code
stringlengths
31
1.05M
apis
list
extract_api
stringlengths
97
1.91M
# -*- coding: utf-8 -*- import sys,os import pandas as pd import numpy as np from collections import Counter import joblib from sklearn.preprocessing import StandardScaler, OneHotEncoder from sklearn.model_selection import RandomizedSearchCV from sklearn.model_selection import GroupKFold, StratifiedKFold from sklearn.ensemble import RandomForestClassifier from sklearn.pipeline import Pipeline from sklearn.utils.class_weight import compute_class_weight from sklearn.metrics import make_scorer, average_precision_score from imblearn.over_sampling import SMOTE sys.path.append('../analysis/') from analysis import cv_save_feat_importances_result, cv_save_classification_result def main(argv): infile = argv[0] mode = argv[1] # binary or multiclass or nonwear dataset = argv[2] outdir = argv[3] resultdir = os.path.join(outdir,'models') if not os.path.exists(resultdir): os.makedirs(resultdir) # Read data file and retain data only corresponding to 5 sleep states or nonwear df = pd.read_csv(infile, dtype={'label':object, 'user':object, 'position':object, 'dataset':object}) if mode == 'binary': states = ['Wake', 'Sleep'] collate_states = ['NREM 1', 'NREM 2', 'NREM 3', 'REM'] df.loc[df['label'].isin(collate_states), 'label'] = 'Sleep' elif mode == 'nonwear': states = ['Wear', 'Nonwear'] collate_states = ['Wake', 'NREM 1', 'NREM 2', 'NREM 3', 'REM'] df.loc[df['label'].isin(collate_states), 'label'] = 'Wear' else: states = ['Wake', 'NREM 1', 'NREM 2', 'NREM 3', 'REM'] df = df[df['label'].isin(states)].reset_index() print('... Number of data samples: %d' % len(df)) ctr = Counter(df['label']) for cls in ctr: print('%s: %d (%0.2f%%)' % (cls,ctr[cls],ctr[cls]*100.0/len(df))) feat_cols = ['ENMO_mean','ENMO_std','ENMO_range','ENMO_mad', 'ENMO_entropy1','ENMO_entropy2', 'ENMO_prev30diff', 'ENMO_next30diff', 'ENMO_prev60diff', 'ENMO_next60diff', 'ENMO_prev120diff', 'ENMO_next120diff', 'angz_mean','angz_std','angz_range','angz_mad', 'angz_entropy1','angz_entropy2', 'angz_prev30diff', 'angz_next30diff', 'angz_prev60diff', 'angz_next60diff', 'angz_prev120diff', 'angz_next120diff', 'LIDS_mean','LIDS_std','LIDS_range','LIDS_mad', 'LIDS_entropy1','LIDS_entropy2', 'LIDS_prev30diff', 'LIDS_next30diff', 'LIDS_prev60diff', 'LIDS_next60diff', 'LIDS_prev120diff', 'LIDS_next120diff'] ######################## Partition the datasets ####################### # Nested cross-validation - outer CV for estimating model performance # Inner CV for estimating model hyperparameters # Split data based on users, not on samples, for outer CV # Use Stratified CV for inner CV to ensure similar label distribution ts = df['timestamp'] X = df[feat_cols].values y = df['label'] y = np.array([states.index(i) for i in y]) groups = df['user'] fnames = df['filename'] feat_len = X.shape[1] encoder = OneHotEncoder() scorer = make_scorer(average_precision_score, average='macro') # Outer CV imbalanced_pred = []; imbalanced_imp = [] balanced_pred = []; balanced_imp = [] outer_cv_splits = 5; inner_cv_splits = 5 outer_group_kfold = GroupKFold(n_splits=outer_cv_splits) out_fold = 0 for train_indices, test_indices in outer_group_kfold.split(X,y,groups): out_fold += 1 out_fold_X_train = X[train_indices,:]; out_fold_X_test = X[test_indices,:] out_fold_y_train = y[train_indices]; out_fold_y_test = y[test_indices] out_fold_users_train = groups[train_indices]; out_fold_users_test = groups[test_indices] out_fold_ts_test = ts[test_indices] out_fold_fnames_test = fnames[test_indices] if mode != 'multiclass': class_wt = compute_class_weight('balanced', np.unique(out_fold_y_train), out_fold_y_train) class_wt = {i:val for i,val in enumerate(class_wt)} else: class_wt = [] for cls in range(len(states)): class_train = (out_fold_y_train == cls).astype(np.int32) cls_wt = compute_class_weight('balanced', np.unique(class_train), class_train) cls_wt = {i:val for i,val in enumerate(cls_wt)} class_wt.append(cls_wt) # Inner CV ################## Balancing with SMOTE ################### scaler = StandardScaler() scaler.fit(out_fold_X_train) out_fold_X_train_sc = scaler.transform(out_fold_X_train) out_fold_X_test_sc = scaler.transform(out_fold_X_test) # Imblearn - Undersampling techniques ENN and Tomek are too slow and # difficult to parallelize # So stick only with oversampling techniques print('Fold'+str(out_fold)+' - Balanced: SMOTE') smote = SMOTE(random_state=0, n_jobs=-1, sampling_strategy='all') # Resample training data for each user train_users = list(set(out_fold_users_train)) out_fold_X_train_resamp, out_fold_y_train_resamp, out_fold_users_train_resamp = None, None, None for i,user in enumerate(train_users): #print('%d/%d - %s' % (i+1,len(train_users),user)) user_X = out_fold_X_train_sc[out_fold_users_train == user] user_y = out_fold_y_train[out_fold_users_train == user] if len(set(user_y)) == 1: print('%d/%d: %s has only one class' % (i+1,len(train_users),user)) print(Counter(user_y)) continue try: user_X_resamp, user_y_resamp = smote.fit_resample(user_X, user_y) except: print('%d/%d: %s failed to fit' % (i+1,len(train_users),user)) print(Counter(user_y)) continue user_y_resamp = user_y_resamp.reshape(-1,1) user_resamp = np.array([user] * len(user_X_resamp)).reshape(-1,1) if out_fold_X_train_resamp is None: out_fold_X_train_resamp = user_X_resamp out_fold_y_train_resamp = user_y_resamp out_fold_users_train_resamp = user_resamp else: out_fold_X_train_resamp = np.vstack((out_fold_X_train_resamp, user_X_resamp)) out_fold_y_train_resamp = np.vstack((out_fold_y_train_resamp, user_y_resamp)) out_fold_users_train_resamp = np.vstack((out_fold_users_train_resamp, user_resamp)) # Shuffle resampled data resamp_indices = np.arange(len(out_fold_X_train_resamp)) np.random.shuffle(resamp_indices) out_fold_X_train_resamp = out_fold_X_train_resamp[resamp_indices] out_fold_y_train_resamp = out_fold_y_train_resamp[resamp_indices].reshape(-1) out_fold_users_train_resamp = out_fold_users_train_resamp[resamp_indices].reshape(-1) inner_group_kfold = GroupKFold(n_splits=inner_cv_splits) custom_resamp_cv_indices = [] for grp_train_idx, grp_test_idx in \ inner_group_kfold.split(out_fold_X_train_resamp, out_fold_y_train_resamp, out_fold_users_train_resamp): custom_resamp_cv_indices.append((grp_train_idx, grp_test_idx)) grp_train_users = out_fold_users_train_resamp[grp_train_idx] grp_test_users = out_fold_users_train_resamp[grp_test_idx] # Note: imblearn Pipeline is slow and sklearn pipeline yields poor results clf = RandomForestClassifier(class_weight=class_wt, max_depth=None, random_state=0) print('Fold'+str(out_fold)+' - Balanced: Hyperparameter search') search_params = {'n_estimators':[100,150,200,300,400,500], 'max_depth': [5,10,15,20,None]} cv_clf = RandomizedSearchCV(estimator=clf, param_distributions=search_params, cv=custom_resamp_cv_indices, scoring=scorer, n_iter=10, n_jobs=-1, verbose=2) if mode == 'multiclass': out_fold_y_train_resamp = encoder.fit_transform(out_fold_y_train_resamp.reshape(-1,1)).todense() cv_clf.fit(out_fold_X_train_resamp, out_fold_y_train_resamp) print(cv_clf.best_estimator_) joblib.dump([scaler,cv_clf], os.path.join(resultdir,\ 'fold'+str(out_fold)+'_'+ mode + '_balanced_RF.sav')) out_fold_y_test_pred = cv_clf.predict_proba(out_fold_X_test_sc) if mode == 'multiclass': # collect probabilities from each binary classification multiclass_y_pred = None for cls in range(len(out_fold_y_test_pred)): if cls == 0: multiclass_y_pred = out_fold_y_test_pred[cls][:,1].reshape(-1,1) else: multiclass_y_pred = np.hstack((multiclass_y_pred, out_fold_y_test_pred[cls][:,1].reshape(-1,1))) out_fold_y_test_pred = multiclass_y_pred print('Fold'+str(out_fold)+' - Balanced', cv_clf.best_params_) balanced_pred.append((out_fold_users_test, out_fold_ts_test, out_fold_fnames_test, out_fold_y_test, out_fold_y_test_pred)) balanced_imp.append(cv_clf.best_estimator_.feature_importances_) print('############## Balanced classification ##############') # Save balanced classification reports cv_save_feat_importances_result(balanced_imp, feat_cols, os.path.join(outdir, mode + '_balanced_feat_imp.csv')) cv_save_classification_result(balanced_pred, states, os.path.join(outdir, mode + '_balanced_classification.csv')) if __name__ == "__main__": main(sys.argv[1:])
[ "sys.path.append", "sklearn.ensemble.RandomForestClassifier", "sklearn.preprocessing.StandardScaler", "os.makedirs", "pandas.read_csv", "numpy.unique", "sklearn.preprocessing.OneHotEncoder", "os.path.exists", "sklearn.model_selection.RandomizedSearchCV", "sklearn.metrics.make_scorer", "numpy.vstack", "imblearn.over_sampling.SMOTE", "sklearn.model_selection.GroupKFold", "collections.Counter", "os.path.join", "numpy.random.shuffle" ]
[((584, 615), 'sys.path.append', 'sys.path.append', (['"""../analysis/"""'], {}), "('../analysis/')\n", (599, 615), False, 'import sys, os\n'), ((850, 880), 'os.path.join', 'os.path.join', (['outdir', '"""models"""'], {}), "(outdir, 'models')\n", (862, 880), False, 'import sys, os\n'), ((1039, 1142), 'pandas.read_csv', 'pd.read_csv', (['infile'], {'dtype': "{'label': object, 'user': object, 'position': object, 'dataset': object}"}), "(infile, dtype={'label': object, 'user': object, 'position':\n object, 'dataset': object})\n", (1050, 1142), True, 'import pandas as pd\n'), ((1721, 1741), 'collections.Counter', 'Counter', (["df['label']"], {}), "(df['label'])\n", (1728, 1741), False, 'from collections import Counter\n'), ((3118, 3133), 'sklearn.preprocessing.OneHotEncoder', 'OneHotEncoder', ([], {}), '()\n', (3131, 3133), False, 'from sklearn.preprocessing import StandardScaler, OneHotEncoder\n'), ((3146, 3199), 'sklearn.metrics.make_scorer', 'make_scorer', (['average_precision_score'], {'average': '"""macro"""'}), "(average_precision_score, average='macro')\n", (3157, 3199), False, 'from sklearn.metrics import make_scorer, average_precision_score\n'), ((3369, 3405), 'sklearn.model_selection.GroupKFold', 'GroupKFold', ([], {'n_splits': 'outer_cv_splits'}), '(n_splits=outer_cv_splits)\n', (3379, 3405), False, 'from sklearn.model_selection import GroupKFold, StratifiedKFold\n'), ((890, 915), 'os.path.exists', 'os.path.exists', (['resultdir'], {}), '(resultdir)\n', (904, 915), False, 'import sys, os\n'), ((922, 944), 'os.makedirs', 'os.makedirs', (['resultdir'], {}), '(resultdir)\n', (933, 944), False, 'import sys, os\n'), ((4456, 4472), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (4470, 4472), False, 'from sklearn.preprocessing import StandardScaler, OneHotEncoder\n'), ((4859, 4916), 'imblearn.over_sampling.SMOTE', 'SMOTE', ([], {'random_state': '(0)', 'n_jobs': '(-1)', 'sampling_strategy': '"""all"""'}), "(random_state=0, n_jobs=-1, sampling_strategy='all')\n", (4864, 4916), False, 'from imblearn.over_sampling import SMOTE\n'), ((6421, 6454), 'numpy.random.shuffle', 'np.random.shuffle', (['resamp_indices'], {}), '(resamp_indices)\n', (6438, 6454), True, 'import numpy as np\n'), ((6727, 6763), 'sklearn.model_selection.GroupKFold', 'GroupKFold', ([], {'n_splits': 'inner_cv_splits'}), '(n_splits=inner_cv_splits)\n', (6737, 6763), False, 'from sklearn.model_selection import GroupKFold, StratifiedKFold\n'), ((7254, 7331), 'sklearn.ensemble.RandomForestClassifier', 'RandomForestClassifier', ([], {'class_weight': 'class_wt', 'max_depth': 'None', 'random_state': '(0)'}), '(class_weight=class_wt, max_depth=None, random_state=0)\n', (7276, 7331), False, 'from sklearn.ensemble import RandomForestClassifier\n'), ((7562, 7713), 'sklearn.model_selection.RandomizedSearchCV', 'RandomizedSearchCV', ([], {'estimator': 'clf', 'param_distributions': 'search_params', 'cv': 'custom_resamp_cv_indices', 'scoring': 'scorer', 'n_iter': '(10)', 'n_jobs': '(-1)', 'verbose': '(2)'}), '(estimator=clf, param_distributions=search_params, cv=\n custom_resamp_cv_indices, scoring=scorer, n_iter=10, n_jobs=-1, verbose=2)\n', (7580, 7713), False, 'from sklearn.model_selection import RandomizedSearchCV\n'), ((9133, 9186), 'os.path.join', 'os.path.join', (['outdir', "(mode + '_balanced_feat_imp.csv')"], {}), "(outdir, mode + '_balanced_feat_imp.csv')\n", (9145, 9186), False, 'import sys, os\n'), ((9264, 9323), 'os.path.join', 'os.path.join', (['outdir', "(mode + '_balanced_classification.csv')"], {}), "(outdir, mode + '_balanced_classification.csv')\n", (9276, 9323), False, 'import sys, os\n'), ((3939, 3966), 'numpy.unique', 'np.unique', (['out_fold_y_train'], {}), '(out_fold_y_train)\n', (3948, 3966), True, 'import numpy as np\n'), ((6092, 6143), 'numpy.vstack', 'np.vstack', (['(out_fold_X_train_resamp, user_X_resamp)'], {}), '((out_fold_X_train_resamp, user_X_resamp))\n', (6101, 6143), True, 'import numpy as np\n'), ((6179, 6230), 'numpy.vstack', 'np.vstack', (['(out_fold_y_train_resamp, user_y_resamp)'], {}), '((out_fold_y_train_resamp, user_y_resamp))\n', (6188, 6230), True, 'import numpy as np\n'), ((6270, 6323), 'numpy.vstack', 'np.vstack', (['(out_fold_users_train_resamp, user_resamp)'], {}), '((out_fold_users_train_resamp, user_resamp))\n', (6279, 6323), True, 'import numpy as np\n'), ((4232, 4254), 'numpy.unique', 'np.unique', (['class_train'], {}), '(class_train)\n', (4241, 4254), True, 'import numpy as np\n'), ((5469, 5484), 'collections.Counter', 'Counter', (['user_y'], {}), '(user_y)\n', (5476, 5484), False, 'from collections import Counter\n'), ((5693, 5708), 'collections.Counter', 'Counter', (['user_y'], {}), '(user_y)\n', (5700, 5708), False, 'from collections import Counter\n')]
import unittest from yauber_algo.errors import * class TWMATestCase(unittest.TestCase): def test_twma(self): import yauber_algo.sanitychecks as sc from numpy import array, nan, inf import os import sys import pandas as pd import numpy as np from yauber_algo.algo import twma # # Function settings # algo = 'twma' func = twma with sc.SanityChecker(algo) as s: # # Check regular algorithm logic # s.check_regular( array([nan, nan, 2, 7/3]), func, ( array([3, 2, 1, 4]), np.array([1, 1, 1]) ), suffix='twma_equal_weight' ) s.check_regular( array([nan, nan, (1*1+2*0.5+3*0.25)/1.75, (4*1+1*0.5+2*0.25)/1.75]), func, ( array([3, 2, 1, 4]), np.array([1, 0.5, 0.25]) ), suffix='twma_linear_weight' ) s.check_regular( array([nan, nan, 2, 7 / 3]), func, ( array([3, 2, 1, 4]), [1, 1, 1] ), suffix='twma_list_weight' ) s.check_regular( array([nan, nan, 2, 7 / 3]), func, ( array([3, 2, 1, 4]), pd.Series([1, 1, 1]) ), suffix='twma_series_weight' ) s.check_regular( array([nan, nan, 2, 7 / 3]), func, ( array([3, 2, 1, 4]), [1, 1, 1, 2, 2] ), suffix='twma_weight_gt_ser', exception=YaUberAlgoArgumentError, ) s.check_regular( array([nan, nan, nan, nan]), func, ( array([3, 2, 1, 4]), np.array([0, 0, 0]) ), suffix='twma_zeroweight' ) s.check_regular( array([nan, nan, 2, 7 / 3]), func, ( array([3, 2, 1, 4]), np.array([1, 1, nan]) ), suffix='twma_nan_weight', exception=YaUberAlgoArgumentError, ) s.check_naninf( array([nan, nan, nan, nan]), func, ( array([3, 2, nan, inf]), np.array([1, 1, 1, 1]) ), suffix='', ) s.check_series( pd.Series(array([nan, nan, 2, 7 / 3])), func, ( pd.Series(array([3, 2, 1, 4])), np.array([1, 1, 1]) ), ) s.check_dtype_float( array([nan, nan, 2, 7 / 3], dtype=float), func, ( array([3, 2, 1, 4], dtype=float), np.array([1, 1, 1], dtype=float) ), ) s.check_dtype_bool( array([nan, nan, 1/3, 2 / 3], dtype=float), func, ( array([0, 1, 0, 1], dtype=bool), np.array([1, 1, 1], dtype=float) ), ) s.check_dtype_int( array([nan, nan, 2, 7 / 3], dtype=float), func, ( array([3, 2, 1, 4], dtype=np.int32), np.array([1, 1, 1], dtype=np.int32) ), ) s.check_dtype_object( func, ( array([3, 2, 1, 4], dtype=np.object), np.array([1, 1, 1], dtype=float) ), ) s.check_futref(5, 1, func, ( np.random.random(100), np.array([1, 0.5, 0.25, 0.2, 0.1]), ), fix_args=[1], # Use weights args as is ) s.check_window_consistency(5, 1, func, ( np.random.random(100), np.array([1, 0.5, 0.25, 0.2, 0.1]), ), fix_args=[1], # Use weights args as is )
[ "pandas.Series", "numpy.random.random", "numpy.array", "yauber_algo.sanitychecks.SanityChecker" ]
[((443, 465), 'yauber_algo.sanitychecks.SanityChecker', 'sc.SanityChecker', (['algo'], {}), '(algo)\n', (459, 465), True, 'import yauber_algo.sanitychecks as sc\n'), ((589, 616), 'numpy.array', 'array', (['[nan, nan, 2, 7 / 3]'], {}), '([nan, nan, 2, 7 / 3])\n', (594, 616), False, 'from numpy import array, nan, inf\n'), ((859, 954), 'numpy.array', 'array', (['[nan, nan, (1 * 1 + 2 * 0.5 + 3 * 0.25) / 1.75, (4 * 1 + 1 * 0.5 + 2 * 0.25\n ) / 1.75]'], {}), '([nan, nan, (1 * 1 + 2 * 0.5 + 3 * 0.25) / 1.75, (4 * 1 + 1 * 0.5 + 2 *\n 0.25) / 1.75])\n', (864, 954), False, 'from numpy import array, nan, inf\n'), ((1177, 1204), 'numpy.array', 'array', (['[nan, nan, 2, 7 / 3]'], {}), '([nan, nan, 2, 7 / 3])\n', (1182, 1204), False, 'from numpy import array, nan, inf\n'), ((1437, 1464), 'numpy.array', 'array', (['[nan, nan, 2, 7 / 3]'], {}), '([nan, nan, 2, 7 / 3])\n', (1442, 1464), False, 'from numpy import array, nan, inf\n'), ((1711, 1738), 'numpy.array', 'array', (['[nan, nan, 2, 7 / 3]'], {}), '([nan, nan, 2, 7 / 3])\n', (1716, 1738), False, 'from numpy import array, nan, inf\n'), ((2032, 2059), 'numpy.array', 'array', (['[nan, nan, nan, nan]'], {}), '([nan, nan, nan, nan])\n', (2037, 2059), False, 'from numpy import array, nan, inf\n'), ((2302, 2329), 'numpy.array', 'array', (['[nan, nan, 2, 7 / 3]'], {}), '([nan, nan, 2, 7 / 3])\n', (2307, 2329), False, 'from numpy import array, nan, inf\n'), ((2625, 2652), 'numpy.array', 'array', (['[nan, nan, nan, nan]'], {}), '([nan, nan, nan, nan])\n', (2630, 2652), False, 'from numpy import array, nan, inf\n'), ((3142, 3182), 'numpy.array', 'array', (['[nan, nan, 2, 7 / 3]'], {'dtype': 'float'}), '([nan, nan, 2, 7 / 3], dtype=float)\n', (3147, 3182), False, 'from numpy import array, nan, inf\n'), ((3413, 3457), 'numpy.array', 'array', (['[nan, nan, 1 / 3, 2 / 3]'], {'dtype': 'float'}), '([nan, nan, 1 / 3, 2 / 3], dtype=float)\n', (3418, 3457), False, 'from numpy import array, nan, inf\n'), ((3683, 3723), 'numpy.array', 'array', (['[nan, nan, 2, 7 / 3]'], {'dtype': 'float'}), '([nan, nan, 2, 7 / 3], dtype=float)\n', (3688, 3723), False, 'from numpy import array, nan, inf\n'), ((676, 695), 'numpy.array', 'array', (['[3, 2, 1, 4]'], {}), '([3, 2, 1, 4])\n', (681, 695), False, 'from numpy import array, nan, inf\n'), ((717, 736), 'numpy.array', 'np.array', (['[1, 1, 1]'], {}), '([1, 1, 1])\n', (725, 736), True, 'import numpy as np\n'), ((988, 1007), 'numpy.array', 'array', (['[3, 2, 1, 4]'], {}), '([3, 2, 1, 4])\n', (993, 1007), False, 'from numpy import array, nan, inf\n'), ((1029, 1053), 'numpy.array', 'np.array', (['[1, 0.5, 0.25]'], {}), '([1, 0.5, 0.25])\n', (1037, 1053), True, 'import numpy as np\n'), ((1266, 1285), 'numpy.array', 'array', (['[3, 2, 1, 4]'], {}), '([3, 2, 1, 4])\n', (1271, 1285), False, 'from numpy import array, nan, inf\n'), ((1526, 1545), 'numpy.array', 'array', (['[3, 2, 1, 4]'], {}), '([3, 2, 1, 4])\n', (1531, 1545), False, 'from numpy import array, nan, inf\n'), ((1567, 1587), 'pandas.Series', 'pd.Series', (['[1, 1, 1]'], {}), '([1, 1, 1])\n', (1576, 1587), True, 'import pandas as pd\n'), ((1800, 1819), 'numpy.array', 'array', (['[3, 2, 1, 4]'], {}), '([3, 2, 1, 4])\n', (1805, 1819), False, 'from numpy import array, nan, inf\n'), ((2121, 2140), 'numpy.array', 'array', (['[3, 2, 1, 4]'], {}), '([3, 2, 1, 4])\n', (2126, 2140), False, 'from numpy import array, nan, inf\n'), ((2162, 2181), 'numpy.array', 'np.array', (['[0, 0, 0]'], {}), '([0, 0, 0])\n', (2170, 2181), True, 'import numpy as np\n'), ((2391, 2410), 'numpy.array', 'array', (['[3, 2, 1, 4]'], {}), '([3, 2, 1, 4])\n', (2396, 2410), False, 'from numpy import array, nan, inf\n'), ((2432, 2453), 'numpy.array', 'np.array', (['[1, 1, nan]'], {}), '([1, 1, nan])\n', (2440, 2453), True, 'import numpy as np\n'), ((2714, 2737), 'numpy.array', 'array', (['[3, 2, nan, inf]'], {}), '([3, 2, nan, inf])\n', (2719, 2737), False, 'from numpy import array, nan, inf\n'), ((2759, 2781), 'numpy.array', 'np.array', (['[1, 1, 1, 1]'], {}), '([1, 1, 1, 1])\n', (2767, 2781), True, 'import numpy as np\n'), ((2897, 2924), 'numpy.array', 'array', (['[nan, nan, 2, 7 / 3]'], {}), '([nan, nan, 2, 7 / 3])\n', (2902, 2924), False, 'from numpy import array, nan, inf\n'), ((3039, 3058), 'numpy.array', 'np.array', (['[1, 1, 1]'], {}), '([1, 1, 1])\n', (3047, 3058), True, 'import numpy as np\n'), ((3244, 3276), 'numpy.array', 'array', (['[3, 2, 1, 4]'], {'dtype': 'float'}), '([3, 2, 1, 4], dtype=float)\n', (3249, 3276), False, 'from numpy import array, nan, inf\n'), ((3298, 3330), 'numpy.array', 'np.array', (['[1, 1, 1]'], {'dtype': 'float'}), '([1, 1, 1], dtype=float)\n', (3306, 3330), True, 'import numpy as np\n'), ((3517, 3548), 'numpy.array', 'array', (['[0, 1, 0, 1]'], {'dtype': 'bool'}), '([0, 1, 0, 1], dtype=bool)\n', (3522, 3548), False, 'from numpy import array, nan, inf\n'), ((3570, 3602), 'numpy.array', 'np.array', (['[1, 1, 1]'], {'dtype': 'float'}), '([1, 1, 1], dtype=float)\n', (3578, 3602), True, 'import numpy as np\n'), ((3785, 3820), 'numpy.array', 'array', (['[3, 2, 1, 4]'], {'dtype': 'np.int32'}), '([3, 2, 1, 4], dtype=np.int32)\n', (3790, 3820), False, 'from numpy import array, nan, inf\n'), ((3842, 3877), 'numpy.array', 'np.array', (['[1, 1, 1]'], {'dtype': 'np.int32'}), '([1, 1, 1], dtype=np.int32)\n', (3850, 3877), True, 'import numpy as np\n'), ((4006, 4042), 'numpy.array', 'array', (['[3, 2, 1, 4]'], {'dtype': 'np.object'}), '([3, 2, 1, 4], dtype=np.object)\n', (4011, 4042), False, 'from numpy import array, nan, inf\n'), ((4064, 4096), 'numpy.array', 'np.array', (['[1, 1, 1]'], {'dtype': 'float'}), '([1, 1, 1], dtype=float)\n', (4072, 4096), True, 'import numpy as np\n'), ((4257, 4278), 'numpy.random.random', 'np.random.random', (['(100)'], {}), '(100)\n', (4273, 4278), True, 'import numpy as np\n'), ((4311, 4345), 'numpy.array', 'np.array', (['[1, 0.5, 0.25, 0.2, 0.1]'], {}), '([1, 0.5, 0.25, 0.2, 0.1])\n', (4319, 4345), True, 'import numpy as np\n'), ((4647, 4668), 'numpy.random.random', 'np.random.random', (['(100)'], {}), '(100)\n', (4663, 4668), True, 'import numpy as np\n'), ((4713, 4747), 'numpy.array', 'np.array', (['[1, 0.5, 0.25, 0.2, 0.1]'], {}), '([1, 0.5, 0.25, 0.2, 0.1])\n', (4721, 4747), True, 'import numpy as np\n'), ((2997, 3016), 'numpy.array', 'array', (['[3, 2, 1, 4]'], {}), '([3, 2, 1, 4])\n', (3002, 3016), False, 'from numpy import array, nan, inf\n')]
# coding=utf-8 from pypint.integrators.node_providers.gauss_legendre_nodes import GaussLegendreNodes import unittest from nose.tools import * import numpy as np test_num_nodes = range(2, 7) def manual_initialization(n_nodes): nodes = GaussLegendreNodes() nodes.init(n_nodes) assert_equal(nodes.num_nodes, n_nodes, "Number of nodes should be set") assert_is_instance(nodes.nodes, np.ndarray, "Nodes should be a numpy.ndarray") assert_equal(nodes.nodes.size, n_nodes, "There should be correct number of nodes") def test_manual_initialization(): for n_nodes in test_num_nodes: yield manual_initialization, n_nodes class GaussLegendreNodesTest(unittest.TestCase): def setUp(self): self._test_obj = GaussLegendreNodes() def test_default_initialization(self): self.assertIsNone(self._test_obj.num_nodes, "Number of nodes should be initialized as 'None'") self.assertIsNone(self._test_obj.nodes, "Nodes list should be initializes as 'None'") def test_correctness_of_selected_nodes(self): self._test_obj.init(1) self.assertAlmostEqual(self._test_obj.nodes[0], 0.0) self.setUp() self._test_obj.init(2) self.assertAlmostEqual(self._test_obj.nodes[0], -np.sqrt(1.0 / 3.0)) self.assertAlmostEqual(self._test_obj.nodes[1], np.sqrt(1.0 / 3.0)) self.setUp() self._test_obj.init(5) self.assertAlmostEqual(self._test_obj.nodes[0], -1.0 / 3.0 * np.sqrt(5.0 + 2.0 * np.sqrt(10.0 / 7.0))) self.assertAlmostEqual(self._test_obj.nodes[1], -1.0 / 3.0 * np.sqrt(5.0 - 2.0 * np.sqrt(10.0 / 7.0))) self.assertAlmostEqual(self._test_obj.nodes[2], 0.0) self.assertAlmostEqual(self._test_obj.nodes[3], 1.0 / 3.0 * np.sqrt(5.0 - 2.0 * np.sqrt(10.0 / 7.0))) self.assertAlmostEqual(self._test_obj.nodes[4], 1.0 / 3.0 * np.sqrt(5 + 2 * np.sqrt(10.0 / 7.0)))
[ "pypint.integrators.node_providers.gauss_legendre_nodes.GaussLegendreNodes", "numpy.sqrt" ]
[((242, 262), 'pypint.integrators.node_providers.gauss_legendre_nodes.GaussLegendreNodes', 'GaussLegendreNodes', ([], {}), '()\n', (260, 262), False, 'from pypint.integrators.node_providers.gauss_legendre_nodes import GaussLegendreNodes\n'), ((803, 823), 'pypint.integrators.node_providers.gauss_legendre_nodes.GaussLegendreNodes', 'GaussLegendreNodes', ([], {}), '()\n', (821, 823), False, 'from pypint.integrators.node_providers.gauss_legendre_nodes import GaussLegendreNodes\n'), ((1446, 1464), 'numpy.sqrt', 'np.sqrt', (['(1.0 / 3.0)'], {}), '(1.0 / 3.0)\n', (1453, 1464), True, 'import numpy as np\n'), ((1370, 1388), 'numpy.sqrt', 'np.sqrt', (['(1.0 / 3.0)'], {}), '(1.0 / 3.0)\n', (1377, 1388), True, 'import numpy as np\n'), ((1608, 1627), 'numpy.sqrt', 'np.sqrt', (['(10.0 / 7.0)'], {}), '(10.0 / 7.0)\n', (1615, 1627), True, 'import numpy as np\n'), ((1719, 1738), 'numpy.sqrt', 'np.sqrt', (['(10.0 / 7.0)'], {}), '(10.0 / 7.0)\n', (1726, 1738), True, 'import numpy as np\n'), ((1890, 1909), 'numpy.sqrt', 'np.sqrt', (['(10.0 / 7.0)'], {}), '(10.0 / 7.0)\n', (1897, 1909), True, 'import numpy as np\n'), ((1996, 2015), 'numpy.sqrt', 'np.sqrt', (['(10.0 / 7.0)'], {}), '(10.0 / 7.0)\n', (2003, 2015), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ Created on Mon Sep 30 13:23:53 2019 @author: casimp """ import numpy as np import csv import matplotlib.pyplot as plt from cpex.transformation import strain_transformation class Extract(): def __init__(self): pass def extract_grains(self, data='elastic', idx=1, grain_idx=None): """ Extracts data (stress, strain etc.) for either all grains, or a specified grain at a given (orthogonal) orientation or component (where data='time', 'frame' etc. indexing does not work. Parameters ---------- data: str The data label, either 'stress', 'strain', 'elastic' (strain), 'back stress', 'rot', 'time', 'frame' idx: int The orientation (referenced via an idx) of the defined data e.g. data='stress', idx=1 => sigma_yy grain_idx: int The index of the grain (note GRAIN-1 => idx=0) Returns ------- order: array Dataset """ if idx == None and grain_idx != None: idx = np.s_[:, grain_idx] elif idx == None and grain_idx == None: idx = np.s_[:, :] elif idx != None and grain_idx == None: idx = np.s_[idx, :] else: idx = np.s_[idx, grain_idx] d = {'strain':self.e, 'stress':self.s, 'elastic':self.elastic, 'back stress':self.b_stress, 'rot':self.rot - self.rot[:,:, 0][:, :, None], 'time':self.t, 'frame':np.arange(self.num_frames)} if data not in ['time', 'frame', 'rot']: ex = d[data][idx] else: ex = d[data] return ex def extract_neighbours_idx(self, grain_idx, frame=0): """ Extracts the indinces of all grains ordered with respect to position away from a given grain (index). Grains move a small amount during deformation, the frame can be defined to explicity interrogtae neightbours at a given load level/time. Parameters ---------- grain_idx: int The index of the grain to search around frame: int, None The frame to reference (default = 0). If None extracts ordered inidices for all frames. Returns ------- order: list Grain indices ordered by euclidean distance from selected grain """ if frame == None: frame = np.s_[:] dims = self.dims[:, :, frame] rel_dims = dims - dims[:, grain_idx, None] # Keeps correct dimensionality euc_dist = np.sum(rel_dims ** 2, axis=0)**0.5 order = np.argsort(euc_dist, axis=0) return order[1:] def extract_neighbours(self, grain_idx, data='strain', idx=1, frame=-1, cmean=False, dimframe='simple'): """ Extracts data (stress, strain etc.) for all grains, with data being ordered with respect to position away from a given grain (index). Calls extract_grains and extrains_neighbours_idx methods. Parameters ---------- grain_idx: int The index of the grain to search around data: str The data label, either 'stress', 'strain', 'elastic' (strain), 'back stress' idx: int The orientation (referenced via an idx) of the defined data e.g. data='stress', idx=1 => sigma_yy frame: int, None The frame to reference (default = 0). If None extracts ordered data for all frames. cmean: bool Compute a rolling, cumulative mean dimframe: str, int, None If frame is not None then the neighbour ordering is done on same frame. If frame is None then the dimensions are taken from the final frame or a specified frame (int) unless dimframes==None, in which case neighbour ordering is done for each frame . Warning this is slow! Returns ------- order: array Ordered dataset """ if frame==None: frame=np.s_[:] ex = self.extract_grains(data=data, idx=idx) if frame == np.s_[:] and dimframe !='simple': # Not ideal!!! order = self.extract_neighbours_idx(grain_idx, None) ex_ordered = np.column_stack([i[j] for i, j in zip(np.split(ex, ex.shape[1], axis=1), np.split(order, order.shape[1], axis=1))]).squeeze() elif frame == np.s_[:] and isinstance(dimframe, int): order = self.extract_neighbours_idx(grain_idx, dimframe) ex_ordered = ex[order] else: dimframe = frame if frame != np.s_[:] else -1 order = self.extract_neighbours_idx(grain_idx, dimframe) # print(order) ex_ordered = ex[order] if cmean: ex_csum = np.cumsum(ex_ordered, axis=0) ex_cmean = ex_csum / np.arange(1, ex_csum.shape[0] + 1)[:, None] return ex_cmean[..., frame] return ex_ordered[..., frame] def plot_neighbours(self, grain_idx, data='plastic', idx=1, frame=-1, cmean=True, ): """ Plots data (stress, strain etc.) for all n grains, with data being ordered with respect to position away from a given grain (index). Parameters ---------- grain_idx: int The index of the grain to search around data: str The data to plot either 'stress', 'strain', 'elastic' (strain), 'back stress' idx: int The orientation (referenced via an idx) of the defined data e.g. data='stress', idx=1 => sigma_yy frame: int, None The frame to reference (default = 0). If None extracts ordered data for all frames. cmean: bool Compute a rolling, cumulative mean """ assert frame != None, "Can't study response across all frames." ex_ordered = self.extract_neighbours(grain_idx, data=data, idx=idx, frame=frame, cmean=cmean) # Tinkering with axis labels x = 'nth nearest neighbour' y = 'cumulative mean {} (window=n)'.format(data) if cmean else data # Plotting plt.plot(np.arange(1, np.size(ex_ordered) +1), ex_ordered, label=grain_idx) plt.legend() plt.ylabel(y) plt.xlabel(x) def extract_lattice(self, data='lattice', family='311', grain_idx=None, plane_idx=None): """ Routine to extract information about some or all (default) grains for a specified lattice plane. Parameters: ----------- data: str Either 'lattice' or 'phi' family: str The lattice plane family to assess grain_idx: int, [int,...], None If None then all grains of this family to be extracted else the individual grain (or list of grains) plane_idx: int, [int,...], None If None then all planes of this family/grain combination to be extracted else the individual planes (or list of planes) Returns: -------- data: array Lattice strains (or phi) for given family (and potentially grain/plane specification) """ if plane_idx == None and grain_idx != None: idx = np.s_[:, grain_idx] elif plane_idx == None and grain_idx == None: idx = np.s_[:, :] elif plane_idx != None and grain_idx == None: idx = np.s_[plane_idx, :] else: idx = np.s_[plane_idx, grain_idx] lattice = self.lattice_strain[family][idx] phi = self.lattice_phi[family] d = {'phi':phi,'lattice':lattice} return d[data] def extract_phi_idx(self, family='311', phi=0, window=10, frame=0): """ Allows for selection of the index of lattice planes wityh a defined orientation with resepect to the y axis (nominally the loading axis). A 2D array of indices with be returned if a frame is specified, the elemtns in the array will be structured: [[grain_idx, plane_idx], [grain_idx, plane_idx], ...] If None is passed as the frame variable then the rotation of the grain during loading/dwell etc. is being considered - a 2D array is returned with each element being structured as follows: [[grain_idx, frame_idx, plane_idx], [grain_idx, frame_idx, plane_idx], ...] ** In addition to the list of indices an equivalent boolean array is returned in each case. ** Parameters ---------- family: str The index of the grain to search around phi: float The data to extractm either 'stress', 'strain', 'elastic' (strain), 'back stress' window: float The orientation (referenced via an idx) of the defined data e.g. data='stress', idx=1 => sigma_yy frame: int, None The frame to reference (default = 0). If None extracts ordered data for all frames. Returns ------- va: array (bool) Boolean array of the same dimension as the lattice strain array - elements are True if they are within the window, else False) select: array (int) A list of the grains/plane indices for all grains that lie within specified orientation/window combination. """ if frame == None: frame = np.s_[:] phi_ = 180 * self.lattice_phi[family][:, frame] / np.pi phi_ -= 90 phi -= 90 w = window / 2 p0, p1 = phi - w, phi + w s0 = np.logical_and(phi_ > np.min(p0), phi_ < np.max(p1)) s1 = np.logical_and(-phi_ > np.min(p0), -phi_ < np.max(p1)) select = np.logical_or(s0, s1) va = np.argwhere(select) return va, select def plot_phi(self, y='lattice', family='200', frame=-1, idx=0, alpha=0.1, restrict_z=False, restrict_range = [70, 110]): """ For a given lattice family (and frame) plots the variation in the *resolved* lattice strain (or back stress) with respect to the angle the planes make to the loading axis (phi). Can be restricted across a smaller z_rot if required. N.b. rotations of grains defined as (x_rot, phi, z_rot). Parameters ---------- y: str The data to plot on the y axis. This is typically lattice strain but it is also possible to plot wrt. back stress. family: str The lattice plane family to assess frame: int The frame to extract data from (default = 0). idx: int The compnent (referenced via an idx) of the defined data. Only valid for back stress (for fcc, idx = 0-11) alpha: float Plotting data transparency restrict_z: bool Restrict data extraction/plotting across one angular range. Can be used to normalise the amount of data wrt. phi restrict_range: [float, float] Range across which to limit z rotations. """ lattice = self.lattice_strain y_ = {'lattice': lattice[family], 'back stress': self.b_stress[idx]}[y] try: y_tensor = self.lattice_tensor[family] tens = True except KeyError: print('Tensor not available') tens=False if y == 'back stress': x = self.rot[1] else: x = self.lattice_phi[family] rot = self.lattice_rot[family] if restrict_z == True and y == 'lattice': r0, r1 = restrict_range t_z = rot[:, :, 2]* 180 / np.pi va = np.logical_and(t_z > r0, t_z < r1) vaf = np.zeros_like(rot[:, :, 2], dtype='bool') vaf[:, frame, :] += True va = np.logical_and(va, vaf) else: va = np.s_[:, frame] plt.plot(x[va].flatten(), y_[va].flatten(), '.', alpha=alpha) if y == 'lattice' and tens: st = strain_transformation(np.linspace(0, np.pi, 1001), *y_tensor[:, frame]) plt.plot(np.linspace(0, np.pi, 1001), st, 'r') x = 'lattice rot (phi)' if y == 'lattice' else 'grain rot (phi)' plt.xlabel(x) plt.ylabel(y) def plot_grains(self, y='elastic', x='stress', x_mean=True, y_mean=False, x_idx=1, y_idx=1, grain_idx=None, alpha=0.2, color='k', mcolor='r'): """ The plot_grain method is very general plotting routing and any grain (not lattice) specific vaues can be plotted on either axis. - Define data to plot on either axis i.e. y='stress', x='strain' - Specify whether the data on given axis is the mean response of all grains - Where relevant, the index of that data must be specified i.e. for y='stress', y_idx = 1 for sigma_yy While general a limited number of x, y combinations will, unsurprisingly, not work. Parameters ---------- y, x: str, str The data (label), either 'stress', 'strain', 'elastic' (strain), 'back stress', 'rot', 'time', 'frame' to plot on x/y axis x_mean, y_mean: bool, bool Whether to take the mean (across all grains) of the data on the x/y axis x_idx, y_idx: int, int Component/orientation of the specified data to plot e.g. x='stress', idx=1 => sigma_xx grain_idx: [int, ...] List on grains (indices) to plot (if None, all grains plotted) alpha, color: float, str Plotting options for the grain specific lines mcolor: The color of the grain average (across x and y) line """ # If necessary put grain_idx into list for fancy indexing if isinstance(grain_idx, int): grain_idx = [grain_idx,] # Time and frame can't be averaged if x in ['time', 'frame']: x_mean = False if y in ['time', 'frame']: y_mean = False # Data extraction x_ = self.extract_grains(data=x, idx=x_idx, grain_idx=grain_idx) y_ = self.extract_grains(data=y, idx=y_idx, grain_idx=grain_idx) # Saving x, y locations (?) csvfile = open('strain_grain.csv', 'w', newline='') obj = csv.writer(csvfile) for val in np.transpose(x_): obj.writerow(val) csvfile.close() csvfile = open('stress_grain.csv', 'w', newline='') obj = csv.writer(csvfile) for val in np.transpose(y_): obj.writerow(val) csvfile.close() # Calculate mean of arrays xm = np.nanmean(x_, axis=0) if x not in ['time', 'frame'] else x_ ym = np.nanmean(y_, axis=0) if y not in ['time', 'frame'] else y_ x__ = xm if x_mean else x_.T y__ = ym if y_mean else y_.T # Tinkering with axis labels x = '{} (idx={})'.format(x, x_idx) if x not in ['time', 'frame'] else x y = '{} (idx={})'.format(y, y_idx) if y not in ['time', 'frame'] else y x = 'mean {}'.format(x) if x_mean else x y = 'mean {}'.format(y) if y_mean else y # Plotting plt.plot(np.squeeze(x__), np.squeeze(y__), color=color, alpha=alpha) if (not y_mean or not x_mean) and (grain_idx == None or len(grain_idx) != 1): plt.plot(xm, ym, color=mcolor, label='Mean response') plt.legend() plt.ylabel(y) plt.xlabel(x) def plot_lattice(self, family='200', phi=0, window=10, lat_ax='x', ax2='stress', ax2_idx=1, ax2_mean=True, alpha=0.2, color='k', mcolor='r', plot_select=True, phi_frame=0): """ The lattice strains for a given family are plotted if they lie at (or close to) an angle, phi (with the loading axis). The angular tolerance / azimuthal window is defined by the user (window). For XRD, a window of 10deg is often used. Parameters: ----------- family: str The lattice plane family to assess phi: float Angle at which to extract the lattice plane strains window: float Azimuthal tolerance (absolute window width) for lattice data extraction lat_ax: str Axis to plot the lattice data on, either 'x' or 'y' ax2: str The data to plot against the lattice strain. Either 'stress', 'strain', 'elastic' (strain), 'back stress' ax2_idx: int Component/orientation of the specified second axis data to plot e.g. ax2='stress', ax2_idx=1 => sigma_xx ax2_mean: bool Whether to take the mean (across all grains) of the data on the second axis alpha, color: float, str Plotting options for the grain specific lines mcolor: The color of the grain average (across x and y) line plot_select: bool If plot_select is True the individual lattice planes will be plotted in addition to the mean result, when False just the mean response phi_frame: int The frame to define the grains that lie within the aimuthal window (default = 0). """ ax2_mean = False if ax2 in ['time', 'frame'] else ax2_mean d = self.extract_grains(data=ax2, idx=ax2_idx, grain_idx=None) valid, select = self.extract_phi_idx(family=family, phi=phi,window=window, frame=phi_frame) if ax2 in ['time', 'frame']: d, dm = d, d else: d = np.nanmean(d, axis=0) if ax2_mean else d[valid[:,0]].T dm = d if ax2_mean else np.nanmean(d, axis=1) lattice = self.extract_lattice(family=family) lattice = lattice[valid[:,0], :, valid[:,1]].T x_ = lattice if lat_ax == 'x' else d y_ = lattice if lat_ax != 'x' else d assert np.sum(select) > 0, 'Phi window too small for {} - no grains/planes selected'.format(family) if plot_select: plt.plot(x_, y_, 'k', alpha=alpha) x_ = np.nanmean(lattice, axis=1) if lat_ax == 'x' else dm y_ = np.nanmean(lattice, axis=1) if lat_ax != 'x' else dm plt.plot(x_, y_, label=family, color=mcolor) ax2 = '{} (idx={})'.format(ax2, ax2_idx) if ax2 not in ['time', 'frame'] else ax2 ax2 = ax2 if not ax2_mean else 'mean {}'.format(ax2) xlabel = ax2 if lat_ax != 'x' else 'lattice' ylabel = ax2 if lat_ax == 'x' else 'lattice' plt.xlabel(xlabel) plt.ylabel(ylabel) def extract_lattice_map(self, family='200', az_bins=19): """ Average the lattice strains data across a defined number of bins (i.e. azimuthally integrate), return 2D array of lattice strains against frame for the specified family. Parameters: ----------- family: str The lattice plane family to assess az_bins: int Number of bins to extract lattice strains across Returns: -------- bins: list List of the phi bins that data has been extracted at data: array Lattice strains for given family averaged across a user defined (az_bins) number of azimuthally arrayed bins """ phi_steps = az_bins + 1 arr1 = np.moveaxis(self.lattice_strain[family], 1, 2) arr1 = arr1.reshape((-1, arr1.shape[-1])) arr2 = np.moveaxis(self.lattice_phi[family], 1, 2) arr2 = arr2.reshape((-1, arr2.shape[-1])) arr2[arr2 > np.pi/2] -= np.pi # -90 to 90 bins = np.linspace(-90, 90, phi_steps) e_phi = np.nan * np.ones((phi_steps - 1, self.num_frames)) for idx, i in enumerate(bins[:-1]): va = np.logical_and(arr2 < bins[idx + 1] * np.pi / 180, arr2 > bins[idx] * np.pi / 180) try: e_phi[idx] = np.sum(arr1 * va, axis=0) / np.nansum(va, axis=0) except ZeroDivisionError: pass return (bins[:-1]+bins[1:])/2, e_phi def plot_lattice_map(self, family='200', az_bins=19, ax2='time', ax2_idx=1): """ Plot 2D map of the azimtuhally arrayed lattice strains as a function of second variable such as time or frame. Also works with macro stress or strain although obvious issues may arise if there is creep dwells. Parameters: ----------- family: str The lattice plane family to assess az_bins: int Number of bins to extract lattice strains across ax2: str The data to plot against the lattice strain. Either 'stress', 'strain', 'elastic' (strain), 'back stress' ax2_idx: int Component/orientation of the specified second axis data to plot e.g. ax2='stress', ax2_idx=1 => sigma_xx Returns: -------- bins: list List of the phi bins that data has been extracted at data: array Lattice strains for given family averaged across a user defined (az_bins) number of azimuthally arrayed bins """ bin_c, e_phi = self.extract_lattice_map(family=family, az_bins=az_bins) d = self.extract_grains(data=ax2, idx=ax2_idx, grain_idx=None) ax2_mean = False if ax2 in ['time', 'frame'] else True if ax2_mean: d = np.nanmean(d, axis=0) time, phi = np.meshgrid(d, bin_c) plt.contourf(time, phi, e_phi) plt.colorbar() ax2 = 'mean {} (idx={})'.format(ax2, ax2_idx) if ax2 not in ['time', 'frame'] else ax2 plt.xlabel(ax2) plt.ylabel('phi (reflected at 0$^o$)') def plot_lattice_all(self, phi=0, window=10, lat_ax='x', ax2='stress', ax2_idx=1, ax2_mean=True, phi_frame=0): """ The lattice strains for a ALL families are plotted if they lie at (or close to) an angle, phi (with the loading axis). The angular tolerance / azimuthal window is defined by the user (window). For XRD, a window of 10deg is often used. Parameters: ----------- phi: float Angle at which to extract the lattice plane strains window: float Azimuthal tolerance (absolute window width) for lattice data extraction lat_ax: str Axis to plot the lattice data on, either 'x' or 'y' ax2: str The data to plot against the lattice strain. Either 'stress', 'strain', 'elastic' (strain), 'back stress' ax2_idx: int Component/orientation of the specified second axis data to plot e.g. ax2='stress', ax2_idx=1 => sigma_xx ax2_mean: bool Whether to take the mean (across all grains) of the data on the second axis phi_frame: int The frame to define the grains that lie within the aimuthal window (default = 0). """ for family in self.lattice_list: try: self.plot_lattice(family=family, lat_ax=lat_ax, ax2=ax2, ax2_idx=ax2_idx, phi=phi, window=window, phi_frame=phi_frame, plot_select=False, mcolor=None, ax2_mean=ax2_mean) except AssertionError: print('Phi window too small for {} - no grains/planes selected'.format(family)) plt.legend(self.lattice_list) def plot_back_lattice(self, family='200', phi=0, window=10, back_ax='y', b_idx=1, ax2='stress', ax2_idx=1, alpha=0.2, color='k', mcolor='r', plot_select=True, phi_frame=0): """ Plot a component of back stress for a specified family of lattice planes at a defined azimuthal angle. Plot against any other extracted stress, strain, time etc. component. Parameters: ----------- family: str The lattice plane family to assess phi: float Angle at which to extract the lattice plane strains window: float Azimuthal tolerance (absolute window width) for lattice data extraction back_ax: str Axis to plot the lattice data on, either 'x' or 'y' back_idx: int Component of the back stress to plot (for fcc 0-11) ax2: str The data to plot against the lattice strain. Either 'stress', 'strain', 'elastic' (strain), 'back stress' ax2_idx: int Component/orientation of the specified second axis data to plot e.g. ax2='stress', ax2_idx=1 => sigma_xx alpha, color: float, str Plotting options for the grain specific lines mcolor: The color of the grain average (across x and y) line plot_select: bool If plot_select is True the individual lattice planes will be plotted in addition to the mean result, when False just the mean response phi_frame: int The frame to define the grains that lie within the aimuthal window (default = 0). """ back = self.extract_grains(data='back stress', idx=b_idx, grain_idx=None) d = self.extract_grains(data=ax2, idx=ax2_idx, grain_idx=None) d = d if ax2 in ['time', 'frame'] else np.nanmean(d, axis=0) valid, select = self.extract_phi_idx(family=family, phi=phi,window=window, frame=phi_frame) # back = back[valid[:,0], :, valid[:,1]].T v = np.unique(valid[:,0]) back = back[v, :].T x_ = back if back_ax == 'x' else d y_ = back if back_ax != 'x' else d assert np.sum(select) > 0, 'Phi window too small for {} - no grains/planes selected'.format(family) if plot_select: plt.plot(x_, y_, 'k', alpha=alpha) ax2 = 'mean {} (idx={})'.format(ax2, ax2_idx) if ax2 not in ['time', 'frame'] else ax2 xlabel = ax2 if back_ax != 'x' else 'back stress' ylabel = ax2 if back_ax == 'x' else 'back stress' plt.xlabel(xlabel) plt.ylabel(ylabel) def plot_active_slip(self, family='200', phi=0, window=10, back_ax='y', b_active=2, ax2='stress', ax2_idx=1, alpha=0.2, color='k', mcolor='r', plot_select=True, phi_frame=0): """ Plot the number of active slip systems for every plane for a specified family of lattice planes at a defined azimuthal angle (angle wrt y axis). Plotting is a function of time, frame, stress strain etc. The activation of a slip system is taken to occur when the absolute back stress associated with that system (i.e. back stress component) rises above a user define value Parameters: ----------- family: str The lattice plane family to assess phi: float Angle at which to extract the lattice plane strains window: float Azimuthal tolerance (absolute window width) for lattice data extraction back_ax: str Axis to plot the lattice data on, either 'x' or 'y' b_active: int Component of the back stress to plot (for fcc 0-11) ax2: str The data to plot against the lattice strain. Either 'stress', 'strain', 'elastic' (strain), 'back stress' ax2_idx: int Component/orientation of the specified second axis data to plot e.g. ax2='stress', ax2_idx=1 => sigma_xx alpha, color: float, str Plotting options for the grain specific lines mcolor: The color of the grain average (across x and y) line plot_select: bool If plot_select is True the individual lattice planes will be plotted in addition to the mean result, when False just the mean response phi_frame: int The frame to define the grains that lie within the aimuthal window (default = 0). """ back = self.extract_grains(data='back stress', idx=None, grain_idx=None) back_bool = np.abs(back) > b_active d = self.extract_grains(data=ax2, idx=ax2_idx, grain_idx=None) d = d if ax2 in ['time', 'frame'] else np.nanmean(d, axis=0) valid, select = self.extract_phi_idx(family=family, phi=phi,window=window, frame=phi_frame) # back = back[valid[:,0], :, valid[:,1]].T v = np.unique(valid[:,0]) back_active = np.sum(back_bool, axis=0)[v, :].T x_ = back_active if back_ax == 'x' else d y_ = back_active if back_ax != 'x' else d assert np.sum(select) > 0, 'Phi window too small for {} - no grains/planes selected'.format(family) if plot_select: plt.plot(x_, y_, 'k', alpha=alpha) x_ = np.nanmean(back_active, axis=1) if back_ax == 'x' else d y_ = np.nanmean(back_active, axis=1) if back_ax != 'x' else d plt.plot(x_, y_, label=family, color=mcolor) ax2 = 'mean {} (idx={})'.format(ax2, ax2_idx) if ax2 not in ['time', 'frame'] else ax2 xlabel = ax2 if back_ax != 'x' else 'Active slip systems' ylabel = ax2 if back_ax == 'x' else 'Active slip systems' plt.xlabel(xlabel) plt.ylabel(ylabel) def plot_active_slip_all(self, phi=0, window=10, back_ax='y', b_active = 2, ax2='stress', ax2_idx=1, phi_frame=0): """ Plot the plane averaged number of active slip systems for all families of lattice planes at a defined azimuthal angle (angle wrt y axis). Plotting is a function of time, frame, stress strain etc. The activation of a slip system is taken to occur when the absolute back stress associated with that system (i.e. back stress component) rises above a user define value Parameters: ----------- phi: float Angle at which to extract the lattice plane strains window: float Azimuthal tolerance (absolute window width) for lattice data extraction back_ax: str Axis to plot the lattice data on, either 'x' or 'y' b_active: int Component of the back stress to plot (for fcc 0-11) ax2: str The data to plot against the lattice strain. Either 'stress', 'strain', 'elastic' (strain), 'back stress' ax2_idx: int Component/orientation of the specified second axis data to plot e.g. ax2='stress', ax2_idx=1 => sigma_xx phi_frame: int The frame to define the grains that lie within the aimuthal window (default = 0). """ for family in self.lattice_list: try: self.plot_active_slip(family=family, back_ax=back_ax, ax2=ax2, ax2_idx=ax2_idx, phi=phi, window=window, frame=phi_frame, plot_select=False, mcolor=None) except AssertionError: print('Phi window too small for {} - no grains/planes selected'.format(family)) plt.legend(self.lattice_list)
[ "numpy.moveaxis", "numpy.sum", "numpy.abs", "numpy.ones", "numpy.argsort", "matplotlib.pyplot.contourf", "numpy.arange", "numpy.unique", "numpy.nanmean", "numpy.meshgrid", "numpy.zeros_like", "numpy.transpose", "matplotlib.pyplot.colorbar", "numpy.cumsum", "numpy.max", "numpy.linspace", "numpy.size", "numpy.nansum", "csv.writer", "matplotlib.pyplot.legend", "numpy.min", "numpy.argwhere", "matplotlib.pyplot.ylabel", "numpy.squeeze", "matplotlib.pyplot.plot", "numpy.logical_and", "numpy.split", "numpy.logical_or", "matplotlib.pyplot.xlabel" ]
[((2844, 2872), 'numpy.argsort', 'np.argsort', (['euc_dist'], {'axis': '(0)'}), '(euc_dist, axis=0)\n', (2854, 2872), True, 'import numpy as np\n'), ((6900, 6912), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (6910, 6912), True, 'import matplotlib.pyplot as plt\n'), ((6921, 6934), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['y'], {}), '(y)\n', (6931, 6934), True, 'import matplotlib.pyplot as plt\n'), ((6943, 6956), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['x'], {}), '(x)\n', (6953, 6956), True, 'import matplotlib.pyplot as plt\n'), ((10705, 10726), 'numpy.logical_or', 'np.logical_or', (['s0', 's1'], {}), '(s0, s1)\n', (10718, 10726), True, 'import numpy as np\n'), ((10749, 10768), 'numpy.argwhere', 'np.argwhere', (['select'], {}), '(select)\n', (10760, 10768), True, 'import numpy as np\n'), ((13337, 13350), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['x'], {}), '(x)\n', (13347, 13350), True, 'import matplotlib.pyplot as plt\n'), ((13359, 13372), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['y'], {}), '(y)\n', (13369, 13372), True, 'import matplotlib.pyplot as plt\n'), ((15506, 15525), 'csv.writer', 'csv.writer', (['csvfile'], {}), '(csvfile)\n', (15516, 15525), False, 'import csv\n'), ((15545, 15561), 'numpy.transpose', 'np.transpose', (['x_'], {}), '(x_)\n', (15557, 15561), True, 'import numpy as np\n'), ((15700, 15719), 'csv.writer', 'csv.writer', (['csvfile'], {}), '(csvfile)\n', (15710, 15719), False, 'import csv\n'), ((15739, 15755), 'numpy.transpose', 'np.transpose', (['y_'], {}), '(y_)\n', (15751, 15755), True, 'import numpy as np\n'), ((16666, 16679), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['y'], {}), '(y)\n', (16676, 16679), True, 'import matplotlib.pyplot as plt\n'), ((16688, 16701), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['x'], {}), '(x)\n', (16698, 16701), True, 'import matplotlib.pyplot as plt\n'), ((19650, 19694), 'matplotlib.pyplot.plot', 'plt.plot', (['x_', 'y_'], {'label': 'family', 'color': 'mcolor'}), '(x_, y_, label=family, color=mcolor)\n', (19658, 19694), True, 'import matplotlib.pyplot as plt\n'), ((19981, 19999), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['xlabel'], {}), '(xlabel)\n', (19991, 19999), True, 'import matplotlib.pyplot as plt\n'), ((20008, 20026), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['ylabel'], {}), '(ylabel)\n', (20018, 20026), True, 'import matplotlib.pyplot as plt\n'), ((20849, 20895), 'numpy.moveaxis', 'np.moveaxis', (['self.lattice_strain[family]', '(1)', '(2)'], {}), '(self.lattice_strain[family], 1, 2)\n', (20860, 20895), True, 'import numpy as np\n'), ((20970, 21013), 'numpy.moveaxis', 'np.moveaxis', (['self.lattice_phi[family]', '(1)', '(2)'], {}), '(self.lattice_phi[family], 1, 2)\n', (20981, 21013), True, 'import numpy as np\n'), ((21138, 21169), 'numpy.linspace', 'np.linspace', (['(-90)', '(90)', 'phi_steps'], {}), '(-90, 90, phi_steps)\n', (21149, 21169), True, 'import numpy as np\n'), ((23080, 23101), 'numpy.meshgrid', 'np.meshgrid', (['d', 'bin_c'], {}), '(d, bin_c)\n', (23091, 23101), True, 'import numpy as np\n'), ((23110, 23140), 'matplotlib.pyplot.contourf', 'plt.contourf', (['time', 'phi', 'e_phi'], {}), '(time, phi, e_phi)\n', (23122, 23140), True, 'import matplotlib.pyplot as plt\n'), ((23149, 23163), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {}), '()\n', (23161, 23163), True, 'import matplotlib.pyplot as plt\n'), ((23269, 23284), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['ax2'], {}), '(ax2)\n', (23279, 23284), True, 'import matplotlib.pyplot as plt\n'), ((23293, 23331), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""phi (reflected at 0$^o$)"""'], {}), "('phi (reflected at 0$^o$)')\n", (23303, 23331), True, 'import matplotlib.pyplot as plt\n'), ((25071, 25100), 'matplotlib.pyplot.legend', 'plt.legend', (['self.lattice_list'], {}), '(self.lattice_list)\n', (25081, 25100), True, 'import matplotlib.pyplot as plt\n'), ((27315, 27337), 'numpy.unique', 'np.unique', (['valid[:, 0]'], {}), '(valid[:, 0])\n', (27324, 27337), True, 'import numpy as np\n'), ((27892, 27910), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['xlabel'], {}), '(xlabel)\n', (27902, 27910), True, 'import matplotlib.pyplot as plt\n'), ((27919, 27937), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['ylabel'], {}), '(ylabel)\n', (27929, 27937), True, 'import matplotlib.pyplot as plt\n'), ((30419, 30441), 'numpy.unique', 'np.unique', (['valid[:, 0]'], {}), '(valid[:, 0])\n', (30428, 30441), True, 'import numpy as np\n'), ((30956, 31000), 'matplotlib.pyplot.plot', 'plt.plot', (['x_', 'y_'], {'label': 'family', 'color': 'mcolor'}), '(x_, y_, label=family, color=mcolor)\n', (30964, 31000), True, 'import matplotlib.pyplot as plt\n'), ((31248, 31266), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['xlabel'], {}), '(xlabel)\n', (31258, 31266), True, 'import matplotlib.pyplot as plt\n'), ((31275, 31293), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['ylabel'], {}), '(ylabel)\n', (31285, 31293), True, 'import matplotlib.pyplot as plt\n'), ((33134, 33163), 'matplotlib.pyplot.legend', 'plt.legend', (['self.lattice_list'], {}), '(self.lattice_list)\n', (33144, 33163), True, 'import matplotlib.pyplot as plt\n'), ((1625, 1651), 'numpy.arange', 'np.arange', (['self.num_frames'], {}), '(self.num_frames)\n', (1634, 1651), True, 'import numpy as np\n'), ((2784, 2813), 'numpy.sum', 'np.sum', (['(rel_dims ** 2)'], {'axis': '(0)'}), '(rel_dims ** 2, axis=0)\n', (2790, 2813), True, 'import numpy as np\n'), ((5251, 5280), 'numpy.cumsum', 'np.cumsum', (['ex_ordered'], {'axis': '(0)'}), '(ex_ordered, axis=0)\n', (5260, 5280), True, 'import numpy as np\n'), ((12781, 12815), 'numpy.logical_and', 'np.logical_and', (['(t_z > r0)', '(t_z < r1)'], {}), '(t_z > r0, t_z < r1)\n', (12795, 12815), True, 'import numpy as np\n'), ((12834, 12875), 'numpy.zeros_like', 'np.zeros_like', (['rot[:, :, 2]'], {'dtype': '"""bool"""'}), "(rot[:, :, 2], dtype='bool')\n", (12847, 12875), True, 'import numpy as np\n'), ((12930, 12953), 'numpy.logical_and', 'np.logical_and', (['va', 'vaf'], {}), '(va, vaf)\n', (12944, 12953), True, 'import numpy as np\n'), ((15862, 15884), 'numpy.nanmean', 'np.nanmean', (['x_'], {'axis': '(0)'}), '(x_, axis=0)\n', (15872, 15884), True, 'import numpy as np\n'), ((15936, 15958), 'numpy.nanmean', 'np.nanmean', (['y_'], {'axis': '(0)'}), '(y_, axis=0)\n', (15946, 15958), True, 'import numpy as np\n'), ((16421, 16436), 'numpy.squeeze', 'np.squeeze', (['x__'], {}), '(x__)\n', (16431, 16436), True, 'import numpy as np\n'), ((16438, 16453), 'numpy.squeeze', 'np.squeeze', (['y__'], {}), '(y__)\n', (16448, 16453), True, 'import numpy as np\n'), ((16579, 16632), 'matplotlib.pyplot.plot', 'plt.plot', (['xm', 'ym'], {'color': 'mcolor', 'label': '"""Mean response"""'}), "(xm, ym, color=mcolor, label='Mean response')\n", (16587, 16632), True, 'import matplotlib.pyplot as plt\n'), ((16645, 16657), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (16655, 16657), True, 'import matplotlib.pyplot as plt\n'), ((19332, 19346), 'numpy.sum', 'np.sum', (['select'], {}), '(select)\n', (19338, 19346), True, 'import numpy as np\n'), ((19461, 19495), 'matplotlib.pyplot.plot', 'plt.plot', (['x_', 'y_', '"""k"""'], {'alpha': 'alpha'}), "(x_, y_, 'k', alpha=alpha)\n", (19469, 19495), True, 'import matplotlib.pyplot as plt\n'), ((19522, 19549), 'numpy.nanmean', 'np.nanmean', (['lattice'], {'axis': '(1)'}), '(lattice, axis=1)\n', (19532, 19549), True, 'import numpy as np\n'), ((19588, 19615), 'numpy.nanmean', 'np.nanmean', (['lattice'], {'axis': '(1)'}), '(lattice, axis=1)\n', (19598, 19615), True, 'import numpy as np\n'), ((21195, 21236), 'numpy.ones', 'np.ones', (['(phi_steps - 1, self.num_frames)'], {}), '((phi_steps - 1, self.num_frames))\n', (21202, 21236), True, 'import numpy as np\n'), ((21307, 21393), 'numpy.logical_and', 'np.logical_and', (['(arr2 < bins[idx + 1] * np.pi / 180)', '(arr2 > bins[idx] * np.pi / 180)'], {}), '(arr2 < bins[idx + 1] * np.pi / 180, arr2 > bins[idx] * np.pi /\n 180)\n', (21321, 21393), True, 'import numpy as np\n'), ((23029, 23050), 'numpy.nanmean', 'np.nanmean', (['d'], {'axis': '(0)'}), '(d, axis=0)\n', (23039, 23050), True, 'import numpy as np\n'), ((27111, 27132), 'numpy.nanmean', 'np.nanmean', (['d'], {'axis': '(0)'}), '(d, axis=0)\n', (27121, 27132), True, 'import numpy as np\n'), ((27484, 27498), 'numpy.sum', 'np.sum', (['select'], {}), '(select)\n', (27490, 27498), True, 'import numpy as np\n'), ((27613, 27647), 'matplotlib.pyplot.plot', 'plt.plot', (['x_', 'y_', '"""k"""'], {'alpha': 'alpha'}), "(x_, y_, 'k', alpha=alpha)\n", (27621, 27647), True, 'import matplotlib.pyplot as plt\n'), ((30064, 30076), 'numpy.abs', 'np.abs', (['back'], {}), '(back)\n', (30070, 30076), True, 'import numpy as np\n'), ((30215, 30236), 'numpy.nanmean', 'np.nanmean', (['d'], {'axis': '(0)'}), '(d, axis=0)\n', (30225, 30236), True, 'import numpy as np\n'), ((30630, 30644), 'numpy.sum', 'np.sum', (['select'], {}), '(select)\n', (30636, 30644), True, 'import numpy as np\n'), ((30759, 30793), 'matplotlib.pyplot.plot', 'plt.plot', (['x_', 'y_', '"""k"""'], {'alpha': 'alpha'}), "(x_, y_, 'k', alpha=alpha)\n", (30767, 30793), True, 'import matplotlib.pyplot as plt\n'), ((30820, 30851), 'numpy.nanmean', 'np.nanmean', (['back_active'], {'axis': '(1)'}), '(back_active, axis=1)\n', (30830, 30851), True, 'import numpy as np\n'), ((30890, 30921), 'numpy.nanmean', 'np.nanmean', (['back_active'], {'axis': '(1)'}), '(back_active, axis=1)\n', (30900, 30921), True, 'import numpy as np\n'), ((10589, 10599), 'numpy.min', 'np.min', (['p0'], {}), '(p0)\n', (10595, 10599), True, 'import numpy as np\n'), ((10608, 10618), 'numpy.max', 'np.max', (['p1'], {}), '(p1)\n', (10614, 10618), True, 'import numpy as np\n'), ((10656, 10666), 'numpy.min', 'np.min', (['p0'], {}), '(p0)\n', (10662, 10666), True, 'import numpy as np\n'), ((10676, 10686), 'numpy.max', 'np.max', (['p1'], {}), '(p1)\n', (10682, 10686), True, 'import numpy as np\n'), ((13147, 13174), 'numpy.linspace', 'np.linspace', (['(0)', 'np.pi', '(1001)'], {}), '(0, np.pi, 1001)\n', (13158, 13174), True, 'import numpy as np\n'), ((13218, 13245), 'numpy.linspace', 'np.linspace', (['(0)', 'np.pi', '(1001)'], {}), '(0, np.pi, 1001)\n', (13229, 13245), True, 'import numpy as np\n'), ((18964, 18985), 'numpy.nanmean', 'np.nanmean', (['d'], {'axis': '(0)'}), '(d, axis=0)\n', (18974, 18985), True, 'import numpy as np\n'), ((19055, 19076), 'numpy.nanmean', 'np.nanmean', (['d'], {'axis': '(1)'}), '(d, axis=1)\n', (19065, 19076), True, 'import numpy as np\n'), ((30463, 30488), 'numpy.sum', 'np.sum', (['back_bool'], {'axis': '(0)'}), '(back_bool, axis=0)\n', (30469, 30488), True, 'import numpy as np\n'), ((5315, 5349), 'numpy.arange', 'np.arange', (['(1)', '(ex_csum.shape[0] + 1)'], {}), '(1, ex_csum.shape[0] + 1)\n', (5324, 5349), True, 'import numpy as np\n'), ((6838, 6857), 'numpy.size', 'np.size', (['ex_ordered'], {}), '(ex_ordered)\n', (6845, 6857), True, 'import numpy as np\n'), ((21436, 21461), 'numpy.sum', 'np.sum', (['(arr1 * va)'], {'axis': '(0)'}), '(arr1 * va, axis=0)\n', (21442, 21461), True, 'import numpy as np\n'), ((21464, 21485), 'numpy.nansum', 'np.nansum', (['va'], {'axis': '(0)'}), '(va, axis=0)\n', (21473, 21485), True, 'import numpy as np\n'), ((4680, 4713), 'numpy.split', 'np.split', (['ex', 'ex.shape[1]'], {'axis': '(1)'}), '(ex, ex.shape[1], axis=1)\n', (4688, 4713), True, 'import numpy as np\n'), ((4758, 4797), 'numpy.split', 'np.split', (['order', 'order.shape[1]'], {'axis': '(1)'}), '(order, order.shape[1], axis=1)\n', (4766, 4797), True, 'import numpy as np\n')]
from __future__ import print_function, absolute_import, division import numpy as np from poseutils.logger import log from poseutils.datasets.unprocessed.Dataset import Dataset class TDPWDataset(Dataset): """Dataset class for handling 3DPW dataset :param path: path to npz file :type path: str """ def __init__(self, path): super(TDPWDataset, self).__init__('3dpw') self.load_data(path) def load_data(self, path): data = np.load(path, allow_pickle=True, encoding='latin1')['data'].item() data_train = data['train'] data_valid = data['test'] self._data_train['2d'] = data_train["combined_2d"] self._data_train['3d'] = data_train["combined_3d_cam"]*1000 self._data_valid['2d'] = data_valid["combined_2d"] self._data_valid['3d'] = data_valid["combined_3d_cam"]*1000 log("Loaded raw data")
[ "numpy.load", "poseutils.logger.log" ]
[((885, 907), 'poseutils.logger.log', 'log', (['"""Loaded raw data"""'], {}), "('Loaded raw data')\n", (888, 907), False, 'from poseutils.logger import log\n'), ((483, 534), 'numpy.load', 'np.load', (['path'], {'allow_pickle': '(True)', 'encoding': '"""latin1"""'}), "(path, allow_pickle=True, encoding='latin1')\n", (490, 534), True, 'import numpy as np\n')]
# Copyright 2020 Makani Technologies LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """GS GPS parameters.""" from makani.config import mconfig from makani.control import system_types import numpy as np @mconfig.Config(deps={ 'gs_model': 'base_station.gs_model', 'test_site': 'common.test_site', }) def MakeParams(params): """Make ground station gps parameters.""" if params['gs_model'] == system_types.kGroundStationModelTopHat: gps_primary_antenna_dir = [0.0, 0.0, -1.0] gps_primary_pos = [1.418, -1.657, -2.417] # TopHat doesn't actually have a secondary gps. gps_secondary_antenna_dir = gps_primary_antenna_dir gps_secondary_pos = gps_primary_pos # Angle [rad] from the GPS compass baseline to the zero-azimuth # reference of the perch frame. Note: The TopHat does not have a # GPS compass, but this value is set for historical consistency. gps_compass_to_perch_azi = -2.440 elif params['gs_model'] == system_types.kGroundStationModelGSv1: gps_primary_antenna_dir = [0.0, 0.0, -1.0] # Position measured on 2015-06-15. gps_primary_pos = [0.0, 0.0, -2.94] # GSv1 doesn't actually have a secondary gps. gps_secondary_antenna_dir = gps_primary_antenna_dir gps_secondary_pos = gps_primary_pos # Angle [rad] from the GPS compass baseline to the zero-azimuth # reference of the perch frame gps_compass_to_perch_azi = -2.440 elif params['gs_model'] == system_types.kGroundStationModelGSv2: gps_primary_antenna_dir = [0.0, 0.0, -1.0] gps_secondary_antenna_dir = [0.0, 0.0, -1.0] if params['test_site'] == system_types.kTestSiteParkerRanch: # See b/137283974 for details. gps_primary_pos = [-0.002, 0.011, -6.7] gps_secondary_pos = [-2.450, -0.428, -6.827] elif params['test_site'] == system_types.kTestSiteNorway: # See b/137660975 for details. gps_primary_pos = [-0.002, 0.011, -6.7] gps_secondary_pos = [-2.450, -0.428, -6.757] else: assert False, 'Unsupported test site.' # Angle [rad] from the GPS compass baseline to the zero-azimuth # reference of the platform frame. See b/118710931. gps_compass_to_perch_azi = np.deg2rad(169.84) else: assert False, 'Unsupported ground station model.' return { # Position [m] of the GS GPS antenna in the platform frame. # NOTE: The direction of the antennae is currently not used. 'primary_antenna_p': { 'antenna_dir': gps_primary_antenna_dir, 'pos': gps_primary_pos, }, 'secondary_antenna_p': { 'antenna_dir': gps_secondary_antenna_dir, 'pos': gps_secondary_pos, }, # Calibration for the ground station compass ([#], [rad], [#]). # The bias is used to account for the angle between the perch # frame and the NovAtel differential GPS receiver. # TODO: Remove this parameter once the computation of # compass heading from the primary and secondary antennae is implemented. 'heading_cal': { 'scale': 1.0, 'bias': gps_compass_to_perch_azi, 'bias_count': 0} }
[ "makani.config.mconfig.Config", "numpy.deg2rad" ]
[((711, 806), 'makani.config.mconfig.Config', 'mconfig.Config', ([], {'deps': "{'gs_model': 'base_station.gs_model', 'test_site': 'common.test_site'}"}), "(deps={'gs_model': 'base_station.gs_model', 'test_site':\n 'common.test_site'})\n", (725, 806), False, 'from makani.config import mconfig\n'), ((2688, 2706), 'numpy.deg2rad', 'np.deg2rad', (['(169.84)'], {}), '(169.84)\n', (2698, 2706), True, 'import numpy as np\n')]
import os import csv import sys import time import json import h5py import pickle as pkl import logging import argparse import random from collections import OrderedDict import torch import numpy as np from tqdm import tqdm, trange from nglib.common import utils def get_arguments(argv): parser = argparse.ArgumentParser(description='more intrinsic evaluations') parser.add_argument('config_file', metavar='CONFIG_FILE', help='ng config file') parser.add_argument('input_dir', metavar='INPUT_DIR', help='input dir') parser.add_argument('prefix', metavar='PREFIX', help='output file prefix') parser.add_argument('output_dir', metavar='OUTPUT_DIR', help='output dir') parser.add_argument("--n_choices", type=int, default=8, help="number of choices") parser.add_argument("--seed", type=int, default=135, help="random seed for initialization") parser.add_argument('-v', '--verbose', action='store_true', default=False, help='show info messages') parser.add_argument('-d', '--debug', action='store_true', default=False, help='show debug messages') args = parser.parse_args(argv) return args def set_seed(gpu, seed): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) # if gpu != -1: # torch.cuda.manual_seed_all(seed) def _get_indices_by_rtypes(ng_edges, rtype_idxs): n_edges = ng_edges.shape[1] ret_idxs = [] for i in range(n_edges): e = tuple(ng_edges[:3, i].astype('int64')) if e[1] in rtype_idxs: ret_idxs.append(i) return ret_idxs def _get_tail_node_repr_by_eidx( gid, cand_idx, ng_edges, bert_nid2rows, bert_inputs, bert_target_idxs): _edge = ng_edges[:, cand_idx] # outputs _nid = int(_edge[2]) _row = bert_nid2rows[_nid] _row = _row[_row != -1] assert _row.shape == (1, ) # for pp links binputs = bert_inputs[:, _row, :].squeeze() target_col = bert_target_idxs[_row] # choice format ret = { 'gid': gid, 'eidx': cand_idx, # we need this because we might need to remove the edge 'edge': _edge, 'nid': _nid, 'bert_inputs': binputs, 'target_col': target_col } return ret def sample_node_multiple_choice(ng_edges, bert_inputs, bert_target_idxs, bert_nid2rows, interested_rel_idxs, fr, gid): interested_eidxs = _get_indices_by_rtypes(ng_edges, interested_rel_idxs) if len(interested_eidxs) == 0: return None # sample a target node which is the tail node of the selected edge eidx = interested_eidxs[random.randint(0, len(interested_eidxs)-1)] answer = _get_tail_node_repr_by_eidx( gid, eidx, ng_edges, bert_nid2rows, bert_inputs, bert_target_idxs ) target_e = ng_edges[:3, eidx].astype('int64') n_nodes = bert_nid2rows.shape[0] choices = [answer] gid_pool = [k for k in fr.keys()] while len(choices) < args.n_choices: # random a graph rgid = gid_pool[random.randint(0, len(gid_pool)-1)] rgid = int(rgid.split('_')[1]) if rgid == gid: continue key = 'graph_{}'.format(rgid) r_binputs = fr[key]['bert_inputs'][:] r_target_idxs = fr[key]['bert_target_idxs'][:] r_nid2rows = fr[key]['bert_nid2rows'][:] r_ng_edges = fr[key]['ng_edges'][:] # sample a predicate node using the same manner as the answer interested_eidxs = _get_indices_by_rtypes(r_ng_edges, interested_rel_idxs) if len(interested_eidxs) == 0: continue eidx = interested_eidxs[random.randint(0, len(interested_eidxs)-1)] c = _get_tail_node_repr_by_eidx( rgid, eidx, r_ng_edges, r_nid2rows, r_binputs, r_target_idxs ) choices.append(c) # shuffle choices choice_idxs = list(range(args.n_choices)) random.shuffle(choice_idxs) correct = choice_idxs.index(0) choices = [choices[cidx] for cidx in choice_idxs] return (correct, choices) def sample_node_multiple_choice_v2( ng_edges, bert_inputs, bert_target_idxs, bert_nid2rows, interested_rel_idxs, fr, gid): interested_eidxs = _get_indices_by_rtypes(ng_edges, interested_rel_idxs) if len(interested_eidxs) == 0: return None pos_edges = set() related_edges = ng_edges[:3, interested_eidxs].astype('int64') for i in range(related_edges.shape[1]): e = tuple(related_edges[:, i].flatten()) pos_edges.add(e) eidx = interested_eidxs[random.randint(0, len(interested_eidxs)-1)] new_edges = np.concatenate((ng_edges[:, :eidx], ng_edges[:, eidx+1:]), axis=1) target_e = tuple(ng_edges[:3, eidx].astype('int64')) n_nodes = bert_nid2rows.shape[0] choices = [target_e] while len(choices) < args.n_choices: # try in-doc sampling # random a node r_nid = random.randint(0, n_nodes-1) # we don't separate entity or predicate r_e = (target_e[0], target_e[1], r_nid) if r_e in pos_edges: continue choices.append(r_e) # shuffle choices choice_idxs = list(range(args.n_choices)) random.shuffle(choice_idxs) correct = choice_idxs.index(0) choices = [choices[cidx] for cidx in choice_idxs] return (new_edges, correct, choices) def sample_ep_questions(ng_edges, rtype2idx): # join ep_edges by src node src_nodes = {} ep_ridxs = {rtype2idx['s'], rtype2idx['o'], rtype2idx['prep']} n_edges = ng_edges.shape[1] all_pos_edges = set() entity_nids = set() for i in range(n_edges): e = tuple(ng_edges[:3, i].astype('int64')) all_pos_edges.add(e) if e[1] in ep_ridxs: if e[0] not in src_nodes: src_nodes[e[0]] = [] src_nodes[e[0]].append((i, e)) entity_nids.add(int(e[2])) if len(entity_nids) < args.n_choices: return None, None # Task1, random a event node with 3 ep edges, predict edge types candidate_sources = {src: es for src, es in src_nodes.items() if len(es) >= 3} if len(candidate_sources) == 0: return None, None keys = list(candidate_sources.keys()) src_nid = keys[random.randint(0, len(candidate_sources)-1)] edges = candidate_sources[src_nid] q_link = (src_nid, edges) # question # Task2, random one edge, predict one entity entity_nid_list = list(entity_nids) r_eidx, r_edge = edges[random.randint(0, len(edges)-1)] answer = r_edge[2] choices = [answer] while len(choices) < args.n_choices: r_nid = entity_nid_list[random.randint(0, len(entity_nid_list)-1)] r_tri = (r_edge[0], r_edge[1], r_nid) if r_tri in all_pos_edges: continue choices.append(r_nid) idxs = list(range(len(choices))) random.shuffle(idxs) correct = idxs.index(0) choices = [choices[i] for i in idxs] q_entity = (r_eidx, r_edge, correct, choices) # question return q_link, q_entity def main(): config = json.load(open(args.config_file)) assert config["config_target"] == "narrative_graph" rtype2idx = config['rtype2idx'] if config['no_entity']: ep_rtype_rev = {} ent_pred_ridxs = set() else: ep_rtype_rev = {rtype2idx[v]: rtype2idx[k] for k, v in config['entity_predicate_rtypes'].items()} ent_pred_ridxs = set(ep_rtype_rev.keys()) n_rtypes = len(rtype2idx) pred_pred_ridxs = set(range(n_rtypes)) - ent_pred_ridxs disc_pred_pred_ridxs = pred_pred_ridxs - {rtype2idx['next'], rtype2idx['cnext']} t2 = time.time() q_counts = { 'pp_coref_next': 0, 'pp_next': 0, 'pp_discourse_next': {}, 'ep_link': 0, 'ep_entity': {} } count_gids = 0 fs = sorted([f for f in os.listdir(args.input_dir) if f.endswith('.h5')]) for f in fs: fpath = os.path.join(args.input_dir, f) logger.info('processing {}...'.format(fpath)) fr = h5py.File(fpath, 'r') questions = OrderedDict() for gn in tqdm(fr.keys()): questions[gn] = {} gid = int(gn.split('_')[-1]) bert_inputs = fr[gn]['bert_inputs'][:] bert_target_idxs = fr[gn]['bert_target_idxs'][:] bert_nid2rows = fr[gn]['bert_nid2rows'][:] ng_edges = fr[gn]['ng_edges'][:] n_nodes = bert_nid2rows.shape[0] # # sample PP_COREF_NEXT task q = sample_node_multiple_choice_v2( ng_edges, bert_inputs, bert_target_idxs, bert_nid2rows, {rtype2idx['cnext']}, fr, gid) questions[gn]['pp_coref_next'] = q if q is not None: q_counts['pp_coref_next'] += 1 # sample PP_NEXT task q = sample_node_multiple_choice_v2( ng_edges, bert_inputs, bert_target_idxs, bert_nid2rows, {rtype2idx['next']}, fr, gid) questions[gn]['pp_next'] = q if q is not None: q_counts['pp_next'] += 1 # sample PP_DISCOURSE_NEXT task q = sample_node_multiple_choice_v2( ng_edges, bert_inputs, bert_target_idxs, bert_nid2rows, disc_pred_pred_ridxs, fr, gid) questions[gn]['pp_discourse_next'] = q if q is not None: # count by rtypes ans = q[2][q[1]] rtype = ans[1] # ans = q[1][q[0]] # rtype = int(ans['edge'][1]) if rtype not in q_counts['pp_discourse_next']: q_counts['pp_discourse_next'][rtype] = 0 q_counts['pp_discourse_next'][rtype] += 1 # sample PP_DISCOURSE_LINK_TYPE task # reuse the above links # sample PP_DISCOURSE_TRIPLET task # evaluate on the sampled test set if not config['no_entity']: # sample EP_LINK_TYPE q_link, q_entity = sample_ep_questions(ng_edges, rtype2idx) questions[gn]['ep_link'] = q_link if q_link is not None: q_counts['ep_link'] += 1 # # sample EP_NODE task questions[gn]['ep_entity'] = q_entity if q_entity is not None: rtype = int(q_entity[1][1]) if rtype not in q_counts['ep_entity']: q_counts['ep_entity'][rtype] = 0 q_counts['ep_entity'][rtype] += 1 count_gids += 1 fr.close() # dump questions for a file fn = '.'.join(f.split('.')[:-1]) fpath = os.path.join(args.output_dir, 'q_{}.pkl'.format(fn)) logger.info('dumping {}...'.format(fpath)) pkl.dump(questions, open(fpath, 'wb')) logger.info('#graphs = {}'.format(count_gids)) logger.info('q_counts = {}'.format(q_counts)) if __name__ == "__main__": args = utils.bin_config(get_arguments) logger = utils.get_root_logger(args) main()
[ "nglib.common.utils.get_root_logger", "nglib.common.utils.bin_config", "h5py.File", "numpy.random.seed", "argparse.ArgumentParser", "random.randint", "torch.manual_seed", "random.shuffle", "time.time", "random.seed", "collections.OrderedDict", "os.path.join", "os.listdir", "numpy.concatenate" ]
[((305, 370), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""more intrinsic evaluations"""'}), "(description='more intrinsic evaluations')\n", (328, 370), False, 'import argparse\n'), ((1360, 1377), 'random.seed', 'random.seed', (['seed'], {}), '(seed)\n', (1371, 1377), False, 'import random\n'), ((1382, 1402), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (1396, 1402), True, 'import numpy as np\n'), ((1407, 1430), 'torch.manual_seed', 'torch.manual_seed', (['seed'], {}), '(seed)\n', (1424, 1430), False, 'import torch\n'), ((4091, 4118), 'random.shuffle', 'random.shuffle', (['choice_idxs'], {}), '(choice_idxs)\n', (4105, 4118), False, 'import random\n'), ((4818, 4886), 'numpy.concatenate', 'np.concatenate', (['(ng_edges[:, :eidx], ng_edges[:, eidx + 1:])'], {'axis': '(1)'}), '((ng_edges[:, :eidx], ng_edges[:, eidx + 1:]), axis=1)\n', (4832, 4886), True, 'import numpy as np\n'), ((5385, 5412), 'random.shuffle', 'random.shuffle', (['choice_idxs'], {}), '(choice_idxs)\n', (5399, 5412), False, 'import random\n'), ((7045, 7065), 'random.shuffle', 'random.shuffle', (['idxs'], {}), '(idxs)\n', (7059, 7065), False, 'import random\n'), ((7844, 7855), 'time.time', 'time.time', ([], {}), '()\n', (7853, 7855), False, 'import time\n'), ((11230, 11261), 'nglib.common.utils.bin_config', 'utils.bin_config', (['get_arguments'], {}), '(get_arguments)\n', (11246, 11261), False, 'from nglib.common import utils\n'), ((11275, 11302), 'nglib.common.utils.get_root_logger', 'utils.get_root_logger', (['args'], {}), '(args)\n', (11296, 11302), False, 'from nglib.common import utils\n'), ((5117, 5147), 'random.randint', 'random.randint', (['(0)', '(n_nodes - 1)'], {}), '(0, n_nodes - 1)\n', (5131, 5147), False, 'import random\n'), ((8138, 8169), 'os.path.join', 'os.path.join', (['args.input_dir', 'f'], {}), '(args.input_dir, f)\n', (8150, 8169), False, 'import os\n'), ((8238, 8259), 'h5py.File', 'h5py.File', (['fpath', '"""r"""'], {}), "(fpath, 'r')\n", (8247, 8259), False, 'import h5py\n'), ((8280, 8293), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (8291, 8293), False, 'from collections import OrderedDict\n'), ((8055, 8081), 'os.listdir', 'os.listdir', (['args.input_dir'], {}), '(args.input_dir)\n', (8065, 8081), False, 'import os\n')]
# RUN: %PYTHON %s import numpy as np from shark.shark_importer import SharkImporter import pytest model_path = "https://tfhub.dev/tensorflow/lite-model/albert_lite_base/squadv1/1?lite-format=tflite" # Inputs modified to be useful albert inputs. def generate_inputs(input_details): for input in input_details: print(str(input["shape"]), input["dtype"].__name__) args = [] args.append( np.random.randint( low=0, high=256, size=input_details[0]["shape"], dtype=input_details[0]["dtype"], ) ) args.append( np.ones( shape=input_details[1]["shape"], dtype=input_details[1]["dtype"] ) ) args.append( np.zeros( shape=input_details[2]["shape"], dtype=input_details[2]["dtype"] ) ) return args if __name__ == "__main__": my_shark_importer = SharkImporter( model_path=model_path, model_type="tflite", model_source_hub="tfhub", device="cpu", dynamic=False, jit_trace=True, ) # Case1: Use default inputs my_shark_importer.compile() shark_results = my_shark_importer.forward() # Case2: Use manually set inputs input_details, output_details = my_shark_importer.get_model_details() inputs = generate_inputs(input_details) # device_inputs my_shark_importer.compile(inputs) shark_results = my_shark_importer.forward(inputs) # print(shark_results)
[ "numpy.random.randint", "numpy.zeros", "numpy.ones", "shark.shark_importer.SharkImporter" ]
[((905, 1038), 'shark.shark_importer.SharkImporter', 'SharkImporter', ([], {'model_path': 'model_path', 'model_type': '"""tflite"""', 'model_source_hub': '"""tfhub"""', 'device': '"""cpu"""', 'dynamic': '(False)', 'jit_trace': '(True)'}), "(model_path=model_path, model_type='tflite', model_source_hub=\n 'tfhub', device='cpu', dynamic=False, jit_trace=True)\n", (918, 1038), False, 'from shark.shark_importer import SharkImporter\n'), ((416, 520), 'numpy.random.randint', 'np.random.randint', ([], {'low': '(0)', 'high': '(256)', 'size': "input_details[0]['shape']", 'dtype': "input_details[0]['dtype']"}), "(low=0, high=256, size=input_details[0]['shape'], dtype=\n input_details[0]['dtype'])\n", (433, 520), True, 'import numpy as np\n'), ((606, 679), 'numpy.ones', 'np.ones', ([], {'shape': "input_details[1]['shape']", 'dtype': "input_details[1]['dtype']"}), "(shape=input_details[1]['shape'], dtype=input_details[1]['dtype'])\n", (613, 679), True, 'import numpy as np\n'), ((733, 807), 'numpy.zeros', 'np.zeros', ([], {'shape': "input_details[2]['shape']", 'dtype': "input_details[2]['dtype']"}), "(shape=input_details[2]['shape'], dtype=input_details[2]['dtype'])\n", (741, 807), True, 'import numpy as np\n')]
from typing import List, Tuple, Optional import numpy as np import os import torch from torch import nn from environments.environment_abstract import Environment, State from collections import OrderedDict import re from random import shuffle from torch import Tensor import torch.optim as optim from torch.optim.optimizer import Optimizer from torch.multiprocessing import Queue, get_context import time # training def states_nnet_to_pytorch_input(states_nnet: List[np.ndarray], device) -> List[Tensor]: states_nnet_tensors = [] for tensor_np in states_nnet: tensor = torch.tensor(tensor_np, device=device) states_nnet_tensors.append(tensor) return states_nnet_tensors def make_batches(states_nnet: List[np.ndarray], outputs: np.ndarray, batch_size: int) -> List[Tuple[List[np.ndarray], np.ndarray]]: num_examples = outputs.shape[0] rand_idxs = np.random.choice(num_examples, num_examples, replace=False) outputs = outputs.astype(np.float32) start_idx = 0 batches = [] while (start_idx + batch_size) <= num_examples: end_idx = start_idx + batch_size idxs = rand_idxs[start_idx:end_idx] inputs_batch = [x[idxs] for x in states_nnet] outputs_batch = outputs[idxs] batches.append((inputs_batch, outputs_batch)) start_idx = end_idx return batches def train_nnet(nnet: nn.Module, states_nnet: List[np.ndarray], outputs: np.ndarray, device: torch.device, batch_size: int, num_itrs: int, train_itr: int, lr: float, lr_d: float, display: bool = True) -> float: # optimization display_itrs = 100 criterion = nn.MSELoss() optimizer: Optimizer = optim.Adam(nnet.parameters(), lr=lr) # initialize status tracking start_time = time.time() # train network batches: List[Tuple[List, np.ndarray]] = make_batches(states_nnet, outputs, batch_size) nnet.train() max_itrs: int = train_itr + num_itrs last_loss: float = np.inf batch_idx: int = 0 while train_itr < max_itrs: # zero the parameter gradients optimizer.zero_grad() lr_itr: float = lr * (lr_d ** train_itr) for param_group in optimizer.param_groups: param_group['lr'] = lr_itr # get data inputs_batch, targets_batch_np = batches[batch_idx] targets_batch_np = targets_batch_np.astype(np.float32) # send data to device states_batch: List[Tensor] = states_nnet_to_pytorch_input(inputs_batch, device) targets_batch: Tensor = torch.tensor(targets_batch_np, device=device) # forward nnet_outputs_batch: Tensor = nnet(*states_batch) # cost nnet_cost_to_go = nnet_outputs_batch[:, 0] target_cost_to_go = targets_batch[:, 0] loss = criterion(nnet_cost_to_go, target_cost_to_go) # backwards loss.backward() # step optimizer.step() last_loss = loss.item() # display progress if (train_itr % display_itrs == 0) and display: print("Itr: %i, lr: %.2E, loss: %.2f, targ_ctg: %.2f, nnet_ctg: %.2f, " "Time: %.2f" % ( train_itr, lr_itr, loss.item(), target_cost_to_go.mean().item(), nnet_cost_to_go.mean().item(), time.time() - start_time)) start_time = time.time() train_itr = train_itr + 1 batch_idx += 1 if batch_idx >= len(batches): shuffle(batches) batch_idx = 0 return last_loss # pytorch device def get_device() -> Tuple[torch.device, List[int], bool]: device: torch.device = torch.device("cpu") devices: List[int] = get_available_gpu_nums() on_gpu: bool = False if devices and torch.cuda.is_available(): device = torch.device("cuda:%i" % 0) on_gpu = True return device, devices, on_gpu # loading nnet def load_nnet(model_file: str, nnet: nn.Module, device: torch.device = None) -> nn.Module: # get state dict if device is None: state_dict = torch.load(model_file) else: state_dict = torch.load(model_file, map_location=device) # remove module prefix new_state_dict = OrderedDict() for k, v in state_dict.items(): k = re.sub('^module\.', '', k) new_state_dict[k] = v # set state dict nnet.load_state_dict(new_state_dict) nnet.eval() return nnet # heuristic def get_heuristic_fn(nnet: nn.Module, device: torch.device, env: Environment, clip_zero: bool = False, batch_size: Optional[int] = None): nnet.eval() def heuristic_fn(states: List, is_nnet_format: bool = False) -> np.ndarray: cost_to_go: np.ndarray = np.zeros(0) if not is_nnet_format: num_states: int = len(states) else: num_states: int = states[0].shape[0] batch_size_inst: int = num_states if batch_size is not None: batch_size_inst = batch_size start_idx: int = 0 while start_idx < num_states: # get batch end_idx: int = min(start_idx + batch_size_inst, num_states) # convert to nnet input if not is_nnet_format: states_batch: List = states[start_idx:end_idx] states_nnet_batch: List[np.ndarray] = env.state_to_nnet_input(states_batch) else: states_nnet_batch = [x[start_idx:end_idx] for x in states] # get nnet output states_nnet_batch_tensors = states_nnet_to_pytorch_input(states_nnet_batch, device) cost_to_go_batch: np.ndarray = nnet(*states_nnet_batch_tensors).cpu().data.numpy() cost_to_go: np.ndarray = np.concatenate((cost_to_go, cost_to_go_batch[:, 0]), axis=0) start_idx: int = end_idx assert (cost_to_go.shape[0] == num_states) if clip_zero: cost_to_go = np.maximum(cost_to_go, 0.0) return cost_to_go return heuristic_fn def get_available_gpu_nums() -> List[int]: devices: Optional[str] = os.environ.get('CUDA_VISIBLE_DEVICES') return [int(x) for x in devices.split(',')] if devices else [] def load_heuristic_fn(nnet_dir: str, device: torch.device, on_gpu: bool, nnet: nn.Module, env: Environment, clip_zero: bool = False, gpu_num: int = -1, batch_size: Optional[int] = None): if (gpu_num >= 0) and on_gpu: os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_num) model_file = "%s/model_state_dict.pt" % nnet_dir nnet = load_nnet(model_file, nnet, device=device) nnet.eval() nnet.to(device) if on_gpu: nnet = nn.DataParallel(nnet) heuristic_fn = get_heuristic_fn(nnet, device, env, clip_zero=clip_zero, batch_size=batch_size) return heuristic_fn def heuristic_fn_par(states: List[State], env: Environment, heur_fn_i_q, heur_fn_o_qs): num_parallel: int = len(heur_fn_o_qs) # Write data states_nnet: List[np.ndarray] = env.state_to_nnet_input(states) parallel_nums = range(min(num_parallel, len(states))) split_idxs = np.array_split(np.arange(len(states)), len(parallel_nums)) for idx in parallel_nums: states_nnet_idx = [x[split_idxs[idx]] for x in states_nnet] heur_fn_i_q.put((idx, states_nnet_idx)) # Check until all data is obtaied results = [None]*len(parallel_nums) for idx in parallel_nums: results[idx] = heur_fn_o_qs[idx].get() results = np.concatenate(results, axis=0) return results # parallel training def heuristic_fn_queue(heuristic_fn_input_queue, heuristic_fn_output_queue, proc_id, env: Environment): def heuristic_fn(states): states_nnet = env.state_to_nnet_input(states) heuristic_fn_input_queue.put((proc_id, states_nnet)) heuristics = heuristic_fn_output_queue.get() return heuristics return heuristic_fn def heuristic_fn_runner(heuristic_fn_input_queue: Queue, heuristic_fn_output_queues, nnet_dir: str, device, on_gpu: bool, gpu_num: int, env: Environment, all_zeros: bool, clip_zero: bool, batch_size: Optional[int]): heuristic_fn = None if not all_zeros: heuristic_fn = load_heuristic_fn(nnet_dir, device, on_gpu, env.get_nnet_model(), env, gpu_num=gpu_num, clip_zero=clip_zero, batch_size=batch_size) while True: proc_id, states_nnet = heuristic_fn_input_queue.get() if proc_id is None: break if all_zeros: heuristics = np.zeros(states_nnet[0].shape[0], dtype=np.float) else: heuristics = heuristic_fn(states_nnet, is_nnet_format=True) heuristic_fn_output_queues[proc_id].put(heuristics) return heuristic_fn def start_heur_fn_runners(num_procs: int, nnet_dir: str, device, on_gpu: bool, env: Environment, all_zeros: bool = False, clip_zero: bool = False, batch_size: Optional[int] = None): ctx = get_context("spawn") heuristic_fn_input_queue: ctx.Queue = ctx.Queue() heuristic_fn_output_queues: List[ctx.Queue] = [] for _ in range(num_procs): heuristic_fn_output_queue: ctx.Queue = ctx.Queue(1) heuristic_fn_output_queues.append(heuristic_fn_output_queue) # initialize heuristic procs gpu_nums = get_available_gpu_nums() or [-1] heur_procs: List[ctx.Process] = [] for gpu_num in gpu_nums: heur_proc = ctx.Process(target=heuristic_fn_runner, args=(heuristic_fn_input_queue, heuristic_fn_output_queues, nnet_dir, device, on_gpu, gpu_num, env, all_zeros, clip_zero, batch_size)) heur_proc.daemon = True heur_proc.start() heur_procs.append(heur_proc) return heuristic_fn_input_queue, heuristic_fn_output_queues, heur_procs def stop_heuristic_fn_runners(heur_procs, heuristic_fn_input_queue): for _ in heur_procs: heuristic_fn_input_queue.put((None, None)) for heur_proc in heur_procs: heur_proc.join()
[ "numpy.random.choice", "torch.nn.MSELoss", "numpy.maximum", "random.shuffle", "torch.load", "torch.multiprocessing.get_context", "numpy.zeros", "torch.nn.DataParallel", "time.time", "os.environ.get", "torch.cuda.is_available", "torch.device", "collections.OrderedDict", "torch.tensor", "re.sub", "numpy.concatenate" ]
[((904, 963), 'numpy.random.choice', 'np.random.choice', (['num_examples', 'num_examples'], {'replace': '(False)'}), '(num_examples, num_examples, replace=False)\n', (920, 963), True, 'import numpy as np\n'), ((1661, 1673), 'torch.nn.MSELoss', 'nn.MSELoss', ([], {}), '()\n', (1671, 1673), False, 'from torch import nn\n'), ((1789, 1800), 'time.time', 'time.time', ([], {}), '()\n', (1798, 1800), False, 'import time\n'), ((3664, 3683), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (3676, 3683), False, 'import torch\n'), ((4228, 4241), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (4239, 4241), False, 'from collections import OrderedDict\n'), ((6109, 6147), 'os.environ.get', 'os.environ.get', (['"""CUDA_VISIBLE_DEVICES"""'], {}), "('CUDA_VISIBLE_DEVICES')\n", (6123, 6147), False, 'import os\n'), ((7510, 7541), 'numpy.concatenate', 'np.concatenate', (['results'], {'axis': '(0)'}), '(results, axis=0)\n', (7524, 7541), True, 'import numpy as np\n'), ((9061, 9081), 'torch.multiprocessing.get_context', 'get_context', (['"""spawn"""'], {}), "('spawn')\n", (9072, 9081), False, 'from torch.multiprocessing import Queue, get_context\n'), ((586, 624), 'torch.tensor', 'torch.tensor', (['tensor_np'], {'device': 'device'}), '(tensor_np, device=device)\n', (598, 624), False, 'import torch\n'), ((2561, 2606), 'torch.tensor', 'torch.tensor', (['targets_batch_np'], {'device': 'device'}), '(targets_batch_np, device=device)\n', (2573, 2606), False, 'import torch\n'), ((3778, 3803), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (3801, 3803), False, 'import torch\n'), ((3822, 3849), 'torch.device', 'torch.device', (["('cuda:%i' % 0)"], {}), "('cuda:%i' % 0)\n", (3834, 3849), False, 'import torch\n'), ((4081, 4103), 'torch.load', 'torch.load', (['model_file'], {}), '(model_file)\n', (4091, 4103), False, 'import torch\n'), ((4135, 4178), 'torch.load', 'torch.load', (['model_file'], {'map_location': 'device'}), '(model_file, map_location=device)\n', (4145, 4178), False, 'import torch\n'), ((4290, 4317), 're.sub', 're.sub', (['"""^module\\\\."""', '""""""', 'k'], {}), "('^module\\\\.', '', k)\n", (4296, 4317), False, 'import re\n'), ((4747, 4758), 'numpy.zeros', 'np.zeros', (['(0)'], {}), '(0)\n', (4755, 4758), True, 'import numpy as np\n'), ((6693, 6714), 'torch.nn.DataParallel', 'nn.DataParallel', (['nnet'], {}), '(nnet)\n', (6708, 6714), False, 'from torch import nn\n'), ((3374, 3385), 'time.time', 'time.time', ([], {}), '()\n', (3383, 3385), False, 'import time\n'), ((3495, 3511), 'random.shuffle', 'shuffle', (['batches'], {}), '(batches)\n', (3502, 3511), False, 'from random import shuffle\n'), ((5756, 5816), 'numpy.concatenate', 'np.concatenate', (['(cost_to_go, cost_to_go_batch[:, 0])'], {'axis': '(0)'}), '((cost_to_go, cost_to_go_batch[:, 0]), axis=0)\n', (5770, 5816), True, 'import numpy as np\n'), ((5955, 5982), 'numpy.maximum', 'np.maximum', (['cost_to_go', '(0.0)'], {}), '(cost_to_go, 0.0)\n', (5965, 5982), True, 'import numpy as np\n'), ((8619, 8668), 'numpy.zeros', 'np.zeros', (['states_nnet[0].shape[0]'], {'dtype': 'np.float'}), '(states_nnet[0].shape[0], dtype=np.float)\n', (8627, 8668), True, 'import numpy as np\n'), ((3321, 3332), 'time.time', 'time.time', ([], {}), '()\n', (3330, 3332), False, 'import time\n')]
import cv2 import numpy as np from imutils import perspective, rotate_bound from pymatting import estimate_alpha_knn, estimate_foreground_ml, stack_images from typing import Tuple PAPER_SIZE = (1485, 1050) def find_paper(image_bgr: np.ndarray) -> np.ndarray: image_hsv = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2HSV) paper_mask = cv2.inRange(image_hsv, (0, 0, 90), (180, 60, 255)) contours, _ = cv2.findContours(paper_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) paper_contour = max(contours, key=cv2.contourArea) eps = 1 while paper_contour.shape[0] > 4: paper_contour = cv2.approxPolyDP(paper_contour, eps, True) eps += 1 paper_contour = np.squeeze(paper_contour) paper_image_bgr = perspective.four_point_transform(image_bgr, paper_contour) return cv2.resize(paper_image_bgr, PAPER_SIZE if image_bgr.shape[1] > image_bgr.shape[0] else PAPER_SIZE[::-1]) def get_object_trimap(paper_image_bgr: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: paper_image_gray = cv2.cvtColor(paper_image_bgr, cv2.COLOR_BGR2GRAY) # Reshaping the image into a 2D array of pixels and 3 color values (RGB) pixel_vals = paper_image_gray.reshape((-1, 1)) # Convert to float type pixel_vals = np.float32(pixel_vals) k = 3 retval, labels, centers = cv2.kmeans(pixel_vals, k, None, None, None, cv2.KMEANS_PP_CENTERS) # convert data into 8-bit values centers = np.uint8(centers) darkest_component_mask = np.uint8(np.ones(paper_image_gray.shape) * 255) darkest_component_mask[labels.reshape(paper_image_gray.shape) == np.argmin(centers)] = 0 contours, _ = cv2.findContours(darkest_component_mask, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) contours_new = [] border_size = 5 for contour in contours: if np.min(contour[:, :, 0]) > border_size \ and np.min(contour[:, :, 1]) > border_size \ and np.max(contour[:, :, 0]) < darkest_component_mask.shape[1] - border_size \ and np.max(contour[:, :, 1]) < darkest_component_mask.shape[0] - border_size \ and cv2.contourArea(contour) > 150: contours_new.append(contour) convex_hulls = [] for contour_new in contours_new: convex_hulls.append(cv2.convexHull(contour_new)) convex_hull = cv2.convexHull(np.concatenate(convex_hulls)) mask_by_countour = np.uint8(np.ones(paper_image_gray.shape) * 255) cv2.drawContours(mask_by_countour, [convex_hull], -1, 0, -1) eroded_mask_by_countour = cv2.erode(mask_by_countour, (30, 30), iterations=9) trimap = 255 - eroded_mask_by_countour trimap[trimap == 255] = 128 trimap[np.logical_and(trimap == 128, labels.reshape(paper_image_gray.shape) == np.argmin(centers))] = 255 return trimap, convex_hull def find_object(image: np.ndarray) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: image_bgr = image image_bgr = cv2.resize(image_bgr, (1920, 1080) if image_bgr.shape[1] > image_bgr.shape[0] else (1080, 1920)) paper_image_bgr = find_paper(image_bgr) trimap, convex_hull = get_object_trimap(paper_image_bgr) paper_image_bgr_scaled = cv2.cvtColor(paper_image_bgr, cv2.COLOR_BGR2RGB) / 255.0 trimap_scaled = trimap / 255.0 # alpha = estimate_alpha_knn(paper_image_bgr_scaled, trimap_scaled) alpha = np.zeros_like(trimap_scaled) alpha[trimap_scaled > 0] = 1 return paper_image_bgr, np.squeeze(convex_hull, 1), np.uint8(alpha * 255)
[ "cv2.approxPolyDP", "numpy.ones", "numpy.argmin", "cv2.erode", "cv2.inRange", "cv2.contourArea", "numpy.zeros_like", "cv2.cvtColor", "numpy.max", "imutils.perspective.four_point_transform", "cv2.drawContours", "cv2.resize", "numpy.uint8", "numpy.min", "cv2.convexHull", "numpy.squeeze", "numpy.concatenate", "numpy.float32", "cv2.kmeans", "cv2.findContours" ]
[((280, 322), 'cv2.cvtColor', 'cv2.cvtColor', (['image_bgr', 'cv2.COLOR_BGR2HSV'], {}), '(image_bgr, cv2.COLOR_BGR2HSV)\n', (292, 322), False, 'import cv2\n'), ((340, 390), 'cv2.inRange', 'cv2.inRange', (['image_hsv', '(0, 0, 90)', '(180, 60, 255)'], {}), '(image_hsv, (0, 0, 90), (180, 60, 255))\n', (351, 390), False, 'import cv2\n'), ((409, 481), 'cv2.findContours', 'cv2.findContours', (['paper_mask', 'cv2.RETR_EXTERNAL', 'cv2.CHAIN_APPROX_SIMPLE'], {}), '(paper_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)\n', (425, 481), False, 'import cv2\n'), ((691, 716), 'numpy.squeeze', 'np.squeeze', (['paper_contour'], {}), '(paper_contour)\n', (701, 716), True, 'import numpy as np\n'), ((739, 797), 'imutils.perspective.four_point_transform', 'perspective.four_point_transform', (['image_bgr', 'paper_contour'], {}), '(image_bgr, paper_contour)\n', (771, 797), False, 'from imutils import perspective, rotate_bound\n'), ((809, 918), 'cv2.resize', 'cv2.resize', (['paper_image_bgr', '(PAPER_SIZE if image_bgr.shape[1] > image_bgr.shape[0] else PAPER_SIZE[::-1])'], {}), '(paper_image_bgr, PAPER_SIZE if image_bgr.shape[1] > image_bgr.\n shape[0] else PAPER_SIZE[::-1])\n', (819, 918), False, 'import cv2\n'), ((1024, 1073), 'cv2.cvtColor', 'cv2.cvtColor', (['paper_image_bgr', 'cv2.COLOR_BGR2GRAY'], {}), '(paper_image_bgr, cv2.COLOR_BGR2GRAY)\n', (1036, 1073), False, 'import cv2\n'), ((1247, 1269), 'numpy.float32', 'np.float32', (['pixel_vals'], {}), '(pixel_vals)\n', (1257, 1269), True, 'import numpy as np\n'), ((1310, 1376), 'cv2.kmeans', 'cv2.kmeans', (['pixel_vals', 'k', 'None', 'None', 'None', 'cv2.KMEANS_PP_CENTERS'], {}), '(pixel_vals, k, None, None, None, cv2.KMEANS_PP_CENTERS)\n', (1320, 1376), False, 'import cv2\n'), ((1428, 1445), 'numpy.uint8', 'np.uint8', (['centers'], {}), '(centers)\n', (1436, 1445), True, 'import numpy as np\n'), ((1636, 1721), 'cv2.findContours', 'cv2.findContours', (['darkest_component_mask', 'cv2.RETR_LIST', 'cv2.CHAIN_APPROX_SIMPLE'], {}), '(darkest_component_mask, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE\n )\n', (1652, 1721), False, 'import cv2\n'), ((2440, 2500), 'cv2.drawContours', 'cv2.drawContours', (['mask_by_countour', '[convex_hull]', '(-1)', '(0)', '(-1)'], {}), '(mask_by_countour, [convex_hull], -1, 0, -1)\n', (2456, 2500), False, 'import cv2\n'), ((2531, 2582), 'cv2.erode', 'cv2.erode', (['mask_by_countour', '(30, 30)'], {'iterations': '(9)'}), '(mask_by_countour, (30, 30), iterations=9)\n', (2540, 2582), False, 'import cv2\n'), ((2920, 3021), 'cv2.resize', 'cv2.resize', (['image_bgr', '((1920, 1080) if image_bgr.shape[1] > image_bgr.shape[0] else (1080, 1920))'], {}), '(image_bgr, (1920, 1080) if image_bgr.shape[1] > image_bgr.shape[\n 0] else (1080, 1920))\n', (2930, 3021), False, 'import cv2\n'), ((3330, 3358), 'numpy.zeros_like', 'np.zeros_like', (['trimap_scaled'], {}), '(trimap_scaled)\n', (3343, 3358), True, 'import numpy as np\n'), ((611, 653), 'cv2.approxPolyDP', 'cv2.approxPolyDP', (['paper_contour', 'eps', '(True)'], {}), '(paper_contour, eps, True)\n', (627, 653), False, 'import cv2\n'), ((2334, 2362), 'numpy.concatenate', 'np.concatenate', (['convex_hulls'], {}), '(convex_hulls)\n', (2348, 2362), True, 'import numpy as np\n'), ((3153, 3201), 'cv2.cvtColor', 'cv2.cvtColor', (['paper_image_bgr', 'cv2.COLOR_BGR2RGB'], {}), '(paper_image_bgr, cv2.COLOR_BGR2RGB)\n', (3165, 3201), False, 'import cv2\n'), ((3421, 3447), 'numpy.squeeze', 'np.squeeze', (['convex_hull', '(1)'], {}), '(convex_hull, 1)\n', (3431, 3447), True, 'import numpy as np\n'), ((3449, 3470), 'numpy.uint8', 'np.uint8', (['(alpha * 255)'], {}), '(alpha * 255)\n', (3457, 3470), True, 'import numpy as np\n'), ((1485, 1516), 'numpy.ones', 'np.ones', (['paper_image_gray.shape'], {}), '(paper_image_gray.shape)\n', (1492, 1516), True, 'import numpy as np\n'), ((1593, 1611), 'numpy.argmin', 'np.argmin', (['centers'], {}), '(centers)\n', (1602, 1611), True, 'import numpy as np\n'), ((2272, 2299), 'cv2.convexHull', 'cv2.convexHull', (['contour_new'], {}), '(contour_new)\n', (2286, 2299), False, 'import cv2\n'), ((2397, 2428), 'numpy.ones', 'np.ones', (['paper_image_gray.shape'], {}), '(paper_image_gray.shape)\n', (2404, 2428), True, 'import numpy as np\n'), ((1799, 1823), 'numpy.min', 'np.min', (['contour[:, :, 0]'], {}), '(contour[:, :, 0])\n', (1805, 1823), True, 'import numpy as np\n'), ((1860, 1884), 'numpy.min', 'np.min', (['contour[:, :, 1]'], {}), '(contour[:, :, 1])\n', (1866, 1884), True, 'import numpy as np\n'), ((1921, 1945), 'numpy.max', 'np.max', (['contour[:, :, 0]'], {}), '(contour[:, :, 0])\n', (1927, 1945), True, 'import numpy as np\n'), ((2016, 2040), 'numpy.max', 'np.max', (['contour[:, :, 1]'], {}), '(contour[:, :, 1])\n', (2022, 2040), True, 'import numpy as np\n'), ((2111, 2135), 'cv2.contourArea', 'cv2.contourArea', (['contour'], {}), '(contour)\n', (2126, 2135), False, 'import cv2\n'), ((2741, 2759), 'numpy.argmin', 'np.argmin', (['centers'], {}), '(centers)\n', (2750, 2759), True, 'import numpy as np\n')]
import tkinter as tk from tkinter import filedialog from tkinter import * from PIL import ImageTk ,Image import numpy as np from keras.models import load_model #load the model model = load_model('traffic_classifier.h5') #defince the class labels in the dictionary classes = { 1:'Speed limit (20km/h)', 2:'Speed limit (30km/h)', 3:'Speed limit (50km/h)', 4:'Speed limit (60km/h)', 5:'Speed limit (70km/h)', 6:'Speed limit (80km/h)', 7:'End of speed limit (80km/h)', 8:'Speed limit (100km/h)', 9:'Speed limit (120km/h)', 10:'No passing', 11:'No passing veh over 3.5 tons', 12:'Right-of-way at intersection', 13:'Priority road', 14:'Yield', 15:'Stop', 16:'No vehicles', 17:'Veh > 3.5 tons prohibited', 18:'No entry', 19:'General caution', 20:'Dangerous curve left', 21:'Dangerous curve right', 22:'Double curve', 23:'Bumpy road', 24:'Slippery road', 25:'Road narrows on the right', 26:'Road work', 27:'Traffic signals', 28:'Pedestrians', 29:'Children crossing', 30:'Bicycles crossing', 31:'Beware of ice/snow', 32:'Wild animals crossing', 33:'End speed + passing limits', 34:'Turn right ahead', 35:'Turn left ahead', 36:'Ahead only', 37:'Go straight or right', 38:'Go straight or left', 39:'Keep right', 40:'Keep left', 41:'Roundabout mandatory', 42:'End of no passing', 43:'End no passing veh > 3.5 tons' } #initialize GUI top = tk.Tk() top.geometry('800x600') top.title('Traffic Sign Classification') top.configure(background = "#CDCDCD") label = Label(top , background = "#CDCDCD" , font = ('arial' , 15, 'bold')) sign_image = Label(top) def classify(file_path): global label_packed image = Image.open(file_path) image = image.resize((30 , 30) , Image.NEAREST) image = np.expand_dims( image , axis = 0) image = np.array(image) pred = model.predict_classes([image])[0] sign = classes[pred+1] print(sign) label.configure( foreground = "#011638" , text = sign) def show_classify_button(file_path): classify_b = Button( top , text = "Classsify Image" , command = lambda: classify(file_path), padx=10 , pady=5) classify_b.configure(background= '#364156' , foreground = 'white', font= ('arial',10,'bold')) classify_b.place(relx = 0.79 , rely = 0.46) def upload_image(): try: file_path = filedialog.askopenfilename() uploaded = Image.open(file_path) uploaded.thumbnail(((top.winfo_width()) , (top.winfo_height()))) im = ImageTk.PhotoImage(uploaded) sign_image.configure(image = im) sign_image.image = im label.configure(text = '') show_classify_button(file_path) except: pass upload = Button(top , text = "Upload an Image" , command = upload_image , padx = 10 , pady = 5) upload.configure( background = "#364156" , foreground = 'white' , font = ('arial' , 10, 'bold')) upload.pack(side = BOTTOM , pady = 50) sign_image.pack(side = BOTTOM , expand =True) label.pack( side =BOTTOM ,expand =True) heading = Label(top , text = 'Know Your Traffic Sign' , pady = 20 , font = ('arial', 20 ,'bold')) heading.configure(background = "#CDCDCD", foreground = "#364156") heading.pack() top.mainloop()
[ "keras.models.load_model", "PIL.ImageTk.PhotoImage", "numpy.expand_dims", "tkinter.filedialog.askopenfilename", "PIL.Image.open", "numpy.array", "tkinter.Tk" ]
[((185, 220), 'keras.models.load_model', 'load_model', (['"""traffic_classifier.h5"""'], {}), "('traffic_classifier.h5')\n", (195, 220), False, 'from keras.models import load_model\n'), ((1873, 1880), 'tkinter.Tk', 'tk.Tk', ([], {}), '()\n', (1878, 1880), True, 'import tkinter as tk\n'), ((2147, 2168), 'PIL.Image.open', 'Image.open', (['file_path'], {}), '(file_path)\n', (2157, 2168), False, 'from PIL import ImageTk, Image\n'), ((2233, 2262), 'numpy.expand_dims', 'np.expand_dims', (['image'], {'axis': '(0)'}), '(image, axis=0)\n', (2247, 2262), True, 'import numpy as np\n'), ((2279, 2294), 'numpy.array', 'np.array', (['image'], {}), '(image)\n', (2287, 2294), True, 'import numpy as np\n'), ((2791, 2819), 'tkinter.filedialog.askopenfilename', 'filedialog.askopenfilename', ([], {}), '()\n', (2817, 2819), False, 'from tkinter import filedialog\n'), ((2839, 2860), 'PIL.Image.open', 'Image.open', (['file_path'], {}), '(file_path)\n', (2849, 2860), False, 'from PIL import ImageTk, Image\n'), ((2948, 2976), 'PIL.ImageTk.PhotoImage', 'ImageTk.PhotoImage', (['uploaded'], {}), '(uploaded)\n', (2966, 2976), False, 'from PIL import ImageTk, Image\n')]
import matplotlib.pyplot as plt import numpy as np from typing import Callable import tensorflow as tf from tensorflow import keras from tensorflow.keras import datasets, layers, models import skimage from skimage.metrics import structural_similarity as ssim from sklearn.model_selection import train_test_split from deep_raman import utils from deep_raman import metrics import streamlit as st def main(num_epochs: int, loss_function: Callable): x = np.linspace(-200, 200, 1024) X, y = utils.generate_training_set(x, num_base_examples=64) X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.33, random_state=42 ) x_train = np.array(X_train).reshape(-1, 1024, 1) x_test = np.array(X_test).reshape(-1, 1024, 1) y_train = np.array(y_train).reshape(-1, 1024, 1) y_test = np.array(y_test).reshape(-1, 1024, 1) inputs = keras.Input(shape=(32 * 32, 1)) x = layers.BatchNormalization(axis=-1)(inputs) x = layers.Conv1D(16, 16, input_shape=(32 * 32, 1))(inputs) x = layers.MaxPooling1D(2)(x) x = layers.Conv1D(16, 16, 16)(x) x = layers.MaxPooling1D(3)(x) x = layers.Conv1D(64, 10)(x) outputs = layers.Conv1DTranspose(1, 1024)(x) model = models.Model(inputs=inputs, outputs=outputs, name="cnn_model") model.compile( loss=loss_function, optimizer=keras.optimizers.Nadam(learning_rate=3e-3), metrics=["mae", "mape"], ) history = model.fit( x_train, y_train, batch_size=64, epochs=num_epochs, validation_split=0.2, ) test_scores = model.evaluate(x_test, y_test, verbose=2) st.write("Test loss:", test_scores[0]) st.write("Test accuracy:", test_scores[1]) sample_input, sample_prediction_, sample_target_ = ( x_train[0:1], model.predict(x_train[0:1]), y_train[0:1], ) return sample_input, sample_prediction_, sample_target_ if __name__ == "__main__": loss_options = { "peak signal to noise ratio": metrics.psnr_loss, "mean absolute error": keras.losses.mean_absolute_error, "mean squared error": keras.losses.mean_squared_error, } NUM_EPOCHS = st.selectbox("Number of epochs", [10**i for i in range(0, 3)]) loss_choice = st.selectbox("Loss function", loss_options.keys()) LOSS_FUNCTION = loss_options[loss_choice] sample_input, sample_prediction_, sample_target_ = main(NUM_EPOCHS, LOSS_FUNCTION) fig = plt.figure(figsize=(12, 8)) plt.subplot(311) plt.title("Sample Input") plt.plot(sample_input.ravel()) plt.subplot(312) plt.title("Sample Prediction") plt.plot(sample_prediction_.ravel()) plt.subplot(313) plt.title("Sample Target") plt.plot(sample_target_.ravel()) fig.tight_layout() fig # We call the fig so it will get picked up by streamlit magic. # TODO: Visualize difference between train loss and test loss - something like tensorboard?
[ "matplotlib.pyplot.title", "matplotlib.pyplot.subplot", "tensorflow.keras.layers.BatchNormalization", "deep_raman.utils.generate_training_set", "sklearn.model_selection.train_test_split", "tensorflow.keras.Input", "tensorflow.keras.layers.Conv1D", "tensorflow.keras.layers.MaxPooling1D", "tensorflow.keras.layers.Conv1DTranspose", "streamlit.write", "tensorflow.keras.optimizers.Nadam", "tensorflow.keras.models.Model", "matplotlib.pyplot.figure", "numpy.array", "numpy.linspace" ]
[((461, 489), 'numpy.linspace', 'np.linspace', (['(-200)', '(200)', '(1024)'], {}), '(-200, 200, 1024)\n', (472, 489), True, 'import numpy as np\n'), ((502, 554), 'deep_raman.utils.generate_training_set', 'utils.generate_training_set', (['x'], {'num_base_examples': '(64)'}), '(x, num_base_examples=64)\n', (529, 554), False, 'from deep_raman import utils\n'), ((595, 650), 'sklearn.model_selection.train_test_split', 'train_test_split', (['X', 'y'], {'test_size': '(0.33)', 'random_state': '(42)'}), '(X, y, test_size=0.33, random_state=42)\n', (611, 650), False, 'from sklearn.model_selection import train_test_split\n'), ((889, 920), 'tensorflow.keras.Input', 'keras.Input', ([], {'shape': '(32 * 32, 1)'}), '(shape=(32 * 32, 1))\n', (900, 920), False, 'from tensorflow import keras\n'), ((1238, 1300), 'tensorflow.keras.models.Model', 'models.Model', ([], {'inputs': 'inputs', 'outputs': 'outputs', 'name': '"""cnn_model"""'}), "(inputs=inputs, outputs=outputs, name='cnn_model')\n", (1250, 1300), False, 'from tensorflow.keras import datasets, layers, models\n'), ((1661, 1699), 'streamlit.write', 'st.write', (['"""Test loss:"""', 'test_scores[0]'], {}), "('Test loss:', test_scores[0])\n", (1669, 1699), True, 'import streamlit as st\n'), ((1704, 1746), 'streamlit.write', 'st.write', (['"""Test accuracy:"""', 'test_scores[1]'], {}), "('Test accuracy:', test_scores[1])\n", (1712, 1746), True, 'import streamlit as st\n'), ((2491, 2518), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(12, 8)'}), '(figsize=(12, 8))\n', (2501, 2518), True, 'import matplotlib.pyplot as plt\n'), ((2524, 2540), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(311)'], {}), '(311)\n', (2535, 2540), True, 'import matplotlib.pyplot as plt\n'), ((2545, 2570), 'matplotlib.pyplot.title', 'plt.title', (['"""Sample Input"""'], {}), "('Sample Input')\n", (2554, 2570), True, 'import matplotlib.pyplot as plt\n'), ((2611, 2627), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(312)'], {}), '(312)\n', (2622, 2627), True, 'import matplotlib.pyplot as plt\n'), ((2632, 2662), 'matplotlib.pyplot.title', 'plt.title', (['"""Sample Prediction"""'], {}), "('Sample Prediction')\n", (2641, 2662), True, 'import matplotlib.pyplot as plt\n'), ((2709, 2725), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(313)'], {}), '(313)\n', (2720, 2725), True, 'import matplotlib.pyplot as plt\n'), ((2730, 2756), 'matplotlib.pyplot.title', 'plt.title', (['"""Sample Target"""'], {}), "('Sample Target')\n", (2739, 2756), True, 'import matplotlib.pyplot as plt\n'), ((929, 963), 'tensorflow.keras.layers.BatchNormalization', 'layers.BatchNormalization', ([], {'axis': '(-1)'}), '(axis=-1)\n', (954, 963), False, 'from tensorflow.keras import datasets, layers, models\n'), ((981, 1028), 'tensorflow.keras.layers.Conv1D', 'layers.Conv1D', (['(16)', '(16)'], {'input_shape': '(32 * 32, 1)'}), '(16, 16, input_shape=(32 * 32, 1))\n', (994, 1028), False, 'from tensorflow.keras import datasets, layers, models\n'), ((1045, 1067), 'tensorflow.keras.layers.MaxPooling1D', 'layers.MaxPooling1D', (['(2)'], {}), '(2)\n', (1064, 1067), False, 'from tensorflow.keras import datasets, layers, models\n'), ((1079, 1104), 'tensorflow.keras.layers.Conv1D', 'layers.Conv1D', (['(16)', '(16)', '(16)'], {}), '(16, 16, 16)\n', (1092, 1104), False, 'from tensorflow.keras import datasets, layers, models\n'), ((1116, 1138), 'tensorflow.keras.layers.MaxPooling1D', 'layers.MaxPooling1D', (['(3)'], {}), '(3)\n', (1135, 1138), False, 'from tensorflow.keras import datasets, layers, models\n'), ((1151, 1172), 'tensorflow.keras.layers.Conv1D', 'layers.Conv1D', (['(64)', '(10)'], {}), '(64, 10)\n', (1164, 1172), False, 'from tensorflow.keras import datasets, layers, models\n'), ((1190, 1221), 'tensorflow.keras.layers.Conv1DTranspose', 'layers.Conv1DTranspose', (['(1)', '(1024)'], {}), '(1, 1024)\n', (1212, 1221), False, 'from tensorflow.keras import datasets, layers, models\n'), ((680, 697), 'numpy.array', 'np.array', (['X_train'], {}), '(X_train)\n', (688, 697), True, 'import numpy as np\n'), ((732, 748), 'numpy.array', 'np.array', (['X_test'], {}), '(X_test)\n', (740, 748), True, 'import numpy as np\n'), ((785, 802), 'numpy.array', 'np.array', (['y_train'], {}), '(y_train)\n', (793, 802), True, 'import numpy as np\n'), ((837, 853), 'numpy.array', 'np.array', (['y_test'], {}), '(y_test)\n', (845, 853), True, 'import numpy as np\n'), ((1367, 1410), 'tensorflow.keras.optimizers.Nadam', 'keras.optimizers.Nadam', ([], {'learning_rate': '(0.003)'}), '(learning_rate=0.003)\n', (1389, 1410), False, 'from tensorflow import keras\n')]
from typing import Dict, Tuple, TYPE_CHECKING import numpy as np from ..continuous_sensor import ContinuousSensor if TYPE_CHECKING: from task import StackingTask # TODO: This should be a DiscreteSensor class CurrentPartReleasedSensor(ContinuousSensor["StackingEnv"]): def __init__(self, part_release_distance: float = 0.05, **kwargs): super().__init__(normalize=False, clip=False, **kwargs) self.__part_release_distance = part_release_distance self.__observation_name = "current_part_released" def _get_limits(self) -> Dict[str, Tuple[np.ndarray, np.ndarray]]: return {self.__observation_name: (np.zeros(1), np.ones(1))} def _reset_unnormalized(self) -> Dict[str, np.ndarray]: return self._observe_unnormalized() def _observe_unnormalized(self) -> Dict[str, np.ndarray]: part = self.task.current_part robot = self.task.robot # TODO: Fix typing part_released = max(robot.finger_distances_to_object(part.scene_object)) \ > self.__part_release_distance return {self.__observation_name: np.array([float(part_released)])}
[ "numpy.zeros", "numpy.ones" ]
[((645, 656), 'numpy.zeros', 'np.zeros', (['(1)'], {}), '(1)\n', (653, 656), True, 'import numpy as np\n'), ((658, 668), 'numpy.ones', 'np.ones', (['(1)'], {}), '(1)\n', (665, 668), True, 'import numpy as np\n')]
import numpy as np import tensorflow as tf from collections import Counter from utils.process_utils import calculate_iou, non_maximum_suppression def evaluate(y_pred, y_true, num_classes, score_thresh=0.5, iou_thresh=0.5): num_images = y_true[0].shape[0] true_labels_dict = {i:0 for i in range(num_classes)} # {class: count} pred_labels_dict = {i:0 for i in range(num_classes)} true_positive_dict = {i:0 for i in range(num_classes)} for i in range(num_images): true_labels_list, true_boxes_list = [], [] for j in range(3): # three feature maps true_probs_temp = y_true[j][i][...,5: ] true_boxes_temp = y_true[j][i][...,0:4] object_mask = true_probs_temp.sum(axis=-1) > 0 true_probs_temp = true_probs_temp[object_mask] true_boxes_temp = true_boxes_temp[object_mask] true_labels_list += np.argmax(true_probs_temp, axis=-1).tolist() true_boxes_list += true_boxes_temp.tolist() if len(true_labels_list) != 0: for cls, count in Counter(true_labels_list).items(): true_labels_dict[cls] += count pred_boxes = y_pred[0][i:i+1] pred_confs = y_pred[1][i:i+1] pred_probs = y_pred[2][i:i+1] pred_boxes, pred_confs, pred_labels = non_maximum_suppression(pred_boxes, pred_confs, pred_probs) true_boxes = np.array(true_boxes_list) box_centers, box_sizes = true_boxes[:,0:2], true_boxes[:,2:4] true_boxes[:,0:2] = box_centers - box_sizes / 2. true_boxes[:,2:4] = true_boxes[:,0:2] + box_sizes pred_labels_list = [] if pred_labels is None else pred_labels.tolist() if pred_labels_list == []: continue detected = [] for k in range(len(true_labels_list)): # compute iou between predicted box and ground_truth boxes iou = calculate_iou(true_boxes[k:k+1], pred_boxes) m = np.argmax(iou) # Extract index of largest overlap if iou[m] >= iou_thresh and true_labels_list[k] == pred_labels_list[m] and m not in detected: pred_labels_dict[true_labels_list[k]] += 1 detected.append(m) pred_labels_list = [pred_labels_list[m] for m in detected] for c in range(num_classes): t = true_labels_list.count(c) p = pred_labels_list.count(c) true_positive_dict[c] += p if t >= p else t recall = sum(true_positive_dict.values()) / (sum(true_labels_dict.values()) + 1e-6) precision = sum(true_positive_dict.values()) / (sum(pred_labels_dict.values()) + 1e-6) avg_prec = [true_positive_dict[i] / (true_labels_dict[i] + 1e-6) for i in range(num_classes)] mAP = sum(avg_prec) / (sum([avg_prec[i] != 0 for i in range(num_classes)]) + 1e-6) return recall, precision, mAP
[ "utils.process_utils.non_maximum_suppression", "numpy.argmax", "numpy.array", "utils.process_utils.calculate_iou", "collections.Counter" ]
[((1303, 1362), 'utils.process_utils.non_maximum_suppression', 'non_maximum_suppression', (['pred_boxes', 'pred_confs', 'pred_probs'], {}), '(pred_boxes, pred_confs, pred_probs)\n', (1326, 1362), False, 'from utils.process_utils import calculate_iou, non_maximum_suppression\n'), ((1385, 1410), 'numpy.array', 'np.array', (['true_boxes_list'], {}), '(true_boxes_list)\n', (1393, 1410), True, 'import numpy as np\n'), ((1880, 1926), 'utils.process_utils.calculate_iou', 'calculate_iou', (['true_boxes[k:k + 1]', 'pred_boxes'], {}), '(true_boxes[k:k + 1], pred_boxes)\n', (1893, 1926), False, 'from utils.process_utils import calculate_iou, non_maximum_suppression\n'), ((1941, 1955), 'numpy.argmax', 'np.argmax', (['iou'], {}), '(iou)\n', (1950, 1955), True, 'import numpy as np\n'), ((903, 938), 'numpy.argmax', 'np.argmax', (['true_probs_temp'], {'axis': '(-1)'}), '(true_probs_temp, axis=-1)\n', (912, 938), True, 'import numpy as np\n'), ((1075, 1100), 'collections.Counter', 'Counter', (['true_labels_list'], {}), '(true_labels_list)\n', (1082, 1100), False, 'from collections import Counter\n')]
import numpy as np from mltk.core.preprocess.audio.audio_feature_generator import AudioFeatureGenerator from mltk.core.preprocess.audio.audio_feature_generator.tests.data import ( DEFAULT_SETTINGS, YES_INPUT_AUDIO, YES_OUTPUT_FEATURES_INT8, NO_INPUT_AUDIO, NO_OUTPUT_FEATURES_INT8 ) def test_yes_samples(): settings = DEFAULT_SETTINGS mfe = AudioFeatureGenerator(settings) sample = np.asarray(YES_INPUT_AUDIO, dtype=np.int16) calculated = mfe.process_sample(sample, dtype=np.int8) expected = np.reshape(np.array(YES_OUTPUT_FEATURES_INT8, dtype=np.int8), settings.spectrogram_shape) assert np.allclose(calculated, expected) def test_no_samples(): settings = DEFAULT_SETTINGS mfe = AudioFeatureGenerator(settings) sample = np.asarray(NO_INPUT_AUDIO, dtype=np.int16) calculated = mfe.process_sample(sample, dtype=np.int8) expected = np.reshape(np.array(NO_OUTPUT_FEATURES_INT8, dtype=np.int8), settings.spectrogram_shape) assert np.allclose(calculated, expected)
[ "numpy.asarray", "mltk.core.preprocess.audio.audio_feature_generator.AudioFeatureGenerator", "numpy.array", "numpy.allclose" ]
[((374, 405), 'mltk.core.preprocess.audio.audio_feature_generator.AudioFeatureGenerator', 'AudioFeatureGenerator', (['settings'], {}), '(settings)\n', (395, 405), False, 'from mltk.core.preprocess.audio.audio_feature_generator import AudioFeatureGenerator\n'), ((419, 462), 'numpy.asarray', 'np.asarray', (['YES_INPUT_AUDIO'], {'dtype': 'np.int16'}), '(YES_INPUT_AUDIO, dtype=np.int16)\n', (429, 462), True, 'import numpy as np\n'), ((644, 677), 'numpy.allclose', 'np.allclose', (['calculated', 'expected'], {}), '(calculated, expected)\n', (655, 677), True, 'import numpy as np\n'), ((745, 776), 'mltk.core.preprocess.audio.audio_feature_generator.AudioFeatureGenerator', 'AudioFeatureGenerator', (['settings'], {}), '(settings)\n', (766, 776), False, 'from mltk.core.preprocess.audio.audio_feature_generator import AudioFeatureGenerator\n'), ((790, 832), 'numpy.asarray', 'np.asarray', (['NO_INPUT_AUDIO'], {'dtype': 'np.int16'}), '(NO_INPUT_AUDIO, dtype=np.int16)\n', (800, 832), True, 'import numpy as np\n'), ((1013, 1046), 'numpy.allclose', 'np.allclose', (['calculated', 'expected'], {}), '(calculated, expected)\n', (1024, 1046), True, 'import numpy as np\n'), ((553, 602), 'numpy.array', 'np.array', (['YES_OUTPUT_FEATURES_INT8'], {'dtype': 'np.int8'}), '(YES_OUTPUT_FEATURES_INT8, dtype=np.int8)\n', (561, 602), True, 'import numpy as np\n'), ((923, 971), 'numpy.array', 'np.array', (['NO_OUTPUT_FEATURES_INT8'], {'dtype': 'np.int8'}), '(NO_OUTPUT_FEATURES_INT8, dtype=np.int8)\n', (931, 971), True, 'import numpy as np\n')]
#!/usr/bin/env python3 """ Implementation of building LSTM model """ # 3rd party imports import pandas as pd import numpy as np import random as rn import datetime as datetime # model import tensorflow as tf from keras.models import Sequential from keras.layers import LSTM from keras.layers import Dense from keras.losses import MeanSquaredLogarithmicError from sklearn.model_selection import train_test_split # local imports from db.model import db, Stat class Lstm: def extract(self) -> pd.DataFrame: """ extract data from database and output into dataframe """ # grab all record from stat table df = pd.read_sql_table("stat", "sqlite:///db/site.db") # return return df def transform(self, df: pd.DataFrame) -> pd.DataFrame: """ transforms done to dataframe: - calculate the difference of each metric - onehotencode countries """ # get diff df["confirmed_diff"] = np.where( df.country == df.country.shift(), df.confirmed - df.confirmed.shift(), 0 ) df["recovered_diff"] = np.where( df.country == df.country.shift(), df.recovered - df.recovered.shift(), 0 ) df["deaths_diff"] = np.where( df.country == df.country.shift(), df.deaths - df.deaths.shift(), 0 ) # encode country with pd.dummies dummies = pd.get_dummies(df.country) dummies["id"] = df.id df = pd.merge(df, dummies, on=["id"]) # return return df def load( self, df: pd.DataFrame, metric="confirmed", win_size=7, epochs=5, batch_size=32, save=False, ) -> Sequential: """ load dataframe into sequential """ # variables x, y = [], [] countries = db.session.query(Stat.country).distinct().all() # countries come in the form of [('Afghanistan',), ('Albania',), ... ] for (country,) in countries: country_df = df[df.country == country] series = list(country_df[metric]) for i in range(0, len(series) - win_size): end = i + win_size series_x, series_y = series[i:end], series[end] if series_y: x.append(series_x) y.append(series_y) X, y = np.array(x), np.array(y) # TTS X_train, X_val, y_train, y_val = train_test_split( X, y, test_size=0.2, random_state=42 ) # preprocess X_train = X_train.reshape(X_train.shape[0], 1, X_train.shape[1]) X_val = X_val.reshape(X_val.shape[0], 1, X_val.shape[1]) # build model model = Sequential() model.add( LSTM( 100, activation="relu", input_shape=(1, win_size), return_sequences=True, ) ) model.add(LSTM(150, activation="relu")) model.add(Dense(1, activation="relu")) # Compile Model model.compile(optimizer="adam", loss=MeanSquaredLogarithmicError()) # Fit Model model.fit( X_train, y_train, epochs=epochs, batch_size=batch_size, validation_data=(X_val, y_val), verbose=2, shuffle=True, ) # Export Model if save: model.save("lstm_model.h5") def main(): """ run code """ # Set random state for Keras np.random.seed(42) rn.seed(12345) # build model and save it model = Lstm() df = model.extract() df = model.transform(df) lstm = model.load(df, save=True) if __name__ == "__main__": main()
[ "numpy.random.seed", "pandas.get_dummies", "pandas.merge", "sklearn.model_selection.train_test_split", "keras.layers.LSTM", "keras.layers.Dense", "random.seed", "numpy.array", "keras.losses.MeanSquaredLogarithmicError", "db.model.db.session.query", "pandas.read_sql_table", "keras.models.Sequential" ]
[((3581, 3599), 'numpy.random.seed', 'np.random.seed', (['(42)'], {}), '(42)\n', (3595, 3599), True, 'import numpy as np\n'), ((3604, 3618), 'random.seed', 'rn.seed', (['(12345)'], {}), '(12345)\n', (3611, 3618), True, 'import random as rn\n'), ((652, 701), 'pandas.read_sql_table', 'pd.read_sql_table', (['"""stat"""', '"""sqlite:///db/site.db"""'], {}), "('stat', 'sqlite:///db/site.db')\n", (669, 701), True, 'import pandas as pd\n'), ((1421, 1447), 'pandas.get_dummies', 'pd.get_dummies', (['df.country'], {}), '(df.country)\n', (1435, 1447), True, 'import pandas as pd\n'), ((1491, 1523), 'pandas.merge', 'pd.merge', (['df', 'dummies'], {'on': "['id']"}), "(df, dummies, on=['id'])\n", (1499, 1523), True, 'import pandas as pd\n'), ((2489, 2543), 'sklearn.model_selection.train_test_split', 'train_test_split', (['X', 'y'], {'test_size': '(0.2)', 'random_state': '(42)'}), '(X, y, test_size=0.2, random_state=42)\n', (2505, 2543), False, 'from sklearn.model_selection import train_test_split\n'), ((2765, 2777), 'keras.models.Sequential', 'Sequential', ([], {}), '()\n', (2775, 2777), False, 'from keras.models import Sequential\n'), ((2408, 2419), 'numpy.array', 'np.array', (['x'], {}), '(x)\n', (2416, 2419), True, 'import numpy as np\n'), ((2421, 2432), 'numpy.array', 'np.array', (['y'], {}), '(y)\n', (2429, 2432), True, 'import numpy as np\n'), ((2809, 2887), 'keras.layers.LSTM', 'LSTM', (['(100)'], {'activation': '"""relu"""', 'input_shape': '(1, win_size)', 'return_sequences': '(True)'}), "(100, activation='relu', input_shape=(1, win_size), return_sequences=True)\n", (2813, 2887), False, 'from keras.layers import LSTM\n'), ((2995, 3023), 'keras.layers.LSTM', 'LSTM', (['(150)'], {'activation': '"""relu"""'}), "(150, activation='relu')\n", (2999, 3023), False, 'from keras.layers import LSTM\n'), ((3043, 3070), 'keras.layers.Dense', 'Dense', (['(1)'], {'activation': '"""relu"""'}), "(1, activation='relu')\n", (3048, 3070), False, 'from keras.layers import Dense\n'), ((3142, 3171), 'keras.losses.MeanSquaredLogarithmicError', 'MeanSquaredLogarithmicError', ([], {}), '()\n', (3169, 3171), False, 'from keras.losses import MeanSquaredLogarithmicError\n'), ((1870, 1900), 'db.model.db.session.query', 'db.session.query', (['Stat.country'], {}), '(Stat.country)\n', (1886, 1900), False, 'from db.model import db, Stat\n')]
# -*- coding: utf-8 -*- """ Created on Thu May 9 13:46:08 2019 @author: <NAME> """ from binomialTreePricer import asianOptionBinomialTree import pandas as pd import numpy as np from datetime import datetime, timedelta uly_names = ['Crude Oil WTI', 'Ethanol', 'Gold', 'Silver', 'Natural Gas'] uly_init = df_uly[uly_names].tail(1) df_opt['bdays'] = 1 + np.busday_count(df_opt['Start Date'].values.astype('datetime64[D]'), df_opt['Maturity Date'].values.astype('datetime64[D]')) df_uly_vol = df_uly[uly_names].std(skipna=True) oneOverRho = 3 df_vols = pd.DataFrame([[0.3, 0.01, 0.4, 0.1, 0.001]], columns = uly_names) df_units = pd.DataFrame([[0.01, 0.0001, 1, 0.001, 0.01]], columns = uly_names) bdays_year = 252 # ============================================================================= # Define risk free rate, reference to US treasury yield curve as of 20190322 # https://www.treasury.gov/resource-center/data-chart-center/interest-rates/pages/TextView.aspx?data=yieldYear&year=2019 # 1m, 2m, 3m, 6m, 1y, 2y, 3y, 5y, 7y, 10y, 20y, 30y # ============================================================================= # Define risk free rate according to US yieldCurveDict = { '2019-04-22': 2.49, '2019-05-22': 2.48, '2019-06-22': 2.46, '2019-09-22': 2.48, '2020-03-22': 2.45, '2021-03-22': 2.31, '2022-03-22': 2.24, '2024-03-22': 2.24, '2026-03-22': 2.34, '2029-03-22': 2.44, '2039-03-22': 2.69, '2049-03-22': 2.88 } # Derive forward rates from US treasury yield curve curvePoints = ['2019-03-22'] + list(yieldCurveDict.keys()) forwardCurveDict = {} for i in range(len(yieldCurveDict)): datePoint1 = curvePoints[i] datePoint2 = curvePoints[i + 1] if (datePoint1 == curvePoints[0]): forwardCurveDict[datePoint2] = yieldCurveDict[datePoint2] else: yieldAtDate1 = yieldCurveDict[datePoint1] yieldAtDate2 = yieldCurveDict[datePoint2] busDateDiff1 = np.busday_count(curvePoints[0], datePoint1) busDateDiff2 = np.busday_count(curvePoints[0], datePoint2) forwardCurveDict[datePoint2] = float((yieldAtDate2 * busDateDiff2 - yieldAtDate1 * busDateDiff1) / (busDateDiff2 - busDateDiff1)) # Function to get risk free rate given a date (datetime.date object) def getRiskFreeRate(inputDate): input_date = inputDate.date() for i in range(len(forwardCurveDict)): datePoint1 = datetime.strptime(curvePoints[i],'%Y-%m-%d').date() datePoint2 = datetime.strptime(curvePoints[i + 1],'%Y-%m-%d').date() if (input_date >= datePoint1 and input_date < datePoint2): return forwardCurveDict[curvePoints[i + 1]] return 0 for row in df_opt.index: # Retrieve the name of the underlying tmp_uly = df_opt['Underlying'][row][:-8] tmp_strike = df_opt['Strike'][row] tmp_maturity = df_opt['Maturity Date'][row] tmp_steps = df_opt['bdays'][row] if tmp_steps > bdays_year: tmp_steps = bdays_year tmp_init = uly_init[tmp_uly][0] tmp_time_period = 1 / bdays_year tmp_vol = df_uly_vol[tmp_uly] tmp_ir = get_interest_rate(tmp_steps) tmp_rates = [getRiskFreeRate(tmp_maturity - timedelta(d)) for d in range(tmp_steps)] tmp_call = df_opt['Call'][row] tmp_unit = df_units[tmp_uly][0] pricer = asianOptionBinomialTree(tmp_steps, tmp_vol, tmp_time_period, oneOverRho, tmp_rates) sim = pricer.getOptionPrice(tmp_init, tmp_strike * tmp_unit) print('undeylying: %s; bdays: %d, strile: %6.3f, init: %6.3f --> simulate: %6.3f; actual call: %6.3f' \ % (tmp_uly, tmp_steps, tmp_strike* tmp_unit, tmp_init, sim, tmp_call))
[ "pandas.DataFrame", "binomialTreePricer.asianOptionBinomialTree", "datetime.datetime.strptime", "datetime.timedelta", "numpy.busday_count" ]
[((555, 618), 'pandas.DataFrame', 'pd.DataFrame', (['[[0.3, 0.01, 0.4, 0.1, 0.001]]'], {'columns': 'uly_names'}), '([[0.3, 0.01, 0.4, 0.1, 0.001]], columns=uly_names)\n', (567, 618), True, 'import pandas as pd\n'), ((632, 697), 'pandas.DataFrame', 'pd.DataFrame', (['[[0.01, 0.0001, 1, 0.001, 0.01]]'], {'columns': 'uly_names'}), '([[0.01, 0.0001, 1, 0.001, 0.01]], columns=uly_names)\n', (644, 697), True, 'import pandas as pd\n'), ((3360, 3447), 'binomialTreePricer.asianOptionBinomialTree', 'asianOptionBinomialTree', (['tmp_steps', 'tmp_vol', 'tmp_time_period', 'oneOverRho', 'tmp_rates'], {}), '(tmp_steps, tmp_vol, tmp_time_period, oneOverRho,\n tmp_rates)\n', (3383, 3447), False, 'from binomialTreePricer import asianOptionBinomialTree\n'), ((2014, 2057), 'numpy.busday_count', 'np.busday_count', (['curvePoints[0]', 'datePoint1'], {}), '(curvePoints[0], datePoint1)\n', (2029, 2057), True, 'import numpy as np\n'), ((2081, 2124), 'numpy.busday_count', 'np.busday_count', (['curvePoints[0]', 'datePoint2'], {}), '(curvePoints[0], datePoint2)\n', (2096, 2124), True, 'import numpy as np\n'), ((2463, 2508), 'datetime.datetime.strptime', 'datetime.strptime', (['curvePoints[i]', '"""%Y-%m-%d"""'], {}), "(curvePoints[i], '%Y-%m-%d')\n", (2480, 2508), False, 'from datetime import datetime, timedelta\n'), ((2536, 2585), 'datetime.datetime.strptime', 'datetime.strptime', (['curvePoints[i + 1]', '"""%Y-%m-%d"""'], {}), "(curvePoints[i + 1], '%Y-%m-%d')\n", (2553, 2585), False, 'from datetime import datetime, timedelta\n'), ((3225, 3237), 'datetime.timedelta', 'timedelta', (['d'], {}), '(d)\n', (3234, 3237), False, 'from datetime import datetime, timedelta\n')]
import numpy as np import pytest import xarray as xr from pyomeca import Analogs, Markers, Angles, Rototrans from ._constants import ANALOGS_DATA, MARKERS_DATA, EXPECTED_VALUES from .utils import is_expected_array def test_analogs_creation(): dims = ("channel", "time") array = Analogs() np.testing.assert_array_equal(x=array, y=xr.DataArray()) assert array.dims == dims array = Analogs(ANALOGS_DATA.values) is_expected_array(array, **EXPECTED_VALUES[56]) size = 10, 100 array = Analogs.from_random_data(size=size) assert array.shape == size assert array.dims == dims with pytest.raises(ValueError): Analogs(MARKERS_DATA) def test_markers_creation(): dims = ("axis", "channel", "time") array = Markers() np.testing.assert_array_equal(x=array, y=xr.DataArray()) assert array.dims == dims array = Markers(MARKERS_DATA.values) is_expected_array(array, **EXPECTED_VALUES[57]) size = 3, 10, 100 array = Markers.from_random_data(size=size) assert array.shape == (4, size[1], size[2]) assert array.dims == dims with pytest.raises(ValueError): Markers(ANALOGS_DATA) def test_angles_creation(): dims = ("axis", "channel", "time") array = Angles() np.testing.assert_array_equal(x=array, y=xr.DataArray()) assert array.dims == dims array = Angles(MARKERS_DATA.values, time=MARKERS_DATA.time) is_expected_array(array, **EXPECTED_VALUES[57]) size = 10, 10, 100 array = Angles.from_random_data(size=size) assert array.shape == size assert array.dims == dims with pytest.raises(ValueError): Angles(ANALOGS_DATA) def test_rototrans_creation(): dims = ("row", "col", "time") array = Rototrans() np.testing.assert_array_equal(x=array, y=xr.DataArray(np.eye(4)[..., np.newaxis])) assert array.dims == dims array = Rototrans(MARKERS_DATA.values, time=MARKERS_DATA.time) is_expected_array(array, **EXPECTED_VALUES[67]) size = 4, 4, 100 array = Rototrans.from_random_data(size=size) assert array.shape == size assert array.dims == dims with pytest.raises(ValueError): Angles(ANALOGS_DATA)
[ "pyomeca.Markers.from_random_data", "pyomeca.Markers", "pyomeca.Rototrans", "pyomeca.Angles", "pyomeca.Rototrans.from_random_data", "pytest.raises", "pyomeca.Angles.from_random_data", "xarray.DataArray", "numpy.eye", "pyomeca.Analogs.from_random_data", "pyomeca.Analogs" ]
[((289, 298), 'pyomeca.Analogs', 'Analogs', ([], {}), '()\n', (296, 298), False, 'from pyomeca import Analogs, Markers, Angles, Rototrans\n'), ((403, 431), 'pyomeca.Analogs', 'Analogs', (['ANALOGS_DATA.values'], {}), '(ANALOGS_DATA.values)\n', (410, 431), False, 'from pyomeca import Analogs, Markers, Angles, Rototrans\n'), ((516, 551), 'pyomeca.Analogs.from_random_data', 'Analogs.from_random_data', ([], {'size': 'size'}), '(size=size)\n', (540, 551), False, 'from pyomeca import Analogs, Markers, Angles, Rototrans\n'), ((762, 771), 'pyomeca.Markers', 'Markers', ([], {}), '()\n', (769, 771), False, 'from pyomeca import Analogs, Markers, Angles, Rototrans\n'), ((876, 904), 'pyomeca.Markers', 'Markers', (['MARKERS_DATA.values'], {}), '(MARKERS_DATA.values)\n', (883, 904), False, 'from pyomeca import Analogs, Markers, Angles, Rototrans\n'), ((992, 1027), 'pyomeca.Markers.from_random_data', 'Markers.from_random_data', ([], {'size': 'size'}), '(size=size)\n', (1016, 1027), False, 'from pyomeca import Analogs, Markers, Angles, Rototrans\n'), ((1254, 1262), 'pyomeca.Angles', 'Angles', ([], {}), '()\n', (1260, 1262), False, 'from pyomeca import Analogs, Markers, Angles, Rototrans\n'), ((1367, 1418), 'pyomeca.Angles', 'Angles', (['MARKERS_DATA.values'], {'time': 'MARKERS_DATA.time'}), '(MARKERS_DATA.values, time=MARKERS_DATA.time)\n', (1373, 1418), False, 'from pyomeca import Analogs, Markers, Angles, Rototrans\n'), ((1507, 1541), 'pyomeca.Angles.from_random_data', 'Angles.from_random_data', ([], {'size': 'size'}), '(size=size)\n', (1530, 1541), False, 'from pyomeca import Analogs, Markers, Angles, Rototrans\n'), ((1748, 1759), 'pyomeca.Rototrans', 'Rototrans', ([], {}), '()\n', (1757, 1759), False, 'from pyomeca import Analogs, Markers, Angles, Rototrans\n'), ((1890, 1944), 'pyomeca.Rototrans', 'Rototrans', (['MARKERS_DATA.values'], {'time': 'MARKERS_DATA.time'}), '(MARKERS_DATA.values, time=MARKERS_DATA.time)\n', (1899, 1944), False, 'from pyomeca import Analogs, Markers, Angles, Rototrans\n'), ((2031, 2068), 'pyomeca.Rototrans.from_random_data', 'Rototrans.from_random_data', ([], {'size': 'size'}), '(size=size)\n', (2057, 2068), False, 'from pyomeca import Analogs, Markers, Angles, Rototrans\n'), ((623, 648), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (636, 648), False, 'import pytest\n'), ((658, 679), 'pyomeca.Analogs', 'Analogs', (['MARKERS_DATA'], {}), '(MARKERS_DATA)\n', (665, 679), False, 'from pyomeca import Analogs, Markers, Angles, Rototrans\n'), ((1116, 1141), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (1129, 1141), False, 'import pytest\n'), ((1151, 1172), 'pyomeca.Markers', 'Markers', (['ANALOGS_DATA'], {}), '(ANALOGS_DATA)\n', (1158, 1172), False, 'from pyomeca import Analogs, Markers, Angles, Rototrans\n'), ((1613, 1638), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (1626, 1638), False, 'import pytest\n'), ((1648, 1668), 'pyomeca.Angles', 'Angles', (['ANALOGS_DATA'], {}), '(ANALOGS_DATA)\n', (1654, 1668), False, 'from pyomeca import Analogs, Markers, Angles, Rototrans\n'), ((2140, 2165), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (2153, 2165), False, 'import pytest\n'), ((2175, 2195), 'pyomeca.Angles', 'Angles', (['ANALOGS_DATA'], {}), '(ANALOGS_DATA)\n', (2181, 2195), False, 'from pyomeca import Analogs, Markers, Angles, Rototrans\n'), ((344, 358), 'xarray.DataArray', 'xr.DataArray', ([], {}), '()\n', (356, 358), True, 'import xarray as xr\n'), ((817, 831), 'xarray.DataArray', 'xr.DataArray', ([], {}), '()\n', (829, 831), True, 'import xarray as xr\n'), ((1308, 1322), 'xarray.DataArray', 'xr.DataArray', ([], {}), '()\n', (1320, 1322), True, 'import xarray as xr\n'), ((1818, 1827), 'numpy.eye', 'np.eye', (['(4)'], {}), '(4)\n', (1824, 1827), True, 'import numpy as np\n')]
import cv2 as cv import numpy as np class FaceMaskAppEngine: """ Perform detector which detects faces from input video, and classifier to classify croped faces to face or mask class :param config: Is a Config instance which provides necessary parameters. """ def __init__(self, config): self.config = config self.detector = None self.classifier_model = None self.running_video = False self.device = self.config.DEVICE if self.device == "x86": from libs.detectors.x86.detector import Detector from libs.classifiers.x86.classifier import Classifier self.detector = Detector(self.config) self.classifier_model = Classifier(self.config) elif self.device == "EdgeTPU": from libs.detectors.edgetpu.detector import Detector from libs.classifiers.edgetpu.classifier import Classifier self.detector = Detector(self.config) self.classifier_model = Classifier(self.config) else: raise ValueError('Not supported device named: ', self.device) self.image_size = (self.config.DETECTOR_INPUT_SIZE[0], self.config.DETECTOR_INPUT_SIZE[1], 3) self.classifier_img_size = (self.config.CLASSIFIER_INPUT_SIZE, self.config.CLASSIFIER_INPUT_SIZE, 3) def set_ui(self, ui): self.ui = ui def __process(self, cv_image): # Resize input image to resolution self.resolution = self.config.APP_VIDEO_RESOLUTION cv_image = cv.resize(cv_image, tuple(self.resolution)) resized_image = cv.resize(cv_image, tuple(self.image_size[:2])) rgb_resized_image = cv.cvtColor(resized_image, cv.COLOR_BGR2RGB) objects_list = self.detector.inference(rgb_resized_image) [w, h] = self.resolution #objects_list = [{'id': '1-0', 'bbox': [.1, .2, .5, .5]}, {'id': '1-1', 'bbox': [.3, .1, .5, .5]}] faces = [] for obj in objects_list: if 'bbox' in obj.keys(): face_bbox = obj['bbox'] # [ymin, xmin, ymax, xmax] xmin, xmax = np.multiply([face_bbox[1], face_bbox[3]], self.resolution[0]) ymin, ymax = np.multiply([face_bbox[0], face_bbox[2]], self.resolution[1]) croped_face = cv_image[int(ymin):int(ymin) + (int(ymax) - int(ymin)), int(xmin):int(xmin) + (int(xmax) - int(xmin))] # Resizing input image croped_face = cv.resize(croped_face, tuple(self.classifier_img_size[:2])) croped_face = cv.cvtColor(croped_face, cv.COLOR_BGR2RGB) # Normalizing input image to [0.0-1.0] croped_face = croped_face / 255.0 faces.append(croped_face) faces = np.array(faces) face_mask_results, scores = self.classifier_model.inference(faces) # TODO: it could be optimized by the returned dictionary from openpifpaf (returining List instead dict) [w, h] = self.resolution idx = 0 for obj in objects_list: if 'bbox' in obj.keys(): obj['face_label'] = face_mask_results[idx] obj['score'] = scores[idx] idx = idx + 1 box = obj["bbox"] x0 = box[1] y0 = box[0] x1 = box[3] y1 = box[2] obj["bbox"] = [x0, y0, x1, y1] return cv_image, objects_list def process_video(self, video_uri): input_cap = cv.VideoCapture(video_uri) if (input_cap.isOpened()): print('opened video ', video_uri) else: print('failed to load video ', video_uri) return self.running_video = True while input_cap.isOpened() and self.running_video: _, cv_image = input_cap.read() if np.shape(cv_image) != (): cv_image, objects = self.__process(cv_image) else: continue self.ui.update(cv_image, objects) input_cap.release() self.running_video = False # def process_image(self, image_path): # # Process and pass the image to ui modules # cv_image = cv.imread(image_path) # cv_image, objects, distancings = self.__process(cv_image) # self.ui.update(cv_image, objects, distancings)
[ "numpy.multiply", "libs.classifiers.edgetpu.classifier.Classifier", "cv2.cvtColor", "cv2.VideoCapture", "numpy.shape", "numpy.array", "libs.detectors.edgetpu.detector.Detector" ]
[((1691, 1735), 'cv2.cvtColor', 'cv.cvtColor', (['resized_image', 'cv.COLOR_BGR2RGB'], {}), '(resized_image, cv.COLOR_BGR2RGB)\n', (1702, 1735), True, 'import cv2 as cv\n'), ((2826, 2841), 'numpy.array', 'np.array', (['faces'], {}), '(faces)\n', (2834, 2841), True, 'import numpy as np\n'), ((3585, 3611), 'cv2.VideoCapture', 'cv.VideoCapture', (['video_uri'], {}), '(video_uri)\n', (3600, 3611), True, 'import cv2 as cv\n'), ((674, 695), 'libs.detectors.edgetpu.detector.Detector', 'Detector', (['self.config'], {}), '(self.config)\n', (682, 695), False, 'from libs.detectors.edgetpu.detector import Detector\n'), ((732, 755), 'libs.classifiers.edgetpu.classifier.Classifier', 'Classifier', (['self.config'], {}), '(self.config)\n', (742, 755), False, 'from libs.classifiers.edgetpu.classifier import Classifier\n'), ((959, 980), 'libs.detectors.edgetpu.detector.Detector', 'Detector', (['self.config'], {}), '(self.config)\n', (967, 980), False, 'from libs.detectors.edgetpu.detector import Detector\n'), ((1017, 1040), 'libs.classifiers.edgetpu.classifier.Classifier', 'Classifier', (['self.config'], {}), '(self.config)\n', (1027, 1040), False, 'from libs.classifiers.edgetpu.classifier import Classifier\n'), ((2128, 2189), 'numpy.multiply', 'np.multiply', (['[face_bbox[1], face_bbox[3]]', 'self.resolution[0]'], {}), '([face_bbox[1], face_bbox[3]], self.resolution[0])\n', (2139, 2189), True, 'import numpy as np\n'), ((2219, 2280), 'numpy.multiply', 'np.multiply', (['[face_bbox[0], face_bbox[2]]', 'self.resolution[1]'], {}), '([face_bbox[0], face_bbox[2]], self.resolution[1])\n', (2230, 2280), True, 'import numpy as np\n'), ((2611, 2653), 'cv2.cvtColor', 'cv.cvtColor', (['croped_face', 'cv.COLOR_BGR2RGB'], {}), '(croped_face, cv.COLOR_BGR2RGB)\n', (2622, 2653), True, 'import cv2 as cv\n'), ((3933, 3951), 'numpy.shape', 'np.shape', (['cv_image'], {}), '(cv_image)\n', (3941, 3951), True, 'import numpy as np\n')]
#!/usr/bin/env python # Copyright 2014-2018 The PySCF Developers. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: <NAME> # from .util import meta, MetaArray, ltri_ix, p from pyscf.lib.diis import DIIS from pyscf.lib.linalg_helper import davidson_nosym1 as davidson from pyscf.cc.uccsd_slow import _PhysicistsERIs as ERIS_uccsd_slow from pyscf.cc.gccsd import _PhysicistsERIs as ERIS_gccsd import numpy import inspect from numbers import Number from collections import OrderedDict from warnings import warn import string def res2amps(residuals, e_occ, e_vir, constant=None): """ Converts residuals into amplitudes update. Args: residuals (iterable): a list of residuals; e_occ (array): occupied energies; e_vir (array): virtual energies; virtual spaces; constant (float): a constant in the denominator; Returns: A list of updates to amplitudes. """ result = [] for res in residuals: if isinstance(res, Number) and res == 0: result.append(0) elif isinstance(res, MetaArray): diagonal = numpy.zeros_like(res) ix = [numpy.newaxis] * len(diagonal.shape) if "labels" not in res.metadata: raise ValueError("Missing metadata: axes labels") for j, s in enumerate(res.metadata["labels"]): ix[j] = slice(None) if s == 'o': diagonal += e_occ[tuple(ix)] elif s == 'v': diagonal -= e_vir[tuple(ix)] else: raise ValueError("Unknown spec '{}' in {}".format(s, residuals.metadata["labels"])) ix[j] = numpy.newaxis if constant is not None: result.append(res / (constant + diagonal)) else: result.append(res / diagonal) else: raise ValueError("Unsupported type: {}".format(type(res))) return result def a2v(amplitudes): """List of amplitudes into a single array.""" result = [] for v in amplitudes: result.append(numpy.reshape(v, -1)) return numpy.concatenate(result) def v2a(vec, like): """Array into a list amplitudes.""" result = [] offset = 0 for v in like: s = v.size result.append(numpy.reshape(vec[offset:offset+s], v.shape)) if isinstance(v, MetaArray): result[-1] = MetaArray(result[-1], **v.metadata) offset += s return result def eris_hamiltonian(eris): """ Retrieves Hamiltonian matrix elements from pyscf ERIS. Args: eris (pyscf.cc.ccsd.ERIS): pyscf ERIS; Returns: A dict with Hamiltonian matrix elements. """ # TODO: decide on adding '**ov', 'vo**' nocc = eris.oooo.shape[0] if isinstance(eris, ERIS_uccsd_slow): def chess(a): ix = [] for d in a.shape: ix.append(numpy.dstack(( numpy.arange(d // 2), numpy.arange(d // 2, d), )).reshape(-1)) return a[numpy.ix_(*ix)] return {k: chess(v) for k, v in dict( ov=eris.fock[:nocc, nocc:], vo=eris.fock[nocc:, :nocc], oo=eris.fock[:nocc, :nocc], vv=eris.fock[nocc:, nocc:], oooo=eris.oooo, oovo=-numpy.transpose(eris.ooov, (0, 1, 3, 2)), oovv=eris.oovv, ovoo=eris.ovoo, ovvo=-numpy.transpose(eris.ovov, (0, 1, 3, 2)), ovvv=eris.ovvv, vvoo=numpy.transpose(eris.oovv, (2, 3, 0, 1)), vvvo=-numpy.transpose(eris.ovvv, (2, 3, 1, 0)), vvvv=eris.vvvv, ).items()} elif isinstance(eris, ERIS_gccsd): return dict( ov=eris.fock[:nocc, nocc:], #OK vo=eris.fock[nocc:, :nocc], #OK oo=eris.fock[:nocc, :nocc], #OK vv=eris.fock[nocc:, nocc:], #OK oooo=eris.oooo, #OK oovo=-numpy.transpose(eris.ooov, (0, 1, 3, 2)), #OK oovv=eris.oovv, # ovoo=eris.ovoo, ovoo=numpy.transpose(eris.ooov, (2, 3, 0, 1)), #OK # ovvo=-numpy.transpose(eris.ovov, (0, 1, 3, 2)), ovvo=eris.ovvo, ovvv=eris.ovvv, vvoo=numpy.transpose(eris.oovv, (2, 3, 0, 1)), vvvo=-numpy.transpose(eris.ovvv, (2, 3, 1, 0)), vvvv=eris.vvvv, ) else: raise ValueError("Unknown object: {}".format(eris)) def oneshot(equations, *args): """ A one-shot calculation. Args: equations (callable): coupled-cluster equations; args (iterable): amplitudes and hamiltonian matrix elements as dicts; Returns: Results of the calculation. """ input_args = inspect.getargspec(equations).args fw_args = {} for i in args: fw_args.update(i) # Remove excess arguments from the Hamiltonian fw_args = {k: v for k, v in fw_args.items() if k in input_args} # Check missing arguments missing = set(input_args) - set(fw_args.keys()) if len(missing) > 0: raise ValueError("Following arguments are missing: {}".format(', '.join(missing))) return equations(**fw_args) def kernel_solve(hamiltonian, equations, initial_guess, tolerance=1e-9, debug=False, diis=True, equation_energy=None, dim_spec=None, maxiter=50): """ Coupled-cluster solver (linear systems). Args: hamiltonian (dict): hamiltonian matrix elements or pyscf ERIS; equations (callable): coupled-cluster equations; initial_guess (OrderedDict): starting amplitudes; tolerance (float): convergence criterion; debug (bool): prints iterations if True; diis (bool, DIIS): converger for iterations; equation_energy (callable): energy equation; dim_spec (iterable): if `initial_guess` is a dict, this parameter defines shapes of arrays in 'ov' notation (list of strings); maxiter (int): maximal number of iterations; Returns: Resulting coupled-cluster amplitudes and energy if specified. """ # Convert ERIS to hamiltonian dict if needed if not isinstance(hamiltonian, dict): hamiltonian = eris_hamiltonian(hamiltonian) if isinstance(initial_guess, (tuple, list)): initial_guess = OrderedDict((k, 0) for k in initial_guess) if dim_spec is None: raise ValueError("dim_spec is not specified") elif isinstance(initial_guess, OrderedDict): if dim_spec is None and any(not isinstance(i, MetaArray) for i in initial_guess.values()): raise ValueError("One or more of initial_guess values is not a MetaArray. Either specify dim_spec or use " "MetaArrays to provide dimensions' labels in the 'ov' notation") dim_spec = tuple(i.metadata["labels"] for i in initial_guess.values()) else: raise ValueError("OrderedDict expected for 'initial_guess'") tol = None e_occ = numpy.diag(hamiltonian["oo"]) e_vir = numpy.diag(hamiltonian["vv"]) if diis is True: diis = DIIS() while tol is None or tol > tolerance and maxiter > 0: output = oneshot(equations, hamiltonian, initial_guess) if not isinstance(output, tuple): output = (output,) output = tuple(MetaArray(i, labels=j) if isinstance(i, numpy.ndarray) else i for i, j in zip(output, dim_spec)) dt = res2amps(output, e_occ, e_vir) tol = max(numpy.linalg.norm(i) for i in dt) for k, delta in zip(initial_guess, dt): initial_guess[k] = initial_guess[k] + delta if diis and not any(isinstance(i, Number) for i in initial_guess.values()): v = a2v(initial_guess.values()) initial_guess = OrderedDict(zip( initial_guess.keys(), v2a(diis.update(v), initial_guess.values()) )) maxiter -= 1 if debug: if equation_energy is not None: e = oneshot(equation_energy, hamiltonian, initial_guess) print("E = {:.10f} delta={:.3e}".format(e, tol)) else: print("delta={:.3e}".format(tol)) if equation_energy is not None: return initial_guess, oneshot(equation_energy, hamiltonian, initial_guess) else: return initial_guess def koopmans_guess_ip(nocc, nvir, amplitudes, n, **kwargs): """ Koopman's guess for IP-EOM-CC amplitudes. Args: nocc (int): occupied space size; nvir (int): virtual space size; amplitudes (OrderedDict): an ordered dict with variable name-variable order pairs; n (int): the root number; kwargs: keyword arguments to `numpy.zeros`. Returns: An ordered dict with variable name-initial guess pairs. """ result = OrderedDict() valid = False for k, v in amplitudes.items(): result[k] = meta(numpy.zeros((nocc,) * v + (nvir,) * (v-1), **kwargs), labels='o' * v + 'v' * (v-1)) if v == 1: if valid: raise ValueError("Several first-order amplitudes encountered: {}".format(amplitudes)) else: result[k][-n-1] = 1 valid = True if not valid: raise ValueError("No first-order amplitudes found: {}".format(amplitudes)) return result def koopmans_guess_ea(nocc, nvir, amplitudes, n, **kwargs): """ Koopman's guess for EA-EOM-CC amplitudes. Args: nocc (int): occupied space size; nvir (int): virtual space size; amplitudes (OrderedDict): an ordered dict with variable name-variable order pairs; n (int): the root number; kwargs: keyword arguments to `numpy.zeros`. Returns: An ordered dict with variable name-initial guess pairs. """ result = OrderedDict() valid = False for k, v in amplitudes.items(): result[k] = meta(numpy.zeros((nocc,) * (v-1) + (nvir,) * v, **kwargs), labels='o' * (v-1) + 'v' * v) if v == 1: if valid: raise ValueError("Several first-order amplitudes encountered: {}".format(amplitudes)) else: result[k][n] = 1 valid = True if not valid: raise ValueError("No first-order amplitudes found: {}".format(amplitudes)) return result def ltri_ix_amplitudes(a): """ Collects lower-triangular indexes of antisymetric amplitudes. Args: a (MetaArray): amplitudes to process; Returns: Lower-triangular indexes. """ if not isinstance(a, MetaArray) or "labels" not in a.metadata: raise ValueError("Labels metadata is missing") labels = a.metadata["labels"] if len(labels) != len(a.shape): raise ValueError("The length of 'labels' spec does not match the tensor rank") dim_sizes = OrderedDict() for label_i, label in enumerate(labels): dim_size = a.shape[label_i] if label in dim_sizes: if dim_sizes[label] != dim_size: raise ValueError("Dimensions of the same type '{}' do not match: {:d} vs {:d} in {}".format( label, dim_sizes[label], dim_size, repr(a.shape), )) else: dim_sizes[label] = dim_size ix = OrderedDict() ix_size = [] for label, dim_size in dim_sizes.items(): indexes = ltri_ix(dim_size, labels.count(label)) ix[label] = iter(indexes) ix_size.append(len(indexes[0])) # Label order label_order = ''.join(ix.keys()) result = [] for label in labels: x = next(ix[label]) pos = label_order.index(label) bf = numpy.prod([1] + ix_size[:pos]) ft = numpy.prod([1] + ix_size[pos+1:]) x = numpy.tile(numpy.repeat(x, ft), bf) result.append(x) return tuple(result) def a2v_sym(amplitudes, ixs): """ Symmetric amplitudes into vector. Args: amplitudes (iterable): amplitudes to join; ixs (iterable): indexes of lower-triangle parts; Returns: A numpy array with amplitudes joined. """ return a2v(a[i] for a, i in zip(amplitudes, ixs)) def v2a_sym(a, labels, shapes, ixs): """ Decompresses the antisymmetric array. Args: a (numpy.ndarray): array to decompress; labels (iterable): array's axes' labels; shapes (iterable): arrays' shapes; ixs (iterable): indexes of lower-triangle parts; Returns: Decompressed amplitude tensors. """ result = [] pos = 0 for lbls, shape, ix in zip(labels, shapes, ixs): ampl = numpy.zeros(shape, dtype=a.dtype) end = pos + len(ix[0]) ampl[ix] = a[pos:end] pos = end for l in set(lbls): letters = iter(string.ascii_lowercase) str_spec = ''.join(next(letters) if i == l else '.' for i in lbls) ampl = p(str_spec, ampl) result.append(ampl) return result def kernel_eig(hamiltonian, equations, amplitudes, tolerance=1e-9): """ Coupled-cluster solver (eigenvalue problem). Args: hamiltonian (dict): hamiltonian matrix elements or pyscf ERIS; equations (callable): coupled-cluster equations; amplitudes (iterable): starting amplitudes (a list of OrderedDicts); tolerance (float): convergence criterion; Returns: Resulting coupled-cluster amplitudes and energy if specified. """ # Convert ERIS to hamiltonian dict if needed if not isinstance(hamiltonian, dict): hamiltonian = eris_hamiltonian(hamiltonian) # Preconditioning e_occ = numpy.diag(hamiltonian["oo"]) e_vir = numpy.diag(hamiltonian["vv"]) # Antisymmetry data sample = amplitudes[0].values() labels = list(i.metadata["labels"] for i in sample) ixs = list(ltri_ix_amplitudes(i) for i in sample) shapes = list(i.shape for i in sample) def matvec(vec): result = [] for i in vec: a = v2a_sym(i, labels, shapes, ixs) a = OrderedDict(zip(amplitudes[0].keys(), a)) r = oneshot(equations, hamiltonian, a) result.append(a2v_sym(r, ixs)) return result def precond(res, e0, x0): a = v2a_sym(res, labels, shapes, ixs) a = list(MetaArray(i, **j.metadata) for i, j in zip(a, amplitudes[0].values())) a = res2amps(a, e_occ, e_vir, constant=e0) return a2v_sym(a, ixs) amplitudes_plain = tuple(a2v_sym(i.values(), ixs) for i in amplitudes) conv, values, vectors = davidson(matvec, amplitudes_plain, precond, tol=tolerance, nroots=len(amplitudes)) if any(not i for i in conv): warn("Following eigenvalues did not converge: {}".format(list( i for i, x in enumerate(conv) if not x ))) return values, list(v2a_sym(i, labels, shapes, ixs) for i in vectors)
[ "numpy.zeros_like", "numpy.ix_", "pyscf.lib.diis.DIIS", "numpy.zeros", "numpy.transpose", "numpy.prod", "inspect.getargspec", "numpy.reshape", "numpy.linalg.norm", "numpy.arange", "collections.OrderedDict", "numpy.diag", "numpy.concatenate", "numpy.repeat" ]
[((2682, 2707), 'numpy.concatenate', 'numpy.concatenate', (['result'], {}), '(result)\n', (2699, 2707), False, 'import numpy\n'), ((7597, 7626), 'numpy.diag', 'numpy.diag', (["hamiltonian['oo']"], {}), "(hamiltonian['oo'])\n", (7607, 7626), False, 'import numpy\n'), ((7639, 7668), 'numpy.diag', 'numpy.diag', (["hamiltonian['vv']"], {}), "(hamiltonian['vv'])\n", (7649, 7668), False, 'import numpy\n'), ((9450, 9463), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (9461, 9463), False, 'from collections import OrderedDict\n'), ((10455, 10468), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (10466, 10468), False, 'from collections import OrderedDict\n'), ((11486, 11499), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (11497, 11499), False, 'from collections import OrderedDict\n'), ((11979, 11992), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (11990, 11992), False, 'from collections import OrderedDict\n'), ((14330, 14359), 'numpy.diag', 'numpy.diag', (["hamiltonian['oo']"], {}), "(hamiltonian['oo'])\n", (14340, 14359), False, 'import numpy\n'), ((14372, 14401), 'numpy.diag', 'numpy.diag', (["hamiltonian['vv']"], {}), "(hamiltonian['vv'])\n", (14382, 14401), False, 'import numpy\n'), ((5346, 5375), 'inspect.getargspec', 'inspect.getargspec', (['equations'], {}), '(equations)\n', (5364, 5375), False, 'import inspect\n'), ((6916, 6958), 'collections.OrderedDict', 'OrderedDict', (['((k, 0) for k in initial_guess)'], {}), '((k, 0) for k in initial_guess)\n', (6927, 6958), False, 'from collections import OrderedDict\n'), ((7706, 7712), 'pyscf.lib.diis.DIIS', 'DIIS', ([], {}), '()\n', (7710, 7712), False, 'from pyscf.lib.diis import DIIS\n'), ((12365, 12396), 'numpy.prod', 'numpy.prod', (['([1] + ix_size[:pos])'], {}), '([1] + ix_size[:pos])\n', (12375, 12396), False, 'import numpy\n'), ((12410, 12445), 'numpy.prod', 'numpy.prod', (['([1] + ix_size[pos + 1:])'], {}), '([1] + ix_size[pos + 1:])\n', (12420, 12445), False, 'import numpy\n'), ((13314, 13347), 'numpy.zeros', 'numpy.zeros', (['shape'], {'dtype': 'a.dtype'}), '(shape, dtype=a.dtype)\n', (13325, 13347), False, 'import numpy\n'), ((2649, 2669), 'numpy.reshape', 'numpy.reshape', (['v', '(-1)'], {}), '(v, -1)\n', (2662, 2669), False, 'import numpy\n'), ((2861, 2907), 'numpy.reshape', 'numpy.reshape', (['vec[offset:offset + s]', 'v.shape'], {}), '(vec[offset:offset + s], v.shape)\n', (2874, 2907), False, 'import numpy\n'), ((9543, 9597), 'numpy.zeros', 'numpy.zeros', (['((nocc,) * v + (nvir,) * (v - 1))'], {}), '((nocc,) * v + (nvir,) * (v - 1), **kwargs)\n', (9554, 9597), False, 'import numpy\n'), ((10548, 10602), 'numpy.zeros', 'numpy.zeros', (['((nocc,) * (v - 1) + (nvir,) * v)'], {}), '((nocc,) * (v - 1) + (nvir,) * v, **kwargs)\n', (10559, 10602), False, 'import numpy\n'), ((12467, 12486), 'numpy.repeat', 'numpy.repeat', (['x', 'ft'], {}), '(x, ft)\n', (12479, 12486), False, 'import numpy\n'), ((1639, 1660), 'numpy.zeros_like', 'numpy.zeros_like', (['res'], {}), '(res)\n', (1655, 1660), False, 'import numpy\n'), ((3637, 3651), 'numpy.ix_', 'numpy.ix_', (['*ix'], {}), '(*ix)\n', (3646, 3651), False, 'import numpy\n'), ((8091, 8111), 'numpy.linalg.norm', 'numpy.linalg.norm', (['i'], {}), '(i)\n', (8108, 8111), False, 'import numpy\n'), ((4665, 4705), 'numpy.transpose', 'numpy.transpose', (['eris.ooov', '(2, 3, 0, 1)'], {}), '(eris.ooov, (2, 3, 0, 1))\n', (4680, 4705), False, 'import numpy\n'), ((4846, 4886), 'numpy.transpose', 'numpy.transpose', (['eris.oovv', '(2, 3, 0, 1)'], {}), '(eris.oovv, (2, 3, 0, 1))\n', (4861, 4886), False, 'import numpy\n'), ((4544, 4584), 'numpy.transpose', 'numpy.transpose', (['eris.ooov', '(0, 1, 3, 2)'], {}), '(eris.ooov, (0, 1, 3, 2))\n', (4559, 4584), False, 'import numpy\n'), ((4906, 4946), 'numpy.transpose', 'numpy.transpose', (['eris.ovvv', '(2, 3, 1, 0)'], {}), '(eris.ovvv, (2, 3, 1, 0))\n', (4921, 4946), False, 'import numpy\n'), ((4108, 4148), 'numpy.transpose', 'numpy.transpose', (['eris.oovv', '(2, 3, 0, 1)'], {}), '(eris.oovv, (2, 3, 0, 1))\n', (4123, 4148), False, 'import numpy\n'), ((3517, 3537), 'numpy.arange', 'numpy.arange', (['(d // 2)'], {}), '(d // 2)\n', (3529, 3537), False, 'import numpy\n'), ((3559, 3582), 'numpy.arange', 'numpy.arange', (['(d // 2)', 'd'], {}), '(d // 2, d)\n', (3571, 3582), False, 'import numpy\n'), ((3905, 3945), 'numpy.transpose', 'numpy.transpose', (['eris.ooov', '(0, 1, 3, 2)'], {}), '(eris.ooov, (0, 1, 3, 2))\n', (3920, 3945), False, 'import numpy\n'), ((4021, 4061), 'numpy.transpose', 'numpy.transpose', (['eris.ovov', '(0, 1, 3, 2)'], {}), '(eris.ovov, (0, 1, 3, 2))\n', (4036, 4061), False, 'import numpy\n'), ((4168, 4208), 'numpy.transpose', 'numpy.transpose', (['eris.ovvv', '(2, 3, 1, 0)'], {}), '(eris.ovvv, (2, 3, 1, 0))\n', (4183, 4208), False, 'import numpy\n')]
from collections import OrderedDict import os.path as osp import matplotlib.pyplot as plt import numpy as np from rlkit.torch.networks import ConcatMlp from rlkit.torch.sets import set_vae_trainer as svt from rlkit.torch.sets import models from rlkit.torch.sets.discriminator import ( DiscriminatorDataset, DiscriminatorTrainer, ) from rlkit.torch.sets.set_vae_trainer import PriorModel, CustomDictLoader from rlkit.torch.sets.batch_algorithm import ( BatchTorchAlgorithm, ) from rlkit.torch.sets.parallel_algorithms import ParallelAlgorithms from torch.utils import data from rlkit.torch import pytorch_util as ptu from rlkit.torch.vae.vae_torch_trainer import VAE def create_circle_dataset(num_examples, radius=3, scale=0.5, origin=(0, 0)): angle = np.random.uniform(size=(num_examples, 1)) * 2 * np.pi r = scale * np.random.randn(num_examples, 1) + radius y = r * np.sin(angle) + origin[1] x = r * np.cos(angle) + origin[0] return np.concatenate([x, y], axis=1) def create_box_dataset(num_examples, xlim, ylim): x = np.random.uniform(xlim[0], xlim[1], size=(num_examples, 1)) y = np.random.uniform(ylim[0], ylim[1], size=(num_examples, 1)) return np.concatenate([x, y], axis=1) def create_datasets(create_set_kwargs_list=None): if create_set_kwargs_list is None: create_set_kwargs_list = [ dict(num_examples=128, version='circle'), dict(num_examples=128, version='box', xlim=(0, 2), ylim=(0, 2)), dict(num_examples=128, version='box', xlim=(-2, 0), ylim=(-2, 0)), dict(num_examples=128, version='box', xlim=(0, 2), ylim=(-2, 0)), dict(num_examples=128, version='box', xlim=(-2, 2), ylim=(0, 2)), ] return np.array([ create_set(**kwargs) for kwargs in create_set_kwargs_list ]) def create_set(version, **kwargs): if version == 'circle': return create_circle_dataset(**kwargs) elif version == 'box': return create_box_dataset(**kwargs) else: raise NotImplementedError() def setup_discriminator( vae: VAE, examples, prior, discriminator_kwargs=None, dataset_kwargs=None, trainer_kwargs=None, algo_kwargs=None, name='', ): if discriminator_kwargs is None: discriminator_kwargs = {} if dataset_kwargs is None: dataset_kwargs = {} if trainer_kwargs is None: trainer_kwargs = {} if algo_kwargs is None: algo_kwargs = {} discriminator = ConcatMlp( input_size=vae.representation_size, output_size=1, **discriminator_kwargs ) discriminator_data_loader = DiscriminatorDataset( vae, examples, prior, **dataset_kwargs) discriminator_trainer = DiscriminatorTrainer( discriminator, prior, name=name, **trainer_kwargs, ) discriminator_algo = BatchTorchAlgorithm( discriminator_trainer, discriminator_data_loader, **algo_kwargs ) return discriminator_algo, discriminator, prior def train_2d_set_vae( create_set_vae_kwargs, vae_trainer_kwargs, vae_algo_kwargs, debug_kwargs, num_iters, x_depends_on_c=False, vae_data_loader_kwargs=None, create_train_dataset_kwargs=None, create_eval_dataset_kwargs=None, setup_discriminator_kwargs=None, set_dict_loader_kwargs=None, ): if set_dict_loader_kwargs is None: set_dict_loader_kwargs = {} if vae_data_loader_kwargs is None: vae_data_loader_kwargs = {} if setup_discriminator_kwargs is None: setup_discriminator_kwargs = {} if create_eval_dataset_kwargs is None: create_eval_dataset_kwargs = create_train_dataset_kwargs data_dim = 2 eval_sets = create_datasets(**create_eval_dataset_kwargs) train_sets = create_datasets(**create_train_dataset_kwargs) for set_ in train_sets: plt.scatter(*set_.T) all_obs = np.vstack(train_sets) # vae = models.create_vector_vae( # data_dim=data_dim, # **create_vae_kwargs, # ) vae = models.create_vector_set_vae( data_dim=data_dim, x_depends_on_c=x_depends_on_c, **create_set_vae_kwargs, ) data_key = 'data' set_key = 'set' set_index_key = 'set_index' train_sets_pt = [ptu.from_numpy(s) for s in train_sets] eval_sets_pt = [ptu.from_numpy(s) for s in eval_sets] all_obs_pt = ptu.from_numpy(all_obs) all_obs_iterator_pt = data.DataLoader(all_obs_pt, **vae_data_loader_kwargs) dict_loader = CustomDictLoader( data=all_obs_iterator_pt, sets=train_sets_pt, data_key=data_key, set_key=set_key, set_index_key=set_index_key, **set_dict_loader_kwargs ) algos = OrderedDict() discriminator_algos = [] discriminators = [] if setup_discriminator_kwargs: prior_models = [PriorModel(vae.representation_size) for _ in train_sets_pt] for i, examples in enumerate(train_sets_pt): discriminator_algo, discriminator, prior_m = setup_discriminator( vae, examples, prior_models[i], name='discriminator{}'.format(i), **setup_discriminator_kwargs ) discriminator_algos.append(discriminator_algo) discriminators.append(discriminator) else: prior_models = None vae_trainer = svt.SetVAETrainer( vae=vae, set_key=set_key, data_key=data_key, train_sets=train_sets_pt, eval_sets=eval_sets_pt, prior_models=prior_models, discriminators=discriminators, **vae_trainer_kwargs) vae_algorithm = BatchTorchAlgorithm( vae_trainer, dict_loader, **vae_algo_kwargs, ) algos['vae'] = vae_algorithm for i, algo in enumerate(discriminator_algos): algos['discriminator_{}'.format(i)] = algo algorithm = ParallelAlgorithms(algos, num_iters) algorithm.to(ptu.device) set_up_debugging(vae_algorithm, prior_models, discriminator_algos, **debug_kwargs) algorithm.run() def set_up_debugging( vae_algorithm, prior_models, discriminator_algos, debug_period=10, num_samples=25, dump_posterior_and_prior_samples=False, ): from rlkit.core import logger logdir = logger.get_snapshot_dir() set_loss_version = vae_algorithm.trainer.set_loss_version # visualize the train/eval set once plt_colors = plt.rcParams['axes.prop_cycle'].by_key()['color'] xmin = xmax = ymin = ymax = 0 for name, list_of_sets in [ ('train', vae_algorithm.trainer.train_sets), ('eval', vae_algorithm.trainer.eval_sets), ]: plt.figure() for i, set in enumerate(list_of_sets): set_examples = ptu.get_numpy(set) plt.scatter(*set_examples.T, color=plt_colors[i]) xmin, xmax, ymin, ymax = plt.axis() plt.savefig(osp.join(logdir, '{}_set_visualization.png'.format(name))) plt.close() def dump_debug_images( algo, epoch, tag='', ): trainer = algo.trainer trainer.vae.train() if debug_period <= 0 or epoch % debug_period != 0: return def draw_reconstruction(batch, color=None): x_np = ptu.get_numpy(batch) x_hat_np = ptu.get_numpy(trainer.vae.reconstruct(batch)) delta = x_hat_np - x_np plt.quiver( x_np[:, 0], x_np[:, 1], delta[:, 0], delta[:, 1], scale=1., scale_units='xy', linewidth=0.5, alpha=0.5, color=color, ) # batch = trainer.example_batch[trainer.data_key] # plt.figure() # draw_reconstruction(batch) # plt.savefig(osp.join(logdir, '{}_recon.png'.format(epoch))) # raw_samples = ptu.get_numpy(trainer.vae.sample(num_samples)) plt.figure() plt.scatter(*raw_samples.T) plt.title('samples, epoch {}'.format(epoch)) plt.savefig(osp.join(logdir, 'vae_samples_{epoch}.png'.format( epoch=epoch))) plt.close() for prefix, list_of_sets in [ ('eval', trainer.eval_sets), ]: name = prefix + tag plt.figure() for i, set in enumerate(list_of_sets): draw_reconstruction(set, color=plt_colors[i]) plt.xlim((xmin, xmax)) plt.ylim((ymin, ymax)) plt.title('{}, epoch {}'.format(name, epoch)) plt.savefig( osp.join(logdir, 'set_recons_{name}_{epoch}.png'.format( epoch=epoch, name=name))) plt.close() for prefix, list_of_sets in [ ('train', trainer.train_sets), ('eval', trainer.eval_sets), ]: name = prefix + tag for fix_xy_lims in [True, False]: plt.figure() for set_i, set in enumerate(list_of_sets): set_samples = ptu.get_numpy( trainer.vae.set_sample(num_samples, set)) plt.scatter(*set_samples.T, color=plt_colors[set_i]) if fix_xy_lims: plt.xlim((xmin, xmax)) plt.ylim((ymin, ymax)) file_name = 'set_vae_samples_fixed_axes_{name}_{epoch}.png'.format( epoch=epoch, name=name, ) else: file_name = 'set_vae_samples_{name}_{epoch}.png'.format( epoch=epoch, name=name, ) plt.title('{}, epoch {}'.format(name, epoch)) plt.savefig(osp.join(logdir, file_name)) plt.close() plt.figure() for i, set in enumerate(list_of_sets): draw_reconstruction(set, color=plt_colors[i]) plt.xlim((xmin, xmax)) plt.ylim((ymin, ymax)) plt.title('{}, epoch {}'.format(name, epoch)) plt.savefig( osp.join(logdir, 'set_recons_{name}_{epoch}.png'.format( epoch=epoch, name=name))) plt.close() def dump_samples( algo, epoch, ): if debug_period <= 0 or epoch % debug_period != 0: return # visualize the train/eval set once data_loaders = [algo.data_loader for algo in discriminator_algos] def get_last_batch(dl): batch = None for batch in dl: pass return batch batches = [get_last_batch(dl) for dl in data_loaders] nrows = len(batches) ncols = algo.trainer.vae.representation_size // 2 fig, list_of_axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(2 * ncols, 2 * nrows)) for batch, axes in zip(batches, list_of_axes): # y = batch['y'] x = batch['x'] xnp = x.cpu().detach().numpy() posterior_samples = xnp[:128] prior_samples = xnp[128:] for i, ax in enumerate(axes): post_x = posterior_samples[:, 2*i] post_y = posterior_samples[:, 2*i + 1] prior_x = prior_samples[:, 2*i] prior_y = prior_samples[:, 2*i + 1] ax.scatter(post_x, post_y, color='r') ax.scatter(prior_x, prior_y, color='b') plt.title('{}, epoch {}'.format(name, epoch)) plt.savefig(logdir + '/discriminator_samples_{epoch}.png'.format( epoch=epoch, )) plt.close() vae_algorithm.post_epoch_funcs.append(dump_debug_images) if dump_posterior_and_prior_samples: vae_algorithm.post_epoch_funcs.append(dump_samples) # if discriminator_algos: # vae_algorithm.pre_train_funcs.append( # functools.partial(dump_debug_images, tag='-pre-vae') # )
[ "matplotlib.pyplot.quiver", "rlkit.torch.sets.batch_algorithm.BatchTorchAlgorithm", "rlkit.torch.pytorch_util.from_numpy", "rlkit.torch.networks.ConcatMlp", "matplotlib.pyplot.figure", "numpy.sin", "rlkit.torch.sets.parallel_algorithms.ParallelAlgorithms", "rlkit.core.logger.get_snapshot_dir", "os.path.join", "rlkit.torch.sets.models.create_vector_set_vae", "torch.utils.data.DataLoader", "numpy.random.randn", "rlkit.torch.sets.set_vae_trainer.SetVAETrainer", "matplotlib.pyplot.close", "rlkit.torch.sets.discriminator.DiscriminatorTrainer", "matplotlib.pyplot.subplots", "rlkit.torch.pytorch_util.get_numpy", "matplotlib.pyplot.ylim", "numpy.cos", "rlkit.torch.sets.set_vae_trainer.CustomDictLoader", "numpy.vstack", "numpy.concatenate", "numpy.random.uniform", "matplotlib.pyplot.xlim", "matplotlib.pyplot.scatter", "rlkit.torch.sets.set_vae_trainer.PriorModel", "matplotlib.pyplot.axis", "rlkit.torch.sets.discriminator.DiscriminatorDataset", "collections.OrderedDict" ]
[((970, 1000), 'numpy.concatenate', 'np.concatenate', (['[x, y]'], {'axis': '(1)'}), '([x, y], axis=1)\n', (984, 1000), True, 'import numpy as np\n'), ((1061, 1120), 'numpy.random.uniform', 'np.random.uniform', (['xlim[0]', 'xlim[1]'], {'size': '(num_examples, 1)'}), '(xlim[0], xlim[1], size=(num_examples, 1))\n', (1078, 1120), True, 'import numpy as np\n'), ((1129, 1188), 'numpy.random.uniform', 'np.random.uniform', (['ylim[0]', 'ylim[1]'], {'size': '(num_examples, 1)'}), '(ylim[0], ylim[1], size=(num_examples, 1))\n', (1146, 1188), True, 'import numpy as np\n'), ((1200, 1230), 'numpy.concatenate', 'np.concatenate', (['[x, y]'], {'axis': '(1)'}), '([x, y], axis=1)\n', (1214, 1230), True, 'import numpy as np\n'), ((2536, 2625), 'rlkit.torch.networks.ConcatMlp', 'ConcatMlp', ([], {'input_size': 'vae.representation_size', 'output_size': '(1)'}), '(input_size=vae.representation_size, output_size=1, **\n discriminator_kwargs)\n', (2545, 2625), False, 'from rlkit.torch.networks import ConcatMlp\n'), ((2683, 2743), 'rlkit.torch.sets.discriminator.DiscriminatorDataset', 'DiscriminatorDataset', (['vae', 'examples', 'prior'], {}), '(vae, examples, prior, **dataset_kwargs)\n', (2703, 2743), False, 'from rlkit.torch.sets.discriminator import DiscriminatorDataset, DiscriminatorTrainer\n'), ((2781, 2852), 'rlkit.torch.sets.discriminator.DiscriminatorTrainer', 'DiscriminatorTrainer', (['discriminator', 'prior'], {'name': 'name'}), '(discriminator, prior, name=name, **trainer_kwargs)\n', (2801, 2852), False, 'from rlkit.torch.sets.discriminator import DiscriminatorDataset, DiscriminatorTrainer\n'), ((2917, 3006), 'rlkit.torch.sets.batch_algorithm.BatchTorchAlgorithm', 'BatchTorchAlgorithm', (['discriminator_trainer', 'discriminator_data_loader'], {}), '(discriminator_trainer, discriminator_data_loader, **\n algo_kwargs)\n', (2936, 3006), False, 'from rlkit.torch.sets.batch_algorithm import BatchTorchAlgorithm\n'), ((4019, 4040), 'numpy.vstack', 'np.vstack', (['train_sets'], {}), '(train_sets)\n', (4028, 4040), True, 'import numpy as np\n'), ((4158, 4266), 'rlkit.torch.sets.models.create_vector_set_vae', 'models.create_vector_set_vae', ([], {'data_dim': 'data_dim', 'x_depends_on_c': 'x_depends_on_c'}), '(data_dim=data_dim, x_depends_on_c=\n x_depends_on_c, **create_set_vae_kwargs)\n', (4186, 4266), False, 'from rlkit.torch.sets import models\n'), ((4503, 4526), 'rlkit.torch.pytorch_util.from_numpy', 'ptu.from_numpy', (['all_obs'], {}), '(all_obs)\n', (4517, 4526), True, 'from rlkit.torch import pytorch_util as ptu\n'), ((4553, 4606), 'torch.utils.data.DataLoader', 'data.DataLoader', (['all_obs_pt'], {}), '(all_obs_pt, **vae_data_loader_kwargs)\n', (4568, 4606), False, 'from torch.utils import data\n'), ((4625, 4788), 'rlkit.torch.sets.set_vae_trainer.CustomDictLoader', 'CustomDictLoader', ([], {'data': 'all_obs_iterator_pt', 'sets': 'train_sets_pt', 'data_key': 'data_key', 'set_key': 'set_key', 'set_index_key': 'set_index_key'}), '(data=all_obs_iterator_pt, sets=train_sets_pt, data_key=\n data_key, set_key=set_key, set_index_key=set_index_key, **\n set_dict_loader_kwargs)\n', (4641, 4788), False, 'from rlkit.torch.sets.set_vae_trainer import PriorModel, CustomDictLoader\n'), ((4846, 4859), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (4857, 4859), False, 'from collections import OrderedDict\n'), ((5516, 5717), 'rlkit.torch.sets.set_vae_trainer.SetVAETrainer', 'svt.SetVAETrainer', ([], {'vae': 'vae', 'set_key': 'set_key', 'data_key': 'data_key', 'train_sets': 'train_sets_pt', 'eval_sets': 'eval_sets_pt', 'prior_models': 'prior_models', 'discriminators': 'discriminators'}), '(vae=vae, set_key=set_key, data_key=data_key, train_sets=\n train_sets_pt, eval_sets=eval_sets_pt, prior_models=prior_models,\n discriminators=discriminators, **vae_trainer_kwargs)\n', (5533, 5717), True, 'from rlkit.torch.sets import set_vae_trainer as svt\n'), ((5794, 5858), 'rlkit.torch.sets.batch_algorithm.BatchTorchAlgorithm', 'BatchTorchAlgorithm', (['vae_trainer', 'dict_loader'], {}), '(vae_trainer, dict_loader, **vae_algo_kwargs)\n', (5813, 5858), False, 'from rlkit.torch.sets.batch_algorithm import BatchTorchAlgorithm\n'), ((6041, 6077), 'rlkit.torch.sets.parallel_algorithms.ParallelAlgorithms', 'ParallelAlgorithms', (['algos', 'num_iters'], {}), '(algos, num_iters)\n', (6059, 6077), False, 'from rlkit.torch.sets.parallel_algorithms import ParallelAlgorithms\n'), ((6461, 6486), 'rlkit.core.logger.get_snapshot_dir', 'logger.get_snapshot_dir', ([], {}), '()\n', (6484, 6486), False, 'from rlkit.core import logger\n'), ((3984, 4004), 'matplotlib.pyplot.scatter', 'plt.scatter', (['*set_.T'], {}), '(*set_.T)\n', (3995, 4004), True, 'import matplotlib.pyplot as plt\n'), ((4389, 4406), 'rlkit.torch.pytorch_util.from_numpy', 'ptu.from_numpy', (['s'], {}), '(s)\n', (4403, 4406), True, 'from rlkit.torch import pytorch_util as ptu\n'), ((4448, 4465), 'rlkit.torch.pytorch_util.from_numpy', 'ptu.from_numpy', (['s'], {}), '(s)\n', (4462, 4465), True, 'from rlkit.torch import pytorch_util as ptu\n'), ((6842, 6854), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (6852, 6854), True, 'import matplotlib.pyplot as plt\n'), ((7044, 7054), 'matplotlib.pyplot.axis', 'plt.axis', ([], {}), '()\n', (7052, 7054), True, 'import matplotlib.pyplot as plt\n'), ((7142, 7153), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (7151, 7153), True, 'import matplotlib.pyplot as plt\n'), ((8156, 8168), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (8166, 8168), True, 'import matplotlib.pyplot as plt\n'), ((8177, 8204), 'matplotlib.pyplot.scatter', 'plt.scatter', (['*raw_samples.T'], {}), '(*raw_samples.T)\n', (8188, 8204), True, 'import matplotlib.pyplot as plt\n'), ((8364, 8375), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (8373, 8375), True, 'import matplotlib.pyplot as plt\n'), ((11021, 11091), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'nrows': 'nrows', 'ncols': 'ncols', 'figsize': '(2 * ncols, 2 * nrows)'}), '(nrows=nrows, ncols=ncols, figsize=(2 * ncols, 2 * nrows))\n', (11033, 11091), True, 'import matplotlib.pyplot as plt\n'), ((11857, 11868), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (11866, 11868), True, 'import matplotlib.pyplot as plt\n'), ((771, 812), 'numpy.random.uniform', 'np.random.uniform', ([], {'size': '(num_examples, 1)'}), '(size=(num_examples, 1))\n', (788, 812), True, 'import numpy as np\n'), ((841, 873), 'numpy.random.randn', 'np.random.randn', (['num_examples', '(1)'], {}), '(num_examples, 1)\n', (856, 873), True, 'import numpy as np\n'), ((895, 908), 'numpy.sin', 'np.sin', (['angle'], {}), '(angle)\n', (901, 908), True, 'import numpy as np\n'), ((933, 946), 'numpy.cos', 'np.cos', (['angle'], {}), '(angle)\n', (939, 946), True, 'import numpy as np\n'), ((4972, 5007), 'rlkit.torch.sets.set_vae_trainer.PriorModel', 'PriorModel', (['vae.representation_size'], {}), '(vae.representation_size)\n', (4982, 5007), False, 'from rlkit.torch.sets.set_vae_trainer import PriorModel, CustomDictLoader\n'), ((6929, 6947), 'rlkit.torch.pytorch_util.get_numpy', 'ptu.get_numpy', (['set'], {}), '(set)\n', (6942, 6947), True, 'from rlkit.torch import pytorch_util as ptu\n'), ((6960, 7009), 'matplotlib.pyplot.scatter', 'plt.scatter', (['*set_examples.T'], {'color': 'plt_colors[i]'}), '(*set_examples.T, color=plt_colors[i])\n', (6971, 7009), True, 'import matplotlib.pyplot as plt\n'), ((7455, 7475), 'rlkit.torch.pytorch_util.get_numpy', 'ptu.get_numpy', (['batch'], {}), '(batch)\n', (7468, 7475), True, 'from rlkit.torch import pytorch_util as ptu\n'), ((7593, 7725), 'matplotlib.pyplot.quiver', 'plt.quiver', (['x_np[:, 0]', 'x_np[:, 1]', 'delta[:, 0]', 'delta[:, 1]'], {'scale': '(1.0)', 'scale_units': '"""xy"""', 'linewidth': '(0.5)', 'alpha': '(0.5)', 'color': 'color'}), "(x_np[:, 0], x_np[:, 1], delta[:, 0], delta[:, 1], scale=1.0,\n scale_units='xy', linewidth=0.5, alpha=0.5, color=color)\n", (7603, 7725), True, 'import matplotlib.pyplot as plt\n'), ((8511, 8523), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (8521, 8523), True, 'import matplotlib.pyplot as plt\n'), ((8649, 8671), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(xmin, xmax)'], {}), '((xmin, xmax))\n', (8657, 8671), True, 'import matplotlib.pyplot as plt\n'), ((8684, 8706), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(ymin, ymax)'], {}), '((ymin, ymax))\n', (8692, 8706), True, 'import matplotlib.pyplot as plt\n'), ((8921, 8932), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (8930, 8932), True, 'import matplotlib.pyplot as plt\n'), ((10025, 10037), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (10035, 10037), True, 'import matplotlib.pyplot as plt\n'), ((10163, 10185), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(xmin, xmax)'], {}), '((xmin, xmax))\n', (10171, 10185), True, 'import matplotlib.pyplot as plt\n'), ((10198, 10220), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(ymin, ymax)'], {}), '((ymin, ymax))\n', (10206, 10220), True, 'import matplotlib.pyplot as plt\n'), ((10435, 10446), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (10444, 10446), True, 'import matplotlib.pyplot as plt\n'), ((9160, 9172), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (9170, 9172), True, 'import matplotlib.pyplot as plt\n'), ((10000, 10011), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (10009, 10011), True, 'import matplotlib.pyplot as plt\n'), ((9367, 9419), 'matplotlib.pyplot.scatter', 'plt.scatter', (['*set_samples.T'], {'color': 'plt_colors[set_i]'}), '(*set_samples.T, color=plt_colors[set_i])\n', (9378, 9419), True, 'import matplotlib.pyplot as plt\n'), ((9472, 9494), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(xmin, xmax)'], {}), '((xmin, xmax))\n', (9480, 9494), True, 'import matplotlib.pyplot as plt\n'), ((9515, 9537), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(ymin, ymax)'], {}), '((ymin, ymax))\n', (9523, 9537), True, 'import matplotlib.pyplot as plt\n'), ((9955, 9982), 'os.path.join', 'osp.join', (['logdir', 'file_name'], {}), '(logdir, file_name)\n', (9963, 9982), True, 'import os.path as osp\n')]
import numpy as np def avoid_backward_action(action): ## if backward movement is initiated, stop the car if np.all(action > 0.0): action[0] = 0.0 action[1] = 0.0 return action def reward_path_divergence(position_history, pos_ptr, reward_multiplier): v2 = position_history[pos_ptr] - position_history[pos_ptr - 1] v1 = position_history[pos_ptr - 1] - position_history[pos_ptr - 2] l2_v1 = np.linalg.norm(v1) l2_v2 = np.linalg.norm(v2) if l2_v1 == 0 and l2_v2 == 0: return -1.0 * reward_multiplier ## L2 normalize if l2_v1 > 0: v1 = v1 / l2_v1 if l2_v2 > 0: v2 = v2 / l2_v2 cosine_similarity = np.sum(v1 * v2) if cosine_similarity > 0.0: return reward_multiplier * (1.0 - cosine_similarity) else: return reward_multiplier * cosine_similarity
[ "numpy.linalg.norm", "numpy.sum", "numpy.all" ]
[((114, 134), 'numpy.all', 'np.all', (['(action > 0.0)'], {}), '(action > 0.0)\n', (120, 134), True, 'import numpy as np\n'), ((421, 439), 'numpy.linalg.norm', 'np.linalg.norm', (['v1'], {}), '(v1)\n', (435, 439), True, 'import numpy as np\n'), ((449, 467), 'numpy.linalg.norm', 'np.linalg.norm', (['v2'], {}), '(v2)\n', (463, 467), True, 'import numpy as np\n'), ((640, 655), 'numpy.sum', 'np.sum', (['(v1 * v2)'], {}), '(v1 * v2)\n', (646, 655), True, 'import numpy as np\n')]
import numpy as np from gym import spaces from brs_envs.base_envs import BaseURDFBulletEnv from brs_envs.base_envs import parse_collision from brs_envs.rocket_landing_scene import RocketLandingScene from brs_envs.martlet9.martlet9_robot import Martlet9Robot class RocketLanderEnv(BaseURDFBulletEnv): LANDING_SPEED_PENALTY = 5 LANDING_SPEED_SURVIVE_THRESH = 10 DEATH_PENALTY = 500 LANDED_SPEED_THRESH = 1e-1 LANDED_BONUS = DEATH_PENALTY ACCURACY_BONUS = DEATH_PENALTY / 10 HIT_WATER_PENALTY = DEATH_PENALTY POSITION_THRESH = 20 def __init__(self, render=False, gravity=9.8, timestep=1/60, sticky=1, max_lateral_offset=10, max_vertical_offset=10, max_roll_offset=0.5, max_pitch_offset=0.5, max_yaw_offset=0.1, mean_robot_start_height=100): BaseURDFBulletEnv.__init__(self, render) self._feet_landed = set() self._gravity = gravity self._timestep = timestep self._sticky = sticky self._max_lateral_offset = max_lateral_offset self._max_vertical_offset = max_vertical_offset self._max_roll_offset = max_roll_offset self._max_pitch_offset = max_pitch_offset self._max_yaw_offset = max_yaw_offset self._mean_robot_start_height = mean_robot_start_height self.observation_space = Martlet9Robot.observation_space self.action_space = Martlet9Robot.action_space def step(self, a): control_cost = self.robot.applyControls(self.p, a) self.scene.step() state = self.robot.getState(self.p) if self.renderable: self.moveCamera(state) self.drawArtifacts(a) collisions_in_water = self.p.getContactPoints(bodyA=self.scene.plane) collisions_on_pad = self.p.getContactPoints(bodyA=self.scene.pad) collision_cost, done = self.processCollisions(state, self._prev_state, collisions_in_water, collisions_on_pad) self._prev_state = state return state, -(control_cost + collision_cost), done, {} def processCollisions(self, state, prev_state, water_col, pad_col): if len(water_col) > 0: return RocketLanderEnv.HIT_WATER_PENALTY + RocketLanderEnv.DEATH_PENALTY, True num_landed_feet = 0 new_landed_feet = 0 allowable_contacts = [self.robot.foot1_link, self.robot.foot2_link, self.robot.foot3_link] feet_landed = set() prev_state_desc = Martlet9Robot.describeState(prev_state) state_desc = Martlet9Robot.describeState(state) if state_desc['position'][-1] >= self._mean_robot_start_height + self._max_vertical_offset: return RocketLanderEnv.DEATH_PENALTY, True lateral_dist_to_center = np.linalg.norm(state_desc['position'][:2]) if lateral_dist_to_center > RocketLanderEnv.POSITION_THRESH: return RocketLanderEnv.DEATH_PENALTY, True for collision in map(parse_collision, pad_col): other_link = collision['linkIndexB'] if other_link not in allowable_contacts: return RocketLanderEnv.DEATH_PENALTY, True num_landed_feet += 1 feet_landed.add(other_link) if other_link not in self._feet_landed: new_landed_feet += 1 self._feet_landed = feet_landed if num_landed_feet == 0: # No collisions, no penalties return 0.00 * np.linalg.norm(state_desc['position']), False speed = np.linalg.norm(state_desc['velocity']) prev_speed = np.linalg.norm(prev_state_desc['velocity']) if max(speed, prev_speed) > RocketLanderEnv.LANDING_SPEED_SURVIVE_THRESH: speed_overshoot = max(speed, prev_speed) - RocketLanderEnv.LANDING_SPEED_SURVIVE_THRESH speed_penalty = RocketLanderEnv.LANDING_SPEED_PENALTY * (speed_overshoot**2) center_bonus = max(1, 10 - lateral_dist_to_center) * RocketLanderEnv.ACCURACY_BONUS # print("Landed too fast! Speed was {}".format(max(speed, prev_speed))) return RocketLanderEnv.DEATH_PENALTY + speed_penalty - center_bonus, True landing_cost = max(speed, prev_speed) * RocketLanderEnv.LANDING_SPEED_PENALTY * min(1, new_landed_feet) if (num_landed_feet < 3) or (speed > RocketLanderEnv.LANDED_SPEED_THRESH): # return landing_cost, False return 0, False # print("Smooth landing!") return landing_cost - RocketLanderEnv.LANDED_BONUS, True def reset(self): state = BaseURDFBulletEnv.reset(self) self.robot.addToScene(self.scene, self.robotStartPos(), self.robotStartOri()) self._prev_state = self.robot.getState(self.p) return self._prev_state def drawArtifacts(self, control): if self.robot.thruster_fire_id is not None: r = 1.0 g = 0.8 * control[0] b = 0.3 a = min(1.0, 0.9 * control[0]) self.p.changeVisualShape(self.robot.uid, self.robot.thruster_fire_id, rgbaColor=[r, g, b, a]) if self.robot.steer_smoke_id is not None: r = 0.4 g = 0.4 b = 0.4 a = min(1.0, 0.2 * control[2]) self.p.changeVisualShape(self.robot.uid, self.robot.steer_smoke_id, rgbaColor=[r, g, b, a]) def moveCamera(self, state): target = state[:3] ori = self.p.getEulerFromQuaternion(state[3:7]) yaw = 20 pitch = state[2] / 100 distance = 0.3 * state[2] + 50 self.p.resetDebugVisualizerCamera(distance, yaw, pitch, target) def initializeScene(self): return RocketLandingScene(self.p, gravity=self._gravity, timestep=self._timestep, sticky=self._sticky) def initializeRobot(self): return Martlet9Robot() def robotStartPos(self): max_lateral_offset = float(self._max_lateral_offset) max_vertical_offset = float(self._max_vertical_offset) mean_robot_start_height = float(self._mean_robot_start_height) x = np.random.uniform(-max_lateral_offset, max_lateral_offset) y = np.random.uniform(-max_lateral_offset, max_lateral_offset) z = mean_robot_start_height + np.random.uniform(-max_vertical_offset, max_vertical_offset) return [x, y, z] def robotStartOri(self): max_roll_offset = float(self._max_roll_offset) max_pitch_offset = float(self._max_pitch_offset) max_yaw_offset = float(self._max_yaw_offset) roll = np.random.uniform(-max_roll_offset, max_roll_offset) pitch = np.random.uniform(-max_pitch_offset, max_pitch_offset) yaw = np.random.uniform(-max_yaw_offset, max_yaw_offset) return self.p.getQuaternionFromEuler([roll, pitch, yaw])
[ "brs_envs.rocket_landing_scene.RocketLandingScene", "numpy.random.uniform", "brs_envs.base_envs.BaseURDFBulletEnv.__init__", "brs_envs.martlet9.martlet9_robot.Martlet9Robot", "numpy.linalg.norm", "brs_envs.martlet9.martlet9_robot.Martlet9Robot.describeState", "brs_envs.base_envs.BaseURDFBulletEnv.reset" ]
[((955, 995), 'brs_envs.base_envs.BaseURDFBulletEnv.__init__', 'BaseURDFBulletEnv.__init__', (['self', 'render'], {}), '(self, render)\n', (981, 995), False, 'from brs_envs.base_envs import BaseURDFBulletEnv\n'), ((2750, 2789), 'brs_envs.martlet9.martlet9_robot.Martlet9Robot.describeState', 'Martlet9Robot.describeState', (['prev_state'], {}), '(prev_state)\n', (2777, 2789), False, 'from brs_envs.martlet9.martlet9_robot import Martlet9Robot\n'), ((2811, 2845), 'brs_envs.martlet9.martlet9_robot.Martlet9Robot.describeState', 'Martlet9Robot.describeState', (['state'], {}), '(state)\n', (2838, 2845), False, 'from brs_envs.martlet9.martlet9_robot import Martlet9Robot\n'), ((3034, 3076), 'numpy.linalg.norm', 'np.linalg.norm', (["state_desc['position'][:2]"], {}), "(state_desc['position'][:2])\n", (3048, 3076), True, 'import numpy as np\n'), ((3775, 3813), 'numpy.linalg.norm', 'np.linalg.norm', (["state_desc['velocity']"], {}), "(state_desc['velocity'])\n", (3789, 3813), True, 'import numpy as np\n'), ((3835, 3878), 'numpy.linalg.norm', 'np.linalg.norm', (["prev_state_desc['velocity']"], {}), "(prev_state_desc['velocity'])\n", (3849, 3878), True, 'import numpy as np\n'), ((4815, 4844), 'brs_envs.base_envs.BaseURDFBulletEnv.reset', 'BaseURDFBulletEnv.reset', (['self'], {}), '(self)\n', (4838, 4844), False, 'from brs_envs.base_envs import BaseURDFBulletEnv\n'), ((6059, 6158), 'brs_envs.rocket_landing_scene.RocketLandingScene', 'RocketLandingScene', (['self.p'], {'gravity': 'self._gravity', 'timestep': 'self._timestep', 'sticky': 'self._sticky'}), '(self.p, gravity=self._gravity, timestep=self._timestep,\n sticky=self._sticky)\n', (6077, 6158), False, 'from brs_envs.rocket_landing_scene import RocketLandingScene\n'), ((6202, 6217), 'brs_envs.martlet9.martlet9_robot.Martlet9Robot', 'Martlet9Robot', ([], {}), '()\n', (6215, 6217), False, 'from brs_envs.martlet9.martlet9_robot import Martlet9Robot\n'), ((6455, 6513), 'numpy.random.uniform', 'np.random.uniform', (['(-max_lateral_offset)', 'max_lateral_offset'], {}), '(-max_lateral_offset, max_lateral_offset)\n', (6472, 6513), True, 'import numpy as np\n'), ((6526, 6584), 'numpy.random.uniform', 'np.random.uniform', (['(-max_lateral_offset)', 'max_lateral_offset'], {}), '(-max_lateral_offset, max_lateral_offset)\n', (6543, 6584), True, 'import numpy as np\n'), ((6919, 6971), 'numpy.random.uniform', 'np.random.uniform', (['(-max_roll_offset)', 'max_roll_offset'], {}), '(-max_roll_offset, max_roll_offset)\n', (6936, 6971), True, 'import numpy as np\n'), ((6988, 7042), 'numpy.random.uniform', 'np.random.uniform', (['(-max_pitch_offset)', 'max_pitch_offset'], {}), '(-max_pitch_offset, max_pitch_offset)\n', (7005, 7042), True, 'import numpy as np\n'), ((7057, 7107), 'numpy.random.uniform', 'np.random.uniform', (['(-max_yaw_offset)', 'max_yaw_offset'], {}), '(-max_yaw_offset, max_yaw_offset)\n', (7074, 7107), True, 'import numpy as np\n'), ((6623, 6683), 'numpy.random.uniform', 'np.random.uniform', (['(-max_vertical_offset)', 'max_vertical_offset'], {}), '(-max_vertical_offset, max_vertical_offset)\n', (6640, 6683), True, 'import numpy as np\n'), ((3713, 3751), 'numpy.linalg.norm', 'np.linalg.norm', (["state_desc['position']"], {}), "(state_desc['position'])\n", (3727, 3751), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ Defines a convolutional neural network with residual connections. Based on the architecture described in: <NAME>, <NAME>, <NAME>, <NAME>. "Deep residual learning for image recognition". https://arxiv.org/abs/1512.03385 With batch normalization as described in: <NAME>, <NAME>. "Batch normalization: Accelerating deep network training by reducing internal covariate shift". https://arxiv.org/abs/1502.03167 And parametric ReLU activations as described in: <NAME>, <NAME>, <NAME>, <NAME>. "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification". https://arxiv.org/abs/1502.01852 """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf from nnetmaker.model import * from nnetmaker.util import * class ConvNetClassifierModel0(BaseModel): def _process_args(self, model_args_validator, **kwargs): self._learn_alpha = model_args_validator.get("learn_alpha", ATYPE_BOOL, True) self._alpha = model_args_validator.get("alpha", ATYPE_FLOAT, True) self._dropout_rate = model_args_validator.get("dropout_rate", ATYPE_FLOAT, True) self._conv_layer_sizes = model_args_validator.get("conv_layer_sizes", ATYPE_INTS_LIST, True) self._conv_layer_dims = model_args_validator.get("conv_layer_dims", ATYPE_INTS_LIST, True) self._fc_layer_dims = model_args_validator.get("fc_layer_dims", ATYPE_INTS_LIST, True) self._num_input_channels = model_args_validator.get("num_input_channels", ATYPE_INT, True) self._input_size = model_args_validator.get("input_size", ATYPE_INT, True) self._output_size = model_args_validator.get("output_size", ATYPE_INT, True) self._add_biases = model_args_validator.get("add_biases", ATYPE_BOOL, True) def _get_input_var_names(self, **kwargs): return ["img"] def _get_target_var_names(self, **kwargs): return ["predictions"] def _build_cost_targets(self, in_vars, target_vars, out_vars, **kwargs): cost_targets = [] cost_targets.append((target_vars["predictions"], out_vars["predictions"], None)) return cost_targets def _build_metrics(self, in_vars, target_vars, out_vars, **kwargs): metrics = {} targets = tf.argmax(target_vars["predictions"], axis=1) predicted = tf.argmax(out_vars["predictions"], axis=1) metrics["accuracy"] = tf.metrics.accuracy(targets, predicted) return metrics def _build_prediction_network(self, input_vars, is_training, **kwargs): weight_vars = [] weight_init_tups = [] # Build convolutional layers. prev_var = input_vars["img"] prev_dims = self._num_input_channels for i in range(len(self._conv_layer_sizes)): size = self._conv_layer_sizes[i] cur_dims = self._conv_layer_dims[i] h_var = self._add_op_square_conv2d(prev_var, "conv%d" % i, weight_vars, weight_init_tups, self._add_biases, prev_dims, cur_dims, size) h_var = self._add_op_batch_norm(h_var, "norm%d" % i, 3, is_training) h_var = self._add_op_relu(h_var, "relu%d" % i, alpha=self._alpha, is_variable=self._learn_alpha) # Add zero padded residual connection. if cur_dims > prev_dims: num_zeros = cur_dims - prev_dims paddings = np.zeros((4, 2), dtype=int) paddings[3, 1] = num_zeros h_var = h_var + tf.pad(prev_var, paddings) else: h_var = h_var + prev_var[:cur_dims] prev_dims = cur_dims prev_var = h_var # Build fully connected and output layers. h_var = prev_var h_size = self._input_size for i, cur_dims in enumerate(self._fc_layer_dims + [self._output_size]): if self._dropout_rate > 0: h_var = self._add_op_dropout(h_var, "dropout%d" % i, self._dropout_rate, is_training) h_var = self._add_op_square_conv2d(h_var, "fc%d" % i, weight_vars, weight_init_tups, self._add_biases, prev_dims, cur_dims, h_size, pad=False) h_size = 1 prev_dims = cur_dims if i < len(self._fc_layer_dims): # Hidden fully connected layer. h_var = self._add_op_batch_norm(h_var, "fc_norm%d" % i, 3, is_training) h_var = self._add_op_relu(h_var, "fc_relu%d" % i, alpha=self._alpha, is_variable=self._learn_alpha) else: # Final output layer. h_var = tf.reduce_mean(h_var, axis=1) h_var = tf.reduce_mean(h_var, axis=1) h_var = tf.nn.softmax(h_var) out_vars = {} out_vars["predictions"] = h_var return out_vars, weight_vars, weight_init_tups
[ "tensorflow.nn.softmax", "tensorflow.metrics.accuracy", "tensorflow.argmax", "tensorflow.pad", "numpy.zeros", "tensorflow.reduce_mean" ]
[((2294, 2339), 'tensorflow.argmax', 'tf.argmax', (["target_vars['predictions']"], {'axis': '(1)'}), "(target_vars['predictions'], axis=1)\n", (2303, 2339), True, 'import tensorflow as tf\n'), ((2356, 2398), 'tensorflow.argmax', 'tf.argmax', (["out_vars['predictions']"], {'axis': '(1)'}), "(out_vars['predictions'], axis=1)\n", (2365, 2398), True, 'import tensorflow as tf\n'), ((2426, 2465), 'tensorflow.metrics.accuracy', 'tf.metrics.accuracy', (['targets', 'predicted'], {}), '(targets, predicted)\n', (2445, 2465), True, 'import tensorflow as tf\n'), ((3443, 3470), 'numpy.zeros', 'np.zeros', (['(4, 2)'], {'dtype': 'int'}), '((4, 2), dtype=int)\n', (3451, 3470), True, 'import numpy as np\n'), ((4634, 4663), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['h_var'], {'axis': '(1)'}), '(h_var, axis=1)\n', (4648, 4663), True, 'import tensorflow as tf\n'), ((4680, 4709), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['h_var'], {'axis': '(1)'}), '(h_var, axis=1)\n', (4694, 4709), True, 'import tensorflow as tf\n'), ((4726, 4746), 'tensorflow.nn.softmax', 'tf.nn.softmax', (['h_var'], {}), '(h_var)\n', (4739, 4746), True, 'import tensorflow as tf\n'), ((3530, 3556), 'tensorflow.pad', 'tf.pad', (['prev_var', 'paddings'], {}), '(prev_var, paddings)\n', (3536, 3556), True, 'import tensorflow as tf\n')]
import sys sys.path.append("./") import shiftnet_cuda import numpy as np import torch import torch.cuda def main(): pattern = np.arange(18 * 18).reshape(18, 18) src_buf = np.zeros((32, 64, 18, 18)).astype(np.float32) for bnr in range(32): for ch in range(64): src_buf[bnr,ch,:,:] = pattern x_hin = torch.zeros(32, 64, 18, 18).type(torch.FloatTensor) #x_hin[:,:,1:4,1:4] = 1.0 x_hin.copy_(torch.from_numpy(src_buf)) y_hin = torch.zeros(32, 64, 18, 18).type(torch.FloatTensor) x = x_hin.cuda() y = y_hin.cuda() #ret = shiftnet_cuda.moduloshift3x3_nchw(x, y) ret = shiftnet_cuda.moduloshiftgeneric_nchw(x, y, 7, 2, -1) assert ret == 1 x_hout = x.cpu() y_hout = y.cpu() print(x_hout[0,0,:18,:18]) for ch in range(9): print(y_hout[0,ch,:18,:18]) if __name__ == "__main__": main()
[ "sys.path.append", "numpy.zeros", "numpy.arange", "torch.zeros", "shiftnet_cuda.moduloshiftgeneric_nchw", "torch.from_numpy" ]
[((11, 32), 'sys.path.append', 'sys.path.append', (['"""./"""'], {}), "('./')\n", (26, 32), False, 'import sys\n'), ((601, 654), 'shiftnet_cuda.moduloshiftgeneric_nchw', 'shiftnet_cuda.moduloshiftgeneric_nchw', (['x', 'y', '(7)', '(2)', '(-1)'], {}), '(x, y, 7, 2, -1)\n', (638, 654), False, 'import shiftnet_cuda\n'), ((414, 439), 'torch.from_numpy', 'torch.from_numpy', (['src_buf'], {}), '(src_buf)\n', (430, 439), False, 'import torch\n'), ((131, 149), 'numpy.arange', 'np.arange', (['(18 * 18)'], {}), '(18 * 18)\n', (140, 149), True, 'import numpy as np\n'), ((178, 204), 'numpy.zeros', 'np.zeros', (['(32, 64, 18, 18)'], {}), '((32, 64, 18, 18))\n', (186, 204), True, 'import numpy as np\n'), ((320, 347), 'torch.zeros', 'torch.zeros', (['(32)', '(64)', '(18)', '(18)'], {}), '(32, 64, 18, 18)\n', (331, 347), False, 'import torch\n'), ((452, 479), 'torch.zeros', 'torch.zeros', (['(32)', '(64)', '(18)', '(18)'], {}), '(32, 64, 18, 18)\n', (463, 479), False, 'import torch\n')]
import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from .anchor_head_template import AnchorHeadTemplate class GradReverse(torch.autograd.Function): def __init__(self, lambd): self.lambd = lambd def forward(self, x): return x.view_as(x) def backward(self, grad_output): return (grad_output * self.lambd) def grad_reverse(x, lambd): return GradReverse(lambd)(x) class RangeIntervalAttentionLayer(nn.Module): def __init__(self, num_channels, kernel_size, division=6, prior=False): super(RangeIntervalAttentionLayer, self).__init__() if prior: param_list = [] for i in range(division): param_list.append(torch.tensor([[[i * (division-1)]]], dtype=torch.float32)) param = torch.cat(param_list, dim=-2) else: param = torch.randn(1, division, 1) self.patch_param = nn.Parameter(param, requires_grad=True) # self.patch_param = nn.Parameter(torch.randn(1, division, 1), requires_grad=True) self.sigmoid = nn.Sigmoid() self.kernel_size = kernel_size self.division = division self.elem = int(self.kernel_size / division) def forward(self, input_tensor): bt, c, h, w = input_tensor.size() input_tensor = input_tensor.view(-1, h, w) self.patch_matrix = self.patch_param.repeat(1, 1, self.elem).view(1, -1, 1) self.patch_matrix = self.patch_matrix.repeat(bt*c, 1, w) input_tensor = input_tensor * self.patch_matrix input_tensor = self.sigmoid(input_tensor).view(bt, c, h, w) return input_tensor class RoadIntervalAttentionLayer(nn.Module): def __init__(self, num_channels, kernel_size, division=6, prior=False): super(RoadIntervalAttentionLayer, self).__init__() if prior: param_list = [] for i in range(division): param_list.append(torch.tensor([[[i * (division-1)]]], dtype=torch.float32)) param = torch.cat(param_list, dim=-1) else: param = torch.randn(1, 1, division) self.patch_param = nn.Parameter(param, requires_grad=True) self.sigmoid = nn.Sigmoid() self.kernel_size = kernel_size self.division = division self.elem = int(self.kernel_size / division) def forward(self, input_tensor): bt, c, h, w = input_tensor.size() input_tensor = input_tensor.view(-1, h, w) self.patch_matrix = self.patch_param.repeat(1, self.elem, 1).permute(0,2,1).contiguous().view(1,-1,1).permute(0,2,1) self.patch_matrix = self.patch_matrix.repeat(bt*c, h, 1) input_tensor = input_tensor * self.patch_matrix input_tensor = self.sigmoid(input_tensor).view(bt, c, h, w) return input_tensor class LocationAttentionLayer(nn.Module): def __init__(self, num_channels, kernel_size, prior=False): super(LocationAttentionLayer, self).__init__() self.patch_matrix = nn.Parameter(torch.randn(1, kernel_size, kernel_size), requires_grad=True) # self.patch_conv = nn.Conv2d(num_channels, 1, kernel_size, kernel_size) self.sigmoid = nn.Sigmoid() def forward(self, input_tensor): #2, 512, 126, 126 bt, c, h, w = input_tensor.size() # print("input_tensor", input_tensor.shape) # patch_tensor = self.patch_conv(input_tensor) # print("patch_tensor", patch_tensor.shape) input_tensor = input_tensor.view(-1, h, w) # self.patch_matrix = self.patch_matrix.repeat(bt*c, 1, 1) # print("self.patch_matrix.repeat(bt*c, 1, 1)x", self.patch_matrix.repeat(bt*c, 1, 1).shape) input_tensor = input_tensor * self.patch_matrix.repeat(bt*c, 1, 1) input_tensor = self.sigmoid(input_tensor).view(bt, c, h, w) # print("input_tensor") # print("self.input_tensor", input_tensor.shape) return input_tensor class SpatialSELayer(nn.Module): """ Re-implementation of SE block -- squeezing spatially and exciting channel-wise described in: *<NAME> al., Concurrent Spatial and Channel Squeeze & Excitation in Fully Convolutional Networks, MICCAI 2018* """ def __init__(self, num_channels): """ :param num_channels: No of input channels """ super(SpatialSELayer, self).__init__() self.conv = nn.Conv2d(num_channels, 1, 1) self.sigmoid = nn.Sigmoid() def forward(self, input_tensor, weights=None): """ :param weights: weights for few shot learning :param input_tensor: X, shape = (batch_size, num_channels, H, W) :return: output_tensor """ # spatial squeeze batch_size, channel, a, b = input_tensor.size() # print("input_tensor.size()", input_tensor.size()) #2, 512, 126, 126 if weights is not None: weights = torch.mean(weights, dim=0) weights = weights.view(1, channel, 1, 1) out = F.conv2d(input_tensor, weights) else: out = self.conv(input_tensor) # print("out.size()", out.size()) #2, 1, 126, 126 squeeze_tensor = self.sigmoid(out) # print("squeeze_tensor.size()", squeeze_tensor.size()) # 2, 1, 126, 126 # spatial excitation squeeze_tensor = squeeze_tensor.view(batch_size, 1, a, b) # print("squeeze_tensor 2.size()", squeeze_tensor.size()) # 2, 1, 126, 126 output_tensor = torch.mul(input_tensor, squeeze_tensor) # print("output_tensor 2.size()", output_tensor.size()) #2, 512, 126, 126 #output_tensor = torch.mul(input_tensor, squeeze_tensor) return output_tensor class ChannelSELayer(nn.Module): """ Re-implementation of Squeeze-and-Excitation (SE) block described in: *<NAME>., Squeeze-and-Excitation Networks, arXiv:1709.01507* """ def __init__(self, num_channels, reduction_ratio=2): """ :param num_channels: No of input channels :param reduction_ratio: By how much should the num_channels should be reduced """ super(ChannelSELayer, self).__init__() num_channels_reduced = num_channels // reduction_ratio self.reduction_ratio = reduction_ratio self.fc1 = nn.Linear(num_channels, num_channels_reduced, bias=True) self.fc2 = nn.Linear(num_channels_reduced, num_channels, bias=True) self.relu = nn.ReLU() self.sigmoid = nn.Sigmoid() def forward(self, input_tensor): """ :param input_tensor: X, shape = (batch_size, num_channels, H, W) :return: output tensor """ batch_size, num_channels, H, W = input_tensor.size() #2, 512, 126, 126 # Average along each channel squeeze_tensor = input_tensor.view(batch_size, num_channels, -1).mean(dim=2) #2, 512, 126*126(1) # channel excitation fc_out_1 = self.relu(self.fc1(squeeze_tensor)) fc_out_2 = self.sigmoid(self.fc2(fc_out_1)) a, b = squeeze_tensor.size() output_tensor = torch.mul(input_tensor, fc_out_2.view(a, b, 1, 1)) return output_tensor class LocalDomainClassifier(nn.Module): def __init__(self, input_channels=256, context=False): super(LocalDomainClassifier, self).__init__() self.conv1 = nn.Conv2d(input_channels, 256, kernel_size=1, stride=1, padding=0, bias=False) self.conv2 = nn.Conv2d(256, 128, kernel_size=1, stride=1, padding=0, bias=False) self.conv3 = nn.Conv2d(128, 1, kernel_size=1, stride=1, padding=0, bias=False) self.context = context self._init_weights() def _init_weights(self): def normal_init(m, mean, stddev, truncated=False): """ weight initalizer: truncated normal and random normal. """ # x is a parameter if truncated: m.weight.data.normal_().fmod_(2).mul_(stddev).add_(mean) # not a perfect approximation else: m.weight.data.normal_(mean, stddev) #m.bias.data.zero_() normal_init(self.conv1, 0, 0.01) normal_init(self.conv2, 0, 0.01) normal_init(self.conv3, 0, 0.01) def forward(self, x): x = F.relu(self.conv1(x)) x = F.relu(self.conv2(x)) if self.context: feat = F.avg_pool2d(x, (x.size(2), x.size(3))) x = self.conv3(x) return F.sigmoid(x),feat else: x = self.conv3(x) return F.sigmoid(x) class AnchorHeadSingleRangeNewConvDom(AnchorHeadTemplate): def __init__(self, model_cfg, input_channels, num_class, class_names, grid_size, point_cloud_range, predict_boxes_when_training=True, nusc=False, fpn_layers=[], **kwargs): super().__init__( model_cfg=model_cfg, num_class=num_class, class_names=class_names, grid_size=grid_size, point_cloud_range=point_cloud_range, predict_boxes_when_training=predict_boxes_when_training, nusc=nusc, fpn_layers=fpn_layers ) self.num_anchors_per_location = sum(self.num_anchors_per_location) self.voxel_det_seconv_attention = self.model_cfg.get('VOXEL_DET_SECONV_ATTENTION', False) self.voxel_det_se_attention = self.model_cfg.get('VOXEL_DET_SE_ATTENTION', False) self.voxel_det_patch_attention = self.model_cfg.get('VOXEL_DET_PATCH_ATTENTION', False) self.voxel_dom_seconv_attention = self.model_cfg.get('VOXEL_DOM_SECONV_ATTENTION', False) self.voxel_dom_se_attention = self.model_cfg.get('VOXEL_DOM_SE_ATTENTION', False) self.voxel_dom_patch_attention = self.model_cfg.get('VOXEL_DOM_PATCH_ATTENTION', False) self.voxel_dom_rangeinterval_attention = self.model_cfg.get('VOXEL_DOM_RANGEINTERVAL_ATTENTION', False) self.voxel_dom_roadinterval_attention = self.model_cfg.get('VOXEL_DOM_ROADINTERVAL_ATTENTION', False) self.joint_attention = self.model_cfg.get('VOXEL_DETDOM_JOINT_ATTENTION', False) self.dom_patch_first = self.model_cfg.get('DOM_PATCH_FIRST', False) if self.range_guidance: if self.range_guidance_dom_only: input_channels_dom = input_channels + 2 else: input_channels = input_channels + 2 input_channels_dom = input_channels else: input_channels_dom = input_channels self.conv_cls = nn.Conv2d( input_channels, self.num_anchors_per_location * self.num_class, kernel_size=1 ) self.conv_box = nn.Conv2d( input_channels, self.num_anchors_per_location * self.box_coder.code_size, kernel_size=1 ) self.rangeinv = self.model_cfg.get('RANGE_INV', False) self.keep_x = self.model_cfg.get('KEEP_X', False) self.keep_y = self.model_cfg.get('KEEP_Y', False) self.keep_xy = self.model_cfg.get('KEEP_XY', False) self.center_xy = self.model_cfg.get('CENTER_XY', False) self.zeroone_prior = self.model_cfg.get('ZEROONE_PRIOR', False) self.rm_thresh = self.model_cfg.get('RM_THRESH', 0) if self.rangeinv: self.conv_range = nn.Conv2d( input_channels, 1, kernel_size=1 ) #nn.Sequential( if self.voxel_det_seconv_attention and not self.joint_attention: self.att_spatial_se_layer_det = SpatialSELayer(512) if self.voxel_det_se_attention and not self.joint_attention: self.att_se_layer_det = ChannelSELayer(512) if self.voxel_det_patch_attention and not self.joint_attention: self.att_patch_layer_det = LocationAttentionLayer(512, self.model_cfg.PATCH_SIZE, prior=self.zeroone_prior) ################### if self.voxel_dom_seconv_attention: self.att_spatial_se_layer = SpatialSELayer(512) if self.voxel_dom_se_attention: self.att_se_layer = ChannelSELayer(512) if self.voxel_dom_patch_attention: self.att_patch_layer = LocationAttentionLayer(512, self.model_cfg.PATCH_SIZE, prior=self.zeroone_prior) if self.voxel_dom_rangeinterval_attention: self.att_rangeinterval_layer = RangeIntervalAttentionLayer(512, self.model_cfg.PATCH_SIZE, division=self.model_cfg.get('RANGE_INTERVAL_DIVISION', 6), prior=self.zeroone_prior) if self.voxel_dom_roadinterval_attention: self.att_roadinterval_layer = RoadIntervalAttentionLayer(512, self.model_cfg.PATCH_SIZE, division=self.model_cfg.get('ROAD_INTERVAL_DIVISION', 6), prior=self.zeroone_prior) if self.model_cfg.get('USE_DIRECTION_CLASSIFIER', None) is not None: self.conv_dir_cls = nn.Conv2d( input_channels, self.num_anchors_per_location * self.model_cfg.NUM_DIR_BINS, kernel_size=1 ) else: self.conv_dir_cls = None dom_fc1, dom_fc2 = self.model_cfg.get('DOM_FC', [1024, 1024]) # print("dom_fc ", dom_fc1, dom_fc2) # if self.model_cfg.get('USE_DOMAIN_CLASSIFIER', None) is not None: if self.range_da > 0: self.domain_pool = nn.AdaptiveAvgPool2d(1) self.domain_classifier_range = nn.ModuleDict() for n in range(0+self.remove_near_range, self.range_da-self.remove_far_range): self.domain_classifier_range[str(n)] = nn.Sequential(nn.Linear(input_channels, dom_fc1), nn.ReLU(True), nn.Dropout(), nn.Linear(dom_fc1, dom_fc2), nn.ReLU(True), nn.Dropout(), nn.Linear(dom_fc2, 1)) if self.keep_xy: self.domain_classifier_range2 = nn.ModuleDict() for n in range(0+self.remove_near_range2, self.range_da-self.remove_far_range2): self.domain_classifier_range2[str(n)] = nn.Sequential(nn.Linear(input_channels, dom_fc1), nn.ReLU(True), nn.Dropout(), nn.Linear(dom_fc1, dom_fc2), nn.ReLU(True), nn.Dropout(), nn.Linear(dom_fc2, 1)) elif self.interval_da > 0: self.domain_pool = nn.AdaptiveAvgPool2d(1) self.domain_classifier_interval = nn.ModuleDict() for n in range(self.interval_da): self.domain_classifier_interval[str(n)] = nn.Sequential(nn.Linear(input_channels, dom_fc1), nn.ReLU(True), nn.Dropout(), nn.Linear(dom_fc1, dom_fc2), nn.ReLU(True), nn.Dropout(), nn.Linear(dom_fc2, 1)) elif self.range_guidance_conv_dom: self.conv_dom_layers = self.make_conv_layers( conv_cfg=self.model_cfg.LOCAL_DOM_FC, input_channels=input_channels_dom, output_channels=1 ) if self.range_guidance_double_dom: self.domain_pool = nn.AdaptiveAvgPool2d(1) self.domain_classifier = nn.Sequential(nn.Linear(input_channels_dom, dom_fc1), nn.ReLU(True), nn.Dropout(), nn.Linear(dom_fc1, dom_fc2), nn.ReLU(True), nn.Dropout(), nn.Linear(dom_fc2, 1)) elif self.range_guidance_new_conv_dom: print("input_channels_dom", input_channels_dom) self.conv_dom_layers = LocalDomainClassifier(input_channels=input_channels_dom, context=self.range_guidance_new_conv_dom_context) # # elif self.range_guidance_pixelfc_dom: # # for i in range() # self.pixelfc_layers = nn.ModuleList() # # for i in range(self.model_cfg.PATCH_SIZE): # self.make_fc_layers( # conv_cfg=self.model_cfg.LOCAL_DOM_FC, # input_channels=input_channels_dom, # output_channels=1 # ) else: self.domain_pool = nn.AdaptiveAvgPool2d(1) self.domain_classifier = nn.Sequential(nn.Linear(input_channels_dom, dom_fc1), nn.ReLU(True), nn.Dropout(), nn.Linear(dom_fc1, dom_fc2), nn.ReLU(True), nn.Dropout(), nn.Linear(dom_fc2, 1)) self.init_weights() def init_weights(self): pi = 0.01 nn.init.constant_(self.conv_cls.bias, -np.log((1 - pi) / pi)) nn.init.normal_(self.conv_box.weight, mean=0, std=0.001) def local_attention(self, features, d): # features.size() = [1, 256, h, w] # d.size() = [1, 1, h, w] after sigmoid d = d.clamp(1e-6, 1) H = - ( d * d.log() + (1-d) * (1-d).log() ) w = 1 - H features_new = (1 + w) * features return features_new def forward(self, data_dict): t_mode = data_dict['t_mode'] l = data_dict['l'] if 'pseudo' in t_mode: pseudo = True else: pseudo = False spatial_features_2d = data_dict['spatial_features_2d'] if t_mode == 'tsne': self.range_da = 2 mid_dim = int(spatial_features_2d.shape[-1]/2.) range_interval = int(spatial_features_2d.shape[-1]/(2*self.range_da)) start_dim = {} mid1_dim = {} mid2_dim = {} end_dim = {} interval_idx = {} interval_feat = {} if self.keep_xy: interval_feat2 = {} # for each range 0,1,2,3 (4) for n in range(0+self.remove_near_range, self.range_da-self.remove_far_range): # no0,1 start_dim[n] = mid_dim - range_interval*(n+1) # 2-1=1, 2-2=0 mid1_dim[n] = mid_dim - range_interval*n # 2-0=2 2-1=1 #int(spatial_features_2d.shape[-1]/2.) mid2_dim[n] = mid_dim + range_interval*n # 2+0=2 2+1=3 end_dim[n] = mid_dim + range_interval*(n+1) # 2+1=3 2+2=4 interval_idx[n] = torch.LongTensor([i for i in range(start_dim[n], mid1_dim[n])]+[i for i in range(mid2_dim[n], end_dim[n])]) feat1 = spatial_features_2d[:,:,:,interval_idx[n]] feat1 = self.domain_pool(feat1).view(feat1.size(0), -1) data_dict[f'spatial_features_2d_x_{n}'] = feat1 feat2 = spatial_features_2d[:,:,interval_idx[n],:] feat2 = self.domain_pool(feat2).view(feat2.size(0), -1) data_dict[f'spatial_features_2d_y_{n}'] = feat2 return data_dict ########################### if self.range_guidance and not self.range_guidance_dom_only: total_range = spatial_features_2d.shape[-1] half_range = int(spatial_features_2d.shape[-1] * 0.5) x_range = torch.abs(torch.arange(-half_range, half_range, 1).float() + 0.5).unsqueeze(0).unsqueeze(0).unsqueeze(0).repeat(spatial_features_2d.shape[0],1, total_range, 1).cuda() # print("x_range", x_range) y_range = torch.abs(torch.arange(-half_range, half_range, 1).float() + 0.5).unsqueeze(-1).unsqueeze(0).unsqueeze(0).repeat(spatial_features_2d.shape[0],1,1,total_range).cuda() spatial_features_2d = torch.cat((spatial_features_2d, x_range, y_range), dim=1) # print("spatial_features_2d", spatial_features_2d.shape) if 'dom_img' in t_mode: if t_mode == 'dom_img_src': dom_src = True elif t_mode == 'dom_img_tgt': dom_src = False else: dom_src = None #################### PATCH EARLY if self.voxel_dom_patch_attention and self.dom_patch_first: spatial_features_2d = self.att_patch_layer(spatial_features_2d) if self.voxel_dom_rangeinterval_attention and self.dom_patch_first: spatial_features_2d = self.att_rangeinterval_layer(spatial_features_2d) if self.voxel_dom_roadinterval_attention and self.dom_patch_first: spatial_features_2d = self.att_roadinterval_layer(spatial_features_2d) #################### PATCH LATE if self.voxel_dom_patch_attention and not self.dom_patch_first: spatial_features_2d = self.att_patch_layer(spatial_features_2d) if self.voxel_dom_rangeinterval_attention and not self.dom_patch_first: spatial_features_2d = self.att_rangeinterval_layer(spatial_features_2d) if self.voxel_dom_roadinterval_attention and not self.dom_patch_first: spatial_features_2d = self.att_roadinterval_layer(spatial_features_2d) #################### if self.range_guidance and self.range_guidance_dom_only: total_range = spatial_features_2d.shape[-1] half_range = int(spatial_features_2d.shape[-1] * 0.5) x_range = torch.abs(torch.arange(-half_range, half_range, 1).float() + 0.5).unsqueeze(0).unsqueeze(0).unsqueeze(0).repeat(spatial_features_2d.shape[0],1, total_range, 1).cuda() y_range = torch.abs(torch.arange(-half_range, half_range, 1).float() + 0.5).unsqueeze(-1).unsqueeze(0).unsqueeze(0).repeat(spatial_features_2d.shape[0],1,1,total_range).cuda() spatial_features_2d = torch.cat((spatial_features_2d, x_range, y_range), dim=1) if self.range_guidance_conv_dom or self.range_guidance_new_conv_dom: # x_pool = self.domain_pool().view(spatial_features_2d.size(0), -1) # print('t_mode', t_mode) # print("l", l) if self.range_guidance_new_conv_dom_attention: x_reverse = grad_reverse(spatial_features_2d, l*-1) if self.range_guidance_new_conv_dom_context: dom_img_preds, _ = self.conv_dom_layers(x_reverse) #print(d_pixel) # if not target: _, feat_pixel = self.conv_dom_layers(spatial_features_2d.detach()) else: dom_img_preds = self.conv_dom_layers(x_reverse) spatial_features_2d = self.local_attention(spatial_features_2d, dom_img_preds.detach()) else: x_reverse = grad_reverse(spatial_features_2d, l*-1) dom_img_preds = self.conv_dom_layers(x_reverse) if self.range_guidance_double_dom: x_pool2 = self.domain_pool(spatial_features_2d).view(spatial_features_2d.size(0), -1) x_reverse2 = grad_reverse(x_pool2, l*-1) # print("x_reverse2", x_reverse2.shape) dom_img_preds2 = self.domain_classifier(x_reverse2)#.squeeze(-1) else: x_pool = self.domain_pool(spatial_features_2d).view(spatial_features_2d.size(0), -1) x_reverse = grad_reverse(x_pool, l*-1) dom_img_preds = self.domain_classifier(x_reverse)#.squeeze(-1) # print("dom_img_preds", dom_img_preds.shape) if self.dom_squeeze: dom_img_preds = dom_img_preds.squeeze(-1) if self.range_guidance_double_dom: dom_img_preds2 = dom_img_preds2.squeeze(-1) self.forward_ret_dict['dom_img_preds'] = dom_img_preds if self.range_guidance_double_dom: self.forward_ret_dict['dom_img_preds2'] = dom_img_preds2 if self.training: targets_dict_dom = self.assign_targets( gt_boxes=data_dict['gt_boxes'], dom_src=dom_src, pseudo=pseudo ) # if self.range_guidance_conv_dom: # targets_dict_dom['dom_labels'] self.forward_ret_dict.update(targets_dict_dom) if 'det' not in t_mode: return data_dict if self.joint_attention: if self.voxel_det_seconv_attention and self.voxel_det_se_attention: spatial_features_2d = torch.max(self.att_spatial_se_layer(spatial_features_2d), self.att_se_layer(spatial_features_2d)) # spatial_features_2d_det = spatial_features_2d elif self.voxel_det_seconv_attention: # print("spatial_features_2d before", spatial_features_2d.shape) spatial_features_2d = self.att_spatial_se_layer(spatial_features_2d) # spatial_features_2d_det = spatial_features_2d elif self.voxel_det_se_attention: spatial_features_2d = self.att_se_layer(spatial_features_2d) # spatial_features_2d_det = spatial_features_2d # else: spatial_features_2d_det = spatial_features_2d else: if self.voxel_det_seconv_attention and self.voxel_det_se_attention: spatial_features_2d_out = torch.max(self.att_spatial_se_layer_det(spatial_features_2d), self.att_se_layer_det(spatial_features_2d)) spatial_features_2d_det = spatial_features_2d_out elif self.voxel_det_seconv_attention: # print("spatial_features_2d before", spatial_features_2d.shape) spatial_features_2d_det = self.att_spatial_se_layer_det(spatial_features_2d) elif self.voxel_det_se_attention: spatial_features_2d_det = self.att_se_layer_det(spatial_features_2d) else: spatial_features_2d_det = spatial_features_2d # print("spatial_features_2d", spatial_features_2d.shape) cls_preds = self.conv_cls(spatial_features_2d_det) box_preds = self.conv_box(spatial_features_2d_det) cls_preds = cls_preds.permute(0, 2, 3, 1).contiguous() # [N, H, W, C] box_preds = box_preds.permute(0, 2, 3, 1).contiguous() # [N, H, W, C] self.forward_ret_dict['cls_preds'] = cls_preds self.forward_ret_dict['box_preds'] = box_preds if self.conv_dir_cls is not None: dir_cls_preds = self.conv_dir_cls(spatial_features_2d_det) dir_cls_preds = dir_cls_preds.permute(0, 2, 3, 1).contiguous() self.forward_ret_dict['dir_cls_preds'] = dir_cls_preds else: dir_cls_preds = None if self.training: if pseudo: pseudo_weights = data_dict['pseudo_weights'] else: pseudo_weights = None # print("gt_classes", data_dict['gt_classes'].shape) # print("gt_classes", data_dict['gt_classes']) # print("pseudo_weights", pseudo_weights) targets_dict = self.assign_targets( gt_boxes=data_dict['gt_boxes'], pseudo=pseudo, pseudo_weights=pseudo_weights ) self.forward_ret_dict.update(targets_dict) if not self.training or self.predict_boxes_when_training: batch_cls_preds, batch_box_preds = self.generate_predicted_boxes( batch_size=data_dict['batch_size'], cls_preds=cls_preds, box_preds=box_preds, dir_cls_preds=dir_cls_preds ) data_dict['batch_cls_preds'] = batch_cls_preds data_dict['batch_box_preds'] = batch_box_preds data_dict['cls_preds_normalized'] = False if self.rangeinv: # print("spatial_features_2d", spatial_features_2d.shape) #512,128,128 thresh = self.rm_thresh start_dim = int(spatial_features_2d.shape[-1]/4.) mid_dim = int(spatial_features_2d.shape[-1]/2.) end_dim = start_dim+int(spatial_features_2d.shape[-1]/2.) near_idx = torch.LongTensor([i for i in range(start_dim, mid_dim-thresh)]+[i for i in range(mid_dim+thresh, end_dim)]) far_idx = torch.LongTensor([i for i in range(start_dim)]+[i for i in range(end_dim, spatial_features_2d.shape[-1])]) if self.keep_x: near_feat_2d = spatial_features_2d[:,:,:,near_idx] far_feat_2d = spatial_features_2d[:,:,:, far_idx] elif self.keep_y: near_feat_2d = spatial_features_2d[:,:,near_idx,:] far_feat_2d = spatial_features_2d[:,:,far_idx,:] near_feat_2d_reverse = grad_reverse(near_feat_2d, l*-1) range_pred_near = self.conv_range(near_feat_2d_reverse) # print("near_range_pred", near_range_pred.shape) far_feat_2d_reverse = grad_reverse(far_feat_2d, l*-1) range_pred_far = self.conv_range(far_feat_2d_reverse) # print("far_range_pred", far_range_pred.shape) range_labels_near = torch.ones((range_pred_near.shape), dtype=torch.float32, device=spatial_features_2d.device) range_labels_far = torch.zeros((range_pred_far.shape), dtype=torch.float32, device=spatial_features_2d.device) targets_dict_range = { 'range_pred_near': range_pred_near, 'range_pred_far': range_pred_far, 'range_labels_near': range_labels_near, 'range_labels_far': range_labels_far, } self.forward_ret_dict.update(targets_dict_range) return data_dict
[ "torch.nn.Dropout", "torch.cat", "torch.randn", "torch.nn.ModuleDict", "torch.arange", "torch.nn.functional.sigmoid", "torch.ones", "torch.nn.Linear", "torch.zeros", "torch.nn.Parameter", "torch.mean", "torch.nn.Conv2d", "torch.nn.functional.conv2d", "torch.mul", "torch.nn.Sigmoid", "torch.nn.AdaptiveAvgPool2d", "torch.nn.ReLU", "numpy.log", "torch.nn.init.normal_", "torch.tensor" ]
[((941, 980), 'torch.nn.Parameter', 'nn.Parameter', (['param'], {'requires_grad': '(True)'}), '(param, requires_grad=True)\n', (953, 980), True, 'import torch.nn as nn\n'), ((1096, 1108), 'torch.nn.Sigmoid', 'nn.Sigmoid', ([], {}), '()\n', (1106, 1108), True, 'import torch.nn as nn\n'), ((2171, 2210), 'torch.nn.Parameter', 'nn.Parameter', (['param'], {'requires_grad': '(True)'}), '(param, requires_grad=True)\n', (2183, 2210), True, 'import torch.nn as nn\n'), ((2234, 2246), 'torch.nn.Sigmoid', 'nn.Sigmoid', ([], {}), '()\n', (2244, 2246), True, 'import torch.nn as nn\n'), ((3220, 3232), 'torch.nn.Sigmoid', 'nn.Sigmoid', ([], {}), '()\n', (3230, 3232), True, 'import torch.nn as nn\n'), ((4426, 4455), 'torch.nn.Conv2d', 'nn.Conv2d', (['num_channels', '(1)', '(1)'], {}), '(num_channels, 1, 1)\n', (4435, 4455), True, 'import torch.nn as nn\n'), ((4479, 4491), 'torch.nn.Sigmoid', 'nn.Sigmoid', ([], {}), '()\n', (4489, 4491), True, 'import torch.nn as nn\n'), ((5514, 5553), 'torch.mul', 'torch.mul', (['input_tensor', 'squeeze_tensor'], {}), '(input_tensor, squeeze_tensor)\n', (5523, 5553), False, 'import torch\n'), ((6316, 6372), 'torch.nn.Linear', 'nn.Linear', (['num_channels', 'num_channels_reduced'], {'bias': '(True)'}), '(num_channels, num_channels_reduced, bias=True)\n', (6325, 6372), True, 'import torch.nn as nn\n'), ((6392, 6448), 'torch.nn.Linear', 'nn.Linear', (['num_channels_reduced', 'num_channels'], {'bias': '(True)'}), '(num_channels_reduced, num_channels, bias=True)\n', (6401, 6448), True, 'import torch.nn as nn\n'), ((6469, 6478), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (6476, 6478), True, 'import torch.nn as nn\n'), ((6502, 6514), 'torch.nn.Sigmoid', 'nn.Sigmoid', ([], {}), '()\n', (6512, 6514), True, 'import torch.nn as nn\n'), ((7356, 7434), 'torch.nn.Conv2d', 'nn.Conv2d', (['input_channels', '(256)'], {'kernel_size': '(1)', 'stride': '(1)', 'padding': '(0)', 'bias': '(False)'}), '(input_channels, 256, kernel_size=1, stride=1, padding=0, bias=False)\n', (7365, 7434), True, 'import torch.nn as nn\n'), ((7474, 7541), 'torch.nn.Conv2d', 'nn.Conv2d', (['(256)', '(128)'], {'kernel_size': '(1)', 'stride': '(1)', 'padding': '(0)', 'bias': '(False)'}), '(256, 128, kernel_size=1, stride=1, padding=0, bias=False)\n', (7483, 7541), True, 'import torch.nn as nn\n'), ((7594, 7659), 'torch.nn.Conv2d', 'nn.Conv2d', (['(128)', '(1)'], {'kernel_size': '(1)', 'stride': '(1)', 'padding': '(0)', 'bias': '(False)'}), '(128, 1, kernel_size=1, stride=1, padding=0, bias=False)\n', (7603, 7659), True, 'import torch.nn as nn\n'), ((10551, 10643), 'torch.nn.Conv2d', 'nn.Conv2d', (['input_channels', '(self.num_anchors_per_location * self.num_class)'], {'kernel_size': '(1)'}), '(input_channels, self.num_anchors_per_location * self.num_class,\n kernel_size=1)\n', (10560, 10643), True, 'import torch.nn as nn\n'), ((10698, 10801), 'torch.nn.Conv2d', 'nn.Conv2d', (['input_channels', '(self.num_anchors_per_location * self.box_coder.code_size)'], {'kernel_size': '(1)'}), '(input_channels, self.num_anchors_per_location * self.box_coder.\n code_size, kernel_size=1)\n', (10707, 10801), True, 'import torch.nn as nn\n'), ((16972, 17028), 'torch.nn.init.normal_', 'nn.init.normal_', (['self.conv_box.weight'], {'mean': '(0)', 'std': '(0.001)'}), '(self.conv_box.weight, mean=0, std=0.001)\n', (16987, 17028), True, 'import torch.nn as nn\n'), ((821, 850), 'torch.cat', 'torch.cat', (['param_list'], {'dim': '(-2)'}), '(param_list, dim=-2)\n', (830, 850), False, 'import torch\n'), ((885, 912), 'torch.randn', 'torch.randn', (['(1)', 'division', '(1)'], {}), '(1, division, 1)\n', (896, 912), False, 'import torch\n'), ((2051, 2080), 'torch.cat', 'torch.cat', (['param_list'], {'dim': '(-1)'}), '(param_list, dim=-1)\n', (2060, 2080), False, 'import torch\n'), ((2115, 2142), 'torch.randn', 'torch.randn', (['(1)', '(1)', 'division'], {}), '(1, 1, division)\n', (2126, 2142), False, 'import torch\n'), ((3054, 3094), 'torch.randn', 'torch.randn', (['(1)', 'kernel_size', 'kernel_size'], {}), '(1, kernel_size, kernel_size)\n', (3065, 3094), False, 'import torch\n'), ((4942, 4968), 'torch.mean', 'torch.mean', (['weights'], {'dim': '(0)'}), '(weights, dim=0)\n', (4952, 4968), False, 'import torch\n'), ((5040, 5071), 'torch.nn.functional.conv2d', 'F.conv2d', (['input_tensor', 'weights'], {}), '(input_tensor, weights)\n', (5048, 5071), True, 'import torch.nn.functional as F\n'), ((8633, 8645), 'torch.nn.functional.sigmoid', 'F.sigmoid', (['x'], {}), '(x)\n', (8642, 8645), True, 'import torch.nn.functional as F\n'), ((11325, 11368), 'torch.nn.Conv2d', 'nn.Conv2d', (['input_channels', '(1)'], {'kernel_size': '(1)'}), '(input_channels, 1, kernel_size=1)\n', (11334, 11368), True, 'import torch.nn as nn\n'), ((12873, 12979), 'torch.nn.Conv2d', 'nn.Conv2d', (['input_channels', '(self.num_anchors_per_location * self.model_cfg.NUM_DIR_BINS)'], {'kernel_size': '(1)'}), '(input_channels, self.num_anchors_per_location * self.model_cfg.\n NUM_DIR_BINS, kernel_size=1)\n', (12882, 12979), True, 'import torch.nn as nn\n'), ((13342, 13365), 'torch.nn.AdaptiveAvgPool2d', 'nn.AdaptiveAvgPool2d', (['(1)'], {}), '(1)\n', (13362, 13365), True, 'import torch.nn as nn\n'), ((13409, 13424), 'torch.nn.ModuleDict', 'nn.ModuleDict', ([], {}), '()\n', (13422, 13424), True, 'import torch.nn as nn\n'), ((19772, 19829), 'torch.cat', 'torch.cat', (['(spatial_features_2d, x_range, y_range)'], {'dim': '(1)'}), '((spatial_features_2d, x_range, y_range), dim=1)\n', (19781, 19829), False, 'import torch\n'), ((29305, 29399), 'torch.ones', 'torch.ones', (['range_pred_near.shape'], {'dtype': 'torch.float32', 'device': 'spatial_features_2d.device'}), '(range_pred_near.shape, dtype=torch.float32, device=\n spatial_features_2d.device)\n', (29315, 29399), False, 'import torch\n'), ((29429, 29523), 'torch.zeros', 'torch.zeros', (['range_pred_far.shape'], {'dtype': 'torch.float32', 'device': 'spatial_features_2d.device'}), '(range_pred_far.shape, dtype=torch.float32, device=\n spatial_features_2d.device)\n', (29440, 29523), False, 'import torch\n'), ((8552, 8564), 'torch.nn.functional.sigmoid', 'F.sigmoid', (['x'], {}), '(x)\n', (8561, 8564), True, 'import torch.nn.functional as F\n'), ((13964, 13979), 'torch.nn.ModuleDict', 'nn.ModuleDict', ([], {}), '()\n', (13977, 13979), True, 'import torch.nn as nn\n'), ((14532, 14555), 'torch.nn.AdaptiveAvgPool2d', 'nn.AdaptiveAvgPool2d', (['(1)'], {}), '(1)\n', (14552, 14555), True, 'import torch.nn as nn\n'), ((14602, 14617), 'torch.nn.ModuleDict', 'nn.ModuleDict', ([], {}), '()\n', (14615, 14617), True, 'import torch.nn as nn\n'), ((16941, 16962), 'numpy.log', 'np.log', (['((1 - pi) / pi)'], {}), '((1 - pi) / pi)\n', (16947, 16962), True, 'import numpy as np\n'), ((21865, 21922), 'torch.cat', 'torch.cat', (['(spatial_features_2d, x_range, y_range)'], {'dim': '(1)'}), '((spatial_features_2d, x_range, y_range), dim=1)\n', (21874, 21922), False, 'import torch\n'), ((742, 801), 'torch.tensor', 'torch.tensor', (['[[[i * (division - 1)]]]'], {'dtype': 'torch.float32'}), '([[[i * (division - 1)]]], dtype=torch.float32)\n', (754, 801), False, 'import torch\n'), ((1972, 2031), 'torch.tensor', 'torch.tensor', (['[[[i * (division - 1)]]]'], {'dtype': 'torch.float32'}), '([[[i * (division - 1)]]], dtype=torch.float32)\n', (1984, 2031), False, 'import torch\n'), ((13585, 13619), 'torch.nn.Linear', 'nn.Linear', (['input_channels', 'dom_fc1'], {}), '(input_channels, dom_fc1)\n', (13594, 13619), True, 'import torch.nn as nn\n'), ((13673, 13686), 'torch.nn.ReLU', 'nn.ReLU', (['(True)'], {}), '(True)\n', (13680, 13686), True, 'import torch.nn as nn\n'), ((13688, 13700), 'torch.nn.Dropout', 'nn.Dropout', ([], {}), '()\n', (13698, 13700), True, 'import torch.nn as nn\n'), ((13754, 13781), 'torch.nn.Linear', 'nn.Linear', (['dom_fc1', 'dom_fc2'], {}), '(dom_fc1, dom_fc2)\n', (13763, 13781), True, 'import torch.nn as nn\n'), ((13783, 13796), 'torch.nn.ReLU', 'nn.ReLU', (['(True)'], {}), '(True)\n', (13790, 13796), True, 'import torch.nn as nn\n'), ((13850, 13862), 'torch.nn.Dropout', 'nn.Dropout', ([], {}), '()\n', (13860, 13862), True, 'import torch.nn as nn\n'), ((13864, 13885), 'torch.nn.Linear', 'nn.Linear', (['dom_fc2', '(1)'], {}), '(dom_fc2, 1)\n', (13873, 13885), True, 'import torch.nn as nn\n'), ((14151, 14185), 'torch.nn.Linear', 'nn.Linear', (['input_channels', 'dom_fc1'], {}), '(input_channels, dom_fc1)\n', (14160, 14185), True, 'import torch.nn as nn\n'), ((14243, 14256), 'torch.nn.ReLU', 'nn.ReLU', (['(True)'], {}), '(True)\n', (14250, 14256), True, 'import torch.nn as nn\n'), ((14258, 14270), 'torch.nn.Dropout', 'nn.Dropout', ([], {}), '()\n', (14268, 14270), True, 'import torch.nn as nn\n'), ((14328, 14355), 'torch.nn.Linear', 'nn.Linear', (['dom_fc1', 'dom_fc2'], {}), '(dom_fc1, dom_fc2)\n', (14337, 14355), True, 'import torch.nn as nn\n'), ((14357, 14370), 'torch.nn.ReLU', 'nn.ReLU', (['(True)'], {}), '(True)\n', (14364, 14370), True, 'import torch.nn as nn\n'), ((14428, 14440), 'torch.nn.Dropout', 'nn.Dropout', ([], {}), '()\n', (14438, 14440), True, 'import torch.nn as nn\n'), ((14442, 14463), 'torch.nn.Linear', 'nn.Linear', (['dom_fc2', '(1)'], {}), '(dom_fc2, 1)\n', (14451, 14463), True, 'import torch.nn as nn\n'), ((14736, 14770), 'torch.nn.Linear', 'nn.Linear', (['input_channels', 'dom_fc1'], {}), '(input_channels, dom_fc1)\n', (14745, 14770), True, 'import torch.nn as nn\n'), ((14824, 14837), 'torch.nn.ReLU', 'nn.ReLU', (['(True)'], {}), '(True)\n', (14831, 14837), True, 'import torch.nn as nn\n'), ((14839, 14851), 'torch.nn.Dropout', 'nn.Dropout', ([], {}), '()\n', (14849, 14851), True, 'import torch.nn as nn\n'), ((14905, 14932), 'torch.nn.Linear', 'nn.Linear', (['dom_fc1', 'dom_fc2'], {}), '(dom_fc1, dom_fc2)\n', (14914, 14932), True, 'import torch.nn as nn\n'), ((14934, 14947), 'torch.nn.ReLU', 'nn.ReLU', (['(True)'], {}), '(True)\n', (14941, 14947), True, 'import torch.nn as nn\n'), ((15001, 15013), 'torch.nn.Dropout', 'nn.Dropout', ([], {}), '()\n', (15011, 15013), True, 'import torch.nn as nn\n'), ((15015, 15036), 'torch.nn.Linear', 'nn.Linear', (['dom_fc2', '(1)'], {}), '(dom_fc2, 1)\n', (15024, 15036), True, 'import torch.nn as nn\n'), ((15375, 15398), 'torch.nn.AdaptiveAvgPool2d', 'nn.AdaptiveAvgPool2d', (['(1)'], {}), '(1)\n', (15395, 15398), True, 'import torch.nn as nn\n'), ((16449, 16472), 'torch.nn.AdaptiveAvgPool2d', 'nn.AdaptiveAvgPool2d', (['(1)'], {}), '(1)\n', (16469, 16472), True, 'import torch.nn as nn\n'), ((15454, 15492), 'torch.nn.Linear', 'nn.Linear', (['input_channels_dom', 'dom_fc1'], {}), '(input_channels_dom, dom_fc1)\n', (15463, 15492), True, 'import torch.nn as nn\n'), ((15546, 15559), 'torch.nn.ReLU', 'nn.ReLU', (['(True)'], {}), '(True)\n', (15553, 15559), True, 'import torch.nn as nn\n'), ((15561, 15573), 'torch.nn.Dropout', 'nn.Dropout', ([], {}), '()\n', (15571, 15573), True, 'import torch.nn as nn\n'), ((15627, 15654), 'torch.nn.Linear', 'nn.Linear', (['dom_fc1', 'dom_fc2'], {}), '(dom_fc1, dom_fc2)\n', (15636, 15654), True, 'import torch.nn as nn\n'), ((15656, 15669), 'torch.nn.ReLU', 'nn.ReLU', (['(True)'], {}), '(True)\n', (15663, 15669), True, 'import torch.nn as nn\n'), ((15723, 15735), 'torch.nn.Dropout', 'nn.Dropout', ([], {}), '()\n', (15733, 15735), True, 'import torch.nn as nn\n'), ((15737, 15758), 'torch.nn.Linear', 'nn.Linear', (['dom_fc2', '(1)'], {}), '(dom_fc2, 1)\n', (15746, 15758), True, 'import torch.nn as nn\n'), ((16524, 16562), 'torch.nn.Linear', 'nn.Linear', (['input_channels_dom', 'dom_fc1'], {}), '(input_channels_dom, dom_fc1)\n', (16533, 16562), True, 'import torch.nn as nn\n'), ((16612, 16625), 'torch.nn.ReLU', 'nn.ReLU', (['(True)'], {}), '(True)\n', (16619, 16625), True, 'import torch.nn as nn\n'), ((16627, 16639), 'torch.nn.Dropout', 'nn.Dropout', ([], {}), '()\n', (16637, 16639), True, 'import torch.nn as nn\n'), ((16689, 16716), 'torch.nn.Linear', 'nn.Linear', (['dom_fc1', 'dom_fc2'], {}), '(dom_fc1, dom_fc2)\n', (16698, 16716), True, 'import torch.nn as nn\n'), ((16718, 16731), 'torch.nn.ReLU', 'nn.ReLU', (['(True)'], {}), '(True)\n', (16725, 16731), True, 'import torch.nn as nn\n'), ((16781, 16793), 'torch.nn.Dropout', 'nn.Dropout', ([], {}), '()\n', (16791, 16793), True, 'import torch.nn as nn\n'), ((16795, 16816), 'torch.nn.Linear', 'nn.Linear', (['dom_fc2', '(1)'], {}), '(dom_fc2, 1)\n', (16804, 16816), True, 'import torch.nn as nn\n'), ((19352, 19392), 'torch.arange', 'torch.arange', (['(-half_range)', 'half_range', '(1)'], {}), '(-half_range, half_range, 1)\n', (19364, 19392), False, 'import torch\n'), ((19581, 19621), 'torch.arange', 'torch.arange', (['(-half_range)', 'half_range', '(1)'], {}), '(-half_range, half_range, 1)\n', (19593, 19621), False, 'import torch\n'), ((21478, 21518), 'torch.arange', 'torch.arange', (['(-half_range)', 'half_range', '(1)'], {}), '(-half_range, half_range, 1)\n', (21490, 21518), False, 'import torch\n'), ((21671, 21711), 'torch.arange', 'torch.arange', (['(-half_range)', 'half_range', '(1)'], {}), '(-half_range, half_range, 1)\n', (21683, 21711), False, 'import torch\n')]
""" Script for extracting the ground plane from the KITTI dataset. We need to determine the ground plane position and orientation in order to be able to reconstruct points on it, which we are trying to detect. We will collect all the points on the ground plane from the dataset and then fit a plane to them with RANSAC. ---------------------------------------------------------------------------------------------------- python kitti_extract_ground_plane.py path_labels ---------------------------------------------------------------------------------------------------- """ __date__ = '04/13/2017' __author__ = '<NAME>' __email__ = '<EMAIL>' import argparse import os import numpy as np import random # import matplotlib # matplotlib.use('Agg') # Prevents from using X interface for plotting from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D from shared.geometry import R3x3_y, t3x1, Rt4x4 #################################################################################################### # DEFINITIONS # #################################################################################################### # Parameter for RANSAC # Distance from the plane (in meters), which is considered as an inlier region INLIER_TRHESHOLD = 1.0 # Number of estimation iterations carried out by RANSAC RANSAC_ITERS = 10000 #################################################################################################### # FUNCTIONS # #################################################################################################### def plane_3p(p1, p2, p3): """ Computes the equation of a plane passing through the 3 given points. Input: p1, p2, p3: 3x1 np.matrix coordinates of points in the plane Returns: [a, b, c, d] coefficients as a 1x4 np.matrix """ l1 = p2 - p1 l2 = p3 - p1 normal = np.cross(l1, l2, axis=0) d = - (normal[0,0]*p1[0,0] + normal[1,0]*p1[1,0] + normal[2,0]*p1[2,0]) return np.asmatrix([normal[0,0], normal[1,0], normal[2,0], d]) def show_X_and_gp(gp_X_4xn, gp_1x4): """ Show a 3D plot of the estimated ground plane. """ fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.set_aspect('equal') ax.scatter(np.array(gp_X_4xn[2,0:1000]), np.array(gp_X_4xn[0,0:1000]), np.array(-gp_X_4xn[1,0:1000]), color='red') X = np.arange(-20, 20, 1) Y = np.arange(-1, 10, 1) X, Y = np.meshgrid(X, Y) Z = - (gp_1x4[0,0]*X + gp_1x4[0,1]*Y + gp_1x4[0,3]) / gp_1x4[0,2] ax.plot_surface(Z, X, -Y, linewidth=0, alpha=0.5, antialiased=True) # Bounding box of the car ax.plot([3,3,3,3,3], [1.5, 1.5, -1.5, -1.5, 1.5], [0,-1.9,-1.9,0,0], color='green') ax.plot([-3,-3,-3,-3,-3], [1.5, 1.5, -1.5, -1.5, 1.5], [0,-1.9,-1.9,0,0], color='red') ax.plot([3, -3], [1.5, 1.5], [0,0], color='blue') ax.plot([3, -3], [1.5, 1.5], [-1.9,-1.9], color='blue') ax.plot([3, -3], [-1.5, -1.5], [0,0], color='blue') ax.plot([3, -3], [-1.5, -1.5], [-1.9,-1.9], color='blue') ax.set_xlim(-100, 100) ax.set_ylim(-100, 100) ax.set_zlim(-100, 100) ax.set_xlabel('Z') ax.set_ylabel('X') ax.set_zlabel('Y') plt.show() #################################################################################################### # CLASSES # #################################################################################################### class GroundPlaneEstimator(object): """ Takes care of the estimation of the ground plane position in the KITTI dataset. """ def __init__(self, path_labels): """ Input: path_labels: Path to the "label_2" folder of the KITTI dataset """ super(GroundPlaneEstimator, self).__init__() self.path_labels = path_labels self.gp_points = [] def run_estimation(self): """ Runs the whole process of estimating the ground plane. """ print('-- ESTIMATING GROUND PLANE POSITION') # Read label files and get all ground plane points print('-- Reading label files') self._read_label_files() print('-- Label files contain ' + str(len(self.gp_points)) + ' points') # Create a matrix from all the points for easier computation self.gp_X_4xn = np.asmatrix(np.ones((4, len(self.gp_points)))) for i in xrange(len(self.gp_points)): self.gp_X_4xn[0:3,i] = self.gp_points[i] # plt.scatter(self.gp_X_4xn[2,:], self.gp_X_4xn[1,:]) # plt.show() # Run RANSAC on those points print('-- Running RANSAC plane estimation') self._ransac_plane() def _read_label_files(self): """ Reads all label files and extract the points on the ground plane. """ filenames = [f for f in os.listdir(self.path_labels) if os.path.isfile(os.path.join(self.path_labels, f))] if len(filenames) != 7481: print('Wrong number (%d) of files in the KITTI dataset! Should be 7481.'%(len(filenames))) exit(1) # Read each label file # i = 0 for f in filenames: path_label_file = os.path.join(self.path_labels, f) self._process_label_file(path_label_file) # i += 1 # if i == 1000: break def _process_label_file(self, path_label_file): """ Processes one label file. Input: path_label_file: Path to the TXT label file in KITTI format to be processed. """ with open(path_label_file, 'r') as infile_label: # Read the objects for line in infile_label: line = line.rstrip('\n') data = line.split(' ') # First element of the data is the label. We don't want to process 'Misc' and # 'DontCare' labels if data[0] == 'Misc' or data[0] == 'DontCare': continue # Extract the points of this object on the ground plane self._extract_ground_plane_pts(data) def _extract_ground_plane_pts(self, data): """ Extract 3D points from the object bounding box, which lie on the ground plane. Input: data: One split line of the label file (line.split(' ')) """ # Object dimensions h = float(data[8]) w = float(data[9]) l = float(data[10]) # Position of the center point on the ground plane (xz plane) cx = float(data[11]) cy = float(data[12]) cz = float(data[13]) # Rotation of the object around y ry = float(data[14]) # 3D box corners on the ground plane. Careful, the coordinate system of the car is that # x points forward, not z! (It is rotated by 90deg with respect to the camera one) # fbr, rbr, fbl, rbl X = np.asmatrix([[l/2, -l/2, l/2, -l/2], [0, 0, 0, 0 ], [-w/2, -w/2, w/2, w/2 ], [1, 1, 1, 1 ]]) # Rotate the 3D box around y axis and translate it to the correct position in the cam. frame X = Rt4x4(R3x3_y(ry), t3x1(cx, cy, cz)) * X self.gp_points.append(X[0:3,0]) self.gp_points.append(X[0:3,1]) self.gp_points.append(X[0:3,2]) self.gp_points.append(X[0:3,3]) def _ransac_plane(self): """ Finds "optimal" ground plane position given the points. Returns: [a, b, c, d] plane equation ax+by+cz+d=0 coefficients as a 1x4 np.matrix """ num_points = len(self.gp_points) # Variables for storing minimum distance sum from the estimated plane dist2_sum_min = 99999999999999999 gp_1x4_max = np.asmatrix(np.zeros((1,4))) for i in range(RANSAC_ITERS): rp = random.sample(range(0, num_points), 3) # Compute the equation of the ground plane gp_1x4 = plane_3p(self.gp_points[rp[0]], self.gp_points[rp[1]], self.gp_points[rp[2]]) # Check that the plane gives small errors on the original points - when we have some # close to singular situation we have to be careful if gp_1x4 * self.gp_X_4xn[:,rp[0]] > 0.000000001 or \ gp_1x4 * self.gp_X_4xn[:,rp[1]] > 0.000000001 or \ gp_1x4 * self.gp_X_4xn[:,rp[2]] > 0.000000001: print('WARNING: Solution not precise, skipping...') continue # Compute the sum of distances from this plane distances2 = np.power(gp_1x4 * self.gp_X_4xn, 2) dist2_sum = np.sum(distances2, axis=1) if dist2_sum[0,0] < dist2_sum_min: print('New min distance sum: ' + str(dist2_sum[0,0])) dist2_sum_min = dist2_sum[0,0] gp_1x4_max = gp_1x4 print('-- RANSAC FINISHED') print('Estimated ground plane: ' + str(gp_1x4_max)) print('Sum of distances: ' + str(dist2_sum_min) + ', ' + str(dist2_sum_min/num_points) + ' per point') # Show a plot of the plane show_X_and_gp(self.gp_X_4xn, gp_1x4_max) return gp_1x4_max #################################################################################################### # MAIN # #################################################################################################### def parse_arguments(): """ Parse input options of the script. """ parser = argparse.ArgumentParser(description='Convert KITTI label files into BBTXT.') parser.add_argument('path_labels', metavar='path_labels', type=str, help='Path to the "label_2" folder of the KITTI dataset') args = parser.parse_args() if not os.path.exists(args.path_labels): print('Input path "%s" does not exist!'%(args.path_labels)) parser.print_help() exit(1) return args def main(): args = parse_arguments() gpe = GroundPlaneEstimator(args.path_labels) gpe.run_estimation() if __name__ == '__main__': main()
[ "numpy.meshgrid", "matplotlib.pyplot.show", "argparse.ArgumentParser", "numpy.sum", "shared.geometry.t3x1", "numpy.power", "numpy.cross", "os.path.exists", "numpy.zeros", "matplotlib.pyplot.figure", "numpy.asmatrix", "numpy.arange", "numpy.array", "shared.geometry.R3x3_y", "os.path.join", "os.listdir" ]
[((2022, 2046), 'numpy.cross', 'np.cross', (['l1', 'l2'], {'axis': '(0)'}), '(l1, l2, axis=0)\n', (2030, 2046), True, 'import numpy as np\n'), ((2129, 2187), 'numpy.asmatrix', 'np.asmatrix', (['[normal[0, 0], normal[1, 0], normal[2, 0], d]'], {}), '([normal[0, 0], normal[1, 0], normal[2, 0], d])\n', (2140, 2187), True, 'import numpy as np\n'), ((2288, 2300), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (2298, 2300), True, 'from matplotlib import pyplot as plt\n'), ((2492, 2513), 'numpy.arange', 'np.arange', (['(-20)', '(20)', '(1)'], {}), '(-20, 20, 1)\n', (2501, 2513), True, 'import numpy as np\n'), ((2519, 2539), 'numpy.arange', 'np.arange', (['(-1)', '(10)', '(1)'], {}), '(-1, 10, 1)\n', (2528, 2539), True, 'import numpy as np\n'), ((2548, 2565), 'numpy.meshgrid', 'np.meshgrid', (['X', 'Y'], {}), '(X, Y)\n', (2559, 2565), True, 'import numpy as np\n'), ((3260, 3270), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3268, 3270), True, 'from matplotlib import pyplot as plt\n'), ((8929, 9005), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Convert KITTI label files into BBTXT."""'}), "(description='Convert KITTI label files into BBTXT.')\n", (8952, 9005), False, 'import argparse\n'), ((2382, 2411), 'numpy.array', 'np.array', (['gp_X_4xn[2, 0:1000]'], {}), '(gp_X_4xn[2, 0:1000])\n', (2390, 2411), True, 'import numpy as np\n'), ((2412, 2441), 'numpy.array', 'np.array', (['gp_X_4xn[0, 0:1000]'], {}), '(gp_X_4xn[0, 0:1000])\n', (2420, 2441), True, 'import numpy as np\n'), ((2442, 2472), 'numpy.array', 'np.array', (['(-gp_X_4xn[1, 0:1000])'], {}), '(-gp_X_4xn[1, 0:1000])\n', (2450, 2472), True, 'import numpy as np\n'), ((6539, 6648), 'numpy.asmatrix', 'np.asmatrix', (['[[l / 2, -l / 2, l / 2, -l / 2], [0, 0, 0, 0], [-w / 2, -w / 2, w / 2, w / \n 2], [1, 1, 1, 1]]'], {}), '([[l / 2, -l / 2, l / 2, -l / 2], [0, 0, 0, 0], [-w / 2, -w / 2,\n w / 2, w / 2], [1, 1, 1, 1]])\n', (6550, 6648), True, 'import numpy as np\n'), ((9178, 9210), 'os.path.exists', 'os.path.exists', (['args.path_labels'], {}), '(args.path_labels)\n', (9192, 9210), False, 'import os\n'), ((5096, 5129), 'os.path.join', 'os.path.join', (['self.path_labels', 'f'], {}), '(self.path_labels, f)\n', (5108, 5129), False, 'import os\n'), ((7341, 7357), 'numpy.zeros', 'np.zeros', (['(1, 4)'], {}), '((1, 4))\n', (7349, 7357), True, 'import numpy as np\n'), ((8020, 8055), 'numpy.power', 'np.power', (['(gp_1x4 * self.gp_X_4xn)', '(2)'], {}), '(gp_1x4 * self.gp_X_4xn, 2)\n', (8028, 8055), True, 'import numpy as np\n'), ((8071, 8097), 'numpy.sum', 'np.sum', (['distances2'], {'axis': '(1)'}), '(distances2, axis=1)\n', (8077, 8097), True, 'import numpy as np\n'), ((4792, 4820), 'os.listdir', 'os.listdir', (['self.path_labels'], {}), '(self.path_labels)\n', (4802, 4820), False, 'import os\n'), ((6808, 6818), 'shared.geometry.R3x3_y', 'R3x3_y', (['ry'], {}), '(ry)\n', (6814, 6818), False, 'from shared.geometry import R3x3_y, t3x1, Rt4x4\n'), ((6820, 6836), 'shared.geometry.t3x1', 't3x1', (['cx', 'cy', 'cz'], {}), '(cx, cy, cz)\n', (6824, 6836), False, 'from shared.geometry import R3x3_y, t3x1, Rt4x4\n'), ((4846, 4879), 'os.path.join', 'os.path.join', (['self.path_labels', 'f'], {}), '(self.path_labels, f)\n', (4858, 4879), False, 'import os\n')]
import pytest import numpy as np from FastDSP.structures import GPUArray class TestGPUArray: @classmethod def setup_class(cls): cls.rows = 4 cls.cols = 6 cls.array_uint8 = np.ones((cls.rows, cls.cols), dtype=np.uint8) cls.array_int = np.ones((cls.rows, cls.cols), dtype=np.int32) cls.array_float = np.ones((cls.rows, cls.cols), dtype=np.float32) cls.array_double = np.ones((cls.rows, cls.cols), dtype=np.float64) cls.array_complex_float = np.ones((cls.rows, cls.cols), dtype=np.complex64) cls.array_complex_double = np.ones((cls.rows, cls.cols), dtype=np.complex128) cls.array_uint8_gpu = GPUArray(cls.array_uint8) cls.array_int_gpu = GPUArray(cls.array_int) cls.array_float_gpu = GPUArray(cls.array_float) cls.array_double_gpu = GPUArray(cls.array_double) cls.array_float_complex_gpu = GPUArray(cls.array_complex_float) cls.array_complex_double_gpu = GPUArray(cls.array_complex_double) def test_uint8_array_transfer_to_device_and_back(self): assert(np.all(self.array_uint8 == self.array_uint8_gpu.get())) def test_int_array_transfer_to_device_and_back(self): assert(np.all(self.array_int == self.array_int_gpu.get())) def test_float_array_transfer_to_device_and_back(self): assert(np.all(self.array_float == self.array_float_gpu.get())) def test_double_array_transfer_to_device_and_back(self): assert(np.all(self.array_double == self.array_double_gpu.get())) def test_complex_float_array_transfer_to_device(self): assert(np.all(self.array_complex_float == self.array_float_complex_gpu.get())) def test_complex_double_array_transfer_to_device(self): assert(np.all(self.array_complex_double == self.array_complex_double_gpu.get())) def test_right_item_is_returned(self): for i in range(self.rows): for j in range(self.cols): assert(self.array_uint8[i, j] == self.array_uint8_gpu[i*self.cols + self.rows]) assert(self.array_int[i, j] == self.array_int_gpu[i*self.cols + self.rows]) assert(self.array_float[i, j] == self.array_float_gpu[i*self.cols + self.rows]) assert(self.array_double[i, j] == self.array_double_gpu[i*self.cols + self.rows]) assert(self.array_complex_float[i, j] == self.array_float_complex_gpu[i*self.cols + self.rows]) assert(self.array_complex_double[i, j] == self.array_float_complex_gpu[i*self.cols + self.rows]) def test_uint8_addition_returns_right_value(self): array3_uint8 = self.array_uint8_gpu + self.array_uint8_gpu array3 = self.array_uint8 + self.array_uint8 assert(np.all(array3_uint8.get() == array3)) def test_int_addition_returns_right_value(self): array3_int = self.array_int_gpu + self.array_int_gpu array3 = self.array_int + self.array_int assert(np.all(array3_int.get() == array3)) def test_float_addition_returns_right_value(self): array3_float = self.array_float_gpu + self.array_float_gpu array3 = self.array_float + self.array_float assert(np.all(array3_float.get() == array3)) def test_double_addition_returns_right_value(self): array3_double = self.array_double_gpu + self.array_double_gpu array3 = self.array_double + self.array_double assert(np.all(array3_double.get() == array3)) def test_complex_float_addition_returns_the_right_value(self): array3_complex = self.array_float_complex_gpu + self.array_float_complex_gpu array3 = self.array_complex_float + self.array_complex_float assert(np.all(array3_complex.get() == array3)) def test_complex_double_addition_return_the_right_value(self): array3_complex_double = self.array_complex_double_gpu + self.array_complex_double_gpu array3 = self.array_complex_double + self.array_complex_double assert(np.all(array3_complex_double.get() == array3)) def test_uint8_subtraction_returns_right_value(self): array3_uint8 = self.array_uint8_gpu - self.array_uint8_gpu array3 = self.array_uint8 - self.array_uint8 assert(np.all(array3_uint8.get() == array3)) def test_int_subtraction_returns_right_value(self): array3_int = self.array_int_gpu - self.array_int_gpu array3 = self.array_int - self.array_int assert(np.all(array3_int.get() == array3)) def test_float_subtraction_returns_right_value(self): array3_float = self.array_float_gpu - self.array_float_gpu array3 = self.array_float - self.array_float assert(np.all(array3_float.get() == array3)) def test_double_subtraction_returns_right_value(self): array3_double = self.array_double_gpu - self.array_double_gpu array3 = self.array_double - self.array_double assert(np.all(array3_double.get() == array3)) def test_complex_float_subtraction_returns_the_right_value(self): array3_complex = self.array_float_complex_gpu - self.array_float_complex_gpu array3 = self.array_complex_float - self.array_complex_float assert(np.all(array3_complex.get() == array3)) def test_complex_double_subtraction_return_the_right_value(self): array3_complex_double = self.array_complex_double_gpu - self.array_complex_double_gpu array3 = self.array_complex_double - self.array_complex_double assert(np.all(array3_complex_double.get() == array3)) def test_uint8_multiplication_returns_right_value(self): array3_uint8 = self.array_uint8_gpu * self.array_uint8_gpu array3 = self.array_uint8 * self.array_uint8 assert(np.all(array3_uint8.get() == array3)) def test_int_multiplication_returns_right_value(self): array3_int = self.array_int_gpu * self.array_int_gpu array3 = self.array_int * self.array_int assert(np.all(array3_int.get() == array3)) def test_float_multiplication_returns_right_value(self): array3_float = self.array_float_gpu * self.array_float_gpu array3 = self.array_float * self.array_float assert(np.all(array3_float.get() == array3)) def test_double_multiplication_returns_right_value(self): array3_double = self.array_double_gpu * self.array_double_gpu array3 = self.array_double * self.array_double assert(np.all(array3_double.get() == array3)) def test_complex_float_multiplication_returns_the_right_value(self): array3_complex = self.array_float_complex_gpu * self.array_float_complex_gpu array3 = self.array_complex_float * self.array_complex_float assert(np.all(array3_complex.get() == array3)) def test_complex_double_multiplication_return_the_right_value(self): array3_complex_double = self.array_complex_double_gpu * self.array_complex_double_gpu array3 = self.array_complex_double * self.array_complex_double assert(np.all(array3_complex_double.get() == array3)) def test_uint8_division_returns_right_value(self): array3_uint8 = self.array_uint8_gpu / self.array_uint8_gpu array3 = self.array_uint8 / self.array_uint8 assert(np.all(array3_uint8.get() == array3)) def test_int_division_returns_right_value(self): array3_int = self.array_int_gpu / self.array_int_gpu array3 = self.array_int / self.array_int assert(np.all(array3_int.get() == array3)) def test_float_division_returns_right_value(self): array3_float = self.array_float_gpu / self.array_float_gpu array3 = self.array_float / self.array_float assert(np.all(array3_float.get() == array3)) def test_double_division_returns_right_value(self): array3_double = self.array_double_gpu / self.array_double_gpu array3 = self.array_double / self.array_double assert(np.all(array3_double.get() == array3)) def test_complex_float_division_returns_the_right_value(self): array3_complex = self.array_float_complex_gpu / self.array_float_complex_gpu array3 = self.array_complex_float / self.array_complex_float assert(np.all(array3_complex.get() == array3)) def test_complex_double_division_return_the_right_value(self): array3_complex_double = self.array_complex_double_gpu / self.array_complex_double_gpu array3 = self.array_complex_double / self.array_complex_double assert(np.all(array3_complex_double.get() == array3))
[ "FastDSP.structures.GPUArray", "numpy.ones" ]
[((209, 254), 'numpy.ones', 'np.ones', (['(cls.rows, cls.cols)'], {'dtype': 'np.uint8'}), '((cls.rows, cls.cols), dtype=np.uint8)\n', (216, 254), True, 'import numpy as np\n'), ((279, 324), 'numpy.ones', 'np.ones', (['(cls.rows, cls.cols)'], {'dtype': 'np.int32'}), '((cls.rows, cls.cols), dtype=np.int32)\n', (286, 324), True, 'import numpy as np\n'), ((351, 398), 'numpy.ones', 'np.ones', (['(cls.rows, cls.cols)'], {'dtype': 'np.float32'}), '((cls.rows, cls.cols), dtype=np.float32)\n', (358, 398), True, 'import numpy as np\n'), ((426, 473), 'numpy.ones', 'np.ones', (['(cls.rows, cls.cols)'], {'dtype': 'np.float64'}), '((cls.rows, cls.cols), dtype=np.float64)\n', (433, 473), True, 'import numpy as np\n'), ((508, 557), 'numpy.ones', 'np.ones', (['(cls.rows, cls.cols)'], {'dtype': 'np.complex64'}), '((cls.rows, cls.cols), dtype=np.complex64)\n', (515, 557), True, 'import numpy as np\n'), ((593, 643), 'numpy.ones', 'np.ones', (['(cls.rows, cls.cols)'], {'dtype': 'np.complex128'}), '((cls.rows, cls.cols), dtype=np.complex128)\n', (600, 643), True, 'import numpy as np\n'), ((675, 700), 'FastDSP.structures.GPUArray', 'GPUArray', (['cls.array_uint8'], {}), '(cls.array_uint8)\n', (683, 700), False, 'from FastDSP.structures import GPUArray\n'), ((729, 752), 'FastDSP.structures.GPUArray', 'GPUArray', (['cls.array_int'], {}), '(cls.array_int)\n', (737, 752), False, 'from FastDSP.structures import GPUArray\n'), ((783, 808), 'FastDSP.structures.GPUArray', 'GPUArray', (['cls.array_float'], {}), '(cls.array_float)\n', (791, 808), False, 'from FastDSP.structures import GPUArray\n'), ((840, 866), 'FastDSP.structures.GPUArray', 'GPUArray', (['cls.array_double'], {}), '(cls.array_double)\n', (848, 866), False, 'from FastDSP.structures import GPUArray\n'), ((905, 938), 'FastDSP.structures.GPUArray', 'GPUArray', (['cls.array_complex_float'], {}), '(cls.array_complex_float)\n', (913, 938), False, 'from FastDSP.structures import GPUArray\n'), ((978, 1012), 'FastDSP.structures.GPUArray', 'GPUArray', (['cls.array_complex_double'], {}), '(cls.array_complex_double)\n', (986, 1012), False, 'from FastDSP.structures import GPUArray\n')]
import numpy as np class MotionExplorer: """ Aim at exploring motions, represented as sampled observations of a n-dimensional input vector. This stream of vectors describe a vector space in which the Mahalanobis distance is used to assess the distance of new samples to previously seen samples. Everytime a new sample is observed that is when that K nearest neighbour are in average further away than N standard deviation, the new sample is deamed original and saved to the attribute observations. """ def __init__(self, inputdim = 2, stepsize = 10, order = 4, window = 30, start_buffer = 10, periodic_recompute = 5, number_of_neighbour = 5, number_of_stdev = 4.5 ): """ Parameters ---------- inputdim : int the number of dimension of the input vector. stepsize : int The size of the interpolation step in milliseconds. order : int The dimension of the output vector, 1 is position only, 2 includes velocity, 3 provides acceleration, and so on. window : int The size of the averaging window in samples. start_buffer : int The number of sample is takes before any observation can be saved, this leaves time for the Savitsky Golay interpolation to start ouputing some data. periodic_recompute : int The number of samples after which mean and covarianve of saved observations will be recomputed. number_of_neighbour : int The number of closest neighnbours that are considered when assessing if a new sample is original or not. number_of_stdev : float The number of standard deviation a new vectors has to be from the mean of K nearest neighbour as measured by Mahalanobis distance. When the mean of K is greater than this value, the new sample is considered original and saved to observations. """ self.inputdim = inputdim self.order = order ## filtering self.axis = [AxisFilter(stepsize, order, window) for _ in range(inputdim)] ## observations space self.observations = np.zeros((1,self.inputdim*self.order)) self.mean = np.zeros(self.inputdim*self.order) self.icov = np.eye(self.inputdim*self.order) ## variable logic self.counter = 0 self.start_buffer = start_buffer self.periodic_recompute = periodic_recompute self.number_of_neighbour = 5 self.number_of_stdev = 4.5 self.last_sample = np.zeros(self.inputdim*self.order) def new_sample(self, ms, ndata): """Passes a new observed sample to the motionexplorer. It will filter it based on the last observed sample and compute the distance of this current sample to all previously saved original samples. If the average distance of the N nearest neightbour is greater than X stdev, then the current sample is saved to the class attribute observations. Parameters ---------- ms : int Timestamp in milliseconds. This can be easily produced with the time module and the call to: int(round(time.time() * 1000)). ndata : iterable An iterable object (tuple, ndarray, ..) representing the N dimensional vector of the current sample. Returns ------- int, bool average Mahalanobis distance to the K nearest neighboour and flag saying if the current sample is added to the set of original observations. """ ## ndata.shape == inputdim self.counter += 1 for i, data in enumerate(ndata): self.axis[i].new_sample(ms, data) ## recompute mean and icov every periodic_recompute if self.counter % self.periodic_recompute == 0: self.compute_observations_mean_icov() ## get last sample from each axis and squash to 1D sample = np.array([self.axis[i].samples[-1] for i in range(self.inputdim)]).reshape(-1) ## compute the distance of sample to all stored observations distances = self.distance_to_observations(sample) distance_meank = np.mean(distances[:self.number_of_neighbour]) if (self.counter > self.start_buffer) and self.axis[0].full: ## keep the sample if further than number of stdev to previous observations if distance_meank > self.number_of_stdev: self.observations = np.vstack((self.observations, sample)) added = True else: added = False else: added = False self.last_sample = sample return distance_meank, added def distance_to_observations(self, vector): """Return the Mahalanobis distance of vector to the space of all observations. The ouput distances are sorted. https://en.wikipedia.org/wiki/Mahalanobis_distance """ diff = self.observations - vector distances = np.sqrt(np.diag(np.dot(np.dot(diff, self.icov), diff.T))) return np.sort(distances) def compute_observations_mean_icov(self): self.mean = np.mean(self.observations, axis=0) # print self.observations.shape[0] if self.observations.shape[0] > 1: self.icov = np.linalg.pinv(np.cov((self.observations-self.mean).transpose())) class AxisFilter: """Filters an unevenly sampled measurement dimension. It interpolates at constant time steps `stepsize` in ms, performs Butter worth filetering and Savitsky Golay interpolation of order `order` over a moving window `window`. """ def __init__(self, stepsize, order, window): """ Parameters ---------- stepsize : int The size of the interpolation step in milliseconds. order : int The dimension of the output vector, 1 is position only, 2 includes velocity, 3 provides acceleration, and so on. window : int The size of the averaging window in samples. """ self.stepsize = stepsize self.order = order self.interpolator = TimeInterpolator(stepsize) self.sgfitter = SavitskyGolayFitter(order, window) self.full = False def new_sample(self, time, value): self.samples = np.empty((0,self.order)) self.interpolator.new_sample(time, value) for point in self.interpolator.value_steps: point = self.sgfitter.new_sample(point) self.samples = np.vstack((self.samples, point)) self.full = self.sgfitter.full class TimeInterpolator: """Interpolate between 2 measurements at constant step size X in ms. """ def __init__(self, stepsize): self.stepsize = stepsize self.firstpoint = True def new_sample(self, time, value): if self.firstpoint == True: self.firstpoint = False self.time_steps = np.array([time]) self.value_steps = np.array([value]) else: self.time_steps = np.arange(self.last_time, time, self.stepsize) self.value_steps = np.interp(self.time_steps, [self.last_time, time], [self.last_value, value]) self.last_time = time self.last_value = value class SavitskyGolayFitter: def __init__(self, order = 4, window = 30): self.order = order if window%2==0: window = window + 1 self.window = window #compute the savitzky-golay differentiators sgolay = self.savitzky_golay(order, window) self.sgolay_diff = [] self.buffers = [] self.samples = 0 self.full = False #create the filters for i in range(order): self.sgolay_diff.append(np.ravel(sgolay[i, :])) self.buffers.append(IIRFilter(self.sgolay_diff[i], [1])) def new_sample(self, x): self.samples = self.samples + 1 if self.samples>self.window: self.full = True fits = np.zeros((self.order,)) # use enumerate or map c = 0 for buffer in self.buffers: fits[c] = buffer.filter(x) c = c + 1 return fits #sg coefficient computation def savitzky_golay(self, order = 2, window = 30): if window is None: window = order + 2 if window % 2 != 1 or window < 1: raise TypeError("window size must be a positive odd number") if window < order + 2: raise TypeError("window size is too small for the polynomial") # A second order polynomial has 3 coefficients order_range = range(order+1) half_window = (window-1)//2 B = np.mat( [ [k**i for i in order_range] for k in range(-half_window, half_window+1)] ) M = np.linalg.pinv(B) return M class IIRFilter: def __init__(self, B, A): """Create an IIR filter, given the B and A coefficient vectors. """ self.B = B self.A = A if len(A)>2: self.prev_outputs = Ringbuffer(len(A)-1) else: self.prev_outputs = Ringbuffer(3) self.prev_inputs = Ringbuffer(len(B)) def filter(self, x): """Take one sample and filter it. Return the output. """ y = 0 self.prev_inputs.new_sample(x) k =0 for b in self.B: y = y + b * self.prev_inputs.reverse_index(k) k = k + 1 k = 0 for a in self.A[1:]: y = y - a * self.prev_outputs.reverse_index(k) k = k + 1 y = y / self.A[0] self.prev_outputs.new_sample(y) return y def new_sample(self, x): return self.filter(x) class Ringbuffer: def __init__(self, size, init=0): if size<1: throw(Exception("Invalid size for a ringbuffer: must be >=1")) self.n_samples = size self.samples = np.ones((size,))*init self.read_head = 1 self.write_head = 0 self.sum = 0 def get_length(self): return self.n_samples def get_samples(self): return np.hstack((self.samples[self.read_head-1:],self.samples[0:self.read_head-1])) def get_sum(self): return self.sum def get_output(self): #self.read_head %= self.n_samples return self.samples[self.read_head-1] def get_mean(self): return self.sum / float(self.n_samples) def forward_index(self, i): new_index = self.read_head+i-1 new_index = new_index % self.n_samples return self.samples[new_index] def reverse_index(self, i): new_index = self.write_head-i-1 while new_index<0: new_index+=self.n_samples return self.samples[new_index] def new_sample(self, x): s = self.samples[self.write_head] self.samples[self.write_head] = x self.sum += x self.sum -= self.samples[self.read_head] self.read_head += 1 self.write_head += 1 self.read_head %= self.n_samples self.write_head %= self.n_samples return s
[ "numpy.dot", "numpy.ravel", "numpy.empty", "numpy.zeros", "numpy.ones", "numpy.hstack", "numpy.sort", "numpy.mean", "numpy.array", "numpy.arange", "numpy.interp", "numpy.eye", "numpy.linalg.pinv", "numpy.vstack" ]
[((2181, 2222), 'numpy.zeros', 'np.zeros', (['(1, self.inputdim * self.order)'], {}), '((1, self.inputdim * self.order))\n', (2189, 2222), True, 'import numpy as np\n'), ((2240, 2276), 'numpy.zeros', 'np.zeros', (['(self.inputdim * self.order)'], {}), '(self.inputdim * self.order)\n', (2248, 2276), True, 'import numpy as np\n'), ((2295, 2329), 'numpy.eye', 'np.eye', (['(self.inputdim * self.order)'], {}), '(self.inputdim * self.order)\n', (2301, 2329), True, 'import numpy as np\n'), ((2575, 2611), 'numpy.zeros', 'np.zeros', (['(self.inputdim * self.order)'], {}), '(self.inputdim * self.order)\n', (2583, 2611), True, 'import numpy as np\n'), ((4240, 4285), 'numpy.mean', 'np.mean', (['distances[:self.number_of_neighbour]'], {}), '(distances[:self.number_of_neighbour])\n', (4247, 4285), True, 'import numpy as np\n'), ((5134, 5152), 'numpy.sort', 'np.sort', (['distances'], {}), '(distances)\n', (5141, 5152), True, 'import numpy as np\n'), ((5220, 5254), 'numpy.mean', 'np.mean', (['self.observations'], {'axis': '(0)'}), '(self.observations, axis=0)\n', (5227, 5254), True, 'import numpy as np\n'), ((6373, 6398), 'numpy.empty', 'np.empty', (['(0, self.order)'], {}), '((0, self.order))\n', (6381, 6398), True, 'import numpy as np\n'), ((8073, 8096), 'numpy.zeros', 'np.zeros', (['(self.order,)'], {}), '((self.order,))\n', (8081, 8096), True, 'import numpy as np\n'), ((8879, 8896), 'numpy.linalg.pinv', 'np.linalg.pinv', (['B'], {}), '(B)\n', (8893, 8896), True, 'import numpy as np\n'), ((10209, 10295), 'numpy.hstack', 'np.hstack', (['(self.samples[self.read_head - 1:], self.samples[0:self.read_head - 1])'], {}), '((self.samples[self.read_head - 1:], self.samples[0:self.read_head -\n 1]))\n', (10218, 10295), True, 'import numpy as np\n'), ((6581, 6613), 'numpy.vstack', 'np.vstack', (['(self.samples, point)'], {}), '((self.samples, point))\n', (6590, 6613), True, 'import numpy as np\n'), ((7002, 7018), 'numpy.array', 'np.array', (['[time]'], {}), '([time])\n', (7010, 7018), True, 'import numpy as np\n'), ((7050, 7067), 'numpy.array', 'np.array', (['[value]'], {}), '([value])\n', (7058, 7067), True, 'import numpy as np\n'), ((7113, 7159), 'numpy.arange', 'np.arange', (['self.last_time', 'time', 'self.stepsize'], {}), '(self.last_time, time, self.stepsize)\n', (7122, 7159), True, 'import numpy as np\n'), ((7191, 7267), 'numpy.interp', 'np.interp', (['self.time_steps', '[self.last_time, time]', '[self.last_value, value]'], {}), '(self.time_steps, [self.last_time, time], [self.last_value, value])\n', (7200, 7267), True, 'import numpy as np\n'), ((10011, 10027), 'numpy.ones', 'np.ones', (['(size,)'], {}), '((size,))\n', (10018, 10027), True, 'import numpy as np\n'), ((4535, 4573), 'numpy.vstack', 'np.vstack', (['(self.observations, sample)'], {}), '((self.observations, sample))\n', (4544, 4573), True, 'import numpy as np\n'), ((7829, 7851), 'numpy.ravel', 'np.ravel', (['sgolay[i, :]'], {}), '(sgolay[i, :])\n', (7837, 7851), True, 'import numpy as np\n'), ((5084, 5107), 'numpy.dot', 'np.dot', (['diff', 'self.icov'], {}), '(diff, self.icov)\n', (5090, 5107), True, 'import numpy as np\n')]
import numpy as np import bokeh.plotting as bp bp.output_file("bokeh1.html") x = np.linspace(0, 2 * np.pi, 1024) y = np.cos(x) fig = bp.figure( ) fig.line(x, y) bp.show(fig)
[ "bokeh.plotting.figure", "bokeh.plotting.output_file", "bokeh.plotting.show", "numpy.cos", "numpy.linspace" ]
[((47, 76), 'bokeh.plotting.output_file', 'bp.output_file', (['"""bokeh1.html"""'], {}), "('bokeh1.html')\n", (61, 76), True, 'import bokeh.plotting as bp\n'), ((81, 112), 'numpy.linspace', 'np.linspace', (['(0)', '(2 * np.pi)', '(1024)'], {}), '(0, 2 * np.pi, 1024)\n', (92, 112), True, 'import numpy as np\n'), ((117, 126), 'numpy.cos', 'np.cos', (['x'], {}), '(x)\n', (123, 126), True, 'import numpy as np\n'), ((133, 144), 'bokeh.plotting.figure', 'bp.figure', ([], {}), '()\n', (142, 144), True, 'import bokeh.plotting as bp\n'), ((161, 173), 'bokeh.plotting.show', 'bp.show', (['fig'], {}), '(fig)\n', (168, 173), True, 'import bokeh.plotting as bp\n')]
import pdb import torch import numpy as np import time from tools.utils import Progbar,AverageMeter from matplotlib import pyplot as plt from scipy.integrate import simps def predict_set(nets, dataloader, runtime_params): run_type = runtime_params['run_type'] #net = net.eval() progbar = Progbar(len(dataloader.dataset), stateful_metrics=['run-type']) batch_time = AverageMeter() names = [] pred_landmarks = np.array([]) gt_landmarks = np.array([]) with torch.no_grad(): for i, (landmarks, imgs, img_paths) in enumerate(dataloader): s_time = time.time() imgs = imgs.cuda() names.extend(img_paths) net = nets[0] if 'half' in runtime_params.values(): output = net(imgs.half()) else: output = net(imgs) output = output.cpu().numpy() pred_landmarks = np.concatenate((pred_landmarks,output),axis=0) gt_landmarks = np.concatenate((gt_landmarks,landmarks.data.numpy()),axis=0) progbar.add(imgs.size(0), values=[('run-type', run_type)]) # ,('batch_time', batch_time.val)]) batch_time.update(time.time() - s_time) if runtime_params['debug'] and i: break pred_landmarks = pred_landmarks.reshape((-1,28,2)) gt_landmarks = gt_landmarks.reshape((-1,28,2)) assert gt_landmarks.shape == pred_landmarks.shape return gt_landmarks, gt_landmarks, names def dist(gtLandmark, dist_type='centers', left_pt=0, right_pt=8, num_eye_pts=8): if dist_type=='centers': normDist = np.linalg.norm(np.mean(gtLandmark[left_pt:left_pt+num_eye_pts], axis=0) - np.mean(gtLandmark[right_pt:right_pt+num_eye_pts], axis=0)) elif dist_type=='corners': normDist = np.linalg.norm(gtLandmark[left_pt] - gtLandmark[right_pt+num_eye_pts/2]) elif dist_type=='diagonal': height, width = np.max(gtLandmark, axis=0) - np.min(gtLandmark, axis=0) normDist = np.sqrt(width**2 + height**2) return normDist def landmark_error(gtLandmarks, predict_Landmarks, dist_type='centers', show_results=False, verbose=False): norm_errors = [] errors = [] for i in range(len(gtLandmarks)): norm_dist = dist(gtLandmarks[i], dist_type=dist_type) error = np.mean(np.sqrt(np.sum((gtLandmarks[i] - predict_Landmarks[i])**2, axis=1))) norm_error = error/norm_dist errors.append(error) norm_errors.append(norm_error) if verbose: print('{0}: {1}'.format(i, error)) if verbose: print("Image idxs sorted by error") print(np.argsort(errors)) avg_error = np.mean(errors) avg_norm_error = np.mean(norm_errors) print("Average error: {0}".format(avg_error)) print("Average norm error: {0}".format(avg_norm_error)) return norm_errors, errors def auc_error(errors, failure_threshold=0.03, step=0.0001, save_path='', showCurve=True): nErrors = len(errors) xAxis = list(np.arange(0., failure_threshold+step, step)) ced = [float(np.count_nonzero([errors <= x])) / nErrors for x in xAxis] auc = simps(ced, x=xAxis) / failure_threshold failure_rate = 1. - ced[-1] print("AUC @ {0}: {1}".format(failure_threshold, auc)) print("Failure rate: {0}".format(failure_rate)) if showCurve: plt.plot(xAxis, ced) plt.savefig(save_path) return auc, failure_rate def evaluate(gt_landmarks, landmarks,th,save_path): gt_landmarks = gt_landmarks.permute((1,0,2)).cpu().numpy() landmarks = landmarks.permute((1, 0, 2)).cpu().numpy() norm_errors, errors = landmark_error(gt_landmarks,landmarks) auc, failure_rate = auc_error(errors,th,save_path=save_path) return {'auc':auc,'failure_rate':failure_rate,"errors":errors}
[ "matplotlib.pyplot.savefig", "numpy.sum", "numpy.concatenate", "matplotlib.pyplot.plot", "numpy.count_nonzero", "time.time", "numpy.argsort", "numpy.max", "numpy.mean", "numpy.array", "numpy.arange", "numpy.linalg.norm", "numpy.min", "torch.no_grad", "scipy.integrate.simps", "tools.utils.AverageMeter", "numpy.sqrt" ]
[((383, 397), 'tools.utils.AverageMeter', 'AverageMeter', ([], {}), '()\n', (395, 397), False, 'from tools.utils import Progbar, AverageMeter\n'), ((434, 446), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (442, 446), True, 'import numpy as np\n'), ((466, 478), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (474, 478), True, 'import numpy as np\n'), ((2713, 2728), 'numpy.mean', 'np.mean', (['errors'], {}), '(errors)\n', (2720, 2728), True, 'import numpy as np\n'), ((2750, 2770), 'numpy.mean', 'np.mean', (['norm_errors'], {}), '(norm_errors)\n', (2757, 2770), True, 'import numpy as np\n'), ((488, 503), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (501, 503), False, 'import torch\n'), ((3046, 3092), 'numpy.arange', 'np.arange', (['(0.0)', '(failure_threshold + step)', 'step'], {}), '(0.0, failure_threshold + step, step)\n', (3055, 3092), True, 'import numpy as np\n'), ((3177, 3196), 'scipy.integrate.simps', 'simps', (['ced'], {'x': 'xAxis'}), '(ced, x=xAxis)\n', (3182, 3196), False, 'from scipy.integrate import simps\n'), ((3387, 3407), 'matplotlib.pyplot.plot', 'plt.plot', (['xAxis', 'ced'], {}), '(xAxis, ced)\n', (3395, 3407), True, 'from matplotlib import pyplot as plt\n'), ((3416, 3438), 'matplotlib.pyplot.savefig', 'plt.savefig', (['save_path'], {}), '(save_path)\n', (3427, 3438), True, 'from matplotlib import pyplot as plt\n'), ((596, 607), 'time.time', 'time.time', ([], {}), '()\n', (605, 607), False, 'import time\n'), ((919, 967), 'numpy.concatenate', 'np.concatenate', (['(pred_landmarks, output)'], {'axis': '(0)'}), '((pred_landmarks, output), axis=0)\n', (933, 967), True, 'import numpy as np\n'), ((1837, 1913), 'numpy.linalg.norm', 'np.linalg.norm', (['(gtLandmark[left_pt] - gtLandmark[right_pt + num_eye_pts / 2])'], {}), '(gtLandmark[left_pt] - gtLandmark[right_pt + num_eye_pts / 2])\n', (1851, 1913), True, 'import numpy as np\n'), ((2677, 2695), 'numpy.argsort', 'np.argsort', (['errors'], {}), '(errors)\n', (2687, 2695), True, 'import numpy as np\n'), ((1634, 1692), 'numpy.mean', 'np.mean', (['gtLandmark[left_pt:left_pt + num_eye_pts]'], {'axis': '(0)'}), '(gtLandmark[left_pt:left_pt + num_eye_pts], axis=0)\n', (1641, 1692), True, 'import numpy as np\n'), ((1727, 1787), 'numpy.mean', 'np.mean', (['gtLandmark[right_pt:right_pt + num_eye_pts]'], {'axis': '(0)'}), '(gtLandmark[right_pt:right_pt + num_eye_pts], axis=0)\n', (1734, 1787), True, 'import numpy as np\n'), ((2041, 2074), 'numpy.sqrt', 'np.sqrt', (['(width ** 2 + height ** 2)'], {}), '(width ** 2 + height ** 2)\n', (2048, 2074), True, 'import numpy as np\n'), ((2369, 2429), 'numpy.sum', 'np.sum', (['((gtLandmarks[i] - predict_Landmarks[i]) ** 2)'], {'axis': '(1)'}), '((gtLandmarks[i] - predict_Landmarks[i]) ** 2, axis=1)\n', (2375, 2429), True, 'import numpy as np\n'), ((3108, 3139), 'numpy.count_nonzero', 'np.count_nonzero', (['[errors <= x]'], {}), '([errors <= x])\n', (3124, 3139), True, 'import numpy as np\n'), ((1192, 1203), 'time.time', 'time.time', ([], {}), '()\n', (1201, 1203), False, 'import time\n'), ((1966, 1992), 'numpy.max', 'np.max', (['gtLandmark'], {'axis': '(0)'}), '(gtLandmark, axis=0)\n', (1972, 1992), True, 'import numpy as np\n'), ((1995, 2021), 'numpy.min', 'np.min', (['gtLandmark'], {'axis': '(0)'}), '(gtLandmark, axis=0)\n', (2001, 2021), True, 'import numpy as np\n')]
######################################## # MIT License # # Copyright (c) 2020 <NAME> ######################################## ''' Define the data_types.for the variables to use in the package. ''' import ctypes import numpy as np __all__ = [] # Types for numpy.ndarray objects cpu_float = np.float64 # double cpu_complex = np.complex128 # complex double cpu_int = np.int32 # int # unsigned integer (char does not seem to be allowed in CUDA), and int16 is too small (must not be equal to cpu_int) cpu_bool = np.uint32 cpu_real_bool = np.bool # bool (not allowed in PyOpenCL) def array_float(*args, **kwargs): return np.array(*args, dtype=cpu_float, **kwargs) def array_int(*args, **kwargs): return np.array(*args, dtype=cpu_int, **kwargs) def empty_float(*args, **kwargs): return np.empty(*args, dtype=cpu_float, **kwargs) def empty_int(*args, **kwargs): return np.empty(*args, dtype=cpu_int, **kwargs) def fromiter_float(i): return np.fromiter(i, dtype=cpu_float) def fromiter_int(i): return np.fromiter(i, dtype=cpu_int) def full_float(n, f): return np.full(n, f, dtype=cpu_float) def full_int(n, i): return np.full(n, i, dtype=cpu_int) # Expose ctypes objects c_double = ctypes.c_double c_double_p = ctypes.POINTER(c_double) c_int = ctypes.c_int c_int_p = ctypes.POINTER(c_int) py_object = ctypes.py_object # Functions to deal with ctypes and numpy value types def as_c_double(*args): ''' Transform arguments to a :mod:`ctypes` "double". ''' if len(args) == 1: return c_double(*args) else: return tuple(c_double(a) for a in args) def as_double(*args): ''' Transform arguments to a :mod:`numpy` "double". ''' if len(args) == 1: return cpu_float(*args) else: return tuple(cpu_float(a) for a in args) def data_as_c_double(*args): ''' Transform arguments to a :mod:`ctypes` "double*". ''' if len(args) == 1: return args[0].ctypes.data_as(c_double_p) else: return tuple(a.ctypes.data_as(c_double_p) for a in args) def as_c_integer(*args): ''' Transform arguments to a :mode:`ctypes` "int". ''' if len(args) == 1: return c_int(*args) else: return tuple(c_int(a) for a in args) def as_integer(*args): ''' Transform arguments to a :mod:`numpy` "integral" type. ''' if len(args) == 1: return cpu_int(*args) else: return tuple(cpu_int(a) for a in args) def data_as_c_int(*args): ''' Transform arguments to a :mod:`ctypes` "int*". ''' if len(args) == 1: return args[0].ctypes.data_as(c_int_p) else: return tuple(a.ctypes.data_as(c_int_p) for a in args) def as_py_object(*args): ''' Transform arguments to a :mod:`ctypes` "PyObject". ''' if len(args) == 1: return py_object(*args) else: return tuple(py_object(a) for a in args)
[ "numpy.full", "numpy.empty", "numpy.array", "numpy.fromiter", "ctypes.POINTER" ]
[((1258, 1282), 'ctypes.POINTER', 'ctypes.POINTER', (['c_double'], {}), '(c_double)\n', (1272, 1282), False, 'import ctypes\n'), ((1314, 1335), 'ctypes.POINTER', 'ctypes.POINTER', (['c_int'], {}), '(c_int)\n', (1328, 1335), False, 'import ctypes\n'), ((627, 669), 'numpy.array', 'np.array', (['*args'], {'dtype': 'cpu_float'}), '(*args, dtype=cpu_float, **kwargs)\n', (635, 669), True, 'import numpy as np\n'), ((715, 755), 'numpy.array', 'np.array', (['*args'], {'dtype': 'cpu_int'}), '(*args, dtype=cpu_int, **kwargs)\n', (723, 755), True, 'import numpy as np\n'), ((803, 845), 'numpy.empty', 'np.empty', (['*args'], {'dtype': 'cpu_float'}), '(*args, dtype=cpu_float, **kwargs)\n', (811, 845), True, 'import numpy as np\n'), ((891, 931), 'numpy.empty', 'np.empty', (['*args'], {'dtype': 'cpu_int'}), '(*args, dtype=cpu_int, **kwargs)\n', (899, 931), True, 'import numpy as np\n'), ((968, 999), 'numpy.fromiter', 'np.fromiter', (['i'], {'dtype': 'cpu_float'}), '(i, dtype=cpu_float)\n', (979, 999), True, 'import numpy as np\n'), ((1034, 1063), 'numpy.fromiter', 'np.fromiter', (['i'], {'dtype': 'cpu_int'}), '(i, dtype=cpu_int)\n', (1045, 1063), True, 'import numpy as np\n'), ((1099, 1129), 'numpy.full', 'np.full', (['n', 'f'], {'dtype': 'cpu_float'}), '(n, f, dtype=cpu_float)\n', (1106, 1129), True, 'import numpy as np\n'), ((1163, 1191), 'numpy.full', 'np.full', (['n', 'i'], {'dtype': 'cpu_int'}), '(n, i, dtype=cpu_int)\n', (1170, 1191), True, 'import numpy as np\n')]
# bezier_curve()生成贝塞尔曲线坐标。 import numpy as np from skimage.draw import bezier_curve img = np.zeros((10, 10), dtype=np.uint8) print(img[1, 5]) rr, cc = bezier_curve(1, 5, 5, -2, 8, 8, 2) img[rr, cc] = 1 print(img) print(img[1, 5]) print(img[5, -2]) print(img[8, 8])
[ "numpy.zeros", "skimage.draw.bezier_curve" ]
[((90, 124), 'numpy.zeros', 'np.zeros', (['(10, 10)'], {'dtype': 'np.uint8'}), '((10, 10), dtype=np.uint8)\n', (98, 124), True, 'import numpy as np\n'), ((151, 185), 'skimage.draw.bezier_curve', 'bezier_curve', (['(1)', '(5)', '(5)', '(-2)', '(8)', '(8)', '(2)'], {}), '(1, 5, 5, -2, 8, 8, 2)\n', (163, 185), False, 'from skimage.draw import bezier_curve\n')]
import numpy as np import cv2 import imutils import os import time # This function calculates the distance between the center of two individuals in a # single frame of the video def Check(a, b): dist = (((a[0] - b[0]) ** 2) + (a[1] - b[1]) ** 2) ** 0.5 calibration = (a[1] + b[1]) / 2 if 0 < dist < 0.25 * calibration: return True else: return False # This function joins the path components, reads the network model stored in Darknet, # and gets all the layers of the network model to only store the indexes of layers with # unconnected outputs def Setup(yolo): global net, ln, LABELS weights = os.path.sep.join([yolo, "/users/anshsahny/darknet/yolov3.weights"]) config = os.path.sep.join([yolo, "/users/anshsahny/darknet/cfg/yolov3.cfg"]) labelsPath = os.path.sep.join([yolo, "/users/anshsahny/darknet/data/coco.names"]) LABELS = open(labelsPath).read().strip().split("\n") net = cv2.dnn.readNetFromDarknet(config, weights) ln = net.getLayerNames() ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()] # This function processes each frame of the video with the "Check" function between # every individual and returns in to the main function def ImageProcess(image): global processedImg (H, W) = (None, None) frame = image.copy() if W is None or H is None: (H, W) = frame.shape[:2] blob = cv2.dnn.blobFromImage(frame, 1 / 255.0, (416, 416), swapRB=True, crop=False) net.setInput(blob) starttime = time.time() layerOutputs = net.forward(ln) stoptime = time.time() print("Video is Getting Processed at {:.4f} seconds per frame".format((stoptime - starttime))) confidences = [] outline = [] for output in layerOutputs: for detection in output: scores = detection[5:] maxi_class = np.argmax(scores) confidence = scores[maxi_class] if LABELS[maxi_class] == "person": if confidence > 0.5: box = detection[0:4] * np.array([W, H, W, H]) (centerX, centerY, width, height) = box.astype("int") x = int(centerX - (width / 2)) y = int(centerY - (height / 2)) outline.append([x, y, int(width), int(height)]) confidences.append(float(confidence)) box_line = cv2.dnn.NMSBoxes(outline, confidences, 0.5, 0.3) if len(box_line) > 0: flat_box = box_line.flatten() pairs = [] center = [] status = [] for i in flat_box: (x, y) = (outline[i][0], outline[i][1]) (w, h) = (outline[i][2], outline[i][3]) center.append([int(x + w / 2), int(y + h / 2)]) status.append(False) for i in range(len(center)): for j in range(len(center)): close = Check(center[i], center[j]) if close: pairs.append([center[i], center[j]]) status[i] = True status[j] = True index = 0 for i in flat_box: (x, y) = (outline[i][0], outline[i][1]) (w, h) = (outline[i][2], outline[i][3]) if status[index] == True: cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 150), 2) elif status[index] == False: cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2) index += 1 for h in pairs: cv2.line(frame, tuple(h[0]), tuple(h[1]), (0, 0, 255), 2) processedImg = frame.copy() create = None frameno = 0 filename = "input.gif" yolo = "" opname = "output.mp4" cap = cv2.VideoCapture(filename) # Main function where input video is broken into single frames and performs all the # functions above, creates output frame and combines it to create an output video time1 = time.time() while (True): ret, frame = cap.read() if not ret: break current_img = frame.copy() current_img = imutils.resize(current_img, width=480) video = current_img.shape frameno += 1 if (frameno % 2 == 0 or frameno == 1): Setup(yolo) ImageProcess(current_img) Frame = processedImg if create is None: fourcc = cv2.VideoWriter_fourcc(*'XVID') create = cv2.VideoWriter(opname, fourcc, 30, (Frame.shape[1], Frame.shape[0]), True) create.write(Frame) if cv2.waitKey(1) & 0xFF == ord('s'): break time2 = time.time() print("Completed. Total Time Taken: {} minutes".format((time2 - time1) / 60)) cap.release() cv2.destroyAllWindows()
[ "cv2.dnn.NMSBoxes", "cv2.VideoWriter_fourcc", "numpy.argmax", "cv2.waitKey", "cv2.dnn.blobFromImage", "cv2.dnn.readNetFromDarknet", "time.time", "cv2.VideoCapture", "cv2.rectangle", "numpy.array", "cv2.VideoWriter", "imutils.resize", "cv2.destroyAllWindows", "os.path.sep.join" ]
[((3685, 3711), 'cv2.VideoCapture', 'cv2.VideoCapture', (['filename'], {}), '(filename)\n', (3701, 3711), False, 'import cv2\n'), ((3888, 3899), 'time.time', 'time.time', ([], {}), '()\n', (3897, 3899), False, 'import time\n'), ((4501, 4512), 'time.time', 'time.time', ([], {}), '()\n', (4510, 4512), False, 'import time\n'), ((4606, 4629), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (4627, 4629), False, 'import cv2\n'), ((640, 707), 'os.path.sep.join', 'os.path.sep.join', (["[yolo, '/users/anshsahny/darknet/yolov3.weights']"], {}), "([yolo, '/users/anshsahny/darknet/yolov3.weights'])\n", (656, 707), False, 'import os\n'), ((721, 788), 'os.path.sep.join', 'os.path.sep.join', (["[yolo, '/users/anshsahny/darknet/cfg/yolov3.cfg']"], {}), "([yolo, '/users/anshsahny/darknet/cfg/yolov3.cfg'])\n", (737, 788), False, 'import os\n'), ((806, 874), 'os.path.sep.join', 'os.path.sep.join', (["[yolo, '/users/anshsahny/darknet/data/coco.names']"], {}), "([yolo, '/users/anshsahny/darknet/data/coco.names'])\n", (822, 874), False, 'import os\n'), ((942, 985), 'cv2.dnn.readNetFromDarknet', 'cv2.dnn.readNetFromDarknet', (['config', 'weights'], {}), '(config, weights)\n', (968, 985), False, 'import cv2\n'), ((1394, 1470), 'cv2.dnn.blobFromImage', 'cv2.dnn.blobFromImage', (['frame', '(1 / 255.0)', '(416, 416)'], {'swapRB': '(True)', 'crop': '(False)'}), '(frame, 1 / 255.0, (416, 416), swapRB=True, crop=False)\n', (1415, 1470), False, 'import cv2\n'), ((1510, 1521), 'time.time', 'time.time', ([], {}), '()\n', (1519, 1521), False, 'import time\n'), ((1572, 1583), 'time.time', 'time.time', ([], {}), '()\n', (1581, 1583), False, 'import time\n'), ((2378, 2426), 'cv2.dnn.NMSBoxes', 'cv2.dnn.NMSBoxes', (['outline', 'confidences', '(0.5)', '(0.3)'], {}), '(outline, confidences, 0.5, 0.3)\n', (2394, 2426), False, 'import cv2\n'), ((4022, 4060), 'imutils.resize', 'imutils.resize', (['current_img'], {'width': '(480)'}), '(current_img, width=480)\n', (4036, 4060), False, 'import imutils\n'), ((1847, 1864), 'numpy.argmax', 'np.argmax', (['scores'], {}), '(scores)\n', (1856, 1864), True, 'import numpy as np\n'), ((4284, 4315), 'cv2.VideoWriter_fourcc', 'cv2.VideoWriter_fourcc', (["*'XVID'"], {}), "(*'XVID')\n", (4306, 4315), False, 'import cv2\n'), ((4337, 4412), 'cv2.VideoWriter', 'cv2.VideoWriter', (['opname', 'fourcc', '(30)', '(Frame.shape[1], Frame.shape[0])', '(True)'], {}), '(opname, fourcc, 30, (Frame.shape[1], Frame.shape[0]), True)\n', (4352, 4412), False, 'import cv2\n'), ((4444, 4458), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (4455, 4458), False, 'import cv2\n'), ((3268, 3328), 'cv2.rectangle', 'cv2.rectangle', (['frame', '(x, y)', '(x + w, y + h)', '(0, 0, 150)', '(2)'], {}), '(frame, (x, y), (x + w, y + h), (0, 0, 150), 2)\n', (3281, 3328), False, 'import cv2\n'), ((3386, 3446), 'cv2.rectangle', 'cv2.rectangle', (['frame', '(x, y)', '(x + w, y + h)', '(0, 255, 0)', '(2)'], {}), '(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)\n', (3399, 3446), False, 'import cv2\n'), ((2036, 2058), 'numpy.array', 'np.array', (['[W, H, W, H]'], {}), '([W, H, W, H])\n', (2044, 2058), True, 'import numpy as np\n')]
""" Transformer 实现 Author: <NAME> Date: 2021/3/7 REF: http://nlp.seas.harvard.edu/2018/04/03/attention.html """ import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import copy import math from torch.autograd import Variable from torch.nn.modules.container import Sequential from torch.nn.modules.normalization import LayerNorm class EncoderDecoder(nn.Module): def __init__(self, encoder, decoder, src_embed, tgt_embed, generator): super(EncoderDecoder, self).__init__() self.encoder = encoder self.decoder = decoder self.src_embed = src_embed self.tgt_embed = tgt_embed self.generator = generator def forward(self, src, tgt, src_mask, tgt_mask): return self.decode(self.encode(src, src_mask), src_mask, tgt, tgt_mask) def encode(self, src, src_mask): return self.encoder(self.src_embed(src), src_mask) def decode(self, memory, src_mask, tgt, tgt_mask): return self.decoder(self.tgt_embed(tgt), memory, src_mask) class Generator(nn.Module): def __init__(self, d_model, vocab): super(Generator, self).__init__() self.proj = nn.Linear(d_model, vocab) def forward(self, X): return F.log_softmax(self.proj(X), dim=-1) def clones(module, N): """ 将一个模型拷贝多次叠加 """ return nn.ModuleList([copy.deepcopy(module) for _ in range(N)]) class Encoder(nn.Module): """ 编码器 """ def __init__(self, layer, N): super(Encoder, self).__init__() self.layers = clones(layer, N) self.norm = LayerNorm(layer.size) def forward(self, X, mask): for layer in self.layers: X = layer(X, mask) return self.norm(X) class LayerNorm(nn.Module): def __init__(self, features, eps=1e-6): super(LayerNorm, self).__init__() self.a_2 = nn.Parameter(torch.ones(features)) self.b_2 = nn.Parameter(torch.zeros(features)) self.eps = eps def forward(self, X): mean = X.mean(-1, keepdim=True) std = X.std(-1, keepdim=True) return self.a_2 * (X - mean) / (std + self.eps) + self.b_2 class SubLayerConnection(nn.Module): """ 残差连接 """ def __init__(self, size, dropout): """ Param ----- :size :dropout """ super(SubLayerConnection, self).__init__() self.norm = LayerNorm(size) self.dropout = nn.Dropout(dropout) def forward(self, X, sublayer): return X + self.dropout(sublayer(self.norm(X))) class EncoderLayer(nn.Module): """ 编码器的一层 """ def __init__(self, size, self_attn, feed_forward, dropout): """ Param ----- :size :self_attn :feed_forward :dropout """ super(EncoderLayer, self).__init__() self.self_attn = self_attn self.feed_forward = feed_forward self.sublayer = clones(SubLayerConnection(size, dropout), 2) self.size = size def forward(self, X, mask): X = self.sublayer[0](X, lambda x: self.self_attn(x, x, x, mask)) return self.sublayer[1](X, self.feed_forward) class Decoder(nn.Module): def __init__(self, layer, N): super(Decoder, self).__init__() self.layers = clones(layer, N) self.norm = LayerNorm(layer.size) def forward(self, X, memory, src_mask, tgt_mask): for layer in self.layers: X = layer(X, memory, src_mask, tgt_mask) return self.norm(X) class DecoderLayer(nn.Module): def __init__(self, size, self_attn, src_attn, feed_forward, dropout): super(DecoderLayer, self).__init__() self.size = size self.self_attn = self_attn self.src_attn = src_attn self.feed_forward = feed_forward self.sublayer = clones(SubLayerConnection(size, dropout), 3) def forward(self, X, memory, src_mask, tgt_mask): m = memory X = self.sublayer[0](X, lambda x:self.self_attn(x, x, x, tgt_mask)) X = self.sublayer[1](X, lambda x: self.src_attn(x, m, m, src_mask)) return self.sublayer[2](X, self.feed_forward) def subsequent_mask(size): attn_shape = (1, size, size) subsequent_mask = np.triu(np.ones(attn_shape), k = 1).astype('uint8') return torch.from_numpy(subsequent_mask) == 0 def attention(query, key, value, mask=None, dropout=None): d_k = query.size(-1) scores = torch.matmul(query, key.transpose(-2, -1)) / torch.sqrt(d_k) if mask is not None: scores = scores.masked_fill(mask == 0, -100) p_attn = F.softmax(scores, dim=-1) if dropout is not None: p_attn = dropout(p_attn) return torch.matmul(p_attn, value), p_attn class MultiHeadAttention(nn.Module): def __init__(self, h, d_model, dropout=0.1): super(MultiHeadAttention, self).__init__() assert d_model % h == 0 self.d_k = d_model // h self.h = h self.linears = clones(nn.Linear(d_model, d_model), 4) self.attn = None self.dropout = nn.Dropout(p=dropout) def forward(self, query, key, value, mask=None): if mask is not None: mask = mask.unsqueeze(1) nbatches = query.size(0) query, key, value = [l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2) for l, x in zip(self.linears, (query, key, value))] x, self.attn = attention(query, key, value, mask=mask, dropout=self.dropout) x = x.transpose(1, 2).contiguous().view(nbatches, -1, self.h*self.d_k) return self.linears[-1](x) class PositionwiseFeedForward(nn.Module): def __init__(self, d_model, d_ff, dropout=0.1): super(PositionwiseFeedForward, self).__init__() self.w_1 = nn.Linear(d_model, d_ff) self.w_2 = nn.Linear(d_ff, d_model) self.dropout = nn.Dropout(dropout) def forward(self, X): return self.w_2(self.dropout(F.relu(self.w_1(X)))) class Embeddings(nn.Module): def __init__(self, d_model, vocab): super(Embeddings, self).__init__() self.lut = nn.Embedding(vocab, d_model) self.d_model = d_model def forward(self, X): return self.lut(X) * torch.sqrt(self.d_model) class PositionalEncoding(nn.Module): def __init__(self, d_model, dropout, max_len=5000): """ 位置编码 Param ----- :d_model 模型的维度(输出的编码维度) :dropout :max_len 最大句子长度 """ super(PositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=dropout) pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len).unsqueeze(1) # (max_len, 1) div_term = torch.exp(torch.arange(0, d_model, 2) * -(math.log(10000.0) / d_model)) # (d_model/2) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0) # (1, max_len, d_model) self.register_buffer('pe', pe) def forward(self, X): X = X + Variable(self.pe[:, :X.size(1)], requires_grad=False) return self.dropout(X) import matplotlib.pyplot as plt plt.figure(figsize=(15, 5)) pe = PositionalEncoding(20, 0) y = pe.forward(Variable(torch.zeros(1, 100, 20))) plt.plot(np.arange(100), y[0,:,4:8].data.numpy()) plt.show() def make_model(src_vocab, tgt_vocab, N=6, d_model=512, d_ff=2048, h=8, dropout=0.1): """ 构造模型 Param ----- :src_vocab :tgt_vocab :N :d_model 模型维度 :d_ff :h 多头注意力的头数 :dropout """ c = copy.deepcopy attn = MultiHeadAttention(h, d_model) ff = PositionwiseFeedForward(d_model, d_ff, dropout) position = PositionalEncoding(d_model, dropout) model = EncoderDecoder( Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), N), Decoder(DecoderLayer(d_model, c(attn), c(attn), c(ff), dropout), N), nn.Sequential(Embeddings(d_model, src_vocab), c(position)), nn.Sequential(Embeddings(d_model, tgt_vocab), c(position)), Generator(d_model, tgt_vocab) ) for p in model.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) return model
[ "torch.nn.Dropout", "torch.sqrt", "torch.nn.Embedding", "numpy.ones", "torch.cos", "matplotlib.pyplot.figure", "numpy.arange", "torch.arange", "torch.ones", "torch.nn.Linear", "torch.zeros", "math.log", "torch.matmul", "torch.nn.modules.normalization.LayerNorm", "copy.deepcopy", "matplotlib.pyplot.show", "torch.nn.init.xavier_uniform_", "torch.from_numpy", "torch.nn.functional.softmax", "torch.sin" ]
[((7195, 7222), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(15, 5)'}), '(figsize=(15, 5))\n', (7205, 7222), True, 'import matplotlib.pyplot as plt\n'), ((7354, 7364), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (7362, 7364), True, 'import matplotlib.pyplot as plt\n'), ((4623, 4648), 'torch.nn.functional.softmax', 'F.softmax', (['scores'], {'dim': '(-1)'}), '(scores, dim=-1)\n', (4632, 4648), True, 'import torch.nn.functional as F\n'), ((7313, 7327), 'numpy.arange', 'np.arange', (['(100)'], {}), '(100)\n', (7322, 7327), True, 'import numpy as np\n'), ((1178, 1203), 'torch.nn.Linear', 'nn.Linear', (['d_model', 'vocab'], {}), '(d_model, vocab)\n', (1187, 1203), True, 'import torch.nn as nn\n'), ((1578, 1599), 'torch.nn.modules.normalization.LayerNorm', 'LayerNorm', (['layer.size'], {}), '(layer.size)\n', (1587, 1599), False, 'from torch.nn.modules.normalization import LayerNorm\n'), ((2404, 2419), 'torch.nn.modules.normalization.LayerNorm', 'LayerNorm', (['size'], {}), '(size)\n', (2413, 2419), False, 'from torch.nn.modules.normalization import LayerNorm\n'), ((2443, 2462), 'torch.nn.Dropout', 'nn.Dropout', (['dropout'], {}), '(dropout)\n', (2453, 2462), True, 'import torch.nn as nn\n'), ((3349, 3370), 'torch.nn.modules.normalization.LayerNorm', 'LayerNorm', (['layer.size'], {}), '(layer.size)\n', (3358, 3370), False, 'from torch.nn.modules.normalization import LayerNorm\n'), ((4334, 4367), 'torch.from_numpy', 'torch.from_numpy', (['subsequent_mask'], {}), '(subsequent_mask)\n', (4350, 4367), False, 'import torch\n'), ((4516, 4531), 'torch.sqrt', 'torch.sqrt', (['d_k'], {}), '(d_k)\n', (4526, 4531), False, 'import torch\n'), ((4721, 4748), 'torch.matmul', 'torch.matmul', (['p_attn', 'value'], {}), '(p_attn, value)\n', (4733, 4748), False, 'import torch\n'), ((5089, 5110), 'torch.nn.Dropout', 'nn.Dropout', ([], {'p': 'dropout'}), '(p=dropout)\n', (5099, 5110), True, 'import torch.nn as nn\n'), ((5779, 5803), 'torch.nn.Linear', 'nn.Linear', (['d_model', 'd_ff'], {}), '(d_model, d_ff)\n', (5788, 5803), True, 'import torch.nn as nn\n'), ((5823, 5847), 'torch.nn.Linear', 'nn.Linear', (['d_ff', 'd_model'], {}), '(d_ff, d_model)\n', (5832, 5847), True, 'import torch.nn as nn\n'), ((5871, 5890), 'torch.nn.Dropout', 'nn.Dropout', (['dropout'], {}), '(dropout)\n', (5881, 5890), True, 'import torch.nn as nn\n'), ((6114, 6142), 'torch.nn.Embedding', 'nn.Embedding', (['vocab', 'd_model'], {}), '(vocab, d_model)\n', (6126, 6142), True, 'import torch.nn as nn\n'), ((6565, 6586), 'torch.nn.Dropout', 'nn.Dropout', ([], {'p': 'dropout'}), '(p=dropout)\n', (6575, 6586), True, 'import torch.nn as nn\n'), ((6601, 6630), 'torch.zeros', 'torch.zeros', (['max_len', 'd_model'], {}), '(max_len, d_model)\n', (6612, 6630), False, 'import torch\n'), ((6846, 6876), 'torch.sin', 'torch.sin', (['(position * div_term)'], {}), '(position * div_term)\n', (6855, 6876), False, 'import torch\n'), ((6899, 6929), 'torch.cos', 'torch.cos', (['(position * div_term)'], {}), '(position * div_term)\n', (6908, 6929), False, 'import torch\n'), ((7278, 7301), 'torch.zeros', 'torch.zeros', (['(1)', '(100)', '(20)'], {}), '(1, 100, 20)\n', (7289, 7301), False, 'import torch\n'), ((1360, 1381), 'copy.deepcopy', 'copy.deepcopy', (['module'], {}), '(module)\n', (1373, 1381), False, 'import copy\n'), ((1878, 1898), 'torch.ones', 'torch.ones', (['features'], {}), '(features)\n', (1888, 1898), False, 'import torch\n'), ((1932, 1953), 'torch.zeros', 'torch.zeros', (['features'], {}), '(features)\n', (1943, 1953), False, 'import torch\n'), ((5009, 5036), 'torch.nn.Linear', 'nn.Linear', (['d_model', 'd_model'], {}), '(d_model, d_model)\n', (5018, 5036), True, 'import torch.nn as nn\n'), ((6234, 6258), 'torch.sqrt', 'torch.sqrt', (['self.d_model'], {}), '(self.d_model)\n', (6244, 6258), False, 'import torch\n'), ((8186, 8212), 'torch.nn.init.xavier_uniform_', 'nn.init.xavier_uniform_', (['p'], {}), '(p)\n', (8209, 8212), True, 'import torch.nn as nn\n'), ((4279, 4298), 'numpy.ones', 'np.ones', (['attn_shape'], {}), '(attn_shape)\n', (4286, 4298), True, 'import numpy as np\n'), ((6650, 6674), 'torch.arange', 'torch.arange', (['(0)', 'max_len'], {}), '(0, max_len)\n', (6662, 6674), False, 'import torch\n'), ((6740, 6767), 'torch.arange', 'torch.arange', (['(0)', 'd_model', '(2)'], {}), '(0, d_model, 2)\n', (6752, 6767), False, 'import torch\n'), ((6772, 6789), 'math.log', 'math.log', (['(10000.0)'], {}), '(10000.0)\n', (6780, 6789), False, 'import math\n')]
import matplotlib.pyplot as plt import numpy as np import sys from environment import MountainCar def get_state(mode, state): if mode == 'raw': s = np.zeros((2, 1)) else: s = np.zeros((2048, 1)) for k in state: s[k] = state[k] return s def get_q(s, w, b): return w.T @ s + b def train_q_learning(mode, episodes, max_episode_len, epsilon, gamma, lr): n_S = 2048 n_A = 3 if mode == 'raw': n_S = 2 w = np.zeros((n_S, n_A)) b = 0 returns = [] car = MountainCar(mode) for i in range(episodes): s = get_state(mode, car.reset()) R = 0. g = 1. for t in range(max_episode_len): assert s.shape[0] <= n_S isGreedy = np.random.uniform(0, 1, 1) >= epsilon if isGreedy: a = int(np.argmax(get_q(s, w, b))) else: a = int(np.random.randint(0, n_A, 1)) state, r, done = car.step(a) s_ = get_state(mode, state) R += (r * g) # g *= gamma q_sa = float(get_q(s, w, b)[a]) # if done: # max_q_s_ = 0 # else: max_q_s_ = float(np.max(get_q(s_, w, b))) td = q_sa - (r + gamma * max_q_s_) w[:, a] = w[:, a] - lr * td * s.flatten() b = b - lr * td s = s_ if done: break returns.append(R) return np.array(returns), w, b def write_array_to_file(filepath, array): """Write a numpy matrix to a file. Args: filepath (str): File path. array (ndarray): Numpy 1D array. """ assert len(array.shape) < 2 out_str = '\n'.join(array.astype('U')) with open(filepath, 'w') as f: f.write(out_str) print('Array written to {0} successfully!'.format(filepath)) def moving_average(a, n=3) : ret = np.cumsum(a, dtype=float) ret[n:] = ret[n:] - ret[:-n] return ret[n - 1:] / n if __name__ == "__main__": assert len(sys.argv) == 1 + 8 mode = sys.argv[1] weight_out = sys.argv[2] returns_out = sys.argv[3] episodes = int(sys.argv[4]) max_episode_len = int(sys.argv[5]) epsilon = float(sys.argv[6]) gamma = float(sys.argv[7]) lr = float(sys.argv[8]) print(f'{mode = }') print(f'{weight_out = }') print(f'{returns_out = }') print(f'{episodes = }') print(f'{max_episode_len = }') print(f'{epsilon = }') print(f'{gamma = }') print(f'{lr = }') returns, w, b = train_q_learning(mode, episodes, max_episode_len, epsilon, gamma, lr) weights = np.concatenate((np.array([b]), w.flatten())) write_array_to_file(weight_out, weights) write_array_to_file(returns_out, returns) plt.plot(list(range(1, episodes + 1)), returns, 'ro-', label='returns') plt.plot(list(range(25, episodes + 1)), moving_average(returns, 25), 'bo-', label='rolling_mean') plt.title('Tile') plt.legend() plt.show()
[ "matplotlib.pyplot.title", "numpy.random.uniform", "matplotlib.pyplot.show", "environment.MountainCar", "matplotlib.pyplot.legend", "numpy.zeros", "numpy.cumsum", "numpy.random.randint", "numpy.array" ]
[((618, 638), 'numpy.zeros', 'np.zeros', (['(n_S, n_A)'], {}), '((n_S, n_A))\n', (626, 638), True, 'import numpy as np\n'), ((683, 700), 'environment.MountainCar', 'MountainCar', (['mode'], {}), '(mode)\n', (694, 700), False, 'from environment import MountainCar\n'), ((2142, 2167), 'numpy.cumsum', 'np.cumsum', (['a'], {'dtype': 'float'}), '(a, dtype=float)\n', (2151, 2167), True, 'import numpy as np\n'), ((3409, 3426), 'matplotlib.pyplot.title', 'plt.title', (['"""Tile"""'], {}), "('Tile')\n", (3418, 3426), True, 'import matplotlib.pyplot as plt\n'), ((3432, 3444), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (3442, 3444), True, 'import matplotlib.pyplot as plt\n'), ((3450, 3460), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3458, 3460), True, 'import matplotlib.pyplot as plt\n'), ((172, 188), 'numpy.zeros', 'np.zeros', (['(2, 1)'], {}), '((2, 1))\n', (180, 188), True, 'import numpy as np\n'), ((213, 232), 'numpy.zeros', 'np.zeros', (['(2048, 1)'], {}), '((2048, 1))\n', (221, 232), True, 'import numpy as np\n'), ((1677, 1694), 'numpy.array', 'np.array', (['returns'], {}), '(returns)\n', (1685, 1694), True, 'import numpy as np\n'), ((3098, 3111), 'numpy.array', 'np.array', (['[b]'], {}), '([b])\n', (3106, 3111), True, 'import numpy as np\n'), ((918, 944), 'numpy.random.uniform', 'np.random.uniform', (['(0)', '(1)', '(1)'], {}), '(0, 1, 1)\n', (935, 944), True, 'import numpy as np\n'), ((1080, 1108), 'numpy.random.randint', 'np.random.randint', (['(0)', 'n_A', '(1)'], {}), '(0, n_A, 1)\n', (1097, 1108), True, 'import numpy as np\n')]
# - * - coding: utf - 8 - * - """ This module tests the functions in dam_tol.py. """ __version__ = '1.0' __author__ = '<NAME>' import sys import pytest import numpy as np sys.path.append(r'C:\LAYLA') from src.LAYLA_V02.constraints import Constraints from src.guidelines.dam_tol import is_dam_tol @pytest.mark.parametrize( "stack, constraints, expect", [ (np.array([45, 0, -45]), Constraints(dam_tol=True, dam_tol_rule=1), True), (np.array([45, 0, 0]), Constraints(dam_tol=True, dam_tol_rule=1), False), (np.array([45, -45, 0, 45, -45]), Constraints(dam_tol=True, dam_tol_rule=2), True), (np.array([45, -45, 0, 90, -45]), Constraints(dam_tol=True, dam_tol_rule=2), False), ]) def test_is_dam_tol(stack, constraints, expect): output = is_dam_tol(stack, constraints) assert output == expect
[ "sys.path.append", "src.LAYLA_V02.constraints.Constraints", "numpy.array", "src.guidelines.dam_tol.is_dam_tol" ]
[((176, 204), 'sys.path.append', 'sys.path.append', (['"""C:\\\\LAYLA"""'], {}), "('C:\\\\LAYLA')\n", (191, 204), False, 'import sys\n'), ((788, 818), 'src.guidelines.dam_tol.is_dam_tol', 'is_dam_tol', (['stack', 'constraints'], {}), '(stack, constraints)\n', (798, 818), False, 'from src.guidelines.dam_tol import is_dam_tol\n'), ((373, 395), 'numpy.array', 'np.array', (['[45, 0, -45]'], {}), '([45, 0, -45])\n', (381, 395), True, 'import numpy as np\n'), ((397, 438), 'src.LAYLA_V02.constraints.Constraints', 'Constraints', ([], {'dam_tol': '(True)', 'dam_tol_rule': '(1)'}), '(dam_tol=True, dam_tol_rule=1)\n', (408, 438), False, 'from src.LAYLA_V02.constraints import Constraints\n'), ((456, 476), 'numpy.array', 'np.array', (['[45, 0, 0]'], {}), '([45, 0, 0])\n', (464, 476), True, 'import numpy as np\n'), ((478, 519), 'src.LAYLA_V02.constraints.Constraints', 'Constraints', ([], {'dam_tol': '(True)', 'dam_tol_rule': '(1)'}), '(dam_tol=True, dam_tol_rule=1)\n', (489, 519), False, 'from src.LAYLA_V02.constraints import Constraints\n'), ((538, 569), 'numpy.array', 'np.array', (['[45, -45, 0, 45, -45]'], {}), '([45, -45, 0, 45, -45])\n', (546, 569), True, 'import numpy as np\n'), ((571, 612), 'src.LAYLA_V02.constraints.Constraints', 'Constraints', ([], {'dam_tol': '(True)', 'dam_tol_rule': '(2)'}), '(dam_tol=True, dam_tol_rule=2)\n', (582, 612), False, 'from src.LAYLA_V02.constraints import Constraints\n'), ((630, 661), 'numpy.array', 'np.array', (['[45, -45, 0, 90, -45]'], {}), '([45, -45, 0, 90, -45])\n', (638, 661), True, 'import numpy as np\n'), ((663, 704), 'src.LAYLA_V02.constraints.Constraints', 'Constraints', ([], {'dam_tol': '(True)', 'dam_tol_rule': '(2)'}), '(dam_tol=True, dam_tol_rule=2)\n', (674, 704), False, 'from src.LAYLA_V02.constraints import Constraints\n')]
import numpy as np import torch import logging logger = logging.getLogger(__name__) class Learner(object): def __init__(self, config): self.config = config self.npr = np.random.RandomState(config.seed) self.calibrate = config.learner.calibrate self.semi_supervised = config.learner.semi_supervised self.risk_thres = config.learner.risk_thres self.use_cuda = torch.cuda.is_available() self.early_stop_scope = config.learner.early_stop_scope self.prototype_as_val = config.learner.prototype_as_val def save_state(self): raise NotImplementedError def load_state(self): raise NotImplementedError def fit_and_predict(self, features, prototype_targets, belief, n_annotation, ground_truth): raise NotImplementedError class DummyLearner(Learner): def __init__(self, config): Learner.__init__(self, config) logger.info('No learner is used') def save_state(self): pass def load_state(self, state): pass def fit_and_predict(self, features, prototype_targets, belief, n_annotation, ground_truth): return None def get_learner_class(config): from .nn_learner import LinearNNLearner if config.learner.algo == 'dummy': return DummyLearner elif config.learner.algo == 'mlp': return LinearNNLearner else: raise ValueError
[ "torch.cuda.is_available", "numpy.random.RandomState", "logging.getLogger" ]
[((57, 84), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (74, 84), False, 'import logging\n'), ((190, 224), 'numpy.random.RandomState', 'np.random.RandomState', (['config.seed'], {}), '(config.seed)\n', (211, 224), True, 'import numpy as np\n'), ((413, 438), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (436, 438), False, 'import torch\n')]
from typing import Optional, Callable import os import torch from torch import nn from torch.nn import functional as F from torch.utils.data import Dataset, DataLoader from torch.optim.lr_scheduler import ReduceLROnPlateau from torch.serialization import save import numpy as np import pandas as pd from glog import logger import joblib as jl from sklearn.impute import SimpleImputer from sklearn.feature_selection import VarianceThreshold from sklearn.preprocessing import StandardScaler from sklearn.pipeline import make_pipeline from fire import Fire class Baseline(nn.Module): def __init__(self, n_features, inner_size=1024): super().__init__() self.features = nn.Linear(n_features, inner_size) self.model = nn.Sequential( nn.LeakyReLU(), nn.Dropout(p=.5), nn.Linear(inner_size, 14), ) def forward(self, x): x = self.features(x) return self.model(x) class PlasticcDataset(Dataset): def __init__(self, x_data: np.array, y_data: np.array, folds: tuple): data = zip(x_data, y_data) self.data = [x for i, x in enumerate(data) if i % 5 in folds] logger.info(f'There are {len(self.data)} records in the dataset') self.features_shape = x_data.shape def __len__(self): return len(self.data) def __getitem__(self, item): return self.data[item] def map_classes(y_full): classes = sorted(list(set(y_full))) mapping = {} for i, y in enumerate(classes): mapping[y] = i logger.info(f'Mapping is {mapping}') return np.array([mapping[y] for y in y_full]) def read_train(): data = pd.read_csv('data/processed_training.csv', engine='c', sep=';') data.pop('object_id') y_full = data.pop('target').values x_full = data.values.astype('float32') x_full[np.isnan(x_full)] = 0 x_full[np.isinf(x_full)] = 0 return x_full, y_full def prepare_data(): if os.path.exists('data/train.bin'): return jl.load('data/train.bin') x_full, y_full = read_train() imputer = SimpleImputer() vt = VarianceThreshold(threshold=.0001) pipeline = make_pipeline(imputer, vt, StandardScaler()) x_full = pipeline.fit_transform(x_full) jl.dump(pipeline, 'preprocess.bin') y_full = map_classes(y_full) x_full = x_full.astype('float32') jl.dump((x_full, y_full), 'data/train.bin') return x_full, y_full def make_dataloaders(): x_full, y_full = prepare_data() train = PlasticcDataset(x_data=x_full, y_data=y_full, folds=(0, 1, 2, 3)) val = PlasticcDataset(x_data=x_full, y_data=y_full, folds=(4,)) shared_params = {'batch_size': 2048, 'shuffle': True} train = DataLoader(train, drop_last=True, **shared_params) val = DataLoader(val, drop_last=False, **shared_params) return train, val class Trainer: def __init__(self, model: nn.Module, train: DataLoader, val: DataLoader, epochs: int = 500, optimizer: Optional[torch.optim.Optimizer] = None, loss_fn: Optional[Callable] = None, scheduler: Optional[ReduceLROnPlateau] = None, reg_lambda: float = .00002, reg_norm: int = 1, device: str = 'cuda:0', checkpoint: str = './model.pt', ): self.epochs = epochs self.model = model.to(device) self.device = device self.train = train self.val = val self.optimizer = optimizer if optimizer is not None else torch.optim.Adam(model.parameters(), lr=1e-3) self.scheduler = scheduler if scheduler is not None else ReduceLROnPlateau(optimizer=self.optimizer, verbose=True) self.loss_fn = loss_fn if loss_fn is not None else F.cross_entropy self.reg_lambda = reg_lambda self.reg_norm = reg_norm self.current_metric = -np.inf self.last_improvement = 0 self.checkpoint = checkpoint def fit_one_epoch(self, n_epoch): self.model.train(True) losses, reg_losses = [], [] for i, (x, y) in enumerate(self.train): x, y = x.to(self.device), y.to(self.device) self.optimizer.zero_grad() outputs = self.model(x) loss = self.loss_fn(outputs, y) losses.append(loss.item()) for param in self.model.model.parameters(): loss += self.reg_lambda * torch.norm(param, p=self.reg_norm) reg_loss = loss.item() reg_losses.append(reg_loss) loss.backward() nn.utils.clip_grad_norm_(self.model.parameters(), 1) self.optimizer.step() self.model.train(False) val_losses = [] y_pred_acc, y_true_acc = [], [] with torch.no_grad(): for i, (x, y) in enumerate(self.val): x, y = x.to(self.device), y.to(self.device) outputs = self.model(x) loss = self.loss_fn(outputs, y) val_losses.append(loss.item()) y_pred_acc.append(outputs.detach().cpu().numpy()) y_true_acc.append(y.detach().cpu().numpy()) train_loss = np.mean(losses) train_reg_loss = np.mean(reg_losses) val_loss = np.mean(val_losses) msg = f'Epoch {n_epoch}: train loss is {train_loss:.5f} (raw), {train_reg_loss:.5f} (reg); val loss is {val_loss:.5f}' logger.info(msg) self.scheduler.step(metrics=val_loss, epoch=n_epoch) y_true_acc, y_pred_acc = map(np.vstack, (y_true_acc, y_pred_acc)) metric = self.evaluate(y_pred=y_pred_acc, y_true=y_true_acc) if metric > self.current_metric: self.current_metric = metric self.last_improvement = n_epoch save(self.model, f=self.checkpoint) logger.info(f'Best model has been saved at {n_epoch}, accuracy is {metric:.4f}') return train_loss, val_loss, metric def evaluate(self, y_pred, y_true): return (y_pred.argmax(-1) == y_true).sum() / y_true.shape[-1] def fit(self): for i in range(self.epochs): self.fit_one_epoch(i) def fit(inner_size=1024, **kwargs): train, val = make_dataloaders() trainer = Trainer(model=Baseline(n_features=train.dataset.features_shape[1], inner_size=inner_size, ), train=train, val=val, loss_fn=F.cross_entropy, **kwargs ) trainer.fit() if __name__ == '__main__': Fire(fit)
[ "torch.nn.Dropout", "sklearn.preprocessing.StandardScaler", "pandas.read_csv", "joblib.dump", "numpy.isnan", "numpy.mean", "torch.no_grad", "sklearn.impute.SimpleImputer", "torch.utils.data.DataLoader", "os.path.exists", "torch.optim.lr_scheduler.ReduceLROnPlateau", "torch.nn.Linear", "sklearn.feature_selection.VarianceThreshold", "torch.norm", "numpy.isinf", "torch.nn.LeakyReLU", "glog.logger.info", "fire.Fire", "numpy.array", "joblib.load", "torch.serialization.save" ]
[((1547, 1583), 'glog.logger.info', 'logger.info', (['f"""Mapping is {mapping}"""'], {}), "(f'Mapping is {mapping}')\n", (1558, 1583), False, 'from glog import logger\n'), ((1595, 1633), 'numpy.array', 'np.array', (['[mapping[y] for y in y_full]'], {}), '([mapping[y] for y in y_full])\n', (1603, 1633), True, 'import numpy as np\n'), ((1665, 1728), 'pandas.read_csv', 'pd.read_csv', (['"""data/processed_training.csv"""'], {'engine': '"""c"""', 'sep': '""";"""'}), "('data/processed_training.csv', engine='c', sep=';')\n", (1676, 1728), True, 'import pandas as pd\n'), ((1958, 1990), 'os.path.exists', 'os.path.exists', (['"""data/train.bin"""'], {}), "('data/train.bin')\n", (1972, 1990), False, 'import os\n'), ((2082, 2097), 'sklearn.impute.SimpleImputer', 'SimpleImputer', ([], {}), '()\n', (2095, 2097), False, 'from sklearn.impute import SimpleImputer\n'), ((2107, 2142), 'sklearn.feature_selection.VarianceThreshold', 'VarianceThreshold', ([], {'threshold': '(0.0001)'}), '(threshold=0.0001)\n', (2124, 2142), False, 'from sklearn.feature_selection import VarianceThreshold\n'), ((2251, 2286), 'joblib.dump', 'jl.dump', (['pipeline', '"""preprocess.bin"""'], {}), "(pipeline, 'preprocess.bin')\n", (2258, 2286), True, 'import joblib as jl\n'), ((2363, 2406), 'joblib.dump', 'jl.dump', (['(x_full, y_full)', '"""data/train.bin"""'], {}), "((x_full, y_full), 'data/train.bin')\n", (2370, 2406), True, 'import joblib as jl\n'), ((2715, 2765), 'torch.utils.data.DataLoader', 'DataLoader', (['train'], {'drop_last': '(True)'}), '(train, drop_last=True, **shared_params)\n', (2725, 2765), False, 'from torch.utils.data import Dataset, DataLoader\n'), ((2776, 2825), 'torch.utils.data.DataLoader', 'DataLoader', (['val'], {'drop_last': '(False)'}), '(val, drop_last=False, **shared_params)\n', (2786, 2825), False, 'from torch.utils.data import Dataset, DataLoader\n'), ((6802, 6811), 'fire.Fire', 'Fire', (['fit'], {}), '(fit)\n', (6806, 6811), False, 'from fire import Fire\n'), ((688, 721), 'torch.nn.Linear', 'nn.Linear', (['n_features', 'inner_size'], {}), '(n_features, inner_size)\n', (697, 721), False, 'from torch import nn\n'), ((1848, 1864), 'numpy.isnan', 'np.isnan', (['x_full'], {}), '(x_full)\n', (1856, 1864), True, 'import numpy as np\n'), ((1881, 1897), 'numpy.isinf', 'np.isinf', (['x_full'], {}), '(x_full)\n', (1889, 1897), True, 'import numpy as np\n'), ((2007, 2032), 'joblib.load', 'jl.load', (['"""data/train.bin"""'], {}), "('data/train.bin')\n", (2014, 2032), True, 'import joblib as jl\n'), ((2184, 2200), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (2198, 2200), False, 'from sklearn.preprocessing import StandardScaler\n'), ((5355, 5370), 'numpy.mean', 'np.mean', (['losses'], {}), '(losses)\n', (5362, 5370), True, 'import numpy as np\n'), ((5396, 5415), 'numpy.mean', 'np.mean', (['reg_losses'], {}), '(reg_losses)\n', (5403, 5415), True, 'import numpy as np\n'), ((5435, 5454), 'numpy.mean', 'np.mean', (['val_losses'], {}), '(val_losses)\n', (5442, 5454), True, 'import numpy as np\n'), ((5590, 5606), 'glog.logger.info', 'logger.info', (['msg'], {}), '(msg)\n', (5601, 5606), False, 'from glog import logger\n'), ((770, 784), 'torch.nn.LeakyReLU', 'nn.LeakyReLU', ([], {}), '()\n', (782, 784), False, 'from torch import nn\n'), ((798, 815), 'torch.nn.Dropout', 'nn.Dropout', ([], {'p': '(0.5)'}), '(p=0.5)\n', (808, 815), False, 'from torch import nn\n'), ((828, 853), 'torch.nn.Linear', 'nn.Linear', (['inner_size', '(14)'], {}), '(inner_size, 14)\n', (837, 853), False, 'from torch import nn\n'), ((3727, 3784), 'torch.optim.lr_scheduler.ReduceLROnPlateau', 'ReduceLROnPlateau', ([], {'optimizer': 'self.optimizer', 'verbose': '(True)'}), '(optimizer=self.optimizer, verbose=True)\n', (3744, 3784), False, 'from torch.optim.lr_scheduler import ReduceLROnPlateau\n'), ((4943, 4958), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (4956, 4958), False, 'import torch\n'), ((5952, 5987), 'torch.serialization.save', 'save', (['self.model'], {'f': 'self.checkpoint'}), '(self.model, f=self.checkpoint)\n', (5956, 5987), False, 'from torch.serialization import save\n'), ((6000, 6085), 'glog.logger.info', 'logger.info', (['f"""Best model has been saved at {n_epoch}, accuracy is {metric:.4f}"""'], {}), "(f'Best model has been saved at {n_epoch}, accuracy is {metric:.4f}'\n )\n", (6011, 6085), False, 'from glog import logger\n'), ((4591, 4625), 'torch.norm', 'torch.norm', (['param'], {'p': 'self.reg_norm'}), '(param, p=self.reg_norm)\n', (4601, 4625), False, 'import torch\n')]
import numpy as np import sympy from enum import Enum from detmodel.hit import Hit from detmodel.signal import Signal, Segment from detmodel.muon import Muon from detmodel import util class DetType(Enum): MM = 'mm' MDT = 'mdt' STGC = 'stgc' def asint(self): return { DetType.MM: 0, DetType.MDT: 1, DetType.STGC: 2 }.get(self) class Plane: ## planes are aligned in z ## tilt only on x segmentation so far ## width_x: geometrical width of detector in x ## width_y: geometrical width of detector in y ## width_t: time window (in BCs = 25ns) to integrate signal ## n_?_seg: number of allowed segments in each coordinate ## segment size is then width_?/n_?_seg def __init__(self, type, z, width_x=10, width_y=10, width_t=10, n_x_seg=10, n_y_seg=0, n_t_seg=10, x_res=0, y_res=0, z_res=0, t_res=0, tilt=0, offset=0, max_hits=0, sig_eff=0): ## type self.p_type = DetType(type) ## geometry self.z = z self.point = sympy.Point3D(0,0,z,evaluate=False) self.plane = sympy.Plane(self.point, normal_vector=(0,0,1)) ## noise info self.noise_rate = 0 self.noise_type = 'constant' ## detector plane tilt and offset self.tilt = tilt self.offset = offset self.max_hits = max_hits self.sig_eff = sig_eff ## detector geometrical boundaries, assuming squares now self.sizes = { 'x': width_x, 'y': width_y, 't': width_t } ## detector spatial segmentation in x and y, ## and timing segmentation in t ## Note: if you have a tilt in x, you need to increase the range ## of the segmentation to ensure full coverage tilt_width_x_min = -0.5*width_x tilt_width_x_max = 0.5*width_x if abs(self.tilt) > 0: tilt_dx = width_y*np.abs( np.tan(tilt) ) tilt_width_x_max = 0.5*width_x + 0.5*tilt_dx tilt_width_x_min = -0.5*width_x - 0.5*tilt_dx self.segmentations = { 'x': np.linspace( tilt_width_x_min+self.offset, tilt_width_x_max+self.offset, n_x_seg+1 ), 'y': np.linspace( -0.5*width_y, 0.5*width_y, n_y_seg+1 ), 't': np.linspace( -0.5*width_t, 0.5*width_t, n_t_seg+1 ) } self.seg_mids = {} for coord in self.segmentations: if len(self.segmentations[coord]) > 1: self.seg_mids[coord] = 0.5*(self.segmentations[coord][:-1] + self.segmentations[coord][1:]) else: self.seg_mids[coord] = self.segmentations[coord] ## plane segmentation lines (centers) self.seg_lines = {'x':[], 'y':[]} for this_x_center in self.seg_mids['x']: this_p1 = sympy.Point3D(this_x_center, 0, self.z, evaluate=False) this_p2 = sympy.Point3D(this_x_center + 0.5*width_y*np.tan(tilt), 0.5*width_y, self.z, evaluate=False) self.seg_lines['x'].append(Segment( sympy.Line3D(this_p1, this_p2), coord='x', z=self.z )) for this_y_center in self.seg_mids['y']: this_p1 = sympy.Point3D(0, this_y_center, self.z, evaluate=False) this_p2 = sympy.Point3D(0.5*width_x, this_y_center, self.z, evaluate=False) self.seg_lines['y'].append(Segment( sympy.Line3D(this_p1, this_p2), coord='y', z=self.z )) ## keeping position resolution as 0 for now ## timing resolution of 5 BCs ## Resolution smearings are applied to muon only, since noise is random self.resolutions = { 'x': x_res, 'y': y_res, 'z': z_res, 't': t_res } ## raw hits self.hits = [] def get_edge(self, edge): # x # __|__ y # | # top and bottom below refer to this orientation if 'right' in edge: return sympy.Line3D( sympy.Point3D(-0.5*self.sizes['x'], 0.5*self.sizes['y'], self.z, evaluate=False), sympy.Point3D( 0.5*self.sizes['x'], 0.5*self.sizes['y'], self.z, evaluate=False) ) elif 'left' in edge: return sympy.Line3D( sympy.Point3D(-0.5*self.sizes['x'], -0.5*self.sizes['y'], self.z, evaluate=False), sympy.Point3D( 0.5*self.sizes['x'], -0.5*self.sizes['y'], self.z, evaluate=False) ) elif 'bottom' in edge: return sympy.Line3D( sympy.Point3D(-0.5*self.sizes['x'], -0.5*self.sizes['y'], self.z, evaluate=False), sympy.Point3D(-0.5*self.sizes['x'], 0.5*self.sizes['y'], self.z, evaluate=False) ) elif 'top' in edge: return sympy.Line3D( sympy.Point3D( 0.5*self.sizes['x'], -0.5*self.sizes['y'], self.z, evaluate=False), sympy.Point3D( 0.5*self.sizes['x'], 0.5*self.sizes['y'], self.z, evaluate=False) ) elif 'midx' in edge: return sympy.Line3D( sympy.Point3D( 0, 0, self.z, evaluate=False), sympy.Point3D( 1, 0, self.z, evaluate=False) ) elif 'midy' in edge: return sympy.Line3D( sympy.Point3D( 0, 0, self.z, evaluate=False), sympy.Point3D( 0, 1, self.z, evaluate=False) ) else: print('Must specify: right, left, bottom, top, midx or midy') return -1 def clear_hits(self): self.hits = [] for slx in self.seg_lines['x']: slx.reset() for sly in self.seg_lines['y']: sly.reset() def smear(self, pos, coord): ## smear muon hit position and time if coord not in self.resolutions: print('Could not understand coordinate, must be x y z or t, but received', coord) return -99 if self.resolutions[coord] > 0: return np.random.normal(pos, self.resolutions[coord]) else: return pos def pass_muon(self, muon, randseed=42): np.random.seed(int(randseed + 10*(self.z))) ## apply signal efficiency if self.sig_eff > 0: rnd_number_eff = np.random.uniform(0.0, 1.0) if rnd_number_eff > self.sig_eff: return 0 ## missed muon signal ## find intersection of muon and detector plane pmu_intersect = self.plane.intersection(muon.line) if len(pmu_intersect) == 0 or len(pmu_intersect) > 1: print("There should always be one and only one muon-plane intersection. What's happening?") print(pmu_intersect) return -1 intersection_point = pmu_intersect[0] mu_ip_x = self.smear(float(intersection_point.x), 'x') mu_ip_y = self.smear(float(intersection_point.y), 'y') mu_ip_z = self.smear(float(intersection_point.z), 'z') mu_ip_t = self.smear(muon.time, 't') ## if muon is outside the detector fiducial volume ## or outside the time window, return 0 if np.abs(mu_ip_x) > 0.5*self.sizes['x']: return 0 if np.abs(mu_ip_y) > 0.5*self.sizes['y']: return 0 if np.abs(mu_ip_t) > 0.5*self.sizes['t']: return 0 # To compute the drift radius (for MDT detector), need to find detector element (i.e. wire) # for which this muon has the smallest distance of closest approach to the wire # Caveat: the calculation below assumes tubes are exactly vertical mu_ix = -9999 mu_rdrift = 9999. if self.p_type == DetType.MDT: for islx, slx in enumerate(self.seg_lines['x']): wirepos = sympy.Point(slx.line.p1.x, slx.line.p1.z, evaluate=False) muonpos1 = sympy.Point(muon.line.p1.x, muon.line.p1.z, evaluate=False) muonpos2 = sympy.Point(muon.line.p2.x, muon.line.p2.z, evaluate=False) muonline = sympy.Line(muonpos1, muonpos2) rdrift = muonline.distance(wirepos) if rdrift.evalf() < mu_rdrift: mu_ix = islx mu_rdrift = rdrift.evalf() # do not record hit if closest wire further than tube radius if mu_rdrift > 0.5*self.sizes['x']/len(self.seg_lines['x']): return 0 muhit = Hit(mu_ip_x, mu_ip_y, mu_ip_z, mu_ip_t, mu_ix, mu_rdrift, True) self.hits.append(muhit) return 1 def set_noise(self, noise_rate, noise_type='constant'): self.noise_rate = noise_rate self.noise_type = noise_type def add_noise(self, noise_scale, override_n_noise_per_plane=-1, randseed=42): ''' p_width_t is the time window in which to integrate the signal (in nano seconds) therefore, the number of noise hits is: noise_scale * noise_rate per strip (Hz) * number of strips * p_width_t (ns) * 1e-9 ''' if 'constant' not in self.noise_type: print('Only support constant noise now') return -1 if self.sizes['t'] < 1e-15: print('Time integration width must be larger than 0') return -1 n_noise_init = noise_scale * (len(self.segmentations['x']) -1) \ * self.noise_rate * self.sizes['t'] * 1e-9 if override_n_noise_per_plane > 0: n_noise_init = override_n_noise_per_plane np.random.seed(int(randseed + (self.z))) n_noise = np.random.poisson(n_noise_init) noise_x = np.random.uniform(-0.5*self.sizes['x'], 0.5*self.sizes['x'], int(n_noise)) noise_y = np.random.uniform(-0.5*self.sizes['y'], 0.5*self.sizes['y'], int(n_noise)) noise_z = self.z*np.ones(int(n_noise)) noise_t = np.random.uniform(-0.5*self.sizes['t'], 0.5*self.sizes['t'], int(n_noise)) noise_r = np.random.uniform(0.0, 0.5*self.sizes['x']/len(self.seg_lines['x']), int(n_noise)) for inoise in range(int(n_noise)): # find detector element (segment) closest to each noise hit along x, as needed for MDT noise_ix = np.argmin( [ np.abs(noise_x[inoise]-xseg.line.p1.x) for xseg in self.seg_lines['x'] ] ) noise_hit = Hit(noise_x[inoise], noise_y[inoise], noise_z[inoise], noise_t[inoise], noise_ix, noise_r[inoise], False) self.hits.append(noise_hit) def find_signal(self, this_hit): ## find which detector segment this hit has activated hit_distancex_seg = None hit_hash_ix = -10 hit_distancey_seg = None hit_hash_iy = -10 if self.p_type == DetType.MDT: # association between hit and detector element (segment) already done according to rdrift hit_hash_ix = this_hit.seg_ix else: # if no tilt in this plane or the hit is in the middle of detector element along y, # speed up finding of nearest element #hit_hash_ix = np.argmin( [ xseg.line.distance(this_hit.point()) for xseg in self.seg_lines['x'] ] ) hit_hash_ix = np.argmin( [ util.distpoint2line(xseg, this_hit) for xseg in self.seg_lines['x'] ] ) #hit_hash_iy = np.argmin( [ yseg.line.distance(this_hit.point()) for yseg in self.seg_lines['y'] ] ) hit_hash_iy = np.argmin( [ util.distpoint2line(yseg, this_hit) for yseg in self.seg_lines['y'] ] ) ## if segment already has signal, skip (but set to muon if new signal is from muon) if self.seg_lines['x'][hit_hash_ix].is_sig == False or \ self.seg_lines['y'][hit_hash_iy].is_sig == False: if self.p_type == DetType.STGC and this_hit.rdrift < -9998.: # do not promote as signal return None isig = Signal( hash_seg_line_x=hit_hash_ix, hash_seg_line_y=hit_hash_iy, x=this_hit.x, y=this_hit.y, z=this_hit.z, time=this_hit.time, seg_ix=this_hit.seg_ix, rdrift=this_hit.rdrift, is_muon=this_hit.is_muon ) self.seg_lines['x'][hit_hash_ix].add_signal(isig) self.seg_lines['y'][hit_hash_iy].add_signal(isig) return isig.get_info_wrt_plane(self, display=False) else: if this_hit.is_muon: if self.seg_lines['x'][hit_hash_ix].is_sig and \ self.seg_lines['y'][hit_hash_iy].is_sig: self.seg_lines['x'][hit_hash_ix].sig.is_muon = True self.seg_lines['y'][hit_hash_iy].sig.is_muon = True return None def hit_processor(self, summary=False): ## decide on overlapping hits ## sorting hits by which one arrived first if self.p_type == DetType.MDT: self.hits.sort(key=lambda hit: hit.rdrift) else: self.hits.sort(key=lambda hit: hit.time) ## apply additional position smearing by combining muon and noise hits if sTGC plane if len(self.hits) > 1 and self.p_type == DetType.STGC: self.combine_hits(False) out_signals = [] if summary: print("Total number of hits:", len(self.hits) ) for ihit in self.hits: isig_info = self.find_signal(ihit) if isig_info is not None: out_signals.append(isig_info) if self.max_hits > 0 and len(out_signals) == self.max_hits: break n_sigs = len(out_signals) if n_sigs < 1: return None n_props = len(out_signals[0]) sig_matrix = np.zeros( (n_sigs, n_props) ) for ns in range(n_sigs): sig_matrix[ns][:] = list( out_signals[ns].values() ) return (sig_matrix, list(out_signals[ns].keys()) ) def combine_hits(self, summary=False): ## Combine hits in the same plane into one hit ## For the time being, only do so if a muon hit exists ## Background noise hit positions are averaged with muon hit position but with a reduced weight imu = -1 sumx = 0. sumw = 0. ibkg = [] list_seg_ix = [] # store detector segment with hits for ihit, hit in enumerate(self.hits): hit_ix = np.argmin( [ util.distpoint2line(xseg, hit) for xseg in self.seg_lines['x'] ] ) # Here we rely on the hits being ordered to avoid multiple hits on same detector segment if hit_ix in list_seg_ix: continue list_seg_ix.append(hit_ix) if hit.is_muon: imu = ihit weight = 1.0 else: # background noise hit ibkg.append(ihit) weight = 0.2 sumx += weight*hit.x sumw += weight ## Update x position of muon hit (if one exists) if imu >= 0: self.hits[imu].x = sumx/sumw ## Flag background noise hits for i in ibkg: self.hits[i].rdrift = -9999. # use as flag not to promote hit as signal return None def return_signal(self, summary=False): return self.hit_processor(summary)
[ "detmodel.util.distpoint2line", "numpy.random.uniform", "numpy.abs", "detmodel.hit.Hit", "sympy.Line3D", "sympy.Point", "numpy.zeros", "sympy.Plane", "sympy.Line", "numpy.tan", "detmodel.signal.Signal", "numpy.random.poisson", "numpy.linspace", "numpy.random.normal", "sympy.Point3D" ]
[((1130, 1168), 'sympy.Point3D', 'sympy.Point3D', (['(0)', '(0)', 'z'], {'evaluate': '(False)'}), '(0, 0, z, evaluate=False)\n', (1143, 1168), False, 'import sympy\n'), ((1187, 1235), 'sympy.Plane', 'sympy.Plane', (['self.point'], {'normal_vector': '(0, 0, 1)'}), '(self.point, normal_vector=(0, 0, 1))\n', (1198, 1235), False, 'import sympy\n'), ((8626, 8689), 'detmodel.hit.Hit', 'Hit', (['mu_ip_x', 'mu_ip_y', 'mu_ip_z', 'mu_ip_t', 'mu_ix', 'mu_rdrift', '(True)'], {}), '(mu_ip_x, mu_ip_y, mu_ip_z, mu_ip_t, mu_ix, mu_rdrift, True)\n', (8629, 8689), False, 'from detmodel.hit import Hit\n'), ((9915, 9946), 'numpy.random.poisson', 'np.random.poisson', (['n_noise_init'], {}), '(n_noise_init)\n', (9932, 9946), True, 'import numpy as np\n'), ((14362, 14389), 'numpy.zeros', 'np.zeros', (['(n_sigs, n_props)'], {}), '((n_sigs, n_props))\n', (14370, 14389), True, 'import numpy as np\n'), ((2191, 2283), 'numpy.linspace', 'np.linspace', (['(tilt_width_x_min + self.offset)', '(tilt_width_x_max + self.offset)', '(n_x_seg + 1)'], {}), '(tilt_width_x_min + self.offset, tilt_width_x_max + self.offset,\n n_x_seg + 1)\n', (2202, 2283), True, 'import numpy as np\n'), ((2290, 2345), 'numpy.linspace', 'np.linspace', (['(-0.5 * width_y)', '(0.5 * width_y)', '(n_y_seg + 1)'], {}), '(-0.5 * width_y, 0.5 * width_y, n_y_seg + 1)\n', (2301, 2345), True, 'import numpy as np\n'), ((2356, 2411), 'numpy.linspace', 'np.linspace', (['(-0.5 * width_t)', '(0.5 * width_t)', '(n_t_seg + 1)'], {}), '(-0.5 * width_t, 0.5 * width_t, n_t_seg + 1)\n', (2367, 2411), True, 'import numpy as np\n'), ((2906, 2961), 'sympy.Point3D', 'sympy.Point3D', (['this_x_center', '(0)', 'self.z'], {'evaluate': '(False)'}), '(this_x_center, 0, self.z, evaluate=False)\n', (2919, 2961), False, 'import sympy\n'), ((3264, 3319), 'sympy.Point3D', 'sympy.Point3D', (['(0)', 'this_y_center', 'self.z'], {'evaluate': '(False)'}), '(0, this_y_center, self.z, evaluate=False)\n', (3277, 3319), False, 'import sympy\n'), ((3342, 3409), 'sympy.Point3D', 'sympy.Point3D', (['(0.5 * width_x)', 'this_y_center', 'self.z'], {'evaluate': '(False)'}), '(0.5 * width_x, this_y_center, self.z, evaluate=False)\n', (3355, 3409), False, 'import sympy\n'), ((6173, 6219), 'numpy.random.normal', 'np.random.normal', (['pos', 'self.resolutions[coord]'], {}), '(pos, self.resolutions[coord])\n', (6189, 6219), True, 'import numpy as np\n'), ((6448, 6475), 'numpy.random.uniform', 'np.random.uniform', (['(0.0)', '(1.0)'], {}), '(0.0, 1.0)\n', (6465, 6475), True, 'import numpy as np\n'), ((7315, 7330), 'numpy.abs', 'np.abs', (['mu_ip_x'], {}), '(mu_ip_x)\n', (7321, 7330), True, 'import numpy as np\n'), ((7386, 7401), 'numpy.abs', 'np.abs', (['mu_ip_y'], {}), '(mu_ip_y)\n', (7392, 7401), True, 'import numpy as np\n'), ((7457, 7472), 'numpy.abs', 'np.abs', (['mu_ip_t'], {}), '(mu_ip_t)\n', (7463, 7472), True, 'import numpy as np\n'), ((10654, 10763), 'detmodel.hit.Hit', 'Hit', (['noise_x[inoise]', 'noise_y[inoise]', 'noise_z[inoise]', 'noise_t[inoise]', 'noise_ix', 'noise_r[inoise]', '(False)'], {}), '(noise_x[inoise], noise_y[inoise], noise_z[inoise], noise_t[inoise],\n noise_ix, noise_r[inoise], False)\n', (10657, 10763), False, 'from detmodel.hit import Hit\n'), ((12423, 12633), 'detmodel.signal.Signal', 'Signal', ([], {'hash_seg_line_x': 'hit_hash_ix', 'hash_seg_line_y': 'hit_hash_iy', 'x': 'this_hit.x', 'y': 'this_hit.y', 'z': 'this_hit.z', 'time': 'this_hit.time', 'seg_ix': 'this_hit.seg_ix', 'rdrift': 'this_hit.rdrift', 'is_muon': 'this_hit.is_muon'}), '(hash_seg_line_x=hit_hash_ix, hash_seg_line_y=hit_hash_iy, x=this_hit\n .x, y=this_hit.y, z=this_hit.z, time=this_hit.time, seg_ix=this_hit.\n seg_ix, rdrift=this_hit.rdrift, is_muon=this_hit.is_muon)\n', (12429, 12633), False, 'from detmodel.signal import Signal, Segment\n'), ((4083, 4171), 'sympy.Point3D', 'sympy.Point3D', (["(-0.5 * self.sizes['x'])", "(0.5 * self.sizes['y'])", 'self.z'], {'evaluate': '(False)'}), "(-0.5 * self.sizes['x'], 0.5 * self.sizes['y'], self.z,\n evaluate=False)\n", (4096, 4171), False, 'import sympy\n'), ((4216, 4303), 'sympy.Point3D', 'sympy.Point3D', (["(0.5 * self.sizes['x'])", "(0.5 * self.sizes['y'])", 'self.z'], {'evaluate': '(False)'}), "(0.5 * self.sizes['x'], 0.5 * self.sizes['y'], self.z,\n evaluate=False)\n", (4229, 4303), False, 'import sympy\n'), ((7956, 8013), 'sympy.Point', 'sympy.Point', (['slx.line.p1.x', 'slx.line.p1.z'], {'evaluate': '(False)'}), '(slx.line.p1.x, slx.line.p1.z, evaluate=False)\n', (7967, 8013), False, 'import sympy\n'), ((8041, 8100), 'sympy.Point', 'sympy.Point', (['muon.line.p1.x', 'muon.line.p1.z'], {'evaluate': '(False)'}), '(muon.line.p1.x, muon.line.p1.z, evaluate=False)\n', (8052, 8100), False, 'import sympy\n'), ((8128, 8187), 'sympy.Point', 'sympy.Point', (['muon.line.p2.x', 'muon.line.p2.z'], {'evaluate': '(False)'}), '(muon.line.p2.x, muon.line.p2.z, evaluate=False)\n', (8139, 8187), False, 'import sympy\n'), ((8215, 8245), 'sympy.Line', 'sympy.Line', (['muonpos1', 'muonpos2'], {}), '(muonpos1, muonpos2)\n', (8225, 8245), False, 'import sympy\n'), ((11935, 11970), 'detmodel.util.distpoint2line', 'util.distpoint2line', (['yseg', 'this_hit'], {}), '(yseg, this_hit)\n', (11954, 11970), False, 'from detmodel import util\n'), ((2016, 2028), 'numpy.tan', 'np.tan', (['tilt'], {}), '(tilt)\n', (2022, 2028), True, 'import numpy as np\n'), ((3125, 3155), 'sympy.Line3D', 'sympy.Line3D', (['this_p1', 'this_p2'], {}), '(this_p1, this_p2)\n', (3137, 3155), False, 'import sympy\n'), ((3456, 3486), 'sympy.Line3D', 'sympy.Line3D', (['this_p1', 'this_p2'], {}), '(this_p1, this_p2)\n', (3468, 3486), False, 'import sympy\n'), ((4362, 4451), 'sympy.Point3D', 'sympy.Point3D', (["(-0.5 * self.sizes['x'])", "(-0.5 * self.sizes['y'])", 'self.z'], {'evaluate': '(False)'}), "(-0.5 * self.sizes['x'], -0.5 * self.sizes['y'], self.z,\n evaluate=False)\n", (4375, 4451), False, 'import sympy\n'), ((4495, 4583), 'sympy.Point3D', 'sympy.Point3D', (["(0.5 * self.sizes['x'])", "(-0.5 * self.sizes['y'])", 'self.z'], {'evaluate': '(False)'}), "(0.5 * self.sizes['x'], -0.5 * self.sizes['y'], self.z,\n evaluate=False)\n", (4508, 4583), False, 'import sympy\n'), ((10554, 10594), 'numpy.abs', 'np.abs', (['(noise_x[inoise] - xseg.line.p1.x)'], {}), '(noise_x[inoise] - xseg.line.p1.x)\n', (10560, 10594), True, 'import numpy as np\n'), ((11705, 11740), 'detmodel.util.distpoint2line', 'util.distpoint2line', (['xseg', 'this_hit'], {}), '(xseg, this_hit)\n', (11724, 11740), False, 'from detmodel import util\n'), ((15079, 15109), 'detmodel.util.distpoint2line', 'util.distpoint2line', (['xseg', 'hit'], {}), '(xseg, hit)\n', (15098, 15109), False, 'from detmodel import util\n'), ((3026, 3038), 'numpy.tan', 'np.tan', (['tilt'], {}), '(tilt)\n', (3032, 3038), True, 'import numpy as np\n'), ((4643, 4732), 'sympy.Point3D', 'sympy.Point3D', (["(-0.5 * self.sizes['x'])", "(-0.5 * self.sizes['y'])", 'self.z'], {'evaluate': '(False)'}), "(-0.5 * self.sizes['x'], -0.5 * self.sizes['y'], self.z,\n evaluate=False)\n", (4656, 4732), False, 'import sympy\n'), ((4776, 4864), 'sympy.Point3D', 'sympy.Point3D', (["(-0.5 * self.sizes['x'])", "(0.5 * self.sizes['y'])", 'self.z'], {'evaluate': '(False)'}), "(-0.5 * self.sizes['x'], 0.5 * self.sizes['y'], self.z,\n evaluate=False)\n", (4789, 4864), False, 'import sympy\n'), ((4921, 5009), 'sympy.Point3D', 'sympy.Point3D', (["(0.5 * self.sizes['x'])", "(-0.5 * self.sizes['y'])", 'self.z'], {'evaluate': '(False)'}), "(0.5 * self.sizes['x'], -0.5 * self.sizes['y'], self.z,\n evaluate=False)\n", (4934, 5009), False, 'import sympy\n'), ((5054, 5141), 'sympy.Point3D', 'sympy.Point3D', (["(0.5 * self.sizes['x'])", "(0.5 * self.sizes['y'])", 'self.z'], {'evaluate': '(False)'}), "(0.5 * self.sizes['x'], 0.5 * self.sizes['y'], self.z,\n evaluate=False)\n", (5067, 5141), False, 'import sympy\n'), ((5200, 5243), 'sympy.Point3D', 'sympy.Point3D', (['(0)', '(0)', 'self.z'], {'evaluate': '(False)'}), '(0, 0, self.z, evaluate=False)\n', (5213, 5243), False, 'import sympy\n'), ((5296, 5339), 'sympy.Point3D', 'sympy.Point3D', (['(1)', '(0)', 'self.z'], {'evaluate': '(False)'}), '(1, 0, self.z, evaluate=False)\n', (5309, 5339), False, 'import sympy\n'), ((5405, 5448), 'sympy.Point3D', 'sympy.Point3D', (['(0)', '(0)', 'self.z'], {'evaluate': '(False)'}), '(0, 0, self.z, evaluate=False)\n', (5418, 5448), False, 'import sympy\n'), ((5501, 5544), 'sympy.Point3D', 'sympy.Point3D', (['(0)', '(1)', 'self.z'], {'evaluate': '(False)'}), '(0, 1, self.z, evaluate=False)\n', (5514, 5544), False, 'import sympy\n')]
"""An agent that makes random decisions using a TensorFlow policy." This agent creates and uses a new randomly initialized TensorFlow NN policy for each step but doesn't do any learning. """ import agentos from tensorflow import keras import numpy as np class Policy: def __init__(self): self.nn = keras.Sequential( [ keras.layers.Dense( 4, activation="relu", input_shape=(4,), dtype="float64" ), keras.layers.Dense(1, activation="sigmoid", dtype="float64"), ] ) def compute_action(self, obs): return int(round(self.nn(np.array(obs)[np.newaxis]).numpy()[0][0])) class RandomTFAgent(agentos.Agent): def _init(self): self.ret_vals = [] def advance(self): ret = sum(self.evaluate_policy(Policy(), max_steps=2000)) self.ret_vals.append(ret) def __del__(self): print( f"Agent done!\n" f"Num rollouts: {len(self.ret_vals)}\n" f"Avg return: {np.mean(self.ret_vals)}\n" f"Max return: {max(self.ret_vals)}\n" f"Median return: {np.median(self.ret_vals)}\n" ) if __name__ == "__main__": from gym.envs.classic_control import CartPoleEnv agentos.run_agent(RandomTFAgent, CartPoleEnv, max_iters=5)
[ "tensorflow.keras.layers.Dense", "numpy.median", "numpy.mean", "numpy.array", "agentos.run_agent" ]
[((1280, 1338), 'agentos.run_agent', 'agentos.run_agent', (['RandomTFAgent', 'CartPoleEnv'], {'max_iters': '(5)'}), '(RandomTFAgent, CartPoleEnv, max_iters=5)\n', (1297, 1338), False, 'import agentos\n'), ((361, 436), 'tensorflow.keras.layers.Dense', 'keras.layers.Dense', (['(4)'], {'activation': '"""relu"""', 'input_shape': '(4,)', 'dtype': '"""float64"""'}), "(4, activation='relu', input_shape=(4,), dtype='float64')\n", (379, 436), False, 'from tensorflow import keras\n'), ((492, 552), 'tensorflow.keras.layers.Dense', 'keras.layers.Dense', (['(1)'], {'activation': '"""sigmoid"""', 'dtype': '"""float64"""'}), "(1, activation='sigmoid', dtype='float64')\n", (510, 552), False, 'from tensorflow import keras\n'), ((1047, 1069), 'numpy.mean', 'np.mean', (['self.ret_vals'], {}), '(self.ret_vals)\n', (1054, 1069), True, 'import numpy as np\n'), ((1154, 1178), 'numpy.median', 'np.median', (['self.ret_vals'], {}), '(self.ret_vals)\n', (1163, 1178), True, 'import numpy as np\n'), ((647, 660), 'numpy.array', 'np.array', (['obs'], {}), '(obs)\n', (655, 660), True, 'import numpy as np\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- ## For Testing Matrix2vec on dataset MNIST ## PCA, Kernel PCA, ISOMAP, NMDS, LLE, LE # import tensorflow as ts import logging import os.path import sys import multiprocessing import numpy as np import argparse import scipy.io import datetime import matrix2vec from sklearn import datasets as ds from sklearn.datasets import load_digits from sklearn.manifold import LocallyLinearEmbedding # from keras.datasets import mnist from sklearn.manifold import SpectralEmbedding from sklearn.decomposition import PCA from sklearn.manifold import MDS, Isomap from sklearn.model_selection import train_test_split, GridSearchCV, cross_val_score from sklearn.neighbors import KNeighborsClassifier from sklearn.preprocessing import MinMaxScaler from sklearn import svm, metrics from sklearn.preprocessing import scale #import cPickle as pickle import pickle from scipy import misc import matplotlib.image as mpimg def unpickle(file): with open(file, 'rb') as fo: dict = pickle.load(fo) return np.array(dict['data']), np.array(dict['labels']) def load_data(path): x_train, y_train = ds.load_svmlight_file(path) x_train.todense() return x_train,y_train def read_data(data_file): import gzip f = gzip.open(data_file, "rb") # train, val, test = pickle.load(f) train, val, test = pickle.load(f, encoding='bytes') f.close() train_x = train[0] train_y = train[1] test_x = test[0] test_y = test[1] return train_x, train_y, test_x, test_y def resizeSVHDShape(matrix): svhd = np.zeros((5000,3072)) [rows, cols] = svhd.shape for r in range(rows): for c in range(cols): svhd[r][c]=matrix[(c%1024)/32][(c%1024)%32][c/1024][r] return svhd if __name__ == "__main__": #args = parse_args() # CoilData = scipy.io.loadmat("D:/NSFC/project/data/coil20/COIL20.mat") # Loading coil20.mat # coil_x = CoilData['X'] # coil_y = CoilData['Y'] # x_train = coil_x # y_train = [] # for item in coil_y: # y_train.append(item[0]) # print("Load the COIL20 dataset finished...") # SVHDData = scipy.io.loadmat("D:/NSFC/project/data/SVHN/train_32x32.mat") # Loading SVHN # svhd_x = SVHDData['X'] # x_train = resizeSVHDShape(svhd_x) # svhd_y = SVHDData['y'] # y_train = [] # for item in svhd_y: # y_train.append(item[0]) # print("Load dataset finished...") #data,label =load_data("D:/NSFC/project/data/movie/train.bow") # data, label = load_data(args.input) x_train, y_train, x_test, y_test = read_data("D:/NSFC/project/data/MNIST/origData/mnistpklgz/mnist.pkl.gz") print("Load dataset MNIST finished...") program = os.path.basename(sys.argv[0]) logger = logging.getLogger(program) x_train=x_train[0:5000, :] y_train = y_train[0:5000] print(x_train.shape) print(x_train) models = [] emb_size=64 num_neighbors=32 for emb_size in (32,64): print("********************* emb_size="+str(emb_size)+" ***************") models=[] models.append(LocallyLinearEmbedding(n_neighbors=num_neighbors,n_components=emb_size,n_jobs=multiprocessing.cpu_count())) models.append(SpectralEmbedding(n_neighbors=num_neighbors,n_components=emb_size,n_jobs=multiprocessing.cpu_count())) models.append(PCA(n_components=emb_size)) models.append(MDS(n_components=emb_size,n_jobs=multiprocessing.cpu_count())) models.append(Isomap(n_neighbors=num_neighbors, n_components=emb_size, n_jobs=multiprocessing.cpu_count())) models.append('matrix2vec') model_names = ['lle', 'le', 'pca', 'MDS', 'ISOMAP', 'matrix2vec'] # names corresponding to model for index, embedding in enumerate(models): print('Start running model '+model_names[index]+"...") start = datetime.datetime.now() X_transformed= np.zeros((x_train.shape[0],emb_size)) if(index<=4): # X_transformed = embedding.fit_transform(x_train) X_transformed = embedding.fit_transform(x_train) else: X_transformed=matrix2vec.matrix2vec(x_train,emb_size,topk=5,num_iter=10) end = datetime.datetime.now() #scale X_transformed=scale(X_transformed) print('Model '+model_names[index]+' Finished in '+str(end-start)+" s.") #Using KNN classifier to test the result with cross_validation knn = KNeighborsClassifier() param = {"n_neighbors": [1, 3, 5, 7, 11]} # 构造一些参数的值进行搜索 (字典类型,可以有多个参数) gc = GridSearchCV(knn, param_grid=param, cv=4) gc.fit(X_transformed, y_train) knn = gc.best_estimator_ print("The best parameter: n_neighbors=" + str(knn.n_neighbors)) scores = cross_val_score(knn, X_transformed, y_train, cv=4) print("交叉验证Accuracy: ", scores) print("Accuracy: %0.4f (+/- %0.4f)" % (scores.mean(), scores.std() * 2))
[ "sklearn.model_selection.GridSearchCV", "gzip.open", "sklearn.preprocessing.scale", "sklearn.model_selection.cross_val_score", "numpy.zeros", "sklearn.neighbors.KNeighborsClassifier", "pickle.load", "numpy.array", "sklearn.datasets.load_svmlight_file", "sklearn.decomposition.PCA", "matrix2vec.matrix2vec", "datetime.datetime.now", "logging.getLogger", "multiprocessing.cpu_count" ]
[((1143, 1170), 'sklearn.datasets.load_svmlight_file', 'ds.load_svmlight_file', (['path'], {}), '(path)\n', (1164, 1170), True, 'from sklearn import datasets as ds\n'), ((1273, 1299), 'gzip.open', 'gzip.open', (['data_file', '"""rb"""'], {}), "(data_file, 'rb')\n", (1282, 1299), False, 'import gzip\n'), ((1363, 1395), 'pickle.load', 'pickle.load', (['f'], {'encoding': '"""bytes"""'}), "(f, encoding='bytes')\n", (1374, 1395), False, 'import pickle\n'), ((1583, 1605), 'numpy.zeros', 'np.zeros', (['(5000, 3072)'], {}), '((5000, 3072))\n', (1591, 1605), True, 'import numpy as np\n'), ((2776, 2802), 'logging.getLogger', 'logging.getLogger', (['program'], {}), '(program)\n', (2793, 2802), False, 'import logging\n'), ((1022, 1037), 'pickle.load', 'pickle.load', (['fo'], {}), '(fo)\n', (1033, 1037), False, 'import pickle\n'), ((1049, 1071), 'numpy.array', 'np.array', (["dict['data']"], {}), "(dict['data'])\n", (1057, 1071), True, 'import numpy as np\n'), ((1073, 1097), 'numpy.array', 'np.array', (["dict['labels']"], {}), "(dict['labels'])\n", (1081, 1097), True, 'import numpy as np\n'), ((3372, 3398), 'sklearn.decomposition.PCA', 'PCA', ([], {'n_components': 'emb_size'}), '(n_components=emb_size)\n', (3375, 3398), False, 'from sklearn.decomposition import PCA\n'), ((3884, 3907), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (3905, 3907), False, 'import datetime\n'), ((3935, 3973), 'numpy.zeros', 'np.zeros', (['(x_train.shape[0], emb_size)'], {}), '((x_train.shape[0], emb_size))\n', (3943, 3973), True, 'import numpy as np\n'), ((4257, 4280), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (4278, 4280), False, 'import datetime\n'), ((4327, 4347), 'sklearn.preprocessing.scale', 'scale', (['X_transformed'], {}), '(X_transformed)\n', (4332, 4347), False, 'from sklearn.preprocessing import scale\n'), ((4540, 4562), 'sklearn.neighbors.KNeighborsClassifier', 'KNeighborsClassifier', ([], {}), '()\n', (4560, 4562), False, 'from sklearn.neighbors import KNeighborsClassifier\n'), ((4665, 4706), 'sklearn.model_selection.GridSearchCV', 'GridSearchCV', (['knn'], {'param_grid': 'param', 'cv': '(4)'}), '(knn, param_grid=param, cv=4)\n', (4677, 4706), False, 'from sklearn.model_selection import train_test_split, GridSearchCV, cross_val_score\n'), ((4885, 4935), 'sklearn.model_selection.cross_val_score', 'cross_val_score', (['knn', 'X_transformed', 'y_train'], {'cv': '(4)'}), '(knn, X_transformed, y_train, cv=4)\n', (4900, 4935), False, 'from sklearn.model_selection import train_test_split, GridSearchCV, cross_val_score\n'), ((4180, 4241), 'matrix2vec.matrix2vec', 'matrix2vec.matrix2vec', (['x_train', 'emb_size'], {'topk': '(5)', 'num_iter': '(10)'}), '(x_train, emb_size, topk=5, num_iter=10)\n', (4201, 4241), False, 'import matrix2vec\n'), ((3195, 3222), 'multiprocessing.cpu_count', 'multiprocessing.cpu_count', ([], {}), '()\n', (3220, 3222), False, 'import multiprocessing\n'), ((3320, 3347), 'multiprocessing.cpu_count', 'multiprocessing.cpu_count', ([], {}), '()\n', (3345, 3347), False, 'import multiprocessing\n'), ((3455, 3482), 'multiprocessing.cpu_count', 'multiprocessing.cpu_count', ([], {}), '()\n', (3480, 3482), False, 'import multiprocessing\n'), ((3571, 3598), 'multiprocessing.cpu_count', 'multiprocessing.cpu_count', ([], {}), '()\n', (3596, 3598), False, 'import multiprocessing\n')]
import os import numpy as np import logging log = logging.getLogger('data_utils') def resample_ants(nii_file, nii_file_newres, new_res=(1.37, 1.37, 10, 1)): ''' Call ANTs to resample an image to a given resolution and save a new resampled file. :param nii_file: the path of the input file :param nii_file_newres: the path of the output file :param new_res: the pixel resolution to resample ''' print('Resampling %s at resolution %s to file %s' % (nii_file, str(new_res), nii_file_newres)) os.system('~/bin/ants/bin/ResampleImage %d %s %s %s' % (len(new_res), nii_file, nii_file_newres, 'x'.join([str(r) for r in new_res]))) def normalise(array, min_value, max_value): array = (max_value - min_value) * (array - float(array.min())) / (array.max() - array.min()) + min_value assert array.max() == max_value and array.min() == min_value return array def crop_same(image_list, mask_list, size=(None, None), mode='equal', pad_mode='constant'): ''' Crop the data in the image and mask lists, so that they have the same size. :param image_list: a list of images. Each element should be 4-dimensional, (sl,h,w,chn) :param mask_list: a list of masks. Each element should be 4-dimensional, (sl,h,w,chn) :param size: dimensions to crop the images to. :param mode: can be one of [equal, left, right]. Denotes where to crop pixels from. Defaults to middle. :param pad_mode: can be one of ['edge', 'constant']. 'edge' pads using the values of the edge pixels, 'constant' pads with a constant value :return: the modified arrays ''' min_w = np.min([m.shape[1] for m in mask_list]) if size[0] is None else size[0] min_h = np.min([m.shape[2] for m in mask_list]) if size[1] is None else size[1] # log.debug('Resizing list1 of size %s to size %s' % (str(image_list[0].shape), str((min_w, min_h)))) # log.debug('Resizing list2 of size %s to size %s' % (str(mask_list[0].shape), str((min_w, min_h)))) img_result, msk_result = [], [] for i in range(len(mask_list)): im = image_list[i] m = mask_list[i] if m.shape[1] > min_w: m = _crop(m, 1, min_w, mode) if im.shape[1] > min_w: im = _crop(im, 1, min_w, mode) if m.shape[1] < min_w: m = _pad(m, 1, min_w, pad_mode) if im.shape[1] < min_w: im = _pad(im, 1, min_w, pad_mode) if m.shape[2] > min_h: m = _crop(m, 2, min_h, mode) if im.shape[2] > min_h: im = _crop(im, 2, min_h, mode) if m.shape[2] < min_h: m = _pad(m, 2, min_h, pad_mode) if im.shape[2] < min_h: im = _pad(im, 2, min_h, pad_mode) img_result.append(im) msk_result.append(m) return img_result, msk_result def _crop(image, dim, nb_pixels, mode): diff = image.shape[dim] - nb_pixels if mode == 'equal': l = int(np.ceil(diff / 2)) r = image.shape[dim] - l elif mode == 'right': l = 0 r = nb_pixels elif mode == 'left': l = diff r = image.shape[dim] else: raise 'Unexpected mode: %s. Expected to be one of [equal, left, right].' % mode if dim == 1: return image[:, l:r, :, :] elif dim == 2: return image[:, :, l:r, :] else: return None def _pad(image, dim, nb_pixels, mode): diff = nb_pixels - image.shape[dim] l = int(diff / 2) r = int(diff - l) if dim == 1: pad_width = ((0, 0), (l, r), (0, 0), (0, 0)) elif dim == 2: pad_width = ((0, 0), (0, 0), (l, r), (0, 0)) else: return None if mode == 'edge': new_image = np.pad(image, pad_width, 'edge') elif mode == 'constant': new_image = np.pad(image, pad_width, 'constant', constant_values=0) else: raise Exception('Invalid pad mode: ' + mode) return new_image def sample(data, nb_samples, seed=-1): if seed > -1: np.random.seed(seed) idx = np.random.choice(len(data), size=nb_samples, replace=False) return np.array([data[i] for i in idx]) def generator(batch, mode, *x): assert mode in ['overflow', 'no_overflow'] imshape = x[0].shape for ar in x: # case where all inputs are images if len(ar.shape) == len(imshape): assert ar.shape[:-1] == imshape[:-1], str(ar.shape) + ' vs ' + str(imshape) # case where inputs might be arrays of different dimensions else: assert ar.shape[0] == imshape[0], str(ar.shape) + ' vs ' + str(imshape) start = 0 while 1: if isempty(*x): # if the arrays are empty do not process and yield empty arrays log.info('Empty inputs. Return empty arrays') res = [] for ar in x: res.append(np.empty(shape=ar.shape)) if len(res) > 1: yield res else: yield res[0] else: start, ims = generate(start, batch, mode, *x) if len(ims) == 1: yield ims[0] else: yield ims def isempty(*x): for ar in x: if ar.shape[0] > 0: return False return True def generate(start, batch, mode, *images): result = [] if mode == 'no_overflow': for ar in images: result.append(ar[start:start + batch] + 0) start += batch if start >= len(images[0]): index = np.array(range(len(images[0]))) np.random.shuffle(index) for ar in images: ar[:] = ar[index] # shuffle array start = 0 return start, result if start + batch <= len(images[0]): for ar in images: result.append(ar[start:start + batch] + 0) start += batch return start, result else: # shuffle images index = np.array(range(len(images[0]))) np.random.shuffle(index) extra = batch + start - len(images[0]) # extra images to use from the beginning for ar in images: ims = ar[start:] + 0 # last images of array ar[:] = ar[index] # shuffle array if extra > 0: result.append(np.concatenate([ims, ar[0:extra]], axis=0)) return extra, result
[ "numpy.pad", "numpy.random.seed", "numpy.random.shuffle", "numpy.ceil", "numpy.concatenate", "numpy.empty", "numpy.min", "numpy.array", "logging.getLogger" ]
[((50, 81), 'logging.getLogger', 'logging.getLogger', (['"""data_utils"""'], {}), "('data_utils')\n", (67, 81), False, 'import logging\n'), ((4156, 4188), 'numpy.array', 'np.array', (['[data[i] for i in idx]'], {}), '([data[i] for i in idx])\n', (4164, 4188), True, 'import numpy as np\n'), ((1692, 1731), 'numpy.min', 'np.min', (['[m.shape[1] for m in mask_list]'], {}), '([m.shape[1] for m in mask_list])\n', (1698, 1731), True, 'import numpy as np\n'), ((1776, 1815), 'numpy.min', 'np.min', (['[m.shape[2] for m in mask_list]'], {}), '([m.shape[2] for m in mask_list])\n', (1782, 1815), True, 'import numpy as np\n'), ((3764, 3796), 'numpy.pad', 'np.pad', (['image', 'pad_width', '"""edge"""'], {}), "(image, pad_width, 'edge')\n", (3770, 3796), True, 'import numpy as np\n'), ((4054, 4074), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (4068, 4074), True, 'import numpy as np\n'), ((6027, 6051), 'numpy.random.shuffle', 'np.random.shuffle', (['index'], {}), '(index)\n', (6044, 6051), True, 'import numpy as np\n'), ((3003, 3020), 'numpy.ceil', 'np.ceil', (['(diff / 2)'], {}), '(diff / 2)\n', (3010, 3020), True, 'import numpy as np\n'), ((3846, 3901), 'numpy.pad', 'np.pad', (['image', 'pad_width', '"""constant"""'], {'constant_values': '(0)'}), "(image, pad_width, 'constant', constant_values=0)\n", (3852, 3901), True, 'import numpy as np\n'), ((5604, 5628), 'numpy.random.shuffle', 'np.random.shuffle', (['index'], {}), '(index)\n', (5621, 5628), True, 'import numpy as np\n'), ((4899, 4923), 'numpy.empty', 'np.empty', ([], {'shape': 'ar.shape'}), '(shape=ar.shape)\n', (4907, 4923), True, 'import numpy as np\n'), ((6331, 6373), 'numpy.concatenate', 'np.concatenate', (['[ims, ar[0:extra]]'], {'axis': '(0)'}), '([ims, ar[0:extra]], axis=0)\n', (6345, 6373), True, 'import numpy as np\n')]
from mmdet.apis import init_detector, inference_detector, show_result_pyplot import mmcv import cv2 import numpy as np import time import sys import glob import os from datetime import datetime def process_video_crcnn(frame_offset, frame_count, config_file, checkpoint_file, video_path): """ frame_offset: skipping this many frames frame_count: run detection on this many frames """ f_number = 0 frame_offset = int(frame_offset) frame_count = int(frame_count) video = mmcv.VideoReader(video_path) model = init_detector(config_file, checkpoint_file, device='cuda:0') model.cfg.data.test.pipeline[1]['img_scale'] = video.resolution print('[config] img_scale: {}'.format(model.cfg.data.test.pipeline[1]['img_scale'])) print('[config] score threshold: {}'.format(model.cfg.test_cfg['rcnn']['score_thr'])) print('[config] iou threshold: {}'.format(model.cfg.test_cfg['rcnn']['nms']['iou_threshold'])) print('[config] rpn nms threshold: {}'.format(model.cfg.test_cfg['rpn']['nms_thr'])) now = datetime.now() date_time = now.strftime("%m%d%Y_%H%M%S") log_filename = './demo/dump/det.txt' log_file = open(log_filename, 'w') start_process = time.time() slice_start = 0 if frame_offset == 0 else frame_offset-1 slice_end = frame_offset+frame_count print('[DBG] processing frames from {} - {}'.format(range(slice_start,slice_end)[0], range(slice_start,slice_end)[-1])) last_boxes = [] for index in range(slice_start,slice_end): frame = video[index] f_number = f_number + 1 if frame is None: print('[DBG] Empty frame received!') break start_time = time.time() result = inference_detector(model, frame) end_time = time.time() bbox_result, _ = result, None bboxes = np.vstack(bbox_result) labels = [np.full(bbox.shape[0], i, dtype=np.int32) for i, bbox in enumerate(bbox_result)] labels = np.concatenate(labels) if len(bboxes) == 0 or (len(bboxes) == 1 and labels[0] != 1): if len(last_boxes) == 0: print('[DBG] both current & previous detection lists for frame %d are empty' % (f_number)) log_file.write(str(f_number)+","+str(100.0)+","+str(100.0)+","+str(135.0)+","+str(228.0)+","+str(0.1) + "\n") else: print('[DBG] received empty detection list for frame %d copying boxes from previous frame' % (f_number)) for i in range(len(last_boxes)): box = last_boxes[i] d = (box[0], box[1], box[2], box[3], box[4]) # cv2.rectangle(frame, (int(d[0]), int(d[1])), (int(d[2]), int(d[3])), (255,0,0), 2) log_file.write(str(f_number)+","+str(d[0])+","+str(d[1])+","+str(d[2])+","+str(d[3])+","+str(d[4]) + "\n") else: for i in range(len(bboxes)): # bb [816.4531 265.64264 832.7383 311.08356 0.99859136] bb = bboxes[i] if labels[i] != 1: continue d = (bb[0], bb[1], bb[2], bb[3], bb[4]) if (d[2]-d[0]) <= 0. or (d[3]-d[1]) <= 0.: print ('[DBG] wrong size of a box at frame: %d' % (f_number)) continue cv2.rectangle(frame, (int(d[0]), int(d[1])), (int(d[2]), int(d[3])), (255,0,0), 2) log_file.write(str(f_number)+","+str(d[0])+","+str(d[1])+","+str(d[2])+","+str(d[3])+","+str(d[4]) + "\n") last_boxes = bboxes.copy() if f_number == 1 or f_number % 300 == 0: end_process = time.time() print('[DBG][{}/{}] frame inference time: {} {}, elapsed time: {} {}'.format(f_number+slice_start, slice_end-1, end_time-start_time, '.s', (end_process-start_process), '.s')) if f_number == 1 or f_number % 3000 == 0: dump_path = "./demo/dump/dump-%06d.jpg" % (f_number) cv2.imwrite(dump_path, frame) log_file.flush() os.fsync(log_file.fileno()) print('[DBG] detection complete!') log_file.close() def process_jpg_crcnn(config_file, checkpoint_file, image_dir): model = init_detector(config_file, checkpoint_file, device='cuda:0') now = datetime.now() date_time = now.strftime("%m%d%Y_%H%M%S") log_filename = './demo/dump/det.txt' log_file = open(log_filename, 'w') start_process = time.time() #dsort_img_path = '/home/dmitriy.khvan/dsort-gcp/bepro-data/data/img1' frame_count = len(glob.glob(os.path.join(image_dir,'*.jpg'))) for num, filename in enumerate(sorted(glob.glob(os.path.join(image_dir,'*.jpg')))): f_number = num + 1 frame = cv2.imread(filename) if frame is None: break start_time = time.time() result = inference_detector(model, frame) end_time = time.time() bbox_result, segm_result = result, None bboxes = np.vstack(bbox_result) labels = [np.full(bbox.shape[0], i, dtype=np.int32) for i, bbox in enumerate(bbox_result)] labels = np.concatenate(labels) for i in range(len(bboxes)): bb = bboxes[i] if labels[i] != 0: continue d = (int(bb[0]), int(bb[1]), int(bb[2]), int(bb[3])) cv2.rectangle(frame, (d[0], d[1]), (d[2], d[3]), (255,0,0), 2) log_file.write(str(f_number)+","+str(d[0])+","+str(d[1])+","+str(d[2])+","+str(d[3]) + "\n") if f_number == 1 or f_number % 500 == 0: end_process = time.time() print('[DBG][{}/{}] frame inference time: {} {}, elapsed time: {} {}'.format(f_number, frame_count, end_time-start_time, '.s', (end_process-start_process), '.s')) if f_number == 1 or f_number % 1000 == 0: dump_path = "./demo/dump/dump-%06d.jpg" % (f_number) cv2.imwrite(dump_path, frame) log_file.flush() os.fsync(log_file.fileno()) print('[DBG] detection complete!') log_file.close() if __name__ == '__main__': data_dir = sys.argv[1] config_file = sys.argv[2] checkpoint_file = sys.argv[3] frame_offset = sys.argv[4] frame_count = sys.argv[5] # python demo/mmdetection_demo.py PVO4R8Dh-trim.mp4 configs/cascade_rcnn/cascade_rcnn_r50_fpn_1x_bepro.py checkpoint/crcnn_r50_bepro_stitch.pth 0 87150 /home/dmitriy.khvan/tmp/ process_video_crcnn(frame_offset, frame_count, config_file, checkpoint_file, data_dir)
[ "numpy.full", "numpy.concatenate", "os.path.join", "cv2.imwrite", "mmdet.apis.init_detector", "mmdet.apis.inference_detector", "mmcv.VideoReader", "time.time", "cv2.imread", "cv2.rectangle", "datetime.datetime.now", "numpy.vstack" ]
[((504, 532), 'mmcv.VideoReader', 'mmcv.VideoReader', (['video_path'], {}), '(video_path)\n', (520, 532), False, 'import mmcv\n'), ((545, 605), 'mmdet.apis.init_detector', 'init_detector', (['config_file', 'checkpoint_file'], {'device': '"""cuda:0"""'}), "(config_file, checkpoint_file, device='cuda:0')\n", (558, 605), False, 'from mmdet.apis import init_detector, inference_detector, show_result_pyplot\n'), ((1057, 1071), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1069, 1071), False, 'from datetime import datetime\n'), ((1220, 1231), 'time.time', 'time.time', ([], {}), '()\n', (1229, 1231), False, 'import time\n'), ((4273, 4333), 'mmdet.apis.init_detector', 'init_detector', (['config_file', 'checkpoint_file'], {'device': '"""cuda:0"""'}), "(config_file, checkpoint_file, device='cuda:0')\n", (4286, 4333), False, 'from mmdet.apis import init_detector, inference_detector, show_result_pyplot\n'), ((4345, 4359), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (4357, 4359), False, 'from datetime import datetime\n'), ((4508, 4519), 'time.time', 'time.time', ([], {}), '()\n', (4517, 4519), False, 'import time\n'), ((1718, 1729), 'time.time', 'time.time', ([], {}), '()\n', (1727, 1729), False, 'import time\n'), ((1747, 1779), 'mmdet.apis.inference_detector', 'inference_detector', (['model', 'frame'], {}), '(model, frame)\n', (1765, 1779), False, 'from mmdet.apis import init_detector, inference_detector, show_result_pyplot\n'), ((1799, 1810), 'time.time', 'time.time', ([], {}), '()\n', (1808, 1810), False, 'import time\n'), ((1875, 1897), 'numpy.vstack', 'np.vstack', (['bbox_result'], {}), '(bbox_result)\n', (1884, 1897), True, 'import numpy as np\n'), ((2015, 2037), 'numpy.concatenate', 'np.concatenate', (['labels'], {}), '(labels)\n', (2029, 2037), True, 'import numpy as np\n'), ((4798, 4818), 'cv2.imread', 'cv2.imread', (['filename'], {}), '(filename)\n', (4808, 4818), False, 'import cv2\n'), ((4890, 4901), 'time.time', 'time.time', ([], {}), '()\n', (4899, 4901), False, 'import time\n'), ((4919, 4951), 'mmdet.apis.inference_detector', 'inference_detector', (['model', 'frame'], {}), '(model, frame)\n', (4937, 4951), False, 'from mmdet.apis import init_detector, inference_detector, show_result_pyplot\n'), ((4971, 4982), 'time.time', 'time.time', ([], {}), '()\n', (4980, 4982), False, 'import time\n'), ((5057, 5079), 'numpy.vstack', 'np.vstack', (['bbox_result'], {}), '(bbox_result)\n', (5066, 5079), True, 'import numpy as np\n'), ((5197, 5219), 'numpy.concatenate', 'np.concatenate', (['labels'], {}), '(labels)\n', (5211, 5219), True, 'import numpy as np\n'), ((1917, 1958), 'numpy.full', 'np.full', (['bbox.shape[0]', 'i'], {'dtype': 'np.int32'}), '(bbox.shape[0], i, dtype=np.int32)\n', (1924, 1958), True, 'import numpy as np\n'), ((3709, 3720), 'time.time', 'time.time', ([], {}), '()\n', (3718, 3720), False, 'import time\n'), ((4036, 4065), 'cv2.imwrite', 'cv2.imwrite', (['dump_path', 'frame'], {}), '(dump_path, frame)\n', (4047, 4065), False, 'import cv2\n'), ((4628, 4660), 'os.path.join', 'os.path.join', (['image_dir', '"""*.jpg"""'], {}), "(image_dir, '*.jpg')\n", (4640, 4660), False, 'import os\n'), ((5099, 5140), 'numpy.full', 'np.full', (['bbox.shape[0]', 'i'], {'dtype': 'np.int32'}), '(bbox.shape[0], i, dtype=np.int32)\n', (5106, 5140), True, 'import numpy as np\n'), ((5403, 5467), 'cv2.rectangle', 'cv2.rectangle', (['frame', '(d[0], d[1])', '(d[2], d[3])', '(255, 0, 0)', '(2)'], {}), '(frame, (d[0], d[1]), (d[2], d[3]), (255, 0, 0), 2)\n', (5416, 5467), False, 'import cv2\n'), ((5647, 5658), 'time.time', 'time.time', ([], {}), '()\n', (5656, 5658), False, 'import time\n'), ((5974, 6003), 'cv2.imwrite', 'cv2.imwrite', (['dump_path', 'frame'], {}), '(dump_path, frame)\n', (5985, 6003), False, 'import cv2\n'), ((4719, 4751), 'os.path.join', 'os.path.join', (['image_dir', '"""*.jpg"""'], {}), "(image_dir, '*.jpg')\n", (4731, 4751), False, 'import os\n')]
import numpy as np def add_noise(a): if len(a.shape) == 2: b = np.random.rand(a.shape[0], a.shape[1]) return a + b else: return a def dot_product(a, b): if len(a.shape) == 2 and len(b.shape) == 1 and a.shape[1] == b.shape[0]: return a.dot(b) else: return "Incompatible dimensions" if __name__ == "__main__": dim = 200 a = np.eye(dim) b = np.ones((dim,)) res1 = add_noise(a) res2 = dot_product(a, b) print(res2) assert res2.all() == b.all()
[ "numpy.random.rand", "numpy.eye", "numpy.ones" ]
[((391, 402), 'numpy.eye', 'np.eye', (['dim'], {}), '(dim)\n', (397, 402), True, 'import numpy as np\n'), ((411, 426), 'numpy.ones', 'np.ones', (['(dim,)'], {}), '((dim,))\n', (418, 426), True, 'import numpy as np\n'), ((76, 114), 'numpy.random.rand', 'np.random.rand', (['a.shape[0]', 'a.shape[1]'], {}), '(a.shape[0], a.shape[1])\n', (90, 114), True, 'import numpy as np\n')]
import time import numpy as np import copy import sys sys.path.append(".") import ai.parameters import ai.actionplanner import ai.energyplanner # get/set/update/check/ # random.choice(d.keys()) class BehaviourPlanner: def __init__(self): self.energy = ai.energyplanner.EnergyPlanner() self.last_behaviour = '' self.last_behaviour_count = 0 self.last_behaviour_time_spend = 0 self.last_behaviour_time_left = 0 self.last_time = self.get_time() def get_time(self): return time.time() def get_time_gap(self): return self.get_time() - self.last_time def get_time_cons(self, behaviour): if behaviour in ai.parameters.TIME_MIN_CONS: return ai.parameters.TIME_MIN_CONS[behaviour] else: return 0 def update_last_time(self): self.last_time = self.get_time() def update_last_time_left(self): print (self.last_behaviour_time_left) self.last_behaviour_time_left -= self.get_time_gap() print (self.last_behaviour_time_left) self.update_last_time() def update_last_behaviour(self, this_behaviour): self.last_behaviour_time_left = self.get_time_cons(this_behaviour) if self.last_behaviour == this_behaviour: self.last_behaviour_count += 1 else: self.last_behaviour_count = 0 ai.actionplanner.ActionPlanner.need_stop = True self.check_behaviour_times() self.last_behaviour = this_behaviour def check_behaviour_times(self): if self.last_behaviour_count > 10: print ("too many times") def update_behaviour(self, input_mode, input_data): behaviour, processed_data = self.get_behaviour_from_mode(input_mode, input_data) print('BP(behaviour=' + behaviour + ', data=' + processed_data + ')') if self.check_behaviour_in_behaviours(behaviour, ['relax', 'move', 'play']): #print ('2.1 in relax, move play') if self.last_behaviour_time_left > 0: #print ('2.11 time left ' + str(self.last_behaviour_time_left)) self.update_last_time_left() behaviour = self.last_behaviour else: #print ('2.12 new behaviour ') self.update_last_behaviour(behaviour) else: #print ('2.2 other move') self.update_last_behaviour(behaviour) print('BP -> behaviour=' + behaviour + ', time_left=' + str(self.last_behaviour_time_left)) return behaviour, processed_data def set_last_behaviour(self, behaviour): if (self.last_behaviour == behaviour): self.last_behaviour_count += 1 else: self.last_behaviour_count = 0 self.last_behaviour = copy.deepcopy(behaviour) def get_behaviour_from_mode(self, input_mode, input_data): _behaviour = None _data = input_data if input_mode == ai.parameters.MODELS[0]: # ds _behaviour = "run_away" elif input_mode == ai.parameters.MODELS[1]: #tc if input_data[0] == 1: _behaviour = "touch_head" elif input_data[2] == 1: _behaviour = "touch_jaw" elif input_data[4] == 1: _behaviour = "touch_back" elif input_mode == ai.parameters.MODELS[2]: #voice _behaviour = self.process_voice(input_data) elif input_mode == ai.parameters.MODELS[3]: #vision _behaviour,_data = self.process_vision(input_data) else: _behaviour = self.process_random_behaviour() return _behaviour, _data def process_voice(self, input_data): ''' 1. kitten 2. mars 3. cat 4. mimi 5. hello 6. how are you 7 be quiet 8 look at me 9 sit 10 run 11 walk 12 turn 13 relax 14 stop 15 come here ''' command = input_data _behaviour = None if command == "MARS" or command == "KITTEN" or command == "CAT": # call _behaviour = 'start_listen' pass elif command == "MIMI" or command == "HELLO" or command == "HOW ARE YOU": # hello _behaviour = 'make_sound' pass elif command == "BE QUIET": # be quiet _behaviour = 'lower_sound' # be quite pass elif command == "LOOK AT ME": # look at me _behaviour = 'stare_at' # look at me pass elif command == "SIT": # Go to your charger _behaviour = 'sit' pass elif command == "RUN": # Play with me _behaviour = 'run' pass elif command == "WALK": # Look at me _behaviour = 'walk' pass elif command == "TURN": # Go foward/ left/ right/ stop _behaviour = 'turn' pass elif command == "RELAX": # Are you sleepy? _behaviour = 'lie_down' pass elif command == "STOP": # Be quiet _behaviour = 'stop' pass elif command == "COME HERE": # Find your toy _behaviour = 'walk_towards' pass else: _behaviour = "lower_sound" pass return _behaviour def process_vision(self, input_data): if type(input_data) != dict or len(input_data)!= 1: return "error process vision", 0 command = '' for i in input_data: command = i _behaviour = None _data = None if command == 'human': _behaviour = ai.parameters.BEHAVIOURS['ita_human'][self.get_rand(4,2)] _data = input_data[command][0][0] # coords elif command == 'qrcode': _behaviour = 'qrcode' _data = command[1] elif command == 'obj': obj_id = input_data[command][0] if obj_id == 0: #high and teaser _behaviour = 'flap_obj' else: _behaviour = 'pre_attack' _data = input_data[command][1] #coord return _behaviour,_data def process_random_behaviour(self): _behaviour = None _rad = self.get_rand() _rad_2 = self.get_rand() if _rad > 0.15: # relax if _rad_2 > 0.75: # sit _behaviour = 'lie_down' elif _rad_2 < 0.7: # lie_down _behaviour = 'sit' else: # stand _behaviour = 'stand' elif _rad < 0.1: # move if _rad_2 > 0.3: # walk _behaviour = 'walk' elif _rad_2 <0.1: _behaviour = 'turn' else: _behaviour = 'run' else: # play _behaviour = ai.parameters.BEHAVIOURS['play'][self.get_rand(4,3)] return _behaviour def get_rand(self, num_type = 0, _data=0): # 0 is for random # 1 is for normal # 4 is for choice / swtich if num_type == 0: return np.random.random() # 0~1 percentage elif num_type == 1: return abs(np.random.normal(0,1)) # 68% in 1; 95% in 2 elif num_type == 2: return np.random.normal(0,1) # 68% in 1; 95% in 2 elif num_type == 3: return np.random.gamma(1,1) # 90% 0~2; 10% bigger than 2 elif num_type == 4: return int(np.random.random()*_data) # 0,1,2 .. data-1 else: return 0 def check_behaviour_in_behaviours(self,_behaviour, _behaviour_group): if type(_behaviour_group) is str: if _behaviour in ai.parameters.BEHAVIOURS[_behaviour_group]: return True else: return False elif type(_behaviour_group) is list: for i in _behaviour_group: if _behaviour in ai.parameters.BEHAVIOURS[i]: return True return False else: print ('Not in the group') return False pass
[ "sys.path.append", "copy.deepcopy", "time.time", "numpy.random.gamma", "numpy.random.random", "numpy.random.normal" ]
[((55, 75), 'sys.path.append', 'sys.path.append', (['"""."""'], {}), "('.')\n", (70, 75), False, 'import sys\n'), ((538, 549), 'time.time', 'time.time', ([], {}), '()\n', (547, 549), False, 'import time\n'), ((2811, 2835), 'copy.deepcopy', 'copy.deepcopy', (['behaviour'], {}), '(behaviour)\n', (2824, 2835), False, 'import copy\n'), ((7335, 7353), 'numpy.random.random', 'np.random.random', ([], {}), '()\n', (7351, 7353), True, 'import numpy as np\n'), ((7425, 7447), 'numpy.random.normal', 'np.random.normal', (['(0)', '(1)'], {}), '(0, 1)\n', (7441, 7447), True, 'import numpy as np\n'), ((7519, 7541), 'numpy.random.normal', 'np.random.normal', (['(0)', '(1)'], {}), '(0, 1)\n', (7535, 7541), True, 'import numpy as np\n'), ((7612, 7633), 'numpy.random.gamma', 'np.random.gamma', (['(1)', '(1)'], {}), '(1, 1)\n', (7627, 7633), True, 'import numpy as np\n'), ((7721, 7739), 'numpy.random.random', 'np.random.random', ([], {}), '()\n', (7737, 7739), True, 'import numpy as np\n')]
""" This module contains mathematically focused functions """ import numpy as np from math import sin, cos def normalise(vector): """Return a normalised vector""" return vector / np.linalg.norm(vector) def rotZ(theta): """ Return rotation matrix that rotates with repect to z axis with theta degress """ rot = np.array([[np.cos(theta), -np.sin(theta), 0], [np.sin(theta), np.cos(theta), 0], [0, 0, 1]]) return rot def rotedEpsilon(Epsilon, theta): """Return an epsilon of an material rotated by theta degree with z as the rotation matrix""" return rotZ(theta).dot(Epsilon.dot(rotZ(-theta))) def rotVTheta(v, theta): """Return the rotation matrix for rotation against a unit vector v and angel theta""" v = normalise(v) # we first normalise the vector w = np.array([[0, -v[2], v[1]], [v[2], 0, -v[0]], [-v[1], v[0], 0]]) return np.cos(theta) * np.identity(3) + np.sin(theta) * w + (1 - np.cos(theta)) *\ np.outer(v,v) def stackDot(array): """ Calculate the overall transfer matrix from a stack of arrays in the increasing z direction. e.g. stack start at z=0 Psi(zb) = P_(zb, z_{N-1}) * ... * P(z1,zf) * Psi(zf) = P(zb,zf) * Psi(zf) """ product = np.identity(len(array[0])) for i in array: product = product.dot(i) return product def buildDeltaMatrix(eps, Kx): """Returns Delta matrix for given relative permitivity and reduced wave number. 'Kx' : reduced wave number, Kx = kx/k0 'eps' : relative permitivity tensor Returns : Delta 4x4 matrix, generator of infinitesimal translations """ return np.array([[ -Kx * eps[2, 0] / eps[2, 2], -Kx * eps[2, 1] / eps[2, 2], 0, 1 - Kx**2 / eps[2, 2] ], [0, 0, -1, 0], [ eps[1, 2] * eps[2, 0] / eps[2, 2] - eps[1, 0], Kx**2 - eps[1, 1] + eps[1, 2] * eps[2, 1] / eps[2, 2], 0, Kx * eps[1, 2] / eps[2, 2] ], [ eps[0, 0] - eps[0, 2] * eps[2, 0] / eps[2, 2], eps[0, 1] - eps[0, 2] * eps[2, 1] / eps[2, 2], 0, -Kx * eps[0, 2] / eps[2, 2] ]]) def rotXY(theta): """Return a roation matrix in 2D. Used in Jones Calculus""" R = np.array([[cos(theta), sin(theta)], [-sin(theta), cos(theta)]]) return R def polariserJ(theta): """Return the Jones matrix of a linear polariser""" R = rotXY(theta) Ri = rotXY(-theta) J = np.array([[1, 0], [0, 0]]) return Ri.dot(J.dot(R)) def vectorFromTheta(theta): """ Return a unit vector in XY plane given the value of theta 'theta' : a list of angles to be calculated return a 3xN array of N vectors calcuated """ X = np.cos(theta) Y = np.sin(theta) Z = np.zeros(len(theta)) return np.array([X, Y, Z]) ######################DEPRECATED######################## # For the depricated Yeh's methods def construct_epsilon_heli(epsilon_diag, pitch, divisions, thickness, handness="left"): """ construct the dielectric matrices of all layers return a N*3*3 array where N is the number of layers We define pitch to be the distance such the rotation is 180 degree e.g. apparant period in z direction """ if pitch == thickness: angles = np.linspace(0, -np.pi, divisions, endpoint=False) elif pitch > thickness: angles = np.linspace( 0, -np.pi * thickness / pitch, divisions, endpoint=False) else: raise NameError('Need thickness to be smaller than pitch') return np.array( [rotZ(i).dot(epsilon_diag.dot(rotZ(-i))) for i in angles]) def calc_c(e, a, b, u=1): # Check units """ calculate the z components of 4 partial waves in medium e: dielectric tensor a,b: components of wavevector in direction of x and y direction return a list containting 4 roots for the z components of the partial waves """ # assign names x = e * u x11, x12, x13 = x[0] x21, x22, x23 = x[1] x31, x32, x33 = x[2] # calculate the coeffciency based on symbolic expression coef4 = x33 coef3 = a * x13 + a * x31 + b * x23 + b * x32 coef2 = a**2*x11 + a**2*x33 + a*b*x12 + a*b*x21 + b**2*x22 + b**2*x33 - \ x11*x33 + x13*x31 - x22*x33 + x23*x32 coef1 = a**3*x13 + a**3*x31 + a**2*b*x23 + a**2*b*x32 + a*b**2*x13 + \ a*b**2*x31 + a*x12*x23 - a*x13*x22 + a*x21*x32 - a*x22*x31 + b**3*x23 \ + b**3*x32 - b*x11*x23 - b*x11*x32 + b*x12*x31 + b*x13*x21 coef0 = a**4*x11 + a**3*b*x12 + a**3*b*x21 + a**2*b**2*x11 + a**2*b**2*x22 \ - a**2*x11*x22 - a**2*x11*x33 + a**2*x12*x21 + a**2*x13*x31 + a*b**3*x12 + \ a*b**3*x21 - a*b*x12*x33 + a*b*x13*x32 - a*b*x21*x33 + a*b*x23*x31 + \ b**4*x22 - b**2*x11*x22 + b**2*x12*x21 - b**2*x22*x33 + b**2*x23*x32 + \ x11*x22*x33 - x11*x23*x32 - x12*x21*x33 + x12*x23*x31 + x13*x21*x32 - \ x13*x22*x31 # calculate the roots of the quartic equation c = np.roots([coef4, coef3, coef2, coef1, coef0]) if len(c) == 2: return np.append(c, c) return c def calc_k(e, a, b, u=1): """ A wrapper to calcualte k vector """ c = calc_c(e, a, b, u) return np.array([[a, b, c[0]], [a, b, c[1]], [a, b, c[2]], [a, b, c[3]]]) def calc_p(e, k, u=1): #something is wrong with this function. Not giving #correct directions """ Calculate the polarisation vector based on the calculated wavevector and frequency equation(9.7-5) e: dielectric tensor k: 4x3 array of 4 k vectors """ x = e * u p = [] x11, x12, x13 = x[0] x21, x22, x23 = x[1] x31, x32, x33 = x[2] for i in k: a = i[0] b = i[1] c = i[2] coeff_m = np.array([[x11 - b**2 - c**2, x12 + a * b, x13 + a * c], [x21 + a * b, x22 - a**2 - c**2, x23 + b * c], [x31 + a * c, x32 + b * c, x33 - a**2 - b**2]]) # The function seems to return the normalised null spcae vector p.append(null(coeff_m)) return np.array(p) def calc_q(k, p, u=1): """ calcualte the direction of q vector based on the k and q vectors given k: an 4x3 array of 4 k vectors p: an 4x3 array of 4 p vectors return a 4x3 array of 4 q vectors use a special unit for the magnetic field such that c/2pi/mu_0 = 1 note these vectors are not normlised """ return np.cross(k, p) / u def calc_D(p, q): return np.array([p[:, 0], q[:, 1], p[:, 1], q[:, 0]]) def calc_P(k, t): return np.diag(np.exp(1j * t * k[:, 2])) def construct_D(e, a, b, omega, u=1): """ construct the dynamic matrix for one layer with know dielectric tensor """ k = calc_k(e, a, b, omega, u) p = calc_p(e, k, omega, u) q = calc_q(k, p, omega, u) return calc_D(p, q) def null(A, eps=1e-14): """ Return the null vector of matrix A, usefull for calculate the p vector with known k vector """ u, s, vh = np.linalg.svd(A) null_mask = (s <= eps) # relax the threshold if no null singularity is identified if null_mask.any() == False: return null(A, eps * 10) null_space = np.compress(null_mask, vh, axis=0).flatten() return np.transpose(null_space) def incident_p(k): """ Calculate the 4 polarisation vectors based on the incident wave wave vector. Assuming the medium is isotropic and polarastion is splited into s and p k is a 3-vector return a array of ps+,ps-,pp+,pp- """ # For normal incidence, fix the direction of polarisation # p is aligned with x and s is aligned with y # note the p vector is reversed for reflected wave otherwise p,s,k don't form # a right hand set if k[0] == 0 and k[1] == 0: return np.array([[0, 1, 0], [0, 1, 0], [1, 0, 0], [-1, 0, 0]]) # calculate the polarisation vectors see lab book for defined geometries # Note the normal vector is [0,0,-1] as the incident wave is traving in postive # z direction si = normalise(np.cross(k, [0, 0, -1])) sr = si pi = normalise(np.cross(si, k)) pr = normalise(np.cross(sr, [k[0], k[1], -k[2]])) # return a 4x3 array of the four polarisation vectors return np.array([si, sr, pi, pr]) def calc_coeff(T): """ Given the transfer matrix calculate the transmission and reflection coefficients Not currently in use """ deno = (T[0, 0] * T[2, 2] - T[0, 2] * T[2, 0]) rss = (T[1, 0] * T[2, 2] - T[1, 2] * T[2, 0]) / deno rsp = (T[3, 0] * T[2, 2] - T[3, 2] * T[2, 0]) / deno rps = (T[0, 0] * T[1, 2] - T[1, 0] * T[0, 2]) / deno rpp = (T[0, 0] * T[3, 2] - T[3, 0] * T[0, 2]) / deno tss = T[2, 2] / deno tsp = -T[2, 0] / deno tps = -T[0, 2] / deno tpp = T[0, 0] / deno return { "rss": rss, "rsp": rsp, "rps": rps, "rpp": rpp, "tss": tss, "tsp": tsp, "tps": tps, "tpp": tpp } def calc_coupling_matrices(T): """ Calculate the coupling matrix between reflected/transmitted light and incident light T is the overall transfer matrix of the system. Return a dictionary of coupling matrice Indice are always in the order of s,p or L,R Note p direction is aligned with x and s is aligned with y in the frame that wave is traveling in the z direction. Refer to geometry guideline in the lab book. """ # Build the coupling matrice between transmitted light and incident/reflected light T_ti = np.array([[T[0, 0], T[0, 2]], [T[2, 0], T[2, 2]]]) T_tr = np.array([[T[1, 0], T[1, 2]], [T[3, 0], T[3, 2]]]) # Connect reflected light to incident light using the coupling to transmitted light T_ir = np.linalg.solve(T_ti, T_tr) T_it = np.linalg.inv(T_ti) # Switching to circular polarisation # Coupling matrix between planar and circular polarsiation T_cp * [L,R] = [S,P] T_cp = np.array([[1j, -1j], [1, 1]]) * np.sqrt(1 / 2) T_ir_c = np.linalg.solve(T_cp, T_ir.dot(T_cp)) T_it_c = np.linalg.solve(T_cp, T_it.dot(T_cp)) coupling_matrices = { "Plane_r": T_ir, "Plane_t": T_it, "Circular_r": T_ir_c, "Circular_t": T_it_c } return coupling_matrices if __name__ == '__main__': e = np.diag([1, 1, 1]) print(calc_c(e, 1, 1, 1))
[ "numpy.roots", "numpy.linalg.svd", "numpy.sin", "numpy.linalg.norm", "numpy.exp", "numpy.diag", "numpy.linalg.solve", "numpy.transpose", "numpy.identity", "numpy.append", "math.cos", "numpy.linspace", "numpy.cross", "math.sin", "numpy.linalg.inv", "numpy.cos", "numpy.compress", "numpy.outer", "numpy.array", "numpy.sqrt" ]
[((833, 897), 'numpy.array', 'np.array', (['[[0, -v[2], v[1]], [v[2], 0, -v[0]], [-v[1], v[0], 0]]'], {}), '([[0, -v[2], v[1]], [v[2], 0, -v[0]], [-v[1], v[0], 0]])\n', (841, 897), True, 'import numpy as np\n'), ((1666, 2065), 'numpy.array', 'np.array', (['[[-Kx * eps[2, 0] / eps[2, 2], -Kx * eps[2, 1] / eps[2, 2], 0, 1 - Kx ** 2 /\n eps[2, 2]], [0, 0, -1, 0], [eps[1, 2] * eps[2, 0] / eps[2, 2] - eps[1, \n 0], Kx ** 2 - eps[1, 1] + eps[1, 2] * eps[2, 1] / eps[2, 2], 0, Kx *\n eps[1, 2] / eps[2, 2]], [eps[0, 0] - eps[0, 2] * eps[2, 0] / eps[2, 2],\n eps[0, 1] - eps[0, 2] * eps[2, 1] / eps[2, 2], 0, -Kx * eps[0, 2] / eps\n [2, 2]]]'], {}), '([[-Kx * eps[2, 0] / eps[2, 2], -Kx * eps[2, 1] / eps[2, 2], 0, 1 -\n Kx ** 2 / eps[2, 2]], [0, 0, -1, 0], [eps[1, 2] * eps[2, 0] / eps[2, 2] -\n eps[1, 0], Kx ** 2 - eps[1, 1] + eps[1, 2] * eps[2, 1] / eps[2, 2], 0, \n Kx * eps[1, 2] / eps[2, 2]], [eps[0, 0] - eps[0, 2] * eps[2, 0] / eps[2,\n 2], eps[0, 1] - eps[0, 2] * eps[2, 1] / eps[2, 2], 0, -Kx * eps[0, 2] /\n eps[2, 2]]])\n', (1674, 2065), True, 'import numpy as np\n'), ((2425, 2451), 'numpy.array', 'np.array', (['[[1, 0], [0, 0]]'], {}), '([[1, 0], [0, 0]])\n', (2433, 2451), True, 'import numpy as np\n'), ((2692, 2705), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (2698, 2705), True, 'import numpy as np\n'), ((2714, 2727), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (2720, 2727), True, 'import numpy as np\n'), ((2768, 2787), 'numpy.array', 'np.array', (['[X, Y, Z]'], {}), '([X, Y, Z])\n', (2776, 2787), True, 'import numpy as np\n'), ((5035, 5080), 'numpy.roots', 'np.roots', (['[coef4, coef3, coef2, coef1, coef0]'], {}), '([coef4, coef3, coef2, coef1, coef0])\n', (5043, 5080), True, 'import numpy as np\n'), ((5263, 5329), 'numpy.array', 'np.array', (['[[a, b, c[0]], [a, b, c[1]], [a, b, c[2]], [a, b, c[3]]]'], {}), '([[a, b, c[0]], [a, b, c[1]], [a, b, c[2]], [a, b, c[3]]])\n', (5271, 5329), True, 'import numpy as np\n'), ((6123, 6134), 'numpy.array', 'np.array', (['p'], {}), '(p)\n', (6131, 6134), True, 'import numpy as np\n'), ((6539, 6585), 'numpy.array', 'np.array', (['[p[:, 0], q[:, 1], p[:, 1], q[:, 0]]'], {}), '([p[:, 0], q[:, 1], p[:, 1], q[:, 0]])\n', (6547, 6585), True, 'import numpy as np\n'), ((7058, 7074), 'numpy.linalg.svd', 'np.linalg.svd', (['A'], {}), '(A)\n', (7071, 7074), True, 'import numpy as np\n'), ((7305, 7329), 'numpy.transpose', 'np.transpose', (['null_space'], {}), '(null_space)\n', (7317, 7329), True, 'import numpy as np\n'), ((8297, 8323), 'numpy.array', 'np.array', (['[si, sr, pi, pr]'], {}), '([si, sr, pi, pr])\n', (8305, 8323), True, 'import numpy as np\n'), ((9580, 9630), 'numpy.array', 'np.array', (['[[T[0, 0], T[0, 2]], [T[2, 0], T[2, 2]]]'], {}), '([[T[0, 0], T[0, 2]], [T[2, 0], T[2, 2]]])\n', (9588, 9630), True, 'import numpy as np\n'), ((9642, 9692), 'numpy.array', 'np.array', (['[[T[1, 0], T[1, 2]], [T[3, 0], T[3, 2]]]'], {}), '([[T[1, 0], T[1, 2]], [T[3, 0], T[3, 2]]])\n', (9650, 9692), True, 'import numpy as np\n'), ((9792, 9819), 'numpy.linalg.solve', 'np.linalg.solve', (['T_ti', 'T_tr'], {}), '(T_ti, T_tr)\n', (9807, 9819), True, 'import numpy as np\n'), ((9831, 9850), 'numpy.linalg.inv', 'np.linalg.inv', (['T_ti'], {}), '(T_ti)\n', (9844, 9850), True, 'import numpy as np\n'), ((10344, 10362), 'numpy.diag', 'np.diag', (['[1, 1, 1]'], {}), '([1, 1, 1])\n', (10351, 10362), True, 'import numpy as np\n'), ((190, 212), 'numpy.linalg.norm', 'np.linalg.norm', (['vector'], {}), '(vector)\n', (204, 212), True, 'import numpy as np\n'), ((3358, 3407), 'numpy.linspace', 'np.linspace', (['(0)', '(-np.pi)', 'divisions'], {'endpoint': '(False)'}), '(0, -np.pi, divisions, endpoint=False)\n', (3369, 3407), True, 'import numpy as np\n'), ((5116, 5131), 'numpy.append', 'np.append', (['c', 'c'], {}), '(c, c)\n', (5125, 5131), True, 'import numpy as np\n'), ((5798, 5970), 'numpy.array', 'np.array', (['[[x11 - b ** 2 - c ** 2, x12 + a * b, x13 + a * c], [x21 + a * b, x22 - a **\n 2 - c ** 2, x23 + b * c], [x31 + a * c, x32 + b * c, x33 - a ** 2 - b ** 2]\n ]'], {}), '([[x11 - b ** 2 - c ** 2, x12 + a * b, x13 + a * c], [x21 + a * b, \n x22 - a ** 2 - c ** 2, x23 + b * c], [x31 + a * c, x32 + b * c, x33 - a **\n 2 - b ** 2]])\n', (5806, 5970), True, 'import numpy as np\n'), ((6488, 6502), 'numpy.cross', 'np.cross', (['k', 'p'], {}), '(k, p)\n', (6496, 6502), True, 'import numpy as np\n'), ((6625, 6651), 'numpy.exp', 'np.exp', (['(1.0j * t * k[:, 2])'], {}), '(1.0j * t * k[:, 2])\n', (6631, 6651), True, 'import numpy as np\n'), ((7847, 7902), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 1, 0], [1, 0, 0], [-1, 0, 0]]'], {}), '([[0, 1, 0], [0, 1, 0], [1, 0, 0], [-1, 0, 0]])\n', (7855, 7902), True, 'import numpy as np\n'), ((8101, 8124), 'numpy.cross', 'np.cross', (['k', '[0, 0, -1]'], {}), '(k, [0, 0, -1])\n', (8109, 8124), True, 'import numpy as np\n'), ((8157, 8172), 'numpy.cross', 'np.cross', (['si', 'k'], {}), '(si, k)\n', (8165, 8172), True, 'import numpy as np\n'), ((8193, 8226), 'numpy.cross', 'np.cross', (['sr', '[k[0], k[1], -k[2]]'], {}), '(sr, [k[0], k[1], -k[2]])\n', (8201, 8226), True, 'import numpy as np\n'), ((9987, 10020), 'numpy.array', 'np.array', (['[[1.0j, -1.0j], [1, 1]]'], {}), '([[1.0j, -1.0j], [1, 1]])\n', (9995, 10020), True, 'import numpy as np\n'), ((10019, 10033), 'numpy.sqrt', 'np.sqrt', (['(1 / 2)'], {}), '(1 / 2)\n', (10026, 10033), True, 'import numpy as np\n'), ((989, 1003), 'numpy.outer', 'np.outer', (['v', 'v'], {}), '(v, v)\n', (997, 1003), True, 'import numpy as np\n'), ((3453, 3522), 'numpy.linspace', 'np.linspace', (['(0)', '(-np.pi * thickness / pitch)', 'divisions'], {'endpoint': '(False)'}), '(0, -np.pi * thickness / pitch, divisions, endpoint=False)\n', (3464, 3522), True, 'import numpy as np\n'), ((7249, 7283), 'numpy.compress', 'np.compress', (['null_mask', 'vh'], {'axis': '(0)'}), '(null_mask, vh, axis=0)\n', (7260, 7283), True, 'import numpy as np\n'), ((350, 363), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (356, 363), True, 'import numpy as np\n'), ((406, 419), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (412, 419), True, 'import numpy as np\n'), ((421, 434), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (427, 434), True, 'import numpy as np\n'), ((909, 922), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (915, 922), True, 'import numpy as np\n'), ((925, 939), 'numpy.identity', 'np.identity', (['(3)'], {}), '(3)\n', (936, 939), True, 'import numpy as np\n'), ((942, 955), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (948, 955), True, 'import numpy as np\n'), ((967, 980), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (973, 980), True, 'import numpy as np\n'), ((2226, 2236), 'math.cos', 'cos', (['theta'], {}), '(theta)\n', (2229, 2236), False, 'from math import sin, cos\n'), ((2238, 2248), 'math.sin', 'sin', (['theta'], {}), '(theta)\n', (2241, 2248), False, 'from math import sin, cos\n'), ((2265, 2275), 'math.cos', 'cos', (['theta'], {}), '(theta)\n', (2268, 2275), False, 'from math import sin, cos\n'), ((366, 379), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (372, 379), True, 'import numpy as np\n'), ((2253, 2263), 'math.sin', 'sin', (['theta'], {}), '(theta)\n', (2256, 2263), False, 'from math import sin, cos\n')]
import io import re import numpy as np class NamedPoints(): def __init__(self, fl): data = np.genfromtxt(fl, dtype=None) self.xyz = np.array([[l[1], l[2], l[3]] for l in data]) self.names = [l[0].decode('ascii') for l in data] self.name_to_xyz = dict(zip(self.names, self.xyz)) class Contacts(NamedPoints): contact_single_regex = re.compile("^([A-Za-z]+[']?)([0-9]+)$") contact_pair_regex_1 = re.compile("^([A-Za-z]+[']?)([0-9]+)-([0-9]+)$") contact_pair_regex_2 = re.compile("^([A-Za-z]+[']?)([0-9]+)-([A-Za-z]+[']?)([0-9]+)$") def __init__(self, filename): super().__init__(filename) self.electrodes = {} for i, name in enumerate(self.names): match = self.contact_single_regex.match(name) if match is None: raise ValueError("Unexpected contact name %s" % name) elec_name, _ = match.groups() if elec_name not in self.electrodes: self.electrodes[elec_name] = [] self.electrodes[elec_name].append(i) def get_elec(self, name): match = self.contact_single_regex.match(name) if match is None: return None return match.groups()[0] def get_coords(self, name): """Get the coordinates of a specified contact or contact pair. Allowed formats are: A1 : Single contact. A1-2 or A1-A2 : Contact pair. The indices must be adjacent. Examples: >>> np.set_printoptions(formatter={'float': lambda x: "{0:0.1f}".format(x)}) >>> contacts = Contacts(io.BytesIO("A1 0.0 0.0 1.0\\nA2 0.0 0.0 2.0".encode())) >>> contacts.get_coords("A1") array([0.0, 0.0, 1.0]) >>> contacts.get_coords("A1-2") array([0.0, 0.0, 1.5]) >>> contacts.get_coords("A2-A1") array([0.0, 0.0, 1.5]) """ match = self.contact_single_regex.match(name) if match is not None: return self.name_to_xyz[name] match = self.contact_pair_regex_1.match(name) if match is not None: assert abs(int(match.group(2)) - int(match.group(3))) == 1 contact1 = match.group(1) + match.group(2) contact2 = match.group(1) + match.group(3) return (self.name_to_xyz[contact1] + self.name_to_xyz[contact2])/2. match = self.contact_pair_regex_2.match(name) if match is not None: assert match.group(1) == match.group(3) assert abs(int(match.group(2)) - int(match.group(4))) == 1 contact1 = match.group(1) + match.group(2) contact2 = match.group(3) + match.group(4) return (self.name_to_xyz[contact1] + self.name_to_xyz[contact2])/2. raise ValueError("Given name '%s' does not follow any expected pattern." % name)
[ "numpy.array", "numpy.genfromtxt", "re.compile" ]
[((374, 413), 're.compile', 're.compile', (['"""^([A-Za-z]+[\']?)([0-9]+)$"""'], {}), '("^([A-Za-z]+[\']?)([0-9]+)$")\n', (384, 413), False, 'import re\n'), ((441, 489), 're.compile', 're.compile', (['"""^([A-Za-z]+[\']?)([0-9]+)-([0-9]+)$"""'], {}), '("^([A-Za-z]+[\']?)([0-9]+)-([0-9]+)$")\n', (451, 489), False, 'import re\n'), ((517, 580), 're.compile', 're.compile', (['"""^([A-Za-z]+[\']?)([0-9]+)-([A-Za-z]+[\']?)([0-9]+)$"""'], {}), '("^([A-Za-z]+[\']?)([0-9]+)-([A-Za-z]+[\']?)([0-9]+)$")\n', (527, 580), False, 'import re\n'), ((106, 135), 'numpy.genfromtxt', 'np.genfromtxt', (['fl'], {'dtype': 'None'}), '(fl, dtype=None)\n', (119, 135), True, 'import numpy as np\n'), ((155, 199), 'numpy.array', 'np.array', (['[[l[1], l[2], l[3]] for l in data]'], {}), '([[l[1], l[2], l[3]] for l in data])\n', (163, 199), True, 'import numpy as np\n')]
import math import numpy as np from numerical_analysis.splines.bezier import Bezier from numerical_analysis.dependencies import Polynomial from numerical_analysis.root_finding import newton_raphson_2x2 from numerical_analysis.dependencies.geometry import StraightLine, Circle from output_lib.csv_lib import ScvExporter from output_lib.plot_lib import PlotExporter from output_lib.screen_lib import ScreenPrinter # Provides a more appropriate parameterization for the specific application class CustomCircle(Circle): def x_t(self, t): return self.R * math.cos(math.pi - 2 * math.pi * t) + self.C[0] def y_t(self, t): return self.R * math.sin(math.pi - 2 * math.pi * t) + self.C[1] class CircleApproacher: def __init__(self, circle_parameters, initial_parameters, num_of_parameters=5): self.r = circle_parameters["radius"] self.c = circle_parameters["center"] self.circle = CustomCircle(self.c, self.r) self.circle_graph = self.circle.graph(0.01) self.line = StraightLine([[0, [0, 0]], [1, [1, 1]]]) self.parameters = initial_parameters self.bezier = self.initialize_bezier() self.num_of_parameters = num_of_parameters def initialize_bezier(self): a, b, c, d, e = self.parameters cp = np.array([[a, 0], [b, c], [d, e], [d, -e], [b, -c], [a, 0]]) return Bezier(cp) def refresh_bezier(self): a, b, c, d, e = self.parameters CP = np.array([[a, 0], [b, c], [d, e], [d, -e], [b, -c], [a, 0]]) self.bezier.refresh_control_points(CP) def refresh_parameters(self, new_parameters): self.parameters = new_parameters def least_squares(self, point_pairs): def p0(t): return Polynomial(np.array([1, -5, 10, -10, 5])).value(t) def p1(t): return Polynomial(np.array([0, 1, -4, 6, -3])).value(t) def p2(t): return Polynomial(np.array([0, 0, 1, -2, 1])).value(t) def p3(t): return Polynomial(np.array([0, 1, -4, 6, -5, 2])).value(t) def p4(t): return Polynomial(np.array([0, 0, 1, -4, 5, -2])).value(t) def sigma1(f, g, table): return sum([f(table[i][0]) * g(table[i][0]) for i in range(len(table))]) def sigma2(f, index, table): return sum([table[i][1][0][index] * f(table[i][0]) for i in range(len(table))]) if self.num_of_parameters == 5: A11 = sigma1(p0, p0, point_pairs) A12 = sigma1(p0, p1, point_pairs) A13 = sigma1(p0, p2, point_pairs) A21 = A12 A22 = sigma1(p1, p1, point_pairs) A23 = sigma1(p1, p2, point_pairs) A31 = A13 A32 = A23 A33 = sigma1(p2, p2, point_pairs) A = [[A11, A12, A13], [A21, A22, A23], [A31, A32, A33]] B11 = sigma2(p0, 0, point_pairs) B21 = sigma2(p1, 0, point_pairs) B31 = sigma2(p2, 0, point_pairs) B = [B11, B21, B31] solution_0 = np.linalg.solve(A, B) a_new = solution_0[0] b_new = solution_0[1] / 5 d_new = solution_0[2] / 10 elif self.num_of_parameters == 3: a_new = 0 b_new = 0 d_new = 0.1 * sigma2(p2, 0, point_pairs) / sigma1(p2, p2, point_pairs) else: return C11 = sigma1(p3, p3, point_pairs) C12 = sigma1(p3, p4, point_pairs) C21 = C12 C22 = sigma1(p4, p4, point_pairs) C = [[C11, C12], [C21, C22]] D11 = sigma2(p3, 1, point_pairs) D21 = sigma2(p4, 1, point_pairs) D = [D11, D21] solution_1 = np.linalg.solve(C, D) c_new = solution_1[0] / 5 e_new = solution_1[1] / 10 return [a_new, b_new, c_new, d_new, e_new] def calculate_point_pairs(self, d_phi): def dx(tb, tl): return self.bezier.x_t(tb) - self.line.x_t(tl) def dy(tb, tl): return self.bezier.y_t(tb) - self.line.y_t(tl) def dxb(tb, tl): return Polynomial(self.bezier.c[0]).derivative().value(tb) def dxl(tb, tl): return - Polynomial(self.line.c[0]).derivative().value(tl) def dyb(tb, tl): return Polynomial(self.bezier.c[1]).derivative().value(tb) def dyl(tb, tl): return - Polynomial(self.line.c[1]).derivative().value(tl) point_pairs = [] dt = d_phi / (2 * math.pi) for t in np.arange(0., 1., dt): self.line.modify_points([[0, [self.r, 0]], [1, self.circle.point_t(t)]]) tb, tl = newton_raphson_2x2(dx, dy, dxb, dxl, dyb, dyl, t, 1, 1.e-12) K = self.line.point_t(1) Q = self.bezier.point_t(tb) point_pairs.append([tb, [K, Q]]) return point_pairs @staticmethod def error_function(point_pairs, divisions): # 1st Approach # Ex = sum([(pair[1][0][0] - pair[1][1][0]) ** 2 for pair in point_pairs]) # Ey = sum([(pair[1][0][1] - pair[1][1][1]) ** 2 for pair in point_pairs]) # return math.sqrt(Ex + Ey) # 2nd Approach return sum([math.sqrt((pair[1][0][0] - pair[1][1][0]) ** 2 + (pair[1][0][1] - pair[1][1][1]) ** 2) for pair in point_pairs]) / divisions def solve(self, d_phi, iterations=3000, error=1e-12, csv_fname=None, plots_path=None): def convergence(): nonlocal new_parameters for i in range(len(self.parameters)): if abs(self.parameters[i] - new_parameters[i]) > error: return False return True def create_csv(): nonlocal csv_exporter csv_exporter.create_csv() csv_exporter.write_headers("Iter", "Parameter a", "Parameter b", "Parameter c", "Parameter d", "Parameter e", "Error Function") def give_output(i, error_f): screen_printer.print_results(i, self.parameters, error_f) if csv_fname: csv_exporter.append_row(i, *self.parameters, error_f) if plots_path and (i < 20 or i % 10 == 0.): bezier_graph = self.bezier.graph(0.01) plot_exporter.create_plot(self.circle_graph, bezier_graph, title="Approach Circle w/ Bezier (Iteration {})".format(i), axes_equal=True) plot_exporter.export_plot("gen_{}".format(str(i).zfill(4))) divisions = 2 * math.pi / d_phi csv_exporter = None if csv_fname: csv_exporter = ScvExporter(csv_fname, r"results/") create_csv() screen_printer = ScreenPrinter() plot_exporter = None if plots_path: plot_exporter = PlotExporter(plots_path) for i in range(iterations): point_pairs = self.calculate_point_pairs(d_phi) error_f = self.error_function(point_pairs, divisions) give_output(i, error_f) new_parameters = self.least_squares(point_pairs) if convergence(): self.refresh_parameters(new_parameters) point_pairs = self.calculate_point_pairs(d_phi) error_f = self.error_function(point_pairs, divisions) give_output(i, error_f) break else: self.refresh_parameters(new_parameters) self.refresh_bezier()
[ "numerical_analysis.root_finding.newton_raphson_2x2", "numerical_analysis.dependencies.Polynomial", "output_lib.plot_lib.PlotExporter", "output_lib.csv_lib.ScvExporter", "math.sqrt", "numerical_analysis.splines.bezier.Bezier", "output_lib.screen_lib.ScreenPrinter", "math.sin", "numerical_analysis.dependencies.geometry.StraightLine", "numpy.array", "numpy.arange", "math.cos", "numpy.linalg.solve" ]
[((1016, 1056), 'numerical_analysis.dependencies.geometry.StraightLine', 'StraightLine', (['[[0, [0, 0]], [1, [1, 1]]]'], {}), '([[0, [0, 0]], [1, [1, 1]]])\n', (1028, 1056), False, 'from numerical_analysis.dependencies.geometry import StraightLine, Circle\n'), ((1287, 1347), 'numpy.array', 'np.array', (['[[a, 0], [b, c], [d, e], [d, -e], [b, -c], [a, 0]]'], {}), '([[a, 0], [b, c], [d, e], [d, -e], [b, -c], [a, 0]])\n', (1295, 1347), True, 'import numpy as np\n'), ((1363, 1373), 'numerical_analysis.splines.bezier.Bezier', 'Bezier', (['cp'], {}), '(cp)\n', (1369, 1373), False, 'from numerical_analysis.splines.bezier import Bezier\n'), ((1458, 1518), 'numpy.array', 'np.array', (['[[a, 0], [b, c], [d, e], [d, -e], [b, -c], [a, 0]]'], {}), '([[a, 0], [b, c], [d, e], [d, -e], [b, -c], [a, 0]])\n', (1466, 1518), True, 'import numpy as np\n'), ((3629, 3650), 'numpy.linalg.solve', 'np.linalg.solve', (['C', 'D'], {}), '(C, D)\n', (3644, 3650), True, 'import numpy as np\n'), ((4376, 4399), 'numpy.arange', 'np.arange', (['(0.0)', '(1.0)', 'dt'], {}), '(0.0, 1.0, dt)\n', (4385, 4399), True, 'import numpy as np\n'), ((6601, 6616), 'output_lib.screen_lib.ScreenPrinter', 'ScreenPrinter', ([], {}), '()\n', (6614, 6616), False, 'from output_lib.screen_lib import ScreenPrinter\n'), ((2990, 3011), 'numpy.linalg.solve', 'np.linalg.solve', (['A', 'B'], {}), '(A, B)\n', (3005, 3011), True, 'import numpy as np\n'), ((4505, 4564), 'numerical_analysis.root_finding.newton_raphson_2x2', 'newton_raphson_2x2', (['dx', 'dy', 'dxb', 'dxl', 'dyb', 'dyl', 't', '(1)', '(1e-12)'], {}), '(dx, dy, dxb, dxl, dyb, dyl, t, 1, 1e-12)\n', (4523, 4564), False, 'from numerical_analysis.root_finding import newton_raphson_2x2\n'), ((6515, 6549), 'output_lib.csv_lib.ScvExporter', 'ScvExporter', (['csv_fname', '"""results/"""'], {}), "(csv_fname, 'results/')\n", (6526, 6549), False, 'from output_lib.csv_lib import ScvExporter\n'), ((6698, 6722), 'output_lib.plot_lib.PlotExporter', 'PlotExporter', (['plots_path'], {}), '(plots_path)\n', (6710, 6722), False, 'from output_lib.plot_lib import PlotExporter\n'), ((558, 593), 'math.cos', 'math.cos', (['(math.pi - 2 * math.pi * t)'], {}), '(math.pi - 2 * math.pi * t)\n', (566, 593), False, 'import math\n'), ((644, 679), 'math.sin', 'math.sin', (['(math.pi - 2 * math.pi * t)'], {}), '(math.pi - 2 * math.pi * t)\n', (652, 679), False, 'import math\n'), ((5053, 5144), 'math.sqrt', 'math.sqrt', (['((pair[1][0][0] - pair[1][1][0]) ** 2 + (pair[1][0][1] - pair[1][1][1]) ** 2)'], {}), '((pair[1][0][0] - pair[1][1][0]) ** 2 + (pair[1][0][1] - pair[1][1\n ][1]) ** 2)\n', (5062, 5144), False, 'import math\n'), ((1739, 1768), 'numpy.array', 'np.array', (['[1, -5, 10, -10, 5]'], {}), '([1, -5, 10, -10, 5])\n', (1747, 1768), True, 'import numpy as np\n'), ((1816, 1843), 'numpy.array', 'np.array', (['[0, 1, -4, 6, -3]'], {}), '([0, 1, -4, 6, -3])\n', (1824, 1843), True, 'import numpy as np\n'), ((1891, 1917), 'numpy.array', 'np.array', (['[0, 0, 1, -2, 1]'], {}), '([0, 0, 1, -2, 1])\n', (1899, 1917), True, 'import numpy as np\n'), ((1965, 1995), 'numpy.array', 'np.array', (['[0, 1, -4, 6, -5, 2]'], {}), '([0, 1, -4, 6, -5, 2])\n', (1973, 1995), True, 'import numpy as np\n'), ((2043, 2073), 'numpy.array', 'np.array', (['[0, 0, 1, -4, 5, -2]'], {}), '([0, 0, 1, -4, 5, -2])\n', (2051, 2073), True, 'import numpy as np\n'), ((3993, 4021), 'numerical_analysis.dependencies.Polynomial', 'Polynomial', (['self.bezier.c[0]'], {}), '(self.bezier.c[0])\n', (4003, 4021), False, 'from numerical_analysis.dependencies import Polynomial\n'), ((4161, 4189), 'numerical_analysis.dependencies.Polynomial', 'Polynomial', (['self.bezier.c[1]'], {}), '(self.bezier.c[1])\n', (4171, 4189), False, 'from numerical_analysis.dependencies import Polynomial\n'), ((4079, 4105), 'numerical_analysis.dependencies.Polynomial', 'Polynomial', (['self.line.c[0]'], {}), '(self.line.c[0])\n', (4089, 4105), False, 'from numerical_analysis.dependencies import Polynomial\n'), ((4247, 4273), 'numerical_analysis.dependencies.Polynomial', 'Polynomial', (['self.line.c[1]'], {}), '(self.line.c[1])\n', (4257, 4273), False, 'from numerical_analysis.dependencies import Polynomial\n')]
from __future__ import division import numpy as np from sklearn import preprocessing as skpp __all__ = ['pre', 'post', '_remove_constant', '_add_constant'] def pre(matrix): """ Take the training data and put everything needed to undo this operation later into a dictionary. :param matrixTrain: :return: matrixTrainPost: preprocDict: """ preprocDict = {} # constants matrix, index, constant = _remove_constant(matrix) preprocDict.update({'index': index, 'constant': constant}) # scale scaler = skpp.StandardScaler().fit(matrix) matrix = scaler.transform(matrix) preprocDict.update({'scaler': scaler}) return matrix, preprocDict def post(matrix, preprocDict): """ Given a reduced matrix, find the full and unnormalised matrix. :param matrixPost: preprocDict: :return: """ # scale scaler = preprocDict['scaler'] matrix = scaler.inverse_transform(matrix) # constants matrix = _add_constant(matrix, preprocDict['index'], preprocDict['constant']) return matrix def _remove_constant(matrix): """ Remove constant features. :param matrix: matrix with constant features :return: matrixR: matrix with constant features removed index: vector of indexes where True == keep, False == constant and removed. constants: matrix of constants removed for adding back later """ index = (np.var(matrix, 0) != 0) matrix_r = np.zeros([np.shape(matrix)[0], sum(index)]) i = 0 for n in range(len(index)): if index[n]: matrix_r[:, i] = matrix[:, n] i += 1 constants = matrix[0, np.invert(index)] return matrix_r, index, constants def _add_constant(matrix, index, constants): """ Add constant features back in. :param matrix: matrix with constant features removed index: vector of indexes where True == kept, False == constant and removed. constants: vector of constants previously removed :return: matrixF matrix with constant features added back in. """ # tile the constants for each data point constants = np.matlib.repmat(constants, np.shape(matrix)[0], 1) # add constants back in to a full matrix matrixF = np.zeros((np.shape(matrix)[0], np.shape(index)[0])) matrixF[:, index] = matrix matrixF[:, np.invert(index)] = constants return matrixF
[ "numpy.shape", "numpy.var", "sklearn.preprocessing.StandardScaler", "numpy.invert" ]
[((1521, 1538), 'numpy.var', 'np.var', (['matrix', '(0)'], {}), '(matrix, 0)\n', (1527, 1538), True, 'import numpy as np\n'), ((567, 588), 'sklearn.preprocessing.StandardScaler', 'skpp.StandardScaler', ([], {}), '()\n', (586, 588), True, 'from sklearn import preprocessing as skpp\n'), ((1756, 1772), 'numpy.invert', 'np.invert', (['index'], {}), '(index)\n', (1765, 1772), True, 'import numpy as np\n'), ((2325, 2341), 'numpy.shape', 'np.shape', (['matrix'], {}), '(matrix)\n', (2333, 2341), True, 'import numpy as np\n'), ((2507, 2523), 'numpy.invert', 'np.invert', (['index'], {}), '(index)\n', (2516, 2523), True, 'import numpy as np\n'), ((1571, 1587), 'numpy.shape', 'np.shape', (['matrix'], {}), '(matrix)\n', (1579, 1587), True, 'import numpy as np\n'), ((2419, 2435), 'numpy.shape', 'np.shape', (['matrix'], {}), '(matrix)\n', (2427, 2435), True, 'import numpy as np\n'), ((2440, 2455), 'numpy.shape', 'np.shape', (['index'], {}), '(index)\n', (2448, 2455), True, 'import numpy as np\n')]
import unittest import numpy as np from small_text.utils.data import list_length class DataUtilsTest(unittest.TestCase): def test_list_length(self): self.assertEqual(10, list_length(list(range(10)))) self.assertEqual(10, list_length(np.random.rand(10, 2)))
[ "numpy.random.rand" ]
[((257, 278), 'numpy.random.rand', 'np.random.rand', (['(10)', '(2)'], {}), '(10, 2)\n', (271, 278), True, 'import numpy as np\n')]
import os import pickle import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from matplotlib import cm from matplotlib import rcParams from sklearn import metrics from sklearn import tree rcParams["font.serif"] = "Times New Roman" rcParams["font.family"] = "serif" dirs = dict(main="F:\\Masterarbeit\\DLR\\project\\1_truck_detection") dirs["plots"] = os.path.join("F:" + os.sep + "Masterarbeit", "THESIS", "general", "plots") dirs["truth"] = os.path.join(dirs["main"], "truth") rf_file = os.path.join(dirs["main"], "code", "detect_trucks", "rf_model.pickle") rf = pickle.load(open(rf_file, "rb")) # read test variables and labels in order to calculate metrics variables_list = pickle.load(open(os.path.join(dirs["truth"], "validation_variables.pickle"), "rb")) labels_list = pickle.load(open(os.path.join(dirs["truth"], "validation_labels.pickle"), "rb")) def plot_random_forest(rf_model, test_variables, test_labels): test_pred = rf._predict(test_variables) plot_confusion_matrix(metrics.confusion_matrix(test_labels, test_pred, labels=[2, 3, 4, 1])) accuracy = metrics.accuracy_score(test_labels, test_pred) report = metrics.classification_report(test_labels, test_pred) labels = np.unique(test_labels) summary = np.zeros((len(labels) + 3, 4), dtype=np.float16) for i, label in enumerate(labels): for j, fun in enumerate([metrics.precision_score, metrics.recall_score, metrics.f1_score]): summary[i, j] = fun(test_labels, test_pred, average="micro", labels=[label]) summary[-3, j] = fun(test_labels, test_pred, average="macro") summary[-2, j] = fun(test_labels, test_pred, average="weighted") summary[i, 3] = np.count_nonzero(np.int8(test_labels) == label) summary[-3, 3] = len(test_labels) summary[-2, 3] = len(test_labels) summary[-1, 3] = len(test_labels) summary[-1, 2] = metrics.accuracy_score(test_labels, test_pred) columns = ["Precision", "Recall", "F1-score", "Support"] shape = summary.shape fig, ax = plt.subplots() summary_altered = summary.copy() # copy in order to set n label column to 0 for imshow summary_altered[:, -1] = 0 # np.min(summary[0:-1, 0:3]) - 0.1 summary_altered[summary_altered == 0] = np.nan cmap = cm.Greens.__copy__() im = ax.imshow(summary_altered.astype(np.float32), cmap=cmap, aspect=0.3) ax.set_xticks(np.arange(shape[1])) ax.set_yticks(np.arange(shape[0])) ax.set_yticklabels(["Background", "Blue", "Green", "Red", "Macro avg.", "Weighted avg.", "Accuracy"]) ax.set_xticklabels(columns) ax.xaxis.set_tick_params(labelsize=10) ax.yaxis.set_tick_params(labelsize=10) plt.setp(ax.get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor") plt.subplots_adjust(bottom=0.2) for i in range(shape[0]): for j in range(shape[1]): value = summary[i, j] value = np.round(value, 2) if value <= 1 else np.int32(value) if value != 0: text = ax.text(j, i, value, ha="center", va="center", color="black") fig.tight_layout() plt.savefig(os.path.join(dirs["plots"], "rf_classification_summary_heatmap.png"), dpi=500) def plot_confusion_matrix(conf_matrix): labels = ["blue", "green", "red", "background"] fig, ax = plt.subplots(figsize=(3.5, 3.5)) cmap = cm.YlGn.__copy__() im = plt.imshow(conf_matrix, cmap=cmap) shape = conf_matrix.shape ax.xaxis.tick_top() ax.set_xticks(np.arange(shape[1])) ax.set_yticks(np.arange(shape[0])) ax.set_yticklabels(labels) ax.set_xticklabels(labels) ax.xaxis.set_tick_params(labelsize=11) ax.yaxis.set_tick_params(labelsize=11) plt.subplots_adjust(bottom=0.25, left=0.25) # add numeric labels inside plot for i in range(shape[0]): for j in range(shape[1]): value = str(conf_matrix[i, j]) if len(value) == 2: value = " %s" % value elif len(value) == 1: value = " %s" % value plt.text(i - 0.2, j + 0.11, value, fontsize=11) plt.text(1.2, -1.2, "True", fontsize=12, fontweight="bold") plt.text(-2.8, 2, "Predicted", fontsize=12, fontweight="bold", rotation=90) plt.tight_layout() plt.savefig(os.path.join(dirs["plots"], "confusion_matrix.png"), dpi=500) plt.close() def plot_feature_importance(rf_model): fig, ax = plt.subplots(figsize=(10, 1)) left = 0 feature_importances = np.round(rf_model.feature_importances_, 2) argsort = np.argsort(feature_importances)[::-1] labels = np.array(["reflectance_variance", "B04_B02_ratio", "B03_B02_ratio", "B04_centered", "B03_centered", "B02_centered", "B08_centered"])[argsort] colors = np.array(["#757575", "#dc4ff0", "#39e7ad", "#ff0000", "#00ff00", "#0000ff", "#7c0912"])[argsort] feature_importances = feature_importances[argsort] offsets = [0.18, 0.12, 0, -0.1, -0.1, -0.5, -0.3] for c, importance, label, idx in zip(colors, feature_importances, labels, range(len(labels))): ax.barh(0, importance, height=0.2, color=c, left=left, edgecolor="black", label="label") text = ax.text(left + importance * 0.5, -0.01, "%s" % importance, ha="center", va="center", color="w", weight="bold", fontsize=16) text = ax.text(left + importance * offsets[idx], [-0.24, 0.16][int(int(idx / 2) == idx / 2)], label, fontsize=16) left += importance text = ax.text(-0.015, -0.05, "0", fontsize=16) text = ax.text(1.005, -0.05, "1", fontsize=16) ax.set_xlabel("") plt.ylabel("") plt.subplots_adjust(bottom=0.8) plt.subplots_adjust(top=0.9) plt.xlim(0, left) positions = feature_importances.copy() for i in range(len(feature_importances)): positions[i] = np.sum(feature_importances[:i]) ax.set_xticks([]) ax.set_yticks([]) ax.set_yticklabels("") plt.tight_layout() plt.subplots_adjust(left=0.05, bottom=0.3) plt.savefig(os.path.join(dirs["plots"], "rf_feature_importances_barplot.png"), dpi=500) plt.close() if __name__ == "__main__": #plot_random_forest(rf, variables_list, labels_list) plot_feature_importance(rf)
[ "numpy.sum", "sklearn.metrics.accuracy_score", "sklearn.metrics.classification_report", "numpy.argsort", "numpy.arange", "matplotlib.pyplot.tight_layout", "numpy.round", "os.path.join", "numpy.unique", "numpy.int8", "matplotlib.pyplot.imshow", "matplotlib.pyplot.close", "numpy.int32", "matplotlib.pyplot.subplots", "matplotlib.cm.YlGn.__copy__", "matplotlib.cm.Greens.__copy__", "matplotlib.pyplot.text", "matplotlib.pyplot.subplots_adjust", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlim", "numpy.array", "sklearn.metrics.confusion_matrix" ]
[((393, 467), 'os.path.join', 'os.path.join', (["('F:' + os.sep + 'Masterarbeit')", '"""THESIS"""', '"""general"""', '"""plots"""'], {}), "('F:' + os.sep + 'Masterarbeit', 'THESIS', 'general', 'plots')\n", (405, 467), False, 'import os\n'), ((484, 519), 'os.path.join', 'os.path.join', (["dirs['main']", '"""truth"""'], {}), "(dirs['main'], 'truth')\n", (496, 519), False, 'import os\n'), ((531, 601), 'os.path.join', 'os.path.join', (["dirs['main']", '"""code"""', '"""detect_trucks"""', '"""rf_model.pickle"""'], {}), "(dirs['main'], 'code', 'detect_trucks', 'rf_model.pickle')\n", (543, 601), False, 'import os\n'), ((1120, 1166), 'sklearn.metrics.accuracy_score', 'metrics.accuracy_score', (['test_labels', 'test_pred'], {}), '(test_labels, test_pred)\n', (1142, 1166), False, 'from sklearn import metrics\n'), ((1180, 1233), 'sklearn.metrics.classification_report', 'metrics.classification_report', (['test_labels', 'test_pred'], {}), '(test_labels, test_pred)\n', (1209, 1233), False, 'from sklearn import metrics\n'), ((1247, 1269), 'numpy.unique', 'np.unique', (['test_labels'], {}), '(test_labels)\n', (1256, 1269), True, 'import numpy as np\n'), ((1919, 1965), 'sklearn.metrics.accuracy_score', 'metrics.accuracy_score', (['test_labels', 'test_pred'], {}), '(test_labels, test_pred)\n', (1941, 1965), False, 'from sklearn import metrics\n'), ((2067, 2081), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (2079, 2081), True, 'import matplotlib.pyplot as plt\n'), ((2303, 2323), 'matplotlib.cm.Greens.__copy__', 'cm.Greens.__copy__', ([], {}), '()\n', (2321, 2323), False, 'from matplotlib import cm\n'), ((2792, 2823), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'bottom': '(0.2)'}), '(bottom=0.2)\n', (2811, 2823), True, 'import matplotlib.pyplot as plt\n'), ((3334, 3366), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(3.5, 3.5)'}), '(figsize=(3.5, 3.5))\n', (3346, 3366), True, 'import matplotlib.pyplot as plt\n'), ((3378, 3396), 'matplotlib.cm.YlGn.__copy__', 'cm.YlGn.__copy__', ([], {}), '()\n', (3394, 3396), False, 'from matplotlib import cm\n'), ((3406, 3440), 'matplotlib.pyplot.imshow', 'plt.imshow', (['conf_matrix'], {'cmap': 'cmap'}), '(conf_matrix, cmap=cmap)\n', (3416, 3440), True, 'import matplotlib.pyplot as plt\n'), ((3725, 3768), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'bottom': '(0.25)', 'left': '(0.25)'}), '(bottom=0.25, left=0.25)\n', (3744, 3768), True, 'import matplotlib.pyplot as plt\n'), ((4120, 4179), 'matplotlib.pyplot.text', 'plt.text', (['(1.2)', '(-1.2)', '"""True"""'], {'fontsize': '(12)', 'fontweight': '"""bold"""'}), "(1.2, -1.2, 'True', fontsize=12, fontweight='bold')\n", (4128, 4179), True, 'import matplotlib.pyplot as plt\n'), ((4184, 4259), 'matplotlib.pyplot.text', 'plt.text', (['(-2.8)', '(2)', '"""Predicted"""'], {'fontsize': '(12)', 'fontweight': '"""bold"""', 'rotation': '(90)'}), "(-2.8, 2, 'Predicted', fontsize=12, fontweight='bold', rotation=90)\n", (4192, 4259), True, 'import matplotlib.pyplot as plt\n'), ((4264, 4282), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (4280, 4282), True, 'import matplotlib.pyplot as plt\n'), ((4365, 4376), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (4374, 4376), True, 'import matplotlib.pyplot as plt\n'), ((4432, 4461), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(10, 1)'}), '(figsize=(10, 1))\n', (4444, 4461), True, 'import matplotlib.pyplot as plt\n'), ((4501, 4543), 'numpy.round', 'np.round', (['rf_model.feature_importances_', '(2)'], {}), '(rf_model.feature_importances_, 2)\n', (4509, 4543), True, 'import numpy as np\n'), ((5629, 5643), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['""""""'], {}), "('')\n", (5639, 5643), True, 'import matplotlib.pyplot as plt\n'), ((5648, 5679), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'bottom': '(0.8)'}), '(bottom=0.8)\n', (5667, 5679), True, 'import matplotlib.pyplot as plt\n'), ((5684, 5712), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'top': '(0.9)'}), '(top=0.9)\n', (5703, 5712), True, 'import matplotlib.pyplot as plt\n'), ((5717, 5734), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(0)', 'left'], {}), '(0, left)\n', (5725, 5734), True, 'import matplotlib.pyplot as plt\n'), ((5954, 5972), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (5970, 5972), True, 'import matplotlib.pyplot as plt\n'), ((5977, 6019), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'left': '(0.05)', 'bottom': '(0.3)'}), '(left=0.05, bottom=0.3)\n', (5996, 6019), True, 'import matplotlib.pyplot as plt\n'), ((6116, 6127), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (6125, 6127), True, 'import matplotlib.pyplot as plt\n'), ((737, 795), 'os.path.join', 'os.path.join', (["dirs['truth']", '"""validation_variables.pickle"""'], {}), "(dirs['truth'], 'validation_variables.pickle')\n", (749, 795), False, 'import os\n'), ((835, 890), 'os.path.join', 'os.path.join', (["dirs['truth']", '"""validation_labels.pickle"""'], {}), "(dirs['truth'], 'validation_labels.pickle')\n", (847, 890), False, 'import os\n'), ((1034, 1103), 'sklearn.metrics.confusion_matrix', 'metrics.confusion_matrix', (['test_labels', 'test_pred'], {'labels': '[2, 3, 4, 1]'}), '(test_labels, test_pred, labels=[2, 3, 4, 1])\n', (1058, 1103), False, 'from sklearn import metrics\n'), ((2420, 2439), 'numpy.arange', 'np.arange', (['shape[1]'], {}), '(shape[1])\n', (2429, 2439), True, 'import numpy as np\n'), ((2459, 2478), 'numpy.arange', 'np.arange', (['shape[0]'], {}), '(shape[0])\n', (2468, 2478), True, 'import numpy as np\n'), ((3147, 3215), 'os.path.join', 'os.path.join', (["dirs['plots']", '"""rf_classification_summary_heatmap.png"""'], {}), "(dirs['plots'], 'rf_classification_summary_heatmap.png')\n", (3159, 3215), False, 'import os\n'), ((3513, 3532), 'numpy.arange', 'np.arange', (['shape[1]'], {}), '(shape[1])\n', (3522, 3532), True, 'import numpy as np\n'), ((3552, 3571), 'numpy.arange', 'np.arange', (['shape[0]'], {}), '(shape[0])\n', (3561, 3571), True, 'import numpy as np\n'), ((4299, 4350), 'os.path.join', 'os.path.join', (["dirs['plots']", '"""confusion_matrix.png"""'], {}), "(dirs['plots'], 'confusion_matrix.png')\n", (4311, 4350), False, 'import os\n'), ((4558, 4589), 'numpy.argsort', 'np.argsort', (['feature_importances'], {}), '(feature_importances)\n', (4568, 4589), True, 'import numpy as np\n'), ((4609, 4745), 'numpy.array', 'np.array', (["['reflectance_variance', 'B04_B02_ratio', 'B03_B02_ratio', 'B04_centered',\n 'B03_centered', 'B02_centered', 'B08_centered']"], {}), "(['reflectance_variance', 'B04_B02_ratio', 'B03_B02_ratio',\n 'B04_centered', 'B03_centered', 'B02_centered', 'B08_centered'])\n", (4617, 4745), True, 'import numpy as np\n'), ((4787, 4878), 'numpy.array', 'np.array', (["['#757575', '#dc4ff0', '#39e7ad', '#ff0000', '#00ff00', '#0000ff', '#7c0912']"], {}), "(['#757575', '#dc4ff0', '#39e7ad', '#ff0000', '#00ff00', '#0000ff',\n '#7c0912'])\n", (4795, 4878), True, 'import numpy as np\n'), ((5847, 5878), 'numpy.sum', 'np.sum', (['feature_importances[:i]'], {}), '(feature_importances[:i])\n', (5853, 5878), True, 'import numpy as np\n'), ((6036, 6101), 'os.path.join', 'os.path.join', (["dirs['plots']", '"""rf_feature_importances_barplot.png"""'], {}), "(dirs['plots'], 'rf_feature_importances_barplot.png')\n", (6048, 6101), False, 'import os\n'), ((4068, 4115), 'matplotlib.pyplot.text', 'plt.text', (['(i - 0.2)', '(j + 0.11)', 'value'], {'fontsize': '(11)'}), '(i - 0.2, j + 0.11, value, fontsize=11)\n', (4076, 4115), True, 'import matplotlib.pyplot as plt\n'), ((1753, 1773), 'numpy.int8', 'np.int8', (['test_labels'], {}), '(test_labels)\n', (1760, 1773), True, 'import numpy as np\n'), ((2942, 2960), 'numpy.round', 'np.round', (['value', '(2)'], {}), '(value, 2)\n', (2950, 2960), True, 'import numpy as np\n'), ((2980, 2995), 'numpy.int32', 'np.int32', (['value'], {}), '(value)\n', (2988, 2995), True, 'import numpy as np\n')]
import string import numpy as np import sys import random import os from shutil import copyfile import subprocess from rpt_ele import rpt_ele import update_process_model_input_file as up import swmm_mpc as sm def get_flood_cost_from_dict(rpt, node_flood_weight_dict): node_flood_costs = [] for nodeid, weight in node_flood_weight_dict.iteritems(): # if user put "Node J3" for nodeid instead of just "J3" make \ # nodeid "J3" if len(nodeid.split()) > 0: nodeid = nodeid.split()[-1] # try/except used here in case there is no flooding for one or \ # more of the nodes if nodeid not in rpt.node_ids: print("warning node {} is not in model".format(nodeid)) try: # flood volume is in column, 5 node_flood_volume = float(rpt.flooding_df.loc[nodeid, 5]) node_flood_cost = (weight*node_flood_volume) node_flood_costs.append(node_flood_cost) except: pass return sum(node_flood_costs) def get_flood_cost(rpt, node_flood_weight_dict): if rpt.total_flooding > 0 and node_flood_weight_dict: return get_flood_cost_from_dict(rpt, node_flood_weight_dict) else: return rpt.total_flooding def get_deviation_cost(rpt, target_depth_dict): node_deviation_costs = [] if target_depth_dict: for nodeid, data in target_depth_dict.iteritems(): depth = rpt.get_ele_df(nodeid)['Depth'] depth_dev = abs(depth - data['target']) avg_dev = depth_dev.sum()/len(depth_dev) weighted_deviation = avg_dev*data['weight'] node_deviation_costs.append(weighted_deviation) return sum(node_deviation_costs) def get_cost(rpt_file, node_flood_weight_dict, flood_weight, target_depth_dict, dev_weight): # read the output file rpt = rpt_ele('{}'.format(rpt_file)) # get flooding costs node_fld_cost = get_flood_cost(rpt, node_flood_weight_dict) # get deviation costs deviation_cost = get_deviation_cost(rpt, target_depth_dict) # convert the contents of the output file into a cost cost = flood_weight*node_fld_cost + dev_weight*deviation_cost return cost def bits_to_decimal(bits): bits_as_string = "".join(str(i) for i in bits) return float(int(bits_as_string, 2)) def bits_max_val(bit_len): bit_ones = [1 for i in range(bit_len)] return bits_to_decimal(bit_ones) def bits_to_perc(bits): bit_dec = bits_to_decimal(bits) max_bits = bits_max_val(len(bits)) return round(bit_dec/max_bits, 3) def bit_to_on_off(bit): """ convert single bit to "ON" or "OFF" bit: [int] or [list] """ if type(bit) == list: if len(bit) > 1: raise ValueError('you passed more than one bit to this fxn') else: bit = bit[0] if bit == 1: return "ON" elif bit == 0: return "OFF" else: raise ValueError('was expecting 1 or 0 and got {}'.format(bit)) def split_gene_by_ctl_ts(gene, control_str_ids, n_steps): """ split a list of bits representing a gene into the bits that correspond with each control id according to the control type for each time step ASSUMPTION: 3 bits for ORIFICE or WEIR, 1 for PUMP gene: [list] bits for a gene (e.g., [1, 0, 1, 1, 1, 0, 0, 1]) control_str_ids: [list] control ids (e.g., ['ORIFICE r1', 'PUMP p1']) n_steps: [int] number of control steps (e.g., 2) returns: [list of lists] [[[1, 0, 1], [1, 1, 0]], [[0], [1]]] """ split_gene = [] for control_id in control_str_ids: # get the control type (i.e. PUMP, WEIR, ORIFICE) control_type = control_id.split()[0] if control_type == 'ORIFICE' or control_type == 'WEIR': bits_per_type = 3 # get the number of control elements that are for the current ctl elif control_type == 'PUMP': bits_per_type = 1 # the number of bits per control structure n_bits = bits_per_type*n_steps # get the segment for the control gene_seg = gene[:n_bits] # split to get the different time steps gene_seg_per_ts = split_list(gene_seg, n_steps) # add the gene segment to the overall list split_gene.append(gene_seg_per_ts) # move the beginning of the gene to the end of the current ctl segment gene = gene[n_bits:] return split_gene def split_list(a_list, n): """ split one list into n lists of equal size. In this case, we are splitting the list that represents the policy of a single each control structure so that each time step is separate """ portions = len(a_list)/n split_lists = [] for i in range(n): split_lists.append(a_list[i*portions: (i+1)*portions]) return split_lists def gene_to_policy_dict(gene, control_str_ids, n_control_steps): """ converts a gene to a policy dictionary that with the format specified in up.update_controls_and_hotstart format a policy given the control_str_ids and splitted_gene control_str_ids: [list] control ids (e.g., ['ORIFICE r1', 'PUMP p1']) splitted_gene: [list of lists] [[[1, 0, 1], [1, 1, 0]], [[0], [1]]] returns: [dict] (e.g., {'ORIFICE r1'} """ fmted_policies = dict() splitted_gene = split_gene_by_ctl_ts(gene, control_str_ids, n_control_steps) for i, control_id in enumerate(control_str_ids): control_type = control_id.split()[0] seg = splitted_gene[i] if control_type == 'ORIFICE' or control_type == 'WEIR': # change the lists of bits into percent openings fmtd_seg = [bits_to_perc(setting) for setting in seg] elif control_type == 'PUMP': # change the lists of bits into on/off fmtd_seg = [bit_to_on_off(bit[0]) for bit in seg] fmted_policies[control_id] = fmtd_seg return fmted_policies def list_to_policy(policy, control_str_ids, n_control_steps): """ ASSUMPTION: round decimal number to BOOLEAN """ split_policies = split_list(policy, len(control_str_ids)) fmted_policies = dict() for i, control_id in enumerate(control_str_ids): control_type = control_id.split()[0] if control_type == 'ORIFICE' or control_type == 'WEIR': fmted_policies[control_id] = split_policies[i] elif control_type == 'PUMP': on_off = [bit_to_on_off(round(p)) for p in split_policies[i]] fmted_policies[control_id] = on_off return fmted_policies def format_policies(policy, control_str_ids, n_control_steps, opt_method): if opt_method == 'genetic_algorithm': return gene_to_policy_dict(policy, control_str_ids, n_control_steps) elif opt_method == 'bayesian_opt': return list_to_policy(policy, control_str_ids, n_control_steps) def prep_tmp_files(proc_inp, work_dir): # make process model tmp file rand_string = ''.join(random.choice( string.ascii_lowercase + string.digits) for _ in range(9)) # make a copy of the process model input file tmp_proc_base = proc_inp.replace('.inp', '_tmp_{}'.format(rand_string)) tmp_proc_inp = tmp_proc_base + '.inp' tmp_proc_rpt = tmp_proc_base + '.rpt' copyfile(proc_inp, tmp_proc_inp) # make copy of hs file hs_file_path = up.read_hs_filename(proc_inp) hs_file_name = os.path.split(hs_file_path)[-1] tmp_hs_file_name = hs_file_name.replace('.hsf', '_{}.hsf'.format(rand_string)) tmp_hs_file_path = os.path.join(sm.run.work_dir, tmp_hs_file_name) copyfile(hs_file_path, tmp_hs_file_path) return tmp_proc_inp, tmp_proc_rpt, tmp_hs_file_path def evaluate(*individual): """ evaluate the performance of an individual given the inp file of the process model, the individual, the control params (ctl_str_ids, horizon, step), and the cost function params (dev_weight/dict, flood weight/dict) """ FNULL = open(os.devnull, 'w') # prep files tmp_inp, tmp_rpt, tmp_hs = prep_tmp_files(sm.run.inp_process_file_path, sm.run.work_dir) # format policies if sm.run.opt_method == 'genetic_algorithm': individual = individual[0] elif sm.run.opt_method == 'bayesian_opt': individual = np.squeeze(individual) fmted_policies = format_policies(individual, sm.run.ctl_str_ids, sm.run.n_ctl_steps, sm.run.opt_method) # update controls up.update_controls_and_hotstart(tmp_inp, sm.run.ctl_time_step, fmted_policies, tmp_hs) # run the swmm model if os.name == 'nt': swmm_exe_cmd = 'swmm5.exe' elif sys.platform.startswith('linux'): swmm_exe_cmd = 'swmm5' cmd = '{} {} {}'.format(swmm_exe_cmd, tmp_inp, tmp_rpt) subprocess.call(cmd, shell=True, stdout=FNULL, stderr=subprocess.STDOUT) # get cost cost = get_cost(tmp_rpt, sm.run.node_flood_weight_dict, sm.run.flood_weight, sm.run.target_depth_dict, sm.run.dev_weight) os.remove(tmp_inp) os.remove(tmp_rpt) os.remove(tmp_hs) return cost
[ "sys.platform.startswith", "os.remove", "update_process_model_input_file.update_controls_and_hotstart", "update_process_model_input_file.read_hs_filename", "random.choice", "subprocess.call", "shutil.copyfile", "numpy.squeeze", "os.path.split", "os.path.join" ]
[((7428, 7460), 'shutil.copyfile', 'copyfile', (['proc_inp', 'tmp_proc_inp'], {}), '(proc_inp, tmp_proc_inp)\n', (7436, 7460), False, 'from shutil import copyfile\n'), ((7508, 7537), 'update_process_model_input_file.read_hs_filename', 'up.read_hs_filename', (['proc_inp'], {}), '(proc_inp)\n', (7527, 7537), True, 'import update_process_model_input_file as up\n'), ((7739, 7786), 'os.path.join', 'os.path.join', (['sm.run.work_dir', 'tmp_hs_file_name'], {}), '(sm.run.work_dir, tmp_hs_file_name)\n', (7751, 7786), False, 'import os\n'), ((7791, 7831), 'shutil.copyfile', 'copyfile', (['hs_file_path', 'tmp_hs_file_path'], {}), '(hs_file_path, tmp_hs_file_path)\n', (7799, 7831), False, 'from shutil import copyfile\n'), ((8719, 8809), 'update_process_model_input_file.update_controls_and_hotstart', 'up.update_controls_and_hotstart', (['tmp_inp', 'sm.run.ctl_time_step', 'fmted_policies', 'tmp_hs'], {}), '(tmp_inp, sm.run.ctl_time_step,\n fmted_policies, tmp_hs)\n', (8750, 8809), True, 'import update_process_model_input_file as up\n'), ((9165, 9237), 'subprocess.call', 'subprocess.call', (['cmd'], {'shell': '(True)', 'stdout': 'FNULL', 'stderr': 'subprocess.STDOUT'}), '(cmd, shell=True, stdout=FNULL, stderr=subprocess.STDOUT)\n', (9180, 9237), False, 'import subprocess\n'), ((9465, 9483), 'os.remove', 'os.remove', (['tmp_inp'], {}), '(tmp_inp)\n', (9474, 9483), False, 'import os\n'), ((9488, 9506), 'os.remove', 'os.remove', (['tmp_rpt'], {}), '(tmp_rpt)\n', (9497, 9506), False, 'import os\n'), ((9511, 9528), 'os.remove', 'os.remove', (['tmp_hs'], {}), '(tmp_hs)\n', (9520, 9528), False, 'import os\n'), ((7557, 7584), 'os.path.split', 'os.path.split', (['hs_file_path'], {}), '(hs_file_path)\n', (7570, 7584), False, 'import os\n'), ((9008, 9040), 'sys.platform.startswith', 'sys.platform.startswith', (['"""linux"""'], {}), "('linux')\n", (9031, 9040), False, 'import sys\n'), ((7094, 7147), 'random.choice', 'random.choice', (['(string.ascii_lowercase + string.digits)'], {}), '(string.ascii_lowercase + string.digits)\n', (7107, 7147), False, 'import random\n'), ((8523, 8545), 'numpy.squeeze', 'np.squeeze', (['individual'], {}), '(individual)\n', (8533, 8545), True, 'import numpy as np\n')]
from _context import sparse from sparse import util import torch from torch import nn from torch.autograd import Variable import torch.nn.functional as F import torch.distributions as dist import numpy as np from argparse import ArgumentParser from torch.utils.tensorboard import SummaryWriter import random, tqdm, sys, math import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt from util import d # import warnings # warnings.simplefilter("error") # warnings.simplefilter("ignore", DeprecationWarning) # from util import tic, toc # NB, the enwik8 data contains tokens from 9 to 240 NUM_TOKENS = 256 LOG2E = math.log2(math.e) MARGIN = 0.1 def sample(lnprobs, temperature=1.0): if temperature == 0.0: return lnprobs.argmax() p = F.softmax(lnprobs / temperature, dim=0) cd = dist.Categorical(p) return cd.sample() def mask_(matrices, maskval=0.0, mask_diagonal=True): """ Masks out all values in the given batch of matrices where i <= j holds, i < j if mask_diagonal is false In place operation :param tns: :return: """ b, h, w = matrices.size() indices = torch.triu_indices(h, w, offset=0 if mask_diagonal else 1) matrices[:, indices[0], indices[1]] = maskval class MSparseSelfAttention(nn.Module): """ Masked sparse self attention (two degrees of freedom) """ def __init__(self, emb, k, gadditional, radditional, region, heads=8, mask=False, min_sigma=0.05, sigma_scale=1.0): """ :param emb: :param k: Number of connections to the input in total :param gadditional: :param radditional: :param region: :param heads: :param mask: """ super().__init__() self.emb, self.heads, self.mask, self.min_sigma, self.sigma_scale = emb, heads, mask, min_sigma, sigma_scale self.tokeys = nn.Linear(emb, emb * heads, bias=False) self.toqueries = nn.Linear(emb, emb * heads, bias=False) self.tovalues = nn.Linear(emb, emb * heads, bias=False) self.unifyheads = nn.Linear(heads * emb, emb) self.gadditional = gadditional self.radditional = radditional self.region = region self.k = k self.means = nn.Parameter(torch.randn((k, 2))) self.sigmas = nn.Parameter(torch.randn((k, ))) self.register_buffer('mvalues', torch.ones((k, ))) def hyper(self, x): b, t, e = x.size() h, k, reg = self.heads, self.k, self.region # generate the continuous parameters means = self.means[None, None, :, :].expand(b, 1, k, 2) sigmas = self.sigmas[None, None, :].expand(b, 1, k) values = self.mvalues[None, None, :].expand(b, 1, k) means = util.flip(means.contiguous()) # flip everything to below the diagonal of the matrix s = (t, t) means, sigmas = sparse.transform_means(means, s), \ sparse.transform_sigmas(sigmas, s, min_sigma=self.min_sigma) * self.sigma_scale return means, sigmas, values def forward(self, x): b, t, e = x.size() h, k, reg = self.heads, self.k, self.region s = (t, t) assert e == self.emb, f'Input embedding dim ({e}) should match layer embedding dim ({self.emb})' means, sigmas, mvalues = self.hyper(x) # sample integer indices and values indices = sparse.ngenerate(means, self.gadditional, self.radditional, rng=(t, t), relative_range=(self.region, self.region), cuda=x.is_cuda) indices = util.flip(indices) indfl = indices.float() vs = k * (4 + self.radditional + self.gadditional) assert indices.size() == (b, 1, vs, 2), f'{indices.size()}, {(b, 1, vs, 2)}' # Mask for duplicate indices dups = util.nduplicates(indices).to(torch.bool) # compute (unnormalized) densities under the given MVNs (proportions) props = sparse.densities(indfl, means, sigmas).clone() props[dups, :] = 0 props = props / props.sum(dim=2, keepdim=True) # normalize over all points of a given index tuple # weight the values by the proportions weights = mvalues[:, :, None, :].expand_as(props) # - add a dim for the MVNs weights = props * weights weights = weights.sum(dim=3) # - sum out the MVNs assert indices.size() == (b, 1, vs, 2), f'{indices.size()}, {(b, 1, vs, 2)}' assert weights.size() == (b, 1, vs), f'{weights.size()}, {(b, 1, vs)}' # expand for heads, fold heads into batch indices = indices[:, None, :, :, :].expand(b, h, 1, vs, 2).contiguous().view(b*h, vs, 2) weights = weights[:, None, :, :].expand(b, h, 1, vs).contiguous().view(b*h, vs) # compute keys, queries, values keys = self.tokeys(x) .view(b, t, h, e) queries = self.toqueries(x).view(b, t, h, e) values = self.tovalues(x) .view(b, t, h, e) # - fold heads into the batch dimension keys = keys.transpose(1, 2).contiguous().view(b * h, t, e) queries = queries.transpose(1, 2).contiguous().view(b * h, t, e) values = values.transpose(1, 2).contiguous().view(b * h, t, e) queries = queries / (e ** (1/4)) # b*h, t, e keys = keys / (e ** (1/4)) # get dot product of queries and keys # - this will be a sparse matrix with the indices we've just computed, and values # defined by the dot product # select the queries indflat = indices.view(b*h*vs, 2) ar = torch.arange(b*h, dtype=torch.long, device=d(x))[:, None].expand(b*h, vs).contiguous().view(b*h*vs) squeries = queries[ar, indflat[:, 0], :] skeys = keys [ar, indflat[:, 1], :] dot = torch.bmm(squeries[:, None, :], skeys[:, :, None]).view(b*h, vs) dot = sparse.logsoftmax(indices, weights * dot, s) # - dot now has row-wise self-attention probabilities # apply the self attention to the values out = sparse.batchmm(indices, dot, size=(t, t), xmatrix=values) # swap h, t back, unify heads out = out.transpose(1, 2).contiguous().view(b, t, h * e) return self.unifyheads(out) class ASH2DSelfAttention(nn.Module): """ Masked sparse self attention. One degree of freedom, the receptive field is adaptive, based on the incoming embedding vector, position embedding and coordinate. """ def __init__(self, emb, k, gadditional, radditional, region, heads=8, mask=False, min_sigma=0.05, sigma_scale=0.1, mmult = 1.0): """ :param emb: :param k: Number of connections to the input for each output :param gadditional: :param radditional: :param region: :param heads: :param mask: """ super().__init__() self.emb, self.heads, self.mask, self.min_sigma, self.sigma_scale = emb, heads, mask, min_sigma, sigma_scale self.mmult = mmult self.tokeys = nn.Linear(emb, emb * heads, bias=False) self.toqueries = nn.Linear(emb, emb * heads, bias=False) self.tovalues = nn.Linear(emb, emb * heads, bias=False) self.unifyheads = nn.Linear(heads * emb, emb) self.gadditional = gadditional self.radditional = radditional self.region = region self.k = k self.register_buffer('mvalues', torch.ones((k, ))) # network that generates the coordinates and sigmas hidden = emb * 4 self.toparams = nn.Sequential( nn.Linear(emb + 1, hidden), nn.ReLU(), nn.Linear(hidden, k * 3) # two means, one sigma ) def hyper(self, x): b, t, e = x.size() h, k, reg = self.heads, self.k, self.region # Generate coords coords = torch.arange(t, dtype=torch.float, device=d(x)) / t coords = coords[None, :, None,].expand(b, t, 1) input = torch.cat([x, coords], dim=2) params = self.toparams(input) # (b, t, k*3) assert not util.contains_nan(params), \ f'params contain NaN\n intput {input.min()} {input.max()} \n {list(self.toparams.parameters())}' # Generate the logits that correspond to the diagonals of the matrix diags = torch.arange(t, dtype=torch.float, device=d(x)) diags = util.inv(diags, mx=t) diags = diags[None, :, None, None].expand(b, t, k, 2) means = params[:, :, :k*2].view(b, t, k, 2) sigmas = params[:, :, k*2:].view(b, t, k) values = self.mvalues[None, None, :].expand(b, t, k) means = diags + self.mmult * means means = util.flip(means) # means = util.flip(means.contiguous()) # flip everything to below the diagonal of the matrix s = (t, t) means, sigmas = sparse.transform_means(means, s), \ sparse.transform_sigmas(sigmas, s, min_sigma=self.min_sigma) * self.sigma_scale return means, sigmas, values def forward(self, x): b, t, e = x.size() h, k, reg = self.heads, self.k, self.region s = (t, t) assert e == self.emb, f'Input embedding dim ({e}) should match layer embedding dim ({self.emb})' means, sigmas, mvalues = self.hyper(x) # sample integer indices and values indices = sparse.ngenerate(means, self.gadditional, self.radditional, rng=(t, t), relative_range=(self.region, self.region), cuda=x.is_cuda) indices = util.flip(indices) indfl = indices.float() vs = k * (4 + self.radditional + self.gadditional) assert indices.size() == (b, t, vs, 2), f'{indices.size()}, {(b, t, vs, 2)}' # Mask for duplicate indices dups = util.nduplicates(indices).to(torch.bool) # compute (unnormalized) densities under the given MVNs (proportions) props = sparse.densities(indfl, means, sigmas).clone() props[dups, :] = 0 props = props / props.sum(dim=2, keepdim=True) # normalize over all points of a given index tuple # weight the values by the proportions weights = mvalues[:, :, None, :].expand_as(props) # - add a dim for the MVNs weights = props * weights weights = weights.sum(dim=3) # - sum out the MVNs assert indices.size() == (b, t, vs, 2), f'{indices.size()}, {(b, t, vs, 2)}' assert weights.size() == (b, t, vs), f'{weights.size()}, {(b, t, vs)}' # expand for heads, fold heads into batch indices = indices[:, None, :, :, :].expand(b, h, t, vs, 2).contiguous().view(b*h, t*vs, 2) weights = weights[:, None, :, :].expand(b, h, t, vs).contiguous().view(b*h, t*vs) # compute keys, queries, values keys = self.tokeys(x) .view(b, t, h, e) queries = self.toqueries(x).view(b, t, h, e) values = self.tovalues(x) .view(b, t, h, e) # - fold heads into the batch dimension keys = keys.transpose(1, 2).contiguous().view(b * h, t, e) queries = queries.transpose(1, 2).contiguous().view(b * h, t, e) values = values.transpose(1, 2).contiguous().view(b * h, t, e) queries = queries / (e ** (1/4)) # b*h, t, e keys = keys / (e ** (1/4)) # get dot product of queries and keys # - this will be a sparse matrix with the indices we've just computed, and values # defined by the dot product # select the queries indflat = indices.view(b*h*t*vs, 2) ar = torch.arange(b*h, dtype=torch.long, device=d(x))[:, None].expand(b*h, t*vs).contiguous().view(b*h*t*vs) squeries = queries[ar, indflat[:, 0], :] skeys = keys [ar, indflat[:, 1], :] dot = torch.bmm(squeries[:, None, :], skeys[:, :, None]).view(b*h,t*vs) #print(f'dot before {dot.min()}, {dot.mean()}, {dot.max()}') assert not util.contains_nan(dot), f'dot contains nan (before softmax) {dot.min()}, {dot.mean()}, {dot.max()}' #print(f'dot after {dot.min()}, {dot.mean()}, {dot.max()}\n') dot = sparse.logsoftmax(indices, weights * dot, s).exp() # - dot now has row-wise self-attention probabilities assert not util.contains_nan(dot), f'dot contains nan (after softmax) {dot.min()}, {dot.mean()}, {dot.max()}' # apply the self attention to the values out = sparse.batchmm(indices, dot, size=(t, t), xmatrix=values) # swap h, t back, unify heads out = out.transpose(1, 2).contiguous().view(b, t, h * e) out = self.unifyheads(out) assert not util.contains_nan(out), f'output contains nan {out}' return out class ASH1DSelfAttention(nn.Module): """ Masked sparse self attention. One degree of freedom, the receptive field is adaptive, based on the incoming embedding vector, position embedding and coordinate. """ def __init__(self, emb, k, gadditional, radditional, region, heads=8, mask=False, min_sigma=0.05, sigma_scale=0.1, mmult = 1.0, norm_method='softmax', outputs=-1, clamp=True): """ :param emb: :param k: Number of connections to the input for each output :param gadditional: :param radditional: :param region: :param heads: :param outputs: The number of units (at the end of the sequence) to compute new vectors for. :param mask: """ super().__init__() self.emb, self.heads, self.mask, self.min_sigma, self.sigma_scale = emb, heads, mask, min_sigma, sigma_scale self.mmult, self.norm_method, self.clamp = mmult, norm_method, clamp if clamp: self.mmult *= 3.0 self.outputs = outputs self.tokeys = nn.Linear(emb, emb * heads, bias=False) self.toqueries = nn.Linear(emb, emb * heads, bias=False) self.tovalues = nn.Linear(emb, emb * heads, bias=False) self.unifyheads = nn.Linear(heads * emb, emb) self.gadditional = gadditional self.radditional = radditional self.region = region self.k = k self.register_buffer('mvalues', torch.ones((k, ))) # network that generates the coordinates and sigmas hidden = emb * 4 self.toparams = nn.Sequential( nn.Linear(emb + 1, hidden), nn.ReLU(), nn.Linear(hidden, k * 2) # one mean, one sigma ) def hyper(self, x): b, t, e = x.size() h, k, reg = self.heads, self.k, self.region o = t if self.outputs < -1 else self.outputs # Generate coords coords = torch.arange(t, dtype=torch.float, device=d(x)) / t coords = coords[None, :, None,].expand(b, t, 1) input = torch.cat([x, coords], dim=2) params = self.toparams(input) # (b, o, k*2) assert not util.contains_nan(params), \ f'params contain NaN\n intput {input.min()} {input.max()} \n {list(self.toparams.parameters())}' # Generate the logits that correspond to the horizontal coordinate of the current word diags = torch.arange(t, dtype=torch.float, device=d(x)) if not self.clamp: diags = util.inv(diags, mx=t) diags = diags[None, :, None, None].expand(b, t, k, 1) means = params[:, :, :k].view(b, t, k, 1) sigmas = params[:, :, k:].view(b, t, k) values = self.mvalues[None, None, :].expand(b, t, k) means = diags - self.mmult * F.softplus(means) s = (t,) means, sigmas = sparse.transform_means(means, s, method='clamp' if self.clamp else 'sigmoid'), \ sparse.transform_sigmas(sigmas, s, min_sigma=self.min_sigma) * self.sigma_scale return means, sigmas, values def forward(self, x): b, t, e = x.size() h, k, reg = self.heads, self.k, self.region s = (t, t) assert e == self.emb, f'Input embedding dim ({e}) should match layer embedding dim ({self.emb})' means, sigmas, mvalues = self.hyper(x) # sample integer indices and values indices = sparse.ngenerate(means, self.gadditional, self.radditional, rng=(t,), relative_range=(self.region, ), cuda=x.is_cuda) indfl = indices.float() vs = k * (2 + self.radditional + self.gadditional) assert indices.size() == (b, t, vs, 1), f'{indices.size()}, {(b, t, vs, 1)}' m = torch.arange(t, dtype=torch.long, device=d(indices))[None, :, None, None].expand(b, t, vs, k) props = sparse.densities(indfl, means, sigmas).clone() # (b, t, vs, k) # Mask for duplicate indices dups = util.nduplicates(indices).to(torch.bool) # compute (unnormalized) densities under the given MVNs (proportions) props[dups, :] = 0 props[indices > m] = 0 props = props / props.sum(dim=2, keepdim=True) # normalize over all points of a given index tuple # weight the values by the proportions weights = mvalues[:, :, None, :].expand_as(props) # - add a dim for the MVNs weights = props * weights weights = weights.sum(dim=3) # - sum out the MVNs out = torch.arange(t, device=d(indices))[None, :, None, None].expand(b, t, vs, 1) indices = torch.cat([out, indices], dim=3) assert indices.size() == (b, t, vs, 2), f'{indices.size()}, {(b, t, vs, 2)}' assert weights.size() == (b, t, vs), f'{weights.size()}, {(b, t, vs)}' # expand for heads, fold heads into batch indices = indices[:, None, :, :, :].expand(b, h, t, vs, 2).contiguous().view(b*h, t*vs, 2) weights = weights[:, None, :, :].expand(b, h, t, vs).contiguous().view(b*h, t*vs) # compute keys, queries, values keys = self.tokeys(x) .view(b, t, h, e) queries = self.toqueries(x).view(b, t, h, e) values = self.tovalues(x) .view(b, t, h, e) # - fold heads into the batch dimension keys = keys.transpose(1, 2).contiguous().view(b * h, t, e) queries = queries.transpose(1, 2).contiguous().view(b * h, t, e) values = values.transpose(1, 2).contiguous().view(b * h, t, e) queries = queries / (e ** (1/4)) # b*h, t, e keys = keys / (e ** (1/4)) # get dot product of queries and keys # - this will be a sparse matrix with the indices we've just computed, and values # defined by the dot product # select the queries indflat = indices.view(b*h*t*vs, 2) ar = torch.arange(b*h, dtype=torch.long, device=d(x))[:, None].expand(b*h, t*vs).contiguous().view(b*h*t*vs) squeries = queries[ar, indflat[:, 0], :] skeys = keys [ar, indflat[:, 1], :] dot = torch.bmm(squeries[:, None, :], skeys[:, :, None]).view(b*h,t*vs) assert not util.contains_inf(dot), f'dot contains inf (before softmax) {dot.min()}, {dot.mean()}, {dot.max()}' assert not util.contains_nan(dot), f'dot contains nan (before softmax) {dot.min()}, {dot.mean()}, {dot.max()}' if self.norm_method == 'softmax': dot = sparse.logsoftmax(indices, weights * dot, s).exp() else: dot = sparse.simple_normalize(indices, weights * dot, s, method=self.norm_method) # - dot now has row-wise self-attention probabilities assert not util.contains_inf(dot), f'dot contains inf (after softmax) {dot.min()}, {dot.mean()}, {dot.max()}' assert not util.contains_nan(dot), f'dot contains nan (after softmax) {dot.min()}, {dot.mean()}, {dot.max()}' # apply the self attention to the values out = sparse.batchmm(indices, dot, size=(t, t), xmatrix=values) # swap h, t back, unify heads out = out.transpose(1, 2).contiguous().view(b, t, h * e) out = self.unifyheads(out) assert not util.contains_nan(out), f'output contains nan {out}, dot min/max: {dot.min()}/{dot.max()}' return out class StridedSparseSelfAttention(nn.Module): """ Masked sparse self attention. One degree of freedom, the receptive field is adaptive, based on the incoming embedding vector, position embedding and coordinate. """ def __init__(self, emb, k, gadditional, radditional, region, heads=8, stride=32, mask=False, min_sigma=0.05, sigma_scale=0.1, mmult = 1.0, norm_method='softmax', clamp=True, **kwargs): """ :param emb: :param k: Number of connections to the input for each output :param gadditional: :param radditional: :param region: :param heads: :param outputs: The number of units (at the end of the sequence) to compute new vectors for. :param mask: """ super().__init__() self.emb, self.heads, self.mask, self.min_sigma, self.sigma_scale = emb, heads, mask, min_sigma, sigma_scale self.mmult, self.norm_method, self.clamp = mmult, norm_method, clamp self.stride = stride if clamp: self.mmult *= 3.0 s = emb // heads self.tokeys = nn.Linear(s, s, bias=False) self.toqueries = nn.Linear(s, s, bias=False) self.tovalues = nn.Linear(s, s, bias=False) self.unifyheads = nn.Linear(s * heads, emb) self.gadditional = gadditional self.radditional = radditional self.region = region self.k = k self.register_buffer('mvalues', torch.ones((k, ))) # network that generates the coordinates and sigmas hidden = emb * 4 self.toparams = nn.Sequential( nn.Linear(2 * emb + 1, hidden), nn.ReLU(), nn.Linear(hidden, k * 2) # one mean, one sigma ) # -- input is the current token's embedding vector, the sum of preceding embedding vectors, and the coordinate. def hyper(self, x): b, t, e = x.size() h, k, reg = self.heads, self.k, self.region r = self.stride s = (t,) # Generate input selection selection = torch.arange(t//r, dtype=torch.long, device=d(x)) selection = (selection + 1) * r - 1 tp = selection.size(0) # Generate coords coords = torch.arange(tp, dtype=torch.float, device=d(x)) / tp coords = coords[None, :, None,].expand(b, tp, 1) summed = (x.cumsum(dim=1) - x) / torch.arange(start=1, end=t+1, device=d(), dtype=torch.float)[None, :, None] input = torch.cat([x[:, selection, :], coords, summed[:, selection, :]], dim=2) params = self.toparams(input) # (b, tp, k*2) assert not util.contains_nan(params), \ f'params contain NaN\n input {input.min()} {input.max()} \n {list(self.toparams.parameters())}' assert not util.contains_inf(params), \ f'params contain inf\n input {input.min()} {input.max()} \n {list(self.toparams.parameters())}' # Generate the logits/coordinates that correspond to the horizontal coordinate of the current word diags = selection.to(torch.float) if not self.clamp: diags = util.inv(diags, mx=t) diags = diags[None, :, None, None].expand(b, tp, k, 1) means = params[:, :, :k].view(b, tp, k, 1) sigmas = params[:, :, k:].view(b, tp, k) values = self.mvalues[None, None, :].expand(b, tp, k) # all ones atm means = diags - self.mmult * F.softplus(means) means, sigmas = sparse.transform_means(means, s, method='clamp' if self.clamp else 'sigmoid'), \ sparse.transform_sigmas(sigmas, s, min_sigma=self.min_sigma) * self.sigma_scale return means, sigmas, values def forward(self, x): b, t, e = x.size() h, k, reg = self.heads, self.k, self.region r = self.stride # Generate input selection (the fixed output indices, which are 'stride' units apart) selection = torch.arange(t//r, dtype=torch.long, device=d(x)) selection = (selection + 1) * r - 1 tp = selection.size(0) size = (t, t) means, sigmas, mvalues = self.hyper(x) s = e // h x = x.view(b, t, h, s) # sample integer indices and values indices = sparse.ngenerate(means, self.gadditional, self.radditional, rng=(t,), relative_range=(self.region, ), cuda=x.is_cuda, epsilon=10e-5) indfl = indices.float() vs = k * (2 + self.radditional + self.gadditional) # number of sampled integer index tuples assert indices.size() == (b, tp, vs, 1), f'{indices.size()}, {(b, tp, vs, 1)}' m = selection[None, :, None, None].expand(b, tp, vs, k) props = sparse.densities(indfl, means, sigmas).clone() # (b, tp, vs, k) # Mask for duplicate indices dups = util.nduplicates(indices).to(torch.bool) # compute (unnormalized) densities under the given MVNs (proportions) props[dups, :] = 0 props[indices > m] = 0 # mask out any forward connections # -- note that while all the continuous index tuples are guaranteed to point backwards, the sampled discrete # index tuples might point forward, so they still need to be zeroed out here. props = props / props.sum(dim=2, keepdim=True) # normalize over all remaining points of a given index tuple # weight the values by the proportions weights = mvalues[:, :, None, :].expand_as(props) # - add a dim for the MVNs weights = props * weights weights = weights.sum(dim=3) # - sum out the MVNs out = selection[None, :, None, None].expand(b, tp, vs, 1) # output indices indices = torch.cat([out, indices], dim=3) assert indices.size() == (b, tp, vs, 2), f'{indices.size()}, {(b, tp, vs, 2)}' assert weights.size() == (b, tp, vs), f'{weights.size()}, {(b, tp, vs)}' assert not util.contains_inf(weights), f'weights contains inf (before norm) {weights.min()}, {weights.mean()}, {weights.max()}' assert not util.contains_nan(weights), f'weights contains nan (before norm) {weights.min()}, {weights.mean()}, {weights.max()}' # expand for heads, fold heads into batch indices = indices[:, None, :, :, :].expand(b, h, tp, vs, 2).contiguous().view(b*h, tp*vs, 2) weights = weights[:, None, :, :].expand(b, h, tp, vs).contiguous().view(b*h, tp*vs) # compute keys, queries, values keys = self.tokeys(x) # note: t not tp, we compute _all_ queries, keys and values queries = self.toqueries(x) values = self.tovalues(x) # - fold heads into the batch dimension keys = keys.transpose(1, 2).contiguous() .view(b * h, t, s) queries = queries.transpose(1, 2).contiguous().view(b * h, t, s) values = values.transpose(1, 2).contiguous() .view(b * h, t, s) # -- We could actually select first, and _then_ transform to kqv's. May be better for very large contexts and # small batches queries = queries / (e ** (1/4)) # b*h, t, e keys = keys / (e ** (1/4)) # get dot product of queries and keys # - this will be a sparse matrix with the indices we've just computed, and values # defined by the dot product # select the queries indflat = indices.view(b*h*tp*vs, 2) ar = torch.arange(b*h, dtype=torch.long, device=d(x))[:, None].expand(b*h, tp*vs).contiguous().view(b*h*tp*vs) squeries = queries[ar, indflat[:, 0], :] skeys = keys [ar, indflat[:, 1], :] dot = torch.bmm(squeries[:, None, :], skeys[:, :, None]).view(b*h,tp*vs) dot_logits = dot.data.clone() assert not util.contains_inf(dot), f'dot contains inf (before norm) {dot.min()}, {dot.mean()}, {dot.max()}' assert not util.contains_nan(dot), f'dot contains nan (before norm) {dot.min()}, {dot.mean()}, {dot.max()}' if self.norm_method == 'softmax': dot = sparse.logsoftmax(indices, weights * dot, size).exp() else: dot = sparse.simple_normalize(indices, weights * dot, size, method=self.norm_method) # - dot now has row-wise self-attention probabilities assert not util.contains_inf(dot), f'dot contains inf (after norm) {dot.min()}, {dot.mean()}, {dot.max()}' try: assert not util.contains_nan(dot), f'dot contains nan (after norm) {dot.min()}, {dot.mean()}, {dot.max()}' except AssertionError: print(dot.sum(dim=1)) print('\n\n\n') for i in range(b*h): print(f'*** {i}') print(indices[i]) print(dot_logits[i]) print((weights * dot_logits)[i]) print('\n\n\n') sys.exit() # apply the self attention to the values out = sparse.batchmm(indices, dot, size=size, xmatrix=values) # swap h, t back, unify heads out = out.transpose(1, 2).contiguous().view(b, t, h * s) out = self.unifyheads(out) assert not util.contains_nan(out), f'output contains nan {out}, dot min/max: {dot.min()}/{dot.max()}' return out class ConvSelfAttention(nn.Module): """ Self-attention with a hardwired convolutional sparsity pattern. That is, each node depends on the k nodes before. Wiring is always "causal" (ie. layer only looks into the past). Padding is addded to the input to ensure the input and output have the same length. """ def __init__(self, emb, heads=8, norm_method='softmax', k=32, **kwargs): """ :param emb: :param k: Number of connections to the input for each output :param gadditional: :param radditional: :param region: :param heads: :param outputs: The number of units (at the end of the sequence) to compute new vectors for. :param mask: """ super().__init__() self.emb, self.heads = emb, heads self.norm_method = norm_method s = emb // heads self.tokeys = nn.Linear(s, s, bias=False) self.toqueries = nn.Linear(s, s, bias=False) self.tovalues = nn.Linear(s, s, bias=False) self.unifyheads = nn.Linear(s * heads, emb) self.k = k def forward(self, x): b, t, e = x.size() h, k = self.heads, self.k s = e // h x = x.view(b, t, h, s) tp = t + k - 1 size = (t, tp) xp = F.pad(x, [0, 0, 0, 0, k-1, 0, 0, 0]) # zero pad the beginning of x assert xp.size() == (b, tp, h, s), f'{xp.size()} vs {(b, tp, h, s)}' # compute keys, queries, values (note that the self attention matrix is slightly rectangular) queries = self.toqueries(x) keys = self.tokeys(xp) values = self.tovalues(xp) # - fold heads into the batch dimension queries = queries.transpose(1, 2) .contiguous().view(b * h, t, s) keys = keys.transpose(1, 2) .contiguous().view(b * h, tp, s) values = values.transpose(1, 2) .contiguous().view(b * h, tp, s) queries = queries / (e ** (1/4)) # shoudl this be s? keys = keys / (e ** (1/4)) # Get dot product of queries and keys # - this will be a sparse matrix with the indices we've just computed, and values # defined by the dot product # generate the indices (t*k pairs of integers per attention head) indices = torch.arange(t, dtype=torch.long, device=d(x))[:, None, None].expand(t, k, 2).contiguous() deltas = torch.arange(k, dtype=torch.long, device=d(x))[None, :, None].expand(t, k, 1) indices[:, :, 1:] += deltas indices = indices[None, None, :, :, :].expand(b, h, t, k, 2).contiguous() indflat = indices.view(b*h*t*k, 2) # select the queries and the keys (left and right column of index matrix) and take their dot # product (note that they are already scaled) ar = torch.arange(b*h, dtype=torch.long, device=d(x))[:, None].expand(b*h, t*k).contiguous().view(b*h*t*k) squeries = queries[ar, indflat[:, 0], :] skeys = keys [ar, indflat[:, 1], :] dot = torch.bmm(squeries[:, None, :], skeys[:, :, None]).view(b*h,t*k) indices = indices.view(b*h, t*k, 2) # assert not util.contains_inf(dot), f'dot contains inf (before softmax) {dot.min()}, {dot.mean()}, {dot.max()}' # assert not util.contains_nan(dot), f'dot contains nan (before softmax) {dot.min()}, {dot.mean()}, {dot.max()}' if self.norm_method == 'softmax': dot = sparse.logsoftmax(indices, dot, size).exp() else: dot = sparse.simple_normalize(indices, dot, size, method=self.norm_method) # - dot now has row-wise self-attention probabilities # assert not util.contains_inf(dot), f'dot contains inf (after softmax) {dot.min()}, {dot.mean()}, {dot.max()}' # assert not util.contains_nan(dot), f'dot contains nan (after softmax) {dot.min()}, {dot.mean()}, {dot.max()}' # apply the self attention to the values out = sparse.batchmm(indices, dot, size=size, xmatrix=values) # swap h, t back, unify heads out = out.transpose(1, 2).contiguous().view(b, t, h * s) out = self.unifyheads(out) assert not util.contains_nan(out), f'output contains nan {out}, dot min/max: {dot.min()}/{dot.max()}' return out class SelfAttention(nn.Module): """ Plain, dense self attention """ def __init__(self, emb, heads=8, mask=False): """ :param emb: :param heads: :param mask: """ super().__init__() self.emb = emb self.heads = heads self.mask = mask self.tokeys = nn.Linear(emb, emb * heads, bias=False) self.toqueries = nn.Linear(emb, emb * heads, bias=False) self.tovalues = nn.Linear(emb, emb * heads, bias=False) self.unifyheads = nn.Linear(heads * emb, emb) def forward(self, x): b, t, e = x.size() h = self.heads assert e == self.emb, f'Input embedding dim ({e}) should match layer embedding dim ({self.emb})' keys = self.tokeys(x) .view(b, t, h, e) queries = self.toqueries(x).view(b, t, h, e) values = self.tovalues(x) .view(b, t, h, e) # compute scaled dot-product self-attention # - fold heads into the batch dimension keys = keys.transpose(1, 2).contiguous().view(b * h, t, e) queries = queries.transpose(1, 2).contiguous().view(b * h, t, e) values = values.transpose(1, 2).contiguous().view(b * h, t, e) queries = queries / (e ** (1/4)) keys = keys / (e ** (1/4)) # - Instead of dividing the dot products by sqrt(e), we scale the keys and values. # This should be more memory efficient # - get dot product of queries and keys, and scale dot = torch.bmm(queries, keys.transpose(1, 2)) assert dot.size() == (b*h, t, t), f'Matrix has size {dot.size()}, expected {(b*h, t, t)}.' if self.mask: # mask out the lower half of the dot matrix,including the diagonal mask_(dot, maskval=float('-inf'), mask_diagonal=False) dot = F.softmax(dot, dim=2) # dot now has row-wise self-attention probabilities assert not util.contains_nan(dot[:, 1:, :]) # only the forst row may contain nan if self.mask == 'first': dot = dot.clone() dot[:, :1, :] = 0.0 # - The first row of the first attention matrix is entirely masked out, so the softmax operation results # in a division by zero. We set this row to zero by hand to get rid of the NaNs # apply the self attention to the values out = torch.bmm(dot, values).view(b, h, t, e) # swap h, t back, unify heads out = out.transpose(1, 2).contiguous().view(b, t, h * e) return self.unifyheads(out) class TransformerBlock(nn.Module): def __init__(self, emb, heads, mask, ff_hidden_mult=4, dropout=0.0, type='dense', oned=True, **kwargs): super().__init__() if type == 'sparse': if mask: if oned: self.attention = ASH1DSelfAttention(emb, heads=heads, **kwargs) else: self.attention = ASH2DSelfAttention(emb, heads=heads, **kwargs) else: raise Exception('Not implemented yet') elif type == 'strided': self.attention = StridedSparseSelfAttention(emb, heads=heads, **kwargs) elif type == 'conv': self.attention = ConvSelfAttention(emb, heads, **kwargs) elif type == 'dense': self.attention = SelfAttention(emb, heads=heads, mask=mask) elif type == 'mixed': layers = [] for type in kwargs['mixture']: if type == 'c': layers.append(ConvSelfAttention(emb, heads, **kwargs)) elif type == 's': strided = StridedSparseSelfAttention(emb, heads=heads, **kwargs) layers.append(strided) self.toplot = strided else: raise Exception(f'layer type {type} not recognized/') self.attention = nn.Sequential(*layers) else: raise Exception('Not implemented yet') self.norm1 = nn.LayerNorm(emb) self.norm2 = nn.LayerNorm(emb) self.ff = nn.Sequential( nn.Linear(emb, ff_hidden_mult * emb), nn.ReLU(), nn.Linear(ff_hidden_mult * emb, emb) ) self.do = nn.Dropout(dropout) def forward(self, x): b, t, e = x.size() attended = self.attention(x) x = self.norm1(attended + x) x = self.do(x) fedforward = self.ff(x) x = self.norm2(fedforward + x) x = self.do(x) return x class GTransformer(nn.Module): """ Transformer for generating text (character by character). """ def __init__(self, emb, heads, depth, seq_length, num_tokens, sparse=False, **kwargs): """ :param emb: :param heads: :param depth: :param seq_length: :param num_tokens: :param sparse: :param kwargs: Are passed to the sparse self attention """ super().__init__() self.num_tokens = num_tokens self.token_embedding = nn.Embedding(embedding_dim=emb, num_embeddings=num_tokens) self.pos_embedding = nn.Embedding(embedding_dim=emb, num_embeddings=seq_length) tblocks = [] for i in range(depth): tblocks.append( TransformerBlock(emb=emb, heads=heads, seq_length=seq_length, mask=True, sparse=sparse, **kwargs)) self.tblocks = nn.Sequential(*tblocks) self.toprobs = nn.Linear(emb, num_tokens) def forward(self, x): """ :param x: A batch by sequence length integer tensor of token indices. :return: predicted log-probability vectors for each token based on the preceding tokens. """ tokens = self.token_embedding(x) b, t, e = tokens.size() positions = self.pos_embedding(torch.arange(t, device=d(x)))[None, :, :].expand(b, t, e) x = tokens + positions x = self.tblocks(x) x = self.toprobs(x.view(b*t, e)).view(b, t, self.num_tokens) return F.log_softmax(x, dim=2) def forward_for_plot(self, x): """ :param x: A batch by sequence length integer tensor of token indices. :return: predicted log-probability vectors for each token based on the preceding tokens. """ means, sigmas, values = [], [], [] tokens = self.token_embedding(x) b, t, e = tokens.size() positions = self.pos_embedding(torch.arange(t, device=d(x)))[None, :, :].expand(b, t, e) x = tokens + positions for tblock in self.tblocks: if type(tblock.attention) is not nn.Sequential: m, s, v = tblock.attention.hyper(x) means.append(m) sigmas.append(s) values.append(v) else: xc = x.clone() for layer in tblock.attention: # walk through the attention layers if type(layer) == StridedSparseSelfAttention: m, s, v = layer.hyper(xc) means.append(m) sigmas.append(s) values.append(v) xc = layer(xc) x = tblock(x) return means, sigmas, values def enwik8(path, n_train=int(90e6), n_valid=int(5e6), n_test=int(5e6)): """ From https://github.com/openai/blocksparse/blob/master/examples/transformer/enwik8.py :param path: :param n_train: :param n_valid: :param n_test: :return: """ X = np.fromstring(open(path).read(n_train + n_valid + n_test), dtype=np.uint8) trX, vaX, teX = np.split(X, [n_train, n_train + n_valid]) return torch.from_numpy(trX), torch.from_numpy(vaX), torch.from_numpy(teX) def go(arg): util.makedirs('./transformer-plots/') if arg.seed < 0: seed = random.randint(0, 1000000) print('random seed: ', seed) else: torch.manual_seed(arg.seed) dv = 'cuda' if arg.cuda else 'cpu' tbw = SummaryWriter(log_dir=arg.tb_dir) # load the data data_train, data_val, data_test = enwik8(arg.data) data_test = data_test if arg.final else data_val # create the model if arg.model.startswith('sparse'): model = GTransformer(emb=arg.embedding_size, heads=arg.num_heads, depth=arg.depth, seq_length=arg.context, num_tokens=NUM_TOKENS, sparse=True, gadditional=arg.gadditional, radditional=arg.radditional, region=arg.region, k=arg.k, min_sigma=arg.min_sigma, sigma_scale=arg.sigma_mult, oned=(arg.model == 'sparse1d'), norm_method=arg.norm_method, clamp=arg.clamp) elif arg.model == 'strided': model = GTransformer(emb=arg.embedding_size, heads=arg.num_heads, depth=arg.depth, seq_length=arg.context, num_tokens=NUM_TOKENS, gadditional=arg.gadditional, radditional=arg.radditional, region=arg.region, k=arg.k, min_sigma=arg.min_sigma, sigma_scale=arg.sigma_mult, norm_method=arg.norm_method, clamp=arg.clamp, stride=arg.stride, type='strided') elif arg.model == 'conv': model = GTransformer(emb=arg.embedding_size, heads=arg.num_heads, depth=arg.depth, seq_length=arg.context, k=arg.kconv, num_tokens=NUM_TOKENS, type='conv', norm_method=arg.norm_method) elif arg.model == 'dense': model = GTransformer(emb=arg.embedding_size, heads=arg.num_heads, depth=arg.depth, seq_length=arg.context, num_tokens=NUM_TOKENS) elif arg.model == 'mixed': model = GTransformer(emb=arg.embedding_size, heads=arg.num_heads, depth=arg.depth, seq_length=arg.context, num_tokens=NUM_TOKENS, gadditional=arg.gadditional, radditional=arg.radditional, region=arg.region, k=arg.k, min_sigma=arg.min_sigma, sigma_scale=arg.sigma_mult, norm_method=arg.norm_method, clamp=arg.clamp, stride=arg.stride, type='mixed', kconv=arg.kconv, mixture=arg.mixture) else: raise Exception(f'Model name unknown: {arg.model}') if arg.cuda: model.cuda() opt = torch.optim.Adam(lr=arg.lr, params=model.parameters()) # training loop for i in tqdm.trange(arg.num_batches): if arg.lr_warmup > 0 and i < arg.lr_warmup: lr = max( (arg.lr / arg.lr_warmup) * i, 1e-10) opt.lr = lr opt.zero_grad() # sample batches starts = torch.randint(size=(arg.batch_size, ), low=0, high=data_train.size(0) - arg.context - 1) seqs_source = [data_train[start :start+arg.context ] for start in starts] seqs_target = [data_train[start+1:start+arg.context+1] for start in starts] source = torch.cat([s[None, :] for s in seqs_source ], dim=0).to(torch.long) target = torch.cat([s[None, :] for s in seqs_target ], dim=0).to(torch.long) if arg.cuda: source, target = source.cuda(), target.cuda() source, target = Variable(source), Variable(target) output = model(source) loss = F.nll_loss(output.transpose(2, 1), target, reduction='none') loss = loss.mean() tbw.add_scalar('transformer/train-loss', float(loss.item()) * LOG2E, i * arg.batch_size) assert loss.item() == loss.item(), f'Loss is nan {loss}' loss.backward() assert not util.contains_nan(model.parameters()), f'Parameters have become NaN {model.parameters()}' if arg.cuda and (i == 0 or random.random() < 0.0005): # occasionally print peak GPU memory usage print(f'\nPeak gpu memory use is {torch.cuda.max_memory_cached() / 1e9:.2} Gb') # clip gradients if arg.gradient_clipping is not None: nn.utils.clip_grad_norm_(model.parameters(), arg.gradient_clipping) opt.step() if (arg.model.startswith('sparse') or arg.model == 'strided' or arg.model == 'mixed') and arg.plot_every > 0 and i % arg.plot_every == 0: shape = (arg.context, arg.context) means, sigmas, values = model.forward_for_plot(source) for t, (m, s, v) in enumerate(zip(means, sigmas, values)): b, c, k, r = m.size() m = m.view(b, c*k, r) s = s.view(b, c*k, r) v = v.reshape(b, c*k) plt.figure(figsize=(7, 7)) plt.cla() if arg.model == 'sparse1d': ind = torch.arange(c, dtype=torch.float, device=d(m))[None, :, None].expand(b, c, k).reshape(b, c*k, 1) m = torch.cat([ind, m], dim=2) util.plot1d(m[0].data, s[0].data, v[0].data, shape=shape) elif arg.model == 'strided' or arg.model == 'mixed': r = arg.stride ind = torch.arange(c, dtype=torch.float, device=d(m)) ind = (ind + 1) * r - 1 ind = ind[None, :, None].expand(b, c, k).reshape(b, c*k, 1) m = torch.cat([ind, m], dim=2) util.plot1d(m[0].data, s[0].data, v[0].data, shape=shape) else: util.plot(m, s, v, shape=shape) plt.xlim((-MARGIN * (shape[0] - 1), (shape[0] - 1) * (1.0 + MARGIN))) plt.ylim((-MARGIN * (shape[0] - 1), (shape[0] - 1) * (1.0 + MARGIN))) plt.savefig(f'./transformer-plots/means{i:06}.{t}.pdf') if i != 0 and (i % arg.test_every == 0 or i == arg.num_batches - 1): upto = data_test.size(0) if i == arg.num_batches - 1 else arg.test_subset data_sub = data_test[:upto] with torch.no_grad(): bits, tot = 0.0, 0 batch = [] for current in range(data_sub.size(0)): fr = max(0, current - arg.context) to = current + 1 context = data_sub[fr:to].to(torch.long) if context.size(0) < arg.context + 1: pad = torch.zeros(size=(arg.context + 1 - context.size(0),), dtype=torch.long) context = torch.cat([pad, context], dim=0) assert context.size(0) == arg.context + 1 if arg.cuda: context = context.cuda() batch.append(context[None, :]) if len(batch) == arg.test_batchsize or current == data_sub.size(0) - 1: b = len(batch) tot += b all = torch.cat(batch, dim=0) source = all[:, :-1] target = all[:, -1] output = model(source) lnprobs = output[torch.arange(b, device=dv), -1, target] log2probs = lnprobs * LOG2E bits += - log2probs.sum() batch = [] assert tot == data_sub.size(0) bits_per_byte = bits / data_sub.size(0) print(f'epoch{i}: {bits_per_byte:.4} bits per byte') # print(f'epoch{i}: {bits:.4} total bits') tbw.add_scalar(f'transformer/eval-loss', bits_per_byte, i * arg.batch_size) # Generate from seed GENSIZE = 600 TEMP = 0.5 seedfr = random.randint(0, data_test.size(0) - arg.context) input = data_test[seedfr:seedfr + arg.context].to(torch.long) if arg.cuda: input = input.cuda() input = Variable(input) print('[', end='', flush=True) for c in input: print(str(chr(c)), end='', flush=True) print(']', end='', flush=True) for _ in range(GENSIZE): output = model(input[None, :]) c = sample(output[0, -1, :], TEMP) print(str(chr(max(32, c))), end='', flush=True) input = torch.cat([input[1:], c[None]], dim=0) print() if __name__ == "__main__": ## Parse the command line options parser = ArgumentParser() parser.add_argument("-N", "--num-batches", dest="num_batches", help="Number of batches to train on. Each batch contains randomly sampled subsequences of the data.", default=1_000_000, type=int) parser.add_argument("-m", "--model", dest="model", help="Which model to train (dense, sparse1d, sparse2d, conv, mixed).", default='dense', type=str) parser.add_argument("--mixture", dest="mixture", help="Character string describing the sequence of convotlutions (c) and strided attentions (s).", default='cccs', type=str) parser.add_argument("--norm", dest="norm_method", help="How to normalize the attention matrix (softmax, softplus, abs).", default='softmax', type=str) parser.add_argument("-b", "--batch-size", dest="batch_size", help="The batch size.", default=64, type=int) parser.add_argument("-k", "--num-points", dest="k", help="Number of index tuples per output in the sparse transformer.", default=32, type=int) parser.add_argument("--k-conv", dest="kconv", help="Convolution kernel size.", default=3, type=int) parser.add_argument("-a", "--gadditional", dest="gadditional", help="Number of additional points sampled globally", default=8, type=int) parser.add_argument("-A", "--radditional", dest="radditional", help="Number of additional points sampled locally", default=8, type=int) parser.add_argument("-R", "--region", dest="region", help="Size of the (square) region to use for local sampling.", default=8, type=int) parser.add_argument("-c", "--cuda", dest="cuda", help="Whether to use cuda.", action="store_true") parser.add_argument("-D", "--data", dest="data", help="Data file", default=None) parser.add_argument("-l", "--learn-rate", dest="lr", help="Learning rate", default=0.0001, type=float) parser.add_argument("-S", "--sigma-mult", dest="sigma_mult", help="Sigma multiplier.", default=0.1, type=float) parser.add_argument("-M", "--min-sigma", dest="min_sigma", help="Minimum value of sigma.", default=0.01, type=float) parser.add_argument("-T", "--tb_dir", dest="tb_dir", help="Data directory", default=None) parser.add_argument("-f", "--final", dest="final", help="Whether to run on the real test set (if not included, the validation set is used).", action="store_true") parser.add_argument("-E", "--embedding", dest="embedding_size", help="Size of the character embeddings.", default=70, type=int) parser.add_argument("-H", "--heads", dest="num_heads", help="Number of attention heads.", default=8, type=int) parser.add_argument("-C", "--context", dest="context", help="Length of the sequences extracted from the corpus (and the context used during inference).", default=300, type=int) parser.add_argument("-d", "--depth", dest="depth", help="Depth of the network (nr of self-attention layers)", default=4, type=int) parser.add_argument("-r", "--random-seed", dest="seed", help="RNG seed. Negative for random", default=1, type=int) parser.add_argument("--stride", dest="stride", help="Stride length for the strided self attention", default=32, type=int) parser.add_argument("--test-every", dest="test_every", help="How many batches between tests.", default=1000, type=int) parser.add_argument("--plot-every", dest="plot_every", help="How many batches between plotting the sparse indices.", default=1000, type=int) parser.add_argument("--test-subset", dest="test_subset", help="A subset for the validation tests.", default=100000, type=int) parser.add_argument("--test-batchsize", dest="test_batchsize", help="Batch size for computing the validation loss.", default=1024, type=int) parser.add_argument("--gradient-clipping", dest="gradient_clipping", help="Gradient clipping.", default=1.0, type=float) parser.add_argument("--lr-warmup", dest="lr_warmup", help="Learning rate warmup.", default=5000, type=int) parser.add_argument("--clamp", dest="clamp", help="Use the clamp operation to fit the parameters to the space of index tuples.", action="store_true") options = parser.parse_args() print('OPTIONS ', options) go(options)
[ "torch.nn.Dropout", "torch.distributions.Categorical", "argparse.ArgumentParser", "sparse.util.inv", "torch.bmm", "torch.nn.Embedding", "torch.cat", "torch.randn", "matplotlib.pyplot.figure", "sparse.util.plot1d", "torch.arange", "torch.no_grad", "torch.nn.functional.pad", "sparse.util.plot", "torch.ones", "_context.sparse.batchmm", "random.randint", "torch.triu_indices", "torch.nn.LayerNorm", "torch.cuda.max_memory_cached", "matplotlib.pyplot.cla", "torch.utils.tensorboard.SummaryWriter", "torch.nn.Linear", "torch.nn.functional.log_softmax", "sparse.util.contains_nan", "_context.sparse.logsoftmax", "util.d", "_context.sparse.transform_sigmas", "tqdm.trange", "matplotlib.pyplot.ylim", "torch.manual_seed", "sparse.util.makedirs", "torch.autograd.Variable", "random.random", "matplotlib.use", "math.log2", "sys.exit", "torch.from_numpy", "matplotlib.pyplot.xlim", "_context.sparse.transform_means", "torch.nn.ReLU", "_context.sparse.ngenerate", "sparse.util.flip", "torch.nn.Sequential", "_context.sparse.simple_normalize", "torch.nn.functional.softmax", "numpy.split", "sparse.util.nduplicates", "sparse.util.contains_inf", "torch.nn.functional.softplus", "matplotlib.pyplot.savefig", "_context.sparse.densities" ]
[((355, 369), 'matplotlib.use', 'mpl.use', (['"""Agg"""'], {}), "('Agg')\n", (362, 369), True, 'import matplotlib as mpl\n'), ((635, 652), 'math.log2', 'math.log2', (['math.e'], {}), '(math.e)\n', (644, 652), False, 'import random, tqdm, sys, math\n'), ((774, 813), 'torch.nn.functional.softmax', 'F.softmax', (['(lnprobs / temperature)'], {'dim': '(0)'}), '(lnprobs / temperature, dim=0)\n', (783, 813), True, 'import torch.nn.functional as F\n'), ((823, 842), 'torch.distributions.Categorical', 'dist.Categorical', (['p'], {}), '(p)\n', (839, 842), True, 'import torch.distributions as dist\n'), ((1150, 1208), 'torch.triu_indices', 'torch.triu_indices', (['h', 'w'], {'offset': '(0 if mask_diagonal else 1)'}), '(h, w, offset=0 if mask_diagonal else 1)\n', (1168, 1208), False, 'import torch\n'), ((41273, 41314), 'numpy.split', 'np.split', (['X', '[n_train, n_train + n_valid]'], {}), '(X, [n_train, n_train + n_valid])\n', (41281, 41314), True, 'import numpy as np\n'), ((41413, 41450), 'sparse.util.makedirs', 'util.makedirs', (['"""./transformer-plots/"""'], {}), "('./transformer-plots/')\n", (41426, 41450), False, 'from sparse import util\n'), ((41649, 41682), 'torch.utils.tensorboard.SummaryWriter', 'SummaryWriter', ([], {'log_dir': 'arg.tb_dir'}), '(log_dir=arg.tb_dir)\n', (41662, 41682), False, 'from torch.utils.tensorboard import SummaryWriter\n'), ((44009, 44037), 'tqdm.trange', 'tqdm.trange', (['arg.num_batches'], {}), '(arg.num_batches)\n', (44020, 44037), False, 'import random, tqdm, sys, math\n'), ((50009, 50025), 'argparse.ArgumentParser', 'ArgumentParser', ([], {}), '()\n', (50023, 50025), False, 'from argparse import ArgumentParser\n'), ((1891, 1930), 'torch.nn.Linear', 'nn.Linear', (['emb', '(emb * heads)'], {'bias': '(False)'}), '(emb, emb * heads, bias=False)\n', (1900, 1930), False, 'from torch import nn\n'), ((1956, 1995), 'torch.nn.Linear', 'nn.Linear', (['emb', '(emb * heads)'], {'bias': '(False)'}), '(emb, emb * heads, bias=False)\n', (1965, 1995), False, 'from torch import nn\n'), ((2020, 2059), 'torch.nn.Linear', 'nn.Linear', (['emb', '(emb * heads)'], {'bias': '(False)'}), '(emb, emb * heads, bias=False)\n', (2029, 2059), False, 'from torch import nn\n'), ((2087, 2114), 'torch.nn.Linear', 'nn.Linear', (['(heads * emb)', 'emb'], {}), '(heads * emb, emb)\n', (2096, 2114), False, 'from torch import nn\n'), ((3416, 3550), '_context.sparse.ngenerate', 'sparse.ngenerate', (['means', 'self.gadditional', 'self.radditional'], {'rng': '(t, t)', 'relative_range': '(self.region, self.region)', 'cuda': 'x.is_cuda'}), '(means, self.gadditional, self.radditional, rng=(t, t),\n relative_range=(self.region, self.region), cuda=x.is_cuda)\n', (3432, 3550), False, 'from _context import sparse\n'), ((3600, 3618), 'sparse.util.flip', 'util.flip', (['indices'], {}), '(indices)\n', (3609, 3618), False, 'from sparse import util\n'), ((5910, 5954), '_context.sparse.logsoftmax', 'sparse.logsoftmax', (['indices', '(weights * dot)', 's'], {}), '(indices, weights * dot, s)\n', (5927, 5954), False, 'from _context import sparse\n'), ((6081, 6138), '_context.sparse.batchmm', 'sparse.batchmm', (['indices', 'dot'], {'size': '(t, t)', 'xmatrix': 'values'}), '(indices, dot, size=(t, t), xmatrix=values)\n', (6095, 6138), False, 'from _context import sparse\n'), ((7084, 7123), 'torch.nn.Linear', 'nn.Linear', (['emb', '(emb * heads)'], {'bias': '(False)'}), '(emb, emb * heads, bias=False)\n', (7093, 7123), False, 'from torch import nn\n'), ((7149, 7188), 'torch.nn.Linear', 'nn.Linear', (['emb', '(emb * heads)'], {'bias': '(False)'}), '(emb, emb * heads, bias=False)\n', (7158, 7188), False, 'from torch import nn\n'), ((7213, 7252), 'torch.nn.Linear', 'nn.Linear', (['emb', '(emb * heads)'], {'bias': '(False)'}), '(emb, emb * heads, bias=False)\n', (7222, 7252), False, 'from torch import nn\n'), ((7280, 7307), 'torch.nn.Linear', 'nn.Linear', (['(heads * emb)', 'emb'], {}), '(heads * emb, emb)\n', (7289, 7307), False, 'from torch import nn\n'), ((8015, 8044), 'torch.cat', 'torch.cat', (['[x, coords]'], {'dim': '(2)'}), '([x, coords], dim=2)\n', (8024, 8044), False, 'import torch\n'), ((8414, 8435), 'sparse.util.inv', 'util.inv', (['diags'], {'mx': 't'}), '(diags, mx=t)\n', (8422, 8435), False, 'from sparse import util\n'), ((8724, 8740), 'sparse.util.flip', 'util.flip', (['means'], {}), '(means)\n', (8733, 8740), False, 'from sparse import util\n'), ((9410, 9544), '_context.sparse.ngenerate', 'sparse.ngenerate', (['means', 'self.gadditional', 'self.radditional'], {'rng': '(t, t)', 'relative_range': '(self.region, self.region)', 'cuda': 'x.is_cuda'}), '(means, self.gadditional, self.radditional, rng=(t, t),\n relative_range=(self.region, self.region), cuda=x.is_cuda)\n', (9426, 9544), False, 'from _context import sparse\n'), ((9595, 9613), 'sparse.util.flip', 'util.flip', (['indices'], {}), '(indices)\n', (9604, 9613), False, 'from sparse import util\n'), ((12473, 12530), '_context.sparse.batchmm', 'sparse.batchmm', (['indices', 'dot'], {'size': '(t, t)', 'xmatrix': 'values'}), '(indices, dot, size=(t, t), xmatrix=values)\n', (12487, 12530), False, 'from _context import sparse\n'), ((13848, 13887), 'torch.nn.Linear', 'nn.Linear', (['emb', '(emb * heads)'], {'bias': '(False)'}), '(emb, emb * heads, bias=False)\n', (13857, 13887), False, 'from torch import nn\n'), ((13913, 13952), 'torch.nn.Linear', 'nn.Linear', (['emb', '(emb * heads)'], {'bias': '(False)'}), '(emb, emb * heads, bias=False)\n', (13922, 13952), False, 'from torch import nn\n'), ((13977, 14016), 'torch.nn.Linear', 'nn.Linear', (['emb', '(emb * heads)'], {'bias': '(False)'}), '(emb, emb * heads, bias=False)\n', (13986, 14016), False, 'from torch import nn\n'), ((14044, 14071), 'torch.nn.Linear', 'nn.Linear', (['(heads * emb)', 'emb'], {}), '(heads * emb, emb)\n', (14053, 14071), False, 'from torch import nn\n'), ((14832, 14861), 'torch.cat', 'torch.cat', (['[x, coords]'], {'dim': '(2)'}), '([x, coords], dim=2)\n', (14841, 14861), False, 'import torch\n'), ((16190, 16310), '_context.sparse.ngenerate', 'sparse.ngenerate', (['means', 'self.gadditional', 'self.radditional'], {'rng': '(t,)', 'relative_range': '(self.region,)', 'cuda': 'x.is_cuda'}), '(means, self.gadditional, self.radditional, rng=(t,),\n relative_range=(self.region,), cuda=x.is_cuda)\n', (16206, 16310), False, 'from _context import sparse\n'), ((17389, 17421), 'torch.cat', 'torch.cat', (['[out, indices]'], {'dim': '(3)'}), '([out, indices], dim=3)\n', (17398, 17421), False, 'import torch\n'), ((19750, 19807), '_context.sparse.batchmm', 'sparse.batchmm', (['indices', 'dot'], {'size': '(t, t)', 'xmatrix': 'values'}), '(indices, dot, size=(t, t), xmatrix=values)\n', (19764, 19807), False, 'from _context import sparse\n'), ((21206, 21233), 'torch.nn.Linear', 'nn.Linear', (['s', 's'], {'bias': '(False)'}), '(s, s, bias=False)\n', (21215, 21233), False, 'from torch import nn\n'), ((21259, 21286), 'torch.nn.Linear', 'nn.Linear', (['s', 's'], {'bias': '(False)'}), '(s, s, bias=False)\n', (21268, 21286), False, 'from torch import nn\n'), ((21312, 21339), 'torch.nn.Linear', 'nn.Linear', (['s', 's'], {'bias': '(False)'}), '(s, s, bias=False)\n', (21321, 21339), False, 'from torch import nn\n'), ((21367, 21392), 'torch.nn.Linear', 'nn.Linear', (['(s * heads)', 'emb'], {}), '(s * heads, emb)\n', (21376, 21392), False, 'from torch import nn\n'), ((22567, 22638), 'torch.cat', 'torch.cat', (['[x[:, selection, :], coords, summed[:, selection, :]]'], {'dim': '(2)'}), '([x[:, selection, :], coords, summed[:, selection, :]], dim=2)\n', (22576, 22638), False, 'import torch\n'), ((24329, 24465), '_context.sparse.ngenerate', 'sparse.ngenerate', (['means', 'self.gadditional', 'self.radditional'], {'rng': '(t,)', 'relative_range': '(self.region,)', 'cuda': 'x.is_cuda', 'epsilon': '(0.0001)'}), '(means, self.gadditional, self.radditional, rng=(t,),\n relative_range=(self.region,), cuda=x.is_cuda, epsilon=0.0001)\n', (24345, 24465), False, 'from _context import sparse\n'), ((25789, 25821), 'torch.cat', 'torch.cat', (['[out, indices]'], {'dim': '(3)'}), '([out, indices], dim=3)\n', (25798, 25821), False, 'import torch\n'), ((28985, 29040), '_context.sparse.batchmm', 'sparse.batchmm', (['indices', 'dot'], {'size': 'size', 'xmatrix': 'values'}), '(indices, dot, size=size, xmatrix=values)\n', (28999, 29040), False, 'from _context import sparse\n'), ((30220, 30247), 'torch.nn.Linear', 'nn.Linear', (['s', 's'], {'bias': '(False)'}), '(s, s, bias=False)\n', (30229, 30247), False, 'from torch import nn\n'), ((30273, 30300), 'torch.nn.Linear', 'nn.Linear', (['s', 's'], {'bias': '(False)'}), '(s, s, bias=False)\n', (30282, 30300), False, 'from torch import nn\n'), ((30326, 30353), 'torch.nn.Linear', 'nn.Linear', (['s', 's'], {'bias': '(False)'}), '(s, s, bias=False)\n', (30335, 30353), False, 'from torch import nn\n'), ((30381, 30406), 'torch.nn.Linear', 'nn.Linear', (['(s * heads)', 'emb'], {}), '(s * heads, emb)\n', (30390, 30406), False, 'from torch import nn\n'), ((30629, 30667), 'torch.nn.functional.pad', 'F.pad', (['x', '[0, 0, 0, 0, k - 1, 0, 0, 0]'], {}), '(x, [0, 0, 0, 0, k - 1, 0, 0, 0])\n', (30634, 30667), True, 'import torch.nn.functional as F\n'), ((33286, 33341), '_context.sparse.batchmm', 'sparse.batchmm', (['indices', 'dot'], {'size': 'size', 'xmatrix': 'values'}), '(indices, dot, size=size, xmatrix=values)\n', (33300, 33341), False, 'from _context import sparse\n'), ((33958, 33997), 'torch.nn.Linear', 'nn.Linear', (['emb', '(emb * heads)'], {'bias': '(False)'}), '(emb, emb * heads, bias=False)\n', (33967, 33997), False, 'from torch import nn\n'), ((34023, 34062), 'torch.nn.Linear', 'nn.Linear', (['emb', '(emb * heads)'], {'bias': '(False)'}), '(emb, emb * heads, bias=False)\n', (34032, 34062), False, 'from torch import nn\n'), ((34087, 34126), 'torch.nn.Linear', 'nn.Linear', (['emb', '(emb * heads)'], {'bias': '(False)'}), '(emb, emb * heads, bias=False)\n', (34096, 34126), False, 'from torch import nn\n'), ((34154, 34181), 'torch.nn.Linear', 'nn.Linear', (['(heads * emb)', 'emb'], {}), '(heads * emb, emb)\n', (34163, 34181), False, 'from torch import nn\n'), ((35448, 35469), 'torch.nn.functional.softmax', 'F.softmax', (['dot'], {'dim': '(2)'}), '(dot, dim=2)\n', (35457, 35469), True, 'import torch.nn.functional as F\n'), ((37637, 37654), 'torch.nn.LayerNorm', 'nn.LayerNorm', (['emb'], {}), '(emb)\n', (37649, 37654), False, 'from torch import nn\n'), ((37676, 37693), 'torch.nn.LayerNorm', 'nn.LayerNorm', (['emb'], {}), '(emb)\n', (37688, 37693), False, 'from torch import nn\n'), ((37879, 37898), 'torch.nn.Dropout', 'nn.Dropout', (['dropout'], {}), '(dropout)\n', (37889, 37898), False, 'from torch import nn\n'), ((38695, 38753), 'torch.nn.Embedding', 'nn.Embedding', ([], {'embedding_dim': 'emb', 'num_embeddings': 'num_tokens'}), '(embedding_dim=emb, num_embeddings=num_tokens)\n', (38707, 38753), False, 'from torch import nn\n'), ((38783, 38841), 'torch.nn.Embedding', 'nn.Embedding', ([], {'embedding_dim': 'emb', 'num_embeddings': 'seq_length'}), '(embedding_dim=emb, num_embeddings=seq_length)\n', (38795, 38841), False, 'from torch import nn\n'), ((39062, 39085), 'torch.nn.Sequential', 'nn.Sequential', (['*tblocks'], {}), '(*tblocks)\n', (39075, 39085), False, 'from torch import nn\n'), ((39110, 39136), 'torch.nn.Linear', 'nn.Linear', (['emb', 'num_tokens'], {}), '(emb, num_tokens)\n', (39119, 39136), False, 'from torch import nn\n'), ((39680, 39703), 'torch.nn.functional.log_softmax', 'F.log_softmax', (['x'], {'dim': '(2)'}), '(x, dim=2)\n', (39693, 39703), True, 'import torch.nn.functional as F\n'), ((41326, 41347), 'torch.from_numpy', 'torch.from_numpy', (['trX'], {}), '(trX)\n', (41342, 41347), False, 'import torch\n'), ((41349, 41370), 'torch.from_numpy', 'torch.from_numpy', (['vaX'], {}), '(vaX)\n', (41365, 41370), False, 'import torch\n'), ((41372, 41393), 'torch.from_numpy', 'torch.from_numpy', (['teX'], {}), '(teX)\n', (41388, 41393), False, 'import torch\n'), ((41488, 41514), 'random.randint', 'random.randint', (['(0)', '(1000000)'], {}), '(0, 1000000)\n', (41502, 41514), False, 'import random, tqdm, sys, math\n'), ((41570, 41597), 'torch.manual_seed', 'torch.manual_seed', (['arg.seed'], {}), '(arg.seed)\n', (41587, 41597), False, 'import torch\n'), ((2278, 2297), 'torch.randn', 'torch.randn', (['(k, 2)'], {}), '((k, 2))\n', (2289, 2297), False, 'import torch\n'), ((2334, 2351), 'torch.randn', 'torch.randn', (['(k,)'], {}), '((k,))\n', (2345, 2351), False, 'import torch\n'), ((2394, 2410), 'torch.ones', 'torch.ones', (['(k,)'], {}), '((k,))\n', (2404, 2410), False, 'import torch\n'), ((2895, 2927), '_context.sparse.transform_means', 'sparse.transform_means', (['means', 's'], {}), '(means, s)\n', (2917, 2927), False, 'from _context import sparse\n'), ((7476, 7492), 'torch.ones', 'torch.ones', (['(k,)'], {}), '((k,))\n', (7486, 7492), False, 'import torch\n'), ((7632, 7658), 'torch.nn.Linear', 'nn.Linear', (['(emb + 1)', 'hidden'], {}), '(emb + 1, hidden)\n', (7641, 7658), False, 'from torch import nn\n'), ((7660, 7669), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (7667, 7669), False, 'from torch import nn\n'), ((7683, 7707), 'torch.nn.Linear', 'nn.Linear', (['hidden', '(k * 3)'], {}), '(hidden, k * 3)\n', (7692, 7707), False, 'from torch import nn\n'), ((8117, 8142), 'sparse.util.contains_nan', 'util.contains_nan', (['params'], {}), '(params)\n', (8134, 8142), False, 'from sparse import util\n'), ((8889, 8921), '_context.sparse.transform_means', 'sparse.transform_means', (['means', 's'], {}), '(means, s)\n', (8911, 8921), False, 'from _context import sparse\n'), ((11991, 12013), 'sparse.util.contains_nan', 'util.contains_nan', (['dot'], {}), '(dot)\n', (12008, 12013), False, 'from sparse import util\n'), ((12310, 12332), 'sparse.util.contains_nan', 'util.contains_nan', (['dot'], {}), '(dot)\n', (12327, 12332), False, 'from sparse import util\n'), ((12690, 12712), 'sparse.util.contains_nan', 'util.contains_nan', (['out'], {}), '(out)\n', (12707, 12712), False, 'from sparse import util\n'), ((14240, 14256), 'torch.ones', 'torch.ones', (['(k,)'], {}), '((k,))\n', (14250, 14256), False, 'import torch\n'), ((14396, 14422), 'torch.nn.Linear', 'nn.Linear', (['(emb + 1)', 'hidden'], {}), '(emb + 1, hidden)\n', (14405, 14422), False, 'from torch import nn\n'), ((14424, 14433), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (14431, 14433), False, 'from torch import nn\n'), ((14447, 14471), 'torch.nn.Linear', 'nn.Linear', (['hidden', '(k * 2)'], {}), '(hidden, k * 2)\n', (14456, 14471), False, 'from torch import nn\n'), ((14934, 14959), 'sparse.util.contains_nan', 'util.contains_nan', (['params'], {}), '(params)\n', (14951, 14959), False, 'from sparse import util\n'), ((15280, 15301), 'sparse.util.inv', 'util.inv', (['diags'], {'mx': 't'}), '(diags, mx=t)\n', (15288, 15301), False, 'from sparse import util\n'), ((15624, 15701), '_context.sparse.transform_means', 'sparse.transform_means', (['means', 's'], {'method': "('clamp' if self.clamp else 'sigmoid')"}), "(means, s, method='clamp' if self.clamp else 'sigmoid')\n", (15646, 15701), False, 'from _context import sparse\n'), ((18948, 18970), 'sparse.util.contains_inf', 'util.contains_inf', (['dot'], {}), '(dot)\n', (18965, 18970), False, 'from sparse import util\n'), ((19067, 19089), 'sparse.util.contains_nan', 'util.contains_nan', (['dot'], {}), '(dot)\n', (19084, 19089), False, 'from sparse import util\n'), ((19311, 19386), '_context.sparse.simple_normalize', 'sparse.simple_normalize', (['indices', '(weights * dot)', 's'], {'method': 'self.norm_method'}), '(indices, weights * dot, s, method=self.norm_method)\n', (19334, 19386), False, 'from _context import sparse\n'), ((19469, 19491), 'sparse.util.contains_inf', 'util.contains_inf', (['dot'], {}), '(dot)\n', (19486, 19491), False, 'from sparse import util\n'), ((19587, 19609), 'sparse.util.contains_nan', 'util.contains_nan', (['dot'], {}), '(dot)\n', (19604, 19609), False, 'from sparse import util\n'), ((19967, 19989), 'sparse.util.contains_nan', 'util.contains_nan', (['out'], {}), '(out)\n', (19984, 19989), False, 'from sparse import util\n'), ((21561, 21577), 'torch.ones', 'torch.ones', (['(k,)'], {}), '((k,))\n', (21571, 21577), False, 'import torch\n'), ((21717, 21747), 'torch.nn.Linear', 'nn.Linear', (['(2 * emb + 1)', 'hidden'], {}), '(2 * emb + 1, hidden)\n', (21726, 21747), False, 'from torch import nn\n'), ((21749, 21758), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (21756, 21758), False, 'from torch import nn\n'), ((21772, 21796), 'torch.nn.Linear', 'nn.Linear', (['hidden', '(k * 2)'], {}), '(hidden, k * 2)\n', (21781, 21796), False, 'from torch import nn\n'), ((22712, 22737), 'sparse.util.contains_nan', 'util.contains_nan', (['params'], {}), '(params)\n', (22729, 22737), False, 'from sparse import util\n'), ((22869, 22894), 'sparse.util.contains_inf', 'util.contains_inf', (['params'], {}), '(params)\n', (22886, 22894), False, 'from sparse import util\n'), ((23204, 23225), 'sparse.util.inv', 'util.inv', (['diags'], {'mx': 't'}), '(diags, mx=t)\n', (23212, 23225), False, 'from sparse import util\n'), ((23550, 23627), '_context.sparse.transform_means', 'sparse.transform_means', (['means', 's'], {'method': "('clamp' if self.clamp else 'sigmoid')"}), "(means, s, method='clamp' if self.clamp else 'sigmoid')\n", (23572, 23627), False, 'from _context import sparse\n'), ((26012, 26038), 'sparse.util.contains_inf', 'util.contains_inf', (['weights'], {}), '(weights)\n', (26029, 26038), False, 'from sparse import util\n'), ((26148, 26174), 'sparse.util.contains_nan', 'util.contains_nan', (['weights'], {}), '(weights)\n', (26165, 26174), False, 'from sparse import util\n'), ((27832, 27854), 'sparse.util.contains_inf', 'util.contains_inf', (['dot'], {}), '(dot)\n', (27849, 27854), False, 'from sparse import util\n'), ((27948, 27970), 'sparse.util.contains_nan', 'util.contains_nan', (['dot'], {}), '(dot)\n', (27965, 27970), False, 'from sparse import util\n'), ((28192, 28270), '_context.sparse.simple_normalize', 'sparse.simple_normalize', (['indices', '(weights * dot)', 'size'], {'method': 'self.norm_method'}), '(indices, weights * dot, size, method=self.norm_method)\n', (28215, 28270), False, 'from _context import sparse\n'), ((28353, 28375), 'sparse.util.contains_inf', 'util.contains_inf', (['dot'], {}), '(dot)\n', (28370, 28375), False, 'from sparse import util\n'), ((29200, 29222), 'sparse.util.contains_nan', 'util.contains_nan', (['out'], {}), '(out)\n', (29217, 29222), False, 'from sparse import util\n'), ((32850, 32918), '_context.sparse.simple_normalize', 'sparse.simple_normalize', (['indices', 'dot', 'size'], {'method': 'self.norm_method'}), '(indices, dot, size, method=self.norm_method)\n', (32873, 32918), False, 'from _context import sparse\n'), ((33501, 33523), 'sparse.util.contains_nan', 'util.contains_nan', (['out'], {}), '(out)\n', (33518, 33523), False, 'from sparse import util\n'), ((35542, 35574), 'sparse.util.contains_nan', 'util.contains_nan', (['dot[:, 1:, :]'], {}), '(dot[:, 1:, :])\n', (35559, 35574), False, 'from sparse import util\n'), ((37740, 37776), 'torch.nn.Linear', 'nn.Linear', (['emb', '(ff_hidden_mult * emb)'], {}), '(emb, ff_hidden_mult * emb)\n', (37749, 37776), False, 'from torch import nn\n'), ((37790, 37799), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (37797, 37799), False, 'from torch import nn\n'), ((37813, 37849), 'torch.nn.Linear', 'nn.Linear', (['(ff_hidden_mult * emb)', 'emb'], {}), '(ff_hidden_mult * emb, emb)\n', (37822, 37849), False, 'from torch import nn\n'), ((44777, 44793), 'torch.autograd.Variable', 'Variable', (['source'], {}), '(source)\n', (44785, 44793), False, 'from torch.autograd import Variable\n'), ((44795, 44811), 'torch.autograd.Variable', 'Variable', (['target'], {}), '(target)\n', (44803, 44811), False, 'from torch.autograd import Variable\n'), ((2955, 3015), '_context.sparse.transform_sigmas', 'sparse.transform_sigmas', (['sigmas', 's'], {'min_sigma': 'self.min_sigma'}), '(sigmas, s, min_sigma=self.min_sigma)\n', (2978, 3015), False, 'from _context import sparse\n'), ((3850, 3875), 'sparse.util.nduplicates', 'util.nduplicates', (['indices'], {}), '(indices)\n', (3866, 3875), False, 'from sparse import util\n'), ((3986, 4024), '_context.sparse.densities', 'sparse.densities', (['indfl', 'means', 'sigmas'], {}), '(indfl, means, sigmas)\n', (4002, 4024), False, 'from _context import sparse\n'), ((5831, 5881), 'torch.bmm', 'torch.bmm', (['squeries[:, None, :]', 'skeys[:, :, None]'], {}), '(squeries[:, None, :], skeys[:, :, None])\n', (5840, 5881), False, 'import torch\n'), ((8392, 8396), 'util.d', 'd', (['x'], {}), '(x)\n', (8393, 8396), False, 'from util import d\n'), ((8949, 9009), '_context.sparse.transform_sigmas', 'sparse.transform_sigmas', (['sigmas', 's'], {'min_sigma': 'self.min_sigma'}), '(sigmas, s, min_sigma=self.min_sigma)\n', (8972, 9009), False, 'from _context import sparse\n'), ((9845, 9870), 'sparse.util.nduplicates', 'util.nduplicates', (['indices'], {}), '(indices)\n', (9861, 9870), False, 'from sparse import util\n'), ((9981, 10019), '_context.sparse.densities', 'sparse.densities', (['indfl', 'means', 'sigmas'], {}), '(indfl, means, sigmas)\n', (9997, 10019), False, 'from _context import sparse\n'), ((11836, 11886), 'torch.bmm', 'torch.bmm', (['squeries[:, None, :]', 'skeys[:, :, None]'], {}), '(squeries[:, None, :], skeys[:, :, None])\n', (11845, 11886), False, 'import torch\n'), ((12177, 12221), '_context.sparse.logsoftmax', 'sparse.logsoftmax', (['indices', '(weights * dot)', 's'], {}), '(indices, weights * dot, s)\n', (12194, 12221), False, 'from _context import sparse\n'), ((15227, 15231), 'util.d', 'd', (['x'], {}), '(x)\n', (15228, 15231), False, 'from util import d\n'), ((15564, 15581), 'torch.nn.functional.softplus', 'F.softplus', (['means'], {}), '(means)\n', (15574, 15581), True, 'import torch.nn.functional as F\n'), ((15729, 15789), '_context.sparse.transform_sigmas', 'sparse.transform_sigmas', (['sigmas', 's'], {'min_sigma': 'self.min_sigma'}), '(sigmas, s, min_sigma=self.min_sigma)\n', (15752, 15789), False, 'from _context import sparse\n'), ((16644, 16682), '_context.sparse.densities', 'sparse.densities', (['indfl', 'means', 'sigmas'], {}), '(indfl, means, sigmas)\n', (16660, 16682), False, 'from _context import sparse\n'), ((16760, 16785), 'sparse.util.nduplicates', 'util.nduplicates', (['indices'], {}), '(indices)\n', (16776, 16785), False, 'from sparse import util\n'), ((18862, 18912), 'torch.bmm', 'torch.bmm', (['squeries[:, None, :]', 'skeys[:, :, None]'], {}), '(squeries[:, None, :], skeys[:, :, None])\n', (18871, 18912), False, 'import torch\n'), ((22195, 22199), 'util.d', 'd', (['x'], {}), '(x)\n', (22196, 22199), False, 'from util import d\n'), ((23507, 23524), 'torch.nn.functional.softplus', 'F.softplus', (['means'], {}), '(means)\n', (23517, 23524), True, 'import torch.nn.functional as F\n'), ((23655, 23715), '_context.sparse.transform_sigmas', 'sparse.transform_sigmas', (['sigmas', 's'], {'min_sigma': 'self.min_sigma'}), '(sigmas, s, min_sigma=self.min_sigma)\n', (23678, 23715), False, 'from _context import sparse\n'), ((24063, 24067), 'util.d', 'd', (['x'], {}), '(x)\n', (24064, 24067), False, 'from util import d\n'), ((24799, 24837), '_context.sparse.densities', 'sparse.densities', (['indfl', 'means', 'sigmas'], {}), '(indfl, means, sigmas)\n', (24815, 24837), False, 'from _context import sparse\n'), ((24916, 24941), 'sparse.util.nduplicates', 'util.nduplicates', (['indices'], {}), '(indices)\n', (24932, 24941), False, 'from sparse import util\n'), ((27707, 27757), 'torch.bmm', 'torch.bmm', (['squeries[:, None, :]', 'skeys[:, :, None]'], {}), '(squeries[:, None, :], skeys[:, :, None])\n', (27716, 27757), False, 'import torch\n'), ((28486, 28508), 'sparse.util.contains_nan', 'util.contains_nan', (['dot'], {}), '(dot)\n', (28503, 28508), False, 'from sparse import util\n'), ((28910, 28920), 'sys.exit', 'sys.exit', ([], {}), '()\n', (28918, 28920), False, 'import random, tqdm, sys, math\n'), ((32361, 32411), 'torch.bmm', 'torch.bmm', (['squeries[:, None, :]', 'skeys[:, :, None]'], {}), '(squeries[:, None, :], skeys[:, :, None])\n', (32370, 32411), False, 'import torch\n'), ((35983, 36005), 'torch.bmm', 'torch.bmm', (['dot', 'values'], {}), '(dot, values)\n', (35992, 36005), False, 'import torch\n'), ((44518, 44569), 'torch.cat', 'torch.cat', (['[s[None, :] for s in seqs_source]'], {'dim': '(0)'}), '([s[None, :] for s in seqs_source], dim=0)\n', (44527, 44569), False, 'import torch\n'), ((44603, 44654), 'torch.cat', 'torch.cat', (['[s[None, :] for s in seqs_target]'], {'dim': '(0)'}), '([s[None, :] for s in seqs_target], dim=0)\n', (44612, 44654), False, 'import torch\n'), ((46119, 46145), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(7, 7)'}), '(figsize=(7, 7))\n', (46129, 46145), True, 'import matplotlib.pyplot as plt\n'), ((46162, 46171), 'matplotlib.pyplot.cla', 'plt.cla', ([], {}), '()\n', (46169, 46171), True, 'import matplotlib.pyplot as plt\n'), ((46993, 47062), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(-MARGIN * (shape[0] - 1), (shape[0] - 1) * (1.0 + MARGIN))'], {}), '((-MARGIN * (shape[0] - 1), (shape[0] - 1) * (1.0 + MARGIN)))\n', (47001, 47062), True, 'import matplotlib.pyplot as plt\n'), ((47079, 47148), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(-MARGIN * (shape[0] - 1), (shape[0] - 1) * (1.0 + MARGIN))'], {}), '((-MARGIN * (shape[0] - 1), (shape[0] - 1) * (1.0 + MARGIN)))\n', (47087, 47148), True, 'import matplotlib.pyplot as plt\n'), ((47166, 47221), 'matplotlib.pyplot.savefig', 'plt.savefig', (['f"""./transformer-plots/means{i:06}.{t}.pdf"""'], {}), "(f'./transformer-plots/means{i:06}.{t}.pdf')\n", (47177, 47221), True, 'import matplotlib.pyplot as plt\n'), ((47445, 47460), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (47458, 47460), False, 'import torch\n'), ((49418, 49433), 'torch.autograd.Variable', 'Variable', (['input'], {}), '(input)\n', (49426, 49433), False, 'from torch.autograd import Variable\n'), ((7932, 7936), 'util.d', 'd', (['x'], {}), '(x)\n', (7933, 7936), False, 'from util import d\n'), ((14749, 14753), 'util.d', 'd', (['x'], {}), '(x)\n', (14750, 14753), False, 'from util import d\n'), ((19228, 19272), '_context.sparse.logsoftmax', 'sparse.logsoftmax', (['indices', '(weights * dot)', 's'], {}), '(indices, weights * dot, s)\n', (19245, 19272), False, 'from _context import sparse\n'), ((22363, 22367), 'util.d', 'd', (['x'], {}), '(x)\n', (22364, 22367), False, 'from util import d\n'), ((28106, 28153), '_context.sparse.logsoftmax', 'sparse.logsoftmax', (['indices', '(weights * dot)', 'size'], {}), '(indices, weights * dot, size)\n', (28123, 28153), False, 'from _context import sparse\n'), ((32774, 32811), '_context.sparse.logsoftmax', 'sparse.logsoftmax', (['indices', 'dot', 'size'], {}), '(indices, dot, size)\n', (32791, 32811), False, 'from _context import sparse\n'), ((45282, 45297), 'random.random', 'random.random', ([], {}), '()\n', (45295, 45297), False, 'import random, tqdm, sys, math\n'), ((46365, 46391), 'torch.cat', 'torch.cat', (['[ind, m]'], {'dim': '(2)'}), '([ind, m], dim=2)\n', (46374, 46391), False, 'import torch\n'), ((46412, 46469), 'sparse.util.plot1d', 'util.plot1d', (['m[0].data', 's[0].data', 'v[0].data'], {'shape': 'shape'}), '(m[0].data, s[0].data, v[0].data, shape=shape)\n', (46423, 46469), False, 'from sparse import util\n'), ((49865, 49903), 'torch.cat', 'torch.cat', (['[input[1:], c[None]]'], {'dim': '(0)'}), '([input[1:], c[None]], dim=0)\n', (49874, 49903), False, 'import torch\n'), ((22511, 22514), 'util.d', 'd', ([], {}), '()\n', (22512, 22514), False, 'from util import d\n'), ((46796, 46822), 'torch.cat', 'torch.cat', (['[ind, m]'], {'dim': '(2)'}), '([ind, m], dim=2)\n', (46805, 46822), False, 'import torch\n'), ((46843, 46900), 'sparse.util.plot1d', 'util.plot1d', (['m[0].data', 's[0].data', 'v[0].data'], {'shape': 'shape'}), '(m[0].data, s[0].data, v[0].data, shape=shape)\n', (46854, 46900), False, 'from sparse import util\n'), ((46944, 46975), 'sparse.util.plot', 'util.plot', (['m', 's', 'v'], {'shape': 'shape'}), '(m, s, v, shape=shape)\n', (46953, 46975), False, 'from sparse import util\n'), ((47931, 47963), 'torch.cat', 'torch.cat', (['[pad, context]'], {'dim': '(0)'}), '([pad, context], dim=0)\n', (47940, 47963), False, 'import torch\n'), ((48364, 48387), 'torch.cat', 'torch.cat', (['batch'], {'dim': '(0)'}), '(batch, dim=0)\n', (48373, 48387), False, 'import torch\n'), ((16574, 16584), 'util.d', 'd', (['indices'], {}), '(indices)\n', (16575, 16584), False, 'from util import d\n'), ((17318, 17328), 'util.d', 'd', (['indices'], {}), '(indices)\n', (17319, 17328), False, 'from util import d\n'), ((31778, 31782), 'util.d', 'd', (['x'], {}), '(x)\n', (31779, 31782), False, 'from util import d\n'), ((37526, 37548), 'torch.nn.Sequential', 'nn.Sequential', (['*layers'], {}), '(*layers)\n', (37539, 37548), False, 'from torch import nn\n'), ((45398, 45428), 'torch.cuda.max_memory_cached', 'torch.cuda.max_memory_cached', ([], {}), '()\n', (45426, 45428), False, 'import torch\n'), ((39499, 39503), 'util.d', 'd', (['x'], {}), '(x)\n', (39500, 39503), False, 'from util import d\n'), ((40119, 40123), 'util.d', 'd', (['x'], {}), '(x)\n', (40120, 40123), False, 'from util import d\n'), ((46642, 46646), 'util.d', 'd', (['m'], {}), '(m)\n', (46643, 46646), False, 'from util import d\n'), ((48567, 48593), 'torch.arange', 'torch.arange', (['b'], {'device': 'dv'}), '(b, device=dv)\n', (48579, 48593), False, 'import torch\n'), ((31669, 31673), 'util.d', 'd', (['x'], {}), '(x)\n', (31670, 31673), False, 'from util import d\n'), ((5661, 5665), 'util.d', 'd', (['x'], {}), '(x)\n', (5662, 5665), False, 'from util import d\n'), ((11662, 11666), 'util.d', 'd', (['x'], {}), '(x)\n', (11663, 11666), False, 'from util import d\n'), ((18688, 18692), 'util.d', 'd', (['x'], {}), '(x)\n', (18689, 18692), False, 'from util import d\n'), ((27531, 27535), 'util.d', 'd', (['x'], {}), '(x)\n', (27532, 27535), False, 'from util import d\n'), ((32189, 32193), 'util.d', 'd', (['x'], {}), '(x)\n', (32190, 32193), False, 'from util import d\n'), ((46285, 46289), 'util.d', 'd', (['m'], {}), '(m)\n', (46286, 46289), False, 'from util import d\n')]
"""Unit tests for instrupy.radiometer_model. References: [1] Chapter 6,7 in "Microwave Radar and Radiometric Remote Sensing," <NAME> , <NAME> 2014 @TODO Include rectangular antenna tests """ import unittest import json import numpy as np import sys, os from instrupy.radiometer_model import PredetectionSectionParams, SystemParams from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, \ BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, \ ScanTech, FixedScan, CrossTrackScan, ConicalScan from instrupy.util import Antenna, Orientation, SphericalGeometry, ViewGeometry, FileUtilityFunctions, Maneuver class TestTotalPowerRadiometerSystem(unittest.TestCase): @classmethod def setUpClass(cls): # See [1] Section 7-3.1 for the source of some of the receiver specs specified below. Section 7.5 lists a normalaized gain variation specs of 10^-2. cls.tpr_sys1_json = '{"tlLoss": 0.5,' \ '"tlPhyTemp": 290,' \ '"rfAmpGain": 30,' \ '"rfAmpInpNoiseTemp": 200,' \ '"rfAmpGainVariation": 10,' \ '"mixerGain": 23,' \ '"mixerInpNoiseTemp": 1200,' \ '"mixerGainVariation": 2,' \ '"ifAmpGain": 30,' \ '"ifAmpInputNoiseTemp": 100,' \ '"ifAmpGainVariation": 10,' \ '"integratorVoltageGain": 1,' \ '"integrationTime": 100e-3,' \ '"bandwidth": 10e6,' \ '"@id": 121}' cls.tpr_sys2_json = '{"predetectionGain": 83,' \ '"predetectionInpNoiseTemp": 200,' \ '"predetectionGainVariation": 2000000,' \ '"integrationTime": 100e-3,' \ '"bandwidth": 10e6,' \ '"integratorVoltageGain": 1 }' def test_from_json(self): """ Test typical initialization of the total power radiometer system. """ o = TotalPowerRadiometerSystem.from_json(self.tpr_sys1_json) self.assertIsInstance(o, TotalPowerRadiometerSystem) self.assertEqual(o._id, 121) self.assertEqual(o._type, "TotalPowerRadiometerSystem") self.assertEqual(o.tlLoss, 0.5) self.assertEqual(o.tlPhyTemp, 290) self.assertEqual(o.rfAmpGain, 30) self.assertEqual(o.rfAmpInpNoiseTemp, 200) self.assertEqual(o.rfAmpGainVariation, 10) self.assertEqual(o.mixerGain, 23) self.assertEqual(o.mixerInpNoiseTemp, 1200) self.assertEqual(o.mixerGainVariation, 2) self.assertEqual(o.ifAmpGain, 30) self.assertEqual(o.ifAmpInputNoiseTemp, 100) self.assertEqual(o.ifAmpGainVariation, 10) self.assertEqual(o.integratorVoltageGain, 1) self.assertIsNone(o.predetectionGain) self.assertIsNone(o.predetectionInpNoiseTemp) self.assertIsNone(o.predetectionGainVariation) self.assertEqual(o.integrationTime, 100e-3) self.assertEqual(o.bandwidth, 10e6) o = TotalPowerRadiometerSystem.from_json(self.tpr_sys2_json) self.assertIsInstance(o, TotalPowerRadiometerSystem) self.assertIsNone(o._id) self.assertEqual(o._type, "TotalPowerRadiometerSystem") self.assertIsNone(o.tlLoss) self.assertIsNone(o.tlPhyTemp) self.assertIsNone(o.rfAmpGain) self.assertIsNone(o.rfAmpInpNoiseTemp) self.assertIsNone(o.rfAmpGainVariation) self.assertIsNone(o.mixerGain) self.assertIsNone(o.mixerInpNoiseTemp) self.assertIsNone(o.mixerGainVariation) self.assertIsNone(o.ifAmpGain) self.assertIsNone(o.ifAmpInputNoiseTemp) self.assertIsNone(o.ifAmpGainVariation) self.assertEqual(o.integratorVoltageGain, 1) self.assertEqual(o.predetectionGain, 83) self.assertEqual(o.predetectionInpNoiseTemp, 200) self.assertEqual(o.predetectionGainVariation, 2000000) self.assertEqual(o.integrationTime, 100e-3) self.assertEqual(o.bandwidth, 10e6) def test_to_dict(self): o = TotalPowerRadiometerSystem.from_json(self.tpr_sys1_json) self.assertEqual(o.to_dict(), {'tlLoss': 0.5, 'tlPhyTemp': 290.0, 'rfAmpGain': 30.0, 'rfAmpInpNoiseTemp': 200.0, 'rfAmpGainVariation': 10.0, 'mixerGain,': 23.0, 'mixerInpNoiseTemp': 1200.0, 'mixerGainVariation': 2.0, 'ifAmpGain': 30.0, 'ifAmpInputNoiseTemp': 100.0, 'ifAmpGainVariation': 10.0, 'integratorVoltageGain': 1.0, 'predetectionGain': None, 'predetectionInpNoiseTemp': None, 'predetectionGainVariation': None, 'integrationTime': 0.1, 'bandwidth': 10000000.0, '@id': 121, '@type': 'TOTAL_POWER'} ) o = TotalPowerRadiometerSystem.from_json(self.tpr_sys2_json) self.assertEqual(o.to_dict(), {'tlLoss': None, 'tlPhyTemp': None, 'rfAmpGain': None, 'rfAmpInpNoiseTemp': None, 'rfAmpGainVariation': None, 'mixerGain,': None, 'mixerInpNoiseTemp': None, 'mixerGainVariation': None, 'ifAmpGain': None, 'ifAmpInputNoiseTemp': None, 'ifAmpGainVariation': None, 'integratorVoltageGain': 1.0, 'predetectionGain': 83.0, 'predetectionInpNoiseTemp': 200.0, 'predetectionGainVariation': 2000000.0, 'integrationTime': 0.1, 'bandwidth': 10000000.0, '@id': None, '@type': 'TOTAL_POWER'} ) def test_compute_integration_time(self): self.assertEqual(TotalPowerRadiometerSystem.compute_integration_time(td=1.5, integration_time_spec=0.5), 0.5) self.assertEqual(TotalPowerRadiometerSystem.compute_integration_time(td=1.5, integration_time_spec=2), 1.5) self.assertEqual(TotalPowerRadiometerSystem.compute_integration_time(td=1.5, integration_time_spec=None), 1.5) def test_compute_predetection_sec_params(self): x = TotalPowerRadiometerSystem.compute_predetection_sec_params(predetectionBandwidth=10e6, tlLoss=0.5, tlPhyTemp=290, rfAmpGain=30, mixerGain=23, ifAmpGain=30, rfAmpGainVariation=10, mixerGainVariation=2, ifAmpGainVariation=10, rfAmpInpNoiseTemp=200, mixerInpNoiseTemp=1200, ifAmpInputNoiseTemp=100) self.assertIsInstance(x, PredetectionSectionParams) self.assertAlmostEqual(x.G, 177827941.00389218) self.assertAlmostEqual(x.G_p, 180510851.84124476) self.assertAlmostEqual(x.G_m, 175171746.5823525) self.assertAlmostEqual(x.T_REC_q, 261.1355769549698) self.assertAlmostEqual(x.B, 10000000.0) x = TotalPowerRadiometerSystem.compute_predetection_sec_params(predetectionBandwidth=15e6, predetectionGain=90, predetectionGainVariation=10000000, predetectionInpNoiseTemp=300) self.assertIsInstance(x, PredetectionSectionParams) self.assertAlmostEqual(x.G, 1000000000) self.assertAlmostEqual(x.G_p, 1005000000) self.assertAlmostEqual(x.G_m, 995000000) self.assertAlmostEqual(x.T_REC_q, 300) self.assertAlmostEqual(x.B, 15000000.0) # no RF amplifier x = TotalPowerRadiometerSystem.compute_predetection_sec_params(predetectionBandwidth=10e6, tlLoss=0.5, tlPhyTemp=290, rfAmpGain=1, mixerGain=23, ifAmpGain=30, rfAmpGainVariation=0, mixerGainVariation=2, ifAmpGainVariation=10, rfAmpInpNoiseTemp=0, mixerInpNoiseTemp=1200, ifAmpInputNoiseTemp=100) self.assertIsInstance(x, PredetectionSectionParams) self.assertAlmostEqual(x.G, 223872.1138568339) self.assertAlmostEqual(x.G_p, 226119.10297269153) self.assertAlmostEqual(x.G_m, 221636.34492551928) self.assertAlmostEqual(x.T_REC_q, 1104.9756026018772) self.assertAlmostEqual(x.B, 10000000.0) def test_compute_system_params(self): antenna = Antenna.from_dict({"radiationEfficiency": 0.8, "phyTemp": 270}) pd_sec_params = TotalPowerRadiometerSystem.compute_predetection_sec_params(predetectionBandwidth=10e6, tlLoss=0.5, tlPhyTemp=290, rfAmpGain=30, mixerGain=23, ifAmpGain=30, rfAmpGainVariation=10, mixerGainVariation=2, ifAmpGainVariation=10, rfAmpInpNoiseTemp=200, mixerInpNoiseTemp=1200, ifAmpInputNoiseTemp=100) G = 180000000 pd_sec_params = PredetectionSectionParams(G=G, G_p=G+0.01*G, G_m=G-0.01*G, T_REC_q=260, B=10e6) x = TotalPowerRadiometerSystem.compute_system_params(antenna, pd_sec_params, integratorVoltageGain=1000, T_A_q=290) self.assertIsInstance(x, SystemParams) self.assertAlmostEqual(x.G_s_delta/x.G_s_bar, 0.02) self.assertAlmostEqual(x.T_A, 286) self.assertAlmostEqual(x.T_SYS, 546) def test_compute_radiometric_resolution(self): # system 1 antenna = Antenna.from_dict({"radiationEfficiency": 0.8, "phyTemp": 270}) o = TotalPowerRadiometerSystem.from_json(self.tpr_sys1_json) # note that these is 100ms integration time specification self.assertAlmostEqual(o.compute_radiometric_resolution(td=200e-3, antenna=antenna, T_A_q=300), 16.676630237262927) self.assertAlmostEqual(o.compute_radiometric_resolution(td=200e-3, antenna=antenna, T_A_q=600), 23.886384796495147) self.assertAlmostEqual(o.compute_radiometric_resolution(td=500e-3, antenna=antenna, T_A_q=300), 16.676630237262927) self.assertAlmostEqual(o.compute_radiometric_resolution(td=50e-3, antenna=antenna, T_A_q=300), 16.685867420640534) antenna = Antenna.from_dict({"radiationEfficiency": 0.8, "phyTemp": 350}) self.assertAlmostEqual(o.compute_radiometric_resolution(td=200e-3, antenna=antenna, T_A_q=300), 17.15728054121174) antenna = Antenna.from_dict({"radiationEfficiency": 0.5, "phyTemp": 270}) self.assertAlmostEqual(o.compute_radiometric_resolution(td=200e-3, antenna=antenna, T_A_q=300), 16.406264441291718) # reduced radiantion-efficiency appears to make the radiometer more sensitive # system 2 o = TotalPowerRadiometerSystem.from_json(self.tpr_sys2_json) # note that these is 100ms integration time specification antenna = Antenna.from_dict({"radiationEfficiency": 0.8, "phyTemp": 270}) self.assertAlmostEqual(o.compute_radiometric_resolution(td=200e-3, antenna=antenna, T_A_q=300), 4.976310348842347) class TestUnbalancedDikeRadiometerSystem(unittest.TestCase): @classmethod def setUpClass(cls): cls.udr_sys1_json = '{"tlLoss": 0.5,' \ '"tlPhyTemp": 290,' \ '"rfAmpGain": 30,' \ '"rfAmpInpNoiseTemp": 200,' \ '"rfAmpGainVariation": 10,' \ '"mixerGain": 23,' \ '"mixerInpNoiseTemp": 1200,' \ '"mixerGainVariation": 2,' \ '"ifAmpGain": 30,' \ '"ifAmpInputNoiseTemp": 100,' \ '"ifAmpGainVariation": 10,' \ '"dickeSwitchOutputNoiseTemperature": 90,' \ '"referenceTemperature": 300,' \ '"integratorVoltageGain": 1,' \ '"integrationTime": 1,' \ '"bandwidth": 100e6,' \ '"@id": "abc"}' # See Section 7-6, end of Pg. 282. cls.udr_sys2_json = '{"predetectionGain": 83,' \ '"predetectionInpNoiseTemp": 700,' \ '"predetectionGainVariation": 1995262.314968883,' \ '"integrationTime": 1,' \ '"bandwidth": 100e6,' \ '"referenceTemperature": 300,' \ '"integratorVoltageGain": 1 }' def test_from_json(self): """ Test typical initialization of the unbalanced Dicke radiometer system. """ o = UnbalancedDikeRadiometerSystem.from_json(self.udr_sys1_json) self.assertIsInstance(o, UnbalancedDikeRadiometerSystem) self.assertEqual(o._id, "abc") self.assertEqual(o._type, "UnbalancedDikeRadiometerSystem") self.assertEqual(o.tlLoss, 0.5) self.assertEqual(o.tlPhyTemp, 290) self.assertEqual(o.rfAmpGain, 30) self.assertEqual(o.rfAmpInpNoiseTemp, 200) self.assertEqual(o.rfAmpGainVariation, 10) self.assertEqual(o.mixerGain, 23) self.assertEqual(o.mixerInpNoiseTemp, 1200) self.assertEqual(o.mixerGainVariation, 2) self.assertEqual(o.ifAmpGain, 30) self.assertEqual(o.ifAmpInputNoiseTemp, 100) self.assertEqual(o.ifAmpGainVariation, 10) self.assertEqual(o.dickeSwitchOutputNoiseTemperature, 90) self.assertEqual(o.referenceTemperature, 300) self.assertEqual(o.integratorVoltageGain, 1) self.assertIsNone(o.predetectionGain) self.assertIsNone(o.predetectionInpNoiseTemp) self.assertIsNone(o.predetectionGainVariation) self.assertEqual(o.integrationTime, 1) self.assertEqual(o.bandwidth, 100e6) o = UnbalancedDikeRadiometerSystem.from_json(self.udr_sys2_json) self.assertIsInstance(o, UnbalancedDikeRadiometerSystem) self.assertIsNone(o._id) self.assertEqual(o._type, "UnbalancedDikeRadiometerSystem") self.assertIsNone(o.tlLoss) self.assertIsNone(o.tlPhyTemp) self.assertIsNone(o.rfAmpGain) self.assertIsNone(o.rfAmpInpNoiseTemp) self.assertIsNone(o.rfAmpGainVariation) self.assertIsNone(o.mixerGain) self.assertIsNone(o.mixerInpNoiseTemp) self.assertIsNone(o.mixerGainVariation) self.assertIsNone(o.ifAmpGain) self.assertIsNone(o.ifAmpInputNoiseTemp) self.assertIsNone(o.ifAmpGainVariation) self.assertIsNone(o.dickeSwitchOutputNoiseTemperature) self.assertEqual(o.referenceTemperature, 300) self.assertEqual(o.integratorVoltageGain, 1) self.assertEqual(o.predetectionGain, 83) self.assertEqual(o.predetectionInpNoiseTemp, 700) self.assertEqual(o.predetectionGainVariation, 1995262.314968883) self.assertEqual(o.integrationTime, 1) self.assertEqual(o.bandwidth, 100e6) def test_to_dict(self): o = UnbalancedDikeRadiometerSystem.from_json(self.udr_sys1_json) self.assertEqual(o.to_dict(), {'tlLoss': 0.5, 'tlPhyTemp': 290.0, 'rfAmpGain': 30.0, 'rfAmpInpNoiseTemp': 200.0, 'rfAmpGainVariation': 10.0, 'mixerGain,': 23.0, 'mixerInpNoiseTemp': 1200.0, 'mixerGainVariation': 2.0, 'ifAmpGain': 30.0, 'ifAmpInputNoiseTemp': 100.0, 'ifAmpGainVariation': 10.0, 'dickeSwitchOutputNoiseTemperature':90.0, 'referenceTemperature':300.0, 'integratorVoltageGain': 1.0, 'predetectionGain': None, 'predetectionInpNoiseTemp': None, 'predetectionGainVariation': None, 'integrationTime': 1.0, 'bandwidth': 100000000.0, '@id': "abc", '@type': 'UNBALANCED_DICKE'} ) o = UnbalancedDikeRadiometerSystem.from_json(self.udr_sys2_json) self.assertEqual(o.to_dict(), {'tlLoss': None, 'tlPhyTemp': None, 'rfAmpGain': None, 'rfAmpInpNoiseTemp': None, 'rfAmpGainVariation': None, 'mixerGain,': None, 'mixerInpNoiseTemp': None, 'mixerGainVariation': None, 'ifAmpGain': None, 'ifAmpInputNoiseTemp': None, 'ifAmpGainVariation': None, 'dickeSwitchOutputNoiseTemperature':None, 'referenceTemperature':300.0, 'integratorVoltageGain': 1.0, 'predetectionGain': 83.0, 'predetectionInpNoiseTemp': 700.0, 'predetectionGainVariation': 1995262.314968883, 'integrationTime': 1.0, 'bandwidth': 100000000.0, '@id': None, '@type': 'UNBALANCED_DICKE'} ) def test_compute_radiometric_resolution(self): antenna = Antenna.from_dict({"radiationEfficiency": 0.8, "phyTemp": 300}) #################################################### System 1 #################################################### ############# Test with T_A equal to the reference temperature ############# o = UnbalancedDikeRadiometerSystem.from_json(self.udr_sys1_json) self.assertAlmostEqual(o.compute_radiometric_resolution(td=1.5, antenna=antenna, T_A_q=300), 0.13022711539099396) # note that these is 1s integration time specification #################################################### System 2 #################################################### ############# See Section 7-6, end of Pg. 282. for truth values for the below calculation. ############# ############# Test with T_A equal to the reference temperature o = UnbalancedDikeRadiometerSystem.from_json(self.udr_sys2_json) self.assertAlmostEqual(o.compute_radiometric_resolution(td=1.5, antenna=antenna, T_A_q=300), 0.2) # Compare with total-power radiometer # Initialize a total-power radiometer with the same specifications. Note that however the predetection noise temperature shall be lower # for a total-power radiometer since it does not include the Dicke switch. o = TotalPowerRadiometerSystem.from_json(self.udr_sys2_json) self.assertAlmostEqual(o.compute_radiometric_resolution(td=1.5, antenna=antenna, T_A_q=300), 10.000499987500632) ############# Test with T_A not equal to the reference temperature o = UnbalancedDikeRadiometerSystem.from_json(self.udr_sys2_json) # note that these is 1s integration time specification antenna = Antenna.from_dict({"radiationEfficiency": 1, "phyTemp": 300}) # setting efficiency to 100% to remove effect of antenna physical temperature self.assertAlmostEqual(o.compute_radiometric_resolution(td=1.5, antenna=antenna, T_A_q=0), 3.0049625621627984) # Compare with total-power radiometer # Initialize a total-power radiometer with the same specifications. Note that however the predetection noise temperature shall be lower # for a total-power radiometer since it does not include the Dicke switch. o = TotalPowerRadiometerSystem.from_json(self.udr_sys2_json) self.assertAlmostEqual(o.compute_radiometric_resolution(td=1.5, antenna=antenna, T_A_q=0), 7.000349991250442) class TestBalancedDikeRadiometerSystem(unittest.TestCase): @classmethod def setUpClass(cls): cls.bdr_sys1_json = '{"tlLoss": 0.5,' \ '"tlPhyTemp": 290,' \ '"rfAmpGain": 30,' \ '"rfAmpInpNoiseTemp": 200,' \ '"rfAmpGainVariation": 10,' \ '"mixerGain": 23,' \ '"mixerInpNoiseTemp": 1200,' \ '"mixerGainVariation": 2,' \ '"ifAmpGain": 30,' \ '"ifAmpInputNoiseTemp": 100,' \ '"ifAmpGainVariation": 10,' \ '"dickeSwitchOutputNoiseTemperature": 90,' \ '"integratorVoltageGain": 1,' \ '"integrationTime": 1,' \ '"bandwidth": 100e6,' \ '"@id": "abc"}' # See Section 7-6, end of Pg. 282. cls.bdr_sys2_json = '{"predetectionGain": 83,' \ '"predetectionInpNoiseTemp": 700,' \ '"predetectionGainVariation": 1995262.314968883,' \ '"integrationTime": 1,' \ '"bandwidth": 100e6,' \ '"integratorVoltageGain": 1 }' def test_from_json(self): """ Test typical initialization of the balanced Dicke radiometer system. """ o = BalancedDikeRadiometerSystem.from_json(self.bdr_sys1_json) self.assertIsInstance(o, BalancedDikeRadiometerSystem) self.assertEqual(o._id, "abc") self.assertEqual(o._type, "BalancedDikeRadiometerSystem") self.assertEqual(o.tlLoss, 0.5) self.assertEqual(o.tlPhyTemp, 290) self.assertEqual(o.rfAmpGain, 30) self.assertEqual(o.rfAmpInpNoiseTemp, 200) self.assertEqual(o.rfAmpGainVariation, 10) self.assertEqual(o.mixerGain, 23) self.assertEqual(o.mixerInpNoiseTemp, 1200) self.assertEqual(o.mixerGainVariation, 2) self.assertEqual(o.ifAmpGain, 30) self.assertEqual(o.ifAmpInputNoiseTemp, 100) self.assertEqual(o.ifAmpGainVariation, 10) self.assertEqual(o.dickeSwitchOutputNoiseTemperature, 90) self.assertEqual(o.integratorVoltageGain, 1) self.assertIsNone(o.predetectionGain) self.assertIsNone(o.predetectionInpNoiseTemp) self.assertIsNone(o.predetectionGainVariation) self.assertEqual(o.integrationTime, 1) self.assertEqual(o.bandwidth, 100e6) o = BalancedDikeRadiometerSystem.from_json(self.bdr_sys2_json) self.assertIsInstance(o, BalancedDikeRadiometerSystem) self.assertIsNone(o._id) self.assertEqual(o._type, "BalancedDikeRadiometerSystem") self.assertIsNone(o.tlLoss) self.assertIsNone(o.tlPhyTemp) self.assertIsNone(o.rfAmpGain) self.assertIsNone(o.rfAmpInpNoiseTemp) self.assertIsNone(o.rfAmpGainVariation) self.assertIsNone(o.mixerGain) self.assertIsNone(o.mixerInpNoiseTemp) self.assertIsNone(o.mixerGainVariation) self.assertIsNone(o.ifAmpGain) self.assertIsNone(o.ifAmpInputNoiseTemp) self.assertIsNone(o.ifAmpGainVariation) self.assertIsNone(o.dickeSwitchOutputNoiseTemperature) self.assertEqual(o.integratorVoltageGain, 1) self.assertEqual(o.predetectionGain, 83) self.assertEqual(o.predetectionInpNoiseTemp, 700) self.assertEqual(o.predetectionGainVariation, 1995262.314968883) self.assertEqual(o.integrationTime, 1) self.assertEqual(o.bandwidth, 100e6) def test_to_dict(self): o = BalancedDikeRadiometerSystem.from_json(self.bdr_sys1_json) self.assertEqual(o.to_dict(), {'tlLoss': 0.5, 'tlPhyTemp': 290.0, 'rfAmpGain': 30.0, 'rfAmpInpNoiseTemp': 200.0, 'rfAmpGainVariation': 10.0, 'mixerGain,': 23.0, 'mixerInpNoiseTemp': 1200.0, 'mixerGainVariation': 2.0, 'ifAmpGain': 30.0, 'ifAmpInputNoiseTemp': 100.0, 'ifAmpGainVariation': 10.0, 'dickeSwitchOutputNoiseTemperature':90.0, 'integratorVoltageGain': 1.0, 'predetectionGain': None, 'predetectionInpNoiseTemp': None, 'predetectionGainVariation': None, 'integrationTime': 1.0, 'bandwidth': 100000000.0, '@id': "abc", '@type': 'BALANCED_DICKE'} ) o = BalancedDikeRadiometerSystem.from_json(self.bdr_sys2_json) self.assertEqual(o.to_dict(), {'tlLoss': None, 'tlPhyTemp': None, 'rfAmpGain': None, 'rfAmpInpNoiseTemp': None, 'rfAmpGainVariation': None, 'mixerGain,': None, 'mixerInpNoiseTemp': None, 'mixerGainVariation': None, 'ifAmpGain': None, 'ifAmpInputNoiseTemp': None, 'ifAmpGainVariation': None, 'dickeSwitchOutputNoiseTemperature':None, 'integratorVoltageGain': 1.0, 'predetectionGain': 83.0, 'predetectionInpNoiseTemp': 700.0, 'predetectionGainVariation': 1995262.314968883, 'integrationTime': 1.0, 'bandwidth': 100000000.0, '@id': None, '@type': 'BALANCED_DICKE'} ) def test_compute_radiometric_resolution(self): antenna = Antenna.from_dict({"radiationEfficiency": 1, "phyTemp": 300}) # setting efficiency to 100% to remove effect of antenna physical temperature o = BalancedDikeRadiometerSystem.from_json(self.bdr_sys1_json) self.assertAlmostEqual(o.compute_radiometric_resolution(td=1.5, antenna=antenna, T_A_q=0), 0.07022711539099395) # note that these is 1s integration time specification ############# Test with T_A not equal to the reference temperature o = BalancedDikeRadiometerSystem.from_json(self.bdr_sys2_json) # note that these is 1s integration time specification self.assertAlmostEqual(o.compute_radiometric_resolution(td=1.5, antenna=antenna, T_A_q=0), 0.14) class TestNoiseAddingRadiometerSystem(unittest.TestCase): @classmethod def setUpClass(cls): cls.nar_sys1_json = '{"tlLoss": 0.5,' \ '"tlPhyTemp": 290,' \ '"rfAmpGain": 30,' \ '"rfAmpInpNoiseTemp": 200,' \ '"rfAmpGainVariation": 10,' \ '"mixerGain": 23,' \ '"mixerInpNoiseTemp": 1200,' \ '"mixerGainVariation": 2,' \ '"ifAmpGain": 30,' \ '"ifAmpInputNoiseTemp": 100,' \ '"ifAmpGainVariation": 10,' \ '"excessNoiseTemperature": 1000,' \ '"integratorVoltageGain": 1,' \ '"integrationTime": 1,' \ '"bandwidth": 100e6,' \ '"@id": "abc"}' # See Section 7-6, end of Pg. 282. cls.nar_sys2_json = '{"predetectionGain": 83,' \ '"predetectionInpNoiseTemp": 700,' \ '"predetectionGainVariation": 1995262.314968883,' \ '"excessNoiseTemperature": 10000,' \ '"integrationTime": 1,' \ '"bandwidth": 100e6,' \ '"integratorVoltageGain": 1 }' def test_from_json(self): """ Test typical initialization of the noise-adding radiometer system. """ o = NoiseAddingRadiometerSystem.from_json(self.nar_sys1_json) self.assertIsInstance(o, NoiseAddingRadiometerSystem) self.assertEqual(o._id, "abc") self.assertEqual(o._type, "NoiseAddingRadiometerSystem") self.assertEqual(o.tlLoss, 0.5) self.assertEqual(o.tlPhyTemp, 290) self.assertEqual(o.rfAmpGain, 30) self.assertEqual(o.rfAmpInpNoiseTemp, 200) self.assertEqual(o.rfAmpGainVariation, 10) self.assertEqual(o.mixerGain, 23) self.assertEqual(o.mixerInpNoiseTemp, 1200) self.assertEqual(o.mixerGainVariation, 2) self.assertEqual(o.ifAmpGain, 30) self.assertEqual(o.ifAmpInputNoiseTemp, 100) self.assertEqual(o.ifAmpGainVariation, 10) self.assertEqual(o.excessNoiseTemperature, 1000) self.assertEqual(o.integratorVoltageGain, 1) self.assertIsNone(o.predetectionGain) self.assertIsNone(o.predetectionInpNoiseTemp) self.assertIsNone(o.predetectionGainVariation) self.assertEqual(o.integrationTime, 1) self.assertEqual(o.bandwidth, 100e6) o = NoiseAddingRadiometerSystem.from_json(self.nar_sys2_json) self.assertIsInstance(o, NoiseAddingRadiometerSystem) self.assertIsNone(o._id) self.assertEqual(o._type, "NoiseAddingRadiometerSystem") self.assertIsNone(o.tlLoss) self.assertIsNone(o.tlPhyTemp) self.assertIsNone(o.rfAmpGain) self.assertIsNone(o.rfAmpInpNoiseTemp) self.assertIsNone(o.rfAmpGainVariation) self.assertIsNone(o.mixerGain) self.assertIsNone(o.mixerInpNoiseTemp) self.assertIsNone(o.mixerGainVariation) self.assertIsNone(o.ifAmpGain) self.assertIsNone(o.ifAmpInputNoiseTemp) self.assertIsNone(o.ifAmpGainVariation) self.assertEqual(o.excessNoiseTemperature, 10000) self.assertEqual(o.integratorVoltageGain, 1) self.assertEqual(o.predetectionGain, 83) self.assertEqual(o.predetectionInpNoiseTemp, 700) self.assertEqual(o.predetectionGainVariation, 1995262.314968883) self.assertEqual(o.integrationTime, 1) self.assertEqual(o.bandwidth, 100e6) def test_to_dict(self): o = NoiseAddingRadiometerSystem.from_json(self.nar_sys1_json) self.assertEqual(o.to_dict(), {'tlLoss': 0.5, 'tlPhyTemp': 290.0, 'rfAmpGain': 30.0, 'rfAmpInpNoiseTemp': 200.0, 'rfAmpGainVariation': 10.0, 'mixerGain,': 23.0, 'mixerInpNoiseTemp': 1200.0, 'mixerGainVariation': 2.0, 'ifAmpGain': 30.0, 'ifAmpInputNoiseTemp': 100.0, 'ifAmpGainVariation': 10.0, 'excessNoiseTemperature':1000.0, 'integratorVoltageGain': 1.0, 'predetectionGain': None, 'predetectionInpNoiseTemp': None, 'predetectionGainVariation': None, 'integrationTime': 1.0, 'bandwidth': 100000000.0, '@id': "abc", '@type': 'NOISE_ADDING'} ) o = NoiseAddingRadiometerSystem.from_json(self.nar_sys2_json) self.assertEqual(o.to_dict(), {'tlLoss': None, 'tlPhyTemp': None, 'rfAmpGain': None, 'rfAmpInpNoiseTemp': None, 'rfAmpGainVariation': None, 'mixerGain,': None, 'mixerInpNoiseTemp': None, 'mixerGainVariation': None, 'ifAmpGain': None, 'ifAmpInputNoiseTemp': None, 'ifAmpGainVariation': None, 'excessNoiseTemperature':10000.0, 'integratorVoltageGain': 1.0, 'predetectionGain': 83.0, 'predetectionInpNoiseTemp': 700.0, 'predetectionGainVariation': 1995262.314968883, 'integrationTime': 1.0, 'bandwidth': 100000000.0, '@id': None, '@type': 'NOISE_ADDING'} ) def test_compute_radiometric_resolution(self): antenna = Antenna.from_dict({"radiationEfficiency": 0.8, "phyTemp": 300}) o = NoiseAddingRadiometerSystem.from_json(self.nar_sys1_json) self.assertAlmostEqual(o.compute_radiometric_resolution(td=1.5, antenna=antenna, T_A_q=300), 0.23817636968082867) # note that these is 1s integration time specification o = NoiseAddingRadiometerSystem.from_json(self.nar_sys2_json) self.assertAlmostEqual(o.compute_radiometric_resolution(td=1.5, antenna=antenna, T_A_q=300), 0.24) # note that these is 1s integration time specification class TestFixedScan(unittest.TestCase): def test_from_json(self): """ Test typical initialization of the FixedScan object """ o = FixedScan.from_json('{"@id": 123}') self.assertIsInstance(o, FixedScan) self.assertEqual(o._id, 123) self.assertEqual(o._type, "FixedScan") o = FixedScan.from_json('{"@id": "abc"}') self.assertIsInstance(o, FixedScan) self.assertEqual(o._id, "abc") self.assertEqual(o._type, "FixedScan") o = FixedScan.from_json('{}') self.assertIsInstance(o, FixedScan) self.assertIsNone(o._id) self.assertEqual(o._type, "FixedScan") def test_to_dict(self): o = FixedScan.from_json('{"@id": 123}') self.assertEqual(o.to_dict(), {'@id': 123, '@type': 'FIXED'}) o = FixedScan.from_json('{"@id": "abc"}') self.assertEqual(o.to_dict(), {'@id': "abc", '@type': 'FIXED'}) o = FixedScan.from_json('{}') self.assertEqual(o.to_dict(), {'@id': None, '@type': 'FIXED'}) def test_compute_instru_field_of_view(self): o = FixedScan.from_json('{"@id": "abc"}') instru_orientation = Orientation.from_dict({"referenceFrame": "SC_BODY_FIXED", "convention": "SIDE_LOOK","sideLookAngle":10}) antenna_fov_sph_geom = SphericalGeometry.from_dict({"shape": "CIRCULAR", "diameter": 30}) instru_fov_sph_geom = antenna_fov_sph_geom self.assertEqual(o.compute_instru_field_of_view(antenna_fov_sph_geom=antenna_fov_sph_geom, instru_orientation=instru_orientation), ViewGeometry(orien=instru_orientation, sph_geom=instru_fov_sph_geom)) antenna_fov_sph_geom = SphericalGeometry.from_dict({"shape": "RECTANGULAR", "angleHeight": 10, "angleWidth": 20}) instru_fov_sph_geom = antenna_fov_sph_geom self.assertEqual(o.compute_instru_field_of_view(antenna_fov_sph_geom=antenna_fov_sph_geom, instru_orientation=instru_orientation), ViewGeometry(orien=instru_orientation, sph_geom=instru_fov_sph_geom)) def test_compute_dwell_time_per_ground_pixel(self): o = FixedScan.from_json('{"@id": 123}') self.assertAlmostEqual(o.compute_dwell_time_per_ground_pixel(res_AT_m=1000, sat_speed_kmps=7.8), 0.1282051282051282) def test_compute_swath_width(self): o = FixedScan.from_json('{"@id": 123}') antenna_fov_sph_geom = SphericalGeometry.from_dict({"shape": "CIRCULAR", "diameter": 30}) # using approximate swath formula as the truth data self.assertAlmostEqual(o.compute_swath_width(alt_km=500, instru_look_angle_deg=0, antenna_fov_sph_geom=antenna_fov_sph_geom), 30*np.pi/180*500, delta=25) self.assertAlmostEqual(o.compute_swath_width(alt_km=700, instru_look_angle_deg=0, antenna_fov_sph_geom=antenna_fov_sph_geom), 30*np.pi/180*700, delta=25) self.assertAlmostEqual(o.compute_swath_width(alt_km=500, instru_look_angle_deg=15, antenna_fov_sph_geom=antenna_fov_sph_geom), 30*np.pi/180*(500/np.cos(np.deg2rad(15))), delta=25) class TestCrossTrackScan(unittest.TestCase): def test_from_json(self): """ Test typical initialization of the CrossTrackScan object """ o = CrossTrackScan.from_json('{"@id": 123, "scanWidth": 120, "interScanOverheadTime": 1e-3}') self.assertIsInstance(o, CrossTrackScan) self.assertEqual(o._id, 123) self.assertEqual(o._type, "CrossTrackScan") self.assertEqual(o.scanWidth, 120) self.assertEqual(o.interScanOverheadTime, 1e-3) def test_to_dict(self): o = CrossTrackScan.from_json('{"@id": 123, "scanWidth": 120, "interScanOverheadTime": 1e-3}') self.assertEqual(o.to_dict(), {'@id': 123, '@type': 'CROSS_TRACK', "scanWidth": 120.0, "interScanOverheadTime": 0.001}) def test_compute_instru_field_of_view(self): o = CrossTrackScan.from_json('{"@id": 123, "scanWidth": 120, "interScanOverheadTime": 1e-3}') instru_orientation = Orientation.from_dict({"referenceFrame": "SC_BODY_FIXED", "convention": "SIDE_LOOK","sideLookAngle":10}) antenna_fov_sph_geom = SphericalGeometry.from_dict({"shape": "CIRCULAR", "diameter": 30}) instru_fov_sph_geom = SphericalGeometry.from_dict({"shape": "RECTANGULAR", "angleHeight": 30, "angleWidth": 150}) self.assertEqual(o.compute_instru_field_of_view(antenna_fov_sph_geom=antenna_fov_sph_geom, instru_orientation=instru_orientation), ViewGeometry(orien=instru_orientation, sph_geom=instru_fov_sph_geom)) antenna_fov_sph_geom = SphericalGeometry.from_dict({"shape": "RECTANGULAR", "angleHeight": 15, "angleWidth": 60}) instru_fov_sph_geom = SphericalGeometry.from_dict({"shape": "RECTANGULAR", "angleHeight": 15, "angleWidth": 180}) self.assertEqual(o.compute_instru_field_of_view(antenna_fov_sph_geom=antenna_fov_sph_geom, instru_orientation=instru_orientation), ViewGeometry(orien=instru_orientation, sph_geom=instru_fov_sph_geom)) def test_compute_dwell_time_per_ground_pixel(self): o = CrossTrackScan.from_json('{"@id": 123, "scanWidth": 120, "interScanOverheadTime": 1e-3}') self.assertAlmostEqual(o.compute_dwell_time_per_ground_pixel(res_AT_m=5000, sat_speed_kmps=7.8, iFOV_CT_deg=4), 0.021334188034188035) self.assertAlmostEqual(o.compute_dwell_time_per_ground_pixel(res_AT_m=10000, sat_speed_kmps=7.8, iFOV_CT_deg=4), 2*0.021334188034188035, places=4) # dwell time should be around doubled in case of double along-track pixel resolution self.assertAlmostEqual(o.compute_dwell_time_per_ground_pixel(res_AT_m=5000, sat_speed_kmps=7.8, iFOV_CT_deg=8), 2*0.021334188034188035, places=4) # dwell time should be around doubled in case of cross-track iFOV o = CrossTrackScan.from_json('{"@id": 123, "scanWidth": 120, "interScanOverheadTime": 10e-3}') self.assertAlmostEqual(o.compute_dwell_time_per_ground_pixel(res_AT_m=5000, sat_speed_kmps=7.8, iFOV_CT_deg=4), 0.021034188034188037) def test_compute_swath_width(self): o = CrossTrackScan.from_json('{"@id": 123, "scanWidth": 20, "interScanOverheadTime": 1e-3}') antenna_fov_sph_geom = SphericalGeometry.from_dict({"shape": "CIRCULAR", "diameter": 1}) # using approximate swath formula as the truth data self.assertAlmostEqual(o.compute_swath_width(alt_km=500, instru_look_angle_deg=0, antenna_fov_sph_geom=antenna_fov_sph_geom), 20*np.pi/180*500, delta=25) self.assertAlmostEqual(o.compute_swath_width(alt_km=700, instru_look_angle_deg=0, antenna_fov_sph_geom=antenna_fov_sph_geom), 20*np.pi/180*700, delta=25) o = CrossTrackScan.from_json('{"@id": 123, "scanWidth": 60, "interScanOverheadTime": 1e-3}') self.assertAlmostEqual(o.compute_swath_width(alt_km=500, instru_look_angle_deg=0, antenna_fov_sph_geom=antenna_fov_sph_geom), 60*np.pi/180*500, delta=75) class TestConicalScan(unittest.TestCase): def test_from_json(self): """ Test typical initialization of the ConicalScan object """ o = ConicalScan.from_json('{"@id": "abc", "offNadirAngle": 30, "clockAngleRange": 60, "interScanOverheadTime": 1e-3}') self.assertIsInstance(o, ConicalScan) self.assertEqual(o._id, "abc") self.assertEqual(o._type, "ConicalScan") self.assertEqual(o.offNadirAngle, 30) self.assertEqual(o.clockAngleRange, 60) self.assertEqual(o.interScanOverheadTime, 1e-3) def test_to_dict(self): o = ConicalScan.from_json('{"@id": "abc", "offNadirAngle": 30, "clockAngleRange": 60, "interScanOverheadTime": 1e-3}') self.assertEqual(o.to_dict(), {'@id': "abc", '@type': 'CONICAL', "offNadirAngle": 30.0, "clockAngleRange": 60.0, "interScanOverheadTime": 0.001}) def test_compute_instru_field_of_view(self): o = ConicalScan.from_json('{"@id": "abc", "offNadirAngle": 30, "clockAngleRange": 60, "interScanOverheadTime": 1e-3}') instru_orientation = Orientation.from_dict({"referenceFrame": "SC_BODY_FIXED", "convention": "SIDE_LOOK","sideLookAngle":10}) antenna_fov_sph_geom = SphericalGeometry.from_dict({"shape": "CIRCULAR", "diameter": 30}) with self.assertRaises(NotImplementedError): o.compute_instru_field_of_view(antenna_fov_sph_geom=antenna_fov_sph_geom, instru_orientation=instru_orientation) def test_compute_dwell_time_per_ground_pixel(self): # results are the same as that of the CrossTrackScan o = ConicalScan.from_json('{"@id": "abc", "offNadirAngle": 30, "clockAngleRange": 120, "interScanOverheadTime": 1e-3}') self.assertAlmostEqual(o.compute_dwell_time_per_ground_pixel(res_AT_m=5000, sat_speed_kmps=7.8, iFOV_CT_deg=4), 0.021334188034188035) self.assertAlmostEqual(o.compute_dwell_time_per_ground_pixel(res_AT_m=10000, sat_speed_kmps=7.8, iFOV_CT_deg=4), 2*0.021334188034188035, places=4) # dwell time should be around doubled in case of double along-track pixel resolution self.assertAlmostEqual(o.compute_dwell_time_per_ground_pixel(res_AT_m=5000, sat_speed_kmps=7.8, iFOV_CT_deg=8), 2*0.021334188034188035, places=4) # dwell time should be around doubled in case of cross-track iFOV o = CrossTrackScan.from_json('{"scanWidth": 120, "interScanOverheadTime": 10e-3}') self.assertAlmostEqual(o.compute_dwell_time_per_ground_pixel(res_AT_m=5000, sat_speed_kmps=7.8, iFOV_CT_deg=4), 0.021034188034188037) def test_compute_swath_width(self): o = ConicalScan.from_json('{"@id": "abc", "offNadirAngle": 30, "clockAngleRange": 120, "interScanOverheadTime": 1e-3}') # using approximate swath formula as the truth data self.assertAlmostEqual(o.compute_swath_width(alt_km=500, instru_look_angle_deg=0), 612.7169711748869) self.assertAlmostEqual(o.compute_swath_width(alt_km=700, instru_look_angle_deg=0), 862.5336432436297) with self.assertRaises(Exception): o.compute_swath_width(alt_km=500, instru_look_angle_deg=30) # instrument look angle is not 0 degrees class TestRadiometerModel(unittest.TestCase): @classmethod def setUpClass(cls): cls.radio1_json = '{"@type": "Radiometer", "name": "ray1", "mass": 50, "volume": 3, "power": 10,' \ ' "orientation": {"referenceFrame": "SC_BODY_FIXED", "convention": "REF_FRAME_ALIGNED"},' \ ' "bitsPerPixel": 16,' \ ' "operatingFrequency": 1.25e9,' \ ' "antenna": {"shape": "CIRCULAR", "diameter": 1, "apertureExcitationProfile": "UNIFORM",' \ ' "radiationEfficiency": 0.8, "phyTemp": 300},' \ ' "system": {"tlLoss": 0.5, "tlPhyTemp": 290, ' \ ' "rfAmpGain": 30, "rfAmpInpNoiseTemp": 200, ' \ ' "rfAmpGainVariation": 10, "mixerGain": 23, "mixerInpNoiseTemp": 1200,' \ ' "mixerGainVariation": 2, "ifAmpGain": 30, "ifAmpInputNoiseTemp": 100,' \ ' "ifAmpGainVariation": 10, "integratorVoltageGain": 1, "integrationTime": 100e-3,' \ ' "bandwidth": 10e6, "@type": "TOTAL_POWER"},' \ ' "scan": {"@type": "FIXED"},' \ ' "targetBrightnessTemp": 345' \ '}' cls.radio2_json = '{"@type": "Radiometer", "name": "ray2", "mass": 50, ' \ ' "operatingFrequency": 1.25e9,' \ ' "antenna": {"shape": "RECTANGULAR", "height": 1, "width": 1, "apertureExcitationProfile": "UNIFORM",' \ ' "radiationEfficiency": 0.75, "phyTemp": 300},' \ ' "system": { "predetectionGain": 83, "predetectionInpNoiseTemp": 700, ' \ ' "predetectionGainVariation": 1995262.314968883, "integrationTime": 1, ' \ ' "bandwidth": 100e6, "referenceTemperature": 300, "integratorVoltageGain": 1,' \ ' "@type": "UNBALANCED_DICKE"},' \ ' "scan": {"@type": "CROSS_TRACK", "scanWidth": 120, "interScanOverheadTime": 1e-3},' \ ' "targetBrightnessTemp": 301' \ '}' cls.radio3_json = '{"@type": "Radiometer", "@id": "ray3",' \ ' "orientation": {"referenceFrame": "SC_BODY_FIXED", "convention": "REF_FRAME_ALIGNED"},' \ ' "bitsPerPixel": 16,' \ ' "operatingFrequency": 1.25e9,' \ ' "antenna": {"shape": "CIRCULAR", "diameter": 3.5, "apertureExcitationProfile": "UNIFORM",' \ ' "radiationEfficiency": 1, "phyTemp": 300},' \ ' "system": { "tlLoss": 0.5, "tlPhyTemp": 290, "rfAmpGain": 30, "rfAmpInpNoiseTemp": 200,' \ ' "rfAmpGainVariation": 10, "mixerGain": 23, "mixerInpNoiseTemp": 1200, "mixerGainVariation": 2,' \ ' "ifAmpGain": 30, "ifAmpInputNoiseTemp": 100, "ifAmpGainVariation": 10, "dickeSwitchOutputNoiseTemperature": 90,' \ ' "integratorVoltageGain": 1, "integrationTime": 1, "bandwidth": 100e6, "@type": "BALANCED_DICKE"},' \ ' "scan": {"@type": "CONICAL", "offNadirAngle": 30, "clockAngleRange": 60, "interScanOverheadTime": 1e-3},' \ ' "targetBrightnessTemp": 295' \ '}' cls.radio4_json = '{"@type": "Radiometer", "@id": "ray4",' \ ' "orientation": {"referenceFrame": "SC_BODY_FIXED", "convention": "SIDE_LOOK", "sideLookAngle":-30},' \ ' "operatingFrequency": 1.25e9,' \ ' "antenna": {"shape": "CIRCULAR", "diameter": 1, "apertureExcitationProfile": "UNIFORM",' \ ' "radiationEfficiency": 1, "phyTemp": 300},' \ ' "system": { "tlLoss": 0.5, "tlPhyTemp": 290, "rfAmpGain": 30, "rfAmpInpNoiseTemp": 200,' \ ' "rfAmpGainVariation": 10, "mixerGain": 23, "mixerInpNoiseTemp": 1200, "mixerGainVariation": 2,' \ ' "ifAmpGain": 30, "ifAmpInputNoiseTemp": 100, "ifAmpGainVariation": 10, "excessNoiseTemperature": 1000,' \ ' "integratorVoltageGain": 1, "integrationTime": 1, "bandwidth": 100e6, "@type": "NOISE_ADDING"},' \ ' "scan": {"@type": "FIXED"},' \ ' "targetBrightnessTemp": 295' \ '}' def test_from_json(self): """ Test typical initializations of the RadiometerModel object """ o = RadiometerModel.from_json(self.radio1_json) self.assertIsInstance(o, RadiometerModel) self.assertIsNotNone(o._id) self.assertEqual(o.name, "ray1") self.assertEqual(o.mass, 50) self.assertEqual(o.volume, 3) self.assertEqual(o.power, 10) self.assertEqual(o.orientation, Orientation.from_dict({"referenceFrame": "SC_BODY_FIXED", "convention": "REF_FRAME_ALIGNED"})) self.assertEqual(o.bitsPerPixel, 16) self.assertEqual(o.operatingFrequency, 1.25e9) self.assertEqual(o.antenna, Antenna.from_dict({"shape": "CIRCULAR", "diameter": 1, "apertureExcitationProfile": "UNIFORM", "radiationEfficiency": 0.8, "phyTemp": 300})) self.assertEqual(o.system, TotalPowerRadiometerSystem.from_dict({"tlLoss": 0.5, "tlPhyTemp": 290, "rfAmpGain": 30, "rfAmpInpNoiseTemp": 200, "rfAmpGainVariation": 10, "mixerGain": 23, "mixerInpNoiseTemp": 1200, "mixerGainVariation": 2, "ifAmpGain": 30, "ifAmpInputNoiseTemp": 100, "ifAmpGainVariation": 10, "integratorVoltageGain": 1, "integrationTime": 100e-3, "bandwidth": 10e6})) self.assertEqual(o.scan, FixedScan.from_dict({})) self.assertEqual(o.targetBrightnessTemp, 345) o = RadiometerModel.from_json(self.radio2_json) self.assertIsInstance(o, RadiometerModel) self.assertIsNotNone(o._id) self.assertEqual(o.name, "ray2") self.assertEqual(o.mass, 50) self.assertIsNone(o.volume) self.assertIsNone(o.power) self.assertEqual(o.orientation, Orientation.from_dict({"referenceFrame": "SC_BODY_FIXED", "convention": "REF_FRAME_ALIGNED"})) self.assertIsNone(o.bitsPerPixel) self.assertEqual(o.operatingFrequency, 1.25e9) self.assertEqual(o.antenna, Antenna.from_dict({"shape": "RECTANGULAR", "height": 1, "width":1, "apertureExcitationProfile": "UNIFORM", "radiationEfficiency": 0.75, "phyTemp": 300})) self.assertEqual(o.system, UnbalancedDikeRadiometerSystem.from_dict({ "predetectionGain": 83, "predetectionInpNoiseTemp": 700, "predetectionGainVariation": 1995262.314968883, "integrationTime": 1, "bandwidth": 100e6, "referenceTemperature": 300, "integratorVoltageGain": 1, "@type": "UNBALANCED_DICKE"})) self.assertEqual(o.scan, CrossTrackScan.from_dict({"scanWidth": 120, "interScanOverheadTime": 1e-3})) self.assertEqual(o.targetBrightnessTemp, 301) o = RadiometerModel.from_json(self.radio3_json) self.assertIsInstance(o, RadiometerModel) self.assertEqual(o._id, "ray3") self.assertIsNone(o.name) self.assertIsNone(o.mass) self.assertIsNone(o.volume) self.assertIsNone(o.power) self.assertEqual(o.orientation, Orientation.from_dict({"referenceFrame": "SC_BODY_FIXED", "convention": "REF_FRAME_ALIGNED"})) self.assertEqual(o.bitsPerPixel, 16) self.assertEqual(o.operatingFrequency, 1.25e9) self.assertEqual(o.antenna, Antenna.from_dict({"shape": "CIRCULAR", "diameter": 3.5, "apertureExcitationProfile": "UNIFORM", "radiationEfficiency": 1, "phyTemp": 300})) self.assertEqual(o.system, BalancedDikeRadiometerSystem.from_dict({ "tlLoss": 0.5, "tlPhyTemp": 290, "rfAmpGain": 30, "rfAmpInpNoiseTemp": 200, "rfAmpGainVariation": 10, "mixerGain": 23, "mixerInpNoiseTemp": 1200, "mixerGainVariation": 2, "ifAmpGain": 30, "ifAmpInputNoiseTemp": 100, "ifAmpGainVariation": 10, "dickeSwitchOutputNoiseTemperature": 90, "integratorVoltageGain": 1, "integrationTime": 1, "bandwidth": 100e6, "@type": "BALANCED_DICKE"})) self.assertEqual(o.scan, ConicalScan.from_dict({"offNadirAngle": 30, "clockAngleRange": 60, "interScanOverheadTime": 1e-3})) self.assertEqual(o.targetBrightnessTemp, 295) o = RadiometerModel.from_json(self.radio4_json) self.assertIsInstance(o, RadiometerModel) self.assertEqual(o._id, "ray4") self.assertIsNone(o.name) self.assertIsNone(o.mass) self.assertIsNone(o.volume) self.assertIsNone(o.power) self.assertEqual(o.orientation, Orientation.from_dict({"referenceFrame": "SC_BODY_FIXED", "convention": "SIDE_LOOK", "sideLookAngle":-30})) self.assertIsNone(o.bitsPerPixel) self.assertEqual(o.operatingFrequency, 1.25e9) self.assertEqual(o.antenna, Antenna.from_dict({"shape": "CIRCULAR", "diameter": 1, "apertureExcitationProfile": "UNIFORM", "radiationEfficiency": 1, "phyTemp": 300})) self.assertEqual(o.system, NoiseAddingRadiometerSystem.from_dict({ "tlLoss": 0.5, "tlPhyTemp": 290, "rfAmpGain": 30, "rfAmpInpNoiseTemp": 200, "rfAmpGainVariation": 10, "mixerGain": 23, "mixerInpNoiseTemp": 1200, "mixerGainVariation": 2, "ifAmpGain": 30, "ifAmpInputNoiseTemp": 100, "ifAmpGainVariation": 10, "excessNoiseTemperature": 1000, "integratorVoltageGain": 1, "integrationTime": 1, "bandwidth": 100e6, "@type": "NOISE_ADDING"})) self.assertEqual(o.scan, FixedScan.from_dict({})) self.assertEqual(o.targetBrightnessTemp, 295) def test_to_dict(self): o = RadiometerModel.from_json(self.radio1_json) _id = o._id # id is generated randomly self.assertEqual(o.to_dict(), {'@type': 'Radiometer', 'name': 'ray1', 'mass': 50.0, 'volume': 3.0, 'power': 10.0, 'orientation': {'referenceFrame': 'SC_BODY_FIXED', 'convention': 'EULER', 'eulerAngle1': 0.0, 'eulerAngle2': 0.0, 'eulerAngle3': 0.0, 'eulerSeq1': 1, 'eulerSeq2': 2, 'eulerSeq3': 3, '@id': None}, 'fieldOfViewGeometry': {'shape': 'CIRCULAR', 'diameter': 13.741474058602394, '@id': None}, 'sceneFieldOfViewGeometry': {'shape': 'CIRCULAR', 'diameter': 13.741474058602394, '@id': None}, 'maneuver': None, 'pointingOption': None, 'dataRate': None, 'bitsPerPixel': 16, 'antenna': {'shape': 'CIRCULAR', 'apertureExcitationProfile': 'UNIFORM', 'diameter': 1.0, 'height': None, 'width': None, 'apertureEfficiency': None, 'radiationEfficiency': 0.8, 'phyTemp': 300.0, '@id': None}, 'operatingFrequency': 1250000000.0, 'system': {'tlLoss': 0.5, 'tlPhyTemp': 290.0, 'rfAmpGain': 30.0, 'rfAmpInpNoiseTemp': 200.0, 'rfAmpGainVariation': 10.0, 'mixerGain,': 23.0, 'mixerInpNoiseTemp': 1200.0, 'mixerGainVariation': 2.0, 'ifAmpGain': 30.0, 'ifAmpInputNoiseTemp': 100.0, 'ifAmpGainVariation': 10.0, 'integratorVoltageGain': 1.0, 'predetectionGain': None, 'predetectionInpNoiseTemp': None, 'predetectionGainVariation': None, 'integrationTime': 0.1, 'bandwidth': 10000000.0, '@id': None, '@type': 'TOTAL_POWER'}, 'scan': {'@id': None, '@type': 'FIXED'}, 'targetBrightnessTemp': 345.0, '@id': _id}) o = RadiometerModel.from_json(self.radio2_json) _id = o._id # id is generated randomly self.assertEqual(o.to_dict(), {'@type': 'Radiometer', 'name': 'ray2', 'mass': 50.0, 'volume': None, 'power': None, 'orientation': {'referenceFrame': 'SC_BODY_FIXED', 'convention': 'EULER', 'eulerAngle1': 0.0, 'eulerAngle2': 0.0, 'eulerAngle3': 0.0, 'eulerSeq1': 1, 'eulerSeq2': 2, 'eulerSeq3': 3, '@id': None}, 'fieldOfViewGeometry': {'shape': 'RECTANGULAR', 'angleHeight': 12.092497171570107, 'angleWidth': 12.092497171570086, '@id': None}, 'sceneFieldOfViewGeometry': {'shape': 'RECTANGULAR', 'angleHeight': 12.092497171570107, 'angleWidth': 12.092497171570086, '@id': None}, 'maneuver': None, 'pointingOption': None, 'dataRate': None, 'bitsPerPixel': None, 'antenna': {'shape': 'RECTANGULAR', 'apertureExcitationProfile': 'UNIFORM', 'diameter': None, 'height': 1.0, 'width': 1.0, 'apertureEfficiency': None, 'radiationEfficiency': 0.75, 'phyTemp': 300.0, '@id': None}, 'operatingFrequency': 1250000000.0, 'system': {'tlLoss': None, 'tlPhyTemp': None, 'rfAmpGain': None, 'rfAmpInpNoiseTemp': None, 'rfAmpGainVariation': None, 'mixerGain,': None, 'mixerInpNoiseTemp': None, 'mixerGainVariation': None, 'ifAmpGain': None, 'ifAmpInputNoiseTemp': None, 'ifAmpGainVariation': None, 'dickeSwitchOutputNoiseTemperature': None, 'referenceTemperature': 300.0, 'integratorVoltageGain': 1.0, 'predetectionGain': 83.0, 'predetectionInpNoiseTemp': 700.0, 'predetectionGainVariation': 1995262.314968883, 'integrationTime': 1.0, 'bandwidth': 100000000.0, '@id': None, '@type': 'UNBALANCED_DICKE'}, 'scan': {'scanWidth': 120.0, 'interScanOverheadTime': 0.001, '@id': None, '@type': 'CROSS_TRACK'}, 'targetBrightnessTemp': 301.0, '@id': _id}) o = RadiometerModel.from_json(self.radio3_json) self.assertEqual(o.to_dict(), {'@type': 'Radiometer', 'name': None, 'mass': None, 'volume': None, 'power': None, 'orientation': {'referenceFrame': 'SC_BODY_FIXED', 'convention': 'EULER', 'eulerAngle1': 0.0, 'eulerAngle2': 0.0, 'eulerAngle3': 0.0, 'eulerSeq1': 1, 'eulerSeq2': 2, 'eulerSeq3': 3, '@id': None}, 'fieldOfViewGeometry': {'shape': 'CIRCULAR', 'diameter': 3.9261354453149697, '@id': None}, 'sceneFieldOfViewGeometry': {'shape': 'CIRCULAR', 'diameter': 3.9261354453149697, '@id': None}, 'maneuver': None, 'pointingOption': None, 'dataRate': None, 'bitsPerPixel': 16, 'antenna': {'shape': 'CIRCULAR', 'apertureExcitationProfile': 'UNIFORM', 'diameter': 3.5, 'height': None, 'width': None, 'apertureEfficiency': None, 'radiationEfficiency': 1.0, 'phyTemp': 300.0, '@id': None}, 'operatingFrequency': 1250000000.0, 'system': {'tlLoss': 0.5, 'tlPhyTemp': 290.0, 'rfAmpGain': 30.0, 'rfAmpInpNoiseTemp': 200.0, 'rfAmpGainVariation': 10.0, 'mixerGain,': 23.0, 'mixerInpNoiseTemp': 1200.0, 'mixerGainVariation': 2.0, 'ifAmpGain': 30.0, 'ifAmpInputNoiseTemp': 100.0, 'ifAmpGainVariation': 10.0, 'dickeSwitchOutputNoiseTemperature': 90.0, 'integratorVoltageGain': 1.0, 'predetectionGain': None, 'predetectionInpNoiseTemp': None, 'predetectionGainVariation': None, 'integrationTime': 1.0, 'bandwidth': 100000000.0, '@id': None, '@type': 'BALANCED_DICKE'}, 'scan': {'offNadirAngle': 30.0, 'clockAngleRange': 60.0, 'interScanOverheadTime': 0.001, '@id': None, '@type': 'CONICAL'}, 'targetBrightnessTemp': 295.0, '@id': 'ray3'}) o = RadiometerModel.from_json(self.radio4_json) self.assertEqual(o.to_dict(), {'@type': 'Radiometer', 'name': None, 'mass': None, 'volume': None, 'power': None, 'orientation': {'referenceFrame': 'SC_BODY_FIXED', 'convention': 'EULER', 'eulerAngle1': 0.0, 'eulerAngle2': 330.0, 'eulerAngle3': 0.0, 'eulerSeq1': 1, 'eulerSeq2': 2, 'eulerSeq3': 3, '@id': None}, 'fieldOfViewGeometry': {'shape': 'CIRCULAR', 'diameter': 13.741474058602394, '@id': None}, 'sceneFieldOfViewGeometry': {'shape': 'CIRCULAR', 'diameter': 13.741474058602394, '@id': None}, 'maneuver': None, 'pointingOption': None, 'dataRate': None, 'bitsPerPixel': None, 'antenna': {'shape': 'CIRCULAR', 'apertureExcitationProfile': 'UNIFORM', 'diameter': 1.0, 'height': None, 'width': None, 'apertureEfficiency': None, 'radiationEfficiency': 1.0, 'phyTemp': 300.0, '@id': None}, 'operatingFrequency': 1250000000.0, 'system': {'tlLoss': 0.5, 'tlPhyTemp': 290.0, 'rfAmpGain': 30.0, 'rfAmpInpNoiseTemp': 200.0, 'rfAmpGainVariation': 10.0, 'mixerGain,': 23.0, 'mixerInpNoiseTemp': 1200.0, 'mixerGainVariation': 2.0, 'ifAmpGain': 30.0, 'ifAmpInputNoiseTemp': 100.0, 'ifAmpGainVariation': 10.0, 'excessNoiseTemperature': 1000.0, 'integratorVoltageGain': 1.0, 'predetectionGain': None, 'predetectionInpNoiseTemp': None, 'predetectionGainVariation': None, 'integrationTime': 1.0, 'bandwidth': 100000000.0, '@id': None, '@type': 'NOISE_ADDING'}, 'scan': {'@id': None, '@type': 'FIXED'}, 'targetBrightnessTemp': 295.0, '@id': 'ray4'}) def test_calc_data_metrics_1(self): """ ``instru_look_angle_from_target_inc_angle`` flag is set to False.""" epoch_JDUT1 = 2458543.06088 # 2019 Feb 28 13:27:40 is time at which the ECEF and ECI frames approximately align, hence ECEF to ECI rotation is identity. See <https://www.celnav.de/longterm.htm> online calculator of GMST. SpacecraftOrbitState = {'time [JDUT1]':epoch_JDUT1, 'x [km]': 6878.137, 'y [km]': 0, 'z [km]': 0, 'vx [km/s]': 0, 'vy [km/s]': 7.6126, 'vz [km/s]': 0} # altitude 500 km TargetCoords = {'lat [deg]': 0, 'lon [deg]': 0} o = RadiometerModel.from_json(self.radio1_json) data_metrics = o.calc_data_metrics(sc_orbit_state=SpacecraftOrbitState, target_coords=TargetCoords, instru_look_angle_from_target_inc_angle=False) self.assertEqual(data_metrics, {'ground pixel along-track resolution [m]': 119917.0, 'ground pixel cross-track resolution [m]': 119917.02, 'swath-width [m]': 120565.56, 'sensitivity [K]': 17.94, 'incidence angle [deg]': 0.03, 'beam efficiency': np.nan}) o = RadiometerModel.from_json(self.radio2_json) TargetCoords = {'lat [deg]': 5, 'lon [deg]': 0} # target pixel somewhere on the cross-track direction. data_metrics = o.calc_data_metrics(sc_orbit_state=SpacecraftOrbitState, target_coords=TargetCoords, instru_look_angle_from_target_inc_angle=False) self.assertEqual(data_metrics, {'ground pixel along-track resolution [m]': 161269.89, 'ground pixel cross-track resolution [m]': 260072.11, 'swath-width [m]': 3159185.93, 'sensitivity [K]': 0.2, 'incidence angle [deg]': 51.68, 'beam efficiency': 0.24}) o = RadiometerModel.from_json(self.radio3_json) TargetCoords = {'lat [deg]': 0, 'lon [deg]': 2.62} data_metrics = o.calc_data_metrics(sc_orbit_state=SpacecraftOrbitState, target_coords=TargetCoords, instru_look_angle_from_target_inc_angle=False) # calculated pixels resolutions are not accurate since the imaged pixel is not at side-looking geometry self.assertEqual(data_metrics, {'ground pixel along-track resolution [m]': 40047.33, 'ground pixel cross-track resolution [m]': 47491.27, 'swath-width [m]': 306358.49, 'sensitivity [K]': 0.21, 'incidence angle [deg]': 32.51, 'beam efficiency': np.nan}) o = RadiometerModel.from_json(self.radio4_json) TargetCoords = {'lat [deg]': -2.62, 'lon [deg]': 0} data_metrics = o.calc_data_metrics(sc_orbit_state=SpacecraftOrbitState, target_coords=TargetCoords, instru_look_angle_from_target_inc_angle=False) self.assertEqual(data_metrics, {'ground pixel along-track resolution [m]': 140198.56, 'ground pixel cross-track resolution [m]': 166301.75, 'swath-width [m]': 168745.48, 'sensitivity [K]': 0.23, 'incidence angle [deg]': 32.54, 'beam efficiency': np.nan}) def test_calc_data_metrics_2(self): """ ``instru_look_angle_from_target_inc_angle`` flag is set to True.""" epoch_JDUT1 = 2458543.06088 # 2019 Feb 28 13:27:40 is time at which the ECEF and ECI frames approximately align, hence ECEF to ECI rotation is identity. See <https://www.celnav.de/longterm.htm> online calculator of GMST. SpacecraftOrbitState = {'time [JDUT1]':epoch_JDUT1, 'x [km]': 6878.137, 'y [km]': 0, 'z [km]': 0, 'vx [km/s]': 0, 'vy [km/s]': 7.6126, 'vz [km/s]': 0} # altitude 500 km TargetCoords = {'lat [deg]': 0, 'lon [deg]': 0.5} o = RadiometerModel.from_json(self.radio1_json) data_metrics = o.calc_data_metrics(sc_orbit_state=SpacecraftOrbitState, target_coords=TargetCoords, instru_look_angle_from_target_inc_angle=True) self.assertEqual(data_metrics, {'ground pixel along-track resolution [m]': 120708.29, 'ground pixel cross-track resolution [m]': 121567.92, 'swath-width [m]': 122255.0, 'sensitivity [K]': 17.94, 'incidence angle [deg]': 6.82, 'beam efficiency': np.nan})
[ "instrupy.radiometer_model.BalancedDikeRadiometerSystem.from_dict", "instrupy.util.Antenna.from_dict", "instrupy.radiometer_model.FixedScan.from_dict", "instrupy.radiometer_model.TotalPowerRadiometerSystem.compute_integration_time", "instrupy.radiometer_model.PredetectionSectionParams", "instrupy.radiometer_model.TotalPowerRadiometerSystem.compute_system_params", "instrupy.radiometer_model.ConicalScan.from_dict", "instrupy.util.Orientation.from_dict", "instrupy.radiometer_model.NoiseAddingRadiometerSystem.from_json", "instrupy.radiometer_model.CrossTrackScan.from_dict", "instrupy.radiometer_model.UnbalancedDikeRadiometerSystem.from_json", "instrupy.radiometer_model.UnbalancedDikeRadiometerSystem.from_dict", "instrupy.util.ViewGeometry", "instrupy.radiometer_model.TotalPowerRadiometerSystem.compute_predetection_sec_params", "instrupy.radiometer_model.TotalPowerRadiometerSystem.from_dict", "instrupy.radiometer_model.TotalPowerRadiometerSystem.from_json", "instrupy.radiometer_model.ConicalScan.from_json", "instrupy.radiometer_model.CrossTrackScan.from_json", "instrupy.radiometer_model.FixedScan.from_json", "instrupy.radiometer_model.BalancedDikeRadiometerSystem.from_json", "numpy.deg2rad", "instrupy.util.SphericalGeometry.from_dict", "instrupy.radiometer_model.RadiometerModel.from_json", "instrupy.radiometer_model.NoiseAddingRadiometerSystem.from_dict" ]
[((2357, 2413), 'instrupy.radiometer_model.TotalPowerRadiometerSystem.from_json', 'TotalPowerRadiometerSystem.from_json', (['self.tpr_sys1_json'], {}), '(self.tpr_sys1_json)\n', (2393, 2413), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((3412, 3468), 'instrupy.radiometer_model.TotalPowerRadiometerSystem.from_json', 'TotalPowerRadiometerSystem.from_json', (['self.tpr_sys2_json'], {}), '(self.tpr_sys2_json)\n', (3448, 3468), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((4468, 4524), 'instrupy.radiometer_model.TotalPowerRadiometerSystem.from_json', 'TotalPowerRadiometerSystem.from_json', (['self.tpr_sys1_json'], {}), '(self.tpr_sys1_json)\n', (4504, 4524), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((5200, 5256), 'instrupy.radiometer_model.TotalPowerRadiometerSystem.from_json', 'TotalPowerRadiometerSystem.from_json', (['self.tpr_sys2_json'], {}), '(self.tpr_sys2_json)\n', (5236, 5256), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((6406, 6725), 'instrupy.radiometer_model.TotalPowerRadiometerSystem.compute_predetection_sec_params', 'TotalPowerRadiometerSystem.compute_predetection_sec_params', ([], {'predetectionBandwidth': '(10000000.0)', 'tlLoss': '(0.5)', 'tlPhyTemp': '(290)', 'rfAmpGain': '(30)', 'mixerGain': '(23)', 'ifAmpGain': '(30)', 'rfAmpGainVariation': '(10)', 'mixerGainVariation': '(2)', 'ifAmpGainVariation': '(10)', 'rfAmpInpNoiseTemp': '(200)', 'mixerInpNoiseTemp': '(1200)', 'ifAmpInputNoiseTemp': '(100)'}), '(\n predetectionBandwidth=10000000.0, tlLoss=0.5, tlPhyTemp=290, rfAmpGain=\n 30, mixerGain=23, ifAmpGain=30, rfAmpGainVariation=10,\n mixerGainVariation=2, ifAmpGainVariation=10, rfAmpInpNoiseTemp=200,\n mixerInpNoiseTemp=1200, ifAmpInputNoiseTemp=100)\n', (6464, 6725), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((7144, 7332), 'instrupy.radiometer_model.TotalPowerRadiometerSystem.compute_predetection_sec_params', 'TotalPowerRadiometerSystem.compute_predetection_sec_params', ([], {'predetectionBandwidth': '(15000000.0)', 'predetectionGain': '(90)', 'predetectionGainVariation': '(10000000)', 'predetectionInpNoiseTemp': '(300)'}), '(\n predetectionBandwidth=15000000.0, predetectionGain=90,\n predetectionGainVariation=10000000, predetectionInpNoiseTemp=300)\n', (7202, 7332), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((7659, 7975), 'instrupy.radiometer_model.TotalPowerRadiometerSystem.compute_predetection_sec_params', 'TotalPowerRadiometerSystem.compute_predetection_sec_params', ([], {'predetectionBandwidth': '(10000000.0)', 'tlLoss': '(0.5)', 'tlPhyTemp': '(290)', 'rfAmpGain': '(1)', 'mixerGain': '(23)', 'ifAmpGain': '(30)', 'rfAmpGainVariation': '(0)', 'mixerGainVariation': '(2)', 'ifAmpGainVariation': '(10)', 'rfAmpInpNoiseTemp': '(0)', 'mixerInpNoiseTemp': '(1200)', 'ifAmpInputNoiseTemp': '(100)'}), '(\n predetectionBandwidth=10000000.0, tlLoss=0.5, tlPhyTemp=290, rfAmpGain=\n 1, mixerGain=23, ifAmpGain=30, rfAmpGainVariation=0, mixerGainVariation\n =2, ifAmpGainVariation=10, rfAmpInpNoiseTemp=0, mixerInpNoiseTemp=1200,\n ifAmpInputNoiseTemp=100)\n', (7717, 7975), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((8474, 8537), 'instrupy.util.Antenna.from_dict', 'Antenna.from_dict', (["{'radiationEfficiency': 0.8, 'phyTemp': 270}"], {}), "({'radiationEfficiency': 0.8, 'phyTemp': 270})\n", (8491, 8537), False, 'from instrupy.util import Antenna, Orientation, SphericalGeometry, ViewGeometry, FileUtilityFunctions, Maneuver\n'), ((8562, 8881), 'instrupy.radiometer_model.TotalPowerRadiometerSystem.compute_predetection_sec_params', 'TotalPowerRadiometerSystem.compute_predetection_sec_params', ([], {'predetectionBandwidth': '(10000000.0)', 'tlLoss': '(0.5)', 'tlPhyTemp': '(290)', 'rfAmpGain': '(30)', 'mixerGain': '(23)', 'ifAmpGain': '(30)', 'rfAmpGainVariation': '(10)', 'mixerGainVariation': '(2)', 'ifAmpGainVariation': '(10)', 'rfAmpInpNoiseTemp': '(200)', 'mixerInpNoiseTemp': '(1200)', 'ifAmpInputNoiseTemp': '(100)'}), '(\n predetectionBandwidth=10000000.0, tlLoss=0.5, tlPhyTemp=290, rfAmpGain=\n 30, mixerGain=23, ifAmpGain=30, rfAmpGainVariation=10,\n mixerGainVariation=2, ifAmpGainVariation=10, rfAmpInpNoiseTemp=200,\n mixerInpNoiseTemp=1200, ifAmpInputNoiseTemp=100)\n', (8620, 8881), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((8993, 9091), 'instrupy.radiometer_model.PredetectionSectionParams', 'PredetectionSectionParams', ([], {'G': 'G', 'G_p': '(G + 0.01 * G)', 'G_m': '(G - 0.01 * G)', 'T_REC_q': '(260)', 'B': '(10000000.0)'}), '(G=G, G_p=G + 0.01 * G, G_m=G - 0.01 * G, T_REC_q=\n 260, B=10000000.0)\n', (9018, 9091), False, 'from instrupy.radiometer_model import PredetectionSectionParams, SystemParams\n'), ((9085, 9200), 'instrupy.radiometer_model.TotalPowerRadiometerSystem.compute_system_params', 'TotalPowerRadiometerSystem.compute_system_params', (['antenna', 'pd_sec_params'], {'integratorVoltageGain': '(1000)', 'T_A_q': '(290)'}), '(antenna, pd_sec_params,\n integratorVoltageGain=1000, T_A_q=290)\n', (9133, 9200), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((9486, 9549), 'instrupy.util.Antenna.from_dict', 'Antenna.from_dict', (["{'radiationEfficiency': 0.8, 'phyTemp': 270}"], {}), "({'radiationEfficiency': 0.8, 'phyTemp': 270})\n", (9503, 9549), False, 'from instrupy.util import Antenna, Orientation, SphericalGeometry, ViewGeometry, FileUtilityFunctions, Maneuver\n'), ((9563, 9619), 'instrupy.radiometer_model.TotalPowerRadiometerSystem.from_json', 'TotalPowerRadiometerSystem.from_json', (['self.tpr_sys1_json'], {}), '(self.tpr_sys1_json)\n', (9599, 9619), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((10202, 10265), 'instrupy.util.Antenna.from_dict', 'Antenna.from_dict', (["{'radiationEfficiency': 0.8, 'phyTemp': 350}"], {}), "({'radiationEfficiency': 0.8, 'phyTemp': 350})\n", (10219, 10265), False, 'from instrupy.util import Antenna, Orientation, SphericalGeometry, ViewGeometry, FileUtilityFunctions, Maneuver\n'), ((10417, 10480), 'instrupy.util.Antenna.from_dict', 'Antenna.from_dict', (["{'radiationEfficiency': 0.5, 'phyTemp': 270}"], {}), "({'radiationEfficiency': 0.5, 'phyTemp': 270})\n", (10434, 10480), False, 'from instrupy.util import Antenna, Orientation, SphericalGeometry, ViewGeometry, FileUtilityFunctions, Maneuver\n'), ((10723, 10779), 'instrupy.radiometer_model.TotalPowerRadiometerSystem.from_json', 'TotalPowerRadiometerSystem.from_json', (['self.tpr_sys2_json'], {}), '(self.tpr_sys2_json)\n', (10759, 10779), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((10856, 10919), 'instrupy.util.Antenna.from_dict', 'Antenna.from_dict', (["{'radiationEfficiency': 0.8, 'phyTemp': 270}"], {}), "({'radiationEfficiency': 0.8, 'phyTemp': 270})\n", (10873, 10919), False, 'from instrupy.util import Antenna, Orientation, SphericalGeometry, ViewGeometry, FileUtilityFunctions, Maneuver\n'), ((12737, 12797), 'instrupy.radiometer_model.UnbalancedDikeRadiometerSystem.from_json', 'UnbalancedDikeRadiometerSystem.from_json', (['self.udr_sys1_json'], {}), '(self.udr_sys1_json)\n', (12777, 12797), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((13922, 13982), 'instrupy.radiometer_model.UnbalancedDikeRadiometerSystem.from_json', 'UnbalancedDikeRadiometerSystem.from_json', (['self.udr_sys2_json'], {}), '(self.udr_sys2_json)\n', (13962, 13982), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((15113, 15173), 'instrupy.radiometer_model.UnbalancedDikeRadiometerSystem.from_json', 'UnbalancedDikeRadiometerSystem.from_json', (['self.udr_sys1_json'], {}), '(self.udr_sys1_json)\n', (15153, 15173), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((15928, 15988), 'instrupy.radiometer_model.UnbalancedDikeRadiometerSystem.from_json', 'UnbalancedDikeRadiometerSystem.from_json', (['self.udr_sys2_json'], {}), '(self.udr_sys2_json)\n', (15968, 15988), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((16815, 16878), 'instrupy.util.Antenna.from_dict', 'Antenna.from_dict', (["{'radiationEfficiency': 0.8, 'phyTemp': 300}"], {}), "({'radiationEfficiency': 0.8, 'phyTemp': 300})\n", (16832, 16878), False, 'from instrupy.util import Antenna, Orientation, SphericalGeometry, ViewGeometry, FileUtilityFunctions, Maneuver\n'), ((17101, 17161), 'instrupy.radiometer_model.UnbalancedDikeRadiometerSystem.from_json', 'UnbalancedDikeRadiometerSystem.from_json', (['self.udr_sys1_json'], {}), '(self.udr_sys1_json)\n', (17141, 17161), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((17670, 17730), 'instrupy.radiometer_model.UnbalancedDikeRadiometerSystem.from_json', 'UnbalancedDikeRadiometerSystem.from_json', (['self.udr_sys2_json'], {}), '(self.udr_sys2_json)\n', (17710, 17730), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((18124, 18180), 'instrupy.radiometer_model.TotalPowerRadiometerSystem.from_json', 'TotalPowerRadiometerSystem.from_json', (['self.udr_sys2_json'], {}), '(self.udr_sys2_json)\n', (18160, 18180), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((18397, 18457), 'instrupy.radiometer_model.UnbalancedDikeRadiometerSystem.from_json', 'UnbalancedDikeRadiometerSystem.from_json', (['self.udr_sys2_json'], {}), '(self.udr_sys2_json)\n', (18437, 18457), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((18531, 18592), 'instrupy.util.Antenna.from_dict', 'Antenna.from_dict', (["{'radiationEfficiency': 1, 'phyTemp': 300}"], {}), "({'radiationEfficiency': 1, 'phyTemp': 300})\n", (18548, 18592), False, 'from instrupy.util import Antenna, Orientation, SphericalGeometry, ViewGeometry, FileUtilityFunctions, Maneuver\n'), ((19076, 19132), 'instrupy.radiometer_model.TotalPowerRadiometerSystem.from_json', 'TotalPowerRadiometerSystem.from_json', (['self.udr_sys2_json'], {}), '(self.udr_sys2_json)\n', (19112, 19132), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((20814, 20872), 'instrupy.radiometer_model.BalancedDikeRadiometerSystem.from_json', 'BalancedDikeRadiometerSystem.from_json', (['self.bdr_sys1_json'], {}), '(self.bdr_sys1_json)\n', (20852, 20872), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((21939, 21997), 'instrupy.radiometer_model.BalancedDikeRadiometerSystem.from_json', 'BalancedDikeRadiometerSystem.from_json', (['self.bdr_sys2_json'], {}), '(self.bdr_sys2_json)\n', (21977, 21997), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((23070, 23128), 'instrupy.radiometer_model.BalancedDikeRadiometerSystem.from_json', 'BalancedDikeRadiometerSystem.from_json', (['self.bdr_sys1_json'], {}), '(self.bdr_sys1_json)\n', (23108, 23128), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((23851, 23909), 'instrupy.radiometer_model.BalancedDikeRadiometerSystem.from_json', 'BalancedDikeRadiometerSystem.from_json', (['self.bdr_sys2_json'], {}), '(self.bdr_sys2_json)\n', (23889, 23909), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((24704, 24765), 'instrupy.util.Antenna.from_dict', 'Antenna.from_dict', (["{'radiationEfficiency': 1, 'phyTemp': 300}"], {}), "({'radiationEfficiency': 1, 'phyTemp': 300})\n", (24721, 24765), False, 'from instrupy.util import Antenna, Orientation, SphericalGeometry, ViewGeometry, FileUtilityFunctions, Maneuver\n'), ((24857, 24915), 'instrupy.radiometer_model.BalancedDikeRadiometerSystem.from_json', 'BalancedDikeRadiometerSystem.from_json', (['self.bdr_sys1_json'], {}), '(self.bdr_sys1_json)\n', (24895, 24915), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((25189, 25247), 'instrupy.radiometer_model.BalancedDikeRadiometerSystem.from_json', 'BalancedDikeRadiometerSystem.from_json', (['self.bdr_sys2_json'], {}), '(self.bdr_sys2_json)\n', (25227, 25247), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((27032, 27089), 'instrupy.radiometer_model.NoiseAddingRadiometerSystem.from_json', 'NoiseAddingRadiometerSystem.from_json', (['self.nar_sys1_json'], {}), '(self.nar_sys1_json)\n', (27069, 27089), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((28145, 28202), 'instrupy.radiometer_model.NoiseAddingRadiometerSystem.from_json', 'NoiseAddingRadiometerSystem.from_json', (['self.nar_sys2_json'], {}), '(self.nar_sys2_json)\n', (28182, 28202), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((29268, 29325), 'instrupy.radiometer_model.NoiseAddingRadiometerSystem.from_json', 'NoiseAddingRadiometerSystem.from_json', (['self.nar_sys1_json'], {}), '(self.nar_sys1_json)\n', (29305, 29325), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((30037, 30094), 'instrupy.radiometer_model.NoiseAddingRadiometerSystem.from_json', 'NoiseAddingRadiometerSystem.from_json', (['self.nar_sys2_json'], {}), '(self.nar_sys2_json)\n', (30074, 30094), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((30875, 30938), 'instrupy.util.Antenna.from_dict', 'Antenna.from_dict', (["{'radiationEfficiency': 0.8, 'phyTemp': 300}"], {}), "({'radiationEfficiency': 0.8, 'phyTemp': 300})\n", (30892, 30938), False, 'from instrupy.util import Antenna, Orientation, SphericalGeometry, ViewGeometry, FileUtilityFunctions, Maneuver\n'), ((30952, 31009), 'instrupy.radiometer_model.NoiseAddingRadiometerSystem.from_json', 'NoiseAddingRadiometerSystem.from_json', (['self.nar_sys1_json'], {}), '(self.nar_sys1_json)\n', (30989, 31009), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((31201, 31258), 'instrupy.radiometer_model.NoiseAddingRadiometerSystem.from_json', 'NoiseAddingRadiometerSystem.from_json', (['self.nar_sys2_json'], {}), '(self.nar_sys2_json)\n', (31238, 31258), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((31588, 31623), 'instrupy.radiometer_model.FixedScan.from_json', 'FixedScan.from_json', (['"""{"@id": 123}"""'], {}), '(\'{"@id": 123}\')\n', (31607, 31623), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((31767, 31804), 'instrupy.radiometer_model.FixedScan.from_json', 'FixedScan.from_json', (['"""{"@id": "abc"}"""'], {}), '(\'{"@id": "abc"}\')\n', (31786, 31804), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((31950, 31975), 'instrupy.radiometer_model.FixedScan.from_json', 'FixedScan.from_json', (['"""{}"""'], {}), "('{}')\n", (31969, 31975), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((32147, 32182), 'instrupy.radiometer_model.FixedScan.from_json', 'FixedScan.from_json', (['"""{"@id": 123}"""'], {}), '(\'{"@id": 123}\')\n', (32166, 32182), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((32266, 32303), 'instrupy.radiometer_model.FixedScan.from_json', 'FixedScan.from_json', (['"""{"@id": "abc"}"""'], {}), '(\'{"@id": "abc"}\')\n', (32285, 32303), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((32389, 32414), 'instrupy.radiometer_model.FixedScan.from_json', 'FixedScan.from_json', (['"""{}"""'], {}), "('{}')\n", (32408, 32414), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((32552, 32589), 'instrupy.radiometer_model.FixedScan.from_json', 'FixedScan.from_json', (['"""{"@id": "abc"}"""'], {}), '(\'{"@id": "abc"}\')\n', (32571, 32589), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((32619, 32729), 'instrupy.util.Orientation.from_dict', 'Orientation.from_dict', (["{'referenceFrame': 'SC_BODY_FIXED', 'convention': 'SIDE_LOOK',\n 'sideLookAngle': 10}"], {}), "({'referenceFrame': 'SC_BODY_FIXED', 'convention':\n 'SIDE_LOOK', 'sideLookAngle': 10})\n", (32640, 32729), False, 'from instrupy.util import Antenna, Orientation, SphericalGeometry, ViewGeometry, FileUtilityFunctions, Maneuver\n'), ((32756, 32822), 'instrupy.util.SphericalGeometry.from_dict', 'SphericalGeometry.from_dict', (["{'shape': 'CIRCULAR', 'diameter': 30}"], {}), "({'shape': 'CIRCULAR', 'diameter': 30})\n", (32783, 32822), False, 'from instrupy.util import Antenna, Orientation, SphericalGeometry, ViewGeometry, FileUtilityFunctions, Maneuver\n'), ((33115, 33209), 'instrupy.util.SphericalGeometry.from_dict', 'SphericalGeometry.from_dict', (["{'shape': 'RECTANGULAR', 'angleHeight': 10, 'angleWidth': 20}"], {}), "({'shape': 'RECTANGULAR', 'angleHeight': 10,\n 'angleWidth': 20})\n", (33142, 33209), False, 'from instrupy.util import Antenna, Orientation, SphericalGeometry, ViewGeometry, FileUtilityFunctions, Maneuver\n'), ((33535, 33570), 'instrupy.radiometer_model.FixedScan.from_json', 'FixedScan.from_json', (['"""{"@id": 123}"""'], {}), '(\'{"@id": 123}\')\n', (33554, 33570), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((33754, 33789), 'instrupy.radiometer_model.FixedScan.from_json', 'FixedScan.from_json', (['"""{"@id": 123}"""'], {}), '(\'{"@id": 123}\')\n', (33773, 33789), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((33821, 33887), 'instrupy.util.SphericalGeometry.from_dict', 'SphericalGeometry.from_dict', (["{'shape': 'CIRCULAR', 'diameter': 30}"], {}), "({'shape': 'CIRCULAR', 'diameter': 30})\n", (33848, 33887), False, 'from instrupy.util import Antenna, Orientation, SphericalGeometry, ViewGeometry, FileUtilityFunctions, Maneuver\n'), ((34674, 34768), 'instrupy.radiometer_model.CrossTrackScan.from_json', 'CrossTrackScan.from_json', (['"""{"@id": 123, "scanWidth": 120, "interScanOverheadTime": 1e-3}"""'], {}), '(\n \'{"@id": 123, "scanWidth": 120, "interScanOverheadTime": 1e-3}\')\n', (34698, 34768), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((35050, 35144), 'instrupy.radiometer_model.CrossTrackScan.from_json', 'CrossTrackScan.from_json', (['"""{"@id": 123, "scanWidth": 120, "interScanOverheadTime": 1e-3}"""'], {}), '(\n \'{"@id": 123, "scanWidth": 120, "interScanOverheadTime": 1e-3}\')\n', (35074, 35144), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((35335, 35429), 'instrupy.radiometer_model.CrossTrackScan.from_json', 'CrossTrackScan.from_json', (['"""{"@id": 123, "scanWidth": 120, "interScanOverheadTime": 1e-3}"""'], {}), '(\n \'{"@id": 123, "scanWidth": 120, "interScanOverheadTime": 1e-3}\')\n', (35359, 35429), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((35455, 35565), 'instrupy.util.Orientation.from_dict', 'Orientation.from_dict', (["{'referenceFrame': 'SC_BODY_FIXED', 'convention': 'SIDE_LOOK',\n 'sideLookAngle': 10}"], {}), "({'referenceFrame': 'SC_BODY_FIXED', 'convention':\n 'SIDE_LOOK', 'sideLookAngle': 10})\n", (35476, 35565), False, 'from instrupy.util import Antenna, Orientation, SphericalGeometry, ViewGeometry, FileUtilityFunctions, Maneuver\n'), ((35592, 35658), 'instrupy.util.SphericalGeometry.from_dict', 'SphericalGeometry.from_dict', (["{'shape': 'CIRCULAR', 'diameter': 30}"], {}), "({'shape': 'CIRCULAR', 'diameter': 30})\n", (35619, 35658), False, 'from instrupy.util import Antenna, Orientation, SphericalGeometry, ViewGeometry, FileUtilityFunctions, Maneuver\n'), ((35689, 35784), 'instrupy.util.SphericalGeometry.from_dict', 'SphericalGeometry.from_dict', (["{'shape': 'RECTANGULAR', 'angleHeight': 30, 'angleWidth': 150}"], {}), "({'shape': 'RECTANGULAR', 'angleHeight': 30,\n 'angleWidth': 150})\n", (35716, 35784), False, 'from instrupy.util import Antenna, Orientation, SphericalGeometry, ViewGeometry, FileUtilityFunctions, Maneuver\n'), ((36022, 36116), 'instrupy.util.SphericalGeometry.from_dict', 'SphericalGeometry.from_dict', (["{'shape': 'RECTANGULAR', 'angleHeight': 15, 'angleWidth': 60}"], {}), "({'shape': 'RECTANGULAR', 'angleHeight': 15,\n 'angleWidth': 60})\n", (36049, 36116), False, 'from instrupy.util import Antenna, Orientation, SphericalGeometry, ViewGeometry, FileUtilityFunctions, Maneuver\n'), ((36143, 36238), 'instrupy.util.SphericalGeometry.from_dict', 'SphericalGeometry.from_dict', (["{'shape': 'RECTANGULAR', 'angleHeight': 15, 'angleWidth': 180}"], {}), "({'shape': 'RECTANGULAR', 'angleHeight': 15,\n 'angleWidth': 180})\n", (36170, 36238), False, 'from instrupy.util import Antenna, Orientation, SphericalGeometry, ViewGeometry, FileUtilityFunctions, Maneuver\n'), ((36513, 36607), 'instrupy.radiometer_model.CrossTrackScan.from_json', 'CrossTrackScan.from_json', (['"""{"@id": 123, "scanWidth": 120, "interScanOverheadTime": 1e-3}"""'], {}), '(\n \'{"@id": 123, "scanWidth": 120, "interScanOverheadTime": 1e-3}\')\n', (36537, 36607), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((37227, 37322), 'instrupy.radiometer_model.CrossTrackScan.from_json', 'CrossTrackScan.from_json', (['"""{"@id": 123, "scanWidth": 120, "interScanOverheadTime": 10e-3}"""'], {}), '(\n \'{"@id": 123, "scanWidth": 120, "interScanOverheadTime": 10e-3}\')\n', (37251, 37322), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((37515, 37608), 'instrupy.radiometer_model.CrossTrackScan.from_json', 'CrossTrackScan.from_json', (['"""{"@id": 123, "scanWidth": 20, "interScanOverheadTime": 1e-3}"""'], {}), '(\n \'{"@id": 123, "scanWidth": 20, "interScanOverheadTime": 1e-3}\')\n', (37539, 37608), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((37636, 37701), 'instrupy.util.SphericalGeometry.from_dict', 'SphericalGeometry.from_dict', (["{'shape': 'CIRCULAR', 'diameter': 1}"], {}), "({'shape': 'CIRCULAR', 'diameter': 1})\n", (37663, 37701), False, 'from instrupy.util import Antenna, Orientation, SphericalGeometry, ViewGeometry, FileUtilityFunctions, Maneuver\n'), ((38140, 38233), 'instrupy.radiometer_model.CrossTrackScan.from_json', 'CrossTrackScan.from_json', (['"""{"@id": 123, "scanWidth": 60, "interScanOverheadTime": 1e-3}"""'], {}), '(\n \'{"@id": 123, "scanWidth": 60, "interScanOverheadTime": 1e-3}\')\n', (38164, 38233), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((38562, 38686), 'instrupy.radiometer_model.ConicalScan.from_json', 'ConicalScan.from_json', (['"""{"@id": "abc", "offNadirAngle": 30, "clockAngleRange": 60, "interScanOverheadTime": 1e-3}"""'], {}), '(\n \'{"@id": "abc", "offNadirAngle": 30, "clockAngleRange": 60, "interScanOverheadTime": 1e-3}\'\n )\n', (38583, 38686), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((39009, 39133), 'instrupy.radiometer_model.ConicalScan.from_json', 'ConicalScan.from_json', (['"""{"@id": "abc", "offNadirAngle": 30, "clockAngleRange": 60, "interScanOverheadTime": 1e-3}"""'], {}), '(\n \'{"@id": "abc", "offNadirAngle": 30, "clockAngleRange": 60, "interScanOverheadTime": 1e-3}\'\n )\n', (39030, 39133), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((39345, 39469), 'instrupy.radiometer_model.ConicalScan.from_json', 'ConicalScan.from_json', (['"""{"@id": "abc", "offNadirAngle": 30, "clockAngleRange": 60, "interScanOverheadTime": 1e-3}"""'], {}), '(\n \'{"@id": "abc", "offNadirAngle": 30, "clockAngleRange": 60, "interScanOverheadTime": 1e-3}\'\n )\n', (39366, 39469), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((39497, 39607), 'instrupy.util.Orientation.from_dict', 'Orientation.from_dict', (["{'referenceFrame': 'SC_BODY_FIXED', 'convention': 'SIDE_LOOK',\n 'sideLookAngle': 10}"], {}), "({'referenceFrame': 'SC_BODY_FIXED', 'convention':\n 'SIDE_LOOK', 'sideLookAngle': 10})\n", (39518, 39607), False, 'from instrupy.util import Antenna, Orientation, SphericalGeometry, ViewGeometry, FileUtilityFunctions, Maneuver\n'), ((39634, 39700), 'instrupy.util.SphericalGeometry.from_dict', 'SphericalGeometry.from_dict', (["{'shape': 'CIRCULAR', 'diameter': 30}"], {}), "({'shape': 'CIRCULAR', 'diameter': 30})\n", (39661, 39700), False, 'from instrupy.util import Antenna, Orientation, SphericalGeometry, ViewGeometry, FileUtilityFunctions, Maneuver\n'), ((40010, 40135), 'instrupy.radiometer_model.ConicalScan.from_json', 'ConicalScan.from_json', (['"""{"@id": "abc", "offNadirAngle": 30, "clockAngleRange": 120, "interScanOverheadTime": 1e-3}"""'], {}), '(\n \'{"@id": "abc", "offNadirAngle": 30, "clockAngleRange": 120, "interScanOverheadTime": 1e-3}\'\n )\n', (40031, 40135), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((40742, 40820), 'instrupy.radiometer_model.CrossTrackScan.from_json', 'CrossTrackScan.from_json', (['"""{"scanWidth": 120, "interScanOverheadTime": 10e-3}"""'], {}), '(\'{"scanWidth": 120, "interScanOverheadTime": 10e-3}\')\n', (40766, 40820), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((41018, 41143), 'instrupy.radiometer_model.ConicalScan.from_json', 'ConicalScan.from_json', (['"""{"@id": "abc", "offNadirAngle": 30, "clockAngleRange": 120, "interScanOverheadTime": 1e-3}"""'], {}), '(\n \'{"@id": "abc", "offNadirAngle": 30, "clockAngleRange": 120, "interScanOverheadTime": 1e-3}\'\n )\n', (41039, 41143), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((46556, 46599), 'instrupy.radiometer_model.RadiometerModel.from_json', 'RadiometerModel.from_json', (['self.radio1_json'], {}), '(self.radio1_json)\n', (46581, 46599), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((47916, 47959), 'instrupy.radiometer_model.RadiometerModel.from_json', 'RadiometerModel.from_json', (['self.radio2_json'], {}), '(self.radio2_json)\n', (47941, 47959), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((49338, 49381), 'instrupy.radiometer_model.RadiometerModel.from_json', 'RadiometerModel.from_json', (['self.radio3_json'], {}), '(self.radio3_json)\n', (49363, 49381), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((50915, 50958), 'instrupy.radiometer_model.RadiometerModel.from_json', 'RadiometerModel.from_json', (['self.radio4_json'], {}), '(self.radio4_json)\n', (50940, 50958), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((52445, 52488), 'instrupy.radiometer_model.RadiometerModel.from_json', 'RadiometerModel.from_json', (['self.radio1_json'], {}), '(self.radio1_json)\n', (52470, 52488), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((54435, 54478), 'instrupy.radiometer_model.RadiometerModel.from_json', 'RadiometerModel.from_json', (['self.radio2_json'], {}), '(self.radio2_json)\n', (54460, 54478), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((56790, 56833), 'instrupy.radiometer_model.RadiometerModel.from_json', 'RadiometerModel.from_json', (['self.radio3_json'], {}), '(self.radio3_json)\n', (56815, 56833), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((58848, 58891), 'instrupy.radiometer_model.RadiometerModel.from_json', 'RadiometerModel.from_json', (['self.radio4_json'], {}), '(self.radio4_json)\n', (58873, 58891), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((61463, 61506), 'instrupy.radiometer_model.RadiometerModel.from_json', 'RadiometerModel.from_json', (['self.radio1_json'], {}), '(self.radio1_json)\n', (61488, 61506), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((61987, 62030), 'instrupy.radiometer_model.RadiometerModel.from_json', 'RadiometerModel.from_json', (['self.radio2_json'], {}), '(self.radio2_json)\n', (62012, 62030), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((62621, 62664), 'instrupy.radiometer_model.RadiometerModel.from_json', 'RadiometerModel.from_json', (['self.radio3_json'], {}), '(self.radio3_json)\n', (62646, 62664), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((63329, 63372), 'instrupy.radiometer_model.RadiometerModel.from_json', 'RadiometerModel.from_json', (['self.radio4_json'], {}), '(self.radio4_json)\n', (63354, 63372), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((64525, 64568), 'instrupy.radiometer_model.RadiometerModel.from_json', 'RadiometerModel.from_json', (['self.radio1_json'], {}), '(self.radio1_json)\n', (64550, 64568), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((6013, 6103), 'instrupy.radiometer_model.TotalPowerRadiometerSystem.compute_integration_time', 'TotalPowerRadiometerSystem.compute_integration_time', ([], {'td': '(1.5)', 'integration_time_spec': '(0.5)'}), '(td=1.5,\n integration_time_spec=0.5)\n', (6064, 6103), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((6131, 6219), 'instrupy.radiometer_model.TotalPowerRadiometerSystem.compute_integration_time', 'TotalPowerRadiometerSystem.compute_integration_time', ([], {'td': '(1.5)', 'integration_time_spec': '(2)'}), '(td=1.5,\n integration_time_spec=2)\n', (6182, 6219), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((6247, 6338), 'instrupy.radiometer_model.TotalPowerRadiometerSystem.compute_integration_time', 'TotalPowerRadiometerSystem.compute_integration_time', ([], {'td': '(1.5)', 'integration_time_spec': 'None'}), '(td=1.5,\n integration_time_spec=None)\n', (6298, 6338), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((33013, 33081), 'instrupy.util.ViewGeometry', 'ViewGeometry', ([], {'orien': 'instru_orientation', 'sph_geom': 'instru_fov_sph_geom'}), '(orien=instru_orientation, sph_geom=instru_fov_sph_geom)\n', (33025, 33081), False, 'from instrupy.util import Antenna, Orientation, SphericalGeometry, ViewGeometry, FileUtilityFunctions, Maneuver\n'), ((33396, 33464), 'instrupy.util.ViewGeometry', 'ViewGeometry', ([], {'orien': 'instru_orientation', 'sph_geom': 'instru_fov_sph_geom'}), '(orien=instru_orientation, sph_geom=instru_fov_sph_geom)\n', (33408, 33464), False, 'from instrupy.util import Antenna, Orientation, SphericalGeometry, ViewGeometry, FileUtilityFunctions, Maneuver\n'), ((35920, 35988), 'instrupy.util.ViewGeometry', 'ViewGeometry', ([], {'orien': 'instru_orientation', 'sph_geom': 'instru_fov_sph_geom'}), '(orien=instru_orientation, sph_geom=instru_fov_sph_geom)\n', (35932, 35988), False, 'from instrupy.util import Antenna, Orientation, SphericalGeometry, ViewGeometry, FileUtilityFunctions, Maneuver\n'), ((36374, 36442), 'instrupy.util.ViewGeometry', 'ViewGeometry', ([], {'orien': 'instru_orientation', 'sph_geom': 'instru_fov_sph_geom'}), '(orien=instru_orientation, sph_geom=instru_fov_sph_geom)\n', (36386, 36442), False, 'from instrupy.util import Antenna, Orientation, SphericalGeometry, ViewGeometry, FileUtilityFunctions, Maneuver\n'), ((46880, 46977), 'instrupy.util.Orientation.from_dict', 'Orientation.from_dict', (["{'referenceFrame': 'SC_BODY_FIXED', 'convention': 'REF_FRAME_ALIGNED'}"], {}), "({'referenceFrame': 'SC_BODY_FIXED', 'convention':\n 'REF_FRAME_ALIGNED'})\n", (46901, 46977), False, 'from instrupy.util import Antenna, Orientation, SphericalGeometry, ViewGeometry, FileUtilityFunctions, Maneuver\n'), ((47111, 47258), 'instrupy.util.Antenna.from_dict', 'Antenna.from_dict', (["{'shape': 'CIRCULAR', 'diameter': 1, 'apertureExcitationProfile': 'UNIFORM',\n 'radiationEfficiency': 0.8, 'phyTemp': 300}"], {}), "({'shape': 'CIRCULAR', 'diameter': 1,\n 'apertureExcitationProfile': 'UNIFORM', 'radiationEfficiency': 0.8,\n 'phyTemp': 300})\n", (47128, 47258), False, 'from instrupy.util import Antenna, Orientation, SphericalGeometry, ViewGeometry, FileUtilityFunctions, Maneuver\n'), ((47287, 47665), 'instrupy.radiometer_model.TotalPowerRadiometerSystem.from_dict', 'TotalPowerRadiometerSystem.from_dict', (["{'tlLoss': 0.5, 'tlPhyTemp': 290, 'rfAmpGain': 30, 'rfAmpInpNoiseTemp': 200,\n 'rfAmpGainVariation': 10, 'mixerGain': 23, 'mixerInpNoiseTemp': 1200,\n 'mixerGainVariation': 2, 'ifAmpGain': 30, 'ifAmpInputNoiseTemp': 100,\n 'ifAmpGainVariation': 10, 'integratorVoltageGain': 1, 'integrationTime':\n 0.1, 'bandwidth': 10000000.0}"], {}), "({'tlLoss': 0.5, 'tlPhyTemp': 290,\n 'rfAmpGain': 30, 'rfAmpInpNoiseTemp': 200, 'rfAmpGainVariation': 10,\n 'mixerGain': 23, 'mixerInpNoiseTemp': 1200, 'mixerGainVariation': 2,\n 'ifAmpGain': 30, 'ifAmpInputNoiseTemp': 100, 'ifAmpGainVariation': 10,\n 'integratorVoltageGain': 1, 'integrationTime': 0.1, 'bandwidth': \n 10000000.0})\n", (47323, 47665), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((47824, 47847), 'instrupy.radiometer_model.FixedScan.from_dict', 'FixedScan.from_dict', (['{}'], {}), '({})\n', (47843, 47847), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((48235, 48332), 'instrupy.util.Orientation.from_dict', 'Orientation.from_dict', (["{'referenceFrame': 'SC_BODY_FIXED', 'convention': 'REF_FRAME_ALIGNED'}"], {}), "({'referenceFrame': 'SC_BODY_FIXED', 'convention':\n 'REF_FRAME_ALIGNED'})\n", (48256, 48332), False, 'from instrupy.util import Antenna, Orientation, SphericalGeometry, ViewGeometry, FileUtilityFunctions, Maneuver\n'), ((48463, 48624), 'instrupy.util.Antenna.from_dict', 'Antenna.from_dict', (["{'shape': 'RECTANGULAR', 'height': 1, 'width': 1,\n 'apertureExcitationProfile': 'UNIFORM', 'radiationEfficiency': 0.75,\n 'phyTemp': 300}"], {}), "({'shape': 'RECTANGULAR', 'height': 1, 'width': 1,\n 'apertureExcitationProfile': 'UNIFORM', 'radiationEfficiency': 0.75,\n 'phyTemp': 300})\n", (48480, 48624), False, 'from instrupy.util import Antenna, Orientation, SphericalGeometry, ViewGeometry, FileUtilityFunctions, Maneuver\n'), ((48652, 48950), 'instrupy.radiometer_model.UnbalancedDikeRadiometerSystem.from_dict', 'UnbalancedDikeRadiometerSystem.from_dict', (["{'predetectionGain': 83, 'predetectionInpNoiseTemp': 700,\n 'predetectionGainVariation': 1995262.314968883, 'integrationTime': 1,\n 'bandwidth': 100000000.0, 'referenceTemperature': 300,\n 'integratorVoltageGain': 1, '@type': 'UNBALANCED_DICKE'}"], {}), "({'predetectionGain': 83,\n 'predetectionInpNoiseTemp': 700, 'predetectionGainVariation': \n 1995262.314968883, 'integrationTime': 1, 'bandwidth': 100000000.0,\n 'referenceTemperature': 300, 'integratorVoltageGain': 1, '@type':\n 'UNBALANCED_DICKE'})\n", (48692, 48950), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((49185, 49261), 'instrupy.radiometer_model.CrossTrackScan.from_dict', 'CrossTrackScan.from_dict', (["{'scanWidth': 120, 'interScanOverheadTime': 0.001}"], {}), "({'scanWidth': 120, 'interScanOverheadTime': 0.001})\n", (49209, 49261), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((49651, 49748), 'instrupy.util.Orientation.from_dict', 'Orientation.from_dict', (["{'referenceFrame': 'SC_BODY_FIXED', 'convention': 'REF_FRAME_ALIGNED'}"], {}), "({'referenceFrame': 'SC_BODY_FIXED', 'convention':\n 'REF_FRAME_ALIGNED'})\n", (49672, 49748), False, 'from instrupy.util import Antenna, Orientation, SphericalGeometry, ViewGeometry, FileUtilityFunctions, Maneuver\n'), ((49882, 50029), 'instrupy.util.Antenna.from_dict', 'Antenna.from_dict', (["{'shape': 'CIRCULAR', 'diameter': 3.5, 'apertureExcitationProfile':\n 'UNIFORM', 'radiationEfficiency': 1, 'phyTemp': 300}"], {}), "({'shape': 'CIRCULAR', 'diameter': 3.5,\n 'apertureExcitationProfile': 'UNIFORM', 'radiationEfficiency': 1,\n 'phyTemp': 300})\n", (49899, 50029), False, 'from instrupy.util import Antenna, Orientation, SphericalGeometry, ViewGeometry, FileUtilityFunctions, Maneuver\n'), ((50058, 50504), 'instrupy.radiometer_model.BalancedDikeRadiometerSystem.from_dict', 'BalancedDikeRadiometerSystem.from_dict', (["{'tlLoss': 0.5, 'tlPhyTemp': 290, 'rfAmpGain': 30, 'rfAmpInpNoiseTemp': 200,\n 'rfAmpGainVariation': 10, 'mixerGain': 23, 'mixerInpNoiseTemp': 1200,\n 'mixerGainVariation': 2, 'ifAmpGain': 30, 'ifAmpInputNoiseTemp': 100,\n 'ifAmpGainVariation': 10, 'dickeSwitchOutputNoiseTemperature': 90,\n 'integratorVoltageGain': 1, 'integrationTime': 1, 'bandwidth': \n 100000000.0, '@type': 'BALANCED_DICKE'}"], {}), "({'tlLoss': 0.5, 'tlPhyTemp': 290,\n 'rfAmpGain': 30, 'rfAmpInpNoiseTemp': 200, 'rfAmpGainVariation': 10,\n 'mixerGain': 23, 'mixerInpNoiseTemp': 1200, 'mixerGainVariation': 2,\n 'ifAmpGain': 30, 'ifAmpInputNoiseTemp': 100, 'ifAmpGainVariation': 10,\n 'dickeSwitchOutputNoiseTemperature': 90, 'integratorVoltageGain': 1,\n 'integrationTime': 1, 'bandwidth': 100000000.0, '@type': 'BALANCED_DICKE'})\n", (50096, 50504), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((50748, 50851), 'instrupy.radiometer_model.ConicalScan.from_dict', 'ConicalScan.from_dict', (["{'offNadirAngle': 30, 'clockAngleRange': 60, 'interScanOverheadTime': 0.001}"], {}), "({'offNadirAngle': 30, 'clockAngleRange': 60,\n 'interScanOverheadTime': 0.001})\n", (50769, 50851), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((51228, 51339), 'instrupy.util.Orientation.from_dict', 'Orientation.from_dict', (["{'referenceFrame': 'SC_BODY_FIXED', 'convention': 'SIDE_LOOK',\n 'sideLookAngle': -30}"], {}), "({'referenceFrame': 'SC_BODY_FIXED', 'convention':\n 'SIDE_LOOK', 'sideLookAngle': -30})\n", (51249, 51339), False, 'from instrupy.util import Antenna, Orientation, SphericalGeometry, ViewGeometry, FileUtilityFunctions, Maneuver\n'), ((51469, 51614), 'instrupy.util.Antenna.from_dict', 'Antenna.from_dict', (["{'shape': 'CIRCULAR', 'diameter': 1, 'apertureExcitationProfile': 'UNIFORM',\n 'radiationEfficiency': 1, 'phyTemp': 300}"], {}), "({'shape': 'CIRCULAR', 'diameter': 1,\n 'apertureExcitationProfile': 'UNIFORM', 'radiationEfficiency': 1,\n 'phyTemp': 300})\n", (51486, 51614), False, 'from instrupy.util import Antenna, Orientation, SphericalGeometry, ViewGeometry, FileUtilityFunctions, Maneuver\n'), ((51643, 52077), 'instrupy.radiometer_model.NoiseAddingRadiometerSystem.from_dict', 'NoiseAddingRadiometerSystem.from_dict', (["{'tlLoss': 0.5, 'tlPhyTemp': 290, 'rfAmpGain': 30, 'rfAmpInpNoiseTemp': 200,\n 'rfAmpGainVariation': 10, 'mixerGain': 23, 'mixerInpNoiseTemp': 1200,\n 'mixerGainVariation': 2, 'ifAmpGain': 30, 'ifAmpInputNoiseTemp': 100,\n 'ifAmpGainVariation': 10, 'excessNoiseTemperature': 1000,\n 'integratorVoltageGain': 1, 'integrationTime': 1, 'bandwidth': \n 100000000.0, '@type': 'NOISE_ADDING'}"], {}), "({'tlLoss': 0.5, 'tlPhyTemp': 290,\n 'rfAmpGain': 30, 'rfAmpInpNoiseTemp': 200, 'rfAmpGainVariation': 10,\n 'mixerGain': 23, 'mixerInpNoiseTemp': 1200, 'mixerGainVariation': 2,\n 'ifAmpGain': 30, 'ifAmpInputNoiseTemp': 100, 'ifAmpGainVariation': 10,\n 'excessNoiseTemperature': 1000, 'integratorVoltageGain': 1,\n 'integrationTime': 1, 'bandwidth': 100000000.0, '@type': 'NOISE_ADDING'})\n", (51680, 52077), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((52321, 52344), 'instrupy.radiometer_model.FixedScan.from_dict', 'FixedScan.from_dict', (['{}'], {}), '({})\n', (52340, 52344), False, 'from instrupy.radiometer_model import RadiometerModel, SystemType, TotalPowerRadiometerSystem, UnbalancedDikeRadiometerSystem, BalancedDikeRadiometerSystem, NoiseAddingRadiometerSystem, ScanTech, FixedScan, CrossTrackScan, ConicalScan\n'), ((34471, 34485), 'numpy.deg2rad', 'np.deg2rad', (['(15)'], {}), '(15)\n', (34481, 34485), True, 'import numpy as np\n')]
"""Main""" import sys sys.stderr = open("error.log", "w") import time # import msvcrt import os import subprocess import cv2 import sqlite3 import numpy as np from pyzbar import pyzbar from easytello.tello import Tello from httprequest import HTTPRequest from easytello.tello_control import ControlCommand as CoCo from easytello.tello_control import TelloControl def main(): """ ストリーミングでQRを解析しながら DjangoサーバーにHTTPリクエストする """ #|パラメータ #|--固定ルートモード fixed_mode = True max_height = 80 # [cm] max_LR = 100 # [cm] height_step = 1 # 段差数 #|--HTTPリクエスト request_enable = True request_url = "http://127.0.0.1/qrcodes/jsontest" # #サーバー起動 # command = [ # "python", # "./TelloRecords/records/manage.py", # "runserver", # "0.0.0.0:80" # ] # subprocess.Popen(command) # time.sleep(10) # #ブラウザ起動 # os.system("start http://127.0.0.1/qrcodes/") arg = input("コードを入力してください:") drone = Tello() drone.streamon() controller = TelloControl() controller.append(CoCo(lambda : drone.set_speed(10))) # DB取得(出庫時想定) if len(arg) > 0: fixed_mode = False dbname = './TelloRecords/records/db.sqlite3' conn = sqlite3.connect(dbname) cur = conn.cursor() try: sql = "select pos_x, pos_y, pos_z from qrcodes_qr" sql += " where qr_code = '{}'".format(arg) cur.execute(sql) except Exception as ex: print('SQL ERROR: {}'.format(ex)) finally: target_pos = cur.fetchall() print(target_pos) if len(target_pos[0]) == 3: controller.append(CoCo(drone.takeoff)) target_x: int = target_pos[0][0] target_y: int = target_pos[0][1] target_z: int = target_pos[0][2] move_flg: bool = np.abs(target_x) >= 20 pls_flg: bool = target_x > 0 if move_flg & pls_flg: controller.append(CoCo(lambda : drone.right(target_x), np.array([target_x, 0, 0]))) if move_flg & pls_flg == False: controller.append(CoCo(lambda : drone.left(-target_x), np.array([target_x, 0, 0]))) move_flg = np.abs(target_y) >= 20 pls_flg = target_y > 0 if move_flg & pls_flg: controller.append(CoCo(lambda : drone.up(target_y), np.array([0, target_y, 0]))) if move_flg & pls_flg == False: controller.append(CoCo(lambda : drone.down(-target_y), np.array([0, target_y, 0]))) move_flg = np.abs(target_z) >= 20 pls_flg = target_z > 0 if move_flg & pls_flg: controller.append(CoCo(lambda : drone.forward(target_z), np.array([0, 0, target_z]))) if move_flg & pls_flg == False: controller.append(CoCo(lambda : drone.back(-target_z), np.array([0, 0, target_z]))) move_flg = np.abs(target_z) >= 20 pls_flg = target_z > 0 if move_flg & pls_flg: controller.append(CoCo(lambda : drone.back(target_z), np.array([0, 0, -target_z]))) if move_flg & pls_flg == False: controller.append(CoCo(lambda : drone.forward(-target_z), np.array([0, 0, -target_z]))) move_flg = np.abs(target_y) >= 20 pls_flg = target_y > 0 if move_flg & pls_flg: controller.append(CoCo(lambda : drone.down(target_y), np.array([0, -target_y, 0]))) if move_flg & pls_flg == False: controller.append(CoCo(lambda : drone.up(-target_y), np.array([0, -target_y, 0]))) move_flg: bool = np.abs(target_x) >= 20 pls_flg: bool = target_x > 0 if move_flg & pls_flg: controller.append(CoCo(lambda : drone.left(target_x), np.array([-target_x, 0, 0]))) if move_flg & pls_flg == False: controller.append(CoCo(lambda : drone.right(-target_x), np.array([-target_x, 0, 0]))) controller.append(CoCo(drone.land)) cur.close() conn.close() if fixed_mode: # controller.append(CoCo(drone.takeoff)) # #平行移動 # controller.append(CoCo(lambda : drone.up(max_height), np.array([0, max_height, 0]))) # for i in range(height_step): # if i % 2 == 0: # # drone.left(max_LR) # controller.append(CoCo(lambda : drone.left(max_LR), np.array([-max_LR, 0, 0]))) # else: # controller.append(CoCo(lambda : drone.right(max_LR), np.array([max_LR, 0, 0]))) # controller.append(CoCo(lambda : drone.down(max_height/height_step), np.array([0, (int)(-max_height/height_step), 0]))) # controller.append(CoCo(drone.land)) with open("commands.txt") as f: for line in f: if line.startswith("takeoff"): controller.append(CoCo(drone.takeoff)) if line.startswith("land"): controller.append(CoCo(drone.land)) if line.startswith("up"): distance = int(line.replace("up ", "")) controller.append(CoCo(lambda: drone.up(distance), np.array([0,distance,0]))) if line.startswith("down"): distance1 = int(line.replace("down ", "")) controller.append(CoCo(lambda: drone.down(distance1), np.array([0,-distance1,0]))) if line.startswith("left"): distance2 = int(line.replace("left ", "")) controller.append(CoCo(lambda: drone.left(distance2), np.array([-distance2,0,0]))) if line.startswith("right"): distance3 = int(line.replace("right ", "")) controller.append(CoCo(lambda: drone.right(distance3), np.array([distance3,0,0]))) if line.startswith("forward"): distance4 = int(line.replace("forward ", "")) controller.append(CoCo(lambda: drone.forward(distance4), np.array([0,0,distance4]))) if line.startswith("back"): distance5 = int(line.replace("back ", "")) controller.append(CoCo(lambda: drone.back(distance5), np.array([0,0,-distance5]))) drone.set_controller(controller) #ストリーミングをONにしたらN秒間待機 time.sleep(5) controller.start() req = None if request_enable: req = HTTPRequest(request_url) try: while True: frame = drone.read() #cv2.imshow('<NAME>', frame) # QR解析 if frame is not None: decoded_objs = pyzbar.decode(frame) if decoded_objs != []: # 解析した1個目を表示 str_dec_obj = decoded_objs[0][0].decode('utf-8', 'ignore') print(f'QR cord: {str_dec_obj}') # 解析時の座標 pos = drone.get_position() # HTTP送信 if request_enable: req.send_qr(str_dec_obj, pos) # # キー入力 # if msvcrt.kbhit(): # kb = msvcrt.getch() # key = kb.decode() # if key == 't': # 離陸 # drone.takeoff() # elif key == 'l': # 着陸 # drone.land() # elif key == 'w': # 前進 # drone.forward(50) # elif key == 's': # 後進 # drone.back(50) # elif key == 'a': # 左移動 # drone.left(50) # elif key == 'd': # 右移動 # drone.right(50) # elif key == 'q': # 左旋回 # drone.ccw(50) # elif key == 'e': # 右旋回 # drone.cw(50) # elif key == 'r': # 上昇 # drone.up(50) # elif key == 'f': # 下降 # drone.down(50) # elif key == 'p': # 任意のタイミングでストップ # #drone.send_command('stop') # drone.send_command('emergency') # ウエイト(とりあえず固定で) time.sleep(0.05) except KeyboardInterrupt: pass drone.streamoff() if __name__ == "__main__": main()
[ "numpy.abs", "easytello.tello_control.ControlCommand", "httprequest.HTTPRequest", "easytello.tello.Tello", "pyzbar.pyzbar.decode", "time.sleep", "sqlite3.connect", "numpy.array", "easytello.tello_control.TelloControl" ]
[((1007, 1014), 'easytello.tello.Tello', 'Tello', ([], {}), '()\n', (1012, 1014), False, 'from easytello.tello import Tello\n'), ((1058, 1072), 'easytello.tello_control.TelloControl', 'TelloControl', ([], {}), '()\n', (1070, 1072), False, 'from easytello.tello_control import TelloControl\n'), ((6642, 6655), 'time.sleep', 'time.sleep', (['(5)'], {}), '(5)\n', (6652, 6655), False, 'import time\n'), ((1268, 1291), 'sqlite3.connect', 'sqlite3.connect', (['dbname'], {}), '(dbname)\n', (1283, 1291), False, 'import sqlite3\n'), ((6733, 6757), 'httprequest.HTTPRequest', 'HTTPRequest', (['request_url'], {}), '(request_url)\n', (6744, 6757), False, 'from httprequest import HTTPRequest\n'), ((8528, 8544), 'time.sleep', 'time.sleep', (['(0.05)'], {}), '(0.05)\n', (8538, 8544), False, 'import time\n'), ((6950, 6970), 'pyzbar.pyzbar.decode', 'pyzbar.decode', (['frame'], {}), '(frame)\n', (6963, 6970), False, 'from pyzbar import pyzbar\n'), ((1720, 1739), 'easytello.tello_control.ControlCommand', 'CoCo', (['drone.takeoff'], {}), '(drone.takeoff)\n', (1724, 1739), True, 'from easytello.tello_control import ControlCommand as CoCo\n'), ((1939, 1955), 'numpy.abs', 'np.abs', (['target_x'], {}), '(target_x)\n', (1945, 1955), True, 'import numpy as np\n'), ((2329, 2345), 'numpy.abs', 'np.abs', (['target_y'], {}), '(target_y)\n', (2335, 2345), True, 'import numpy as np\n'), ((2710, 2726), 'numpy.abs', 'np.abs', (['target_z'], {}), '(target_z)\n', (2716, 2726), True, 'import numpy as np\n'), ((3113, 3129), 'numpy.abs', 'np.abs', (['target_z'], {}), '(target_z)\n', (3119, 3129), True, 'import numpy as np\n'), ((3501, 3517), 'numpy.abs', 'np.abs', (['target_y'], {}), '(target_y)\n', (3507, 3517), True, 'import numpy as np\n'), ((3890, 3906), 'numpy.abs', 'np.abs', (['target_x'], {}), '(target_x)\n', (3896, 3906), True, 'import numpy as np\n'), ((4290, 4306), 'easytello.tello_control.ControlCommand', 'CoCo', (['drone.land'], {}), '(drone.land)\n', (4294, 4306), True, 'from easytello.tello_control import ControlCommand as CoCo\n'), ((5193, 5212), 'easytello.tello_control.ControlCommand', 'CoCo', (['drone.takeoff'], {}), '(drone.takeoff)\n', (5197, 5212), True, 'from easytello.tello_control import ControlCommand as CoCo\n'), ((5296, 5312), 'easytello.tello_control.ControlCommand', 'CoCo', (['drone.land'], {}), '(drone.land)\n', (5300, 5312), True, 'from easytello.tello_control import ControlCommand as CoCo\n'), ((2121, 2147), 'numpy.array', 'np.array', (['[target_x, 0, 0]'], {}), '([target_x, 0, 0])\n', (2129, 2147), True, 'import numpy as np\n'), ((2273, 2299), 'numpy.array', 'np.array', (['[target_x, 0, 0]'], {}), '([target_x, 0, 0])\n', (2281, 2299), True, 'import numpy as np\n'), ((2502, 2528), 'numpy.array', 'np.array', (['[0, target_y, 0]'], {}), '([0, target_y, 0])\n', (2510, 2528), True, 'import numpy as np\n'), ((2654, 2680), 'numpy.array', 'np.array', (['[0, target_y, 0]'], {}), '([0, target_y, 0])\n', (2662, 2680), True, 'import numpy as np\n'), ((2888, 2914), 'numpy.array', 'np.array', (['[0, 0, target_z]'], {}), '([0, 0, target_z])\n', (2896, 2914), True, 'import numpy as np\n'), ((3040, 3066), 'numpy.array', 'np.array', (['[0, 0, target_z]'], {}), '([0, 0, target_z])\n', (3048, 3066), True, 'import numpy as np\n'), ((3288, 3315), 'numpy.array', 'np.array', (['[0, 0, -target_z]'], {}), '([0, 0, -target_z])\n', (3296, 3315), True, 'import numpy as np\n'), ((3444, 3471), 'numpy.array', 'np.array', (['[0, 0, -target_z]'], {}), '([0, 0, -target_z])\n', (3452, 3471), True, 'import numpy as np\n'), ((3676, 3703), 'numpy.array', 'np.array', (['[0, -target_y, 0]'], {}), '([0, -target_y, 0])\n', (3684, 3703), True, 'import numpy as np\n'), ((3827, 3854), 'numpy.array', 'np.array', (['[0, -target_y, 0]'], {}), '([0, -target_y, 0])\n', (3835, 3854), True, 'import numpy as np\n'), ((4071, 4098), 'numpy.array', 'np.array', (['[-target_x, 0, 0]'], {}), '([-target_x, 0, 0])\n', (4079, 4098), True, 'import numpy as np\n'), ((4225, 4252), 'numpy.array', 'np.array', (['[-target_x, 0, 0]'], {}), '([-target_x, 0, 0])\n', (4233, 4252), True, 'import numpy as np\n'), ((5487, 5513), 'numpy.array', 'np.array', (['[0, distance, 0]'], {}), '([0, distance, 0])\n', (5495, 5513), True, 'import numpy as np\n'), ((5695, 5723), 'numpy.array', 'np.array', (['[0, -distance1, 0]'], {}), '([0, -distance1, 0])\n', (5703, 5723), True, 'import numpy as np\n'), ((5905, 5933), 'numpy.array', 'np.array', (['[-distance2, 0, 0]'], {}), '([-distance2, 0, 0])\n', (5913, 5933), True, 'import numpy as np\n'), ((6118, 6145), 'numpy.array', 'np.array', (['[distance3, 0, 0]'], {}), '([distance3, 0, 0])\n', (6126, 6145), True, 'import numpy as np\n'), ((6336, 6363), 'numpy.array', 'np.array', (['[0, 0, distance4]'], {}), '([0, 0, distance4])\n', (6344, 6363), True, 'import numpy as np\n'), ((6545, 6573), 'numpy.array', 'np.array', (['[0, 0, -distance5]'], {}), '([0, 0, -distance5])\n', (6553, 6573), True, 'import numpy as np\n')]
from enum import Enum import numpy as np def mean_squared_error(observed_value: np.ndarray, predicted_value: np.ndarray, axis: tuple = None) -> np.ndarray: if axis is None: return np.mean(np.square(np.subtract(observed_value, predicted_value))) else: return np.mean(np.square(np.subtract(observed_value, predicted_value)), axis=axis, keepdims=True) def mean_squared_error_derivative(observed_value: np.ndarray, predicted_value: np.ndarray, axis: tuple = None) -> np.ndarray: if axis is None: return np.multiply(np.mean(np.subtract(observed_value, predicted_value)), 2.0) else: return np.multiply(np.mean(np.subtract(observed_value, predicted_value), axis=axis, keepdims=True), 2.0) class LossFunctions: MSE = mean_squared_error class LossFunctionDerivatives: MSE_DERIVATIVE = mean_squared_error_derivative
[ "numpy.subtract" ]
[((213, 257), 'numpy.subtract', 'np.subtract', (['observed_value', 'predicted_value'], {}), '(observed_value, predicted_value)\n', (224, 257), True, 'import numpy as np\n'), ((303, 347), 'numpy.subtract', 'np.subtract', (['observed_value', 'predicted_value'], {}), '(observed_value, predicted_value)\n', (314, 347), True, 'import numpy as np\n'), ((560, 604), 'numpy.subtract', 'np.subtract', (['observed_value', 'predicted_value'], {}), '(observed_value, predicted_value)\n', (571, 604), True, 'import numpy as np\n'), ((657, 701), 'numpy.subtract', 'np.subtract', (['observed_value', 'predicted_value'], {}), '(observed_value, predicted_value)\n', (668, 701), True, 'import numpy as np\n')]
import numpy as np from PIL import Image from PIL import ImageFilter import matplotlib.pyplot as plt import os from itertools import permutations from IPython.display import clear_output from copy import deepcopy from collections import namedtuple # ---------------- Image utilities ---------------- def read_img(filename): '''Gets the array of an image file.''' return Image.open(filename) def split_img(im_shuffled, nb_lines, nb_cols, margin=(0, 0)): '''Returns a dictionary of all the pieces of the puzzle. Use optional argument margin in order to have more smooth cuts. Args: - im_suffled (Image object) - nb_lines (int) - nb_cols (int) - margin ((x_margin, y_margin)) Returns: - cropped (dict) ''' w, h = im_shuffled.size # w, h = width, height # For one piece of the puzzle w_piece = (w / nb_cols) h_piece = (h / nb_lines) cropped = {} x_margin, y_margin = margin for i in range(nb_lines): for j in range(nb_cols): left = i * w_piece + x_margin / 2 top = j * h_piece + y_margin / 2 right = (i + 1) * w_piece - x_margin / 2 bottom = (j + 1) * h_piece - y_margin / 2 cropped[(i,j)] = im_shuffled.crop((left, top, right, bottom)) return cropped def display_image(img, nb_lines, nb_cols, title='', figsize=(5,6)): '''Show the image with custom ticks for both x and y axis, making piece identification easier. Args: - img (Image object) - nb_lines (int) - nb_cols (int) Returns: - None ''' plt.figure(figsize=figsize) xticks_location = (img.width / nb_cols) / 2 + np.linspace(0, img.width, nb_cols+1) yticks_location = (img.height / nb_lines) / 2 + np.linspace(0, img.height, nb_lines+1) plt.xticks(xticks_location, range(nb_cols)) plt.yticks(yticks_location, range(nb_lines)) if title: plt.title(title) plt.imshow(img) return def display_cropped(cropped, nb_lines, nb_cols, title='', figsize=(5,6)): '''Show the image with custom ticks for both x and y axis, making piece identification easier. Args: - cropped ({key: image}) - nb_lines (int) - nb_cols (int) Returns: - None ''' img = cropped_to_img(cropped, nb_lines, nb_cols) display_image(img, nb_lines, nb_cols, title='', figsize=figsize) return def save_cropped(cropped): '''Save as file all the pieces of the puzzle in the cropped directory. The files are named accordingly to 'i-j.jpg' where i and j are the coordinates of the pieces of the puzzle in the PIL coods system. Args: - cropped ({key: image}) Returns: - None ''' for (i,j), im in cropped.items(): filename = f'{i}-{j}.jpg' filepath = os.path.join('cropped', filename) im.save(filepath) print('Images successfully saved.') return # ---------------- Operations on images ---------------- def get_current_permutations(cropped): ''' Generator that yields a dictionary giving the mapping from the current configuration to the shuffled puzzle. Args: - cropped ({key: image}) Returns: - generator object ''' list_keys = list(cropped.keys()) for config in permutations(list_keys): map_config = dict(zip(list_keys, config)) yield map_config def grad_x(im1, im2): '''Return the discrete horizontal gradient. im2 must be to the right of im1. Args: - im1 (Image object) - im2 (Image object) Returns: - grad_x_val (float) NB: numpy and PIL don't share the same coordinate system! ''' ## Conversion from Image object into numpy arrays arr1 = np.array(im1) arr2 = np.array(im2) min_x = min(arr1.shape[0], arr2.shape[0]) min_y = min(arr1.shape[1], arr2.shape[1]) arr1 = arr1[:min_x,:min_y,:] arr2 = arr2[:min_x,:min_y,:] ## Computation of the horizontal gradient at the frontier return np.sum(np.square(arr1[-1,:,:] - arr2[0,:,:])) def grad_y(im1, im2): '''Return the discrete horizontal gradient. im2 must be below im1. Args: - im1 (Image object) - im2 (Image object) Returns: - grad_y_val (float) NB: numpy and PIL don't share the same coordinate system! ''' ## Conversion into numpy arrays arr1 = np.array(im1) arr2 = np.array(im2) min_x = min(arr1.shape[0], arr2.shape[0]) min_y = min(arr1.shape[1], arr2.shape[1]) arr1 = arr1[:min_x,:min_y,:] arr2 = arr2[:min_x,:min_y,:] ## Computation of the vertical gradient at the frontier return np.sum(np.square(arr1[:,0,:] - arr2[:,-1,:])) def mean_grad(cropped, nb_lines, nb_cols): '''Returns the mean of the gradient both horizontally and vertically.''' res = 0 for j in range(nb_lines): for i in range(nb_cols-1): res += grad_x(cropped[(i,j)], cropped[(i+1,j)]) for i in range(nb_cols): for j in range(nb_lines-1): res += grad_y(cropped[(i,j)], cropped[(i,j+1)]) return res / 2 def read_cropped_im(i, j): ''' Returns the given image loaded from the cropped folder as an Image object.''' im = Image.open(os.path.join('cropped', f'{i}-{j}.jpg')) return im def get_concat_h(im1, im2): ''' Returns the horizontal concatenation of im1 and im2.''' dst = Image.new('RGB', (im1.width + im2.width, im1.height)) dst.paste(im1, (0, 0)) dst.paste(im2, (im1.width, 0)) return dst def get_concat_v(im1, im2): ''' Returns the vertical concatenation of im1 and im2.''' dst = Image.new('RGB', (im1.width, im1.height + im2.height)) dst.paste(im1, (0, 0)) dst.paste(im2, (0, im1.height)) return dst def config_to_img(map_config, nb_lines, nb_cols): ''' Returns an image according to the given configuration. Strategy: 1) We'll start concatenate each line of the final configuration. 2) Only then are we going to concatenate those lines vertically. Args: - map_config ({(old_coords): (new_coords), ...}): dictionary mapping from the current configuration to the shuffled puzzle. - nb_lines (int) - nb_cols (int) Returns: - an Image object ''' ## Step 1: list_lines = [] for j in range(nb_lines): # We process line by line... # We start from the left-most image. current_im = read_cropped_im(*map_config[(0,j)]) # NB: The * allows to unpack the given tuple for i in range(1, nb_cols): # For each piece of the line... new_piece = read_cropped_im(*map_config[(i,j)]) # we get the juxtaposed piece just right to the previous one current_im = get_concat_h(current_im, new_piece) list_lines.append(current_im) # Now we can vertically concatenate the obtained lines. current_im = list_lines[0] for idx, img_line in enumerate(list_lines): if idx == 0: pass else: current_im = get_concat_v(current_im, img_line) return current_im def cropped_to_img(cropped, nb_lines, nb_cols): ''' Returns an image according to the given configuration. Strategy: 1) We'll start concatenate each line of the final configuration. 2) Only then are we going to concatenate those lines vertically. Args: - cropped ({(x, y): Image Object, ...}): dictionary mapping from the current configuration to the shuffled puzzle. - nb_lines (int) - nb_cols (int) Returns: - an Image object ''' ## Step 1: list_lines = [] for j in range(nb_lines): # We process line by line... # We start from the left-most image. current_im = cropped[(0,j)] # NB: The * allows to unpack the given tuple for i in range(1, nb_cols): # For each piece of the line... new_piece = cropped[(i,j)] # we get the juxtaposed piece just right to the previous one current_im = get_concat_h(current_im, new_piece) list_lines.append(current_im) # Now we can vertically concatenate the obtained lines. current_im = list_lines[0] for idx, img_line in enumerate(list_lines): if idx == 0: pass else: current_im = get_concat_v(current_im, img_line) return current_im def get_grad_orientation(im_1, im_2, orientation): '''Returns the gradient considering im_1 as the reference image and im_2 concatenated right next to im_1 with the given orientation. The gradient is calculated at the limit. Orientation must be in ['N', 'E', 'W', 'S']. Args: - im_1 (Image object) - im_2 (Image object) - orientation (str) Returns: - grad (float) ''' assert orientation in ['N', 'E', 'W', 'S'], 'Given input for orientation not understood.' if orientation == 'E': return grad_y(im_1, im_2) elif orientation == 'W': return grad_y(im_2, im_1) elif orientation == 'S': return grad_x(im_1, im_2) elif orientation == 'N': return grad_x(im_2, im_1) def getBestConfig(cropped, nb_lines, nb_cols): '''Returns a dictionary that contains another dictionary that gives the ID of the piece with the best gradient according to the current direction ('N' for North, 'E' for East, 'W' for West and 'S' for South) which is used as the key. Moreover, one can access the gradient value using the 'grad_N' (or grad_E, etc...) key. Args: - cropped {key: image} - nb_lines (int) - nb_cols (int) Returns: - dicBestConfig {curr_piece: {'N': (x_best_N, y_best_N), ..., 'grad_N': min_grad_N, ...}} ''' dicBestConfig = {} orientations = ['N', 'E', 'W', 'S'] for curr_piece_ID in cropped.keys(): # For every piece of the puzzle... # Creating an empty dict for the current piece. dicBestConfig[curr_piece_ID] = {} for orientation in orientations: # For every single of the 4 orientation... # Preparing the key for storing the gradient. grad_orientation = 'grad_' + orientation # Variables to store the best candidate. min_grad = np.inf best_piece_ID = None for piece_ID in cropped.keys(): # For every piece of the puzzle... if piece_ID == curr_piece_ID: # We skip duplicates... continue else: # If we have two different pieces... curr_grad = get_grad_orientation( im_1=cropped[curr_piece_ID], im_2=cropped[piece_ID], orientation=orientation) if curr_grad < min_grad: # If it's a better candidate... # Overwriting the previous variables. min_grad = curr_grad best_piece_ID = piece_ID dicBestConfig[curr_piece_ID][orientation] = best_piece_ID dicBestConfig[curr_piece_ID][grad_orientation] = min_grad return dicBestConfig def getOrderedConfigsByConfig(dicBestConfig, orientation, reverse=False): '''Returns a sorted list of elements from dicBestConfig.values(). Args: - dicBestConfig (dict) - orientation (str) - reverse (bool) Returns: - ordered_list [(value from dicBestConfig.values()) ordered by the gradient according to the given orientation] ''' orientations = ['N', 'E', 'W', 'S'] assert orientation in ['N', 'E', 'W', 'S'], 'Given input for orientation not understood.' grad_orientation_key = 'grad_' + orientation return sorted(dicBestConfig.items(), key=lambda x: x[1][grad_orientation_key], reverse=reverse) def getOrderedConfigs(dicBestConfig, reverse=False): """Returns a sorted list of elements from dicBestConfig.values(). We don't consider orientation in this function. Args: - dicBestConfig (dict) - reverse (bool) Returns: - ordered_list (list): list of named tuples of the form (start, end, orientation, score) """ list_temp = [] list_orientations = ['N', 'E', 'W', 'S'] # Creating a namedtuple for convenience: Config = namedtuple('Config', ['start', 'end', 'orientation', 'score']) for start, val in dicBestConfig.items(): for orientation in list_orientations: end = val[orientation] score = val['grad_' + orientation] list_temp.append(Config(start, end, orientation, score)) ordered_list = sorted(list_temp, key=lambda x: x.score, reverse=reverse) return ordered_list # ---------------- Brute force ---------------- def brute_force(cropped, nb_lines, nb_cols): ''' Brute force solve. VERY SLOW!!! Saves all possibles configurations in the 'output' folder. Args: - cropped {dict} - nb_lines (int) - nb_cols (int) Returns: - None ''' for idx, map_config in enumerate(get_current_permutations(cropped)): print(f'Current configuration: {idx}') im_config = config_to_img(map_config, nb_lines, nb_cols) filename = f'{idx}.jpg' filepath = os.path.join('outputs', filename) im_config.save(filepath) clear_output(wait=True) # ---------------- Manual solve ---------------- def config_switcher(cropped, nb_lines, nb_cols, coords_1, coords_2): '''Switch places for two pieces and return a new cropped dictionary. Args: - cropped - nb_lines - nb_cols - coords_1 (2-tuple): 1st piece to move - coords_2 (2-tuple): 2nd piece to move Returns: - new_cropped ''' new_cropped = deepcopy(cropped) new_cropped[coords_1], new_cropped[coords_2] = new_cropped[coords_2], new_cropped[coords_1] return new_cropped def config_switcher_helper(cropped, nb_lines, nb_cols, coords_1, coords_2): '''Show on the same plot the previous image and the new one after having the pieces switched places. Args: - cropped - nb_lines - nb_cols - coords_1 (2-tuple): 1st piece to move - coords_2 (2-tuple): 2nd piece to move Returns: - new_cropped ''' plt.figure(figsize=(12, 10)) plt.subplot(1, 2, 1) old_image = cropped_to_img(cropped, nb_lines, nb_cols) xticks_location = (old_image.width / nb_cols) / 2 + np.linspace(0, old_image.width, nb_cols+1) yticks_location = (old_image.height / nb_lines) / 2 + np.linspace(0, old_image.height, nb_lines+1) plt.xticks(xticks_location, range(nb_cols)) plt.yticks(yticks_location, range(nb_lines)) plt.imshow(old_image) plt.title('Old image') plt.subplot(1, 2, 2) new_cropped = config_switcher(cropped, nb_lines, nb_cols, coords_1, coords_2) new_image = cropped_to_img(new_cropped, nb_lines, nb_cols) plt.xticks(xticks_location, range(nb_cols)) plt.yticks(yticks_location, range(nb_lines)) plt.imshow(new_image) plt.title('New image') return # ---------------- Backtracking ---------------- def get_next_location(nb_pieces, nb_lines, nb_cols): '''Returns the next coords (i,j) of the piece according to the completion strategy. Completion strategy: Adds a piece with increasing x and, if the x are the same, with increasing y. In other terms, we complete the puzzle from left to right and from top to bottom.''' # Get the previous coords (not trivial) if nb_pieces % nb_cols == 0: # If we have a full line... y = (nb_pieces // nb_cols) - 1 x = nb_cols - 1 else: #If the line isn't fully completed yet... y = nb_pieces // nb_cols x = (nb_pieces % nb_cols) - 1 if x == nb_cols - 1: # If we are already at the end of a line... x_new = 0 y_new = y + 1 else: # If there is still some room on the line... x_new = x + 1 y_new = y print(f'Added new piece at: ({x_new}, {y_new})') assert 0 <= x_new < nb_cols, 'Error with the x axis!' assert 0 <= y_new < nb_lines, 'Error with the y axis!' return (x_new, y_new) def score(config, cropped, nb_lines, nb_cols): '''Computes the score of the current config, which is in this case the squared mean gradient with respect to x and y divided by the total number of pieces in the puzzle.''' # In order to call the mean_grad function, we first # have to generate a dictionary that has the same # format as 'cropped': {(0, 0): <PIL.Image.Image>, ...}. # Currently, 'config' has the shape {(new_coords): (old_coords), ...}. # Next line allows to obtain the wanted dictionary. new_cropped = get_config_mapped(config=config, cropped=cropped) score = mean_grad(new_cropped, nb_lines, nb_cols)**2 / 2 return score def get_config_mapped(config, cropped): '''Converts a config dictionary to the same format as a cropped dictionary. Args: - config ({(new_coords): (old_coords), ...}): current configuration (not necessarily completed) - cropped ({(0, 0): <PIL.Image.Image>, ...}): dictionary of every single piece of the puzzle ''' return {new_coords: cropped[old_coords] for new_coords, old_coords in config.items()} def partial_score(partial_config, cropped, nb_lines, nb_cols): '''Computes the score of a partial configuration.''' res = 0 config_mapped = get_config_mapped(config=partial_config, cropped=cropped) # Gradient wrt to x: for j in range(nb_lines): for i in range(nb_cols-1): if (i,j) in config_mapped.keys() and (i+1,j) in config_mapped.keys(): res += grad_x(config_mapped[(i,j)], config_mapped[(i+1,j)]) # Gradient wrt to y: for i in range(nb_cols): for j in range(nb_lines-1): if (i,j) in config_mapped.keys() and (i,j+1) in config_mapped.keys(): res += grad_y(config_mapped[(i,j)], config_mapped[(i,j+1)]) return (res/2)**2 / (nb_lines * nb_cols) def solve_backtracking(cropped, nb_lines, nb_cols): ''' Applies backtracking for building the puzzle. In what follows, 'config' is a dictionary with the shape {(x, y): (i, j), ...}, ie that links the current configuration to the suffled one. Args: - cropped ({(0, 0): <PIL.Image.Image>, ...}): dictionary of every single piece of the puzzle ''' bestScore = np.inf bestSol = None nb_pieces_total = len(cropped) config = {} # ------ Auxiliary functions ------ def is_terminal(config): '''Returns True if we have generated a complete solution for the puzzle.''' return len(config) == nb_pieces_total def is_promising(partial_config, bestScore): '''Returns True iif the gradient score of the partial configuration is lower or equal to bestScore.''' current_score = partial_score(partial_config, cropped, nb_lines, nb_cols) print(f'current_score: {current_score}') return current_score < bestScore def children(config, cropped, bestScore): '''Generator for a list of configurations that have one supplementary piece when compared to 'config'. Args: - config ({new_coords: old_coords, ...}) - cropped ({(i,j): Image object, ...}) Completion strategy: Adds a piece with increasing x and, if the x are the same, with increasing y. In other terms, we complete the puzzle from left to right and from top to bottom.''' # We get the location (i, j) of the next piece. nb_pieces = len(config) next_location = get_next_location(nb_pieces=nb_pieces, nb_lines=nb_lines, nb_cols=nb_cols) # config.values() contains the old coords that have already been used # cropped.keys() contains all the possible coords remaining_pieces = [coords for coords in cropped.keys() if coords not in config.values()] for next_piece in remaining_pieces: config_copy = deepcopy(config) assert next_location not in config_copy.keys(), 'issue when completing the current config' config_copy[next_location] = next_piece # print(f'config_copy = {config_copy}\n') if is_promising(config_copy, bestScore): print('Promising branch.\n') yield config_copy else: print('Not promising branch.\n') continue # get directly to next iteration def backtracking(config, cropped, bestScore, bestSol): ''' Backtracking for building the puzzle (recursive). Args: - config: dictionary giving the mapping from the current configuration to a given configuration of the puzzle (the dictionary doesn't have to contain alle the puzzle pieces since it's being built on the moment) - cropped - bestScore (float) - bestSol (dict) Returns: - new_bestScore - new_bestSol ''' if is_terminal(config): # print('Viewing current configuration:') # current_img = create_config(config, nb_lines, nb_cols) # plt.figure(figsize = (5,2)) # plt.imshow(current_img) # pdb.set_trace() print('is_terminal') current_score = score(config, cropped, nb_lines, nb_cols) # clear_output(wait=True) print(f'current_score: {current_score}\n') if current_score < bestScore: new_bestScore = current_score new_bestSol = deepcopy(config) print(f'New bestScore: {new_bestScore}\n') else: print(f'not terminal, current nb of pieces: {len(config)}') for new_config in children(config, cropped, bestScore): new_bestScore, new_bestSol = backtracking(new_config, cropped, bestScore, bestSol) return new_bestScore, new_bestSol # ------ Main ------ return backtracking(config, cropped, bestScore, bestSol)
[ "matplotlib.pyplot.title", "matplotlib.pyplot.subplot", "PIL.Image.new", "copy.deepcopy", "matplotlib.pyplot.imshow", "itertools.permutations", "numpy.square", "PIL.Image.open", "matplotlib.pyplot.figure", "numpy.array", "collections.namedtuple", "numpy.linspace", "IPython.display.clear_output", "os.path.join" ]
[((380, 400), 'PIL.Image.open', 'Image.open', (['filename'], {}), '(filename)\n', (390, 400), False, 'from PIL import Image\n'), ((1631, 1658), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': 'figsize'}), '(figsize=figsize)\n', (1641, 1658), True, 'import matplotlib.pyplot as plt\n'), ((1979, 1994), 'matplotlib.pyplot.imshow', 'plt.imshow', (['img'], {}), '(img)\n', (1989, 1994), True, 'import matplotlib.pyplot as plt\n'), ((3339, 3362), 'itertools.permutations', 'permutations', (['list_keys'], {}), '(list_keys)\n', (3351, 3362), False, 'from itertools import permutations\n'), ((3779, 3792), 'numpy.array', 'np.array', (['im1'], {}), '(im1)\n', (3787, 3792), True, 'import numpy as np\n'), ((3804, 3817), 'numpy.array', 'np.array', (['im2'], {}), '(im2)\n', (3812, 3817), True, 'import numpy as np\n'), ((4422, 4435), 'numpy.array', 'np.array', (['im1'], {}), '(im1)\n', (4430, 4435), True, 'import numpy as np\n'), ((4447, 4460), 'numpy.array', 'np.array', (['im2'], {}), '(im2)\n', (4455, 4460), True, 'import numpy as np\n'), ((5463, 5516), 'PIL.Image.new', 'Image.new', (['"""RGB"""', '(im1.width + im2.width, im1.height)'], {}), "('RGB', (im1.width + im2.width, im1.height))\n", (5472, 5516), False, 'from PIL import Image\n'), ((5695, 5749), 'PIL.Image.new', 'Image.new', (['"""RGB"""', '(im1.width, im1.height + im2.height)'], {}), "('RGB', (im1.width, im1.height + im2.height))\n", (5704, 5749), False, 'from PIL import Image\n'), ((12471, 12533), 'collections.namedtuple', 'namedtuple', (['"""Config"""', "['start', 'end', 'orientation', 'score']"], {}), "('Config', ['start', 'end', 'orientation', 'score'])\n", (12481, 12533), False, 'from collections import namedtuple\n'), ((13934, 13951), 'copy.deepcopy', 'deepcopy', (['cropped'], {}), '(cropped)\n', (13942, 13951), False, 'from copy import deepcopy\n'), ((14457, 14485), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(12, 10)'}), '(figsize=(12, 10))\n', (14467, 14485), True, 'import matplotlib.pyplot as plt\n'), ((14493, 14513), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(2)', '(1)'], {}), '(1, 2, 1)\n', (14504, 14513), True, 'import matplotlib.pyplot as plt\n'), ((14882, 14903), 'matplotlib.pyplot.imshow', 'plt.imshow', (['old_image'], {}), '(old_image)\n', (14892, 14903), True, 'import matplotlib.pyplot as plt\n'), ((14908, 14930), 'matplotlib.pyplot.title', 'plt.title', (['"""Old image"""'], {}), "('Old image')\n", (14917, 14930), True, 'import matplotlib.pyplot as plt\n'), ((14940, 14960), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(2)', '(2)'], {}), '(1, 2, 2)\n', (14951, 14960), True, 'import matplotlib.pyplot as plt\n'), ((15207, 15228), 'matplotlib.pyplot.imshow', 'plt.imshow', (['new_image'], {}), '(new_image)\n', (15217, 15228), True, 'import matplotlib.pyplot as plt\n'), ((15233, 15255), 'matplotlib.pyplot.title', 'plt.title', (['"""New image"""'], {}), "('New image')\n", (15242, 15255), True, 'import matplotlib.pyplot as plt\n'), ((1710, 1748), 'numpy.linspace', 'np.linspace', (['(0)', 'img.width', '(nb_cols + 1)'], {}), '(0, img.width, nb_cols + 1)\n', (1721, 1748), True, 'import numpy as np\n'), ((1799, 1839), 'numpy.linspace', 'np.linspace', (['(0)', 'img.height', '(nb_lines + 1)'], {}), '(0, img.height, nb_lines + 1)\n', (1810, 1839), True, 'import numpy as np\n'), ((1957, 1973), 'matplotlib.pyplot.title', 'plt.title', (['title'], {}), '(title)\n', (1966, 1973), True, 'import matplotlib.pyplot as plt\n'), ((2851, 2884), 'os.path.join', 'os.path.join', (['"""cropped"""', 'filename'], {}), "('cropped', filename)\n", (2863, 2884), False, 'import os\n'), ((4071, 4112), 'numpy.square', 'np.square', (['(arr1[-1, :, :] - arr2[0, :, :])'], {}), '(arr1[-1, :, :] - arr2[0, :, :])\n', (4080, 4112), True, 'import numpy as np\n'), ((4712, 4753), 'numpy.square', 'np.square', (['(arr1[:, 0, :] - arr2[:, -1, :])'], {}), '(arr1[:, 0, :] - arr2[:, -1, :])\n', (4721, 4753), True, 'import numpy as np\n'), ((5305, 5344), 'os.path.join', 'os.path.join', (['"""cropped"""', 'f"""{i}-{j}.jpg"""'], {}), "('cropped', f'{i}-{j}.jpg')\n", (5317, 5344), False, 'import os\n'), ((13432, 13465), 'os.path.join', 'os.path.join', (['"""outputs"""', 'filename'], {}), "('outputs', filename)\n", (13444, 13465), False, 'import os\n'), ((13507, 13530), 'IPython.display.clear_output', 'clear_output', ([], {'wait': '(True)'}), '(wait=True)\n', (13519, 13530), False, 'from IPython.display import clear_output\n'), ((14630, 14674), 'numpy.linspace', 'np.linspace', (['(0)', 'old_image.width', '(nb_cols + 1)'], {}), '(0, old_image.width, nb_cols + 1)\n', (14641, 14674), True, 'import numpy as np\n'), ((14731, 14777), 'numpy.linspace', 'np.linspace', (['(0)', 'old_image.height', '(nb_lines + 1)'], {}), '(0, old_image.height, nb_lines + 1)\n', (14742, 14777), True, 'import numpy as np\n'), ((20394, 20410), 'copy.deepcopy', 'deepcopy', (['config'], {}), '(config)\n', (20402, 20410), False, 'from copy import deepcopy\n'), ((22125, 22141), 'copy.deepcopy', 'deepcopy', (['config'], {}), '(config)\n', (22133, 22141), False, 'from copy import deepcopy\n')]
from numpy import random import numpy as np import matplotlib.pyplot as plt import math ### Defining theta theta = math.pi/4 ### Generates count number of random values in the range [0, 1] def getU(count): u = [] for i in range(count): key = random.rand() u.append(key) return u def getX(u): x = [] for t in u: res = -theta*(math.log(1-t)) x.append(res) return x def getSampleMeanVariance(x): sum = 0.00 for i in x: sum += i avg = sum/(len(x)) cnt = 0.00 for i in x: cnt += (i-avg)**2 variance = cnt/(len(x)-1) return avg, variance def plotCDF(data): data_size = len(data) data_set = sorted(set(data)) bins = np.append(data_set, data_set[-1]+1) counts, bin_edges = np.histogram(data, bins=bins, density=False) counts = counts.astype(float)/data_size cdf = np.cumsum(counts) plt.plot(bin_edges[0:-1], cdf, linestyle='--', marker='o', color='b') plt.ylim((0, 1)) plt.ylabel("CDF") plt.grid(True) plt.show() # Plots y = 1 - e^(-x/theta) def plotActualDistributionFunction(): a = -1 b = 1/theta c = 1 x = np.linspace(0, 10, 256, endpoint = True) y = (a * np.exp(-b*x)) + c plt.plot(x, y, '-r', label=r'$y = 1 - e^{-x/theta}$') axes = plt.gca() axes.set_xlim([x.min(), x.max()]) axes.set_ylim([y.min(), y.max()]) plt.xlabel('x') plt.ylabel('y') plt.title('Actual Distribution') plt.legend(loc='upper left') plt.show() def execute(cnt): print("For input size of : " + str(cnt)) u = getU(cnt) u.sort() # print(u) x = getX(u) # print(x) sMean, sVariance = getSampleMeanVariance(x) # Actual Mean is theta print("Sample Mean: " + str(sMean) + " " + "Actual Mean: " + str(theta)) print("Abs. Difference : " + str(abs(sMean-theta))) # Actual Variance is theta^2 print("Sample Variance: " + str(sVariance) + " " + "Actual Variance: " + str(theta**2)) print("Abs. Difference : " + str(abs(sVariance-theta**2))) print() plotCDF(x) def main(): plotActualDistributionFunction() execute(10) execute(100) execute(1000) execute(10000) execute(100000) # execute(1000000) if __name__ == '__main__': main()
[ "matplotlib.pyplot.title", "matplotlib.pyplot.show", "matplotlib.pyplot.plot", "matplotlib.pyplot.ylim", "matplotlib.pyplot.legend", "numpy.append", "numpy.histogram", "numpy.cumsum", "numpy.exp", "numpy.linspace", "matplotlib.pyplot.gca", "numpy.random.rand", "matplotlib.pyplot.ylabel", "math.log", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.grid" ]
[((649, 686), 'numpy.append', 'np.append', (['data_set', '(data_set[-1] + 1)'], {}), '(data_set, data_set[-1] + 1)\n', (658, 686), True, 'import numpy as np\n'), ((707, 751), 'numpy.histogram', 'np.histogram', (['data'], {'bins': 'bins', 'density': '(False)'}), '(data, bins=bins, density=False)\n', (719, 751), True, 'import numpy as np\n'), ((802, 819), 'numpy.cumsum', 'np.cumsum', (['counts'], {}), '(counts)\n', (811, 819), True, 'import numpy as np\n'), ((822, 891), 'matplotlib.pyplot.plot', 'plt.plot', (['bin_edges[0:-1]', 'cdf'], {'linestyle': '"""--"""', 'marker': '"""o"""', 'color': '"""b"""'}), "(bin_edges[0:-1], cdf, linestyle='--', marker='o', color='b')\n", (830, 891), True, 'import matplotlib.pyplot as plt\n'), ((893, 909), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(0, 1)'], {}), '((0, 1))\n', (901, 909), True, 'import matplotlib.pyplot as plt\n'), ((911, 928), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""CDF"""'], {}), "('CDF')\n", (921, 928), True, 'import matplotlib.pyplot as plt\n'), ((930, 944), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (938, 944), True, 'import matplotlib.pyplot as plt\n'), ((947, 957), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (955, 957), True, 'import matplotlib.pyplot as plt\n'), ((1061, 1099), 'numpy.linspace', 'np.linspace', (['(0)', '(10)', '(256)'], {'endpoint': '(True)'}), '(0, 10, 256, endpoint=True)\n', (1072, 1099), True, 'import numpy as np\n'), ((1132, 1185), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y', '"""-r"""'], {'label': '"""$y = 1 - e^{-x/theta}$"""'}), "(x, y, '-r', label='$y = 1 - e^{-x/theta}$')\n", (1140, 1185), True, 'import matplotlib.pyplot as plt\n'), ((1196, 1205), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (1203, 1205), True, 'import matplotlib.pyplot as plt\n'), ((1278, 1293), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""x"""'], {}), "('x')\n", (1288, 1293), True, 'import matplotlib.pyplot as plt\n'), ((1295, 1310), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""y"""'], {}), "('y')\n", (1305, 1310), True, 'import matplotlib.pyplot as plt\n'), ((1312, 1344), 'matplotlib.pyplot.title', 'plt.title', (['"""Actual Distribution"""'], {}), "('Actual Distribution')\n", (1321, 1344), True, 'import matplotlib.pyplot as plt\n'), ((1346, 1374), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""upper left"""'}), "(loc='upper left')\n", (1356, 1374), True, 'import matplotlib.pyplot as plt\n'), ((1377, 1387), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1385, 1387), True, 'import matplotlib.pyplot as plt\n'), ((248, 261), 'numpy.random.rand', 'random.rand', ([], {}), '()\n', (259, 261), False, 'from numpy import random\n'), ((340, 355), 'math.log', 'math.log', (['(1 - t)'], {}), '(1 - t)\n', (348, 355), False, 'import math\n'), ((1112, 1126), 'numpy.exp', 'np.exp', (['(-b * x)'], {}), '(-b * x)\n', (1118, 1126), True, 'import numpy as np\n')]
# Copyright (c) Facebook, Inc. and its affiliates. import logging import numpy as np from typing import Dict, List, Optional, Tuple import torch from torch import nn import torch.nn.functional as F from detectron2.config import configurable from detectron2.data.detection_utils import convert_image_to_rgb from detectron2.structures import ImageList, Instances from detectron2.utils.events import get_event_storage from detectron2.utils.logger import log_first_n from ..backbone import Backbone, build_backbone from ..postprocessing import detector_postprocess from ..proposal_generator import build_proposal_generator from ..roi_heads import build_roi_heads from .build import META_ARCH_REGISTRY __all__ = ["GeneralizedRCNN", "ProposalNetwork", "ProposalNetwork1"] class AugmentedConv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, dk, dv, Nh, shape=0, relative=False, stride=1): super(AugmentedConv, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.dk = dk self.dv = dv self.Nh = Nh self.shape = shape self.relative = relative self.stride = stride self.padding = (self.kernel_size - 1) // 2 #print("conv param", padding, stride) assert self.Nh != 0, "integer division or modulo by zero, Nh >= 1" assert self.dk % self.Nh == 0, "dk should be divided by Nh. (example: out_channels: 20, dk: 40, Nh: 4)" assert self.dv % self.Nh == 0, "dv should be divided by Nh. (example: out_channels: 20, dv: 4, Nh: 4)" assert stride in [1, 2], str(stride) + " Up to 2 strides are allowed." self.conv_out = nn.Conv2d(self.in_channels, self.out_channels - self.dv, self.kernel_size, stride=stride, padding=self.padding) #self.conv_out = nn.Conv2d(self.in_channels, self.out_channels , self.kernel_size, stride=stride, padding=self.padding) self.qkv_conv = nn.Conv2d(self.in_channels, 2 * self.dk + self.dv, kernel_size=self.kernel_size, stride=stride, padding=self.padding) self.attn_out = nn.Conv2d(self.dv, self.dv, kernel_size=1, stride=1) if self.relative: self.key_rel_w = nn.Parameter(torch.randn((2 * self.shape - 1, dk // Nh), requires_grad=True)) self.key_rel_h = nn.Parameter(torch.randn((2 * self.shape - 1, dk // Nh), requires_grad=True)) def forward(self, x): # Input x # (batch_size, channels, height, width) # batch, _, height, width = x.size() # conv_out # (batch_size, out_channels, height, width) x = x.reshape(-1, 5 * x.shape[1], x.shape[2], x.shape[3]) conv_out = self.conv_out(x) batch, _, height, width = conv_out.size() #batch, _, height, width = x.size() #height= width=self.shape #print(conv_out.size()) # flat_q, flat_k, flat_v # (batch_size, Nh, height * width, dvh or dkh) # dvh = dv / Nh, dkh = dk / Nh # q, k, v # (batch_size, Nh, height, width, dv or dk) #print("input to qkv", x.shape) flat_q, flat_k, flat_v, q, k, v = self.compute_flat_qkv(x, self.dk, self.dv, self.Nh) logits = torch.matmul(flat_q.transpose(2, 3), flat_k) if self.relative: h_rel_logits, w_rel_logits = self.relative_logits(q) logits += h_rel_logits logits += w_rel_logits weights = F.softmax(logits, dim=-1) # attn_out # (batch, Nh, height * width, dvh) attn_out = torch.matmul(weights, flat_v.transpose(2, 3)) attn_out = torch.reshape(attn_out, (batch, self.Nh, self.dv // self.Nh, height, width)) #print("attn",attn_out.size()) # combine_heads_2d # (batch, out_channels, height, width) #print("input to attn", attn_out.size()) attn_out = self.combine_heads_2d(attn_out) attn_out = self.attn_out(attn_out) return torch.cat((conv_out, attn_out), dim=1) #return conv_out def compute_flat_qkv(self, x, dk, dv, Nh): qkv = self.qkv_conv(x) #print("qkv",qkv.size()) N, _, H, W = qkv.size() q, k, v = torch.split(qkv, [dk, dk, dv], dim=1) q = self.split_heads_2d(q, Nh) k = self.split_heads_2d(k, Nh) v = self.split_heads_2d(v, Nh) dkh = dk // Nh q *= dkh ** -0.5 flat_q = torch.reshape(q, (N, Nh, dk // Nh, H * W)) flat_k = torch.reshape(k, (N, Nh, dk // Nh, H * W)) flat_v = torch.reshape(v, (N, Nh, dv // Nh, H * W)) return flat_q, flat_k, flat_v, q, k, v def split_heads_2d(self, x, Nh): batch, channels, height, width = x.size() ret_shape = (batch, Nh, channels // Nh, height, width) split = torch.reshape(x, ret_shape) return split def combine_heads_2d(self, x): batch, Nh, dv, H, W = x.size() ret_shape = (batch, Nh * dv, H, W) return torch.reshape(x, ret_shape) def relative_logits(self, q): B, Nh, dk, H, W = q.size() q = torch.transpose(q, 2, 4).transpose(2, 3) rel_logits_w = self.relative_logits_1d(q, self.key_rel_w, H, W, Nh, "w") rel_logits_h = self.relative_logits_1d(torch.transpose(q, 2, 3), self.key_rel_h, W, H, Nh, "h") return rel_logits_h, rel_logits_w def relative_logits_1d(self, q, rel_k, H, W, Nh, case): rel_logits = torch.einsum('bhxyd,md->bhxym', q, rel_k) rel_logits = torch.reshape(rel_logits, (-1, Nh * H, W, 2 * W - 1)) rel_logits = self.rel_to_abs(rel_logits) rel_logits = torch.reshape(rel_logits, (-1, Nh, H, W, W)) rel_logits = torch.unsqueeze(rel_logits, dim=3) rel_logits = rel_logits.repeat((1, 1, 1, H, 1, 1)) if case == "w": rel_logits = torch.transpose(rel_logits, 3, 4) elif case == "h": rel_logits = torch.transpose(rel_logits, 2, 4).transpose(4, 5).transpose(3, 5) rel_logits = torch.reshape(rel_logits, (-1, Nh, H * W, H * W)) return rel_logits def rel_to_abs(self, x): B, Nh, L, _ = x.size() col_pad = torch.zeros((B, Nh, L, 1)).to(x) x = torch.cat((x, col_pad), dim=3) flat_x = torch.reshape(x, (B, Nh, L * 2 * L)) flat_pad = torch.zeros((B, Nh, L - 1)).to(x) flat_x_padded = torch.cat((flat_x, flat_pad), dim=2) final_x = torch.reshape(flat_x_padded, (B, Nh, L + 1, 2 * L - 1)) final_x = final_x[:, :, :L, L - 1:] return final_x #augmented_conv_128 = AugmentedConv(in_channels=5*256, out_channels=256, kernel_size=3, dk=40, dv=4, Nh=2, relative=True, stride=2, shape=64) augmented_conv_64 = AugmentedConv(in_channels=5*256, out_channels=256, kernel_size=3, dk=40, dv=4, Nh=2, relative=True, stride=1, shape=64) augmented_conv_32 = AugmentedConv(in_channels=5*256, out_channels=256, kernel_size=3, dk=40, dv=4, Nh=2, relative=True, stride=1, shape=32) augmented_conv_16 = AugmentedConv(in_channels=5*256, out_channels=256, kernel_size=3, dk=40, dv=4, Nh=2, relative=True, stride=1, shape=16) augmented_conv_8 = AugmentedConv(in_channels=5*256, out_channels=256, kernel_size=3, dk=40, dv=4, Nh=2, relative=True, stride=1, shape=8) augmented_conv_4 = AugmentedConv(in_channels=5*256, out_channels=256, kernel_size=3, dk=40, dv=4, Nh=2, relative=True, stride=1, shape=4) #attention with more dk dv = equal to convolution # augmented_conv_128 = AugmentedConv(in_channels=3*256, out_channels=256, kernel_size=3, dk=64, dv=64, Nh=8, relative=True, stride=2, shape=64) # augmented_conv_64 = AugmentedConv(in_channels=3*256, out_channels=256, kernel_size=3, dk=64, dv=64, Nh=8, relative=True, stride=1, shape=64) # augmented_conv_32 = AugmentedConv(in_channels=3*256, out_channels=256, kernel_size=3, dk=64, dv=64, Nh=8, relative=True, stride=1, shape=32) # augmented_conv_16 = AugmentedConv(in_channels=3*256, out_channels=256, kernel_size=3, dk=64, dv=64, Nh=8, relative=True, stride=1, shape=16) # augmented_conv_8 = AugmentedConv(in_channels=3*256, out_channels=256, kernel_size=3, dk=64, dv=64, Nh=8, relative=True, stride=1, shape=8) #up_sample = nn.ConvTranspose2d(256, 256, 3,stride=2, padding=1, output_padding=1) @META_ARCH_REGISTRY.register() class GeneralizedRCNN(nn.Module): """ Generalized R-CNN. Any models that contains the following three components: 1. Per-image feature extraction (aka backbone) 2. Region proposal generation 3. Per-region feature extraction and prediction """ @configurable def __init__( self, *, backbone: Backbone, proposal_generator: nn.Module, roi_heads: nn.Module, pixel_mean: Tuple[float], pixel_std: Tuple[float], input_format: Optional[str] = None, vis_period: int = 0, ): """ Args: backbone: a backbone module, must follow detectron2's backbone interface proposal_generator: a module that generates proposals using backbone features roi_heads: a ROI head that performs per-region computation pixel_mean, pixel_std: list or tuple with #channels element, representing the per-channel mean and std to be used to normalize the input image input_format: describe the meaning of channels of input. Needed by visualization vis_period: the period to run visualization. Set to 0 to disable. """ super().__init__() self.backbone = backbone self.proposal_generator = proposal_generator self.roi_heads = roi_heads self.input_format = input_format self.vis_period = vis_period if vis_period > 0: assert input_format is not None, "input_format is required for visualization!" self.register_buffer("pixel_mean", torch.tensor(pixel_mean).view(-1, 1, 1), False) self.register_buffer("pixel_std", torch.tensor(pixel_std).view(-1, 1, 1), False) assert ( self.pixel_mean.shape == self.pixel_std.shape ), f"{self.pixel_mean} and {self.pixel_std} have different shapes!" @classmethod def from_config(cls, cfg): backbone = build_backbone(cfg) return { "backbone": backbone, "proposal_generator": build_proposal_generator(cfg, backbone.output_shape()), "roi_heads": build_roi_heads(cfg, backbone.output_shape()), "input_format": cfg.INPUT.FORMAT, "vis_period": cfg.VIS_PERIOD, "pixel_mean": cfg.MODEL.PIXEL_MEAN, "pixel_std": cfg.MODEL.PIXEL_STD, } @property def device(self): return self.pixel_mean.device def visualize_training(self, batched_inputs, proposals): """ A function used to visualize images and proposals. It shows ground truth bounding boxes on the original image and up to 20 top-scoring predicted object proposals on the original image. Users can implement different visualization functions for different models. Args: batched_inputs (list): a list that contains input to the model. proposals (list): a list that contains predicted proposals. Both batched_inputs and proposals should have the same length. """ from detectron2.utils.visualizer import Visualizer storage = get_event_storage() max_vis_prop = 20 for input, prop in zip(batched_inputs, proposals): img = input["image"] img = convert_image_to_rgb(img.permute(1, 2, 0), self.input_format) v_gt = Visualizer(img, None) v_gt = v_gt.overlay_instances(boxes=input["instances"].gt_boxes) anno_img = v_gt.get_image() box_size = min(len(prop.proposal_boxes), max_vis_prop) v_pred = Visualizer(img, None) v_pred = v_pred.overlay_instances( boxes=prop.proposal_boxes[0:box_size].tensor.cpu().numpy() ) prop_img = v_pred.get_image() vis_img = np.concatenate((anno_img, prop_img), axis=1) vis_img = vis_img.transpose(2, 0, 1) vis_name = "Left: GT bounding boxes; Right: Predicted proposals" storage.put_image(vis_name, vis_img) break # only visualize one image in a batch def forward(self, batched_inputs: Tuple[Dict[str, torch.Tensor]]): """ Args: batched_inputs: a list, batched outputs of :class:`DatasetMapper` . Each item in the list contains the inputs for one image. For now, each item in the list is a dict that contains: * image: Tensor, image in (C, H, W) format. * instances (optional): groundtruth :class:`Instances` * proposals (optional): :class:`Instances`, precomputed proposals. Other information that's included in the original dicts, such as: * "height", "width" (int): the output resolution of the model, used in inference. See :meth:`postprocess` for details. Returns: list[dict]: Each dict is the output for one input image. The dict contains one key "instances" whose value is a :class:`Instances`. The :class:`Instances` object has the following keys: "pred_boxes", "pred_classes", "scores", "pred_masks", "pred_keypoints" """ if not self.training: return self.inference(batched_inputs) images = self.preprocess_image(batched_inputs) if "instances" in batched_inputs[0]: gt_instances = [x["instances"].to(self.device) for x in batched_inputs] else: gt_instances = None features = self.backbone(images.tensor) if self.proposal_generator is not None: proposals, proposal_losses = self.proposal_generator(images, features, gt_instances) else: assert "proposals" in batched_inputs[0] proposals = [x["proposals"].to(self.device) for x in batched_inputs] proposal_losses = {} _, detector_losses = self.roi_heads(images, features, proposals, gt_instances) if self.vis_period > 0: storage = get_event_storage() if storage.iter % self.vis_period == 0: self.visualize_training(batched_inputs, proposals) losses = {} losses.update(detector_losses) losses.update(proposal_losses) return losses def inference( self, batched_inputs: Tuple[Dict[str, torch.Tensor]], detected_instances: Optional[List[Instances]] = None, do_postprocess: bool = True, ): """ Run inference on the given inputs. Args: batched_inputs (list[dict]): same as in :meth:`forward` detected_instances (None or list[Instances]): if not None, it contains an `Instances` object per image. The `Instances` object contains "pred_boxes" and "pred_classes" which are known boxes in the image. The inference will then skip the detection of bounding boxes, and only predict other per-ROI outputs. do_postprocess (bool): whether to apply post-processing on the outputs. Returns: When do_postprocess=True, same as in :meth:`forward`. Otherwise, a list[Instances] containing raw network outputs. """ assert not self.training images = self.preprocess_image(batched_inputs) features = self.backbone(images.tensor) if detected_instances is None: if self.proposal_generator is not None: proposals, _ = self.proposal_generator(images, features, None) else: assert "proposals" in batched_inputs[0] proposals = [x["proposals"].to(self.device) for x in batched_inputs] results, _ = self.roi_heads(images, features, proposals, None) else: detected_instances = [x.to(self.device) for x in detected_instances] results = self.roi_heads.forward_with_given_boxes(features, detected_instances) if do_postprocess: assert not torch.jit.is_scripting(), "Scripting is not supported for postprocess." return GeneralizedRCNN._postprocess(results, batched_inputs, images.image_sizes) else: return results def preprocess_image(self, batched_inputs: Tuple[Dict[str, torch.Tensor]]): """ Normalize, pad and batch the input images. """ images = [x["image"].to(self.device) for x in batched_inputs] images = [(x - self.pixel_mean) / self.pixel_std for x in images] images = ImageList.from_tensors(images, self.backbone.size_divisibility) return images @staticmethod def _postprocess(instances, batched_inputs: Tuple[Dict[str, torch.Tensor]], image_sizes): """ Rescale the output instances to the target size. """ # note: private function; subject to changes processed_results = [] for results_per_image, input_per_image, image_size in zip( instances, batched_inputs, image_sizes ): height = input_per_image.get("height", image_size[0]) width = input_per_image.get("width", image_size[1]) r = detector_postprocess(results_per_image, height, width) processed_results.append({"instances": r}) return processed_results @META_ARCH_REGISTRY.register() class ProposalNetwork(nn.Module): """ A meta architecture that only predicts object proposals. """ @configurable def __init__( self, *, backbone: Backbone, proposal_generator: nn.Module, pixel_mean: Tuple[float], pixel_std: Tuple[float], ): """ Args: backbone: a backbone module, must follow detectron2's backbone interface proposal_generator: a module that generates proposals using backbone features pixel_mean, pixel_std: list or tuple with #channels element, representing the per-channel mean and std to be used to normalize the input image """ super().__init__() self.backbone = backbone self.proposal_generator = proposal_generator self.register_buffer("pixel_mean", torch.tensor(pixel_mean).view(-1, 1, 1), False) self.register_buffer("pixel_std", torch.tensor(pixel_std).view(-1, 1, 1), False) @classmethod def from_config(cls, cfg): backbone = build_backbone(cfg) return { "backbone": backbone, "proposal_generator": build_proposal_generator(cfg, backbone.output_shape()), "pixel_mean": cfg.MODEL.PIXEL_MEAN, "pixel_std": cfg.MODEL.PIXEL_STD, } @property def device(self): return self.pixel_mean.device def forward(self, batched_inputs): """ Args: Same as in :class:`GeneralizedRCNN.forward` Returns: list[dict]: Each dict is the output for one input image. The dict contains one key "proposals" whose value is a :class:`Instances` with keys "proposal_boxes" and "objectness_logits". """ images = [x["image"].to(self.device) for x in batched_inputs] images = [(x - self.pixel_mean) / self.pixel_std for x in images] images = ImageList.from_tensors(images, self.backbone.size_divisibility) features = self.backbone(images.tensor) if "instances" in batched_inputs[0]: gt_instances = [x["instances"].to(self.device) for x in batched_inputs] elif "targets" in batched_inputs[0]: log_first_n( logging.WARN, "'targets' in the model inputs is now renamed to 'instances'!", n=10 ) gt_instances = [x["targets"].to(self.device) for x in batched_inputs] else: gt_instances = None proposals, proposal_losses = self.proposal_generator(images, features, gt_instances) # In training, the proposals are not useful at all but we generate them anyway. # This makes RPN-only models about 5% slower. if self.training: return proposal_losses processed_results = [] for results_per_image, input_per_image, image_size in zip( proposals, batched_inputs, images.image_sizes ): height = input_per_image.get("height", image_size[0]) width = input_per_image.get("width", image_size[1]) r = detector_postprocess(results_per_image, height, width) processed_results.append({"proposals": r}) return processed_results @META_ARCH_REGISTRY.register() class ProposalNetwork1(nn.Module): """ A meta architecture that only predicts object proposals. """ def __init__(self, cfg): super().__init__() self.backbone = build_backbone(cfg) #self.augmentedConv_128 = augmented_conv_128 self.augmentedConv_64 = augmented_conv_64 self.augmentedConv_32 = augmented_conv_32 self.augmentedConv_16 = augmented_conv_16 self.augmentedConv_8 = augmented_conv_8#AugmentedConv() self.augmentedConv_4 = augmented_conv_4 #self.up_sample = up_sample self.proposal_generator = build_proposal_generator(cfg, self.backbone.output_shape()) self.register_buffer("pixel_mean", torch.Tensor(cfg.MODEL.PIXEL_MEAN1).view(-1, 1, 1)) self.register_buffer("pixel_std", torch.Tensor(cfg.MODEL.PIXEL_STD1).view(-1, 1, 1)) @property def device(self): return self.pixel_mean.device def forward(self, batched_inputs): """ Args: Same as in :class:`GeneralizedRCNN.forward` Returns: list[dict]: Each dict is the output for one input image. The dict contains one key "proposals" whose value is a :class:`Instances` with keys "proposal_boxes" and "objectness_logits". """ images = [x["image"].to(self.device) for x in batched_inputs] images = [(x - self.pixel_mean) / self.pixel_std for x in images] temp_images = () for im in images: temp_images += im.split(3) images = ImageList.from_tensors(temp_images, self.backbone.size_divisibility) features = self.backbone(images.tensor) # for key in features.keys(): # print(key,features[key].shape) feature_fused = {} feature_fused['p3'] = self.augmentedConv_64(features['p3']) #print('feature_128.shape up sample',feature_fused['p2'].shape) feature_fused['p4'] = self.augmentedConv_32(features['p4']) feature_fused['p5'] = self.augmentedConv_16(features['p5']) feature_fused['p6'] = self.augmentedConv_8(features['p6']) feature_fused['p7'] = self.augmentedConv_4(features['p7']) my_image = images.tensor[3::5] #5 slice #my_image = images.tensor[4::9] #print(my_image.shape) my_image_sizes = [(my_image.shape[-2], my_image.shape[-1]) for im in my_image] #print(image_sizes) images = ImageList(my_image,my_image_sizes) if "instances" in batched_inputs[0]: gt_instances = [x["instances"].to(self.device) for x in batched_inputs] elif "targets" in batched_inputs[0]: log_first_n( logging.WARN, "'targets' in the model inputs is now renamed to 'instances'!", n=10 ) gt_instances = [x["targets"].to(self.device) for x in batched_inputs] else: gt_instances = None proposals, proposal_losses = self.proposal_generator(images, feature_fused, gt_instances) # In training, the proposals are not useful at all but we generate them anyway. # This makes RPN-only models about 5% slower. if self.training: return proposal_losses processed_results = [] for results_per_image, input_per_image, image_size in zip( proposals, batched_inputs, images.image_sizes ): height = input_per_image.get("height", image_size[0]) width = input_per_image.get("width", image_size[1]) r = detector_postprocess(results_per_image, height, width) processed_results.append({"instances": r}) return processed_results
[ "detectron2.structures.ImageList.from_tensors", "torch.jit.is_scripting", "torch.cat", "torch.randn", "detectron2.utils.logger.log_first_n", "detectron2.utils.visualizer.Visualizer", "detectron2.utils.events.get_event_storage", "torch.Tensor", "torch.zeros", "torch.split", "torch.nn.Conv2d", "detectron2.structures.ImageList", "torch.einsum", "torch.unsqueeze", "torch.reshape", "numpy.concatenate", "torch.nn.functional.softmax", "torch.tensor", "torch.transpose" ]
[((1746, 1861), 'torch.nn.Conv2d', 'nn.Conv2d', (['self.in_channels', '(self.out_channels - self.dv)', 'self.kernel_size'], {'stride': 'stride', 'padding': 'self.padding'}), '(self.in_channels, self.out_channels - self.dv, self.kernel_size,\n stride=stride, padding=self.padding)\n', (1755, 1861), False, 'from torch import nn\n'), ((2019, 2141), 'torch.nn.Conv2d', 'nn.Conv2d', (['self.in_channels', '(2 * self.dk + self.dv)'], {'kernel_size': 'self.kernel_size', 'stride': 'stride', 'padding': 'self.padding'}), '(self.in_channels, 2 * self.dk + self.dv, kernel_size=self.\n kernel_size, stride=stride, padding=self.padding)\n', (2028, 2141), False, 'from torch import nn\n'), ((2162, 2214), 'torch.nn.Conv2d', 'nn.Conv2d', (['self.dv', 'self.dv'], {'kernel_size': '(1)', 'stride': '(1)'}), '(self.dv, self.dv, kernel_size=1, stride=1)\n', (2171, 2214), False, 'from torch import nn\n'), ((3519, 3544), 'torch.nn.functional.softmax', 'F.softmax', (['logits'], {'dim': '(-1)'}), '(logits, dim=-1)\n', (3528, 3544), True, 'import torch.nn.functional as F\n'), ((3692, 3768), 'torch.reshape', 'torch.reshape', (['attn_out', '(batch, self.Nh, self.dv // self.Nh, height, width)'], {}), '(attn_out, (batch, self.Nh, self.dv // self.Nh, height, width))\n', (3705, 3768), False, 'import torch\n'), ((4040, 4078), 'torch.cat', 'torch.cat', (['(conv_out, attn_out)'], {'dim': '(1)'}), '((conv_out, attn_out), dim=1)\n', (4049, 4078), False, 'import torch\n'), ((4275, 4312), 'torch.split', 'torch.split', (['qkv', '[dk, dk, dv]'], {'dim': '(1)'}), '(qkv, [dk, dk, dv], dim=1)\n', (4286, 4312), False, 'import torch\n'), ((4496, 4538), 'torch.reshape', 'torch.reshape', (['q', '(N, Nh, dk // Nh, H * W)'], {}), '(q, (N, Nh, dk // Nh, H * W))\n', (4509, 4538), False, 'import torch\n'), ((4556, 4598), 'torch.reshape', 'torch.reshape', (['k', '(N, Nh, dk // Nh, H * W)'], {}), '(k, (N, Nh, dk // Nh, H * W))\n', (4569, 4598), False, 'import torch\n'), ((4616, 4658), 'torch.reshape', 'torch.reshape', (['v', '(N, Nh, dv // Nh, H * W)'], {}), '(v, (N, Nh, dv // Nh, H * W))\n', (4629, 4658), False, 'import torch\n'), ((4873, 4900), 'torch.reshape', 'torch.reshape', (['x', 'ret_shape'], {}), '(x, ret_shape)\n', (4886, 4900), False, 'import torch\n'), ((5055, 5082), 'torch.reshape', 'torch.reshape', (['x', 'ret_shape'], {}), '(x, ret_shape)\n', (5068, 5082), False, 'import torch\n'), ((5517, 5558), 'torch.einsum', 'torch.einsum', (['"""bhxyd,md->bhxym"""', 'q', 'rel_k'], {}), "('bhxyd,md->bhxym', q, rel_k)\n", (5529, 5558), False, 'import torch\n'), ((5580, 5633), 'torch.reshape', 'torch.reshape', (['rel_logits', '(-1, Nh * H, W, 2 * W - 1)'], {}), '(rel_logits, (-1, Nh * H, W, 2 * W - 1))\n', (5593, 5633), False, 'import torch\n'), ((5705, 5749), 'torch.reshape', 'torch.reshape', (['rel_logits', '(-1, Nh, H, W, W)'], {}), '(rel_logits, (-1, Nh, H, W, W))\n', (5718, 5749), False, 'import torch\n'), ((5771, 5805), 'torch.unsqueeze', 'torch.unsqueeze', (['rel_logits'], {'dim': '(3)'}), '(rel_logits, dim=3)\n', (5786, 5805), False, 'import torch\n'), ((6087, 6136), 'torch.reshape', 'torch.reshape', (['rel_logits', '(-1, Nh, H * W, H * W)'], {}), '(rel_logits, (-1, Nh, H * W, H * W))\n', (6100, 6136), False, 'import torch\n'), ((6288, 6318), 'torch.cat', 'torch.cat', (['(x, col_pad)'], {'dim': '(3)'}), '((x, col_pad), dim=3)\n', (6297, 6318), False, 'import torch\n'), ((6337, 6373), 'torch.reshape', 'torch.reshape', (['x', '(B, Nh, L * 2 * L)'], {}), '(x, (B, Nh, L * 2 * L))\n', (6350, 6373), False, 'import torch\n'), ((6451, 6487), 'torch.cat', 'torch.cat', (['(flat_x, flat_pad)'], {'dim': '(2)'}), '((flat_x, flat_pad), dim=2)\n', (6460, 6487), False, 'import torch\n'), ((6507, 6562), 'torch.reshape', 'torch.reshape', (['flat_x_padded', '(B, Nh, L + 1, 2 * L - 1)'], {}), '(flat_x_padded, (B, Nh, L + 1, 2 * L - 1))\n', (6520, 6562), False, 'import torch\n'), ((11513, 11532), 'detectron2.utils.events.get_event_storage', 'get_event_storage', ([], {}), '()\n', (11530, 11532), False, 'from detectron2.utils.events import get_event_storage\n'), ((16993, 17056), 'detectron2.structures.ImageList.from_tensors', 'ImageList.from_tensors', (['images', 'self.backbone.size_divisibility'], {}), '(images, self.backbone.size_divisibility)\n', (17015, 17056), False, 'from detectron2.structures import ImageList, Instances\n'), ((19763, 19826), 'detectron2.structures.ImageList.from_tensors', 'ImageList.from_tensors', (['images', 'self.backbone.size_divisibility'], {}), '(images, self.backbone.size_divisibility)\n', (19785, 19826), False, 'from detectron2.structures import ImageList, Instances\n'), ((22678, 22746), 'detectron2.structures.ImageList.from_tensors', 'ImageList.from_tensors', (['temp_images', 'self.backbone.size_divisibility'], {}), '(temp_images, self.backbone.size_divisibility)\n', (22700, 22746), False, 'from detectron2.structures import ImageList, Instances\n'), ((23572, 23607), 'detectron2.structures.ImageList', 'ImageList', (['my_image', 'my_image_sizes'], {}), '(my_image, my_image_sizes)\n', (23581, 23607), False, 'from detectron2.structures import ImageList, Instances\n'), ((5335, 5359), 'torch.transpose', 'torch.transpose', (['q', '(2)', '(3)'], {}), '(q, 2, 3)\n', (5350, 5359), False, 'import torch\n'), ((5915, 5948), 'torch.transpose', 'torch.transpose', (['rel_logits', '(3)', '(4)'], {}), '(rel_logits, 3, 4)\n', (5930, 5948), False, 'import torch\n'), ((11751, 11772), 'detectron2.utils.visualizer.Visualizer', 'Visualizer', (['img', 'None'], {}), '(img, None)\n', (11761, 11772), False, 'from detectron2.utils.visualizer import Visualizer\n'), ((11978, 11999), 'detectron2.utils.visualizer.Visualizer', 'Visualizer', (['img', 'None'], {}), '(img, None)\n', (11988, 11999), False, 'from detectron2.utils.visualizer import Visualizer\n'), ((12200, 12244), 'numpy.concatenate', 'np.concatenate', (['(anno_img, prop_img)'], {'axis': '(1)'}), '((anno_img, prop_img), axis=1)\n', (12214, 12244), True, 'import numpy as np\n'), ((14444, 14463), 'detectron2.utils.events.get_event_storage', 'get_event_storage', ([], {}), '()\n', (14461, 14463), False, 'from detectron2.utils.events import get_event_storage\n'), ((2284, 2347), 'torch.randn', 'torch.randn', (['(2 * self.shape - 1, dk // Nh)'], {'requires_grad': '(True)'}), '((2 * self.shape - 1, dk // Nh), requires_grad=True)\n', (2295, 2347), False, 'import torch\n'), ((2391, 2454), 'torch.randn', 'torch.randn', (['(2 * self.shape - 1, dk // Nh)'], {'requires_grad': '(True)'}), '((2 * self.shape - 1, dk // Nh), requires_grad=True)\n', (2402, 2454), False, 'import torch\n'), ((5165, 5189), 'torch.transpose', 'torch.transpose', (['q', '(2)', '(4)'], {}), '(q, 2, 4)\n', (5180, 5189), False, 'import torch\n'), ((6243, 6269), 'torch.zeros', 'torch.zeros', (['(B, Nh, L, 1)'], {}), '((B, Nh, L, 1))\n', (6254, 6269), False, 'import torch\n'), ((6393, 6420), 'torch.zeros', 'torch.zeros', (['(B, Nh, L - 1)'], {}), '((B, Nh, L - 1))\n', (6404, 6420), False, 'import torch\n'), ((16470, 16494), 'torch.jit.is_scripting', 'torch.jit.is_scripting', ([], {}), '()\n', (16492, 16494), False, 'import torch\n'), ((20062, 20161), 'detectron2.utils.logger.log_first_n', 'log_first_n', (['logging.WARN', '"""\'targets\' in the model inputs is now renamed to \'instances\'!"""'], {'n': '(10)'}), '(logging.WARN,\n "\'targets\' in the model inputs is now renamed to \'instances\'!", n=10)\n', (20073, 20161), False, 'from detectron2.utils.logger import log_first_n\n'), ((23795, 23894), 'detectron2.utils.logger.log_first_n', 'log_first_n', (['logging.WARN', '"""\'targets\' in the model inputs is now renamed to \'instances\'!"""'], {'n': '(10)'}), '(logging.WARN,\n "\'targets\' in the model inputs is now renamed to \'instances\'!", n=10)\n', (23806, 23894), False, 'from detectron2.utils.logger import log_first_n\n'), ((9958, 9982), 'torch.tensor', 'torch.tensor', (['pixel_mean'], {}), '(pixel_mean)\n', (9970, 9982), False, 'import torch\n'), ((10048, 10071), 'torch.tensor', 'torch.tensor', (['pixel_std'], {}), '(pixel_std)\n', (10060, 10071), False, 'import torch\n'), ((18662, 18686), 'torch.tensor', 'torch.tensor', (['pixel_mean'], {}), '(pixel_mean)\n', (18674, 18686), False, 'import torch\n'), ((18752, 18775), 'torch.tensor', 'torch.tensor', (['pixel_std'], {}), '(pixel_std)\n', (18764, 18775), False, 'import torch\n'), ((21810, 21845), 'torch.Tensor', 'torch.Tensor', (['cfg.MODEL.PIXEL_MEAN1'], {}), '(cfg.MODEL.PIXEL_MEAN1)\n', (21822, 21845), False, 'import torch\n'), ((21904, 21938), 'torch.Tensor', 'torch.Tensor', (['cfg.MODEL.PIXEL_STD1'], {}), '(cfg.MODEL.PIXEL_STD1)\n', (21916, 21938), False, 'import torch\n'), ((6000, 6033), 'torch.transpose', 'torch.transpose', (['rel_logits', '(2)', '(4)'], {}), '(rel_logits, 2, 4)\n', (6015, 6033), False, 'import torch\n')]
import sys import numpy as np file = sys.argv[-1] with open(file) as f: cnt = f.readlines() count = [] distortion = [] calibration = [] linf = [] for line in cnt: if line.startswith('Adversarial Example Found Successfully:'): count.append(int(line.split(' ')[-2])) distortion.append(eval(line.split(' ')[-6])) elif line.startswith('1 Predicted label'): calibration.append(eval(line.split(' ')[-3])) linf.append(eval(line.split(' ')[-2])) print('len:', len(count)) print('count:', np.mean(count), np.median(count), np.min(count), np.max(count)) print('distortion:', np.mean(distortion), np.median(distortion), np.min(distortion), np.max(distortion)) if len(linf) != 0: print('calibration:', np.mean(calibration), np.median(calibration), np.min(calibration), np.max(calibration)) print('linf:', np.mean(linf), np.median(linf), np.min(linf), np.max(linf))
[ "numpy.median", "numpy.min", "numpy.mean", "numpy.max" ]
[((493, 507), 'numpy.mean', 'np.mean', (['count'], {}), '(count)\n', (500, 507), True, 'import numpy as np\n'), ((509, 525), 'numpy.median', 'np.median', (['count'], {}), '(count)\n', (518, 525), True, 'import numpy as np\n'), ((527, 540), 'numpy.min', 'np.min', (['count'], {}), '(count)\n', (533, 540), True, 'import numpy as np\n'), ((542, 555), 'numpy.max', 'np.max', (['count'], {}), '(count)\n', (548, 555), True, 'import numpy as np\n'), ((578, 597), 'numpy.mean', 'np.mean', (['distortion'], {}), '(distortion)\n', (585, 597), True, 'import numpy as np\n'), ((599, 620), 'numpy.median', 'np.median', (['distortion'], {}), '(distortion)\n', (608, 620), True, 'import numpy as np\n'), ((622, 640), 'numpy.min', 'np.min', (['distortion'], {}), '(distortion)\n', (628, 640), True, 'import numpy as np\n'), ((642, 660), 'numpy.max', 'np.max', (['distortion'], {}), '(distortion)\n', (648, 660), True, 'import numpy as np\n'), ((707, 727), 'numpy.mean', 'np.mean', (['calibration'], {}), '(calibration)\n', (714, 727), True, 'import numpy as np\n'), ((729, 751), 'numpy.median', 'np.median', (['calibration'], {}), '(calibration)\n', (738, 751), True, 'import numpy as np\n'), ((753, 772), 'numpy.min', 'np.min', (['calibration'], {}), '(calibration)\n', (759, 772), True, 'import numpy as np\n'), ((774, 793), 'numpy.max', 'np.max', (['calibration'], {}), '(calibration)\n', (780, 793), True, 'import numpy as np\n'), ((814, 827), 'numpy.mean', 'np.mean', (['linf'], {}), '(linf)\n', (821, 827), True, 'import numpy as np\n'), ((829, 844), 'numpy.median', 'np.median', (['linf'], {}), '(linf)\n', (838, 844), True, 'import numpy as np\n'), ((846, 858), 'numpy.min', 'np.min', (['linf'], {}), '(linf)\n', (852, 858), True, 'import numpy as np\n'), ((860, 872), 'numpy.max', 'np.max', (['linf'], {}), '(linf)\n', (866, 872), True, 'import numpy as np\n')]
import numpy as np import pytest from artemis.general.nondeterminism_hunting import delete_vars, assert_variable_matches_between_runs, variable_matches_between_runs, \ reset_variable_tracker def _runs_are_the_same(var_gen_1, var_gen_2, use_assert = False): delete_vars(['_test_random_var_32r5477w32']) for run, gen in [(0, var_gen_1), (1, var_gen_2)]: reset_variable_tracker() for v in gen: if use_assert: assert_variable_matches_between_runs(v, '_test_random_var_32r5477w32') else: its_a_match=variable_matches_between_runs(v, '_test_random_var_32r5477w32') if run==0: assert its_a_match is None else: if not its_a_match: return False return True def test_variable_matches_between_runs(): rng1 = np.random.RandomState(1234) gen1 = (rng1.randn(3, 4) for _ in range(5)) rng2 = np.random.RandomState(1234) gen2 = (rng2.randn(3, 4) for _ in range(5)) assert _runs_are_the_same(gen1, gen2) rng = np.random.RandomState(1234) gen1 = (rng.randn(3, 4) for _ in range(5)) gen2 = (rng.randn(3, 4) for _ in range(5)) assert not _runs_are_the_same(gen1, gen2) gen1 = (i for i in range(5)) gen2 = (i for i in range(5)) assert _runs_are_the_same(gen1, gen2) gen1 = (i for i in range(5)) gen2 = (i if i<4 else 7 for i in range(5)) assert not _runs_are_the_same(gen1, gen2) def test_assert_variable_matches_between_runs(): rng1 = np.random.RandomState(1234) gen1 = (rng1.randn(3, 4) for _ in range(5)) rng2 = np.random.RandomState(1234) gen2 = (rng2.randn(3, 4) for _ in range(5)) _runs_are_the_same(gen1, gen2, use_assert=True) rng = np.random.RandomState(1234) gen1 = (rng.randn(3, 4) for _ in range(5)) gen2 = (rng.randn(3, 4) for _ in range(5)) with pytest.raises(AssertionError): _runs_are_the_same(gen1, gen2, use_assert=True) gen1 = (i for i in range(5)) gen2 = (i for i in range(5)) _runs_are_the_same(gen1, gen2, use_assert=True) gen1 = (i for i in range(5)) gen2 = (i if i<4 else 7 for i in range(5)) with pytest.raises(AssertionError): _runs_are_the_same(gen1, gen2, use_assert=True) if __name__ == '__main__': test_variable_matches_between_runs() test_assert_variable_matches_between_runs()
[ "artemis.general.nondeterminism_hunting.delete_vars", "numpy.random.RandomState", "artemis.general.nondeterminism_hunting.variable_matches_between_runs", "pytest.raises", "artemis.general.nondeterminism_hunting.reset_variable_tracker", "artemis.general.nondeterminism_hunting.assert_variable_matches_between_runs" ]
[((268, 312), 'artemis.general.nondeterminism_hunting.delete_vars', 'delete_vars', (["['_test_random_var_32r5477w32']"], {}), "(['_test_random_var_32r5477w32'])\n", (279, 312), False, 'from artemis.general.nondeterminism_hunting import delete_vars, assert_variable_matches_between_runs, variable_matches_between_runs, reset_variable_tracker\n'), ((891, 918), 'numpy.random.RandomState', 'np.random.RandomState', (['(1234)'], {}), '(1234)\n', (912, 918), True, 'import numpy as np\n'), ((978, 1005), 'numpy.random.RandomState', 'np.random.RandomState', (['(1234)'], {}), '(1234)\n', (999, 1005), True, 'import numpy as np\n'), ((1107, 1134), 'numpy.random.RandomState', 'np.random.RandomState', (['(1234)'], {}), '(1234)\n', (1128, 1134), True, 'import numpy as np\n'), ((1574, 1601), 'numpy.random.RandomState', 'np.random.RandomState', (['(1234)'], {}), '(1234)\n', (1595, 1601), True, 'import numpy as np\n'), ((1661, 1688), 'numpy.random.RandomState', 'np.random.RandomState', (['(1234)'], {}), '(1234)\n', (1682, 1688), True, 'import numpy as np\n'), ((1800, 1827), 'numpy.random.RandomState', 'np.random.RandomState', (['(1234)'], {}), '(1234)\n', (1821, 1827), True, 'import numpy as np\n'), ((375, 399), 'artemis.general.nondeterminism_hunting.reset_variable_tracker', 'reset_variable_tracker', ([], {}), '()\n', (397, 399), False, 'from artemis.general.nondeterminism_hunting import delete_vars, assert_variable_matches_between_runs, variable_matches_between_runs, reset_variable_tracker\n'), ((1931, 1960), 'pytest.raises', 'pytest.raises', (['AssertionError'], {}), '(AssertionError)\n', (1944, 1960), False, 'import pytest\n'), ((2227, 2256), 'pytest.raises', 'pytest.raises', (['AssertionError'], {}), '(AssertionError)\n', (2240, 2256), False, 'import pytest\n'), ((465, 535), 'artemis.general.nondeterminism_hunting.assert_variable_matches_between_runs', 'assert_variable_matches_between_runs', (['v', '"""_test_random_var_32r5477w32"""'], {}), "(v, '_test_random_var_32r5477w32')\n", (501, 535), False, 'from artemis.general.nondeterminism_hunting import delete_vars, assert_variable_matches_between_runs, variable_matches_between_runs, reset_variable_tracker\n'), ((582, 645), 'artemis.general.nondeterminism_hunting.variable_matches_between_runs', 'variable_matches_between_runs', (['v', '"""_test_random_var_32r5477w32"""'], {}), "(v, '_test_random_var_32r5477w32')\n", (611, 645), False, 'from artemis.general.nondeterminism_hunting import delete_vars, assert_variable_matches_between_runs, variable_matches_between_runs, reset_variable_tracker\n')]
# Copyright 2018 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import numpy as np import pytest import tensorflow as tf from adnc.model.utils import layer_norm @pytest.fixture() def session(): with tf.Session() as sess: yield sess tf.reset_default_graph() @pytest.fixture() def np_rng(): seed = np.random.randint(1, 999) return np.random.RandomState(seed) def test_layer_norm(session, np_rng): np_weights = np_rng.normal(0, 1, [64, 128]) weights = tf.constant(np_weights, dtype=tf.float32) weights_ln = layer_norm(weights, 'test') session.run(tf.global_variables_initializer()) weights_ln = session.run(weights_ln) assert weights_ln.shape == (64, 128)
[ "adnc.model.utils.layer_norm", "tensorflow.global_variables_initializer", "tensorflow.reset_default_graph", "pytest.fixture", "tensorflow.Session", "tensorflow.constant", "numpy.random.RandomState", "numpy.random.randint" ]
[((751, 767), 'pytest.fixture', 'pytest.fixture', ([], {}), '()\n', (765, 767), False, 'import pytest\n'), ((864, 880), 'pytest.fixture', 'pytest.fixture', ([], {}), '()\n', (878, 880), False, 'import pytest\n'), ((837, 861), 'tensorflow.reset_default_graph', 'tf.reset_default_graph', ([], {}), '()\n', (859, 861), True, 'import tensorflow as tf\n'), ((906, 931), 'numpy.random.randint', 'np.random.randint', (['(1)', '(999)'], {}), '(1, 999)\n', (923, 931), True, 'import numpy as np\n'), ((943, 970), 'numpy.random.RandomState', 'np.random.RandomState', (['seed'], {}), '(seed)\n', (964, 970), True, 'import numpy as np\n'), ((1073, 1114), 'tensorflow.constant', 'tf.constant', (['np_weights'], {'dtype': 'tf.float32'}), '(np_weights, dtype=tf.float32)\n', (1084, 1114), True, 'import tensorflow as tf\n'), ((1132, 1159), 'adnc.model.utils.layer_norm', 'layer_norm', (['weights', '"""test"""'], {}), "(weights, 'test')\n", (1142, 1159), False, 'from adnc.model.utils import layer_norm\n'), ((792, 804), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (802, 804), True, 'import tensorflow as tf\n'), ((1177, 1210), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (1208, 1210), True, 'import tensorflow as tf\n')]
from scipy.integrate import quad,dblquad import numpy as np from scipy.special import gamma from scipy.special import gammainc def poisson_integrand(tau, rho, beta, fm=1, K=1, alpha=2): #lambda = beta*f(m)*rho*tau L = np.array([(tau*beta*rho*fm)**k/gamma(k+1) for k in range(K)]) return (1-np.exp(-tau*beta*rho*fm)*np.sum(L))*tau**(-alpha-1) def exponential_integrand(tau, rho, beta, fm=1, K=1, alpha=2): scale = tau*rho*beta*fm return np.exp(-K/scale)*tau**(-alpha-1) def exponential_pdf(kappa,scale=1): return np.exp(-kappa/scale)/scale def weibull_integrand(tau, rho, beta, fm=1, K=1, alpha=2, shape=2): scale = tau*rho*beta*fm/gamma(1+1/shape) #mean = tau*rho*beta return np.exp(-(K/scale)**shape)*tau**(-alpha-1) def weibull_pdf(kappa,scale=1,shape=2): return (shape/scale)*(kappa/scale)**(shape-1)*np.exp(-(kappa/scale)**shape) def frechet_integrand(tau, rho, beta, fm=1, K=1, alpha=2, shape=2): scale = tau*rho*beta*fm/gamma(1-1/shape) return (1-np.exp(-(K/scale)**(-shape)))*tau**(-alpha-1) def frechet_pdf(kappa,scale=1,shape=2): return (shape/scale)*(kappa/scale)**(-shape-1)*np.exp(-(kappa/scale)**(-shape)) def gamma_special_integrand(tau, rho, beta, fm=1, K=1, alpha=2 ,z = 0.): #play with the scale/shape instead of just the scale, such that variance != mean^2 #z = 0 is equivalent to the exponential param = tau*rho*beta*fm return (1 - gammainc(param**z,K/param**(1-z)))*tau**(-alpha-1) def kernel(rho, beta, fm=1, K=1, alpha=2., tmin=1, T=np.inf, integrand=exponential_integrand, args=tuple()): Z = (tmin**(-alpha)-T**(-alpha))/alpha _args = (rho,beta,fm,K,alpha,*args) return quad(integrand,tmin,T,args=_args)[0]/Z #same as kernel, but put beta first for integration and multiply by Q(beta) def kernel2(beta, Q, rho, fm=1, K=1, alpha=2.,tmin=1, T=np.inf, integrand=exponential_integrand, args=tuple()): _args = (rho,beta,fm,K,alpha, *args) return Q(beta)*quad(integrand,tmin,T,args=_args)[0] def kernel_het_beta(rho, fm=1, K=1, alpha=2., tmin=1, T=np.inf, integrand=exponential_integrand,args=tuple(), Q=lambda b: np.exp(-b),betalim=(0,np.inf)): Z = (tmin**(-alpha)-T**(-alpha))/alpha _args=(Q,rho,fm,K,alpha,tmin,T,integrand,args) return quad(kernel2,betalim[0],betalim[1],args=_args)[0]/Z if __name__ == '__main__': import matplotlib.pyplot as plt alpha_list = [0.5,1.,1.5,2.] rho_list = np.logspace(-3,0,100) beta = 0.1 for alpha in alpha_list: label=fr"$\alpha = {alpha}$" kernel_list = [kernel(rho,alpha,beta,K=0.1,tmin=1, integrand=gamma_integrand, args=tuple()) for rho in rho_list] plt.loglog(rho_list,kernel_list, '-',label=label) plt.loglog(rho_list,rho_list**alpha, '--',label=label) plt.legend() plt.xlabel(r"$\rho$") plt.ylabel(r"$\theta_m(\rho)$") plt.show()
[ "matplotlib.pyplot.loglog", "matplotlib.pyplot.show", "numpy.sum", "scipy.integrate.quad", "numpy.logspace", "matplotlib.pyplot.legend", "scipy.special.gammainc", "numpy.exp", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "scipy.special.gamma" ]
[((2512, 2535), 'numpy.logspace', 'np.logspace', (['(-3)', '(0)', '(100)'], {}), '(-3, 0, 100)\n', (2523, 2535), True, 'import numpy as np\n'), ((2945, 2957), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (2955, 2957), True, 'import matplotlib.pyplot as plt\n'), ((2962, 2983), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""$\\\\rho$"""'], {}), "('$\\\\rho$')\n", (2972, 2983), True, 'import matplotlib.pyplot as plt\n'), ((2988, 3020), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""$\\\\theta_m(\\\\rho)$"""'], {}), "('$\\\\theta_m(\\\\rho)$')\n", (2998, 3020), True, 'import matplotlib.pyplot as plt\n'), ((3024, 3034), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3032, 3034), True, 'import matplotlib.pyplot as plt\n'), ((458, 476), 'numpy.exp', 'np.exp', (['(-K / scale)'], {}), '(-K / scale)\n', (464, 476), True, 'import numpy as np\n'), ((539, 561), 'numpy.exp', 'np.exp', (['(-kappa / scale)'], {}), '(-kappa / scale)\n', (545, 561), True, 'import numpy as np\n'), ((663, 683), 'scipy.special.gamma', 'gamma', (['(1 + 1 / shape)'], {}), '(1 + 1 / shape)\n', (668, 683), False, 'from scipy.special import gamma\n'), ((712, 741), 'numpy.exp', 'np.exp', (['(-(K / scale) ** shape)'], {}), '(-(K / scale) ** shape)\n', (718, 741), True, 'import numpy as np\n'), ((845, 878), 'numpy.exp', 'np.exp', (['(-(kappa / scale) ** shape)'], {}), '(-(kappa / scale) ** shape)\n', (851, 878), True, 'import numpy as np\n'), ((972, 992), 'scipy.special.gamma', 'gamma', (['(1 - 1 / shape)'], {}), '(1 - 1 / shape)\n', (977, 992), False, 'from scipy.special import gamma\n'), ((1141, 1175), 'numpy.exp', 'np.exp', (['(-(kappa / scale) ** -shape)'], {}), '(-(kappa / scale) ** -shape)\n', (1147, 1175), True, 'import numpy as np\n'), ((2211, 2221), 'numpy.exp', 'np.exp', (['(-b)'], {}), '(-b)\n', (2217, 2221), True, 'import numpy as np\n'), ((2827, 2878), 'matplotlib.pyplot.loglog', 'plt.loglog', (['rho_list', 'kernel_list', '"""-"""'], {'label': 'label'}), "(rho_list, kernel_list, '-', label=label)\n", (2837, 2878), True, 'import matplotlib.pyplot as plt\n'), ((2885, 2943), 'matplotlib.pyplot.loglog', 'plt.loglog', (['rho_list', '(rho_list ** alpha)', '"""--"""'], {'label': 'label'}), "(rho_list, rho_list ** alpha, '--', label=label)\n", (2895, 2943), True, 'import matplotlib.pyplot as plt\n'), ((1003, 1033), 'numpy.exp', 'np.exp', (['(-(K / scale) ** -shape)'], {}), '(-(K / scale) ** -shape)\n', (1009, 1033), True, 'import numpy as np\n'), ((1423, 1465), 'scipy.special.gammainc', 'gammainc', (['(param ** z)', '(K / param ** (1 - z))'], {}), '(param ** z, K / param ** (1 - z))\n', (1431, 1465), False, 'from scipy.special import gammainc\n'), ((1700, 1736), 'scipy.integrate.quad', 'quad', (['integrand', 'tmin', 'T'], {'args': '_args'}), '(integrand, tmin, T, args=_args)\n', (1704, 1736), False, 'from scipy.integrate import quad, dblquad\n'), ((2010, 2046), 'scipy.integrate.quad', 'quad', (['integrand', 'tmin', 'T'], {'args': '_args'}), '(integrand, tmin, T, args=_args)\n', (2014, 2046), False, 'from scipy.integrate import quad, dblquad\n'), ((2348, 2397), 'scipy.integrate.quad', 'quad', (['kernel2', 'betalim[0]', 'betalim[1]'], {'args': '_args'}), '(kernel2, betalim[0], betalim[1], args=_args)\n', (2352, 2397), False, 'from scipy.integrate import quad, dblquad\n'), ((258, 270), 'scipy.special.gamma', 'gamma', (['(k + 1)'], {}), '(k + 1)\n', (263, 270), False, 'from scipy.special import gamma\n'), ((303, 333), 'numpy.exp', 'np.exp', (['(-tau * beta * rho * fm)'], {}), '(-tau * beta * rho * fm)\n', (309, 333), True, 'import numpy as np\n'), ((328, 337), 'numpy.sum', 'np.sum', (['L'], {}), '(L)\n', (334, 337), True, 'import numpy as np\n')]
import cv2 import numpy as np import random import argparse import logging import glog as log import os import sys from stcgan.shadow6.nets import * import stcgan.shadow6.module as module import glob import mxnet as mx # import pydevd # pydevd.settrace('172.17.122.65', port=10203, stdoutToServer=True, stderrToServer=True) def get_args(arglist=None): parser = argparse.ArgumentParser( description='Shadow Removel Params') parser.add_argument('-dbprefix', type=str, default='./ISTD_Dataset/train', help='path of generated dataset prefix') parser.add_argument('-valprefix', type=str, default='./', help='path of generated dataset prefix') parser.add_argument('-logfn', type=str, default='deshadow_train', help='path to save log file') parser.add_argument('-gpuid', type=int, default=0, help='gpu id, -1 for cpu') parser.add_argument('-lr', type=float, default=2e-3, help="learning rate") return parser.parse_args() if arglist is None else parser.parse_args(arglist) def ferr(label, pred): pred = pred.ravel() label = label.ravel() return np.abs(label - (pred > 0.5)).sum() / label.shape[0] if __name__ == '__main__': args = get_args() # environment setting log_file_name = args.logfn + '.log' log_file = open(log_file_name, 'w') log_file.close() logger = logging.getLogger() logger.setLevel(logging.INFO) fh = logging.FileHandler(log_file_name) logger.addHandler(fh) if args.gpuid >= 0: context = mx.gpu(args.gpuid) else: context = mx.cpu() if not os.path.exists(args.dbprefix): logging.info( "training data not exist, pls check if the file path is correct.") sys.exit(0) if not os.path.exists("./result"): os.mkdir("./result") if not os.path.exists("./val_result"): os.mkdir("./val_result") if not os.path.exists("./trained_params"): os.mkdir("./trained_params") mstr = 'train' train_s_dir = os.path.join(args.dbprefix, '%s_A' % mstr) # with shadow train_m_dir = os.path.join(args.dbprefix, '%s_B' % mstr) # shadow mask train_g_dir = os.path.join(args.dbprefix, '%s_C' % mstr) # gt val_s_dir = os.path.join(args.valprefix, 'test') # val_m_dir = os.path.join(args.valprefix, 'test_B') # val_g_dir = os.path.join(args.valprefix, 'test_C') assert os.path.exists(train_s_dir), '%s_A not exist!' % mstr assert os.path.exists(train_m_dir), '%s_B not exist!' % mstr assert os.path.exists(train_g_dir), '%s_C not exist!' % mstr filenms = os.listdir(train_s_dir) filenms_test = os.listdir(val_s_dir) # use rec file to load image. index = list(range(len(filenms))) index2 = list(range(len(filenms_test))) lr = args.lr beta1 = 0.5 batch_size = 16 # rand_shape = (batch_size, 100) num_epoch = 1000 width = 256 height = 256 data_g1_shape = (batch_size, 3, width, height) data_g2_shape = (batch_size, 4, width, height) data_d1_shape = (batch_size, 4, width, height) data_d2_shape = (batch_size, 7, width, height) # initialize net gmod = module.GANModule( shadow_det_net_G1_v2(), shadow_removal_net_G2_v2(), shadow_det_net_D_v2(), bce_loss_v2(), l1_loss_v2(), context=context, data_g1_shape=data_g1_shape, data_g2_shape=data_g2_shape, data_d1_shape=data_d1_shape, data_d2_shape=data_d2_shape, hw=int(width / 32) ) gmod.init_params(mx.init.Uniform(0.2)) gmod.init_optimizer(lr) metric_acc1 = mx.metric.CustomMetric(ferr) metric_acc2 = mx.metric.CustomMetric(ferr) # load data for epoch in range(num_epoch): metric_acc1.reset() metric_acc2.reset() random.shuffle(index) random.shuffle(index2) data_s = np.zeros((batch_size, 3, width, height)) data_m = np.zeros((batch_size, 1, width, height)) data_g = np.zeros((batch_size, 3, width, height)) for i in range(len(index) // batch_size): for j in range(batch_size): data_s_tmp = cv2.resize(cv2.imread(os.path.join( train_s_dir, filenms[index[i * batch_size + j]])) / 255.0, (width, height)) data_m_tmp = cv2.resize(cv2.imread(os.path.join( train_m_dir, filenms[index[i * batch_size + j]]), cv2.IMREAD_GRAYSCALE) / 255.0, (width, height)) data_m_tmp[data_m_tmp > 0.5] = 1.0 data_m_tmp[data_m_tmp <= 0.5] = 0.0 data_g_tmp = cv2.resize(cv2.imread(os.path.join( train_g_dir, filenms[index[i * batch_size + j]])) / 255, (width, height)) # random crop random_x = random.randint(0, data_s_tmp.shape[1] - height) random_y = random.randint(0, data_s_tmp.shape[0] - width) data_s[j, :, :, :] = np.transpose( data_s_tmp[random_y: random_y + width, random_x: random_x + height, :], (2, 0, 1)) data_m[j, 0, :, :] = data_m_tmp[random_y: random_y + width, random_x: random_x + height] data_g[j, :, :, :] = np.transpose( data_g_tmp[random_y: random_y + width, random_x: random_x + height, :], (2, 0, 1)) gmod.update(mx.nd.array(data_s, ctx=context), mx.nd.array( data_m, ctx=context), mx.nd.array(data_g, ctx=context)) gmod.temp_label[:] = 0.0 metric_acc1.update([gmod.temp_label], gmod.outputs_fake1) metric_acc2.update([gmod.temp_label], gmod.outputs_fake2) gmod.temp_label[:] = 1.0 metric_acc1.update([gmod.temp_label], gmod.outputs_real1) metric_acc2.update([gmod.temp_label], gmod.outputs_real2) # training results log.info('epoch: %d, bce_loss is %.5f, adver_d1_loss is %.5f, l1_loss is %.5f, adver_d2_loss is %.5f'%( epoch,gmod.loss[0, 0], gmod.loss[0, 1], gmod.loss[0, 2], gmod.loss[0, 3])) if epoch % 500 == 0 or epoch == num_epoch - 1: gmod.modG1.save_params('G1_epoch_{}.params'.format(epoch)) gmod.modG2.save_params('G2_epoch_{}.params'.format(epoch)) gmod.modD1.save_params('D1_epoch_{}.params'.format(epoch)) gmod.modD2.save_params('D2_epoch_{}.params'.format(epoch)) img_dir = glob.glob("test/*") img_name = [] for i in img_dir: value = i[i.find("test/") + 5:] # print(value) # img_name.append(value) # dir_length = len(img_dir) # for i in range(dir_length): # img=cv2.imread(os.path.join(val_s_dir, i[i.find("test/") + 5:])) img_gt = cv2.imread(os.path.join( val_s_dir, i[i.find("test/") + 5:])) # w = cv2.imread(os.path.join(val_s_dir, i[i.find("test/") + 5:]))[1] # h = cv2.imread(os.path.join(val_s_dir, i[i.find("test/") + 5:]))[0] data_s_tmp = cv2.resize(cv2.imread(os.path.join( val_s_dir, i[i.find("test/") + 5:])) / 255.0, (width, height)) # data_m_tmp = cv2.resize(cv2.imread(os.path.join(val_m_dir, filenms_test[index2[i]]), # cv2.IMREAD_GRAYSCALE), (width, height)) # data_g_tmp = cv2.resize(cv2.imread(os.path.join( # val_g_dir, filenms_test[index2[i]])), (width, height)) # random crop random_x = random.randint(0, data_s_tmp.shape[1] - height) random_y = random.randint(0, data_s_tmp.shape[0] - width) data_s[0, :, :, :] = np.transpose( data_s_tmp[random_y: random_y + width, random_x: random_x + height, :], (2, 0, 1)) # data_m[0, 0, :, :] = data_m_tmp[random_y: random_y + # width, random_x: random_x + height] # data_g[0, :, :, :] = np.transpose( # data_g_tmp[random_y: random_y + width, random_x: random_x + height, :], (2, 0, 1)) gmod.forward(mx.nd.array(data_s, ctx=context)) # cv2.imwrite('./val_result/sin_{}_{}.jpg'.format(epoch, i), # np.round((np.transpose(data_s[0, :, :, :], (1, 2, 0))) * 255)) # cv2.imwrite('./val_result/min_{}_{}.jpg'.format(epoch, i), # data_m_tmp) # cv2.imwrite('./val_result/gin_{}_{}.jpg'.format(epoch, i), # data_g_tmp) # cv2.imwrite('./SBU/shadow_free/'+img_name[i],#shadow free # np.clip(np.round((np.transpose(gmod.temp_outG2.asnumpy()[0, :, :, :], (1, 2, 0)) + 1) / 2 * 255), 0, 255).astype(np.uint8)) # cv2.imwrite('./SBU/shadow_mask/'+img_name[i], # np.round((np.transpose(gmod.temp_outG1.asnumpy()[0, :, :, :], (1, 2, 0)) + 1) / 2 * 255)) # shadow_remove # shadow_mask img = np.clip(np.round(np.transpose(gmod.temp_outG2.asnumpy()[ 0, :, :, :], (1, 2, 0)) * 255), 0, 255).astype(np.uint8) img = cv2.resize(img, (img_gt.shape[1], img_gt.shape[0])) img2 = np.round((np.transpose(gmod.temp_outG1.asnumpy()[0, :, :, :], (1, 2, 0)) * 255).astype(np.uint8)) img2 = cv2.resize(img2, (img_gt.shape[1], img_gt.shape[0])) cv2.imwrite('result/shadow_remove/' + value, img) cv2.imwrite('result/shadow_mask/' + value, img2)
[ "os.mkdir", "numpy.abs", "argparse.ArgumentParser", "random.shuffle", "glob.glob", "mxnet.metric.CustomMetric", "os.path.join", "logging.FileHandler", "random.randint", "glog.info", "cv2.imwrite", "os.path.exists", "numpy.transpose", "mxnet.gpu", "cv2.resize", "mxnet.cpu", "mxnet.nd.array", "os.listdir", "sys.exit", "mxnet.init.Uniform", "numpy.zeros", "logging.info", "logging.getLogger" ]
[((369, 429), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Shadow Removel Params"""'}), "(description='Shadow Removel Params')\n", (392, 429), False, 'import argparse\n'), ((1430, 1449), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (1447, 1449), False, 'import logging\n'), ((1493, 1527), 'logging.FileHandler', 'logging.FileHandler', (['log_file_name'], {}), '(log_file_name)\n', (1512, 1527), False, 'import logging\n'), ((2082, 2124), 'os.path.join', 'os.path.join', (['args.dbprefix', "('%s_A' % mstr)"], {}), "(args.dbprefix, '%s_A' % mstr)\n", (2094, 2124), False, 'import os\n'), ((2158, 2200), 'os.path.join', 'os.path.join', (['args.dbprefix', "('%s_B' % mstr)"], {}), "(args.dbprefix, '%s_B' % mstr)\n", (2170, 2200), False, 'import os\n'), ((2234, 2276), 'os.path.join', 'os.path.join', (['args.dbprefix', "('%s_C' % mstr)"], {}), "(args.dbprefix, '%s_C' % mstr)\n", (2246, 2276), False, 'import os\n'), ((2299, 2335), 'os.path.join', 'os.path.join', (['args.valprefix', '"""test"""'], {}), "(args.valprefix, 'test')\n", (2311, 2335), False, 'import os\n'), ((2461, 2488), 'os.path.exists', 'os.path.exists', (['train_s_dir'], {}), '(train_s_dir)\n', (2475, 2488), False, 'import os\n'), ((2526, 2553), 'os.path.exists', 'os.path.exists', (['train_m_dir'], {}), '(train_m_dir)\n', (2540, 2553), False, 'import os\n'), ((2591, 2618), 'os.path.exists', 'os.path.exists', (['train_g_dir'], {}), '(train_g_dir)\n', (2605, 2618), False, 'import os\n'), ((2659, 2682), 'os.listdir', 'os.listdir', (['train_s_dir'], {}), '(train_s_dir)\n', (2669, 2682), False, 'import os\n'), ((2702, 2723), 'os.listdir', 'os.listdir', (['val_s_dir'], {}), '(val_s_dir)\n', (2712, 2723), False, 'import os\n'), ((3682, 3710), 'mxnet.metric.CustomMetric', 'mx.metric.CustomMetric', (['ferr'], {}), '(ferr)\n', (3704, 3710), True, 'import mxnet as mx\n'), ((3729, 3757), 'mxnet.metric.CustomMetric', 'mx.metric.CustomMetric', (['ferr'], {}), '(ferr)\n', (3751, 3757), True, 'import mxnet as mx\n'), ((1597, 1615), 'mxnet.gpu', 'mx.gpu', (['args.gpuid'], {}), '(args.gpuid)\n', (1603, 1615), True, 'import mxnet as mx\n'), ((1644, 1652), 'mxnet.cpu', 'mx.cpu', ([], {}), '()\n', (1650, 1652), True, 'import mxnet as mx\n'), ((1665, 1694), 'os.path.exists', 'os.path.exists', (['args.dbprefix'], {}), '(args.dbprefix)\n', (1679, 1694), False, 'import os\n'), ((1704, 1783), 'logging.info', 'logging.info', (['"""training data not exist, pls check if the file path is correct."""'], {}), "('training data not exist, pls check if the file path is correct.')\n", (1716, 1783), False, 'import logging\n'), ((1805, 1816), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (1813, 1816), False, 'import sys\n'), ((1828, 1854), 'os.path.exists', 'os.path.exists', (['"""./result"""'], {}), "('./result')\n", (1842, 1854), False, 'import os\n'), ((1864, 1884), 'os.mkdir', 'os.mkdir', (['"""./result"""'], {}), "('./result')\n", (1872, 1884), False, 'import os\n'), ((1896, 1926), 'os.path.exists', 'os.path.exists', (['"""./val_result"""'], {}), "('./val_result')\n", (1910, 1926), False, 'import os\n'), ((1936, 1960), 'os.mkdir', 'os.mkdir', (['"""./val_result"""'], {}), "('./val_result')\n", (1944, 1960), False, 'import os\n'), ((1972, 2006), 'os.path.exists', 'os.path.exists', (['"""./trained_params"""'], {}), "('./trained_params')\n", (1986, 2006), False, 'import os\n'), ((2016, 2044), 'os.mkdir', 'os.mkdir', (['"""./trained_params"""'], {}), "('./trained_params')\n", (2024, 2044), False, 'import os\n'), ((3612, 3632), 'mxnet.init.Uniform', 'mx.init.Uniform', (['(0.2)'], {}), '(0.2)\n', (3627, 3632), True, 'import mxnet as mx\n'), ((3873, 3894), 'random.shuffle', 'random.shuffle', (['index'], {}), '(index)\n', (3887, 3894), False, 'import random\n'), ((3903, 3925), 'random.shuffle', 'random.shuffle', (['index2'], {}), '(index2)\n', (3917, 3925), False, 'import random\n'), ((3943, 3983), 'numpy.zeros', 'np.zeros', (['(batch_size, 3, width, height)'], {}), '((batch_size, 3, width, height))\n', (3951, 3983), True, 'import numpy as np\n'), ((4001, 4041), 'numpy.zeros', 'np.zeros', (['(batch_size, 1, width, height)'], {}), '((batch_size, 1, width, height))\n', (4009, 4041), True, 'import numpy as np\n'), ((4059, 4099), 'numpy.zeros', 'np.zeros', (['(batch_size, 3, width, height)'], {}), '((batch_size, 3, width, height))\n', (4067, 4099), True, 'import numpy as np\n'), ((6537, 6556), 'glob.glob', 'glob.glob', (['"""test/*"""'], {}), "('test/*')\n", (6546, 6556), False, 'import glob\n'), ((5978, 6173), 'glog.info', 'log.info', (["('epoch: %d, bce_loss is %.5f, adver_d1_loss is %.5f, l1_loss is %.5f, adver_d2_loss is %.5f'\n % (epoch, gmod.loss[0, 0], gmod.loss[0, 1], gmod.loss[0, 2], gmod.loss\n [0, 3]))"], {}), "(\n 'epoch: %d, bce_loss is %.5f, adver_d1_loss is %.5f, l1_loss is %.5f, adver_d2_loss is %.5f'\n % (epoch, gmod.loss[0, 0], gmod.loss[0, 1], gmod.loss[0, 2], gmod.loss\n [0, 3]))\n", (5986, 6173), True, 'import glog as log\n'), ((7683, 7730), 'random.randint', 'random.randint', (['(0)', '(data_s_tmp.shape[1] - height)'], {}), '(0, data_s_tmp.shape[1] - height)\n', (7697, 7730), False, 'import random\n'), ((7754, 7800), 'random.randint', 'random.randint', (['(0)', '(data_s_tmp.shape[0] - width)'], {}), '(0, data_s_tmp.shape[0] - width)\n', (7768, 7800), False, 'import random\n'), ((7834, 7931), 'numpy.transpose', 'np.transpose', (['data_s_tmp[random_y:random_y + width, random_x:random_x + height, :]', '(2, 0, 1)'], {}), '(data_s_tmp[random_y:random_y + width, random_x:random_x +\n height, :], (2, 0, 1))\n', (7846, 7931), True, 'import numpy as np\n'), ((9382, 9433), 'cv2.resize', 'cv2.resize', (['img', '(img_gt.shape[1], img_gt.shape[0])'], {}), '(img, (img_gt.shape[1], img_gt.shape[0]))\n', (9392, 9433), False, 'import cv2\n'), ((9572, 9624), 'cv2.resize', 'cv2.resize', (['img2', '(img_gt.shape[1], img_gt.shape[0])'], {}), '(img2, (img_gt.shape[1], img_gt.shape[0]))\n', (9582, 9624), False, 'import cv2\n'), ((9638, 9687), 'cv2.imwrite', 'cv2.imwrite', (["('result/shadow_remove/' + value)", 'img'], {}), "('result/shadow_remove/' + value, img)\n", (9649, 9687), False, 'import cv2\n'), ((9725, 9773), 'cv2.imwrite', 'cv2.imwrite', (["('result/shadow_mask/' + value)", 'img2'], {}), "('result/shadow_mask/' + value, img2)\n", (9736, 9773), False, 'import cv2\n'), ((1187, 1215), 'numpy.abs', 'np.abs', (['(label - (pred > 0.5))'], {}), '(label - (pred > 0.5))\n', (1193, 1215), True, 'import numpy as np\n'), ((4854, 4901), 'random.randint', 'random.randint', (['(0)', '(data_s_tmp.shape[1] - height)'], {}), '(0, data_s_tmp.shape[1] - height)\n', (4868, 4901), False, 'import random\n'), ((4929, 4975), 'random.randint', 'random.randint', (['(0)', '(data_s_tmp.shape[0] - width)'], {}), '(0, data_s_tmp.shape[0] - width)\n', (4943, 4975), False, 'import random\n'), ((5013, 5110), 'numpy.transpose', 'np.transpose', (['data_s_tmp[random_y:random_y + width, random_x:random_x + height, :]', '(2, 0, 1)'], {}), '(data_s_tmp[random_y:random_y + width, random_x:random_x +\n height, :], (2, 0, 1))\n', (5025, 5110), True, 'import numpy as np\n'), ((5320, 5417), 'numpy.transpose', 'np.transpose', (['data_g_tmp[random_y:random_y + width, random_x:random_x + height, :]', '(2, 0, 1)'], {}), '(data_g_tmp[random_y:random_y + width, random_x:random_x +\n height, :], (2, 0, 1))\n', (5332, 5417), True, 'import numpy as np\n'), ((5461, 5493), 'mxnet.nd.array', 'mx.nd.array', (['data_s'], {'ctx': 'context'}), '(data_s, ctx=context)\n', (5472, 5493), True, 'import mxnet as mx\n'), ((5495, 5527), 'mxnet.nd.array', 'mx.nd.array', (['data_m'], {'ctx': 'context'}), '(data_m, ctx=context)\n', (5506, 5527), True, 'import mxnet as mx\n'), ((5546, 5578), 'mxnet.nd.array', 'mx.nd.array', (['data_g'], {'ctx': 'context'}), '(data_g, ctx=context)\n', (5557, 5578), True, 'import mxnet as mx\n'), ((8287, 8319), 'mxnet.nd.array', 'mx.nd.array', (['data_s'], {'ctx': 'context'}), '(data_s, ctx=context)\n', (8298, 8319), True, 'import mxnet as mx\n'), ((4242, 4303), 'os.path.join', 'os.path.join', (['train_s_dir', 'filenms[index[i * batch_size + j]]'], {}), '(train_s_dir, filenms[index[i * batch_size + j]])\n', (4254, 4303), False, 'import os\n'), ((4403, 4464), 'os.path.join', 'os.path.join', (['train_m_dir', 'filenms[index[i * batch_size + j]]'], {}), '(train_m_dir, filenms[index[i * batch_size + j]])\n', (4415, 4464), False, 'import os\n'), ((4689, 4750), 'os.path.join', 'os.path.join', (['train_g_dir', 'filenms[index[i * batch_size + j]]'], {}), '(train_g_dir, filenms[index[i * batch_size + j]])\n', (4701, 4750), False, 'import os\n')]
import sys,os,time,csv,getopt,cv2,argparse import numpy, ctypes, array import numpy as np #import matplotlib as plt from datetime import datetime from ctypes import cdll, c_char_p from skimage.transform import resize from numpy.ctypeslib import ndpointer from lime import lime_image from skimage.segmentation import mark_boundaries import ntpath import scipy.misc from PIL import Image AnnInferenceLib = ctypes.cdll.LoadLibrary('/home/rajy/work/inceptionv4/build/libannmodule.so') inf_fun = AnnInferenceLib.annRunInference inf_fun.restype = ctypes.c_int inf_fun.argtypes = [ctypes.c_void_p, ndpointer(ctypes.c_float, flags="C_CONTIGUOUS"), ctypes.c_size_t, ndpointer(ctypes.c_float, flags="C_CONTIGUOUS"), ctypes.c_size_t] hdl = 0 def PreprocessImage(img, dim): imgw = img.shape[1] imgh = img.shape[0] imgb = np.empty((dim[0], dim[1], 3)) #for inception v4 imgb.fill(1.0) if imgh/imgw > dim[1]/dim[0]: neww = int(imgw * dim[1] / imgh) newh = dim[1] else: newh = int(imgh * dim[0] / imgw) neww = dim[0] offx = int((dim[0] - neww)/2) offy = int((dim[1] - newh)/2) imgc = img.copy()*(2.0/255.0) - 1.0 #print('INFO:: newW:%d newH:%d offx:%d offy: %d' % (neww, newh, offx, offy)) imgb[offy:offy+newh,offx:offx+neww,:] = resize(imgc,(newh,neww),1.0) #im = imgb[:,:,(2,1,0)] return imgb def runInference(img): global hdl imgw = img.shape[1] imgh = img.shape[0] #proc_images.append(im) out_buf = bytearray(1000*4) #out_buf = memoryview(out_buf) out = np.frombuffer(out_buf, dtype=numpy.float32) #im = im.astype(np.float32) inf_fun(hdl, np.ascontiguousarray(img, dtype=np.float32), (img.shape[0]*img.shape[1]*3*4), np.ascontiguousarray(out, dtype=np.float32), len(out_buf)) return out def predict_fn(images): results = np.zeros(shape=(len(images), 1000)) for i in range(len(images)): results[i] = runInference(images[i]) return results def lime_explainer(image, preds): for x in preds.argsort()[0][-5:]: print (x, names[x], preds[0,x]) top_indeces.append(x) tmp = datetime.now() explainer = lime_image.LimeImageExplainer() # Hide color is the color for a superpixel turned OFF. Alternatively, if it is NONE, the superpixel will be replaced by the average of its pixels explanation = explainer.explain_instance(image, predict_fn, top_labels=5, hide_color=0, num_samples=1000) #to see the explanation for the top class temp, mask = explanation.get_image_and_mask(top_indeces[4], positive_only=True, num_features=5, hide_rest=True) im_top1 = mark_boundaries(temp / 2 + 0.5, mask) #print "iminfo",im_top1.shape, im_top1.dtype im_top1 = im_top1[:,:,(2,1,0)] #BGR to RGB temp1, mask1 = explanation.get_image_and_mask(top_indeces[3], positive_only=True, num_features=100, hide_rest=True) im_top2 = mark_boundaries(temp1 / 2 + 0.5, mask1) im_top2 = im_top2[:,:,(2,1,0)] #BGR to RGB del top_indeces[:] return im_top1, im_top2 if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--image', dest='image', type=str, default='./images/dog.jpg', help='An image path.') parser.add_argument('--video', dest='video', type=str, default='./videos/car.avi', help='A video path.') parser.add_argument('--imagefolder', dest='imagefolder', type=str, default='./', help='A directory with images.') parser.add_argument('--resultsfolder', dest='resultfolder', type=str, default='./', help='A directory with images.') parser.add_argument('--labels', dest='labelfile', type=str, default='./labels.txt', help='file with labels') args = parser.parse_args() imagefile = args.image videofile = args.video imagedir = args.imagefolder outputdir = args.resultfolder synsetfile = args.labelfile images = [] proc_images = [] AnnInferenceLib.annCreateContext.argtype = [ctypes.c_char_p] data_folder = "/home/rajy/work/inceptionv4" b_data_folder = data_folder.encode('utf-8') global hdl hdl = AnnInferenceLib.annCreateContext(b_data_folder) top_indeces = [] #read synset names if synsetfile: fp = open(synsetfile, 'r') names = fp.readlines() names = [x.strip() for x in names] fp.close() if sys.argv[1] == '--image': # image preprocess img = cv2.imread(imagefile) dim = (299,299) imgb = PreprocessImage(img, dim) images.append(imgb) #proc_images.append(imgb) start = datetime.now() preds = predict_fn(images) end = datetime.now() elapsedTime = end-start print ('total time for inference in milliseconds', elapsedTime.total_seconds()*1000) if False: for x in preds.argsort()[0][-5:]: print (x, names[x], preds[0,x]) top_indeces.append(x) image0 = images[0] tmp = datetime.now() explainer = lime_image.LimeImageExplainer() # Hide color is the color for a superpixel turned OFF. Alternatively, if it is NONE, the superpixel will be replaced by the average of its pixels explanation = explainer.explain_instance(image0, predict_fn, top_labels=5, hide_color=0, num_samples=1000) elapsedTime = datetime.now()-tmp print ('total time for lime is " milliseconds', elapsedTime.total_seconds()*1000) #to see the explanation for the top class temp, mask = explanation.get_image_and_mask(top_indeces[4], positive_only=True, num_features=5, hide_rest=True) im_top1 = mark_boundaries(temp / 2 + 0.5, mask) #print "iminfo",im_top1.shape, im_top1.dtype im_top1_save = im_top1[:,:,(2,1,0)] #BGR to RGB infile = ntpath.basename(imagefile) inname,ext = infile.split('.') cv2.imshow('top1', im_top1) scipy.misc.imsave(outputdir + inname + '_top1.jpg', im_top1_save) #scipy.imsave(outputdir + inname + '_1.jpg', im_top1) #im_top1_norm.save(outputdir + inname + '_1.jpg') temp1, mask1 = explanation.get_image_and_mask(top_indeces[3], positive_only=True, num_features=100, hide_rest=True) #temp, mask = explanation.get_image_and_mask(top_indeces[3], positive_only=True, num_features=1000, hide_rest=False, min_weight=0.05) #cv2.imshow('top2', mark_boundaries(temp1 / 2 + 0.5, mask1)) im_top2 = mark_boundaries(temp1 / 2 + 0.5, mask1) im_top2 = im_top2[:,:,(2,1,0)] #BGR to RGB scipy.misc.imsave(outputdir + inname + '_top2.jpg', im_top2) else: im_top1, im_top2 = lime_explainer(images[0], preds) infile = ntpath.basename(imagefile) inname,ext = infile.split('.') #cv2.imshow('top1', im_top1) scipy.misc.imsave(outputdir + inname + '_top1.jpg', im_top1) scipy.misc.imsave(outputdir + inname + '_top2.jpg', im_top2) #cv2.destroyAllWindows() AnnInferenceLib.annReleaseContext(ctypes.c_void_p(hdl)) exit() elif sys.argv[1] == '--imagefolder': count = 0 start = datetime.now() for image in sorted(os.listdir(imagedir)): print('Processing Image ' + image) img = cv2.imread(imagedir + image) dim = (299,299) imgb = PreprocessImage(img, dim) images.append(imgb) #proc_images.append(imgb) preds = predict_fn(images) im_top1, im_top2 = lime_explainer(images[0], preds) inname,ext = image.split('.') #cv2.imshow('top1', im_top1) scipy.misc.imsave(outputdir + inname + '_top1.jpg', im_top1) scipy.misc.imsave(outputdir + inname + '_top2.jpg', im_top2) images.remove(imgb) count += 1 end = datetime.now() elapsedTime = end-start print ('total time is " milliseconds', elapsedTime.total_seconds()*1000) AnnInferenceLib.annReleaseContext(ctypes.c_void_p(hdl)) exit()
[ "skimage.segmentation.mark_boundaries", "numpy.ctypeslib.ndpointer", "argparse.ArgumentParser", "ntpath.basename", "numpy.frombuffer", "numpy.empty", "numpy.ascontiguousarray", "ctypes.cdll.LoadLibrary", "lime.lime_image.LimeImageExplainer", "cv2.imread", "skimage.transform.resize", "ctypes.c_void_p", "cv2.imshow", "datetime.datetime.now", "os.listdir" ]
[((406, 482), 'ctypes.cdll.LoadLibrary', 'ctypes.cdll.LoadLibrary', (['"""/home/rajy/work/inceptionv4/build/libannmodule.so"""'], {}), "('/home/rajy/work/inceptionv4/build/libannmodule.so')\n", (429, 482), False, 'import numpy, ctypes, array\n'), ((609, 656), 'numpy.ctypeslib.ndpointer', 'ndpointer', (['ctypes.c_float'], {'flags': '"""C_CONTIGUOUS"""'}), "(ctypes.c_float, flags='C_CONTIGUOUS')\n", (618, 656), False, 'from numpy.ctypeslib import ndpointer\n'), ((707, 754), 'numpy.ctypeslib.ndpointer', 'ndpointer', (['ctypes.c_float'], {'flags': '"""C_CONTIGUOUS"""'}), "(ctypes.c_float, flags='C_CONTIGUOUS')\n", (716, 754), False, 'from numpy.ctypeslib import ndpointer\n'), ((888, 917), 'numpy.empty', 'np.empty', (['(dim[0], dim[1], 3)'], {}), '((dim[0], dim[1], 3))\n', (896, 917), True, 'import numpy as np\n'), ((1362, 1393), 'skimage.transform.resize', 'resize', (['imgc', '(newh, neww)', '(1.0)'], {}), '(imgc, (newh, neww), 1.0)\n', (1368, 1393), False, 'from skimage.transform import resize\n'), ((1627, 1670), 'numpy.frombuffer', 'np.frombuffer', (['out_buf'], {'dtype': 'numpy.float32'}), '(out_buf, dtype=numpy.float32)\n', (1640, 1670), True, 'import numpy as np\n'), ((2201, 2215), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (2213, 2215), False, 'from datetime import datetime\n'), ((2232, 2263), 'lime.lime_image.LimeImageExplainer', 'lime_image.LimeImageExplainer', ([], {}), '()\n', (2261, 2263), False, 'from lime import lime_image\n'), ((2700, 2737), 'skimage.segmentation.mark_boundaries', 'mark_boundaries', (['(temp / 2 + 0.5)', 'mask'], {}), '(temp / 2 + 0.5, mask)\n', (2715, 2737), False, 'from skimage.segmentation import mark_boundaries\n'), ((2968, 3007), 'skimage.segmentation.mark_boundaries', 'mark_boundaries', (['(temp1 / 2 + 0.5)', 'mask1'], {}), '(temp1 / 2 + 0.5, mask1)\n', (2983, 3007), False, 'from skimage.segmentation import mark_boundaries\n'), ((3147, 3172), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (3170, 3172), False, 'import sys, os, time, csv, getopt, cv2, argparse\n'), ((1720, 1763), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['img'], {'dtype': 'np.float32'}), '(img, dtype=np.float32)\n', (1740, 1763), True, 'import numpy as np\n'), ((1798, 1841), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['out'], {'dtype': 'np.float32'}), '(out, dtype=np.float32)\n', (1818, 1841), True, 'import numpy as np\n'), ((4586, 4607), 'cv2.imread', 'cv2.imread', (['imagefile'], {}), '(imagefile)\n', (4596, 4607), False, 'import sys, os, time, csv, getopt, cv2, argparse\n'), ((4751, 4765), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (4763, 4765), False, 'from datetime import datetime\n'), ((4815, 4829), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (4827, 4829), False, 'from datetime import datetime\n'), ((5154, 5168), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (5166, 5168), False, 'from datetime import datetime\n'), ((5193, 5224), 'lime.lime_image.LimeImageExplainer', 'lime_image.LimeImageExplainer', ([], {}), '()\n', (5222, 5224), False, 'from lime import lime_image\n'), ((5842, 5879), 'skimage.segmentation.mark_boundaries', 'mark_boundaries', (['(temp / 2 + 0.5)', 'mask'], {}), '(temp / 2 + 0.5, mask)\n', (5857, 5879), False, 'from skimage.segmentation import mark_boundaries\n'), ((6019, 6045), 'ntpath.basename', 'ntpath.basename', (['imagefile'], {}), '(imagefile)\n', (6034, 6045), False, 'import ntpath\n'), ((6102, 6129), 'cv2.imshow', 'cv2.imshow', (['"""top1"""', 'im_top1'], {}), "('top1', im_top1)\n", (6112, 6129), False, 'import sys, os, time, csv, getopt, cv2, argparse\n'), ((6713, 6752), 'skimage.segmentation.mark_boundaries', 'mark_boundaries', (['(temp1 / 2 + 0.5)', 'mask1'], {}), '(temp1 / 2 + 0.5, mask1)\n', (6728, 6752), False, 'from skimage.segmentation import mark_boundaries\n'), ((6984, 7010), 'ntpath.basename', 'ntpath.basename', (['imagefile'], {}), '(imagefile)\n', (6999, 7010), False, 'import ntpath\n'), ((7324, 7344), 'ctypes.c_void_p', 'ctypes.c_void_p', (['hdl'], {}), '(hdl)\n', (7339, 7344), False, 'import numpy, ctypes, array\n'), ((7436, 7450), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (7448, 7450), False, 'from datetime import datetime\n'), ((8147, 8161), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (8159, 8161), False, 'from datetime import datetime\n'), ((5528, 5542), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (5540, 5542), False, 'from datetime import datetime\n'), ((7479, 7499), 'os.listdir', 'os.listdir', (['imagedir'], {}), '(imagedir)\n', (7489, 7499), False, 'import sys, os, time, csv, getopt, cv2, argparse\n'), ((7567, 7595), 'cv2.imread', 'cv2.imread', (['(imagedir + image)'], {}), '(imagedir + image)\n', (7577, 7595), False, 'import sys, os, time, csv, getopt, cv2, argparse\n'), ((8317, 8337), 'ctypes.c_void_p', 'ctypes.c_void_p', (['hdl'], {}), '(hdl)\n', (8332, 8337), False, 'import numpy, ctypes, array\n')]
# -*- coding: utf-8 -*- ### ATENÇÃO ### # Antes de executar instale o pyfirmata: # pip install pyfirmata --user # E compile no arduino o código do ArduinoIDE encontrado em: # Arquivo -> Exemplos -> Firmata -> StandardFirmata ### IMPORTANTE ### # O valor da frequencia fica aproximado # imports import pyfirmata import time import numpy as np import matplotlib.pyplot as plt from matplotlib import style from loguru import logger import pandas as pd #-------------------------------#-------------------------------#-------------------------------#------------------------------- ### INICIO MUDANÇAS PERMITIDAS ### #------------------------------- # Controlador desejado #controlUse = "sc" # Sem controlador controlUse = "cavlr1" #Cavlr 1ª ord ********** Controlador em avanço por lugar das raizes para modelo de primeira ordem #controlUse = "catlr1" #Catlr 1ª ord ********** Controlador em atraso por lugar das raizes para modelo de primeira ordem #controlUse = "cavatlr1" #Cavatlr 1ª ord ********** Controlador em avanço-atraso por lugar das raizes para modelo de primeira ordem #controlUse = "cavrf1" #Cavrf 1ª ord ********** Controlador em avanço por resposta em frequencia para modelo de primeira ordem #controlUse = "catrf1" #Catrf 1ª ord ********** Controlador em atraso por resposta em frequencia para modelo de primeira ordem #controlUse = "cavlr2" #Cavlr 2ª ord ********** Controlador em avanço por lugar das raizes para modelo de segunda ordem #controlUse = "catlr2" #Catlr 2ª ord ********** Controlador em atraso por lugar das raizes para modelo de segunda ordem #controlUse = "cavatlr2" #Cavatlr 2ª ord ********** Controlador em avanço-atraso por lugar das raizes para modelo de segunda ordem #controlUse = "cavrf2" #Cavrf 2ª ord ********** Controlador em avanço por resposta em frequencia para modelo de segunda ordem #controlUse = "catrf2" #Catrf 2ª ord ********** Controlador em atraso por resposta em frequencia para modelo de segunda ordem #------------------------------- # Configuração do arduino """ x:n:t -> ordem de configuração dos pinos sendo: x - a letra referente ao pino n - numero do pino t - tipo que sera utilizado o pino p - PWM i - input o - output """ serialPort = '/dev/ttyACM0' # Porta que o arduino esta conectada outPin = 'd:9:p' # Pino de escrita PWM inPin = 'a:0:i' # Pino utilizado para ler #------------------------------- # dados para salvar imagem dpiImage = 100 # Dpi da imagem srcImage = './../../Controles/PRBS-FS10/ord1/real/graph-'+controlUse+'-5Xkc-zero 2Xsigma-esp 0.1.svg' # Endereço e nome da imagem a ser salva, se setar como None não salva #srcImage = None formatImage = "svg" # Tipo de imagem a ser salva width = 1920 # Largura em px (pixels) da imagem salva height = 1080 # Altura em px (pixels) da imagem salva #------------------------------- # dados para salvar csv dos dados srcFile = './../../Controles/PRBS-FS10/ord1/real/data-'+controlUse+'-5Xkc-zero 2Xsigma-esp 0.1.csv'# Endereço e nome do csv a ser salva, se setar como None não salva #srcFile # None #------------------------------- # frequência de amostragem freq = 10 # Em amostras por seg (Hz) #------------------------------- # Numero total de amostras N = 400 # Total de amostras #------------------------------- # vetor de entrada (yr) qtdTrocas = 8 # Quantas vezes o sinal vai trocar de nivel sizeStep = int(N/qtdTrocas) # Calcula o tamanho das janelas # Monta o vetor de entrada yr como um conjunto de degraus yr = np.zeros(sizeStep) yr = np.append(yr,4*np.ones(sizeStep)) yr = np.append(yr, np.zeros(sizeStep)) yr = np.append(yr,5*np.ones(sizeStep)) yr = np.append(yr,1*np.ones(sizeStep)) yr = np.append(yr,2*np.ones(sizeStep)) yr = np.append(yr,0*np.ones(sizeStep)) yr = np.append(yr,3*np.ones(sizeStep)) #------------------------------- # Valores do arduino maxValue = 5 # O arduino só aguenta ler/escrever até 5V minValue = 0 # O arduino só aguenta ler/escrever a partir de 0V #------------------------------- # Valores do arduino erroAcc = 1.15 # quantas vezes é aceito que a frequencia real seja superior a desejada #------------------------------- # coeficientes dos controladores if controlUse == "sc": controlName = "Sem controlador" elif controlUse == "cavlr1": #******* Cavlr 1ª ord ********** Controlador em avanço por lugar das raizes para modelo de primeira ordem controlName = "Controlador avanço - LR" # Kc= Kc # b0 = 2.244 # b1 = -1.964 # b2 = 0 # a1 = -0.4845 # a2 = 0 # Kc= Kc # fs = 100 # b0 = 2.758 # b1 = -2.722 # b2 = 0 # a1 = -0.9329 # a2 = 0 # Kc= Kc e zero em 3/4*sigma # b0 = 1.13 # b1 = -1.022 # b2 = 0 # a1 = -0.6931 # a2 = 0 # Kc= 5*Kc #b0 = 11.23 #b1 = -9.823 #b2 = 0 #a1 = -0.4845 #a2 = 0 # Kc= 10*Kc # b0 = 22.44 # b1 = -19.64 # b2 = 0 # a1 = -0.4845 # a2 = 0 # Kc= 10*Kc # fs = 100 # b0 = 27.58 # b1 = -27.22 # b2 = 0 # a1 = -0.9329 # a2 = 0 # Kc= 10*Kc # zero = 3/4*sigma # b0 = 11.3 # b1 = -10.22 # b2 = 0 # a1 = -0.6931 # a2 = 0 # Kc= 10*Kc # zero = *sigma/3 # b0 = 4.89 # b1 = -4.652 # b2 = 0 # a1 = -0.8415 # a2 = 0 # Kc= 5*Kc # zero = 2*sigma # e_esp = 0.1 b0 = 6.151 b1 = -4.704 b2 = 0 a1 = -0.6033 a2 = 0 elif controlUse == "cavlr2": #******* Cavlr 2ª ord ********** Controlador em avanço por lugar das raizes para modelo de segunda ordem controlName = "Controlador avanço - LR" # # Colocando zero em sigma *2 # b0 = 3.882 # b1 = -1.664 # b2 = 0 # a1 = -0.0007006 # a2 = 0 # Colocando zero em sigma *3 # b0 = 4.05 # b1 = -1.012 # b2 = 0 # a1 = -0.02119 # a2 = 0 # Colocando zero em sigma *4.5 b0 = 4.061 b1 = -0.214 b2 = 0 a1 = 0.0184 a2 = 0 elif controlUse == "cavrf1": #******* Cavrf 1ª ord ********** Controlador em avanço por resposta em frequencia para modelo de primeira ordem controlName = "Controlador avanço - RF" # b0 = 31.73 # b1 = 20.49 # b2 = 0 # a1 = 0.09445 # a2 = 0 # Kc = Kc /2 -> ficou mais instavel # b0 = 12.56 # b1 = 5.048 # b2 = 0 # a1 = -0.2618 # a2 = 0 # trocando o erro esperado para 0.1 # b0 = 1.118 # b1 = -0.4326 # b2 = 0 # a1 = -0.8546 # a2 = 0 # trocando o erro esperado para 0.03 b0 = 10.7 b1 = -5.587 b2 = 0 a1 = -0.6781 a2 = 0 elif controlUse == "cavrf2": #******* Cavrf 2ª ord ********** Controlador em avanço por resposta em frequencia para modelo de segunda ordem controlName = "Controlador avanço - RF" b0 = 0.4338 b1 = -0.1238 b2 = 0 a1 = -0.9367 a2 = 0 elif controlUse == "catlr1": #******* Catlr 1ª ord ********** Controlador em atraso por lugar das raizes para modelo de primeira ordem controlName = "Controlador atraso - LR" b0 = 0.825 b1 = -0.651 b2 = 0 a1 = -0.997 a2 = 0 elif controlUse == "catlr2": #******* Catlr 2ª ord ********** Controlador em atraso por lugar das raizes para modelo de segunda ordem controlName = "Controlador atraso - LR" b0 = 4.752 b1 = -3.447 b2 = 0 a1 = -0.996 a2 = 0 elif controlUse == "catrf1": #******* Catrf 1ª ord ********** Controlador em atraso por resposta em frequencia para modelo de primeira ordem # b0 = 29.22 # b1 = -15.25 # b2 = 0 # a1 = -0.7072 # a2 = 0 # alterando o erro esperado para 0.1 b0 = 1.086 b1 = -0.5667 b2 = 0 a1 = -0.8912 a2 = 0 controlName = "Controlador atraso - RF" elif controlUse == "catrf2": #******* Catrf 2ª ord ********** Controlador em atraso por resposta em frequencia para modelo de segunda ordem controlName = "Controlador atraso - RF" b0 = 13.91 b1 = 7.194 b2 = 0 a1 = -0.3594 a2 = 0 elif controlUse == "cavatlr1": #******* Cavatlr 1ª ord ********** Controlador em avanço-atraso por lugar das raizes para modelo de primeira ordem controlName = "Controlador avanço-atraso - LR" # b0 = 2.823 # b1 = -4.129 # b2 = 1.452 # a1 = -1.481 # a2 = 0.483 # Colocando o zero do controlador de avanço em sigma/2 # b0 = 1.133 # b1 = -1.29 # b2 = 0.2146 # a1 = -1.79 # a2 = 0.7911 # Colocando o zero do controlador de avanço em sigma*3/4 b0 = 1.583 b1 = -2.105 b2 = 0.6091 a1 = -1.69 a2 = 0.691 elif controlUse == "cavatlr2": #******* Cavatlr 2ª ord ********** Controlador em avanço-atraso por lugar das raizes para modelo de segunda ordem controlName = "Controlador avanço-atraso - LR" # colocando o zero em sigma * 4.5 b0 = 4.355 b1 = -4.072 b2 = 0.2026 a1 = -0.9776 a2 = -0.01833 elif controlUse == "cavatrf1": #**************** #******* Cavatrf 1ª ord ********** Controlador em avanço-atraso por resposta em frequencia para modelo de primeira ordem controlName = "Controlador avanço-atraso - RF" elif controlUse == "cavatrf2": #**************** #******* Cavatrf 2ª ord ********** Controlador em avanço-atraso por resposta em frequencia para modelo de segunda ordem controlName = "Controlador avanço-atraso - RF" else: controlName = "Sem controlador" ### FIM MUDANÇAS PERMITIDAS ### #-------------------------------#-------------------------------#-------------------------------#------------------------------- # Configurando DEBUG debugOn = False # Configuração do arduino logger.info(f"Configurando conexão com o arduino...") board = pyfirmata.Arduino(serialPort) pwmPin = board.get_pin(outPin) readPin = board.get_pin(inPin) it = pyfirmata.util.Iterator(board) it.start() readPin.enable_reporting() time.sleep(0.5) # espera as configurações surtirem efeito # Monta o vetor de saida (y) zerado, o de erro e de controle também logger.info(f"Inicializando vetoros utilizados...") y = np.zeros(len(yr)) # vetor de saida e = np.zeros(len(yr)) # vetor de erro u = np.zeros(len(yr)) # vetor de controle #--**----**----**----**----**----**----**----**----**----**-- # Normaliza os dados de entrada yr = yr/maxValue # Loop de operações com o arduino logger.info(f"Tempo total estimado para executar as medições: {len(yr)/freq}") t_ini = time.time() # registra o tempo de inicio contLevel = 0 # Inicia o contador de leveis atingidos do yr for i in range(2,len(yr)): t_ini_loop = time.time() # registra horario de inicio da interação #------------------------------ aux = readPin.read() # lê com a porta analogica if(aux != None): y[i] = float(aux) # salva no vetor resultado #------------------------------ e[i] = yr[i] - y[i] # calcula o erro #------------------------------ # malha de controle if controlName != "Sem controlador": u[i] = b0* e[i] + b1*e[i-1] + b2*e[i-2] - a1*u[i-1] - a2*u[i-2] else: u[i] = yr[i] # garante que o sinal estara entre os valores acc pelo arduino if(u[i] > 1): u[i] = 1 elif(u[i] < minValue): u[i] = minValue #------------------------------ pwmPin.write(u[i]) # escreve no PWM #------------------------------ if debugOn: logger.debug(f"{i}:In: {y[i]*maxValue}") logger.debug(f"{i}:PWM: {u[i]*maxValue}") logger.debug(f"{i}:yr: {yr[i]*maxValue}") else: if(i > contLevel): contLevel += sizeStep logger.info(f"Já foram realizados {contLevel/sizeStep}/{qtdTrocas} trocas de niveis!") #------------------------------ try: time.sleep((1/freq)-(time.time() - t_ini_loop)) # gera delay para esperar pelo período de amostragem except: pass pwmPin.write(0) # Desliga o motor t_end = time.time() # registra o tempo de término #--**----**----**----**----**----**----**----**----**----**-- board.exit() # Encerra conexão com o arduino # Exibe informações logger.info(f"Tempo total gasto para executar as medições: {t_end-t_ini}") logger.info(f"frequencia real: {len(yr)/(t_end-t_ini)}") if len(yr)/(t_end-t_ini) > erroAcc * freq: logger.warning(f"frequencia real {len(yr)/(t_end-t_ini)} está superioa a {erroAcc} vezes acima da desejada {freq}") logger.warning(f"Encerrando execução") exit() # Monta dados de saida yr = yr.astype(np.float64) * maxValue u = u.astype(np.float64) * maxValue y = y.astype(np.float64) * maxValue e = e.astype(np.float64) * maxValue logger.info(f"Montando data frame") data = pd.DataFrame() data.loc[:, 'yr'] = yr data.loc[:, 'u'] = u data.loc[:, 'y'] = y data.loc[0, 'fs'] = freq if srcFile != None: logger.info(f"Salvando csv de dados...") data.to_csv(srcFile, index=False) # Monta o grafico de resultado x = [i for i,a in enumerate(yr)] # Monta eixo x dos graficos sizeImage = (width/dpiImage,height/dpiImage) fig, axs = plt.subplots(3, sharex=True, figsize=sizeImage, dpi=dpiImage) axs[0].plot(x,y , color='red', linewidth=4,label='y') axs[0].plot(x,yr,'--', color='blue', linewidth=2, label='yr') axs[0].set_ylim(-0.5,5.5) axs[0].set_title('Dados Lidos - y(k)', fontsize=21) axs[0].legend(loc="upper right") axs[0].grid(color='gray') axs[1].plot(x,u,'--', color='green', linewidth=4) axs[1].set_ylim(-0.5,5.5) axs[1].set_title('Saída controlador - u(k)', fontsize=21) axs[1].grid(color='gray') axs[2].plot(x,e, color='black', linewidth=4) axs[2].set_ylim(-5.5,5.5) axs[2].set_title('Erro - e(k)', fontsize=21) axs[2].grid(color='gray') plt.suptitle(controlName, fontsize=26) plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=None, hspace=0.3) for ax in axs.flat: ax.set_ylabel('Voltagem (V)', fontsize=16) ax.set_xlabel('Amostras (k)', fontsize=18) for ax in axs.flat: ax.label_outer() if srcImage != None: logger.info(f"Salvando grafico...") plt.savefig(srcImage, format=formatImage) plt.show() logger.info(f"Encerrando execução!")
[ "pandas.DataFrame", "matplotlib.pyplot.show", "matplotlib.pyplot.suptitle", "pyfirmata.util.Iterator", "loguru.logger.warning", "numpy.zeros", "numpy.ones", "time.sleep", "time.time", "loguru.logger.info", "pyfirmata.Arduino", "matplotlib.pyplot.subplots_adjust", "loguru.logger.debug", "matplotlib.pyplot.subplots", "matplotlib.pyplot.savefig" ]
[((4782, 4800), 'numpy.zeros', 'np.zeros', (['sizeStep'], {}), '(sizeStep)\n', (4790, 4800), True, 'import numpy as np\n'), ((11161, 11214), 'loguru.logger.info', 'logger.info', (['f"""Configurando conexão com o arduino..."""'], {}), "(f'Configurando conexão com o arduino...')\n", (11172, 11214), False, 'from loguru import logger\n'), ((11237, 11266), 'pyfirmata.Arduino', 'pyfirmata.Arduino', (['serialPort'], {}), '(serialPort)\n', (11254, 11266), False, 'import pyfirmata\n'), ((11376, 11406), 'pyfirmata.util.Iterator', 'pyfirmata.util.Iterator', (['board'], {}), '(board)\n', (11399, 11406), False, 'import pyfirmata\n'), ((11445, 11460), 'time.sleep', 'time.sleep', (['(0.5)'], {}), '(0.5)\n', (11455, 11460), False, 'import time\n'), ((11572, 11623), 'loguru.logger.info', 'logger.info', (['f"""Inicializando vetoros utilizados..."""'], {}), "(f'Inicializando vetoros utilizados...')\n", (11583, 11623), False, 'from loguru import logger\n'), ((12160, 12171), 'time.time', 'time.time', ([], {}), '()\n', (12169, 12171), False, 'import time\n'), ((14045, 14056), 'time.time', 'time.time', ([], {}), '()\n', (14054, 14056), False, 'import time\n'), ((14313, 14389), 'loguru.logger.info', 'logger.info', (['f"""Tempo total gasto para executar as medições: {t_end - t_ini}"""'], {}), "(f'Tempo total gasto para executar as medições: {t_end - t_ini}')\n", (14324, 14389), False, 'from loguru import logger\n'), ((14903, 14938), 'loguru.logger.info', 'logger.info', (['f"""Montando data frame"""'], {}), "(f'Montando data frame')\n", (14914, 14938), False, 'from loguru import logger\n'), ((14961, 14975), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (14973, 14975), True, 'import pandas as pd\n'), ((15387, 15448), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(3)'], {'sharex': '(True)', 'figsize': 'sizeImage', 'dpi': 'dpiImage'}), '(3, sharex=True, figsize=sizeImage, dpi=dpiImage)\n', (15399, 15448), True, 'import matplotlib.pyplot as plt\n'), ((16009, 16047), 'matplotlib.pyplot.suptitle', 'plt.suptitle', (['controlName'], {'fontsize': '(26)'}), '(controlName, fontsize=26)\n', (16021, 16047), True, 'import matplotlib.pyplot as plt\n'), ((16048, 16143), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'left': 'None', 'bottom': 'None', 'right': 'None', 'top': 'None', 'wspace': 'None', 'hspace': '(0.3)'}), '(left=None, bottom=None, right=None, top=None, wspace=\n None, hspace=0.3)\n', (16067, 16143), True, 'import matplotlib.pyplot as plt\n'), ((16403, 16413), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (16411, 16413), True, 'import matplotlib.pyplot as plt\n'), ((16415, 16451), 'loguru.logger.info', 'logger.info', (['f"""Encerrando execução!"""'], {}), "(f'Encerrando execução!')\n", (16426, 16451), False, 'from loguru import logger\n'), ((4885, 4903), 'numpy.zeros', 'np.zeros', (['sizeStep'], {}), '(sizeStep)\n', (4893, 4903), True, 'import numpy as np\n'), ((12406, 12417), 'time.time', 'time.time', ([], {}), '()\n', (12415, 12417), False, 'import time\n'), ((14612, 14650), 'loguru.logger.warning', 'logger.warning', (['f"""Encerrando execução"""'], {}), "(f'Encerrando execução')\n", (14626, 14650), False, 'from loguru import logger\n'), ((15101, 15141), 'loguru.logger.info', 'logger.info', (['f"""Salvando csv de dados..."""'], {}), "(f'Salvando csv de dados...')\n", (15112, 15141), False, 'from loguru import logger\n'), ((16320, 16355), 'loguru.logger.info', 'logger.info', (['f"""Salvando grafico..."""'], {}), "(f'Salvando grafico...')\n", (16331, 16355), False, 'from loguru import logger\n'), ((16360, 16401), 'matplotlib.pyplot.savefig', 'plt.savefig', (['srcImage'], {'format': 'formatImage'}), '(srcImage, format=formatImage)\n', (16371, 16401), True, 'import matplotlib.pyplot as plt\n'), ((4834, 4851), 'numpy.ones', 'np.ones', (['sizeStep'], {}), '(sizeStep)\n', (4841, 4851), True, 'import numpy as np\n'), ((4938, 4955), 'numpy.ones', 'np.ones', (['sizeStep'], {}), '(sizeStep)\n', (4945, 4955), True, 'import numpy as np\n'), ((4990, 5007), 'numpy.ones', 'np.ones', (['sizeStep'], {}), '(sizeStep)\n', (4997, 5007), True, 'import numpy as np\n'), ((5042, 5059), 'numpy.ones', 'np.ones', (['sizeStep'], {}), '(sizeStep)\n', (5049, 5059), True, 'import numpy as np\n'), ((5094, 5111), 'numpy.ones', 'np.ones', (['sizeStep'], {}), '(sizeStep)\n', (5101, 5111), True, 'import numpy as np\n'), ((5146, 5163), 'numpy.ones', 'np.ones', (['sizeStep'], {}), '(sizeStep)\n', (5153, 5163), True, 'import numpy as np\n'), ((13423, 13465), 'loguru.logger.debug', 'logger.debug', (['f"""{i}:In: {y[i] * maxValue}"""'], {}), "(f'{i}:In: {y[i] * maxValue}')\n", (13435, 13465), False, 'from loguru import logger\n'), ((13472, 13515), 'loguru.logger.debug', 'logger.debug', (['f"""{i}:PWM: {u[i] * maxValue}"""'], {}), "(f'{i}:PWM: {u[i] * maxValue}')\n", (13484, 13515), False, 'from loguru import logger\n'), ((13522, 13565), 'loguru.logger.debug', 'logger.debug', (['f"""{i}:yr: {yr[i] * maxValue}"""'], {}), "(f'{i}:yr: {yr[i] * maxValue}')\n", (13534, 13565), False, 'from loguru import logger\n'), ((13647, 13745), 'loguru.logger.info', 'logger.info', (['f"""Já foram realizados {contLevel / sizeStep}/{qtdTrocas} trocas de niveis!"""'], {}), "(\n f'Já foram realizados {contLevel / sizeStep}/{qtdTrocas} trocas de niveis!'\n )\n", (13658, 13745), False, 'from loguru import logger\n'), ((13808, 13819), 'time.time', 'time.time', ([], {}), '()\n', (13817, 13819), False, 'import time\n')]
import os, sys import time import torch import numpy as np sys.path.append(os.path.dirname(os.path.abspath(__file__))) from vis_utils import get_vis_depth, get_vis_mask, get_vis_normal import copy import cv2 import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt import matplotlib.cm as cm from PIL import Image as pil import pickle def print_loss_pack(loss_pack, name): loss_depth, loss_mask_gt, loss_mask_out, loss_normal, loss_l2reg = loss_pack['depth'], loss_pack['mask_gt'], loss_pack['mask_out'], loss_pack['normal'], loss_pack['l2reg'] if len(loss_depth.shape) == 1: loss_mask_gt, loss_mask_out, loss_depth, loss_normal, loss_l2reg = loss_mask_gt.mean(), loss_mask_out.mean(), loss_depth.mean(), loss_normal.mean(), loss_l2reg.mean() print('NAME = [{0}] -- loss_depth: {1:.4f}, loss_mask_gt: {2:.4f}, loss_mask_out: {3:.4f}, loss_normal: {4:.4f}, loss_l2reg: {5:.4f}'.format(name, loss_depth.detach().cpu().numpy(), loss_mask_gt.detach().cpu().numpy(), loss_mask_out.detach().cpu().numpy(), loss_normal.detach().cpu().numpy(), loss_l2reg.detach().cpu().numpy())) def print_loss_pack_color(loss_pack, name): loss_color, loss_depth, loss_mask_gt, loss_mask_out, loss_normal, loss_l2reg, loss_l2reg_c = loss_pack['color'], loss_pack['depth'], loss_pack['mask_gt'], loss_pack['mask_out'], loss_pack['normal'], loss_pack['l2reg'], loss_pack['l2reg_c'] print('NAME = [{0}] -- loss_color: {1:.4f}, loss_depth: {2:.4f}, loss_mask_gt: {3:.4f}, loss_mask_out: {4:.4f}, loss_normal: {5:.4f}, loss_l2reg: {6:.4f}, loss_l2re_cg: {7:.4f}'.format(name, loss_color.detach().cpu().numpy(), loss_depth.detach().cpu().numpy(), loss_mask_gt.detach().cpu().numpy(), loss_mask_out.detach().cpu().numpy(), loss_normal.detach().cpu().numpy(), loss_l2reg.detach().cpu().numpy(), loss_l2reg_c.detach().cpu().numpy())) def demo_color_save_render_output(prefix, sdf_renderer, shape_code, color_code, camera, lighting_loc=None, profile=False): R, T = camera.extrinsic[:,:3], camera.extrinsic[:,3] R, T = torch.from_numpy(R).float().cuda(), torch.from_numpy(T).float().cuda() R.requires_grad, T.requires_grad = False, False if lighting_loc is not None: lighting_locations = torch.from_numpy(lighting_loc).float().unsqueeze(0).cuda() else: lighting_locations = None render_output = sdf_renderer.render(color_code, shape_code, R, T, profile=profile, no_grad=True, lighting_locations=lighting_locations) depth_rendered, normal_rendered, color_rgb, valid_mask_rendered, min_sdf_sample = render_output data = {} data['depth'] = depth_rendered.detach().cpu().numpy() data['normal'] = normal_rendered.detach().cpu().numpy() data['mask'] = valid_mask_rendered.detach().cpu().numpy() data['color'] = color_rgb.detach().cpu().numpy() data['min_sdf_sample'] = min_sdf_sample.detach().cpu().numpy() data['latent_tensor'] = shape_code.detach().cpu().numpy() data['K'] = sdf_renderer.get_intrinsic() data['RT'] = torch.cat([R, T[:,None]], 1).detach().cpu().numpy() fname = prefix + '_info.pkl' with open(fname, 'wb') as f: pickle.dump(data, f) img_hw = sdf_renderer.get_img_hw() visualizer = Visualizer(img_hw) print('Writing to prefix: {}'.format(prefix)) visualizer.visualize_depth(prefix + '_depth.png', depth_rendered.detach().cpu().numpy(), valid_mask_rendered.detach().cpu().numpy()) visualizer.visualize_normal(prefix + '_normal.png', normal_rendered.detach().cpu().numpy(), valid_mask_rendered.detach().cpu().numpy(), bgr2rgb=True) visualizer.visualize_mask(prefix + '_silhouette.png', valid_mask_rendered.detach().cpu().numpy()) cv2.imwrite(prefix + '_rendered_rgb.png', color_rgb.detach().cpu().numpy() * 255) class Visualizer(object): def __init__(self, img_hw, dmin=0.0, dmax=10.0): self.img_h, self.img_w = img_hw[0], img_hw[1] self.data = {} self.dmin, self.dmax = dmin, dmax self.loss_counter = 0 self.loss_curve = {} self.loss_list = [] self.chamfer_list = [] def get_data(self, data_name): if data_name in self.data.keys(): return self.data[data_name] else: raise ValueError('Key {0} does not exist.'.format(data_name)) def set_data(self, data): self.data = data def reset_data(self): self.data = {} keys = ['mask_gt', 'mask_output', 'loss_mask_gt', 'loss_mask_out', 'depth_gt', 'depth_output', 'loss_depth', 'normal_gt', 'normal_output', 'loss_normal'] for key in keys: self.data[key] = np.zeros((64, 64)) def reset_loss_curve(self): self.loss_counter = 0 self.loss_curve = {} def reset_all(self): self.reset_data() self.reset_loss_curve() def add_loss_from_pack(self, loss_pack): ''' potential properties: ['mask_gt', 'mask_out', 'depth' 'normal', 'l2reg'] ''' loss_name_list = list(loss_pack.keys()) if self.loss_curve == {}: for loss_name in loss_name_list: self.loss_curve[loss_name] = [] for loss_name in loss_name_list: loss_value = loss_pack[loss_name].detach().cpu().numpy() self.loss_curve[loss_name].append(loss_value) self.loss_counter = self.loss_counter + 1 def add_loss(self, loss): self.loss_list.append(loss.detach().cpu().numpy()) def add_chamfer(self, chamfer): self.chamfer_list.append(chamfer) def add_data(self, data_name, data_src, data_mask=None): ''' potential properties: mask: ['mask_gt', 'mask_output', 'loss_mask_gt', 'loss_mask_out'] depth: ['depth_gt', 'depth_output', 'loss_depth'] normal: ['normal_gt', 'normal_output', 'loss_normal'] ''' if data_mask is None: self.data[data_name] = data_src else: data_map = np.zeros(data_mask.shape) data_map[data_mask != 0] = data_src self.data[data_name] = data_map def save_depth(self, fname, depth_vis, cmap='magma', direct=False): if direct: cv2.imwrite(fname, depth_vis) return 0 vmin, vmax = 0, 255 normalizer = mpl.colors.Normalize(vmin=vmin, vmax=vmax) mapper = cm.ScalarMappable(norm=normalizer, cmap=cmap) colormapped_im = (mapper.to_rgba(depth_vis)[:,:,:3] * 255).astype(np.uint8) im = pil.fromarray(colormapped_im) im.save(fname) def save_mask(self, fname, mask_vis, bgr2rgb=False): if bgr2rgb: mask_vis = cv2.cvtColor(mask_vis, cv2.COLOR_BGR2RGB) cv2.imwrite(fname, mask_vis) def save_normal(self, fname, normal_vis, bgr2rgb=False): if bgr2rgb: normal_vis = cv2.cvtColor(normal_vis, cv2.COLOR_BGR2RGB) cv2.imwrite(fname, normal_vis) def save_error(self, fname, error_vis, bgr2rgb=False): self.save_depth(fname, error_vis, cmap='jet') def visualize_depth(self, fname, depth, mask=None): # depth_vis = get_vis_depth(depth, mask=mask, dmin=self.dmin, dmax=self.dmax) depth_vis = get_vis_depth(depth, mask=mask) # self.save_depth(fname, depth_vis) cv2.imwrite(fname, depth_vis) def visualize_normal(self, fname, normal, mask=None, bgr2rgb=False): normal_vis = get_vis_normal(normal, mask=mask) if bgr2rgb: normal_vis = cv2.cvtColor(normal_vis, cv2.COLOR_BGR2RGB) cv2.imwrite(fname, normal_vis) def visualize_mask(self, fname, mask, bgr2rgb=False): mask_vis = get_vis_mask(mask) if bgr2rgb: mask_vis = cv2.cvtColor(mask_vis, cv2.COLOR_BGR2RGB) cv2.imwrite(fname, mask_vis) def imshow(self, ax, img, title=None): ax.imshow(img) ax.axis('off') if title is not None: ax.set_title(title) def imshow_bgr2rgb(self, ax, img, title=None): if len(img.shape) == 3: img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) ax.imshow(img) ax.axis('off') if title is not None: ax.set_title(title) def show_loss_curve(self, fname): pass def show_all_data_3x4(self, fname): fig, axs = plt.subplots(3, 4, figsize=(30,30)) # first row, groundtruth depth_gt_vis = get_vis_depth(self.data['depth_gt'], mask=self.data['mask_gt'], dmin=self.dmin, dmax=self.dmax) self.imshow_bgr2rgb(axs[0, 0], 255 - depth_gt_vis, title='depth gt') normal_gt_vis = get_vis_normal(self.data['normal_gt'], mask=self.data['mask_gt']) self.imshow(axs[0, 1], normal_gt_vis, title='normal gt') mask_gt_vis = get_vis_mask(self.data['mask_gt']) self.imshow_bgr2rgb(axs[0, 2], 255 - mask_gt_vis, title='mask gt') axs[0, 3].axis('off') # second row, output depth_output_vis = get_vis_depth(self.data['depth_output'], mask=self.data['mask_output'], dmin=self.dmin, dmax=self.dmax) self.imshow_bgr2rgb(axs[1, 0], 255 - depth_output_vis, title='depth output') normal_output_vis = get_vis_normal(self.data['normal_output'], mask=self.data['mask_output']) self.imshow(axs[1, 1], normal_output_vis, title='normal output') mask_output_vis = get_vis_mask(self.data['mask_output']) self.imshow_bgr2rgb(axs[1, 2], 255 - mask_output_vis, title='mask output') axs[1, 3].axis('off') # third row, loss valid_mask = np.logical_and(self.data['mask_gt'], self.data['mask_output']) loss_depth_vis = get_vis_depth(np.abs(self.data['loss_depth']), valid_mask, dmin=0.0, dmax=0.5) self.imshow_bgr2rgb(axs[2, 0], 255 - loss_depth_vis, title='depth loss') loss_normal_vis = get_vis_depth(self.data['loss_normal'], valid_mask, dmin=-1.0, dmax=0.0) self.imshow_bgr2rgb(axs[2, 1], 255 - loss_normal_vis, title='normal loss') loss_mask_gt_vis = get_vis_mask(np.abs(self.data['loss_mask_gt']) > 0) self.imshow_bgr2rgb(axs[2, 2], 255 - loss_mask_gt_vis, title='gt \ output') loss_mask_out_vis = get_vis_mask(np.abs(self.data['loss_mask_out']) > 0) self.imshow_bgr2rgb(axs[2, 3], 255 - loss_mask_out_vis, title='output \ gt') # savefig fig.savefig(fname) plt.close('all') def save_all_data(self, prefix): # groundtruth depth_gt_vis = get_vis_depth(self.data['depth_gt'], mask=self.data['mask_gt'], dmin=self.dmin, dmax=self.dmax) self.save_depth(prefix + '_depth_gt.png', depth_gt_vis, cmap='magma', direct=True) normal_gt_vis = get_vis_normal(self.data['normal_gt'], mask=self.data['mask_gt']) self.save_normal(prefix + '_normal_gt.png', normal_gt_vis, bgr2rgb=True) mask_gt_vis = get_vis_mask(self.data['mask_gt']) self.save_mask(prefix + '_mask_gt.png', mask_gt_vis) # output depth_output_vis = get_vis_depth(self.data['depth_output'], mask=self.data['mask_output'], dmin=self.dmin, dmax=self.dmax) self.save_depth(prefix + '_depth_output.png', depth_output_vis, cmap='magma', direct=True) normal_output_vis = get_vis_normal(self.data['normal_output'], mask=self.data['mask_output']) self.save_normal(prefix + '_normal_output.png', normal_output_vis, bgr2rgb=True) mask_output_vis = get_vis_mask(self.data['mask_output']) self.save_mask(prefix + '_mask_output.png', mask_output_vis) # third row, loss valid_mask = np.logical_and(self.data['mask_gt'], self.data['mask_output']) loss_depth_vis = get_vis_depth(np.abs(self.data['loss_depth']), valid_mask, dmin=0.0, dmax=0.5, bg_color=0) self.save_error(prefix + '_depth_loss.png', loss_depth_vis, bgr2rgb=True) loss_normal_vis = get_vis_depth(self.data['loss_normal'], valid_mask, dmin=-1.0, dmax=0.0, bg_color=0) self.save_error(prefix + '_normal_loss.png', loss_normal_vis, bgr2rgb=True) loss_mask_gt_vis = get_vis_depth(np.abs(self.data['loss_mask_gt']), bg_color=0) self.save_error(prefix + '_mask_gt_loss.png', loss_mask_gt_vis, bgr2rgb=True) loss_mask_out_vis = get_vis_depth(np.abs(self.data['loss_mask_out']), bg_color=0) self.save_error(prefix + '_mask_out_loss.png', loss_mask_out_vis, bgr2rgb=True) self.save_error(prefix + '_mask_loss.png', loss_mask_gt_vis + loss_mask_out_vis, bgr2rgb=True) def dump_all_data(self, fname): with open(fname, 'wb') as f: pickle.dump({'data': self.data, 'loss_curve': self.loss_curve, 'loss_list': self.loss_list, 'chamfer_list': self.chamfer_list}, f) def show_all_data(self, fname): self.show_all_data_3x4(fname) # self.save_all_data(fname[:-4]) def show_all_data_color(self, fname): fig, axs = plt.subplots(3, 4, figsize=(30,30)) # first row, groundtruth depth_gt_vis = get_vis_depth(self.data['depth_gt'], mask=self.data['mask_gt'], dmin=self.dmin, dmax=self.dmax) self.imshow_bgr2rgb(axs[0, 0], depth_gt_vis, title='depth gt') normal_gt_vis = get_vis_normal(self.data['normal_gt']) self.imshow_bgr2rgb(axs[0, 1], normal_gt_vis, title='normal gt') mask_gt_vis = get_vis_mask(self.data['mask_gt']) self.imshow_bgr2rgb(axs[0, 2], mask_gt_vis, title='mask gt') self.imshow_bgr2rgb(axs[0, 3], self.data['color_gt'], title='rgb gt') # second row, output depth_output_vis = get_vis_depth(self.data['depth_output'], mask=self.data['mask_output'], dmin=self.dmin, dmax=self.dmax) self.imshow_bgr2rgb(axs[1, 0], depth_output_vis, title='depth output') normal_output_vis = get_vis_normal(self.data['normal_output']) self.imshow_bgr2rgb(axs[1, 1], normal_output_vis, title='normal output') mask_output_vis = get_vis_mask(self.data['mask_output']) self.imshow_bgr2rgb(axs[1, 2], mask_output_vis, title='mask output') self.imshow_bgr2rgb(axs[1, 3], self.data['color_output'], title='rgb output') # third row, loss valid_mask = np.logical_and(self.data['mask_gt'], self.data['mask_output']) loss_depth_vis = get_vis_depth(np.abs(self.data['loss_depth']), valid_mask, dmin=0.0, dmax=0.5) self.imshow_bgr2rgb(axs[2, 0], loss_depth_vis, title='depth loss') loss_normal_vis = get_vis_depth(self.data['loss_normal'], valid_mask, dmin=-1.0, dmax=0.0) self.imshow_bgr2rgb(axs[2, 1], loss_normal_vis, title='normal loss') loss_mask_gt_vis = get_vis_mask(np.abs(self.data['loss_mask_gt']) > 0) loss_mask_out_vis = get_vis_mask(np.abs(self.data['loss_mask_out']) > 0) loss_mask_gt_vis += loss_mask_out_vis self.imshow_bgr2rgb(axs[2, 2], loss_mask_gt_vis, title='mask loss') self.imshow_bgr2rgb(axs[2, 3], self.data['loss_color'], title='rgb loss') # savefig fig.savefig(fname) plt.close('all') def return_output_data_color(self): return self.data['color_output'], self.data['depth_output'], self.data['normal_output'], self.data['mask_output'] def show_all_data_color_multi(self, fname, num_img=4): fig, axs = plt.subplots(3, 2*num_img, figsize=(8*2*num_img,25)) for i in range(num_img): # first row, ground truth self.imshow_bgr2rgb(axs[0, 2*i], self.data['color_gt-{}'.format(i)], title='rgb gt {}'.format(i)) mask_gt_vis = get_vis_mask(self.data['mask_gt-{}'.format(i)]) self.imshow_bgr2rgb(axs[0, 2*i+1], mask_gt_vis, title='mask gt {}'.format(i)) # second row, output self.imshow_bgr2rgb(axs[1, 2*i], self.data['color_output-{}'.format(i)], title='rgb output {}'.format(i)) mask_output_vis = get_vis_mask(self.data['mask_output-{}'.format(i)]) self.imshow_bgr2rgb(axs[1, 2*i+1], mask_output_vis, title='mask output {}'.format(i)) # third row, loss self.imshow_bgr2rgb(axs[2, 2*i], self.data['loss_color-{}'.format(i)], title='rgb loss {}'.format(i)) loss_mask_gt_vis = get_vis_mask(np.abs(self.data['loss_mask_gt-{}'.format(i)]) > 0) loss_mask_out_vis = get_vis_mask(np.abs(self.data['loss_mask_out-{}'.format(i)]) > 0) loss_mask_gt_vis += loss_mask_out_vis self.imshow_bgr2rgb(axs[2, 2*i+1], loss_mask_gt_vis, title='mask loss {}'.format(i)) # savefig plt.subplots_adjust(top=0.95, right=0.99, left=0.01, bottom=0.01, wspace=0.05, hspace=0.1) fig.savefig(fname) plt.close('all') def show_all_data_color_warp(self, fname): fig, axs = plt.subplots(1, 5, figsize=(15, 3.4)) self.imshow_bgr2rgb(axs[0], self.data['color_gt-1'], title='view 1') self.imshow_bgr2rgb(axs[1], self.data['color_gt-2'], title='view 2') self.imshow_bgr2rgb(axs[2], self.data['color_valid-1'], title='valid region in view 1') self.imshow_bgr2rgb(axs[3], self.data['color_valid-2'], title='warped color from view 2') self.imshow_bgr2rgb(axs[4], self.data['color_valid_loss'], title='color loss') # savefig plt.subplots_adjust(top=0.99, right=0.99, left=0.01, bottom=0.00, wspace=0.05, hspace=0) fig.savefig(fname) plt.close('all')
[ "vis_utils.get_vis_depth", "pickle.dump", "numpy.abs", "torch.cat", "os.path.abspath", "matplotlib.colors.Normalize", "cv2.cvtColor", "matplotlib.cm.ScalarMappable", "cv2.imwrite", "matplotlib.pyplot.close", "vis_utils.get_vis_mask", "matplotlib.pyplot.subplots", "matplotlib.use", "matplotlib.pyplot.subplots_adjust", "vis_utils.get_vis_normal", "torch.from_numpy", "numpy.logical_and", "numpy.zeros", "PIL.Image.fromarray" ]
[((233, 247), 'matplotlib.use', 'mpl.use', (['"""Agg"""'], {}), "('Agg')\n", (240, 247), True, 'import matplotlib as mpl\n'), ((91, 116), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (106, 116), False, 'import os, sys\n'), ((3133, 3153), 'pickle.dump', 'pickle.dump', (['data', 'f'], {}), '(data, f)\n', (3144, 3153), False, 'import pickle\n'), ((6299, 6341), 'matplotlib.colors.Normalize', 'mpl.colors.Normalize', ([], {'vmin': 'vmin', 'vmax': 'vmax'}), '(vmin=vmin, vmax=vmax)\n', (6319, 6341), True, 'import matplotlib as mpl\n'), ((6359, 6404), 'matplotlib.cm.ScalarMappable', 'cm.ScalarMappable', ([], {'norm': 'normalizer', 'cmap': 'cmap'}), '(norm=normalizer, cmap=cmap)\n', (6376, 6404), True, 'import matplotlib.cm as cm\n'), ((6502, 6531), 'PIL.Image.fromarray', 'pil.fromarray', (['colormapped_im'], {}), '(colormapped_im)\n', (6515, 6531), True, 'from PIL import Image as pil\n'), ((6706, 6734), 'cv2.imwrite', 'cv2.imwrite', (['fname', 'mask_vis'], {}), '(fname, mask_vis)\n', (6717, 6734), False, 'import cv2\n'), ((6894, 6924), 'cv2.imwrite', 'cv2.imwrite', (['fname', 'normal_vis'], {}), '(fname, normal_vis)\n', (6905, 6924), False, 'import cv2\n'), ((7202, 7233), 'vis_utils.get_vis_depth', 'get_vis_depth', (['depth'], {'mask': 'mask'}), '(depth, mask=mask)\n', (7215, 7233), False, 'from vis_utils import get_vis_depth, get_vis_mask, get_vis_normal\n'), ((7286, 7315), 'cv2.imwrite', 'cv2.imwrite', (['fname', 'depth_vis'], {}), '(fname, depth_vis)\n', (7297, 7315), False, 'import cv2\n'), ((7411, 7444), 'vis_utils.get_vis_normal', 'get_vis_normal', (['normal'], {'mask': 'mask'}), '(normal, mask=mask)\n', (7425, 7444), False, 'from vis_utils import get_vis_depth, get_vis_mask, get_vis_normal\n'), ((7542, 7572), 'cv2.imwrite', 'cv2.imwrite', (['fname', 'normal_vis'], {}), '(fname, normal_vis)\n', (7553, 7572), False, 'import cv2\n'), ((7651, 7669), 'vis_utils.get_vis_mask', 'get_vis_mask', (['mask'], {}), '(mask)\n', (7663, 7669), False, 'from vis_utils import get_vis_depth, get_vis_mask, get_vis_normal\n'), ((7763, 7791), 'cv2.imwrite', 'cv2.imwrite', (['fname', 'mask_vis'], {}), '(fname, mask_vis)\n', (7774, 7791), False, 'import cv2\n'), ((8303, 8339), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(3)', '(4)'], {'figsize': '(30, 30)'}), '(3, 4, figsize=(30, 30))\n', (8315, 8339), True, 'import matplotlib.pyplot as plt\n'), ((8396, 8496), 'vis_utils.get_vis_depth', 'get_vis_depth', (["self.data['depth_gt']"], {'mask': "self.data['mask_gt']", 'dmin': 'self.dmin', 'dmax': 'self.dmax'}), "(self.data['depth_gt'], mask=self.data['mask_gt'], dmin=self.\n dmin, dmax=self.dmax)\n", (8409, 8496), False, 'from vis_utils import get_vis_depth, get_vis_mask, get_vis_normal\n'), ((8593, 8658), 'vis_utils.get_vis_normal', 'get_vis_normal', (["self.data['normal_gt']"], {'mask': "self.data['mask_gt']"}), "(self.data['normal_gt'], mask=self.data['mask_gt'])\n", (8607, 8658), False, 'from vis_utils import get_vis_depth, get_vis_mask, get_vis_normal\n'), ((8746, 8780), 'vis_utils.get_vis_mask', 'get_vis_mask', (["self.data['mask_gt']"], {}), "(self.data['mask_gt'])\n", (8758, 8780), False, 'from vis_utils import get_vis_depth, get_vis_mask, get_vis_normal\n'), ((8943, 9050), 'vis_utils.get_vis_depth', 'get_vis_depth', (["self.data['depth_output']"], {'mask': "self.data['mask_output']", 'dmin': 'self.dmin', 'dmax': 'self.dmax'}), "(self.data['depth_output'], mask=self.data['mask_output'],\n dmin=self.dmin, dmax=self.dmax)\n", (8956, 9050), False, 'from vis_utils import get_vis_depth, get_vis_mask, get_vis_normal\n'), ((9160, 9233), 'vis_utils.get_vis_normal', 'get_vis_normal', (["self.data['normal_output']"], {'mask': "self.data['mask_output']"}), "(self.data['normal_output'], mask=self.data['mask_output'])\n", (9174, 9233), False, 'from vis_utils import get_vis_depth, get_vis_mask, get_vis_normal\n'), ((9333, 9371), 'vis_utils.get_vis_mask', 'get_vis_mask', (["self.data['mask_output']"], {}), "(self.data['mask_output'])\n", (9345, 9371), False, 'from vis_utils import get_vis_depth, get_vis_mask, get_vis_normal\n'), ((9533, 9595), 'numpy.logical_and', 'np.logical_and', (["self.data['mask_gt']", "self.data['mask_output']"], {}), "(self.data['mask_gt'], self.data['mask_output'])\n", (9547, 9595), True, 'import numpy as np\n'), ((9807, 9879), 'vis_utils.get_vis_depth', 'get_vis_depth', (["self.data['loss_normal']", 'valid_mask'], {'dmin': '(-1.0)', 'dmax': '(0.0)'}), "(self.data['loss_normal'], valid_mask, dmin=-1.0, dmax=0.0)\n", (9820, 9879), False, 'from vis_utils import get_vis_depth, get_vis_mask, get_vis_normal\n'), ((10346, 10362), 'matplotlib.pyplot.close', 'plt.close', (['"""all"""'], {}), "('all')\n", (10355, 10362), True, 'import matplotlib.pyplot as plt\n'), ((10446, 10546), 'vis_utils.get_vis_depth', 'get_vis_depth', (["self.data['depth_gt']"], {'mask': "self.data['mask_gt']", 'dmin': 'self.dmin', 'dmax': 'self.dmax'}), "(self.data['depth_gt'], mask=self.data['mask_gt'], dmin=self.\n dmin, dmax=self.dmax)\n", (10459, 10546), False, 'from vis_utils import get_vis_depth, get_vis_mask, get_vis_normal\n'), ((10657, 10722), 'vis_utils.get_vis_normal', 'get_vis_normal', (["self.data['normal_gt']"], {'mask': "self.data['mask_gt']"}), "(self.data['normal_gt'], mask=self.data['mask_gt'])\n", (10671, 10722), False, 'from vis_utils import get_vis_depth, get_vis_mask, get_vis_normal\n'), ((10826, 10860), 'vis_utils.get_vis_mask', 'get_vis_mask', (["self.data['mask_gt']"], {}), "(self.data['mask_gt'])\n", (10838, 10860), False, 'from vis_utils import get_vis_depth, get_vis_mask, get_vis_normal\n'), ((10967, 11074), 'vis_utils.get_vis_depth', 'get_vis_depth', (["self.data['depth_output']"], {'mask': "self.data['mask_output']", 'dmin': 'self.dmin', 'dmax': 'self.dmax'}), "(self.data['depth_output'], mask=self.data['mask_output'],\n dmin=self.dmin, dmax=self.dmax)\n", (10980, 11074), False, 'from vis_utils import get_vis_depth, get_vis_mask, get_vis_normal\n'), ((11198, 11271), 'vis_utils.get_vis_normal', 'get_vis_normal', (["self.data['normal_output']"], {'mask': "self.data['mask_output']"}), "(self.data['normal_output'], mask=self.data['mask_output'])\n", (11212, 11271), False, 'from vis_utils import get_vis_depth, get_vis_mask, get_vis_normal\n'), ((11387, 11425), 'vis_utils.get_vis_mask', 'get_vis_mask', (["self.data['mask_output']"], {}), "(self.data['mask_output'])\n", (11399, 11425), False, 'from vis_utils import get_vis_depth, get_vis_mask, get_vis_normal\n'), ((11543, 11605), 'numpy.logical_and', 'np.logical_and', (["self.data['mask_gt']", "self.data['mask_output']"], {}), "(self.data['mask_gt'], self.data['mask_output'])\n", (11557, 11605), True, 'import numpy as np\n'), ((11830, 11918), 'vis_utils.get_vis_depth', 'get_vis_depth', (["self.data['loss_normal']", 'valid_mask'], {'dmin': '(-1.0)', 'dmax': '(0.0)', 'bg_color': '(0)'}), "(self.data['loss_normal'], valid_mask, dmin=-1.0, dmax=0.0,\n bg_color=0)\n", (11843, 11918), False, 'from vis_utils import get_vis_depth, get_vis_mask, get_vis_normal\n'), ((12850, 12886), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(3)', '(4)'], {'figsize': '(30, 30)'}), '(3, 4, figsize=(30, 30))\n', (12862, 12886), True, 'import matplotlib.pyplot as plt\n'), ((12943, 13043), 'vis_utils.get_vis_depth', 'get_vis_depth', (["self.data['depth_gt']"], {'mask': "self.data['mask_gt']", 'dmin': 'self.dmin', 'dmax': 'self.dmax'}), "(self.data['depth_gt'], mask=self.data['mask_gt'], dmin=self.\n dmin, dmax=self.dmax)\n", (12956, 13043), False, 'from vis_utils import get_vis_depth, get_vis_mask, get_vis_normal\n'), ((13134, 13172), 'vis_utils.get_vis_normal', 'get_vis_normal', (["self.data['normal_gt']"], {}), "(self.data['normal_gt'])\n", (13148, 13172), False, 'from vis_utils import get_vis_depth, get_vis_mask, get_vis_normal\n'), ((13268, 13302), 'vis_utils.get_vis_mask', 'get_vis_mask', (["self.data['mask_gt']"], {}), "(self.data['mask_gt'])\n", (13280, 13302), False, 'from vis_utils import get_vis_depth, get_vis_mask, get_vis_normal\n'), ((13507, 13614), 'vis_utils.get_vis_depth', 'get_vis_depth', (["self.data['depth_output']"], {'mask': "self.data['mask_output']", 'dmin': 'self.dmin', 'dmax': 'self.dmax'}), "(self.data['depth_output'], mask=self.data['mask_output'],\n dmin=self.dmin, dmax=self.dmax)\n", (13520, 13614), False, 'from vis_utils import get_vis_depth, get_vis_mask, get_vis_normal\n'), ((13718, 13760), 'vis_utils.get_vis_normal', 'get_vis_normal', (["self.data['normal_output']"], {}), "(self.data['normal_output'])\n", (13732, 13760), False, 'from vis_utils import get_vis_depth, get_vis_mask, get_vis_normal\n'), ((13868, 13906), 'vis_utils.get_vis_mask', 'get_vis_mask', (["self.data['mask_output']"], {}), "(self.data['mask_output'])\n", (13880, 13906), False, 'from vis_utils import get_vis_depth, get_vis_mask, get_vis_normal\n'), ((14118, 14180), 'numpy.logical_and', 'np.logical_and', (["self.data['mask_gt']", "self.data['mask_output']"], {}), "(self.data['mask_gt'], self.data['mask_output'])\n", (14132, 14180), True, 'import numpy as np\n'), ((14386, 14458), 'vis_utils.get_vis_depth', 'get_vis_depth', (["self.data['loss_normal']", 'valid_mask'], {'dmin': '(-1.0)', 'dmax': '(0.0)'}), "(self.data['loss_normal'], valid_mask, dmin=-1.0, dmax=0.0)\n", (14399, 14458), False, 'from vis_utils import get_vis_depth, get_vis_mask, get_vis_normal\n'), ((14954, 14970), 'matplotlib.pyplot.close', 'plt.close', (['"""all"""'], {}), "('all')\n", (14963, 14970), True, 'import matplotlib.pyplot as plt\n'), ((15213, 15272), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(3)', '(2 * num_img)'], {'figsize': '(8 * 2 * num_img, 25)'}), '(3, 2 * num_img, figsize=(8 * 2 * num_img, 25))\n', (15225, 15272), True, 'import matplotlib.pyplot as plt\n'), ((16457, 16552), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'top': '(0.95)', 'right': '(0.99)', 'left': '(0.01)', 'bottom': '(0.01)', 'wspace': '(0.05)', 'hspace': '(0.1)'}), '(top=0.95, right=0.99, left=0.01, bottom=0.01, wspace=\n 0.05, hspace=0.1)\n', (16476, 16552), True, 'import matplotlib.pyplot as plt\n'), ((16583, 16599), 'matplotlib.pyplot.close', 'plt.close', (['"""all"""'], {}), "('all')\n", (16592, 16599), True, 'import matplotlib.pyplot as plt\n'), ((16667, 16704), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(5)'], {'figsize': '(15, 3.4)'}), '(1, 5, figsize=(15, 3.4))\n', (16679, 16704), True, 'import matplotlib.pyplot as plt\n'), ((17167, 17259), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'top': '(0.99)', 'right': '(0.99)', 'left': '(0.01)', 'bottom': '(0.0)', 'wspace': '(0.05)', 'hspace': '(0)'}), '(top=0.99, right=0.99, left=0.01, bottom=0.0, wspace=\n 0.05, hspace=0)\n', (17186, 17259), True, 'import matplotlib.pyplot as plt\n'), ((17291, 17307), 'matplotlib.pyplot.close', 'plt.close', (['"""all"""'], {}), "('all')\n", (17300, 17307), True, 'import matplotlib.pyplot as plt\n'), ((4638, 4656), 'numpy.zeros', 'np.zeros', (['(64, 64)'], {}), '((64, 64))\n', (4646, 4656), True, 'import numpy as np\n'), ((5977, 6002), 'numpy.zeros', 'np.zeros', (['data_mask.shape'], {}), '(data_mask.shape)\n', (5985, 6002), True, 'import numpy as np\n'), ((6199, 6228), 'cv2.imwrite', 'cv2.imwrite', (['fname', 'depth_vis'], {}), '(fname, depth_vis)\n', (6210, 6228), False, 'import cv2\n'), ((6656, 6697), 'cv2.cvtColor', 'cv2.cvtColor', (['mask_vis', 'cv2.COLOR_BGR2RGB'], {}), '(mask_vis, cv2.COLOR_BGR2RGB)\n', (6668, 6697), False, 'import cv2\n'), ((6842, 6885), 'cv2.cvtColor', 'cv2.cvtColor', (['normal_vis', 'cv2.COLOR_BGR2RGB'], {}), '(normal_vis, cv2.COLOR_BGR2RGB)\n', (6854, 6885), False, 'import cv2\n'), ((7490, 7533), 'cv2.cvtColor', 'cv2.cvtColor', (['normal_vis', 'cv2.COLOR_BGR2RGB'], {}), '(normal_vis, cv2.COLOR_BGR2RGB)\n', (7502, 7533), False, 'import cv2\n'), ((7713, 7754), 'cv2.cvtColor', 'cv2.cvtColor', (['mask_vis', 'cv2.COLOR_BGR2RGB'], {}), '(mask_vis, cv2.COLOR_BGR2RGB)\n', (7725, 7754), False, 'import cv2\n'), ((8046, 8082), 'cv2.cvtColor', 'cv2.cvtColor', (['img', 'cv2.COLOR_BGR2RGB'], {}), '(img, cv2.COLOR_BGR2RGB)\n', (8058, 8082), False, 'import cv2\n'), ((9635, 9666), 'numpy.abs', 'np.abs', (["self.data['loss_depth']"], {}), "(self.data['loss_depth'])\n", (9641, 9666), True, 'import numpy as np\n'), ((11645, 11676), 'numpy.abs', 'np.abs', (["self.data['loss_depth']"], {}), "(self.data['loss_depth'])\n", (11651, 11676), True, 'import numpy as np\n'), ((12041, 12074), 'numpy.abs', 'np.abs', (["self.data['loss_mask_gt']"], {}), "(self.data['loss_mask_gt'])\n", (12047, 12074), True, 'import numpy as np\n'), ((12216, 12250), 'numpy.abs', 'np.abs', (["self.data['loss_mask_out']"], {}), "(self.data['loss_mask_out'])\n", (12222, 12250), True, 'import numpy as np\n'), ((12541, 12675), 'pickle.dump', 'pickle.dump', (["{'data': self.data, 'loss_curve': self.loss_curve, 'loss_list': self.\n loss_list, 'chamfer_list': self.chamfer_list}", 'f'], {}), "({'data': self.data, 'loss_curve': self.loss_curve, 'loss_list':\n self.loss_list, 'chamfer_list': self.chamfer_list}, f)\n", (12552, 12675), False, 'import pickle\n'), ((14220, 14251), 'numpy.abs', 'np.abs', (["self.data['loss_depth']"], {}), "(self.data['loss_depth'])\n", (14226, 14251), True, 'import numpy as np\n'), ((10003, 10036), 'numpy.abs', 'np.abs', (["self.data['loss_mask_gt']"], {}), "(self.data['loss_mask_gt'])\n", (10009, 10036), True, 'import numpy as np\n'), ((10167, 10201), 'numpy.abs', 'np.abs', (["self.data['loss_mask_out']"], {}), "(self.data['loss_mask_out'])\n", (10173, 10201), True, 'import numpy as np\n'), ((14576, 14609), 'numpy.abs', 'np.abs', (["self.data['loss_mask_gt']"], {}), "(self.data['loss_mask_gt'])\n", (14582, 14609), True, 'import numpy as np\n'), ((14656, 14690), 'numpy.abs', 'np.abs', (["self.data['loss_mask_out']"], {}), "(self.data['loss_mask_out'])\n", (14662, 14690), True, 'import numpy as np\n'), ((2039, 2058), 'torch.from_numpy', 'torch.from_numpy', (['R'], {}), '(R)\n', (2055, 2058), False, 'import torch\n'), ((2075, 2094), 'torch.from_numpy', 'torch.from_numpy', (['T'], {}), '(T)\n', (2091, 2094), False, 'import torch\n'), ((3007, 3036), 'torch.cat', 'torch.cat', (['[R, T[:, None]]', '(1)'], {}), '([R, T[:, None]], 1)\n', (3016, 3036), False, 'import torch\n'), ((2225, 2255), 'torch.from_numpy', 'torch.from_numpy', (['lighting_loc'], {}), '(lighting_loc)\n', (2241, 2255), False, 'import torch\n')]
import os import time import numpy as np import torch from torch import nn from butterfly_factor import butterfly_factor_mult_intermediate # from butterfly import Block2x2DiagProduct # from test_factor_multiply import twiddle_list_concat exps = np.arange(6, 14) sizes = 1 << exps batch_size = 256 ntrials = [100000, 100000, 10000, 10000, 10000, 10000, 10000, 10000] dense_times = np.zeros(exps.size) fft_times = np.zeros(exps.size) butterfly_times = np.zeros(exps.size) for idx_n, (n, ntrial) in enumerate(zip(sizes, ntrials)): print(n) # B = Block2x2DiagProduct(n).to('cuda') L = torch.nn.Linear(n, n, bias=False).to('cuda') x = torch.randn(batch_size, n, requires_grad=True).to('cuda') grad = torch.randn_like(x) # twiddle = twiddle_list_concat(B) # Dense multiply output = L(x) # Do it once to initialize cuBlas handle and such torch.autograd.grad(output, (L.weight, x), grad) torch.cuda.synchronize() start = time.perf_counter() for _ in range(ntrial): output = L(x) torch.autograd.grad(output, (L.weight, x), grad) torch.cuda.synchronize() end = time.perf_counter() dense_times[idx_n] = (end - start) / ntrial # FFT output = torch.rfft(x, 1) # Do it once to initialize cuBlas handle and such grad_fft = torch.randn_like(output) torch.autograd.grad(output, x, grad_fft) torch.cuda.synchronize() start = time.perf_counter() for _ in range(ntrial): output = torch.rfft(x, 1) torch.autograd.grad(output, x, grad_fft) torch.cuda.synchronize() end = time.perf_counter() fft_times[idx_n] = (end - start) / ntrial # Butterfly output = butterfly_factor_mult_intermediate(twiddle, x) torch.autograd.grad(output, (twiddle, x), grad) torch.cuda.synchronize() start = time.perf_counter() for _ in range(ntrial): output = butterfly_factor_mult_intermediate(twiddle, x) torch.autograd.grad(output, (twiddle, x), grad) torch.cuda.synchronize() end = time.perf_counter() butterfly_times[idx_n] = (end-start) / ntrial print(dense_times) print(fft_times) print(butterfly_times) print(dense_times / butterfly_times) print(dense_times / fft_times) data = { 'sizes': sizes, 'speedup_fft': dense_times / fft_times, 'speedup_butterfly': dense_times / butterfly_times, } import pickle with open('speed_training_data.pkl', 'wb') as f: pickle.dump(data, f)
[ "torch.cuda.synchronize", "pickle.dump", "torch.randn_like", "butterfly_factor.butterfly_factor_mult_intermediate", "torch.autograd.grad", "numpy.zeros", "time.perf_counter", "torch.randn", "numpy.arange", "torch.rfft", "torch.nn.Linear" ]
[((249, 265), 'numpy.arange', 'np.arange', (['(6)', '(14)'], {}), '(6, 14)\n', (258, 265), True, 'import numpy as np\n'), ((387, 406), 'numpy.zeros', 'np.zeros', (['exps.size'], {}), '(exps.size)\n', (395, 406), True, 'import numpy as np\n'), ((419, 438), 'numpy.zeros', 'np.zeros', (['exps.size'], {}), '(exps.size)\n', (427, 438), True, 'import numpy as np\n'), ((457, 476), 'numpy.zeros', 'np.zeros', (['exps.size'], {}), '(exps.size)\n', (465, 476), True, 'import numpy as np\n'), ((722, 741), 'torch.randn_like', 'torch.randn_like', (['x'], {}), '(x)\n', (738, 741), False, 'import torch\n'), ((876, 924), 'torch.autograd.grad', 'torch.autograd.grad', (['output', '(L.weight, x)', 'grad'], {}), '(output, (L.weight, x), grad)\n', (895, 924), False, 'import torch\n'), ((929, 953), 'torch.cuda.synchronize', 'torch.cuda.synchronize', ([], {}), '()\n', (951, 953), False, 'import torch\n'), ((966, 985), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (983, 985), False, 'import time\n'), ((1097, 1121), 'torch.cuda.synchronize', 'torch.cuda.synchronize', ([], {}), '()\n', (1119, 1121), False, 'import torch\n'), ((1132, 1151), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (1149, 1151), False, 'import time\n'), ((1224, 1240), 'torch.rfft', 'torch.rfft', (['x', '(1)'], {}), '(x, 1)\n', (1234, 1240), False, 'import torch\n'), ((1307, 1331), 'torch.randn_like', 'torch.randn_like', (['output'], {}), '(output)\n', (1323, 1331), False, 'import torch\n'), ((1336, 1376), 'torch.autograd.grad', 'torch.autograd.grad', (['output', 'x', 'grad_fft'], {}), '(output, x, grad_fft)\n', (1355, 1376), False, 'import torch\n'), ((1381, 1405), 'torch.cuda.synchronize', 'torch.cuda.synchronize', ([], {}), '()\n', (1403, 1405), False, 'import torch\n'), ((1418, 1437), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (1435, 1437), False, 'import time\n'), ((1553, 1577), 'torch.cuda.synchronize', 'torch.cuda.synchronize', ([], {}), '()\n', (1575, 1577), False, 'import torch\n'), ((1588, 1607), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (1605, 1607), False, 'import time\n'), ((1684, 1730), 'butterfly_factor.butterfly_factor_mult_intermediate', 'butterfly_factor_mult_intermediate', (['twiddle', 'x'], {}), '(twiddle, x)\n', (1718, 1730), False, 'from butterfly_factor import butterfly_factor_mult_intermediate\n'), ((1735, 1782), 'torch.autograd.grad', 'torch.autograd.grad', (['output', '(twiddle, x)', 'grad'], {}), '(output, (twiddle, x), grad)\n', (1754, 1782), False, 'import torch\n'), ((1787, 1811), 'torch.cuda.synchronize', 'torch.cuda.synchronize', ([], {}), '()\n', (1809, 1811), False, 'import torch\n'), ((1824, 1843), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (1841, 1843), False, 'import time\n'), ((1996, 2020), 'torch.cuda.synchronize', 'torch.cuda.synchronize', ([], {}), '()\n', (2018, 2020), False, 'import torch\n'), ((2031, 2050), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (2048, 2050), False, 'import time\n'), ((2431, 2451), 'pickle.dump', 'pickle.dump', (['data', 'f'], {}), '(data, f)\n', (2442, 2451), False, 'import pickle\n'), ((1044, 1092), 'torch.autograd.grad', 'torch.autograd.grad', (['output', '(L.weight, x)', 'grad'], {}), '(output, (L.weight, x), grad)\n', (1063, 1092), False, 'import torch\n'), ((1483, 1499), 'torch.rfft', 'torch.rfft', (['x', '(1)'], {}), '(x, 1)\n', (1493, 1499), False, 'import torch\n'), ((1508, 1548), 'torch.autograd.grad', 'torch.autograd.grad', (['output', 'x', 'grad_fft'], {}), '(output, x, grad_fft)\n', (1527, 1548), False, 'import torch\n'), ((1889, 1935), 'butterfly_factor.butterfly_factor_mult_intermediate', 'butterfly_factor_mult_intermediate', (['twiddle', 'x'], {}), '(twiddle, x)\n', (1923, 1935), False, 'from butterfly_factor import butterfly_factor_mult_intermediate\n'), ((1944, 1991), 'torch.autograd.grad', 'torch.autograd.grad', (['output', '(twiddle, x)', 'grad'], {}), '(output, (twiddle, x), grad)\n', (1963, 1991), False, 'import torch\n'), ((600, 633), 'torch.nn.Linear', 'torch.nn.Linear', (['n', 'n'], {'bias': '(False)'}), '(n, n, bias=False)\n', (615, 633), False, 'import torch\n'), ((653, 699), 'torch.randn', 'torch.randn', (['batch_size', 'n'], {'requires_grad': '(True)'}), '(batch_size, n, requires_grad=True)\n', (664, 699), False, 'import torch\n')]
from pandas import Series from sklearn.metrics import roc_curve, auc from sklearn.model_selection import StratifiedKFold, ShuffleSplit import numpy as np from scipy import interp import matplotlib.pyplot as plt from sklearn import metrics from sklearn.preprocessing import LabelEncoder def transform_labels(y) -> Series: if type(next(iter(y))) is str: le = LabelEncoder() le.fit(y) y = le.transform(y) return Series(y) def calc_auc(clf, test_x, test_y): y_pred = clf.predict(test_x) return metrics.roc_auc_score( transform_labels(test_y), transform_labels(y_pred.tolist()) ) def roc_plot(classifier, X, y, n_splits=3, title='', labeller=None): cv = StratifiedKFold(n_splits=n_splits) #if labeller: # y = [labeller(i) for i in y] y = transform_labels(y) #cv = ShuffleSplit(n_splits=n_splits) tprs = [] aucs = [] mean_fpr = np.linspace(0, 1, 100) i = 0 for train, test in cv.split(X, y): probas_ = classifier.fit(X.iloc[train], y.iloc[train]).predict_proba(X.iloc[test]) # Compute ROC curve and area the curve fpr, tpr, thresholds = roc_curve(y.iloc[test], probas_[:, 1]) tprs.append(interp(mean_fpr, fpr, tpr)) tprs[-1][0] = 0.0 roc_auc = auc(fpr, tpr) aucs.append(roc_auc) plt.plot(fpr, tpr, lw=1, alpha=0.3, label='ROC fold %d (AUC = %0.2f)' % (i, roc_auc)) i += 1 plt.plot([0, 1], [0, 1], linestyle='--', lw=2, color='r', label='Chance', alpha=.8) mean_tpr = np.mean(tprs, axis=0) mean_tpr[-1] = 1.0 mean_auc = auc(mean_fpr, mean_tpr) std_auc = np.std(aucs) plt.plot(mean_fpr, mean_tpr, color='b', label=r'Mean ROC (AUC = %0.2f $\pm$ %0.2f)' % (mean_auc, std_auc), lw=2, alpha=.8) std_tpr = np.std(tprs, axis=0) tprs_upper = np.minimum(mean_tpr + std_tpr, 1) tprs_lower = np.maximum(mean_tpr - std_tpr, 0) plt.fill_between(mean_fpr, tprs_lower, tprs_upper, color='grey', alpha=.2, label=r'$\pm$ 1 std. dev.') plt.xlim([-0.05, 1.05]) plt.ylim([-0.05, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic ' + title) plt.legend(loc="lower right") plt.show() return plt
[ "matplotlib.pyplot.title", "numpy.maximum", "numpy.mean", "matplotlib.pyplot.fill_between", "numpy.std", "sklearn.preprocessing.LabelEncoder", "numpy.linspace", "numpy.minimum", "matplotlib.pyplot.show", "matplotlib.pyplot.ylim", "matplotlib.pyplot.legend", "pandas.Series", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlim", "matplotlib.pyplot.plot", "sklearn.metrics.roc_curve", "sklearn.metrics.auc", "sklearn.model_selection.StratifiedKFold", "scipy.interp", "matplotlib.pyplot.xlabel" ]
[((444, 453), 'pandas.Series', 'Series', (['y'], {}), '(y)\n', (450, 453), False, 'from pandas import Series\n'), ((720, 754), 'sklearn.model_selection.StratifiedKFold', 'StratifiedKFold', ([], {'n_splits': 'n_splits'}), '(n_splits=n_splits)\n', (735, 754), False, 'from sklearn.model_selection import StratifiedKFold, ShuffleSplit\n'), ((924, 946), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(100)'], {}), '(0, 1, 100)\n', (935, 946), True, 'import numpy as np\n'), ((1471, 1559), 'matplotlib.pyplot.plot', 'plt.plot', (['[0, 1]', '[0, 1]'], {'linestyle': '"""--"""', 'lw': '(2)', 'color': '"""r"""', 'label': '"""Chance"""', 'alpha': '(0.8)'}), "([0, 1], [0, 1], linestyle='--', lw=2, color='r', label='Chance',\n alpha=0.8)\n", (1479, 1559), True, 'import matplotlib.pyplot as plt\n'), ((1584, 1605), 'numpy.mean', 'np.mean', (['tprs'], {'axis': '(0)'}), '(tprs, axis=0)\n', (1591, 1605), True, 'import numpy as np\n'), ((1644, 1667), 'sklearn.metrics.auc', 'auc', (['mean_fpr', 'mean_tpr'], {}), '(mean_fpr, mean_tpr)\n', (1647, 1667), False, 'from sklearn.metrics import roc_curve, auc\n'), ((1682, 1694), 'numpy.std', 'np.std', (['aucs'], {}), '(aucs)\n', (1688, 1694), True, 'import numpy as np\n'), ((1699, 1831), 'matplotlib.pyplot.plot', 'plt.plot', (['mean_fpr', 'mean_tpr'], {'color': '"""b"""', 'label': "('Mean ROC (AUC = %0.2f $\\\\pm$ %0.2f)' % (mean_auc, std_auc))", 'lw': '(2)', 'alpha': '(0.8)'}), "(mean_fpr, mean_tpr, color='b', label=\n 'Mean ROC (AUC = %0.2f $\\\\pm$ %0.2f)' % (mean_auc, std_auc), lw=2,\n alpha=0.8)\n", (1707, 1831), True, 'import matplotlib.pyplot as plt\n'), ((1863, 1883), 'numpy.std', 'np.std', (['tprs'], {'axis': '(0)'}), '(tprs, axis=0)\n', (1869, 1883), True, 'import numpy as np\n'), ((1901, 1934), 'numpy.minimum', 'np.minimum', (['(mean_tpr + std_tpr)', '(1)'], {}), '(mean_tpr + std_tpr, 1)\n', (1911, 1934), True, 'import numpy as np\n'), ((1952, 1985), 'numpy.maximum', 'np.maximum', (['(mean_tpr - std_tpr)', '(0)'], {}), '(mean_tpr - std_tpr, 0)\n', (1962, 1985), True, 'import numpy as np\n'), ((1990, 2097), 'matplotlib.pyplot.fill_between', 'plt.fill_between', (['mean_fpr', 'tprs_lower', 'tprs_upper'], {'color': '"""grey"""', 'alpha': '(0.2)', 'label': '"""$\\\\pm$ 1 std. dev."""'}), "(mean_fpr, tprs_lower, tprs_upper, color='grey', alpha=0.2,\n label='$\\\\pm$ 1 std. dev.')\n", (2006, 2097), True, 'import matplotlib.pyplot as plt\n'), ((2119, 2142), 'matplotlib.pyplot.xlim', 'plt.xlim', (['[-0.05, 1.05]'], {}), '([-0.05, 1.05])\n', (2127, 2142), True, 'import matplotlib.pyplot as plt\n'), ((2147, 2170), 'matplotlib.pyplot.ylim', 'plt.ylim', (['[-0.05, 1.05]'], {}), '([-0.05, 1.05])\n', (2155, 2170), True, 'import matplotlib.pyplot as plt\n'), ((2175, 2208), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""False Positive Rate"""'], {}), "('False Positive Rate')\n", (2185, 2208), True, 'import matplotlib.pyplot as plt\n'), ((2213, 2245), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""True Positive Rate"""'], {}), "('True Positive Rate')\n", (2223, 2245), True, 'import matplotlib.pyplot as plt\n'), ((2250, 2305), 'matplotlib.pyplot.title', 'plt.title', (["('Receiver operating characteristic ' + title)"], {}), "('Receiver operating characteristic ' + title)\n", (2259, 2305), True, 'import matplotlib.pyplot as plt\n'), ((2310, 2339), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""lower right"""'}), "(loc='lower right')\n", (2320, 2339), True, 'import matplotlib.pyplot as plt\n'), ((2344, 2354), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2352, 2354), True, 'import matplotlib.pyplot as plt\n'), ((372, 386), 'sklearn.preprocessing.LabelEncoder', 'LabelEncoder', ([], {}), '()\n', (384, 386), False, 'from sklearn.preprocessing import LabelEncoder\n'), ((1166, 1204), 'sklearn.metrics.roc_curve', 'roc_curve', (['y.iloc[test]', 'probas_[:, 1]'], {}), '(y.iloc[test], probas_[:, 1])\n', (1175, 1204), False, 'from sklearn.metrics import roc_curve, auc\n'), ((1297, 1310), 'sklearn.metrics.auc', 'auc', (['fpr', 'tpr'], {}), '(fpr, tpr)\n', (1300, 1310), False, 'from sklearn.metrics import roc_curve, auc\n'), ((1348, 1437), 'matplotlib.pyplot.plot', 'plt.plot', (['fpr', 'tpr'], {'lw': '(1)', 'alpha': '(0.3)', 'label': "('ROC fold %d (AUC = %0.2f)' % (i, roc_auc))"}), "(fpr, tpr, lw=1, alpha=0.3, label='ROC fold %d (AUC = %0.2f)' % (i,\n roc_auc))\n", (1356, 1437), True, 'import matplotlib.pyplot as plt\n'), ((1225, 1251), 'scipy.interp', 'interp', (['mean_fpr', 'fpr', 'tpr'], {}), '(mean_fpr, fpr, tpr)\n', (1231, 1251), False, 'from scipy import interp\n')]
######################################################################################################################## # Module: tests/test_core.py # Description: Tests for core and Sampler # # Web: https://github.com/SamDuffield/mocat ######################################################################################################################## import unittest import jax.numpy as jnp import mocat.src.sample import numpy.testing as npt from mocat.src import core from mocat.src import sample class Testcdict(unittest.TestCase): cdict = core.cdict(test_arr=jnp.ones((10, 3)), test_float=3.) def test_init(self): npt.assert_(hasattr(self.cdict, 'test_arr')) npt.assert_array_equal(self.cdict.test_arr, jnp.ones((10, 3))) npt.assert_(hasattr(self.cdict, 'test_float')) npt.assert_equal(self.cdict.test_float, 3.) def test_copy(self): cdict2 = self.cdict.copy() npt.assert_(isinstance(cdict2, core.cdict)) npt.assert_(isinstance(cdict2.test_arr, jnp.DeviceArray)) npt.assert_array_equal(cdict2.test_arr, jnp.ones((10, 3))) npt.assert_(isinstance(cdict2.test_float, float)) npt.assert_equal(cdict2.test_float, 3.) cdict2.test_arr = jnp.zeros(5) npt.assert_array_equal(self.cdict.test_arr, jnp.ones((10, 3))) cdict2.test_float = 9. npt.assert_equal(self.cdict.test_float, 3.) def test_getitem(self): cdict_0get = self.cdict[0] npt.assert_(isinstance(cdict_0get, core.cdict)) npt.assert_(isinstance(cdict_0get.test_arr, jnp.DeviceArray)) npt.assert_array_equal(cdict_0get.test_arr, jnp.ones(3)) npt.assert_(isinstance(cdict_0get.test_float, float)) npt.assert_equal(cdict_0get.test_float, 3.) def test_additem(self): cdict_other = core.cdict(test_arr=jnp.ones((2, 3)), test_float=7., time=25.) self.cdict.time = 10. cdict_add = self.cdict + cdict_other npt.assert_(isinstance(cdict_add, core.cdict)) npt.assert_(isinstance(cdict_add.test_arr, jnp.DeviceArray)) npt.assert_array_equal(cdict_add.test_arr, jnp.ones((12, 3))) npt.assert_array_equal(cdict_add.time, 35.) npt.assert_(isinstance(cdict_add.test_float, float)) npt.assert_equal(cdict_add.test_float, 3.) npt.assert_array_equal(self.cdict.test_arr, jnp.ones((10, 3))) npt.assert_equal(self.cdict.test_float, 3.) npt.assert_equal(self.cdict.time, 10.) del self.cdict.time class TestSampler(unittest.TestCase): sampler = sample.Sampler(name='test', other=jnp.zeros(2)) def test_init(self): npt.assert_equal(self.sampler.name, 'test') npt.assert_(hasattr(self.sampler, 'parameters')) npt.assert_array_equal(self.sampler.parameters.other, jnp.zeros(2)) def test_copy(self): sampler2 = self.sampler.deepcopy() npt.assert_(isinstance(sampler2, sample.Sampler)) sampler2.name = 'other' npt.assert_equal(self.sampler.name, 'test') sampler2.parameters.other = 10. npt.assert_array_equal(self.sampler.parameters.other, jnp.zeros(2)) if __name__ == '__main__': unittest.main()
[ "unittest.main", "numpy.testing.assert_array_equal", "numpy.testing.assert_equal", "jax.numpy.ones", "jax.numpy.zeros" ]
[((3308, 3323), 'unittest.main', 'unittest.main', ([], {}), '()\n', (3321, 3323), False, 'import unittest\n'), ((851, 895), 'numpy.testing.assert_equal', 'npt.assert_equal', (['self.cdict.test_float', '(3.0)'], {}), '(self.cdict.test_float, 3.0)\n', (867, 895), True, 'import numpy.testing as npt\n'), ((1209, 1249), 'numpy.testing.assert_equal', 'npt.assert_equal', (['cdict2.test_float', '(3.0)'], {}), '(cdict2.test_float, 3.0)\n', (1225, 1249), True, 'import numpy.testing as npt\n'), ((1276, 1288), 'jax.numpy.zeros', 'jnp.zeros', (['(5)'], {}), '(5)\n', (1285, 1288), True, 'import jax.numpy as jnp\n'), ((1400, 1444), 'numpy.testing.assert_equal', 'npt.assert_equal', (['self.cdict.test_float', '(3.0)'], {}), '(self.cdict.test_float, 3.0)\n', (1416, 1444), True, 'import numpy.testing as npt\n'), ((1771, 1815), 'numpy.testing.assert_equal', 'npt.assert_equal', (['cdict_0get.test_float', '(3.0)'], {}), '(cdict_0get.test_float, 3.0)\n', (1787, 1815), True, 'import numpy.testing as npt\n'), ((2276, 2320), 'numpy.testing.assert_array_equal', 'npt.assert_array_equal', (['cdict_add.time', '(35.0)'], {}), '(cdict_add.time, 35.0)\n', (2298, 2320), True, 'import numpy.testing as npt\n'), ((2390, 2433), 'numpy.testing.assert_equal', 'npt.assert_equal', (['cdict_add.test_float', '(3.0)'], {}), '(cdict_add.test_float, 3.0)\n', (2406, 2433), True, 'import numpy.testing as npt\n'), ((2513, 2557), 'numpy.testing.assert_equal', 'npt.assert_equal', (['self.cdict.test_float', '(3.0)'], {}), '(self.cdict.test_float, 3.0)\n', (2529, 2557), True, 'import numpy.testing as npt\n'), ((2565, 2604), 'numpy.testing.assert_equal', 'npt.assert_equal', (['self.cdict.time', '(10.0)'], {}), '(self.cdict.time, 10.0)\n', (2581, 2604), True, 'import numpy.testing as npt\n'), ((2768, 2811), 'numpy.testing.assert_equal', 'npt.assert_equal', (['self.sampler.name', '"""test"""'], {}), "(self.sampler.name, 'test')\n", (2784, 2811), True, 'import numpy.testing as npt\n'), ((3114, 3157), 'numpy.testing.assert_equal', 'npt.assert_equal', (['self.sampler.name', '"""test"""'], {}), "(self.sampler.name, 'test')\n", (3130, 3157), True, 'import numpy.testing as npt\n'), ((580, 597), 'jax.numpy.ones', 'jnp.ones', (['(10, 3)'], {}), '((10, 3))\n', (588, 597), True, 'import jax.numpy as jnp\n'), ((768, 785), 'jax.numpy.ones', 'jnp.ones', (['(10, 3)'], {}), '((10, 3))\n', (776, 785), True, 'import jax.numpy as jnp\n'), ((1123, 1140), 'jax.numpy.ones', 'jnp.ones', (['(10, 3)'], {}), '((10, 3))\n', (1131, 1140), True, 'import jax.numpy as jnp\n'), ((1341, 1358), 'jax.numpy.ones', 'jnp.ones', (['(10, 3)'], {}), '((10, 3))\n', (1349, 1358), True, 'import jax.numpy as jnp\n'), ((1687, 1698), 'jax.numpy.ones', 'jnp.ones', (['(3)'], {}), '(3)\n', (1695, 1698), True, 'import jax.numpy as jnp\n'), ((2249, 2266), 'jax.numpy.ones', 'jnp.ones', (['(12, 3)'], {}), '((12, 3))\n', (2257, 2266), True, 'import jax.numpy as jnp\n'), ((2486, 2503), 'jax.numpy.ones', 'jnp.ones', (['(10, 3)'], {}), '((10, 3))\n', (2494, 2503), True, 'import jax.numpy as jnp\n'), ((2720, 2732), 'jax.numpy.zeros', 'jnp.zeros', (['(2)'], {}), '(2)\n', (2729, 2732), True, 'import jax.numpy as jnp\n'), ((2931, 2943), 'jax.numpy.zeros', 'jnp.zeros', (['(2)'], {}), '(2)\n', (2940, 2943), True, 'import jax.numpy as jnp\n'), ((3261, 3273), 'jax.numpy.zeros', 'jnp.zeros', (['(2)'], {}), '(2)\n', (3270, 3273), True, 'import jax.numpy as jnp\n'), ((1886, 1902), 'jax.numpy.ones', 'jnp.ones', (['(2, 3)'], {}), '((2, 3))\n', (1894, 1902), True, 'import jax.numpy as jnp\n')]
import numpy as np import diversipy def test_distance_to_boundary(): points = np.array([[0.1, 0.2], [0.3, 0.9]]) np.testing.assert_almost_equal( diversipy.distance.distance_to_boundary(points), np.array([0.1, 0.1]) ) np.testing.assert_almost_equal( diversipy.distance.distance_to_boundary(points, cuboid=((-1, -1), (2, 2))), np.array([1.1, 1.1]), ) def test_distance_matrix(): points1 = np.array([[0.1, 0.2], [0.3, 0.9], [0.6, 0.1]]) points2 = np.array([[0.2, 0.2]]) # test L1 distance np.testing.assert_almost_equal( diversipy.distance.distance_matrix(points1, points2, norm=1), [[0.1], [0.1 + 0.7], [0.4 + 0.1]], ) # test L2 distance np.testing.assert_almost_equal( diversipy.distance.distance_matrix(points1, points2, norm=2), [[0.1], [(0.1 ** 2 + 0.7 ** 2) ** 0.5], [(0.4 ** 2 + 0.1 ** 2) ** 0.5]], ) # test toridal L1 distance np.testing.assert_almost_equal( diversipy.distance.distance_matrix(points1, points2, norm=1, max_dist=[1, 1]), [[0.1], [0.1 + (1 - 0.7)], [0.4 + 0.1]], )
[ "diversipy.distance.distance_to_boundary", "numpy.array", "diversipy.distance.distance_matrix" ]
[((84, 118), 'numpy.array', 'np.array', (['[[0.1, 0.2], [0.3, 0.9]]'], {}), '([[0.1, 0.2], [0.3, 0.9]])\n', (92, 118), True, 'import numpy as np\n'), ((439, 485), 'numpy.array', 'np.array', (['[[0.1, 0.2], [0.3, 0.9], [0.6, 0.1]]'], {}), '([[0.1, 0.2], [0.3, 0.9], [0.6, 0.1]])\n', (447, 485), True, 'import numpy as np\n'), ((500, 522), 'numpy.array', 'np.array', (['[[0.2, 0.2]]'], {}), '([[0.2, 0.2]])\n', (508, 522), True, 'import numpy as np\n'), ((163, 210), 'diversipy.distance.distance_to_boundary', 'diversipy.distance.distance_to_boundary', (['points'], {}), '(points)\n', (202, 210), False, 'import diversipy\n'), ((212, 232), 'numpy.array', 'np.array', (['[0.1, 0.1]'], {}), '([0.1, 0.1])\n', (220, 232), True, 'import numpy as np\n'), ((283, 357), 'diversipy.distance.distance_to_boundary', 'diversipy.distance.distance_to_boundary', (['points'], {'cuboid': '((-1, -1), (2, 2))'}), '(points, cuboid=((-1, -1), (2, 2)))\n', (322, 357), False, 'import diversipy\n'), ((367, 387), 'numpy.array', 'np.array', (['[1.1, 1.1]'], {}), '([1.1, 1.1])\n', (375, 387), True, 'import numpy as np\n'), ((590, 650), 'diversipy.distance.distance_matrix', 'diversipy.distance.distance_matrix', (['points1', 'points2'], {'norm': '(1)'}), '(points1, points2, norm=1)\n', (624, 650), False, 'import diversipy\n'), ((768, 828), 'diversipy.distance.distance_matrix', 'diversipy.distance.distance_matrix', (['points1', 'points2'], {'norm': '(2)'}), '(points1, points2, norm=2)\n', (802, 828), False, 'import diversipy\n'), ((992, 1069), 'diversipy.distance.distance_matrix', 'diversipy.distance.distance_matrix', (['points1', 'points2'], {'norm': '(1)', 'max_dist': '[1, 1]'}), '(points1, points2, norm=1, max_dist=[1, 1])\n', (1026, 1069), False, 'import diversipy\n')]
import numpy as np import os import configparser import tensorflow as tf from pkg_resources import resource_filename from pyniel.python_tools.path_tools import make_dir_if_not_exists import crowd_sim # adds CrowdSim-v0 to gym # noqa from crowd_sim.envs.crowd_sim import CrowdSim # reference to env code # noqa from crowd_sim.envs.utils.robot import Robot # next line fails otherwise # noqa from crowd_nav.policy.network_om import SDOADRL from crowd_sim.envs.utils.state import JointState, FullState, ObservableState from crowd_sim.envs.utils.action import ActionRot from navrep.scripts.cross_test_navreptrain_in_ianenv import run_test_episodes from navrep.tools.commonargs import parse_common_args from navrep.envs.ianenv import IANEnv TODO = None class LuciaRawPolicy(object): """ legacy SOADRL policy from lucia's paper, takes in agents state, local map The problem is that in the original implementation, policy and environment are intertwined. this class goes further into separating them by reimplementing methods from agents.py, robots.py """ def __init__(self): self._make_policy() def _make_policy(self): # Config config_dir = resource_filename('crowd_nav', 'config') config_file = os.path.join(config_dir, 'test_soadrl_static.config') config = configparser.RawConfigParser() config.read(config_file) sess = tf.Session() policy = SDOADRL() policy.configure(sess, 'global', config) policy.set_phase('test') self.model_path = os.path.expanduser('~/soadrl/Final_models/angular_map_full_FOV/rl_model') policy.load_model(self.model_path) self.policy = policy def act(self, obs): robot_state, humans_state, local_map = obs state = JointState(robot_state, humans_state) action = self.policy.predict(state, local_map, None) action = ActionRot(robot_state.v_pref * action.v, action.r) # de-normalize return action class IANEnvWithLegacySOADRLObs(object): def __init__(self, silent=False, max_episode_length=1000, collect_trajectories=False): # Get lidar values from the SOADRL config config_dir = resource_filename('crowd_nav', 'config') config_file = os.path.join(config_dir, 'test_soadrl_static.config') config = configparser.RawConfigParser() config.read(config_file) self.v_pref = config.getfloat('humans', 'v_pref') # lidar scan expected by SOADRL self.angular_map_max_range = config.getfloat('map', 'angular_map_max_range') self.angular_map_dim = config.getint('map', 'angular_map_dim') self.angular_map_min_angle = config.getfloat('map', 'angle_min') * np.pi self.angular_map_max_angle = config.getfloat('map', 'angle_max') * np.pi self.angular_map_angle_increment = ( self.angular_map_max_angle - self.angular_map_min_angle) / self.angular_map_dim self.lidar_upsampling = 15 # create env self.env = IANEnv( silent=silent, max_episode_length=max_episode_length, collect_trajectories=collect_trajectories) self.reset() def reset(self): """ IANEnv destroys and re-creates its iarlenv at every reset, so apply our changes here """ self.env.reset() # we raytrace at a higher resolution, then downsample back to the original soadrl resolution # this avoids missing small obstacles due to the small soadrl resolution self.env.iarlenv.rlenv.virtual_peppers[0].kLidarMergedMaxAngle = self.angular_map_max_angle self.env.iarlenv.rlenv.virtual_peppers[0].kLidarMergedMinAngle = self.angular_map_min_angle self.env.iarlenv.rlenv.virtual_peppers[0].kLidarAngleIncrement = \ self.angular_map_angle_increment / self.lidar_upsampling self.env.iarlenv.rlenv.kMergedScanSize = self.angular_map_dim * self.lidar_upsampling self.episode_statistics = self.env.episode_statistics obs, _, _, _ = self.step(ActionRot(0.,0.)) return obs def step(self, action): # convert lucia action to IANEnv action ianenv_action = np.array([0., 0., 0.]) # SOADRL - rotation is dtheta # IAN - rotation is dtheta/dt ianenv_action[2] = action.r / self.env._get_dt() # SOADRL - instant rot, then vel # IAN - vel, then rot action_vy = 0. # SOADRL outputs non-holonomic by default ianenv_action[0] = action.v * np.cos(action.r) - action_vy * np.sin(action.r) ianenv_action[1] = action.v * np.sin(action.r) + action_vy * np.cos(action.r) # get obs from IANEnv obs, rew, done, info = self.env.step(ianenv_action) # convert to SOADRL style robot_state = FullState( self.env.iarlenv.rlenv.virtual_peppers[0].pos[0], self.env.iarlenv.rlenv.virtual_peppers[0].pos[1], self.env.iarlenv.rlenv.virtual_peppers[0].vel[0], self.env.iarlenv.rlenv.virtual_peppers[0].vel[1], self.env.iarlenv.rlenv.vp_radii[0], self.env.iarlenv.rlenv.agent_goals[0][0], self.env.iarlenv.rlenv.agent_goals[0][1], self.v_pref, self.env.iarlenv.rlenv.virtual_peppers[0].pos[2],) humans_state = [ObservableState( human.pos[0], human.pos[1], human.vel[0], human.vel[1], r,) for human, r in zip( self.env.iarlenv.rlenv.virtual_peppers[1:], self.env.iarlenv.rlenv.vp_radii[1:])] scan = obs[0] # for each angular section we take the min of the returns downsampled_scan = scan.reshape((-1, self.lidar_upsampling)) downsampled_scan = np.min(downsampled_scan, axis=1) self.last_downsampled_scan = downsampled_scan local_map = np.clip(downsampled_scan / self.angular_map_max_range, 0., 1.) obs = (robot_state, humans_state, local_map) return obs, rew, done, info def _get_dt(self): return self.env._get_dt() def render(self, *args, **kwargs): _, lidar_angles = self.env.iarlenv.rlenv.virtual_peppers[0].get_lidar_update_ijangles( "merged", self.env.iarlenv.rlenv.kMergedScanSize ) lidar_angles_downsampled = lidar_angles[::self.lidar_upsampling] kwargs["lidar_angles_override"] = lidar_angles_downsampled kwargs["lidar_scan_override"] = self.last_downsampled_scan return self.env.render(*args, **kwargs) if __name__ == '__main__': args, _ = parse_common_args() if args.n is None: args.n = 1000 collect_trajectories = False env = IANEnvWithLegacySOADRLObs(silent=True, collect_trajectories=collect_trajectories) policy = LuciaRawPolicy() S = run_test_episodes(env, policy, render=args.render, num_episodes=args.n) DIR = os.path.expanduser("~/navrep/eval/crosstest") if args.dry_run: DIR = "/tmp/navrep/eval/crosstest" make_dir_if_not_exists(DIR) if collect_trajectories: NAME = "lucianavreptrain_in_ianenv_{}.pckl".format(len(S)) PATH = os.path.join(DIR, NAME) S.to_pickle(PATH) else: NAME = "lucianavreptrain_in_ianenv_{}.csv".format(len(S)) PATH = os.path.join(DIR, NAME) S.to_csv(PATH) print("{} written.".format(PATH))
[ "pkg_resources.resource_filename", "numpy.clip", "numpy.sin", "crowd_sim.envs.utils.action.ActionRot", "os.path.join", "pyniel.python_tools.path_tools.make_dir_if_not_exists", "configparser.RawConfigParser", "navrep.envs.ianenv.IANEnv", "crowd_nav.policy.network_om.SDOADRL", "crowd_sim.envs.utils.state.JointState", "navrep.scripts.cross_test_navreptrain_in_ianenv.run_test_episodes", "navrep.tools.commonargs.parse_common_args", "tensorflow.Session", "numpy.min", "crowd_sim.envs.utils.state.ObservableState", "numpy.cos", "crowd_sim.envs.utils.state.FullState", "numpy.array", "os.path.expanduser" ]
[((6596, 6615), 'navrep.tools.commonargs.parse_common_args', 'parse_common_args', ([], {}), '()\n', (6613, 6615), False, 'from navrep.tools.commonargs import parse_common_args\n'), ((6827, 6898), 'navrep.scripts.cross_test_navreptrain_in_ianenv.run_test_episodes', 'run_test_episodes', (['env', 'policy'], {'render': 'args.render', 'num_episodes': 'args.n'}), '(env, policy, render=args.render, num_episodes=args.n)\n', (6844, 6898), False, 'from navrep.scripts.cross_test_navreptrain_in_ianenv import run_test_episodes\n'), ((6910, 6955), 'os.path.expanduser', 'os.path.expanduser', (['"""~/navrep/eval/crosstest"""'], {}), "('~/navrep/eval/crosstest')\n", (6928, 6955), False, 'import os\n'), ((7024, 7051), 'pyniel.python_tools.path_tools.make_dir_if_not_exists', 'make_dir_if_not_exists', (['DIR'], {}), '(DIR)\n', (7046, 7051), False, 'from pyniel.python_tools.path_tools import make_dir_if_not_exists\n'), ((1194, 1234), 'pkg_resources.resource_filename', 'resource_filename', (['"""crowd_nav"""', '"""config"""'], {}), "('crowd_nav', 'config')\n", (1211, 1234), False, 'from pkg_resources import resource_filename\n'), ((1257, 1310), 'os.path.join', 'os.path.join', (['config_dir', '"""test_soadrl_static.config"""'], {}), "(config_dir, 'test_soadrl_static.config')\n", (1269, 1310), False, 'import os\n'), ((1328, 1358), 'configparser.RawConfigParser', 'configparser.RawConfigParser', ([], {}), '()\n', (1356, 1358), False, 'import configparser\n'), ((1408, 1420), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (1418, 1420), True, 'import tensorflow as tf\n'), ((1438, 1447), 'crowd_nav.policy.network_om.SDOADRL', 'SDOADRL', ([], {}), '()\n', (1445, 1447), False, 'from crowd_nav.policy.network_om import SDOADRL\n'), ((1556, 1629), 'os.path.expanduser', 'os.path.expanduser', (['"""~/soadrl/Final_models/angular_map_full_FOV/rl_model"""'], {}), "('~/soadrl/Final_models/angular_map_full_FOV/rl_model')\n", (1574, 1629), False, 'import os\n'), ((1795, 1832), 'crowd_sim.envs.utils.state.JointState', 'JointState', (['robot_state', 'humans_state'], {}), '(robot_state, humans_state)\n', (1805, 1832), False, 'from crowd_sim.envs.utils.state import JointState, FullState, ObservableState\n'), ((1911, 1961), 'crowd_sim.envs.utils.action.ActionRot', 'ActionRot', (['(robot_state.v_pref * action.v)', 'action.r'], {}), '(robot_state.v_pref * action.v, action.r)\n', (1920, 1961), False, 'from crowd_sim.envs.utils.action import ActionRot\n'), ((2221, 2261), 'pkg_resources.resource_filename', 'resource_filename', (['"""crowd_nav"""', '"""config"""'], {}), "('crowd_nav', 'config')\n", (2238, 2261), False, 'from pkg_resources import resource_filename\n'), ((2284, 2337), 'os.path.join', 'os.path.join', (['config_dir', '"""test_soadrl_static.config"""'], {}), "(config_dir, 'test_soadrl_static.config')\n", (2296, 2337), False, 'import os\n'), ((2355, 2385), 'configparser.RawConfigParser', 'configparser.RawConfigParser', ([], {}), '()\n', (2383, 2385), False, 'import configparser\n'), ((3048, 3155), 'navrep.envs.ianenv.IANEnv', 'IANEnv', ([], {'silent': 'silent', 'max_episode_length': 'max_episode_length', 'collect_trajectories': 'collect_trajectories'}), '(silent=silent, max_episode_length=max_episode_length,\n collect_trajectories=collect_trajectories)\n', (3054, 3155), False, 'from navrep.envs.ianenv import IANEnv\n'), ((4190, 4215), 'numpy.array', 'np.array', (['[0.0, 0.0, 0.0]'], {}), '([0.0, 0.0, 0.0])\n', (4198, 4215), True, 'import numpy as np\n'), ((4808, 5225), 'crowd_sim.envs.utils.state.FullState', 'FullState', (['self.env.iarlenv.rlenv.virtual_peppers[0].pos[0]', 'self.env.iarlenv.rlenv.virtual_peppers[0].pos[1]', 'self.env.iarlenv.rlenv.virtual_peppers[0].vel[0]', 'self.env.iarlenv.rlenv.virtual_peppers[0].vel[1]', 'self.env.iarlenv.rlenv.vp_radii[0]', 'self.env.iarlenv.rlenv.agent_goals[0][0]', 'self.env.iarlenv.rlenv.agent_goals[0][1]', 'self.v_pref', 'self.env.iarlenv.rlenv.virtual_peppers[0].pos[2]'], {}), '(self.env.iarlenv.rlenv.virtual_peppers[0].pos[0], self.env.\n iarlenv.rlenv.virtual_peppers[0].pos[1], self.env.iarlenv.rlenv.\n virtual_peppers[0].vel[0], self.env.iarlenv.rlenv.virtual_peppers[0].\n vel[1], self.env.iarlenv.rlenv.vp_radii[0], self.env.iarlenv.rlenv.\n agent_goals[0][0], self.env.iarlenv.rlenv.agent_goals[0][1], self.\n v_pref, self.env.iarlenv.rlenv.virtual_peppers[0].pos[2])\n', (4817, 5225), False, 'from crowd_sim.envs.utils.state import JointState, FullState, ObservableState\n'), ((5775, 5807), 'numpy.min', 'np.min', (['downsampled_scan'], {'axis': '(1)'}), '(downsampled_scan, axis=1)\n', (5781, 5807), True, 'import numpy as np\n'), ((5882, 5946), 'numpy.clip', 'np.clip', (['(downsampled_scan / self.angular_map_max_range)', '(0.0)', '(1.0)'], {}), '(downsampled_scan / self.angular_map_max_range, 0.0, 1.0)\n', (5889, 5946), True, 'import numpy as np\n'), ((7163, 7186), 'os.path.join', 'os.path.join', (['DIR', 'NAME'], {}), '(DIR, NAME)\n', (7175, 7186), False, 'import os\n'), ((7304, 7327), 'os.path.join', 'os.path.join', (['DIR', 'NAME'], {}), '(DIR, NAME)\n', (7316, 7327), False, 'import os\n'), ((4052, 4071), 'crowd_sim.envs.utils.action.ActionRot', 'ActionRot', (['(0.0)', '(0.0)'], {}), '(0.0, 0.0)\n', (4061, 4071), False, 'from crowd_sim.envs.utils.action import ActionRot\n'), ((5335, 5409), 'crowd_sim.envs.utils.state.ObservableState', 'ObservableState', (['human.pos[0]', 'human.pos[1]', 'human.vel[0]', 'human.vel[1]', 'r'], {}), '(human.pos[0], human.pos[1], human.vel[0], human.vel[1], r)\n', (5350, 5409), False, 'from crowd_sim.envs.utils.state import JointState, FullState, ObservableState\n'), ((4528, 4544), 'numpy.cos', 'np.cos', (['action.r'], {}), '(action.r)\n', (4534, 4544), True, 'import numpy as np\n'), ((4559, 4575), 'numpy.sin', 'np.sin', (['action.r'], {}), '(action.r)\n', (4565, 4575), True, 'import numpy as np\n'), ((4614, 4630), 'numpy.sin', 'np.sin', (['action.r'], {}), '(action.r)\n', (4620, 4630), True, 'import numpy as np\n'), ((4645, 4661), 'numpy.cos', 'np.cos', (['action.r'], {}), '(action.r)\n', (4651, 4661), True, 'import numpy as np\n')]
from collections import OrderedDict import matplotlib.pyplot as plt import seaborn as sns import torch import torch.nn as nn from seaborn.palettes import color_palette import numpy as np # import seaborn as sns import torch import os from BatchTransNorm import BatchTransNorm2d from datasets import (Chest_few_shot, CropDisease_few_shot, EuroSAT_few_shot, ISIC_few_shot, miniImageNet_few_shot) def get_visual_domain(BN_list, dataloader_list, dataset_names_list): label_dataset = [] spatial_mean = [] spatial_var = [] with torch.no_grad(): for i, loader in enumerate(dataloader_list): # loader_iter = iter(loader) # x, _ = loader_iter.next() for x, _ in loader: out = BN_list[i](x) spatial_mean += out.mean([2, 3]).tolist() spatial_var += out.var([2, 3]).tolist() label_dataset += [dataset_names_list[i]]*len(x) break return np.array(spatial_mean), np.array(spatial_var), label_dataset if torch.cuda.is_available(): dev = "cuda:0" else: dev = "cpu" device = torch.device(dev) dataset_class_list = [miniImageNet_few_shot, EuroSAT_few_shot]#, CropDisease_few_shot, Chest_few_shot, ISIC_few_shot] dataset_names_list = ['miniImageNet', 'EuroSAT', 'CropDisease', 'ChestX', 'ISIC'] dataloader_list = [] for i, dataset_class in enumerate(dataset_class_list): transform = dataset_class.TransformLoader( 224).get_composed_transform(aug=True) transform_test = dataset_class.TransformLoader( 224).get_composed_transform(aug=False) # split = 'datasets/split_seed_1/{0}_labeled_20.csv'.format( # dataset_names_list[i]) # if dataset_names_list[i] == 'miniImageNet': split = None dataset = dataset_class.SimpleDataset( transform, split=split) loader = torch.utils.data.DataLoader(dataset, batch_size=128, num_workers=0, shuffle=True, drop_last=True) dataloader_list.append(loader) BN_list = [] btn = BatchTransNorm2d(num_features=3) with torch.no_grad(): for i, loader in enumerate(dataloader_list): BN_list.append(nn.BatchNorm2d(num_features=3)) BN_list[-1].train() for epoch in range(3): # number of epoch for x, _ in loader: BN_list[-1](x) # break print('dataset {0} epoch {1}'.format(dataset_names_list[i], epoch)) btn.load_state_dict(BN_list[0].state_dict()) vd_mean, vd_var, labels = get_visual_domain(BN_list, dataloader_list, dataset_names_list) tvd_mean, tvd_var, labels = get_visual_domain([btn]*len(BN_list), dataloader_list, dataset_names_list) color = sns.color_palette(n_colors=len(dataloader_list)) fig = plt.figure(figsize=(20, 10)) ax = fig.subplots(1,2) sns.kdeplot(x=vd_mean[:, 0], y=vd_var[:, 0], hue=labels, ax=ax[0], palette=color) sns.kdeplot(x=tvd_mean[:, 0], y=tvd_var[:, 0], hue=labels, ax=ax[1], palette=color) title = 'Left visual domain, Right transnormed visual domain.' fig.suptitle(title) plt.savefig('./lab/visual_domain/{0}.png'.format(title)) plt.savefig('./lab/visual_domain/{0}.svg'.format(title)) print(title)
[ "seaborn.kdeplot", "torch.utils.data.DataLoader", "matplotlib.pyplot.figure", "torch.nn.BatchNorm2d", "torch.cuda.is_available", "numpy.array", "BatchTransNorm.BatchTransNorm2d", "torch.device", "torch.no_grad" ]
[((1082, 1107), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (1105, 1107), False, 'import torch\n'), ((1159, 1176), 'torch.device', 'torch.device', (['dev'], {}), '(dev)\n', (1171, 1176), False, 'import torch\n'), ((2159, 2191), 'BatchTransNorm.BatchTransNorm2d', 'BatchTransNorm2d', ([], {'num_features': '(3)'}), '(num_features=3)\n', (2175, 2191), False, 'from BatchTransNorm import BatchTransNorm2d\n'), ((2871, 2899), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(20, 10)'}), '(figsize=(20, 10))\n', (2881, 2899), True, 'import matplotlib.pyplot as plt\n'), ((2927, 3013), 'seaborn.kdeplot', 'sns.kdeplot', ([], {'x': 'vd_mean[:, 0]', 'y': 'vd_var[:, 0]', 'hue': 'labels', 'ax': 'ax[0]', 'palette': 'color'}), '(x=vd_mean[:, 0], y=vd_var[:, 0], hue=labels, ax=ax[0], palette=\n color)\n', (2938, 3013), True, 'import seaborn as sns\n'), ((3022, 3109), 'seaborn.kdeplot', 'sns.kdeplot', ([], {'x': 'tvd_mean[:, 0]', 'y': 'tvd_var[:, 0]', 'hue': 'labels', 'ax': 'ax[1]', 'palette': 'color'}), '(x=tvd_mean[:, 0], y=tvd_var[:, 0], hue=labels, ax=ax[1],\n palette=color)\n', (3033, 3109), True, 'import seaborn as sns\n'), ((1924, 2026), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', (['dataset'], {'batch_size': '(128)', 'num_workers': '(0)', 'shuffle': '(True)', 'drop_last': '(True)'}), '(dataset, batch_size=128, num_workers=0, shuffle\n =True, drop_last=True)\n', (1951, 2026), False, 'import torch\n'), ((2197, 2212), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (2210, 2212), False, 'import torch\n'), ((566, 581), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (579, 581), False, 'import torch\n'), ((1016, 1038), 'numpy.array', 'np.array', (['spatial_mean'], {}), '(spatial_mean)\n', (1024, 1038), True, 'import numpy as np\n'), ((1040, 1061), 'numpy.array', 'np.array', (['spatial_var'], {}), '(spatial_var)\n', (1048, 1061), True, 'import numpy as np\n'), ((2290, 2320), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', ([], {'num_features': '(3)'}), '(num_features=3)\n', (2304, 2320), True, 'import torch.nn as nn\n')]
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2018, 2019, 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=invalid-name """ Entry/exit point for pulse simulation specified through PulseSimulator backend """ from warnings import warn import numpy as np from ..system_models.string_model_parser.string_model_parser import NoiseParser from ..qutip_extra_lite import qobj_generators as qobj_gen from .digest_pulse_qobj import digest_pulse_qobj from ..de_solvers.pulse_de_options import OPoptions from .unitary_controller import run_unitary_experiments from .mc_controller import run_monte_carlo_experiments def pulse_controller(qobj, system_model, backend_options): """ Interprets PulseQobj input, runs simulations, and returns results Parameters: qobj (qobj): pulse qobj containing a list of pulse schedules system_model (PulseSystemModel): contains system model information backend_options (dict): dict of options, which overrides other parameters Returns: list: simulation results Raises: ValueError: if input is of incorrect format Exception: for invalid ODE options """ pulse_sim_desc = PulseSimDescription() if backend_options is None: backend_options = {} noise_model = backend_options.get('noise_model', None) # post warnings for unsupported features _unsupported_warnings(noise_model) # ############################### # ### Extract model parameters # ############################### # Get qubit list and number qubit_list = system_model.subsystem_list if qubit_list is None: raise ValueError('Model must have a qubit list to simulate.') n_qubits = len(qubit_list) # get Hamiltonian if system_model.hamiltonian is None: raise ValueError('Model must have a Hamiltonian to simulate.') ham_model = system_model.hamiltonian # For now we dump this into OpSystem, though that should be refactored pulse_sim_desc.system = ham_model._system pulse_sim_desc.vars = ham_model._variables pulse_sim_desc.channels = ham_model._channels pulse_sim_desc.h_diag = ham_model._h_diag pulse_sim_desc.evals = ham_model._evals pulse_sim_desc.estates = ham_model._estates dim_qub = ham_model._subsystem_dims dim_osc = {} # convert estates into a Qutip qobj estates = [qobj_gen.state(state) for state in ham_model._estates.T[:]] pulse_sim_desc.initial_state = estates[0] pulse_sim_desc.global_data['vars'] = list(pulse_sim_desc.vars.values()) # Need this info for evaluating the hamiltonian vars in the c++ solver pulse_sim_desc.global_data['vars_names'] = list(pulse_sim_desc.vars.keys()) # Get dt if system_model.dt is None: raise ValueError('Qobj must have a dt value to simulate.') pulse_sim_desc.dt = system_model.dt # Parse noise if noise_model: noise = NoiseParser(noise_dict=noise_model, dim_osc=dim_osc, dim_qub=dim_qub) noise.parse() pulse_sim_desc.noise = noise.compiled if any(pulse_sim_desc.noise): pulse_sim_desc.can_sample = False # ############################### # ### Parse qobj_config settings # ############################### digested_qobj = digest_pulse_qobj(qobj, pulse_sim_desc.channels, pulse_sim_desc.dt, qubit_list, backend_options) # does this even need to be extracted here, or can the relevant info just be passed to the # relevant functions? pulse_sim_desc.global_data['shots'] = digested_qobj.shots pulse_sim_desc.global_data['meas_level'] = digested_qobj.meas_level pulse_sim_desc.global_data['meas_return'] = digested_qobj.meas_return pulse_sim_desc.global_data['memory_slots'] = digested_qobj.memory_slots pulse_sim_desc.global_data['memory'] = digested_qobj.memory pulse_sim_desc.global_data['n_registers'] = digested_qobj.n_registers pulse_sim_desc.global_data['pulse_array'] = digested_qobj.pulse_array pulse_sim_desc.global_data['pulse_indices'] = digested_qobj.pulse_indices pulse_sim_desc.pulse_to_int = digested_qobj.pulse_to_int pulse_sim_desc.experiments = digested_qobj.experiments # Handle qubit_lo_freq qubit_lo_freq = digested_qobj.qubit_lo_freq # if it wasn't specified in the PulseQobj, draw from system_model if qubit_lo_freq is None: qubit_lo_freq = system_model._qubit_freq_est # if still None draw from the Hamiltonian if qubit_lo_freq is None: qubit_lo_freq = system_model.hamiltonian.get_qubit_lo_from_drift() warn('Warning: qubit_lo_freq was not specified in PulseQobj or in PulseSystemModel, ' + 'so it is beign automatically determined from the drift Hamiltonian.') pulse_sim_desc.freqs = system_model.calculate_channel_frequencies(qubit_lo_freq=qubit_lo_freq) pulse_sim_desc.global_data['freqs'] = list(pulse_sim_desc.freqs.values()) # ############################### # ### Parse backend_options # # solver-specific information should be extracted in the solver # ############################### pulse_sim_desc.global_data['seed'] = (int(backend_options['seed']) if 'seed' in backend_options else None) pulse_sim_desc.global_data['q_level_meas'] = int(backend_options.get('q_level_meas', 1)) # solver options allowed_ode_options = ['atol', 'rtol', 'nsteps', 'max_step', 'num_cpus', 'norm_tol', 'norm_steps', 'rhs_reuse', 'rhs_filename'] ode_options = backend_options.get('ode_options', {}) for key in ode_options: if key not in allowed_ode_options: raise Exception('Invalid ode_option: {}'.format(key)) pulse_sim_desc.ode_options = OPoptions(**ode_options) # Set the ODE solver max step to be the half the # width of the smallest pulse min_width = np.iinfo(np.int32).max for key, val in pulse_sim_desc.pulse_to_int.items(): if key != 'pv': stop = pulse_sim_desc.global_data['pulse_indices'][val + 1] start = pulse_sim_desc.global_data['pulse_indices'][val] min_width = min(min_width, stop - start) pulse_sim_desc.ode_options.max_step = min_width / 2 * pulse_sim_desc.dt # ######################################## # Determination of measurement operators. # ######################################## pulse_sim_desc.global_data['measurement_ops'] = [None] * n_qubits for exp in pulse_sim_desc.experiments: # Add in measurement operators # Not sure if this will work for multiple measurements # Note: the extraction of multiple measurements works, but the simulator itself # implicitly assumes there is only one measurement at the end if any(exp['acquire']): for acq in exp['acquire']: for jj in acq[1]: if jj > qubit_list[-1]: continue if not pulse_sim_desc.global_data['measurement_ops'][qubit_list.index(jj)]: q_level_meas = pulse_sim_desc.global_data['q_level_meas'] pulse_sim_desc.global_data['measurement_ops'][qubit_list.index(jj)] = \ qobj_gen.qubit_occ_oper_dressed(jj, estates, h_osc=dim_osc, h_qub=dim_qub, level=q_level_meas ) if not exp['can_sample']: pulse_sim_desc.can_sample = False op_data_config(pulse_sim_desc) run_experiments = (run_unitary_experiments if pulse_sim_desc.can_sample else run_monte_carlo_experiments) exp_results, exp_times = run_experiments(pulse_sim_desc) return format_exp_results(exp_results, exp_times, pulse_sim_desc) def op_data_config(op_system): """ Preps the data for the opsolver. This should eventually be replaced by functions that construct different types of DEs in standard formats Everything is stored in the passed op_system. Args: op_system (OPSystem): An openpulse system. """ num_h_terms = len(op_system.system) H = [hpart[0] for hpart in op_system.system] op_system.global_data['num_h_terms'] = num_h_terms # take care of collapse operators, if any op_system.global_data['c_num'] = 0 if op_system.noise: op_system.global_data['c_num'] = len(op_system.noise) op_system.global_data['num_h_terms'] += 1 op_system.global_data['c_ops_data'] = [] op_system.global_data['c_ops_ind'] = [] op_system.global_data['c_ops_ptr'] = [] op_system.global_data['n_ops_data'] = [] op_system.global_data['n_ops_ind'] = [] op_system.global_data['n_ops_ptr'] = [] op_system.global_data['h_diag_elems'] = op_system.h_diag # if there are any collapse operators H_noise = 0 for kk in range(op_system.global_data['c_num']): c_op = op_system.noise[kk] n_op = c_op.dag() * c_op # collapse ops op_system.global_data['c_ops_data'].append(c_op.data.data) op_system.global_data['c_ops_ind'].append(c_op.data.indices) op_system.global_data['c_ops_ptr'].append(c_op.data.indptr) # norm ops op_system.global_data['n_ops_data'].append(n_op.data.data) op_system.global_data['n_ops_ind'].append(n_op.data.indices) op_system.global_data['n_ops_ptr'].append(n_op.data.indptr) # Norm ops added to time-independent part of # Hamiltonian to decrease norm H_noise -= 0.5j * n_op if H_noise: H = H + [H_noise] # construct data sets op_system.global_data['h_ops_data'] = [-1.0j * hpart.data.data for hpart in H] op_system.global_data['h_ops_ind'] = [hpart.data.indices for hpart in H] op_system.global_data['h_ops_ptr'] = [hpart.data.indptr for hpart in H] # Convert inital state to flat array in global_data op_system.global_data['initial_state'] = \ op_system.initial_state.full().ravel() def format_exp_results(exp_results, exp_times, op_system): """ format simulation results Parameters: exp_results (list): simulation results exp_times (list): simulation times op_system (PulseSimDescription): object containing all simulation information Returns: list: formatted simulation results """ # format the data into the proper output all_results = [] for idx_exp, exp in enumerate(op_system.experiments): m_lev = op_system.global_data['meas_level'] m_ret = op_system.global_data['meas_return'] # populate the results dictionary results = {'seed_simulator': exp['seed'], 'shots': op_system.global_data['shots'], 'status': 'DONE', 'success': True, 'time_taken': exp_times[idx_exp], 'header': exp['header'], 'meas_level': m_lev, 'meas_return': m_ret, 'data': {}} if op_system.can_sample: memory = exp_results[idx_exp][0] results['data']['statevector'] = [] for coef in exp_results[idx_exp][1]: results['data']['statevector'].append([np.real(coef), np.imag(coef)]) results['header']['ode_t'] = exp_results[idx_exp][2] else: memory = exp_results[idx_exp] # meas_level 2 return the shots if m_lev == 2: # convert the memory **array** into a n # integer # e.g. [1,0] -> 2 int_mem = memory.dot(np.power(2.0, np.arange(memory.shape[1]))).astype(int) # if the memory flag is set return each shot if op_system.global_data['memory']: hex_mem = [hex(val) for val in int_mem] results['data']['memory'] = hex_mem # Get hex counts dict unique = np.unique(int_mem, return_counts=True) hex_dict = {} for kk in range(unique[0].shape[0]): key = hex(unique[0][kk]) hex_dict[key] = unique[1][kk] results['data']['counts'] = hex_dict # meas_level 1 returns the <n> elif m_lev == 1: if m_ret == 'avg': memory = [np.mean(memory, 0)] # convert into the right [real, complex] pair form for json # this should be cython? results['data']['memory'] = [] for mem_shot in memory: results['data']['memory'].append([]) for mem_slot in mem_shot: results['data']['memory'][-1].append( [np.real(mem_slot), np.imag(mem_slot)]) if m_ret == 'avg': results['data']['memory'] = results['data']['memory'][0] all_results.append(results) return all_results def _unsupported_warnings(noise_model): """ Warns the user about untested/unsupported features. Parameters: noise_model (dict): backend_options for simulation Returns: Raises: AerError: for unsupported features """ # Warnings that don't stop execution warning_str = '{} are an untested feature, and therefore may not behave as expected.' if noise_model is not None: warn(warning_str.format('Noise models')) class PulseSimDescription(): """ Object for holding any/all information required for simulation. Needs to be refactored into different pieces. """ def __init__(self): # The system Hamiltonian in numerical format self.system = None # The noise (if any) in numerical format self.noise = None # System variables self.vars = None # The initial state of the system self.initial_state = None # Channels in the Hamiltonian string # these tell the order in which the channels # are evaluated in the RHS solver. self.channels = None # options of the ODE solver self.ode_options = None # time between pulse sample points. self.dt = None # Array containing all pulse samples self.pulse_array = None # Array of indices indicating where a pulse starts in the self.pulse_array self.pulse_indices = None # A dict that translates pulse names to integers for use in self.pulse_indices self.pulse_to_int = None # Holds the parsed experiments self.experiments = [] # Can experiments be simulated once then sampled self.can_sample = True # holds global data self.global_data = {} # holds frequencies for the channels self.freqs = {} # diagonal elements of the hamiltonian self.h_diag = None # eigenvalues of the time-independent hamiltonian self.evals = None # eigenstates of the time-independent hamiltonian self.estates = None
[ "numpy.iinfo", "numpy.imag", "numpy.mean", "numpy.arange", "numpy.real", "warnings.warn", "numpy.unique" ]
[((5144, 5312), 'warnings.warn', 'warn', (["('Warning: qubit_lo_freq was not specified in PulseQobj or in PulseSystemModel, '\n + 'so it is beign automatically determined from the drift Hamiltonian.')"], {}), "(\n 'Warning: qubit_lo_freq was not specified in PulseQobj or in PulseSystemModel, '\n + 'so it is beign automatically determined from the drift Hamiltonian.')\n", (5148, 5312), False, 'from warnings import warn\n'), ((6483, 6501), 'numpy.iinfo', 'np.iinfo', (['np.int32'], {}), '(np.int32)\n', (6491, 6501), True, 'import numpy as np\n'), ((12920, 12958), 'numpy.unique', 'np.unique', (['int_mem'], {'return_counts': '(True)'}), '(int_mem, return_counts=True)\n', (12929, 12958), True, 'import numpy as np\n'), ((12145, 12158), 'numpy.real', 'np.real', (['coef'], {}), '(coef)\n', (12152, 12158), True, 'import numpy as np\n'), ((12215, 12228), 'numpy.imag', 'np.imag', (['coef'], {}), '(coef)\n', (12222, 12228), True, 'import numpy as np\n'), ((13294, 13312), 'numpy.mean', 'np.mean', (['memory', '(0)'], {}), '(memory, 0)\n', (13301, 13312), True, 'import numpy as np\n'), ((12609, 12635), 'numpy.arange', 'np.arange', (['memory.shape[1]'], {}), '(memory.shape[1])\n', (12618, 12635), True, 'import numpy as np\n'), ((13682, 13699), 'numpy.real', 'np.real', (['mem_slot'], {}), '(mem_slot)\n', (13689, 13699), True, 'import numpy as np\n'), ((13701, 13718), 'numpy.imag', 'np.imag', (['mem_slot'], {}), '(mem_slot)\n', (13708, 13718), True, 'import numpy as np\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ atmospheres.py includes functions to calculate atmospheric quantities. Created on Tue Nov 29 11:45:15 2016 @author: tr1010 (<NAME>) """ import sys sys.path.append('atmosphere_models/Python-NRLMSISE-00-master') from nrlmsise_00_header import * from nrlmsise_00 import * import numpy as np def nrlmsise00(doy,year,sec,alt,g_lat,g_long,lst,f107A,f107,ap): """ nrlmsise00 calculates atmospheric quantities using the NRLMSISE-00 atmosphere published in 2001 by <NAME>, <NAME>, and <NAME>. Originally written in FORTRAN, it was later implemented in C by Dominik Brodowski. This function calls a Python port of Brodowski's C implementation originally written by <NAME> in 2013. This software was released under an MIT license (see the license file in the atmosphere_models directory). The NRLMSISE-00 model uses a number of switches (contained in the flags class) to modify the model output. At the moment, these defaults are hard- wired into PETra. Later revisions will give the user the ability to select these switches. For more detailed information about the inputs/outputs/switches used in this model, the user is directed to the docstrings of the funcitons contained in the model files (norlmsise_00_header.py and nrlmsise_00.py). Inputs: doy: day of year year: year (currently ignored) sec: seconds in day alt: altitude g_lat: geodetic latitude g_long: geodetic longitude lst: local apparent solar time (hours) f107A: 81 day average of F10.7 flux (centred on doy) f107: daily f10.7 flux (for previous day) ap: magnetic index (daily) Outputs: rho: density at the requested altitude pressure_mixture: pressure at the requested altitude temperature: temperature at the requested altitude R_mixture: the gas constant of the mixture mean_free_path: mean free path of the air at the requested altitude. In contrast to the other outputs of this function, the mean free path calculation assumes a single molecule gas (assumed to be an 'average' air molecule) eta: viscosity (calcualted using Sutherland's law) molecular_weight_mixture: the molecular weight of the air at the requested altitude SoS: speed of sound (assume ratio of specific heats is constant 1.4 everywhere in the atmosphere) """ output = nrlmsise_output() Input = nrlmsise_input() # output = [nrlmsise_output() for _ in range(17)] # Input = [nrlmsise_input() for _ in range(17)] flags = nrlmsise_flags() aph = ap_array() # For more detailed ap data (i.e more than daily) flags.switches[0] = 1 # to have results in m rather than cm for i in range(1,24): flags.switches[i]=1 # below 80 km solar & magnetic effects not well established so set to defaults if alt < 80e3: f107 = 150. f107A = 150. ap = 4. # fill out Input class Input.year=year Input.doy=doy Input.sec=sec Input.alt=alt*1e-3 #change input to km Input.g_lat=g_lat*180/np.pi Input.g_long=g_long*180/np.pi Input.lst=lst Input.f107A=f107A Input.f107=f107 Input.ap=ap if alt > 500e3: gtd7d(Input, flags, output) else: gtd7(Input, flags, output) d = output.d t = output.t """ DEFAULT OUTPUT VARIABLES: d[0] - HE NUMBER DENSITY(CM-3) d[1] - O NUMBER DENSITY(CM-3) d[2] - N2 NUMBER DENSITY(CM-3) d[3] - O2 NUMBER DENSITY(CM-3) d[4] - AR NUMBER DENSITY(CM-3) d[5] - TOTAL MASS DENSITY(GM/CM3) [includes d[8] in td7d] d[6] - H NUMBER DENSITY(CM-3) d[7] - N NUMBER DENSITY(CM-3) d[8] - Anomalous oxygen NUMBER DENSITY(CM-3) t[0] - EXOSPHERIC TEMPERATURE t[1] - TEMPERATURE AT ALT """ #Now process output to get required values kb = 1.38064852e-23 # Boltzmann constant (m**2 kg)/(s**2 K) Na = 6.022140857e26 # avogadro number (molecules per kilomole) R0 = kb * Na # universal gas constant #Molecular weights of different components (kg/kmole) molecular_weights = np.zeros(8) molecular_weights[0] = 4.002602 #He molecular_weights[1] = 15.9994 #O molecular_weights[2] = 28.0134 #N2 molecular_weights[3] = 31.9988 #O2 molecular_weights[4] = 39.948 #AR molecular_weights[5] = 1.00794 #H molecular_weights[6] = 14.0067 #N molecular_weights[7] = 15.9994 #anomalous O # Calculate partial pressures partial_p = np.zeros(8) partial_p[0] = d[0]*kb*t[1] #He partial_p[1] = d[1]*kb*t[1] #O partial_p[2] = d[2]*kb*t[1] #N2 partial_p[3] = d[3]*kb*t[1] #O2 partial_p[4] = d[4]*kb*t[1] #AR partial_p[5] = d[6]*kb*t[1] #H partial_p[6] = d[7]*kb*t[1] #N partial_p[7] = d[8]*kb*t[1] #anomalous O #Assuming perfect gas, calculate atmospheric pressure pressure_mixture = np.sum(partial_p) temperature = t[1] mole_fraction = np.divide(partial_p,pressure_mixture) molecular_weight_mixture = np.sum(np.multiply(mole_fraction,molecular_weights)) #kg/kmol mass_fractions = np.multiply(mole_fraction, np.divide(molecular_weights,molecular_weight_mixture)) specific_gas_constants = R0/molecular_weights R_mixture = np.sum(np.multiply(mass_fractions,specific_gas_constants)) number_density_mixture = np.sum(d) - d[5] mean_free_path = (np.sqrt(2)*np.pi*4.15e-10**2*number_density_mixture)**-1 eta = np.float64(1.458e-6*temperature**1.5/(temperature + 110.4)) # dynamic viscosity via sutherland law SoS = np.float64(np.sqrt(1.4*R_mixture*temperature)) rho = d[5] return rho, pressure_mixture, temperature, R_mixture, mean_free_path, eta, molecular_weight_mixture, SoS # US mutant Atmosphere def US62_76(r,RE): """ US62_76 is a very simple atmosphere model that uses the US76 standard atmosphere below 80 km and the US62 standard atmosphere above 80km Inputs: r: altitude RE: radius of the Earth Outputs: rho: density P: pressure T: temperature mfp: mean free path eta: viscosity (sutherland's law) MolW: molecular weight SoS: speed of sound """ #Some constants: #RE = 6378.137e3 Na = np.float64(6.0220978e23) sig = np.float64(3.65e-10) # Sea level standard values: P0 = 101325.0 #Pa T0 = 288.15 #K M = np.array([28.9644, 28.9644, 28.9644, 28.9644, 28.9644, 28.9644, 28.962, 28.962, 28.88, 28.56, 28.07, 26.92, 26.66, 26.4, 25.85, 24.70, 22.66, 19.94, 17.94, 16.84, 16.17]) # Molecular masses with altitude g/mol R0 = 8.31432 # J/mol-K g0 = 9.806658 # m/s2 GM_R = g0*M/R0 # GM/R K/km Z = (r - RE)*1e-3 # convert radius in m to altitude in km H = me2po(RE,Z) # geopotential altitude BLH = np.array([0., 11., 20., 32., 47., 51., 71., me2po(RE,86.), me2po(RE,100.), me2po(RE,110.), me2po(RE,120.), me2po(RE,150.), me2po(RE,160.), me2po(RE,170.), me2po(RE,190.), me2po(RE,230.), me2po(RE,300.), me2po(RE,400.), me2po(RE,500.), me2po(RE,600.), me2po(RE,700.)]) L = np.array([0., -6.5, 0., 1., 2.8, 0., -2.8, -2., 1.693, 5., 10., 20., 15., 10., 7., 5., 4., 3.3, 2.6, 1.7, 1.1]) BLT = np.zeros((21,)) BLP = np.zeros((21,)) BLT[0] = T0 BLP[0] = P0 for i in range(0, 20): # Calculate base temperatures BLT[i+1] = BLT[i] + L[i+1]*(BLH[i+1] - BLH[i]) # Calculate base pressures if (i+1 == 0) or (i+1 == 2) or (i+1 == 5): BLP[i+1] = BLP[i]*np.exp(-GM_R[i+1]*(BLH[i+1] - BLH[i])/BLT[i]) else: BLP[i+1] = BLP[i]*((BLT[i] + L[i+1]*(BLH[i+1] - BLH[i]))/BLT[i])**(-GM_R[i+1]/L[i+1]) # Calculate values at requested altitude if H > BLH[i] and H <= BLH[i+1]: # Molecular weight (interpolate)] MolW = M[i] + (M[i+1] - M[i])*(H - BLH[i])/(BLH[i+1] - BLH[i]) gmrtemp = g0*MolW/R0 # Molecular scale Temperature T = np.float64(BLT[i] + L[i+1]*(H - BLH[i])) T = MolW*T/M[0] # Convert molecular scale temperature to kinetic temperature # Pressure if i+1 == 0 or i+1 == 2 or i+1 == 5: P = np.float64(BLP[i]*np.exp(-gmrtemp*(H - BLH[i])/BLT[i])) else: P = np.float64(BLP[i]*((BLT[i] + L[i+1]*(H - BLH[i]))/BLT[i])**(-gmrtemp/L[i+1])) # Density rho = np.float64(MolW*1e-3*P/(R0*T)) mfp = np.float64(MolW*1e-3/(2**0.5*np.pi*sig**2*rho*Na)) # mean free path eta = np.float64(1.458e-6*T**1.5/(T + 110.4)) # dynamic viscosity via sutherland law SoS = np.float64(np.sqrt(1.4*287.085*T)) return rho, P, T, mfp, eta, MolW, SoS def me2po(RE,Z): """ me2po converts geometric altitude to geopotential altitude -- the US standard atmosphere works in geopotential altitudes, which approximates the altitude of a pressure surface above the mean sea level. The reasoning for this is as follows: A change in geometric altitude will create a change in gravitational potential energy per unit mass (as the effects of gravity become smaller as two objects move away from each other) Inputs: RE: Earth radius Z: Geometric altitude Outputs: H: Geopotential altitude """ H = RE*Z/(RE + Z) return H
[ "sys.path.append", "numpy.divide", "numpy.sum", "numpy.multiply", "numpy.zeros", "numpy.array", "numpy.exp", "numpy.float64", "numpy.sqrt" ]
[((202, 264), 'sys.path.append', 'sys.path.append', (['"""atmosphere_models/Python-NRLMSISE-00-master"""'], {}), "('atmosphere_models/Python-NRLMSISE-00-master')\n", (217, 264), False, 'import sys\n'), ((4385, 4396), 'numpy.zeros', 'np.zeros', (['(8)'], {}), '(8)\n', (4393, 4396), True, 'import numpy as np\n'), ((4770, 4781), 'numpy.zeros', 'np.zeros', (['(8)'], {}), '(8)\n', (4778, 4781), True, 'import numpy as np\n'), ((5158, 5175), 'numpy.sum', 'np.sum', (['partial_p'], {}), '(partial_p)\n', (5164, 5175), True, 'import numpy as np\n'), ((5229, 5267), 'numpy.divide', 'np.divide', (['partial_p', 'pressure_mixture'], {}), '(partial_p, pressure_mixture)\n', (5238, 5267), True, 'import numpy as np\n'), ((5792, 5858), 'numpy.float64', 'np.float64', (['(1.458e-06 * temperature ** 1.5 / (temperature + 110.4))'], {}), '(1.458e-06 * temperature ** 1.5 / (temperature + 110.4))\n', (5802, 5858), True, 'import numpy as np\n'), ((6628, 6653), 'numpy.float64', 'np.float64', (['(6.0220978e+23)'], {}), '(6.0220978e+23)\n', (6638, 6653), True, 'import numpy as np\n'), ((6663, 6683), 'numpy.float64', 'np.float64', (['(3.65e-10)'], {}), '(3.65e-10)\n', (6673, 6683), True, 'import numpy as np\n'), ((6771, 6950), 'numpy.array', 'np.array', (['[28.9644, 28.9644, 28.9644, 28.9644, 28.9644, 28.9644, 28.962, 28.962, \n 28.88, 28.56, 28.07, 26.92, 26.66, 26.4, 25.85, 24.7, 22.66, 19.94, \n 17.94, 16.84, 16.17]'], {}), '([28.9644, 28.9644, 28.9644, 28.9644, 28.9644, 28.9644, 28.962, \n 28.962, 28.88, 28.56, 28.07, 26.92, 26.66, 26.4, 25.85, 24.7, 22.66, \n 19.94, 17.94, 16.84, 16.17])\n', (6779, 6950), True, 'import numpy as np\n'), ((7583, 7711), 'numpy.array', 'np.array', (['[0.0, -6.5, 0.0, 1.0, 2.8, 0.0, -2.8, -2.0, 1.693, 5.0, 10.0, 20.0, 15.0, \n 10.0, 7.0, 5.0, 4.0, 3.3, 2.6, 1.7, 1.1]'], {}), '([0.0, -6.5, 0.0, 1.0, 2.8, 0.0, -2.8, -2.0, 1.693, 5.0, 10.0, 20.0,\n 15.0, 10.0, 7.0, 5.0, 4.0, 3.3, 2.6, 1.7, 1.1])\n', (7591, 7711), True, 'import numpy as np\n'), ((7724, 7739), 'numpy.zeros', 'np.zeros', (['(21,)'], {}), '((21,))\n', (7732, 7739), True, 'import numpy as np\n'), ((7750, 7765), 'numpy.zeros', 'np.zeros', (['(21,)'], {}), '((21,))\n', (7758, 7765), True, 'import numpy as np\n'), ((5310, 5355), 'numpy.multiply', 'np.multiply', (['mole_fraction', 'molecular_weights'], {}), '(mole_fraction, molecular_weights)\n', (5321, 5355), True, 'import numpy as np\n'), ((5451, 5505), 'numpy.divide', 'np.divide', (['molecular_weights', 'molecular_weight_mixture'], {}), '(molecular_weights, molecular_weight_mixture)\n', (5460, 5505), True, 'import numpy as np\n'), ((5589, 5640), 'numpy.multiply', 'np.multiply', (['mass_fractions', 'specific_gas_constants'], {}), '(mass_fractions, specific_gas_constants)\n', (5600, 5640), True, 'import numpy as np\n'), ((5675, 5684), 'numpy.sum', 'np.sum', (['d'], {}), '(d)\n', (5681, 5684), True, 'import numpy as np\n'), ((5917, 5955), 'numpy.sqrt', 'np.sqrt', (['(1.4 * R_mixture * temperature)'], {}), '(1.4 * R_mixture * temperature)\n', (5924, 5955), True, 'import numpy as np\n'), ((8527, 8571), 'numpy.float64', 'np.float64', (['(BLT[i] + L[i + 1] * (H - BLH[i]))'], {}), '(BLT[i] + L[i + 1] * (H - BLH[i]))\n', (8537, 8571), True, 'import numpy as np\n'), ((8976, 9015), 'numpy.float64', 'np.float64', (['(MolW * 0.001 * P / (R0 * T))'], {}), '(MolW * 0.001 * P / (R0 * T))\n', (8986, 9015), True, 'import numpy as np\n'), ((9025, 9092), 'numpy.float64', 'np.float64', (['(MolW * 0.001 / (2 ** 0.5 * np.pi * sig ** 2 * rho * Na))'], {}), '(MolW * 0.001 / (2 ** 0.5 * np.pi * sig ** 2 * rho * Na))\n', (9035, 9092), True, 'import numpy as np\n'), ((9111, 9157), 'numpy.float64', 'np.float64', (['(1.458e-06 * T ** 1.5 / (T + 110.4))'], {}), '(1.458e-06 * T ** 1.5 / (T + 110.4))\n', (9121, 9157), True, 'import numpy as np\n'), ((8045, 8098), 'numpy.exp', 'np.exp', (['(-GM_R[i + 1] * (BLH[i + 1] - BLH[i]) / BLT[i])'], {}), '(-GM_R[i + 1] * (BLH[i + 1] - BLH[i]) / BLT[i])\n', (8051, 8098), True, 'import numpy as np\n'), ((8844, 8940), 'numpy.float64', 'np.float64', (['(BLP[i] * ((BLT[i] + L[i + 1] * (H - BLH[i])) / BLT[i]) ** (-gmrtemp / L[i +\n 1]))'], {}), '(BLP[i] * ((BLT[i] + L[i + 1] * (H - BLH[i])) / BLT[i]) ** (-\n gmrtemp / L[i + 1]))\n', (8854, 8940), True, 'import numpy as np\n'), ((9219, 9245), 'numpy.sqrt', 'np.sqrt', (['(1.4 * 287.085 * T)'], {}), '(1.4 * 287.085 * T)\n', (9226, 9245), True, 'import numpy as np\n'), ((5720, 5730), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (5727, 5730), True, 'import numpy as np\n'), ((8768, 8808), 'numpy.exp', 'np.exp', (['(-gmrtemp * (H - BLH[i]) / BLT[i])'], {}), '(-gmrtemp * (H - BLH[i]) / BLT[i])\n', (8774, 8808), True, 'import numpy as np\n')]
import numpy as np import matplotlib.pyplot as plt from nt_toolbox.signal import imageplot def plot_levelset(Z, level=0, f=[]): """ f is supposed to be of the same shape as Z """ if len(f) == 0: f = np.copy(Z) n,p = np.shape(Z) X,Y = np.meshgrid(np.arange(0,n),np.arange(0,p)) plt.contour(X, Y, Z,[level],linewidths=2, colors="red") imageplot(f)
[ "numpy.copy", "nt_toolbox.signal.imageplot", "numpy.shape", "matplotlib.pyplot.contour", "numpy.arange" ]
[((258, 269), 'numpy.shape', 'np.shape', (['Z'], {}), '(Z)\n', (266, 269), True, 'import numpy as np\n'), ((327, 384), 'matplotlib.pyplot.contour', 'plt.contour', (['X', 'Y', 'Z', '[level]'], {'linewidths': '(2)', 'colors': '"""red"""'}), "(X, Y, Z, [level], linewidths=2, colors='red')\n", (338, 384), True, 'import matplotlib.pyplot as plt\n'), ((387, 399), 'nt_toolbox.signal.imageplot', 'imageplot', (['f'], {}), '(f)\n', (396, 399), False, 'from nt_toolbox.signal import imageplot\n'), ((228, 238), 'numpy.copy', 'np.copy', (['Z'], {}), '(Z)\n', (235, 238), True, 'import numpy as np\n'), ((292, 307), 'numpy.arange', 'np.arange', (['(0)', 'n'], {}), '(0, n)\n', (301, 307), True, 'import numpy as np\n'), ((307, 322), 'numpy.arange', 'np.arange', (['(0)', 'p'], {}), '(0, p)\n', (316, 322), True, 'import numpy as np\n')]
# python3 # # Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Example using TF Lite to classify objects with the Raspberry Pi camera.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function #import argparse #import io #import time import numpy as np #import picamera from PIL import Image from tflite_runtime.interpreter import Interpreter #from datetime import datetime #from time import sleep def saveImageSimple(cropImage): filePath = "./test/224.jpg" cropImage.save(filePath, quality=100, subsampling=0) print("saved", filePath) # log DEBUG return True def load_labels(path): with open(path, 'r') as f: return {i: line.strip() for i, line in enumerate(f.readlines())} def set_input_tensor(interpreter, image): tensor_index = interpreter.get_input_details()[0]['index'] input_tensor = interpreter.tensor(tensor_index)()[0] input_tensor[:, :] = image def classify_image(interpreter, image, top_k=1): """Returns a sorted array of classification results.""" set_input_tensor(interpreter, image) interpreter.invoke() output_details = interpreter.get_output_details()[0] output = np.squeeze(interpreter.get_tensor(output_details['index'])) # If the model is quantized (uint8 data), then dequantize the results if output_details['dtype'] == np.uint8: scale, zero_point = output_details['quantization'] # "output" is list of probablilities, in the same order as labels are in dict.txt output = scale * (output - zero_point) # "ordered" is list of numbers that show the order of each probability in "output" ordered = np.argpartition(-output, top_k) # print("ordered ", ordered) # print("output", output) # best = ordered[0] # all = [(labels[i], output[i]) for i in ordered[:top_k]] # print(best, all) return output # return ordered # labels # return output def formatOutput(output, labels): all = {} labelNumber = 0 for i in output: all[labels[labelNumber]] = i labelNumber = labelNumber + 1 bestKey = max(all, key=lambda key: all[key]) bestVal = all[bestKey] # print("best", best) # TODO: return best key and value as second return value return bestKey, bestVal, all # Main function def classify(cropFrame): print("Here") # width = 224 # height = 224 # Hardcoded args # model = './models/tflite-plumps1_20210328/model.tflite' # labels = './models/tflite-plumps1_20210328/dict.txt' model = './models/tflite-plumps2_20210330/model.tflite' labels = './models/tflite-plumps2_20210330/dict.txt' # TODO: Do this only once, pass to the function? labels = load_labels(labels) interpreter = Interpreter(model) interpreter.allocate_tensors() _, height, width, _ = interpreter.get_input_details()[0]['shape'] cropImage = Image.fromarray(cropFrame) cropImage = cropImage.resize((width, height), Image.ANTIALIAS) # success = saveImageSimple(cropImage) # test results = classify_image(interpreter, cropImage, 1) # print("Results array ", results) bestKey, bestVal, all = formatOutput(results, labels) print("res: ", bestKey, bestVal, all) # label_id, prob = results[0] # print(labels[label_id], prob) # return labels[label_id], prob return bestKey, bestVal, all
[ "PIL.Image.fromarray", "numpy.argpartition", "tflite_runtime.interpreter.Interpreter" ]
[((2208, 2239), 'numpy.argpartition', 'np.argpartition', (['(-output)', 'top_k'], {}), '(-output, top_k)\n', (2223, 2239), True, 'import numpy as np\n'), ((3261, 3279), 'tflite_runtime.interpreter.Interpreter', 'Interpreter', (['model'], {}), '(model)\n', (3272, 3279), False, 'from tflite_runtime.interpreter import Interpreter\n'), ((3402, 3428), 'PIL.Image.fromarray', 'Image.fromarray', (['cropFrame'], {}), '(cropFrame)\n', (3417, 3428), False, 'from PIL import Image\n')]
""" Context class for the pushing task as used in the paper "How to Train Your Differentiable Filter". """ # this code only works with tensorflow 1 import tensorflow.compat.v1 as tf tf.disable_v2_behavior() import tensorflow_probability as tfp import numpy as np import os import csv from matplotlib.patches import Ellipse from matplotlib.patches import Polygon import matplotlib.pyplot as plt import pickle from differentiable_filters.contexts import paper_base_context as base from differentiable_filters.utils.base_layer import BaseLayer from differentiable_filters.utils import recordio as tfr from differentiable_filters.utils import push_utils as utils from differentiable_filters.utils import tensorflow_compatability as compat class Context(base.PaperaseContext): def __init__(self, param, mode): """ Context class for the pushing task as used in the paper. Parameters ---------- param : dict A dictionary of arguments mode : string determines which parts of the model are trained. Use "filter" for the whole model, "pretrain_obs" for pretraining the observation related functions of the context in isolation or "pretrain_proc" for pretrainign the process-related functions of the context. """ base.PaperBaseContext.__init__(self, param, mode) if 'normalize' in param.keys(): self.normalize = param['normalize'] else: self.normalize = 'layer' # the state size self.dim_x = 10 self.dim_u = 2 self.dim_z = 8 # dimension names self.x_names = ['x', 'y', 'theta', 'l', 'mu', 'rx', 'ry', 'nx', 'ny', 's'] self.z_names = ['x', 'y', 'theta', 'rx', 'ry', 'nx', 'ny', 's'] # load the points on the outline of the butter object for visualization path = os.path.dirname(os.path.dirname(os.path.dirname(__file__))) with open(os.path.join(path, 'resources', 'butter_points.pkl'), 'rb') as bf: butter_points = pickle.load(bf) self.butter_points = np.array(butter_points) # define initial values for the process noise q and observation noise r # diagonals # Important: All values are standard-deviations, so they are # squared for forming the covariance matrices if param['q_diag'] is not None: cov_string = param['q_diag'] cov = list(map(lambda x: float(x), cov_string.split(' '))) self.q_diag = np.array(cov).astype(np.float32) else: self.q_diag = np.ones((self.dim_x)).astype(np.float32) self.q_diag = self.q_diag.astype(np.float32) / self.scale if param['r_diag'] is not None: cov_string = param['r_diag'] cov = list(map(lambda x: float(x), cov_string.split(' '))) self.r_diag = np.array(cov).astype(np.float32) else: self.r_diag = np.ones((self.dim_z)).astype(np.float32) self.r_diag = self.r_diag.astype(np.float32) / self.scale # if the noise matrices are not learned, we construct the fixed # covariance matrices here q = np.diag(np.square(self.q_diag)) self.Q = tf.convert_to_tensor(q, dtype=tf.float32) r = np.diag(np.square(self.r_diag)) self.R = tf.convert_to_tensor(r, dtype=tf.float32) # for state in mm/deg, # c = np.array([50, 50, 1e-2, 5, 5, 50, 50, 0.5, 0.5, 0.5]) self.noise_list = \ [np.array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]), np.array([49.8394116, -2.3510439, 0, 2.5196417, 1.93745247, 27.6656989, 67.1287098, 0.03124815, -0.18917632, -0.14730855]), np.array([27.9914853, -30.3366791, 0, -4.6963326, -2.96631439, 3.6698755, -14.5376077, -0.49956926, 0.56362964, 0.54478971])] for i, n in enumerate(self.noise_list): self.noise_list[i] = n.astype(np.float32) if mode == 'filter': train_sensor_model = param['train_sensor_model'] train_process_model = param['train_process_model'] train_q = param['train_q'] train_r = param['train_r'] if param['filter'] == 'lstm': train_process_model = False train_q = False train_r = False # tensorflow does not allow summaries inside rnn-loops summary = False else: train_sensor_model = True train_process_model = True train_q = True train_r = True summary = True # all layers used in the context need to be instantiated here, but we # cannot instantiate layers that will not be used if mode == 'filter' or mode == 'pretrain_obs': # don't train the segmentation model is we use a pretrained # sensor network self.segmentation_layer = \ SegmentationLayer(self.batch_size, self.normalize, summary, train_sensor_model) self.sensor_model_layer = \ SensorLayer(self.batch_size, self.normalize, self.scale, summary, train_sensor_model) self.observation_model_layer = ObservationModel(self.dim_z, self.batch_size) # group the layers for easier checkpoint restoring self.observation_models = {'sensor': [self.segmentation_layer, self.sensor_model_layer], 'obs': self.observation_model_layer} self.update_ops += self.segmentation_layer.updateable self.update_ops += self.sensor_model_layer.updateable else: self.observation_models = {} lstm_no_noise = param['filter'] == 'lstm' and \ not param['lstm_structure'] == 'full' self.observation_noise_models = {} if param['learn_r'] and param['hetero_r'] and \ param['diagonal_covar'] and mode == 'filter' and \ not lstm_no_noise or mode == 'pretrain_obs': self.observation_noise_hetero_diag = \ ObservationNoise(self.batch_size, self.dim_z, self.r_diag, self.scale, hetero=True, diag=True, trainable=train_r, summary=summary) self.observation_noise_models['het_diag'] = \ self.observation_noise_hetero_diag if param['learn_r'] and param['hetero_r'] and \ not param['diagonal_covar'] and mode == 'filter' and \ not lstm_no_noise or mode == 'pretrain_obs': self.observation_noise_hetero_full = \ ObservationNoise(self.batch_size, self.dim_z, self.r_diag, self.scale, hetero=True, diag=False, trainable=train_r, summary=summary) self.observation_noise_models['het_full'] = \ self.observation_noise_hetero_full if param['learn_r'] and not param['hetero_r'] and \ param['diagonal_covar'] and mode == 'filter' and \ not lstm_no_noise or mode == 'pretrain_obs': self.observation_noise_const_diag = \ ObservationNoise(self.batch_size, self.dim_z, self.r_diag, self.scale, hetero=False, diag=True, trainable=train_r, summary=summary) self.observation_noise_models['const_diag'] = \ self.observation_noise_const_diag if param['learn_r'] and not param['hetero_r'] and \ not param['diagonal_covar'] and mode == 'filter' and \ not lstm_no_noise or mode == 'pretrain_obs': self.observation_noise_const_full = \ ObservationNoise(self.batch_size, self.dim_z, self.r_diag, self.scale, hetero=False, diag=False, trainable=train_r, summary=summary) self.observation_noise_models['const_full'] = \ self.observation_noise_const_full if param['learned_likelihood'] and mode == 'filter' and \ not lstm_no_noise or mode == 'pretrain_obs': self.likelihood_layer = Likelihood(self.dim_z, trainable=train_r, summary=summary) self.observation_noise_models['like'] = self.likelihood_layer self.process_models = {} lstm_unstructured = param['filter'] == 'lstm' and \ (param['lstm_structure'] == 'none' or param['lstm_structure'] == 'lstm' or param['lstm_structure'] == 'lstm1') if mode == 'filter' and not lstm_unstructured and \ param['learn_process'] or mode == 'pretrain_process': self.process_model_learned_layer = \ ProcessModel(self.batch_size, self.dim_x, self.scale, learned=True, jacobian=param['filter'] == 'ekf', trainable=train_process_model, summary=summary) self.process_models['learned'] = self.process_model_learned_layer if mode == 'filter' and not lstm_unstructured and \ not param['learn_process'] or mode == 'pretrain_process': self.process_model_analytical_layer = \ ProcessModel(self.batch_size, self.dim_x, self.scale, learned=False, jacobian=param['filter'] == 'ekf', trainable=train_process_model, summary=summary) self.process_models['ana'] = self.process_model_analytical_layer self.process_noise_models = {} process_noise = (param['learn_q'] and not lstm_no_noise and mode == 'filter') if process_noise and param['learn_process'] and param['hetero_q'] and \ param['diagonal_covar'] or mode == 'pretrain_process': self.process_noise_hetero_diag_lrn = \ ProcessNoise(self.batch_size, self.dim_x, self.q_diag, self.scale, hetero=True, diag=True, learned=True, trainable=train_q, summary=summary) self.process_noise_models['het_diag_lrn'] = \ self.process_noise_hetero_diag_lrn if process_noise and param['learn_process'] and param['hetero_q'] and \ not param['diagonal_covar'] or mode == 'pretrain_process': self.process_noise_hetero_full_lrn = \ ProcessNoise(self.batch_size, self.dim_x, self.q_diag, self.scale, hetero=True, diag=False, learned=True, trainable=train_q, summary=summary) self.process_noise_models['het_full_lrn'] = \ self.process_noise_hetero_full_lrn if process_noise and param['learn_process'] and \ not param['hetero_q'] and param['diagonal_covar'] or \ mode == 'pretrain_process': self.process_noise_const_diag_lrn = \ ProcessNoise(self.batch_size, self.dim_x, self.q_diag, self.scale, hetero=False, diag=True, learned=True, trainable=train_q, summary=summary) self.process_noise_models['const_diag_lrn'] = \ self.process_noise_const_diag_lrn if process_noise and param['learn_process'] and \ not param['hetero_q'] and not param['diagonal_covar'] or \ mode == 'pretrain_process': self.process_noise_const_full_lrn = \ ProcessNoise(self.batch_size, self.dim_x, self.q_diag, self.scale, hetero=False, diag=False, learned=True, trainable=train_q, summary=summary) self.process_noise_models['const_full_lrn'] = \ self.process_noise_const_full_lrn if process_noise and not param['learn_process'] and \ param['hetero_q'] and param['diagonal_covar'] or \ mode == 'pretrain_process': self.process_noise_hetero_diag_ana = \ ProcessNoise(self.batch_size, self.dim_x, self.q_diag, self.scale, hetero=True, diag=True, learned=False, trainable=train_q, summary=summary) self.process_noise_models['het_diag_ana'] = \ self.process_noise_hetero_diag_ana if process_noise and not param['learn_process'] and \ param['hetero_q'] and not param['diagonal_covar'] or \ mode == 'pretrain_process': self.process_noise_hetero_full_ana = \ ProcessNoise(self.batch_size, self.dim_x, self.q_diag, self.scale, hetero=True, diag=False, learned=False, trainable=train_q, summary=summary) self.process_noise_models['het_full_ana'] = \ self.process_noise_hetero_full_ana if process_noise and not param['learn_process'] and \ not param['hetero_q'] and param['diagonal_covar'] or \ mode == 'pretrain_process': self.process_noise_const_diag_ana = \ ProcessNoise(self.batch_size, self.dim_x, self.q_diag, self.scale, hetero=False, diag=True, learned=False, trainable=train_q, summary=summary) self.process_noise_models['const_diag_ana'] = \ self.process_noise_const_diag_ana if process_noise and not param['learn_process'] and \ not param['hetero_q'] and not param['diagonal_covar'] or \ mode == 'pretrain_process': self.process_noise_const_full_ana = \ ProcessNoise(self.batch_size, self.dim_x, self.q_diag, self.scale, hetero=False, diag=False, learned=False, trainable=train_q, summary=summary) self.process_noise_models['const_full_ana'] = \ self.process_noise_const_full_ana ########################################################################### # observation models ########################################################################### def run_sensor_model(self, raw_observations, training): """ Process raw observations and return an encoding and predicted observations z for the filter """ images, tip_pos, tip_pos_pix, tip_end_pix, start_glimpse = \ raw_observations seg_out, pix = self.segmentation_layer(images, training) z, enc = self.sensor_model_layer([images, tip_pos, tip_pos_pix, tip_end_pix, start_glimpse] + seg_out, training) enc = list(enc) + [pix] return z, enc def run_process_model(self, old_state, action, learned, training): """ Predict the next state from the old state and the action and returns the jacobian """ if learned: new_state, F = \ self.process_model_learned_layer([old_state, action, self.ob], training) else: new_state, F = \ self.process_model_analytical_layer([old_state, action, self.ob], training) new_state = self.correct_state(new_state, diff=False) return new_state, F def get_initial_glimpse(self, image, training): """ Process the observations for the initial state and return a segmented glimpse of the object in its initial position """ seg_out, pix = self.segmentation_layer(image, training) mask, pos, glimpse_rot = seg_out return glimpse_rot, pix, mask def initial_from_observed(self, base_state, init_z, base_covar, init_R): state = tf.concat([init_z[:, :3], base_state[:, 3:5], init_z[:, 3:]], axis=-1) covar = \ tf.concat([tf.concat([base_covar[:, :3, :3], init_R[:, :3, :3]], axis=-1), base_covar[:, 3:5, :], tf.concat([base_covar[:, 5:, 5:], init_R[:, 3:, 3:]], axis=-1)], axis=1) return state, covar ########################################################################### # loss functions ########################################################################### def get_filter_loss(self, prediction, label, step, training): """ Compute the loss for the filtering application - defined in the context Args: prediction: list of predicted tensors label: list of label tensors step: training step training: boolean tensor, indicates if we compute a loss for training or testing Returns: loss: the total loss for training the filtering application metrics: additional metrics we might want to log for evaluation metric-names: the names for those metrics """ particles, weights, states, covars, init_s, init_c, z, r, q = \ prediction states = tf.reshape(states, [self.batch_size, -1, self.dim_x]) covars = tf.reshape(covars, [self.batch_size, -1, self.dim_x, self.dim_x]) seq_label, mv_tr, mv_rot, vis = label diff = seq_label - states diff = self.correct_state(diff) # get the likelihood if self.param['filter'] == 'pf' and self.param['mixture_likelihood']: num = particles.get_shape()[2].value seq_label_tiled = tf.tile(seq_label[:, :, None, :], [1, 1, num, 1]) particle_diff = self.correct_state(seq_label_tiled - particles) likelihood = self._mixture_likelihood(particle_diff, weights) else: likelihood = self._likelihood(diff, covars, reduce_mean=False) # compensate for scaling offset = tf.ones_like(likelihood)*tf.math.log(self.scale)*2*self.dim_x likelihood += 0.5 * offset # compute the errors of the predicted states total_mse, total_dist = self._mse(diff, reduce_mean=False) total_mse *= self.scale**2 total_dist *= self.scale # compute component-wise distances dists = [] for i in range(self.dim_x): _, dist = self._mse(diff[:, :, i:i+1], reduce_mean=False) dists += [dist*self.scale] # position and orientation error _, dist_tr = self._mse(diff[:, :, 0:2], reduce_mean=False) _, dist_rot = self._mse(diff[:, :, 2:3], reduce_mean=False) # compute the error in the predicted observations (only for monitoring) diff_obs = tf.concat([seq_label[:, :, :3] - z[:, :, 0:3], seq_label[:, :, 5:] - z[:, :, 3:]], axis=-1) diff_obs = self.correct_observation_diff(diff_obs) # rsme _, dist_ob = self._mse(diff_obs, reduce_mean=False) dist_ob *= self.scale # component-wise dist_obs = [] for i in range(self.dim_z): _, dist = self._mse(diff_obs[:, :, i:i+1], reduce_mean=False) dist = dist*self.scale dist_obs += [dist] # compute the correlation between predicted observation noise and # the number of visible object pixels # this only makes sense for the heteroscedastic noise diag_r = tf.linalg.diag_part(r) diag_r = tf.sqrt(tf.abs(diag_r + 1e-5)) diag_r = tf.reshape(diag_r, [-1, self.dim_z]) corr = [] for i in range(self.dim_z): corr += \ [tfp.stats.correlation(diag_r[:, i:i+1], tf.reshape(vis, [-1, 1]), sample_axis=0, event_axis=-1)] corr_r = tf.add_n(corr)/self.dim_z # correlation between noise and contact corr_r_cont = [] for i in range(self.dim_z): crs = \ tfp.stats.correlation(diag_r[:, i:i+1], tf.reshape(seq_label[:, :, 9:], [-1, 1]), sample_axis=0, event_axis=-1) corr_r_cont += [crs] corr_r_cont = tf.add_n(corr_r_cont)/self.dim_z # same for q diag_q = tf.linalg.diag_part(q) diag_q = tf.sqrt(tf.abs(diag_q + 1e-5)) diag_q = tf.reshape(diag_q, [-1, self.dim_x]) corr_q = [] for i in range(self.dim_x-1): cqs = \ tfp.stats.correlation(diag_q[:, i:i+1], tf.reshape(seq_label[:, :, 9:], [-1, 1]), sample_axis=0, event_axis=-1) corr_q += [cqs] corr_q = tf.add_n(corr_q)/(self.dim_x-1) # compute the output metric m_per_tr, deg_per_deg = \ self._output_loss(states[:, :, :3], seq_label[:, :, :3], mv_tr, mv_rot) tf.summary.scalar('out/m_per_tr', m_per_tr) tf.summary.scalar('out/deg_per_deg', deg_per_deg) tf.summary.scalar('out/tr_total', tf.reduce_mean(mv_tr)) tf.summary.scalar('out/rot_total', tf.reduce_mean(mv_rot)) tf.summary.scalar('out/tr_error', tf.reduce_mean(dist_tr)) tf.summary.scalar('out/rot_error', tf.reduce_mean(dist_rot)) # get the weight decay wd = [] for la in self.observation_models.values(): wd += la.losses for la in self.observation_noise_models.values(): wd += la.losses for la in self.process_models.values(): wd += la.losses for la in self.process_noise_models.values(): wd += la.losses wd = tf.add_n(wd) # add a bias to all losses that use the likelihood, to set off # possible negative values of the likelihood total_tracking = tf.reduce_mean(total_mse) total_obs = tf.reduce_mean(dist_ob) if self.loss == 'like': total_loss = tf.reduce_mean(likelihood) elif self.loss == 'error': total_loss = total_tracking elif self.loss == 'mixed': total_loss = (total_tracking + tf.reduce_mean(likelihood)) / 2. elif self.loss == 'mixed_error': total_loss = total_tracking * 0.75 + \ tf.reduce_mean(likelihood) * 0.25 elif self.loss == 'mixed_like': total_loss = total_tracking * 0.25 + \ tf.reduce_mean(likelihood) * 0.75 elif self.loss == 'mixed_curr': total_loss = tf.cond(tf.less(step, self.epoch_size * 3), lambda: total_tracking, lambda: tf.reduce_mean(likelihood)) if self.loss == 'mixed_curr': total_loss_val = tf.reduce_mean(likelihood) else: total_loss_val = total_loss if self.loss != 'error': total_loss_val += 1000 total = tf.cond(training, lambda: total_loss + wd, lambda: total_loss_val) # add summaries tf.summary.scalar('loss/total', total) tf.summary.scalar('loss/wd', wd) tf.summary.scalar('loss/likelihood', tf.reduce_mean(likelihood)) tf.summary.scalar('loss/tracking', total_tracking) tf.summary.scalar('loss/observations', total_obs) tf.summary.scalar('loss/corr_r_vis', tf.squeeze(corr_r)) tf.summary.scalar('loss/corr_r_cont', tf.squeeze(corr_r_cont)) tf.summary.scalar('loss/corr_q_cont', tf.squeeze(corr_q)) for i, name in enumerate(self.x_names): tf.summary.scalar('tracking_loss/' + name, tf.reduce_mean(dists[i])) for i, name in enumerate(self.z_names): tf.summary.scalar('observation_loss/' + name, tf.reduce_mean(dist_obs[i])) return total, [likelihood, total_dist, dist_ob, total_mse, dist_tr, dist_rot, m_per_tr, deg_per_deg, vis, seq_label[:, :, 9], diag_r, diag_q, wd] +\ dists, ['likelihood', 'dist', 'dist_obs', 'mse', 'dist_tr', 'dist_rot', 'm_tr', 'deg_rot', 'vis', 'cont', 'r_pred', 'q_pred', 'wd'] + \ self.x_names def _output_loss(self, pred, label, mv_tr, mv_rot): endpoint_error = self._compute_sq_distance(pred[:, -1, 0:2], label[:, -1, 0:2]) endpoint_error_rot = self._compute_sq_distance(pred[:, -1, 2:3], label[:, -1, 2:3], True) m_per_tr = tf.where(tf.greater(mv_tr, 0), endpoint_error**0.5/mv_tr, endpoint_error) deg_per_deg = tf.where(tf.greater(mv_rot, 0), endpoint_error_rot**0.5/mv_rot, endpoint_error_rot) return tf.reduce_mean(m_per_tr), tf.reduce_mean(deg_per_deg) def _compute_sq_distance(self, pred, label, rotation=False): diff = pred - label if rotation: diff = self._adapt_orientation(diff, self.ob, 1) diff = tf.square(diff) diff = tf.reduce_sum(diff, axis=-1) diff = tf.where(tf.greater(diff, 0), tf.sqrt(diff), diff) return diff def get_observation_loss(self, prediction, labels, step, training): """ Compute the loss for the observation functions - defined in the context Args: prediction: list of predicted tensors label: list of label tensors step: training step training: are we doing training or validation Returns: loss: the total loss for training the observation preprocessing metrics: additional metrics we might want to log for evaluation metric-names: the names for those metrics """ z, pix_pred, seg_pred, initial_pix_pred, initial_seg_pred, \ R_const_diag, R_const_tri, R_het_diag, R_het_tri, \ like_good, like_bad = prediction label, pix_pos, initial_pix_pos, seg, initial_seg, vis = labels diff = self.correct_observation_diff(label - z) likelihood_const_diag = self._likelihood(tf.stop_gradient(diff), R_const_diag, reduce_mean=False) likelihood_const_tri = self._likelihood(tf.stop_gradient(diff), R_const_tri, reduce_mean=False) likelihood_het_diag = self._likelihood(diff, R_het_diag, reduce_mean=False) likelihood_het_tri = self._likelihood(diff, R_het_tri, reduce_mean=False) likelihood = (likelihood_const_diag + likelihood_const_tri + likelihood_het_diag + likelihood_het_tri) / 4. # compute the correlation between predicted observation noise and # the number of visible object pixels # this only makes sense for the heteroscedastic noise diag_r_het_diag = tf.linalg.diag_part(R_het_diag) diag_r_het_diag = tf.sqrt(tf.abs(diag_r_het_diag + 1e-5)) diag_r_het_diag = tf.reshape(diag_r_het_diag, [-1, self.dim_z]) diag_r_het_tri = tf.linalg.diag_part(R_het_tri) diag_r_het_tri = tf.sqrt(tf.abs(diag_r_het_tri + 1e-5)) diag_r_het_tri = tf.reshape(diag_r_het_tri, [-1, self.dim_z]) corr_diag = [] corr_full = [] for i in range(self.dim_z): corr_diag += \ [tfp.stats.correlation(diag_r_het_diag[:, i:i+1], tf.reshape(vis, [-1, 1]), sample_axis=0, event_axis=-1)] corr_full += \ [tfp.stats.correlation(diag_r_het_tri[:, i:i+1], tf.reshape(vis, [-1, 1]), sample_axis=0, event_axis=-1)] corr_r_diag = tf.add_n(corr_diag)/self.dim_z corr_r_full = tf.add_n(corr_full)/self.dim_z # compute the errors of the predicted observations dist_obs = [] mses = [] cont = label[:, 7:8] for i in range(self.dim_z): mse, dist = self._mse(diff[:, i:i+1], reduce_mean=False) # undo the overall scaling for dist and mse, but only undo the # component-wise scaling for dist scale_dist = self.scale scale_mse = self.scale**2 # mask out non-contact cases for contact point and normal if i in [3, 4, 5, 6]: dist_obs += [tf.reduce_mean(dist*scale_dist*cont)] mses += [tf.reduce_sum(mse*scale_mse*cont)] else: dist_obs += [tf.reduce_mean(dist*scale_dist)] mses += [tf.reduce_sum(mse*scale_mse)] mse = tf.add_n(mses) # segmentatuin error height = seg.get_shape()[1] width = seg.get_shape()[2] seg_pred = tf.image.resize(seg_pred, [height, width]) initial_seg_pred = tf.image.resize(initial_seg_pred, [height, width]) seg_loss = tf.nn.sigmoid_cross_entropy_with_logits( logits=tf.squeeze(seg_pred, axis=-1), labels=tf.squeeze(seg, axis=-1)) seg_loss = tf.reduce_mean(tf.reduce_sum(seg_loss, axis=[1, 2])) seg_loss2 = tf.nn.sigmoid_cross_entropy_with_logits( logits=tf.squeeze(initial_seg_pred, axis=-1), labels=tf.squeeze(initial_seg, axis=-1)) seg_loss += tf.reduce_mean(tf.reduce_sum(seg_loss2, axis=[1, 2])) # get the pixel prediction error for the position pix_diff = pix_pred - pix_pos pix_mse, pix_dist = self._mse(pix_diff, reduce_mean=False) pix_mse = tf.reduce_mean(pix_mse) _, dist_3d = self._mse(diff[:, :2], reduce_mean=False) initial_pix_diff = initial_pix_pred - initial_pix_pos initial_pix_mse, initial_pix_dist = self._mse(initial_pix_diff, reduce_mean=False) initial_pix_mse = tf.reduce_mean(initial_pix_mse) # compute the angle-loss of the normals norm_pred = z[:, 5:7] norm_label = label[:, 5:7] normal_ang = self.normal_loss(norm_pred, norm_label) # compute the contact loss contact_loss, ce = self.contact_loss(z[:, 7:8], label[:, 7:8]) # compute the loss for the learned likelihood model of the pf good_loss = tf.reduce_mean(-tf.math.log(tf.maximum(like_good, 1e-6))) bad_loss = \ tf.reduce_mean(-tf.math.log(tf.maximum(1.0 - like_bad, 1e-6))) like_loss = good_loss + bad_loss # add a penalty term for predicted rotation values greater than pi rot_pred = tf.abs(z[:, 2]) rot_penalty = tf.where(tf.greater(rot_pred, 180), tf.square(rot_pred - 180), tf.zeros_like(rot_pred)) rot_penalty = tf.reduce_mean(rot_penalty) wd = [] for la in self.observation_models.values(): wd += la.losses for la in self.observation_noise_models.values(): wd += la.losses wd = tf.add_n(wd) # start by training only the localization for two epochs total_train = \ tf.cond(tf.less(step, self.epoch_size*2), lambda: 10 * (pix_mse + initial_pix_mse) + seg_loss, lambda: (10 * tf.add_n(mses) + 10 * (pix_mse + initial_pix_mse) + 100 * tf.reduce_mean(normal_ang) + 100 * tf.reduce_mean(contact_loss) + 1e-4 * tf.reduce_mean(likelihood) + 1e-3 * like_loss + rot_penalty + 0.01 * seg_loss + 0.01 * wd)) total_train = \ tf.cond(tf.less(step, self.epoch_size*5), lambda: total_train, lambda: (10 * tf.add_n(mses) + 10 * (pix_mse + initial_pix_mse) + 100 * tf.reduce_mean(normal_ang) + 100 * tf.reduce_mean(contact_loss) + 0.1 * (tf.reduce_mean(likelihood) + like_loss) + rot_penalty + 0.001 * seg_loss + wd)) total_val = 10 * tf.add_n(mses) + 10 * tf.reduce_mean(normal_ang) + \ 100 * tf.reduce_mean(contact_loss) + \ tf.reduce_mean(likelihood) + like_loss + 100 total = tf.cond(training, lambda: total_train, lambda: total_val) # add summaries tf.summary.scalar('loss/total', total) tf.summary.scalar('loss/wd', wd) tf.summary.scalar('loss/likelihood_const_diag', tf.reduce_mean(likelihood_const_diag)) tf.summary.scalar('loss/likelihood_const_tri', tf.reduce_mean(likelihood_const_tri)) tf.summary.scalar('loss/likelihood_het_diag', tf.reduce_mean(likelihood_het_diag)) tf.summary.scalar('loss/likelihood_het_tri', tf.reduce_mean(likelihood_het_tri)) for i, name in enumerate(self.z_names): tf.summary.scalar('label/' + name, label[0, i]) for i, name in enumerate(self.z_names): tf.summary.scalar('observation_loss/' + name, tf.reduce_mean(dist_obs[i])) for i, name in enumerate(self.z_names): tf.summary.scalar('noise_loss/diag_' + name, tf.reduce_mean(corr_diag[i])) tf.summary.scalar('noise_loss/full_' + name, tf.reduce_mean(corr_full[i])) tf.summary.scalar('noise_loss/corr_diag', tf.reduce_mean(corr_r_diag)) tf.summary.scalar('noise_loss/corr_full', tf.reduce_mean(corr_r_full)) tf.summary.scalar('observation_loss/normal_ang', tf.reduce_mean(normal_ang)) tf.summary.scalar('observation_loss/mean_vis', tf.reduce_mean(vis)) tf.summary.scalar('observation_loss/dist_pix', tf.reduce_mean(pix_dist)) tf.summary.scalar('observation_loss/dist_3d', tf.reduce_mean(dist_3d)) tf.summary.scalar('observation_loss/contact_cross', tf.reduce_mean(ce)) tf.summary.scalar('observation_loss/rot_penalty', rot_penalty) tf.summary.scalar('loss/like_good', good_loss) tf.summary.scalar('loss/like_bad', bad_loss) tf.summary.scalar('loss/like_loss', like_loss) tf.summary.scalar('loss/segmentation', seg_loss) tf.summary.image('loss/seg_label', seg) tf.summary.image('loss/seg_pred', seg_pred) tf.summary.image('loss/initial_seg_label', initial_seg) tf.summary.image('loss/inital_seg_pred', initial_seg_pred) return total, [likelihood_const_diag, likelihood_const_tri, likelihood_het_diag, likelihood_het_tri, mse, like_loss, tf.reduce_mean(normal_ang), tf.reduce_mean(ce), tf.reshape(vis, [-1, 1]), diag_r_het_diag, diag_r_het_tri, wd] + dist_obs, \ ['likelihood_const_diag', 'likelihood_const_tri', 'likelihood_het_diag', 'likelihood_het_tri', 'mse', 'like', 'normal_ang', 'contact_cross', 'vis', 'r_het_diag', 'r_het_tri', 'wd'] + self.z_names def get_process_loss(self, prediction, labels, step, training): """ Compute the loss for the process functions - defined in the context Args: prediction: list of predicted tensors label: list of label tensors step: training step training: boolean tensor, indicates if we compute a loss for training or testing Returns: loss: the total loss for training the process model metrics: additional metrics we might want to log for evaluation metric-names: the names for those metrics """ state, Q_const_diag, Q_const_tri, Q_het_diag, Q_het_tri, \ state_ana, Q_const_diag_ana, Q_const_tri_ana, Q_het_diag_ana, \ Q_het_tri_ana = prediction label, start = labels diff = label - state diff = self.correct_state(diff) likelihood_const_diag = self._likelihood(diff, Q_const_diag, reduce_mean=False) likelihood_const_tri = self._likelihood(diff, Q_const_tri, reduce_mean=False) likelihood_het_diag = self._likelihood(diff, Q_het_diag, reduce_mean=False) likelihood_het_tri = self._likelihood(diff, Q_het_tri, reduce_mean=False) likelihood = (likelihood_const_diag + likelihood_const_tri + likelihood_het_diag + likelihood_het_tri) / 4. diff_ana = label - state_ana diff_ana = self.correct_state(diff_ana) likelihood_const_diag_ana = self._likelihood(diff_ana, Q_const_diag_ana, reduce_mean=False) likelihood_const_tri_ana = self._likelihood(diff_ana, Q_const_tri_ana, reduce_mean=False) likelihood_het_diag_ana = self._likelihood(diff_ana, Q_het_diag_ana, reduce_mean=False) likelihood_het_tri_ana = self._likelihood(diff_ana, Q_het_tri_ana, reduce_mean=False) likelihood_ana = \ (likelihood_const_diag_ana + likelihood_const_tri_ana + likelihood_het_diag_ana + likelihood_het_tri_ana) / 4. # compute the errors of the predicted states from the learned model mses = [] dists = [] for i in range(self.dim_x): mse, dist = self._mse(diff[:, i:i+1], reduce_mean=False) # undo the overall scaling for dist and mse mses += [tf.reduce_mean(mse*self.scale**2)] dists += [tf.reduce_mean(dist*self.scale)] mse = tf.add_n(mses) # compute the errors of the predicted states from the analytical model dists_ana = [] for i in range(self.dim_x): _, dist = self._mse(diff_ana[:, i:i+1], reduce_mean=False) dists_ana += [tf.reduce_mean(dist*self.scale)] wd = [] for la in self.process_models.values(): wd += la.losses for la in self.process_noise_models.values(): wd += la.losses wd = tf.add_n(wd) total_loss = \ tf.cond(tf.less(step, self.epoch_size*5), lambda: (1000 * tf.reduce_mean(mse) + 1e-5 * tf.reduce_mean(likelihood) + 1e-5 * tf.reduce_mean(likelihood_ana)), lambda: (tf.reduce_mean(likelihood) + tf.reduce_mean(likelihood_ana) + 1000 * tf.reduce_mean(mse))) total = \ tf.cond(training, lambda: total_loss + wd, lambda: (tf.reduce_mean(likelihood) + 100 + tf.reduce_mean(likelihood_ana) + 10 * tf.reduce_mean(mse))) # add summaries tf.summary.scalar('loss/total', total) tf.summary.scalar('loss/wd', wd) tf.summary.scalar('loss/likelihood_const_diag', tf.reduce_mean(likelihood_const_diag)) tf.summary.scalar('loss/likelihood_const_tri', tf.reduce_mean(likelihood_const_tri)) tf.summary.scalar('loss/likelihood_het_diag', tf.reduce_mean(likelihood_het_diag)) tf.summary.scalar('loss/likelihood_het_tri', tf.reduce_mean(likelihood_het_tri)) tf.summary.scalar('loss/likelihood_const_diag_ana', tf.reduce_mean(likelihood_const_diag_ana)) tf.summary.scalar('loss/likelihood_const_tri_ana', tf.reduce_mean(likelihood_const_tri_ana)) tf.summary.scalar('loss/likelihood_het_diag_ana', tf.reduce_mean(likelihood_het_diag_ana)) tf.summary.scalar('loss/likelihood_het_tri_ana', tf.reduce_mean(likelihood_het_tri_ana)) tf.summary.scalar('loss/tracking', tf.reduce_mean(mse)) for i, name in enumerate(self.x_names): tf.summary.scalar('tracking_loss/' + name, tf.reduce_mean(dists[i])) tf.summary.scalar('tracking_loss/' + name + '_ana', tf.reduce_mean(dists_ana[i])) for i in range(min(self.batch_size, 1)): tf.summary.scalar('label/x_' + str(i), label[i, 0]) tf.summary.scalar('label/y_' + str(i), label[i, 1]) tf.summary.scalar('label/theta_' + str(i), label[i, 2]) tf.summary.scalar('label/l_' + str(i), label[i, 3]) tf.summary.scalar('label/mu_' + str(i), label[i, 4]) tf.summary.scalar('label/rx_' + str(i), label[i, 5]) tf.summary.scalar('label/ry_' + str(i), label[i, 6]) tf.summary.scalar('label/nx_' + str(i), label[i, 7]) tf.summary.scalar('label/ny_' + str(i), label[i, 8]) tf.summary.scalar('label/s_' + str(i), label[i, 9]) tf.summary.scalar('start/x_' + str(i), start[i, 0]) tf.summary.scalar('start/y_' + str(i), start[i, 1]) tf.summary.scalar('start/theta_' + str(i), start[i, 2]) tf.summary.scalar('start/l_' + str(i), start[i, 3]) tf.summary.scalar('start/mu_' + str(i), start[i, 4]) tf.summary.scalar('start/rx_' + str(i), start[i, 5]) tf.summary.scalar('start/ry_' + str(i), start[i, 6]) tf.summary.scalar('start/nx_' + str(i), start[i, 7]) tf.summary.scalar('start/ny_' + str(i), start[i, 8]) tf.summary.scalar('start/s_' + str(i), start[i, 9]) tf.summary.scalar('pred/x_ana_' + str(i), state_ana[i, 0]) tf.summary.scalar('pred/y_ana_' + str(i), state_ana[i, 1]) tf.summary.scalar('pred/theta_ana_' + str(i), state_ana[i, 2]) tf.summary.scalar('pred/l_ana_' + str(i), state_ana[i, 3]) tf.summary.scalar('pred/mu_ana_' + str(i), state_ana[i, 4]) tf.summary.scalar('pred/rx_ana_' + str(i), state_ana[i, 5]) tf.summary.scalar('pred/ry_ana_' + str(i), state_ana[i, 6]) tf.summary.scalar('pred/nx_ana_' + str(i), state_ana[i, 7]) tf.summary.scalar('pred/ny_ana_' + str(i), state_ana[i, 8]) tf.summary.scalar('pred/s_ana_' + str(i), state_ana[i, 9]) tf.summary.scalar('pred/x_' + str(i), state[i, 0]) tf.summary.scalar('pred/y_' + str(i), state[i, 1]) tf.summary.scalar('pred/theta_' + str(i), state[i, 2]) tf.summary.scalar('pred/l_' + str(i), state[i, 3]) tf.summary.scalar('pred/mu_' + str(i), state[i, 4]) tf.summary.scalar('pred/rx_' + str(i), state[i, 5]) tf.summary.scalar('pred/ry_' + str(i), state[i, 6]) tf.summary.scalar('pred/nx_' + str(i), state[i, 7]) tf.summary.scalar('pred/ny_' + str(i), state[i, 8]) tf.summary.scalar('pred/s_' + str(i), state[i, 9]) return total, \ [likelihood_const_diag, likelihood_const_tri, likelihood_het_diag, likelihood_het_tri, likelihood_const_diag_ana, likelihood_const_tri_ana, likelihood_het_diag_ana, likelihood_het_tri_ana, wd] + dists + \ dists_ana, \ ['likelihood_const_diag', 'likelihood_const_tri', 'likelihood_het_diag', 'likelihood_het_tri', 'likelihood_const_diag_ana', 'likelihood_const_tri_ana', 'likelihood_het_diag_ana', 'likelihood_het_tri_ana', 'wd'] + \ self.x_names + list(map(lambda x: x + '_ana', self.x_names)) def normal_loss(self, pred, label, name=""): # normalize both pred_norm = tf.norm(pred, axis=-1, keep_dims=True) label_norm = tf.norm(label, axis=-1, keep_dims=True) pred = tf.nn.l2_normalize(pred, -1) label = tf.nn.l2_normalize(label, -1) # calculate the angles between them if len(pred.get_shape().as_list()) == 3: prod = tf.matmul(tf.reshape(pred, [self.batch_size, -1, 1, 2]), tf.reshape(label, [self.batch_size, -1, 2, 1])) prod = tf.clip_by_value(prod, -0.999999999, 0.999999999) prod = tf.acos(tf.reshape(prod, [self.batch_size, -1, 1])) else: prod = tf.matmul(tf.reshape(pred, [self.batch_size, 1, 2]), tf.reshape(label, [self.batch_size, 2, 1])) prod = tf.clip_by_value(prod, -0.999999999, 0.999999999) prod = tf.acos(tf.reshape(prod, [self.batch_size, 1])) # mask out invalid values and non-contact cases greater = tf.logical_and(tf.greater(pred_norm, 1e-6), tf.greater(label_norm, 1e-6)) ang_mask = tf.logical_and(greater, tf.math.is_finite(prod)) ang = tf.where(ang_mask, tf.abs(prod), tf.zeros_like(prod)) # correct values over 180 deg. ang = tf.where(tf.greater(tf.abs(ang), np.pi), 2*np.pi - tf.abs(ang), tf.abs(ang))*180./np.pi return ang def contact_loss(self, pred, label, name=""): # calculate the error label = tf.reshape(label, [self.batch_size, -1, 1]) pred = tf.reshape(pred, [self.batch_size, -1, 1]) # limit pred to [0..1] pred = tf.clip_by_value(pred, 0, 1.) # slightly downweight the loss for in-contact-cases to reduce the # amount of false-positives loss = (1 - label) * -tf.math.log(tf.maximum(1 - pred, 1e-7)) + \ label * -tf.math.log(tf.maximum(pred, 1e-7)) ce = (1 - label) * -tf.math.log(tf.maximum(1 - pred, 1e-7)) + \ label * -tf.math.log(tf.maximum(pred, 1e-7)) return loss, ce ########################################################################### # keeping the state correct ########################################################################### def correct_state(self, state, diff=True): """ Correct the state to make sure theta is in the right interval Args: state: The current state Returns: state: The corrected state """ shape = state.get_shape().as_list() if len(shape) > 2: state = tf.reshape(state, [-1, self.dim_x]) sc = self.scale if diff: state = \ tf.concat([state[:, :2], self._adapt_orientation(state[:, 2:3], self.ob, sc), state[:, 3:]], axis=-1) else: state = \ tf.concat([state[:, :2], self._adapt_orientation(state[:, 2:3], self.ob, sc), self._adapt_fr(state[:, 3:4]), self._adapt_m(state[:, 4:5]), state[:, 5:7], self._adapt_n(state[:, 7:9], state[:, 5:7], state[:, 0:2]), self._adapt_s(state[:, 9:])], axis=-1) if len(shape) > 2: state = tf.reshape(state, shape[:-1] + [self.dim_x]) return state def correct_observation_diff(self, diff): """ Correct a difference in observations to account for angle intervals Args: state: The difference Returns: state: The corrected difference """ shape = diff.get_shape().as_list() if len(shape) > 2: diff = tf.reshape(diff, [-1, self.dim_z]) sc = 1 * self.scale diff = tf.concat([diff[:, :2], self._adapt_orientation(diff[:, 2:3], self.ob, sc), diff[:, 3:]], axis=-1) if len(shape) > 2: diff = tf.reshape(diff, shape[:-1] + [self.dim_z]) return diff def weighted_state_mean_with_angles(self, points, weights): ps = tf.concat([points[:, :, :2], tf.sin(points[:, :, 2:3]*self.scale*np.pi/180.0), tf.cos(points[:, :, 2:3]*self.scale*np.pi/180.0), points[:, :, 3:]], axis=-1) mult = tf.multiply(ps, weights) mean = tf.reduce_sum(mult, axis=1) ang1 = tf.math.atan2(mean[:, 2:3], mean[:, 3:4])*180.0/np.pi out = tf.concat([mean[:, :2], ang1/self.scale, mean[:, 4:]], axis=-1) return out def weighted_observation_mean_with_angles(self, points, weights, axis=1): ps = tf.concat([points[:, :, :2], tf.sin(points[:, :, 2:3]*self.scale*np.pi/180.0), tf.cos(points[:, :, 2:3]*self.scale*np.pi/180.0), points[:, :, 3:]], axis=-1) mult = tf.multiply(ps, weights) mean = tf.reduce_sum(mult, axis=axis) ang = tf.math.atan2(mean[:, 2:3], mean[:, 3:4])*180.0/np.pi out = tf.concat([mean[:, :2], ang/self.scale, mean[:, 4:]], axis=-1) return out def _adapt_fr(self, fr): # prevent l from getting too small or too big fr = tf.clip_by_value(fr, 0.1/self.scale, 5e3/self.scale) return fr def _adapt_m(self, m): # prevent m from getting negative or too large m = tf.clip_by_value(m, 0.1/self.scale, 90./self.scale) return m def _adapt_s(self, s): # keep the contact indicator between 0 and 1 s = tf.clip_by_value(s, 0., 1.) return s def _adapt_n(self, n, r, o): # normalize -- not good at all! # n_norm = tf.linalg.norm(n, axis=-1, keepdims=True) # n = tf.where(tf.greater(tf.squeeze(n_norm), 1e-6), n/n_norm, n) # # make sure the normal points towards the object # dir_center = o[:, :2] - r[:, :2] # dir_center_norm = tf.linalg.norm(dir_center, axis=-1, keepdims=True) # dir_center = tf.where(tf.greater(tf.squeeze(dir_center_norm), 0.), # dir_center/dir_center_norm, dir_center) # prod = tf.matmul(tf.reshape(dir_center, [bs, 1, 2]), # tf.reshape(n, [bs, 2, 1])) # ang = tf.acos(tf.reshape(prod, [bs])) # # correct values over 180 deg. # ang = tf.where(tf.greater(tf.abs(ang), np.pi), # 2*np.pi - tf.abs(ang), tf.abs(ang))*180./np.pi # # if the angle is greater than 90 degree, we need to flip the # # normal # n = tf.where(tf.greater(ang, np.pi/2.), n, -1 * n) return n def _adapt_orientation(self, rot, ob, sc): rot = rot * sc # in most cases, the maximum rotation range is 180deg, but some have # more or fewer symmetries # we first apply a modulo operation to make sure that no value is # larger than the maximum rotation range. Then we have to deal with the # periodicity of the interval rot_max = tf.ones_like(rot) * 180 ob = tf.squeeze(ob) ob = tf.strings.regex_replace(ob, "\000", "") ob = tf.strings.regex_replace(ob, "\00", "") if len(ob.get_shape()) < 1: rot_max = \ tf.case({tf.equal(ob, 'ellip1'): lambda: tf.zeros_like(rot), tf.equal(ob, 'rect1'): lambda: tf.ones_like(rot)*90., tf.equal(ob, 'tri1'): lambda: tf.ones_like(rot)*360., tf.equal(ob, 'tri2'): lambda: tf.ones_like(rot)*360., tf.equal(ob, 'tri3'): lambda: tf.ones_like(rot)*360., tf.equal(ob, 'hex'): lambda: tf.ones_like(rot)*60.}, default=lambda: rot_max, exclusive=True) rot_new = \ tf.cond(tf.equal(ob, 'ellip1'), lambda: tf.zeros_like(rot), lambda: tf.math.mod(tf.abs(rot), rot_max)*tf.sign(rot)) # now make sure that the measured rotation is the smallest # posslibel value in the interval - rot_max/2, rot_max/2 rot_add = tf.where(tf.greater(rot_new, rot_max/2.), rot_new - rot_max, rot_new) rot_add = tf.where(tf.less(rot_add, -rot_max/2.), rot_add + rot_max, rot_add) else: if ob.get_shape()[0].value < rot.get_shape()[0].value: mult = rot.get_shape()[0].value // ob.get_shape()[0].value ob = tf.reshape(ob, [-1, 1]) ob = tf.reshape(tf.tile(ob, [1, mult]), [-1]) rot_max = tf.where(tf.equal(ob, 'ellip1'), tf.zeros_like(rot), rot_max) rot_max = tf.where(tf.equal(ob, 'rect1'), tf.ones_like(rot)*90, rot_max) rot_max = tf.where(tf.equal(ob, 'tri1'), tf.ones_like(rot)*360, rot_max) rot_max = tf.where(tf.equal(ob, 'tri2'), tf.ones_like(rot)*360, rot_max) rot_max = tf.where(tf.equal(ob, 'tri3'), tf.ones_like(rot)*360, rot_max) rot_max = tf.where(tf.equal(ob, 'hex'), tf.ones_like(rot)*60, rot_max) rot_new = tf.where(tf.equal(ob, 'ellip1'), tf.zeros_like(rot), tf.math.mod(tf.abs(rot), rot_max)*tf.sign(rot)) # now make sure that the measured rotation is the smallest # posslibel value in the interval - rot_max/2, rot_max/2 rot_add = tf.where(tf.greater(rot_new, rot_max/2.), rot_new - rot_max, rot_new) rot_add = tf.where(tf.less(rot_add, -rot_max/2.), rot_add + rot_max, rot_add) rot_add /= sc return rot_add ########################################################################### # data loading ########################################################################### def tf_record_map(self, path, name, dataset, data_mode, train_mode, num_threads=5): """ Defines how to read in the data from a tf record """ keys = ['pos', 'object', 'contact_point', 'normal', 'contact', 'tip', 'friction', 'coord', 'image', 'material', 'pix_tip', 'pix_pos', 'segmentation'] record_meta = tfr.RecordMeta.load(path, name + '_' + data_mode + '_') if train_mode == 'filter': dataset = dataset.map( lambda x: self._parse_function(x, keys, record_meta, data_mode), num_parallel_calls=num_threads) elif train_mode == 'pretrain_obs': dataset = dataset.map( lambda x: self._parse_function_obs(x, keys, record_meta, data_mode), num_parallel_calls=num_threads) elif train_mode == 'pretrain_process': dataset = dataset.map( lambda x: self._parse_function_process(x, keys, record_meta, data_mode), num_parallel_calls=num_threads) else: self.log.error('unknown training mode: ' + train_mode) dataset = \ dataset.flat_map(lambda x, y: tf.data.Dataset.from_tensor_slices((x, y))) return dataset def _parse_example(self, example_proto, keys, record_meta): features = {} for key in keys: record_meta.add_tf_feature(key, features) parsed_features = tf.io.parse_single_example(example_proto, features) for key in keys: features[key] = record_meta.reshape_and_cast(key, parsed_features) return features def _parse_function_obs(self, example_proto, keys, record_meta, data_mode): features = self._parse_example(example_proto, keys, record_meta) pose = features['pos'] ori = self._adapt_orientation(pose[:, 3:]*(180.0/np.pi), features['object'], 1) pose = tf.concat([pose[:, 0:1]*1000/self.scale, pose[:, 1:2]*1000/self.scale, ori/self.scale], axis=1) n = tf.squeeze(features['normal'])/self.scale con = tf.cast(features['contact'], tf.float32) con = tf.reshape(con, [-1, 1])/self.scale tips = features['tip'] cp = features['contact_point'][:, :2]*1000 con_norm = tf.linalg.norm(cp, axis=-1) cp = tf.where(tf.less(con_norm, 1e-6), tips[:, :2]*1000, cp)/self.scale pix_tip = features['pix_tip'] im = features['image'] coord = features['coord'] mask = features['segmentation'] mask = tf.cast(tf.where(tf.greater(mask, 2.5), tf.ones_like(mask), tf.zeros_like(mask)), tf.float32) vis = tf.reduce_sum(mask, axis=[1, 2, 3]) seq_len = im.get_shape()[0].value im = tf.concat([im, coord], axis=-1) pix = features['pix_pos'][:, :2] ob = tf.reshape(features['object'], [1]) mat = tf.reshape(features['material'], [1]) # sanity check for reprojection betwen pixels and 3d # # load a plane image for reprojecting # path = os.path.dirname(os.path.dirname(os.path.dirname(__file__))) # path = os.path.join(path, 'resources', 'plane_image.npy') # print('loading plane image from: ', path) # plane_depth = tf.convert_to_tensor(np.load(path))[none, :, :, none] # pix_pos = features['pix_pos'][1:2] # pos_3d = features['pos'][1:2, :3] # projected1 = utils._to_3d(pix_pos, im[1:2, :, :, -1:]) # projected2 = utils._to_3d(pix_pos, plane_depth) # pix_pro = utils._to_2d(pos_3d) # cp = tf.print(cp, [pix_pos, pix_pro], # summarize=1000, message='pix, pix_pro\n') # cp = tf.print(cp, [pos_3d, projected1, projected2], # summarize=1000, message='3d, pro_d, pro_plane \n') # we use several steps of the sequence if data_mode == 'train': start_inds = np.random.randint(2, seq_len-2, 5) self.train_multiplier = len(start_inds) else: # use every eighth data point start_inds = np.arange(2, seq_len-2, 8) num = len(start_inds) # prepare the lists of output tensors viss = [] ims = [] start_ims = [] start_ts = [] tes = [] labels = [] good_zs = [] bad_zs = [] pixs = [] pixts = [] pixte = [] start_pixs = [] segs = [] start_segs = [] for si in start_inds: start_ts += [tips[1]] start_ims += [im[1]] start_pixs += [pix[1]] start_segs += [mask[1]] viss += [vis[si]] segs += [mask[si]] ims += [im[si]] pixs += [pix[si]] pixts += [pix_tip[si]] pixte += [pix_tip[si+1]] tes += [tips[si]] relative_rot = \ self._adapt_orientation(pose[si, 2:3] - pose[1, 2:3], ob, self.scale) label = tf.concat([pose[si, :2], relative_rot, cp[si], n[si], con[si]], axis=0) labels += [label] good_noise = np.random.normal(loc=0, scale=1e-1, size=(24, 8)) good_noise[0, :] = 0 bad_noise = np.random.normal(loc=10, scale=5, size=(24, 8)) bad_noise[12:] = np.random.normal(loc=-10, scale=5, size=(12, 8)) # downscale noise for normal and contact good_noise[:, 5:] /= 10 bad_noise[:, 5:] /= 10 # upscale for pos and or bad_noise[:, :2] *= 10 bad_noise[:, 2:3] *= 2 good_noise[:, :2] *= 10 good_noise[:, 2:3] *= 2 # adapt to scaling bad_noise /= self.scale good_noise /= self.scale bad_zs += [tf.tile(label[None, :], [24, 1]) + bad_noise] good_zs += [tf.tile(label[None, :], [24, 1]) + good_noise] ims = tf.stack(ims) start_ims = tf.stack(start_ims) start_ts = tf.stack(start_ts) tes = tf.stack(tes) pixts = tf.stack(pixts) pixte = tf.stack(pixte) ob = tf.tile(ob, [num]) mat = tf.tile(mat, [num]) values = [(ims, tes, pixts, pixte), tf.stack(labels), tf.stack(good_zs), tf.stack(bad_zs), (start_ims, start_ts), (ob, mat)] labels = [tf.stack(labels), tf.stack(pixs), tf.stack(start_pixs), tf.stack(segs), tf.stack(start_segs), tf.stack(viss)] return tuple(values), tuple(labels) def _parse_function_process(self, example_proto, keys, record_meta, data_mode): features = self._parse_example(example_proto, keys, record_meta) pose = features['pos'] ori = self._adapt_orientation(pose[:, 3:]*180./np.pi, features['object'], 1) pose = tf.concat([pose[:, 0:1]*1000, pose[:, 1:2]*1000, ori], axis=1)/self.scale n = tf.squeeze(features['normal'])/self.scale con = tf.cast(features['contact'], tf.float32) con = tf.reshape(con, [-1, 1])/self.scale tips = features['tip'] cp = features['contact_point'][:, :2] con_norm = tf.linalg.norm(cp, axis=-1) cp = tf.where(tf.less(con_norm, 1e-6), tips[:, :2], cp)*1000/self.scale friction = \ tf.square(tf.reshape(features['friction'], [1]) * 1000.) friction = friction/(100*self.scale) mu = tf.atan(tf.ones([1], dtype=tf.float32) * 0.25)*180./np.pi mu = mu/self.scale ob = tf.reshape(features['object'], [1]) mat = tf.reshape(features['material'], [1]) seq_len = features['pos'].get_shape()[0].value # calculate the actions - scale them by the same amount as the # position t_end = tips[1:, :2] t_start = tips[:-1, :2] u = (t_end - t_start) * 1000./self.scale # we use several steps of the sequence if data_mode == 'train': start_inds = np.random.randint(2, seq_len-1, 10) self.train_multiplier = len(start_inds) else: # use every eigth data point start_inds = np.arange(2, seq_len-1, 8) num = len(start_inds) # prepare the lists of output tensors start_state = [] us = [] labels = [] for si in start_inds: p_start = pose[si-1][:2] s_start = tf.concat([p_start, tf.zeros([1]), friction, mu, cp[si-1], n[si-1], con[si-1]], axis=0) start_state += [s_start] us += [u[si-1]] relative_rot = pose[si, 2:3] - pose[si-1, 2:3] relative_rot = \ self._adapt_orientation(relative_rot, ob, self.scale) label = tf.concat([pose[si, :2], relative_rot, friction, mu, cp[si], n[si], con[si]], axis=0) labels += [label] start_state = tf.stack(start_state) us = tf.stack(us) ob = tf.tile(ob, [num]) mat = tf.tile(mat, [num]) values = [start_state, us, (ob, mat)] labels = [labels, start_state] return tuple(values), tuple(labels) def _parse_function(self, example_proto, keys, record_meta, data_mode): features = self._parse_example(example_proto, keys, record_meta) pose = features['pos'] ori = self._adapt_orientation(pose[:, 3:]*180./np.pi, features['object'], 1) pose = tf.concat([pose[:, 0:1]*1000, pose[:, 1:2]*1000, ori], axis=1)/self.scale n = tf.squeeze(features['normal'])/self.scale con = tf.cast(features['contact'], tf.float32) con = tf.reshape(con, [-1, 1])/self.scale tips = features['tip'] cp = features['contact_point'][:, :2] con_norm = tf.linalg.norm(cp, axis=-1) cp = tf.where(tf.less(con_norm, 1e-6), tips[:, :2], cp)*1000/self.scale friction = \ tf.square(tf.reshape(features['friction'], [1]) * 1000.) friction = friction/(100*self.scale) mu = tf.atan(tf.ones([1], dtype=tf.float32) * 0.25)*180./np.pi mu = mu/self.scale # calculate the actions - scale them by the same amount as the # position t_end = tips[1:, :2] t_start = tips[:-1, :2] u = (t_end - t_start) * 1000./self.scale im = features['image'] coord = features['coord'] mask = features['segmentation'] mask = tf.cast(tf.where(tf.greater(mask, 2.5), tf.ones_like(mask), tf.zeros_like(mask)), tf.float32) vis = tf.reduce_sum(mask, axis=[1, 2, 3]) im = tf.concat([im, coord], axis=-1) pix_tip = features['pix_tip'] ob = tf.reshape(features['object'], [1]) mat = tf.reshape(features['material'], [1]) seq_len = features['pos'].get_shape()[0].value # we use several steps of the sequence if data_mode == 'train': num = 1 start_inds = np.random.randint(1, seq_len-self.sl-2, num) elif data_mode == 'val': num = 1 # we use several sub-sequences of the validation sequence start_inds = np.arange(1, seq_len-self.sl-2, (self.sl+1)//2) start_inds = start_inds[:num] else: if self.sl > seq_len//2: start_inds = [1] else: start_inds = np.arange(1, seq_len-self.sl-2, 20) num = len(start_inds) self.test_multiplier = num # prepare the lists of output tensors ims = [] start_ims = [] start_ts = [] start_state = [] us = [] tes = [] pixts = [] pixte = [] labels = [] mv_trs = [] mv_rots = [] viss = [] for si in start_inds: p_start = pose[si][:2] s_start = tf.concat([p_start, tf.zeros([1]), friction, mu, cp[si], n[si], con[si]], axis=0) start_state += [s_start] start_ts += [tips[si]] start_ims += [im[si]] start = si + 1 end = si + 1 + self.sl ims += [im[start:end]] us += [u[start:end]] tes += [tips[start:end]] pixts += [pix_tip[start:end]] pixte += [pix_tip[start+1:end+1]] relative_rot = pose[start:end, 2:3] - \ tf.tile(pose[si:si+1, 2:3], [self.sl, 1]) relative_rot = \ self._adapt_orientation(relative_rot, ob, self.scale) label = tf.concat([pose[start:end, :2], relative_rot, tf.tile(friction[None, :], [self.sl, 1]), tf.tile(mu[None, :], [self.sl, 1]), cp[start:end], n[start:end], con[start:end]], axis=-1) labels += [label] viss += [vis[start:end]] mv = pose[start:end] - pose[si:end-1] mv_trs += [tf.reduce_sum(tf.norm(mv[:, :2], axis=-1))] mvr = self._adapt_orientation(mv[:, 2], ob, self.scale) mv_rots += [tf.reduce_sum(tf.abs(mvr))] ims = tf.stack(ims) start_ims = tf.stack(start_ims) start_ts = tf.stack(start_ts) start_state = tf.stack(start_state) us = tf.stack(us) tes = tf.stack(tes) pixts = tf.stack(pixts) pixte = tf.stack(pixte) mv_trs = tf.stack(mv_trs) mv_rots = tf.stack(mv_rots) viss = tf.stack(viss) ob = tf.tile(ob, [num]) mat = tf.tile(mat, [num]) values = [(ims, tes, pixts, pixte), us, (start_ims, start_ts), start_state, (ob, mat)] labels = [labels, mv_trs, mv_rots, viss] return tuple(values), tuple(labels) ###################################### # Evaluation ###################################### def save_log(self, log_dict, out_dir, step, num, mode): if mode == 'filter': keys = ['noise_num', 'likelihood', 'likelihood_std', 'dist_tr', 'dist_tr_std', 'dist_rot', 'dist_rot_std', 'corr_r_vis', 'corr_r_cont', 'corr_q_cont', 'm_tr', 'm_tr_std', 'deg_rot', 'deg_rot_std', 'dist', 'dist_std', 'dist_obs', 'dist_obs_std'] keys += self.x_names + list(map(lambda x: x + '_std', self.x_names)) keys_corr = ['noise_num'] keys_corr += list(map(lambda x: 'cq_cont_' + x, self.x_names)) keys_corr += list(map(lambda x: 'cr_cont_' + x, self.z_names)) keys_corr += list(map(lambda x: 'cr_vis_' + x, self.z_names)) log_file = open(os.path.join(out_dir, str(step) + '_res.csv'), 'a') log = csv.DictWriter(log_file, keys) if num == 0: log.writeheader() log_file_corr = open(os.path.join(out_dir, str(step) + '_corr.csv'), 'a') log_corr = csv.DictWriter(log_file_corr, keys_corr) if num == 0: log_corr.writeheader() row = {} for k, v in log_dict.items(): if k in keys and type(v[0]) not in [str, bool, np.str, np.bool]: row[k] = np.mean(v) row[k + '_std'] = np.std(v) # corr_r cannot be properly evaluated per-example when batch size # is 1, so we have to evaluate it here before outputting it row_corr = {} r_pred = log_dict['r_pred'].reshape(-1, self.dim_z).T vis = log_dict['vis'].reshape(-1, 1).T cont = log_dict['cont'].reshape(-1, 1).T corr_vis = [] corr_cont = [] for i, n in enumerate(self.z_names): r_c = np.corrcoef(r_pred[i:i+1], cont)[0, 1] r_v = np.corrcoef(r_pred[i:i+1], vis)[0, 1] corr_vis += [r_v] corr_cont += [r_c] row_corr['cr_cont_' + n] = r_c row_corr['cr_vis_' + n] = r_v row['corr_r_vis'] = np.mean(corr_vis) row['corr_r_cont'] = np.mean(corr_cont) q_pred = log_dict['q_pred'].reshape(-1, self.dim_x).T corr_cont = [] for i, n in enumerate(self.x_names): q_c = np.corrcoef(q_pred[i:i+1], cont)[0, 1] corr_cont += [q_c] row_corr['cq_cont_' + n] = q_c row['corr_q_cont'] = np.mean(corr_cont) row['noise_num'] = num log.writerow(row) log_file.close() row_corr['noise_num'] = num log_corr.writerow(row_corr) log_file_corr.close() else: row = {} for k, v in log_dict.items(): if type(v[0]) not in [str, bool, np.str, np.bool]: row[k] = np.mean(v) row[k + '_std'] = np.std(v) if mode == 'pretrain_obs': # corr_r cannot be properly evaluated per-example when batch # size is 1, so we have to evaluate it here r_het_diag = log_dict['r_het_diag'].reshape(-1, self.dim_z).T r_het_tri = log_dict['r_het_tri'].reshape(-1, self.dim_z).T vis = log_dict['vis'].reshape(-1, 1).T corr_diags = [] corr_fulls = [] for i in range(self.dim_z): corr_diags += [np.corrcoef(r_het_diag[i:i+1], vis)[0, 1]] corr_fulls += [np.corrcoef(r_het_tri[i:i+1], vis)[0, 1]] row['corr_r_het_diag'] = np.mean(corr_diags) row['corr_r_het_tri'] = np.mean(corr_fulls) for i, n in enumerate(self.z_names): row['corr_' + n + '_diag'] = corr_diags[i] row['corr_' + n + '_full'] = corr_fulls[i] log_file = open(os.path.join(out_dir, str(step) + '_res.csv'), 'w') log = csv.DictWriter(log_file, sorted(row.keys())) log.writeheader() log.writerow(row) log_file.close() return def _eigsorted(self, cov): vals, vecs = np.linalg.eigh(cov) order = vals.argsort()[::-1] return vals[order], vecs[:, order] def plot_tracking(self, seq_pred, cov_pred, z, seq, q_pred, r_pred, vis, out_dir, num, diffs, likes, actions, ob, init, full_out=False): pos_pred = np.squeeze(seq_pred[:, :2]) or_pred = np.squeeze(seq_pred[:, 2]) l_pred = np.squeeze(seq_pred[:, 3]) mu_pred = np.squeeze(seq_pred[:, 4]) cp_pred = np.squeeze(seq_pred[:, 5:7]) n_pred = np.squeeze(seq_pred[:, 7:9]) s_pred = np.squeeze(seq_pred[:, 9]) vis = vis / np.max(vis) if z is not None: pos_obs = np.squeeze(z[:, :2]) or_obs = np.squeeze(z[:, 2]) r_obs = np.squeeze(z[:, 3:5]) n_obs = np.squeeze(z[:, 5:7]) s_obs = np.squeeze(z[:, 7]) if cov_pred is not None: cov_pred = cov_pred.reshape(self.sl, self.dim_x, self.dim_x) cx = np.sqrt(np.squeeze(cov_pred[:, 0, 0])) cy = np.sqrt(np.squeeze(cov_pred[:, 1, 1])) ct = np.sqrt(np.squeeze(cov_pred[:, 2, 2])) cl = np.sqrt(np.squeeze(cov_pred[:, 3, 3])) cmu = np.sqrt(np.squeeze(cov_pred[:, 4, 4])) crx = np.sqrt(np.squeeze(cov_pred[:, 5, 5])) cry = np.sqrt(np.squeeze(cov_pred[:, 6, 6])) cnx = np.sqrt(np.squeeze(cov_pred[:, 7, 7])) cny = np.sqrt(np.squeeze(cov_pred[:, 8, 8])) cs = np.sqrt(np.squeeze(cov_pred[:, 9, 9])) q_pred = q_pred.reshape(self.sl, self.dim_x, self.dim_x) r_pred = r_pred.reshape(self.sl, self.dim_z, self.dim_z) qx = np.sqrt(np.squeeze(q_pred[:, 0, 0])) qy = np.sqrt(np.squeeze(q_pred[:, 1, 1])) qt = np.sqrt(np.squeeze(q_pred[:, 2, 2])) ql = np.sqrt(np.squeeze(q_pred[:, 3, 3])) qmu = np.sqrt(np.squeeze(q_pred[:, 4, 4])) qrx = np.sqrt(np.squeeze(q_pred[:, 5, 5])) qry = np.sqrt(np.squeeze(q_pred[:, 6, 6])) qnx = np.sqrt(np.squeeze(q_pred[:, 7, 7])) qny = np.sqrt(np.squeeze(q_pred[:, 8, 8])) qs = np.sqrt(np.squeeze(q_pred[:, 9, 9])) rx = np.sqrt(np.squeeze(r_pred[:, 0, 0])) ry = np.sqrt(np.squeeze(r_pred[:, 1, 1])) rt = np.sqrt(np.squeeze(r_pred[:, 2, 2])) rrx = np.sqrt(np.squeeze(r_pred[:, 3, 3])) rry = np.sqrt(np.squeeze(r_pred[:, 4, 4])) rnx = np.sqrt(np.squeeze(r_pred[:, 5, 5])) rny = np.sqrt(np.squeeze(r_pred[:, 6, 6])) rs = np.sqrt(np.squeeze(r_pred[:, 7, 7])) fig, ax = plt.subplots(2, 3, figsize=[20, 15]) ts = np.arange(pos_pred.shape[0]) ax[0, 0].plot(ts, pos_pred[:, 0], '-r', label='x predicted') ax[0, 0].plot(ts, seq[:, 0], '--g', label='x true') ax[0, 0].plot(ts, pos_obs[:, 0], 'kx', label='x observed') ax[0, 0].plot(ts, pos_pred[:, 1], '-m', label='y predicted') ax[0, 0].plot(ts, seq[:, 1], '--c', label='y true') ax[0, 0].plot(ts, pos_obs[:, 1], 'ko', label='y observed') ax[0, 0].set_title('position') ax[0, 0].legend() ax[0, 1].plot(ts, or_pred, '-r', label='predicted') ax[0, 1].plot(ts, seq[:, 2], '--g', label='true') ax[0, 1].plot(ts, or_obs, 'kx', label='observed') ax[0, 1].set_title('heading') ax[0, 1].legend() ax[0, 2].plot(ts, cp_pred[:, 0], '-r', label='x predicted') ax[0, 2].plot(ts, seq[:, 5], '--g', label='x true') ax[0, 2].plot(ts, r_obs[:, 0], 'kx', label='x observed') ax[0, 2].plot(ts, cp_pred[:, 1], '-m', label='y predicted') ax[0, 2].plot(ts, seq[:, 6], '--c', label='y true') ax[0, 2].plot(ts, r_obs[:, 1], 'ko', label='y observed') ax[0, 2].set_title('contact point') ax[0, 2].legend() ax[1, 2].plot(ts, n_pred[:, 0], '-r', label='x predicted') ax[1, 2].plot(ts, seq[:, 7], '--g', label='x true') ax[1, 2].plot(ts, n_obs[:, 0], 'kx', label='x observed') ax[1, 2].plot(ts, n_pred[:, 1], '-m', label='y predicted') ax[1, 2].plot(ts, seq[:, 8], '--c', label='y true') ax[1, 2].plot(ts, n_obs[:, 1], 'ko', label='y observed') ax[1, 2].set_title('normal') ax[1, 2].legend() ax[1, 0].plot(ts, mu_pred, '-r', label='mu predicted') ax[1, 0].plot(ts, seq[:, 4], '--g', label='mu true') ax[1, 0].plot(ts, l_pred, '-m', label='l predicted') ax[1, 0].plot(ts, seq[:, 3], '--c', label='l true') ax[1, 0].set_title('friction') ax[1, 0].legend() ax[1, 1].plot(ts, s_pred, '-r', label='predicted') ax[1, 1].plot(ts, seq[:, 9], '--g', label='true') ax[1, 1].plot(ts, s_obs, 'kx', label='observed') ax[1, 1].plot(ts, vis, '-b', label='visibility') ax[1, 1].set_title('contact') ax[1, 1].legend() if cov_pred is not None: ax[0, 0].fill_between(ts, pos_pred[:, 0] - cx, pos_pred[:, 0] + cx, color="lightblue") ax[0, 0].fill_between(ts, pos_pred[:, 1] - cy, pos_pred[:, 1] + cy, color="lightblue") ax[0, 1].fill_between(ts, (or_pred - ct), (or_pred + ct), color="lightblue") ax[0, 2].fill_between(ts, cp_pred[:, 0] - crx, cp_pred[:, 0] + crx, color="lightblue") ax[0, 2].fill_between(ts, cp_pred[:, 1] - cry, cp_pred[:, 1] + cry, color="lightblue") ax[1, 0].fill_between(ts, (l_pred - cl), (l_pred + cl), color="lightblue") ax[1, 0].fill_between(ts, mu_pred - cmu, mu_pred + cmu, color="lightblue") ax[1, 1].fill_between(ts, (s_pred - cs), (s_pred + cs), color="lightblue") ax[1, 2].fill_between(ts, n_pred[:, 0] - cnx, n_pred[:, 0] + cnx, color="lightblue") ax[1, 2].fill_between(ts, n_pred[:, 1] - cny, n_pred[:, 1] + cny, color="lightblue") fig.subplots_adjust(left=0.1, bottom=0.1, right=0.95, top=0.85, wspace=0.1, hspace=0.3) fig.savefig(os.path.join(out_dir, str(num) + "_tracking"), bbox_inches="tight") # plot the noise estimates fig, ax = plt.subplots(2, 3, figsize=[20, 15]) ts = np.arange(pos_pred.shape[0]) sc = np.max([np.max(qx), np.max(qy), np.max(rx), np.max(ry)]) sc = max(1., sc) ax[0, 0].plot(ts, qx, '-r', label='qx') ax[0, 0].plot(ts, rx, '--g', label='rx') ax[0, 0].plot(ts, qy, '-m', label='qy') ax[0, 0].plot(ts, ry, '--c', label='ry') ax[0, 0].plot(ts, vis*sc, '-b', label='visibility') ax[0, 0].plot(ts, seq[:, 9]*sc, '-k', label='contact') ax[0, 0].set_title('position') ax[0, 0].legend() sc = np.max([np.max(qt), np.max(rt)]) sc = max(1., sc) ax[0, 1].plot(ts, qt, '-r', label='q') ax[0, 1].plot(ts, rt, '--g', label='r') ax[0, 1].plot(ts, vis*sc, '-b', label='visibility') ax[0, 1].plot(ts, seq[:, 9]*sc, '-k', label='contact') ax[0, 1].set_title('heading') ax[0, 1].legend() sc = np.max([np.max(qrx), np.max(qry), np.max(rrx), np.max(rry)]) sc = max(1., sc) ax[0, 2].plot(ts, qrx, '-r', label='qx') ax[0, 2].plot(ts, rrx, '--g', label='rx') ax[0, 2].plot(ts, qry, '-m', label='qy') ax[0, 2].plot(ts, rry, '--c', label='ry') ax[0, 2].plot(ts, vis*sc, '-b', label='visibility') ax[0, 2].plot(ts, seq[:, 9]*sc, '-k', label='contact') ax[0, 2].set_title('contact point') ax[0, 2].legend() sc = np.max([np.max(qnx), np.max(qny), np.max(rnx), np.max(rny)]) sc = max(1., sc) ax[1, 2].plot(ts, qnx, '-r', label='qx') ax[1, 2].plot(ts, rnx, '--g', label='rx') ax[1, 2].plot(ts, qny, '-m', label='qy') ax[1, 2].plot(ts, rny, '--c', label='ry') ax[1, 2].plot(ts, vis*sc, '-b', label='visibility') ax[1, 2].plot(ts, seq[:, 9]*sc, '-k', label='contact') ax[1, 2].set_title('normal') ax[1, 2].legend() sc = np.max([np.max(qmu), np.max(ql)]) sc = max(1., sc) ax[1, 0].plot(ts, qmu, '-r', label='qmu') ax[1, 0].plot(ts, ql, '-m', label='ql') ax[1, 0].plot(ts, seq[:, 9]*sc, '-k', label='contact') ax[1, 0].set_title('friction') ax[1, 0].legend() sc = np.max([np.max(qs), np.max(rs)]) sc = max(1., sc) ax[1, 1].plot(ts, qs, '-r', label='q') ax[1, 1].plot(ts, rs, '--g', label='r') ax[1, 1].plot(ts, vis*sc, '-b', label='visibility') ax[1, 1].plot(ts, seq[:, 9]*sc, '-k', label='contact') ax[1, 1].set_title('contact') ax[1, 1].legend() fig.subplots_adjust(left=0.1, bottom=0.1, right=0.95, top=0.85, wspace=0.1, hspace=0.3) fig.savefig(os.path.join(out_dir, str(num) + "_noise"), bbox_inches="tight") log_file = open(os.path.join(out_dir, str(num) + '_seq.csv'), 'w') keys = ['t', 'x', 'y', 'or', 'l', 'mu', 'rx', 'ry', 'nx', 'ny', 's', 'x_p', 'y_p', 'or_p', 'l_p', 'mu_p', 'rx_p', 'ry_p', 'nx_p', 'ny_p', 's_p'] if cov_pred is not None and z is not None: keys += ['x_c', 'y_c', 'or_c', 'l_c', 'mu_c', 'rx_c', 'ry_c', 'nx_c', 'ny_c', 's_c', 'x_ob', 'y_ob', 'or_ob', 'rx_ob', 'ry_ob', 'nx_ob', 'ny_ob', 's_ob'] log = csv.DictWriter(log_file, keys) log.writeheader() for t in ts: row = {'x': seq[t, 0], 'y': seq[t, 1], 'or': seq[t, 2], 'l': seq[t, 3], 'mu': seq[t, 4], 'rx': seq[t, 5], 'ry': seq[t, 6], 'nx': seq[t, 7], 'ny': seq[t, 8], 's': seq[t, 9], 'x_p': seq_pred[t, 0], 'y_p': seq_pred[t, 1], 'or_p': seq_pred[t, 2], 'l_p': seq_pred[t, 3], 'mu_p': seq_pred[t, 4], 'rx_p': seq_pred[t, 5], 'ry_p': seq_pred[t, 6], 'nx_p': seq_pred[t, 7], 'ny_p': seq_pred[t, 8], 's_p': seq_pred[t, 9], 'x_c': cx[t], 'y_c': cy[t], 'or_c': ct[t], 'l_c': cl[t], 'mu_c': cmu[t], 'rx_c': crx[t], 'ry_c': cry[t], 'nx_c': cnx[t], 'ny_c': cny[t], 's_c': cs[t], 'x_ob': pos_obs[t, 0], 'y_ob': pos_obs[t, 1], 'or_ob': or_obs[t], 'rx_ob': r_obs[t, 0], 'ry_ob': r_obs[t, 1], 'nx_ob': n_obs[t, 0], 'ny_ob': n_obs[t, 1], 's_ob': s_obs[t]} log.writerow(row) else: log = csv.DictWriter(log_file, keys) log.writeheader() for t in ts: row = {'x': seq[t, 0], 'y': seq[t, 1], 'or': seq[t, 2], 'l': seq[t, 3], 'mu': seq[t, 4], 'rx': seq[t, 5], 'ry': seq[t, 6], 'nx': seq[t, 7], 'ny': seq[t, 8], 's': seq[t, 9], 'x_p': seq_pred[t, 0], 'y_p': seq_pred[t, 1], 'or_p': seq_pred[t, 2], 'l_p': seq_pred[t, 3], 'mu_p': seq_pred[t, 4], 'rx_p': seq_pred[t, 5], 'ry_p': seq_pred[t, 6], 'nx_p': seq_pred[t, 7], 'ny_p': seq_pred[t, 8], 's_p': seq_pred[t, 9]} log.writerow(row) log_file.close() # save debug output if full_out: name = os.path.join(out_dir, str(num)) np.save(name + '_init', init) np.save(name + '_true', seq) np.save(name + '_pred', seq_pred) np.save(name + '_obs', z) np.save(name + '_c', cov_pred) np.save(name + '_q', q_pred) np.save(name + '_r', r_pred) np.save(name + '_vis', vis) np.save(name + '_u', actions) np.save(name + '_ob', ob) def plot_trajectory(self, particles, weights, seq, cov_pred, seq_pred, ob, out_dir, num): if particles is not None: particles = particles.reshape(self.sl, -1, self.dim_x) weights = weights.reshape(self.sl, -1) if cov_pred is not None: cov_pred = cov_pred.reshape(self.sl, self.dim_x, self.dim_x) # get the object shape (deal with some encoding problems) ob = np.asscalar(ob).decode("utf-8").replace('\0', '') if 'rect' in ob: # c-----d # | | # a-----b # get the positions of the corner points if '1' in ob: points = [[-0.045, -0.045], [0.045, -0.045], [0.045, 0.045], [-0.045, 0.045]] if '2' in ob: points = [[-0.044955, -0.05629], [0.044955, -0.05629], [0.044955, 0.05629], [-0.044955, 0.05629]] if '3' in ob: points = [[-0.067505, -0.04497], [0.067505, -0.04497], [0.067505, 0.04497], [-0.067505, 0.04497]] elif 'tri' in ob: # b ----- a # | # | # c # get the positions of the points if '1' in ob: points = [[0.045, 0.045], [-0.0809, 0.045], [0.045, -0.08087]] if '2' in ob: points = [[0.045, 0.045], [-0.106, 0.045], [0.045, -0.08087]] if '3' in ob: points = [[0.045, 0.045], [-0.1315, 0.045], [0.045, -0.08061]] elif 'ellip' in ob: if '1' in ob: a = 0.0525 b = 0.0525 elif '2' in ob: a = 0.0525 b = 0.065445 elif '3' in ob: a = 0.0525 b = 0.0785 elif 'hex' in ob: points = [] for i in range(6): theta = (np.pi/3)*i points += [[0.06050*np.cos(theta), 0.06050*np.sin(theta)]] elif 'butter' in ob: points = self.butter_points[:] pos_pred = np.squeeze(seq_pred[:, :2]) minx = min(np.min(seq[:, 0]), np.min(pos_pred[:, 0])) miny = min(np.min(seq[:, 1]), np.min(pos_pred[:, 1])) maxx = max(np.max(seq[:, 0]), np.max(pos_pred[:, 0])) maxy = max(np.max(seq[:, 1]), np.max(pos_pred[:, 1])) fig, ax = plt.subplots(figsize=[15, 15]) ax.set_aspect('equal') fig2, ax2 = plt.subplots(figsize=[17, 17]) ax2.set_aspect('equal') for i in range(self.sl - 1): if cov_pred is not None: # plot the confidence ellipse vals, vecs = self._eigsorted(cov_pred[i, :2, :2]) theta = np.degrees(np.arctan2(*vecs[:, 0][::-1])) width, height = 4 * np.sqrt(vals) ellip = Ellipse(xy=pos_pred[i], width=width, height=height, angle=theta, alpha=0.1) ax.add_artist(ellip) if particles is not None: # sort the particles by weight p = weights[i].argsort() par = particles[i][p] wei = weights[i][p] # plot the 20 best weighted particles with colour depending on # weight if i == 0: ax.scatter(par[:20, 0], par[:20, 1], c=wei[:20], cmap='jet', marker='x', alpha=0.5, label='particles') else: ax.scatter(par[:20, 0], par[:20, 1], c=wei[:20], cmap='jet', marker='x', alpha=0.5) # plot a marker for the starting point of the sequence if i == 0: ax.plot(seq[i, 0], seq[i, 1], 'cx', markersize=15., label='start') # plot the mean trajectory ax.plot([pos_pred[i, 0], pos_pred[i+1, 0]], [pos_pred[i, 1], pos_pred[i+1, 1]], '-r', label='predicted') # plot the real trajectory ax.plot([seq[i, 0], seq[i+1, 0]], [seq[i, 1], seq[i+1, 1]], '-g', label='true') ax2.plot(seq[i, 0], seq[i, 1], 'cx', markersize=15., label='start') # plot the mean trajectory ax2.plot([pos_pred[i, 0], pos_pred[i+1, 0]], [pos_pred[i, 1], pos_pred[i+1, 1]], '-r', label='predicted') # plot the real trajectory ax2.plot([seq[i, 0], seq[i+1, 0]], [seq[i, 1], seq[i+1, 1]], '-g', label='true') else: # plot the mean trajectory ax.plot([pos_pred[i, 0], pos_pred[i+1, 0]], [pos_pred[i, 1], pos_pred[i+1, 1]], '-r') # plot the real trajectory ax.plot([seq[i, 0], seq[i+1, 0]], [seq[i, 1], seq[i+1, 1]], '-g') # plot the mean trajectory ax2.plot([pos_pred[i, 0], pos_pred[i+1, 0]], [pos_pred[i, 1], pos_pred[i+1, 1]], '-r') # plot the real trajectory ax2.plot([seq[i, 0], seq[i+1, 0]], [seq[i, 1], seq[i+1, 1]], '-g') # plot the mean trajectory ax.plot(pos_pred[i, 0], pos_pred[i, 1], 'ro') ax.plot(seq[i, 0], seq[i, 1], 'go') if i % 5 == 0: if 'ellip' in ob: ax2.add_artist(Ellipse((pos_pred[i, 0], pos_pred[i, 1]), 2*a*1000, 2*b*1000, seq_pred[i, 2], alpha=0.1, facecolor='r', edgecolor='r')) ax2.add_artist(Ellipse((seq[i, 0], seq[i, 1]), 2*a*1000, 2*b*1000, seq[i, 2], alpha=0.1, facecolor='g', edgecolor='g')) else: r_p = np.zeros((2, 2)) r_pred = seq_pred[i, 2]*np.pi/180. r_p[0, 0] = np.cos(r_pred) r_p[0, 1] = -np.sin(r_pred) r_p[1, 0] = np.sin(r_pred) r_p[1, 1] = np.cos(r_pred) r_l = np.zeros((2, 2)) r_la = seq[i, 2]*np.pi/180. r_l[0, 0] = np.cos(r_la) r_l[0, 1] = -np.sin(r_la) r_l[1, 0] = np.sin(r_la) r_l[1, 1] = np.cos(r_la) points_p = [] points_l = [] for p in points: # rotate and translate the points according to the # object's pose pt = np.array(p).reshape(2, 1) * 1000 points_p += [np.dot(r_p, pt).reshape(2)+pos_pred[i]] points_l += [np.dot(r_l, pt).reshape(2)+seq[i, :2]] ax2.add_artist(Polygon(points_p, alpha=0.1, facecolor='r', edgecolor='r')) ax2.add_artist(Polygon(points_l, alpha=0.1, facecolor='g', edgecolor='g')) ax.legend() # plot the last step if cov_pred is not None: vals, vecs = self._eigsorted(cov_pred[-1, :2, :2]) theta = np.degrees(np.arctan2(*vecs[:, 0][::-1])) width, height = 2 * 2 * np.sqrt(vals) ellip = Ellipse(xy=pos_pred[-1], width=width, height=height, angle=theta, alpha=0.1) ax.add_artist(ellip) # plot the mean trajectory ax.plot(pos_pred[-1, 0], pos_pred[-1, 1], 'ro') # plot the real trajectory ax.plot(seq[-1, 0], seq[-1, 1], 'go') if particles is not None: p = weights[-1].argsort() par = particles[-1][p] wei = weights[-1][p] # plot the particles with colour depending on weight ax.scatter(par[:20, 0], par[:20, 1], c=wei[:20], cmap='jet', marker='x', alpha=0.5) fig.savefig(os.path.join(out_dir, str(num) + "_tracking_2d"), bbox_inches="tight") ax2.set_xlim([minx-100, maxx+100]) ax2.set_ylim([miny-100, maxy+100]) fig2.savefig(os.path.join(out_dir, str(num) + "_tracking_vis"), bbox_inches="tight") class SegmentationLayer(BaseLayer): def __init__(self, batch_size, normalize, summary, trainable): super(SegmentationLayer, self).__init__() self.summary = summary self.batch_size = batch_size self.normalize = normalize # load a plane image for reprojecting path = os.path.dirname(os.path.dirname(os.path.dirname(__file__))) path = os.path.join(path, 'resources', 'plane_image.npy') self.plane_depth = \ tf.convert_to_tensor(np.load(path))[None, :, :, None] self.plane_depth = tf.tile(self.plane_depth, [self.batch_size, 1, 1, 1]) # segmenting the image self.im_c1 = self._conv_layer('segment/conv1', 7, 8, trainable=trainable) self.im_c2 = self._conv_layer('segment/conv2', 5, 16, trainable=trainable) self.im_c3 = self._conv_layer('segment/conv3', 3, 32, trainable=trainable) self.im_d1 = self._deconv_layer('segment/deconv1', 13, 16, trainable=trainable) self.im_d2 = self._deconv_layer('segment/deconv2', 3, 8, trainable=trainable) self.im_d3 = self._deconv_layer('segment/deconv3', 3, 1, activation=None, trainable=trainable) if self.normalize == 'layer': self.im_n1 =\ tf.keras.layers.LayerNormalization(name='segment/norm1', trainable=trainable) self.im_n2 =\ tf.keras.layers.LayerNormalization(name='segment/norm2', trainable=trainable) self.im_n3 =\ tf.keras.layers.LayerNormalization(name='segment/norm3', trainable=trainable) self.im_n4 = \ tf.keras.layers.LayerNormalization(name='segment/norm4', trainable=trainable) self.im_n5 = \ tf.keras.layers.LayerNormalization(name='segment/norm5', trainable=trainable) elif self.normalize == 'batch': self.im_n1 =\ tf.keras.layers.BatchNormalization(name='segment/norm1', trainable=trainable) self.im_n2 =\ tf.keras.layers.BatchNormalization(name='segment/norm2', trainable=trainable) self.im_n3 =\ tf.keras.layers.BatchNormalization(name='segment/norm3', trainable=trainable) self.im_n4 = \ tf.keras.layers.BatchNormalization(name='segment/norm4', trainable=trainable) self.im_n5 = \ tf.keras.layers.BatchNormalization(name='segment/norm5', trainable=trainable) self.updateable = [self.im_n1, self.im_n2, self.im_n3, self.im_n4, self.im_n5] def call(self, inputs, training): # unpack the inputs images = inputs[:, :, :, 0:3] coords = inputs[:, :, :, 3:] height = images.get_shape()[1].value width = images.get_shape()[2].value # disable the topmost name scope so that the summaries don't end up all # under one tab in tensorbaord with tf.name_scope(""): # segment the image with tf.name_scope('segment'): conv1 = self.im_c1(inputs) conv1 = tf.nn.max_pool2d(conv1, 3, 2, padding='SAME') if self.normalize == 'layer': conv1 = self.im_n1(conv1) elif self.normalize == 'batch': conv1 = self.im_n1(conv1, training) conv2 = self.im_c2(conv1) conv2 = tf.nn.max_pool2d(conv2, 3, 2, padding='SAME') if self.normalize == 'layer': conv2 = self.im_n2(conv2) elif self.normalize == 'batch': conv2 = self.im_n2(conv2, training) conv3 = self.im_c3(conv2) conv3 = tf.nn.max_pool2d(conv3, 5, 4, padding='SAME') if self.normalize == 'layer': conv3 = self.im_n3(conv3) elif self.normalize == 'batch': conv3 = self.im_n3(conv3, training) deconv1 = self.im_d1(conv3) deconv1 = tf.image.resize(deconv1, conv2.get_shape()[1:3]) deconv1 = deconv1 + conv2 if self.normalize == 'layer': deconv1 = self.im_n4(deconv1) elif self.normalize == 'batch': deconv1 = self.im_n4(deconv1, training) deconv2 = self.im_d2(deconv1) deconv2 = tf.image.resize(deconv2, [height // 2, width // 2]) if self.normalize == 'layer': deconv2 = self.im_n5(deconv2) elif self.normalize == 'batch': deconv2 = self.im_n5(deconv2, training) mask_out = self.im_d3(deconv2) mask = tf.image.resize(mask_out, [height, width]) if self.summary: if self.normalize == 'batch': tf.summary.histogram('n1_mean', self.im_n1.moving_mean) tf.summary.histogram('n1_var', self.im_n1.moving_variance) tf.summary.image('rgb', images[:, :, :, :3]) tf.summary.image('depth', coords[:, :, :, -1:]) tf.summary.image('conv1_im', conv1[0:1, :, :, 0:1]) tf.summary.histogram('conv1_out', conv1) tf.summary.image('conv2_im', conv2[0:1, :, :, 0:1]) tf.summary.histogram('conv2_out', conv2) tf.summary.image('conv3_im', conv3[0:1, :, :, 0:1]) tf.summary.histogram('conv3_out', conv3) tf.summary.image('deconv1_im', deconv1[0:1, :, :, 0:1]) tf.summary.histogram('deconv1_out', deconv1) tf.summary.image('deconv2_im', deconv2[0:1, :, :, 0:1]) tf.summary.histogram('deconv2_out', deconv2) tf.summary.image('mask', mask_out[0:1]) # predict the object position pos_pix = self._spatial_softmax(mask, 'pos', method='softmax', summary=self.summary) pos_pix = tf.reshape(pos_pix, [self.batch_size, 2]) pos = utils._to_3d(pos_pix, self.plane_depth) # extract the glimpses for rotation estimation and parameter # estimation coords_rot = tf.concat([pos_pix[:, 1:2] * 2, pos_pix[:, 0:1] * 2], axis=1) glimpse_rot = \ tf.image.extract_glimpse(images, size=[72, 72], offsets=coords_rot, centered=True, normalized=False) return [mask_out, pos, glimpse_rot], pos_pix class SensorLayer(BaseLayer): def __init__(self, batch_size, normalize, scale, summary, trainable): super(SensorLayer, self).__init__() self.summary = summary self.batch_size = batch_size self.scale = scale self.normalize = normalize # load a plane image for reprojecting path = os.path.dirname(os.path.dirname(os.path.dirname(__file__))) path = os.path.join(path, 'resources', 'plane_image.npy') self.plane_depth = \ tf.convert_to_tensor(np.load(path))[None, :, :, None] self.plane_depth = tf.tile(self.plane_depth, [self.batch_size, 1, 1, 1]) # processing the glimpse self.g_c1 = self._conv_layer('glimpse/conv1', 3, 8, trainable=trainable) self.g_c2 = self._conv_layer('glimpse/conv2', 3, 16, trainable=trainable) self.g_c3 = self._conv_layer('glimpse/conv2', 3, 32, trainable=trainable) self.g_fc1 = self._fc_layer('glimpse/r_fc1', 128, trainable=trainable) self.g_rfc2 = self._fc_layer('glimpse/r_fc2', 64, trainable=trainable) self.g_r = self._fc_layer('glimpse/r', 2, activation=None, trainable=trainable) self.g_nfc2 = self._fc_layer('glimpse/n_fc2', 64, trainable=trainable) self.g_n = self._fc_layer('glimpse/n', 2, activation=None, trainable=trainable) self.g_s = self._fc_layer('glimpse/s', 1, activation=None, bias=-0.1, trainable=trainable) # get the rotation self.r_c1 = self._conv_layer('rot/conv1', 3, 32, trainable=trainable) self.r_c2 = self._conv_layer('rot/conv2', 3, 64, trainable=trainable) self.r_fc1 = self._fc_layer('rot/fc1', 128, trainable=trainable) self.r_fc2 = self._fc_layer('rot/fc2', 64, trainable=trainable) self.r_rot = self._fc_layer('rot/rot', 1, activation=None, trainable=trainable) if self.normalize == 'layer': self.g_n1 = \ tf.keras.layers.LayerNormalization(name='glimpse/norm1', trainable=trainable) self.g_n2 = \ tf.keras.layers.LayerNormalization(name='glimpse/norm2', trainable=trainable) self.g_n3 = \ tf.keras.layers.LayerNormalization(name='glimpse/norm3', trainable=trainable) self.r_n1 = \ tf.keras.layers.LayerNormalization(name='rot/norm1', trainable=trainable) self.r_n2 = \ tf.keras.layers.LayerNormalization(name='rot/norm2', trainable=trainable) elif self.normalize == 'batch': self.g_n1 = \ tf.keras.layers.BatchNormalization(name='glimpse/norm1', trainable=trainable) self.g_n2 = \ tf.keras.layers.BatchNormalization(name='glimpse/norm2', trainable=trainable) self.g_n3 = \ tf.keras.layers.BatchNormalization(name='glimpse/norm3', trainable=trainable) self.r_n1 = \ tf.keras.layers.BatchNormalization(name='rot/norm1', trainable=trainable) self.r_n2 = \ tf.keras.layers.BatchNormalization(name='rot/norm2', trainable=trainable) self.updateable = [self.g_n1, self.g_n2, self.g_n3, self.r_n1, self.r_n2] def call(self, inputs, training): # unpack the inputs pc, tip_pos, tip_pix, tip_pix_end, start_glimpse, mask, pos, \ glimpse_rot = inputs # unpack the inputs image = pc[:, :, :, 0:3] coord = pc[:, :, :, 3:] # disable the topmost name scope so that the summaries don't end up all # under one tab in tensorbaord with tf.name_scope(""): # predict the orientation with tf.name_scope('rot'): # in_data = tf.concat([glimpse_rot, start_glimpse], axis=-1) in_data = start_glimpse - glimpse_rot rot_conv1 = self.r_c1(in_data) if self.normalize == 'layer': rot_conv1 = self.r_n1(rot_conv1) elif self.normalize == 'batch': rot_conv1 = self.r_n1(rot_conv1, training) rot_conv1 = tf.nn.max_pool2d(rot_conv1, 3, 2, padding='VALID') rot_conv2 = self.r_c2(rot_conv1) if self.normalize == 'layer': rot_conv2 = self.r_n2(rot_conv2) elif self.normalize == 'batch': rot_conv2 = self.r_n2(rot_conv2, training) rot_conv2 = tf.nn.max_pool2d(rot_conv2, 3, 2, padding='VALID') rot_fc1 = self.r_fc1(tf.reshape(rot_conv2, [self.batch_size, -1])) rot_fc2 = self.r_fc2(rot_fc1) rot = self.r_rot(rot_fc2) if self.summary: tf.summary.image('glimpse_rot', glimpse_rot[0:1, :, :, :3]) tf.summary.image('glimpse_start', start_glimpse[0:1, :, :, :3]) tf.summary.image('conv1_im', rot_conv1[0:1, :, :, 0:1]) tf.summary.histogram('conv1_out', rot_conv1) tf.summary.image('conv2_im', rot_conv2[0:1, :, :, 0:1]) tf.summary.histogram('conv2_out', rot_conv2) tf.summary.histogram('fc1_out', rot_fc1) tf.summary.histogram('fc2_out', rot_fc2) tf.summary.histogram('rot_out', rot) # process the glimpse with tf.name_scope('glimpse'): tip_pix_x = tf.slice(tip_pix, [0, 0], [-1, 1]) * 2 tip_pix_y = tf.slice(tip_pix, [0, 1], [-1, 1]) * 2 coords = tf.concat([tip_pix_y, tip_pix_x], axis=1) glimpse = \ tf.image.extract_glimpse(coord, size=[64, 64], offsets=coords, centered=True, normalized=False) im_glimpse = \ tf.image.extract_glimpse(image, size=[64, 64], offsets=coords, centered=True, normalized=False) # subtract the tip pose to normalize the z coordinates glimpse -= tip_pos[:, None, None, :] in_g = tf.concat([im_glimpse, glimpse], axis=-1) g_conv1 = self.g_c1(in_g) g_conv1 = tf.nn.max_pool2d(g_conv1, 3, 2, padding='VALID') if self.normalize == 'layer': g_conv1 = self.g_n1(g_conv1) elif self.normalize == 'batch': g_conv1 = self.g_n1(g_conv1, training) g_conv2 = self.g_c2(g_conv1) g_conv2 = tf.nn.max_pool2d(g_conv2, 3, 2, padding='VALID') if self.normalize == 'layer': g_conv2 = self.g_n2(g_conv2) elif self.normalize == 'batch': g_conv2 = self.g_n2(g_conv2, training) g_conv3 = self.g_c3(g_conv2) # g_conv3 = tf.nn.max_pool2d(g_conv3, 3, 2, padding='VALID') if self.normalize == 'layer': g_conv3 = self.g_n3(g_conv3) elif self.normalize == 'batch': g_conv3 = self.g_n3(g_conv3, training) glimpse_encoding = tf.reshape(g_conv3, [self.batch_size, -1]) # add the action pix_u = tf.concat([tip_pix_end - tip_pix, tip_pix], axis=1) glimpse_encoding = tf.concat([glimpse_encoding, pix_u], axis=-1) # extract contact point and push velocity from the glimpse g_fc1 = self.g_fc1(glimpse_encoding) g_rfc2 = self.g_rfc2(g_fc1) r_pix = self.g_r(g_rfc2) # add the tip's global postition to the local estimate and # transform to 2d (using the tip's depth if necessary) r_pix = r_pix + tip_pix # r = utils._to_3d(r_pix, self.plane_depth) r = utils._to_3d_d(r_pix, coord[:, :, :, -1:], tip_pos) g_nfc2 = self.g_nfc2(g_fc1) n_pix = self.g_n(g_nfc2) # calculate the pixel end point to get the z-value # for projecting the predicted normal from pixels to 3d n_end_pix = tf.stop_gradient(r_pix) + n_pix # n_end = utils._to_3d(n_end_pix, self.plane_depth) n_end = utils._to_3d_d(n_end_pix, coord[:, :, :, -1:], tip_pos) n = n_end - tf.stop_gradient(r) # get the contact annotation s = self.g_s(glimpse_encoding) s = tf.nn.sigmoid(s) # here we have to adapt the observations to the scale, since # the network can't learn it itself due to the sigmoid s = s / self.scale if self.summary: tf.summary.image('glimpse_z', glimpse[0:1, :, :, -1:]) tf.summary.image('glimpse_rgb', im_glimpse[0:1]) tf.summary.image('conv1_im', g_conv1[0:1, :, :, 0:1]) tf.summary.histogram('conv1_out', g_conv1) tf.summary.image('conv2_im', g_conv2[0:1, :, :, 0:1]) tf.summary.histogram('conv2_out', g_conv2) tf.summary.image('conv3_im', g_conv3[0:1, :, :, 0:1]) tf.summary.histogram('g_fc1_out', g_fc1) tf.summary.histogram('g_rfc2_out', g_rfc2) tf.summary.histogram('r_pix_out', r_pix) tf.summary.histogram('g_nfc2_out', g_nfc2) tf.summary.histogram('n_pix_out', n_pix) tf.summary.histogram('n_end_pix_out', n_end_pix) # assemble the observations: remove the z(up) coordinates, # convert to centimeter, normalize n_norm = tf.linalg.norm(n[:, :2], axis=1, keepdims=True) n = tf.where(tf.greater(tf.squeeze(n_norm), 1e-5), n[:, :2] / n_norm, n[:, :2]) n = tf.where(tf.greater_equal(tf.tile(s, [1, 2]), 0.5), n, 0 * n) # we only care for the position in the table plane r = r[:, :2] * 1000. / self.scale n = n[:, :2] / self.scale pos = pos[:, :2] * 1000. / self.scale z = tf.concat([pos, rot, r, n, s], axis=-1) if self.summary: tf.summary.scalar('r_x', r[0, 0]) tf.summary.scalar('r_y', r[0, 1]) tf.summary.scalar('n_x', n[0, 0]) tf.summary.scalar('n_y', n[0, 1]) tf.summary.scalar('o_x', pos[0, 0]) tf.summary.scalar('o_y', pos[0, 1]) tf.summary.scalar('t_x', tip_pos[0, 0]) tf.summary.scalar('t_y', tip_pos[0, 1]) tf.summary.scalar('s', s[0, 0]) tf.summary.scalar('rot', rot[0, 0]) return z, [mask, rot_fc2, g_fc1] class ObservationNoise(BaseLayer): def __init__(self, batch_size, dim_z, r_diag, scale, hetero, diag, trainable, summary): super(ObservationNoise, self).__init__() self.hetero = hetero self.diag = diag self.batch_size = batch_size self.dim_z = dim_z self.scale = scale self.r_diag = r_diag self.summary = summary self.trainable = trainable def build(self, input_shape): init_const = np.ones(self.dim_z) * 1e-3 // self.scale**2 init = np.sqrt(np.maximum(np.square(self.r_diag) - init_const, 0)) # the constant bias keeps the predicted covariance away from zero self.bias_fixed = \ self.add_weight(name='bias_fixed', shape=[self.dim_z], trainable=False, initializer=tf.constant_initializer(init_const)) num = self.dim_z * (self.dim_z + 1) // 2 wd = 1e-3 * self.scale**2 if self.hetero and self.diag: # for heteroscedastic noise with diagonal covariance matrix # position self.het_diag_pos_c1 = self._conv_layer('het_diag_pos_c1', 5, 16, stride=[2, 2], trainable=self.trainable) self.het_diag_pos_c2 = self._conv_layer('het_diag_pos_c2', 3, 32, stride=[2, 2], trainable=self.trainable) self.het_diag_pos_fc1 = self._fc_layer('het_diag_pos_fc1', 64, trainable=self.trainable) self.het_diag_pos_fc2 = self._fc_layer('het_diag_pos_fc2', 2, mean=0, std=1e-3, activation=None, trainable=self.trainable) # rotation, normal, contact point and contact self.het_diag_rot_fc = self._fc_layer('het_diag_rot_fc', 1, mean=0, std=1e-3, activation=None, trainable=self.trainable) self.het_diag_fc1 = self._fc_layer('het_diag_fc1', 64, std=1e-4, trainable=self.trainable) self.het_diag_fc2 = self._fc_layer('het_diag_fc2', 32, std=1e-3, trainable=self.trainable) self.het_diag_fc3 = self._fc_layer('het_diag_fc3', 5, std=1e-2, activation=None, trainable=self.trainable) self.het_diag_init_bias = \ self.add_weight(name='het_diag_init_bias', shape=[self.dim_z], trainable=self.trainable, regularizer=tf.keras.regularizers.l2(l=wd), initializer=tf.constant_initializer(init)) elif not self.hetero and self.diag: # for constant noise with diagonal covariance matrix self.const_diag = \ self.add_weight(name='const_diag', shape=[self.dim_z], trainable=self.trainable, regularizer=tf.keras.regularizers.l2(l=wd), initializer=tf.constant_initializer(init)) elif self.hetero and not self.diag: # for heteroscedastic noise with full covariance matrix self.het_full_pos_c1 = self._conv_layer('het_full_pos_c1', 5, 16, stride=[2, 2], trainable=self.trainable) self.het_full_pos_c2 = self._conv_layer('het_full_pos_c2', 3, 32, stride=[2, 2], trainable=self.trainable) self.het_full_pos_fc = self._fc_layer('het_full_pos_fc', self.dim_z, trainable=self.trainable) # rotation, normal, contact point and contact self.het_full_rot_fc = self._fc_layer('het_full_rot_fc', self.dim_z, trainable=self.trainable) self.het_full_g_fc1 = self._fc_layer('het_full_g_fc1', 64, std=1e-3, trainable=self.trainable) self.het_full_g_fc2 = self._fc_layer('het_full_g_f2', 32, trainable=self.trainable) self.het_full_fc1 = self._fc_layer('het_full_fc1', 64, std=1e-3, trainable=self.trainable) self.het_full_fc2 = \ self._fc_layer('het_full_fc2', num, activation=None, trainable=self.trainable) self.het_full_init_bias = \ self.add_weight(name='het_full_init_bias', shape=[self.dim_z], trainable=self.trainable, regularizer=tf.keras.regularizers.l2(l=wd), initializer=tf.constant_initializer(init)) else: # for constant noise with full covariance matrix self.const_full = \ self.add_weight(name='const_tri', shape=[num], regularizer=tf.keras.regularizers.l2(l=wd), initializer=tf.constant_initializer(0.), trainable=self.trainable) self.const_full_init_bias = \ self.add_weight(name='const_full_init_bias', shape=[self.dim_z], trainable=self.trainable, regularizer=tf.keras.regularizers.l2(l=wd), initializer=tf.constant_initializer(init)) def call(self, inputs, training): mask, rot_encoding, glimpse_encoding, pix = inputs if self.hetero and self.diag: het_diag_pos_c1 = self.het_diag_pos_c1(mask) het_diag_pos_c2 = self.het_diag_pos_c2(het_diag_pos_c1) het_diag_pos_c2 = tf.reshape(het_diag_pos_c2, [self.batch_size, -1]) het_diag_pos_fc1 = self.het_diag_pos_fc1(het_diag_pos_c2) het_diag_pos = self.het_diag_pos_fc2(het_diag_pos_fc1) # rotation, normal, contact point and contact het_diag_rot = self.het_diag_rot_fc(rot_encoding) het_diag_fc1 = self.het_diag_fc1(glimpse_encoding) het_diag_fc2 = self.het_diag_fc2(het_diag_fc1) het_diag_rns = self.het_diag_fc3(het_diag_fc2) diag = tf.concat([het_diag_pos, het_diag_rot, het_diag_rns], axis=-1) if self.summary: tf.summary.image('het_diag_pos_c1_im', het_diag_pos_c1[0:1, :, :, 0:1]) tf.summary.histogram('het_diag_pos_c1_out', het_diag_pos_c1) tf.summary.histogram('het_diag_pos_c2_out', het_diag_pos_c2) tf.summary.histogram('het_diag_pos_fc1_out', het_diag_pos_fc1) tf.summary.histogram('het_diag_pos_fc2_out', het_diag_pos) tf.summary.histogram('het_diag_rot_fc_out', het_diag_rot) tf.summary.histogram('het_diag_rns_fc1_out', het_diag_fc1) tf.summary.histogram('het_diag_rns_fc2_out', het_diag_fc2) tf.summary.histogram('het_diag_rns_fc3_out', het_diag_rns) tf.summary.histogram('het_diag_out', diag) diag = tf.square(diag + self.het_diag_init_bias) diag += self.bias_fixed R = tf.linalg.diag(diag) elif not self.hetero and self.diag: diag = self.const_diag diag = tf.square(diag) + self.bias_fixed R = tf.linalg.tensor_diag(diag) R = tf.tile(R[None, :, :], [self.batch_size, 1, 1]) elif self.hetero and not self.diag: het_full_pos_c1 = self.het_full_pos_c1(mask) het_full_pos_c2 = self.het_full_pos_c2(het_full_pos_c1) het_full_pos_c2 = tf.reshape(het_full_pos_c2, [self.batch_size, -1]) het_full_pos = self.het_full_pos_fc(het_full_pos_c2) # rotation, normal, contact point and contact het_full_rot = self.het_full_rot_fc(rot_encoding) het_full_g1 = self.het_full_g_fc1(glimpse_encoding) het_full_g2 = self.het_full_g_fc2(het_full_g1) input_data = tf.concat([het_full_pos, het_full_rot, het_full_g2], axis=-1) het_full_fc1 = self.het_full_fc1(input_data) tri = self.het_full_fc2(het_full_fc1) if self.summary: tf.summary.image('het_full_pos_c1_im', het_full_pos_c1[0:1, :, :, 0:1]) tf.summary.histogram('het_full_pos_c1_out', het_full_pos_c1) tf.summary.histogram('het_full_pos_c2_out', het_full_pos_c2) tf.summary.histogram('het_full_pos_fc_out', het_full_pos) tf.summary.histogram('het_full_rot_fc_out', het_full_rot) tf.summary.histogram('het_full_g_fc1_out', het_full_g1) tf.summary.histogram('het_full_g_fc2_out', het_full_g2) tf.summary.histogram('het_full_fc1_out', het_full_fc1) tf.summary.histogram('het_tri_out', tri) R = compat.fill_triangular(tri) R += tf.linalg.diag(self.het_full_init_bias) R = tf.matmul(R, tf.linalg.matrix_transpose(R)) R = R + tf.linalg.diag(self.bias_fixed) else: tri = self.const_full R = compat.fill_triangular(tri) R += tf.linalg.diag(self.const_full_init_bias) R = tf.matmul(R, tf.linalg.matrix_transpose(R)) R = R + tf.linalg.diag(self.bias_fixed) R = tf.tile(R[None, :, :], [self.batch_size, 1, 1]) return R class Likelihood(BaseLayer): def __init__(self, dim_z, trainable, summary): super(Likelihood, self).__init__() self.summary = summary self.dim_z = dim_z self.like_pos_c1 = self._conv_layer('like_pos_c1', 5, 16, stride=[2, 2], trainable=self.trainable) self.like_pos_c2 = self._conv_layer('like_pos_c2', 3, 32, trainable=self.trainable) self.like_pos_fc = self._fc_layer('like_pos_fc', 2*self.dim_z, trainable=self.trainable) # rotation, normal, contact point and contact self.like_rot_fc = self._fc_layer('like_rot_fc', self.dim_z, trainable=self.trainable) self.like_rns_fc1 = self._fc_layer('like_rns_fc1', 128, trainable=self.trainable) self.like_rns_fc2 = self._fc_layer('like_rn2_fc2', 5*self.dim_z, trainable=self.trainable) self.fc1 = self._fc_layer('fc1', 128, trainable=trainable) self.fc2 = self._fc_layer('fc2', 128, trainable=trainable) self.fc3 = self._fc_layer('fc3', 1, trainable=trainable, activation=tf.nn.sigmoid) def call(self, inputs, training): # unpack the inputs particles, encoding = inputs bs = particles.get_shape()[0].value num_pred = particles.get_shape()[1].value # diff, encoding = inputs mask, rot_encoding, glimpse_encoding, pix = encoding # preprocess the encodings # mask pos_c1 = self.like_pos_c1(mask) pos_c2 = self.like_pos_c2(pos_c1) pos_c2 = tf.reshape(pos_c2, [bs, -1]) pos_fc = self.like_pos_fc(pos_c2) # rotation, normal, contact point and contact rot_fc = self.like_rot_fc(rot_encoding) rns_fc1 = self.like_rns_fc1(glimpse_encoding) rns_fc2 = self.like_rns_fc2(rns_fc1) # concatenate and tile the preprocessed encoding encoding = tf.concat([pos_fc, rot_fc, rns_fc2], axis=-1) encoding = tf.tile(encoding[:, None, :], [1, num_pred, 1]) input_data = tf.concat([encoding, particles], axis=-1) input_data = tf.reshape(input_data, [bs * num_pred, -1]) fc1 = self.fc1(input_data) if self.summary: tf.summary.histogram('fc1_out', fc1) fc2 = self.fc2(fc1) if self.summary: tf.summary.histogram('fc2_out', fc2) like = self.fc3(fc2) if self.summary: tf.summary.histogram('pos_c1_out', pos_c1) tf.summary.histogram('pos_c2_out', pos_c2) tf.summary.histogram('pos_fc_out', pos_fc) tf.summary.histogram('rot_fc_out', rot_fc) tf.summary.histogram('rns_fc1_out', rns_fc1) tf.summary.histogram('rns_fc2_out', rns_fc2) tf.summary.histogram('fc1_out', fc1) tf.summary.histogram('fc2_out', fc2) tf.summary.histogram('like', like) return like class ObservationModel(BaseLayer): def __init__(self, dim_z, batch_size): super(ObservationModel, self).__init__() self.dim_z = dim_z self.batch_size = batch_size def call(self, inputs, training): H = tf.concat( [tf.tile(np.array([[[1, 0, 0, 0, 0, 0, 0, 0, 0, 0]]], dtype=np.float32), [self.batch_size, 1, 1]), tf.tile(np.array([[[0, 1, 0, 0, 0, 0, 0, 0, 0, 0]]], dtype=np.float32), [self.batch_size, 1, 1]), tf.tile(np.array([[[0, 0, 1, 0, 0, 0, 0, 0, 0, 0]]], dtype=np.float32), [self.batch_size, 1, 1]), tf.tile(np.array([[[0, 0, 0, 0, 0, 1, 0, 0, 0, 0]]], dtype=np.float32), [self.batch_size, 1, 1]), tf.tile(np.array([[[0, 0, 0, 0, 0, 0, 1, 0, 0, 0]]], dtype=np.float32), [self.batch_size, 1, 1]), tf.tile(np.array([[[0, 0, 0, 0, 0, 0, 0, 1, 0, 0]]], dtype=np.float32), [self.batch_size, 1, 1]), tf.tile(np.array([[[0, 0, 0, 0, 0, 0, 0, 0, 1, 0]]], dtype=np.float32), [self.batch_size, 1, 1]), tf.tile(np.array([[[0, 0, 0, 0, 0, 0, 0, 0, 0, 1]]], dtype=np.float32), [self.batch_size, 1, 1])], axis=1) z_pred = tf.concat([inputs[:, :3], inputs[:, 5:]], axis=1) return z_pred, H class ProcessModel(BaseLayer): def __init__(self, batch_size, dim_x, scale, learned, jacobian, trainable, summary): super(ProcessModel, self).__init__() self.summary = summary self.batch_size = batch_size self.dim_x = dim_x self.learned = learned self.jacobian = jacobian self.scale = scale if learned: self.fc1 = self._fc_layer('fc1', 256, std=1e-4, trainable=trainable) self.fc2 = self._fc_layer('fc2', 128, trainable=trainable) self.fc3 = self._fc_layer('fc3', 128, trainable=trainable) self.update = self._fc_layer('fc4', self.dim_x, activation=None, trainable=trainable) def call(self, inputs, training): # unpack the inputs last_state, actions, ob = inputs if self.learned: fc1 = self.fc1(tf.concat([last_state, actions[:, :2]], axis=-1)) fc2 = self.fc2(fc1) fc3 = self.fc3(fc2) update = self.update(fc3) # for the circular object, the orientation is always zero, # so we have to set the prediction to 0 and adapt the # jacobian ob = tf.reshape(ob, [self.batch_size, 1]) bs = last_state.get_shape()[0] ob = tf.tile(ob, [1, bs // self.batch_size]) ob = tf.reshape(ob, [-1]) ob = tf.strings.regex_replace(ob, "\000", "") ob = tf.strings.regex_replace(ob, "\00", "") rot_pred = update[:, 2:3] rot_pred = tf.where(tf.equal(ob, 'ellip1'), tf.zeros_like(rot_pred), rot_pred) update = tf.concat([update[:, :2], rot_pred, update[:, 3:]], axis=-1) new_state = last_state + update if self.summary: tf.summary.histogram('fc1_out', fc1) tf.summary.histogram('fc2_out', fc2) tf.summary.histogram('fc3_out', fc3) tf.summary.histogram('update_out', update) if self.jacobian: F = self._compute_jacobian(new_state, last_state) else: F = None else: if self.jacobian: # with tf.GradientTape() as tape: # tape.watch(last_state) # # split the state into parts and undo the scaling # last_state *= self.scale # pos = last_state[:, :2] # ori = last_state[:, 2:3] # fr = last_state[:, 3:4] # fr_mu = last_state[:, 4:5] # cp = last_state[:, 5:7] # n = last_state[:, 7:9] # s = last_state[:, 9:] # # undo the scaling for the actions as well # actions *= self.scale # # apply the analytical model to get predicted translation # # and rotation # tr_pred, rot_pred, keep_contact = \ # utils.physical_model(pos, cp, n, actions, fr, fr_mu, s) # pos_pred = pos + tr_pred # ori_pred = ori + rot_pred * 180.0/np.pi # fr_pred = fr # fr_mu_pred = fr_mu # cp_pred = cp + actions # keep_contact = tf.cast(keep_contact, tf.float32) # n_pred = n * keep_contact # s_pred = s * keep_contact # # piece together the new state and apply scaling again # new_state = \ # tf.concat([pos_pred, ori_pred, fr_pred, # fr_mu_pred, cp_pred, n_pred, s_pred], # axis=1) / self.scale # # block vectorization to avoid excessive memory usage for # # long sequences # F = tape.batch_jacobian(new_state, last_state, # experimental_use_pfor=False) # split the state into parts and undo the scaling last_state *= self.scale pos = last_state[:, :2] ori = last_state[:, 2:3] fr = last_state[:, 3:4] fr_mu = last_state[:, 4:5] cp = last_state[:, 5:7] n = last_state[:, 7:9] s = last_state[:, 9:] # undo the scaling for the actions as well actions *= self.scale # apply the analytical model to get predicted translation and # rotation tr_pred, rot_pred, keep_contact, dx, dy, dom = \ utils.physical_model_derivative(pos, cp, n, actions, fr, fr_mu, s) # for the circular object, the orientation is always zero, # so we have to set the prediction to 0 and adapt the # jacobian ob = tf.squeeze(ob) ob = tf.strings.regex_replace(ob, "\000", "") ob = tf.strings.regex_replace(ob, "\00", "") rot_pred = tf.where(tf.equal(ob, 'ellip1'), tf.zeros_like(rot_pred), rot_pred) dom = tf.where(tf.equal(ob, 'ellip1'), tf.zeros_like(dom), dom) pos_pred = pos + tr_pred ori_pred = ori + rot_pred * 180.0 / np.pi fr_pred = fr fr_mu_pred = fr_mu cp_pred = cp + actions keep_contact = tf.cast(keep_contact, tf.float32) n_pred = n * keep_contact s_pred = s * keep_contact # piece together the new state and apply scaling again new_state = \ tf.concat([pos_pred, ori_pred, fr_pred, fr_mu_pred, cp_pred, n_pred, s_pred], axis=1) / self.scale # piece together the jacobian (I found this to work better than # getting the whole jacobian from tensorflow) dom *= 180.0 / np.pi dnx = tf.concat([tf.zeros([self.batch_size, 7]), tf.cast(keep_contact, tf.float32), tf.zeros([self.batch_size, 2])], axis=-1) dny = tf.concat([tf.zeros([self.batch_size, 8]), tf.cast(keep_contact, tf.float32), tf.zeros([self.batch_size, 1])], axis=-1) ds = tf.concat([tf.zeros([self.batch_size, 9]), tf.cast(keep_contact, tf.float32)], axis=-1) F = tf.concat( [dx + np.array([[[1, 0, 0, 0, 0, 0, 0, 0, 0, 0.]]], dtype=np.float32), dy + np.array([[[0, 1, 0, 0, 0, 0, 0, 0, 0, 0.]]], dtype=np.float32), dom + np.array([[[0, 0, 1, 0, 0, 0, 0, 0, 0, 0.]]], dtype=np.float32), tf.tile(np.array([[[0, 0, 0, 1, 0, 0, 0, 0, 0, 0.]]], dtype=np.float32), [self.batch_size, 1, 1]), tf.tile(np.array([[[0, 0, 0, 0, 1, 0, 0, 0, 0, 0.]]], dtype=np.float32), [self.batch_size, 1, 1]), tf.tile(np.array([[[0, 0, 0, 0, 0, 1, 0, 0, 0, 0]]], dtype=np.float32), [self.batch_size, 1, 1]), tf.tile(np.array([[[0, 0, 0, 0, 0, 0, 1, 0, 0, 0]]], dtype=np.float32), [self.batch_size, 1, 1]), tf.reshape(dnx, [-1, 1, self.dim_x]), tf.reshape(dny, [-1, 1, self.dim_x]), tf.reshape(ds, [-1, 1, self.dim_x])], axis=1) else: # split the state into parts and undo the scaling last_state *= self.scale pos = last_state[:, :2] ori = last_state[:, 2:3] fr = last_state[:, 3:4] fr_mu = last_state[:, 4:5] cp = last_state[:, 5:7] n = last_state[:, 7:9] s = last_state[:, 9:] # undo the scaling for the actions as well actions *= self.scale # apply the analytical model to get predicted translation and # rotation tr_pred, rot_pred, keep_contact = \ utils.physical_model(pos, cp, n, actions, fr, fr_mu, s) pos_pred = pos + tr_pred ori_pred = ori + rot_pred * 180.0 / np.pi fr_pred = fr fr_mu_pred = fr_mu cp_pred = cp + actions keep_contact = tf.cast(keep_contact, tf.float32) n_pred = n * keep_contact s_pred = s * keep_contact # piece together the new state and apply scaling again new_state = \ tf.concat([pos_pred, ori_pred, fr_pred, fr_mu_pred, cp_pred, n_pred, s_pred], axis=1) / self.scale F = None if self.jacobian: F = tf.stop_gradient(F) return new_state, F class ProcessNoise(BaseLayer): def __init__(self, batch_size, dim_x, q_diag, scale, hetero, diag, learned, trainable, summary): super(ProcessNoise, self).__init__() self.hetero = hetero self.diag = diag self.learned = learned self.trainable = trainable self.dim_x = dim_x self.q_diag = q_diag self.scale = scale self.batch_size = batch_size self.summary = summary def build(self, input_shape): init_const = np.ones(self.dim_x) * 1e-5 / self.scale**2 init = np.sqrt(np.square(self.q_diag) - init_const) # the constant bias keeps the predicted covariance away from zero self.bias_fixed = \ self.add_weight(name='bias_fixed', shape=[self.dim_x], trainable=False, initializer=tf.constant_initializer(init_const)) num = self.dim_x * (self.dim_x + 1) // 2 wd = 1e-3 * self.scale**2 if self.hetero and self.diag and self.learned: # for heteroscedastic noise with diagonal covariance matrix self.het_diag_lrn_fc1 = self._fc_layer('het_diag_lrn_fc1', 128, trainable=self.trainable) self.het_diag_lrn_fc2 = self._fc_layer('het_diag_lrn_fc2', 64, trainable=self.trainable) self.het_diag_lrn_fc3 = \ self._fc_layer('het_diag_lrn_fc3', self.dim_x, mean=0, std=1e-3, activation=None, trainable=self.trainable) self.het_diag_lrn_init_bias = \ self.add_weight(name='het_diag_lrn_init_bias', shape=[self.dim_x], trainable=self.trainable, regularizer=tf.keras.regularizers.l2(l=wd), initializer=tf.constant_initializer(init)) elif not self.hetero and self.diag and self.learned: # for constant noise with diagonal covariance matrix self.const_diag_lrn = \ self.add_weight(name='const_diag_lrn', shape=[self.dim_x], trainable=self.trainable, regularizer=tf.keras.regularizers.l2(l=wd), initializer=tf.constant_initializer(init)) elif self.hetero and not self.diag and self.learned: # for heteroscedastic noise with full covariance matrix self.het_full_lrn_fc1 = self._fc_layer('het_full_lrn_fc1', 128, trainable=self.trainable) self.het_full_lrn_fc2 = self._fc_layer('het_full_lrn_fc2', 64, trainable=self.trainable) self.het_full_lrn_fc3 = \ self._fc_layer('het_full_lrn_fc3', num, mean=0, std=1e-3, activation=None, trainable=self.trainable) self.het_full_lrn_init_bias = \ self.add_weight(name='het_full_lrn_init_bias', shape=[self.dim_x], trainable=self.trainable, regularizer=tf.keras.regularizers.l2(l=wd), initializer=tf.constant_initializer(init)) elif not self.hetero and not self.diag and self.learned: # for constant noise with full covariance matrix self.const_full_lrn = \ self.add_weight(name='const_tri_lrn', shape=[num], regularizer=tf.keras.regularizers.l2(l=wd), initializer=tf.constant_initializer(0.), trainable=self.trainable) self.const_full_lrn_init_bias = \ self.add_weight(name='const_full_lrn_init_bias', shape=[self.dim_x], trainable=self.trainable, regularizer=tf.keras.regularizers.l2(l=wd), initializer=tf.constant_initializer(init)) elif self.hetero and self.diag and not self.learned: # for heteroscedastic noise with diagonal covariance matrix self.het_diag_ana_fc1 = self._fc_layer('het_diag_ana_fc1', 128, std=1e-3, trainable=self.trainable) self.het_diag_ana_fc2 = self._fc_layer('het_diag_ana_fc2', 64, trainable=self.trainable) self.het_diag_ana_fc3 = \ self._fc_layer('het_diag_ana_fc3', self.dim_x, mean=0, std=1e-3, activation=None, trainable=self.trainable) self.het_diag_ana_init_bias = \ self.add_weight(name='het_diag_ana_init_bias', shape=[self.dim_x], trainable=self.trainable, regularizer=tf.keras.regularizers.l2(l=wd), initializer=tf.constant_initializer(init)) elif not self.hetero and self.diag and not self.learned: # for constant noise with diagonal covariance matrix self.const_diag_ana = \ self.add_weight(name='const_diag_ana', shape=[self.dim_x], trainable=self.trainable, regularizer=tf.keras.regularizers.l2(l=wd), initializer=tf.constant_initializer(init)) elif self.hetero and not self.diag and not self.learned: # for heteroscedastic noise with full covariance matrix self.het_full_ana_fc1 = self._fc_layer('het_full_ana_fc1', 128, std=1e-3, trainable=self.trainable) self.het_full_ana_fc2 = self._fc_layer('het_full_ana_fc2', 64, trainable=self.trainable) self.het_full_ana_fc3 = \ self._fc_layer('het_full_ana_fc3', num, mean=0, std=1e-3, activation=None, trainable=self.trainable) self.het_full_ana_init_bias = \ self.add_weight(name='het_full_ana_init_bias', shape=[self.dim_x], trainable=self.trainable, regularizer=tf.keras.regularizers.l2(l=wd), initializer=tf.constant_initializer(init)) elif not self.hetero and not self.diag and not self.learned: # for constant noise with full covariance matrix self.const_full_ana = \ self.add_weight(name='const_tri_ana', shape=[num], regularizer=tf.keras.regularizers.l2(l=wd), initializer=tf.constant_initializer(0.), trainable=self.trainable) self.const_full_ana_init_bias = \ self.add_weight(name='const_full_ana_init_bias', shape=[self.dim_x], trainable=self.trainable, regularizer=tf.keras.regularizers.l2(l=wd), initializer=tf.constant_initializer(init)) def call(self, inputs, training): old_state, actions = inputs # exclude l from the inputs for stability input_data = tf.concat([old_state[:, :3], old_state[:, 4:], actions], axis=-1) # input_data = tf.concat([old_state, actions], axis=-1) if self.learned: if self.hetero and self.diag: fc1 = self.het_diag_lrn_fc1(input_data) fc2 = self.het_diag_lrn_fc2(fc1) diag = self.het_diag_lrn_fc3(fc2) if self.summary: tf.summary.histogram('het_diag_lrn_fc1_out', fc1) tf.summary.histogram('het_diag_lrn_fc2_out', fc2) tf.summary.histogram('het_diag_lrn_fc3_out', diag) diag = tf.square(diag + self.het_diag_lrn_init_bias) diag += self.bias_fixed Q = tf.linalg.diag(diag) elif not self.hetero and self.diag: diag = self.const_diag_lrn diag = tf.square(diag) + self.bias_fixed Q = tf.linalg.tensor_diag(diag) Q = tf.tile(Q[None, :, :], [self.batch_size, 1, 1]) elif self.hetero and not self.diag: fc1 = self.het_full_lrn_fc1(input_data) fc2 = self.het_full_lrn_fc2(fc1) tri = self.het_full_lrn_fc3(fc2) if self.summary: tf.summary.histogram('het_full_lrn_fc1_out', fc1) tf.summary.histogram('het_full_lrn_fc2_out', fc2) tf.summary.histogram('het_full_lrn_out', tri) Q = compat.fill_triangular(tri) Q += tf.linalg.diag(self.het_full_lrn_init_bias) Q = tf.matmul(Q, tf.linalg.matrix_transpose(Q)) Q = Q + tf.linalg.diag(self.bias_fixed) else: tri = self.const_full_lrn Q = compat.fill_triangular(tri) Q += tf.linalg.diag(self.const_full_lrn_init_bias) Q = tf.matmul(Q, tf.linalg.matrix_transpose(Q)) Q = Q + tf.linalg.diag(self.bias_fixed) Q = tf.tile(Q[None, :, :], [self.batch_size, 1, 1]) else: if self.hetero and self.diag: fc1 = self.het_diag_ana_fc1(input_data) fc2 = self.het_diag_ana_fc2(fc1) diag = self.het_diag_ana_fc3(fc2) if self.summary: tf.summary.histogram('het_diag_ana_fc1_out', fc1) tf.summary.histogram('het_diag_ana_fc2_out', fc2) tf.summary.histogram('het_diag_ana_fc3_out', diag) diag = tf.square(diag + self.het_diag_ana_init_bias) diag += self.bias_fixed Q = tf.linalg.diag(diag) elif not self.hetero and self.diag: diag = self.const_diag_ana diag = tf.square(diag) + self.bias_fixed Q = tf.linalg.tensor_diag(diag) Q = tf.tile(Q[None, :, :], [self.batch_size, 1, 1]) elif self.hetero and not self.diag: fc1 = self.het_full_ana_fc1(input_data) fc2 = self.het_full_ana_fc2(fc1) tri = self.het_full_ana_fc3(fc2) if self.summary: tf.summary.histogram('het_full_ana_fc1_out', fc1) tf.summary.histogram('het_full_ana_fc2_out', fc2) tf.summary.histogram('het_full_ana_out', tri) Q = compat.fill_triangular(tri) Q += tf.linalg.diag(self.het_full_ana_init_bias) Q = tf.matmul(Q, tf.linalg.matrix_transpose(Q)) Q = Q + tf.linalg.diag(self.bias_fixed) else: tri = self.const_full_ana Q = compat.fill_triangular(tri) Q += tf.linalg.diag(self.const_full_ana_init_bias) Q = tf.matmul(Q, tf.linalg.matrix_transpose(Q)) Q = Q + tf.linalg.diag(self.bias_fixed) Q = tf.tile(Q[None, :, :], [self.batch_size, 1, 1]) return Q
[ "tensorflow.compat.v1.zeros", "numpy.arctan2", "numpy.ones", "tensorflow.compat.v1.summary.histogram", "matplotlib.patches.Polygon", "numpy.arange", "differentiable_filters.utils.push_utils.physical_model", "tensorflow.compat.v1.name_scope", "os.path.dirname", "tensorflow.compat.v1.constant_initializer", "tensorflow.compat.v1.squeeze", "tensorflow.compat.v1.multiply", "differentiable_filters.utils.push_utils._to_3d_d", "numpy.max", "tensorflow.compat.v1.convert_to_tensor", "tensorflow.compat.v1.norm", "matplotlib.pyplot.subplots", "numpy.save", "tensorflow.compat.v1.linalg.matrix_transpose", "tensorflow.compat.v1.stop_gradient", "numpy.min", "numpy.squeeze", "tensorflow.compat.v1.summary.scalar", "tensorflow.compat.v1.nn.sigmoid", "numpy.linalg.eigh", "tensorflow.compat.v1.abs", "numpy.array", "tensorflow.compat.v1.math.atan2", "tensorflow.compat.v1.data.Dataset.from_tensor_slices", "tensorflow.compat.v1.stack", "tensorflow.compat.v1.reduce_mean", "tensorflow.compat.v1.keras.layers.BatchNormalization", "tensorflow.compat.v1.sign", "tensorflow.compat.v1.linalg.norm", "numpy.asscalar", "tensorflow.compat.v1.nn.max_pool2d", "tensorflow.compat.v1.strings.regex_replace", "differentiable_filters.utils.push_utils._to_3d", "differentiable_filters.utils.push_utils.physical_model_derivative", "numpy.square", "tensorflow.compat.v1.reshape", "tensorflow.compat.v1.greater", "tensorflow.compat.v1.sin", "tensorflow.compat.v1.concat", "tensorflow.compat.v1.keras.layers.LayerNormalization", "differentiable_filters.utils.tensorflow_compatability.fill_triangular", "tensorflow.compat.v1.equal", "pickle.load", "numpy.mean", "numpy.sin", "os.path.join", "tensorflow.compat.v1.slice", "tensorflow.compat.v1.tile", "tensorflow.compat.v1.reduce_sum", "tensorflow.compat.v1.add_n", "tensorflow.compat.v1.cast", "numpy.corrcoef", "tensorflow.compat.v1.cos", "numpy.dot", "tensorflow.compat.v1.linalg.diag_part", "tensorflow.compat.v1.disable_v2_behavior", "tensorflow.compat.v1.zeros_like", "tensorflow.compat.v1.math.log", "differentiable_filters.contexts.paper_base_context.PaperBaseContext.__init__", "numpy.zeros", "tensorflow.compat.v1.ones_like", "tensorflow.compat.v1.maximum", "tensorflow.compat.v1.image.extract_glimpse", "tensorflow.compat.v1.sqrt", "numpy.load", "tensorflow.compat.v1.nn.l2_normalize", "tensorflow.compat.v1.io.parse_single_example", "tensorflow.compat.v1.linalg.tensor_diag", "numpy.random.randint", "numpy.random.normal", "tensorflow.compat.v1.image.resize", "tensorflow.compat.v1.cond", "csv.DictWriter", "tensorflow.compat.v1.square", "tensorflow.compat.v1.ones", "numpy.std", "tensorflow.compat.v1.clip_by_value", "tensorflow.compat.v1.linalg.diag", "tensorflow.compat.v1.summary.image", "numpy.cos", "matplotlib.patches.Ellipse", "tensorflow.compat.v1.math.is_finite", "differentiable_filters.utils.recordio.RecordMeta.load", "tensorflow.compat.v1.less", "tensorflow.compat.v1.keras.regularizers.l2", "numpy.sqrt" ]
[((183, 207), 'tensorflow.compat.v1.disable_v2_behavior', 'tf.disable_v2_behavior', ([], {}), '()\n', (205, 207), True, 'import tensorflow.compat.v1 as tf\n'), ((1337, 1386), 'differentiable_filters.contexts.paper_base_context.PaperBaseContext.__init__', 'base.PaperBaseContext.__init__', (['self', 'param', 'mode'], {}), '(self, param, mode)\n', (1367, 1386), True, 'from differentiable_filters.contexts import paper_base_context as base\n'), ((2174, 2197), 'numpy.array', 'np.array', (['butter_points'], {}), '(butter_points)\n', (2182, 2197), True, 'import numpy as np\n'), ((3308, 3349), 'tensorflow.compat.v1.convert_to_tensor', 'tf.convert_to_tensor', (['q'], {'dtype': 'tf.float32'}), '(q, dtype=tf.float32)\n', (3328, 3349), True, 'import tensorflow.compat.v1 as tf\n'), ((3411, 3452), 'tensorflow.compat.v1.convert_to_tensor', 'tf.convert_to_tensor', (['r'], {'dtype': 'tf.float32'}), '(r, dtype=tf.float32)\n', (3431, 3452), True, 'import tensorflow.compat.v1 as tf\n'), ((16446, 16516), 'tensorflow.compat.v1.concat', 'tf.concat', (['[init_z[:, :3], base_state[:, 3:5], init_z[:, 3:]]'], {'axis': '(-1)'}), '([init_z[:, :3], base_state[:, 3:5], init_z[:, 3:]], axis=-1)\n', (16455, 16516), True, 'import tensorflow.compat.v1 as tf\n'), ((17833, 17886), 'tensorflow.compat.v1.reshape', 'tf.reshape', (['states', '[self.batch_size, -1, self.dim_x]'], {}), '(states, [self.batch_size, -1, self.dim_x])\n', (17843, 17886), True, 'import tensorflow.compat.v1 as tf\n'), ((17904, 17969), 'tensorflow.compat.v1.reshape', 'tf.reshape', (['covars', '[self.batch_size, -1, self.dim_x, self.dim_x]'], {}), '(covars, [self.batch_size, -1, self.dim_x, self.dim_x])\n', (17914, 17969), True, 'import tensorflow.compat.v1 as tf\n'), ((19428, 19523), 'tensorflow.compat.v1.concat', 'tf.concat', (['[seq_label[:, :, :3] - z[:, :, 0:3], seq_label[:, :, 5:] - z[:, :, 3:]]'], {'axis': '(-1)'}), '([seq_label[:, :, :3] - z[:, :, 0:3], seq_label[:, :, 5:] - z[:, :,\n 3:]], axis=-1)\n', (19437, 19523), True, 'import tensorflow.compat.v1 as tf\n'), ((20139, 20161), 'tensorflow.compat.v1.linalg.diag_part', 'tf.linalg.diag_part', (['r'], {}), '(r)\n', (20158, 20161), True, 'import tensorflow.compat.v1 as tf\n'), ((20227, 20263), 'tensorflow.compat.v1.reshape', 'tf.reshape', (['diag_r', '[-1, self.dim_z]'], {}), '(diag_r, [-1, self.dim_z])\n', (20237, 20263), True, 'import tensorflow.compat.v1 as tf\n'), ((21036, 21058), 'tensorflow.compat.v1.linalg.diag_part', 'tf.linalg.diag_part', (['q'], {}), '(q)\n', (21055, 21058), True, 'import tensorflow.compat.v1 as tf\n'), ((21124, 21160), 'tensorflow.compat.v1.reshape', 'tf.reshape', (['diag_q', '[-1, self.dim_x]'], {}), '(diag_q, [-1, self.dim_x])\n', (21134, 21160), True, 'import tensorflow.compat.v1 as tf\n'), ((21713, 21756), 'tensorflow.compat.v1.summary.scalar', 'tf.summary.scalar', (['"""out/m_per_tr"""', 'm_per_tr'], {}), "('out/m_per_tr', m_per_tr)\n", (21730, 21756), True, 'import tensorflow.compat.v1 as tf\n'), ((21765, 21814), 'tensorflow.compat.v1.summary.scalar', 'tf.summary.scalar', (['"""out/deg_per_deg"""', 'deg_per_deg'], {}), "('out/deg_per_deg', deg_per_deg)\n", (21782, 21814), True, 'import tensorflow.compat.v1 as tf\n'), ((22468, 22480), 'tensorflow.compat.v1.add_n', 'tf.add_n', (['wd'], {}), '(wd)\n', (22476, 22480), True, 'import tensorflow.compat.v1 as tf\n'), ((22631, 22656), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['total_mse'], {}), '(total_mse)\n', (22645, 22656), True, 'import tensorflow.compat.v1 as tf\n'), ((22677, 22700), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['dist_ob'], {}), '(dist_ob)\n', (22691, 22700), True, 'import tensorflow.compat.v1 as tf\n'), ((23724, 23792), 'tensorflow.compat.v1.cond', 'tf.cond', (['training', '(lambda : total_loss + wd)', '(lambda : total_loss_val)'], {}), '(training, lambda : total_loss + wd, lambda : total_loss_val)\n', (23731, 23792), True, 'import tensorflow.compat.v1 as tf\n'), ((23848, 23886), 'tensorflow.compat.v1.summary.scalar', 'tf.summary.scalar', (['"""loss/total"""', 'total'], {}), "('loss/total', total)\n", (23865, 23886), True, 'import tensorflow.compat.v1 as tf\n'), ((23895, 23927), 'tensorflow.compat.v1.summary.scalar', 'tf.summary.scalar', (['"""loss/wd"""', 'wd'], {}), "('loss/wd', wd)\n", (23912, 23927), True, 'import tensorflow.compat.v1 as tf\n'), ((24009, 24059), 'tensorflow.compat.v1.summary.scalar', 'tf.summary.scalar', (['"""loss/tracking"""', 'total_tracking'], {}), "('loss/tracking', total_tracking)\n", (24026, 24059), True, 'import tensorflow.compat.v1 as tf\n'), ((24068, 24117), 'tensorflow.compat.v1.summary.scalar', 'tf.summary.scalar', (['"""loss/observations"""', 'total_obs'], {}), "('loss/observations', total_obs)\n", (24085, 24117), True, 'import tensorflow.compat.v1 as tf\n'), ((25960, 25975), 'tensorflow.compat.v1.square', 'tf.square', (['diff'], {}), '(diff)\n', (25969, 25975), True, 'import tensorflow.compat.v1 as tf\n'), ((25991, 26019), 'tensorflow.compat.v1.reduce_sum', 'tf.reduce_sum', (['diff'], {'axis': '(-1)'}), '(diff, axis=-1)\n', (26004, 26019), True, 'import tensorflow.compat.v1 as tf\n'), ((28024, 28055), 'tensorflow.compat.v1.linalg.diag_part', 'tf.linalg.diag_part', (['R_het_diag'], {}), '(R_het_diag)\n', (28043, 28055), True, 'import tensorflow.compat.v1 as tf\n'), ((28148, 28193), 'tensorflow.compat.v1.reshape', 'tf.reshape', (['diag_r_het_diag', '[-1, self.dim_z]'], {}), '(diag_r_het_diag, [-1, self.dim_z])\n', (28158, 28193), True, 'import tensorflow.compat.v1 as tf\n'), ((28219, 28249), 'tensorflow.compat.v1.linalg.diag_part', 'tf.linalg.diag_part', (['R_het_tri'], {}), '(R_het_tri)\n', (28238, 28249), True, 'import tensorflow.compat.v1 as tf\n'), ((28339, 28383), 'tensorflow.compat.v1.reshape', 'tf.reshape', (['diag_r_het_tri', '[-1, self.dim_z]'], {}), '(diag_r_het_tri, [-1, self.dim_z])\n', (28349, 28383), True, 'import tensorflow.compat.v1 as tf\n'), ((29836, 29850), 'tensorflow.compat.v1.add_n', 'tf.add_n', (['mses'], {}), '(mses)\n', (29844, 29850), True, 'import tensorflow.compat.v1 as tf\n'), ((29971, 30013), 'tensorflow.compat.v1.image.resize', 'tf.image.resize', (['seg_pred', '[height, width]'], {}), '(seg_pred, [height, width])\n', (29986, 30013), True, 'import tensorflow.compat.v1 as tf\n'), ((30041, 30091), 'tensorflow.compat.v1.image.resize', 'tf.image.resize', (['initial_seg_pred', '[height, width]'], {}), '(initial_seg_pred, [height, width])\n', (30056, 30091), True, 'import tensorflow.compat.v1 as tf\n'), ((30747, 30770), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['pix_mse'], {}), '(pix_mse)\n', (30761, 30770), True, 'import tensorflow.compat.v1 as tf\n'), ((31068, 31099), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['initial_pix_mse'], {}), '(initial_pix_mse)\n', (31082, 31099), True, 'import tensorflow.compat.v1 as tf\n'), ((31763, 31778), 'tensorflow.compat.v1.abs', 'tf.abs', (['z[:, 2]'], {}), '(z[:, 2])\n', (31769, 31778), True, 'import tensorflow.compat.v1 as tf\n'), ((31973, 32000), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['rot_penalty'], {}), '(rot_penalty)\n', (31987, 32000), True, 'import tensorflow.compat.v1 as tf\n'), ((32197, 32209), 'tensorflow.compat.v1.add_n', 'tf.add_n', (['wd'], {}), '(wd)\n', (32205, 32209), True, 'import tensorflow.compat.v1 as tf\n'), ((33571, 33630), 'tensorflow.compat.v1.cond', 'tf.cond', (['training', '(lambda : total_train)', '(lambda : total_val)'], {}), '(training, lambda : total_train, lambda : total_val)\n', (33578, 33630), True, 'import tensorflow.compat.v1 as tf\n'), ((33662, 33700), 'tensorflow.compat.v1.summary.scalar', 'tf.summary.scalar', (['"""loss/total"""', 'total'], {}), "('loss/total', total)\n", (33679, 33700), True, 'import tensorflow.compat.v1 as tf\n'), ((33709, 33741), 'tensorflow.compat.v1.summary.scalar', 'tf.summary.scalar', (['"""loss/wd"""', 'wd'], {}), "('loss/wd', wd)\n", (33726, 33741), True, 'import tensorflow.compat.v1 as tf\n'), ((35466, 35528), 'tensorflow.compat.v1.summary.scalar', 'tf.summary.scalar', (['"""observation_loss/rot_penalty"""', 'rot_penalty'], {}), "('observation_loss/rot_penalty', rot_penalty)\n", (35483, 35528), True, 'import tensorflow.compat.v1 as tf\n'), ((35537, 35583), 'tensorflow.compat.v1.summary.scalar', 'tf.summary.scalar', (['"""loss/like_good"""', 'good_loss'], {}), "('loss/like_good', good_loss)\n", (35554, 35583), True, 'import tensorflow.compat.v1 as tf\n'), ((35592, 35636), 'tensorflow.compat.v1.summary.scalar', 'tf.summary.scalar', (['"""loss/like_bad"""', 'bad_loss'], {}), "('loss/like_bad', bad_loss)\n", (35609, 35636), True, 'import tensorflow.compat.v1 as tf\n'), ((35645, 35691), 'tensorflow.compat.v1.summary.scalar', 'tf.summary.scalar', (['"""loss/like_loss"""', 'like_loss'], {}), "('loss/like_loss', like_loss)\n", (35662, 35691), True, 'import tensorflow.compat.v1 as tf\n'), ((35701, 35749), 'tensorflow.compat.v1.summary.scalar', 'tf.summary.scalar', (['"""loss/segmentation"""', 'seg_loss'], {}), "('loss/segmentation', seg_loss)\n", (35718, 35749), True, 'import tensorflow.compat.v1 as tf\n'), ((35758, 35797), 'tensorflow.compat.v1.summary.image', 'tf.summary.image', (['"""loss/seg_label"""', 'seg'], {}), "('loss/seg_label', seg)\n", (35774, 35797), True, 'import tensorflow.compat.v1 as tf\n'), ((35806, 35849), 'tensorflow.compat.v1.summary.image', 'tf.summary.image', (['"""loss/seg_pred"""', 'seg_pred'], {}), "('loss/seg_pred', seg_pred)\n", (35822, 35849), True, 'import tensorflow.compat.v1 as tf\n'), ((35858, 35913), 'tensorflow.compat.v1.summary.image', 'tf.summary.image', (['"""loss/initial_seg_label"""', 'initial_seg'], {}), "('loss/initial_seg_label', initial_seg)\n", (35874, 35913), True, 'import tensorflow.compat.v1 as tf\n'), ((35922, 35980), 'tensorflow.compat.v1.summary.image', 'tf.summary.image', (['"""loss/inital_seg_pred"""', 'initial_seg_pred'], {}), "('loss/inital_seg_pred', initial_seg_pred)\n", (35938, 35980), True, 'import tensorflow.compat.v1 as tf\n'), ((39445, 39459), 'tensorflow.compat.v1.add_n', 'tf.add_n', (['mses'], {}), '(mses)\n', (39453, 39459), True, 'import tensorflow.compat.v1 as tf\n'), ((39917, 39929), 'tensorflow.compat.v1.add_n', 'tf.add_n', (['wd'], {}), '(wd)\n', (39925, 39929), True, 'import tensorflow.compat.v1 as tf\n'), ((40687, 40725), 'tensorflow.compat.v1.summary.scalar', 'tf.summary.scalar', (['"""loss/total"""', 'total'], {}), "('loss/total', total)\n", (40704, 40725), True, 'import tensorflow.compat.v1 as tf\n'), ((40734, 40766), 'tensorflow.compat.v1.summary.scalar', 'tf.summary.scalar', (['"""loss/wd"""', 'wd'], {}), "('loss/wd', wd)\n", (40751, 40766), True, 'import tensorflow.compat.v1 as tf\n'), ((45536, 45574), 'tensorflow.compat.v1.norm', 'tf.norm', (['pred'], {'axis': '(-1)', 'keep_dims': '(True)'}), '(pred, axis=-1, keep_dims=True)\n', (45543, 45574), True, 'import tensorflow.compat.v1 as tf\n'), ((45596, 45635), 'tensorflow.compat.v1.norm', 'tf.norm', (['label'], {'axis': '(-1)', 'keep_dims': '(True)'}), '(label, axis=-1, keep_dims=True)\n', (45603, 45635), True, 'import tensorflow.compat.v1 as tf\n'), ((45651, 45679), 'tensorflow.compat.v1.nn.l2_normalize', 'tf.nn.l2_normalize', (['pred', '(-1)'], {}), '(pred, -1)\n', (45669, 45679), True, 'import tensorflow.compat.v1 as tf\n'), ((45696, 45725), 'tensorflow.compat.v1.nn.l2_normalize', 'tf.nn.l2_normalize', (['label', '(-1)'], {}), '(label, -1)\n', (45714, 45725), True, 'import tensorflow.compat.v1 as tf\n'), ((47007, 47050), 'tensorflow.compat.v1.reshape', 'tf.reshape', (['label', '[self.batch_size, -1, 1]'], {}), '(label, [self.batch_size, -1, 1])\n', (47017, 47050), True, 'import tensorflow.compat.v1 as tf\n'), ((47066, 47108), 'tensorflow.compat.v1.reshape', 'tf.reshape', (['pred', '[self.batch_size, -1, 1]'], {}), '(pred, [self.batch_size, -1, 1])\n', (47076, 47108), True, 'import tensorflow.compat.v1 as tf\n'), ((47155, 47185), 'tensorflow.compat.v1.clip_by_value', 'tf.clip_by_value', (['pred', '(0)', '(1.0)'], {}), '(pred, 0, 1.0)\n', (47171, 47185), True, 'import tensorflow.compat.v1 as tf\n'), ((50010, 50034), 'tensorflow.compat.v1.multiply', 'tf.multiply', (['ps', 'weights'], {}), '(ps, weights)\n', (50021, 50034), True, 'import tensorflow.compat.v1 as tf\n'), ((50050, 50077), 'tensorflow.compat.v1.reduce_sum', 'tf.reduce_sum', (['mult'], {'axis': '(1)'}), '(mult, axis=1)\n', (50063, 50077), True, 'import tensorflow.compat.v1 as tf\n'), ((50163, 50228), 'tensorflow.compat.v1.concat', 'tf.concat', (['[mean[:, :2], ang1 / self.scale, mean[:, 4:]]'], {'axis': '(-1)'}), '([mean[:, :2], ang1 / self.scale, mean[:, 4:]], axis=-1)\n', (50172, 50228), True, 'import tensorflow.compat.v1 as tf\n'), ((50582, 50606), 'tensorflow.compat.v1.multiply', 'tf.multiply', (['ps', 'weights'], {}), '(ps, weights)\n', (50593, 50606), True, 'import tensorflow.compat.v1 as tf\n'), ((50622, 50652), 'tensorflow.compat.v1.reduce_sum', 'tf.reduce_sum', (['mult'], {'axis': 'axis'}), '(mult, axis=axis)\n', (50635, 50652), True, 'import tensorflow.compat.v1 as tf\n'), ((50737, 50801), 'tensorflow.compat.v1.concat', 'tf.concat', (['[mean[:, :2], ang / self.scale, mean[:, 4:]]'], {'axis': '(-1)'}), '([mean[:, :2], ang / self.scale, mean[:, 4:]], axis=-1)\n', (50746, 50801), True, 'import tensorflow.compat.v1 as tf\n'), ((50916, 50975), 'tensorflow.compat.v1.clip_by_value', 'tf.clip_by_value', (['fr', '(0.1 / self.scale)', '(5000.0 / self.scale)'], {}), '(fr, 0.1 / self.scale, 5000.0 / self.scale)\n', (50932, 50975), True, 'import tensorflow.compat.v1 as tf\n'), ((51082, 51138), 'tensorflow.compat.v1.clip_by_value', 'tf.clip_by_value', (['m', '(0.1 / self.scale)', '(90.0 / self.scale)'], {}), '(m, 0.1 / self.scale, 90.0 / self.scale)\n', (51098, 51138), True, 'import tensorflow.compat.v1 as tf\n'), ((51244, 51273), 'tensorflow.compat.v1.clip_by_value', 'tf.clip_by_value', (['s', '(0.0)', '(1.0)'], {}), '(s, 0.0, 1.0)\n', (51260, 51273), True, 'import tensorflow.compat.v1 as tf\n'), ((52768, 52782), 'tensorflow.compat.v1.squeeze', 'tf.squeeze', (['ob'], {}), '(ob)\n', (52778, 52782), True, 'import tensorflow.compat.v1 as tf\n'), ((52796, 52836), 'tensorflow.compat.v1.strings.regex_replace', 'tf.strings.regex_replace', (['ob', "'\\x00'", '""""""'], {}), "(ob, '\\x00', '')\n", (52820, 52836), True, 'import tensorflow.compat.v1 as tf\n'), ((52850, 52890), 'tensorflow.compat.v1.strings.regex_replace', 'tf.strings.regex_replace', (['ob', "'\\x00'", '""""""'], {}), "(ob, '\\x00', '')\n", (52874, 52890), True, 'import tensorflow.compat.v1 as tf\n'), ((56178, 56233), 'differentiable_filters.utils.recordio.RecordMeta.load', 'tfr.RecordMeta.load', (['path', "(name + '_' + data_mode + '_')"], {}), "(path, name + '_' + data_mode + '_')\n", (56197, 56233), True, 'from differentiable_filters.utils import recordio as tfr\n'), ((57451, 57502), 'tensorflow.compat.v1.io.parse_single_example', 'tf.io.parse_single_example', (['example_proto', 'features'], {}), '(example_proto, features)\n', (57477, 57502), True, 'import tensorflow.compat.v1 as tf\n'), ((58068, 58178), 'tensorflow.compat.v1.concat', 'tf.concat', (['[pose[:, 0:1] * 1000 / self.scale, pose[:, 1:2] * 1000 / self.scale, ori /\n self.scale]'], {'axis': '(1)'}), '([pose[:, 0:1] * 1000 / self.scale, pose[:, 1:2] * 1000 / self.\n scale, ori / self.scale], axis=1)\n', (58077, 58178), True, 'import tensorflow.compat.v1 as tf\n'), ((58284, 58324), 'tensorflow.compat.v1.cast', 'tf.cast', (["features['contact']", 'tf.float32'], {}), "(features['contact'], tf.float32)\n", (58291, 58324), True, 'import tensorflow.compat.v1 as tf\n'), ((58476, 58503), 'tensorflow.compat.v1.linalg.norm', 'tf.linalg.norm', (['cp'], {'axis': '(-1)'}), '(cp, axis=-1)\n', (58490, 58503), True, 'import tensorflow.compat.v1 as tf\n'), ((58905, 58940), 'tensorflow.compat.v1.reduce_sum', 'tf.reduce_sum', (['mask'], {'axis': '[1, 2, 3]'}), '(mask, axis=[1, 2, 3])\n', (58918, 58940), True, 'import tensorflow.compat.v1 as tf\n'), ((58997, 59028), 'tensorflow.compat.v1.concat', 'tf.concat', (['[im, coord]'], {'axis': '(-1)'}), '([im, coord], axis=-1)\n', (59006, 59028), True, 'import tensorflow.compat.v1 as tf\n'), ((59083, 59118), 'tensorflow.compat.v1.reshape', 'tf.reshape', (["features['object']", '[1]'], {}), "(features['object'], [1])\n", (59093, 59118), True, 'import tensorflow.compat.v1 as tf\n'), ((59133, 59170), 'tensorflow.compat.v1.reshape', 'tf.reshape', (["features['material']", '[1]'], {}), "(features['material'], [1])\n", (59143, 59170), True, 'import tensorflow.compat.v1 as tf\n'), ((62285, 62298), 'tensorflow.compat.v1.stack', 'tf.stack', (['ims'], {}), '(ims)\n', (62293, 62298), True, 'import tensorflow.compat.v1 as tf\n'), ((62319, 62338), 'tensorflow.compat.v1.stack', 'tf.stack', (['start_ims'], {}), '(start_ims)\n', (62327, 62338), True, 'import tensorflow.compat.v1 as tf\n'), ((62358, 62376), 'tensorflow.compat.v1.stack', 'tf.stack', (['start_ts'], {}), '(start_ts)\n', (62366, 62376), True, 'import tensorflow.compat.v1 as tf\n'), ((62391, 62404), 'tensorflow.compat.v1.stack', 'tf.stack', (['tes'], {}), '(tes)\n', (62399, 62404), True, 'import tensorflow.compat.v1 as tf\n'), ((62421, 62436), 'tensorflow.compat.v1.stack', 'tf.stack', (['pixts'], {}), '(pixts)\n', (62429, 62436), True, 'import tensorflow.compat.v1 as tf\n'), ((62453, 62468), 'tensorflow.compat.v1.stack', 'tf.stack', (['pixte'], {}), '(pixte)\n', (62461, 62468), True, 'import tensorflow.compat.v1 as tf\n'), ((62482, 62500), 'tensorflow.compat.v1.tile', 'tf.tile', (['ob', '[num]'], {}), '(ob, [num])\n', (62489, 62500), True, 'import tensorflow.compat.v1 as tf\n'), ((62515, 62534), 'tensorflow.compat.v1.tile', 'tf.tile', (['mat', '[num]'], {}), '(mat, [num])\n', (62522, 62534), True, 'import tensorflow.compat.v1 as tf\n'), ((63422, 63462), 'tensorflow.compat.v1.cast', 'tf.cast', (["features['contact']", 'tf.float32'], {}), "(features['contact'], tf.float32)\n", (63429, 63462), True, 'import tensorflow.compat.v1 as tf\n'), ((63609, 63636), 'tensorflow.compat.v1.linalg.norm', 'tf.linalg.norm', (['cp'], {'axis': '(-1)'}), '(cp, axis=-1)\n', (63623, 63636), True, 'import tensorflow.compat.v1 as tf\n'), ((63985, 64020), 'tensorflow.compat.v1.reshape', 'tf.reshape', (["features['object']", '[1]'], {}), "(features['object'], [1])\n", (63995, 64020), True, 'import tensorflow.compat.v1 as tf\n'), ((64035, 64072), 'tensorflow.compat.v1.reshape', 'tf.reshape', (["features['material']", '[1]'], {}), "(features['material'], [1])\n", (64045, 64072), True, 'import tensorflow.compat.v1 as tf\n'), ((65392, 65413), 'tensorflow.compat.v1.stack', 'tf.stack', (['start_state'], {}), '(start_state)\n', (65400, 65413), True, 'import tensorflow.compat.v1 as tf\n'), ((65427, 65439), 'tensorflow.compat.v1.stack', 'tf.stack', (['us'], {}), '(us)\n', (65435, 65439), True, 'import tensorflow.compat.v1 as tf\n'), ((65453, 65471), 'tensorflow.compat.v1.tile', 'tf.tile', (['ob', '[num]'], {}), '(ob, [num])\n', (65460, 65471), True, 'import tensorflow.compat.v1 as tf\n'), ((65486, 65505), 'tensorflow.compat.v1.tile', 'tf.tile', (['mat', '[num]'], {}), '(mat, [num])\n', (65493, 65505), True, 'import tensorflow.compat.v1 as tf\n'), ((66122, 66162), 'tensorflow.compat.v1.cast', 'tf.cast', (["features['contact']", 'tf.float32'], {}), "(features['contact'], tf.float32)\n", (66129, 66162), True, 'import tensorflow.compat.v1 as tf\n'), ((66309, 66336), 'tensorflow.compat.v1.linalg.norm', 'tf.linalg.norm', (['cp'], {'axis': '(-1)'}), '(cp, axis=-1)\n', (66323, 66336), True, 'import tensorflow.compat.v1 as tf\n'), ((67134, 67169), 'tensorflow.compat.v1.reduce_sum', 'tf.reduce_sum', (['mask'], {'axis': '[1, 2, 3]'}), '(mask, axis=[1, 2, 3])\n', (67147, 67169), True, 'import tensorflow.compat.v1 as tf\n'), ((67183, 67214), 'tensorflow.compat.v1.concat', 'tf.concat', (['[im, coord]'], {'axis': '(-1)'}), '([im, coord], axis=-1)\n', (67192, 67214), True, 'import tensorflow.compat.v1 as tf\n'), ((67267, 67302), 'tensorflow.compat.v1.reshape', 'tf.reshape', (["features['object']", '[1]'], {}), "(features['object'], [1])\n", (67277, 67302), True, 'import tensorflow.compat.v1 as tf\n'), ((67317, 67354), 'tensorflow.compat.v1.reshape', 'tf.reshape', (["features['material']", '[1]'], {}), "(features['material'], [1])\n", (67327, 67354), True, 'import tensorflow.compat.v1 as tf\n'), ((69761, 69774), 'tensorflow.compat.v1.stack', 'tf.stack', (['ims'], {}), '(ims)\n', (69769, 69774), True, 'import tensorflow.compat.v1 as tf\n'), ((69795, 69814), 'tensorflow.compat.v1.stack', 'tf.stack', (['start_ims'], {}), '(start_ims)\n', (69803, 69814), True, 'import tensorflow.compat.v1 as tf\n'), ((69834, 69852), 'tensorflow.compat.v1.stack', 'tf.stack', (['start_ts'], {}), '(start_ts)\n', (69842, 69852), True, 'import tensorflow.compat.v1 as tf\n'), ((69875, 69896), 'tensorflow.compat.v1.stack', 'tf.stack', (['start_state'], {}), '(start_state)\n', (69883, 69896), True, 'import tensorflow.compat.v1 as tf\n'), ((69910, 69922), 'tensorflow.compat.v1.stack', 'tf.stack', (['us'], {}), '(us)\n', (69918, 69922), True, 'import tensorflow.compat.v1 as tf\n'), ((69937, 69950), 'tensorflow.compat.v1.stack', 'tf.stack', (['tes'], {}), '(tes)\n', (69945, 69950), True, 'import tensorflow.compat.v1 as tf\n'), ((69967, 69982), 'tensorflow.compat.v1.stack', 'tf.stack', (['pixts'], {}), '(pixts)\n', (69975, 69982), True, 'import tensorflow.compat.v1 as tf\n'), ((69999, 70014), 'tensorflow.compat.v1.stack', 'tf.stack', (['pixte'], {}), '(pixte)\n', (70007, 70014), True, 'import tensorflow.compat.v1 as tf\n'), ((70032, 70048), 'tensorflow.compat.v1.stack', 'tf.stack', (['mv_trs'], {}), '(mv_trs)\n', (70040, 70048), True, 'import tensorflow.compat.v1 as tf\n'), ((70067, 70084), 'tensorflow.compat.v1.stack', 'tf.stack', (['mv_rots'], {}), '(mv_rots)\n', (70075, 70084), True, 'import tensorflow.compat.v1 as tf\n'), ((70100, 70114), 'tensorflow.compat.v1.stack', 'tf.stack', (['viss'], {}), '(viss)\n', (70108, 70114), True, 'import tensorflow.compat.v1 as tf\n'), ((70129, 70147), 'tensorflow.compat.v1.tile', 'tf.tile', (['ob', '[num]'], {}), '(ob, [num])\n', (70136, 70147), True, 'import tensorflow.compat.v1 as tf\n'), ((70162, 70181), 'tensorflow.compat.v1.tile', 'tf.tile', (['mat', '[num]'], {}), '(mat, [num])\n', (70169, 70181), True, 'import tensorflow.compat.v1 as tf\n'), ((74936, 74955), 'numpy.linalg.eigh', 'np.linalg.eigh', (['cov'], {}), '(cov)\n', (74950, 74955), True, 'import numpy as np\n'), ((75241, 75268), 'numpy.squeeze', 'np.squeeze', (['seq_pred[:, :2]'], {}), '(seq_pred[:, :2])\n', (75251, 75268), True, 'import numpy as np\n'), ((75287, 75313), 'numpy.squeeze', 'np.squeeze', (['seq_pred[:, 2]'], {}), '(seq_pred[:, 2])\n', (75297, 75313), True, 'import numpy as np\n'), ((75331, 75357), 'numpy.squeeze', 'np.squeeze', (['seq_pred[:, 3]'], {}), '(seq_pred[:, 3])\n', (75341, 75357), True, 'import numpy as np\n'), ((75376, 75402), 'numpy.squeeze', 'np.squeeze', (['seq_pred[:, 4]'], {}), '(seq_pred[:, 4])\n', (75386, 75402), True, 'import numpy as np\n'), ((75421, 75449), 'numpy.squeeze', 'np.squeeze', (['seq_pred[:, 5:7]'], {}), '(seq_pred[:, 5:7])\n', (75431, 75449), True, 'import numpy as np\n'), ((75467, 75495), 'numpy.squeeze', 'np.squeeze', (['seq_pred[:, 7:9]'], {}), '(seq_pred[:, 7:9])\n', (75477, 75495), True, 'import numpy as np\n'), ((75513, 75539), 'numpy.squeeze', 'np.squeeze', (['seq_pred[:, 9]'], {}), '(seq_pred[:, 9])\n', (75523, 75539), True, 'import numpy as np\n'), ((77617, 77653), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(2)', '(3)'], {'figsize': '[20, 15]'}), '(2, 3, figsize=[20, 15])\n', (77629, 77653), True, 'import matplotlib.pyplot as plt\n'), ((77667, 77695), 'numpy.arange', 'np.arange', (['pos_pred.shape[0]'], {}), '(pos_pred.shape[0])\n', (77676, 77695), True, 'import numpy as np\n'), ((81505, 81541), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(2)', '(3)'], {'figsize': '[20, 15]'}), '(2, 3, figsize=[20, 15])\n', (81517, 81541), True, 'import matplotlib.pyplot as plt\n'), ((81555, 81583), 'numpy.arange', 'np.arange', (['pos_pred.shape[0]'], {}), '(pos_pred.shape[0])\n', (81564, 81583), True, 'import numpy as np\n'), ((89522, 89549), 'numpy.squeeze', 'np.squeeze', (['seq_pred[:, :2]'], {}), '(seq_pred[:, :2])\n', (89532, 89549), True, 'import numpy as np\n'), ((89817, 89847), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '[15, 15]'}), '(figsize=[15, 15])\n', (89829, 89847), True, 'import matplotlib.pyplot as plt\n'), ((89899, 89929), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '[17, 17]'}), '(figsize=[17, 17])\n', (89911, 89929), True, 'import matplotlib.pyplot as plt\n'), ((96536, 96586), 'os.path.join', 'os.path.join', (['path', '"""resources"""', '"""plane_image.npy"""'], {}), "(path, 'resources', 'plane_image.npy')\n", (96548, 96586), False, 'import os\n'), ((96710, 96763), 'tensorflow.compat.v1.tile', 'tf.tile', (['self.plane_depth', '[self.batch_size, 1, 1, 1]'], {}), '(self.plane_depth, [self.batch_size, 1, 1, 1])\n', (96717, 96763), True, 'import tensorflow.compat.v1 as tf\n'), ((104084, 104134), 'os.path.join', 'os.path.join', (['path', '"""resources"""', '"""plane_image.npy"""'], {}), "(path, 'resources', 'plane_image.npy')\n", (104096, 104134), False, 'import os\n'), ((104258, 104311), 'tensorflow.compat.v1.tile', 'tf.tile', (['self.plane_depth', '[self.batch_size, 1, 1, 1]'], {}), '(self.plane_depth, [self.batch_size, 1, 1, 1])\n', (104265, 104311), True, 'import tensorflow.compat.v1 as tf\n'), ((128109, 128137), 'tensorflow.compat.v1.reshape', 'tf.reshape', (['pos_c2', '[bs, -1]'], {}), '(pos_c2, [bs, -1])\n', (128119, 128137), True, 'import tensorflow.compat.v1 as tf\n'), ((128459, 128504), 'tensorflow.compat.v1.concat', 'tf.concat', (['[pos_fc, rot_fc, rns_fc2]'], {'axis': '(-1)'}), '([pos_fc, rot_fc, rns_fc2], axis=-1)\n', (128468, 128504), True, 'import tensorflow.compat.v1 as tf\n'), ((128524, 128571), 'tensorflow.compat.v1.tile', 'tf.tile', (['encoding[:, None, :]', '[1, num_pred, 1]'], {}), '(encoding[:, None, :], [1, num_pred, 1])\n', (128531, 128571), True, 'import tensorflow.compat.v1 as tf\n'), ((128594, 128635), 'tensorflow.compat.v1.concat', 'tf.concat', (['[encoding, particles]'], {'axis': '(-1)'}), '([encoding, particles], axis=-1)\n', (128603, 128635), True, 'import tensorflow.compat.v1 as tf\n'), ((128657, 128700), 'tensorflow.compat.v1.reshape', 'tf.reshape', (['input_data', '[bs * num_pred, -1]'], {}), '(input_data, [bs * num_pred, -1])\n', (128667, 128700), True, 'import tensorflow.compat.v1 as tf\n'), ((130890, 130939), 'tensorflow.compat.v1.concat', 'tf.concat', (['[inputs[:, :3], inputs[:, 5:]]'], {'axis': '(1)'}), '([inputs[:, :3], inputs[:, 5:]], axis=1)\n', (130899, 130939), True, 'import tensorflow.compat.v1 as tf\n'), ((148450, 148515), 'tensorflow.compat.v1.concat', 'tf.concat', (['[old_state[:, :3], old_state[:, 4:], actions]'], {'axis': '(-1)'}), '([old_state[:, :3], old_state[:, 4:], actions], axis=-1)\n', (148459, 148515), True, 'import tensorflow.compat.v1 as tf\n'), ((2129, 2144), 'pickle.load', 'pickle.load', (['bf'], {}), '(bf)\n', (2140, 2144), False, 'import pickle\n'), ((3267, 3289), 'numpy.square', 'np.square', (['self.q_diag'], {}), '(self.q_diag)\n', (3276, 3289), True, 'import numpy as np\n'), ((3370, 3392), 'numpy.square', 'np.square', (['self.r_diag'], {}), '(self.r_diag)\n', (3379, 3392), True, 'import numpy as np\n'), ((3594, 3654), 'numpy.array', 'np.array', (['[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]'], {}), '([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0])\n', (3602, 3654), True, 'import numpy as np\n'), ((3659, 3786), 'numpy.array', 'np.array', (['[49.8394116, -2.3510439, 0, 2.5196417, 1.93745247, 27.6656989, 67.1287098, \n 0.03124815, -0.18917632, -0.14730855]'], {}), '([49.8394116, -2.3510439, 0, 2.5196417, 1.93745247, 27.6656989, \n 67.1287098, 0.03124815, -0.18917632, -0.14730855])\n', (3667, 3786), True, 'import numpy as np\n'), ((3842, 3971), 'numpy.array', 'np.array', (['[27.9914853, -30.3366791, 0, -4.6963326, -2.96631439, 3.6698755, -\n 14.5376077, -0.49956926, 0.56362964, 0.54478971]'], {}), '([27.9914853, -30.3366791, 0, -4.6963326, -2.96631439, 3.6698755, -\n 14.5376077, -0.49956926, 0.56362964, 0.54478971])\n', (3850, 3971), True, 'import numpy as np\n'), ((18316, 18365), 'tensorflow.compat.v1.tile', 'tf.tile', (['seq_label[:, :, None, :]', '[1, 1, num, 1]'], {}), '(seq_label[:, :, None, :], [1, 1, num, 1])\n', (18323, 18365), True, 'import tensorflow.compat.v1 as tf\n'), ((20187, 20209), 'tensorflow.compat.v1.abs', 'tf.abs', (['(diag_r + 1e-05)'], {}), '(diag_r + 1e-05)\n', (20193, 20209), True, 'import tensorflow.compat.v1 as tf\n'), ((20549, 20563), 'tensorflow.compat.v1.add_n', 'tf.add_n', (['corr'], {}), '(corr)\n', (20557, 20563), True, 'import tensorflow.compat.v1 as tf\n'), ((20964, 20985), 'tensorflow.compat.v1.add_n', 'tf.add_n', (['corr_r_cont'], {}), '(corr_r_cont)\n', (20972, 20985), True, 'import tensorflow.compat.v1 as tf\n'), ((21084, 21106), 'tensorflow.compat.v1.abs', 'tf.abs', (['(diag_q + 1e-05)'], {}), '(diag_q + 1e-05)\n', (21090, 21106), True, 'import tensorflow.compat.v1 as tf\n'), ((21488, 21504), 'tensorflow.compat.v1.add_n', 'tf.add_n', (['corr_q'], {}), '(corr_q)\n', (21496, 21504), True, 'import tensorflow.compat.v1 as tf\n'), ((21857, 21878), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['mv_tr'], {}), '(mv_tr)\n', (21871, 21878), True, 'import tensorflow.compat.v1 as tf\n'), ((21923, 21945), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['mv_rot'], {}), '(mv_rot)\n', (21937, 21945), True, 'import tensorflow.compat.v1 as tf\n'), ((21989, 22012), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['dist_tr'], {}), '(dist_tr)\n', (22003, 22012), True, 'import tensorflow.compat.v1 as tf\n'), ((22057, 22081), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['dist_rot'], {}), '(dist_rot)\n', (22071, 22081), True, 'import tensorflow.compat.v1 as tf\n'), ((22758, 22784), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['likelihood'], {}), '(likelihood)\n', (22772, 22784), True, 'import tensorflow.compat.v1 as tf\n'), ((23557, 23583), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['likelihood'], {}), '(likelihood)\n', (23571, 23583), True, 'import tensorflow.compat.v1 as tf\n'), ((23973, 23999), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['likelihood'], {}), '(likelihood)\n', (23987, 23999), True, 'import tensorflow.compat.v1 as tf\n'), ((24163, 24181), 'tensorflow.compat.v1.squeeze', 'tf.squeeze', (['corr_r'], {}), '(corr_r)\n', (24173, 24181), True, 'import tensorflow.compat.v1 as tf\n'), ((24229, 24252), 'tensorflow.compat.v1.squeeze', 'tf.squeeze', (['corr_r_cont'], {}), '(corr_r_cont)\n', (24239, 24252), True, 'import tensorflow.compat.v1 as tf\n'), ((24300, 24318), 'tensorflow.compat.v1.squeeze', 'tf.squeeze', (['corr_q'], {}), '(corr_q)\n', (24310, 24318), True, 'import tensorflow.compat.v1 as tf\n'), ((25438, 25458), 'tensorflow.compat.v1.greater', 'tf.greater', (['mv_tr', '(0)'], {}), '(mv_tr, 0)\n', (25448, 25458), True, 'import tensorflow.compat.v1 as tf\n'), ((25562, 25583), 'tensorflow.compat.v1.greater', 'tf.greater', (['mv_rot', '(0)'], {}), '(mv_rot, 0)\n', (25572, 25583), True, 'import tensorflow.compat.v1 as tf\n'), ((25715, 25739), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['m_per_tr'], {}), '(m_per_tr)\n', (25729, 25739), True, 'import tensorflow.compat.v1 as tf\n'), ((25741, 25768), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['deg_per_deg'], {}), '(deg_per_deg)\n', (25755, 25768), True, 'import tensorflow.compat.v1 as tf\n'), ((26045, 26064), 'tensorflow.compat.v1.greater', 'tf.greater', (['diff', '(0)'], {}), '(diff, 0)\n', (26055, 26064), True, 'import tensorflow.compat.v1 as tf\n'), ((26066, 26079), 'tensorflow.compat.v1.sqrt', 'tf.sqrt', (['diff'], {}), '(diff)\n', (26073, 26079), True, 'import tensorflow.compat.v1 as tf\n'), ((27062, 27084), 'tensorflow.compat.v1.stop_gradient', 'tf.stop_gradient', (['diff'], {}), '(diff)\n', (27078, 27084), True, 'import tensorflow.compat.v1 as tf\n'), ((27265, 27287), 'tensorflow.compat.v1.stop_gradient', 'tf.stop_gradient', (['diff'], {}), '(diff)\n', (27281, 27287), True, 'import tensorflow.compat.v1 as tf\n'), ((28090, 28121), 'tensorflow.compat.v1.abs', 'tf.abs', (['(diag_r_het_diag + 1e-05)'], {}), '(diag_r_het_diag + 1e-05)\n', (28096, 28121), True, 'import tensorflow.compat.v1 as tf\n'), ((28283, 28313), 'tensorflow.compat.v1.abs', 'tf.abs', (['(diag_r_het_tri + 1e-05)'], {}), '(diag_r_het_tri + 1e-05)\n', (28289, 28313), True, 'import tensorflow.compat.v1 as tf\n'), ((28943, 28962), 'tensorflow.compat.v1.add_n', 'tf.add_n', (['corr_diag'], {}), '(corr_diag)\n', (28951, 28962), True, 'import tensorflow.compat.v1 as tf\n'), ((28996, 29015), 'tensorflow.compat.v1.add_n', 'tf.add_n', (['corr_full'], {}), '(corr_full)\n', (29004, 29015), True, 'import tensorflow.compat.v1 as tf\n'), ((30281, 30317), 'tensorflow.compat.v1.reduce_sum', 'tf.reduce_sum', (['seg_loss'], {'axis': '[1, 2]'}), '(seg_loss, axis=[1, 2])\n', (30294, 30317), True, 'import tensorflow.compat.v1 as tf\n'), ((30526, 30563), 'tensorflow.compat.v1.reduce_sum', 'tf.reduce_sum', (['seg_loss2'], {'axis': '[1, 2]'}), '(seg_loss2, axis=[1, 2])\n', (30539, 30563), True, 'import tensorflow.compat.v1 as tf\n'), ((31810, 31835), 'tensorflow.compat.v1.greater', 'tf.greater', (['rot_pred', '(180)'], {}), '(rot_pred, 180)\n', (31820, 31835), True, 'import tensorflow.compat.v1 as tf\n'), ((31868, 31893), 'tensorflow.compat.v1.square', 'tf.square', (['(rot_pred - 180)'], {}), '(rot_pred - 180)\n', (31877, 31893), True, 'import tensorflow.compat.v1 as tf\n'), ((31926, 31949), 'tensorflow.compat.v1.zeros_like', 'tf.zeros_like', (['rot_pred'], {}), '(rot_pred)\n', (31939, 31949), True, 'import tensorflow.compat.v1 as tf\n'), ((32320, 32354), 'tensorflow.compat.v1.less', 'tf.less', (['step', '(self.epoch_size * 2)'], {}), '(step, self.epoch_size * 2)\n', (32327, 32354), True, 'import tensorflow.compat.v1 as tf\n'), ((32902, 32936), 'tensorflow.compat.v1.less', 'tf.less', (['step', '(self.epoch_size * 5)'], {}), '(step, self.epoch_size * 5)\n', (32909, 32936), True, 'import tensorflow.compat.v1 as tf\n'), ((33824, 33861), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['likelihood_const_diag'], {}), '(likelihood_const_diag)\n', (33838, 33861), True, 'import tensorflow.compat.v1 as tf\n'), ((33944, 33980), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['likelihood_const_tri'], {}), '(likelihood_const_tri)\n', (33958, 33980), True, 'import tensorflow.compat.v1 as tf\n'), ((34062, 34097), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['likelihood_het_diag'], {}), '(likelihood_het_diag)\n', (34076, 34097), True, 'import tensorflow.compat.v1 as tf\n'), ((34178, 34212), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['likelihood_het_tri'], {}), '(likelihood_het_tri)\n', (34192, 34212), True, 'import tensorflow.compat.v1 as tf\n'), ((34274, 34321), 'tensorflow.compat.v1.summary.scalar', 'tf.summary.scalar', (["('label/' + name)", 'label[0, i]'], {}), "('label/' + name, label[0, i])\n", (34291, 34321), True, 'import tensorflow.compat.v1 as tf\n'), ((34819, 34846), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['corr_r_diag'], {}), '(corr_r_diag)\n', (34833, 34846), True, 'import tensorflow.compat.v1 as tf\n'), ((34898, 34925), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['corr_r_full'], {}), '(corr_r_full)\n', (34912, 34925), True, 'import tensorflow.compat.v1 as tf\n'), ((35010, 35036), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['normal_ang'], {}), '(normal_ang)\n', (35024, 35036), True, 'import tensorflow.compat.v1 as tf\n'), ((35119, 35138), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['vis'], {}), '(vis)\n', (35133, 35138), True, 'import tensorflow.compat.v1 as tf\n'), ((35221, 35245), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['pix_dist'], {}), '(pix_dist)\n', (35235, 35245), True, 'import tensorflow.compat.v1 as tf\n'), ((35327, 35350), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['dist_3d'], {}), '(dist_3d)\n', (35341, 35350), True, 'import tensorflow.compat.v1 as tf\n'), ((35438, 35456), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['ce'], {}), '(ce)\n', (35452, 35456), True, 'import tensorflow.compat.v1 as tf\n'), ((39974, 40008), 'tensorflow.compat.v1.less', 'tf.less', (['step', '(self.epoch_size * 5)'], {}), '(step, self.epoch_size * 5)\n', (39981, 40008), True, 'import tensorflow.compat.v1 as tf\n'), ((40849, 40886), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['likelihood_const_diag'], {}), '(likelihood_const_diag)\n', (40863, 40886), True, 'import tensorflow.compat.v1 as tf\n'), ((40969, 41005), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['likelihood_const_tri'], {}), '(likelihood_const_tri)\n', (40983, 41005), True, 'import tensorflow.compat.v1 as tf\n'), ((41087, 41122), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['likelihood_het_diag'], {}), '(likelihood_het_diag)\n', (41101, 41122), True, 'import tensorflow.compat.v1 as tf\n'), ((41203, 41237), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['likelihood_het_tri'], {}), '(likelihood_het_tri)\n', (41217, 41237), True, 'import tensorflow.compat.v1 as tf\n'), ((41325, 41366), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['likelihood_const_diag_ana'], {}), '(likelihood_const_diag_ana)\n', (41339, 41366), True, 'import tensorflow.compat.v1 as tf\n'), ((41453, 41493), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['likelihood_const_tri_ana'], {}), '(likelihood_const_tri_ana)\n', (41467, 41493), True, 'import tensorflow.compat.v1 as tf\n'), ((41579, 41618), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['likelihood_het_diag_ana'], {}), '(likelihood_het_diag_ana)\n', (41593, 41618), True, 'import tensorflow.compat.v1 as tf\n'), ((41703, 41741), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['likelihood_het_tri_ana'], {}), '(likelihood_het_tri_ana)\n', (41717, 41741), True, 'import tensorflow.compat.v1 as tf\n'), ((41786, 41805), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['mse'], {}), '(mse)\n', (41800, 41805), True, 'import tensorflow.compat.v1 as tf\n'), ((45992, 46041), 'tensorflow.compat.v1.clip_by_value', 'tf.clip_by_value', (['prod', '(-0.999999999)', '(0.999999999)'], {}), '(prod, -0.999999999, 0.999999999)\n', (46008, 46041), True, 'import tensorflow.compat.v1 as tf\n'), ((46291, 46340), 'tensorflow.compat.v1.clip_by_value', 'tf.clip_by_value', (['prod', '(-0.999999999)', '(0.999999999)'], {}), '(prod, -0.999999999, 0.999999999)\n', (46307, 46340), True, 'import tensorflow.compat.v1 as tf\n'), ((46498, 46526), 'tensorflow.compat.v1.greater', 'tf.greater', (['pred_norm', '(1e-06)'], {}), '(pred_norm, 1e-06)\n', (46508, 46526), True, 'import tensorflow.compat.v1 as tf\n'), ((46560, 46589), 'tensorflow.compat.v1.greater', 'tf.greater', (['label_norm', '(1e-06)'], {}), '(label_norm, 1e-06)\n', (46570, 46589), True, 'import tensorflow.compat.v1 as tf\n'), ((46633, 46656), 'tensorflow.compat.v1.math.is_finite', 'tf.math.is_finite', (['prod'], {}), '(prod)\n', (46650, 46656), True, 'import tensorflow.compat.v1 as tf\n'), ((46691, 46703), 'tensorflow.compat.v1.abs', 'tf.abs', (['prod'], {}), '(prod)\n', (46697, 46703), True, 'import tensorflow.compat.v1 as tf\n'), ((46705, 46724), 'tensorflow.compat.v1.zeros_like', 'tf.zeros_like', (['prod'], {}), '(prod)\n', (46718, 46724), True, 'import tensorflow.compat.v1 as tf\n'), ((48112, 48147), 'tensorflow.compat.v1.reshape', 'tf.reshape', (['state', '[-1, self.dim_x]'], {}), '(state, [-1, self.dim_x])\n', (48122, 48147), True, 'import tensorflow.compat.v1 as tf\n'), ((48938, 48982), 'tensorflow.compat.v1.reshape', 'tf.reshape', (['state', '(shape[:-1] + [self.dim_x])'], {}), '(state, shape[:-1] + [self.dim_x])\n', (48948, 48982), True, 'import tensorflow.compat.v1 as tf\n'), ((49349, 49383), 'tensorflow.compat.v1.reshape', 'tf.reshape', (['diff', '[-1, self.dim_z]'], {}), '(diff, [-1, self.dim_z])\n', (49359, 49383), True, 'import tensorflow.compat.v1 as tf\n'), ((49624, 49667), 'tensorflow.compat.v1.reshape', 'tf.reshape', (['diff', '(shape[:-1] + [self.dim_z])'], {}), '(diff, shape[:-1] + [self.dim_z])\n', (49634, 49667), True, 'import tensorflow.compat.v1 as tf\n'), ((52730, 52747), 'tensorflow.compat.v1.ones_like', 'tf.ones_like', (['rot'], {}), '(rot)\n', (52742, 52747), True, 'import tensorflow.compat.v1 as tf\n'), ((58228, 58258), 'tensorflow.compat.v1.squeeze', 'tf.squeeze', (["features['normal']"], {}), "(features['normal'])\n", (58238, 58258), True, 'import tensorflow.compat.v1 as tf\n'), ((58339, 58363), 'tensorflow.compat.v1.reshape', 'tf.reshape', (['con', '[-1, 1]'], {}), '(con, [-1, 1])\n', (58349, 58363), True, 'import tensorflow.compat.v1 as tf\n'), ((60169, 60205), 'numpy.random.randint', 'np.random.randint', (['(2)', '(seq_len - 2)', '(5)'], {}), '(2, seq_len - 2, 5)\n', (60186, 60205), True, 'import numpy as np\n'), ((60337, 60365), 'numpy.arange', 'np.arange', (['(2)', '(seq_len - 2)', '(8)'], {}), '(2, seq_len - 2, 8)\n', (60346, 60365), True, 'import numpy as np\n'), ((61285, 61356), 'tensorflow.compat.v1.concat', 'tf.concat', (['[pose[si, :2], relative_rot, cp[si], n[si], con[si]]'], {'axis': '(0)'}), '([pose[si, :2], relative_rot, cp[si], n[si], con[si]], axis=0)\n', (61294, 61356), True, 'import tensorflow.compat.v1 as tf\n'), ((61443, 61491), 'numpy.random.normal', 'np.random.normal', ([], {'loc': '(0)', 'scale': '(0.1)', 'size': '(24, 8)'}), '(loc=0, scale=0.1, size=(24, 8))\n', (61459, 61491), True, 'import numpy as np\n'), ((61550, 61597), 'numpy.random.normal', 'np.random.normal', ([], {'loc': '(10)', 'scale': '(5)', 'size': '(24, 8)'}), '(loc=10, scale=5, size=(24, 8))\n', (61566, 61597), True, 'import numpy as np\n'), ((61627, 61675), 'numpy.random.normal', 'np.random.normal', ([], {'loc': '(-10)', 'scale': '(5)', 'size': '(12, 8)'}), '(loc=-10, scale=5, size=(12, 8))\n', (61643, 61675), True, 'import numpy as np\n'), ((62580, 62596), 'tensorflow.compat.v1.stack', 'tf.stack', (['labels'], {}), '(labels)\n', (62588, 62596), True, 'import tensorflow.compat.v1 as tf\n'), ((62616, 62633), 'tensorflow.compat.v1.stack', 'tf.stack', (['good_zs'], {}), '(good_zs)\n', (62624, 62633), True, 'import tensorflow.compat.v1 as tf\n'), ((62653, 62669), 'tensorflow.compat.v1.stack', 'tf.stack', (['bad_zs'], {}), '(bad_zs)\n', (62661, 62669), True, 'import tensorflow.compat.v1 as tf\n'), ((62723, 62739), 'tensorflow.compat.v1.stack', 'tf.stack', (['labels'], {}), '(labels)\n', (62731, 62739), True, 'import tensorflow.compat.v1 as tf\n'), ((62741, 62755), 'tensorflow.compat.v1.stack', 'tf.stack', (['pixs'], {}), '(pixs)\n', (62749, 62755), True, 'import tensorflow.compat.v1 as tf\n'), ((62757, 62777), 'tensorflow.compat.v1.stack', 'tf.stack', (['start_pixs'], {}), '(start_pixs)\n', (62765, 62777), True, 'import tensorflow.compat.v1 as tf\n'), ((62797, 62811), 'tensorflow.compat.v1.stack', 'tf.stack', (['segs'], {}), '(segs)\n', (62805, 62811), True, 'import tensorflow.compat.v1 as tf\n'), ((62813, 62833), 'tensorflow.compat.v1.stack', 'tf.stack', (['start_segs'], {}), '(start_segs)\n', (62821, 62833), True, 'import tensorflow.compat.v1 as tf\n'), ((62835, 62849), 'tensorflow.compat.v1.stack', 'tf.stack', (['viss'], {}), '(viss)\n', (62843, 62849), True, 'import tensorflow.compat.v1 as tf\n'), ((63255, 63321), 'tensorflow.compat.v1.concat', 'tf.concat', (['[pose[:, 0:1] * 1000, pose[:, 1:2] * 1000, ori]'], {'axis': '(1)'}), '([pose[:, 0:1] * 1000, pose[:, 1:2] * 1000, ori], axis=1)\n', (63264, 63321), True, 'import tensorflow.compat.v1 as tf\n'), ((63366, 63396), 'tensorflow.compat.v1.squeeze', 'tf.squeeze', (["features['normal']"], {}), "(features['normal'])\n", (63376, 63396), True, 'import tensorflow.compat.v1 as tf\n'), ((63477, 63501), 'tensorflow.compat.v1.reshape', 'tf.reshape', (['con', '[-1, 1]'], {}), '(con, [-1, 1])\n', (63487, 63501), True, 'import tensorflow.compat.v1 as tf\n'), ((64435, 64472), 'numpy.random.randint', 'np.random.randint', (['(2)', '(seq_len - 1)', '(10)'], {}), '(2, seq_len - 1, 10)\n', (64452, 64472), True, 'import numpy as np\n'), ((64603, 64631), 'numpy.arange', 'np.arange', (['(2)', '(seq_len - 1)', '(8)'], {}), '(2, seq_len - 1, 8)\n', (64612, 64631), True, 'import numpy as np\n'), ((65222, 65312), 'tensorflow.compat.v1.concat', 'tf.concat', (['[pose[si, :2], relative_rot, friction, mu, cp[si], n[si], con[si]]'], {'axis': '(0)'}), '([pose[si, :2], relative_rot, friction, mu, cp[si], n[si], con[si]\n ], axis=0)\n', (65231, 65312), True, 'import tensorflow.compat.v1 as tf\n'), ((65955, 66021), 'tensorflow.compat.v1.concat', 'tf.concat', (['[pose[:, 0:1] * 1000, pose[:, 1:2] * 1000, ori]'], {'axis': '(1)'}), '([pose[:, 0:1] * 1000, pose[:, 1:2] * 1000, ori], axis=1)\n', (65964, 66021), True, 'import tensorflow.compat.v1 as tf\n'), ((66066, 66096), 'tensorflow.compat.v1.squeeze', 'tf.squeeze', (["features['normal']"], {}), "(features['normal'])\n", (66076, 66096), True, 'import tensorflow.compat.v1 as tf\n'), ((66177, 66201), 'tensorflow.compat.v1.reshape', 'tf.reshape', (['con', '[-1, 1]'], {}), '(con, [-1, 1])\n', (66187, 66201), True, 'import tensorflow.compat.v1 as tf\n'), ((67536, 67584), 'numpy.random.randint', 'np.random.randint', (['(1)', '(seq_len - self.sl - 2)', 'num'], {}), '(1, seq_len - self.sl - 2, num)\n', (67553, 67584), True, 'import numpy as np\n'), ((71406, 71436), 'csv.DictWriter', 'csv.DictWriter', (['log_file', 'keys'], {}), '(log_file, keys)\n', (71420, 71436), False, 'import csv\n'), ((71652, 71692), 'csv.DictWriter', 'csv.DictWriter', (['log_file_corr', 'keys_corr'], {}), '(log_file_corr, keys_corr)\n', (71666, 71692), False, 'import csv\n'), ((72806, 72823), 'numpy.mean', 'np.mean', (['corr_vis'], {}), '(corr_vis)\n', (72813, 72823), True, 'import numpy as np\n'), ((72857, 72875), 'numpy.mean', 'np.mean', (['corr_cont'], {}), '(corr_cont)\n', (72864, 72875), True, 'import numpy as np\n'), ((73195, 73213), 'numpy.mean', 'np.mean', (['corr_cont'], {}), '(corr_cont)\n', (73202, 73213), True, 'import numpy as np\n'), ((75560, 75571), 'numpy.max', 'np.max', (['vis'], {}), '(vis)\n', (75566, 75571), True, 'import numpy as np\n'), ((75621, 75641), 'numpy.squeeze', 'np.squeeze', (['z[:, :2]'], {}), '(z[:, :2])\n', (75631, 75641), True, 'import numpy as np\n'), ((75663, 75682), 'numpy.squeeze', 'np.squeeze', (['z[:, 2]'], {}), '(z[:, 2])\n', (75673, 75682), True, 'import numpy as np\n'), ((75703, 75724), 'numpy.squeeze', 'np.squeeze', (['z[:, 3:5]'], {}), '(z[:, 3:5])\n', (75713, 75724), True, 'import numpy as np\n'), ((75745, 75766), 'numpy.squeeze', 'np.squeeze', (['z[:, 5:7]'], {}), '(z[:, 5:7])\n', (75755, 75766), True, 'import numpy as np\n'), ((75787, 75806), 'numpy.squeeze', 'np.squeeze', (['z[:, 7]'], {}), '(z[:, 7])\n', (75797, 75806), True, 'import numpy as np\n'), ((84813, 84843), 'csv.DictWriter', 'csv.DictWriter', (['log_file', 'keys'], {}), '(log_file, keys)\n', (84827, 84843), False, 'import csv\n'), ((86058, 86088), 'csv.DictWriter', 'csv.DictWriter', (['log_file', 'keys'], {}), '(log_file, keys)\n', (86072, 86088), False, 'import csv\n'), ((86925, 86954), 'numpy.save', 'np.save', (["(name + '_init')", 'init'], {}), "(name + '_init', init)\n", (86932, 86954), True, 'import numpy as np\n'), ((86967, 86995), 'numpy.save', 'np.save', (["(name + '_true')", 'seq'], {}), "(name + '_true', seq)\n", (86974, 86995), True, 'import numpy as np\n'), ((87008, 87041), 'numpy.save', 'np.save', (["(name + '_pred')", 'seq_pred'], {}), "(name + '_pred', seq_pred)\n", (87015, 87041), True, 'import numpy as np\n'), ((87054, 87079), 'numpy.save', 'np.save', (["(name + '_obs')", 'z'], {}), "(name + '_obs', z)\n", (87061, 87079), True, 'import numpy as np\n'), ((87092, 87122), 'numpy.save', 'np.save', (["(name + '_c')", 'cov_pred'], {}), "(name + '_c', cov_pred)\n", (87099, 87122), True, 'import numpy as np\n'), ((87135, 87163), 'numpy.save', 'np.save', (["(name + '_q')", 'q_pred'], {}), "(name + '_q', q_pred)\n", (87142, 87163), True, 'import numpy as np\n'), ((87176, 87204), 'numpy.save', 'np.save', (["(name + '_r')", 'r_pred'], {}), "(name + '_r', r_pred)\n", (87183, 87204), True, 'import numpy as np\n'), ((87217, 87244), 'numpy.save', 'np.save', (["(name + '_vis')", 'vis'], {}), "(name + '_vis', vis)\n", (87224, 87244), True, 'import numpy as np\n'), ((87257, 87286), 'numpy.save', 'np.save', (["(name + '_u')", 'actions'], {}), "(name + '_u', actions)\n", (87264, 87286), True, 'import numpy as np\n'), ((87299, 87324), 'numpy.save', 'np.save', (["(name + '_ob')", 'ob'], {}), "(name + '_ob', ob)\n", (87306, 87324), True, 'import numpy as np\n'), ((89569, 89586), 'numpy.min', 'np.min', (['seq[:, 0]'], {}), '(seq[:, 0])\n', (89575, 89586), True, 'import numpy as np\n'), ((89588, 89610), 'numpy.min', 'np.min', (['pos_pred[:, 0]'], {}), '(pos_pred[:, 0])\n', (89594, 89610), True, 'import numpy as np\n'), ((89631, 89648), 'numpy.min', 'np.min', (['seq[:, 1]'], {}), '(seq[:, 1])\n', (89637, 89648), True, 'import numpy as np\n'), ((89650, 89672), 'numpy.min', 'np.min', (['pos_pred[:, 1]'], {}), '(pos_pred[:, 1])\n', (89656, 89672), True, 'import numpy as np\n'), ((89693, 89710), 'numpy.max', 'np.max', (['seq[:, 0]'], {}), '(seq[:, 0])\n', (89699, 89710), True, 'import numpy as np\n'), ((89712, 89734), 'numpy.max', 'np.max', (['pos_pred[:, 0]'], {}), '(pos_pred[:, 0])\n', (89718, 89734), True, 'import numpy as np\n'), ((89755, 89772), 'numpy.max', 'np.max', (['seq[:, 1]'], {}), '(seq[:, 1])\n', (89761, 89772), True, 'import numpy as np\n'), ((89774, 89796), 'numpy.max', 'np.max', (['pos_pred[:, 1]'], {}), '(pos_pred[:, 1])\n', (89780, 89796), True, 'import numpy as np\n'), ((95192, 95268), 'matplotlib.patches.Ellipse', 'Ellipse', ([], {'xy': 'pos_pred[-1]', 'width': 'width', 'height': 'height', 'angle': 'theta', 'alpha': '(0.1)'}), '(xy=pos_pred[-1], width=width, height=height, angle=theta, alpha=0.1)\n', (95199, 95268), False, 'from matplotlib.patches import Ellipse\n'), ((97671, 97748), 'tensorflow.compat.v1.keras.layers.LayerNormalization', 'tf.keras.layers.LayerNormalization', ([], {'name': '"""segment/norm1"""', 'trainable': 'trainable'}), "(name='segment/norm1', trainable=trainable)\n", (97705, 97748), True, 'import tensorflow.compat.v1 as tf\n'), ((97842, 97919), 'tensorflow.compat.v1.keras.layers.LayerNormalization', 'tf.keras.layers.LayerNormalization', ([], {'name': '"""segment/norm2"""', 'trainable': 'trainable'}), "(name='segment/norm2', trainable=trainable)\n", (97876, 97919), True, 'import tensorflow.compat.v1 as tf\n'), ((98013, 98090), 'tensorflow.compat.v1.keras.layers.LayerNormalization', 'tf.keras.layers.LayerNormalization', ([], {'name': '"""segment/norm3"""', 'trainable': 'trainable'}), "(name='segment/norm3', trainable=trainable)\n", (98047, 98090), True, 'import tensorflow.compat.v1 as tf\n'), ((98185, 98262), 'tensorflow.compat.v1.keras.layers.LayerNormalization', 'tf.keras.layers.LayerNormalization', ([], {'name': '"""segment/norm4"""', 'trainable': 'trainable'}), "(name='segment/norm4', trainable=trainable)\n", (98219, 98262), True, 'import tensorflow.compat.v1 as tf\n'), ((98357, 98434), 'tensorflow.compat.v1.keras.layers.LayerNormalization', 'tf.keras.layers.LayerNormalization', ([], {'name': '"""segment/norm5"""', 'trainable': 'trainable'}), "(name='segment/norm5', trainable=trainable)\n", (98391, 98434), True, 'import tensorflow.compat.v1 as tf\n'), ((99869, 99886), 'tensorflow.compat.v1.name_scope', 'tf.name_scope', (['""""""'], {}), "('')\n", (99882, 99886), True, 'import tensorflow.compat.v1 as tf\n'), ((103065, 103106), 'tensorflow.compat.v1.reshape', 'tf.reshape', (['pos_pix', '[self.batch_size, 2]'], {}), '(pos_pix, [self.batch_size, 2])\n', (103075, 103106), True, 'import tensorflow.compat.v1 as tf\n'), ((103125, 103164), 'differentiable_filters.utils.push_utils._to_3d', 'utils._to_3d', (['pos_pix', 'self.plane_depth'], {}), '(pos_pix, self.plane_depth)\n', (103137, 103164), True, 'from differentiable_filters.utils import push_utils as utils\n'), ((103289, 103350), 'tensorflow.compat.v1.concat', 'tf.concat', (['[pos_pix[:, 1:2] * 2, pos_pix[:, 0:1] * 2]'], {'axis': '(1)'}), '([pos_pix[:, 1:2] * 2, pos_pix[:, 0:1] * 2], axis=1)\n', (103298, 103350), True, 'import tensorflow.compat.v1 as tf\n'), ((103430, 103534), 'tensorflow.compat.v1.image.extract_glimpse', 'tf.image.extract_glimpse', (['images'], {'size': '[72, 72]', 'offsets': 'coords_rot', 'centered': '(True)', 'normalized': '(False)'}), '(images, size=[72, 72], offsets=coords_rot,\n centered=True, normalized=False)\n', (103454, 103534), True, 'import tensorflow.compat.v1 as tf\n'), ((105886, 105963), 'tensorflow.compat.v1.keras.layers.LayerNormalization', 'tf.keras.layers.LayerNormalization', ([], {'name': '"""glimpse/norm1"""', 'trainable': 'trainable'}), "(name='glimpse/norm1', trainable=trainable)\n", (105920, 105963), True, 'import tensorflow.compat.v1 as tf\n'), ((106057, 106134), 'tensorflow.compat.v1.keras.layers.LayerNormalization', 'tf.keras.layers.LayerNormalization', ([], {'name': '"""glimpse/norm2"""', 'trainable': 'trainable'}), "(name='glimpse/norm2', trainable=trainable)\n", (106091, 106134), True, 'import tensorflow.compat.v1 as tf\n'), ((106228, 106305), 'tensorflow.compat.v1.keras.layers.LayerNormalization', 'tf.keras.layers.LayerNormalization', ([], {'name': '"""glimpse/norm3"""', 'trainable': 'trainable'}), "(name='glimpse/norm3', trainable=trainable)\n", (106262, 106305), True, 'import tensorflow.compat.v1 as tf\n'), ((106399, 106472), 'tensorflow.compat.v1.keras.layers.LayerNormalization', 'tf.keras.layers.LayerNormalization', ([], {'name': '"""rot/norm1"""', 'trainable': 'trainable'}), "(name='rot/norm1', trainable=trainable)\n", (106433, 106472), True, 'import tensorflow.compat.v1 as tf\n'), ((106566, 106639), 'tensorflow.compat.v1.keras.layers.LayerNormalization', 'tf.keras.layers.LayerNormalization', ([], {'name': '"""rot/norm2"""', 'trainable': 'trainable'}), "(name='rot/norm2', trainable=trainable)\n", (106600, 106639), True, 'import tensorflow.compat.v1 as tf\n'), ((108092, 108109), 'tensorflow.compat.v1.name_scope', 'tf.name_scope', (['""""""'], {}), "('')\n", (108105, 108109), True, 'import tensorflow.compat.v1 as tf\n'), ((114573, 114620), 'tensorflow.compat.v1.linalg.norm', 'tf.linalg.norm', (['n[:, :2]'], {'axis': '(1)', 'keepdims': '(True)'}), '(n[:, :2], axis=1, keepdims=True)\n', (114587, 114620), True, 'import tensorflow.compat.v1 as tf\n'), ((115030, 115069), 'tensorflow.compat.v1.concat', 'tf.concat', (['[pos, rot, r, n, s]'], {'axis': '(-1)'}), '([pos, rot, r, n, s], axis=-1)\n', (115039, 115069), True, 'import tensorflow.compat.v1 as tf\n'), ((115108, 115141), 'tensorflow.compat.v1.summary.scalar', 'tf.summary.scalar', (['"""r_x"""', 'r[0, 0]'], {}), "('r_x', r[0, 0])\n", (115125, 115141), True, 'import tensorflow.compat.v1 as tf\n'), ((115154, 115187), 'tensorflow.compat.v1.summary.scalar', 'tf.summary.scalar', (['"""r_y"""', 'r[0, 1]'], {}), "('r_y', r[0, 1])\n", (115171, 115187), True, 'import tensorflow.compat.v1 as tf\n'), ((115200, 115233), 'tensorflow.compat.v1.summary.scalar', 'tf.summary.scalar', (['"""n_x"""', 'n[0, 0]'], {}), "('n_x', n[0, 0])\n", (115217, 115233), True, 'import tensorflow.compat.v1 as tf\n'), ((115246, 115279), 'tensorflow.compat.v1.summary.scalar', 'tf.summary.scalar', (['"""n_y"""', 'n[0, 1]'], {}), "('n_y', n[0, 1])\n", (115263, 115279), True, 'import tensorflow.compat.v1 as tf\n'), ((115292, 115327), 'tensorflow.compat.v1.summary.scalar', 'tf.summary.scalar', (['"""o_x"""', 'pos[0, 0]'], {}), "('o_x', pos[0, 0])\n", (115309, 115327), True, 'import tensorflow.compat.v1 as tf\n'), ((115340, 115375), 'tensorflow.compat.v1.summary.scalar', 'tf.summary.scalar', (['"""o_y"""', 'pos[0, 1]'], {}), "('o_y', pos[0, 1])\n", (115357, 115375), True, 'import tensorflow.compat.v1 as tf\n'), ((115388, 115427), 'tensorflow.compat.v1.summary.scalar', 'tf.summary.scalar', (['"""t_x"""', 'tip_pos[0, 0]'], {}), "('t_x', tip_pos[0, 0])\n", (115405, 115427), True, 'import tensorflow.compat.v1 as tf\n'), ((115440, 115479), 'tensorflow.compat.v1.summary.scalar', 'tf.summary.scalar', (['"""t_y"""', 'tip_pos[0, 1]'], {}), "('t_y', tip_pos[0, 1])\n", (115457, 115479), True, 'import tensorflow.compat.v1 as tf\n'), ((115492, 115523), 'tensorflow.compat.v1.summary.scalar', 'tf.summary.scalar', (['"""s"""', 's[0, 0]'], {}), "('s', s[0, 0])\n", (115509, 115523), True, 'import tensorflow.compat.v1 as tf\n'), ((115536, 115571), 'tensorflow.compat.v1.summary.scalar', 'tf.summary.scalar', (['"""rot"""', 'rot[0, 0]'], {}), "('rot', rot[0, 0])\n", (115553, 115571), True, 'import tensorflow.compat.v1 as tf\n'), ((122340, 122390), 'tensorflow.compat.v1.reshape', 'tf.reshape', (['het_diag_pos_c2', '[self.batch_size, -1]'], {}), '(het_diag_pos_c2, [self.batch_size, -1])\n', (122350, 122390), True, 'import tensorflow.compat.v1 as tf\n'), ((122891, 122953), 'tensorflow.compat.v1.concat', 'tf.concat', (['[het_diag_pos, het_diag_rot, het_diag_rns]'], {'axis': '(-1)'}), '([het_diag_pos, het_diag_rot, het_diag_rns], axis=-1)\n', (122900, 122953), True, 'import tensorflow.compat.v1 as tf\n'), ((123818, 123859), 'tensorflow.compat.v1.square', 'tf.square', (['(diag + self.het_diag_init_bias)'], {}), '(diag + self.het_diag_init_bias)\n', (123827, 123859), True, 'import tensorflow.compat.v1 as tf\n'), ((123912, 123932), 'tensorflow.compat.v1.linalg.diag', 'tf.linalg.diag', (['diag'], {}), '(diag)\n', (123926, 123932), True, 'import tensorflow.compat.v1 as tf\n'), ((128774, 128810), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""fc1_out"""', 'fc1'], {}), "('fc1_out', fc1)\n", (128794, 128810), True, 'import tensorflow.compat.v1 as tf\n'), ((128876, 128912), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""fc2_out"""', 'fc2'], {}), "('fc2_out', fc2)\n", (128896, 128912), True, 'import tensorflow.compat.v1 as tf\n'), ((128980, 129022), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""pos_c1_out"""', 'pos_c1'], {}), "('pos_c1_out', pos_c1)\n", (129000, 129022), True, 'import tensorflow.compat.v1 as tf\n'), ((129035, 129077), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""pos_c2_out"""', 'pos_c2'], {}), "('pos_c2_out', pos_c2)\n", (129055, 129077), True, 'import tensorflow.compat.v1 as tf\n'), ((129090, 129132), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""pos_fc_out"""', 'pos_fc'], {}), "('pos_fc_out', pos_fc)\n", (129110, 129132), True, 'import tensorflow.compat.v1 as tf\n'), ((129145, 129187), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""rot_fc_out"""', 'rot_fc'], {}), "('rot_fc_out', rot_fc)\n", (129165, 129187), True, 'import tensorflow.compat.v1 as tf\n'), ((129200, 129244), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""rns_fc1_out"""', 'rns_fc1'], {}), "('rns_fc1_out', rns_fc1)\n", (129220, 129244), True, 'import tensorflow.compat.v1 as tf\n'), ((129257, 129301), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""rns_fc2_out"""', 'rns_fc2'], {}), "('rns_fc2_out', rns_fc2)\n", (129277, 129301), True, 'import tensorflow.compat.v1 as tf\n'), ((129314, 129350), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""fc1_out"""', 'fc1'], {}), "('fc1_out', fc1)\n", (129334, 129350), True, 'import tensorflow.compat.v1 as tf\n'), ((129363, 129399), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""fc2_out"""', 'fc2'], {}), "('fc2_out', fc2)\n", (129383, 129399), True, 'import tensorflow.compat.v1 as tf\n'), ((129412, 129446), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""like"""', 'like'], {}), "('like', like)\n", (129432, 129446), True, 'import tensorflow.compat.v1 as tf\n'), ((132247, 132283), 'tensorflow.compat.v1.reshape', 'tf.reshape', (['ob', '[self.batch_size, 1]'], {}), '(ob, [self.batch_size, 1])\n', (132257, 132283), True, 'import tensorflow.compat.v1 as tf\n'), ((132344, 132383), 'tensorflow.compat.v1.tile', 'tf.tile', (['ob', '[1, bs // self.batch_size]'], {}), '(ob, [1, bs // self.batch_size])\n', (132351, 132383), True, 'import tensorflow.compat.v1 as tf\n'), ((132401, 132421), 'tensorflow.compat.v1.reshape', 'tf.reshape', (['ob', '[-1]'], {}), '(ob, [-1])\n', (132411, 132421), True, 'import tensorflow.compat.v1 as tf\n'), ((132439, 132479), 'tensorflow.compat.v1.strings.regex_replace', 'tf.strings.regex_replace', (['ob', "'\\x00'", '""""""'], {}), "(ob, '\\x00', '')\n", (132463, 132479), True, 'import tensorflow.compat.v1 as tf\n'), ((132497, 132537), 'tensorflow.compat.v1.strings.regex_replace', 'tf.strings.regex_replace', (['ob', "'\\x00'", '""""""'], {}), "(ob, '\\x00', '')\n", (132521, 132537), True, 'import tensorflow.compat.v1 as tf\n'), ((132720, 132780), 'tensorflow.compat.v1.concat', 'tf.concat', (['[update[:, :2], rot_pred, update[:, 3:]]'], {'axis': '(-1)'}), '([update[:, :2], rot_pred, update[:, 3:]], axis=-1)\n', (132729, 132780), True, 'import tensorflow.compat.v1 as tf\n'), ((140773, 140792), 'tensorflow.compat.v1.stop_gradient', 'tf.stop_gradient', (['F'], {}), '(F)\n', (140789, 140792), True, 'import tensorflow.compat.v1 as tf\n'), ((1957, 1982), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (1972, 1982), False, 'import os\n'), ((2003, 2055), 'os.path.join', 'os.path.join', (['path', '"""resources"""', '"""butter_points.pkl"""'], {}), "(path, 'resources', 'butter_points.pkl')\n", (2015, 2055), False, 'import os\n'), ((16584, 16646), 'tensorflow.compat.v1.concat', 'tf.concat', (['[base_covar[:, :3, :3], init_R[:, :3, :3]]'], {'axis': '(-1)'}), '([base_covar[:, :3, :3], init_R[:, :3, :3]], axis=-1)\n', (16593, 16646), True, 'import tensorflow.compat.v1 as tf\n'), ((16750, 16812), 'tensorflow.compat.v1.concat', 'tf.concat', (['[base_covar[:, 5:, 5:], init_R[:, 3:, 3:]]'], {'axis': '(-1)'}), '([base_covar[:, 5:, 5:], init_R[:, 3:, 3:]], axis=-1)\n', (16759, 16812), True, 'import tensorflow.compat.v1 as tf\n'), ((20799, 20839), 'tensorflow.compat.v1.reshape', 'tf.reshape', (['seq_label[:, :, 9:]', '[-1, 1]'], {}), '(seq_label[:, :, 9:], [-1, 1])\n', (20809, 20839), True, 'import tensorflow.compat.v1 as tf\n'), ((21333, 21373), 'tensorflow.compat.v1.reshape', 'tf.reshape', (['seq_label[:, :, 9:]', '[-1, 1]'], {}), '(seq_label[:, :, 9:], [-1, 1])\n', (21343, 21373), True, 'import tensorflow.compat.v1 as tf\n'), ((24453, 24477), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['dists[i]'], {}), '(dists[i])\n', (24467, 24477), True, 'import tensorflow.compat.v1 as tf\n'), ((24615, 24642), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['dist_obs[i]'], {}), '(dist_obs[i])\n', (24629, 24642), True, 'import tensorflow.compat.v1 as tf\n'), ((30171, 30200), 'tensorflow.compat.v1.squeeze', 'tf.squeeze', (['seg_pred'], {'axis': '(-1)'}), '(seg_pred, axis=-1)\n', (30181, 30200), True, 'import tensorflow.compat.v1 as tf\n'), ((30221, 30245), 'tensorflow.compat.v1.squeeze', 'tf.squeeze', (['seg'], {'axis': '(-1)'}), '(seg, axis=-1)\n', (30231, 30245), True, 'import tensorflow.compat.v1 as tf\n'), ((30399, 30436), 'tensorflow.compat.v1.squeeze', 'tf.squeeze', (['initial_seg_pred'], {'axis': '(-1)'}), '(initial_seg_pred, axis=-1)\n', (30409, 30436), True, 'import tensorflow.compat.v1 as tf\n'), ((30457, 30489), 'tensorflow.compat.v1.squeeze', 'tf.squeeze', (['initial_seg'], {'axis': '(-1)'}), '(initial_seg, axis=-1)\n', (30467, 30489), True, 'import tensorflow.compat.v1 as tf\n'), ((34458, 34485), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['dist_obs[i]'], {}), '(dist_obs[i])\n', (34472, 34485), True, 'import tensorflow.compat.v1 as tf\n'), ((34622, 34650), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['corr_diag[i]'], {}), '(corr_diag[i])\n', (34636, 34650), True, 'import tensorflow.compat.v1 as tf\n'), ((34739, 34767), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['corr_full[i]'], {}), '(corr_full[i])\n', (34753, 34767), True, 'import tensorflow.compat.v1 as tf\n'), ((39341, 39378), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['(mse * self.scale ** 2)'], {}), '(mse * self.scale ** 2)\n', (39355, 39378), True, 'import tensorflow.compat.v1 as tf\n'), ((39398, 39431), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['(dist * self.scale)'], {}), '(dist * self.scale)\n', (39412, 39431), True, 'import tensorflow.compat.v1 as tf\n'), ((39696, 39729), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['(dist * self.scale)'], {}), '(dist * self.scale)\n', (39710, 39729), True, 'import tensorflow.compat.v1 as tf\n'), ((41940, 41964), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['dists[i]'], {}), '(dists[i])\n', (41954, 41964), True, 'import tensorflow.compat.v1 as tf\n'), ((42060, 42088), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['dists_ana[i]'], {}), '(dists_ana[i])\n', (42074, 42088), True, 'import tensorflow.compat.v1 as tf\n'), ((45849, 45894), 'tensorflow.compat.v1.reshape', 'tf.reshape', (['pred', '[self.batch_size, -1, 1, 2]'], {}), '(pred, [self.batch_size, -1, 1, 2])\n', (45859, 45894), True, 'import tensorflow.compat.v1 as tf\n'), ((45925, 45971), 'tensorflow.compat.v1.reshape', 'tf.reshape', (['label', '[self.batch_size, -1, 2, 1]'], {}), '(label, [self.batch_size, -1, 2, 1])\n', (45935, 45971), True, 'import tensorflow.compat.v1 as tf\n'), ((46069, 46111), 'tensorflow.compat.v1.reshape', 'tf.reshape', (['prod', '[self.batch_size, -1, 1]'], {}), '(prod, [self.batch_size, -1, 1])\n', (46079, 46111), True, 'import tensorflow.compat.v1 as tf\n'), ((46156, 46197), 'tensorflow.compat.v1.reshape', 'tf.reshape', (['pred', '[self.batch_size, 1, 2]'], {}), '(pred, [self.batch_size, 1, 2])\n', (46166, 46197), True, 'import tensorflow.compat.v1 as tf\n'), ((46228, 46270), 'tensorflow.compat.v1.reshape', 'tf.reshape', (['label', '[self.batch_size, 2, 1]'], {}), '(label, [self.batch_size, 2, 1])\n', (46238, 46270), True, 'import tensorflow.compat.v1 as tf\n'), ((46368, 46406), 'tensorflow.compat.v1.reshape', 'tf.reshape', (['prod', '[self.batch_size, 1]'], {}), '(prod, [self.batch_size, 1])\n', (46378, 46406), True, 'import tensorflow.compat.v1 as tf\n'), ((49819, 49873), 'tensorflow.compat.v1.sin', 'tf.sin', (['(points[:, :, 2:3] * self.scale * np.pi / 180.0)'], {}), '(points[:, :, 2:3] * self.scale * np.pi / 180.0)\n', (49825, 49873), True, 'import tensorflow.compat.v1 as tf\n'), ((49893, 49947), 'tensorflow.compat.v1.cos', 'tf.cos', (['(points[:, :, 2:3] * self.scale * np.pi / 180.0)'], {}), '(points[:, :, 2:3] * self.scale * np.pi / 180.0)\n', (49899, 49947), True, 'import tensorflow.compat.v1 as tf\n'), ((50094, 50135), 'tensorflow.compat.v1.math.atan2', 'tf.math.atan2', (['mean[:, 2:3]', 'mean[:, 3:4]'], {}), '(mean[:, 2:3], mean[:, 3:4])\n', (50107, 50135), True, 'import tensorflow.compat.v1 as tf\n'), ((50391, 50445), 'tensorflow.compat.v1.sin', 'tf.sin', (['(points[:, :, 2:3] * self.scale * np.pi / 180.0)'], {}), '(points[:, :, 2:3] * self.scale * np.pi / 180.0)\n', (50397, 50445), True, 'import tensorflow.compat.v1 as tf\n'), ((50465, 50519), 'tensorflow.compat.v1.cos', 'tf.cos', (['(points[:, :, 2:3] * self.scale * np.pi / 180.0)'], {}), '(points[:, :, 2:3] * self.scale * np.pi / 180.0)\n', (50471, 50519), True, 'import tensorflow.compat.v1 as tf\n'), ((50668, 50709), 'tensorflow.compat.v1.math.atan2', 'tf.math.atan2', (['mean[:, 2:3]', 'mean[:, 3:4]'], {}), '(mean[:, 2:3], mean[:, 3:4])\n', (50681, 50709), True, 'import tensorflow.compat.v1 as tf\n'), ((53535, 53557), 'tensorflow.compat.v1.equal', 'tf.equal', (['ob', '"""ellip1"""'], {}), "(ob, 'ellip1')\n", (53543, 53557), True, 'import tensorflow.compat.v1 as tf\n'), ((53839, 53873), 'tensorflow.compat.v1.greater', 'tf.greater', (['rot_new', '(rot_max / 2.0)'], {}), '(rot_new, rot_max / 2.0)\n', (53849, 53873), True, 'import tensorflow.compat.v1 as tf\n'), ((53962, 53994), 'tensorflow.compat.v1.less', 'tf.less', (['rot_add', '(-rot_max / 2.0)'], {}), '(rot_add, -rot_max / 2.0)\n', (53969, 53994), True, 'import tensorflow.compat.v1 as tf\n'), ((54229, 54252), 'tensorflow.compat.v1.reshape', 'tf.reshape', (['ob', '[-1, 1]'], {}), '(ob, [-1, 1])\n', (54239, 54252), True, 'import tensorflow.compat.v1 as tf\n'), ((54346, 54368), 'tensorflow.compat.v1.equal', 'tf.equal', (['ob', '"""ellip1"""'], {}), "(ob, 'ellip1')\n", (54354, 54368), True, 'import tensorflow.compat.v1 as tf\n'), ((54370, 54388), 'tensorflow.compat.v1.zeros_like', 'tf.zeros_like', (['rot'], {}), '(rot)\n', (54383, 54388), True, 'import tensorflow.compat.v1 as tf\n'), ((54461, 54482), 'tensorflow.compat.v1.equal', 'tf.equal', (['ob', '"""rect1"""'], {}), "(ob, 'rect1')\n", (54469, 54482), True, 'import tensorflow.compat.v1 as tf\n'), ((54577, 54597), 'tensorflow.compat.v1.equal', 'tf.equal', (['ob', '"""tri1"""'], {}), "(ob, 'tri1')\n", (54585, 54597), True, 'import tensorflow.compat.v1 as tf\n'), ((54693, 54713), 'tensorflow.compat.v1.equal', 'tf.equal', (['ob', '"""tri2"""'], {}), "(ob, 'tri2')\n", (54701, 54713), True, 'import tensorflow.compat.v1 as tf\n'), ((54809, 54829), 'tensorflow.compat.v1.equal', 'tf.equal', (['ob', '"""tri3"""'], {}), "(ob, 'tri3')\n", (54817, 54829), True, 'import tensorflow.compat.v1 as tf\n'), ((54925, 54944), 'tensorflow.compat.v1.equal', 'tf.equal', (['ob', '"""hex"""'], {}), "(ob, 'hex')\n", (54933, 54944), True, 'import tensorflow.compat.v1 as tf\n'), ((55040, 55062), 'tensorflow.compat.v1.equal', 'tf.equal', (['ob', '"""ellip1"""'], {}), "(ob, 'ellip1')\n", (55048, 55062), True, 'import tensorflow.compat.v1 as tf\n'), ((55064, 55082), 'tensorflow.compat.v1.zeros_like', 'tf.zeros_like', (['rot'], {}), '(rot)\n', (55077, 55082), True, 'import tensorflow.compat.v1 as tf\n'), ((55335, 55369), 'tensorflow.compat.v1.greater', 'tf.greater', (['rot_new', '(rot_max / 2.0)'], {}), '(rot_new, rot_max / 2.0)\n', (55345, 55369), True, 'import tensorflow.compat.v1 as tf\n'), ((55458, 55490), 'tensorflow.compat.v1.less', 'tf.less', (['rot_add', '(-rot_max / 2.0)'], {}), '(rot_add, -rot_max / 2.0)\n', (55465, 55490), True, 'import tensorflow.compat.v1 as tf\n'), ((57190, 57232), 'tensorflow.compat.v1.data.Dataset.from_tensor_slices', 'tf.data.Dataset.from_tensor_slices', (['(x, y)'], {}), '((x, y))\n', (57224, 57232), True, 'import tensorflow.compat.v1 as tf\n'), ((58526, 58550), 'tensorflow.compat.v1.less', 'tf.less', (['con_norm', '(1e-06)'], {}), '(con_norm, 1e-06)\n', (58533, 58550), True, 'import tensorflow.compat.v1 as tf\n'), ((58782, 58803), 'tensorflow.compat.v1.greater', 'tf.greater', (['mask', '(2.5)'], {}), '(mask, 2.5)\n', (58792, 58803), True, 'import tensorflow.compat.v1 as tf\n'), ((58805, 58823), 'tensorflow.compat.v1.ones_like', 'tf.ones_like', (['mask'], {}), '(mask)\n', (58817, 58823), True, 'import tensorflow.compat.v1 as tf\n'), ((58857, 58876), 'tensorflow.compat.v1.zeros_like', 'tf.zeros_like', (['mask'], {}), '(mask)\n', (58870, 58876), True, 'import tensorflow.compat.v1 as tf\n'), ((63782, 63819), 'tensorflow.compat.v1.reshape', 'tf.reshape', (["features['friction']", '[1]'], {}), "(features['friction'], [1])\n", (63792, 63819), True, 'import tensorflow.compat.v1 as tf\n'), ((66482, 66519), 'tensorflow.compat.v1.reshape', 'tf.reshape', (["features['friction']", '[1]'], {}), "(features['friction'], [1])\n", (66492, 66519), True, 'import tensorflow.compat.v1 as tf\n'), ((67011, 67032), 'tensorflow.compat.v1.greater', 'tf.greater', (['mask', '(2.5)'], {}), '(mask, 2.5)\n', (67021, 67032), True, 'import tensorflow.compat.v1 as tf\n'), ((67034, 67052), 'tensorflow.compat.v1.ones_like', 'tf.ones_like', (['mask'], {}), '(mask)\n', (67046, 67052), True, 'import tensorflow.compat.v1 as tf\n'), ((67086, 67105), 'tensorflow.compat.v1.zeros_like', 'tf.zeros_like', (['mask'], {}), '(mask)\n', (67099, 67105), True, 'import tensorflow.compat.v1 as tf\n'), ((67729, 67784), 'numpy.arange', 'np.arange', (['(1)', '(seq_len - self.sl - 2)', '((self.sl + 1) // 2)'], {}), '(1, seq_len - self.sl - 2, (self.sl + 1) // 2)\n', (67738, 67784), True, 'import numpy as np\n'), ((68977, 69020), 'tensorflow.compat.v1.tile', 'tf.tile', (['pose[si:si + 1, 2:3]', '[self.sl, 1]'], {}), '(pose[si:si + 1, 2:3], [self.sl, 1])\n', (68984, 69020), True, 'import tensorflow.compat.v1 as tf\n'), ((74347, 74366), 'numpy.mean', 'np.mean', (['corr_diags'], {}), '(corr_diags)\n', (74354, 74366), True, 'import numpy as np\n'), ((74407, 74426), 'numpy.mean', 'np.mean', (['corr_fulls'], {}), '(corr_fulls)\n', (74414, 74426), True, 'import numpy as np\n'), ((75939, 75968), 'numpy.squeeze', 'np.squeeze', (['cov_pred[:, 0, 0]'], {}), '(cov_pred[:, 0, 0])\n', (75949, 75968), True, 'import numpy as np\n'), ((75995, 76024), 'numpy.squeeze', 'np.squeeze', (['cov_pred[:, 1, 1]'], {}), '(cov_pred[:, 1, 1])\n', (76005, 76024), True, 'import numpy as np\n'), ((76051, 76080), 'numpy.squeeze', 'np.squeeze', (['cov_pred[:, 2, 2]'], {}), '(cov_pred[:, 2, 2])\n', (76061, 76080), True, 'import numpy as np\n'), ((76107, 76136), 'numpy.squeeze', 'np.squeeze', (['cov_pred[:, 3, 3]'], {}), '(cov_pred[:, 3, 3])\n', (76117, 76136), True, 'import numpy as np\n'), ((76164, 76193), 'numpy.squeeze', 'np.squeeze', (['cov_pred[:, 4, 4]'], {}), '(cov_pred[:, 4, 4])\n', (76174, 76193), True, 'import numpy as np\n'), ((76221, 76250), 'numpy.squeeze', 'np.squeeze', (['cov_pred[:, 5, 5]'], {}), '(cov_pred[:, 5, 5])\n', (76231, 76250), True, 'import numpy as np\n'), ((76278, 76307), 'numpy.squeeze', 'np.squeeze', (['cov_pred[:, 6, 6]'], {}), '(cov_pred[:, 6, 6])\n', (76288, 76307), True, 'import numpy as np\n'), ((76335, 76364), 'numpy.squeeze', 'np.squeeze', (['cov_pred[:, 7, 7]'], {}), '(cov_pred[:, 7, 7])\n', (76345, 76364), True, 'import numpy as np\n'), ((76392, 76421), 'numpy.squeeze', 'np.squeeze', (['cov_pred[:, 8, 8]'], {}), '(cov_pred[:, 8, 8])\n', (76402, 76421), True, 'import numpy as np\n'), ((76448, 76477), 'numpy.squeeze', 'np.squeeze', (['cov_pred[:, 9, 9]'], {}), '(cov_pred[:, 9, 9])\n', (76458, 76477), True, 'import numpy as np\n'), ((76642, 76669), 'numpy.squeeze', 'np.squeeze', (['q_pred[:, 0, 0]'], {}), '(q_pred[:, 0, 0])\n', (76652, 76669), True, 'import numpy as np\n'), ((76696, 76723), 'numpy.squeeze', 'np.squeeze', (['q_pred[:, 1, 1]'], {}), '(q_pred[:, 1, 1])\n', (76706, 76723), True, 'import numpy as np\n'), ((76750, 76777), 'numpy.squeeze', 'np.squeeze', (['q_pred[:, 2, 2]'], {}), '(q_pred[:, 2, 2])\n', (76760, 76777), True, 'import numpy as np\n'), ((76804, 76831), 'numpy.squeeze', 'np.squeeze', (['q_pred[:, 3, 3]'], {}), '(q_pred[:, 3, 3])\n', (76814, 76831), True, 'import numpy as np\n'), ((76859, 76886), 'numpy.squeeze', 'np.squeeze', (['q_pred[:, 4, 4]'], {}), '(q_pred[:, 4, 4])\n', (76869, 76886), True, 'import numpy as np\n'), ((76914, 76941), 'numpy.squeeze', 'np.squeeze', (['q_pred[:, 5, 5]'], {}), '(q_pred[:, 5, 5])\n', (76924, 76941), True, 'import numpy as np\n'), ((76969, 76996), 'numpy.squeeze', 'np.squeeze', (['q_pred[:, 6, 6]'], {}), '(q_pred[:, 6, 6])\n', (76979, 76996), True, 'import numpy as np\n'), ((77024, 77051), 'numpy.squeeze', 'np.squeeze', (['q_pred[:, 7, 7]'], {}), '(q_pred[:, 7, 7])\n', (77034, 77051), True, 'import numpy as np\n'), ((77079, 77106), 'numpy.squeeze', 'np.squeeze', (['q_pred[:, 8, 8]'], {}), '(q_pred[:, 8, 8])\n', (77089, 77106), True, 'import numpy as np\n'), ((77133, 77160), 'numpy.squeeze', 'np.squeeze', (['q_pred[:, 9, 9]'], {}), '(q_pred[:, 9, 9])\n', (77143, 77160), True, 'import numpy as np\n'), ((77187, 77214), 'numpy.squeeze', 'np.squeeze', (['r_pred[:, 0, 0]'], {}), '(r_pred[:, 0, 0])\n', (77197, 77214), True, 'import numpy as np\n'), ((77241, 77268), 'numpy.squeeze', 'np.squeeze', (['r_pred[:, 1, 1]'], {}), '(r_pred[:, 1, 1])\n', (77251, 77268), True, 'import numpy as np\n'), ((77295, 77322), 'numpy.squeeze', 'np.squeeze', (['r_pred[:, 2, 2]'], {}), '(r_pred[:, 2, 2])\n', (77305, 77322), True, 'import numpy as np\n'), ((77350, 77377), 'numpy.squeeze', 'np.squeeze', (['r_pred[:, 3, 3]'], {}), '(r_pred[:, 3, 3])\n', (77360, 77377), True, 'import numpy as np\n'), ((77405, 77432), 'numpy.squeeze', 'np.squeeze', (['r_pred[:, 4, 4]'], {}), '(r_pred[:, 4, 4])\n', (77415, 77432), True, 'import numpy as np\n'), ((77460, 77487), 'numpy.squeeze', 'np.squeeze', (['r_pred[:, 5, 5]'], {}), '(r_pred[:, 5, 5])\n', (77470, 77487), True, 'import numpy as np\n'), ((77515, 77542), 'numpy.squeeze', 'np.squeeze', (['r_pred[:, 6, 6]'], {}), '(r_pred[:, 6, 6])\n', (77525, 77542), True, 'import numpy as np\n'), ((77569, 77596), 'numpy.squeeze', 'np.squeeze', (['r_pred[:, 7, 7]'], {}), '(r_pred[:, 7, 7])\n', (77579, 77596), True, 'import numpy as np\n'), ((81605, 81615), 'numpy.max', 'np.max', (['qx'], {}), '(qx)\n', (81611, 81615), True, 'import numpy as np\n'), ((81617, 81627), 'numpy.max', 'np.max', (['qy'], {}), '(qy)\n', (81623, 81627), True, 'import numpy as np\n'), ((81629, 81639), 'numpy.max', 'np.max', (['rx'], {}), '(rx)\n', (81635, 81639), True, 'import numpy as np\n'), ((81641, 81651), 'numpy.max', 'np.max', (['ry'], {}), '(ry)\n', (81647, 81651), True, 'import numpy as np\n'), ((82083, 82093), 'numpy.max', 'np.max', (['qt'], {}), '(qt)\n', (82089, 82093), True, 'import numpy as np\n'), ((82095, 82105), 'numpy.max', 'np.max', (['rt'], {}), '(rt)\n', (82101, 82105), True, 'import numpy as np\n'), ((82437, 82448), 'numpy.max', 'np.max', (['qrx'], {}), '(qrx)\n', (82443, 82448), True, 'import numpy as np\n'), ((82450, 82461), 'numpy.max', 'np.max', (['qry'], {}), '(qry)\n', (82456, 82461), True, 'import numpy as np\n'), ((82463, 82474), 'numpy.max', 'np.max', (['rrx'], {}), '(rrx)\n', (82469, 82474), True, 'import numpy as np\n'), ((82476, 82487), 'numpy.max', 'np.max', (['rry'], {}), '(rry)\n', (82482, 82487), True, 'import numpy as np\n'), ((82928, 82939), 'numpy.max', 'np.max', (['qnx'], {}), '(qnx)\n', (82934, 82939), True, 'import numpy as np\n'), ((82941, 82952), 'numpy.max', 'np.max', (['qny'], {}), '(qny)\n', (82947, 82952), True, 'import numpy as np\n'), ((82954, 82965), 'numpy.max', 'np.max', (['rnx'], {}), '(rnx)\n', (82960, 82965), True, 'import numpy as np\n'), ((82967, 82978), 'numpy.max', 'np.max', (['rny'], {}), '(rny)\n', (82973, 82978), True, 'import numpy as np\n'), ((83412, 83423), 'numpy.max', 'np.max', (['qmu'], {}), '(qmu)\n', (83418, 83423), True, 'import numpy as np\n'), ((83425, 83435), 'numpy.max', 'np.max', (['ql'], {}), '(ql)\n', (83431, 83435), True, 'import numpy as np\n'), ((83711, 83721), 'numpy.max', 'np.max', (['qs'], {}), '(qs)\n', (83717, 83721), True, 'import numpy as np\n'), ((83723, 83733), 'numpy.max', 'np.max', (['rs'], {}), '(rs)\n', (83729, 83733), True, 'import numpy as np\n'), ((90288, 90363), 'matplotlib.patches.Ellipse', 'Ellipse', ([], {'xy': 'pos_pred[i]', 'width': 'width', 'height': 'height', 'angle': 'theta', 'alpha': '(0.1)'}), '(xy=pos_pred[i], width=width, height=height, angle=theta, alpha=0.1)\n', (90295, 90363), False, 'from matplotlib.patches import Ellipse\n'), ((95091, 95120), 'numpy.arctan2', 'np.arctan2', (['*vecs[:, 0][::-1]'], {}), '(*vecs[:, 0][::-1])\n', (95101, 95120), True, 'import numpy as np\n'), ((95158, 95171), 'numpy.sqrt', 'np.sqrt', (['vals'], {}), '(vals)\n', (95165, 95171), True, 'import numpy as np\n'), ((96493, 96518), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (96508, 96518), False, 'import os\n'), ((96650, 96663), 'numpy.load', 'np.load', (['path'], {}), '(path)\n', (96657, 96663), True, 'import numpy as np\n'), ((98568, 98645), 'tensorflow.compat.v1.keras.layers.BatchNormalization', 'tf.keras.layers.BatchNormalization', ([], {'name': '"""segment/norm1"""', 'trainable': 'trainable'}), "(name='segment/norm1', trainable=trainable)\n", (98602, 98645), True, 'import tensorflow.compat.v1 as tf\n'), ((98739, 98816), 'tensorflow.compat.v1.keras.layers.BatchNormalization', 'tf.keras.layers.BatchNormalization', ([], {'name': '"""segment/norm2"""', 'trainable': 'trainable'}), "(name='segment/norm2', trainable=trainable)\n", (98773, 98816), True, 'import tensorflow.compat.v1 as tf\n'), ((98910, 98987), 'tensorflow.compat.v1.keras.layers.BatchNormalization', 'tf.keras.layers.BatchNormalization', ([], {'name': '"""segment/norm3"""', 'trainable': 'trainable'}), "(name='segment/norm3', trainable=trainable)\n", (98944, 98987), True, 'import tensorflow.compat.v1 as tf\n'), ((99082, 99159), 'tensorflow.compat.v1.keras.layers.BatchNormalization', 'tf.keras.layers.BatchNormalization', ([], {'name': '"""segment/norm4"""', 'trainable': 'trainable'}), "(name='segment/norm4', trainable=trainable)\n", (99116, 99159), True, 'import tensorflow.compat.v1 as tf\n'), ((99254, 99331), 'tensorflow.compat.v1.keras.layers.BatchNormalization', 'tf.keras.layers.BatchNormalization', ([], {'name': '"""segment/norm5"""', 'trainable': 'trainable'}), "(name='segment/norm5', trainable=trainable)\n", (99288, 99331), True, 'import tensorflow.compat.v1 as tf\n'), ((99937, 99961), 'tensorflow.compat.v1.name_scope', 'tf.name_scope', (['"""segment"""'], {}), "('segment')\n", (99950, 99961), True, 'import tensorflow.compat.v1 as tf\n'), ((100030, 100075), 'tensorflow.compat.v1.nn.max_pool2d', 'tf.nn.max_pool2d', (['conv1', '(3)', '(2)'], {'padding': '"""SAME"""'}), "(conv1, 3, 2, padding='SAME')\n", (100046, 100075), True, 'import tensorflow.compat.v1 as tf\n'), ((100338, 100383), 'tensorflow.compat.v1.nn.max_pool2d', 'tf.nn.max_pool2d', (['conv2', '(3)', '(2)'], {'padding': '"""SAME"""'}), "(conv2, 3, 2, padding='SAME')\n", (100354, 100383), True, 'import tensorflow.compat.v1 as tf\n'), ((100646, 100691), 'tensorflow.compat.v1.nn.max_pool2d', 'tf.nn.max_pool2d', (['conv3', '(5)', '(4)'], {'padding': '"""SAME"""'}), "(conv3, 5, 4, padding='SAME')\n", (100662, 100691), True, 'import tensorflow.compat.v1 as tf\n'), ((101325, 101376), 'tensorflow.compat.v1.image.resize', 'tf.image.resize', (['deconv2', '[height // 2, width // 2]'], {}), '(deconv2, [height // 2, width // 2])\n', (101340, 101376), True, 'import tensorflow.compat.v1 as tf\n'), ((101651, 101693), 'tensorflow.compat.v1.image.resize', 'tf.image.resize', (['mask_out', '[height, width]'], {}), '(mask_out, [height, width])\n', (101666, 101693), True, 'import tensorflow.compat.v1 as tf\n'), ((104041, 104066), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (104056, 104066), False, 'import os\n'), ((104198, 104211), 'numpy.load', 'np.load', (['path'], {}), '(path)\n', (104205, 104211), True, 'import numpy as np\n'), ((106773, 106850), 'tensorflow.compat.v1.keras.layers.BatchNormalization', 'tf.keras.layers.BatchNormalization', ([], {'name': '"""glimpse/norm1"""', 'trainable': 'trainable'}), "(name='glimpse/norm1', trainable=trainable)\n", (106807, 106850), True, 'import tensorflow.compat.v1 as tf\n'), ((106944, 107021), 'tensorflow.compat.v1.keras.layers.BatchNormalization', 'tf.keras.layers.BatchNormalization', ([], {'name': '"""glimpse/norm2"""', 'trainable': 'trainable'}), "(name='glimpse/norm2', trainable=trainable)\n", (106978, 107021), True, 'import tensorflow.compat.v1 as tf\n'), ((107115, 107192), 'tensorflow.compat.v1.keras.layers.BatchNormalization', 'tf.keras.layers.BatchNormalization', ([], {'name': '"""glimpse/norm3"""', 'trainable': 'trainable'}), "(name='glimpse/norm3', trainable=trainable)\n", (107149, 107192), True, 'import tensorflow.compat.v1 as tf\n'), ((107286, 107359), 'tensorflow.compat.v1.keras.layers.BatchNormalization', 'tf.keras.layers.BatchNormalization', ([], {'name': '"""rot/norm1"""', 'trainable': 'trainable'}), "(name='rot/norm1', trainable=trainable)\n", (107320, 107359), True, 'import tensorflow.compat.v1 as tf\n'), ((107453, 107526), 'tensorflow.compat.v1.keras.layers.BatchNormalization', 'tf.keras.layers.BatchNormalization', ([], {'name': '"""rot/norm2"""', 'trainable': 'trainable'}), "(name='rot/norm2', trainable=trainable)\n", (107487, 107526), True, 'import tensorflow.compat.v1 as tf\n'), ((108166, 108186), 'tensorflow.compat.v1.name_scope', 'tf.name_scope', (['"""rot"""'], {}), "('rot')\n", (108179, 108186), True, 'import tensorflow.compat.v1 as tf\n'), ((108604, 108654), 'tensorflow.compat.v1.nn.max_pool2d', 'tf.nn.max_pool2d', (['rot_conv1', '(3)', '(2)'], {'padding': '"""VALID"""'}), "(rot_conv1, 3, 2, padding='VALID')\n", (108620, 108654), True, 'import tensorflow.compat.v1 as tf\n'), ((108943, 108993), 'tensorflow.compat.v1.nn.max_pool2d', 'tf.nn.max_pool2d', (['rot_conv2', '(3)', '(2)'], {'padding': '"""VALID"""'}), "(rot_conv2, 3, 2, padding='VALID')\n", (108959, 108993), True, 'import tensorflow.compat.v1 as tf\n'), ((109997, 110021), 'tensorflow.compat.v1.name_scope', 'tf.name_scope', (['"""glimpse"""'], {}), "('glimpse')\n", (110010, 110021), True, 'import tensorflow.compat.v1 as tf\n'), ((110182, 110223), 'tensorflow.compat.v1.concat', 'tf.concat', (['[tip_pix_y, tip_pix_x]'], {'axis': '(1)'}), '([tip_pix_y, tip_pix_x], axis=1)\n', (110191, 110223), True, 'import tensorflow.compat.v1 as tf\n'), ((110272, 110372), 'tensorflow.compat.v1.image.extract_glimpse', 'tf.image.extract_glimpse', (['coord'], {'size': '[64, 64]', 'offsets': 'coords', 'centered': '(True)', 'normalized': '(False)'}), '(coord, size=[64, 64], offsets=coords, centered=\n True, normalized=False)\n', (110296, 110372), True, 'import tensorflow.compat.v1 as tf\n'), ((110509, 110609), 'tensorflow.compat.v1.image.extract_glimpse', 'tf.image.extract_glimpse', (['image'], {'size': '[64, 64]', 'offsets': 'coords', 'centered': '(True)', 'normalized': '(False)'}), '(image, size=[64, 64], offsets=coords, centered=\n True, normalized=False)\n', (110533, 110609), True, 'import tensorflow.compat.v1 as tf\n'), ((110842, 110883), 'tensorflow.compat.v1.concat', 'tf.concat', (['[im_glimpse, glimpse]'], {'axis': '(-1)'}), '([im_glimpse, glimpse], axis=-1)\n', (110851, 110883), True, 'import tensorflow.compat.v1 as tf\n'), ((110953, 111001), 'tensorflow.compat.v1.nn.max_pool2d', 'tf.nn.max_pool2d', (['g_conv1', '(3)', '(2)'], {'padding': '"""VALID"""'}), "(g_conv1, 3, 2, padding='VALID')\n", (110969, 111001), True, 'import tensorflow.compat.v1 as tf\n'), ((111275, 111323), 'tensorflow.compat.v1.nn.max_pool2d', 'tf.nn.max_pool2d', (['g_conv2', '(3)', '(2)'], {'padding': '"""VALID"""'}), "(g_conv2, 3, 2, padding='VALID')\n", (111291, 111323), True, 'import tensorflow.compat.v1 as tf\n'), ((111885, 111927), 'tensorflow.compat.v1.reshape', 'tf.reshape', (['g_conv3', '[self.batch_size, -1]'], {}), '(g_conv3, [self.batch_size, -1])\n', (111895, 111927), True, 'import tensorflow.compat.v1 as tf\n'), ((111986, 112037), 'tensorflow.compat.v1.concat', 'tf.concat', (['[tip_pix_end - tip_pix, tip_pix]'], {'axis': '(1)'}), '([tip_pix_end - tip_pix, tip_pix], axis=1)\n', (111995, 112037), True, 'import tensorflow.compat.v1 as tf\n'), ((112073, 112118), 'tensorflow.compat.v1.concat', 'tf.concat', (['[glimpse_encoding, pix_u]'], {'axis': '(-1)'}), '([glimpse_encoding, pix_u], axis=-1)\n', (112082, 112118), True, 'import tensorflow.compat.v1 as tf\n'), ((112644, 112695), 'differentiable_filters.utils.push_utils._to_3d_d', 'utils._to_3d_d', (['r_pix', 'coord[:, :, :, -1:]', 'tip_pos'], {}), '(r_pix, coord[:, :, :, -1:], tip_pos)\n', (112658, 112695), True, 'from differentiable_filters.utils import push_utils as utils\n'), ((113073, 113128), 'differentiable_filters.utils.push_utils._to_3d_d', 'utils._to_3d_d', (['n_end_pix', 'coord[:, :, :, -1:]', 'tip_pos'], {}), '(n_end_pix, coord[:, :, :, -1:], tip_pos)\n', (113087, 113128), True, 'from differentiable_filters.utils import push_utils as utils\n'), ((113329, 113345), 'tensorflow.compat.v1.nn.sigmoid', 'tf.nn.sigmoid', (['s'], {}), '(s)\n', (113342, 113345), True, 'import tensorflow.compat.v1 as tf\n'), ((116105, 116124), 'numpy.ones', 'np.ones', (['self.dim_z'], {}), '(self.dim_z)\n', (116112, 116124), True, 'import numpy as np\n'), ((116478, 116513), 'tensorflow.compat.v1.constant_initializer', 'tf.constant_initializer', (['init_const'], {}), '(init_const)\n', (116501, 116513), True, 'import tensorflow.compat.v1 as tf\n'), ((123028, 123099), 'tensorflow.compat.v1.summary.image', 'tf.summary.image', (['"""het_diag_pos_c1_im"""', 'het_diag_pos_c1[0:1, :, :, 0:1]'], {}), "('het_diag_pos_c1_im', het_diag_pos_c1[0:1, :, :, 0:1])\n", (123044, 123099), True, 'import tensorflow.compat.v1 as tf\n'), ((123149, 123209), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""het_diag_pos_c1_out"""', 'het_diag_pos_c1'], {}), "('het_diag_pos_c1_out', het_diag_pos_c1)\n", (123169, 123209), True, 'import tensorflow.compat.v1 as tf\n'), ((123226, 123286), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""het_diag_pos_c2_out"""', 'het_diag_pos_c2'], {}), "('het_diag_pos_c2_out', het_diag_pos_c2)\n", (123246, 123286), True, 'import tensorflow.compat.v1 as tf\n'), ((123303, 123365), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""het_diag_pos_fc1_out"""', 'het_diag_pos_fc1'], {}), "('het_diag_pos_fc1_out', het_diag_pos_fc1)\n", (123323, 123365), True, 'import tensorflow.compat.v1 as tf\n'), ((123382, 123440), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""het_diag_pos_fc2_out"""', 'het_diag_pos'], {}), "('het_diag_pos_fc2_out', het_diag_pos)\n", (123402, 123440), True, 'import tensorflow.compat.v1 as tf\n'), ((123457, 123514), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""het_diag_rot_fc_out"""', 'het_diag_rot'], {}), "('het_diag_rot_fc_out', het_diag_rot)\n", (123477, 123514), True, 'import tensorflow.compat.v1 as tf\n'), ((123531, 123589), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""het_diag_rns_fc1_out"""', 'het_diag_fc1'], {}), "('het_diag_rns_fc1_out', het_diag_fc1)\n", (123551, 123589), True, 'import tensorflow.compat.v1 as tf\n'), ((123606, 123664), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""het_diag_rns_fc2_out"""', 'het_diag_fc2'], {}), "('het_diag_rns_fc2_out', het_diag_fc2)\n", (123626, 123664), True, 'import tensorflow.compat.v1 as tf\n'), ((123681, 123739), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""het_diag_rns_fc3_out"""', 'het_diag_rns'], {}), "('het_diag_rns_fc3_out', het_diag_rns)\n", (123701, 123739), True, 'import tensorflow.compat.v1 as tf\n'), ((123756, 123798), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""het_diag_out"""', 'diag'], {}), "('het_diag_out', diag)\n", (123776, 123798), True, 'import tensorflow.compat.v1 as tf\n'), ((124081, 124108), 'tensorflow.compat.v1.linalg.tensor_diag', 'tf.linalg.tensor_diag', (['diag'], {}), '(diag)\n', (124102, 124108), True, 'import tensorflow.compat.v1 as tf\n'), ((124125, 124172), 'tensorflow.compat.v1.tile', 'tf.tile', (['R[None, :, :]', '[self.batch_size, 1, 1]'], {}), '(R[None, :, :], [self.batch_size, 1, 1])\n', (124132, 124172), True, 'import tensorflow.compat.v1 as tf\n'), ((131917, 131965), 'tensorflow.compat.v1.concat', 'tf.concat', (['[last_state, actions[:, :2]]'], {'axis': '(-1)'}), '([last_state, actions[:, :2]], axis=-1)\n', (131926, 131965), True, 'import tensorflow.compat.v1 as tf\n'), ((132608, 132630), 'tensorflow.compat.v1.equal', 'tf.equal', (['ob', '"""ellip1"""'], {}), "(ob, 'ellip1')\n", (132616, 132630), True, 'import tensorflow.compat.v1 as tf\n'), ((132664, 132687), 'tensorflow.compat.v1.zeros_like', 'tf.zeros_like', (['rot_pred'], {}), '(rot_pred)\n', (132677, 132687), True, 'import tensorflow.compat.v1 as tf\n'), ((132902, 132938), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""fc1_out"""', 'fc1'], {}), "('fc1_out', fc1)\n", (132922, 132938), True, 'import tensorflow.compat.v1 as tf\n'), ((132955, 132991), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""fc2_out"""', 'fc2'], {}), "('fc2_out', fc2)\n", (132975, 132991), True, 'import tensorflow.compat.v1 as tf\n'), ((133008, 133044), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""fc3_out"""', 'fc3'], {}), "('fc3_out', fc3)\n", (133028, 133044), True, 'import tensorflow.compat.v1 as tf\n'), ((133061, 133103), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""update_out"""', 'update'], {}), "('update_out', update)\n", (133081, 133103), True, 'import tensorflow.compat.v1 as tf\n'), ((135830, 135896), 'differentiable_filters.utils.push_utils.physical_model_derivative', 'utils.physical_model_derivative', (['pos', 'cp', 'n', 'actions', 'fr', 'fr_mu', 's'], {}), '(pos, cp, n, actions, fr, fr_mu, s)\n', (135861, 135896), True, 'from differentiable_filters.utils import push_utils as utils\n'), ((136143, 136157), 'tensorflow.compat.v1.squeeze', 'tf.squeeze', (['ob'], {}), '(ob)\n', (136153, 136157), True, 'import tensorflow.compat.v1 as tf\n'), ((136179, 136219), 'tensorflow.compat.v1.strings.regex_replace', 'tf.strings.regex_replace', (['ob', "'\\x00'", '""""""'], {}), "(ob, '\\x00', '')\n", (136203, 136219), True, 'import tensorflow.compat.v1 as tf\n'), ((136241, 136281), 'tensorflow.compat.v1.strings.regex_replace', 'tf.strings.regex_replace', (['ob', "'\\x00'", '""""""'], {}), "(ob, '\\x00', '')\n", (136265, 136281), True, 'import tensorflow.compat.v1 as tf\n'), ((136758, 136791), 'tensorflow.compat.v1.cast', 'tf.cast', (['keep_contact', 'tf.float32'], {}), '(keep_contact, tf.float32)\n', (136765, 136791), True, 'import tensorflow.compat.v1 as tf\n'), ((140015, 140070), 'differentiable_filters.utils.push_utils.physical_model', 'utils.physical_model', (['pos', 'cp', 'n', 'actions', 'fr', 'fr_mu', 's'], {}), '(pos, cp, n, actions, fr, fr_mu, s)\n', (140035, 140070), True, 'from differentiable_filters.utils import push_utils as utils\n'), ((140305, 140338), 'tensorflow.compat.v1.cast', 'tf.cast', (['keep_contact', 'tf.float32'], {}), '(keep_contact, tf.float32)\n', (140312, 140338), True, 'import tensorflow.compat.v1 as tf\n'), ((141345, 141364), 'numpy.ones', 'np.ones', (['self.dim_x'], {}), '(self.dim_x)\n', (141352, 141364), True, 'import numpy as np\n'), ((141411, 141433), 'numpy.square', 'np.square', (['self.q_diag'], {}), '(self.q_diag)\n', (141420, 141433), True, 'import numpy as np\n'), ((141702, 141737), 'tensorflow.compat.v1.constant_initializer', 'tf.constant_initializer', (['init_const'], {}), '(init_const)\n', (141725, 141737), True, 'import tensorflow.compat.v1 as tf\n'), ((149100, 149145), 'tensorflow.compat.v1.square', 'tf.square', (['(diag + self.het_diag_lrn_init_bias)'], {}), '(diag + self.het_diag_lrn_init_bias)\n', (149109, 149145), True, 'import tensorflow.compat.v1 as tf\n'), ((149206, 149226), 'tensorflow.compat.v1.linalg.diag', 'tf.linalg.diag', (['diag'], {}), '(diag)\n', (149220, 149226), True, 'import tensorflow.compat.v1 as tf\n'), ((151007, 151052), 'tensorflow.compat.v1.square', 'tf.square', (['(diag + self.het_diag_ana_init_bias)'], {}), '(diag + self.het_diag_ana_init_bias)\n', (151016, 151052), True, 'import tensorflow.compat.v1 as tf\n'), ((151113, 151133), 'tensorflow.compat.v1.linalg.diag', 'tf.linalg.diag', (['diag'], {}), '(diag)\n', (151127, 151133), True, 'import tensorflow.compat.v1 as tf\n'), ((2600, 2613), 'numpy.array', 'np.array', (['cov'], {}), '(cov)\n', (2608, 2613), True, 'import numpy as np\n'), ((2673, 2692), 'numpy.ones', 'np.ones', (['self.dim_x'], {}), '(self.dim_x)\n', (2680, 2692), True, 'import numpy as np\n'), ((2959, 2972), 'numpy.array', 'np.array', (['cov'], {}), '(cov)\n', (2967, 2972), True, 'import numpy as np\n'), ((3032, 3051), 'numpy.ones', 'np.ones', (['self.dim_z'], {}), '(self.dim_z)\n', (3039, 3051), True, 'import numpy as np\n'), ((18657, 18681), 'tensorflow.compat.v1.ones_like', 'tf.ones_like', (['likelihood'], {}), '(likelihood)\n', (18669, 18681), True, 'import tensorflow.compat.v1 as tf\n'), ((18682, 18705), 'tensorflow.compat.v1.math.log', 'tf.math.log', (['self.scale'], {}), '(self.scale)\n', (18693, 18705), True, 'import tensorflow.compat.v1 as tf\n'), ((20436, 20460), 'tensorflow.compat.v1.reshape', 'tf.reshape', (['vis', '[-1, 1]'], {}), '(vis, [-1, 1])\n', (20446, 20460), True, 'import tensorflow.compat.v1 as tf\n'), ((28598, 28622), 'tensorflow.compat.v1.reshape', 'tf.reshape', (['vis', '[-1, 1]'], {}), '(vis, [-1, 1])\n', (28608, 28622), True, 'import tensorflow.compat.v1 as tf\n'), ((28825, 28849), 'tensorflow.compat.v1.reshape', 'tf.reshape', (['vis', '[-1, 1]'], {}), '(vis, [-1, 1])\n', (28835, 28849), True, 'import tensorflow.compat.v1 as tf\n'), ((29589, 29629), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['(dist * scale_dist * cont)'], {}), '(dist * scale_dist * cont)\n', (29603, 29629), True, 'import tensorflow.compat.v1 as tf\n'), ((29652, 29689), 'tensorflow.compat.v1.reduce_sum', 'tf.reduce_sum', (['(mse * scale_mse * cont)'], {}), '(mse * scale_mse * cont)\n', (29665, 29689), True, 'import tensorflow.compat.v1 as tf\n'), ((29734, 29767), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['(dist * scale_dist)'], {}), '(dist * scale_dist)\n', (29748, 29767), True, 'import tensorflow.compat.v1 as tf\n'), ((29792, 29822), 'tensorflow.compat.v1.reduce_sum', 'tf.reduce_sum', (['(mse * scale_mse)'], {}), '(mse * scale_mse)\n', (29805, 29822), True, 'import tensorflow.compat.v1 as tf\n'), ((31501, 31529), 'tensorflow.compat.v1.maximum', 'tf.maximum', (['like_good', '(1e-06)'], {}), '(like_good, 1e-06)\n', (31511, 31529), True, 'import tensorflow.compat.v1 as tf\n'), ((31592, 31625), 'tensorflow.compat.v1.maximum', 'tf.maximum', (['(1.0 - like_bad)', '(1e-06)'], {}), '(1.0 - like_bad, 1e-06)\n', (31602, 31625), True, 'import tensorflow.compat.v1 as tf\n'), ((33509, 33535), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['likelihood'], {}), '(likelihood)\n', (33523, 33535), True, 'import tensorflow.compat.v1 as tf\n'), ((36153, 36179), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['normal_ang'], {}), '(normal_ang)\n', (36167, 36179), True, 'import tensorflow.compat.v1 as tf\n'), ((36204, 36222), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['ce'], {}), '(ce)\n', (36218, 36222), True, 'import tensorflow.compat.v1 as tf\n'), ((36224, 36248), 'tensorflow.compat.v1.reshape', 'tf.reshape', (['vis', '[-1, 1]'], {}), '(vis, [-1, 1])\n', (36234, 36248), True, 'import tensorflow.compat.v1 as tf\n'), ((46867, 46878), 'tensorflow.compat.v1.abs', 'tf.abs', (['ang'], {}), '(ang)\n', (46873, 46878), True, 'import tensorflow.compat.v1 as tf\n'), ((52975, 52997), 'tensorflow.compat.v1.equal', 'tf.equal', (['ob', '"""ellip1"""'], {}), "(ob, 'ellip1')\n", (52983, 52997), True, 'import tensorflow.compat.v1 as tf\n'), ((53052, 53073), 'tensorflow.compat.v1.equal', 'tf.equal', (['ob', '"""rect1"""'], {}), "(ob, 'rect1')\n", (53060, 53073), True, 'import tensorflow.compat.v1 as tf\n'), ((53131, 53151), 'tensorflow.compat.v1.equal', 'tf.equal', (['ob', '"""tri1"""'], {}), "(ob, 'tri1')\n", (53139, 53151), True, 'import tensorflow.compat.v1 as tf\n'), ((53210, 53230), 'tensorflow.compat.v1.equal', 'tf.equal', (['ob', '"""tri2"""'], {}), "(ob, 'tri2')\n", (53218, 53230), True, 'import tensorflow.compat.v1 as tf\n'), ((53289, 53309), 'tensorflow.compat.v1.equal', 'tf.equal', (['ob', '"""tri3"""'], {}), "(ob, 'tri3')\n", (53297, 53309), True, 'import tensorflow.compat.v1 as tf\n'), ((53368, 53387), 'tensorflow.compat.v1.equal', 'tf.equal', (['ob', '"""hex"""'], {}), "(ob, 'hex')\n", (53376, 53387), True, 'import tensorflow.compat.v1 as tf\n'), ((53567, 53585), 'tensorflow.compat.v1.zeros_like', 'tf.zeros_like', (['rot'], {}), '(rot)\n', (53580, 53585), True, 'import tensorflow.compat.v1 as tf\n'), ((54285, 54307), 'tensorflow.compat.v1.tile', 'tf.tile', (['ob', '[1, mult]'], {}), '(ob, [1, mult])\n', (54292, 54307), True, 'import tensorflow.compat.v1 as tf\n'), ((54484, 54501), 'tensorflow.compat.v1.ones_like', 'tf.ones_like', (['rot'], {}), '(rot)\n', (54496, 54501), True, 'import tensorflow.compat.v1 as tf\n'), ((54599, 54616), 'tensorflow.compat.v1.ones_like', 'tf.ones_like', (['rot'], {}), '(rot)\n', (54611, 54616), True, 'import tensorflow.compat.v1 as tf\n'), ((54715, 54732), 'tensorflow.compat.v1.ones_like', 'tf.ones_like', (['rot'], {}), '(rot)\n', (54727, 54732), True, 'import tensorflow.compat.v1 as tf\n'), ((54831, 54848), 'tensorflow.compat.v1.ones_like', 'tf.ones_like', (['rot'], {}), '(rot)\n', (54843, 54848), True, 'import tensorflow.compat.v1 as tf\n'), ((54946, 54963), 'tensorflow.compat.v1.ones_like', 'tf.ones_like', (['rot'], {}), '(rot)\n', (54958, 54963), True, 'import tensorflow.compat.v1 as tf\n'), ((55149, 55161), 'tensorflow.compat.v1.sign', 'tf.sign', (['rot'], {}), '(rot)\n', (55156, 55161), True, 'import tensorflow.compat.v1 as tf\n'), ((62153, 62185), 'tensorflow.compat.v1.tile', 'tf.tile', (['label[None, :]', '[24, 1]'], {}), '(label[None, :], [24, 1])\n', (62160, 62185), True, 'import tensorflow.compat.v1 as tf\n'), ((62223, 62255), 'tensorflow.compat.v1.tile', 'tf.tile', (['label[None, :]', '[24, 1]'], {}), '(label[None, :], [24, 1])\n', (62230, 62255), True, 'import tensorflow.compat.v1 as tf\n'), ((63659, 63683), 'tensorflow.compat.v1.less', 'tf.less', (['con_norm', '(1e-06)'], {}), '(con_norm, 1e-06)\n', (63666, 63683), True, 'import tensorflow.compat.v1 as tf\n'), ((64877, 64890), 'tensorflow.compat.v1.zeros', 'tf.zeros', (['[1]'], {}), '([1])\n', (64885, 64890), True, 'import tensorflow.compat.v1 as tf\n'), ((66359, 66383), 'tensorflow.compat.v1.less', 'tf.less', (['con_norm', '(1e-06)'], {}), '(con_norm, 1e-06)\n', (66366, 66383), True, 'import tensorflow.compat.v1 as tf\n'), ((67950, 67989), 'numpy.arange', 'np.arange', (['(1)', '(seq_len - self.sl - 2)', '(20)'], {}), '(1, seq_len - self.sl - 2, 20)\n', (67959, 67989), True, 'import numpy as np\n'), ((68451, 68464), 'tensorflow.compat.v1.zeros', 'tf.zeros', (['[1]'], {}), '([1])\n', (68459, 68464), True, 'import tensorflow.compat.v1 as tf\n'), ((69215, 69255), 'tensorflow.compat.v1.tile', 'tf.tile', (['friction[None, :]', '[self.sl, 1]'], {}), '(friction[None, :], [self.sl, 1])\n', (69222, 69255), True, 'import tensorflow.compat.v1 as tf\n'), ((69288, 69322), 'tensorflow.compat.v1.tile', 'tf.tile', (['mu[None, :]', '[self.sl, 1]'], {}), '(mu[None, :], [self.sl, 1])\n', (69295, 69322), True, 'import tensorflow.compat.v1 as tf\n'), ((69596, 69623), 'tensorflow.compat.v1.norm', 'tf.norm', (['mv[:, :2]'], {'axis': '(-1)'}), '(mv[:, :2], axis=-1)\n', (69603, 69623), True, 'import tensorflow.compat.v1 as tf\n'), ((69732, 69743), 'tensorflow.compat.v1.abs', 'tf.abs', (['mvr'], {}), '(mvr)\n', (69738, 69743), True, 'import tensorflow.compat.v1 as tf\n'), ((71983, 71993), 'numpy.mean', 'np.mean', (['v'], {}), '(v)\n', (71990, 71993), True, 'import numpy as np\n'), ((72032, 72041), 'numpy.std', 'np.std', (['v'], {}), '(v)\n', (72038, 72041), True, 'import numpy as np\n'), ((72513, 72547), 'numpy.corrcoef', 'np.corrcoef', (['r_pred[i:i + 1]', 'cont'], {}), '(r_pred[i:i + 1], cont)\n', (72524, 72547), True, 'import numpy as np\n'), ((72574, 72607), 'numpy.corrcoef', 'np.corrcoef', (['r_pred[i:i + 1]', 'vis'], {}), '(r_pred[i:i + 1], vis)\n', (72585, 72607), True, 'import numpy as np\n'), ((73041, 73075), 'numpy.corrcoef', 'np.corrcoef', (['q_pred[i:i + 1]', 'cont'], {}), '(q_pred[i:i + 1], cont)\n', (73052, 73075), True, 'import numpy as np\n'), ((73597, 73607), 'numpy.mean', 'np.mean', (['v'], {}), '(v)\n', (73604, 73607), True, 'import numpy as np\n'), ((73646, 73655), 'numpy.std', 'np.std', (['v'], {}), '(v)\n', (73652, 73655), True, 'import numpy as np\n'), ((90183, 90212), 'numpy.arctan2', 'np.arctan2', (['*vecs[:, 0][::-1]'], {}), '(*vecs[:, 0][::-1])\n', (90193, 90212), True, 'import numpy as np\n'), ((90250, 90263), 'numpy.sqrt', 'np.sqrt', (['vals'], {}), '(vals)\n', (90257, 90263), True, 'import numpy as np\n'), ((93669, 93685), 'numpy.zeros', 'np.zeros', (['(2, 2)'], {}), '((2, 2))\n', (93677, 93685), True, 'import numpy as np\n'), ((93773, 93787), 'numpy.cos', 'np.cos', (['r_pred'], {}), '(r_pred)\n', (93779, 93787), True, 'import numpy as np\n'), ((93868, 93882), 'numpy.sin', 'np.sin', (['r_pred'], {}), '(r_pred)\n', (93874, 93882), True, 'import numpy as np\n'), ((93915, 93929), 'numpy.cos', 'np.cos', (['r_pred'], {}), '(r_pred)\n', (93921, 93929), True, 'import numpy as np\n'), ((93956, 93972), 'numpy.zeros', 'np.zeros', (['(2, 2)'], {}), '((2, 2))\n', (93964, 93972), True, 'import numpy as np\n'), ((94053, 94065), 'numpy.cos', 'np.cos', (['r_la'], {}), '(r_la)\n', (94059, 94065), True, 'import numpy as np\n'), ((94144, 94156), 'numpy.sin', 'np.sin', (['r_la'], {}), '(r_la)\n', (94150, 94156), True, 'import numpy as np\n'), ((94189, 94201), 'numpy.cos', 'np.cos', (['r_la'], {}), '(r_la)\n', (94195, 94201), True, 'import numpy as np\n'), ((102005, 102049), 'tensorflow.compat.v1.summary.image', 'tf.summary.image', (['"""rgb"""', 'images[:, :, :, :3]'], {}), "('rgb', images[:, :, :, :3])\n", (102021, 102049), True, 'import tensorflow.compat.v1 as tf\n'), ((102070, 102117), 'tensorflow.compat.v1.summary.image', 'tf.summary.image', (['"""depth"""', 'coords[:, :, :, -1:]'], {}), "('depth', coords[:, :, :, -1:])\n", (102086, 102117), True, 'import tensorflow.compat.v1 as tf\n'), ((102138, 102189), 'tensorflow.compat.v1.summary.image', 'tf.summary.image', (['"""conv1_im"""', 'conv1[0:1, :, :, 0:1]'], {}), "('conv1_im', conv1[0:1, :, :, 0:1])\n", (102154, 102189), True, 'import tensorflow.compat.v1 as tf\n'), ((102210, 102250), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""conv1_out"""', 'conv1'], {}), "('conv1_out', conv1)\n", (102230, 102250), True, 'import tensorflow.compat.v1 as tf\n'), ((102271, 102322), 'tensorflow.compat.v1.summary.image', 'tf.summary.image', (['"""conv2_im"""', 'conv2[0:1, :, :, 0:1]'], {}), "('conv2_im', conv2[0:1, :, :, 0:1])\n", (102287, 102322), True, 'import tensorflow.compat.v1 as tf\n'), ((102343, 102383), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""conv2_out"""', 'conv2'], {}), "('conv2_out', conv2)\n", (102363, 102383), True, 'import tensorflow.compat.v1 as tf\n'), ((102404, 102455), 'tensorflow.compat.v1.summary.image', 'tf.summary.image', (['"""conv3_im"""', 'conv3[0:1, :, :, 0:1]'], {}), "('conv3_im', conv3[0:1, :, :, 0:1])\n", (102420, 102455), True, 'import tensorflow.compat.v1 as tf\n'), ((102476, 102516), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""conv3_out"""', 'conv3'], {}), "('conv3_out', conv3)\n", (102496, 102516), True, 'import tensorflow.compat.v1 as tf\n'), ((102537, 102592), 'tensorflow.compat.v1.summary.image', 'tf.summary.image', (['"""deconv1_im"""', 'deconv1[0:1, :, :, 0:1]'], {}), "('deconv1_im', deconv1[0:1, :, :, 0:1])\n", (102553, 102592), True, 'import tensorflow.compat.v1 as tf\n'), ((102613, 102657), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""deconv1_out"""', 'deconv1'], {}), "('deconv1_out', deconv1)\n", (102633, 102657), True, 'import tensorflow.compat.v1 as tf\n'), ((102678, 102733), 'tensorflow.compat.v1.summary.image', 'tf.summary.image', (['"""deconv2_im"""', 'deconv2[0:1, :, :, 0:1]'], {}), "('deconv2_im', deconv2[0:1, :, :, 0:1])\n", (102694, 102733), True, 'import tensorflow.compat.v1 as tf\n'), ((102754, 102798), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""deconv2_out"""', 'deconv2'], {}), "('deconv2_out', deconv2)\n", (102774, 102798), True, 'import tensorflow.compat.v1 as tf\n'), ((102819, 102858), 'tensorflow.compat.v1.summary.image', 'tf.summary.image', (['"""mask"""', 'mask_out[0:1]'], {}), "('mask', mask_out[0:1])\n", (102835, 102858), True, 'import tensorflow.compat.v1 as tf\n'), ((109031, 109075), 'tensorflow.compat.v1.reshape', 'tf.reshape', (['rot_conv2', '[self.batch_size, -1]'], {}), '(rot_conv2, [self.batch_size, -1])\n', (109041, 109075), True, 'import tensorflow.compat.v1 as tf\n'), ((109266, 109325), 'tensorflow.compat.v1.summary.image', 'tf.summary.image', (['"""glimpse_rot"""', 'glimpse_rot[0:1, :, :, :3]'], {}), "('glimpse_rot', glimpse_rot[0:1, :, :, :3])\n", (109282, 109325), True, 'import tensorflow.compat.v1 as tf\n'), ((109383, 109446), 'tensorflow.compat.v1.summary.image', 'tf.summary.image', (['"""glimpse_start"""', 'start_glimpse[0:1, :, :, :3]'], {}), "('glimpse_start', start_glimpse[0:1, :, :, :3])\n", (109399, 109446), True, 'import tensorflow.compat.v1 as tf\n'), ((109504, 109559), 'tensorflow.compat.v1.summary.image', 'tf.summary.image', (['"""conv1_im"""', 'rot_conv1[0:1, :, :, 0:1]'], {}), "('conv1_im', rot_conv1[0:1, :, :, 0:1])\n", (109520, 109559), True, 'import tensorflow.compat.v1 as tf\n'), ((109580, 109624), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""conv1_out"""', 'rot_conv1'], {}), "('conv1_out', rot_conv1)\n", (109600, 109624), True, 'import tensorflow.compat.v1 as tf\n'), ((109645, 109700), 'tensorflow.compat.v1.summary.image', 'tf.summary.image', (['"""conv2_im"""', 'rot_conv2[0:1, :, :, 0:1]'], {}), "('conv2_im', rot_conv2[0:1, :, :, 0:1])\n", (109661, 109700), True, 'import tensorflow.compat.v1 as tf\n'), ((109721, 109765), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""conv2_out"""', 'rot_conv2'], {}), "('conv2_out', rot_conv2)\n", (109741, 109765), True, 'import tensorflow.compat.v1 as tf\n'), ((109786, 109826), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""fc1_out"""', 'rot_fc1'], {}), "('fc1_out', rot_fc1)\n", (109806, 109826), True, 'import tensorflow.compat.v1 as tf\n'), ((109847, 109887), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""fc2_out"""', 'rot_fc2'], {}), "('fc2_out', rot_fc2)\n", (109867, 109887), True, 'import tensorflow.compat.v1 as tf\n'), ((109908, 109944), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""rot_out"""', 'rot'], {}), "('rot_out', rot)\n", (109928, 109944), True, 'import tensorflow.compat.v1 as tf\n'), ((110051, 110085), 'tensorflow.compat.v1.slice', 'tf.slice', (['tip_pix', '[0, 0]', '[-1, 1]'], {}), '(tip_pix, [0, 0], [-1, 1])\n', (110059, 110085), True, 'import tensorflow.compat.v1 as tf\n'), ((110118, 110152), 'tensorflow.compat.v1.slice', 'tf.slice', (['tip_pix', '[0, 1]', '[-1, 1]'], {}), '(tip_pix, [0, 1], [-1, 1])\n', (110126, 110152), True, 'import tensorflow.compat.v1 as tf\n'), ((112949, 112972), 'tensorflow.compat.v1.stop_gradient', 'tf.stop_gradient', (['r_pix'], {}), '(r_pix)\n', (112965, 112972), True, 'import tensorflow.compat.v1 as tf\n'), ((113196, 113215), 'tensorflow.compat.v1.stop_gradient', 'tf.stop_gradient', (['r'], {}), '(r)\n', (113212, 113215), True, 'import tensorflow.compat.v1 as tf\n'), ((113583, 113637), 'tensorflow.compat.v1.summary.image', 'tf.summary.image', (['"""glimpse_z"""', 'glimpse[0:1, :, :, -1:]'], {}), "('glimpse_z', glimpse[0:1, :, :, -1:])\n", (113599, 113637), True, 'import tensorflow.compat.v1 as tf\n'), ((113658, 113706), 'tensorflow.compat.v1.summary.image', 'tf.summary.image', (['"""glimpse_rgb"""', 'im_glimpse[0:1]'], {}), "('glimpse_rgb', im_glimpse[0:1])\n", (113674, 113706), True, 'import tensorflow.compat.v1 as tf\n'), ((113727, 113780), 'tensorflow.compat.v1.summary.image', 'tf.summary.image', (['"""conv1_im"""', 'g_conv1[0:1, :, :, 0:1]'], {}), "('conv1_im', g_conv1[0:1, :, :, 0:1])\n", (113743, 113780), True, 'import tensorflow.compat.v1 as tf\n'), ((113801, 113843), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""conv1_out"""', 'g_conv1'], {}), "('conv1_out', g_conv1)\n", (113821, 113843), True, 'import tensorflow.compat.v1 as tf\n'), ((113864, 113917), 'tensorflow.compat.v1.summary.image', 'tf.summary.image', (['"""conv2_im"""', 'g_conv2[0:1, :, :, 0:1]'], {}), "('conv2_im', g_conv2[0:1, :, :, 0:1])\n", (113880, 113917), True, 'import tensorflow.compat.v1 as tf\n'), ((113938, 113980), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""conv2_out"""', 'g_conv2'], {}), "('conv2_out', g_conv2)\n", (113958, 113980), True, 'import tensorflow.compat.v1 as tf\n'), ((114001, 114054), 'tensorflow.compat.v1.summary.image', 'tf.summary.image', (['"""conv3_im"""', 'g_conv3[0:1, :, :, 0:1]'], {}), "('conv3_im', g_conv3[0:1, :, :, 0:1])\n", (114017, 114054), True, 'import tensorflow.compat.v1 as tf\n'), ((114075, 114115), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""g_fc1_out"""', 'g_fc1'], {}), "('g_fc1_out', g_fc1)\n", (114095, 114115), True, 'import tensorflow.compat.v1 as tf\n'), ((114136, 114178), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""g_rfc2_out"""', 'g_rfc2'], {}), "('g_rfc2_out', g_rfc2)\n", (114156, 114178), True, 'import tensorflow.compat.v1 as tf\n'), ((114199, 114239), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""r_pix_out"""', 'r_pix'], {}), "('r_pix_out', r_pix)\n", (114219, 114239), True, 'import tensorflow.compat.v1 as tf\n'), ((114260, 114302), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""g_nfc2_out"""', 'g_nfc2'], {}), "('g_nfc2_out', g_nfc2)\n", (114280, 114302), True, 'import tensorflow.compat.v1 as tf\n'), ((114323, 114363), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""n_pix_out"""', 'n_pix'], {}), "('n_pix_out', n_pix)\n", (114343, 114363), True, 'import tensorflow.compat.v1 as tf\n'), ((114384, 114432), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""n_end_pix_out"""', 'n_end_pix'], {}), "('n_end_pix_out', n_end_pix)\n", (114404, 114432), True, 'import tensorflow.compat.v1 as tf\n'), ((114657, 114675), 'tensorflow.compat.v1.squeeze', 'tf.squeeze', (['n_norm'], {}), '(n_norm)\n', (114667, 114675), True, 'import tensorflow.compat.v1 as tf\n'), ((114780, 114798), 'tensorflow.compat.v1.tile', 'tf.tile', (['s', '[1, 2]'], {}), '(s, [1, 2])\n', (114787, 114798), True, 'import tensorflow.compat.v1 as tf\n'), ((116183, 116205), 'numpy.square', 'np.square', (['self.r_diag'], {}), '(self.r_diag)\n', (116192, 116205), True, 'import numpy as np\n'), ((118726, 118756), 'tensorflow.compat.v1.keras.regularizers.l2', 'tf.keras.regularizers.l2', ([], {'l': 'wd'}), '(l=wd)\n', (118750, 118756), True, 'import tensorflow.compat.v1 as tf\n'), ((118802, 118831), 'tensorflow.compat.v1.constant_initializer', 'tf.constant_initializer', (['init'], {}), '(init)\n', (118825, 118831), True, 'import tensorflow.compat.v1 as tf\n'), ((124031, 124046), 'tensorflow.compat.v1.square', 'tf.square', (['diag'], {}), '(diag)\n', (124040, 124046), True, 'import tensorflow.compat.v1 as tf\n'), ((124372, 124422), 'tensorflow.compat.v1.reshape', 'tf.reshape', (['het_full_pos_c2', '[self.batch_size, -1]'], {}), '(het_full_pos_c2, [self.batch_size, -1])\n', (124382, 124422), True, 'import tensorflow.compat.v1 as tf\n'), ((124798, 124859), 'tensorflow.compat.v1.concat', 'tf.concat', (['[het_full_pos, het_full_rot, het_full_g2]'], {'axis': '(-1)'}), '([het_full_pos, het_full_rot, het_full_g2], axis=-1)\n', (124807, 124859), True, 'import tensorflow.compat.v1 as tf\n'), ((125743, 125770), 'differentiable_filters.utils.tensorflow_compatability.fill_triangular', 'compat.fill_triangular', (['tri'], {}), '(tri)\n', (125765, 125770), True, 'from differentiable_filters.utils import tensorflow_compatability as compat\n'), ((125788, 125827), 'tensorflow.compat.v1.linalg.diag', 'tf.linalg.diag', (['self.het_full_init_bias'], {}), '(self.het_full_init_bias)\n', (125802, 125827), True, 'import tensorflow.compat.v1 as tf\n'), ((126004, 126031), 'differentiable_filters.utils.tensorflow_compatability.fill_triangular', 'compat.fill_triangular', (['tri'], {}), '(tri)\n', (126026, 126031), True, 'from differentiable_filters.utils import tensorflow_compatability as compat\n'), ((126049, 126090), 'tensorflow.compat.v1.linalg.diag', 'tf.linalg.diag', (['self.const_full_init_bias'], {}), '(self.const_full_init_bias)\n', (126063, 126090), True, 'import tensorflow.compat.v1 as tf\n'), ((126219, 126266), 'tensorflow.compat.v1.tile', 'tf.tile', (['R[None, :, :]', '[self.batch_size, 1, 1]'], {}), '(R[None, :, :], [self.batch_size, 1, 1])\n', (126226, 126266), True, 'import tensorflow.compat.v1 as tf\n'), ((129744, 129806), 'numpy.array', 'np.array', (['[[[1, 0, 0, 0, 0, 0, 0, 0, 0, 0]]]'], {'dtype': 'np.float32'}), '([[[1, 0, 0, 0, 0, 0, 0, 0, 0, 0]]], dtype=np.float32)\n', (129752, 129806), True, 'import numpy as np\n'), ((129885, 129947), 'numpy.array', 'np.array', (['[[[0, 1, 0, 0, 0, 0, 0, 0, 0, 0]]]'], {'dtype': 'np.float32'}), '([[[0, 1, 0, 0, 0, 0, 0, 0, 0, 0]]], dtype=np.float32)\n', (129893, 129947), True, 'import numpy as np\n'), ((130026, 130088), 'numpy.array', 'np.array', (['[[[0, 0, 1, 0, 0, 0, 0, 0, 0, 0]]]'], {'dtype': 'np.float32'}), '([[[0, 0, 1, 0, 0, 0, 0, 0, 0, 0]]], dtype=np.float32)\n', (130034, 130088), True, 'import numpy as np\n'), ((130167, 130229), 'numpy.array', 'np.array', (['[[[0, 0, 0, 0, 0, 1, 0, 0, 0, 0]]]'], {'dtype': 'np.float32'}), '([[[0, 0, 0, 0, 0, 1, 0, 0, 0, 0]]], dtype=np.float32)\n', (130175, 130229), True, 'import numpy as np\n'), ((130308, 130370), 'numpy.array', 'np.array', (['[[[0, 0, 0, 0, 0, 0, 1, 0, 0, 0]]]'], {'dtype': 'np.float32'}), '([[[0, 0, 0, 0, 0, 0, 1, 0, 0, 0]]], dtype=np.float32)\n', (130316, 130370), True, 'import numpy as np\n'), ((130449, 130511), 'numpy.array', 'np.array', (['[[[0, 0, 0, 0, 0, 0, 0, 1, 0, 0]]]'], {'dtype': 'np.float32'}), '([[[0, 0, 0, 0, 0, 0, 0, 1, 0, 0]]], dtype=np.float32)\n', (130457, 130511), True, 'import numpy as np\n'), ((130590, 130652), 'numpy.array', 'np.array', (['[[[0, 0, 0, 0, 0, 0, 0, 0, 1, 0]]]'], {'dtype': 'np.float32'}), '([[[0, 0, 0, 0, 0, 0, 0, 0, 1, 0]]], dtype=np.float32)\n', (130598, 130652), True, 'import numpy as np\n'), ((130731, 130793), 'numpy.array', 'np.array', (['[[[0, 0, 0, 0, 0, 0, 0, 0, 0, 1]]]'], {'dtype': 'np.float32'}), '([[[0, 0, 0, 0, 0, 0, 0, 0, 0, 1]]], dtype=np.float32)\n', (130739, 130793), True, 'import numpy as np\n'), ((136318, 136340), 'tensorflow.compat.v1.equal', 'tf.equal', (['ob', '"""ellip1"""'], {}), "(ob, 'ellip1')\n", (136326, 136340), True, 'import tensorflow.compat.v1 as tf\n'), ((136378, 136401), 'tensorflow.compat.v1.zeros_like', 'tf.zeros_like', (['rot_pred'], {}), '(rot_pred)\n', (136391, 136401), True, 'import tensorflow.compat.v1 as tf\n'), ((136444, 136466), 'tensorflow.compat.v1.equal', 'tf.equal', (['ob', '"""ellip1"""'], {}), "(ob, 'ellip1')\n", (136452, 136466), True, 'import tensorflow.compat.v1 as tf\n'), ((136499, 136517), 'tensorflow.compat.v1.zeros_like', 'tf.zeros_like', (['dom'], {}), '(dom)\n', (136512, 136517), True, 'import tensorflow.compat.v1 as tf\n'), ((136998, 137088), 'tensorflow.compat.v1.concat', 'tf.concat', (['[pos_pred, ori_pred, fr_pred, fr_mu_pred, cp_pred, n_pred, s_pred]'], {'axis': '(1)'}), '([pos_pred, ori_pred, fr_pred, fr_mu_pred, cp_pred, n_pred, s_pred\n ], axis=1)\n', (137007, 137088), True, 'import tensorflow.compat.v1 as tf\n'), ((140545, 140635), 'tensorflow.compat.v1.concat', 'tf.concat', (['[pos_pred, ori_pred, fr_pred, fr_mu_pred, cp_pred, n_pred, s_pred]'], {'axis': '(1)'}), '([pos_pred, ori_pred, fr_pred, fr_mu_pred, cp_pred, n_pred, s_pred\n ], axis=1)\n', (140554, 140635), True, 'import tensorflow.compat.v1 as tf\n'), ((142708, 142738), 'tensorflow.compat.v1.keras.regularizers.l2', 'tf.keras.regularizers.l2', ([], {'l': 'wd'}), '(l=wd)\n', (142732, 142738), True, 'import tensorflow.compat.v1 as tf\n'), ((142784, 142813), 'tensorflow.compat.v1.constant_initializer', 'tf.constant_initializer', (['init'], {}), '(init)\n', (142807, 142813), True, 'import tensorflow.compat.v1 as tf\n'), ((148886, 148935), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""het_diag_lrn_fc1_out"""', 'fc1'], {}), "('het_diag_lrn_fc1_out', fc1)\n", (148906, 148935), True, 'import tensorflow.compat.v1 as tf\n'), ((148956, 149005), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""het_diag_lrn_fc2_out"""', 'fc2'], {}), "('het_diag_lrn_fc2_out', fc2)\n", (148976, 149005), True, 'import tensorflow.compat.v1 as tf\n'), ((149026, 149076), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""het_diag_lrn_fc3_out"""', 'diag'], {}), "('het_diag_lrn_fc3_out', diag)\n", (149046, 149076), True, 'import tensorflow.compat.v1 as tf\n'), ((149395, 149422), 'tensorflow.compat.v1.linalg.tensor_diag', 'tf.linalg.tensor_diag', (['diag'], {}), '(diag)\n', (149416, 149422), True, 'import tensorflow.compat.v1 as tf\n'), ((149443, 149490), 'tensorflow.compat.v1.tile', 'tf.tile', (['Q[None, :, :]', '[self.batch_size, 1, 1]'], {}), '(Q[None, :, :], [self.batch_size, 1, 1])\n', (149450, 149490), True, 'import tensorflow.compat.v1 as tf\n'), ((150793, 150842), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""het_diag_ana_fc1_out"""', 'fc1'], {}), "('het_diag_ana_fc1_out', fc1)\n", (150813, 150842), True, 'import tensorflow.compat.v1 as tf\n'), ((150863, 150912), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""het_diag_ana_fc2_out"""', 'fc2'], {}), "('het_diag_ana_fc2_out', fc2)\n", (150883, 150912), True, 'import tensorflow.compat.v1 as tf\n'), ((150933, 150983), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""het_diag_ana_fc3_out"""', 'diag'], {}), "('het_diag_ana_fc3_out', diag)\n", (150953, 150983), True, 'import tensorflow.compat.v1 as tf\n'), ((151302, 151329), 'tensorflow.compat.v1.linalg.tensor_diag', 'tf.linalg.tensor_diag', (['diag'], {}), '(diag)\n', (151323, 151329), True, 'import tensorflow.compat.v1 as tf\n'), ((151350, 151397), 'tensorflow.compat.v1.tile', 'tf.tile', (['Q[None, :, :]', '[self.batch_size, 1, 1]'], {}), '(Q[None, :, :], [self.batch_size, 1, 1])\n', (151357, 151397), True, 'import tensorflow.compat.v1 as tf\n'), ((40167, 40197), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['likelihood_ana'], {}), '(likelihood_ana)\n', (40181, 40197), True, 'import tensorflow.compat.v1 as tf\n'), ((40229, 40255), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['likelihood'], {}), '(likelihood)\n', (40243, 40255), True, 'import tensorflow.compat.v1 as tf\n'), ((40287, 40317), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['likelihood_ana'], {}), '(likelihood_ana)\n', (40301, 40317), True, 'import tensorflow.compat.v1 as tf\n'), ((40356, 40375), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['mse'], {}), '(mse)\n', (40370, 40375), True, 'import tensorflow.compat.v1 as tf\n'), ((40565, 40595), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['likelihood_ana'], {}), '(likelihood_ana)\n', (40579, 40595), True, 'import tensorflow.compat.v1 as tf\n'), ((40632, 40651), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['mse'], {}), '(mse)\n', (40646, 40651), True, 'import tensorflow.compat.v1 as tf\n'), ((46800, 46811), 'tensorflow.compat.v1.abs', 'tf.abs', (['ang'], {}), '(ang)\n', (46806, 46811), True, 'import tensorflow.compat.v1 as tf\n'), ((46854, 46865), 'tensorflow.compat.v1.abs', 'tf.abs', (['ang'], {}), '(ang)\n', (46860, 46865), True, 'import tensorflow.compat.v1 as tf\n'), ((47337, 47364), 'tensorflow.compat.v1.maximum', 'tf.maximum', (['(1 - pred)', '(1e-07)'], {}), '(1 - pred, 1e-07)\n', (47347, 47364), True, 'import tensorflow.compat.v1 as tf\n'), ((47402, 47425), 'tensorflow.compat.v1.maximum', 'tf.maximum', (['pred', '(1e-07)'], {}), '(pred, 1e-07)\n', (47412, 47425), True, 'import tensorflow.compat.v1 as tf\n'), ((47466, 47493), 'tensorflow.compat.v1.maximum', 'tf.maximum', (['(1 - pred)', '(1e-07)'], {}), '(1 - pred, 1e-07)\n', (47476, 47493), True, 'import tensorflow.compat.v1 as tf\n'), ((47531, 47554), 'tensorflow.compat.v1.maximum', 'tf.maximum', (['pred', '(1e-07)'], {}), '(pred, 1e-07)\n', (47541, 47554), True, 'import tensorflow.compat.v1 as tf\n'), ((53007, 53025), 'tensorflow.compat.v1.zeros_like', 'tf.zeros_like', (['rot'], {}), '(rot)\n', (53020, 53025), True, 'import tensorflow.compat.v1 as tf\n'), ((53653, 53665), 'tensorflow.compat.v1.sign', 'tf.sign', (['rot'], {}), '(rot)\n', (53660, 53665), True, 'import tensorflow.compat.v1 as tf\n'), ((55127, 55138), 'tensorflow.compat.v1.abs', 'tf.abs', (['rot'], {}), '(rot)\n', (55133, 55138), True, 'import tensorflow.compat.v1 as tf\n'), ((63895, 63925), 'tensorflow.compat.v1.ones', 'tf.ones', (['[1]'], {'dtype': 'tf.float32'}), '([1], dtype=tf.float32)\n', (63902, 63925), True, 'import tensorflow.compat.v1 as tf\n'), ((66595, 66625), 'tensorflow.compat.v1.ones', 'tf.ones', (['[1]'], {'dtype': 'tf.float32'}), '([1], dtype=tf.float32)\n', (66602, 66625), True, 'import tensorflow.compat.v1 as tf\n'), ((87782, 87797), 'numpy.asscalar', 'np.asscalar', (['ob'], {}), '(ob)\n', (87793, 87797), True, 'import numpy as np\n'), ((93103, 93233), 'matplotlib.patches.Ellipse', 'Ellipse', (['(pos_pred[i, 0], pos_pred[i, 1])', '(2 * a * 1000)', '(2 * b * 1000)', 'seq_pred[i, 2]'], {'alpha': '(0.1)', 'facecolor': '"""r"""', 'edgecolor': '"""r"""'}), "((pos_pred[i, 0], pos_pred[i, 1]), 2 * a * 1000, 2 * b * 1000,\n seq_pred[i, 2], alpha=0.1, facecolor='r', edgecolor='r')\n", (93110, 93233), False, 'from matplotlib.patches import Ellipse\n'), ((93387, 93502), 'matplotlib.patches.Ellipse', 'Ellipse', (['(seq[i, 0], seq[i, 1])', '(2 * a * 1000)', '(2 * b * 1000)', 'seq[i, 2]'], {'alpha': '(0.1)', 'facecolor': '"""g"""', 'edgecolor': '"""g"""'}), "((seq[i, 0], seq[i, 1]), 2 * a * 1000, 2 * b * 1000, seq[i, 2],\n alpha=0.1, facecolor='g', edgecolor='g')\n", (93394, 93502), False, 'from matplotlib.patches import Ellipse\n'), ((93821, 93835), 'numpy.sin', 'np.sin', (['r_pred'], {}), '(r_pred)\n', (93827, 93835), True, 'import numpy as np\n'), ((94099, 94111), 'numpy.sin', 'np.sin', (['r_la'], {}), '(r_la)\n', (94105, 94111), True, 'import numpy as np\n'), ((94672, 94730), 'matplotlib.patches.Polygon', 'Polygon', (['points_p'], {'alpha': '(0.1)', 'facecolor': '"""r"""', 'edgecolor': '"""r"""'}), "(points_p, alpha=0.1, facecolor='r', edgecolor='r')\n", (94679, 94730), False, 'from matplotlib.patches import Polygon\n'), ((94810, 94868), 'matplotlib.patches.Polygon', 'Polygon', (['points_l'], {'alpha': '(0.1)', 'facecolor': '"""g"""', 'edgecolor': '"""g"""'}), "(points_l, alpha=0.1, facecolor='g', edgecolor='g')\n", (94817, 94868), False, 'from matplotlib.patches import Polygon\n'), ((101801, 101856), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""n1_mean"""', 'self.im_n1.moving_mean'], {}), "('n1_mean', self.im_n1.moving_mean)\n", (101821, 101856), True, 'import tensorflow.compat.v1 as tf\n'), ((101881, 101939), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""n1_var"""', 'self.im_n1.moving_variance'], {}), "('n1_var', self.im_n1.moving_variance)\n", (101901, 101939), True, 'import tensorflow.compat.v1 as tf\n'), ((119179, 119209), 'tensorflow.compat.v1.keras.regularizers.l2', 'tf.keras.regularizers.l2', ([], {'l': 'wd'}), '(l=wd)\n', (119203, 119209), True, 'import tensorflow.compat.v1 as tf\n'), ((119255, 119284), 'tensorflow.compat.v1.constant_initializer', 'tf.constant_initializer', (['init'], {}), '(init)\n', (119278, 119284), True, 'import tensorflow.compat.v1 as tf\n'), ((125047, 125118), 'tensorflow.compat.v1.summary.image', 'tf.summary.image', (['"""het_full_pos_c1_im"""', 'het_full_pos_c1[0:1, :, :, 0:1]'], {}), "('het_full_pos_c1_im', het_full_pos_c1[0:1, :, :, 0:1])\n", (125063, 125118), True, 'import tensorflow.compat.v1 as tf\n'), ((125168, 125228), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""het_full_pos_c1_out"""', 'het_full_pos_c1'], {}), "('het_full_pos_c1_out', het_full_pos_c1)\n", (125188, 125228), True, 'import tensorflow.compat.v1 as tf\n'), ((125245, 125305), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""het_full_pos_c2_out"""', 'het_full_pos_c2'], {}), "('het_full_pos_c2_out', het_full_pos_c2)\n", (125265, 125305), True, 'import tensorflow.compat.v1 as tf\n'), ((125322, 125379), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""het_full_pos_fc_out"""', 'het_full_pos'], {}), "('het_full_pos_fc_out', het_full_pos)\n", (125342, 125379), True, 'import tensorflow.compat.v1 as tf\n'), ((125396, 125453), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""het_full_rot_fc_out"""', 'het_full_rot'], {}), "('het_full_rot_fc_out', het_full_rot)\n", (125416, 125453), True, 'import tensorflow.compat.v1 as tf\n'), ((125470, 125525), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""het_full_g_fc1_out"""', 'het_full_g1'], {}), "('het_full_g_fc1_out', het_full_g1)\n", (125490, 125525), True, 'import tensorflow.compat.v1 as tf\n'), ((125542, 125597), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""het_full_g_fc2_out"""', 'het_full_g2'], {}), "('het_full_g_fc2_out', het_full_g2)\n", (125562, 125597), True, 'import tensorflow.compat.v1 as tf\n'), ((125614, 125668), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""het_full_fc1_out"""', 'het_full_fc1'], {}), "('het_full_fc1_out', het_full_fc1)\n", (125634, 125668), True, 'import tensorflow.compat.v1 as tf\n'), ((125685, 125725), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""het_tri_out"""', 'tri'], {}), "('het_tri_out', tri)\n", (125705, 125725), True, 'import tensorflow.compat.v1 as tf\n'), ((125857, 125886), 'tensorflow.compat.v1.linalg.matrix_transpose', 'tf.linalg.matrix_transpose', (['R'], {}), '(R)\n', (125883, 125886), True, 'import tensorflow.compat.v1 as tf\n'), ((125908, 125939), 'tensorflow.compat.v1.linalg.diag', 'tf.linalg.diag', (['self.bias_fixed'], {}), '(self.bias_fixed)\n', (125922, 125939), True, 'import tensorflow.compat.v1 as tf\n'), ((126120, 126149), 'tensorflow.compat.v1.linalg.matrix_transpose', 'tf.linalg.matrix_transpose', (['R'], {}), '(R)\n', (126146, 126149), True, 'import tensorflow.compat.v1 as tf\n'), ((126171, 126202), 'tensorflow.compat.v1.linalg.diag', 'tf.linalg.diag', (['self.bias_fixed'], {}), '(self.bias_fixed)\n', (126185, 126202), True, 'import tensorflow.compat.v1 as tf\n'), ((137371, 137401), 'tensorflow.compat.v1.zeros', 'tf.zeros', (['[self.batch_size, 7]'], {}), '([self.batch_size, 7])\n', (137379, 137401), True, 'import tensorflow.compat.v1 as tf\n'), ((137436, 137469), 'tensorflow.compat.v1.cast', 'tf.cast', (['keep_contact', 'tf.float32'], {}), '(keep_contact, tf.float32)\n', (137443, 137469), True, 'import tensorflow.compat.v1 as tf\n'), ((137504, 137534), 'tensorflow.compat.v1.zeros', 'tf.zeros', (['[self.batch_size, 2]'], {}), '([self.batch_size, 2])\n', (137512, 137534), True, 'import tensorflow.compat.v1 as tf\n'), ((137611, 137641), 'tensorflow.compat.v1.zeros', 'tf.zeros', (['[self.batch_size, 8]'], {}), '([self.batch_size, 8])\n', (137619, 137641), True, 'import tensorflow.compat.v1 as tf\n'), ((137676, 137709), 'tensorflow.compat.v1.cast', 'tf.cast', (['keep_contact', 'tf.float32'], {}), '(keep_contact, tf.float32)\n', (137683, 137709), True, 'import tensorflow.compat.v1 as tf\n'), ((137744, 137774), 'tensorflow.compat.v1.zeros', 'tf.zeros', (['[self.batch_size, 1]'], {}), '([self.batch_size, 1])\n', (137752, 137774), True, 'import tensorflow.compat.v1 as tf\n'), ((137850, 137880), 'tensorflow.compat.v1.zeros', 'tf.zeros', (['[self.batch_size, 9]'], {}), '([self.batch_size, 9])\n', (137858, 137880), True, 'import tensorflow.compat.v1 as tf\n'), ((137914, 137947), 'tensorflow.compat.v1.cast', 'tf.cast', (['keep_contact', 'tf.float32'], {}), '(keep_contact, tf.float32)\n', (137921, 137947), True, 'import tensorflow.compat.v1 as tf\n'), ((139169, 139205), 'tensorflow.compat.v1.reshape', 'tf.reshape', (['dnx', '[-1, 1, self.dim_x]'], {}), '(dnx, [-1, 1, self.dim_x])\n', (139179, 139205), True, 'import tensorflow.compat.v1 as tf\n'), ((139228, 139264), 'tensorflow.compat.v1.reshape', 'tf.reshape', (['dny', '[-1, 1, self.dim_x]'], {}), '(dny, [-1, 1, self.dim_x])\n', (139238, 139264), True, 'import tensorflow.compat.v1 as tf\n'), ((139287, 139322), 'tensorflow.compat.v1.reshape', 'tf.reshape', (['ds', '[-1, 1, self.dim_x]'], {}), '(ds, [-1, 1, self.dim_x])\n', (139297, 139322), True, 'import tensorflow.compat.v1 as tf\n'), ((143154, 143184), 'tensorflow.compat.v1.keras.regularizers.l2', 'tf.keras.regularizers.l2', ([], {'l': 'wd'}), '(l=wd)\n', (143178, 143184), True, 'import tensorflow.compat.v1 as tf\n'), ((143230, 143259), 'tensorflow.compat.v1.constant_initializer', 'tf.constant_initializer', (['init'], {}), '(init)\n', (143253, 143259), True, 'import tensorflow.compat.v1 as tf\n'), ((149341, 149356), 'tensorflow.compat.v1.square', 'tf.square', (['diag'], {}), '(diag)\n', (149350, 149356), True, 'import tensorflow.compat.v1 as tf\n'), ((149953, 149980), 'differentiable_filters.utils.tensorflow_compatability.fill_triangular', 'compat.fill_triangular', (['tri'], {}), '(tri)\n', (149975, 149980), True, 'from differentiable_filters.utils import tensorflow_compatability as compat\n'), ((150002, 150045), 'tensorflow.compat.v1.linalg.diag', 'tf.linalg.diag', (['self.het_full_lrn_init_bias'], {}), '(self.het_full_lrn_init_bias)\n', (150016, 150045), True, 'import tensorflow.compat.v1 as tf\n'), ((150246, 150273), 'differentiable_filters.utils.tensorflow_compatability.fill_triangular', 'compat.fill_triangular', (['tri'], {}), '(tri)\n', (150268, 150273), True, 'from differentiable_filters.utils import tensorflow_compatability as compat\n'), ((150295, 150340), 'tensorflow.compat.v1.linalg.diag', 'tf.linalg.diag', (['self.const_full_lrn_init_bias'], {}), '(self.const_full_lrn_init_bias)\n', (150309, 150340), True, 'import tensorflow.compat.v1 as tf\n'), ((150481, 150528), 'tensorflow.compat.v1.tile', 'tf.tile', (['Q[None, :, :]', '[self.batch_size, 1, 1]'], {}), '(Q[None, :, :], [self.batch_size, 1, 1])\n', (150488, 150528), True, 'import tensorflow.compat.v1 as tf\n'), ((151248, 151263), 'tensorflow.compat.v1.square', 'tf.square', (['diag'], {}), '(diag)\n', (151257, 151263), True, 'import tensorflow.compat.v1 as tf\n'), ((151860, 151887), 'differentiable_filters.utils.tensorflow_compatability.fill_triangular', 'compat.fill_triangular', (['tri'], {}), '(tri)\n', (151882, 151887), True, 'from differentiable_filters.utils import tensorflow_compatability as compat\n'), ((151909, 151952), 'tensorflow.compat.v1.linalg.diag', 'tf.linalg.diag', (['self.het_full_ana_init_bias'], {}), '(self.het_full_ana_init_bias)\n', (151923, 151952), True, 'import tensorflow.compat.v1 as tf\n'), ((152153, 152180), 'differentiable_filters.utils.tensorflow_compatability.fill_triangular', 'compat.fill_triangular', (['tri'], {}), '(tri)\n', (152175, 152180), True, 'from differentiable_filters.utils import tensorflow_compatability as compat\n'), ((152202, 152247), 'tensorflow.compat.v1.linalg.diag', 'tf.linalg.diag', (['self.const_full_ana_init_bias'], {}), '(self.const_full_ana_init_bias)\n', (152216, 152247), True, 'import tensorflow.compat.v1 as tf\n'), ((152388, 152435), 'tensorflow.compat.v1.tile', 'tf.tile', (['Q[None, :, :]', '[self.batch_size, 1, 1]'], {}), '(Q[None, :, :], [self.batch_size, 1, 1])\n', (152395, 152435), True, 'import tensorflow.compat.v1 as tf\n'), ((22938, 22964), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['likelihood'], {}), '(likelihood)\n', (22952, 22964), True, 'import tensorflow.compat.v1 as tf\n'), ((33464, 33492), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['contact_loss'], {}), '(contact_loss)\n', (33478, 33492), True, 'import tensorflow.compat.v1 as tf\n'), ((40044, 40063), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['mse'], {}), '(mse)\n', (40058, 40063), True, 'import tensorflow.compat.v1 as tf\n'), ((40102, 40128), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['likelihood'], {}), '(likelihood)\n', (40116, 40128), True, 'import tensorflow.compat.v1 as tf\n'), ((40501, 40527), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['likelihood'], {}), '(likelihood)\n', (40515, 40527), True, 'import tensorflow.compat.v1 as tf\n'), ((53083, 53100), 'tensorflow.compat.v1.ones_like', 'tf.ones_like', (['rot'], {}), '(rot)\n', (53095, 53100), True, 'import tensorflow.compat.v1 as tf\n'), ((53161, 53178), 'tensorflow.compat.v1.ones_like', 'tf.ones_like', (['rot'], {}), '(rot)\n', (53173, 53178), True, 'import tensorflow.compat.v1 as tf\n'), ((53240, 53257), 'tensorflow.compat.v1.ones_like', 'tf.ones_like', (['rot'], {}), '(rot)\n', (53252, 53257), True, 'import tensorflow.compat.v1 as tf\n'), ((53319, 53336), 'tensorflow.compat.v1.ones_like', 'tf.ones_like', (['rot'], {}), '(rot)\n', (53331, 53336), True, 'import tensorflow.compat.v1 as tf\n'), ((53397, 53414), 'tensorflow.compat.v1.ones_like', 'tf.ones_like', (['rot'], {}), '(rot)\n', (53409, 53414), True, 'import tensorflow.compat.v1 as tf\n'), ((53631, 53642), 'tensorflow.compat.v1.abs', 'tf.abs', (['rot'], {}), '(rot)\n', (53637, 53642), True, 'import tensorflow.compat.v1 as tf\n'), ((74185, 74222), 'numpy.corrcoef', 'np.corrcoef', (['r_het_diag[i:i + 1]', 'vis'], {}), '(r_het_diag[i:i + 1], vis)\n', (74196, 74222), True, 'import numpy as np\n'), ((74263, 74299), 'numpy.corrcoef', 'np.corrcoef', (['r_het_tri[i:i + 1]', 'vis'], {}), '(r_het_tri[i:i + 1], vis)\n', (74274, 74299), True, 'import numpy as np\n'), ((121201, 121231), 'tensorflow.compat.v1.keras.regularizers.l2', 'tf.keras.regularizers.l2', ([], {'l': 'wd'}), '(l=wd)\n', (121225, 121231), True, 'import tensorflow.compat.v1 as tf\n'), ((121277, 121306), 'tensorflow.compat.v1.constant_initializer', 'tf.constant_initializer', (['init'], {}), '(init)\n', (121300, 121306), True, 'import tensorflow.compat.v1 as tf\n'), ((121522, 121552), 'tensorflow.compat.v1.keras.regularizers.l2', 'tf.keras.regularizers.l2', ([], {'l': 'wd'}), '(l=wd)\n', (121546, 121552), True, 'import tensorflow.compat.v1 as tf\n'), ((121598, 121626), 'tensorflow.compat.v1.constant_initializer', 'tf.constant_initializer', (['(0.0)'], {}), '(0.0)\n', (121621, 121626), True, 'import tensorflow.compat.v1 as tf\n'), ((121942, 121972), 'tensorflow.compat.v1.keras.regularizers.l2', 'tf.keras.regularizers.l2', ([], {'l': 'wd'}), '(l=wd)\n', (121966, 121972), True, 'import tensorflow.compat.v1 as tf\n'), ((122018, 122047), 'tensorflow.compat.v1.constant_initializer', 'tf.constant_initializer', (['init'], {}), '(init)\n', (122041, 122047), True, 'import tensorflow.compat.v1 as tf\n'), ((138048, 138112), 'numpy.array', 'np.array', (['[[[1, 0, 0, 0, 0, 0, 0, 0, 0, 0.0]]]'], {'dtype': 'np.float32'}), '([[[1, 0, 0, 0, 0, 0, 0, 0, 0, 0.0]]], dtype=np.float32)\n', (138056, 138112), True, 'import numpy as np\n'), ((138174, 138238), 'numpy.array', 'np.array', (['[[[0, 1, 0, 0, 0, 0, 0, 0, 0, 0.0]]]'], {'dtype': 'np.float32'}), '([[[0, 1, 0, 0, 0, 0, 0, 0, 0, 0.0]]], dtype=np.float32)\n', (138182, 138238), True, 'import numpy as np\n'), ((138301, 138365), 'numpy.array', 'np.array', (['[[[0, 0, 1, 0, 0, 0, 0, 0, 0, 0.0]]]'], {'dtype': 'np.float32'}), '([[[0, 0, 1, 0, 0, 0, 0, 0, 0, 0.0]]], dtype=np.float32)\n', (138309, 138365), True, 'import numpy as np\n'), ((138431, 138495), 'numpy.array', 'np.array', (['[[[0, 0, 0, 1, 0, 0, 0, 0, 0, 0.0]]]'], {'dtype': 'np.float32'}), '([[[0, 0, 0, 1, 0, 0, 0, 0, 0, 0.0]]], dtype=np.float32)\n', (138439, 138495), True, 'import numpy as np\n'), ((138618, 138682), 'numpy.array', 'np.array', (['[[[0, 0, 0, 0, 1, 0, 0, 0, 0, 0.0]]]'], {'dtype': 'np.float32'}), '([[[0, 0, 0, 0, 1, 0, 0, 0, 0, 0.0]]], dtype=np.float32)\n', (138626, 138682), True, 'import numpy as np\n'), ((138805, 138867), 'numpy.array', 'np.array', (['[[[0, 0, 0, 0, 0, 1, 0, 0, 0, 0]]]'], {'dtype': 'np.float32'}), '([[[0, 0, 0, 0, 0, 1, 0, 0, 0, 0]]], dtype=np.float32)\n', (138813, 138867), True, 'import numpy as np\n'), ((138991, 139053), 'numpy.array', 'np.array', (['[[[0, 0, 0, 0, 0, 0, 1, 0, 0, 0]]]'], {'dtype': 'np.float32'}), '([[[0, 0, 0, 0, 0, 0, 1, 0, 0, 0]]], dtype=np.float32)\n', (138999, 139053), True, 'import numpy as np\n'), ((144110, 144140), 'tensorflow.compat.v1.keras.regularizers.l2', 'tf.keras.regularizers.l2', ([], {'l': 'wd'}), '(l=wd)\n', (144134, 144140), True, 'import tensorflow.compat.v1 as tf\n'), ((144186, 144215), 'tensorflow.compat.v1.constant_initializer', 'tf.constant_initializer', (['init'], {}), '(init)\n', (144209, 144215), True, 'import tensorflow.compat.v1 as tf\n'), ((149746, 149795), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""het_full_lrn_fc1_out"""', 'fc1'], {}), "('het_full_lrn_fc1_out', fc1)\n", (149766, 149795), True, 'import tensorflow.compat.v1 as tf\n'), ((149816, 149865), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""het_full_lrn_fc2_out"""', 'fc2'], {}), "('het_full_lrn_fc2_out', fc2)\n", (149836, 149865), True, 'import tensorflow.compat.v1 as tf\n'), ((149886, 149931), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""het_full_lrn_out"""', 'tri'], {}), "('het_full_lrn_out', tri)\n", (149906, 149931), True, 'import tensorflow.compat.v1 as tf\n'), ((150079, 150108), 'tensorflow.compat.v1.linalg.matrix_transpose', 'tf.linalg.matrix_transpose', (['Q'], {}), '(Q)\n', (150105, 150108), True, 'import tensorflow.compat.v1 as tf\n'), ((150134, 150165), 'tensorflow.compat.v1.linalg.diag', 'tf.linalg.diag', (['self.bias_fixed'], {}), '(self.bias_fixed)\n', (150148, 150165), True, 'import tensorflow.compat.v1 as tf\n'), ((150374, 150403), 'tensorflow.compat.v1.linalg.matrix_transpose', 'tf.linalg.matrix_transpose', (['Q'], {}), '(Q)\n', (150400, 150403), True, 'import tensorflow.compat.v1 as tf\n'), ((150429, 150460), 'tensorflow.compat.v1.linalg.diag', 'tf.linalg.diag', (['self.bias_fixed'], {}), '(self.bias_fixed)\n', (150443, 150460), True, 'import tensorflow.compat.v1 as tf\n'), ((151653, 151702), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""het_full_ana_fc1_out"""', 'fc1'], {}), "('het_full_ana_fc1_out', fc1)\n", (151673, 151702), True, 'import tensorflow.compat.v1 as tf\n'), ((151723, 151772), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""het_full_ana_fc2_out"""', 'fc2'], {}), "('het_full_ana_fc2_out', fc2)\n", (151743, 151772), True, 'import tensorflow.compat.v1 as tf\n'), ((151793, 151838), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['"""het_full_ana_out"""', 'tri'], {}), "('het_full_ana_out', tri)\n", (151813, 151838), True, 'import tensorflow.compat.v1 as tf\n'), ((151986, 152015), 'tensorflow.compat.v1.linalg.matrix_transpose', 'tf.linalg.matrix_transpose', (['Q'], {}), '(Q)\n', (152012, 152015), True, 'import tensorflow.compat.v1 as tf\n'), ((152041, 152072), 'tensorflow.compat.v1.linalg.diag', 'tf.linalg.diag', (['self.bias_fixed'], {}), '(self.bias_fixed)\n', (152055, 152072), True, 'import tensorflow.compat.v1 as tf\n'), ((152281, 152310), 'tensorflow.compat.v1.linalg.matrix_transpose', 'tf.linalg.matrix_transpose', (['Q'], {}), '(Q)\n', (152307, 152310), True, 'import tensorflow.compat.v1 as tf\n'), ((152336, 152367), 'tensorflow.compat.v1.linalg.diag', 'tf.linalg.diag', (['self.bias_fixed'], {}), '(self.bias_fixed)\n', (152350, 152367), True, 'import tensorflow.compat.v1 as tf\n'), ((23079, 23105), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['likelihood'], {}), '(likelihood)\n', (23093, 23105), True, 'import tensorflow.compat.v1 as tf\n'), ((33393, 33407), 'tensorflow.compat.v1.add_n', 'tf.add_n', (['mses'], {}), '(mses)\n', (33401, 33407), True, 'import tensorflow.compat.v1 as tf\n'), ((33415, 33441), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['normal_ang'], {}), '(normal_ang)\n', (33429, 33441), True, 'import tensorflow.compat.v1 as tf\n'), ((144490, 144520), 'tensorflow.compat.v1.keras.regularizers.l2', 'tf.keras.regularizers.l2', ([], {'l': 'wd'}), '(l=wd)\n', (144514, 144520), True, 'import tensorflow.compat.v1 as tf\n'), ((144566, 144594), 'tensorflow.compat.v1.constant_initializer', 'tf.constant_initializer', (['(0.0)'], {}), '(0.0)\n', (144589, 144594), True, 'import tensorflow.compat.v1 as tf\n'), ((144886, 144916), 'tensorflow.compat.v1.keras.regularizers.l2', 'tf.keras.regularizers.l2', ([], {'l': 'wd'}), '(l=wd)\n', (144910, 144916), True, 'import tensorflow.compat.v1 as tf\n'), ((144962, 144991), 'tensorflow.compat.v1.constant_initializer', 'tf.constant_initializer', (['init'], {}), '(init)\n', (144985, 144991), True, 'import tensorflow.compat.v1 as tf\n'), ((23220, 23246), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['likelihood'], {}), '(likelihood)\n', (23234, 23246), True, 'import tensorflow.compat.v1 as tf\n'), ((23327, 23361), 'tensorflow.compat.v1.less', 'tf.less', (['step', '(self.epoch_size * 3)'], {}), '(step, self.epoch_size * 3)\n', (23334, 23361), True, 'import tensorflow.compat.v1 as tf\n'), ((94451, 94462), 'numpy.array', 'np.array', (['p'], {}), '(p)\n', (94459, 94462), True, 'import numpy as np\n'), ((145945, 145975), 'tensorflow.compat.v1.keras.regularizers.l2', 'tf.keras.regularizers.l2', ([], {'l': 'wd'}), '(l=wd)\n', (145969, 145975), True, 'import tensorflow.compat.v1 as tf\n'), ((146021, 146050), 'tensorflow.compat.v1.constant_initializer', 'tf.constant_initializer', (['init'], {}), '(init)\n', (146044, 146050), True, 'import tensorflow.compat.v1 as tf\n'), ((23461, 23487), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['likelihood'], {}), '(likelihood)\n', (23475, 23487), True, 'import tensorflow.compat.v1 as tf\n'), ((32708, 32734), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['likelihood'], {}), '(likelihood)\n', (32722, 32734), True, 'import tensorflow.compat.v1 as tf\n'), ((33191, 33219), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['contact_loss'], {}), '(contact_loss)\n', (33205, 33219), True, 'import tensorflow.compat.v1 as tf\n'), ((33258, 33284), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['likelihood'], {}), '(likelihood)\n', (33272, 33284), True, 'import tensorflow.compat.v1 as tf\n'), ((89363, 89376), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (89369, 89376), True, 'import numpy as np\n'), ((89414, 89427), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (89420, 89427), True, 'import numpy as np\n'), ((94521, 94536), 'numpy.dot', 'np.dot', (['r_p', 'pt'], {}), '(r_p, pt)\n', (94527, 94536), True, 'import numpy as np\n'), ((94598, 94613), 'numpy.dot', 'np.dot', (['r_l', 'pt'], {}), '(r_l, pt)\n', (94604, 94613), True, 'import numpy as np\n'), ((146395, 146425), 'tensorflow.compat.v1.keras.regularizers.l2', 'tf.keras.regularizers.l2', ([], {'l': 'wd'}), '(l=wd)\n', (146419, 146425), True, 'import tensorflow.compat.v1 as tf\n'), ((146471, 146500), 'tensorflow.compat.v1.constant_initializer', 'tf.constant_initializer', (['init'], {}), '(init)\n', (146494, 146500), True, 'import tensorflow.compat.v1 as tf\n'), ((32641, 32669), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['contact_loss'], {}), '(contact_loss)\n', (32655, 32669), True, 'import tensorflow.compat.v1 as tf\n'), ((33127, 33153), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['normal_ang'], {}), '(normal_ang)\n', (33141, 33153), True, 'import tensorflow.compat.v1 as tf\n'), ((147416, 147446), 'tensorflow.compat.v1.keras.regularizers.l2', 'tf.keras.regularizers.l2', ([], {'l': 'wd'}), '(l=wd)\n', (147440, 147446), True, 'import tensorflow.compat.v1 as tf\n'), ((147492, 147521), 'tensorflow.compat.v1.constant_initializer', 'tf.constant_initializer', (['init'], {}), '(init)\n', (147515, 147521), True, 'import tensorflow.compat.v1 as tf\n'), ((32577, 32603), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (['normal_ang'], {}), '(normal_ang)\n', (32591, 32603), True, 'import tensorflow.compat.v1 as tf\n'), ((33011, 33025), 'tensorflow.compat.v1.add_n', 'tf.add_n', (['mses'], {}), '(mses)\n', (33019, 33025), True, 'import tensorflow.compat.v1 as tf\n'), ((147800, 147830), 'tensorflow.compat.v1.keras.regularizers.l2', 'tf.keras.regularizers.l2', ([], {'l': 'wd'}), '(l=wd)\n', (147824, 147830), True, 'import tensorflow.compat.v1 as tf\n'), ((147876, 147904), 'tensorflow.compat.v1.constant_initializer', 'tf.constant_initializer', (['(0.0)'], {}), '(0.0)\n', (147899, 147904), True, 'import tensorflow.compat.v1 as tf\n'), ((148196, 148226), 'tensorflow.compat.v1.keras.regularizers.l2', 'tf.keras.regularizers.l2', ([], {'l': 'wd'}), '(l=wd)\n', (148220, 148226), True, 'import tensorflow.compat.v1 as tf\n'), ((148272, 148301), 'tensorflow.compat.v1.constant_initializer', 'tf.constant_initializer', (['init'], {}), '(init)\n', (148295, 148301), True, 'import tensorflow.compat.v1 as tf\n'), ((32461, 32475), 'tensorflow.compat.v1.add_n', 'tf.add_n', (['mses'], {}), '(mses)\n', (32469, 32475), True, 'import tensorflow.compat.v1 as tf\n')]
import numpy as np from scipy.optimize import leastsq import matplotlib matplotlib.use('TkAgg') import pylab as plt from math import sqrt, atan, cos from process_data import * guess_mean = np.mean(y1)/2 guess_std = 3*np.std(y1)/(2**0.5) guess_phase = 0 guess_stretch = 0.3 data_first_guess = guess_std*np.sin(np.sin(guess_stretch**-1 * (x1))) + guess_mean optimize_func = lambda x: x[0]*np.sin(np.sin(x[1]**-1 *(x1))) - y1 est_std, est_stretch, est_mean = leastsq(optimize_func, [guess_std, guess_stretch, guess_mean])[0] fig = plt.figure(1, figsize=(9, 5), dpi=150) fig.suptitle('\\textbf{Torque Felt by Driven Gear vs. Difference in Displacements}', fontweight='bold') fig.subplots_adjust(left=0.11, top=0.9, right=0.98, bottom=0.1) plt.plot(x1, y1, '.', label='Processed Data Points', c='black') plt.plot(x1, est_std*np.sin(est_stretch**-1 *(x1)+est_mean), '--', label='Fitted Sine Wave', c='black') plt.ylabel('\\textbf{Torque Felt by\\\\Driven Gear (Nm)}') plt.xlabel('\\textbf{Difference in Displacements (rad)}') plt.xlim(0, np.pi/2) plt.legend(numpoints=1) plt.show()
[ "pylab.show", "numpy.std", "pylab.ylabel", "scipy.optimize.leastsq", "matplotlib.use", "pylab.figure", "numpy.mean", "pylab.xlabel", "numpy.sin", "pylab.xlim", "pylab.legend", "pylab.plot" ]
[((72, 95), 'matplotlib.use', 'matplotlib.use', (['"""TkAgg"""'], {}), "('TkAgg')\n", (86, 95), False, 'import matplotlib\n'), ((533, 571), 'pylab.figure', 'plt.figure', (['(1)'], {'figsize': '(9, 5)', 'dpi': '(150)'}), '(1, figsize=(9, 5), dpi=150)\n', (543, 571), True, 'import pylab as plt\n'), ((741, 804), 'pylab.plot', 'plt.plot', (['x1', 'y1', '"""."""'], {'label': '"""Processed Data Points"""', 'c': '"""black"""'}), "(x1, y1, '.', label='Processed Data Points', c='black')\n", (749, 804), True, 'import pylab as plt\n'), ((910, 968), 'pylab.ylabel', 'plt.ylabel', (['"""\\\\textbf{Torque Felt by\\\\\\\\Driven Gear (Nm)}"""'], {}), "('\\\\textbf{Torque Felt by\\\\\\\\Driven Gear (Nm)}')\n", (920, 968), True, 'import pylab as plt\n'), ((969, 1026), 'pylab.xlabel', 'plt.xlabel', (['"""\\\\textbf{Difference in Displacements (rad)}"""'], {}), "('\\\\textbf{Difference in Displacements (rad)}')\n", (979, 1026), True, 'import pylab as plt\n'), ((1027, 1049), 'pylab.xlim', 'plt.xlim', (['(0)', '(np.pi / 2)'], {}), '(0, np.pi / 2)\n', (1035, 1049), True, 'import pylab as plt\n'), ((1049, 1072), 'pylab.legend', 'plt.legend', ([], {'numpoints': '(1)'}), '(numpoints=1)\n', (1059, 1072), True, 'import pylab as plt\n'), ((1073, 1083), 'pylab.show', 'plt.show', ([], {}), '()\n', (1081, 1083), True, 'import pylab as plt\n'), ((190, 201), 'numpy.mean', 'np.mean', (['y1'], {}), '(y1)\n', (197, 201), True, 'import numpy as np\n'), ((460, 522), 'scipy.optimize.leastsq', 'leastsq', (['optimize_func', '[guess_std, guess_stretch, guess_mean]'], {}), '(optimize_func, [guess_std, guess_stretch, guess_mean])\n', (467, 522), False, 'from scipy.optimize import leastsq\n'), ((218, 228), 'numpy.std', 'np.std', (['y1'], {}), '(y1)\n', (224, 228), True, 'import numpy as np\n'), ((826, 867), 'numpy.sin', 'np.sin', (['(est_stretch ** -1 * x1 + est_mean)'], {}), '(est_stretch ** -1 * x1 + est_mean)\n', (832, 867), True, 'import numpy as np\n'), ((312, 344), 'numpy.sin', 'np.sin', (['(guess_stretch ** -1 * x1)'], {}), '(guess_stretch ** -1 * x1)\n', (318, 344), True, 'import numpy as np\n'), ((398, 421), 'numpy.sin', 'np.sin', (['(x[1] ** -1 * x1)'], {}), '(x[1] ** -1 * x1)\n', (404, 421), True, 'import numpy as np\n')]
"""basic array functions""" import multiprocessing import warnings import numpy as np try: import numexpr numexpr.set_num_threads(multiprocessing.cpu_count()) numexpr.set_vml_num_threads(multiprocessing.cpu_count()) except ImportError: warnings.warn('numexpr not detected, use `sudo pip install numexpr`') numexpr = None def astype(array, dtype): """cast array to dtype Parameters ---------- - array: array - dtype: dtype to cast to """ if numexpr is None: return array.astype(dtype) result = np.zeros(array.shape, dtype=dtype) return numexpr.evaluate('array', out=result, casting='unsafe') def concatenate(arrays, axis, dtype=None, out=None): """concatenate arrays along axis Parameters ---------- - arrays: iterable of arrays - axis: int axis to concatenate - dtype: dtype of result - out: array in which to store result """ # compute sizes ndim = arrays[0].ndim other_axes = [other for other in range(arrays[0].ndim) if other != axis] other_lengths = [arrays[0].shape[other_axis] for other_axis in other_axes] axis_lengths = [array.shape[axis] for array in arrays] axis_length = np.sum(axis_lengths) result_shape = other_lengths[:axis] + [axis_length] + other_lengths[axis:] # ensure sizes and dtypes are proper for a, array in enumerate(arrays): if len(array.shape) != ndim: raise Exception('array' + str(a) + 'has wrong dimensions') for ol, length in enumerate(other_lengths): if array.shape[other_axes[ol]] != length: raise Exception('bad axis ' + str(ol) + ' of array ' + str(a)) if out is not None: if out.shape != result_shape: raise Exception('out does not have shape ' + str(result_shape)) if dtype is not None and out.dtype != dtype: raise Exception('out does not have dtype ' + str(dtype)) # initialize output if out is None: out = np.zeros(result_shape, dtype=dtype) # fall back to numpy if numexpr not available if numexpr is None: out[:] = np.concatenate(arrays, axis=axis) return out # populate output start = 0 slices = [slice(None) for d in range(ndim)] for array in arrays: end = start + array.shape[axis] slices[axis] = slice(start, end) numexpr.evaluate('array', out=out[slices]) start = end return out def isnan(X): """evaluate whether elements of X are infinite Parameters ---------- - X: array to evaluate nan values of """ if numexpr is not None: return numexpr.evaluate('X != X') else: return np.isnan(X) def nan_to_num(X): """convert infinite values in array to 0 Parameters ---------- - X: array whose infinite values to convert """ if numexpr is not None: X = copy(X) X[isnan(X)] = 0 return X else: return np.nan_to_num(X) def nan_to_num_inplace(X): """convert infinite values in array to 0 inplace Parameters ---------- - X: array whose infinite values to convert """ if numexpr is not None: X[isnan(X)] = 0 return X else: X[np.isnan(X)] = 0 return X def copy(X): """return a copy of X Parameters ---------- - X: array to copy """ if numexpr is not None: return numexpr.evaluate('X') else: return np.copy(X)
[ "numpy.sum", "numpy.nan_to_num", "numpy.copy", "numpy.zeros", "numexpr.evaluate", "numpy.isnan", "warnings.warn", "numpy.concatenate", "multiprocessing.cpu_count" ]
[((559, 593), 'numpy.zeros', 'np.zeros', (['array.shape'], {'dtype': 'dtype'}), '(array.shape, dtype=dtype)\n', (567, 593), True, 'import numpy as np\n'), ((605, 660), 'numexpr.evaluate', 'numexpr.evaluate', (['"""array"""'], {'out': 'result', 'casting': '"""unsafe"""'}), "('array', out=result, casting='unsafe')\n", (621, 660), False, 'import numexpr\n'), ((1211, 1231), 'numpy.sum', 'np.sum', (['axis_lengths'], {}), '(axis_lengths)\n', (1217, 1231), True, 'import numpy as np\n'), ((141, 168), 'multiprocessing.cpu_count', 'multiprocessing.cpu_count', ([], {}), '()\n', (166, 168), False, 'import multiprocessing\n'), ((202, 229), 'multiprocessing.cpu_count', 'multiprocessing.cpu_count', ([], {}), '()\n', (227, 229), False, 'import multiprocessing\n'), ((255, 324), 'warnings.warn', 'warnings.warn', (['"""numexpr not detected, use `sudo pip install numexpr`"""'], {}), "('numexpr not detected, use `sudo pip install numexpr`')\n", (268, 324), False, 'import warnings\n'), ((2004, 2039), 'numpy.zeros', 'np.zeros', (['result_shape'], {'dtype': 'dtype'}), '(result_shape, dtype=dtype)\n', (2012, 2039), True, 'import numpy as np\n'), ((2132, 2165), 'numpy.concatenate', 'np.concatenate', (['arrays'], {'axis': 'axis'}), '(arrays, axis=axis)\n', (2146, 2165), True, 'import numpy as np\n'), ((2384, 2426), 'numexpr.evaluate', 'numexpr.evaluate', (['"""array"""'], {'out': 'out[slices]'}), "('array', out=out[slices])\n", (2400, 2426), False, 'import numexpr\n'), ((2653, 2679), 'numexpr.evaluate', 'numexpr.evaluate', (['"""X != X"""'], {}), "('X != X')\n", (2669, 2679), False, 'import numexpr\n'), ((2705, 2716), 'numpy.isnan', 'np.isnan', (['X'], {}), '(X)\n', (2713, 2716), True, 'import numpy as np\n'), ((2984, 3000), 'numpy.nan_to_num', 'np.nan_to_num', (['X'], {}), '(X)\n', (2997, 3000), True, 'import numpy as np\n'), ((3439, 3460), 'numexpr.evaluate', 'numexpr.evaluate', (['"""X"""'], {}), "('X')\n", (3455, 3460), False, 'import numexpr\n'), ((3486, 3496), 'numpy.copy', 'np.copy', (['X'], {}), '(X)\n', (3493, 3496), True, 'import numpy as np\n'), ((3259, 3270), 'numpy.isnan', 'np.isnan', (['X'], {}), '(X)\n', (3267, 3270), True, 'import numpy as np\n')]
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert UV crops to full UV maps.""" import os import sys import json from PIL import Image import numpy as np def place_crop(crop, image, center_x, center_y): """Place the crop in the image at the specified location.""" im_height, im_width = image.shape[:2] crop_height, crop_width = crop.shape[:2] left = center_x - crop_width // 2 right = left + crop_width top = center_y - crop_height // 2 bottom = top + crop_height adjusted_crop = crop # remove regions of crop that go beyond image bounds if left < 0: adjusted_crop = adjusted_crop[:, -left:] if right > im_width: adjusted_crop = adjusted_crop[:, :(im_width - right)] if top < 0: adjusted_crop = adjusted_crop[-top:] if bottom > im_height: adjusted_crop = adjusted_crop[:(im_height - bottom)] crop_mask = (adjusted_crop > 0).astype(crop.dtype).sum(-1, keepdims=True) image[max(0, top):min(im_height, bottom), max(0, left):min(im_width, right)] *= (1 - crop_mask) image[max(0, top):min(im_height, bottom), max(0, left):min(im_width, right)] += adjusted_crop return image def crop2full(keypoints_path, metadata_path, uvdir, outdir): """Create each frame's layer UVs from predicted UV crops""" with open(keypoints_path) as f: kp_data = json.load(f) # Get all people ids people_ids = set() for frame in kp_data: for skeleton in kp_data[frame]: people_ids.add(skeleton['idx']) people_ids = sorted(list(people_ids)) with open(metadata_path) as f: metadata = json.load(f) orig_size = np.array(metadata['alphapose_input_size'][::-1]) out_size = np.array(metadata['size_LR'][::-1]) if 'people_layers' in metadata: people_layers = metadata['people_layers'] else: people_layers = [[pid] for pid in people_ids] # Create output directories. for layer_i in range(1, 1 + len(people_layers)): os.makedirs(os.path.join(outdir, f'{layer_i:02d}'), exist_ok=True) print(f'Writing UVs to {outdir}') for frame in sorted(kp_data): for layer_i, layer in enumerate(people_layers, 1): out_path = os.path.join(outdir, f'{layer_i:02d}', frame) sys.stdout.flush() sys.stdout.write('processing frame %s\r' % out_path) uv_map = np.zeros([out_size[0], out_size[1], 4]) for person_id in layer: matches = [p for p in kp_data[frame] if p['idx'] == person_id] if len(matches) == 0: # person doesn't appear in this frame continue skeleton = matches[0] kps = np.array(skeleton['keypoints']).reshape(17, 3) # Get kps bounding box. left = kps[:, 0].min() right = kps[:, 0].max() top = kps[:, 1].min() bottom = kps[:, 1].max() height = bottom - top width = right - left orig_crop_size = max(height, width) orig_center_x = (left + right) // 2 orig_center_y = (top + bottom) // 2 # read predicted uv map uv_crop_path = os.path.join(uvdir, f'{person_id:02d}_{os.path.basename(out_path)[:-4]}_output_uv.png') if os.path.exists(uv_crop_path): uv_crop = np.array(Image.open(uv_crop_path)) else: uv_crop = np.zeros([256, 256, 3]) # add person ID channel person_mask = (uv_crop[..., 0:1] > 0).astype('uint8') person_ids = (255 - person_id) * person_mask uv_crop = np.concatenate([uv_crop, person_ids], -1) # scale crop to desired output size # 256 is the crop size, 192 is the inner crop size out_crop_size = orig_crop_size * 256./192 * out_size / orig_size out_crop_size = out_crop_size.astype(np.int) uv_crop = uv_crop.astype(np.uint8) uv_crop = np.array(Image.fromarray(uv_crop).resize((out_crop_size[1], out_crop_size[0]), resample=Image.NEAREST)) # scale center coordinate accordingly out_center_x = (orig_center_x * out_size[1] / orig_size[1]).astype(np.int) out_center_y = (orig_center_y * out_size[0] / orig_size[0]).astype(np.int) # Place UV crop in full UV map and save. uv_map = place_crop(uv_crop, uv_map, out_center_x, out_center_y) uv_map = Image.fromarray(uv_map.astype('uint8')) uv_map.save(out_path) if __name__ == "__main__": import argparse arguments = argparse.ArgumentParser() arguments.add_argument('--dataroot', type=str) opt = arguments.parse_args() keypoints_path = os.path.join(opt.dataroot, 'keypoints.json') metadata_path = os.path.join(opt.dataroot, 'metadata.json') uvdir = os.path.join(opt.dataroot, 'kp2uv/test_latest/images') outdir = os.path.join(opt.dataroot, 'iuv') crop2full(keypoints_path, metadata_path, uvdir, outdir)
[ "sys.stdout.write", "json.load", "argparse.ArgumentParser", "os.path.basename", "numpy.zeros", "os.path.exists", "PIL.Image.open", "sys.stdout.flush", "numpy.array", "PIL.Image.fromarray", "os.path.join", "numpy.concatenate" ]
[((2186, 2234), 'numpy.array', 'np.array', (["metadata['alphapose_input_size'][::-1]"], {}), "(metadata['alphapose_input_size'][::-1])\n", (2194, 2234), True, 'import numpy as np\n'), ((2250, 2285), 'numpy.array', 'np.array', (["metadata['size_LR'][::-1]"], {}), "(metadata['size_LR'][::-1])\n", (2258, 2285), True, 'import numpy as np\n'), ((5283, 5308), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (5306, 5308), False, 'import argparse\n'), ((5415, 5459), 'os.path.join', 'os.path.join', (['opt.dataroot', '"""keypoints.json"""'], {}), "(opt.dataroot, 'keypoints.json')\n", (5427, 5459), False, 'import os\n'), ((5480, 5523), 'os.path.join', 'os.path.join', (['opt.dataroot', '"""metadata.json"""'], {}), "(opt.dataroot, 'metadata.json')\n", (5492, 5523), False, 'import os\n'), ((5536, 5590), 'os.path.join', 'os.path.join', (['opt.dataroot', '"""kp2uv/test_latest/images"""'], {}), "(opt.dataroot, 'kp2uv/test_latest/images')\n", (5548, 5590), False, 'import os\n'), ((5604, 5637), 'os.path.join', 'os.path.join', (['opt.dataroot', '"""iuv"""'], {}), "(opt.dataroot, 'iuv')\n", (5616, 5637), False, 'import os\n'), ((1887, 1899), 'json.load', 'json.load', (['f'], {}), '(f)\n', (1896, 1899), False, 'import json\n'), ((2156, 2168), 'json.load', 'json.load', (['f'], {}), '(f)\n', (2165, 2168), False, 'import json\n'), ((2544, 2582), 'os.path.join', 'os.path.join', (['outdir', 'f"""{layer_i:02d}"""'], {}), "(outdir, f'{layer_i:02d}')\n", (2556, 2582), False, 'import os\n'), ((2754, 2799), 'os.path.join', 'os.path.join', (['outdir', 'f"""{layer_i:02d}"""', 'frame'], {}), "(outdir, f'{layer_i:02d}', frame)\n", (2766, 2799), False, 'import os\n'), ((2812, 2830), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (2828, 2830), False, 'import sys\n'), ((2843, 2895), 'sys.stdout.write', 'sys.stdout.write', (["('processing frame %s\\r' % out_path)"], {}), "('processing frame %s\\r' % out_path)\n", (2859, 2895), False, 'import sys\n'), ((2917, 2956), 'numpy.zeros', 'np.zeros', (['[out_size[0], out_size[1], 4]'], {}), '([out_size[0], out_size[1], 4])\n', (2925, 2956), True, 'import numpy as np\n'), ((3893, 3921), 'os.path.exists', 'os.path.exists', (['uv_crop_path'], {}), '(uv_crop_path)\n', (3907, 3921), False, 'import os\n'), ((4262, 4303), 'numpy.concatenate', 'np.concatenate', (['[uv_crop, person_ids]', '(-1)'], {}), '([uv_crop, person_ids], -1)\n', (4276, 4303), True, 'import numpy as np\n'), ((4040, 4063), 'numpy.zeros', 'np.zeros', (['[256, 256, 3]'], {}), '([256, 256, 3])\n', (4048, 4063), True, 'import numpy as np\n'), ((3238, 3269), 'numpy.array', 'np.array', (["skeleton['keypoints']"], {}), "(skeleton['keypoints'])\n", (3246, 3269), True, 'import numpy as np\n'), ((3962, 3986), 'PIL.Image.open', 'Image.open', (['uv_crop_path'], {}), '(uv_crop_path)\n', (3972, 3986), False, 'from PIL import Image\n'), ((4652, 4676), 'PIL.Image.fromarray', 'Image.fromarray', (['uv_crop'], {}), '(uv_crop)\n', (4667, 4676), False, 'from PIL import Image\n'), ((3825, 3851), 'os.path.basename', 'os.path.basename', (['out_path'], {}), '(out_path)\n', (3841, 3851), False, 'import os\n')]
import collections import copy import datetime import gc import time # import torch import numpy as np from util.logconf import logging log = logging.getLogger(__name__) # log.setLevel(logging.WARN) # log.setLevel(logging.INFO) log.setLevel(logging.DEBUG) IrcTuple = collections.namedtuple('IrcTuple', ['index', 'row', 'col']) XyzTuple = collections.namedtuple('XyzTuple', ['x', 'y', 'z']) def irc2xyz(coord_irc, origin_xyz, vxSize_xyz, direction_a): cri_a = np.array(coord_irc)[::-1] origin_a = np.array(origin_xyz) vxSize_a = np.array(vxSize_xyz) coords_xyz = (direction_a @ (cri_a * vxSize_a)) + origin_a # coords_xyz = (direction_a @ (idx * vxSize_a)) + origin_a return XyzTuple(*coords_xyz) def xyz2irc(coord_xyz, origin_xyz, vxSize_xyz, direction_a): origin_a = np.array(origin_xyz) vxSize_a = np.array(vxSize_xyz) coord_a = np.array(coord_xyz) cri_a = ((coord_a - origin_a) @ np.linalg.inv(direction_a)) / vxSize_a cri_a = np.round(cri_a) return IrcTuple(int(cri_a[2]), int(cri_a[1]), int(cri_a[0])) def importstr(module_str, from_=None): """ >>> importstr('os') <module 'os' from '.../os.pyc'> >>> importstr('math', 'fabs') <built-in function fabs> """ if from_ is None and ':' in module_str: module_str, from_ = module_str.rsplit(':') module = __import__(module_str) for sub_str in module_str.split('.')[1:]: module = getattr(module, sub_str) if from_: try: return getattr(module, from_) except: raise ImportError('{}.{}'.format(module_str, from_)) return module # class dotdict(dict): # '''dict where key can be access as attribute d.key -> d[key]''' # @classmethod # def deep(cls, dic_obj): # '''Initialize from dict with deep conversion''' # return cls(dic_obj).deepConvert() # # def __getattr__(self, attr): # if attr in self: # return self[attr] # log.error(sorted(self.keys())) # raise AttributeError(attr) # #return self.get(attr, None) # __setattr__= dict.__setitem__ # __delattr__= dict.__delitem__ # # # def __copy__(self): # return dotdict(self) # # def __deepcopy__(self, memo): # new_dict = dotdict() # for k, v in self.items(): # new_dict[k] = copy.deepcopy(v, memo) # return new_dict # # # pylint: disable=multiple-statements # def __getstate__(self): return self.__dict__ # def __setstate__(self, d): self.__dict__.update(d) # # def deepConvert(self): # '''Convert all dicts at all tree levels into dotdict''' # for k, v in self.items(): # if type(v) is dict: # pylint: disable=unidiomatic-typecheck # self[k] = dotdict(v) # self[k].deepConvert() # try: # try enumerable types # for m, x in enumerate(v): # if type(x) is dict: # pylint: disable=unidiomatic-typecheck # x = dotdict(x) # x.deepConvert() # v[m] = x# # except TypeError: # pass # return self # # def copy(self): # # override dict.copy() # return dotdict(self) def prhist(ary, prefix_str=None, **kwargs): if prefix_str is None: prefix_str = '' else: prefix_str += ' ' count_ary, bins_ary = np.histogram(ary, **kwargs) for i in range(count_ary.shape[0]): print("{}{:-8.2f}".format(prefix_str, bins_ary[i]), "{:-10}".format(count_ary[i])) print("{}{:-8.2f}".format(prefix_str, bins_ary[-1])) # def dumpCuda(): # # small_count = 0 # total_bytes = 0 # size2count_dict = collections.defaultdict(int) # size2bytes_dict = {} # for obj in gc.get_objects(): # if isinstance(obj, torch.cuda._CudaBase): # nbytes = 4 # for n in obj.size(): # nbytes *= n # # size2count_dict[tuple([obj.get_device()] + list(obj.size()))] += 1 # size2bytes_dict[tuple([obj.get_device()] + list(obj.size()))] = nbytes # # total_bytes += nbytes # # # print(small_count, "tensors equal to or less than than 16 bytes") # for size, count in sorted(size2count_dict.items(), key=lambda sc: (size2bytes_dict[sc[0]] * sc[1], sc[1], sc[0])): # print('{:4}x'.format(count), '{:10,}'.format(size2bytes_dict[size]), size) # print('{:10,}'.format(total_bytes), "total bytes") def enumerateWithEstimate( iter, desc_str, start_ndx=0, print_ndx=4, backoff=None, iter_len=None, ): """ In terms of behavior, `enumerateWithEstimate` is almost identical to the standard `enumerate` (the differences are things like how our function returns a generator, while `enumerate` returns a specialized `<enumerate object at 0x...>`). However, the side effects (logging, specifically) are what make the function interesting. :param iter: `iter` is the iterable that will be passed into `enumerate`. Required. :param desc_str: This is a human-readable string that describes what the loop is doing. The value is arbitrary, but should be kept reasonably short. Things like `"epoch 4 training"` or `"deleting temp files"` or similar would all make sense. :param start_ndx: This parameter defines how many iterations of the loop should be skipped before timing actually starts. Skipping a few iterations can be useful if there are startup costs like caching that are only paid early on, resulting in a skewed average when those early iterations dominate the average time per iteration. NOTE: Using `start_ndx` to skip some iterations makes the time spent performing those iterations not be included in the displayed duration. Please account for this if you use the displayed duration for anything formal. This parameter defaults to `0`. :param print_ndx: determines which loop interation that the timing logging will start on. The intent is that we don't start logging until we've given the loop a few iterations to let the average time-per-iteration a chance to stablize a bit. We require that `print_ndx` not be less than `start_ndx` times `backoff`, since `start_ndx` greater than `0` implies that the early N iterations are unstable from a timing perspective. `print_ndx` defaults to `4`. :param backoff: This is used to how many iterations to skip before logging again. Frequent logging is less interesting later on, so by default we double the gap between logging messages each time after the first. `backoff` defaults to `2` unless iter_len is > 1000, in which case it defaults to `4`. :param iter_len: Since we need to know the number of items to estimate when the loop will finish, that can be provided by passing in a value for `iter_len`. If a value isn't provided, then it will be set by using the value of `len(iter)`. :return: """ if iter_len is None: iter_len = len(iter) if backoff is None: backoff = 2 while backoff ** 7 < iter_len: backoff *= 2 assert backoff >= 2 while print_ndx < start_ndx * backoff: print_ndx *= backoff log.warning("{} ----/{}, starting".format( desc_str, iter_len, )) start_ts = time.time() for (current_ndx, item) in enumerate(iter): yield (current_ndx, item) if current_ndx == print_ndx: # ... <1> duration_sec = ((time.time() - start_ts) / (current_ndx - start_ndx + 1) * (iter_len-start_ndx) ) done_dt = datetime.datetime.fromtimestamp(start_ts + duration_sec) done_td = datetime.timedelta(seconds=duration_sec) log.info("{} {:-4}/{}, done at {}, {}".format( desc_str, current_ndx, iter_len, str(done_dt).rsplit('.', 1)[0], str(done_td).rsplit('.', 1)[0], )) print_ndx *= backoff if current_ndx + 1 == start_ndx: start_ts = time.time() log.warning("{} ----/{}, done at {}".format( desc_str, iter_len, str(datetime.datetime.now()).rsplit('.', 1)[0], )) # # try: # import matplotlib # matplotlib.use('agg', warn=False) # # import matplotlib.pyplot as plt # # matplotlib color maps # cdict = {'red': ((0.0, 1.0, 1.0), # # (0.5, 1.0, 1.0), # (1.0, 1.0, 1.0)), # # 'green': ((0.0, 0.0, 0.0), # (0.5, 0.0, 0.0), # (1.0, 0.5, 0.5)), # # 'blue': ((0.0, 0.0, 0.0), # # (0.5, 0.5, 0.5), # # (0.75, 0.0, 0.0), # (1.0, 0.0, 0.0)), # # 'alpha': ((0.0, 0.0, 0.0), # (0.75, 0.5, 0.5), # (1.0, 0.5, 0.5))} # # plt.register_cmap(name='mask', data=cdict) # # cdict = {'red': ((0.0, 0.0, 0.0), # (0.25, 1.0, 1.0), # (1.0, 1.0, 1.0)), # # 'green': ((0.0, 1.0, 1.0), # (0.25, 1.0, 1.0), # (0.5, 0.0, 0.0), # (1.0, 0.0, 0.0)), # # 'blue': ((0.0, 0.0, 0.0), # # (0.5, 0.5, 0.5), # # (0.75, 0.0, 0.0), # (1.0, 0.0, 0.0)), # # 'alpha': ((0.0, 0.15, 0.15), # (0.5, 0.3, 0.3), # (0.8, 0.0, 0.0), # (1.0, 0.0, 0.0))} # # plt.register_cmap(name='maskinvert', data=cdict) # except ImportError: # pass
[ "datetime.datetime.now", "time.time", "util.logconf.logging.getLogger", "numpy.histogram", "numpy.array", "collections.namedtuple", "numpy.linalg.inv", "datetime.datetime.fromtimestamp", "datetime.timedelta", "numpy.round" ]
[((144, 171), 'util.logconf.logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (161, 171), False, 'from util.logconf import logging\n'), ((270, 329), 'collections.namedtuple', 'collections.namedtuple', (['"""IrcTuple"""', "['index', 'row', 'col']"], {}), "('IrcTuple', ['index', 'row', 'col'])\n", (292, 329), False, 'import collections\n'), ((341, 392), 'collections.namedtuple', 'collections.namedtuple', (['"""XyzTuple"""', "['x', 'y', 'z']"], {}), "('XyzTuple', ['x', 'y', 'z'])\n", (363, 392), False, 'import collections\n'), ((508, 528), 'numpy.array', 'np.array', (['origin_xyz'], {}), '(origin_xyz)\n', (516, 528), True, 'import numpy as np\n'), ((544, 564), 'numpy.array', 'np.array', (['vxSize_xyz'], {}), '(vxSize_xyz)\n', (552, 564), True, 'import numpy as np\n'), ((801, 821), 'numpy.array', 'np.array', (['origin_xyz'], {}), '(origin_xyz)\n', (809, 821), True, 'import numpy as np\n'), ((837, 857), 'numpy.array', 'np.array', (['vxSize_xyz'], {}), '(vxSize_xyz)\n', (845, 857), True, 'import numpy as np\n'), ((872, 891), 'numpy.array', 'np.array', (['coord_xyz'], {}), '(coord_xyz)\n', (880, 891), True, 'import numpy as np\n'), ((979, 994), 'numpy.round', 'np.round', (['cri_a'], {}), '(cri_a)\n', (987, 994), True, 'import numpy as np\n'), ((3456, 3483), 'numpy.histogram', 'np.histogram', (['ary'], {}), '(ary, **kwargs)\n', (3468, 3483), True, 'import numpy as np\n'), ((7606, 7617), 'time.time', 'time.time', ([], {}), '()\n', (7615, 7617), False, 'import time\n'), ((467, 486), 'numpy.array', 'np.array', (['coord_irc'], {}), '(coord_irc)\n', (475, 486), True, 'import numpy as np\n'), ((928, 954), 'numpy.linalg.inv', 'np.linalg.inv', (['direction_a'], {}), '(direction_a)\n', (941, 954), True, 'import numpy as np\n'), ((7976, 8032), 'datetime.datetime.fromtimestamp', 'datetime.datetime.fromtimestamp', (['(start_ts + duration_sec)'], {}), '(start_ts + duration_sec)\n', (8007, 8032), False, 'import datetime\n'), ((8055, 8095), 'datetime.timedelta', 'datetime.timedelta', ([], {'seconds': 'duration_sec'}), '(seconds=duration_sec)\n', (8073, 8095), False, 'import datetime\n'), ((8447, 8458), 'time.time', 'time.time', ([], {}), '()\n', (8456, 8458), False, 'import time\n'), ((7788, 7799), 'time.time', 'time.time', ([], {}), '()\n', (7797, 7799), False, 'import time\n'), ((8557, 8580), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (8578, 8580), False, 'import datetime\n')]
import os import sys import argparse import datetime import time import os.path as osp import matplotlib matplotlib.use('Agg') from matplotlib import pyplot as plt import numpy as np import torch import torch.nn as nn from torch.optim import lr_scheduler import torch.backends.cudnn as cudnn import datasets import models from utils import AverageMeter, Logger from center_loss import CenterLoss parser = argparse.ArgumentParser("Center Loss Example") # dataset parser.add_argument('-d', '--dataset', type=str, default='mnist', choices=['mnist']) parser.add_argument('-j', '--workers', default=4, type=int, help="number of data loading workers (default: 4)") # optimization parser.add_argument('--batch-size', type=int, default=128) parser.add_argument('--lr-model', type=float, default=0.001, help="learning rate for model") parser.add_argument('--lr-cent', type=float, default=0.5, help="learning rate for center loss") parser.add_argument('--weight-cent', type=float, default=1, help="weight for center loss") parser.add_argument('--max-epoch', type=int, default=100) parser.add_argument('--stepsize', type=int, default=20) parser.add_argument('--gamma', type=float, default=0.5, help="learning rate decay") # model parser.add_argument('--model', type=str, default='cnn') # misc parser.add_argument('--eval-freq', type=int, default=10) parser.add_argument('--print-freq', type=int, default=50) parser.add_argument('--gpu', type=str, default='0') parser.add_argument('--seed', type=int, default=1) parser.add_argument('--use-cpu', action='store_true') parser.add_argument('--save-dir', type=str, default='log') parser.add_argument('--plot', action='store_true', help="whether to plot features for every epoch") args = parser.parse_args() def main(): torch.manual_seed(args.seed) os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu use_gpu = torch.cuda.is_available() if args.use_cpu: use_gpu = False sys.stdout = Logger(osp.join(args.save_dir, 'log_' + args.dataset + '.txt')) if use_gpu: print("Currently using GPU: {}".format(args.gpu)) cudnn.benchmark = True torch.cuda.manual_seed_all(args.seed) else: print("Currently using CPU") print("Creating dataset: {}".format(args.dataset)) dataset = datasets.create( name=args.dataset, batch_size=args.batch_size, use_gpu=use_gpu, num_workers=args.workers, ) trainloader, testloader = dataset.trainloader, dataset.testloader print("Creating model: {}".format(args.model)) model = models.create(name=args.model, num_classes=dataset.num_classes) if use_gpu: model = nn.DataParallel(model).cuda() criterion_xent = nn.CrossEntropyLoss() criterion_cent = CenterLoss(num_classes=dataset.num_classes, feat_dim=2, use_gpu=use_gpu) optimizer_model = torch.optim.SGD(model.parameters(), lr=args.lr_model, weight_decay=5e-04, momentum=0.9) optimizer_centloss = torch.optim.SGD(criterion_cent.parameters(), lr=args.lr_cent) if args.stepsize > 0: scheduler = lr_scheduler.StepLR(optimizer_model, step_size=args.stepsize, gamma=args.gamma) start_time = time.time() for epoch in range(args.max_epoch): print("==> Epoch {}/{}".format(epoch+1, args.max_epoch)) train(model, criterion_xent, criterion_cent, optimizer_model, optimizer_centloss, trainloader, use_gpu, dataset.num_classes, epoch) if args.stepsize > 0: scheduler.step() if args.eval_freq > 0 and (epoch+1) % args.eval_freq == 0 or (epoch+1) == args.max_epoch: print("==> Test") acc, err = test(model, testloader, use_gpu, dataset.num_classes, epoch) print("Accuracy (%): {}\t Error rate (%): {}".format(acc, err)) elapsed = round(time.time() - start_time) elapsed = str(datetime.timedelta(seconds=elapsed)) print("Finished. Total elapsed time (h:m:s): {}".format(elapsed)) def train(model, criterion_xent, criterion_cent, optimizer_model, optimizer_centloss, trainloader, use_gpu, num_classes, epoch): model.train() xent_losses = AverageMeter() cent_losses = AverageMeter() losses = AverageMeter() if args.plot: all_features, all_labels = [], [] for batch_idx, (data, labels) in enumerate(trainloader): if use_gpu: data, labels = data.cuda(), labels.cuda() features, outputs = model(data) loss_xent = criterion_xent(outputs, labels) loss_cent = criterion_cent(features, labels) loss_cent *= args.weight_cent loss = loss_xent + loss_cent optimizer_model.zero_grad() optimizer_centloss.zero_grad() loss.backward() optimizer_model.step() # by doing so, weight_cent would not impact on the learning of centers for param in criterion_cent.parameters(): param.grad.data *= (1. / args.weight_cent) optimizer_centloss.step() losses.update(loss.item(), labels.size(0)) xent_losses.update(loss_xent.item(), labels.size(0)) cent_losses.update(loss_cent.item(), labels.size(0)) if args.plot: if use_gpu: all_features.append(features.data.cpu().numpy()) all_labels.append(labels.data.cpu().numpy()) else: all_features.append(features.data.numpy()) all_labels.append(labels.data.numpy()) if (batch_idx+1) % args.print_freq == 0: print("Batch {}/{}\t Loss {:.6f} ({:.6f}) XentLoss {:.6f} ({:.6f}) CenterLoss {:.6f} ({:.6f})" \ .format(batch_idx+1, len(trainloader), losses.val, losses.avg, xent_losses.val, xent_losses.avg, cent_losses.val, cent_losses.avg)) if args.plot: all_features = np.concatenate(all_features, 0) all_labels = np.concatenate(all_labels, 0) plot_features(all_features, all_labels, num_classes, epoch, prefix='train') def test(model, testloader, use_gpu, num_classes, epoch): model.eval() correct, total = 0, 0 if args.plot: all_features, all_labels = [], [] with torch.no_grad(): for data, labels in testloader: if use_gpu: data, labels = data.cuda(), labels.cuda() features, outputs = model(data) predictions = outputs.data.max(1)[1] total += labels.size(0) correct += (predictions == labels.data).sum() if args.plot: if use_gpu: all_features.append(features.data.cpu().numpy()) all_labels.append(labels.data.cpu().numpy()) else: all_features.append(features.data.numpy()) all_labels.append(labels.data.numpy()) if args.plot: all_features = np.concatenate(all_features, 0) all_labels = np.concatenate(all_labels, 0) plot_features(all_features, all_labels, num_classes, epoch, prefix='test') acc = correct * 100. / total err = 100. - acc return acc, err def plot_features(features, labels, num_classes, epoch, prefix): """Plot features on 2D plane. Args: features: (num_instances, num_features). labels: (num_instances). """ colors = ['C0', 'C1', 'C2', 'C3', 'C4', 'C5', 'C6', 'C7', 'C8', 'C9'] for label_idx in range(num_classes): plt.scatter( features[labels==label_idx, 0], features[labels==label_idx, 1], c=colors[label_idx], s=1, ) plt.legend(['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'], loc='upper right') dirname = osp.join(args.save_dir, prefix) if not osp.exists(dirname): os.mkdir(dirname) save_name = osp.join(dirname, 'epoch_' + str(epoch+1) + '.png') plt.savefig(save_name, bbox_inches='tight') plt.close() if __name__ == '__main__': main()
[ "os.mkdir", "torch.optim.lr_scheduler.StepLR", "argparse.ArgumentParser", "torch.no_grad", "os.path.join", "models.create", "utils.AverageMeter", "matplotlib.pyplot.close", "os.path.exists", "datetime.timedelta", "datasets.create", "torch.manual_seed", "matplotlib.pyplot.legend", "center_loss.CenterLoss", "matplotlib.use", "torch.cuda.is_available", "numpy.concatenate", "matplotlib.pyplot.scatter", "torch.nn.CrossEntropyLoss", "time.time", "torch.cuda.manual_seed_all", "torch.nn.DataParallel", "matplotlib.pyplot.savefig" ]
[((105, 126), 'matplotlib.use', 'matplotlib.use', (['"""Agg"""'], {}), "('Agg')\n", (119, 126), False, 'import matplotlib\n'), ((408, 454), 'argparse.ArgumentParser', 'argparse.ArgumentParser', (['"""Center Loss Example"""'], {}), "('Center Loss Example')\n", (431, 454), False, 'import argparse\n'), ((1781, 1809), 'torch.manual_seed', 'torch.manual_seed', (['args.seed'], {}), '(args.seed)\n', (1798, 1809), False, 'import torch\n'), ((1874, 1899), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (1897, 1899), False, 'import torch\n'), ((2288, 2398), 'datasets.create', 'datasets.create', ([], {'name': 'args.dataset', 'batch_size': 'args.batch_size', 'use_gpu': 'use_gpu', 'num_workers': 'args.workers'}), '(name=args.dataset, batch_size=args.batch_size, use_gpu=\n use_gpu, num_workers=args.workers)\n', (2303, 2398), False, 'import datasets\n'), ((2552, 2615), 'models.create', 'models.create', ([], {'name': 'args.model', 'num_classes': 'dataset.num_classes'}), '(name=args.model, num_classes=dataset.num_classes)\n', (2565, 2615), False, 'import models\n'), ((2701, 2722), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (2720, 2722), True, 'import torch.nn as nn\n'), ((2744, 2816), 'center_loss.CenterLoss', 'CenterLoss', ([], {'num_classes': 'dataset.num_classes', 'feat_dim': '(2)', 'use_gpu': 'use_gpu'}), '(num_classes=dataset.num_classes, feat_dim=2, use_gpu=use_gpu)\n', (2754, 2816), False, 'from center_loss import CenterLoss\n'), ((3159, 3170), 'time.time', 'time.time', ([], {}), '()\n', (3168, 3170), False, 'import time\n'), ((4140, 4154), 'utils.AverageMeter', 'AverageMeter', ([], {}), '()\n', (4152, 4154), False, 'from utils import AverageMeter, Logger\n'), ((4173, 4187), 'utils.AverageMeter', 'AverageMeter', ([], {}), '()\n', (4185, 4187), False, 'from utils import AverageMeter, Logger\n'), ((4201, 4215), 'utils.AverageMeter', 'AverageMeter', ([], {}), '()\n', (4213, 4215), False, 'from utils import AverageMeter, Logger\n'), ((7606, 7692), 'matplotlib.pyplot.legend', 'plt.legend', (["['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']"], {'loc': '"""upper right"""'}), "(['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'], loc=\n 'upper right')\n", (7616, 7692), True, 'from matplotlib import pyplot as plt\n'), ((7702, 7733), 'os.path.join', 'osp.join', (['args.save_dir', 'prefix'], {}), '(args.save_dir, prefix)\n', (7710, 7733), True, 'import os.path as osp\n'), ((7864, 7907), 'matplotlib.pyplot.savefig', 'plt.savefig', (['save_name'], {'bbox_inches': '"""tight"""'}), "(save_name, bbox_inches='tight')\n", (7875, 7907), True, 'from matplotlib import pyplot as plt\n'), ((7912, 7923), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (7921, 7923), True, 'from matplotlib import pyplot as plt\n'), ((1962, 2017), 'os.path.join', 'osp.join', (['args.save_dir', "('log_' + args.dataset + '.txt')"], {}), "(args.save_dir, 'log_' + args.dataset + '.txt')\n", (1970, 2017), True, 'import os.path as osp\n'), ((2133, 2170), 'torch.cuda.manual_seed_all', 'torch.cuda.manual_seed_all', (['args.seed'], {}), '(args.seed)\n', (2159, 2170), False, 'import torch\n'), ((3061, 3140), 'torch.optim.lr_scheduler.StepLR', 'lr_scheduler.StepLR', (['optimizer_model'], {'step_size': 'args.stepsize', 'gamma': 'args.gamma'}), '(optimizer_model, step_size=args.stepsize, gamma=args.gamma)\n', (3080, 3140), False, 'from torch.optim import lr_scheduler\n'), ((3847, 3882), 'datetime.timedelta', 'datetime.timedelta', ([], {'seconds': 'elapsed'}), '(seconds=elapsed)\n', (3865, 3882), False, 'import datetime\n'), ((5823, 5854), 'numpy.concatenate', 'np.concatenate', (['all_features', '(0)'], {}), '(all_features, 0)\n', (5837, 5854), True, 'import numpy as np\n'), ((5876, 5905), 'numpy.concatenate', 'np.concatenate', (['all_labels', '(0)'], {}), '(all_labels, 0)\n', (5890, 5905), True, 'import numpy as np\n'), ((6162, 6177), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (6175, 6177), False, 'import torch\n'), ((6875, 6906), 'numpy.concatenate', 'np.concatenate', (['all_features', '(0)'], {}), '(all_features, 0)\n', (6889, 6906), True, 'import numpy as np\n'), ((6928, 6957), 'numpy.concatenate', 'np.concatenate', (['all_labels', '(0)'], {}), '(all_labels, 0)\n', (6942, 6957), True, 'import numpy as np\n'), ((7441, 7550), 'matplotlib.pyplot.scatter', 'plt.scatter', (['features[labels == label_idx, 0]', 'features[labels == label_idx, 1]'], {'c': 'colors[label_idx]', 's': '(1)'}), '(features[labels == label_idx, 0], features[labels == label_idx,\n 1], c=colors[label_idx], s=1)\n', (7452, 7550), True, 'from matplotlib import pyplot as plt\n'), ((7745, 7764), 'os.path.exists', 'osp.exists', (['dirname'], {}), '(dirname)\n', (7755, 7764), True, 'import os.path as osp\n'), ((7774, 7791), 'os.mkdir', 'os.mkdir', (['dirname'], {}), '(dirname)\n', (7782, 7791), False, 'import os\n'), ((3803, 3814), 'time.time', 'time.time', ([], {}), '()\n', (3812, 3814), False, 'import time\n'), ((2649, 2671), 'torch.nn.DataParallel', 'nn.DataParallel', (['model'], {}), '(model)\n', (2664, 2671), True, 'import torch.nn as nn\n')]
#!/usr/bin/env python # coding: utf-8 # In[1]: #read in ipsilateral breast labelmap/volume #mask this patient's breast #generate histogram of intensity #DIR to new patient's breast #expand/dilate region (might need to be manual) #mask new patient's breast #generate histogram of intensity # In[2]: #import modules import SimpleITK as sitk from platipy.imaging.visualisation.tools import ImageVisualiser from platipy.imaging.utils.tools import get_com import matplotlib.pyplot as plt import numpy as np get_ipython().run_line_magic('matplotlib', 'notebook') # In[3]: R_breast=sitk.ReadImage("/home/alicja/Downloads/Segmentation.nii.gz") # In[4]: WES_010_4_B50T=sitk.ReadImage("/home/alicja/Documents/WES_010/IMAGES/WES_010_4_20180829_MR_EP2D_DIFF_TRA_SPAIR_ZOOMIT_EZ_B50T_EP2D_DIFF_TRA_SPAIR_ZOOMIT_TRACEW_DFC_MIX_5.nii.gz") WES_010_4_B800T=sitk.ReadImage("/home/alicja/Documents/WES_010/IMAGES/WES_010_4_20180829_MR_EP2D_DIFF_TRA_SPAIR_ZOOMIT_EZ_B800T_EP2D_DIFF_TRA_SPAIR_ZOOMIT_TRACEW_DFC_MIX_5.nii.gz") # In[5]: masked_R_breast = sitk.Mask(WES_010_4_B50T, R_breast) # In[10]: values = sitk.GetArrayViewFromImage(masked_R_breast).flatten() fig, ax = plt.subplots(1,1) ax.hist(values, bins=np.linspace(200,900,50), histtype='stepfilled', lw=2) #ax.set_yscale('log') ax.grid() ax.set_axisbelow(True) ax.set_xlabel('Intensity') ax.set_ylabel('Frequency') fig.show() # In[7]: #Use these values to do thresholding def estimate_tumour_vol(img_mri, lowerthreshold=300, upperthreshold=3000, hole_size=1): label_threshold = sitk.BinaryThreshold(img_mri, lowerThreshold=lowerthreshold, upperThreshold=upperthreshold) label_threshold_cc = sitk.RelabelComponent(sitk.ConnectedComponent(label_threshold)) label_threshold_cc_x = (label_threshold_cc==1) label_threshold_cc_x_f = sitk.BinaryMorphologicalClosing(label_threshold_cc_x, (hole_size,hole_size,hole_size)) return(label_threshold_cc_x_f) # In[12]: image_mri=WES_010_4_B50T arr_mri = sitk.GetArrayFromImage(image_mri) arr_mri[:,:,arr_mri.shape[2]//2:] = 0 image_mri_masked=sitk.GetImageFromArray(arr_mri) image_mri_masked.CopyInformation(image_mri) label_threshold_cc_x_f=estimate_tumour_vol(image_mri_masked, lowerthreshold=720, upperthreshold=3000, hole_size=1) sitk.WriteImage(label_threshold_cc_x_f,"test_label_threshold_010_4_B50T_hist.nii.gz") #works well # In[35]: np.max(label_threshold_cc_x_f) # In[60]: masked_R_breast_B800T = sitk.Mask(WES_010_4_B800T, R_breast) values = sitk.GetArrayViewFromImage(masked_R_breast_B800T).flatten() fig, ax = plt.subplots(1,1) ax.hist(values, bins=np.linspace(1,600,50), histtype='stepfilled', lw=2) #ax.set_yscale('log') ax.grid() ax.set_axisbelow(True) ax.set_xlabel('Intensity') ax.set_ylabel('Frequency') fig.show() # In[61]: image_mri=WES_010_4_B800T arr_mri = sitk.GetArrayFromImage(image_mri) arr_mri[:,:,arr_mri.shape[2]//2:] = 0 image_mri_masked=sitk.GetImageFromArray(arr_mri) image_mri_masked.CopyInformation(image_mri) label_threshold_cc_x_f=estimate_tumour_vol(image_mri_masked, lowerthreshold=300, upperthreshold=3000, hole_size=1) sitk.WriteImage(label_threshold_cc_x_f,"test_label_threshold_010_4_B800T_hist.nii.gz") #works super well # In[15]: WES_010_4_T2w=sitk.ReadImage("/home/alicja/Documents/WES_010/IMAGES/WES_010_4_20180829_MR_T2_TSE_TRA_SPAIR_TSE2D1_11_T2_TSE_TRA_SPAIR_3.nii.gz") # In[63]: WES_010_4_T2w=sitk.Resample(WES_010_4_T2w, WES_010_4_B50T) masked_R_breast_T2w = sitk.Mask(WES_010_4_T2w, R_breast) values = sitk.GetArrayViewFromImage(masked_R_breast_T2w).flatten() fig, ax = plt.subplots(1,1) ax.hist(values, bins=np.linspace(1,300,50), histtype='stepfilled', lw=2) #ax.set_yscale('log') ax.grid() ax.set_axisbelow(True) ax.set_xlabel('Intensity') ax.set_ylabel('Frequency') fig.show() # In[64]: image_mri=WES_010_4_T2w arr_mri = sitk.GetArrayFromImage(image_mri) arr_mri[:,:,arr_mri.shape[2]//2:] = 0 image_mri_masked=sitk.GetImageFromArray(arr_mri) image_mri_masked.CopyInformation(image_mri) label_threshold_cc_x_f=estimate_tumour_vol(image_mri_masked, lowerthreshold=170, upperthreshold=3000, hole_size=1) sitk.WriteImage(label_threshold_cc_x_f,"test_label_threshold_010_4_T2w_hist.nii.gz") #works well too # In[13]: WES_010_4_MPE=sitk.ReadImage("MPE_sub_WES_010_4.nii.gz") # In[17]: WES_010_4_MPE=sitk.Resample(WES_010_4_MPE, WES_010_4_B50T) masked_R_breast_MPE = sitk.Mask(WES_010_4_MPE, R_breast) values = sitk.GetArrayViewFromImage(masked_R_breast_MPE).flatten() fig, ax = plt.subplots(1,1) ax.hist(values, bins=np.linspace(150,450,50), histtype='stepfilled', lw=2) #ax.set_yscale('log') ax.grid() ax.set_axisbelow(True) ax.set_xlabel('Intensity') ax.set_ylabel('Frequency') fig.show() # In[20]: image_mri=WES_010_4_MPE arr_mri = sitk.GetArrayFromImage(image_mri) arr_mri[:,:,arr_mri.shape[2]//2:] = 0 image_mri_masked=sitk.GetImageFromArray(arr_mri) image_mri_masked.CopyInformation(image_mri) label_threshold_cc_x_f=estimate_tumour_vol(image_mri_masked, lowerthreshold=230, upperthreshold=3000, hole_size=1) sitk.WriteImage(label_threshold_cc_x_f,"test_label_threshold_010_4_MPE_hist.nii.gz") #good # In[ ]: # In[65]: from platipy.imaging.visualisation.tools import ImageVisualiser from platipy.imaging.registration.registration import ( initial_registration, fast_symmetric_forces_demons_registration, transform_propagation, apply_field ) # In[66]: #DIR to Patient 8 WES_008_4_B50T=sitk.ReadImage("/home/alicja/Documents/WES_008/IMAGES/WES_008_4_20180619_MR_EP2D_DIFF_TRA_SPAIR_ZOOMIT_EZ_B50T_EP2D_DIFF_TRA_SPAIR_ZOOMIT_TRACEW_DFC_MIX_5.nii.gz") image_to_0_rigid, tfm_to_0_rigid = initial_registration( WES_008_4_B50T, WES_010_4_B50T, options={ 'shrink_factors': [8,4], 'smooth_sigmas': [0,0], 'sampling_rate': 0.5, 'final_interp': 2, 'metric': 'mean_squares', 'optimiser': 'gradient_descent_line_search', 'number_of_iterations': 25}, reg_method='Rigid') image_to_0_dir, tfm_to_0_dir = fast_symmetric_forces_demons_registration( WES_008_4_B50T, image_to_0_rigid, resolution_staging=[4,2], iteration_staging=[10,10] ) R_breast_to_0_rigid = transform_propagation( WES_008_4_B50T, R_breast, tfm_to_0_rigid, structure=True ) R_breast_to_0_dir = apply_field( R_breast_to_0_rigid, tfm_to_0_dir, structure=True ) # In[67]: vis = ImageVisualiser(WES_008_4_B50T, axis='z', cut=get_com(R_breast_to_0_dir), window=[-250, 500]) vis.add_contour(R_breast_to_0_dir, name='BREAST', color='g') fig = vis.show() # In[78]: breast_contour_dilate=sitk.BinaryDilate(R_breast_to_0_dir, (2,2,2)) # In[79]: vis = ImageVisualiser(WES_008_4_B50T, axis='z', cut=get_com(R_breast_to_0_dir), window=[-250, 500]) vis.add_contour(breast_contour_dilate, name='BREAST', color='g') fig = vis.show() # In[80]: masked_R_breast = sitk.Mask(WES_008_4_B50T, breast_contour_dilate) # In[92]: values = sitk.GetArrayViewFromImage(masked_R_breast).flatten() fig, ax = plt.subplots(1,1) ax.hist(values, bins=np.linspace(200,3000,50), histtype='stepfilled', lw=2) #ax.set_yscale('log') ax.grid() ax.set_axisbelow(True) ax.set_xlabel('Intensity') ax.set_ylabel('Frequency') fig.show() # In[93]: image_mri=WES_008_4_B50T arr_mri = sitk.GetArrayFromImage(image_mri) arr_mri[:,:,arr_mri.shape[2]//2:] = 0 image_mri_masked=sitk.GetImageFromArray(arr_mri) image_mri_masked.CopyInformation(image_mri) label_threshold_cc_x_f=estimate_tumour_vol(image_mri_masked, lowerthreshold=1400, upperthreshold=5000, hole_size=1) sitk.WriteImage(label_threshold_cc_x_f,"test_label_threshold_008_4_B50T_hist.nii.gz") #good but seems to contain #fibroglandular tissue as well # In[95]: WES_008_4_B800T=sitk.ReadImage("/home/alicja/Documents/WES_008/IMAGES/WES_008_4_20180619_MR_EP2D_DIFF_TRA_SPAIR_ZOOMIT_EZ_B800T_EP2D_DIFF_TRA_SPAIR_ZOOMIT_TRACEW_DFC_MIX_5.nii.gz") WES_008_4_T2w=sitk.ReadImage("/home/alicja/Documents/WES_008/IMAGES/WES_008_4_20180619_MR_T2_TSE_TRA_SPAIR_TSE2D1_11_T2_TSE_TRA_SPAIR_3.nii.gz") # In[96]: masked_R_breast_B800T = sitk.Mask(WES_008_4_B800T, breast_contour_dilate) values = sitk.GetArrayViewFromImage(masked_R_breast_B800T).flatten() fig, ax = plt.subplots(1,1) ax.hist(values, bins=np.linspace(1,600,50), histtype='stepfilled', lw=2) #ax.set_yscale('log') ax.grid() ax.set_axisbelow(True) ax.set_xlabel('Intensity') ax.set_ylabel('Frequency') fig.show() # In[99]: image_mri=WES_008_4_B800T arr_mri = sitk.GetArrayFromImage(image_mri) arr_mri[:,:,arr_mri.shape[2]//2:] = 0 image_mri_masked=sitk.GetImageFromArray(arr_mri) image_mri_masked.CopyInformation(image_mri) label_threshold_cc_x_f=estimate_tumour_vol(image_mri_masked, lowerthreshold=480, upperthreshold=5000, hole_size=1) sitk.WriteImage(label_threshold_cc_x_f,"test_label_threshold_008_4_B800T_hist.nii.gz") #good # In[104]: WES_008_4_T2w=sitk.Resample(WES_008_4_T2w,WES_008_4_B800T) masked_R_breast_T2w = sitk.Mask(WES_008_4_T2w, breast_contour_dilate) values = sitk.GetArrayViewFromImage(masked_R_breast_T2w).flatten() fig, ax = plt.subplots(1,1) ax.hist(values, bins=np.linspace(1,250,50), histtype='stepfilled', lw=2) #ax.set_yscale('log') ax.grid() ax.set_axisbelow(True) ax.set_xlabel('Intensity') ax.set_ylabel('Frequency') fig.show() # In[105]: image_mri=WES_008_4_T2w arr_mri = sitk.GetArrayFromImage(image_mri) arr_mri[:,:,arr_mri.shape[2]//2:] = 0 image_mri_masked=sitk.GetImageFromArray(arr_mri) image_mri_masked.CopyInformation(image_mri) label_threshold_cc_x_f=estimate_tumour_vol(image_mri_masked, lowerthreshold=197, upperthreshold=5000, hole_size=1) sitk.WriteImage(label_threshold_cc_x_f,"test_label_threshold_008_4_T2w_hist.nii.gz") #okay but picks up #fibroglandular tissue # In[106]: L_breast=sitk.ReadImage("contralateral_segmentation.nii.gz") # In[107]: L_breast_to_0_rigid = transform_propagation( WES_008_4_B50T, L_breast, tfm_to_0_rigid, structure=True ) L_breast_to_0_dir = apply_field( L_breast_to_0_rigid, tfm_to_0_dir, structure=True ) # In[110]: L_breast_contour_dilate=sitk.BinaryDilate(L_breast_to_0_dir, (4,4,4)) vis = ImageVisualiser(WES_008_4_B50T, axis='z', cut=get_com(L_breast_to_0_dir), window=[-250, 500]) vis.add_contour(L_breast_contour_dilate, name='BREAST', color='g') fig = vis.show() # In[111]: masked_L_breast = sitk.Mask(WES_008_4_B50T, L_breast_contour_dilate) values = sitk.GetArrayViewFromImage(masked_L_breast).flatten() fig, ax = plt.subplots(1,1) ax.hist(values, bins=np.linspace(200,3000,50), histtype='stepfilled', lw=2) #ax.set_yscale('log') ax.grid() ax.set_axisbelow(True) ax.set_xlabel('Intensity') ax.set_ylabel('Frequency') fig.show() # In[ ]:
[ "SimpleITK.BinaryThreshold", "SimpleITK.Resample", "platipy.imaging.registration.registration.fast_symmetric_forces_demons_registration", "SimpleITK.ConnectedComponent", "SimpleITK.GetArrayViewFromImage", "SimpleITK.ReadImage", "SimpleITK.GetArrayFromImage", "numpy.max", "SimpleITK.BinaryMorphologicalClosing", "numpy.linspace", "matplotlib.pyplot.subplots", "platipy.imaging.utils.tools.get_com", "SimpleITK.Mask", "SimpleITK.WriteImage", "platipy.imaging.registration.registration.initial_registration", "platipy.imaging.registration.registration.apply_field", "SimpleITK.BinaryDilate", "SimpleITK.GetImageFromArray", "platipy.imaging.registration.registration.transform_propagation" ]
[((588, 648), 'SimpleITK.ReadImage', 'sitk.ReadImage', (['"""/home/alicja/Downloads/Segmentation.nii.gz"""'], {}), "('/home/alicja/Downloads/Segmentation.nii.gz')\n", (602, 648), True, 'import SimpleITK as sitk\n'), ((677, 850), 'SimpleITK.ReadImage', 'sitk.ReadImage', (['"""/home/alicja/Documents/WES_010/IMAGES/WES_010_4_20180829_MR_EP2D_DIFF_TRA_SPAIR_ZOOMIT_EZ_B50T_EP2D_DIFF_TRA_SPAIR_ZOOMIT_TRACEW_DFC_MIX_5.nii.gz"""'], {}), "(\n '/home/alicja/Documents/WES_010/IMAGES/WES_010_4_20180829_MR_EP2D_DIFF_TRA_SPAIR_ZOOMIT_EZ_B50T_EP2D_DIFF_TRA_SPAIR_ZOOMIT_TRACEW_DFC_MIX_5.nii.gz'\n )\n", (691, 850), True, 'import SimpleITK as sitk\n'), ((857, 1031), 'SimpleITK.ReadImage', 'sitk.ReadImage', (['"""/home/alicja/Documents/WES_010/IMAGES/WES_010_4_20180829_MR_EP2D_DIFF_TRA_SPAIR_ZOOMIT_EZ_B800T_EP2D_DIFF_TRA_SPAIR_ZOOMIT_TRACEW_DFC_MIX_5.nii.gz"""'], {}), "(\n '/home/alicja/Documents/WES_010/IMAGES/WES_010_4_20180829_MR_EP2D_DIFF_TRA_SPAIR_ZOOMIT_EZ_B800T_EP2D_DIFF_TRA_SPAIR_ZOOMIT_TRACEW_DFC_MIX_5.nii.gz'\n )\n", (871, 1031), True, 'import SimpleITK as sitk\n'), ((1053, 1088), 'SimpleITK.Mask', 'sitk.Mask', (['WES_010_4_B50T', 'R_breast'], {}), '(WES_010_4_B50T, R_breast)\n', (1062, 1088), True, 'import SimpleITK as sitk\n'), ((1177, 1195), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {}), '(1, 1)\n', (1189, 1195), True, 'import matplotlib.pyplot as plt\n'), ((1982, 2015), 'SimpleITK.GetArrayFromImage', 'sitk.GetArrayFromImage', (['image_mri'], {}), '(image_mri)\n', (2004, 2015), True, 'import SimpleITK as sitk\n'), ((2071, 2102), 'SimpleITK.GetImageFromArray', 'sitk.GetImageFromArray', (['arr_mri'], {}), '(arr_mri)\n', (2093, 2102), True, 'import SimpleITK as sitk\n'), ((2264, 2354), 'SimpleITK.WriteImage', 'sitk.WriteImage', (['label_threshold_cc_x_f', '"""test_label_threshold_010_4_B50T_hist.nii.gz"""'], {}), "(label_threshold_cc_x_f,\n 'test_label_threshold_010_4_B50T_hist.nii.gz')\n", (2279, 2354), True, 'import SimpleITK as sitk\n'), ((2376, 2406), 'numpy.max', 'np.max', (['label_threshold_cc_x_f'], {}), '(label_threshold_cc_x_f)\n', (2382, 2406), True, 'import numpy as np\n'), ((2445, 2481), 'SimpleITK.Mask', 'sitk.Mask', (['WES_010_4_B800T', 'R_breast'], {}), '(WES_010_4_B800T, R_breast)\n', (2454, 2481), True, 'import SimpleITK as sitk\n'), ((2562, 2580), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {}), '(1, 1)\n', (2574, 2580), True, 'import matplotlib.pyplot as plt\n'), ((2823, 2856), 'SimpleITK.GetArrayFromImage', 'sitk.GetArrayFromImage', (['image_mri'], {}), '(image_mri)\n', (2845, 2856), True, 'import SimpleITK as sitk\n'), ((2912, 2943), 'SimpleITK.GetImageFromArray', 'sitk.GetImageFromArray', (['arr_mri'], {}), '(arr_mri)\n', (2934, 2943), True, 'import SimpleITK as sitk\n'), ((3105, 3196), 'SimpleITK.WriteImage', 'sitk.WriteImage', (['label_threshold_cc_x_f', '"""test_label_threshold_010_4_B800T_hist.nii.gz"""'], {}), "(label_threshold_cc_x_f,\n 'test_label_threshold_010_4_B800T_hist.nii.gz')\n", (3120, 3196), True, 'import SimpleITK as sitk\n'), ((3238, 3378), 'SimpleITK.ReadImage', 'sitk.ReadImage', (['"""/home/alicja/Documents/WES_010/IMAGES/WES_010_4_20180829_MR_T2_TSE_TRA_SPAIR_TSE2D1_11_T2_TSE_TRA_SPAIR_3.nii.gz"""'], {}), "(\n '/home/alicja/Documents/WES_010/IMAGES/WES_010_4_20180829_MR_T2_TSE_TRA_SPAIR_TSE2D1_11_T2_TSE_TRA_SPAIR_3.nii.gz'\n )\n", (3252, 3378), True, 'import SimpleITK as sitk\n'), ((3397, 3441), 'SimpleITK.Resample', 'sitk.Resample', (['WES_010_4_T2w', 'WES_010_4_B50T'], {}), '(WES_010_4_T2w, WES_010_4_B50T)\n', (3410, 3441), True, 'import SimpleITK as sitk\n'), ((3464, 3498), 'SimpleITK.Mask', 'sitk.Mask', (['WES_010_4_T2w', 'R_breast'], {}), '(WES_010_4_T2w, R_breast)\n', (3473, 3498), True, 'import SimpleITK as sitk\n'), ((3577, 3595), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {}), '(1, 1)\n', (3589, 3595), True, 'import matplotlib.pyplot as plt\n'), ((3836, 3869), 'SimpleITK.GetArrayFromImage', 'sitk.GetArrayFromImage', (['image_mri'], {}), '(image_mri)\n', (3858, 3869), True, 'import SimpleITK as sitk\n'), ((3925, 3956), 'SimpleITK.GetImageFromArray', 'sitk.GetImageFromArray', (['arr_mri'], {}), '(arr_mri)\n', (3947, 3956), True, 'import SimpleITK as sitk\n'), ((4118, 4207), 'SimpleITK.WriteImage', 'sitk.WriteImage', (['label_threshold_cc_x_f', '"""test_label_threshold_010_4_T2w_hist.nii.gz"""'], {}), "(label_threshold_cc_x_f,\n 'test_label_threshold_010_4_T2w_hist.nii.gz')\n", (4133, 4207), True, 'import SimpleITK as sitk\n'), ((4247, 4289), 'SimpleITK.ReadImage', 'sitk.ReadImage', (['"""MPE_sub_WES_010_4.nii.gz"""'], {}), "('MPE_sub_WES_010_4.nii.gz')\n", (4261, 4289), True, 'import SimpleITK as sitk\n'), ((4318, 4362), 'SimpleITK.Resample', 'sitk.Resample', (['WES_010_4_MPE', 'WES_010_4_B50T'], {}), '(WES_010_4_MPE, WES_010_4_B50T)\n', (4331, 4362), True, 'import SimpleITK as sitk\n'), ((4385, 4419), 'SimpleITK.Mask', 'sitk.Mask', (['WES_010_4_MPE', 'R_breast'], {}), '(WES_010_4_MPE, R_breast)\n', (4394, 4419), True, 'import SimpleITK as sitk\n'), ((4498, 4516), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {}), '(1, 1)\n', (4510, 4516), True, 'import matplotlib.pyplot as plt\n'), ((4759, 4792), 'SimpleITK.GetArrayFromImage', 'sitk.GetArrayFromImage', (['image_mri'], {}), '(image_mri)\n', (4781, 4792), True, 'import SimpleITK as sitk\n'), ((4848, 4879), 'SimpleITK.GetImageFromArray', 'sitk.GetImageFromArray', (['arr_mri'], {}), '(arr_mri)\n', (4870, 4879), True, 'import SimpleITK as sitk\n'), ((5041, 5130), 'SimpleITK.WriteImage', 'sitk.WriteImage', (['label_threshold_cc_x_f', '"""test_label_threshold_010_4_MPE_hist.nii.gz"""'], {}), "(label_threshold_cc_x_f,\n 'test_label_threshold_010_4_MPE_hist.nii.gz')\n", (5056, 5130), True, 'import SimpleITK as sitk\n'), ((5446, 5619), 'SimpleITK.ReadImage', 'sitk.ReadImage', (['"""/home/alicja/Documents/WES_008/IMAGES/WES_008_4_20180619_MR_EP2D_DIFF_TRA_SPAIR_ZOOMIT_EZ_B50T_EP2D_DIFF_TRA_SPAIR_ZOOMIT_TRACEW_DFC_MIX_5.nii.gz"""'], {}), "(\n '/home/alicja/Documents/WES_008/IMAGES/WES_008_4_20180619_MR_EP2D_DIFF_TRA_SPAIR_ZOOMIT_EZ_B50T_EP2D_DIFF_TRA_SPAIR_ZOOMIT_TRACEW_DFC_MIX_5.nii.gz'\n )\n", (5460, 5619), True, 'import SimpleITK as sitk\n'), ((5645, 5936), 'platipy.imaging.registration.registration.initial_registration', 'initial_registration', (['WES_008_4_B50T', 'WES_010_4_B50T'], {'options': "{'shrink_factors': [8, 4], 'smooth_sigmas': [0, 0], 'sampling_rate': 0.5,\n 'final_interp': 2, 'metric': 'mean_squares', 'optimiser':\n 'gradient_descent_line_search', 'number_of_iterations': 25}", 'reg_method': '"""Rigid"""'}), "(WES_008_4_B50T, WES_010_4_B50T, options={\n 'shrink_factors': [8, 4], 'smooth_sigmas': [0, 0], 'sampling_rate': 0.5,\n 'final_interp': 2, 'metric': 'mean_squares', 'optimiser':\n 'gradient_descent_line_search', 'number_of_iterations': 25}, reg_method\n ='Rigid')\n", (5665, 5936), False, 'from platipy.imaging.registration.registration import initial_registration, fast_symmetric_forces_demons_registration, transform_propagation, apply_field\n'), ((6023, 6157), 'platipy.imaging.registration.registration.fast_symmetric_forces_demons_registration', 'fast_symmetric_forces_demons_registration', (['WES_008_4_B50T', 'image_to_0_rigid'], {'resolution_staging': '[4, 2]', 'iteration_staging': '[10, 10]'}), '(WES_008_4_B50T, image_to_0_rigid,\n resolution_staging=[4, 2], iteration_staging=[10, 10])\n', (6064, 6157), False, 'from platipy.imaging.registration.registration import initial_registration, fast_symmetric_forces_demons_registration, transform_propagation, apply_field\n'), ((6193, 6272), 'platipy.imaging.registration.registration.transform_propagation', 'transform_propagation', (['WES_008_4_B50T', 'R_breast', 'tfm_to_0_rigid'], {'structure': '(True)'}), '(WES_008_4_B50T, R_breast, tfm_to_0_rigid, structure=True)\n', (6214, 6272), False, 'from platipy.imaging.registration.registration import initial_registration, fast_symmetric_forces_demons_registration, transform_propagation, apply_field\n'), ((6312, 6374), 'platipy.imaging.registration.registration.apply_field', 'apply_field', (['R_breast_to_0_rigid', 'tfm_to_0_dir'], {'structure': '(True)'}), '(R_breast_to_0_rigid, tfm_to_0_dir, structure=True)\n', (6323, 6374), False, 'from platipy.imaging.registration.registration import initial_registration, fast_symmetric_forces_demons_registration, transform_propagation, apply_field\n'), ((6617, 6664), 'SimpleITK.BinaryDilate', 'sitk.BinaryDilate', (['R_breast_to_0_dir', '(2, 2, 2)'], {}), '(R_breast_to_0_dir, (2, 2, 2))\n', (6634, 6664), True, 'import SimpleITK as sitk\n'), ((6891, 6939), 'SimpleITK.Mask', 'sitk.Mask', (['WES_008_4_B50T', 'breast_contour_dilate'], {}), '(WES_008_4_B50T, breast_contour_dilate)\n', (6900, 6939), True, 'import SimpleITK as sitk\n'), ((7028, 7046), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {}), '(1, 1)\n', (7040, 7046), True, 'import matplotlib.pyplot as plt\n'), ((7291, 7324), 'SimpleITK.GetArrayFromImage', 'sitk.GetArrayFromImage', (['image_mri'], {}), '(image_mri)\n', (7313, 7324), True, 'import SimpleITK as sitk\n'), ((7380, 7411), 'SimpleITK.GetImageFromArray', 'sitk.GetImageFromArray', (['arr_mri'], {}), '(arr_mri)\n', (7402, 7411), True, 'import SimpleITK as sitk\n'), ((7574, 7664), 'SimpleITK.WriteImage', 'sitk.WriteImage', (['label_threshold_cc_x_f', '"""test_label_threshold_008_4_B50T_hist.nii.gz"""'], {}), "(label_threshold_cc_x_f,\n 'test_label_threshold_008_4_B50T_hist.nii.gz')\n", (7589, 7664), True, 'import SimpleITK as sitk\n'), ((7748, 7922), 'SimpleITK.ReadImage', 'sitk.ReadImage', (['"""/home/alicja/Documents/WES_008/IMAGES/WES_008_4_20180619_MR_EP2D_DIFF_TRA_SPAIR_ZOOMIT_EZ_B800T_EP2D_DIFF_TRA_SPAIR_ZOOMIT_TRACEW_DFC_MIX_5.nii.gz"""'], {}), "(\n '/home/alicja/Documents/WES_008/IMAGES/WES_008_4_20180619_MR_EP2D_DIFF_TRA_SPAIR_ZOOMIT_EZ_B800T_EP2D_DIFF_TRA_SPAIR_ZOOMIT_TRACEW_DFC_MIX_5.nii.gz'\n )\n", (7762, 7922), True, 'import SimpleITK as sitk\n'), ((7927, 8067), 'SimpleITK.ReadImage', 'sitk.ReadImage', (['"""/home/alicja/Documents/WES_008/IMAGES/WES_008_4_20180619_MR_T2_TSE_TRA_SPAIR_TSE2D1_11_T2_TSE_TRA_SPAIR_3.nii.gz"""'], {}), "(\n '/home/alicja/Documents/WES_008/IMAGES/WES_008_4_20180619_MR_T2_TSE_TRA_SPAIR_TSE2D1_11_T2_TSE_TRA_SPAIR_3.nii.gz'\n )\n", (7941, 8067), True, 'import SimpleITK as sitk\n'), ((8096, 8145), 'SimpleITK.Mask', 'sitk.Mask', (['WES_008_4_B800T', 'breast_contour_dilate'], {}), '(WES_008_4_B800T, breast_contour_dilate)\n', (8105, 8145), True, 'import SimpleITK as sitk\n'), ((8226, 8244), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {}), '(1, 1)\n', (8238, 8244), True, 'import matplotlib.pyplot as plt\n'), ((8487, 8520), 'SimpleITK.GetArrayFromImage', 'sitk.GetArrayFromImage', (['image_mri'], {}), '(image_mri)\n', (8509, 8520), True, 'import SimpleITK as sitk\n'), ((8576, 8607), 'SimpleITK.GetImageFromArray', 'sitk.GetImageFromArray', (['arr_mri'], {}), '(arr_mri)\n', (8598, 8607), True, 'import SimpleITK as sitk\n'), ((8769, 8860), 'SimpleITK.WriteImage', 'sitk.WriteImage', (['label_threshold_cc_x_f', '"""test_label_threshold_008_4_B800T_hist.nii.gz"""'], {}), "(label_threshold_cc_x_f,\n 'test_label_threshold_008_4_B800T_hist.nii.gz')\n", (8784, 8860), True, 'import SimpleITK as sitk\n'), ((8891, 8936), 'SimpleITK.Resample', 'sitk.Resample', (['WES_008_4_T2w', 'WES_008_4_B800T'], {}), '(WES_008_4_T2w, WES_008_4_B800T)\n', (8904, 8936), True, 'import SimpleITK as sitk\n'), ((8959, 9006), 'SimpleITK.Mask', 'sitk.Mask', (['WES_008_4_T2w', 'breast_contour_dilate'], {}), '(WES_008_4_T2w, breast_contour_dilate)\n', (8968, 9006), True, 'import SimpleITK as sitk\n'), ((9085, 9103), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {}), '(1, 1)\n', (9097, 9103), True, 'import matplotlib.pyplot as plt\n'), ((9345, 9378), 'SimpleITK.GetArrayFromImage', 'sitk.GetArrayFromImage', (['image_mri'], {}), '(image_mri)\n', (9367, 9378), True, 'import SimpleITK as sitk\n'), ((9434, 9465), 'SimpleITK.GetImageFromArray', 'sitk.GetImageFromArray', (['arr_mri'], {}), '(arr_mri)\n', (9456, 9465), True, 'import SimpleITK as sitk\n'), ((9627, 9716), 'SimpleITK.WriteImage', 'sitk.WriteImage', (['label_threshold_cc_x_f', '"""test_label_threshold_008_4_T2w_hist.nii.gz"""'], {}), "(label_threshold_cc_x_f,\n 'test_label_threshold_008_4_T2w_hist.nii.gz')\n", (9642, 9716), True, 'import SimpleITK as sitk\n'), ((9778, 9829), 'SimpleITK.ReadImage', 'sitk.ReadImage', (['"""contralateral_segmentation.nii.gz"""'], {}), "('contralateral_segmentation.nii.gz')\n", (9792, 9829), True, 'import SimpleITK as sitk\n'), ((9867, 9946), 'platipy.imaging.registration.registration.transform_propagation', 'transform_propagation', (['WES_008_4_B50T', 'L_breast', 'tfm_to_0_rigid'], {'structure': '(True)'}), '(WES_008_4_B50T, L_breast, tfm_to_0_rigid, structure=True)\n', (9888, 9946), False, 'from platipy.imaging.registration.registration import initial_registration, fast_symmetric_forces_demons_registration, transform_propagation, apply_field\n'), ((9986, 10048), 'platipy.imaging.registration.registration.apply_field', 'apply_field', (['L_breast_to_0_rigid', 'tfm_to_0_dir'], {'structure': '(True)'}), '(L_breast_to_0_rigid, tfm_to_0_dir, structure=True)\n', (9997, 10048), False, 'from platipy.imaging.registration.registration import initial_registration, fast_symmetric_forces_demons_registration, transform_propagation, apply_field\n'), ((10102, 10149), 'SimpleITK.BinaryDilate', 'sitk.BinaryDilate', (['L_breast_to_0_dir', '(4, 4, 4)'], {}), '(L_breast_to_0_dir, (4, 4, 4))\n', (10119, 10149), True, 'import SimpleITK as sitk\n'), ((10365, 10415), 'SimpleITK.Mask', 'sitk.Mask', (['WES_008_4_B50T', 'L_breast_contour_dilate'], {}), '(WES_008_4_B50T, L_breast_contour_dilate)\n', (10374, 10415), True, 'import SimpleITK as sitk\n'), ((10491, 10509), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {}), '(1, 1)\n', (10503, 10509), True, 'import matplotlib.pyplot as plt\n'), ((1550, 1646), 'SimpleITK.BinaryThreshold', 'sitk.BinaryThreshold', (['img_mri'], {'lowerThreshold': 'lowerthreshold', 'upperThreshold': 'upperthreshold'}), '(img_mri, lowerThreshold=lowerthreshold, upperThreshold\n =upperthreshold)\n', (1570, 1646), True, 'import SimpleITK as sitk\n'), ((1811, 1903), 'SimpleITK.BinaryMorphologicalClosing', 'sitk.BinaryMorphologicalClosing', (['label_threshold_cc_x', '(hole_size, hole_size, hole_size)'], {}), '(label_threshold_cc_x, (hole_size, hole_size,\n hole_size))\n', (1842, 1903), True, 'import SimpleITK as sitk\n'), ((1112, 1155), 'SimpleITK.GetArrayViewFromImage', 'sitk.GetArrayViewFromImage', (['masked_R_breast'], {}), '(masked_R_breast)\n', (1138, 1155), True, 'import SimpleITK as sitk\n'), ((1216, 1241), 'numpy.linspace', 'np.linspace', (['(200)', '(900)', '(50)'], {}), '(200, 900, 50)\n', (1227, 1241), True, 'import numpy as np\n'), ((1689, 1729), 'SimpleITK.ConnectedComponent', 'sitk.ConnectedComponent', (['label_threshold'], {}), '(label_threshold)\n', (1712, 1729), True, 'import SimpleITK as sitk\n'), ((2491, 2540), 'SimpleITK.GetArrayViewFromImage', 'sitk.GetArrayViewFromImage', (['masked_R_breast_B800T'], {}), '(masked_R_breast_B800T)\n', (2517, 2540), True, 'import SimpleITK as sitk\n'), ((2601, 2624), 'numpy.linspace', 'np.linspace', (['(1)', '(600)', '(50)'], {}), '(1, 600, 50)\n', (2612, 2624), True, 'import numpy as np\n'), ((3508, 3555), 'SimpleITK.GetArrayViewFromImage', 'sitk.GetArrayViewFromImage', (['masked_R_breast_T2w'], {}), '(masked_R_breast_T2w)\n', (3534, 3555), True, 'import SimpleITK as sitk\n'), ((3616, 3639), 'numpy.linspace', 'np.linspace', (['(1)', '(300)', '(50)'], {}), '(1, 300, 50)\n', (3627, 3639), True, 'import numpy as np\n'), ((4429, 4476), 'SimpleITK.GetArrayViewFromImage', 'sitk.GetArrayViewFromImage', (['masked_R_breast_MPE'], {}), '(masked_R_breast_MPE)\n', (4455, 4476), True, 'import SimpleITK as sitk\n'), ((4537, 4562), 'numpy.linspace', 'np.linspace', (['(150)', '(450)', '(50)'], {}), '(150, 450, 50)\n', (4548, 4562), True, 'import numpy as np\n'), ((6455, 6481), 'platipy.imaging.utils.tools.get_com', 'get_com', (['R_breast_to_0_dir'], {}), '(R_breast_to_0_dir)\n', (6462, 6481), False, 'from platipy.imaging.utils.tools import get_com\n'), ((6729, 6755), 'platipy.imaging.utils.tools.get_com', 'get_com', (['R_breast_to_0_dir'], {}), '(R_breast_to_0_dir)\n', (6736, 6755), False, 'from platipy.imaging.utils.tools import get_com\n'), ((6963, 7006), 'SimpleITK.GetArrayViewFromImage', 'sitk.GetArrayViewFromImage', (['masked_R_breast'], {}), '(masked_R_breast)\n', (6989, 7006), True, 'import SimpleITK as sitk\n'), ((7067, 7093), 'numpy.linspace', 'np.linspace', (['(200)', '(3000)', '(50)'], {}), '(200, 3000, 50)\n', (7078, 7093), True, 'import numpy as np\n'), ((8155, 8204), 'SimpleITK.GetArrayViewFromImage', 'sitk.GetArrayViewFromImage', (['masked_R_breast_B800T'], {}), '(masked_R_breast_B800T)\n', (8181, 8204), True, 'import SimpleITK as sitk\n'), ((8265, 8288), 'numpy.linspace', 'np.linspace', (['(1)', '(600)', '(50)'], {}), '(1, 600, 50)\n', (8276, 8288), True, 'import numpy as np\n'), ((9016, 9063), 'SimpleITK.GetArrayViewFromImage', 'sitk.GetArrayViewFromImage', (['masked_R_breast_T2w'], {}), '(masked_R_breast_T2w)\n', (9042, 9063), True, 'import SimpleITK as sitk\n'), ((9124, 9147), 'numpy.linspace', 'np.linspace', (['(1)', '(250)', '(50)'], {}), '(1, 250, 50)\n', (9135, 9147), True, 'import numpy as np\n'), ((10200, 10226), 'platipy.imaging.utils.tools.get_com', 'get_com', (['L_breast_to_0_dir'], {}), '(L_breast_to_0_dir)\n', (10207, 10226), False, 'from platipy.imaging.utils.tools import get_com\n'), ((10426, 10469), 'SimpleITK.GetArrayViewFromImage', 'sitk.GetArrayViewFromImage', (['masked_L_breast'], {}), '(masked_L_breast)\n', (10452, 10469), True, 'import SimpleITK as sitk\n'), ((10530, 10556), 'numpy.linspace', 'np.linspace', (['(200)', '(3000)', '(50)'], {}), '(200, 3000, 50)\n', (10541, 10556), True, 'import numpy as np\n')]
import numpy as np def hole_filling(img, kernel=3): N, M = img.shape for i in range(N): for j in range(M): if img[i, j] == 0: neighbour = img[max(int((i-(kernel-1)/2)), 0):min(int((i+(kernel-1)/2)), N), max(int((j-(kernel-1)/2)),0):min(int((j+(kernel-1)/2)), M)] if len(neighbour) == 0: continue else: max_val = np.amax(neighbour) img[i, j] = max_val return img
[ "numpy.amax" ]
[((429, 447), 'numpy.amax', 'np.amax', (['neighbour'], {}), '(neighbour)\n', (436, 447), True, 'import numpy as np\n')]
''' adapted from Harry ''' import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt import numpy as np from pyPCGA import PCGA # import mf import math import datetime as dt import os import sys from poro import Model #print(np.__version__) # domain parameters nx = 128 ny = 128 N = np.array([nx, ny]) m = np.prod(N) x = np.linspace(0., 1., N[0]) y = np.linspace(0., 1., N[1]) xmin = np.array([x[0], y[0]]) xmax = np.array([x[-1], y[-1]]) # forward problem parameters pts_fem = np.loadtxt('dof_perm_dg0.csv', delimiter=',') ptx = np.linspace(0,1,nx) pty = np.linspace(0,1,ny) logk_idx = np.loadtxt('logk_idx.txt').astype(int) forward_params = {'ptx': ptx, 'pty': pty, 'pts_fem': pts_fem, 'logk_idx': logk_idx} # Load files for s_true and obs s_true = np.loadtxt('s_true.txt').reshape(-1,1) obs = np.loadtxt('obs.txt').reshape(-1,1) # gerenated noisy obs from poro.py # covairance kernel and scale parameters prior_std = 2.0 prior_cov_scale = np.array([0.1, 0.1]) def kernel(r): return (prior_std ** 2) * np.exp(-r) XX, YY = np.meshgrid(x, y) pts = None # for uniform grids, you don't need pts of s # prepare interface to run as a function def forward_model(s, parallelization, ncores=None): model = Model(forward_params) if parallelization: simul_obs = model.run(s, parallelization, ncores) else: simul_obs = model.run(s, parallelization) return simul_obs params = {'R': (50.0) ** 2, 'n_pc': 96, 'maxiter': 10, 'restol': 0.1, 'matvec': 'FFT', 'xmin': xmin, 'xmax': xmax, 'N': N, 'prior_std': prior_std, 'prior_cov_scale': prior_cov_scale, 'kernel': kernel, 'post_cov': 'diag', 'precond': False, 'LM': True, # 'LM_smin' : -30.0, 'LM_smax' : 5.0, # 'alphamax_LM' : 1.E+5, 'parallel': True, 'linesearch': True, #'precision': 1.e-4, 'forward_model_verbose': True, 'verbose': True, 'iter_save': True} #s_init = np.mean(s_true) * np.ones((m, 1)) s_init = -20. * np.ones((m, 1)) # initialize prob = PCGA(forward_model, s_init, pts, params, s_true, obs) # prob = PCGA(forward_model, s_init, pts, params, s_true, obs, X = X) #if you want to add your own drift X # run inversion s_hat, simul_obs, post_diagv, iter_best = prob.Run()
[ "numpy.meshgrid", "poro.Model", "pyPCGA.PCGA", "numpy.ones", "matplotlib.use", "numpy.array", "numpy.loadtxt", "numpy.linspace", "numpy.exp", "numpy.prod" ]
[((49, 70), 'matplotlib.use', 'matplotlib.use', (['"""Agg"""'], {}), "('Agg')\n", (63, 70), False, 'import matplotlib\n'), ((323, 341), 'numpy.array', 'np.array', (['[nx, ny]'], {}), '([nx, ny])\n', (331, 341), True, 'import numpy as np\n'), ((347, 357), 'numpy.prod', 'np.prod', (['N'], {}), '(N)\n', (354, 357), True, 'import numpy as np\n'), ((365, 392), 'numpy.linspace', 'np.linspace', (['(0.0)', '(1.0)', 'N[0]'], {}), '(0.0, 1.0, N[0])\n', (376, 392), True, 'import numpy as np\n'), ((396, 423), 'numpy.linspace', 'np.linspace', (['(0.0)', '(1.0)', 'N[1]'], {}), '(0.0, 1.0, N[1])\n', (407, 423), True, 'import numpy as np\n'), ((432, 454), 'numpy.array', 'np.array', (['[x[0], y[0]]'], {}), '([x[0], y[0]])\n', (440, 454), True, 'import numpy as np\n'), ((463, 487), 'numpy.array', 'np.array', (['[x[-1], y[-1]]'], {}), '([x[-1], y[-1]])\n', (471, 487), True, 'import numpy as np\n'), ((531, 576), 'numpy.loadtxt', 'np.loadtxt', (['"""dof_perm_dg0.csv"""'], {'delimiter': '""","""'}), "('dof_perm_dg0.csv', delimiter=',')\n", (541, 576), True, 'import numpy as np\n'), ((584, 605), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', 'nx'], {}), '(0, 1, nx)\n', (595, 605), True, 'import numpy as np\n'), ((611, 632), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', 'ny'], {}), '(0, 1, ny)\n', (622, 632), True, 'import numpy as np\n'), ((1014, 1034), 'numpy.array', 'np.array', (['[0.1, 0.1]'], {}), '([0.1, 0.1])\n', (1022, 1034), True, 'import numpy as np\n'), ((1102, 1119), 'numpy.meshgrid', 'np.meshgrid', (['x', 'y'], {}), '(x, y)\n', (1113, 1119), True, 'import numpy as np\n'), ((2115, 2168), 'pyPCGA.PCGA', 'PCGA', (['forward_model', 's_init', 'pts', 'params', 's_true', 'obs'], {}), '(forward_model, s_init, pts, params, s_true, obs)\n', (2119, 2168), False, 'from pyPCGA import PCGA\n'), ((1288, 1309), 'poro.Model', 'Model', (['forward_params'], {}), '(forward_params)\n', (1293, 1309), False, 'from poro import Model\n'), ((2077, 2092), 'numpy.ones', 'np.ones', (['(m, 1)'], {}), '((m, 1))\n', (2084, 2092), True, 'import numpy as np\n'), ((643, 669), 'numpy.loadtxt', 'np.loadtxt', (['"""logk_idx.txt"""'], {}), "('logk_idx.txt')\n", (653, 669), True, 'import numpy as np\n'), ((815, 839), 'numpy.loadtxt', 'np.loadtxt', (['"""s_true.txt"""'], {}), "('s_true.txt')\n", (825, 839), True, 'import numpy as np\n'), ((861, 882), 'numpy.loadtxt', 'np.loadtxt', (['"""obs.txt"""'], {}), "('obs.txt')\n", (871, 882), True, 'import numpy as np\n'), ((1079, 1089), 'numpy.exp', 'np.exp', (['(-r)'], {}), '(-r)\n', (1085, 1089), True, 'import numpy as np\n')]
#!/usr/bin/env python3 import tensorflow as tf tf.config.run_functions_eagerly(True) import numpy as np from graph2tensor.model.layers import GCNConv from graph2tensor.model.models import MessagePassing from unittest import TestCase, main conv_layers = [ GCNConv(units=32, name="layer1"), GCNConv(units=32, name="layer2"), GCNConv(units=8, name="layer3"), ] mp = MessagePassing([conv_layers, conv_layers, conv_layers], name="sage", concat_hidden=False) src = {'feat': tf.constant(np.random.random(size=(4, 16)), dtype=tf.float32)} hop1 = {'feat': tf.constant(np.random.random(size=(10, 16)), dtype=tf.float32)} hop2 = {'feat': tf.constant(np.random.random(size=(55, 16)), dtype=tf.float32)} hop3 = {'feat': tf.constant(np.random.random(size=(110, 16)), dtype=tf.float32)} edge = {} hops = ( (src, edge, hop1, tf.repeat(tf.range(4), tf.range(1, 5))), (hop1, edge, hop2, tf.repeat(tf.range(10), tf.range(1, 11))), (hop2, edge, hop3, tf.repeat(tf.range(55), 2)) ) class TestMsgPassing(TestCase): def test_config(self): config = mp.get_config() assert config["name"] == "sage" assert config["concat_hidden"] is False assert config["attr_reduce_mode"] == 'concat' assert config["conv_layers"].__len__() == 3 assert config["conv_layers"][0].__len__() == 3 assert config["conv_layers"][0][1]["class_name"] == "GCNConv" assert config["conv_layers"][0][1]["config"]["name"] == "layer2" assert config["conv_layers"][0][1]["config"]["units"] == 32 custom_objects = { "GCNConv": GCNConv, } _ = MessagePassing.from_config(config, custom_objects) def test_save_load(self): x = mp((hops, hops, hops)).numpy() mp.save_weights("/tmp/sage") mp1 = MessagePassing([conv_layers, conv_layers, conv_layers], name="sage", concat_hidden=False) mp1.load_weights("/tmp/sage") x1 = mp1((hops, hops, hops)).numpy() np.testing.assert_allclose(x, x1, atol=1e-6) def test_call(self): assert mp((hops, hops, hops)).numpy().shape == (4, 8) mp1 = MessagePassing([conv_layers, conv_layers, conv_layers], name="sage", concat_hidden=True) assert mp1((hops, hops, hops)).numpy().shape == (4, 72) if __name__ == "__main__": main()
[ "unittest.main", "tensorflow.config.run_functions_eagerly", "graph2tensor.model.layers.GCNConv", "tensorflow.range", "graph2tensor.model.models.MessagePassing.from_config", "numpy.random.random", "numpy.testing.assert_allclose", "graph2tensor.model.models.MessagePassing" ]
[((47, 84), 'tensorflow.config.run_functions_eagerly', 'tf.config.run_functions_eagerly', (['(True)'], {}), '(True)\n', (78, 84), True, 'import tensorflow as tf\n'), ((376, 469), 'graph2tensor.model.models.MessagePassing', 'MessagePassing', (['[conv_layers, conv_layers, conv_layers]'], {'name': '"""sage"""', 'concat_hidden': '(False)'}), "([conv_layers, conv_layers, conv_layers], name='sage',\n concat_hidden=False)\n", (390, 469), False, 'from graph2tensor.model.models import MessagePassing\n'), ((260, 292), 'graph2tensor.model.layers.GCNConv', 'GCNConv', ([], {'units': '(32)', 'name': '"""layer1"""'}), "(units=32, name='layer1')\n", (267, 292), False, 'from graph2tensor.model.layers import GCNConv\n'), ((298, 330), 'graph2tensor.model.layers.GCNConv', 'GCNConv', ([], {'units': '(32)', 'name': '"""layer2"""'}), "(units=32, name='layer2')\n", (305, 330), False, 'from graph2tensor.model.layers import GCNConv\n'), ((336, 367), 'graph2tensor.model.layers.GCNConv', 'GCNConv', ([], {'units': '(8)', 'name': '"""layer3"""'}), "(units=8, name='layer3')\n", (343, 367), False, 'from graph2tensor.model.layers import GCNConv\n'), ((2312, 2318), 'unittest.main', 'main', ([], {}), '()\n', (2316, 2318), False, 'from unittest import TestCase, main\n'), ((493, 523), 'numpy.random.random', 'np.random.random', ([], {'size': '(4, 16)'}), '(size=(4, 16))\n', (509, 523), True, 'import numpy as np\n'), ((572, 603), 'numpy.random.random', 'np.random.random', ([], {'size': '(10, 16)'}), '(size=(10, 16))\n', (588, 603), True, 'import numpy as np\n'), ((652, 683), 'numpy.random.random', 'np.random.random', ([], {'size': '(55, 16)'}), '(size=(55, 16))\n', (668, 683), True, 'import numpy as np\n'), ((732, 764), 'numpy.random.random', 'np.random.random', ([], {'size': '(110, 16)'}), '(size=(110, 16))\n', (748, 764), True, 'import numpy as np\n'), ((1622, 1672), 'graph2tensor.model.models.MessagePassing.from_config', 'MessagePassing.from_config', (['config', 'custom_objects'], {}), '(config, custom_objects)\n', (1648, 1672), False, 'from graph2tensor.model.models import MessagePassing\n'), ((1798, 1891), 'graph2tensor.model.models.MessagePassing', 'MessagePassing', (['[conv_layers, conv_layers, conv_layers]'], {'name': '"""sage"""', 'concat_hidden': '(False)'}), "([conv_layers, conv_layers, conv_layers], name='sage',\n concat_hidden=False)\n", (1812, 1891), False, 'from graph2tensor.model.models import MessagePassing\n'), ((1979, 2024), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['x', 'x1'], {'atol': '(1e-06)'}), '(x, x1, atol=1e-06)\n', (2005, 2024), True, 'import numpy as np\n'), ((2126, 2218), 'graph2tensor.model.models.MessagePassing', 'MessagePassing', (['[conv_layers, conv_layers, conv_layers]'], {'name': '"""sage"""', 'concat_hidden': '(True)'}), "([conv_layers, conv_layers, conv_layers], name='sage',\n concat_hidden=True)\n", (2140, 2218), False, 'from graph2tensor.model.models import MessagePassing\n'), ((836, 847), 'tensorflow.range', 'tf.range', (['(4)'], {}), '(4)\n', (844, 847), True, 'import tensorflow as tf\n'), ((849, 863), 'tensorflow.range', 'tf.range', (['(1)', '(5)'], {}), '(1, 5)\n', (857, 863), True, 'import tensorflow as tf\n'), ((900, 912), 'tensorflow.range', 'tf.range', (['(10)'], {}), '(10)\n', (908, 912), True, 'import tensorflow as tf\n'), ((914, 929), 'tensorflow.range', 'tf.range', (['(1)', '(11)'], {}), '(1, 11)\n', (922, 929), True, 'import tensorflow as tf\n'), ((966, 978), 'tensorflow.range', 'tf.range', (['(55)'], {}), '(55)\n', (974, 978), True, 'import tensorflow as tf\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ High level functions for signal characterization from 1D signals Code licensed under both GPL and BSD licenses Authors: <NAME> <<EMAIL>> <NAME> <<EMAIL>> """ from scipy.signal import periodogram, welch import pandas as pd import numpy as np def psd(s, fs, nperseg=256, method='welch', window='hanning', nfft=None, tlims=None): """ Estimates power spectral density of 1D signal using Welch's or periodogram methods. Note: this is a wrapper function that uses functions from scipy.signal module Parameters ---------- s: 1D array Input signal to process fs: float, optional Sampling frequency of audio signal nperseg: int, optional Lenght of segment for 'welch' method, default is 256 nfft: int, optional Length of FFT for periodogram method. If None, length of signal will be used. Length of FFT for welch method if zero padding is desired. If None, length of nperseg will be used. method: {'welch', 'periodogram'} Method used to estimate the power spectral density of the signal tlims: tuple of ints or floats Temporal limits to compute the power spectral density in seconds (s) Returns ------- psd: pandas Series Estimate of power spectral density f_idx: pandas Series Index of sample frequencies Example ------- s, fs = sound.load('spinetail.wav') psd, f_idx = psd(s, fs, nperseg=512) """ if tlims is not None: # trim audio signal try: s = s[int(tlims[0]*fs): int(tlims[1]*fs)] except: raise Exception('length of tlims tuple should be 2') if method=='welch': f_idx, psd_s = welch(s, fs, window, nperseg, nfft) elif method=='periodogram': f_idx, psd_s = periodogram(s, fs, window, nfft, scaling='spectrum') else: raise Exception("Invalid method. Method should be 'welch' or 'periodogram' ") index_names = ['psd_' + str(idx).zfill(3) for idx in range(1,len(psd_s)+1)] psd_s = pd.Series(psd_s, index=index_names) f_idx = pd.Series(f_idx, index=index_names) return psd_s, f_idx def rms(s): """ Computes the root-mean-square (RMS) of a signal Parameters ---------- s : ndarray 1D audio signal Returns ------- rms: float Root mean square of signal """ return np.sqrt(np.mean(s**2))
[ "scipy.signal.periodogram", "numpy.mean", "pandas.Series", "scipy.signal.welch" ]
[((2212, 2247), 'pandas.Series', 'pd.Series', (['psd_s'], {'index': 'index_names'}), '(psd_s, index=index_names)\n', (2221, 2247), True, 'import pandas as pd\n'), ((2260, 2295), 'pandas.Series', 'pd.Series', (['f_idx'], {'index': 'index_names'}), '(f_idx, index=index_names)\n', (2269, 2295), True, 'import pandas as pd\n'), ((1856, 1891), 'scipy.signal.welch', 'welch', (['s', 'fs', 'window', 'nperseg', 'nfft'], {}), '(s, fs, window, nperseg, nfft)\n', (1861, 1891), False, 'from scipy.signal import periodogram, welch\n'), ((2567, 2582), 'numpy.mean', 'np.mean', (['(s ** 2)'], {}), '(s ** 2)\n', (2574, 2582), True, 'import numpy as np\n'), ((1952, 2004), 'scipy.signal.periodogram', 'periodogram', (['s', 'fs', 'window', 'nfft'], {'scaling': '"""spectrum"""'}), "(s, fs, window, nfft, scaling='spectrum')\n", (1963, 2004), False, 'from scipy.signal import periodogram, welch\n')]
import os from PIL import Image import numpy as np path='faces/faces_4/an2i' trainx=[] trainy=[] for filename in os.listdir(path): pixel=[] im=Image.open(path+'/'+filename) for i in range(im.size[0]): row=[] for j in range(im.size[1]): row.append(im.getpixel((i,j))) pixel.append(row) trainx.append(pixel) director=filename.split('_')[1] if director=='left': trainy.append([1,0,0,0]) elif director=='right': trainy.append([0,1,0,0]) elif director=='straight': trainy.append([0,0,1,0]) elif director=='up': trainy.append([0,0,0,1]) trainx=np.array(trainx) trainy=np.array(trainy) trainx=np.transpose(trainx.reshape((-1,32*30))-128)/256.0 trainy=np.transpose(trainy)
[ "numpy.transpose", "numpy.array", "os.listdir", "PIL.Image.open" ]
[((114, 130), 'os.listdir', 'os.listdir', (['path'], {}), '(path)\n', (124, 130), False, 'import os\n'), ((565, 581), 'numpy.array', 'np.array', (['trainx'], {}), '(trainx)\n', (573, 581), True, 'import numpy as np\n'), ((590, 606), 'numpy.array', 'np.array', (['trainy'], {}), '(trainy)\n', (598, 606), True, 'import numpy as np\n'), ((673, 693), 'numpy.transpose', 'np.transpose', (['trainy'], {}), '(trainy)\n', (685, 693), True, 'import numpy as np\n'), ((146, 179), 'PIL.Image.open', 'Image.open', (["(path + '/' + filename)"], {}), "(path + '/' + filename)\n", (156, 179), False, 'from PIL import Image\n')]
import glob import os import torch from torch.utils.data import Dataset, DataLoader import numpy as np import matplotlib.image as mpimg import pandas as pd import cv2 class FacialKeypointsDataset(Dataset): """Face Landmarks dataset.""" def __init__(self, csv_file, root_dir, transform=None): """ Args: csv_file (string): Path to the csv file with annotations. root_dir (string): Directory with all the images. transform (callable, optional): Optional transform to be applied on a sample. """ self.key_pts_frame = pd.read_csv(csv_file) self.root_dir = root_dir self.transform = transform def __len__(self): return len(self.key_pts_frame) def __getitem__(self, idx): image_name = os.path.join(self.root_dir, self.key_pts_frame.iloc[idx, 0]) image = mpimg.imread(image_name) # if image has an alpha color channel, get rid of it if(image.shape[2] == 4): image = image[:,:,0:3] key_pts = self.key_pts_frame.iloc[idx, 1:].as_matrix() key_pts = key_pts.astype('float').reshape(-1, 2) sample = {'image': image, 'keypoints': key_pts} if self.transform: sample = self.transform(sample) return sample # tranforms import torch from torchvision import transforms, utils # tranforms class GrayScale(object): def __call__(self, sample): image, keypoints = sample["image"], sample["keypoints"] image_copy = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY).reshape(image.shape[0], image.shape[1], 1) print(image_copy.shape) return {"image": image_copy, "keypoints": keypoints} class Normalize(object): """Convert a color image to grayscale and normalize the color range to [0,1].""" def __call__(self, sample): image, key_pts = sample['image'], sample['keypoints'] image_copy = np.copy(image) key_pts_copy = np.copy(key_pts) # convert image to grayscale #image_copy = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) # scale color range from [0, 255] to [0, 1] image_copy= image_copy/255.0 # scale keypoints to be centered around 0 with a range of [-1, 1] # mean = 100, sqrt = 50, so, pts should be (pts - 100)/50 key_pts_copy = (key_pts_copy - 100)/50.0 return {'image': image_copy, 'keypoints': key_pts_copy} class Rescale(object): """Rescale the image in a sample to a given size. Args: output_size (tuple or int): Desired output size. If tuple, output is matched to output_size. If int, smaller of image edges is matched to output_size keeping aspect ratio the same. """ def __init__(self, output_size): assert isinstance(output_size, (int, tuple)) self.output_size = output_size def __call__(self, sample): image, key_pts = sample['image'], sample['keypoints'] h, w = image.shape[:2] #keep the aspec ratio if isinstance(self.output_size, int): if h > w: new_h, new_w = self.output_size * h / w, self.output_size else: new_h, new_w = self.output_size, self.output_size * w / h else: new_h, new_w = self.output_size new_h, new_w = int(new_h), int(new_w) img = cv2.resize(image, (new_w, new_h)) # scale the pts, too key_pts = key_pts * [new_w / w, new_h / h] return {'image': img, 'keypoints': key_pts} class RandomCrop(object): """Crop randomly the image in a sample. Args: output_size (tuple or int): Desired output size. If int, square crop is made. """ def __init__(self, output_size): assert isinstance(output_size, (int, tuple)) if isinstance(output_size, int): self.output_size = (output_size, output_size) else: assert len(output_size) == 2 self.output_size = output_size def __call__(self, sample): image, key_pts = sample['image'], sample['keypoints'] h, w = image.shape[:2] new_h, new_w = self.output_size top = np.random.randint(0, h - new_h) left = np.random.randint(0, w - new_w) image = image[top: top + new_h, left: left + new_w] key_pts = key_pts - [left, top] return {'image': image, 'keypoints': key_pts} class ToTensor(object): """Convert ndarrays in sample to Tensors.""" def __call__(self, sample): image, key_pts = sample['image'], sample['keypoints'] # if image has no grayscale color channel, add one if(len(image.shape) == 2): # add that third color dim image = image.reshape(image.shape[0], image.shape[1], 1) # swap color axis because # numpy image: H x W x C # torch image: C X H X W image = image.transpose((2, 0, 1)) return {'image': torch.from_numpy(image), 'keypoints': torch.from_numpy(key_pts)} class RandomRotation(object): """Rotate randomly an image in a sample Args: min_rotation_angle (int) max_rotation_angle (int) """ def __init__(self, range_angle=45, range_scale=0.1): self.range_angle = range_angle self.range_scale = range_scale def __call__(self, sample): image, keypoints = sample['image'], sample['keypoints'] random_angle = -self.range_angle + np.random.random()*2*self.range_angle random_scale = 1-self.range_scale + np.random.random()*2*self.range_scale (h, w) = image.shape[:2] (cX, cY) = (w // 2, h // 2) rotation = cv2.getRotationMatrix2D((cX, cY), random_angle, random_scale) keypoints_copy = np.hstack([keypoints, np.ones((keypoints.shape[0], 1))]) #print("keypoints_shape : ", keypoints_copy.T) keypoints_copy = np.matmul(rotation, keypoints_copy.T).T rotated_image = cv2.warpAffine(image, rotation,(h, w)) print("rotated_image_shape : ", rotated_image.shape) return {'image': rotated_image, 'keypoints': keypoints_copy} class RandomHorizontalFlip(object): """Rotate randomly an image in a sample Args: """ def __init__(self): self.flip_indices = [(21, 22), (20, 23), (19, 24), (18, 25), (17, 26), #eye brow (36, 45), (37, 44), (38, 43), (39, 42), (41, 46), (40, 47), # eyes (0, 16), (1, 15), (2, 14), (3, 13), (4, 12), (5, 11), (6, 10), (7, 9), #chin (48, 54), (49, 54), (50, 53), (58, 56), (59, 55), (60, 64), (61, 64), (67, 65), #mouth (31, 35), (32, 34) # nose ] def __call__(self, sample): flip = np.random.random() > 0.5 image, keypoints = sample['image'], sample['keypoints'] keypoints_copy = keypoints[:,:] (h, w) = image.shape[:2] if flip: # change the coordinates of the keypoints keypoints_copy[:,0] = w - keypoints_copy[:,0] #and inverse their position in keypoints as well for i, j in self.flip_indices: temp = [keypoints_copy[i,0],keypoints_copy[i,1]] keypoints_copy[i,0] = keypoints_copy[j,0] keypoints_copy[i,1] = keypoints_copy[j,1] keypoints_copy[j,0] = temp[0] keypoints_copy[j,1] = temp[1] #flip the image image = image[:,-1:0:-1,:] return {'image': image, 'keypoints': keypoints_copy}
[ "matplotlib.image.imread", "numpy.copy", "pandas.read_csv", "cv2.cvtColor", "numpy.ones", "cv2.warpAffine", "numpy.random.randint", "numpy.random.random", "numpy.matmul", "os.path.join", "cv2.getRotationMatrix2D", "cv2.resize", "torch.from_numpy" ]
[((608, 629), 'pandas.read_csv', 'pd.read_csv', (['csv_file'], {}), '(csv_file)\n', (619, 629), True, 'import pandas as pd\n'), ((815, 875), 'os.path.join', 'os.path.join', (['self.root_dir', 'self.key_pts_frame.iloc[idx, 0]'], {}), '(self.root_dir, self.key_pts_frame.iloc[idx, 0])\n', (827, 875), False, 'import os\n'), ((933, 957), 'matplotlib.image.imread', 'mpimg.imread', (['image_name'], {}), '(image_name)\n', (945, 957), True, 'import matplotlib.image as mpimg\n'), ((2062, 2076), 'numpy.copy', 'np.copy', (['image'], {}), '(image)\n', (2069, 2076), True, 'import numpy as np\n'), ((2100, 2116), 'numpy.copy', 'np.copy', (['key_pts'], {}), '(key_pts)\n', (2107, 2116), True, 'import numpy as np\n'), ((3533, 3566), 'cv2.resize', 'cv2.resize', (['image', '(new_w, new_h)'], {}), '(image, (new_w, new_h))\n', (3543, 3566), False, 'import cv2\n'), ((4368, 4399), 'numpy.random.randint', 'np.random.randint', (['(0)', '(h - new_h)'], {}), '(0, h - new_h)\n', (4385, 4399), True, 'import numpy as np\n'), ((4415, 4446), 'numpy.random.randint', 'np.random.randint', (['(0)', '(w - new_w)'], {}), '(0, w - new_w)\n', (4432, 4446), True, 'import numpy as np\n'), ((5962, 6023), 'cv2.getRotationMatrix2D', 'cv2.getRotationMatrix2D', (['(cX, cY)', 'random_angle', 'random_scale'], {}), '((cX, cY), random_angle, random_scale)\n', (5985, 6023), False, 'import cv2\n'), ((6253, 6292), 'cv2.warpAffine', 'cv2.warpAffine', (['image', 'rotation', '(h, w)'], {}), '(image, rotation, (h, w))\n', (6267, 6292), False, 'import cv2\n'), ((5198, 5221), 'torch.from_numpy', 'torch.from_numpy', (['image'], {}), '(image)\n', (5214, 5221), False, 'import torch\n'), ((5252, 5277), 'torch.from_numpy', 'torch.from_numpy', (['key_pts'], {}), '(key_pts)\n', (5268, 5277), False, 'import torch\n'), ((6187, 6224), 'numpy.matmul', 'np.matmul', (['rotation', 'keypoints_copy.T'], {}), '(rotation, keypoints_copy.T)\n', (6196, 6224), True, 'import numpy as np\n'), ((7105, 7123), 'numpy.random.random', 'np.random.random', ([], {}), '()\n', (7121, 7123), True, 'import numpy as np\n'), ((1633, 1672), 'cv2.cvtColor', 'cv2.cvtColor', (['image', 'cv2.COLOR_RGB2GRAY'], {}), '(image, cv2.COLOR_RGB2GRAY)\n', (1645, 1672), False, 'import cv2\n'), ((6072, 6104), 'numpy.ones', 'np.ones', (['(keypoints.shape[0], 1)'], {}), '((keypoints.shape[0], 1))\n', (6079, 6104), True, 'import numpy as np\n'), ((5752, 5770), 'numpy.random.random', 'np.random.random', ([], {}), '()\n', (5768, 5770), True, 'import numpy as np\n'), ((5834, 5852), 'numpy.random.random', 'np.random.random', ([], {}), '()\n', (5850, 5852), True, 'import numpy as np\n')]
# class Event(object): # _observers = [] # # def __init__(self, webscraper, item): # self.webscraper = webscraper # self.item = item # # def __repr__(self): # return self.__class__.__name__ # # @classmethod # def register(cls, observer): # if observer not in cls._observers: # cls._observers.append(observer) # # @classmethod # def unregister(cls, observer): # if observer in cls._observers: # cls._observers.remove(observer) # # @classmethod # def notify(cls, subject, item): # event = cls(subject, item) # # print(cls,'-', subject,'-', event) # print(cls._observers, end="\n") # for observer in cls._observers: # # print(observer, end="\n") # observer(event) # # ##### 2. Ignore method repr ### # class MagnetRequestEvent(Event): # def repr(self): # pass # # # class MagnetNotifierEvent(Event): # # def repr(self): # # pass # # def log_add_magnet(event): # print('{0} magnet has been added: {1}'.format(event.webscraper, event.item)) # # class Announcer(): # def __call__(self, event): # print('Announcer Magnet Has Been Added {0}'.format(event.item)) # # MagnetRequestEvent.register(log_add_magnet) # MagnetRequestEvent.register(Announcer()) # MagnetRequestEvent.notify('MejorTorrentScraper', 'magnet:aferqwejklrq12') # # # def log(event): # # print('{} was written'.format(event.subject)) # # # # class AnotherObserver(): # # def __call__(self, event): # # print('Yeah {} told me !'.format(event)) # # # # WriteEvent.register(log) # # WriteEvent.register(AnotherObserver()) # # WriteEvent.notify('a given file', '') # # # # class AnotherEvent(Event): # # def repr(self): # # pass # # # AnotherEvent = Event(subject = 'test2') # # AnotherEvent.register(log) # # AnotherEvent.register(AnotherObserver()) # # AnotherEvent.notify('second file', '') import numpy as np webscraper_list = [1,2,3,4,5,6,7] c = 80/len(webscraper_list) magnet_counter = 30 f = c/30 for i in np.arange(0, c, f): print(int(i)) def _calculate_progress_bar(webscraper_list, counter): base = 80/len(webscraper_list) chunk = base/len(counter) return base, chunk def _update_progress_bar(analized, chunk): return int(analized * chunk)
[ "numpy.arange" ]
[((2095, 2113), 'numpy.arange', 'np.arange', (['(0)', 'c', 'f'], {}), '(0, c, f)\n', (2104, 2113), True, 'import numpy as np\n')]
from copy import copy import time import os import numpy as np import numpy.linalg as linalg import gym from gym import spaces from gym.utils import seeding from roboball2d.physics import B2World from roboball2d.robot import DefaultRobotConfig from roboball2d.robot import DefaultRobotState from roboball2d.ball import BallConfig from roboball2d.ball_gun import DefaultBallGun from roboball2d.utils import Box class Tennis2DEnv(gym.GoalEnv): """2D Toy Robotic Tennis Environment. Task: 2D robot with 3 degrees of freedom has to return tennis ball to given goal landing point by hitting it appropriately. A sparse reward is given only if the ball lands within the goal region.""" metadata = {"render.mode": ["human"]} # This version of the environment uses a sparse reward dense_reward = False # goal properties _goal_min = 3.0 _goal_max = 6.0 _goal_diameter = 0.8 _goal_color = (0.2, 0.7, 0.0) # variables for reward design _hit_reward = 2.0 # maximum episode length in seconds _max_episode_length_sec = 5.0 # divide by this attribute to normalize angles _angle_normalization = 0.5*np.pi # maximum angular velocity _max_angular_vel = 8.0 # safety factor (for joint limits because solver # can't ensure that they are always satisfied) _safety_factor = 1.3 # simulation steps per second _steps_per_sec = 100 _arrow_width = 0.02 _arrow_head_size = 0.06 _arrow_scaling = 0.3 def __init__(self, slow_motion_factor = 2.0): super().__init__() self._subgoals = [] self._timed_subgoals = [] self._tolerances = None self._subgoal_colors = [] # maximum episode length in steps self.max_episode_length = int(self._max_episode_length_sec*self._steps_per_sec) self.seed() self.verbose = 0 self._slow_motion_factor = slow_motion_factor self._renderer = None self._callbacks = [] ##################################### # Physics simulation using Roboball2D ##################################### # robot and ball configuration self._robot_config = DefaultRobotConfig() self._robot_config.linear_damping = 0.1 self._robot_config.angular_damping = 4.4 self._ball_configs = [BallConfig()] self._ball_configs[0].color = (0.3, 0.3, 0.3) self._ball_configs[0].line_color = (0.8, 0.8, 0.8) # safety factors for joint angles to avoid giving observations out of interval self._joint_factor = [] for index in range(3): if index in [0, 1]: factor = self._robot_config.rod_joint_limit*self._safety_factor else: factor = self._robot_config.racket_joint_limit*self._safety_factor self._joint_factor.append(factor) self._visible_area_width = 6.0 self._visual_height = 0.05 # physics simulation self._world = B2World( robot_configs = self._robot_config, ball_configs = self._ball_configs, visible_area_width = self._visible_area_width, steps_per_sec = self._steps_per_sec ) # ball gun : specifies the reset of # the ball (by shooting a new one) self._ball_guns = [DefaultBallGun(self._ball_configs[0])] # robot init : specifies the reinit of the robot # (e.g. angles of the rods and rackets, etc) self._robot_init_state = DefaultRobotState( robot_config = self._robot_config, #generalized_coordinates = [0., -0.5*np.pi, 0.], generalized_coordinates = [0.25*np.pi, -0.5*np.pi, 0.], generalized_velocities = [0., 0., 0.]) ################### # Observation space ################### obs_space_dict = {} bounded_space = spaces.Box(low = -1.0, high = 1.0, shape= (1,), dtype = np.float32) unbounded_space = spaces.Box(low = -np.inf, high = np.inf, shape= (1,), dtype = np.float32) unit_interval = spaces.Box(low = 0.0, high = 1.0, shape= (1,), dtype = np.float32) for index in [0, 1, 2]: obs_space_dict["joint_" + str(index) + "_angle"] = bounded_space for index in [0, 1, 2]: obs_space_dict["joint_" + str(index) + "_angular_vel"] = bounded_space obs_space_dict["ball_pos_x"] = unbounded_space obs_space_dict["ball_pos_y"] = unbounded_space obs_space_dict["ball_vel_x"] = unbounded_space obs_space_dict["ball_vel_y"] = unbounded_space obs_space_dict["ball_anguler_vel"] = unbounded_space obs_space_dict["ball_bounced_at_least_once"] = unit_interval obs_space_dict["ball_bouncing_second_time"] = unit_interval obs_space_dict["ball_bounced_at_least_twice"] = unit_interval if self.dense_reward == True: # in case of dense reward have to include (first component of) desired goal into observation space # (second and third component are always one and therefore not useful as observation) obs_space_dict["desired_landing_pos_x"] = bounded_space # partial observation space (without goal) self._preliminary_obs_space = spaces.Dict(obs_space_dict) # Note: Observations are scaled versions of corresponding quantities # in physics simulation. # in sparse reward case, also have to specifiy desired and achieved # goal spaces if self.dense_reward == False: # goal space has components # 1. ball position x # 2. bool indicating whether ball bounced at least once # 3. bool indicating whether ball is bouncing for the second time # in this time step # 4. bool indicating whether ball bounced at least twice desired_goal_space = spaces.Box( low = np.array([-np.inf, 0., 0., 0.]), high = np.array([np.inf, 1., 1., 1.]), dtype = np.float32) achieved_goal_space = desired_goal_space # observation space consists of dictionary of subspaces # corresponding to observation, desired goal and achieved # goal spaces self.observation_space = spaces.Dict({ "observation": self._preliminary_obs_space, "desired_goal": desired_goal_space, "achieved_goal": achieved_goal_space }) # in dense reward case, observation space is simply preliminary # observation space else: self.observation_space = self._preliminary_obs_space ################### # Action space ################### # action space consists of torques applied to the three joints # Note: Actions are scaled versions of torques in physics simulation. act_space_dict = {} for index in range(3): act_space_dict["joint_" + str(index) + "_torque"] = bounded_space self.action_space = spaces.Dict(act_space_dict) # reset to make sure environment is not used without resetting it first self.reset() def step(self, action): #################### # Physics simulation #################### action_keys = sorted(action.keys()) torques = [action[key][0] for key in action_keys] # perform one step of physics simulation, receive new world state self._world_state = self._world.step(torques, relative_torques = True) # clip angular velocities to make sure they are in a bounded interval for joint in self._world_state.robots[0].joints: joint.angular_velocity = np.clip(joint.angular_velocity, -self._max_angular_vel, self._max_angular_vel) #################### # Reward calculation #################### reward = 0 info = {} # check whether the ball is bouncing off the floor in this time step self._ball_bouncing_second_time = False if self._world_state.ball_hits_floor: self._n_ball_bounces += 1 if self._n_ball_bounces == 2: self._ball_bouncing_second_time = True # set achieved goal achieved_goal = self._get_achieved_goal() # dense reward case if self.dense_reward == True: # reward for hitting ball with racket if self._world_state.balls_hits_racket[0]: self._n_hits_ball_racket += 1 if self._n_hits_ball_racket == 1: reward += self._hit_reward # reward for bouncing off ground in goal area goal_reward = self.compute_reward(achieved_goal, self._desired_goal, info) reward += goal_reward if goal_reward == 0.: done = True # sparse reward case else: goal_reward = self.compute_reward(achieved_goal, self._desired_goal, info) reward += goal_reward if goal_reward == 0.: done = True # end episode after some time if self._world_state.t >= self._max_episode_length_sec: self.done = True return self.get_observation(), reward, self.done, info def _get_achieved_goal(self): return [(self._world_state.balls[0].position[0] - self._goal_min)/(self._goal_max - self._goal_min), int(self._n_ball_bounces >= 1), int(self._ball_bouncing_second_time), int(self._n_ball_bounces >= 2)] def update_subgoals(self, subgoals, tolerances = None): self._subgoals = subgoals self._tolerances = tolerances def update_timed_subgoals(self, timed_subgoals, tolerances = None): self._subgoals = [tsg.goal for tsg in timed_subgoals if tsg is not None] self._timed_subgoals = timed_subgoals self._tolerances = tolerances def reset(self): self.t = 0 # check for consistency with GoalEnv if self.dense_reward == False: super().reset() self.done = False # reset physics simulation self._world_state = self._world.reset(self._robot_init_state, self._ball_guns) # reset variables necessary for computation of reward self._n_ball_bounces = 0 self._ball_bouncing_second_time = False self._n_hits_ball_racket = 0 # sample goal position (last three components indicate that ball bounced for # the second time in this time step) self._desired_goal = np.array([self.np_random.uniform(0., 1.), 1., 1., 1.]) return self.get_observation() def seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def render(self, mode = "human", close = False): # have to import renderer here to avoid problems when running training without display # server from roboball2d.rendering import PygletRenderer from roboball2d.rendering import RenderingConfig import roboball2d.rendering.pyglet_utils as pyglet_utils import pyglet.gl as gl from ..utils.graphics_utils import get_default_subgoal_colors # render callback method which draws arrow for velocity of racket def render_racket_vel_callback(ws): scaled_vector = [self._arrow_scaling*x for x in ws.robot.racket.linear_velocity] pyglet_utils.draw_vector( initial_point = ws.robot.racket.position, vector = scaled_vector, width = self._arrow_width, arrow_head_size = self._arrow_head_size, color = (0.8, 0.8, 0.8)) # callback function for rendering of subgoals def render_subgoal_callback(ws): z = -0.01 for sg, color in zip(self._subgoals, self._subgoal_colors): # robot generalized_coordinates = [sg[f"joint_{i}_angle"]*self._joint_factor[i] for i in range(3)] generalized_velocities = [sg[f"joint_{i}_angular_vel"]*self._max_angular_vel for i in range(3)] robot_state = DefaultRobotState( robot_config = self._robot_config, generalized_coordinates = generalized_coordinates, generalized_velocities = generalized_velocities) robot_state.render( color = color, z_coordinate = z) # racket velocity scaled_vector = [self._arrow_scaling*x for x in robot_state.racket.linear_velocity] gl.glPushMatrix() gl.glTranslatef(0., 0., z) pyglet_utils.draw_vector( initial_point = robot_state.racket.position, vector = scaled_vector, width = self._arrow_width, arrow_head_size = self._arrow_head_size, color = color) gl.glPopMatrix() z += -0.01 def render_time_bars_callback(ws): y_pos = 2.5 for tsg, color in zip(self._timed_subgoals, self._subgoal_colors): if tsg is not None: width = tsg.delta_t_ach*0.01 pyglet_utils.draw_box((0.16 + 0.5*width, y_pos), width, 0.1, 0., color) y_pos -= 0.1 ######################## # Renderer from Tennis2D ######################## if self._renderer is None: self._subgoal_colors = get_default_subgoal_colors() self._callbacks.append(render_racket_vel_callback) self._callbacks.append(render_subgoal_callback) self._callbacks.append(render_time_bars_callback) renderer_config = RenderingConfig(self._visible_area_width, self._visual_height) renderer_config.window.width = 1920 renderer_config.window.height = 960 renderer_config.background_color = (1.0, 1.0, 1.0, 1.0) renderer_config.ground_color = (0.702, 0.612, 0.51) self._renderer = PygletRenderer(renderer_config, self._robot_config, self._ball_configs, self._callbacks) # render based on the information provided by # the physics simulation and the desired goal goals = [( self._desired_goal[0]*(self._goal_max - self._goal_min) \ + self._goal_min - 0.5*self._goal_diameter, self._desired_goal[0]*(self._goal_max - self._goal_min) \ + self._goal_min + 0.5*self._goal_diameter, self._goal_color )] self._renderer.render( world_state = self._world_state, goals = goals, time_step = self._slow_motion_factor*self._world_state.applied_time_step) def compute_reward(self, achieved_goal, desired_goal, info): if self.dense_reward == False: if np.all(achieved_goal[1:] == desired_goal[1:]): if abs((desired_goal[0] - achieved_goal[0])*(self._goal_max - self._goal_min)) <= 0.5*self._goal_diameter: return 0. return -1. else: if np.all(achieved_goal[1:] == desired_goal[1:]): return (-min(abs((desired_goal[0] - achieved_goal[0])*(self._goal_max - self._goal_min)), self._goal_max + self._goal_diameter - self._robot_config.position) + self._goal_max + self._goal_diameter - self._robot_config.position) return 0. # part of observation depending only on env state and not on goal def _get_env_observation(self): ws = self._world_state env_observation = {} for index, joint in enumerate(ws.robots[0].joints): env_observation["joint_" + str(index) + "_angle"] = np.clip([joint.angle/self._joint_factor[index]], -1., 1.) env_observation["joint_" + str(index) + "_angular_vel"] = [joint.angular_velocity/self._max_angular_vel] ball = ws.balls[0] env_observation["ball_pos_x"] = [ball.position[0]/self._ball_guns[0].initial_pos_x] env_observation["ball_pos_y"] = [ball.position[1]/self._ball_guns[0].initial_pos_x] env_observation["ball_vel_x"] = [ball.linear_velocity[0]/self._ball_guns[0].speed_mean] env_observation["ball_vel_y"] = [ball.linear_velocity[1]/self._ball_guns[0].speed_mean] env_observation["ball_anguler_vel"] = [ball.angular_velocity/self._ball_guns[0].spin_std] env_observation["ball_bounced_at_least_once"] = [int(self._n_ball_bounces >= 1)] env_observation["ball_bouncing_second_time"] = [int(self._ball_bouncing_second_time)] env_observation["ball_bounced_at_least_twice"] = [int(self._n_ball_bounces >= 2)] for key, value in env_observation.items(): env_observation[key] = np.array(value) return env_observation def get_observation(self): observation = self._get_env_observation() if self.dense_reward == False: result = { "observation": observation, "achieved_goal": np.array(self._get_achieved_goal()), "desired_goal" : np.array(self._desired_goal) } return result else: observation["desired_landing_pos_x"] = self._desired_goal[0] return observation def map_to_achieved_goal(self, partial_obs): pos_x = partial_obs["ball_pos_x"][0]*self._ball_guns[0].initial_pos_x achieved_goal = [ [(pos_x - self._goal_min)/(self._goal_max - self._goal_min)], partial_obs["ball_bounced_at_least_once"], partial_obs["ball_bouncing_second_time"], partial_obs["ball_bounced_at_least_twice"]] return np.concatenate(achieved_goal) def _get_robot_conf_and_vel(self, robot_state): pass class Tennis2DDenseRewardEnv(Tennis2DEnv): """Dense reward version of the 2D robotic toy tennis environment. In contrast to the sparse reward version, the dense reward version of the environment gives a constant reward to the agent when it hits the ball and another one when the ball bounces on the ground for the second time after being hit by the racket. The latter reward is proportional to the nagative distance to the goal landing point.""" dense_reward = True
[ "roboball2d.rendering.pyglet_utils.draw_vector", "numpy.clip", "roboball2d.rendering.pyglet_utils.draw_box", "roboball2d.physics.B2World", "gym.utils.seeding.np_random", "roboball2d.robot.DefaultRobotState", "roboball2d.ball.BallConfig", "pyglet.gl.glTranslatef", "roboball2d.ball_gun.DefaultBallGun", "roboball2d.rendering.RenderingConfig", "pyglet.gl.glPushMatrix", "numpy.all", "pyglet.gl.glPopMatrix", "numpy.concatenate", "gym.spaces.Dict", "roboball2d.robot.DefaultRobotConfig", "roboball2d.rendering.PygletRenderer", "numpy.array", "gym.spaces.Box" ]
[((2207, 2227), 'roboball2d.robot.DefaultRobotConfig', 'DefaultRobotConfig', ([], {}), '()\n', (2225, 2227), False, 'from roboball2d.robot import DefaultRobotConfig\n'), ((3020, 3183), 'roboball2d.physics.B2World', 'B2World', ([], {'robot_configs': 'self._robot_config', 'ball_configs': 'self._ball_configs', 'visible_area_width': 'self._visible_area_width', 'steps_per_sec': 'self._steps_per_sec'}), '(robot_configs=self._robot_config, ball_configs=self._ball_configs,\n visible_area_width=self._visible_area_width, steps_per_sec=self.\n _steps_per_sec)\n', (3027, 3183), False, 'from roboball2d.physics import B2World\n'), ((3563, 3717), 'roboball2d.robot.DefaultRobotState', 'DefaultRobotState', ([], {'robot_config': 'self._robot_config', 'generalized_coordinates': '[0.25 * np.pi, -0.5 * np.pi, 0.0]', 'generalized_velocities': '[0.0, 0.0, 0.0]'}), '(robot_config=self._robot_config, generalized_coordinates=\n [0.25 * np.pi, -0.5 * np.pi, 0.0], generalized_velocities=[0.0, 0.0, 0.0])\n', (3580, 3717), False, 'from roboball2d.robot import DefaultRobotState\n'), ((3964, 4024), 'gym.spaces.Box', 'spaces.Box', ([], {'low': '(-1.0)', 'high': '(1.0)', 'shape': '(1,)', 'dtype': 'np.float32'}), '(low=-1.0, high=1.0, shape=(1,), dtype=np.float32)\n', (3974, 4024), False, 'from gym import spaces\n'), ((4058, 4124), 'gym.spaces.Box', 'spaces.Box', ([], {'low': '(-np.inf)', 'high': 'np.inf', 'shape': '(1,)', 'dtype': 'np.float32'}), '(low=-np.inf, high=np.inf, shape=(1,), dtype=np.float32)\n', (4068, 4124), False, 'from gym import spaces\n'), ((4156, 4215), 'gym.spaces.Box', 'spaces.Box', ([], {'low': '(0.0)', 'high': '(1.0)', 'shape': '(1,)', 'dtype': 'np.float32'}), '(low=0.0, high=1.0, shape=(1,), dtype=np.float32)\n', (4166, 4215), False, 'from gym import spaces\n'), ((5341, 5368), 'gym.spaces.Dict', 'spaces.Dict', (['obs_space_dict'], {}), '(obs_space_dict)\n', (5352, 5368), False, 'from gym import spaces\n'), ((7174, 7201), 'gym.spaces.Dict', 'spaces.Dict', (['act_space_dict'], {}), '(act_space_dict)\n', (7185, 7201), False, 'from gym import spaces\n'), ((10915, 10938), 'gym.utils.seeding.np_random', 'seeding.np_random', (['seed'], {}), '(seed)\n', (10932, 10938), False, 'from gym.utils import seeding\n'), ((18353, 18382), 'numpy.concatenate', 'np.concatenate', (['achieved_goal'], {}), '(achieved_goal)\n', (18367, 18382), True, 'import numpy as np\n'), ((2355, 2367), 'roboball2d.ball.BallConfig', 'BallConfig', ([], {}), '()\n', (2365, 2367), False, 'from roboball2d.ball import BallConfig\n'), ((3380, 3417), 'roboball2d.ball_gun.DefaultBallGun', 'DefaultBallGun', (['self._ball_configs[0]'], {}), '(self._ball_configs[0])\n', (3394, 3417), False, 'from roboball2d.ball_gun import DefaultBallGun\n'), ((6400, 6535), 'gym.spaces.Dict', 'spaces.Dict', (["{'observation': self._preliminary_obs_space, 'desired_goal':\n desired_goal_space, 'achieved_goal': achieved_goal_space}"], {}), "({'observation': self._preliminary_obs_space, 'desired_goal':\n desired_goal_space, 'achieved_goal': achieved_goal_space})\n", (6411, 6535), False, 'from gym import spaces\n'), ((7851, 7929), 'numpy.clip', 'np.clip', (['joint.angular_velocity', '(-self._max_angular_vel)', 'self._max_angular_vel'], {}), '(joint.angular_velocity, -self._max_angular_vel, self._max_angular_vel)\n', (7858, 7929), True, 'import numpy as np\n'), ((11630, 11813), 'roboball2d.rendering.pyglet_utils.draw_vector', 'pyglet_utils.draw_vector', ([], {'initial_point': 'ws.robot.racket.position', 'vector': 'scaled_vector', 'width': 'self._arrow_width', 'arrow_head_size': 'self._arrow_head_size', 'color': '(0.8, 0.8, 0.8)'}), '(initial_point=ws.robot.racket.position, vector=\n scaled_vector, width=self._arrow_width, arrow_head_size=self.\n _arrow_head_size, color=(0.8, 0.8, 0.8))\n', (11654, 11813), True, 'import roboball2d.rendering.pyglet_utils as pyglet_utils\n'), ((14087, 14149), 'roboball2d.rendering.RenderingConfig', 'RenderingConfig', (['self._visible_area_width', 'self._visual_height'], {}), '(self._visible_area_width, self._visual_height)\n', (14102, 14149), False, 'from roboball2d.rendering import RenderingConfig\n'), ((14454, 14546), 'roboball2d.rendering.PygletRenderer', 'PygletRenderer', (['renderer_config', 'self._robot_config', 'self._ball_configs', 'self._callbacks'], {}), '(renderer_config, self._robot_config, self._ball_configs,\n self._callbacks)\n', (14468, 14546), False, 'from roboball2d.rendering import PygletRenderer\n'), ((15434, 15479), 'numpy.all', 'np.all', (['(achieved_goal[1:] == desired_goal[1:])'], {}), '(achieved_goal[1:] == desired_goal[1:])\n', (15440, 15479), True, 'import numpy as np\n'), ((15686, 15731), 'numpy.all', 'np.all', (['(achieved_goal[1:] == desired_goal[1:])'], {}), '(achieved_goal[1:] == desired_goal[1:])\n', (15692, 15731), True, 'import numpy as np\n'), ((16341, 16402), 'numpy.clip', 'np.clip', (['[joint.angle / self._joint_factor[index]]', '(-1.0)', '(1.0)'], {}), '([joint.angle / self._joint_factor[index]], -1.0, 1.0)\n', (16348, 16402), True, 'import numpy as np\n'), ((17378, 17393), 'numpy.array', 'np.array', (['value'], {}), '(value)\n', (17386, 17393), True, 'import numpy as np\n'), ((12382, 12533), 'roboball2d.robot.DefaultRobotState', 'DefaultRobotState', ([], {'robot_config': 'self._robot_config', 'generalized_coordinates': 'generalized_coordinates', 'generalized_velocities': 'generalized_velocities'}), '(robot_config=self._robot_config, generalized_coordinates=\n generalized_coordinates, generalized_velocities=generalized_velocities)\n', (12399, 12533), False, 'from roboball2d.robot import DefaultRobotState\n'), ((12876, 12893), 'pyglet.gl.glPushMatrix', 'gl.glPushMatrix', ([], {}), '()\n', (12891, 12893), True, 'import pyglet.gl as gl\n'), ((12910, 12938), 'pyglet.gl.glTranslatef', 'gl.glTranslatef', (['(0.0)', '(0.0)', 'z'], {}), '(0.0, 0.0, z)\n', (12925, 12938), True, 'import pyglet.gl as gl\n'), ((12953, 13129), 'roboball2d.rendering.pyglet_utils.draw_vector', 'pyglet_utils.draw_vector', ([], {'initial_point': 'robot_state.racket.position', 'vector': 'scaled_vector', 'width': 'self._arrow_width', 'arrow_head_size': 'self._arrow_head_size', 'color': 'color'}), '(initial_point=robot_state.racket.position, vector=\n scaled_vector, width=self._arrow_width, arrow_head_size=self.\n _arrow_head_size, color=color)\n', (12977, 13129), True, 'import roboball2d.rendering.pyglet_utils as pyglet_utils\n'), ((13271, 13287), 'pyglet.gl.glPopMatrix', 'gl.glPopMatrix', ([], {}), '()\n', (13285, 13287), True, 'import pyglet.gl as gl\n'), ((17734, 17762), 'numpy.array', 'np.array', (['self._desired_goal'], {}), '(self._desired_goal)\n', (17742, 17762), True, 'import numpy as np\n'), ((6012, 6046), 'numpy.array', 'np.array', (['[-np.inf, 0.0, 0.0, 0.0]'], {}), '([-np.inf, 0.0, 0.0, 0.0])\n', (6020, 6046), True, 'import numpy as np\n'), ((6073, 6106), 'numpy.array', 'np.array', (['[np.inf, 1.0, 1.0, 1.0]'], {}), '([np.inf, 1.0, 1.0, 1.0])\n', (6081, 6106), True, 'import numpy as np\n'), ((13567, 13641), 'roboball2d.rendering.pyglet_utils.draw_box', 'pyglet_utils.draw_box', (['(0.16 + 0.5 * width, y_pos)', 'width', '(0.1)', '(0.0)', 'color'], {}), '((0.16 + 0.5 * width, y_pos), width, 0.1, 0.0, color)\n', (13588, 13641), True, 'import roboball2d.rendering.pyglet_utils as pyglet_utils\n')]
from typing import Optional, Union, List, Tuple import os import cv2 as cv import numpy as np from PySide6.QtWidgets import QLayout, QLabel, QWidget, QGridLayout from PySide6.QtGui import QImage, QMouseEvent, QCloseEvent, QResizeEvent, QMoveEvent, QPixmap from PySide6.QtCore import Slot, QSize, QPoint, Qt, Signal from .ui_editor_window import Ui_EditorWindow from .preview_window import PreviewWindow from .cluster_image_entry import ClusterImageEntry from .layer_image_entry import LayerImageEntry from .layer_data import LayerData from .utils import load_image, array2d_to_pixmap, fit_to_frame, create_cluster class CLusterPreviewWindow(QWidget): """ Extends QWidget. Floating window next to ClusterEditor showing the current cluster state. """ def __init__(self, parent: Optional[QWidget] = None, size: QSize = QSize(600, 600), image: Optional[QImage] = None): super(CLusterPreviewWindow, self).__init__(parent) self.setWindowFlags(Qt.Window | Qt.FramelessWindowHint) self.resize(size) self.imageLabel = QLabel("Cluster Preview", self) self.imageLabel.setAlignment(Qt.AlignCenter) layout = QGridLayout(self) layout.addWidget(self.imageLabel) if image is not None: self.__update_cluster_preview(QPixmap.fromImage(image)) def __update_cluster_preview(self, image: QPixmap) -> None: self.imageLabel.setPixmap(fit_to_frame(image, QSize(self.width(), self.height()))) def update_cluster_preview(self, image: Union[np.ndarray, str]) -> None: """ Load an image from a string or an array and update the cluster preview. :param image: Can be both a numpy array and a string. """ if isinstance(image, np.ndarray): self.__update_cluster_preview(array2d_to_pixmap(image, normalize=True, colormap=cv.COLORMAP_JET)) return if isinstance(image, str): self.__update_cluster_preview(QPixmap.fromImage(QImage(image))) return raise ValueError("Invalid image type: {}".format(type(image))) class ClusterEditor(PreviewWindow): """ Extends PreviewWindow. The window that allows editing of the clusters. """ applied_to_all = Signal(list) def __init__(self, parent: Optional[QWidget], calling_image_entry: ClusterImageEntry): super(ClusterEditor, self).__init__(parent) self.ui = Ui_EditorWindow() self.ui.setupUi(self) self.ui.mergeButton.clicked.connect(self.merge) self.ui.applyButton.clicked.connect(self.apply_to_all) self.ui.resetButton.clicked.connect(self.reset) # self.ui.unmergeButton.clicked.connect(self.unmerge) self.ui.undoButton.clicked.connect(self.undo) self._source_image_entries: List[LayerImageEntry] = [] self._selected_image_entry: Optional[LayerImageEntry] = None self.__cluster_image_entry: ClusterImageEntry = calling_image_entry self.__pending_mergers: List[List[int]] = [] self.__pending_ime: List[LayerImageEntry] = [] self.__old_entries: List[List[LayerImageEntry]] = [] self.__cluster_array: np.ndarray = np.load(self.__cluster_image_entry.array_path) side_length = self.height() - self.menuBar().height() self.__cluster_preview_window = CLusterPreviewWindow(self, QSize(side_length, side_length), load_image(self.__cluster_image_entry.image_path)) # self.cluster_preview_window.show() # first = True for i in range(self.__cluster_image_entry.layer_count()): layer_data = self.__cluster_image_entry.get_layer_data(i) array = np.load(layer_data.array_path) qim: QImage = load_image(layer_data.image_path) ime = LayerImageEntry(self, qim, array, layer_data.name(), is_merger=layer_data.is_merger, layer_index=layer_data.layer_index, parent_layers=layer_data.parent_layers) ime.mouse_pressed.connect(self.image_entry_click_handler) ime.state_changed.connect(self.change_merge_button_state) self.add_source_image_entry(ime) # if first: # self.set_preview_image(qim, ime) # first = False def source_layout(self) -> QLayout: return self.ui.scrollAreaLayersContents.layout() def image_preview(self) -> QLabel: return self.ui.imageLabel @Slot(LayerImageEntry, QMouseEvent) def image_entry_click_handler(self, sender: LayerImageEntry, event: QMouseEvent) -> None: assert type(sender) == LayerImageEntry self.set_preview_image(array2d_to_pixmap(sender.array, normalize=True).toImage(), sender) def resizeEvent(self, event: QResizeEvent) -> None: if self._selected_image_entry is None: return self.draw_preview_image(array2d_to_pixmap(self._selected_image_entry.array, normalize=True).toImage()) def moveEvent(self, event: QMoveEvent) -> None: position = event.pos() self.__cluster_preview_window.move(position - QPoint(self.__cluster_preview_window.width(), 0)) if self.__cluster_preview_window.isHidden(): self.__cluster_preview_window.show() def closeEvent(self, event: QCloseEvent) -> None: self.__cluster_preview_window.close() self.__cluster_preview_window = None def __pending_add(self, mergers_idx: List[int], ime: LayerImageEntry, old_entries: List[LayerImageEntry]) -> None: """ Add the result of a merge to the pending list, and store the merged layers to be able to undo the merge. :param mergers_idx: Indices of the layers to merge. :type mergers_idx: list of int :param LayerImageEntry ime: The newly merged image entry. :param old_entries: A list of the layers used to generate the merged layer. :type old_entries: list of LayerImageEntry """ if not self.ui.undoButton.isEnabled(): self.ui.undoButton.setEnabled(True) self.__pending_mergers.append(mergers_idx) self.__pending_ime.append(ime) self.__old_entries.append(old_entries) def __pending_clear(self) -> None: """ Deletes the mergers that haven't been applied yet. """ self.ui.undoButton.setEnabled(False) self.__pending_mergers.clear() self.__pending_ime.clear() self.__old_entries.clear() def __pending_count(self) -> int: n = len(self.__pending_mergers) assert n == len(self.__pending_ime) == len(self.__old_entries) return n def __pending_pop(self) -> Tuple[List[int], LayerImageEntry, List[LayerImageEntry]]: """ Gives a tuple of the last merged indices, image entry of the merged layers and the list of image entries used to generate the merger. :rtype: (list of int, LayerImageEntry, list of LayerImageEntry) """ if self.__pending_count() == 1: self.ui.undoButton.setEnabled(False) return self.__pending_mergers.pop(), self.__pending_ime.pop(), self.__old_entries.pop() @Slot(int) def change_merge_button_state(self, state: int) -> None: if not state == Qt.CheckState.Checked: self.ui.mergeButton.setEnabled(True) return if len(self.get_selected_entries()) == len(self._source_image_entries): self.ui.mergeButton.setEnabled(False) @Slot() def merge(self) -> None: """ Merge the selected layers only in the current view. Update the cluster preview with the newly merged cluster. """ if len(self.get_selected_entries()) < 2: return checked_indices: List[int] = [] old_ime: List[LayerImageEntry] = [] merger: Optional[np.ndarray] = None parent_layers: List[int] = [] for index, ime in enumerate(self._source_image_entries): if not ime.isChecked(): continue if ime.layer_data.is_merger: assert ime.layer_data.parent_layers is not None parent_layers.extend(ime.layer_data.parent_layers) else: assert ime.layer_data.layer_index is not None parent_layers.append(ime.layer_data.layer_index) checked_indices.append(index) old_ime.append(ime) merger = self._source_image_entries[index].array if merger is None else merger | self._source_image_entries[ index].array ime.setChecked(False) ime.close() for i in sorted(checked_indices, reverse=True): self._source_image_entries.pop(i) self.__cluster_array = create_cluster([ime.array for ime in self._source_image_entries]) self.__cluster_preview_window.update_cluster_preview(self.__cluster_array) qim: QImage = array2d_to_pixmap(merger, normalize=True).toImage() merged_ime = LayerImageEntry(self, qim, merger, f"m {LayerData.indices2str(parent_layers)}", is_merger=True, parent_layers=parent_layers) merged_ime.mouse_pressed.connect(self.image_entry_click_handler) merged_ime.state_changed.connect(self.change_merge_button_state) self.__pending_add(checked_indices, merged_ime, old_ime) self.set_preview_image(qim, merged_ime) self.add_source_image_entry(merged_ime) self.change_all_entries_check_state(False) @Slot() def apply_to_all(self) -> None: """ Send a merge signal for each pending merge. """ for merger in self.__pending_mergers: self.applied_to_all.emit(merger) self.__pending_clear() @Slot() def reset(self) -> None: """ Removes all uncommitted changes done in the editor. """ if len(self.__pending_mergers) == 0: return self.__pending_clear() for ime in self._source_image_entries: ime.close() self._source_image_entries.clear() self.__cluster_array = np.load(self.__cluster_image_entry.array_path) self.__cluster_preview_window.update_cluster_preview(self.__cluster_array) for i in range(self.__cluster_image_entry.layer_count()): layer_data = self.__cluster_image_entry.get_layer_data(i) array = np.load(layer_data.array_path) qim: QImage = load_image(layer_data.image_path) ime = LayerImageEntry(self, qim, array, layer_data.name(), layer_data.is_merger, layer_data.layer_index, layer_data.parent_layers) ime.mouse_pressed.connect(self.image_entry_click_handler) ime.state_changed.connect(self.change_merge_button_state) self.add_source_image_entry(ime) if i == 0: self.set_preview_image(load_image(layer_data.image_path), ime) self.change_all_entries_check_state(False) @Slot() def unmerge(self) -> None: """ Unmerge the selected layers in the editor. Global behavior not implemented. """ for index, ime in enumerate(self._source_image_entries): if not ime.isChecked() or not ime.layer_data.is_merger: continue self._source_image_entries.pop(index) assert ime.layer_data.parent_layers is not None for parent_layer_index in ime.layer_data.parent_layers.copy(): directory = os.path.dirname(self.__cluster_image_entry.image_path) path_no_ext = os.path.join(directory, f"{self.__cluster_image_entry.basename}_layer_{parent_layer_index}") image_path = f"{path_no_ext}.png" array_path = f"{path_no_ext}.npy" parent_ime = LayerImageEntry(self, load_image(image_path), np.load(array_path), str(parent_layer_index), layer_index=parent_layer_index) parent_ime.mouse_pressed.connect(self.image_entry_click_handler) parent_ime.state_changed.connect(self.change_merge_button_state) self.add_source_image_entry(parent_ime) ime.close() @Slot() def undo(self) -> None: """ Go one step back. """ if self.__pending_count() == 0: return indices, pending_ime, old_ime = self.__pending_pop() self._source_image_entries.pop() pending_ime.close() for index, ime in zip(indices, old_ime): ime.setVisible(True) self.add_source_image_entry(ime, index) self.image_preview().setText("Layer") self.__cluster_preview_window.update_cluster_preview(self.__cluster_image_entry.image_path) self.change_all_entries_check_state(False)
[ "numpy.load", "os.path.dirname", "PySide6.QtWidgets.QLabel", "PySide6.QtGui.QImage", "PySide6.QtCore.Signal", "PySide6.QtCore.QSize", "PySide6.QtGui.QPixmap.fromImage", "PySide6.QtCore.Slot", "PySide6.QtWidgets.QGridLayout", "os.path.join" ]
[((2253, 2265), 'PySide6.QtCore.Signal', 'Signal', (['list'], {}), '(list)\n', (2259, 2265), False, 'from PySide6.QtCore import Slot, QSize, QPoint, Qt, Signal\n'), ((4502, 4536), 'PySide6.QtCore.Slot', 'Slot', (['LayerImageEntry', 'QMouseEvent'], {}), '(LayerImageEntry, QMouseEvent)\n', (4506, 4536), False, 'from PySide6.QtCore import Slot, QSize, QPoint, Qt, Signal\n'), ((7208, 7217), 'PySide6.QtCore.Slot', 'Slot', (['int'], {}), '(int)\n', (7212, 7217), False, 'from PySide6.QtCore import Slot, QSize, QPoint, Qt, Signal\n'), ((7530, 7536), 'PySide6.QtCore.Slot', 'Slot', ([], {}), '()\n', (7534, 7536), False, 'from PySide6.QtCore import Slot, QSize, QPoint, Qt, Signal\n'), ((9575, 9581), 'PySide6.QtCore.Slot', 'Slot', ([], {}), '()\n', (9579, 9581), False, 'from PySide6.QtCore import Slot, QSize, QPoint, Qt, Signal\n'), ((9822, 9828), 'PySide6.QtCore.Slot', 'Slot', ([], {}), '()\n', (9826, 9828), False, 'from PySide6.QtCore import Slot, QSize, QPoint, Qt, Signal\n'), ((11085, 11091), 'PySide6.QtCore.Slot', 'Slot', ([], {}), '()\n', (11089, 11091), False, 'from PySide6.QtCore import Slot, QSize, QPoint, Qt, Signal\n'), ((12370, 12376), 'PySide6.QtCore.Slot', 'Slot', ([], {}), '()\n', (12374, 12376), False, 'from PySide6.QtCore import Slot, QSize, QPoint, Qt, Signal\n'), ((839, 854), 'PySide6.QtCore.QSize', 'QSize', (['(600)', '(600)'], {}), '(600, 600)\n', (844, 854), False, 'from PySide6.QtCore import Slot, QSize, QPoint, Qt, Signal\n'), ((1065, 1096), 'PySide6.QtWidgets.QLabel', 'QLabel', (['"""Cluster Preview"""', 'self'], {}), "('Cluster Preview', self)\n", (1071, 1096), False, 'from PySide6.QtWidgets import QLayout, QLabel, QWidget, QGridLayout\n'), ((1168, 1185), 'PySide6.QtWidgets.QGridLayout', 'QGridLayout', (['self'], {}), '(self)\n', (1179, 1185), False, 'from PySide6.QtWidgets import QLayout, QLabel, QWidget, QGridLayout\n'), ((3188, 3234), 'numpy.load', 'np.load', (['self.__cluster_image_entry.array_path'], {}), '(self.__cluster_image_entry.array_path)\n', (3195, 3234), True, 'import numpy as np\n'), ((10186, 10232), 'numpy.load', 'np.load', (['self.__cluster_image_entry.array_path'], {}), '(self.__cluster_image_entry.array_path)\n', (10193, 10232), True, 'import numpy as np\n'), ((3365, 3396), 'PySide6.QtCore.QSize', 'QSize', (['side_length', 'side_length'], {}), '(side_length, side_length)\n', (3370, 3396), False, 'from PySide6.QtCore import Slot, QSize, QPoint, Qt, Signal\n'), ((3735, 3765), 'numpy.load', 'np.load', (['layer_data.array_path'], {}), '(layer_data.array_path)\n', (3742, 3765), True, 'import numpy as np\n'), ((10473, 10503), 'numpy.load', 'np.load', (['layer_data.array_path'], {}), '(layer_data.array_path)\n', (10480, 10503), True, 'import numpy as np\n'), ((1301, 1325), 'PySide6.QtGui.QPixmap.fromImage', 'QPixmap.fromImage', (['image'], {}), '(image)\n', (1318, 1325), False, 'from PySide6.QtGui import QImage, QMouseEvent, QCloseEvent, QResizeEvent, QMoveEvent, QPixmap\n'), ((11603, 11657), 'os.path.dirname', 'os.path.dirname', (['self.__cluster_image_entry.image_path'], {}), '(self.__cluster_image_entry.image_path)\n', (11618, 11657), False, 'import os\n'), ((11688, 11784), 'os.path.join', 'os.path.join', (['directory', 'f"""{self.__cluster_image_entry.basename}_layer_{parent_layer_index}"""'], {}), "(directory,\n f'{self.__cluster_image_entry.basename}_layer_{parent_layer_index}')\n", (11700, 11784), False, 'import os\n'), ((1995, 2008), 'PySide6.QtGui.QImage', 'QImage', (['image'], {}), '(image)\n', (2001, 2008), False, 'from PySide6.QtGui import QImage, QMouseEvent, QCloseEvent, QResizeEvent, QMoveEvent, QPixmap\n'), ((11999, 12018), 'numpy.load', 'np.load', (['array_path'], {}), '(array_path)\n', (12006, 12018), True, 'import numpy as np\n')]
import numpy as np import torch from tensorboardX import SummaryWriter from tqdm import tqdm import argparse import config from data_gen import TextMelLoader, TextMelCollate from taco2models.loss_function import Tacotron2Loss from taco2models.models import Tacotron2 from taco2models.optimizer import Tacotron2Optimizer from utils_1 import save_checkpoint, AverageMeter, get_logger, test import os def train_net(args): torch.manual_seed(7) np.random.seed(7) checkpoint = args.checkpoint start_epoch = 0 best_loss = float('inf') writer = SummaryWriter() steps_since_improvement = 0 # Initialize / load checkpoint if checkpoint is None: print('Training from scratch ...') # model model = Tacotron2(config) print(model) # model = nn.DataParallel(model) # optimizer optimizer = Tacotron2Optimizer( torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.l2, betas=(0.9, 0.999), eps=1e-6)) else: print('Loading model:{}'.format(checkpoint)) load_mode = args.load_type if load_mode == 'dict': checkpoint = torch.load(checkpoint) model = checkpoint['model'] start_epoch = checkpoint['epoch'] + 1 step = checkpoint['step'] + 1 steps_since_improvement = checkpoint['steps_since_improvement'] optimizer = checkpoint['optimizer'] model = checkpoint['model'] best_loss = checkpoint['loss'] if best_loss < 0.4: # 为了防止loss由于best_loss太低导致 loss一直无法下降到best_loss而导致best_checkpoint存不下来 best_loss = 0.4 else: checkpoint = torch.load(checkpoint) model = Tacotron2(config) model.load_state_dict(checkpoint) optimizer = Tacotron2Optimizer( torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.l2, betas=(0.9, 0.999), eps=1e-6)) print(model) logger = get_logger() print(f'learning rate is',optimizer.lr) model = model.to(config.device) criterion = Tacotron2Loss() collate_fn = TextMelCollate(config.n_frames_per_step) # Custom dataloaders if args.dataset == 'biaobei': training_files = args.dataset + '_filelist/' + args.dataset + '_audio_text_train_filelist.txt' validation_files = args.dataset + '_filelist/' + args.dataset + '_audio_text_valid_filelist.txt' else: training_files = args.dataset + '_filelist/' + args.dataset + '_audio_text_train_filelist.json' validation_files = args.dataset + '_filelist/' + args.dataset + '_audio_text_valid_filelist.json' train_dataset = TextMelLoader(training_files, config, dataset=args.dataset) print('batch size is ', args.batch_size) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, collate_fn=collate_fn, pin_memory=True, shuffle=True, num_workers=args.num_workers) print(f'loaded dataset from {training_files}') valid_dataset = TextMelLoader(validation_files, config, dataset=args.dataset) valid_loader = torch.utils.data.DataLoader(valid_dataset, batch_size=args.batch_size, collate_fn=collate_fn, pin_memory=True, shuffle=False, num_workers=args.num_workers) print(f'loaded dataset from {validation_files}') # Epochs for epoch in range(start_epoch, args.epochs): # One epoch's training losses = AverageMeter() for i, batch in enumerate(train_loader): model.train() model.zero_grad() x, y = model.parse_batch(batch) # Forward prop. y_pred = model(x) # loss loss = criterion(y_pred, y) # Back prop. optimizer.zero_grad() loss.backward() # Update weights optimizer.step() # Keep track of metrics losses.update(loss.item()) torch.cuda.empty_cache() writer.add_scalar('model/train_loss', losses.val, optimizer.step_num) # Print status if i % args.print_freq == 0: logger.info('Epoch: [{0}][{1}/{2}]\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})'.format(epoch, i, len(train_loader), loss=losses)) # validation if i % config.validation_steps == 0 and i != 0: valid_losses = AverageMeter() model.eval() lr = optimizer.lr step_num = optimizer.step_num print('\nLearning rate: {}'.format(lr)) writer.add_scalar('model/learning_rate', lr, step_num) print('Step num: {}\n'.format(step_num)) with torch.no_grad(): for batch in valid_loader: model.zero_grad() x, y = model.parse_batch(batch) # Forward prop. y_pred = model(x) loss = criterion(y_pred, y) # Keep track of metrics valid_losses.update(loss.item()) valid_loss = valid_losses.avg writer.add_scalar('model/valid_loss', valid_loss, step_num) logger.info('Epoch: [{0}][{1}/{2}]\t' 'Validation Loss {loss:.4f}'.format(epoch, i, len(train_loader), loss=valid_loss)) # Check if there was an improvement is_best = valid_loss < best_loss best_loss = min(valid_loss, best_loss) if not is_best: steps_since_improvement += config.validation_steps print("\nSteps since last improvement: %d\n" % (steps_since_improvement,)) else: steps_since_improvement = 0 # saving checkpoint and update the best checkpoint save_checkpoint(epoch, step_num, steps_since_improvement, model, optimizer, best_loss, is_best, dataset=args.dataset,trial_type=args.trial_type) # drawing alignment img_align = test(model, step_num, valid_loss) writer.add_image('model/alignment', img_align, step_num, dataformats='HWC') def parse_args(): parser = argparse.ArgumentParser(description='Tacotron2') parser.add_argument('--epochs', default=10000, type=int) parser.add_argument('--max_norm', default=1, type=float, help='Gradient norm threshold to clip') # trial type parser.add_argument('--trial_type', type=str, default='new', help='new vaocal dict or old vaocal dict') parser.add_argument('--load_type', type=str, default='dict', help='method to load model') # dataset parser.add_argument('--dataset', type=str, default='aixia', help='name of dataset') # minibatch parser.add_argument('--batch_size', default=16, type=int) parser.add_argument('--num-workers', default=4, type=int, help='Number of workers to generate minibatch') # logging parser.add_argument('--print_freq', default=10, type=int, help='Frequency of printing training information') # optimizer parser.add_argument('--lr', default=1e-3, type=float, help='Init learning rate') parser.add_argument('--l2', default=1e-6, type=float, help='weight decay (L2)') parser.add_argument('--checkpoint', type=str, default='biaobei_checkpoints/biaobei.tar', help='checkpoint') args = parser.parse_args() return args def main(): global args args = parse_args() train_net(args) if __name__ == '__main__': main()
[ "tensorboardX.SummaryWriter", "numpy.random.seed", "utils_1.get_logger", "torch.utils.data.DataLoader", "argparse.ArgumentParser", "utils_1.AverageMeter", "torch.manual_seed", "torch.load", "taco2models.loss_function.Tacotron2Loss", "data_gen.TextMelLoader", "torch.cuda.empty_cache", "utils_1.save_checkpoint", "taco2models.models.Tacotron2", "utils_1.test", "torch.no_grad", "data_gen.TextMelCollate" ]
[((426, 446), 'torch.manual_seed', 'torch.manual_seed', (['(7)'], {}), '(7)\n', (443, 446), False, 'import torch\n'), ((451, 468), 'numpy.random.seed', 'np.random.seed', (['(7)'], {}), '(7)\n', (465, 468), True, 'import numpy as np\n'), ((564, 579), 'tensorboardX.SummaryWriter', 'SummaryWriter', ([], {}), '()\n', (577, 579), False, 'from tensorboardX import SummaryWriter\n'), ((2013, 2025), 'utils_1.get_logger', 'get_logger', ([], {}), '()\n', (2023, 2025), False, 'from utils_1 import save_checkpoint, AverageMeter, get_logger, test\n'), ((2124, 2139), 'taco2models.loss_function.Tacotron2Loss', 'Tacotron2Loss', ([], {}), '()\n', (2137, 2139), False, 'from taco2models.loss_function import Tacotron2Loss\n'), ((2158, 2198), 'data_gen.TextMelCollate', 'TextMelCollate', (['config.n_frames_per_step'], {}), '(config.n_frames_per_step)\n', (2172, 2198), False, 'from data_gen import TextMelLoader, TextMelCollate\n'), ((2712, 2771), 'data_gen.TextMelLoader', 'TextMelLoader', (['training_files', 'config'], {'dataset': 'args.dataset'}), '(training_files, config, dataset=args.dataset)\n', (2725, 2771), False, 'from data_gen import TextMelLoader, TextMelCollate\n'), ((2837, 3000), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', (['train_dataset'], {'batch_size': 'args.batch_size', 'collate_fn': 'collate_fn', 'pin_memory': '(True)', 'shuffle': '(True)', 'num_workers': 'args.num_workers'}), '(train_dataset, batch_size=args.batch_size,\n collate_fn=collate_fn, pin_memory=True, shuffle=True, num_workers=args.\n num_workers)\n', (2864, 3000), False, 'import torch\n'), ((3110, 3171), 'data_gen.TextMelLoader', 'TextMelLoader', (['validation_files', 'config'], {'dataset': 'args.dataset'}), '(validation_files, config, dataset=args.dataset)\n', (3123, 3171), False, 'from data_gen import TextMelLoader, TextMelCollate\n'), ((3191, 3355), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', (['valid_dataset'], {'batch_size': 'args.batch_size', 'collate_fn': 'collate_fn', 'pin_memory': '(True)', 'shuffle': '(False)', 'num_workers': 'args.num_workers'}), '(valid_dataset, batch_size=args.batch_size,\n collate_fn=collate_fn, pin_memory=True, shuffle=False, num_workers=args\n .num_workers)\n', (3218, 3355), False, 'import torch\n'), ((6474, 6522), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Tacotron2"""'}), "(description='Tacotron2')\n", (6497, 6522), False, 'import argparse\n'), ((750, 767), 'taco2models.models.Tacotron2', 'Tacotron2', (['config'], {}), '(config)\n', (759, 767), False, 'from taco2models.models import Tacotron2\n'), ((3558, 3572), 'utils_1.AverageMeter', 'AverageMeter', ([], {}), '()\n', (3570, 3572), False, 'from utils_1 import save_checkpoint, AverageMeter, get_logger, test\n'), ((1160, 1182), 'torch.load', 'torch.load', (['checkpoint'], {}), '(checkpoint)\n', (1170, 1182), False, 'import torch\n'), ((1710, 1732), 'torch.load', 'torch.load', (['checkpoint'], {}), '(checkpoint)\n', (1720, 1732), False, 'import torch\n'), ((1753, 1770), 'taco2models.models.Tacotron2', 'Tacotron2', (['config'], {}), '(config)\n', (1762, 1770), False, 'from taco2models.models import Tacotron2\n'), ((4076, 4100), 'torch.cuda.empty_cache', 'torch.cuda.empty_cache', ([], {}), '()\n', (4098, 4100), False, 'import torch\n'), ((4552, 4566), 'utils_1.AverageMeter', 'AverageMeter', ([], {}), '()\n', (4564, 4566), False, 'from utils_1 import save_checkpoint, AverageMeter, get_logger, test\n'), ((6107, 6256), 'utils_1.save_checkpoint', 'save_checkpoint', (['epoch', 'step_num', 'steps_since_improvement', 'model', 'optimizer', 'best_loss', 'is_best'], {'dataset': 'args.dataset', 'trial_type': 'args.trial_type'}), '(epoch, step_num, steps_since_improvement, model, optimizer,\n best_loss, is_best, dataset=args.dataset, trial_type=args.trial_type)\n', (6122, 6256), False, 'from utils_1 import save_checkpoint, AverageMeter, get_logger, test\n'), ((6316, 6349), 'utils_1.test', 'test', (['model', 'step_num', 'valid_loss'], {}), '(model, step_num, valid_loss)\n', (6320, 6349), False, 'from utils_1 import save_checkpoint, AverageMeter, get_logger, test\n'), ((4881, 4896), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (4894, 4896), False, 'import torch\n')]
# -*- coding: utf-8 -*- """ Created on Wed May 6 09:28:40 2020 @author: yo Función auxiliar para calcular el RSE """ import numpy as np def calc_rse(valores,prediccion): return(sum(valores-prediccion)**2/sum((valores-np.mean(valores))**2))
[ "numpy.mean" ]
[((226, 242), 'numpy.mean', 'np.mean', (['valores'], {}), '(valores)\n', (233, 242), True, 'import numpy as np\n')]
#!/usr/bin/env python import glob import cv2 import numpy as np import torch import architecture as arch import argparse import warnings import time import sys try: import tqdm except ImportError: pass from pathlib import Path from chunks import DataChunks model_docs = { "RRDB_ESRGAN_x4.pth": "Official perceptual upscaling model.", "RRDB_PSNR_x4.pth": "Official PSNR upscaling model.", "4x_interp_08.pth": "RRDB_PSNR_x4 interpolated with RRDB_ESRGAN_x4 with 0.8 strength.", "4x_interp_09.pth": "RRDB_PSNR_x4 interpolated with RRDB_ESRGAN_x4 with 0.9 strength.", "4x_Box.pth": "General purpose upscaling. Larger dataset than RRDB_ESRGAN_x4.", "4x_NickelbackFS_72000_G.pth": "General purpose upscaling. Larger dataset than Box.", "4x_Misc_220000.pth": "Surface upscaling. Works well as general/manga upscaler too.", "4x_Faces_N_250000.pth": "Face upscaling.", "4x_face_focus_275k.pth": "Face deblurring and upscaling.", "4x_Fatality_01_265000_G.pth": "Upscales pixel art.", "4x_rebout_325k.pth": "Upscales pixel art. Trained on KOF94 Rebout.", "4x_rebout_interp.pth": "Upscales pixel art. Trained on KOF94 Rebout. Interped.", "4x_falcoon300.pth": "Manga upscaling. Removes dithering.", "4x_unholy03.pth": "Manga upscaling. Interpolation of many models.", "4x_WaifuGAN_v3_30000.pth": "Manga upscaling.", "4x_Manga109Attempt.pth": "Manga upscaling.", "4x_ESRGAN_Skyrim_NonTiled_Alpha_NN_128_32_105000.pth": "Upscales greyscale maps. Trained on Skyrim textures.", "4x_detoon_225k.pth": "Tries to make toon images realistic.", "4x_detoon_alt.pth": "Tries to make toon images realistic. Softer version.", "4x_Lady0101_208000.pth": "Upscaled pixel art to painting style. Original version.", "4x_Lady0101_v3_340000.pth": "Upscaled pixel art to painting style. Moderate blendering, moderate dedithering.", "4x_Lady0101_v3_blender.pth": "Upscaled pixel art to painting style. Heavy blending, low dedithering.", "4x_scalenx_90k.pth": "Upscales pixel art in scalenx style.", "4x_xbrz_90k.pth": "Upscales pixel art in xbr style. No dedithering.", "4x_xbrdd_90k.pth": "Upscales pixel art in xbr style. Dedithering.", "1x_JPEG_00-20.pth": "Cleans up JPEG compression. For images with 0-20%% compression ratio.", "1x_JPEG_20-40.pth": "Cleans up JPEG compression. For images with 20-40%% compression ratio.", "1x_JPEG_40-60.pth": "Cleans up JPEG compression. For images with 40-60%% compression ratio.", "1x_JPEG_60-80.pth": "Cleans up JPEG compression. For images with 60-80%% compression ratio.", "1x_JPEG_80-100.pth": "Cleans up JPEG compression. For images with 80-100%% compression ratio.", "1x_DeJpeg_Fatality_PlusULTRA_200000_G.pth": "Cleans up JPEG compression. Any compression ratio. Increases contrast and sharpness.", "1x_BC1_take2_260850.pth": "Cleans up BC1 compression. Restricted version (only works with low-noise images).", "1x_BC1NoiseAgressiveTake3_400000_G.pth": "Cleans up BC1 compression. Free version (more aggressive than restricted).", "1x_cinepak_200000.pth": "Cleans up Cinepak, msvideo1 and Roq compression.", "1x_DeSharpen.pth": "Removes over-sharpening.", "1x_normals_generator_general_215k.pth": "Attempts to generate a normal map from a texture.", "1x_Alias_200000_G.pth": "Performs anti-aliasing on the image.", "1x_SSAntiAlias9x.pth": "Performs anti-aliasing on the image. Newer.", "1x_DEDITHER_32_512_126900_G.pth": "Tries to remove dithering patterns.", "1x_BS_Debandizer_34000G.pth": "Tries to remove banding.", } aliases = { "esrgan": "RRDB_ESRGAN_x4.pth", "psnr": "RRDB_PSNR_x4.pth", "0.8": "4x_interp_08.pth", "0.9": "4x_interp_09.pth", "desharpen": "1x_DeSharpen.pth", "deblur": "1x_Fatality_DeBlur_275000_G.pth", "jpeg20": "1x_JPEG_00-20.pth", "jpeg40": "1x_JPEG_20-40.pth", "jpeg60": "1x_JPEG_40-60.pth", "jpeg80": "1x_JPEG_60-80.pth", "jpeg100": "1x_JPEG_80-100.pth", "jpegF": "1x_DeJpeg_Fatality_PlusULTRA_200000_G.pth", "box": "4x_Box.pth", "nickelback": "4x_NickelbackFS_72000_G.pth", "misc": "4x_Misc_220000.pth", "facefocus": "4x_face_focus_275k.pth", "face": "4x_Faces_N_250000.pth", "fatality": "4x_Fatality_01_265000_G.pth", "unholy": "4x_unholy03.pth", "waifugan": "4x_WaifuGAN_v3_30000.pth", "manga109": "4x_Manga109Attempt.pth", "falcoon": "4x_falcoon300.pth", "rebout": "4x_rebout_325k.pth", "rebouti": "4x_rebout_interp.pth", "detoon": "4x_detoon_225k.pth", "detoon_alt": "4x_detoon_alt.pth", "bc1r": "1x_BC1_take2_260850.pth", "bc1f": "1x_BC1NoiseAgressiveTake3_400000_G.pth", "aa": "1x_Alias_200000_G.pth", "aa2": "1x_SSAntiAlias9x.pth", "dedither": "1x_DEDITHER_32_512_126900_G.pth", "deband": "1x_BS_Debandizer_34000G.pth", "alpha": "4x_ESRGAN_Skyrim_NonTiled_Alpha_NN_128_32_105000.pth", "ladyold": "4x_Lady0101_208000.pth", "ladyblend": "4x_Lady0101_v3_blender.pth", "lady": "4x_Lady0101_v3_340000.pth", "scalenx": "4x_scalenx_90k.pth", "xbrz": "4x_xbrz_90k.pth", "xbrzdd": "4x_xbrdd_90k.pth", } class SmartFormatter(argparse.HelpFormatter): """ Custom Help Formatter used to split help text when '\n' was inserted in it. """ def _split_lines(self, text, width): r = [] for t in text.splitlines(): r.extend(argparse.HelpFormatter._split_lines(self, t, width)) r.append("") return r def enum_models(model_dir, aliases=aliases): models = {model.name: model for model in model_dir.rglob("*.pth")} for alias, original in aliases.items(): models[alias] = model_dir / original return models def get_models_help(models, aliases=aliases, model_docs=model_docs): lines = [] for model, docs in model_docs.items(): if model not in models.keys(): continue names = [model] for alias, original in aliases.items(): if original == model: names.append(alias) quoted_names = (f'"{name}"' for name in names) lines.append(f"{' | '.join(quoted_names)}: {docs}") return "\n".join(lines) def parse_args(models, models_help): parser = argparse.ArgumentParser( description="Upscale images with ESRGAN", formatter_class=SmartFormatter ) parser.add_argument("images", nargs="+", type=Path, help="The images to process.") parser.add_argument( "-o", "--out-dir", type=Path, required=False, help="The directory to write output to. Defaults to source directory.", ) parser.add_argument( "-s", "--scale", type=int, default=1, help="The number of times to perform scaling. Defaults to 1.", ) parser.add_argument( "-m", "--model", choices=models.keys(), default="0.8", help=f'The model to use for upscaling. Defaults to "0.8" (RRDB_PSNR_x4 - RRDB_ESRGAN_x4 x 0.8 interp).\n{models_help}', ) parser.add_argument( "--cpu", action="store_true", help="Use CPU for upscaling, instead of attempting to use CUDA.", ) parser.add_argument( "-e", "--end", default="_scaled", help="The suffix to append to scaled images. Defaults to `_scaled`.", ) parser.add_argument( "-a", "--append-model", action="store_true", help="Append the model name to the filename, before any custom suffix.", ) parser.add_argument( "-x", "--max-dimension", help="Split image into chunks of max-dimension.", type=int, required=False, default=0, ) parser.add_argument( "-p", "--padding", help="Pad image when splitting into quadrants.", type=int, required=False, default=0, ) parser.add_argument( "-t", "--threads", help="Number of CPU threads to use.", type=int, required=False, ) args = parser.parse_args() if args.max_dimension != 0 or args.padding != 0: assert ( args.padding >= 0 and args.max_dimension >= 0 ), "padding and max-dimension must be positive" assert ( args.padding < args.max_dimension ), "padding must be smaller than max-dimension" if args.threads is not None: assert args.threads > 0, "threads must be larger than 0" return args def main(): start = time.perf_counter_ns() model_dir = Path(__file__).resolve().parent / "models" models = enum_models(model_dir) models_help = get_models_help(models) args = parse_args(models, models_help) model_path = model_dir / models[args.model] state_dict = torch.load(model_path) if "conv_first.weight" in state_dict: print("Error: Attempted to load a new-format model") return 1 # Extract model information scale2 = 0 max_part = 0 in_nc = 3 out_nc = 3 nf = 64 nb = 23 for part in list(state_dict): parts = part.split(".") n_parts = len(parts) if n_parts == 5 and parts[2] == "sub": nb = int(parts[3]) elif n_parts == 3: part_num = int(parts[1]) if part_num > 6 and parts[2] == "weight": scale2 += 1 if part_num > max_part: max_part = part_num out_nc = state_dict[part].shape[0] upscale = 2 ** scale2 in_nc = state_dict["model.0.weight"].shape[1] nf = state_dict["model.0.weight"].shape[0] if args.threads is not None and args.threads > 0: torch.set_num_threads(args.threads) torch.set_num_interop_threads(args.threads) if torch.cuda.is_available() and not args.cpu: device = torch.device("cuda") else: device = torch.device("cpu") model = arch.RRDB_Net( in_nc, out_nc, nf, nb, gc=32, upscale=upscale, norm_type=None, act_type="leakyrelu", mode="CNA", res_scale=1, upsample_mode="upconv", ) model.load_state_dict(state_dict, strict=True) del state_dict model.eval() for k, v in model.named_parameters(): v.requires_grad = False model = model.to(device) for i, path in enumerate( Path(img_path) for img_glob in args.images for img_path in glob.glob(str(img_glob)) ): print(i + 1, path.name) # read image img = cv2.imread(str(path), cv2.IMREAD_COLOR) img = img * 1.0 / 255 with warnings.catch_warnings(): warnings.simplefilter("ignore") for _ in range(args.scale): img = torch.from_numpy( np.transpose(img[:, :, [2, 1, 0]], (2, 0, 1)) ).float() img = img.unsqueeze(0) if args.max_dimension: data_chunks = DataChunks( img, args.max_dimension, args.padding, upscale ) chunks = data_chunks.iter() if "tqdm" in sys.modules.keys(): chunks_count = data_chunks.hlen * data_chunks.vlen chunks = tqdm.tqdm(chunks, total=chunks_count, unit=" chunks") for chunk in chunks: input = chunk.to(device) output = model(input) data_chunks.gather(output) output = data_chunks.concatenate() else: input = img.to(device) output = model(input) img = output.data.squeeze().float().cpu().clamp_(0, 1).numpy() img = np.transpose(img[[2, 1, 0], :, :], (1, 2, 0)) img = (img * 255.0).round() out_dir = args.out_dir if args.out_dir is not None else path.parent suffix = f"_{args.model}{args.end}" if args.append_model else args.end out_path = out_dir / (path.stem + suffix + ".png") cv2.imwrite(str(out_path), img) period = time.perf_counter_ns() - start print("Done in {:,}s".format(period / 1_000_000_000.0)) return 0 if __name__ == "__main__": sys.exit(main())
[ "tqdm.tqdm", "argparse.ArgumentParser", "warnings.simplefilter", "chunks.DataChunks", "sys.modules.keys", "torch.load", "architecture.RRDB_Net", "numpy.transpose", "torch.set_num_interop_threads", "torch.set_num_threads", "torch.cuda.is_available", "pathlib.Path", "warnings.catch_warnings", "torch.device", "time.perf_counter_ns", "argparse.HelpFormatter._split_lines" ]
[((6290, 6391), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Upscale images with ESRGAN"""', 'formatter_class': 'SmartFormatter'}), "(description='Upscale images with ESRGAN',\n formatter_class=SmartFormatter)\n", (6313, 6391), False, 'import argparse\n'), ((8599, 8621), 'time.perf_counter_ns', 'time.perf_counter_ns', ([], {}), '()\n', (8619, 8621), False, 'import time\n'), ((8868, 8890), 'torch.load', 'torch.load', (['model_path'], {}), '(model_path)\n', (8878, 8890), False, 'import torch\n'), ((9995, 10146), 'architecture.RRDB_Net', 'arch.RRDB_Net', (['in_nc', 'out_nc', 'nf', 'nb'], {'gc': '(32)', 'upscale': 'upscale', 'norm_type': 'None', 'act_type': '"""leakyrelu"""', 'mode': '"""CNA"""', 'res_scale': '(1)', 'upsample_mode': '"""upconv"""'}), "(in_nc, out_nc, nf, nb, gc=32, upscale=upscale, norm_type=None,\n act_type='leakyrelu', mode='CNA', res_scale=1, upsample_mode='upconv')\n", (10008, 10146), True, 'import architecture as arch\n'), ((9757, 9792), 'torch.set_num_threads', 'torch.set_num_threads', (['args.threads'], {}), '(args.threads)\n', (9778, 9792), False, 'import torch\n'), ((9801, 9844), 'torch.set_num_interop_threads', 'torch.set_num_interop_threads', (['args.threads'], {}), '(args.threads)\n', (9830, 9844), False, 'import torch\n'), ((9853, 9878), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (9876, 9878), False, 'import torch\n'), ((9914, 9934), 'torch.device', 'torch.device', (['"""cuda"""'], {}), "('cuda')\n", (9926, 9934), False, 'import torch\n'), ((9962, 9981), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (9974, 9981), False, 'import torch\n'), ((12253, 12275), 'time.perf_counter_ns', 'time.perf_counter_ns', ([], {}), '()\n', (12273, 12275), False, 'import time\n'), ((10468, 10482), 'pathlib.Path', 'Path', (['img_path'], {}), '(img_path)\n', (10472, 10482), False, 'from pathlib import Path\n'), ((10726, 10751), 'warnings.catch_warnings', 'warnings.catch_warnings', ([], {}), '()\n', (10749, 10751), False, 'import warnings\n'), ((10765, 10796), 'warnings.simplefilter', 'warnings.simplefilter', (['"""ignore"""'], {}), "('ignore')\n", (10786, 10796), False, 'import warnings\n'), ((5444, 5495), 'argparse.HelpFormatter._split_lines', 'argparse.HelpFormatter._split_lines', (['self', 't', 'width'], {}), '(self, t, width)\n', (5479, 5495), False, 'import argparse\n'), ((11901, 11946), 'numpy.transpose', 'np.transpose', (['img[[2, 1, 0], :, :]', '(1, 2, 0)'], {}), '(img[[2, 1, 0], :, :], (1, 2, 0))\n', (11913, 11946), True, 'import numpy as np\n'), ((8638, 8652), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (8642, 8652), False, 'from pathlib import Path\n'), ((11082, 11140), 'chunks.DataChunks', 'DataChunks', (['img', 'args.max_dimension', 'args.padding', 'upscale'], {}), '(img, args.max_dimension, args.padding, upscale)\n', (11092, 11140), False, 'from chunks import DataChunks\n'), ((11268, 11286), 'sys.modules.keys', 'sys.modules.keys', ([], {}), '()\n', (11284, 11286), False, 'import sys\n'), ((11396, 11449), 'tqdm.tqdm', 'tqdm.tqdm', (['chunks'], {'total': 'chunks_count', 'unit': '""" chunks"""'}), "(chunks, total=chunks_count, unit=' chunks')\n", (11405, 11449), False, 'import tqdm\n'), ((10897, 10942), 'numpy.transpose', 'np.transpose', (['img[:, :, [2, 1, 0]]', '(2, 0, 1)'], {}), '(img[:, :, [2, 1, 0]], (2, 0, 1))\n', (10909, 10942), True, 'import numpy as np\n')]
import matplotlib.pyplot as plt import numpy as np import math # tip geometry dia = 0.057 # m r = dia/2 offset = 3 * dia pen_rate_labels = ['1 m/min','2 m/min','3 m/min','4 m/min','5 m/min'] pen_rates = [1/60 , 2/60 , 3/60 , 4/60 , 5/60] # m/seks rpm = 25 * (2*math.pi) / 60 # rad/secs X = [] Y = [] Z = [] k=0 for rate in pen_rates: t = np.linspace(0, 1/rate, num=300) # secs theta = t * rpm X.append( r*np.sin(theta) + k*offset ) Y.append( r*np.cos(theta) ) Z.append( t*rate ) # needed to set 3D aspect ratio if k == 0: xs = X[-1].tolist() ys = Y[-1].tolist() zs = Z[-1].tolist() else: xs += X[-1].tolist() ys += Y[-1].tolist() zs += Z[-1].tolist() k += 1 # ... aspect ratio xs = np.array(xs) ys = np.array(ys) zs = np.array(zs) max_range = np.array([xs.max()-xs.min(), ys.max()-ys.min(), zs.max()-zs.min()]).max() / 2.0 mid_x = (xs.max()+xs.min()) * 0.5 mid_y = (ys.max()+ys.min()) * 0.5 mid_z = (zs.max()+zs.min()) * 0.5 fig = plt.figure() ax = fig.gca(projection='3d') # plot each curve for rate, x, y, z in zip( pen_rate_labels, X, Y, Z ): ax.plot(x, y, z, label=rate) leg = plt.legend(loc='best', fancybox=True) # ...aspect ratio by setting limits ax.set_xlim(mid_x - max_range, mid_x + max_range) ax.set_ylim(mid_y - max_range, mid_y + max_range) ax.set_zlim(mid_z - max_range, mid_z + max_range) ax.invert_zaxis() ax.set_ylabel('Distance y (m)', multialignment='center') ax.set_xlabel('Distance x (m)', multialignment='center') ax.set_zlabel('Depth (m)', multialignment='center') plt.show()
[ "matplotlib.pyplot.show", "matplotlib.pyplot.legend", "matplotlib.pyplot.figure", "numpy.sin", "numpy.array", "numpy.linspace", "numpy.cos" ]
[((769, 781), 'numpy.array', 'np.array', (['xs'], {}), '(xs)\n', (777, 781), True, 'import numpy as np\n'), ((787, 799), 'numpy.array', 'np.array', (['ys'], {}), '(ys)\n', (795, 799), True, 'import numpy as np\n'), ((805, 817), 'numpy.array', 'np.array', (['zs'], {}), '(zs)\n', (813, 817), True, 'import numpy as np\n'), ((1019, 1031), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (1029, 1031), True, 'import matplotlib.pyplot as plt\n'), ((1174, 1211), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""best"""', 'fancybox': '(True)'}), "(loc='best', fancybox=True)\n", (1184, 1211), True, 'import matplotlib.pyplot as plt\n'), ((1584, 1594), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1592, 1594), True, 'import matplotlib.pyplot as plt\n'), ((347, 380), 'numpy.linspace', 'np.linspace', (['(0)', '(1 / rate)'], {'num': '(300)'}), '(0, 1 / rate, num=300)\n', (358, 380), True, 'import numpy as np\n'), ((465, 478), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (471, 478), True, 'import numpy as np\n'), ((422, 435), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (428, 435), True, 'import numpy as np\n')]
import torch import torch.nn as nn import numpy as np print('loading model and train data...') # load model from file net = torch.load('models/torch_rnn.model') # load data from file train_loader = torch.load('data/processed/torch_rnn_train.loader') valid_loader = torch.load('data/processed/torch_rnn_validate.loader') # loss and optimization functions lr = 0.001 criterion = nn.BCELoss() optimizer = torch.optim.Adam(net.parameters(), lr=lr) # training params epochs = 8 counter = 0 print_every = 50 clip = 5 # gradient clipping batch_size = 50 # check for gpu print('checking if gpu avaliable...') train_on_gpu = torch.cuda.is_available() print('training on gpu') if train_on_gpu else print( 'no gpu avaliable, training on cpu') # move model to gpu, if avaliable if train_on_gpu: net.cuda() print('training model...') net.train() # train for some number of epochs for e in range(epochs): # initialize hidden state h = net.init_hidden(batch_size) # batch loop for inputs, labels in train_loader: counter += 1 if(train_on_gpu): inputs, labels = inputs.cuda(), labels.cuda() # create new variables for hidden state to prevent # backpropping through entire training history h = tuple([each.data for each in h]) # zero accumulated gradients net.zero_grad() # get the output from the model output, h = net(inputs, h) # calculate the loss and perform backprop loss = criterion(output.squeeze(), labels.float()) loss.backward() # clip_grad_norm helps prevent the exploding gradient problem in RNNs nn.utils.clip_grad_norm_(net.parameters(), clip) optimizer.step() # loss stats if counter % print_every == 0: # get validation loss val_h = net.init_hidden(batch_size) val_losses = [] net.eval() for inputs, labels in valid_loader: # create new variables for hidden state val_h = tuple([each.data for each in h]) if train_on_gpu: inputs, labels = inputs.cuda(), labels.cuda() output, val_h = net(inputs, val_h) val_loss = criterion(output.squeeze(), labels.float()) val_losses.append(val_loss.item()) net.train() print("Epoch: {}/{}...".format(e+1, epochs), "Step: {}...".format(counter), "Loss: {:.6f}...".format(loss.item()), "Val Loss: {:.6f}".format(np.mean(val_losses))) # save trained model print('saving trained model...') torch.save(net, 'models/torch_rnn_trained.model')
[ "torch.nn.BCELoss", "torch.load", "torch.save", "numpy.mean", "torch.cuda.is_available" ]
[((125, 161), 'torch.load', 'torch.load', (['"""models/torch_rnn.model"""'], {}), "('models/torch_rnn.model')\n", (135, 161), False, 'import torch\n'), ((200, 251), 'torch.load', 'torch.load', (['"""data/processed/torch_rnn_train.loader"""'], {}), "('data/processed/torch_rnn_train.loader')\n", (210, 251), False, 'import torch\n'), ((267, 321), 'torch.load', 'torch.load', (['"""data/processed/torch_rnn_validate.loader"""'], {}), "('data/processed/torch_rnn_validate.loader')\n", (277, 321), False, 'import torch\n'), ((381, 393), 'torch.nn.BCELoss', 'nn.BCELoss', ([], {}), '()\n', (391, 393), True, 'import torch.nn as nn\n'), ((624, 649), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (647, 649), False, 'import torch\n'), ((2677, 2726), 'torch.save', 'torch.save', (['net', '"""models/torch_rnn_trained.model"""'], {}), "(net, 'models/torch_rnn_trained.model')\n", (2687, 2726), False, 'import torch\n'), ((2599, 2618), 'numpy.mean', 'np.mean', (['val_losses'], {}), '(val_losses)\n', (2606, 2618), True, 'import numpy as np\n')]
import numpy as np class RBFMMD2(object): def __init__(self, sigma_list, num_bit, is_binary): self.sigma_list = sigma_list self.num_bit = num_bit self.is_binary = is_binary self.basis = np.arange(2**num_bit,dtype='int32') self.K = mix_rbf_kernel(self.basis, self.basis, self.sigma_list, is_binary) def __call__(self, px, py): ''' Args: px (1darray, default=None): probability for data set x, used only when self.is_exact==True. py (1darray, default=None): same as px, but for data set y. Returns: float, loss. ''' pxy = px-py return self.kernel_expect(pxy, pxy) def kernel_expect(self, px, py): res = px.dot(self.K.dot(py)) return res def mix_rbf_kernel(x, y, sigma_list, is_binary): if is_binary: dx2 = np.zeros([len(x)]*2, dtype='int64') num_bit = int(np.round(np.log(len(x))/np.log(2))) for i in range(num_bit): dx2 += (x[:,None]>>i)&1 != (y>>i)&1 else: dx2 = (x[:, None] - y)**2 return _mix_rbf_kernel_d(dx2, sigma_list) def _mix_rbf_kernel_d(dx2, sigma_list): K = 0.0 for sigma in sigma_list: gamma = 1.0 / (2 * sigma) K = K + np.exp(-gamma * dx2) return K
[ "numpy.log", "numpy.arange", "numpy.exp" ]
[((223, 261), 'numpy.arange', 'np.arange', (['(2 ** num_bit)'], {'dtype': '"""int32"""'}), "(2 ** num_bit, dtype='int32')\n", (232, 261), True, 'import numpy as np\n'), ((1270, 1290), 'numpy.exp', 'np.exp', (['(-gamma * dx2)'], {}), '(-gamma * dx2)\n', (1276, 1290), True, 'import numpy as np\n'), ((955, 964), 'numpy.log', 'np.log', (['(2)'], {}), '(2)\n', (961, 964), True, 'import numpy as np\n')]