-formula for f > 200 Hz linear mapping for f <= 200 Hz z_gt_200 = 26.81 .* f ./ (1960 + f) - 0.53; z_le_200 = f ./ 102.9; z = (f>200) .* z_gt_200 + (f<=200) .* z_le_200; @ Author: Kyrill, Oct. 1996 Kyrill, March 1997 (linear mapping added) """ # Inverse of Hynek's formula (see bark2hz) # z = 6 * log(f/600 + sqrt(1+ ((f/600).^2))); # z = 6 * asinh(f/600); # (matlab equivalent) z = np.multiply(6.0, np.arcsinh(np.divide(f, 600.0))) return z def bark2hz(z): """ @Author: Converts frequencies Bark to Hertz (Hz) It uses; Traunmueller-formula for z > 2 Bark linear mapping for z <= 2 Bark hz_gt_2 = 1960 .* (z + 0.53) ./ (26.28 - z); hz_le_2 = z .* 102.9; hz = (z>2) .* hz_gt_2 + (z<=2) .* hz_le_2; @Author: Kyrill, Oct. 1996 Kyrill, March 1997 (linear mapping added) """ hz = np.multiply(600.0, np.sinh(np.divide(z, 6.0))) return hz def fft2barkmx( nfft, sr, nfilts = 0, band_width = 1, min_freq = 0.0, max_freq = 0.0 ): """ @About: Generate a matrix of weights to combine FFT bins into Bark bins weights = fft2barkmx(nfft, sr, nfilts, width, minfreq, maxfreq) where, nfft : source FFT size sr : sampling frequency (Hz) nfilts : number of output bands required (else per one bark). band_width : a constant width of each band in Bark weights : It nfft columns, the second half are all zero. Note: Bark spectrum is fft2barkmx(nfft,sr)*abs(fft(xincols,nfft)); 2004-09-05 <EMAIL> based on rastamat/audspec.m """ if max_freq == 0: max_freq = sr / 2.0 min_bark = hz2bark(min_freq) nyqbark = hz2bark(max_freq) - min_bark if nfilts == 0 : nfilts = np.add(np.ceil(nyqbark), 1) weights = np.zeros((int(nfilts), int(nfft))) step_barks = np.divide(nyqbark, np.subtract(nfilts, 1)) binbarks = hz2bark(np.multiply(np.arange(0, np.add(np.divide(nfft, 2),1)), np.divide(sr, nfft))) for i in range (int(nfilts)): f_bark_mid = min_bark + np.multiply(i, step_barks) # Linear slopes in log-space (i.e. dB) intersect to trapezoidal window lof = np.subtract(np.subtract(binbarks, f_bark_mid), 0.5) hif = np.add(np.subtract(binbarks, f_bark_mid), 0.5) weights[i, 0 : int(nfft / 2) + 1] = np.power(10, np.minimum(0, np.divide(np.minimum(hif, np.multiply(-2.5, lof)), band_width))) return weights def rastafilt(x): """ y = rastafilt(x) xrow, xcol = x.shape() where, x : input signal xrow : critical bands xcol : no of frames y : rasta filtered signal """ # rasta filter numer = np.arange(-2, 3) numer = np.divide(-1.0*numer,sum(np.power(numer,2))) denom = np.array([1, -0.94]) """ Initialize the state. This avoids a big spike at the beginning resulting from the dc offset level in each band. """ zi = signal.lfilter_zi(numer,1) y = np.zeros((x.shape)) for i in range(x.shape[0]): # FIR for initial state response compuation y1, zi = signal.lfilter(numer, 1, x[i, 0:4], axis = 0, zi = zi * x[i, 0]) y1 = y1*0 # IIR y2, _ = signal.lfilter(numer, denom, x[i, 4:x.shape[1]], axis = 0, zi = zi) y[i, :] = np.append(y1, y2) return y def dolpc(x, modelorder = 8): """ y = dolpc(x,modelorder) @About: compute autoregressive model from spectral magnitude samples where, x : input signal row_x, col_x = x.shape() row_x : critical band col_y : nframes modelorder : order of model, defaults to 8 y : lpc coeff. row_y, col_y = y.shape() row_y : """ nbands, nframes = x.shape ncorr = 2 * (nbands - 1) # @TO-DO : This need optimisation R = np.zeros((ncorr, nframes)) R[0:nbands, :] = x for i in range(nbands - 1): R[i + nbands - 1, :] = x[nbands - (i + 1), :] # Calculate autocorrelation r = fft.ifft(R.T).real.T # First half only r = r[0:nbands, :] y = np.ones((nframes, modelorder + 1)) e = np.zeros((nframes, 1)) # Find LPC coeffs by durbin if modelorder == 0: for i in range(nframes): _ , e_tmp, _ = spectrum.LEVINSON(r[:, i], modelorder, allow_singularity = True) e[i, 0] = e_tmp else: for i in range(nframes): y_tmp, e_tmp, _ = spectrum.LEVINSON(r[:, i], modelorder, allow_singularity = True) y[i, 1:modelorder + 1] = y_tmp e[i, 0] = e_tmp # Normalize each poly by gain y = np.divide(y.T, np.add(np.tile(e.T, (modelorder + 1, 1)), 1e-8)) return y def lpc2cep(a, nout = 0): """ cep = lpc2cep(lpcas,nout) where, lpcas = lp coeff. nout = number of cepstra to produce, defaults to size(lpcas,1) """ nin, ncol = a.shape order = nin - 1 if nout == 0: nout = order + 1 # First cep is log(Error) from Durbin cep = np.zeros((nout, ncol)) cep[0, :] = -np.log(a[0, :]) # Renormalize lpc A coeffs norm_a = np.divide(a, np.add(np.tile(a[0, :], (nin, 1)), 1e-8)) for n in range(1, nout): sum = 0 for m in range(1, n): sum = np.add(sum, np.multiply(np.multiply((n - m), norm_a[m, :]), cep[(n - m), :])) cep[n, :] = -np.add(norm_a[n, :], np.divide(sum, n)) return cep def lifter(x, lift = 0.6, invs = False): """ @About : Apply lifter to matrix of cepstra y = lifter(x, lift, invs) lift = exponent of x i^n liftering or, as a negative integer, the length of HTK-style sin-curve liftering. If inverse == True (default False), undo the liftering. """ ncep = x.shape[0] if lift == 0: y = x else: if lift < 0: warnings.warn('HTK liftering does not support yet; default liftering') lift = 0.6 lift_weights = np.power(np.arange(1, ncep), lift) lift_weights = np.append(1, lift_weights) if (invs): lift_weights = np.divide(1, lift_weights) y = np.matmul(np.diag(lift_weights), x) return y def hz2mel(f, htk = False): """ @About : Convert frequencies in Hz to mel 'scale'. z = hz2mel(f,htk) where, f : frequency in Hz htk : True uses the mel axis defined in the HTKBook otherwise use Slaney's formula """ if htk: z = np.multiply(2595, np.log10(np.add(1, np.divide(f, 700)))) else: f_0 = 0.0 # 133.33333; f_sp = 200.0 / 3 # 66.66667; brkfrq = 1000.0 # starting mel value for log region brkpt = (brkfrq - f_0) / f_sp # the magic 1.0711703 which is the ratio needed to get from 1000 Hz to 6400 Hz in 27 steps, and is *almost* the ratio between 1000 Hz and the preceding linear filter center at 933.33333 Hz (actually 1000/933.33333 = 1.07142857142857 and exp(log(6.4)/27) = 1.07117028749447) logstep = np.exp(np.log(6.4) / 27.0) f = np.array(f, ndmin = 1) z = np.zeros((f.shape[0], )) # fill in parts separately for i in range(f.shape[0]): if f[i] < brkpt: z[i] = (f[i] - f_0) / f_sp else: z[i] = brkpt + (np.log(f[i] / brkfrq) / np.log(logstep)) return z def mel2hz(z, htk = False): """ @About : Converts 'mel scale' into Frequency in Hz f = mel2hz(z, htk) where, z : frequency in mel scale htk : "True" means use the HTK formula else use the formula from Slaney's mfcc f : frequency in Hz """ if htk: f = np.multiply(700, np.subtract(np.power(10, np.divide(z, 2595)), 1)) else: f_0 = 0.0 # 133.33333; f_sp = 200.0/3 # 66.66667; brkfrq = 1000.0 brkpt = (brkfrq - f_0) / f_sp # starting mel value for log region logstep = np.exp(np.log(6.4) / 27.0) # the magic 1.0711703 which is the ratio needed to get from 1000 Hz to 6400 Hz in 27 steps, and is *almost* the ratio between 1000 Hz and the preceding linear filter center at 933.33333 Hz (actually 1000/933.33333 = 1.07142857142857 and exp(log(6.4)/27) = 1.07117028749447) z = np.array(z, ndmin = 1) f = np.zeros((z.shape[0], )) # fill in parts separately for i in range(z.shape[0]): if z[i] < brkpt: f[i] = f_0 + f_sp * z[i] else: f[i] = brkfrq * np.exp(np.log(logstep) * (z[i] - brkpt)) return f def fft2melmx( nfft, sr=8000, nfilts = 0, band_width = 1, min_freq = 0.0, max_freq = 0.0, htkmel = False, constamp = False ): """ @About : Generate a matrix of weights to combine FFT bins into Mel bins. [weights, binfrqs] = fft2melmx(nfft, sr, nfilts, width, min_freq, max_freq, htkmel, constamp) where, nfft : no of FFT point considered for given sampling rate. sr : sampling rate. nfilts : number of output bands required (else one per "mel/width") width : the constant width of each band relative to standard Mel (default 1). minfrq : frequency (in Hz) of the lowest band edge; maxfrq : frequency (in Hz) of upper edge; default sr/2. htkmel : "True" means use HTK's version of the mel curve, not Slaney's. constamp : "True" means make integration windows peak at 1, not sum to 1. weights : output model weights. weight has nfft columns, the second half are all zero. binfrqs : returns bin center frequencies. Note: You can exactly duplicate the mel matrix in Slaney's mfcc.m as fft2melmx(512, 8000, 40, 1, 133.33, 6855.5, 0); """ if nfilts == 0 : nfilts = np.ceil(hz2mel(max_freq, htkmel) / 2) if max_freq == 0: max_freq = sr / 2.0 weights = np.zeros((int(nfilts), int(nfft))) # Center freqs of each FFT bin fftfrqs = np.multiply(np.divide(np.arange(0,nfft / 2 + 1), nfft), sr) # 'Center freqs' of mel bands - uniformly spaced between limits min_mel = hz2mel(min_freq, htkmel) max_mel = hz2mel(max_freq, htkmel) binfrqs = mel2hz(np.add(min_mel, np.multiply(np.arange(0, nfilts + 2), (max_mel - min_mel) / (nfilts + 1))), htkmel) for i in range (int(nfilts)): freq_tmp = binfrqs[np.add(np.arange(0,3), i)] # scale by width freq_tmp = np.add(freq_tmp[1], np.multiply(band_width, np.subtract(freq_tmp, freq_tmp[1]))) # lower and upper slopes for all bins loslope = np.divide(np.subtract(fftfrqs, freq_tmp[0]), np.subtract(freq_tmp[1], freq_tmp[0])) hislope = np.divide(np.subtract(freq_tmp[2], fftfrqs), np.subtract(freq_tmp[2], freq_tmp[1])) weights[i, 0 : int(nfft / 2) + 1] = np.maximum(0, np.minimum(loslope, hislope)) if constamp == False: # Slaney-style mel is scaled to be approx constant E per channel weights = np.matmul(np.diag(np.divide(2, np.subtract(binfrqs[2 : int(nfilts) + 2], binfrqs[0 : int(nfilts)]))), weights) return weights, binfrqs def audspec(p_spectrum, fs = 8000, nfilts = 0, fbtype = 'bark', min_freq = 0, max_freq = 0, sumpower = 1, band_width = 1 ): """ @About: Performs critical band analysis on power spectrogram (see PLP) [aspectrum,weights] = audspec(pspectrum, sr, nfilts, fbtype, minfreq, maxfreq, sumpower, bwidth) where, pspectrum : power spectrogram sr : sampling frequency nfilts : number of output bands required fbtype : filterbank type minfrq : frequency (in Hz) of the lowest band edge; maxfrq : frequency (in Hz) of upper edge; default sr/2. sumpower : band_width : the constant width of each band relative to standard Mel (default 1). aspectrum : spectrogram aftar band analysis weight : output model weights """ if nfilts == 0: np.add(np.ceil(hz2bark(fs / 2)), 1) if max_freq == 0: max_freq = fs / 2 nframes, nfreqs = p_spectrum.shape # print("nfreq: ", nfreqs, p_spectrum.shape, type(nfreqs)) nfft = (int(nfreqs) - 1) * 2 weights = None binfrqs = None if fbtype == 'bark': weights = fft2barkmx(nfft, fs, nfilts, band_width, min_freq, max_freq) elif fbtype == 'mel': weights,binfrqs = fft2melmx(nfft, fs, nfilts, band_width, min_freq, max_freq) elif fbtype == 'htkmel': weights,binfrqs = fft2melmx(nfft, fs, nfilts, band_width, min_freq, max_freq, htkmel = True, constamp = True) elif fbtype == 'fcmel': weights,binfrqs = fft2melmx(nfft, fs, nfilts, band_width, min_freq, max_freq, htkmel = True, constamp = False) else: raise TypeError("fbtype is not recognised. choose from 'bark', 'mel', 'htkmel', 'fcmel'") weights = weights[:, 0 : nfreqs] # Integrate FFT bins into Mel bins, in abs or abs^2 domains: if sumpower: aspectrum = weights.dot(p_spectrum.T).T else: aspectrum = np.power(weights.dot(np.sqrt(p_spectrum.T)).T, 2) return aspectrum, weights def postaud(x, fmax, fbtype = 'bark', broaden = 0): nbands, nframes = x.shape # print("postaud :: ",nbands, nframes) nfpts = int(nbands + 2 * broaden) if fbtype == 'bark': bandcfhz = bark2hz(np.linspace(0, hz2bark(fmax), nfpts)) elif fbtype == 'mel': bandcfhz = mel2hz(np.linspace(0, hz2mel(fmax), nfpts)) elif fbtype == 'htkmel' or fbtype == 'fcmel': bandcfhz = mel2hz(np.linspace(0, hz2mel(fmax, htk = True), nfpts), htk = True) bandcfhz = bandcfhz[broaden : (nfpts - broaden)] # Hynek's magic equal-loudness-curve formula fsq = np.power(bandcfhz, 2) ftmp = np.add(fsq, 1.6e5) eql = np.multiply(np.power(np.divide(fsq, ftmp), 2), np.divide(np.add(fsq, 1.44e6), np.add(fsq, 9.61e6))) # weight the critical bands z = np.multiply(np.tile(eql, (nframes, 1)).T, x) # cube root compress z = np.power(z, 0.33) # replicate first and last band (because they are unreliable as calculated) if broaden: y = np.zeros((z.shape[0] + 2, z.shape[1])) y[0, :] = z[0, :] y[1:nbands + 1, :] = z y[nbands + 1, :] = z[z.shape[0] - 1, :] else: y = np.zeros((z.shape[0], z.shape[1])) y[0, :] = z[1, :] y[1:nbands - 1, :] = z[1:z.shape[0] - 1, :] y[nbands - 1, :] = z[z.shape[0] - 2, :] return y.T def spec2cep(spec, ncep=13, dcttype=2): nrow, ncol = spec.shape[0], spec.shape[1] dctm = np.zeros((ncep, nrow)) if dcttype == 2 or dcttype == 3: for i in range(ncep): dctm[i, :] = np.multiply(np.cos(i*np.arange(1, 2 * nrow, 2)/(2 * nrow)*np.pi), np.sqrt(2 / nrow)) if dcttype == 2: dctm[0, :] = np.divide(dctm[0, :], np.sqrt(2)) elif dcttype == 4: for i in range(ncep): dctm[i, :] = np.multiply(np.cos(np.multiply(np.divide(np.multiply(i, np.arange(1, nrow + 1)), (nrow + 1)), np.pi)), 2) dctm[i, 0] = np.add(dctm[i, 0], 1) dctm[i, int(nrow - 1)] = np.multiply(dctm[i, int(nrow - 1)], np.power(-1, i)) dctm = np.divide(dctm, 2 * (nrow + 1)) else: for i in range(ncep): dctm[i, :] = np.divide(np.multiply(np.cos(np.multiply(np.divide(np.multiply(i, np.arange(0, nrow)), (nrow - 1)), np.pi)), 2), 2 * (nrow - 1)) dctm[:, 0] = np.divide(dctm[:, 0], 2) dctm[:, int(nrow - 1)] = np.divide(dctm[:, int(nrow - 1)], 2) # cep = np.matmul(dctm, np.log(np.add(spec, 1e-8))) cep = dctm.dot(np.log(np.add(spec, 1e-8))) return cep.T, dctm def lpc2spec(lpcas, nout = 17, FMout = False): rows, cols = lpcas.shape order = rows - 1 gg = lpcas[0, :] aa = np.divide(lpcas, np.tile(gg, (rows, 1))) # Calculate the actual z-plane polyvals: nout points around unit circle tmp_1 = np.array(np.arange(0, nout), ndmin = 2).T tmp_1 = np.divide(np.multiply(-1j, np.multiply(tmp_1, np.pi)), (nout - 1)) tmp_2 = np.array(np.arange(0, order + 1), ndmin = 2) zz = np.exp(np.matmul(tmp_1, tmp_2)) # Actual polyvals, in power (mag^2) features = np.divide(np.power(np.divide(1, np.abs(np.matmul(zz, aa))), 2), np.tile(gg, (nout, 1))) F = np.zeros((cols, int(np.ceil(rows / 2)))) M = F if FMout == True: for c in range(cols): aaa = aa[:, c] rr = np.roots(aaa) ff_tmp = np.angle(rr) ff = np.array(ff_tmp, ndmin = 2).T zz = np.exp(np.multiply(1j, np.matmul(ff, np.array(np.arange(0, aaa.shape[0]), ndmin = 2)))) mags = np.sqrt(np.divide(np.power(np.divide(1, np.abs(np.matmul(zz, np.array(aaa, ndmin = 2).T))), 2), gg[c])) ix = np.argsort(ff_tmp) dummy = np.sort(ff_tmp) tmp_F_list = [] tmp_M_list = [] for i in range(ff.shape[0]): if dummy[i] > 0: tmp_F_list = np.append(tmp_F_list, dummy[i]) tmp_M_list = np.append(tmp_M_list, mags[ix[i]]) M[c, 0 : tmp_M_list.shape[0]] = tmp_M_list F[c, 0 : tmp_F_list.shape[0]] = tmp_F_list return features, F, M def deltas(x, w = 9): rows, cols = x.shape hlen = np.floor(w / 2) win = np.arange(hlen,-(hlen + 1),-1, dtype = 'float32') xx = np.append(np.append(np.tile(x[:, 0], (int(hlen), 1)).T, x, axis = 1), np.tile(x[:, cols - 1], (int(hlen), 1)).T, axis = 1) d = signal.lfilter(win, 1, xx, axis = 1) d = d[:, int(2 * hlen) : int(2 * hlen + cols)] return d def cep2spec(cep, nfreq, dcttype = 2): ncep, ncol = cep.shape dctm = np.zeros((ncep, nfreq)) idctm = np.zeros((nfreq, ncep)) if dcttype == 2 or dcttype == 3: for i in range(ncep): dctm[i, :] = np.multiply(np.cos(np.multiply(np.divide(np.multiply(i, np.arange(1, 2 * nfreq, 2)), (2 * nfreq)), np.pi)), np.sqrt(2 / nfreq)) if dcttype == 2: dctm[0, :] = np.divide(dctm[0, :], np.sqrt(2)) else: dctm[0, :] = np.divide(dctm[0, :], 2) idctm = dctm.T elif dcttype == 4: for i in range(ncep): idctm[:, i] = np.multiply(np.cos(np.multiply(np.divide(np.multiply(i, np.arange(1, nfreq + 1).T), (nfreq + 1)), np.pi)), 2) idctm[:, 0:ncep] = np.divide(idctm[:, 0:ncep], 2) else: for i in range(ncep): idctm[:, i] = np.multiply(np.cos(np.multiply(np.divide(np.multiply(i, np.arange(0, nfreq).T), (nfreq - 1)), np.pi)), 2) idctm[:, [0, -1]] = np.divide(idctm[:, [0, -1]], 2) spec = np.exp(np.matmul(idctm, cep)) return spec, idctm def invpostaud(y, fmax, fbtype = 'bark', broaden = 0): nbands, nframes = y.shape if fbtype == 'bark': bandcfhz = bark2hz(np.linspace(0, hz2bark(fmax), nbands)) elif fbtype == 'mel': bandcfhz = mel2hz(np.linspace(0, hz2mel(fmax), nbands)) elif fbtype == 'htkmel' or fbtype == 'fcmel': bandcfhz = mel2hz(np.linspace(0, hz2mel(fmax, htk = True), nbands), htk = True) bandcfhz = bandcfhz[broaden : (nbands - broaden)] fsq = np.power(bandcfhz, 2) ftmp = np.add(fsq, 1.6e5) eql = np.multiply(np.power(np.divide(fsq, ftmp), 2), np.divide(np.add(fsq, 1.44e6), np.add(fsq, 9.61e6))) x = np.power(y, np.divide(1, 0.33)) if eql[0] == 0: eql[0] = eql[1] eql[-1] = eql[-2] x = np.divide(x[broaden : (nbands - broaden + 1), :], np.add(np.tile(eql.T, (nframes, 1)).T, 1e-8)) return x, eql def invpowspec(y, fs, win_time, hoplen_in_sec, excit = []): nrow, ncol = y.shape r = excit winpts = int(np.round(np.multiply(win_time, fs))) steppts = int(np.round(np.multiply(hoplen_in_sec, fs))) nfft = int(np.power(2, np.ceil(np.divide(np.log(winpts), np.log(2))))) # Can't predict librosa stft length... tmp = librosa.istft(y, hop_length = steppts, win_length = winpts, window='hann', center = False) xlen = len(tmp) # xlen = int(np.add(winpts, np.multiply(steppts, np.subtract(ncol, 1)))) # xlen = int(np.multiply(steppts, np.subtract(ncol, 1))) if len(r) == 0: r = np.squeeze(np.random.randn(xlen, 1)) r = r[0:xlen] R = librosa.stft(np.divide(r, 32768 * 12), n_fft = nfft, hop_length = steppts, win_length = winpts, window = 'hann', center = False) R = np.multiply(R, np.sqrt(y)) x = librosa.istft(R, hop_length = steppts, win_length = winpts, window = 'hann', center = False) return x def invaudspec(aspectrum, fs = 16000, nfft = 512, fbtype = 'bark', min_freq = 0, max_freq = 0, sumpower = True, band_width = 1): if max_freq == 0: max_freq = fs / 2 nfilts, nframes = aspectrum.shape if fbtype == 'bark': weights = fft2barkmx(nfft, fs, nfilts, band_width, min_freq, max_freq) elif fbtype == 'mel': weights = fft2melmx(nfft, fs, nfilts, band_width, min_freq, max_freq) elif fbtype == 'htkmel': weights = fft2melmx(nfft, fs, nfilts, band_width, min_freq, max_freq, htkmel = True, constamp = True) elif fbtype == 'fcmel': weights = fft2melmx(nfft, fs, nfilts, band_width, min_freq, max_freq, htkmel = True, constamp = False) weights = weights[:, 0:int(nfft / 2 + 1)] ww = np.matmul(weights.T, weights) itws = np.divide(weights.T, np.tile(np.maximum(np.divide(np.mean(np.diag(ww)), 100), np.sum(ww, axis = 0)), (nfilts, 1)).T) if sumpower == True: spec = np.matmul(itws, aspectrum) else: spec = np.power(np.matmul(itws, np.sqrt(aspectrum))) return spec, weights, itws def delta_voicebox(CepCoeff, d): """ delta_coeff = mfcc2delta(CepCoeff,d); Input: CepCoeff: Cepstral Coefficient (Row Represents a feature vector for a frame) d : Lag size for delta feature computation Output: delta_coeff: Output delta coefficient Ref . http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html """ vf = np.arange(d,-(d+1),-1) vf=vf/sum(vf**2); ww=np.ones((d,1)); NoOfFrame, NoOfCoeff = CepCoeff.shape cx = np.concatenate( (np.concatenate(CepCoeff[(ww-1).astype(int)]), CepCoeff , np.concatenate(CepCoeff[(ww*NoOfFrame-1).astype(int)])) ) cx_r, cx_c = cx.shape cx_col = cx.T.reshape(cx_r*cx_c) vx = signal.lfilter(vf,1,cx_col.T).reshape((cx_r,cx_c), order='F') delta_coeff=vx[2*d::,:] return delta_coeff def sdc(CepCoeff, N=7, D=1, P=3, K=7): """ About: Shifted Delta Coefficient Computation. Usage: sdc_coeff = mfcc2sdc(CepCoeff,N,d,P,k) input: CepCoeff : MFCC Coefficients stored in row-wise N: NoOfCepstrum i.e. no of column of CepCoeff d: Amount of shift for delta computation P: Amount of shift for next frame whose deltas are to be computed. K: No of frame whose deltas are to be stacked. output: sdc_coeff: Shifted delta coefficient of CepCoeff. Dimension of the output: NumberOfFrame x N*K Ref. <NAME>, J.P.Campbell, <NAME>, <NAME>, <NAME>, Support vector machines for speaker and language recognition, Computer Speech & Language, Volume 20, Issues 2-3, Odyssey 2004: The speaker and Language Recognition Workshop - Odyssey-04, April-July 2006, Pages 210-229. """ nframe, ncoeff = CepCoeff.shape CepCoeff = np.concatenate((CepCoeff,CepCoeff[0:P*(K-1),:])) NoOfFrame, NoOfCoeff = CepCoeff.shape delta_coeff = delta_voicebox(CepCoeff,D).T sdc_coeff = [] for i in range(K): temp=(delta_coeff[:,P*i::])[:,0:nframe] sdc_coeff.append(temp) sdc_coeff = np.concatenate(sdc_coeff) return sdc_coeff
[ "numpy.roots", "numpy.abs", "numpy.sum", "numpy.angle", "numpy.floor", "numpy.ones", "numpy.argsort", "librosa.istft", "numpy.arange", "numpy.tile", "numpy.diag", "numpy.round", "spectrum.LEVINSON", "numpy.multiply", "numpy.random.randn", "scipy.signal.lfilter", "numpy.fft.fft", "numpy.power", "numpy.append", "numpy.hanning", "numpy.add", "numpy.divide", "numpy.minimum", "numpy.ceil", "numpy.hamming", "numpy.log2", "scipy.fftpack.ifft", "numpy.sort", "numpy.concatenate", "scipy.signal.lfilter_zi", "numpy.subtract", "numpy.log", "numpy.zeros", "numpy.array", "numpy.matmul", "warnings.warn", "numpy.sqrt" ]
[((305, 317), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (313, 317), True, 'import numpy as np\n'), ((1490, 1507), 'numpy.concatenate', 'np.concatenate', (['S'], {}), '(S)\n', (1504, 1507), True, 'import numpy as np\n'), ((1516, 1535), 'numpy.fft.fft', 'np.fft.fft', (['S', 'nfft'], {}), '(S, nfft)\n', (1526, 1535), True, 'import numpy as np\n'), ((5823, 5839), 'numpy.arange', 'np.arange', (['(-2)', '(3)'], {}), '(-2, 3)\n', (5832, 5839), True, 'import numpy as np\n'), ((5909, 5929), 'numpy.array', 'np.array', (['[1, -0.94]'], {}), '([1, -0.94])\n', (5917, 5929), True, 'import numpy as np\n'), ((6076, 6103), 'scipy.signal.lfilter_zi', 'signal.lfilter_zi', (['numer', '(1)'], {}), '(numer, 1)\n', (6093, 6103), False, 'from scipy import signal\n'), ((6111, 6128), 'numpy.zeros', 'np.zeros', (['x.shape'], {}), '(x.shape)\n', (6119, 6128), True, 'import numpy as np\n'), ((7008, 7034), 'numpy.zeros', 'np.zeros', (['(ncorr, nframes)'], {}), '((ncorr, nframes))\n', (7016, 7034), True, 'import numpy as np\n'), ((7260, 7294), 'numpy.ones', 'np.ones', (['(nframes, modelorder + 1)'], {}), '((nframes, modelorder + 1))\n', (7267, 7294), True, 'import numpy as np\n'), ((7303, 7325), 'numpy.zeros', 'np.zeros', (['(nframes, 1)'], {}), '((nframes, 1))\n', (7311, 7325), True, 'import numpy as np\n'), ((8198, 8220), 'numpy.zeros', 'np.zeros', (['(nout, ncol)'], {}), '((nout, ncol))\n', (8206, 8220), True, 'import numpy as np\n'), ((17097, 17118), 'numpy.power', 'np.power', (['bandcfhz', '(2)'], {}), '(bandcfhz, 2)\n', (17105, 17118), True, 'import numpy as np\n'), ((17130, 17151), 'numpy.add', 'np.add', (['fsq', '(160000.0)'], {}), '(fsq, 160000.0)\n', (17136, 17151), True, 'import numpy as np\n'), ((17379, 17396), 'numpy.power', 'np.power', (['z', '(0.33)'], {}), '(z, 0.33)\n', (17387, 17396), True, 'import numpy as np\n'), ((17947, 17969), 'numpy.zeros', 'np.zeros', (['(ncep, nrow)'], {}), '((ncep, nrow))\n', (17955, 17969), True, 'import numpy as np\n'), ((20683, 20698), 'numpy.floor', 'np.floor', (['(w / 2)'], {}), '(w / 2)\n', (20691, 20698), True, 'import numpy as np\n'), ((20709, 20758), 'numpy.arange', 'np.arange', (['hlen', '(-(hlen + 1))', '(-1)'], {'dtype': '"""float32"""'}), "(hlen, -(hlen + 1), -1, dtype='float32')\n", (20718, 20758), True, 'import numpy as np\n'), ((20916, 20950), 'scipy.signal.lfilter', 'signal.lfilter', (['win', '(1)', 'xx'], {'axis': '(1)'}), '(win, 1, xx, axis=1)\n', (20930, 20950), False, 'from scipy import signal\n'), ((21097, 21120), 'numpy.zeros', 'np.zeros', (['(ncep, nfreq)'], {}), '((ncep, nfreq))\n', (21105, 21120), True, 'import numpy as np\n'), ((21133, 21156), 'numpy.zeros', 'np.zeros', (['(nfreq, ncep)'], {}), '((nfreq, ncep))\n', (21141, 21156), True, 'import numpy as np\n'), ((22639, 22660), 'numpy.power', 'np.power', (['bandcfhz', '(2)'], {}), '(bandcfhz, 2)\n', (22647, 22660), True, 'import numpy as np\n'), ((22672, 22693), 'numpy.add', 'np.add', (['fsq', '(160000.0)'], {}), '(fsq, 160000.0)\n', (22678, 22693), True, 'import numpy as np\n'), ((23403, 23491), 'librosa.istft', 'librosa.istft', (['y'], {'hop_length': 'steppts', 'win_length': 'winpts', 'window': '"""hann"""', 'center': '(False)'}), "(y, hop_length=steppts, win_length=winpts, window='hann',\n center=False)\n", (23416, 23491), False, 'import librosa\n'), ((23965, 24053), 'librosa.istft', 'librosa.istft', (['R'], {'hop_length': 'steppts', 'win_length': 'winpts', 'window': '"""hann"""', 'center': '(False)'}), "(R, hop_length=steppts, win_length=winpts, window='hann',\n center=False)\n", (23978, 24053), False, 'import librosa\n'), ((24870, 24899), 'numpy.matmul', 'np.matmul', (['weights.T', 'weights'], {}), '(weights.T, weights)\n', (24879, 24899), True, 'import numpy as np\n'), ((25630, 25656), 'numpy.arange', 'np.arange', (['d', '(-(d + 1))', '(-1)'], {}), '(d, -(d + 1), -1)\n', (25639, 25656), True, 'import numpy as np\n'), ((25682, 25697), 'numpy.ones', 'np.ones', (['(d, 1)'], {}), '((d, 1))\n', (25689, 25697), True, 'import numpy as np\n'), ((27037, 27091), 'numpy.concatenate', 'np.concatenate', (['(CepCoeff, CepCoeff[0:P * (K - 1), :])'], {}), '((CepCoeff, CepCoeff[0:P * (K - 1), :]))\n', (27051, 27091), True, 'import numpy as np\n'), ((27312, 27337), 'numpy.concatenate', 'np.concatenate', (['sdc_coeff'], {}), '(sdc_coeff)\n', (27326, 27337), True, 'import numpy as np\n'), ((725, 743), 'numpy.hanning', 'np.hanning', (['window'], {}), '(window)\n', (735, 743), True, 'import numpy as np\n'), ((862, 878), 'numpy.hanning', 'np.hanning', (['nfft'], {}), '(nfft)\n', (872, 878), True, 'import numpy as np\n'), ((1088, 1155), 'warnings.warn', 'warnings.warn', (['"""fft points adjusted to win_size as win_size > nfft"""'], {}), "('fft points adjusted to win_size as win_size > nfft')\n", (1101, 1155), False, 'import warnings\n'), ((1732, 1748), 'numpy.array', 'np.array', (['offset'], {}), '(offset)\n', (1740, 1748), True, 'import numpy as np\n'), ((2354, 2382), 'numpy.round', 'np.round', (['(winlen_in_sec * fs)'], {}), '(winlen_in_sec * fs)\n', (2362, 2382), True, 'import numpy as np\n'), ((2405, 2433), 'numpy.round', 'np.round', (['(hoplen_in_sec * fs)'], {}), '(hoplen_in_sec * fs)\n', (2413, 2433), True, 'import numpy as np\n'), ((2688, 2702), 'numpy.abs', 'np.abs', (['specgm'], {}), '(specgm)\n', (2694, 2702), True, 'import numpy as np\n'), ((2741, 2769), 'numpy.add', 'np.add', (['pow_spec', 'win_length'], {}), '(pow_spec, win_length)\n', (2747, 2769), True, 'import numpy as np\n'), ((2831, 2855), 'numpy.sum', 'np.sum', (['pow_spec'], {'axis': '(0)'}), '(pow_spec, axis=0)\n', (2837, 2855), True, 'import numpy as np\n'), ((4992, 5014), 'numpy.subtract', 'np.subtract', (['nfilts', '(1)'], {}), '(nfilts, 1)\n', (5003, 5014), True, 'import numpy as np\n'), ((6232, 6292), 'scipy.signal.lfilter', 'signal.lfilter', (['numer', '(1)', 'x[i, 0:4]'], {'axis': '(0)', 'zi': '(zi * x[i, 0])'}), '(numer, 1, x[i, 0:4], axis=0, zi=zi * x[i, 0])\n', (6246, 6292), False, 'from scipy import signal\n'), ((6346, 6409), 'scipy.signal.lfilter', 'signal.lfilter', (['numer', 'denom', 'x[i, 4:x.shape[1]]'], {'axis': '(0)', 'zi': 'zi'}), '(numer, denom, x[i, 4:x.shape[1]], axis=0, zi=zi)\n', (6360, 6409), False, 'from scipy import signal\n'), ((6432, 6449), 'numpy.append', 'np.append', (['y1', 'y2'], {}), '(y1, y2)\n', (6441, 6449), True, 'import numpy as np\n'), ((8238, 8253), 'numpy.log', 'np.log', (['a[0, :]'], {}), '(a[0, :])\n', (8244, 8253), True, 'import numpy as np\n'), ((9184, 9210), 'numpy.append', 'np.append', (['(1)', 'lift_weights'], {}), '(1, lift_weights)\n', (9193, 9210), True, 'import numpy as np\n'), ((10216, 10236), 'numpy.array', 'np.array', (['f'], {'ndmin': '(1)'}), '(f, ndmin=1)\n', (10224, 10236), True, 'import numpy as np\n'), ((10251, 10274), 'numpy.zeros', 'np.zeros', (['(f.shape[0],)'], {}), '((f.shape[0],))\n', (10259, 10274), True, 'import numpy as np\n'), ((11419, 11439), 'numpy.array', 'np.array', (['z'], {'ndmin': '(1)'}), '(z, ndmin=1)\n', (11427, 11439), True, 'import numpy as np\n'), ((11454, 11477), 'numpy.zeros', 'np.zeros', (['(z.shape[0],)'], {}), '((z.shape[0],))\n', (11462, 11477), True, 'import numpy as np\n'), ((17506, 17544), 'numpy.zeros', 'np.zeros', (['(z.shape[0] + 2, z.shape[1])'], {}), '((z.shape[0] + 2, z.shape[1]))\n', (17514, 17544), True, 'import numpy as np\n'), ((17672, 17706), 'numpy.zeros', 'np.zeros', (['(z.shape[0], z.shape[1])'], {}), '((z.shape[0], z.shape[1]))\n', (17680, 17706), True, 'import numpy as np\n'), ((19188, 19210), 'numpy.tile', 'np.tile', (['gg', '(rows, 1)'], {}), '(gg, (rows, 1))\n', (19195, 19210), True, 'import numpy as np\n'), ((19446, 19469), 'numpy.arange', 'np.arange', (['(0)', '(order + 1)'], {}), '(0, order + 1)\n', (19455, 19469), True, 'import numpy as np\n'), ((19498, 19521), 'numpy.matmul', 'np.matmul', (['tmp_1', 'tmp_2'], {}), '(tmp_1, tmp_2)\n', (19507, 19521), True, 'import numpy as np\n'), ((19646, 19668), 'numpy.tile', 'np.tile', (['gg', '(nout, 1)'], {}), '(gg, (nout, 1))\n', (19653, 19668), True, 'import numpy as np\n'), ((22119, 22140), 'numpy.matmul', 'np.matmul', (['idctm', 'cep'], {}), '(idctm, cep)\n', (22128, 22140), True, 'import numpy as np\n'), ((22844, 22862), 'numpy.divide', 'np.divide', (['(1)', '(0.33)'], {}), '(1, 0.33)\n', (22853, 22862), True, 'import numpy as np\n'), ((23784, 23808), 'numpy.divide', 'np.divide', (['r', '(32768 * 12)'], {}), '(r, 32768 * 12)\n', (23793, 23808), True, 'import numpy as np\n'), ((23945, 23955), 'numpy.sqrt', 'np.sqrt', (['y'], {}), '(y)\n', (23952, 23955), True, 'import numpy as np\n'), ((25115, 25141), 'numpy.matmul', 'np.matmul', (['itws', 'aspectrum'], {}), '(itws, aspectrum)\n', (25124, 25141), True, 'import numpy as np\n'), ((2639, 2661), 'numpy.hamming', 'np.hamming', (['win_length'], {}), '(win_length)\n', (2649, 2661), True, 'import numpy as np\n'), ((3489, 3508), 'numpy.divide', 'np.divide', (['f', '(600.0)'], {}), '(f, 600.0)\n', (3498, 3508), True, 'import numpy as np\n'), ((3987, 4004), 'numpy.divide', 'np.divide', (['z', '(6.0)'], {}), '(z, 6.0)\n', (3996, 4004), True, 'import numpy as np\n'), ((4885, 4901), 'numpy.ceil', 'np.ceil', (['nyqbark'], {}), '(nyqbark)\n', (4892, 4901), True, 'import numpy as np\n'), ((5095, 5114), 'numpy.divide', 'np.divide', (['sr', 'nfft'], {}), '(sr, nfft)\n', (5104, 5114), True, 'import numpy as np\n'), ((5184, 5210), 'numpy.multiply', 'np.multiply', (['i', 'step_barks'], {}), '(i, step_barks)\n', (5195, 5210), True, 'import numpy as np\n'), ((5317, 5350), 'numpy.subtract', 'np.subtract', (['binbarks', 'f_bark_mid'], {}), '(binbarks, f_bark_mid)\n', (5328, 5350), True, 'import numpy as np\n'), ((5378, 5411), 'numpy.subtract', 'np.subtract', (['binbarks', 'f_bark_mid'], {}), '(binbarks, f_bark_mid)\n', (5389, 5411), True, 'import numpy as np\n'), ((5877, 5895), 'numpy.power', 'np.power', (['numer', '(2)'], {}), '(numer, 2)\n', (5885, 5895), True, 'import numpy as np\n'), ((7185, 7198), 'scipy.fftpack.ifft', 'fft.ifft', (['R.T'], {}), '(R.T)\n', (7193, 7198), True, 'import scipy.fftpack as fft\n'), ((7443, 7505), 'spectrum.LEVINSON', 'spectrum.LEVINSON', (['r[:, i]', 'modelorder'], {'allow_singularity': '(True)'}), '(r[:, i], modelorder, allow_singularity=True)\n', (7460, 7505), False, 'import spectrum\n'), ((7609, 7671), 'spectrum.LEVINSON', 'spectrum.LEVINSON', (['r[:, i]', 'modelorder'], {'allow_singularity': '(True)'}), '(r[:, i], modelorder, allow_singularity=True)\n', (7626, 7671), False, 'import spectrum\n'), ((7810, 7843), 'numpy.tile', 'np.tile', (['e.T', '(modelorder + 1, 1)'], {}), '(e.T, (modelorder + 1, 1))\n', (7817, 7843), True, 'import numpy as np\n'), ((8319, 8345), 'numpy.tile', 'np.tile', (['a[0, :]', '(nin, 1)'], {}), '(a[0, :], (nin, 1))\n', (8326, 8345), True, 'import numpy as np\n'), ((9009, 9079), 'warnings.warn', 'warnings.warn', (['"""HTK liftering does not support yet; default liftering"""'], {}), "('HTK liftering does not support yet; default liftering')\n", (9022, 9079), False, 'import warnings\n'), ((9135, 9153), 'numpy.arange', 'np.arange', (['(1)', 'ncep'], {}), '(1, ncep)\n', (9144, 9153), True, 'import numpy as np\n'), ((9258, 9284), 'numpy.divide', 'np.divide', (['(1)', 'lift_weights'], {}), '(1, lift_weights)\n', (9267, 9284), True, 'import numpy as np\n'), ((9308, 9329), 'numpy.diag', 'np.diag', (['lift_weights'], {}), '(lift_weights)\n', (9315, 9329), True, 'import numpy as np\n'), ((13243, 13269), 'numpy.arange', 'np.arange', (['(0)', '(nfft / 2 + 1)'], {}), '(0, nfft / 2 + 1)\n', (13252, 13269), True, 'import numpy as np\n'), ((13846, 13879), 'numpy.subtract', 'np.subtract', (['fftfrqs', 'freq_tmp[0]'], {}), '(fftfrqs, freq_tmp[0])\n', (13857, 13879), True, 'import numpy as np\n'), ((13881, 13918), 'numpy.subtract', 'np.subtract', (['freq_tmp[1]', 'freq_tmp[0]'], {}), '(freq_tmp[1], freq_tmp[0])\n', (13892, 13918), True, 'import numpy as np\n'), ((13948, 13981), 'numpy.subtract', 'np.subtract', (['freq_tmp[2]', 'fftfrqs'], {}), '(freq_tmp[2], fftfrqs)\n', (13959, 13981), True, 'import numpy as np\n'), ((13983, 14020), 'numpy.subtract', 'np.subtract', (['freq_tmp[2]', 'freq_tmp[1]'], {}), '(freq_tmp[2], freq_tmp[1])\n', (13994, 14020), True, 'import numpy as np\n'), ((14080, 14108), 'numpy.minimum', 'np.minimum', (['loslope', 'hislope'], {}), '(loslope, hislope)\n', (14090, 14108), True, 'import numpy as np\n'), ((17180, 17200), 'numpy.divide', 'np.divide', (['fsq', 'ftmp'], {}), '(fsq, ftmp)\n', (17189, 17200), True, 'import numpy as np\n'), ((17216, 17238), 'numpy.add', 'np.add', (['fsq', '(1440000.0)'], {}), '(fsq, 1440000.0)\n', (17222, 17238), True, 'import numpy as np\n'), ((17237, 17259), 'numpy.add', 'np.add', (['fsq', '(9610000.0)'], {}), '(fsq, 9610000.0)\n', (17243, 17259), True, 'import numpy as np\n'), ((17312, 17338), 'numpy.tile', 'np.tile', (['eql', '(nframes, 1)'], {}), '(eql, (nframes, 1))\n', (17319, 17338), True, 'import numpy as np\n'), ((18570, 18601), 'numpy.divide', 'np.divide', (['dctm', '(2 * (nrow + 1))'], {}), '(dctm, 2 * (nrow + 1))\n', (18579, 18601), True, 'import numpy as np\n'), ((18818, 18842), 'numpy.divide', 'np.divide', (['dctm[:, 0]', '(2)'], {}), '(dctm[:, 0], 2)\n', (18827, 18842), True, 'import numpy as np\n'), ((18996, 19015), 'numpy.add', 'np.add', (['spec', '(1e-08)'], {}), '(spec, 1e-08)\n', (19002, 19015), True, 'import numpy as np\n'), ((19313, 19331), 'numpy.arange', 'np.arange', (['(0)', 'nout'], {}), '(0, nout)\n', (19322, 19331), True, 'import numpy as np\n'), ((19385, 19410), 'numpy.multiply', 'np.multiply', (['tmp_1', 'np.pi'], {}), '(tmp_1, np.pi)\n', (19396, 19410), True, 'import numpy as np\n'), ((19826, 19839), 'numpy.roots', 'np.roots', (['aaa'], {}), '(aaa)\n', (19834, 19839), True, 'import numpy as np\n'), ((19861, 19873), 'numpy.angle', 'np.angle', (['rr'], {}), '(rr)\n', (19869, 19873), True, 'import numpy as np\n'), ((20167, 20185), 'numpy.argsort', 'np.argsort', (['ff_tmp'], {}), '(ff_tmp)\n', (20177, 20185), True, 'import numpy as np\n'), ((20206, 20221), 'numpy.sort', 'np.sort', (['ff_tmp'], {}), '(ff_tmp)\n', (20213, 20221), True, 'import numpy as np\n'), ((21568, 21592), 'numpy.divide', 'np.divide', (['dctm[0, :]', '(2)'], {}), '(dctm[0, :], 2)\n', (21577, 21592), True, 'import numpy as np\n'), ((21835, 21865), 'numpy.divide', 'np.divide', (['idctm[:, 0:ncep]', '(2)'], {}), '(idctm[:, 0:ncep], 2)\n', (21844, 21865), True, 'import numpy as np\n'), ((22068, 22099), 'numpy.divide', 'np.divide', (['idctm[:, [0, -1]]', '(2)'], {}), '(idctm[:, [0, -1]], 2)\n', (22077, 22099), True, 'import numpy as np\n'), ((22722, 22742), 'numpy.divide', 'np.divide', (['fsq', 'ftmp'], {}), '(fsq, ftmp)\n', (22731, 22742), True, 'import numpy as np\n'), ((22780, 22802), 'numpy.add', 'np.add', (['fsq', '(1440000.0)'], {}), '(fsq, 1440000.0)\n', (22786, 22802), True, 'import numpy as np\n'), ((22801, 22823), 'numpy.add', 'np.add', (['fsq', '(9610000.0)'], {}), '(fsq, 9610000.0)\n', (22807, 22823), True, 'import numpy as np\n'), ((23186, 23211), 'numpy.multiply', 'np.multiply', (['win_time', 'fs'], {}), '(win_time, fs)\n', (23197, 23211), True, 'import numpy as np\n'), ((23241, 23271), 'numpy.multiply', 'np.multiply', (['hoplen_in_sec', 'fs'], {}), '(hoplen_in_sec, fs)\n', (23252, 23271), True, 'import numpy as np\n'), ((23718, 23742), 'numpy.random.randn', 'np.random.randn', (['xlen', '(1)'], {}), '(xlen, 1)\n', (23733, 23742), True, 'import numpy as np\n'), ((25985, 26016), 'scipy.signal.lfilter', 'signal.lfilter', (['vf', '(1)', 'cx_col.T'], {}), '(vf, 1, cx_col.T)\n', (25999, 26016), False, 'from scipy import signal\n'), ((787, 804), 'numpy.ceil', 'np.ceil', (['(nfft / 2)'], {}), '(nfft / 2)\n', (794, 804), True, 'import numpy as np\n'), ((1377, 1391), 'numpy.zeros', 'np.zeros', (['npad'], {}), '(npad)\n', (1385, 1391), True, 'import numpy as np\n'), ((2520, 2547), 'numpy.log2', 'np.log2', (['(winlen_in_sec * fs)'], {}), '(winlen_in_sec * fs)\n', (2527, 2547), True, 'import numpy as np\n'), ((8569, 8586), 'numpy.divide', 'np.divide', (['sum', 'n'], {}), '(sum, n)\n', (8578, 8586), True, 'import numpy as np\n'), ((10183, 10194), 'numpy.log', 'np.log', (['(6.4)'], {}), '(6.4)\n', (10189, 10194), True, 'import numpy as np\n'), ((11111, 11122), 'numpy.log', 'np.log', (['(6.4)'], {}), '(6.4)\n', (11117, 11122), True, 'import numpy as np\n'), ((13477, 13501), 'numpy.arange', 'np.arange', (['(0)', '(nfilts + 2)'], {}), '(0, nfilts + 2)\n', (13486, 13501), True, 'import numpy as np\n'), ((13626, 13641), 'numpy.arange', 'np.arange', (['(0)', '(3)'], {}), '(0, 3)\n', (13635, 13641), True, 'import numpy as np\n'), ((13735, 13769), 'numpy.subtract', 'np.subtract', (['freq_tmp', 'freq_tmp[1]'], {}), '(freq_tmp, freq_tmp[1])\n', (13746, 13769), True, 'import numpy as np\n'), ((18129, 18146), 'numpy.sqrt', 'np.sqrt', (['(2 / nrow)'], {}), '(2 / nrow)\n', (18136, 18146), True, 'import numpy as np\n'), ((18221, 18231), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (18228, 18231), True, 'import numpy as np\n'), ((18443, 18464), 'numpy.add', 'np.add', (['dctm[i, 0]', '(1)'], {}), '(dctm[i, 0], 1)\n', (18449, 18464), True, 'import numpy as np\n'), ((19698, 19715), 'numpy.ceil', 'np.ceil', (['(rows / 2)'], {}), '(rows / 2)\n', (19705, 19715), True, 'import numpy as np\n'), ((19891, 19916), 'numpy.array', 'np.array', (['ff_tmp'], {'ndmin': '(2)'}), '(ff_tmp, ndmin=2)\n', (19899, 19916), True, 'import numpy as np\n'), ((21424, 21442), 'numpy.sqrt', 'np.sqrt', (['(2 / nfreq)'], {}), '(2 / nfreq)\n', (21431, 21442), True, 'import numpy as np\n'), ((21517, 21527), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (21524, 21527), True, 'import numpy as np\n'), ((23001, 23029), 'numpy.tile', 'np.tile', (['eql.T', '(nframes, 1)'], {}), '(eql.T, (nframes, 1))\n', (23008, 23029), True, 'import numpy as np\n'), ((25192, 25210), 'numpy.sqrt', 'np.sqrt', (['aspectrum'], {}), '(aspectrum)\n', (25199, 25210), True, 'import numpy as np\n'), ((5071, 5089), 'numpy.divide', 'np.divide', (['nfft', '(2)'], {}), '(nfft, 2)\n', (5080, 5089), True, 'import numpy as np\n'), ((8472, 8504), 'numpy.multiply', 'np.multiply', (['(n - m)', 'norm_a[m, :]'], {}), '(n - m, norm_a[m, :])\n', (8483, 8504), True, 'import numpy as np\n'), ((9670, 9687), 'numpy.divide', 'np.divide', (['f', '(700)'], {}), '(f, 700)\n', (9679, 9687), True, 'import numpy as np\n'), ((10887, 10905), 'numpy.divide', 'np.divide', (['z', '(2595)'], {}), '(z, 2595)\n', (10896, 10905), True, 'import numpy as np\n'), ((16442, 16463), 'numpy.sqrt', 'np.sqrt', (['p_spectrum.T'], {}), '(p_spectrum.T)\n', (16449, 16463), True, 'import numpy as np\n'), ((18538, 18553), 'numpy.power', 'np.power', (['(-1)', 'i'], {}), '(-1, i)\n', (18546, 18553), True, 'import numpy as np\n'), ((19621, 19638), 'numpy.matmul', 'np.matmul', (['zz', 'aa'], {}), '(zz, aa)\n', (19630, 19638), True, 'import numpy as np\n'), ((20386, 20417), 'numpy.append', 'np.append', (['tmp_F_list', 'dummy[i]'], {}), '(tmp_F_list, dummy[i])\n', (20395, 20417), True, 'import numpy as np\n'), ((20451, 20485), 'numpy.append', 'np.append', (['tmp_M_list', 'mags[ix[i]]'], {}), '(tmp_M_list, mags[ix[i]])\n', (20460, 20485), True, 'import numpy as np\n'), ((23319, 23333), 'numpy.log', 'np.log', (['winpts'], {}), '(winpts)\n', (23325, 23333), True, 'import numpy as np\n'), ((23335, 23344), 'numpy.log', 'np.log', (['(2)'], {}), '(2)\n', (23341, 23344), True, 'import numpy as np\n'), ((25036, 25054), 'numpy.sum', 'np.sum', (['ww'], {'axis': '(0)'}), '(ww, axis=0)\n', (25042, 25054), True, 'import numpy as np\n'), ((5515, 5537), 'numpy.multiply', 'np.multiply', (['(-2.5)', 'lof'], {}), '(-2.5, lof)\n', (5526, 5537), True, 'import numpy as np\n'), ((10470, 10491), 'numpy.log', 'np.log', (['(f[i] / brkfrq)'], {}), '(f[i] / brkfrq)\n', (10476, 10491), True, 'import numpy as np\n'), ((10494, 10509), 'numpy.log', 'np.log', (['logstep'], {}), '(logstep)\n', (10500, 10509), True, 'import numpy as np\n'), ((11678, 11693), 'numpy.log', 'np.log', (['logstep'], {}), '(logstep)\n', (11684, 11693), True, 'import numpy as np\n'), ((19984, 20010), 'numpy.arange', 'np.arange', (['(0)', 'aaa.shape[0]'], {}), '(0, aaa.shape[0])\n', (19993, 20010), True, 'import numpy as np\n'), ((24969, 24980), 'numpy.diag', 'np.diag', (['ww'], {}), '(ww)\n', (24976, 24980), True, 'import numpy as np\n'), ((18084, 18109), 'numpy.arange', 'np.arange', (['(1)', '(2 * nrow)', '(2)'], {}), '(1, 2 * nrow, 2)\n', (18093, 18109), True, 'import numpy as np\n'), ((21306, 21332), 'numpy.arange', 'np.arange', (['(1)', '(2 * nfreq)', '(2)'], {}), '(1, 2 * nfreq, 2)\n', (21315, 21332), True, 'import numpy as np\n'), ((18368, 18390), 'numpy.arange', 'np.arange', (['(1)', '(nrow + 1)'], {}), '(1, nrow + 1)\n', (18377, 18390), True, 'import numpy as np\n'), ((18734, 18752), 'numpy.arange', 'np.arange', (['(0)', 'nrow'], {}), '(0, nrow)\n', (18743, 18752), True, 'import numpy as np\n'), ((20106, 20128), 'numpy.array', 'np.array', (['aaa'], {'ndmin': '(2)'}), '(aaa, ndmin=2)\n', (20114, 20128), True, 'import numpy as np\n'), ((21753, 21776), 'numpy.arange', 'np.arange', (['(1)', '(nfreq + 1)'], {}), '(1, nfreq + 1)\n', (21762, 21776), True, 'import numpy as np\n'), ((21989, 22008), 'numpy.arange', 'np.arange', (['(0)', 'nfreq'], {}), '(0, nfreq)\n', (21998, 22008), True, 'import numpy as np\n')]
import numpy as np initial_state = globals().copy() non_element_functions = ['element_metadata', 'initial_state', 'non_element_functions', 'typeChecker', 'circuit_elements'] # populated at the end of the file - # this maps ex. 'R' to the function R to always give us a list of # active elements in any context circuit_elements = {} def element_metadata(num_params, units): """ decorator to store metadata for a circuit element Parameters ---------- num_params : int number of parameters for an element units : list of str list of units for the element parameters """ def decorator(func): def wrapper(p, f): typeChecker(p, f, func.__name__, num_params) return func(p, f) wrapper.num_params = num_params wrapper.units = units wrapper.__name__ = func.__name__ wrapper.__doc__ = func.__doc__ return wrapper return decorator def s(series): """ sums elements in series Notes --------- .. math:: Z = Z_1 + Z_2 + ... + Z_n """ z = len(series[0])*[0 + 0*1j] for elem in series: z += elem return z def p(parallel): """ adds elements in parallel Notes --------- .. math:: Z = \\frac{1}{\\frac{1}{Z_1} + \\frac{1}{Z_2} + ... + \\frac{1}{Z_n}} """ z = len(parallel[0])*[0 + 0*1j] for elem in parallel: z += 1/elem return 1/z @element_metadata(num_params=1, units=['Ohm']) def R(p, f): """ defines a resistor Notes --------- .. math:: Z = R """ return np.array(len(f)*[p[0]]) @element_metadata(num_params=1, units=['F']) def C(p, f): """ defines a capacitor .. math:: Z = \\frac{1}{C \\times j 2 \\pi f} """ omega = 2*np.pi*np.array(f) return 1.0/(p[0]*1j*omega) @element_metadata(num_params=1, units=['H']) def L(p, f): """ defines an inductor .. math:: Z = L \\times j 2 \\pi f """ omega = 2*np.pi*np.array(f) return p[0]*1j*omega @element_metadata(num_params=1, units=['Ohm sec^-1/2']) def W(p, f): """ defines a semi-infinite Warburg element Notes ----- .. math:: Z = \\frac{A_W}{\\sqrt{ 2 \\pi f}} (1-j) """ omega = 2*np.pi*np.array(f) Aw = p[0] Zw = Aw*(1-1j)/np.sqrt(omega) return Zw @element_metadata(num_params=2, units=['Ohm', 'sec']) def Wo(p, f): """ defines an open (finite-space) Warburg element Notes --------- .. math:: Z = \\frac{Z_0}{\\sqrt{ j \\omega \\tau }} \\coth{\\sqrt{j \\omega \\tau }} where :math:`Z_0` = p[0] (Ohms) and :math:`\\tau` = p[1] (sec) = :math:`\\frac{L^2}{D}` """ omega = 2*np.pi*np.array(f) Z0, tau = p[0], p[1] Z = Z0/(np.sqrt(1j*omega*tau)*np.tanh(np.sqrt(1j*omega*tau))) return Z # Zw(omega) @element_metadata(num_params=2, units=['Ohm', 'sec']) def Ws(p, f): """ defines a short (finite-length) Warburg element Notes --------- .. math:: Z = \\frac{Z_0}{\\sqrt{ j \\omega \\tau }} \\tanh{\\sqrt{j \\omega \\tau }} where :math:`Z_0` = p[0] (Ohms) and :math:`\\tau` = p[1] (sec) = :math:`\\frac{L^2}{D}` """ omega = 2*np.pi*np.array(f) Z0, tau = p[0], p[1] Z = Z0*np.tanh(np.sqrt(1j*omega*tau))/np.sqrt(1j*omega*tau) return Z @element_metadata(num_params=2, units=['Ohm^-1 sec^a', '']) def CPE(p, f): """ defines a constant phase element Notes ----- .. math:: Z = \\frac{1}{Q \\times (j 2 \\pi f)^\\alpha} where :math:`Q` = p[0] and :math:`\\alpha` = p[1]. """ omega = 2*np.pi*np.array(f) Q, alpha = p return 1.0/(Q*(1j*omega)**alpha) @element_metadata(num_params=2, units=['Ohm', 'sec']) def G(p, f): """ defines a Gerischer Element as represented in [1] Notes --------- .. math:: Z = \\frac{R_G}{\\sqrt{1 + j \\, 2 \\pi f \\, t_G}} where :math:`R_G` = p[0] and :math:`t_G` = p[1] Gerischer impedance is also commonly represented as [2]: .. math:: Z = \\frac{Z_o}{\\sqrt{K+ j \\, 2 \\pi f}} where :math:`Z_o = \\frac{R_G}{\\sqrt{t_G}}` and :math:`K = \\frac{1}{t_G}` with units :math:`\\Omega sec^{1/2}` and :math:`sec^{-1}` , respectively. [1] <NAME>, <NAME>, and <NAME>, Journal of The Electrochemical Society, 156, B513-B525 (2009) `doi:10.1149/1.3079337 <https://doi.org/10.1149/1.3079337>`_. [2] <NAME>, <NAME>, <NAME>, <NAME>, and <NAME>, <NAME>, 1, 256-264 (2001) `doi:10.1016/0013-4686(93)85083-B <https://doi.org/10.1016/0013-4686(93)85083-B>`_. """ omega = 2*np.pi*np.array(f) R_G, t_G = p return R_G/np.sqrt(1 + 1j*omega*t_G) @element_metadata(num_params=3, units=['Ohm', 'sec', '']) def Gs(p, f): """ defines a finite-length Gerischer Element as represented in [1] Notes --------- .. math:: Z = \\frac{R_G}{\\sqrt{1 + j \\, 2 \\pi f \\, t_G} \\, tanh(\\phi \\sqrt{1 + j \\, 2 \\pi f \\, t_G})} where :math:`R_G` = p[0], :math:`t_G` = p[1] and :math:`\\phi` = p[2] [1] <NAME>, <NAME>, and <NAME>, Solid State Ionics, 179, 647-660 (2008) `doi:10.1016/j.ssi.2008.04.024 <https://doi.org/10.1016/j.ssi.2008.04.024>`_. """ omega = 2*np.pi*np.array(f) R_G, t_G, phi = p Z = R_G/(np.sqrt(1 + 1j*omega*t_G) * np.tanh(phi * np.sqrt(1 + 1j*omega*t_G))) return Z @element_metadata(num_params=2, units=['Ohm', 'sec']) def K(p, f): """ An RC element for use in lin-KK model Notes ----- .. math:: Z = \\frac{R}{1 + j \\omega \\tau_k} """ omega = 2*np.pi*np.array(f) return p[0]/(1 + 1j*omega*p[1]) @element_metadata(num_params=4, units=['Ohm-m^2', 'Ohm-m^2', '', 'sec']) def T(p, f): """ A macrohomogeneous porous electrode model from Paasch et al. [1] Notes ----- .. math:: Z = A\\frac{\\coth{\\beta}}{\\beta} + B\\frac{1}{\\beta\\sinh{\\beta}} where .. math:: A = d\\frac{\\rho_1^2 + \\rho_2^2}{\\rho_1 + \\rho_2} \\quad B = d\\frac{2 \\rho_1 \\rho_2}{\\rho_1 + \\rho_2} and .. math:: \\beta = (a + j \\omega b)^{1/2} \\quad a = \\frac{k d^2}{K} \\quad b = \\frac{d^2}{K} [1] <NAME>, <NAME>, and <NAME>, Electrochimica Acta, 38, 2653–2662 (1993) `doi: 10.1016/0013-4686(93)85083-B <https://doi.org/10.1016/0013-4686(93)85083-B>`_. """ omega = 2*np.pi*np.array(f) A, B, a, b = p beta = (a + 1j*omega*b)**(1/2) sinh = [] for x in beta: if x < 100: sinh.append(np.sinh(x)) else: sinh.append(1e10) return A/(beta*np.tanh(beta)) + B/(beta*np.array(sinh)) circuit_elements = {key: eval(key) for key in set(globals())-set(initial_state) if key not in non_element_functions} def get_element_from_name(name): excluded_chars = '0123456789_' return ''.join(char for char in name if char not in excluded_chars) def typeChecker(p, f, name, length): assert isinstance(p, list), \ 'in {}, input must be of type list'.format(name) for i in p: assert isinstance(i, (float, int, np.int32, np.float64)), \ 'in {}, value {} in {} is not a number'.format(name, i, p) for i in f: assert isinstance(i, (float, int, np.int32, np.float64)), \ 'in {}, value {} in {} is not a number'.format(name, i, f) assert len(p) == length, \ 'in {}, input list must be length {}'.format(name, length) return
[ "numpy.sinh", "numpy.array", "numpy.tanh", "numpy.sqrt" ]
[((1933, 1944), 'numpy.array', 'np.array', (['f'], {}), '(f)\n', (1941, 1944), True, 'import numpy as np\n'), ((2143, 2154), 'numpy.array', 'np.array', (['f'], {}), '(f)\n', (2151, 2154), True, 'import numpy as np\n'), ((2412, 2423), 'numpy.array', 'np.array', (['f'], {}), '(f)\n', (2420, 2423), True, 'import numpy as np\n'), ((2457, 2471), 'numpy.sqrt', 'np.sqrt', (['omega'], {}), '(omega)\n', (2464, 2471), True, 'import numpy as np\n'), ((2868, 2879), 'numpy.array', 'np.array', (['f'], {}), '(f)\n', (2876, 2879), True, 'import numpy as np\n'), ((3382, 3393), 'numpy.array', 'np.array', (['f'], {}), '(f)\n', (3390, 3393), True, 'import numpy as np\n'), ((3462, 3489), 'numpy.sqrt', 'np.sqrt', (['(1.0j * omega * tau)'], {}), '(1.0j * omega * tau)\n', (3469, 3489), True, 'import numpy as np\n'), ((3790, 3801), 'numpy.array', 'np.array', (['f'], {}), '(f)\n', (3798, 3801), True, 'import numpy as np\n'), ((4809, 4820), 'numpy.array', 'np.array', (['f'], {}), '(f)\n', (4817, 4820), True, 'import numpy as np\n'), ((4853, 4884), 'numpy.sqrt', 'np.sqrt', (['(1 + 1.0j * omega * t_G)'], {}), '(1 + 1.0j * omega * t_G)\n', (4860, 4884), True, 'import numpy as np\n'), ((5455, 5466), 'numpy.array', 'np.array', (['f'], {}), '(f)\n', (5463, 5466), True, 'import numpy as np\n'), ((5824, 5835), 'numpy.array', 'np.array', (['f'], {}), '(f)\n', (5832, 5835), True, 'import numpy as np\n'), ((6635, 6646), 'numpy.array', 'np.array', (['f'], {}), '(f)\n', (6643, 6646), True, 'import numpy as np\n'), ((2918, 2945), 'numpy.sqrt', 'np.sqrt', (['(1.0j * omega * tau)'], {}), '(1.0j * omega * tau)\n', (2925, 2945), True, 'import numpy as np\n'), ((5503, 5534), 'numpy.sqrt', 'np.sqrt', (['(1 + 1.0j * omega * t_G)'], {}), '(1 + 1.0j * omega * t_G)\n', (5510, 5534), True, 'import numpy as np\n'), ((2948, 2975), 'numpy.sqrt', 'np.sqrt', (['(1.0j * omega * tau)'], {}), '(1.0j * omega * tau)\n', (2955, 2975), True, 'import numpy as np\n'), ((3439, 3466), 'numpy.sqrt', 'np.sqrt', (['(1.0j * omega * tau)'], {}), '(1.0j * omega * tau)\n', (3446, 3466), True, 'import numpy as np\n'), ((6779, 6789), 'numpy.sinh', 'np.sinh', (['x'], {}), '(x)\n', (6786, 6789), True, 'import numpy as np\n'), ((6855, 6868), 'numpy.tanh', 'np.tanh', (['beta'], {}), '(beta)\n', (6862, 6868), True, 'import numpy as np\n'), ((6880, 6894), 'numpy.array', 'np.array', (['sinh'], {}), '(sinh)\n', (6888, 6894), True, 'import numpy as np\n'), ((5558, 5589), 'numpy.sqrt', 'np.sqrt', (['(1 + 1.0j * omega * t_G)'], {}), '(1 + 1.0j * omega * t_G)\n', (5565, 5589), True, 'import numpy as np\n')]
import random import time from copy import deepcopy import gym import networkx as nx import numpy as np from gym.spaces import Box, Dict, Discrete, MultiDiscrete, Tuple class MyTestEnv(gym.Env): """This is a "going right" task. The task is to go right ``size`` steps. """ def __init__( self, size, sleep=0, dict_state=False, recurse_state=False, ma_rew=0, multidiscrete_action=False, random_sleep=False, array_state=False ): assert dict_state + recurse_state + array_state <= 1, \ "dict_state / recurse_state / array_state can be only one true" self.size = size self.sleep = sleep self.random_sleep = random_sleep self.dict_state = dict_state self.recurse_state = recurse_state self.array_state = array_state self.ma_rew = ma_rew self._md_action = multidiscrete_action # how many steps this env has stepped self.steps = 0 if dict_state: self.observation_space = Dict( { "index": Box(shape=(1, ), low=0, high=size - 1), "rand": Box(shape=(1, ), low=0, high=1, dtype=np.float64) } ) elif recurse_state: self.observation_space = Dict( { "index": Box(shape=(1, ), low=0, high=size - 1), "dict": Dict( { "tuple": Tuple( ( Discrete(2), Box(shape=(2, ), low=0, high=1, dtype=np.float64) ) ), "rand": Box(shape=(1, 2), low=0, high=1, dtype=np.float64) } ) } ) elif array_state: self.observation_space = Box(shape=(4, 84, 84), low=0, high=255) else: self.observation_space = Box(shape=(1, ), low=0, high=size - 1) if multidiscrete_action: self.action_space = MultiDiscrete([2, 2]) else: self.action_space = Discrete(2) self.done = False self.index = 0 self.seed() def seed(self, seed=0): self.rng = np.random.RandomState(seed) return [seed] def reset(self, state=0): self.done = False self.do_sleep() self.index = state return self._get_state() def _get_reward(self): """Generate a non-scalar reward if ma_rew is True.""" end_flag = int(self.done) if self.ma_rew > 0: return [end_flag] * self.ma_rew return end_flag def _get_state(self): """Generate state(observation) of MyTestEnv""" if self.dict_state: return { 'index': np.array([self.index], dtype=np.float32), 'rand': self.rng.rand(1) } elif self.recurse_state: return { 'index': np.array([self.index], dtype=np.float32), 'dict': { "tuple": (np.array([1], dtype=int), self.rng.rand(2)), "rand": self.rng.rand(1, 2) } } elif self.array_state: img = np.zeros([4, 84, 84], int) img[3, np.arange(84), np.arange(84)] = self.index img[2, np.arange(84)] = self.index img[1, :, np.arange(84)] = self.index img[0] = self.index return img else: return np.array([self.index], dtype=np.float32) def do_sleep(self): if self.sleep > 0: sleep_time = random.random() if self.random_sleep else 1 sleep_time *= self.sleep time.sleep(sleep_time) def step(self, action): self.steps += 1 if self._md_action: action = action[0] if self.done: raise ValueError('step after done !!!') self.do_sleep() if self.index == self.size: self.done = True return self._get_state(), self._get_reward(), self.done, {} if action == 0: self.index = max(self.index - 1, 0) return self._get_state(), self._get_reward(), self.done, \ {'key': 1, 'env': self} if self.dict_state else {} elif action == 1: self.index += 1 self.done = self.index == self.size return self._get_state(), self._get_reward(), \ self.done, {'key': 1, 'env': self} class NXEnv(gym.Env): def __init__(self, size, obs_type, feat_dim=32): self.size = size self.feat_dim = feat_dim self.graph = nx.Graph() self.graph.add_nodes_from(list(range(size))) assert obs_type in ["array", "object"] self.obs_type = obs_type def _encode_obs(self): if self.obs_type == "array": return np.stack([v["data"] for v in self.graph._node.values()]) return deepcopy(self.graph) def reset(self): graph_state = np.random.rand(self.size, self.feat_dim) for i in range(self.size): self.graph.nodes[i]["data"] = graph_state[i] return self._encode_obs() def step(self, action): next_graph_state = np.random.rand(self.size, self.feat_dim) for i in range(self.size): self.graph.nodes[i]["data"] = next_graph_state[i] return self._encode_obs(), 1.0, 0, {}
[ "copy.deepcopy", "gym.spaces.Discrete", "numpy.zeros", "numpy.random.RandomState", "gym.spaces.MultiDiscrete", "time.sleep", "random.random", "networkx.Graph", "numpy.array", "gym.spaces.Box", "numpy.arange", "numpy.random.rand" ]
[((2491, 2518), 'numpy.random.RandomState', 'np.random.RandomState', (['seed'], {}), '(seed)\n', (2512, 2518), True, 'import numpy as np\n'), ((4941, 4951), 'networkx.Graph', 'nx.Graph', ([], {}), '()\n', (4949, 4951), True, 'import networkx as nx\n'), ((5241, 5261), 'copy.deepcopy', 'deepcopy', (['self.graph'], {}), '(self.graph)\n', (5249, 5261), False, 'from copy import deepcopy\n'), ((5306, 5346), 'numpy.random.rand', 'np.random.rand', (['self.size', 'self.feat_dim'], {}), '(self.size, self.feat_dim)\n', (5320, 5346), True, 'import numpy as np\n'), ((5529, 5569), 'numpy.random.rand', 'np.random.rand', (['self.size', 'self.feat_dim'], {}), '(self.size, self.feat_dim)\n', (5543, 5569), True, 'import numpy as np\n'), ((2294, 2315), 'gym.spaces.MultiDiscrete', 'MultiDiscrete', (['[2, 2]'], {}), '([2, 2])\n', (2307, 2315), False, 'from gym.spaces import Box, Dict, Discrete, MultiDiscrete, Tuple\n'), ((2362, 2373), 'gym.spaces.Discrete', 'Discrete', (['(2)'], {}), '(2)\n', (2370, 2373), False, 'from gym.spaces import Box, Dict, Discrete, MultiDiscrete, Tuple\n'), ((3991, 4013), 'time.sleep', 'time.sleep', (['sleep_time'], {}), '(sleep_time)\n', (4001, 4013), False, 'import time\n'), ((3058, 3098), 'numpy.array', 'np.array', (['[self.index]'], {'dtype': 'np.float32'}), '([self.index], dtype=np.float32)\n', (3066, 3098), True, 'import numpy as np\n'), ((3898, 3913), 'random.random', 'random.random', ([], {}), '()\n', (3911, 3913), False, 'import random\n'), ((1127, 1164), 'gym.spaces.Box', 'Box', ([], {'shape': '(1,)', 'low': '(0)', 'high': '(size - 1)'}), '(shape=(1,), low=0, high=size - 1)\n', (1130, 1164), False, 'from gym.spaces import Box, Dict, Discrete, MultiDiscrete, Tuple\n'), ((1195, 1243), 'gym.spaces.Box', 'Box', ([], {'shape': '(1,)', 'low': '(0)', 'high': '(1)', 'dtype': 'np.float64'}), '(shape=(1,), low=0, high=1, dtype=np.float64)\n', (1198, 1243), False, 'from gym.spaces import Box, Dict, Discrete, MultiDiscrete, Tuple\n'), ((2099, 2138), 'gym.spaces.Box', 'Box', ([], {'shape': '(4, 84, 84)', 'low': '(0)', 'high': '(255)'}), '(shape=(4, 84, 84), low=0, high=255)\n', (2102, 2138), False, 'from gym.spaces import Box, Dict, Discrete, MultiDiscrete, Tuple\n'), ((2190, 2227), 'gym.spaces.Box', 'Box', ([], {'shape': '(1,)', 'low': '(0)', 'high': '(size - 1)'}), '(shape=(1,), low=0, high=size - 1)\n', (2193, 2227), False, 'from gym.spaces import Box, Dict, Discrete, MultiDiscrete, Tuple\n'), ((3234, 3274), 'numpy.array', 'np.array', (['[self.index]'], {'dtype': 'np.float32'}), '([self.index], dtype=np.float32)\n', (3242, 3274), True, 'import numpy as np\n'), ((3506, 3532), 'numpy.zeros', 'np.zeros', (['[4, 84, 84]', 'int'], {}), '([4, 84, 84], int)\n', (3514, 3532), True, 'import numpy as np\n'), ((3780, 3820), 'numpy.array', 'np.array', (['[self.index]'], {'dtype': 'np.float32'}), '([self.index], dtype=np.float32)\n', (3788, 3820), True, 'import numpy as np\n'), ((1415, 1452), 'gym.spaces.Box', 'Box', ([], {'shape': '(1,)', 'low': '(0)', 'high': '(size - 1)'}), '(shape=(1,), low=0, high=size - 1)\n', (1418, 1452), False, 'from gym.spaces import Box, Dict, Discrete, MultiDiscrete, Tuple\n'), ((3332, 3356), 'numpy.array', 'np.array', (['[1]'], {'dtype': 'int'}), '([1], dtype=int)\n', (3340, 3356), True, 'import numpy as np\n'), ((3552, 3565), 'numpy.arange', 'np.arange', (['(84)'], {}), '(84)\n', (3561, 3565), True, 'import numpy as np\n'), ((3567, 3580), 'numpy.arange', 'np.arange', (['(84)'], {}), '(84)\n', (3576, 3580), True, 'import numpy as np\n'), ((3614, 3627), 'numpy.arange', 'np.arange', (['(84)'], {}), '(84)\n', (3623, 3627), True, 'import numpy as np\n'), ((3664, 3677), 'numpy.arange', 'np.arange', (['(84)'], {}), '(84)\n', (3673, 3677), True, 'import numpy as np\n'), ((1905, 1955), 'gym.spaces.Box', 'Box', ([], {'shape': '(1, 2)', 'low': '(0)', 'high': '(1)', 'dtype': 'np.float64'}), '(shape=(1, 2), low=0, high=1, dtype=np.float64)\n', (1908, 1955), False, 'from gym.spaces import Box, Dict, Discrete, MultiDiscrete, Tuple\n'), ((1677, 1688), 'gym.spaces.Discrete', 'Discrete', (['(2)'], {}), '(2)\n', (1685, 1688), False, 'from gym.spaces import Box, Dict, Discrete, MultiDiscrete, Tuple\n'), ((1726, 1774), 'gym.spaces.Box', 'Box', ([], {'shape': '(2,)', 'low': '(0)', 'high': '(1)', 'dtype': 'np.float64'}), '(shape=(2,), low=0, high=1, dtype=np.float64)\n', (1729, 1774), False, 'from gym.spaces import Box, Dict, Discrete, MultiDiscrete, Tuple\n')]
# Based on https://colab.research.google.com/github/reiinakano/neural-painters/blob/master/notebooks/generate_stroke_examples.ipynb from lib import surface, tiledsurface, brush import torch import numpy as np from PIL import Image def point_on_curve_1(t, cx, cy, sx, sy, x1, y1, x2, y2): ratio = t / 100.0 x3, y3 = multiply_add(sx, sy, x1, y1, ratio) x4, y4 = multiply_add(cx, cy, x2, y2, ratio) x5, y5 = difference(x3, y3, x4, y4) x, y = multiply_add(x3, y3, x5, y5, ratio) return x, y def length_and_normal(x1, y1, x2, y2): x, y = difference(x1, y1, x2, y2) length = np.sqrt(x * x + y * y) if length == 0.0: x, y = 0.0, 0.0 else: x, y = x / length, y / length return length, x, y def multiply_add(x1, y1, x2, y2, d): x3, y3 = multiply(x2, y2, d) x, y = add(x1, y1, x3, y3) return x, y def multiply(x, y, d): # Multiply vector x = x * d y = y * d return x, y def add(x1, y1, x2, y2): # Add vectors x = x1 + x2 y = y1 + y2 return x, y def difference(x1, y1, x2, y2): # Difference in x and y between two points x = x2 - x1 y = y2 - y1 return x, y def midpoint(x1, y1, x2, y2): # Midpoint between 2 points x = (x1 + x2) / 2.0 y = (y1 + y2) / 2.0 return x, y class MyPaintImagesDataLoader: def __init__(self, H=32, W=32): self.rng = np.random.default_rng(42) self.head = 0.25 self.tail = 0.75 self.surface = tiledsurface.Surface() with open("gan_stroke_generator/brushes/classic/dry_brush.myb") as brush_file: self.brush_info = brush.BrushInfo(brush_file.read()) self.brush = brush.Brush(self.brush_info) self.H = H self.W = W self.num_action = 9 self.num_images = int(10e9) def _stroke_to(self, x, y, pressure): duration = 0.1 self.brush.stroke_to( self.surface.backend, x, y, pressure, 0.0, 0.0, duration, 0.0, 0.0, 0.0 ) self.surface.end_atomic() self.surface.begin_atomic() def _line_settings(self, entry_pressure, pressure): p2 = (entry_pressure + pressure) / 2 prange1 = p2 - entry_pressure prange2 = pressure - p2 return p2, prange1, prange2 def curve( self, control_x, control_y, start_x, start_y, ex, ey, entry_pressure, pressure ): ( midpoint_p, prange1, prange2, ) = self._line_settings(entry_pressure, pressure) points_in_curve = 100 mx, my = midpoint(start_x, start_y, ex, ey) length, nx, ny = length_and_normal(mx, my, control_x, control_y) cx, cy = multiply_add(mx, my, nx, ny, length * 2) x1, y1 = difference(start_x, start_y, cx, cy) x2, y2 = difference(cx, cy, ex, ey) head = points_in_curve * self.head head_range = int(head) + 1 tail = points_in_curve * self.tail tail_range = int(tail) + 1 tail_length = points_in_curve - tail # Beginning px, py = point_on_curve_1(1, cx, cy, start_x, start_y, x1, y1, x2, y2) length, nx, ny = length_and_normal(start_x, start_y, px, py) bx, by = multiply_add(start_x, start_y, nx, ny, 0.25) self._stroke_to(bx, by, entry_pressure) pressure = abs(1 / head * prange1 + entry_pressure) self._stroke_to(px, py, pressure) for i in range(2, head_range): px, py = point_on_curve_1(i, cx, cy, start_x, start_y, x1, y1, x2, y2) pressure = abs(i / head * prange1 + entry_pressure) self._stroke_to(px, py, pressure) # Middle for i in range(head_range, tail_range): px, py = point_on_curve_1(i, cx, cy, start_x, start_y, x1, y1, x2, y2) self._stroke_to(px, py, midpoint_p) # End for i in range(tail_range, points_in_curve + 1): px, py = point_on_curve_1(i, cx, cy, start_x, start_y, x1, y1, x2, y2) pressure = abs((i - tail) / tail_length * prange2 + midpoint_p) self._stroke_to(px, py, pressure) return pressure def draw_stroke( self, start_x, start_y, end_x, end_y, control_x, control_y, entry_pressure, pressure, size, color_rgb, ): start_x = start_x * self.H start_y = start_y * self.W end_x = end_x * self.H end_y = end_y * self.W control_x = control_x * self.H control_y = control_y * self.W self.brush.brushinfo.set_color_rgb(color_rgb) self.brush.brushinfo.set_base_value("radius_logarithmic", size) # Move brush to starting point without leaving it on the canvas. self._stroke_to(start_x, start_y, 0) self.curve( control_x, control_y, start_x, start_y, end_x, end_y, entry_pressure, pressure, ) # Relieve brush pressure for next jump self._stroke_to(end_x, end_y, 0) self.surface.end_atomic() self.surface.begin_atomic() def get_mypaint_image( self, start_x, start_y, end_x, end_y, control_x, control_y, entry_pressure, pressure, size, color_rgb, ): self.draw_stroke( start_x, start_y, end_x, end_y, control_x, control_y, entry_pressure, pressure, size, color_rgb, ) rect = [0, 0, self.H, self.W] scanline_strips = surface.scanline_strips_iter(self.surface, rect, single_tile_pattern=True) img = next(scanline_strips) self.surface.clear() self.surface.end_atomic() self.surface.begin_atomic() return img def random_action(self): return self.rng.uniform(size=[self.num_action]) def __len__(self): return self.num_images def __iter__(self): for _ in range(self.num_images): action = self.random_action() img = self.get_mypaint_image( start_x=action[0], start_y=action[1], end_x=action[2], end_y=action[3], control_x=action[4], control_y=action[5], pressure=action[6], entry_pressure=action[7], size=action[8], color_rgb=[1, 1, 1], ) img = Image.fromarray(img).convert('L') # We need to create batch of size 1 img = np.expand_dims(img, axis=0) # We need to create a channel for img img = np.expand_dims(img, axis=0) action = np.expand_dims(action, axis=0) yield { "stroke": torch.from_numpy(img.astype(float) / 255.0), "action": torch.from_numpy(action), }
[ "torch.from_numpy", "lib.tiledsurface.Surface", "lib.brush.Brush", "lib.surface.scanline_strips_iter", "numpy.expand_dims", "numpy.random.default_rng", "PIL.Image.fromarray", "numpy.sqrt" ]
[((607, 629), 'numpy.sqrt', 'np.sqrt', (['(x * x + y * y)'], {}), '(x * x + y * y)\n', (614, 629), True, 'import numpy as np\n'), ((1396, 1421), 'numpy.random.default_rng', 'np.random.default_rng', (['(42)'], {}), '(42)\n', (1417, 1421), True, 'import numpy as np\n'), ((1495, 1517), 'lib.tiledsurface.Surface', 'tiledsurface.Surface', ([], {}), '()\n', (1515, 1517), False, 'from lib import surface, tiledsurface, brush\n'), ((1691, 1719), 'lib.brush.Brush', 'brush.Brush', (['self.brush_info'], {}), '(self.brush_info)\n', (1702, 1719), False, 'from lib import surface, tiledsurface, brush\n'), ((5742, 5816), 'lib.surface.scanline_strips_iter', 'surface.scanline_strips_iter', (['self.surface', 'rect'], {'single_tile_pattern': '(True)'}), '(self.surface, rect, single_tile_pattern=True)\n', (5770, 5816), False, 'from lib import surface, tiledsurface, brush\n'), ((6752, 6779), 'numpy.expand_dims', 'np.expand_dims', (['img'], {'axis': '(0)'}), '(img, axis=0)\n', (6766, 6779), True, 'import numpy as np\n'), ((6848, 6875), 'numpy.expand_dims', 'np.expand_dims', (['img'], {'axis': '(0)'}), '(img, axis=0)\n', (6862, 6875), True, 'import numpy as np\n'), ((6897, 6927), 'numpy.expand_dims', 'np.expand_dims', (['action'], {'axis': '(0)'}), '(action, axis=0)\n', (6911, 6927), True, 'import numpy as np\n'), ((6652, 6672), 'PIL.Image.fromarray', 'Image.fromarray', (['img'], {}), '(img)\n', (6667, 6672), False, 'from PIL import Image\n'), ((7045, 7069), 'torch.from_numpy', 'torch.from_numpy', (['action'], {}), '(action)\n', (7061, 7069), False, 'import torch\n')]
from __future__ import absolute_import from __future__ import division from __future__ import print_function from numba import f8 from numba import i8 from numba import jit from numba import prange from numpy import argmin from numpy import array from numpy import empty from numpy import min from numpy.random import rand from numpy.random import choice __author__ = ['<NAME> <<EMAIL>>'] __copyright__ = 'Copyright 2017, BLOCK Research Group - ETH Zurich' __license__ = 'MIT License' __email__ = '<EMAIL>' __all__ = [ 'devo_numba', ] args = 0 @jit(nogil=True, nopython=True, parallel=True) def _fn(u, args): # Booth's function, fopt=0, uopt=(1, 3) x = u[0] y = u[1] z = (x + 2 * y - 7)**2 + (2 * x + y - 5)**2 return z @jit((f8[:, :], i8, i8), nogil=True, nopython=True, parallel=False) def devo_numba(bounds, population, generations): """ Call the Numba accelerated Differential Evolution solver. Parameters: bounds (array): Lower and upper bounds for each DoF. population (int): Number of agents in the population. generations (int): Number of cross-over cycles/steps to perform. F (float): Differential evolution parameter. CR (float): Differential evolution cross-over ratio parameter. Returns: array: Values that give the optimum (minimised) function. """ # Heading print('\n---------------------------------') print('Differential Evolution started...') print('---------------------------------') F = 0.8 CR = 0.9 # Setup population k = bounds.shape[0] agents = rand(k, population) for i in prange(k): for j in prange(population): agents[i, j] *= bounds[i, 1] - bounds[i, 0] agents[i, j] += bounds[i, 0] candidates = empty((population, population - 1)) for i in prange(population): c = 0 for j in prange(population - 1): if j == i: c += 1 candidates[i, j] = c c += 1 # Initial conditions f = empty(population) for i in prange(population): f[i] = _fn(agents[:, i], args) fopt = min(f) agents_ = empty((k, population)) ts = 0 print('\nGeneration: ', ts, ' fopt: ', fopt) # Start evolution while ts < generations + 1: ind = rand(k, population) < CR for i in prange(population): choices = choice(population - 1, 3, replace=False) ind0 = int(candidates[i, choices[0]]) ind1 = int(candidates[i, choices[1]]) ind2 = int(candidates[i, choices[2]]) ac = agents[:, ind0] bc = agents[:, ind1] cc = agents[:, ind2] for j in prange(k): if ind[j, i]: val = ac[j] + F * (bc[j] - cc[j]) if val < bounds[j, 0]: val = bounds[j, 0] elif val > bounds[j, 1]: val = bounds[j, 1] agents_[j, i] = val else: agents_[j, i] = agents[j, i] f_ = _fn(agents_[:, i], args) if f_ < f[i]: agents[:, i] = agents_[:, i] f[i] = f_ fopt = min(f) xopt = agents[:, argmin(f)] ts += 1 print('Generation: ', ts, ' fopt: ', fopt) # Summary print('\n-------------------------------') print('Differential Evolution finished') print('fopt: ', fopt) print('-------------------------------') return xopt # ============================================================================== # Main # ============================================================================== if __name__ == "__main__": from time import time tic = time() bounds = array([[-10., 10.], [-10., 10.]]) devo_numba(bounds=bounds, population=1000, generations=1000) print(time() - tic)
[ "numpy.random.choice", "numpy.empty", "numpy.argmin", "time.time", "numpy.min", "numba.jit", "numpy.array", "numba.prange", "numpy.random.rand" ]
[((568, 613), 'numba.jit', 'jit', ([], {'nogil': '(True)', 'nopython': '(True)', 'parallel': '(True)'}), '(nogil=True, nopython=True, parallel=True)\n', (571, 613), False, 'from numba import jit\n'), ((766, 832), 'numba.jit', 'jit', (['(f8[:, :], i8, i8)'], {'nogil': '(True)', 'nopython': '(True)', 'parallel': '(False)'}), '((f8[:, :], i8, i8), nogil=True, nopython=True, parallel=False)\n', (769, 832), False, 'from numba import jit\n'), ((1620, 1639), 'numpy.random.rand', 'rand', (['k', 'population'], {}), '(k, population)\n', (1624, 1639), False, 'from numpy.random import rand\n'), ((1653, 1662), 'numba.prange', 'prange', (['k'], {}), '(k)\n', (1659, 1662), False, 'from numba import prange\n'), ((1816, 1851), 'numpy.empty', 'empty', (['(population, population - 1)'], {}), '((population, population - 1))\n', (1821, 1851), False, 'from numpy import empty\n'), ((1865, 1883), 'numba.prange', 'prange', (['population'], {}), '(population)\n', (1871, 1883), False, 'from numba import prange\n'), ((2073, 2090), 'numpy.empty', 'empty', (['population'], {}), '(population)\n', (2078, 2090), False, 'from numpy import empty\n'), ((2104, 2122), 'numba.prange', 'prange', (['population'], {}), '(population)\n', (2110, 2122), False, 'from numba import prange\n'), ((2174, 2180), 'numpy.min', 'min', (['f'], {}), '(f)\n', (2177, 2180), False, 'from numpy import min\n'), ((2195, 2217), 'numpy.empty', 'empty', (['(k, population)'], {}), '((k, population))\n', (2200, 2217), False, 'from numpy import empty\n'), ((3830, 3836), 'time.time', 'time', ([], {}), '()\n', (3834, 3836), False, 'from time import time\n'), ((3851, 3888), 'numpy.array', 'array', (['[[-10.0, 10.0], [-10.0, 10.0]]'], {}), '([[-10.0, 10.0], [-10.0, 10.0]])\n', (3856, 3888), False, 'from numpy import array\n'), ((1681, 1699), 'numba.prange', 'prange', (['population'], {}), '(population)\n', (1687, 1699), False, 'from numba import prange\n'), ((1916, 1938), 'numba.prange', 'prange', (['(population - 1)'], {}), '(population - 1)\n', (1922, 1938), False, 'from numba import prange\n'), ((2394, 2412), 'numba.prange', 'prange', (['population'], {}), '(population)\n', (2400, 2412), False, 'from numba import prange\n'), ((3284, 3290), 'numpy.min', 'min', (['f'], {}), '(f)\n', (3287, 3290), False, 'from numpy import min\n'), ((2351, 2370), 'numpy.random.rand', 'rand', (['k', 'population'], {}), '(k, population)\n', (2355, 2370), False, 'from numpy.random import rand\n'), ((2436, 2476), 'numpy.random.choice', 'choice', (['(population - 1)', '(3)'], {'replace': '(False)'}), '(population - 1, 3, replace=False)\n', (2442, 2476), False, 'from numpy.random import choice\n'), ((2748, 2757), 'numba.prange', 'prange', (['k'], {}), '(k)\n', (2754, 2757), False, 'from numba import prange\n'), ((3961, 3967), 'time.time', 'time', ([], {}), '()\n', (3965, 3967), False, 'from time import time\n'), ((3316, 3325), 'numpy.argmin', 'argmin', (['f'], {}), '(f)\n', (3322, 3325), False, 'from numpy import argmin\n')]
import pandas as pd import matplotlib.pyplot as plt import numpy as np import re import spacy import pickle import time from collections import defaultdict import pmi_tfidf_classifier as ptic path = "../data/" np.random.seed(250) #spacy.prefer_gpu() #nlp = spacy.load("en_core_sci_sm", disable=['ner', 'parser']) data_raw = pd.read_csv(path + 'DILI_data.csv') indices = np.random.permutation(data_raw.index) data = data_raw.loc[indices] data = data_raw.sample(frac=1) idx = int(data.shape[0] * 0.2) test_data = data.iloc[:idx] train_data = data.iloc[idx:] targets_train = train_data['Label'].values targets_test = test_data['Label'].values tokenized_texts = ptic.tokenization(train_data) tokenized_test_texts = ptic.tokenization(test_data) N = len(tokenized_texts) accuracies = [] precisions = [] recalls = [] F1s = [] dict_size = [i for i in range(0.02, 1, 0.01)] for i in dict_size: part = tokenized_texts[:int(N * i)] word2text_count = ptic.get_word_stat(part) words_pmis = ptic.create_pmi_dict(part, targets_train, min_count=20) results = ptic.classify_pmi_based(words_pmis, word2text_count, tokenized_test_texts, N) precision = np.sum( np.logical_and(results, targets_test) ) / np.sum(results) recall = np.sum( np.logical_and(results, targets_test) ) / np.sum(targets_test) F1 = 2 * (recall * precision)/(recall + precision) accuracy = (results == targets_test).mean() accuracies.append( accuracy ) precisions.append( precisions ) recalls.append( recall ) FP_rate = ((results - targets_test) == 1).sum()/np.sum(targets_test) FN_rate = ((results - targets_test) == -1).sum()/np.sum(targets_test == 0) print("Accuracy: %s\t \nPrecision: %s\t \nRecall: %s\t \nF1: %s\t" % (accuracy, precision, recall, F1)) print("FP: %s\t \nFN: %s\t" % (FP_rate, FN_rate))
[ "pmi_tfidf_classifier.get_word_stat", "numpy.random.seed", "numpy.sum", "numpy.logical_and", "pandas.read_csv", "pmi_tfidf_classifier.create_pmi_dict", "pmi_tfidf_classifier.classify_pmi_based", "numpy.random.permutation", "pmi_tfidf_classifier.tokenization" ]
[((211, 230), 'numpy.random.seed', 'np.random.seed', (['(250)'], {}), '(250)\n', (225, 230), True, 'import numpy as np\n'), ((326, 361), 'pandas.read_csv', 'pd.read_csv', (["(path + 'DILI_data.csv')"], {}), "(path + 'DILI_data.csv')\n", (337, 361), True, 'import pandas as pd\n'), ((372, 409), 'numpy.random.permutation', 'np.random.permutation', (['data_raw.index'], {}), '(data_raw.index)\n', (393, 409), True, 'import numpy as np\n'), ((661, 690), 'pmi_tfidf_classifier.tokenization', 'ptic.tokenization', (['train_data'], {}), '(train_data)\n', (678, 690), True, 'import pmi_tfidf_classifier as ptic\n'), ((714, 742), 'pmi_tfidf_classifier.tokenization', 'ptic.tokenization', (['test_data'], {}), '(test_data)\n', (731, 742), True, 'import pmi_tfidf_classifier as ptic\n'), ((952, 976), 'pmi_tfidf_classifier.get_word_stat', 'ptic.get_word_stat', (['part'], {}), '(part)\n', (970, 976), True, 'import pmi_tfidf_classifier as ptic\n'), ((994, 1049), 'pmi_tfidf_classifier.create_pmi_dict', 'ptic.create_pmi_dict', (['part', 'targets_train'], {'min_count': '(20)'}), '(part, targets_train, min_count=20)\n', (1014, 1049), True, 'import pmi_tfidf_classifier as ptic\n'), ((1065, 1142), 'pmi_tfidf_classifier.classify_pmi_based', 'ptic.classify_pmi_based', (['words_pmis', 'word2text_count', 'tokenized_test_texts', 'N'], {}), '(words_pmis, word2text_count, tokenized_test_texts, N)\n', (1088, 1142), True, 'import pmi_tfidf_classifier as ptic\n'), ((1563, 1583), 'numpy.sum', 'np.sum', (['targets_test'], {}), '(targets_test)\n', (1569, 1583), True, 'import numpy as np\n'), ((1633, 1658), 'numpy.sum', 'np.sum', (['(targets_test == 0)'], {}), '(targets_test == 0)\n', (1639, 1658), True, 'import numpy as np\n'), ((1210, 1225), 'numpy.sum', 'np.sum', (['results'], {}), '(results)\n', (1216, 1225), True, 'import numpy as np\n'), ((1289, 1309), 'numpy.sum', 'np.sum', (['targets_test'], {}), '(targets_test)\n', (1295, 1309), True, 'import numpy as np\n'), ((1168, 1205), 'numpy.logical_and', 'np.logical_and', (['results', 'targets_test'], {}), '(results, targets_test)\n', (1182, 1205), True, 'import numpy as np\n'), ((1247, 1284), 'numpy.logical_and', 'np.logical_and', (['results', 'targets_test'], {}), '(results, targets_test)\n', (1261, 1284), True, 'import numpy as np\n')]
import numpy as np def msaeye(msa, unique, turbo): tic1 = timeit.default_timer() length = msa.shape[1] number = msa.shape[0] # number = 5 array = np.eye(int(number)) seqs = [] for i in range(number): seqs.append(msa[i,:]) iseq = np.zeros((number, length), dtype=int) for i in range(0,number-1): if i == 0: for k in range(length): if ord(seqs[i][k])>90: iseq[i,k]=ord(seqs[i][k])-96 if ord(seqs[i][k])-96 > 0 \ and ord(seqs[i][k])-96 < 26 else 0 else: iseq[i,k]=ord(seqs[i][k])-64 if ord(seqs[i][k])-64 > 0 \ and ord(seqs[i][k])-64 < 26 else 0 for j in range(i+1,number): score=0. ncols=0. for k in range(length): if ord(seqs[j][k])>90: iseq[j,k]=ord(seqs[j][k])-96 if ord(seqs[j][k])-96 > 0 \ and ord(seqs[j][k])-96 < 26 else 0 else: iseq[j,k]=ord(seqs[j][k])-64 if ord(seqs[j][k])-64 > 0 and ord(seqs[j][k])-64 < 26 else 0 if iseq[i,k] or iseq[j,k]: ncols += 1 if iseq[i,k]==iseq[j,k]: score+=1 array[i,j]=float(score)/ncols array[j,i]=array[i,j] # print iseq[0] # print seqs[0] # raw_input() else: for j in range(i+1,number): score=0. ncols=0. for k in range(length): if iseq[i,k] or iseq[j,k]: ncols += 1 if iseq[i,k]==iseq[j,k]: score+=1 array[i,j]= float(score)/ncols#float(sum((iseq[i] == iseq[j])*(iseq[i]*iseq[j]!=0))) / sum(iseq[i]*iseq[j]!=0) array[j,i]=array[i,j] toc1 = timeit.default_timer() elapsed1 = toc1 - tic1 LOGGER.debug('Elapsed: %4.2fs'%elapsed1) def buildDaliEnsemble(PDBs, record): daliInfo = record._alignPDB n_confs = len(PDBs) ref_pdb_ca = PDBs[0] ref_chain = list(ref_pdb_ca.getHierView().iterChains())[0] ref_indices_set = set(range(len(ref_chain))) ensemble = PDBEnsemble('Dali ensemble - ' + record.getTitle()) ensemble.setAtoms(ref_chain) ensemble.setCoords(ref_chain) LOGGER.progress('Building PDB ensemble for {0} conformations from Dali...' .format(n_confs), n_confs, '_prody_buildDaliEnsemble') for i, pdb in enumerate(PDBs): pdb_chain = pdb.getTitle()[:5] temp_dict = daliInfo[pdb_chain] sel_pdb_ca = PDBs[i] map_ref = temp_dict['map_ref'] map_sel = temp_dict['map_sel'] dum_sel = list(ref_indices_set - set(map_ref)) atommap = AtomMap(sel_pdb_ca, indices=map_sel, mapping=map_ref, dummies=dum_sel) ensemble.addCoordset(atommap, weights=atommap.getFlags('mapped'), degeneracy=True) LOGGER.update(i, label='_prody_buildDaliEnsemble') LOGGER.finish() try: ensemble.iterpose() except: LOGGER.warn('failed to iterpose the ensemble.') return ensemble def fetchCATH(filename, ftp_host=None, ftp_path=None, **kwargs): """Downloads CATH file via FTP.""" if ftp_host == None: ftp_host = 'orengoftp.biochem.ucl.ac.uk' if ftp_path == None: ftp_path = '/cath/releases/daily-release/newest/' from ftplib import FTP output_folder = kwargs.pop('folder', None) ftp_fn = filename try: ftp = FTP(ftp_host) except Exception as error: raise type(error)('FTP connection problem, potential reason: ' 'no internet connectivity') else: success = 0 failure = 0 filenames = [] ftp.login('') data = [] try: ftp.cwd(ftp_path) ftp.retrbinary('RETR ' + ftp_fn, data.append) except Exception as error: if ftp_fn in ftp.nlst(): LOGGER.warn('{0} download failed ({1}). It is ' 'possible that you do not have rights to ' 'download .gz files in the current network.' .format(ftp_fn, str(error))) else: LOGGER.warn('{0} download failed. {1} does not exist ' 'on {2}.'.format(ftp_fn, ftp_fn, ftp_host)) failure += 1 filenames.append(None) else: if len(data): if output_folder is None: output_folder = getcwd() filename_full = join(output_folder, ftp_fn) with open(filename_full, 'w+b') as pdbfile: write = pdbfile.write [write(block) for block in data] filename_full = normpath(relpath(filename_full)) LOGGER.debug('{0} downloaded ({1})' .format(ftp_fn, sympath(filename_full))) success += 1 filenames.append(filename_full) else: LOGGER.warn('{0} download failed, reason unknown.' .format(ftp_fn)) failure += 1 filenames.append(None) ftp.quit() def buildCATHNameDict(cath_file, iscommpressed=True): """Returns a dictionary for CATH names with key of CATH ID.""" if iscommpressed: gunzip(cath_file, 'cath_b.names.temp') cath_file = 'cath_b.names.temp' cath_id2name = dict() with open(cath_file, 'r') as file_temp: for line in file_temp: ind_temp = line.find(' ') cath_id2name[line[:ind_temp]] = line[ind_temp:].strip() if iscommpressed: remove(cath_file) return cath_id2name def buildPDBChainCATHDict(cath_file, iscommpressed=True): """Returns a dictionary for CATH info (ID and version) with key of PDB chain.""" if iscommpressed: gunzip(cath_file, 'cath_b.all.temp') cath_file = 'cath_b.all.temp' cath_dict_temp = dict() cath_i_dict = dict() with open(cath_file, 'r') as file_temp: for line in file_temp: line = line.strip() if line != '': line_list = line.split(' ') cath_dict_temp[line_list[0]] = line_list[1:] key, value = line[0:5], line[5:7] if key in cath_i_dict: cath_i_dict[key].append(value) else: cath_i_dict[key] = [value] pdbChain2CATH = dict() for key, values in cath_i_dict.items(): pdbChain2CATH[key] = [] for v in values: pdbChain2CATH[key].append(cath_dict_temp[key+v]) if iscommpressed: remove(cath_file) return pdbChain2CATH def fetchCATH(filename, ftp_host=None, ftp_path=None, **kwargs): """Downloads CATH file via FTP.""" if ftp_host == None: ftp_host = 'orengoftp.biochem.ucl.ac.uk' if ftp_path == None: ftp_path = '/cath/releases/daily-release/newest/' from ftplib import FTP output_folder = kwargs.pop('folder', None) ftp_fn = filename try: ftp = FTP(ftp_host) except Exception as error: raise type(error)('FTP connection problem, potential reason: ' 'no internet connectivity') else: success = 0 failure = 0 filenames = [] ftp.login('') data = [] try: ftp.cwd(ftp_path) ftp.retrbinary('RETR ' + ftp_fn, data.append) except Exception as error: if ftp_fn in ftp.nlst(): LOGGER.warn('{0} download failed ({1}). It is ' 'possible that you do not have rights to ' 'download .gz files in the current network.' .format(ftp_fn, str(error))) else: LOGGER.warn('{0} download failed. {1} does not exist ' 'on {2}.'.format(ftp_fn, ftp_fn, ftp_host)) failure += 1 filenames.append(None) else: if len(data): if output_folder is None: output_folder = getcwd() filename_full = join(output_folder, ftp_fn) with open(filename_full, 'w+b') as pdbfile: write = pdbfile.write [write(block) for block in data] filename_full = normpath(relpath(filename_full)) LOGGER.debug('{0} downloaded ({1})' .format(ftp_fn, sympath(filename_full))) success += 1 filenames.append(filename_full) else: LOGGER.warn('{0} download failed, reason unknown.' .format(ftp_fn)) failure += 1 filenames.append(None) ftp.quit() # ftp://orengoftp.biochem.ucl.ac.uk/cath/releases/daily-release/newest/ # fetchCATH('cath-b-newest-names.gz') # cath_id2name = buildCATHNameDict('cath-b-newest-names.gz') # fetchCATH('cath-b-newest-all.gz') # pdbChain2CATH = buildPDBChainCATHDict('cath-b-newest-all.gz') def extend(model, nodes, atoms): """Returns mapping indices and an :class:`.AtomMap`.""" try: n_atoms = model.numAtoms() is3d = model.is3d() except AttributeError: raise ValueError('model must be an NMA instance') try: n_nodes = nodes.numAtoms() i_nodes = nodes.iterAtoms() except AttributeError: raise ValueError('nodes must be an Atomic instance') if n_atoms != n_nodes: raise ValueError('atom numbers must be the same') if not nodes in atoms: raise ValueError('nodes must be a subset of atoms') atom_indices = [] indices = [] get = HierView(atoms).getResidue for i, node in enumerate(i_nodes): res = get(node.getChid() or None, node.getResnum(), node.getIcode() or None, node.getSegname() or None) if res is None: raise ValueError('atoms must contain a residue for all atoms') atom_indices.append(res._getIndices()) if is3d: indices.append(list(range(i*3, (i+1)*3)) * len(res)) else: indices.append([i] * len(res)) atom_indices = np.concatenate(atom_indices) indices = np.concatenate(indices) try: ag = atoms.getAtomGroup() except AttributeError: ag = atoms atommap = AtomMap(ag, atom_indices, atoms.getACSIndex(), title=str(atoms), intarrays=True) return indices, atommap def extendAtomicData(data, nodes, atoms): """Extend a coarse grained data obtained for *nodes* to *atoms*. :arg data: any data array :type data: :class:`~numpy.ndarray` :arg nodes: a set of atoms that has been used as nodes in data generation :type nodes: :class:`.Atomic` :arg atoms: atoms to be selected from :type atoms: :class:`.Atomic` """ from collections import Counter try: data = np.asarray(data) except: raise TypeError('The data must be array-like.') if not isinstance(nodes, Atomic): raise TypeError('nodes must be an Atomic instance') if not isinstance(atoms, Atomic): raise TypeError('atoms must be an Atomic instance') nnodes = nodes.numAtoms() is3d = False if len(data) != nnodes: if data.shape[0] == nnodes * 3: is3d = True else: raise ValueError('data and atoms must have the same size') indices = nodes.getResindices() if is3d: indices = np.array([[i*3, i*3+1, i*3+2] for i in indices] ).reshape(3*len(indices)) data_ext = [] resid_counter = Counter(atoms.getResindices()) for i in indices: data_ext.extend(resid_counter.values()[i]*[data[i]]) resid_selstr = ' '.join([str(resid) for resid in nodes.getResindices()]) rest = atoms.select('not resid {0}'.format(resid_selstr)) data_ext.extend(np.zeros(rest.numAtoms())) return data_ext def refineEnsemble(ens, lower=.5, upper=10.): """Refine a PDB ensemble based on RMSD criterions.""" from scipy.cluster.hierarchy import linkage, fcluster from scipy.spatial.distance import squareform from collections import Counter ### calculate pairwise RMSDs ### RMSD = ens.getRMSDs(pairwise=True) # convert the RMSD table to the compressed form v = squareform(RMSD) ### apply upper threshold ### Z_upper = linkage(v, method='complete') labels = fcluster(Z_upper, upper, criterion='distance') most_common_label = Counter(labels).most_common(1)[0][0] I = np.where(labels==most_common_label)[0] ### apply lower threshold ### Z_lower = linkage(v, method='single') labels = fcluster(Z_lower, lower, criterion='distance') uniq_labels = np.unique(labels) clusters = [] for label in uniq_labels: indices = np.where(labels==label)[0] clusters.append(indices) J = np.ones(len(clusters), dtype=int) * -1 rmsd = None for i, cluster in enumerate(clusters): if len(cluster) > 0: # find the conformations with the largest coverage # (the weight of the ref should be 1) weights = [ens[j].getWeights().sum() for j in cluster] js = np.where(weights==np.max(weights))[0] # in the case where there are multiple structures with the same weight, # the one with the smallest rmsd wrt the ens._coords is selected. if len(js) > 1: # rmsd is not calulated unless necessary for the sake of efficiency rmsd = ens.getRMSDs() if rmsd is None else rmsd j = js[np.argmin(rmsd[js])] else: j = js[0] J[i] = cluster[j] else: J[i] = cluster[0] ### refine ensemble ### K = np.intersect1d(I, J) reens = ens[K] return reens def showVarianceBar(mode_ensemble, highlights=None, **kwargs): from matplotlib.pyplot import figure, gca, annotate, subplots_adjust, plot from matplotlib.figure import Figure from matplotlib.colorbar import ColorbarBase from matplotlib.colors import Normalize, NoNorm from matplotlib import cm, colors fig = kwargs.pop('figure', None) if isinstance(fig, Figure): fig_num = fig.number elif fig is None or isinstance(fig, (int, str)): fig_num = fig else: raise TypeError('figure can be either an instance of matplotlib.figure.Figure ' 'or a figure number.') if SETTINGS['auto_show']: if fig_num is None: figure(figsize=(6, 2)) else: figure(fig_num) elif fig_num is not None: figure(fig_num) ax = gca() # adjust layouts box = ax.get_position() _, _, _, height = box.bounds ratio = 2.5 box.y1 = box.y0 + height/ratio #box.y0 += height/7. ax.set_position(box) fract = kwargs.pop('fraction', True) #defarrow = {'width':1, 'headwidth':2, # 'facecolor':'black', # 'headlength': 4} defarrow = {'arrowstyle': '->'} arrowprops = kwargs.pop('arrowprops', defarrow) if fract: sig = calcSignatureFractVariance(mode_ensemble) else: sig = mode_ensemble.getVariances() variances = sig.getArray().sum(axis=1) #meanVar = variances.mean() #stdVar = variances.std() #variances = (variances - meanVar)/stdVar maxVar = variances.max() minVar = variances.min() cmap = kwargs.pop('cmap', 'jet') norm = Normalize(vmin=minVar, vmax=maxVar) cb = ColorbarBase(ax, cmap=cmap, norm=norm, orientation='horizontal') if not highlights: highlights = [] indices = []; labels = [] ens_labels = mode_ensemble.getLabels() for hl in highlights: if isinstance(hl, str): if not ens_labels: raise TypeError('highlights should be a list of integers because ' 'mode_ensemble has no label') indices.append(ens_labels.index(hl)) labels.append(hl) else: try: index = int(hl) except: raise TypeError('highlights should be a list of integers or strings') indices.append(index) if ens_labels: labels.append(ens_labels[index]) else: labels.append(str(index)) annotations = [] for i, label in zip(indices, labels): x = norm(variances[i]) an = annotate(label, xy=(x, 1), xytext=(x, ratio), arrowprops=arrowprops) annotations.append(an) for i in range(len(variances)): x = norm(variances[i]) plot([x, x], [0, 1], 'w') cb.set_label('Variances') if SETTINGS['auto_show']: showFigure() return cb, annotations def mapChainByChain(atoms, target, **kwargs): """This function is similar to :func:`.mapOntoChain` but correspondence of chains is found by their chain identifiers. :arg atoms: atoms to be mapped onto *target* :type atoms: :class:`.Atomic` :arg target: reference structure for mapping :type target: :class:`.Atomic` :arg return_all: whether to return all mappings. If False, only mappings for the first chain will be returned. Default is **True** :arg return_all: bool :arg correspondence: chain IDs in atoms corresponding to those in ref Default is to use the same chain IDs as in ref. :type correspondence: str, list, dict """ mappings = [] if isinstance(target, AtomGroup): chs_ref_ag = target.iterChains() else: chs_ref_ag = target.getAtomGroup().iterChains() id_atm = atoms.getTitle() id_ref = target.getTitle() chs_atm = [chain for chain in atoms.getHierView().iterChains()] chs_ref = [chain for chain in target.getHierView().iterChains()] corr_input = kwargs.get('correspondence', None) if isinstance(corr_input, dict): correspondence = corr_input elif corr_input is None: correspondence = {} elif isinstance(corr_input, str): correspondence = {} correspondence[atoms.getTitle()] = corr_input else: correspondence = {} try: correspondence[id_atm] = corr_input[0] correspondence[id_ref] = corr_input[1] except (IndexError, TypeError): raise TypeError('correspondence should be a dict with keys being titles of atoms and ref, ' 'and values are str indicating chID correspondences') if not id_atm in correspondence: correspondence[id_atm] = ''.join([chain.getChid() for chain in chs_atm]) if not id_ref in correspondence: correspondence[id_ref] = ''.join([chain.getChid() for chain in chs_ref_ag]) corr_tar = correspondence[id_atm] corr_ref = correspondence[id_ref] for chain in chs_ref: try: i = corr_ref.index(chain.getChid()) chid = corr_tar[i] except ValueError: continue for target_chain in chs_atm: if target_chain.getChid() == chid: mappings_ = mapOntoChainByAlignment(target_chain, chain, **kwargs) if len(mappings_): mappings.append(mappings_[0]) return mappings def _extend(self, arr, defval=0): mask = self.mask#.copy() if self.is3d(): mask = np.repeat(mask, 3) n_true = np.sum(mask) N = len(mask) if arr.ndim == 1: whole_array = np.empty(N, dtype=arr.dtype) whole_array.fill(defval) whole_array[mask] = arr[:n_true] elif arr.ndim == 2: n, m = arr.shape whole_array = np.empty((N, m), dtype=arr.dtype) whole_array.fill(defval) #mask = np.expand_dims(mask, axis=1) #mask = mask.repeat(m, axis=1) whole_array[mask] = arr[:n_true, :] else: # only developers can trigger this case raise ValueError('arr can only be either 1D or 2D') return whole_array
[ "scipy.cluster.hierarchy.fcluster", "numpy.sum", "numpy.empty", "scipy.cluster.hierarchy.linkage", "numpy.argmin", "matplotlib.pyplot.figure", "matplotlib.pyplot.gca", "numpy.unique", "matplotlib.colors.Normalize", "numpy.max", "collections.Counter", "numpy.intersect1d", "numpy.repeat", "scipy.spatial.distance.squareform", "numpy.asarray", "matplotlib.colorbar.ColorbarBase", "numpy.concatenate", "matplotlib.pyplot.annotate", "matplotlib.pyplot.plot", "numpy.zeros", "numpy.where", "numpy.array", "ftplib.FTP" ]
[((271, 308), 'numpy.zeros', 'np.zeros', (['(number, length)'], {'dtype': 'int'}), '((number, length), dtype=int)\n', (279, 308), True, 'import numpy as np\n'), ((10729, 10757), 'numpy.concatenate', 'np.concatenate', (['atom_indices'], {}), '(atom_indices)\n', (10743, 10757), True, 'import numpy as np\n'), ((10772, 10795), 'numpy.concatenate', 'np.concatenate', (['indices'], {}), '(indices)\n', (10786, 10795), True, 'import numpy as np\n'), ((12941, 12957), 'scipy.spatial.distance.squareform', 'squareform', (['RMSD'], {}), '(RMSD)\n', (12951, 12957), False, 'from scipy.spatial.distance import squareform\n'), ((13007, 13036), 'scipy.cluster.hierarchy.linkage', 'linkage', (['v'], {'method': '"""complete"""'}), "(v, method='complete')\n", (13014, 13036), False, 'from scipy.cluster.hierarchy import linkage, fcluster\n'), ((13050, 13096), 'scipy.cluster.hierarchy.fcluster', 'fcluster', (['Z_upper', 'upper'], {'criterion': '"""distance"""'}), "(Z_upper, upper, criterion='distance')\n", (13058, 13096), False, 'from scipy.cluster.hierarchy import linkage, fcluster\n'), ((13254, 13281), 'scipy.cluster.hierarchy.linkage', 'linkage', (['v'], {'method': '"""single"""'}), "(v, method='single')\n", (13261, 13281), False, 'from scipy.cluster.hierarchy import linkage, fcluster\n'), ((13295, 13341), 'scipy.cluster.hierarchy.fcluster', 'fcluster', (['Z_lower', 'lower'], {'criterion': '"""distance"""'}), "(Z_lower, lower, criterion='distance')\n", (13303, 13341), False, 'from scipy.cluster.hierarchy import linkage, fcluster\n'), ((13360, 13377), 'numpy.unique', 'np.unique', (['labels'], {}), '(labels)\n', (13369, 13377), True, 'import numpy as np\n'), ((14416, 14436), 'numpy.intersect1d', 'np.intersect1d', (['I', 'J'], {}), '(I, J)\n', (14430, 14436), True, 'import numpy as np\n'), ((15321, 15326), 'matplotlib.pyplot.gca', 'gca', ([], {}), '()\n', (15324, 15326), False, 'from matplotlib.pyplot import figure, gca, annotate, subplots_adjust, plot\n'), ((16148, 16183), 'matplotlib.colors.Normalize', 'Normalize', ([], {'vmin': 'minVar', 'vmax': 'maxVar'}), '(vmin=minVar, vmax=maxVar)\n', (16157, 16183), False, 'from matplotlib.colors import Normalize, NoNorm\n'), ((16193, 16257), 'matplotlib.colorbar.ColorbarBase', 'ColorbarBase', (['ax'], {'cmap': 'cmap', 'norm': 'norm', 'orientation': '"""horizontal"""'}), "(ax, cmap=cmap, norm=norm, orientation='horizontal')\n", (16205, 16257), False, 'from matplotlib.colorbar import ColorbarBase\n'), ((20150, 20162), 'numpy.sum', 'np.sum', (['mask'], {}), '(mask)\n', (20156, 20162), True, 'import numpy as np\n'), ((3715, 3728), 'ftplib.FTP', 'FTP', (['ftp_host'], {}), '(ftp_host)\n', (3718, 3728), False, 'from ftplib import FTP\n'), ((7474, 7487), 'ftplib.FTP', 'FTP', (['ftp_host'], {}), '(ftp_host)\n', (7477, 7487), False, 'from ftplib import FTP\n'), ((11482, 11498), 'numpy.asarray', 'np.asarray', (['data'], {}), '(data)\n', (11492, 11498), True, 'import numpy as np\n'), ((13166, 13203), 'numpy.where', 'np.where', (['(labels == most_common_label)'], {}), '(labels == most_common_label)\n', (13174, 13203), True, 'import numpy as np\n'), ((17167, 17235), 'matplotlib.pyplot.annotate', 'annotate', (['label'], {'xy': '(x, 1)', 'xytext': '(x, ratio)', 'arrowprops': 'arrowprops'}), '(label, xy=(x, 1), xytext=(x, ratio), arrowprops=arrowprops)\n', (17175, 17235), False, 'from matplotlib.pyplot import figure, gca, annotate, subplots_adjust, plot\n'), ((17343, 17368), 'matplotlib.pyplot.plot', 'plot', (['[x, x]', '[0, 1]', '"""w"""'], {}), "([x, x], [0, 1], 'w')\n", (17347, 17368), False, 'from matplotlib.pyplot import figure, gca, annotate, subplots_adjust, plot\n'), ((20117, 20135), 'numpy.repeat', 'np.repeat', (['mask', '(3)'], {}), '(mask, 3)\n', (20126, 20135), True, 'import numpy as np\n'), ((20226, 20254), 'numpy.empty', 'np.empty', (['N'], {'dtype': 'arr.dtype'}), '(N, dtype=arr.dtype)\n', (20234, 20254), True, 'import numpy as np\n'), ((13445, 13470), 'numpy.where', 'np.where', (['(labels == label)'], {}), '(labels == label)\n', (13453, 13470), True, 'import numpy as np\n'), ((15193, 15215), 'matplotlib.pyplot.figure', 'figure', ([], {'figsize': '(6, 2)'}), '(figsize=(6, 2))\n', (15199, 15215), False, 'from matplotlib.pyplot import figure, gca, annotate, subplots_adjust, plot\n'), ((15242, 15257), 'matplotlib.pyplot.figure', 'figure', (['fig_num'], {}), '(fig_num)\n', (15248, 15257), False, 'from matplotlib.pyplot import figure, gca, annotate, subplots_adjust, plot\n'), ((15296, 15311), 'matplotlib.pyplot.figure', 'figure', (['fig_num'], {}), '(fig_num)\n', (15302, 15311), False, 'from matplotlib.pyplot import figure, gca, annotate, subplots_adjust, plot\n'), ((20400, 20433), 'numpy.empty', 'np.empty', (['(N, m)'], {'dtype': 'arr.dtype'}), '((N, m), dtype=arr.dtype)\n', (20408, 20433), True, 'import numpy as np\n'), ((12059, 12117), 'numpy.array', 'np.array', (['[[i * 3, i * 3 + 1, i * 3 + 2] for i in indices]'], {}), '([[i * 3, i * 3 + 1, i * 3 + 2] for i in indices])\n', (12067, 12117), True, 'import numpy as np\n'), ((13121, 13136), 'collections.Counter', 'Counter', (['labels'], {}), '(labels)\n', (13128, 13136), False, 'from collections import Counter\n'), ((14240, 14259), 'numpy.argmin', 'np.argmin', (['rmsd[js]'], {}), '(rmsd[js])\n', (14249, 14259), True, 'import numpy as np\n'), ((13857, 13872), 'numpy.max', 'np.max', (['weights'], {}), '(weights)\n', (13863, 13872), True, 'import numpy as np\n')]
import numpy as np import cv2 as cv from split import SliceImage import utils class DocumentScanner: def __init__(self, path): self.path = path self.contrast = 0 self.row = 4 self.column = 4 def setImage(self): self.image = cv.imread(self.path, 1) def copy(self): self.clone = self.image.copy() def resize(self, width): # old_height/old_width ratio = self.image.shape[0] / self.image.shape[1] # Only resize when image's width > 600 if self.image.shape[1] > width: # Resize (width, width*ratio) self.image = cv.resize(self.image, (width, round(width * ratio))) def convertGray(self): self.grayscale = cv.cvtColor(self.clone, cv.COLOR_BGR2GRAY) def calculate_contrast(self): # Blur to decrease detail blur = SliceImage(self.grayscale, self.column, self.row) blur.divide() blur.blur(50, 50) self.contrast = blur.contrast() def equalization(self): equalization = cv.equalizeHist(self.grayscale) self.median = cv.medianBlur(equalization,5) def canny(self): self.slice.edge_canny() self.slice.merge() self.edge = self.slice.image def otsu(self): self.slice.edge_otsu() self.slice.merge() self.edge = self.slice.image def dilate(self): kernel = cv.getStructuringElement(cv.MORPH_RECT, (3, 3)) self.dilation = cv.dilate(self.edge, kernel, 1) def contour(self): contours, hierarchy = cv.findContours(self.dilation, cv.RETR_LIST, cv.CHAIN_APPROX_SIMPLE) contours = sorted(contours, key=cv.contourArea, reverse= True) # Find matching contour for i in contours: elip = cv.arcLength(i, True) approx = cv.approxPolyDP(i, 0.08*elip, True) # Ordinary papers have 4 corner if len(approx) == 4 : doc = approx break cv.drawContours(self.clone, [doc], -1, (0, 255, 0), 2) def write(self): cv.imwrite('../process/grayscale.jpg', self.grayscale) cv.imwrite('../process/edge.jpg', self.edge) cv.imwrite('../process/dilation.jpg', self.dilation) cv.imwrite('../process/contour.jpg', self.clone) def test(self, name): cv.imwrite('result/' + name, self.clone) def detect(self): self.setImage() self.resize(600) self.copy() self.convertGray() self.slice = SliceImage(self.grayscale, self.column, self.row) self.slice.divide() self.calculate_contrast() if self.contrast < 25: self.equalization() self.slice.image = self.median self.slice.divide() self.slice.blur(70, 70) else: self.slice.blur(50, 50) self.canny() self.dilate() self.contour() def old(self): #reshape to avoid errors ahead doc=doc.reshape((4,2)) #create a new array and initialize rect = np.zeros((4,2), dtype="float32") Sum = doc.sum(axis = 1) rect[0] = doc[np.argmin(Sum)] rect[2] = doc[np.argmax(Sum)] Diff = np.diff(doc, axis=1) rect[1] = doc[np.argmin(Diff)] rect[3] = doc[np.argmax(Diff)] (topLeft,topRight,bottomRight,bottomLeft) = rect #find distance between points and get max dist1 = np.linalg.norm(bottomRight-bottomLeft) dist2 = np.linalg.norm(topRight-topLeft) maxWidth = max(int(dist1),int(dist2)) dist3 = np.linalg.norm(topRight-bottomRight) dist4 = np.linalg.norm(topLeft-bottomLeft) maxHeight = max(int(dist3), int(dist4)) dst = np.array([[0,0],[maxWidth-1, 0],[maxWidth-1, maxHeight-1], [0, maxHeight-1]], dtype="float32") M = cv.getPerspectiveTransform(rect, dst) warp = cv.warpPerspective(sourceImage, M, (maxWidth, maxHeight)) destinationImage = cv.cvtColor(warp, cv.COLOR_BGR2GRAY) # sharpen image sharpen = cv.GaussianBlur(destinationImage, (0, 0), 3) sharpen = cv.addWeighted(destinationImage, 1.5, sharpen, -0.5, 0) # apply adaptive threshold to get black and white effect thresh = cv.adaptiveThreshold( sharpen, 255, cv.ADAPTIVE_THRESH_GAUSSIAN_C, cv.THRESH_BINARY, 21, 15) cv.imwrite('scanned.jpg', warp) cv.imwrite('white effect.jpg', thresh) return thresh
[ "cv2.GaussianBlur", "cv2.medianBlur", "cv2.getPerspectiveTransform", "cv2.arcLength", "cv2.approxPolyDP", "numpy.argmax", "cv2.adaptiveThreshold", "numpy.argmin", "numpy.linalg.norm", "cv2.warpPerspective", "cv2.dilate", "cv2.cvtColor", "cv2.imwrite", "split.SliceImage", "cv2.drawContours", "cv2.equalizeHist", "cv2.addWeighted", "cv2.getStructuringElement", "numpy.zeros", "cv2.imread", "numpy.diff", "numpy.array", "cv2.findContours" ]
[((278, 301), 'cv2.imread', 'cv.imread', (['self.path', '(1)'], {}), '(self.path, 1)\n', (287, 301), True, 'import cv2 as cv\n'), ((749, 791), 'cv2.cvtColor', 'cv.cvtColor', (['self.clone', 'cv.COLOR_BGR2GRAY'], {}), '(self.clone, cv.COLOR_BGR2GRAY)\n', (760, 791), True, 'import cv2 as cv\n'), ((881, 930), 'split.SliceImage', 'SliceImage', (['self.grayscale', 'self.column', 'self.row'], {}), '(self.grayscale, self.column, self.row)\n', (891, 930), False, 'from split import SliceImage\n'), ((1072, 1103), 'cv2.equalizeHist', 'cv.equalizeHist', (['self.grayscale'], {}), '(self.grayscale)\n', (1087, 1103), True, 'import cv2 as cv\n'), ((1126, 1156), 'cv2.medianBlur', 'cv.medianBlur', (['equalization', '(5)'], {}), '(equalization, 5)\n', (1139, 1156), True, 'import cv2 as cv\n'), ((1448, 1495), 'cv2.getStructuringElement', 'cv.getStructuringElement', (['cv.MORPH_RECT', '(3, 3)'], {}), '(cv.MORPH_RECT, (3, 3))\n', (1472, 1495), True, 'import cv2 as cv\n'), ((1520, 1551), 'cv2.dilate', 'cv.dilate', (['self.edge', 'kernel', '(1)'], {}), '(self.edge, kernel, 1)\n', (1529, 1551), True, 'import cv2 as cv\n'), ((1611, 1679), 'cv2.findContours', 'cv.findContours', (['self.dilation', 'cv.RETR_LIST', 'cv.CHAIN_APPROX_SIMPLE'], {}), '(self.dilation, cv.RETR_LIST, cv.CHAIN_APPROX_SIMPLE)\n', (1626, 1679), True, 'import cv2 as cv\n'), ((2031, 2085), 'cv2.drawContours', 'cv.drawContours', (['self.clone', '[doc]', '(-1)', '(0, 255, 0)', '(2)'], {}), '(self.clone, [doc], -1, (0, 255, 0), 2)\n', (2046, 2085), True, 'import cv2 as cv\n'), ((2117, 2171), 'cv2.imwrite', 'cv.imwrite', (['"""../process/grayscale.jpg"""', 'self.grayscale'], {}), "('../process/grayscale.jpg', self.grayscale)\n", (2127, 2171), True, 'import cv2 as cv\n'), ((2180, 2224), 'cv2.imwrite', 'cv.imwrite', (['"""../process/edge.jpg"""', 'self.edge'], {}), "('../process/edge.jpg', self.edge)\n", (2190, 2224), True, 'import cv2 as cv\n'), ((2233, 2285), 'cv2.imwrite', 'cv.imwrite', (['"""../process/dilation.jpg"""', 'self.dilation'], {}), "('../process/dilation.jpg', self.dilation)\n", (2243, 2285), True, 'import cv2 as cv\n'), ((2294, 2342), 'cv2.imwrite', 'cv.imwrite', (['"""../process/contour.jpg"""', 'self.clone'], {}), "('../process/contour.jpg', self.clone)\n", (2304, 2342), True, 'import cv2 as cv\n'), ((2379, 2419), 'cv2.imwrite', 'cv.imwrite', (["('result/' + name)", 'self.clone'], {}), "('result/' + name, self.clone)\n", (2389, 2419), True, 'import cv2 as cv\n'), ((2562, 2611), 'split.SliceImage', 'SliceImage', (['self.grayscale', 'self.column', 'self.row'], {}), '(self.grayscale, self.column, self.row)\n', (2572, 2611), False, 'from split import SliceImage\n'), ((3148, 3181), 'numpy.zeros', 'np.zeros', (['(4, 2)'], {'dtype': '"""float32"""'}), "((4, 2), dtype='float32')\n", (3156, 3181), True, 'import numpy as np\n'), ((3305, 3325), 'numpy.diff', 'np.diff', (['doc'], {'axis': '(1)'}), '(doc, axis=1)\n', (3312, 3325), True, 'import numpy as np\n'), ((3530, 3570), 'numpy.linalg.norm', 'np.linalg.norm', (['(bottomRight - bottomLeft)'], {}), '(bottomRight - bottomLeft)\n', (3544, 3570), True, 'import numpy as np\n'), ((3585, 3619), 'numpy.linalg.norm', 'np.linalg.norm', (['(topRight - topLeft)'], {}), '(topRight - topLeft)\n', (3599, 3619), True, 'import numpy as np\n'), ((3682, 3720), 'numpy.linalg.norm', 'np.linalg.norm', (['(topRight - bottomRight)'], {}), '(topRight - bottomRight)\n', (3696, 3720), True, 'import numpy as np\n'), ((3735, 3771), 'numpy.linalg.norm', 'np.linalg.norm', (['(topLeft - bottomLeft)'], {}), '(topLeft - bottomLeft)\n', (3749, 3771), True, 'import numpy as np\n'), ((3834, 3944), 'numpy.array', 'np.array', (['[[0, 0], [maxWidth - 1, 0], [maxWidth - 1, maxHeight - 1], [0, maxHeight - 1]]'], {'dtype': '"""float32"""'}), "([[0, 0], [maxWidth - 1, 0], [maxWidth - 1, maxHeight - 1], [0, \n maxHeight - 1]], dtype='float32')\n", (3842, 3944), True, 'import numpy as np\n'), ((3942, 3979), 'cv2.getPerspectiveTransform', 'cv.getPerspectiveTransform', (['rect', 'dst'], {}), '(rect, dst)\n', (3968, 3979), True, 'import cv2 as cv\n'), ((3995, 4052), 'cv2.warpPerspective', 'cv.warpPerspective', (['sourceImage', 'M', '(maxWidth, maxHeight)'], {}), '(sourceImage, M, (maxWidth, maxHeight))\n', (4013, 4052), True, 'import cv2 as cv\n'), ((4081, 4117), 'cv2.cvtColor', 'cv.cvtColor', (['warp', 'cv.COLOR_BGR2GRAY'], {}), '(warp, cv.COLOR_BGR2GRAY)\n', (4092, 4117), True, 'import cv2 as cv\n'), ((4161, 4205), 'cv2.GaussianBlur', 'cv.GaussianBlur', (['destinationImage', '(0, 0)', '(3)'], {}), '(destinationImage, (0, 0), 3)\n', (4176, 4205), True, 'import cv2 as cv\n'), ((4224, 4279), 'cv2.addWeighted', 'cv.addWeighted', (['destinationImage', '(1.5)', 'sharpen', '(-0.5)', '(0)'], {}), '(destinationImage, 1.5, sharpen, -0.5, 0)\n', (4238, 4279), True, 'import cv2 as cv\n'), ((4362, 4458), 'cv2.adaptiveThreshold', 'cv.adaptiveThreshold', (['sharpen', '(255)', 'cv.ADAPTIVE_THRESH_GAUSSIAN_C', 'cv.THRESH_BINARY', '(21)', '(15)'], {}), '(sharpen, 255, cv.ADAPTIVE_THRESH_GAUSSIAN_C, cv.\n THRESH_BINARY, 21, 15)\n', (4382, 4458), True, 'import cv2 as cv\n'), ((4481, 4512), 'cv2.imwrite', 'cv.imwrite', (['"""scanned.jpg"""', 'warp'], {}), "('scanned.jpg', warp)\n", (4491, 4512), True, 'import cv2 as cv\n'), ((4522, 4560), 'cv2.imwrite', 'cv.imwrite', (['"""white effect.jpg"""', 'thresh'], {}), "('white effect.jpg', thresh)\n", (4532, 4560), True, 'import cv2 as cv\n'), ((1829, 1850), 'cv2.arcLength', 'cv.arcLength', (['i', '(True)'], {}), '(i, True)\n', (1841, 1850), True, 'import cv2 as cv\n'), ((1869, 1906), 'cv2.approxPolyDP', 'cv.approxPolyDP', (['i', '(0.08 * elip)', '(True)'], {}), '(i, 0.08 * elip, True)\n', (1884, 1906), True, 'import cv2 as cv\n'), ((3235, 3249), 'numpy.argmin', 'np.argmin', (['Sum'], {}), '(Sum)\n', (3244, 3249), True, 'import numpy as np\n'), ((3273, 3287), 'numpy.argmax', 'np.argmax', (['Sum'], {}), '(Sum)\n', (3282, 3287), True, 'import numpy as np\n'), ((3348, 3363), 'numpy.argmin', 'np.argmin', (['Diff'], {}), '(Diff)\n', (3357, 3363), True, 'import numpy as np\n'), ((3387, 3402), 'numpy.argmax', 'np.argmax', (['Diff'], {}), '(Diff)\n', (3396, 3402), True, 'import numpy as np\n')]
import tensorflow as tf import numpy as np (x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data() x_train, x_test = np.array(x_train/255.0,dtype="<f4"), np.array(x_test/255.0,dtype="<f4") idx=np.argsort(y_train.flatten()) vdx=np.array([6000*i+j for i in range(10) for j in range(5400,6000)]) tdx=np.array([6000*i+j for i in range(10) for j in range(5400)]) x_val, y_val = x_train[idx[vdx]] , y_train[idx[vdx]] x_train, y_train = x_train[idx[tdx]] , y_train[idx[tdx]] idx=np.random.permutation(54000) x_train, y_train = tf.convert_to_tensor(x_train[idx]) , tf.convert_to_tensor(y_train[idx]) idx=np.random.permutation(6000) x_val, y_val = tf.convert_to_tensor(x_val[idx]) , tf.convert_to_tensor(y_val[idx]) x_test, y_test = tf.convert_to_tensor(x_test) , tf.convert_to_tensor(y_test)
[ "numpy.random.permutation", "tensorflow.convert_to_tensor", "numpy.array", "tensorflow.keras.datasets.mnist.load_data" ]
[((86, 121), 'tensorflow.keras.datasets.mnist.load_data', 'tf.keras.datasets.mnist.load_data', ([], {}), '()\n', (119, 121), True, 'import tensorflow as tf\n'), ((508, 536), 'numpy.random.permutation', 'np.random.permutation', (['(54000)'], {}), '(54000)\n', (529, 536), True, 'import numpy as np\n'), ((636, 663), 'numpy.random.permutation', 'np.random.permutation', (['(6000)'], {}), '(6000)\n', (657, 663), True, 'import numpy as np\n'), ((141, 179), 'numpy.array', 'np.array', (['(x_train / 255.0)'], {'dtype': '"""<f4"""'}), "(x_train / 255.0, dtype='<f4')\n", (149, 179), True, 'import numpy as np\n'), ((178, 215), 'numpy.array', 'np.array', (['(x_test / 255.0)'], {'dtype': '"""<f4"""'}), "(x_test / 255.0, dtype='<f4')\n", (186, 215), True, 'import numpy as np\n'), ((557, 591), 'tensorflow.convert_to_tensor', 'tf.convert_to_tensor', (['x_train[idx]'], {}), '(x_train[idx])\n', (577, 591), True, 'import tensorflow as tf\n'), ((594, 628), 'tensorflow.convert_to_tensor', 'tf.convert_to_tensor', (['y_train[idx]'], {}), '(y_train[idx])\n', (614, 628), True, 'import tensorflow as tf\n'), ((680, 712), 'tensorflow.convert_to_tensor', 'tf.convert_to_tensor', (['x_val[idx]'], {}), '(x_val[idx])\n', (700, 712), True, 'import tensorflow as tf\n'), ((715, 747), 'tensorflow.convert_to_tensor', 'tf.convert_to_tensor', (['y_val[idx]'], {}), '(y_val[idx])\n', (735, 747), True, 'import tensorflow as tf\n'), ((768, 796), 'tensorflow.convert_to_tensor', 'tf.convert_to_tensor', (['x_test'], {}), '(x_test)\n', (788, 796), True, 'import tensorflow as tf\n'), ((799, 827), 'tensorflow.convert_to_tensor', 'tf.convert_to_tensor', (['y_test'], {}), '(y_test)\n', (819, 827), True, 'import tensorflow as tf\n')]
import numpy as np import mido from mido import Message, MidiFile, MidiTrack import argparse from functools import partial def main(): #Get options from input parser = argparse.ArgumentParser(description='Superpermutation to midi converter') parser.add_argument('inputfile', help='The file containing the superpermutation to convert.') parser.add_argument('outputfile', nargs='?', default='inputfile', help='The file to store the midi output in.') parser.add_argument('-s', '--scale', nargs='?', default="default", help='Scale to translate the numbers into. Possible scales:\ major, natural-minor, harmonic-minor, whole-note') parser.add_argument('-p', '--play', action='store_true', help='Play back the midifile when running the script(requires python-rtmidi)') parser.add_argument('-I', '--instrument', default=46, help='General MIDI instrument number from 0 to 127. Default: 46 (harp)') parser.add_argument('-l', '--note_length', default='edge-weight', help='The method to decide note lengths.\ Possible values are: edge-weight, free-space, even') args = parser.parse_args() input_string = open(args.inputfile, 'r').read().strip() superpermutation = np.array(list(input_string), dtype=int) #Make sure it is zero indexed superpermutation -= superpermutation.min() N = superpermutation.max() + 1 note_lengths = np.zeros_like(superpermutation) scale = args.scale if args.scale == "default": if N == 7: scale = "major" elif N == 6: scale = "whole-note" elif N == 5: scale = "major-pentatonic" scaleFunction = { "major" : partial(numberToScale, scale=Scales.major), "natural-minor" : partial(numberToScale, scale=Scales.natural_minor), "harmonic-minor" : partial(numberToScale, scale=Scales.harmonic_minor), "whole-note" : partial(numberToScale, scale=Scales.whole_note), "major-pentatonic": partial(numberToScale, scale=Scales.major_pentatonic), "miyako-bushi" : partial(numberToScale, scale=Scales.miyako_bushi) }.get(scale, "major") if args.note_length == 'free-space': for i, number in enumerate(superpermutation): num_perms = 0 # Length based on how far it is to the same value on both sides for j in range(1, N): if i-j < 0 or superpermutation[i-j] == number: break num_perms += 1 for j in range(1, N): if i+j >= superpermutation.size or superpermutation[i+j] == number: break num_perms += 1 note_lengths[i] = num_perms - N + 1 elif args.note_length == 'edge-weight': for i, number in enumerate(superpermutation): weight = 0 for j in range(i+1, i+N+1): if j >= N and j < superpermutation.size: if isLegalPermutation(superpermutation[j-N:j]): break; weight += 1 note_lengths[i] = N - weight - 1 else: note_lengths[:] = N - 1 # Fix the end values note_lengths[0:N-1] = N - 1 mid = MidiFile() track = MidiTrack() mid.tracks.append(track) track.append(Message('program_change', program=args.instrument, time=0)) for i in range(superpermutation.size): note = scaleFunction(superpermutation[i]) track.append(Message('note_on', note=note, time=0)) track.append(Message('note_off', note=note, time=2**(note_lengths[i] + 10 - N))) if args.outputfile == "inputfile": mid.save(args.inputfile.split('.')[0] + ".mid") else: mid.save(args.outputfile) if args.play: port = mido.open_output() for msg in mid.play(): port.send(msg) def isLegalPermutation(array): if np.unique(array).size == array.size: return True else: return False def numberToScale(number, scale, base_note=64): octave = number // scale.__len__() note = number % scale.__len__() return base_note + octave*12 + scale.get(note, 0) class Scales: whole_note = {number: 2*number for number in range(7)} major = { 0: 0, 1: 2, 2: 4, 3: 5, 4: 7, 5: 9, 6: 11 } natural_minor = { 0: 0, 1: 2, 2: 3, 3: 5, 4: 7, 5: 8, 6: 10 } harmonic_minor = { 0: 0, 1: 2, 2: 3, 3: 5, 4: 7, 5: 8, 6: 11 } major_pentatonic = { 0: 0, 1: 2, 2: 4, 3: 7, 4: 9 } miyako_bushi = { 0: 0, 1: 1, 2: 5, 3: 7, 4: 8 } if __name__ == "__main__": main()
[ "functools.partial", "numpy.zeros_like", "argparse.ArgumentParser", "mido.MidiFile", "mido.Message", "mido.MidiTrack", "mido.open_output", "numpy.unique" ]
[((178, 251), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Superpermutation to midi converter"""'}), "(description='Superpermutation to midi converter')\n", (201, 251), False, 'import argparse\n'), ((1550, 1581), 'numpy.zeros_like', 'np.zeros_like', (['superpermutation'], {}), '(superpermutation)\n', (1563, 1581), True, 'import numpy as np\n'), ((3400, 3410), 'mido.MidiFile', 'MidiFile', ([], {}), '()\n', (3408, 3410), False, 'from mido import Message, MidiFile, MidiTrack\n'), ((3423, 3434), 'mido.MidiTrack', 'MidiTrack', ([], {}), '()\n', (3432, 3434), False, 'from mido import Message, MidiFile, MidiTrack\n'), ((3482, 3540), 'mido.Message', 'Message', (['"""program_change"""'], {'program': 'args.instrument', 'time': '(0)'}), "('program_change', program=args.instrument, time=0)\n", (3489, 3540), False, 'from mido import Message, MidiFile, MidiTrack\n'), ((3960, 3978), 'mido.open_output', 'mido.open_output', ([], {}), '()\n', (3976, 3978), False, 'import mido\n'), ((3658, 3695), 'mido.Message', 'Message', (['"""note_on"""'], {'note': 'note', 'time': '(0)'}), "('note_on', note=note, time=0)\n", (3665, 3695), False, 'from mido import Message, MidiFile, MidiTrack\n'), ((3718, 3786), 'mido.Message', 'Message', (['"""note_off"""'], {'note': 'note', 'time': '(2 ** (note_lengths[i] + 10 - N))'}), "('note_off', note=note, time=2 ** (note_lengths[i] + 10 - N))\n", (3725, 3786), False, 'from mido import Message, MidiFile, MidiTrack\n'), ((4076, 4092), 'numpy.unique', 'np.unique', (['array'], {}), '(array)\n', (4085, 4092), True, 'import numpy as np\n'), ((1852, 1894), 'functools.partial', 'partial', (['numberToScale'], {'scale': 'Scales.major'}), '(numberToScale, scale=Scales.major)\n', (1859, 1894), False, 'from functools import partial\n'), ((1924, 1974), 'functools.partial', 'partial', (['numberToScale'], {'scale': 'Scales.natural_minor'}), '(numberToScale, scale=Scales.natural_minor)\n', (1931, 1974), False, 'from functools import partial\n'), ((2004, 2055), 'functools.partial', 'partial', (['numberToScale'], {'scale': 'Scales.harmonic_minor'}), '(numberToScale, scale=Scales.harmonic_minor)\n', (2011, 2055), False, 'from functools import partial\n'), ((2085, 2132), 'functools.partial', 'partial', (['numberToScale'], {'scale': 'Scales.whole_note'}), '(numberToScale, scale=Scales.whole_note)\n', (2092, 2132), False, 'from functools import partial\n'), ((2162, 2215), 'functools.partial', 'partial', (['numberToScale'], {'scale': 'Scales.major_pentatonic'}), '(numberToScale, scale=Scales.major_pentatonic)\n', (2169, 2215), False, 'from functools import partial\n'), ((2245, 2294), 'functools.partial', 'partial', (['numberToScale'], {'scale': 'Scales.miyako_bushi'}), '(numberToScale, scale=Scales.miyako_bushi)\n', (2252, 2294), False, 'from functools import partial\n')]
""" This module implements the intermediates computation for plot(df) function. """ # pylint: disable=too-many-lines from collections import defaultdict from typing import Any, DefaultDict, Dict, List, Optional, Tuple, Union, cast import dask import dask.array as da import dask.dataframe as dd import numpy as np import pandas as pd from dask.array.stats import kurtosis, skew from nltk.stem import PorterStemmer, WordNetLemmatizer from scipy.stats import gaussian_kde from ...assets.english_stopwords import english_stopwords from ...errors import UnreachableError from ..dtypes import ( Continuous, DateTime, DType, DTypeDef, Nominal, detect_dtype, drop_null, is_dtype, ) from ..intermediate import Intermediate from ..utils import to_dask __all__ = ["compute"] # Dictionary for mapping the time unit to its formatting. Each entry is of the # form unit:(unit code for pd.Grouper freq parameter, pandas to_period strftime # formatting for line charts, pandas to_period strftime formatting for box plot, # label format). DTMAP = { "year": ("Y", "%Y", "%Y", "Year"), "quarter": ("Q", "Q%q %Y", "Q%q %Y", "Quarter"), "month": ("M", "%B %Y", "%b %Y", "Month"), "week": ("W-SAT", "%d %B, %Y", "%d %b, %Y", "Week of"), "day": ("D", "%d %B, %Y", "%d %b, %Y", "Date"), "hour": ("H", "%d %B, %Y, %I %p", "%d %b, %Y, %I %p", "Hour"), "minute": ("T", "%d %B, %Y, %I:%M %p", "%d %b, %Y, %I:%M %p", "Minute"), "second": ("S", "%d %B, %Y, %I:%M:%S %p", "%d %b, %Y, %I:%M:%S %p", "Second"), } def compute( df: Union[pd.DataFrame, dd.DataFrame], x: Optional[str] = None, y: Optional[str] = None, z: Optional[str] = None, *, bins: int = 10, ngroups: int = 10, largest: bool = True, nsubgroups: int = 5, timeunit: str = "auto", agg: str = "mean", sample_size: int = 1000, top_words: int = 30, stopword: bool = True, lemmatize: bool = False, stem: bool = False, value_range: Optional[Tuple[float, float]] = None, dtype: Optional[DTypeDef] = None, ) -> Intermediate: """ Parameters ---------- df Dataframe from which plots are to be generated x: Optional[str], default None A valid column name from the dataframe y: Optional[str], default None A valid column name from the dataframe z: Optional[str], default None A valid column name from the dataframe bins: int, default 10 For a histogram or box plot with numerical x axis, it defines the number of equal-width bins to use when grouping. ngroups: int, default 10 When grouping over a categorical column, it defines the number of groups to show in the plot. Ie, the number of bars to show in a bar chart. largest: bool, default True If true, when grouping over a categorical column, the groups with the largest count will be output. If false, the groups with the smallest count will be output. nsubgroups: int, default 5 If x and y are categorical columns, ngroups refers to how many groups to show from column x, and nsubgroups refers to how many subgroups to show from column y in each group in column x. timeunit: str, default "auto" Defines the time unit to group values over for a datetime column. It can be "year", "quarter", "month", "week", "day", "hour", "minute", "second". With default value "auto", it will use the time unit such that the resulting number of groups is closest to 15. agg: str, default "mean" Specify the aggregate to use when aggregating over a numeric column sample_size: int, default 1000 Sample size for the scatter plot top_words: int, default 30 Specify the amount of words to show in the wordcloud and word frequency bar chart stopword: bool, default True Eliminate the stopwords in the text data for plotting wordcloud and word frequency bar chart lemmatize: bool, default False Lemmatize the words in the text data for plotting wordcloud and word frequency bar chart stem: bool, default False Apply Potter Stem on the text data for plotting wordcloud and word frequency bar chart value_range: Optional[Tuple[float, float]], default None The lower and upper bounds on the range of a numerical column. Applies when column x is specified and column y is unspecified. dtype: str or DType or dict of str or dict of DType, default None Specify Data Types for designated column or all columns. E.g. dtype = {"a": Continuous, "b": "Nominal"} or dtype = {"a": Continuous(), "b": "nominal"} or dtype = Continuous() or dtype = "Continuous" or dtype = Continuous() """ # pylint: disable=too-many-locals df = to_dask(df) if not any((x, y, z)): return compute_overview(df, bins, ngroups, largest, timeunit, dtype) if sum(v is None for v in (x, y, z)) == 2: col: str = cast(str, x or y or z) return compute_univariate( df, col, bins, ngroups, largest, timeunit, top_words, stopword, lemmatize, stem, value_range, dtype, ) if sum(v is None for v in (x, y, z)) == 1: x, y = (v for v in (x, y, z) if v is not None) return compute_bivariate( df, x, y, bins, ngroups, largest, nsubgroups, timeunit, agg, sample_size, dtype, ) if x is not None and y is not None and z is not None: return compute_trivariate(df, x, y, z, ngroups, largest, timeunit, agg, dtype) return Intermediate() def compute_overview( df: dd.DataFrame, bins: int, ngroups: int, largest: bool, timeunit: str, dtype: Optional[DTypeDef] = None, ) -> Intermediate: # pylint: disable=too-many-arguments,too-many-locals """ Compute functions for plot(df) Parameters ---------- df Dataframe from which plots are to be generated bins For a histogram or box plot with numerical x axis, it defines the number of equal-width bins to use when grouping. ngroups When grouping over a categorical column, it defines the number of groups to show in the plot. Ie, the number of bars to show in a bar chart. largest If true, when grouping over a categorical column, the groups with the largest count will be output. If false, the groups with the smallest count will be output. timeunit Defines the time unit to group values over for a datetime column. It can be "year", "quarter", "month", "week", "day", "hour", "minute", "second". With default value "auto", it will use the time unit such that the resulting number of groups is closest to 15. dtype: str or DType or dict of str or dict of DType, default None Specify Data Types for designated column or all columns. E.g. dtype = {"a": Continuous, "b": "Nominal"} or dtype = {"a": Continuous(), "b": "nominal"} or dtype = Continuous() or dtype = "Continuous" or dtype = Continuous() """ # extract the first rows for checking if a column contains a mutable type first_rows: pd.DataFrame = df.head() # dd.DataFrame.head triggers a (small) data read datas: List[Any] = [] dtype_cnts: DefaultDict[str, int] = defaultdict(int) col_names_dtypes: List[Tuple[str, DType]] = [] for column in df.columns: srs = df[column] column_dtype = detect_dtype(srs, dtype) if is_dtype(column_dtype, Nominal()): # cast the column as string type if it contains a mutable type try: first_rows[column].apply(hash) except TypeError: srs = df[column] = srs.dropna().astype(str) # bar chart datas.append(calc_bar(srs, ngroups, largest)) col_names_dtypes.append((column, Nominal())) dtype_cnts["Categorical"] += 1 elif is_dtype(column_dtype, Continuous()): # histogram hist = da.histogram(drop_null(srs), bins=bins, range=[srs.min(), srs.max()]) datas.append(hist) col_names_dtypes.append((column, Continuous())) dtype_cnts["Numerical"] += 1 elif is_dtype(column_dtype, DateTime()): datas.append(dask.delayed(calc_line_dt)(df[[column]], timeunit)) col_names_dtypes.append((column, DateTime())) dtype_cnts["DateTime"] += 1 else: raise UnreachableError stats = calc_stats(df, dtype_cnts) datas, stats = dask.compute(datas, stats) data = [(col, dtp, dat) for (col, dtp), dat in zip(col_names_dtypes, datas)] return Intermediate(data=data, stats=stats, visual_type="distribution_grid",) def compute_univariate( df: dd.DataFrame, x: str, bins: int, ngroups: int, largest: bool, timeunit: str, top_words: int, stopword: bool = True, lemmatize: bool = False, stem: bool = False, value_range: Optional[Tuple[float, float]] = None, dtype: Optional[DTypeDef] = None, ) -> Intermediate: """ Compute functions for plot(df, x) Parameters ---------- df Dataframe from which plots are to be generated x A valid column name from the dataframe bins For a histogram or box plot with numerical x axis, it defines the number of equal-width bins to use when grouping. ngroups When grouping over a categorical column, it defines the number of groups to show in the plot. Ie, the number of bars to show in a bar chart. largest If true, when grouping over a categorical column, the groups with the largest count will be output. If false, the groups with the smallest count will be output. timeunit Defines the time unit to group values over for a datetime column. It can be "year", "quarter", "month", "week", "day", "hour", "minute", "second". With default value "auto", it will use the time unit such that the resulting number of groups is closest to 15. top_words: int, default 30 Specify the amount of words to show in the wordcloud and word frequency bar chart stopword: bool, default True Eliminate the stopwords in the text data for plotting wordcloud and word frequency bar chart lemmatize: bool, default False Lemmatize the words in the text data for plotting wordcloud and word frequency bar chart stem: bool, default False Apply Potter Stem on the text data for plotting wordcloud and word frequency bar chart value_range The lower and upper bounds on the range of a numerical column. Applies when column x is specified and column y is unspecified. dtype: str or DType or dict of str or dict of DType, default None Specify Data Types for designated column or all columns. E.g. dtype = {"a": Continuous, "b": "Nominal"} or dtype = {"a": Continuous(), "b": "nominal"} or dtype = Continuous() or dtype = "Continuous" or dtype = Continuous() """ # pylint: disable=too-many-locals, too-many-arguments col_dtype = detect_dtype(df[x], dtype) if is_dtype(col_dtype, Nominal()): # extract the column df_x = df[x] # calculate the total rows nrows = df_x.shape[0] # cast the column as string type if it contains a mutable type if df_x.head().apply(lambda x: hasattr(x, "__hash__")).any(): # drop_null() will not work if the column conatains a mutable type df_x = df_x.dropna().astype(str) # drop null values df_x = drop_null(df_x) # calc_word_freq() returns the frequency of words (for the word cloud and word # frequency bar chart) and the total number of words word_data = calc_word_freq(df_x, top_words, stopword, lemmatize, stem) # calc_cat_stats() computes all the categorical stats including the length # histogram. calc_bar_pie() does the calculations for the bar and pie charts # NOTE this dictionary could be returned to create_report without # calling the subsequent compute cat_data = { "stats": calc_cat_stats(df_x, nrows, bins), "bar_pie": calc_bar_pie(df_x, ngroups, largest), "word_data": word_data, } cat_data = dask.compute(cat_data)[0] return Intermediate( col=x, stats=cat_data["stats"], bar_pie=cat_data["bar_pie"], word_data=cat_data["word_data"], visual_type="categorical_column", ) elif is_dtype(col_dtype, Continuous()): # calculate the total number of rows then drop the missing values nrows = df.shape[0] df_x = drop_null(df[x]) if value_range is not None: df_x = df_x[df_x.between(*value_range)] # TODO perhaps we should not use to_dask() on the entire # initial dataframe and instead only use the column of data # df_x = df_x.repartition(partition_size="100MB") # calculate numerical statistics and extract the min and max num_stats = calc_num_stats(df_x, nrows) minv, maxv = num_stats["min"], num_stats["max"] # NOTE this dictionary could be returned to create_report without # calling the subsequent compute num_data = { "hist": da.histogram(df_x, bins=bins, range=[minv, maxv]), "kde": calc_kde(df_x, bins, minv, maxv), "box_data": calc_box_new(df_x, num_stats["qntls"]), "stats": num_stats, } num_data = dask.compute(num_data)[0] return Intermediate( col=x, hist=num_data["hist"], kde=num_data["kde"], box_data=num_data["box_data"], stats=num_data["stats"], visual_type="numerical_column", ) elif is_dtype(col_dtype, DateTime()): data_dt: List[Any] = [] # line chart data_dt.append(dask.delayed(calc_line_dt)(df[[x]], timeunit)) # stats data_dt.append(dask.delayed(calc_stats_dt)(df[x])) data, statsdata_dt = dask.compute(*data_dt) return Intermediate( col=x, data=data, stats=statsdata_dt, visual_type="datetime_column", ) else: raise UnreachableError def compute_bivariate( df: dd.DataFrame, x: str, y: str, bins: int, ngroups: int, largest: bool, nsubgroups: int, timeunit: str, agg: str, sample_size: int, dtype: Optional[DTypeDef] = None, ) -> Intermediate: """ Compute functions for plot(df, x, y) Parameters ---------- df Dataframe from which plots are to be generated x A valid column name from the dataframe y A valid column name from the dataframe bins For a histogram or box plot with numerical x axis, it defines the number of equal-width bins to use when grouping. ngroups When grouping over a categorical column, it defines the number of groups to show in the plot. Ie, the number of bars to show in a bar chart. largest If true, when grouping over a categorical column, the groups with the largest count will be output. If false, the groups with the smallest count will be output. nsubgroups If x and y are categorical columns, ngroups refers to how many groups to show from column x, and nsubgroups refers to how many subgroups to show from column y in each group in column x. timeunit Defines the time unit to group values over for a datetime column. It can be "year", "quarter", "month", "week", "day", "hour", "minute", "second". With default value "auto", it will use the time unit such that the resulting number of groups is closest to 15. agg Specify the aggregate to use when aggregating over a numeric column sample_size Sample size for the scatter plot dtype: str or DType or dict of str or dict of DType, default None Specify Data Types for designated column or all columns. E.g. dtype = {"a": Continuous, "b": "Nominal"} or dtype = {"a": Continuous(), "b": "nominal"} or dtype = Continuous() or dtype = "Continuous" or dtype = Continuous() """ # pylint: disable=too-many-arguments,too-many-locals xtype = detect_dtype(df[x], dtype) ytype = detect_dtype(df[y], dtype) if ( is_dtype(xtype, Nominal()) and is_dtype(ytype, Continuous()) or is_dtype(xtype, Continuous()) and is_dtype(ytype, Nominal()) ): x, y = (x, y) if is_dtype(xtype, Nominal()) else (y, x) df = drop_null(df[[x, y]]) df[x] = df[x].apply(str, meta=(x, str)) # box plot per group boxdata = calc_box(df, bins, ngroups, largest, dtype) # histogram per group hisdata = calc_hist_by_group(df, bins, ngroups, largest) return Intermediate( x=x, y=y, boxdata=boxdata, histdata=hisdata, visual_type="cat_and_num_cols", ) elif ( is_dtype(xtype, DateTime()) and is_dtype(ytype, Continuous()) or is_dtype(xtype, Continuous()) and is_dtype(ytype, DateTime()) ): x, y = (x, y) if is_dtype(xtype, DateTime()) else (y, x) df = drop_null(df[[x, y]]) dtnum: List[Any] = [] # line chart dtnum.append(dask.delayed(calc_line_dt)(df, timeunit, agg)) # box plot dtnum.append(dask.delayed(calc_box_dt)(df, timeunit)) dtnum = dask.compute(*dtnum) return Intermediate( x=x, y=y, linedata=dtnum[0], boxdata=dtnum[1], visual_type="dt_and_num_cols", ) elif ( is_dtype(xtype, DateTime()) and is_dtype(ytype, Nominal()) or is_dtype(xtype, Nominal()) and is_dtype(ytype, DateTime()) ): x, y = (x, y) if is_dtype(xtype, DateTime()) else (y, x) df = drop_null(df[[x, y]]) df[y] = df[y].apply(str, meta=(y, str)) dtcat: List[Any] = [] # line chart dtcat.append( dask.delayed(calc_line_dt)(df, timeunit, ngroups=ngroups, largest=largest) ) # stacked bar chart dtcat.append(dask.delayed(calc_stacked_dt)(df, timeunit, ngroups, largest)) dtcat = dask.compute(*dtcat) return Intermediate( x=x, y=y, linedata=dtcat[0], stackdata=dtcat[1], visual_type="dt_and_cat_cols", ) elif is_dtype(xtype, Nominal()) and is_dtype(ytype, Nominal()): df = drop_null(df[[x, y]]) df[x] = df[x].apply(str, meta=(x, str)) df[y] = df[y].apply(str, meta=(y, str)) # nested bar chart nesteddata = calc_nested(df, ngroups, nsubgroups) # stacked bar chart stackdata = calc_stacked(df, ngroups, nsubgroups) # heat map heatmapdata = calc_heatmap(df, ngroups, nsubgroups) return Intermediate( x=x, y=y, nesteddata=nesteddata, stackdata=stackdata, heatmapdata=heatmapdata, visual_type="two_cat_cols", ) elif is_dtype(xtype, Continuous()) and is_dtype(ytype, Continuous()): df = drop_null(df[[x, y]]) # scatter plot scatdata = calc_scatter(df, sample_size) # hexbin plot hexbindata = df.compute() # box plot boxdata = calc_box(df, bins) return Intermediate( x=x, y=y, scatdata=scatdata, boxdata=boxdata, hexbindata=hexbindata, spl_sz=sample_size, visual_type="two_num_cols", ) else: raise UnreachableError def compute_trivariate( df: dd.DataFrame, x: str, y: str, z: str, ngroups: int, largest: bool, timeunit: str, agg: str, dtype: Optional[DTypeDef] = None, ) -> Intermediate: """ Compute functions for plot(df, x, y, z) Parameters ---------- df Dataframe from which plots are to be generated x A valid column name from the dataframe y A valid column name from the dataframe z A valid column name from the dataframe bins For a histogram or box plot with numerical x axis, it defines the number of equal-width bins to use when grouping. ngroups When grouping over a categorical column, it defines the number of groups to show in the plot. Ie, the number of bars to show in a bar chart. largest If true, when grouping over a categorical column, the groups with the largest count will be output. If false, the groups with the smallest count will be output. timeunit Defines the time unit to group values over for a datetime column. It can be "year", "quarter", "month", "week", "day", "hour", "minute", "second". With default value "auto", it will use the time unit such that the resulting number of groups is closest to 15. agg Specify the aggregate to use when aggregating over a numeric column dtype: str or DType or dict of str or dict of DType, default None Specify Data Types for designated column or all columns. E.g. dtype = {"a": Continuous, "b": "Nominal"} or dtype = {"a": Continuous(), "b": "nominal"} or dtype = Continuous() or dtype = "Continuous" or dtype = Continuous() """ # pylint: disable=too-many-arguments xtype = detect_dtype(df[x], dtype) ytype = detect_dtype(df[y], dtype) ztype = detect_dtype(df[z], dtype) if ( is_dtype(xtype, DateTime()) and is_dtype(ytype, Nominal()) and is_dtype(ztype, Continuous()) ): y, z = z, y elif ( is_dtype(xtype, Continuous()) and is_dtype(ytype, DateTime()) and is_dtype(ztype, Nominal()) ): x, y = y, x elif ( is_dtype(xtype, Continuous()) and is_dtype(ytype, Nominal()) and is_dtype(ztype, DateTime()) ): x, y, z = z, x, y elif ( is_dtype(xtype, Nominal()) and is_dtype(ytype, DateTime()) and is_dtype(ztype, Continuous()) ): x, y, z = y, z, x elif ( is_dtype(xtype, Nominal()) and is_dtype(ytype, Continuous()) and is_dtype(ztype, DateTime()) ): x, z = z, x assert ( is_dtype(xtype, DateTime()) and is_dtype(ytype, Continuous()) and is_dtype(ztype, Nominal()) ), "x, y, and z must be one each of type datetime, numerical, and categorical" df = drop_null(df[[x, y, z]]) df[z] = df[z].apply(str, meta=(z, str)) # line chart data = dask.compute(dask.delayed(calc_line_dt)(df, timeunit, agg, ngroups, largest)) return Intermediate( x=x, y=y, z=z, agg=agg, data=data[0], visual_type="dt_cat_num_cols", ) def calc_line_dt( df: dd.DataFrame, unit: str, agg: Optional[str] = None, ngroups: Optional[int] = None, largest: Optional[bool] = None, ) -> Union[ Tuple[pd.DataFrame, Dict[str, int], str], Tuple[pd.DataFrame, str, float], Tuple[pd.DataFrame, str], ]: """ Calculate a line or multiline chart with date on the x axis. If df contains one datetime column, it will make a line chart of the frequency of values. If df contains a datetime and categorical column, it will compute the frequency of each categorical value in each time group. If df contains a datetime and numerical column, it will compute the aggregate of the numerical column grouped by the time groups. If df contains a datetime, categorical, and numerical column, it will compute the aggregate of the numerical column for values in the categorical column grouped by time. Parameters ---------- df A dataframe unit The unit of time over which to group the values agg Aggregate to use for the numerical column ngroups Number of groups for the categorical column largest Use the largest or smallest groups in the categorical column """ # pylint: disable=too-many-locals x = df.columns[0] # time column unit = _get_timeunit(df[x].min(), df[x].max(), 100) if unit == "auto" else unit if unit not in DTMAP.keys(): raise ValueError grouper = pd.Grouper(key=x, freq=DTMAP[unit][0]) # for grouping the time values # multiline charts if ngroups and largest: hist_dict: Dict[str, Tuple[np.ndarray, np.ndarray, List[str]]] = dict() hist_lst: List[Tuple[np.ndarray, np.ndarray, List[str]]] = list() agg = ( "freq" if agg is None else agg ) # default agg if unspecified for notational concision # categorical column for grouping over, each resulting group is a line in the chart grpby_col = df.columns[1] if len(df.columns) == 2 else df.columns[2] df, grp_cnt_stats, largest_grps = _calc_groups(df, grpby_col, ngroups, largest) groups = df.groupby([grpby_col]) for grp in largest_grps: srs = groups.get_group(grp) # calculate the frequencies or aggregate value in each time group if len(df.columns) == 3: dfr = srs.groupby(grouper)[df.columns[1]].agg(agg).reset_index() else: dfr = srs[x].to_frame().groupby(grouper).size().reset_index() dfr.columns = [x, agg] # if grouping by week, make the label for the week the beginning Sunday dfr[x] = dfr[x] - pd.to_timedelta(6, unit="d") if unit == "week" else dfr[x] # format the label dfr["lbl"] = dfr[x].dt.to_period("S").dt.strftime(DTMAP[unit][1]) hist_lst.append((list(dfr[agg]), list(dfr[x]), list(dfr["lbl"]))) hist_lst = dask.compute(*hist_lst) for elem in zip(largest_grps, hist_lst): hist_dict[elem[0]] = elem[1] return hist_dict, grp_cnt_stats, DTMAP[unit][3] # single line charts if agg is None: # frequency of datetime column miss_pct = round(df[x].isna().sum() / len(df) * 100, 1) dfr = drop_null(df).groupby(grouper).size().reset_index() dfr.columns = [x, "freq"] dfr["pct"] = dfr["freq"] / len(df) * 100 else: # aggregate over a second column dfr = df.groupby(grouper)[df.columns[1]].agg(agg).reset_index() dfr.columns = [x, agg] dfr[x] = dfr[x] - pd.to_timedelta(6, unit="d") if unit == "week" else dfr[x] dfr["lbl"] = dfr[x].dt.to_period("S").dt.strftime(DTMAP[unit][1]) return (dfr, DTMAP[unit][3], miss_pct) if agg is None else (dfr, DTMAP[unit][3]) def calc_box_dt( df: dd.DataFrame, unit: str ) -> Tuple[pd.DataFrame, List[str], List[float], str]: """ Calculate a box plot with date on the x axis. Parameters ---------- df A dataframe with one datetime and one numerical column unit The unit of time over which to group the values """ x, y = df.columns[0], df.columns[1] # time column unit = _get_timeunit(df[x].min(), df[x].max(), 10) if unit == "auto" else unit if unit not in DTMAP.keys(): raise ValueError grps = df.groupby(pd.Grouper(key=x, freq=DTMAP[unit][0])) # time groups # box plot for the values in each time group df = pd.concat([_calc_box_stats(g[1][y], g[0], True) for g in grps], axis=1,) df = df.append(pd.Series({c: i + 1 for i, c in enumerate(df.columns)}, name="x",)).T # If grouping by week, make the label for the week the beginning Sunday df.index = df.index - pd.to_timedelta(6, unit="d") if unit == "week" else df.index df.index.name = "grp" df = df.reset_index() df["grp"] = df["grp"].dt.to_period("S").dt.strftime(DTMAP[unit][2]) df["x0"], df["x1"] = df["x"] - 0.8, df["x"] - 0.2 # width of whiskers for plotting outx, outy = _calc_box_otlrs(df) return df, outx, outy, DTMAP[unit][3] def calc_stacked_dt( df: dd.DataFrame, unit: str, ngroups: int, largest: bool, ) -> Tuple[pd.DataFrame, Dict[str, int], str]: """ Calculate a stacked bar chart with date on the x axis Parameters ---------- df A dataframe with one datetime and one categorical column unit The unit of time over which to group the values ngroups Number of groups for the categorical column largest Use the largest or smallest groups in the categorical column """ # pylint: disable=too-many-locals x, y = df.columns[0], df.columns[1] # time column unit = _get_timeunit(df[x].min(), df[x].max(), 10) if unit == "auto" else unit if unit not in DTMAP.keys(): raise ValueError # get the largest groups df_grps, grp_cnt_stats, _ = _calc_groups(df, y, ngroups, largest) grouper = (pd.Grouper(key=x, freq=DTMAP[unit][0]),) # time grouper # pivot table of counts with date groups as index and categorical values as column names dfr = pd.pivot_table( df_grps, index=grouper, columns=y, aggfunc=len, fill_value=0, ).rename_axis(None) # if more than ngroups categorical values, aggregate the smallest groups into "Others" if grp_cnt_stats[f"{y}_ttl"] > grp_cnt_stats[f"{y}_shw"]: grp_cnts = df.groupby(pd.Grouper(key=x, freq=DTMAP[unit][0])).size() dfr["Others"] = grp_cnts - dfr.sum(axis=1) dfr.index = ( # If grouping by week, make the label for the week the beginning Sunday dfr.index - pd.to_timedelta(6, unit="d") if unit == "week" else dfr.index ) dfr.index = dfr.index.to_period("S").strftime(DTMAP[unit][2]) # format labels return dfr, grp_cnt_stats, DTMAP[unit][3] def calc_bar( srs: dd.Series, ngroups: int, largest: bool ) -> Tuple[dd.DataFrame, dd.core.Scalar, dd.core.Scalar]: """ Calculates the counts of categorical values, the total number of categorical values, and the number of non-null cells required for a bar chart in plot(df). Parameters ---------- srs One categorical column ngroups Number of groups to return largest If true, show the groups with the largest count, else show the groups with the smallest count """ # drop null values srs_present = drop_null(srs) # number of present (not null) values npresent = srs_present.shape[0] # counts of unique values in the series grps = srs_present.value_counts(sort=False) # total number of groups ttl_grps = grps.shape[0] # select the largest or smallest groups fnl_grp_cnts = grps.nlargest(ngroups) if largest else grps.nsmallest(ngroups) return fnl_grp_cnts.to_frame(), ttl_grps, npresent def calc_bar_pie( srs: dd.Series, ngroups: int, largest: bool ) -> Tuple[dd.DataFrame, dd.core.Scalar]: """ Calculates the counts of categorical values and the total number of categorical values required for the bar and pie charts in plot(df, x). Parameters ---------- srs One categorical column ngroups Number of groups to return largest If true, show the groups with the largest count, else show the groups with the smallest count """ # counts of unique values in the series grps = srs.value_counts(sort=False) # total number of groups ttl_grps = grps.shape[0] # select the largest or smallest groups fnl_grp_cnts = grps.nlargest(ngroups) if largest else grps.nsmallest(ngroups) return fnl_grp_cnts.to_frame(), ttl_grps def calc_word_freq( srs: dd.Series, top_words: int = 30, stopword: bool = True, lemmatize: bool = False, stem: bool = False, ) -> Tuple[dd.Series, dd.core.Scalar]: """ Parse a categorical column of text data into words, and then compute the frequency distribution of words and the total number of words. Parameters ---------- srs One categorical column top_words Number of highest frequency words to show in the wordcloud and word frequency bar chart stopword If True, remove stop words, else keep them lemmatize If True, lemmatize the words before computing the word frequencies, else don't stem If True, extract the stem of the words before computing the word frequencies, else don't """ # pylint: disable=unnecessary-lambda if stopword: # use a regex to replace stop words with empty string srs = srs.str.replace(r"\b(?:{})\b".format("|".join(english_stopwords)), "") # replace all non-alphanumeric characters with an empty string, and convert to lowercase srs = srs.str.replace(r"[^\w+ ]", "").str.lower() # split each string on whitespace into words then apply "explode()" to "stack" all # the words into a series # NOTE this is slow. One possibly better solution: after .split(), count the words # immediately rather than create a new series with .explode() and apply # .value_counts() srs = srs.str.split().explode() # lemmatize and stem if lemmatize or stem: srs = srs.dropna() if lemmatize: lem = WordNetLemmatizer() srs = srs.apply(lambda x: lem.lemmatize(x), meta=(srs.name, "object")) if stem: porter = PorterStemmer() srs = srs.apply(lambda x: porter.stem(x), meta=(srs.name, "object")) # counts of words, excludes null values word_cnts = srs.value_counts(sort=False) # total number of words nwords = word_cnts.sum() # words with the highest frequency fnl_word_cnts = word_cnts.nlargest(n=top_words) return fnl_word_cnts, nwords def calc_kde( srs: dd.Series, bins: int, minv: float, maxv: float, ) -> Tuple[Tuple[da.core.Array, da.core.Array], np.ndarray]: """ Calculate a density histogram and its corresponding kernel density estimate over a given series. The kernel is Gaussian. Parameters ---------- data One numerical column over which to compute the histogram and kde bins Number of bins to use in the histogram """ # compute the density histogram hist = da.histogram(srs, bins=bins, range=[minv, maxv], density=True) # probability density function for the series # NOTE gaussian_kde triggers a .compute() try: kde = gaussian_kde( srs.map_partitions(lambda x: x.sample(min(1000, x.shape[0])), meta=srs) ) except np.linalg.LinAlgError: kde = None return hist, kde def calc_box_new(srs: dd.Series, qntls: dd.Series) -> Dict[str, Any]: """ Calculate the data required for a box plot Parameters ---------- srs One numerical column from which to compute the box plot data qntls Quantiles from the normal Q-Q plot """ # box plot stats # inter-quartile range # TODO figure out how to extract a scalar from a Dask series without using a function like sum() qrtl1 = qntls.loc[0.25].sum() qrtl3 = qntls.loc[0.75].sum() iqr = qrtl3 - qrtl1 srs_iqr = srs[srs.between(qrtl1 - 1.5 * iqr, qrtl3 + 1.5 * iqr)] # outliers otlrs = srs[~srs.between(qrtl1 - 1.5 * iqr, qrtl3 + 1.5 * iqr)] # randomly sample at most 100 outliers from each partition without replacement otlrs = otlrs.map_partitions(lambda x: x.sample(min(100, x.shape[0])), meta=otlrs) box_data = { "grp": srs.name, "q1": qrtl1, "q2": qntls.loc[0.5].sum(), "q3": qrtl3, "lw": srs_iqr.min(), "uw": srs_iqr.max(), "otlrs": otlrs.values, "x": 1, # x, x0, and x1 are for plotting the box plot with bokeh "x0": 0.2, "x1": 0.8, } return box_data def calc_stats( df: dd.DataFrame, dtype_cnts: Dict[str, int] ) -> Dict[str, Union[int, dd.core.Scalar, Dict[str, int]]]: """ Calculate the statistics for plot(df) from a DataFrame Parameters ---------- df a DataFrame dtype_cnts a dictionary that contains the count for each type """ stats = { "nrows": df.shape[0], "ncols": df.shape[1], "npresent_cells": df.count().sum(), "nrows_wo_dups": df.drop_duplicates().shape[0], "mem_use": df.memory_usage(deep=True).sum(), "dtype_cnts": dtype_cnts, } return stats def calc_num_stats(srs: dd.Series, nrows: dd.core.Scalar,) -> Dict[str, Any]: """ Calculate statistics for a numerical column Parameters ---------- srs a numerical column nrows number of rows in the column before dropping null values """ stats = { "nrows": nrows, "npresent": srs.shape[0], "nunique": srs.nunique(), "ninfinite": ((srs == np.inf) | (srs == -np.inf)).sum(), "nzero": (srs == 0).sum(), "min": srs.min(), "max": srs.max(), "qntls": srs.quantile(np.linspace(0.01, 0.99, 99)), "mean": srs.mean(), "std": srs.std(), "skew": skew(srs), "kurt": kurtosis(srs), "mem_use": srs.memory_usage(), } return stats def calc_cat_stats( srs: dd.Series, nrows: int, bins: int, ) -> Tuple[Dict[str, Any], Dict[str, Any], Dict[str, Any]]: """ Calculate stats for a categorical column Parameters ---------- srs a categorical column nrows number of rows before dropping null values bins number of bins for the category length frequency histogram """ # overview stats stats = { "nrows": nrows, "npresent": srs.shape[0], "nunique": srs.nunique(), "mem_use": srs.memory_usage(), "first_rows": srs.loc[:4], } # length stats lengths = srs.str.len() minv, maxv = lengths.min(), lengths.max() hist = da.histogram(lengths.values, bins=bins, range=[minv, maxv]) length_stats = { "Mean": lengths.mean(), "Median": lengths.quantile(0.5), "Minimum": minv, "Maximum": maxv, "hist": hist, } # letter stats letter_stats = { "Count": srs.str.count(r"[a-zA-Z]").sum(), "Lowercase Letter": srs.str.count(r"[a-z]").sum(), "Space Separator": srs.str.count(r"[ ]").sum(), "Uppercase Letter": srs.str.count(r"[A-Z]").sum(), "Dash Punctuation": srs.str.count(r"[-]").sum(), "Decimal Number": srs.str.count(r"[0-9]").sum(), } return stats, length_stats, letter_stats def calc_box( df: dd.DataFrame, bins: int, ngroups: int = 10, largest: bool = True, dtype: Optional[DTypeDef] = None, ) -> Tuple[pd.DataFrame, List[str], List[float], Optional[Dict[str, int]]]: """ Compute a box plot over either 1) the values in one column 2) the values corresponding to groups in another column 3) the values corresponding to binning another column Parameters ---------- df Dataframe with one or two columns bins Number of bins to use if df has two numerical columns ngroups Number of groups to show if df has a categorical and numerical column largest When calculating a box plot per group, select the largest or smallest groups dtype: str or DType or dict of str or dict of DType, default None Specify Data Types for designated column or all columns. E.g. dtype = {"a": Continuous, "b": "Nominal"} or dtype = {"a": Continuous(), "b": "nominal"} or dtype = Continuous() or dtype = "Continuous" or dtype = Continuous() Returns ------- Tuple[pd.DataFrame, List[str], List[float], Dict[str, int]] The box plot statistics in a dataframe, a list of the outlier groups and another list of the outlier values, a dictionary logging the sampled group output """ # pylint: disable=too-many-locals grp_cnt_stats = None # to inform the user of sampled output x = df.columns[0] if len(df.columns) == 1: df = _calc_box_stats(df[x], x) else: y = df.columns[1] if is_dtype(detect_dtype(df[x], dtype), Continuous()) and is_dtype( detect_dtype(df[y], dtype), Continuous() ): minv, maxv, cnt = dask.compute(df[x].min(), df[x].max(), df[x].nunique()) bins = cnt if cnt < bins else bins endpts = np.linspace(minv, maxv, num=bins + 1) # calculate a box plot over each bin df = dd.concat( [ _calc_box_stats( df[(df[x] >= endpts[i]) & (df[x] < endpts[i + 1])][y], f"[{endpts[i]},{endpts[i + 1]})", ) if i != len(endpts) - 2 else _calc_box_stats( df[(df[x] >= endpts[i]) & (df[x] <= endpts[i + 1])][y], f"[{endpts[i]},{endpts[i + 1]}]", ) for i in range(len(endpts) - 1) ], axis=1, ).compute() endpts_df = pd.DataFrame( [endpts[:-1], endpts[1:]], ["lb", "ub"], df.columns ) df = pd.concat([df, endpts_df], axis=0) else: df, grp_cnt_stats, largest_grps = _calc_groups(df, x, ngroups, largest) # calculate a box plot over each group df = dd.concat( [_calc_box_stats(df[df[x] == grp][y], grp) for grp in largest_grps], axis=1, ).compute() df = df.append(pd.Series({c: i + 1 for i, c in enumerate(df.columns)}, name="x",)).T df.index.name = "grp" df = df.reset_index() df["x0"], df["x1"] = df["x"] - 0.8, df["x"] - 0.2 # width of whiskers for plotting outx, outy = _calc_box_otlrs(df) return df, outx, outy, grp_cnt_stats def calc_hist_by_group( df: dd.DataFrame, bins: int, ngroups: int, largest: bool ) -> Tuple[pd.DataFrame, Dict[str, int]]: """ Compute a histogram over the values corresponding to the groups in another column Parameters ---------- df Dataframe with one categorical and one numerical column bins Number of bins to use in the histogram ngroups Number of groups to show from the categorical column largest Select the largest or smallest groups Returns ------- Tuple[pd.DataFrame, Dict[str, int]] The histograms in a dataframe and a dictionary logging the sampled group output """ # pylint: disable=too-many-locals hist_dict: Dict[str, Tuple[np.ndarray, np.ndarray, List[str]]] = dict() hist_lst: List[Tuple[np.ndarray, np.ndarray, List[str]]] = list() df, grp_cnt_stats, largest_grps = _calc_groups(df, df.columns[0], ngroups, largest) # create a histogram for each group groups = df.groupby([df.columns[0]]) minv, maxv = dask.compute(df[df.columns[1]].min(), df[df.columns[1]].max()) for grp in largest_grps: grp_srs = groups.get_group(grp)[df.columns[1]] hist_arr, bins_arr = da.histogram(grp_srs, range=[minv, maxv], bins=bins) intervals = _format_bin_intervals(bins_arr) hist_lst.append((hist_arr, bins_arr, intervals)) hist_lst = dask.compute(*hist_lst) for elem in zip(largest_grps, hist_lst): hist_dict[elem[0]] = elem[1] return hist_dict, grp_cnt_stats def calc_scatter(df: dd.DataFrame, sample_size: int) -> pd.DataFrame: """ Extracts the points to use in a scatter plot Parameters ---------- df Dataframe with two numerical columns sample_size the number of points to randomly sample in the scatter plot Returns ------- pd.DataFrame A dataframe containing the scatter points """ if len(df) > sample_size: df = df.sample(frac=sample_size / len(df)) return df.compute() def calc_nested( df: dd.DataFrame, ngroups: int, nsubgroups: int, ) -> Tuple[pd.DataFrame, Dict[str, int]]: """ Calculate a nested bar chart of the counts of two columns Parameters ---------- df Dataframe with two categorical columns ngroups Number of groups to show from the first column nsubgroups Number of subgroups (from the second column) to show in each group Returns ------- Tuple[pd.DataFrame, Dict[str, int]] The bar chart counts in a dataframe and a dictionary logging the sampled group output """ x, y = df.columns[0], df.columns[1] df, grp_cnt_stats, _ = _calc_groups(df, x, ngroups) df2 = df.groupby([x, y]).size().reset_index() max_subcol_cnt = df2.groupby(x).size().max().compute() df2.columns = [x, y, "cnt"] df_res = ( df2.groupby(x)[[y, "cnt"]] .apply( lambda x: x.nlargest(n=nsubgroups, columns="cnt"), meta=({y: "f8", "cnt": "i8"}), ) .reset_index() .compute() ) df_res["grp_names"] = list(zip(df_res[x], df_res[y])) df_res = df_res.drop([x, "level_1", y], axis=1) grp_cnt_stats[f"{y}_ttl"] = max_subcol_cnt grp_cnt_stats[f"{y}_shw"] = min(max_subcol_cnt, nsubgroups) return df_res, grp_cnt_stats def calc_stacked( df: dd.DataFrame, ngroups: int, nsubgroups: int, ) -> Tuple[pd.DataFrame, Dict[str, int]]: """ Calculate a stacked bar chart of the counts of two columns Parameters ---------- df two categorical columns ngroups number of groups to show from the first column nsubgroups number of subgroups (from the second column) to show in each group Returns ------- Tuple[pd.DataFrame, Dict[str, int]] The bar chart counts in a dataframe and a dictionary logging the sampled group output """ x, y = df.columns[0], df.columns[1] df, grp_cnt_stats, largest_grps = _calc_groups(df, x, ngroups) fin_df = pd.DataFrame() for grp in largest_grps: df_grp = df[df[x] == grp] df_res = df_grp.groupby(y).size().nlargest(n=nsubgroups) / len(df_grp) * 100 df_res = df_res.to_frame().compute().T df_res.columns = list(df_res.columns) df_res["Others"] = 100 - df_res.sum(axis=1) fin_df = fin_df.append(df_res, sort=False) fin_df = fin_df.fillna(value=0) others = fin_df.pop("Others") if others.sum() > 1e-4: fin_df["Others"] = others fin_df.index = list(largest_grps) return fin_df, grp_cnt_stats def calc_heatmap( df: dd.DataFrame, ngroups: int, nsubgroups: int, ) -> Tuple[pd.DataFrame, Dict[str, int]]: """ Calculate a heatmap of the counts of two columns Parameters ---------- df Dataframe with two categorical columns ngroups Number of groups to show from the first column nsubgroups Number of subgroups (from the second column) to show in each group Returns ------- Tuple[pd.DataFrame, Dict[str, int]] The heatmap counts in a dataframe and a dictionary logging the sampled group output """ x, y = df.columns[0], df.columns[1] df, grp_cnt_stats, _ = _calc_groups(df, x, ngroups) srs = df.groupby(y).size() srs_lrgst = srs.nlargest(n=nsubgroups) largest_subgrps = list(srs_lrgst.index.compute()) df = df[df[y].isin(largest_subgrps)] df_res = df.groupby([x, y]).size().reset_index().compute() df_res.columns = ["x", "y", "cnt"] df_res = pd.pivot_table( df_res, index=["x", "y"], values="cnt", fill_value=0, aggfunc=np.sum, ).reset_index() grp_cnt_stats[f"{y}_ttl"] = len(srs.index.compute()) grp_cnt_stats[f"{y}_shw"] = len(largest_subgrps) return df_res, grp_cnt_stats def calc_stats_dt(srs: dd.Series) -> Dict[str, str]: """ Calculate stats from a datetime column Parameters ---------- srs a datetime column Returns ------- Dict[str, str] Dictionary that contains Overview """ size = len(srs) # include nan count = srs.count() # exclude nan uniq_count = srs.nunique() overview_dict = { "Distinct Count": uniq_count, "Unique (%)": uniq_count / count, "Missing": size - count, "Missing (%)": 1 - (count / size), "Memory Size": srs.memory_usage(), "Minimum": srs.min(), "Maximum": srs.max(), } return overview_dict def _calc_box_stats(grp_srs: dd.Series, grp: str, dlyd: bool = False) -> pd.DataFrame: """ Auxiliary function to calculate the Tukey box plot statistics dlyd is for if this function is called when dask is computing in parallel (dask.delayed) """ stats: Dict[str, Any] = dict() try: # this is a bad fix for the problem of when there is no data passed to this function if dlyd: qntls = np.round(grp_srs.quantile([0.25, 0.50, 0.75]), 3) else: qntls = np.round(grp_srs.quantile([0.25, 0.50, 0.75]).compute(), 3) stats["q1"], stats["q2"], stats["q3"] = qntls[0.25], qntls[0.50], qntls[0.75] except ValueError: stats["q1"], stats["q2"], stats["q3"] = np.nan, np.nan, np.nan iqr = stats["q3"] - stats["q1"] stats["lw"] = grp_srs[grp_srs >= stats["q1"] - 1.5 * iqr].min() stats["uw"] = grp_srs[grp_srs <= stats["q3"] + 1.5 * iqr].max() if not dlyd: stats["lw"], stats["uw"] = dask.compute(stats["lw"], stats["uw"]) otlrs = grp_srs[(grp_srs < stats["lw"]) | (grp_srs > stats["uw"])] if len(otlrs) > 100: # sample 100 outliers otlrs = otlrs.sample(frac=100 / len(otlrs)) stats["otlrs"] = list(otlrs) if dlyd else list(otlrs.compute()) return pd.DataFrame({grp: stats}) def _calc_box_otlrs(df: dd.DataFrame) -> Tuple[List[str], List[float]]: """ Calculate the outliers for a box plot """ outx: List[str] = [] # list for the outlier groups outy: List[float] = [] # list for the outlier values for ind in df.index: otlrs = df.loc[ind]["otlrs"] outx = outx + [df.loc[ind]["grp"]] * len(otlrs) outy = outy + otlrs return outx, outy def _calc_groups( df: dd.DataFrame, x: str, ngroups: int, largest: bool = True ) -> Tuple[dd.DataFrame, Dict[str, int], List[str]]: """ Auxillary function to parse the dataframe to consist of only the groups with the largest counts """ # group count statistics to inform the user of the sampled output grp_cnt_stats: Dict[str, int] = dict() srs = df.groupby(x).size() srs_lrgst = srs.nlargest(n=ngroups) if largest else srs.nsmallest(n=ngroups) try: largest_grps = list(srs_lrgst.index.compute()) grp_cnt_stats[f"{x}_ttl"] = len(srs.index.compute()) except AttributeError: largest_grps = list(srs_lrgst.index) grp_cnt_stats[f"{x}_ttl"] = len(srs.index) df = df[df[x].isin(largest_grps)] grp_cnt_stats[f"{x}_shw"] = len(largest_grps) return df, grp_cnt_stats, largest_grps def _format_bin_intervals(bins_arr: np.ndarray) -> List[str]: """ Auxillary function to format bin intervals in a histogram """ bins_arr = np.round(bins_arr, 3) bins_arr = [int(val) if float(val).is_integer() else val for val in bins_arr] intervals = [ f"[{bins_arr[i]}, {bins_arr[i + 1]})" for i in range(len(bins_arr) - 2) ] intervals.append(f"[{bins_arr[-2]},{bins_arr[-1]}]") return intervals def _get_timeunit(min_time: pd.Timestamp, max_time: pd.Timestamp, dflt: int) -> str: """ Auxillary function to find an appropriate time unit. Will find the time unit such that the number of time units are closest to dflt. """ dt_secs = { "year": 60 * 60 * 24 * 365, "quarter": 60 * 60 * 24 * 91, "month": 60 * 60 * 24 * 30, "week": 60 * 60 * 24 * 7, "day": 60 * 60 * 24, "hour": 60 * 60, "minute": 60, "second": 1, } time_rng_secs = (max_time - min_time).total_seconds() prev_bin_cnt, prev_unit = 0, "year" for unit, secs_in_unit in dt_secs.items(): cur_bin_cnt = time_rng_secs / secs_in_unit if abs(prev_bin_cnt - dflt) < abs(cur_bin_cnt - dflt): return prev_unit prev_bin_cnt = cur_bin_cnt prev_unit = unit return prev_unit
[ "pandas.DataFrame", "dask.array.stats.skew", "dask.delayed", "nltk.stem.PorterStemmer", "nltk.stem.WordNetLemmatizer", "dask.array.histogram", "typing.cast", "dask.array.stats.kurtosis", "pandas.pivot_table", "collections.defaultdict", "pandas.to_timedelta", "pandas.Grouper", "numpy.linspace", "dask.compute", "numpy.round", "pandas.concat" ]
[((7664, 7680), 'collections.defaultdict', 'defaultdict', (['int'], {}), '(int)\n', (7675, 7680), False, 'from collections import defaultdict\n'), ((8921, 8947), 'dask.compute', 'dask.compute', (['datas', 'stats'], {}), '(datas, stats)\n', (8933, 8947), False, 'import dask\n'), ((25009, 25047), 'pandas.Grouper', 'pd.Grouper', ([], {'key': 'x', 'freq': 'DTMAP[unit][0]'}), '(key=x, freq=DTMAP[unit][0])\n', (25019, 25047), True, 'import pandas as pd\n'), ((34802, 34864), 'dask.array.histogram', 'da.histogram', (['srs'], {'bins': 'bins', 'range': '[minv, maxv]', 'density': '(True)'}), '(srs, bins=bins, range=[minv, maxv], density=True)\n', (34814, 34864), True, 'import dask.array as da\n'), ((38471, 38530), 'dask.array.histogram', 'da.histogram', (['lengths.values'], {'bins': 'bins', 'range': '[minv, maxv]'}), '(lengths.values, bins=bins, range=[minv, maxv])\n', (38483, 38530), True, 'import dask.array as da\n'), ((43907, 43930), 'dask.compute', 'dask.compute', (['*hist_lst'], {}), '(*hist_lst)\n', (43919, 43930), False, 'import dask\n'), ((46579, 46593), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (46591, 46593), True, 'import pandas as pd\n'), ((50325, 50351), 'pandas.DataFrame', 'pd.DataFrame', (['{grp: stats}'], {}), '({grp: stats})\n', (50337, 50351), True, 'import pandas as pd\n'), ((51790, 51811), 'numpy.round', 'np.round', (['bins_arr', '(3)'], {}), '(bins_arr, 3)\n', (51798, 51811), True, 'import numpy as np\n'), ((5064, 5086), 'typing.cast', 'cast', (['str', '(x or y or z)'], {}), '(str, x or y or z)\n', (5068, 5086), False, 'from typing import Any, DefaultDict, Dict, List, Optional, Tuple, Union, cast\n'), ((26489, 26512), 'dask.compute', 'dask.compute', (['*hist_lst'], {}), '(*hist_lst)\n', (26501, 26512), False, 'import dask\n'), ((27890, 27928), 'pandas.Grouper', 'pd.Grouper', ([], {'key': 'x', 'freq': 'DTMAP[unit][0]'}), '(key=x, freq=DTMAP[unit][0])\n', (27900, 27928), True, 'import pandas as pd\n'), ((29488, 29526), 'pandas.Grouper', 'pd.Grouper', ([], {'key': 'x', 'freq': 'DTMAP[unit][0]'}), '(key=x, freq=DTMAP[unit][0])\n', (29498, 29526), True, 'import pandas as pd\n'), ((33814, 33833), 'nltk.stem.WordNetLemmatizer', 'WordNetLemmatizer', ([], {}), '()\n', (33831, 33833), False, 'from nltk.stem import PorterStemmer, WordNetLemmatizer\n'), ((33943, 33958), 'nltk.stem.PorterStemmer', 'PorterStemmer', ([], {}), '()\n', (33956, 33958), False, 'from nltk.stem import PorterStemmer, WordNetLemmatizer\n'), ((37665, 37674), 'dask.array.stats.skew', 'skew', (['srs'], {}), '(srs)\n', (37669, 37674), False, 'from dask.array.stats import kurtosis, skew\n'), ((37692, 37705), 'dask.array.stats.kurtosis', 'kurtosis', (['srs'], {}), '(srs)\n', (37700, 37705), False, 'from dask.array.stats import kurtosis, skew\n'), ((43729, 43781), 'dask.array.histogram', 'da.histogram', (['grp_srs'], {'range': '[minv, maxv]', 'bins': 'bins'}), '(grp_srs, range=[minv, maxv], bins=bins)\n', (43741, 43781), True, 'import dask.array as da\n'), ((50034, 50072), 'dask.compute', 'dask.compute', (["stats['lw']", "stats['uw']"], {}), "(stats['lw'], stats['uw'])\n", (50046, 50072), False, 'import dask\n'), ((12795, 12817), 'dask.compute', 'dask.compute', (['cat_data'], {}), '(cat_data)\n', (12807, 12817), False, 'import dask\n'), ((18083, 18103), 'dask.compute', 'dask.compute', (['*dtnum'], {}), '(*dtnum)\n', (18095, 18103), False, 'import dask\n'), ((23367, 23393), 'dask.delayed', 'dask.delayed', (['calc_line_dt'], {}), '(calc_line_dt)\n', (23379, 23393), False, 'import dask\n'), ((27119, 27147), 'pandas.to_timedelta', 'pd.to_timedelta', (['(6)'], {'unit': '"""d"""'}), "(6, unit='d')\n", (27134, 27147), True, 'import pandas as pd\n'), ((28267, 28295), 'pandas.to_timedelta', 'pd.to_timedelta', (['(6)'], {'unit': '"""d"""'}), "(6, unit='d')\n", (28282, 28295), True, 'import pandas as pd\n'), ((29648, 29724), 'pandas.pivot_table', 'pd.pivot_table', (['df_grps'], {'index': 'grouper', 'columns': 'y', 'aggfunc': 'len', 'fill_value': '(0)'}), '(df_grps, index=grouper, columns=y, aggfunc=len, fill_value=0)\n', (29662, 29724), True, 'import pandas as pd\n'), ((30152, 30180), 'pandas.to_timedelta', 'pd.to_timedelta', (['(6)'], {'unit': '"""d"""'}), "(6, unit='d')\n", (30167, 30180), True, 'import pandas as pd\n'), ((37565, 37592), 'numpy.linspace', 'np.linspace', (['(0.01)', '(0.99)', '(99)'], {}), '(0.01, 0.99, 99)\n', (37576, 37592), True, 'import numpy as np\n'), ((41017, 41054), 'numpy.linspace', 'np.linspace', (['minv', 'maxv'], {'num': '(bins + 1)'}), '(minv, maxv, num=bins + 1)\n', (41028, 41054), True, 'import numpy as np\n'), ((41735, 41800), 'pandas.DataFrame', 'pd.DataFrame', (['[endpts[:-1], endpts[1:]]', "['lb', 'ub']", 'df.columns'], {}), "([endpts[:-1], endpts[1:]], ['lb', 'ub'], df.columns)\n", (41747, 41800), True, 'import pandas as pd\n'), ((41848, 41882), 'pandas.concat', 'pd.concat', (['[df, endpts_df]'], {'axis': '(0)'}), '([df, endpts_df], axis=0)\n', (41857, 41882), True, 'import pandas as pd\n'), ((48113, 48201), 'pandas.pivot_table', 'pd.pivot_table', (['df_res'], {'index': "['x', 'y']", 'values': '"""cnt"""', 'fill_value': '(0)', 'aggfunc': 'np.sum'}), "(df_res, index=['x', 'y'], values='cnt', fill_value=0,\n aggfunc=np.sum)\n", (48127, 48201), True, 'import pandas as pd\n'), ((13840, 13889), 'dask.array.histogram', 'da.histogram', (['df_x'], {'bins': 'bins', 'range': '[minv, maxv]'}), '(df_x, bins=bins, range=[minv, maxv])\n', (13852, 13889), True, 'import dask.array as da\n'), ((14069, 14091), 'dask.compute', 'dask.compute', (['num_data'], {}), '(num_data)\n', (14081, 14091), False, 'import dask\n'), ((14615, 14637), 'dask.compute', 'dask.compute', (['*data_dt'], {}), '(*data_dt)\n', (14627, 14637), False, 'import dask\n'), ((18898, 18918), 'dask.compute', 'dask.compute', (['*dtcat'], {}), '(*dtcat)\n', (18910, 18918), False, 'import dask\n'), ((17939, 17965), 'dask.delayed', 'dask.delayed', (['calc_line_dt'], {}), '(calc_line_dt)\n', (17951, 17965), False, 'import dask\n'), ((18026, 18051), 'dask.delayed', 'dask.delayed', (['calc_box_dt'], {}), '(calc_box_dt)\n', (18038, 18051), False, 'import dask\n'), ((26224, 26252), 'pandas.to_timedelta', 'pd.to_timedelta', (['(6)'], {'unit': '"""d"""'}), "(6, unit='d')\n", (26239, 26252), True, 'import pandas as pd\n'), ((29942, 29980), 'pandas.Grouper', 'pd.Grouper', ([], {'key': 'x', 'freq': 'DTMAP[unit][0]'}), '(key=x, freq=DTMAP[unit][0])\n', (29952, 29980), True, 'import pandas as pd\n'), ((14464, 14490), 'dask.delayed', 'dask.delayed', (['calc_line_dt'], {}), '(calc_line_dt)\n', (14476, 14490), False, 'import dask\n'), ((14550, 14577), 'dask.delayed', 'dask.delayed', (['calc_stats_dt'], {}), '(calc_stats_dt)\n', (14562, 14577), False, 'import dask\n'), ((18685, 18711), 'dask.delayed', 'dask.delayed', (['calc_line_dt'], {}), '(calc_line_dt)\n', (18697, 18711), False, 'import dask\n'), ((18819, 18848), 'dask.delayed', 'dask.delayed', (['calc_stacked_dt'], {}), '(calc_stacked_dt)\n', (18831, 18848), False, 'import dask\n'), ((8663, 8689), 'dask.delayed', 'dask.delayed', (['calc_line_dt'], {}), '(calc_line_dt)\n', (8675, 8689), False, 'import dask\n')]
################################################################################ # Numba-DPPY # # Copyright 2020-2021 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ################################################################################ import dpctl import numpy as np import pytest from numba import njit import numba_dppy as dppy from numba_dppy.tests._helper import ( assert_auto_offloading, filter_strings, is_gen12, ) list_of_filter_strs = [ "opencl:gpu:0", "level_zero:gpu:0", "opencl:cpu:0", ] @pytest.fixture(params=list_of_filter_strs) def filter_str(request): return request.param list_of_trig_ops = [ "sin", "cos", "tan", "arcsin", "arccos", "arctan", "arctan2", "sinh", "cosh", "tanh", "arcsinh", "arccosh", "arctanh", "deg2rad", "rad2deg", "degrees", "radians", ] @pytest.fixture(params=list_of_trig_ops) def trig_op(request): return request.param list_of_dtypes = [ np.float32, np.float64, ] @pytest.fixture(params=list_of_trig_ops) def dtype(request): return request.param @pytest.fixture(params=list_of_dtypes) def input_arrays(request): # The size of input and out arrays to be used N = 2048 # Note: These inputs do not work for all of the functions and # can result in warnings. E.g. arccosh needs the range of values # to be greater than 0, while arccos needs them to be [-1,1]. # These warnings are relatively benign as NumPy will return "nan" # for such cases. a = np.array(np.random.random(N), request.param) b = np.array(np.random.random(N), request.param) return a, b @pytest.mark.parametrize("filter_str", filter_strings) def test_trigonometric_fn(filter_str, trig_op, input_arrays): # FIXME: Why does archcosh fail on Gen12 discrete graphics card? if trig_op == "arccosh" and is_gen12(filter_str): pytest.skip() a, b = input_arrays trig_fn = getattr(np, trig_op) actual = np.empty(shape=a.shape, dtype=a.dtype) expected = np.empty(shape=a.shape, dtype=a.dtype) if trig_op == "arctan2": @njit def f(a, b): return trig_fn(a, b) device = dpctl.SyclDevice(filter_str) with dpctl.device_context(device), assert_auto_offloading(): actual = f(a, b) expected = trig_fn(a, b) else: @njit def f(a): return trig_fn(a) device = dpctl.SyclDevice(filter_str) with dpctl.device_context(device), assert_auto_offloading(): actual = f(a) expected = trig_fn(a) np.testing.assert_allclose(actual, expected, rtol=1e-5, atol=0)
[ "dpctl.SyclDevice", "numba_dppy.tests._helper.assert_auto_offloading", "numpy.empty", "dpctl.device_context", "numpy.testing.assert_allclose", "pytest.fixture", "pytest.skip", "numpy.random.random", "numba_dppy.tests._helper.is_gen12", "pytest.mark.parametrize" ]
[((1088, 1130), 'pytest.fixture', 'pytest.fixture', ([], {'params': 'list_of_filter_strs'}), '(params=list_of_filter_strs)\n', (1102, 1130), False, 'import pytest\n'), ((1440, 1479), 'pytest.fixture', 'pytest.fixture', ([], {'params': 'list_of_trig_ops'}), '(params=list_of_trig_ops)\n', (1454, 1479), False, 'import pytest\n'), ((1585, 1624), 'pytest.fixture', 'pytest.fixture', ([], {'params': 'list_of_trig_ops'}), '(params=list_of_trig_ops)\n', (1599, 1624), False, 'import pytest\n'), ((1673, 1710), 'pytest.fixture', 'pytest.fixture', ([], {'params': 'list_of_dtypes'}), '(params=list_of_dtypes)\n', (1687, 1710), False, 'import pytest\n'), ((2219, 2272), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""filter_str"""', 'filter_strings'], {}), "('filter_str', filter_strings)\n", (2242, 2272), False, 'import pytest\n'), ((2553, 2591), 'numpy.empty', 'np.empty', ([], {'shape': 'a.shape', 'dtype': 'a.dtype'}), '(shape=a.shape, dtype=a.dtype)\n', (2561, 2591), True, 'import numpy as np\n'), ((2607, 2645), 'numpy.empty', 'np.empty', ([], {'shape': 'a.shape', 'dtype': 'a.dtype'}), '(shape=a.shape, dtype=a.dtype)\n', (2615, 2645), True, 'import numpy as np\n'), ((3173, 3237), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['actual', 'expected'], {'rtol': '(1e-05)', 'atol': '(0)'}), '(actual, expected, rtol=1e-05, atol=0)\n', (3199, 3237), True, 'import numpy as np\n'), ((2111, 2130), 'numpy.random.random', 'np.random.random', (['N'], {}), '(N)\n', (2127, 2130), True, 'import numpy as np\n'), ((2164, 2183), 'numpy.random.random', 'np.random.random', (['N'], {}), '(N)\n', (2180, 2183), True, 'import numpy as np\n'), ((2436, 2456), 'numba_dppy.tests._helper.is_gen12', 'is_gen12', (['filter_str'], {}), '(filter_str)\n', (2444, 2456), False, 'from numba_dppy.tests._helper import assert_auto_offloading, filter_strings, is_gen12\n'), ((2466, 2479), 'pytest.skip', 'pytest.skip', ([], {}), '()\n', (2477, 2479), False, 'import pytest\n'), ((2763, 2791), 'dpctl.SyclDevice', 'dpctl.SyclDevice', (['filter_str'], {}), '(filter_str)\n', (2779, 2791), False, 'import dpctl\n'), ((3014, 3042), 'dpctl.SyclDevice', 'dpctl.SyclDevice', (['filter_str'], {}), '(filter_str)\n', (3030, 3042), False, 'import dpctl\n'), ((2805, 2833), 'dpctl.device_context', 'dpctl.device_context', (['device'], {}), '(device)\n', (2825, 2833), False, 'import dpctl\n'), ((2835, 2859), 'numba_dppy.tests._helper.assert_auto_offloading', 'assert_auto_offloading', ([], {}), '()\n', (2857, 2859), False, 'from numba_dppy.tests._helper import assert_auto_offloading, filter_strings, is_gen12\n'), ((3056, 3084), 'dpctl.device_context', 'dpctl.device_context', (['device'], {}), '(device)\n', (3076, 3084), False, 'import dpctl\n'), ((3086, 3110), 'numba_dppy.tests._helper.assert_auto_offloading', 'assert_auto_offloading', ([], {}), '()\n', (3108, 3110), False, 'from numba_dppy.tests._helper import assert_auto_offloading, filter_strings, is_gen12\n')]
import tkinter from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2Tk from matplotlib.figure import Figure import requests from scipy.signal import medfilt from copy import deepcopy from json import loads import numpy as np with open('endomondo.config', 'r') as conf: username = conf.readline()[:-1] password = conf.readline() class Requester: def __init__(self, email, password): self.email = email self.password = password self.session = requests.session() self.cookies = {} self.headers = { 'User-Agent': 'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:72.0) Gecko/20100101 Firefox/72.0', 'Accept': 'application/json, text/plain, */*', 'Accept-Language': 'en-US,en;q=0.5', 'Referer': 'https://www.endomondo.com/home', 'Connection': 'keep-alive', 'Upgrade-Insecure-Requests': '1', 'Cache-Control': 'max-age=0', 'TE': 'Trailers', } self.data = '{"email":"' + self.email + '","password":"' + self.password + '","remember":true}' def login(self): # getting csrf token, jsessionid and awselb response = self.session.get('https://www.endomondo.com/', headers=self.headers, cookies=self.cookies) self.headers["X-CSRF-TOKEN"] = response.cookies["CSRF_TOKEN"] self.headers["Referer"] = "https://www.endomondo.com/login" self.headers["Origin"] = "https://www.endomondo.com" self.headers["Content-Type"] = "application/json;charset=utf-8" response2 = self.session.post('https://www.endomondo.com/rest/session', headers=self.headers, cookies=self.cookies, data=self.data) def get_workout(self, url): self.headers["Referer"] = url response = self.session.get("https://www.endomondo.com/rest/v1/" + url[26:], headers=self.headers, cookies=self.cookies) return response.content.decode('utf-8') class Training: class Plot: def __init__(self, data, y_label, line_color): self.raw_data = data self.data = data self.y_label = y_label self.line_color = line_color self.visible = True self.inherited = None def set_visible(self, boolean): self.visible = boolean def average(self, _i): self.data = medfilt(self.raw_data, _i) def __init__(self, json, line_type): self.decoded = loads(json) self.line_type = line_type self.name = self.decoded['id'] # creating all plots heart_rate = [] for i in range(len(self.decoded['points']['points'])): if "heart_rate" in self.decoded['points']['points'][i]['sensor_data']: heart_rate.append(self.decoded['points']['points'][i]['sensor_data']['heart_rate']) else: if heart_rate: heart_rate.append(heart_rate[-1]) else: heart_rate.append(0) self.plot_heart_rate = self.Plot(heart_rate, "[heart rate] = bpm", 'tab:red') self.distance = [self.decoded["points"]["points"][i]["distance"] for i in range(len(self. decoded['points']['points']))] speed = [] for i in range(len(self.decoded['points']['points'])): if "speed" in self.decoded['points']['points'][i]['sensor_data']: speed.append(self.decoded['points']['points'][i]['sensor_data']['speed']) else: if speed: speed.append(speed[-1]) else: speed.append(0) avg = np.average(speed) for j, i in enumerate(speed): try: speed[j] = 60 / i except ZeroDivisionError: speed[j] = 60 / avg self.plot_speed = self.Plot(speed, "[speed] = minpkm", 'tab:blue') alt = [] for i in range(len(self.decoded['points']['points'])): if "altitude" in self.decoded['points']['points'][i]: alt.append(self.decoded['points']['points'][i]['altitude']) else: if alt: alt.append(alt[-1]) else: alt.append(None) for j, i in enumerate(alt): if i is None: for el in alt[j:]: if el: alt[j] = el self.plot_altitude = self.Plot(alt, "[altitude] = m", 'tab:green') self.plot_speed.inherited = [self.distance, self.line_type, self.name] self.plot_altitude.inherited = [self.distance, self.line_type, self.name] self.plot_heart_rate.inherited = [self.distance, self.line_type, self.name] self.date = self.decoded["local_start_time"] self.empty_plot = self.Plot([0 for _ in range(len(self.decoded['points']['points']))], "", "tab:blue") self.empty_plot.set_visible(False) self.empty_plot.inherited = [self.distance, self.line_type, self.name] def txt_changed_0(txt): if len(txt) >= 50: Trainings[0] = Training(user.get_workout(txt), '-') plot(states) def txt_changed_1(txt): if not txt: Trainings.pop(1) if len(txt) >= 50: if len(Trainings) >= 2: Trainings[1] = Training(user.get_workout(txt), '--') else: Trainings.append(Training(user.get_workout(txt), '--')) plot(states) def txt_changed_2(txt): if not txt: Trainings.pop(2) if len(txt) >= 50: if len(Trainings) >= 3: Trainings[2] = Training(user.get_workout(txt), ':') else: Trainings.append(Training(user.get_workout(txt), ':')) plot(states) def txt_changed_3(txt): if not txt: Trainings.pop(3) if len(txt) >= 50: if len(Trainings) >= 4: Trainings[3] = Training(user.get_workout(txt), '-.') else: Trainings.append(Training(user.get_workout(txt), '-.')) plot(states) def slide(numb): numb = int(numb) for training in Trainings: training.plot_speed.average(numb) training.plot_heart_rate.average(numb) plot(states) def slide_change(n): n = int(n) if not n % 2: slider.set(n + 1) def btn_slide(): slide(int(slider.get())) def check_box(): global states states['plot_speed'] = varSpeed.get() states['plot_altitude'] = varAltitude.get() states['plot_heart_rate'] = varHeart.get() plot(states) def submit(): global txtBoxes temp = [txtBox0.get(), txtBox1.get(), txtBox2.get(), txtBox3.get()] for i, element in enumerate(temp): if not element == txtBoxes[i]: if i == 0: txt_changed_0(element) if i == 1: txt_changed_1(element) if i == 2: txt_changed_2(element) if i == 3: txt_changed_3(element) txtBoxes[i] = element user = Requester(username, password) user.login() Trainings = [Training(user.get_workout("https://www.endomondo.com/users/19154541/workouts/1458780940"), '-')] states = {'plot_speed': True, 'plot_altitude': True, 'plot_heart_rate': False} txtBoxes = ['', '', '', ''] root = tkinter.Tk() root.wm_title("Endomondo Analyzer") fig = Figure(figsize=(5, 4), dpi=100) fig.add_subplot(111) ax1 = fig.subplots() ax2 = ax1.twinx() canvas = FigureCanvasTkAgg(fig, master=root) # A tk.DrawingArea. canvas.draw() canvas.get_tk_widget().pack(side=tkinter.TOP, fill=tkinter.BOTH, expand=1) toolbar = NavigationToolbar2Tk(canvas, root) toolbar.update() canvas.get_tk_widget().pack(side=tkinter.TOP, fill=tkinter.BOTH, expand=1) txtBox0 = tkinter.Entry(root) txtBox0.place(x=20, y=40) lbl0 = tkinter.Label(root, text="durchgezogen") lbl0.place(x=150, y=40) lbl1 = tkinter.Label(root, text="gestrichelt") lbl1.place(x=150, y=80) lbl0 = tkinter.Label(root, text="gepunktet") lbl0.place(x=150, y=120) lbl1 = tkinter.Label(root, text="gestrichpunktet") lbl1.place(x=150, y=160) txtBox1 = tkinter.Entry(root) txtBox1.place(x=20, y=80) txtBox2 = tkinter.Entry(root) txtBox2.place(x=20, y=120) txtBox3 = tkinter.Entry(root) txtBox3.place(x=20, y=160) slider = tkinter.Scale(root, from_=1, to=35, orient=tkinter.HORIZONTAL, length=300, command=slide_change) slider.place(x=20, y=580) varSpeed = tkinter.BooleanVar() chckSpeed = tkinter.Checkbutton(root, text="Speed", command=check_box, variable=varSpeed) chckSpeed.place(x=20, y=410) chckSpeed.select() varAltitude = tkinter.BooleanVar() chckAltitude = tkinter.Checkbutton(root, text="Altitude", command=check_box, variable=varAltitude) chckAltitude.place(x=20, y=450) chckAltitude.select() varHeart = tkinter.BooleanVar() chckHeart = tkinter.Checkbutton(root, text="Heart Rate", command=check_box, variable=varHeart) chckHeart.place(x=20, y=490) btnSubmit = tkinter.Button(root, command=submit, text="Submit") btnSubmit.place(x=20, y=200) btnChangeScale = tkinter.Button(root, command=btn_slide, text="Change Average") btnChangeScale.place(x=20, y=540) Dates = tkinter.StringVar(root) lblDates = tkinter.Label(root, textvariable=Dates) lblDates.place(x=20, y=250) def _quit(): root.quit() # stops mainloop root.destroy() # this is necessary on Windows to prevent # Fatal Python Error: PyEval_RestoreThread: NULL tstate def plot(_dict): # choosing which plots to show on which axis plot1 = None plot2 = None dictionary = deepcopy(_dict) for element in dictionary: if dictionary[element]: plot1 = element dictionary[element] = 0 break for element in dictionary: if dictionary[element]: plot2 = element dictionary[element] = 0 break global ax1 global ax2 color = "" ax1.clear() ax2.clear() # defining lists of plots if plot1 == "plot_speed": plots1 = [i.plot_speed for i in Trainings] elif plot1 == "plot_altitude": plots1 = [i.plot_altitude for i in Trainings] elif plot1 == "plot_heart_rate": plots1 = [i.plot_heart_rate for i in Trainings] if plot2 == "plot_altitude": plots2 = [i.plot_altitude for i in Trainings] elif plot2 == "plot_heart_rate": plots2 = [i.plot_heart_rate for i in Trainings] if plot1 is None: plots1 = [Trainings[0].empty_plot] if plot2 is None: plots2 = [Trainings[0].empty_plot] color = plots1[0].line_color ax1.set_xlabel('[distance] = km') ax1.set_ylabel(plots1[0].y_label, color=color) dates = "Dates:\n" for training in Trainings: dates = dates + training.date[:10] + "\n" Dates.set(dates) for pl in plots1: ax1.plot(pl.inherited[0], pl.data, color=color, visible=pl.visible, linestyle=pl.inherited[1]) ax1.tick_params(axis='y', labelcolor=color) color = plots2[0].line_color ax2.set_xlabel('[distance] = km') ax2.set_ylabel(plots2[0].y_label, color=color) for pl in plots2: ax2.plot(pl.inherited[0], pl.data, color=color, visible=pl.visible, linestyle=pl.inherited[1]) ax2.tick_params(axis='y', labelcolor=color) fig.subplots_adjust(left=0.2) fig.canvas.draw_idle() plot(states) fig.canvas.draw_idle() button = tkinter.Button(master=root, text="Quit", command=_quit) button.pack(side=tkinter.BOTTOM) tkinter.mainloop()
[ "matplotlib.backends.backend_tkagg.NavigationToolbar2Tk", "tkinter.Checkbutton", "tkinter.StringVar", "copy.deepcopy", "requests.session", "json.loads", "numpy.average", "tkinter.mainloop", "tkinter.Button", "tkinter.Entry", "scipy.signal.medfilt", "matplotlib.figure.Figure", "tkinter.Scale", "tkinter.BooleanVar", "tkinter.Label", "tkinter.Tk", "matplotlib.backends.backend_tkagg.FigureCanvasTkAgg" ]
[((7376, 7388), 'tkinter.Tk', 'tkinter.Tk', ([], {}), '()\n', (7386, 7388), False, 'import tkinter\n'), ((7432, 7463), 'matplotlib.figure.Figure', 'Figure', ([], {'figsize': '(5, 4)', 'dpi': '(100)'}), '(figsize=(5, 4), dpi=100)\n', (7438, 7463), False, 'from matplotlib.figure import Figure\n'), ((7534, 7569), 'matplotlib.backends.backend_tkagg.FigureCanvasTkAgg', 'FigureCanvasTkAgg', (['fig'], {'master': 'root'}), '(fig, master=root)\n', (7551, 7569), False, 'from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2Tk\n'), ((7691, 7725), 'matplotlib.backends.backend_tkagg.NavigationToolbar2Tk', 'NavigationToolbar2Tk', (['canvas', 'root'], {}), '(canvas, root)\n', (7711, 7725), False, 'from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2Tk\n'), ((7829, 7848), 'tkinter.Entry', 'tkinter.Entry', (['root'], {}), '(root)\n', (7842, 7848), False, 'import tkinter\n'), ((7882, 7922), 'tkinter.Label', 'tkinter.Label', (['root'], {'text': '"""durchgezogen"""'}), "(root, text='durchgezogen')\n", (7895, 7922), False, 'import tkinter\n'), ((7954, 7993), 'tkinter.Label', 'tkinter.Label', (['root'], {'text': '"""gestrichelt"""'}), "(root, text='gestrichelt')\n", (7967, 7993), False, 'import tkinter\n'), ((8025, 8062), 'tkinter.Label', 'tkinter.Label', (['root'], {'text': '"""gepunktet"""'}), "(root, text='gepunktet')\n", (8038, 8062), False, 'import tkinter\n'), ((8095, 8138), 'tkinter.Label', 'tkinter.Label', (['root'], {'text': '"""gestrichpunktet"""'}), "(root, text='gestrichpunktet')\n", (8108, 8138), False, 'import tkinter\n'), ((8174, 8193), 'tkinter.Entry', 'tkinter.Entry', (['root'], {}), '(root)\n', (8187, 8193), False, 'import tkinter\n'), ((8230, 8249), 'tkinter.Entry', 'tkinter.Entry', (['root'], {}), '(root)\n', (8243, 8249), False, 'import tkinter\n'), ((8287, 8306), 'tkinter.Entry', 'tkinter.Entry', (['root'], {}), '(root)\n', (8300, 8306), False, 'import tkinter\n'), ((8345, 8445), 'tkinter.Scale', 'tkinter.Scale', (['root'], {'from_': '(1)', 'to': '(35)', 'orient': 'tkinter.HORIZONTAL', 'length': '(300)', 'command': 'slide_change'}), '(root, from_=1, to=35, orient=tkinter.HORIZONTAL, length=300,\n command=slide_change)\n', (8358, 8445), False, 'import tkinter\n'), ((8480, 8500), 'tkinter.BooleanVar', 'tkinter.BooleanVar', ([], {}), '()\n', (8498, 8500), False, 'import tkinter\n'), ((8513, 8590), 'tkinter.Checkbutton', 'tkinter.Checkbutton', (['root'], {'text': '"""Speed"""', 'command': 'check_box', 'variable': 'varSpeed'}), "(root, text='Speed', command=check_box, variable=varSpeed)\n", (8532, 8590), False, 'import tkinter\n'), ((8653, 8673), 'tkinter.BooleanVar', 'tkinter.BooleanVar', ([], {}), '()\n', (8671, 8673), False, 'import tkinter\n'), ((8689, 8777), 'tkinter.Checkbutton', 'tkinter.Checkbutton', (['root'], {'text': '"""Altitude"""', 'command': 'check_box', 'variable': 'varAltitude'}), "(root, text='Altitude', command=check_box, variable=\n varAltitude)\n", (8708, 8777), False, 'import tkinter\n'), ((8838, 8858), 'tkinter.BooleanVar', 'tkinter.BooleanVar', ([], {}), '()\n', (8856, 8858), False, 'import tkinter\n'), ((8871, 8958), 'tkinter.Checkbutton', 'tkinter.Checkbutton', (['root'], {'text': '"""Heart Rate"""', 'command': 'check_box', 'variable': 'varHeart'}), "(root, text='Heart Rate', command=check_box, variable=\n varHeart)\n", (8890, 8958), False, 'import tkinter\n'), ((8996, 9047), 'tkinter.Button', 'tkinter.Button', (['root'], {'command': 'submit', 'text': '"""Submit"""'}), "(root, command=submit, text='Submit')\n", (9010, 9047), False, 'import tkinter\n'), ((9096, 9158), 'tkinter.Button', 'tkinter.Button', (['root'], {'command': 'btn_slide', 'text': '"""Change Average"""'}), "(root, command=btn_slide, text='Change Average')\n", (9110, 9158), False, 'import tkinter\n'), ((9202, 9225), 'tkinter.StringVar', 'tkinter.StringVar', (['root'], {}), '(root)\n', (9219, 9225), False, 'import tkinter\n'), ((9237, 9276), 'tkinter.Label', 'tkinter.Label', (['root'], {'textvariable': 'Dates'}), '(root, textvariable=Dates)\n', (9250, 9276), False, 'import tkinter\n'), ((11425, 11480), 'tkinter.Button', 'tkinter.Button', ([], {'master': 'root', 'text': '"""Quit"""', 'command': '_quit'}), "(master=root, text='Quit', command=_quit)\n", (11439, 11480), False, 'import tkinter\n'), ((11515, 11533), 'tkinter.mainloop', 'tkinter.mainloop', ([], {}), '()\n', (11531, 11533), False, 'import tkinter\n'), ((9614, 9629), 'copy.deepcopy', 'deepcopy', (['_dict'], {}), '(_dict)\n', (9622, 9629), False, 'from copy import deepcopy\n'), ((511, 529), 'requests.session', 'requests.session', ([], {}), '()\n', (527, 529), False, 'import requests\n'), ((2558, 2569), 'json.loads', 'loads', (['json'], {}), '(json)\n', (2563, 2569), False, 'from json import loads\n'), ((3762, 3779), 'numpy.average', 'np.average', (['speed'], {}), '(speed)\n', (3772, 3779), True, 'import numpy as np\n'), ((2466, 2492), 'scipy.signal.medfilt', 'medfilt', (['self.raw_data', '_i'], {}), '(self.raw_data, _i)\n', (2473, 2492), False, 'from scipy.signal import medfilt\n')]
#!/usr/bin/env python ############################################################################### # $Id$ # # Project: GDAL/OGR Test Suite # Purpose: Test basic integration with Numeric Python. # Author: <NAME>, <EMAIL> # ############################################################################### # Copyright (c) 2003, <NAME> <<EMAIL>> # Copyright (c) 2009-2010, <NAME> <even dot rouault at mines-paris dot org> # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. ############################################################################### import sys sys.path.append( '../pymod' ) import gdaltest from osgeo import gdal ############################################################################### # verify that we can load Numeric python, and find the Numpy driver. def numpy_rw_1(): gdaltest.numpy_drv = None try: from osgeo import gdalnumeric gdalnumeric.zeros except: return 'skip' try: import _gdal _gdal.GDALRegister_NUMPY() # only needed for old style bindings. gdal.AllRegister() except: pass gdaltest.numpy_drv = gdal.GetDriverByName( 'NUMPY' ) if gdaltest.numpy_drv is None: gdaltest.post_reason( 'NUMPY driver not found!' ) return 'fail' return 'success' ############################################################################### # Load a test file into a memory Numpy array, and verify the checksum. def numpy_rw_2(): if gdaltest.numpy_drv is None: return 'skip' from osgeo import gdalnumeric array = gdalnumeric.LoadFile( 'data/utmsmall.tif' ) if array is None: gdaltest.post_reason( 'Failed to load utmsmall.tif into array') return 'fail' ds = gdalnumeric.OpenArray( array ) if ds is None: gdaltest.post_reason( 'Failed to open memory array as dataset.' ) return 'fail' bnd = ds.GetRasterBand(1) if bnd.Checksum() != 50054: gdaltest.post_reason( 'Didnt get expected checksum on reopened file') return 'fail' ds = None return 'success' ############################################################################### # Test loading complex data. def numpy_rw_3(): if gdaltest.numpy_drv is None: return 'skip' ds = gdal.Open( 'data/cint_sar.tif' ) array = ds.ReadAsArray() if array[2][3] != 116-16j: print(array[0][2][3]) gdaltest.post_reason( 'complex value read improperly.' ) return 'fail' return 'success' ############################################################################### # Test a band read with downsampling. def numpy_rw_4(): if gdaltest.numpy_drv is None: return 'skip' ds = gdal.Open( 'data/byte.tif' ) array = ds.GetRasterBand(1).ReadAsArray(0,0,20,20,5,5) if array[2][3] != 123: print(array[2][3]) gdaltest.post_reason( 'Read wrong value - perhaps downsampling algorithm has changed subtly?' ) return 'fail' return 'success' ############################################################################### # Test reading a multi-band file. def numpy_rw_5(): if gdaltest.numpy_drv is None: return 'skip' from osgeo import gdalnumeric array = gdalnumeric.LoadFile('data/rgbsmall.tif',35,21,1,1) if array[0][0][0] != 78: print(array) gdaltest.post_reason( 'value read improperly.' ) return 'fail' if array[1][0][0] != 117: print(array) gdaltest.post_reason( 'value read improperly.' ) return 'fail' if array[2][0][0] != 24: print(array) gdaltest.post_reason( 'value read improperly.' ) return 'fail' array = gdalnumeric.LoadFile('data/rgbsmall.tif', buf_xsize=1, buf_ysize=1, resample_alg = gdal.GRIORA_Bilinear) if array.shape[0] != 3 or array.shape[1] != 1 or array.shape[2] != 1: print(array.shape) gdaltest.post_reason( 'wrong array shape.' ) return 'fail' if array[0][0][0] != 70 or array[1][0][0] != 97 or array[2][0][0] != 29: print(array) gdaltest.post_reason( 'value read improperly.' ) return 'fail' import numpy array = numpy.zeros([3, 1, 1], dtype = numpy.uint8) ds = gdal.Open('data/rgbsmall.tif') ds.ReadAsArray( buf_obj = array, resample_alg = gdal.GRIORA_Bilinear ) if array[0][0][0] != 70 or array[1][0][0] != 97 or array[2][0][0] != 29: print(array) gdaltest.post_reason( 'value read improperly.' ) return 'fail' return 'success' ############################################################################### # Check that Band.ReadAsArray() can accept an already allocated array (#2658, #3028) def numpy_rw_6(): if gdaltest.numpy_drv is None: return 'skip' import numpy from osgeo import gdalnumeric ds = gdal.Open( 'data/byte.tif' ) array = numpy.zeros( [ds.RasterYSize, ds.RasterXSize], numpy.uint8 ) array_res = ds.GetRasterBand(1).ReadAsArray(buf_obj = array) if array is not array_res: return 'fail' ds2 = gdalnumeric.OpenArray( array ) if ds2.GetRasterBand(1).Checksum() != ds.GetRasterBand(1).Checksum(): return 'fail' return 'success' ############################################################################### # Check that Dataset.ReadAsArray() can accept an already allocated array (#2658, #3028) def numpy_rw_7(): if gdaltest.numpy_drv is None: return 'skip' import numpy from osgeo import gdalnumeric ds = gdal.Open( 'data/byte.tif' ) array = numpy.zeros( [1, ds.RasterYSize, ds.RasterXSize], numpy.uint8 ) array_res = ds.ReadAsArray(buf_obj = array) if array is not array_res: return 'fail' ds2 = gdalnumeric.OpenArray( array ) if ds2.GetRasterBand(1).Checksum() != ds.GetRasterBand(1).Checksum(): return 'fail' # Try again with a 2D array array = numpy.zeros( [ds.RasterYSize, ds.RasterXSize], numpy.uint8 ) array_res = ds.ReadAsArray(buf_obj = array) if array is not array_res: return 'fail' ds2 = gdalnumeric.OpenArray( array ) if ds2.GetRasterBand(1).Checksum() != ds.GetRasterBand(1).Checksum(): return 'fail' # With a multi band file ds = gdal.Open( 'data/rgbsmall.tif' ) array = numpy.zeros( [ds.RasterCount, ds.RasterYSize, ds.RasterXSize], numpy.uint8 ) array_res = ds.ReadAsArray(buf_obj = array) if array is not array_res: return 'fail' ds2 = gdalnumeric.OpenArray( array ) if ds2.GetRasterBand(1).Checksum() != ds.GetRasterBand(1).Checksum(): return 'fail' return 'success' ############################################################################### # Check that Dataset.ReadAsArray() with multi-band data def numpy_rw_8(): if gdaltest.numpy_drv is None: return 'skip' import numpy from osgeo import gdalnumeric ds = gdal.Open( 'data/rgbsmall.tif' ) array = numpy.zeros( [ds.RasterCount,ds.RasterYSize, ds.RasterXSize], numpy.uint8 ) ds.ReadAsArray(buf_obj = array) ds2 = gdalnumeric.OpenArray( array ) for i in range(1, ds.RasterCount): if ds2.GetRasterBand(i).Checksum() != ds.GetRasterBand(i).Checksum(): return 'fail' return 'success' ############################################################################### # Test Band.WriteArray() def numpy_rw_9(): if gdaltest.numpy_drv is None: return 'skip' ds = gdal.Open( 'data/byte.tif' ) array = ds.ReadAsArray() out_ds = gdal.GetDriverByName('MEM').Create('', ds.RasterYSize, ds.RasterXSize) out_ds.GetRasterBand(1).WriteArray(array) cs = out_ds.GetRasterBand(1).Checksum() out_ds = None ds = None if cs != 4672: gdaltest.post_reason('did not get expected checksum') print(cs) return 'fail' return 'success' ############################################################################### # Test signed byte handling def numpy_rw_10(): if gdaltest.numpy_drv is None: return 'skip' import numpy ds = gdal.GetDriverByName('GTiff').Create('/vsimem/signed8.tif', 2, 1, options = ['PIXELTYPE=SIGNEDBYTE']) ar = numpy.empty([1, 2], dtype = numpy.int8) ar[0][0] = -128 ar[0][1] = 127 ds.GetRasterBand(1).WriteArray(ar) ds = None ds = gdal.Open('/vsimem/signed8.tif') ar2 = ds.ReadAsArray() ar3 = numpy.empty_like(ar2) ds.GetRasterBand(1).ReadAsArray(buf_obj = ar3) ds = None gdal.Unlink('/vsimem/signed8.tif') if ar2[0][0] != -128 or ar2[0][1] != 127: gdaltest.post_reason('did not get expected result (1)') print(ar2) return 'fail' if ar3[0][0] != -128 or ar3[0][1] != 127: gdaltest.post_reason('did not get expected result (2)') print(ar3) return 'fail' return 'success' ############################################################################### # Test all datatypes def numpy_rw_11(): if gdaltest.numpy_drv is None: return 'skip' import numpy type_tuples = [ ( 'uint8', gdal.GDT_Byte, numpy.uint8, 255 ), ( 'uint16', gdal.GDT_UInt16, numpy.uint16, 65535 ), ( 'int16', gdal.GDT_Int16, numpy.int16, -32767 ), ( 'uint32', gdal.GDT_UInt32, numpy.uint32, 4294967295 ), ( 'int32', gdal.GDT_Int32, numpy.int32, -2147483648 ), ( 'float32', gdal.GDT_Float32, numpy.float32, 1.23 ), ( 'float64', gdal.GDT_Float64, numpy.float64, 1.23456789 ), ( 'cint16', gdal.GDT_CInt16, numpy.complex64, -32768 + 32767j ), ( 'cint32', gdal.GDT_CInt32, numpy.complex64, -32769 + 32768j ), ( 'cfloat32', gdal.GDT_CFloat32, numpy.complex64, -32768.5 + 32767.5j ), ( 'cfloat64', gdal.GDT_CFloat64, numpy.complex128, -32768.123456 + 32767.123456j ) ] for type_tuple in type_tuples: ds = gdal.GetDriverByName('GTiff').Create('/vsimem/' + type_tuple[0], 1, 1, 1, type_tuple[1]) tmp = ds.ReadAsArray() if tmp.dtype != type_tuple[2]: gdaltest.post_reason('did not get expected numpy type') print(type_tuple) return 'fail' ar = numpy.empty([1, 1], dtype = type_tuple[2]) ar[0][0] = type_tuple[3] ds.GetRasterBand(1).WriteArray(ar) ds = None ds = gdal.Open('/vsimem/' + type_tuple[0]) ar2 = ds.ReadAsArray() ar3 = numpy.empty_like(ar2) ds.GetRasterBand(1).ReadAsArray(buf_obj = ar3) ds = None gdal.Unlink('/vsimem/' + type_tuple[0]) if (type_tuple[0] == 'float32' and abs(ar2[0][0] - type_tuple[3]) > 1e-6) or \ (type_tuple[0] != 'float32' and ar2[0][0] != type_tuple[3]): gdaltest.post_reason('did not get expected result (1)') print(ar2) print(type_tuple) return 'fail' if (type_tuple[0] == 'float32' and abs(ar3[0][0] - type_tuple[3]) > 1e-6) or \ (type_tuple[0] != 'float32' and ar3[0][0] != type_tuple[3]): gdaltest.post_reason('did not get expected result (2)') print(ar3) print(type_tuple) return 'fail' return 'success' ############################################################################### # Test array with slices (#3542) def numpy_rw_12(): if gdaltest.numpy_drv is None: return 'skip' import numpy ar = numpy.empty([2, 2], dtype = numpy.uint8) ar[0][0] = 0 ar[0][1] = 1 ar[1][0] = 2 ar[1][1] = 3 drv = gdal.GetDriverByName( 'MEM' ) ds = drv.Create( '', 1, 2, 1, gdal.GDT_Byte ) slice = ar[:,1:] ds.GetRasterBand(1).WriteArray( slice ) ar_read = numpy.zeros_like(ar) slice_read = ar_read[:,1:] ds.GetRasterBand(1).ReadAsArray( buf_obj = slice_read ) ds = None if slice_read[0][0] != 1 or slice_read[1][0] != 3: print(slice_read) return 'fail' return 'success' ############################################################################### # Test expected errors def numpy_rw_13(): if gdaltest.numpy_drv is None: return 'skip' import numpy drv = gdal.GetDriverByName( 'MEM' ) ds = drv.Create( '', 2, 1, 1, gdal.GDT_Byte ) ar = numpy.empty([1, 2], dtype = numpy.uint8) ar[0][0] = 100 ar[0][1] = 200 ds.GetRasterBand(1).WriteArray( ar ) # Try reading into unsupported array type ar = numpy.empty([1, 2], dtype = numpy.int64) try: ds.GetRasterBand(1).ReadAsArray( buf_obj = ar ) gdaltest.post_reason('expected "ValueError: array does not have corresponding GDAL data type"') return 'fail' except: pass # Try call with inconsistant parameters ar = numpy.empty([1, 2], dtype = numpy.uint8) try: ds.GetRasterBand(1).ReadAsArray( buf_obj = ar, buf_xsize = 2, buf_ysize = 2 ) gdaltest.post_reason('expected "Specified buf_ysize not consistant with buffer shape"') return 'fail' except: pass # Same with 3 dimensions ar = numpy.empty([1, 1, 2], dtype = numpy.uint8) try: ds.GetRasterBand(1).ReadAsArray( buf_obj = ar, buf_xsize = 2, buf_ysize = 2 ) gdaltest.post_reason('expected "Specified buf_ysize not consistant with buffer shape"') return 'fail' except: pass # Try call with inconsistant parameters ar = numpy.empty([1, 2], dtype = numpy.uint8) try: ds.GetRasterBand(1).ReadAsArray( buf_obj = ar, buf_xsize = 1, buf_ysize = 1 ) gdaltest.post_reason('expected "Specified buf_xsize not consistant with buffer shape"') return 'fail' except: pass # Inconsistent data type ar = numpy.empty([1, 2], dtype = numpy.uint8) try: ds.GetRasterBand(1).ReadAsArray( buf_obj = ar, buf_type = gdal.GDT_Int16 ) gdaltest.post_reason('expected "Specified buf_type not consistant with array type"') return 'fail' except: pass # This one should be OK ! ar = numpy.zeros([1, 2], dtype = numpy.uint8) ds.GetRasterBand(1).ReadAsArray( buf_obj = ar, buf_xsize = 2, buf_ysize = 1 ) if ar[0][0] != 100 or ar[0][1] != 200: gdaltest.post_reason('did not get expected values') print(ar) return 'fail' # This one too ar = numpy.zeros([1, 1, 2], dtype = numpy.uint8) ds.GetRasterBand(1).ReadAsArray( buf_obj = ar ) if ar[0][0][0] != 100 or ar[0][0][1] != 200: gdaltest.post_reason('did not get expected values') print(ar) return 'fail' # This one too ar = numpy.zeros([1, 1, 2], dtype = numpy.uint8) ds.ReadAsArray( buf_obj = ar ) if ar[0][0][0] != 100 or ar[0][0][1] != 200: gdaltest.post_reason('did not get expected values') print(ar) return 'fail' # This one too ar = ds.ReadAsArray() if ar[0][0] != 100 or ar[0][1] != 200: gdaltest.post_reason('did not get expected values') print(ar) return 'fail' ds = None # With a multiband file drv = gdal.GetDriverByName( 'MEM' ) ds = drv.Create( '', 2, 1, 3, gdal.GDT_Byte ) ar = numpy.empty([3, 1, 2], dtype = numpy.uint8) ar[0][0][0] = 100 ar[0][0][1] = 200 ar[1][0][0] = 101 ar[1][0][1] = 201 ar[2][0][0] = 102 ar[2][0][1] = 202 for i in range(3): ds.GetRasterBand(i+1).WriteArray( ar[i] ) ar = numpy.empty([3, 1, 2], dtype = numpy.int64) try: ds.ReadAsArray( buf_obj = ar ) gdaltest.post_reason('expected "ValueError: array does not have corresponding GDAL data type"') return 'fail' except: pass # Try call with inconsistant parameters ar = numpy.empty([3, 1, 2], dtype = numpy.uint8) try: ds.ReadAsArray( buf_obj = ar, buf_xsize = 2, buf_ysize = 2 ) gdaltest.post_reason('expected "Specified buf_ysize not consistant with buffer shape"') return 'fail' except: pass # With 2 dimensions ar = numpy.empty([1, 2], dtype = numpy.uint8) try: ds.ReadAsArray( buf_obj = ar ) gdaltest.post_reason('expected "ValueError: Array should have 3 dimensions"') return 'fail' except: pass # Try call with inconsistant parameters ar = numpy.empty([3, 1, 2], dtype = numpy.uint8) try: ds.ReadAsArray( buf_obj = ar, buf_xsize = 1, buf_ysize = 1 ) gdaltest.post_reason('expected "Specified buf_xsize not consistant with buffer shape"') return 'fail' except: pass # Inconsistent data type ar = numpy.empty([3, 1, 2], dtype = numpy.uint8) try: ds.ReadAsArray( buf_obj = ar, buf_type = gdal.GDT_Int16 ) gdaltest.post_reason('expected "Specified buf_type not consistant with array type"') return 'fail' except: pass # Not enough space in first dimension ar = numpy.empty([2, 1, 2], dtype = numpy.uint8) try: ds.ReadAsArray( buf_obj = ar ) gdaltest.post_reason('expected "Array should have space for 3 bands"') return 'fail' except: pass # This one should be OK ! ar = numpy.zeros([3, 1, 2], dtype = numpy.uint8) ds.ReadAsArray( buf_obj = ar, buf_xsize = 2, buf_ysize = 1, buf_type = gdal.GDT_Byte ) if ar[0][0][0] != 100 or ar[0][0][1] != 200 or ar[1][0][0] != 101 or ar[1][0][1] != 201 or ar[2][0][0] != 102 or ar[2][0][1] != 202: gdaltest.post_reason('did not get expected values') print(ar) return 'fail' # This one too ar = numpy.zeros([3, 1, 2], dtype = numpy.uint8) ds.ReadAsArray( buf_obj = ar ) if ar[0][0][0] != 100 or ar[0][0][1] != 200 or ar[1][0][0] != 101 or ar[1][0][1] != 201 or ar[2][0][0] != 102 or ar[2][0][1] != 202: gdaltest.post_reason('did not get expected values') print(ar) return 'fail' # This one too ar = ds.ReadAsArray() if ar[0][0][0] != 100 or ar[0][0][1] != 200 or ar[1][0][0] != 101 or ar[1][0][1] != 201 or ar[2][0][0] != 102 or ar[2][0][1] != 202: gdaltest.post_reason('did not get expected values') print(ar) return 'fail' ds = None return 'success' ############################################################################### # Test callback of ReadAsArray() def numpy_rw_14_progress_callback(pct, message, user_data): if abs(pct - user_data[0]) > 1e-5: print('Expected %f, got %f' % (user_data[0], pct)) user_data[1] = False user_data[0] = user_data[0] + 0.05 return 1 # 1 to continue, 0 to stop def numpy_rw_14_progress_interrupt_callback(pct, message, user_data): user_data[0] = pct if pct >= 0.5: return 0 return 1 # 1 to continue, 0 to stop def numpy_rw_14_progress_callback_2(pct, message, user_data): if pct < user_data[0]: print('Got %f, last pct was %f' % (pct, user_data[0])) return 0 user_data[0] = pct return 1 # 1 to continue, 0 to stop def numpy_rw_14(): if gdaltest.numpy_drv is None: return 'skip' # Progress not implemented yet if gdal.GetConfigOption('GTIFF_DIRECT_IO') == 'YES' or \ gdal.GetConfigOption('GTIFF_VIRTUAL_MEM_IO') == 'YES': return 'skip' import numpy ds = gdal.Open('data/byte.tif') # Test RasterBand.ReadAsArray tab = [ 0.05, True ] data = ds.GetRasterBand(1).ReadAsArray(resample_alg = gdal.GRIORA_NearestNeighbour, callback = numpy_rw_14_progress_callback, callback_data = tab) if data is None: gdaltest.post_reason('failure') return 'fail' if abs(tab[0] - 1.05) > 1e-5 or not tab[1]: gdaltest.post_reason('failure') return 'fail' # Test interruption tab = [ 0 ] data = ds.GetRasterBand(1).ReadAsArray(callback = numpy_rw_14_progress_interrupt_callback, callback_data = tab) if data is not None: gdaltest.post_reason('failure') return 'fail' if tab[0] < 0.50: gdaltest.post_reason('failure') return 'fail' # Test Dataset.ReadAsArray tab = [ 0.05, True ] data = ds.ReadAsArray(resample_alg = gdal.GRIORA_NearestNeighbour, callback = numpy_rw_14_progress_callback, callback_data = tab) if data is None: gdaltest.post_reason('failure') return 'fail' if abs(tab[0] - 1.05) > 1e-5 or not tab[1]: gdaltest.post_reason('failure') return 'fail' # Same with interruption tab = [ 0 ] data = ds.ReadAsArray(callback = numpy_rw_14_progress_interrupt_callback, callback_data = tab) if data is not None or tab[0] < 0.50: gdaltest.post_reason('failure') return 'fail' # Test Dataset.ReadAsArray on a multi band file ds = None ds = gdal.Open('data/rgbsmall.tif') last_pct = [ 0 ] data = ds.ReadAsArray(callback = numpy_rw_14_progress_callback_2, callback_data = last_pct) if data is None or abs(last_pct[0] - 1.0) > 1e-5: gdaltest.post_reason('failure') return 'fail' last_pct = [ 0 ] # Same but with a provided array array = numpy.empty( [ds.RasterCount, ds.RasterYSize, ds.RasterXSize], numpy.uint8 ) data = ds.ReadAsArray(buf_obj = array, callback = numpy_rw_14_progress_callback_2, callback_data = last_pct) if data is None or abs(last_pct[0] - 1.0) > 1e-5: gdaltest.post_reason('failure') return 'fail' return 'success' ############################################################################### # Test NumPy GetGeoTransform/SetGeoTransform def numpy_rw_15(): if gdaltest.numpy_drv is None: return 'skip' import numpy from osgeo import gdal_array array = numpy.empty( [1,1,1], numpy.uint8 ) ds = gdal_array.OpenArray( array ) gt = ds.GetGeoTransform(can_return_null = True) if gt is not None: gdaltest.post_reason('failure') return 'fail' ds.SetGeoTransform([1,2,3,4,5,-6]) gt = ds.GetGeoTransform() if gt != (1,2,3,4,5,-6): gdaltest.post_reason('failure') return 'fail' return 'success' def numpy_rw_cleanup(): gdaltest.numpy_drv = None return 'success' gdaltest_list = [ numpy_rw_1, numpy_rw_2, numpy_rw_3, numpy_rw_4, numpy_rw_5, numpy_rw_6, numpy_rw_7, numpy_rw_8, numpy_rw_9, numpy_rw_10, numpy_rw_11, numpy_rw_12, numpy_rw_13, numpy_rw_14, numpy_rw_15, numpy_rw_cleanup ] if __name__ == '__main__': gdaltest.setup_run( 'numpy_rw' ) gdaltest.run_tests( gdaltest_list ) gdaltest.summarize()
[ "sys.path.append", "numpy.zeros_like", "osgeo.gdal_array.OpenArray", "_gdal.GDALRegister_NUMPY", "gdaltest.post_reason", "osgeo.gdal.Unlink", "numpy.empty", "numpy.zeros", "numpy.empty_like", "osgeo.gdalnumeric.OpenArray", "gdaltest.run_tests", "gdaltest.setup_run", "gdaltest.summarize", "osgeo.gdalnumeric.LoadFile", "osgeo.gdal.GetConfigOption", "osgeo.gdal.Open", "osgeo.gdal.GetDriverByName", "osgeo.gdal.AllRegister" ]
[((1577, 1604), 'sys.path.append', 'sys.path.append', (['"""../pymod"""'], {}), "('../pymod')\n", (1592, 1604), False, 'import sys\n'), ((2138, 2167), 'osgeo.gdal.GetDriverByName', 'gdal.GetDriverByName', (['"""NUMPY"""'], {}), "('NUMPY')\n", (2158, 2167), False, 'from osgeo import gdal\n'), ((2588, 2629), 'osgeo.gdalnumeric.LoadFile', 'gdalnumeric.LoadFile', (['"""data/utmsmall.tif"""'], {}), "('data/utmsmall.tif')\n", (2608, 2629), False, 'from osgeo import gdalnumeric\n'), ((2758, 2786), 'osgeo.gdalnumeric.OpenArray', 'gdalnumeric.OpenArray', (['array'], {}), '(array)\n', (2779, 2786), False, 'from osgeo import gdalnumeric\n'), ((3300, 3330), 'osgeo.gdal.Open', 'gdal.Open', (['"""data/cint_sar.tif"""'], {}), "('data/cint_sar.tif')\n", (3309, 3330), False, 'from osgeo import gdal\n'), ((3739, 3765), 'osgeo.gdal.Open', 'gdal.Open', (['"""data/byte.tif"""'], {}), "('data/byte.tif')\n", (3748, 3765), False, 'from osgeo import gdal\n'), ((4270, 4325), 'osgeo.gdalnumeric.LoadFile', 'gdalnumeric.LoadFile', (['"""data/rgbsmall.tif"""', '(35)', '(21)', '(1)', '(1)'], {}), "('data/rgbsmall.tif', 35, 21, 1, 1)\n", (4290, 4325), False, 'from osgeo import gdalnumeric\n'), ((4726, 4832), 'osgeo.gdalnumeric.LoadFile', 'gdalnumeric.LoadFile', (['"""data/rgbsmall.tif"""'], {'buf_xsize': '(1)', 'buf_ysize': '(1)', 'resample_alg': 'gdal.GRIORA_Bilinear'}), "('data/rgbsmall.tif', buf_xsize=1, buf_ysize=1,\n resample_alg=gdal.GRIORA_Bilinear)\n", (4746, 4832), False, 'from osgeo import gdalnumeric\n'), ((5214, 5255), 'numpy.zeros', 'numpy.zeros', (['[3, 1, 1]'], {'dtype': 'numpy.uint8'}), '([3, 1, 1], dtype=numpy.uint8)\n', (5225, 5255), False, 'import numpy\n'), ((5267, 5297), 'osgeo.gdal.Open', 'gdal.Open', (['"""data/rgbsmall.tif"""'], {}), "('data/rgbsmall.tif')\n", (5276, 5297), False, 'from osgeo import gdal\n'), ((5885, 5911), 'osgeo.gdal.Open', 'gdal.Open', (['"""data/byte.tif"""'], {}), "('data/byte.tif')\n", (5894, 5911), False, 'from osgeo import gdal\n'), ((5926, 5984), 'numpy.zeros', 'numpy.zeros', (['[ds.RasterYSize, ds.RasterXSize]', 'numpy.uint8'], {}), '([ds.RasterYSize, ds.RasterXSize], numpy.uint8)\n', (5937, 5984), False, 'import numpy\n'), ((6121, 6149), 'osgeo.gdalnumeric.OpenArray', 'gdalnumeric.OpenArray', (['array'], {}), '(array)\n', (6142, 6149), False, 'from osgeo import gdalnumeric\n'), ((6586, 6612), 'osgeo.gdal.Open', 'gdal.Open', (['"""data/byte.tif"""'], {}), "('data/byte.tif')\n", (6595, 6612), False, 'from osgeo import gdal\n'), ((6627, 6688), 'numpy.zeros', 'numpy.zeros', (['[1, ds.RasterYSize, ds.RasterXSize]', 'numpy.uint8'], {}), '([1, ds.RasterYSize, ds.RasterXSize], numpy.uint8)\n', (6638, 6688), False, 'import numpy\n'), ((6808, 6836), 'osgeo.gdalnumeric.OpenArray', 'gdalnumeric.OpenArray', (['array'], {}), '(array)\n', (6829, 6836), False, 'from osgeo import gdalnumeric\n'), ((6988, 7046), 'numpy.zeros', 'numpy.zeros', (['[ds.RasterYSize, ds.RasterXSize]', 'numpy.uint8'], {}), '([ds.RasterYSize, ds.RasterXSize], numpy.uint8)\n', (6999, 7046), False, 'import numpy\n'), ((7166, 7194), 'osgeo.gdalnumeric.OpenArray', 'gdalnumeric.OpenArray', (['array'], {}), '(array)\n', (7187, 7194), False, 'from osgeo import gdalnumeric\n'), ((7332, 7362), 'osgeo.gdal.Open', 'gdal.Open', (['"""data/rgbsmall.tif"""'], {}), "('data/rgbsmall.tif')\n", (7341, 7362), False, 'from osgeo import gdal\n'), ((7377, 7451), 'numpy.zeros', 'numpy.zeros', (['[ds.RasterCount, ds.RasterYSize, ds.RasterXSize]', 'numpy.uint8'], {}), '([ds.RasterCount, ds.RasterYSize, ds.RasterXSize], numpy.uint8)\n', (7388, 7451), False, 'import numpy\n'), ((7571, 7599), 'osgeo.gdalnumeric.OpenArray', 'gdalnumeric.OpenArray', (['array'], {}), '(array)\n', (7592, 7599), False, 'from osgeo import gdalnumeric\n'), ((8008, 8038), 'osgeo.gdal.Open', 'gdal.Open', (['"""data/rgbsmall.tif"""'], {}), "('data/rgbsmall.tif')\n", (8017, 8038), False, 'from osgeo import gdal\n'), ((8053, 8127), 'numpy.zeros', 'numpy.zeros', (['[ds.RasterCount, ds.RasterYSize, ds.RasterXSize]', 'numpy.uint8'], {}), '([ds.RasterCount, ds.RasterYSize, ds.RasterXSize], numpy.uint8)\n', (8064, 8127), False, 'import numpy\n'), ((8176, 8204), 'osgeo.gdalnumeric.OpenArray', 'gdalnumeric.OpenArray', (['array'], {}), '(array)\n', (8197, 8204), False, 'from osgeo import gdalnumeric\n'), ((8577, 8603), 'osgeo.gdal.Open', 'gdal.Open', (['"""data/byte.tif"""'], {}), "('data/byte.tif')\n", (8586, 8603), False, 'from osgeo import gdal\n'), ((9316, 9353), 'numpy.empty', 'numpy.empty', (['[1, 2]'], {'dtype': 'numpy.int8'}), '([1, 2], dtype=numpy.int8)\n', (9327, 9353), False, 'import numpy\n'), ((9458, 9490), 'osgeo.gdal.Open', 'gdal.Open', (['"""/vsimem/signed8.tif"""'], {}), "('/vsimem/signed8.tif')\n", (9467, 9490), False, 'from osgeo import gdal\n'), ((9528, 9549), 'numpy.empty_like', 'numpy.empty_like', (['ar2'], {}), '(ar2)\n', (9544, 9549), False, 'import numpy\n'), ((9620, 9654), 'osgeo.gdal.Unlink', 'gdal.Unlink', (['"""/vsimem/signed8.tif"""'], {}), "('/vsimem/signed8.tif')\n", (9631, 9654), False, 'from osgeo import gdal\n'), ((12642, 12680), 'numpy.empty', 'numpy.empty', (['[2, 2]'], {'dtype': 'numpy.uint8'}), '([2, 2], dtype=numpy.uint8)\n', (12653, 12680), False, 'import numpy\n'), ((12762, 12789), 'osgeo.gdal.GetDriverByName', 'gdal.GetDriverByName', (['"""MEM"""'], {}), "('MEM')\n", (12782, 12789), False, 'from osgeo import gdal\n'), ((12923, 12943), 'numpy.zeros_like', 'numpy.zeros_like', (['ar'], {}), '(ar)\n', (12939, 12943), False, 'import numpy\n'), ((13386, 13413), 'osgeo.gdal.GetDriverByName', 'gdal.GetDriverByName', (['"""MEM"""'], {}), "('MEM')\n", (13406, 13413), False, 'from osgeo import gdal\n'), ((13475, 13513), 'numpy.empty', 'numpy.empty', (['[1, 2]'], {'dtype': 'numpy.uint8'}), '([1, 2], dtype=numpy.uint8)\n', (13486, 13513), False, 'import numpy\n'), ((13651, 13689), 'numpy.empty', 'numpy.empty', (['[1, 2]'], {'dtype': 'numpy.int64'}), '([1, 2], dtype=numpy.int64)\n', (13662, 13689), False, 'import numpy\n'), ((13962, 14000), 'numpy.empty', 'numpy.empty', (['[1, 2]'], {'dtype': 'numpy.uint8'}), '([1, 2], dtype=numpy.uint8)\n', (13973, 14000), False, 'import numpy\n'), ((14280, 14321), 'numpy.empty', 'numpy.empty', (['[1, 1, 2]'], {'dtype': 'numpy.uint8'}), '([1, 1, 2], dtype=numpy.uint8)\n', (14291, 14321), False, 'import numpy\n'), ((14616, 14654), 'numpy.empty', 'numpy.empty', (['[1, 2]'], {'dtype': 'numpy.uint8'}), '([1, 2], dtype=numpy.uint8)\n', (14627, 14654), False, 'import numpy\n'), ((14938, 14976), 'numpy.empty', 'numpy.empty', (['[1, 2]'], {'dtype': 'numpy.uint8'}), '([1, 2], dtype=numpy.uint8)\n', (14949, 14976), False, 'import numpy\n'), ((15251, 15289), 'numpy.zeros', 'numpy.zeros', (['[1, 2]'], {'dtype': 'numpy.uint8'}), '([1, 2], dtype=numpy.uint8)\n', (15262, 15289), False, 'import numpy\n'), ((15546, 15587), 'numpy.zeros', 'numpy.zeros', (['[1, 1, 2]'], {'dtype': 'numpy.uint8'}), '([1, 1, 2], dtype=numpy.uint8)\n', (15557, 15587), False, 'import numpy\n'), ((15820, 15861), 'numpy.zeros', 'numpy.zeros', (['[1, 1, 2]'], {'dtype': 'numpy.uint8'}), '([1, 1, 2], dtype=numpy.uint8)\n', (15831, 15861), False, 'import numpy\n'), ((16291, 16318), 'osgeo.gdal.GetDriverByName', 'gdal.GetDriverByName', (['"""MEM"""'], {}), "('MEM')\n", (16311, 16318), False, 'from osgeo import gdal\n'), ((16380, 16421), 'numpy.empty', 'numpy.empty', (['[3, 1, 2]'], {'dtype': 'numpy.uint8'}), '([3, 1, 2], dtype=numpy.uint8)\n', (16391, 16421), False, 'import numpy\n'), ((16639, 16680), 'numpy.empty', 'numpy.empty', (['[3, 1, 2]'], {'dtype': 'numpy.int64'}), '([3, 1, 2], dtype=numpy.int64)\n', (16650, 16680), False, 'import numpy\n'), ((16936, 16977), 'numpy.empty', 'numpy.empty', (['[3, 1, 2]'], {'dtype': 'numpy.uint8'}), '([3, 1, 2], dtype=numpy.uint8)\n', (16947, 16977), False, 'import numpy\n'), ((17235, 17273), 'numpy.empty', 'numpy.empty', (['[1, 2]'], {'dtype': 'numpy.uint8'}), '([1, 2], dtype=numpy.uint8)\n', (17246, 17273), False, 'import numpy\n'), ((17511, 17552), 'numpy.empty', 'numpy.empty', (['[3, 1, 2]'], {'dtype': 'numpy.uint8'}), '([3, 1, 2], dtype=numpy.uint8)\n', (17522, 17552), False, 'import numpy\n'), ((17819, 17860), 'numpy.empty', 'numpy.empty', (['[3, 1, 2]'], {'dtype': 'numpy.uint8'}), '([3, 1, 2], dtype=numpy.uint8)\n', (17830, 17860), False, 'import numpy\n'), ((18130, 18171), 'numpy.empty', 'numpy.empty', (['[2, 1, 2]'], {'dtype': 'numpy.uint8'}), '([2, 1, 2], dtype=numpy.uint8)\n', (18141, 18171), False, 'import numpy\n'), ((18392, 18433), 'numpy.zeros', 'numpy.zeros', (['[3, 1, 2]'], {'dtype': 'numpy.uint8'}), '([3, 1, 2], dtype=numpy.uint8)\n', (18403, 18433), False, 'import numpy\n'), ((18793, 18834), 'numpy.zeros', 'numpy.zeros', (['[3, 1, 2]'], {'dtype': 'numpy.uint8'}), '([3, 1, 2], dtype=numpy.uint8)\n', (18804, 18834), False, 'import numpy\n'), ((20500, 20526), 'osgeo.gdal.Open', 'gdal.Open', (['"""data/byte.tif"""'], {}), "('data/byte.tif')\n", (20509, 20526), False, 'from osgeo import gdal\n'), ((22174, 22204), 'osgeo.gdal.Open', 'gdal.Open', (['"""data/rgbsmall.tif"""'], {}), "('data/rgbsmall.tif')\n", (22183, 22204), False, 'from osgeo import gdal\n'), ((22536, 22610), 'numpy.empty', 'numpy.empty', (['[ds.RasterCount, ds.RasterYSize, ds.RasterXSize]', 'numpy.uint8'], {}), '([ds.RasterCount, ds.RasterYSize, ds.RasterXSize], numpy.uint8)\n', (22547, 22610), False, 'import numpy\n'), ((23184, 23219), 'numpy.empty', 'numpy.empty', (['[1, 1, 1]', 'numpy.uint8'], {}), '([1, 1, 1], numpy.uint8)\n', (23195, 23219), False, 'import numpy\n'), ((23229, 23256), 'osgeo.gdal_array.OpenArray', 'gdal_array.OpenArray', (['array'], {}), '(array)\n', (23249, 23256), False, 'from osgeo import gdal_array\n'), ((23976, 24006), 'gdaltest.setup_run', 'gdaltest.setup_run', (['"""numpy_rw"""'], {}), "('numpy_rw')\n", (23994, 24006), False, 'import gdaltest\n'), ((24014, 24047), 'gdaltest.run_tests', 'gdaltest.run_tests', (['gdaltest_list'], {}), '(gdaltest_list)\n', (24032, 24047), False, 'import gdaltest\n'), ((24055, 24075), 'gdaltest.summarize', 'gdaltest.summarize', ([], {}), '()\n', (24073, 24075), False, 'import gdaltest\n'), ((1994, 2020), '_gdal.GDALRegister_NUMPY', '_gdal.GDALRegister_NUMPY', ([], {}), '()\n', (2018, 2020), False, 'import _gdal\n'), ((2068, 2086), 'osgeo.gdal.AllRegister', 'gdal.AllRegister', ([], {}), '()\n', (2084, 2086), False, 'from osgeo import gdal\n'), ((2213, 2260), 'gdaltest.post_reason', 'gdaltest.post_reason', (['"""NUMPY driver not found!"""'], {}), "('NUMPY driver not found!')\n", (2233, 2260), False, 'import gdaltest\n'), ((2662, 2724), 'gdaltest.post_reason', 'gdaltest.post_reason', (['"""Failed to load utmsmall.tif into array"""'], {}), "('Failed to load utmsmall.tif into array')\n", (2682, 2724), False, 'import gdaltest\n'), ((2816, 2879), 'gdaltest.post_reason', 'gdaltest.post_reason', (['"""Failed to open memory array as dataset."""'], {}), "('Failed to open memory array as dataset.')\n", (2836, 2879), False, 'import gdaltest\n'), ((2975, 3043), 'gdaltest.post_reason', 'gdaltest.post_reason', (['"""Didnt get expected checksum on reopened file"""'], {}), "('Didnt get expected checksum on reopened file')\n", (2995, 3043), False, 'import gdaltest\n'), ((3432, 3486), 'gdaltest.post_reason', 'gdaltest.post_reason', (['"""complex value read improperly."""'], {}), "('complex value read improperly.')\n", (3452, 3486), False, 'import gdaltest\n'), ((3890, 3988), 'gdaltest.post_reason', 'gdaltest.post_reason', (['"""Read wrong value - perhaps downsampling algorithm has changed subtly?"""'], {}), "(\n 'Read wrong value - perhaps downsampling algorithm has changed subtly?')\n", (3910, 3988), False, 'import gdaltest\n'), ((4381, 4427), 'gdaltest.post_reason', 'gdaltest.post_reason', (['"""value read improperly."""'], {}), "('value read improperly.')\n", (4401, 4427), False, 'import gdaltest\n'), ((4512, 4558), 'gdaltest.post_reason', 'gdaltest.post_reason', (['"""value read improperly."""'], {}), "('value read improperly.')\n", (4532, 4558), False, 'import gdaltest\n'), ((4642, 4688), 'gdaltest.post_reason', 'gdaltest.post_reason', (['"""value read improperly."""'], {}), "('value read improperly.')\n", (4662, 4688), False, 'import gdaltest\n'), ((4940, 4982), 'gdaltest.post_reason', 'gdaltest.post_reason', (['"""wrong array shape."""'], {}), "('wrong array shape.')\n", (4960, 4982), False, 'import gdaltest\n'), ((5113, 5159), 'gdaltest.post_reason', 'gdaltest.post_reason', (['"""value read improperly."""'], {}), "('value read improperly.')\n", (5133, 5159), False, 'import gdaltest\n'), ((5479, 5525), 'gdaltest.post_reason', 'gdaltest.post_reason', (['"""value read improperly."""'], {}), "('value read improperly.')\n", (5499, 5525), False, 'import gdaltest\n'), ((8870, 8923), 'gdaltest.post_reason', 'gdaltest.post_reason', (['"""did not get expected checksum"""'], {}), "('did not get expected checksum')\n", (8890, 8923), False, 'import gdaltest\n'), ((9710, 9765), 'gdaltest.post_reason', 'gdaltest.post_reason', (['"""did not get expected result (1)"""'], {}), "('did not get expected result (1)')\n", (9730, 9765), False, 'import gdaltest\n'), ((9862, 9917), 'gdaltest.post_reason', 'gdaltest.post_reason', (['"""did not get expected result (2)"""'], {}), "('did not get expected result (2)')\n", (9882, 9917), False, 'import gdaltest\n'), ((11408, 11448), 'numpy.empty', 'numpy.empty', (['[1, 1]'], {'dtype': 'type_tuple[2]'}), '([1, 1], dtype=type_tuple[2])\n', (11419, 11448), False, 'import numpy\n'), ((11559, 11596), 'osgeo.gdal.Open', 'gdal.Open', (["('/vsimem/' + type_tuple[0])"], {}), "('/vsimem/' + type_tuple[0])\n", (11568, 11596), False, 'from osgeo import gdal\n'), ((11642, 11663), 'numpy.empty_like', 'numpy.empty_like', (['ar2'], {}), '(ar2)\n', (11658, 11663), False, 'import numpy\n'), ((11746, 11785), 'osgeo.gdal.Unlink', 'gdal.Unlink', (["('/vsimem/' + type_tuple[0])"], {}), "('/vsimem/' + type_tuple[0])\n", (11757, 11785), False, 'from osgeo import gdal\n'), ((13765, 13865), 'gdaltest.post_reason', 'gdaltest.post_reason', (['"""expected "ValueError: array does not have corresponding GDAL data type\\""""'], {}), '(\n \'expected "ValueError: array does not have corresponding GDAL data type"\')\n', (13785, 13865), False, 'import gdaltest\n'), ((14106, 14198), 'gdaltest.post_reason', 'gdaltest.post_reason', (['"""expected "Specified buf_ysize not consistant with buffer shape\\""""'], {}), '(\n \'expected "Specified buf_ysize not consistant with buffer shape"\')\n', (14126, 14198), False, 'import gdaltest\n'), ((14427, 14519), 'gdaltest.post_reason', 'gdaltest.post_reason', (['"""expected "Specified buf_ysize not consistant with buffer shape\\""""'], {}), '(\n \'expected "Specified buf_ysize not consistant with buffer shape"\')\n', (14447, 14519), False, 'import gdaltest\n'), ((14760, 14852), 'gdaltest.post_reason', 'gdaltest.post_reason', (['"""expected "Specified buf_xsize not consistant with buffer shape\\""""'], {}), '(\n \'expected "Specified buf_xsize not consistant with buffer shape"\')\n', (14780, 14852), False, 'import gdaltest\n'), ((15079, 15168), 'gdaltest.post_reason', 'gdaltest.post_reason', (['"""expected "Specified buf_type not consistant with array type\\""""'], {}), '(\n \'expected "Specified buf_type not consistant with array type"\')\n', (15099, 15168), False, 'import gdaltest\n'), ((15425, 15476), 'gdaltest.post_reason', 'gdaltest.post_reason', (['"""did not get expected values"""'], {}), "('did not get expected values')\n", (15445, 15476), False, 'import gdaltest\n'), ((15699, 15750), 'gdaltest.post_reason', 'gdaltest.post_reason', (['"""did not get expected values"""'], {}), "('did not get expected values')\n", (15719, 15750), False, 'import gdaltest\n'), ((15956, 16007), 'gdaltest.post_reason', 'gdaltest.post_reason', (['"""did not get expected values"""'], {}), "('did not get expected values')\n", (15976, 16007), False, 'import gdaltest\n'), ((16145, 16196), 'gdaltest.post_reason', 'gdaltest.post_reason', (['"""did not get expected values"""'], {}), "('did not get expected values')\n", (16165, 16196), False, 'import gdaltest\n'), ((16739, 16839), 'gdaltest.post_reason', 'gdaltest.post_reason', (['"""expected "ValueError: array does not have corresponding GDAL data type\\""""'], {}), '(\n \'expected "ValueError: array does not have corresponding GDAL data type"\')\n', (16759, 16839), False, 'import gdaltest\n'), ((17066, 17158), 'gdaltest.post_reason', 'gdaltest.post_reason', (['"""expected "Specified buf_ysize not consistant with buffer shape\\""""'], {}), '(\n \'expected "Specified buf_ysize not consistant with buffer shape"\')\n', (17086, 17158), False, 'import gdaltest\n'), ((17332, 17409), 'gdaltest.post_reason', 'gdaltest.post_reason', (['"""expected "ValueError: Array should have 3 dimensions\\""""'], {}), '(\'expected "ValueError: Array should have 3 dimensions"\')\n', (17352, 17409), False, 'import gdaltest\n'), ((17641, 17733), 'gdaltest.post_reason', 'gdaltest.post_reason', (['"""expected "Specified buf_xsize not consistant with buffer shape\\""""'], {}), '(\n \'expected "Specified buf_xsize not consistant with buffer shape"\')\n', (17661, 17733), False, 'import gdaltest\n'), ((17946, 18035), 'gdaltest.post_reason', 'gdaltest.post_reason', (['"""expected "Specified buf_type not consistant with array type\\""""'], {}), '(\n \'expected "Specified buf_type not consistant with array type"\')\n', (17966, 18035), False, 'import gdaltest\n'), ((18230, 18300), 'gdaltest.post_reason', 'gdaltest.post_reason', (['"""expected "Array should have space for 3 bands\\""""'], {}), '(\'expected "Array should have space for 3 bands"\')\n', (18250, 18300), False, 'import gdaltest\n'), ((18672, 18723), 'gdaltest.post_reason', 'gdaltest.post_reason', (['"""did not get expected values"""'], {}), "('did not get expected values')\n", (18692, 18723), False, 'import gdaltest\n'), ((19017, 19068), 'gdaltest.post_reason', 'gdaltest.post_reason', (['"""did not get expected values"""'], {}), "('did not get expected values')\n", (19037, 19068), False, 'import gdaltest\n'), ((19300, 19351), 'gdaltest.post_reason', 'gdaltest.post_reason', (['"""did not get expected values"""'], {}), "('did not get expected values')\n", (19320, 19351), False, 'import gdaltest\n'), ((20855, 20886), 'gdaltest.post_reason', 'gdaltest.post_reason', (['"""failure"""'], {}), "('failure')\n", (20875, 20886), False, 'import gdaltest\n'), ((20965, 20996), 'gdaltest.post_reason', 'gdaltest.post_reason', (['"""failure"""'], {}), "('failure')\n", (20985, 20996), False, 'import gdaltest\n'), ((21252, 21283), 'gdaltest.post_reason', 'gdaltest.post_reason', (['"""failure"""'], {}), "('failure')\n", (21272, 21283), False, 'import gdaltest\n'), ((21336, 21367), 'gdaltest.post_reason', 'gdaltest.post_reason', (['"""failure"""'], {}), "('failure')\n", (21356, 21367), False, 'import gdaltest\n'), ((21660, 21691), 'gdaltest.post_reason', 'gdaltest.post_reason', (['"""failure"""'], {}), "('failure')\n", (21680, 21691), False, 'import gdaltest\n'), ((21770, 21801), 'gdaltest.post_reason', 'gdaltest.post_reason', (['"""failure"""'], {}), "('failure')\n", (21790, 21801), False, 'import gdaltest\n'), ((22044, 22075), 'gdaltest.post_reason', 'gdaltest.post_reason', (['"""failure"""'], {}), "('failure')\n", (22064, 22075), False, 'import gdaltest\n'), ((22410, 22441), 'gdaltest.post_reason', 'gdaltest.post_reason', (['"""failure"""'], {}), "('failure')\n", (22430, 22441), False, 'import gdaltest\n'), ((22840, 22871), 'gdaltest.post_reason', 'gdaltest.post_reason', (['"""failure"""'], {}), "('failure')\n", (22860, 22871), False, 'import gdaltest\n'), ((23342, 23373), 'gdaltest.post_reason', 'gdaltest.post_reason', (['"""failure"""'], {}), "('failure')\n", (23362, 23373), False, 'import gdaltest\n'), ((23502, 23533), 'gdaltest.post_reason', 'gdaltest.post_reason', (['"""failure"""'], {}), "('failure')\n", (23522, 23533), False, 'import gdaltest\n'), ((8649, 8676), 'osgeo.gdal.GetDriverByName', 'gdal.GetDriverByName', (['"""MEM"""'], {}), "('MEM')\n", (8669, 8676), False, 'from osgeo import gdal\n'), ((9205, 9234), 'osgeo.gdal.GetDriverByName', 'gdal.GetDriverByName', (['"""GTiff"""'], {}), "('GTiff')\n", (9225, 9234), False, 'from osgeo import gdal\n'), ((11282, 11337), 'gdaltest.post_reason', 'gdaltest.post_reason', (['"""did not get expected numpy type"""'], {}), "('did not get expected numpy type')\n", (11302, 11337), False, 'import gdaltest\n'), ((11958, 12013), 'gdaltest.post_reason', 'gdaltest.post_reason', (['"""did not get expected result (1)"""'], {}), "('did not get expected result (1)')\n", (11978, 12013), False, 'import gdaltest\n'), ((12265, 12320), 'gdaltest.post_reason', 'gdaltest.post_reason', (['"""did not get expected result (2)"""'], {}), "('did not get expected result (2)')\n", (12285, 12320), False, 'import gdaltest\n'), ((20334, 20373), 'osgeo.gdal.GetConfigOption', 'gdal.GetConfigOption', (['"""GTIFF_DIRECT_IO"""'], {}), "('GTIFF_DIRECT_IO')\n", (20354, 20373), False, 'from osgeo import gdal\n'), ((20395, 20439), 'osgeo.gdal.GetConfigOption', 'gdal.GetConfigOption', (['"""GTIFF_VIRTUAL_MEM_IO"""'], {}), "('GTIFF_VIRTUAL_MEM_IO')\n", (20415, 20439), False, 'from osgeo import gdal\n'), ((11111, 11140), 'osgeo.gdal.GetDriverByName', 'gdal.GetDriverByName', (['"""GTiff"""'], {}), "('GTiff')\n", (11131, 11140), False, 'from osgeo import gdal\n')]
from sklearn.model_selection import KFold from sklearn.metrics import classification_report, accuracy_score, matthews_corrcoef from sklearn import svm from feature import Feature from sklearn.linear_model import LogisticRegression from sklearn.ensemble import ExtraTreesClassifier import numpy as np def random_data(file_name): seqs_blosum62, label, work2vec, train_seqs, seqs_dde, seqs_z, seqs_aac, seqs_dpc, seqs_ctdd, seqs_ctrial, seqs_ksctriad, seqs_gtpc, seqs_cksaagp, seqs_gaac, seqs_gdpc, seqs_ctdt, seqs_geary, seqs_cksaap, seqs_aaindex, seqs_paac = Feature( file_name) # , seqs_dde, seqs_z, seqs_aac, seqs_dpc, seqs_ctdd seqs_dde = np.array(seqs_dde) train_seqs = np.array(train_seqs) seqs_ksctriad = np.array(seqs_ksctriad) #work2vec = np.array(work2vec) seqs_blosum62 = np.array(seqs_blosum62) print(seqs_blosum62.shape) seqs_ctrial = np.array(seqs_ctrial) seqs_gtpc = np.array(seqs_gtpc) seqs_cksaagp = np.array(seqs_cksaagp) seqs_gaac = np.array(seqs_gaac) seqs_cksaap = np.array(seqs_cksaap) seqs_aaindex = np.array(seqs_aaindex, dtype=float) seqs_paac = np.array(seqs_paac) seqs_gdpc = np.array(seqs_gdpc) # print(seqs_gtpc.shape) seqs_ctdt = np.array(seqs_ctdt) seqs_ctdt = seqs_ctdt.reshape(seqs_ctdt.shape[0], -1) seqs_ctdd = np.array(seqs_ctdd) seqs_ctdd = seqs_ctdd.reshape(seqs_ctdd.shape[0], -1) seqs_dpc = np.array(seqs_dpc) seqs_dpc = seqs_dpc.reshape(seqs_dpc.shape[0], -1) seqs_aac = np.array(seqs_aac) seqs_aac = seqs_aac.reshape(seqs_aac.shape[0], -1) seqs_z = np.array(seqs_z) seqs_z = seqs_z.reshape(seqs_z.shape[0], -1) seqs_geary = np.array(seqs_geary) seqs_geary = seqs_geary.reshape(seqs_geary.shape[0], -1) seqs_dde = np.array(seqs_dde) seqs_dde = seqs_dde.reshape(seqs_dde.shape[0], -1) #work2vec = work2vec.reshape(work2vec.shape[0], -1) seqs_ctrial = seqs_ctrial.reshape(seqs_ctrial.shape[0], -1) seqs_ksctriad = seqs_ksctriad.reshape(seqs_ksctriad.shape[0], -1) seqs_blosum62 = seqs_blosum62.reshape(seqs_blosum62.shape[0], -1) seqs_gtpc = seqs_gtpc.reshape(seqs_gtpc.shape[0], -1) seqs_cksaagp = seqs_cksaagp.reshape(seqs_cksaagp.shape[0], -1) seqs_gaac = seqs_gaac.reshape(seqs_gaac.shape[0], -1) seqs_cksaap = seqs_cksaap.reshape(seqs_cksaap.shape[0], -1) seqs_aaindex = seqs_aaindex.reshape(seqs_aaindex.shape[0], -1) seqs_dpc = seqs_dpc.reshape(seqs_dpc.shape[0], -1) seqs_paac = seqs_paac.reshape(seqs_paac.shape[0], -1) seqs_gdpc = seqs_gdpc.reshape(seqs_gdpc.shape[0], -1) #data_features = np.concatenate((seqs_blosum62, seqs_ksctriad, seqs_cksaap, seqs_aaindex), 1) #0.93 data_features1 = np.concatenate((seqs_aac,seqs_dde,seqs_paac,seqs_gaac), 1) data_features2 = np.concatenate((seqs_aac,seqs_dde,seqs_paac,seqs_gdpc), 1) # 0.929 data_features3 = np.concatenate((seqs_aac,seqs_dde,seqs_paac,seqs_ctdt), 1) data_features4 = np.concatenate((seqs_dde,seqs_paac,seqs_gaac,seqs_gdpc), 1) data_features5 = np.concatenate((seqs_dde,seqs_paac,seqs_ctdt,train_seqs), 1) data_features6 = np.concatenate((seqs_cksaap,seqs_aac,seqs_dde,seqs_gtpc, seqs_ctdt), 1) data_features7 = np.concatenate((seqs_cksaap,seqs_aac,seqs_dde,seqs_gdpc,seqs_aaindex), 1) data_features8 = np.concatenate((seqs_aac,seqs_dde,seqs_paac,seqs_gaac,train_seqs), 1) # 0.928 data_features9 = np.concatenate((seqs_aac,seqs_dde,seqs_gaac,seqs_geary,train_seqs), 1) data_features10 = np.concatenate((seqs_dde,seqs_paac,seqs_gtpc,seqs_gdpc,seqs_ctdt), 1) data_features11 = np.concatenate((seqs_cksaap,seqs_aac,seqs_dde,seqs_gtpc,seqs_gaac,seqs_aaindex,train_seqs), 1) data_features12 = np.concatenate((seqs_aac,seqs_dde,seqs_dpc,seqs_paac,seqs_gaac,seqs_aaindex), 1) data_features13 = np.concatenate((seqs_aac,seqs_dde,seqs_gaac,seqs_ctdt,seqs_aaindex,seqs_ksctriad), 1) data_features14 = np.concatenate((seqs_aac,seqs_dde,seqs_dpc,seqs_paac,seqs_gdpc,seqs_aaindex,seqs_ctrial,train_seqs), 1) data_features15 = np.concatenate((seqs_aac,seqs_dde,seqs_gtpc,seqs_ksctriad,seqs_cksaap), 1) #seqs_aac', 'seqs_cksaagp', 'seqs_gaac', 'seqs_gdpc # seqs_blosum62, label, work2vec, train_seqs, seqs_dde, seqs_z, seqs_aac, seqs_dpc, seqs_ctdd = Feature(file_name) # train_seqs = np.array(train_seqs) # seqs_dde = np.array(seqs_dde) # seqs_dde = seqs_dde.reshape(seqs_dde.shape[0], -1) # data_features = np.concatenate((train_seqs, seqs_dde), 1) # if num > 1: # data_features = np.array(eval(data_feature[0])) # if data_features.ndim > 2: # data_features = data_features.reshape(data_features.shape[0], -1) # for i in range(num - 1): # temp = eval(data_feature[i + 1]) # temp = np.array(temp) # if temp.ndim > 2: # temp = temp.reshape(temp.shape[0], -1) # data_features = np.concatenate((data_features, temp), 1) # else: # data_feature = eval(data_feature) # data_features = np.array(data_feature) # if data_features.ndim > 2: # data_features = data_features.reshape(data_features.shape[0], -1) label = np.array(label) label = label.reshape(label.shape[0], ) # indx = np.arange(data_features.shape[0]) # # np.random.shuffle(indx) # # label = ((label[indx])) # # data_features = (data_features[indx]) return data_features1, data_features2, data_features3, data_features4, data_features5, data_features6, data_features7, data_features8, data_features9, data_features10, data_features11, data_features12, data_features13, data_features14, data_features15, label # data_features1, data_features2, data_features3, data_features4, data_features5, data_features6, data_features7, data_features8, data_features9, data_features10, data_features11, data_features12, data_features13, data_features14, data_features15, label = random_data( # "D:\E下载\\ACP20AltTrain (1).fasta") # # te_data_features1, te_data_features2, te_data_features3, te_data_features4, te_data_features5, te_data_features6, te_data_features7, te_data_features8, te_data_features9, te_data_features10, te_data_features11, te_data_features12, te_data_features13, te_data_features14, te_data_features15, te_label = random_data( # "D:\E下载\\ACP20AltTest (1).fasta") #ml_model = XGBClassifier(use_label_encoder=False) ml_model1 = ExtraTreesClassifier(random_state= 0) ml_model2 = ExtraTreesClassifier(random_state= 0) ml_model3 = ExtraTreesClassifier(random_state= 0) ml_model4 = ExtraTreesClassifier(random_state= 0) ml_model5 = ExtraTreesClassifier(random_state= 0) ml_model6 = ExtraTreesClassifier(random_state= 0) ml_model7 = ExtraTreesClassifier(random_state= 0) ml_model8 = ExtraTreesClassifier(random_state= 0) ml_model9 = ExtraTreesClassifier(random_state= 0) ml_model10 = ExtraTreesClassifier(random_state= 0) estimatorf = VotingClassifier(estimators=[ ('log_clf', LogisticRegression()), ('svm_clf', svm.SVC(probability=True)), ], voting='soft') data_features1x, data_features2x, data_features3x, data_features4x, data_features5x, data_features6x, data_features7x, data_features8x, data_features9x, data_features10x, data_features11x, data_features12x, data_features13x, data_features14x, data_features15x, labelx = random_data("D:\E下载\\CPP.txt") skf = KFold(n_splits= 10, shuffle= True,random_state= 999) k_re_list1 = [] MCC1 = [] SP1 = [] SN1 = [] k_re_list2 = [] MCC2 = [] SP2 = [] SN2 = [] k_re_list3 = [] MCC3 = [] SP3 = [] SN3 = [] k_re_list4 = [] MCC4 = [] SP4 = [] SN4 = [] k_re_list5 = [] MCC5 = [] SP5 = [] SN5 = [] k_re_list6 = [] MCC6 = [] SP6 = [] SN6 = [] k_re_list7 = [] MCC7 = [] SP7 = [] SN7 = [] k_re_list8 = [] MCC8 = [] SP8 = [] SN8 = [] k_re_list9 = [] MCC9 = [] SP9 = [] SN9 = [] k_re_list10 = [] MCC10 = [] SP10 = [] SN10 = [] k_re_list1x = [] MCC1x = [] SP1x = [] SN1x = [] for K, (train_idx, val_idx) in enumerate(skf.split(data_features1x, labelx)): print("{}K-fold\n".format(K)) # data_features1 = data_features1x[train_idx] # te_data_features1 = data_features1x[val_idx] # data_features2 = data_features2x[train_idx] # te_data_features2 = data_features2x[val_idx] # data_features3 = data_features3x[train_idx] # te_data_features3 = data_features3x[val_idx] # data_features4 = data_features4x[train_idx] # te_data_features4 = data_features4x[val_idx] data_features5 = data_features5x[train_idx] te_data_features5 = data_features5x[val_idx] data_features6 = data_features6x[train_idx] te_data_features6 = data_features6x[val_idx] data_features7 = data_features7x[train_idx] te_data_features7 = data_features7x[val_idx] # data_features8 = data_features8x[train_idx] # te_data_features8 = data_features8x[val_idx] # data_features9 = data_features9x[train_idx] # te_data_features9 = data_features9x[val_idx] # data_features10 = data_features10x[train_idx] # te_data_features10 = data_features10x[val_idx] # label = labelx[train_idx] te_label = labelx[val_idx] # print("1") # ml_model1.fit(data_features1, label) # print("1") # ml_model2.fit(data_features2, label) # print("2") # ml_model3.fit(data_features3, label) # print("3") # ml_model4.fit(data_features4, label) # print("4") ml_model5.fit(data_features5, label) print("5") ml_model6.fit(data_features6, label) print("6") ml_model7.fit(data_features7, label) print("7") #ml_model8.fit(data_features8, label) # print("8") # ml_model9.fit(data_features9, label) # print("9") # ml_model10.fit(data_features10, label) # print("10") # # y_pred1 = ml_model1.predict(te_data_features1) # k_re_list1.append(accuracy_score(te_label, y_pred1)) # MCC1.append(matthews_corrcoef(te_label, y_pred1)) # SP1.append(float((str(classification_report((y_pred1), te_label, digits=4)).split())[6])) # SN1.append(float((str(classification_report((y_pred1), te_label, digits=4)).split())[11])) # print(classification_report((y_pred1), te_label, digits=4)) # print("=========1===========") # y_pred2 = ml_model2.predict(te_data_features2) # MCC2.append(matthews_corrcoef(te_label, y_pred2)) # SP2.append(float((str(classification_report((y_pred2), te_label, digits=4)).split())[6])) # SN2.append(float((str(classification_report((y_pred2), te_label, digits=4)).split())[11])) # k_re_list2.append(accuracy_score(te_label, y_pred2)) # print(classification_report((y_pred2), te_label, digits=4)) # print("=========2===========") # y_pred3 = ml_model3.predict(te_data_features3) # k_re_list3.append(accuracy_score(te_label, y_pred3)) # MCC3.append(matthews_corrcoef(te_label, y_pred3)) # SP3.append(float((str(classification_report((y_pred3), te_label, digits=4)).split())[6])) # SN3.append(float((str(classification_report((y_pred3), te_label, digits=4)).split())[11])) # print(classification_report((y_pred3), te_label, digits=4)) # print("=========3===========") # y_pred4 = ml_model4.predict(te_data_features4) # k_re_list4.append(accuracy_score(te_label, y_pred4)) # MCC4.append(matthews_corrcoef(te_label, y_pred4)) # SP4.append(float((str(classification_report((y_pred4), te_label, digits=4)).split())[6])) # SN4.append(float((str(classification_report((y_pred4), te_label, digits=4)).split())[11])) # print(classification_report((y_pred4), te_label, digits=4)) # print("=========4===========") y_pred5 = ml_model5.predict(te_data_features5) k_re_list5.append(accuracy_score(te_label, y_pred5)) MCC5.append(matthews_corrcoef(te_label, y_pred5)) SP5.append(float((str(classification_report((y_pred5), te_label, digits=4)).split())[6])) SN5.append(float((str(classification_report((y_pred5), te_label, digits=4)).split())[11])) print(classification_report((y_pred5), te_label, digits=4)) print("=========5===========") y_pred6 = ml_model6.predict(te_data_features6) k_re_list6.append(accuracy_score(te_label, y_pred6)) MCC6.append(matthews_corrcoef(te_label, y_pred6)) SP6.append(float((str(classification_report((y_pred6), te_label, digits=4)).split())[6])) SN6.append(float((str(classification_report((y_pred6), te_label, digits=4)).split())[11])) print(classification_report((y_pred6), te_label, digits=4)) print("=========6===========") y_pred7 = ml_model7.predict(te_data_features7) k_re_list7.append(accuracy_score(te_label, y_pred7)) MCC7.append(matthews_corrcoef(te_label, y_pred7)) SP7.append(float((str(classification_report((y_pred7), te_label, digits=4)).split())[6])) SN7.append(float((str(classification_report((y_pred7), te_label, digits=4)).split())[11])) print(classification_report((y_pred7), te_label, digits=4)) print("=========7===========") # y_pred8 = ml_model8.predict(te_data_features8) # k_re_list8.append(accuracy_score(te_label, y_pred8)) # MCC8.append(matthews_corrcoef(te_label, y_pred8)) # SP8.append(float((str(classification_report((y_pred8), te_label, digits=4)).split())[6])) # SN8.append(float((str(classification_report((y_pred8), te_label, digits=4)).split())[11])) # print(classification_report((y_pred8), te_label, digits=4)) # print("=========8===========") # y_pred9 = ml_model9.predict(te_data_features9) # k_re_list9.append(accuracy_score(te_label, y_pred9)) # MCC9.append(matthews_corrcoef(te_label, y_pred9)) # SP9.append(float((str(classification_report((y_pred9), te_label, digits=4)).split())[6])) # SN9.append(float((str(classification_report((y_pred9), te_label, digits=4)).split())[11])) # print(classification_report((y_pred9), te_label, digits=4)) # print("=========9===========") # y_pred10 = ml_model10.predict(te_data_features10) # k_re_list10.append(accuracy_score(te_label, y_pred10)) # MCC10.append(matthews_corrcoef(te_label, y_pred10)) # SP10.append(float((str(classification_report((y_pred10), te_label, digits=4)).split())[6])) # SN10.append(float((str(classification_report((y_pred10), te_label, digits=4)).split())[11])) # print(classification_report((y_pred10), te_label, digits=4)) # print("=========10===========") # t_pred1 = ml_model1.predict(data_features1) # t_pred2 = ml_model2.predict(data_features2) # t_pred3 = ml_model3.predict(data_features3) # t_pred4 = ml_model4.predict(data_features4) t_pred5 = ml_model5.predict(data_features5) t_pred6 = ml_model6.predict(data_features6) t_pred7 = ml_model7.predict(data_features7) # t_pred8 = ml_model8.predict(data_features8) # t_pred9 = ml_model9.predict(data_features9) # t_pred10 = ml_model10.predict(data_features10) # y_pred1 = y_pred1.reshape(y_pred1.shape[0], 1) # y_pred2 = y_pred2.reshape(y_pred2.shape[0], 1) # y_pred3 = y_pred3.reshape(y_pred3.shape[0], 1) # y_pred4 = y_pred4.reshape(y_pred4.shape[0], 1) y_pred5 = y_pred5.reshape(y_pred5.shape[0], 1) y_pred6 = y_pred6.reshape(y_pred6.shape[0], 1) y_pred7 = y_pred7.reshape(y_pred7.shape[0], 1) # y_pred8 = y_pred8.reshape(y_pred8.shape[0], 1) # y_pred9 = y_pred9.reshape(y_pred9.shape[0], 1) # y_pred10 = y_pred10.reshape(y_pred10.shape[0], 1) # t_pred1 = t_pred1.reshape(t_pred1.shape[0], 1) # t_pred2 = t_pred2.reshape(t_pred2.shape[0], 1) # t_pred3 = t_pred3.reshape(t_pred3.shape[0], 1) # t_pred4 = t_pred4.reshape(t_pred4.shape[0], 1) t_pred5 = t_pred5.reshape(t_pred5.shape[0], 1) t_pred6 = t_pred6.reshape(t_pred6.shape[0], 1) t_pred7 = t_pred7.reshape(t_pred7.shape[0], 1) # t_pred8 = t_pred8.reshape(t_pred8.shape[0], 1) # t_pred9 = t_pred9.reshape(t_pred9.shape[0], 1) # t_pred10 = t_pred10.reshape(t_pred10.shape[0], 1) temf_y_predx = np.concatenate( (y_pred6,y_pred5, y_pred7), 1) # ,y_pred6,y_pred7,y_pred8,y_pred9,y_pred10 y_pred1,,y_pred4,y_pred8,y_pred9,y_pred10 temf_t_predx = np.concatenate( (t_pred6, t_pred5, t_pred7), 1) # , t_pred6, t_pred7, t_pred8, t_pred9, t_pred10t_pred1,, t_pred4, t_pred8, t_pred9, t_pred10 estimatorf.fit(temf_t_predx, label) temf_y_predxf = estimatorf.predict(temf_y_predx) temf_t_predxf = estimatorf.predict(temf_t_predx) k_re_list1x.append(accuracy_score(te_label, temf_y_predxf)) MCC1x.append(matthews_corrcoef(te_label, temf_y_predxf)) SP1x.append(float((str(classification_report((temf_y_predxf), te_label, digits=4)).split())[6])) SN1x.append(float((str(classification_report((temf_y_predxf), te_label, digits=4)).split())[11])) print(classification_report(temf_y_predxf, te_label, digits=4)) print("=========f===========") # print(1) # print("SP: ", sum(SP1) / 10) # print("SN: ", sum(SN1) / 10) # print("MCC: ", sum(MCC1) / 10) # print("ACC: ",sum(k_re_list1) / 10) # print(2) # print("SP: ", sum(SP2) / 10) # print("SN: ", sum(SN2) / 10) # print("MCC: ", sum(MCC2) / 10) # print("ACC: ",sum(k_re_list2) / 10) # print(3) # print("SP: ", sum(SP3) / 10) # print("SN: ", sum(SN3) / 10) # print("MCC: ", sum(MCC3) / 10) # print("ACC: ",sum(k_re_list3) / 10) # print(4) # print("SP: ", sum(SP4) / 10) # print("SN: ", sum(SN4) / 10) # print("MCC: ", sum(MCC4) / 10) # print("ACC: ",sum(k_re_list4) / 10) print(5) print("SP: ", sum(SP5) / 10) print("SN: ", sum(SN5) / 10) print("MCC: ", sum(MCC5) / 10) print("ACC: ",sum(k_re_list5) / 10) print(6) print("SP: ", sum(SP6) / 10) print("SN: ", sum(SN6) / 10) print("MCC: ", sum(MCC6) / 10) print("ACC: ",sum(k_re_list6) / 10) print(7) print("SP: ", sum(SP7) / 10) print("SN: ", sum(SN7) / 10) print("MCC: ", sum(MCC7) / 10) print("ACC: ",sum(k_re_list7) / 10) # print(8) # print("SP: ", sum(SP8) / 10) # print("SN: ", sum(SN8) / 10) # print("MCC: ", sum(MCC8) / 10) # print("ACC: ",sum(k_re_list8) / 10) # print(9) # print("SP: ", sum(SP9) / 10) # print("SN: ", sum(SN9) / 10) # print("MCC: ", sum(MCC9) / 10) # print("ACC: ",sum(k_re_list9) / 10) # print(10) # print("SP: ", sum(SP10) / 10) # print("SN: ", sum(SN10) / 10) # print("MCC: ", sum(MCC10) / 10) # print("ACC: ",sum(k_re_list10) / 10) print("f") print("SP: ", sum(SP1x) / 10) print("SN: ", sum(SN1x) / 10) print("MCC: ", sum(MCC1x) / 10) print("ACC: ",sum(k_re_list1x) / 10)
[ "sklearn.metrics.accuracy_score", "sklearn.model_selection.KFold", "sklearn.metrics.classification_report", "sklearn.ensemble.ExtraTreesClassifier", "sklearn.linear_model.LogisticRegression", "sklearn.metrics.matthews_corrcoef", "numpy.array", "sklearn.svm.SVC", "feature.Feature", "numpy.concatenate" ]
[((6598, 6634), 'sklearn.ensemble.ExtraTreesClassifier', 'ExtraTreesClassifier', ([], {'random_state': '(0)'}), '(random_state=0)\n', (6618, 6634), False, 'from sklearn.ensemble import ExtraTreesClassifier\n'), ((6649, 6685), 'sklearn.ensemble.ExtraTreesClassifier', 'ExtraTreesClassifier', ([], {'random_state': '(0)'}), '(random_state=0)\n', (6669, 6685), False, 'from sklearn.ensemble import ExtraTreesClassifier\n'), ((6700, 6736), 'sklearn.ensemble.ExtraTreesClassifier', 'ExtraTreesClassifier', ([], {'random_state': '(0)'}), '(random_state=0)\n', (6720, 6736), False, 'from sklearn.ensemble import ExtraTreesClassifier\n'), ((6751, 6787), 'sklearn.ensemble.ExtraTreesClassifier', 'ExtraTreesClassifier', ([], {'random_state': '(0)'}), '(random_state=0)\n', (6771, 6787), False, 'from sklearn.ensemble import ExtraTreesClassifier\n'), ((6802, 6838), 'sklearn.ensemble.ExtraTreesClassifier', 'ExtraTreesClassifier', ([], {'random_state': '(0)'}), '(random_state=0)\n', (6822, 6838), False, 'from sklearn.ensemble import ExtraTreesClassifier\n'), ((6853, 6889), 'sklearn.ensemble.ExtraTreesClassifier', 'ExtraTreesClassifier', ([], {'random_state': '(0)'}), '(random_state=0)\n', (6873, 6889), False, 'from sklearn.ensemble import ExtraTreesClassifier\n'), ((6904, 6940), 'sklearn.ensemble.ExtraTreesClassifier', 'ExtraTreesClassifier', ([], {'random_state': '(0)'}), '(random_state=0)\n', (6924, 6940), False, 'from sklearn.ensemble import ExtraTreesClassifier\n'), ((6955, 6991), 'sklearn.ensemble.ExtraTreesClassifier', 'ExtraTreesClassifier', ([], {'random_state': '(0)'}), '(random_state=0)\n', (6975, 6991), False, 'from sklearn.ensemble import ExtraTreesClassifier\n'), ((7006, 7042), 'sklearn.ensemble.ExtraTreesClassifier', 'ExtraTreesClassifier', ([], {'random_state': '(0)'}), '(random_state=0)\n', (7026, 7042), False, 'from sklearn.ensemble import ExtraTreesClassifier\n'), ((7058, 7094), 'sklearn.ensemble.ExtraTreesClassifier', 'ExtraTreesClassifier', ([], {'random_state': '(0)'}), '(random_state=0)\n', (7078, 7094), False, 'from sklearn.ensemble import ExtraTreesClassifier\n'), ((7567, 7617), 'sklearn.model_selection.KFold', 'KFold', ([], {'n_splits': '(10)', 'shuffle': '(True)', 'random_state': '(999)'}), '(n_splits=10, shuffle=True, random_state=999)\n', (7572, 7617), False, 'from sklearn.model_selection import KFold\n'), ((589, 607), 'feature.Feature', 'Feature', (['file_name'], {}), '(file_name)\n', (596, 607), False, 'from feature import Feature\n'), ((693, 711), 'numpy.array', 'np.array', (['seqs_dde'], {}), '(seqs_dde)\n', (701, 711), True, 'import numpy as np\n'), ((730, 750), 'numpy.array', 'np.array', (['train_seqs'], {}), '(train_seqs)\n', (738, 750), True, 'import numpy as np\n'), ((772, 795), 'numpy.array', 'np.array', (['seqs_ksctriad'], {}), '(seqs_ksctriad)\n', (780, 795), True, 'import numpy as np\n'), ((853, 876), 'numpy.array', 'np.array', (['seqs_blosum62'], {}), '(seqs_blosum62)\n', (861, 876), True, 'import numpy as np\n'), ((928, 949), 'numpy.array', 'np.array', (['seqs_ctrial'], {}), '(seqs_ctrial)\n', (936, 949), True, 'import numpy as np\n'), ((967, 986), 'numpy.array', 'np.array', (['seqs_gtpc'], {}), '(seqs_gtpc)\n', (975, 986), True, 'import numpy as np\n'), ((1007, 1029), 'numpy.array', 'np.array', (['seqs_cksaagp'], {}), '(seqs_cksaagp)\n', (1015, 1029), True, 'import numpy as np\n'), ((1047, 1066), 'numpy.array', 'np.array', (['seqs_gaac'], {}), '(seqs_gaac)\n', (1055, 1066), True, 'import numpy as np\n'), ((1086, 1107), 'numpy.array', 'np.array', (['seqs_cksaap'], {}), '(seqs_cksaap)\n', (1094, 1107), True, 'import numpy as np\n'), ((1128, 1163), 'numpy.array', 'np.array', (['seqs_aaindex'], {'dtype': 'float'}), '(seqs_aaindex, dtype=float)\n', (1136, 1163), True, 'import numpy as np\n'), ((1183, 1202), 'numpy.array', 'np.array', (['seqs_paac'], {}), '(seqs_paac)\n', (1191, 1202), True, 'import numpy as np\n'), ((1220, 1239), 'numpy.array', 'np.array', (['seqs_gdpc'], {}), '(seqs_gdpc)\n', (1228, 1239), True, 'import numpy as np\n'), ((1287, 1306), 'numpy.array', 'np.array', (['seqs_ctdt'], {}), '(seqs_ctdt)\n', (1295, 1306), True, 'import numpy as np\n'), ((1383, 1402), 'numpy.array', 'np.array', (['seqs_ctdd'], {}), '(seqs_ctdd)\n', (1391, 1402), True, 'import numpy as np\n'), ((1478, 1496), 'numpy.array', 'np.array', (['seqs_dpc'], {}), '(seqs_dpc)\n', (1486, 1496), True, 'import numpy as np\n'), ((1569, 1587), 'numpy.array', 'np.array', (['seqs_aac'], {}), '(seqs_aac)\n', (1577, 1587), True, 'import numpy as np\n'), ((1658, 1674), 'numpy.array', 'np.array', (['seqs_z'], {}), '(seqs_z)\n', (1666, 1674), True, 'import numpy as np\n'), ((1745, 1765), 'numpy.array', 'np.array', (['seqs_geary'], {}), '(seqs_geary)\n', (1753, 1765), True, 'import numpy as np\n'), ((1844, 1862), 'numpy.array', 'np.array', (['seqs_dde'], {}), '(seqs_dde)\n', (1852, 1862), True, 'import numpy as np\n'), ((2810, 2871), 'numpy.concatenate', 'np.concatenate', (['(seqs_aac, seqs_dde, seqs_paac, seqs_gaac)', '(1)'], {}), '((seqs_aac, seqs_dde, seqs_paac, seqs_gaac), 1)\n', (2824, 2871), True, 'import numpy as np\n'), ((2891, 2952), 'numpy.concatenate', 'np.concatenate', (['(seqs_aac, seqs_dde, seqs_paac, seqs_gdpc)', '(1)'], {}), '((seqs_aac, seqs_dde, seqs_paac, seqs_gdpc), 1)\n', (2905, 2952), True, 'import numpy as np\n'), ((2985, 3046), 'numpy.concatenate', 'np.concatenate', (['(seqs_aac, seqs_dde, seqs_paac, seqs_ctdt)', '(1)'], {}), '((seqs_aac, seqs_dde, seqs_paac, seqs_ctdt), 1)\n', (2999, 3046), True, 'import numpy as np\n'), ((3066, 3128), 'numpy.concatenate', 'np.concatenate', (['(seqs_dde, seqs_paac, seqs_gaac, seqs_gdpc)', '(1)'], {}), '((seqs_dde, seqs_paac, seqs_gaac, seqs_gdpc), 1)\n', (3080, 3128), True, 'import numpy as np\n'), ((3148, 3211), 'numpy.concatenate', 'np.concatenate', (['(seqs_dde, seqs_paac, seqs_ctdt, train_seqs)', '(1)'], {}), '((seqs_dde, seqs_paac, seqs_ctdt, train_seqs), 1)\n', (3162, 3211), True, 'import numpy as np\n'), ((3231, 3305), 'numpy.concatenate', 'np.concatenate', (['(seqs_cksaap, seqs_aac, seqs_dde, seqs_gtpc, seqs_ctdt)', '(1)'], {}), '((seqs_cksaap, seqs_aac, seqs_dde, seqs_gtpc, seqs_ctdt), 1)\n', (3245, 3305), True, 'import numpy as np\n'), ((3325, 3402), 'numpy.concatenate', 'np.concatenate', (['(seqs_cksaap, seqs_aac, seqs_dde, seqs_gdpc, seqs_aaindex)', '(1)'], {}), '((seqs_cksaap, seqs_aac, seqs_dde, seqs_gdpc, seqs_aaindex), 1)\n', (3339, 3402), True, 'import numpy as np\n'), ((3421, 3494), 'numpy.concatenate', 'np.concatenate', (['(seqs_aac, seqs_dde, seqs_paac, seqs_gaac, train_seqs)', '(1)'], {}), '((seqs_aac, seqs_dde, seqs_paac, seqs_gaac, train_seqs), 1)\n', (3435, 3494), True, 'import numpy as np\n'), ((3526, 3600), 'numpy.concatenate', 'np.concatenate', (['(seqs_aac, seqs_dde, seqs_gaac, seqs_geary, train_seqs)', '(1)'], {}), '((seqs_aac, seqs_dde, seqs_gaac, seqs_geary, train_seqs), 1)\n', (3540, 3600), True, 'import numpy as np\n'), ((3620, 3693), 'numpy.concatenate', 'np.concatenate', (['(seqs_dde, seqs_paac, seqs_gtpc, seqs_gdpc, seqs_ctdt)', '(1)'], {}), '((seqs_dde, seqs_paac, seqs_gtpc, seqs_gdpc, seqs_ctdt), 1)\n', (3634, 3693), True, 'import numpy as np\n'), ((3713, 3817), 'numpy.concatenate', 'np.concatenate', (['(seqs_cksaap, seqs_aac, seqs_dde, seqs_gtpc, seqs_gaac, seqs_aaindex,\n train_seqs)', '(1)'], {}), '((seqs_cksaap, seqs_aac, seqs_dde, seqs_gtpc, seqs_gaac,\n seqs_aaindex, train_seqs), 1)\n', (3727, 3817), True, 'import numpy as np\n'), ((3831, 3920), 'numpy.concatenate', 'np.concatenate', (['(seqs_aac, seqs_dde, seqs_dpc, seqs_paac, seqs_gaac, seqs_aaindex)', '(1)'], {}), '((seqs_aac, seqs_dde, seqs_dpc, seqs_paac, seqs_gaac,\n seqs_aaindex), 1)\n', (3845, 3920), True, 'import numpy as np\n'), ((3935, 4029), 'numpy.concatenate', 'np.concatenate', (['(seqs_aac, seqs_dde, seqs_gaac, seqs_ctdt, seqs_aaindex, seqs_ksctriad)', '(1)'], {}), '((seqs_aac, seqs_dde, seqs_gaac, seqs_ctdt, seqs_aaindex,\n seqs_ksctriad), 1)\n', (3949, 4029), True, 'import numpy as np\n'), ((4044, 4158), 'numpy.concatenate', 'np.concatenate', (['(seqs_aac, seqs_dde, seqs_dpc, seqs_paac, seqs_gdpc, seqs_aaindex,\n seqs_ctrial, train_seqs)', '(1)'], {}), '((seqs_aac, seqs_dde, seqs_dpc, seqs_paac, seqs_gdpc,\n seqs_aaindex, seqs_ctrial, train_seqs), 1)\n', (4058, 4158), True, 'import numpy as np\n'), ((4171, 4249), 'numpy.concatenate', 'np.concatenate', (['(seqs_aac, seqs_dde, seqs_gtpc, seqs_ksctriad, seqs_cksaap)', '(1)'], {}), '((seqs_aac, seqs_dde, seqs_gtpc, seqs_ksctriad, seqs_cksaap), 1)\n', (4185, 4249), True, 'import numpy as np\n'), ((5345, 5360), 'numpy.array', 'np.array', (['label'], {}), '(label)\n', (5353, 5360), True, 'import numpy as np\n'), ((16321, 16367), 'numpy.concatenate', 'np.concatenate', (['(y_pred6, y_pred5, y_pred7)', '(1)'], {}), '((y_pred6, y_pred5, y_pred7), 1)\n', (16335, 16367), True, 'import numpy as np\n'), ((16483, 16529), 'numpy.concatenate', 'np.concatenate', (['(t_pred6, t_pred5, t_pred7)', '(1)'], {}), '((t_pred6, t_pred5, t_pred7), 1)\n', (16497, 16529), True, 'import numpy as np\n'), ((11976, 12009), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['te_label', 'y_pred5'], {}), '(te_label, y_pred5)\n', (11990, 12009), False, 'from sklearn.metrics import classification_report, accuracy_score, matthews_corrcoef\n'), ((12028, 12064), 'sklearn.metrics.matthews_corrcoef', 'matthews_corrcoef', (['te_label', 'y_pred5'], {}), '(te_label, y_pred5)\n', (12045, 12064), False, 'from sklearn.metrics import classification_report, accuracy_score, matthews_corrcoef\n'), ((12268, 12318), 'sklearn.metrics.classification_report', 'classification_report', (['y_pred5', 'te_label'], {'digits': '(4)'}), '(y_pred5, te_label, digits=4)\n', (12289, 12318), False, 'from sklearn.metrics import classification_report, accuracy_score, matthews_corrcoef\n'), ((12433, 12466), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['te_label', 'y_pred6'], {}), '(te_label, y_pred6)\n', (12447, 12466), False, 'from sklearn.metrics import classification_report, accuracy_score, matthews_corrcoef\n'), ((12485, 12521), 'sklearn.metrics.matthews_corrcoef', 'matthews_corrcoef', (['te_label', 'y_pred6'], {}), '(te_label, y_pred6)\n', (12502, 12521), False, 'from sklearn.metrics import classification_report, accuracy_score, matthews_corrcoef\n'), ((12725, 12775), 'sklearn.metrics.classification_report', 'classification_report', (['y_pred6', 'te_label'], {'digits': '(4)'}), '(y_pred6, te_label, digits=4)\n', (12746, 12775), False, 'from sklearn.metrics import classification_report, accuracy_score, matthews_corrcoef\n'), ((12890, 12923), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['te_label', 'y_pred7'], {}), '(te_label, y_pred7)\n', (12904, 12923), False, 'from sklearn.metrics import classification_report, accuracy_score, matthews_corrcoef\n'), ((12942, 12978), 'sklearn.metrics.matthews_corrcoef', 'matthews_corrcoef', (['te_label', 'y_pred7'], {}), '(te_label, y_pred7)\n', (12959, 12978), False, 'from sklearn.metrics import classification_report, accuracy_score, matthews_corrcoef\n'), ((13184, 13234), 'sklearn.metrics.classification_report', 'classification_report', (['y_pred7', 'te_label'], {'digits': '(4)'}), '(y_pred7, te_label, digits=4)\n', (13205, 13234), False, 'from sklearn.metrics import classification_report, accuracy_score, matthews_corrcoef\n'), ((16809, 16848), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['te_label', 'temf_y_predxf'], {}), '(te_label, temf_y_predxf)\n', (16823, 16848), False, 'from sklearn.metrics import classification_report, accuracy_score, matthews_corrcoef\n'), ((16868, 16910), 'sklearn.metrics.matthews_corrcoef', 'matthews_corrcoef', (['te_label', 'temf_y_predxf'], {}), '(te_label, temf_y_predxf)\n', (16885, 16910), False, 'from sklearn.metrics import classification_report, accuracy_score, matthews_corrcoef\n'), ((17128, 17184), 'sklearn.metrics.classification_report', 'classification_report', (['temf_y_predxf', 'te_label'], {'digits': '(4)'}), '(temf_y_predxf, te_label, digits=4)\n', (17149, 17184), False, 'from sklearn.metrics import classification_report, accuracy_score, matthews_corrcoef\n'), ((7163, 7183), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {}), '()\n', (7181, 7183), False, 'from sklearn.linear_model import LogisticRegression\n'), ((7203, 7228), 'sklearn.svm.SVC', 'svm.SVC', ([], {'probability': '(True)'}), '(probability=True)\n', (7210, 7228), False, 'from sklearn import svm\n'), ((12093, 12143), 'sklearn.metrics.classification_report', 'classification_report', (['y_pred5', 'te_label'], {'digits': '(4)'}), '(y_pred5, te_label, digits=4)\n', (12114, 12143), False, 'from sklearn.metrics import classification_report, accuracy_score, matthews_corrcoef\n'), ((12188, 12238), 'sklearn.metrics.classification_report', 'classification_report', (['y_pred5', 'te_label'], {'digits': '(4)'}), '(y_pred5, te_label, digits=4)\n', (12209, 12238), False, 'from sklearn.metrics import classification_report, accuracy_score, matthews_corrcoef\n'), ((12550, 12600), 'sklearn.metrics.classification_report', 'classification_report', (['y_pred6', 'te_label'], {'digits': '(4)'}), '(y_pred6, te_label, digits=4)\n', (12571, 12600), False, 'from sklearn.metrics import classification_report, accuracy_score, matthews_corrcoef\n'), ((12645, 12695), 'sklearn.metrics.classification_report', 'classification_report', (['y_pred6', 'te_label'], {'digits': '(4)'}), '(y_pred6, te_label, digits=4)\n', (12666, 12695), False, 'from sklearn.metrics import classification_report, accuracy_score, matthews_corrcoef\n'), ((13007, 13057), 'sklearn.metrics.classification_report', 'classification_report', (['y_pred7', 'te_label'], {'digits': '(4)'}), '(y_pred7, te_label, digits=4)\n', (13028, 13057), False, 'from sklearn.metrics import classification_report, accuracy_score, matthews_corrcoef\n'), ((13102, 13152), 'sklearn.metrics.classification_report', 'classification_report', (['y_pred7', 'te_label'], {'digits': '(4)'}), '(y_pred7, te_label, digits=4)\n', (13123, 13152), False, 'from sklearn.metrics import classification_report, accuracy_score, matthews_corrcoef\n'), ((16940, 16996), 'sklearn.metrics.classification_report', 'classification_report', (['temf_y_predxf', 'te_label'], {'digits': '(4)'}), '(temf_y_predxf, te_label, digits=4)\n', (16961, 16996), False, 'from sklearn.metrics import classification_report, accuracy_score, matthews_corrcoef\n'), ((17042, 17098), 'sklearn.metrics.classification_report', 'classification_report', (['temf_y_predxf', 'te_label'], {'digits': '(4)'}), '(temf_y_predxf, te_label, digits=4)\n', (17063, 17098), False, 'from sklearn.metrics import classification_report, accuracy_score, matthews_corrcoef\n')]
""" Tensorflow implementation of DeepFM [1] Reference: [1] DeepFM: A Factorization-Machine based Neural Network for CTR Prediction, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>. """ import numpy as np import tensorflow as tf import os import example.config as config from sklearn.base import BaseEstimator, TransformerMixin from sklearn.metrics import roc_auc_score from time import time from tensorflow.contrib.layers.python.layers import batch_norm as batch_norm # from yellowfin import YFOptimizer class DeepFM(BaseEstimator, TransformerMixin): def __init__(self, feature_size, field_size, embedding_size=8, dropout_fm=[1.0, 1.0], deep_layers=[32, 32], dropout_deep=[0.5, 0.5, 0.5], deep_layers_activation=tf.nn.relu, epoch=10, batch_size=256, learning_rate=0.001, optimizer_type="adam", batch_norm=0, batch_norm_decay=0.995, verbose=False, random_seed=2016, use_fm=True, use_deep=True, loss_type="logloss", eval_metric=roc_auc_score, l2_reg=0.0, greater_is_better=True, is_finetune=False): assert (use_fm or use_deep) assert loss_type in ["logloss", "mse"], \ "loss_type can be either 'logloss' for classification task or 'mse' for regression task" self.feature_size = feature_size # denote as M, size of the feature dictionary self.field_size = field_size # denote as F, size of the feature fields self.embedding_size = embedding_size # denote as K, size of the feature embedding self.dropout_fm = dropout_fm self.deep_layers = deep_layers self.dropout_deep = dropout_deep self.deep_layers_activation = deep_layers_activation self.use_fm = use_fm self.use_deep = use_deep self.l2_reg = l2_reg self.epoch = epoch self.batch_size = batch_size self.learning_rate = learning_rate self.optimizer_type = optimizer_type self.batch_norm = batch_norm self.batch_norm_decay = batch_norm_decay self.verbose = verbose self.random_seed = random_seed self.loss_type = loss_type self.eval_metric = eval_metric self.greater_is_better = greater_is_better self.train_result, self.valid_result = [], [] self.is_finetune = is_finetune self._init_graph() def _init_graph(self): self.graph = tf.Graph() with self.graph.as_default(): tf.set_random_seed(self.random_seed) self.sess = self._init_session() self.feat_index = tf.placeholder(tf.int32, shape=[None, None], name="feat_index") # None * F self.feat_value = tf.placeholder(tf.float32, shape=[None, None], name="feat_value") # None * F self.label = tf.placeholder(tf.float32, shape=[None, 1], name="label") # None * 1 self.dropout_keep_fm = tf.placeholder(tf.float32, shape=[None], name="dropout_keep_fm") self.dropout_keep_deep = tf.placeholder(tf.float32, shape=[None], name="dropout_keep_deep") self.train_phase = tf.placeholder(tf.bool, name="train_phase") self.weights = self._initialize_weights() # model self.embeddings = tf.nn.embedding_lookup(self.weights["feature_embeddings"], self.feat_index) # None * F * K feat_value = tf.reshape(self.feat_value, shape=[-1, self.field_size, 1]) self.embeddings = tf.multiply(self.embeddings, feat_value) # ---------- first order term ---------- self.y_first_order = tf.nn.embedding_lookup(self.weights["feature_bias"], self.feat_index) # None * F * 1 self.y_first_order = tf.reduce_sum(tf.multiply(self.y_first_order, feat_value), 2) # None * F self.y_first_order = tf.nn.dropout(self.y_first_order, self.dropout_keep_fm[0]) # None * F # ---------- second order term --------------- # sum_square part self.summed_features_emb = tf.reduce_sum(self.embeddings, 1) # None * K self.summed_features_emb_square = tf.square(self.summed_features_emb) # None * K # square_sum part self.squared_features_emb = tf.square(self.embeddings) self.squared_sum_features_emb = tf.reduce_sum(self.squared_features_emb, 1) # None * K # second order self.y_second_order = 0.5 * tf.subtract(self.summed_features_emb_square, self.squared_sum_features_emb) # None * K self.y_second_order = tf.nn.dropout(self.y_second_order, self.dropout_keep_fm[1]) # None * K # ---------- Deep component ---------- self.y_deep = tf.reshape(self.embeddings, shape=[-1, self.field_size * self.embedding_size]) # None * (F*K) self.y_deep = tf.nn.dropout(self.y_deep, self.dropout_keep_deep[0]) for i in range(0, len(self.deep_layers)): self.y_deep = tf.add(tf.matmul(self.y_deep, self.weights["layer_%d" %i]), self.weights["bias_%d"%i]) # None * layer[i] * 1 if self.batch_norm: self.y_deep = self.batch_norm_layer(self.y_deep, train_phase=self.train_phase, scope_bn="bn_%d" %i) # None * layer[i] * 1 self.y_deep = self.deep_layers_activation(self.y_deep) self.y_deep = tf.nn.dropout(self.y_deep, self.dropout_keep_deep[1+i]) # dropout at each Deep layer # ---------- DeepFM ---------- if self.use_fm and self.use_deep: concat_input = tf.concat([self.y_first_order, self.y_second_order, self.y_deep], axis=1) elif self.use_fm: concat_input = tf.concat([self.y_first_order, self.y_second_order], axis=1) elif self.use_deep: concat_input = self.y_deep self.out = tf.add(tf.matmul(concat_input, self.weights["concat_projection"]), self.weights["concat_bias"]) # loss if self.loss_type == "logloss": self.out = tf.nn.sigmoid(self.out) self.loss = tf.losses.log_loss(self.label, self.out) elif self.loss_type == "mse": self.loss = tf.nn.l2_loss(tf.subtract(self.label, self.out)) # l2 regularization on weights if self.l2_reg > 0: self.loss += tf.contrib.layers.l2_regularizer( self.l2_reg)(self.weights["concat_projection"]) if self.use_deep: for i in range(len(self.deep_layers)): self.loss += tf.contrib.layers.l2_regularizer( self.l2_reg)(self.weights["layer_%d"%i]) # for nn in self.graph.as_graph_def().node: # print(nn.name) # optimizer if self.optimizer_type == "adam": self.optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate, beta1=0.9, beta2=0.999, epsilon=1e-8).minimize(self.loss) elif self.optimizer_type == "adagrad": self.optimizer = tf.train.AdagradOptimizer(learning_rate=self.learning_rate, initial_accumulator_value=1e-8).minimize(self.loss) elif self.optimizer_type == "gd": self.optimizer = tf.train.GradientDescentOptimizer(learning_rate=self.learning_rate).minimize(self.loss) elif self.optimizer_type == "momentum": self.optimizer = tf.train.MomentumOptimizer(learning_rate=self.learning_rate, momentum=0.95).minimize( self.loss) # elif self.optimizer_type == "yellowfin": # self.optimizer = YFOptimizer(learning_rate=self.learning_rate, momentum=0.0).minimize( # self.loss) # init self.saver = tf.train.Saver() if self.is_finetune: self._load_old_model() # opt = tf.train.MomentumOptimizer(learning_rate=self.learning_rate, momentum=0.95) # self.optimizer = opt.minimize(self.loss) # self.sess.run(tf.variables_initializer(opt.variables())) # pass else: init = tf.global_variables_initializer() self.sess.run(init) # number of params total_parameters = 0 for variable in self.weights.values(): shape = variable.get_shape() variable_parameters = 1 for dim in shape: variable_parameters *= dim.value total_parameters += variable_parameters if self.verbose > 0: print("#params: %d" % total_parameters) def _init_session(self): config = tf.ConfigProto(device_count={"gpu": 0}) config.gpu_options.allow_growth = True return tf.Session(config=config) def _load_old_model(self): weights = dict() #saver = tf.train.import_meta_graph(os.path.join(config.SUB_DIR, 'model/0', 'fm-series-%d.meta' % (self.epoch-1))) self.saver.restore(self.sess, tf.train.latest_checkpoint(os.path.join(config.SUB_DIR, 'model/0'))) # graph = tf.get_default_graph() # weights["feature_embeddings"] = graph.get_tensor_by_name("feature_embeddings:0") # weights["feature_bias"] = graph.get_tensor_by_name("feature_bias:0") # weights["layer_0"] = graph.get_tensor_by_name("layer_0:0") # weights["bias_0"] = graph.get_tensor_by_name("bias_0:0") # num_layer = len(self.deep_layers) # for i in range(1, num_layer): # weights["layer_%d" % i] = graph.get_tensor_by_name("layer_%d:0" % i) # weights["bias_%d"% i] = graph.get_tensor_by_name("bias_%d:0" % i) # # weights["concat_projection"] = graph.get_tensor_by_name("concat_projection:0") # weights["concat_bias"] = graph.get_tensor_by_name("concat_bias:0") # # self.weights = weights def _initialize_weights(self): weights = dict() # embeddings weights["feature_embeddings"] = tf.Variable( tf.random_normal([self.feature_size, self.embedding_size], 0.0, 0.01), name="feature_embeddings") # feature_size * K weights["feature_bias"] = tf.Variable( tf.random_uniform([self.feature_size, 1], 0.0, 1.0), name="feature_bias") # feature_size * 1 # deep layers num_layer = len(self.deep_layers) input_size = self.field_size * self.embedding_size glorot = np.sqrt(2.0 / (input_size + self.deep_layers[0])) weights["layer_0"] = tf.Variable( np.random.normal(loc=0, scale=glorot, size=(input_size, self.deep_layers[0])), dtype=np.float32, name="layer_0") weights["bias_0"] = tf.Variable(np.random.normal(loc=0, scale=glorot, size=(1, self.deep_layers[0])), dtype=np.float32, name="bias_0") # 1 * layers[0] for i in range(1, num_layer): glorot = np.sqrt(2.0 / (self.deep_layers[i-1] + self.deep_layers[i])) weights["layer_%d" % i] = tf.Variable( np.random.normal(loc=0, scale=glorot, size=(self.deep_layers[i-1], self.deep_layers[i])), dtype=np.float32, name="layer_%d" % i) # layers[i-1] * layers[i] weights["bias_%d" % i] = tf.Variable( np.random.normal(loc=0, scale=glorot, size=(1, self.deep_layers[i])), dtype=np.float32, name="bias_%d" % i ) # 1 * layer[i] # final concat projection layer if self.use_fm and self.use_deep: input_size = self.field_size + self.embedding_size + self.deep_layers[-1] elif self.use_fm: input_size = self.field_size + self.embedding_size elif self.use_deep: input_size = self.deep_layers[-1] glorot = np.sqrt(2.0 / (input_size + 1)) weights["concat_projection"] = tf.Variable( np.random.normal(loc=0, scale=glorot, size=(input_size, 1)), dtype=np.float32, name="concat_projection") # layers[i-1]*layers[i] weights["concat_bias"] = tf.Variable(tf.constant(0.01), dtype=np.float32, name="concat_bias") return weights def batch_norm_layer(self, x, train_phase, scope_bn): bn_train = batch_norm(x, decay=self.batch_norm_decay, center=True, scale=True, updates_collections=None, is_training=True, reuse=None, trainable=True, scope=scope_bn) bn_inference = batch_norm(x, decay=self.batch_norm_decay, center=True, scale=True, updates_collections=None, is_training=False, reuse=True, trainable=True, scope=scope_bn) z = tf.cond(train_phase, lambda: bn_train, lambda: bn_inference) return z def get_batch(self, Xi, Xv, y, batch_size, index): start = index * batch_size end = (index+1) * batch_size end = end if end < len(y) else len(y) return Xi[start:end], Xv[start:end], [[y_] for y_ in y[start:end]] # shuffle three lists simutaneously def shuffle_in_unison_scary(self, a, b, c): rng_state = np.random.get_state() np.random.shuffle(a) np.random.set_state(rng_state) np.random.shuffle(b) np.random.set_state(rng_state) np.random.shuffle(c) def fit_on_batch(self, Xi, Xv, y): feed_dict = {self.feat_index: Xi, self.feat_value: Xv, self.label: y, self.dropout_keep_fm: self.dropout_fm, self.dropout_keep_deep: self.dropout_deep, self.train_phase: True} loss, opt = self.sess.run((self.loss, self.optimizer), feed_dict=feed_dict) return loss def fit(self, Xi_train, Xv_train, y_train, Xi_valid=None, Xv_valid=None, y_valid=None, early_stopping=False, refit=False, fold_seq = 0): """ :param Xi_train: [[ind1_1, ind1_2, ...], [ind2_1, ind2_2, ...], ..., [indi_1, indi_2, ..., indi_j, ...], ...] indi_j is the feature index of feature field j of sample i in the training set :param Xv_train: [[val1_1, val1_2, ...], [val2_1, val2_2, ...], ..., [vali_1, vali_2, ..., vali_j, ...], ...] vali_j is the feature value of feature field j of sample i in the training set vali_j can be either binary (1/0, for binary/categorical features) or float (e.g., 10.24, for numerical features) :param y_train: label of each sample in the training set :param Xi_valid: list of list of feature indices of each sample in the validation set :param Xv_valid: list of list of feature values of each sample in the validation set :param y_valid: label of each sample in the validation set :param early_stopping: perform early stopping or not :param refit: refit the model on the train+valid dataset or not :return: None """ has_valid = Xv_valid is not None for epoch in range(self.epoch): t1 = time() self.shuffle_in_unison_scary(Xi_train, Xv_train, y_train) total_batch = int(len(y_train) / self.batch_size) for i in range(total_batch): Xi_batch, Xv_batch, y_batch = self.get_batch(Xi_train, Xv_train, y_train, self.batch_size, i) self.fit_on_batch(Xi_batch, Xv_batch, y_batch) self.saver.save(self.sess, os.path.join(config.SUB_DIR, 'model', str(fold_seq), 'fm-series'), global_step=epoch) # evaluate training and validation datasets train_result = self.evaluate(Xi_train, Xv_train, y_train) self.train_result.append(train_result) if has_valid: valid_result = self.evaluate(Xi_valid, Xv_valid, y_valid) self.valid_result.append(valid_result) if self.verbose > 0 and epoch % self.verbose == 0: if has_valid: print("[%d] train-result=%.4f, valid-result=%.4f [%.1f s]" % (epoch + 1, train_result, valid_result, time() - t1)) else: print("[%d] train-result=%.4f [%.1f s]" % (epoch + 1, train_result, time() - t1)) if has_valid and early_stopping and self.training_termination(self.valid_result): break # fit a few more epoch on train+valid until result reaches the best_train_score if has_valid and refit: if self.greater_is_better: best_valid_score = max(self.valid_result) else: best_valid_score = min(self.valid_result) best_epoch = self.valid_result.index(best_valid_score) best_train_score = self.train_result[best_epoch] Xi_train = Xi_train + Xi_valid Xv_train = Xv_train + Xv_valid y_train = y_train + y_valid for epoch in range(100): self.shuffle_in_unison_scary(Xi_train, Xv_train, y_train) total_batch = int(len(y_train) / self.batch_size) for i in range(total_batch): Xi_batch, Xv_batch, y_batch = self.get_batch(Xi_train, Xv_train, y_train, self.batch_size, i) self.fit_on_batch(Xi_batch, Xv_batch, y_batch) # check train_result = self.evaluate(Xi_train, Xv_train, y_train) if abs(train_result - best_train_score) < 0.001 or \ (self.greater_is_better and train_result > best_train_score) or \ ((not self.greater_is_better) and train_result < best_train_score): break def training_termination(self, valid_result): if len(valid_result) > 5: if self.greater_is_better: if valid_result[-1] < valid_result[-2] and \ valid_result[-2] < valid_result[-3] and \ valid_result[-3] < valid_result[-4] and \ valid_result[-4] < valid_result[-5]: return True else: if valid_result[-1] > valid_result[-2] and \ valid_result[-2] > valid_result[-3] and \ valid_result[-3] > valid_result[-4] and \ valid_result[-4] > valid_result[-5]: return True return False def predict(self, Xi, Xv): """ :param Xi: list of list of feature indices of each sample in the dataset :param Xv: list of list of feature values of each sample in the dataset :return: predicted probability of each sample """ # dummy y dummy_y = [1] * len(Xi) batch_index = 0 Xi_batch, Xv_batch, y_batch = self.get_batch(Xi, Xv, dummy_y, self.batch_size, batch_index) y_pred = None while len(Xi_batch) > 0: num_batch = len(y_batch) feed_dict = {self.feat_index: Xi_batch, self.feat_value: Xv_batch, self.label: y_batch, self.dropout_keep_fm: [1.0] * len(self.dropout_fm), self.dropout_keep_deep: [1.0] * len(self.dropout_deep), self.train_phase: False} batch_out = self.sess.run(self.out, feed_dict=feed_dict) if batch_index == 0: y_pred = np.reshape(batch_out, (num_batch,)) else: y_pred = np.concatenate((y_pred, np.reshape(batch_out, (num_batch,)))) batch_index += 1 Xi_batch, Xv_batch, y_batch = self.get_batch(Xi, Xv, dummy_y, self.batch_size, batch_index) return y_pred def evaluate(self, Xi, Xv, y): """ :param Xi: list of list of feature indices of each sample in the dataset :param Xv: list of list of feature values of each sample in the dataset :param y: label of each sample in the dataset :return: metric of the evaluation """ y_pred = self.predict(Xi, Xv) return self.eval_metric(y, y_pred)
[ "tensorflow.cond", "tensorflow.reduce_sum", "tensorflow.contrib.layers.l2_regularizer", "tensorflow.reshape", "numpy.random.set_state", "tensorflow.train.AdamOptimizer", "tensorflow.ConfigProto", "tensorflow.multiply", "tensorflow.matmul", "tensorflow.losses.log_loss", "numpy.random.normal", "os.path.join", "tensorflow.subtract", "tensorflow.concat", "tensorflow.set_random_seed", "tensorflow.placeholder", "numpy.reshape", "numpy.random.shuffle", "tensorflow.train.Saver", "tensorflow.nn.embedding_lookup", "tensorflow.global_variables_initializer", "tensorflow.train.AdagradOptimizer", "tensorflow.Session", "tensorflow.constant", "tensorflow.random_normal", "tensorflow.train.MomentumOptimizer", "tensorflow.Graph", "tensorflow.train.GradientDescentOptimizer", "tensorflow.random_uniform", "tensorflow.contrib.layers.python.layers.batch_norm", "numpy.random.get_state", "time.time", "tensorflow.square", "tensorflow.nn.sigmoid", "tensorflow.nn.dropout", "numpy.sqrt" ]
[((2513, 2523), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (2521, 2523), True, 'import tensorflow as tf\n'), ((8938, 8977), 'tensorflow.ConfigProto', 'tf.ConfigProto', ([], {'device_count': "{'gpu': 0}"}), "(device_count={'gpu': 0})\n", (8952, 8977), True, 'import tensorflow as tf\n'), ((9040, 9065), 'tensorflow.Session', 'tf.Session', ([], {'config': 'config'}), '(config=config)\n', (9050, 9065), True, 'import tensorflow as tf\n'), ((10739, 10788), 'numpy.sqrt', 'np.sqrt', (['(2.0 / (input_size + self.deep_layers[0]))'], {}), '(2.0 / (input_size + self.deep_layers[0]))\n', (10746, 10788), True, 'import numpy as np\n'), ((12087, 12118), 'numpy.sqrt', 'np.sqrt', (['(2.0 / (input_size + 1))'], {}), '(2.0 / (input_size + 1))\n', (12094, 12118), True, 'import numpy as np\n'), ((12554, 12717), 'tensorflow.contrib.layers.python.layers.batch_norm', 'batch_norm', (['x'], {'decay': 'self.batch_norm_decay', 'center': '(True)', 'scale': '(True)', 'updates_collections': 'None', 'is_training': '(True)', 'reuse': 'None', 'trainable': '(True)', 'scope': 'scope_bn'}), '(x, decay=self.batch_norm_decay, center=True, scale=True,\n updates_collections=None, is_training=True, reuse=None, trainable=True,\n scope=scope_bn)\n', (12564, 12717), True, 'from tensorflow.contrib.layers.python.layers import batch_norm as batch_norm\n'), ((12763, 12927), 'tensorflow.contrib.layers.python.layers.batch_norm', 'batch_norm', (['x'], {'decay': 'self.batch_norm_decay', 'center': '(True)', 'scale': '(True)', 'updates_collections': 'None', 'is_training': '(False)', 'reuse': '(True)', 'trainable': '(True)', 'scope': 'scope_bn'}), '(x, decay=self.batch_norm_decay, center=True, scale=True,\n updates_collections=None, is_training=False, reuse=True, trainable=True,\n scope=scope_bn)\n', (12773, 12927), True, 'from tensorflow.contrib.layers.python.layers import batch_norm as batch_norm\n'), ((12966, 13028), 'tensorflow.cond', 'tf.cond', (['train_phase', '(lambda : bn_train)', '(lambda : bn_inference)'], {}), '(train_phase, lambda : bn_train, lambda : bn_inference)\n', (12973, 13028), True, 'import tensorflow as tf\n'), ((13404, 13425), 'numpy.random.get_state', 'np.random.get_state', ([], {}), '()\n', (13423, 13425), True, 'import numpy as np\n'), ((13434, 13454), 'numpy.random.shuffle', 'np.random.shuffle', (['a'], {}), '(a)\n', (13451, 13454), True, 'import numpy as np\n'), ((13463, 13493), 'numpy.random.set_state', 'np.random.set_state', (['rng_state'], {}), '(rng_state)\n', (13482, 13493), True, 'import numpy as np\n'), ((13502, 13522), 'numpy.random.shuffle', 'np.random.shuffle', (['b'], {}), '(b)\n', (13519, 13522), True, 'import numpy as np\n'), ((13531, 13561), 'numpy.random.set_state', 'np.random.set_state', (['rng_state'], {}), '(rng_state)\n', (13550, 13561), True, 'import numpy as np\n'), ((13570, 13590), 'numpy.random.shuffle', 'np.random.shuffle', (['c'], {}), '(c)\n', (13587, 13590), True, 'import numpy as np\n'), ((2575, 2611), 'tensorflow.set_random_seed', 'tf.set_random_seed', (['self.random_seed'], {}), '(self.random_seed)\n', (2593, 2611), True, 'import tensorflow as tf\n'), ((2687, 2750), 'tensorflow.placeholder', 'tf.placeholder', (['tf.int32'], {'shape': '[None, None]', 'name': '"""feat_index"""'}), "(tf.int32, shape=[None, None], name='feat_index')\n", (2701, 2750), True, 'import tensorflow as tf\n'), ((2793, 2858), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[None, None]', 'name': '"""feat_value"""'}), "(tf.float32, shape=[None, None], name='feat_value')\n", (2807, 2858), True, 'import tensorflow as tf\n'), ((2896, 2953), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[None, 1]', 'name': '"""label"""'}), "(tf.float32, shape=[None, 1], name='label')\n", (2910, 2953), True, 'import tensorflow as tf\n'), ((3001, 3065), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[None]', 'name': '"""dropout_keep_fm"""'}), "(tf.float32, shape=[None], name='dropout_keep_fm')\n", (3015, 3065), True, 'import tensorflow as tf\n'), ((3103, 3169), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[None]', 'name': '"""dropout_keep_deep"""'}), "(tf.float32, shape=[None], name='dropout_keep_deep')\n", (3117, 3169), True, 'import tensorflow as tf\n'), ((3201, 3244), 'tensorflow.placeholder', 'tf.placeholder', (['tf.bool'], {'name': '"""train_phase"""'}), "(tf.bool, name='train_phase')\n", (3215, 3244), True, 'import tensorflow as tf\n'), ((3351, 3426), 'tensorflow.nn.embedding_lookup', 'tf.nn.embedding_lookup', (["self.weights['feature_embeddings']", 'self.feat_index'], {}), "(self.weights['feature_embeddings'], self.feat_index)\n", (3373, 3426), True, 'import tensorflow as tf\n'), ((3468, 3527), 'tensorflow.reshape', 'tf.reshape', (['self.feat_value'], {'shape': '[-1, self.field_size, 1]'}), '(self.feat_value, shape=[-1, self.field_size, 1])\n', (3478, 3527), True, 'import tensorflow as tf\n'), ((3558, 3598), 'tensorflow.multiply', 'tf.multiply', (['self.embeddings', 'feat_value'], {}), '(self.embeddings, feat_value)\n', (3569, 3598), True, 'import tensorflow as tf\n'), ((3686, 3755), 'tensorflow.nn.embedding_lookup', 'tf.nn.embedding_lookup', (["self.weights['feature_bias']", 'self.feat_index'], {}), "(self.weights['feature_bias'], self.feat_index)\n", (3708, 3755), True, 'import tensorflow as tf\n'), ((3911, 3969), 'tensorflow.nn.dropout', 'tf.nn.dropout', (['self.y_first_order', 'self.dropout_keep_fm[0]'], {}), '(self.y_first_order, self.dropout_keep_fm[0])\n', (3924, 3969), True, 'import tensorflow as tf\n'), ((4110, 4143), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['self.embeddings', '(1)'], {}), '(self.embeddings, 1)\n', (4123, 4143), True, 'import tensorflow as tf\n'), ((4202, 4237), 'tensorflow.square', 'tf.square', (['self.summed_features_emb'], {}), '(self.summed_features_emb)\n', (4211, 4237), True, 'import tensorflow as tf\n'), ((4321, 4347), 'tensorflow.square', 'tf.square', (['self.embeddings'], {}), '(self.embeddings)\n', (4330, 4347), True, 'import tensorflow as tf\n'), ((4392, 4435), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['self.squared_features_emb', '(1)'], {}), '(self.squared_features_emb, 1)\n', (4405, 4435), True, 'import tensorflow as tf\n'), ((4638, 4697), 'tensorflow.nn.dropout', 'tf.nn.dropout', (['self.y_second_order', 'self.dropout_keep_fm[1]'], {}), '(self.y_second_order, self.dropout_keep_fm[1])\n', (4651, 4697), True, 'import tensorflow as tf\n'), ((4788, 4866), 'tensorflow.reshape', 'tf.reshape', (['self.embeddings'], {'shape': '[-1, self.field_size * self.embedding_size]'}), '(self.embeddings, shape=[-1, self.field_size * self.embedding_size])\n', (4798, 4866), True, 'import tensorflow as tf\n'), ((4908, 4961), 'tensorflow.nn.dropout', 'tf.nn.dropout', (['self.y_deep', 'self.dropout_keep_deep[0]'], {}), '(self.y_deep, self.dropout_keep_deep[0])\n', (4921, 4961), True, 'import tensorflow as tf\n'), ((7997, 8013), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {}), '()\n', (8011, 8013), True, 'import tensorflow as tf\n'), ((10315, 10384), 'tensorflow.random_normal', 'tf.random_normal', (['[self.feature_size, self.embedding_size]', '(0.0)', '(0.01)'], {}), '([self.feature_size, self.embedding_size], 0.0, 0.01)\n', (10331, 10384), True, 'import tensorflow as tf\n'), ((10504, 10555), 'tensorflow.random_uniform', 'tf.random_uniform', (['[self.feature_size, 1]', '(0.0)', '(1.0)'], {}), '([self.feature_size, 1], 0.0, 1.0)\n', (10521, 10555), True, 'import tensorflow as tf\n'), ((10843, 10920), 'numpy.random.normal', 'np.random.normal', ([], {'loc': '(0)', 'scale': 'glorot', 'size': '(input_size, self.deep_layers[0])'}), '(loc=0, scale=glorot, size=(input_size, self.deep_layers[0]))\n', (10859, 10920), True, 'import numpy as np\n'), ((10996, 11064), 'numpy.random.normal', 'np.random.normal', ([], {'loc': '(0)', 'scale': 'glorot', 'size': '(1, self.deep_layers[0])'}), '(loc=0, scale=glorot, size=(1, self.deep_layers[0]))\n', (11012, 11064), True, 'import numpy as np\n'), ((11231, 11293), 'numpy.sqrt', 'np.sqrt', (['(2.0 / (self.deep_layers[i - 1] + self.deep_layers[i]))'], {}), '(2.0 / (self.deep_layers[i - 1] + self.deep_layers[i]))\n', (11238, 11293), True, 'import numpy as np\n'), ((12195, 12254), 'numpy.random.normal', 'np.random.normal', ([], {'loc': '(0)', 'scale': 'glorot', 'size': '(input_size, 1)'}), '(loc=0, scale=glorot, size=(input_size, 1))\n', (12211, 12254), True, 'import numpy as np\n'), ((12394, 12411), 'tensorflow.constant', 'tf.constant', (['(0.01)'], {}), '(0.01)\n', (12405, 12411), True, 'import tensorflow as tf\n'), ((15371, 15377), 'time.time', 'time', ([], {}), '()\n', (15375, 15377), False, 'from time import time\n'), ((3818, 3861), 'tensorflow.multiply', 'tf.multiply', (['self.y_first_order', 'feat_value'], {}), '(self.y_first_order, feat_value)\n', (3829, 3861), True, 'import tensorflow as tf\n'), ((4516, 4591), 'tensorflow.subtract', 'tf.subtract', (['self.summed_features_emb_square', 'self.squared_sum_features_emb'], {}), '(self.summed_features_emb_square, self.squared_sum_features_emb)\n', (4527, 4591), True, 'import tensorflow as tf\n'), ((5434, 5491), 'tensorflow.nn.dropout', 'tf.nn.dropout', (['self.y_deep', 'self.dropout_keep_deep[1 + i]'], {}), '(self.y_deep, self.dropout_keep_deep[1 + i])\n', (5447, 5491), True, 'import tensorflow as tf\n'), ((5640, 5713), 'tensorflow.concat', 'tf.concat', (['[self.y_first_order, self.y_second_order, self.y_deep]'], {'axis': '(1)'}), '([self.y_first_order, self.y_second_order, self.y_deep], axis=1)\n', (5649, 5713), True, 'import tensorflow as tf\n'), ((5941, 5999), 'tensorflow.matmul', 'tf.matmul', (['concat_input', "self.weights['concat_projection']"], {}), "(concat_input, self.weights['concat_projection'])\n", (5950, 5999), True, 'import tensorflow as tf\n'), ((6121, 6144), 'tensorflow.nn.sigmoid', 'tf.nn.sigmoid', (['self.out'], {}), '(self.out)\n', (6134, 6144), True, 'import tensorflow as tf\n'), ((6173, 6213), 'tensorflow.losses.log_loss', 'tf.losses.log_loss', (['self.label', 'self.out'], {}), '(self.label, self.out)\n', (6191, 6213), True, 'import tensorflow as tf\n'), ((8384, 8417), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (8415, 8417), True, 'import tensorflow as tf\n'), ((9312, 9351), 'os.path.join', 'os.path.join', (['config.SUB_DIR', '"""model/0"""'], {}), "(config.SUB_DIR, 'model/0')\n", (9324, 9351), False, 'import os\n'), ((11359, 11454), 'numpy.random.normal', 'np.random.normal', ([], {'loc': '(0)', 'scale': 'glorot', 'size': '(self.deep_layers[i - 1], self.deep_layers[i])'}), '(loc=0, scale=glorot, size=(self.deep_layers[i - 1], self.\n deep_layers[i]))\n', (11375, 11454), True, 'import numpy as np\n'), ((11597, 11665), 'numpy.random.normal', 'np.random.normal', ([], {'loc': '(0)', 'scale': 'glorot', 'size': '(1, self.deep_layers[i])'}), '(loc=0, scale=glorot, size=(1, self.deep_layers[i]))\n', (11613, 11665), True, 'import numpy as np\n'), ((19815, 19850), 'numpy.reshape', 'np.reshape', (['batch_out', '(num_batch,)'], {}), '(batch_out, (num_batch,))\n', (19825, 19850), True, 'import numpy as np\n'), ((5053, 5105), 'tensorflow.matmul', 'tf.matmul', (['self.y_deep', "self.weights['layer_%d' % i]"], {}), "(self.y_deep, self.weights['layer_%d' % i])\n", (5062, 5105), True, 'import tensorflow as tf\n'), ((5775, 5835), 'tensorflow.concat', 'tf.concat', (['[self.y_first_order, self.y_second_order]'], {'axis': '(1)'}), '([self.y_first_order, self.y_second_order], axis=1)\n', (5784, 5835), True, 'import tensorflow as tf\n'), ((6437, 6482), 'tensorflow.contrib.layers.l2_regularizer', 'tf.contrib.layers.l2_regularizer', (['self.l2_reg'], {}), '(self.l2_reg)\n', (6469, 6482), True, 'import tensorflow as tf\n'), ((6298, 6331), 'tensorflow.subtract', 'tf.subtract', (['self.label', 'self.out'], {}), '(self.label, self.out)\n', (6309, 6331), True, 'import tensorflow as tf\n'), ((6964, 7064), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', ([], {'learning_rate': 'self.learning_rate', 'beta1': '(0.9)', 'beta2': '(0.999)', 'epsilon': '(1e-08)'}), '(learning_rate=self.learning_rate, beta1=0.9, beta2=\n 0.999, epsilon=1e-08)\n', (6986, 7064), True, 'import tensorflow as tf\n'), ((19918, 19953), 'numpy.reshape', 'np.reshape', (['batch_out', '(num_batch,)'], {}), '(batch_out, (num_batch,))\n', (19928, 19953), True, 'import numpy as np\n'), ((6669, 6714), 'tensorflow.contrib.layers.l2_regularizer', 'tf.contrib.layers.l2_regularizer', (['self.l2_reg'], {}), '(self.l2_reg)\n', (6701, 6714), True, 'import tensorflow as tf\n'), ((7219, 7315), 'tensorflow.train.AdagradOptimizer', 'tf.train.AdagradOptimizer', ([], {'learning_rate': 'self.learning_rate', 'initial_accumulator_value': '(1e-08)'}), '(learning_rate=self.learning_rate,\n initial_accumulator_value=1e-08)\n', (7244, 7315), True, 'import tensorflow as tf\n'), ((7469, 7536), 'tensorflow.train.GradientDescentOptimizer', 'tf.train.GradientDescentOptimizer', ([], {'learning_rate': 'self.learning_rate'}), '(learning_rate=self.learning_rate)\n', (7502, 7536), True, 'import tensorflow as tf\n'), ((7642, 7717), 'tensorflow.train.MomentumOptimizer', 'tf.train.MomentumOptimizer', ([], {'learning_rate': 'self.learning_rate', 'momentum': '(0.95)'}), '(learning_rate=self.learning_rate, momentum=0.95)\n', (7668, 7717), True, 'import tensorflow as tf\n'), ((16419, 16425), 'time.time', 'time', ([], {}), '()\n', (16423, 16425), False, 'from time import time\n'), ((16567, 16573), 'time.time', 'time', ([], {}), '()\n', (16571, 16573), False, 'from time import time\n')]
''' DIO using a serial port + microcontroller instead of the NIDAQ card ''' import serial from collections import defaultdict import struct from numpy import binary_repr from .dio.parse import MSG_TYPE_ROWBYTE, MSG_TYPE_REGISTER import time import threading import pyfirmata def construct_word(aux, msg_type, data, n_bits_data=8, n_bits_msg_type=3): word = (aux << (n_bits_data + n_bits_msg_type)) | (msg_type << n_bits_data) | data return word def parse_word(word, n_bits_data=8, n_bits_msg_type=3): data = word & ((1 << n_bits_data) - 1) msg_type = (word >> n_bits_data) & ((1 << n_bits_msg_type) - 1) aux = word >> n_bits_msg_type + n_bits_data return aux, msg_type, data baudrate = 115200 class SendRowByte(object): ''' Send only an 8-bit data word corresponding to the 8 lower bits of the current row number of the HDF table ''' ''' Interface for sending all the task-generated data through the NIDAQ interface card ''' def __init__(self, device=None): ''' Constructor for SendRowByte Parameters ---------- device : string, optional Linux name of the serial port for the Arduino board, defined by setserial Returns ------- SendAll instance ''' self.systems = dict() self.port = serial.Serial('/dev/arduino_neurosync', baudrate=baudrate) self.n_systems = 0 self.rowcount = defaultdict(int) def close(self): ''' Release access to the Arduino serial port ''' # stop recording self.port.write('p') self.port.close() def register(self, system, dtype): ''' Send information about the registration system (name and datatype) in string form, one byte at a time. Parameters ---------- system : string Name of the system being registered dtype : np.dtype instance Datatype of incoming data, for later decoding of the binary data during analysis Returns ------- None ''' # Save the index of the system being registered (arbitrary number corresponding to the order in which systems were registered) self.n_systems += 1 self.systems[system] = self.n_systems # if self.n_systems > 1: # raise Exception("This currently only works for one system!") #print "System Register: %s" % system, self.systems[system] #print "Arduino register %s" % system, self.systems[system] #if self.n_systems > 1: # raise Exception("This currently only works for one system!") print("Arduino register %s" % system, self.systems[system]) for sys_name_chr in system: reg_word = construct_word(self.systems[system], MSG_TYPE_REGISTER, ord(sys_name_chr)) self._send_data_word_to_serial_port(reg_word) null_term_word = construct_word(self.systems[system], MSG_TYPE_REGISTER, 0) # data payload is 0 for null terminator self._send_data_word_to_serial_port(null_term_word) def sendMsg(self, msg): ''' Do nothing. Messages are stored with row numbers in the HDF table, so no need to also send the message over to the recording system. Parameters ---------- msg : string Message to send Returns ------- None ''' # there's no point in sending a message, since every message is # stored in the HDF table anyway with a row number, # and every row number is automatically synced. pass def send(self, system, data): ''' Send the row number for a data word to the neural system Parameters ---------- system : string Name of system data : object This is unused. Only used in the parent's version where the actual data, and not just the HDF row number, is sent. Returns ------- None ''' if not (system in self.systems): # if the system is not registered, do nothing return current_sys_rowcount = self.rowcount[system] self.rowcount[system] += 1 # construct the data packet word = construct_word(self.systems[system], MSG_TYPE_ROWBYTE, current_sys_rowcount % 256) self._send_data_word_to_serial_port(word) # if verbose: # print binary_repr(word, 16) # word_str = 'd' + struct.pack('<H', word) # self.port.write(word_str) def _send_data_word_to_serial_port(self, word, verbose=False): #self.port.write(word) if verbose: print(binary_repr(word, 16)) word_str = 'd' + struct.pack('<H', word) self.port.write(word_str)
[ "serial.Serial", "collections.defaultdict", "numpy.binary_repr", "struct.pack" ]
[((1347, 1405), 'serial.Serial', 'serial.Serial', (['"""/dev/arduino_neurosync"""'], {'baudrate': 'baudrate'}), "('/dev/arduino_neurosync', baudrate=baudrate)\n", (1360, 1405), False, 'import serial\n'), ((1457, 1473), 'collections.defaultdict', 'defaultdict', (['int'], {}), '(int)\n', (1468, 1473), False, 'from collections import defaultdict\n'), ((4815, 4838), 'struct.pack', 'struct.pack', (['"""<H"""', 'word'], {}), "('<H', word)\n", (4826, 4838), False, 'import struct\n'), ((4767, 4788), 'numpy.binary_repr', 'binary_repr', (['word', '(16)'], {}), '(word, 16)\n', (4778, 4788), False, 'from numpy import binary_repr\n')]
import copy import os import pickle import numpy as np from numpy.linalg import inv from numpy.matlib import repmat import pylot.utils class DepthFrame(object): """Class that stores depth frames. Args: frame: A numpy array storing the depth frame. camera_setup (:py:class:`~pylot.drivers.sensor_setup.DepthCameraSetup`): # noqa: E501 The camera setup used by the sensor that generated this frame. original_frame: A numpy array storing the RGB encoded depth image. Attributes: frame: A numpy array storing the depth frame. camera_setup (:py:class:`~pylot.drivers.sensor_setup.DepthCameraSetup`): The camera setup used by the sensor that generated this frame. original_frame: A numpy array storing the RGB encoded depth image. """ def __init__(self, frame, camera_setup, original_frame=None): self.frame = frame self.camera_setup = camera_setup self.original_frame = original_frame # Attribute used to cache the depth frame as a point cloud. We're doing # this because it is computationally expensive to transform a depth # frame to a point cloud. self._cached_point_cloud = None @classmethod def from_simulator_frame(cls, frame, camera_setup, save_original_frame=False): """Creates a pylot depth frame from a simulator depth frame. Args: frame: An image instance containing the depth image. camera_setup: The setup of the depth camera. save_original_frame: True if the original RGB image needs to be saved. Returns: :py:class:`.DepthFrame`: A depth frame. """ original_frame = None # Convert an image containing simulator encoded depth-map to a 2D # array containing the depth value of each pixel normalized # between [0.0, 1.0] _frame = np.frombuffer(frame.raw_data, dtype=np.dtype("uint8")) _frame = np.reshape(_frame, (frame.height, frame.width, 4)) frame = _frame.astype(np.float32) if save_original_frame: original_frame = copy.deepcopy(frame[:, :, :3]) # Apply (R + G * 256 + B * 256 * 256) / (256 * 256 * 256 - 1). frame = np.dot(frame[:, :, :3], [65536.0, 256.0, 1.0]) frame /= 16777215.0 # (256.0 * 256.0 * 256.0 - 1.0) return cls(frame, camera_setup, original_frame) def as_numpy_array(self): """Returns the depth frame as a numpy array.""" return self.frame def as_point_cloud(self): """Converts the depth frame to a 1D array containing the 3D position of each pixel in world coordinates. See :py:class:`~pylot.drivers.sensor_setup.CameraSetup` for coordinate axis orientations. """ far = 1000.0 # max depth in meters. intrinsic_mat = self.camera_setup.get_intrinsic_matrix() width, height = self.camera_setup.width, self.camera_setup.height # 2d pixel coordinates pixel_length = width * height u_coord = repmat(np.r_[0:width:1], height, 1).reshape(pixel_length) v_coord = repmat(np.c_[0:height:1], 1, width).reshape(pixel_length) normalized_depth = np.reshape(self.frame, pixel_length) # p2d = [u,v,1] p2d = np.array([u_coord, v_coord, np.ones_like(u_coord)]) # P = [X,Y,Z] p3d = np.dot(inv(intrinsic_mat), p2d) p3d *= normalized_depth * far # [[X1,Y1,Z1],[X2,Y2,Z2], ... [Xn,Yn,Zn]] locations = np.asarray(np.transpose(p3d)) # Transform the points in 3D world coordinates. to_world_transform = self.camera_setup.get_unreal_transform() point_cloud = to_world_transform.transform_points(locations) return point_cloud def get_pixel_locations(self, pixels): """ Gets the 3D world locations from pixel coordinates. Args: pixels: List of pylot.utils.Vector2D pixel coordinates. Returns: List of pylot.utils.Locations """ if self._cached_point_cloud is None: self._cached_point_cloud = self.as_point_cloud() pixel_locations = [ self._cached_point_cloud[pixel.y * self.camera_setup.width + pixel.x] for pixel in pixels ] return [ pylot.utils.Location(loc[0], loc[1], loc[2]) for loc in pixel_locations ] def pixel_has_same_depth(self, x, y, z, threshold): """Checks if the depth of pixel (y,x) is within threshold of z.""" return abs(self.frame[int(y)][int(x)] * 1000 - z) < threshold def resize(self, width, height): """Resizes the frame.""" import cv2 self.camera_setup.set_resolution(width, height) self.frame = cv2.resize(self.frame, dsize=(width, height), interpolation=cv2.INTER_NEAREST) def visualize(self, pygame_display, timestamp=None): """Visualizes the frame on a pygame display.""" if self.original_frame is not None: import pygame image_np = self.original_frame image_np = image_np[:, :, ::-1] image_np = np.transpose(image_np, (1, 0, 2)) pygame.surfarray.blit_array(pygame_display, image_np) pygame.display.flip() def save(self, timestamp, data_path, file_base): """Saves the depth frame to a file. Args: timestamp (:obj:`int`): Timestamp associated with the depth frame. data_path (:obj:`str`): Path where to save the depth frame. file_base (:obj:`str`): Base name of the file. """ file_name = os.path.join(data_path, '{}-{}.pkl'.format(file_base, timestamp)) pickle.dump(self.as_numpy_array(), open(file_name, 'wb'), protocol=pickle.HIGHEST_PROTOCOL) def __repr__(self): return 'DepthFrame(camera_setup: {}, frame: {})'.format( self.camera_setup, self.frame) def __str__(self): return 'DepthFrame(camera_setup: {})'.format(self.camera_setup)
[ "copy.deepcopy", "numpy.ones_like", "numpy.dtype", "numpy.transpose", "pygame.display.flip", "pygame.surfarray.blit_array", "numpy.linalg.inv", "numpy.reshape", "numpy.dot", "numpy.matlib.repmat", "cv2.resize" ]
[((2098, 2148), 'numpy.reshape', 'np.reshape', (['_frame', '(frame.height, frame.width, 4)'], {}), '(_frame, (frame.height, frame.width, 4))\n', (2108, 2148), True, 'import numpy as np\n'), ((2370, 2416), 'numpy.dot', 'np.dot', (['frame[:, :, :3]', '[65536.0, 256.0, 1.0]'], {}), '(frame[:, :, :3], [65536.0, 256.0, 1.0])\n', (2376, 2416), True, 'import numpy as np\n'), ((3350, 3386), 'numpy.reshape', 'np.reshape', (['self.frame', 'pixel_length'], {}), '(self.frame, pixel_length)\n', (3360, 3386), True, 'import numpy as np\n'), ((4945, 5023), 'cv2.resize', 'cv2.resize', (['self.frame'], {'dsize': '(width, height)', 'interpolation': 'cv2.INTER_NEAREST'}), '(self.frame, dsize=(width, height), interpolation=cv2.INTER_NEAREST)\n', (4955, 5023), False, 'import cv2\n'), ((2252, 2282), 'copy.deepcopy', 'copy.deepcopy', (['frame[:, :, :3]'], {}), '(frame[:, :, :3])\n', (2265, 2282), False, 'import copy\n'), ((3522, 3540), 'numpy.linalg.inv', 'inv', (['intrinsic_mat'], {}), '(intrinsic_mat)\n', (3525, 3540), False, 'from numpy.linalg import inv\n'), ((3667, 3684), 'numpy.transpose', 'np.transpose', (['p3d'], {}), '(p3d)\n', (3679, 3684), True, 'import numpy as np\n'), ((5382, 5415), 'numpy.transpose', 'np.transpose', (['image_np', '(1, 0, 2)'], {}), '(image_np, (1, 0, 2))\n', (5394, 5415), True, 'import numpy as np\n'), ((5428, 5481), 'pygame.surfarray.blit_array', 'pygame.surfarray.blit_array', (['pygame_display', 'image_np'], {}), '(pygame_display, image_np)\n', (5455, 5481), False, 'import pygame\n'), ((5494, 5515), 'pygame.display.flip', 'pygame.display.flip', ([], {}), '()\n', (5513, 5515), False, 'import pygame\n'), ((2062, 2079), 'numpy.dtype', 'np.dtype', (['"""uint8"""'], {}), "('uint8')\n", (2070, 2079), True, 'import numpy as np\n'), ((3189, 3224), 'numpy.matlib.repmat', 'repmat', (['np.r_[0:width:1]', 'height', '(1)'], {}), '(np.r_[0:width:1], height, 1)\n', (3195, 3224), False, 'from numpy.matlib import repmat\n'), ((3265, 3300), 'numpy.matlib.repmat', 'repmat', (['np.c_[0:height:1]', '(1)', 'width'], {}), '(np.c_[0:height:1], 1, width)\n', (3271, 3300), False, 'from numpy.matlib import repmat\n'), ((3454, 3475), 'numpy.ones_like', 'np.ones_like', (['u_coord'], {}), '(u_coord)\n', (3466, 3475), True, 'import numpy as np\n')]
""" Coordinate Transformation Functions This module contains the functions for converting one `sunpy.coordinates.frames` object to another. .. warning:: The functions in this submodule should never be called directly, transforming between coordinate frames should be done using the ``.transform_to`` methods on `~astropy.coordinates.BaseCoordinateFrame` or `~astropy.coordinates.SkyCoord` instances. """ import logging from copy import deepcopy from functools import wraps from contextlib import contextmanager import numpy as np import astropy.units as u from astropy.constants import c as speed_of_light from astropy.coordinates import ( HCRS, ICRS, BaseCoordinateFrame, ConvertError, HeliocentricMeanEcliptic, get_body_barycentric, ) from astropy.coordinates.baseframe import frame_transform_graph from astropy.coordinates.builtin_frames import make_transform_graph_docs from astropy.coordinates.builtin_frames.utils import get_jd12 from astropy.coordinates.matrix_utilities import matrix_product, matrix_transpose, rotation_matrix from astropy.coordinates.representation import ( CartesianRepresentation, SphericalRepresentation, UnitSphericalRepresentation, ) # Import erfa via astropy to make sure we are using the same ERFA library as Astropy from astropy.coordinates.sky_coordinate import erfa from astropy.coordinates.transformations import FunctionTransform, FunctionTransformWithFiniteDifference from astropy.time import Time from sunpy import log from sunpy.sun import constants from .frames import ( _J2000, GeocentricEarthEquatorial, GeocentricSolarEcliptic, Heliocentric, HeliocentricEarthEcliptic, HeliocentricInertial, HeliographicCarrington, HeliographicStonyhurst, Helioprojective, ) RSUN_METERS = constants.get('radius').si.to(u.m) __all__ = ['transform_with_sun_center', 'propagate_with_solar_surface', 'hgs_to_hgc', 'hgc_to_hgs', 'hcc_to_hpc', 'hpc_to_hcc', 'hcc_to_hgs', 'hgs_to_hcc', 'hpc_to_hpc', 'hcrs_to_hgs', 'hgs_to_hcrs', 'hgs_to_hgs', 'hgc_to_hgc', 'hcc_to_hcc', 'hme_to_hee', 'hee_to_hme', 'hee_to_hee', 'hee_to_gse', 'gse_to_hee', 'gse_to_gse', 'hgs_to_hci', 'hci_to_hgs', 'hci_to_hci', 'hme_to_gei', 'gei_to_hme', 'gei_to_gei'] # Boolean flag for whether to ignore the motion of the center of the Sun in inertial space _ignore_sun_motion = False # If not None, the name of the differential-rotation model to use for any obstime change _autoapply_diffrot = None @contextmanager def transform_with_sun_center(): """ Context manager for coordinate transformations to ignore the motion of the center of the Sun. Normally, coordinates refer to a point in inertial space (relative to the barycenter of the solar system). Transforming to a different observation time does not move the point at all, but rather only updates the coordinate representation as needed for the origin and axis orientations at the new observation time. However, the center of the Sun moves over time. Thus, for example, a coordinate that lies on the surface of the Sun at one observation time will not continue to lie on the surface of the Sun at other observation times. Under this context manager, transformations will instead move the coordinate over time to "follow" the translational motion of the center of Sun, thus maintaining the position of the coordinate relative to the center of the Sun. Notes ----- This context manager accounts only for the motion of the center of the Sun, i.e., translational motion. The motion of solar features due to any rotation of the Sun about its rotational axis is not accounted for. Due to the implementation approach, this context manager modifies transformations between only these five coordinate frames: `~sunpy.coordinates.frames.HeliographicStonyhurst`, `~sunpy.coordinates.frames.HeliographicCarrington`, `~sunpy.coordinates.frames.HeliocentricInertial`, `~sunpy.coordinates.frames.Heliocentric`, and `~sunpy.coordinates.frames.Helioprojective`. Examples -------- >>> from astropy.coordinates import SkyCoord >>> from sunpy.coordinates import HeliographicStonyhurst, transform_with_sun_center >>> import astropy.units as u >>> start_frame = HeliographicStonyhurst(obstime="2001-01-01") >>> end_frame = HeliographicStonyhurst(obstime="2001-02-01") >>> sun_center = SkyCoord(0*u.deg, 0*u.deg, 0*u.AU, frame=start_frame) >>> sun_center <SkyCoord (HeliographicStonyhurst: obstime=2001-01-01T00:00:00.000, rsun=695700.0 km): (lon, lat, radius) in (deg, deg, AU) (0., 0., 0.)> >>> sun_center.transform_to(end_frame) # transformations do not normally follow Sun center <SkyCoord (HeliographicStonyhurst: obstime=2001-02-01T00:00:00.000, rsun=695700.0 km): (lon, lat, radius) in (deg, deg, AU) (23.33174233, -5.96399877, 0.00027959)> >>> with transform_with_sun_center(): ... sun_center.transform_to(end_frame) # now following Sun center <SkyCoord (HeliographicStonyhurst: obstime=2001-02-01T00:00:00.000, rsun=695700.0 km): (lon, lat, radius) in (deg, deg, AU) (0., 0., 0.)> """ try: global _ignore_sun_motion old_ignore_sun_motion = _ignore_sun_motion # nominally False if not old_ignore_sun_motion: log.debug("Ignoring the motion of the center of the Sun for transformations") _ignore_sun_motion = True yield finally: if not old_ignore_sun_motion: log.debug("Stop ignoring the motion of the center of the Sun for transformations") _ignore_sun_motion = old_ignore_sun_motion @contextmanager def propagate_with_solar_surface(rotation_model='howard'): """ Context manager for coordinate transformations to automatically apply solar differential rotation for any change in observation time. Normally, coordinates refer to a point in inertial space (relative to the barycenter of the solar system). Transforming to a different observation time does not move the point at all, but rather only updates the coordinate representation as needed for the origin and axis orientations at the new observation time. Under this context manager, transformations will instead treat the coordinate as if it were referring to a point on the solar surface instead of a point in inertial space. If a transformation has a change in observation time, the heliographic longitude of the point will be updated according to the specified rotation model. Parameters ---------- rotation_model : `str` Accepted model names are ``'howard'`` (default), ``'snodgrass'``, ``'allen'``, and ``'rigid'``. See the documentation for :func:`~sunpy.physics.differential_rotation.diff_rot` for the differences between these models. Notes ----- This context manager also ignores the motion of the center of the Sun (see :func:`~sunpy.coordinates.transformations.transform_with_sun_center`). Due to the implementation approach, this context manager modifies transformations between only these five coordinate frames: `~sunpy.coordinates.frames.HeliographicStonyhurst`, `~sunpy.coordinates.frames.HeliographicCarrington`, `~sunpy.coordinates.frames.HeliocentricInertial`, `~sunpy.coordinates.frames.Heliocentric`, and `~sunpy.coordinates.frames.Helioprojective`. Examples -------- .. minigallery:: sunpy.coordinates.propagate_with_solar_surface >>> import astropy.units as u >>> from astropy.coordinates import SkyCoord >>> from sunpy.coordinates import HeliocentricInertial, propagate_with_solar_surface >>> meridian = SkyCoord(0*u.deg, [-60, -30, 0, 30, 60]*u.deg, 1*u.AU, ... frame=HeliocentricInertial, obstime='2021-09-15') >>> out_frame = HeliocentricInertial(obstime='2021-09-21') >>> with propagate_with_solar_surface(): ... print(meridian.transform_to(out_frame)) <SkyCoord (HeliocentricInertial: obstime=2021-09-21T00:00:00.000): (lon, lat, distance) in (deg, deg, AU) [(70.24182965, -60., 1.), (82.09298036, -30., 1.), (85.9579703 , 0., 1.), (82.09298036, 30., 1.), (70.24182965, 60., 1.)]> >>> with propagate_with_solar_surface(rotation_model='rigid'): ... print(meridian.transform_to(out_frame)) <SkyCoord (HeliocentricInertial: obstime=2021-09-21T00:00:00.000): (lon, lat, distance) in (deg, deg, AU) [(85.1064, -60., 1.), (85.1064, -30., 1.), (85.1064, 0., 1.), (85.1064, 30., 1.), (85.1064, 60., 1.)]> """ with transform_with_sun_center(): try: global _autoapply_diffrot old_autoapply_diffrot = _autoapply_diffrot # nominally False log.debug("Enabling automatic solar differential rotation " f"('{rotation_model}') for any changes in obstime") _autoapply_diffrot = rotation_model yield finally: if not old_autoapply_diffrot: log.debug("Disabling automatic solar differential rotation " "for any changes in obstime") _autoapply_diffrot = old_autoapply_diffrot # Global counter to keep track of the layer of transformation _layer_level = 0 def _transformation_debug(description): """ Decorator to produce debugging output for a transformation function: its description, inputs, and output. Unicode box-drawing characters are used. """ def decorator(func): @wraps(func) def wrapped_func(*args, **kwargs): global _layer_level # Check if the logging level is at least DEBUG (for performance reasons) debug_output = log.getEffectiveLevel() <= logging.DEBUG if debug_output: # Indention for transformation layer indention = u"\u2502 " * _layer_level # For the input arguments, add indention to any lines after the first line from_str = str(args[0]).replace("\n", f"\n {indention}\u2502 ") to_str = str(args[1]).replace("\n", f"\n {indention}\u2502 ") # Log the description and the input arguments log.debug(f"{indention}{description}") log.debug(f"{indention}\u251c\u2500From: {from_str}") log.debug(f"{indention}\u251c\u2500To : {to_str}") # Increment the layer level to increase the indention for nested transformations _layer_level += 1 result = func(*args, **kwargs) if debug_output: # Decrement the layer level _layer_level -= 1 # For the output, add intention to any lines after the first line out_str = str(result).replace("\n", f"\n {indention} ") # Log the output log.debug(f"{indention}\u2514\u2500Out : {out_str}") return result return wrapped_func return decorator def _observers_are_equal(obs_1, obs_2): # Note that this also lets pass the situation where both observers are None if obs_1 is obs_2: return True # obs_1 != obs_2 if obs_1 is None: raise ConvertError("The source observer is set to None, but the transformation requires " "the source observer to be specified, as the destination observer " f"is set to {obs_2}.") if obs_2 is None: raise ConvertError("The destination observer is set to None, but the transformation " "requires the destination observer to be specified, as the " f"source observer is set to {obs_1}.") if isinstance(obs_1, str): if obs_1 == "self": return False raise ConvertError("The source observer needs to have `obstime` set because the " "destination observer is different.") if isinstance(obs_2, str): if obs_2 == "self": return False raise ConvertError("The destination observer needs to have `obstime` set because the " "source observer is different.") return np.atleast_1d((u.allclose(obs_1.lat, obs_2.lat) and u.allclose(obs_1.lon, obs_2.lon) and u.allclose(obs_1.radius, obs_2.radius) and _times_are_equal(obs_1.obstime, obs_2.obstime))).all() def _check_observer_defined(frame): if frame.observer is None: raise ConvertError("This transformation cannot be performed because the " f"{frame.__class__.__name__} frame has observer=None.") elif isinstance(frame.observer, str): if frame.observer != "self": raise ConvertError("This transformation cannot be performed because the " f"{frame.__class__.__name__} frame needs a specified obstime " f"to fully resolve observer='{frame.observer}'.") elif not isinstance(frame, HeliographicCarrington): raise ConvertError(f"The {frame.__class__.__name__} frame has observer='self' " "but this is valid for only HeliographicCarrington frames.") def _times_are_equal(time_1, time_2): # Checks whether times are equal if isinstance(time_1, Time) and isinstance(time_2, Time): # We explicitly perform the check in TAI to avoid possible numerical precision differences # between a time in UTC and the same time after a UTC->TAI->UTC conversion return np.all(time_1.tai == time_2.tai) # We also deem the times equal if they are both None return time_1 is None and time_2 is None # ============================================================================= # ------------------------- Transformation Framework -------------------------- # ============================================================================= def _transform_obstime(frame, obstime): """ Transform a frame to a new obstime using the appropriate loopback transformation. If the new obstime is None, no transformation is performed. If the frame's obstime is None, the frame is copied with the new obstime. """ # If obstime is None or the obstime matches, nothing needs to be done if obstime is None or _times_are_equal(frame.obstime, obstime): return frame # Transform to the new obstime using the appropriate loopback transformation new_frame = frame.replicate(obstime=obstime) if frame.obstime is not None: return frame.transform_to(new_frame) else: return new_frame def _rotation_matrix_hgs_to_hgc(obstime, observer_distance_from_sun): """ Return the rotation matrix from HGS to HGC at the same observation time """ if obstime is None: raise ConvertError("To perform this transformation, the coordinate" " frame needs a specified `obstime`.") # Import here to avoid a circular import from .sun import L0, earth_distance # Calculate the difference in light travel time if the observer is at a different distance from # the Sun than the Earth is delta_time = (observer_distance_from_sun - earth_distance(obstime)) / speed_of_light # Calculate the corresponding difference in apparent longitude delta_lon = delta_time * constants.sidereal_rotation_rate # Rotation is only in longitude, so only around the Z axis return rotation_matrix(-(L0(obstime) + delta_lon), 'z') @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, HeliographicStonyhurst, HeliographicCarrington) @_transformation_debug("HGS->HGC") def hgs_to_hgc(hgscoord, hgcframe): """ Convert from Heliographic Stonyhurst to Heliographic Carrington. """ _check_observer_defined(hgcframe) if isinstance(hgcframe.observer, str) and hgcframe.observer == "self": observer_radius = hgscoord.radius else: observer_radius = hgcframe.observer.radius # First transform the HGS coord to the HGC obstime int_coord = _transform_obstime(hgscoord, hgcframe.obstime) # Rotate from HGS to HGC total_matrix = _rotation_matrix_hgs_to_hgc(int_coord.obstime, observer_radius) newrepr = int_coord.cartesian.transform(total_matrix) return hgcframe._replicate(newrepr, obstime=int_coord.obstime) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, HeliographicCarrington, HeliographicStonyhurst) @_transformation_debug("HGC->HGS") def hgc_to_hgs(hgccoord, hgsframe): """ Convert from Heliographic Carrington to Heliographic Stonyhurst. """ _check_observer_defined(hgccoord) hgccoord = hgccoord.make_3d() if isinstance(hgccoord.observer, str) and hgccoord.observer == "self": observer_radius = hgccoord.radius else: observer_radius = hgccoord.observer.radius # First transform the HGC coord to the HGS obstime int_coord = _transform_obstime(hgccoord, hgsframe.obstime) # Rotate from HGC to HGS total_matrix = matrix_transpose(_rotation_matrix_hgs_to_hgc(int_coord.obstime, observer_radius)) newrepr = int_coord.cartesian.transform(total_matrix) return hgsframe._replicate(newrepr, obstime=int_coord.obstime) def _matrix_hcc_to_hpc(): # Returns the transformation matrix that permutes/swaps axes from HCC to HPC # HPC spherical coordinates are a left-handed frame with these equivalent Cartesian axes: # HPC_X = -HCC_Z # HPC_Y = HCC_X # HPC_Z = HCC_Y # (HPC_X and HPC_Y are not to be confused with HPC_Tx and HPC_Ty) return np.array([[0, 0, -1], [1, 0, 0], [0, 1, 0]]) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, Heliocentric, Helioprojective) @_transformation_debug("HCC->HPC") def hcc_to_hpc(helioccoord, heliopframe): """ Convert from Heliocentric Cartesian to Helioprojective Cartesian. """ _check_observer_defined(helioccoord) _check_observer_defined(heliopframe) # Transform the HPC observer (in HGS) to the HPC obstime in case it's different observer = _transform_obstime(heliopframe.observer, heliopframe.obstime) # Loopback transform HCC coord to obstime and observer of HPC frame int_frame = Heliocentric(obstime=observer.obstime, observer=observer) int_coord = helioccoord.transform_to(int_frame) # Shift the origin from the Sun to the observer distance = int_coord.observer.radius newrepr = int_coord.cartesian - CartesianRepresentation(0*u.m, 0*u.m, distance) # Permute/swap axes from HCC to HPC equivalent Cartesian newrepr = newrepr.transform(_matrix_hcc_to_hpc()) # Explicitly represent as spherical because external code (e.g., wcsaxes) expects it return heliopframe.realize_frame(newrepr.represent_as(SphericalRepresentation)) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, Helioprojective, Heliocentric) @_transformation_debug("HPC->HCC") def hpc_to_hcc(heliopcoord, heliocframe): """ Convert from Helioprojective Cartesian to Heliocentric Cartesian. """ _check_observer_defined(heliopcoord) _check_observer_defined(heliocframe) heliopcoord = heliopcoord.make_3d() # Permute/swap axes from HPC equivalent Cartesian to HCC newrepr = heliopcoord.cartesian.transform(matrix_transpose(_matrix_hcc_to_hpc())) # Transform the HPC observer (in HGS) to the HPC obstime in case it's different observer = _transform_obstime(heliopcoord.observer, heliopcoord.obstime) # Shift the origin from the observer to the Sun distance = observer.radius newrepr += CartesianRepresentation(0*u.m, 0*u.m, distance) # Complete the conversion of HPC to HCC at the obstime and observer of the HPC coord int_coord = Heliocentric(newrepr, obstime=observer.obstime, observer=observer) # Loopback transform HCC as needed return int_coord.transform_to(heliocframe) def _rotation_matrix_hcc_to_hgs(longitude, latitude): # Returns the rotation matrix from HCC to HGS based on the observer longitude and latitude # Permute the axes of HCC to match HGS Cartesian equivalent # HGS_X = HCC_Z # HGS_Y = HCC_X # HGS_Z = HCC_Y axes_matrix = np.array([[0, 0, 1], [1, 0, 0], [0, 1, 0]]) # Rotate in latitude and longitude (sign difference because of direction difference) lat_matrix = rotation_matrix(latitude, 'y') lon_matrix = rotation_matrix(-longitude, 'z') return lon_matrix @ lat_matrix @ axes_matrix @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, Heliocentric, HeliographicStonyhurst) @_transformation_debug("HCC->HGS") def hcc_to_hgs(helioccoord, heliogframe): """ Convert from Heliocentric Cartesian to Heliographic Stonyhurst. """ _check_observer_defined(helioccoord) # Transform the HCC observer (in HGS) to the HCC obstime in case it's different hcc_observer_at_hcc_obstime = _transform_obstime(helioccoord.observer, helioccoord.obstime) total_matrix = _rotation_matrix_hcc_to_hgs(hcc_observer_at_hcc_obstime.lon, hcc_observer_at_hcc_obstime.lat) # Transform from HCC to HGS at the HCC obstime newrepr = helioccoord.cartesian.transform(total_matrix) int_coord = HeliographicStonyhurst(newrepr, obstime=hcc_observer_at_hcc_obstime.obstime) # For historical reasons, we support HCC with no obstime transforming to HGS with an obstime if int_coord.obstime is None and heliogframe.obstime is not None: int_coord = int_coord.replicate(obstime=heliogframe.obstime) # Loopback transform HGS as needed return int_coord.transform_to(heliogframe) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, HeliographicStonyhurst, Heliocentric) @_transformation_debug("HGS->HCC") def hgs_to_hcc(heliogcoord, heliocframe): """ Convert from Heliographic Stonyhurst to Heliocentric Cartesian. """ _check_observer_defined(heliocframe) heliogcoord = heliogcoord.make_3d() # Loopback transform HGS if there is a change in obstime int_coord = _transform_obstime(heliogcoord, heliocframe.obstime) # Transform the HCC observer (in HGS) to the HCC obstime in case it's different hcc_observer_at_hcc_obstime = _transform_obstime(heliocframe.observer, int_coord.obstime) total_matrix = matrix_transpose(_rotation_matrix_hcc_to_hgs(hcc_observer_at_hcc_obstime.lon, hcc_observer_at_hcc_obstime.lat)) # Transform from HGS to HCC at the same obstime newrepr = int_coord.cartesian.transform(total_matrix) return heliocframe.realize_frame(newrepr) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, Helioprojective, Helioprojective) @_transformation_debug("HPC->HPC") def hpc_to_hpc(from_coo, to_frame): """ This converts from HPC to HPC, with different observer location parameters. It does this by transforming through HGS. """ if _observers_are_equal(from_coo.observer, to_frame.observer) and \ _times_are_equal(from_coo.obstime, to_frame.obstime): return to_frame.realize_frame(from_coo.data) _check_observer_defined(from_coo) _check_observer_defined(to_frame) hgs = from_coo.transform_to(HeliographicStonyhurst(obstime=to_frame.obstime)) hpc = hgs.transform_to(to_frame) return hpc def _rotation_matrix_reprs_to_reprs(start_representation, end_representation): """ Return the matrix for the direct rotation from one representation to a second representation. The representations need not be normalized first, and can be arrays of representations. """ A = start_representation.to_cartesian() B = end_representation.to_cartesian() rotation_axis = A.cross(B) rotation_angle = -np.arccos(A.dot(B) / (A.norm() * B.norm())) # negation is required if rotation_angle.isscalar: # This line works around some input/output quirks of Astropy's rotation_matrix() matrix = np.array(rotation_matrix(rotation_angle, rotation_axis.xyz.value.tolist())) else: matrix_list = [np.array(rotation_matrix(angle, axis.xyz.value.tolist())) for angle, axis in zip(rotation_angle, rotation_axis)] matrix = np.stack(matrix_list) return matrix def _rotation_matrix_reprs_to_xz_about_z(representations): """ Return one or more matrices for rotating one or more representations around the Z axis into the XZ plane. """ A = representations.to_cartesian() # Zero out the Z components # (The additional transpose operations are to handle both scalar and array inputs) A_no_z = CartesianRepresentation((A.xyz.T * [1, 1, 0]).T) # Rotate the resulting vector to the X axis x_axis = CartesianRepresentation(1, 0, 0) matrix = _rotation_matrix_reprs_to_reprs(A_no_z, x_axis) return matrix def _sun_earth_icrf(time): """ Return the Sun-Earth vector for ICRF-based frames. """ sun_pos_icrs = get_body_barycentric('sun', time) earth_pos_icrs = get_body_barycentric('earth', time) return earth_pos_icrs - sun_pos_icrs # The Sun's north pole is oriented RA=286.13 deg, dec=63.87 deg in ICRS, and thus HCRS as well # (See Archinal et al. 2011, # "Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2009") # The orientation of the north pole in ICRS/HCRS is assumed to be constant in time _SOLAR_NORTH_POLE_HCRS = UnitSphericalRepresentation(lon=constants.get('alpha_0'), lat=constants.get('delta_0')) # Calculate the rotation matrix to de-tilt the Sun's rotation axis to be parallel to the Z axis _SUN_DETILT_MATRIX = _rotation_matrix_reprs_to_reprs(_SOLAR_NORTH_POLE_HCRS, CartesianRepresentation(0, 0, 1)) def _affine_params_hcrs_to_hgs(hcrs_time, hgs_time): """ Return the affine parameters (matrix and offset) from HCRS to HGS HGS shares the same origin (the Sun) as HCRS, but has its Z axis aligned with the Sun's rotation axis and its X axis aligned with the projection of the Sun-Earth vector onto the Sun's equatorial plane (i.e., the component of the Sun-Earth vector perpendicular to the Z axis). Thus, the transformation matrix is the product of the matrix to align the Z axis (by de-tilting the Sun's rotation axis) and the matrix to align the X axis. The first matrix is independent of time and is pre-computed, while the second matrix depends on the time-varying Sun-Earth vector. """ # Determine the Sun-Earth vector in ICRS # Since HCRS is ICRS with an origin shift, this is also the Sun-Earth vector in HCRS sun_pos_icrs = get_body_barycentric('sun', hgs_time) earth_pos_icrs = get_body_barycentric('earth', hgs_time) sun_earth = earth_pos_icrs - sun_pos_icrs # De-tilt the Sun-Earth vector to the frame with the Sun's rotation axis parallel to the Z axis sun_earth_detilt = sun_earth.transform(_SUN_DETILT_MATRIX) # Rotate the Sun-Earth vector about the Z axis so that it lies in the XZ plane rot_matrix = _rotation_matrix_reprs_to_xz_about_z(sun_earth_detilt) total_matrix = rot_matrix @ _SUN_DETILT_MATRIX # All of the above is calculated for the HGS observation time # If the HCRS observation time is different, calculate the translation in origin if not _ignore_sun_motion and np.any(hcrs_time != hgs_time): sun_pos_old_icrs = get_body_barycentric('sun', hcrs_time) offset_icrf = sun_pos_old_icrs - sun_pos_icrs else: offset_icrf = sun_pos_icrs * 0 # preserves obstime shape offset = offset_icrf.transform(total_matrix) return total_matrix, offset @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, HCRS, HeliographicStonyhurst) @_transformation_debug("HCRS->HGS") def hcrs_to_hgs(hcrscoord, hgsframe): """ Convert from HCRS to Heliographic Stonyhurst (HGS). Even though we calculate the parameters for the affine transform, we use ``FunctionTransformWithFiniteDifference`` because otherwise there is no way to account for the induced angular velocity when transforming a coordinate with velocity information. """ if hgsframe.obstime is None: raise ConvertError("To perform this transformation, the HeliographicStonyhurst" " frame needs a specified `obstime`.") rot_matrix, offset = _affine_params_hcrs_to_hgs(hcrscoord.obstime, hgsframe.obstime) return hgsframe.realize_frame(hcrscoord.cartesian.transform(rot_matrix) + offset) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, HeliographicStonyhurst, HCRS) @_transformation_debug("HGS->HCRS") def hgs_to_hcrs(hgscoord, hcrsframe): """ Convert from Heliographic Stonyhurst to HCRS. Even though we calculate the parameters for the affine transform, we use ``FunctionTransformWithFiniteDifference`` because otherwise there is no way to account for the induced angular velocity when transforming a coordinate with velocity information. """ if hgscoord.obstime is None: raise ConvertError("To perform this transformation, the HeliographicStonyhurst" " frame needs a specified `obstime`.") hgscoord = hgscoord.make_3d() # Calculate the matrix and offset in the HCRS->HGS direction forward_matrix, forward_offset = _affine_params_hcrs_to_hgs(hcrsframe.obstime, hgscoord.obstime) # Invert the transformation to get the HGS->HCRS transformation reverse_matrix = matrix_transpose(forward_matrix) reverse_offset = (-forward_offset).transform(reverse_matrix) return hcrsframe.realize_frame(hgscoord.cartesian.transform(reverse_matrix) + reverse_offset) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, HeliographicStonyhurst, HeliographicStonyhurst) @_transformation_debug("HGS->HGS") def hgs_to_hgs(from_coo, to_frame): """ Convert between two Heliographic Stonyhurst frames. """ if to_frame.obstime is None: return from_coo.replicate() elif _times_are_equal(from_coo.obstime, to_frame.obstime): return to_frame.realize_frame(from_coo.data) else: if _autoapply_diffrot: from_coo = from_coo._apply_diffrot((to_frame.obstime - from_coo.obstime).to('day'), _autoapply_diffrot) return from_coo.transform_to(HCRS(obstime=to_frame.obstime)).transform_to(to_frame) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, HeliographicCarrington, HeliographicCarrington) @_transformation_debug("HGC->HGC") def hgc_to_hgc(from_coo, to_frame): """ Convert between two Heliographic Carrington frames. """ if _observers_are_equal(from_coo.observer, to_frame.observer) and \ _times_are_equal(from_coo.obstime, to_frame.obstime): return to_frame.realize_frame(from_coo.data) _check_observer_defined(from_coo) _check_observer_defined(to_frame) # Convert through HGS hgscoord = from_coo.transform_to(HeliographicStonyhurst(obstime=from_coo.obstime)) return hgscoord.transform_to(to_frame) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, Heliocentric, Heliocentric) @_transformation_debug("HCC->HCC") def hcc_to_hcc(from_coo, to_frame): """ Convert between two Heliocentric frames. """ if _observers_are_equal(from_coo.observer, to_frame.observer) and \ _times_are_equal(from_coo.obstime, to_frame.obstime): return to_frame.realize_frame(from_coo.data) _check_observer_defined(from_coo) _check_observer_defined(to_frame) # Convert through HGS hgscoord = from_coo.transform_to(HeliographicStonyhurst(obstime=to_frame.obstime)) return hgscoord.transform_to(to_frame) def _rotation_matrix_hme_to_hee(hmeframe): """ Return the rotation matrix from HME to HEE at the same observation time """ # Get the Sun-Earth vector sun_earth = HCRS(_sun_earth_icrf(hmeframe.obstime), obstime=hmeframe.obstime) sun_earth_hme = sun_earth.transform_to(hmeframe).cartesian # Rotate the Sun-Earth vector about the Z axis so that it lies in the XZ plane rot_matrix = _rotation_matrix_reprs_to_xz_about_z(sun_earth_hme) # Tilt the rotated Sun-Earth vector so that it is aligned with the X axis tilt_matrix = _rotation_matrix_reprs_to_reprs(sun_earth_hme.transform(rot_matrix), CartesianRepresentation(1, 0, 0)) return matrix_product(tilt_matrix, rot_matrix) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, HeliocentricMeanEcliptic, HeliocentricEarthEcliptic) @_transformation_debug("HME->HEE") def hme_to_hee(hmecoord, heeframe): """ Convert from Heliocentric Mean Ecliptic to Heliocentric Earth Ecliptic """ if heeframe.obstime is None: raise ConvertError("To perform this transformation, the coordinate" " frame needs a specified `obstime`.") # Convert to the HME frame with mean equinox of date at the HEE obstime, through HCRS int_frame = HeliocentricMeanEcliptic(obstime=heeframe.obstime, equinox=heeframe.obstime) int_coord = hmecoord.transform_to(HCRS(obstime=hmecoord.obstime)).transform_to(int_frame) # Rotate the intermediate coord to the HEE frame total_matrix = _rotation_matrix_hme_to_hee(int_frame) newrepr = int_coord.cartesian.transform(total_matrix) return heeframe.realize_frame(newrepr) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, HeliocentricEarthEcliptic, HeliocentricMeanEcliptic) @_transformation_debug("HEE->HME") def hee_to_hme(heecoord, hmeframe): """ Convert from Heliocentric Earth Ecliptic to Heliocentric Mean Ecliptic """ if heecoord.obstime is None: raise ConvertError("To perform this transformation, the coordinate" " frame needs a specified `obstime`.") int_frame = HeliocentricMeanEcliptic(obstime=heecoord.obstime, equinox=heecoord.obstime) # Rotate the HEE coord to the intermediate frame total_matrix = matrix_transpose(_rotation_matrix_hme_to_hee(int_frame)) int_repr = heecoord.cartesian.transform(total_matrix) int_coord = int_frame.realize_frame(int_repr) # Convert to the HME frame through HCRS return int_coord.transform_to(HCRS(obstime=int_coord.obstime)).transform_to(hmeframe) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, HeliocentricEarthEcliptic, HeliocentricEarthEcliptic) @_transformation_debug("HEE->HEE") def hee_to_hee(from_coo, to_frame): """ Convert between two Heliocentric Earth Ecliptic frames. """ if _times_are_equal(from_coo.obstime, to_frame.obstime): return to_frame.realize_frame(from_coo.data) elif to_frame.obstime is None: return from_coo else: return from_coo.transform_to(HCRS(obstime=from_coo.obstime)).transform_to(to_frame) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, HeliocentricEarthEcliptic, GeocentricSolarEcliptic) @_transformation_debug("HEE->GSE") def hee_to_gse(heecoord, gseframe): """ Convert from Heliocentric Earth Ecliptic to Geocentric Solar Ecliptic """ # First transform the HEE coord to the GSE obstime int_coord = _transform_obstime(heecoord, gseframe.obstime) if int_coord.obstime is None: raise ConvertError("To perform this transformation, the coordinate" " frame needs a specified `obstime`.") # Import here to avoid a circular import from .sun import earth_distance # Find the Earth-object vector in the intermediate frame sun_earth_int = earth_distance(int_coord.obstime) * CartesianRepresentation(1, 0, 0) earth_object_int = int_coord.cartesian - sun_earth_int # Flip the vector in X and Y, but leave Z untouched # (The additional transpose operations are to handle both scalar and array inputs) newrepr = CartesianRepresentation((earth_object_int.xyz.T * [-1, -1, 1]).T) return gseframe._replicate(newrepr, obstime=int_coord.obstime) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, GeocentricSolarEcliptic, HeliocentricEarthEcliptic) @_transformation_debug("GSE->HEE") def gse_to_hee(gsecoord, heeframe): """ Convert from Geocentric Solar Ecliptic to Heliocentric Earth Ecliptic """ # First transform the GSE coord to the HEE obstime int_coord = _transform_obstime(gsecoord, heeframe.obstime) if int_coord.obstime is None: raise ConvertError("To perform this transformation, the coordinate" " frame needs a specified `obstime`.") # Import here to avoid a circular import from .sun import earth_distance # Find the Sun-object vector in the intermediate frame earth_sun_int = earth_distance(int_coord.obstime) * CartesianRepresentation(1, 0, 0) sun_object_int = int_coord.cartesian - earth_sun_int # Flip the vector in X and Y, but leave Z untouched # (The additional transpose operations are to handle both scalar and array inputs) newrepr = CartesianRepresentation((sun_object_int.xyz.T * [-1, -1, 1]).T) return heeframe._replicate(newrepr, obstime=int_coord.obstime) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, GeocentricSolarEcliptic, GeocentricSolarEcliptic) @_transformation_debug("GSE->GSE") def gse_to_gse(from_coo, to_frame): """ Convert between two Geocentric Solar Ecliptic frames. """ if _times_are_equal(from_coo.obstime, to_frame.obstime): return to_frame.realize_frame(from_coo.data) else: heecoord = from_coo.transform_to(HeliocentricEarthEcliptic(obstime=from_coo.obstime)) return heecoord.transform_to(to_frame) def _rotation_matrix_hgs_to_hci(obstime): """ Return the rotation matrix from HGS to HCI at the same observation time """ z_axis = CartesianRepresentation(0, 0, 1)*u.m if not obstime.isscalar: z_axis = z_axis._apply('repeat', obstime.size) # Get the ecliptic pole in HGS ecliptic_pole = HeliocentricMeanEcliptic(z_axis, obstime=obstime, equinox=_J2000) ecliptic_pole_hgs = ecliptic_pole.transform_to(HeliographicStonyhurst(obstime=obstime)) # Rotate the ecliptic pole to the -YZ plane, which aligns the solar ascending node with the X # axis rot_matrix = _rotation_matrix_reprs_to_xz_about_z(ecliptic_pole_hgs.cartesian) xz_to_yz_matrix = rotation_matrix(-90*u.deg, 'z') return xz_to_yz_matrix @ rot_matrix @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, HeliographicStonyhurst, HeliocentricInertial) @_transformation_debug("HGS->HCI") def hgs_to_hci(hgscoord, hciframe): """ Convert from Heliographic Stonyhurst to Heliocentric Inertial """ hgscoord = hgscoord.make_3d() # First transform the HGS coord to the HCI obstime int_coord = _transform_obstime(hgscoord, hciframe.obstime) if int_coord.obstime is None: raise ConvertError("To perform this transformation, the coordinate" " frame needs a specified `obstime`.") # Rotate from HGS to HCI total_matrix = _rotation_matrix_hgs_to_hci(int_coord.obstime) newrepr = int_coord.cartesian.transform(total_matrix) return hciframe._replicate(newrepr, obstime=int_coord.obstime) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, HeliocentricInertial, HeliographicStonyhurst) @_transformation_debug("HCI->HGS") def hci_to_hgs(hcicoord, hgsframe): """ Convert from Heliocentric Inertial to Heliographic Stonyhurst """ # First transform the HCI coord to the HGS obstime int_coord = _transform_obstime(hcicoord, hgsframe.obstime) if int_coord.obstime is None: raise ConvertError("To perform this transformation, the coordinate" " frame needs a specified `obstime`.") # Rotate from HCI to HGS total_matrix = matrix_transpose(_rotation_matrix_hgs_to_hci(int_coord.obstime)) newrepr = int_coord.cartesian.transform(total_matrix) return hgsframe._replicate(newrepr, obstime=int_coord.obstime) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, HeliocentricInertial, HeliocentricInertial) @_transformation_debug("HCI->HCI") def hci_to_hci(from_coo, to_frame): """ Convert between two Heliocentric Inertial frames. """ if _times_are_equal(from_coo.obstime, to_frame.obstime): return to_frame.realize_frame(from_coo.data) else: return from_coo.transform_to(HeliographicStonyhurst(obstime=from_coo.obstime)).\ transform_to(to_frame) def _rotation_matrix_obliquity(time): """ Return the rotation matrix from Earth equatorial to ecliptic coordinates """ return rotation_matrix(erfa.obl06(*get_jd12(time, 'tt'))*u.radian, 'x') @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, HeliocentricMeanEcliptic, GeocentricEarthEquatorial) @_transformation_debug("HME->GEI") def hme_to_gei(hmecoord, geiframe): """ Convert from Heliocentric Mean Ecliptic to Geocentric Earth Equatorial """ if geiframe.obstime is None: raise ConvertError("To perform this transformation, the coordinate" " frame needs a specified `obstime`.") # Use an intermediate frame of HME at the GEI observation time, through HCRS int_frame = HeliocentricMeanEcliptic(obstime=geiframe.obstime, equinox=geiframe.equinox) int_coord = hmecoord.transform_to(HCRS(obstime=int_frame.obstime)).transform_to(int_frame) # Get the Sun-Earth vector in the intermediate frame sun_earth = HCRS(_sun_earth_icrf(int_frame.obstime), obstime=int_frame.obstime) sun_earth_int = sun_earth.transform_to(int_frame).cartesian # Find the Earth-object vector in the intermediate frame earth_object_int = int_coord.cartesian - sun_earth_int # Rotate from ecliptic to Earth equatorial rot_matrix = matrix_transpose(_rotation_matrix_obliquity(int_frame.equinox)) newrepr = earth_object_int.transform(rot_matrix) return geiframe.realize_frame(newrepr) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, GeocentricEarthEquatorial, HeliocentricMeanEcliptic) @_transformation_debug("GEI->HME") def gei_to_hme(geicoord, hmeframe): """ Convert from Geocentric Earth Equatorial to Heliocentric Mean Ecliptic """ if geicoord.obstime is None: raise ConvertError("To perform this transformation, the coordinate" " frame needs a specified `obstime`.") # Use an intermediate frame of HME at the GEI observation time int_frame = HeliocentricMeanEcliptic(obstime=geicoord.obstime, equinox=geicoord.equinox) # Get the Sun-Earth vector in the intermediate frame sun_earth = HCRS(_sun_earth_icrf(int_frame.obstime), obstime=int_frame.obstime) sun_earth_int = sun_earth.transform_to(int_frame).cartesian # Rotate from Earth equatorial to ecliptic rot_matrix = _rotation_matrix_obliquity(int_frame.equinox) earth_object_int = geicoord.cartesian.transform(rot_matrix) # Find the Sun-object vector in the intermediate frame sun_object_int = sun_earth_int + earth_object_int int_coord = int_frame.realize_frame(sun_object_int) # Convert to the final frame through HCRS return int_coord.transform_to(HCRS(obstime=int_coord.obstime)).transform_to(hmeframe) @frame_transform_graph.transform(FunctionTransformWithFiniteDifference, GeocentricEarthEquatorial, GeocentricEarthEquatorial) @_transformation_debug("GEI->GEI") def gei_to_gei(from_coo, to_frame): """ Convert between two Geocentric Earth Equatorial frames. """ if _times_are_equal(from_coo.equinox, to_frame.equinox) and \ _times_are_equal(from_coo.obstime, to_frame.obstime): return to_frame.realize_frame(from_coo.data) else: return from_coo.transform_to(HCRS(obstime=from_coo.obstime)).transform_to(to_frame) def _make_sunpy_graph(): """ Culls down the full transformation graph for SunPy purposes and returns the string version """ # Frames to keep in the transformation graph keep_list = ['icrs', 'hcrs', 'heliocentrictrueecliptic', 'heliocentricmeanecliptic', 'heliographic_stonyhurst', 'heliographic_carrington', 'heliocentric', 'helioprojective', 'heliocentricearthecliptic', 'geocentricsolarecliptic', 'heliocentricinertial', 'geocentricearthequatorial', 'gcrs', 'precessedgeocentric', 'geocentrictrueecliptic', 'geocentricmeanecliptic', 'cirs', 'altaz', 'itrs'] small_graph = deepcopy(frame_transform_graph) cull_list = [name for name in small_graph.get_names() if name not in keep_list] cull_frames = [small_graph.lookup_name(name) for name in cull_list] for frame in cull_frames: # Remove the part of the graph where the unwanted frame is the source frame if frame in small_graph._graph: del small_graph._graph[frame] # Remove all instances of the unwanted frame as the destination frame for entry in small_graph._graph: if frame in small_graph._graph[entry]: del (small_graph._graph[entry])[frame] # Clean up the node list for name in cull_list: small_graph._cached_names.pop(name) _add_astropy_node(small_graph) docstr = make_transform_graph_docs(small_graph) # Make adjustments to the graph docstr = _tweak_graph(docstr) return docstr def _add_astropy_node(graph): """ Add an 'Astropy' node that links to an ICRS node in the graph """ class Astropy(BaseCoordinateFrame): name = "REPLACE" @graph.transform(FunctionTransform, Astropy, ICRS) def fake_transform1(): pass @graph.transform(FunctionTransform, ICRS, Astropy) def fake_transform2(): pass def _tweak_graph(docstr): # Remove Astropy's diagram description output = docstr[docstr.find('.. Wrap the graph'):] # Change the Astropy node output = output.replace('Astropy [shape=oval label="Astropy\\n`REPLACE`"]', 'Astropy [shape=box3d style=filled fillcolor=lightcyan ' 'label="Other frames\\nin Astropy"]') # Change the Astropy<->ICRS links to black output = output.replace('ICRS -> Astropy[ color = "#783001" ]', 'ICRS -> Astropy[ color = "#000000" ]') output = output.replace('Astropy -> ICRS[ color = "#783001" ]', 'Astropy -> ICRS[ color = "#000000" ]') # Set the nodes to be filled and cyan by default output = output.replace('AstropyCoordinateTransformGraph {', 'AstropyCoordinateTransformGraph {\n' ' node [style=filled fillcolor=lightcyan]') # Set the nodes for SunPy frames to be white sunpy_frames = ['HeliographicStonyhurst', 'HeliographicCarrington', 'Heliocentric', 'Helioprojective', 'HeliocentricEarthEcliptic', 'GeocentricSolarEcliptic', 'HeliocentricInertial', 'GeocentricEarthEquatorial'] for frame in sunpy_frames: output = output.replace(frame + ' [', frame + ' [fillcolor=white ') # Set the rank direction to be left->right (as opposed to top->bottom) # Force nodes for ICRS, HCRS, and "Other frames in Astropy" to be at the same rank output = output.replace(' overlap=false', ' overlap=false\n' ' rankdir=LR\n' ' {rank=same; ICRS; HCRS; Astropy}') output = output.replace('<ul>\n\n', '<ul>\n\n' + _add_legend_row('SunPy frames', 'white') + _add_legend_row('Astropy frames', 'lightcyan')) return output def _add_legend_row(label, color): row = ' <li style="list-style: none;">\n'\ ' <p style="font-size: 12px;line-height: 24px;font-weight: normal;'\ 'color: #848484;padding: 0;margin: 0;">\n'\ ' <b>' + label + ':</b>\n'\ ' <span class="dot" style="height: 20px;width: 40px;'\ 'background-color: ' + color + ';border-radius: 50%;border: 1px solid black;'\ 'display: inline-block;"></span>\n'\ ' </p>\n'\ ' </li>\n\n\n' return row
[ "astropy.coordinates.ConvertError", "astropy.coordinates.matrix_utilities.matrix_product", "sunpy.sun.constants.get", "astropy.coordinates.HeliocentricMeanEcliptic", "astropy.units.allclose", "astropy.coordinates.representation.CartesianRepresentation", "astropy.coordinates.HCRS", "astropy.coordinates.get_body_barycentric", "numpy.stack", "copy.deepcopy", "astropy.coordinates.builtin_frames.make_transform_graph_docs", "sunpy.log.debug", "astropy.coordinates.builtin_frames.utils.get_jd12", "functools.wraps", "sunpy.log.getEffectiveLevel", "numpy.all", "astropy.coordinates.baseframe.frame_transform_graph.transform", "astropy.coordinates.matrix_utilities.matrix_transpose", "numpy.any", "astropy.coordinates.matrix_utilities.rotation_matrix", "numpy.array" ]
[((15927, 16049), 'astropy.coordinates.baseframe.frame_transform_graph.transform', 'frame_transform_graph.transform', (['FunctionTransformWithFiniteDifference', 'HeliographicStonyhurst', 'HeliographicCarrington'], {}), '(FunctionTransformWithFiniteDifference,\n HeliographicStonyhurst, HeliographicCarrington)\n', (15958, 16049), False, 'from astropy.coordinates.baseframe import frame_transform_graph\n'), ((16812, 16934), 'astropy.coordinates.baseframe.frame_transform_graph.transform', 'frame_transform_graph.transform', (['FunctionTransformWithFiniteDifference', 'HeliographicCarrington', 'HeliographicStonyhurst'], {}), '(FunctionTransformWithFiniteDifference,\n HeliographicCarrington, HeliographicStonyhurst)\n', (16843, 16934), False, 'from astropy.coordinates.baseframe import frame_transform_graph\n'), ((18254, 18359), 'astropy.coordinates.baseframe.frame_transform_graph.transform', 'frame_transform_graph.transform', (['FunctionTransformWithFiniteDifference', 'Heliocentric', 'Helioprojective'], {}), '(FunctionTransformWithFiniteDifference,\n Heliocentric, Helioprojective)\n', (18285, 18359), False, 'from astropy.coordinates.baseframe import frame_transform_graph\n'), ((19466, 19571), 'astropy.coordinates.baseframe.frame_transform_graph.transform', 'frame_transform_graph.transform', (['FunctionTransformWithFiniteDifference', 'Helioprojective', 'Heliocentric'], {}), '(FunctionTransformWithFiniteDifference,\n Helioprojective, Heliocentric)\n', (19497, 19571), False, 'from astropy.coordinates.baseframe import frame_transform_graph\n'), ((21245, 21357), 'astropy.coordinates.baseframe.frame_transform_graph.transform', 'frame_transform_graph.transform', (['FunctionTransformWithFiniteDifference', 'Heliocentric', 'HeliographicStonyhurst'], {}), '(FunctionTransformWithFiniteDifference,\n Heliocentric, HeliographicStonyhurst)\n', (21276, 21357), False, 'from astropy.coordinates.baseframe import frame_transform_graph\n'), ((22463, 22575), 'astropy.coordinates.baseframe.frame_transform_graph.transform', 'frame_transform_graph.transform', (['FunctionTransformWithFiniteDifference', 'HeliographicStonyhurst', 'Heliocentric'], {}), '(FunctionTransformWithFiniteDifference,\n HeliographicStonyhurst, Heliocentric)\n', (22494, 22575), False, 'from astropy.coordinates.baseframe import frame_transform_graph\n'), ((23514, 23622), 'astropy.coordinates.baseframe.frame_transform_graph.transform', 'frame_transform_graph.transform', (['FunctionTransformWithFiniteDifference', 'Helioprojective', 'Helioprojective'], {}), '(FunctionTransformWithFiniteDifference,\n Helioprojective, Helioprojective)\n', (23545, 23622), False, 'from astropy.coordinates.baseframe import frame_transform_graph\n'), ((28675, 28779), 'astropy.coordinates.baseframe.frame_transform_graph.transform', 'frame_transform_graph.transform', (['FunctionTransformWithFiniteDifference', 'HCRS', 'HeliographicStonyhurst'], {}), '(FunctionTransformWithFiniteDifference, HCRS,\n HeliographicStonyhurst)\n', (28706, 28779), False, 'from astropy.coordinates.baseframe import frame_transform_graph\n'), ((29586, 29690), 'astropy.coordinates.baseframe.frame_transform_graph.transform', 'frame_transform_graph.transform', (['FunctionTransformWithFiniteDifference', 'HeliographicStonyhurst', 'HCRS'], {}), '(FunctionTransformWithFiniteDifference,\n HeliographicStonyhurst, HCRS)\n', (29617, 29690), False, 'from astropy.coordinates.baseframe import frame_transform_graph\n'), ((30803, 30925), 'astropy.coordinates.baseframe.frame_transform_graph.transform', 'frame_transform_graph.transform', (['FunctionTransformWithFiniteDifference', 'HeliographicStonyhurst', 'HeliographicStonyhurst'], {}), '(FunctionTransformWithFiniteDifference,\n HeliographicStonyhurst, HeliographicStonyhurst)\n', (30834, 30925), False, 'from astropy.coordinates.baseframe import frame_transform_graph\n'), ((31582, 31704), 'astropy.coordinates.baseframe.frame_transform_graph.transform', 'frame_transform_graph.transform', (['FunctionTransformWithFiniteDifference', 'HeliographicCarrington', 'HeliographicCarrington'], {}), '(FunctionTransformWithFiniteDifference,\n HeliographicCarrington, HeliographicCarrington)\n', (31613, 31704), False, 'from astropy.coordinates.baseframe import frame_transform_graph\n'), ((32301, 32403), 'astropy.coordinates.baseframe.frame_transform_graph.transform', 'frame_transform_graph.transform', (['FunctionTransformWithFiniteDifference', 'Heliocentric', 'Heliocentric'], {}), '(FunctionTransformWithFiniteDifference,\n Heliocentric, Heliocentric)\n', (32332, 32403), False, 'from astropy.coordinates.baseframe import frame_transform_graph\n'), ((33757, 33884), 'astropy.coordinates.baseframe.frame_transform_graph.transform', 'frame_transform_graph.transform', (['FunctionTransformWithFiniteDifference', 'HeliocentricMeanEcliptic', 'HeliocentricEarthEcliptic'], {}), '(FunctionTransformWithFiniteDifference,\n HeliocentricMeanEcliptic, HeliocentricEarthEcliptic)\n', (33788, 33884), False, 'from astropy.coordinates.baseframe import frame_transform_graph\n'), ((34746, 34873), 'astropy.coordinates.baseframe.frame_transform_graph.transform', 'frame_transform_graph.transform', (['FunctionTransformWithFiniteDifference', 'HeliocentricEarthEcliptic', 'HeliocentricMeanEcliptic'], {}), '(FunctionTransformWithFiniteDifference,\n HeliocentricEarthEcliptic, HeliocentricMeanEcliptic)\n', (34777, 34873), False, 'from astropy.coordinates.baseframe import frame_transform_graph\n'), ((35710, 35838), 'astropy.coordinates.baseframe.frame_transform_graph.transform', 'frame_transform_graph.transform', (['FunctionTransformWithFiniteDifference', 'HeliocentricEarthEcliptic', 'HeliocentricEarthEcliptic'], {}), '(FunctionTransformWithFiniteDifference,\n HeliocentricEarthEcliptic, HeliocentricEarthEcliptic)\n', (35741, 35838), False, 'from astropy.coordinates.baseframe import frame_transform_graph\n'), ((36293, 36419), 'astropy.coordinates.baseframe.frame_transform_graph.transform', 'frame_transform_graph.transform', (['FunctionTransformWithFiniteDifference', 'HeliocentricEarthEcliptic', 'GeocentricSolarEcliptic'], {}), '(FunctionTransformWithFiniteDifference,\n HeliocentricEarthEcliptic, GeocentricSolarEcliptic)\n', (36324, 36419), False, 'from astropy.coordinates.baseframe import frame_transform_graph\n'), ((37492, 37618), 'astropy.coordinates.baseframe.frame_transform_graph.transform', 'frame_transform_graph.transform', (['FunctionTransformWithFiniteDifference', 'GeocentricSolarEcliptic', 'HeliocentricEarthEcliptic'], {}), '(FunctionTransformWithFiniteDifference,\n GeocentricSolarEcliptic, HeliocentricEarthEcliptic)\n', (37523, 37618), False, 'from astropy.coordinates.baseframe import frame_transform_graph\n'), ((38685, 38809), 'astropy.coordinates.baseframe.frame_transform_graph.transform', 'frame_transform_graph.transform', (['FunctionTransformWithFiniteDifference', 'GeocentricSolarEcliptic', 'GeocentricSolarEcliptic'], {}), '(FunctionTransformWithFiniteDifference,\n GeocentricSolarEcliptic, GeocentricSolarEcliptic)\n', (38716, 38809), False, 'from astropy.coordinates.baseframe import frame_transform_graph\n'), ((40024, 40144), 'astropy.coordinates.baseframe.frame_transform_graph.transform', 'frame_transform_graph.transform', (['FunctionTransformWithFiniteDifference', 'HeliographicStonyhurst', 'HeliocentricInertial'], {}), '(FunctionTransformWithFiniteDifference,\n HeliographicStonyhurst, HeliocentricInertial)\n', (40055, 40144), False, 'from astropy.coordinates.baseframe import frame_transform_graph\n'), ((40883, 41003), 'astropy.coordinates.baseframe.frame_transform_graph.transform', 'frame_transform_graph.transform', (['FunctionTransformWithFiniteDifference', 'HeliocentricInertial', 'HeliographicStonyhurst'], {}), '(FunctionTransformWithFiniteDifference,\n HeliocentricInertial, HeliographicStonyhurst)\n', (40914, 41003), False, 'from astropy.coordinates.baseframe import frame_transform_graph\n'), ((41724, 41842), 'astropy.coordinates.baseframe.frame_transform_graph.transform', 'frame_transform_graph.transform', (['FunctionTransformWithFiniteDifference', 'HeliocentricInertial', 'HeliocentricInertial'], {}), '(FunctionTransformWithFiniteDifference,\n HeliocentricInertial, HeliocentricInertial)\n', (41755, 41842), False, 'from astropy.coordinates.baseframe import frame_transform_graph\n'), ((42473, 42600), 'astropy.coordinates.baseframe.frame_transform_graph.transform', 'frame_transform_graph.transform', (['FunctionTransformWithFiniteDifference', 'HeliocentricMeanEcliptic', 'GeocentricEarthEquatorial'], {}), '(FunctionTransformWithFiniteDifference,\n HeliocentricMeanEcliptic, GeocentricEarthEquatorial)\n', (42504, 42600), False, 'from astropy.coordinates.baseframe import frame_transform_graph\n'), ((43793, 43920), 'astropy.coordinates.baseframe.frame_transform_graph.transform', 'frame_transform_graph.transform', (['FunctionTransformWithFiniteDifference', 'GeocentricEarthEquatorial', 'HeliocentricMeanEcliptic'], {}), '(FunctionTransformWithFiniteDifference,\n GeocentricEarthEquatorial, HeliocentricMeanEcliptic)\n', (43824, 43920), False, 'from astropy.coordinates.baseframe import frame_transform_graph\n'), ((45139, 45267), 'astropy.coordinates.baseframe.frame_transform_graph.transform', 'frame_transform_graph.transform', (['FunctionTransformWithFiniteDifference', 'GeocentricEarthEquatorial', 'GeocentricEarthEquatorial'], {}), '(FunctionTransformWithFiniteDifference,\n GeocentricEarthEquatorial, GeocentricEarthEquatorial)\n', (45170, 45267), False, 'from astropy.coordinates.baseframe import frame_transform_graph\n'), ((18164, 18208), 'numpy.array', 'np.array', (['[[0, 0, -1], [1, 0, 0], [0, 1, 0]]'], {}), '([[0, 0, -1], [1, 0, 0], [0, 1, 0]])\n', (18172, 18208), True, 'import numpy as np\n'), ((20296, 20347), 'astropy.coordinates.representation.CartesianRepresentation', 'CartesianRepresentation', (['(0 * u.m)', '(0 * u.m)', 'distance'], {}), '(0 * u.m, 0 * u.m, distance)\n', (20319, 20347), False, 'from astropy.coordinates.representation import CartesianRepresentation, SphericalRepresentation, UnitSphericalRepresentation\n'), ((20904, 20947), 'numpy.array', 'np.array', (['[[0, 0, 1], [1, 0, 0], [0, 1, 0]]'], {}), '([[0, 0, 1], [1, 0, 0], [0, 1, 0]])\n', (20912, 20947), True, 'import numpy as np\n'), ((21111, 21141), 'astropy.coordinates.matrix_utilities.rotation_matrix', 'rotation_matrix', (['latitude', '"""y"""'], {}), "(latitude, 'y')\n", (21126, 21141), False, 'from astropy.coordinates.matrix_utilities import matrix_product, matrix_transpose, rotation_matrix\n'), ((21159, 21191), 'astropy.coordinates.matrix_utilities.rotation_matrix', 'rotation_matrix', (['(-longitude)', '"""z"""'], {}), "(-longitude, 'z')\n", (21174, 21191), False, 'from astropy.coordinates.matrix_utilities import matrix_product, matrix_transpose, rotation_matrix\n'), ((25563, 25611), 'astropy.coordinates.representation.CartesianRepresentation', 'CartesianRepresentation', (['(A.xyz.T * [1, 1, 0]).T'], {}), '((A.xyz.T * [1, 1, 0]).T)\n', (25586, 25611), False, 'from astropy.coordinates.representation import CartesianRepresentation, SphericalRepresentation, UnitSphericalRepresentation\n'), ((25674, 25706), 'astropy.coordinates.representation.CartesianRepresentation', 'CartesianRepresentation', (['(1)', '(0)', '(0)'], {}), '(1, 0, 0)\n', (25697, 25706), False, 'from astropy.coordinates.representation import CartesianRepresentation, SphericalRepresentation, UnitSphericalRepresentation\n'), ((25906, 25939), 'astropy.coordinates.get_body_barycentric', 'get_body_barycentric', (['"""sun"""', 'time'], {}), "('sun', time)\n", (25926, 25939), False, 'from astropy.coordinates import HCRS, ICRS, BaseCoordinateFrame, ConvertError, HeliocentricMeanEcliptic, get_body_barycentric\n'), ((25961, 25996), 'astropy.coordinates.get_body_barycentric', 'get_body_barycentric', (['"""earth"""', 'time'], {}), "('earth', time)\n", (25981, 25996), False, 'from astropy.coordinates import HCRS, ICRS, BaseCoordinateFrame, ConvertError, HeliocentricMeanEcliptic, get_body_barycentric\n'), ((26738, 26770), 'astropy.coordinates.representation.CartesianRepresentation', 'CartesianRepresentation', (['(0)', '(0)', '(1)'], {}), '(0, 0, 1)\n', (26761, 26770), False, 'from astropy.coordinates.representation import CartesianRepresentation, SphericalRepresentation, UnitSphericalRepresentation\n'), ((27660, 27697), 'astropy.coordinates.get_body_barycentric', 'get_body_barycentric', (['"""sun"""', 'hgs_time'], {}), "('sun', hgs_time)\n", (27680, 27697), False, 'from astropy.coordinates import HCRS, ICRS, BaseCoordinateFrame, ConvertError, HeliocentricMeanEcliptic, get_body_barycentric\n'), ((27719, 27758), 'astropy.coordinates.get_body_barycentric', 'get_body_barycentric', (['"""earth"""', 'hgs_time'], {}), "('earth', hgs_time)\n", (27739, 27758), False, 'from astropy.coordinates import HCRS, ICRS, BaseCoordinateFrame, ConvertError, HeliocentricMeanEcliptic, get_body_barycentric\n'), ((30603, 30635), 'astropy.coordinates.matrix_utilities.matrix_transpose', 'matrix_transpose', (['forward_matrix'], {}), '(forward_matrix)\n', (30619, 30635), False, 'from astropy.coordinates.matrix_utilities import matrix_product, matrix_transpose, rotation_matrix\n'), ((33714, 33753), 'astropy.coordinates.matrix_utilities.matrix_product', 'matrix_product', (['tilt_matrix', 'rot_matrix'], {}), '(tilt_matrix, rot_matrix)\n', (33728, 33753), False, 'from astropy.coordinates.matrix_utilities import matrix_product, matrix_transpose, rotation_matrix\n'), ((34358, 34434), 'astropy.coordinates.HeliocentricMeanEcliptic', 'HeliocentricMeanEcliptic', ([], {'obstime': 'heeframe.obstime', 'equinox': 'heeframe.obstime'}), '(obstime=heeframe.obstime, equinox=heeframe.obstime)\n', (34382, 34434), False, 'from astropy.coordinates import HCRS, ICRS, BaseCoordinateFrame, ConvertError, HeliocentricMeanEcliptic, get_body_barycentric\n'), ((35257, 35333), 'astropy.coordinates.HeliocentricMeanEcliptic', 'HeliocentricMeanEcliptic', ([], {'obstime': 'heecoord.obstime', 'equinox': 'heecoord.obstime'}), '(obstime=heecoord.obstime, equinox=heecoord.obstime)\n', (35281, 35333), False, 'from astropy.coordinates import HCRS, ICRS, BaseCoordinateFrame, ConvertError, HeliocentricMeanEcliptic, get_body_barycentric\n'), ((37355, 37420), 'astropy.coordinates.representation.CartesianRepresentation', 'CartesianRepresentation', (['(earth_object_int.xyz.T * [-1, -1, 1]).T'], {}), '((earth_object_int.xyz.T * [-1, -1, 1]).T)\n', (37378, 37420), False, 'from astropy.coordinates.representation import CartesianRepresentation, SphericalRepresentation, UnitSphericalRepresentation\n'), ((38550, 38613), 'astropy.coordinates.representation.CartesianRepresentation', 'CartesianRepresentation', (['(sun_object_int.xyz.T * [-1, -1, 1]).T'], {}), '((sun_object_int.xyz.T * [-1, -1, 1]).T)\n', (38573, 38613), False, 'from astropy.coordinates.representation import CartesianRepresentation, SphericalRepresentation, UnitSphericalRepresentation\n'), ((39575, 39640), 'astropy.coordinates.HeliocentricMeanEcliptic', 'HeliocentricMeanEcliptic', (['z_axis'], {'obstime': 'obstime', 'equinox': '_J2000'}), '(z_axis, obstime=obstime, equinox=_J2000)\n', (39599, 39640), False, 'from astropy.coordinates import HCRS, ICRS, BaseCoordinateFrame, ConvertError, HeliocentricMeanEcliptic, get_body_barycentric\n'), ((39948, 39981), 'astropy.coordinates.matrix_utilities.rotation_matrix', 'rotation_matrix', (['(-90 * u.deg)', '"""z"""'], {}), "(-90 * u.deg, 'z')\n", (39963, 39981), False, 'from astropy.coordinates.matrix_utilities import matrix_product, matrix_transpose, rotation_matrix\n'), ((43065, 43141), 'astropy.coordinates.HeliocentricMeanEcliptic', 'HeliocentricMeanEcliptic', ([], {'obstime': 'geiframe.obstime', 'equinox': 'geiframe.equinox'}), '(obstime=geiframe.obstime, equinox=geiframe.equinox)\n', (43089, 43141), False, 'from astropy.coordinates import HCRS, ICRS, BaseCoordinateFrame, ConvertError, HeliocentricMeanEcliptic, get_body_barycentric\n'), ((44371, 44447), 'astropy.coordinates.HeliocentricMeanEcliptic', 'HeliocentricMeanEcliptic', ([], {'obstime': 'geicoord.obstime', 'equinox': 'geicoord.equinox'}), '(obstime=geicoord.obstime, equinox=geicoord.equinox)\n', (44395, 44447), False, 'from astropy.coordinates import HCRS, ICRS, BaseCoordinateFrame, ConvertError, HeliocentricMeanEcliptic, get_body_barycentric\n'), ((46429, 46460), 'copy.deepcopy', 'deepcopy', (['frame_transform_graph'], {}), '(frame_transform_graph)\n', (46437, 46460), False, 'from copy import deepcopy\n'), ((47191, 47229), 'astropy.coordinates.builtin_frames.make_transform_graph_docs', 'make_transform_graph_docs', (['small_graph'], {}), '(small_graph)\n', (47216, 47229), False, 'from astropy.coordinates.builtin_frames import make_transform_graph_docs\n'), ((9788, 9799), 'functools.wraps', 'wraps', (['func'], {}), '(func)\n', (9793, 9799), False, 'from functools import wraps\n'), ((11552, 11730), 'astropy.coordinates.ConvertError', 'ConvertError', (['f"""The source observer is set to None, but the transformation requires the source observer to be specified, as the destination observer is set to {obs_2}."""'], {}), "(\n f'The source observer is set to None, but the transformation requires the source observer to be specified, as the destination observer is set to {obs_2}.'\n )\n", (11564, 11730), False, 'from astropy.coordinates import HCRS, ICRS, BaseCoordinateFrame, ConvertError, HeliocentricMeanEcliptic, get_body_barycentric\n'), ((11817, 12000), 'astropy.coordinates.ConvertError', 'ConvertError', (['f"""The destination observer is set to None, but the transformation requires the destination observer to be specified, as the source observer is set to {obs_1}."""'], {}), "(\n f'The destination observer is set to None, but the transformation requires the destination observer to be specified, as the source observer is set to {obs_1}.'\n )\n", (11829, 12000), False, 'from astropy.coordinates import HCRS, ICRS, BaseCoordinateFrame, ConvertError, HeliocentricMeanEcliptic, get_body_barycentric\n'), ((12149, 12269), 'astropy.coordinates.ConvertError', 'ConvertError', (['"""The source observer needs to have `obstime` set because the destination observer is different."""'], {}), "(\n 'The source observer needs to have `obstime` set because the destination observer is different.'\n )\n", (12161, 12269), False, 'from astropy.coordinates import HCRS, ICRS, BaseCoordinateFrame, ConvertError, HeliocentricMeanEcliptic, get_body_barycentric\n'), ((12388, 12508), 'astropy.coordinates.ConvertError', 'ConvertError', (['"""The destination observer needs to have `obstime` set because the source observer is different."""'], {}), "(\n 'The destination observer needs to have `obstime` set because the source observer is different.'\n )\n", (12400, 12508), False, 'from astropy.coordinates import HCRS, ICRS, BaseCoordinateFrame, ConvertError, HeliocentricMeanEcliptic, get_body_barycentric\n'), ((12889, 13019), 'astropy.coordinates.ConvertError', 'ConvertError', (['f"""This transformation cannot be performed because the {frame.__class__.__name__} frame has observer=None."""'], {}), "(\n f'This transformation cannot be performed because the {frame.__class__.__name__} frame has observer=None.'\n )\n", (12901, 13019), False, 'from astropy.coordinates import HCRS, ICRS, BaseCoordinateFrame, ConvertError, HeliocentricMeanEcliptic, get_body_barycentric\n'), ((13960, 13992), 'numpy.all', 'np.all', (['(time_1.tai == time_2.tai)'], {}), '(time_1.tai == time_2.tai)\n', (13966, 13992), True, 'import numpy as np\n'), ((15234, 15341), 'astropy.coordinates.ConvertError', 'ConvertError', (['"""To perform this transformation, the coordinate frame needs a specified `obstime`."""'], {}), "(\n 'To perform this transformation, the coordinate frame needs a specified `obstime`.'\n )\n", (15246, 15341), False, 'from astropy.coordinates import HCRS, ICRS, BaseCoordinateFrame, ConvertError, HeliocentricMeanEcliptic, get_body_barycentric\n'), ((19125, 19176), 'astropy.coordinates.representation.CartesianRepresentation', 'CartesianRepresentation', (['(0 * u.m)', '(0 * u.m)', 'distance'], {}), '(0 * u.m, 0 * u.m, distance)\n', (19148, 19176), False, 'from astropy.coordinates.representation import CartesianRepresentation, SphericalRepresentation, UnitSphericalRepresentation\n'), ((25159, 25180), 'numpy.stack', 'np.stack', (['matrix_list'], {}), '(matrix_list)\n', (25167, 25180), True, 'import numpy as np\n'), ((26401, 26425), 'sunpy.sun.constants.get', 'constants.get', (['"""alpha_0"""'], {}), "('alpha_0')\n", (26414, 26425), False, 'from sunpy.sun import constants\n'), ((26484, 26508), 'sunpy.sun.constants.get', 'constants.get', (['"""delta_0"""'], {}), "('delta_0')\n", (26497, 26508), False, 'from sunpy.sun import constants\n'), ((28363, 28392), 'numpy.any', 'np.any', (['(hcrs_time != hgs_time)'], {}), '(hcrs_time != hgs_time)\n', (28369, 28392), True, 'import numpy as np\n'), ((28421, 28459), 'astropy.coordinates.get_body_barycentric', 'get_body_barycentric', (['"""sun"""', 'hcrs_time'], {}), "('sun', hcrs_time)\n", (28441, 28459), False, 'from astropy.coordinates import HCRS, ICRS, BaseCoordinateFrame, ConvertError, HeliocentricMeanEcliptic, get_body_barycentric\n'), ((29266, 29385), 'astropy.coordinates.ConvertError', 'ConvertError', (['"""To perform this transformation, the HeliographicStonyhurst frame needs a specified `obstime`."""'], {}), "(\n 'To perform this transformation, the HeliographicStonyhurst frame needs a specified `obstime`.'\n )\n", (29278, 29385), False, 'from astropy.coordinates import HCRS, ICRS, BaseCoordinateFrame, ConvertError, HeliocentricMeanEcliptic, get_body_barycentric\n'), ((30171, 30290), 'astropy.coordinates.ConvertError', 'ConvertError', (['"""To perform this transformation, the HeliographicStonyhurst frame needs a specified `obstime`."""'], {}), "(\n 'To perform this transformation, the HeliographicStonyhurst frame needs a specified `obstime`.'\n )\n", (30183, 30290), False, 'from astropy.coordinates import HCRS, ICRS, BaseCoordinateFrame, ConvertError, HeliocentricMeanEcliptic, get_body_barycentric\n'), ((33668, 33700), 'astropy.coordinates.representation.CartesianRepresentation', 'CartesianRepresentation', (['(1)', '(0)', '(0)'], {}), '(1, 0, 0)\n', (33691, 33700), False, 'from astropy.coordinates.representation import CartesianRepresentation, SphericalRepresentation, UnitSphericalRepresentation\n'), ((34123, 34230), 'astropy.coordinates.ConvertError', 'ConvertError', (['"""To perform this transformation, the coordinate frame needs a specified `obstime`."""'], {}), "(\n 'To perform this transformation, the coordinate frame needs a specified `obstime`.'\n )\n", (34135, 34230), False, 'from astropy.coordinates import HCRS, ICRS, BaseCoordinateFrame, ConvertError, HeliocentricMeanEcliptic, get_body_barycentric\n'), ((35112, 35219), 'astropy.coordinates.ConvertError', 'ConvertError', (['"""To perform this transformation, the coordinate frame needs a specified `obstime`."""'], {}), "(\n 'To perform this transformation, the coordinate frame needs a specified `obstime`.'\n )\n", (35124, 35219), False, 'from astropy.coordinates import HCRS, ICRS, BaseCoordinateFrame, ConvertError, HeliocentricMeanEcliptic, get_body_barycentric\n'), ((36777, 36884), 'astropy.coordinates.ConvertError', 'ConvertError', (['"""To perform this transformation, the coordinate frame needs a specified `obstime`."""'], {}), "(\n 'To perform this transformation, the coordinate frame needs a specified `obstime`.'\n )\n", (36789, 36884), False, 'from astropy.coordinates import HCRS, ICRS, BaseCoordinateFrame, ConvertError, HeliocentricMeanEcliptic, get_body_barycentric\n'), ((37105, 37137), 'astropy.coordinates.representation.CartesianRepresentation', 'CartesianRepresentation', (['(1)', '(0)', '(0)'], {}), '(1, 0, 0)\n', (37128, 37137), False, 'from astropy.coordinates.representation import CartesianRepresentation, SphericalRepresentation, UnitSphericalRepresentation\n'), ((37976, 38083), 'astropy.coordinates.ConvertError', 'ConvertError', (['"""To perform this transformation, the coordinate frame needs a specified `obstime`."""'], {}), "(\n 'To perform this transformation, the coordinate frame needs a specified `obstime`.'\n )\n", (37988, 38083), False, 'from astropy.coordinates import HCRS, ICRS, BaseCoordinateFrame, ConvertError, HeliocentricMeanEcliptic, get_body_barycentric\n'), ((38302, 38334), 'astropy.coordinates.representation.CartesianRepresentation', 'CartesianRepresentation', (['(1)', '(0)', '(0)'], {}), '(1, 0, 0)\n', (38325, 38334), False, 'from astropy.coordinates.representation import CartesianRepresentation, SphericalRepresentation, UnitSphericalRepresentation\n'), ((39398, 39430), 'astropy.coordinates.representation.CartesianRepresentation', 'CartesianRepresentation', (['(0)', '(0)', '(1)'], {}), '(0, 0, 1)\n', (39421, 39430), False, 'from astropy.coordinates.representation import CartesianRepresentation, SphericalRepresentation, UnitSphericalRepresentation\n'), ((40530, 40637), 'astropy.coordinates.ConvertError', 'ConvertError', (['"""To perform this transformation, the coordinate frame needs a specified `obstime`."""'], {}), "(\n 'To perform this transformation, the coordinate frame needs a specified `obstime`.'\n )\n", (40542, 40637), False, 'from astropy.coordinates import HCRS, ICRS, BaseCoordinateFrame, ConvertError, HeliocentricMeanEcliptic, get_body_barycentric\n'), ((41353, 41460), 'astropy.coordinates.ConvertError', 'ConvertError', (['"""To perform this transformation, the coordinate frame needs a specified `obstime`."""'], {}), "(\n 'To perform this transformation, the coordinate frame needs a specified `obstime`.'\n )\n", (41365, 41460), False, 'from astropy.coordinates import HCRS, ICRS, BaseCoordinateFrame, ConvertError, HeliocentricMeanEcliptic, get_body_barycentric\n'), ((42839, 42946), 'astropy.coordinates.ConvertError', 'ConvertError', (['"""To perform this transformation, the coordinate frame needs a specified `obstime`."""'], {}), "(\n 'To perform this transformation, the coordinate frame needs a specified `obstime`.'\n )\n", (42851, 42946), False, 'from astropy.coordinates import HCRS, ICRS, BaseCoordinateFrame, ConvertError, HeliocentricMeanEcliptic, get_body_barycentric\n'), ((44159, 44266), 'astropy.coordinates.ConvertError', 'ConvertError', (['"""To perform this transformation, the coordinate frame needs a specified `obstime`."""'], {}), "(\n 'To perform this transformation, the coordinate frame needs a specified `obstime`.'\n )\n", (44171, 44266), False, 'from astropy.coordinates import HCRS, ICRS, BaseCoordinateFrame, ConvertError, HeliocentricMeanEcliptic, get_body_barycentric\n'), ((1805, 1828), 'sunpy.sun.constants.get', 'constants.get', (['"""radius"""'], {}), "('radius')\n", (1818, 1828), False, 'from sunpy.sun import constants\n'), ((5488, 5565), 'sunpy.log.debug', 'log.debug', (['"""Ignoring the motion of the center of the Sun for transformations"""'], {}), "('Ignoring the motion of the center of the Sun for transformations')\n", (5497, 5565), False, 'from sunpy import log\n'), ((5677, 5764), 'sunpy.log.debug', 'log.debug', (['"""Stop ignoring the motion of the center of the Sun for transformations"""'], {}), "(\n 'Stop ignoring the motion of the center of the Sun for transformations')\n", (5686, 5764), False, 'from sunpy import log\n'), ((9012, 9130), 'sunpy.log.debug', 'log.debug', (['f"""Enabling automatic solar differential rotation (\'{rotation_model}\') for any changes in obstime"""'], {}), '(\n f"Enabling automatic solar differential rotation (\'{rotation_model}\') for any changes in obstime"\n )\n', (9021, 9130), False, 'from sunpy import log\n'), ((9287, 9384), 'sunpy.log.debug', 'log.debug', (['"""Disabling automatic solar differential rotation for any changes in obstime"""'], {}), "(\n 'Disabling automatic solar differential rotation for any changes in obstime'\n )\n", (9296, 9384), False, 'from sunpy import log\n'), ((9988, 10011), 'sunpy.log.getEffectiveLevel', 'log.getEffectiveLevel', ([], {}), '()\n', (10009, 10011), False, 'from sunpy import log\n'), ((10521, 10559), 'sunpy.log.debug', 'log.debug', (['f"""{indention}{description}"""'], {}), "(f'{indention}{description}')\n", (10530, 10559), False, 'from sunpy import log\n'), ((10576, 10619), 'sunpy.log.debug', 'log.debug', (['f"""{indention}├─From: {from_str}"""'], {}), "(f'{indention}├─From: {from_str}')\n", (10585, 10619), False, 'from sunpy import log\n'), ((10646, 10687), 'sunpy.log.debug', 'log.debug', (['f"""{indention}├─To : {to_str}"""'], {}), "(f'{indention}├─To : {to_str}')\n", (10655, 10687), False, 'from sunpy import log\n'), ((11200, 11242), 'sunpy.log.debug', 'log.debug', (['f"""{indention}└─Out : {out_str}"""'], {}), "(f'{indention}└─Out : {out_str}')\n", (11209, 11242), False, 'from sunpy import log\n'), ((13137, 13320), 'astropy.coordinates.ConvertError', 'ConvertError', (['f"""This transformation cannot be performed because the {frame.__class__.__name__} frame needs a specified obstime to fully resolve observer=\'{frame.observer}\'."""'], {}), '(\n f"This transformation cannot be performed because the {frame.__class__.__name__} frame needs a specified obstime to fully resolve observer=\'{frame.observer}\'."\n )\n', (13149, 13320), False, 'from astropy.coordinates import HCRS, ICRS, BaseCoordinateFrame, ConvertError, HeliocentricMeanEcliptic, get_body_barycentric\n'), ((34473, 34503), 'astropy.coordinates.HCRS', 'HCRS', ([], {'obstime': 'hmecoord.obstime'}), '(obstime=hmecoord.obstime)\n', (34477, 34503), False, 'from astropy.coordinates import HCRS, ICRS, BaseCoordinateFrame, ConvertError, HeliocentricMeanEcliptic, get_body_barycentric\n'), ((35651, 35682), 'astropy.coordinates.HCRS', 'HCRS', ([], {'obstime': 'int_coord.obstime'}), '(obstime=int_coord.obstime)\n', (35655, 35682), False, 'from astropy.coordinates import HCRS, ICRS, BaseCoordinateFrame, ConvertError, HeliocentricMeanEcliptic, get_body_barycentric\n'), ((43180, 43211), 'astropy.coordinates.HCRS', 'HCRS', ([], {'obstime': 'int_frame.obstime'}), '(obstime=int_frame.obstime)\n', (43184, 43211), False, 'from astropy.coordinates import HCRS, ICRS, BaseCoordinateFrame, ConvertError, HeliocentricMeanEcliptic, get_body_barycentric\n'), ((45080, 45111), 'astropy.coordinates.HCRS', 'HCRS', ([], {'obstime': 'int_coord.obstime'}), '(obstime=int_coord.obstime)\n', (45084, 45111), False, 'from astropy.coordinates import HCRS, ICRS, BaseCoordinateFrame, ConvertError, HeliocentricMeanEcliptic, get_body_barycentric\n'), ((12556, 12588), 'astropy.units.allclose', 'u.allclose', (['obs_1.lat', 'obs_2.lat'], {}), '(obs_1.lat, obs_2.lat)\n', (12566, 12588), True, 'import astropy.units as u\n'), ((12619, 12651), 'astropy.units.allclose', 'u.allclose', (['obs_1.lon', 'obs_2.lon'], {}), '(obs_1.lon, obs_2.lon)\n', (12629, 12651), True, 'import astropy.units as u\n'), ((12682, 12720), 'astropy.units.allclose', 'u.allclose', (['obs_1.radius', 'obs_2.radius'], {}), '(obs_1.radius, obs_2.radius)\n', (12692, 12720), True, 'import astropy.units as u\n'), ((13458, 13599), 'astropy.coordinates.ConvertError', 'ConvertError', (['f"""The {frame.__class__.__name__} frame has observer=\'self\' but this is valid for only HeliographicCarrington frames."""'], {}), '(\n f"The {frame.__class__.__name__} frame has observer=\'self\' but this is valid for only HeliographicCarrington frames."\n )\n', (13470, 13599), False, 'from astropy.coordinates import HCRS, ICRS, BaseCoordinateFrame, ConvertError, HeliocentricMeanEcliptic, get_body_barycentric\n'), ((42433, 42453), 'astropy.coordinates.builtin_frames.utils.get_jd12', 'get_jd12', (['time', '"""tt"""'], {}), "(time, 'tt')\n", (42441, 42453), False, 'from astropy.coordinates.builtin_frames.utils import get_jd12\n'), ((45671, 45701), 'astropy.coordinates.HCRS', 'HCRS', ([], {'obstime': 'from_coo.obstime'}), '(obstime=from_coo.obstime)\n', (45675, 45701), False, 'from astropy.coordinates import HCRS, ICRS, BaseCoordinateFrame, ConvertError, HeliocentricMeanEcliptic, get_body_barycentric\n'), ((31524, 31554), 'astropy.coordinates.HCRS', 'HCRS', ([], {'obstime': 'to_frame.obstime'}), '(obstime=to_frame.obstime)\n', (31528, 31554), False, 'from astropy.coordinates import HCRS, ICRS, BaseCoordinateFrame, ConvertError, HeliocentricMeanEcliptic, get_body_barycentric\n'), ((36235, 36265), 'astropy.coordinates.HCRS', 'HCRS', ([], {'obstime': 'from_coo.obstime'}), '(obstime=from_coo.obstime)\n', (36239, 36265), False, 'from astropy.coordinates import HCRS, ICRS, BaseCoordinateFrame, ConvertError, HeliocentricMeanEcliptic, get_body_barycentric\n')]
from keras.callbacks import Callback import keras.backend as K import numpy as np class SGDRScheduler(Callback): '''Cosine annealing learning rate scheduler with periodic restarts. # Usage ```python schedule = SGDRScheduler(min_lr=1e-5, max_lr=1e-2, steps_per_epoch=np.ceil(epoch_size/batch_size), lr_decay=0.9, cycle_length=5, mult_factor=1.5) model.fit(X_train, Y_train, epochs=100, callbacks=[schedule]) ``` # Arguments min_lr: The lower bound of the learning rate range for the experiment. max_lr: The upper bound of the learning rate range for the experiment. steps_per_epoch: Number of mini-batches in the dataset. Calculated as `np.ceil(epoch_size/batch_size)`. lr_decay: Reduce the max_lr after the completion of each cycle. Ex. To reduce the max_lr by 20% after each cycle, set this value to 0.8. cycle_length: Initial number of epochs in a cycle. mult_factor: Scale epochs_to_restart after each full cycle completion. # References Blog post: jeremyjordan.me/nn-learning-rate Original paper: http://arxiv.org/abs/1608.03983 ''' def __init__(self, min_lr, max_lr, steps_per_epoch, lr_decay=1, cycle_length=10, mult_factor=2): self.min_lr = min_lr self.max_lr = max_lr self.lr_decay = lr_decay self.batch_since_restart = 0 self.next_restart = cycle_length self.steps_per_epoch = steps_per_epoch self.cycle_length = cycle_length self.mult_factor = mult_factor self.history = {} def clr(self): '''Calculate the learning rate.''' fraction_to_restart = self.batch_since_restart / (self.steps_per_epoch * self.cycle_length) lr = self.min_lr + 0.5 * (self.max_lr - self.min_lr) * (1 + np.cos(fraction_to_restart * np.pi)) return lr def on_train_begin(self, logs={}): '''Initialize the learning rate to the minimum value at the start of training.''' logs = logs or {} K.set_value(self.model.optimizer.lr, self.max_lr) def on_batch_end(self, batch, logs={}): '''Record previous batch statistics and update the learning rate.''' logs = logs or {} self.history.setdefault('lr', []).append(K.get_value(self.model.optimizer.lr)) for k, v in logs.items(): self.history.setdefault(k, []).append(v) self.batch_since_restart += 1 K.set_value(self.model.optimizer.lr, self.clr()) def on_epoch_end(self, epoch, logs={}): if callable(self.lr_decay): decay = self.lr_decay(epoch) else: decay = self.lr_decay '''Check for end of current cycle, apply restarts when necessary.''' if epoch + 1 == self.next_restart: self.batch_since_restart = 0 self.cycle_length = np.ceil(self.cycle_length * self.mult_factor) self.next_restart += self.cycle_length self.max_lr *= decay print('SGDRScheduler :: set max lr in ', self.max_lr) # def on_train_end(self, logs={}): # '''Set weights to the values from the end of the most recent cycle for best performance.''' # self.model.set_weights(self.best_weights)
[ "keras.backend.set_value", "keras.backend.get_value", "numpy.ceil", "numpy.cos" ]
[((2345, 2394), 'keras.backend.set_value', 'K.set_value', (['self.model.optimizer.lr', 'self.max_lr'], {}), '(self.model.optimizer.lr, self.max_lr)\n', (2356, 2394), True, 'import keras.backend as K\n'), ((2592, 2628), 'keras.backend.get_value', 'K.get_value', (['self.model.optimizer.lr'], {}), '(self.model.optimizer.lr)\n', (2603, 2628), True, 'import keras.backend as K\n'), ((3176, 3221), 'numpy.ceil', 'np.ceil', (['(self.cycle_length * self.mult_factor)'], {}), '(self.cycle_length * self.mult_factor)\n', (3183, 3221), True, 'import numpy as np\n'), ((2126, 2161), 'numpy.cos', 'np.cos', (['(fraction_to_restart * np.pi)'], {}), '(fraction_to_restart * np.pi)\n', (2132, 2161), True, 'import numpy as np\n')]
import cv2 import numpy as np from PIL import Image import os path = "./photo/myobject" filelist = os.listdir(path) total_num = len(filelist) n = 6 for i in range(1,total_num): n = 6 - len(str(i)) filepath = "./photo/myobject/"+str(0)*n + str(i)+".jpg" imgsize = Image.open(filepath)#開啟圖片 print('開啟檔案:' + filepath) for a in range(1,101): for b in range(1,101): print('round %s_%s_%s' % (str(i),str(a),str(b))) img = cv2.imread(filepath) mask = np.zeros(img.shape[:2],np.uint8) bgdModel = np.zeros((1,65),np.float64) fgdModel = np.zeros((1,65),np.float64) rect = (a,b,imgsize.size[0],imgsize.size[1]) cv2.grabCut(img,mask,rect,bgdModel,fgdModel,5,cv2.GC_INIT_WITH_RECT) mask2 = np.where((mask==2)|(mask==0),0,1).astype('uint8') img = img*mask2[:,:,np.newaxis] print('輸出檔案:%s_%s_%s.jpg' %(str(0)*n + str(i),str(a),str(b))) cv2.imwrite('./save/%s_%s_%s.jpg' %(str(0)*n + str(i),str(a),str(b)),img)
[ "cv2.grabCut", "numpy.zeros", "PIL.Image.open", "cv2.imread", "numpy.where", "os.listdir" ]
[((101, 117), 'os.listdir', 'os.listdir', (['path'], {}), '(path)\n', (111, 117), False, 'import os\n'), ((278, 298), 'PIL.Image.open', 'Image.open', (['filepath'], {}), '(filepath)\n', (288, 298), False, 'from PIL import Image\n'), ((471, 491), 'cv2.imread', 'cv2.imread', (['filepath'], {}), '(filepath)\n', (481, 491), False, 'import cv2\n'), ((511, 544), 'numpy.zeros', 'np.zeros', (['img.shape[:2]', 'np.uint8'], {}), '(img.shape[:2], np.uint8)\n', (519, 544), True, 'import numpy as np\n'), ((567, 596), 'numpy.zeros', 'np.zeros', (['(1, 65)', 'np.float64'], {}), '((1, 65), np.float64)\n', (575, 596), True, 'import numpy as np\n'), ((618, 647), 'numpy.zeros', 'np.zeros', (['(1, 65)', 'np.float64'], {}), '((1, 65), np.float64)\n', (626, 647), True, 'import numpy as np\n'), ((715, 789), 'cv2.grabCut', 'cv2.grabCut', (['img', 'mask', 'rect', 'bgdModel', 'fgdModel', '(5)', 'cv2.GC_INIT_WITH_RECT'], {}), '(img, mask, rect, bgdModel, fgdModel, 5, cv2.GC_INIT_WITH_RECT)\n', (726, 789), False, 'import cv2\n'), ((804, 845), 'numpy.where', 'np.where', (['((mask == 2) | (mask == 0))', '(0)', '(1)'], {}), '((mask == 2) | (mask == 0), 0, 1)\n', (812, 845), True, 'import numpy as np\n')]
""" Math Utilities """ import collections import numpy as np from nnlib.utils.functional import not_none __all__ = ['FNVHash', 'ceil_div', 'normalize', 'pow', 'prod', 'sum', 'random_subset', 'softmax'] class FNVHash: hval = 0x811c9dc5 fnv_32_prime = 0x01000193 uint32_max = 2 ** 32 @staticmethod def hash(s): h = FNVHash.hval for ch in s: h = ((h ^ ord(ch)) * FNVHash.fnv_32_prime) % FNVHash.uint32_max return h def ceil_div(a, b): r""" Integer division that rounds up. """ return (a + b - 1) // b def normalize(xs): r""" NumPy-based normalization. """ arr = np.asarray(xs, dtype=np.float) return arr / np.sum(arr) # noinspection PyShadowingBuiltins def pow(a, b, fast=True): r""" Compute ``a ** b`` (``a`` raised to ``b``-th power). ``b`` has to be a positive integer. **Note:** It is not required for ``type(a)`` to have an identity element. :param a: The base. Can be any variable that supports multiplication ``*``. :type b: int :param b: The exponent. :param fast: Whether to use fast exponent algorithm (that runs in logarithmic time). """ if type(b) is not int: raise TypeError("Exponent should be a positive integer.") if b < 1: raise ValueError("Exponent should be a positive integer.") result = a b -= 1 if fast: # O(log b) while b > 0: if b % 2 == 1: result *= a b //= 2 a *= a else: # O(b) while b > 0: result *= a b -= 1 return result def _reduce(fn, *args): r""" Recursively reduce over sequence of values, where values can be sequences. None values are ignored. :type fn: (Any, Any) -> Any :param fn: Function taking (accumulator, element) and returning new accumulator. """ result = None for x in filter(not_none, args): val = _reduce(fn, *x) if isinstance(x, collections.Iterable) else x if result is None: result = val else: result = fn(result, val) return result def _ireduce(fn, *args): r""" In-place version of ``_reduce``. :type fn: (Any, Any) -> None :param fn: Function taking (accumulator, element) and performing in-place operation on accumulator. """ return _reduce(lambda x, y: [fn(x, y), x][-1], *args) def prod(*args): r""" Compute product of arguments, ignoring ``None`` values. Arguments could contain lists, or list of lists, etc. **Note:** It is not required for list elements to have an identity element. """ return _reduce(lambda x, y: x.__rmul__(y), *args) # noinspection PyShadowingBuiltins def sum(*args): r""" Compute sum of arguments, ignoring ``None`` values. Arguments could contain lists, or list of lists, etc. **Note:** It is not required for list elements to have an identity element. """ return _reduce(lambda x, y: x.__add__(y), *args) def random_subset(total, size): r""" Select a random subset of size ``size`` from the larger set of size ``total``. This method is implemented to replace :func:`numpy.random.choice` with :attr:`replacement=False`. :param total: Size of the original set. :param size: Size of the randomly selected subset. :return: The 0-based indices of the subset elements. """ if isinstance(size, float): size = int(total * size) # Don't trust `np.random.choice` without replacement! It's using brute force! if size * np.log(size) > total: return np.random.permutation(np.arange(total))[:size] else: choices = set() while len(choices) < size: choices.add(np.random.choice(total, size - len(choices)).tolist()) return choices def softmax(xs, t=1): r""" NumPy-based softmax with temperature. Returns a sequence with each element calculated as: .. math:: s_i = \frac{ \exp(x_i / t) }{ \sum_x \exp(x / t) } :param xs: The sequence of weights. :param t: Temperature. Higher temperatures give a more uniform distribution, while lower temperatures give a more peaked distribution. """ arr = np.exp(np.asarray(xs) / t) return arr / np.sum(arr)
[ "numpy.arange", "numpy.asarray", "numpy.sum", "numpy.log" ]
[((657, 687), 'numpy.asarray', 'np.asarray', (['xs'], {'dtype': 'np.float'}), '(xs, dtype=np.float)\n', (667, 687), True, 'import numpy as np\n'), ((705, 716), 'numpy.sum', 'np.sum', (['arr'], {}), '(arr)\n', (711, 716), True, 'import numpy as np\n'), ((4282, 4293), 'numpy.sum', 'np.sum', (['arr'], {}), '(arr)\n', (4288, 4293), True, 'import numpy as np\n'), ((3576, 3588), 'numpy.log', 'np.log', (['size'], {}), '(size)\n', (3582, 3588), True, 'import numpy as np\n'), ((4245, 4259), 'numpy.asarray', 'np.asarray', (['xs'], {}), '(xs)\n', (4255, 4259), True, 'import numpy as np\n'), ((3635, 3651), 'numpy.arange', 'np.arange', (['total'], {}), '(total)\n', (3644, 3651), True, 'import numpy as np\n')]
"""Beat-synchronous chroma feature calculation with LabROSA. <NAME> <EMAIL> 2016-04-08 """ from __future__ import print_function import cPickle as pickle import getopt import os import sys import time import numpy as np import scipy import sklearn.mixture import librosa def read_iso_label_file(filename): """Read in an isophonics-format chord label file.""" times = [] labels = [] with open(filename, 'r') as f: for line in f: fields = line.strip().split(' ') start_secs = float(fields[0]) end_secs = float(fields[1]) times.append((start_secs, end_secs)) labels.append(fields[2]) return np.array(times), labels def calculate_overlap_durations(ranges_a, ranges_b): """Calculate duration of overlaps between all (start, end) intervals.""" max_starts_matrix = np.maximum.outer(ranges_a[:, 0], ranges_b[:, 0]) min_ends_matrix = np.minimum.outer(ranges_a[:, 1], ranges_b[:, 1]) overlap_durations = np.maximum(0, min_ends_matrix - max_starts_matrix) return overlap_durations def sample_label_sequence(sample_ranges, label_ranges, labels): """Find the most-overlapping label for a list of (start, end) intervals.""" overlaps = calculate_overlap_durations(sample_ranges, label_ranges) best_label = np.argmax(overlaps, axis=1) return [labels[i] for i in best_label] def chord_name_to_index(labels): """Convert chord name strings into model indices (0..25).""" indices = np.zeros(len(labels), dtype=int) root_degrees = {'C': 0, 'D': 2, 'E': 4, 'F':5, 'G': 7, 'A':9, 'B': 11} for label_index, label in enumerate(labels): if label == 'N' or label == 'X': # Leave at zero. continue root_degree = root_degrees[label[0].upper()] minor = False if len(label) > 1: if label[1] == '#': root_degree = (root_degree + 1) % 12 if label[1] == 'b': root_degree = (root_degree - 1) % 12 if ':' in label: modifier = label[label.index(':') + 1:] if modifier[:3] == 'min': minor = True indices[label_index] = 1 + root_degree + 12 * minor return indices def calculate_beat_sync_chroma_of_file(wavfilename): """Read the audio, calculate beat-sync chroma.""" y, sr = librosa.load(wavfilename, sr=None) hop_length = 128 # 8 ms at 16 kHz tempo, beat_frames = librosa.beat.beat_track(y=y, sr=sr, hop_length=hop_length, start_bpm=240) # Append a final beat time one beat beyond the end. extended_beat_frames = np.hstack([beat_frames, 2*beat_frames[-1] - beat_frames[-2]]) frame_chroma = librosa.feature.chroma_cqt(y=y, sr=sr, hop_length=hop_length) # Drop the first beat_chroma which is stuff before the first beat, # and the final beat_chroma which is everything after the last beat time. beat_chroma = librosa.feature.sync(frame_chroma, extended_beat_frames).transpose() # Drop first row if the beat_frames start after the beginning. if beat_frames[0] > 0: beat_chroma = beat_chroma[1:] # Keep only as many frames as beat times. beat_chroma = beat_chroma[:len(beat_frames)] assert beat_chroma.shape[0] == beat_frames.shape[0] frame_rate = sr / float(hop_length) beat_times = beat_frames / frame_rate return beat_times, beat_chroma def calculate_label_indices(labfilename, beat_times): """Read a label file, sample at beat times, return 0..25 indices.""" # MP3s encoded with lame have a 68 ms delay LAME_DELAY_SECONDS = 0.068 extended_beat_times = (np.hstack([beat_times, 2*beat_times[-1] - beat_times[-2]]) - LAME_DELAY_SECONDS) beat_ranges = np.hstack([extended_beat_times[:-1, np.newaxis], extended_beat_times[1:, np.newaxis]]) label_time_ranges, labels = read_iso_label_file(labfilename) beat_labels = sample_label_sequence(beat_ranges, label_time_ranges, labels) label_indices = chord_name_to_index(beat_labels) return label_indices def write_beat_chroma_labels(filename, beat_times, chroma_features, label_indices): """Write out the computed beat-synchronous chroma data.""" # Create the enclosing directory if needed. directory = os.path.dirname(filename) if directory and not os.path.exists(directory): os.makedirs(directory) with open(filename, "wb") as f: pickle.dump((beat_times, chroma_features, label_indices), f, pickle.HIGHEST_PROTOCOL) def read_beat_chroma_labels(filename): """Read back a precomputed beat-synchronous chroma record.""" with open(filename, "rb") as f: beat_times, chroma_features, label_indices = pickle.load(f) return beat_times, chroma_features, label_indices def read_file_list(filename): """Read a text file with one item per line.""" items = [] with open(filename, 'r') as f: for line in f: items.append(line.strip()) return items def process_items(input_list_file, wav_base_dir, lab_base_dir, output_base_dir, start_index, num_to_process): """Process files from a list.""" all_ids = read_file_list(input_list_file) print("total ids in list:", len(all_ids)) if num_to_process > 0: ids_to_process = all_ids[start_index : start_index + num_to_process] else: ids_to_process = all_ids[start_index:] for number, file_id in enumerate(ids_to_process): print(time.ctime(), "File {:d} of {:d}: {:s}".format( number, len(ids_to_process), file_id)) wavfilename = os.path.join(wav_base_dir, file_id + '.mp3') beat_times, beat_chroma = calculate_beat_sync_chroma_of_file( wavfilename) if lab_base_dir: labfilename = os.path.join(lab_base_dir, file_id + '.txt') label_indices = calculate_label_indices(labfilename, beat_times) else: label_indices = None beatchromlab_filename = os.path.join(output_base_dir, file_id + '.pkl') write_beat_chroma_labels(beatchromlab_filename, beat_times, beat_chroma, label_indices) #DATA_DIR = '/q/porkpie/porkpie-p9/hog-restored/hog-p9/drspeech/data/music/' HELP_STRING = '-i <inputlistfile> -o <outputbasedir> -w <wavbasedir> -l <labbasedir> -s <startindex> -n <numtoprocess>' def main(argv): inputfile = '' outputfile = '' try: opts, args = getopt.getopt(argv[1:], "hi:o:s:n:w:l:", ["inputlistfile=", "outputbasedir=", "startindex=", "numtoprocess=", "wavbasedir=", "labbasedir="]) except getopt.GetoptError: print(argv[0], HELP_STRING) sys.exit(2) input_list_file = 'mp3s-mp3s.txt' output_base_dir = 'beatchromftrs' wav_base_dir = 'mp3s-32k' lab_base_dir = None start_index = 0 num_to_process = -1 for opt, arg in opts: if opt == '-h': print(argv[0], HELP_STRING) sys.exit() elif opt in ("-i", "--inputlistfile"): input_list_file = arg elif opt in ("-o", "--outputbasedir"): output_base_dir = arg elif opt in ("-s", "--startindex"): start_index = int(arg) elif opt in ("-n", "--numtoprocess"): num_to_process = int(arg) elif opt in ("-w", "--wavbasedir"): wav_base_dir = arg elif opt in ("-l", "--labbasedir"): lab_base_dir = arg process_items(input_list_file, wav_base_dir, lab_base_dir, output_base_dir, start_index, num_to_process) if __name__ == "__main__": main(sys.argv)
[ "numpy.maximum", "getopt.getopt", "numpy.argmax", "time.ctime", "cPickle.load", "librosa.feature.sync", "os.path.join", "os.path.dirname", "os.path.exists", "numpy.maximum.outer", "librosa.feature.chroma_cqt", "numpy.hstack", "librosa.load", "sys.exit", "os.makedirs", "cPickle.dump", "numpy.array", "librosa.beat.beat_track", "numpy.minimum.outer" ]
[((864, 912), 'numpy.maximum.outer', 'np.maximum.outer', (['ranges_a[:, 0]', 'ranges_b[:, 0]'], {}), '(ranges_a[:, 0], ranges_b[:, 0])\n', (880, 912), True, 'import numpy as np\n'), ((935, 983), 'numpy.minimum.outer', 'np.minimum.outer', (['ranges_a[:, 1]', 'ranges_b[:, 1]'], {}), '(ranges_a[:, 1], ranges_b[:, 1])\n', (951, 983), True, 'import numpy as np\n'), ((1008, 1058), 'numpy.maximum', 'np.maximum', (['(0)', '(min_ends_matrix - max_starts_matrix)'], {}), '(0, min_ends_matrix - max_starts_matrix)\n', (1018, 1058), True, 'import numpy as np\n'), ((1323, 1350), 'numpy.argmax', 'np.argmax', (['overlaps'], {'axis': '(1)'}), '(overlaps, axis=1)\n', (1332, 1350), True, 'import numpy as np\n'), ((2388, 2422), 'librosa.load', 'librosa.load', (['wavfilename'], {'sr': 'None'}), '(wavfilename, sr=None)\n', (2400, 2422), False, 'import librosa\n'), ((2487, 2560), 'librosa.beat.beat_track', 'librosa.beat.beat_track', ([], {'y': 'y', 'sr': 'sr', 'hop_length': 'hop_length', 'start_bpm': '(240)'}), '(y=y, sr=sr, hop_length=hop_length, start_bpm=240)\n', (2510, 2560), False, 'import librosa\n'), ((2744, 2807), 'numpy.hstack', 'np.hstack', (['[beat_frames, 2 * beat_frames[-1] - beat_frames[-2]]'], {}), '([beat_frames, 2 * beat_frames[-1] - beat_frames[-2]])\n', (2753, 2807), True, 'import numpy as np\n'), ((2864, 2925), 'librosa.feature.chroma_cqt', 'librosa.feature.chroma_cqt', ([], {'y': 'y', 'sr': 'sr', 'hop_length': 'hop_length'}), '(y=y, sr=sr, hop_length=hop_length)\n', (2890, 2925), False, 'import librosa\n'), ((4003, 4094), 'numpy.hstack', 'np.hstack', (['[extended_beat_times[:-1, np.newaxis], extended_beat_times[1:, np.newaxis]]'], {}), '([extended_beat_times[:-1, np.newaxis], extended_beat_times[1:, np\n .newaxis]])\n', (4012, 4094), True, 'import numpy as np\n'), ((4586, 4611), 'os.path.dirname', 'os.path.dirname', (['filename'], {}), '(filename)\n', (4601, 4611), False, 'import os\n'), ((684, 699), 'numpy.array', 'np.array', (['times'], {}), '(times)\n', (692, 699), True, 'import numpy as np\n'), ((3838, 3898), 'numpy.hstack', 'np.hstack', (['[beat_times, 2 * beat_times[-1] - beat_times[-2]]'], {}), '([beat_times, 2 * beat_times[-1] - beat_times[-2]])\n', (3847, 3898), True, 'import numpy as np\n'), ((4672, 4694), 'os.makedirs', 'os.makedirs', (['directory'], {}), '(directory)\n', (4683, 4694), False, 'import os\n'), ((4739, 4829), 'cPickle.dump', 'pickle.dump', (['(beat_times, chroma_features, label_indices)', 'f', 'pickle.HIGHEST_PROTOCOL'], {}), '((beat_times, chroma_features, label_indices), f, pickle.\n HIGHEST_PROTOCOL)\n', (4750, 4829), True, 'import cPickle as pickle\n'), ((5042, 5056), 'cPickle.load', 'pickle.load', (['f'], {}), '(f)\n', (5053, 5056), True, 'import cPickle as pickle\n'), ((5935, 5979), 'os.path.join', 'os.path.join', (['wav_base_dir', "(file_id + '.mp3')"], {}), "(wav_base_dir, file_id + '.mp3')\n", (5947, 5979), False, 'import os\n'), ((6327, 6374), 'os.path.join', 'os.path.join', (['output_base_dir', "(file_id + '.pkl')"], {}), "(output_base_dir, file_id + '.pkl')\n", (6339, 6374), False, 'import os\n'), ((6792, 6940), 'getopt.getopt', 'getopt.getopt', (['argv[1:]', '"""hi:o:s:n:w:l:"""', "['inputlistfile=', 'outputbasedir=', 'startindex=', 'numtoprocess=',\n 'wavbasedir=', 'labbasedir=']"], {}), "(argv[1:], 'hi:o:s:n:w:l:', ['inputlistfile=',\n 'outputbasedir=', 'startindex=', 'numtoprocess=', 'wavbasedir=',\n 'labbasedir='])\n", (6805, 6940), False, 'import getopt\n'), ((3094, 3150), 'librosa.feature.sync', 'librosa.feature.sync', (['frame_chroma', 'extended_beat_frames'], {}), '(frame_chroma, extended_beat_frames)\n', (3114, 3150), False, 'import librosa\n'), ((4637, 4662), 'os.path.exists', 'os.path.exists', (['directory'], {}), '(directory)\n', (4651, 4662), False, 'import os\n'), ((5814, 5826), 'time.ctime', 'time.ctime', ([], {}), '()\n', (5824, 5826), False, 'import time\n'), ((6126, 6170), 'os.path.join', 'os.path.join', (['lab_base_dir', "(file_id + '.txt')"], {}), "(lab_base_dir, file_id + '.txt')\n", (6138, 6170), False, 'import os\n'), ((7115, 7126), 'sys.exit', 'sys.exit', (['(2)'], {}), '(2)\n', (7123, 7126), False, 'import sys\n'), ((7403, 7413), 'sys.exit', 'sys.exit', ([], {}), '()\n', (7411, 7413), False, 'import sys\n')]
import logging import numpy as np from amset.constants import defaults from amset.deformation.common import desymmetrize_deformation_potentials from amset.deformation.io import load_deformation_potentials from amset.electronic_structure.kpoints import get_mesh_from_kpoint_numbers from amset.electronic_structure.symmetry import expand_kpoints from amset.interpolation.periodic import PeriodicLinearInterpolator __author__ = "<NAME>" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" logger = logging.getLogger(__name__) class DeformationPotentialInterpolator(PeriodicLinearInterpolator): @classmethod def from_file(cls, filename, scale=1.0): deform_potentials, kpoints, structure = load_deformation_potentials(filename) deform_potentials = {s: d * scale for s, d in deform_potentials.items()} return cls.from_deformation_potentials(deform_potentials, kpoints, structure) @classmethod def from_deformation_potentials( cls, deformation_potentials, kpoints, structure, symprec=defaults["symprec"] ): logger.info("Initializing deformation potential interpolator") mesh_dim = get_mesh_from_kpoint_numbers(kpoints) if np.product(mesh_dim) == len(kpoints): return cls.from_data(kpoints, deformation_potentials) full_kpoints, rotations, _, _, op_mapping, kp_mapping = expand_kpoints( structure, kpoints, time_reversal=True, return_mapping=True, symprec=symprec ) logger.warning("Desymmetrizing deformation potentials, this could go wrong.") deformation_potentials = desymmetrize_deformation_potentials( deformation_potentials, structure, rotations, op_mapping, kp_mapping ) return cls.from_data(full_kpoints, deformation_potentials)
[ "amset.deformation.common.desymmetrize_deformation_potentials", "amset.electronic_structure.kpoints.get_mesh_from_kpoint_numbers", "numpy.product", "amset.electronic_structure.symmetry.expand_kpoints", "logging.getLogger", "amset.deformation.io.load_deformation_potentials" ]
[((495, 522), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (512, 522), False, 'import logging\n'), ((703, 740), 'amset.deformation.io.load_deformation_potentials', 'load_deformation_potentials', (['filename'], {}), '(filename)\n', (730, 740), False, 'from amset.deformation.io import load_deformation_potentials\n'), ((1146, 1183), 'amset.electronic_structure.kpoints.get_mesh_from_kpoint_numbers', 'get_mesh_from_kpoint_numbers', (['kpoints'], {}), '(kpoints)\n', (1174, 1183), False, 'from amset.electronic_structure.kpoints import get_mesh_from_kpoint_numbers\n'), ((1364, 1460), 'amset.electronic_structure.symmetry.expand_kpoints', 'expand_kpoints', (['structure', 'kpoints'], {'time_reversal': '(True)', 'return_mapping': '(True)', 'symprec': 'symprec'}), '(structure, kpoints, time_reversal=True, return_mapping=True,\n symprec=symprec)\n', (1378, 1460), False, 'from amset.electronic_structure.symmetry import expand_kpoints\n'), ((1598, 1707), 'amset.deformation.common.desymmetrize_deformation_potentials', 'desymmetrize_deformation_potentials', (['deformation_potentials', 'structure', 'rotations', 'op_mapping', 'kp_mapping'], {}), '(deformation_potentials, structure,\n rotations, op_mapping, kp_mapping)\n', (1633, 1707), False, 'from amset.deformation.common import desymmetrize_deformation_potentials\n'), ((1195, 1215), 'numpy.product', 'np.product', (['mesh_dim'], {}), '(mesh_dim)\n', (1205, 1215), True, 'import numpy as np\n')]
""" Utilities for working with videos, pulling out patches, etc. """ import numpy from pylearn2.compat import OrderedDict from pylearn2.utils.rng import make_np_rng __author__ = "<NAME>" __copyright__ = "Copyright 2011, <NAME> / Universite de Montreal" __license__ = "BSD" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __all__ = ["get_video_dims", "spatiotemporal_cubes"] def get_video_dims(fname): """ Pull out the frame length, spatial height and spatial width of a video file using ffmpeg. Parameters ---------- fname : str Path to video file to be inspected. Returns ------- shape : tuple The spatiotemporal dimensions of the video (length, height, width). """ try: import pyffmpeg except ImportError: raise ImportError("This function requires pyffmpeg " "<http://code.google.com/p/pyffmpeg/>") mp = pyffmpeg.FFMpegReader() try: mp.open(fname) tracks = mp.get_tracks() for track in tracks: if isinstance(track, pyffmpeg.VideoTrack): break else: raise ValueError('no video track found') return (track.duration(),) + track.get_orig_size() finally: mp.close() class FrameLookup(object): """ Class encapsulating the logic of turning a frame index into a collection of files into the frame index of a specific video file. Item-indexing on this object will yield a (filename, nframes, frame_no) tuple, where nframes is the number of frames in the given file (mainly for checking that we're far enough from the end so that we can sample a big enough chunk). Parameters ---------- names_ang_lengths : WRITEME """ def __init__(self, names_and_lengths): self.files, self.lengths = zip(*names_and_lengths) self.terminals = numpy.cumsum([s[1] for s in names_and_lengths]) def __getitem__(self, i): idx = (i < self.terminals).nonzero()[0][0] frame_no = i if idx > 0: frame_no -= self.terminals[idx - 1] return self.files[idx], self.lengths[idx], frame_no def __len__(self): return self.terminals[-1] def __iter__(self): raise TypeError('iteration not supported') def spatiotemporal_cubes(file_tuples, shape, n_patches=numpy.inf, rng=None): """ Generator function that yields a stream of (filename, slicetuple) representing a spatiotemporal patch of that file. Parameters ---------- file_tuples : list of tuples Each element should be a 2-tuple consisting of a filename (or arbitrary identifier) and a (length, height, width) shape tuple of the dimensions (number of frames in the video, height and width of each frame). shape : tuple A shape tuple consisting of the desired (length, height, width) of each spatiotemporal patch. n_patches : int, optional The number of patches to generate. By default, generates patches infinitely. rng : RandomState object or seed, optional The random number generator (or seed) to use. Defaults to None, meaning it will be seeded from /dev/urandom or the clock. Returns ------- generator : generator object A generator that yields a stream of (filename, slicetuple) tuples. The slice tuple is such that it indexes into a 3D array containing the entire clip with frames indexed along the first axis, rows along the second and columns along the third. """ frame_lookup = FrameLookup([(a, b[0]) for a, b in file_tuples]) file_lookup = OrderedDict(file_tuples) patch_length, patch_height, patch_width = shape done = 0 rng = make_np_rng(rng, which_method="random_integers") while done < n_patches: frame = numpy.random.random_integers(0, len(frame_lookup) - 1) filename, file_length, frame_no = frame_lookup[frame] # Check that there is a contiguous block of frames starting at # frame_no that is at least as long as our desired cube length. if file_length - frame_no < patch_length: continue _, video_height, video_width = file_lookup[filename][:3] # The last row and column in which a patch could "start" to still # fall within frame. last_row = video_height - patch_height last_col = video_width - patch_width row = numpy.random.random_integers(0, last_row) col = numpy.random.random_integers(0, last_col) patch_slice = (slice(frame_no, frame_no + patch_length), slice(row, row + patch_height), slice(col, col + patch_width)) done += 1 yield filename, patch_slice
[ "pylearn2.utils.rng.make_np_rng", "pylearn2.compat.OrderedDict", "pyffmpeg.FFMpegReader", "numpy.cumsum", "numpy.random.random_integers" ]
[((930, 953), 'pyffmpeg.FFMpegReader', 'pyffmpeg.FFMpegReader', ([], {}), '()\n', (951, 953), False, 'import pyffmpeg\n'), ((3701, 3725), 'pylearn2.compat.OrderedDict', 'OrderedDict', (['file_tuples'], {}), '(file_tuples)\n', (3712, 3725), False, 'from pylearn2.compat import OrderedDict\n'), ((3801, 3849), 'pylearn2.utils.rng.make_np_rng', 'make_np_rng', (['rng'], {'which_method': '"""random_integers"""'}), "(rng, which_method='random_integers')\n", (3812, 3849), False, 'from pylearn2.utils.rng import make_np_rng\n'), ((1906, 1953), 'numpy.cumsum', 'numpy.cumsum', (['[s[1] for s in names_and_lengths]'], {}), '([s[1] for s in names_and_lengths])\n', (1918, 1953), False, 'import numpy\n'), ((4499, 4540), 'numpy.random.random_integers', 'numpy.random.random_integers', (['(0)', 'last_row'], {}), '(0, last_row)\n', (4527, 4540), False, 'import numpy\n'), ((4555, 4596), 'numpy.random.random_integers', 'numpy.random.random_integers', (['(0)', 'last_col'], {}), '(0, last_col)\n', (4583, 4596), False, 'import numpy\n')]
import numpy as np import pickle, os, ntpath, cv2 tot_list = [] img_list = [] label_list = [] pickle_dict = {} load_path = '' def _load_data(path): count = 0 for root, dirs, files in os.walk(path): for file in files: imgpath = os.path.join(root, file) tot_list.append(imgpath) np.random.shuffle(tot_list) for img in tot_list: image = cv2.imread(img) image = cv2.resize(image, (192, 192), cv2.INTER_CUBIC) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) label = [1, 0] if ntpath.basename(img)[0] == '1' else [0, 1] img_list.append(image) label_list.append(label) count += 1 print('>> 총 {} 데이터 loading !'.format(count)) tot_img = np.asarray(img_list) pickle_dict[b'labels'] = label_list pickle_dict[b'data'] = tot_img with open('database/rgb_data/gelontoxon_data', 'wb') as data: pickle.dump(pickle_dict, data) print('>> pickle dumpling 완료 ! ') if __name__ == '__main__': path = '/home/kyh/dataset/gelontoxon/' _load_data(path)
[ "pickle.dump", "numpy.random.shuffle", "ntpath.basename", "cv2.cvtColor", "numpy.asarray", "os.walk", "cv2.imread", "os.path.join", "cv2.resize" ]
[((193, 206), 'os.walk', 'os.walk', (['path'], {}), '(path)\n', (200, 206), False, 'import pickle, os, ntpath, cv2\n'), ((324, 351), 'numpy.random.shuffle', 'np.random.shuffle', (['tot_list'], {}), '(tot_list)\n', (341, 351), True, 'import numpy as np\n'), ((747, 767), 'numpy.asarray', 'np.asarray', (['img_list'], {}), '(img_list)\n', (757, 767), True, 'import numpy as np\n'), ((394, 409), 'cv2.imread', 'cv2.imread', (['img'], {}), '(img)\n', (404, 409), False, 'import pickle, os, ntpath, cv2\n'), ((426, 472), 'cv2.resize', 'cv2.resize', (['image', '(192, 192)', 'cv2.INTER_CUBIC'], {}), '(image, (192, 192), cv2.INTER_CUBIC)\n', (436, 472), False, 'import pickle, os, ntpath, cv2\n'), ((489, 527), 'cv2.cvtColor', 'cv2.cvtColor', (['image', 'cv2.COLOR_BGR2RGB'], {}), '(image, cv2.COLOR_BGR2RGB)\n', (501, 527), False, 'import pickle, os, ntpath, cv2\n'), ((920, 950), 'pickle.dump', 'pickle.dump', (['pickle_dict', 'data'], {}), '(pickle_dict, data)\n', (931, 950), False, 'import pickle, os, ntpath, cv2\n'), ((257, 281), 'os.path.join', 'os.path.join', (['root', 'file'], {}), '(root, file)\n', (269, 281), False, 'import pickle, os, ntpath, cv2\n'), ((555, 575), 'ntpath.basename', 'ntpath.basename', (['img'], {}), '(img)\n', (570, 575), False, 'import pickle, os, ntpath, cv2\n')]
import numpy as np from . import _colormixer from . import _histograms import threading from ...util import img_as_ubyte # utilities to make life easier for plugin writers. import multiprocessing CPU_COUNT = multiprocessing.cpu_count() class GuiLockError(Exception): def __init__(self, msg): self.msg = msg def __str__(self): return self.msg class WindowManager(object): ''' A class to keep track of spawned windows, and make any needed callback once all the windows, are closed.''' def __init__(self): self._windows = [] self._callback = None self._callback_args = () self._callback_kwargs = {} self._gui_lock = False self._guikit = '' def _check_locked(self): if not self._gui_lock: raise GuiLockError(\ 'Must first acquire the gui lock before using this image manager') def _exec_callback(self): if self._callback: self._callback(*self._callback_args, **self._callback_kwargs) def acquire(self, kit): if self._gui_lock: raise GuiLockError(\ 'The gui lock can only be acquired by one toolkit per session. \ The lock is already acquired by %s' % self._guikit) else: self._gui_lock = True self._guikit = str(kit) def _release(self, kit): # releaseing the lock will lose all references to currently # tracked images and the callback. # this function is private for reason! self._check_locked() if str(kit) == self._guikit: self._windows = [] self._callback = None self._callback_args = () self._callback_kwargs = {} self._gui_lock = False self._guikit = '' else: raise RuntimeError('Only the toolkit that owns the lock may ' 'release it') def add_window(self, win): self._check_locked() self._windows.append(win) def remove_window(self, win): self._check_locked() try: self._windows.remove(win) except ValueError: print('Unable to find referenced window in tracked windows.') print('Ignoring...') else: if len(self._windows) == 0: self._exec_callback() def register_callback(self, cb, *cbargs, **cbkwargs): self._check_locked() self._callback = cb self._callback_args = cbargs self._callback_kwargs = cbkwargs def has_windows(self): if len(self._windows) > 0: return True else: return False window_manager = WindowManager() def prepare_for_display(npy_img): '''Convert a 2D or 3D numpy array of any dtype into a 3D numpy array with dtype uint8. This array will be suitable for use in passing to gui toolkits for image display purposes. Parameters ---------- npy_img : ndarray, 2D or 3D The image to convert for display Returns ------- out : ndarray, 3D dtype=np.uint8 The converted image. This is guaranteed to be a contiguous array. Notes ----- If the input image is floating point, it is assumed that the data is in the range of 0.0 - 1.0. No check is made to assert this condition. The image is then scaled to be in the range 0 - 255 and then cast to np.uint8 For all other dtypes, the array is simply cast to np.uint8 If a 2D array is passed, the single channel is replicated to the 2nd and 3rd channels. If the array contains an alpha channel, this channel is ignored. ''' if npy_img.ndim < 2: raise ValueError('Image must be 2D or 3D array') height = npy_img.shape[0] width = npy_img.shape[1] out = np.empty((height, width, 3), dtype=np.uint8) npy_img = img_as_ubyte(npy_img) if npy_img.ndim == 2 or \ (npy_img.ndim == 3 and npy_img.shape[2] == 1): npy_plane = npy_img.reshape((height, width)) out[:, :, 0] = npy_plane out[:, :, 1] = npy_plane out[:, :, 2] = npy_plane elif npy_img.ndim == 3: if npy_img.shape[2] == 3 or npy_img.shape[2] == 4: out[:, :, :3] = npy_img[:, :, :3] else: raise ValueError('Image must have 1, 3, or 4 channels') else: raise ValueError('Image must have 2 or 3 dimensions') return out def histograms(image, nbins): '''Calculate the channel histograms of the current image. Parameters ---------- image : ndarray, ndim=3, dtype=np.uint8 Input image. nbins : int The number of bins. Returns ------- out : (rcounts, gcounts, bcounts, vcounts) The binned histograms of the RGB channels and intensity values. This is a NAIVE histogram routine, meant primarily for fast display. ''' return _histograms.histograms(image, nbins) class ImgThread(threading.Thread): def __init__(self, func, *args): super(ImgThread, self).__init__() self.func = func self.args = args def run(self): self.func(*self.args) class ThreadDispatch(object): def __init__(self, img, stateimg, func, *args): height = img.shape[0] self.cores = CPU_COUNT self.threads = [] self.chunks = [] if self.cores == 1: self.chunks.append((img, stateimg)) elif self.cores >= 4: self.chunks.append((img[:(height // 4), :, :], stateimg[:(height // 4), :, :])) self.chunks.append((img[(height // 4):(height // 2), :, :], stateimg[(height // 4):(height // 2), :, :])) self.chunks.append((img[(height // 2):(3 * height // 4), :, :], stateimg[(height // 2):(3 * height // 4), :, :] )) self.chunks.append((img[(3 * height // 4):, :, :], stateimg[(3 * height // 4):, :, :])) # if they don't have 1, or 4 or more, 2 is good. else: self.chunks.append((img[:(height // 2), :, :], stateimg[:(height // 2), :, :])) self.chunks.append((img[(height // 2):, :, :], stateimg[(height // 2):, :, :])) for i in range(len(self.chunks)): self.threads.append(ImgThread(func, self.chunks[i][0], self.chunks[i][1], *args)) def run(self): for t in self.threads: t.start() for t in self.threads: t.join() class ColorMixer(object): ''' a class to manage mixing colors in an image. The input array must be an RGB uint8 image. The mixer maintains an original copy of the image, and uses this copy to query the pixel data for operations. It also makes a copy for sharing state across operations. That is, if you add to a channel, and multiply to same channel, the two operations are carried separately and the results averaged together. it modifies your array in place. This ensures that if you bust over a threshold, you can always come back down. The passed values to a function are always considered absolute. Thus to threshold a channel completely you can do mixer.add(RED, 255). Or to double the intensity of the blue channel: mixer.multiply(BLUE, 2.) To reverse these operations, respectively: mixer.add(RED, 0), mixer.multiply(BLUE, 1.) The majority of the backend is implemented in Cython, so it should be quite quick. ''' RED = 0 GREEN = 1 BLUE = 2 valid_channels = [RED, GREEN, BLUE] def __init__(self, img): if type(img) != np.ndarray: raise ValueError('Image must be a numpy array') if img.dtype != np.uint8: raise ValueError('Image must have dtype uint8') if img.ndim != 3 or img.shape[2] != 3: raise ValueError('Image must be 3 channel MxNx3') self.img = img self.origimg = img.copy() self.stateimg = img.copy() def get_stateimage(self): return self.stateimg def commit_changes(self): self.stateimg[:] = self.img[:] def revert(self): self.stateimg[:] = self.origimg[:] self.img[:] = self.stateimg[:] def set_to_stateimg(self): self.img[:] = self.stateimg[:] def add(self, channel, ammount): '''Add the specified ammount to the specified channel. Parameters ---------- channel : flag the color channel to operate on RED, GREED, or BLUE ammount : integer the ammount of color to add to the channel, can be positive or negative. ''' if channel not in self.valid_channels: raise ValueError('assert_channel is not a valid channel.') pool = ThreadDispatch(self.img, self.stateimg, _colormixer.add, channel, ammount) pool.run() def multiply(self, channel, ammount): '''Mutliply the indicated channel by the specified value. Parameters ---------- channel : flag the color channel to operate on RED, GREED, or BLUE ammount : integer the ammount of color to add to the channel, can be positive or negative. ''' if channel not in self.valid_channels: raise ValueError('assert_channel is not a valid channel.') pool = ThreadDispatch(self.img, self.stateimg, _colormixer.multiply, channel, ammount) pool.run() def brightness(self, factor, offset): '''Adjust the brightness off an image with an offset and factor. Parameters ---------- offset : integer The ammount to add to each channel. factor : float The factor to multiply each channel by. result = clip((pixel + offset)*factor) ''' pool = ThreadDispatch(self.img, self.stateimg, _colormixer.brightness, factor, offset) pool.run() def sigmoid_gamma(self, alpha, beta): pool = ThreadDispatch(self.img, self.stateimg, _colormixer.sigmoid_gamma, alpha, beta) pool.run() def gamma(self, gamma): pool = ThreadDispatch(self.img, self.stateimg, _colormixer.gamma, gamma) pool.run() def hsv_add(self, h_amt, s_amt, v_amt): '''Adjust the H, S, V channels of an image by a constant ammount. This is similar to the add() mixer function, but operates over the entire image at once. Thus all three additive values, H, S, V, must be supplied simultaneously. Parameters ---------- h_amt : float The ammount to add to the hue (-180..180) s_amt : float The ammount to add to the saturation (-1..1) v_amt : float The ammount to add to the value (-1..1) ''' pool = ThreadDispatch(self.img, self.stateimg, _colormixer.hsv_add, h_amt, s_amt, v_amt) pool.run() def hsv_multiply(self, h_amt, s_amt, v_amt): '''Adjust the H, S, V channels of an image by a constant ammount. This is similar to the add() mixer function, but operates over the entire image at once. Thus all three additive values, H, S, V, must be supplied simultaneously. Note that since hue is in degrees, it makes no sense to multiply that channel, thus an add operation is performed on the hue. And the values given for h_amt, should be the same as for hsv_add Parameters ---------- h_amt : float The ammount to to add to the hue (-180..180) s_amt : float The ammount to multiply to the saturation (0..1) v_amt : float The ammount to multiply to the value (0..1) ''' pool = ThreadDispatch(self.img, self.stateimg, _colormixer.hsv_multiply, h_amt, s_amt, v_amt) pool.run() def rgb_2_hsv_pixel(self, R, G, B): '''Convert an RGB value to HSV Parameters ---------- R : int Red value G : int Green value B : int Blue value Returns ------- out : (H, S, V) Floats The HSV values ''' H, S, V = _colormixer.py_rgb_2_hsv(R, G, B) return (H, S, V) def hsv_2_rgb_pixel(self, H, S, V): '''Convert an HSV value to RGB Parameters ---------- H : float Hue value S : float Saturation value V : float Intensity value Returns ------- out : (R, G, B) ints The RGB values ''' R, G, B = _colormixer.py_hsv_2_rgb(H, S, V) return (R, G, B)
[ "numpy.empty", "multiprocessing.cpu_count" ]
[((210, 237), 'multiprocessing.cpu_count', 'multiprocessing.cpu_count', ([], {}), '()\n', (235, 237), False, 'import multiprocessing\n'), ((3854, 3898), 'numpy.empty', 'np.empty', (['(height, width, 3)'], {'dtype': 'np.uint8'}), '((height, width, 3), dtype=np.uint8)\n', (3862, 3898), True, 'import numpy as np\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ feign blocks module zs. elter, a. cserkaszky 2019 """ import os import math import re import numpy as np import matplotlib.pyplot as plt from feign.geometry import * def isFloat(s): try: float(s) return True except ValueError: return False def readMu(path,column,energy): """The function to read attenuaton coefficients from XCOM datafiles. Parameters ---------- path : str path to the file (str) column : int column which contains the total attenuation coefficients in case more columns are present in the file energy : float or list of floats energy or energies where the attenuation coefficient is needed. Returns ------- float or list of floats the interpolated value(s) of the attenuaton coefficient. """ try: inputfile=open(path,'r').readlines() except FileNotFoundError: inputfile=open(os.getcwd()+path,'r').readlines() en=[] mu=[] for line in inputfile: x=line.strip().split() if len(x)>=1 and isFloat(x[0]): en.append(float(x[0])) mu.append(float(x[column])) return np.interp(energy,en,mu) def is_hex_color(input_string): """The function to assess whether a string is hex color description. Taken from https://stackoverflow.com/questions/42876366/check-if-a-string-defines-a-color Parameters ---------- input_string : str String which may contain hex color description Returns ------- bool True if the string is a hex format definition, False otherwise. Examples -------- >>> is_hex_color('notahex') False >>> is_hex_color('#FF0000') True """ HEX_COLOR_REGEX = r'^#([A-Fa-f0-9]{6}|[A-Fa-f0-9]{3})$' regexp = re.compile(HEX_COLOR_REGEX) if regexp.search(input_string): return True return False def getID(nameKeyword, argList, keywordDict): """The function returns 1 string argument from a general list or arguments The argument can be named with nameKeyword Parameters ---------- nameKeyword : str The keyword of the desired argument if named argList : list *args passed to this function keywordDict : dict **kwargs passed to this function Returns ------- str The found string argument """ foundArg = None if len(argList) == 1 and len(keywordDict) == 0: foundArg = argList[0] elif len(argList) == 0 and len(keywordDict) == 1 and nameKeyword in keywordDict: foundArg = keywordDict[nameKeyword] if foundArg is not None and isinstance(foundArg, str): return foundArg raise ValueError('expected 1 argument: '+nameKeyword+' string') class Material(object): """A class used to represent a Material. Parameters ---------- matID : str ID of the material Attributes ---------- matID : str ID of the material density : float density of material in (g/cm3) path : str path to attenuation coefficient file color : str color of material when plotting """ _idName = 'matID' def __init__(self, *args, **kwargs): self._density = None self._path = None self._color = None self._id = getID(self._idName, args, kwargs) def __repr__(self): return "Material(matID=%s)" % (self._id) @property def density(self): return self._density @property def path(self): return self._path @property def color(self): return self._color def set_density(self, density=None): """The function to set the density of the Material Parameters ---------- density : float density of material in g/cm2 """ if isFloat(density): self._density=density else: raise ValueError('density has to be float for Material ID="{}"'.format(self._id)) def set_path(self, path=None): """The function to set the path to the attenuation data of the Material. Parameters ---------- path : tuple (str,int) the path of the file, and the column which contains the data. """ if isinstance(path, tuple) and len(path)==2 and isinstance(path[0], str) and isinstance(path[1], int): self._path=path else: raise ValueError(('Path has to be (str,int) tuple for Material ID="{}"'.format(self._id))) def set_color(self, color=None): """The function to set the color of Material in case the geometry is plotted. Parameters ---------- color : str color of the material in hex format """ if isinstance(color, str) and is_hex_color(color): self._color=color else: raise ValueError(('Color has to be hex str for Material ID="{}"'.format(self._id))) class Pin(object): """A class used to represent a Pin. With :meth:`Pin.add_region()` coaxial circles can be added to describe the content (eg. fuel pellet, helium gap, clad). In case no region is added, the Pin() object will behave as an empty channel filled with the coolant material. Parameters ---------- pinID : str ID of the pin Attributes ---------- pinID : str ID of the pin regions : list of tuples (Material, radius) pairs to describe coaxial regions within pin, radius in cm. materials : list of str list of :attr:`Material.matID` identifiers within the pin radii : list of floats list of radii of regions within the pin, radii in cm """ _idName = 'pinID' def __init__(self, *args, **kwargs): self._regions=[] self._materials=[] self._radii=[] self._id = getID(self._idName, args, kwargs) def __repr__(self): return "Pin(pinID=%s)" % (self._id) @property def regions(self): return self._regions @property def materials(self): return self._materials @property def radii(self): return self._radii def add_region(self,material=None,radius=None): """The function to add coaxial circles and rings to a pin. In case of consecutive calls (ie. more regions added), the radii has to increase. Parameters ---------- material : Material material filled into new region radius : radius of new region Examples -------- >>> uo2 = Material('1') >>> he = Material('2') >>> zr = Material('3') >>> fuel = Pin('1') >>> fuel.add_region(uo2,0.41) >>> fuel.add_region(he,0.42) >>> fuel.add_region(zr,0.48) >>> fuel.regions [(Material(matID=1), 0.41), (Material(matID=2), 0.42), (Material(matID=3), 0.48)] """ if isinstance(material,Material): self._materials.append(material._id) else: raise TypeError('Material() object is expected') if isFloat(radius): if len(self._radii)>0 and self._radii[-1]>=radius: raise ValueError('Radii are not increasing in pin #{}'.format(self._id)) else: self._radii.append(radius) self._regions.append((material,radius)) def checkArgvConsistency(*argv): if len(argv) >= 2: for arg in argv[1:]: if not isinstance(arg, type(argv[0])): raise TypeError('Inconsistent input objects: '+str(type(arg))+' != '+str(type(argv[0]))) def addIDsToDict(objectDict, *argv): checkArgvConsistency(*argv) #add new elements for arg in argv: if arg._id in objectDict: raise ValueError('ID {} is duplicated'.format(arg._id)) else: objectDict[arg._id]=arg def delIDsFromDict(objectDict, *argv): checkArgvConsistency(*argv) for arg in argv: if objectDict is None: raise TypeError('No objects added yet.') elif arg._id not in objectDict: print('ID {} is not in dict yet'.format(arg._id)) else: del objectDict[arg._id] class Assembly(object): """A class used to represent a rectangular Assembly. Parameters ---------- N : int number of positions in y direction M : int number of positions in x direction Attributes ---------- N : int number of positions in y direction M : int number of positions in x direction pitch : float pitch size of the lattice in cm pins: Pins() pins in the assembly fuelmap: 2D array fuelmap to describe which pins are filled in the positions coolant : str matID of the coolant (ie. materal filled between pins) pool : Rectangle() (optional) pool in which the assembly is placed. Within the pool coolant material is filled, outside the pool surrounding material is filled. surrounding : str (mandatory if pool is present) matID of the surrounding material (ie. material filled around pool) source : list of str :attr:`Material.matID` identifiers of material emitting gamma particles """ def __init__(self,N,M): try: self.N=int(N) self.M=int(M) except ValueError: raise ValueError('N,M has to be decimal') except TypeError: raise TypeError('N,M has to be int') self._pitch=None self._pins=None self._fuelmap=None self._coolant=None self._surrounding=None self._source=None #TODO what if more materials emit from same pin? self._pool=None def __repr__(self): return "Assembly(N=%d,M=%d)" % (self.N,self.M) @property def pitch(self): return self._pitch @property def pool(self): return self._pool @property def pins(self): return self._pins @property def fuelmap(self): return self._fuelmap @property def coolant(self): return self._coolant @property def surrounding(self): return self._surrounding @property def source(self): return self._source def set_pitch(self,pitch=None): """The function to set the pitch of the lattice of Assembly Parameters ---------- pitch : float pitch of lattice in cm """ if isFloat(pitch): self._pitch=pitch else: raise TypeError('Pitch has to be float') def set_pins(self,*argv): """The function to include Pin objects in an Assembly Parameters ---------- *argv : Pin() or more Pin() objects Pin() objects to be included in the Assembly Examples -------- >>> fuel=Pin('1') >>> guide=Pin('2') >>> assembly=Assembly(2,2) >>> assembly.pins >>> assembly.set_pins(fuel,guide) >>> assembly.pins {'1': Pin(pinID=1), '2': Pin(pinID=2)} Raises ------ TypeError if the parameter is not Pin() ValueError if the Pin is already included """ self._pins={} self.add_pin(*argv) def add_pin(self,*argv): """The function to add Pin objects to an Assembly, which may have already included pins. If one wants to rewrite the existing pins, then the :meth:`Assembly.set_pins()` has to be called. Parameters ---------- *argv : Pin() or more Pin() objects Pin() objects to be added in the Assembly Examples -------- >>> fuel=Pin('1') >>> guide=Pin('2') >>> assembly=Assembly(2,2) >>> assembly.set_pins() >>> assembly.pins {} >>> assembly.add_pin(fuel) >>> assembly.add_pin(guide) >>> assembly.pins {'1': Pin(pinID=1), '2': Pin(pinID=2)} Raises ------ TypeError if the parameter is not Pin() ValueError if the Pin is already included """ if len(argv) > 0 and not isinstance(argv[0],Pin): raise TypeError('Inputs need to be Pin() objects') addIDsToDict(self.pins, *argv) def remove_pin(self,*argv): """The function to remove Pin objects from an Assembly which already has previously included pins. Parameters ---------- *argv : Pin() or more Pin() objects Pin() objects to be added in the Assembly Examples -------- >>> fuel=Pin('1') >>> guide=Pin('2') >>> assembly=Assembly(2,2) >>> assembly.set_pins(fuel,guide) >>> assembly.pins {'1': Pin(pinID=1), '2': Pin(pinID=2)} >>> assembly.remove_pin(guide) >>> assembly.pins {'1': Pin(pinID=1)} >>> assembly.remove_pin(guide) ID 2 is not in dict yet Raises ------ TypeError if the parameter is not Pin() ValueError if the Pin is already included TypeError if :attr:`pins` is None. """ if len(argv) > 0 and not isinstance(argv[0],Pin): raise TypeError('Inputs need to be Pin() objects') delIDsFromDict(self._pins, *argv) def set_fuelmap(self,fuelmap=None): """The function to set the fuelmap of the Assembly Parameters ---------- fuelmap : 2D array (NxM shape) fuelmap of the lattice Example ------- >>> fuel=Pin('1') >>> fuel.add_region(uo2,0.5) >>> fuel.add_region(he,0.51) >>> fuel.add_region(zr,0.61) >>> fuelmap=[['1','1'], ['1','1']] >>> assy=Assembly(2,2) >>> assy.set_fuelmap(fuelmap) """ fuelmap=np.array(fuelmap) if fuelmap.shape[0] != self.N or fuelmap.shape[1] != self.M: raise ValueError('Fuelmap has wrong size') else: self._fuelmap=fuelmap def set_coolant(self, coolant=None): """The function to set the coolant material in the Assembly Parameters ---------- coolant : Material() the coolant material """ if isinstance(coolant, Material): self._coolant=coolant._id else: raise TypeError('Material() is expected') def set_surrounding(self, surrounding=None): """The function to set the surrounding material around the Assembly Parameters ---------- surrounding : Material() the surrounding material """ if isinstance(surrounding, Material): self._surrounding=surrounding._id else: raise TypeError('Material() is expected') def set_source(self, *args): """The function to set the source material(s) in the Assembly Parameters ---------- *args : Material() instances the source material(s) """ self._source=[] for arg in args: if isinstance(arg,Material): self._source.append(arg._id) def set_pool(self,pool=None): """The function to set the pool around the Assembly Parameters ---------- pool : Rectangle() the shape of the pool """ if isinstance(pool,Rectangle): self._pool=pool else: raise TypeError('Pool has to be a Rectangle() object') def checkComplete(self): """ The function to check whether everything is defined correctly in an Assembly() object. Prints messages indicating any problem. - checks whether any attribute is not defined (pool does not need to be defined) - checks whether any pin contains any region with radius greater than the pitch - checks whether all the pins in the fuelmap are attributed to the assembly - in case a pool is defined, it is checked whether the pool is around the assembly. Returns ------- bool True if everything is correct and complete, False otherwise """ if self.pins is None or self.pitch is None or \ self.coolant is None or self.fuelmap is None or \ self.source is None: print('ERROR: Assembly is not complete.') return False if False in [r<=self.pitch/2 for pin in self.pins.values() for r in pin._radii]: print('ERROR: in a Pin() a radius is greater than the pitch') return False if [] in [pin._radii for pin in self.pins.values()]: print('Warning: a pin has no regions, considered as coolant channel') if False in [self.fuelmap[i][j] in self.pins for i in range(self.N) for j in range(self.M)]: print('ERROR: Assembly().fuelmap contains pin not included in Assembly.Pins()') return False if self.pool is None: print('Warning: no pool in the problem, the surrounding of the Assembly is filled with coolant material') self._surrounding=self._coolant return True if self.surrounding is None: print('ERROR: Surrounding material has to be defined if pool is defined') return False #Check that the pool is around the fuel assembly pooldummy=Rectangle(Point(self.N*self.pitch/2,self.M*self.pitch/2), Point(self.N*self.pitch/2,-self.M*self.pitch/2), Point(-self.N*self.pitch/2,-self.M*self.pitch/2), Point(-self.N*self.pitch/2,self.M*self.pitch/2)) for corner in [self.pool.p1,self.pool.p2,self.pool.p3,self.pool.p4]: if pooldummy.encloses_point(corner): #TODO use corners print('ERROR: Pool is inside fuel') return False if len(pooldummy.intersection(self.pool.p1p2))>1 or \ len(pooldummy.intersection(self.pool.p2p3))>1 or \ len(pooldummy.intersection(self.pool.p3p4))>1 or \ len(pooldummy.intersection(self.pool.p4p1))>1: print('ERROR: Assembly does not fit in pool') return False return True class Detector(object): """A class used to represent a Detector. Parameters ---------- detID : str ID of the detector Attributes ---------- detID : str ID of the detector location : Point() location of the detector collimator : Collimator(), optional Collimator placed between the source and the detector """ _idName = 'detID' def __init__(self, *args, **kwargs): self._location=None self._collimator=None self._id = getID(self._idName, args, kwargs) def __repr__(self): return "Detector(detID=%s)" % (self._id) @property def location(self): return self._location @property def collimator(self): return self._collimator def set_location(self,location=None): """The function to set the location of Detector Parameters ---------- location : Point() location of the Detector """ if isinstance(location,Point): self._location=location else: raise TypeError('Detector location has to be Point() object') def set_collimator(self,collimator=None): """The function to set the Collimator of Detector Parameters ---------- collimator : Collimator() Collimator between source and Detector """ if isinstance(collimator,Collimator): self._collimator=collimator else: raise TypeError('Collimator has to be Collimator() object') class Absorber(object): """A class used to represent an Absorber. An absorber can be thought of any element around (or within) the assembly, which attenuates gamma radiation. Parameters ---------- absID : str ID of the absorber Attributes ---------- absID : str ID of the absorber form : Rectangle() or Circle() the shape of the absorber material : str matID of the Material the absorber is made of accommat : str matID of the Material the absorber is surrounded with (Note: the program has no capabilities to decide which material is around the absorber, thus the user has to set this) """ _idName = 'absID' def __init__(self, *args, **kwargs): self._form=None self._material=None self._accommat=None self._id = getID(self._idName, args, kwargs) def __repr__(self): return "Absorber(absID=%s)" % (self._id) @property def form(self): return self._form @property def material(self): return self._material @property def accommat(self): return self._accommat def set_form(self,form=None): """The function to set the shape of Absorber Parameters ---------- form : Rectangle() or Circle() shape of the absorber """ if isinstance(form,Rectangle) or isinstance(form,Circle): self._form=form else: raise TypeError('Absorber has to be a Rectangle or Circle object') def set_material(self, material=None): """The function to set the material of Absorber Parameters ---------- material : Material() Material the Absorber is made of """ if isinstance(material, Material): self._material=material._id else: raise TypeError('Material() is expected') def set_accommat(self, accommat=None): """The function to set the accommodating material of Absorber Parameters ---------- accommat : Material() Material the Absorber is surrounded with. """ if isinstance(accommat, Material): self._accommat=accommat._id else: raise TypeError('Material() is expected') class Collimator(object): """A class used to represent a Collimator. Any gamma ray not passing through the Collimator will be rejected. Collimators have an impact only if they are attributed to Detector objects with :meth:`Detector.set_collimator()`. The front and the back of the collimator cannot intersect. Parameters ---------- collID : str (optional) ID of the collimator Attributes ---------- collID : str (optional) ID of the collimator front : Segment() First ppening of the collimator slit back : Segment() Second opening of the collimator slit color : str color of the collimator in case of plotting the geometry. """ _idName = 'collID' def __init__(self, *args, **kwargs): self._front=None self._back=None self._color=None self._id = getID(self._idName, args, kwargs) def __repr__(self): return "Collimator()" @property def front(self): return self._front @property def back(self): return self._back @property def color(self): return self._color def set_front(self,front=None): """The function to set the front of the Collimator. Intersecting front and back is not accepted. Parameters ---------- front : Segment() Opening of the collimator slit Examples ---------- >>> c1=Collimator() >>> c1.set_back(Segment(Point(0,0),Point(1,0))) >>> c1.set_front(Segment(Point(0.5,-1),Point(0.5,1))) ValueError('Collimator back and front should not intersect') """ if not isinstance(front,Segment): raise TypeError('Collimator front has to be a Segment object') if self._back is None: self._front=front elif len(self._back.intersection(front))>0: raise ValueError('Collimator back and front should not intersect') else: self._front=front def set_back(self,back=None): """The function to set the back of the Collimator. Intersecting front and back is not accepted. Parameters ---------- back : Segment() Opening of the collimator slit """ if not isinstance(back,Segment): raise TypeError('Collimator back has to be a Segment object') if self._front is None: self._back=back elif len(self._front.intersection(back))>0: raise ValueError('Collimator back and front should not intersect') else: self._back=back def set_color(self, color=None): """The function to set the color of the Collimator in case of plotting. Parameters ---------- color : str color definition of Collimator in hex format. """ if isinstance(color, str) and is_hex_color(color): self._color=color else: raise ValueError(('Color has to be hex str for Material ID="{}"'.format(self._id))) class Experiment(object): """A class used to represent an Experiment. An experiment is a complete passive gamma spectroscopy measurment setup with an assembly and detectors (absorbers and collimators are optional). Attributes ---------- assembly : Assembly() The Assembly containing the source pins : dict Dictionary containing the available pin types. materials : dict Dictionary containing the available materials detectors : dict Dictionary containing the detectors in the problem absorbers : dict, optional Dictionary containing the absorbers in the problem elines : list of float, optional Energy lines (in MeV) at which the geometric efficiency is computed (in case missing, only the distance travelled in various material is computed) mu : dict The total attenuation coefficients for all the energies in elines, and for each material in the problem. sourcePoints : list List of pin-wise source point locations for each random sample. dTmap : dict of dictionaries of 2D numpy arrays The average distance travelled by a gamma-ray from a lattice position to a detector given for each material in the problem. Outer keys are :attr:`Detector._id` identifiers, inner keys are :attr:`Material._id` identifiers. It is an average of all random samples (which are kept track in :attr:`Experiment.dTmaps`) dTmapErr : dict of dictionaries of 2D numpy arrays The standard deviation of distance travelled by a gamma-ray from a lattice position to a detector given for each material in the problem. Outer keys are :attr:`Detector._id` identifiers, inner keys are :attr:`Material._id` identifiers. It is an standard deviation of all random samples (which are kept track in :attr:`Experiment.dTmaps`) dTmaps : list of dictionaries of 2D numpy arrays All random samples of distance travelled by a gamma-ray from a lattice position to a detector. Source point for each sample are stored in :attr:`Experiment.sourcePoints` contributionMap : dict Dictionary to store the rod-wise contributions averaged over random samples to each detector at each energy. Outer keys are detector :attr:`Detector.detID` identifiers. Inner keys are energy lines (as given in :meth:`Experiment.set_elines()`) contributionMap[detID][eline] is an NxM shaped numpy array, where N is :attr:`Assembly.N` and M is :attr:`Assembly.M` contributionMapErr : dict Dictionary to store the standard deviation of rod-wise contributions averaged over random samples to each detector at each energy. Outer keys are detector :attr:`Detector.detID` identifiers. Inner keys are energy lines (as given in :meth:`Experiment.set_elines()`) contributionMapErr[detID][eline] is an NxM shaped numpy array, where N is :attr:`Assembly.N` and M is :attr:`Assembly.M` contributionMaps : list All random samples of contribution maps to each detector at each energy. contributionMapAve : dict Dictionary to store the rod-wise contribution averaged over all detectors at each energy averaged over all random samples. Keys are energy lines (as given in :meth:`Experiment.set_elines()`) contributionMapAve[eline] is an NxM shaped numpy array, where N is :attr:`Assembly.N` and M is :attr:`Assembly.M` contributionMapAveErr : dict Dictionary to store the standard deviation of the pin-wise contribution averaged over all detectors at each energy averaged over all random samples. Keys are energy lines (as given in :meth:`Experiment.set_elines()`) contributionMapAveErr[eline] is an NxM shaped numpy array, where N is :attr:`Assembly.N` and M is :attr:`Assembly.M` contributionMapAves : list All random samples of the pin-wise contribution averaged over all detectors at each energy. geomEff : dict Dictionary to store the geometric efficiency at each detector location averaged over each random sample. Keys are detector :attr:`Detector._id` identifiers. geomEff[detID] is E long numpy array, where E is the length of :attr:`Experiment.elines` geomEffErr : dict Dictionary to store the standard deviation of the geometric efficiency at each detector location averaged over each random sample. Keys are detector :attr:`Detector._id` identifiers. geomEff[detID] is E long numpy array, where E is the length of :attr:`Experiment.elines` geomEffs : list All random samples of the geometric efficiency at each detector location. geomEffAve : numpy.ndarray Geometric efficiency of the Experiment averaged over all detectors averaged over each random sample. The length is of :attr:`Experiment.elines` geomEffAveErr : numpy.ndarray Standard deviation of the geometric efficiency of the Experiment averaged over all detectors averaged over each random sample. The length is of :attr:`Experiment.elines` geomEffAves : list All random samples of the geometric efficiency of the Experiment averaged over all detectors. output : str, optional filename (and path) where to print the geometric efficiency Note ---- While computing the travelled distance, if the ray does not pass through the collimator, np.Inf is set in the given traveled distance map for the given position. This is useful, because the the probability of travelling infinite distance is zero, thus in the related contribution map, at the same location 0.0 will be found. If the geometry is so that rays emitted from any location from a pin will not pass through the collimator, than the mean traveled map (:attr:`Experiment.dTmap`) will have np.Inf at that location (which is correct since the mean of many infinities is infinity) and the the standard deviation will be 0.0 (which is again correct). However, in cases when rays emitted from some location in a pin pass through the collimator, whereas from some other locations in a pin they do not pass through, the mean traveled distance (:attr:`Experiment.dTmap`) and the standard deviation of the travelled distance (:attr:`Experiment.dTmapErr`) become meaningless at such pin positions. (This could be a situation when the collimator slit is narrower than the size of the pins). The reason is that the mean of something and infinity will become infinity as well. Also, for the standard deviation calculation the np.Inf values are set to 0.0, otherwise the map location would be filled with NaN. For these cases one might analyse the list of travelled distances (:attr:`Experiment.dTmap`) and the list of source locations (:attr:`Experiment.sourcePoints`). Nevertheless, the contribution maps and the geometric efficiency is correctly calculated even in these situations! Examples -------- Examples of plotting attributes can be found at https://github.com/ezsolti/feign/blob/master/examples/ex1_2x2fuel.ipynb """ def __init__(self): self._output=None self._assembly=None self._pins=None self._materials=None self._detectors=None self._absorbers=None self._elines=None self._mu=None self._sourcePoints=None self._dTmap=None self._dTmapErr=None self._dTmaps=None self._contributionMap=None self._contributionMapErr=None self._contributionMaps=None self._contributionMapAve=None self._contributionMapAveErr=None self._contributionMapAves=None self._geomEff=None self._geomEffErr=None self._geomEffs=None self._geomEffAve=None self._geomEffAveErr=None self._geomEffAves=None self._randomNum=1 def __repr__(self): return "Experiment()" @property def output(self): return self._output @property def assembly(self): return self._assembly @property def materials(self): return self._materials @property def pins(self): return self._pins @property def detectors(self): return self._detectors @property def absorbers(self): return self._absorbers @property def elines(self): return np.array(self._elines).astype(float) #TODO, i want the strings for later, but for plotting float is better. Is this a correct way to do it? #probably not because I may want the strings in processing as well. but this can be done while processing @property def sourcePoints(self): return self._sourcePoints @property def dTmap(self): return self._dTmap @property def dTmapErr(self): return self._dTmapErr @property def dTmaps(self): return self._dTmaps @property def contributionMap(self): return self._contributionMap @property def contributionMapErr(self): return self._contributionMapErr @property def contributionMaps(self): return self._contributionMaps @property def contributionMapAve(self): return self._contributionMapAve @property def contributionMapAveErr(self): return self._contributionMapAveErr @property def contributionMapAves(self): return self._contributionMapAves @property def mu(self): return self._mu @property def geomEff(self): return self._geomEff @property def geomEffErr(self): return self._geomEffErr @property def geomEffs(self): return self._geomEffs @property def geomEffAve(self): return self._geomEffAve @property def geomEffAveErr(self): return self._geomEffAveErr @property def geomEffAves(self): return self._geomEffAves @property def randomNum(self): return self._randomNum def set_random(self,randomNum=1): """The function to set number of random source locations per pin. Parameters ---------- randomNum : int number of random source locations in each pin. """ if isinstance(randomNum, int): self._randomNum=randomNum else: raise TypeError('Has to be int') def set_output(self,output='output.dat'): """The function to set the output file for printing the geometric efficiency Parameters ---------- output : str filename and path where to print the geometric efficiency. """ if isinstance(output, str): self._output=output else: raise TypeError('Output filename has to be str') def set_materials(self,*argv): """The function to include Material objects in an Experiment Parameters ---------- *argv : Material() or more Material() objects Material() objects to be included in the Experiment Examples -------- >>> uox=Material('1') >>> zr=Material('2') >>> experiment=Experiment() >>> experiment.materials >>> experiment.set_materials(uox,zr) >>> experiment.materials {'1': Material(matID=1), '2': Material(matID=2)} Raises ------ TypeError if the parameter is not Material() ValueError if the Material is already included """ self._materials={} self.add_material(*argv) def add_material(self,*argv): """The function to add Material objects to an Experiment, which may have already included materials. If one wants to rewrite the existing materials, then the :meth:`Experiment.set_materials()` has to be called. Parameters ---------- *argv : Material() or more Material() objects Material() objects to be added in the Experiment Examples -------- >>> uox=Material('1') >>> zr=Material('2') >>> experiment=Experiment() >>> experiment.set_materials() >>> experiment.materials {} >>> experiment.add_material(uox) >>> experiment.add_material(zr) >>> experiment.materials {'1': Material(matID=1), '2': Material(matID=2)} Raises ------ TypeError if the parameter is not Material() ValueError if the Material is already included """ if len(argv) > 0 and not isinstance(argv[0],Material): raise TypeError('Inputs need to be Material() objects') addIDsToDict(self._materials, *argv) def remove_material(self,*argv): """The function to remove Material objects from an Experiment which already has previously included materials. Parameters ---------- *argv : Material() or more Material() objects Material() objects to be added in the Experiment Examples -------- >>> uox=Material('1') >>> zr=Material('2') >>> experiment=Experiment() >>> experiment.set_materials(uox,zr) >>> experiment.materials {'1': Material(matID=1), '2': Material(matID=2)} >>> experiment.remove_material(zr) >>> experiment.materials {'1': Material(matID=1)} >>> experiment.remove_material(zr) ID 2 is not in dict yet Raises ------ TypeError if the parameter is not Material() TypeError if :attr:`materials` is None. """ if len(argv) > 0 and not isinstance(argv[0],Material): raise TypeError('Inputs need to be Material() objects') delIDsFromDict(self._materials, *argv) def set_absorbers(self,*argv): """The function to include Absorber objects in an Experiment Parameters ---------- *argv : Absorber() or more Absorber() objects Absorber() objects to be included in the Experiment Examples -------- >>> leadsheet=Absorber('leadsheet') >>> alusheet=Absorber('alusheet') >>> experiment=Experiment() >>> experiment.absorbers >>> experiment.set_absorbers(leadsheet,alusheet) >>> experiment.absorbers {'leadsheet': Absorber(absID=leadsheet), 'alusheet': Absorber(absID=alusheet)} Raises ------ TypeError if the parameter is not Absorber() ValueError if the Absorber is already included """ self._absorbers={} self.add_absorber(*argv) def add_absorber(self,*argv): """The function to add Absorber objects to an Experiment, which may have already included absorbers. If one wants to rewrite the existing absorbers, then the :meth:`Experiment.set_absorbers()` has to be called. Parameters ---------- *argv : Absorber() or more Absorber() objects Absorber() objects to be added in the Experiment Examples -------- >>> leadsheet=Absorber('leadsheet') >>> alusheet=Absorber('alusheet') >>> experiment=Experiment() >>> experiment.set_absorbers() >>> experiment.absorbers {} >>> experiment.add_absorber(leadsheet) >>> experiment.add_absorber(alusheet) >>> experiment.absorbers {'leadsheet': Absorber(absID=leadsheet), 'alusheet': Absorber(absID=alusheet)} Raises ------ TypeError if the parameter is not Absorber() ValueError if the Absorber is already included """ if len(argv) > 0 and not isinstance(argv[0],Absorber): raise TypeError('Inputs need to be Absorber() objects') addIDsToDict(self._absorbers, *argv) def remove_absorber(self,*argv): """The function to remove Absorber objects from an Experiment which already has previously included absorbers. Parameters ---------- *argv : Absorber() or more Absorber() objects Absorber() objects to be added in the Experiment Examples -------- >>> leadsheet=Absorber('leadsheet') >>> alusheet=Absorber('alusheet') >>> experiment=Experiment() >>> experiment.set_absorbers(leadsheet,alusheet) >>> experiment.absorbers {'leadsheet': Absorber(absID=leadsheet), 'alusheet': Absorber(absID=alusheet)} >>> experiment.remove_absorber(alusheet) >>> experiment.absorbers {'leadsheet': Absorber(absID=leadsheet)} >>> experiment.remove_absorber(alusheet) ID alusheet is not in dict yet Raises ------ TypeError if the parameter is not Absorber() TypeError if :attr:`absorbers` is None. """ if len(argv) > 0 and not isinstance(argv[0],Absorber): raise TypeError('Inputs need to be Absorber() objects') delIDsFromDict(self._absorbers, *argv) def set_detectors(self,*argv): """The function to include Detector objects in an Experiment Parameters ---------- *argv : Detector() or more Detector() objects Detector() objects to be included in the Experiment Examples -------- >>> F5=Detector('F5') >>> F15=Detector('F15') >>> experiment=Experiment() >>> experiment.detectors >>> experiment.set_detectors(F5,F15) >>> experiment.detectors {'F5': Detector(detID=F5), 'F15': Detector(detID=F15)} Raises ------ TypeError if the parameter is not Detector() ValueError if the Detector is already included """ self._detectors={} self.add_detector(*argv) def add_detector(self,*argv): """The function to add Detector objects to an Experiment, which may have already included detectors. If one wants to rewrite the existing detectors, then the :meth:`Experiment.set_detectors()` has to be called. Parameters ---------- *argv : Detector() or more Detector() objects Detector() objects to be added in the Experiment Examples -------- >>> F5=Detector('F5') >>> F15=Detector('F15') >>> experiment=Experiment() >>> experiment.set_detectors() >>> experiment.detectors {} >>> experiment.add_detector(F5) >>> experiment.add_detector(F15) >>> experiment.detectors {'F5': Detector(detID=F5), 'F15': Detector(detID=F15)} Raises ------ TypeError if the parameter is not Detector() ValueError if the Detector is already included """ if len(argv) > 0 and not isinstance(argv[0],Detector): raise TypeError('Inputs need to be Detector() objects') addIDsToDict(self._detectors, *argv) def remove_detector(self,*argv): """The function to remove Detector objects from an Experiment which already has previously included detectors. Parameters ---------- *argv : Detector() or more Detector() objects Detector() objects to be added in the Experiment Examples -------- >>> F5=Detector('F5') >>> F15=Detector('F15') >>> experiment=Experiment() >>> experiment.set_detectors(F5,F15) >>> experiment.detectors {'F5': Detector(detID=F5), 'F15': Detector(detID=F15)} >>> experiment.remove_detector(F15) >>> experiment.detectors {'F5': Detector(detID=F5)} >>> experiment.remove_detector(F15) ID F15 is not in dict yet Raises ------ TypeError if the parameter is not Detector() TypeError if :attr:`detectors` is None. """ if len(argv) > 0 and not isinstance(argv[0],Detector): raise TypeError('Inputs need to be Detector() objects') delIDsFromDict(self._detectors, *argv) def set_assembly(self,assembly=None): """The function to include Assembly in an Experiment Parameters ---------- assembly : Assembly() Assembly to be included in Experiment """ if isinstance(assembly,Assembly): self._assembly=assembly self._pins=self._assembly.pins else: raise ValueError('Assembly has to be an Assembly() object') def set_elines(self,elines=None): """The function to set energy lines at which the geometric efficiency is calculated Parameters ---------- elines : list of str Energy lines (in MeV) at which the geometric efficiency is calculated. Note ---- values of elines are strings, because they will be keys of :attr:`mu` """ if isinstance(elines, list) and (False not in [isinstance(e, str) for e in elines]) and (False not in [isFloat(e) for e in elines]): self._elines=elines else: raise ValueError('elines has to be a list of str MeV values') def get_MuTable(self): """The function to create a nested dictionary to store the total attenuation coefficients. Returns ------- dict Dictionary to store the attenuation coefficients. Outer keys are energies as defined in :attr:`elines`, inner keys are :attr:`Material.matID` identifiers. """ mu={e: {m: 0 for m in self.materials} for e in self._elines} for m in self.materials: mum=readMu(self.materials[m].path[0],self.materials[m].path[1],self.elines) for ei,mui in zip(self._elines,mum): mu[ei][m]=mui self._mu=mu # OLD, nicer but more file reading. # for e in self._elines: # mu[e]={key: readMu(self.materials[key].path[0],self.materials[key].path[1],float(e)) for key in self.materials} # self._mu=mu def distanceTravelled(self,detector): """The function to calculate the distanced travelled in any material by a gamma ray emitted from any pin positions of the Assembly to a detector Parameters ---------- detector : Detector() Returns ------- dTmap : dict The travelled distance in various materials. Keys are material identifiers, values are pin-wise distance values. sourcePoint : numpy array Pin-wise source location in the given calculation. """ dTmap={key: np.zeros((self.assembly.N,self.assembly.M)) for key in self.materials} #sourcePoint=np.array([[0 for i in range(self.assembly.N)] for j in range(self.assembly.M)]) sourcePoint=np.empty((self.assembly.N,self.assembly.M),dtype=object) #create distance seen maps for each material p=self.assembly.pitch/2 N=self.assembly.N M=self.assembly.M for i in range(N): for j in range(M): sourceIn=[s in self.pins[self.assembly.fuelmap[i][j]]._materials for s in self.assembly.source] if True in sourceIn: dT={key: 0 for key in self.materials} #dict to track distances travelled in each material for a given pin #TODO get a random number is the source material?! #if source is the inner most pin randomly center in circle #else: randomly in that and reject the things within if self.randomNum == 1: centerSource=Point(-p*(M-1)+j*2*p,p*(N-1)-i*2*p) else: length = self.pins[self.assembly.fuelmap[i][j]]._radii[0]*np.sqrt(np.random.uniform(0, 1)) #TODO, if second ring is the source? angle = np.pi * np.random.uniform(0, 2) xnoise = length * np.cos(angle) ynoise = length * np.sin(angle) centerSource=Point(-p*(M-1)+j*2*p,p*(N-1)-i*2*p).translate(xnoise,ynoise) sourcePoint[i][j]=centerSource segmentSourceDetector=Segment(centerSource,detector.location) #Only track rays which pass through the collimator if detector.collimator is None or (len(detector.collimator.front.intersection(segmentSourceDetector))==1 and len(detector.collimator.back.intersection(segmentSourceDetector))==1): ###Distances traveled in other pin positions for ii in range(N): for jj in range(M): centerShield=Point(-p*(M-1)+jj*2*p,p*(N-1)-ii*2*p) pinChannel=Rectangle(centerShield.translate(-p,p),centerShield.translate(p,p), centerShield.translate(p,-p),centerShield.translate(-p,-p)) # print('------') # print(pinChannel) # print(segmentSourceDetector) # print('------') if len(pinChannel.intersection(segmentSourceDetector))>=1: #check only pins in between Source and Detector if ii==i and jj==j: #pinChannel.encloses_point(centerSource): #in that case, only one intersection Dprev=0 for r,mat in zip(self.pins[self.assembly.fuelmap[ii][jj]]._radii, self.pins[self.assembly.fuelmap[ii][jj]]._materials): intersects = Circle(centerShield,r).intersection(segmentSourceDetector) D=Point.distance(intersects[0],centerSource) dT[mat]=dT[mat]+(D-Dprev) Dprev=D else: Dprev=0 for r,mat in zip(self.pins[self.assembly.fuelmap[ii][jj]]._radii, self.pins[self.assembly.fuelmap[ii][jj]]._materials): intersects = Circle(centerShield,r).intersection(segmentSourceDetector) if len(intersects)>1: #if len()==1, it is tangent, no distance traveled D=Point.distance(intersects[0],intersects[1]) dT[mat]=dT[mat]+(D-Dprev) Dprev=D ###Distance traveled outside the pool = distance of ray-pool intersect and detector if self.assembly.pool is not None: dT[self.assembly.surrounding]=dT[self.assembly.surrounding]+Point.distance(self.assembly.pool.intersection(segmentSourceDetector)[0],detector.location) ###Distance traveled in coolantMat = total source-detector distance - everything else dT[self.assembly.coolant]=dT[self.assembly.coolant]+Point.distance(centerSource,detector.location)-sum([dT[k] for k in dT.keys()]) #in case there is a ring filled with the coolent, eg an empty control rod guide, we need keep that ###Distance traveled in absorbers ###Absorber can be Circle() or Rectangular, the syntax ###is the same regarding .intersection(), thus the code ###handles both as it is. for absorber in self.absorbers.values(): intersects=absorber.form.intersection(segmentSourceDetector) if len(intersects)>1: dabs=Point.distance(intersects[0],intersects[1]) elif len(intersects)==1: #if the detector or source is within absorber. if absorber.form.encloses_point(detector.location): dabs=Point.distance(intersects[0],detector.location) elif absorber.form.encloses_point(centerSource): dabs=Point.distance(intersects[0],centerSource) print('Warning: absorber #%s is around source at %.2f,%.2f'%(absorber._id,centerSource.x,centerSource.y)) else: raise ValueError('Ray has only one intersection with Absorber \n and the detector neither the source is enclosed by it.') else: dabs=0 dT[absorber.material]=dT[absorber.material]+dabs dT[absorber.accommat]=dT[absorber.accommat]-dabs #Update the map for key in dT: dTmap[key][i][j]=dT[key] else: #not through collimator for key in dT: dTmap[key][i][j]=np.Inf return dTmap, sourcePoint def attenuation(self,dTmap,mue,detector,sourcePoint): """The function to calculate the pin-wise contribution to the detector at a given energy. That is the probablity that a gamma-ray emitted from a pin will reach the detector point. Parameters ---------- dTmap : dict The travelled distance in various materials. Keys are material identifiers, values are pin-wise distance values. Shape as created by :meth:`Experiment.distanceTravelled()` mue : dict Total attenuation coefficients at the given energy. Keys are materials, values are the total attenuation coefficient values. detector : Detector() sourcePoint : numpy array Pin-wise source locations, as created by :meth:`Experiment.distanceTravelled()`. Returns ------- contribmap : numpy array Pin-wise probabilities that a gamma-ray emitted from a given pin hits the detector. """ p=self.assembly.pitch/2 N=self.assembly.N M=self.assembly.M contribmap=np.zeros((N,M)) for i in range(N): for j in range(M): center=sourcePoint[i][j] sourceIn=[s in self.pins[self.assembly.fuelmap[i][j]]._materials for s in self.assembly.source] if True in sourceIn: contrib=1 #TODO might be a place to include a pre-known emission weight map. Or to provide a function which multiplies the contribution with some weight matrix for key in self.materials.keys(): contrib=contrib*math.exp(-1*mue[key]*dTmap[key][i][j]) contribmap[i][j]=contrib/(4*math.pi*(Point.distance(center,detector.location))**2) return contribmap def checkComplete(self): """Function to check whether everything is defined correctly in an Experiment() object. - checks whether assembly is complete - checks whether any pin contains any region with radius greater than the pitch - checks whether all the pins in the fuelmap are attributed to the assembly - in case a pool is defined, it is checked whether the pool is around the assembly. Returns ---------- bool True if everything is correct and complete, False otherwise """ errors=[] if self.materials is None: print('ERROR: Materials are not defined') return False #otherwise the following checks cannot be done. if self.assembly is None: print('ERROR: Assembly is missing') errors.append(False) else: if not self.assembly.checkComplete(): errors.append(False) else: if False in [mat in self.materials for pin in self.pins.values() for mat in pin._materials]: print('ERROR: pin material is missing from materials') errors.append(False) if False in [source in self.materials for source in self.assembly.source]: print('ERROR: source material is not in Materials') errors.append(False) if self.detectors is None: print('ERROR: no detector is defined.') errors.append(False) else: if True in [det.location is None for det in self.detectors.values()]: print('ERROR: Detector location is not defined') errors.append(False) if True in [det.collimator.back is None or det.collimator.front is None for det in self.detectors.values() if det.collimator is not None]: print('ERROR: One collimator is not fully defined') errors.append(False) if self.absorbers is None: self.set_absorbers() print('No absorbers in the problem') else: if self.absorbers is not None and False in [absorber.material in self.materials for absorber in self.absorbers.values()]: print('ERROR: absorber material is missing from materials') errors.append(False) if self.absorbers is not None and False in [absorber.accommat in self.materials for absorber in self.absorbers.values()]: print('ERROR: Absorber accommodating material is missing from materials') errors.append(False) if self._elines is None: print('Warning: elines missing; only distance travelled in various materials will be computed') else: if True in [mat.density is None for mat in self.materials.values()]: print('ERROR: Material density is missing') errors.append(False) if True in [mat.path is None for mat in self.materials.values()]: print('ERROR: Path for attenuation file missing') errors.append(False) if len(errors)!=0: print('%d errors encountered.'%(len(errors))) return False return True def Plot(self,out=None,dpi=600,xl=[-100,100],yl=[-100,100],detectorSize=0.4): """Function to plot the geometry of an Experiment() object. The function will randomly set colors to Material() objects for which colors were previously not defined. Parameters ---------- out : str (default=None) name of output file dpi : int (default=600) dpi of the saved plot xl : list of float (default=[-100,100]) x-direction limits of region of the geometry to plot (in cm) yl : list of float (default=[-100,100]) y-direction limits of region of the geometry to plot (in cm) detectorSize : float (default=400) radius of white circle to illustrate the detector points """ if self.checkComplete() is False: raise ValueError('ERROR') import random for mat in self.materials: if self.materials[mat].color is None: self.materials[mat].set_color("#"+''.join([random.choice('0123456789ABCDEF') for j in range(6)])) pool=self.assembly.pool N=self.assembly.N M=self.assembly.M p=self.assembly.pitch/2 fig, ax = plt.subplots() ax.patch.set_facecolor(self.materials[self.assembly.surrounding].color) if self.assembly.pool is not None: pool=self.assembly.pool polygon = plt.Polygon([[pool.p1.x,pool.p1.y],[pool.p2.x,pool.p2.y],[pool.p3.x,pool.p3.y],[pool.p4.x,pool.p4.y]], True,color=self.materials[self.assembly.coolant].color) ax.add_artist(polygon) #fuelmap for i in range(N): for j in range(M): center=[-p*(M-1)+j*2*p,p*(N-1)-i*2*p] for r,m in zip(reversed(self.pins[self.assembly.fuelmap[i][j]]._radii),reversed(self.pins[self.assembly.fuelmap[i][j]]._materials)): circle1 = plt.Circle((center[0], center[1]), r, color=self.materials[m].color) ax.add_artist(circle1) for a in self.absorbers: absorber=self.absorbers[a] if isinstance(absorber.form,Rectangle): polygon = plt.Polygon([[absorber.form.p1.x,absorber.form.p1.y],[absorber.form.p2.x,absorber.form.p2.y],[absorber.form.p3.x,absorber.form.p3.y],[absorber.form.p4.x,absorber.form.p4.y]], True,color=self.materials[absorber.material].color) ax.add_artist(polygon) else: circle1 = plt.Circle((absorber.form.c.x,absorber.form.c.y),absorber.form.r,color=self.materials[absorber.material].color) ax.add_artist(circle1) for d in self.detectors: circle1= plt.Circle((self.detectors[d].location.x,self.detectors[d].location.y),detectorSize,color='white') ax.add_artist(circle1) if self.detectors[d].collimator is not None: if self.detectors[d].collimator.color is None: self.detectors[d].collimator.set_color('#C2C5CC') #the "orientation" of back and front is not know, so I plot two ways. polygon=plt.Polygon([[self.detectors[d].collimator.front.p.x,self.detectors[d].collimator.front.p.y],[self.detectors[d].collimator.front.q.x, self.detectors[d].collimator.front.q.y],[self.detectors[d].collimator.back.p.x,self.detectors[d].collimator.back.p.y],[self.detectors[d].collimator.back.q.x,self.detectors[d].collimator.back.q.y]],True,color=self.detectors[d].collimator.color) ax.add_artist(polygon) polygon=plt.Polygon([[self.detectors[d].collimator.front.p.x,self.detectors[d].collimator.front.p.y],[self.detectors[d].collimator.front.q.x, self.detectors[d].collimator.front.q.y],[self.detectors[d].collimator.back.q.x,self.detectors[d].collimator.back.q.y],[self.detectors[d].collimator.back.p.x,self.detectors[d].collimator.back.p.y]],True,color=self.detectors[d].collimator.color) ax.add_artist(polygon) plt.xlim(xl[0],xl[1]) plt.ylim(yl[0],yl[1]) plt.gca().set_aspect('equal', adjustable='box') if out is not None: plt.savefig(out,dpi=dpi) plt.show() def Run(self): """The function to run an Experiment. It will update the dTmap, the contributionMap and the geomEff attributes. """ if self.checkComplete() is False: raise ValueError('ERROR') sourceNorm=0 for i in range(self.assembly.N): for j in range(self.assembly.M): sourceIn=[s in self.pins[self.assembly.fuelmap[i][j]]._materials for s in self.assembly.source] if True in sourceIn: sourceNorm=sourceNorm+1 dTmaps=[] contributionMaps=[] contributionMapAves=[] geomefficiencies=[] geomefficiencyAves=[] sourcePoints=[] for k in range(self.randomNum): print('#%d is being calculated'%(k)) #TODO RUN-ba dTmap={} for name in self.detectors: print("Distance travelled to detector "+name+" is being calculated") dTmap[name],sourcePoint=self.distanceTravelled(self.detectors[name]) dTmaps.append(dTmap) sourcePoints.append(sourcePoint) if self._elines is not None: if k==0: self.get_MuTable() geomefficiency={} geomefficiencyAve=np.zeros(len(self._elines)) contributionMapAve={e: np.zeros((self.assembly.N,self.assembly.M)) for e in self._elines} contributionMap={} for name in self.detectors: print('Contribution to detector %s is calculated...'%(name)) contributionMap[name]={} geomefficiency[name]=np.zeros(len(self._elines)) for e in self._elines: print('...for gamma energy %s MeV'%(e)) mue=self._mu[e] muem={key: mue[key]*self.materials[key].density for key in mue.keys()} contributionMap[name][e]=self.attenuation(dTmap[name],muem,self.detectors[name],sourcePoint) contributionMapAve[e]=contributionMapAve[e]+contributionMap[name][e]/len(self.detectors) geomefficiency[name]=np.array([np.sum(contribution) for contribution in contributionMap[name].values()])/sourceNorm geomefficiencyAve=geomefficiencyAve+geomefficiency[name]/len(self.detectors) contributionMaps.append(contributionMap) contributionMapAves.append(contributionMapAve) geomefficiencies.append(geomefficiency) geomefficiencyAves.append(geomefficiencyAve) self._sourcePoints=sourcePoints #Various Numpy manipulations to restructure the "plural" lists containing data for #each random sample. Then the mean and the std of the "plural" lists is calculated. #restructuring dTmaps: from the list of dictionaries, make a dictionary of lists #then take the mean and std of the maps in the inner list dTmapsRe={det: {mat: [dmap[det][mat] for dmap in dTmaps] for mat in self.materials} for det in self.detectors} dTmap={} #will be the average dTmapErr={} #will be the std for det in dTmapsRe: dTmap[det]={} dTmapErr[det]={} for mat in dTmapsRe[det]: dTmapToAve=np.array([np.ravel(dT) for dT in dTmapsRe[det][mat]]) dTmap[det][mat]=np.mean(dTmapToAve,axis=0).reshape((self.assembly.N,self.assembly.M)) #dTmap elements may be np.Inf if the ray did not pass through the collimator #this is useful to get 0 in attenuation() for those locations #and it makes std calculation impossible, thus we set it to 0. see not in docstring! dTmapToAve=np.where(dTmapToAve==np.Inf,0.0,dTmapToAve) dTmapErr[det][mat]=np.std(dTmapToAve,axis=0).reshape((self.assembly.N,self.assembly.M)) self._dTmap=dTmap self._dTmapErr=dTmapErr self._dTmaps=dTmaps if self._elines is not None: #restructuring contributionMaps contributionMapsRe={det: {e: [cmap[det][e] for cmap in contributionMaps] for e in self._elines} for det in self.detectors} contributionMap={} #will be the average contributionMapErr={} #will be the stdcontributionMapAves for det in contributionMapsRe: contributionMap[det]={} contributionMapErr[det]={} for e in contributionMapsRe[det]: cMapToAve=np.array([np.ravel(cm) for cm in contributionMapsRe[det][e]]) contributionMap[det][e]=np.mean(cMapToAve,axis=0).reshape((self.assembly.N,self.assembly.M)) contributionMapErr[det][e]=np.std(cMapToAve,axis=0).reshape((self.assembly.N,self.assembly.M)) self._contributionMap=contributionMap self._contributionMapErr=contributionMapErr self._contributionMaps=contributionMaps #restructuring contributionMapAves contributionMapAvesRe={e: [cmap[e] for cmap in contributionMapAves] for e in self._elines} contributionMapAve={} #will be the average contributionMapAveErr={} #will be the std for e in contributionMapAvesRe: cMapToAve=np.array([np.ravel(cm) for cm in contributionMapAvesRe[e]]) contributionMapAve[e]=np.mean(cMapToAve,axis=0).reshape((self.assembly.N,self.assembly.M)) contributionMapAveErr[e]=np.std(cMapToAve,axis=0).reshape((self.assembly.N,self.assembly.M)) self._contributionMapAve=contributionMapAve self._contributionMapAveErr=contributionMapAveErr self._contributionMapAves=contributionMapAves #restructuring geomefficiencies geomefficienciesRe={det: [geff[det] for geff in geomefficiencies] for det in self._detectors} geomefficiency={} #will be the average geomefficiencyErr={} #will be the std for det in geomefficienciesRe: geffToAve=np.array([geff for geff in geomefficienciesRe[det]]) geomefficiency[det]=np.mean(geffToAve,axis=0) geomefficiencyErr[det]=np.std(geffToAve,axis=0) self._geomEff=geomefficiency self._geomEffErr=geomefficiencyErr self._geomEffs=geomefficiencies #restructuring geomefficiencyAves geomefficiencyAve=np.mean(np.array([geff for geff in geomefficiencyAves]),axis=0) geomefficiencyAveErr=np.std(np.array([geff for geff in geomefficiencyAves]),axis=0) self._geomEffAve=geomefficiencyAve self._geomEffAveErr=geomefficiencyAveErr self._geomEffAves=geomefficiencyAves if self.output is not None: output=open(self.output,'w') for e,c in zip(self._elines,self._geomEffAve): output.write(e+'\t'+str(c)+'\n') output.close()
[ "numpy.sum", "numpy.ravel", "numpy.empty", "numpy.mean", "numpy.sin", "matplotlib.pyplot.gca", "numpy.interp", "numpy.std", "matplotlib.pyplot.subplots", "matplotlib.pyplot.show", "matplotlib.pyplot.ylim", "matplotlib.pyplot.Circle", "numpy.cos", "matplotlib.pyplot.Polygon", "re.compile", "matplotlib.pyplot.xlim", "numpy.random.uniform", "math.exp", "os.getcwd", "numpy.zeros", "random.choice", "numpy.where", "numpy.array", "matplotlib.pyplot.savefig" ]
[((1225, 1250), 'numpy.interp', 'np.interp', (['energy', 'en', 'mu'], {}), '(energy, en, mu)\n', (1234, 1250), True, 'import numpy as np\n'), ((1853, 1880), 're.compile', 're.compile', (['HEX_COLOR_REGEX'], {}), '(HEX_COLOR_REGEX)\n', (1863, 1880), False, 'import re\n'), ((14130, 14147), 'numpy.array', 'np.array', (['fuelmap'], {}), '(fuelmap)\n', (14138, 14147), True, 'import numpy as np\n'), ((48972, 49030), 'numpy.empty', 'np.empty', (['(self.assembly.N, self.assembly.M)'], {'dtype': 'object'}), '((self.assembly.N, self.assembly.M), dtype=object)\n', (48980, 49030), True, 'import numpy as np\n'), ((56869, 56885), 'numpy.zeros', 'np.zeros', (['(N, M)'], {}), '((N, M))\n', (56877, 56885), True, 'import numpy as np\n'), ((62164, 62178), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (62176, 62178), True, 'import matplotlib.pyplot as plt\n'), ((64939, 64961), 'matplotlib.pyplot.xlim', 'plt.xlim', (['xl[0]', 'xl[1]'], {}), '(xl[0], xl[1])\n', (64947, 64961), True, 'import matplotlib.pyplot as plt\n'), ((64969, 64991), 'matplotlib.pyplot.ylim', 'plt.ylim', (['yl[0]', 'yl[1]'], {}), '(yl[0], yl[1])\n', (64977, 64991), True, 'import matplotlib.pyplot as plt\n'), ((65120, 65130), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (65128, 65130), True, 'import matplotlib.pyplot as plt\n'), ((48780, 48824), 'numpy.zeros', 'np.zeros', (['(self.assembly.N, self.assembly.M)'], {}), '((self.assembly.N, self.assembly.M))\n', (48788, 48824), True, 'import numpy as np\n'), ((62360, 62535), 'matplotlib.pyplot.Polygon', 'plt.Polygon', (['[[pool.p1.x, pool.p1.y], [pool.p2.x, pool.p2.y], [pool.p3.x, pool.p3.y], [\n pool.p4.x, pool.p4.y]]', '(True)'], {'color': 'self.materials[self.assembly.coolant].color'}), '([[pool.p1.x, pool.p1.y], [pool.p2.x, pool.p2.y], [pool.p3.x,\n pool.p3.y], [pool.p4.x, pool.p4.y]], True, color=self.materials[self.\n assembly.coolant].color)\n', (62371, 62535), True, 'import matplotlib.pyplot as plt\n'), ((63639, 63744), 'matplotlib.pyplot.Circle', 'plt.Circle', (['(self.detectors[d].location.x, self.detectors[d].location.y)', 'detectorSize'], {'color': '"""white"""'}), "((self.detectors[d].location.x, self.detectors[d].location.y),\n detectorSize, color='white')\n", (63649, 63744), True, 'import matplotlib.pyplot as plt\n'), ((65087, 65112), 'matplotlib.pyplot.savefig', 'plt.savefig', (['out'], {'dpi': 'dpi'}), '(out, dpi=dpi)\n', (65098, 65112), True, 'import matplotlib.pyplot as plt\n'), ((34198, 34220), 'numpy.array', 'np.array', (['self._elines'], {}), '(self._elines)\n', (34206, 34220), True, 'import numpy as np\n'), ((63124, 63372), 'matplotlib.pyplot.Polygon', 'plt.Polygon', (['[[absorber.form.p1.x, absorber.form.p1.y], [absorber.form.p2.x, absorber.\n form.p2.y], [absorber.form.p3.x, absorber.form.p3.y], [absorber.form.p4\n .x, absorber.form.p4.y]]', '(True)'], {'color': 'self.materials[absorber.material].color'}), '([[absorber.form.p1.x, absorber.form.p1.y], [absorber.form.p2.x,\n absorber.form.p2.y], [absorber.form.p3.x, absorber.form.p3.y], [\n absorber.form.p4.x, absorber.form.p4.y]], True, color=self.materials[\n absorber.material].color)\n', (63135, 63372), True, 'import matplotlib.pyplot as plt\n'), ((63434, 63553), 'matplotlib.pyplot.Circle', 'plt.Circle', (['(absorber.form.c.x, absorber.form.c.y)', 'absorber.form.r'], {'color': 'self.materials[absorber.material].color'}), '((absorber.form.c.x, absorber.form.c.y), absorber.form.r, color=\n self.materials[absorber.material].color)\n', (63444, 63553), True, 'import matplotlib.pyplot as plt\n'), ((64073, 64482), 'matplotlib.pyplot.Polygon', 'plt.Polygon', (['[[self.detectors[d].collimator.front.p.x, self.detectors[d].collimator.\n front.p.y], [self.detectors[d].collimator.front.q.x, self.detectors[d].\n collimator.front.q.y], [self.detectors[d].collimator.back.p.x, self.\n detectors[d].collimator.back.p.y], [self.detectors[d].collimator.back.q\n .x, self.detectors[d].collimator.back.q.y]]', '(True)'], {'color': 'self.detectors[d].collimator.color'}), '([[self.detectors[d].collimator.front.p.x, self.detectors[d].\n collimator.front.p.y], [self.detectors[d].collimator.front.q.x, self.\n detectors[d].collimator.front.q.y], [self.detectors[d].collimator.back.\n p.x, self.detectors[d].collimator.back.p.y], [self.detectors[d].\n collimator.back.q.x, self.detectors[d].collimator.back.q.y]], True,\n color=self.detectors[d].collimator.color)\n', (64084, 64482), True, 'import matplotlib.pyplot as plt\n'), ((64514, 64923), 'matplotlib.pyplot.Polygon', 'plt.Polygon', (['[[self.detectors[d].collimator.front.p.x, self.detectors[d].collimator.\n front.p.y], [self.detectors[d].collimator.front.q.x, self.detectors[d].\n collimator.front.q.y], [self.detectors[d].collimator.back.q.x, self.\n detectors[d].collimator.back.q.y], [self.detectors[d].collimator.back.p\n .x, self.detectors[d].collimator.back.p.y]]', '(True)'], {'color': 'self.detectors[d].collimator.color'}), '([[self.detectors[d].collimator.front.p.x, self.detectors[d].\n collimator.front.p.y], [self.detectors[d].collimator.front.q.x, self.\n detectors[d].collimator.front.q.y], [self.detectors[d].collimator.back.\n q.x, self.detectors[d].collimator.back.q.y], [self.detectors[d].\n collimator.back.p.x, self.detectors[d].collimator.back.p.y]], True,\n color=self.detectors[d].collimator.color)\n', (64525, 64923), True, 'import matplotlib.pyplot as plt\n'), ((64999, 65008), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (65006, 65008), True, 'import matplotlib.pyplot as plt\n'), ((68975, 69022), 'numpy.where', 'np.where', (['(dTmapToAve == np.Inf)', '(0.0)', 'dTmapToAve'], {}), '(dTmapToAve == np.Inf, 0.0, dTmapToAve)\n', (68983, 69022), True, 'import numpy as np\n'), ((71332, 71384), 'numpy.array', 'np.array', (['[geff for geff in geomefficienciesRe[det]]'], {}), '([geff for geff in geomefficienciesRe[det]])\n', (71340, 71384), True, 'import numpy as np\n'), ((71421, 71447), 'numpy.mean', 'np.mean', (['geffToAve'], {'axis': '(0)'}), '(geffToAve, axis=0)\n', (71428, 71447), True, 'import numpy as np\n'), ((71486, 71511), 'numpy.std', 'np.std', (['geffToAve'], {'axis': '(0)'}), '(geffToAve, axis=0)\n', (71492, 71511), True, 'import numpy as np\n'), ((71740, 71787), 'numpy.array', 'np.array', (['[geff for geff in geomefficiencyAves]'], {}), '([geff for geff in geomefficiencyAves])\n', (71748, 71787), True, 'import numpy as np\n'), ((71836, 71883), 'numpy.array', 'np.array', (['[geff for geff in geomefficiencyAves]'], {}), '([geff for geff in geomefficiencyAves])\n', (71844, 71883), True, 'import numpy as np\n'), ((62862, 62930), 'matplotlib.pyplot.Circle', 'plt.Circle', (['(center[0], center[1])', 'r'], {'color': 'self.materials[m].color'}), '((center[0], center[1]), r, color=self.materials[m].color)\n', (62872, 62930), True, 'import matplotlib.pyplot as plt\n'), ((66495, 66539), 'numpy.zeros', 'np.zeros', (['(self.assembly.N, self.assembly.M)'], {}), '((self.assembly.N, self.assembly.M))\n', (66503, 66539), True, 'import numpy as np\n'), ((68530, 68542), 'numpy.ravel', 'np.ravel', (['dT'], {}), '(dT)\n', (68538, 68542), True, 'import numpy as np\n'), ((68606, 68633), 'numpy.mean', 'np.mean', (['dTmapToAve'], {'axis': '(0)'}), '(dTmapToAve, axis=0)\n', (68613, 68633), True, 'import numpy as np\n'), ((69055, 69081), 'numpy.std', 'np.std', (['dTmapToAve'], {'axis': '(0)'}), '(dTmapToAve, axis=0)\n', (69061, 69081), True, 'import numpy as np\n'), ((70566, 70578), 'numpy.ravel', 'np.ravel', (['cm'], {}), '(cm)\n', (70574, 70578), True, 'import numpy as np\n'), ((70654, 70680), 'numpy.mean', 'np.mean', (['cMapToAve'], {'axis': '(0)'}), '(cMapToAve, axis=0)\n', (70661, 70680), True, 'import numpy as np\n'), ((70764, 70789), 'numpy.std', 'np.std', (['cMapToAve'], {'axis': '(0)'}), '(cMapToAve, axis=0)\n', (70770, 70789), True, 'import numpy as np\n'), ((987, 998), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (996, 998), False, 'import os\n'), ((50100, 50123), 'numpy.random.uniform', 'np.random.uniform', (['(0)', '(2)'], {}), '(0, 2)\n', (50117, 50123), True, 'import numpy as np\n'), ((50166, 50179), 'numpy.cos', 'np.cos', (['angle'], {}), '(angle)\n', (50172, 50179), True, 'import numpy as np\n'), ((50222, 50235), 'numpy.sin', 'np.sin', (['angle'], {}), '(angle)\n', (50228, 50235), True, 'import numpy as np\n'), ((57407, 57449), 'math.exp', 'math.exp', (['(-1 * mue[key] * dTmap[key][i][j])'], {}), '(-1 * mue[key] * dTmap[key][i][j])\n', (57415, 57449), False, 'import math\n'), ((69776, 69788), 'numpy.ravel', 'np.ravel', (['cm'], {}), '(cm)\n', (69784, 69788), True, 'import numpy as np\n'), ((69872, 69898), 'numpy.mean', 'np.mean', (['cMapToAve'], {'axis': '(0)'}), '(cMapToAve, axis=0)\n', (69879, 69898), True, 'import numpy as np\n'), ((69988, 70013), 'numpy.std', 'np.std', (['cMapToAve'], {'axis': '(0)'}), '(cMapToAve, axis=0)\n', (69994, 70013), True, 'import numpy as np\n'), ((49998, 50021), 'numpy.random.uniform', 'np.random.uniform', (['(0)', '(1)'], {}), '(0, 1)\n', (50015, 50021), True, 'import numpy as np\n'), ((61974, 62007), 'random.choice', 'random.choice', (['"""0123456789ABCDEF"""'], {}), "('0123456789ABCDEF')\n", (61987, 62007), False, 'import random\n'), ((67359, 67379), 'numpy.sum', 'np.sum', (['contribution'], {}), '(contribution)\n', (67365, 67379), True, 'import numpy as np\n')]
import numpy as np import numpy_financial as npf import numpy.linalg as linalg from datetime import date from workalendar.america import Brazil cal = Brazil() class Titulos: def __init__(self, taxa, start, end, c=0): """ :param fv: Face Value :param c: coupon :param start: settlement date :param end: Maturity date """ self.fv = 1000 self.taxa = taxa self.coupon = c self.start = start self.end = end def ltn(self): """ :param taxa: taxa contratada :param DU: Número de dias úteis :return: """ DU = cal.get_working_days_delta(self.start, self.end) # Lidando com possível erro de entrada do usuário if self.taxa < 1: taxa = self.taxa elif self.taxa > 1: taxa = self.taxa / 100 price = self.fv / (1 + taxa) ** (DU / 252) return price def ntn_f(self): """ compute log returns for each ticker. parameters ---------- taxa : scalar taxa contratada da ltn DU: list Dias úteis do pagamento de cada cupon returns ------- preço : escalar preço de uma NTN-F """ taxa = self.taxa # Lidando com possível erro de entrada do usuário if taxa < 1: taxa = taxa elif taxa > 1: taxa = taxa / 100 # O Valor de Face sempre será 1000 fv = 1000 #Solucionar para as datas gerando cupons start = self.start end_year = date(start.year, 12, 31) start_next_year = date(start.year + 1, 1, 1) maturity = self.end #days é o restante do ano e days2 o restante do contrato após o ano seguinte days = cal.get_working_days_delta(start, end_year) days2 = cal.get_working_days_delta(start_next_year, maturity) if days < 252 / 2: coupon = 1 else: coupon = 2 number_coupons = int((days2 / 252) * 2) + coupon # Criamos uma np.array para facilitar manipulação DU = np.zeros(number_coupons) for i in range(1, number_coupons): DU[0] = days DU[i] = DU[i - 1] + 252 / 2 # O valor do cupom é fixo e é melhor aproximado por essa conta c = fv * ((1 + 0.1) ** (1 / 2) - 1) # Manipulação para a criação do fluxo de caixa terminal = fv + c fluxo_caixa = np.full(len(DU), fill_value=c) fluxo_caixa[-1] = terminal dcf = np.full(len(DU), fill_value=taxa) price = sum(fluxo_caixa / (1 + dcf) ** (DU / 252)) return price def ntn_b_principal(self, VNA, IPCA): """ Essa função retorna o preço de uma NTN-B :param taxa: Na hora da negociação :param VNA: VNA na hora da negociação :param DU = Dias úteis até o vencimento :param IPCA: IPCA projetado. Deve estar em percentual :param date: Data em que a negociação será feita :return: preço da NTN-B """ DU = self.end - self.start DU = DU.days my_date = self.start taxa = self.taxa # Lidando com possível erro de entrada do usuário if taxa < 1: taxa = taxa elif taxa > 1: taxa = taxa / 100 IPCA = IPCA / 100 # Lidando com o tempo e seus casos extremos # Esse é um ponto crítico no cálculo da NTN-B if my_date.month == 1: last = datetime.date(my_date.year - 1, 12, 15) else: last = datetime.date(my_date.year, my_date.month - 1, 15) if my_date.day < 15: this_month = datetime.date(my_date.year, my_date.month, 15) else: this_month = my_date if my_date.month == 12: next_month = datetime.date(my_date.year + 1, 1, 15) else: next_month = datetime.date(my_date.year, my_date.month + 1, 15) # A partir daqui come;a o real cálculo da ntn-b # Se o cálculo é para o DIA 15, o VNA náo precisa ser calculado if my_date.day == 15: VNA_p = VNA else: pr = (my_date - last) / (next_month - this_month) VNA_p = VNA * (1 + IPCA) ** (pr) #Calculando a cotação cotacao = 1 / (1 + taxa) ** (DU / 252) #preço de compra da NTN-B valor = VNA_p * cotacao return valor def ntn_b(self, VNA, DU, IPCA, date): """ Essa função retorna o preço de uma NTN-B :param taxa: Na hora da negociação :param VNA: VNA na hora da negociação :param DU = Lista de dias úteis de cada cupom :param IPCA: IPCA projetado. Deve estar em percentual :param date: Data em que a negociação será feita :return: preço da NTN-B """ taxa = self.taxa # Lidando com possível erro de entrada do usuário if taxa < 1: taxa = taxa elif taxa > 1: taxa = taxa / 100 # Criamos uma np.array para facilitar manipulação DU = np.array(DU) # Temos que normalizar o IPCa IPCA = IPCA / 100 # Lidando com o tempo e seus casos extremos # Esse é um ponto crítico no cálculo da NTN-B my_date = date if my_date.month == 1: last = datetime.date(my_date.year - 1, 12, 15) else: last = datetime.date(my_date.year, my_date.month - 1, 15) if my_date.day < 15: this_month = datetime.date(my_date.year, my_date.month, 15) else: this_month = my_date if my_date.month == 12: next_month = datetime.date(my_date.year + 1, 1, 15) else: next_month = datetime.date(my_date.year, my_date.month + 1, 15) # A partir daqui começa o real cálculo da ntn-b pr = (my_date - last) / (next_month - this_month) # Calculando e controlando o VNA projetado if my_date.day == 15: VNA_p = VNA else: VNA_p = VNA * (1 + IPCA) ** (pr) #Calculando a cotação que inclui os cupons c = ((1 + 0.06) ** (1 / 2) - 1) terminal = 1 fluxo_caixa = np.full(len(DU), fill_value=c) fluxo_caixa[-1] = fluxo_caixa[-1] + terminal dcf = np.full(len(DU), fill_value=taxa) cotacao = sum(fluxo_caixa / (1 + dcf) ** (DU / 252)) #preço de compra da NTN-B valor_final = VNA_p * cotacao return valor_final def lft(self, taxa, DU, VNA, selic): """ Retorna o preço de compra de uma LFT :param taxa: taxa contratada com ágio ou deságio :param DU: dias úteis :param VNA: VNA corrigido pela SELIC :param selic: Taxa Selic projetada e anualizada :return: """ if selic < 1: selic = selic elif taxa > 1: selic = selic / 100 VNA_p = VNA * (1 + selic) ** (1 / 252) cotacao = 1 / (1 + taxa) ** (DU / 252) return VNA_p * cotacao def bondPrice(self, ttm: int , ytm): """ param: ttm = Time to maturity ytm = Yield to Maturity """ c = self.coupon fv = self.fv cashFlow = [] if c < 0: c = c else: c = c/100 if ytm < 0: ytm = ytm else: ytm = ytm/100 [cashFlow.append((fv*c)/(1+ytm)**(i)) for i in range(1,ttm)] cashFlow.append((fv+(fv*c))/(1+ytm)**(ttm)) price = sum(cashFlow) return price def ytm(self, r): """ This function return the prices of each path. :param fv: Bonds Face Value :param rates: a list of interest rates :param c: coupon rate :return: Bond Yield to Maturity and Price """ #Setting ttm = Time to maturity ttm = len(r) fv = self.fv c = self.coupon if c > 1: c = c/100 else: c = c ttm1 = ttm-1 #Creating a coupon array cashF = np.array([fv*c]*ttm1) cashF = np.append(cashF,(fv*c)+fv) #Create a array with zeros to fill with discounted factors dcf = np.zeros(ttm, dtype=np.double) for i in range(0,ttm): dcf[i] = cashF[i] * (1/(1+r[i])**(i+1)) # Fiding prices price = np.sum(dcf) #Creating cash flow structure to calculate YTM cashF = np.insert(cashF, 0, -price) ytm = npf.irr(cashF) Bond_Characteristics = { "Bond price": price, "Bond Yield":round(ytm*100, 3), } return Bond_Characteristics def bondPriceElasticity(self, rates, delta): """ :param fv: Bonds Face Value :param rates: a list of interest rates :param c: coupon rate :param delta: change in Yield to Maturity :return: Bond Yield to Maturity and Price """ fv = self.fv c = self.coupon ttm = len(rates) values = ytm(rates) price = values['Bond price'] rates = np.array(rates) rates = rates*(1/100) c = c/100 delta = delta/100 ttm1 = ttm-1 cashF = np.vstack([fv*c]*ttm1) cashF = np.append(cashF,(fv*c)+fv) dcf = np.array([]) for i in range(0,ttm): dcf = np.append(dcf,cashF[i]*(i+1)/(1+rates[i])**(i+2) ) pe_factor = np.sum(dcf) b = -1/price price_elasticity = b*pe_factor delta_bond = -price*abs(price_elasticity)*delta bond_elasticity = {'Bond Price': price, 'Bond new price': price+delta_bond, 'Bond Elasticity':price_elasticity, 'Price Change': delta_bond, } return bond_elasticity def convexity(self, r): """ param: fv = Face Value ttm = Time to maturity c = coupon ytm = Yield to Maturity """ fv = self.fv c = self.coupon ytm = ytm(r) ttm = len(r) price = bondPrice(fv, ttm, c, ytm) c = c/100 ytm = ytm/100 x = [] [x.append((fv*c)/(1+ytm)**(i)) for i in range(1,ttm)] x.append((fv+(fv*c))/(1+ytm)**(ttm)) y = [] [y.append(x[i] * (i+1) * (i+2) ) for i in range(0,ttm)] dfc = sum(y) cx = (dfc*0.5)/(((1+ytm)**2)*price) return cx def mac_mod_cx_duration(self, r): """ param: fv = Face Value ttm = Time to maturity; If the bond is a perpetuity, ttm =0 c = coupon ytm = Yield to Maturity """ fv = self.fv c = self.coupon ytm = ytm(r) ttm = len(r) price = bondPrice(fv, ttm, c, ytm) cx = convexity(fv,ttm,c, ytm) c = c/100 ytm = ytm/100 x =[] if ttm == 0: modD = 1/ytm D = modD*(1+ytm) else: if c == 0: D = ttm else: [x.append((fv*c)/(1+ytm)**(i) *i) for i in range(1,ttm)] x.append((fv+(fv*c))/(1+ytm)**(ttm) * ttm) d = sum(x) D = d/price modD = D/(1+ytm) bond_cara = {'Price': price, 'Bond Macauly Duration':D, 'Modified Duration': modD, 'Convexity': cx, } return bond_cara def bondRisk(self, r, delta): """ param: fv = Face Value ttm = Time to maturity; If the bond is a perpetuity, ttm =0 c = coupon ytm = Yield to Maturity delta = change in yield to maturity """ fv = self.fv ttm = len(r) c = self.coupon ytm = ytm(r) delta = delta/100 values = mac_mod_cx_duration(fv,ttm,c,ytm) price = values['Price'] D = values['Bond Macauly Duration'] modD = values['Modified Duration'] cx = values['Convexity'] """Now we calculate the change in price of this bond. delta_price = is the approximation only with modifie duration delta_price2 = is the approximation with modifie duration and convexity """ delta_price = -price*modD*delta delta_price2 = price*(-modD*delta + cx*delta**2) """ Now we use the change to see what is the new price in these two cases. l """ newprice = price + delta_price newprice2 = price + delta_price2 bond_risks = {'Bond Macauly Duration':D, 'Bond Modified Duration':modD, 'first order change in price': delta_price, 'Second order change in price':delta_price2, 'Original Price':price, 'New price Mod Duration': newprice, 'New price Mod and Convexity': newprice2, } return bond_risks def arbitrageEstrategy(fv, price, c, ttm): """ param: fv = Face Value ttm = List with Time to Maturity. c = List with Coupon interest; ytm = List with Yield to Maturity. """ price = np.array(price) price = price * (-1) fv = np.array(fv) c = np.array(c) c = c/100 ttm = np.array(ttm) # The shape of the Matrix. This will depend of the bond with the higher time to maturity. mformat = np.max(ttm) ttmz = ttm-1 # Manipulação das constantes para a estratégia cons = np.array([]) len = mformat cons = np.vstack([0]*(len)) cons = np.insert(cons, 0, 100) #creating a Matrix Matrix = np.zeros((price.size, mformat)) # Setting the Matrix #Setting the o coupon bonds for i in range(0, price.size): if (c[i] == 0): Matrix[i][ttmz[i]] = fv else: pass #Setting the coupon payment for i in range(0, price.size): if (np.max(Matrix[i][:]) == 0): for j in range(0, mformat): Matrix[i][j] = (fv*c[i]) #Setting the principal payment for i in range(0, price.size): for j in range(0, mformat): if(c[i] != 0 and j == ttmz[i]): Matrix[i][j] = fv+(fv*c[i]) #Cleaning the Matrix for i in range(0, price.size): for j in range(0, mformat): if(c[i] != 0 and j > ttmz[i]): Matrix[i][j] = 0 #Get together prices array and matrix matrix = np.column_stack((price, Matrix)) #Transposing the Matrix matrix = np.transpose(matrix) #Solving the Matrix. Maybe another function for non-quadratic matrix answer = linalg.solve(matrix, cons) return answer
[ "workalendar.america.Brazil", "numpy.sum", "numpy_financial.irr", "numpy.zeros", "datetime.date", "numpy.transpose", "numpy.insert", "numpy.append", "numpy.max", "numpy.array", "numpy.column_stack", "numpy.linalg.solve", "numpy.vstack" ]
[((150, 158), 'workalendar.america.Brazil', 'Brazil', ([], {}), '()\n', (156, 158), False, 'from workalendar.america import Brazil\n'), ((1621, 1645), 'datetime.date', 'date', (['start.year', '(12)', '(31)'], {}), '(start.year, 12, 31)\n', (1625, 1645), False, 'from datetime import date\n'), ((1672, 1698), 'datetime.date', 'date', (['(start.year + 1)', '(1)', '(1)'], {}), '(start.year + 1, 1, 1)\n', (1676, 1698), False, 'from datetime import date\n'), ((2159, 2183), 'numpy.zeros', 'np.zeros', (['number_coupons'], {}), '(number_coupons)\n', (2167, 2183), True, 'import numpy as np\n'), ((5156, 5168), 'numpy.array', 'np.array', (['DU'], {}), '(DU)\n', (5164, 5168), True, 'import numpy as np\n'), ((8190, 8215), 'numpy.array', 'np.array', (['([fv * c] * ttm1)'], {}), '([fv * c] * ttm1)\n', (8198, 8215), True, 'import numpy as np\n'), ((8228, 8257), 'numpy.append', 'np.append', (['cashF', '(fv * c + fv)'], {}), '(cashF, fv * c + fv)\n', (8237, 8257), True, 'import numpy as np\n'), ((8338, 8368), 'numpy.zeros', 'np.zeros', (['ttm'], {'dtype': 'np.double'}), '(ttm, dtype=np.double)\n', (8346, 8368), True, 'import numpy as np\n'), ((8493, 8504), 'numpy.sum', 'np.sum', (['dcf'], {}), '(dcf)\n', (8499, 8504), True, 'import numpy as np\n'), ((8577, 8604), 'numpy.insert', 'np.insert', (['cashF', '(0)', '(-price)'], {}), '(cashF, 0, -price)\n', (8586, 8604), True, 'import numpy as np\n'), ((8619, 8633), 'numpy_financial.irr', 'npf.irr', (['cashF'], {}), '(cashF)\n', (8626, 8633), True, 'import numpy_financial as npf\n'), ((9239, 9254), 'numpy.array', 'np.array', (['rates'], {}), '(rates)\n', (9247, 9254), True, 'import numpy as np\n'), ((9366, 9392), 'numpy.vstack', 'np.vstack', (['([fv * c] * ttm1)'], {}), '([fv * c] * ttm1)\n', (9375, 9392), True, 'import numpy as np\n'), ((9405, 9434), 'numpy.append', 'np.append', (['cashF', '(fv * c + fv)'], {}), '(cashF, fv * c + fv)\n', (9414, 9434), True, 'import numpy as np\n'), ((9446, 9458), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (9454, 9458), True, 'import numpy as np\n'), ((9579, 9590), 'numpy.sum', 'np.sum', (['dcf'], {}), '(dcf)\n', (9585, 9590), True, 'import numpy as np\n'), ((13415, 13430), 'numpy.array', 'np.array', (['price'], {}), '(price)\n', (13423, 13430), True, 'import numpy as np\n'), ((13474, 13486), 'numpy.array', 'np.array', (['fv'], {}), '(fv)\n', (13482, 13486), True, 'import numpy as np\n'), ((13499, 13510), 'numpy.array', 'np.array', (['c'], {}), '(c)\n', (13507, 13510), True, 'import numpy as np\n'), ((13544, 13557), 'numpy.array', 'np.array', (['ttm'], {}), '(ttm)\n', (13552, 13557), True, 'import numpy as np\n'), ((13675, 13686), 'numpy.max', 'np.max', (['ttm'], {}), '(ttm)\n', (13681, 13686), True, 'import numpy as np\n'), ((13779, 13791), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (13787, 13791), True, 'import numpy as np\n'), ((13829, 13849), 'numpy.vstack', 'np.vstack', (['([0] * len)'], {}), '([0] * len)\n', (13838, 13849), True, 'import numpy as np\n'), ((13865, 13888), 'numpy.insert', 'np.insert', (['cons', '(0)', '(100)'], {}), '(cons, 0, 100)\n', (13874, 13888), True, 'import numpy as np\n'), ((13934, 13965), 'numpy.zeros', 'np.zeros', (['(price.size, mformat)'], {}), '((price.size, mformat))\n', (13942, 13965), True, 'import numpy as np\n'), ((14860, 14892), 'numpy.column_stack', 'np.column_stack', (['(price, Matrix)'], {}), '((price, Matrix))\n', (14875, 14892), True, 'import numpy as np\n'), ((14943, 14963), 'numpy.transpose', 'np.transpose', (['matrix'], {}), '(matrix)\n', (14955, 14963), True, 'import numpy as np\n'), ((15059, 15085), 'numpy.linalg.solve', 'linalg.solve', (['matrix', 'cons'], {}), '(matrix, cons)\n', (15071, 15085), True, 'import numpy.linalg as linalg\n'), ((9508, 9570), 'numpy.append', 'np.append', (['dcf', '(cashF[i] * (i + 1) / (1 + rates[i]) ** (i + 2))'], {}), '(dcf, cashF[i] * (i + 1) / (1 + rates[i]) ** (i + 2))\n', (9517, 9570), True, 'import numpy as np\n'), ((14272, 14292), 'numpy.max', 'np.max', (['Matrix[i][:]'], {}), '(Matrix[i][:])\n', (14278, 14292), True, 'import numpy as np\n')]
# Plot (and write to table?) autocorrelation and ESS for samplers with different # stepsizes on some standard functions (no noise?). See also MCMCVisualizer # plots and pymc3 plots. # Plot the following: # vs NUTS with different initial stepsizes # vs HMC with different initial stepsizes # vs SGHMC with different initial stepsizes # vs SGLD with different initial stepsizes # other plots definitely should go in appendix unless they have some super-unexpected results # => show table with all results (what is a reasonable table format?) # List of samplers: # - SGHMC (sgmcmc, theano) [x] # - SGHMCHD (pysgmcmc, keras) [x] # - SGLD (pysgmcmc, tensorflow) [x] <- from tensorflow_probability # - HMC(pymc3) [x] # - NUTS (pymc3, pymc3) <- compare to NUTS here as well! [x] # - slice/metropolis (pymc3) [x] # Left to add: # - SVGD (?) # - RelSGHMC (re-implement as optimizer in pysgmcmc) # - import sys from os.path import dirname, join as path_join sys.path.insert(0, path_join(dirname(__file__), "..")) sys.path.insert(0, path_join(dirname(__file__), "robo")) sys.path.insert(0, path_join(dirname(__file__), "pysgmcmc_development")) import numpy as np from keras import backend as K from collections import OrderedDict from itertools import islice, product from pysgmcmc.diagnostics import PYSGMCMCTrace from pysgmcmc.samplers.energy_functions import ( to_negative_log_likelihood, Banana, Gmm1, Gmm2, Gmm3, MoGL2HMC, StandardNormal, Donut, Squiggle, ) from pysgmcmc.samplers.sghmc import SGHMCSampler from pysgmcmc.samplers.sghmchd import SGHMCHDSampler from pysgmcmc.samplers.sgld import SGLDSampler from pysgmcmc_experiments.experiment_wrapper import to_experiment import pymc3 as pm import dill # XXX: Handle variable naming properly. EXPERIMENT_NAME = "energy_functions" def init_hmc(model, stepsize, init="jitter+adapt_diag", chains=1): from pymc3.step_methods.hmc import quadpotential if init == 'jitter+adapt_diag': start = [] for _ in range(chains): mean = {var: val.copy() for var, val in model.test_point.items()} for val in mean.values(): val[...] += 2 * np.random.rand(*val.shape) - 1 start.append(mean) mean = np.mean([model.dict_to_array(vals) for vals in start], axis=0) var = np.ones_like(mean) potential = quadpotential.QuadPotentialDiagAdapt( model.ndim, mean, var, 10) return pm.step_methods.HamiltonianMC( step_scale=stepsize, potential=potential, path_length=1 ) else: raise NotImplementedError() ENERGY_FUNCTIONS = OrderedDict(( ("banana", (Banana(), lambda: [K.random_normal_variable(mean=0., scale=1., shape=(1,)), K.random_normal_variable(mean=0., scale=1., shape=(1,))])), ("gmm1", (Gmm1(), lambda: [K.variable(K.random_normal((1,)), name="x", dtype=K.floatx())],)), ("gmm2", ( Gmm2(), lambda: [K.variable(K.random_normal((1,)), name="x", dtype=K.floatx())], )), ("gmm3", (Gmm3(), lambda: [K.variable(K.random_normal((1,)), name="x", dtype=K.floatx())],) ), ("mogl2hmc", (MoGL2HMC(), lambda: [K.variable(K.random_normal((1,)), name="x", dtype=K.floatx())],) ), ("standard_normal", (StandardNormal(), lambda: [K.variable(K.random_normal((1,)), name="x", dtype=K.floatx())],) ), ("donut", (Donut(), lambda: [K.random_normal_variable(mean=0., scale=1., shape=(1,)), K.random_normal_variable(mean=0., scale=1., shape=(1,))])), ("squiggle", (Squiggle(), lambda: [K.random_normal_variable(mean=0., scale=1., shape=(1,)), K.random_normal_variable(mean=0., scale=1., shape=(1,))])), )) PYMC3_SAMPLERS = ("NUTS", "HMC", "Metropolis", "Slice",) SAMPLERS = OrderedDict(( ("SGHMC", SGHMCSampler), ("SGHMCHD", SGHMCHDSampler), ("SGLD", SGLDSampler), ("NUTS", pm.step_methods.NUTS), ("HMC", pm.step_methods.HamiltonianMC), ("Metropolis", pm.step_methods.Metropolis), ("Slice", pm.step_methods.Slice), )) STEPSIZES = tuple(( 1e-12, 1e-10, 1e-8, 1e-6, 1e-4, 1e-2, 0.25, 0.5, 1.0, )) CONFIGURATIONS = [ {"energy_function": energy_function, "sampler": sampler, "stepsize": stepsize} for energy_function, sampler, stepsize in product(ENERGY_FUNCTIONS, SAMPLERS, STEPSIZES) if sampler not in ("Metropolis", "Slice") ] CONFIGURATIONS.extend([ {"energy_function": energy_function, "sampler": sampler, "stepsize": None} for energy_function, sampler in product(ENERGY_FUNCTIONS, ("Metropolis", "Slice")) ]) def get_trace(sampler, stepsize, energy_function, _run, burn_in_steps=3000, sampling_steps=10 ** 4, num_chains=10): energy_function_, initial_guess = ENERGY_FUNCTIONS[energy_function] initial_sample = initial_guess() sampler_cls = SAMPLERS[sampler] if sampler in PYMC3_SAMPLERS: def draw_trace(chain_id): with pm.Model() as model: energy_function_.to_pymc3() if sampler == "NUTS": from pymc3.sampling import init_nuts start, step = init_nuts( init="auto", n_init=200000, model=model, progressbar=True ) trace = pm.sample( sampling_steps, tune=burn_in_steps, step=step, chains=1, chain_idx=chain_id, start=start, discard_tuned_samples=False ) elif sampler == "HMC": step = init_hmc(stepsize=stepsize, model=model) trace = pm.sample(sampling_steps, tune=burn_in_steps, step=step, chains=1, discard_tuned_samples=False, chain_idx=chain_id) else: step = SAMPLERS[sampler]() trace = pm.sample( sampling_steps, tune=burn_in_steps, step=step, chains=1, chain_idx=chain_id, discard_tuned_samples=False ) return trace def combine_traces(multitraces): base_trace = multitraces[0] for multitrace in multitraces[1:]: for chain, strace in multitrace._straces.items(): if chain in base_trace._straces: raise ValueError("Chains are not unique.") base_trace._straces[chain] = strace return base_trace multitrace = combine_traces( [draw_trace(chain_id=chain_id) for chain_id in range(num_chains)] ) else: def loss_for(sampler, energy_function): def loss_fun(sample): loss_tensor = to_negative_log_likelihood(energy_function)(sample) for param in sample: param.hypergradient = K.gradients(loss_tensor, param) return loss_tensor return loss_fun def draw_chain(): loss = loss_for(sampler_cls, energy_function_)(initial_sample) sampler_ = sampler_cls(params=initial_sample, loss=loss, lr=stepsize) samples = np.asarray([ sample for _, sample in islice(sampler_, burn_in_steps + sampling_steps) ]) if np.isnan(samples).any(): print("Had nans.. iterating") return draw_chain() return np.squeeze(samples, 2) multitrace = pm.backends.base.MultiTrace([PYSGMCMCTrace(draw_chain(), chain_id=id) for id in range(num_chains)]) output_filename = path_join( dirname(__file__), "../results/{}/{}/trace.pkl".format(EXPERIMENT_NAME, _run._id) ) with open(output_filename, "wb") as trace_buffer: dill.dump(multitrace, trace_buffer) return True experiment = to_experiment( experiment_name=EXPERIMENT_NAME, function=get_trace, configurations=CONFIGURATIONS, )
[ "pymc3.sample", "pysgmcmc.samplers.energy_functions.Gmm1", "numpy.isnan", "numpy.random.rand", "os.path.dirname", "keras.backend.random_normal_variable", "itertools.product", "pymc3.step_methods.HamiltonianMC", "pymc3.sampling.init_nuts", "pysgmcmc.samplers.energy_functions.MoGL2HMC", "keras.backend.gradients", "pysgmcmc.samplers.energy_functions.Donut", "numpy.ones_like", "pymc3.Model", "pysgmcmc.samplers.energy_functions.Squiggle", "keras.backend.random_normal", "itertools.islice", "numpy.squeeze", "dill.dump", "pysgmcmc_experiments.experiment_wrapper.to_experiment", "pysgmcmc.samplers.energy_functions.Banana", "keras.backend.floatx", "pysgmcmc.samplers.energy_functions.to_negative_log_likelihood", "pysgmcmc.samplers.energy_functions.Gmm2", "pymc3.step_methods.hmc.quadpotential.QuadPotentialDiagAdapt", "pysgmcmc.samplers.energy_functions.Gmm3", "collections.OrderedDict", "pysgmcmc.samplers.energy_functions.StandardNormal" ]
[((3859, 4112), 'collections.OrderedDict', 'OrderedDict', (["(('SGHMC', SGHMCSampler), ('SGHMCHD', SGHMCHDSampler), ('SGLD', SGLDSampler\n ), ('NUTS', pm.step_methods.NUTS), ('HMC', pm.step_methods.\n HamiltonianMC), ('Metropolis', pm.step_methods.Metropolis), ('Slice',\n pm.step_methods.Slice))"], {}), "((('SGHMC', SGHMCSampler), ('SGHMCHD', SGHMCHDSampler), ('SGLD',\n SGLDSampler), ('NUTS', pm.step_methods.NUTS), ('HMC', pm.step_methods.\n HamiltonianMC), ('Metropolis', pm.step_methods.Metropolis), ('Slice',\n pm.step_methods.Slice)))\n", (3870, 4112), False, 'from collections import OrderedDict\n'), ((8152, 8253), 'pysgmcmc_experiments.experiment_wrapper.to_experiment', 'to_experiment', ([], {'experiment_name': 'EXPERIMENT_NAME', 'function': 'get_trace', 'configurations': 'CONFIGURATIONS'}), '(experiment_name=EXPERIMENT_NAME, function=get_trace,\n configurations=CONFIGURATIONS)\n', (8165, 8253), False, 'from pysgmcmc_experiments.experiment_wrapper import to_experiment\n'), ((983, 1000), 'os.path.dirname', 'dirname', (['__file__'], {}), '(__file__)\n', (990, 1000), False, 'from os.path import dirname, join as path_join\n'), ((1038, 1055), 'os.path.dirname', 'dirname', (['__file__'], {}), '(__file__)\n', (1045, 1055), False, 'from os.path import dirname, join as path_join\n'), ((1095, 1112), 'os.path.dirname', 'dirname', (['__file__'], {}), '(__file__)\n', (1102, 1112), False, 'from os.path import dirname, join as path_join\n'), ((2312, 2330), 'numpy.ones_like', 'np.ones_like', (['mean'], {}), '(mean)\n', (2324, 2330), True, 'import numpy as np\n'), ((2351, 2414), 'pymc3.step_methods.hmc.quadpotential.QuadPotentialDiagAdapt', 'quadpotential.QuadPotentialDiagAdapt', (['model.ndim', 'mean', 'var', '(10)'], {}), '(model.ndim, mean, var, 10)\n', (2387, 2414), False, 'from pymc3.step_methods.hmc import quadpotential\n'), ((2444, 2534), 'pymc3.step_methods.HamiltonianMC', 'pm.step_methods.HamiltonianMC', ([], {'step_scale': 'stepsize', 'potential': 'potential', 'path_length': '(1)'}), '(step_scale=stepsize, potential=potential,\n path_length=1)\n', (2473, 2534), True, 'import pymc3 as pm\n'), ((4366, 4412), 'itertools.product', 'product', (['ENERGY_FUNCTIONS', 'SAMPLERS', 'STEPSIZES'], {}), '(ENERGY_FUNCTIONS, SAMPLERS, STEPSIZES)\n', (4373, 4412), False, 'from itertools import islice, product\n'), ((7927, 7944), 'os.path.dirname', 'dirname', (['__file__'], {}), '(__file__)\n', (7934, 7944), False, 'from os.path import dirname, join as path_join\n'), ((8085, 8120), 'dill.dump', 'dill.dump', (['multitrace', 'trace_buffer'], {}), '(multitrace, trace_buffer)\n', (8094, 8120), False, 'import dill\n'), ((4605, 4655), 'itertools.product', 'product', (['ENERGY_FUNCTIONS', "('Metropolis', 'Slice')"], {}), "(ENERGY_FUNCTIONS, ('Metropolis', 'Slice'))\n", (4612, 4655), False, 'from itertools import islice, product\n'), ((7740, 7762), 'numpy.squeeze', 'np.squeeze', (['samples', '(2)'], {}), '(samples, 2)\n', (7750, 7762), True, 'import numpy as np\n'), ((2679, 2687), 'pysgmcmc.samplers.energy_functions.Banana', 'Banana', ([], {}), '()\n', (2685, 2687), False, 'from pysgmcmc.samplers.energy_functions import to_negative_log_likelihood, Banana, Gmm1, Gmm2, Gmm3, MoGL2HMC, StandardNormal, Donut, Squiggle\n'), ((2859, 2865), 'pysgmcmc.samplers.energy_functions.Gmm1', 'Gmm1', ([], {}), '()\n', (2863, 2865), False, 'from pysgmcmc.samplers.energy_functions import to_negative_log_likelihood, Banana, Gmm1, Gmm2, Gmm3, MoGL2HMC, StandardNormal, Donut, Squiggle\n'), ((2966, 2972), 'pysgmcmc.samplers.energy_functions.Gmm2', 'Gmm2', ([], {}), '()\n', (2970, 2972), False, 'from pysgmcmc.samplers.energy_functions import to_negative_log_likelihood, Banana, Gmm1, Gmm2, Gmm3, MoGL2HMC, StandardNormal, Donut, Squiggle\n'), ((3082, 3088), 'pysgmcmc.samplers.energy_functions.Gmm3', 'Gmm3', ([], {}), '()\n', (3086, 3088), False, 'from pysgmcmc.samplers.energy_functions import to_negative_log_likelihood, Banana, Gmm1, Gmm2, Gmm3, MoGL2HMC, StandardNormal, Donut, Squiggle\n'), ((3195, 3205), 'pysgmcmc.samplers.energy_functions.MoGL2HMC', 'MoGL2HMC', ([], {}), '()\n', (3203, 3205), False, 'from pysgmcmc.samplers.energy_functions import to_negative_log_likelihood, Banana, Gmm1, Gmm2, Gmm3, MoGL2HMC, StandardNormal, Donut, Squiggle\n'), ((3319, 3335), 'pysgmcmc.samplers.energy_functions.StandardNormal', 'StandardNormal', ([], {}), '()\n', (3333, 3335), False, 'from pysgmcmc.samplers.energy_functions import to_negative_log_likelihood, Banana, Gmm1, Gmm2, Gmm3, MoGL2HMC, StandardNormal, Donut, Squiggle\n'), ((3439, 3446), 'pysgmcmc.samplers.energy_functions.Donut', 'Donut', ([], {}), '()\n', (3444, 3446), False, 'from pysgmcmc.samplers.energy_functions import to_negative_log_likelihood, Banana, Gmm1, Gmm2, Gmm3, MoGL2HMC, StandardNormal, Donut, Squiggle\n'), ((3621, 3631), 'pysgmcmc.samplers.energy_functions.Squiggle', 'Squiggle', ([], {}), '()\n', (3629, 3631), False, 'from pysgmcmc.samplers.energy_functions import to_negative_log_likelihood, Banana, Gmm1, Gmm2, Gmm3, MoGL2HMC, StandardNormal, Donut, Squiggle\n'), ((5008, 5018), 'pymc3.Model', 'pm.Model', ([], {}), '()\n', (5016, 5018), True, 'import pymc3 as pm\n'), ((5202, 5270), 'pymc3.sampling.init_nuts', 'init_nuts', ([], {'init': '"""auto"""', 'n_init': '(200000)', 'model': 'model', 'progressbar': '(True)'}), "(init='auto', n_init=200000, model=model, progressbar=True)\n", (5211, 5270), False, 'from pymc3.sampling import init_nuts\n'), ((5418, 5550), 'pymc3.sample', 'pm.sample', (['sampling_steps'], {'tune': 'burn_in_steps', 'step': 'step', 'chains': '(1)', 'chain_idx': 'chain_id', 'start': 'start', 'discard_tuned_samples': '(False)'}), '(sampling_steps, tune=burn_in_steps, step=step, chains=1,\n chain_idx=chain_id, start=start, discard_tuned_samples=False)\n', (5427, 5550), True, 'import pymc3 as pm\n'), ((7047, 7090), 'pysgmcmc.samplers.energy_functions.to_negative_log_likelihood', 'to_negative_log_likelihood', (['energy_function'], {}), '(energy_function)\n', (7073, 7090), False, 'from pysgmcmc.samplers.energy_functions import to_negative_log_likelihood, Banana, Gmm1, Gmm2, Gmm3, MoGL2HMC, StandardNormal, Donut, Squiggle\n'), ((7178, 7209), 'keras.backend.gradients', 'K.gradients', (['loss_tensor', 'param'], {}), '(loss_tensor, param)\n', (7189, 7209), True, 'from keras import backend as K\n'), ((7613, 7630), 'numpy.isnan', 'np.isnan', (['samples'], {}), '(samples)\n', (7621, 7630), True, 'import numpy as np\n'), ((2158, 2184), 'numpy.random.rand', 'np.random.rand', (['*val.shape'], {}), '(*val.shape)\n', (2172, 2184), True, 'import numpy as np\n'), ((2698, 2755), 'keras.backend.random_normal_variable', 'K.random_normal_variable', ([], {'mean': '(0.0)', 'scale': '(1.0)', 'shape': '(1,)'}), '(mean=0.0, scale=1.0, shape=(1,))\n', (2722, 2755), True, 'from keras import backend as K\n'), ((2780, 2837), 'keras.backend.random_normal_variable', 'K.random_normal_variable', ([], {'mean': '(0.0)', 'scale': '(1.0)', 'shape': '(1,)'}), '(mean=0.0, scale=1.0, shape=(1,))\n', (2804, 2837), True, 'from keras import backend as K\n'), ((3457, 3514), 'keras.backend.random_normal_variable', 'K.random_normal_variable', ([], {'mean': '(0.0)', 'scale': '(1.0)', 'shape': '(1,)'}), '(mean=0.0, scale=1.0, shape=(1,))\n', (3481, 3514), True, 'from keras import backend as K\n'), ((3538, 3595), 'keras.backend.random_normal_variable', 'K.random_normal_variable', ([], {'mean': '(0.0)', 'scale': '(1.0)', 'shape': '(1,)'}), '(mean=0.0, scale=1.0, shape=(1,))\n', (3562, 3595), True, 'from keras import backend as K\n'), ((3642, 3699), 'keras.backend.random_normal_variable', 'K.random_normal_variable', ([], {'mean': '(0.0)', 'scale': '(1.0)', 'shape': '(1,)'}), '(mean=0.0, scale=1.0, shape=(1,))\n', (3666, 3699), True, 'from keras import backend as K\n'), ((3726, 3783), 'keras.backend.random_normal_variable', 'K.random_normal_variable', ([], {'mean': '(0.0)', 'scale': '(1.0)', 'shape': '(1,)'}), '(mean=0.0, scale=1.0, shape=(1,))\n', (3750, 3783), True, 'from keras import backend as K\n'), ((5872, 5991), 'pymc3.sample', 'pm.sample', (['sampling_steps'], {'tune': 'burn_in_steps', 'step': 'step', 'chains': '(1)', 'discard_tuned_samples': '(False)', 'chain_idx': 'chain_id'}), '(sampling_steps, tune=burn_in_steps, step=step, chains=1,\n discard_tuned_samples=False, chain_idx=chain_id)\n', (5881, 5991), True, 'import pymc3 as pm\n'), ((6085, 6204), 'pymc3.sample', 'pm.sample', (['sampling_steps'], {'tune': 'burn_in_steps', 'step': 'step', 'chains': '(1)', 'chain_idx': 'chain_id', 'discard_tuned_samples': '(False)'}), '(sampling_steps, tune=burn_in_steps, step=step, chains=1,\n chain_idx=chain_id, discard_tuned_samples=False)\n', (6094, 6204), True, 'import pymc3 as pm\n'), ((7533, 7581), 'itertools.islice', 'islice', (['sampler_', '(burn_in_steps + sampling_steps)'], {}), '(sampler_, burn_in_steps + sampling_steps)\n', (7539, 7581), False, 'from itertools import islice, product\n'), ((2887, 2908), 'keras.backend.random_normal', 'K.random_normal', (['(1,)'], {}), '((1,))\n', (2902, 2908), True, 'from keras import backend as K\n'), ((3002, 3023), 'keras.backend.random_normal', 'K.random_normal', (['(1,)'], {}), '((1,))\n', (3017, 3023), True, 'from keras import backend as K\n'), ((3110, 3131), 'keras.backend.random_normal', 'K.random_normal', (['(1,)'], {}), '((1,))\n', (3125, 3131), True, 'from keras import backend as K\n'), ((3227, 3248), 'keras.backend.random_normal', 'K.random_normal', (['(1,)'], {}), '((1,))\n', (3242, 3248), True, 'from keras import backend as K\n'), ((3357, 3378), 'keras.backend.random_normal', 'K.random_normal', (['(1,)'], {}), '((1,))\n', (3372, 3378), True, 'from keras import backend as K\n'), ((2926, 2936), 'keras.backend.floatx', 'K.floatx', ([], {}), '()\n', (2934, 2936), True, 'from keras import backend as K\n'), ((3041, 3051), 'keras.backend.floatx', 'K.floatx', ([], {}), '()\n', (3049, 3051), True, 'from keras import backend as K\n'), ((3149, 3159), 'keras.backend.floatx', 'K.floatx', ([], {}), '()\n', (3157, 3159), True, 'from keras import backend as K\n'), ((3266, 3276), 'keras.backend.floatx', 'K.floatx', ([], {}), '()\n', (3274, 3276), True, 'from keras import backend as K\n'), ((3396, 3406), 'keras.backend.floatx', 'K.floatx', ([], {}), '()\n', (3404, 3406), True, 'from keras import backend as K\n')]
import mysql.connector mydb = mysql.connector.connect( host="localhost", user="root", password="", database="PUCCR" ) mycursor = mydb.cursor() #mycursor.execute("SELECT * FROM users") #myresult = mycursor.fetchall() #for x in myresult: # print(x) import sys, os, dlib, glob, numpy import cv2 from skimage import io #取得預設的臉部偵測器 detector = dlib.get_frontal_face_detector() # 人臉68特徵點模型路徑 predictor_path = "shape_predictor_68_face_landmarks.dat" # 人臉辨識模型路徑 face_rec_model_path = "dlib_face_recognition_resnet_model_v1.dat" # 比對人臉圖片資料夾 faces_folder_path = "./memberPic" #載入人臉68特徵點檢測器 sp = dlib.shape_predictor(predictor_path) #載入人臉辨識檢測器 facerec = dlib.face_recognition_model_v1(face_rec_model_path) ### 處理資料夾裡每張圖片 ### 建議 ### descriptors, candidate 存入資料庫,後續直接讀取使用 #比對人臉描述子列表 descriptors = [] #比對人臉名稱列表 candidate = [] #針對比對資料夾裡每張圖片做比對: #1.人臉偵測 #2.特徵點偵測 #3.取得描述子 for f in glob.glob(os.path.join(faces_folder_path, "*.jpg")): base = os.path.basename(f).split('.')[0] # 檔名 #依序取得圖片檔案人名 #candidate.append(base) img = io.imread(f) #1.人臉偵測 dets = detector(img, 1) #2.特徵點偵測 for k, d in enumerate(dets): shape = sp(img, d) #3.取得描述子,68維特徵量 face_descriptor = facerec.compute_face_descriptor(img, shape) #轉換numpy array格式 v = numpy.array(face_descriptor) #將值放入descriptors print(face_descriptor) #descriptors.append(v) sql = "INSERT INTO user (name, 68_face_landmark) VALUES (%s, %s)" str1 = ' '.join(str(e) for e in face_descriptor) val = (base, str1) print(val) mycursor.execute(sql, val) mydb.commit()
[ "os.path.basename", "dlib.face_recognition_model_v1", "numpy.array", "dlib.get_frontal_face_detector", "dlib.shape_predictor", "os.path.join", "skimage.io.imread" ]
[((354, 386), 'dlib.get_frontal_face_detector', 'dlib.get_frontal_face_detector', ([], {}), '()\n', (384, 386), False, 'import sys, os, dlib, glob, numpy\n'), ((602, 638), 'dlib.shape_predictor', 'dlib.shape_predictor', (['predictor_path'], {}), '(predictor_path)\n', (622, 638), False, 'import sys, os, dlib, glob, numpy\n'), ((661, 712), 'dlib.face_recognition_model_v1', 'dlib.face_recognition_model_v1', (['face_rec_model_path'], {}), '(face_rec_model_path)\n', (691, 712), False, 'import sys, os, dlib, glob, numpy\n'), ((898, 938), 'os.path.join', 'os.path.join', (['faces_folder_path', '"""*.jpg"""'], {}), "(faces_folder_path, '*.jpg')\n", (910, 938), False, 'import sys, os, dlib, glob, numpy\n'), ((1047, 1059), 'skimage.io.imread', 'io.imread', (['f'], {}), '(f)\n', (1056, 1059), False, 'from skimage import io\n'), ((1308, 1336), 'numpy.array', 'numpy.array', (['face_descriptor'], {}), '(face_descriptor)\n', (1319, 1336), False, 'import sys, os, dlib, glob, numpy\n'), ((952, 971), 'os.path.basename', 'os.path.basename', (['f'], {}), '(f)\n', (968, 971), False, 'import sys, os, dlib, glob, numpy\n')]
# -------------------------------------------------------- # Flow-Guided Feature Aggregation # Copyright (c) 2017 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by <NAME> # -------------------------------------------------------- """ given a imagenet vid imdb, compute mAP """ import numpy as np import os import cPickle def parse_vid_rec(filename, classhash, img_ids, defaultIOUthr=0.5, pixelTolerance=10): """ parse imagenet vid record into a dictionary :param filename: xml file path :return: list of dict """ import xml.etree.ElementTree as ET tree = ET.parse(filename) objects = [] for obj in tree.findall('object'): obj_dict = dict() obj_dict['label'] = classhash[obj.find('name').text] bbox = obj.find('bndbox') obj_dict['bbox'] = [float(bbox.find('xmin').text), float(bbox.find('ymin').text), float(bbox.find('xmax').text), float(bbox.find('ymax').text)] gt_w = obj_dict['bbox'][2] - obj_dict['bbox'][0] + 1 gt_h = obj_dict['bbox'][3] - obj_dict['bbox'][1] + 1 thr = (gt_w*gt_h)/((gt_w+pixelTolerance)*(gt_h+pixelTolerance)) obj_dict['thr'] = np.min([thr, defaultIOUthr]) objects.append(obj_dict) return {'bbox' : np.array([x['bbox'] for x in objects]), 'label': np.array([x['label'] for x in objects]), 'thr' : np.array([x['thr'] for x in objects]), 'img_ids': img_ids} def vid_ap(rec, prec): """ average precision calculations [precision integrated to recall] :param rec: recall :param prec: precision :return: average precision """ # append sentinel values at both ends mrec = np.concatenate(([0.], rec, [1.])) mpre = np.concatenate(([0.], prec, [0.])) # compute precision integration ladder for i in range(mpre.size - 1, 0, -1): mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) # look for recall value changes i = np.where(mrec[1:] != mrec[:-1])[0] # sum (\delta recall) * prec ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) return ap def vid_eval(multifiles, detpath, annopath, imageset_file, classname_map, annocache, ovthresh=0.5): """ imagenet vid evaluation :param detpath: detection results detpath.format(classname) :param annopath: annotations annopath.format(classname) :param imageset_file: text file containing list of images :param annocache: caching annotations :param ovthresh: overlap threshold :return: rec, prec, ap """ with open(imageset_file, 'r') as f: lines = [x.strip().split(' ') for x in f.readlines()] img_basenames = [x[0] for x in lines] gt_img_ids = [int(x[1]) for x in lines] classhash = dict(zip(classname_map, range(0,len(classname_map)))) # load annotations from cache if not os.path.isfile(annocache): recs = [] for ind, image_filename in enumerate(img_basenames): recs.append(parse_vid_rec(annopath.format('VID/' + image_filename), classhash, gt_img_ids[ind])) if ind % 100 == 0: print('reading annotations for {:d}/{:d}'.format(ind + 1, len(img_basenames))) print('saving annotations cache to {:s}'.format(annocache)) with open(annocache, 'wb') as f: cPickle.dump(recs, f, protocol=cPickle.HIGHEST_PROTOCOL) else: with open(annocache, 'rb') as f: recs = cPickle.load(f) # extract objects in :param classname: npos = np.zeros(len(classname_map)) for rec in recs: rec_labels = rec['label'] for x in rec_labels: npos[x] += 1 # read detections splitlines = [] if (multifiles == False): with open(detpath, 'r') as f: lines = f.readlines() splitlines = [x.strip().split(' ') for x in lines] else: for det in detpath: with open(det, 'r') as f: lines = f.readlines() splitlines += [x.strip().split(' ') for x in lines] img_ids = np.array([int(x[0]) for x in splitlines]) obj_labels = np.array([int(x[1]) for x in splitlines]) obj_confs = np.array([float(x[2]) for x in splitlines]) obj_bboxes = np.array([[float(z) for z in x[3:]] for x in splitlines]) # sort by confidence if obj_bboxes.shape[0] > 0: sorted_inds = np.argsort(img_ids) img_ids = img_ids[sorted_inds] obj_labels = obj_labels[sorted_inds] obj_confs = obj_confs[sorted_inds] obj_bboxes = obj_bboxes[sorted_inds, :] num_imgs = max(max(gt_img_ids),max(img_ids)) + 1 obj_labels_cell = [None] * num_imgs obj_confs_cell = [None] * num_imgs obj_bboxes_cell = [None] * num_imgs start_i = 0 id = img_ids[0] for i in range(0, len(img_ids)): if i == len(img_ids)-1 or img_ids[i+1] != id: conf = obj_confs[start_i:i+1] label = obj_labels[start_i:i+1] bbox = obj_bboxes[start_i:i+1, :] sorted_inds = np.argsort(-conf) obj_labels_cell[id] = label[sorted_inds] obj_confs_cell[id] = conf[sorted_inds] obj_bboxes_cell[id] = bbox[sorted_inds, :] if i < len(img_ids)-1: id = img_ids[i+1] start_i = i+1 # go down detections and mark true positives and false positives tp_cell = [None] * num_imgs fp_cell = [None] * num_imgs for rec in recs: id = rec['img_ids'] gt_labels = rec['label'] gt_bboxes = rec['bbox'] gt_thr = rec['thr'] num_gt_obj = len(gt_labels) gt_detected = np.zeros(num_gt_obj) labels = obj_labels_cell[id] bboxes = obj_bboxes_cell[id] num_obj = 0 if labels is None else len(labels) tp = np.zeros(num_obj) fp = np.zeros(num_obj) for j in range(0,num_obj): bb = bboxes[j, :] ovmax = -1 kmax = -1 for k in range(0,num_gt_obj): if labels[j] != gt_labels[k]: continue if gt_detected[k] > 0: continue bbgt = gt_bboxes[k, :] bi=[np.max((bb[0],bbgt[0])), np.max((bb[1],bbgt[1])), np.min((bb[2],bbgt[2])), np.min((bb[3],bbgt[3]))] iw=bi[2]-bi[0]+1 ih=bi[3]-bi[1]+1 if iw>0 and ih>0: # compute overlap as area of intersection / area of union ua = (bb[2] - bb[0] + 1.) * (bb[3] - bb[1] + 1.) + \ (bbgt[2] - bbgt[0] + 1.) * \ (bbgt[3] - bbgt[1] + 1.) - iw*ih ov=iw*ih/ua # makes sure that this object is detected according # to its individual threshold if ov >= gt_thr[k] and ov > ovmax: ovmax=ov kmax=k if kmax >= 0: tp[j] = 1 gt_detected[kmax] = 1 else: fp[j] = 1 tp_cell[id] = tp fp_cell[id] = fp tp_all = np.concatenate([x for x in np.array(tp_cell)[gt_img_ids] if x is not None]) fp_all = np.concatenate([x for x in np.array(fp_cell)[gt_img_ids] if x is not None]) obj_labels = np.concatenate([x for x in np.array(obj_labels_cell)[gt_img_ids] if x is not None]) confs = np.concatenate([x for x in np.array(obj_confs_cell)[gt_img_ids] if x is not None]) sorted_inds = np.argsort(-confs) tp_all = tp_all[sorted_inds] fp_all = fp_all[sorted_inds] obj_labels = obj_labels[sorted_inds] ap = np.zeros(len(classname_map)) for c in range(1, len(classname_map)): # compute precision recall fp = np.cumsum(fp_all[obj_labels == c]) tp = np.cumsum(tp_all[obj_labels == c]) rec = tp / float(npos[c]) # avoid division by zero in case first detection matches a difficult ground ruth prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps) ap[c] = vid_ap(rec, prec) ap = ap[1:] return ap
[ "xml.etree.ElementTree.parse", "numpy.sum", "numpy.maximum", "numpy.zeros", "cPickle.load", "numpy.argsort", "numpy.cumsum", "numpy.min", "numpy.where", "numpy.array", "os.path.isfile", "cPickle.dump", "numpy.max", "numpy.finfo", "numpy.concatenate" ]
[((619, 637), 'xml.etree.ElementTree.parse', 'ET.parse', (['filename'], {}), '(filename)\n', (627, 637), True, 'import xml.etree.ElementTree as ET\n'), ((1799, 1834), 'numpy.concatenate', 'np.concatenate', (['([0.0], rec, [1.0])'], {}), '(([0.0], rec, [1.0]))\n', (1813, 1834), True, 'import numpy as np\n'), ((1844, 1880), 'numpy.concatenate', 'np.concatenate', (['([0.0], prec, [0.0])'], {}), '(([0.0], prec, [0.0]))\n', (1858, 1880), True, 'import numpy as np\n'), ((2143, 2188), 'numpy.sum', 'np.sum', (['((mrec[i + 1] - mrec[i]) * mpre[i + 1])'], {}), '((mrec[i + 1] - mrec[i]) * mpre[i + 1])\n', (2149, 2188), True, 'import numpy as np\n'), ((7628, 7646), 'numpy.argsort', 'np.argsort', (['(-confs)'], {}), '(-confs)\n', (7638, 7646), True, 'import numpy as np\n'), ((1271, 1299), 'numpy.min', 'np.min', (['[thr, defaultIOUthr]'], {}), '([thr, defaultIOUthr])\n', (1277, 1299), True, 'import numpy as np\n'), ((1354, 1392), 'numpy.array', 'np.array', (["[x['bbox'] for x in objects]"], {}), "([x['bbox'] for x in objects])\n", (1362, 1392), True, 'import numpy as np\n'), ((1416, 1455), 'numpy.array', 'np.array', (["[x['label'] for x in objects]"], {}), "([x['label'] for x in objects])\n", (1424, 1455), True, 'import numpy as np\n'), ((1479, 1516), 'numpy.array', 'np.array', (["[x['thr'] for x in objects]"], {}), "([x['thr'] for x in objects])\n", (1487, 1516), True, 'import numpy as np\n'), ((1987, 2019), 'numpy.maximum', 'np.maximum', (['mpre[i - 1]', 'mpre[i]'], {}), '(mpre[i - 1], mpre[i])\n', (1997, 2019), True, 'import numpy as np\n'), ((2065, 2096), 'numpy.where', 'np.where', (['(mrec[1:] != mrec[:-1])'], {}), '(mrec[1:] != mrec[:-1])\n', (2073, 2096), True, 'import numpy as np\n'), ((2951, 2976), 'os.path.isfile', 'os.path.isfile', (['annocache'], {}), '(annocache)\n', (2965, 2976), False, 'import os\n'), ((4462, 4481), 'numpy.argsort', 'np.argsort', (['img_ids'], {}), '(img_ids)\n', (4472, 4481), True, 'import numpy as np\n'), ((5728, 5748), 'numpy.zeros', 'np.zeros', (['num_gt_obj'], {}), '(num_gt_obj)\n', (5736, 5748), True, 'import numpy as np\n'), ((5893, 5910), 'numpy.zeros', 'np.zeros', (['num_obj'], {}), '(num_obj)\n', (5901, 5910), True, 'import numpy as np\n'), ((5924, 5941), 'numpy.zeros', 'np.zeros', (['num_obj'], {}), '(num_obj)\n', (5932, 5941), True, 'import numpy as np\n'), ((7884, 7918), 'numpy.cumsum', 'np.cumsum', (['fp_all[obj_labels == c]'], {}), '(fp_all[obj_labels == c])\n', (7893, 7918), True, 'import numpy as np\n'), ((7932, 7966), 'numpy.cumsum', 'np.cumsum', (['tp_all[obj_labels == c]'], {}), '(tp_all[obj_labels == c])\n', (7941, 7966), True, 'import numpy as np\n'), ((3413, 3469), 'cPickle.dump', 'cPickle.dump', (['recs', 'f'], {'protocol': 'cPickle.HIGHEST_PROTOCOL'}), '(recs, f, protocol=cPickle.HIGHEST_PROTOCOL)\n', (3425, 3469), False, 'import cPickle\n'), ((3540, 3555), 'cPickle.load', 'cPickle.load', (['f'], {}), '(f)\n', (3552, 3555), False, 'import cPickle\n'), ((5115, 5132), 'numpy.argsort', 'np.argsort', (['(-conf)'], {}), '(-conf)\n', (5125, 5132), True, 'import numpy as np\n'), ((6297, 6321), 'numpy.max', 'np.max', (['(bb[0], bbgt[0])'], {}), '((bb[0], bbgt[0]))\n', (6303, 6321), True, 'import numpy as np\n'), ((6322, 6346), 'numpy.max', 'np.max', (['(bb[1], bbgt[1])'], {}), '((bb[1], bbgt[1]))\n', (6328, 6346), True, 'import numpy as np\n'), ((6347, 6371), 'numpy.min', 'np.min', (['(bb[2], bbgt[2])'], {}), '((bb[2], bbgt[2]))\n', (6353, 6371), True, 'import numpy as np\n'), ((6372, 6396), 'numpy.min', 'np.min', (['(bb[3], bbgt[3])'], {}), '((bb[3], bbgt[3]))\n', (6378, 6396), True, 'import numpy as np\n'), ((7275, 7292), 'numpy.array', 'np.array', (['tp_cell'], {}), '(tp_cell)\n', (7283, 7292), True, 'import numpy as np\n'), ((7364, 7381), 'numpy.array', 'np.array', (['fp_cell'], {}), '(fp_cell)\n', (7372, 7381), True, 'import numpy as np\n'), ((7457, 7482), 'numpy.array', 'np.array', (['obj_labels_cell'], {}), '(obj_labels_cell)\n', (7465, 7482), True, 'import numpy as np\n'), ((7553, 7577), 'numpy.array', 'np.array', (['obj_confs_cell'], {}), '(obj_confs_cell)\n', (7561, 7577), True, 'import numpy as np\n'), ((8130, 8150), 'numpy.finfo', 'np.finfo', (['np.float64'], {}), '(np.float64)\n', (8138, 8150), True, 'import numpy as np\n')]
# lshash/lshash.py # Copyright 2012 <NAME> (a.k.a <NAME>) and contributors (see CONTRIBUTORS.txt) # # This module is part of lshash and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php # wiki:https://yongyuan.name/blog/ann-search.html import os import json import numpy as np from storage import storage try: from bitarray import bitarray except ImportError: bitarray = None class LSHash(object): """ LSHash implments locality sensitive hashing using random projection for input vectors of dimension `input_dim`. Attributes: :param hash_size: The length of the resulting binary hash in integer. E.g., 32 means the resulting binary hash will be 32-bit long. :param input_dim: The dimension of the input vector. E.g., a grey-scale picture of 30x30 pixels will have an input dimension of 900. :param num_hashtables: (optional) The number of hash tables used for multiple lookups. :param storage_config: (optional) A dictionary of the form `{backend_name: config}` where `backend_name` is the either `dict` or `redis`, and `config` is the configuration used by the backend. For `redis` it should be in the format of `{"redis": {"host": hostname, "port": port_num}}`, where `hostname` is normally `localhost` and `port` is normally 6379. :param matrices_filename: (optional) Specify the path to the compressed numpy file ending with extension `.npz`, where the uniform random planes are stored, or to be stored if the file does not exist yet. :param overwrite: (optional) Whether to overwrite the matrices file if it already exist """ def __init__(self, hash_size, input_dim, num_hashtables=1, storage_config=None, matrices_filename=None, overwrite=False): self.hash_size = hash_size self.input_dim = input_dim self.num_hashtables = num_hashtables if storage_config is None: storage_config = {'dict': None} self.storage_config = storage_config if matrices_filename and not matrices_filename.endswith('.npz'): raise ValueError("The specified file name must end with .npz") self.matrices_filename = matrices_filename self.overwrite = overwrite self._init_uniform_planes() self._init_hashtables() def _init_uniform_planes(self): """ Initialize uniform planes used to calculate the hashes if file `self.matrices_filename` exist and `self.overwrite` is selected, save the uniform planes to the specified file. if file `self.matrices_filename` exist and `self.overwrite` is not selected, load the matrix with `np.load`. if file `self.matrices_filename` does not exist and regardless of `self.overwrite`, only set `self.uniform_planes`. """ if "uniform_planes" in self.__dict__: return if self.matrices_filename: file_exist = os.path.isfile(self.matrices_filename) if file_exist and not self.overwrite: try: npzfiles = np.load(self.matrices_filename) except IOError: print("Cannot load specified file as a numpy array") raise else: npzfiles = sorted(npzfiles.items(), key=lambda x: x[0]) self.uniform_planes = [t[1] for t in npzfiles] else: self.uniform_planes = [self._generate_uniform_planes() for _ in range(self.num_hashtables)] try: np.savez_compressed(self.matrices_filename, *self.uniform_planes) except IOError: print("IOError when saving matrices to specificed path") raise else: # 生成num_hashtable个随机划分表,每个表维度:[hash_size, dim] self.uniform_planes = [self._generate_uniform_planes() for _ in range(self.num_hashtables)] def _init_hashtables(self): """ Initialize the hash tables such that each record will be in the form of "[storage1, storage2, ...]" """ # 初始化num_hashtable个hash表 self.hash_tables = [storage(self.storage_config, i) for i in range(self.num_hashtables)] def _generate_uniform_planes(self): """ Generate uniformly distributed hyperplanes and return it as a 2D numpy array. """ # 随机矩阵[hash_size, input_dim], 矩阵每行代表一条直线的法向量,Ax>0即代表与所有平面的法向量的夹角<90的所有点x的集合 return np.random.randn(self.hash_size, self.input_dim) def _hash(self, planes, input_point): """ Generates the binary hash for `input_point` and returns it. :param planes: The planes are random uniform planes with a dimension of `hash_size` * `input_dim`. :param input_point: A Python tuple or list object that contains only numbers. The dimension needs to be 1 * `input_dim`. """ try: input_point = np.array(input_point) # for faster dot product # planes:[hash_size, dim] # input_point:[dim], 亦可理解为input_point: [dim,1] # projections:[hash_size] = planes*input_point # 矩阵planes与input_points相乘的几何意义就是判断input_points是否与planes每行的直线法向量的乘积 projections = np.dot(planes, input_point) except TypeError as e: print("""The input point needs to be an array-like object with numbers only elements""") raise except ValueError as e: print("""The input point needs to be of the same dimension as `input_dim` when initializing this LSHash instance""", e) raise else: # 比如可能是'001' return "".join(['1' if i > 0 else '0' for i in projections]) def _as_np_array(self, json_or_tuple): """ Takes either a JSON-serialized data structure or a tuple that has the original input points stored, and returns the original input point in numpy array format. """ if isinstance(json_or_tuple, str): # JSON-serialized in the case of Redis try: # Return the point stored as list, without the extra data tuples = json.loads(json_or_tuple)[0] except TypeError: print("The value stored is not JSON-serilizable") raise else: # If extra_data exists, `tuples` is the entire # (point:tuple, extra_data). Otherwise (i.e., extra_data=None), # return the point stored as a tuple tuples = json_or_tuple if isinstance(tuples[0], tuple): # in this case extra data exists return np.asarray(tuples[0]) elif isinstance(tuples, (tuple, list)): try: return np.asarray(tuples) except ValueError as e: print("The input needs to be an array-like object", e) raise else: raise TypeError("query data is not supported") def index(self, input_point, extra_data=None): """ Index a single input point by adding it to the selected storage. If `extra_data` is provided, it will become the value of the dictionary {input_point: extra_data}, which in turn will become the value of the hash table. `extra_data` needs to be JSON serializable if in-memory dict is not used as storage. :param input_point: A list, or tuple, or numpy ndarray object that contains numbers only. The dimension needs to be 1 * `input_dim`. This object will be converted to Python tuple and stored in the selected storage. :param extra_data: (optional) Needs to be a JSON-serializable object: list, dicts and basic types such as strings and integers. """ if isinstance(input_point, np.ndarray): input_point = input_point.tolist() if extra_data: value = (tuple(input_point), extra_data) else: value = tuple(input_point) # 每个hash表均要存一下hash串+原始point for i, table in enumerate(self.hash_tables): # 生成num_hashtable个随机划分表,每个表维度:[hash_size, dim] hash_code = self._hash(self.uniform_planes[i], input_point) # 之所以有多个表,就是为了增大召回,即只要有一个划分方式一致就可以召回 table.append_val(key=hash_code, val=value) def query(self, query_point, num_results=None, distance_func_for_hash=None): """ Takes `query_point` which is either a tuple or a list of numbers, returns `num_results` of results as a list of tuples that are ranked based on the supplied metric function `distance_func`. :param query_point: A list, or tuple, or numpy ndarray that only contains numbers. The dimension needs to be 1 * `input_dim`. Used by :meth:`._hash`. :param num_results: (optional) Integer, specifies the max amount of results to be returned. If not specified all candidates will be returned as a list in ranked order. :param distance_func_for_hash: (optional) The distance function to be used. Currently it needs to be one of ("hamming", "euclidean", "true_euclidean", "centred_euclidean", "cosine", "l1norm"). By default "euclidean" will used. """ candidates = set() if not distance_func_for_hash: distance_func_for_hash = "euclidean" if distance_func_for_hash == "hamming": # 此时实际上就是multi-probe的方式进行探测 if not bitarray: raise ImportError(" Bitarray is required for hamming distance") for i, table in enumerate(self.hash_tables): binary_hash_for_query = self._hash(self.uniform_planes[i], query_point) for key in table.keys(): distance = LSHash.hamming_dist(key, binary_hash_for_query) # 所有hamming距离<2的全都加入候选集合,注意,不一定是相同hash_key下的所有候选point if distance < 2: # 将该hash_key下所有的原始值全加入set candidates.update(table.get_list(key)) d_func_for_rank = LSHash.euclidean_dist_square else: # euclidean if distance_func_for_hash == "euclidean": d_func_for_rank = LSHash.euclidean_dist_square elif distance_func_for_hash == "true_euclidean": d_func_for_rank = LSHash.euclidean_dist elif distance_func_for_hash == "centred_euclidean": d_func_for_rank = LSHash.euclidean_dist_centred elif distance_func_for_hash == "cosine": d_func_for_rank = LSHash.cosine_dist elif distance_func_for_hash == "l1norm": d_func_for_rank = LSHash.l1norm_dist else: raise ValueError("The distance function name is invalid.") # 只有hash值相同的才认为是候选集合,只要有一个hash表认为是候选就加入候选 for i, table in enumerate(self.hash_tables): binary_hash_for_query = self._hash(self.uniform_planes[i], query_point) candidates.update(table.get_list(binary_hash_for_query)) # rank candidates by distance function # 计算query与每个候选集原始值的距离 # [(candidate_point, distance),... ] candidates = [(candidate_point, d_func_for_rank(query_point, self._as_np_array(candidate_point))) for candidate_point in candidates] candidates.sort(key=lambda x: x[1]) # 按距离升序排序 # 选出距离最近的topK return candidates[:num_results] if num_results else candidates ### distance functions # 海明距离是直接异或么?直接数不同的位数的个数 @staticmethod def hamming_dist(bitarray1, bitarray2): xor_result = bitarray(bitarray1) ^ bitarray(bitarray2) return xor_result.count() @staticmethod def euclidean_dist(x, y): """ This is a hot function, hence some optimizations are made. """ return np.sqrt(LSHash.euclidean_dist_square(x,y)) @staticmethod def euclidean_dist_square(x, y): """ This is a hot function, hence some optimizations are made. """ diff = np.array(x) - y return np.dot(diff, diff) @staticmethod def euclidean_dist_centred(x, y): """ This is a hot function, hence some optimizations are made. """ diff = np.mean(x) - np.mean(y) return np.dot(diff, diff) @staticmethod def l1norm_dist(x, y): return sum(abs(x - y)) @staticmethod def cosine_dist(x, y): return 1 - np.dot(x, y) / ((np.dot(x, x) * np.dot(y, y)) ** 0.5) if __name__ == '__main__': lsh = LSHash(hash_size=6, input_dim=8, num_hashtables=3) # 给数据建立hash索引 lsh.index(input_point=[1, 2, 3, 4, 5, 6, 7, 8]) lsh.index(input_point=[2, 3, 4, 5, 6, 7, 8, 9]) lsh.index(input_point=[1, 2, 3, 4, 4, 6, 7, 8]) lsh.index(input_point=[1, 2, 3, 3, 5, 6, 7, 8]) lsh.index(input_point=[1, 2, 3, 4, 5, 6, 7, 9]) lsh.index(input_point=[2, 2, 3, 4, 5, 6, 7, 9]) lsh.index(input_point=[2, -2, 3, 4, 5, 6, 7, 9]) lsh.index(input_point=[-1, 2, 3, 4, 5, 6, 7, 9]) lsh.index(input_point=[10, 12, 99, 1, 5, 31, 2, 3]) # 查询 res = lsh.query(query_point=[1, 2, 3, 4, 5, 6, 7, 7], num_results=4) print(res)
[ "storage.storage", "numpy.load", "json.loads", "numpy.random.randn", "numpy.asarray", "os.path.isfile", "numpy.mean", "numpy.array", "numpy.savez_compressed", "numpy.dot", "bitarray.bitarray" ]
[((4758, 4805), 'numpy.random.randn', 'np.random.randn', (['self.hash_size', 'self.input_dim'], {}), '(self.hash_size, self.input_dim)\n', (4773, 4805), True, 'import numpy as np\n'), ((12575, 12593), 'numpy.dot', 'np.dot', (['diff', 'diff'], {}), '(diff, diff)\n', (12581, 12593), True, 'import numpy as np\n'), ((12780, 12798), 'numpy.dot', 'np.dot', (['diff', 'diff'], {}), '(diff, diff)\n', (12786, 12798), True, 'import numpy as np\n'), ((3065, 3103), 'os.path.isfile', 'os.path.isfile', (['self.matrices_filename'], {}), '(self.matrices_filename)\n', (3079, 3103), False, 'import os\n'), ((4411, 4442), 'storage.storage', 'storage', (['self.storage_config', 'i'], {}), '(self.storage_config, i)\n', (4418, 4442), False, 'from storage import storage\n'), ((5258, 5279), 'numpy.array', 'np.array', (['input_point'], {}), '(input_point)\n', (5266, 5279), True, 'import numpy as np\n'), ((5567, 5594), 'numpy.dot', 'np.dot', (['planes', 'input_point'], {}), '(planes, input_point)\n', (5573, 5594), True, 'import numpy as np\n'), ((7015, 7036), 'numpy.asarray', 'np.asarray', (['tuples[0]'], {}), '(tuples[0])\n', (7025, 7036), True, 'import numpy as np\n'), ((12140, 12159), 'bitarray.bitarray', 'bitarray', (['bitarray1'], {}), '(bitarray1)\n', (12148, 12159), False, 'from bitarray import bitarray\n'), ((12162, 12181), 'bitarray.bitarray', 'bitarray', (['bitarray2'], {}), '(bitarray2)\n', (12170, 12181), False, 'from bitarray import bitarray\n'), ((12544, 12555), 'numpy.array', 'np.array', (['x'], {}), '(x)\n', (12552, 12555), True, 'import numpy as np\n'), ((12741, 12751), 'numpy.mean', 'np.mean', (['x'], {}), '(x)\n', (12748, 12751), True, 'import numpy as np\n'), ((12754, 12764), 'numpy.mean', 'np.mean', (['y'], {}), '(y)\n', (12761, 12764), True, 'import numpy as np\n'), ((12941, 12953), 'numpy.dot', 'np.dot', (['x', 'y'], {}), '(x, y)\n', (12947, 12953), True, 'import numpy as np\n'), ((3206, 3237), 'numpy.load', 'np.load', (['self.matrices_filename'], {}), '(self.matrices_filename)\n', (3213, 3237), True, 'import numpy as np\n'), ((3740, 3805), 'numpy.savez_compressed', 'np.savez_compressed', (['self.matrices_filename', '*self.uniform_planes'], {}), '(self.matrices_filename, *self.uniform_planes)\n', (3759, 3805), True, 'import numpy as np\n'), ((6529, 6554), 'json.loads', 'json.loads', (['json_or_tuple'], {}), '(json_or_tuple)\n', (6539, 6554), False, 'import json\n'), ((7126, 7144), 'numpy.asarray', 'np.asarray', (['tuples'], {}), '(tuples)\n', (7136, 7144), True, 'import numpy as np\n'), ((12958, 12970), 'numpy.dot', 'np.dot', (['x', 'x'], {}), '(x, x)\n', (12964, 12970), True, 'import numpy as np\n'), ((12973, 12985), 'numpy.dot', 'np.dot', (['y', 'y'], {}), '(y, y)\n', (12979, 12985), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import unittest from network import TargetNetwork, Network class TargetNetworkTest(unittest.TestCase): def test_init(self): np.random.seed(seed=0) target_network = TargetNetwork() for i in range(10): input_values, target_values = target_network.get_training_pair() self.assertEqual(input_values.shape, (30, )) self.assertEqual(target_values.shape, (10, )) print(target_values) """ def test_save(self): np.random.seed(seed=0) target_network = TargetNetwork() target_network.save("tmp") target_network.load("tmp") """ if __name__ == '__main__': unittest.main()
[ "unittest.main", "network.TargetNetwork", "numpy.random.seed" ]
[((829, 844), 'unittest.main', 'unittest.main', ([], {}), '()\n', (842, 844), False, 'import unittest\n'), ((292, 314), 'numpy.random.seed', 'np.random.seed', ([], {'seed': '(0)'}), '(seed=0)\n', (306, 314), True, 'import numpy as np\n'), ((340, 355), 'network.TargetNetwork', 'TargetNetwork', ([], {}), '()\n', (353, 355), False, 'from network import TargetNetwork, Network\n')]
from mpvr.datamodule.manager import Manager as dm from mpvr.utils.process import * from scipy.signal import savgol_filter import numpy as np import pandas as pd dm = dm.from_config(dm.section_list()[1]) max_val = 0 for scenario in dm.get_scenarios(): dm.set_scenario(scenario) df = dm.get_processed_data('mpe') mpe = df['MPEntropy'].values if np.max(np.abs(mpe)) > max_val: max_val = np.max(np.abs(mpe)) print(max_val) for scenario in dm.get_scenarios(): print(scenario) dm.set_scenario(scenario) df = dm.get_processed_data('mpe') time, mpe = df['Time'].values, df['MPEntropy'].values acr = absolute_category_rating(mpe, grid) incidence = dm.get_incidence_data() fig, axes = dm.fig_setup(2, ['ACR', 'Incidence'], np.arange(0, len(time)/3, 2), times = time, width = 3, height=3) axes[0].plot(time, acr) axes[1].bar(time, incidence, width=0.2) axes[0].set_yticks(np.arange(1, 6, 1)) axes[1].set_yticks(np.arange(0, 5, 1)) dm.fig_finalize(tag='mpe', remark_dir='acr/')
[ "numpy.abs", "mpvr.datamodule.manager.Manager.fig_finalize", "mpvr.datamodule.manager.Manager.get_incidence_data", "numpy.arange", "mpvr.datamodule.manager.Manager.get_scenarios", "mpvr.datamodule.manager.Manager.set_scenario", "mpvr.datamodule.manager.Manager.section_list", "mpvr.datamodule.manager.Manager.get_processed_data" ]
[((233, 251), 'mpvr.datamodule.manager.Manager.get_scenarios', 'dm.get_scenarios', ([], {}), '()\n', (249, 251), True, 'from mpvr.datamodule.manager import Manager as dm\n'), ((463, 481), 'mpvr.datamodule.manager.Manager.get_scenarios', 'dm.get_scenarios', ([], {}), '()\n', (479, 481), True, 'from mpvr.datamodule.manager import Manager as dm\n'), ((257, 282), 'mpvr.datamodule.manager.Manager.set_scenario', 'dm.set_scenario', (['scenario'], {}), '(scenario)\n', (272, 282), True, 'from mpvr.datamodule.manager import Manager as dm\n'), ((292, 320), 'mpvr.datamodule.manager.Manager.get_processed_data', 'dm.get_processed_data', (['"""mpe"""'], {}), "('mpe')\n", (313, 320), True, 'from mpvr.datamodule.manager import Manager as dm\n'), ((507, 532), 'mpvr.datamodule.manager.Manager.set_scenario', 'dm.set_scenario', (['scenario'], {}), '(scenario)\n', (522, 532), True, 'from mpvr.datamodule.manager import Manager as dm\n'), ((543, 571), 'mpvr.datamodule.manager.Manager.get_processed_data', 'dm.get_processed_data', (['"""mpe"""'], {}), "('mpe')\n", (564, 571), True, 'from mpvr.datamodule.manager import Manager as dm\n'), ((692, 715), 'mpvr.datamodule.manager.Manager.get_incidence_data', 'dm.get_incidence_data', ([], {}), '()\n', (713, 715), True, 'from mpvr.datamodule.manager import Manager as dm\n'), ((999, 1044), 'mpvr.datamodule.manager.Manager.fig_finalize', 'dm.fig_finalize', ([], {'tag': '"""mpe"""', 'remark_dir': '"""acr/"""'}), "(tag='mpe', remark_dir='acr/')\n", (1014, 1044), True, 'from mpvr.datamodule.manager import Manager as dm\n'), ((182, 199), 'mpvr.datamodule.manager.Manager.section_list', 'dm.section_list', ([], {}), '()\n', (197, 199), True, 'from mpvr.datamodule.manager import Manager as dm\n'), ((932, 950), 'numpy.arange', 'np.arange', (['(1)', '(6)', '(1)'], {}), '(1, 6, 1)\n', (941, 950), True, 'import numpy as np\n'), ((975, 993), 'numpy.arange', 'np.arange', (['(0)', '(5)', '(1)'], {}), '(0, 5, 1)\n', (984, 993), True, 'import numpy as np\n'), ((368, 379), 'numpy.abs', 'np.abs', (['mpe'], {}), '(mpe)\n', (374, 379), True, 'import numpy as np\n'), ((417, 428), 'numpy.abs', 'np.abs', (['mpe'], {}), '(mpe)\n', (423, 428), True, 'import numpy as np\n')]
import paddle import paddle.nn as nn import paddle.nn.functional as F import cv2 import numpy as np from PIL import Image import math class Erosion2d(nn.Layer): """ Erosion2d """ def __init__(self, m=1): super(Erosion2d, self).__init__() self.m = m self.pad = [m, m, m, m] def forward(self, x): batch_size, c, h, w = x.shape x_pad = F.pad(x, pad=self.pad, mode='constant', value=1e9) channel = nn.functional.unfold(x_pad, 2 * self.m + 1, strides=1, paddings=0).reshape([batch_size, c, -1, h, w]) result = paddle.min(channel, axis=2) return result class Dilation2d(nn.Layer): """ Dilation2d """ def __init__(self, m=1): super(Dilation2d, self).__init__() self.m = m self.pad = [m, m, m, m] def forward(self, x): batch_size, c, h, w = x.shape x_pad = F.pad(x, pad=self.pad, mode='constant', value=-1e9) channel = nn.functional.unfold(x_pad, 2 * self.m + 1, strides=1, paddings=0).reshape([batch_size, c, -1, h, w]) result = paddle.max(channel, axis=2) return result def param2stroke(param, H, W, meta_brushes): """ param2stroke """ b = param.shape[0] param_list = paddle.split(param, 8, axis=1) x0, y0, w, h, theta = [item.squeeze(-1) for item in param_list[:5]] sin_theta = paddle.sin(math.pi * theta) cos_theta = paddle.cos(math.pi * theta) index = paddle.full((b,), -1, dtype='int64').numpy() index[(h > w).numpy()] = 0 index[(h <= w).numpy()] = 1 meta_brushes_resize = F.interpolate(meta_brushes, (H, W)).numpy() brush = paddle.to_tensor(meta_brushes_resize[index]) warp_00 = cos_theta / w warp_01 = sin_theta * H / (W * w) warp_02 = (1 - 2 * x0) * cos_theta / w + (1 - 2 * y0) * sin_theta * H / (W * w) warp_10 = -sin_theta * W / (H * h) warp_11 = cos_theta / h warp_12 = (1 - 2 * y0) * cos_theta / h - (1 - 2 * x0) * sin_theta * W / (H * h) warp_0 = paddle.stack([warp_00, warp_01, warp_02], axis=1) warp_1 = paddle.stack([warp_10, warp_11, warp_12], axis=1) warp = paddle.stack([warp_0, warp_1], axis=1) grid = nn.functional.affine_grid(warp, [b, 3, H, W]) # paddle和torch默认值是反过来的 brush = nn.functional.grid_sample(brush, grid) return brush def read_img(img_path, img_type='RGB', h=None, w=None): """ read img """ img = Image.open(img_path).convert(img_type) if h is not None and w is not None: img = img.resize((w, h), resample=Image.NEAREST) img = np.array(img) if img.ndim == 2: img = np.expand_dims(img, axis=-1) img = img.transpose((2, 0, 1)) # 矩阵的维度由 (X, Y, Z) -> (Z, X, Y) img = paddle.to_tensor(img).unsqueeze(0).astype('float32') / 255. # 矩阵变为归一化张量 return img def preprocess(img, w=512, h=512): image = cv2.resize(img, (w, h), cv2.INTER_NEAREST) image = image.transpose((2, 0, 1)) image = paddle.to_tensor(image).unsqueeze(0).astype('float32') / 255. return image def pad(img, H, W): b, c, h, w = img.shape pad_h = (H - h) // 2 pad_w = (W - w) // 2 remainder_h = (H - h) % 2 remainder_w = (W - w) % 2 expand_img = nn.functional.pad(img, [pad_w, pad_w + remainder_w, pad_h, pad_h + remainder_h]) return expand_img
[ "paddle.to_tensor", "paddle.nn.functional.affine_grid", "paddle.nn.functional.grid_sample", "paddle.sin", "paddle.stack", "paddle.nn.functional.unfold", "numpy.expand_dims", "paddle.cos", "PIL.Image.open", "paddle.nn.functional.pad", "paddle.min", "paddle.full", "numpy.array", "paddle.max", "paddle.nn.functional.interpolate", "paddle.split", "cv2.resize" ]
[((1255, 1285), 'paddle.split', 'paddle.split', (['param', '(8)'], {'axis': '(1)'}), '(param, 8, axis=1)\n', (1267, 1285), False, 'import paddle\n'), ((1374, 1401), 'paddle.sin', 'paddle.sin', (['(math.pi * theta)'], {}), '(math.pi * theta)\n', (1384, 1401), False, 'import paddle\n'), ((1418, 1445), 'paddle.cos', 'paddle.cos', (['(math.pi * theta)'], {}), '(math.pi * theta)\n', (1428, 1445), False, 'import paddle\n'), ((1649, 1693), 'paddle.to_tensor', 'paddle.to_tensor', (['meta_brushes_resize[index]'], {}), '(meta_brushes_resize[index])\n', (1665, 1693), False, 'import paddle\n'), ((2009, 2058), 'paddle.stack', 'paddle.stack', (['[warp_00, warp_01, warp_02]'], {'axis': '(1)'}), '([warp_00, warp_01, warp_02], axis=1)\n', (2021, 2058), False, 'import paddle\n'), ((2072, 2121), 'paddle.stack', 'paddle.stack', (['[warp_10, warp_11, warp_12]'], {'axis': '(1)'}), '([warp_10, warp_11, warp_12], axis=1)\n', (2084, 2121), False, 'import paddle\n'), ((2133, 2171), 'paddle.stack', 'paddle.stack', (['[warp_0, warp_1]'], {'axis': '(1)'}), '([warp_0, warp_1], axis=1)\n', (2145, 2171), False, 'import paddle\n'), ((2183, 2228), 'paddle.nn.functional.affine_grid', 'nn.functional.affine_grid', (['warp', '[b, 3, H, W]'], {}), '(warp, [b, 3, H, W])\n', (2208, 2228), True, 'import paddle.nn as nn\n'), ((2264, 2302), 'paddle.nn.functional.grid_sample', 'nn.functional.grid_sample', (['brush', 'grid'], {}), '(brush, grid)\n', (2289, 2302), True, 'import paddle.nn as nn\n'), ((2564, 2577), 'numpy.array', 'np.array', (['img'], {}), '(img)\n', (2572, 2577), True, 'import numpy as np\n'), ((2855, 2897), 'cv2.resize', 'cv2.resize', (['img', '(w, h)', 'cv2.INTER_NEAREST'], {}), '(img, (w, h), cv2.INTER_NEAREST)\n', (2865, 2897), False, 'import cv2\n'), ((3203, 3288), 'paddle.nn.functional.pad', 'nn.functional.pad', (['img', '[pad_w, pad_w + remainder_w, pad_h, pad_h + remainder_h]'], {}), '(img, [pad_w, pad_w + remainder_w, pad_h, pad_h + remainder_h]\n )\n', (3220, 3288), True, 'import paddle.nn as nn\n'), ((395, 454), 'paddle.nn.functional.pad', 'F.pad', (['x'], {'pad': 'self.pad', 'mode': '"""constant"""', 'value': '(1000000000.0)'}), "(x, pad=self.pad, mode='constant', value=1000000000.0)\n", (400, 454), True, 'import paddle.nn.functional as F\n'), ((583, 610), 'paddle.min', 'paddle.min', (['channel'], {'axis': '(2)'}), '(channel, axis=2)\n', (593, 610), False, 'import paddle\n'), ((897, 957), 'paddle.nn.functional.pad', 'F.pad', (['x'], {'pad': 'self.pad', 'mode': '"""constant"""', 'value': '(-1000000000.0)'}), "(x, pad=self.pad, mode='constant', value=-1000000000.0)\n", (902, 957), True, 'import paddle.nn.functional as F\n'), ((1086, 1113), 'paddle.max', 'paddle.max', (['channel'], {'axis': '(2)'}), '(channel, axis=2)\n', (1096, 1113), False, 'import paddle\n'), ((2614, 2642), 'numpy.expand_dims', 'np.expand_dims', (['img'], {'axis': '(-1)'}), '(img, axis=-1)\n', (2628, 2642), True, 'import numpy as np\n'), ((1458, 1494), 'paddle.full', 'paddle.full', (['(b,)', '(-1)'], {'dtype': '"""int64"""'}), "((b,), -1, dtype='int64')\n", (1469, 1494), False, 'import paddle\n'), ((1593, 1628), 'paddle.nn.functional.interpolate', 'F.interpolate', (['meta_brushes', '(H, W)'], {}), '(meta_brushes, (H, W))\n', (1606, 1628), True, 'import paddle.nn.functional as F\n'), ((2418, 2438), 'PIL.Image.open', 'Image.open', (['img_path'], {}), '(img_path)\n', (2428, 2438), False, 'from PIL import Image\n'), ((464, 530), 'paddle.nn.functional.unfold', 'nn.functional.unfold', (['x_pad', '(2 * self.m + 1)'], {'strides': '(1)', 'paddings': '(0)'}), '(x_pad, 2 * self.m + 1, strides=1, paddings=0)\n', (484, 530), True, 'import paddle.nn as nn\n'), ((967, 1033), 'paddle.nn.functional.unfold', 'nn.functional.unfold', (['x_pad', '(2 * self.m + 1)'], {'strides': '(1)', 'paddings': '(0)'}), '(x_pad, 2 * self.m + 1, strides=1, paddings=0)\n', (987, 1033), True, 'import paddle.nn as nn\n'), ((2720, 2741), 'paddle.to_tensor', 'paddle.to_tensor', (['img'], {}), '(img)\n', (2736, 2741), False, 'import paddle\n'), ((2949, 2972), 'paddle.to_tensor', 'paddle.to_tensor', (['image'], {}), '(image)\n', (2965, 2972), False, 'import paddle\n')]
import numpy as np import matplotlib.pyplot as plt from newton_raphson import * from random import uniform import numpy.polynomial.legendre as L ###question 0 def E(X): ##Return the value of E(x1,...,xn) E=0 N=len(X) for i in range(N): E+=np.log(abs(X[i]+1))+np.log(abs(X[i]-1)) for j in range(N): if j!=i: if X[i]!=X[j]: E+=np.log(abs(X[i]-X[j])) else: return -7 ## To avoid a divsion by 0 return E def grad_E(X): ## Return the vector grad E as it is described in the subject n, m = np.shape(X) assert (m == 1) res = np.zeros([n,1]) for i in range(n): s = 0 for j in range(n): if (i != j): s += 1. / (X[i, 0] - X[j, 0]) res[i, 0] = 1. / (1 + X[i]) + 1. / (X[i] - 1) + s return res def F(X): return grad_E(X) ###quest1 def Jacobian_E(Y): ## Return the Jacobian matrix of delta_E N = np.shape(Y)[0] J=np.zeros((N,N)) for j in range(N): for i in range(N): if i==j: J[j][i]=-1/(Y[i]+1)**2 - 1/(Y[i]-1)**2 for k in range(N): if k!=j: J[j][i]+=-1/(Y[i]-Y[k])**2 else: J[i][j]=1/(Y[i]-Y[j])**2 return J def J(X): return Jacobian_E(X) ## Two global lists to the display of the curve norme_F=[] iterations=[] def Newton_Raphson_curve(f, J, U0, N, eps): ## The Newton-Raphson algorithm modified to allow the display of the curve ||F(X)|| global norme_F global iterations norme_F=[] iterations=[] """ Solve nonlinear system F=0 by Newton-Raphson's method. J is the Jacobian of F. At input, U0 is the starting position of the algorithm. The iteration continues until ||F|| < eps or until N iterations are reached. """ F_value = f(U0) U = U0 F_norm = np.linalg.norm(F_value, ord=2) iteration_counter = 0 norme_F.append(F_norm) iterations.append(iteration_counter) while abs(F_norm) > eps and iteration_counter < N: V = np.linalg.solve(J(U), -F_value) U = U + V F_value = f(U) F_norm = np.linalg.norm(F_value, ord=2) iteration_counter += 1 norme_F.append(F_norm) iterations.append(iteration_counter) # Here, either a solution is found, or too many iterations if abs(F_norm) > eps: iteration_counter = -1 return U, iteration_counter def Newton_Raphson_backtracking_curve(f, J, U0, N, eps, alpha): ## The Newton-Raphson algorithm with backtracking modified to allow the display of the curve ||F(X)|| global norme_F global iterations norme_F=[] iterations=[] """ Solve nonlinear system F=0 by Newton-Raphson's method. J is the Jacobian of F. At input, U0 is the starting position of the algorithm. The iteration continues until ||F|| < eps or until N iterations are reached. There is a backtracking to reach the solution faster. """ F_value, U = f(U0), U0 F_norm = np.linalg.norm(F_value, ord=2) iteration_counter = 0 while abs(F_norm) > eps and iteration_counter < N: V = np.linalg.lstsq(J(U), -F_value, rcond=None)[0] nxt_F_norm = np.linalg.norm(f(U + V), ord=2) i = 0 while nxt_F_norm >= F_norm : print('BACKTRACKING') i += 1 nxt_F_norm = np.linalg.norm(f(U + alpha ** i * V), ord=2) U = U + alpha ** i * V F_value = f(U) F_norm = np.linalg.norm(F_value, ord=2) iteration_counter += 1 norme_F.append(F_norm) iterations.append(iteration_counter) # Here, either a solution is found, or too many iterations if abs(F_norm) > eps: iteration_counter = -1 return U, iteration_counter ## Initialisation of Ten chosen charges U0=np.zeros((10,1)) U0[0]=-0.86684278 U0[1]=0.86088026 U0[2]=0.80889216 U0[3]=-0.98098176 U0[4]=0.68707341 U0[5]=0.27329905 U0[6]=-0.07208807 U0[7]=0.6864963 U0[8]=-0.11970087 U0[9]=-0.1899953 #we could have imported the function from newton_raphson.py but this version allows to draw the curve def Newton_Raphson_with_backtracking(f, J, U0, N, epsilon): global norme_F global iterations norme_F=[] iterations=[] F_value, U = f(U0), U0 F_norm = np.linalg.norm(F_value, ord=2) iteration_counter = 0 for i in range(N): fu = f(U) na = np.linalg.norm(fu) if (na < epsilon): return U ju = J(U) V = np.linalg.lstsq(ju,-fu)[0] if (np.linalg.norm(f(U+V)) - na >= 0): V = (1.0/3.0)*V U = U + V F_value = f(U) F_norm = np.linalg.norm(F_value, ord=2) iteration_counter += 1 norme_F.append(F_norm) iterations.append(iteration_counter) return U, iteration_counter U,iteration_counter=Newton_Raphson_curve(F, J, U0, N=100, eps=1e-8) def test_equilibrium(): #a function that shows the electrostatic equilibrium with 10 charges with and without backtracking U,iteration_counter=Newton_Raphson_curve(F, J, U0, N=100, eps=1e-8) print("Test with 10 charges, initialisation of U0 : ",U0.transpose()) print("Final positions of the charges : ",U.transpose()) plt.plot(iterations,norme_F,label="without backtracking") plt.title("Electrostatic equilibrium with 10 charges") Newton_Raphson_with_backtracking(F, J, U0, N=100, epsilon=1e-8) #plt.plot(iterations,norme_F,label="using backtracking") plt.xlabel("Number of iterations") plt.ylabel("||F(X)||") plt.title("Electrostatic equilibrium with 10 charges with and without backtracking") plt.semilogy() plt.legend() plt.show() def position_real_axis(): #a function that shows the final position ofthe charges on the real axis plt.figure(num=2,figsize=(7,1.5)) print("Final positions on the real axis") plt.title("Position of the charges") plt.xlabel("x axis") plt.plot([min(U),max(U)],[0,0],color="red",label="Real axis") plt.plot(U,[0]*len(U),'o',color="yellow",label="Charge") plt.legend() plt.show() def energy_one_charge_position(): ## The plot of the curve for one charge size=50 O=np.linspace(-0.99,0.99,size) V=np.zeros((size,1)) for k in range(size): V[k]=E([O[k]]) print("Graph describing the evolution the electrostatic energy of one charge") plt.title("Electrostatic energy of one charge") plt.ylabel("Energy") plt.xlabel("Position of the charge") plt.plot(O,V) plt.show() def mirror(A): n = A.size for i in range(n//2): tmp = A[i] A[i] = A[n-i-1] A[n-i-1] = tmp return A #Plot Legendre polynomials and equilibrium positions def add_plot(X, lbl, clr, type='o'): Peq = Newton_Raphson(grad_E, Jacobian_E, X, 100, 1e-8) n= Peq.size for i in range(n): plt.plot(Peq[i,0],0,type, color=clr) c = [0]*(n+2) c[n+1] = 1 d = L.legder(c) P = L.leg2poly(d) P = mirror(P) Poly = np.poly1d(P) x = np.linspace(-1,1,100) y = Poly(x) plt.plot(x, y, label=lbl, color=clr) #Electrostatic Equilibrium Test def elec_equ_test(): A = np.matrix([[0.2]]) B = np.matrix([[0.5], [0.6]]) C = np.matrix([[0.4], [-0.5], [0.7]]) D = np.matrix([[0.4], [-0.4], [0.5], [0.6]]) add_plot(A, 'n=1', 'r') add_plot(B, 'n=2', 'y') add_plot(C, 'n=3', 'b') add_plot(D, 'n=4', 'g') plt.plot([-1,1], [0,0], 'k') plt.axis([-1,1,-4,4]) plt.xlabel("x") plt.ylabel("y") plt.legend() plt.title("Legendre polynomials and equilibrium positions") plt.show() if __name__ == '__main__': test_equilibrium() position_real_axis() energy_one_charge_position() elec_equ_test()
[ "matplotlib.pyplot.title", "numpy.poly1d", "numpy.matrix", "matplotlib.pyplot.show", "numpy.linalg.lstsq", "matplotlib.pyplot.plot", "matplotlib.pyplot.legend", "numpy.zeros", "matplotlib.pyplot.axis", "numpy.shape", "matplotlib.pyplot.figure", "numpy.polynomial.legendre.leg2poly", "numpy.linalg.norm", "numpy.linspace", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.semilogy", "matplotlib.pyplot.xlabel", "numpy.polynomial.legendre.legder" ]
[((3963, 3980), 'numpy.zeros', 'np.zeros', (['(10, 1)'], {}), '((10, 1))\n', (3971, 3980), True, 'import numpy as np\n'), ((617, 628), 'numpy.shape', 'np.shape', (['X'], {}), '(X)\n', (625, 628), True, 'import numpy as np\n'), ((659, 675), 'numpy.zeros', 'np.zeros', (['[n, 1]'], {}), '([n, 1])\n', (667, 675), True, 'import numpy as np\n'), ((1021, 1037), 'numpy.zeros', 'np.zeros', (['(N, N)'], {}), '((N, N))\n', (1029, 1037), True, 'import numpy as np\n'), ((1957, 1987), 'numpy.linalg.norm', 'np.linalg.norm', (['F_value'], {'ord': '(2)'}), '(F_value, ord=2)\n', (1971, 1987), True, 'import numpy as np\n'), ((3129, 3159), 'numpy.linalg.norm', 'np.linalg.norm', (['F_value'], {'ord': '(2)'}), '(F_value, ord=2)\n', (3143, 3159), True, 'import numpy as np\n'), ((4434, 4464), 'numpy.linalg.norm', 'np.linalg.norm', (['F_value'], {'ord': '(2)'}), '(F_value, ord=2)\n', (4448, 4464), True, 'import numpy as np\n'), ((5382, 5441), 'matplotlib.pyplot.plot', 'plt.plot', (['iterations', 'norme_F'], {'label': '"""without backtracking"""'}), "(iterations, norme_F, label='without backtracking')\n", (5390, 5441), True, 'import matplotlib.pyplot as plt\n'), ((5444, 5498), 'matplotlib.pyplot.title', 'plt.title', (['"""Electrostatic equilibrium with 10 charges"""'], {}), "('Electrostatic equilibrium with 10 charges')\n", (5453, 5498), True, 'import matplotlib.pyplot as plt\n'), ((5632, 5666), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Number of iterations"""'], {}), "('Number of iterations')\n", (5642, 5666), True, 'import matplotlib.pyplot as plt\n'), ((5671, 5693), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""||F(X)||"""'], {}), "('||F(X)||')\n", (5681, 5693), True, 'import matplotlib.pyplot as plt\n'), ((5698, 5787), 'matplotlib.pyplot.title', 'plt.title', (['"""Electrostatic equilibrium with 10 charges with and without backtracking"""'], {}), "(\n 'Electrostatic equilibrium with 10 charges with and without backtracking')\n", (5707, 5787), True, 'import matplotlib.pyplot as plt\n'), ((5787, 5801), 'matplotlib.pyplot.semilogy', 'plt.semilogy', ([], {}), '()\n', (5799, 5801), True, 'import matplotlib.pyplot as plt\n'), ((5806, 5818), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (5816, 5818), True, 'import matplotlib.pyplot as plt\n'), ((5823, 5833), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5831, 5833), True, 'import matplotlib.pyplot as plt\n'), ((5942, 5977), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'num': '(2)', 'figsize': '(7, 1.5)'}), '(num=2, figsize=(7, 1.5))\n', (5952, 5977), True, 'import matplotlib.pyplot as plt\n'), ((6026, 6062), 'matplotlib.pyplot.title', 'plt.title', (['"""Position of the charges"""'], {}), "('Position of the charges')\n", (6035, 6062), True, 'import matplotlib.pyplot as plt\n'), ((6067, 6087), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""x axis"""'], {}), "('x axis')\n", (6077, 6087), True, 'import matplotlib.pyplot as plt\n'), ((6219, 6231), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (6229, 6231), True, 'import matplotlib.pyplot as plt\n'), ((6236, 6246), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6244, 6246), True, 'import matplotlib.pyplot as plt\n'), ((6345, 6375), 'numpy.linspace', 'np.linspace', (['(-0.99)', '(0.99)', 'size'], {}), '(-0.99, 0.99, size)\n', (6356, 6375), True, 'import numpy as np\n'), ((6380, 6399), 'numpy.zeros', 'np.zeros', (['(size, 1)'], {}), '((size, 1))\n', (6388, 6399), True, 'import numpy as np\n'), ((6535, 6582), 'matplotlib.pyplot.title', 'plt.title', (['"""Electrostatic energy of one charge"""'], {}), "('Electrostatic energy of one charge')\n", (6544, 6582), True, 'import matplotlib.pyplot as plt\n'), ((6587, 6607), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Energy"""'], {}), "('Energy')\n", (6597, 6607), True, 'import matplotlib.pyplot as plt\n'), ((6612, 6648), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Position of the charge"""'], {}), "('Position of the charge')\n", (6622, 6648), True, 'import matplotlib.pyplot as plt\n'), ((6653, 6667), 'matplotlib.pyplot.plot', 'plt.plot', (['O', 'V'], {}), '(O, V)\n', (6661, 6667), True, 'import matplotlib.pyplot as plt\n'), ((6671, 6681), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6679, 6681), True, 'import matplotlib.pyplot as plt\n'), ((7105, 7116), 'numpy.polynomial.legendre.legder', 'L.legder', (['c'], {}), '(c)\n', (7113, 7116), True, 'import numpy.polynomial.legendre as L\n'), ((7125, 7138), 'numpy.polynomial.legendre.leg2poly', 'L.leg2poly', (['d'], {}), '(d)\n', (7135, 7138), True, 'import numpy.polynomial.legendre as L\n'), ((7169, 7181), 'numpy.poly1d', 'np.poly1d', (['P'], {}), '(P)\n', (7178, 7181), True, 'import numpy as np\n'), ((7190, 7213), 'numpy.linspace', 'np.linspace', (['(-1)', '(1)', '(100)'], {}), '(-1, 1, 100)\n', (7201, 7213), True, 'import numpy as np\n'), ((7232, 7268), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y'], {'label': 'lbl', 'color': 'clr'}), '(x, y, label=lbl, color=clr)\n', (7240, 7268), True, 'import matplotlib.pyplot as plt\n'), ((7334, 7352), 'numpy.matrix', 'np.matrix', (['[[0.2]]'], {}), '([[0.2]])\n', (7343, 7352), True, 'import numpy as np\n'), ((7362, 7387), 'numpy.matrix', 'np.matrix', (['[[0.5], [0.6]]'], {}), '([[0.5], [0.6]])\n', (7371, 7387), True, 'import numpy as np\n'), ((7416, 7449), 'numpy.matrix', 'np.matrix', (['[[0.4], [-0.5], [0.7]]'], {}), '([[0.4], [-0.5], [0.7]])\n', (7425, 7449), True, 'import numpy as np\n'), ((7497, 7537), 'numpy.matrix', 'np.matrix', (['[[0.4], [-0.4], [0.5], [0.6]]'], {}), '([[0.4], [-0.4], [0.5], [0.6]])\n', (7506, 7537), True, 'import numpy as np\n'), ((7711, 7741), 'matplotlib.pyplot.plot', 'plt.plot', (['[-1, 1]', '[0, 0]', '"""k"""'], {}), "([-1, 1], [0, 0], 'k')\n", (7719, 7741), True, 'import matplotlib.pyplot as plt\n'), ((7744, 7768), 'matplotlib.pyplot.axis', 'plt.axis', (['[-1, 1, -4, 4]'], {}), '([-1, 1, -4, 4])\n', (7752, 7768), True, 'import matplotlib.pyplot as plt\n'), ((7770, 7785), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""x"""'], {}), "('x')\n", (7780, 7785), True, 'import matplotlib.pyplot as plt\n'), ((7790, 7805), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""y"""'], {}), "('y')\n", (7800, 7805), True, 'import matplotlib.pyplot as plt\n'), ((7810, 7822), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (7820, 7822), True, 'import matplotlib.pyplot as plt\n'), ((7827, 7886), 'matplotlib.pyplot.title', 'plt.title', (['"""Legendre polynomials and equilibrium positions"""'], {}), "('Legendre polynomials and equilibrium positions')\n", (7836, 7886), True, 'import matplotlib.pyplot as plt\n'), ((7891, 7901), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (7899, 7901), True, 'import matplotlib.pyplot as plt\n'), ((1000, 1011), 'numpy.shape', 'np.shape', (['Y'], {}), '(Y)\n', (1008, 1011), True, 'import numpy as np\n'), ((2239, 2269), 'numpy.linalg.norm', 'np.linalg.norm', (['F_value'], {'ord': '(2)'}), '(F_value, ord=2)\n', (2253, 2269), True, 'import numpy as np\n'), ((3616, 3646), 'numpy.linalg.norm', 'np.linalg.norm', (['F_value'], {'ord': '(2)'}), '(F_value, ord=2)\n', (3630, 3646), True, 'import numpy as np\n'), ((4545, 4563), 'numpy.linalg.norm', 'np.linalg.norm', (['fu'], {}), '(fu)\n', (4559, 4563), True, 'import numpy as np\n'), ((4802, 4832), 'numpy.linalg.norm', 'np.linalg.norm', (['F_value'], {'ord': '(2)'}), '(F_value, ord=2)\n', (4816, 4832), True, 'import numpy as np\n'), ((7017, 7056), 'matplotlib.pyplot.plot', 'plt.plot', (['Peq[i, 0]', '(0)', 'type'], {'color': 'clr'}), '(Peq[i, 0], 0, type, color=clr)\n', (7025, 7056), True, 'import matplotlib.pyplot as plt\n'), ((4642, 4666), 'numpy.linalg.lstsq', 'np.linalg.lstsq', (['ju', '(-fu)'], {}), '(ju, -fu)\n', (4657, 4666), True, 'import numpy as np\n')]
# coding: utf-8 import os import sys sys.path.append(os.pardir) # 为了导入父目录的文件而进行的设定 import numpy as np import matplotlib.pyplot as plt from dataset.mnist import load_mnist from common.multi_layer_net import MultiLayerNet from common.optimizer import SGD (x_train, t_train), (x_test, t_test) = load_mnist(normalize=True) # 为了再现过拟合,减少学习数据 x_train = x_train[:300] t_train = t_train[:300] # weight decay(权值衰减)的设定 ======================= #weight_decay_lambda = 0 # 不使用权值衰减的情况 weight_decay_lambda = 0.1 # ==================================================== network = MultiLayerNet(input_size=784, hidden_size_list=[100, 100, 100, 100, 100, 100], output_size=10, weight_decay_lambda=weight_decay_lambda) optimizer = SGD(lr=0.01) max_epochs = 201 train_size = x_train.shape[0] batch_size = 100 train_loss_list = [] train_acc_list = [] test_acc_list = [] iter_per_epoch = max(train_size / batch_size, 1) epoch_cnt = 0 for i in range(1000000000): batch_mask = np.random.choice(train_size, batch_size) x_batch = x_train[batch_mask] t_batch = t_train[batch_mask] grads = network.gradient(x_batch, t_batch) optimizer.update(network.params, grads) if i % iter_per_epoch == 0: train_acc = network.accuracy(x_train, t_train) test_acc = network.accuracy(x_test, t_test) train_acc_list.append(train_acc) test_acc_list.append(test_acc) # print("epoch:" + str(epoch_cnt) + ", train acc:" + str(train_acc) + ", test acc:" + str(test_acc)) epoch_cnt += 1 if epoch_cnt >= max_epochs: break # 3.绘制图形========== markers = {'train': 'o', 'test': 's'} x = np.arange(max_epochs) plt.plot(x, train_acc_list, marker='o', label='train', markevery=10) plt.plot(x, test_acc_list, marker='s', label='test', markevery=10) plt.xlabel("epochs") plt.ylabel("accuracy") plt.ylim(0, 1.0) plt.legend(loc='lower right') plt.show()
[ "sys.path.append", "numpy.random.choice", "matplotlib.pyplot.show", "matplotlib.pyplot.plot", "matplotlib.pyplot.ylim", "common.optimizer.SGD", "matplotlib.pyplot.legend", "dataset.mnist.load_mnist", "numpy.arange", "common.multi_layer_net.MultiLayerNet", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel" ]
[((38, 64), 'sys.path.append', 'sys.path.append', (['os.pardir'], {}), '(os.pardir)\n', (53, 64), False, 'import sys\n'), ((295, 321), 'dataset.mnist.load_mnist', 'load_mnist', ([], {'normalize': '(True)'}), '(normalize=True)\n', (305, 321), False, 'from dataset.mnist import load_mnist\n'), ((567, 707), 'common.multi_layer_net.MultiLayerNet', 'MultiLayerNet', ([], {'input_size': '(784)', 'hidden_size_list': '[100, 100, 100, 100, 100, 100]', 'output_size': '(10)', 'weight_decay_lambda': 'weight_decay_lambda'}), '(input_size=784, hidden_size_list=[100, 100, 100, 100, 100, \n 100], output_size=10, weight_decay_lambda=weight_decay_lambda)\n', (580, 707), False, 'from common.multi_layer_net import MultiLayerNet\n'), ((739, 751), 'common.optimizer.SGD', 'SGD', ([], {'lr': '(0.01)'}), '(lr=0.01)\n', (742, 751), False, 'from common.optimizer import SGD\n'), ((1659, 1680), 'numpy.arange', 'np.arange', (['max_epochs'], {}), '(max_epochs)\n', (1668, 1680), True, 'import numpy as np\n'), ((1681, 1749), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'train_acc_list'], {'marker': '"""o"""', 'label': '"""train"""', 'markevery': '(10)'}), "(x, train_acc_list, marker='o', label='train', markevery=10)\n", (1689, 1749), True, 'import matplotlib.pyplot as plt\n'), ((1750, 1816), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'test_acc_list'], {'marker': '"""s"""', 'label': '"""test"""', 'markevery': '(10)'}), "(x, test_acc_list, marker='s', label='test', markevery=10)\n", (1758, 1816), True, 'import matplotlib.pyplot as plt\n'), ((1817, 1837), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""epochs"""'], {}), "('epochs')\n", (1827, 1837), True, 'import matplotlib.pyplot as plt\n'), ((1838, 1860), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""accuracy"""'], {}), "('accuracy')\n", (1848, 1860), True, 'import matplotlib.pyplot as plt\n'), ((1861, 1877), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(0)', '(1.0)'], {}), '(0, 1.0)\n', (1869, 1877), True, 'import matplotlib.pyplot as plt\n'), ((1878, 1907), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""lower right"""'}), "(loc='lower right')\n", (1888, 1907), True, 'import matplotlib.pyplot as plt\n'), ((1908, 1918), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1916, 1918), True, 'import matplotlib.pyplot as plt\n'), ((988, 1028), 'numpy.random.choice', 'np.random.choice', (['train_size', 'batch_size'], {}), '(train_size, batch_size)\n', (1004, 1028), True, 'import numpy as np\n')]
''' FILENAME: pix2pix_data.py AUTHORS: <NAME> START DATE: Friday February 25th 2022 CONTACT: <EMAIL> INFO: preparing data for training with pix2pix model ''' import sys from matplotlib.pyplot import bar_label sys.path.append('/data1/shaohua/code/GANToy') import glob import os import numpy as np import torch import torchvision from torch.utils.data import Dataset import torchvision.transforms as transforms from PIL import Image from options.train_options import args_option class Pix2PixDataset(Dataset): def __init__(self, args, transforms_=None, mode='train'): self.transform = transforms_ self.args = args self.filelist = sorted(glob.glob(os.path.join(args.dataroot, args.dataset, mode, '*.jpg'))) def __len__(self): return len(self.filelist) def __getitem__(self, index): img = Image.open(self.filelist[index]) w, h = img.size img_A = img.crop((0, 0, w // 2, h)) img_B = img.crop((w // 2, 0, w, h)) if self.args.which_direction != 'AtoB': img_A, img_B = img_B, img_A # data augmentation if np.random.random() < 0.5: img_A = Image.fromarray(np.array(img_A)[:, ::-1, :], 'RGB') img_B = Image.fromarray(np.array(img_B)[:, ::-1, :], 'RGB') img_A = self.transform(img_A) img_B = self.transform(img_B) return {'A': img_A, 'B': img_B} if __name__ == '__main__': from torch.utils.data import DataLoader args = args_option() trans = transforms.Compose([ transforms.Resize((args.image_size, args.image_size), Image.BICUBIC), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) datasets = Pix2PixDataset(args, trans) dataloader = DataLoader(datasets, batch_size=1) for index, item in enumerate(dataloader): img_A = item['A'] img_B = item['B'] torchvision.utils.save_image(img_A[0], 'img_A_{}.png'.format(index)) if index >= 10: break
[ "sys.path.append", "options.train_options.args_option", "torch.utils.data.DataLoader", "PIL.Image.open", "torchvision.transforms.ToTensor", "numpy.random.random", "numpy.array", "torchvision.transforms.Normalize", "os.path.join", "torchvision.transforms.Resize" ]
[((249, 294), 'sys.path.append', 'sys.path.append', (['"""/data1/shaohua/code/GANToy"""'], {}), "('/data1/shaohua/code/GANToy')\n", (264, 294), False, 'import sys\n'), ((1533, 1546), 'options.train_options.args_option', 'args_option', ([], {}), '()\n', (1544, 1546), False, 'from options.train_options import args_option\n'), ((1821, 1855), 'torch.utils.data.DataLoader', 'DataLoader', (['datasets'], {'batch_size': '(1)'}), '(datasets, batch_size=1)\n', (1831, 1855), False, 'from torch.utils.data import DataLoader\n'), ((885, 917), 'PIL.Image.open', 'Image.open', (['self.filelist[index]'], {}), '(self.filelist[index])\n', (895, 917), False, 'from PIL import Image\n'), ((1160, 1178), 'numpy.random.random', 'np.random.random', ([], {}), '()\n', (1176, 1178), True, 'import numpy as np\n'), ((1589, 1657), 'torchvision.transforms.Resize', 'transforms.Resize', (['(args.image_size, args.image_size)', 'Image.BICUBIC'], {}), '((args.image_size, args.image_size), Image.BICUBIC)\n', (1606, 1657), True, 'import torchvision.transforms as transforms\n'), ((1667, 1688), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (1686, 1688), True, 'import torchvision.transforms as transforms\n'), ((1698, 1752), 'torchvision.transforms.Normalize', 'transforms.Normalize', (['(0.5, 0.5, 0.5)', '(0.5, 0.5, 0.5)'], {}), '((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))\n', (1718, 1752), True, 'import torchvision.transforms as transforms\n'), ((718, 774), 'os.path.join', 'os.path.join', (['args.dataroot', 'args.dataset', 'mode', '"""*.jpg"""'], {}), "(args.dataroot, args.dataset, mode, '*.jpg')\n", (730, 774), False, 'import os\n'), ((1222, 1237), 'numpy.array', 'np.array', (['img_A'], {}), '(img_A)\n', (1230, 1237), True, 'import numpy as np\n'), ((1294, 1309), 'numpy.array', 'np.array', (['img_B'], {}), '(img_B)\n', (1302, 1309), True, 'import numpy as np\n')]
from collections import Counter from io import BytesIO import base64 from PIL import Image, ImageDraw import numpy as np from kmeans import KMeans def rgb2hex(rgb): return '#{:02x}{:02x}{:02x}'.format(*[int(x) for x in rgb]) def receive_image(buf): return Image.open(BytesIO(buf)) def image_to_array(img, img_size): denom = np.sqrt(np.product(img.size[:2]) / img_size**2) im = np.asarray(img.resize( (np.array(img.size) / denom).astype(int)), dtype='int32') X = im.reshape((im.shape[0]*im.shape[1], 3)) return X, im.shape def image_resize(img, img_size): denom = np.sqrt(max(1, np.product(img.size[:2]) / img_size**2)) im = np.asarray(img.resize( (np.array(img.size) / denom).astype(int)), dtype='int32') img = img.resize((np.array(img.size) / denom).astype(int)) buf = BytesIO() img.save(buf, format='jpeg') return base64.b64encode(buf.getvalue()).decode('utf') def get_clusters(X, algo, n_clusters): if algo == 'KMeans': clf = KMeans(n_clusters=n_clusters) else: clf = KMeans(n_clusters=n_clusters) clf.fit(X) return clf def get_colors_from_clf(clf, X): clf_labels = clf.predict(X) colors = [] hist = [] items = sorted(Counter(clf_labels).items()) for k, v in items: colors.append(X[clf_labels == k].mean(axis=0).astype(int).tolist()) hist.append(v) return hist, colors def get_image_from_clf(clf, colors, X, dims): recoded = np.array([ [int(y) for y in colors[x]] for x in clf.predict(X)]).reshape(dims) buf = BytesIO() Image.fromarray(np.uint8(recoded)).save(buf, format='jpeg') return base64.b64encode(buf.getvalue()).decode('utf') def generate_image(w, h, color): img_io = BytesIO() Image.new('RGB', (w, h), color).save(img_io, 'JPEG', quality=90) img_io.seek(0) return img_io
[ "io.BytesIO", "PIL.Image.new", "numpy.uint8", "numpy.product", "numpy.array", "kmeans.KMeans", "collections.Counter" ]
[((838, 847), 'io.BytesIO', 'BytesIO', ([], {}), '()\n', (845, 847), False, 'from io import BytesIO\n'), ((1597, 1606), 'io.BytesIO', 'BytesIO', ([], {}), '()\n', (1604, 1606), False, 'from io import BytesIO\n'), ((1778, 1787), 'io.BytesIO', 'BytesIO', ([], {}), '()\n', (1785, 1787), False, 'from io import BytesIO\n'), ((281, 293), 'io.BytesIO', 'BytesIO', (['buf'], {}), '(buf)\n', (288, 293), False, 'from io import BytesIO\n'), ((1020, 1049), 'kmeans.KMeans', 'KMeans', ([], {'n_clusters': 'n_clusters'}), '(n_clusters=n_clusters)\n', (1026, 1049), False, 'from kmeans import KMeans\n'), ((1074, 1103), 'kmeans.KMeans', 'KMeans', ([], {'n_clusters': 'n_clusters'}), '(n_clusters=n_clusters)\n', (1080, 1103), False, 'from kmeans import KMeans\n'), ((352, 376), 'numpy.product', 'np.product', (['img.size[:2]'], {}), '(img.size[:2])\n', (362, 376), True, 'import numpy as np\n'), ((1792, 1823), 'PIL.Image.new', 'Image.new', (['"""RGB"""', '(w, h)', 'color'], {}), "('RGB', (w, h), color)\n", (1801, 1823), False, 'from PIL import Image, ImageDraw\n'), ((625, 649), 'numpy.product', 'np.product', (['img.size[:2]'], {}), '(img.size[:2])\n', (635, 649), True, 'import numpy as np\n'), ((1253, 1272), 'collections.Counter', 'Counter', (['clf_labels'], {}), '(clf_labels)\n', (1260, 1272), False, 'from collections import Counter\n'), ((1627, 1644), 'numpy.uint8', 'np.uint8', (['recoded'], {}), '(recoded)\n', (1635, 1644), True, 'import numpy as np\n'), ((787, 805), 'numpy.array', 'np.array', (['img.size'], {}), '(img.size)\n', (795, 805), True, 'import numpy as np\n'), ((433, 451), 'numpy.array', 'np.array', (['img.size'], {}), '(img.size)\n', (441, 451), True, 'import numpy as np\n'), ((707, 725), 'numpy.array', 'np.array', (['img.size'], {}), '(img.size)\n', (715, 725), True, 'import numpy as np\n')]
import numpy as np from scipy import interpolate def clean_ibi(events, samping_rate, n=2): ibi = _ibi(events, samping_rate) for _ in range(n): # detect outlier and repalce with nan outliers = signal_outliers(ibi, samping_rate) time = np.cumsum(ibi) # interpolate nan f = interpolate.interp1d( time[~outliers], ibi[~outliers], "cubic", fill_value="extrapolate" ) ibi = f(time) # update return ibi def _ibi(events, samping_rate): """Inter beat interval at msec scale.""" return np.diff(events) / samping_rate * 1000 def signal_outliers(signal, samping_rate): """Number of outliers in Inter beat intervals.""" return _rolling_mad(signal, int(0.5 * samping_rate)) def _mad(arr): """Median Absolute Deviation.""" med = np.median(arr) return med, np.median(np.abs(arr - med)) def _rolling_mad(arr, window): """Rolling window MAD outlier detection on 1d array.""" outliers = [] for i in range(window, len(arr)): cur = arr[(i - window) : i] med, cur_mad = _mad(cur) cur_out = cur > (med + cur_mad * 3) idx = list(np.arange((i - window), i)[cur_out]) outliers += idx outliers = list(set(outliers)) # turn index into boolean bool_outliers = np.zeros(arr.shape[0], dtype=bool) bool_outliers[outliers] = True return bool_outliers
[ "numpy.abs", "numpy.median", "numpy.zeros", "numpy.cumsum", "numpy.diff", "numpy.arange", "scipy.interpolate.interp1d" ]
[((827, 841), 'numpy.median', 'np.median', (['arr'], {}), '(arr)\n', (836, 841), True, 'import numpy as np\n'), ((1315, 1349), 'numpy.zeros', 'np.zeros', (['arr.shape[0]'], {'dtype': 'bool'}), '(arr.shape[0], dtype=bool)\n', (1323, 1349), True, 'import numpy as np\n'), ((268, 282), 'numpy.cumsum', 'np.cumsum', (['ibi'], {}), '(ibi)\n', (277, 282), True, 'import numpy as np\n'), ((321, 414), 'scipy.interpolate.interp1d', 'interpolate.interp1d', (['time[~outliers]', 'ibi[~outliers]', '"""cubic"""'], {'fill_value': '"""extrapolate"""'}), "(time[~outliers], ibi[~outliers], 'cubic', fill_value=\n 'extrapolate')\n", (341, 414), False, 'from scipy import interpolate\n'), ((569, 584), 'numpy.diff', 'np.diff', (['events'], {}), '(events)\n', (576, 584), True, 'import numpy as np\n'), ((868, 885), 'numpy.abs', 'np.abs', (['(arr - med)'], {}), '(arr - med)\n', (874, 885), True, 'import numpy as np\n'), ((1168, 1192), 'numpy.arange', 'np.arange', (['(i - window)', 'i'], {}), '(i - window, i)\n', (1177, 1192), True, 'import numpy as np\n')]
import numpy as np import matplotlib.pyplot as plt def f(x): decay = 10.0 period = decay return (3.0+0.5*np.sin(2.*np.pi*x/period))*x*np.exp(-x/decay) # read data from file xdata, ydata, yerror = np.loadtxt('DecayOcsData.txt', skiprows=5, unpack=True) # create theoretical fitting curve x = np.linspace(0, 45, 128) y = f(x) # create plot plt.figure(1, figsize = (7,4.5) ) plt.plot(x, y, 'b-', label="theory") plt.errorbar(xdata, ydata, fmt='ro', label="data", xerr=0.75, yerr=yerror, ecolor='k') plt.xlabel('x') plt.ylabel('transverse displacement') plt.legend(loc='upper right') # save plot to file plt.savefig('DecayOcsData.pdf') # display plot on screen plt.show()
[ "matplotlib.pyplot.savefig", "matplotlib.pyplot.show", "matplotlib.pyplot.plot", "matplotlib.pyplot.legend", "matplotlib.pyplot.figure", "numpy.sin", "numpy.loadtxt", "numpy.linspace", "numpy.exp", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.errorbar" ]
[((210, 265), 'numpy.loadtxt', 'np.loadtxt', (['"""DecayOcsData.txt"""'], {'skiprows': '(5)', 'unpack': '(True)'}), "('DecayOcsData.txt', skiprows=5, unpack=True)\n", (220, 265), True, 'import numpy as np\n'), ((306, 329), 'numpy.linspace', 'np.linspace', (['(0)', '(45)', '(128)'], {}), '(0, 45, 128)\n', (317, 329), True, 'import numpy as np\n'), ((354, 385), 'matplotlib.pyplot.figure', 'plt.figure', (['(1)'], {'figsize': '(7, 4.5)'}), '(1, figsize=(7, 4.5))\n', (364, 385), True, 'import matplotlib.pyplot as plt\n'), ((388, 424), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y', '"""b-"""'], {'label': '"""theory"""'}), "(x, y, 'b-', label='theory')\n", (396, 424), True, 'import matplotlib.pyplot as plt\n'), ((425, 515), 'matplotlib.pyplot.errorbar', 'plt.errorbar', (['xdata', 'ydata'], {'fmt': '"""ro"""', 'label': '"""data"""', 'xerr': '(0.75)', 'yerr': 'yerror', 'ecolor': '"""k"""'}), "(xdata, ydata, fmt='ro', label='data', xerr=0.75, yerr=yerror,\n ecolor='k')\n", (437, 515), True, 'import matplotlib.pyplot as plt\n'), ((526, 541), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""x"""'], {}), "('x')\n", (536, 541), True, 'import matplotlib.pyplot as plt\n'), ((542, 579), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""transverse displacement"""'], {}), "('transverse displacement')\n", (552, 579), True, 'import matplotlib.pyplot as plt\n'), ((580, 609), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""upper right"""'}), "(loc='upper right')\n", (590, 609), True, 'import matplotlib.pyplot as plt\n'), ((631, 662), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""DecayOcsData.pdf"""'], {}), "('DecayOcsData.pdf')\n", (642, 662), True, 'import matplotlib.pyplot as plt\n'), ((689, 699), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (697, 699), True, 'import matplotlib.pyplot as plt\n'), ((147, 165), 'numpy.exp', 'np.exp', (['(-x / decay)'], {}), '(-x / decay)\n', (153, 165), True, 'import numpy as np\n'), ((118, 150), 'numpy.sin', 'np.sin', (['(2.0 * np.pi * x / period)'], {}), '(2.0 * np.pi * x / period)\n', (124, 150), True, 'import numpy as np\n')]
#!/usr/bin/env python # As v1, but using scipy.sparse.diags instead of spdiags """ Functions for solving a 1D diffusion equations of simplest types (constant coefficient, no source term): u_t = a*u_xx on (0,L) with boundary conditions u=0 on x=0,L, for t in (0,T]. Initial condition: u(x,0)=I(x). The following naming convention of variables are used. ===== ========================================================== Name Description ===== ========================================================== Nx The total number of mesh cells; mesh points are numbered from 0 to Nx. F The dimensionless number a*dt/dx**2, which implicitly specifies the time step. T The stop time for the simulation. I Initial condition (Python function of x). a Variable coefficient (constant). L Length of the domain ([0,L]). x Mesh points in space. t Mesh points in time. n Index counter in time. u Unknown at current/new time level. u_n u at the previous time level. dx Constant mesh spacing in x. dt Constant mesh spacing in t. ===== ========================================================== user_action is a function of (u, x, t, n), u[i] is the solution at spatial mesh point x[i] at time t[n], where the calling code can add visualization, error computations, data analysis, store solutions, etc. """ import sys import time # import scitools.std as plt import scipy.sparse import scipy.sparse.linalg import numpy as np def solver_FE_simple(I, a, f, L, dt, F, T): """ Simplest expression of the computational algorithm using the Forward Euler method and explicit Python loops. For this method F <= 0.5 for stability. """ import time t0 = time.perf_counter() # For measuring the CPU time Nt = int(round(T/float(dt))) t = np.linspace(0, Nt*dt, Nt+1) # Mesh points in time dx = np.sqrt(a*dt/F) Nx = int(round(L/dx)) x = np.linspace(0, L, Nx+1) # Mesh points in space # Make sure dx and dt are compatible with x and t dx = x[1] - x[0] dt = t[1] - t[0] u = np.zeros(Nx+1) u_n = np.zeros(Nx+1) # Set initial condition u(x,0) = I(x) for i in range(0, Nx+1): u_n[i] = I(x[i]) for n in range(0, Nt): # Compute u at inner mesh points for i in range(1, Nx): u[i] = u_n[i] + F*(u_n[i-1] - 2*u_n[i] + u_n[i+1]) + \ dt*f(x[i], t[n]) # Insert boundary conditions u[0] = 0 u[Nx] = 0 # Switch variables before next step # u_n[:] = u # safe, but slow u_n, u = u, u_n t1 = time.perf_counter() return u_n, x, t, t1-t0 # u_n holds latest u def solver_FE(I, a, f, L, dt, F, T, user_action=None, version='scalar'): """ Vectorized implementation of solver_FE_simple. """ t0 = time.perf_counter() # for measuring the CPU time Nt = int(round(T/float(dt))) t = np.linspace(0, Nt*dt, Nt+1) # Mesh points in time dx = np.sqrt(a*dt/F) Nx = int(round(L/dx)) x = np.linspace(0, L, Nx+1) # Mesh points in space # Make sure dx and dt are compatible with x and t dx = x[1] - x[0] dt = t[1] - t[0] u = np.zeros(Nx+1) # solution array u_n = np.zeros(Nx+1) # solution at t-dt # Set initial condition for i in range(0, Nx+1): u_n[i] = I(x[i]) if user_action is not None: user_action(u_n, x, t, 0) for n in range(0, Nt): # Update all inner points if version == 'scalar': for i in range(1, Nx): u[i] = u_n[i] +\ F*(u_n[i-1] - 2*u_n[i] + u_n[i+1]) +\ dt*f(x[i], t[n]) elif version == 'vectorized': u[1:Nx] = u_n[1:Nx] + \ F*(u_n[0:Nx-1] - 2*u_n[1:Nx] + u_n[2:Nx+1]) +\ dt*f(x[1:Nx], t[n]) else: raise ValueError('version=%s' % version) # Insert boundary conditions u[0] = 0 u[Nx] = 0 if user_action is not None: user_action(u, x, t, n+1) # Switch variables before next step u_n, u = u, u_n t1 = time.perf_counter() return t1-t0 def solver_BE_simple(I, a, f, L, dt, F, T, user_action=None): """ Simplest expression of the computational algorithm for the Backward Euler method, using explicit Python loops and a dense matrix format for the coefficient matrix. """ import time t0 = time.perf_counter() # for measuring the CPU time Nt = int(round(T/float(dt))) t = np.linspace(0, Nt*dt, Nt+1) # Mesh points in time dx = np.sqrt(a*dt/F) Nx = int(round(L/dx)) x = np.linspace(0, L, Nx+1) # Mesh points in space # Make sure dx and dt are compatible with x and t dx = x[1] - x[0] dt = t[1] - t[0] u = np.zeros(Nx+1) u_n = np.zeros(Nx+1) # Data structures for the linear system A = np.zeros((Nx+1, Nx+1)) b = np.zeros(Nx+1) for i in range(1, Nx): A[i, i-1] = -F A[i, i+1] = -F A[i, i] = 1 + 2*F A[0, 0] = A[Nx, Nx] = 1 # Set initial condition u(x,0) = I(x) for i in range(0, Nx+1): u_n[i] = I(x[i]) if user_action is not None: user_action(u_n, x, t, 0) for n in range(0, Nt): # Compute b and solve linear system for i in range(1, Nx): b[i] = u_n[i] + dt*f(x[i], t[n+1]) b[0] = b[Nx] = 0 u[:] = np.linalg.solve(A, b) if user_action is not None: user_action(u, x, t, n+1) # Update u_n before next step u_n, u = u, u_n t1 = time.perf_counter() return t1-t0 def solver_BE(I, a, f, L, dt, F, T, user_action=None): """ Vectorized implementation of solver_BE_simple using also a sparse (tridiagonal) matrix for efficiency. """ import time t0 = time.perf_counter() # for measuring the CPU time Nt = int(round(T/float(dt))) t = np.linspace(0, Nt*dt, Nt+1) # Mesh points in time dx = np.sqrt(a*dt/F) Nx = int(round(L/dx)) x = np.linspace(0, L, Nx+1) # Mesh points in space # Make sure dx and dt are compatible with x and t dx = x[1] - x[0] dt = t[1] - t[0] u = np.zeros(Nx+1) # Solution array at t[n+1] u_n = np.zeros(Nx+1) # Solution at t[n] # Representation of sparse matrix and right-hand side diagonal = np.zeros(Nx+1) lower = np.zeros(Nx) upper = np.zeros(Nx) b = np.zeros(Nx+1) # Precompute sparse matrix diagonal[:] = 1 + 2*F lower[:] = -F # 1 upper[:] = -F # 1 # Insert boundary conditions diagonal[0] = 1 upper[0] = 0 diagonal[Nx] = 1 lower[-1] = 0 A = scipy.sparse.diags( diagonals=[diagonal, lower, upper], offsets=[0, -1, 1], shape=(Nx+1, Nx+1), format='csr') print(A.todense()) # Set initial condition for i in range(0, Nx+1): u_n[i] = I(x[i]) if user_action is not None: user_action(u_n, x, t, 0) for n in range(0, Nt): b = u_n + dt*f(x[:], t[n+1]) b[0] = b[-1] = 0.0 # boundary conditions u[:] = scipy.sparse.linalg.spsolve(A, b) if user_action is not None: user_action(u, x, t, n+1) # Update u_n before next step # u_n[:] = u u_n, u = u, u_n t1 = time.perf_counter() return t1-t0 def solver_theta(I, a, f, L, dt, F, T, theta=0.5, u_L=0, u_R=0, user_action=None): """ Full solver for the model problem using the theta-rule difference approximation in time (no restriction on F, i.e., the time step when theta >= 0.5). Vectorized implementation and sparse (tridiagonal) coefficient matrix. """ import time t0 = time.perf_counter() # for measuring the CPU time Nt = int(round(T/float(dt))) t = np.linspace(0, Nt*dt, Nt+1) # Mesh points in time dx = np.sqrt(a*dt/F) Nx = int(round(L/dx)) x = np.linspace(0, L, Nx+1) # Mesh points in space # Make sure dx and dt are compatible with x and t dx = x[1] - x[0] dt = t[1] - t[0] u = np.zeros(Nx+1) # solution array at t[n+1] u_n = np.zeros(Nx+1) # solution at t[n] # Representation of sparse matrix and right-hand side diagonal = np.zeros(Nx+1) lower = np.zeros(Nx) upper = np.zeros(Nx) b = np.zeros(Nx+1) # Precompute sparse matrix (scipy format) Fl = F*theta Fr = F*(1-theta) diagonal[:] = 1 + 2*Fl lower[:] = -Fl # 1 upper[:] = -Fl # 1 # Insert boundary conditions diagonal[0] = 1 upper[0] = 0 diagonal[Nx] = 1 lower[-1] = 0 diags = [0, -1, 1] A = scipy.sparse.diags( diagonals=[diagonal, lower, upper], offsets=[0, -1, 1], shape=(Nx+1, Nx+1), format='csr') print(A.todense()) # Set initial condition for i in range(0, Nx+1): u_n[i] = I(x[i]) if user_action is not None: user_action(u_n, x, t, 0) # Time loop for n in range(0, Nt): b[1:-1] = u_n[1:-1] + \ Fr*(u_n[:-2] - 2*u_n[1:-1] + u_n[2:]) + \ dt*theta*f(x[1:-1], t[n+1]) + \ dt*(1-theta)*f(x[1:-1], t[n]) b[0] = u_L # Boundary conditions b[-1] = u_R u[:] = scipy.sparse.linalg.spsolve(A, b) if user_action is not None: user_action(u, x, t, n+1) # Update u_n before next step u_n, u = u, u_n t1 = time.perf_counter() return t1-t0 def viz(I, a, L, dt, F, T, umin, umax, scheme='FE', animate=True, framefiles=True): def plot_u(u, x, t, n): plt.plot(x, u, 'r-', axis=[0, L, umin, umax], title='t=%f' % t[n]) if framefiles: plt.savefig('tmp_frame%04d.png' % n) if t[n] == 0: time.sleep(2) elif not framefiles: # It takes time to write files so pause is needed # for screen only animation time.sleep(0.2) user_action = plot_u if animate else lambda u, x, t, n: None cpu = eval('solver_'+scheme)(I, a, L, dt, F, T, user_action=user_action) return cpu def plug(scheme='FE', F=0.5, Nx=50): L = 1. a = 1. T = 0.1 # Compute dt from Nx and F dx = L/Nx dt = F/a*dx**2 def I(x): """Plug profile as initial condition.""" if abs(x-L/2.0) > 0.1: return 0 else: return 1 cpu = viz(I, a, L, dt, F, T, umin=-0.1, umax=1.1, scheme=scheme, animate=True, framefiles=True) print('CPU time:', cpu) def gaussian(scheme='FE', F=0.5, Nx=50, sigma=0.05): L = 1. a = 1. T = 0.1 # Compute dt from Nx and F dx = L/Nx dt = F/a*dx**2 def I(x): """Gaussian profile as initial condition.""" return exp(-0.5*((x-L/2.0)**2)/sigma**2) u, cpu = viz(I, a, L, dt, F, T, umin=-0.1, umax=1.1, scheme=scheme, animate=True, framefiles=True) print('CPU time:', cpu) def expsin(scheme='FE', F=0.5, m=3): L = 10.0 a = 1 T = 1.2 def exact(x, t): return exp(-m**2*pi**2*a/L**2*t)*sin(m*pi/L*x) def I(x): return exact(x, 0) Nx = 80 # Compute dt from Nx and F dx = L/Nx dt = F/a*dx**2 viz(I, a, L, dt, F, T, -1, 1, scheme=scheme, animate=True, framefiles=True) # Convergence study def action(u, x, t, n): e = abs(u - exact(x, t[n])).max() errors.append(e) errors = [] Nx_values = [10, 20, 40, 80, 160] for Nx in Nx_values: eval('solver_'+scheme)(I, a, L, Nx, F, T, user_action=action) dt = F*(L/Nx)**2/a print(dt, errors[-1]) def test_solvers(): def u_exact(x, t): return x*(L-x)*5*t # fulfills BC at x=0 and x=L def I(x): return u_exact(x, 0) def f(x, t): return 5*x*(L-x) + 10*a*t a = 3.5 L = 1.5 Nx = 4 F = 0.5 # Compute dt from Nx and F dx = L/Nx dt = F/a*dx**2 def compare(u, x, t, n): # user_action function """Compare exact and computed solution.""" u_e = u_exact(x, t[n]) diff = abs(u_e - u).max() tol = 1E-14 assert diff < tol, 'max diff: %g' % diff import functools s = functools.partial # object for calling a function w/args solvers = [ s(solver_FE_simple, I=I, a=a, f=f, L=L, dt=dt, F=F, T=0.2), s(solver_FE, I=I, a=a, f=f, L=L, dt=dt, F=F, T=2, user_action=compare, version='scalar'), s(solver_FE, I=I, a=a, f=f, L=L, dt=dt, F=F, T=2, user_action=compare, version='vectorized'), s(solver_BE_simple, I=I, a=a, f=f, L=L, dt=dt, F=F, T=2, user_action=compare), s(solver_BE, I=I, a=a, f=f, L=L, dt=dt, F=F, T=2, user_action=compare), s(solver_theta, I=I, a=a, f=f, L=L, dt=dt, F=F, T=2, theta=0, u_L=0, u_R=0, user_action=compare), ] # solver_FE_simple has different return from the others u, x, t, cpu = solvers[0]() u_e = u_exact(x, t[-1]) diff = abs(u_e - u).max() tol = 1E-14 print(u_e) print(u) assert diff < tol, 'max diff solver_FE_simple: %g' % diff for solver in solvers: solver() if __name__ == '__main__': if len(sys.argv) < 2: print("""Usage %s function arg1 arg2 arg3 ...""" % sys.argv[0]) sys.exit(0) cmd = '%s(%s)' % (sys.argv[1], ', '.join(sys.argv[2:])) print(cmd) eval(cmd)
[ "numpy.zeros", "time.perf_counter", "time.sleep", "numpy.linspace", "numpy.linalg.solve", "sys.exit", "numpy.sqrt" ]
[((1720, 1739), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (1737, 1739), False, 'import time\n'), ((1812, 1843), 'numpy.linspace', 'np.linspace', (['(0)', '(Nt * dt)', '(Nt + 1)'], {}), '(0, Nt * dt, Nt + 1)\n', (1823, 1843), True, 'import numpy as np\n'), ((1873, 1892), 'numpy.sqrt', 'np.sqrt', (['(a * dt / F)'], {}), '(a * dt / F)\n', (1880, 1892), True, 'import numpy as np\n'), ((1923, 1948), 'numpy.linspace', 'np.linspace', (['(0)', 'L', '(Nx + 1)'], {}), '(0, L, Nx + 1)\n', (1934, 1948), True, 'import numpy as np\n'), ((2081, 2097), 'numpy.zeros', 'np.zeros', (['(Nx + 1)'], {}), '(Nx + 1)\n', (2089, 2097), True, 'import numpy as np\n'), ((2106, 2122), 'numpy.zeros', 'np.zeros', (['(Nx + 1)'], {}), '(Nx + 1)\n', (2114, 2122), True, 'import numpy as np\n'), ((2612, 2631), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (2629, 2631), False, 'import time\n'), ((2847, 2866), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (2864, 2866), False, 'import time\n'), ((2939, 2970), 'numpy.linspace', 'np.linspace', (['(0)', '(Nt * dt)', '(Nt + 1)'], {}), '(0, Nt * dt, Nt + 1)\n', (2950, 2970), True, 'import numpy as np\n'), ((3000, 3019), 'numpy.sqrt', 'np.sqrt', (['(a * dt / F)'], {}), '(a * dt / F)\n', (3007, 3019), True, 'import numpy as np\n'), ((3050, 3075), 'numpy.linspace', 'np.linspace', (['(0)', 'L', '(Nx + 1)'], {}), '(0, L, Nx + 1)\n', (3061, 3075), True, 'import numpy as np\n'), ((3208, 3224), 'numpy.zeros', 'np.zeros', (['(Nx + 1)'], {}), '(Nx + 1)\n', (3216, 3224), True, 'import numpy as np\n'), ((3251, 3267), 'numpy.zeros', 'np.zeros', (['(Nx + 1)'], {}), '(Nx + 1)\n', (3259, 3267), True, 'import numpy as np\n'), ((4179, 4198), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (4196, 4198), False, 'import time\n'), ((4497, 4516), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (4514, 4516), False, 'import time\n'), ((4589, 4620), 'numpy.linspace', 'np.linspace', (['(0)', '(Nt * dt)', '(Nt + 1)'], {}), '(0, Nt * dt, Nt + 1)\n', (4600, 4620), True, 'import numpy as np\n'), ((4650, 4669), 'numpy.sqrt', 'np.sqrt', (['(a * dt / F)'], {}), '(a * dt / F)\n', (4657, 4669), True, 'import numpy as np\n'), ((4700, 4725), 'numpy.linspace', 'np.linspace', (['(0)', 'L', '(Nx + 1)'], {}), '(0, L, Nx + 1)\n', (4711, 4725), True, 'import numpy as np\n'), ((4858, 4874), 'numpy.zeros', 'np.zeros', (['(Nx + 1)'], {}), '(Nx + 1)\n', (4866, 4874), True, 'import numpy as np\n'), ((4883, 4899), 'numpy.zeros', 'np.zeros', (['(Nx + 1)'], {}), '(Nx + 1)\n', (4891, 4899), True, 'import numpy as np\n'), ((4951, 4977), 'numpy.zeros', 'np.zeros', (['(Nx + 1, Nx + 1)'], {}), '((Nx + 1, Nx + 1))\n', (4959, 4977), True, 'import numpy as np\n'), ((4982, 4998), 'numpy.zeros', 'np.zeros', (['(Nx + 1)'], {}), '(Nx + 1)\n', (4990, 4998), True, 'import numpy as np\n'), ((5648, 5667), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (5665, 5667), False, 'import time\n'), ((5894, 5913), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (5911, 5913), False, 'import time\n'), ((5986, 6017), 'numpy.linspace', 'np.linspace', (['(0)', '(Nt * dt)', '(Nt + 1)'], {}), '(0, Nt * dt, Nt + 1)\n', (5997, 6017), True, 'import numpy as np\n'), ((6047, 6066), 'numpy.sqrt', 'np.sqrt', (['(a * dt / F)'], {}), '(a * dt / F)\n', (6054, 6066), True, 'import numpy as np\n'), ((6097, 6122), 'numpy.linspace', 'np.linspace', (['(0)', 'L', '(Nx + 1)'], {}), '(0, L, Nx + 1)\n', (6108, 6122), True, 'import numpy as np\n'), ((6255, 6271), 'numpy.zeros', 'np.zeros', (['(Nx + 1)'], {}), '(Nx + 1)\n', (6263, 6271), True, 'import numpy as np\n'), ((6308, 6324), 'numpy.zeros', 'np.zeros', (['(Nx + 1)'], {}), '(Nx + 1)\n', (6316, 6324), True, 'import numpy as np\n'), ((6417, 6433), 'numpy.zeros', 'np.zeros', (['(Nx + 1)'], {}), '(Nx + 1)\n', (6425, 6433), True, 'import numpy as np\n'), ((6444, 6456), 'numpy.zeros', 'np.zeros', (['Nx'], {}), '(Nx)\n', (6452, 6456), True, 'import numpy as np\n'), ((6469, 6481), 'numpy.zeros', 'np.zeros', (['Nx'], {}), '(Nx)\n', (6477, 6481), True, 'import numpy as np\n'), ((6490, 6506), 'numpy.zeros', 'np.zeros', (['(Nx + 1)'], {}), '(Nx + 1)\n', (6498, 6506), True, 'import numpy as np\n'), ((7367, 7386), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (7384, 7386), False, 'import time\n'), ((7788, 7807), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (7805, 7807), False, 'import time\n'), ((7880, 7911), 'numpy.linspace', 'np.linspace', (['(0)', '(Nt * dt)', '(Nt + 1)'], {}), '(0, Nt * dt, Nt + 1)\n', (7891, 7911), True, 'import numpy as np\n'), ((7941, 7960), 'numpy.sqrt', 'np.sqrt', (['(a * dt / F)'], {}), '(a * dt / F)\n', (7948, 7960), True, 'import numpy as np\n'), ((7991, 8016), 'numpy.linspace', 'np.linspace', (['(0)', 'L', '(Nx + 1)'], {}), '(0, L, Nx + 1)\n', (8002, 8016), True, 'import numpy as np\n'), ((8149, 8165), 'numpy.zeros', 'np.zeros', (['(Nx + 1)'], {}), '(Nx + 1)\n', (8157, 8165), True, 'import numpy as np\n'), ((8203, 8219), 'numpy.zeros', 'np.zeros', (['(Nx + 1)'], {}), '(Nx + 1)\n', (8211, 8219), True, 'import numpy as np\n'), ((8313, 8329), 'numpy.zeros', 'np.zeros', (['(Nx + 1)'], {}), '(Nx + 1)\n', (8321, 8329), True, 'import numpy as np\n'), ((8340, 8352), 'numpy.zeros', 'np.zeros', (['Nx'], {}), '(Nx)\n', (8348, 8352), True, 'import numpy as np\n'), ((8365, 8377), 'numpy.zeros', 'np.zeros', (['Nx'], {}), '(Nx)\n', (8373, 8377), True, 'import numpy as np\n'), ((8386, 8402), 'numpy.zeros', 'np.zeros', (['(Nx + 1)'], {}), '(Nx + 1)\n', (8394, 8402), True, 'import numpy as np\n'), ((9502, 9521), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (9519, 9521), False, 'import time\n'), ((5478, 5499), 'numpy.linalg.solve', 'np.linalg.solve', (['A', 'b'], {}), '(A, b)\n', (5493, 5499), True, 'import numpy as np\n'), ((13485, 13496), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (13493, 13496), False, 'import sys\n'), ((9860, 9873), 'time.sleep', 'time.sleep', (['(2)'], {}), '(2)\n', (9870, 9873), False, 'import time\n'), ((10017, 10032), 'time.sleep', 'time.sleep', (['(0.2)'], {}), '(0.2)\n', (10027, 10032), False, 'import time\n')]
import copy from typing import List import numpy as np from numpy.core import ndarray from .hg import Histogram # import matplotlib.pyplot as plt to_print = False class NewForest: """This creates a forest of trees, given the following list of parameters: 1) n_trees: the number of trees 2) max_depth: the depth of the trees 3) max_samples: number of samples per tree 4) max_buckets: maximum number of buckets used by the histogram 5) epsilon: accuracy of the histogram""" dim = ... # type: int size = ... # type: int points = ... # type: ndarray start = ... # type: ndarray end = ... # type: ndarray def __init__(self, **kwargs): self.n_trees = kwargs['n_trees'] self.max_depth = kwargs['max_depth'] self.max_samples = kwargs['max_samples'] self.max_buckets = kwargs['max_buckets'] self.epsilon = kwargs['epsilon'] self.sample_axis = kwargs['sample_axis'] self.threshold = kwargs['threshold'] self.tree = [] self.bucket_profile = np.zeros(self.max_buckets) self.num_leaves = 0 def fit(self, pts): self.points = pts self.dim, self.size = np.shape(self.points) if int(self.sample_axis * self.dim) == 0: print("sample_axis is too low") return self.start = np.zeros((self.dim, 1)) self.end = np.zeros((self.dim, 1)) for axis in range(self.dim): val = np.unique(np.array(self.points[axis])) if len(val) <= 1: print("No entropy in dimension :", axis) return self.start[axis] = (3 * val[0] - val[1]) / 2 self.end[axis] = (3 * val[-1] - val[-2]) / 2 k_args = {'depth': 0, 'forest': self} sample = np.random.choice(self.size, self.max_depth * 50, replace=False) for i in range(self.n_trees): k_args['indices'] = np.random.choice(self.size, self.max_samples, replace=False) root_node = Node(**k_args) root_node.compute_density(sample) self.tree.append(root_node) def plt_scores(self, pts): _, n_pts = np.shape(pts) n_show = int(2 * self.n_trees / 3) scores = np.zeros((self.n_trees, n_pts)) # need to do this streaming indices = [i for i in range(n_pts)] for i in range(self.n_trees): self.tree[i].compute_split(pts, indices, scores[i]) for i in range(n_pts): plt.plot(np.sort(scores[:, i])[:n_show]) plt.show() def predict(self, pts, err=0.1, pct=50): _, n_pts = np.shape(pts) scores = np.zeros((self.n_trees, n_pts)) # need to do this streaming indices = np.arange(n_pts) for i in range(self.n_trees): self.tree[i].compute_split(pts, indices, scores[i]) n_err = int(err * n_pts) min_score = np.percentile(scores, pct, axis=0) top_indices = np.argsort(min_score)[:n_err] anom_pts = {} anom_scores = {} anom_pct = {} for i in range(n_err): anom_pts[top_indices[i]] = pts[:, top_indices[i]] anom_scores[top_indices[i]] = scores[:, top_indices[i]] anom_pct[top_indices[i]] = min_score[top_indices[i]] return top_indices, anom_pts, anom_scores, anom_pct class PointSet: def __init__(self, node, indices): self.node = node self.indices = indices self.val = [] self.count = [] self.gap = [] for axis in range(self.node.forest.dim): val, count = np.unique(np.array(self.node.forest.points[axis, self.indices]), return_counts=True) self.val.append(val) self.count.append(count) if len(val) <= 1: gap = [0] else: gap = np.zeros(len(val)) gap[0] = (val[0] + val[1]) / 2 - self.node.cube.start[axis] gap[-1] = self.node.cube.end[axis] - (val[-1] + val[-2]) / 2 for i in range(1, len(val) - 1): gap[i] = (val[i + 1] - val[i - 1]) / 2 self.gap.append(gap) class Cube: def __init__(self, node, start, end): assert isinstance(node, Node) self.node = node self.child = [] self.start = start self.end = end self.dim = len(start) self.split_axis = -1 self.split_vals = [] self.vol = 1 for i in range(self.dim): self.vol *= (self.end[i] - self.start[i]) def filter_indices(self, indices): in_lb = self.node.forest.points[:, indices] >= self.start.reshape(self.dim, 1) in_ub = self.node.forest.points[:, indices] < self.end.reshape(self.dim, 1) return [indices[i] for i in range(len(indices)) if in_lb[:, i].all() and in_ub[:, i].all()] def split_indices(self, pts, indices): if not self.child: return indices n_child = len(self.child) n_arr = len(indices) if n_arr == 0: return [[] for _ in range(n_child)] s_arr = pts[self.split_axis] s_start = self.start[self.split_axis] s_end = self.end[self.split_axis] index_split = [[] for _ in range(n_child)] index_split[0] = [indices[ind] for ind in range(n_arr) if ((s_arr[ind] >= s_start) and (s_arr[ind] < self.split_vals[0]))] index_split[-1] = [indices[ind] for ind in range(n_arr) if ((s_arr[ind] >= self.split_vals[-1]) and (s_arr[ind] < s_end))] for k in range(1, n_child - 1): index_split[k] = [indices[ind] for ind in range(n_arr) if (s_arr[ind] >= self.split_vals[k - 1]) and (s_arr[ind] < self.split_vals[k])] return index_split class Node: def __init__(self, depth, forest, **kwargs): self.depth = depth self.forest = forest if self.depth == 0: self.id_string = [0] self.cube = Cube(self, self.forest.start, self.forest.end) self.point_set = PointSet(self, kwargs['indices']) else: self.id_string = kwargs['id'] self.cube = Cube(self, kwargs['start'], kwargs['end']) self.point_set = PointSet(self, self.cube.filter_indices(kwargs['indices'])) self.density = -1 self.child = [] if (self.depth < self.forest.max_depth) and (len(self.point_set.indices) > 1): self.split_node() def split_node(self): imp_axis = [axis for axis in range(self.cube.dim) if len(self.point_set.val[axis]) > 1] if not imp_axis: return max_axes = min(len(imp_axis), int(self.forest.sample_axis * self.cube.dim)) s_axes = np.random.choice(imp_axis, max_axes, replace=False) buckets = {} var_red = {} for axis in s_axes: hist = Histogram(self.point_set.gap[axis] / self.point_set.count[axis], self.point_set.count[axis], self.forest.max_buckets, self.forest.epsilon) opt_buckets, var_red[axis], buckets[axis] = hist.best_split() if np.max(list(var_red.values())) <= self.forest.threshold: return self.forest.bucket_profile[opt_buckets - 1] += 1 self.forest.num_leaves += opt_buckets split_axis = np.random.choice(s_axes, p=list(var_red.values()) / np.sum(list(var_red.values()))) self.cube.split_axis = split_axis self.cube.split_vals = [(self.point_set.val[split_axis][i - 1] + self.point_set.val[split_axis][i]) / 2 for i in buckets[split_axis]] for i in range(len(self.cube.split_vals) + 1): new_start = np.array(self.cube.start) new_end = np.array(self.cube.end) if 0 < i < len(self.cube.split_vals): new_start[split_axis] = self.cube.split_vals[i - 1] new_end[split_axis] = self.cube.split_vals[i] elif i == 0: new_end[split_axis] = self.cube.split_vals[0] else: # i == len(self.cube.split_vals) new_start[split_axis] = self.cube.split_vals[-1] new_id = copy.deepcopy(self.id_string) new_id.append(i) kwargs = {'start': new_start, 'end': new_end} kwargs.update({'indices': self.point_set.indices, 'id': new_id}) child_node = Node(self.depth + 1, self.forest, **kwargs) self.child.append(child_node) self.cube.child.append(child_node.cube) def compute_density(self, indices): if len(indices) == 0: self.density = 0 self.child = [] self.cube.child = [] self.cube.split_axis = -1 return n_arr = len(indices) self.density = n_arr / self.cube.vol if self.child: index_split = self.cube.split_indices(self.forest.points, indices) for i in range(len(self.child)): self.child[i].compute_density(index_split[i]) def compute_split(self, pts, indices, scores): if self.child: index_split = self.cube.split_indices(pts, indices) for i in range(len(self.child)): if index_split[i]: self.child[i].compute_split(pts, index_split[i], scores) else: scores[indices] = self.density def __str__(self): str_val = "Id: " + str(self.id_string) + "\n" str_val += "Boundary: " for i in range(self.cube.dim): str_val += " [" + str(self.cube.start[i]) + ", " + str(self.cube.end[i]) + "]" if i < self.cube.dim - 1: str_val += " x" else: str_val += "\n" str_val += "Indices: " + str(self.point_set.indices) + "\n" return str_val def print_node(self): print_list = [self] while print_list: node = print_list.pop(0) print(str(node)) print_list.extend(node.child)
[ "copy.deepcopy", "numpy.zeros", "numpy.shape", "numpy.percentile", "numpy.argsort", "numpy.sort", "numpy.arange", "numpy.array", "numpy.random.choice" ]
[((1059, 1085), 'numpy.zeros', 'np.zeros', (['self.max_buckets'], {}), '(self.max_buckets)\n', (1067, 1085), True, 'import numpy as np\n'), ((1195, 1216), 'numpy.shape', 'np.shape', (['self.points'], {}), '(self.points)\n', (1203, 1216), True, 'import numpy as np\n'), ((1351, 1374), 'numpy.zeros', 'np.zeros', (['(self.dim, 1)'], {}), '((self.dim, 1))\n', (1359, 1374), True, 'import numpy as np\n'), ((1394, 1417), 'numpy.zeros', 'np.zeros', (['(self.dim, 1)'], {}), '((self.dim, 1))\n', (1402, 1417), True, 'import numpy as np\n'), ((1799, 1862), 'numpy.random.choice', 'np.random.choice', (['self.size', '(self.max_depth * 50)'], {'replace': '(False)'}), '(self.size, self.max_depth * 50, replace=False)\n', (1815, 1862), True, 'import numpy as np\n'), ((2170, 2183), 'numpy.shape', 'np.shape', (['pts'], {}), '(pts)\n', (2178, 2183), True, 'import numpy as np\n'), ((2244, 2275), 'numpy.zeros', 'np.zeros', (['(self.n_trees, n_pts)'], {}), '((self.n_trees, n_pts))\n', (2252, 2275), True, 'import numpy as np\n'), ((2623, 2636), 'numpy.shape', 'np.shape', (['pts'], {}), '(pts)\n', (2631, 2636), True, 'import numpy as np\n'), ((2654, 2685), 'numpy.zeros', 'np.zeros', (['(self.n_trees, n_pts)'], {}), '((self.n_trees, n_pts))\n', (2662, 2685), True, 'import numpy as np\n'), ((2733, 2749), 'numpy.arange', 'np.arange', (['n_pts'], {}), '(n_pts)\n', (2742, 2749), True, 'import numpy as np\n'), ((2905, 2939), 'numpy.percentile', 'np.percentile', (['scores', 'pct'], {'axis': '(0)'}), '(scores, pct, axis=0)\n', (2918, 2939), True, 'import numpy as np\n'), ((6879, 6930), 'numpy.random.choice', 'np.random.choice', (['imp_axis', 'max_axes'], {'replace': '(False)'}), '(imp_axis, max_axes, replace=False)\n', (6895, 6930), True, 'import numpy as np\n'), ((1933, 1993), 'numpy.random.choice', 'np.random.choice', (['self.size', 'self.max_samples'], {'replace': '(False)'}), '(self.size, self.max_samples, replace=False)\n', (1949, 1993), True, 'import numpy as np\n'), ((2962, 2983), 'numpy.argsort', 'np.argsort', (['min_score'], {}), '(min_score)\n', (2972, 2983), True, 'import numpy as np\n'), ((7852, 7877), 'numpy.array', 'np.array', (['self.cube.start'], {}), '(self.cube.start)\n', (7860, 7877), True, 'import numpy as np\n'), ((7900, 7923), 'numpy.array', 'np.array', (['self.cube.end'], {}), '(self.cube.end)\n', (7908, 7923), True, 'import numpy as np\n'), ((8329, 8358), 'copy.deepcopy', 'copy.deepcopy', (['self.id_string'], {}), '(self.id_string)\n', (8342, 8358), False, 'import copy\n'), ((1483, 1510), 'numpy.array', 'np.array', (['self.points[axis]'], {}), '(self.points[axis])\n', (1491, 1510), True, 'import numpy as np\n'), ((3612, 3665), 'numpy.array', 'np.array', (['self.node.forest.points[axis, self.indices]'], {}), '(self.node.forest.points[axis, self.indices])\n', (3620, 3665), True, 'import numpy as np\n'), ((2503, 2524), 'numpy.sort', 'np.sort', (['scores[:, i]'], {}), '(scores[:, i])\n', (2510, 2524), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """The check functions.""" # Authors: <NAME> <<EMAIL>> # # License: BSD (3-clause) import operator from distutils.version import LooseVersion import os.path as op import numpy as np from ._logging import warn def _ensure_int(x, name='unknown', must_be='an int'): """Ensure a variable is an integer.""" # This is preferred over numbers.Integral, see: # https://github.com/scipy/scipy/pull/7351#issuecomment-299713159 try: x = int(operator.index(x)) except TypeError: raise TypeError('%s must be %s, got %s' % (name, must_be, type(x))) return x def check_fname(fname, filetype, endings, endings_err=()): """Enforce MNE filename conventions. Parameters ---------- fname : str Name of the file. filetype : str Type of file. e.g., ICA, Epochs etc. endings : tuple Acceptable endings for the filename. endings_err : tuple Obligatory possible endings for the filename. """ if len(endings_err) > 0 and not fname.endswith(endings_err): print_endings = ' or '.join([', '.join(endings_err[:-1]), endings_err[-1]]) raise IOError('The filename (%s) for file type %s must end with %s' % (fname, filetype, print_endings)) print_endings = ' or '.join([', '.join(endings[:-1]), endings[-1]]) if not fname.endswith(endings): warn('This filename (%s) does not conform to MNE naming conventions. ' 'All %s files should end with %s' % (fname, filetype, print_endings)) def check_version(library, min_version): r"""Check minimum library version required. Parameters ---------- library : str The library name to import. Must have a ``__version__`` property. min_version : str The minimum version string. Anything that matches ``'(\d+ | [a-z]+ | \.)'``. Can also be empty to skip version check (just check for library presence). Returns ------- ok : bool True if the library exists with at least the specified version. """ ok = True try: library = __import__(library) except ImportError: ok = False else: if min_version: this_version = LooseVersion(library.__version__) if this_version < min_version: ok = False return ok def _check_mayavi_version(min_version='4.3.0'): """Check mayavi version.""" if not check_version('mayavi', min_version): raise RuntimeError("Need mayavi >= %s" % min_version) def _check_pyface_backend(): """Check the currently selected Pyface backend. Returns ------- backend : str Name of the backend. result : 0 | 1 | 2 0: the backend has been tested and works. 1: the backend has not been tested. 2: the backend not been tested. Notes ----- See also http://docs.enthought.com/pyface/. """ try: from traits.trait_base import ETSConfig except ImportError: return None, 2 backend = ETSConfig.toolkit if backend == 'qt4': status = 0 else: status = 1 return backend, status def check_random_state(seed): """Turn seed into a np.random.RandomState instance. If seed is None, return the RandomState singleton used by np.random. If seed is an int, return a new RandomState instance seeded with seed. If seed is already a RandomState instance, return it. Otherwise raise ValueError. """ if seed is None or seed is np.random: return np.random.mtrand._rand if isinstance(seed, (int, np.integer)): return np.random.RandomState(seed) if isinstance(seed, np.random.RandomState): return seed raise ValueError('%r cannot be used to seed a numpy.random.RandomState' ' instance' % seed) def _check_event_id(event_id, events): """Check event_id and convert to default format.""" # check out event_id dict if event_id is None: # convert to int to make typing-checks happy event_id = list(np.unique(events[:, 2])) if isinstance(event_id, dict): for key in event_id.keys(): _validate_type(key, str, 'Event names') event_id = dict((key, _ensure_int(val, 'event_id[%s]' % key)) for key, val in event_id.items()) elif isinstance(event_id, list): event_id = [_ensure_int(v, 'event_id[%s]' % vi) for vi, v in enumerate(event_id)] event_id = dict(zip((str(i) for i in event_id), event_id)) else: event_id = _ensure_int(event_id, 'event_id') event_id = {str(event_id): event_id} return event_id def _check_fname(fname, overwrite=False, must_exist=False): """Check for file existence.""" _validate_type(fname, 'str', 'fname') from mne.utils import logger if must_exist and not op.isfile(fname): raise IOError('File "%s" does not exist' % fname) if op.isfile(fname): if not overwrite: raise IOError('Destination file exists. Please use option ' '"overwrite=True" to force overwriting.') elif overwrite != 'read': logger.info('Overwriting existing file.') def _check_subject(class_subject, input_subject, raise_error=True): """Get subject name from class.""" if input_subject is not None: _validate_type(input_subject, 'str', "subject input") return input_subject elif class_subject is not None: _validate_type(class_subject, 'str', "Either subject input or class subject attribute") return class_subject else: if raise_error is True: raise ValueError('Neither subject input nor class subject ' 'attribute was a string') return None def _check_preload(inst, msg): """Ensure data are preloaded.""" from ..epochs import BaseEpochs from ..evoked import Evoked from ..time_frequency import _BaseTFR if isinstance(inst, (_BaseTFR, Evoked)): pass else: name = "epochs" if isinstance(inst, BaseEpochs) else 'raw' if not inst.preload: raise RuntimeError( "By default, MNE does not load data into main memory to " "conserve resources. " + msg + ' requires %s data to be ' 'loaded. Use preload=True (or string) in the constructor or ' '%s.load_data().' % (name, name)) def _check_compensation_grade(inst, inst2, name, name2, ch_names=None): """Ensure that objects have same compensation_grade.""" from ..io.pick import pick_channels, pick_info from ..io.compensator import get_current_comp if None in [inst.info, inst2.info]: return if ch_names is None: grade = inst.compensation_grade grade2 = inst2.compensation_grade else: info = inst.info.copy() info2 = inst2.info.copy() # pick channels for t_info in [info, info2]: if t_info['comps']: t_info['comps'] = [] picks = pick_channels(t_info['ch_names'], ch_names) pick_info(t_info, picks, copy=False) # get compensation grades grade = get_current_comp(info) grade2 = get_current_comp(info2) # perform check if grade != grade2: msg = 'Compensation grade of %s (%d) and %s (%d) don\'t match' raise RuntimeError(msg % (name, inst.compensation_grade, name2, inst2.compensation_grade)) def _check_pandas_installed(strict=True): """Aux function.""" try: import pandas return pandas except ImportError: if strict is True: raise RuntimeError('For this functionality to work, the Pandas ' 'library is required.') else: return False def _check_pandas_index_arguments(index, defaults): """Check pandas index arguments.""" if not any(isinstance(index, k) for k in (list, tuple)): index = [index] invalid_choices = [e for e in index if e not in defaults] if invalid_choices: options = [', '.join(e) for e in [invalid_choices, defaults]] raise ValueError('[%s] is not an valid option. Valid index' 'values are \'None\' or %s' % tuple(options)) def _check_ch_locs(chs): """Check if channel locations exist. Parameters ---------- chs : dict The channels from info['chs'] """ locs3d = np.array([ch['loc'][:3] for ch in chs]) return not ((locs3d == 0).all() or (~np.isfinite(locs3d)).all() or np.allclose(locs3d, 0.)) def _check_type_picks(picks): """Guarantee type integrity of picks.""" err_msg = 'picks must be None, a list or an array of integers' if picks is None: pass elif isinstance(picks, list): for pick in picks: _validate_type(pick, 'int', 'Each pick') picks = np.array(picks) elif isinstance(picks, np.ndarray): if not picks.dtype.kind == 'i': raise TypeError(err_msg) else: raise TypeError(err_msg) return picks def _is_numeric(n): return isinstance(n, (np.integer, np.floating, int, float)) def _validate_type(item, types=None, item_name=None, type_name=None): """Validate that `item` is an instance of `types`. Parameters ---------- item : obj The thing to be checked. types : type | tuple of types | str The types to be checked against. If str, must be one of 'str', 'int', 'numeric'. """ if types == "int": _ensure_int(item, name=item_name) return # terminate prematurely elif types == "str": types = str type_name = "str" if type_name is None else type_name elif types == "numeric": types = (np.integer, np.floating, int, float) type_name = "numeric" if type_name is None else type_name elif types == "info": from mne.io import Info as types type_name = "Info" if type_name is None else type_name item_name = "Info" if item_name is None else item_name if type_name is None: iter_types = ([types] if not isinstance(types, (list, tuple)) else types) type_name = ', '.join(cls.__name__ for cls in iter_types) if not isinstance(item, types): raise TypeError('%s must be an instance of %s, got %s instead' % (item_name, type_name, type(item),)) def _check_if_nan(data, msg=" to be plotted"): """Raise if any of the values are NaN.""" if not np.isfinite(data).all(): raise ValueError("Some of the values {} are NaN.".format(msg))
[ "operator.index", "mne.utils.logger.info", "distutils.version.LooseVersion", "numpy.allclose", "numpy.isfinite", "numpy.random.RandomState", "os.path.isfile", "numpy.array", "numpy.unique" ]
[((5048, 5064), 'os.path.isfile', 'op.isfile', (['fname'], {}), '(fname)\n', (5057, 5064), True, 'import os.path as op\n'), ((8651, 8690), 'numpy.array', 'np.array', (["[ch['loc'][:3] for ch in chs]"], {}), "([ch['loc'][:3] for ch in chs])\n", (8659, 8690), True, 'import numpy as np\n'), ((3713, 3740), 'numpy.random.RandomState', 'np.random.RandomState', (['seed'], {}), '(seed)\n', (3734, 3740), True, 'import numpy as np\n'), ((483, 500), 'operator.index', 'operator.index', (['x'], {}), '(x)\n', (497, 500), False, 'import operator\n'), ((2302, 2335), 'distutils.version.LooseVersion', 'LooseVersion', (['library.__version__'], {}), '(library.__version__)\n', (2314, 2335), False, 'from distutils.version import LooseVersion\n'), ((4148, 4171), 'numpy.unique', 'np.unique', (['events[:, 2]'], {}), '(events[:, 2])\n', (4157, 4171), True, 'import numpy as np\n'), ((4965, 4981), 'os.path.isfile', 'op.isfile', (['fname'], {}), '(fname)\n', (4974, 4981), True, 'import os.path as op\n'), ((8794, 8818), 'numpy.allclose', 'np.allclose', (['locs3d', '(0.0)'], {}), '(locs3d, 0.0)\n', (8805, 8818), True, 'import numpy as np\n'), ((9128, 9143), 'numpy.array', 'np.array', (['picks'], {}), '(picks)\n', (9136, 9143), True, 'import numpy as np\n'), ((5278, 5319), 'mne.utils.logger.info', 'logger.info', (['"""Overwriting existing file."""'], {}), "('Overwriting existing file.')\n", (5289, 5319), False, 'from mne.utils import logger\n'), ((10787, 10804), 'numpy.isfinite', 'np.isfinite', (['data'], {}), '(data)\n', (10798, 10804), True, 'import numpy as np\n'), ((8748, 8767), 'numpy.isfinite', 'np.isfinite', (['locs3d'], {}), '(locs3d)\n', (8759, 8767), True, 'import numpy as np\n')]
# -------------- #Importing header files import pandas as pd import warnings warnings.filterwarnings("ignore") from sklearn.model_selection import train_test_split # Code starts here data = pd.read_csv(path) X = data.drop(['customer.id','paid.back.loan'],axis =1 ) y = data['paid.back.loan'] X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.3, random_state = 0 ) # Code ends here # -------------- #Importing header files import matplotlib.pyplot as plt # Code starts here fully_paid = y_train.value_counts() fully_paid.plot(kind = "Bar") # Code ends here # -------------- #Importing header files import numpy as np from sklearn.preprocessing import LabelEncoder # Code starts here X_train['int.rate'] = X_train['int.rate'].str.replace("%","") X_train['int.rate'] = X_train['int.rate'].apply(float) X_train['int.rate'] = X_train['int.rate']/100 X_test['int.rate'] = X_test['int.rate'].str.replace("%","") X_test['int.rate'] = X_test['int.rate'].apply(float) X_test['int.rate'] = X_test['int.rate']/100 num_df= X_train.select_dtypes(exclude = ['object']) cat_df = X_train.select_dtypes(include = ['object']) # Code ends here # -------------- #Importing header files import seaborn as sns # Code starts here cols = list(num_df.columns) fig,axes = plt.subplots(nrows = 9 , ncols = 1) for i in range (0,9): sns.boxplot(x=y_train, y=num_df[cols[i]] , ax=axes[i]) # Code ends here # -------------- # Code starts here cols = list(cat_df.columns) fig,axes = plt.subplots(nrows = 2 , ncols = 2) for i in range (0,2): for j in range(0,2): sns.countplot(x=X_train[cols[i*2+j]], hue=y_train, ax=axes[i,j]) # Code ends here # -------------- #Importing header files from sklearn.tree import DecisionTreeClassifier from sklearn import tree # Code starts here le = LabelEncoder() X_train['credit.policy'] = le.fit_transform(X_train['credit.policy']) X_train['purpose'] = le.fit_transform(X_train['purpose']) X_train['inq.last.6mths'] = le.fit_transform(X_train['inq.last.6mths']) X_train['delinq.2yrs'] = le.fit_transform(X_train['delinq.2yrs']) X_test['credit.policy'] = le.fit_transform(X_test['credit.policy']) X_test['purpose'] = le.fit_transform(X_test['purpose']) X_test['inq.last.6mths'] = le.fit_transform(X_test['inq.last.6mths']) X_test['delinq.2yrs'] = le.fit_transform(X_test['delinq.2yrs']) y_train= y_train.str.replace("No","0") y_train = y_train.str.replace("Yes","1") y_test =y_test.str.replace("No","0") y_test = y_test.str.replace("Yes","1") model = tree.DecisionTreeClassifier(random_state=0) model.fit(X_train,y_train) acc = model.score(X_test,y_test) print(acc) # Code ends here # -------------- #Importing header files from sklearn.model_selection import GridSearchCV #Parameter grid parameter_grid = {'max_depth': np.arange(3,10), 'min_samples_leaf': range(10,50,10)} # Code starts here model_2 = tree.DecisionTreeClassifier(random_state=0) p_tree = GridSearchCV(estimator=model_2, param_grid=parameter_grid,cv=5) p_tree.fit(X_train,y_train) acc_2= p_tree.score(X_test,y_test) print(acc_2) # Code ends here # -------------- #Importing header files from io import StringIO from sklearn.tree import export_graphviz from sklearn import tree from sklearn import metrics from IPython.display import Image import pydotplus # Code starts here dot_data = export_graphviz(decision_tree=p_tree.best_estimator_, out_file=None, feature_names=X.columns, filled = True , class_names=['loan_paid_back_yes','loan_paid_back_no']) graph_big = pydotplus.graph_from_dot_data(dot_data) # show graph - do not delete/modify the code below this line img_path = user_data_dir+'/file.png' graph_big.write_png(img_path) plt.figure(figsize=(20,15)) plt.imshow(plt.imread(img_path)) plt.axis('off') plt.show() # Code ends here
[ "sklearn.model_selection.GridSearchCV", "matplotlib.pyplot.show", "warnings.filterwarnings", "pandas.read_csv", "sklearn.model_selection.train_test_split", "matplotlib.pyplot.axis", "sklearn.preprocessing.LabelEncoder", "sklearn.tree.DecisionTreeClassifier", "sklearn.tree.export_graphviz", "pydotplus.graph_from_dot_data", "matplotlib.pyplot.figure", "seaborn.boxplot", "numpy.arange", "seaborn.countplot", "matplotlib.pyplot.imread", "matplotlib.pyplot.subplots" ]
[((80, 113), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (103, 113), False, 'import warnings\n'), ((196, 213), 'pandas.read_csv', 'pd.read_csv', (['path'], {}), '(path)\n', (207, 213), True, 'import pandas as pd\n'), ((330, 383), 'sklearn.model_selection.train_test_split', 'train_test_split', (['X', 'y'], {'test_size': '(0.3)', 'random_state': '(0)'}), '(X, y, test_size=0.3, random_state=0)\n', (346, 383), False, 'from sklearn.model_selection import train_test_split\n'), ((1285, 1315), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'nrows': '(9)', 'ncols': '(1)'}), '(nrows=9, ncols=1)\n', (1297, 1315), True, 'import matplotlib.pyplot as plt\n'), ((1499, 1529), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'nrows': '(2)', 'ncols': '(2)'}), '(nrows=2, ncols=2)\n', (1511, 1529), True, 'import matplotlib.pyplot as plt\n'), ((1816, 1830), 'sklearn.preprocessing.LabelEncoder', 'LabelEncoder', ([], {}), '()\n', (1828, 1830), False, 'from sklearn.preprocessing import LabelEncoder\n'), ((2522, 2565), 'sklearn.tree.DecisionTreeClassifier', 'tree.DecisionTreeClassifier', ([], {'random_state': '(0)'}), '(random_state=0)\n', (2549, 2565), False, 'from sklearn import tree\n'), ((2878, 2921), 'sklearn.tree.DecisionTreeClassifier', 'tree.DecisionTreeClassifier', ([], {'random_state': '(0)'}), '(random_state=0)\n', (2905, 2921), False, 'from sklearn import tree\n'), ((2932, 2996), 'sklearn.model_selection.GridSearchCV', 'GridSearchCV', ([], {'estimator': 'model_2', 'param_grid': 'parameter_grid', 'cv': '(5)'}), '(estimator=model_2, param_grid=parameter_grid, cv=5)\n', (2944, 2996), False, 'from sklearn.model_selection import GridSearchCV\n'), ((3334, 3505), 'sklearn.tree.export_graphviz', 'export_graphviz', ([], {'decision_tree': 'p_tree.best_estimator_', 'out_file': 'None', 'feature_names': 'X.columns', 'filled': '(True)', 'class_names': "['loan_paid_back_yes', 'loan_paid_back_no']"}), "(decision_tree=p_tree.best_estimator_, out_file=None,\n feature_names=X.columns, filled=True, class_names=['loan_paid_back_yes',\n 'loan_paid_back_no'])\n", (3349, 3505), False, 'from sklearn.tree import export_graphviz\n'), ((3512, 3551), 'pydotplus.graph_from_dot_data', 'pydotplus.graph_from_dot_data', (['dot_data'], {}), '(dot_data)\n', (3541, 3551), False, 'import pydotplus\n'), ((3683, 3711), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(20, 15)'}), '(figsize=(20, 15))\n', (3693, 3711), True, 'import matplotlib.pyplot as plt\n'), ((3744, 3759), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (3752, 3759), True, 'import matplotlib.pyplot as plt\n'), ((3760, 3770), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3768, 3770), True, 'import matplotlib.pyplot as plt\n'), ((1349, 1402), 'seaborn.boxplot', 'sns.boxplot', ([], {'x': 'y_train', 'y': 'num_df[cols[i]]', 'ax': 'axes[i]'}), '(x=y_train, y=num_df[cols[i]], ax=axes[i])\n', (1360, 1402), True, 'import seaborn as sns\n'), ((2794, 2810), 'numpy.arange', 'np.arange', (['(3)', '(10)'], {}), '(3, 10)\n', (2803, 2810), True, 'import numpy as np\n'), ((3722, 3742), 'matplotlib.pyplot.imread', 'plt.imread', (['img_path'], {}), '(img_path)\n', (3732, 3742), True, 'import matplotlib.pyplot as plt\n'), ((1592, 1661), 'seaborn.countplot', 'sns.countplot', ([], {'x': 'X_train[cols[i * 2 + j]]', 'hue': 'y_train', 'ax': 'axes[i, j]'}), '(x=X_train[cols[i * 2 + j]], hue=y_train, ax=axes[i, j])\n', (1605, 1661), True, 'import seaborn as sns\n')]
# Some tests for the Cylindrical coordinates handler import numpy as np from yt.testing import \ fake_amr_ds, \ assert_equal, \ assert_almost_equal # Our canonical tests are that we can access all of our fields and we can # compute our volume correctly. def test_cylindrical_coordinates(): # We're going to load up a simple AMR grid and check its volume # calculations and path length calculations. ds = fake_amr_ds(geometry="cylindrical") axes = ["r", "z", "theta"] for i, axis in enumerate(axes): dd = ds.all_data() fi = ("index", axis) fd = ("index", "d%s" % axis) ma = np.argmax(dd[fi]) assert_equal(dd[fi][ma] + dd[fd][ma] / 2.0, ds.domain_right_edge[i].d) mi = np.argmin(dd[fi]) assert_equal(dd[fi][mi] - dd[fd][mi] / 2.0, ds.domain_left_edge[i].d) assert_equal(dd[fd].max(), (ds.domain_width/ds.domain_dimensions)[i].d) assert_almost_equal(dd["cell_volume"].sum(dtype="float64"), np.pi*ds.domain_width[0]**2 * ds.domain_width[1]) assert_equal(dd["index", "path_element_r"], dd["index", "dr"]) assert_equal(dd["index", "path_element_z"], dd["index", "dz"]) assert_equal(dd["index", "path_element_theta"], dd["index", "r"] * dd["index", "dtheta"])
[ "yt.testing.fake_amr_ds", "yt.testing.assert_equal", "numpy.argmin", "numpy.argmax" ]
[((432, 467), 'yt.testing.fake_amr_ds', 'fake_amr_ds', ([], {'geometry': '"""cylindrical"""'}), "(geometry='cylindrical')\n", (443, 467), False, 'from yt.testing import fake_amr_ds, assert_equal, assert_almost_equal\n'), ((1069, 1131), 'yt.testing.assert_equal', 'assert_equal', (["dd['index', 'path_element_r']", "dd['index', 'dr']"], {}), "(dd['index', 'path_element_r'], dd['index', 'dr'])\n", (1081, 1131), False, 'from yt.testing import fake_amr_ds, assert_equal, assert_almost_equal\n'), ((1136, 1198), 'yt.testing.assert_equal', 'assert_equal', (["dd['index', 'path_element_z']", "dd['index', 'dz']"], {}), "(dd['index', 'path_element_z'], dd['index', 'dz'])\n", (1148, 1198), False, 'from yt.testing import fake_amr_ds, assert_equal, assert_almost_equal\n'), ((1203, 1297), 'yt.testing.assert_equal', 'assert_equal', (["dd['index', 'path_element_theta']", "(dd['index', 'r'] * dd['index', 'dtheta'])"], {}), "(dd['index', 'path_element_theta'], dd['index', 'r'] * dd[\n 'index', 'dtheta'])\n", (1215, 1297), False, 'from yt.testing import fake_amr_ds, assert_equal, assert_almost_equal\n'), ((641, 658), 'numpy.argmax', 'np.argmax', (['dd[fi]'], {}), '(dd[fi])\n', (650, 658), True, 'import numpy as np\n'), ((667, 737), 'yt.testing.assert_equal', 'assert_equal', (['(dd[fi][ma] + dd[fd][ma] / 2.0)', 'ds.domain_right_edge[i].d'], {}), '(dd[fi][ma] + dd[fd][ma] / 2.0, ds.domain_right_edge[i].d)\n', (679, 737), False, 'from yt.testing import fake_amr_ds, assert_equal, assert_almost_equal\n'), ((751, 768), 'numpy.argmin', 'np.argmin', (['dd[fi]'], {}), '(dd[fi])\n', (760, 768), True, 'import numpy as np\n'), ((777, 846), 'yt.testing.assert_equal', 'assert_equal', (['(dd[fi][mi] - dd[fd][mi] / 2.0)', 'ds.domain_left_edge[i].d'], {}), '(dd[fi][mi] - dd[fd][mi] / 2.0, ds.domain_left_edge[i].d)\n', (789, 846), False, 'from yt.testing import fake_amr_ds, assert_equal, assert_almost_equal\n')]
#! /usr/bin/env python # -*- coding: utf-8 -*- # Copyright 2018 the HERA Project # Licensed under the MIT License import os import argparse import pyuvdata from hera_cal.version import version_info import pyuvdata.utils as uvutils import numpy as np parser = argparse.ArgumentParser(description='Extract HERA hex antennas from data ' 'file, and save with new extension.') parser.add_argument('--extension', type=str, help='Extension to be appended to ' 'filename for output. Default="HH".', default='HH') parser.add_argument('--filetype', type=str, help='Input and output file type. ' 'Allowed values are "miriad" (default), and "uvfits".', default='miriad') parser.add_argument('--fixuvws', action='store_true', help='Optional flag to ' 'use antenna positions to replace uvws.') parser.add_argument('--overwrite', action='store_true', default=False, help='Optional flag to overwrite output file if it exists.') parser.add_argument('files', metavar='files', type=str, nargs='+', help='Files to be processed.') parser.add_argument('--ex_ants_file', type=str, help='Text file with list of antennas' ' which are excluded downstream in RTP. Generally, these are ' 'antennas which are being actively commissioned, or known as bad.' ' Note these values are only stored in the history, not actually ' 'flagged at this step.', default=None) args = parser.parse_args() for filename in args.files: uv = pyuvdata.UVData() if args.filetype == 'miriad': uv.read_miriad(filename) elif args.filetype == 'uvfits': uv.read_uvfits(filename) else: raise ValueError('Unrecognized file type ' + str(args.filetype)) st_type_str = uv.extra_keywords.pop('st_type').replace('\x00', '') st_type_list = st_type_str[1:-1].split(', ') ind = [i for i, x in enumerate(st_type_list) if x[:7] == 'herahex' or x == 'heraringa' or x == 'heraringb'] uv.select(antenna_nums=uv.antenna_numbers[ind]) st_type_list = list(np.array(st_type_list)[np.array(ind, dtype=int)]) uv.extra_keywords['st_type'] = '[' + ', '.join(st_type_list) + ']' uv.history += ' Hera Hex antennas selected' if args.fixuvws: antpos = uv.antenna_positions + uv.telescope_location antpos = uvutils.ENU_from_ECEF(antpos.T, *uv.telescope_location_lat_lon_alt).T antmap = -np.ones(np.max(uv.antenna_numbers) + 1, dtype=int) for i, ant in enumerate(uv.antenna_numbers): antmap[ant] = i uv.uvw_array = antpos[antmap[uv.ant_2_array], :] - antpos[antmap[uv.ant_1_array], :] uv.history += ' and uvws corrected' uv.history += ' with hera_cal/scripts/extract_hh.py, hera_cal version: ' +\ str(version_info) + '.' if args.ex_ants_file: ex_ants = np.loadtxt(args.ex_ants_file, dtype=int) ex_ants = [str(ant) for ant in ex_ants if ant in uv.get_ants()] uv.history += ' Antennas to exclude in RTP: ' + ','.join(ex_ants) + '.' if args.filetype == 'miriad': base, ext = os.path.splitext(filename) uv.write_miriad(base + '.' + args.extension + ext, clobber=args.overwrite) else: base, ext = os.path.splitext(filename) uv.write_uvfits(base + args.extension + ext, clobber=args.overwrite) del(uv) # Reset for next loop
[ "pyuvdata.UVData", "argparse.ArgumentParser", "pyuvdata.utils.ENU_from_ECEF", "numpy.max", "numpy.array", "os.path.splitext", "numpy.loadtxt" ]
[((261, 375), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Extract HERA hex antennas from data file, and save with new extension."""'}), "(description=\n 'Extract HERA hex antennas from data file, and save with new extension.')\n", (284, 375), False, 'import argparse\n'), ((1653, 1670), 'pyuvdata.UVData', 'pyuvdata.UVData', ([], {}), '()\n', (1668, 1670), False, 'import pyuvdata\n'), ((2990, 3030), 'numpy.loadtxt', 'np.loadtxt', (['args.ex_ants_file'], {'dtype': 'int'}), '(args.ex_ants_file, dtype=int)\n', (3000, 3030), True, 'import numpy as np\n'), ((3237, 3263), 'os.path.splitext', 'os.path.splitext', (['filename'], {}), '(filename)\n', (3253, 3263), False, 'import os\n'), ((3377, 3403), 'os.path.splitext', 'os.path.splitext', (['filename'], {}), '(filename)\n', (3393, 3403), False, 'import os\n'), ((2198, 2220), 'numpy.array', 'np.array', (['st_type_list'], {}), '(st_type_list)\n', (2206, 2220), True, 'import numpy as np\n'), ((2221, 2245), 'numpy.array', 'np.array', (['ind'], {'dtype': 'int'}), '(ind, dtype=int)\n', (2229, 2245), True, 'import numpy as np\n'), ((2467, 2534), 'pyuvdata.utils.ENU_from_ECEF', 'uvutils.ENU_from_ECEF', (['antpos.T', '*uv.telescope_location_lat_lon_alt'], {}), '(antpos.T, *uv.telescope_location_lat_lon_alt)\n', (2488, 2534), True, 'import pyuvdata.utils as uvutils\n'), ((2563, 2589), 'numpy.max', 'np.max', (['uv.antenna_numbers'], {}), '(uv.antenna_numbers)\n', (2569, 2589), True, 'import numpy as np\n')]
#!/usr/bin/env python # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: from __future__ import print_function # Python 2/3 compatibility __doc__ = """ Demo ward clustering on a graph: various ways of forming clusters and dendrogram Requires matplotlib """ print(__doc__) import numpy as np from numpy.random import randn, rand try: import matplotlib.pyplot as plt except ImportError: raise RuntimeError("This script needs the matplotlib library") from nipy.algorithms.graph import knn from nipy.algorithms.clustering.hierarchical_clustering import ward # n = number of points, k = number of nearest neighbours n = 100 k = 5 # Set verbose to True to see more printed output verbose = False X = randn(n, 2) X[:np.ceil(n / 3)] += 3 G = knn(X, 5) tree = ward(G, X, verbose) threshold = .5 * n u = tree.partition(threshold) plt.figure(figsize=(12, 6)) plt.subplot(1, 3, 1) for i in range(u.max()+1): plt.plot(X[u == i, 0], X[u == i, 1], 'o', color=(rand(), rand(), rand())) plt.axis('tight') plt.axis('off') plt.title('clustering into clusters \n of inertia < %g' % threshold) u = tree.split(k) plt.subplot(1, 3, 2) for e in range(G.E): plt.plot([X[G.edges[e, 0], 0], X[G.edges[e, 1], 0]], [X[G.edges[e, 0], 1], X[G.edges[e, 1], 1]], 'k') for i in range(u.max() + 1): plt.plot(X[u == i, 0], X[u == i, 1], 'o', color=(rand(), rand(), rand())) plt.axis('tight') plt.axis('off') plt.title('clustering into 5 clusters') nl = np.sum(tree.isleaf()) validleaves = np.zeros(n) validleaves[:np.ceil(n / 4)] = 1 valid = np.zeros(tree.V, 'bool') valid[tree.isleaf()] = validleaves.astype('bool') nv = np.sum(validleaves) nv0 = 0 while nv > nv0: nv0 = nv for v in range(tree.V): if valid[v]: valid[tree.parents[v]]=1 nv = np.sum(valid) ax = plt.subplot(1, 3, 3) ax = tree.plot(ax) ax.set_title('Dendrogram') ax.set_visible(True) plt.show() if verbose: print('List of sub trees') print(tree.list_of_subtrees())
[ "matplotlib.pyplot.title", "matplotlib.pyplot.subplot", "numpy.sum", "matplotlib.pyplot.show", "matplotlib.pyplot.plot", "numpy.random.randn", "numpy.ceil", "nipy.algorithms.clustering.hierarchical_clustering.ward", "numpy.zeros", "matplotlib.pyplot.axis", "matplotlib.pyplot.figure", "nipy.algorithms.graph.knn", "numpy.random.rand" ]
[((772, 783), 'numpy.random.randn', 'randn', (['n', '(2)'], {}), '(n, 2)\n', (777, 783), False, 'from numpy.random import randn, rand\n'), ((812, 821), 'nipy.algorithms.graph.knn', 'knn', (['X', '(5)'], {}), '(X, 5)\n', (815, 821), False, 'from nipy.algorithms.graph import knn\n'), ((829, 848), 'nipy.algorithms.clustering.hierarchical_clustering.ward', 'ward', (['G', 'X', 'verbose'], {}), '(G, X, verbose)\n', (833, 848), False, 'from nipy.algorithms.clustering.hierarchical_clustering import ward\n'), ((900, 927), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(12, 6)'}), '(figsize=(12, 6))\n', (910, 927), True, 'import matplotlib.pyplot as plt\n'), ((928, 948), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(3)', '(1)'], {}), '(1, 3, 1)\n', (939, 948), True, 'import matplotlib.pyplot as plt\n'), ((1055, 1072), 'matplotlib.pyplot.axis', 'plt.axis', (['"""tight"""'], {}), "('tight')\n", (1063, 1072), True, 'import matplotlib.pyplot as plt\n'), ((1073, 1088), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (1081, 1088), True, 'import matplotlib.pyplot as plt\n'), ((1089, 1160), 'matplotlib.pyplot.title', 'plt.title', (['("""clustering into clusters \n of inertia < %g""" % threshold)'], {}), '("""clustering into clusters \n of inertia < %g""" % threshold)\n', (1098, 1160), True, 'import matplotlib.pyplot as plt\n'), ((1177, 1197), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(3)', '(2)'], {}), '(1, 3, 2)\n', (1188, 1197), True, 'import matplotlib.pyplot as plt\n'), ((1444, 1461), 'matplotlib.pyplot.axis', 'plt.axis', (['"""tight"""'], {}), "('tight')\n", (1452, 1461), True, 'import matplotlib.pyplot as plt\n'), ((1462, 1477), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (1470, 1477), True, 'import matplotlib.pyplot as plt\n'), ((1478, 1517), 'matplotlib.pyplot.title', 'plt.title', (['"""clustering into 5 clusters"""'], {}), "('clustering into 5 clusters')\n", (1487, 1517), True, 'import matplotlib.pyplot as plt\n'), ((1560, 1571), 'numpy.zeros', 'np.zeros', (['n'], {}), '(n)\n', (1568, 1571), True, 'import numpy as np\n'), ((1613, 1637), 'numpy.zeros', 'np.zeros', (['tree.V', '"""bool"""'], {}), "(tree.V, 'bool')\n", (1621, 1637), True, 'import numpy as np\n'), ((1693, 1712), 'numpy.sum', 'np.sum', (['validleaves'], {}), '(validleaves)\n', (1699, 1712), True, 'import numpy as np\n'), ((1869, 1889), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(3)', '(3)'], {}), '(1, 3, 3)\n', (1880, 1889), True, 'import matplotlib.pyplot as plt\n'), ((1957, 1967), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1965, 1967), True, 'import matplotlib.pyplot as plt\n'), ((1223, 1328), 'matplotlib.pyplot.plot', 'plt.plot', (['[X[G.edges[e, 0], 0], X[G.edges[e, 1], 0]]', '[X[G.edges[e, 0], 1], X[G.edges[e, 1], 1]]', '"""k"""'], {}), "([X[G.edges[e, 0], 0], X[G.edges[e, 1], 0]], [X[G.edges[e, 0], 1],\n X[G.edges[e, 1], 1]], 'k')\n", (1231, 1328), True, 'import matplotlib.pyplot as plt\n'), ((787, 801), 'numpy.ceil', 'np.ceil', (['(n / 3)'], {}), '(n / 3)\n', (794, 801), True, 'import numpy as np\n'), ((1585, 1599), 'numpy.ceil', 'np.ceil', (['(n / 4)'], {}), '(n / 4)\n', (1592, 1599), True, 'import numpy as np\n'), ((1849, 1862), 'numpy.sum', 'np.sum', (['valid'], {}), '(valid)\n', (1855, 1862), True, 'import numpy as np\n'), ((1029, 1035), 'numpy.random.rand', 'rand', ([], {}), '()\n', (1033, 1035), False, 'from numpy.random import randn, rand\n'), ((1037, 1043), 'numpy.random.rand', 'rand', ([], {}), '()\n', (1041, 1043), False, 'from numpy.random import randn, rand\n'), ((1045, 1051), 'numpy.random.rand', 'rand', ([], {}), '()\n', (1049, 1051), False, 'from numpy.random import randn, rand\n'), ((1419, 1425), 'numpy.random.rand', 'rand', ([], {}), '()\n', (1423, 1425), False, 'from numpy.random import randn, rand\n'), ((1427, 1433), 'numpy.random.rand', 'rand', ([], {}), '()\n', (1431, 1433), False, 'from numpy.random import randn, rand\n'), ((1435, 1441), 'numpy.random.rand', 'rand', ([], {}), '()\n', (1439, 1441), False, 'from numpy.random import randn, rand\n')]
from __future__ import print_function import numpy as np import matplotlib.pyplot as plt from matplotlib.ticker import IndexLocator, FormatStrFormatter ''' <NAME>, Dec 2015 Plotting routine for initial 'test' runs of ELC. It will make a plot that has both light curve data w/fit and RV data w/fit. There are also residuals in the plots! (Strongly based on ELCplotter_unfold.py) ***IMPORTANT*** This version assumes the files above are NOT yet folded in phase, and are in time. This would happen if you are using ELCgap.inp, or anytime when ELC.inp has itime = 2. So we need to fold them. (If you want to plot already-folded data, use ELCplotter_new.py) ***ALSO IMPORTANT*** This version assumes you haven't run demcmcELC yet, but just ELC, to get an initial clue whether or not your input parameters are half decent. In other words, it doesn't need .fold files or fitparm.all, but it does need ELC.out. ''' # Colors for plots. Selected with help from colorbrewer. red = '#e34a33' # red, star 1 yel = '#fdbb84' # yellow, star 2 # Columns in fitparm file that correspond to T0 and Period #tconj_col = 0 #porb_col = 15 # Read in everything f1 = 'modelU.mag' #f2 = 'ELCdataU.fold' f3 = 'star1.RV' f4 = 'star2.RV' ELCoutfile = 'ELC.out' gridloop = 'gridloop.opt' #f5 = 'ELCdataRV1.fold' #f6 = 'ELCdataRV2.fold' #fitparm = 'fitparm.all' # OPTIONAL ADJUSTMENT B/C FINAL ELC RV MODEL OUTPUT IS SHIFTED BY GAMMA #gamma = 0 gamma = input("Enter gamma adjustment (0 for none): ") phase_mod,mag_mod = np.loadtxt(f1, comments='#', dtype=np.float64, usecols=(0,1), unpack=True) #phase_dat,mag_dat = np.loadtxt(f2, comments='#', dtype=np.float64, usecols=(0,1), unpack=True) phase_rv1,rv1 = np.loadtxt(f3, comments='#', dtype=np.float64, usecols=(0,1), unpack=True) phase_rv2,rv2 = np.loadtxt(f4, comments='#', dtype=np.float64, usecols=(0,1), unpack=True) #phase_rv1dat,rv1dat,rv1err = np.loadtxt(f5, comments='#', dtype=np.float64, usecols=(0,1,2), unpack=True) #phase_rv2dat,rv2dat,rv2err = np.loadtxt(f6, comments='#', dtype=np.float64, usecols=(0,1,2), unpack=True) # FUNCTION TO FOLD STUFF so phases are actually phases ... and then sort all the arrays. def phasecalc(times, period=100, BJD0=2454833): phases = [] #cycles = [] for i in range(0, len(times)): fracP = (times[i] - BJD0) / period if fracP < 0: phases.append(fracP % 1) #cycles.append(int(fracP)) else: phases.append(fracP % 1) #cycles.append(int(fracP) + 1) #print(fracP, phases[i]) return np.array(phases) # GET PERIOD AND T0 from ELC.out file with open(ELCoutfile) as f: for i, row in enumerate(f): if i == 27: # 28th row columns = row.split() period = float(columns[0]) # 1st column #if i == 38: # 39th row, i.e. T0 # this one has a funny zeropoint (ok if circular) if i == 133: # 134th row, i.e. Tconj # this one puts primary eclipse at phase 0 columns = row.split() Tconj = float(columns[0]) #1st column #periods, tconjs = np.loadtxt(fitparm, usecols=(porb_col, tconj_col), unpack=True) #period = np.median(periods) #Tconj = np.median(tconjs) print(period, Tconj) Tconj = Tconj + 0.5*period with open(gridloop) as f: for i, row in enumerate(f): if i == 0: LCinfile = row.split()[0] if i == 8: RV1infile = row.split()[0] if i == 9: RV2infile = row.split()[0] # Read in observed times, magnitudes, and RVs (calling time 'phase' but that's a lie) phase_dat,mag_dat = np.loadtxt(LCinfile, comments='#', dtype=np.float64, usecols=(0,1), unpack=True) phase_rv1dat,rv1dat,rv1err = np.loadtxt(RV1infile, comments='#', dtype=np.float64, usecols=(0,1,2), unpack=True) phase_rv2dat,rv2dat,rv2err = np.loadtxt(RV2infile, comments='#', dtype=np.float64, usecols=(0,1,2), unpack=True) # Fold everything (observations and model) phase_mod = phasecalc(phase_mod, period=period, BJD0=Tconj) phase_dat = phasecalc(phase_dat, period=period, BJD0=Tconj) phase_rv1 = phasecalc(phase_rv1, period=period, BJD0=Tconj) phase_rv2 = phasecalc(phase_rv2, period=period, BJD0=Tconj) phase_rv1dat = phasecalc(phase_rv1dat, period=period, BJD0=Tconj) phase_rv2dat = phasecalc(phase_rv2dat, period=period, BJD0=Tconj) p1 = phase_mod.argsort() p2 = phase_dat.argsort() p3 = phase_rv1.argsort() p4 = phase_rv2.argsort() p5 = phase_rv1dat.argsort() p6 = phase_rv2dat.argsort() phase_mod = phase_mod[p1] phase_dat = phase_dat[p2] phase_rv1 = phase_rv1[p3] phase_rv2 = phase_rv2[p4] phase_rv1dat = phase_rv1dat[p5] phase_rv2dat = phase_rv2dat[p6] mag_mod = mag_mod[p1] mag_dat = mag_dat[p2] rv1 = rv1[p3] rv2 = rv2[p4] rv1dat = rv1dat[p5] rv2dat = rv2dat[p6] # OPTIONAL ADJUSTMENT B/C FINAL ELC RV MODEL OUTPUT IS SHIFTED BY GAMMA #gamma = input("Enter gamma adjustment (0 for none): ") rv1 = rv1 + gamma rv2 = rv2 + gamma print ("Done reading (and folding) data!") if np.abs(np.median(mag_mod) - np.median(mag_dat)) > 1: print('Adjusting magnitude of model light curve...') mag_mod = mag_mod + (np.median(mag_dat) - np.median(mag_mod)) # Interpolate model onto data phase grid, for residuals newmag_model = np.interp(phase_dat, phase_mod, mag_mod) newrv1 = np.interp(phase_rv1dat, phase_rv1, rv1) newrv2 = np.interp(phase_rv2dat, phase_rv2, rv2) lcresid = mag_dat - newmag_model rv1resid = rv1dat - newrv1 rv2resid = rv2dat - newrv2 print ("Done interpolating!") # Make plots # First, define some handy global parameters for the plots phasemin = 0 phasemax = 1 magdim = np.max(mag_dat) + 0.02 #11.97 # remember magnitudes are backwards, dangit magbright = np.min(mag_dat) - 0.02 #11.861 rvmin = np.min([np.min(rv1dat), np.min(rv2dat)]) - 5 #-79 rvmax = np.max([np.max(rv1dat), np.max(rv2dat)]) + 5 #-1 primary_phasemin = 0.48 #0.09 #0.48 primary_phasemax = 0.52 #0.14 #0.52 secondary_phasemin = 0.98 #0.881 secondary_phasemax = 1.01 #0.921 magresid_min = 0.006 # remember magnitudes are backwards, dangit magresid_max = -0.006 rvresid_min = -5 rvresid_max = 5 # Light curve ax1 = plt.subplot2grid((12,1),(4,0), rowspan=3) plt.axis([phasemin, phasemax, magdim, magbright]) plt.tick_params(axis='both', which='major') plt.plot(phase_dat, mag_dat, color=red, marker='.', ls='None', ms=6, mew=0) #lc data plt.plot(phase_mod, mag_mod, 'k', lw=1.5, label='ELC Model') #lc model ax1.set_ylabel('Magnitude', size=18) ax1.set_xticklabels([]) # Radial velocities ax2 = plt.subplot2grid((12,1),(1,0), rowspan=3) plt.subplots_adjust(wspace = 0.0001, hspace=0.0001) plt.axis([phasemin, phasemax, rvmin, rvmax]) plt.errorbar(phase_rv1dat, rv1dat, yerr=rv1err, marker='o', color=yel, ms=9, mec='None', ls='None') #rv1 data plt.errorbar(phase_rv2dat, rv2dat, yerr=rv2err, marker='o', color=red, ms=9, mec='None', ls='None') #rv2 data plt.plot(phase_rv1, rv1, color='k', lw=1.5) #rv1 model plt.plot(phase_rv2, rv2, color='k', lw=1.5) #rv2 model ax2.set_ylabel('Radial Velocity (km s$^{-1}$)', size=18) ax2.set_xticklabels([]) # Light curve residuals axr1 = plt.subplot2grid((12,1),(7,0)) axr1.axis([phasemin, phasemax, magresid_min, magresid_max]) axr1.set_yticks([-0.004, 0, 0.004]) plt.axhline(y=0, xmin=phasemin, xmax=phasemax, color='0.75', ls=':') plt.plot(phase_dat, lcresid, color=red, marker='.', ls='None', ms=4, mew=0) #lc residual # Radial velocity residuals axr2 = plt.subplot2grid((12,1),(0,0)) axr2.axis([phasemin, phasemax, rvresid_min, rvresid_max]) #axr2.set_yticks([-2,0,2]) plt.axhline(y=0, xmin=phasemin, xmax=phasemax, color='0.75', ls=':') plt.errorbar(phase_rv1dat, rv1resid, yerr=rv1err, marker='o', color=yel, ms=9, mec='None', ls='None') #rv1 residual plt.errorbar(phase_rv2dat, rv2resid, yerr=rv2err, marker='o', color=red, ms=9, mec='None', ls='None') #rv2 residual #plt.xlabel('Orbital Phase (conjunction at $\phi = 0.5$)', size=20) # EXTRA LABEL axr2.set_xticklabels([]) # Zoom-in of shallower (secondary) eclipse ax3 = plt.subplot2grid((12,2),(9,1), rowspan=2) plt.axis([secondary_phasemin, secondary_phasemax, magdim, magbright]) ax3.set_xticks([0.89, 0.90, 0.91, 0.92]) plt.plot(phase_dat, mag_dat, color=yel, marker='.', ls='None', ms=6, mew=0) #lc data plt.plot(phase_mod, mag_mod, color='k', lw=1.5) #lc model ax3.set_ylabel('Magnitude') ax3.set_xticklabels([]) ax3.set_yticklabels([]) # Zoom-in of deeper (primary) eclipse ax4 = plt.subplot2grid((12,2),(9,0), rowspan=2) plt.axis([primary_phasemin, primary_phasemax, magdim, magbright]) ax4.set_xticks([0.49, 0.50, 0.51, 0.52]) plt.plot(phase_dat, mag_dat, color=red, marker='.', ls='None', ms=6, mew=0) #lc data plt.plot(phase_mod, mag_mod, color='k', lw=1.5) #lc model ax4.set_xticklabels([]) #ax4.set_yticklabels([]) # Zoom plot residuals, shallower (secondary) eclipse axr3 = plt.subplot2grid((12,2),(11,1)) plt.axis([secondary_phasemin, secondary_phasemax, magresid_min, magresid_max]) axr3.set_yticks([-0.004, 0, 0.004]) axr3.set_xticks([0.89, 0.90, 0.91, 0.92]) plt.axhline(y=0, xmin=0, xmax=2, color='0.75', ls=':') plt.plot(phase_dat, lcresid, color=red, marker='.', ls='None', ms=4, mew=0) #lc residual axr3.set_yticklabels([]) # Zoom plot residuals, deeper (primary) eclipse axr4 = plt.subplot2grid((12,2),(11,0)) plt.axis([primary_phasemin, primary_phasemax, magresid_min, magresid_max]) axr4.set_yticks([-0.004, 0, 0.004]) axr4.set_xticks([0.49, 0.50, 0.51, 0.52]) plt.axhline(y=0, xmin=0, xmax=2, color='0.75', ls=':') plt.plot(phase_dat, lcresid, color=red, marker='.', ls='None', ms=4, mew=0) #lc residual #axr4.set_yticklabels([]) # Labels using overall figure as a reference plt.figtext(0.5, 0.04, 'Orbital Phase (conjunction at $\phi = 0.5$)', ha='center', va='center', size=25) #plt.figtext(0.135, 0.18, 'Secondary') #plt.figtext(0.535, 0.18, 'Primary') plt.figtext(0.06, 0.86, '$\Delta$') plt.figtext(0.04, 0.395, '$\Delta$') plt.figtext(0.04, 0.125, '$\Delta$') ax1.legend(loc='lower right', frameon=False, prop={'size':20}) print ("Done preparing plot!") plt.show() #outfile = 'testplot1.png' #plt.savefig(outfile) #print ("Plot saved to %s!" % outfile)
[ "matplotlib.pyplot.axhline", "matplotlib.pyplot.show", "matplotlib.pyplot.plot", "numpy.median", "matplotlib.pyplot.tick_params", "matplotlib.pyplot.subplot2grid", "matplotlib.pyplot.axis", "matplotlib.pyplot.figtext", "numpy.max", "numpy.min", "numpy.array", "numpy.loadtxt", "numpy.interp", "matplotlib.pyplot.errorbar", "matplotlib.pyplot.subplots_adjust" ]
[((1544, 1619), 'numpy.loadtxt', 'np.loadtxt', (['f1'], {'comments': '"""#"""', 'dtype': 'np.float64', 'usecols': '(0, 1)', 'unpack': '(True)'}), "(f1, comments='#', dtype=np.float64, usecols=(0, 1), unpack=True)\n", (1554, 1619), True, 'import numpy as np\n'), ((1731, 1806), 'numpy.loadtxt', 'np.loadtxt', (['f3'], {'comments': '"""#"""', 'dtype': 'np.float64', 'usecols': '(0, 1)', 'unpack': '(True)'}), "(f3, comments='#', dtype=np.float64, usecols=(0, 1), unpack=True)\n", (1741, 1806), True, 'import numpy as np\n'), ((1822, 1897), 'numpy.loadtxt', 'np.loadtxt', (['f4'], {'comments': '"""#"""', 'dtype': 'np.float64', 'usecols': '(0, 1)', 'unpack': '(True)'}), "(f4, comments='#', dtype=np.float64, usecols=(0, 1), unpack=True)\n", (1832, 1897), True, 'import numpy as np\n'), ((3491, 3577), 'numpy.loadtxt', 'np.loadtxt', (['LCinfile'], {'comments': '"""#"""', 'dtype': 'np.float64', 'usecols': '(0, 1)', 'unpack': '(True)'}), "(LCinfile, comments='#', dtype=np.float64, usecols=(0, 1), unpack\n =True)\n", (3501, 3577), True, 'import numpy as np\n'), ((3601, 3690), 'numpy.loadtxt', 'np.loadtxt', (['RV1infile'], {'comments': '"""#"""', 'dtype': 'np.float64', 'usecols': '(0, 1, 2)', 'unpack': '(True)'}), "(RV1infile, comments='#', dtype=np.float64, usecols=(0, 1, 2),\n unpack=True)\n", (3611, 3690), True, 'import numpy as np\n'), ((3714, 3803), 'numpy.loadtxt', 'np.loadtxt', (['RV2infile'], {'comments': '"""#"""', 'dtype': 'np.float64', 'usecols': '(0, 1, 2)', 'unpack': '(True)'}), "(RV2infile, comments='#', dtype=np.float64, usecols=(0, 1, 2),\n unpack=True)\n", (3724, 3803), True, 'import numpy as np\n'), ((5109, 5149), 'numpy.interp', 'np.interp', (['phase_dat', 'phase_mod', 'mag_mod'], {}), '(phase_dat, phase_mod, mag_mod)\n', (5118, 5149), True, 'import numpy as np\n'), ((5159, 5198), 'numpy.interp', 'np.interp', (['phase_rv1dat', 'phase_rv1', 'rv1'], {}), '(phase_rv1dat, phase_rv1, rv1)\n', (5168, 5198), True, 'import numpy as np\n'), ((5208, 5247), 'numpy.interp', 'np.interp', (['phase_rv2dat', 'phase_rv2', 'rv2'], {}), '(phase_rv2dat, phase_rv2, rv2)\n', (5217, 5247), True, 'import numpy as np\n'), ((5988, 6032), 'matplotlib.pyplot.subplot2grid', 'plt.subplot2grid', (['(12, 1)', '(4, 0)'], {'rowspan': '(3)'}), '((12, 1), (4, 0), rowspan=3)\n', (6004, 6032), True, 'import matplotlib.pyplot as plt\n'), ((6030, 6079), 'matplotlib.pyplot.axis', 'plt.axis', (['[phasemin, phasemax, magdim, magbright]'], {}), '([phasemin, phasemax, magdim, magbright])\n', (6038, 6079), True, 'import matplotlib.pyplot as plt\n'), ((6080, 6123), 'matplotlib.pyplot.tick_params', 'plt.tick_params', ([], {'axis': '"""both"""', 'which': '"""major"""'}), "(axis='both', which='major')\n", (6095, 6123), True, 'import matplotlib.pyplot as plt\n'), ((6124, 6199), 'matplotlib.pyplot.plot', 'plt.plot', (['phase_dat', 'mag_dat'], {'color': 'red', 'marker': '"""."""', 'ls': '"""None"""', 'ms': '(6)', 'mew': '(0)'}), "(phase_dat, mag_dat, color=red, marker='.', ls='None', ms=6, mew=0)\n", (6132, 6199), True, 'import matplotlib.pyplot as plt\n'), ((6209, 6269), 'matplotlib.pyplot.plot', 'plt.plot', (['phase_mod', 'mag_mod', '"""k"""'], {'lw': '(1.5)', 'label': '"""ELC Model"""'}), "(phase_mod, mag_mod, 'k', lw=1.5, label='ELC Model')\n", (6217, 6269), True, 'import matplotlib.pyplot as plt\n'), ((6368, 6412), 'matplotlib.pyplot.subplot2grid', 'plt.subplot2grid', (['(12, 1)', '(1, 0)'], {'rowspan': '(3)'}), '((12, 1), (1, 0), rowspan=3)\n', (6384, 6412), True, 'import matplotlib.pyplot as plt\n'), ((6410, 6459), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'wspace': '(0.0001)', 'hspace': '(0.0001)'}), '(wspace=0.0001, hspace=0.0001)\n', (6429, 6459), True, 'import matplotlib.pyplot as plt\n'), ((6462, 6506), 'matplotlib.pyplot.axis', 'plt.axis', (['[phasemin, phasemax, rvmin, rvmax]'], {}), '([phasemin, phasemax, rvmin, rvmax])\n', (6470, 6506), True, 'import matplotlib.pyplot as plt\n'), ((6507, 6610), 'matplotlib.pyplot.errorbar', 'plt.errorbar', (['phase_rv1dat', 'rv1dat'], {'yerr': 'rv1err', 'marker': '"""o"""', 'color': 'yel', 'ms': '(9)', 'mec': '"""None"""', 'ls': '"""None"""'}), "(phase_rv1dat, rv1dat, yerr=rv1err, marker='o', color=yel, ms=9,\n mec='None', ls='None')\n", (6519, 6610), True, 'import matplotlib.pyplot as plt\n'), ((6617, 6720), 'matplotlib.pyplot.errorbar', 'plt.errorbar', (['phase_rv2dat', 'rv2dat'], {'yerr': 'rv2err', 'marker': '"""o"""', 'color': 'red', 'ms': '(9)', 'mec': '"""None"""', 'ls': '"""None"""'}), "(phase_rv2dat, rv2dat, yerr=rv2err, marker='o', color=red, ms=9,\n mec='None', ls='None')\n", (6629, 6720), True, 'import matplotlib.pyplot as plt\n'), ((6727, 6770), 'matplotlib.pyplot.plot', 'plt.plot', (['phase_rv1', 'rv1'], {'color': '"""k"""', 'lw': '(1.5)'}), "(phase_rv1, rv1, color='k', lw=1.5)\n", (6735, 6770), True, 'import matplotlib.pyplot as plt\n'), ((6782, 6825), 'matplotlib.pyplot.plot', 'plt.plot', (['phase_rv2', 'rv2'], {'color': '"""k"""', 'lw': '(1.5)'}), "(phase_rv2, rv2, color='k', lw=1.5)\n", (6790, 6825), True, 'import matplotlib.pyplot as plt\n'), ((6950, 6983), 'matplotlib.pyplot.subplot2grid', 'plt.subplot2grid', (['(12, 1)', '(7, 0)'], {}), '((12, 1), (7, 0))\n', (6966, 6983), True, 'import matplotlib.pyplot as plt\n'), ((7077, 7145), 'matplotlib.pyplot.axhline', 'plt.axhline', ([], {'y': '(0)', 'xmin': 'phasemin', 'xmax': 'phasemax', 'color': '"""0.75"""', 'ls': '""":"""'}), "(y=0, xmin=phasemin, xmax=phasemax, color='0.75', ls=':')\n", (7088, 7145), True, 'import matplotlib.pyplot as plt\n'), ((7146, 7221), 'matplotlib.pyplot.plot', 'plt.plot', (['phase_dat', 'lcresid'], {'color': 'red', 'marker': '"""."""', 'ls': '"""None"""', 'ms': '(4)', 'mew': '(0)'}), "(phase_dat, lcresid, color=red, marker='.', ls='None', ms=4, mew=0)\n", (7154, 7221), True, 'import matplotlib.pyplot as plt\n'), ((7271, 7304), 'matplotlib.pyplot.subplot2grid', 'plt.subplot2grid', (['(12, 1)', '(0, 0)'], {}), '((12, 1), (0, 0))\n', (7287, 7304), True, 'import matplotlib.pyplot as plt\n'), ((7387, 7455), 'matplotlib.pyplot.axhline', 'plt.axhline', ([], {'y': '(0)', 'xmin': 'phasemin', 'xmax': 'phasemax', 'color': '"""0.75"""', 'ls': '""":"""'}), "(y=0, xmin=phasemin, xmax=phasemax, color='0.75', ls=':')\n", (7398, 7455), True, 'import matplotlib.pyplot as plt\n'), ((7456, 7562), 'matplotlib.pyplot.errorbar', 'plt.errorbar', (['phase_rv1dat', 'rv1resid'], {'yerr': 'rv1err', 'marker': '"""o"""', 'color': 'yel', 'ms': '(9)', 'mec': '"""None"""', 'ls': '"""None"""'}), "(phase_rv1dat, rv1resid, yerr=rv1err, marker='o', color=yel, ms\n =9, mec='None', ls='None')\n", (7468, 7562), True, 'import matplotlib.pyplot as plt\n'), ((7572, 7678), 'matplotlib.pyplot.errorbar', 'plt.errorbar', (['phase_rv2dat', 'rv2resid'], {'yerr': 'rv2err', 'marker': '"""o"""', 'color': 'red', 'ms': '(9)', 'mec': '"""None"""', 'ls': '"""None"""'}), "(phase_rv2dat, rv2resid, yerr=rv2err, marker='o', color=red, ms\n =9, mec='None', ls='None')\n", (7584, 7678), True, 'import matplotlib.pyplot as plt\n'), ((7845, 7889), 'matplotlib.pyplot.subplot2grid', 'plt.subplot2grid', (['(12, 2)', '(9, 1)'], {'rowspan': '(2)'}), '((12, 2), (9, 1), rowspan=2)\n', (7861, 7889), True, 'import matplotlib.pyplot as plt\n'), ((7887, 7956), 'matplotlib.pyplot.axis', 'plt.axis', (['[secondary_phasemin, secondary_phasemax, magdim, magbright]'], {}), '([secondary_phasemin, secondary_phasemax, magdim, magbright])\n', (7895, 7956), True, 'import matplotlib.pyplot as plt\n'), ((7998, 8073), 'matplotlib.pyplot.plot', 'plt.plot', (['phase_dat', 'mag_dat'], {'color': 'yel', 'marker': '"""."""', 'ls': '"""None"""', 'ms': '(6)', 'mew': '(0)'}), "(phase_dat, mag_dat, color=yel, marker='.', ls='None', ms=6, mew=0)\n", (8006, 8073), True, 'import matplotlib.pyplot as plt\n'), ((8083, 8130), 'matplotlib.pyplot.plot', 'plt.plot', (['phase_mod', 'mag_mod'], {'color': '"""k"""', 'lw': '(1.5)'}), "(phase_mod, mag_mod, color='k', lw=1.5)\n", (8091, 8130), True, 'import matplotlib.pyplot as plt\n'), ((8262, 8306), 'matplotlib.pyplot.subplot2grid', 'plt.subplot2grid', (['(12, 2)', '(9, 0)'], {'rowspan': '(2)'}), '((12, 2), (9, 0), rowspan=2)\n', (8278, 8306), True, 'import matplotlib.pyplot as plt\n'), ((8304, 8369), 'matplotlib.pyplot.axis', 'plt.axis', (['[primary_phasemin, primary_phasemax, magdim, magbright]'], {}), '([primary_phasemin, primary_phasemax, magdim, magbright])\n', (8312, 8369), True, 'import matplotlib.pyplot as plt\n'), ((8411, 8486), 'matplotlib.pyplot.plot', 'plt.plot', (['phase_dat', 'mag_dat'], {'color': 'red', 'marker': '"""."""', 'ls': '"""None"""', 'ms': '(6)', 'mew': '(0)'}), "(phase_dat, mag_dat, color=red, marker='.', ls='None', ms=6, mew=0)\n", (8419, 8486), True, 'import matplotlib.pyplot as plt\n'), ((8496, 8543), 'matplotlib.pyplot.plot', 'plt.plot', (['phase_mod', 'mag_mod'], {'color': '"""k"""', 'lw': '(1.5)'}), "(phase_mod, mag_mod, color='k', lw=1.5)\n", (8504, 8543), True, 'import matplotlib.pyplot as plt\n'), ((8664, 8698), 'matplotlib.pyplot.subplot2grid', 'plt.subplot2grid', (['(12, 2)', '(11, 1)'], {}), '((12, 2), (11, 1))\n', (8680, 8698), True, 'import matplotlib.pyplot as plt\n'), ((8696, 8774), 'matplotlib.pyplot.axis', 'plt.axis', (['[secondary_phasemin, secondary_phasemax, magresid_min, magresid_max]'], {}), '([secondary_phasemin, secondary_phasemax, magresid_min, magresid_max])\n', (8704, 8774), True, 'import matplotlib.pyplot as plt\n'), ((8853, 8907), 'matplotlib.pyplot.axhline', 'plt.axhline', ([], {'y': '(0)', 'xmin': '(0)', 'xmax': '(2)', 'color': '"""0.75"""', 'ls': '""":"""'}), "(y=0, xmin=0, xmax=2, color='0.75', ls=':')\n", (8864, 8907), True, 'import matplotlib.pyplot as plt\n'), ((8908, 8983), 'matplotlib.pyplot.plot', 'plt.plot', (['phase_dat', 'lcresid'], {'color': 'red', 'marker': '"""."""', 'ls': '"""None"""', 'ms': '(4)', 'mew': '(0)'}), "(phase_dat, lcresid, color=red, marker='.', ls='None', ms=4, mew=0)\n", (8916, 8983), True, 'import matplotlib.pyplot as plt\n'), ((9078, 9112), 'matplotlib.pyplot.subplot2grid', 'plt.subplot2grid', (['(12, 2)', '(11, 0)'], {}), '((12, 2), (11, 0))\n', (9094, 9112), True, 'import matplotlib.pyplot as plt\n'), ((9110, 9184), 'matplotlib.pyplot.axis', 'plt.axis', (['[primary_phasemin, primary_phasemax, magresid_min, magresid_max]'], {}), '([primary_phasemin, primary_phasemax, magresid_min, magresid_max])\n', (9118, 9184), True, 'import matplotlib.pyplot as plt\n'), ((9263, 9317), 'matplotlib.pyplot.axhline', 'plt.axhline', ([], {'y': '(0)', 'xmin': '(0)', 'xmax': '(2)', 'color': '"""0.75"""', 'ls': '""":"""'}), "(y=0, xmin=0, xmax=2, color='0.75', ls=':')\n", (9274, 9317), True, 'import matplotlib.pyplot as plt\n'), ((9318, 9393), 'matplotlib.pyplot.plot', 'plt.plot', (['phase_dat', 'lcresid'], {'color': 'red', 'marker': '"""."""', 'ls': '"""None"""', 'ms': '(4)', 'mew': '(0)'}), "(phase_dat, lcresid, color=red, marker='.', ls='None', ms=4, mew=0)\n", (9326, 9393), True, 'import matplotlib.pyplot as plt\n'), ((9479, 9589), 'matplotlib.pyplot.figtext', 'plt.figtext', (['(0.5)', '(0.04)', '"""Orbital Phase (conjunction at $\\\\phi = 0.5$)"""'], {'ha': '"""center"""', 'va': '"""center"""', 'size': '(25)'}), "(0.5, 0.04, 'Orbital Phase (conjunction at $\\\\phi = 0.5$)', ha=\n 'center', va='center', size=25)\n", (9490, 9589), True, 'import matplotlib.pyplot as plt\n'), ((9660, 9696), 'matplotlib.pyplot.figtext', 'plt.figtext', (['(0.06)', '(0.86)', '"""$\\\\Delta$"""'], {}), "(0.06, 0.86, '$\\\\Delta$')\n", (9671, 9696), True, 'import matplotlib.pyplot as plt\n'), ((9696, 9733), 'matplotlib.pyplot.figtext', 'plt.figtext', (['(0.04)', '(0.395)', '"""$\\\\Delta$"""'], {}), "(0.04, 0.395, '$\\\\Delta$')\n", (9707, 9733), True, 'import matplotlib.pyplot as plt\n'), ((9733, 9770), 'matplotlib.pyplot.figtext', 'plt.figtext', (['(0.04)', '(0.125)', '"""$\\\\Delta$"""'], {}), "(0.04, 0.125, '$\\\\Delta$')\n", (9744, 9770), True, 'import matplotlib.pyplot as plt\n'), ((9866, 9876), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (9874, 9876), True, 'import matplotlib.pyplot as plt\n'), ((2524, 2540), 'numpy.array', 'np.array', (['phases'], {}), '(phases)\n', (2532, 2540), True, 'import numpy as np\n'), ((5475, 5490), 'numpy.max', 'np.max', (['mag_dat'], {}), '(mag_dat)\n', (5481, 5490), True, 'import numpy as np\n'), ((5563, 5578), 'numpy.min', 'np.min', (['mag_dat'], {}), '(mag_dat)\n', (5569, 5578), True, 'import numpy as np\n'), ((4874, 4892), 'numpy.median', 'np.median', (['mag_mod'], {}), '(mag_mod)\n', (4883, 4892), True, 'import numpy as np\n'), ((4895, 4913), 'numpy.median', 'np.median', (['mag_dat'], {}), '(mag_dat)\n', (4904, 4913), True, 'import numpy as np\n'), ((4996, 5014), 'numpy.median', 'np.median', (['mag_dat'], {}), '(mag_dat)\n', (5005, 5014), True, 'import numpy as np\n'), ((5017, 5035), 'numpy.median', 'np.median', (['mag_mod'], {}), '(mag_mod)\n', (5026, 5035), True, 'import numpy as np\n'), ((5610, 5624), 'numpy.min', 'np.min', (['rv1dat'], {}), '(rv1dat)\n', (5616, 5624), True, 'import numpy as np\n'), ((5626, 5640), 'numpy.min', 'np.min', (['rv2dat'], {}), '(rv2dat)\n', (5632, 5640), True, 'import numpy as np\n'), ((5668, 5682), 'numpy.max', 'np.max', (['rv1dat'], {}), '(rv1dat)\n', (5674, 5682), True, 'import numpy as np\n'), ((5684, 5698), 'numpy.max', 'np.max', (['rv2dat'], {}), '(rv2dat)\n', (5690, 5698), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- __all__ = [ 'predict', 'redistribute', 'simulate', 'walk_probability' ] ########### # IMPORTS # ########### # Libraries import numpy as _np # Internal from .custom_types import ( oint as _oint, olist_int as _olist_int, tarray as _tarray, tlist_int as _tlist_int, tmc as _tmc, trand as _trand, tredists as _tredists ) ############# # FUNCTIONS # ############# def predict(mc: _tmc, steps: int, initial_state: int) -> _olist_int: current_state = initial_state value = [initial_state] for _ in range(steps): d = mc.p[current_state, :] d_max = _np.argwhere(d == _np.max(d)) if d_max.size > 1: return None current_state = d_max.item() value.append(current_state) return value def redistribute(mc: _tmc, steps: int, initial_status: _tarray, output_last: bool) -> _tredists: value = _np.zeros((steps + 1, mc.size), dtype=float) value[0, :] = initial_status for i in range(1, steps + 1): value[i, :] = value[i - 1, :].dot(mc.p) value[i, :] /= _np.sum(value[i, :]) if output_last: return value[-1] value = [_np.ravel(distribution) for distribution in _np.split(value, value.shape[0])] return value def simulate(mc: _tmc, steps: int, initial_state: int, final_state: _oint, rng: _trand) -> _tlist_int: current_state = initial_state value = [initial_state] for _ in range(steps): w = mc.p[current_state, :] current_state = rng.choice(mc.size, size=1, p=w).item() value.append(current_state) if final_state is not None and current_state == final_state: break return value def walk_probability(mc: _tmc, walk: _tlist_int) -> float: p = 0.0 for (i, j) in zip(walk[:-1], walk[1:]): if mc.p[i, j] > 0.0: p += _np.log(mc.p[i, j]) else: p = -_np.inf break value = _np.exp(p) return value
[ "numpy.sum", "numpy.log", "numpy.ravel", "numpy.zeros", "numpy.split", "numpy.max", "numpy.exp" ]
[((935, 979), 'numpy.zeros', '_np.zeros', (['(steps + 1, mc.size)'], {'dtype': 'float'}), '((steps + 1, mc.size), dtype=float)\n', (944, 979), True, 'import numpy as _np\n'), ((1990, 2000), 'numpy.exp', '_np.exp', (['p'], {}), '(p)\n', (1997, 2000), True, 'import numpy as _np\n'), ((1119, 1139), 'numpy.sum', '_np.sum', (['value[i, :]'], {}), '(value[i, :])\n', (1126, 1139), True, 'import numpy as _np\n'), ((1200, 1223), 'numpy.ravel', '_np.ravel', (['distribution'], {}), '(distribution)\n', (1209, 1223), True, 'import numpy as _np\n'), ((1244, 1276), 'numpy.split', '_np.split', (['value', 'value.shape[0]'], {}), '(value, value.shape[0])\n', (1253, 1276), True, 'import numpy as _np\n'), ((1900, 1919), 'numpy.log', '_np.log', (['mc.p[i, j]'], {}), '(mc.p[i, j])\n', (1907, 1919), True, 'import numpy as _np\n'), ((667, 677), 'numpy.max', '_np.max', (['d'], {}), '(d)\n', (674, 677), True, 'import numpy as _np\n')]
# This example demonstrates prototype of the update model that Ryan, Alex, and Chip discussed. ################################################################################################################################ # Everything here would be part of a DH library ################################################################################################################################ import numpy as np from deephaven import QueryScope #TODO: this should be java class IndexSet: def __init__(self, max_size): self.current = -1 self.idx = np.zeros(max_size, dtype=np.int64) def clear(self): self.current = -2 self.idx = None def add(self, kk): if self.current == self.idx.size: raise Exception("Adding more indices than can fit") self.current += 1 self.idx[self.current] = kk def __len__(self): return self.current + 1 def __getitem__(self, i): if i >= len(self): raise Exception("Index out of bounds") return self.idx[i] #TODO: this should be java class Gatherer: def __init__(self, batch_size): self.batch_size = batch_size self.current = None def clear(self): self.current = None def gather(self, kk): if self.current == None or self.current.size() >= self.batch_size: self.current = IndexSet(self.batch_size) self.current.add(kk) return self.current #TODO: this should probably be java class Future: def __init__(self, func, index_set): self.func = func self.index_set = index_set self.called = False self.result = None def clear(self): self.func = None self.index_set = None self.result = None def get(self): if not self.called: # data should be gathered here and then passed to model instead of doing it all in one go. That means were # going to need to get the input objects here somehow, and I think that complicates things quite a bit. # self.func gets passed an index set, but I think it should get passed the gathered data. # otherwise, how does the interface not change? self.result = self.func(self.index_set) self.index_set.clear() self.called = True return self.result #TODO: this should probably be java class Computer: def __init__(self, func): self.func = func self.futures = {} def compute(self, index_set): if index_set in self.futures: return self.futures[index_set] f = Future(self.func, index_set) self.futures[gathered] = f return f #TODO: this should be java class Scatterer: def __init__(self, batch_size, scatter_func): self.batch_size = batch_size self.count = -1 self.scatter_func = scatter_func def clear(self): self.count = -1 def scatter(self, data): self.count += 1 offset = self.count % self.batch_size return self.scatter_func(data, offset) def do_magic(table, model, scatter_func, batch_size): #TODO: horrible hack def gather_it(index_set): print("Calling gather_it") data = np.zeros([len(index_set), 3], dtype=np.float64) for i in range(len(index_set)): data[i,0] = table.getColumnSource("A", index_set[i]) data[i,1] = table.getColumnSource("B", index_set[i]) data[i,2] = table.getColumnSource("C", index_set[i]) return data #TODO: horrible hack def eval_func(index_set): print("Calling eval_func") data = gather_it(index_set) return model(data) gatherer = Gatherer(batch_size) computer = Computer(eval_func) scatterer_x = Scatterer(batch_size, scatter_func) #TODO: python is having major problems. It doesn't resolve these variables inside of a function, and when you try to add them, it complains they aren't java #TODO: may need to implement this function in Java as well to avoid some problems. Right now, it doesn't run. QueryScope.addParam("gatherer", gatherer) QueryScope.addParam("computer", computer) QueryScope.addParam("scatterer_x", scatterer_x) def cleanup(future): gatherer.clear() computer.clear() future.clear() scatterer_x.clear() return table.update("IndexSet = gatherer.gather(kk)", "Future = computer.compute(IndexSet)", "X = (double) scatterer_x.scatter(Future.get())", "Clean = cleanup(Future)") \ .dropColumns("IndexSet", "Future", "Clean") ################################################################################################################################ # Everything here would be part of user code ################################################################################################################################ def model(data): return np.sum(data, axis=1) def scatter(data,i): return data[i] from deephaven.TableTools import timeTable source = timeTable("00:00:01").update("A=i", "B=sqrt(i)", "C=i*i") batch_size = 10 result = do_magic(source, model, scatter, batch_size)
[ "numpy.zeros", "deephaven.TableTools.timeTable", "numpy.sum", "deephaven.QueryScope.addParam" ]
[((4181, 4222), 'deephaven.QueryScope.addParam', 'QueryScope.addParam', (['"""gatherer"""', 'gatherer'], {}), "('gatherer', gatherer)\n", (4200, 4222), False, 'from deephaven import QueryScope\n'), ((4227, 4268), 'deephaven.QueryScope.addParam', 'QueryScope.addParam', (['"""computer"""', 'computer'], {}), "('computer', computer)\n", (4246, 4268), False, 'from deephaven import QueryScope\n'), ((4273, 4320), 'deephaven.QueryScope.addParam', 'QueryScope.addParam', (['"""scatterer_x"""', 'scatterer_x'], {}), "('scatterer_x', scatterer_x)\n", (4292, 4320), False, 'from deephaven import QueryScope\n'), ((5012, 5032), 'numpy.sum', 'np.sum', (['data'], {'axis': '(1)'}), '(data, axis=1)\n', (5018, 5032), True, 'import numpy as np\n'), ((579, 613), 'numpy.zeros', 'np.zeros', (['max_size'], {'dtype': 'np.int64'}), '(max_size, dtype=np.int64)\n', (587, 613), True, 'import numpy as np\n'), ((5128, 5149), 'deephaven.TableTools.timeTable', 'timeTable', (['"""00:00:01"""'], {}), "('00:00:01')\n", (5137, 5149), False, 'from deephaven.TableTools import timeTable\n')]
'''Prediction and plotting routine In preparation for prediction and plotting, this script will: 1) Load the obs_dimensions 2) Specify the input_dimensions and latent_dimensions 3) Instantiate the DataHandler class 4) Instantiate the neural network 5) Load the trained neural network weights 6) Select and prepare an illustrative test example 7) Draw from the predicted posterior by utilizing nn.iaf_chain_posterior as well as the encoder 8) Predict the state using the draw from the posterior either using the modelled or learned (decoder) parameter-to-observable map 9) Plot the prediction Inputs: - hyperp: dictionary storing set hyperparameter values - options: dictionary storing the set options - filepaths: instance of the FilePaths class storing the default strings for importing and exporting required objects. Author: <NAME>, Oden Institute, Austin, Texas 2020 ''' import sys sys.path.append('../../../../..') import numpy as np import pandas as pd import matplotlib.pyplot as plt plt.ioff() # Turn interactive plotting off # Import src code from utils_data.data_handler import DataHandler from neural_networks.nn_vaeiaf import VAEIAF from utils_misc.positivity_constraints import positivity_constraint_log_exp # Import FEM Code from Finite_Element_Method.src.load_mesh import load_mesh from utils_project.plot_fem_function import plot_fem_function import pdb #Equivalent of keyboard in MATLAB, just add "pdb.set_trace()" ############################################################################### # Plot Predictions # ############################################################################### def predict_and_plot(hyperp, options, filepaths): #=== Load Observation Indices ===# if options.obs_type == 'full': obs_dimensions = options.parameter_dimensions if options.obs_type == 'obs': obs_dimensions = options.num_obs_points print('Loading Boundary Indices') df_obs_indices = pd.read_csv(filepaths.project.obs_indices + '.csv') obs_indices = df_obs_indices.to_numpy() #=== Data and Latent Dimensions of Autoencoder ===# input_dimensions = obs_dimensions latent_dimensions = options.parameter_dimensions #=== Prepare Data ===# data = DataHandler(hyperp, options, filepaths, options.parameter_dimensions, obs_dimensions) data.load_data_test() if options.add_noise == 1: data.add_noise_qoi_test() parameter_test = data.poi_test state_obs_test = data.qoi_test #=== Load Trained Neural Network ===# nn = VAEIAF(hyperp, options, input_dimensions, latent_dimensions, None, None, None, None, positivity_constraint_log_exp) nn.load_weights(filepaths.trained_nn) #=== Selecting Samples ===# sample_number = 105 parameter_test_sample = np.expand_dims(parameter_test[sample_number,:], 0) state_obs_test_sample = np.expand_dims(state_obs_test[sample_number,:], 0) #=== Predictions ===# parameter_pred_sample, _ = nn.iaf_chain_posterior( nn.encoder(state_obs_test_sample)) state_obs_pred_sample = nn.decoder(parameter_test_sample) parameter_pred_sample = parameter_pred_sample.numpy().flatten() state_obs_pred_sample = state_obs_pred_sample.numpy().flatten() #=== Plotting Prediction ===# print('================================') print(' Plotting Predictions ') print('================================') #=== Load Mesh ===# nodes, elements, _, _, _, _, _, _ = load_mesh(filepaths.project) #=== Plot FEM Functions ===# plot_fem_function(filepaths.figures_savefile_name_parameter_test, 'True Parameter', 7.0, nodes, elements, parameter_test_sample) plot_fem_function(filepaths.figures_savefile_name_parameter_pred, 'Parameter Prediction', 7.0, nodes, elements, parameter_pred_sample) if options.obs_type == 'full': plot_fem_function(filepaths.figures_savefile_name_state_test, 'True State', 2.6, nodes, elements, state_obs_test_sample) plot_fem_function(filepaths.figures_savefile_name_state_pred, 'State Prediction', 2.6, nodes, elements, state_obs_pred_sample) print('Predictions plotted') ############################################################################### # Plot Metrics # ############################################################################### def plot_and_save_metrics(hyperp, options, filepaths): print('================================') print(' Plotting Metrics ') print('================================') #=== Load Metrics ===# print('Loading Metrics') df_metrics = pd.read_csv(filepaths.trained_nn + "_metrics" + '.csv') array_metrics = df_metrics.to_numpy() #################### # Load Metrics # #################### storage_array_loss_train = array_metrics[:,0] storage_array_loss_train_VAE = array_metrics[:,1] storage_array_loss_train_encoder = array_metrics[:,2] storage_array_relative_error_input_VAE = array_metrics[:,10] storage_array_relative_error_latent_encoder = array_metrics[:,11] storage_array_relative_error_input_decoder = array_metrics[:,12] storage_array_relative_gradient_norm = array_metrics[:,13] ################ # Plotting # ################ #=== Loss Train ===# fig_loss = plt.figure() x_axis = np.linspace(1, hyperp.num_epochs, hyperp.num_epochs, endpoint = True) plt.plot(x_axis, np.log(storage_array_loss_train)) plt.title('Log-Loss for Training Neural Network') plt.xlabel('Epochs') plt.ylabel('Log-Loss') figures_savefile_name = filepaths.directory_figures + '/' +\ 'loss.png' plt.savefig(figures_savefile_name) plt.close(fig_loss) #=== Loss Autoencoder ===# fig_loss = plt.figure() x_axis = np.linspace(1, hyperp.num_epochs, hyperp.num_epochs, endpoint = True) plt.plot(x_axis, np.log(storage_array_loss_train_VAE)) plt.title('Log-Loss for VAE') plt.xlabel('Epochs') plt.ylabel('Log-Loss') figures_savefile_name = filepaths.directory_figures + '/' +\ 'loss_autoencoder.png' plt.savefig(figures_savefile_name) plt.close(fig_loss) #=== Loss Encoder ===# fig_loss = plt.figure() x_axis = np.linspace(1, hyperp.num_epochs, hyperp.num_epochs, endpoint = True) plt.plot(x_axis, np.log(storage_array_loss_train_encoder)) plt.title('Log-Loss for Encoder') plt.xlabel('Epochs') plt.ylabel('Log-Loss') figures_savefile_name = filepaths.directory_figures + '/' +\ 'loss_encoder.png' plt.savefig(figures_savefile_name) plt.close(fig_loss) #=== Relative Error Autoencoder ===# fig_accuracy = plt.figure() x_axis = np.linspace(1,hyperp.num_epochs, hyperp.num_epochs, endpoint = True) plt.plot(x_axis, storage_array_relative_error_input_VAE) plt.title('Relative Error for Autoencoder') plt.xlabel('Epochs') plt.ylabel('Relative Error') figures_savefile_name = filepaths.directory_figures + '/' +\ 'relative_error_autoencoder.png' plt.savefig(figures_savefile_name) plt.close(fig_accuracy) #=== Relative Error Encoder ===# fig_accuracy = plt.figure() x_axis = np.linspace(1,hyperp.num_epochs, hyperp.num_epochs, endpoint = True) plt.plot(x_axis, storage_array_relative_error_latent_encoder) plt.title('Relative Error for Encoder') plt.xlabel('Epochs') plt.ylabel('Relative Error') figures_savefile_name = filepaths.directory_figures + '/' +\ 'relative_error_encoder.png' plt.savefig(figures_savefile_name) plt.close(fig_accuracy) #=== Relative Error Decoder ===# fig_accuracy = plt.figure() x_axis = np.linspace(1,hyperp.num_epochs, hyperp.num_epochs, endpoint = True) plt.plot(x_axis, storage_array_relative_error_input_decoder) plt.title('Relative Error for Decoder') plt.xlabel('Epochs') plt.ylabel('Relative Error') figures_savefile_name = filepaths.directory_figures + '/' +\ 'relative_error_decoder.png' plt.savefig(figures_savefile_name) plt.close(fig_accuracy) #=== Relative Gradient Norm ===# fig_gradient_norm = plt.figure() x_axis = np.linspace(1,hyperp.num_epochs, hyperp.num_epochs, endpoint = True) plt.plot(x_axis, storage_array_relative_gradient_norm) plt.title('Relative Gradient Norm') plt.xlabel('Epochs') plt.ylabel('Relative Error') figures_savefile_name = filepaths.directory_figures + '/' +\ 'relative_error_gradient_norm.png' plt.savefig(figures_savefile_name) plt.close(fig_gradient_norm) if options.model_augmented == 1: #=== Relative Error Decoder ===# fig_loss = plt.figure() x_axis = np.linspace(1,hyperp.num_epochs, hyperp.num_epochs, endpoint = True) plt.plot(x_axis, storage_array_loss_train_forward_model) plt.title('Log-loss Forward Model') plt.xlabel('Epochs') plt.ylabel('Relative Error') figures_savefile_name = filepaths.directory_figures + '/' +\ 'loss_forward_model.png' plt.savefig(figures_savefile_name) plt.close(fig_loss) print('Plotting complete')
[ "sys.path.append", "matplotlib.pyplot.title", "numpy.log", "matplotlib.pyplot.ioff", "matplotlib.pyplot.plot", "pandas.read_csv", "matplotlib.pyplot.close", "neural_networks.nn_vaeiaf.VAEIAF", "numpy.expand_dims", "matplotlib.pyplot.figure", "utils_data.data_handler.DataHandler", "numpy.linspace", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "utils_project.plot_fem_function.plot_fem_function", "matplotlib.pyplot.savefig", "Finite_Element_Method.src.load_mesh.load_mesh" ]
[((968, 1001), 'sys.path.append', 'sys.path.append', (['"""../../../../.."""'], {}), "('../../../../..')\n", (983, 1001), False, 'import sys\n'), ((1074, 1084), 'matplotlib.pyplot.ioff', 'plt.ioff', ([], {}), '()\n', (1082, 1084), True, 'import matplotlib.pyplot as plt\n'), ((2374, 2463), 'utils_data.data_handler.DataHandler', 'DataHandler', (['hyperp', 'options', 'filepaths', 'options.parameter_dimensions', 'obs_dimensions'], {}), '(hyperp, options, filepaths, options.parameter_dimensions,\n obs_dimensions)\n', (2385, 2463), False, 'from utils_data.data_handler import DataHandler\n'), ((2696, 2815), 'neural_networks.nn_vaeiaf.VAEIAF', 'VAEIAF', (['hyperp', 'options', 'input_dimensions', 'latent_dimensions', 'None', 'None', 'None', 'None', 'positivity_constraint_log_exp'], {}), '(hyperp, options, input_dimensions, latent_dimensions, None, None,\n None, None, positivity_constraint_log_exp)\n', (2702, 2815), False, 'from neural_networks.nn_vaeiaf import VAEIAF\n'), ((3003, 3054), 'numpy.expand_dims', 'np.expand_dims', (['parameter_test[sample_number, :]', '(0)'], {}), '(parameter_test[sample_number, :], 0)\n', (3017, 3054), True, 'import numpy as np\n'), ((3082, 3133), 'numpy.expand_dims', 'np.expand_dims', (['state_obs_test[sample_number, :]', '(0)'], {}), '(state_obs_test[sample_number, :], 0)\n', (3096, 3133), True, 'import numpy as np\n'), ((3697, 3725), 'Finite_Element_Method.src.load_mesh.load_mesh', 'load_mesh', (['filepaths.project'], {}), '(filepaths.project)\n', (3706, 3725), False, 'from Finite_Element_Method.src.load_mesh import load_mesh\n'), ((3764, 3896), 'utils_project.plot_fem_function.plot_fem_function', 'plot_fem_function', (['filepaths.figures_savefile_name_parameter_test', '"""True Parameter"""', '(7.0)', 'nodes', 'elements', 'parameter_test_sample'], {}), "(filepaths.figures_savefile_name_parameter_test,\n 'True Parameter', 7.0, nodes, elements, parameter_test_sample)\n", (3781, 3896), False, 'from utils_project.plot_fem_function import plot_fem_function\n'), ((3962, 4100), 'utils_project.plot_fem_function.plot_fem_function', 'plot_fem_function', (['filepaths.figures_savefile_name_parameter_pred', '"""Parameter Prediction"""', '(7.0)', 'nodes', 'elements', 'parameter_pred_sample'], {}), "(filepaths.figures_savefile_name_parameter_pred,\n 'Parameter Prediction', 7.0, nodes, elements, parameter_pred_sample)\n", (3979, 4100), False, 'from utils_project.plot_fem_function import plot_fem_function\n'), ((5159, 5214), 'pandas.read_csv', 'pd.read_csv', (["(filepaths.trained_nn + '_metrics' + '.csv')"], {}), "(filepaths.trained_nn + '_metrics' + '.csv')\n", (5170, 5214), True, 'import pandas as pd\n'), ((5866, 5878), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (5876, 5878), True, 'import matplotlib.pyplot as plt\n'), ((5892, 5959), 'numpy.linspace', 'np.linspace', (['(1)', 'hyperp.num_epochs', 'hyperp.num_epochs'], {'endpoint': '(True)'}), '(1, hyperp.num_epochs, hyperp.num_epochs, endpoint=True)\n', (5903, 5959), True, 'import numpy as np\n'), ((6021, 6070), 'matplotlib.pyplot.title', 'plt.title', (['"""Log-Loss for Training Neural Network"""'], {}), "('Log-Loss for Training Neural Network')\n", (6030, 6070), True, 'import matplotlib.pyplot as plt\n'), ((6075, 6095), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Epochs"""'], {}), "('Epochs')\n", (6085, 6095), True, 'import matplotlib.pyplot as plt\n'), ((6100, 6122), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Log-Loss"""'], {}), "('Log-Loss')\n", (6110, 6122), True, 'import matplotlib.pyplot as plt\n'), ((6215, 6249), 'matplotlib.pyplot.savefig', 'plt.savefig', (['figures_savefile_name'], {}), '(figures_savefile_name)\n', (6226, 6249), True, 'import matplotlib.pyplot as plt\n'), ((6254, 6273), 'matplotlib.pyplot.close', 'plt.close', (['fig_loss'], {}), '(fig_loss)\n', (6263, 6273), True, 'import matplotlib.pyplot as plt\n'), ((6321, 6333), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (6331, 6333), True, 'import matplotlib.pyplot as plt\n'), ((6347, 6414), 'numpy.linspace', 'np.linspace', (['(1)', 'hyperp.num_epochs', 'hyperp.num_epochs'], {'endpoint': '(True)'}), '(1, hyperp.num_epochs, hyperp.num_epochs, endpoint=True)\n', (6358, 6414), True, 'import numpy as np\n'), ((6480, 6509), 'matplotlib.pyplot.title', 'plt.title', (['"""Log-Loss for VAE"""'], {}), "('Log-Loss for VAE')\n", (6489, 6509), True, 'import matplotlib.pyplot as plt\n'), ((6514, 6534), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Epochs"""'], {}), "('Epochs')\n", (6524, 6534), True, 'import matplotlib.pyplot as plt\n'), ((6539, 6561), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Log-Loss"""'], {}), "('Log-Loss')\n", (6549, 6561), True, 'import matplotlib.pyplot as plt\n'), ((6666, 6700), 'matplotlib.pyplot.savefig', 'plt.savefig', (['figures_savefile_name'], {}), '(figures_savefile_name)\n', (6677, 6700), True, 'import matplotlib.pyplot as plt\n'), ((6705, 6724), 'matplotlib.pyplot.close', 'plt.close', (['fig_loss'], {}), '(fig_loss)\n', (6714, 6724), True, 'import matplotlib.pyplot as plt\n'), ((6768, 6780), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (6778, 6780), True, 'import matplotlib.pyplot as plt\n'), ((6794, 6861), 'numpy.linspace', 'np.linspace', (['(1)', 'hyperp.num_epochs', 'hyperp.num_epochs'], {'endpoint': '(True)'}), '(1, hyperp.num_epochs, hyperp.num_epochs, endpoint=True)\n', (6805, 6861), True, 'import numpy as np\n'), ((6931, 6964), 'matplotlib.pyplot.title', 'plt.title', (['"""Log-Loss for Encoder"""'], {}), "('Log-Loss for Encoder')\n", (6940, 6964), True, 'import matplotlib.pyplot as plt\n'), ((6969, 6989), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Epochs"""'], {}), "('Epochs')\n", (6979, 6989), True, 'import matplotlib.pyplot as plt\n'), ((6994, 7016), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Log-Loss"""'], {}), "('Log-Loss')\n", (7004, 7016), True, 'import matplotlib.pyplot as plt\n'), ((7117, 7151), 'matplotlib.pyplot.savefig', 'plt.savefig', (['figures_savefile_name'], {}), '(figures_savefile_name)\n', (7128, 7151), True, 'import matplotlib.pyplot as plt\n'), ((7156, 7175), 'matplotlib.pyplot.close', 'plt.close', (['fig_loss'], {}), '(fig_loss)\n', (7165, 7175), True, 'import matplotlib.pyplot as plt\n'), ((7237, 7249), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (7247, 7249), True, 'import matplotlib.pyplot as plt\n'), ((7263, 7330), 'numpy.linspace', 'np.linspace', (['(1)', 'hyperp.num_epochs', 'hyperp.num_epochs'], {'endpoint': '(True)'}), '(1, hyperp.num_epochs, hyperp.num_epochs, endpoint=True)\n', (7274, 7330), True, 'import numpy as np\n'), ((7336, 7392), 'matplotlib.pyplot.plot', 'plt.plot', (['x_axis', 'storage_array_relative_error_input_VAE'], {}), '(x_axis, storage_array_relative_error_input_VAE)\n', (7344, 7392), True, 'import matplotlib.pyplot as plt\n'), ((7397, 7440), 'matplotlib.pyplot.title', 'plt.title', (['"""Relative Error for Autoencoder"""'], {}), "('Relative Error for Autoencoder')\n", (7406, 7440), True, 'import matplotlib.pyplot as plt\n'), ((7445, 7465), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Epochs"""'], {}), "('Epochs')\n", (7455, 7465), True, 'import matplotlib.pyplot as plt\n'), ((7470, 7498), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Relative Error"""'], {}), "('Relative Error')\n", (7480, 7498), True, 'import matplotlib.pyplot as plt\n'), ((7613, 7647), 'matplotlib.pyplot.savefig', 'plt.savefig', (['figures_savefile_name'], {}), '(figures_savefile_name)\n', (7624, 7647), True, 'import matplotlib.pyplot as plt\n'), ((7652, 7675), 'matplotlib.pyplot.close', 'plt.close', (['fig_accuracy'], {}), '(fig_accuracy)\n', (7661, 7675), True, 'import matplotlib.pyplot as plt\n'), ((7733, 7745), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (7743, 7745), True, 'import matplotlib.pyplot as plt\n'), ((7759, 7826), 'numpy.linspace', 'np.linspace', (['(1)', 'hyperp.num_epochs', 'hyperp.num_epochs'], {'endpoint': '(True)'}), '(1, hyperp.num_epochs, hyperp.num_epochs, endpoint=True)\n', (7770, 7826), True, 'import numpy as np\n'), ((7832, 7893), 'matplotlib.pyplot.plot', 'plt.plot', (['x_axis', 'storage_array_relative_error_latent_encoder'], {}), '(x_axis, storage_array_relative_error_latent_encoder)\n', (7840, 7893), True, 'import matplotlib.pyplot as plt\n'), ((7898, 7937), 'matplotlib.pyplot.title', 'plt.title', (['"""Relative Error for Encoder"""'], {}), "('Relative Error for Encoder')\n", (7907, 7937), True, 'import matplotlib.pyplot as plt\n'), ((7942, 7962), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Epochs"""'], {}), "('Epochs')\n", (7952, 7962), True, 'import matplotlib.pyplot as plt\n'), ((7967, 7995), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Relative Error"""'], {}), "('Relative Error')\n", (7977, 7995), True, 'import matplotlib.pyplot as plt\n'), ((8106, 8140), 'matplotlib.pyplot.savefig', 'plt.savefig', (['figures_savefile_name'], {}), '(figures_savefile_name)\n', (8117, 8140), True, 'import matplotlib.pyplot as plt\n'), ((8145, 8168), 'matplotlib.pyplot.close', 'plt.close', (['fig_accuracy'], {}), '(fig_accuracy)\n', (8154, 8168), True, 'import matplotlib.pyplot as plt\n'), ((8226, 8238), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (8236, 8238), True, 'import matplotlib.pyplot as plt\n'), ((8252, 8319), 'numpy.linspace', 'np.linspace', (['(1)', 'hyperp.num_epochs', 'hyperp.num_epochs'], {'endpoint': '(True)'}), '(1, hyperp.num_epochs, hyperp.num_epochs, endpoint=True)\n', (8263, 8319), True, 'import numpy as np\n'), ((8325, 8385), 'matplotlib.pyplot.plot', 'plt.plot', (['x_axis', 'storage_array_relative_error_input_decoder'], {}), '(x_axis, storage_array_relative_error_input_decoder)\n', (8333, 8385), True, 'import matplotlib.pyplot as plt\n'), ((8390, 8429), 'matplotlib.pyplot.title', 'plt.title', (['"""Relative Error for Decoder"""'], {}), "('Relative Error for Decoder')\n", (8399, 8429), True, 'import matplotlib.pyplot as plt\n'), ((8434, 8454), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Epochs"""'], {}), "('Epochs')\n", (8444, 8454), True, 'import matplotlib.pyplot as plt\n'), ((8459, 8487), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Relative Error"""'], {}), "('Relative Error')\n", (8469, 8487), True, 'import matplotlib.pyplot as plt\n'), ((8598, 8632), 'matplotlib.pyplot.savefig', 'plt.savefig', (['figures_savefile_name'], {}), '(figures_savefile_name)\n', (8609, 8632), True, 'import matplotlib.pyplot as plt\n'), ((8637, 8660), 'matplotlib.pyplot.close', 'plt.close', (['fig_accuracy'], {}), '(fig_accuracy)\n', (8646, 8660), True, 'import matplotlib.pyplot as plt\n'), ((8723, 8735), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (8733, 8735), True, 'import matplotlib.pyplot as plt\n'), ((8749, 8816), 'numpy.linspace', 'np.linspace', (['(1)', 'hyperp.num_epochs', 'hyperp.num_epochs'], {'endpoint': '(True)'}), '(1, hyperp.num_epochs, hyperp.num_epochs, endpoint=True)\n', (8760, 8816), True, 'import numpy as np\n'), ((8822, 8876), 'matplotlib.pyplot.plot', 'plt.plot', (['x_axis', 'storage_array_relative_gradient_norm'], {}), '(x_axis, storage_array_relative_gradient_norm)\n', (8830, 8876), True, 'import matplotlib.pyplot as plt\n'), ((8881, 8916), 'matplotlib.pyplot.title', 'plt.title', (['"""Relative Gradient Norm"""'], {}), "('Relative Gradient Norm')\n", (8890, 8916), True, 'import matplotlib.pyplot as plt\n'), ((8921, 8941), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Epochs"""'], {}), "('Epochs')\n", (8931, 8941), True, 'import matplotlib.pyplot as plt\n'), ((8946, 8974), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Relative Error"""'], {}), "('Relative Error')\n", (8956, 8974), True, 'import matplotlib.pyplot as plt\n'), ((9091, 9125), 'matplotlib.pyplot.savefig', 'plt.savefig', (['figures_savefile_name'], {}), '(figures_savefile_name)\n', (9102, 9125), True, 'import matplotlib.pyplot as plt\n'), ((9130, 9158), 'matplotlib.pyplot.close', 'plt.close', (['fig_gradient_norm'], {}), '(fig_gradient_norm)\n', (9139, 9158), True, 'import matplotlib.pyplot as plt\n'), ((2087, 2138), 'pandas.read_csv', 'pd.read_csv', (["(filepaths.project.obs_indices + '.csv')"], {}), "(filepaths.project.obs_indices + '.csv')\n", (2098, 2138), True, 'import pandas as pd\n'), ((4206, 4330), 'utils_project.plot_fem_function.plot_fem_function', 'plot_fem_function', (['filepaths.figures_savefile_name_state_test', '"""True State"""', '(2.6)', 'nodes', 'elements', 'state_obs_test_sample'], {}), "(filepaths.figures_savefile_name_state_test, 'True State',\n 2.6, nodes, elements, state_obs_test_sample)\n", (4223, 4330), False, 'from utils_project.plot_fem_function import plot_fem_function\n'), ((4413, 4543), 'utils_project.plot_fem_function.plot_fem_function', 'plot_fem_function', (['filepaths.figures_savefile_name_state_pred', '"""State Prediction"""', '(2.6)', 'nodes', 'elements', 'state_obs_pred_sample'], {}), "(filepaths.figures_savefile_name_state_pred,\n 'State Prediction', 2.6, nodes, elements, state_obs_pred_sample)\n", (4430, 4543), False, 'from utils_project.plot_fem_function import plot_fem_function\n'), ((5983, 6015), 'numpy.log', 'np.log', (['storage_array_loss_train'], {}), '(storage_array_loss_train)\n', (5989, 6015), True, 'import numpy as np\n'), ((6438, 6474), 'numpy.log', 'np.log', (['storage_array_loss_train_VAE'], {}), '(storage_array_loss_train_VAE)\n', (6444, 6474), True, 'import numpy as np\n'), ((6885, 6925), 'numpy.log', 'np.log', (['storage_array_loss_train_encoder'], {}), '(storage_array_loss_train_encoder)\n', (6891, 6925), True, 'import numpy as np\n'), ((9257, 9269), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (9267, 9269), True, 'import matplotlib.pyplot as plt\n'), ((9287, 9354), 'numpy.linspace', 'np.linspace', (['(1)', 'hyperp.num_epochs', 'hyperp.num_epochs'], {'endpoint': '(True)'}), '(1, hyperp.num_epochs, hyperp.num_epochs, endpoint=True)\n', (9298, 9354), True, 'import numpy as np\n'), ((9364, 9420), 'matplotlib.pyplot.plot', 'plt.plot', (['x_axis', 'storage_array_loss_train_forward_model'], {}), '(x_axis, storage_array_loss_train_forward_model)\n', (9372, 9420), True, 'import matplotlib.pyplot as plt\n'), ((9429, 9464), 'matplotlib.pyplot.title', 'plt.title', (['"""Log-loss Forward Model"""'], {}), "('Log-loss Forward Model')\n", (9438, 9464), True, 'import matplotlib.pyplot as plt\n'), ((9473, 9493), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Epochs"""'], {}), "('Epochs')\n", (9483, 9493), True, 'import matplotlib.pyplot as plt\n'), ((9502, 9530), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Relative Error"""'], {}), "('Relative Error')\n", (9512, 9530), True, 'import matplotlib.pyplot as plt\n'), ((9649, 9683), 'matplotlib.pyplot.savefig', 'plt.savefig', (['figures_savefile_name'], {}), '(figures_savefile_name)\n', (9660, 9683), True, 'import matplotlib.pyplot as plt\n'), ((9692, 9711), 'matplotlib.pyplot.close', 'plt.close', (['fig_loss'], {}), '(fig_loss)\n', (9701, 9711), True, 'import matplotlib.pyplot as plt\n')]
import logging logging.basicConfig(format="[%(asctime)s] %(filename)s [line:%(lineno)d] %(message)s", datefmt="%m-%d %H:%M:%S") import os import sys import urllib import pprint import tarfile import tensorflow as tf import json import datetime import dateutil.tz import numpy as np import scipy.misc pp = pprint.PrettyPrinter().pprint logger = logging.getLogger(__name__) def setup_model_saving(model_name, data, hyperparams=None, root_dir='run/'): # construct the model directory template name name = os.path.join(root_dir, data, model_name + '%s') # iterate until we find an index that hasn't been taken yet. i = 0 while os.path.exists(name % i): i += 1 name = name % i # create the folder os.makedirs(name) return name def mprint(matrix, pivot=0.5): for array in matrix: print("".join("#" if i > pivot else " " for i in array)) def show_all_variables(): total_count = 0 for idx, op in enumerate(tf.trainable_variables()): shape = op.get_shape() count = np.prod(shape) print("[%2d] %s %s = %s" % (idx, op.name, shape, count)) total_count += int(count) print("[Total] variable size: %s" % "{:,}".format(total_count)) def get_timestamp(): now = datetime.datetime.now(dateutil.tz.tzlocal()) return now.strftime('%Y_%m_%d_%H_%M_%S') def binarize(images): return (np.random.uniform(size=images.shape) < images).astype('float32') def save_images_in(images,cmin=0.0, cmax=1.0,directory="./",prefix="sample"): index = 1 for i in np.arange(images.shape[0]): filename = '%s_%s_%s.jpg' % (i,prefix, get_timestamp()) scipy.misc.toimage(images[i].reshape(images[i].shape[0],images[i].shape[1]), cmin=0, cmax=255).save(filename) def save_images(images, height, width,channel, n_row, n_col, cmin=0.0, cmax=1.0, directory="./", prefix="sample"): if channel == 1: images = images.reshape((n_row, n_col, height, width)) images = images.transpose(1, 2, 0, 3) images = images.reshape((height * n_row, width * n_col)) filename = '%s_%s.jpg' % (prefix, get_timestamp()) scipy.misc.toimage(images, cmin=cmin, cmax=cmax).save(os.path.join(directory, filename)) elif channel == 3: images = images.reshape((n_row, n_col, height, width,channel)) images = images.transpose(1, 2, 0, 3, 4) images = images.reshape((height * n_row, width * n_col,channel)) filename = '%s_%s.jpg' % (prefix, get_timestamp()) scipy.misc.toimage(images).save(os.path.join(directory, filename)) def get_model_dir(conf, exceptions=None): # attrs = conf.__dict__['__flags'] # pp(attrs) keys = conf.flag_values_dict() # keys.remove('data') # keys = ['data'] + keys names =[] for key in keys: # Only use useful flags if key not in exceptions: names.append("%s=%s" % (key, ",".join([str(i) for i in conf[key]]) if type(conf[key]) == list else conf[key])) return os.path.join('checkpoints', *names) + '/' def preprocess_conf(conf): options = conf.__flags for option, value in options.items(): option = option.lower() def check_and_create_dir(directory): if not os.path.exists(directory): logger.info('Creating directory: %s' % directory) os.makedirs(directory) else: logger.info('Skip creating directory: %s' % directory) def maybe_download_and_extract(dest_directory): """ Download and extract the tarball from Alex's website. From https://github.com/tensorflow/tensorflow/blob/r0.9/tensorflow/models/image/cifar10/cifar10.py """ DATA_URL = 'http://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz' if not os.path.exists(dest_directory): os.makedirs(dest_directory) filename = DATA_URL.split('/')[-1] filepath = os.path.join(dest_directory, filename) if not os.path.exists(filepath): def _progress(count, block_size, total_size): sys.stdout.write('\r>> Downloading %s %.1f%%' % (filename, float(count * block_size) / float(total_size) * 100.0)) sys.stdout.flush() filepath, _ = urllib.urlretrieve(DATA_URL, filepath, _progress) print() statinfo = os.stat(filepath) print('Successfully downloaded', filename, statinfo.st_size, 'bytes.') tarfile.open(filepath, 'r:gz').extractall(dest_directory)
[ "numpy.random.uniform", "os.makedirs", "logging.basicConfig", "tensorflow.trainable_variables", "os.stat", "os.path.exists", "numpy.prod", "pprint.PrettyPrinter", "numpy.arange", "sys.stdout.flush", "urllib.urlretrieve", "tarfile.open", "os.path.join", "logging.getLogger" ]
[((15, 137), 'logging.basicConfig', 'logging.basicConfig', ([], {'format': '"""[%(asctime)s] %(filename)s [line:%(lineno)d] %(message)s"""', 'datefmt': '"""%m-%d %H:%M:%S"""'}), "(format=\n '[%(asctime)s] %(filename)s [line:%(lineno)d] %(message)s', datefmt=\n '%m-%d %H:%M:%S')\n", (34, 137), False, 'import logging\n'), ((347, 374), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (364, 374), False, 'import logging\n'), ((308, 330), 'pprint.PrettyPrinter', 'pprint.PrettyPrinter', ([], {}), '()\n', (328, 330), False, 'import pprint\n'), ((510, 557), 'os.path.join', 'os.path.join', (['root_dir', 'data', "(model_name + '%s')"], {}), "(root_dir, data, model_name + '%s')\n", (522, 557), False, 'import os\n'), ((637, 661), 'os.path.exists', 'os.path.exists', (['(name % i)'], {}), '(name % i)\n', (651, 661), False, 'import os\n'), ((716, 733), 'os.makedirs', 'os.makedirs', (['name'], {}), '(name)\n', (727, 733), False, 'import os\n'), ((1492, 1518), 'numpy.arange', 'np.arange', (['images.shape[0]'], {}), '(images.shape[0])\n', (1501, 1518), True, 'import numpy as np\n'), ((3692, 3730), 'os.path.join', 'os.path.join', (['dest_directory', 'filename'], {}), '(dest_directory, filename)\n', (3704, 3730), False, 'import os\n'), ((936, 960), 'tensorflow.trainable_variables', 'tf.trainable_variables', ([], {}), '()\n', (958, 960), True, 'import tensorflow as tf\n'), ((1002, 1016), 'numpy.prod', 'np.prod', (['shape'], {}), '(shape)\n', (1009, 1016), True, 'import numpy as np\n'), ((2893, 2928), 'os.path.join', 'os.path.join', (['"""checkpoints"""', '*names'], {}), "('checkpoints', *names)\n", (2905, 2928), False, 'import os\n'), ((3104, 3129), 'os.path.exists', 'os.path.exists', (['directory'], {}), '(directory)\n', (3118, 3129), False, 'import os\n'), ((3189, 3211), 'os.makedirs', 'os.makedirs', (['directory'], {}), '(directory)\n', (3200, 3211), False, 'import os\n'), ((3577, 3607), 'os.path.exists', 'os.path.exists', (['dest_directory'], {}), '(dest_directory)\n', (3591, 3607), False, 'import os\n'), ((3613, 3640), 'os.makedirs', 'os.makedirs', (['dest_directory'], {}), '(dest_directory)\n', (3624, 3640), False, 'import os\n'), ((3741, 3765), 'os.path.exists', 'os.path.exists', (['filepath'], {}), '(filepath)\n', (3755, 3765), False, 'import os\n'), ((3991, 4040), 'urllib.urlretrieve', 'urllib.urlretrieve', (['DATA_URL', 'filepath', '_progress'], {}), '(DATA_URL, filepath, _progress)\n', (4009, 4040), False, 'import urllib\n'), ((4068, 4085), 'os.stat', 'os.stat', (['filepath'], {}), '(filepath)\n', (4075, 4085), False, 'import os\n'), ((2114, 2147), 'os.path.join', 'os.path.join', (['directory', 'filename'], {}), '(directory, filename)\n', (2126, 2147), False, 'import os\n'), ((3954, 3972), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (3970, 3972), False, 'import sys\n'), ((1325, 1361), 'numpy.random.uniform', 'np.random.uniform', ([], {'size': 'images.shape'}), '(size=images.shape)\n', (1342, 1361), True, 'import numpy as np\n'), ((2453, 2486), 'os.path.join', 'os.path.join', (['directory', 'filename'], {}), '(directory, filename)\n', (2465, 2486), False, 'import os\n'), ((4165, 4195), 'tarfile.open', 'tarfile.open', (['filepath', '"""r:gz"""'], {}), "(filepath, 'r:gz')\n", (4177, 4195), False, 'import tarfile\n')]
#!/usr/bin/env python3 import os import sys import re import argparse from pathlib import Path from collections import Counter from enum import Enum import itertools import json from operator import itemgetter import math import datetime import logging import multiprocessing import time import signal from typing import Tuple, Union import io import cv2 from numpy import ndarray import numpy as np import pytesseract from PIL import Image from PIL.ExifTags import TAGS import pageinfo PROGNAME = "FGOスクショカウント" VERSION = "0.4.0" DEFAULT_ITEM_LANG = "jpn" # "jpn": japanese, "eng": English logger = logging.getLogger(__name__) watcher_running = True class CustomAdapter(logging.LoggerAdapter): """ この adapter を通した場合、自動的にログ出力文字列の先頭に [target] が挿入される。 target は adapter インスタンス生成時に確定させること。 """ def process(self, msg, kwargs): return f"[{self.extra['target']}] {msg}", kwargs class Ordering(Enum): """ ファイルの処理順序を示す定数 """ NOTSPECIFIED = 'notspecified' # 指定なし FILENAME = 'filename' # ファイル名 TIMESTAMP = 'timestamp' # 作成日時 def __str__(self): return str(self.value) basedir = Path(__file__).resolve().parent Item_dir = basedir / Path("item/equip/") CE_dir = basedir / Path("item/ce/") Point_dir = basedir / Path("item/point/") train_item = basedir / Path("item.xml") # item stack & bonus train_chest = basedir / Path("chest.xml") # drop_coount (Old UI) train_dcnt = basedir / Path("dcnt.xml") # drop_coount (New UI) train_card = basedir / Path("card.xml") # card name drop_file = basedir / Path("fgoscdata/hash_drop.json") eventquest_dir = basedir / Path("fgoscdata/data/json/") items_img = basedir / Path("data/misc/items_img.png") hasher = cv2.img_hash.PHash_create() FONTSIZE_UNDEFINED = -1 FONTSIZE_NORMAL = 0 FONTSIZE_SMALL = 1 FONTSIZE_TINY = 2 FONTSIZE_NEWSTYLE = 99 PRIORITY_CE = 9000 PRIORITY_POINT = 3000 PRIORITY_ITEM = 700 PRIORITY_GEM_MIN = 6094 PRIORITY_MAGIC_GEM_MIN = 6194 PRIORITY_SECRET_GEM_MIN = 6294 PRIORITY_PIECE_MIN = 5194 PRIORITY_REWARD_QP = 9012 ID_START = 9500000 ID_QP = 1 ID_REWARD_QP = 5 ID_GEM_MIN = 6001 ID_GEM_MAX = 6007 ID_MAGIC_GEM_MIN = 6101 ID_MAGIC_GEM_MAX = 6107 ID_SECRET_GEM_MIN = 6201 ID_SECRET_GEM_MAX = 6207 ID_PIECE_MIN = 7001 ID_MONUMENT_MAX = 7107 ID_EXP_MIN = 9700100 ID_EXP_MAX = 9707500 ID_2ZORO_DICE = 94047708 ID_3ZORO_DICE = 94047709 ID_NORTH_AMERICA = 93000500 ID_SYURENJYO = 94006800 ID_EVNET = 94000000 TIMEOUT = 15 QP_UNKNOWN = -1 DEFAULT_POLL_FREQ = 60 DEFAULT_AMT_PROCESSES = 1 class FgosccntError(Exception): pass class GainedQPandDropMissMatchError(FgosccntError): pass with open(drop_file, encoding='UTF-8') as f: drop_item = json.load(f) # JSONファイルから各辞書を作成 item_name = {item["id"]: item["name"] for item in drop_item} item_name_eng = {item["id"]: item["name_eng"] for item in drop_item if "name_eng" in item.keys()} item_shortname = {item["id"]: item["shortname"] for item in drop_item if "shortname" in item.keys()} item_dropPriority = {item["id"]: item["dropPriority"] for item in drop_item} item_background = {item["id"]: item["background"] for item in drop_item if "background" in item.keys()} item_type = {item["id"]: item["type"] for item in drop_item} dist_item = {item["phash_battle"]: item["id"] for item in drop_item if item["type"] == "Item" and "phash_battle" in item.keys()} dist_ce = {item["phash"]: item["id"] for item in drop_item if item["type"] == "Craft Essence"} dist_ce_narrow = {item["phash_narrow"]: item["id"] for item in drop_item if item["type"] == "Craft Essence"} dist_secret_gem = {item["id"]: item["phash_class"] for item in drop_item if 6200 < item["id"] < 6208 and "phash_class" in item.keys()} dist_magic_gem = {item["id"]: item["phash_class"] for item in drop_item if 6100 < item["id"] < 6108 and "phash_class" in item.keys()} dist_gem = {item["id"]: item["phash_class"] for item in drop_item if 6000 < item["id"] < 6008 and "phash_class" in item.keys()} dist_exp_rarity = {item["phash_rarity"]: item["id"] for item in drop_item if item["type"] == "Exp. UP" and "phash_rarity" in item.keys()} dist_exp_rarity_sold = {item["phash_rarity_sold"]: item["id"] for item in drop_item if item["type"] == "Exp. UP" and "phash_rarity_sold" in item.keys()} dist_exp_rarity.update(dist_exp_rarity_sold) dist_exp_class = {item["phash_class"]: item["id"] for item in drop_item if item["type"] == "Exp. UP" and "phash_class" in item.keys()} dist_exp_class_sold = {item["phash_class_sold"]: item["id"] for item in drop_item if item["type"] == "Exp. UP" and "phash_class_sold" in item.keys()} dist_exp_class.update(dist_exp_class_sold) dist_point = {item["phash_battle"]: item["id"] for item in drop_item if item["type"] == "Point" and "phash_battle" in item.keys()} with open(drop_file, encoding='UTF-8') as f: drop_item = json.load(f) freequest = [] evnetfiles = eventquest_dir.glob('**/*.json') for evnetfile in evnetfiles: try: with open(evnetfile, encoding='UTF-8') as f: event = json.load(f) freequest = freequest + event except (OSError, UnicodeEncodeError) as e: logger.exception(e) npz = np.load(basedir / Path('background.npz')) hist_zero = npz["hist_zero"] hist_gold = npz["hist_gold"] hist_silver = npz["hist_silver"] hist_bronze = npz["hist_bronze"] def has_intersect(a, b): """ 二つの矩形の当たり判定 隣接するのはOKとする """ return max(a[0], b[0]) < min(a[2], b[2]) \ and max(a[1], b[1]) < min(a[3], b[3]) class State(): def set_screen(self): self.screen_type = "normal" def set_char_position(self): logger.debug("JP Standard Position") def set_font_size(self): logger.debug("JP Standard Font Size") def set_max_qp(self): self.max_qp = 999999999 logger.debug("999,999,999") class JpNov2020(State): def set_screen(self): self.screen_type = "wide" class JpAug2021(JpNov2020): def set_font_size(self): logger.debug("JP New Font Size") def set_max_qp(self): self.max_qp = 2000000000 logger.debug("2,000,000,000") class NaState(State): def set_char_position(self): logger.debug("NA Standard Position") class Context: def __init__(self): self.jp_aug_2021 = JpAug2021() self.jp_nov_2020 = JpNov2020() self.jp = State() self.na = NaState() self.state = self.jp_aug_2021 self.set_screen() self.set_font_size() self.set_char_position() self.set_max_qp() def change_state(self, mode): if mode == "jp": self.state = self.jp_aug_2021 elif mode == "na": self.state = self.na else: raise ValueError("change_state method must be in {}".format(["jp", "na"])) self.set_screen() self.set_font_size() self.set_char_position() self.set_max_qp() def set_screen(self): self.state.set_screen() def set_char_position(self): self.state.set_char_position() def set_font_size(self): self.state.set_font_size() def set_max_qp(self): self.state.set_max_qp() def get_coodinates(img: ndarray, display: bool = False) -> Tuple[Tuple[int, int], Tuple[int, int]]: threshold: int = 30 height, width = img.shape[:2] img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) if display: cv2.imshow('image', img_gray) cv2.waitKey(0) cv2.destroyAllWindows() _, inv = cv2.threshold(img_gray, threshold, 255, cv2.THRESH_BINARY_INV) if display: cv2.imshow('image', inv) cv2.waitKey(0) cv2.destroyAllWindows() contours, _ = cv2.findContours(inv, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE) contours2 = [] for cnt in contours: _, _, w, h = cv2.boundingRect(cnt) area = cv2.contourArea(cnt) if 1.81 < w/h < 1.83 and area > height / 2 * width / 2 and height/h > 1080/910: contours2.append(cnt) if len(contours2) == 0: raise ValueError("Game screen not found.") max_contour = max(contours2, key=lambda x: cv2.contourArea(x)) x, y, width, height = cv2.boundingRect(max_contour) return ((x, y), (x + width, y + height)) def standardize_size(frame_img: ndarray, display: bool = False) -> Tuple[ndarray, float]: TRAINING_WIDTH: int = 1754 height, width = frame_img.shape[:2] if display: pass logger.debug("height: %d", height) logger.debug("width: %d", width) _, width, _ = frame_img.shape resize_scale: float = TRAINING_WIDTH / width logger.debug("resize_scale: %f", resize_scale) if resize_scale > 1: frame_img = cv2.resize(frame_img, (0, 0), fx=resize_scale, fy=resize_scale, interpolation=cv2.INTER_CUBIC) elif resize_scale < 1: frame_img = cv2.resize(frame_img, (0, 0), fx=resize_scale, fy=resize_scale, interpolation=cv2.INTER_AREA) if display: cv2.imshow('image', frame_img) cv2.waitKey(0) cv2.destroyAllWindows() return frame_img, resize_scale def area_decision(frame_img: ndarray, display: bool = False) -> str: """ FGOアプリの地域を選択 'na', 'jp'に対応 'items_img.png' とのオブジェクトマッチングで判定 """ img = frame_img[0:100, 0:500] img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) if display: cv2.imshow('image', img_gray) cv2.waitKey(0) cv2.destroyAllWindows() template = imread(items_img, 0) res = cv2.matchTemplate( img_gray, template, cv2.TM_CCOEFF_NORMED ) threshold = 0.9 loc = np.where(res >= threshold) for pt in zip(*loc[::-1]): return 'na' return 'jp' def check_page_mismatch(page_items: int, chestnum: int, pagenum: int, pages: int, lines: int) -> bool: if pages == 1: if chestnum + 1 != page_items: return False return True if not (pages - 1) * 21 <= chestnum <= pages * 21 - 1: return False if pagenum == pages: item_count = chestnum - ((pages - 1) * 21 - 1) + (pages * 3 - lines) * 7 if item_count != page_items: return False return True class ScreenShot: """ 戦利品スクリーンショットを表すクラス """ def __init__(self, args, img_rgb, svm, svm_chest, svm_dcnt, svm_card, fileextention, exLogger, reward_only=False): self.exLogger = exLogger threshold = 80 try: self.pagenum, self.pages, self.lines = pageinfo.guess_pageinfo(img_rgb) except pageinfo.TooManyAreasDetectedError: self.pagenum, self.pages, self.lines = (-1, -1, -1) self.img_rgb_orig = img_rgb img_blue, img_green, img_red = cv2.split(img_rgb) if (img_blue==img_green).all() & (img_green==img_red ).all(): raise ValueError("Input image is grayscale") self.img_gray_orig = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY) self.img_hsv_orig = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2HSV) _, self.img_th_orig = cv2.threshold(self.img_gray_orig, threshold, 255, cv2.THRESH_BINARY) ((self.x1, self.y1), (self.x2, self.y2)) = get_coodinates(self.img_rgb_orig) frame_img: ndarray = self.img_rgb_orig[self.y1: self.y2, self.x1: self.x2] img_resize, resize_scale = standardize_size(frame_img) self.img_rgb = img_resize mode = area_decision(img_resize) logger.debug("lang: %s", mode) # UI modeを決める sc = Context() sc.change_state(mode) self.max_qp = sc.state.max_qp self.screen_type = sc.state.screen_type dcnt_old, dcnt_new = self.drop_count_area(self.img_rgb_orig, resize_scale, sc) if logger.isEnabledFor(logging.DEBUG): cv2.imwrite('frame_img.png', img_resize) if logger.isEnabledFor(logging.DEBUG): if self.screen_type == "normal": cv2.imwrite('dcnt_old.png', dcnt_old) cv2.imwrite('dcnt_new.png', dcnt_new) self.img_gray = cv2.cvtColor(self.img_rgb, cv2.COLOR_BGR2GRAY) _, self.img_th = cv2.threshold(self.img_gray, threshold, 255, cv2.THRESH_BINARY) self.svm = svm self.svm_chest = svm_chest self.svm_dcnt = svm_dcnt self.height, self.width = self.img_rgb.shape[:2] if self.screen_type == "normal": self.chestnum = self.ocr_tresurechest(dcnt_old) if self.chestnum == -1: self.chestnum = self.ocr_dcnt(dcnt_new) else: self.chestnum = self.ocr_dcnt(dcnt_new) self.asr_y, self.actual_height = self.detect_scroll_bar() logger.debug("Total Drop (OCR): %d", self.chestnum) item_pts = self.img2points(mode) logger.debug("item_pts:%s", item_pts) self.items = [] self.current_dropPriority = PRIORITY_REWARD_QP if reward_only: # qpsplit.py で利用 item_pts = item_pts[0:1] prev_item = None for i, pt in enumerate(item_pts): lx, _ = self.find_edge(self.img_th[pt[1]: pt[3], pt[0]: pt[2]], reverse=True) logger.debug("lx: %d", lx) item_img_th = self.img_th[pt[1] + 37: pt[3] - 30, pt[0] + lx: pt[2] + lx] if self.is_empty_box(item_img_th): break item_img_rgb = self.img_rgb[pt[1]: pt[3], pt[0] + lx: pt[2] + lx] item_img_gray = self.img_gray[pt[1]: pt[3], pt[0] + lx: pt[2] + lx] if logger.isEnabledFor(logging.DEBUG): cv2.imwrite('item' + str(i) + '.png', item_img_rgb) dropitem = Item(args, i, prev_item, item_img_rgb, item_img_gray, svm, svm_card, fileextention, self.current_dropPriority, self.exLogger, mode) if dropitem.id == -1: break self.current_dropPriority = item_dropPriority[dropitem.id] self.items.append(dropitem) prev_item = dropitem self.itemlist = self.makeitemlist() try: self.total_qp = self.get_qp(mode) self.qp_gained = self.get_qp_gained(mode) asr_y, actual_height = self.detect_scroll_bar() if asr_y == -1 or actual_height == -1: self.scroll_position = -1 else: entire_height = 649 # from correct_pageinfo() self.scroll_position = asr_y / entire_height except Exception as e: self.total_qp = -1 self.qp_gained = -1 self.exLogger.warning("QP detection fails") logger.exception(e) if self.qp_gained > 0 and len(self.itemlist) == 0: raise GainedQPandDropMissMatchError self.pagenum, self.pages, self.lines = self.correct_pageinfo() if not reward_only: self.check_page_mismatch() # Determine scrollbar's position. AtlasAcademy processing pipeline uses this to group drop-pages asr_y, actual_height = self.detect_scroll_bar() if asr_y == -1 or actual_height == -1: self.scroll_position = -1 else: entire_height = 649 # from correct_pageinfo() self.scroll_position = asr_y / entire_height def check_page_mismatch(self): valid = check_page_mismatch( len(self.itemlist), self.chestnum, self.pagenum, self.pages, self.lines, ) if not valid: self.exLogger.warning("drops_count is a mismatch:") self.exLogger.warning("drops_count = %d", self.chestnum) self.exLogger.warning("drops_found = %d", len(self.itemlist)) def find_notch(self): """ 直線検出で検出されなかったフチ幅を検出 """ edge_width = 150 height, width = self.img_hsv_orig.shape[:2] target_color = 0 for rx in range(edge_width): img_hsv_x = self.img_hsv_orig[:, width - rx - 1: width - rx] # ヒストグラムを計算 hist = cv2.calcHist([img_hsv_x], [0], None, [256], [0, 256]) # 最小値・最大値・最小値の位置・最大値の位置を取得 _, maxVal, _, maxLoc = cv2.minMaxLoc(hist) if not (maxLoc[1] == target_color and maxVal > height * 0.7): break return rx def drop_count_area(self, img: ndarray, resize_scale, sc, display: bool = False) -> Tuple[Union[ndarray, None], ndarray]: # widescreenかどうかで挙動を変える if resize_scale > 1: img = cv2.resize(img, (0, 0), fx=resize_scale, fy=resize_scale, interpolation=cv2.INTER_CUBIC) elif resize_scale < 1: img = cv2.resize(img, (0, 0), fx=resize_scale, fy=resize_scale, interpolation=cv2.INTER_AREA) # ((x1, y1), (_, _)) = get_coodinates(img) # 相対座標(旧UI) dcnt_old = None if sc.state.screen_type == "normal": dcnt_old = img[int(self.y1*resize_scale) - 81: int(self.y1*resize_scale) - 44, int(self.x1*resize_scale) + 1446: int(self.x1*resize_scale) + 1505] if display: cv2.imshow('image', dcnt_old) cv2.waitKey(0) cv2.destroyAllWindows() # 相対座標(新UI) rx = self.find_notch() height, width = img.shape[:2] if width/height > 16/8.96: # Issue #317 dcnt_new = img[int(self.y1*resize_scale) - 20: int(self.y1*resize_scale) + 14, width - 495 - rx: width - 415 - int(rx*resize_scale)] else: dcnt_new = img[int(self.y1*resize_scale) - 20: int(self.y1*resize_scale) + 14, width - 430: width - 350] if display: cv2.imshow('image', dcnt_new) cv2.waitKey(0) cv2.destroyAllWindows() return dcnt_old, dcnt_new def detect_scroll_bar(self): ''' Modified from determine_scroll_position() ''' width = self.img_rgb.shape[1] topleft = (width - 90, 81) bottomright = (width, 2 + 753) if logger.isEnabledFor(logging.DEBUG): img_copy = self.img_rgb.copy() cv2.rectangle(img_copy, topleft, bottomright, (0, 0, 255), 3) cv2.imwrite("./scroll_bar_selected2.jpg", img_copy) gray_image = self.img_gray[ topleft[1]: bottomright[1], topleft[0]: bottomright[0] ] _, binary = cv2.threshold(gray_image, 200, 255, cv2.THRESH_BINARY) if logger.isEnabledFor(logging.DEBUG): cv2.imwrite("scroll_bar_binary2.png", binary) contours = cv2.findContours( binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE )[0] pts = [] for cnt in contours: ret = cv2.boundingRect(cnt) pt = [ret[0], ret[1], ret[0] + ret[2], ret[1] + ret[3]] if ret[3] > 10: pts.append(pt) if len(pts) == 0: logger.debug("Can't find scroll bar") return -1, -1 elif len(pts) > 1: self.exLogger.warning("Too many objects.") return -1, -1 else: return pt[1], pt[3] - pt[1] def valid_pageinfo(self): ''' Checking the content of pageinfo and correcting it when it fails ''' if self.pagenum == -1 or self.pages == -1 or self.lines == -1: return False if (self.pagenum == 1 and self.pages == 1 and self.lines == 0) and self.chestnum > 20: return False elif self.itemlist[0]["id"] != ID_REWARD_QP and self.pagenum == 1: return False elif self.chestnum != -1 and self.pagenum != 1 \ and self.lines != int(self.chestnum/7) + 1: return False return True def correct_pageinfo(self): if self.valid_pageinfo() is False: self.exLogger.warning("pageinfo validation failed") if self.asr_y == -1 or self.actual_height == -1: return 1, 1, 0 entire_height = 649 esr_y = 17 cap_height = 14 # 正規化後の im.height を 1155 であると仮定して計算した値 pagenum = pageinfo.guess_pagenum(self.asr_y, esr_y, self.actual_height, entire_height, cap_height) pages = pageinfo.guess_pages(self.actual_height, entire_height, cap_height) lines = pageinfo.guess_lines(self.actual_height, entire_height, cap_height) return pagenum, pages, lines else: return self.pagenum, self.pages, self.lines def calc_black_whiteArea(self, bw_image): image_size = bw_image.size whitePixels = cv2.countNonZero(bw_image) whiteAreaRatio = (whitePixels / image_size) * 100 # [%] return whiteAreaRatio def is_empty_box(self, img_th): """ アイテムボックスにアイテムが無いことを判別する """ if self.calc_black_whiteArea(img_th) < 1: return True return False def get_qp_from_text(self, text): """ capy-drop-parser から流用 """ qp = 0 power = 1 # re matches left to right so reverse the list # to process lower orders of magnitude first. for match in re.findall("[0-9]+", text)[::-1]: qp += int(match) * power power *= 1000 return qp def extract_text_from_image(self, image): """ capy-drop-parser から流用 """ gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) _, qp_image = cv2.threshold(gray, 65, 255, cv2.THRESH_BINARY_INV) # '+' is needed to ensure that tesseract doesn't force a recognition on it, # which results in a '4' most of the time. return pytesseract.image_to_string( qp_image, config="-l eng --oem 1 --psm 7 -c tessedit_char_whitelist=+,0123456789", ) def get_qp(self, mode): """ capy-drop-parser から流用 tesseract-OCR is quite slow and changed to use SVM """ use_tesseract = False pt = pageinfo.detect_qp_region(self.img_rgb_orig, mode) logger.debug('pt from pageinfo: %s', pt) if pt is None: use_tesseract = True qp_total = -1 if use_tesseract is False: # use SVM im_th = cv2.bitwise_not( self.img_th_orig[pt[0][1]: pt[1][1], pt[0][0]: pt[1][0]] ) qp_total = self.ocr_text(im_th) if use_tesseract or qp_total == -1: if self.screen_type == "normal": pt = ((288, 948), (838, 1024)) else: pt = ((288, 838), (838, 914)) logger.debug('Use tesseract') qp_total_text = self.extract_text_from_image( self.img_rgb[pt[0][1]: pt[1][1], pt[0][0]: pt[1][0]] ) logger.debug('qp_total_text from text: %s', qp_total_text) qp_total = self.get_qp_from_text(qp_total_text) logger.debug('qp_total from text: %s', qp_total) if qp_total > self.max_qp: self.exLogger.warning( "qp_total exceeds the system's maximum: %s", qp_total ) if qp_total == 0: return QP_UNKNOWN return qp_total def get_qp_gained(self, mode): use_tesseract = False bounds = pageinfo.detect_qp_region(self.img_rgb_orig, mode) if bounds is None: # fall back on hardcoded bound if self.screen_type == "normal": bounds = ((398, 858), (948, 934)) else: bounds = ((398, 748), (948, 824)) use_tesseract = True else: # Detecting the QP box with different shading is "easy", while detecting the absence of it # for the gain QP amount is hard. However, the 2 values have the same font and thus roughly # the same height (please NA...). You can consider them to be 2 same-sized boxes on top of # each other. (topleft, bottomright) = bounds height = bottomright[1] - topleft[1] topleft = (topleft[0], topleft[1] - height + int(height*0.12)) bottomright = (bottomright[0], bottomright[1] - height) bounds = (topleft, bottomright) logger.debug('Gained QP bounds: %s', bounds) if logger.isEnabledFor(logging.DEBUG): img_copy = self.img_rgb.copy() cv2.rectangle(img_copy, bounds[0], bounds[1], (0, 0, 255), 3) cv2.imwrite("./qp_gain_detection.jpg", img_copy) qp_gain = -1 if use_tesseract is False: im_th = cv2.bitwise_not( self.img_th_orig[topleft[1]: bottomright[1], topleft[0]: bottomright[0]] ) qp_gain = self.ocr_text(im_th) if use_tesseract or qp_gain == -1: logger.debug('Use tesseract') (topleft, bottomright) = bounds qp_gain_text = self.extract_text_from_image( self.img_rgb[topleft[1]: bottomright[1], topleft[0]: bottomright[0]] ) qp_gain = self.get_qp_from_text(qp_gain_text) logger.debug('qp from text: %s', qp_gain) if qp_gain == 0: qp_gain = QP_UNKNOWN return qp_gain def find_edge(self, img_th, reverse=False): """ 直線検出で検出されなかったフチ幅を検出 """ edge_width = 4 _, width = img_th.shape[:2] target_color = 255 if reverse else 0 for i in range(edge_width): img_th_x = img_th[:, i:i + 1] # ヒストグラムを計算 hist = cv2.calcHist([img_th_x], [0], None, [256], [0, 256]) # 最小値・最大値・最小値の位置・最大値の位置を取得 _, _, _, maxLoc = cv2.minMaxLoc(hist) if maxLoc[1] == target_color: break lx = i for j in range(edge_width): img_th_x = img_th[:, width - j - 1: width - j] # ヒストグラムを計算 hist = cv2.calcHist([img_th_x], [0], None, [256], [0, 256]) # 最小値・最大値・最小値の位置・最大値の位置を取得 _, _, _, maxLoc = cv2.minMaxLoc(hist) if maxLoc[1] == 0: break rx = j return lx, rx def makeitemlist(self): """ アイテムを出力 """ itemlist = [] for item in self.items: tmp = {} tmp['id'] = item.id tmp['name'] = item.name tmp['dropPriority'] = item_dropPriority[item.id] tmp['stack'] = int(item.dropnum[1:]) tmp['bonus'] = item.bonus tmp['category'] = item.category tmp['x'] = item.position % 7 tmp['y'] = item.position//7 itemlist.append(tmp) return itemlist def ocr_text(self, im_th): h, w = im_th.shape[:2] # 物体検出 im_th = cv2.bitwise_not(im_th) contours = cv2.findContours(im_th, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0] item_pts = [] for cnt in contours: ret = cv2.boundingRect(cnt) area = cv2.contourArea(cnt) pt = [ret[0], ret[1], ret[0] + ret[2], ret[1] + ret[3]] if ret[2] < int(w/2) and area > 80 and ret[1] < h/2 \ and 0.3 < ret[2]/ret[3] < 0.85 and ret[3] > h * 0.45: flag = False for p in item_pts: if has_intersect(p, pt): # どちらかを消す p_area = (p[2]-p[0])*(p[3]-p[1]) pt_area = ret[2]*ret[3] if p_area < pt_area: item_pts.remove(p) else: flag = True if flag is False: item_pts.append(pt) if len(item_pts) == 0: # Recognizing Failure return -1 item_pts.sort() if len(item_pts) > len(str(self.max_qp)): # QP may be misrecognizing the 10th digit or more, so cut it item_pts = item_pts[len(item_pts) - len(str(self.max_qp)):] logger.debug("ocr item_pts: %s", item_pts) logger.debug("ドロップ桁数(OCR): %d", len(item_pts)) # Hog特徴のパラメータ win_size = (120, 60) block_size = (16, 16) block_stride = (4, 4) cell_size = (4, 4) bins = 9 res = "" for pt in item_pts: test = [] if pt[0] == 0: tmpimg = im_th[pt[1]:pt[3], pt[0]:pt[2]+1] else: tmpimg = im_th[pt[1]:pt[3], pt[0]-1:pt[2]+1] tmpimg = cv2.resize(tmpimg, (win_size)) hog = cv2.HOGDescriptor(win_size, block_size, block_stride, cell_size, bins) test.append(hog.compute(tmpimg)) # 特徴量の格納 test = np.array(test) pred = self.svm_chest.predict(test) res = res + str(int(pred[1][0][0])) return int(res) def ocr_tresurechest(self, drop_count_img): """ 宝箱数をOCRする関数 """ threshold = 80 img_gray = cv2.cvtColor(drop_count_img, cv2.COLOR_BGR2GRAY) _, img_num = cv2.threshold(img_gray, threshold, 255, cv2.THRESH_BINARY) im_th = cv2.bitwise_not(img_num) h, w = im_th.shape[:2] # 情報ウィンドウが数字とかぶった部分を除去する for y in range(h): im_th[y, 0] = 255 for x in range(w): # ドロップ数7のときバグる対策 #54 im_th[0, x] = 255 return self.ocr_text(im_th) def pred_dcnt(self, img): """ for JP new UI """ # Hog特徴のパラメータ win_size = (120, 60) block_size = (16, 16) block_stride = (4, 4) cell_size = (4, 4) bins = 9 char = [] tmpimg = cv2.resize(img, (win_size)) hog = cv2.HOGDescriptor(win_size, block_size, block_stride, cell_size, bins) char.append(hog.compute(tmpimg)) # 特徴量の格納 char = np.array(char) pred = self.svm_dcnt.predict(char) res = str(int(pred[1][0][0])) return int(res) def img2num(self, img, img_th, pts, char_w, end): """実際より小さく切り抜かれた数字画像を補正して認識させる """ height, width = img.shape[:2] c_center = int(pts[0] + (pts[2] - pts[0])/2) # newimg = img[:, item_pts[-1][0]-1:item_pts[-1][2]+1] newimg = img[:, max(int(c_center - char_w/2), 0):min(int(c_center + char_w/2), width)] threshold2 = 10 ret, newimg_th = cv2.threshold(newimg, threshold2, 255, cv2.THRESH_BINARY) # 上部はもとのやつを上書き # for w in range(item_pts[-1][2] - item_pts[-1][0] + 2): for w in range(min(int(c_center + char_w/2), width) - max(int(c_center - char_w/2), 0)): for h in range(end): newimg_th[h, w] = img_th[h, w + int(c_center - char_w/2)] # newimg_th[h, w] = img_th[h, w + item_pts[-1][0]] newimg_th[height - 1, w] = 0 newimg_th[height - 2, w] = 0 newimg_th[height - 3, w] = 0 res = self.pred_dcnt(newimg_th) return res def ocr_dcnt(self, drop_count_img): """ ocr drop_count (for New UI) """ char_w = 28 threshold = 80 kernel = np.ones((4, 4), np.uint8) img = cv2.cvtColor(drop_count_img, cv2.COLOR_BGR2GRAY) _, img_th = cv2.threshold(img, threshold, 255, cv2.THRESH_BINARY) img_th = cv2.dilate(img_th, kernel, iterations=1) height, width = img_th.shape[:2] end = -1 for i in range(height): if end == -1 and img_th[height - i - 1, width - 1] == 255: end = height - i break start = end - 7 for j in range(width): for k in range(end - start): img_th[start + k, j] = 0 contours = cv2.findContours(img_th, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0] item_pts = [] for cnt in contours: ret = cv2.boundingRect(cnt) pt = [ret[0], ret[1], ret[0] + ret[2], ret[1] + ret[3]] if ret[1] > 0 and ret[3] > 8 and ret[1] + ret[3] == start \ and 12 < ret[2] < char_w + 4 and ret[0] + ret[2] != width: item_pts.append(pt) if len(item_pts) == 0: return -1 item_pts.sort() res = self.img2num(img, img_th, item_pts[-1], char_w, end) if len(item_pts) >= 2: if item_pts[-1][0] - item_pts[-2][2] < char_w / (2 / 3): res2 = self.img2num(img, img_th, item_pts[-2], char_w, end) res = res2 * 10 + res if len(item_pts) == 3: if item_pts[-2][0] - item_pts[-3][2] < char_w / (2 / 3): res3 = self.img2num(img, img_th, item_pts[-3], char_w, end) res = res3 * 100 + res2 * 10 + res return res def calc_offset(self, pts, std_pts, margin_x): """ オフセットを反映 """ if len(pts) == 0: return std_pts # Y列でソート pts.sort(key=lambda x: x[1]) if len(pts) > 1: # fix #107 if (pts[1][3] - pts[1][1]) - (pts[0][3] - pts[0][1]) > 0: pts = pts[1:] # Offsetを算出 offset_x = pts[0][0] - margin_x offset_y = pts[0][1] - std_pts[0][1] if offset_y > (std_pts[7][3] - std_pts[7][1])*2: # これ以上になったら三行目の座標と判断 offset_y = pts[0][1] - std_pts[14][1] elif offset_y > 30: # これ以上になったら二行目の座標と判断 offset_y = pts[0][1] - std_pts[7][1] # Offset を反映 item_pts = [] for pt in std_pts: ptl = list(pt) ptl[0] = ptl[0] + offset_x ptl[1] = ptl[1] + offset_y ptl[3] = ptl[3] + offset_y ptl[2] = ptl[2] + offset_x item_pts.append(ptl) return item_pts def img2points(self, mode): """ 戦利品左一列のY座標を求めて標準座標とのずれを補正して座標を出力する """ std_pts = self.booty_pts() row_size = 7 # アイテム表示最大列 col_size = 3 # アイテム表示最大行 margin_x = 15 area_size_lower = 37000 # アイテム枠の面積の最小値 img_1strow = self.img_th[0:self.height, std_pts[0][0] - margin_x: std_pts[0][2] + margin_x] SCROLLBAR_WIDTH4ONEPAGE = 610 POSITION_TOP = 16 POSITION_BOTTOM_JP = 42 # JP POSITION_BOTTOM_NA = 52 # NA SCROLL_OFFSET = 28 # 輪郭を抽出 contours = cv2.findContours(img_1strow, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)[0] leftcell_pts = [] for cnt in contours: area = cv2.contourArea(cnt) if area > area_size_lower \ and area < self.height * self.width / (row_size * col_size): epsilon = 0.01*cv2.arcLength(cnt, True) approx = cv2.approxPolyDP(cnt, epsilon, True) if 4 <= len(approx) <= 6: # 六角形のみ認識 ret = cv2.boundingRect(cnt) if ret[1] > self.height * 0.15 - 101 \ and ret[1] + ret[3] < self.height * 0.76 - 101: # 小数の数値はだいたいの実測 pts = [ret[0], ret[1], ret[0] + ret[2], ret[1] + ret[3]] leftcell_pts.append(pts) if len(leftcell_pts) != 0: item_pts = self.calc_offset(leftcell_pts, std_pts, margin_x) logger.debug("leftcell_pts: %s", leftcell_pts) else: if (self.asr_y == POSITION_TOP and self.actual_height == SCROLLBAR_WIDTH4ONEPAGE) or self.actual_height == -1: # case: normal if mode == "na": leftcell_pts = [[25, 109, 214, 315]] else: leftcell_pts = [[14, 97, 202, 303]] item_pts = self.calc_offset(leftcell_pts, std_pts, margin_x) elif POSITION_BOTTOM_JP <= self.asr_y <= POSITION_BOTTOM_NA and self.actual_height == SCROLLBAR_WIDTH4ONEPAGE: # case: scrolling down by mistake if mode == "na": leftcell_pts = [[25, 299, 214, 504]] else: leftcell_pts = [[14, 97 - SCROLL_OFFSET, 202, 303 - SCROLL_OFFSET]] item_pts = self.calc_offset(leftcell_pts, std_pts, margin_x) return item_pts def booty_pts(self): """ 戦利品が出現する21の座標 [left, top, right, bottom] 解像度別に設定 """ criteria_left = 102 criteria_top = 99 item_width = 188 item_height = 206 margin_width = 32 margin_height = 21 pts = generate_booty_pts(criteria_left, criteria_top, item_width, item_height, margin_width, margin_height) return pts def generate_booty_pts(criteria_left, criteria_top, item_width, item_height, margin_width, margin_height): """ ScreenShot#booty_pts() が返すべき座標リストを生成する。 全戦利品画像が等間隔に並んでいることを仮定している。 criteria_left ... 左上にある戦利品の left 座標 criteria_top ... 左上にある戦利品の top 座標 item_width ... 戦利品画像の width item_height ... 戦利品画像の height margin_width ... 戦利品画像間の width margin_height ... 戦利品画像間の height """ pts = [] current = (criteria_left, criteria_top, criteria_left + item_width, criteria_top + item_height) for j in range(3): # top, bottom の y座標を計算 current_top = criteria_top + (item_height + margin_height) * j current_bottom = current_top + item_height # x座標を左端に固定 current = (criteria_left, current_top, criteria_left + item_width, current_bottom) for i in range(7): # y座標を固定したままx座標をスライドさせていく current_left = criteria_left + (item_width + margin_width) * i current_right = current_left + item_width current = (current_left, current_top, current_right, current_bottom) pts.append(current) return pts class Item: def __init__(self, args, pos, prev_item, img_rgb, img_gray, svm, svm_card, fileextention, current_dropPriority, exLogger, mode='jp'): self.position = pos self.prev_item = prev_item self.img_rgb = img_rgb self.img_gray = img_gray self.img_hsv = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2HSV) _, img_th = cv2.threshold(self.img_gray, 174, 255, cv2.THRESH_BINARY) self.img_th = cv2.bitwise_not(img_th) self.fileextention = fileextention self.exLogger = exLogger self.dropnum_cache = [] self.margin_left = 5 self.height, self.width = img_rgb.shape[:2] logger.debug("pos: %d", pos) self.identify_item(args, prev_item, svm_card, current_dropPriority) if self.id == -1: return logger.debug("id: %d", self.id) logger.debug("background: %s", self.background) logger.debug("dropPriority: %s", item_dropPriority[self.id]) logger.debug("Category: %s", self.category) logger.debug("Name: %s", self.name) self.svm = svm self.bonus = "" if self.category != "Craft Essence" and self.category != "Exp. UP": self.ocr_digit(mode) else: self.dropnum = "x1" logger.debug("Bonus: %s", self.bonus) logger.debug("Stack: %s", self.dropnum) def identify_item(self, args, prev_item, svm_card, current_dropPriority): self.background = classify_background(self.img_rgb) self.hash_item = compute_hash(self.img_rgb) # 画像の距離 if prev_item is not None: # [Requirements for Caching] # 1. previous item is not a reward QP. # 2. Same background as the previous item # 3. Not (similarity is close) dice, gem or EXP if prev_item.id != ID_REWARD_QP \ and prev_item.background == self.background \ and not (ID_GEM_MIN <= prev_item.id <= ID_SECRET_GEM_MAX or ID_2ZORO_DICE <= prev_item.id <= ID_3ZORO_DICE or ID_EXP_MIN <= prev_item.id <= ID_EXP_MAX): d = hasher.compare(self.hash_item, prev_item.hash_item) if d <= 4: self.category = prev_item.category self.id = prev_item.id self.name = prev_item.name return self.category = self.classify_category(svm_card) self.id = self.classify_card(self.img_rgb, current_dropPriority) if args.lang == "jpn": self.name = item_name[self.id] else: if self.id in item_name_eng.keys(): self.name = item_name_eng[self.id] else: self.name = item_name[self.id] if self.category == "": if self.id in item_type: self.category = item_type[self.id] else: self.category = "Item" def conflictcheck(self, pts, pt): """ pt が ptsのどれかと衝突していたら面積に応じて入れ替える """ flag = False for p in list(pts): if has_intersect(p, pt): # どちらかを消す p_area = (p[2]-p[0])*(p[3]-p[1]) pt_area = (pt[2]-pt[0])*(pt[3]-pt[1]) if p_area < pt_area: pts.remove(p) else: flag = True if flag is False: pts.append(pt) return pts def extension(self, pts): """ 文字エリアを1pixcel微修正 """ new_pts = [] for pt in pts: if pt[0] == 0 and pt[1] == 0: pt = [pt[0], pt[1], pt[2], pt[3] + 1] elif pt[0] == 0 and pt[1] != 0: pt = [pt[0], pt[1] - 1, pt[2], pt[3] + 1] elif pt[0] != 0 and pt[1] == 0: pt = [pt[0] - 1, pt[1], pt[2], pt[3] + 1] else: pt = [pt[0] - 1, pt[1] - 1, pt[2], pt[3] + 1] new_pts.append(pt) return new_pts def extension_straighten(self, pts): """ Y軸を最大値にそろえつつ文字エリアを1pixcel微修正 """ base_top = 6 # 強制的に高さを確保 base_bottom = 10 for pt in pts: if base_top > pt[1]: base_top = pt[1] if base_bottom < pt[3]: base_bottom = pt[3] # 5桁目がおかしくなる対策 new_pts = [] pts.reverse() for i, pt in enumerate(pts): if len(pts) > 6 and i == 4: pt = [pts[5][2], base_top, pts[3][0], base_bottom] else: pt = [pt[0], base_top, pt[2], base_bottom] new_pts.append(pt) new_pts.reverse() return new_pts def detect_bonus_char4jpg(self, mode): """ [JP]Ver.2.37.0以前の仕様 戦利品数OCRで下段の黄文字の座標を抽出する PNGではない画像の認識用 """ # QP,ポイントはボーナス6桁のときに高さが変わる # それ以外は3桁のときに変わるはず(未確認) # ここのmargin_right はドロップ数の下一桁目までの距離 base_line = 181 if mode == "na" else 179 pattern_tiny = r"^\(\+\d{4,5}0\)$" pattern_small = r"^\(\+\d{5}0\)$" pattern_normal = r"^\(\+[1-9]\d*\)$" # 1-5桁の読み込み font_size = FONTSIZE_NORMAL if mode == 'na': margin_right = 20 else: margin_right = 26 line, pts = self.get_number4jpg(base_line, margin_right, font_size) logger.debug("Read BONUS NORMAL: %s", line) m_normal = re.match(pattern_normal, line) if m_normal: logger.debug("Font Size: %d", font_size) return line, pts, font_size # 6桁の読み込み if mode == 'na': margin_right = 19 else: margin_right = 25 font_size = FONTSIZE_SMALL line, pts = self.get_number4jpg(base_line, margin_right, font_size) logger.debug("Read BONUS SMALL: %s", line) m_small = re.match(pattern_small, line) if m_small: logger.debug("Font Size: %d", font_size) return line, pts, font_size # 7桁読み込み font_size = FONTSIZE_TINY if mode == 'na': margin_right = 18 else: margin_right = 26 line, pts = self.get_number4jpg(base_line, margin_right, font_size) logger.debug("Read BONUS TINY: %s", line) m_tiny = re.match(pattern_tiny, line) if m_tiny: logger.debug("Font Size: %d", font_size) return line, pts, font_size else: font_size = FONTSIZE_UNDEFINED logger.debug("Font Size: %d", font_size) line = "" pts = [] return line, pts, font_size def detect_bonus_char4jpg2(self, mode): """ [JP]Ver.2.37.0以降の仕様 戦利品数OCRで下段の黄文字の座標を抽出する PNGではない画像の認識用 """ # QP,ポイントはボーナス6桁のときに高さが変わる # それ以外は3桁のときに変わるはず(未確認) # ここのmargin_right はドロップ数の下一桁目までの距離 base_line = 181 if mode == "na" else 179 pattern_tiny = r"^\(\+\d{4,5}0\)$" pattern_small = r"^\(\+\d{5}0\)$" pattern_normal = r"^\(\+[1-9]\d*\)$" font_size = FONTSIZE_NEWSTYLE if mode == 'na': margin_right = 20 else: margin_right = 26 # 1-5桁の読み込み cut_width = 21 comma_width = 5 line, pts = self.get_number4jpg2(base_line, margin_right, cut_width, comma_width) logger.debug("Read BONUS NORMAL: %s", line) m_normal = re.match(pattern_normal, line) if m_normal: logger.debug("Font Size: %d", font_size) return line, pts, font_size # 6桁の読み込み cut_width = 19 comma_width = 5 line, pts = self.get_number4jpg2(base_line, margin_right, cut_width, comma_width) logger.debug("Read BONUS SMALL: %s", line) m_small = re.match(pattern_small, line) if m_small: logger.debug("Font Size: %d", font_size) return line, pts, font_size # 7桁読み込み cut_width = 18 comma_width = 5 line, pts = self.get_number4jpg2(base_line, margin_right, cut_width, comma_width) logger.debug("Read BONUS TINY: %s", line) m_tiny = re.match(pattern_tiny, line) if m_tiny: logger.debug("Font Size: %d", font_size) return line, pts, font_size else: font_size = FONTSIZE_UNDEFINED logger.debug("Font Size: %d", font_size) line = "" pts = [] return line, pts, font_size def detect_bonus_char(self): """ 戦利品数OCRで下段の黄文字の座標を抽出する HSVで黄色をマスクしてオブジェクト検出 ノイズは少なく精度はかなり良い """ margin_top = int(self.height*0.72) margin_bottom = int(self.height*0.11) margin_left = 8 margin_right = 8 img_hsv_lower = self.img_hsv[margin_top: self.height - margin_bottom, margin_left: self.width - margin_right] h, w = img_hsv_lower.shape[:2] # 手持ちスクショでうまくいっている範囲 # 黄文字がこの数値でマスクできるかが肝 # 未対応機種が発生したため[25,180,119] →[25,175,119]に変更 lower_yellow = np.array([25, 175, 119]) upper_yellow = np.array([37, 255, 255]) img_hsv_lower_mask = cv2.inRange(img_hsv_lower, lower_yellow, upper_yellow) contours = cv2.findContours(img_hsv_lower_mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)[0] bonus_pts = [] # 物体検出マスクがうまくいっているかが成功の全て for cnt in contours: ret = cv2.boundingRect(cnt) area = cv2.contourArea(cnt) pt = [ret[0] + margin_left, ret[1] + margin_top, ret[0] + ret[2] + margin_left, ret[1] + ret[3] + margin_top] # )が上下に割れることがあるので上の一つは消す if ret[2] < int(w/2) and ret[1] < int(h*3/5) \ and ret[1] + ret[3] > h*0.65 and area > 3: bonus_pts = self.conflictcheck(bonus_pts, pt) bonus_pts.sort() if len(bonus_pts) > 0: if self.width - bonus_pts[-1][2] > int((22*self.width/188)): # 黄文字は必ず右寄せなので最後の文字が画面端から離れている場合全部ゴミ bonus_pts = [] return self.extension(bonus_pts) def define_fontsize(self, font_size): if font_size == FONTSIZE_NORMAL: cut_width = 20 cut_height = 28 comma_width = 9 elif font_size == FONTSIZE_SMALL: cut_width = 18 cut_height = 25 comma_width = 8 else: cut_width = 16 cut_height = 22 comma_width = 6 return cut_width, cut_height, comma_width def get_number4jpg(self, base_line, margin_right, font_size): """[JP]Ver.2.37.0以前の仕様 """ cut_width, cut_height, comma_width = self.define_fontsize(font_size) top_y = base_line - cut_height # まず、+, xの位置が何桁目か調査する pts = [] if font_size == FONTSIZE_TINY: max_digits = 8 elif font_size == FONTSIZE_SMALL: max_digits = 8 else: max_digits = 7 for i in range(max_digits): if i == 0: continue pt = [self.width - margin_right - cut_width * (i + 1) - comma_width * int((i - 1)/3), top_y, self.width - margin_right - cut_width * i - comma_width * int((i - 1)/3), base_line] result = self.read_char(pt) if i == 1 and ord(result) == 0: # アイテム数 x1 とならず表記無し場合のエラー処理 return "", pts if result in ['x', '+']: break # 決まった位置まで出力する line = "" for j in range(i): pt = [self.width - margin_right - cut_width * (j + 1) - comma_width * int(j/3), top_y, self.width - margin_right - cut_width * j - comma_width * int(j/3), base_line] c = self.read_char(pt) if ord(c) == 0: # Null文字対策 line = line + '?' break line = line + c pts.append(pt) j = j + 1 pt = [self.width - margin_right - cut_width * (j + 1) - comma_width * int((j - 1)/3), top_y, self.width - margin_right - cut_width * j - comma_width * int((j - 1)/3), base_line] c = self.read_char(pt) if ord(c) == 0: # Null文字対策 c = '?' line = line + c line = "(" + line[::-1] + ")" pts.append(pt) pts.sort() # PNGのマスク法との差を埋める補正 new_pts = [[pts[0][0]-10, pts[0][1], pts[0][0]-1, pts[0][3]]] # "(" に対応 new_pts.append("") # ")" に対応 return line, new_pts def get_number4jpg2(self, base_line, margin_right, cut_width, comma_width): """[JP]Ver.2.37.0以降の仕様 """ cut_height = 30 top_y = base_line - cut_height # まず、+, xの位置が何桁目か調査する pts = [] max_digits = 7 for i in range(max_digits): if i == 0: continue pt = [self.width - margin_right - cut_width * (i + 1) - comma_width * int((i - 1)/3), top_y, self.width - margin_right - cut_width * i - comma_width * int((i - 1)/3), base_line] result = self.read_char(pt) if i == 1 and ord(result) == 0: # アイテム数 x1 とならず表記無し場合のエラー処理 return "", pts if result in ['x', '+']: break # 決まった位置まで出力する line = "" for j in range(i): pt = [self.width - margin_right - cut_width * (j + 1) - comma_width * int(j/3), top_y, self.width - margin_right - cut_width * j - comma_width * int(j/3), base_line] c = self.read_char(pt) if ord(c) == 0: # Null文字対策 line = line + '?' break line = line + c pts.append(pt) j = j + 1 pt = [self.width - margin_right - cut_width * (j + 1) - comma_width * int((j - 1)/3), top_y, self.width - margin_right - cut_width * j - comma_width * int((j - 1)/3), base_line] c = self.read_char(pt) if ord(c) == 0: # Null文字対策 c = '?' line = line + c line = "(" + line[::-1] + ")" pts.append(pt) pts.sort() # PNGのマスク法との差を埋める補正 new_pts = [[pts[0][0]-10, pts[0][1], pts[0][0]-1, pts[0][3]]] # "(" に対応 new_pts.append("") # ")" に対応 return line, new_pts def get_number(self, base_line, margin_right, font_size): """[JP]Ver.2.37.0以前の仕様 """ cut_width, cut_height, comma_width = self.define_fontsize(font_size) top_y = base_line - cut_height # まず、+, xの位置が何桁目か調査する for i in range(8): # 8桁以上は無い if i == 0: continue elif (self.id == ID_REWARD_QP or self.category in ["Point"]) and i <= 2: # 報酬QPとPointは3桁以上 continue elif self.name == "QP" and i <= 3: # QPは4桁以上 continue pt = [self.width - margin_right - cut_width * (i + 1) - comma_width * int((i - 1)/3), top_y, self.width - margin_right - cut_width * i - comma_width * int((i - 1)/3), base_line] if pt[0] < 0: break result = self.read_char(pt) if i == 1 and ord(result) == 0: # アイテム数 x1 とならず表記無し場合のエラー処理 return "" if result in ['x', '+']: self.margin_left = pt[0] break # 決まった位置まで出力する line = "" for j in range(i): if (self.id == ID_REWARD_QP) and j < 1: # 報酬QPの下一桁は0 line += '0' continue elif (self.name == "QP" or self.category in ["Point"]) and j < 2: # QPとPointは下二桁は00 line += '0' continue pt = [self.width - margin_right - cut_width * (j + 1) - comma_width * int(j/3), top_y, self.width - margin_right - cut_width * j - comma_width * int(j/3), base_line] if pt[0] < 0: break c = self.read_char(pt) if ord(c) == 0: # Null文字対策 c = '?' line = line + c j = j + 1 pt = [self.width - margin_right - cut_width * (j + 1) - comma_width * int((j - 1)/3), top_y, self.width - margin_right - cut_width * j - comma_width * int((j - 1)/3), base_line] if pt[0] > 0: c = self.read_char(pt) if ord(c) == 0: # Null文字対策 c = '?' line = line + c line = line[::-1] return line def get_number2(self, cut_width, comma_width, base_line=147, margin_right=15): """[JP]Ver.2.37.0以降の仕様 """ cut_height = 26 # base_line = 147 # margin_right = 15 top_y = base_line - cut_height # まず、+, xの位置が何桁目か調査する for i in range(8): # 8桁以上は無い if i == 0: continue elif (self.id == ID_REWARD_QP or self.category in ["Point"]) and i <= 2: # 報酬QPとPointは3桁以上 continue elif self.name == "QP" and i <= 3: # QPは4桁以上 continue pt = [self.width - margin_right - cut_width * (i + 1) - comma_width * int((i - 1)/3), top_y, self.width - margin_right - cut_width * i - comma_width * int((i - 1)/3), base_line] if pt[0] < 0: break result = self.read_char(pt) if i == 1 and ord(result) == 0: # アイテム数 x1 とならず表記無し場合のエラー処理 return "" if result in ['x', '+']: self.margin_left = pt[0] break # 決まった位置まで出力する line = "" for j in range(i): if (self.id == ID_REWARD_QP) and j < 1: # 報酬QPの下一桁は0 line += '0' continue elif (self.name == "QP" or self.category in ["Point"]) and j < 2: # QPとPointは下二桁は00 line += '0' continue pt = [self.width - margin_right - cut_width * (j + 1) - comma_width * int(j/3), top_y, self.width - margin_right - cut_width * j - comma_width * int(j/3), base_line] if pt[0] < 0: break c = self.read_char(pt) if ord(c) == 0: # Null文字対策 c = '?' line = line + c j = j + 1 pt = [self.width - margin_right - cut_width * (j + 1) - comma_width * int((j - 1)/3), top_y, self.width - margin_right - cut_width * j - comma_width * int((j - 1)/3), base_line] if pt[0] > 0: c = self.read_char(pt) if ord(c) == 0: # Null文字対策 c = '?' line = line + c line = line[::-1] return line def detect_white_char(self, base_line, margin_right, mode="jp"): """ 上段と下段の白文字を見つける機能を一つに統合 [JP]Ver.2.37.0からボーナスがある場合の表示の仕様変更有り """ pattern_tiny = r"^[\+x][12]\d{4}00$" pattern_tiny_qp = r"^\+[12]\d{4,5}00$" pattern_small = r"^[\+x]\d{4}00$" pattern_small_qp = r"^\+\d{4,5}00$" pattern_normal = r"^[\+x][1-9]\d{0,5}$" pattern_normal_qp = r"^\+[1-9]\d{0,4}0$" logger.debug("base_line: %d", base_line) if mode == "jp" and base_line < 170: # JP Ver.2.37.0以降の新仕様 # 1-6桁の読み込み font_size = FONTSIZE_NEWSTYLE cut_width = 21 comma_width = 5 line = self.get_number2(cut_width, comma_width) logger.debug("Read NORMAL: %s", line) if self.id == ID_QP or self.category == "Point": pattern_normal = pattern_normal_qp m_normal = re.match(pattern_normal, line) if m_normal: logger.debug("Font Size: %d", font_size) self.font_size = font_size return line # 6桁の読み込み cut_width = 19 comma_width = 5 line = self.get_number2(cut_width, comma_width) logger.debug("Read SMALL: %s", line) if self.id == ID_QP or self.category == "Point": pattern_small = pattern_small_qp m_small = re.match(pattern_small, line) if m_small: logger.debug("Font Size: %d", font_size) self.font_size = font_size return line # 7桁読み込み cut_width = 19 comma_width = 4 line = self.get_number2(cut_width, comma_width) logger.debug("Read TINY: %s", line) if self.id == ID_QP or self.category == "Point": pattern_tiny = pattern_tiny_qp m_tiny = re.match(pattern_tiny, line) if m_tiny: logger.debug("Font Size: %d", font_size) self.font_size = font_size return line elif mode == "jp" and self.id not in [ID_QP, ID_REWARD_QP] and self.category != "Point": cut_width = 21 comma_width = 5 line = self.get_number2(cut_width, comma_width, base_line=base_line, margin_right=margin_right) logger.debug("line: %s", line) if len(line) <= 1: return "" elif not line[1:].isdigit(): return "" return line else: # JP Ver.2.37.0以前の旧仕様 if self.font_size != FONTSIZE_UNDEFINED: line = self.get_number(base_line, margin_right, self.font_size) logger.debug("line: %s", line) if len(line) <= 1: return "" elif not line[1:].isdigit(): return "" return line else: # 1-6桁の読み込み font_size = FONTSIZE_NORMAL line = self.get_number(base_line, margin_right, font_size) logger.debug("Read NORMAL: %s", line) if self.id == ID_QP or self.category == "Point": pattern_normal = pattern_normal_qp m_normal = re.match(pattern_normal, line) if m_normal: logger.debug("Font Size: %d", font_size) self.font_size = font_size return line # 6桁の読み込み font_size = FONTSIZE_SMALL line = self.get_number(base_line, margin_right, font_size) logger.debug("Read SMALL: %s", line) if self.id == ID_QP or self.category == "Point": pattern_small = pattern_small_qp m_small = re.match(pattern_small, line) if m_small: logger.debug("Font Size: %d", font_size) self.font_size = font_size return line # 7桁読み込み font_size = FONTSIZE_TINY line = self.get_number(base_line, margin_right, font_size) logger.debug("Read TINY: %s", line) if self.id == ID_QP or self.category == "Point": pattern_tiny = pattern_tiny_qp m_tiny = re.match(pattern_tiny, line) if m_tiny: logger.debug("Font Size: %d", font_size) self.font_size = font_size return line return "" def read_item(self, pts): """ ボーナスの数値をOCRする(エラー訂正有) """ win_size = (120, 60) block_size = (16, 16) block_stride = (4, 4) cell_size = (4, 4) bins = 9 lines = "" for pt in pts: char = [] tmpimg = self.img_gray[pt[1]:pt[3], pt[0]:pt[2]] tmpimg = cv2.resize(tmpimg, (win_size)) hog = cv2.HOGDescriptor(win_size, block_size, block_stride, cell_size, bins) char.append(hog.compute(tmpimg)) char = np.array(char) pred = self.svm.predict(char) result = int(pred[1][0][0]) if result != 0: lines = lines + chr(result) logger.debug("OCR Result: %s", lines) # 以下エラー訂正 if not lines.endswith(")"): lines = lines[:-1] + ")" if not lines.startswith("(+") and not lines.startswith("(x"): if lines[0] in ["+", 'x']: lines = "(" + lines elif lines.startswith("("): lines = lines.replace("(", "(+") else: lines = "" lines = lines.replace("()", "0") if len(lines) > 1: # エラー訂正 文字列左側 # 主にイベントのポイントドロップで左側にゴミができるが、 # 特定の記号がでてきたらそれより前はデータが無いはずなので削除する point_lbra = lines.rfind("(") point_plus = lines.rfind("+") point_x = lines.rfind("x") if point_lbra != -1: lines = lines[point_lbra:] elif point_plus != -1: lines = lines[point_plus:] elif point_x != -1: lines = lines[point_x:] if lines.isdigit(): if int(lines) == 0: lines = "xErr" elif self.name == "QP" or self.name == "クエストクリア報酬QP": lines = '+' + lines else: if int(lines) >= 100: lines = '+' + lines else: lines = 'x' + lines if len(lines) == 1: lines = "xErr" return lines def read_char(self, pt): """ 戦利品の数値1文字をOCRする 白文字検出で使用 """ win_size = (120, 60) block_size = (16, 16) block_stride = (4, 4) cell_size = (4, 4) bins = 9 char = [] tmpimg = self.img_gray[pt[1]:pt[3], pt[0]:pt[2]] tmpimg = cv2.resize(tmpimg, (win_size)) hog = cv2.HOGDescriptor(win_size, block_size, block_stride, cell_size, bins) char.append(hog.compute(tmpimg)) char = np.array(char) pred = self.svm.predict(char) result = int(pred[1][0][0]) return chr(result) def ocr_digit(self, mode='jp'): """ 戦利品OCR """ self.font_size = FONTSIZE_UNDEFINED if self.prev_item is None: prev_id = -1 else: prev_id = self.prev_item.id logger.debug("self.id: %d", self.id) logger.debug("prev_id: %d", prev_id) if prev_id == self.id: self.dropnum_cache = self.prev_item.dropnum_cache if prev_id == self.id \ and not (ID_GEM_MAX <= self.id <= ID_MONUMENT_MAX): # もしキャッシュ画像と一致したらOCRスキップ logger.debug("dropnum_cache: %s", self.prev_item.dropnum_cache) for dropnum_cache in self.prev_item.dropnum_cache: pts = dropnum_cache["pts"] img_gray = self.img_gray[pts[0][1]-2:pts[1][1]+2, pts[0][0]-2:pts[1][0]+2] template = dropnum_cache["img"] res = cv2.matchTemplate(img_gray, template, cv2.TM_CCOEFF_NORMED) threshold = 0.97 loc = np.where(res >= threshold) find_match = False for pt in zip(*loc[::-1]): find_match = True break if find_match: logger.debug("find_match") self.bonus = dropnum_cache["bonus"] self.dropnum = dropnum_cache["dropnum"] self.bonus_pts = dropnum_cache["bonus_pts"] return logger.debug("not find_match") if ID_GEM_MAX <= self.id <= ID_MONUMENT_MAX: # ボーナスが無いアイテム self.bonus_pts = [] self.bonus = "" self.font_size = FONTSIZE_NORMAL elif prev_id == self.id \ and self.category != "Point" and self.name != "QP": self.bonus_pts = self.prev_item.bonus_pts self.bonus = self.prev_item.bonus self.font_size = self.prev_item.font_size elif self.fileextention.lower() == '.png': self.bonus_pts = self.detect_bonus_char() self.bonus = self.read_item(self.bonus_pts) # フォントサイズを決定 if len(self.bonus_pts) > 0: y_height = self.bonus_pts[-1][3] - self.bonus_pts[-1][1] logger.debug("y_height: %s", y_height) if self.position >= 14: self.font_size = FONTSIZE_UNDEFINED elif y_height < 25: self.font_size = FONTSIZE_TINY elif y_height > 27: self.font_size = FONTSIZE_NORMAL else: self.font_size = FONTSIZE_SMALL else: if mode == "jp": self.bonus, self.bonus_pts, self.font_size = self.detect_bonus_char4jpg2(mode) else: self.bonus, self.bonus_pts, self.font_size = self.detect_bonus_char4jpg(mode) logger.debug("Bonus Font Size: %s", self.font_size) # 実際の(ボーナス無し)ドロップ数が上段にあるか下段にあるか決定 offsset_y = 2 if mode == 'na' else 0 if (self.category in ["Quest Reward", "Point"] or self.name == "QP") \ and len(self.bonus) >= 5: # ボーナスは"(+*0)"なので # 1桁目の上部からの距離を設定 base_line = self.bonus_pts[-2][1] - 3 + offsset_y else: base_line = int(180/206*self.height) self.__bonus_string_into_int() # 実際の(ボーナス無し)ドロップ数の右端の位置を決定 offset_x = -7 if mode == "na" else 0 if self.category in ["Quest Reward", "Point"] or self.name == "QP": margin_right = 15 + offset_x elif len(self.bonus_pts) > 0: margin_right = self.width - self.bonus_pts[0][0] + 2 else: margin_right = 15 + offset_x logger.debug("margin_right: %d", margin_right) self.dropnum = self.detect_white_char(base_line, margin_right, mode) logger.debug("self.dropnum: %s", self.dropnum) if len(self.dropnum) == 0: self.dropnum = "x1" if self.id != ID_REWARD_QP \ and not (ID_GEM_MAX <= self.id <= ID_MONUMENT_MAX): dropnum_found = False for cache_item in self.dropnum_cache: if cache_item["dropnum"] == self.dropnum: dropnum_found = True break if dropnum_found is False: # キャッシュのために画像を取得する _, width = self.img_gray.shape _, cut_height, _ = self.define_fontsize(self.font_size) logger.debug("base_line: %d", base_line) logger.debug("cut_height: %d", cut_height) logger.debug("margin_right: %d", margin_right) pts = ((self.margin_left, base_line - cut_height), (width - margin_right, base_line)) cached_img = self.img_gray[pts[0][1]:pts[1][1], pts[0][0]:pts[1][0]] tmp = {} tmp["dropnum"] = self.dropnum tmp["img"] = cached_img tmp["pts"] = pts tmp["bonus"] = self.bonus tmp["bonus_pts"] = self.bonus_pts self.dropnum_cache.append(tmp) def __bonus_string_into_int(self): try: self.bonus = int(re.sub(r"\(|\)|\+", "", self.bonus)) except: self.bonus = 0 def gem_img2id(self, img, gem_dict): hash_gem = self.compute_gem_hash(img) gems = {} for i in gem_dict.keys(): d2 = hasher.compare(hash_gem, hex2hash(gem_dict[i])) if d2 <= 20: gems[i] = d2 gems = sorted(gems.items(), key=lambda x: x[1]) gem = next(iter(gems)) return gem[0] def classify_item(self, img, currnet_dropPriority): """) imgとの距離を比較して近いアイテムを求める id を返すように変更 """ hash_item = self.hash_item # 画像の距離 if logger.isEnabledFor(logging.DEBUG): hex = "" for h in hash_item[0]: hex = hex + "{:02x}".format(h) logger.debug("phash: %s", hex) def compare_distance(hash_item, background=True): ids = {} # 既存のアイテムとの距離を比較 for i in dist_item.keys(): itemid = dist_item[i] item_bg = item_background[itemid] d = hasher.compare(hash_item, hex2hash(i)) if background: if d <= 13 and item_bg == self.background: # ポイントと種の距離が8という例有り(IMG_0274)→16に # バーガーと脂の距離が10という例有り(IMG_2354)→14に ids[dist_item[i]] = d else: if d <= 13: ids[dist_item[i]] = d if len(ids) > 0: ids = sorted(ids.items(), key=lambda x: x[1]) id_tupple = next(iter(ids)) id = id_tupple[0] if ID_SECRET_GEM_MIN <= id <= ID_SECRET_GEM_MAX: if currnet_dropPriority >= PRIORITY_SECRET_GEM_MIN: id = self.gem_img2id(img, dist_secret_gem) else: return "" elif ID_MAGIC_GEM_MIN <= id <= ID_MAGIC_GEM_MAX: if currnet_dropPriority >= PRIORITY_MAGIC_GEM_MIN: id = self.gem_img2id(img, dist_magic_gem) else: return "" elif ID_GEM_MIN <= id <= ID_GEM_MAX: if currnet_dropPriority >= PRIORITY_GEM_MIN: id = self.gem_img2id(img, dist_gem) else: return "" return id return "" id = compare_distance(hash_item, background=True) if id == "": id = compare_distance(hash_item, background=False) return id def classify_ce_sub(self, img, hasher_prog, dist_dic, threshold): """ imgとの距離を比較して近いアイテムを求める """ hash_item = hasher_prog(img) # 画像の距離 itemfiles = {} if logger.isEnabledFor(logging.DEBUG): hex = "" for h in hash_item[0]: hex = hex + "{:02x}".format(h) # 既存のアイテムとの距離を比較 for i in dist_dic.keys(): d = hasher.compare(hash_item, hex2hash(i)) if d <= threshold: itemfiles[dist_dic[i]] = d if len(itemfiles) > 0: itemfiles = sorted(itemfiles.items(), key=lambda x: x[1]) logger.debug("itemfiles: %s", itemfiles) item = next(iter(itemfiles)) return item[0] return "" def classify_ce(self, img): itemid = self.classify_ce_sub(img, compute_hash_ce, dist_ce, 12) if itemid == "": logger.debug("use narrow image") itemid = self.classify_ce_sub( img, compute_hash_ce_narrow, dist_ce_narrow, 15 ) return itemid def classify_point(self, img): """ imgとの距離を比較して近いアイテムを求める """ hash_item = compute_hash(img) # 画像の距離 itemfiles = {} if logger.isEnabledFor(logging.DEBUG): hex = "" for h in hash_item[0]: hex = hex + "{:02x}".format(h) logger.debug("phash: %s", hex) # 既存のアイテムとの距離を比較 for i in dist_point.keys(): itemid = dist_point[i] item_bg = item_background[itemid] d = hasher.compare(hash_item, hex2hash(i)) if d <= 16 and item_bg == self.background: itemfiles[itemid] = d if len(itemfiles) > 0: itemfiles = sorted(itemfiles.items(), key=lambda x: x[1]) item = next(iter(itemfiles)) return item[0] return "" def classify_exp(self, img): hash_item = self.compute_exp_rarity_hash(img) # 画像の距離 exps = {} for i in dist_exp_rarity.keys(): dt = hasher.compare(hash_item, hex2hash(i)) if dt <= 15: # IMG_1833で11 IMG_1837で15 exps[i] = dt exps = sorted(exps.items(), key=lambda x: x[1]) if len(exps) > 0: exp = next(iter(exps)) hash_exp_class = self.compute_exp_class_hash(img) exp_classes = {} for j in dist_exp_class.keys(): dtc = hasher.compare(hash_exp_class, hex2hash(j)) exp_classes[j] = dtc exp_classes = sorted(exp_classes.items(), key=lambda x: x[1]) exp_class = next(iter(exp_classes)) return int(str(dist_exp_class[exp_class[0]])[:4] + str(dist_exp_rarity[exp[0]])[4] + "00") return "" def make_new_file(self, img, search_dir, dist_dic, dropPriority, category): """ ファイル名候補を探す """ i_dic = {"Item": "item", "Craft Essence": "ce", "Point": "point"} initial = i_dic[category] for i in range(999): itemfile = search_dir / (initial + '{:0=3}'.format(i + 1) + '.png') if itemfile.is_file(): continue else: cv2.imwrite(itemfile.as_posix(), img) # id 候補を決める for j in range(99999): id = j + ID_START if id in item_name.keys(): continue break if category == "Craft Essence": hash = compute_hash_ce(img) else: hash = compute_hash(img) hash_hex = "" for h in hash[0]: hash_hex = hash_hex + "{:02x}".format(h) dist_dic[hash_hex] = id if category == "Craft Essence": hash_narrow = compute_hash_ce_narrow(img) hash_hex_narrow = "" for h in hash_narrow[0]: hash_narrow = hash_narrow + "{:02x}".format(h) dist_ce_narrow[hash_hex_narrow] = id item_name[id] = itemfile.stem item_background[id] = classify_background(img) item_dropPriority[id] = dropPriority item_type[id] = category break return id def classify_category(self, svm_card): """ カード判別器 """ """ カード判別器 この場合は画像全域のハッシュをとる """ # Hog特徴のパラメータ win_size = (120, 60) block_size = (16, 16) block_stride = (4, 4) cell_size = (4, 4) bins = 9 test = [] carddic = {0: 'Quest Reward', 1: 'Item', 2: 'Point', 3: 'Craft Essence', 4: 'Exp. UP', 99: ""} tmpimg = self.img_rgb[int(189/206*self.height): int(201/206*self.height), int(78/188*self.width): int(115/188*self.width)] tmpimg = cv2.resize(tmpimg, (win_size)) hog = cv2.HOGDescriptor(win_size, block_size, block_stride, cell_size, bins) test.append(hog.compute(tmpimg)) # 特徴量の格納 test = np.array(test) pred = svm_card.predict(test) return carddic[pred[1][0][0]] def classify_card(self, img, currnet_dropPriority): """ アイテム判別器 """ if self.category == "Point": id = self.classify_point(img) if id == "": id = self.make_new_file(img, Point_dir, dist_point, PRIORITY_POINT, self.category) return id elif self.category == "Quest Reward": return 5 elif self.category == "Craft Essence": id = self.classify_ce(img) if id == "": id = self.make_new_file(img, CE_dir, dist_ce, PRIORITY_CE, self.category) return id elif self.category == "Exp. UP": return self.classify_exp(img) elif self.category == "Item": id = self.classify_item(img, currnet_dropPriority) if id == "": id = self.make_new_file(img, Item_dir, dist_item, PRIORITY_ITEM, self.category) else: # ここで category が判別できないのは三行目かつ # スクロール位置の関係で下部表示が消えている場合 id = self.classify_item(img, currnet_dropPriority) if id != "": return id id = self.classify_point(img) if id != "": return id id = self.classify_ce(img) if id != "": return id id = self.classify_exp(img) if id != "": return id if id == "": id = self.make_new_file(img, Item_dir, dist_item, PRIORITY_ITEM, "Item") return id def compute_exp_rarity_hash(self, img_rgb): """ 種火レアリティ判別器 この場合は画像全域のハッシュをとる """ img = img_rgb[int(53/189*self.height):int(136/189*self.height), int(37/206*self.width):int(149/206*self.width)] return hasher.compute(img) def compute_exp_class_hash(self, img_rgb): """ 種火クラス判別器 左上のクラスマークぎりぎりのハッシュを取る 記述した比率はiPhone6S画像の実測値 """ img = img_rgb[int((5+9)/135*self.height):int((30+2)/135*self.height), int(5/135*self.width):int((30+6)/135*self.width)] return hasher.compute(img) def compute_gem_hash(self, img_rgb): """ スキル石クラス判別器 中央のクラスマークぎりぎりのハッシュを取る 記述した比率はiPhone6S画像の実測値 """ height, width = img_rgb.shape[:2] img = img_rgb[int((145-16-60*0.8)/2/145*height)+2: int((145-16+60*0.8)/2/145*height)+2, int((132-52*0.8)/2/132*width): int((132+52*0.8)/2/132*width)] return hasher.compute(img) def classify_background(img_rgb): """ 背景判別 """ _, width = img_rgb.shape[:2] img = img_rgb[30:119, width - 25:width - 7] target_hist = img_hist(img) bg_score = [] score_z = calc_hist_score(target_hist, hist_zero) bg_score.append({"background": "zero", "dist": score_z}) score_g = calc_hist_score(target_hist, hist_gold) bg_score.append({"background": "gold", "dist": score_g}) score_s = calc_hist_score(target_hist, hist_silver) bg_score.append({"background": "silver", "dist": score_s}) score_b = calc_hist_score(target_hist, hist_bronze) bg_score.append({"background": "bronze", "dist": score_b}) bg_score = sorted(bg_score, key=lambda x: x['dist']) # logger.debug("background dist: %s", bg_score) return (bg_score[0]["background"]) def compute_hash(img_rgb): """ 判別器 この判別器は下部のドロップ数を除いた部分を比較するもの 記述した比率はiPhone6S画像の実測値 """ height, width = img_rgb.shape[:2] img = img_rgb[int(22/135*height): int(77/135*height), int(23/135*width): int(112/135*width)] return hasher.compute(img) def compute_hash_ce(img_rgb): """ 判別器 この判別器は下部のドロップ数を除いた部分を比較するもの 記述した比率はiPpd2018画像の実測値 """ img = img_rgb[12:176, 9:182] return hasher.compute(img) def compute_hash_ce_narrow(img_rgb): """ CE Identifier for scrolled down screenshot """ height, width = img_rgb.shape[:2] img = img_rgb[int(30/206*height):int(155/206*height), int(5/188*width):int(183/188*width)] return hasher.compute(img) def search_file(search_dir, dist_dic, dropPriority, category): """ Item, Craft Essence, Pointの各ファイルを探す """ files = search_dir.glob('**/*.png') for fname in files: img = imread(fname) # id 候補を決める # 既存のデータがあったらそれを使用 if fname.stem in item_name.values(): id = [k for k, v in item_name.items() if v == fname.stem][0] elif fname.stem in item_shortname.values(): id = [k for k, v in item_shortname.items() if v == fname.stem][0] else: for j in range(99999): id = j + ID_START if id in item_name.keys(): continue break # priotiry は固定 item_name[id] = fname.stem item_dropPriority[id] = dropPriority item_type[id] = category if category == "Craft Essence": hash = compute_hash_ce(img) else: hash = compute_hash(img) hash_hex = "" for h in hash[0]: hash_hex = hash_hex + "{:02x}".format(h) dist_dic[hash_hex] = id if category == "Item" or category == "Point": item_background[id] = classify_background(img) if category == "Craft Essence": hash_narrow = compute_hash_ce_narrow(img) hash_hex_narrow = "" for h in hash_narrow[0]: hash_hex_narrow = hash_hex_narrow + "{:02x}".format(h) dist_ce_narrow[hash_hex_narrow] = id def calc_hist_score(hist1, hist2): scores = [] for channel1, channel2 in zip(hist1, hist2): score = cv2.compareHist(channel1, channel2, cv2.HISTCMP_BHATTACHARYYA) scores.append(score) return np.mean(scores) def img_hist(src_img): img = cv2.cvtColor(src_img, cv2.COLOR_BGR2HSV) hist1 = cv2.calcHist([img], [0], None, [256], [0, 256]) hist2 = cv2.calcHist([img], [1], None, [256], [0, 256]) hist3 = cv2.calcHist([img], [2], None, [256], [0, 256]) return hist1, hist2, hist3 def calc_dist_local(): """ 既所持のアイテム画像の距離(一次元配列)の辞書を作成して保持 """ search_file(Item_dir, dist_item, PRIORITY_ITEM, "Item") search_file(CE_dir, dist_ce, PRIORITY_CE, "Craft Essence") search_file(Point_dir, dist_point, PRIORITY_POINT, "Point") def hex2hash(hexstr): hashlist = [] for i in range(8): hashlist.append(int('0x' + hexstr[i*2:i*2+2], 0)) return np.array([hashlist], dtype='uint8') def out_name(args, id): if args.lang == "eng": if id in item_name_eng.keys(): return item_name_eng[id] if id in item_shortname.keys(): name = item_shortname[id] else: name = item_name[id] return name def imread(filename, flags=cv2.IMREAD_COLOR, dtype=np.uint8): """ OpenCVのimreadが日本語ファイル名が読めない対策 """ try: n = np.fromfile(filename, dtype) img = cv2.imdecode(n, flags) return img except Exception as e: logger.exception(e) return None def get_exif(img): exif = img._getexif() try: for id, val in exif.items(): tg = TAGS.get(id, id) if tg == "DateTimeOriginal": return datetime.datetime.strptime(val, '%Y:%m:%d %H:%M:%S') except AttributeError: return "NON" return "NON" def get_output(filenames, args): """ 出力内容を作成 """ calc_dist_local() if train_item.exists() is False: logger.critical("item.xml is not found") logger.critical("Try to run 'python makeitem.py'") sys.exit(1) if train_chest.exists() is False: logger.critical("chest.xml is not found") logger.critical("Try to run 'python makechest.py'") sys.exit(1) if train_dcnt.exists() is False: logger.critical("dcnt.xml is not found") logger.critical("Try to run 'python makedcnt.py'") sys.exit(1) if train_card.exists() is False: logger.critical("card.xml is not found") logger.critical("Try to run 'python makecard.py'") sys.exit(1) svm = cv2.ml.SVM_load(str(train_item)) svm_chest = cv2.ml.SVM_load(str(train_chest)) svm_dcnt = cv2.ml.SVM_load(str(train_dcnt)) svm_card = cv2.ml.SVM_load(str(train_card)) fileoutput = [] # 出力 output = {} prev_pages = 0 prev_pagenum = 0 prev_total_qp = QP_UNKNOWN prev_itemlist = [] prev_datetime = datetime.datetime(year=2015, month=7, day=30, hour=0) prev_qp_gained = 0 prev_chestnum = 0 all_list = [] for filename in filenames: exLogger = CustomAdapter(logger, {"target": filename}) logger.debug("filename: %s", filename) f = Path(filename) if f.exists() is False: output = {'filename': str(filename) + ': not found'} all_list.append([]) elif f.is_dir(): # for ZIP file from MacOS continue elif f.suffix.upper() not in ['.PNG', '.JPG', '.JPEG']: output = {'filename': str(filename) + ': Not Supported'} all_list.append([]) else: img_rgb = imread(filename) fileextention = Path(filename).suffix try: sc = ScreenShot(args, img_rgb, svm, svm_chest, svm_dcnt, svm_card, fileextention, exLogger) if sc.itemlist[0]["id"] != ID_REWARD_QP and sc.pagenum == 1: logger.warning( "Page count recognition is failing: %s", filename ) # ドロップ内容が同じで下記のとき、重複除外 # QPカンストじゃない時、QPが前と一緒 # QPカンストの時、Exif内のファイル作成時間が15秒未満 pilimg = Image.open(filename) dt = get_exif(pilimg) if dt == "NON" or prev_datetime == "NON": td = datetime.timedelta(days=1) else: td = dt - prev_datetime if sc.pages - sc.pagenum == 0: sc.itemlist = sc.itemlist[14-(sc.lines+2) % 3*7:] if prev_itemlist == sc.itemlist: if (sc.total_qp != -1 and sc.total_qp != 2000000000 and sc.total_qp == prev_total_qp) \ or ((sc.total_qp == -1 or sc.total_qp == 2000000000) and td.total_seconds() < args.timeout): logger.debug("args.timeout: %s", args.timeout) logger.debug("filename: %s", filename) logger.debug("prev_itemlist: %s", prev_itemlist) logger.debug("sc.itemlist: %s", sc.itemlist) logger.debug("sc.total_qp: %s", sc.total_qp) logger.debug("prev_total_qp: %s", prev_total_qp) logger.debug("datetime: %s", dt) logger.debug("prev_datetime: %s", prev_datetime) logger.debug("td.total_second: %s", td.total_seconds()) fileoutput.append( {'filename': str(filename) + ': duplicate'}) all_list.append([]) continue # 2頁目以前のスクショが無い場合に migging と出力 # 1. 前頁が最終頁じゃない&前頁の続き頁数じゃない # または前頁が最終頁なのに1頁じゃない # 2. 前頁の続き頁なのに獲得QPが違う if ( prev_pages - prev_pagenum > 0 and sc.pagenum - prev_pagenum != 1) \ or (prev_pages - prev_pagenum == 0 and sc.pagenum != 1) \ or sc.pagenum != 1 \ and sc.pagenum - prev_pagenum == 1 \ and ( prev_qp_gained != sc.qp_gained ): logger.debug("prev_pages: %s", prev_pages) logger.debug("prev_pagenum: %s", prev_pagenum) logger.debug("sc.pagenum: %s", sc.pagenum) logger.debug("prev_qp_gained: %s", prev_qp_gained) logger.debug("sc.qp_gained: %s", sc.qp_gained) logger.debug("prev_chestnum: %s", prev_chestnum) logger.debug("sc.chestnum: %s", sc.chestnum) fileoutput.append({'filename': 'missing'}) all_list.append([]) all_list.append(sc.itemlist) prev_pages = sc.pages prev_pagenum = sc.pagenum prev_total_qp = sc.total_qp prev_itemlist = sc.itemlist prev_datetime = dt prev_qp_gained = sc.qp_gained prev_chestnum = sc.chestnum sumdrop = len([d for d in sc.itemlist if d["id"] != ID_REWARD_QP]) if args.lang == "jpn": drop_count = "ドロ数" item_count = "アイテム数" else: drop_count = "item_count" item_count = "item_count" output = {'filename': str(filename), drop_count: sc.chestnum, item_count: sumdrop} except Exception as e: logger.error(filename) logger.error(e, exc_info=True) output = ({'filename': str(filename) + ': not valid'}) all_list.append([]) fileoutput.append(output) return fileoutput, all_list def load_svms(): svm = cv2.ml.SVM_load(str(train_item)) svm_chest = cv2.ml.SVM_load(str(train_chest)) svm_dcnt = cv2.ml.SVM_load(str(train_dcnt)) svm_card = cv2.ml.SVM_load(str(train_card)) return (svm, svm_chest, svm_dcnt, svm_card) def parse_img( program_args, svm, svm_chest, svm_dcnt, svm_card, file_path, prev_pages=0, prev_pagenum=0, prev_total_qp=QP_UNKNOWN, prev_gained_qp=QP_UNKNOWN, prev_itemlist=[], prev_datetime=datetime.datetime(year=2015, month=7, day=30, hour=0)): parsed_img_data = {"status": "Incomplete"} logger.debug("filename: %s", file_path) file_loc = Path(file_path).resolve() parsed_img_data["image_path"] = str(file_loc) if not file_loc.exists(): # TODO: is this needed? parsed_img_data["status"] = "File not found" return parsed_img_data img_rgb = imread(file_path) file_extention = file_loc.suffix exLogger = CustomAdapter(logger, {"target": file_loc.name}) try: screenshot = ScreenShot( program_args, img_rgb, svm, svm_chest, svm_dcnt, svm_card, file_extention, exLogger) # If the previous image indicated more coming, check whether this is the fated one. if (prev_pages - prev_pagenum > 0 and screenshot.pagenum - prev_pagenum != 1) \ or (prev_pages - prev_pagenum == 0 and screenshot.pagenum != 1): parsed_img_data["status"] = "Missing page before this" # Detect whether image is a duplicate # Image is a candidate duplicate if drops and gained QP match previous image. # Duplicate is confirmed if: # - QP is not capped and drops are the same as in the previous image # - QP is capped and previous image was taken within 15sec # TODO: is this needed? pilimg = Image.open(file_path) date_time = get_exif(pilimg) if date_time == "NON" or prev_datetime == "NON": time_delta = datetime.timedelta(days=1) else: time_delta = date_time - prev_datetime if prev_itemlist == screenshot.itemlist and prev_gained_qp == screenshot.qp_gained: if (screenshot.total_qp != 999999999 and screenshot.total_qp == prev_total_qp) \ or (screenshot.total_qp == 999999999 and time_delta.total_seconds() < args.timeout): logger.debug("args.timeout: {}".format(args.timeout)) logger.debug("filename: {}".format(file_path)) logger.debug("prev_itemlist: {}".format(prev_itemlist)) logger.debug("screenshot.itemlist: {}".format( screenshot.itemlist)) logger.debug("screenshot.total_qp: {}".format( screenshot.total_qp)) logger.debug("prev_total_qp: {}".format(prev_total_qp)) logger.debug("datetime: {}".format(date_time)) logger.debug("prev_datetime: {}".format(prev_datetime)) logger.debug("td.total_second: {}".format( time_delta.total_seconds())) parsed_img_data["status"] = "Duplicate file" return parsed_img_data # Prep next iter prev_pages = screenshot.pages prev_pagenum = screenshot.pagenum prev_total_qp = screenshot.total_qp prev_gained_qp = screenshot.qp_gained prev_itemlist = screenshot.itemlist prev_datetime = date_time # Gather data parsed_img_data["qp_total"] = screenshot.total_qp parsed_img_data["qp_gained"] = screenshot.qp_gained parsed_img_data["scroll_position"] = screenshot.scroll_position parsed_img_data["drop_count"] = screenshot.chestnum parsed_img_data["drops_found"] = len(screenshot.itemlist) parsed_img_data["drops"] = screenshot.itemlist parsed_img_data["status"] = "OK" if parsed_img_data["status"] == "Incomplete" else parsed_img_data["status"] return parsed_img_data except Exception as e: logger.error("Error during parsing of {}\n{}\n".format( file_path, e), exc_info=True) parsed_img_data["status"] = "Invalid file" return parsed_img_data def move_file_to_out_dir(src_file_path, out_dir): if out_dir is not None: if not os.path.exists(out_dir): os.makedirs(out_dir) src_file_path = Path(src_file_path) if not src_file_path.exists(): print("Cannot move {}. It does not exist.".format(src_file_path)) exit(1) dst_file_path = "{}/{}".format(out_dir, src_file_path.name) os.rename(src_file_path, dst_file_path) return dst_file_path return src_file_path def check_svms_trained(): if train_item.exists() is False: logger.critical("item.xml is not found") logger.critical("Try to run 'python makeitem.py'") sys.exit(1) if train_chest.exists() is False: logger.critical("chest.xml is not found") logger.critical("Try to run 'python makechest.py'") sys.exit(1) if train_dcnt.exists() is False: logger.critical("dcnt.xml is not found") logger.critical("Try to run 'python makedcnt.py'") sys.exit(1) if train_card.exists() is False: logger.critical("card.xml is not found") logger.critical("Try to run 'python makecard.py'") sys.exit(1) def parse_into_json(input_file_paths, args): """ The version of output gathering used by AtlasAcademy. Made to resemble capy's output. """ calc_dist_local() check_svms_trained() (svm, svm_chest, svm_dcnt, svm_card) = load_svms() prev_pages = 0 prev_pagenum = 0 prev_total_qp = QP_UNKNOWN prev_gained_qp = QP_UNKNOWN prev_itemlist = [] prev_datetime = datetime.datetime(year=2015, month=7, day=30, hour=0) all_parsed_output = [] for file_path in input_file_paths: file_path = move_file_to_out_dir(file_path, args.out_folder) all_parsed_output.append(parse_img( args, svm, svm_chest, svm_dcnt, svm_card, file_path, prev_pages, prev_pagenum, prev_total_qp, prev_gained_qp, prev_itemlist, prev_datetime)) return all_parsed_output def __parse_into_json_process(input_queue, args): (svm, svm_chest, svm_dcnt, svm_card) = load_svms() global watcher_running while watcher_running or not input_queue.empty(): input_file_path = input_queue.get() # Detection of missing screenshots/pages (e.g. scrolled down image with no previous # image to go along with it), is dissabled with `prev_pages=-1`. This is because # the technique depends on having the images sorted in chronological order. Sorting # files and processing them in order is not possible in a multiprocess environment. parsed_output = parse_img( args, svm, svm_chest, svm_dcnt, svm_card, input_file_path, prev_pages=-1) output_json([parsed_output], args.out_folder) def __signal_handling(*_): """ Taken from capy-drop-parser """ global watcher_running if not watcher_running: sys.exit(1) watcher_running = False print( "Notice: app may take up to polling frequency time and however long it takes to finish the queue before exiting." ) def watch_parse_output_into_json(args): """ Continuously watch the given input directory for new files. Processes any new images by parsing them, moving them to output dir, and writing parsed json to output dir. Works with a producer/consumer multiprocessing approach. This function watches and fills the queue, while spawned processes use `__parse_into_json_process` to consume the items. """ calc_dist_local() check_svms_trained() signal.signal(signal.SIGINT, __signal_handling) # We estimate roughly 2secs per image parsing. Queue can hold as many images as can be # processed by the given amount of processes in the given amount of poll time. input_queue = multiprocessing.Queue(maxsize=int( args.num_processes * args.polling_frequency / 2)) pool = multiprocessing.Pool( args.num_processes, initializer=__parse_into_json_process, initargs=(input_queue, args)) global watcher_running while watcher_running: for f in Path(args.folder).iterdir(): if not f.is_file(): continue file_path = move_file_to_out_dir(f, args.out_folder) input_queue.put(file_path) # blocks when queue is full time.sleep(int(args.polling_frequency)) input_queue.close() input_queue.join_thread() pool.close() pool.join() def sort_files(files, ordering): if ordering == Ordering.NOTSPECIFIED: return files elif ordering == Ordering.FILENAME: return sorted(files) elif ordering == Ordering.TIMESTAMP: return sorted(files, key=lambda f: Path(f).stat().st_ctime) raise ValueError(f'Unsupported ordering: {ordering}') def change_value(args, line): if args.lang == 'jpn': line = re.sub('000000$', "百万", str(line)) line = re.sub('0000$', "万", str(line)) line = re.sub('000$', "千", str(line)) else: line = re.sub('000000$', "M", str(line)) line = re.sub('000$', "K", str(line)) return line def make_quest_output(quest): output = "" if quest != "": quest_list = [q["name"] for q in freequest if q["place"] == quest["place"]] if math.floor(quest["id"]/100)*100 == ID_NORTH_AMERICA: output = quest["place"] + " " + quest["name"] elif math.floor(quest["id"]/100)*100 == ID_SYURENJYO: output = quest["chapter"] + " " + quest["place"] elif math.floor(quest["id"]/100000)*100000 == ID_EVNET: output = quest["shortname"] else: # クエストが0番目のときは場所を出力、それ以外はクエスト名を出力 if quest_list.index(quest["name"]) == 0: output = quest["chapter"] + " " + quest["place"] else: output = quest["chapter"] + " " + quest["name"] return output UNKNOWN = -1 OTHER = 0 NOVICE = 1 INTERMEDIATE = 2 ADVANCED = 3 EXPERT = 4 MASTER = 5 def tv_quest_type(item_list): quest_type = UNKNOWN for item in item_list: if item["id"] == ID_REWARD_QP: if quest_type != UNKNOWN: quest_type = OTHER break if item["dropnum"] == 1400: quest_type = NOVICE elif item["dropnum"] == 2900: quest_type = INTERMEDIATE elif item["dropnum"] == 4400: quest_type = ADVANCED elif item["dropnum"] == 6400: quest_type = EXPERT elif item["dropnum"] == 7400: quest_type = MASTER else: quest_type = OTHER break return quest_type def deside_tresure_valut_quest(item_list): quest_type = tv_quest_type(item_list) if quest_type in [UNKNOWN, OTHER]: quest_candidate = "" return quest_candidate item_set = set() for item in item_list: if item["id"] == ID_REWARD_QP: continue elif item["id"] != ID_QP: quest_candidate = "" break else: item_set.add(item["dropnum"]) if quest_type == NOVICE and item_set == {10000, 15000, 30000, 45000}: quest_candidate = { "id": 94061636, "name": "宝物庫の扉を開け 初級", "place": "", "chapter": "", "qp": 1400, "shortname": "宝物庫 初級", } elif quest_type == INTERMEDIATE and item_set == {10000, 15000, 30000, 45000, 90000, 135000}: quest_candidate = { "id": 94061637, "name": "宝物庫の扉を開け 中級", "place": "", "chapter": "", "qp": 2900, "shortname": "宝物庫 中級", } elif quest_type == ADVANCED and item_set == {30000, 45000, 90000, 135000, 270000, 405000}: quest_candidate = { "id": 94061638, "name": "宝物庫の扉を開け 上級", "place": "", "chapter": "", "qp": 4400, "shortname": "宝物庫 上級", } elif quest_type == EXPERT and item_set == {90000, 135000, 270000, 405000}: quest_candidate = { "id": 94061639, "name": "宝物庫の扉を開け 超級", "place": "", "chapter": "", "qp": 7400, "shortname": "宝物庫 超級", } elif quest_type == MASTER and item_set == {270000, 405000, 1500000}: quest_candidate = { "id": 94061640, "name": "宝物庫の扉を開け 極級", "place": "", "chapter": "", "qp": 7400, "shortname": "宝物庫 極級", } else: quest_candidate = "" return quest_candidate def deside_quest(item_list): quest_name = deside_tresure_valut_quest(item_list) if quest_name != "": return quest_name item_set = set() for item in item_list: if item["id"] == ID_REWARD_QP: item_set.add("QP(+" + str(item["dropnum"]) + ")") elif item["id"] == 1 \ or item["category"] == "Craft Essence" \ or (9700 <= math.floor(item["id"]/1000) <= 9707 and str(item["id"])[4] not in ["4", "5"]): continue else: item_set.add(item["name"]) quest_candidate = "" for quest in reversed(freequest): dropset = {i["name"] for i in quest["drop"] if i["type"] != "Craft Essence"} dropset.add("QP(+" + str(quest["qp"]) + ")") if dropset == item_set: quest_candidate = quest break return quest_candidate def quest_name_recognition(item_list): """アイテムが全て埋まっていない場合のクエスト名の判別 Args: item_list ([type]): [description] Returns: [type]: [description] """ reward_qp = 0 item_set = set() for item in item_list: if item["id"] == ID_REWARD_QP: item_set.add("QP(+" + str(item["dropnum"]) + ")") reward_qp = item["dropnum"] elif item["id"] == 1 \ or item["category"] == "Craft Essence" \ or (9700 <= math.floor(item["id"]/1000) <= 9707 and str(item["id"])[4] not in ["4", "5"]): continue else: item_set.add(item["name"]) if reward_qp == 0: return "", [] quest_candidate = [] # 報酬QPが同じクエストの一覧を作る for quest in reversed(freequest): if quest["qp"] == reward_qp: quest_candidate.append(quest) # クエスト一覧に含まれるかチェック # 含まれるクエストが一つだったら出力 quest_candidate2 = [] missing_items = [] for quest in quest_candidate: dropset = {i["name"] for i in quest["drop"] if i["type"] != "Craft Essence"} dropset.add("QP(+" + str(quest["qp"]) + ")") diff = item_set - dropset if len(diff) == 0: tmp_items = [] diff2 = dropset - item_set quest_candidate2.append(quest) for item in quest["drop"]: if item["name"] in diff2: item["dropnum"] = 0 item["category"] = "Item" tmp_items.append(item) missing_items.append(tmp_items) if len(quest_candidate2) == 1: return quest_candidate2[0], missing_items[0] else: return "", [] def make_csv_header(args, item_list): """ CSVのヘッダ情報を作成 礼装のドロップが無いかつ恒常以外のアイテムが有るとき礼装0をつける """ if args.lang == 'jpn': drop_count = 'ドロ数' item_count = 'アイテム数' ce_str = '礼装' else: drop_count = 'drop_count' item_count = 'item_count' ce_str = 'CE' if item_list == [[]]: return ['filename', drop_count], False, "" # リストを一次元に flat_list = list(itertools.chain.from_iterable(item_list)) # 余計な要素を除く short_list = [{"id": a["id"], "name": a["name"], "category": a["category"], "dropPriority": a["dropPriority"], "dropnum": a["dropnum"]} for a in flat_list] # 概念礼装のカテゴリのアイテムが無くかつイベントアイテム(>ID_EXM_MAX)がある if args.lang == 'jpn': no_ce_exp_list = [ k for k in flat_list if not k["name"].startswith("概念礼装EXPカード:") ] else: no_ce_exp_list = [ k for k in flat_list if not k["name"].startswith("CE EXP Card:") ] ce0_flag = ("Craft Essence" not in [ d.get('category') for d in no_ce_exp_list ] ) and ( max([d.get("id") for d in flat_list]) > ID_EXP_MAX ) if ce0_flag: short_list.append({"id": 99999990, "name": ce_str, "category": "Craft Essence", "dropPriority": 9005, "dropnum": 0}) # 重複する要素を除く unique_list = list(map(json.loads, set(map(json.dumps, short_list)))) # クエスト名判定 quest = deside_quest(unique_list) if quest == "": quest, items2 = quest_name_recognition(unique_list) unique_list.extend(items2) quest_output = make_quest_output(quest) # ソート new_list = sorted(sorted(sorted(unique_list, key=itemgetter('dropnum')), key=itemgetter('id'), reverse=True), key=itemgetter('dropPriority'), reverse=True) header = [] for nlist in new_list: if nlist['category'] in ['Quest Reward', 'Point'] \ or nlist["name"] == "QP": tmp = out_name(args, nlist['id']) \ + "(+" + change_value(args, nlist["dropnum"]) + ")" elif nlist["dropnum"] > 1: tmp = out_name(args, nlist['id']) \ + "(x" + change_value(args, nlist["dropnum"]) + ")" elif nlist["name"] == ce_str: tmp = ce_str else: tmp = out_name(args, nlist['id']) header.append(tmp) return ['filename', drop_count, item_count] + header, ce0_flag, quest_output def make_csv_data(args, sc_list, ce0_flag): if sc_list == []: return [{}], [{}] csv_data = [] allitem = [] for sc in sc_list: tmp = [] for item in sc: if item['category'] in ['Quest Reward', 'Point'] \ or item["name"] == "QP": tmp.append(out_name(args, item['id']) + "(+" + change_value(args, item["dropnum"]) + ")") elif item["dropnum"] > 1: tmp.append(out_name(args, item['id']) + "(x" + change_value(args, item["dropnum"]) + ")") else: tmp.append(out_name(args, item['id'])) allitem = allitem + tmp csv_data.append(dict(Counter(tmp))) csv_sum = dict(Counter(allitem)) if ce0_flag: if args.lang == 'jpn': ce_str = '礼装' else: ce_str = 'CE' csv_sum.update({ce_str: 0}) return csv_sum, csv_data def output_json(parsed_output, out_folder): if out_folder is None: sys.stdout.buffer.write(json.dumps( parsed_output, ensure_ascii=False).encode('utf8')) else: if not os.path.exists(out_folder): os.makedirs(out_folder) for parsed_file in parsed_output: title = Path(parsed_file["image_path"]).stem with open(Path("{}/{}.json".format(out_folder, title)), "w", encoding="utf-8") as f: json.dump(parsed_file, f, indent=4, ensure_ascii=False) if __name__ == '__main__': # オプションの解析 parser = argparse.ArgumentParser( description='Image Parse for FGO Battle Results' ) # 3. parser.add_argumentで受け取る引数を追加していく parser.add_argument( '-i', '--filenames', help='image file to parse', nargs='+') # 必須の引数を追加 parser.add_argument('--lang', default=DEFAULT_ITEM_LANG, choices=('jpn', 'eng'), help='Language to be used for output: Default ' + DEFAULT_ITEM_LANG) parser.add_argument('-f', '--folder', help='Specify by folder') parser.add_argument('-o', '--out_folder', help='folder to write parsed data to. If specified, parsed images will also be moved to here. Else, output will simply be written to stdout') parser.add_argument('--ordering', help='The order in which files are processed ', type=Ordering, choices=list(Ordering), default=Ordering.NOTSPECIFIED) text_timeout = 'Duplicate check interval at QP MAX (sec): Default ' parser.add_argument('-t', '--timeout', type=int, default=TIMEOUT, help=text_timeout + str(TIMEOUT) + ' sec') parser.add_argument('--version', action='version', version=PROGNAME + " " + VERSION) parser.add_argument('-l', '--loglevel', choices=('debug', 'info'), default='info') subparsers = parser.add_subparsers( title='subcommands', description='{subcommand} --help: show help message for the subcommand',) watcher_parser = subparsers.add_parser( 'watch', help='continuously watch the folder specified by [-f FOLDER]') watcher_parser.add_argument( "-j", "--num_processes", required=False, default=DEFAULT_AMT_PROCESSES, type=int, help="number of processes to allocate in the process pool. Default: {}".format( DEFAULT_AMT_PROCESSES), ) watcher_parser.add_argument( "-p", "--polling_frequency", required=False, default=DEFAULT_POLL_FREQ, type=int, help="how often to check for new images (in seconds). Default: {}s".format( DEFAULT_POLL_FREQ), ) args = parser.parse_args() # 引数を解析 lformat = '%(name)s <%(filename)s-L%(lineno)s> [%(levelname)s] %(message)s' logging.basicConfig( level=logging.INFO, format=lformat, ) logger.setLevel(args.loglevel.upper()) if args.out_folder is not None and not Path(args.out_folder): print("{} is not a valid path".format(args.out_folder)) exit(1) for ndir in [Item_dir, CE_dir, Point_dir]: if not ndir.is_dir(): ndir.mkdir(parents=True) # Attributes are only present if the watch subcommand has been invoked. if hasattr(args, "num_processes") and hasattr(args, "polling_frequency"): if args.folder is None or not Path(args.folder).exists(): print( "The watch subcommands requires a valid input directory. Provide one with --folder.") exit(1) watch_parse_output_into_json(args) else: if args.filenames is None and args.folder is None: print( "No input files specified. Use --filenames or --folder to do so.") exit(1) # gather input image files if args.folder: inputs = [x for x in Path(args.folder).iterdir()] else: inputs = args.filenames inputs = sort_files(inputs, args.ordering) parsed_output = parse_into_json(inputs, args) output_json(parsed_output, args.out_folder)
[ "argparse.ArgumentParser", "cv2.approxPolyDP", "cv2.arcLength", "cv2.imdecode", "numpy.ones", "logging.getLogger", "pageinfo.guess_lines", "json.dumps", "pathlib.Path", "numpy.mean", "cv2.rectangle", "cv2.compareHist", "cv2.HOGDescriptor", "cv2.minMaxLoc", "cv2.imshow", "cv2.inRange", "PIL.ExifTags.TAGS.get", "cv2.matchTemplate", "cv2.contourArea", "cv2.img_hash.PHash_create", "cv2.dilate", "cv2.cvtColor", "cv2.imwrite", "os.path.exists", "cv2.split", "re.findall", "datetime.timedelta", "collections.Counter", "cv2.boundingRect", "cv2.destroyAllWindows", "re.sub", "cv2.resize", "pageinfo.guess_pagenum", "json.dump", "cv2.bitwise_not", "cv2.countNonZero", "cv2.waitKey", "cv2.calcHist", "os.rename", "re.match", "datetime.datetime", "datetime.datetime.strptime", "multiprocessing.Pool", "signal.signal", "sys.exit", "json.load", "os.makedirs", "logging.basicConfig", "pageinfo.guess_pages", "numpy.fromfile", "cv2.threshold", "math.floor", "pytesseract.image_to_string", "PIL.Image.open", "pageinfo.guess_pageinfo", "numpy.where", "numpy.array", "pageinfo.detect_qp_region", "operator.itemgetter", "itertools.chain.from_iterable", "cv2.findContours" ]
[((605, 632), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (622, 632), False, 'import logging\n'), ((1733, 1760), 'cv2.img_hash.PHash_create', 'cv2.img_hash.PHash_create', ([], {}), '()\n', (1758, 1760), False, 'import cv2\n'), ((1215, 1234), 'pathlib.Path', 'Path', (['"""item/equip/"""'], {}), "('item/equip/')\n", (1219, 1234), False, 'from pathlib import Path\n'), ((1254, 1270), 'pathlib.Path', 'Path', (['"""item/ce/"""'], {}), "('item/ce/')\n", (1258, 1270), False, 'from pathlib import Path\n'), ((1293, 1312), 'pathlib.Path', 'Path', (['"""item/point/"""'], {}), "('item/point/')\n", (1297, 1312), False, 'from pathlib import Path\n'), ((1336, 1352), 'pathlib.Path', 'Path', (['"""item.xml"""'], {}), "('item.xml')\n", (1340, 1352), False, 'from pathlib import Path\n'), ((1399, 1416), 'pathlib.Path', 'Path', (['"""chest.xml"""'], {}), "('chest.xml')\n", (1403, 1416), False, 'from pathlib import Path\n'), ((1464, 1480), 'pathlib.Path', 'Path', (['"""dcnt.xml"""'], {}), "('dcnt.xml')\n", (1468, 1480), False, 'from pathlib import Path\n'), ((1528, 1544), 'pathlib.Path', 'Path', (['"""card.xml"""'], {}), "('card.xml')\n", (1532, 1544), False, 'from pathlib import Path\n'), ((1580, 1612), 'pathlib.Path', 'Path', (['"""fgoscdata/hash_drop.json"""'], {}), "('fgoscdata/hash_drop.json')\n", (1584, 1612), False, 'from pathlib import Path\n'), ((1640, 1668), 'pathlib.Path', 'Path', (['"""fgoscdata/data/json/"""'], {}), "('fgoscdata/data/json/')\n", (1644, 1668), False, 'from pathlib import Path\n'), ((1691, 1722), 'pathlib.Path', 'Path', (['"""data/misc/items_img.png"""'], {}), "('data/misc/items_img.png')\n", (1695, 1722), False, 'from pathlib import Path\n'), ((2698, 2710), 'json.load', 'json.load', (['f'], {}), '(f)\n', (2707, 2710), False, 'import json\n'), ((5203, 5215), 'json.load', 'json.load', (['f'], {}), '(f)\n', (5212, 5215), False, 'import json\n'), ((7779, 7816), 'cv2.cvtColor', 'cv2.cvtColor', (['img', 'cv2.COLOR_BGR2GRAY'], {}), '(img, cv2.COLOR_BGR2GRAY)\n', (7791, 7816), False, 'import cv2\n'), ((7939, 8001), 'cv2.threshold', 'cv2.threshold', (['img_gray', 'threshold', '(255)', 'cv2.THRESH_BINARY_INV'], {}), '(img_gray, threshold, 255, cv2.THRESH_BINARY_INV)\n', (7952, 8001), False, 'import cv2\n'), ((8124, 8183), 'cv2.findContours', 'cv2.findContours', (['inv', 'cv2.RETR_LIST', 'cv2.CHAIN_APPROX_NONE'], {}), '(inv, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)\n', (8140, 8183), False, 'import cv2\n'), ((8601, 8630), 'cv2.boundingRect', 'cv2.boundingRect', (['max_contour'], {}), '(max_contour)\n', (8617, 8630), False, 'import cv2\n'), ((9878, 9915), 'cv2.cvtColor', 'cv2.cvtColor', (['img', 'cv2.COLOR_BGR2GRAY'], {}), '(img, cv2.COLOR_BGR2GRAY)\n', (9890, 9915), False, 'import cv2\n'), ((10071, 10130), 'cv2.matchTemplate', 'cv2.matchTemplate', (['img_gray', 'template', 'cv2.TM_CCOEFF_NORMED'], {}), '(img_gray, template, cv2.TM_CCOEFF_NORMED)\n', (10088, 10130), False, 'import cv2\n'), ((10275, 10301), 'numpy.where', 'np.where', (['(res >= threshold)'], {}), '(res >= threshold)\n', (10283, 10301), True, 'import numpy as np\n'), ((86662, 86677), 'numpy.mean', 'np.mean', (['scores'], {}), '(scores)\n', (86669, 86677), True, 'import numpy as np\n'), ((86713, 86753), 'cv2.cvtColor', 'cv2.cvtColor', (['src_img', 'cv2.COLOR_BGR2HSV'], {}), '(src_img, cv2.COLOR_BGR2HSV)\n', (86725, 86753), False, 'import cv2\n'), ((86766, 86813), 'cv2.calcHist', 'cv2.calcHist', (['[img]', '[0]', 'None', '[256]', '[0, 256]'], {}), '([img], [0], None, [256], [0, 256])\n', (86778, 86813), False, 'import cv2\n'), ((86826, 86873), 'cv2.calcHist', 'cv2.calcHist', (['[img]', '[1]', 'None', '[256]', '[0, 256]'], {}), '([img], [1], None, [256], [0, 256])\n', (86838, 86873), False, 'import cv2\n'), ((86886, 86933), 'cv2.calcHist', 'cv2.calcHist', (['[img]', '[2]', 'None', '[256]', '[0, 256]'], {}), '([img], [2], None, [256], [0, 256])\n', (86898, 86933), False, 'import cv2\n'), ((87363, 87398), 'numpy.array', 'np.array', (['[hashlist]'], {'dtype': '"""uint8"""'}), "([hashlist], dtype='uint8')\n", (87371, 87398), True, 'import numpy as np\n'), ((89351, 89404), 'datetime.datetime', 'datetime.datetime', ([], {'year': '(2015)', 'month': '(7)', 'day': '(30)', 'hour': '(0)'}), '(year=2015, month=7, day=30, hour=0)\n', (89368, 89404), False, 'import datetime\n'), ((95037, 95090), 'datetime.datetime', 'datetime.datetime', ([], {'year': '(2015)', 'month': '(7)', 'day': '(30)', 'hour': '(0)'}), '(year=2015, month=7, day=30, hour=0)\n', (95054, 95090), False, 'import datetime\n'), ((100377, 100430), 'datetime.datetime', 'datetime.datetime', ([], {'year': '(2015)', 'month': '(7)', 'day': '(30)', 'hour': '(0)'}), '(year=2015, month=7, day=30, hour=0)\n', (100394, 100430), False, 'import datetime\n'), ((102569, 102616), 'signal.signal', 'signal.signal', (['signal.SIGINT', '__signal_handling'], {}), '(signal.SIGINT, __signal_handling)\n', (102582, 102616), False, 'import signal\n'), ((102914, 103028), 'multiprocessing.Pool', 'multiprocessing.Pool', (['args.num_processes'], {'initializer': '__parse_into_json_process', 'initargs': '(input_queue, args)'}), '(args.num_processes, initializer=\n __parse_into_json_process, initargs=(input_queue, args))\n', (102934, 103028), False, 'import multiprocessing\n'), ((115145, 115218), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Image Parse for FGO Battle Results"""'}), "(description='Image Parse for FGO Battle Results')\n", (115168, 115218), False, 'import argparse\n'), ((117512, 117567), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.INFO', 'format': 'lformat'}), '(level=logging.INFO, format=lformat)\n', (117531, 117567), False, 'import logging\n'), ((5544, 5566), 'pathlib.Path', 'Path', (['"""background.npz"""'], {}), "('background.npz')\n", (5548, 5566), False, 'from pathlib import Path\n'), ((7841, 7870), 'cv2.imshow', 'cv2.imshow', (['"""image"""', 'img_gray'], {}), "('image', img_gray)\n", (7851, 7870), False, 'import cv2\n'), ((7879, 7893), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (7890, 7893), False, 'import cv2\n'), ((7902, 7925), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (7923, 7925), False, 'import cv2\n'), ((8026, 8050), 'cv2.imshow', 'cv2.imshow', (['"""image"""', 'inv'], {}), "('image', inv)\n", (8036, 8050), False, 'import cv2\n'), ((8059, 8073), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (8070, 8073), False, 'import cv2\n'), ((8082, 8105), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (8103, 8105), False, 'import cv2\n'), ((8249, 8270), 'cv2.boundingRect', 'cv2.boundingRect', (['cnt'], {}), '(cnt)\n', (8265, 8270), False, 'import cv2\n'), ((8286, 8306), 'cv2.contourArea', 'cv2.contourArea', (['cnt'], {}), '(cnt)\n', (8301, 8306), False, 'import cv2\n'), ((9146, 9244), 'cv2.resize', 'cv2.resize', (['frame_img', '(0, 0)'], {'fx': 'resize_scale', 'fy': 'resize_scale', 'interpolation': 'cv2.INTER_CUBIC'}), '(frame_img, (0, 0), fx=resize_scale, fy=resize_scale,\n interpolation=cv2.INTER_CUBIC)\n', (9156, 9244), False, 'import cv2\n'), ((9530, 9560), 'cv2.imshow', 'cv2.imshow', (['"""image"""', 'frame_img'], {}), "('image', frame_img)\n", (9540, 9560), False, 'import cv2\n'), ((9569, 9583), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (9580, 9583), False, 'import cv2\n'), ((9592, 9615), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (9613, 9615), False, 'import cv2\n'), ((9940, 9969), 'cv2.imshow', 'cv2.imshow', (['"""image"""', 'img_gray'], {}), "('image', img_gray)\n", (9950, 9969), False, 'import cv2\n'), ((9978, 9992), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (9989, 9992), False, 'import cv2\n'), ((10001, 10024), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (10022, 10024), False, 'import cv2\n'), ((11381, 11399), 'cv2.split', 'cv2.split', (['img_rgb'], {}), '(img_rgb)\n', (11390, 11399), False, 'import cv2\n'), ((11556, 11597), 'cv2.cvtColor', 'cv2.cvtColor', (['img_rgb', 'cv2.COLOR_BGR2GRAY'], {}), '(img_rgb, cv2.COLOR_BGR2GRAY)\n', (11568, 11597), False, 'import cv2\n'), ((11626, 11666), 'cv2.cvtColor', 'cv2.cvtColor', (['img_rgb', 'cv2.COLOR_BGR2HSV'], {}), '(img_rgb, cv2.COLOR_BGR2HSV)\n', (11638, 11666), False, 'import cv2\n'), ((11697, 11765), 'cv2.threshold', 'cv2.threshold', (['self.img_gray_orig', 'threshold', '(255)', 'cv2.THRESH_BINARY'], {}), '(self.img_gray_orig, threshold, 255, cv2.THRESH_BINARY)\n', (11710, 11765), False, 'import cv2\n'), ((12727, 12773), 'cv2.cvtColor', 'cv2.cvtColor', (['self.img_rgb', 'cv2.COLOR_BGR2GRAY'], {}), '(self.img_rgb, cv2.COLOR_BGR2GRAY)\n', (12739, 12773), False, 'import cv2\n'), ((12799, 12862), 'cv2.threshold', 'cv2.threshold', (['self.img_gray', 'threshold', '(255)', 'cv2.THRESH_BINARY'], {}), '(self.img_gray, threshold, 255, cv2.THRESH_BINARY)\n', (12812, 12862), False, 'import cv2\n'), ((19582, 19636), 'cv2.threshold', 'cv2.threshold', (['gray_image', '(200)', '(255)', 'cv2.THRESH_BINARY'], {}), '(gray_image, 200, 255, cv2.THRESH_BINARY)\n', (19595, 19636), False, 'import cv2\n'), ((21913, 21939), 'cv2.countNonZero', 'cv2.countNonZero', (['bw_image'], {}), '(bw_image)\n', (21929, 21939), False, 'import cv2\n'), ((22713, 22752), 'cv2.cvtColor', 'cv2.cvtColor', (['image', 'cv2.COLOR_BGR2GRAY'], {}), '(image, cv2.COLOR_BGR2GRAY)\n', (22725, 22752), False, 'import cv2\n'), ((22775, 22826), 'cv2.threshold', 'cv2.threshold', (['gray', '(65)', '(255)', 'cv2.THRESH_BINARY_INV'], {}), '(gray, 65, 255, cv2.THRESH_BINARY_INV)\n', (22788, 22826), False, 'import cv2\n'), ((22978, 23093), 'pytesseract.image_to_string', 'pytesseract.image_to_string', (['qp_image'], {'config': '"""-l eng --oem 1 --psm 7 -c tessedit_char_whitelist=+,0123456789"""'}), "(qp_image, config=\n '-l eng --oem 1 --psm 7 -c tessedit_char_whitelist=+,0123456789')\n", (23005, 23093), False, 'import pytesseract\n'), ((23309, 23359), 'pageinfo.detect_qp_region', 'pageinfo.detect_qp_region', (['self.img_rgb_orig', 'mode'], {}), '(self.img_rgb_orig, mode)\n', (23334, 23359), False, 'import pageinfo\n'), ((24592, 24642), 'pageinfo.detect_qp_region', 'pageinfo.detect_qp_region', (['self.img_rgb_orig', 'mode'], {}), '(self.img_rgb_orig, mode)\n', (24617, 24642), False, 'import pageinfo\n'), ((28149, 28171), 'cv2.bitwise_not', 'cv2.bitwise_not', (['im_th'], {}), '(im_th)\n', (28164, 28171), False, 'import cv2\n'), ((30484, 30532), 'cv2.cvtColor', 'cv2.cvtColor', (['drop_count_img', 'cv2.COLOR_BGR2GRAY'], {}), '(drop_count_img, cv2.COLOR_BGR2GRAY)\n', (30496, 30532), False, 'import cv2\n'), ((30554, 30612), 'cv2.threshold', 'cv2.threshold', (['img_gray', 'threshold', '(255)', 'cv2.THRESH_BINARY'], {}), '(img_gray, threshold, 255, cv2.THRESH_BINARY)\n', (30567, 30612), False, 'import cv2\n'), ((30664, 30688), 'cv2.bitwise_not', 'cv2.bitwise_not', (['img_num'], {}), '(img_num)\n', (30679, 30688), False, 'import cv2\n'), ((31194, 31219), 'cv2.resize', 'cv2.resize', (['img', 'win_size'], {}), '(img, win_size)\n', (31204, 31219), False, 'import cv2\n'), ((31236, 31306), 'cv2.HOGDescriptor', 'cv2.HOGDescriptor', (['win_size', 'block_size', 'block_stride', 'cell_size', 'bins'], {}), '(win_size, block_size, block_stride, cell_size, bins)\n', (31253, 31306), False, 'import cv2\n'), ((31405, 31419), 'numpy.array', 'np.array', (['char'], {}), '(char)\n', (31413, 31419), True, 'import numpy as np\n'), ((31933, 31990), 'cv2.threshold', 'cv2.threshold', (['newimg', 'threshold2', '(255)', 'cv2.THRESH_BINARY'], {}), '(newimg, threshold2, 255, cv2.THRESH_BINARY)\n', (31946, 31990), False, 'import cv2\n'), ((32810, 32835), 'numpy.ones', 'np.ones', (['(4, 4)', 'np.uint8'], {}), '((4, 4), np.uint8)\n', (32817, 32835), True, 'import numpy as np\n'), ((32850, 32898), 'cv2.cvtColor', 'cv2.cvtColor', (['drop_count_img', 'cv2.COLOR_BGR2GRAY'], {}), '(drop_count_img, cv2.COLOR_BGR2GRAY)\n', (32862, 32898), False, 'import cv2\n'), ((32919, 32972), 'cv2.threshold', 'cv2.threshold', (['img', 'threshold', '(255)', 'cv2.THRESH_BINARY'], {}), '(img, threshold, 255, cv2.THRESH_BINARY)\n', (32932, 32972), False, 'import cv2\n'), ((32990, 33030), 'cv2.dilate', 'cv2.dilate', (['img_th', 'kernel'], {'iterations': '(1)'}), '(img_th, kernel, iterations=1)\n', (33000, 33030), False, 'import cv2\n'), ((40146, 40186), 'cv2.cvtColor', 'cv2.cvtColor', (['img_rgb', 'cv2.COLOR_BGR2HSV'], {}), '(img_rgb, cv2.COLOR_BGR2HSV)\n', (40158, 40186), False, 'import cv2\n'), ((40207, 40264), 'cv2.threshold', 'cv2.threshold', (['self.img_gray', '(174)', '(255)', 'cv2.THRESH_BINARY'], {}), '(self.img_gray, 174, 255, cv2.THRESH_BINARY)\n', (40220, 40264), False, 'import cv2\n'), ((40287, 40310), 'cv2.bitwise_not', 'cv2.bitwise_not', (['img_th'], {}), '(img_th)\n', (40302, 40310), False, 'import cv2\n'), ((45370, 45400), 're.match', 're.match', (['pattern_normal', 'line'], {}), '(pattern_normal, line)\n', (45378, 45400), False, 'import re\n'), ((45812, 45841), 're.match', 're.match', (['pattern_small', 'line'], {}), '(pattern_small, line)\n', (45820, 45841), False, 'import re\n'), ((46248, 46276), 're.match', 're.match', (['pattern_tiny', 'line'], {}), '(pattern_tiny, line)\n', (46256, 46276), False, 'import re\n'), ((47384, 47414), 're.match', 're.match', (['pattern_normal', 'line'], {}), '(pattern_normal, line)\n', (47392, 47414), False, 'import re\n'), ((47754, 47783), 're.match', 're.match', (['pattern_small', 'line'], {}), '(pattern_small, line)\n', (47762, 47783), False, 'import re\n'), ((48119, 48147), 're.match', 're.match', (['pattern_tiny', 'line'], {}), '(pattern_tiny, line)\n', (48127, 48147), False, 'import re\n'), ((49061, 49085), 'numpy.array', 'np.array', (['[25, 175, 119]'], {}), '([25, 175, 119])\n', (49069, 49085), True, 'import numpy as np\n'), ((49109, 49133), 'numpy.array', 'np.array', (['[37, 255, 255]'], {}), '([37, 255, 255])\n', (49117, 49133), True, 'import numpy as np\n'), ((49164, 49218), 'cv2.inRange', 'cv2.inRange', (['img_hsv_lower', 'lower_yellow', 'upper_yellow'], {}), '(img_hsv_lower, lower_yellow, upper_yellow)\n', (49175, 49218), False, 'import cv2\n'), ((66867, 66895), 'cv2.resize', 'cv2.resize', (['tmpimg', 'win_size'], {}), '(tmpimg, win_size)\n', (66877, 66895), False, 'import cv2\n'), ((66912, 66982), 'cv2.HOGDescriptor', 'cv2.HOGDescriptor', (['win_size', 'block_size', 'block_stride', 'cell_size', 'bins'], {}), '(win_size, block_size, block_stride, cell_size, bins)\n', (66929, 66982), False, 'import cv2\n'), ((67071, 67085), 'numpy.array', 'np.array', (['char'], {}), '(char)\n', (67079, 67085), True, 'import numpy as np\n'), ((80282, 80310), 'cv2.resize', 'cv2.resize', (['tmpimg', 'win_size'], {}), '(tmpimg, win_size)\n', (80292, 80310), False, 'import cv2\n'), ((80327, 80397), 'cv2.HOGDescriptor', 'cv2.HOGDescriptor', (['win_size', 'block_size', 'block_stride', 'cell_size', 'bins'], {}), '(win_size, block_size, block_stride, cell_size, bins)\n', (80344, 80397), False, 'import cv2\n'), ((80496, 80510), 'numpy.array', 'np.array', (['test'], {}), '(test)\n', (80504, 80510), True, 'import numpy as np\n'), ((86559, 86621), 'cv2.compareHist', 'cv2.compareHist', (['channel1', 'channel2', 'cv2.HISTCMP_BHATTACHARYYA'], {}), '(channel1, channel2, cv2.HISTCMP_BHATTACHARYYA)\n', (86574, 86621), False, 'import cv2\n'), ((87788, 87816), 'numpy.fromfile', 'np.fromfile', (['filename', 'dtype'], {}), '(filename, dtype)\n', (87799, 87816), True, 'import numpy as np\n'), ((87831, 87853), 'cv2.imdecode', 'cv2.imdecode', (['n', 'flags'], {}), '(n, flags)\n', (87843, 87853), False, 'import cv2\n'), ((88495, 88506), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (88503, 88506), False, 'import sys\n'), ((88663, 88674), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (88671, 88674), False, 'import sys\n'), ((88828, 88839), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (88836, 88839), False, 'import sys\n'), ((88993, 89004), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (89001, 89004), False, 'import sys\n'), ((89623, 89637), 'pathlib.Path', 'Path', (['filename'], {}), '(filename)\n', (89627, 89637), False, 'from pathlib import Path\n'), ((96390, 96411), 'PIL.Image.open', 'Image.open', (['file_path'], {}), '(file_path)\n', (96400, 96411), False, 'from PIL import Image\n'), ((98953, 98972), 'pathlib.Path', 'Path', (['src_file_path'], {}), '(src_file_path)\n', (98957, 98972), False, 'from pathlib import Path\n'), ((99187, 99226), 'os.rename', 'os.rename', (['src_file_path', 'dst_file_path'], {}), '(src_file_path, dst_file_path)\n', (99196, 99226), False, 'import os\n'), ((99464, 99475), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (99472, 99475), False, 'import sys\n'), ((99632, 99643), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (99640, 99643), False, 'import sys\n'), ((99797, 99808), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (99805, 99808), False, 'import sys\n'), ((99962, 99973), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (99970, 99973), False, 'import sys\n'), ((101910, 101921), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (101918, 101921), False, 'import sys\n'), ((111279, 111319), 'itertools.chain.from_iterable', 'itertools.chain.from_iterable', (['item_list'], {}), '(item_list)\n', (111308, 111319), False, 'import itertools\n'), ((114353, 114369), 'collections.Counter', 'Counter', (['allitem'], {}), '(allitem)\n', (114360, 114369), False, 'from collections import Counter\n'), ((1162, 1176), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (1166, 1176), False, 'from pathlib import Path\n'), ((5389, 5401), 'json.load', 'json.load', (['f'], {}), '(f)\n', (5398, 5401), False, 'import json\n'), ((9350, 9447), 'cv2.resize', 'cv2.resize', (['frame_img', '(0, 0)'], {'fx': 'resize_scale', 'fy': 'resize_scale', 'interpolation': 'cv2.INTER_AREA'}), '(frame_img, (0, 0), fx=resize_scale, fy=resize_scale,\n interpolation=cv2.INTER_AREA)\n', (9360, 9447), False, 'import cv2\n'), ((11158, 11190), 'pageinfo.guess_pageinfo', 'pageinfo.guess_pageinfo', (['img_rgb'], {}), '(img_rgb)\n', (11181, 11190), False, 'import pageinfo\n'), ((12464, 12504), 'cv2.imwrite', 'cv2.imwrite', (['"""frame_img.png"""', 'img_resize'], {}), "('frame_img.png', img_resize)\n", (12475, 12504), False, 'import cv2\n'), ((12664, 12701), 'cv2.imwrite', 'cv2.imwrite', (['"""dcnt_new.png"""', 'dcnt_new'], {}), "('dcnt_new.png', dcnt_new)\n", (12675, 12701), False, 'import cv2\n'), ((16937, 16990), 'cv2.calcHist', 'cv2.calcHist', (['[img_hsv_x]', '[0]', 'None', '[256]', '[0, 256]'], {}), '([img_hsv_x], [0], None, [256], [0, 256])\n', (16949, 16990), False, 'import cv2\n'), ((17065, 17084), 'cv2.minMaxLoc', 'cv2.minMaxLoc', (['hist'], {}), '(hist)\n', (17078, 17084), False, 'import cv2\n'), ((17478, 17571), 'cv2.resize', 'cv2.resize', (['img', '(0, 0)'], {'fx': 'resize_scale', 'fy': 'resize_scale', 'interpolation': 'cv2.INTER_CUBIC'}), '(img, (0, 0), fx=resize_scale, fy=resize_scale, interpolation=cv2\n .INTER_CUBIC)\n', (17488, 17571), False, 'import cv2\n'), ((18787, 18816), 'cv2.imshow', 'cv2.imshow', (['"""image"""', 'dcnt_new'], {}), "('image', dcnt_new)\n", (18797, 18816), False, 'import cv2\n'), ((18829, 18843), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (18840, 18843), False, 'import cv2\n'), ((18856, 18879), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (18877, 18879), False, 'import cv2\n'), ((19237, 19298), 'cv2.rectangle', 'cv2.rectangle', (['img_copy', 'topleft', 'bottomright', '(0, 0, 255)', '(3)'], {}), '(img_copy, topleft, bottomright, (0, 0, 255), 3)\n', (19250, 19298), False, 'import cv2\n'), ((19311, 19362), 'cv2.imwrite', 'cv2.imwrite', (['"""./scroll_bar_selected2.jpg"""', 'img_copy'], {}), "('./scroll_bar_selected2.jpg', img_copy)\n", (19322, 19362), False, 'import cv2\n'), ((19696, 19741), 'cv2.imwrite', 'cv2.imwrite', (['"""scroll_bar_binary2.png"""', 'binary'], {}), "('scroll_bar_binary2.png', binary)\n", (19707, 19741), False, 'import cv2\n'), ((19761, 19823), 'cv2.findContours', 'cv2.findContours', (['binary', 'cv2.RETR_LIST', 'cv2.CHAIN_APPROX_NONE'], {}), '(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)\n', (19777, 19823), False, 'import cv2\n'), ((20037, 20058), 'cv2.boundingRect', 'cv2.boundingRect', (['cnt'], {}), '(cnt)\n', (20053, 20058), False, 'import cv2\n'), ((21433, 21525), 'pageinfo.guess_pagenum', 'pageinfo.guess_pagenum', (['self.asr_y', 'esr_y', 'self.actual_height', 'entire_height', 'cap_height'], {}), '(self.asr_y, esr_y, self.actual_height, entire_height,\n cap_height)\n', (21455, 21525), False, 'import pageinfo\n'), ((21542, 21609), 'pageinfo.guess_pages', 'pageinfo.guess_pages', (['self.actual_height', 'entire_height', 'cap_height'], {}), '(self.actual_height, entire_height, cap_height)\n', (21562, 21609), False, 'import pageinfo\n'), ((21630, 21697), 'pageinfo.guess_lines', 'pageinfo.guess_lines', (['self.actual_height', 'entire_height', 'cap_height'], {}), '(self.actual_height, entire_height, cap_height)\n', (21650, 21697), False, 'import pageinfo\n'), ((22481, 22507), 're.findall', 're.findall', (['"""[0-9]+"""', 'text'], {}), "('[0-9]+', text)\n", (22491, 22507), False, 'import re\n'), ((23554, 23625), 'cv2.bitwise_not', 'cv2.bitwise_not', (['self.img_th_orig[pt[0][1]:pt[1][1], pt[0][0]:pt[1][0]]'], {}), '(self.img_th_orig[pt[0][1]:pt[1][1], pt[0][0]:pt[1][0]])\n', (23569, 23625), False, 'import cv2\n'), ((25695, 25756), 'cv2.rectangle', 'cv2.rectangle', (['img_copy', 'bounds[0]', 'bounds[1]', '(0, 0, 255)', '(3)'], {}), '(img_copy, bounds[0], bounds[1], (0, 0, 255), 3)\n', (25708, 25756), False, 'import cv2\n'), ((25769, 25817), 'cv2.imwrite', 'cv2.imwrite', (['"""./qp_gain_detection.jpg"""', 'img_copy'], {}), "('./qp_gain_detection.jpg', img_copy)\n", (25780, 25817), False, 'import cv2\n'), ((25895, 25987), 'cv2.bitwise_not', 'cv2.bitwise_not', (['self.img_th_orig[topleft[1]:bottomright[1], topleft[0]:bottomright[0]]'], {}), '(self.img_th_orig[topleft[1]:bottomright[1], topleft[0]:\n bottomright[0]])\n', (25910, 25987), False, 'import cv2\n'), ((26921, 26973), 'cv2.calcHist', 'cv2.calcHist', (['[img_th_x]', '[0]', 'None', '[256]', '[0, 256]'], {}), '([img_th_x], [0], None, [256], [0, 256])\n', (26933, 26973), False, 'import cv2\n'), ((27043, 27062), 'cv2.minMaxLoc', 'cv2.minMaxLoc', (['hist'], {}), '(hist)\n', (27056, 27062), False, 'import cv2\n'), ((27280, 27332), 'cv2.calcHist', 'cv2.calcHist', (['[img_th_x]', '[0]', 'None', '[256]', '[0, 256]'], {}), '([img_th_x], [0], None, [256], [0, 256])\n', (27292, 27332), False, 'import cv2\n'), ((27402, 27421), 'cv2.minMaxLoc', 'cv2.minMaxLoc', (['hist'], {}), '(hist)\n', (27415, 27421), False, 'import cv2\n'), ((28191, 28258), 'cv2.findContours', 'cv2.findContours', (['im_th', 'cv2.RETR_EXTERNAL', 'cv2.CHAIN_APPROX_SIMPLE'], {}), '(im_th, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)\n', (28207, 28258), False, 'import cv2\n'), ((28403, 28424), 'cv2.boundingRect', 'cv2.boundingRect', (['cnt'], {}), '(cnt)\n', (28419, 28424), False, 'import cv2\n'), ((28444, 28464), 'cv2.contourArea', 'cv2.contourArea', (['cnt'], {}), '(cnt)\n', (28459, 28464), False, 'import cv2\n'), ((29982, 30010), 'cv2.resize', 'cv2.resize', (['tmpimg', 'win_size'], {}), '(tmpimg, win_size)\n', (29992, 30010), False, 'import cv2\n'), ((30031, 30101), 'cv2.HOGDescriptor', 'cv2.HOGDescriptor', (['win_size', 'block_size', 'block_stride', 'cell_size', 'bins'], {}), '(win_size, block_size, block_stride, cell_size, bins)\n', (30048, 30101), False, 'import cv2\n'), ((30212, 30226), 'numpy.array', 'np.array', (['test'], {}), '(test)\n', (30220, 30226), True, 'import numpy as np\n'), ((33406, 33474), 'cv2.findContours', 'cv2.findContours', (['img_th', 'cv2.RETR_EXTERNAL', 'cv2.CHAIN_APPROX_SIMPLE'], {}), '(img_th, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)\n', (33422, 33474), False, 'import cv2\n'), ((33619, 33640), 'cv2.boundingRect', 'cv2.boundingRect', (['cnt'], {}), '(cnt)\n', (33635, 33640), False, 'import cv2\n'), ((36177, 36245), 'cv2.findContours', 'cv2.findContours', (['img_1strow', 'cv2.RETR_TREE', 'cv2.CHAIN_APPROX_SIMPLE'], {}), '(img_1strow, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)\n', (36193, 36245), False, 'import cv2\n'), ((36360, 36380), 'cv2.contourArea', 'cv2.contourArea', (['cnt'], {}), '(cnt)\n', (36375, 36380), False, 'import cv2\n'), ((49280, 49356), 'cv2.findContours', 'cv2.findContours', (['img_hsv_lower_mask', 'cv2.RETR_TREE', 'cv2.CHAIN_APPROX_SIMPLE'], {}), '(img_hsv_lower_mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)\n', (49296, 49356), False, 'import cv2\n'), ((49501, 49522), 'cv2.boundingRect', 'cv2.boundingRect', (['cnt'], {}), '(cnt)\n', (49517, 49522), False, 'import cv2\n'), ((49542, 49562), 'cv2.contourArea', 'cv2.contourArea', (['cnt'], {}), '(cnt)\n', (49557, 49562), False, 'import cv2\n'), ((60736, 60766), 're.match', 're.match', (['pattern_normal', 'line'], {}), '(pattern_normal, line)\n', (60744, 60766), False, 'import re\n'), ((61238, 61267), 're.match', 're.match', (['pattern_small', 'line'], {}), '(pattern_small, line)\n', (61246, 61267), False, 'import re\n'), ((61733, 61761), 're.match', 're.match', (['pattern_tiny', 'line'], {}), '(pattern_tiny, line)\n', (61741, 61761), False, 'import re\n'), ((64779, 64807), 'cv2.resize', 'cv2.resize', (['tmpimg', 'win_size'], {}), '(tmpimg, win_size)\n', (64789, 64807), False, 'import cv2\n'), ((64828, 64898), 'cv2.HOGDescriptor', 'cv2.HOGDescriptor', (['win_size', 'block_size', 'block_stride', 'cell_size', 'bins'], {}), '(win_size, block_size, block_stride, cell_size, bins)\n', (64845, 64898), False, 'import cv2\n'), ((64999, 65013), 'numpy.array', 'np.array', (['char'], {}), '(char)\n', (65007, 65013), True, 'import numpy as np\n'), ((88058, 88074), 'PIL.ExifTags.TAGS.get', 'TAGS.get', (['id', 'id'], {}), '(id, id)\n', (88066, 88074), False, 'from PIL.ExifTags import TAGS\n'), ((95200, 95215), 'pathlib.Path', 'Path', (['file_path'], {}), '(file_path)\n', (95204, 95215), False, 'from pathlib import Path\n'), ((96531, 96557), 'datetime.timedelta', 'datetime.timedelta', ([], {'days': '(1)'}), '(days=1)\n', (96549, 96557), False, 'import datetime\n'), ((98870, 98893), 'os.path.exists', 'os.path.exists', (['out_dir'], {}), '(out_dir)\n', (98884, 98893), False, 'import os\n'), ((98907, 98927), 'os.makedirs', 'os.makedirs', (['out_dir'], {}), '(out_dir)\n', (98918, 98927), False, 'import os\n'), ((112905, 112931), 'operator.itemgetter', 'itemgetter', (['"""dropPriority"""'], {}), "('dropPriority')\n", (112915, 112931), False, 'from operator import itemgetter\n'), ((114755, 114781), 'os.path.exists', 'os.path.exists', (['out_folder'], {}), '(out_folder)\n', (114769, 114781), False, 'import os\n'), ((114795, 114818), 'os.makedirs', 'os.makedirs', (['out_folder'], {}), '(out_folder)\n', (114806, 114818), False, 'import os\n'), ((117678, 117699), 'pathlib.Path', 'Path', (['args.out_folder'], {}), '(args.out_folder)\n', (117682, 117699), False, 'from pathlib import Path\n'), ((8555, 8573), 'cv2.contourArea', 'cv2.contourArea', (['x'], {}), '(x)\n', (8570, 8573), False, 'import cv2\n'), ((12614, 12651), 'cv2.imwrite', 'cv2.imwrite', (['"""dcnt_old.png"""', 'dcnt_old'], {}), "('dcnt_old.png', dcnt_old)\n", (12625, 12651), False, 'import cv2\n'), ((17674, 17766), 'cv2.resize', 'cv2.resize', (['img', '(0, 0)'], {'fx': 'resize_scale', 'fy': 'resize_scale', 'interpolation': 'cv2.INTER_AREA'}), '(img, (0, 0), fx=resize_scale, fy=resize_scale, interpolation=cv2\n .INTER_AREA)\n', (17684, 17766), False, 'import cv2\n'), ((18186, 18215), 'cv2.imshow', 'cv2.imshow', (['"""image"""', 'dcnt_old'], {}), "('image', dcnt_old)\n", (18196, 18215), False, 'import cv2\n'), ((18232, 18246), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (18243, 18246), False, 'import cv2\n'), ((18263, 18286), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (18284, 18286), False, 'import cv2\n'), ((36578, 36614), 'cv2.approxPolyDP', 'cv2.approxPolyDP', (['cnt', 'epsilon', '(True)'], {}), '(cnt, epsilon, True)\n', (36594, 36614), False, 'import cv2\n'), ((68127, 68186), 'cv2.matchTemplate', 'cv2.matchTemplate', (['img_gray', 'template', 'cv2.TM_CCOEFF_NORMED'], {}), '(img_gray, template, cv2.TM_CCOEFF_NORMED)\n', (68144, 68186), False, 'import cv2\n'), ((68282, 68308), 'numpy.where', 'np.where', (['(res >= threshold)'], {}), '(res >= threshold)\n', (68290, 68308), True, 'import numpy as np\n'), ((72562, 72599), 're.sub', 're.sub', (['"""\\\\(|\\\\)|\\\\+"""', '""""""', 'self.bonus'], {}), "('\\\\(|\\\\)|\\\\+', '', self.bonus)\n", (72568, 72599), False, 'import re\n'), ((88139, 88191), 'datetime.datetime.strptime', 'datetime.datetime.strptime', (['val', '"""%Y:%m:%d %H:%M:%S"""'], {}), "(val, '%Y:%m:%d %H:%M:%S')\n", (88165, 88191), False, 'import datetime\n'), ((103105, 103122), 'pathlib.Path', 'Path', (['args.folder'], {}), '(args.folder)\n', (103109, 103122), False, 'from pathlib import Path\n'), ((104304, 104333), 'math.floor', 'math.floor', (["(quest['id'] / 100)"], {}), "(quest['id'] / 100)\n", (104314, 104333), False, 'import math\n'), ((112846, 112862), 'operator.itemgetter', 'itemgetter', (['"""id"""'], {}), "('id')\n", (112856, 112862), False, 'from operator import itemgetter\n'), ((114319, 114331), 'collections.Counter', 'Counter', (['tmp'], {}), '(tmp)\n', (114326, 114331), False, 'from collections import Counter\n'), ((114882, 114913), 'pathlib.Path', 'Path', (["parsed_file['image_path']"], {}), "(parsed_file['image_path'])\n", (114886, 114913), False, 'from pathlib import Path\n'), ((115032, 115087), 'json.dump', 'json.dump', (['parsed_file', 'f'], {'indent': '(4)', 'ensure_ascii': '(False)'}), '(parsed_file, f, indent=4, ensure_ascii=False)\n', (115041, 115087), False, 'import json\n'), ((36528, 36552), 'cv2.arcLength', 'cv2.arcLength', (['cnt', '(True)'], {}), '(cnt, True)\n', (36541, 36552), False, 'import cv2\n'), ((36694, 36715), 'cv2.boundingRect', 'cv2.boundingRect', (['cnt'], {}), '(cnt)\n', (36710, 36715), False, 'import cv2\n'), ((63126, 63156), 're.match', 're.match', (['pattern_normal', 'line'], {}), '(pattern_normal, line)\n', (63134, 63156), False, 'import re\n'), ((63667, 63696), 're.match', 're.match', (['pattern_small', 'line'], {}), '(pattern_small, line)\n', (63675, 63696), False, 'import re\n'), ((64200, 64228), 're.match', 're.match', (['pattern_tiny', 'line'], {}), '(pattern_tiny, line)\n', (64208, 64228), False, 'import re\n'), ((104428, 104457), 'math.floor', 'math.floor', (["(quest['id'] / 100)"], {}), "(quest['id'] / 100)\n", (104438, 104457), False, 'import math\n'), ((112789, 112810), 'operator.itemgetter', 'itemgetter', (['"""dropnum"""'], {}), "('dropnum')\n", (112799, 112810), False, 'from operator import itemgetter\n'), ((114655, 114700), 'json.dumps', 'json.dumps', (['parsed_output'], {'ensure_ascii': '(False)'}), '(parsed_output, ensure_ascii=False)\n', (114665, 114700), False, 'import json\n'), ((90087, 90101), 'pathlib.Path', 'Path', (['filename'], {}), '(filename)\n', (90091, 90101), False, 'from pathlib import Path\n'), ((90719, 90739), 'PIL.Image.open', 'Image.open', (['filename'], {}), '(filename)\n', (90729, 90739), False, 'from PIL import Image\n'), ((104551, 104583), 'math.floor', 'math.floor', (["(quest['id'] / 100000)"], {}), "(quest['id'] / 100000)\n", (104561, 104583), False, 'import math\n'), ((108643, 108672), 'math.floor', 'math.floor', (["(item['id'] / 1000)"], {}), "(item['id'] / 1000)\n", (108653, 108672), False, 'import math\n'), ((109639, 109668), 'math.floor', 'math.floor', (["(item['id'] / 1000)"], {}), "(item['id'] / 1000)\n", (109649, 109668), False, 'import math\n'), ((118089, 118106), 'pathlib.Path', 'Path', (['args.folder'], {}), '(args.folder)\n', (118093, 118106), False, 'from pathlib import Path\n'), ((90861, 90887), 'datetime.timedelta', 'datetime.timedelta', ([], {'days': '(1)'}), '(days=1)\n', (90879, 90887), False, 'import datetime\n'), ((118584, 118601), 'pathlib.Path', 'Path', (['args.folder'], {}), '(args.folder)\n', (118588, 118601), False, 'from pathlib import Path\n'), ((103713, 103720), 'pathlib.Path', 'Path', (['f'], {}), '(f)\n', (103717, 103720), False, 'from pathlib import Path\n')]
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Execution Callbacks for Eager Mode.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import numpy as np from tensorflow.python import pywrap_tensorflow from tensorflow.python.eager import context from tensorflow.python.eager import core from tensorflow.python.platform import tf_logging as logging _DEFAULT_CALLBACK_ACTION = "raise" _VALID_CALLBACK_ACTIONS = (None, "ignore", "print", "raise", "warn") # TODO(cais): Consider moving this exception class to errors_impl.py. class InfOrNanError(Exception): """Exception for inf and/or nan being present in tensor.""" def __init__(self, op_type, op_name, output_index, num_outputs, value): """Constructor of InfOrNanError. Args: op_type: Type name of the op that generated the tensor that generated the `inf`(s) or `nan`(s) (e.g., `Div`). op_name: Name of the op that generated the tensor with `inf`(s) or `nan`(s). This name is set by client and can be `None` if it is unset. output_index: The 0-based output index of the tensor that contains `inf`(s) or `nan`(s). num_outputs: Total number of outputs of the operation. value: The tensor value that contains `inf`(s) or `nan`(s). """ self._op_type = op_type self._op_name = op_name self._output_index = output_index self._num_outputs = num_outputs self._value = value self._total_count = np.size(value) self._inf_count = np.count_nonzero(np.isinf(value)) self._nan_count = np.count_nonzero(np.isnan(value)) super(InfOrNanError, self).__init__(self._get_error_message()) def _get_error_message(self): """Get the error message describing this InfOrNanError object.""" name_str = (("'%s'" % self._op_name) if self._op_name is not None else str(self._op_name)) msg = "Output %d of %d of TFE operation %s (name: %s) contains " % ( self._output_index + 1, self._num_outputs, self._op_type, name_str) if self._inf_count and self._nan_count: msg += "%d inf(s) and %d nan(s) " % (self._inf_count, self._nan_count) elif self._inf_count: msg += "%d inf(s) " % self._inf_count else: msg += "%d nan(s) " % self._nan_count msg += "out of a total of %d element(s). Tensor value: %s" % ( self._total_count, self._value) return msg @property def op_type(self): return self._op_type @property def op_name(self): return self._op_name @property def output_index(self): return self._output_index @property def num_outputs(self): return self._num_outputs @property def value(self): return self._value def inf_nan_callback(op_type, op_name, attrs, inputs, outputs, check_inf=True, check_nan=True, action=_DEFAULT_CALLBACK_ACTION): """An execution callback that checks for `inf`s and `nan`s in output tensors. This callback can be used with `tfe.add_execute_callback` to check for invalid numeric values. E.g., ```python tfe.add_execute_callback(tfe.inf_nan_callback) ``` Args: op_type: Name of the TFE operation type (e.g., `MatMul`). op_name: Name of the TFE operation. This name is set by client and can be `None` if it unset. attrs: Attributes of the TFE operation, as a tuple of alternating attribute names and attribute values. inputs: The `list` of input tensors to the operation, currently unused by this callback. outputs: The `list` of output tensors from the operation, checked by this callback for `inf` and `nan` values. check_inf: (`bool`) Whether this callback should check for `inf` values in the output tensor values. check_nan: (`bool`) Whether this callback should check for `nan` values in the output tensor values. action: (`str`) Action to be taken by the callback when `inf` or `nan` values are detected. Possible values {"raise", "warn", "print"} `"raise"`: Raise a `InfOrNanError`. `"warn"`: Log a warning using `tf.logging.warn`. `"print"`: Print a message to `sys.stdout`. Raises: InfOrNanError: iff `inf` or `nan` values are seen in any of `outputs` and `action` is `"raise"`. ValueError: iff the value of `action` is invalid. """ del attrs, inputs # Not used. ctx = context.get_default_context() for index, output in enumerate(outputs): if not output.dtype.is_numpy_compatible: continue numpy_dtype = output.dtype.as_numpy_dtype if (np.issubdtype(numpy_dtype, np.float) or np.issubdtype(numpy_dtype, np.complex) or np.issubdtype(numpy_dtype, np.integer)): try: check_numerics_op_attrs = ( "message", "Eager-mode inf/nan check", "T", outputs[0].dtype.as_datatype_enum) # TODO(cais): Consider moving this into execute.py. # pylint: disable=protected-access pywrap_tensorflow.TFE_Py_Execute( ctx._handle, output.device, "CheckNumerics", [output], check_numerics_op_attrs, 1) # pylint: enable=protected-access except core._NotOkStatusException: # pylint: disable=protected-access value = output.numpy() inf_detected = np.any(np.isinf(value)) and check_inf nan_detected = np.any(np.isnan(value)) and check_nan if not inf_detected and not nan_detected: continue error = InfOrNanError(op_type, op_name, index, len(outputs), value) if action == "print": print("Warning: %s" % str(error)) elif action == "warn": logging.warn(str(error)) elif action == "raise": raise error else: raise ValueError( "Invalid action for inf_nan_callback: %s. Valid actions are: " "{print | warn | raise}" % action) def inf_callback(op_type, op_name, attrs, inputs, outputs, action=_DEFAULT_CALLBACK_ACTION): """A specialization of `inf_nan_callback` that checks for `inf`s only.""" inf_nan_callback( op_type, op_name, attrs, inputs, outputs, check_inf=True, check_nan=False, action=action) def nan_callback(op_type, op_name, attrs, inputs, outputs, action=_DEFAULT_CALLBACK_ACTION): """A specialization of `inf_nan_callback` that checks for `nan`s only.""" inf_nan_callback( op_type, op_name, attrs, inputs, outputs, check_inf=False, check_nan=True, action=action) def add_execution_callback(callback): """Add an execution callback to the default eager context. An execution callback is invoked immediately after an eager operation or function has finished execution, providing access to the op's type, name input and output tensors. Multiple execution callbacks can be added, in which case the callbacks will be invoked in the order in which they are added. To clear all execution callbacks that have been added, use `clear_execution_callbacks()`. Example: ```python def print_even_callback(op_type, op_name, attrs, inputs, outputs): # A callback that prints only the even output values. if outputs[0].numpy() % 2 == 0: print("Even output from %s: %s" % (op_name or op_type, outputs)) tfe.add_execution_callback(print_even_callback) x = tf.pow(2.0, 3.0) - 3.0 y = tf.multiply(x, tf.add(1.0, 5.0)) # When the line above is run, you will see all intermediate outputs that are # even numbers printed to the console. tfe.clear_execution_callbacks() ``` Args: callback: a callable of the signature `f(op_type, op_name, attrs, inputs, outputs)`. `op_type` is the type of the operation that was just executed (e.g., `MatMul`). `op_name` is the name of the operation that has was just executed. This name is set by the client who created the operation and can be `None` if it is unset. `attrs` contains the attributes of the operation as a `tuple` of alternating attribute name and attribute value. `inputs` is the `list` of input `Tensor`(s) to the op. `outputs` is the `list` of output `Tensor`(s) from the op. Return value(s) from the callback are ignored. """ context.get_default_context().add_post_execution_callback(callback) def clear_execution_callbacks(): """Clear all execution callbacks from the default eager context.""" context.get_default_context().clear_post_execution_callbacks() def seterr(inf_or_nan=None): """Set how abnormal conditions are handled by the default eager context. Example: ```python tfe.seterr(inf_or_nan="raise") a = tf.constant(10.0) b = tf.constant(0.0) try: c = a / b # <-- Raises InfOrNanError. except Exception as e: print("Caught Exception: %s" % e) tfe.seterr(inf_or_nan="ignore") c = a / b # <-- Does NOT raise exception anymore. ``` Args: inf_or_nan: Set action for infinity (`inf`) and NaN (`nan`) values. Possible values: `{"ignore", "print", "raise", "warn"}`. `"ignore"`: take no action when `inf` values appear. `"print"`: print a warning to `stdout`. `"raise"`: raise an `InfOrNanError`. `"warn"`: print a warning using `tf.logging.warn`. A value of `None` leads to no change in the action of the condition. Returns: A dictionary of old actions. Raises: ValueError: If the value of any keyword arguments is invalid. """ if inf_or_nan not in _VALID_CALLBACK_ACTIONS: raise ValueError( "Invalid action value for inf_or_nan: %s. " "Valid actions are %s." % (inf_or_nan, _VALID_CALLBACK_ACTIONS)) old_settings = {"inf_or_nan": "ignore"} default_context = context.get_default_context() carryover_callbacks = [] for callback in default_context.post_execution_callbacks: # Check whether the callback is inf_nan_callback or a partial object of # inf_nan_callback. if (callback == inf_nan_callback or isinstance(callback, functools.partial) and callback.func == inf_nan_callback): if callback == inf_nan_callback: old_settings["inf_or_nan"] = _DEFAULT_CALLBACK_ACTION else: old_settings["inf_or_nan"] = callback.keywords.get( "action", _DEFAULT_CALLBACK_ACTION) elif inf_or_nan is not None: carryover_callbacks.append(callback) if inf_or_nan is not None: default_context.clear_post_execution_callbacks() for callback in carryover_callbacks: default_context.add_post_execution_callback(callback) if inf_or_nan != "ignore": default_context.add_post_execution_callback( functools.partial(inf_nan_callback, action=inf_or_nan)) return old_settings
[ "functools.partial", "numpy.size", "tensorflow.python.eager.context.get_default_context", "tensorflow.python.pywrap_tensorflow.TFE_Py_Execute", "numpy.isinf", "numpy.isnan", "numpy.issubdtype" ]
[((5244, 5273), 'tensorflow.python.eager.context.get_default_context', 'context.get_default_context', ([], {}), '()\n', (5271, 5273), False, 'from tensorflow.python.eager import context\n'), ((10708, 10737), 'tensorflow.python.eager.context.get_default_context', 'context.get_default_context', ([], {}), '()\n', (10735, 10737), False, 'from tensorflow.python.eager import context\n'), ((2236, 2250), 'numpy.size', 'np.size', (['value'], {}), '(value)\n', (2243, 2250), True, 'import numpy as np\n'), ((2290, 2305), 'numpy.isinf', 'np.isinf', (['value'], {}), '(value)\n', (2298, 2305), True, 'import numpy as np\n'), ((2346, 2361), 'numpy.isnan', 'np.isnan', (['value'], {}), '(value)\n', (2354, 2361), True, 'import numpy as np\n'), ((5433, 5469), 'numpy.issubdtype', 'np.issubdtype', (['numpy_dtype', 'np.float'], {}), '(numpy_dtype, np.float)\n', (5446, 5469), True, 'import numpy as np\n'), ((5481, 5519), 'numpy.issubdtype', 'np.issubdtype', (['numpy_dtype', 'np.complex'], {}), '(numpy_dtype, np.complex)\n', (5494, 5519), True, 'import numpy as np\n'), ((5531, 5569), 'numpy.issubdtype', 'np.issubdtype', (['numpy_dtype', 'np.integer'], {}), '(numpy_dtype, np.integer)\n', (5544, 5569), True, 'import numpy as np\n'), ((9243, 9272), 'tensorflow.python.eager.context.get_default_context', 'context.get_default_context', ([], {}), '()\n', (9270, 9272), False, 'from tensorflow.python.eager import context\n'), ((9418, 9447), 'tensorflow.python.eager.context.get_default_context', 'context.get_default_context', ([], {}), '()\n', (9445, 9447), False, 'from tensorflow.python.eager import context\n'), ((5833, 5952), 'tensorflow.python.pywrap_tensorflow.TFE_Py_Execute', 'pywrap_tensorflow.TFE_Py_Execute', (['ctx._handle', 'output.device', '"""CheckNumerics"""', '[output]', 'check_numerics_op_attrs', '(1)'], {}), "(ctx._handle, output.device,\n 'CheckNumerics', [output], check_numerics_op_attrs, 1)\n", (5865, 5952), False, 'from tensorflow.python import pywrap_tensorflow\n'), ((11635, 11689), 'functools.partial', 'functools.partial', (['inf_nan_callback'], {'action': 'inf_or_nan'}), '(inf_nan_callback, action=inf_or_nan)\n', (11652, 11689), False, 'import functools\n'), ((6154, 6169), 'numpy.isinf', 'np.isinf', (['value'], {}), '(value)\n', (6162, 6169), True, 'import numpy as np\n'), ((6215, 6230), 'numpy.isnan', 'np.isnan', (['value'], {}), '(value)\n', (6223, 6230), True, 'import numpy as np\n')]
import numpy as np from .distribution import NoDistribution __all__ = ["Simulator"] class Simulator(NoDistribution): def __init__(self, function, *args, **kwargs): """ This class stores a function defined by the user in python language. function : function Simulation function defined by the user. *args and **kwargs : Arguments and keywords arguments that the function takes. """ self.function = function observed = self.data super().__init__(shape=np.prod(observed.shape), dtype=observed.dtype, *args, **kwargs) def random(self, point=None, size=None): """ Draw random values from Simulator Parameters ---------- point : dict, optional Dict of variable values on which random values are to be conditioned (uses default point if not specified). size : int, optional Desired size of random sample (returns one sample if not specified). Returns ------- array """ raise NotImplementedError("Not implemented yet") def _repr_latex_(self, name=None, dist=None): if dist is None: dist = self name = r"\text{%s}" % name function = dist.function params = dist.parameters sum_stat = dist.sum_stat return r"${} \sim \text{{Simulator}}(\mathit{{function}}={},~\mathit{{parameters}}={},~\mathit{{summary statistics}}={})$".format( name, function, params, sum_stat )
[ "numpy.prod" ]
[((556, 579), 'numpy.prod', 'np.prod', (['observed.shape'], {}), '(observed.shape)\n', (563, 579), True, 'import numpy as np\n')]
import copy import os import random import re import time from os.path import join from threading import Thread import cv2 import gym import numpy as np from filelock import FileLock, Timeout from gym.utils import seeding from vizdoom.vizdoom import ScreenResolution, DoomGame, Mode, AutomapMode from algorithms.utils.spaces.discretized import Discretized from utils.utils import log, project_tmp_dir def doom_lock_file(max_parallel): """ Doom instances tend to have problems starting when a lot of them are initialized in parallel. This is not a problem during normal execution once the envs are initialized. The "sweet spot" for the number of envs that can be initialized in parallel is about 5-10. Here we use file locking mechanism to ensure that only a limited amount of envs are being initialized at the same time. This tends to be more of a problem for multiplayer envs. This also has an advantage of working across completely independent process groups, e.g. different experiments. """ lock_filename = f'doom_{random.randrange(0, max_parallel):03d}.lockfile' tmp_dir = project_tmp_dir() lock_path = join(tmp_dir, lock_filename) return lock_path def key_to_action_default(key): """ MOVE_FORWARD MOVE_BACKWARD MOVE_RIGHT MOVE_LEFT SELECT_WEAPON1 SELECT_WEAPON2 SELECT_WEAPON3 SELECT_WEAPON4 SELECT_WEAPON5 SELECT_WEAPON6 SELECT_WEAPON7 ATTACK SPEED TURN_LEFT_RIGHT_DELTA """ from pynput.keyboard import Key # health gathering action_table = { Key.left: 0, Key.right: 1, Key.up: 2, Key.down: 3, } # action_table = { # Key.up: 0, # Key.down: 1, # Key.alt: 6, # Key.ctrl: 11, # Key.shift: 12, # Key.space: 13, # Key.right: 'turn_right', # Key.left: 'turn_left', # } return action_table.get(key, None) class VizdoomEnv(gym.Env): def __init__(self, action_space, config_file, coord_limits=None, max_histogram_length=200, show_automap=False, skip_frames=1, async_mode=False, record_to=None): self.initialized = False # essential game data self.game = None self.state = None self.curr_seed = 0 self.rng = None self.skip_frames = skip_frames self.async_mode = async_mode # optional - for topdown view rendering and visitation heatmaps self.show_automap = show_automap self.coord_limits = coord_limits # can be adjusted after the environment is created (but before any reset() call) via observation space wrapper self.screen_w, self.screen_h, self.channels = 640, 480, 3 self.screen_resolution = ScreenResolution.RES_640X480 self.calc_observation_space() self.black_screen = None # provided as a part of environment definition, since these depend on the scenario and # can be quite complex multi-discrete spaces self.action_space = action_space self.composite_action_space = hasattr(self.action_space, 'spaces') self.delta_actions_scaling_factor = 7.5 scenarios_dir = join(os.path.dirname(__file__), 'scenarios') self.config_path = join(scenarios_dir, config_file) self.variable_indices = self._parse_variable_indices(self.config_path) # only created if we call render() method self.viewer = None # record full episodes using VizDoom recording functionality self.record_to = record_to self.is_multiplayer = False # overridden in derived classes # (optional) histogram to track positional coverage # do not pass coord_limits if you don't need this, to avoid extra calculation self.max_histogram_length = max_histogram_length self.current_histogram, self.previous_histogram = None, None if self.coord_limits: x = (self.coord_limits[2] - self.coord_limits[0]) y = (self.coord_limits[3] - self.coord_limits[1]) if x > y: len_x = self.max_histogram_length len_y = int((y / x) * self.max_histogram_length) else: len_x = int((x / y) * self.max_histogram_length) len_y = self.max_histogram_length self.current_histogram = np.zeros((len_x, len_y), dtype=np.int32) self.previous_histogram = np.zeros_like(self.current_histogram) # helpers for human play with pynput keyboard input self._terminate = False self._current_actions = [] self._actions_flattened = None self._prev_info = None self._last_episode_info = None self._num_episodes = 0 self.mode = 'algo' self.seed() def seed(self, seed=None): self.curr_seed = seeding.hash_seed(seed, max_bytes=4) self.rng, _ = seeding.np_random(seed=self.curr_seed) return [self.curr_seed, self.rng] def calc_observation_space(self): self.observation_space = gym.spaces.Box(0, 255, (self.screen_h, self.screen_w, self.channels), dtype=np.uint8) def _set_game_mode(self, mode): if mode == 'replay': self.game.set_mode(Mode.PLAYER) else: if self.async_mode: log.info('Starting in async mode! Use this only for testing, otherwise PLAYER mode is much faster') self.game.set_mode(Mode.ASYNC_PLAYER) else: self.game.set_mode(Mode.PLAYER) def _create_doom_game(self, mode): self.game = DoomGame() self.game.load_config(self.config_path) self.game.set_screen_resolution(self.screen_resolution) self.game.set_seed(self.rng.randint(0, 2**32 - 1)) if mode == 'algo': self.game.set_window_visible(False) elif mode == 'human' or mode == 'replay': self.game.add_game_args('+freelook 1') self.game.set_window_visible(True) else: raise Exception('Unsupported mode') self._set_game_mode(mode) def _game_init(self, with_locking=True, max_parallel=10): lock_file = lock = None if with_locking: lock_file = doom_lock_file(max_parallel) lock = FileLock(lock_file) init_attempt = 0 while True: init_attempt += 1 try: if with_locking: with lock.acquire(timeout=20): self.game.init() else: self.game.init() break except Timeout: if with_locking: log.debug( 'Another process currently holds the lock %s, attempt: %d', lock_file, init_attempt, ) except Exception as exc: log.warning('VizDoom game.init() threw an exception %r. Terminate process...', exc) from envs.env_utils import EnvCriticalError raise EnvCriticalError() def initialize(self): self._create_doom_game(self.mode) # (optional) top-down view provided by the game engine if self.show_automap: self.game.set_automap_buffer_enabled(True) self.game.set_automap_mode(AutomapMode.OBJECTS) self.game.set_automap_rotate(False) self.game.set_automap_render_textures(False) # self.game.add_game_args("+am_restorecolors") # self.game.add_game_args("+am_followplayer 1") background_color = 'ffffff' self.game.add_game_args('+viz_am_center 1') self.game.add_game_args('+am_backcolor ' + background_color) self.game.add_game_args('+am_tswallcolor dddddd') # self.game.add_game_args("+am_showthingsprites 0") self.game.add_game_args('+am_yourcolor ' + background_color) self.game.add_game_args('+am_cheat 0') self.game.add_game_args('+am_thingcolor 0000ff') # player color self.game.add_game_args('+am_thingcolor_item 00ff00') # self.game.add_game_args("+am_thingcolor_citem 00ff00") self._game_init() self.initialized = True def _ensure_initialized(self): if not self.initialized: self.initialize() @staticmethod def _parse_variable_indices(config): with open(config, 'r') as config_file: lines = config_file.readlines() lines = [l.strip() for l in lines] variable_indices = {} for line in lines: if line.startswith('#'): continue # comment variables_syntax = r'available_game_variables[\s]*=[\s]*\{(.*)\}' match = re.match(variables_syntax, line) if match is not None: variables_str = match.groups()[0] variables_str = variables_str.strip() variables = variables_str.split(' ') for i, variable in enumerate(variables): variable_indices[variable] = i break return variable_indices def _black_screen(self): if self.black_screen is None: self.black_screen = np.zeros(self.observation_space.shape, dtype=np.uint8) return self.black_screen def _game_variables_dict(self, state): game_variables = state.game_variables variables = {} for variable, idx in self.variable_indices.items(): variables[variable] = game_variables[idx] return variables def demo_path(self, episode_idx): demo_name = f'e{episode_idx:03d}.lmp' demo_path = join(self.record_to, demo_name) demo_path = os.path.normpath(demo_path) return demo_path def reset(self): self._ensure_initialized() if self.record_to is not None and not self.is_multiplayer: # does not work in multiplayer (uses different mechanism) if not os.path.exists(self.record_to): os.makedirs(self.record_to) demo_path = self.demo_path(self._num_episodes) log.warning('Recording episode demo to %s', demo_path) self.game.new_episode(demo_path) else: if self._num_episodes > 0: # no demo recording (default) self.game.new_episode() self.state = self.game.get_state() img = None try: img = self.state.screen_buffer except AttributeError: # sometimes Doom does not return screen buffer at all??? Rare bug pass if img is None: log.error('Game returned None screen buffer! This is not supposed to happen!') img = self._black_screen() # Swap current and previous histogram if self.current_histogram is not None and self.previous_histogram is not None: swap = self.current_histogram self.current_histogram = self.previous_histogram self.previous_histogram = swap self.current_histogram.fill(0) self._actions_flattened = None self._last_episode_info = copy.deepcopy(self._prev_info) self._prev_info = None self._num_episodes += 1 return np.transpose(img, (1, 2, 0)) def _convert_actions(self, actions): """Convert actions from gym action space to the action space expected by Doom game.""" if self.composite_action_space: # composite action space with multiple subspaces spaces = self.action_space.spaces else: # simple action space, e.g. Discrete. We still treat it like composite of length 1 spaces = (self.action_space, ) actions = (actions, ) actions_flattened = [] for i, action in enumerate(actions): if isinstance(spaces[i], Discretized): # discretized continuous action # check discretized first because it's a subclass of gym.spaces.Discrete # the order of if clauses here matters! DON'T CHANGE THE ORDER OF IFS! continuous_action = spaces[i].to_continuous(action) actions_flattened.append(continuous_action) elif isinstance(spaces[i], gym.spaces.Discrete): # standard discrete action num_non_idle_actions = spaces[i].n - 1 action_one_hot = np.zeros(num_non_idle_actions, dtype=np.uint8) if action > 0: action_one_hot[action - 1] = 1 # 0th action in each subspace is a no-op actions_flattened.extend(action_one_hot) elif isinstance(spaces[i], gym.spaces.Box): # continuous action actions_flattened.extend(list(action * self.delta_actions_scaling_factor)) else: raise NotImplementedError(f'Action subspace type {type(spaces[i])} is not supported!') return actions_flattened def _vizdoom_variables_bug_workaround(self, info, done): """Some variables don't get reset to zero on game.new_episode(). This fixes it (also check overflow?).""" if done and 'DAMAGECOUNT' in info: log.info('DAMAGECOUNT value on done: %r', info.get('DAMAGECOUNT')) if self._last_episode_info is not None: bugged_vars = ['DEATHCOUNT', 'HITCOUNT', 'DAMAGECOUNT'] for v in bugged_vars: if v in info: info[v] -= self._last_episode_info.get(v, 0) def _process_game_step(self, state, done, info): if not done: observation = np.transpose(state.screen_buffer, (1, 2, 0)) game_variables = self._game_variables_dict(state) info.update(self.get_info(game_variables)) self._update_histogram(info) self._prev_info = copy.deepcopy(info) else: observation = self._black_screen() # when done=True Doom does not allow us to call get_info, so we provide info from the last frame info.update(self._prev_info) self._vizdoom_variables_bug_workaround(info, done) return observation, done, info def step(self, actions): """ Action is either a single value (discrete, one-hot), or a tuple with an action for each of the discrete action subspaces. """ if self._actions_flattened is not None: # provided externally, e.g. via human play actions_flattened = self._actions_flattened self._actions_flattened = None else: actions_flattened = self._convert_actions(actions) default_info = {'num_frames': self.skip_frames} reward = self.game.make_action(actions_flattened, self.skip_frames) state = self.game.get_state() done = self.game.is_episode_finished() observation, done, info = self._process_game_step(state, done, default_info) return observation, reward, done, info def render(self, mode='human'): try: img = self.game.get_state().screen_buffer img = np.transpose(img, [1, 2, 0]) if mode == 'rgb_array': return img h, w = img.shape[:2] render_w = 1280 if w < render_w: render_h = int(render_w * h / w) img = cv2.resize(img, (render_w, render_h)) if self.viewer is None: from gym.envs.classic_control import rendering self.viewer = rendering.SimpleImageViewer(maxwidth=render_w) self.viewer.imshow(img) return img except AttributeError: return None def close(self): try: if self.game is not None: self.game.close() except RuntimeError as exc: log.warning('Runtime error in VizDoom game close(): %r', exc) if self.viewer is not None: self.viewer.close() def get_info(self, variables=None): if variables is None: variables = self._game_variables_dict(self.game.get_state()) info_dict = {'pos': self.get_positions(variables)} info_dict.update(variables) return info_dict def get_info_all(self, variables=None): if variables is None: variables = self._game_variables_dict(self.game.get_state()) info = self.get_info(variables) if self.previous_histogram is not None: info['previous_histogram'] = self.previous_histogram return info def get_positions(self, variables): return self._get_positions(variables) @staticmethod def _get_positions(variables): have_coord_data = True required_vars = ['POSITION_X', 'POSITION_Y', 'ANGLE'] for required_var in required_vars: if required_var not in variables: have_coord_data = False break x = y = a = np.nan if have_coord_data: x = variables['POSITION_X'] y = variables['POSITION_Y'] a = variables['ANGLE'] return {'agent_x': x, 'agent_y': y, 'agent_a': a} def get_automap_buffer(self): if self.game.is_episode_finished(): return None state = self.game.get_state() map_ = state.automap_buffer map_ = np.swapaxes(map_, 0, 2) map_ = np.swapaxes(map_, 0, 1) return map_ def _update_histogram(self, info, eps=1e-8): if self.current_histogram is None: return agent_x, agent_y = info['pos']['agent_x'], info['pos']['agent_y'] # Get agent coordinates normalized to [0, 1] dx = (agent_x - self.coord_limits[0]) / (self.coord_limits[2] - self.coord_limits[0]) dy = (agent_y - self.coord_limits[1]) / (self.coord_limits[3] - self.coord_limits[1]) # Rescale coordinates to histogram dimensions # Subtract eps to exclude upper bound of dx, dy dx = int((dx - eps) * self.current_histogram.shape[0]) dy = int((dy - eps) * self.current_histogram.shape[1]) self.current_histogram[dx, dy] += 1 def _key_to_action(self, key): if hasattr(self.action_space, 'key_to_action'): return self.action_space.key_to_action(key) else: return key_to_action_default(key) def _keyboard_on_press(self, key): from pynput.keyboard import Key if key == Key.esc: self._terminate = True return False action = self._key_to_action(key) if action is not None: if action not in self._current_actions: self._current_actions.append(action) def _keyboard_on_release(self, key): action = self._key_to_action(key) if action is not None: if action in self._current_actions: self._current_actions.remove(action) # noinspection PyProtectedMember @staticmethod def play_human_mode(env, skip_frames=1, num_episodes=3, num_actions=None): from pynput.keyboard import Listener doom = env.unwrapped doom.skip_frames = 1 # handled by this script separately # noinspection PyProtectedMember def start_listener(): with Listener(on_press=doom._keyboard_on_press, on_release=doom._keyboard_on_release) as listener: listener.join() listener_thread = Thread(target=start_listener) listener_thread.start() for episode in range(num_episodes): doom.mode = 'human' env.reset() last_render_time = time.time() time_between_frames = 1.0 / 35.0 total_rew = 0.0 while not doom.game.is_episode_finished() and not doom._terminate: num_actions = 14 if num_actions is None else num_actions turn_delta_action_idx = num_actions - 1 actions = [0] * num_actions for action in doom._current_actions: if isinstance(action, int): actions[action] = 1 # 1 for buttons currently pressed, 0 otherwise else: if action == 'turn_left': actions[turn_delta_action_idx] = -doom.delta_actions_scaling_factor elif action == 'turn_right': actions[turn_delta_action_idx] = doom.delta_actions_scaling_factor for frame in range(skip_frames): doom._actions_flattened = actions _, rew, _, _ = env.step(actions) new_total_rew = total_rew + rew if new_total_rew != total_rew: log.info('Reward: %.3f, total: %.3f', rew, new_total_rew) total_rew = new_total_rew state = doom.game.get_state() verbose = True if state is not None and verbose: info = doom.get_info() print( 'Health:', info['HEALTH'], # 'Weapon:', info['SELECTED_WEAPON'], # 'ready:', info['ATTACK_READY'], # 'ammo:', info['SELECTED_WEAPON_AMMO'], # 'pc:', info['PLAYER_COUNT'], # 'dmg:', info['DAMAGECOUNT'], ) time_since_last_render = time.time() - last_render_time time_wait = time_between_frames - time_since_last_render if doom.show_automap and state.automap_buffer is not None: map_ = state.automap_buffer map_ = np.swapaxes(map_, 0, 2) map_ = np.swapaxes(map_, 0, 1) cv2.imshow('ViZDoom Automap Buffer', map_) if time_wait > 0: cv2.waitKey(int(time_wait) * 1000) else: if time_wait > 0: time.sleep(time_wait) last_render_time = time.time() if doom.show_automap: cv2.destroyAllWindows() log.debug('Press ESC to exit...') listener_thread.join() # noinspection PyProtectedMember @staticmethod def replay(env, rec_path): doom = env.unwrapped doom.mode = 'replay' doom._ensure_initialized() doom.game.replay_episode(rec_path) episode_reward = 0 start = time.time() while not doom.game.is_episode_finished(): doom.game.advance_action() r = doom.game.get_last_reward() episode_reward += r log.info('Episode reward: %.3f, time so far: %.1f s', episode_reward, time.time() - start) log.info('Finishing replay') doom.close()
[ "vizdoom.vizdoom.DoomGame", "utils.utils.log.warning", "utils.utils.log.info", "cv2.imshow", "os.path.join", "gym.utils.seeding.np_random", "numpy.zeros_like", "os.path.dirname", "numpy.transpose", "os.path.exists", "utils.utils.log.debug", "gym.utils.seeding.hash_seed", "os.path.normpath", "numpy.swapaxes", "cv2.destroyAllWindows", "cv2.resize", "gym.envs.classic_control.rendering.SimpleImageViewer", "threading.Thread", "copy.deepcopy", "envs.env_utils.EnvCriticalError", "pynput.keyboard.Listener", "re.match", "time.sleep", "utils.utils.project_tmp_dir", "os.makedirs", "filelock.FileLock", "numpy.zeros", "time.time", "random.randrange", "gym.spaces.Box", "utils.utils.log.error" ]
[((1128, 1145), 'utils.utils.project_tmp_dir', 'project_tmp_dir', ([], {}), '()\n', (1143, 1145), False, 'from utils.utils import log, project_tmp_dir\n'), ((1162, 1190), 'os.path.join', 'join', (['tmp_dir', 'lock_filename'], {}), '(tmp_dir, lock_filename)\n', (1166, 1190), False, 'from os.path import join\n'), ((3471, 3503), 'os.path.join', 'join', (['scenarios_dir', 'config_file'], {}), '(scenarios_dir, config_file)\n', (3475, 3503), False, 'from os.path import join\n'), ((5063, 5099), 'gym.utils.seeding.hash_seed', 'seeding.hash_seed', (['seed'], {'max_bytes': '(4)'}), '(seed, max_bytes=4)\n', (5080, 5099), False, 'from gym.utils import seeding\n'), ((5122, 5160), 'gym.utils.seeding.np_random', 'seeding.np_random', ([], {'seed': 'self.curr_seed'}), '(seed=self.curr_seed)\n', (5139, 5160), False, 'from gym.utils import seeding\n'), ((5275, 5365), 'gym.spaces.Box', 'gym.spaces.Box', (['(0)', '(255)', '(self.screen_h, self.screen_w, self.channels)'], {'dtype': 'np.uint8'}), '(0, 255, (self.screen_h, self.screen_w, self.channels), dtype\n =np.uint8)\n', (5289, 5365), False, 'import gym\n'), ((5813, 5823), 'vizdoom.vizdoom.DoomGame', 'DoomGame', ([], {}), '()\n', (5821, 5823), False, 'from vizdoom.vizdoom import ScreenResolution, DoomGame, Mode, AutomapMode\n'), ((9939, 9970), 'os.path.join', 'join', (['self.record_to', 'demo_name'], {}), '(self.record_to, demo_name)\n', (9943, 9970), False, 'from os.path import join\n'), ((9991, 10018), 'os.path.normpath', 'os.path.normpath', (['demo_path'], {}), '(demo_path)\n', (10007, 10018), False, 'import os\n'), ((11442, 11472), 'copy.deepcopy', 'copy.deepcopy', (['self._prev_info'], {}), '(self._prev_info)\n', (11455, 11472), False, 'import copy\n'), ((11553, 11581), 'numpy.transpose', 'np.transpose', (['img', '(1, 2, 0)'], {}), '(img, (1, 2, 0))\n', (11565, 11581), True, 'import numpy as np\n'), ((17710, 17733), 'numpy.swapaxes', 'np.swapaxes', (['map_', '(0)', '(2)'], {}), '(map_, 0, 2)\n', (17721, 17733), True, 'import numpy as np\n'), ((17749, 17772), 'numpy.swapaxes', 'np.swapaxes', (['map_', '(0)', '(1)'], {}), '(map_, 0, 1)\n', (17760, 17772), True, 'import numpy as np\n'), ((19791, 19820), 'threading.Thread', 'Thread', ([], {'target': 'start_listener'}), '(target=start_listener)\n', (19797, 19820), False, 'from threading import Thread\n'), ((22663, 22696), 'utils.utils.log.debug', 'log.debug', (['"""Press ESC to exit..."""'], {}), "('Press ESC to exit...')\n", (22672, 22696), False, 'from utils.utils import log, project_tmp_dir\n'), ((22995, 23006), 'time.time', 'time.time', ([], {}), '()\n', (23004, 23006), False, 'import time\n'), ((23286, 23314), 'utils.utils.log.info', 'log.info', (['"""Finishing replay"""'], {}), "('Finishing replay')\n", (23294, 23314), False, 'from utils.utils import log, project_tmp_dir\n'), ((1064, 1097), 'random.randrange', 'random.randrange', (['(0)', 'max_parallel'], {}), '(0, max_parallel)\n', (1080, 1097), False, 'import random\n'), ((3404, 3429), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (3419, 3429), False, 'import os\n'), ((4570, 4610), 'numpy.zeros', 'np.zeros', (['(len_x, len_y)'], {'dtype': 'np.int32'}), '((len_x, len_y), dtype=np.int32)\n', (4578, 4610), True, 'import numpy as np\n'), ((4649, 4686), 'numpy.zeros_like', 'np.zeros_like', (['self.current_histogram'], {}), '(self.current_histogram)\n', (4662, 4686), True, 'import numpy as np\n'), ((6509, 6528), 'filelock.FileLock', 'FileLock', (['lock_file'], {}), '(lock_file)\n', (6517, 6528), False, 'from filelock import FileLock, Timeout\n'), ((9007, 9039), 're.match', 're.match', (['variables_syntax', 'line'], {}), '(variables_syntax, line)\n', (9015, 9039), False, 'import re\n'), ((9494, 9548), 'numpy.zeros', 'np.zeros', (['self.observation_space.shape'], {'dtype': 'np.uint8'}), '(self.observation_space.shape, dtype=np.uint8)\n', (9502, 9548), True, 'import numpy as np\n'), ((10406, 10460), 'utils.utils.log.warning', 'log.warning', (['"""Recording episode demo to %s"""', 'demo_path'], {}), "('Recording episode demo to %s', demo_path)\n", (10417, 10460), False, 'from utils.utils import log, project_tmp_dir\n'), ((10927, 11005), 'utils.utils.log.error', 'log.error', (['"""Game returned None screen buffer! This is not supposed to happen!"""'], {}), "('Game returned None screen buffer! This is not supposed to happen!')\n", (10936, 11005), False, 'from utils.utils import log, project_tmp_dir\n'), ((13938, 13982), 'numpy.transpose', 'np.transpose', (['state.screen_buffer', '(1, 2, 0)'], {}), '(state.screen_buffer, (1, 2, 0))\n', (13950, 13982), True, 'import numpy as np\n'), ((14171, 14190), 'copy.deepcopy', 'copy.deepcopy', (['info'], {}), '(info)\n', (14184, 14190), False, 'import copy\n'), ((15447, 15475), 'numpy.transpose', 'np.transpose', (['img', '[1, 2, 0]'], {}), '(img, [1, 2, 0])\n', (15459, 15475), True, 'import numpy as np\n'), ((19985, 19996), 'time.time', 'time.time', ([], {}), '()\n', (19994, 19996), False, 'import time\n'), ((5533, 5642), 'utils.utils.log.info', 'log.info', (['"""Starting in async mode! Use this only for testing, otherwise PLAYER mode is much faster"""'], {}), "(\n 'Starting in async mode! Use this only for testing, otherwise PLAYER mode is much faster'\n )\n", (5541, 5642), False, 'from utils.utils import log, project_tmp_dir\n'), ((10258, 10288), 'os.path.exists', 'os.path.exists', (['self.record_to'], {}), '(self.record_to)\n', (10272, 10288), False, 'import os\n'), ((10306, 10333), 'os.makedirs', 'os.makedirs', (['self.record_to'], {}), '(self.record_to)\n', (10317, 10333), False, 'import os\n'), ((15702, 15739), 'cv2.resize', 'cv2.resize', (['img', '(render_w, render_h)'], {}), '(img, (render_w, render_h))\n', (15712, 15739), False, 'import cv2\n'), ((15870, 15916), 'gym.envs.classic_control.rendering.SimpleImageViewer', 'rendering.SimpleImageViewer', ([], {'maxwidth': 'render_w'}), '(maxwidth=render_w)\n', (15897, 15916), False, 'from gym.envs.classic_control import rendering\n'), ((16186, 16247), 'utils.utils.log.warning', 'log.warning', (['"""Runtime error in VizDoom game close(): %r"""', 'exc'], {}), "('Runtime error in VizDoom game close(): %r', exc)\n", (16197, 16247), False, 'from utils.utils import log, project_tmp_dir\n'), ((19638, 19723), 'pynput.keyboard.Listener', 'Listener', ([], {'on_press': 'doom._keyboard_on_press', 'on_release': 'doom._keyboard_on_release'}), '(on_press=doom._keyboard_on_press, on_release=doom._keyboard_on_release\n )\n', (19646, 19723), False, 'from pynput.keyboard import Listener\n'), ((22630, 22653), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (22651, 22653), False, 'import cv2\n'), ((7105, 7192), 'utils.utils.log.warning', 'log.warning', (['"""VizDoom game.init() threw an exception %r. Terminate process..."""', 'exc'], {}), "('VizDoom game.init() threw an exception %r. Terminate process...',\n exc)\n", (7116, 7192), False, 'from utils.utils import log, project_tmp_dir\n'), ((7271, 7289), 'envs.env_utils.EnvCriticalError', 'EnvCriticalError', ([], {}), '()\n', (7287, 7289), False, 'from envs.env_utils import EnvCriticalError\n'), ((12726, 12772), 'numpy.zeros', 'np.zeros', (['num_non_idle_actions'], {'dtype': 'np.uint8'}), '(num_non_idle_actions, dtype=np.uint8)\n', (12734, 12772), True, 'import numpy as np\n'), ((22567, 22578), 'time.time', 'time.time', ([], {}), '()\n', (22576, 22578), False, 'import time\n'), ((23256, 23267), 'time.time', 'time.time', ([], {}), '()\n', (23265, 23267), False, 'import time\n'), ((6910, 7008), 'utils.utils.log.debug', 'log.debug', (['"""Another process currently holds the lock %s, attempt: %d"""', 'lock_file', 'init_attempt'], {}), "('Another process currently holds the lock %s, attempt: %d',\n lock_file, init_attempt)\n", (6919, 7008), False, 'from utils.utils import log, project_tmp_dir\n'), ((21123, 21180), 'utils.utils.log.info', 'log.info', (['"""Reward: %.3f, total: %.3f"""', 'rew', 'new_total_rew'], {}), "('Reward: %.3f, total: %.3f', rew, new_total_rew)\n", (21131, 21180), False, 'from utils.utils import log, project_tmp_dir\n'), ((21887, 21898), 'time.time', 'time.time', ([], {}), '()\n', (21896, 21898), False, 'import time\n'), ((22158, 22181), 'numpy.swapaxes', 'np.swapaxes', (['map_', '(0)', '(2)'], {}), '(map_, 0, 2)\n', (22169, 22181), True, 'import numpy as np\n'), ((22213, 22236), 'numpy.swapaxes', 'np.swapaxes', (['map_', '(0)', '(1)'], {}), '(map_, 0, 1)\n', (22224, 22236), True, 'import numpy as np\n'), ((22261, 22303), 'cv2.imshow', 'cv2.imshow', (['"""ViZDoom Automap Buffer"""', 'map_'], {}), "('ViZDoom Automap Buffer', map_)\n", (22271, 22303), False, 'import cv2\n'), ((22505, 22526), 'time.sleep', 'time.sleep', (['time_wait'], {}), '(time_wait)\n', (22515, 22526), False, 'import time\n')]
import unittest import tensorflow.contrib.keras as keras import numpy as np from vixstructure.models import term_structure_to_spread_price, term_structure_to_spread_price_v2 from vixstructure.models import term_structure_to_single_spread_price from vixstructure.models import mask_output from vixstructure.data import LongPricesDataset class TestModels(unittest.TestCase): def setUp(self): self.dataset = LongPricesDataset("../../data/8_m_settle.csv", "../../data/expirations.csv") def test_term_structure_to_spread_price(self): model = term_structure_to_spread_price(5, 9) self.assertEqual(len(model.layers), 7) def test_mask_output_function_for_lambda_layers(self): input = keras.layers.Input(shape=(9,)) output = keras.layers.Lambda(mask_output)(input) model = keras.models.Model(inputs=input, outputs=output) x, y = self.dataset.dataset() preds = model.predict(x) self.assertEqual(preds.shape, (2655, 6)) self.assertEqual(np.all(preds, axis=0).sum(), 5) self.assertEqual(np.all(preds, axis=1).sum(), 2529) self.assertEqual((preds == 0.).sum(), 126) def test_term_structure_to_spread_prices_v2(self): model = term_structure_to_spread_price_v2(5, 9) x, y = self.dataset.dataset() preds = model.predict(x) self.assertEqual(preds.shape, (2655, 6)) self.assertEqual(np.all(preds, axis=0).sum(), 5) self.assertEqual(np.all(preds, axis=1).sum(), 2529) def test_term_structure_to_single_spread_price(self): """Just test model construction.""" model = term_structure_to_single_spread_price(5, 9) self.assertEqual([layer.output_shape[1] for layer in model.layers], [8, 9, 9, 9, 9, 9, 1]) for distribution in (layer.kernel_initializer.distribution for layer in model.layers if isinstance(layer, keras.layers.Dense)): self.assertEqual(distribution, "uniform") model_reduced_widths = term_structure_to_single_spread_price(5, 9, reduce_width=True) self.assertEqual([layer.output_shape[1] for layer in model_reduced_widths.layers], [8, 9, 7, 6, 4, 3, 1]) for distribution in (layer.kernel_initializer.distribution for layer in model_reduced_widths.layers if isinstance(layer, keras.layers.Dense)): self.assertEqual(distribution, "uniform") def test_term_structure_to_single_spread_price_with_selu(self): model = term_structure_to_single_spread_price(5, 9, activation_function="selu") self.assertEqual([layer.output_shape[1] for layer in model.layers], [8, 9, 9, 9, 9, 9, 1]) vars = [np.square(layer.kernel_initializer.stddev) for layer in model.layers if isinstance(layer, keras.layers.Dense)] self.assertAlmostEqual(1 / vars[0], 8 / 2) for fst, snd in zip(vars[1:], [9, 9, 9, 9, 9]): self.assertAlmostEqual(1 / fst, snd) model_reduced_widths = term_structure_to_single_spread_price(5, 9, reduce_width=True, activation_function="selu") self.assertEqual([layer.output_shape[1] for layer in model_reduced_widths.layers], [8, 9, 7, 6, 4, 3, 1]) vars_reduced_widths = [np.square(layer.kernel_initializer.stddev) for layer in model_reduced_widths.layers if isinstance(layer, keras.layers.Dense)] self.assertAlmostEqual(1 / vars[0], 8 / 2) for fst, snd in zip(vars_reduced_widths[1:], [9, 7, 6, 4, 3]): self.assertAlmostEqual(1 / fst, snd) if __name__ == '__main__': unittest.main()
[ "unittest.main", "numpy.square", "vixstructure.models.term_structure_to_single_spread_price", "tensorflow.contrib.keras.layers.Lambda", "numpy.all", "tensorflow.contrib.keras.layers.Input", "tensorflow.contrib.keras.models.Model", "vixstructure.models.term_structure_to_spread_price_v2", "vixstructure.data.LongPricesDataset", "vixstructure.models.term_structure_to_spread_price" ]
[((3622, 3637), 'unittest.main', 'unittest.main', ([], {}), '()\n', (3635, 3637), False, 'import unittest\n'), ((421, 497), 'vixstructure.data.LongPricesDataset', 'LongPricesDataset', (['"""../../data/8_m_settle.csv"""', '"""../../data/expirations.csv"""'], {}), "('../../data/8_m_settle.csv', '../../data/expirations.csv')\n", (438, 497), False, 'from vixstructure.data import LongPricesDataset\n'), ((566, 602), 'vixstructure.models.term_structure_to_spread_price', 'term_structure_to_spread_price', (['(5)', '(9)'], {}), '(5, 9)\n', (596, 602), False, 'from vixstructure.models import term_structure_to_spread_price, term_structure_to_spread_price_v2\n'), ((726, 756), 'tensorflow.contrib.keras.layers.Input', 'keras.layers.Input', ([], {'shape': '(9,)'}), '(shape=(9,))\n', (744, 756), True, 'import tensorflow.contrib.keras as keras\n'), ((830, 878), 'tensorflow.contrib.keras.models.Model', 'keras.models.Model', ([], {'inputs': 'input', 'outputs': 'output'}), '(inputs=input, outputs=output)\n', (848, 878), True, 'import tensorflow.contrib.keras as keras\n'), ((1239, 1278), 'vixstructure.models.term_structure_to_spread_price_v2', 'term_structure_to_spread_price_v2', (['(5)', '(9)'], {}), '(5, 9)\n', (1272, 1278), False, 'from vixstructure.models import term_structure_to_spread_price, term_structure_to_spread_price_v2\n'), ((1635, 1678), 'vixstructure.models.term_structure_to_single_spread_price', 'term_structure_to_single_spread_price', (['(5)', '(9)'], {}), '(5, 9)\n', (1672, 1678), False, 'from vixstructure.models import term_structure_to_single_spread_price\n'), ((2028, 2090), 'vixstructure.models.term_structure_to_single_spread_price', 'term_structure_to_single_spread_price', (['(5)', '(9)'], {'reduce_width': '(True)'}), '(5, 9, reduce_width=True)\n', (2065, 2090), False, 'from vixstructure.models import term_structure_to_single_spread_price\n'), ((2524, 2595), 'vixstructure.models.term_structure_to_single_spread_price', 'term_structure_to_single_spread_price', (['(5)', '(9)'], {'activation_function': '"""selu"""'}), "(5, 9, activation_function='selu')\n", (2561, 2595), False, 'from vixstructure.models import term_structure_to_single_spread_price\n'), ((3025, 3119), 'vixstructure.models.term_structure_to_single_spread_price', 'term_structure_to_single_spread_price', (['(5)', '(9)'], {'reduce_width': '(True)', 'activation_function': '"""selu"""'}), "(5, 9, reduce_width=True,\n activation_function='selu')\n", (3062, 3119), False, 'from vixstructure.models import term_structure_to_single_spread_price\n'), ((774, 806), 'tensorflow.contrib.keras.layers.Lambda', 'keras.layers.Lambda', (['mask_output'], {}), '(mask_output)\n', (793, 806), True, 'import tensorflow.contrib.keras as keras\n'), ((2711, 2753), 'numpy.square', 'np.square', (['layer.kernel_initializer.stddev'], {}), '(layer.kernel_initializer.stddev)\n', (2720, 2753), True, 'import numpy as np\n'), ((3261, 3303), 'numpy.square', 'np.square', (['layer.kernel_initializer.stddev'], {}), '(layer.kernel_initializer.stddev)\n', (3270, 3303), True, 'import numpy as np\n'), ((1024, 1045), 'numpy.all', 'np.all', (['preds'], {'axis': '(0)'}), '(preds, axis=0)\n', (1030, 1045), True, 'import numpy as np\n'), ((1081, 1102), 'numpy.all', 'np.all', (['preds'], {'axis': '(1)'}), '(preds, axis=1)\n', (1087, 1102), True, 'import numpy as np\n'), ((1424, 1445), 'numpy.all', 'np.all', (['preds'], {'axis': '(0)'}), '(preds, axis=0)\n', (1430, 1445), True, 'import numpy as np\n'), ((1481, 1502), 'numpy.all', 'np.all', (['preds'], {'axis': '(1)'}), '(preds, axis=1)\n', (1487, 1502), True, 'import numpy as np\n')]
from sklearn.utils.sparsefuncs import mean_variance_axis from scipy.sparse import issparse from scipy.special import loggamma import numpy as np def log_binom(n, k): """ log (n choose k) Parameters ---------- n, k: int Output ------ log_binom: float """ return loggamma(n + 1) - loggamma(k + 1) - loggamma(n - k + 1) # TODO: add this test # import numpy as np # from scipy.special import binom # n = 10 # k = 3 # abs(np.log(binom(n, k)) - log_binom(n, k)) < 1e-8 def weighted_mean_std(X, sample_weight=None, ddof=0): """ Computes possible weighted mean and standard deviations of each column of a data matrix. It is safe to call this function on either a sparse or dense matrix. Parameters ----------- X: array-like, shape (n_samples, n_features) The data matrix. sample_weight: None, array-like shape (n_samples) The optional sample weights to use. ddof: int The divisor used in calculations is ``TOT_WEIGHT - ddof``, where ``TOT_WEIGHT`` is the total weight. If sample_weight is None or norm_weight=True then TOT_WEIGHT = n_samples. Otherwise, TOT_WEIGHT = sample_weight.sum() Output ------ mean, std mean: array-like, shape (n_features, ) The weighted mean for each feature. std: array-like, shape (n_features, ) The weighted standard deviation for each feature. """ n_samples = X.shape[0] # process sample weights if sample_weight is not None: _sample_weight = np.array(sample_weight).reshape(-1).astype(X.dtype) assert len(_sample_weight) == n_samples # normalize the weights _sample_weight /= _sample_weight.sum() _sample_weight *= n_samples TOT_WEIGHT = _sample_weight.sum() else: TOT_WEIGHT = n_samples _sample_weight = None # sklearn has this built in for sparse matrices # TODO: can we find this somewhere for dense? if issparse(X): # TODO: handle ddof MEAN, VAR, SUM_WEIGHTS = \ mean_variance_axis(X=X, axis=0, weights=_sample_weight, return_sum_weights=True) VAR *= SUM_WEIGHTS / (TOT_WEIGHT - ddof) return MEAN, np.sqrt(VAR) # unweighted, dense case if sample_weight is None: return X.mean(axis=0), X.std(axis=0, ddof=ddof) else: # weighted, dense case MEAN = X.T @ _sample_weight / TOT_WEIGHT VAR = ((X - MEAN) ** 2).T @ _sample_weight VAR = VAR / (TOT_WEIGHT - ddof) return MEAN, np.sqrt(VAR)
[ "scipy.special.loggamma", "scipy.sparse.issparse", "numpy.array", "sklearn.utils.sparsefuncs.mean_variance_axis", "numpy.sqrt" ]
[((1997, 2008), 'scipy.sparse.issparse', 'issparse', (['X'], {}), '(X)\n', (2005, 2008), False, 'from scipy.sparse import issparse\n'), ((341, 360), 'scipy.special.loggamma', 'loggamma', (['(n - k + 1)'], {}), '(n - k + 1)\n', (349, 360), False, 'from scipy.special import loggamma\n'), ((2086, 2171), 'sklearn.utils.sparsefuncs.mean_variance_axis', 'mean_variance_axis', ([], {'X': 'X', 'axis': '(0)', 'weights': '_sample_weight', 'return_sum_weights': '(True)'}), '(X=X, axis=0, weights=_sample_weight, return_sum_weights=True\n )\n', (2104, 2171), False, 'from sklearn.utils.sparsefuncs import mean_variance_axis\n'), ((305, 320), 'scipy.special.loggamma', 'loggamma', (['(n + 1)'], {}), '(n + 1)\n', (313, 320), False, 'from scipy.special import loggamma\n'), ((323, 338), 'scipy.special.loggamma', 'loggamma', (['(k + 1)'], {}), '(k + 1)\n', (331, 338), False, 'from scipy.special import loggamma\n'), ((2269, 2281), 'numpy.sqrt', 'np.sqrt', (['VAR'], {}), '(VAR)\n', (2276, 2281), True, 'import numpy as np\n'), ((2595, 2607), 'numpy.sqrt', 'np.sqrt', (['VAR'], {}), '(VAR)\n', (2602, 2607), True, 'import numpy as np\n'), ((1556, 1579), 'numpy.array', 'np.array', (['sample_weight'], {}), '(sample_weight)\n', (1564, 1579), True, 'import numpy as np\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # A tf.keras implementation of ghostnet # # import os, sys import warnings import math from keras_applications.imagenet_utils import _obtain_input_shape from keras_applications.imagenet_utils import preprocess_input as _preprocess_input from tensorflow.keras.utils import get_source_inputs, get_file from tensorflow.keras.models import Model from tensorflow.keras.layers import Conv2D, DepthwiseConv2D, BatchNormalization, Dense, Flatten, ReLU, Reshape, Activation from tensorflow.keras.layers import Input, GlobalAveragePooling2D, GlobalMaxPooling2D, Concatenate, Dropout, Add, Multiply from tensorflow.keras import backend as K sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '..', '..')) from common.backbones.layers import YoloConv2D, YoloDepthwiseConv2D, CustomBatchNormalization BASE_WEIGHT_PATH = ( 'https://github.com/david8862/tf-keras-image-classifier/' 'releases/download/v1.0.0/') def preprocess_input(x): """ "mode" option description in preprocess_input mode: One of "caffe", "tf" or "torch". - caffe: will convert the images from RGB to BGR, then will zero-center each color channel with respect to the ImageNet dataset, without scaling. - tf: will scale pixels between -1 and 1, sample-wise. - torch: will scale pixels between 0 and 1 and then will normalize each channel with respect to the ImageNet dataset. """ # here we use pytorch mode preprocess to align with origin #x = _preprocess_input(x, mode='torch', backend=K) x /= 255. mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] x[..., 0] -= mean[0] x[..., 1] -= mean[1] x[..., 2] -= mean[2] if std is not None: x[..., 0] /= std[0] x[..., 1] /= std[1] x[..., 2] /= std[2] return x # This function is taken from the original tf repo. # It ensures that all layers have a channel number that is divisible by 8 # It can be seen here: # https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py def _make_divisible(v, divisor, min_value=None): if min_value is None: min_value = divisor new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) # Make sure that round down does not go down by more than 10%. if new_v < 0.9 * v: new_v += divisor return new_v def hard_sigmoid(x): return ReLU(6.0)(x + 3.0) / 6.0 def primary_conv(x, output_filters, kernel_size, strides=(1,1), padding='same', act=True, use_bias=False, name=None): x = YoloConv2D(filters=output_filters, kernel_size=kernel_size, strides=strides, padding=padding, use_bias=use_bias, name=name + '_0')(x) x = CustomBatchNormalization(name=name+'_1')(x) x = ReLU(name=name+'_relu')(x) if act else x return x def cheap_operations(x, output_filters, kernel_size, strides=(1,1), padding='same', act=True, use_bias=False, name=None): x = YoloDepthwiseConv2D(kernel_size=kernel_size, strides=strides, padding=padding, use_bias=use_bias, name=name+'_0')(x) x = CustomBatchNormalization(name=name+'_1')(x) x = ReLU(name=name+'_relu')(x) if act else x return x def SqueezeExcite(input_x, se_ratio=0.25, reduced_base_chs=None, divisor=4, name=None): reduce_chs =_make_divisible((reduced_base_chs or int(input_x.shape[-1]))*se_ratio, divisor) x = GlobalAveragePooling2D(name=name+'_avg_pool2d')(input_x) if K.image_data_format() == 'channels_first': x = Reshape((int(input_x.shape[-1]), 1, 1))(x) else: x = Reshape((1, 1, int(input_x.shape[-1])))(x) x = YoloConv2D(filters=reduce_chs, kernel_size=1, use_bias=True, name=name+'_conv_reduce')(x) x = ReLU(name=name+'_act')(x) x = YoloConv2D(filters=int(input_x.shape[-1]), kernel_size=1, use_bias=True, name=name+'_conv_expand')(x) x = Activation(hard_sigmoid, name=name+'_hard_sigmoid')(x) x = Multiply()([input_x, x]) return x def ConvBnAct(input_x, out_chs, kernel_size, stride=(1,1), name=None): x = YoloConv2D(filters=out_chs, kernel_size=kernel_size, strides=stride, padding='valid', use_bias=False, name=name+'_conv')(input_x) x = CustomBatchNormalization(name=name+'_bn1')(x) x = ReLU(name=name+'_relu')(x) return x def GhostModule(input_x, output_chs, kernel_size=1, ratio=2, dw_size=3, stride=(1,1), act=True, name=None): init_channels = int(math.ceil(output_chs / ratio)) new_channels = int(init_channels * (ratio - 1)) x1 = primary_conv(input_x, init_channels, kernel_size=kernel_size, strides=stride, padding='valid', act=act, name = name + '_primary_conv') x2 = cheap_operations(x1, new_channels, kernel_size=dw_size, strides=(1,1), padding= 'same', act=act, name = name + '_cheap_operation') x = Concatenate(axis=3,name=name+'_concat')([x1,x2]) return x def GhostBottleneck(input_x, mid_chs, out_chs, dw_kernel_size=3, stride=(1,1), se_ratio=0., name=None): '''ghostnet bottleneck w/optional se''' has_se = se_ratio is not None and se_ratio > 0. #1st ghost bottleneck x = GhostModule(input_x, mid_chs, act=True, name=name+'_ghost1') #depth_with convolution if stride[0] > 1: x = YoloDepthwiseConv2D(kernel_size=dw_kernel_size, strides=stride, padding='same', use_bias=False, name=name+'_conv_dw')(x) x = CustomBatchNormalization(name=name+'_bn_dw')(x) #Squeeze_and_excitation if has_se: x = SqueezeExcite(x, se_ratio=se_ratio, name=name+'_se') #2nd ghost bottleneck x = GhostModule(x, out_chs, act=False, name=name+'_ghost2') #short cut if (input_x.shape[-1] == out_chs and stride[0] == 1): sc = input_x else: name1 = name + '_shortcut' sc = YoloDepthwiseConv2D(kernel_size=dw_kernel_size, strides=stride, padding='same', use_bias=False, name=name1+'_0')(input_x) sc = CustomBatchNormalization(name=name1+'_1')(sc) sc = YoloConv2D(filters=out_chs, kernel_size=1, strides=(1,1), padding='valid', use_bias=False, name=name1+'_2')(sc) sc = CustomBatchNormalization(name=name1+'_3')(sc) x = Add(name=name+'_add')([x, sc]) return x DEFAULT_CFGS = [ # k, t, c, SE, s # stage1 [[3, 16, 16, 0, 1]], # stage2 [[3, 48, 24, 0, 2]], [[3, 72, 24, 0, 1]], # stage3 [[5, 72, 40, 0.25, 2]], [[5, 120, 40, 0.25, 1]], # stage4 [[3, 240, 80, 0, 2]], [[3, 200, 80, 0, 1], [3, 184, 80, 0, 1], [3, 184, 80, 0, 1], [3, 480, 112, 0.25, 1], [3, 672, 112, 0.25, 1] ], # stage5 [[5, 672, 160, 0.25, 2]], [[5, 960, 160, 0, 1], [5, 960, 160, 0.25, 1], [5, 960, 160, 0, 1], [5, 960, 160, 0.25, 1] ] ] def GhostNet(input_shape=None, include_top=True, weights='imagenet', input_tensor=None, cfgs=DEFAULT_CFGS, width=1.0, dropout_rate=0.2, pooling=None, classes=1000, **kwargs): """Instantiates the GhostNet architecture. # Arguments input_shape: optional shape tuple, to be specified if you would like to use a model with an input img resolution that is not (224, 224, 3). It should have exactly 3 inputs channels (224, 224, 3). You can also omit this option if you would like to infer input_shape from an input_tensor. If you choose to include both input_tensor and input_shape then input_shape will be used if they match, if the shapes do not match then we will throw an error. E.g. `(160, 160, 3)` would be one valid value. include_top: whether to include the fully-connected layer at the top of the network. weights: one of `None` (random initialization), 'imagenet' (pre-training on ImageNet), or the path to the weights file to be loaded. input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. cfgs: model structure config list width: controls the width of the network dropout_rate: fraction of the input units to drop on the last layer pooling: Optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional block. - `avg` means that global average pooling will be applied to the output of the last convolutional block, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. classes: optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified. # Returns A Keras model instance. # Raises ValueError: in case of invalid argument for `weights`, or invalid input shape or invalid alpha, rows when weights='imagenet' """ if not (weights in {'imagenet', None} or os.path.exists(weights)): raise ValueError('The `weights` argument should be either ' '`None` (random initialization), `imagenet` ' '(pre-training on ImageNet), ' 'or the path to the weights file to be loaded.') if weights == 'imagenet' and include_top and classes != 1000: raise ValueError('If using `weights` as `"imagenet"` with `include_top` ' 'as true, `classes` should be 1000') # Determine proper input shape input_shape = _obtain_input_shape(input_shape, default_size=224, min_size=32, data_format=K.image_data_format(), require_flatten=include_top, weights=weights) # If input_shape is None and input_tensor is None using standard shape if input_shape is None and input_tensor is None: input_shape = (None, None, 3) if input_tensor is None: img_input = Input(shape=input_shape) else: #if not K.is_keras_tensor(input_tensor): #img_input = Input(tensor=input_tensor, shape=input_shape) #else: #img_input = input_tensor img_input = input_tensor channel_axis = 1 if K.image_data_format() == 'channels_first' else -1 # building first layer output_channel = int(_make_divisible(16 * width, 4)) x = YoloConv2D(filters=output_channel, kernel_size=3, strides=(2, 2), padding='same', use_bias=False, name='conv_stem')(img_input) x = CustomBatchNormalization(name='bn1')(x) x = ReLU(name='Conv2D_1_act')(x) # building inverted residual blocks for index, cfg in enumerate(cfgs): sub_index = 0 for k,exp_size,c,se_ratio,s in cfg: output_channel = int(_make_divisible(c * width, 4)) hidden_channel = int(_make_divisible(exp_size * width, 4)) x = GhostBottleneck(x, hidden_channel, output_channel, k, (s,s), se_ratio=se_ratio, name='blocks_'+str(index)+'_'+str(sub_index)) sub_index += 1 output_channel = _make_divisible(exp_size * width, 4) x = ConvBnAct(x, output_channel, kernel_size=1, name='blocks_9_0') if include_top: x = GlobalAveragePooling2D(name='global_avg_pooling2D')(x) if K.image_data_format() == 'channels_first': x = Reshape((output_channel, 1, 1))(x) else: x = Reshape((1, 1, output_channel))(x) # building last several layers output_channel = 1280 x = YoloConv2D(filters=output_channel, kernel_size=1, strides=(1,1), padding='valid', use_bias=True, name='conv_head')(x) x = ReLU(name='relu_head')(x) if dropout_rate > 0.: x = Dropout(dropout_rate, name='dropout_1')(x) x = Flatten()(x) x = Dense(units=classes, activation='softmax', use_bias=True, name='classifier')(x) else: if pooling == 'avg': x = GlobalAveragePooling2D()(x) elif pooling == 'max': x = GlobalMaxPooling2D()(x) # Ensure that the model takes into account # any potential predecessors of `input_tensor`. if input_tensor is not None: inputs = get_source_inputs(input_tensor) else: inputs = img_input # Create model. model = Model(inputs, x, name='ghostnet_%0.2f' % (width)) # Load weights. if weights == 'imagenet': if include_top: file_name = 'ghostnet_weights_tf_dim_ordering_tf_kernels_224.h5' weight_path = BASE_WEIGHT_PATH + file_name else: file_name = 'ghostnet_weights_tf_dim_ordering_tf_kernels_224_no_top.h5' weight_path = BASE_WEIGHT_PATH + file_name weights_path = get_file(file_name, weight_path, cache_subdir='models') model.load_weights(weights_path) elif weights is not None: model.load_weights(weights) return model if __name__ == '__main__': input_tensor = Input(shape=(None, None, 3), name='image_input') #model = GhostNet(include_top=False, input_tensor=input_tensor, weights='imagenet') model = GhostNet(include_top=True, input_shape=(224, 224, 3), weights='imagenet') model.summary() K.set_learning_phase(0) import numpy as np from tensorflow.keras.applications.resnet50 import decode_predictions from keras_preprocessing import image img = image.load_img('../../example/eagle.jpg', target_size=(224, 224)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) preds = model.predict(x) print('Predicted:', decode_predictions(preds))
[ "keras_preprocessing.image.load_img", "tensorflow.keras.layers.Reshape", "tensorflow.keras.layers.Dense", "tensorflow.keras.layers.Multiply", "common.backbones.layers.YoloConv2D", "tensorflow.keras.backend.set_learning_phase", "common.backbones.layers.YoloDepthwiseConv2D", "tensorflow.keras.layers.Flatten", "tensorflow.keras.layers.Concatenate", "os.path.exists", "tensorflow.keras.layers.Activation", "tensorflow.keras.layers.Input", "tensorflow.keras.utils.get_file", "tensorflow.keras.layers.GlobalAveragePooling2D", "tensorflow.keras.layers.Dropout", "math.ceil", "os.path.realpath", "keras_preprocessing.image.img_to_array", "tensorflow.keras.models.Model", "tensorflow.keras.backend.image_data_format", "tensorflow.keras.applications.resnet50.decode_predictions", "tensorflow.keras.layers.GlobalMaxPooling2D", "common.backbones.layers.CustomBatchNormalization", "tensorflow.keras.layers.ReLU", "numpy.expand_dims", "tensorflow.keras.utils.get_source_inputs", "tensorflow.keras.layers.Add" ]
[((14029, 14076), 'tensorflow.keras.models.Model', 'Model', (['inputs', 'x'], {'name': "('ghostnet_%0.2f' % width)"}), "(inputs, x, name='ghostnet_%0.2f' % width)\n", (14034, 14076), False, 'from tensorflow.keras.models import Model\n'), ((14692, 14740), 'tensorflow.keras.layers.Input', 'Input', ([], {'shape': '(None, None, 3)', 'name': '"""image_input"""'}), "(shape=(None, None, 3), name='image_input')\n", (14697, 14740), False, 'from tensorflow.keras.layers import Input, GlobalAveragePooling2D, GlobalMaxPooling2D, Concatenate, Dropout, Add, Multiply\n'), ((14939, 14962), 'tensorflow.keras.backend.set_learning_phase', 'K.set_learning_phase', (['(0)'], {}), '(0)\n', (14959, 14962), True, 'from tensorflow.keras import backend as K\n'), ((15114, 15179), 'keras_preprocessing.image.load_img', 'image.load_img', (['"""../../example/eagle.jpg"""'], {'target_size': '(224, 224)'}), "('../../example/eagle.jpg', target_size=(224, 224))\n", (15128, 15179), False, 'from keras_preprocessing import image\n'), ((15188, 15211), 'keras_preprocessing.image.img_to_array', 'image.img_to_array', (['img'], {}), '(img)\n', (15206, 15211), False, 'from keras_preprocessing import image\n'), ((15220, 15245), 'numpy.expand_dims', 'np.expand_dims', (['x'], {'axis': '(0)'}), '(x, axis=0)\n', (15234, 15245), True, 'import numpy as np\n'), ((2664, 2798), 'common.backbones.layers.YoloConv2D', 'YoloConv2D', ([], {'filters': 'output_filters', 'kernel_size': 'kernel_size', 'strides': 'strides', 'padding': 'padding', 'use_bias': 'use_bias', 'name': "(name + '_0')"}), "(filters=output_filters, kernel_size=kernel_size, strides=strides,\n padding=padding, use_bias=use_bias, name=name + '_0')\n", (2674, 2798), False, 'from common.backbones.layers import YoloConv2D, YoloDepthwiseConv2D, CustomBatchNormalization\n'), ((2881, 2923), 'common.backbones.layers.CustomBatchNormalization', 'CustomBatchNormalization', ([], {'name': "(name + '_1')"}), "(name=name + '_1')\n", (2905, 2923), False, 'from common.backbones.layers import YoloConv2D, YoloDepthwiseConv2D, CustomBatchNormalization\n'), ((3119, 3239), 'common.backbones.layers.YoloDepthwiseConv2D', 'YoloDepthwiseConv2D', ([], {'kernel_size': 'kernel_size', 'strides': 'strides', 'padding': 'padding', 'use_bias': 'use_bias', 'name': "(name + '_0')"}), "(kernel_size=kernel_size, strides=strides, padding=\n padding, use_bias=use_bias, name=name + '_0')\n", (3138, 3239), False, 'from common.backbones.layers import YoloConv2D, YoloDepthwiseConv2D, CustomBatchNormalization\n'), ((3340, 3382), 'common.backbones.layers.CustomBatchNormalization', 'CustomBatchNormalization', ([], {'name': "(name + '_1')"}), "(name=name + '_1')\n", (3364, 3382), False, 'from common.backbones.layers import YoloConv2D, YoloDepthwiseConv2D, CustomBatchNormalization\n'), ((3641, 3690), 'tensorflow.keras.layers.GlobalAveragePooling2D', 'GlobalAveragePooling2D', ([], {'name': "(name + '_avg_pool2d')"}), "(name=name + '_avg_pool2d')\n", (3663, 3690), False, 'from tensorflow.keras.layers import Input, GlobalAveragePooling2D, GlobalMaxPooling2D, Concatenate, Dropout, Add, Multiply\n'), ((3705, 3726), 'tensorflow.keras.backend.image_data_format', 'K.image_data_format', ([], {}), '()\n', (3724, 3726), True, 'from tensorflow.keras import backend as K\n'), ((3877, 3969), 'common.backbones.layers.YoloConv2D', 'YoloConv2D', ([], {'filters': 'reduce_chs', 'kernel_size': '(1)', 'use_bias': '(True)', 'name': "(name + '_conv_reduce')"}), "(filters=reduce_chs, kernel_size=1, use_bias=True, name=name +\n '_conv_reduce')\n", (3887, 3969), False, 'from common.backbones.layers import YoloConv2D, YoloDepthwiseConv2D, CustomBatchNormalization\n'), ((3975, 3999), 'tensorflow.keras.layers.ReLU', 'ReLU', ([], {'name': "(name + '_act')"}), "(name=name + '_act')\n", (3979, 3999), False, 'from tensorflow.keras.layers import Conv2D, DepthwiseConv2D, BatchNormalization, Dense, Flatten, ReLU, Reshape, Activation\n'), ((4120, 4173), 'tensorflow.keras.layers.Activation', 'Activation', (['hard_sigmoid'], {'name': "(name + '_hard_sigmoid')"}), "(hard_sigmoid, name=name + '_hard_sigmoid')\n", (4130, 4173), False, 'from tensorflow.keras.layers import Conv2D, DepthwiseConv2D, BatchNormalization, Dense, Flatten, ReLU, Reshape, Activation\n'), ((4183, 4193), 'tensorflow.keras.layers.Multiply', 'Multiply', ([], {}), '()\n', (4191, 4193), False, 'from tensorflow.keras.layers import Input, GlobalAveragePooling2D, GlobalMaxPooling2D, Concatenate, Dropout, Add, Multiply\n'), ((4303, 4429), 'common.backbones.layers.YoloConv2D', 'YoloConv2D', ([], {'filters': 'out_chs', 'kernel_size': 'kernel_size', 'strides': 'stride', 'padding': '"""valid"""', 'use_bias': '(False)', 'name': "(name + '_conv')"}), "(filters=out_chs, kernel_size=kernel_size, strides=stride,\n padding='valid', use_bias=False, name=name + '_conv')\n", (4313, 4429), False, 'from common.backbones.layers import YoloConv2D, YoloDepthwiseConv2D, CustomBatchNormalization\n'), ((4516, 4560), 'common.backbones.layers.CustomBatchNormalization', 'CustomBatchNormalization', ([], {'name': "(name + '_bn1')"}), "(name=name + '_bn1')\n", (4540, 4560), False, 'from common.backbones.layers import YoloConv2D, YoloDepthwiseConv2D, CustomBatchNormalization\n'), ((4570, 4595), 'tensorflow.keras.layers.ReLU', 'ReLU', ([], {'name': "(name + '_relu')"}), "(name=name + '_relu')\n", (4574, 4595), False, 'from tensorflow.keras.layers import Conv2D, DepthwiseConv2D, BatchNormalization, Dense, Flatten, ReLU, Reshape, Activation\n'), ((4744, 4773), 'math.ceil', 'math.ceil', (['(output_chs / ratio)'], {}), '(output_chs / ratio)\n', (4753, 4773), False, 'import math\n'), ((5407, 5449), 'tensorflow.keras.layers.Concatenate', 'Concatenate', ([], {'axis': '(3)', 'name': "(name + '_concat')"}), "(axis=3, name=name + '_concat')\n", (5418, 5449), False, 'from tensorflow.keras.layers import Input, GlobalAveragePooling2D, GlobalMaxPooling2D, Concatenate, Dropout, Add, Multiply\n'), ((7066, 7089), 'tensorflow.keras.layers.Add', 'Add', ([], {'name': "(name + '_add')"}), "(name=name + '_add')\n", (7069, 7089), False, 'from tensorflow.keras.layers import Input, GlobalAveragePooling2D, GlobalMaxPooling2D, Concatenate, Dropout, Add, Multiply\n'), ((11460, 11484), 'tensorflow.keras.layers.Input', 'Input', ([], {'shape': 'input_shape'}), '(shape=input_shape)\n', (11465, 11484), False, 'from tensorflow.keras.layers import Input, GlobalAveragePooling2D, GlobalMaxPooling2D, Concatenate, Dropout, Add, Multiply\n'), ((11869, 11989), 'common.backbones.layers.YoloConv2D', 'YoloConv2D', ([], {'filters': 'output_channel', 'kernel_size': '(3)', 'strides': '(2, 2)', 'padding': '"""same"""', 'use_bias': '(False)', 'name': '"""conv_stem"""'}), "(filters=output_channel, kernel_size=3, strides=(2, 2), padding=\n 'same', use_bias=False, name='conv_stem')\n", (11879, 11989), False, 'from common.backbones.layers import YoloConv2D, YoloDepthwiseConv2D, CustomBatchNormalization\n'), ((12079, 12115), 'common.backbones.layers.CustomBatchNormalization', 'CustomBatchNormalization', ([], {'name': '"""bn1"""'}), "(name='bn1')\n", (12103, 12115), False, 'from common.backbones.layers import YoloConv2D, YoloDepthwiseConv2D, CustomBatchNormalization\n'), ((12127, 12152), 'tensorflow.keras.layers.ReLU', 'ReLU', ([], {'name': '"""Conv2D_1_act"""'}), "(name='Conv2D_1_act')\n", (12131, 12152), False, 'from tensorflow.keras.layers import Conv2D, DepthwiseConv2D, BatchNormalization, Dense, Flatten, ReLU, Reshape, Activation\n'), ((13927, 13958), 'tensorflow.keras.utils.get_source_inputs', 'get_source_inputs', (['input_tensor'], {}), '(input_tensor)\n', (13944, 13958), False, 'from tensorflow.keras.utils import get_source_inputs, get_file\n'), ((14463, 14518), 'tensorflow.keras.utils.get_file', 'get_file', (['file_name', 'weight_path'], {'cache_subdir': '"""models"""'}), "(file_name, weight_path, cache_subdir='models')\n", (14471, 14518), False, 'from tensorflow.keras.utils import get_source_inputs, get_file\n'), ((15328, 15353), 'tensorflow.keras.applications.resnet50.decode_predictions', 'decode_predictions', (['preds'], {}), '(preds)\n', (15346, 15353), False, 'from tensorflow.keras.applications.resnet50 import decode_predictions\n'), ((726, 752), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (742, 752), False, 'import os, sys\n'), ((2511, 2520), 'tensorflow.keras.layers.ReLU', 'ReLU', (['(6.0)'], {}), '(6.0)\n', (2515, 2520), False, 'from tensorflow.keras.layers import Conv2D, DepthwiseConv2D, BatchNormalization, Dense, Flatten, ReLU, Reshape, Activation\n'), ((2933, 2958), 'tensorflow.keras.layers.ReLU', 'ReLU', ([], {'name': "(name + '_relu')"}), "(name=name + '_relu')\n", (2937, 2958), False, 'from tensorflow.keras.layers import Conv2D, DepthwiseConv2D, BatchNormalization, Dense, Flatten, ReLU, Reshape, Activation\n'), ((3392, 3417), 'tensorflow.keras.layers.ReLU', 'ReLU', ([], {'name': "(name + '_relu')"}), "(name=name + '_relu')\n", (3396, 3417), False, 'from tensorflow.keras.layers import Conv2D, DepthwiseConv2D, BatchNormalization, Dense, Flatten, ReLU, Reshape, Activation\n'), ((5830, 5954), 'common.backbones.layers.YoloDepthwiseConv2D', 'YoloDepthwiseConv2D', ([], {'kernel_size': 'dw_kernel_size', 'strides': 'stride', 'padding': '"""same"""', 'use_bias': '(False)', 'name': "(name + '_conv_dw')"}), "(kernel_size=dw_kernel_size, strides=stride, padding=\n 'same', use_bias=False, name=name + '_conv_dw')\n", (5849, 5954), False, 'from common.backbones.layers import YoloConv2D, YoloDepthwiseConv2D, CustomBatchNormalization\n'), ((6075, 6121), 'common.backbones.layers.CustomBatchNormalization', 'CustomBatchNormalization', ([], {'name': "(name + '_bn_dw')"}), "(name=name + '_bn_dw')\n", (6099, 6121), False, 'from common.backbones.layers import YoloConv2D, YoloDepthwiseConv2D, CustomBatchNormalization\n'), ((6476, 6595), 'common.backbones.layers.YoloDepthwiseConv2D', 'YoloDepthwiseConv2D', ([], {'kernel_size': 'dw_kernel_size', 'strides': 'stride', 'padding': '"""same"""', 'use_bias': '(False)', 'name': "(name1 + '_0')"}), "(kernel_size=dw_kernel_size, strides=stride, padding=\n 'same', use_bias=False, name=name1 + '_0')\n", (6495, 6595), False, 'from common.backbones.layers import YoloConv2D, YoloDepthwiseConv2D, CustomBatchNormalization\n'), ((6727, 6770), 'common.backbones.layers.CustomBatchNormalization', 'CustomBatchNormalization', ([], {'name': "(name1 + '_1')"}), "(name=name1 + '_1')\n", (6751, 6770), False, 'from common.backbones.layers import YoloConv2D, YoloDepthwiseConv2D, CustomBatchNormalization\n'), ((6786, 6900), 'common.backbones.layers.YoloConv2D', 'YoloConv2D', ([], {'filters': 'out_chs', 'kernel_size': '(1)', 'strides': '(1, 1)', 'padding': '"""valid"""', 'use_bias': '(False)', 'name': "(name1 + '_2')"}), "(filters=out_chs, kernel_size=1, strides=(1, 1), padding='valid',\n use_bias=False, name=name1 + '_2')\n", (6796, 6900), False, 'from common.backbones.layers import YoloConv2D, YoloDepthwiseConv2D, CustomBatchNormalization\n'), ((7011, 7054), 'common.backbones.layers.CustomBatchNormalization', 'CustomBatchNormalization', ([], {'name': "(name1 + '_3')"}), "(name=name1 + '_3')\n", (7035, 7054), False, 'from common.backbones.layers import YoloConv2D, YoloDepthwiseConv2D, CustomBatchNormalization\n'), ((10347, 10370), 'os.path.exists', 'os.path.exists', (['weights'], {}), '(weights)\n', (10361, 10370), False, 'import os, sys\n'), ((11097, 11118), 'tensorflow.keras.backend.image_data_format', 'K.image_data_format', ([], {}), '()\n', (11116, 11118), True, 'from tensorflow.keras import backend as K\n'), ((11726, 11747), 'tensorflow.keras.backend.image_data_format', 'K.image_data_format', ([], {}), '()\n', (11745, 11747), True, 'from tensorflow.keras import backend as K\n'), ((12833, 12884), 'tensorflow.keras.layers.GlobalAveragePooling2D', 'GlobalAveragePooling2D', ([], {'name': '"""global_avg_pooling2D"""'}), "(name='global_avg_pooling2D')\n", (12855, 12884), False, 'from tensorflow.keras.layers import Input, GlobalAveragePooling2D, GlobalMaxPooling2D, Concatenate, Dropout, Add, Multiply\n'), ((12899, 12920), 'tensorflow.keras.backend.image_data_format', 'K.image_data_format', ([], {}), '()\n', (12918, 12920), True, 'from tensorflow.keras import backend as K\n'), ((13140, 13260), 'common.backbones.layers.YoloConv2D', 'YoloConv2D', ([], {'filters': 'output_channel', 'kernel_size': '(1)', 'strides': '(1, 1)', 'padding': '"""valid"""', 'use_bias': '(True)', 'name': '"""conv_head"""'}), "(filters=output_channel, kernel_size=1, strides=(1, 1), padding=\n 'valid', use_bias=True, name='conv_head')\n", (13150, 13260), False, 'from common.backbones.layers import YoloConv2D, YoloDepthwiseConv2D, CustomBatchNormalization\n'), ((13365, 13387), 'tensorflow.keras.layers.ReLU', 'ReLU', ([], {'name': '"""relu_head"""'}), "(name='relu_head')\n", (13369, 13387), False, 'from tensorflow.keras.layers import Conv2D, DepthwiseConv2D, BatchNormalization, Dense, Flatten, ReLU, Reshape, Activation\n'), ((13493, 13502), 'tensorflow.keras.layers.Flatten', 'Flatten', ([], {}), '()\n', (13500, 13502), False, 'from tensorflow.keras.layers import Conv2D, DepthwiseConv2D, BatchNormalization, Dense, Flatten, ReLU, Reshape, Activation\n'), ((13518, 13594), 'tensorflow.keras.layers.Dense', 'Dense', ([], {'units': 'classes', 'activation': '"""softmax"""', 'use_bias': '(True)', 'name': '"""classifier"""'}), "(units=classes, activation='softmax', use_bias=True, name='classifier')\n", (13523, 13594), False, 'from tensorflow.keras.layers import Conv2D, DepthwiseConv2D, BatchNormalization, Dense, Flatten, ReLU, Reshape, Activation\n'), ((12958, 12989), 'tensorflow.keras.layers.Reshape', 'Reshape', (['(output_channel, 1, 1)'], {}), '((output_channel, 1, 1))\n', (12965, 12989), False, 'from tensorflow.keras.layers import Conv2D, DepthwiseConv2D, BatchNormalization, Dense, Flatten, ReLU, Reshape, Activation\n'), ((13023, 13054), 'tensorflow.keras.layers.Reshape', 'Reshape', (['(1, 1, output_channel)'], {}), '((1, 1, output_channel))\n', (13030, 13054), False, 'from tensorflow.keras.layers import Conv2D, DepthwiseConv2D, BatchNormalization, Dense, Flatten, ReLU, Reshape, Activation\n'), ((13438, 13477), 'tensorflow.keras.layers.Dropout', 'Dropout', (['dropout_rate'], {'name': '"""dropout_1"""'}), "(dropout_rate, name='dropout_1')\n", (13445, 13477), False, 'from tensorflow.keras.layers import Input, GlobalAveragePooling2D, GlobalMaxPooling2D, Concatenate, Dropout, Add, Multiply\n'), ((13678, 13702), 'tensorflow.keras.layers.GlobalAveragePooling2D', 'GlobalAveragePooling2D', ([], {}), '()\n', (13700, 13702), False, 'from tensorflow.keras.layers import Input, GlobalAveragePooling2D, GlobalMaxPooling2D, Concatenate, Dropout, Add, Multiply\n'), ((13753, 13773), 'tensorflow.keras.layers.GlobalMaxPooling2D', 'GlobalMaxPooling2D', ([], {}), '()\n', (13771, 13773), False, 'from tensorflow.keras.layers import Input, GlobalAveragePooling2D, GlobalMaxPooling2D, Concatenate, Dropout, Add, Multiply\n')]
""" Copyright (c) 2019 NAVER Corp. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import torch import torch.nn as nn import numpy as np def get_wav(in_channels, pool=True): """wavelet decomposition using conv2d""" harr_wav_L = 1 / np.sqrt(2) * np.ones((1, 2)) harr_wav_H = 1 / np.sqrt(2) * np.ones((1, 2)) harr_wav_H[0, 0] = -1 * harr_wav_H[0, 0] harr_wav_LL = np.transpose(harr_wav_L) * harr_wav_L harr_wav_LH = np.transpose(harr_wav_L) * harr_wav_H harr_wav_HL = np.transpose(harr_wav_H) * harr_wav_L harr_wav_HH = np.transpose(harr_wav_H) * harr_wav_H filter_LL = torch.from_numpy(harr_wav_LL).unsqueeze(0) filter_LH = torch.from_numpy(harr_wav_LH).unsqueeze(0) filter_HL = torch.from_numpy(harr_wav_HL).unsqueeze(0) filter_HH = torch.from_numpy(harr_wav_HH).unsqueeze(0) if pool: net = nn.Conv2d else: net = nn.ConvTranspose2d LL = net(in_channels, in_channels, kernel_size=2, stride=2, padding=0, bias=False, groups=in_channels) LH = net(in_channels, in_channels, kernel_size=2, stride=2, padding=0, bias=False, groups=in_channels) HL = net(in_channels, in_channels, kernel_size=2, stride=2, padding=0, bias=False, groups=in_channels) HH = net(in_channels, in_channels, kernel_size=2, stride=2, padding=0, bias=False, groups=in_channels) LL.weight.requires_grad = False LH.weight.requires_grad = False HL.weight.requires_grad = False HH.weight.requires_grad = False LL.weight.data = filter_LL.float().unsqueeze(0).expand(in_channels, -1, -1, -1).clone() LH.weight.data = filter_LH.float().unsqueeze(0).expand(in_channels, -1, -1, -1).clone() HL.weight.data = filter_HL.float().unsqueeze(0).expand(in_channels, -1, -1, -1).clone() HH.weight.data = filter_HH.float().unsqueeze(0).expand(in_channels, -1, -1, -1).clone() return LL, LH, HL, HH class WavePool(nn.Module): def __init__(self, in_channels): super(WavePool, self).__init__() self.LL, self.LH, self.HL, self.HH = get_wav(in_channels) def forward(self, x): return self.LL(x), self.LH(x), self.HL(x), self.HH(x) class WaveUnpool(nn.Module): def __init__(self, in_channels, option_unpool='cat5'): super(WaveUnpool, self).__init__() self.in_channels = in_channels self.option_unpool = option_unpool self.LL, self.LH, self.HL, self.HH = get_wav(self.in_channels, pool=False) def forward(self, LL, LH, HL, HH, original=None): if self.option_unpool == 'sum': return self.LL(LL) + self.LH(LH) + self.HL(HL) + self.HH(HH) elif self.option_unpool == 'cat5' and original is not None: return torch.cat([self.LL(LL), self.LH(LH), self.HL(HL), self.HH(HH), original], dim=1) else: raise NotImplementedError class WaveEncoder(nn.Module): def __init__(self, option_unpool): super(WaveEncoder, self).__init__() self.option_unpool = option_unpool self.pad = nn.ReflectionPad2d(1) self.relu = nn.ReLU(inplace=True) self.conv0 = nn.Conv2d(3, 3, 1, 1, 0) self.conv1_1 = nn.Conv2d(3, 64, 3, 1, 0) self.conv1_2 = nn.Conv2d(64, 64, 3, 1, 0) self.pool1 = WavePool(64) self.conv2_1 = nn.Conv2d(64, 128, 3, 1, 0) self.conv2_2 = nn.Conv2d(128, 128, 3, 1, 0) self.pool2 = WavePool(128) self.conv3_1 = nn.Conv2d(128, 256, 3, 1, 0) self.conv3_2 = nn.Conv2d(256, 256, 3, 1, 0) self.conv3_3 = nn.Conv2d(256, 256, 3, 1, 0) self.conv3_4 = nn.Conv2d(256, 256, 3, 1, 0) self.pool3 = WavePool(256) self.conv4_1 = nn.Conv2d(256, 512, 3, 1, 0) def forward(self, x): skips = {} for level in [1, 2, 3, 4]: x = self.encode(x, skips, level) return x def encode(self, x, skips, level): assert level in {1, 2, 3, 4} if self.option_unpool == 'sum': if level == 1: out = self.conv0(x) out = self.relu(self.conv1_1(self.pad(out))) out = self.relu(self.conv1_2(self.pad(out))) skips['conv1_2'] = out LL, LH, HL, HH = self.pool1(out) skips['pool1'] = [LH, HL, HH] return LL elif level == 2: out = self.relu(self.conv2_1(self.pad(x))) out = self.relu(self.conv2_2(self.pad(out))) skips['conv2_2'] = out LL, LH, HL, HH = self.pool2(out) skips['pool2'] = [LH, HL, HH] return LL elif level == 3: out = self.relu(self.conv3_1(self.pad(x))) out = self.relu(self.conv3_2(self.pad(out))) out = self.relu(self.conv3_3(self.pad(out))) out = self.relu(self.conv3_4(self.pad(out))) skips['conv3_4'] = out LL, LH, HL, HH = self.pool3(out) skips['pool3'] = [LH, HL, HH] return LL else: return self.relu(self.conv4_1(self.pad(x))) elif self.option_unpool == 'cat5': if level == 1: out = self.conv0(x) out = self.relu(self.conv1_1(self.pad(out))) return out elif level == 2: out = self.relu(self.conv1_2(self.pad(x))) skips['conv1_2'] = out LL, LH, HL, HH = self.pool1(out) skips['pool1'] = [LH, HL, HH] out = self.relu(self.conv2_1(self.pad(LL))) return out elif level == 3: out = self.relu(self.conv2_2(self.pad(x))) skips['conv2_2'] = out LL, LH, HL, HH = self.pool2(out) skips['pool2'] = [LH, HL, HH] out = self.relu(self.conv3_1(self.pad(LL))) return out else: out = self.relu(self.conv3_2(self.pad(x))) out = self.relu(self.conv3_3(self.pad(out))) out = self.relu(self.conv3_4(self.pad(out))) skips['conv3_4'] = out LL, LH, HL, HH = self.pool3(out) skips['pool3'] = [LH, HL, HH] out = self.relu(self.conv4_1(self.pad(LL))) return out else: raise NotImplementedError class WaveDecoder(nn.Module): def __init__(self, option_unpool): super(WaveDecoder, self).__init__() self.option_unpool = option_unpool if option_unpool == 'sum': multiply_in = 1 elif option_unpool == 'cat5': multiply_in = 5 else: raise NotImplementedError self.pad = nn.ReflectionPad2d(1) self.relu = nn.ReLU(inplace=True) self.conv4_1 = nn.Conv2d(512, 256, 3, 1, 0) self.recon_block3 = WaveUnpool(256, option_unpool) if option_unpool == 'sum': self.conv3_4 = nn.Conv2d(256*multiply_in, 256, 3, 1, 0) else: self.conv3_4_2 = nn.Conv2d(256*multiply_in, 256, 3, 1, 0) self.conv3_3 = nn.Conv2d(256, 256, 3, 1, 0) self.conv3_2 = nn.Conv2d(256, 256, 3, 1, 0) self.conv3_1 = nn.Conv2d(256, 128, 3, 1, 0) self.recon_block2 = WaveUnpool(128, option_unpool) if option_unpool == 'sum': self.conv2_2 = nn.Conv2d(128*multiply_in, 128, 3, 1, 0) else: self.conv2_2_2 = nn.Conv2d(128*multiply_in, 128, 3, 1, 0) self.conv2_1 = nn.Conv2d(128, 64, 3, 1, 0) self.recon_block1 = WaveUnpool(64, option_unpool) if option_unpool == 'sum': self.conv1_2 = nn.Conv2d(64*multiply_in, 64, 3, 1, 0) else: self.conv1_2_2 = nn.Conv2d(64*multiply_in, 64, 3, 1, 0) self.conv1_1 = nn.Conv2d(64, 3, 3, 1, 0) def forward(self, x, skips): for level in [4, 3, 2, 1]: x = self.decode(x, skips, level) return x def decode(self, x, skips, level): assert level in {4, 3, 2, 1} if level == 4: out = self.relu(self.conv4_1(self.pad(x))) LH, HL, HH = skips['pool3'] original = skips['conv3_4'] if 'conv3_4' in skips.keys() else None out = self.recon_block3(out, LH, HL, HH, original) _conv3_4 = self.conv3_4 if self.option_unpool == 'sum' else self.conv3_4_2 out = self.relu(_conv3_4(self.pad(out))) out = self.relu(self.conv3_3(self.pad(out))) return self.relu(self.conv3_2(self.pad(out))) elif level == 3: out = self.relu(self.conv3_1(self.pad(x))) LH, HL, HH = skips['pool2'] original = skips['conv2_2'] if 'conv2_2' in skips.keys() else None out = self.recon_block2(out, LH, HL, HH, original) _conv2_2 = self.conv2_2 if self.option_unpool == 'sum' else self.conv2_2_2 return self.relu(_conv2_2(self.pad(out))) elif level == 2: out = self.relu(self.conv2_1(self.pad(x))) LH, HL, HH = skips['pool1'] original = skips['conv1_2'] if 'conv1_2' in skips.keys() else None out = self.recon_block1(out, LH, HL, HH, original) _conv1_2 = self.conv1_2 if self.option_unpool == 'sum' else self.conv1_2_2 return self.relu(_conv1_2(self.pad(out))) else: return self.conv1_1(self.pad(x))
[ "torch.from_numpy", "torch.nn.ReLU", "torch.nn.ReflectionPad2d", "torch.nn.Conv2d", "numpy.transpose", "numpy.ones", "numpy.sqrt" ]
[((1237, 1252), 'numpy.ones', 'np.ones', (['(1, 2)'], {}), '((1, 2))\n', (1244, 1252), True, 'import numpy as np\n'), ((1287, 1302), 'numpy.ones', 'np.ones', (['(1, 2)'], {}), '((1, 2))\n', (1294, 1302), True, 'import numpy as np\n'), ((1367, 1391), 'numpy.transpose', 'np.transpose', (['harr_wav_L'], {}), '(harr_wav_L)\n', (1379, 1391), True, 'import numpy as np\n'), ((1423, 1447), 'numpy.transpose', 'np.transpose', (['harr_wav_L'], {}), '(harr_wav_L)\n', (1435, 1447), True, 'import numpy as np\n'), ((1479, 1503), 'numpy.transpose', 'np.transpose', (['harr_wav_H'], {}), '(harr_wav_H)\n', (1491, 1503), True, 'import numpy as np\n'), ((1535, 1559), 'numpy.transpose', 'np.transpose', (['harr_wav_H'], {}), '(harr_wav_H)\n', (1547, 1559), True, 'import numpy as np\n'), ((4091, 4112), 'torch.nn.ReflectionPad2d', 'nn.ReflectionPad2d', (['(1)'], {}), '(1)\n', (4109, 4112), True, 'import torch.nn as nn\n'), ((4133, 4154), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (4140, 4154), True, 'import torch.nn as nn\n'), ((4177, 4201), 'torch.nn.Conv2d', 'nn.Conv2d', (['(3)', '(3)', '(1)', '(1)', '(0)'], {}), '(3, 3, 1, 1, 0)\n', (4186, 4201), True, 'import torch.nn as nn\n'), ((4225, 4250), 'torch.nn.Conv2d', 'nn.Conv2d', (['(3)', '(64)', '(3)', '(1)', '(0)'], {}), '(3, 64, 3, 1, 0)\n', (4234, 4250), True, 'import torch.nn as nn\n'), ((4274, 4300), 'torch.nn.Conv2d', 'nn.Conv2d', (['(64)', '(64)', '(3)', '(1)', '(0)'], {}), '(64, 64, 3, 1, 0)\n', (4283, 4300), True, 'import torch.nn as nn\n'), ((4359, 4386), 'torch.nn.Conv2d', 'nn.Conv2d', (['(64)', '(128)', '(3)', '(1)', '(0)'], {}), '(64, 128, 3, 1, 0)\n', (4368, 4386), True, 'import torch.nn as nn\n'), ((4410, 4438), 'torch.nn.Conv2d', 'nn.Conv2d', (['(128)', '(128)', '(3)', '(1)', '(0)'], {}), '(128, 128, 3, 1, 0)\n', (4419, 4438), True, 'import torch.nn as nn\n'), ((4498, 4526), 'torch.nn.Conv2d', 'nn.Conv2d', (['(128)', '(256)', '(3)', '(1)', '(0)'], {}), '(128, 256, 3, 1, 0)\n', (4507, 4526), True, 'import torch.nn as nn\n'), ((4550, 4578), 'torch.nn.Conv2d', 'nn.Conv2d', (['(256)', '(256)', '(3)', '(1)', '(0)'], {}), '(256, 256, 3, 1, 0)\n', (4559, 4578), True, 'import torch.nn as nn\n'), ((4602, 4630), 'torch.nn.Conv2d', 'nn.Conv2d', (['(256)', '(256)', '(3)', '(1)', '(0)'], {}), '(256, 256, 3, 1, 0)\n', (4611, 4630), True, 'import torch.nn as nn\n'), ((4654, 4682), 'torch.nn.Conv2d', 'nn.Conv2d', (['(256)', '(256)', '(3)', '(1)', '(0)'], {}), '(256, 256, 3, 1, 0)\n', (4663, 4682), True, 'import torch.nn as nn\n'), ((4742, 4770), 'torch.nn.Conv2d', 'nn.Conv2d', (['(256)', '(512)', '(3)', '(1)', '(0)'], {}), '(256, 512, 3, 1, 0)\n', (4751, 4770), True, 'import torch.nn as nn\n'), ((7842, 7863), 'torch.nn.ReflectionPad2d', 'nn.ReflectionPad2d', (['(1)'], {}), '(1)\n', (7860, 7863), True, 'import torch.nn as nn\n'), ((7884, 7905), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (7891, 7905), True, 'import torch.nn as nn\n'), ((7929, 7957), 'torch.nn.Conv2d', 'nn.Conv2d', (['(512)', '(256)', '(3)', '(1)', '(0)'], {}), '(512, 256, 3, 1, 0)\n', (7938, 7957), True, 'import torch.nn as nn\n'), ((8228, 8256), 'torch.nn.Conv2d', 'nn.Conv2d', (['(256)', '(256)', '(3)', '(1)', '(0)'], {}), '(256, 256, 3, 1, 0)\n', (8237, 8256), True, 'import torch.nn as nn\n'), ((8280, 8308), 'torch.nn.Conv2d', 'nn.Conv2d', (['(256)', '(256)', '(3)', '(1)', '(0)'], {}), '(256, 256, 3, 1, 0)\n', (8289, 8308), True, 'import torch.nn as nn\n'), ((8332, 8360), 'torch.nn.Conv2d', 'nn.Conv2d', (['(256)', '(128)', '(3)', '(1)', '(0)'], {}), '(256, 128, 3, 1, 0)\n', (8341, 8360), True, 'import torch.nn as nn\n'), ((8631, 8658), 'torch.nn.Conv2d', 'nn.Conv2d', (['(128)', '(64)', '(3)', '(1)', '(0)'], {}), '(128, 64, 3, 1, 0)\n', (8640, 8658), True, 'import torch.nn as nn\n'), ((8924, 8949), 'torch.nn.Conv2d', 'nn.Conv2d', (['(64)', '(3)', '(3)', '(1)', '(0)'], {}), '(64, 3, 3, 1, 0)\n', (8933, 8949), True, 'import torch.nn as nn\n'), ((1224, 1234), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (1231, 1234), True, 'import numpy as np\n'), ((1274, 1284), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (1281, 1284), True, 'import numpy as np\n'), ((1590, 1619), 'torch.from_numpy', 'torch.from_numpy', (['harr_wav_LL'], {}), '(harr_wav_LL)\n', (1606, 1619), False, 'import torch\n'), ((1649, 1678), 'torch.from_numpy', 'torch.from_numpy', (['harr_wav_LH'], {}), '(harr_wav_LH)\n', (1665, 1678), False, 'import torch\n'), ((1708, 1737), 'torch.from_numpy', 'torch.from_numpy', (['harr_wav_HL'], {}), '(harr_wav_HL)\n', (1724, 1737), False, 'import torch\n'), ((1767, 1796), 'torch.from_numpy', 'torch.from_numpy', (['harr_wav_HH'], {}), '(harr_wav_HH)\n', (1783, 1796), False, 'import torch\n'), ((8080, 8122), 'torch.nn.Conv2d', 'nn.Conv2d', (['(256 * multiply_in)', '(256)', '(3)', '(1)', '(0)'], {}), '(256 * multiply_in, 256, 3, 1, 0)\n', (8089, 8122), True, 'import torch.nn as nn\n'), ((8164, 8206), 'torch.nn.Conv2d', 'nn.Conv2d', (['(256 * multiply_in)', '(256)', '(3)', '(1)', '(0)'], {}), '(256 * multiply_in, 256, 3, 1, 0)\n', (8173, 8206), True, 'import torch.nn as nn\n'), ((8483, 8525), 'torch.nn.Conv2d', 'nn.Conv2d', (['(128 * multiply_in)', '(128)', '(3)', '(1)', '(0)'], {}), '(128 * multiply_in, 128, 3, 1, 0)\n', (8492, 8525), True, 'import torch.nn as nn\n'), ((8567, 8609), 'torch.nn.Conv2d', 'nn.Conv2d', (['(128 * multiply_in)', '(128)', '(3)', '(1)', '(0)'], {}), '(128 * multiply_in, 128, 3, 1, 0)\n', (8576, 8609), True, 'import torch.nn as nn\n'), ((8780, 8820), 'torch.nn.Conv2d', 'nn.Conv2d', (['(64 * multiply_in)', '(64)', '(3)', '(1)', '(0)'], {}), '(64 * multiply_in, 64, 3, 1, 0)\n', (8789, 8820), True, 'import torch.nn as nn\n'), ((8862, 8902), 'torch.nn.Conv2d', 'nn.Conv2d', (['(64 * multiply_in)', '(64)', '(3)', '(1)', '(0)'], {}), '(64 * multiply_in, 64, 3, 1, 0)\n', (8871, 8902), True, 'import torch.nn as nn\n')]
import numpy class ReverseProjection: """ I suppose that the photo is xy plane having z=0. coordinates of a point of laser plane having laser_position=0 are (p_1, p_2, p_3). normal vector of laser plane is (n_1, n_2, n_3). focus is in (width/2, heigth/2, -f). """ def __init__(self, laser_plane_normal, a_point_at_laser_plane, photo_size_px, up, focal_point_z): self.laser_plane_normal = laser_plane_normal self.a_point_at_laser_plane = a_point_at_laser_plane self.photo_size = photo_size_px # focal point self.focal_point = numpy.array([photo_size_px[0]/2, photo_size_px[1]/2, focal_point_z]) self.normal_unit = laser_plane_normal / numpy.linalg.norm(laser_plane_normal) self.up = up # Normalized up vector self.up_unit = up / numpy.linalg.norm(up) # axis X is orthogonal to Y and Z self.axis_x = numpy.cross(self.up_unit, self.normal_unit) self.axis_x_unit = self.axis_x / numpy.linalg.norm(self.axis_x) def get3D(self, photo_x, photo_y, laser_position): """ :param photo_x: :param photo_y: :param laser_position: :return: """ laser_point = self.a_point_at_laser_plane + laser_position * self.normal_unit # is a point in laser plane photo_point = numpy.array([photo_x, photo_y, 0]) line_direction = photo_point - self.focal_point # line containing points photo_point and focus has equation focus + line_param * line_direction # laser plane has equation normal.(x, y, z) - normal.laser_point = 0, so the intersection is defined by line_param = (numpy.dot(self.normal_unit,laser_point) - numpy.dot(self.normal_unit, self.focal_point)) / (numpy.dot(self.normal_unit, line_direction)) coordinates = self.focal_point + line_param * line_direction return coordinates def coordinate_change(self, old_coordinates): """ :param old_coordinates: :return: """ # from photo coordinates the cuboid coordinates are obtained using change of basis matrix new_basis = numpy.transpose(numpy.array([self.axis_x, self.up, self.laser_plane_normal])) print(new_basis) new_basis_inversion = numpy.linalg.inv(new_basis) print(new_basis_inversion) new_coordinates = numpy.dot(new_basis_inversion, old_coordinates) return new_coordinates
[ "numpy.cross", "numpy.linalg.inv", "numpy.array", "numpy.linalg.norm", "numpy.dot" ]
[((602, 674), 'numpy.array', 'numpy.array', (['[photo_size_px[0] / 2, photo_size_px[1] / 2, focal_point_z]'], {}), '([photo_size_px[0] / 2, photo_size_px[1] / 2, focal_point_z])\n', (613, 674), False, 'import numpy\n'), ((923, 966), 'numpy.cross', 'numpy.cross', (['self.up_unit', 'self.normal_unit'], {}), '(self.up_unit, self.normal_unit)\n', (934, 966), False, 'import numpy\n'), ((1352, 1386), 'numpy.array', 'numpy.array', (['[photo_x, photo_y, 0]'], {}), '([photo_x, photo_y, 0])\n', (1363, 1386), False, 'import numpy\n'), ((2291, 2318), 'numpy.linalg.inv', 'numpy.linalg.inv', (['new_basis'], {}), '(new_basis)\n', (2307, 2318), False, 'import numpy\n'), ((2380, 2427), 'numpy.dot', 'numpy.dot', (['new_basis_inversion', 'old_coordinates'], {}), '(new_basis_inversion, old_coordinates)\n', (2389, 2427), False, 'import numpy\n'), ((719, 756), 'numpy.linalg.norm', 'numpy.linalg.norm', (['laser_plane_normal'], {}), '(laser_plane_normal)\n', (736, 756), False, 'import numpy\n'), ((837, 858), 'numpy.linalg.norm', 'numpy.linalg.norm', (['up'], {}), '(up)\n', (854, 858), False, 'import numpy\n'), ((1008, 1038), 'numpy.linalg.norm', 'numpy.linalg.norm', (['self.axis_x'], {}), '(self.axis_x)\n', (1025, 1038), False, 'import numpy\n'), ((1773, 1816), 'numpy.dot', 'numpy.dot', (['self.normal_unit', 'line_direction'], {}), '(self.normal_unit, line_direction)\n', (1782, 1816), False, 'import numpy\n'), ((2174, 2234), 'numpy.array', 'numpy.array', (['[self.axis_x, self.up, self.laser_plane_normal]'], {}), '([self.axis_x, self.up, self.laser_plane_normal])\n', (2185, 2234), False, 'import numpy\n'), ((1681, 1721), 'numpy.dot', 'numpy.dot', (['self.normal_unit', 'laser_point'], {}), '(self.normal_unit, laser_point)\n', (1690, 1721), False, 'import numpy\n'), ((1723, 1768), 'numpy.dot', 'numpy.dot', (['self.normal_unit', 'self.focal_point'], {}), '(self.normal_unit, self.focal_point)\n', (1732, 1768), False, 'import numpy\n')]
#!/usr/bin/env python ''' Feature homography ================== Example of using features2d framework for interactive video homography matching. ORB features and FLANN matcher are used. The actual tracking is implemented by PlaneTracker class in plane_tracker.py ''' # Python 2/3 compatibility from __future__ import print_function import numpy as np import cv2 import sys PY3 = sys.version_info[0] == 3 if PY3: xrange = range # local modules from tst_scene_render import TestSceneRender def intersectionRate(s1, s2): x1, y1, x2, y2 = s1 s1 = np.array([[x1, y1], [x2,y1], [x2, y2], [x1, y2]]) area, intersection = cv2.intersectConvexConvex(s1, np.array(s2)) return 2 * area / (cv2.contourArea(s1) + cv2.contourArea(np.array(s2))) from tests_common import NewOpenCVTests class feature_homography_test(NewOpenCVTests): render = None tracker = None framesCounter = 0 frame = None def test_feature_homography(self): self.render = TestSceneRender(self.get_sample('samples/data/graf1.png'), self.get_sample('samples/data/box.png'), noise = 0.5, speed = 0.5) self.frame = self.render.getNextFrame() self.tracker = PlaneTracker() self.tracker.clear() self.tracker.add_target(self.frame, self.render.getCurrentRect()) while self.framesCounter < 100: self.framesCounter += 1 tracked = self.tracker.track(self.frame) if len(tracked) > 0: tracked = tracked[0] self.assertGreater(intersectionRate(self.render.getCurrentRect(), np.int32(tracked.quad)), 0.6) else: self.assertEqual(0, 1, 'Tracking error') self.frame = self.render.getNextFrame() # built-in modules from collections import namedtuple FLANN_INDEX_KDTREE = 1 FLANN_INDEX_LSH = 6 flann_params= dict(algorithm = FLANN_INDEX_LSH, table_number = 6, # 12 key_size = 12, # 20 multi_probe_level = 1) #2 MIN_MATCH_COUNT = 10 ''' image - image to track rect - tracked rectangle (x1, y1, x2, y2) keypoints - keypoints detected inside rect descrs - their descriptors data - some user-provided data ''' PlanarTarget = namedtuple('PlaneTarget', 'image, rect, keypoints, descrs, data') ''' target - reference to PlanarTarget p0 - matched points coords in target image p1 - matched points coords in input frame H - homography matrix from p0 to p1 quad - target bounary quad in input frame ''' TrackedTarget = namedtuple('TrackedTarget', 'target, p0, p1, H, quad') class PlaneTracker: def __init__(self): self.detector = cv2.AKAZE_create(threshold = 0.003) self.matcher = cv2.FlannBasedMatcher(flann_params, {}) # bug : need to pass empty dict (#1329) self.targets = [] self.frame_points = [] def add_target(self, image, rect, data=None): '''Add a new tracking target.''' x0, y0, x1, y1 = rect raw_points, raw_descrs = self.detect_features(image) points, descs = [], [] for kp, desc in zip(raw_points, raw_descrs): x, y = kp.pt if x0 <= x <= x1 and y0 <= y <= y1: points.append(kp) descs.append(desc) descs = np.uint8(descs) self.matcher.add([descs]) target = PlanarTarget(image = image, rect=rect, keypoints = points, descrs=descs, data=data) self.targets.append(target) def clear(self): '''Remove all targets''' self.targets = [] self.matcher.clear() def track(self, frame): '''Returns a list of detected TrackedTarget objects''' self.frame_points, frame_descrs = self.detect_features(frame) if len(self.frame_points) < MIN_MATCH_COUNT: return [] matches = self.matcher.knnMatch(frame_descrs, k = 2) matches = [m[0] for m in matches if len(m) == 2 and m[0].distance < m[1].distance * 0.75] if len(matches) < MIN_MATCH_COUNT: return [] matches_by_id = [[] for _ in xrange(len(self.targets))] for m in matches: matches_by_id[m.imgIdx].append(m) tracked = [] for imgIdx, matches in enumerate(matches_by_id): if len(matches) < MIN_MATCH_COUNT: continue target = self.targets[imgIdx] p0 = [target.keypoints[m.trainIdx].pt for m in matches] p1 = [self.frame_points[m.queryIdx].pt for m in matches] p0, p1 = np.float32((p0, p1)) H, status = cv2.findHomography(p0, p1, cv2.RANSAC, 3.0) status = status.ravel() != 0 if status.sum() < MIN_MATCH_COUNT: continue p0, p1 = p0[status], p1[status] x0, y0, x1, y1 = target.rect quad = np.float32([[x0, y0], [x1, y0], [x1, y1], [x0, y1]]) quad = cv2.perspectiveTransform(quad.reshape(1, -1, 2), H).reshape(-1, 2) track = TrackedTarget(target=target, p0=p0, p1=p1, H=H, quad=quad) tracked.append(track) tracked.sort(key = lambda t: len(t.p0), reverse=True) return tracked def detect_features(self, frame): '''detect_features(self, frame) -> keypoints, descrs''' keypoints, descrs = self.detector.detectAndCompute(frame, None) if descrs is None: # detectAndCompute returns descs=None if no keypoints found descrs = [] return keypoints, descrs
[ "cv2.contourArea", "numpy.uint8", "numpy.float32", "cv2.AKAZE_create", "cv2.FlannBasedMatcher", "numpy.array", "collections.namedtuple", "numpy.int32", "cv2.findHomography" ]
[((2274, 2339), 'collections.namedtuple', 'namedtuple', (['"""PlaneTarget"""', '"""image, rect, keypoints, descrs, data"""'], {}), "('PlaneTarget', 'image, rect, keypoints, descrs, data')\n", (2284, 2339), False, 'from collections import namedtuple\n'), ((2588, 2642), 'collections.namedtuple', 'namedtuple', (['"""TrackedTarget"""', '"""target, p0, p1, H, quad"""'], {}), "('TrackedTarget', 'target, p0, p1, H, quad')\n", (2598, 2642), False, 'from collections import namedtuple\n'), ((563, 613), 'numpy.array', 'np.array', (['[[x1, y1], [x2, y1], [x2, y2], [x1, y2]]'], {}), '([[x1, y1], [x2, y1], [x2, y2], [x1, y2]])\n', (571, 613), True, 'import numpy as np\n'), ((669, 681), 'numpy.array', 'np.array', (['s2'], {}), '(s2)\n', (677, 681), True, 'import numpy as np\n'), ((2712, 2745), 'cv2.AKAZE_create', 'cv2.AKAZE_create', ([], {'threshold': '(0.003)'}), '(threshold=0.003)\n', (2728, 2745), False, 'import cv2\n'), ((2771, 2810), 'cv2.FlannBasedMatcher', 'cv2.FlannBasedMatcher', (['flann_params', '{}'], {}), '(flann_params, {})\n', (2792, 2810), False, 'import cv2\n'), ((3334, 3349), 'numpy.uint8', 'np.uint8', (['descs'], {}), '(descs)\n', (3342, 3349), True, 'import numpy as np\n'), ((706, 725), 'cv2.contourArea', 'cv2.contourArea', (['s1'], {}), '(s1)\n', (721, 725), False, 'import cv2\n'), ((4578, 4598), 'numpy.float32', 'np.float32', (['(p0, p1)'], {}), '((p0, p1))\n', (4588, 4598), True, 'import numpy as np\n'), ((4623, 4666), 'cv2.findHomography', 'cv2.findHomography', (['p0', 'p1', 'cv2.RANSAC', '(3.0)'], {}), '(p0, p1, cv2.RANSAC, 3.0)\n', (4641, 4666), False, 'import cv2\n'), ((4885, 4937), 'numpy.float32', 'np.float32', (['[[x0, y0], [x1, y0], [x1, y1], [x0, y1]]'], {}), '([[x0, y0], [x1, y0], [x1, y1], [x0, y1]])\n', (4895, 4937), True, 'import numpy as np\n'), ((744, 756), 'numpy.array', 'np.array', (['s2'], {}), '(s2)\n', (752, 756), True, 'import numpy as np\n'), ((1597, 1619), 'numpy.int32', 'np.int32', (['tracked.quad'], {}), '(tracked.quad)\n', (1605, 1619), True, 'import numpy as np\n')]
import re from string import ascii_letters import numpy as np import pandas as pd import pytest import anndata as ad ADATA_ATTRS = ("obs", "var", "varm", "obsm", "layers", "obsp", "varp", "uns") @pytest.fixture def adata(): return ad.AnnData( np.zeros((20, 10)), obs=pd.DataFrame( dict(obs_key=list(ascii_letters[:20])), index=[f"cell{i}" for i in range(20)], ), var=pd.DataFrame( dict(var_key=np.arange(10)), index=[f"gene{i}" for i in range(10)] ), varm=dict(varm_key=np.zeros((10, 20))), obsm=dict(obsm_key=np.zeros((20, 20))), layers=dict(layers_key=np.zeros((20, 10))), obsp=dict(obsp_key=np.zeros((20, 20))), varp=dict(varp_key=np.zeros((10, 10))), uns=dict(uns_key=dict(zip("abc", range(3)))), ) @pytest.fixture(params=ADATA_ATTRS) def adata_attr(request): return request.param def test_anndata_repr(adata): assert f"{adata.n_obs} × {adata.n_vars}" in repr(adata) for idxr in [ (slice(10, 20), 9), (12, 9), (["cell1", "cell2"], slice(10, 15)), ]: v = adata[idxr] v_repr = repr(v) assert f"{v.n_obs} × {v.n_vars}" in v_repr assert "View of" in v_repr for attr in ADATA_ATTRS: assert re.search( rf"^\s+{attr}:[^$]*{attr}_key.*$", v_repr, flags=re.MULTILINE ) def test_removal(adata, adata_attr): attr = adata_attr assert re.search(rf"^\s+{attr}:.*$", repr(adata), flags=re.MULTILINE) delattr(adata, attr) assert re.search(rf"^\s+{attr}:.*$", repr(adata), flags=re.MULTILINE) is None
[ "numpy.zeros", "pytest.fixture", "numpy.arange", "re.search" ]
[((843, 877), 'pytest.fixture', 'pytest.fixture', ([], {'params': 'ADATA_ATTRS'}), '(params=ADATA_ATTRS)\n', (857, 877), False, 'import pytest\n'), ((260, 278), 'numpy.zeros', 'np.zeros', (['(20, 10)'], {}), '((20, 10))\n', (268, 278), True, 'import numpy as np\n'), ((1323, 1395), 're.search', 're.search', (['f"""^\\\\s+{attr}:[^$]*{attr}_key.*$"""', 'v_repr'], {'flags': 're.MULTILINE'}), "(f'^\\\\s+{attr}:[^$]*{attr}_key.*$', v_repr, flags=re.MULTILINE)\n", (1332, 1395), False, 'import re\n'), ((563, 581), 'numpy.zeros', 'np.zeros', (['(10, 20)'], {}), '((10, 20))\n', (571, 581), True, 'import numpy as np\n'), ((611, 629), 'numpy.zeros', 'np.zeros', (['(20, 20)'], {}), '((20, 20))\n', (619, 629), True, 'import numpy as np\n'), ((663, 681), 'numpy.zeros', 'np.zeros', (['(20, 10)'], {}), '((20, 10))\n', (671, 681), True, 'import numpy as np\n'), ((711, 729), 'numpy.zeros', 'np.zeros', (['(20, 20)'], {}), '((20, 20))\n', (719, 729), True, 'import numpy as np\n'), ((759, 777), 'numpy.zeros', 'np.zeros', (['(10, 10)'], {}), '((10, 10))\n', (767, 777), True, 'import numpy as np\n'), ((471, 484), 'numpy.arange', 'np.arange', (['(10)'], {}), '(10)\n', (480, 484), True, 'import numpy as np\n')]
# Copyright 2019 Graphcore Ltd. """Networks for VAE implementation in VCD paper""" import numpy as np import tensorflow as tf def encoder(X_input, Z_dim, dtype, n_hidden=200): """As in paper""" with tf.variable_scope('encoder', reuse=tf.AUTO_REUSE, use_resource=True): # Calculate sqrt(n_hidden) - for initialisers sqrt_n_hid_inv = 1. / np.sqrt(float(n_hidden)) # Separate networks for approx posterior mean and log std with tf.variable_scope('mean', use_resource=True, reuse=tf.AUTO_REUSE): relu0_mean = tf.layers.dense( X_input, units=n_hidden, activation=tf.nn.relu, kernel_initializer=tf.random_normal_initializer(stddev=sqrt_n_hid_inv, dtype=dtype), bias_initializer=tf.random_normal_initializer(stddev=sqrt_n_hid_inv, dtype=dtype), name='relu0_mu') relu1_mean = tf.layers.dense( relu0_mean, units=n_hidden, activation=tf.nn.relu, kernel_initializer=tf.random_normal_initializer(stddev=sqrt_n_hid_inv, dtype=dtype), bias_initializer=tf.random_normal_initializer(stddev=sqrt_n_hid_inv, dtype=dtype), name='relu1_mu') Z_cond_X_mean = tf.layers.dense( relu1_mean, units=Z_dim, activation=None, kernel_initializer=tf.random_normal_initializer(dtype=dtype), bias_initializer=tf.random_normal_initializer(dtype=dtype), name='posterior_mean') with tf.variable_scope('std', use_resource=True, reuse=tf.AUTO_REUSE): relu0_std = tf.layers.dense( X_input, units=n_hidden, activation=tf.nn.relu, kernel_initializer=tf.random_normal_initializer(stddev=sqrt_n_hid_inv, dtype=dtype), bias_initializer=tf.random_normal_initializer(stddev=sqrt_n_hid_inv, dtype=dtype), name='relu0_std') relu1_std = tf.layers.dense( relu0_std, units=n_hidden, activation=tf.nn.relu, kernel_initializer=tf.random_normal_initializer(stddev=sqrt_n_hid_inv, dtype=dtype), bias_initializer=tf.random_normal_initializer(stddev=sqrt_n_hid_inv, dtype=dtype), name='relu1_std') Z_cond_X_log_std = tf.layers.dense( relu1_std, units=Z_dim, activation=None, kernel_initializer=tf.random_normal_initializer(dtype=dtype), bias_initializer=tf.random_normal_initializer(dtype=dtype), name='posterior_log_std') # More numerically-stable exponential function def _pos_softplus(x): return x + tf.log(1. + tf.exp(1e-4 - x)) def _neg_softplus(x): return 1e-4 + tf.log(1. + tf.exp(x - 1e-4)) Z_cond_X_std = tf.where(Z_cond_X_log_std >= 0, _pos_softplus(Z_cond_X_log_std), _neg_softplus(Z_cond_X_log_std)) return Z_cond_X_mean, Z_cond_X_std def decoder(Z_cond_X_samples, output_dims, dtype, n_hidden=200): """As in paper""" # Calculate sqrt(n_hidden) - for initialisers sqrt_n_hid_inv = 1. / np.sqrt(float(n_hidden)) with tf.variable_scope('decoder', reuse=tf.AUTO_REUSE, use_resource=True): relu0_dec = tf.layers.dense( Z_cond_X_samples, units=n_hidden, activation=tf.nn.relu, kernel_initializer=tf.random_normal_initializer(stddev=sqrt_n_hid_inv, dtype=dtype), bias_initializer=tf.random_normal_initializer(stddev=sqrt_n_hid_inv, dtype=dtype), name='relu0_dec') relu1_dec = tf.layers.dense( relu0_dec, units=n_hidden, activation=tf.nn.relu, kernel_initializer=tf.random_normal_initializer(stddev=sqrt_n_hid_inv, dtype=dtype), bias_initializer=tf.random_normal_initializer(stddev=sqrt_n_hid_inv, dtype=dtype), name='relu1_dec') lin_out = tf.layers.dense( relu1_dec, units=np.prod(output_dims), activation=None, kernel_initializer=tf.random_normal_initializer(dtype=dtype), bias_initializer=tf.random_normal_initializer(dtype=dtype), name='dec_lin_out') return {'logits': lin_out}
[ "tensorflow.exp", "tensorflow.random_normal_initializer", "tensorflow.variable_scope", "numpy.prod" ]
[((209, 277), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""encoder"""'], {'reuse': 'tf.AUTO_REUSE', 'use_resource': '(True)'}), "('encoder', reuse=tf.AUTO_REUSE, use_resource=True)\n", (226, 277), True, 'import tensorflow as tf\n'), ((3424, 3492), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""decoder"""'], {'reuse': 'tf.AUTO_REUSE', 'use_resource': '(True)'}), "('decoder', reuse=tf.AUTO_REUSE, use_resource=True)\n", (3441, 3492), True, 'import tensorflow as tf\n'), ((469, 534), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""mean"""'], {'use_resource': '(True)', 'reuse': 'tf.AUTO_REUSE'}), "('mean', use_resource=True, reuse=tf.AUTO_REUSE)\n", (486, 534), True, 'import tensorflow as tf\n'), ((1624, 1688), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""std"""'], {'use_resource': '(True)', 'reuse': 'tf.AUTO_REUSE'}), "('std', use_resource=True, reuse=tf.AUTO_REUSE)\n", (1641, 1688), True, 'import tensorflow as tf\n'), ((3655, 3719), 'tensorflow.random_normal_initializer', 'tf.random_normal_initializer', ([], {'stddev': 'sqrt_n_hid_inv', 'dtype': 'dtype'}), '(stddev=sqrt_n_hid_inv, dtype=dtype)\n', (3683, 3719), True, 'import tensorflow as tf\n'), ((3750, 3814), 'tensorflow.random_normal_initializer', 'tf.random_normal_initializer', ([], {'stddev': 'sqrt_n_hid_inv', 'dtype': 'dtype'}), '(stddev=sqrt_n_hid_inv, dtype=dtype)\n', (3778, 3814), True, 'import tensorflow as tf\n'), ((4001, 4065), 'tensorflow.random_normal_initializer', 'tf.random_normal_initializer', ([], {'stddev': 'sqrt_n_hid_inv', 'dtype': 'dtype'}), '(stddev=sqrt_n_hid_inv, dtype=dtype)\n', (4029, 4065), True, 'import tensorflow as tf\n'), ((4096, 4160), 'tensorflow.random_normal_initializer', 'tf.random_normal_initializer', ([], {'stddev': 'sqrt_n_hid_inv', 'dtype': 'dtype'}), '(stddev=sqrt_n_hid_inv, dtype=dtype)\n', (4124, 4160), True, 'import tensorflow as tf\n'), ((4269, 4289), 'numpy.prod', 'np.prod', (['output_dims'], {}), '(output_dims)\n', (4276, 4289), True, 'import numpy as np\n'), ((4351, 4392), 'tensorflow.random_normal_initializer', 'tf.random_normal_initializer', ([], {'dtype': 'dtype'}), '(dtype=dtype)\n', (4379, 4392), True, 'import tensorflow as tf\n'), ((4423, 4464), 'tensorflow.random_normal_initializer', 'tf.random_normal_initializer', ([], {'dtype': 'dtype'}), '(dtype=dtype)\n', (4451, 4464), True, 'import tensorflow as tf\n'), ((709, 773), 'tensorflow.random_normal_initializer', 'tf.random_normal_initializer', ([], {'stddev': 'sqrt_n_hid_inv', 'dtype': 'dtype'}), '(stddev=sqrt_n_hid_inv, dtype=dtype)\n', (737, 773), True, 'import tensorflow as tf\n'), ((808, 872), 'tensorflow.random_normal_initializer', 'tf.random_normal_initializer', ([], {'stddev': 'sqrt_n_hid_inv', 'dtype': 'dtype'}), '(stddev=sqrt_n_hid_inv, dtype=dtype)\n', (836, 872), True, 'import tensorflow as tf\n'), ((1084, 1148), 'tensorflow.random_normal_initializer', 'tf.random_normal_initializer', ([], {'stddev': 'sqrt_n_hid_inv', 'dtype': 'dtype'}), '(stddev=sqrt_n_hid_inv, dtype=dtype)\n', (1112, 1148), True, 'import tensorflow as tf\n'), ((1183, 1247), 'tensorflow.random_normal_initializer', 'tf.random_normal_initializer', ([], {'stddev': 'sqrt_n_hid_inv', 'dtype': 'dtype'}), '(stddev=sqrt_n_hid_inv, dtype=dtype)\n', (1211, 1247), True, 'import tensorflow as tf\n'), ((1452, 1493), 'tensorflow.random_normal_initializer', 'tf.random_normal_initializer', ([], {'dtype': 'dtype'}), '(dtype=dtype)\n', (1480, 1493), True, 'import tensorflow as tf\n'), ((1528, 1569), 'tensorflow.random_normal_initializer', 'tf.random_normal_initializer', ([], {'dtype': 'dtype'}), '(dtype=dtype)\n', (1556, 1569), True, 'import tensorflow as tf\n'), ((1862, 1926), 'tensorflow.random_normal_initializer', 'tf.random_normal_initializer', ([], {'stddev': 'sqrt_n_hid_inv', 'dtype': 'dtype'}), '(stddev=sqrt_n_hid_inv, dtype=dtype)\n', (1890, 1926), True, 'import tensorflow as tf\n'), ((1961, 2025), 'tensorflow.random_normal_initializer', 'tf.random_normal_initializer', ([], {'stddev': 'sqrt_n_hid_inv', 'dtype': 'dtype'}), '(stddev=sqrt_n_hid_inv, dtype=dtype)\n', (1989, 2025), True, 'import tensorflow as tf\n'), ((2236, 2300), 'tensorflow.random_normal_initializer', 'tf.random_normal_initializer', ([], {'stddev': 'sqrt_n_hid_inv', 'dtype': 'dtype'}), '(stddev=sqrt_n_hid_inv, dtype=dtype)\n', (2264, 2300), True, 'import tensorflow as tf\n'), ((2335, 2399), 'tensorflow.random_normal_initializer', 'tf.random_normal_initializer', ([], {'stddev': 'sqrt_n_hid_inv', 'dtype': 'dtype'}), '(stddev=sqrt_n_hid_inv, dtype=dtype)\n', (2363, 2399), True, 'import tensorflow as tf\n'), ((2608, 2649), 'tensorflow.random_normal_initializer', 'tf.random_normal_initializer', ([], {'dtype': 'dtype'}), '(dtype=dtype)\n', (2636, 2649), True, 'import tensorflow as tf\n'), ((2684, 2725), 'tensorflow.random_normal_initializer', 'tf.random_normal_initializer', ([], {'dtype': 'dtype'}), '(dtype=dtype)\n', (2712, 2725), True, 'import tensorflow as tf\n'), ((2890, 2908), 'tensorflow.exp', 'tf.exp', (['(0.0001 - x)'], {}), '(0.0001 - x)\n', (2896, 2908), True, 'import tensorflow as tf\n'), ((2977, 2995), 'tensorflow.exp', 'tf.exp', (['(x - 0.0001)'], {}), '(x - 0.0001)\n', (2983, 2995), True, 'import tensorflow as tf\n')]
from functools import reduce from itertools import product from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Union import numpy as np class _Domain: __slots__ = ['_dimensions_discrete', '_avg_distance', '_dimensions_continuous', '_dimension_length', '_dimensions', '_domain', '_total_size'] def __init__(self, discrete_domain: Optional[List[Iterable]] = None, continuous_bounds: Optional[List[Tuple]] = None, default_resolution: int = 30): domain_discrete: Dict[str, Any] = { f'd{i}': list(d) for i, d in enumerate(discrete_domain or [])} self._dimensions_discrete = list(domain_discrete.keys()) continuous_bounds = [c if len(c) == 2 else (*c, default_resolution) for c in continuous_bounds] self._dimension_length = { f'c{i}': (c[1] - c[0]) for i, c in enumerate(continuous_bounds)} self._avg_distance = {f'c{i}': (c[1] - c[0]) / c[2] for i, c in enumerate(continuous_bounds)} domain_continuous = {f'c{i}': np.linspace(*c) for i, c in enumerate(continuous_bounds or [])} self._dimensions_continuous = list(domain_continuous.keys()) self._dimensions = (self._dimensions_discrete + self._dimensions_continuous) self._domain = domain_discrete self._domain.update(domain_continuous) self._total_size = reduce(lambda x, y: x * y, [len(v) for v in self._domain.values()]) assert self._total_size > 0, 'Please define domain components!' assert default_resolution > 0, 'default_resolution must be > 0!' def __iter__(self) -> Iterable[str]: return self._domain.keys().__iter__() def __getitem__(self, item: str) -> Union[List[Any], np.ndarray]: return self._domain[item] @property def dimensions(self): return self._dimensions @property def dimensions_discrete(self): return self._dimensions_discrete @property def dimensions_continuous(self): return self._dimensions_continuous @property def dimension_length(self): return self._dimension_length @property def avg_distance(self): return self._avg_distance @property def total_size(self): return self._total_size def keys(self) -> List[str]: return list(self._domain.keys()) def values(self) -> List[Any]: return list(self._domain.values()) def items(self) -> List[Tuple[str, Any]]: return list(zip(self.keys(), self.values())) class _Individual: __slots__ = ['_values', '_scores', '_payload'] def __init__(self, values: Dict[str, Any]): self._values = values self._scores: Optional[np.ndarray] = None self._payload: Dict[str, Any] = {} def __eq__(self, other: '_Individual') -> bool: return self._values == other._values @property def values(self) -> Dict[str, Any]: return self._values @property def scores(self) -> Union[np.ndarray, None]: return self._scores @scores.setter def scores(self, scores: np.ndarray): self._scores = scores @property def payload(self) -> Dict[str, Any]: return self._payload def __getitem__(self, item: str) -> Any: return self._payload[item] def __setitem__(self, key: str, value: Any): self._payload[key] = value class _Population: __slots__ = ['_individuals'] def __init__(self, individuals: Optional[List[_Individual]] = None): unique_individuals = [] if individuals is not None: for individual in individuals: for ind in unique_individuals: if ind == individual: continue unique_individuals.append(individual) self._individuals: List[_Individual] = unique_individuals def __len__(self) -> int: return len(self._individuals) def __iter__(self) -> Iterable[_Individual]: return self._individuals.__iter__() def __add__(self, other: '_Population'): return _Population(self.individuals + other.individuals) def __getitem__(self, n: Union[int, slice] ) -> Union[_Individual, '_Population']: if isinstance(n, int): return self._individuals[n] return _Population(self._individuals[n]) @property def individuals(self) -> List[_Individual]: return self._individuals class _DistanceCalculator: __slots__ = ['_domain'] def __init__(self, domain: _Domain): self._domain = domain def distance_values(self, individual1: _Individual, individual2: _Individual) -> float: s1 = individual1.values s2 = individual2.values # Hamming-distance: distance_discrete = float(np.sum([ s1[k] != s2[k] for k in self._domain.dimensions_discrete])) # L1-distance: distance_continuous = float(np.sum([ abs(s1[k] - s2[k]) for k in self._domain.dimensions_continuous])) return distance_discrete + distance_continuous class _Scorer: __slots__ = ['_domain', '_objectives'] def __init__(self, domain: _Domain, objectives: List[Callable]): self._domain = domain self._objectives = objectives def score_individual(self, individual: _Individual): if individual.scores is None: individual.scores = np.array([ obj(individual, self._domain) for obj in self._objectives ]) def score_population(self, population: _Population): for ind in population.individuals: self.score_individual(ind) class _SimpleSorter: __slots__ = [] @staticmethod def sort_population(population: _Population, score_index: int = 0 ) -> _Population: individuals_sorted = sorted(population, key=lambda i: i.scores[score_index]) return _Population(individuals_sorted) class _GridSampler: __slots__ = ['_domain'] def __init__(self, domain: _Domain): self._domain = domain def get_grid_positions(self) -> List[Dict[str, Any]]: keys = self._domain.keys() combinations = product(*self._domain.values()) return [dict(zip(keys, values)) for values in combinations] def get_grid_population(self) -> _Population: individuals = [_Individual(values) for values in self.get_grid_positions()] return _Population(individuals=individuals) class _RandomSampler: __slots__ = ['_domain', '_rng'] def __init__(self, domain: _Domain, seed: int = 111): self._rng = np.random.default_rng(seed=seed) self._domain = domain def get_random_position(self) -> Dict[str, Any]: return {k: self._rng.choice(self._domain[k]) for k in self._domain} def get_random_individual(self) -> _Individual: values = self.get_random_position() return _Individual(values) def get_random_population(self, n_individuals: int) -> _Population: """ Get a random population with (unique) samples. If less than the desired number of individuals are available in the grid, the full grid is returned. """ if n_individuals >= self._domain.total_size: # If n_individuals exhausts the space, just return the full grid: return _GridSampler(self._domain).get_grid_population() individuals = [] while len(individuals) < n_individuals: new_individual = self.get_random_individual() if not any([new_individual == ind for ind in individuals]): individuals.append(new_individual) return _Population(individuals=individuals) class _Mutator: __slots__ = ['_domain', '_mutation_probability', '_crossover_probability', '_selection_probability', '_seed', '_rng'] def __init__(self, domain: _Domain, mutation_probability: float = 0.2, crossover_probability: float = 0.2, selection_probability: float = 0.3, seed: int = 112): self._domain = domain self._mutation_probability = mutation_probability self._crossover_probability = crossover_probability self._selection_probability = selection_probability self._seed = seed self._rng = np.random.default_rng(seed=seed) def crossover_individuals(self, individual1: _Individual, individual2: _Individual ) -> Tuple[_Individual, _Individual]: values1 = individual1.values.copy() values2 = individual2.values.copy() for d in self._domain.dimensions_discrete: if self._rng.random() < self._crossover_probability: values1[d], values2[d] = values2[d], values1[d] for d in self._domain.dimensions_continuous: if self._rng.random() < self._crossover_probability: v1 = values1[d] v2 = values2[d] dist = v2 - v1 rand = self._rng.random() v1 += dist * rand v2 += dist * rand # Match new values to grid: arg_min1 = np.argmin(np.abs(self._domain[d] - v1)) values1[d] = self._domain[d][arg_min1] arg_min2 = np.argmin(np.abs(self._domain[d] - v2)) values2[d] = self._domain[d][arg_min2] return _Individual(values1), _Individual(values2) def mutate_individual(self, individual: _Individual) -> _Individual: values = individual.values.copy() for d in self._domain.dimensions_discrete: if self._rng.random() < self._mutation_probability: # Update discrete variables uniform by random: values[d] = np.random.choice(self._domain[d]) for d in self._domain.dimensions_continuous: if self._rng.random() < self._mutation_probability: # Normally distributed mutation with std equal to # 2x the typical distance between points: new_value = (values[d] + self._rng.normal() * 2 * self._domain.avg_distance[d]) # Match new value to grid: arg_min = np.argmin(np.abs(self._domain[d] - new_value)) values[d] = self._domain[d][arg_min] return _Individual(values=values) def mutate_population(self, population: _Population) -> _Population: p = 1.0 - self._selection_probability weights = np.array([p ** i for i in range(len(population))]) weights = np.cumsum(weights) weights /= weights[-1] counter = 0 new_individuals = population.individuals.copy() while len(new_individuals) < 2 * len(population): idx1 = int(np.where(self._rng.random() < weights)[0][0]) idx2 = int(np.where(self._rng.random() < weights)[0][0]) individual1 = population[idx1] individual2 = population[idx2] if idx1 != idx2: individual1, individual2 = self.crossover_individuals( individual1=individual1, individual2=individual2) individual1 = self.mutate_individual(individual1) individual2 = self.mutate_individual(individual2) if not np.any([individual1 == ind for ind in new_individuals]): new_individuals.append(individual1) if not np.any([individual2 == ind for ind in new_individuals]): new_individuals.append(individual2) counter += 1 if counter > 10 * len(population): break return _Population(new_individuals)
[ "numpy.sum", "numpy.abs", "numpy.random.default_rng", "numpy.cumsum", "numpy.any", "numpy.linspace", "numpy.random.choice" ]
[((7364, 7396), 'numpy.random.default_rng', 'np.random.default_rng', ([], {'seed': 'seed'}), '(seed=seed)\n', (7385, 7396), True, 'import numpy as np\n'), ((9225, 9257), 'numpy.random.default_rng', 'np.random.default_rng', ([], {'seed': 'seed'}), '(seed=seed)\n', (9246, 9257), True, 'import numpy as np\n'), ((11582, 11600), 'numpy.cumsum', 'np.cumsum', (['weights'], {}), '(weights)\n', (11591, 11600), True, 'import numpy as np\n'), ((1240, 1255), 'numpy.linspace', 'np.linspace', (['*c'], {}), '(*c)\n', (1251, 1255), True, 'import numpy as np\n'), ((5292, 5360), 'numpy.sum', 'np.sum', (['[(s1[k] != s2[k]) for k in self._domain.dimensions_discrete]'], {}), '([(s1[k] != s2[k]) for k in self._domain.dimensions_discrete])\n', (5298, 5360), True, 'import numpy as np\n'), ((10763, 10796), 'numpy.random.choice', 'np.random.choice', (['self._domain[d]'], {}), '(self._domain[d])\n', (10779, 10796), True, 'import numpy as np\n'), ((12327, 12384), 'numpy.any', 'np.any', (['[(individual1 == ind) for ind in new_individuals]'], {}), '([(individual1 == ind) for ind in new_individuals])\n', (12333, 12384), True, 'import numpy as np\n'), ((12455, 12512), 'numpy.any', 'np.any', (['[(individual2 == ind) for ind in new_individuals]'], {}), '([(individual2 == ind) for ind in new_individuals])\n', (12461, 12512), True, 'import numpy as np\n'), ((10148, 10176), 'numpy.abs', 'np.abs', (['(self._domain[d] - v1)'], {}), '(self._domain[d] - v1)\n', (10154, 10176), True, 'import numpy as np\n'), ((10270, 10298), 'numpy.abs', 'np.abs', (['(self._domain[d] - v2)'], {}), '(self._domain[d] - v2)\n', (10276, 10298), True, 'import numpy as np\n'), ((11242, 11277), 'numpy.abs', 'np.abs', (['(self._domain[d] - new_value)'], {}), '(self._domain[d] - new_value)\n', (11248, 11277), True, 'import numpy as np\n')]
#!/usr/bin/env python import numpy as np import chainer from chainer import cuda, serializers, Variable # , optimizers, training import cv2 import os.path #import chainer.functions as F #import chainer.links as L #import six #import os #from chainer.training import extensions #from train import Image2ImageDataset from img2imgDataset import ImageAndRefDataset import unet import lnet class Painter: def __init__(self, gpu=0): print("start") self.root = "./images/" self.batchsize = 1 self.outdir = self.root + "out/" self.outdir_min = self.root + "out_min/" self.gpu = gpu self._dtype = np.float32 if not os.path.isfile("./models/unet_128_standard"): print("./models/unet_128_standard not found. Please download them from http://paintschainer.preferred.tech/downloads/") if not os.path.isfile("./models/unet_512_standard"): print("./models/unet_512_standard not found. Please download them from http://paintschainer.preferred.tech/downloads/") print("load model") if self.gpu >= 0: cuda.get_device(self.gpu).use() cuda.set_max_workspace_size(64 * 1024 * 1024) # 64MB chainer.Function.type_check_enable = False self.cnn_128 = unet.UNET() self.cnn_512 = unet.UNET() if self.gpu >= 0: self.cnn_128.to_gpu() self.cnn_512.to_gpu() #lnn = lnet.LNET() #serializers.load_npz("./cgi-bin/wnet/models/model_cnn_128_df_4", cnn_128) #serializers.load_npz("./cgi-bin/paint_x2_unet/models/model_cnn_128_f3_2", cnn_128) serializers.load_npz( "./models/unet_128_standard", self.cnn_128) #serializers.load_npz("./cgi-bin/paint_x2_unet/models/model_cnn_128_ua_1", self.cnn_128) #serializers.load_npz("./cgi-bin/paint_x2_unet/models/model_m_1.6", self.cnn) serializers.load_npz( "./models/unet_512_standard", self.cnn_512) #serializers.load_npz("./cgi-bin/paint_x2_unet/models/model_p2_1", self.cnn) #serializers.load_npz("./cgi-bin/paint_x2_unet/models/model_10000", self.cnn) #serializers.load_npz("./cgi-bin/paint_x2_unet/models/liner_f", lnn) def save_as_img(self, array, name): array = array.transpose(1, 2, 0) array = array.clip(0, 255).astype(np.uint8) array = cuda.to_cpu(array) (major, minor, _) = cv2.__version__.split(".") if major == '3': img = cv2.cvtColor(array, cv2.COLOR_YUV2RGB) else: img = cv2.cvtColor(array, cv2.COLOR_YUV2BGR) cv2.imwrite(name, img) def liner(self, id_str): if self.gpu >= 0: cuda.get_device(self.gpu).use() image1 = cv2.imread(path1, cv2.IMREAD_GRAYSCALE) image1 = np.asarray(image1, self._dtype) if image1.ndim == 2: image1 = image1[:, :, np.newaxis] img = image1.transpose(2, 0, 1) x = np.zeros((1, 3, img.shape[1], img.shape[2]), dtype='f') if self.gpu >= 0: x = cuda.to_gpu(x) lnn = lnet.LNET() with chainer.no_backprop_mode(): with chainer.using_config('train', False): y = lnn.calc(Variable(x)) self.save_as_img(y.data[0], self.root + "line/" + id_str + ".jpg") def colorize(self, id_str, step='C', blur=0, s_size=128,colorize_format="jpg"): if self.gpu >= 0: cuda.get_device(self.gpu).use() _ = {'S': "ref/", 'L': "out_min/", 'C': "ref/"} dataset = ImageAndRefDataset( [id_str + ".png"], self.root + "line/", self.root + _[step]) _ = {'S': True, 'L': False, 'C': True} sample = dataset.get_example(0, minimize=_[step], blur=blur, s_size=s_size) _ = {'S': 0, 'L': 1, 'C': 0}[step] sample_container = np.zeros( (1, 4, sample[_].shape[1], sample[_].shape[2]), dtype='f') sample_container[0, :] = sample[_] if self.gpu >= 0: sample_container = cuda.to_gpu(sample_container) cnn = {'S': self.cnn_128, 'L': self.cnn_512, 'C': self.cnn_128} with chainer.no_backprop_mode(): with chainer.using_config('train', False): image_conv2d_layer = cnn[step].calc(Variable(sample_container)) del sample_container if step == 'C': input_bat = np.zeros((1, 4, sample[1].shape[1], sample[1].shape[2]), dtype='f') print(input_bat.shape) input_bat[0, 0, :] = sample[1] output = cuda.to_cpu(image_conv2d_layer.data[0]) del image_conv2d_layer # release memory for channel in range(3): input_bat[0, 1 + channel, :] = cv2.resize( output[channel, :], (sample[1].shape[2], sample[1].shape[1]), interpolation=cv2.INTER_CUBIC) if self.gpu >= 0: link = cuda.to_gpu(input_bat, None) else: link = input_bat with chainer.no_backprop_mode(): with chainer.using_config('train', False): image_conv2d_layer = self.cnn_512.calc(Variable(link)) del link # release memory image_out_path = { 'S': self.outdir_min + id_str + ".png", 'L': self.outdir + id_str + ".jpg", 'C': self.outdir + id_str + "_0." + colorize_format} self.save_as_img(image_conv2d_layer.data[0], image_out_path[step]) del image_conv2d_layer if __name__ == '__main__': for n in range(1): p = Painter() print(n) p.colorize(n * p.batchsize)
[ "lnet.LNET", "chainer.cuda.set_max_workspace_size", "cv2.resize", "chainer.Variable", "chainer.cuda.get_device", "chainer.serializers.load_npz", "cv2.cvtColor", "cv2.imwrite", "numpy.asarray", "numpy.zeros", "chainer.cuda.to_cpu", "cv2.imread", "unet.UNET", "cv2.__version__.split", "chainer.cuda.to_gpu", "chainer.no_backprop_mode", "chainer.using_config", "img2imgDataset.ImageAndRefDataset" ]
[((1298, 1309), 'unet.UNET', 'unet.UNET', ([], {}), '()\n', (1307, 1309), False, 'import unet\n'), ((1333, 1344), 'unet.UNET', 'unet.UNET', ([], {}), '()\n', (1342, 1344), False, 'import unet\n'), ((1649, 1713), 'chainer.serializers.load_npz', 'serializers.load_npz', (['"""./models/unet_128_standard"""', 'self.cnn_128'], {}), "('./models/unet_128_standard', self.cnn_128)\n", (1669, 1713), False, 'from chainer import cuda, serializers, Variable\n'), ((1918, 1982), 'chainer.serializers.load_npz', 'serializers.load_npz', (['"""./models/unet_512_standard"""', 'self.cnn_512'], {}), "('./models/unet_512_standard', self.cnn_512)\n", (1938, 1982), False, 'from chainer import cuda, serializers, Variable\n'), ((2394, 2412), 'chainer.cuda.to_cpu', 'cuda.to_cpu', (['array'], {}), '(array)\n', (2405, 2412), False, 'from chainer import cuda, serializers, Variable\n'), ((2441, 2467), 'cv2.__version__.split', 'cv2.__version__.split', (['"""."""'], {}), "('.')\n", (2462, 2467), False, 'import cv2\n'), ((2629, 2651), 'cv2.imwrite', 'cv2.imwrite', (['name', 'img'], {}), '(name, img)\n', (2640, 2651), False, 'import cv2\n'), ((2770, 2809), 'cv2.imread', 'cv2.imread', (['path1', 'cv2.IMREAD_GRAYSCALE'], {}), '(path1, cv2.IMREAD_GRAYSCALE)\n', (2780, 2809), False, 'import cv2\n'), ((2827, 2858), 'numpy.asarray', 'np.asarray', (['image1', 'self._dtype'], {}), '(image1, self._dtype)\n', (2837, 2858), True, 'import numpy as np\n'), ((2986, 3041), 'numpy.zeros', 'np.zeros', (['(1, 3, img.shape[1], img.shape[2])'], {'dtype': '"""f"""'}), "((1, 3, img.shape[1], img.shape[2]), dtype='f')\n", (2994, 3041), True, 'import numpy as np\n'), ((3114, 3125), 'lnet.LNET', 'lnet.LNET', ([], {}), '()\n', (3123, 3125), False, 'import lnet\n'), ((3570, 3649), 'img2imgDataset.ImageAndRefDataset', 'ImageAndRefDataset', (["[id_str + '.png']", "(self.root + 'line/')", '(self.root + _[step])'], {}), "([id_str + '.png'], self.root + 'line/', self.root + _[step])\n", (3588, 3649), False, 'from img2imgDataset import ImageAndRefDataset\n'), ((3866, 3933), 'numpy.zeros', 'np.zeros', (['(1, 4, sample[_].shape[1], sample[_].shape[2])'], {'dtype': '"""f"""'}), "((1, 4, sample[_].shape[1], sample[_].shape[2]), dtype='f')\n", (3874, 3933), True, 'import numpy as np\n'), ((1166, 1211), 'chainer.cuda.set_max_workspace_size', 'cuda.set_max_workspace_size', (['(64 * 1024 * 1024)'], {}), '(64 * 1024 * 1024)\n', (1193, 1211), False, 'from chainer import cuda, serializers, Variable\n'), ((2511, 2549), 'cv2.cvtColor', 'cv2.cvtColor', (['array', 'cv2.COLOR_YUV2RGB'], {}), '(array, cv2.COLOR_YUV2RGB)\n', (2523, 2549), False, 'import cv2\n'), ((2582, 2620), 'cv2.cvtColor', 'cv2.cvtColor', (['array', 'cv2.COLOR_YUV2BGR'], {}), '(array, cv2.COLOR_YUV2BGR)\n', (2594, 2620), False, 'import cv2\n'), ((3084, 3098), 'chainer.cuda.to_gpu', 'cuda.to_gpu', (['x'], {}), '(x)\n', (3095, 3098), False, 'from chainer import cuda, serializers, Variable\n'), ((3139, 3165), 'chainer.no_backprop_mode', 'chainer.no_backprop_mode', ([], {}), '()\n', (3163, 3165), False, 'import chainer\n'), ((4048, 4077), 'chainer.cuda.to_gpu', 'cuda.to_gpu', (['sample_container'], {}), '(sample_container)\n', (4059, 4077), False, 'from chainer import cuda, serializers, Variable\n'), ((4164, 4190), 'chainer.no_backprop_mode', 'chainer.no_backprop_mode', ([], {}), '()\n', (4188, 4190), False, 'import chainer\n'), ((4405, 4472), 'numpy.zeros', 'np.zeros', (['(1, 4, sample[1].shape[1], sample[1].shape[2])'], {'dtype': '"""f"""'}), "((1, 4, sample[1].shape[1], sample[1].shape[2]), dtype='f')\n", (4413, 4472), True, 'import numpy as np\n'), ((4573, 4612), 'chainer.cuda.to_cpu', 'cuda.to_cpu', (['image_conv2d_layer.data[0]'], {}), '(image_conv2d_layer.data[0])\n', (4584, 4612), False, 'from chainer import cuda, serializers, Variable\n'), ((3184, 3220), 'chainer.using_config', 'chainer.using_config', (['"""train"""', '(False)'], {}), "('train', False)\n", (3204, 3220), False, 'import chainer\n'), ((4209, 4245), 'chainer.using_config', 'chainer.using_config', (['"""train"""', '(False)'], {}), "('train', False)\n", (4229, 4245), False, 'import chainer\n'), ((4751, 4858), 'cv2.resize', 'cv2.resize', (['output[channel, :]', '(sample[1].shape[2], sample[1].shape[1])'], {'interpolation': 'cv2.INTER_CUBIC'}), '(output[channel, :], (sample[1].shape[2], sample[1].shape[1]),\n interpolation=cv2.INTER_CUBIC)\n', (4761, 4858), False, 'import cv2\n'), ((4972, 5000), 'chainer.cuda.to_gpu', 'cuda.to_gpu', (['input_bat', 'None'], {}), '(input_bat, None)\n', (4983, 5000), False, 'from chainer import cuda, serializers, Variable\n'), ((5069, 5095), 'chainer.no_backprop_mode', 'chainer.no_backprop_mode', ([], {}), '()\n', (5093, 5095), False, 'import chainer\n'), ((1122, 1147), 'chainer.cuda.get_device', 'cuda.get_device', (['self.gpu'], {}), '(self.gpu)\n', (1137, 1147), False, 'from chainer import cuda, serializers, Variable\n'), ((2720, 2745), 'chainer.cuda.get_device', 'cuda.get_device', (['self.gpu'], {}), '(self.gpu)\n', (2735, 2745), False, 'from chainer import cuda, serializers, Variable\n'), ((3251, 3262), 'chainer.Variable', 'Variable', (['x'], {}), '(x)\n', (3259, 3262), False, 'from chainer import cuda, serializers, Variable\n'), ((3463, 3488), 'chainer.cuda.get_device', 'cuda.get_device', (['self.gpu'], {}), '(self.gpu)\n', (3478, 3488), False, 'from chainer import cuda, serializers, Variable\n'), ((4299, 4325), 'chainer.Variable', 'Variable', (['sample_container'], {}), '(sample_container)\n', (4307, 4325), False, 'from chainer import cuda, serializers, Variable\n'), ((5118, 5154), 'chainer.using_config', 'chainer.using_config', (['"""train"""', '(False)'], {}), "('train', False)\n", (5138, 5154), False, 'import chainer\n'), ((5215, 5229), 'chainer.Variable', 'Variable', (['link'], {}), '(link)\n', (5223, 5229), False, 'from chainer import cuda, serializers, Variable\n')]
from flee import flee, SimulationSettings from datamanager import handle_refugee_data from datamanager import DataTable #DataTable.subtract_dates() from flee import InputGeography import numpy as np import outputanalysis.analysis as a import sys import visualization.vis from datetime import datetime from datetime import timedelta def AddInitialRefugees(e, d, loc): """ Add the initial refugees to a location, using the location name""" num_refugees = int(d.get_field(loc.name, 0, FullInterpolation=True)) for i in range(0, num_refugees): e.addAgent(location=loc) def date_to_sim_days(date): return DataTable.subtract_dates(date,"2013-12-01") if __name__ == "__main__": end_time = 820 last_physical_day = 820 if len(sys.argv)>1: if (sys.argv[1]).isnumeric(): end_time = int(sys.argv[1]) last_physical_day = int(sys.argv[1]) else: end_time = 820 last_physical_day = 820 duration = flee.SimulationSettings.SimulationSettings.ReadFromCSV(sys.argv[1]) if duration>0: end_time = duration last_physical_day = end_time e = flee.Ecosystem() ig = InputGeography.InputGeography() ig.ReadLocationsFromCSV("examples/car_input_csv/locations.csv") ig.ReadLinksFromCSV("examples/car_input_csv/routes.csv") ig.ReadClosuresFromCSV("examples/car_input_csv/closures.csv") e,lm = ig.StoreInputGeographyInEcosystem(e) #print("Network data loaded") d = handle_refugee_data.RefugeeTable(csvformat="generic", data_directory="source_data/car2014/", start_date="2013-12-01", data_layout="data_layout.csv") #Correcting for overestimations due to inaccurate level 1 registrations in five of the camps. #These errors led to a perceived large drop in refugee population in all of these camps. #We correct by linearly scaling the values down to make the last level 1 registration match the first level 2 registration value. #To our knowledge, all level 2 registration procedures were put in place by the end of 2016. d.correctLevel1Registrations("Amboko","2015-09-30") d.correctLevel1Registrations("Belom","2015-08-31") d.correctLevel1Registrations("Dosseye","2015-09-30") d.correctLevel1Registrations("Gondje","2015-09-30") lm["Moyo"].capacity *= d.correctLevel1Registrations("Moyo","2015-06-02") #also "2014-05-11" and "2015-06-02" d.correctLevel1Registrations("East","2014-09-28") d.correctLevel1Registrations("Adamaoua","2014-10-19") d.correctLevel1Registrations("Bili","2016-06-30") d.correctLevel1Registrations("Boyabu","2016-06-30") d.correctLevel1Registrations("Inke","2014-06-30") d.correctLevel1Registrations("Betou","2014-03-22") lm["Amboko"].capacity = d.getMaxFromData("Amboko", last_physical_day) lm["Belom"].capacity = d.getMaxFromData("Belom", last_physical_day) # set manually. lm["Dosseye"].capacity = d.getMaxFromData("Dosseye", last_physical_day) lm["Gondje"].capacity = d.getMaxFromData("Gondje", last_physical_day) #lm["Moyo"].capacity = d.getMaxFromData("Moyo", last_physical_day ) # blip in the data set, set capacity manually. lm["East"].capacity = d.getMaxFromData("East", last_physical_day) lm["Adamaoua"].capacity = d.getMaxFromData("Adamaoua", last_physical_day) lm["Mole"].capacity = d.getMaxFromData("Mole", last_physical_day) lm["Bili"].capacity = d.getMaxFromData("Bili", last_physical_day) #lm["Bossobolo"].capacity = d.getMaxFromData("Bossobolo", last_physical_day) #camp excluded lm["Boyabu"].capacity = d.getMaxFromData("Boyabu", last_physical_day) lm["Mboti"].capacity = d.getMaxFromData("Mboti", last_physical_day) lm["Inke"].capacity = d.getMaxFromData("Inke", last_physical_day) lm["Betou"].capacity = d.getMaxFromData("Betou", last_physical_day) lm["Brazaville"].capacity = d.getMaxFromData("Brazaville", last_physical_day) output_header_string = "Day," camp_locations = ["Amboko","Belom","Dosseye","Gondje","Moyo","East","Adamaoua","Mole","Bili","Boyabu","Mboti","Inke","Betou","Brazaville"] #TODO: Add Camps from CSV based on their location type. for l in camp_locations: AddInitialRefugees(e,d,lm[l]) output_header_string += "%s sim,%s data,%s error," % (lm[l].name, lm[l].name, lm[l].name) output_header_string += "Total error,refugees in camps (UNHCR),total refugees (simulation),raw UNHCR refugee count,refugees in camps (simulation),refugee_debt" print(output_header_string) # Set up a mechanism to incorporate temporary decreases in refugees refugee_debt = 0 refugees_raw = 0 #raw (interpolated) data from TOTAL UNHCR refugee count only. visoutput = visualization.vis.VisManager(SimulationSettings.SimulationSettings.DefaultVisPath / "car.json") start_date = datetime(2013, 12, 1) current_date = datetime(2013, 12, 1) for t in range(0,end_time): ig.AddNewConflictZones(e,t) # Determine number of new refugees to insert into the system. new_refs = d.get_daily_difference(t, FullInterpolation=True) - refugee_debt refugees_raw += d.get_daily_difference(t, FullInterpolation=True) if new_refs < 0: refugee_debt = -new_refs new_refs = 0 elif refugee_debt > 0: refugee_debt = 0 #Insert refugee agents for i in range(0, new_refs): e.addAgent(e.pick_conflict_location()) e.refresh_conflict_weights() t_data = t e.enact_border_closures(t) e.evolve() #Calculation of error terms errors = [] abs_errors = [] loc_data = [] camps = [] for i in camp_locations: camps += [lm[i]] loc_data += [d.get_field(i, t)] refugees_in_camps_sim = 0 for c in camps: refugees_in_camps_sim += c.numAgents # calculate errors j=0 for i in camp_locations: errors += [a.rel_error(lm[i].numAgents, loc_data[j])] abs_errors += [a.abs_error(lm[i].numAgents, loc_data[j])] j += 1 output = "%s" % t for i in range(0,len(errors)): output += ",%s,%s,%s" % (lm[camp_locations[i]].numAgents, loc_data[i], errors[i]) if refugees_raw>0: #output_string += ",%s,%s,%s,%s" % (float(np.sum(abs_errors))/float(refugees_raw), int(sum(loc_data)), e.numAgents(), refugees_raw) output += ",%s,%s,%s,%s,%s,%s" % (float(np.sum(abs_errors))/float(refugees_raw), int(sum(loc_data)), e.numAgents(), refugees_raw, refugees_in_camps_sim, refugee_debt) else: output += ",0,0,0,0,0,0,0" #output_string += ",0" print(output) assert t == visoutput.addTimeStep(current_date.strftime("%Y-%m-%d")) visoutput.addLocationDataAtTime(t, e.locations) current_date = current_date + timedelta(days=1) visoutput.setMetaData([5.725311, 19.488373], start_date.strftime("%Y-%m-%d"), "CAR", "CAR visualization") visoutput.saveVisData()
[ "outputanalysis.analysis.abs_error", "flee.flee.Ecosystem", "flee.InputGeography.InputGeography", "numpy.sum", "datamanager.handle_refugee_data.RefugeeTable", "datamanager.DataTable.subtract_dates", "datetime.datetime", "datetime.timedelta", "outputanalysis.analysis.rel_error", "flee.flee.SimulationSettings.SimulationSettings.ReadFromCSV" ]
[((614, 658), 'datamanager.DataTable.subtract_dates', 'DataTable.subtract_dates', (['date', '"""2013-12-01"""'], {}), "(date, '2013-12-01')\n", (638, 658), False, 'from datamanager import DataTable\n'), ((1104, 1120), 'flee.flee.Ecosystem', 'flee.Ecosystem', ([], {}), '()\n', (1118, 1120), False, 'from flee import flee, SimulationSettings\n'), ((1129, 1160), 'flee.InputGeography.InputGeography', 'InputGeography.InputGeography', ([], {}), '()\n', (1158, 1160), False, 'from flee import InputGeography\n'), ((1440, 1598), 'datamanager.handle_refugee_data.RefugeeTable', 'handle_refugee_data.RefugeeTable', ([], {'csvformat': '"""generic"""', 'data_directory': '"""source_data/car2014/"""', 'start_date': '"""2013-12-01"""', 'data_layout': '"""data_layout.csv"""'}), "(csvformat='generic', data_directory=\n 'source_data/car2014/', start_date='2013-12-01', data_layout=\n 'data_layout.csv')\n", (1472, 1598), False, 'from datamanager import handle_refugee_data\n'), ((4691, 4712), 'datetime.datetime', 'datetime', (['(2013)', '(12)', '(1)'], {}), '(2013, 12, 1)\n', (4699, 4712), False, 'from datetime import datetime\n'), ((4730, 4751), 'datetime.datetime', 'datetime', (['(2013)', '(12)', '(1)'], {}), '(2013, 12, 1)\n', (4738, 4751), False, 'from datetime import datetime\n'), ((943, 1010), 'flee.flee.SimulationSettings.SimulationSettings.ReadFromCSV', 'flee.SimulationSettings.SimulationSettings.ReadFromCSV', (['sys.argv[1]'], {}), '(sys.argv[1])\n', (997, 1010), False, 'from flee import flee, SimulationSettings\n'), ((6577, 6594), 'datetime.timedelta', 'timedelta', ([], {'days': '(1)'}), '(days=1)\n', (6586, 6594), False, 'from datetime import timedelta\n'), ((5722, 5763), 'outputanalysis.analysis.rel_error', 'a.rel_error', (['lm[i].numAgents', 'loc_data[j]'], {}), '(lm[i].numAgents, loc_data[j])\n', (5733, 5763), True, 'import outputanalysis.analysis as a\n'), ((5786, 5827), 'outputanalysis.analysis.abs_error', 'a.abs_error', (['lm[i].numAgents', 'loc_data[j]'], {}), '(lm[i].numAgents, loc_data[j])\n', (5797, 5827), True, 'import outputanalysis.analysis as a\n'), ((6199, 6217), 'numpy.sum', 'np.sum', (['abs_errors'], {}), '(abs_errors)\n', (6205, 6217), True, 'import numpy as np\n')]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import matplotlib.patches as mpatches #importing dataset and converting to datasframe data = pd.read_csv('heart.csv', header=None) df = pd.DataFrame(data) #data frame y = df.iloc[:, 13] y = y-1 def chol_age(): x = df.iloc[:, 0:5] x = x.drop(x.columns[1:4], axis=1) chol_avgs = x.groupby(0, sort=True).mean() ages = (chol_avgs[4].index.values) avgs = (chol_avgs[4].values) plt.plot(ages,avgs,'g-') plt.title('Variation of Cholestrol Levels with Age') plt.xlabel('Age(years)') plt.ylabel('Serum Cholestrol in mg/dl') def heart_atrack_heart_rate_bp(): x = df.iloc[:, 0:14] x[14] = np.round(df[3], -1) x_dis = x[x[13] == 2] bp_set_dis = x_dis.groupby(14, sort=True) nums_dis = (bp_set_dis.count()[0]).index.values bps_dis = (bp_set_dis.count()[0]).values bar2 = plt.bar(nums_dis+2, bps_dis, color='r', width=2) x_nor = x[x[13] == 1] bp_set_nor = x_nor.groupby(14, sort=True) nums_nor = (bp_set_nor.count()[0]).index.values bps_nor = (bp_set_nor.count()[0]).values bar1 = plt.bar(nums_nor, bps_nor, color='g', width=2) plt.title('Resting blood pressure as heart risk indicator') plt.xlabel('Resting Blood Pressure Bucket') plt.ylabel('Number of Patients') plt.legend((bar1[0], bar2[0]), ('Safe', 'At Risk')) def pie_chart_chest_pain(): x = df.iloc[:, 0:3] sets = x.groupby(2).count() fin_lab = ['Typical Angina', 'Atypical Angina', 'Non-anginal Pain', 'Asymptotic'] values = (sets[0].values) plt.pie(values, labels=fin_lab, colors=['yellowgreen', 'gold', 'lightskyblue', 'lightcoral'], explode = [0,0.2,0,0], shadow=True, autopct='%1.1f%%', startangle=90) plt.title('Chest Pain Types') def scatter_chart(): x = df.iloc[:, 0:13] sc = plt.scatter(x[7],x[4], c=y, cmap='summer') plt.title('Dataset Scatter') classes = ['Safe', 'At Risk'] class_colours = ['g','y'] recs = [] for i in range(0,len(class_colours)): recs.append(mpatches.Rectangle((0,0),1,1,fc=class_colours[i])) plt.legend(recs, classes) plt.show()
[ "matplotlib.pyplot.title", "pandas.DataFrame", "matplotlib.pyplot.show", "matplotlib.pyplot.plot", "matplotlib.patches.Rectangle", "pandas.read_csv", "matplotlib.pyplot.scatter", "matplotlib.pyplot.bar", "matplotlib.pyplot.legend", "matplotlib.pyplot.pie", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "numpy.round" ]
[((165, 202), 'pandas.read_csv', 'pd.read_csv', (['"""heart.csv"""'], {'header': 'None'}), "('heart.csv', header=None)\n", (176, 202), True, 'import pandas as pd\n'), ((209, 227), 'pandas.DataFrame', 'pd.DataFrame', (['data'], {}), '(data)\n', (221, 227), True, 'import pandas as pd\n'), ((2018, 2028), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2026, 2028), True, 'import matplotlib.pyplot as plt\n'), ((453, 479), 'matplotlib.pyplot.plot', 'plt.plot', (['ages', 'avgs', '"""g-"""'], {}), "(ages, avgs, 'g-')\n", (461, 479), True, 'import matplotlib.pyplot as plt\n'), ((479, 531), 'matplotlib.pyplot.title', 'plt.title', (['"""Variation of Cholestrol Levels with Age"""'], {}), "('Variation of Cholestrol Levels with Age')\n", (488, 531), True, 'import matplotlib.pyplot as plt\n'), ((533, 557), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Age(years)"""'], {}), "('Age(years)')\n", (543, 557), True, 'import matplotlib.pyplot as plt\n'), ((559, 598), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Serum Cholestrol in mg/dl"""'], {}), "('Serum Cholestrol in mg/dl')\n", (569, 598), True, 'import matplotlib.pyplot as plt\n'), ((665, 684), 'numpy.round', 'np.round', (['df[3]', '(-1)'], {}), '(df[3], -1)\n', (673, 684), True, 'import numpy as np\n'), ((851, 901), 'matplotlib.pyplot.bar', 'plt.bar', (['(nums_dis + 2)', 'bps_dis'], {'color': '"""r"""', 'width': '(2)'}), "(nums_dis + 2, bps_dis, color='r', width=2)\n", (858, 901), True, 'import matplotlib.pyplot as plt\n'), ((1066, 1112), 'matplotlib.pyplot.bar', 'plt.bar', (['nums_nor', 'bps_nor'], {'color': '"""g"""', 'width': '(2)'}), "(nums_nor, bps_nor, color='g', width=2)\n", (1073, 1112), True, 'import matplotlib.pyplot as plt\n'), ((1115, 1174), 'matplotlib.pyplot.title', 'plt.title', (['"""Resting blood pressure as heart risk indicator"""'], {}), "('Resting blood pressure as heart risk indicator')\n", (1124, 1174), True, 'import matplotlib.pyplot as plt\n'), ((1176, 1219), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Resting Blood Pressure Bucket"""'], {}), "('Resting Blood Pressure Bucket')\n", (1186, 1219), True, 'import matplotlib.pyplot as plt\n'), ((1221, 1253), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Number of Patients"""'], {}), "('Number of Patients')\n", (1231, 1253), True, 'import matplotlib.pyplot as plt\n'), ((1256, 1307), 'matplotlib.pyplot.legend', 'plt.legend', (['(bar1[0], bar2[0])', "('Safe', 'At Risk')"], {}), "((bar1[0], bar2[0]), ('Safe', 'At Risk'))\n", (1266, 1307), True, 'import matplotlib.pyplot as plt\n'), ((1498, 1670), 'matplotlib.pyplot.pie', 'plt.pie', (['values'], {'labels': 'fin_lab', 'colors': "['yellowgreen', 'gold', 'lightskyblue', 'lightcoral']", 'explode': '[0, 0.2, 0, 0]', 'shadow': '(True)', 'autopct': '"""%1.1f%%"""', 'startangle': '(90)'}), "(values, labels=fin_lab, colors=['yellowgreen', 'gold',\n 'lightskyblue', 'lightcoral'], explode=[0, 0.2, 0, 0], shadow=True,\n autopct='%1.1f%%', startangle=90)\n", (1505, 1670), True, 'import matplotlib.pyplot as plt\n'), ((1663, 1692), 'matplotlib.pyplot.title', 'plt.title', (['"""Chest Pain Types"""'], {}), "('Chest Pain Types')\n", (1672, 1692), True, 'import matplotlib.pyplot as plt\n'), ((1743, 1786), 'matplotlib.pyplot.scatter', 'plt.scatter', (['x[7]', 'x[4]'], {'c': 'y', 'cmap': '"""summer"""'}), "(x[7], x[4], c=y, cmap='summer')\n", (1754, 1786), True, 'import matplotlib.pyplot as plt\n'), ((1787, 1815), 'matplotlib.pyplot.title', 'plt.title', (['"""Dataset Scatter"""'], {}), "('Dataset Scatter')\n", (1796, 1815), True, 'import matplotlib.pyplot as plt\n'), ((1990, 2015), 'matplotlib.pyplot.legend', 'plt.legend', (['recs', 'classes'], {}), '(recs, classes)\n', (2000, 2015), True, 'import matplotlib.pyplot as plt\n'), ((1938, 1991), 'matplotlib.patches.Rectangle', 'mpatches.Rectangle', (['(0, 0)', '(1)', '(1)'], {'fc': 'class_colours[i]'}), '((0, 0), 1, 1, fc=class_colours[i])\n', (1956, 1991), True, 'import matplotlib.patches as mpatches\n')]
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of NVIDIA CORPORATION nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import sys sys.path.append("../common") import math import unittest import numpy as np from tensorrtserver.api import * import test_util as tu class LargePayLoadTest(unittest.TestCase): def setUp(self): self.data_type_ = np.float32 # n GB divided by element size self.input_size_ = math.trunc(6 * (1024 * 1024 * 1024) / np.dtype(self.data_type_).itemsize) self.protocols_ = ((ProtocolType.HTTP, 'localhost:8000'), (ProtocolType.GRPC, 'localhost:8001')) def _test_helper(self, ctx, tensor_shape, small_tensor_shape, input_name='INPUT0', output_name='OUTPUT0'): try: in0 = np.random.random(tensor_shape).astype(self.data_type_) results = ctx.run({ input_name : (in0,)}, { output_name : InferContext.ResultFormat.RAW}, 1) # if the inference is completed, examine results to ensure that # the framework and protocol do support large payload self.assertTrue(np.array_equal(in0, results[output_name][0]), "output is different from input") except InferenceServerException as ex: # if the inference failed, inference server should return error # gracefully. In addition to this, send a small payload to # verify if the server is still functional sin0 = np.random.random(small_tensor_shape).astype(self.data_type_) results = ctx.run({ input_name : (sin0,)}, { output_name : InferContext.ResultFormat.RAW}, 1) self.assertTrue(np.array_equal(sin0, results[output_name][0]), "output is different from input") def test_graphdef(self): tensor_shape = (self.input_size_,) small_tensor_shape = (1,) # graphdef_nobatch_zero_1_float32 is identity model with input shape [-1] for protocol, url in self.protocols_: model_name = tu.get_zero_model_name("graphdef_nobatch", 1, self.data_type_) ctx = InferContext(url, protocol, model_name, None, True) self._test_helper(ctx, tensor_shape, small_tensor_shape) def test_savedmodel(self): tensor_shape = (self.input_size_,) small_tensor_shape = (1,) # savedmodel_nobatch_zero_1_float32 is identity model with input shape [-1] for protocol, url in self.protocols_: model_name = tu.get_zero_model_name("savedmodel_nobatch", 1, self.data_type_) ctx = InferContext(url, protocol, model_name, None, True) self._test_helper(ctx, tensor_shape, small_tensor_shape) def test_netdef(self): tensor_shape = (self.input_size_,) small_tensor_shape = (1,) # netdef_nobatch_zero_1_float32 is identity model with input shape [-1] for protocol, url in self.protocols_: model_name = tu.get_zero_model_name("netdef_nobatch", 1, self.data_type_) ctx = InferContext(url, protocol, model_name, None, True) self._test_helper(ctx, tensor_shape, small_tensor_shape) def test_onnx(self): tensor_shape = (self.input_size_,) small_tensor_shape = (1,) # onnx_nobatch_zero_1_float32 is identity model with input shape [-1] for protocol, url in self.protocols_: model_name = tu.get_zero_model_name("onnx_nobatch", 1, self.data_type_) ctx = InferContext(url, protocol, model_name, None, True) self._test_helper(ctx, tensor_shape, small_tensor_shape) def test_plan(self): tensor_shape = (self.input_size_,) small_tensor_shape = (1,) # plan_nobatch_zero_1_float32 is identity model with input shape [-1] for protocol, url in self.protocols_: model_name = tu.get_zero_model_name("plan_nobatch", 1, self.data_type_) ctx = InferContext(url, protocol, model_name, None, True) self._test_helper(ctx, tensor_shape, small_tensor_shape) def test_libtorch(self): tensor_shape = (self.input_size_,) small_tensor_shape = (1,) # libtorch_nobatch_zero_1_float32 is identity model with input shape [-1] for protocol, url in self.protocols_: model_name = tu.get_zero_model_name("libtorch_nobatch", 1, self.data_type_) ctx = InferContext(url, protocol, model_name, None, True) self._test_helper(ctx, tensor_shape, small_tensor_shape, 'INPUT__0', 'OUTPUT__0') def test_custom(self): tensor_shape = (self.input_size_,) small_tensor_shape = (1,) # custom_zero_1_float32 is identity model with input shape [-1] for protocol, url in self.protocols_: model_name = tu.get_zero_model_name("custom", 1, self.data_type_) ctx = InferContext(url, protocol, model_name, None, True) self._test_helper(ctx, tensor_shape, small_tensor_shape) if __name__ == '__main__': unittest.main()
[ "sys.path.append", "unittest.main", "numpy.dtype", "test_util.get_zero_model_name", "numpy.random.random", "numpy.array_equal" ]
[((1545, 1573), 'sys.path.append', 'sys.path.append', (['"""../common"""'], {}), "('../common')\n", (1560, 1573), False, 'import sys\n'), ((6563, 6578), 'unittest.main', 'unittest.main', ([], {}), '()\n', (6576, 6578), False, 'import unittest\n'), ((3541, 3603), 'test_util.get_zero_model_name', 'tu.get_zero_model_name', (['"""graphdef_nobatch"""', '(1)', 'self.data_type_'], {}), "('graphdef_nobatch', 1, self.data_type_)\n", (3563, 3603), True, 'import test_util as tu\n'), ((4008, 4072), 'test_util.get_zero_model_name', 'tu.get_zero_model_name', (['"""savedmodel_nobatch"""', '(1)', 'self.data_type_'], {}), "('savedmodel_nobatch', 1, self.data_type_)\n", (4030, 4072), True, 'import test_util as tu\n'), ((4469, 4529), 'test_util.get_zero_model_name', 'tu.get_zero_model_name', (['"""netdef_nobatch"""', '(1)', 'self.data_type_'], {}), "('netdef_nobatch', 1, self.data_type_)\n", (4491, 4529), True, 'import test_util as tu\n'), ((4922, 4980), 'test_util.get_zero_model_name', 'tu.get_zero_model_name', (['"""onnx_nobatch"""', '(1)', 'self.data_type_'], {}), "('onnx_nobatch', 1, self.data_type_)\n", (4944, 4980), True, 'import test_util as tu\n'), ((5373, 5431), 'test_util.get_zero_model_name', 'tu.get_zero_model_name', (['"""plan_nobatch"""', '(1)', 'self.data_type_'], {}), "('plan_nobatch', 1, self.data_type_)\n", (5395, 5431), True, 'import test_util as tu\n'), ((5832, 5894), 'test_util.get_zero_model_name', 'tu.get_zero_model_name', (['"""libtorch_nobatch"""', '(1)', 'self.data_type_'], {}), "('libtorch_nobatch', 1, self.data_type_)\n", (5854, 5894), True, 'import test_util as tu\n'), ((6338, 6390), 'test_util.get_zero_model_name', 'tu.get_zero_model_name', (['"""custom"""', '(1)', 'self.data_type_'], {}), "('custom', 1, self.data_type_)\n", (6360, 6390), True, 'import test_util as tu\n'), ((2599, 2643), 'numpy.array_equal', 'np.array_equal', (['in0', 'results[output_name][0]'], {}), '(in0, results[output_name][0])\n', (2613, 2643), True, 'import numpy as np\n'), ((1884, 1909), 'numpy.dtype', 'np.dtype', (['self.data_type_'], {}), '(self.data_type_)\n', (1892, 1909), True, 'import numpy as np\n'), ((2213, 2243), 'numpy.random.random', 'np.random.random', (['tensor_shape'], {}), '(tensor_shape)\n', (2229, 2243), True, 'import numpy as np\n'), ((3199, 3244), 'numpy.array_equal', 'np.array_equal', (['sin0', 'results[output_name][0]'], {}), '(sin0, results[output_name][0])\n', (3213, 3244), True, 'import numpy as np\n'), ((2948, 2984), 'numpy.random.random', 'np.random.random', (['small_tensor_shape'], {}), '(small_tensor_shape)\n', (2964, 2984), True, 'import numpy as np\n')]
# This code is part of Qiskit. # # (C) Copyright IBM 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ PrimitiveOp Class """ from typing import Dict, List, Optional, Set, Union, cast import numpy as np import scipy.linalg from scipy.sparse import spmatrix from qiskit import QuantumCircuit from qiskit.circuit import Instruction, ParameterExpression from qiskit.opflow.operator_base import OperatorBase from qiskit.quantum_info import Operator, Pauli, SparsePauliOp, Statevector class PrimitiveOp(OperatorBase): r""" A class for representing basic Operators, backed by Operator primitives from Terra. This class (and inheritors) primarily serves to allow the underlying primitives to "flow" - i.e. interoperability and adherence to the Operator formalism - while the core computational logic mostly remains in the underlying primitives. For example, we would not produce an interface in Terra in which ``QuantumCircuit1 + QuantumCircuit2`` equaled the Operator sum of the circuit unitaries, rather than simply appending the circuits. However, within the Operator flow summing the unitaries is the expected behavior. Note that all mathematical methods are not in-place, meaning that they return a new object, but the underlying primitives are not copied. """ def __init_subclass__(cls): cls.__new__ = lambda cls, *args, **kwargs: super().__new__(cls) @staticmethod # pylint: disable=unused-argument def __new__(cls, primitive: Union[Instruction, QuantumCircuit, List, np.ndarray, spmatrix, Operator, Pauli, SparsePauliOp], coeff: Union[complex, ParameterExpression] = 1.0) -> 'PrimitiveOp': """ A factory method to produce the correct type of PrimitiveOp subclass based on the primitive passed in. Primitive and coeff arguments are passed into subclass's init() as-is automatically by new(). Args: primitive: The operator primitive being wrapped. coeff: A coefficient multiplying the primitive. Returns: The appropriate PrimitiveOp subclass for ``primitive``. Raises: TypeError: Unsupported primitive type passed. """ # pylint: disable=cyclic-import if isinstance(primitive, (Instruction, QuantumCircuit)): from .circuit_op import CircuitOp return super().__new__(CircuitOp) if isinstance(primitive, (list, np.ndarray, spmatrix, Operator)): from .matrix_op import MatrixOp return super().__new__(MatrixOp) if isinstance(primitive, Pauli): from .pauli_op import PauliOp return super().__new__(PauliOp) if isinstance(primitive, SparsePauliOp): from .pauli_sum_op import PauliSumOp return super().__new__(PauliSumOp) raise TypeError('Unsupported primitive type {} passed into PrimitiveOp ' 'factory constructor'.format(type(primitive))) def __init__(self, primitive: Union[QuantumCircuit, Operator, Pauli, SparsePauliOp, OperatorBase], coeff: Union[complex, ParameterExpression] = 1.0) -> None: """ Args: primitive: The operator primitive being wrapped. coeff: A coefficient multiplying the primitive. """ super().__init__() self._primitive = primitive self._coeff = coeff @property def primitive(self) -> Union[QuantumCircuit, Operator, Pauli, SparsePauliOp, OperatorBase]: """ The primitive defining the underlying function of the Operator. Returns: The primitive object. """ return self._primitive @property def coeff(self) -> Union[complex, ParameterExpression]: """ The scalar coefficient multiplying the Operator. Returns: The coefficient. """ return self._coeff @property def num_qubits(self) -> int: raise NotImplementedError def primitive_strings(self) -> Set[str]: raise NotImplementedError def add(self, other: OperatorBase) -> OperatorBase: raise NotImplementedError def adjoint(self) -> OperatorBase: raise NotImplementedError def equals(self, other: OperatorBase) -> bool: raise NotImplementedError def mul(self, scalar: Union[complex, ParameterExpression]) -> OperatorBase: if not isinstance(scalar, (int, float, complex, ParameterExpression)): raise ValueError('Operators can only be scalar multiplied by float or complex, not ' '{} of type {}.'.format(scalar, type(scalar))) # Need to return self.__class__ in case the object is one of the inherited OpPrimitives return self.__class__(self.primitive, coeff=self.coeff * scalar) def tensor(self, other: OperatorBase) -> OperatorBase: raise NotImplementedError def tensorpower(self, other: int) -> Union[OperatorBase, int]: # Hack to make Z^(I^0) work as intended. if other == 0: return 1 if not isinstance(other, int) or other < 0: raise TypeError('Tensorpower can only take positive int arguments') temp = PrimitiveOp(self.primitive, coeff=self.coeff) # type: OperatorBase for _ in range(other - 1): temp = temp.tensor(self) return temp def compose(self, other: OperatorBase, permutation: Optional[List[int]] = None, front: bool = False) -> \ OperatorBase: # pylint: disable=cyclic-import from ..list_ops.composed_op import ComposedOp new_self, other = self._expand_shorter_operator_and_permute(other, permutation) if isinstance(other, ComposedOp): comp_with_first = new_self.compose(other.oplist[0]) if not isinstance(comp_with_first, ComposedOp): new_oplist = [comp_with_first] + other.oplist[1:] return ComposedOp(new_oplist, coeff=other.coeff) return ComposedOp([new_self] + other.oplist, coeff=other.coeff) return ComposedOp([new_self, other]) def power(self, exponent: int) -> OperatorBase: if not isinstance(exponent, int) or exponent <= 0: raise TypeError('power can only take positive int arguments') temp = PrimitiveOp(self.primitive, coeff=self.coeff) # type: OperatorBase for _ in range(exponent - 1): temp = temp.compose(self) return temp def _expand_dim(self, num_qubits: int) -> OperatorBase: raise NotImplementedError def permute(self, permutation: List[int]) -> OperatorBase: raise NotImplementedError def exp_i(self) -> OperatorBase: """ Return Operator exponentiation, equaling e^(-i * op)""" # pylint: disable=cyclic-import from ..evolutions.evolved_op import EvolvedOp return EvolvedOp(self) def log_i(self, massive: bool = False) -> OperatorBase: """Return a ``MatrixOp`` equivalent to log(H)/-i for this operator H. This function is the effective inverse of exp_i, equivalent to finding the Hermitian Operator which produces self when exponentiated.""" # pylint: disable=cyclic-import from ..operator_globals import EVAL_SIG_DIGITS from .matrix_op import MatrixOp return MatrixOp(np.around(scipy.linalg.logm(self.to_matrix(massive=massive)) / -1j, decimals=EVAL_SIG_DIGITS)) def __str__(self) -> str: raise NotImplementedError def __repr__(self) -> str: return "{}({}, coeff={})".format(type(self).__name__, repr(self.primitive), self.coeff) def eval( self, front: Optional[ Union[str, Dict[str, complex], np.ndarray, OperatorBase, Statevector] ] = None, ) -> Union[OperatorBase, complex]: raise NotImplementedError @property def parameters(self): params = set() if isinstance(self.primitive, (OperatorBase, QuantumCircuit)): params.update(self.primitive.parameters) if isinstance(self.coeff, ParameterExpression): params.update(self.coeff.parameters) return params def assign_parameters(self, param_dict: dict) -> OperatorBase: param_value = self.coeff if isinstance(self.coeff, ParameterExpression): unrolled_dict = self._unroll_param_dict(param_dict) if isinstance(unrolled_dict, list): # pylint: disable=cyclic-import from ..list_ops.list_op import ListOp return ListOp([self.assign_parameters(param_dict) for param_dict in unrolled_dict]) if self.coeff.parameters <= set(unrolled_dict.keys()): binds = {param: unrolled_dict[param] for param in self.coeff.parameters} param_value = float(self.coeff.bind(binds)) return self.__class__(self.primitive, coeff=param_value) # Nothing to collapse here. def reduce(self) -> OperatorBase: return self def to_matrix(self, massive: bool = False) -> np.ndarray: raise NotImplementedError def to_matrix_op(self, massive: bool = False) -> OperatorBase: """ Returns a ``MatrixOp`` equivalent to this Operator. """ coeff = self.coeff op = self.copy() op._coeff = 1 prim_mat = op.to_matrix(massive=massive) from .matrix_op import MatrixOp return MatrixOp(prim_mat, coeff=coeff) def to_instruction(self) -> Instruction: """ Returns an ``Instruction`` equivalent to this Operator. """ raise NotImplementedError def to_circuit(self) -> QuantumCircuit: """ Returns a ``QuantumCircuit`` equivalent to this Operator. """ qc = QuantumCircuit(self.num_qubits) qc.append(self.to_instruction(), qargs=range(self.primitive.num_qubits)) return qc.decompose() def to_circuit_op(self) -> OperatorBase: """ Returns a ``CircuitOp`` equivalent to this Operator. """ from .circuit_op import CircuitOp if self.coeff == 0: return CircuitOp(QuantumCircuit(self.num_qubits), coeff=0) return CircuitOp(self.to_circuit(), coeff=self.coeff) def to_pauli_op(self, massive: bool = False) -> OperatorBase: """ Returns a sum of ``PauliOp`` s equivalent to this Operator. """ # pylint: disable=cyclic-import from .matrix_op import MatrixOp mat_op = cast(MatrixOp, self.to_matrix_op(massive=massive)) sparse_pauli = SparsePauliOp.from_operator(mat_op.primitive) if not sparse_pauli.to_list(): from ..operator_globals import I return (I ^ self.num_qubits) * 0.0 from .pauli_op import PauliOp if len(sparse_pauli) == 1: label, coeff = sparse_pauli.to_list()[0] coeff = coeff.real if np.isreal(coeff) else coeff return PauliOp(Pauli(label), coeff * self.coeff) from ..list_ops.summed_op import SummedOp return SummedOp( [ PrimitiveOp( Pauli(label), coeff.real if coeff == coeff.real else coeff, ) for (label, coeff) in sparse_pauli.to_list() ], self.coeff, )
[ "numpy.isreal", "qiskit.quantum_info.Pauli", "qiskit.quantum_info.SparsePauliOp.from_operator", "qiskit.QuantumCircuit" ]
[((10316, 10347), 'qiskit.QuantumCircuit', 'QuantumCircuit', (['self.num_qubits'], {}), '(self.num_qubits)\n', (10330, 10347), False, 'from qiskit import QuantumCircuit\n'), ((11091, 11136), 'qiskit.quantum_info.SparsePauliOp.from_operator', 'SparsePauliOp.from_operator', (['mat_op.primitive'], {}), '(mat_op.primitive)\n', (11118, 11136), False, 'from qiskit.quantum_info import Operator, Pauli, SparsePauliOp, Statevector\n'), ((10673, 10704), 'qiskit.QuantumCircuit', 'QuantumCircuit', (['self.num_qubits'], {}), '(self.num_qubits)\n', (10687, 10704), False, 'from qiskit import QuantumCircuit\n'), ((11428, 11444), 'numpy.isreal', 'np.isreal', (['coeff'], {}), '(coeff)\n', (11437, 11444), True, 'import numpy as np\n'), ((11483, 11495), 'qiskit.quantum_info.Pauli', 'Pauli', (['label'], {}), '(label)\n', (11488, 11495), False, 'from qiskit.quantum_info import Operator, Pauli, SparsePauliOp, Statevector\n'), ((11656, 11668), 'qiskit.quantum_info.Pauli', 'Pauli', (['label'], {}), '(label)\n', (11661, 11668), False, 'from qiskit.quantum_info import Operator, Pauli, SparsePauliOp, Statevector\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- # SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: © 2021 Massachusetts Institute of Technology. # SPDX-FileCopyrightText: © 2021 <NAME> <<EMAIL>> # NOTICE: authors should document their contributions in concisely in NOTICE # with details inline in source files, comments, and docstrings. """ Some utilities to help with dataset creation and annotation """ from wavestate.bunch import Bunch import numpy as np from .. import annotate from .. import TFmath from .. import representations from .. import fitters_ZPK from . import plots def make_description( generator, sets=1, instances=1, description=None, annotation=None, **kwargs ): doc = generator.__doc__ if description is None: if doc is not None: description = annotate.padding_remove(doc) else: description = "<no description>" else: description = annotate.padding_remove(description) if annotation is None and doc is not None: annotation = annotate.padding_remove(doc) return Bunch( generator=generator, instances=instances, description=description, annotation=annotation, **kwargs ) def generator_autofill( F_Hz, SNR, F_nyquist_Hz, data=None, bestfit_ZPK_z=None, bestfit_ZPK_s=None, delay_s=0, residuals_log_best=None, sN=0, iN=0, **kwargs ): if bestfit_ZPK_s: # replace with the ZPKs filled out fully bestfit_ZPK_s = TFmath.ZPK_fill(bestfit_ZPK_s) if bestfit_ZPK_z: # replace with the ZPKs filled out fully bestfit_ZPK_z = TFmath.ZPK_fill(bestfit_ZPK_z) if not bestfit_ZPK_z and F_nyquist_Hz is not None: if bestfit_ZPK_s: bestfit_ZPK_z = TFmath.StoZ( bestfit_ZPK_s, F_nyquist_Hz=F_nyquist_Hz, ) if not bestfit_ZPK_s and F_nyquist_Hz is not None: if bestfit_ZPK_z: bestfit_ZPK_s = TFmath.ZtoS( bestfit_ZPK_z, F_nyquist_Hz=F_nyquist_Hz, ) if data is None: if SNR is not None: rand = np.random.RandomState() rand.seed(iN) N = len(F_Hz) rel_noise = rand.normal(1, 1 / SNR, N) + 1j * rand.normal(0, 1 / SNR, N) else: rel_noise = 1 if bestfit_ZPK_s: data = rel_noise * TFmath.TF_ZPK( F_Hz, ZPK=bestfit_ZPK_s, ) elif bestfit_ZPK_z: data = rel_noise * TFmath.TF_ZPK( F_Hz, ZPK=bestfit_ZPK_s, F_nyquist_Hz=F_nyquist_Hz, ) if delay_s is not None: data = data * np.exp(-2j * np.pi * delay_s * F_Hz) if bestfit_ZPK_z is not None: rep_z = representations.ZPKwData( data=data, F_Hz=F_Hz, W=SNR, F_nyquist_Hz=F_nyquist_Hz, ZPK=bestfit_ZPK_z, delay_s=delay_s, ) else: rep_z = None if bestfit_ZPK_s is not None: rep_s = representations.ZPKwData( data=data, F_Hz=F_Hz, W=SNR, F_nyquist_Hz=None, ZPK=bestfit_ZPK_s, delay_s=delay_s, ) else: rep_s = None return Bunch( F_Hz=F_Hz, data=data, SNR=SNR, F_nyquist_Hz=F_nyquist_Hz, residuals_log_best=residuals_log_best, bestfit_ZPK_z=bestfit_ZPK_z, bestfit_ZPK_s=bestfit_ZPK_s, rep_z=rep_z, rep_s=rep_s, iN=iN, sN=sN, **kwargs ) def assert_almost_equal(arr1, arr2, decimals): np.testing.assert_allclose(arr1, arr2, decimals) # np.testing.assert_allclose(arr1.real, arr2.real, decimals) # np.testing.assert_allclose(arr1.imag, arr2.imag, decimals) def sign_validate(aid, fitter): """ To be added as a hint to data2filter """ rep = fitter.ZPKrep xfer = rep.xfer_fit data = rep.data rat = data / xfer rat_ang = np.exp(1j * np.angle(rat)) ang_avg_rep = np.sum(rat_ang * rep.W ** 2) / np.sum(rep.W ** 2) xfer = fitter.xfer_fit data = fitter.data rat = data / xfer rat_ang = np.exp(1j * np.angle(rat)) ang_avg_fit = np.sum(rat_ang * fitter.W ** 2) / np.sum(fitter.W ** 2) # print("SGN: ", ang_avg_rep, ang_avg_fit) # axB = plots.plots.plot_fit( # fitter, # fname = 'test1.png', # ) # axB = plots.plots.plot_fitter_flag( # fitter, # fname = 'test3.png', # ) # axB = plots.plots.plot_fit( # fitter.ZPKrep, # fname = 'test2.png', # ) if isinstance(fitter, fitters_ZPK.MultiReprFilterBase): for coding in list(fitter.num_codings) + list(fitter.den_codings): rB = representations.RootBunch( u=coding.roots(), constraint=representations.root_constraints.no_constraint, ) h1 = coding.transfer() h, lnG = rB.val_lnG(fitter.Xex_grid) h = h * np.exp(lnG) assert_almost_equal(h / h1, 1, 4) assert ang_avg_fit.real > 0 and ang_avg_rep.real > 0 sign_validate_hint = { "fitter_update_validate": sign_validate, "fitter_check_validate": sign_validate, } def rational_fitter_validate(rat_fitter, fitter): """ To be added as a hint to data2filter """ rep1 = rat_fitter.ZPKrep.xfer_fit rep2 = fitter.ZPKrep.xfer_fit rat = rat_fitter.xfer_fit mrf = fitter.xfer_fit assert_almost_equal(rep1 / rep2, 1, 5) assert_almost_equal(rat / rep2, 1, 5) assert_almost_equal(mrf / rep2, 1, 5) print("Checking Rational Fitter") def sign_validate_and_plot_hint(pyfile, request): def sign_validate_plot(aid, fitter): with plots.plot_on_assert(pyfile, request, fitter, plot_anyway=False): try: sign_validate(aid, fitter) except AssertionError: print(fitter) print(fitter.F_nyquist_Hz) print(fitter.zeros) print(fitter.zeros_overlay) print(fitter.ZPKrep) # assert(False) raise hint = { "fitter_update_validate": sign_validate_plot, "fitter_check_validate": sign_validate_plot, "rational_fitter_validate": rational_fitter_validate, } return hint def stability_validate_and_plot_hint(pyfile, request): def sign_validate_plot(aid, fitter): with plots.plot_on_assert(pyfile, request, fitter, plot_anyway=False): assert np.all(fitter.ZPKrep.poles.c.real <= 0) assert np.all(fitter.ZPKrep.poles.r.real <= 0) try: sign_validate(aid, fitter) except AssertionError: print(fitter) print(fitter.F_nyquist_Hz) print(fitter.zeros) print(fitter.zeros_overlay) print(fitter.ZPKrep) # assert(False) raise hint = { "fitter_update_validate": sign_validate_plot, "fitter_check_validate": sign_validate_plot, "rational_fitter_validate": rational_fitter_validate, } return hint def sign_validate_and_digest_hint(pyfile, request): def sign_validate_plot(aid, fitter): with plots.digest_on_assert(pyfile, request, aid, plot_anyway=False): try: sign_validate(aid, fitter) except AssertionError: print(fitter) print(fitter.F_nyquist_Hz) print(fitter.zeros) print(fitter.zeros_overlay) print(fitter.ZPKrep) # assert(False) raise hint = { "fitter_update_validate": sign_validate_plot, "fitter_check_validate": sign_validate_plot, "rational_fitter_validate": rational_fitter_validate, } return hint
[ "numpy.sum", "numpy.angle", "numpy.random.RandomState", "numpy.exp", "wavestate.bunch.Bunch", "numpy.testing.assert_allclose", "numpy.all" ]
[((1086, 1195), 'wavestate.bunch.Bunch', 'Bunch', ([], {'generator': 'generator', 'instances': 'instances', 'description': 'description', 'annotation': 'annotation'}), '(generator=generator, instances=instances, description=description,\n annotation=annotation, **kwargs)\n', (1091, 1195), False, 'from wavestate.bunch import Bunch\n'), ((3385, 3608), 'wavestate.bunch.Bunch', 'Bunch', ([], {'F_Hz': 'F_Hz', 'data': 'data', 'SNR': 'SNR', 'F_nyquist_Hz': 'F_nyquist_Hz', 'residuals_log_best': 'residuals_log_best', 'bestfit_ZPK_z': 'bestfit_ZPK_z', 'bestfit_ZPK_s': 'bestfit_ZPK_s', 'rep_z': 'rep_z', 'rep_s': 'rep_s', 'iN': 'iN', 'sN': 'sN'}), '(F_Hz=F_Hz, data=data, SNR=SNR, F_nyquist_Hz=F_nyquist_Hz,\n residuals_log_best=residuals_log_best, bestfit_ZPK_z=bestfit_ZPK_z,\n bestfit_ZPK_s=bestfit_ZPK_s, rep_z=rep_z, rep_s=rep_s, iN=iN, sN=sN, **\n kwargs)\n', (3390, 3608), False, 'from wavestate.bunch import Bunch\n'), ((3751, 3799), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['arr1', 'arr2', 'decimals'], {}), '(arr1, arr2, decimals)\n', (3777, 3799), True, 'import numpy as np\n'), ((4170, 4198), 'numpy.sum', 'np.sum', (['(rat_ang * rep.W ** 2)'], {}), '(rat_ang * rep.W ** 2)\n', (4176, 4198), True, 'import numpy as np\n'), ((4201, 4219), 'numpy.sum', 'np.sum', (['(rep.W ** 2)'], {}), '(rep.W ** 2)\n', (4207, 4219), True, 'import numpy as np\n'), ((4352, 4383), 'numpy.sum', 'np.sum', (['(rat_ang * fitter.W ** 2)'], {}), '(rat_ang * fitter.W ** 2)\n', (4358, 4383), True, 'import numpy as np\n'), ((4386, 4407), 'numpy.sum', 'np.sum', (['(fitter.W ** 2)'], {}), '(fitter.W ** 2)\n', (4392, 4407), True, 'import numpy as np\n'), ((2188, 2211), 'numpy.random.RandomState', 'np.random.RandomState', ([], {}), '()\n', (2209, 2211), True, 'import numpy as np\n'), ((4137, 4150), 'numpy.angle', 'np.angle', (['rat'], {}), '(rat)\n', (4145, 4150), True, 'import numpy as np\n'), ((4319, 4332), 'numpy.angle', 'np.angle', (['rat'], {}), '(rat)\n', (4327, 4332), True, 'import numpy as np\n'), ((6691, 6730), 'numpy.all', 'np.all', (['(fitter.ZPKrep.poles.c.real <= 0)'], {}), '(fitter.ZPKrep.poles.c.real <= 0)\n', (6697, 6730), True, 'import numpy as np\n'), ((6750, 6789), 'numpy.all', 'np.all', (['(fitter.ZPKrep.poles.r.real <= 0)'], {}), '(fitter.ZPKrep.poles.r.real <= 0)\n', (6756, 6789), True, 'import numpy as np\n'), ((2780, 2818), 'numpy.exp', 'np.exp', (['(-2.0j * np.pi * delay_s * F_Hz)'], {}), '(-2.0j * np.pi * delay_s * F_Hz)\n', (2786, 2818), True, 'import numpy as np\n'), ((5144, 5155), 'numpy.exp', 'np.exp', (['lnG'], {}), '(lnG)\n', (5150, 5155), True, 'import numpy as np\n')]
import numpy as np import matplotlib matplotlib.use('pdf') import matplotlib.pyplot as plt import traceback Fs = 30.72e6 x1 = [] x2=[] x5=[] x_comp_0 = [] y_comp_0 = [] x_comp_1 = [] y_comp_1 = [] x_comp_2 = [] y_comp_2 = [] try: f1 = open("/root/.files/free5GRAN/execution_raw_files/studied_frame.txt", "r") for x in f1: x = x.split("(")[1] x = x.split(")")[0] re = float(x.split(',')[0]) im = float(x.split(',')[1]) x1.append(complex(re,im)) fig1 = plt.figure() plt.specgram(x1, NFFT=1024, Fs=Fs) plt.xticks(np.arange(0, 0.01, 0.001)) plt.title("Studied Frame") plt.ylim(-Fs/2, Fs/2) plt.savefig("/root/.files/free5GRAN/visualization_files/studied_frame.pdf", bbox_inches='tight', pad_inches=0.5) plt.close(fig1) except Exception: traceback.print_exc() try: f2 = open("/root/.files/free5GRAN/execution_raw_files/moniroting_slots.txt", "r") for x in f2: x = x.split("(")[1] x = x.split(")")[0] re = float(x.split(',')[0]) im = float(x.split(',')[1]) x2.append(complex(re,im)) fig2 = plt.figure() plt.specgram(x2, NFFT=1024, Fs=Fs) plt.yticks(np.arange(-15e6, 15e6, 2e6)) plt.title("Monitoring slots") plt.ylim(-Fs/2, Fs/2) plt.savefig("/root/.files/free5GRAN/visualization_files/moniroting_slots.pdf", bbox_inches='tight', pad_inches=0.5) plt.close(fig2) except Exception: traceback.print_exc() try: f5 = open("/root/.files/free5GRAN/execution_raw_files/global_signal.txt", "r") for x in f5: x = x.split("(")[1] x = x.split(")")[0] re = float(x.split(',')[0]) im = float(x.split(',')[1]) x5.append(complex(re,im)) fig2 = plt.figure() plt.specgram(x5, NFFT=1024, Fs=Fs) plt.yticks(np.arange(-15e6, 15e6, 2e6)) plt.title("Global signal") plt.ylim(-Fs/2, Fs/2) plt.savefig("/root/.files/free5GRAN/visualization_files/global_signal.pdf", bbox_inches='tight', pad_inches=0.5) plt.close(fig2) except Exception: traceback.print_exc() try: f3 = open("/root/.files/free5GRAN/execution_raw_files/pdcch_constellation.txt", "r") for x in f3: x = x.split("(")[1] x = x.split(")")[0] x_comp_0.append(float(x.split(',')[0])) y_comp_0.append(float(x.split(',')[1])) fig3 = plt.figure() plt.scatter(x_comp_0,y_comp_0, color='red') plt.title("PDCCH constellation") plt.savefig("/root/.files/free5GRAN/visualization_files/pdcch_constellation.pdf") plt.close(fig3) except Exception: traceback.print_exc() try: f4 = open("/root/.files/free5GRAN/execution_raw_files/pdsch_constellation.txt", "r") for x in f4: x = x.split("(")[1] x = x.split(")")[0] x_comp_1.append(float(x.split(',')[0])) y_comp_1.append(float(x.split(',')[1])) fig4 = plt.figure() plt.scatter(x_comp_1,y_comp_1, color='red') plt.title("PDSCH constellation") plt.savefig("/root/.files/free5GRAN/visualization_files/pdsch_constellation.pdf") plt.close(fig4) except Exception: traceback.print_exc()
[ "matplotlib.pyplot.title", "matplotlib.pyplot.specgram", "traceback.print_exc", "matplotlib.pyplot.ylim", "matplotlib.pyplot.close", "matplotlib.pyplot.scatter", "matplotlib.pyplot.figure", "matplotlib.use", "numpy.arange", "matplotlib.pyplot.savefig" ]
[((37, 58), 'matplotlib.use', 'matplotlib.use', (['"""pdf"""'], {}), "('pdf')\n", (51, 58), False, 'import matplotlib\n'), ((509, 521), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (519, 521), True, 'import matplotlib.pyplot as plt\n'), ((526, 560), 'matplotlib.pyplot.specgram', 'plt.specgram', (['x1'], {'NFFT': '(1024)', 'Fs': 'Fs'}), '(x1, NFFT=1024, Fs=Fs)\n', (538, 560), True, 'import matplotlib.pyplot as plt\n'), ((607, 633), 'matplotlib.pyplot.title', 'plt.title', (['"""Studied Frame"""'], {}), "('Studied Frame')\n", (616, 633), True, 'import matplotlib.pyplot as plt\n'), ((638, 663), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(-Fs / 2)', '(Fs / 2)'], {}), '(-Fs / 2, Fs / 2)\n', (646, 663), True, 'import matplotlib.pyplot as plt\n'), ((664, 780), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""/root/.files/free5GRAN/visualization_files/studied_frame.pdf"""'], {'bbox_inches': '"""tight"""', 'pad_inches': '(0.5)'}), "('/root/.files/free5GRAN/visualization_files/studied_frame.pdf',\n bbox_inches='tight', pad_inches=0.5)\n", (675, 780), True, 'import matplotlib.pyplot as plt\n'), ((781, 796), 'matplotlib.pyplot.close', 'plt.close', (['fig1'], {}), '(fig1)\n', (790, 796), True, 'import matplotlib.pyplot as plt\n'), ((1127, 1139), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (1137, 1139), True, 'import matplotlib.pyplot as plt\n'), ((1144, 1178), 'matplotlib.pyplot.specgram', 'plt.specgram', (['x2'], {'NFFT': '(1024)', 'Fs': 'Fs'}), '(x2, NFFT=1024, Fs=Fs)\n', (1156, 1178), True, 'import matplotlib.pyplot as plt\n'), ((1227, 1256), 'matplotlib.pyplot.title', 'plt.title', (['"""Monitoring slots"""'], {}), "('Monitoring slots')\n", (1236, 1256), True, 'import matplotlib.pyplot as plt\n'), ((1261, 1286), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(-Fs / 2)', '(Fs / 2)'], {}), '(-Fs / 2, Fs / 2)\n', (1269, 1286), True, 'import matplotlib.pyplot as plt\n'), ((1287, 1406), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""/root/.files/free5GRAN/visualization_files/moniroting_slots.pdf"""'], {'bbox_inches': '"""tight"""', 'pad_inches': '(0.5)'}), "('/root/.files/free5GRAN/visualization_files/moniroting_slots.pdf',\n bbox_inches='tight', pad_inches=0.5)\n", (1298, 1406), True, 'import matplotlib.pyplot as plt\n'), ((1407, 1422), 'matplotlib.pyplot.close', 'plt.close', (['fig2'], {}), '(fig2)\n', (1416, 1422), True, 'import matplotlib.pyplot as plt\n'), ((1749, 1761), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (1759, 1761), True, 'import matplotlib.pyplot as plt\n'), ((1766, 1800), 'matplotlib.pyplot.specgram', 'plt.specgram', (['x5'], {'NFFT': '(1024)', 'Fs': 'Fs'}), '(x5, NFFT=1024, Fs=Fs)\n', (1778, 1800), True, 'import matplotlib.pyplot as plt\n'), ((1849, 1875), 'matplotlib.pyplot.title', 'plt.title', (['"""Global signal"""'], {}), "('Global signal')\n", (1858, 1875), True, 'import matplotlib.pyplot as plt\n'), ((1880, 1905), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(-Fs / 2)', '(Fs / 2)'], {}), '(-Fs / 2, Fs / 2)\n', (1888, 1905), True, 'import matplotlib.pyplot as plt\n'), ((1906, 2022), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""/root/.files/free5GRAN/visualization_files/global_signal.pdf"""'], {'bbox_inches': '"""tight"""', 'pad_inches': '(0.5)'}), "('/root/.files/free5GRAN/visualization_files/global_signal.pdf',\n bbox_inches='tight', pad_inches=0.5)\n", (1917, 2022), True, 'import matplotlib.pyplot as plt\n'), ((2023, 2038), 'matplotlib.pyplot.close', 'plt.close', (['fig2'], {}), '(fig2)\n', (2032, 2038), True, 'import matplotlib.pyplot as plt\n'), ((2361, 2373), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (2371, 2373), True, 'import matplotlib.pyplot as plt\n'), ((2378, 2422), 'matplotlib.pyplot.scatter', 'plt.scatter', (['x_comp_0', 'y_comp_0'], {'color': '"""red"""'}), "(x_comp_0, y_comp_0, color='red')\n", (2389, 2422), True, 'import matplotlib.pyplot as plt\n'), ((2426, 2458), 'matplotlib.pyplot.title', 'plt.title', (['"""PDCCH constellation"""'], {}), "('PDCCH constellation')\n", (2435, 2458), True, 'import matplotlib.pyplot as plt\n'), ((2463, 2549), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""/root/.files/free5GRAN/visualization_files/pdcch_constellation.pdf"""'], {}), "(\n '/root/.files/free5GRAN/visualization_files/pdcch_constellation.pdf')\n", (2474, 2549), True, 'import matplotlib.pyplot as plt\n'), ((2549, 2564), 'matplotlib.pyplot.close', 'plt.close', (['fig3'], {}), '(fig3)\n', (2558, 2564), True, 'import matplotlib.pyplot as plt\n'), ((2888, 2900), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (2898, 2900), True, 'import matplotlib.pyplot as plt\n'), ((2905, 2949), 'matplotlib.pyplot.scatter', 'plt.scatter', (['x_comp_1', 'y_comp_1'], {'color': '"""red"""'}), "(x_comp_1, y_comp_1, color='red')\n", (2916, 2949), True, 'import matplotlib.pyplot as plt\n'), ((2953, 2985), 'matplotlib.pyplot.title', 'plt.title', (['"""PDSCH constellation"""'], {}), "('PDSCH constellation')\n", (2962, 2985), True, 'import matplotlib.pyplot as plt\n'), ((2990, 3076), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""/root/.files/free5GRAN/visualization_files/pdsch_constellation.pdf"""'], {}), "(\n '/root/.files/free5GRAN/visualization_files/pdsch_constellation.pdf')\n", (3001, 3076), True, 'import matplotlib.pyplot as plt\n'), ((3076, 3091), 'matplotlib.pyplot.close', 'plt.close', (['fig4'], {}), '(fig4)\n', (3085, 3091), True, 'import matplotlib.pyplot as plt\n'), ((576, 601), 'numpy.arange', 'np.arange', (['(0)', '(0.01)', '(0.001)'], {}), '(0, 0.01, 0.001)\n', (585, 601), True, 'import numpy as np\n'), ((820, 841), 'traceback.print_exc', 'traceback.print_exc', ([], {}), '()\n', (839, 841), False, 'import traceback\n'), ((1194, 1239), 'numpy.arange', 'np.arange', (['(-15000000.0)', '(15000000.0)', '(2000000.0)'], {}), '(-15000000.0, 15000000.0, 2000000.0)\n', (1203, 1239), True, 'import numpy as np\n'), ((1446, 1467), 'traceback.print_exc', 'traceback.print_exc', ([], {}), '()\n', (1465, 1467), False, 'import traceback\n'), ((1816, 1861), 'numpy.arange', 'np.arange', (['(-15000000.0)', '(15000000.0)', '(2000000.0)'], {}), '(-15000000.0, 15000000.0, 2000000.0)\n', (1825, 1861), True, 'import numpy as np\n'), ((2062, 2083), 'traceback.print_exc', 'traceback.print_exc', ([], {}), '()\n', (2081, 2083), False, 'import traceback\n'), ((2588, 2609), 'traceback.print_exc', 'traceback.print_exc', ([], {}), '()\n', (2607, 2609), False, 'import traceback\n'), ((3114, 3135), 'traceback.print_exc', 'traceback.print_exc', ([], {}), '()\n', (3133, 3135), False, 'import traceback\n')]
# -*- coding: utf-8 -*- """ Spyder Editor This is a temporary script file. """ from functions_scenario import derivatives, sat_conc import numpy as np import matplotlib.pyplot as plt import pandas as pd from pandas import DataFrame # Start hour h2 is for test only - in live version will be current time h2 = 1095 h1 = h2-240 # select previous 10 days ndp = int((h2-h1)/12) # number of data points used for calibration # Input calibrated parameters output from calibration model # Stored in database? Currently output to csv file ACHinp = np.genfromtxt('ACH_out.csv', delimiter=',') IASinp = np.genfromtxt('IAS_out.csv', delimiter=',') # Calculate mean calibrated ACH, IAS and 5%, 95% quantiles ACHcal = ACHinp[1:,-1*ndp:]*9+1 # selects ACH values corresponding to the last ndp data points ACHmean = np.mean(ACHcal,0) ACHuq = np.quantile(ACHcal,0.95,0) ACHlq = np.quantile(ACHcal,0.05,0) IAScal = IASinp[1:,-1*ndp:]*0.75+0.1 IASmean = np.mean(IAScal,0) IASuq = np.quantile(IAScal,0.95,0) IASlq = np.quantile(IAScal,0.05,0) # Set up parameters for runs: 1) BAU mean, 2) Scenario, 3) BAU UQ, 4) BAU LQ # Scenario values N, ndh and lshift will come from sliders on dashboard test = np.zeros((ndp,4,4)) #for i in range(np.size(test,2)): test[:,0,0] = ACHmean test[:,1,0] = IASmean test[:,2,0] = 1 test[:,3,0] = 0 test[:,0,1] = ACHmean test[:,1,1] = IASmean test[:,2,1] = 1 test[:,3,1] = 0 test[:,0,2] = ACHuq test[:,1,2] = IASlq test[:,2,2] = 1 test[:,3,2] = 0 test[:,0,3] = ACHlq test[:,1,3] = IASuq test[:,2,3] = 1 test[:,3,3] = 0 # Scenario 1 - vary ACH N = 1 # ventilation rate inout from slider ScenEval = np.zeros((8,4,4)) ScenEval[:,0,0] = ACHmean[-1] ScenEval[:,0,1] = N # input from slider ScenEval[:,0,2] = ACHuq[-1] ScenEval[:,0,3] = ACHlq[-1] ScenEval[:,1,0] = IASmean[-1] ScenEval[:,1,1] = IASmean[-1] ScenEval[:,1,2] = IASlq[-1] ScenEval[:,1,3] = IASuq[-1] # Scenario 2 - vary number of dehumidifiers ndh = 2 # number of dehumidifiers ScenEval[:,2,0] = 1 ScenEval[:,2,1] = ndh/2 # ndh input from slider (integer) (/2 as half farm modelled) ScenEval[:,2,2] = 1 ScenEval[:,2,3] = 1 # Scenario 3 - shift lighting schedule (+/-hours) lshift = -3 ScenEval[:,3,0] = 1 ScenEval[:,3,1] = lshift # lshift input from slider ScenEval[:,3,2] = 1 ScenEval[:,3,3] = 1 params = np.concatenate((test, ScenEval)) # put scenario on the end of the calibrated parameters ## Run model, using time varying ACH, IAS corresponding to outputs from calibration for # first 10 days, then scenario evaluation values for last 3 days results = derivatives(h1, h2, params, ndp) T_air = results[1,:,:] Cw_air = results[11,:,:] RH_air = Cw_air/sat_conc(T_air) ## Plot Results p1 = h1 # start hour delta_h = 12 # hours between data points p2 = ndp*delta_h+p1 # end data point seq = np.linspace(p1,p2,ndp+1,endpoint='true') date_cols = ["DateTimex"] Data = pd.read_csv("TRHE2018.csv", parse_dates=date_cols) RHData =Data['MidFarmRH2'] TData =Data['MidFarmT'] #t = np.linspace(h1,h2+3*24,1+240+3*24) t = np.linspace(h1-h2,3*24,1+240+3*24) t1 = np.linspace(0,3*24,1+3*24) td = np.linspace(h1-h2,0,21) dpRH = RHData[seq] dpT = TData[seq]+273.15 dpCw = dpRH/100 * sat_conc(dpT) fig = plt.figure() ax1 = fig.add_subplot(1,2,1) plt.plot(t,T_air[:,0]-273.15,'r') #p1 = plt.plot(t,T_air[:,2]-273.15,'r:') #p2 = plt.plot(t,T_air[:,3]-273.15,'r:') ax1.fill_between(t[:-73], T_air[:-73,2]-273.15, T_air[:-73,3]-273.15, color='red', alpha = 0.2) #plt.plot(t,T_air[:,1],'b--') plt.plot(t1,T_air[-73:,1]-273.15,'b--') plt.scatter(td,dpT-273.15, marker='.', color='k') plt.xticks(fontsize=8) plt.yticks(fontsize=8) ax1.set_xlabel('Hour', fontsize=8) ax1.set_ylabel('Temperature ($\mathregular{^{o}}$C)', fontsize=8) ax1.set_title('Temperature', fontsize=10) ax1.axvline(x=0, color='k') ax1.set_xlim(-120, 72) ax3 = fig.add_subplot(1,2,2) lbl1 = str(int(N)) + ' ACH' lbl2 = ', ' + str(int(ndh)) + ' DH' lbl3 = ', ' + str(int(lshift)) + ' hours' plt.plot(t,100*RH_air[:,0],'r', label='BAU') ax3.fill_between(t[:-73], 100*RH_air[:-73,2], 100*RH_air[:-73,3], color='red', alpha = 0.2) #plt.plot(t,100*RH_air[:,1],'b--', label='Max N') plt.plot(t1,100*RH_air[-73:,1],'b--', label= lbl1 + lbl2 + lbl3) plt.scatter(td,dpRH, marker='.', color='k', label='Data') ax3.set_title('Relative Humidity', fontsize=10) plt.xticks(fontsize=8) plt.yticks(fontsize=8) ax3.set_xlabel('Hour', fontsize=8) ax3.set_ylabel('Relative Humidity (%)', fontsize=8) ax3.legend(loc='best', fontsize='small') ax3.axvline(x=0, color='k') ax3.set_xlim(-120, 72) plt.subplots_adjust(wspace=0.5) # Calculate statistics and produce pie charts. Note need too cold as well? Check # setpoints with Mel setTmax = 25 + 273.15 setTmin = 20 + 273.15 setRHmax = 0.85 setRHmin = 0.5 TBAUstat = T_air[-73:,0] TSEstat = T_air[-73:,1] RHBAUstat = RH_air[-73:,0] RHSEstat = RH_air[-73:,1] testTBAU = TBAUstat>setTmax testTBAU_low = TBAUstat<setTmin testTSE = TSEstat>setTmax testTSE_low = TSEstat<setTmin testRHBAU = RHBAUstat>setRHmax testRHBAU_low = RHBAUstat<setRHmin testRHSE = RHSEstat>setRHmax testRHSE_low = RHSEstat<setRHmin #y1 = ([np.sum(testTBAU), 72]) y1 = {'T<Tmin': np.sum(testTBAU_low), 'T OK': 72-np.sum(testTBAU)-np.sum(testTBAU_low), 'T>Tset': np.sum(testTBAU)} names1 = [key for key,value in y1.items() if value!=0] values1 = [value for value in y1.values() if value!=0] #y2 = ([np.sum(testTSE), 72]) #y2 = {'T<Tset': 72-np.sum(testTSE), 'T>Tset': np.sum(testTSE)} y2 = {'T<Tmin': np.sum(testTSE_low), 'T OK': 72-np.sum(testTSE)-np.sum(testTSE_low), 'T>Tset': np.sum(testTSE)} names2 = [key for key,value in y2.items() if value!=0] values2 = [value for value in y2.values() if value!=0] #y3 = ([np.sum(testRHBAU), 72]) #y3 = {'RH<RHset': 72-np.sum(testRHBAU), 'RH>RHset': np.sum(testRHBAU)} y3 = {'RH<RHmin': np.sum(testRHBAU_low), 'RH OK': 72-np.sum(testRHBAU)-np.sum(testRHBAU_low), 'RH>RHset': np.sum(testRHBAU)} names3 = [key for key,value in y3.items()] values3 = [value for value in y3.values()] #y4 = ([np.sum(testRHSE), 72]) #y4 = {'RH<RHset': 72-np.sum(testRHSE), 'RH>RHset': np.sum(testRHSE)} y4 = {'RH<RHmin': np.sum(testRHSE_low), 'RH OK': 72-np.sum(testRHSE)-np.sum(testRHSE_low), 'RH>RHset': np.sum(testRHSE)} names4 = [key for key,value in y4.items()] values4 = [value for value in y4.values()] fig2 = plt.figure() #Tlabels = ['T>Tset', 'T<Tset'] #RHlabels = ['RH>RHset', 'RH<RHset'] ax11 = fig2.add_subplot(2,2,1) plt.pie(values1, colors = ['blue','green','red'], startangle = 90, labels = names1, textprops={'fontsize': 8}) ax11.set_title('Temperature - BAU', fontsize = 8) ax12 = fig2.add_subplot(2,2,3) plt.pie(values2, colors = ['blue','green','red'], startangle = 90, labels = names2, textprops={'fontsize': 8}) ax12.set_title('Temperature - Scenario', fontsize = 8) ax31 = fig2.add_subplot(2,2,2) plt.pie(values3, colors = ['blue','green','red'], startangle = 90, labels = names3, textprops={'fontsize': 8}) ax31.set_title('RH - BAU', fontsize = 8) ax32 = fig2.add_subplot(2,2,4) plt.pie(values4, colors = ['blue','green','red'], startangle = 90, labels = names4, textprops={'fontsize': 8}) ax32.set_title('RH - Scenario', fontsize = 8)
[ "numpy.quantile", "numpy.sum", "matplotlib.pyplot.plot", "pandas.read_csv", "matplotlib.pyplot.scatter", "functions_scenario.derivatives", "matplotlib.pyplot.yticks", "numpy.zeros", "numpy.genfromtxt", "matplotlib.pyplot.figure", "numpy.mean", "numpy.linspace", "matplotlib.pyplot.subplots_adjust", "functions_scenario.sat_conc", "matplotlib.pyplot.xticks", "numpy.concatenate", "matplotlib.pyplot.pie" ]
[((544, 587), 'numpy.genfromtxt', 'np.genfromtxt', (['"""ACH_out.csv"""'], {'delimiter': '""","""'}), "('ACH_out.csv', delimiter=',')\n", (557, 587), True, 'import numpy as np\n'), ((597, 640), 'numpy.genfromtxt', 'np.genfromtxt', (['"""IAS_out.csv"""'], {'delimiter': '""","""'}), "('IAS_out.csv', delimiter=',')\n", (610, 640), True, 'import numpy as np\n'), ((807, 825), 'numpy.mean', 'np.mean', (['ACHcal', '(0)'], {}), '(ACHcal, 0)\n', (814, 825), True, 'import numpy as np\n'), ((833, 861), 'numpy.quantile', 'np.quantile', (['ACHcal', '(0.95)', '(0)'], {}), '(ACHcal, 0.95, 0)\n', (844, 861), True, 'import numpy as np\n'), ((868, 896), 'numpy.quantile', 'np.quantile', (['ACHcal', '(0.05)', '(0)'], {}), '(ACHcal, 0.05, 0)\n', (879, 896), True, 'import numpy as np\n'), ((943, 961), 'numpy.mean', 'np.mean', (['IAScal', '(0)'], {}), '(IAScal, 0)\n', (950, 961), True, 'import numpy as np\n'), ((969, 997), 'numpy.quantile', 'np.quantile', (['IAScal', '(0.95)', '(0)'], {}), '(IAScal, 0.95, 0)\n', (980, 997), True, 'import numpy as np\n'), ((1004, 1032), 'numpy.quantile', 'np.quantile', (['IAScal', '(0.05)', '(0)'], {}), '(IAScal, 0.05, 0)\n', (1015, 1032), True, 'import numpy as np\n'), ((1189, 1210), 'numpy.zeros', 'np.zeros', (['(ndp, 4, 4)'], {}), '((ndp, 4, 4))\n', (1197, 1210), True, 'import numpy as np\n'), ((1622, 1641), 'numpy.zeros', 'np.zeros', (['(8, 4, 4)'], {}), '((8, 4, 4))\n', (1630, 1641), True, 'import numpy as np\n'), ((2296, 2328), 'numpy.concatenate', 'np.concatenate', (['(test, ScenEval)'], {}), '((test, ScenEval))\n', (2310, 2328), True, 'import numpy as np\n'), ((2551, 2583), 'functions_scenario.derivatives', 'derivatives', (['h1', 'h2', 'params', 'ndp'], {}), '(h1, h2, params, ndp)\n', (2562, 2583), False, 'from functions_scenario import derivatives, sat_conc\n'), ((2796, 2841), 'numpy.linspace', 'np.linspace', (['p1', 'p2', '(ndp + 1)'], {'endpoint': '"""true"""'}), "(p1, p2, ndp + 1, endpoint='true')\n", (2807, 2841), True, 'import numpy as np\n'), ((2871, 2921), 'pandas.read_csv', 'pd.read_csv', (['"""TRHE2018.csv"""'], {'parse_dates': 'date_cols'}), "('TRHE2018.csv', parse_dates=date_cols)\n", (2882, 2921), True, 'import pandas as pd\n'), ((3022, 3068), 'numpy.linspace', 'np.linspace', (['(h1 - h2)', '(3 * 24)', '(1 + 240 + 3 * 24)'], {}), '(h1 - h2, 3 * 24, 1 + 240 + 3 * 24)\n', (3033, 3068), True, 'import numpy as np\n'), ((3062, 3096), 'numpy.linspace', 'np.linspace', (['(0)', '(3 * 24)', '(1 + 3 * 24)'], {}), '(0, 3 * 24, 1 + 3 * 24)\n', (3073, 3096), True, 'import numpy as np\n'), ((3094, 3121), 'numpy.linspace', 'np.linspace', (['(h1 - h2)', '(0)', '(21)'], {}), '(h1 - h2, 0, 21)\n', (3105, 3121), True, 'import numpy as np\n'), ((3201, 3213), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (3211, 3213), True, 'import matplotlib.pyplot as plt\n'), ((3244, 3282), 'matplotlib.pyplot.plot', 'plt.plot', (['t', '(T_air[:, 0] - 273.15)', '"""r"""'], {}), "(t, T_air[:, 0] - 273.15, 'r')\n", (3252, 3282), True, 'import matplotlib.pyplot as plt\n'), ((3486, 3530), 'matplotlib.pyplot.plot', 'plt.plot', (['t1', '(T_air[-73:, 1] - 273.15)', '"""b--"""'], {}), "(t1, T_air[-73:, 1] - 273.15, 'b--')\n", (3494, 3530), True, 'import matplotlib.pyplot as plt\n'), ((3526, 3578), 'matplotlib.pyplot.scatter', 'plt.scatter', (['td', '(dpT - 273.15)'], {'marker': '"""."""', 'color': '"""k"""'}), "(td, dpT - 273.15, marker='.', color='k')\n", (3537, 3578), True, 'import matplotlib.pyplot as plt\n'), ((3576, 3598), 'matplotlib.pyplot.xticks', 'plt.xticks', ([], {'fontsize': '(8)'}), '(fontsize=8)\n', (3586, 3598), True, 'import matplotlib.pyplot as plt\n'), ((3599, 3621), 'matplotlib.pyplot.yticks', 'plt.yticks', ([], {'fontsize': '(8)'}), '(fontsize=8)\n', (3609, 3621), True, 'import matplotlib.pyplot as plt\n'), ((3952, 4001), 'matplotlib.pyplot.plot', 'plt.plot', (['t', '(100 * RH_air[:, 0])', '"""r"""'], {'label': '"""BAU"""'}), "(t, 100 * RH_air[:, 0], 'r', label='BAU')\n", (3960, 4001), True, 'import matplotlib.pyplot as plt\n'), ((4140, 4208), 'matplotlib.pyplot.plot', 'plt.plot', (['t1', '(100 * RH_air[-73:, 1])', '"""b--"""'], {'label': '(lbl1 + lbl2 + lbl3)'}), "(t1, 100 * RH_air[-73:, 1], 'b--', label=lbl1 + lbl2 + lbl3)\n", (4148, 4208), True, 'import matplotlib.pyplot as plt\n'), ((4205, 4263), 'matplotlib.pyplot.scatter', 'plt.scatter', (['td', 'dpRH'], {'marker': '"""."""', 'color': '"""k"""', 'label': '"""Data"""'}), "(td, dpRH, marker='.', color='k', label='Data')\n", (4216, 4263), True, 'import matplotlib.pyplot as plt\n'), ((4311, 4333), 'matplotlib.pyplot.xticks', 'plt.xticks', ([], {'fontsize': '(8)'}), '(fontsize=8)\n', (4321, 4333), True, 'import matplotlib.pyplot as plt\n'), ((4334, 4356), 'matplotlib.pyplot.yticks', 'plt.yticks', ([], {'fontsize': '(8)'}), '(fontsize=8)\n', (4344, 4356), True, 'import matplotlib.pyplot as plt\n'), ((4538, 4569), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'wspace': '(0.5)'}), '(wspace=0.5)\n', (4557, 4569), True, 'import matplotlib.pyplot as plt\n'), ((6307, 6319), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (6317, 6319), True, 'import matplotlib.pyplot as plt\n'), ((6423, 6534), 'matplotlib.pyplot.pie', 'plt.pie', (['values1'], {'colors': "['blue', 'green', 'red']", 'startangle': '(90)', 'labels': 'names1', 'textprops': "{'fontsize': 8}"}), "(values1, colors=['blue', 'green', 'red'], startangle=90, labels=\n names1, textprops={'fontsize': 8})\n", (6430, 6534), True, 'import matplotlib.pyplot as plt\n'), ((6624, 6735), 'matplotlib.pyplot.pie', 'plt.pie', (['values2'], {'colors': "['blue', 'green', 'red']", 'startangle': '(90)', 'labels': 'names2', 'textprops': "{'fontsize': 8}"}), "(values2, colors=['blue', 'green', 'red'], startangle=90, labels=\n names2, textprops={'fontsize': 8})\n", (6631, 6735), True, 'import matplotlib.pyplot as plt\n'), ((6824, 6935), 'matplotlib.pyplot.pie', 'plt.pie', (['values3'], {'colors': "['blue', 'green', 'red']", 'startangle': '(90)', 'labels': 'names3', 'textprops': "{'fontsize': 8}"}), "(values3, colors=['blue', 'green', 'red'], startangle=90, labels=\n names3, textprops={'fontsize': 8})\n", (6831, 6935), True, 'import matplotlib.pyplot as plt\n'), ((7017, 7128), 'matplotlib.pyplot.pie', 'plt.pie', (['values4'], {'colors': "['blue', 'green', 'red']", 'startangle': '(90)', 'labels': 'names4', 'textprops': "{'fontsize': 8}"}), "(values4, colors=['blue', 'green', 'red'], startangle=90, labels=\n names4, textprops={'fontsize': 8})\n", (7024, 7128), True, 'import matplotlib.pyplot as plt\n'), ((2654, 2669), 'functions_scenario.sat_conc', 'sat_conc', (['T_air'], {}), '(T_air)\n', (2662, 2669), False, 'from functions_scenario import derivatives, sat_conc\n'), ((3180, 3193), 'functions_scenario.sat_conc', 'sat_conc', (['dpT'], {}), '(dpT)\n', (3188, 3193), False, 'from functions_scenario import derivatives, sat_conc\n'), ((5147, 5167), 'numpy.sum', 'np.sum', (['testTBAU_low'], {}), '(testTBAU_low)\n', (5153, 5167), True, 'import numpy as np\n'), ((5229, 5245), 'numpy.sum', 'np.sum', (['testTBAU'], {}), '(testTBAU)\n', (5235, 5245), True, 'import numpy as np\n'), ((5468, 5487), 'numpy.sum', 'np.sum', (['testTSE_low'], {}), '(testTSE_low)\n', (5474, 5487), True, 'import numpy as np\n'), ((5547, 5562), 'numpy.sum', 'np.sum', (['testTSE'], {}), '(testTSE)\n', (5553, 5562), True, 'import numpy as np\n'), ((5797, 5818), 'numpy.sum', 'np.sum', (['testRHBAU_low'], {}), '(testRHBAU_low)\n', (5803, 5818), True, 'import numpy as np\n'), ((5885, 5902), 'numpy.sum', 'np.sum', (['testRHBAU'], {}), '(testRHBAU)\n', (5891, 5902), True, 'import numpy as np\n'), ((6110, 6130), 'numpy.sum', 'np.sum', (['testRHSE_low'], {}), '(testRHSE_low)\n', (6116, 6130), True, 'import numpy as np\n'), ((6195, 6211), 'numpy.sum', 'np.sum', (['testRHSE'], {}), '(testRHSE)\n', (6201, 6211), True, 'import numpy as np\n'), ((5197, 5217), 'numpy.sum', 'np.sum', (['testTBAU_low'], {}), '(testTBAU_low)\n', (5203, 5217), True, 'import numpy as np\n'), ((5516, 5535), 'numpy.sum', 'np.sum', (['testTSE_low'], {}), '(testTSE_low)\n', (5522, 5535), True, 'import numpy as np\n'), ((5850, 5871), 'numpy.sum', 'np.sum', (['testRHBAU_low'], {}), '(testRHBAU_low)\n', (5856, 5871), True, 'import numpy as np\n'), ((6161, 6181), 'numpy.sum', 'np.sum', (['testRHSE_low'], {}), '(testRHSE_low)\n', (6167, 6181), True, 'import numpy as np\n'), ((5180, 5196), 'numpy.sum', 'np.sum', (['testTBAU'], {}), '(testTBAU)\n', (5186, 5196), True, 'import numpy as np\n'), ((5500, 5515), 'numpy.sum', 'np.sum', (['testTSE'], {}), '(testTSE)\n', (5506, 5515), True, 'import numpy as np\n'), ((5832, 5849), 'numpy.sum', 'np.sum', (['testRHBAU'], {}), '(testRHBAU)\n', (5838, 5849), True, 'import numpy as np\n'), ((6144, 6160), 'numpy.sum', 'np.sum', (['testRHSE'], {}), '(testRHSE)\n', (6150, 6160), True, 'import numpy as np\n')]
"""Print summary statistics of DRIAMS spectra. The purpose of this script is to print some summary statistics about DRIAMS data sets, stratified by site. This is just a debug script with no usage in real-world analysis scenarios. """ import argparse import dotenv import os import numpy as np from maldi_learn.driams import DRIAMSDatasetExplorer from maldi_learn.driams import load_driams_dataset from tqdm import tqdm dotenv.load_dotenv() DRIAMS_ROOT = os.getenv('DRIAMS_ROOT') if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '-s', '--site', default='DRIAMS-A', type=str, help='Site to pre-process') parser.add_argument( '-y', '--years', default=['2015', '2016', '2017', '2018'], type=str, nargs='+', help='Years to pre-process' ) args = parser.parse_args() # Get all available antibiotics for the selected site. We will # pre-process *all* the spectra. explorer = DRIAMSDatasetExplorer(DRIAMS_ROOT) antibiotics = explorer.available_antibiotics(args.site) # Process each year separately, because that simplifies assigning # the output files. for year in tqdm(args.years, desc='Year'): driams_dataset = load_driams_dataset( explorer.root, args.site, year, '*', # Load all species; we do *not* want to filter anything antibiotics[year], handle_missing_resistance_measurements='keep', # Keep all spectra_type='binned_6000', ) codes = driams_dataset.y['code'].values for spectrum, code in tqdm(zip(driams_dataset.X, codes), total=len(codes), desc='Spectrum'): # Use intensity values only if len(spectrum.shape) == 2: spectrum = spectrum[:, 1] min_value, max_value = np.min(spectrum), np.max(spectrum) tic = np.sum(spectrum) print(f'*** {code} ***') print(f'Min: {min_value:.08f}') print(f'Max: {max_value:.08f}') print(f'TIC: {tic:.2f}')
[ "tqdm.tqdm", "numpy.sum", "argparse.ArgumentParser", "maldi_learn.driams.DRIAMSDatasetExplorer", "maldi_learn.driams.load_driams_dataset", "dotenv.load_dotenv", "numpy.min", "numpy.max", "os.getenv" ]
[((425, 445), 'dotenv.load_dotenv', 'dotenv.load_dotenv', ([], {}), '()\n', (443, 445), False, 'import dotenv\n'), ((460, 484), 'os.getenv', 'os.getenv', (['"""DRIAMS_ROOT"""'], {}), "('DRIAMS_ROOT')\n", (469, 484), False, 'import os\n'), ((528, 553), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (551, 553), False, 'import argparse\n'), ((1018, 1052), 'maldi_learn.driams.DRIAMSDatasetExplorer', 'DRIAMSDatasetExplorer', (['DRIAMS_ROOT'], {}), '(DRIAMS_ROOT)\n', (1039, 1052), False, 'from maldi_learn.driams import DRIAMSDatasetExplorer\n'), ((1224, 1253), 'tqdm.tqdm', 'tqdm', (['args.years'], {'desc': '"""Year"""'}), "(args.years, desc='Year')\n", (1228, 1253), False, 'from tqdm import tqdm\n'), ((1280, 1434), 'maldi_learn.driams.load_driams_dataset', 'load_driams_dataset', (['explorer.root', 'args.site', 'year', '"""*"""', 'antibiotics[year]'], {'handle_missing_resistance_measurements': '"""keep"""', 'spectra_type': '"""binned_6000"""'}), "(explorer.root, args.site, year, '*', antibiotics[year],\n handle_missing_resistance_measurements='keep', spectra_type='binned_6000')\n", (1299, 1434), False, 'from maldi_learn.driams import load_driams_dataset\n'), ((2057, 2073), 'numpy.sum', 'np.sum', (['spectrum'], {}), '(spectrum)\n', (2063, 2073), True, 'import numpy as np\n'), ((2004, 2020), 'numpy.min', 'np.min', (['spectrum'], {}), '(spectrum)\n', (2010, 2020), True, 'import numpy as np\n'), ((2022, 2038), 'numpy.max', 'np.max', (['spectrum'], {}), '(spectrum)\n', (2028, 2038), True, 'import numpy as np\n')]
from functools import partial import numpy as np from keras.preprocessing.image import img_to_array from keras.preprocessing.image import load_img from toolbox.image import bicubic_rescale from toolbox.image import modcrop from toolbox.paths import data_dir def load_set(name, lr_sub_size=11, lr_sub_stride=5, scale=3): hr_sub_size = lr_sub_size * scale hr_sub_stride = lr_sub_stride * scale lr_gen_sub = partial(generate_sub_images, size=lr_sub_size, stride=lr_sub_stride) hr_gen_sub = partial(generate_sub_images, size=hr_sub_size, stride=hr_sub_stride) lr_sub_arrays = [] hr_sub_arrays = [] for path in (data_dir / name).glob('*'): lr_image, hr_image = load_image_pair(str(path), scale=scale) lr_sub_arrays += [img_to_array(img) for img in lr_gen_sub(lr_image)] hr_sub_arrays += [img_to_array(img) for img in hr_gen_sub(hr_image)] x = np.stack(lr_sub_arrays) y = np.stack(hr_sub_arrays) return x, y def load_image_pair(path, scale=3): image = load_img(path) image = image.convert('YCbCr') hr_image = modcrop(image, scale) lr_image = bicubic_rescale(hr_image, 1 / scale) return lr_image, hr_image def generate_sub_images(image, size, stride): for i in range(0, image.size[0] - size + 1, stride): for j in range(0, image.size[1] - size + 1, stride): yield image.crop([i, j, i + size, j + size])
[ "numpy.stack", "functools.partial", "toolbox.image.bicubic_rescale", "keras.preprocessing.image.img_to_array", "keras.preprocessing.image.load_img", "toolbox.image.modcrop" ]
[((421, 489), 'functools.partial', 'partial', (['generate_sub_images'], {'size': 'lr_sub_size', 'stride': 'lr_sub_stride'}), '(generate_sub_images, size=lr_sub_size, stride=lr_sub_stride)\n', (428, 489), False, 'from functools import partial\n'), ((532, 600), 'functools.partial', 'partial', (['generate_sub_images'], {'size': 'hr_sub_size', 'stride': 'hr_sub_stride'}), '(generate_sub_images, size=hr_sub_size, stride=hr_sub_stride)\n', (539, 600), False, 'from functools import partial\n'), ((949, 972), 'numpy.stack', 'np.stack', (['lr_sub_arrays'], {}), '(lr_sub_arrays)\n', (957, 972), True, 'import numpy as np\n'), ((981, 1004), 'numpy.stack', 'np.stack', (['hr_sub_arrays'], {}), '(hr_sub_arrays)\n', (989, 1004), True, 'import numpy as np\n'), ((1071, 1085), 'keras.preprocessing.image.load_img', 'load_img', (['path'], {}), '(path)\n', (1079, 1085), False, 'from keras.preprocessing.image import load_img\n'), ((1136, 1157), 'toolbox.image.modcrop', 'modcrop', (['image', 'scale'], {}), '(image, scale)\n', (1143, 1157), False, 'from toolbox.image import modcrop\n'), ((1173, 1209), 'toolbox.image.bicubic_rescale', 'bicubic_rescale', (['hr_image', '(1 / scale)'], {}), '(hr_image, 1 / scale)\n', (1188, 1209), False, 'from toolbox.image import bicubic_rescale\n'), ((813, 830), 'keras.preprocessing.image.img_to_array', 'img_to_array', (['img'], {}), '(img)\n', (825, 830), False, 'from keras.preprocessing.image import img_to_array\n'), ((890, 907), 'keras.preprocessing.image.img_to_array', 'img_to_array', (['img'], {}), '(img)\n', (902, 907), False, 'from keras.preprocessing.image import img_to_array\n')]
from datetime import datetime import numpy as NP import scipy.optimize import sympy as SYM import pylab as PL def chapman(z, Nm, Hm, H_O, exp=NP.exp): """ Return Chapman function electron density at height *z*, maximum electron density at the F-peak *Nm*, height at the maximum *Hm*, and the scale height of atomic oxygen *H_O*. The exponential function can be overridden with *exp*. """ return Nm * exp((1 - ((z - Hm) / H_O) - exp(-(z - Hm) / H_O)) / 2) def chapman_sym(z, Nm, Hm, H_O): """ Return symbolic (i.e., :module:`sympy`) Chapman electron density profile function. """ return chapman(z, Nm, Hm, H_O, exp=SYM.exp) def chapman_vec(z_vec, Nm_vec, Hm_vec, H_O_vec): """ Vectorized implementation of the Chapman function evaluation routine :func:`chapman`. The input arguments must be sequences with the same length and the output is an :class:`NP.ndarray` with that length. """ try: chapman_vec._chapman_sym_f except AttributeError: sym_vars = SYM.symbols('z Nm Hm H_O') chapman_vec._chapman_sym_f = SYM.lambdify(sym_vars, chapman_sym(*sym_vars), modules='numexpr') return chapman_vec._chapman_sym_f(z_vec, Nm_vec, Hm_vec, H_O_vec) def chapman_fit(alt, ne, x0=[1e6, 300, 50], bounds=[(1, None), (150, 500), (30, 80)], verbose=False, **kwds): """ """ # optimization setup z, Nm, Hm, H_O = SYM.symbols('z Nm Hm H_O') chapman = chapman_sym(z, Nm, Hm, H_O) dNm = SYM.diff(chapman, Nm) dHm = SYM.diff(chapman, Hm) dH_O = SYM.diff(chapman, H_O) chapman_f = SYM.lambdify((z, Nm, Hm, H_O), chapman, modules='numexpr') dNm_f = SYM.lambdify((z, Nm, Hm, H_O), dNm, modules='numexpr') dHm_f = SYM.lambdify((z, Nm, Hm, H_O), dHm, modules='numexpr') dH_O_f = SYM.lambdify((z, Nm, Hm, H_O), dH_O, modules='numexpr') # define cost function y = NP.asarray(ne) def J(x): Nm, Hm, H_O = x if verbose: print('-' * 80) print(x) y_hat = NP.array([chapman_f(z, Nm, Hm, H_O) for z in alt]) diff = y - y_hat J1 = NP.array([dNm_f(z, Nm, Hm, H_O) for z in alt]) J2 = NP.array([dHm_f(z, Nm, Hm, H_O) for z in alt]) J3 = NP.array([dH_O_f(z, Nm, Hm, H_O) for z in alt]) return (NP.dot(diff, diff), NP.array([-2 * NP.sum(diff * J1), -2 * NP.sum(diff * J2), -2 * NP.sum(diff * J3)])) # minimize cost function x_star, f, d = scipy.optimize.fmin_l_bfgs_b(J, x0, bounds=bounds, **kwds) assert d['warnflag'] == 0 return x_star if __name__ == '__main__': from pyglow.pyglow import Point N = 200 alt = NP.linspace(100, 1500, N) dt = datetime(2000, 1, 1) lat = 0 lon = 0 iri_ne = [] for alt_i in alt: point = Point(dt, lat, lon, alt_i) point.run_iri() iri_ne.append(point.ne) Nm_star, Hm_star, H_O_star = chapman_fit(alt, iri_ne, verbose=True) chapman_ne = [chapman(z, Nm_star, Hm_star, H_O_star) for z in alt] fig = PL.figure(figsize=(6,10)) PL.plot(iri_ne, alt, color='b', label='IRI') PL.plot(chapman_ne, alt, color='g', label='Chapman fit') PL.legend() PL.xlabel('Electron density [cm$^{-3}$]') PL.ylabel('Height [km]') PL.ticklabel_format(style='sci', axis='x', scilimits=(0,0)) PL.axis('tight') PL.show()
[ "sympy.symbols", "pylab.show", "numpy.sum", "pylab.axis", "numpy.asarray", "sympy.diff", "pylab.ylabel", "sympy.lambdify", "datetime.datetime", "pylab.figure", "numpy.linspace", "pylab.xlabel", "numpy.dot", "pyglow.pyglow.Point", "pylab.ticklabel_format", "pylab.legend", "pylab.plot" ]
[((1769, 1795), 'sympy.symbols', 'SYM.symbols', (['"""z Nm Hm H_O"""'], {}), "('z Nm Hm H_O')\n", (1780, 1795), True, 'import sympy as SYM\n'), ((1848, 1869), 'sympy.diff', 'SYM.diff', (['chapman', 'Nm'], {}), '(chapman, Nm)\n', (1856, 1869), True, 'import sympy as SYM\n'), ((1880, 1901), 'sympy.diff', 'SYM.diff', (['chapman', 'Hm'], {}), '(chapman, Hm)\n', (1888, 1901), True, 'import sympy as SYM\n'), ((1913, 1935), 'sympy.diff', 'SYM.diff', (['chapman', 'H_O'], {}), '(chapman, H_O)\n', (1921, 1935), True, 'import sympy as SYM\n'), ((1952, 2010), 'sympy.lambdify', 'SYM.lambdify', (['(z, Nm, Hm, H_O)', 'chapman'], {'modules': '"""numexpr"""'}), "((z, Nm, Hm, H_O), chapman, modules='numexpr')\n", (1964, 2010), True, 'import sympy as SYM\n'), ((2081, 2135), 'sympy.lambdify', 'SYM.lambdify', (['(z, Nm, Hm, H_O)', 'dNm'], {'modules': '"""numexpr"""'}), "((z, Nm, Hm, H_O), dNm, modules='numexpr')\n", (2093, 2135), True, 'import sympy as SYM\n'), ((2198, 2252), 'sympy.lambdify', 'SYM.lambdify', (['(z, Nm, Hm, H_O)', 'dHm'], {'modules': '"""numexpr"""'}), "((z, Nm, Hm, H_O), dHm, modules='numexpr')\n", (2210, 2252), True, 'import sympy as SYM\n'), ((2316, 2371), 'sympy.lambdify', 'SYM.lambdify', (['(z, Nm, Hm, H_O)', 'dH_O'], {'modules': '"""numexpr"""'}), "((z, Nm, Hm, H_O), dH_O, modules='numexpr')\n", (2328, 2371), True, 'import sympy as SYM\n'), ((2459, 2473), 'numpy.asarray', 'NP.asarray', (['ne'], {}), '(ne)\n', (2469, 2473), True, 'import numpy as NP\n'), ((3429, 3454), 'numpy.linspace', 'NP.linspace', (['(100)', '(1500)', 'N'], {}), '(100, 1500, N)\n', (3440, 3454), True, 'import numpy as NP\n'), ((3465, 3485), 'datetime.datetime', 'datetime', (['(2000)', '(1)', '(1)'], {}), '(2000, 1, 1)\n', (3473, 3485), False, 'from datetime import datetime\n'), ((3804, 3830), 'pylab.figure', 'PL.figure', ([], {'figsize': '(6, 10)'}), '(figsize=(6, 10))\n', (3813, 3830), True, 'import pylab as PL\n'), ((3834, 3878), 'pylab.plot', 'PL.plot', (['iri_ne', 'alt'], {'color': '"""b"""', 'label': '"""IRI"""'}), "(iri_ne, alt, color='b', label='IRI')\n", (3841, 3878), True, 'import pylab as PL\n'), ((3919, 3975), 'pylab.plot', 'PL.plot', (['chapman_ne', 'alt'], {'color': '"""g"""', 'label': '"""Chapman fit"""'}), "(chapman_ne, alt, color='g', label='Chapman fit')\n", (3926, 3975), True, 'import pylab as PL\n'), ((4016, 4027), 'pylab.legend', 'PL.legend', ([], {}), '()\n', (4025, 4027), True, 'import pylab as PL\n'), ((4032, 4073), 'pylab.xlabel', 'PL.xlabel', (['"""Electron density [cm$^{-3}$]"""'], {}), "('Electron density [cm$^{-3}$]')\n", (4041, 4073), True, 'import pylab as PL\n'), ((4078, 4102), 'pylab.ylabel', 'PL.ylabel', (['"""Height [km]"""'], {}), "('Height [km]')\n", (4087, 4102), True, 'import pylab as PL\n'), ((4107, 4167), 'pylab.ticklabel_format', 'PL.ticklabel_format', ([], {'style': '"""sci"""', 'axis': '"""x"""', 'scilimits': '(0, 0)'}), "(style='sci', axis='x', scilimits=(0, 0))\n", (4126, 4167), True, 'import pylab as PL\n'), ((4171, 4187), 'pylab.axis', 'PL.axis', (['"""tight"""'], {}), "('tight')\n", (4178, 4187), True, 'import pylab as PL\n'), ((4193, 4202), 'pylab.show', 'PL.show', ([], {}), '()\n', (4200, 4202), True, 'import pylab as PL\n'), ((3565, 3591), 'pyglow.pyglow.Point', 'Point', (['dt', 'lat', 'lon', 'alt_i'], {}), '(dt, lat, lon, alt_i)\n', (3570, 3591), False, 'from pyglow.pyglow import Point\n'), ((1053, 1079), 'sympy.symbols', 'SYM.symbols', (['"""z Nm Hm H_O"""'], {}), "('z Nm Hm H_O')\n", (1064, 1079), True, 'import sympy as SYM\n'), ((2870, 2888), 'numpy.dot', 'NP.dot', (['diff', 'diff'], {}), '(diff, diff)\n', (2876, 2888), True, 'import numpy as NP\n'), ((2921, 2938), 'numpy.sum', 'NP.sum', (['(diff * J1)'], {}), '(diff * J1)\n', (2927, 2938), True, 'import numpy as NP\n'), ((2971, 2988), 'numpy.sum', 'NP.sum', (['(diff * J2)'], {}), '(diff * J2)\n', (2977, 2988), True, 'import numpy as NP\n'), ((3021, 3038), 'numpy.sum', 'NP.sum', (['(diff * J3)'], {}), '(diff * J3)\n', (3027, 3038), True, 'import numpy as NP\n')]