code
stringlengths
31
1.05M
apis
list
extract_api
stringlengths
97
1.91M
# -*- coding: utf-8 -*- """ Created on Sat Aug 25 12:48:20 2018 @author: <EMAIL> """ def swap_matrix_element (A, P): import random as r S1 = len(A) S2 = len(A[0]) for i in range(P): row1 = r.randint(0, S1-1) row2 = r.randint(0, S1-1) col1 = r.randint(0, S2-1) col2 = r.randint(0, S2-1) x = A[row1][col1] y = A[row2][col2] A[row1][col1] = y A[row2][col2] = x NODF= NODF_calc(A) return(A, NODF) def NODF_calc (A): #print('Calcolo NODF della corrispondente matrice random.') import statistics as stat #import math import numpy as np #print('conn = ', conn) #A = random_matrix(int(S1a),int(S2a),float(conn)) S1 = len(A) S2 = len(A[0]) #print('S1 + S2 = ', S1+S2) #print('S1 = ', S1) #print('S2 = ', S2) k_A = [] k_P = [] for i in range (len(A)): x = 0 for j in range(len(A[i])): x = x + A[i][j] k_A.append(x) for j in range(len(A[0])): x = 0 for i in range(len(A)): x = x + A[i][j] k_P.append(x) #print('k_A = ', k_A) #print('k_P = ', k_P) #sigma_deg_A = stat.stdev(k_A) #sigma_deg_P = stat.stdev(k_P) O_A = [ [] for x in range(S1)] O_P = [ [] for x in range(S2)] for i in range(S1): for j in range(S1): x = 0 for k in range(S2): x = x + A[i][k]*A[j][k] O_A[i].append(x) for i in range(S2): for j in range(S2): x = 0 for k in range(S1): x = x + A[k][i]*A[k][j] O_P[i].append(x) T_A = [ [] for x in range(S1)] T_P = [ [] for x in range(S2)] for i in range(S1): for j in range(S1): if k_A[i] == k_A[j]: T_A[i].append(0) elif O_A[i][j] == 0: T_A[i].append(0) else: m = min( [k_A[i], k_A[j] ]) if m == 0: print('Attenzione, min( [k_A[{}], k_A[{}] ]) = 0 '.format(i,j)) print('k_A[{}] = {}'.format(i, k_A[i])) print('k_A[{}] = {}'.format(j, k_A[j])) print('O_A[{}][{}] = {}'.format(i,j,O_A[i][j])) m = 0.001 x = O_A[i][j]/m T_A[i].append(x) for i in range(S2): for j in range(S2): if k_P[i] == k_P[j]: T_P[i].append(0) elif O_P[i][j] == 0: T_P[i].append(0) else: m = min( [k_P[i], k_P[j] ]) if m == 0: print('Attenzione, min( [k_P[{}], k_P[{}] ]) = 0 '.format(i,j)) print('k_P[{}] = {}'.format(i, k_P[i])) print('k_P[{}] = {}'.format(j, k_P[j])) print('O_P[{}][{}] = {}'.format(i,j,O_P[i][j])) m = 0.001 x = O_P[i][j]/m T_P[i].append(x) num_A = 0 for i in range(S1): for j in range(i,S1): num_A = num_A + T_A[i][j] if np.isnan(num_A): print('T_A[i][j] = ', T_A[i][j]) num_P = 0 for i in range(S2): for j in range(i,S2): num_P = num_P + T_P[i][j] if np.isnan(num_P): print('T_P[i][j] = ', T_P[i][j]) den_A = S1*(S1-1)/2 den_P = S2*(S2-1)/2 NODF = round((num_A + num_P)/(den_A + den_P),3) #sigma = math.sqrt( pow(sigma_deg_A/S2,2) + pow(sigma_deg_P/S1,2)) return (NODF)
[ "random.randint", "numpy.isnan" ]
[((215, 235), 'random.randint', 'r.randint', (['(0)', '(S1 - 1)'], {}), '(0, S1 - 1)\n', (224, 235), True, 'import random as r\n'), ((249, 269), 'random.randint', 'r.randint', (['(0)', '(S1 - 1)'], {}), '(0, S1 - 1)\n', (258, 269), True, 'import random as r\n'), ((283, 303), 'random.randint', 'r.randint', (['(0)', '(S2 - 1)'], {}), '(0, S2 - 1)\n', (292, 303), True, 'import random as r\n'), ((317, 337), 'random.randint', 'r.randint', (['(0)', '(S2 - 1)'], {}), '(0, S2 - 1)\n', (326, 337), True, 'import random as r\n'), ((3179, 3194), 'numpy.isnan', 'np.isnan', (['num_A'], {}), '(num_A)\n', (3187, 3194), True, 'import numpy as np\n'), ((3388, 3403), 'numpy.isnan', 'np.isnan', (['num_P'], {}), '(num_P)\n', (3396, 3403), True, 'import numpy as np\n')]
import numpy as np import keras,gc,nltk import pandas as pd from keras.utils import to_categorical from sklearn import preprocessing from supervised_BAE import * from utils import * from sklearn.model_selection import train_test_split from keras.utils import to_categorical from sklearn import preprocessing from utils import sample_test_mask from sklearn.preprocessing import StandardScaler import time name_dat = "CIFAR-10" __random_state__ = 20 np.random.seed(__random_state__) def load_data(percentage_supervision,addval=1,reseed=0,seed_to_reseed=20): (_, aux_t), (_, aux_test) = keras.datasets.cifar10.load_data() labels = ["airplane", "automobile","bird", "cat","deer","dog","frog","horse","ship","truck"] labels_t = np.asarray([labels[value[0]] for value in aux_t]) labels_test = np.asarray([labels[value[0]] for value in aux_test]) labels_t = np.concatenate((labels_t,labels_test),axis=0) X_t = np.load("Data/cifar10_VGG_avg.npy") #mejora X_t.shape mask_train = sample_test_mask(labels_t, N=100) X_test = X_t[~mask_train] X_t = X_t[mask_train] labels_test = enmask_data(labels_t, ~mask_train) labels_t = enmask_data(labels_t, mask_train) gc.collect() std = StandardScaler(with_mean=True, with_std=True) std.fit(X_t) X_t = std.transform(X_t) X_test = std.transform(X_test) X_train, X_val, labels_train, labels_val = train_test_split(X_t, labels_t, random_state=20, test_size=len(X_test)) del X_t, labels_t gc.collect() X_train_input = X_train X_val_input = X_val X_test_input = X_test X_total_input = np.concatenate((X_train_input,X_val_input),axis=0) X_total = np.concatenate((X_train,X_val),axis=0) labels_total = np.concatenate((labels_train,labels_val),axis=0) #print("\n=====> Encoding Labels ...\n") label_encoder = preprocessing.LabelEncoder() label_encoder.fit(labels) n_classes = len(labels) y_train = label_encoder.transform(labels_train) y_val = label_encoder.transform(labels_val) y_test = label_encoder.transform(labels_test) y_train_input = to_categorical(y_train,num_classes=n_classes) y_val_input = to_categorical(y_val,num_classes=n_classes) y_test_input = to_categorical(y_test,num_classes=n_classes) ##RESEED? if reseed > 0: np.random.seed(seed_to_reseed) else: np.random.seed(__random_state__) idx_train = np.arange(0,len(y_train_input),1) np.random.shuffle(idx_train) np.random.shuffle(idx_train) n_sup = int(np.floor(percentage_supervision*len(idx_train))) idx_sup = idx_train[0:n_sup] idx_unsup = idx_train[n_sup:] if (len(idx_unsup) > 0): for idx in idx_unsup: y_train_input[idx,:] = np.zeros(n_classes) Y_total_input = y_train_input if addval > 0: idx_val = np.arange(0,len(y_val_input),1) np.random.shuffle(idx_val) np.random.shuffle(idx_val) n_sup_val = int(np.floor(percentage_supervision*len(idx_val))) idx_sup_val = idx_val[0:n_sup_val] idx_unsup_val = idx_val[n_sup_val:] if (len(idx_unsup_val) > 0): for idx in idx_unsup_val: y_val_input[idx,:] = np.zeros(n_classes) Y_total_input = np.concatenate((y_train_input,y_val_input),axis=0) return n_classes, labels, labels_total, labels_test, X_total, X_test, X_total_input, X_test_input, Y_total_input def run_CIFAR(model_id,percentage_supervision,nbits_for_hashing,alpha_val,lambda_val,beta_VAL,name_file, addval,reseed,seed_to_reseed, n_classes, labels, labels_total, labels_test, X_total, X_test, X_total_input, X_test_input, Y_total_input): batch_size = 512 tf.keras.backend.clear_session() tic = time.perf_counter() if model_id == 1: vae,encoder,generator = VDSHS(X_total.shape[1],n_classes,Nb=int(nbits_for_hashing),units=500,layers_e=2,layers_d=0,beta=beta_VAL,alpha=alpha_val) vae.fit(X_total_input, [X_total, Y_total_input], epochs=10, batch_size=batch_size,verbose=1) name_model = 'VDSH_S' elif model_id == 2: #MODIFICA ESEGUITA #Vecchia versione: vae,encoder,generator = PSH_GS(X_total.shape[1],n_classes,Nb=int(nbits_for_hashing),units=500,layers_e=2,layers_d=0,beta=beta_VAL,alpha=alpha_val,gamma=gamma_val) #Sostituisci gamma con lambda_ , e gamma_val con lambda_val vae,encoder,generator = PSH_GS(X_total.shape[1],n_classes,Nb=int(nbits_for_hashing),units=500,layers_e=2,layers_d=0,beta=beta_VAL,alpha=alpha_val,lambda_=lambda_val) vae.fit(X_total_input, [X_total, Y_total_input], epochs=10, batch_size=batch_size,verbose=1) name_model = 'PHS_GS' else:#elif model_id == 3: #MODIFICA ESEGUITA #Vecchia versione: vae,encoder,generator = SSBVAE(X_total.shape[1],n_classes,Nb=int(nbits_for_hashing),units=500,layers_e=2,layers_d=0,beta=beta_VAL,alpha=alpha_val,gamma=gamma_val) #Sostituisci gamma con lambda_ , e gamma_val con lambda_val vae,encoder,generator = SSBVAE(X_total.shape[1],n_classes,Nb=int(nbits_for_hashing),units=500,layers_e=2,layers_d=0,beta=beta_VAL,alpha=alpha_val,lambda_=lambda_val) vae.fit(X_total_input, [X_total, Y_total_input], epochs=10, batch_size=batch_size,verbose=1) name_model = 'SSB_VAE' print("\n=====> Evaluate the Models ... \n") if model_id == 1:#Gaussian VAE total_hash, test_hash = hash_data(encoder,X_total_input,X_test_input, binary=False) else:#Bernoulli VAE total_hash, test_hash = hash_data(encoder,X_total_input,X_test_input) p100_b,r100_b = evaluate_hashing_DE(labels,total_hash, test_hash,labels_total,labels_test,tipo="topK") p5000_b = evaluate_hashing_DE(labels,total_hash, test_hash,labels_total,labels_test,tipo="topK",eval_tipo="Patk",K=5000) p1000_b = evaluate_hashing_DE(labels,total_hash, test_hash,labels_total,labels_test,tipo="topK",eval_tipo="Patk",K=1000) map5000_b = evaluate_hashing_DE(labels,total_hash, test_hash,labels_total,labels_test,tipo="topK",eval_tipo="MAP",K=5000) map1000_b = evaluate_hashing_DE(labels,total_hash, test_hash,labels_total,labels_test,tipo="topK",eval_tipo="MAP",K=1000) map100_b = evaluate_hashing_DE(labels,total_hash, test_hash,labels_total,labels_test,tipo="topK",eval_tipo="MAP",K=100) file = open(name_file,"a") file.write("%s, %s, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %d, %d\n"%(name_dat,name_model,percentage_supervision,alpha_val,beta_VAL,lambda_val,p100_b,r100_b,p1000_b,p5000_b,map100_b,map1000_b,map5000_b,addval,seed_to_reseed)) file.close() del vae, total_hash, test_hash gc.collect() print("DONE ...") import sys from optparse import OptionParser def testcifar(model,ps, addvalidation, alpha, beta, lambda_, repetitions, nbits, ofilename, reseed=0): seeds_to_reseed = [20, 144, 1028, 2044, 101, 6077, 621, 1981, 2806, 79] nbits = int(nbits) if reseed > 0: for rep in range(repetitions): new_seed = seeds_to_reseed[rep%len(seeds_to_reseed)] n_classes, labels, labels_total, labels_test, X_total, X_test, X_total_input, X_test_input, Y_total_input = load_data(ps,addval=addvalidation,reseed=reseed,seed_to_reseed=new_seed) run_CIFAR(model,ps,nbits,alpha,lambda_,beta,ofilename,addvalidation,reseed,new_seed,n_classes, labels, labels_total, labels_test, X_total, X_test, X_total_input, X_test_input, Y_total_input) del n_classes, labels, labels_total, labels_test, X_total, X_test, X_total_input, X_test_input, Y_total_input gc.collect() else: n_classes, labels, labels_total, labels_test, X_total, X_test, X_total_input, X_test_input, Y_total_input = load_data(ps,addval=addvalidation,reseed=0,seed_to_reseed=20) for rep in range(repetitions): run_CIFAR(model,ps,nbits,alpha,lambda_,beta,ofilename,addvalidation,0,20,n_classes, labels, labels_total, labels_test, X_total, X_test, X_total_input, X_test_input, Y_total_input)
[ "numpy.load", "numpy.random.seed", "keras.datasets.cifar10.load_data", "sklearn.preprocessing.StandardScaler", "numpy.random.shuffle", "numpy.asarray", "utils.sample_test_mask", "time.perf_counter", "sklearn.preprocessing.LabelEncoder", "numpy.zeros", "gc.collect", "numpy.concatenate", "keras.utils.to_categorical" ]
[((451, 483), 'numpy.random.seed', 'np.random.seed', (['__random_state__'], {}), '(__random_state__)\n', (465, 483), True, 'import numpy as np\n'), ((597, 631), 'keras.datasets.cifar10.load_data', 'keras.datasets.cifar10.load_data', ([], {}), '()\n', (629, 631), False, 'import keras, gc, nltk\n'), ((745, 794), 'numpy.asarray', 'np.asarray', (['[labels[value[0]] for value in aux_t]'], {}), '([labels[value[0]] for value in aux_t])\n', (755, 794), True, 'import numpy as np\n'), ((813, 865), 'numpy.asarray', 'np.asarray', (['[labels[value[0]] for value in aux_test]'], {}), '([labels[value[0]] for value in aux_test])\n', (823, 865), True, 'import numpy as np\n'), ((881, 928), 'numpy.concatenate', 'np.concatenate', (['(labels_t, labels_test)'], {'axis': '(0)'}), '((labels_t, labels_test), axis=0)\n', (895, 928), True, 'import numpy as np\n'), ((938, 973), 'numpy.load', 'np.load', (['"""Data/cifar10_VGG_avg.npy"""'], {}), "('Data/cifar10_VGG_avg.npy')\n", (945, 973), True, 'import numpy as np\n'), ((1014, 1047), 'utils.sample_test_mask', 'sample_test_mask', (['labels_t'], {'N': '(100)'}), '(labels_t, N=100)\n', (1030, 1047), False, 'from utils import sample_test_mask\n'), ((1212, 1224), 'gc.collect', 'gc.collect', ([], {}), '()\n', (1222, 1224), False, 'import keras, gc, nltk\n'), ((1236, 1281), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {'with_mean': '(True)', 'with_std': '(True)'}), '(with_mean=True, with_std=True)\n', (1250, 1281), False, 'from sklearn.preprocessing import StandardScaler\n'), ((1512, 1524), 'gc.collect', 'gc.collect', ([], {}), '()\n', (1522, 1524), False, 'import keras, gc, nltk\n'), ((1625, 1677), 'numpy.concatenate', 'np.concatenate', (['(X_train_input, X_val_input)'], {'axis': '(0)'}), '((X_train_input, X_val_input), axis=0)\n', (1639, 1677), True, 'import numpy as np\n'), ((1690, 1730), 'numpy.concatenate', 'np.concatenate', (['(X_train, X_val)'], {'axis': '(0)'}), '((X_train, X_val), axis=0)\n', (1704, 1730), True, 'import numpy as np\n'), ((1748, 1798), 'numpy.concatenate', 'np.concatenate', (['(labels_train, labels_val)'], {'axis': '(0)'}), '((labels_train, labels_val), axis=0)\n', (1762, 1798), True, 'import numpy as np\n'), ((1863, 1891), 'sklearn.preprocessing.LabelEncoder', 'preprocessing.LabelEncoder', ([], {}), '()\n', (1889, 1891), False, 'from sklearn import preprocessing\n'), ((2123, 2169), 'keras.utils.to_categorical', 'to_categorical', (['y_train'], {'num_classes': 'n_classes'}), '(y_train, num_classes=n_classes)\n', (2137, 2169), False, 'from keras.utils import to_categorical\n'), ((2187, 2231), 'keras.utils.to_categorical', 'to_categorical', (['y_val'], {'num_classes': 'n_classes'}), '(y_val, num_classes=n_classes)\n', (2201, 2231), False, 'from keras.utils import to_categorical\n'), ((2250, 2295), 'keras.utils.to_categorical', 'to_categorical', (['y_test'], {'num_classes': 'n_classes'}), '(y_test, num_classes=n_classes)\n', (2264, 2295), False, 'from keras.utils import to_categorical\n'), ((2474, 2502), 'numpy.random.shuffle', 'np.random.shuffle', (['idx_train'], {}), '(idx_train)\n', (2491, 2502), True, 'import numpy as np\n'), ((2507, 2535), 'numpy.random.shuffle', 'np.random.shuffle', (['idx_train'], {}), '(idx_train)\n', (2524, 2535), True, 'import numpy as np\n'), ((3760, 3779), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (3777, 3779), False, 'import time\n'), ((6654, 6666), 'gc.collect', 'gc.collect', ([], {}), '()\n', (6664, 6666), False, 'import keras, gc, nltk\n'), ((2337, 2367), 'numpy.random.seed', 'np.random.seed', (['seed_to_reseed'], {}), '(seed_to_reseed)\n', (2351, 2367), True, 'import numpy as np\n'), ((2386, 2418), 'numpy.random.seed', 'np.random.seed', (['__random_state__'], {}), '(__random_state__)\n', (2400, 2418), True, 'import numpy as np\n'), ((2897, 2923), 'numpy.random.shuffle', 'np.random.shuffle', (['idx_val'], {}), '(idx_val)\n', (2914, 2923), True, 'import numpy as np\n'), ((2932, 2958), 'numpy.random.shuffle', 'np.random.shuffle', (['idx_val'], {}), '(idx_val)\n', (2949, 2958), True, 'import numpy as np\n'), ((3275, 3327), 'numpy.concatenate', 'np.concatenate', (['(y_train_input, y_val_input)'], {'axis': '(0)'}), '((y_train_input, y_val_input), axis=0)\n', (3289, 3327), True, 'import numpy as np\n'), ((2763, 2782), 'numpy.zeros', 'np.zeros', (['n_classes'], {}), '(n_classes)\n', (2771, 2782), True, 'import numpy as np\n'), ((7594, 7606), 'gc.collect', 'gc.collect', ([], {}), '()\n', (7604, 7606), False, 'import keras, gc, nltk\n'), ((3230, 3249), 'numpy.zeros', 'np.zeros', (['n_classes'], {}), '(n_classes)\n', (3238, 3249), True, 'import numpy as np\n')]
from __future__ import division, print_function, absolute_import from shutil import copyfile from src.TensorFlowModels import ModelConfig from src.Miscellaneous import bcolors import os import glob import tflearn import numpy as np import pandas as pd import tensorflow as tf import src.TensorFlowModels as TFModels import matplotlib matplotlib.use('Agg') # use('Agg') for saving to file and use('TkAgg') for interactive plot import matplotlib.pyplot as plt class ModelTrainer: def __init__(self, config_path=None, training_data_path=None, validation_data_path=None, prediction_data_path=None, results_path=None): # -------------------------------------- # Objects # -------------------------------------- self.cfg = ModelConfig() self.cfg.load(config_path) # -------------------------------------- # Directories # -------------------------------------- self._input_config_path = config_path self._results_root_path = results_path + self.cfg.model_name + '/' self._output_config_path = self._results_root_path + 'config.csv' self._log_directory = self._results_root_path + 'logs/' # Output Training Directories self._training_results_path = self._results_root_path + 'training/' self._epoch_checkpoint_path = self._training_results_path + 'epoch_results/' self._best_checkpoint_path = self._training_results_path + 'best_results/' self._last_checkpoint_path = self._training_results_path + 'last_results/' self._training_images_path = self._training_results_path + 'images/' # Output Validation Directories self._validation_results_path = self._results_root_path + 'validation/' # Output Prediction Directories self._prediction_results_path = self._results_root_path + 'prediction/' # Input Directories self._train_data_path = training_data_path self._validation_data_path = validation_data_path self._prediction_data_path = prediction_data_path # -------------------------------------- # Normal Variables # -------------------------------------- self.validation_accuracy = [] self.training_accuracy = [] self._model_files = {} # -------------------------------------- # Execute initialization functions # -------------------------------------- # NOTE: DO NOT CHANGE THIS ORDER self._init_directories() self._init_model_data() def test_func(self): in_keys = ['m1CMD', 'm2CMD', '<KEY>'] out_keys = ['pitch', 'roll'] inputs, targets, num_samples = self._parse_input_data(self._model_files['training'][0], in_keys, out_keys) def train_from_scratch(self, input_data_keys=None, output_data_keys=None, training_plot_callback=None, validation_plot_callback=None): # Sanity check that our input/output size do indeed match our config file assert(len(input_data_keys) == self.cfg.input_size) assert(len(output_data_keys) == self.cfg.output_size) # Save so we know what data was used in the I/O modeling self.cfg.input_keys = input_data_keys self.cfg.output_keys = output_data_keys self.cfg.save(self._output_config_path) print(bcolors.OKBLUE + 'STARTING TRAINING OF: ' + self.cfg.model_name + bcolors.ENDC) tf.reset_default_graph() assert (isinstance(self.cfg.variable_scope, str)) with tf.variable_scope(self.cfg.variable_scope): assert (np.isscalar(self.cfg.max_cpu_cores)) assert (np.isscalar(self.cfg.max_gpu_mem)) assert (isinstance(self.cfg.training_device, str)) tflearn.init_graph(num_cores=self.cfg.max_cpu_cores, gpu_memory_fraction=self.cfg.max_gpu_mem) with tf.device(self.cfg.training_device): model = self._generate_training_model() # --------------------------------------- # Train on each file present in training folder # --------------------------------------- file_iteration = 0 for training_file in self._model_files['training']: print(bcolors.OKGREEN + 'TRAINING WITH FILE: ' + training_file + bcolors.ENDC) # Grab the full set of input data inputs, targets, num_samples = self._parse_input_data(filename=training_file, input_keys=input_data_keys, output_keys=output_data_keys) # Split the data into parts for training so that we don't exhaust RAM resources # All the data is pre-generated to save training time total_train_iterations = int(np.ceil(num_samples / self.cfg.train_data_len)) t_inputs, t_targets = self._generate_training_data(input_full=inputs, output_full=targets, num_iter=total_train_iterations, total_samples=num_samples) # Pre-load random validation data to reduce runtime file_num = np.random.randint(len(self._model_files['validation'])) v_inputs, v_targets = self._generate_validation_data(self._model_files['validation'][file_num]) # --------------------------------------- # Fit on each data set # --------------------------------------- for train_iteration in range(0, total_train_iterations): print(bcolors.OKGREEN + 'Iteration ' + str(train_iteration+1) + ' of ' + str(total_train_iterations) + bcolors.ENDC) model.fit(X_inputs=t_inputs[train_iteration], Y_targets=t_targets[train_iteration], n_epoch=self.cfg.epoch_len, batch_size=self.cfg.batch_len, validation_batch_size=self.cfg.batch_len, validation_set=(v_inputs, v_targets), show_metric=True, snapshot_epoch=True, run_id=self.cfg.model_name) # Generate validation scores for training round self.validation_accuracy.append(model.evaluate(X=v_inputs, Y=v_targets, batch_size=self.cfg.batch_len)[0]) self.training_accuracy.append(model.evaluate(X=t_inputs[train_iteration], Y=t_targets[train_iteration], batch_size=self.cfg.batch_len)[0]) # Generate prediction data t_predict = model.predict(t_inputs[train_iteration]) v_predict = model.predict(v_inputs) # Plot training results if callable(training_plot_callback): training_plot_callback(t_targets[train_iteration], t_predict) img_name = 'f' + str(file_iteration) + '_iter' + str(train_iteration) + '_train.pdf' plt.savefig(self._training_images_path + img_name, format='pdf', dpi=600) if callable(validation_plot_callback): validation_plot_callback(v_targets, v_predict) img_name = 'f' + str(file_iteration) + '_iter' + str(train_iteration) + '_validate.pdf' plt.savefig(self._training_images_path + img_name, format='pdf', dpi=600) # --------------------------------------- # Post processing/updating variables # --------------------------------------- file_iteration += 1 def _init_directories(self): """ If a directory doesn't exist, create it. Otherwise, empty it of all files (not folders) :return: """ def init_dir(path, clean=True): if not os.path.exists(path): os.makedirs(path) elif clean: files = glob.glob(path + '*') for f in files: if not os.path.isdir(f): os.remove(f) init_dir(self._results_root_path) init_dir(self._training_results_path) init_dir(self._validation_results_path) init_dir(self._prediction_results_path) init_dir(self._epoch_checkpoint_path) init_dir(self._best_checkpoint_path) init_dir(self._last_checkpoint_path) init_dir(self._training_images_path) init_dir(self._log_directory + self.cfg.model_name + '/') # Tensorboard logs like this for some reason def _init_model_data(self): # Grab all the files available in the training, validation, and prediction paths self._model_files['training'] = glob.glob(self._train_data_path + '*.csv') self._model_files['validation'] = glob.glob(self._validation_data_path + '*.csv') self._model_files['prediction'] = glob.glob(self._prediction_data_path + '*.csv') # Copy over the configuration file for later use copyfile(self._input_config_path, self._output_config_path) # Update the model logging paths, overwriting whatever the user had self.cfg.load(self._output_config_path) self.cfg.epoch_chkpt_path = self._epoch_checkpoint_path + self.cfg.model_name self.cfg.best_chkpt_path = self._best_checkpoint_path + self.cfg.model_name self.cfg.last_chkpt_path = self._last_checkpoint_path + self.cfg.model_name self.cfg.image_data_path = self._training_images_path + self.cfg.model_name self.cfg.save(self._output_config_path) def _generate_training_model(self): """ A factory function to generate a system model based upon values in the class config object """ if self.cfg.data_inversion: model_input_shape = [None, self.cfg.input_size, self.cfg.input_depth] else: model_input_shape = [None, self.cfg.input_depth, self.cfg.input_size] # Grab the particular model function in use assert (isinstance(self.cfg.model_type, str)) if self.cfg.model_type in TFModels.function_dispatcher: model_func = TFModels.function_dispatcher[self.cfg.model_type] else: raise ValueError(bcolors.FAIL + 'Invalid model type!' + bcolors.ENDC) # All models are guaranteed to have this input form return model_func(shape=model_input_shape, dim_in=self.cfg.input_size, dim_out=self.cfg.output_size, past_depth=self.cfg.input_depth, layer_neurons=self.cfg.neurons_per_layer, layer_dropout=self.cfg.layer_dropout, learning_rate=self.cfg.learning_rate, checkpoint_path=self.cfg.epoch_chkpt_path, best_checkpoint_path=self.cfg.best_chkpt_path, log_dir=self._log_directory) def _generate_training_data(self, input_full, output_full, num_iter, total_samples): output_x = [[] for i in range(num_iter)] output_y = [[] for i in range(num_iter)] current_train_idx = 0 for iteration in range(0, num_iter): # Grab a full set of data if we have enough left if (current_train_idx + self.cfg.train_data_len) < total_samples: train_x, train_y = self._fill_data(raw_inputs=input_full, raw_targets=output_full, start_idx=current_train_idx, end_idx=current_train_idx+self.cfg.train_data_len) # Otherwise, only get remaining data else: train_x, train_y = self._fill_data(raw_inputs=input_full, raw_targets=output_full, start_idx=current_train_idx, end_idx=(total_samples - self.cfg.input_depth)) # Return the data in the correct format for direct input into the network output_x[iteration], output_y[iteration] = self._reshape_data(train_x, train_y) current_train_idx += self.cfg.train_data_len return output_x, output_y def _generate_validation_data(self, filename): try: input_full, output_full, num_samples = self._parse_input_data(filename=filename, input_keys=self.cfg.input_keys, output_keys=self.cfg.output_keys) except: print(bcolors.WARNING + 'Validation file doesn\'t exist!' + bcolors.ENDC) return None, None validation_x, validation_y = self._fill_data(input_full, output_full, 0, num_samples) validation_x, validation_y = self._reshape_data(validation_x, validation_y) return validation_x, validation_y def _parse_input_data(self, filename, input_keys, output_keys): # -------------------------------------- # Attempt to read all the input data requested # -------------------------------------- try: data_set = pd.read_csv(filename) except: raise ValueError(bcolors.FAIL + 'Could not open file: ' + filename + bcolors.ENDC) try: data = [] for key in input_keys: value = data_set[key] data.append(value) input_full = np.array(data) except: raise ValueError(bcolors.FAIL + 'Key does not exist in input dataset!' + bcolors.ENDC) try: data = [] for key in output_keys: value = data_set[key] data.append(value) output_full = np.array(data) except: raise ValueError(bcolors.FAIL + 'Key does not exist in dataset!' + bcolors.ENDC) # -------------------------------------- # Reformat for later processing # -------------------------------------- # Ensures data is in row-wise format [vars x samples] if self.cfg.data_inversion: num_samples = np.shape(input_full)[1] # Ensures data is in column-wise format [samples x vars] else: input_full = input_full.transpose() output_full = output_full.transpose() num_samples = np.shape(input_full)[0] return input_full, output_full, num_samples def _reshape_data(self, inputs, targets): """ Reshapes the input data into the correct form for the neural network :param inputs: :param targets: :return: """ if self.cfg.data_inversion: inputs = np.reshape(inputs, [-1, self.cfg.input_size, self.cfg.input_depth]) targets = np.reshape(targets, [-1, self.cfg.output_size]) else: inputs = np.reshape(inputs, [-1, self.cfg.input_depth, self.cfg.input_size]) targets = np.reshape(targets, [-1, self.cfg.output_size]) return inputs, targets def _fill_data(self, raw_inputs, raw_targets, start_idx, end_idx): """ Takes a set of input/target data and creates two new data sets that are a subset of the original. That subset spans from [start_idx, end_idx] :param raw_inputs: :param raw_targets: :param start_idx: :param end_idx: :return: """ inputs = [] targets = [] # Data should be formatted row-wise [vars x samples] if self.cfg.data_inversion: for i in range(start_idx, end_idx-self.cfg.input_depth): inputs.append(raw_inputs[0:self.cfg.input_size, i:i + self.cfg.input_depth]) targets.append(raw_targets[0:self.cfg.output_size, i + self.cfg.input_depth]) # Data should be formatted column-wise [samples x vars] else: for i in range(start_idx, end_idx-self.cfg.input_depth): inputs.append(raw_inputs[i:i + self.cfg.input_depth, 0:self.cfg.input_size]) targets.append(raw_targets[i + self.cfg.input_depth, 0:self.cfg.output_size]) return inputs, targets
[ "os.remove", "pandas.read_csv", "tensorflow.reset_default_graph", "numpy.shape", "glob.glob", "os.path.exists", "tensorflow.variable_scope", "numpy.reshape", "shutil.copyfile", "numpy.ceil", "matplotlib.use", "src.TensorFlowModels.ModelConfig", "os.makedirs", "numpy.isscalar", "os.path.isdir", "tensorflow.device", "numpy.array", "tflearn.init_graph", "matplotlib.pyplot.savefig" ]
[((337, 358), 'matplotlib.use', 'matplotlib.use', (['"""Agg"""'], {}), "('Agg')\n", (351, 358), False, 'import matplotlib\n'), ((778, 791), 'src.TensorFlowModels.ModelConfig', 'ModelConfig', ([], {}), '()\n', (789, 791), False, 'from src.TensorFlowModels import ModelConfig\n'), ((3483, 3507), 'tensorflow.reset_default_graph', 'tf.reset_default_graph', ([], {}), '()\n', (3505, 3507), True, 'import tensorflow as tf\n'), ((9640, 9682), 'glob.glob', 'glob.glob', (["(self._train_data_path + '*.csv')"], {}), "(self._train_data_path + '*.csv')\n", (9649, 9682), False, 'import glob\n'), ((9725, 9772), 'glob.glob', 'glob.glob', (["(self._validation_data_path + '*.csv')"], {}), "(self._validation_data_path + '*.csv')\n", (9734, 9772), False, 'import glob\n'), ((9815, 9862), 'glob.glob', 'glob.glob', (["(self._prediction_data_path + '*.csv')"], {}), "(self._prediction_data_path + '*.csv')\n", (9824, 9862), False, 'import glob\n'), ((9929, 9988), 'shutil.copyfile', 'copyfile', (['self._input_config_path', 'self._output_config_path'], {}), '(self._input_config_path, self._output_config_path)\n', (9937, 9988), False, 'from shutil import copyfile\n'), ((3579, 3621), 'tensorflow.variable_scope', 'tf.variable_scope', (['self.cfg.variable_scope'], {}), '(self.cfg.variable_scope)\n', (3596, 3621), True, 'import tensorflow as tf\n'), ((3643, 3678), 'numpy.isscalar', 'np.isscalar', (['self.cfg.max_cpu_cores'], {}), '(self.cfg.max_cpu_cores)\n', (3654, 3678), True, 'import numpy as np\n'), ((3700, 3733), 'numpy.isscalar', 'np.isscalar', (['self.cfg.max_gpu_mem'], {}), '(self.cfg.max_gpu_mem)\n', (3711, 3733), True, 'import numpy as np\n'), ((3811, 3910), 'tflearn.init_graph', 'tflearn.init_graph', ([], {'num_cores': 'self.cfg.max_cpu_cores', 'gpu_memory_fraction': 'self.cfg.max_gpu_mem'}), '(num_cores=self.cfg.max_cpu_cores, gpu_memory_fraction=\n self.cfg.max_gpu_mem)\n', (3829, 3910), False, 'import tflearn\n'), ((14292, 14313), 'pandas.read_csv', 'pd.read_csv', (['filename'], {}), '(filename)\n', (14303, 14313), True, 'import pandas as pd\n'), ((14595, 14609), 'numpy.array', 'np.array', (['data'], {}), '(data)\n', (14603, 14609), True, 'import numpy as np\n'), ((14897, 14911), 'numpy.array', 'np.array', (['data'], {}), '(data)\n', (14905, 14911), True, 'import numpy as np\n'), ((15859, 15926), 'numpy.reshape', 'np.reshape', (['inputs', '[-1, self.cfg.input_size, self.cfg.input_depth]'], {}), '(inputs, [-1, self.cfg.input_size, self.cfg.input_depth])\n', (15869, 15926), True, 'import numpy as np\n'), ((15949, 15996), 'numpy.reshape', 'np.reshape', (['targets', '[-1, self.cfg.output_size]'], {}), '(targets, [-1, self.cfg.output_size])\n', (15959, 15996), True, 'import numpy as np\n'), ((16033, 16100), 'numpy.reshape', 'np.reshape', (['inputs', '[-1, self.cfg.input_depth, self.cfg.input_size]'], {}), '(inputs, [-1, self.cfg.input_depth, self.cfg.input_size])\n', (16043, 16100), True, 'import numpy as np\n'), ((16123, 16170), 'numpy.reshape', 'np.reshape', (['targets', '[-1, self.cfg.output_size]'], {}), '(targets, [-1, self.cfg.output_size])\n', (16133, 16170), True, 'import numpy as np\n'), ((3923, 3958), 'tensorflow.device', 'tf.device', (['self.cfg.training_device'], {}), '(self.cfg.training_device)\n', (3932, 3958), True, 'import tensorflow as tf\n'), ((8757, 8777), 'os.path.exists', 'os.path.exists', (['path'], {}), '(path)\n', (8771, 8777), False, 'import os\n'), ((8795, 8812), 'os.makedirs', 'os.makedirs', (['path'], {}), '(path)\n', (8806, 8812), False, 'import os\n'), ((15284, 15304), 'numpy.shape', 'np.shape', (['input_full'], {}), '(input_full)\n', (15292, 15304), True, 'import numpy as np\n'), ((15512, 15532), 'numpy.shape', 'np.shape', (['input_full'], {}), '(input_full)\n', (15520, 15532), True, 'import numpy as np\n'), ((8861, 8882), 'glob.glob', 'glob.glob', (["(path + '*')"], {}), "(path + '*')\n", (8870, 8882), False, 'import glob\n'), ((4983, 5029), 'numpy.ceil', 'np.ceil', (['(num_samples / self.cfg.train_data_len)'], {}), '(num_samples / self.cfg.train_data_len)\n', (4990, 5029), True, 'import numpy as np\n'), ((7873, 7946), 'matplotlib.pyplot.savefig', 'plt.savefig', (['(self._training_images_path + img_name)'], {'format': '"""pdf"""', 'dpi': '(600)'}), "(self._training_images_path + img_name, format='pdf', dpi=600)\n", (7884, 7946), True, 'import matplotlib.pyplot as plt\n'), ((8231, 8304), 'matplotlib.pyplot.savefig', 'plt.savefig', (['(self._training_images_path + img_name)'], {'format': '"""pdf"""', 'dpi': '(600)'}), "(self._training_images_path + img_name, format='pdf', dpi=600)\n", (8242, 8304), True, 'import matplotlib.pyplot as plt\n'), ((8942, 8958), 'os.path.isdir', 'os.path.isdir', (['f'], {}), '(f)\n', (8955, 8958), False, 'import os\n'), ((8984, 8996), 'os.remove', 'os.remove', (['f'], {}), '(f)\n', (8993, 8996), False, 'import os\n')]
# ------------------------------------------------------------------------------ # Program: The LDAR Simulator (LDAR-Sim) # File: methods.deployment.OGI_Camera # Purpose: OGI company specific deployment classes and methods based on RK (2018) # # Copyright (C) 2018-2021 Intelligent Methane Monitoring and Management System (IM3S) Group # # This program is free software: you can redistribute it and/or modify # it under the terms of the MIT License as published # by the Free Software Foundation, version 3. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # MIT License for more details. # You should have received a copy of the MIT License # along with this program. If not, see <https://opensource.org/licenses/MIT>. # # ------------------------------------------------------------------------------ import math import numpy as np from methods.funcs import measured_rate from utils.attribution import update_tag def detect_emissions(self, site, covered_leaks, covered_equipment_rates, covered_site_rate, site_rate, venting, equipment_rates): missed_leaks_str = '{}_missed_leaks'.format(self.config['label']) equip_measured_rates = [] site_measured_rate = 0 found_leak = False for leak in covered_leaks: k = np.random.normal(4.9, 0.3) x0 = np.random.normal(self.config['sensor']['MDL'][0], self.config['sensor']['MDL'][1]) x0 = math.log10(x0 * 3600) # Convert from g/s to g/h and take log if leak['rate'] == 0: prob_detect = 0 else: x = math.log10(leak['rate'] * 3600) # Convert from g/s to g/h prob_detect = 1 / (1 + math.exp(-k * (x - x0))) if np.random.binomial(1, prob_detect): found_leak = True is_new_leak = update_tag(leak, site, self.timeseries, self.state['t'], self.config['label'], self.id) if is_new_leak: site_measured_rate += measured_rate(leak['rate'], self.config['sensor']['QE']) else: site[missed_leaks_str] += 1 self.timeseries[missed_leaks_str][self.state['t'].current_timestep] += 1 site_dict = { 'site': site, 'leaks_present': covered_leaks, 'site_true_rate': site_rate, 'site_measured_rate': site_measured_rate, 'equip_measured_rates': equip_measured_rates, 'vent_rate': venting, 'found_leak': found_leak, } return site_dict
[ "math.exp", "numpy.random.binomial", "methods.funcs.measured_rate", "math.log10", "numpy.random.normal", "utils.attribution.update_tag" ]
[((1428, 1454), 'numpy.random.normal', 'np.random.normal', (['(4.9)', '(0.3)'], {}), '(4.9, 0.3)\n', (1444, 1454), True, 'import numpy as np\n'), ((1468, 1555), 'numpy.random.normal', 'np.random.normal', (["self.config['sensor']['MDL'][0]", "self.config['sensor']['MDL'][1]"], {}), "(self.config['sensor']['MDL'][0], self.config['sensor'][\n 'MDL'][1])\n", (1484, 1555), True, 'import numpy as np\n'), ((1564, 1585), 'math.log10', 'math.log10', (['(x0 * 3600)'], {}), '(x0 * 3600)\n', (1574, 1585), False, 'import math\n'), ((1846, 1880), 'numpy.random.binomial', 'np.random.binomial', (['(1)', 'prob_detect'], {}), '(1, prob_detect)\n', (1864, 1880), True, 'import numpy as np\n'), ((1715, 1746), 'math.log10', 'math.log10', (["(leak['rate'] * 3600)"], {}), "(leak['rate'] * 3600)\n", (1725, 1746), False, 'import math\n'), ((1938, 2030), 'utils.attribution.update_tag', 'update_tag', (['leak', 'site', 'self.timeseries', "self.state['t']", "self.config['label']", 'self.id'], {}), "(leak, site, self.timeseries, self.state['t'], self.config[\n 'label'], self.id)\n", (1948, 2030), False, 'from utils.attribution import update_tag\n'), ((2129, 2185), 'methods.funcs.measured_rate', 'measured_rate', (["leak['rate']", "self.config['sensor']['QE']"], {}), "(leak['rate'], self.config['sensor']['QE'])\n", (2142, 2185), False, 'from methods.funcs import measured_rate\n'), ((1809, 1832), 'math.exp', 'math.exp', (['(-k * (x - x0))'], {}), '(-k * (x - x0))\n', (1817, 1832), False, 'import math\n')]
import numpy as np from tilitools.svdd_dual_qp import SvddDualQP class LatentSVDD: """ Latent variable support vector data description. Written by <NAME>, TU Berlin, 2014 For more information see: 'Learning and Evaluation with non-i.i.d Label Noise' Goernitz et al., AISTATS & JMLR W&CP, 2014 """ PRECISION = 1e-3 # important: effects the threshold, support vectors and speed! nu = 1.0 # (scalar) the regularization constant > 0 sobj = None # structured object contains various functions # i.e. get_num_dims(), get_num_samples(), get_sample(i), argmin(sol,i) sol = None # (vector) solution vector (after training, of course) def __init__(self, sobj, nu=1.0): self.nu = nu self.sobj = sobj def fit(self, max_iter=50): """ Solve the LatentSVDD optimization problem with a sequential convex programming/DC-programming approach: Iteratively, find the most likely configuration of the latent variables and then, optimize for the model parameter using fixed latent states. """ N = self.sobj.get_num_samples() DIMS = self.sobj.get_num_dims() # intermediate solutions # latent variables latent = [0]*N sol = np.random.randn(DIMS).reshape((DIMS, 1)) psi = np.zeros((DIMS, N)) # (dim x exm) old_psi = np.zeros((DIMS, N)) # (dim x exm) threshold = 0. obj = -1. iter = 0 # terminate if objective function value doesn't change much while iter<max_iter and (iter<2 or sum(sum(abs(np.array(psi-old_psi))))>=0.001): print('Starting iteration {0}.'.format(iter)) print(sum(sum(abs(np.array(psi-old_psi))))) iter += 1 old_psi = psi # 1. linearize # for the current solution compute the # most likely latent variable configuration for i in range(N): # min_z ||sol - Psi(x,z)||^2 = ||sol||^2 + min_z -2<sol,Psi(x,z)> + ||Psi(x,z)||^2 # Hence => ||sol||^2 - max_z 2<sol,Psi(x,z)> - ||Psi(x,z)||^2 _, latent[i], foo = self.sobj.argmax(sol, i, opt_type='quadratic') psi[:, i] = foo.ravel() # 2. solve the intermediate convex optimization problem svdd = SvddDualQP('linear', None, self.nu) svdd.fit(psi) threshold = svdd.get_radius() sol = psi.dot(svdd.alphas) self.sol = sol self.latent = latent return sol, latent, threshold def apply(self, pred_sobj): """ Application of the LatentSVDD: anomaly_score = min_z ||c*-\Psi(x,z)||^2 latent_state = argmin_z ||c*-\Psi(x,z)||^2 """ N = pred_sobj.get_num_samples() norm2 = self.sol.T.dot(self.sol) vals = np.zeros((N)) lats = [0]*N for i in range(N): # min_z ||sol - Psi(x,z)||^2 = ||sol||^2 + min_z -2<sol,Psi(x,z)> + ||Psi(x,z)||^2 # Hence => ||sol||^2 - max_z 2<sol,Psi(x,z)> - ||Psi(x,z)||^2 max_obj, lats[i], foo = pred_sobj.argmax(self.sol, i, opt_type='quadratic') vals[i] = norm2 - max_obj return vals, lats
[ "numpy.array", "tilitools.svdd_dual_qp.SvddDualQP", "numpy.zeros", "numpy.random.randn" ]
[((1386, 1405), 'numpy.zeros', 'np.zeros', (['(DIMS, N)'], {}), '((DIMS, N))\n', (1394, 1405), True, 'import numpy as np\n'), ((1439, 1458), 'numpy.zeros', 'np.zeros', (['(DIMS, N)'], {}), '((DIMS, N))\n', (1447, 1458), True, 'import numpy as np\n'), ((2933, 2944), 'numpy.zeros', 'np.zeros', (['N'], {}), '(N)\n', (2941, 2944), True, 'import numpy as np\n'), ((2406, 2441), 'tilitools.svdd_dual_qp.SvddDualQP', 'SvddDualQP', (['"""linear"""', 'None', 'self.nu'], {}), "('linear', None, self.nu)\n", (2416, 2441), False, 'from tilitools.svdd_dual_qp import SvddDualQP\n'), ((1331, 1352), 'numpy.random.randn', 'np.random.randn', (['DIMS'], {}), '(DIMS)\n', (1346, 1352), True, 'import numpy as np\n'), ((1777, 1800), 'numpy.array', 'np.array', (['(psi - old_psi)'], {}), '(psi - old_psi)\n', (1785, 1800), True, 'import numpy as np\n'), ((1655, 1678), 'numpy.array', 'np.array', (['(psi - old_psi)'], {}), '(psi - old_psi)\n', (1663, 1678), True, 'import numpy as np\n')]
#!/usr/bin/env python # coding: utf-8 # # ml lab5 # In[7]: import os import numpy as np import scipy.optimize as opt import scipy.io import matplotlib.pyplot as plt import matplotlib.image as mpimg # ### 1. read `ex5data1.mat` # In[4]: data = scipy.io.loadmat('data/ex5data1.mat') X = data['X'] y = np.squeeze(data['y']) X.shape, y.size # ### 2. plot data # In[25]: def plot_data(X, y, axes=None): if axes == None: axes = plt.gca() axes.scatter(X[y == 1, 0], X[y == 1, 1], marker='x', c='g', s=30, label='y = 1') axes.scatter(X[y == 0, 0], X[y == 0, 1], c='r', s=30, label='y = 0') axes.set_xlabel('X1') axes.set_ylabel('X2') axes.legend(frameon= True, fancybox = True) return axes plot_data(X, y) # ### 3. svm classifier # In[8]: from sklearn import svm clf = svm.LinearSVC() clf.fit(X, y) # ### 4. descision boundary with `c=1`, `c=100` # In[23]: C_VALS = [1, 100] fig, axes = plt.subplots(1, 2, sharey = True, figsize=(16, 6)) def get_meshgrid(X, num=100): return np.meshgrid( np.linspace(X[:, 0].min(), X[:, 0].max(), num=100), np.linspace(X[:, 1].min(), X[:, 1].max(), num=100) ) for i, C in enumerate(C_VALS): X_1, X_2 = get_meshgrid(X) clf = svm.LinearSVC(C=C, max_iter=100000) clf.fit(X, y) Z = clf.predict(np.array([X_1.ravel(), X_2.ravel()]).T).reshape(X_1.shape) plot_data(X, y, axes[i]) axes[i].contour(X_1, X_2, Z, 1, colors='b') axes[i].set_title(f'Descision Boundary with C={C}') # > При `C=100` можно наблюдать переобученую модель: граница захватывает случайные выбросы. При `C=1` граница выглядит правильно. # ### 5. svm gaussian kernel # In[22]: def gaussian_kernel(x1, x2, sigma): return np.exp(-np.sum((x1 - x2) ** 2) / (2 * (sigma ** 2))) def gaussian_kernel_gram_matrix(X, L, sigma, K_function=gaussian_kernel): gram_matrix = np.zeros((X.shape[0], L.shape[0])) for i, x in enumerate(X): for j, l in enumerate(L): gram_matrix[i, j] = K_function(x, l, sigma) return gram_matrix # ### 6-8. `ex5data2.mat` with svm gaussian kernel # In[29]: data = scipy.io.loadmat('data/ex5data2.mat') X = data['X'] y = np.squeeze(data['y']) L = X sigma = 0.1 gram = gaussian_kernel_gram_matrix(X, L, sigma) clf = svm.SVC(kernel='precomputed') clf.fit(gram, y) # ### 9. plot data # In[30]: ax = plot_data(X, y) X_1, X_2 = get_meshgrid(X) X_plot = np.array([X_1.ravel(), X_2.ravel()]).T gram_plot = gaussian_kernel_gram_matrix(X_plot, L, sigma) Z = clf.predict(gram_plot).reshape(X_1.shape) ax.contour(X_1, X_2, Z, 1, colors='b') # ### 10. read `ex5data3` data # In[33]: data = scipy.io.loadmat('data/ex5data3.mat') X = data['X'] y = np.squeeze(data['y']) X_val = data['Xval'] y_val = np.squeeze(data['yval']) X.shape, X_val.shape # ### 11. cross validation # In[34]: def cross_validate(X, y, X_val, y_val): C_array = np.array([0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30]) sigma_array = np.array([0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30]) err_array = np.zeros([C_array.size, sigma_array.size]) for i in np.arange(C_array.size): for j in np.arange(sigma_array.size): sigma = sigma_array[j] C = C_array[i] gram = gaussian_kernel_gram_matrix(X, X, sigma) clf = svm.SVC(C=C, kernel='precomputed') clf.fit(gram, y) predictions = clf.predict(gaussian_kernel_gram_matrix(X_val, X, sigma)) pred_error = np.mean(predictions != y_val) err_array[i, j] = pred_error idx = np.unravel_index(np.argmin(err_array, axis=None), err_array.shape) C = C_array[idx[0]] sigma = sigma_array[idx[1]] return C, sigma # In[35]: C, sigma = cross_validate(X, y, X_val, y_val) print(f'Found:\nC:\t{C}\nsigma:\t{sigma}') # In[36]: gram = gaussian_kernel_gram_matrix(X, X, sigma) clf = svm.SVC(C=C, kernel='precomputed') clf.fit(gram, y) # ### 12. plot data # In[37]: ax = plot_data(X, y) X_1, X_2 = get_meshgrid(X, num=50) X_plot = np.array([X_1.ravel(), X_2.ravel()]).T gram_plot = gaussian_kernel_gram_matrix(X_plot, X, sigma) Z = clf.predict(gram_plot).reshape(X_1.shape) ax.contour(X_1, X_2, Z, 1, colors='b') # ### 13-15. read `spamTrain.mat` & `spamTest.mat` data # In[38]: spam_train = scipy.io.loadmat('data/spamTrain.mat') X = spam_train['X'] y = np.squeeze(spam_train['y']) spam_test = scipy.io.loadmat('data/spamTest.mat') X_test = spam_test['Xtest'] y_test = np.squeeze(spam_test['ytest']) # ### 14-16. svm + cross validation # In[39]: def spam_cross_validation(X, y, X_val, y_val): C_array = np.array([0.01, 0.1, 0.3, 1, 10]) err_array = np.zeros(C_array.size) for i in np.arange(C_array.size): C = C_array[i] clf = svm.SVC(C=C, kernel='linear') clf.fit(X, y) predictions = clf.predict(X_val) pred_error = np.mean(predictions != y_val) err_array[i] = pred_error idx = np.unravel_index(np.argmin(err_array, axis=None), err_array.shape) return C_array[idx[0]] # In[40]: C = spam_cross_validation(X, y, X_test, y_test) print(f'Found:\nC:\t{C}\n') # In[42]: clf = svm.SVC(C=C, kernel='linear') clf.fit(X, y) train_accuracy = clf.score(X, y) * 100 test_accuracy = clf.score(X_test, y_test) * 100 print(f'Train accuracy:\t{train_accuracy}%') print(f'Test accuracy:\t{test_accuracy}%') # > Линейное ядро быстрее и точнее чем Гаусовское # ### 17. text preprocessing # In[44]: import re from nltk.stem import PorterStemmer ps = PorterStemmer() HTML_REGEX = r'<.*?>' URL_REGEX = r'[http|https]://[^\s]*' EMAIL_REGEX = r'[^\s]+@[^\s]+' NUMBER_REGEX = r'[0-9]+' DOLLAR_REGEX = r'[$]+' def preprocess_data(data): result = data.lower() result = re.sub(HTML_REGEX, '', result) result = re.sub(URL_REGEX, 'httpaddr', result) result = re.sub(EMAIL_REGEX, 'emailaddr', result) result = re.sub(NUMBER_REGEX, ' number ', result) result = re.sub(DOLLAR_REGEX, ' dollar ', result) result = re.sub(r'[^a-zA-Z\s]+', ' ', result) result = result.replace('\n', ' ') result = [ps.stem(token) for token in result.split(' ')] result = ' '.join(result) return result # ### 18. read `vocab.txt` # In[45]: vocab_data = open('data/vocab.txt', 'r').read().split('\n')[:-1] vocab = {} for elem in vocab_data: index, word = elem.split('\t')[:] vocab[word] = index # ### 19. word to code # In[46]: def map_to_vocabulary(data, vocab): result = [] for word in data.split(): if len(word) > 1 and word in vocab: result.append(int(vocab[word])) return result # ### 20. text to feature vector # In[47]: def map_to_feature(data, vocab): n = len(vocab) features = np.zeros((n,)) for i in data: features[i] = 1 return features # In[50]: def generate_feature(data, vocab): preprocessed = preprocess_data(data) word_indexes = map_to_vocabulary(preprocessed, vocab) feature = map_to_feature(word_indexes, vocab) return feature # ### 21. test classifier # In[53]: def predict_from_files(files, vocab, clf): features = [] for file in files: feature = generate_feature(open(f'data/{file}', 'r').read(), vocab) features.append(feature) features = np.array(features) result = clf.predict(features) return zip(files, result) # In[54]: FILES = ['emailSample1.txt', 'emailSample2.txt', 'spamSample1.txt', 'spamSample2.txt'] predicts = predict_from_files(FILES, vocab, clf) for file, predict in predicts: res = 'spam' if predict == 1 else 'not spam' print(f'{file} - {res}') # ### 22. get dataset from [`spamassassin.apache.org/old/publiccorpus`](http://spamassassin.apache.org/old/publiccorpus/) # In[67]: HAM_DIR = 'data/easy_ham' SPAM_DIR = 'data/spam' def read_data(data_dir, out): files = os.listdir(data_dir) for file_name in files: if file_name == '.DS_Store': continue with open(f'{data_dir}/{file_name}', 'r') as f: try: out.append(f.read()) except: continue return out X_data = [] X_data = read_data(HAM_DIR, X_data) y_ham = np.zeros(len(X_data)) X_data = read_data(SPAM_DIR, X_data) y_spam = np.ones(len(X_data) - len(y_ham)) y = np.concatenate((y_ham, y_spam)) len(X_data), y.size # ### 24. build vocabulary # In[68]: from sklearn.feature_extraction.text import CountVectorizer from sklearn.model_selection import train_test_split X_vocab = [] for data in X_data[100:]: X_vocab.append(preprocess_data(data)) vectorizer = CountVectorizer() vectorizer.fit(X_vocab) n = 1000 vocab = {} index = 0 for word in vectorizer.vocabulary_: vocab[word] = index index += 1 if index >= n: break # ### 25. test new dataset # In[69]: X = [] for data in X_data: feature = generate_feature(data, vocab) X.append(feature) X = np.array(X) # In[70]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) # In[71]: C = 0.1 clf = svm.SVC(C=C, kernel='linear') clf.fit(X_train, y_train) train_accuracy = clf.score(X, y) * 100 test_accuracy = clf.score(X_test, y_test) * 100 print(f'Train accuracy:\t{train_accuracy}%') print(f'Test accuracy:\t{test_accuracy}%') # In[73]: FILES = ['emailSample1.txt', 'emailSample2.txt', 'spamSample1.txt', 'spamSample2.txt'] predicts = predict_from_files(FILES, vocab, clf) for file, predict in predicts: res = 'spam' if predict == 1 else 'not spam' print(f'{file} - {res}') # > Качество классификации сохранилось, тк новый датасет достаточно большой, что позволяет произвести обучение # ### 26. conclusions # Был рассмотрен метод опорных векторов, обучен класификатор с разными ядрами, подобраны параметры C и σ2. Протестирован анализатор спама в сообщениях как на готовом наборе признаков, так и на собственном словаре # In[ ]:
[ "sklearn.feature_extraction.text.CountVectorizer", "numpy.sum", "nltk.stem.PorterStemmer", "matplotlib.pyplot.gca", "sklearn.model_selection.train_test_split", "numpy.zeros", "numpy.argmin", "re.sub", "numpy.mean", "numpy.array", "numpy.arange", "sklearn.svm.SVC", "numpy.squeeze", "sklearn.svm.LinearSVC", "matplotlib.pyplot.subplots", "os.listdir", "numpy.concatenate" ]
[((311, 332), 'numpy.squeeze', 'np.squeeze', (["data['y']"], {}), "(data['y'])\n", (321, 332), True, 'import numpy as np\n'), ((839, 854), 'sklearn.svm.LinearSVC', 'svm.LinearSVC', ([], {}), '()\n', (852, 854), False, 'from sklearn import svm\n'), ((962, 1010), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(2)'], {'sharey': '(True)', 'figsize': '(16, 6)'}), '(1, 2, sharey=True, figsize=(16, 6))\n', (974, 1010), True, 'import matplotlib.pyplot as plt\n'), ((2217, 2238), 'numpy.squeeze', 'np.squeeze', (["data['y']"], {}), "(data['y'])\n", (2227, 2238), True, 'import numpy as np\n'), ((2312, 2341), 'sklearn.svm.SVC', 'svm.SVC', ([], {'kernel': '"""precomputed"""'}), "(kernel='precomputed')\n", (2319, 2341), False, 'from sklearn import svm\n'), ((2743, 2764), 'numpy.squeeze', 'np.squeeze', (["data['y']"], {}), "(data['y'])\n", (2753, 2764), True, 'import numpy as np\n'), ((2794, 2818), 'numpy.squeeze', 'np.squeeze', (["data['yval']"], {}), "(data['yval'])\n", (2804, 2818), True, 'import numpy as np\n'), ((3938, 3972), 'sklearn.svm.SVC', 'svm.SVC', ([], {'C': 'C', 'kernel': '"""precomputed"""'}), "(C=C, kernel='precomputed')\n", (3945, 3972), False, 'from sklearn import svm\n'), ((4421, 4448), 'numpy.squeeze', 'np.squeeze', (["spam_train['y']"], {}), "(spam_train['y'])\n", (4431, 4448), True, 'import numpy as np\n'), ((4537, 4567), 'numpy.squeeze', 'np.squeeze', (["spam_test['ytest']"], {}), "(spam_test['ytest'])\n", (4547, 4567), True, 'import numpy as np\n'), ((5241, 5270), 'sklearn.svm.SVC', 'svm.SVC', ([], {'C': 'C', 'kernel': '"""linear"""'}), "(C=C, kernel='linear')\n", (5248, 5270), False, 'from sklearn import svm\n'), ((5609, 5624), 'nltk.stem.PorterStemmer', 'PorterStemmer', ([], {}), '()\n', (5622, 5624), False, 'from nltk.stem import PorterStemmer\n'), ((8383, 8414), 'numpy.concatenate', 'np.concatenate', (['(y_ham, y_spam)'], {}), '((y_ham, y_spam))\n', (8397, 8414), True, 'import numpy as np\n'), ((8688, 8705), 'sklearn.feature_extraction.text.CountVectorizer', 'CountVectorizer', ([], {}), '()\n', (8703, 8705), False, 'from sklearn.feature_extraction.text import CountVectorizer\n'), ((9008, 9019), 'numpy.array', 'np.array', (['X'], {}), '(X)\n', (9016, 9019), True, 'import numpy as np\n'), ((9069, 9106), 'sklearn.model_selection.train_test_split', 'train_test_split', (['X', 'y'], {'test_size': '(0.2)'}), '(X, y, test_size=0.2)\n', (9085, 9106), False, 'from sklearn.model_selection import train_test_split\n'), ((9135, 9164), 'sklearn.svm.SVC', 'svm.SVC', ([], {'C': 'C', 'kernel': '"""linear"""'}), "(C=C, kernel='linear')\n", (9142, 9164), False, 'from sklearn import svm\n'), ((1271, 1306), 'sklearn.svm.LinearSVC', 'svm.LinearSVC', ([], {'C': 'C', 'max_iter': '(100000)'}), '(C=C, max_iter=100000)\n', (1284, 1306), False, 'from sklearn import svm\n'), ((1910, 1944), 'numpy.zeros', 'np.zeros', (['(X.shape[0], L.shape[0])'], {}), '((X.shape[0], L.shape[0]))\n', (1918, 1944), True, 'import numpy as np\n'), ((2937, 2983), 'numpy.array', 'np.array', (['[0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30]'], {}), '([0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30])\n', (2945, 2983), True, 'import numpy as np\n'), ((3002, 3048), 'numpy.array', 'np.array', (['[0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30]'], {}), '([0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30])\n', (3010, 3048), True, 'import numpy as np\n'), ((3065, 3107), 'numpy.zeros', 'np.zeros', (['[C_array.size, sigma_array.size]'], {}), '([C_array.size, sigma_array.size])\n', (3073, 3107), True, 'import numpy as np\n'), ((3126, 3149), 'numpy.arange', 'np.arange', (['C_array.size'], {}), '(C_array.size)\n', (3135, 3149), True, 'import numpy as np\n'), ((4680, 4713), 'numpy.array', 'np.array', (['[0.01, 0.1, 0.3, 1, 10]'], {}), '([0.01, 0.1, 0.3, 1, 10])\n', (4688, 4713), True, 'import numpy as np\n'), ((4730, 4752), 'numpy.zeros', 'np.zeros', (['C_array.size'], {}), '(C_array.size)\n', (4738, 4752), True, 'import numpy as np\n'), ((4767, 4790), 'numpy.arange', 'np.arange', (['C_array.size'], {}), '(C_array.size)\n', (4776, 4790), True, 'import numpy as np\n'), ((5830, 5860), 're.sub', 're.sub', (['HTML_REGEX', '""""""', 'result'], {}), "(HTML_REGEX, '', result)\n", (5836, 5860), False, 'import re\n'), ((5874, 5911), 're.sub', 're.sub', (['URL_REGEX', '"""httpaddr"""', 'result'], {}), "(URL_REGEX, 'httpaddr', result)\n", (5880, 5911), False, 'import re\n'), ((5925, 5965), 're.sub', 're.sub', (['EMAIL_REGEX', '"""emailaddr"""', 'result'], {}), "(EMAIL_REGEX, 'emailaddr', result)\n", (5931, 5965), False, 'import re\n'), ((5979, 6019), 're.sub', 're.sub', (['NUMBER_REGEX', '""" number """', 'result'], {}), "(NUMBER_REGEX, ' number ', result)\n", (5985, 6019), False, 'import re\n'), ((6033, 6073), 're.sub', 're.sub', (['DOLLAR_REGEX', '""" dollar """', 'result'], {}), "(DOLLAR_REGEX, ' dollar ', result)\n", (6039, 6073), False, 'import re\n'), ((6087, 6123), 're.sub', 're.sub', (['"""[^a-zA-Z\\\\s]+"""', '""" """', 'result'], {}), "('[^a-zA-Z\\\\s]+', ' ', result)\n", (6093, 6123), False, 'import re\n'), ((6818, 6832), 'numpy.zeros', 'np.zeros', (['(n,)'], {}), '((n,))\n', (6826, 6832), True, 'import numpy as np\n'), ((7369, 7387), 'numpy.array', 'np.array', (['features'], {}), '(features)\n', (7377, 7387), True, 'import numpy as np\n'), ((7942, 7962), 'os.listdir', 'os.listdir', (['data_dir'], {}), '(data_dir)\n', (7952, 7962), False, 'import os\n'), ((455, 464), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (462, 464), True, 'import matplotlib.pyplot as plt\n'), ((3168, 3195), 'numpy.arange', 'np.arange', (['sigma_array.size'], {}), '(sigma_array.size)\n', (3177, 3195), True, 'import numpy as np\n'), ((3636, 3667), 'numpy.argmin', 'np.argmin', (['err_array'], {'axis': 'None'}), '(err_array, axis=None)\n', (3645, 3667), True, 'import numpy as np\n'), ((4838, 4867), 'sklearn.svm.SVC', 'svm.SVC', ([], {'C': 'C', 'kernel': '"""linear"""'}), "(C=C, kernel='linear')\n", (4845, 4867), False, 'from sklearn import svm\n'), ((4961, 4990), 'numpy.mean', 'np.mean', (['(predictions != y_val)'], {}), '(predictions != y_val)\n', (4968, 4990), True, 'import numpy as np\n'), ((5054, 5085), 'numpy.argmin', 'np.argmin', (['err_array'], {'axis': 'None'}), '(err_array, axis=None)\n', (5063, 5085), True, 'import numpy as np\n'), ((3350, 3384), 'sklearn.svm.SVC', 'svm.SVC', ([], {'C': 'C', 'kernel': '"""precomputed"""'}), "(C=C, kernel='precomputed')\n", (3357, 3384), False, 'from sklearn import svm\n'), ((3536, 3565), 'numpy.mean', 'np.mean', (['(predictions != y_val)'], {}), '(predictions != y_val)\n', (3543, 3565), True, 'import numpy as np\n'), ((1772, 1794), 'numpy.sum', 'np.sum', (['((x1 - x2) ** 2)'], {}), '((x1 - x2) ** 2)\n', (1778, 1794), True, 'import numpy as np\n')]
import numpy as np class simulated_parameter: def __init__(self, parameter_name, parameter_mean, parameter_stddev, start_year, end_year): self._parameter_name = parameter_name self._parameter_mean = parameter_mean self._parameter_stddev = parameter_stddev self._start_year = start_year self._end_year = end_year def get_simulated_value(self): return np.random.normal( loc=self._parameter_mean, scale=self._parameter_stddev, size=1)[0] def get_param_name(self): return self._parameter_name class recurring_payment: """ Represents a recurring payment (income for positive sums and expenses for negative sums). Args: name: the name of the payment annual_sum: the annual total sum of the payment. annual_change: the annual change in the annual sum. payment_stdev: the standard deviation in the annual sum. start_year: the year in which the payment starts. end_year: the year in which the payment ends. """ def __init__(self, name, annual_sum, annual_change, payment_stdev, start_year, end_year): self._name = name self._annual_sum = annual_sum self._initial_sum = annual_sum self._annual_change = annual_change self._payment_stdev = payment_stdev self._start_year = start_year self._end_year = end_year def update_payment(self): self._annual_sum = self._annual_sum * self._annual_change def simulate_payment(self, year): if year < self._start_year or year >= self._end_year: return 0.0 sim = simulated_parameter( parameter_name=self._name, parameter_mean=self._annual_sum, parameter_stddev=abs(self._annual_sum * self._payment_stdev), start_year=self._start_year, end_year=self._end_year) return sim.get_simulated_value() def reset(self): self._annual_sum = self._initial_sum def simulate_portfolio(initial_value, annual_rate_of_return, annual_payments, mortgage, start_year, end_year, num_simulations): # Store the values and incomes for each simulation and each year. values = [] net_incomes = [] # Loop over the number of simulations. for _ in range(num_simulations): curr_payments = annual_payments for p in curr_payments: p.reset() # Store the values and incomes for all years in this simulation. curr_values = [initial_value] curr_net_incomes = [] # Loop over years. for year in range(start_year, end_year, 1): # Calculate current values. new_income = 0 for p in curr_payments: new_income += p.simulate_payment(year) # Update payment value. p.update_payment() # Add mortgage payment to payments. if (mortgage is None or year < mortgage.start_year_ or year >= mortgage.start_year_ + mortgage.mortgage_term_years_): mortgage_payment = 0.0 else: mortgage_payment = mortgage.get_annual_payment() new_income -= mortgage_payment # Update value of assets. ror = annual_rate_of_return.get_simulated_value() if curr_values[-1] > 0: new_value = (curr_values[-1] * ror) + new_income else: new_value = curr_values[-1] + new_income # Update the incomes and values for one year in one simulation. if len(curr_net_incomes) == 0: curr_net_incomes.append(new_income) curr_net_incomes.append(new_income) curr_values.append(new_value) # Update the set of all incomes and values. net_incomes.append(curr_net_incomes) values.append(curr_values) return values, net_incomes
[ "numpy.random.normal" ]
[((410, 495), 'numpy.random.normal', 'np.random.normal', ([], {'loc': 'self._parameter_mean', 'scale': 'self._parameter_stddev', 'size': '(1)'}), '(loc=self._parameter_mean, scale=self._parameter_stddev, size=1\n )\n', (426, 495), True, 'import numpy as np\n')]
import numpy as np import keras.backend as K from keras.layers import Layer class LinearLayer(Layer): """ linear regression score by using ids of user/item """ def __init__(self, num_user, num_item, **kwargs): super(LinearLayer, self).__init__(**kwargs) self.b_u = K.variable(np.zeros((num_user, 1)), name='{}_b_u'.format(self.name)) self.b_v = K.variable(np.zeros((num_item, 1)), name='{}_b_v'.format(self.name)) self.b_g = K.variable(0.0, name='{}_b_g'.format(self.name)) self.trainable_weights = [self.b_u, self.b_v, self.b_g] def get_output_shape_for(self, input_shape): return (None, 1) def call(self, x, mask=None): uid, vid = x[0], x[1] # regression = self.b_u[uid] + self.b_v[vid] + self.b_g regression = K.gather(self.b_u, uid) + K.gather(self.b_v, vid) + self.b_g regression = K.reshape(regression, (-1, 1)) return regression
[ "keras.backend.reshape", "numpy.zeros", "keras.backend.gather" ]
[((887, 917), 'keras.backend.reshape', 'K.reshape', (['regression', '(-1, 1)'], {}), '(regression, (-1, 1))\n', (896, 917), True, 'import keras.backend as K\n'), ((302, 325), 'numpy.zeros', 'np.zeros', (['(num_user, 1)'], {}), '((num_user, 1))\n', (310, 325), True, 'import numpy as np\n'), ((390, 413), 'numpy.zeros', 'np.zeros', (['(num_item, 1)'], {}), '((num_item, 1))\n', (398, 413), True, 'import numpy as np\n'), ((805, 828), 'keras.backend.gather', 'K.gather', (['self.b_u', 'uid'], {}), '(self.b_u, uid)\n', (813, 828), True, 'import keras.backend as K\n'), ((831, 854), 'keras.backend.gather', 'K.gather', (['self.b_v', 'vid'], {}), '(self.b_v, vid)\n', (839, 854), True, 'import keras.backend as K\n')]
# Copyright 2020 Amazon Technologies, Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import copy import itertools import unittest import byteps.mxnet as bps import mxnet as mx import mxnet.ndarray as nd import numpy as np from gluoncv.model_zoo import get_model from mxnet import autograd, gluon from numba import jit from parameterized import parameterized from tqdm import tqdm from meta_test import MetaTest from utils import bernoulli, fake_data @jit(nopython=True) def round_next_pow2(v): v -= np.uint32(1) v |= v >> np.uint32(1) v |= v >> np.uint32(2) v |= v >> np.uint32(4) v |= v >> np.uint32(8) v |= v >> np.uint32(16) v += np.uint32(1) return v def dithering(x, k, state, partition='linear', norm="max"): y = x.flatten() if norm == "max": scale = np.max(np.abs(y)) elif norm == "l2": scale = np.linalg.norm(y.astype(np.float64), ord=2) else: raise ValueError("Unsupported normalization") y /= scale sign = np.sign(y) y = np.abs(y) # stocastic rounding if partition == 'linear': y *= k low = np.floor(y) p = y - low # whether to ceil y = low + bernoulli(p, state) y /= k elif partition == "natural": y *= 2**(k-1) low = round_next_pow2((np.ceil(y).astype(np.uint32))) >> 1 length = copy.deepcopy(low) length[length == 0] = 1 p = (y - low) / length y = low + length * bernoulli(p, state) y = y.astype(np.float32) y /= 2**(k-1) else: raise ValueError("Unsupported partition") y *= sign y *= scale return y.reshape(x.shape) class DitheringTestCase(unittest.TestCase, metaclass=MetaTest): @parameterized.expand(itertools.product([2, 4, 8], ["linear, natural"], ["max", "l2"], np.random.randint(0, 2020, size=3).tolist())) def test_dithering(self, k, ptype, ntype, seed): ctx = mx.gpu(0) net = get_model("resnet18_v2") net.initialize(mx.init.Xavier(), ctx=ctx) net.summary(nd.ones((1, 3, 224, 224), ctx=ctx)) # hyper-params batch_size = 32 optimizer_params = {'momentum': 0, 'wd': 0, 'learning_rate': 0.01} compression_params = { "compressor": "dithering", "k": k, "partition": ptype, "normalize": ntype, "seed": seed } print(compression_params) trainer = bps.DistributedTrainer(net.collect_params( ), "sgd", optimizer_params, compression_params=compression_params) loss_fn = gluon.loss.SoftmaxCrossEntropyLoss() train_data = fake_data(batch_size=batch_size) params = {} rngs = {} rngs_s = {} for i, param in enumerate(trainer._params): if param.grad_req != 'null': params[i] = param._data[0].asnumpy() rngs[i] = np.array([seed, seed], dtype=np.uint64) rngs_s[i] = np.array([seed, seed], dtype=np.uint64) for it, batch in tqdm(enumerate(train_data)): data = batch[0].as_in_context(ctx) label = batch[1].as_in_context(ctx) with autograd.record(): output = net(data) loss = loss_fn(output, label) loss.backward() gs = {} xs = {} for i, param in enumerate(trainer._params): if param.grad_req != 'null': gs[i] = param._grad[0].asnumpy() xs[i] = param._data[0].asnumpy() trainer.step(batch_size) for i, param in enumerate(trainer._params): if param.grad_req != "null": g = gs[i] / (batch_size * bps.size()) c = dithering(g, k, rngs[i], ptype, ntype) cs = dithering(c, k, rngs_s[i], ptype, ntype) c = cs params[i] -= optimizer_params["learning_rate"] * c np_g = c.flatten() mx_g = param._grad[0].asnumpy().flatten() if not np.allclose(np_g, mx_g, atol=np.finfo(np.float32).eps): diff = np.abs(np_g - mx_g) print("np", np_g) print("mx", mx_g) print("diff", diff) print("max diff", np.max(diff)) idx = np.nonzero(diff > 1e-5) print("idx", idx, np_g[idx], mx_g[idx]) input() cnt = 0 tot = 0 for i, param in enumerate(trainer._params): if param.grad_req != "null": x = param._data[0].asnumpy() tot += len(x.flatten()) if not np.allclose(params[i], x, atol=np.finfo(np.float32).eps): diff = np.abs(x.flatten() - params[i].flatten()) idx = np.where(diff > np.finfo(np.float32).eps) cnt += len(idx[0]) assert cnt == 0, "false/tot=%d/%d=%f" % (cnt, tot, cnt/tot) if __name__ == '__main__': unittest.main()
[ "numpy.uint32", "numpy.abs", "numpy.floor", "numpy.random.randint", "unittest.main", "gluoncv.model_zoo.get_model", "numpy.finfo", "numpy.max", "mxnet.gpu", "copy.deepcopy", "mxnet.autograd.record", "numpy.ceil", "mxnet.gluon.loss.SoftmaxCrossEntropyLoss", "mxnet.init.Xavier", "utils.bernoulli", "utils.fake_data", "mxnet.ndarray.ones", "numpy.nonzero", "numba.jit", "numpy.array", "numpy.sign", "byteps.mxnet.size" ]
[((1062, 1080), 'numba.jit', 'jit', ([], {'nopython': '(True)'}), '(nopython=True)\n', (1065, 1080), False, 'from numba import jit\n'), ((1114, 1126), 'numpy.uint32', 'np.uint32', (['(1)'], {}), '(1)\n', (1123, 1126), True, 'import numpy as np\n'), ((1272, 1284), 'numpy.uint32', 'np.uint32', (['(1)'], {}), '(1)\n', (1281, 1284), True, 'import numpy as np\n'), ((1609, 1619), 'numpy.sign', 'np.sign', (['y'], {}), '(y)\n', (1616, 1619), True, 'import numpy as np\n'), ((1628, 1637), 'numpy.abs', 'np.abs', (['y'], {}), '(y)\n', (1634, 1637), True, 'import numpy as np\n'), ((5771, 5786), 'unittest.main', 'unittest.main', ([], {}), '()\n', (5784, 5786), False, 'import unittest\n'), ((1141, 1153), 'numpy.uint32', 'np.uint32', (['(1)'], {}), '(1)\n', (1150, 1153), True, 'import numpy as np\n'), ((1168, 1180), 'numpy.uint32', 'np.uint32', (['(2)'], {}), '(2)\n', (1177, 1180), True, 'import numpy as np\n'), ((1195, 1207), 'numpy.uint32', 'np.uint32', (['(4)'], {}), '(4)\n', (1204, 1207), True, 'import numpy as np\n'), ((1222, 1234), 'numpy.uint32', 'np.uint32', (['(8)'], {}), '(8)\n', (1231, 1234), True, 'import numpy as np\n'), ((1249, 1262), 'numpy.uint32', 'np.uint32', (['(16)'], {}), '(16)\n', (1258, 1262), True, 'import numpy as np\n'), ((1723, 1734), 'numpy.floor', 'np.floor', (['y'], {}), '(y)\n', (1731, 1734), True, 'import numpy as np\n'), ((2540, 2549), 'mxnet.gpu', 'mx.gpu', (['(0)'], {}), '(0)\n', (2546, 2549), True, 'import mxnet as mx\n'), ((2564, 2588), 'gluoncv.model_zoo.get_model', 'get_model', (['"""resnet18_v2"""'], {}), "('resnet18_v2')\n", (2573, 2588), False, 'from gluoncv.model_zoo import get_model\n'), ((3226, 3262), 'mxnet.gluon.loss.SoftmaxCrossEntropyLoss', 'gluon.loss.SoftmaxCrossEntropyLoss', ([], {}), '()\n', (3260, 3262), False, 'from mxnet import autograd, gluon\n'), ((3285, 3317), 'utils.fake_data', 'fake_data', ([], {'batch_size': 'batch_size'}), '(batch_size=batch_size)\n', (3294, 3317), False, 'from utils import bernoulli, fake_data\n'), ((1425, 1434), 'numpy.abs', 'np.abs', (['y'], {}), '(y)\n', (1431, 1434), True, 'import numpy as np\n'), ((1792, 1811), 'utils.bernoulli', 'bernoulli', (['p', 'state'], {}), '(p, state)\n', (1801, 1811), False, 'from utils import bernoulli, fake_data\n'), ((1966, 1984), 'copy.deepcopy', 'copy.deepcopy', (['low'], {}), '(low)\n', (1979, 1984), False, 'import copy\n'), ((2612, 2628), 'mxnet.init.Xavier', 'mx.init.Xavier', ([], {}), '()\n', (2626, 2628), True, 'import mxnet as mx\n'), ((2659, 2693), 'mxnet.ndarray.ones', 'nd.ones', (['(1, 3, 224, 224)'], {'ctx': 'ctx'}), '((1, 3, 224, 224), ctx=ctx)\n', (2666, 2693), True, 'import mxnet.ndarray as nd\n'), ((3550, 3589), 'numpy.array', 'np.array', (['[seed, seed]'], {'dtype': 'np.uint64'}), '([seed, seed], dtype=np.uint64)\n', (3558, 3589), True, 'import numpy as np\n'), ((3618, 3657), 'numpy.array', 'np.array', (['[seed, seed]'], {'dtype': 'np.uint64'}), '([seed, seed], dtype=np.uint64)\n', (3626, 3657), True, 'import numpy as np\n'), ((3826, 3843), 'mxnet.autograd.record', 'autograd.record', ([], {}), '()\n', (3841, 3843), False, 'from mxnet import autograd, gluon\n'), ((2075, 2094), 'utils.bernoulli', 'bernoulli', (['p', 'state'], {}), '(p, state)\n', (2084, 2094), False, 'from utils import bernoulli, fake_data\n'), ((2427, 2461), 'numpy.random.randint', 'np.random.randint', (['(0)', '(2020)'], {'size': '(3)'}), '(0, 2020, size=3)\n', (2444, 2461), True, 'import numpy as np\n'), ((4847, 4866), 'numpy.abs', 'np.abs', (['(np_g - mx_g)'], {}), '(np_g - mx_g)\n', (4853, 4866), True, 'import numpy as np\n'), ((5081, 5105), 'numpy.nonzero', 'np.nonzero', (['(diff > 1e-05)'], {}), '(diff > 1e-05)\n', (5091, 5105), True, 'import numpy as np\n'), ((1913, 1923), 'numpy.ceil', 'np.ceil', (['y'], {}), '(y)\n', (1920, 1923), True, 'import numpy as np\n'), ((4390, 4400), 'byteps.mxnet.size', 'bps.size', ([], {}), '()\n', (4398, 4400), True, 'import byteps.mxnet as bps\n'), ((5037, 5049), 'numpy.max', 'np.max', (['diff'], {}), '(diff)\n', (5043, 5049), True, 'import numpy as np\n'), ((5466, 5486), 'numpy.finfo', 'np.finfo', (['np.float32'], {}), '(np.float32)\n', (5474, 5486), True, 'import numpy as np\n'), ((5604, 5624), 'numpy.finfo', 'np.finfo', (['np.float32'], {}), '(np.float32)\n', (5612, 5624), True, 'import numpy as np\n'), ((4789, 4809), 'numpy.finfo', 'np.finfo', (['np.float32'], {}), '(np.float32)\n', (4797, 4809), True, 'import numpy as np\n')]
import matplotlib.pyplot as plt import matplotlib.cm as cm import numpy as np import pandas as pd import sklearn from sklearn import datasets from sklearn.preprocessing import StandardScaler, MinMaxScaler, RobustScaler from sklearn.model_selection import train_test_split from sklearn.metrics import f1_score from sklearn.decomposition import PCA from sklearn.manifold import TSNE from sklearn.cluster import KMeans, AgglomerativeClustering from sklearn.mixture import GaussianMixture from scipy.cluster.hierarchy import dendrogram, linkage from sklearn.ensemble import RandomForestClassifier def plot_pca(X, components=[1, 2], figsize=(8, 6), color_vector=None, scale=False, title=None): """ Apply PCA to input X. Args: color_vector : each element corresponds to a row in X. Unique elements are colored with a different color. Returns: pca : object of sklearn.decomposition.PCA() x_pca : pca matrix fig : PCA plot figure handle """ if color_vector is not None: assert len(X) == len(color_vector), 'len(df) and len(color_vector) must be the same size.' n_colors = len(np.unique(color_vector)) colors = iter(cm.rainbow(np.linspace(0, 1, n_colors))) X = pd.DataFrame(X) # PCA if scale: xx = StandardScaler().fit_transform(X.values) else: xx = X.values n_components = max(components) pca = PCA(n_components=n_components) x_pca = pca.fit_transform(xx) pc0 = components[0] - 1 pc1 = components[1] - 1 # Start plotting fig, ax = plt.subplots(figsize=figsize) alpha = 0.7 if color_vector is not None: for color in np.unique(color_vector): idx = color_vector == color c = next(colors) ax.scatter(x_pca[idx, pc0], x_pca[idx, pc1], alpha=alpha, marker='o', edgecolor=c, color=c, label=f'{color}') else: ax.scatter(x_pca[:, pc0], x_pca[:, pc1], alpha=alpha, marker='s', edgecolors=None, color='b') ax.set_xlabel('PC' + str(components[0])) ax.set_ylabel('PC' + str(components[1])) ax.legend(loc='lower left', bbox_to_anchor=(1.01, 0.0), ncol=1, borderaxespad=0, frameon=True) plt.grid(True) if title: ax.set_title(title) print('Explained variance by PCA components [{}, {}]: [{:.5f}, {:.5f}]'.format( components[0], components[1], pca.explained_variance_ratio_[pc0], pca.explained_variance_ratio_[pc1])) return pca, x_pca def load_cancer_data(): """ Return cancer dataset (unscaled). Returns: X, Y """ # Load data from sklearn import datasets data = datasets.load_breast_cancer() # Get features and target X = pd.DataFrame(data['data'], columns=data['feature_names']) X = X[sorted(X.columns)] Y = data['target'] return X, Y def plot_kmeans_obj(X_sc, tot_clusters=10): opt_obj_vec = [] for k in range(1, tot_clusters): model = KMeans(n_clusters=k) model.fit(X_sc) opt_obj_vec.append(model.inertia_/X_sc.shape[0]) # Plot k = np.arange(len(opt_obj_vec)) + 1 plt.figure(figsize=(8, 6)) plt.plot(k, opt_obj_vec, '--o') plt.xlabel('Number of clusters (k)', fontsize=14) plt.ylabel('Inertia', fontsize=14) plt.grid(True) return opt_obj_vec def split_tr_te(X, Y, te_size=0.2): from sklearn.model_selection import train_test_split X = pd.DataFrame(X) Y = pd.DataFrame(Y) xtr, xte, ytr, yte = train_test_split(X, Y, test_size=te_size) xtr.reset_index(drop=True, inplace=True) xte.reset_index(drop=True, inplace=True) return xtr, xte, ytr, yte def chk_tissues(x, tissues): return any([True if t in x else False for t in tissues]) def create_rna_data(): # Load data rna_org = pd.read_csv('/Users/apartin/work/jdacs/Benchmarks/Data/Pilot1/combined_rnaseq_data_lincs1000', sep='\t') meta_org = pd.read_csv('/Users/apartin/work/jdacs/Benchmarks/Data/Pilot1/combined_metadata_2018May.txt', sep='\t') ctypes_org = pd.read_csv('/Users/apartin/work/jdacs/Benchmarks/Data/Pilot1/combined_cancer_types', sep='\t') print(rna_org.shape) print(meta_org.shape) print(ctypes_org.shape) rna = rna_org.copy() meta = meta_org.copy() # Update rna df rna.rename(columns={'Sample': 'sample'}, inplace=True) rna.set_index('sample', inplace=True) # set dataframe index to sample (we will later merge dataframes on index) rna.columns = ['GE_'+c for c in rna.columns] # add prefix 'GE_' to all gene expression columns # Scale the features rna_index, rna_cols = rna.index, rna.columns rna = StandardScaler().fit_transform(rna) rna = pd.DataFrame(rna, index=rna_index, columns=rna_cols) # Update meta df meta = meta.rename( columns={'sample_name': 'sample', 'dataset': 'src', 'sample_category': 'category', 'sample_descr': 'descr', 'tumor_site_from_data_src': 'csite', 'tumor_type_from_data_src': 'ctype', 'simplified_tumor_site': 'simp_csite', 'simplified_tumor_type': 'simp_ctype'}) # Extract a subset of cols meta = meta[['sample', 'src', 'csite', 'ctype', 'simp_csite', 'simp_ctype', 'category', 'descr']] meta['src'] = meta['src'].map(lambda x: x.lower()) meta['csite'] = meta['csite'].map(lambda x: x.strip()) meta['ctype'] = meta['ctype'].map(lambda x: x.strip()) meta['src'] = meta['src'].map(lambda x: 'gdc' if x=='tcga' else x) meta.set_index('sample', inplace=True) # add prefix 'GE_' to all gene expression columns # Filter on source sources = ['gdc'] rna = rna.loc[rna.index.map(lambda s: s.split('.')[0].lower() in sources), :] print(rna.shape) # Update rna and meta on = 'sample' df = pd.merge(meta, rna, how='inner', on=on) col = 'csite' df[col] = df[col].map(lambda x: x.split('/')[0]) # df[col].value_counts() # GDC tissues = ['breast', 'skin', 'lung', 'prostate'] df = df.loc[ df[col].map(lambda x: chk_tissues(x, tissues)), : ] print(df['csite'].value_counts()) # Randomly sample a subset of samples to create a balanced dataset sample_sz = 7 df_list = [] for i, t in enumerate(tissues): print(t) tmp = df[ df[col].isin([t]) ].sample(n=sample_sz, random_state=seed) df_list.append(tmp) df = pd.concat(df_list, axis=0) df = df.sample(frac=1.0) # Dump df df = df.drop(columns=['simp_csite', 'simp_ctype', 'category', 'descr']) df.to_csv('rna.csv') def plot_hists(k_means_bins, y_bins, x_labels = ['Malignant', 'Benign']): """ Specific function to plot histograms from bins. matplotlib.org/gallery/lines_bars_and_markers/barchart.html#sphx-glr-gallery-lines-bars-and-markers-barchart-py """ x = np.arange(len(x_labels)) # the label locations width = 0.35 # the width of the bars fig, ax = plt.subplots() rects1 = ax.bar(x - width/2, y_bins, width, label='True label') rects2 = ax.bar(x + width/2, k_means_bins, width, label='K-means') # Add some text for labels, title and custom x-axis tick labels, etc. ax.set_ylabel('Total count') ax.set_title('Histogram') ax.set_xticks(x) ax.set_xticklabels(x_labels) ax.set_ylim(0, 450) ax.legend(loc='best') def autolabel(rects): """ Attach a text label above each bar in *rects*, displaying its height. """ for rect in rects: height = rect.get_height() ax.annotate('{}'.format(height), xy=(rect.get_x() + rect.get_width() / 2, height), xytext=(0, 3), # 3 points vertical offset textcoords="offset points", ha='center', va='bottom') autolabel(rects1) autolabel(rects2) fig.tight_layout() plt.show()
[ "pandas.DataFrame", "matplotlib.pyplot.show", "sklearn.preprocessing.StandardScaler", "matplotlib.pyplot.plot", "pandas.read_csv", "sklearn.model_selection.train_test_split", "pandas.merge", "sklearn.cluster.KMeans", "sklearn.datasets.load_breast_cancer", "matplotlib.pyplot.figure", "sklearn.decomposition.PCA", "numpy.linspace", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.subplots", "pandas.concat", "numpy.unique", "matplotlib.pyplot.grid" ]
[((1256, 1271), 'pandas.DataFrame', 'pd.DataFrame', (['X'], {}), '(X)\n', (1268, 1271), True, 'import pandas as pd\n'), ((1429, 1459), 'sklearn.decomposition.PCA', 'PCA', ([], {'n_components': 'n_components'}), '(n_components=n_components)\n', (1432, 1459), False, 'from sklearn.decomposition import PCA\n'), ((1586, 1615), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': 'figsize'}), '(figsize=figsize)\n', (1598, 1615), True, 'import matplotlib.pyplot as plt\n'), ((2274, 2288), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (2282, 2288), True, 'import matplotlib.pyplot as plt\n'), ((2728, 2757), 'sklearn.datasets.load_breast_cancer', 'datasets.load_breast_cancer', ([], {}), '()\n', (2755, 2757), False, 'from sklearn import datasets\n'), ((2797, 2854), 'pandas.DataFrame', 'pd.DataFrame', (["data['data']"], {'columns': "data['feature_names']"}), "(data['data'], columns=data['feature_names'])\n", (2809, 2854), True, 'import pandas as pd\n'), ((3216, 3242), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(8, 6)'}), '(figsize=(8, 6))\n', (3226, 3242), True, 'import matplotlib.pyplot as plt\n'), ((3247, 3278), 'matplotlib.pyplot.plot', 'plt.plot', (['k', 'opt_obj_vec', '"""--o"""'], {}), "(k, opt_obj_vec, '--o')\n", (3255, 3278), True, 'import matplotlib.pyplot as plt\n'), ((3283, 3332), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Number of clusters (k)"""'], {'fontsize': '(14)'}), "('Number of clusters (k)', fontsize=14)\n", (3293, 3332), True, 'import matplotlib.pyplot as plt\n'), ((3337, 3371), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Inertia"""'], {'fontsize': '(14)'}), "('Inertia', fontsize=14)\n", (3347, 3371), True, 'import matplotlib.pyplot as plt\n'), ((3376, 3390), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (3384, 3390), True, 'import matplotlib.pyplot as plt\n'), ((3526, 3541), 'pandas.DataFrame', 'pd.DataFrame', (['X'], {}), '(X)\n', (3538, 3541), True, 'import pandas as pd\n'), ((3550, 3565), 'pandas.DataFrame', 'pd.DataFrame', (['Y'], {}), '(Y)\n', (3562, 3565), True, 'import pandas as pd\n'), ((3596, 3637), 'sklearn.model_selection.train_test_split', 'train_test_split', (['X', 'Y'], {'test_size': 'te_size'}), '(X, Y, test_size=te_size)\n', (3612, 3637), False, 'from sklearn.model_selection import train_test_split\n'), ((3910, 4024), 'pandas.read_csv', 'pd.read_csv', (['"""/Users/apartin/work/jdacs/Benchmarks/Data/Pilot1/combined_rnaseq_data_lincs1000"""'], {'sep': '"""\t"""'}), "(\n '/Users/apartin/work/jdacs/Benchmarks/Data/Pilot1/combined_rnaseq_data_lincs1000'\n , sep='\\t')\n", (3921, 4024), True, 'import pandas as pd\n'), ((4030, 4143), 'pandas.read_csv', 'pd.read_csv', (['"""/Users/apartin/work/jdacs/Benchmarks/Data/Pilot1/combined_metadata_2018May.txt"""'], {'sep': '"""\t"""'}), "(\n '/Users/apartin/work/jdacs/Benchmarks/Data/Pilot1/combined_metadata_2018May.txt'\n , sep='\\t')\n", (4041, 4143), True, 'import pandas as pd\n'), ((4151, 4255), 'pandas.read_csv', 'pd.read_csv', (['"""/Users/apartin/work/jdacs/Benchmarks/Data/Pilot1/combined_cancer_types"""'], {'sep': '"""\t"""'}), "(\n '/Users/apartin/work/jdacs/Benchmarks/Data/Pilot1/combined_cancer_types',\n sep='\\t')\n", (4162, 4255), True, 'import pandas as pd\n'), ((4823, 4875), 'pandas.DataFrame', 'pd.DataFrame', (['rna'], {'index': 'rna_index', 'columns': 'rna_cols'}), '(rna, index=rna_index, columns=rna_cols)\n', (4835, 4875), True, 'import pandas as pd\n'), ((5931, 5970), 'pandas.merge', 'pd.merge', (['meta', 'rna'], {'how': '"""inner"""', 'on': 'on'}), "(meta, rna, how='inner', on=on)\n", (5939, 5970), True, 'import pandas as pd\n'), ((6534, 6560), 'pandas.concat', 'pd.concat', (['df_list'], {'axis': '(0)'}), '(df_list, axis=0)\n', (6543, 6560), True, 'import pandas as pd\n'), ((7087, 7101), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (7099, 7101), True, 'import matplotlib.pyplot as plt\n'), ((8023, 8033), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (8031, 8033), True, 'import matplotlib.pyplot as plt\n'), ((1687, 1710), 'numpy.unique', 'np.unique', (['color_vector'], {}), '(color_vector)\n', (1696, 1710), True, 'import numpy as np\n'), ((3043, 3063), 'sklearn.cluster.KMeans', 'KMeans', ([], {'n_clusters': 'k'}), '(n_clusters=k)\n', (3049, 3063), False, 'from sklearn.cluster import KMeans, AgglomerativeClustering\n'), ((1159, 1182), 'numpy.unique', 'np.unique', (['color_vector'], {}), '(color_vector)\n', (1168, 1182), True, 'import numpy as np\n'), ((4777, 4793), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (4791, 4793), False, 'from sklearn.preprocessing import StandardScaler, MinMaxScaler, RobustScaler\n'), ((1217, 1244), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', 'n_colors'], {}), '(0, 1, n_colors)\n', (1228, 1244), True, 'import numpy as np\n'), ((1310, 1326), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (1324, 1326), False, 'from sklearn.preprocessing import StandardScaler, MinMaxScaler, RobustScaler\n')]
import numpy as np import pytz from pandas._libs.tslibs import ( Resolution, get_resolution, ) from pandas._libs.tslibs.dtypes import NpyDatetimeUnit def test_get_resolution_nano(): # don't return the fallback RESO_DAY arr = np.array([1], dtype=np.int64) res = get_resolution(arr) assert res == Resolution.RESO_NS def test_get_resolution_non_nano_data(): arr = np.array([1], dtype=np.int64) res = get_resolution(arr, None, NpyDatetimeUnit.NPY_FR_us.value) assert res == Resolution.RESO_US res = get_resolution(arr, pytz.UTC, NpyDatetimeUnit.NPY_FR_us.value) assert res == Resolution.RESO_US
[ "pandas._libs.tslibs.get_resolution", "numpy.array" ]
[((244, 273), 'numpy.array', 'np.array', (['[1]'], {'dtype': 'np.int64'}), '([1], dtype=np.int64)\n', (252, 273), True, 'import numpy as np\n'), ((284, 303), 'pandas._libs.tslibs.get_resolution', 'get_resolution', (['arr'], {}), '(arr)\n', (298, 303), False, 'from pandas._libs.tslibs import Resolution, get_resolution\n'), ((394, 423), 'numpy.array', 'np.array', (['[1]'], {'dtype': 'np.int64'}), '([1], dtype=np.int64)\n', (402, 423), True, 'import numpy as np\n'), ((434, 492), 'pandas._libs.tslibs.get_resolution', 'get_resolution', (['arr', 'None', 'NpyDatetimeUnit.NPY_FR_us.value'], {}), '(arr, None, NpyDatetimeUnit.NPY_FR_us.value)\n', (448, 492), False, 'from pandas._libs.tslibs import Resolution, get_resolution\n'), ((541, 603), 'pandas._libs.tslibs.get_resolution', 'get_resolution', (['arr', 'pytz.UTC', 'NpyDatetimeUnit.NPY_FR_us.value'], {}), '(arr, pytz.UTC, NpyDatetimeUnit.NPY_FR_us.value)\n', (555, 603), False, 'from pandas._libs.tslibs import Resolution, get_resolution\n')]
import sys import argparse from yolo import YOLO, detect_video from PIL import Image from keras.utils.generic_utils import Progbar import os import numpy as np import matplotlib.pyplot as plt from PIL import ImageDraw, ImageFont def detect_sequence_imgs(yolo, list_images, output_dir, save_img=False): # Prepare directory to save the results if not os.path.exists(output_dir): os.makedirs(output_dir) # Load txt files with the paths of all the images with open(list_images) as f: lines = f.readlines() # Prepare progress bar steps = len(lines) progbar = Progbar(target=steps) # Iterate over each of the images for i in range(0, steps): # Load image lines[i] = lines[i].replace("\n", "") if not lines[i].endswith(('.jpg')): lines[i] += '.jpg' try: img = Image.open(lines[i]) except: print('Open Error! Try again!') continue else: # Make predictions predictions = yolo.detection_results(img, lines[i]) # Create dir if not exists if not os.path.exists(output_dir): os.mkdir(output_dir) # Save the results on a txt (one txt per image) results = open(os.path.join(output_dir, lines[i].replace("/", "__").replace('.jpg', ".txt")), 'w') if save_img: font = ImageFont.truetype(font='font/FiraMono-Medium.otf', size=np.floor(3e-2 * img.size[1] + 0.5).astype('int32')) thickness = (img.size[0] + img.size[1]) // 300 draw = ImageDraw.Draw(img) for j in range(0, predictions.shape[0]): if predictions.shape[1] > 1: label = predictions[j, 0].split() left = predictions[j, 1] top = predictions[j, 2] right = predictions[j, 3] bottom = predictions[j, 4] print('\tClass = {}, Confidence = {}, Xmin = {}, Ymin = {}, Xmax = {}, Ymax = {}'.format(label[0], label[1], left, top, right, bottom)) results.write(predictions[j, 0] + ' ' + left + ' ' + top + ' ' + right + ' ' + bottom + '\n') if save_img: left = int(left) top = int(top) right = int(right) bottom = int(bottom) label_size = draw.textsize(predictions[j, 0], font) if top - label_size[1] >= 0: text_origin = np.array([left, top - label_size[1]]) else: text_origin = np.array([left, top + 1]) # My kingdom for a good redistributable image drawing library. for k in range(thickness): draw.rectangle([left + k, top + k, right - k, bottom - k], outline=(0, 255, 0)) draw.rectangle([tuple(text_origin), tuple(text_origin + label_size)], fill=(0, 255, 0)) draw.text(text_origin, predictions[j, 0], fill=(0, 0, 0), font=font) else: results.write(predictions[j, 0]) results.close() # Insert the results on the jpg if save_img: img.save(os.path.join(output_dir, lines[i].replace("/", "__").replace("jpg", "png")), 'PNG') del draw # Update progress bar progbar.update(i+1), print('\t') yolo.close_session() def detect_img(yolo, image_path, output_dir='', gt='', save_img=False): # Load image try: image= Image.open(image_path) except: print('Open Error! Try again!') else: # Make predictions img_pred, predictions = yolo.detect_image(image) # If gt is set, insert the gts on the image if len(gt) > 0: # Define font of the text of the labels and the thickness of the boxes font = ImageFont.truetype(font='font/FiraMono-Medium.otf', size=np.floor(3e-2 * image.size[1] + 0.5).astype('int32')) thickness = (image.size[0] + image.size[1]) // 300 # Load gt with open(gt) as g: lines = g.readlines() # Iterate over each bounding box for i in range(0, len(lines)): # Prepare to draw on the image base = img_pred.convert('RGBA') img_alpha = Image.new('RGBA', base.size, (255, 255, 255, 0)) draw = ImageDraw.Draw(img_alpha, 'RGBA') # Get label lines[i] = lines[i].replace("\n", "") line = lines[i].split() label = line[0] # Get the coordinates left = float(line[1]) top = float(line[2]) right = float(line[3]) bottom = float(line[4]) # Prepare box for the label label_size = draw.textsize(label, font) if top - label_size[1] >= 0: text_origin = np.array([left, top - label_size[1]]) else: text_origin = np.array([left, top + 1]) # Iterate to draw the box more thick for k in range(thickness): draw.rectangle([left + k, top + k, right - k, bottom - k], outline=(255, 0, 0, 255)) # Draw the box of the labels draw.rectangle([tuple(text_origin), tuple(text_origin + label_size)], fill=(255, 0, 0, 64)) # Insert the text of the labels draw.text(text_origin, label, fill=(0, 0, 0, 255), font=font) img_pred = Image.alpha_composite(base, img_alpha) del draw # If output_dir is set, save the results on a txt and a jpg if len(output_dir) > 0: # Create dir if not exists if not os.path.exists(output_dir): os.mkdir(output_dir) # Insert the results on the txt results = open(output_dir + "/prediction.txt", 'w') for j in range(0, predictions.shape[0]): if predictions.shape[1] > 1: results.write(predictions[j, 0] + ' ' + predictions[j, 1] + ' ' + predictions[j, 2] + ' ' + predictions[j, 3] + ' ' + predictions[j, 4] + '\n') else: results.write(predictions[j, 0]) results.close() # Insert the results on the jpg if save_img: img_pred.save(output_dir + "/prediction.png") # Plot the result plt.imshow(np.array(img_pred)), plt.show() yolo.close_session() def str2bool(v): if isinstance(v, bool): return v if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') FLAGS = None if __name__ == '__main__': # class YOLO defines the default value, so suppress any default here parser = argparse.ArgumentParser(argument_default=argparse.SUPPRESS) ''' Command line options ''' parser.add_argument( '--model_path', type=str, dest='model_path', help='path to model weight file, default ' + YOLO.get_defaults("model_path") ) parser.add_argument( '--anchors_path', type=str, dest='anchors_path', help='path to anchor definitions, default ' + YOLO.get_defaults("anchors_path") ) parser.add_argument( '--classes_path', type=str, dest='classes_path', help='path to class definitions, default ' + YOLO.get_defaults("classes_path") ) parser.add_argument( '--image_size', type=int, dest='image_size', help='Size of the processed image(s), same for width and height,' 'default ({}, {})'.format(YOLO.get_defaults("model_image_size")[0], YOLO.get_defaults("model_image_size")[1]) ) parser.add_argument( '--score', type=float, dest='score', default=0.3, help='confidence score threshold, default ' + str(YOLO.get_defaults("score")) ) parser.add_argument( '--iou', type=float, dest='iou', default=0.5, help='IoU threshold, default ' + str(YOLO.get_defaults("iou")) ) parser.add_argument( '--gpu_num', type=int, help='Number of GPU to use, default ' + str(YOLO.get_defaults("gpu_num")) ) parser.add_argument( '--image', default=False, action="store_true", help='Image detection mode, will ignore all positional arguments' ) ''' Command line positional arguments -- for video detection mode ''' parser.add_argument( "--input", nargs='?', type=str,required=False, default='./path2your_video', help = "Video input path" ) parser.add_argument( "--output", nargs='?', type=str, default="", help = "[Optional] Video output path" ) parser.add_argument( "--save_img", nargs='?', type=str2bool, default=False, help="Save image with predictions or not" ) # Only for single detections (single_image=True) parser.add_argument( "--gt", nargs='?', type=str, default="", help="Path to txt file with the ground truth of the given image" ) # Required for multiple detections (single_image=False) parser.add_argument( "--list_images", nargs='?', type=str, default="/media/nsp/62D49B40D49B157F/u/nsp/TFM_Natalia/PIROPO/Test/lista_img_test.txt", help="Path to txt file listing the path of each of the images" ) # Required for multiple detections (single_image=False) parser.add_argument( "--single_image", nargs='?', type=str, default="", help="If you wish to detect one single image, indicate here its path" ) parser.add_argument( "--output_dir", nargs='?', type=str, default="/media/nsp/62D49B40D49B157F/u/nsp/TFM_Natalia/keras-yolo3/input/detection-results-trial10-hw38", help="Path where a set of txt files (one per image) will be generated" ) FLAGS = parser.parse_args() if len(FLAGS.single_image) > 0: detect_img(YOLO(**vars(FLAGS)), image_path=FLAGS.single_image, output_dir=FLAGS.output_dir, gt=FLAGS.gt, save_img=FLAGS.save_img) else: detect_sequence_imgs(YOLO(**vars(FLAGS)), list_images=FLAGS.list_images, output_dir=FLAGS.output_dir, save_img=FLAGS.save_img)
[ "os.mkdir", "PIL.Image.new", "keras.utils.generic_utils.Progbar", "matplotlib.pyplot.show", "os.makedirs", "argparse.ArgumentParser", "numpy.floor", "os.path.exists", "PIL.Image.open", "PIL.Image.alpha_composite", "numpy.array", "yolo.YOLO.get_defaults", "PIL.ImageDraw.Draw", "argparse.ArgumentTypeError" ]
[((626, 647), 'keras.utils.generic_utils.Progbar', 'Progbar', ([], {'target': 'steps'}), '(target=steps)\n', (633, 647), False, 'from keras.utils.generic_utils import Progbar\n'), ((7588, 7647), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'argument_default': 'argparse.SUPPRESS'}), '(argument_default=argparse.SUPPRESS)\n', (7611, 7647), False, 'import argparse\n'), ((374, 400), 'os.path.exists', 'os.path.exists', (['output_dir'], {}), '(output_dir)\n', (388, 400), False, 'import os\n'), ((411, 434), 'os.makedirs', 'os.makedirs', (['output_dir'], {}), '(output_dir)\n', (422, 434), False, 'import os\n'), ((3912, 3934), 'PIL.Image.open', 'Image.open', (['image_path'], {}), '(image_path)\n', (3922, 3934), False, 'from PIL import Image\n'), ((901, 921), 'PIL.Image.open', 'Image.open', (['lines[i]'], {}), '(lines[i])\n', (911, 921), False, 'from PIL import Image\n'), ((7112, 7122), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (7120, 7122), True, 'import matplotlib.pyplot as plt\n'), ((7396, 7449), 'argparse.ArgumentTypeError', 'argparse.ArgumentTypeError', (['"""Boolean value expected."""'], {}), "('Boolean value expected.')\n", (7422, 7449), False, 'import argparse\n'), ((1182, 1208), 'os.path.exists', 'os.path.exists', (['output_dir'], {}), '(output_dir)\n', (1196, 1208), False, 'import os\n'), ((1227, 1247), 'os.mkdir', 'os.mkdir', (['output_dir'], {}), '(output_dir)\n', (1235, 1247), False, 'import os\n'), ((1715, 1734), 'PIL.ImageDraw.Draw', 'ImageDraw.Draw', (['img'], {}), '(img)\n', (1729, 1734), False, 'from PIL import ImageDraw, ImageFont\n'), ((4805, 4853), 'PIL.Image.new', 'Image.new', (['"""RGBA"""', 'base.size', '(255, 255, 255, 0)'], {}), "('RGBA', base.size, (255, 255, 255, 0))\n", (4814, 4853), False, 'from PIL import Image\n'), ((4878, 4911), 'PIL.ImageDraw.Draw', 'ImageDraw.Draw', (['img_alpha', '"""RGBA"""'], {}), "(img_alpha, 'RGBA')\n", (4892, 4911), False, 'from PIL import ImageDraw, ImageFont\n'), ((6101, 6139), 'PIL.Image.alpha_composite', 'Image.alpha_composite', (['base', 'img_alpha'], {}), '(base, img_alpha)\n', (6122, 6139), False, 'from PIL import Image\n'), ((6332, 6358), 'os.path.exists', 'os.path.exists', (['output_dir'], {}), '(output_dir)\n', (6346, 6358), False, 'import os\n'), ((6377, 6397), 'os.mkdir', 'os.mkdir', (['output_dir'], {}), '(output_dir)\n', (6385, 6397), False, 'import os\n'), ((7091, 7109), 'numpy.array', 'np.array', (['img_pred'], {}), '(img_pred)\n', (7099, 7109), True, 'import numpy as np\n'), ((7826, 7857), 'yolo.YOLO.get_defaults', 'YOLO.get_defaults', (['"""model_path"""'], {}), "('model_path')\n", (7843, 7857), False, 'from yolo import YOLO, detect_video\n'), ((8006, 8039), 'yolo.YOLO.get_defaults', 'YOLO.get_defaults', (['"""anchors_path"""'], {}), "('anchors_path')\n", (8023, 8039), False, 'from yolo import YOLO, detect_video\n'), ((8187, 8220), 'yolo.YOLO.get_defaults', 'YOLO.get_defaults', (['"""classes_path"""'], {}), "('classes_path')\n", (8204, 8220), False, 'from yolo import YOLO, detect_video\n'), ((5456, 5493), 'numpy.array', 'np.array', (['[left, top - label_size[1]]'], {}), '([left, top - label_size[1]])\n', (5464, 5493), True, 'import numpy as np\n'), ((5552, 5577), 'numpy.array', 'np.array', (['[left, top + 1]'], {}), '([left, top + 1])\n', (5560, 5577), True, 'import numpy as np\n'), ((8426, 8463), 'yolo.YOLO.get_defaults', 'YOLO.get_defaults', (['"""model_image_size"""'], {}), "('model_image_size')\n", (8443, 8463), False, 'from yolo import YOLO, detect_video\n'), ((8509, 8546), 'yolo.YOLO.get_defaults', 'YOLO.get_defaults', (['"""model_image_size"""'], {}), "('model_image_size')\n", (8526, 8546), False, 'from yolo import YOLO, detect_video\n'), ((8704, 8730), 'yolo.YOLO.get_defaults', 'YOLO.get_defaults', (['"""score"""'], {}), "('score')\n", (8721, 8730), False, 'from yolo import YOLO, detect_video\n'), ((8868, 8892), 'yolo.YOLO.get_defaults', 'YOLO.get_defaults', (['"""iou"""'], {}), "('iou')\n", (8885, 8892), False, 'from yolo import YOLO, detect_video\n'), ((9014, 9042), 'yolo.YOLO.get_defaults', 'YOLO.get_defaults', (['"""gpu_num"""'], {}), "('gpu_num')\n", (9031, 9042), False, 'from yolo import YOLO, detect_video\n'), ((2769, 2806), 'numpy.array', 'np.array', (['[left, top - label_size[1]]'], {}), '([left, top - label_size[1]])\n', (2777, 2806), True, 'import numpy as np\n'), ((2881, 2906), 'numpy.array', 'np.array', (['[left, top + 1]'], {}), '([left, top + 1])\n', (2889, 2906), True, 'import numpy as np\n'), ((4370, 4406), 'numpy.floor', 'np.floor', (['(0.03 * image.size[1] + 0.5)'], {}), '(0.03 * image.size[1] + 0.5)\n', (4378, 4406), True, 'import numpy as np\n'), ((1575, 1609), 'numpy.floor', 'np.floor', (['(0.03 * img.size[1] + 0.5)'], {}), '(0.03 * img.size[1] + 0.5)\n', (1583, 1609), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- import os, sys import numpy as np import matplotlib.pylab as plt from sklearn.manifold import TSNE import json, pickle def load_json_data(json_path): fea_dict = json.load(open(json_path)) fea_category_dict = {} for key in fea_dict.keys(): cat = key[:key.find('_')] if cat not in fea_category_dict: fea_category_dict[cat] = [fea_dict[key]] else: fea_category_dict[cat].append(fea_dict[key]) return fea_category_dict def generate_data_label(feas): Data = [] Label = [] for iter in range(0, 24): if iter<22: tn = len(feas[str(iter+1)]) for jter in range(tn): temp = feas[str(iter+1)][jter] Data.append(np.array(temp)) Label.append([iter]) elif iter==22: tn = len(feas['X']) for jter in range(tn): temp = feas['X'][jter] Data.append(np.array(temp)) Label.append([iter]) else: tn = len(feas['Y']) for jter in range(tn): temp = feas['Y'][jter] Data.append(np.array(temp)) Label.append([iter]) Data = np.array(Data) Label = np.squeeze(Label) return Data, Label if __name__ == "__main__": test_fea_path = "chromosome_test_feas.json" test_feas = load_json_data(test_fea_path) feas, labels = generate_data_label(test_feas) y_data = labels num_label = len(np.unique(y_data)) print("tsne...") # # # original space # ori_embed_feas = TSNE(n_components=2).fit_transform(feas) # ori_vis_x = ori_embed_feas[:, 0] # ori_vis_y = ori_embed_feas[:, 1] # project space lda_paras = pickle.load(open("lda_model.pkl", "rb")) prj_feas = np.matmul(feas, lda_paras['ProjectMat']) prj_embed_feas = TSNE(n_components=2).fit_transform(prj_feas) prj_vis_x = prj_embed_feas[:, 0] prj_vis_y = prj_embed_feas[:, 1] # fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(7, 3), dpi=300) # ori = ax1.scatter(ori_vis_x, ori_vis_y, c=y_data, cmap=plt.cm.get_cmap("jet", num_label)) # plt.colorbar(ori, ax=ax1) # ax1.set_title("Original chromosome feature embedding", fontsize=8) # prj = ax2.scatter(prj_vis_x, prj_vis_y, c=y_data, cmap=plt.cm.get_cmap("jet", num_label)) # plt.colorbar(prj, ax=ax2) # ax2.set_title("LDA projected feature embedding", fontsize=8) fig, axes = plt.subplots(1, 1, figsize=(6, 6), dpi=300) prj = axes.scatter(prj_vis_x, prj_vis_y, s=3, c=y_data, cmap=plt.cm.get_cmap("jet", num_label)) plt.colorbar(prj, ax=axes) axes.set_title("LDA projected feature embedding", fontsize=8) plt.show()
[ "matplotlib.pylab.colorbar", "sklearn.manifold.TSNE", "numpy.array", "numpy.matmul", "matplotlib.pylab.cm.get_cmap", "numpy.squeeze", "matplotlib.pylab.subplots", "numpy.unique", "matplotlib.pylab.show" ]
[((1006, 1020), 'numpy.array', 'np.array', (['Data'], {}), '(Data)\n', (1014, 1020), True, 'import numpy as np\n'), ((1030, 1047), 'numpy.squeeze', 'np.squeeze', (['Label'], {}), '(Label)\n', (1040, 1047), True, 'import numpy as np\n'), ((1583, 1623), 'numpy.matmul', 'np.matmul', (['feas', "lda_paras['ProjectMat']"], {}), "(feas, lda_paras['ProjectMat'])\n", (1592, 1623), True, 'import numpy as np\n'), ((2246, 2289), 'matplotlib.pylab.subplots', 'plt.subplots', (['(1)', '(1)'], {'figsize': '(6, 6)', 'dpi': '(300)'}), '(1, 1, figsize=(6, 6), dpi=300)\n', (2258, 2289), True, 'import matplotlib.pylab as plt\n'), ((2394, 2420), 'matplotlib.pylab.colorbar', 'plt.colorbar', (['prj'], {'ax': 'axes'}), '(prj, ax=axes)\n', (2406, 2420), True, 'import matplotlib.pylab as plt\n'), ((2492, 2502), 'matplotlib.pylab.show', 'plt.show', ([], {}), '()\n', (2500, 2502), True, 'import matplotlib.pylab as plt\n'), ((1283, 1300), 'numpy.unique', 'np.unique', (['y_data'], {}), '(y_data)\n', (1292, 1300), True, 'import numpy as np\n'), ((1645, 1665), 'sklearn.manifold.TSNE', 'TSNE', ([], {'n_components': '(2)'}), '(n_components=2)\n', (1649, 1665), False, 'from sklearn.manifold import TSNE\n'), ((2355, 2388), 'matplotlib.pylab.cm.get_cmap', 'plt.cm.get_cmap', (['"""jet"""', 'num_label'], {}), "('jet', num_label)\n", (2370, 2388), True, 'import matplotlib.pylab as plt\n'), ((664, 678), 'numpy.array', 'np.array', (['temp'], {}), '(temp)\n', (672, 678), True, 'import numpy as np\n'), ((815, 829), 'numpy.array', 'np.array', (['temp'], {}), '(temp)\n', (823, 829), True, 'import numpy as np\n'), ((956, 970), 'numpy.array', 'np.array', (['temp'], {}), '(temp)\n', (964, 970), True, 'import numpy as np\n')]
import cv2 as cv import numpy as np def const_accel(dt = 1.0/30): kf = cv.KalmanFilter(18, 6, 0) state = np.zeros((18, 1), np.float32) # Transition matrix position/orientation tmp = np.eye(9, dtype=np.float32) tmp[0:3, 3:6] = np.eye(3, dtype=np.float32) * dt tmp[3:6, 6:9] = np.eye(3, dtype=np.float32) * dt tmp[0:3, 6:9] = np.eye(3, dtype=np.float32) * dt * dt / 2 # Transition matrix kf.transitionMatrix = np.concatenate(( np.concatenate((tmp, np.zeros((9, 9))), axis=1), np.concatenate((np.zeros((9, 9)), tmp), axis=1)), axis=0 ) # Measurement matrix tmp = np.zeros((6, 18), dtype=np.float32) tmp[0:3, 0:3] = np.eye(3, dtype=np.float32) tmp[3:6, 9:12] = np.eye(3, dtype=np.float32) kf.measurementMatrix = tmp # Process/Measurement noise covariance & Error kf.processNoiseCov = 1e-5 * np.eye(18, dtype=np.float32) kf.measurementNoiseCov = 1e-4 * np.eye(6, dtype=np.float32) kf.errorCovPost = np.eye(18, dtype=np.float32) return kf def const_vel(dt = 1.0/30): kf = cv.KalmanFilter(12, 6, 0) state = np.zeros((12, 1), np.float32) # Transition matrix position/orientation tmp = np.eye(9, dtype=np.float32) tmp[0:3, 3:6] = np.eye(3, dtype=np.float32) * dt # Transition matrix kf.transitionMatrix = np.concatenate(( np.concatenate((tmp, np.zeros((6, 6))), axis=1), np.concatenate((np.zeros((6, 6)), tmp), axis=1)), axis=0 ) # Measurement matrix tmp = np.zeros((6, 12), dtype=np.float32) tmp[0:3, 0:3] = np.eye(3, dtype=np.float32) tmp[3:6, 6:9] = np.eye(3, dtype=np.float32) kf.measurementMatrix = tmp # Process/Measurement noise covariance & Error kf.processNoiseCov = 1e-5 * np.eye(18, dtype=np.float32) kf.measurementNoiseCov = 1e-4 * np.eye(6, dtype=np.float32) kf.errorCovPost = np.eye(18, dtype=np.float32) return kf filters = { 'const_accel': const_accel, 'const_vel': const_vel }
[ "cv2.KalmanFilter", "numpy.eye", "numpy.zeros" ]
[((77, 102), 'cv2.KalmanFilter', 'cv.KalmanFilter', (['(18)', '(6)', '(0)'], {}), '(18, 6, 0)\n', (92, 102), True, 'import cv2 as cv\n'), ((115, 144), 'numpy.zeros', 'np.zeros', (['(18, 1)', 'np.float32'], {}), '((18, 1), np.float32)\n', (123, 144), True, 'import numpy as np\n'), ((205, 232), 'numpy.eye', 'np.eye', (['(9)'], {'dtype': 'np.float32'}), '(9, dtype=np.float32)\n', (211, 232), True, 'import numpy as np\n'), ((651, 686), 'numpy.zeros', 'np.zeros', (['(6, 18)'], {'dtype': 'np.float32'}), '((6, 18), dtype=np.float32)\n', (659, 686), True, 'import numpy as np\n'), ((707, 734), 'numpy.eye', 'np.eye', (['(3)'], {'dtype': 'np.float32'}), '(3, dtype=np.float32)\n', (713, 734), True, 'import numpy as np\n'), ((756, 783), 'numpy.eye', 'np.eye', (['(3)'], {'dtype': 'np.float32'}), '(3, dtype=np.float32)\n', (762, 783), True, 'import numpy as np\n'), ((1018, 1046), 'numpy.eye', 'np.eye', (['(18)'], {'dtype': 'np.float32'}), '(18, dtype=np.float32)\n', (1024, 1046), True, 'import numpy as np\n'), ((1105, 1130), 'cv2.KalmanFilter', 'cv.KalmanFilter', (['(12)', '(6)', '(0)'], {}), '(12, 6, 0)\n', (1120, 1130), True, 'import cv2 as cv\n'), ((1143, 1172), 'numpy.zeros', 'np.zeros', (['(12, 1)', 'np.float32'], {}), '((12, 1), np.float32)\n', (1151, 1172), True, 'import numpy as np\n'), ((1233, 1260), 'numpy.eye', 'np.eye', (['(9)'], {'dtype': 'np.float32'}), '(9, dtype=np.float32)\n', (1239, 1260), True, 'import numpy as np\n'), ((1564, 1599), 'numpy.zeros', 'np.zeros', (['(6, 12)'], {'dtype': 'np.float32'}), '((6, 12), dtype=np.float32)\n', (1572, 1599), True, 'import numpy as np\n'), ((1620, 1647), 'numpy.eye', 'np.eye', (['(3)'], {'dtype': 'np.float32'}), '(3, dtype=np.float32)\n', (1626, 1647), True, 'import numpy as np\n'), ((1668, 1695), 'numpy.eye', 'np.eye', (['(3)'], {'dtype': 'np.float32'}), '(3, dtype=np.float32)\n', (1674, 1695), True, 'import numpy as np\n'), ((1930, 1958), 'numpy.eye', 'np.eye', (['(18)'], {'dtype': 'np.float32'}), '(18, dtype=np.float32)\n', (1936, 1958), True, 'import numpy as np\n'), ((253, 280), 'numpy.eye', 'np.eye', (['(3)'], {'dtype': 'np.float32'}), '(3, dtype=np.float32)\n', (259, 280), True, 'import numpy as np\n'), ((306, 333), 'numpy.eye', 'np.eye', (['(3)'], {'dtype': 'np.float32'}), '(3, dtype=np.float32)\n', (312, 333), True, 'import numpy as np\n'), ((903, 931), 'numpy.eye', 'np.eye', (['(18)'], {'dtype': 'np.float32'}), '(18, dtype=np.float32)\n', (909, 931), True, 'import numpy as np\n'), ((968, 995), 'numpy.eye', 'np.eye', (['(6)'], {'dtype': 'np.float32'}), '(6, dtype=np.float32)\n', (974, 995), True, 'import numpy as np\n'), ((1281, 1308), 'numpy.eye', 'np.eye', (['(3)'], {'dtype': 'np.float32'}), '(3, dtype=np.float32)\n', (1287, 1308), True, 'import numpy as np\n'), ((1815, 1843), 'numpy.eye', 'np.eye', (['(18)'], {'dtype': 'np.float32'}), '(18, dtype=np.float32)\n', (1821, 1843), True, 'import numpy as np\n'), ((1880, 1907), 'numpy.eye', 'np.eye', (['(6)'], {'dtype': 'np.float32'}), '(6, dtype=np.float32)\n', (1886, 1907), True, 'import numpy as np\n'), ((359, 386), 'numpy.eye', 'np.eye', (['(3)'], {'dtype': 'np.float32'}), '(3, dtype=np.float32)\n', (365, 386), True, 'import numpy as np\n'), ((502, 518), 'numpy.zeros', 'np.zeros', (['(9, 9)'], {}), '((9, 9))\n', (510, 518), True, 'import numpy as np\n'), ((555, 571), 'numpy.zeros', 'np.zeros', (['(9, 9)'], {}), '((9, 9))\n', (563, 571), True, 'import numpy as np\n'), ((1415, 1431), 'numpy.zeros', 'np.zeros', (['(6, 6)'], {}), '((6, 6))\n', (1423, 1431), True, 'import numpy as np\n'), ((1468, 1484), 'numpy.zeros', 'np.zeros', (['(6, 6)'], {}), '((6, 6))\n', (1476, 1484), True, 'import numpy as np\n')]
import numpy as np import numpy.linalg as la from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D import matplotlib.cm as cm import sys import SBW_util as util from matplotlib.animation import FuncAnimation eps_u = 0.001 # 0.01 eps_v = 0.001 # 0.001 gamma_u = 0.005# 0.05 zeta = 0.0 alpha_v = 0.1 beta_v = 0.1 eta_w = 10.0 def constr_lineqU(U, W, V, N, M, T): ''' N: nb of x grid points (int) T: current timestep (int) U: discrete solution of u (np.array) W: discrete solution of w (np.array) V: discrete solution of v (np.array) M: nb of time steps (int) ''' h = 1.0/float(N) k = 1.0/float(M) #assert(U.shape == W.shape and W.shape == V.shape, 'Dim error') #assert(U.shape[1] ==N and U.shape[0] == M, 'Dim error') DT = 0 X_length = N A2Ut = np.zeros((X_length, X_length)) A1Ut = np.zeros((X_length, X_length)) fU = np.zeros((X_length, )) # BOUNDARY CONDITIONS A2Ut[0,0], A2Ut[0, 1] = -1, 1 # left boundary A2Ut[-1, -2], A2Ut[-1,-1] = -1, 1 # right boundary A1Ut[0,0], A1Ut[0, 1] = -1, 1 # left boundary A1Ut[-1, -2], A1Ut[-1,-1] = -1, 1 # right boundary # A1 UM+1 = f - A2 UM for i in range(1, X_length-1): # for each x in space do A2Ut[i, i] = -1 - zeta*(-2*eps_u*k/(h**2)+ gamma_u*k/(h**2)*(W[T-DT, i+1]+W[T-DT, i-1]-2*W[T-DT, i])) # contribution of UN A2Ut[i, i+1] = - zeta*(eps_u*k/(h**2)+gamma_u*k/(4*h**2)*(W[T-DT, i+1]-W[T-DT,i-1])) # contribution of UN-1 A2Ut[i, i-1] = - zeta*(eps_u*k/(h**2)-gamma_u*k/(4*h**2)*(W[T-DT, i+1]-W[T-DT,i-1])) A1Ut[i,i] = 1 - (1-zeta)*(-2*eps_u*k/(h**2)+ gamma_u*k/(h**2)*(W[T-DT, i+1]+W[T-DT, i-1]-2*W[T-DT, i])) A1Ut[i, i+1] = - (1-zeta)*(eps_u*k/(h**2)+gamma_u*k/(4*h**2)*(W[T-DT, i+1]-W[T-DT,i-1])) A1Ut[i, i-1] = -(1-zeta)*(eps_u*k/(h**2)-gamma_u*k/(4*h**2)*(W[T-DT, i+1]-W[T-DT,i-1])) dummy = A2Ut@U[T-1,:] fU = fU - dummy return A1Ut, fU, A2Ut def constr_lineqV(U, W, V, N, M, T): ''' N: nb of x grid points (int) T: current timestep (int) U: discrete solution of u (np.array) W: discrete solution of w (np.array) V: discrete solution of v (np.array) M: nb of time steps (int) ''' k = 1.0/float(M) h = 1.0/float(N) #k = 0.25*h**2*1.0/eps_v #assert(U.shape == W.shape and W.shape == V.shape, 'Dim error') #assert(U.shape[1]==N and U.shape[0] == M, 'Dim error') X_length = N A2Vt = np.zeros((X_length, X_length)) A1Vt = np.zeros((X_length, X_length)) fV = np.zeros((X_length, )) # BOUNDARY CONDITIONS A2Vt[0,0], A2Vt[0, 1] = -1.0, 1.0 # left boundary A2Vt[-1, -2], A2Vt[-1,-1] = -1.0, 1.0 # right boundary A1Vt[0,0], A1Vt[0, 1] = -1.0, 1.0 # left boundary A1Vt[-1, -2], A1Vt[-1,-1] = -1.0, 1.0 # right boundary # A1 VM+1 = f - A2 VM for i in range(1, X_length-1): # for each x in space do A1Vt[i, i] = 1 + (1-zeta)*2*eps_v*k/(h**2) + beta_v*(1-zeta) A1Vt[i, i-1] = -(1-zeta)*eps_v*k/(h**2) A1Vt[i, i+1] = -(1-zeta)*eps_v*k/(h**2) A2Vt[i, i] = -1 + zeta*2*eps_v*k/(h**2) + beta_v*zeta A2Vt[i, i-1] = -zeta*eps_v*k/(h**2) A2Vt[i, i+1] = -zeta*eps_v*k/(h**2) fV[i] = alpha_v*U[T-1, i] dummy = A2Vt@V[T-1,:] fV = fV - dummy return A1Vt, fV, A2Vt def constr_lineqW(U, W, V, N, M, T): ''' N: nb of x grid points (int) T: current timestep (int) U: discrete solution of u (np.array) W: discrete solution of w (np.array) V: discrete solution of v (np.array) M: nb of time steps (int) ''' #k = 1.0/float(M) h = 1.0/float(N) k = 1.0/float(M) #k = 0.25*h**2*1.0/eps_v #assert(U.shape == W.shape and W.shape == V.shape, 'Dim error') #assert(U.shape[1]==N and U.shape[0] == M, 'Dim error') X_length = N A2Wt = np.zeros((X_length, X_length)) A1Wt = np.zeros((X_length, X_length)) fW = np.zeros((X_length, )) for i in range(0, X_length): # for each x in space do A1Wt[i,i] = 1.0 + k*(1-zeta)*eta_w*V[T,i] A2Wt[i,i] = -1.0 + k*zeta*eta_w*V[T,i] dummy = A2Wt@W[T-1,:] fW = fW - dummy return A1Wt, fW, A2Wt def SB_solver_1D(N, M, nb_sec): print(M) h = 1.0/float(N) k = 1.0/float(M) U = np.zeros((M*nb_sec,N)) W = np.zeros((M*nb_sec,N)) V = np.zeros((M*nb_sec,N)) epsilon = 0.01 # J = 0: SET INITIAL conditions n0 = [np.exp(-((1.0*x)/N)**2/epsilon)*1.0 for x in range(N)] f0 = [(1.0 - 0.25*np.exp(-((1.0*x)/N)**2/epsilon))*1.0 for x in range(N)] m0 = [0.5*np.exp(-((1.0*x)/N)**2/epsilon) for x in range(N)] U[0,:] = np.array(n0) U[0,0], U[0,-1] = U[0,1], U[0,-2] #V[0,:] = np.array(m0) #V[0,0], V[0,-1] = V[0,1], V[0,-2] W[0,:] = np.array(f0) rhoU, rhoV, rhoW = [], [], [] # J = 1..M for j in range(1, M*nb_sec): # for each time do #print('_', end='') AV, fV, BV = constr_lineqV(U, W, V, N, M, j) # use newer values of U already? V_solve = la.solve(AV, fV)#, V_guess V[j,:] = V_solve AW, fW , BW = constr_lineqW(U, W, V, N, M, j) W_solve = la.solve(AW, fW) W[j,:] = W_solve AU, fU, BU = constr_lineqU(U, W, V, N, M, j) U_solve = la.solve(AU, fU)#, U_guess U[j,:] = U_solve return U, V, W, AU, BU, AV, BV, rhoU, rhoV, rhoW compsol = True N_tsol = 1024 nb_sec = 128 hsol = 1.0/float(N_tsol) #ksol = 0.25*h**2 / max(eps_u,eps_v) #M_tsol = int(1.0/k) M_tsol=1024 ksol=1.0/float(M_tsol) if compsol : Usol, Vsol, Wsol, AUx, BUx, AVx, BVx, rhoUx, rhoVx, rhoWx = SB_solver_1D(N_tsol,M_tsol, nb_sec) e=np.zeros(20) for i in range (5, 9): N_t=2**i nb_sec = 128 M_t=2**i k=1.0/float(M_tsol) Tsol= M_tsol*nb_sec -1 T= M_t*nb_sec -1 K=M_tsol-1 # print(M_t,N_t) Usolfit=np.zeros((M_t*nb_sec,N_t)) U, V, W, AUx, BUx, AVx, BVx, rhoUx, rhoVx, rhoWx = SB_solver_1D(N_t,M_t, nb_sec) #print(np.size(Usolfit),np.size(U)) #for j in range(10) : #Usolfit[j,:] =U[2**(M_t-i)*j,2**(6-i):] e[i-1]= la.norm(U[T,:] - Usol[Tsol,::2**(K-i)]) # print(e) xx = np.array(range(0,20)) fig = plt.figure(1) plt.plot(xx, e)
[ "matplotlib.pyplot.plot", "numpy.zeros", "matplotlib.pyplot.figure", "numpy.array", "numpy.linalg.norm", "numpy.exp", "numpy.linalg.solve" ]
[((5835, 5847), 'numpy.zeros', 'np.zeros', (['(20)'], {}), '(20)\n', (5843, 5847), True, 'import numpy as np\n'), ((6402, 6415), 'matplotlib.pyplot.figure', 'plt.figure', (['(1)'], {}), '(1)\n', (6412, 6415), True, 'from matplotlib import pyplot as plt\n'), ((6416, 6431), 'matplotlib.pyplot.plot', 'plt.plot', (['xx', 'e'], {}), '(xx, e)\n', (6424, 6431), True, 'from matplotlib import pyplot as plt\n'), ((856, 886), 'numpy.zeros', 'np.zeros', (['(X_length, X_length)'], {}), '((X_length, X_length))\n', (864, 886), True, 'import numpy as np\n'), ((898, 928), 'numpy.zeros', 'np.zeros', (['(X_length, X_length)'], {}), '((X_length, X_length))\n', (906, 928), True, 'import numpy as np\n'), ((939, 960), 'numpy.zeros', 'np.zeros', (['(X_length,)'], {}), '((X_length,))\n', (947, 960), True, 'import numpy as np\n'), ((2540, 2570), 'numpy.zeros', 'np.zeros', (['(X_length, X_length)'], {}), '((X_length, X_length))\n', (2548, 2570), True, 'import numpy as np\n'), ((2582, 2612), 'numpy.zeros', 'np.zeros', (['(X_length, X_length)'], {}), '((X_length, X_length))\n', (2590, 2612), True, 'import numpy as np\n'), ((2623, 2644), 'numpy.zeros', 'np.zeros', (['(X_length,)'], {}), '((X_length,))\n', (2631, 2644), True, 'import numpy as np\n'), ((3976, 4006), 'numpy.zeros', 'np.zeros', (['(X_length, X_length)'], {}), '((X_length, X_length))\n', (3984, 4006), True, 'import numpy as np\n'), ((4018, 4048), 'numpy.zeros', 'np.zeros', (['(X_length, X_length)'], {}), '((X_length, X_length))\n', (4026, 4048), True, 'import numpy as np\n'), ((4059, 4080), 'numpy.zeros', 'np.zeros', (['(X_length,)'], {}), '((X_length,))\n', (4067, 4080), True, 'import numpy as np\n'), ((4430, 4455), 'numpy.zeros', 'np.zeros', (['(M * nb_sec, N)'], {}), '((M * nb_sec, N))\n', (4438, 4455), True, 'import numpy as np\n'), ((4461, 4486), 'numpy.zeros', 'np.zeros', (['(M * nb_sec, N)'], {}), '((M * nb_sec, N))\n', (4469, 4486), True, 'import numpy as np\n'), ((4492, 4517), 'numpy.zeros', 'np.zeros', (['(M * nb_sec, N)'], {}), '((M * nb_sec, N))\n', (4500, 4517), True, 'import numpy as np\n'), ((4797, 4809), 'numpy.array', 'np.array', (['n0'], {}), '(n0)\n', (4805, 4809), True, 'import numpy as np\n'), ((4927, 4939), 'numpy.array', 'np.array', (['f0'], {}), '(f0)\n', (4935, 4939), True, 'import numpy as np\n'), ((6035, 6064), 'numpy.zeros', 'np.zeros', (['(M_t * nb_sec, N_t)'], {}), '((M_t * nb_sec, N_t))\n', (6043, 6064), True, 'import numpy as np\n'), ((6295, 6340), 'numpy.linalg.norm', 'la.norm', (['(U[T, :] - Usol[Tsol, ::2 ** (K - i)])'], {}), '(U[T, :] - Usol[Tsol, ::2 ** (K - i)])\n', (6302, 6340), True, 'import numpy.linalg as la\n'), ((5183, 5199), 'numpy.linalg.solve', 'la.solve', (['AV', 'fV'], {}), '(AV, fV)\n', (5191, 5199), True, 'import numpy.linalg as la\n'), ((5316, 5332), 'numpy.linalg.solve', 'la.solve', (['AW', 'fW'], {}), '(AW, fW)\n', (5324, 5332), True, 'import numpy.linalg as la\n'), ((5438, 5454), 'numpy.linalg.solve', 'la.solve', (['AU', 'fU'], {}), '(AU, fU)\n', (5446, 5454), True, 'import numpy.linalg as la\n'), ((4586, 4623), 'numpy.exp', 'np.exp', (['(-(1.0 * x / N) ** 2 / epsilon)'], {}), '(-(1.0 * x / N) ** 2 / epsilon)\n', (4592, 4623), True, 'import numpy as np\n'), ((4733, 4770), 'numpy.exp', 'np.exp', (['(-(1.0 * x / N) ** 2 / epsilon)'], {}), '(-(1.0 * x / N) ** 2 / epsilon)\n', (4739, 4770), True, 'import numpy as np\n'), ((4663, 4700), 'numpy.exp', 'np.exp', (['(-(1.0 * x / N) ** 2 / epsilon)'], {}), '(-(1.0 * x / N) ** 2 / epsilon)\n', (4669, 4700), True, 'import numpy as np\n')]
import numpy as np def read_pairs(pairs_filename): pairs = [] with open(pairs_filename, 'r') as f: for line in f.readlines()[1:]: print(line) pair = line.strip().split() print('--',pair) pairs.append(pair) return np.array(pairs) read_pairs('ab_pairs_428.txt')
[ "numpy.array" ]
[((292, 307), 'numpy.array', 'np.array', (['pairs'], {}), '(pairs)\n', (300, 307), True, 'import numpy as np\n')]
''' data parameters data: cora / dblp / arXiv / acm split: train-test split used for the dataset ''' data = "dblp" split = 2 ''' model parameters h: number of hidden dimensions drop: hidden droput relu: flag for relu non-linearity ''' h = 1024 drop = 0.0 relu = False ''' miscellaneous parameters lr: learning rate epochs: number of epochs decay: weight decay ''' lr = 0.001 epochs = 200 decay = 0.0005 ''' environmental parameters gpu: gpu number (range: {0, 1, 2, 3, 4, 5, 6, 7}) seed: initial seed value log: log on file (true) or print on console (false) ''' gpu = 0 seed = 42 log = False import argparse def parse(): """ add and parse arguments / hyperparameters """ p = argparse.ArgumentParser() p = argparse.ArgumentParser(description="Inductive Vertex Embedding on Multi-Relational Ordered Hypergraphs") def str2bool(v): if isinstance(v, bool): return v if v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: return True p.add_argument('--data', type=str, default=data, help='data name (FB-AUTO)') p.add_argument('--split', type=str, default=split, help='train-test split used for the dataset') p.add_argument('--h', type=int, default=h, help='number of hidden dimensions') p.add_argument('--drop', type=float, default=drop, help='hidden droput') p.add_argument("--relu", default=relu, type=str2bool, help="flag for relu non-linearity") p.add_argument('--lr', type=float, default=lr, help='learning rate') p.add_argument('--epochs', type=int, default=epochs, help='number of epochs') p.add_argument('--decay', type=float, default=decay, help='weight decay') p.add_argument('--gpu', type=int, default=gpu, help='gpu number') p.add_argument('--seed', type=int, default=seed, help='initial seed value') p.add_argument("--log", default=log, type=str2bool, help="log on file (true) or print on console (false)") p.add_argument('-f') # for jupyter default return p.parse_args() import os, inspect, logging class Logger(): def __init__(self, args): ''' Initialise logger ''' # setup checkpoint directory current = os.path.abspath(inspect.getfile(inspect.currentframe())) Dir = os.path.join(os.path.split(os.path.split(current)[0])[0], "checkpoints") self.log = args.log # setup log file if args.log: if not os.path.exists(Dir): os.makedirs(Dir) name = str(len(os.listdir(Dir)) + 1) Dir = os.path.join(Dir, name) if not os.path.exists(Dir): os.makedirs(Dir) args.dir = Dir # setup logging logger = logging.getLogger(__name__) file = os.path.join(Dir, name + ".log") logging.basicConfig(format="%(asctime)s - %(levelname)s - %(message)s", filename=file, level=logging.INFO) self.logger = logger def info(self, s): if self.log: self.logger.info(s) else: print(s) import torch, numpy as np def setup(): # parse arguments args = parse() args.logger = Logger(args) D = vars(args) # log configuration l = ['']*(len(D)-1) + ['\n\n'] args.logger.info("Arguments are as follows") for i, k in enumerate(D): args.logger.info(k + ": " + str(D[k]) + l[i]) # set seed torch.manual_seed(args.seed) np.random.seed(args.seed) os.environ['PYTHONHASHSEED'] = str(args.seed) # set device (gpu/cpu) os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu) args.device = torch.device('cuda') if args.gpu != '-1' and torch.cuda.is_available() else torch.device('cpu') return args
[ "numpy.random.seed", "argparse.ArgumentParser", "logging.basicConfig", "os.makedirs", "torch.manual_seed", "os.path.exists", "torch.cuda.is_available", "torch.device", "inspect.currentframe", "os.path.split", "os.path.join", "os.listdir", "logging.getLogger" ]
[((704, 729), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (727, 729), False, 'import argparse\n'), ((738, 848), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Inductive Vertex Embedding on Multi-Relational Ordered Hypergraphs"""'}), "(description=\n 'Inductive Vertex Embedding on Multi-Relational Ordered Hypergraphs')\n", (761, 848), False, 'import argparse\n'), ((3416, 3444), 'torch.manual_seed', 'torch.manual_seed', (['args.seed'], {}), '(args.seed)\n', (3433, 3444), False, 'import torch, numpy as np\n'), ((3449, 3474), 'numpy.random.seed', 'np.random.seed', (['args.seed'], {}), '(args.seed)\n', (3463, 3474), True, 'import torch, numpy as np\n'), ((3687, 3707), 'torch.device', 'torch.device', (['"""cuda"""'], {}), "('cuda')\n", (3699, 3707), False, 'import torch, numpy as np\n'), ((3763, 3782), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (3775, 3782), False, 'import torch, numpy as np\n'), ((2568, 2591), 'os.path.join', 'os.path.join', (['Dir', 'name'], {}), '(Dir, name)\n', (2580, 2591), False, 'import os, inspect, logging\n'), ((2726, 2753), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (2743, 2753), False, 'import os, inspect, logging\n'), ((2786, 2818), 'os.path.join', 'os.path.join', (['Dir', "(name + '.log')"], {}), "(Dir, name + '.log')\n", (2798, 2818), False, 'import os, inspect, logging\n'), ((2831, 2943), 'logging.basicConfig', 'logging.basicConfig', ([], {'format': '"""%(asctime)s - %(levelname)s - %(message)s"""', 'filename': 'file', 'level': 'logging.INFO'}), "(format='%(asctime)s - %(levelname)s - %(message)s',\n filename=file, level=logging.INFO)\n", (2850, 2943), False, 'import os, inspect, logging\n'), ((3732, 3757), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (3755, 3757), False, 'import torch, numpy as np\n'), ((2233, 2255), 'inspect.currentframe', 'inspect.currentframe', ([], {}), '()\n', (2253, 2255), False, 'import os, inspect, logging\n'), ((2450, 2469), 'os.path.exists', 'os.path.exists', (['Dir'], {}), '(Dir)\n', (2464, 2469), False, 'import os, inspect, logging\n'), ((2471, 2487), 'os.makedirs', 'os.makedirs', (['Dir'], {}), '(Dir)\n', (2482, 2487), False, 'import os, inspect, logging\n'), ((2611, 2630), 'os.path.exists', 'os.path.exists', (['Dir'], {}), '(Dir)\n', (2625, 2630), False, 'import os, inspect, logging\n'), ((2632, 2648), 'os.makedirs', 'os.makedirs', (['Dir'], {}), '(Dir)\n', (2643, 2648), False, 'import os, inspect, logging\n'), ((2299, 2321), 'os.path.split', 'os.path.split', (['current'], {}), '(current)\n', (2312, 2321), False, 'import os, inspect, logging\n'), ((2515, 2530), 'os.listdir', 'os.listdir', (['Dir'], {}), '(Dir)\n', (2525, 2530), False, 'import os, inspect, logging\n')]
''' Demonstrates linear regression with TensorFlow ''' from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf # Set constants N = 1000 learning_rate = 0.1 batch_size = 40 # the size of the part of the entire dataset, we don't feed the entire dataset all at once, we divide it into parts num_batches = 400 # Step 1: Generate input points x = np.random.normal(size=N) m_real = np.random.normal(loc=0.5, scale=0.2, size= N) b_real = np.random.normal(loc=1.0, scale=0.2, size= N) y = m_real*x + b_real # Step 2: Create variables and placeholders m= tf.Variable(tf.random_normal([])) b= tf.Variable(tf.random_normal([])) x_holder = tf.placeholder(tf.float32, shape=[batch_size]) y_holder = tf.placeholder(tf.float32, shape=[batch_size]) # Step 3: Define model and loss model = m * x_holder + b loss = tf.reduce_mean(tf.pow(model - y_holder, 2)) # Step 4: Create optimizer optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(loss) # Step 5: Execute optimizer in a session with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for _ in range(num_batches): x_data = np.empty(batch_size) y_data = np.empty(batch_size) for i in range(batch_size): index = np.random.randint(0, N) x_data[i] = x[index] y_data[i] = y[index] sess.run(optimizer, feed_dict={x_holder: x_data, y_holder: y_data}) print("m = ", sess.run(m)) print("b = ", sess.run(b))
[ "tensorflow.global_variables_initializer", "numpy.empty", "tensorflow.Session", "tensorflow.pow", "tensorflow.placeholder", "numpy.random.randint", "tensorflow.random_normal", "numpy.random.normal", "tensorflow.train.GradientDescentOptimizer" ]
[((443, 467), 'numpy.random.normal', 'np.random.normal', ([], {'size': 'N'}), '(size=N)\n', (459, 467), True, 'import numpy as np\n'), ((477, 521), 'numpy.random.normal', 'np.random.normal', ([], {'loc': '(0.5)', 'scale': '(0.2)', 'size': 'N'}), '(loc=0.5, scale=0.2, size=N)\n', (493, 521), True, 'import numpy as np\n'), ((532, 576), 'numpy.random.normal', 'np.random.normal', ([], {'loc': '(1.0)', 'scale': '(0.2)', 'size': 'N'}), '(loc=1.0, scale=0.2, size=N)\n', (548, 576), True, 'import numpy as np\n'), ((731, 777), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[batch_size]'}), '(tf.float32, shape=[batch_size])\n', (745, 777), True, 'import tensorflow as tf\n'), ((789, 835), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[batch_size]'}), '(tf.float32, shape=[batch_size])\n', (803, 835), True, 'import tensorflow as tf\n'), ((660, 680), 'tensorflow.random_normal', 'tf.random_normal', (['[]'], {}), '([])\n', (676, 680), True, 'import tensorflow as tf\n'), ((697, 717), 'tensorflow.random_normal', 'tf.random_normal', (['[]'], {}), '([])\n', (713, 717), True, 'import tensorflow as tf\n'), ((915, 942), 'tensorflow.pow', 'tf.pow', (['(model - y_holder)', '(2)'], {}), '(model - y_holder, 2)\n', (921, 942), True, 'import tensorflow as tf\n'), ((1108, 1120), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (1118, 1120), True, 'import tensorflow as tf\n'), ((983, 1045), 'tensorflow.train.GradientDescentOptimizer', 'tf.train.GradientDescentOptimizer', ([], {'learning_rate': 'learning_rate'}), '(learning_rate=learning_rate)\n', (1016, 1045), True, 'import tensorflow as tf\n'), ((1143, 1176), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (1174, 1176), True, 'import tensorflow as tf\n'), ((1229, 1249), 'numpy.empty', 'np.empty', (['batch_size'], {}), '(batch_size)\n', (1237, 1249), True, 'import numpy as np\n'), ((1267, 1287), 'numpy.empty', 'np.empty', (['batch_size'], {}), '(batch_size)\n', (1275, 1287), True, 'import numpy as np\n'), ((1345, 1368), 'numpy.random.randint', 'np.random.randint', (['(0)', 'N'], {}), '(0, N)\n', (1362, 1368), True, 'import numpy as np\n')]
# from typing import List import sys import json import numpy as np from fairseq import pybleu def process_bpe_symbol(sentence: str, bpe_symbol: str): if bpe_symbol is not None: sentence = (sentence + ' ').replace(bpe_symbol, '').rstrip() return sentence # ===== # algorithm helper # performing aligning by matching scores # -- input is 2d matrix of matching scores [len_a1, len_a2], should be >=0, 0 means absolute no match # -- the order is important for breaking ties for add_a1,match,add_a2: by default prefer add-a2 later def align_matches(match_score_arr, order_scores=None): DEFAULT_CODE = (0,1,2) # a1/match/a2 if order_scores is None: order_scores = DEFAULT_CODE assert np.all(match_score_arr>=0.) len1, len2 = match_score_arr.shape # recordings record_best_scores = np.zeros((1+len1, 1+len2), dtype=np.float32) # best matching scores # pointers for back-tracing & also prefer order: by default add a1(x+=1); match; add a2(y+=1) record_best_codes = np.zeros((1+len1, 1+len2), dtype=np.int32) record_best_codes[0,:] = 2 # add a2 at y record_best_codes[:,0] = 0 # add a1 at x record_best_codes[0,0] = -1 # never used # loop: the looping order (ij or ji) does not matter for i in range(len1): ip1 = i + 1 for j in range(len2): jp1 = j + 1 s_match = match_score_arr[i,j] + record_best_scores[i,j] # match one s_a1 = record_best_scores[i,jp1] # add a1 on x s_a2 = record_best_scores[ip1,j] # add a2 on y ordered_selections = sorted(zip((s_a1, s_match, s_a2), order_scores, DEFAULT_CODE)) sel_score, _, sel_code = ordered_selections[-1] # max score record_best_scores[ip1,jp1] = sel_score record_best_codes[ip1,jp1] = sel_code # backtracking for whole seq and aligning point # results of idx matches merge_to_a1, merge_to_a2 = [], [] # merge_idx -> a?_idx or None a1_to_merge, a2_to_merge = [], [] # a?_idx -> merge_idx back_i, back_j = len1, len2 cur_midx = -1 while back_i+back_j>0: # there are still remainings code = record_best_codes[back_i, back_j] if code == 0: # add a1[back_i-1] back_i -= 1 merge_to_a1.append(back_i) merge_to_a2.append(None) a1_to_merge.append(cur_midx) elif code == 1: # add matched a1[back_i-1],a2[back_j-1] back_i -= 1 back_j -= 1 merge_to_a1.append(back_i) merge_to_a2.append(back_j) a1_to_merge.append(cur_midx) a2_to_merge.append(cur_midx) elif code == 2: # add a2[back_j-1] back_j -= 1 merge_to_a1.append(None) merge_to_a2.append(back_j) a2_to_merge.append(cur_midx) else: raise NotImplementedError() cur_midx -= 1 # reverse things merge_to_a1.reverse() merge_to_a2.reverse() merge_len = len(merge_to_a1) a1_to_merge = [merge_len+z for z in reversed(a1_to_merge)] a2_to_merge = [merge_len+z for z in reversed(a2_to_merge)] return merge_to_a1, merge_to_a2, a1_to_merge, a2_to_merge # ===== # usually we want to match s2 to s1, thus hint is the start of s2 to s1 def align_seqs(s1, s2, hint_s2_on_s1_offset: float=None, hint_scale=0.1, match_f=(lambda x,y: float(x==y))): # first compare each pair to get match scores len1, len2 = len(s1), len(s2) match_score_arr = np.asarray([match_f(x,y) for x in s1 for y in s2]).reshape((len1, len2)) if hint_s2_on_s1_offset is not None: assert hint_s2_on_s1_offset>=0 and hint_s2_on_s1_offset<len(s1), "Outside range of s1" posi_diff = np.arange(len1)[:, np.newaxis] - (np.arange(len2)+hint_s2_on_s1_offset)[np.newaxis, :] hint_rewards = hint_scale * np.exp(-np.abs(posi_diff)) match_score_arr += (match_score_arr>0.).astype(np.float) * hint_rewards # only add if >0 # then get results return align_matches(match_score_arr) # ===== # special routine to merge a series of sequences (incrementally, left to right) # input: seq_list is List[List[item]], K is merging range in each step def merge_seqs(seq_list: List[List], K: int): cur_seq = [] for s in seq_list: if len(cur_seq) < K: cur0, cur1 = [], cur_seq else: cur0, cur1 = cur_seq[:-K], cur_seq[-K:] # use the most recent K for merging align_res = align_seqs(cur1, s) # get the merged one ma1, ma2 = align_res[:2] cur2 = [(s[b] if a is None else cur1[a]) for a,b in zip(ma1, ma2)] # finally concat cur_seq = cur0 + cur2 return cur_seq # == def test1(): # test s1 = "pero las horas son fijadas por ' provincia ' , no por el gobierno central ...".split() s2 = "pero las horas se establecen por provincia , no por ' gobierno central ' ...".split() rets = align_seqs(s1, s2) s_merge = [f"{s1[a] if a else ''}/{s2[b] if b else ''}" for a, b in zip(rets[0], rets[1])] # breakpoint() print(rets) def test2(): SLEN = 20 PLEN = 10 WIN = 2 original_seq = list(range(SLEN)) center_seq = sorted(np.random.randint(0, SLEN, size=PLEN)) pieces = [(list(range(r-WIN, r)) + [r] + list(range(r+1, r+WIN+1))) for r in center_seq] ret_seq = merge_seqs(pieces, K=5) print(ret_seq, center_seq) def main(filename, SEG=3, K=3): scorer = pybleu.PyBleuScorer() IGNORE_SET = ["<s>", "</s>"] SEG = int(SEG) # SEG is used when reading raw inputs K = int(K) # K is tunable for merging pred_sens = [] cur_ref = '' cur_hyp = '' with open(filename) as f: for line in f: if line.startswith('ref:'): if len(cur_ref) > 0: pred_sens.append((cur_ref, cur_hyp)) cur_hyp = '' cur_ref = line.split(':', 1)[1].strip() elif line.startswith('hyp:'): cur_hyp = ' '.join((cur_hyp, line.split(':', 1)[1].strip())) results = [] with open('pred.txt', 'w') as predf, open('ref.txt', 'w') as reff: for line in pred_sens: ref, pred = line try: seq_list = json.loads(line) # each line is a json of List[List] except: raw_seq_list = pred.split() seq_list = [raw_seq_list[i:i+SEG] for i in range(0, len(raw_seq_list), SEG)] ret_seq = merge_seqs(seq_list, K) final_seq = [""] for r in ret_seq: if r != final_seq[-1] and r not in IGNORE_SET: final_seq.append(r) ori_ref = process_bpe_symbol(ref.strip(), '@@ ') reff.write(ori_ref + '\n') ori_pred = process_bpe_symbol(' '.join(final_seq).strip(), '@@ ') results.append((ori_ref, ori_pred)) predf.write(ori_pred + '\n') ref, out = zip(*results) print(scorer.score(ref, out)) if __name__ == '__main__': # test1() # test2() main(*sys.argv[1:])
[ "numpy.abs", "json.loads", "numpy.zeros", "numpy.random.randint", "fairseq.pybleu.PyBleuScorer", "numpy.arange", "numpy.all" ]
[((745, 775), 'numpy.all', 'np.all', (['(match_score_arr >= 0.0)'], {}), '(match_score_arr >= 0.0)\n', (751, 775), True, 'import numpy as np\n'), ((857, 905), 'numpy.zeros', 'np.zeros', (['(1 + len1, 1 + len2)'], {'dtype': 'np.float32'}), '((1 + len1, 1 + len2), dtype=np.float32)\n', (865, 905), True, 'import numpy as np\n'), ((1050, 1096), 'numpy.zeros', 'np.zeros', (['(1 + len1, 1 + len2)'], {'dtype': 'np.int32'}), '((1 + len1, 1 + len2), dtype=np.int32)\n', (1058, 1096), True, 'import numpy as np\n'), ((5599, 5620), 'fairseq.pybleu.PyBleuScorer', 'pybleu.PyBleuScorer', ([], {}), '()\n', (5618, 5620), False, 'from fairseq import pybleu\n'), ((5340, 5377), 'numpy.random.randint', 'np.random.randint', (['(0)', 'SLEN'], {'size': 'PLEN'}), '(0, SLEN, size=PLEN)\n', (5357, 5377), True, 'import numpy as np\n'), ((3824, 3839), 'numpy.arange', 'np.arange', (['len1'], {}), '(len1)\n', (3833, 3839), True, 'import numpy as np\n'), ((6442, 6458), 'json.loads', 'json.loads', (['line'], {}), '(line)\n', (6452, 6458), False, 'import json\n'), ((3858, 3873), 'numpy.arange', 'np.arange', (['len2'], {}), '(len2)\n', (3867, 3873), True, 'import numpy as np\n'), ((3956, 3973), 'numpy.abs', 'np.abs', (['posi_diff'], {}), '(posi_diff)\n', (3962, 3973), True, 'import numpy as np\n')]
import time import numpy as np import tensorflow as tf from sklearn.model_selection import train_test_split, KFold from dogFunctions import genData, genBatch def convBlock( X, trn, nFilters, kernelSize, bnm ): '''A block consisting of a convolution, a poolingi, and a batch normalization layer.''' heInit = tf.variance_scaling_initializer() with tf.name_scope("ConvolutionBlock"): conv = tf.layers.conv2d( X, filters = nFilters, kernel_size = kernelSize, strides = 1, padding = "same", kernel_initializer = heInit ) pool = tf.layers.max_pooling2d( conv, pool_size = 2, strides = 2, padding = "valid", name = "pool" ) bn = tf.layers.batch_normalization( pool, training = trn, momentum = bnm ) return tf.nn.elu( bn ) def inceptionBlock( X, trn, nPath1, nPath2_1, nPath2_2, nPath3_1, nPath3_2, nPath4, bnm ): """Creates an inception block with a residual (skip) connection.""" heInit = tf.variance_scaling_initializer() m, h, w, c = X.get_shape().as_list() with tf.name_scope( "inceptionBlock" ): path1 = tf.layers.conv2d( X, filters = nPath1, kernel_size = 1, strides = 1, padding = "same", activation = tf.nn.relu, kernel_initializer = heInit ) in2 = tf.layers.conv2d( X, filters = nPath2_1, kernel_size = 1, strides = 1, padding = "same", activation = tf.nn.elu, kernel_initializer = heInit ) path2 = tf.layers.conv2d( in2, filters = nPath2_2, kernel_size = 3, strides = 1, padding = "same", activation = tf.nn.elu, kernel_initializer = heInit ) in3 = tf.layers.conv2d( X, filters = nPath3_1, kernel_size = 1, strides = 1, padding = "same", activation = tf.nn.elu, kernel_initializer = heInit ) path3 = tf.layers.conv2d( in3, filters = nPath3_2, kernel_size = 5, strides = 1, padding = "same", activation = tf.nn.elu, kernel_initializer = heInit ) in4 = tf.layers.max_pooling2d( X, pool_size = 2, strides = 1, padding = "same", name = "p4.1" ) path4 = tf.layers.conv2d( in4, filters = nPath4, kernel_size = 1, strides = 1, padding = "same", activation = tf.nn.elu, kernel_initializer = heInit) concat = tf.concat( [path1, path2, path3, path4], axis = 3 ) merge = tf.layers.conv2d( concat, filters = c, kernel_size = 1, strides = 1, padding = "same", kernel_initializer = heInit ) bn = tf.layers.batch_normalization( merge + X, training = trn, momentum = bnm ) return tf.nn.elu( bn ) def dogClassifier( X, y, trn, alpha = 0.001, b1 = 0.9, b2 = 0.999, eps = 1e-08, bnm = 0.99, dropProb = 0.5 ): """Creates all objects needed for training the dog classifier.""" heInit = tf.variance_scaling_initializer() with tf.name_scope( "cnn" ): conv1 = convBlock( X, trn, 8, 3, bnm ) incept1 = inceptionBlock( conv1, trn, 4, 2, 4, 2, 4, 4, bnm ) conv2 = convBlock( incept1, trn, 16, 3, bnm ) incept2_1 = inceptionBlock( conv2, trn, 8, 4, 8, 4, 8, 8, bnm ) incept2_2 = inceptionBlock( incept2_1, trn, 8, 4, 8, 4, 8, 8, bnm ) conv3 = convBlock( incept2_2, trn, 32, 3, bnm ) incept3_1 = inceptionBlock( conv3, trn, 16, 8, 16, 8, 16, 16, bnm ) incept3_2 = inceptionBlock( incept3_1, trn, 16, 8, 16, 8, 16, 16, bnm ) conv4 = convBlock( incept3_2, trn, 48, 3, bnm ) incept4_1 = inceptionBlock( conv4, trn, 24, 12, 24, 12, 24, 24, bnm ) incept4_2 = inceptionBlock( incept4_1, trn, 24, 12, 24, 12, 24, 24, bnm ) conv5 = convBlock( incept4_2, trn, 64, 3, bnm ) incept5_1 = inceptionBlock( conv5, trn, 32, 16, 32, 16, 32, 32, bnm ) incept5_2 = inceptionBlock( incept5_1, trn, 32, 16, 32, 16, 32, 32, bnm ) flat = tf.layers.flatten( incept5_2 ) dropout1 = tf.layers.dropout( flat, dropProb, training = trn ) fc1 = tf.layers.dense( dropout1, 1024, name = "fc1", kernel_initializer = heInit, activation = tf.nn.elu ) dropout2 = tf.layers.dropout( fc1, dropProb, training = trn ) fc2 = tf.layers.dense( dropout2, 1024, name = "fc2", kernel_initializer = heInit, activation = tf.nn.elu ) dropout3 = tf.layers.dropout( fc2, dropProb, training = trn ) logits = tf.layers.dense( dropout3, 120, name = "output", kernel_initializer = heInit ) predict = tf.nn.softmax( logits ) with tf.name_scope("loss"): crossEnt = tf.nn.sparse_softmax_cross_entropy_with_logits( labels = y, logits = logits) loss = tf.reduce_mean( crossEnt, name = "loss" ) with tf.name_scope("eval"): correct = tf.nn.in_top_k(logits, y, 1) accuracy = tf.reduce_mean( tf.cast(correct, tf.float32) ) with tf.name_scope("train"): #opt = tf.train.MomentumOptimizer( learning_rate = alpha, momentum = b1, # use_nesterov = False ) opt = tf.train.AdamOptimizer( learning_rate = alpha, beta1 = b1, beta2 = b2, epsilon = eps ) training = opt.minimize( loss ) lossSummary = tf.summary.scalar("crossEntropy", loss) with tf.name_scope("utility"): init = tf.global_variables_initializer() saver = tf.train.Saver() return loss, training, accuracy, predict, lossSummary, init, saver def batchEval( X, y, allX, allY, batchSize, function ): count = 0 temp = 0 for start in range(0, len(allX) - 1, batchSize): bX, bY = genData( allX[ start : start + batchSize ], allY, size = 200 ) n = len(bX) count += n temp += function.eval( feed_dict = { X : bX, y : bY } ) * n return temp / count def trainModel( trainX, valX, labels, params, saveModel = False , loadState = False, histDtype = np.float32 ): """Trains the model. Loads a previously saved state if loadStat is True.""" imgSize = 200 parameters = params[ "params" ] tf.reset_default_graph() X = tf.placeholder(tf.float32, shape = (None, imgSize, imgSize, 3), name = "X") y = tf.placeholder(tf.int32, shape = (None), name = "y") trn = tf.placeholder_with_default( False, shape = (), name = "trn" ) loss, training, accuracy, predict, lossSummary, init, saver = dogClassifier( X, y, trn, **parameters ) extraOps = tf.get_collection(tf.GraphKeys.UPDATE_OPS) batchSize = params[ "batchSize" ] maxBatch = 512 patience = 0 step = 0 startTime = time.time() with tf.Session() as sess: if ( loadState ): saver.restore( sess, "./best/dogClass-best.ckpt" ) else: init.run() tls = [ histDtype( batchEval( X, y, trainX, labels, batchSize, loss ) ) ] tas = [ histDtype( batchEval( X, y, trainX, labels, batchSize, accuracy ) ) ] vls = [ histDtype( batchEval( X, y, valX, labels, batchSize, loss ) ) ] vas = [ histDtype( batchEval( X, y, valX, labels, batchSize, accuracy ) ) ] loVal = vls[0] while ( batchSize <= maxBatch ): for batchX, batchY in genBatch( trainX, labels, batchSize, imgSize = imgSize ): sess.run( [training, extraOps], feed_dict = { X : batchX, y : batchY, trn : True } ) step += 1 if ( step % 25 == 0 ): valLoss = batchEval( X, y, valX, labels, batchSize, loss ) valAcc = batchEval( X, y, valX, labels, batchSize, accuracy ) trainLoss = loss.eval( feed_dict = { X : batchX, y : batchY } ) trAcc = accuracy.eval( feed_dict = { X : batchX, y : batchY } ) tls.append( histDtype( trainLoss ) ) vls.append( histDtype( valLoss ) ) tas.append( histDtype( trAcc ) ) vas.append( histDtype( valAcc ) ) print( ("Step {0}:\n "\ "valLoss: {1:8.6f}, "\ "trainLoss: {2:8.6f}, "\ "trAcc: {3:5.4f}, "\ "valAcc: {4:5.4f}, "\ "patience: {5:>2d}").format( step, valLoss, trainLoss, trAcc, valAcc, patience ) ) if ( valLoss < loVal ): loVal = valLoss patience = 0 if (saveModel): saver.save( sess, "./best/dogClass-best.ckpt" ) elif ( step > 500 and valLoss >= loVal ): patience += 1 if ( patience >= 10 ): batchSize = 2 * batchSize patience = 0 print( "\n\nbatchSize =", batchSize, "\n\n" ) endTime = time.time() print( "Training time: {0:3.2f}h".format( (endTime - startTime) /3600.0 ) ) return ( np.array(loVal), np.array(tls), np.array(vls), np.array(tas), np.array(vas) )
[ "tensorflow.get_collection", "tensorflow.reset_default_graph", "tensorflow.layers.max_pooling2d", "tensorflow.layers.batch_normalization", "tensorflow.nn.softmax", "tensorflow.nn.elu", "tensorflow.placeholder_with_default", "tensorflow.concat", "tensorflow.placeholder", "tensorflow.cast", "dogFunctions.genData", "tensorflow.name_scope", "tensorflow.nn.in_top_k", "tensorflow.summary.scalar", "tensorflow.global_variables_initializer", "tensorflow.train.Saver", "tensorflow.layers.dropout", "tensorflow.layers.flatten", "tensorflow.reduce_mean", "tensorflow.Session", "tensorflow.layers.conv2d", "dogFunctions.genBatch", "tensorflow.variance_scaling_initializer", "tensorflow.layers.dense", "time.time", "numpy.array", "tensorflow.train.AdamOptimizer", "tensorflow.nn.sparse_softmax_cross_entropy_with_logits" ]
[((319, 352), 'tensorflow.variance_scaling_initializer', 'tf.variance_scaling_initializer', ([], {}), '()\n', (350, 352), True, 'import tensorflow as tf\n'), ((1017, 1050), 'tensorflow.variance_scaling_initializer', 'tf.variance_scaling_initializer', ([], {}), '()\n', (1048, 1050), True, 'import tensorflow as tf\n'), ((3236, 3269), 'tensorflow.variance_scaling_initializer', 'tf.variance_scaling_initializer', ([], {}), '()\n', (3267, 3269), True, 'import tensorflow as tf\n'), ((6616, 6640), 'tensorflow.reset_default_graph', 'tf.reset_default_graph', ([], {}), '()\n', (6638, 6640), True, 'import tensorflow as tf\n'), ((6650, 6721), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '(None, imgSize, imgSize, 3)', 'name': '"""X"""'}), "(tf.float32, shape=(None, imgSize, imgSize, 3), name='X')\n", (6664, 6721), True, 'import tensorflow as tf\n'), ((6734, 6780), 'tensorflow.placeholder', 'tf.placeholder', (['tf.int32'], {'shape': 'None', 'name': '"""y"""'}), "(tf.int32, shape=None, name='y')\n", (6748, 6780), True, 'import tensorflow as tf\n'), ((6797, 6853), 'tensorflow.placeholder_with_default', 'tf.placeholder_with_default', (['(False)'], {'shape': '()', 'name': '"""trn"""'}), "(False, shape=(), name='trn')\n", (6824, 6853), True, 'import tensorflow as tf\n'), ((6984, 7026), 'tensorflow.get_collection', 'tf.get_collection', (['tf.GraphKeys.UPDATE_OPS'], {}), '(tf.GraphKeys.UPDATE_OPS)\n', (7001, 7026), True, 'import tensorflow as tf\n'), ((7133, 7144), 'time.time', 'time.time', ([], {}), '()\n', (7142, 7144), False, 'import time\n'), ((9541, 9552), 'time.time', 'time.time', ([], {}), '()\n', (9550, 9552), False, 'import time\n'), ((363, 396), 'tensorflow.name_scope', 'tf.name_scope', (['"""ConvolutionBlock"""'], {}), "('ConvolutionBlock')\n", (376, 396), True, 'import tensorflow as tf\n'), ((414, 533), 'tensorflow.layers.conv2d', 'tf.layers.conv2d', (['X'], {'filters': 'nFilters', 'kernel_size': 'kernelSize', 'strides': '(1)', 'padding': '"""same"""', 'kernel_initializer': 'heInit'}), "(X, filters=nFilters, kernel_size=kernelSize, strides=1,\n padding='same', kernel_initializer=heInit)\n", (430, 533), True, 'import tensorflow as tf\n'), ((590, 678), 'tensorflow.layers.max_pooling2d', 'tf.layers.max_pooling2d', (['conv'], {'pool_size': '(2)', 'strides': '(2)', 'padding': '"""valid"""', 'name': '"""pool"""'}), "(conv, pool_size=2, strides=2, padding='valid', name\n ='pool')\n", (613, 678), True, 'import tensorflow as tf\n'), ((737, 800), 'tensorflow.layers.batch_normalization', 'tf.layers.batch_normalization', (['pool'], {'training': 'trn', 'momentum': 'bnm'}), '(pool, training=trn, momentum=bnm)\n', (766, 800), True, 'import tensorflow as tf\n'), ((823, 836), 'tensorflow.nn.elu', 'tf.nn.elu', (['bn'], {}), '(bn)\n', (832, 836), True, 'import tensorflow as tf\n'), ((1103, 1134), 'tensorflow.name_scope', 'tf.name_scope', (['"""inceptionBlock"""'], {}), "('inceptionBlock')\n", (1116, 1134), True, 'import tensorflow as tf\n'), ((1154, 1286), 'tensorflow.layers.conv2d', 'tf.layers.conv2d', (['X'], {'filters': 'nPath1', 'kernel_size': '(1)', 'strides': '(1)', 'padding': '"""same"""', 'activation': 'tf.nn.relu', 'kernel_initializer': 'heInit'}), "(X, filters=nPath1, kernel_size=1, strides=1, padding=\n 'same', activation=tf.nn.relu, kernel_initializer=heInit)\n", (1170, 1286), True, 'import tensorflow as tf\n'), ((1381, 1514), 'tensorflow.layers.conv2d', 'tf.layers.conv2d', (['X'], {'filters': 'nPath2_1', 'kernel_size': '(1)', 'strides': '(1)', 'padding': '"""same"""', 'activation': 'tf.nn.elu', 'kernel_initializer': 'heInit'}), "(X, filters=nPath2_1, kernel_size=1, strides=1, padding=\n 'same', activation=tf.nn.elu, kernel_initializer=heInit)\n", (1397, 1514), True, 'import tensorflow as tf\n'), ((1610, 1745), 'tensorflow.layers.conv2d', 'tf.layers.conv2d', (['in2'], {'filters': 'nPath2_2', 'kernel_size': '(3)', 'strides': '(1)', 'padding': '"""same"""', 'activation': 'tf.nn.elu', 'kernel_initializer': 'heInit'}), "(in2, filters=nPath2_2, kernel_size=3, strides=1, padding=\n 'same', activation=tf.nn.elu, kernel_initializer=heInit)\n", (1626, 1745), True, 'import tensorflow as tf\n'), ((1840, 1973), 'tensorflow.layers.conv2d', 'tf.layers.conv2d', (['X'], {'filters': 'nPath3_1', 'kernel_size': '(1)', 'strides': '(1)', 'padding': '"""same"""', 'activation': 'tf.nn.elu', 'kernel_initializer': 'heInit'}), "(X, filters=nPath3_1, kernel_size=1, strides=1, padding=\n 'same', activation=tf.nn.elu, kernel_initializer=heInit)\n", (1856, 1973), True, 'import tensorflow as tf\n'), ((2069, 2204), 'tensorflow.layers.conv2d', 'tf.layers.conv2d', (['in3'], {'filters': 'nPath3_2', 'kernel_size': '(5)', 'strides': '(1)', 'padding': '"""same"""', 'activation': 'tf.nn.elu', 'kernel_initializer': 'heInit'}), "(in3, filters=nPath3_2, kernel_size=5, strides=1, padding=\n 'same', activation=tf.nn.elu, kernel_initializer=heInit)\n", (2085, 2204), True, 'import tensorflow as tf\n'), ((2299, 2378), 'tensorflow.layers.max_pooling2d', 'tf.layers.max_pooling2d', (['X'], {'pool_size': '(2)', 'strides': '(1)', 'padding': '"""same"""', 'name': '"""p4.1"""'}), "(X, pool_size=2, strides=1, padding='same', name='p4.1')\n", (2322, 2378), True, 'import tensorflow as tf\n'), ((2442, 2575), 'tensorflow.layers.conv2d', 'tf.layers.conv2d', (['in4'], {'filters': 'nPath4', 'kernel_size': '(1)', 'strides': '(1)', 'padding': '"""same"""', 'activation': 'tf.nn.elu', 'kernel_initializer': 'heInit'}), "(in4, filters=nPath4, kernel_size=1, strides=1, padding=\n 'same', activation=tf.nn.elu, kernel_initializer=heInit)\n", (2458, 2575), True, 'import tensorflow as tf\n'), ((2670, 2717), 'tensorflow.concat', 'tf.concat', (['[path1, path2, path3, path4]'], {'axis': '(3)'}), '([path1, path2, path3, path4], axis=3)\n', (2679, 2717), True, 'import tensorflow as tf\n'), ((2739, 2848), 'tensorflow.layers.conv2d', 'tf.layers.conv2d', (['concat'], {'filters': 'c', 'kernel_size': '(1)', 'strides': '(1)', 'padding': '"""same"""', 'kernel_initializer': 'heInit'}), "(concat, filters=c, kernel_size=1, strides=1, padding=\n 'same', kernel_initializer=heInit)\n", (2755, 2848), True, 'import tensorflow as tf\n'), ((2904, 2972), 'tensorflow.layers.batch_normalization', 'tf.layers.batch_normalization', (['(merge + X)'], {'training': 'trn', 'momentum': 'bnm'}), '(merge + X, training=trn, momentum=bnm)\n', (2933, 2972), True, 'import tensorflow as tf\n'), ((2995, 3008), 'tensorflow.nn.elu', 'tf.nn.elu', (['bn'], {}), '(bn)\n', (3004, 3008), True, 'import tensorflow as tf\n'), ((3280, 3300), 'tensorflow.name_scope', 'tf.name_scope', (['"""cnn"""'], {}), "('cnn')\n", (3293, 3300), True, 'import tensorflow as tf\n'), ((4320, 4348), 'tensorflow.layers.flatten', 'tf.layers.flatten', (['incept5_2'], {}), '(incept5_2)\n', (4337, 4348), True, 'import tensorflow as tf\n'), ((4371, 4418), 'tensorflow.layers.dropout', 'tf.layers.dropout', (['flat', 'dropProb'], {'training': 'trn'}), '(flat, dropProb, training=trn)\n', (4388, 4418), True, 'import tensorflow as tf\n'), ((4438, 4534), 'tensorflow.layers.dense', 'tf.layers.dense', (['dropout1', '(1024)'], {'name': '"""fc1"""', 'kernel_initializer': 'heInit', 'activation': 'tf.nn.elu'}), "(dropout1, 1024, name='fc1', kernel_initializer=heInit,\n activation=tf.nn.elu)\n", (4453, 4534), True, 'import tensorflow as tf\n'), ((4589, 4635), 'tensorflow.layers.dropout', 'tf.layers.dropout', (['fc1', 'dropProb'], {'training': 'trn'}), '(fc1, dropProb, training=trn)\n', (4606, 4635), True, 'import tensorflow as tf\n'), ((4655, 4751), 'tensorflow.layers.dense', 'tf.layers.dense', (['dropout2', '(1024)'], {'name': '"""fc2"""', 'kernel_initializer': 'heInit', 'activation': 'tf.nn.elu'}), "(dropout2, 1024, name='fc2', kernel_initializer=heInit,\n activation=tf.nn.elu)\n", (4670, 4751), True, 'import tensorflow as tf\n'), ((4806, 4852), 'tensorflow.layers.dropout', 'tf.layers.dropout', (['fc2', 'dropProb'], {'training': 'trn'}), '(fc2, dropProb, training=trn)\n', (4823, 4852), True, 'import tensorflow as tf\n'), ((4875, 4947), 'tensorflow.layers.dense', 'tf.layers.dense', (['dropout3', '(120)'], {'name': '"""output"""', 'kernel_initializer': 'heInit'}), "(dropout3, 120, name='output', kernel_initializer=heInit)\n", (4890, 4947), True, 'import tensorflow as tf\n'), ((4973, 4994), 'tensorflow.nn.softmax', 'tf.nn.softmax', (['logits'], {}), '(logits)\n', (4986, 4994), True, 'import tensorflow as tf\n'), ((5007, 5028), 'tensorflow.name_scope', 'tf.name_scope', (['"""loss"""'], {}), "('loss')\n", (5020, 5028), True, 'import tensorflow as tf\n'), ((5049, 5120), 'tensorflow.nn.sparse_softmax_cross_entropy_with_logits', 'tf.nn.sparse_softmax_cross_entropy_with_logits', ([], {'labels': 'y', 'logits': 'logits'}), '(labels=y, logits=logits)\n', (5095, 5120), True, 'import tensorflow as tf\n'), ((5141, 5178), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['crossEnt'], {'name': '"""loss"""'}), "(crossEnt, name='loss')\n", (5155, 5178), True, 'import tensorflow as tf\n'), ((5193, 5214), 'tensorflow.name_scope', 'tf.name_scope', (['"""eval"""'], {}), "('eval')\n", (5206, 5214), True, 'import tensorflow as tf\n'), ((5234, 5262), 'tensorflow.nn.in_top_k', 'tf.nn.in_top_k', (['logits', 'y', '(1)'], {}), '(logits, y, 1)\n', (5248, 5262), True, 'import tensorflow as tf\n'), ((5339, 5361), 'tensorflow.name_scope', 'tf.name_scope', (['"""train"""'], {}), "('train')\n", (5352, 5361), True, 'import tensorflow as tf\n'), ((5525, 5601), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', ([], {'learning_rate': 'alpha', 'beta1': 'b1', 'beta2': 'b2', 'epsilon': 'eps'}), '(learning_rate=alpha, beta1=b1, beta2=b2, epsilon=eps)\n', (5547, 5601), True, 'import tensorflow as tf\n'), ((5714, 5753), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""crossEntropy"""', 'loss'], {}), "('crossEntropy', loss)\n", (5731, 5753), True, 'import tensorflow as tf\n'), ((5764, 5788), 'tensorflow.name_scope', 'tf.name_scope', (['"""utility"""'], {}), "('utility')\n", (5777, 5788), True, 'import tensorflow as tf\n'), ((5805, 5838), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (5836, 5838), True, 'import tensorflow as tf\n'), ((5855, 5871), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {}), '()\n', (5869, 5871), True, 'import tensorflow as tf\n'), ((6101, 6155), 'dogFunctions.genData', 'genData', (['allX[start:start + batchSize]', 'allY'], {'size': '(200)'}), '(allX[start:start + batchSize], allY, size=200)\n', (6108, 6155), False, 'from dogFunctions import genData, genBatch\n'), ((7155, 7167), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (7165, 7167), True, 'import tensorflow as tf\n'), ((9647, 9662), 'numpy.array', 'np.array', (['loVal'], {}), '(loVal)\n', (9655, 9662), True, 'import numpy as np\n'), ((9664, 9677), 'numpy.array', 'np.array', (['tls'], {}), '(tls)\n', (9672, 9677), True, 'import numpy as np\n'), ((9679, 9692), 'numpy.array', 'np.array', (['vls'], {}), '(vls)\n', (9687, 9692), True, 'import numpy as np\n'), ((9694, 9707), 'numpy.array', 'np.array', (['tas'], {}), '(tas)\n', (9702, 9707), True, 'import numpy as np\n'), ((9709, 9722), 'numpy.array', 'np.array', (['vas'], {}), '(vas)\n', (9717, 9722), True, 'import numpy as np\n'), ((5298, 5326), 'tensorflow.cast', 'tf.cast', (['correct', 'tf.float32'], {}), '(correct, tf.float32)\n', (5305, 5326), True, 'import tensorflow as tf\n'), ((7750, 7802), 'dogFunctions.genBatch', 'genBatch', (['trainX', 'labels', 'batchSize'], {'imgSize': 'imgSize'}), '(trainX, labels, batchSize, imgSize=imgSize)\n', (7758, 7802), False, 'from dogFunctions import genData, genBatch\n')]
# -*- coding: utf-8 -*- from __future__ import division, print_function, unicode_literals __all__ = ["Summary"] import fitsio import numpy as np try: import matplotlib.pyplot as pl except ImportError: pl = None else: from matplotlib.ticker import MaxNLocator from matplotlib.backends.backend_pdf import PdfPages from ..pipeline import Pipeline class Summary(Pipeline): query_parameters = dict( summary_file=(None, True), signals=([], False), nboot=(400, False), ) def __init__(self, *args, **kwargs): if pl is None: raise ImportError("matplotlib is required") kwargs["cache"] = kwargs.pop("cache", False) super(Summary, self).__init__(*args, **kwargs) def get_result(self, query, parent_response): from matplotlib import rcParams rcParams["text.usetex"] = True rcParams["font.size"] = 11. epic = parent_response.epic tpf = fitsio.read(parent_response.target_pixel_file) lc_data = fitsio.read(query["light_curve_file"]) x = np.all(lc_data["flux"], axis=1) i = np.arange(len(x))[np.isfinite(x)][-1] # Get the light curve object. lc = parent_response.model_light_curves[0] fp_model = parent_response.fp_model # Loop over signals, compute the mean model, and the centroid offsets. print("Computing centroid offsets...") off = np.empty(len(query["signals"])) off_boot = np.empty((len(query["signals"]), query["nboot"])) model = np.zeros_like(lc.time) for i, row in enumerate(query["signals"]): p, t0, d, tau = (row[k] for k in ["period", "t0", "depth", "duration"]) hp = 0.5 * p m = np.abs((lc.time - t0 + hp) % p - hp) < 0.5*tau model[m] -= d # Compute the centroid offsets. off[i] = fp_model.compute_offsets(p, t0, tau) for j in range(query["nboot"]): x = np.random.uniform(0, p) off_boot[i, j] = fp_model.compute_offsets(p, x, tau) # Make the prediction. t = lc.time f = lc.flux - lc.predict(lc.flux - model) # Dimensions. full_h = 0.97 / 6 vspace_b, vspace_t = 0.2 * full_h, 0.1 * full_h inner_h = full_h - vspace_t - vspace_b full_w = 0.5 hspace_l, hspace_r = 0.15 * full_w, 0.05 * full_w inner_w = full_w - hspace_l - hspace_r label_dict = dict(xy=(0, 0), xycoords="axes fraction", xytext=(6, 6), textcoords="offset points", ha="left", va="bottom") with PdfPages(query["summary_file"]) as pdf: # Initialize the figure. fig = pl.figure(figsize=(9, 12)) # Make a figure for every signal. colors = "grb" for ntransit, (row, color) in enumerate(zip(query["signals"], colors)): fig.clf() # Plot the full light curve. ax = pl.axes([hspace_l, 5. * full_h + vspace_b, 2*inner_w + hspace_l + hspace_r, inner_h]) ax.plot(t, f, ".k", rasterized=True) ax.set_title((r"EPIC {0} \#{1} --- period: {2:.3f} d, " "depth: {3:.3f} ppt").format( epic.id, ntransit + 1, row["period"], row["depth"], )) # Plot the transit locations. for mod, c in zip(query["signals"], colors): p, t0 = (mod[k] for k in ["period", "t0"]) while True: ax.axvline(t0, color=c, lw=1.5, alpha=0.5) t0 += p if t0 > t.max(): break # Format the full light curve plot. ax.set_xlim(t.min(), t.max()) ax.set_ylabel("rel. flux [ppt]") ax.set_xlabel("time [days]") ax.yaxis.set_major_locator(MaxNLocator(5)) ylim = ax.get_ylim() # Compute the folded times. p, t0, depth = (row[k] for k in ["period", "t0", "depth"]) hp = 0.5 * p t_fold = (t - t0 + hp) % p - hp # Plot the zoomed folded light curve. ax = pl.axes([hspace_l, 4. * full_h + vspace_b, inner_w, inner_h]) ax.plot(t_fold, f, ".k", rasterized=True) ax.axvline(0, color=color, lw=1.5, alpha=0.5) ax.annotate("phased (zoom)", **label_dict) ax.set_xlim(-0.7, 0.7) ax.set_ylim(ylim) ax.set_ylabel("rel. flux [ppt]") ax.set_xlabel("time since transit [days]") ax.yaxis.set_major_locator(MaxNLocator(5)) # Plot the folded light curve. ax = pl.axes([hspace_l, 3. * full_h + vspace_b, inner_w, inner_h]) ax.plot(t_fold, f, ".k", rasterized=True) ax.axvline(0, color=color, lw=1.5, alpha=0.5) ax.annotate("phased", **label_dict) ax.set_xlim(-1.7, 1.7) ax.set_ylim(ylim) ax.set_ylabel("rel. flux [ppt]") ax.set_xlabel("time since transit [days]") ax.yaxis.set_major_locator(MaxNLocator(5)) # Plot the secondary. ax = pl.axes([hspace_l, 2. * full_h + vspace_b, inner_w, inner_h]) t_fold_2 = (t - t0) % p - hp ax.plot(t_fold_2, f, ".k", rasterized=True) ax.axvline(0, color=color, lw=1.5, alpha=0.5) ax.annotate("phased secondary", **label_dict) ax.set_xlim(-1.7, 1.7) ax.set_ylim(ylim) ax.set_ylabel("rel. flux [ppt]") ax.set_xlabel("time since secondary [days]") ax.yaxis.set_major_locator(MaxNLocator(5)) # Plot the stacked transits. ax = pl.axes([full_w + hspace_l, 2. * full_h + vspace_b, inner_w, 3 * inner_h + 2 * vspace_b + 2 * vspace_t]) num = ((t - t0 - hp) // p).astype(int) num -= min(num) offset = 2 * depth for n in set(num): m = (num == n) & (np.abs(t_fold) < 1.7) c = "rb"[n % 2] ax.plot(t_fold[m], f[m] + offset * n, c) ax.axhline(offset * n, color="k", linestyle="dashed") ax.axvline(0, color="k", lw=1.5, alpha=0.5) ax.set_yticklabels([]) ax.set_ylim(-offset, (max(num) + 0.5) * offset) ax.set_xlim(-1.7, 1.7) ax.set_xlabel("time since transit [days]") # Plot the tpf. ax = pl.axes([hspace_l, vspace_b, inner_w, 2 * inner_h + vspace_b + vspace_t]) img = tpf["FLUX"][i].T limg = np.nan + np.zeros_like(img) m = np.isfinite(img) & (img > 0) limg[m] = np.log(img[m]) ax.imshow(-limg, cmap="gray", interpolation="nearest") ax.annotate("log(frame)", **label_dict) ax.set_xlim(-0.5, img.shape[1] - 0.5) ax.set_ylim(-0.5, img.shape[0] - 0.5) ax.set_xticklabels([]) ax.set_yticklabels([]) # Plot the centroid offsets. ax = pl.axes([full_w + hspace_l, vspace_b + full_h, inner_w, inner_h]) bins = np.linspace(0, off_boot[ntransit].max(), 12) ax.hist(off_boot[ntransit], bins, histtype="step", color="k") ax.axvline(off[ntransit], color=color, lw=1.5, alpha=0.5) ax.set_yticklabels([]) ax.set_xlabel("centroid offset [pix]") # Plot the even/odd depth. ax = pl.axes([full_w + hspace_l, vspace_b, inner_w, inner_h]) mu, std = fp_model.compute_odd_even(row["period"], row["t0"], row["duration"]) ax.errorbar(mu, range(2), xerr=std, fmt="ok", capsize=0) ax.set_yticklabels([]) ax.set_xlabel("even/odd depth [ppt]") ax.set_ylim(-0.5, 1.5) pdf.savefig(fig) pl.close(fig) return parent_response
[ "matplotlib.backends.backend_pdf.PdfPages", "numpy.random.uniform", "numpy.zeros_like", "numpy.abs", "numpy.log", "matplotlib.pyplot.axes", "matplotlib.pyplot.close", "matplotlib.ticker.MaxNLocator", "numpy.isfinite", "fitsio.read", "matplotlib.pyplot.figure", "numpy.all" ]
[((967, 1013), 'fitsio.read', 'fitsio.read', (['parent_response.target_pixel_file'], {}), '(parent_response.target_pixel_file)\n', (978, 1013), False, 'import fitsio\n'), ((1032, 1070), 'fitsio.read', 'fitsio.read', (["query['light_curve_file']"], {}), "(query['light_curve_file'])\n", (1043, 1070), False, 'import fitsio\n'), ((1083, 1114), 'numpy.all', 'np.all', (["lc_data['flux']"], {'axis': '(1)'}), "(lc_data['flux'], axis=1)\n", (1089, 1114), True, 'import numpy as np\n'), ((1558, 1580), 'numpy.zeros_like', 'np.zeros_like', (['lc.time'], {}), '(lc.time)\n', (1571, 1580), True, 'import numpy as np\n'), ((8852, 8865), 'matplotlib.pyplot.close', 'pl.close', (['fig'], {}), '(fig)\n', (8860, 8865), True, 'import matplotlib.pyplot as pl\n'), ((2713, 2744), 'matplotlib.backends.backend_pdf.PdfPages', 'PdfPages', (["query['summary_file']"], {}), "(query['summary_file'])\n", (2721, 2744), False, 'from matplotlib.backends.backend_pdf import PdfPages\n'), ((2808, 2834), 'matplotlib.pyplot.figure', 'pl.figure', ([], {'figsize': '(9, 12)'}), '(figsize=(9, 12))\n', (2817, 2834), True, 'import matplotlib.pyplot as pl\n'), ((1145, 1159), 'numpy.isfinite', 'np.isfinite', (['x'], {}), '(x)\n', (1156, 1159), True, 'import numpy as np\n'), ((1803, 1839), 'numpy.abs', 'np.abs', (['((lc.time - t0 + hp) % p - hp)'], {}), '((lc.time - t0 + hp) % p - hp)\n', (1809, 1839), True, 'import numpy as np\n'), ((2043, 2066), 'numpy.random.uniform', 'np.random.uniform', (['(0)', 'p'], {}), '(0, p)\n', (2060, 2066), True, 'import numpy as np\n'), ((3142, 3234), 'matplotlib.pyplot.axes', 'pl.axes', (['[hspace_l, 5.0 * full_h + vspace_b, 2 * inner_w + hspace_l + hspace_r, inner_h]'], {}), '([hspace_l, 5.0 * full_h + vspace_b, 2 * inner_w + hspace_l +\n hspace_r, inner_h])\n', (3149, 3234), True, 'import matplotlib.pyplot as pl\n'), ((4589, 4651), 'matplotlib.pyplot.axes', 'pl.axes', (['[hspace_l, 4.0 * full_h + vspace_b, inner_w, inner_h]'], {}), '([hspace_l, 4.0 * full_h + vspace_b, inner_w, inner_h])\n', (4596, 4651), True, 'import matplotlib.pyplot as pl\n'), ((5169, 5231), 'matplotlib.pyplot.axes', 'pl.axes', (['[hspace_l, 3.0 * full_h + vspace_b, inner_w, inner_h]'], {}), '([hspace_l, 3.0 * full_h + vspace_b, inner_w, inner_h])\n', (5176, 5231), True, 'import matplotlib.pyplot as pl\n'), ((5733, 5795), 'matplotlib.pyplot.axes', 'pl.axes', (['[hspace_l, 2.0 * full_h + vspace_b, inner_w, inner_h]'], {}), '([hspace_l, 2.0 * full_h + vspace_b, inner_w, inner_h])\n', (5740, 5795), True, 'import matplotlib.pyplot as pl\n'), ((6363, 6472), 'matplotlib.pyplot.axes', 'pl.axes', (['[full_w + hspace_l, 2.0 * full_h + vspace_b, inner_w, 3 * inner_h + 2 *\n vspace_b + 2 * vspace_t]'], {}), '([full_w + hspace_l, 2.0 * full_h + vspace_b, inner_w, 3 * inner_h +\n 2 * vspace_b + 2 * vspace_t])\n', (6370, 6472), True, 'import matplotlib.pyplot as pl\n'), ((7231, 7304), 'matplotlib.pyplot.axes', 'pl.axes', (['[hspace_l, vspace_b, inner_w, 2 * inner_h + vspace_b + vspace_t]'], {}), '([hspace_l, vspace_b, inner_w, 2 * inner_h + vspace_b + vspace_t])\n', (7238, 7304), True, 'import matplotlib.pyplot as pl\n'), ((7500, 7514), 'numpy.log', 'np.log', (['img[m]'], {}), '(img[m])\n', (7506, 7514), True, 'import numpy as np\n'), ((7895, 7960), 'matplotlib.pyplot.axes', 'pl.axes', (['[full_w + hspace_l, vspace_b + full_h, inner_w, inner_h]'], {}), '([full_w + hspace_l, vspace_b + full_h, inner_w, inner_h])\n', (7902, 7960), True, 'import matplotlib.pyplot as pl\n'), ((8370, 8426), 'matplotlib.pyplot.axes', 'pl.axes', (['[full_w + hspace_l, vspace_b, inner_w, inner_h]'], {}), '([full_w + hspace_l, vspace_b, inner_w, inner_h])\n', (8377, 8426), True, 'import matplotlib.pyplot as pl\n'), ((4263, 4277), 'matplotlib.ticker.MaxNLocator', 'MaxNLocator', (['(5)'], {}), '(5)\n', (4274, 4277), False, 'from matplotlib.ticker import MaxNLocator\n'), ((5084, 5098), 'matplotlib.ticker.MaxNLocator', 'MaxNLocator', (['(5)'], {}), '(5)\n', (5095, 5098), False, 'from matplotlib.ticker import MaxNLocator\n'), ((5657, 5671), 'matplotlib.ticker.MaxNLocator', 'MaxNLocator', (['(5)'], {}), '(5)\n', (5668, 5671), False, 'from matplotlib.ticker import MaxNLocator\n'), ((6280, 6294), 'matplotlib.ticker.MaxNLocator', 'MaxNLocator', (['(5)'], {}), '(5)\n', (6291, 6294), False, 'from matplotlib.ticker import MaxNLocator\n'), ((7406, 7424), 'numpy.zeros_like', 'np.zeros_like', (['img'], {}), '(img)\n', (7419, 7424), True, 'import numpy as np\n'), ((7445, 7461), 'numpy.isfinite', 'np.isfinite', (['img'], {}), '(img)\n', (7456, 7461), True, 'import numpy as np\n'), ((6723, 6737), 'numpy.abs', 'np.abs', (['t_fold'], {}), '(t_fold)\n', (6729, 6737), True, 'import numpy as np\n')]
from typing import Dict, List, Tuple from black import main import matplotlib.pyplot as plt import numpy as np def _make_histogram( reshaped_image: np.ndarray, threshold: float, bins: int = 5 ) -> Tuple[List[int], np.ndarray]: """Fetch top colors from the histogram Args: reshaped_image (np.ndarray): Image reshaped to (N, 3) n_colors (int, optional): Number of colors. Defaults to 2. bins (int, optional): Number of bins for the histogram. Defaults to 5. Returns: Tuple[List[int], np.ndarray]: Unflatten indexes of top colors and all edges """ ranges = ( (np.min(reshaped_image[:, 0]), np.max(reshaped_image[:, 0])), (np.min(reshaped_image[:, 1]), np.max(reshaped_image[:, 1])), (np.min(reshaped_image[:, 2]), np.max(reshaped_image[:, 2])), ) hist, edges = np.histogramdd(reshaped_image, bins=bins, range=ranges) hist = hist / len(reshaped_image) best_indexes = np.where(hist.flatten() > threshold)[0] unflatten_indexes = [np.unravel_index(index, hist.shape) for index in best_indexes] return unflatten_indexes, np.array(edges) def _get_best_color_boundaries( dimension_indexes: Tuple[int, int, int], edges: np.ndarray ) -> List[Tuple[float, float]]: """Compute boundaries for each dimension of a main color Args: dimension_indexes (int): Indexes of main color (R, G, B) edges (np.ndarray): Edges from the histogram computation Returns: List[float, float]: List of the boundaries of the main color """ boundaries = [] for n, dimension_index in enumerate(dimension_indexes): boundaries.append((edges[n, dimension_index], edges[n, dimension_index + 1])) return boundaries def _get_best_colors_boundaries( indexes: List[Tuple[int, int, int]], edges: np.ndarray ) -> np.ndarray: """Compute boundaries of all main colors for all dimension Args: indexes (List[Tuple[int, int, int]]): List of color indexes (RGB) edges (np.ndarray): Edges from the histogram computation Returns: np.ndarray: Boundaries of each colors shape (N, 3, 2) """ main_colors = [] for index in indexes: main_colors.append(_get_best_color_boundaries(index, edges)) return np.array(main_colors) def get_main_colors( reshaped_image: np.ndarray, threshold: float, bins: int = 5 ) -> np.ndarray: """Compute best colors Args: reshaped_image (np.ndarray): Reshaped image to (N, 3) n_colors (int, optional): Number of main colors. Defaults to 2. bins (int, optional): Bin size. Defaults to 5. Returns: np.ndarray: Main colors """ unflatten_indexes, edges = _make_histogram(reshaped_image, threshold, bins) main_colors = _get_best_colors_boundaries(unflatten_indexes, edges) return main_colors def show_main_colors(main_colors: np.ndarray): """Plot main colors Args: main_colors (np.ndarray): Main colors """ _, axes = plt.subplots(1, len(main_colors), figsize=(15, 2)) for k in range(len(axes)): axes[k].imshow([[np.mean(main_colors, axis=2)[k] / 256]]) axes[k].set_axis_off() def compute_masks(main_colors: np.ndarray, image: np.ndarray) -> np.ndarray: """Compute masks for main_colors segmentation Args: main_colors (np.ndarray): Main colors image (np.ndarray): Image Returns: np.ndarray: Masks """ masks = [] for main_color in main_colors: condition = (image[..., 0] > main_color[0, 0]) & ( image[..., 0] < main_color[0, 1] ) condition = ( condition & (image[..., 1] > main_color[1, 0]) & (image[..., 1] < main_color[1, 1]) ) condition = ( condition & (image[..., 2] > main_color[2, 0]) & (image[..., 2] < main_color[2, 1]) ) masks.append(condition) return masks def compute_distributions( masks: np.ndarray, image: np.ndarray ) -> List[Dict[str, np.ndarray]]: """Compute distributions (mean, variance) for each main color Args: masks (np.ndarray): Masks of each main color image (np.ndarray): Image Returns: List[Dict[str, np.ndarray]]: Distributions of main colors with keys mu (for mean) and sigma2 (for variance) """ distributions = [] for mask in masks: sub_image = image[mask] distributions.append( dict( mu=np.mean(sub_image, axis=0), sigma2=np.var(sub_image, axis=0), size=len(sub_image), ) ) return distributions def show_mask(mask: np.ndarray, image: np.ndarray): r = np.where(mask, image[..., 0], 255)[..., np.newaxis] g = np.where(mask, image[..., 1], 255)[..., np.newaxis] b = np.where(mask, image[..., 2], 255)[..., np.newaxis] plt.imshow(np.concatenate([r, g, b], axis=-1)) def make_original_partition(image: np.ndarray, main_colors: np.ndarray) -> dict: """Generate an initial partition of using euclidian distance with main colors Args: image (np.ndarray): Image main_colors (np.ndarray): Main colors boundaries Returns: dict: Initial partition """ partition = {k: set() for k in range(len(main_colors))} reshaped_image = image.reshape(-1, 3) for n in range(len(reshaped_image)): pixel = reshaped_image[n] distances = np.linalg.norm(pixel - np.mean(main_colors, 2), axis=1) label = np.argmin(distances) partition[label].add(str(n)) return partition def segmentation( image: np.ndarray, params: dict, verbose: bool = True, threshold: float = 0.1 ) -> Tuple[List[Dict[str, np.ndarray]], dict]: """Run the original segmentation using histogram of colors Args: image (np.ndarray): Image params (dict): Params with key bins (int) verbose (bool, optional): Verbose. Defaults to True. threshold (float, optional): Threshold. Defaults to 0.1. Returns: Tuple[List[Dict[str, np.ndarray]], dict]: Distributions of main colors and original partition """ if verbose: print("Computing main colors...") reshaped_image = image.reshape((-1, 3)) main_colors = get_main_colors( reshaped_image, bins=params["bins"], threshold=threshold ) while len(main_colors) == 0: threshold = threshold * 9 / 10 main_colors = get_main_colors( reshaped_image, bins=params["bins"], threshold=threshold ) masks = compute_masks(main_colors, image) distributions = compute_distributions(masks, image) original_partition = make_original_partition(image, main_colors) return distributions, original_partition
[ "numpy.histogramdd", "numpy.unravel_index", "numpy.argmin", "numpy.min", "numpy.where", "numpy.array", "numpy.max", "numpy.mean", "numpy.var", "numpy.concatenate" ]
[((851, 906), 'numpy.histogramdd', 'np.histogramdd', (['reshaped_image'], {'bins': 'bins', 'range': 'ranges'}), '(reshaped_image, bins=bins, range=ranges)\n', (865, 906), True, 'import numpy as np\n'), ((2284, 2305), 'numpy.array', 'np.array', (['main_colors'], {}), '(main_colors)\n', (2292, 2305), True, 'import numpy as np\n'), ((1030, 1065), 'numpy.unravel_index', 'np.unravel_index', (['index', 'hist.shape'], {}), '(index, hist.shape)\n', (1046, 1065), True, 'import numpy as np\n'), ((1123, 1138), 'numpy.array', 'np.array', (['edges'], {}), '(edges)\n', (1131, 1138), True, 'import numpy as np\n'), ((4796, 4830), 'numpy.where', 'np.where', (['mask', 'image[..., 0]', '(255)'], {}), '(mask, image[..., 0], 255)\n', (4804, 4830), True, 'import numpy as np\n'), ((4856, 4890), 'numpy.where', 'np.where', (['mask', 'image[..., 1]', '(255)'], {}), '(mask, image[..., 1], 255)\n', (4864, 4890), True, 'import numpy as np\n'), ((4916, 4950), 'numpy.where', 'np.where', (['mask', 'image[..., 2]', '(255)'], {}), '(mask, image[..., 2], 255)\n', (4924, 4950), True, 'import numpy as np\n'), ((4983, 5017), 'numpy.concatenate', 'np.concatenate', (['[r, g, b]'], {'axis': '(-1)'}), '([r, g, b], axis=-1)\n', (4997, 5017), True, 'import numpy as np\n'), ((5609, 5629), 'numpy.argmin', 'np.argmin', (['distances'], {}), '(distances)\n', (5618, 5629), True, 'import numpy as np\n'), ((626, 654), 'numpy.min', 'np.min', (['reshaped_image[:, 0]'], {}), '(reshaped_image[:, 0])\n', (632, 654), True, 'import numpy as np\n'), ((656, 684), 'numpy.max', 'np.max', (['reshaped_image[:, 0]'], {}), '(reshaped_image[:, 0])\n', (662, 684), True, 'import numpy as np\n'), ((696, 724), 'numpy.min', 'np.min', (['reshaped_image[:, 1]'], {}), '(reshaped_image[:, 1])\n', (702, 724), True, 'import numpy as np\n'), ((726, 754), 'numpy.max', 'np.max', (['reshaped_image[:, 1]'], {}), '(reshaped_image[:, 1])\n', (732, 754), True, 'import numpy as np\n'), ((766, 794), 'numpy.min', 'np.min', (['reshaped_image[:, 2]'], {}), '(reshaped_image[:, 2])\n', (772, 794), True, 'import numpy as np\n'), ((796, 824), 'numpy.max', 'np.max', (['reshaped_image[:, 2]'], {}), '(reshaped_image[:, 2])\n', (802, 824), True, 'import numpy as np\n'), ((5560, 5583), 'numpy.mean', 'np.mean', (['main_colors', '(2)'], {}), '(main_colors, 2)\n', (5567, 5583), True, 'import numpy as np\n'), ((4570, 4596), 'numpy.mean', 'np.mean', (['sub_image'], {'axis': '(0)'}), '(sub_image, axis=0)\n', (4577, 4596), True, 'import numpy as np\n'), ((4621, 4646), 'numpy.var', 'np.var', (['sub_image'], {'axis': '(0)'}), '(sub_image, axis=0)\n', (4627, 4646), True, 'import numpy as np\n'), ((3125, 3153), 'numpy.mean', 'np.mean', (['main_colors'], {'axis': '(2)'}), '(main_colors, axis=2)\n', (3132, 3153), True, 'import numpy as np\n')]
import cv2 import numpy as np img = cv2.imread("imori.jpg").astype(np.float32) H,W,C=img.shape #gray scale b = img[:,:,0].copy() g = img[:,:,1].copy() r = img[:,:,2].copy() gray = 0.2126 * r + 0.7152 * g + 0.0722 * b #0.2126+0.7152+0.0722 = 1 gray = gray.astype(np.uint8) #filtersize filtersize=3 pad=filtersize//2 out=np.zeros((H+pad*2,W+pad*2,C),dtype=np.float) out[pad:pad+H, pad:pad+W] = img.copy().astype(np.float) #filter temp=out.copy() for y in range (H): for x in range(W): out[y+pad][x+pad]= np.max(temp[y:y+filtersize, x:x+filtersize])-np.min(temp[y:y+filtersize, x:x+filtersize]) out[out<0]=0 out[out>255]=255 out = out[pad:pad+H, pad:pad+W].astype(np.uint8) cv2.imwrite("question13.jpg", out) cv2.imshow("result", out) cv2.waitKey(0) cv2.destroyAllWindows()
[ "cv2.waitKey", "cv2.imwrite", "cv2.destroyAllWindows", "numpy.zeros", "cv2.imread", "numpy.max", "numpy.min", "cv2.imshow" ]
[((323, 378), 'numpy.zeros', 'np.zeros', (['(H + pad * 2, W + pad * 2, C)'], {'dtype': 'np.float'}), '((H + pad * 2, W + pad * 2, C), dtype=np.float)\n', (331, 378), True, 'import numpy as np\n'), ((695, 729), 'cv2.imwrite', 'cv2.imwrite', (['"""question13.jpg"""', 'out'], {}), "('question13.jpg', out)\n", (706, 729), False, 'import cv2\n'), ((730, 755), 'cv2.imshow', 'cv2.imshow', (['"""result"""', 'out'], {}), "('result', out)\n", (740, 755), False, 'import cv2\n'), ((756, 770), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (767, 770), False, 'import cv2\n'), ((771, 794), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (792, 794), False, 'import cv2\n'), ((36, 59), 'cv2.imread', 'cv2.imread', (['"""imori.jpg"""'], {}), "('imori.jpg')\n", (46, 59), False, 'import cv2\n'), ((524, 572), 'numpy.max', 'np.max', (['temp[y:y + filtersize, x:x + filtersize]'], {}), '(temp[y:y + filtersize, x:x + filtersize])\n', (530, 572), True, 'import numpy as np\n'), ((569, 617), 'numpy.min', 'np.min', (['temp[y:y + filtersize, x:x + filtersize]'], {}), '(temp[y:y + filtersize, x:x + filtersize])\n', (575, 617), True, 'import numpy as np\n')]
''' interactive plot/ graphical user interface to select an area for segmentation, and appropriate thresholds. ''' from matplotlib.widgets import PolygonSelector, Button,Slider from matplotlib import path from matplotlib.image import AxesImage from matplotlib.backend_bases import MouseEvent from matplotlib.colors import LinearSegmentedColormap import matplotlib.pyplot as plt import tkinter as tk from tkinter import filedialog import numpy as np import warnings import os from segementation_bugs import * def assert_mask(mask): ''' hecks if mask exists.Tries to load from current working directory if it doesn't and prints warning messages. :param mask: np.darray representing the mask of the dish area :return: the mask and a boolean if the the mask could be loaded ''' if not isinstance(mask, np.ndarray): print("no current mask for dish area found") path_mask=os.path.join(os.getcwd(),"mask.npy") if os.path.exists(path_mask): # checks if mask can be loaded from current directory mask=np.load(path_mask) print("load mask from "+ path_mask) return mask,True else: warnings.warn("couldn't find current selection for the dish area" "or load a mask file") return 0, False else: return mask, True def set_button(pos,disp_name,fun,font_size=10): ''' helper function to set buttons, returns the axes object of the button and the widget object :param pos: x,y postion of buttom axes left corner and length and hight dx,dy as a list :param disp_name: string of the button name :param fun: function that is executed on button click :return: ax_button: the axes of the button button_widget: the button object ''' ax_button = plt.axes(pos) ax_button.xaxis.set_ticks_position('none') ax_button.yaxis.set_ticks_position('none') ax_button.set_xticks([]) ax_button.set_yticks([]) button_widget = Button(ax_button ,disp_name ) button_widget.on_clicked(fun) button_widget.label.set_fontsize(font_size) return ax_button,button_widget def ask_file(event): ''' opens a tk inter file browser. The selected file is loaded as an image to the window. Additionally the filtered image is calculated immediately. :param event: :return: ''' # opens dialog box for image selection global fig, ax, image, pix, image_f, im, lasso2 root = tk.Tk() root.withdraw() # file_path = filedialog.askopenfile() # loading the image image = plt.imread(file_path.name) # grey scale conversion, one could use some wights here if len(image.shape) == 3: #image=image[:,:,0] image = np.mean(image, axis=2) # filtering image image_f=normalize(image,lb=0.1,ub=99.9) # normalization to a range from 0 to 1 image_f=gaussian(image_f,sigma=s1)-gaussian(image_f,sigma=s2) # difference of gaussian filtering # displaying unfiltered image first im=ax.imshow(image) # you can choose a diffrent color map here fig.canvas.draw_idle() #plot update # coordinate of the image, later needed for selction pixx = np.arange(image.shape[0]) pixy = np.arange(image.shape[1]) xv, yv = np.meshgrid(pixy, pixx) pix = np.vstack((xv.flatten(), yv.flatten())).T # (re)initialize polygon selector #lasso2.disconnect_events() seems to have some kind of bug... lasso2 = PolygonSelector(ax, select_mask) # selector on bf image def select_mask(verts): ''' Constructs and displays the mask of the dish area from the nodes slected by the polygone selector. :param verts: vertices from the polygone selector :return: ''' global mask,im_mask,mask_show,verts_out if len(verts)==0: return # workaround when deleting old mask if not isinstance(pix,np.ndarray): #error handling if pix is not caclulated (e.g when no image is selected) warnings.warn("could not find coordinates of an image\n" "make sure to select and display an image file") return verts_out = verts # vertices of curve drawn by lasso selector p = path.Path(verts) #retrieving mask ind = p.contains_points(pix, radius=1) # all points inside of the selected area mask = np.reshape(np.array(ind), image.shape) # displaying the mask overlayed on image mask_show=np.zeros(mask.shape)+np.nan mask_show[mask]=1 im_mask=ax.imshow(mask_show,alpha=0.2) fig.canvas.draw_idle() # deleting the selected mask with right click def delete_mask(event): ''' deletes the mask of the dish area or the mask for bug selection if you click with the right mouse button :param event: :return: ''' global mask,im_mask,lasso2,mask_show,im_mask_bugs # deleting mask of dish area if exists if event.button==3 and event.inaxes==ax and isinstance(mask,np.ndarray) and isinstance(im_mask,AxesImage) : # only on right click, only if clicked in main axes # chek if mask is already selected mask=0 # reset mask mask_show=0 im_mask.remove() # remove displaying mask im_mask=0 lasso2._xs = [] lasso2._ys = [] lasso2._draw_polygon() # removes display of old verts lasso2 = PolygonSelector(ax, select_mask) # reinitalizing the selector fig.canvas.draw_idle() # plot update #print('you pressed', event.button, event.xdata, event.ydata) # deleting mask of bug segemetnation if exists # only on right click, only if clicked in main axes or in slider axis if event.button == 3 and isinstance(mask_bugs,np.ndarray) and isinstance(im_mask_bugs,AxesImage) and (event.inaxes==ax or event.inaxes == ax_slider): im_mask_bugs.remove()# im_mask_bugs=0 fig.canvas.draw_idle() # plotupdate def save_mask(event): ''' saves the mask to the currentworking directors as mask.npy. :param event: :return: ''' ## this will autmatically overide file=os.path.join(os.getcwd(),"mask.npy") np.save(file,mask) print("mask saved to " + file) ### button to show filtering (could alos be done automatically def show_filtered_image(event): ''' shows the filtered image or the original image. If you press the button once, the respectively other option appears on the button. :param event: :return: ''' global sfi_button,im_f,im,im_mask,lasso2 # disconnects and stops the lassoselecto lasso2.disconnect_events() # showing the filtered image if sfi_button.label.get_text()=="show filtered\nimage": # checks the text displayed on the button im.remove()# removing unfiltered image im_f=ax.imshow(image_f)# showning filterd image lasso2 = PolygonSelector(ax, select_mask) # reinitalizing the selector if isinstance(mask_show,np.ndarray): # showing mask if already selected im_mask=ax.imshow(mask_show, alpha=0.2) sfi_button.label.set_text("show unfiltered\nimage") fig.canvas.draw_idle() # plot update return # showing the unfilterd image if sfi_button.label.get_text()=="show unfiltered\nimage": # checks the text displayed on the button im_f.remove() # removing unfiltered image im = ax.imshow(image) # showing filterd image lasso2 = PolygonSelector(ax, select_mask) # reinitalizing the selector if isinstance(mask_show, np.ndarray): # showing mask if alaready selected im_mask = ax.imshow(mask_show, alpha=0.2) sfi_button.label.set_text("show filtered\nimage") fig.canvas.draw_idle() # plot update return def update_segmentation(val): ## note also disables the polygone selctor ''' Function to perform segmentation adn display the mask. This function is called when the threshold slider or the show detections button is pressed. :param val: value of the segmentation threshold :return: ''' global txt,ax,mask_bugs,mask,im_mask_bugs,im_mask,segmentation_factor segmentation_factor=val if not isinstance(pix, np.ndarray): # check if an image is selected warnings.warn("could not find coordinates of an image\n" "make sure to select and display an image file") return # checking if disk area mask is selected or can be loaded from the current working directory mask,mask_bool=assert_mask(mask) if not mask_bool: return # segmentation mask_bugs,thresh=segementation_sd(image_f,f=segmentation_factor,mask_area=mask) #segemtnation with new values #updating display if isinstance(im_mask,AxesImage): # remove other mask from display im_mask.remove() im_mask=0 # clearing previous mask of bugs if isinstance(im_mask_bugs,AxesImage): im_mask_bugs.remove() im_mask_bugs=0 # showing the new mask from segmentation mask_bugs_show=np.zeros(mask_bugs.shape)+np.nan mask_bugs_show[mask_bugs]=1 im_mask_bugs=ax.imshow(mask_bugs_show,alpha=0.7,cmap=cmap_mask) # updating the text displaying the formula for the threshold txt.remove() txt=plt.text(0, 1.5,"thresh: %.2f=mean + %.2f * sd"%(np.round(thresh,2),np.round(val,2)) ,transform = ax_slider_tresh.transAxes) ### get better text position # disabeling the lassoselector lasso2.set_visible(False) lasso2.set_active(False) fig.canvas.draw_idle() # plot update def show_dections(event): ''' showing the detections. Every bug is displayed as a dot. This function is called when the "show detections" button is pressed or when the "min size" slider is used :param event: :return: ''' global txt,ax,mask_bugs,mask,im_mask_bugs,im_mask,detections,minsize #retreiving the value of minsize if the slider is used if type(event)!=MouseEvent: minsize=event event_cp=event if not isinstance(pix, np.ndarray): # check if image is selected warnings.warn("could not find coordinates of an image\n" "make sure to select and display an image file") return # checking if disk area mask is selected or can be loaded from the current working directory mask,mask_bool=assert_mask(mask) if not mask_bool: return # checking if segmentation has already been performed. # if not segmentation is performed with the default or the latest selected value of the # segmentation factor if not isinstance(mask_bugs,AxesImage): warnings.warn("clouldnt find mask from segmentation, performing segmentation" "with factor %f"%segmentation_factor) # segmentation mask_bugs, thresh = segementation_sd(image_f, f=segmentation_factor, mask_area=mask) # segemtnation with new values # updating segmentation mask mask_bugs_show=np.zeros(mask_bugs.shape)+np.nan mask_bugs_show[mask_bugs]=1 im_mask_bugs=ax.imshow(mask_bugs_show,alpha=0.7,cmap=cmap_mask) # deleting previous detections: if isinstance(detections,np.ndarray) or isinstance(detections,list): for l in ax.lines: l.remove()#removing all plotted points for t in ax.texts [1:]: t.remove() # removing all texts except an empty initial one detections=0 #resetting detections list # performing detection detections,labels=detection(mask_bugs, min_size=minsize) # dsiplaying the new detections with a dot and a number offset=0.2 # text is moved a bit out of the way for i,(x,y) in enumerate(detections): ax.plot(y,x,"o",markersize=3) ax.text(y,x,str(i)) # disabling the lassoselector lasso2.set_visible(False) lasso2.set_active(False) fig.canvas.draw_idle() # paramteres for filtering s1=12 s2=5 ##some preset or default values variables; don't change these pix=0 mask=0 mask_show=0 im_mask=0 im_mask_bugs=0 mask_bugs=0 detections=0 segmentation_factor=5 # default value, you can change this minsize=0 # default value, you can change this # custom color map for showing the mask of segmentation cmap_mask = LinearSegmentedColormap.from_list('mycmap', ["red","white"]) # initializing the interactive window fig, ax = plt.subplots() txt=plt.text(0.25,0.15,str("")) # text over sliding bar plt.subplots_adjust(left=0.25, bottom=0.25) # adding the open image button to the window ax_file,file_select=set_button([0.02, 0.5, 0.17, 0.05],'open image',ask_file) # initialyzing the polygone selector lasso2 = PolygonSelector(ax, select_mask) # ## adds functionality to delete the mask of segemntation or the dish area on rioght mouse click delete_mask_event = fig.canvas.mpl_connect('button_press_event', delete_mask) # buttton so save the mask of the dish area ax_save_changes,save_changes_button=set_button([0.02, 0.4, 0.17, 0.05],'save mask',save_mask) # buttton to swithc between the filtered and unfiltered images ax_sfi, sfi_button = set_button([0.02, 0.15, 0.17, 0.1], "show filtered\nimage",show_filtered_image) # adding the slider for thresholding ax_slider_tresh = plt.axes([0.25, 0.1, 0.65, 0.03]) # axis for the slider slider1= Slider(ax_slider_tresh, 'threshold', 0.5, 30, valinit=5, valstep=0.01) # creates a slider object slider1.on_changed(update_segmentation) # connects the slider to the segmentation function # adding the "show detections button ax_detections, detections_button = set_button([0.02, 0.3,0.17, 0.05], "show detections",show_dections) # adding the slider for min_size ax_slider_minsize = plt.axes([0.25, 0.05, 0.65, 0.03]) # axis for the slider slider2= Slider(ax_slider_minsize, 'min size', 0, 200, valinit=50, valstep=1) # creates a slider object slider2.on_changed(show_dections) # connects the slider to the show detections function # showing the entire window plt.show() # todo: # text position when segmenting is off #bug:rectangel selector seems to get increasingly slower when image is switched multiple times #(switching by loading new image or by displaying the filtered image ## sidenode, ther is also a "draw event, that might be nice.... # could add afunction to reactivate polygone selector (not really necessary)
[ "numpy.load", "matplotlib.pyplot.axes", "matplotlib.widgets.Slider", "numpy.mean", "numpy.arange", "matplotlib.widgets.PolygonSelector", "matplotlib.pyplot.imread", "numpy.round", "matplotlib.colors.LinearSegmentedColormap.from_list", "numpy.meshgrid", "os.path.exists", "tkinter.filedialog.askopenfile", "matplotlib.pyplot.subplots", "tkinter.Tk", "numpy.save", "matplotlib.pyplot.show", "matplotlib.pyplot.subplots_adjust", "os.getcwd", "numpy.zeros", "matplotlib.widgets.Button", "matplotlib.path.Path", "numpy.array", "warnings.warn" ]
[((12274, 12335), 'matplotlib.colors.LinearSegmentedColormap.from_list', 'LinearSegmentedColormap.from_list', (['"""mycmap"""', "['red', 'white']"], {}), "('mycmap', ['red', 'white'])\n", (12307, 12335), False, 'from matplotlib.colors import LinearSegmentedColormap\n'), ((12384, 12398), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (12396, 12398), True, 'import matplotlib.pyplot as plt\n'), ((12455, 12498), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'left': '(0.25)', 'bottom': '(0.25)'}), '(left=0.25, bottom=0.25)\n', (12474, 12498), True, 'import matplotlib.pyplot as plt\n'), ((12670, 12702), 'matplotlib.widgets.PolygonSelector', 'PolygonSelector', (['ax', 'select_mask'], {}), '(ax, select_mask)\n', (12685, 12702), False, 'from matplotlib.widgets import PolygonSelector, Button, Slider\n'), ((13240, 13273), 'matplotlib.pyplot.axes', 'plt.axes', (['[0.25, 0.1, 0.65, 0.03]'], {}), '([0.25, 0.1, 0.65, 0.03])\n', (13248, 13273), True, 'import matplotlib.pyplot as plt\n'), ((13305, 13375), 'matplotlib.widgets.Slider', 'Slider', (['ax_slider_tresh', '"""threshold"""', '(0.5)', '(30)'], {'valinit': '(5)', 'valstep': '(0.01)'}), "(ax_slider_tresh, 'threshold', 0.5, 30, valinit=5, valstep=0.01)\n", (13311, 13375), False, 'from matplotlib.widgets import PolygonSelector, Button, Slider\n'), ((13688, 13722), 'matplotlib.pyplot.axes', 'plt.axes', (['[0.25, 0.05, 0.65, 0.03]'], {}), '([0.25, 0.05, 0.65, 0.03])\n', (13696, 13722), True, 'import matplotlib.pyplot as plt\n'), ((13754, 13822), 'matplotlib.widgets.Slider', 'Slider', (['ax_slider_minsize', '"""min size"""', '(0)', '(200)'], {'valinit': '(50)', 'valstep': '(1)'}), "(ax_slider_minsize, 'min size', 0, 200, valinit=50, valstep=1)\n", (13760, 13822), False, 'from matplotlib.widgets import PolygonSelector, Button, Slider\n'), ((13966, 13976), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (13974, 13976), True, 'import matplotlib.pyplot as plt\n'), ((1851, 1864), 'matplotlib.pyplot.axes', 'plt.axes', (['pos'], {}), '(pos)\n', (1859, 1864), True, 'import matplotlib.pyplot as plt\n'), ((2037, 2065), 'matplotlib.widgets.Button', 'Button', (['ax_button', 'disp_name'], {}), '(ax_button, disp_name)\n', (2043, 2065), False, 'from matplotlib.widgets import PolygonSelector, Button, Slider\n'), ((2515, 2522), 'tkinter.Tk', 'tk.Tk', ([], {}), '()\n', (2520, 2522), True, 'import tkinter as tk\n'), ((2561, 2585), 'tkinter.filedialog.askopenfile', 'filedialog.askopenfile', ([], {}), '()\n', (2583, 2585), False, 'from tkinter import filedialog\n'), ((2622, 2648), 'matplotlib.pyplot.imread', 'plt.imread', (['file_path.name'], {}), '(file_path.name)\n', (2632, 2648), True, 'import matplotlib.pyplot as plt\n'), ((3232, 3257), 'numpy.arange', 'np.arange', (['image.shape[0]'], {}), '(image.shape[0])\n', (3241, 3257), True, 'import numpy as np\n'), ((3269, 3294), 'numpy.arange', 'np.arange', (['image.shape[1]'], {}), '(image.shape[1])\n', (3278, 3294), True, 'import numpy as np\n'), ((3308, 3331), 'numpy.meshgrid', 'np.meshgrid', (['pixy', 'pixx'], {}), '(pixy, pixx)\n', (3319, 3331), True, 'import numpy as np\n'), ((3503, 3535), 'matplotlib.widgets.PolygonSelector', 'PolygonSelector', (['ax', 'select_mask'], {}), '(ax, select_mask)\n', (3518, 3535), False, 'from matplotlib.widgets import PolygonSelector, Button, Slider\n'), ((4226, 4242), 'matplotlib.path.Path', 'path.Path', (['verts'], {}), '(verts)\n', (4235, 4242), False, 'from matplotlib import path\n'), ((6141, 6160), 'numpy.save', 'np.save', (['file', 'mask'], {}), '(file, mask)\n', (6148, 6160), True, 'import numpy as np\n'), ((964, 989), 'os.path.exists', 'os.path.exists', (['path_mask'], {}), '(path_mask)\n', (978, 989), False, 'import os\n'), ((2783, 2805), 'numpy.mean', 'np.mean', (['image'], {'axis': '(2)'}), '(image, axis=2)\n', (2790, 2805), True, 'import numpy as np\n'), ((4012, 4127), 'warnings.warn', 'warnings.warn', (['"""could not find coordinates of an image\nmake sure to select and display an image file"""'], {}), '(\n """could not find coordinates of an image\nmake sure to select and display an image file"""\n )\n', (4025, 4127), False, 'import warnings\n'), ((4370, 4383), 'numpy.array', 'np.array', (['ind'], {}), '(ind)\n', (4378, 4383), True, 'import numpy as np\n'), ((4457, 4477), 'numpy.zeros', 'np.zeros', (['mask.shape'], {}), '(mask.shape)\n', (4465, 4477), True, 'import numpy as np\n'), ((5356, 5388), 'matplotlib.widgets.PolygonSelector', 'PolygonSelector', (['ax', 'select_mask'], {}), '(ax, select_mask)\n', (5371, 5388), False, 'from matplotlib.widgets import PolygonSelector, Button, Slider\n'), ((6113, 6124), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (6122, 6124), False, 'import os\n'), ((6862, 6894), 'matplotlib.widgets.PolygonSelector', 'PolygonSelector', (['ax', 'select_mask'], {}), '(ax, select_mask)\n', (6877, 6894), False, 'from matplotlib.widgets import PolygonSelector, Button, Slider\n'), ((7440, 7472), 'matplotlib.widgets.PolygonSelector', 'PolygonSelector', (['ax', 'select_mask'], {}), '(ax, select_mask)\n', (7455, 7472), False, 'from matplotlib.widgets import PolygonSelector, Button, Slider\n'), ((8260, 8375), 'warnings.warn', 'warnings.warn', (['"""could not find coordinates of an image\nmake sure to select and display an image file"""'], {}), '(\n """could not find coordinates of an image\nmake sure to select and display an image file"""\n )\n', (8273, 8375), False, 'import warnings\n'), ((9044, 9069), 'numpy.zeros', 'np.zeros', (['mask_bugs.shape'], {}), '(mask_bugs.shape)\n', (9052, 9069), True, 'import numpy as np\n'), ((10100, 10215), 'warnings.warn', 'warnings.warn', (['"""could not find coordinates of an image\nmake sure to select and display an image file"""'], {}), '(\n """could not find coordinates of an image\nmake sure to select and display an image file"""\n )\n', (10113, 10215), False, 'import warnings\n'), ((10645, 10769), 'warnings.warn', 'warnings.warn', (["('clouldnt find mask from segmentation, performing segmentationwith factor %f'\n % segmentation_factor)"], {}), "(\n 'clouldnt find mask from segmentation, performing segmentationwith factor %f'\n % segmentation_factor)\n", (10658, 10769), False, 'import warnings\n'), ((929, 940), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (938, 940), False, 'import os\n'), ((1062, 1080), 'numpy.load', 'np.load', (['path_mask'], {}), '(path_mask)\n', (1069, 1080), True, 'import numpy as np\n'), ((1184, 1274), 'warnings.warn', 'warnings.warn', (['"""couldn\'t find current selection for the dish areaor load a mask file"""'], {}), '(\n "couldn\'t find current selection for the dish areaor load a mask file")\n', (1197, 1274), False, 'import warnings\n'), ((10991, 11016), 'numpy.zeros', 'np.zeros', (['mask_bugs.shape'], {}), '(mask_bugs.shape)\n', (10999, 11016), True, 'import numpy as np\n'), ((9317, 9336), 'numpy.round', 'np.round', (['thresh', '(2)'], {}), '(thresh, 2)\n', (9325, 9336), True, 'import numpy as np\n'), ((9336, 9352), 'numpy.round', 'np.round', (['val', '(2)'], {}), '(val, 2)\n', (9344, 9352), True, 'import numpy as np\n')]
from __future__ import division import time from Model import Road from Model import Lane import numpy as np import cv2 as cv from types import NoneType import numpy as np import moviepy.editor as mpy import matplotlib.pyplot as plt from ImageProcessing.PerspectiveWrapper import PerspectiveWrapper import tensorflow as tf from PIL import Image from glob import glob from tqdm import tqdm from get_labels import get_labels from get_model import get_model from detect_peaks import detect_peaks import os # os.environ['CUDA_VISIBLE_DEVICES'] = '-1' import tensorflow as tf from keras import backend as K K.set_learning_phase(0) # Set Memory allocation in tf/keras to Growth config = tf.compat.v1.ConfigProto() config.gpu_options.allow_growth = True config.inter_op_parallelism_threads = 4 config.intra_op_parallelism_threads = 4 config.allow_soft_placement = True config.graph_options.optimizer_options.global_jit_level = tf.OptimizerOptions.ON_1 sess = tf.compat.v1.Session(config=config) K.set_session(sess) class LaneDetectorCNN: def __init__(self): # General self.settings for network training and labels (do not change) self.settings = dict() self.settings['model'] = 'espnet' self.settings['shape'] = (640, 480) self.settings['random_flip'] = True self.settings['random_crop'] = True self.settings['epochs'] = 1000 self.settings['batch_size'] = 1 self.settings['learning_rate'] = 0.001 self.settings['weight_decay'] = 0.001 self.settings['labels'] = 'base' self.settings['labels'] = get_labels(self.settings) # self.settings for verbosity (with plots) self.settings['verbose'] = False # Setting to indicate whether to save input images one by one and create a movie afterwards self.settings['save'] = False # Load pretrained self.model _, self.model, _ = get_model(self.settings) print(os.getcwd()) self.model.load_weights('LaneDetectionOld/espnet_base_0.7669_0.7630.hdf5', by_name=True) self.model._make_predict_function() self.weights = self.model.get_weights() weights_array = np.array(self.weights) for i in range(len(self.weights)): weights_array[i] = np.float16(weights_array[i]) self.weights = weights_array.tolist() self.model.set_weights(self.weights) # sess = tf.Session() # sess.run(tf.global_variables_initializer()) # self.default_graph = tf.get_default_graph() # self.default_graph.finalize() def get_road(self, img): lanes = self.get_lanes(img) road = Road(lanes) return road def get_lanes(self, img): return lanes def detect_lanes(self, img): image_w = img.shape[1] image_h = img.shape[0] # Load original image image = np.array(img).astype(np.float32) / 255 # Resize it to network dimensions image_small = cv.resize(image, (640, 480), interpolation=cv.INTER_LINEAR) # with self.default_graph.as_default(): # Predict image_pred_small = self.model.predict(np.expand_dims(image_small, axis=0), batch_size=len(image_small))[0] # Resize prediction back to original size image_pred = cv.resize(image_pred_small, (image_w, image_h), interpolation=cv.INTER_LINEAR) # Get RGB image from label predictions image_seg = y_label_to_rgb(self.settings, image_pred.argmax(axis=-1).astype(np.int)) # Transform image to flat representation image_seg_flat = car_to_bird(image_seg) # Extract lane markings image_seg_flat_lane_markings = np.zeros((image_seg_flat.shape[:2]), dtype=np.uint8) image_seg_flat_lane_markings[np.where((image_seg_flat == [255, 255, 255]).all(axis=2))] = [255] # Extract road information image_seg_flat_lane_edge_road = np.copy(image_seg_flat_lane_markings) image_seg_flat_lane_edge_road[np.where((image_seg_flat == [128, 64, 128]).all(axis=2))] = [255] image_seg_flat_lane_edge_road[np.where((image_seg_flat == [244, 35, 232]).all(axis=2))] = [255] # Extract car/person information (in addition to road information) image_seg_flat_lane_edge_car = np.copy(image_seg_flat_lane_edge_road) image_seg_flat_lane_edge_car[np.where((image_seg_flat == [0, 0, 142]).all(axis=2))] = [255] image_seg_flat_lane_edge_car[np.where((image_seg_flat == [128, 64, 128]).all(axis=2))] = [255] # intersection edge detection between road-information and road-person-car information image_seg_flat_lane_edge = np.zeros((image_seg_flat.shape[:2]), dtype=np.uint8) image_seg_flat_lane_edge[(cv.Canny(image_seg_flat_lane_edge_road, 64, 192).astype(np.int) + cv.Canny( image_seg_flat_lane_edge_car, 64, 192).astype(np.int)) > 255] = 255 # Combine intersection with extracted lane markings image_seg_flat_lane = np.zeros((image_seg_flat.shape[:2]), dtype=np.uint8) image_seg_flat_lane[image_seg_flat_lane_markings >= 255] = 255 # Since line below is commented out, only lane markings are checked as lane lines, and not road-sidewalk edges # etc. # image_seg_flat_lane[image_seg_flat_lane_edge >= 255] = 255 # Hough transformation to find straight lines in image_seg_flat_lane image_flat_lines = np.zeros((image_seg_flat.shape[:2]), dtype=np.uint8) lines = cv.HoughLinesP(image_seg_flat_lane, 6, np.pi / 130, 50, np.array([]), 10, 100) if type(lines) != NoneType: # POOPOO ALERT for line in lines: for x1, y1, x2, y2 in line: cv.line(image_flat_lines, (x1, y1), (x2, y2), 255, 1) # # Detect peaks in bottom part (all except first 160px) of picture # line_flat_peaks = (np.sum(image_flat_lines[0:, :], axis=0) / 255).astype(np.int32) # peaks = detect_peaks(line_flat_peaks, mph=20, mpd=40, show=False).astype(np.int) # # Find, for each peak, its lower/upper bound (based on when the line_flat_peaks returns 0) # peaks_lower = np.zeros(len(peaks), dtype=np.int) # peaks_upper = np.zeros(len(peaks), dtype=np.int) # for j in range(len(peaks)): # pos_left = np.where(line_flat_peaks[:peaks[j]] == 0)[0] # if len(pos_left) > 0: # peaks_lower[j] = pos_left[-1] # else: # peaks_lower[j] = 0 # pos_right = np.where(line_flat_peaks[peaks[j]:] == 0)[0] # if len(pos_right) > 0: # peaks_upper[j] = peaks[j] + pos_right[0] # else: # peaks_upper[j] = 640 # peaks = np.stack((peaks_lower, peaks, peaks_upper), axis=-1) # # # Split peaks in those lying left and right of the ego vehicle # left_indexes = np.where(peaks[:, 1] < 320)[0] # right_indexes = np.where(peaks[:, 1] >= 320)[0] # # For all possible lane combinations see if they actually are a lane. # lanes = [] # if len(left_indexes) > 0 and len(right_indexes) > 0: # # Left Lanes # for j in left_indexes[:-1]: # left = peaks[left_indexes[j]] # right = peaks[left_indexes[j + 1]] # if (left[2] - left[0]) < 60 and (right[2] - right[0]) < 60: # lane = StraightLane(left, right, 'left') # if lane.get_confidence(image_seg_flat, image_flat_lines)[0] > 0.1: # lanes.append(lane) # # Center Lane # left = peaks[left_indexes[-1]] # right = peaks[right_indexes[0]] # if (left[2] - left[0]) < 60 and (right[2] - right[0]) < 60: # lane = StraightLane(left, right, 'center') # if lane.get_confidence(image_seg_flat, image_flat_lines)[0] > 0.1: # lanes.append(lane) # # Right Lane # for j in range(len(right_indexes[1:])): # left = peaks[right_indexes[j]] # right = peaks[right_indexes[j + 1]] # if (left[2] - left[0]) < 60 and (right[2] - right[0]) < 60: # lane = StraightLane(left, right, 'right') # if lane.get_confidence(image_seg_flat, image_flat_lines)[0] > 0.1: # lanes.append(lane) # # # Fill top/bottom values of lanes surrounded by two 'larger' lanes # for j in range(1, len(lanes) - 1): # top = (lanes[j - 1].top, lanes[j].top, lanes[j + 1].top) # bottom = (lanes[j - 1].bottom, lanes[j].bottom, lanes[j + 1].bottom) # if lanes[j - 1].right[1] == lanes[j].left[1] and lanes[j].right[1] == lanes[j + 1].left[1]: # if np.max([lanes[j - 1].top, lanes[j + 1].top]) < lanes[j].top: # lanes[j].top = np.max([lanes[j - 1].top, lanes[j + 1].top]) # if np.min([lanes[j - 1].bottom, lanes[j + 1].bottom]) > lanes[j].bottom: # lanes[j].bottom = np.min([lanes[j - 1].bottom, lanes[j + 1].bottom]) # # # Extract lane images (just for visualization - no further use) # image_final_extracted = np.zeros(image_seg_flat.shape, dtype=np.uint8) # image_final_created = np.zeros(image_seg_flat.shape, dtype=np.uint8) # for lane in lanes: # image_final_extracted[lane.top:lane.bottom + 1, lane.left[1]:lane.right[1], :] = lane.extract_image( # image_seg_flat, image_flat_lines)[lane.top:lane.bottom + 1, lane.left[1]:lane.right[1], :] # image_final_created[lane.top:lane.bottom + 1, lane.left[1] - 2:lane.right[1] + 3, # :] = lane.create_image( # image_seg_flat, image_flat_lines)[lane.top:lane.bottom + 1, lane.left[1] - 2:lane.right[1] + 3, :] # Visualize results if self.settings['verbose']: plot_image(image, 1) plot_image(image_small, 2) plot_image(image_seg, 3) plot_image(image_seg_flat, 4) plot_image(image_seg_flat_lane_markings, 5) plot_image(image_seg_flat_lane_edge_road, 6) plot_image(image_seg_flat_lane_edge_car, 7) plot_image(image_seg_flat_lane_edge, 8) plot_image(image_seg_flat_lane, 9) plot_image(image_flat_lines, 10) plot_line(line_flat_peaks, 11) plot_image(image_final_extracted, 12) plot_image(image_final_created, 13) # Save image process from input to detected lanes if self.settings['save']: image_flat = (car_to_bird(image) * 255).astype(np.uint8) image = (image * 255).astype(np.uint8) image_flat_lines = np.stack((image_flat_lines, image_flat_lines, image_flat_lines), axis=-1) image_final = np.vstack((np.hstack((image, image_flat, image_flat_lines)), np.hstack((image_seg, image_seg_flat, image_final_created)))) Image.fromarray(image_final).save( 'results/{}/{}.png'.format(num, str(i).rjust(len(str(len(img_paths))), '0'))) # # Create a clip with saved images # if self.settings['save']: # clip = mpy.ImageSequenceClip('results/{}'.format(num), fps=10) # clip.write_videofile('results/{}.mp4'.format(num)) image_flat = (car_to_bird(image) * 255).astype(np.uint8) image = (image * 255).astype(np.uint8) image_flat_lines = np.stack((image_flat_lines, image_flat_lines, image_flat_lines), axis=-1) image_final = np.vstack((np.hstack((image, image_flat, image_flat_lines)), np.hstack((image_seg, image_seg_flat, image_flat_lines)))) return image_final, image_flat_lines # Class for a single straight lane. class StraightLane: # Init def __init__(self, left, right, name): self.left = left self.right = right self.name = name self.width = self.right[1] - self.left[1] # Calculate top/bottom range of lane and extract road information from segmented flat image def extract_image(self, full_image, line_image): self.extracted_image = np.zeros(full_image.shape, dtype=np.uint8) for rgb in [[128, 64, 128], [244, 35, 232], [255, 255, 255]]: x, y = np.where((full_image[:, self.left[1]:self.right[1]] == rgb).all(axis=2)) self.extracted_image[x, y + self.left[1], :] = rgb line_image = np.stack((line_image, line_image, line_image), axis=-1) if 'left' in self.name: self.top = np.where(np.sum(np.sum(line_image[:, self.left[0]:self.left[2], :], axis=2), axis=1) > 0)[0][0] self.bottom = np.where(np.sum(np.sum(line_image[:, self.left[0]:self.left[2], :], axis=2), axis=1) > 0)[0][ -1] elif 'right' in self.name: self.top = np.where(np.sum(np.sum(line_image[:, self.right[0]:self.right[2], :], axis=2), axis=1) > 0)[0][0] self.bottom = np.where(np.sum(np.sum(line_image[:, self.right[0]:self.right[2], :], axis=2), axis=1) > 0)[0][-1] else: self.top = np.where(np.sum(np.sum(line_image[:, self.left[0]:self.right[2], :], axis=2), axis=1) > 0)[0][0] self.bottom = np.where(np.sum(np.sum(line_image[:, self.left[0]:self.right[2], :], axis=2), axis=1) > 0)[0][ -1] return self.extracted_image # Get type (road or sidewalk) and confidence value (how much of area of lane dimension is classified as # road/sidewalk?) def get_confidence(self, full_image, line_image): if not hasattr(self, 'extracted_image'): self.extract_image(full_image, line_image) road_num = len( np.where((full_image[self.top:self.bottom + 1, self.left[1]:self.right[1]] == [128, 64, 128]).all(axis=2))[ 0]) sidewalk_num = len( np.where((full_image[self.top:self.bottom + 1, self.left[1]:self.right[1]] == [244, 35, 232]).all(axis=2))[ 0]) total_num = len(np.ravel(full_image[self.top:self.bottom + 1, self.left[1]:self.right[1], 0])) if road_num >= sidewalk_num: self.confidence = np.float(road_num / total_num) self.confidence_name = 'road' self.confidence_rgb = [128, 64, 128] else: self.confidence = sidewalk_num / total_num self.confidence_name = 'sidewalk' self.confidence_rgb = [244, 35, 232] return (self.confidence, self.confidence_name, self.confidence_rgb) # Create a visualization of this Lane def create_image(self, full_image, line_image): if not hasattr(self, 'extracted_image'): self.extract_image(full_image, line_image) if not hasattr(self, 'confidence_rgb'): self.get_confidence(full_image, line_image) self.created_image = np.zeros(self.extracted_image.shape, dtype=np.uint8) self.created_image[self.top:self.bottom + 1, self.left[1]:self.right[1]] = self.confidence_rgb cv.line(self.created_image, (self.left[1], self.top), (self.left[1], self.bottom), (255, 255, 255), 3) cv.line(self.created_image, (self.right[1], self.top), (self.right[1], self.bottom), (255, 255, 255), 3) return self.created_image # Sort image paths by first 'padding' them with '_' (so that '12' does not gets sorted in between '119' and '121' by making it '_12') def sort_paths(input_img_paths): img_paths = [] for img_path in input_img_paths: num = img_path.split('_')[-1].split('.')[0] img_path = img_path.replace(str(num) + '.png', str(num).rjust(8, '!') + '.png') img_paths.append(img_path) img_paths.sort() return img_paths # Transform image from car to bird perspective def car_to_bird(img): pw = PerspectiveWrapper() dst = pw.top_down(img) return dst # Convert label predictions to an RGB image def y_label_to_rgb(settings, y_label): y_rgb = np.zeros(y_label.shape + (3,), dtype=np.uint8) for i in range(len(settings['labels'][0])): name = tuple(settings['labels'][0].keys())[i] rgb = settings['labels'][0][name]['rgb'] y_rgb[y_label == i + 1] = rgb return y_rgb # Plot image def plot_image(image, fig_num): plt.figure(fig_num) plt.clf() plt.imshow(image) plt.pause(0.001) # Plot line def plot_line(line, fig_num): plt.figure(fig_num) plt.clf() plt.plot(line) plt.pause(0.001)
[ "numpy.sum", "matplotlib.pyplot.clf", "numpy.ravel", "matplotlib.pyplot.figure", "cv2.line", "get_model.get_model", "numpy.copy", "matplotlib.pyplot.imshow", "ImageProcessing.PerspectiveWrapper.PerspectiveWrapper", "Model.Road", "tensorflow.compat.v1.Session", "matplotlib.pyplot.pause", "cv2.resize", "numpy.stack", "numpy.float16", "cv2.Canny", "keras.backend.set_session", "numpy.float", "numpy.hstack", "get_labels.get_labels", "tensorflow.compat.v1.ConfigProto", "matplotlib.pyplot.plot", "os.getcwd", "numpy.zeros", "numpy.expand_dims", "keras.backend.set_learning_phase", "numpy.array", "PIL.Image.fromarray" ]
[((608, 631), 'keras.backend.set_learning_phase', 'K.set_learning_phase', (['(0)'], {}), '(0)\n', (628, 631), True, 'from keras import backend as K\n'), ((688, 714), 'tensorflow.compat.v1.ConfigProto', 'tf.compat.v1.ConfigProto', ([], {}), '()\n', (712, 714), True, 'import tensorflow as tf\n'), ((959, 994), 'tensorflow.compat.v1.Session', 'tf.compat.v1.Session', ([], {'config': 'config'}), '(config=config)\n', (979, 994), True, 'import tensorflow as tf\n'), ((995, 1014), 'keras.backend.set_session', 'K.set_session', (['sess'], {}), '(sess)\n', (1008, 1014), True, 'from keras import backend as K\n'), ((15981, 16001), 'ImageProcessing.PerspectiveWrapper.PerspectiveWrapper', 'PerspectiveWrapper', ([], {}), '()\n', (15999, 16001), False, 'from ImageProcessing.PerspectiveWrapper import PerspectiveWrapper\n'), ((16141, 16187), 'numpy.zeros', 'np.zeros', (['(y_label.shape + (3,))'], {'dtype': 'np.uint8'}), '(y_label.shape + (3,), dtype=np.uint8)\n', (16149, 16187), True, 'import numpy as np\n'), ((16445, 16464), 'matplotlib.pyplot.figure', 'plt.figure', (['fig_num'], {}), '(fig_num)\n', (16455, 16464), True, 'import matplotlib.pyplot as plt\n'), ((16469, 16478), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (16476, 16478), True, 'import matplotlib.pyplot as plt\n'), ((16483, 16500), 'matplotlib.pyplot.imshow', 'plt.imshow', (['image'], {}), '(image)\n', (16493, 16500), True, 'import matplotlib.pyplot as plt\n'), ((16505, 16521), 'matplotlib.pyplot.pause', 'plt.pause', (['(0.001)'], {}), '(0.001)\n', (16514, 16521), True, 'import matplotlib.pyplot as plt\n'), ((16570, 16589), 'matplotlib.pyplot.figure', 'plt.figure', (['fig_num'], {}), '(fig_num)\n', (16580, 16589), True, 'import matplotlib.pyplot as plt\n'), ((16594, 16603), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (16601, 16603), True, 'import matplotlib.pyplot as plt\n'), ((16608, 16622), 'matplotlib.pyplot.plot', 'plt.plot', (['line'], {}), '(line)\n', (16616, 16622), True, 'import matplotlib.pyplot as plt\n'), ((16627, 16643), 'matplotlib.pyplot.pause', 'plt.pause', (['(0.001)'], {}), '(0.001)\n', (16636, 16643), True, 'import matplotlib.pyplot as plt\n'), ((1596, 1621), 'get_labels.get_labels', 'get_labels', (['self.settings'], {}), '(self.settings)\n', (1606, 1621), False, 'from get_labels import get_labels\n'), ((1918, 1942), 'get_model.get_model', 'get_model', (['self.settings'], {}), '(self.settings)\n', (1927, 1942), False, 'from get_model import get_model\n'), ((2183, 2205), 'numpy.array', 'np.array', (['self.weights'], {}), '(self.weights)\n', (2191, 2205), True, 'import numpy as np\n'), ((2659, 2670), 'Model.Road', 'Road', (['lanes'], {}), '(lanes)\n', (2663, 2670), False, 'from Model import Road\n'), ((2991, 3050), 'cv2.resize', 'cv.resize', (['image', '(640, 480)'], {'interpolation': 'cv.INTER_LINEAR'}), '(image, (640, 480), interpolation=cv.INTER_LINEAR)\n', (3000, 3050), True, 'import cv2 as cv\n'), ((3305, 3383), 'cv2.resize', 'cv.resize', (['image_pred_small', '(image_w, image_h)'], {'interpolation': 'cv.INTER_LINEAR'}), '(image_pred_small, (image_w, image_h), interpolation=cv.INTER_LINEAR)\n', (3314, 3383), True, 'import cv2 as cv\n'), ((3695, 3745), 'numpy.zeros', 'np.zeros', (['image_seg_flat.shape[:2]'], {'dtype': 'np.uint8'}), '(image_seg_flat.shape[:2], dtype=np.uint8)\n', (3703, 3745), True, 'import numpy as np\n'), ((3928, 3965), 'numpy.copy', 'np.copy', (['image_seg_flat_lane_markings'], {}), '(image_seg_flat_lane_markings)\n', (3935, 3965), True, 'import numpy as np\n'), ((4289, 4327), 'numpy.copy', 'np.copy', (['image_seg_flat_lane_edge_road'], {}), '(image_seg_flat_lane_edge_road)\n', (4296, 4327), True, 'import numpy as np\n'), ((4662, 4712), 'numpy.zeros', 'np.zeros', (['image_seg_flat.shape[:2]'], {'dtype': 'np.uint8'}), '(image_seg_flat.shape[:2], dtype=np.uint8)\n', (4670, 4712), True, 'import numpy as np\n'), ((4996, 5046), 'numpy.zeros', 'np.zeros', (['image_seg_flat.shape[:2]'], {'dtype': 'np.uint8'}), '(image_seg_flat.shape[:2], dtype=np.uint8)\n', (5004, 5046), True, 'import numpy as np\n'), ((5427, 5477), 'numpy.zeros', 'np.zeros', (['image_seg_flat.shape[:2]'], {'dtype': 'np.uint8'}), '(image_seg_flat.shape[:2], dtype=np.uint8)\n', (5435, 5477), True, 'import numpy as np\n'), ((11616, 11689), 'numpy.stack', 'np.stack', (['(image_flat_lines, image_flat_lines, image_flat_lines)'], {'axis': '(-1)'}), '((image_flat_lines, image_flat_lines, image_flat_lines), axis=-1)\n', (11624, 11689), True, 'import numpy as np\n'), ((12332, 12374), 'numpy.zeros', 'np.zeros', (['full_image.shape'], {'dtype': 'np.uint8'}), '(full_image.shape, dtype=np.uint8)\n', (12340, 12374), True, 'import numpy as np\n'), ((12621, 12676), 'numpy.stack', 'np.stack', (['(line_image, line_image, line_image)'], {'axis': '(-1)'}), '((line_image, line_image, line_image), axis=-1)\n', (12629, 12676), True, 'import numpy as np\n'), ((15045, 15097), 'numpy.zeros', 'np.zeros', (['self.extracted_image.shape'], {'dtype': 'np.uint8'}), '(self.extracted_image.shape, dtype=np.uint8)\n', (15053, 15097), True, 'import numpy as np\n'), ((15209, 15316), 'cv2.line', 'cv.line', (['self.created_image', '(self.left[1], self.top)', '(self.left[1], self.bottom)', '(255, 255, 255)', '(3)'], {}), '(self.created_image, (self.left[1], self.top), (self.left[1], self.\n bottom), (255, 255, 255), 3)\n', (15216, 15316), True, 'import cv2 as cv\n'), ((15320, 15429), 'cv2.line', 'cv.line', (['self.created_image', '(self.right[1], self.top)', '(self.right[1], self.bottom)', '(255, 255, 255)', '(3)'], {}), '(self.created_image, (self.right[1], self.top), (self.right[1], self\n .bottom), (255, 255, 255), 3)\n', (15327, 15429), True, 'import cv2 as cv\n'), ((1957, 1968), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (1966, 1968), False, 'import os\n'), ((2280, 2308), 'numpy.float16', 'np.float16', (['weights_array[i]'], {}), '(weights_array[i])\n', (2290, 2308), True, 'import numpy as np\n'), ((5552, 5564), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (5560, 5564), True, 'import numpy as np\n'), ((10853, 10926), 'numpy.stack', 'np.stack', (['(image_flat_lines, image_flat_lines, image_flat_lines)'], {'axis': '(-1)'}), '((image_flat_lines, image_flat_lines, image_flat_lines), axis=-1)\n', (10861, 10926), True, 'import numpy as np\n'), ((14205, 14282), 'numpy.ravel', 'np.ravel', (['full_image[self.top:self.bottom + 1, self.left[1]:self.right[1], 0]'], {}), '(full_image[self.top:self.bottom + 1, self.left[1]:self.right[1], 0])\n', (14213, 14282), True, 'import numpy as np\n'), ((14351, 14381), 'numpy.float', 'np.float', (['(road_num / total_num)'], {}), '(road_num / total_num)\n', (14359, 14381), True, 'import numpy as np\n'), ((3164, 3199), 'numpy.expand_dims', 'np.expand_dims', (['image_small'], {'axis': '(0)'}), '(image_small, axis=0)\n', (3178, 3199), True, 'import numpy as np\n'), ((11723, 11771), 'numpy.hstack', 'np.hstack', (['(image, image_flat, image_flat_lines)'], {}), '((image, image_flat, image_flat_lines))\n', (11732, 11771), True, 'import numpy as np\n'), ((11806, 11862), 'numpy.hstack', 'np.hstack', (['(image_seg, image_seg_flat, image_flat_lines)'], {}), '((image_seg, image_seg_flat, image_flat_lines))\n', (11815, 11862), True, 'import numpy as np\n'), ((2887, 2900), 'numpy.array', 'np.array', (['img'], {}), '(img)\n', (2895, 2900), True, 'import numpy as np\n'), ((5723, 5776), 'cv2.line', 'cv.line', (['image_flat_lines', '(x1, y1)', '(x2, y2)', '(255)', '(1)'], {}), '(image_flat_lines, (x1, y1), (x2, y2), 255, 1)\n', (5730, 5776), True, 'import cv2 as cv\n'), ((10964, 11012), 'numpy.hstack', 'np.hstack', (['(image, image_flat, image_flat_lines)'], {}), '((image, image_flat, image_flat_lines))\n', (10973, 11012), True, 'import numpy as np\n'), ((11050, 11109), 'numpy.hstack', 'np.hstack', (['(image_seg, image_seg_flat, image_final_created)'], {}), '((image_seg, image_seg_flat, image_final_created))\n', (11059, 11109), True, 'import numpy as np\n'), ((11124, 11152), 'PIL.Image.fromarray', 'Image.fromarray', (['image_final'], {}), '(image_final)\n', (11139, 11152), False, 'from PIL import Image\n'), ((4749, 4797), 'cv2.Canny', 'cv.Canny', (['image_seg_flat_lane_edge_road', '(64)', '(192)'], {}), '(image_seg_flat_lane_edge_road, 64, 192)\n', (4757, 4797), True, 'import cv2 as cv\n'), ((4815, 4862), 'cv2.Canny', 'cv.Canny', (['image_seg_flat_lane_edge_car', '(64)', '(192)'], {}), '(image_seg_flat_lane_edge_car, 64, 192)\n', (4823, 4862), True, 'import cv2 as cv\n'), ((12748, 12807), 'numpy.sum', 'np.sum', (['line_image[:, self.left[0]:self.left[2], :]'], {'axis': '(2)'}), '(line_image[:, self.left[0]:self.left[2], :], axis=2)\n', (12754, 12807), True, 'import numpy as np\n'), ((12870, 12929), 'numpy.sum', 'np.sum', (['line_image[:, self.left[0]:self.left[2], :]'], {'axis': '(2)'}), '(line_image[:, self.left[0]:self.left[2], :], axis=2)\n', (12876, 12929), True, 'import numpy as np\n'), ((13042, 13103), 'numpy.sum', 'np.sum', (['line_image[:, self.right[0]:self.right[2], :]'], {'axis': '(2)'}), '(line_image[:, self.right[0]:self.right[2], :], axis=2)\n', (13048, 13103), True, 'import numpy as np\n'), ((13166, 13227), 'numpy.sum', 'np.sum', (['line_image[:, self.right[0]:self.right[2], :]'], {'axis': '(2)'}), '(line_image[:, self.right[0]:self.right[2], :], axis=2)\n', (13172, 13227), True, 'import numpy as np\n'), ((13302, 13362), 'numpy.sum', 'np.sum', (['line_image[:, self.left[0]:self.right[2], :]'], {'axis': '(2)'}), '(line_image[:, self.left[0]:self.right[2], :], axis=2)\n', (13308, 13362), True, 'import numpy as np\n'), ((13425, 13485), 'numpy.sum', 'np.sum', (['line_image[:, self.left[0]:self.right[2], :]'], {'axis': '(2)'}), '(line_image[:, self.left[0]:self.right[2], :], axis=2)\n', (13431, 13485), True, 'import numpy as np\n')]
from easyhmm import sparsehmm, hmm import numpy as np obsProbList = np.array(((1.0, 0.0, 0.0), (0.0, 0.51, 0.5), (0.0, 0.0, 1.0), (0.5, 0.51, 0.0), (1/3, 1/3, 1/3), (0.75, 0.25, 0.0)), dtype = np.float32) obsProbList = np.concatenate((obsProbList, obsProbList[::-1], obsProbList)) obsProbList += 1e-5 obsProbList /= np.sum(obsProbList, axis=1).reshape(obsProbList.shape[0], 1) initStateProb = np.ones(3, dtype = np.float32) / 3 transProb = np.array((1/3, 1/3, 1/3, 1/3, 1/3, 1/3, 0, 0.5, 0.5), dtype = np.float32) vd = hmm.ViterbiDecoder(3) vd.initialize(obsProbList[0], initStateProb) vd.feed(obsProbList[1:], transProb) print("NormalHMM:", vd.readDecodedPath())
[ "numpy.sum", "easyhmm.hmm.ViterbiDecoder", "numpy.ones", "numpy.array", "numpy.concatenate" ]
[((72, 217), 'numpy.array', 'np.array', (['((1.0, 0.0, 0.0), (0.0, 0.51, 0.5), (0.0, 0.0, 1.0), (0.5, 0.51, 0.0), (1 /\n 3, 1 / 3, 1 / 3), (0.75, 0.25, 0.0))'], {'dtype': 'np.float32'}), '(((1.0, 0.0, 0.0), (0.0, 0.51, 0.5), (0.0, 0.0, 1.0), (0.5, 0.51, \n 0.0), (1 / 3, 1 / 3, 1 / 3), (0.75, 0.25, 0.0)), dtype=np.float32)\n', (80, 217), True, 'import numpy as np\n'), ((224, 285), 'numpy.concatenate', 'np.concatenate', (['(obsProbList, obsProbList[::-1], obsProbList)'], {}), '((obsProbList, obsProbList[::-1], obsProbList))\n', (238, 285), True, 'import numpy as np\n'), ((451, 539), 'numpy.array', 'np.array', (['(1 / 3, 1 / 3, 1 / 3, 1 / 3, 1 / 3, 1 / 3, 0, 0.5, 0.5)'], {'dtype': 'np.float32'}), '((1 / 3, 1 / 3, 1 / 3, 1 / 3, 1 / 3, 1 / 3, 0, 0.5, 0.5), dtype=np.\n float32)\n', (459, 539), True, 'import numpy as np\n'), ((533, 554), 'easyhmm.hmm.ViterbiDecoder', 'hmm.ViterbiDecoder', (['(3)'], {}), '(3)\n', (551, 554), False, 'from easyhmm import sparsehmm, hmm\n'), ((403, 431), 'numpy.ones', 'np.ones', (['(3)'], {'dtype': 'np.float32'}), '(3, dtype=np.float32)\n', (410, 431), True, 'import numpy as np\n'), ((323, 350), 'numpy.sum', 'np.sum', (['obsProbList'], {'axis': '(1)'}), '(obsProbList, axis=1)\n', (329, 350), True, 'import numpy as np\n')]
from pathlib import Path import numpy as np from PIL import Image, ImageDraw, ImageFont from magnebot import Arm from magnebot.paths import IK_ORIENTATIONS_RIGHT_PATH, IK_ORIENTATIONS_LEFT_PATH, IK_POSITIONS_PATH from magnebot.ik.orientation import ORIENTATIONS """ Visualize the pre-calculated IK orientation solutions as colorized vertical slices. Each position is a circle on the image. Each image is a region at a given y value. Each position is colorized to indicate the orientation mode + target orientation solution. These images are saved to: `doc/images/ik` """ if __name__ == "__main__": ik_images_directory = Path("../doc/images/ik") # This color palette is used to colorize each orientation. # Source: https://github.com/onivim/oni/blob/master/extensions/theme-onedark/colors/onedark.vim colors = [(171, 178, 191), (224, 108, 117), (190, 80, 70), (152, 195, 121), (229, 192, 123), (209, 154, 102), (97, 175, 239), (198, 120, 221), (86, 182, 194), (99, 109, 131)] # Draw a colorized legend for the orientation images. font_path = "fonts/inconsolata/Inconsolata_Expanded-Regular.ttf" legend_font = ImageFont.truetype(font_path, 14) legend = Image.new('RGB', (128, 220)) draw = ImageDraw.Draw(legend) y = 8 x = 8 draw.text((x, y), "Key:", font=legend_font, anchor="mb", fill=(171, 178, 191)) y += 24 x += 8 for color, o in zip(colors, ORIENTATIONS): draw.text((x, y), str(o), font=legend_font, anchor="mb", fill=color) y += 18 # Save the color legend. legend.save(str(ik_images_directory.joinpath("legend.jpg"))) # Load the positions. positions = np.load(str(IK_POSITIONS_PATH.resolve())) # The width of the image in pixels. d = 256 # The radius of each circle. r = 12 # Make images for each arm. for arm, path in zip([Arm.left, Arm.right], [IK_ORIENTATIONS_LEFT_PATH, IK_ORIENTATIONS_RIGHT_PATH]): orientations = np.load(str(path.resolve())) directory = ik_images_directory.joinpath(arm.name) # Get vertical slices of the point cloud. for y in np.arange(0, 1.6, step=0.1): image = Image.new('RGB', (d, 300)) draw = ImageDraw.Draw(image) x = 0 # Draw the title text. header_font = ImageFont.truetype(font_path, 18) header = f"y = {round(y, 1)}" header_size = header_font.getsize(header) header_x = int((d / 2) - (header_size[0] / 2)) header_y = 8 draw.text((header_x, header_y), header, font=header_font, anchor="mg", fill=(171, 178, 191)) for p, o in zip(positions, orientations): # Only include positions with the correct y value. if o < -0.01 or np.abs(y - p[1]) > 0.01: continue # Convert the position to image coordinates. x = d * (1 - ((1 - p[0]) / 2)) - 6 # Add a little padding to position this below the header text. z = d * (1 - ((1 - p[2]) / 2)) + 30 # Draw a circle to mark the position. Colorize the orientation. draw.rectangle((x, z, x + r, z + r), fill=colors[o], outline=colors[o]) # Save the image. image.save(str(directory.joinpath(f"{round(y, 1)}.jpg").resolve()))
[ "PIL.Image.new", "numpy.abs", "PIL.ImageFont.truetype", "pathlib.Path", "numpy.arange", "magnebot.paths.IK_POSITIONS_PATH.resolve", "PIL.ImageDraw.Draw" ]
[((627, 651), 'pathlib.Path', 'Path', (['"""../doc/images/ik"""'], {}), "('../doc/images/ik')\n", (631, 651), False, 'from pathlib import Path\n'), ((1153, 1186), 'PIL.ImageFont.truetype', 'ImageFont.truetype', (['font_path', '(14)'], {}), '(font_path, 14)\n', (1171, 1186), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((1200, 1228), 'PIL.Image.new', 'Image.new', (['"""RGB"""', '(128, 220)'], {}), "('RGB', (128, 220))\n", (1209, 1228), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((1240, 1262), 'PIL.ImageDraw.Draw', 'ImageDraw.Draw', (['legend'], {}), '(legend)\n', (1254, 1262), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((2120, 2147), 'numpy.arange', 'np.arange', (['(0)', '(1.6)'], {'step': '(0.1)'}), '(0, 1.6, step=0.1)\n', (2129, 2147), True, 'import numpy as np\n'), ((1678, 1705), 'magnebot.paths.IK_POSITIONS_PATH.resolve', 'IK_POSITIONS_PATH.resolve', ([], {}), '()\n', (1703, 1705), False, 'from magnebot.paths import IK_ORIENTATIONS_RIGHT_PATH, IK_ORIENTATIONS_LEFT_PATH, IK_POSITIONS_PATH\n'), ((2169, 2195), 'PIL.Image.new', 'Image.new', (['"""RGB"""', '(d, 300)'], {}), "('RGB', (d, 300))\n", (2178, 2195), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((2215, 2236), 'PIL.ImageDraw.Draw', 'ImageDraw.Draw', (['image'], {}), '(image)\n', (2229, 2236), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((2316, 2349), 'PIL.ImageFont.truetype', 'ImageFont.truetype', (['font_path', '(18)'], {}), '(font_path, 18)\n', (2334, 2349), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((2788, 2804), 'numpy.abs', 'np.abs', (['(y - p[1])'], {}), '(y - p[1])\n', (2794, 2804), True, 'import numpy as np\n')]
import os from searcher.es_search import SearchResults_ES from searcher.corpus_manager import CorpusManager #from searcher.models import QueryRequest, VisRequest #from searcher.query_handler import QueryHandler from searcher.corpus_manager import CorpusManager from searcher.nlp_model_manager import NLPModelManager from searcher.formatted_data_manager import FormattedDataManager import pandas as pd import numpy as np import tqdm import gensim from gensim.models import CoherenceModel STORAGE_PATH = "eval_data/lda_hyperparams/" class ModelEvaluation: def __init__(self, query_obj): self.query_obj = query_obj self.dictionary = CorpusManager(self.query_obj) self.corpus = None self.raw_corpus = None self.df = None self.raw_doc_iter = SearchResults_ES(self.query_obj['database'], qry_obj=self.query_obj, rand=self.query_obj["rand"], cleaned=True) self.doc_iter = None def run_eval(self): if self.query_obj['method'] == "special": #unimpemented return else: self.run_lda_coherence() def single_lda_run(self, topics=None, a=0.91, b=.1, seed=100, savefile=None): ntopics = self.query_obj['num_topics'] if topics == None else topics if self.corpus == None: self.dictionary.create_ngrams() self.dictionary.create_dict() self.corpus = [] self.raw_corpus = [] self.doc_iter = SearchResults_ES(self.query_obj['database'], qry_obj=self.query_obj, rand=self.query_obj["rand"], tokenized=True, cm=self.dictionary) for x in self.raw_doc_iter: self.raw_corpus.append(x) for x in self.doc_iter: self.corpus.append(x) lda_model = gensim.models.LdaModel( corpus=self.corpus, id2word=self.dictionary.dct, num_topics=ntopics, random_state=seed, chunksize=100, passes=5, alpha=a, eta=b, eval_every=5, per_word_topics=True) topics = lda_model.show_topics(num_topics=ntopics, num_words=10, formatted=True) print("model alpha:{} beta:{} topics:{}".format(a, b, ntopics)) print(topics) if savefile: lda_model.save(STORAGE_PATH + savefile) else: lda_model.save(STORAGE_PATH + 'test_model') perp = lda_model.log_perplexity(self.corpus) coherence_model_lda = CoherenceModel(model=lda_model, texts=self.raw_corpus, dictionary=self.dictionary.dct, coherence='c_v') with np.errstate(invalid='ignore'): lda_score = coherence_model_lda.get_coherence() print(lda_score) print(perp) return [lda_score, perp] def run_lda_coherence(self, min_topics=15, max_topics=40, step_size=5, test=False): if self.corpus == None: self.dictionary.create_ngrams() self.dictionary.create_dict() self.corpus = [] self.raw_corpus = [] self.doc_iter = SearchResults_ES(self.query_obj['database'], qry_obj=self.query_obj, rand=self.query_obj["rand"], tokenized=True, cm=self.dictionary) self.raw_doc_iter = SearchResults_ES(self.query_obj['database'], qry_obj=self.query_obj, rand=self.query_obj["rand"], cleaned=True, cm=self.dictionary) for x in self.raw_doc_iter: self.raw_corpus.append(x) for x in self.doc_iter: self.corpus.append(x) print("CORPUS") print(self.corpus) print("RAW_CORPUS") print(self.raw_corpus) step_size = step_size topics_range = range(min_topics, max_topics, step_size) # Alpha parameter alpha = list(np.arange(0.01, 1, 0.3)) alpha.append('symmetric') alpha.append('asymmetric') # Beta parameter beta = list(np.arange(0.01, 1, 0.3)) beta.append('symmetric') beta.append('auto') if test == True: alpha = [0.31] beta = [0.91] id2word = self.dictionary corpus_sets = [""] corpus_title = ['100% Corpus'] model_results = {'Validation_Set': [], 'Topics': [], 'Alpha': [], 'Beta': [], 'Coherence': [], 'Perplexity' : [] } total_count = len(alpha) * len(beta) * ((max_topics - min_topics) / step_size) print(total_count) if 1 == 1: pbar = tqdm.tqdm(total=total_count) # iterate through validation corpuses for i in range(len(corpus_sets)): # iterate through number of topics for k in topics_range: # iterate through alpha values for a in alpha: # iterare through beta values for b in beta: # get the coherence score for the given parameters count = 0 cv = self.single_lda_run(topics=k, a=a, b=b) model_results['Validation_Set'].append(corpus_title[i]) model_results['Topics'].append(k) model_results['Alpha'].append(a) model_results['Beta'].append(b) model_results['Coherence'].append(cv[0]) model_results['Perplexity'].append(cv[1]) pbar.update(1) self.df = pd.DataFrame(model_results) pbar.close() return def write_eval(self, writefile=None): if writefile: self.df.to_csv(writefile, index=False) else: return self.df if __name__ == '__main__': """test_qry_obj = {'start': '1809', 'end': '2017', 'f_start': '-1', 'f_end': '-1', 'qry': '', 'maximum_hits': '10', 'method': 'multilevel_lda', 'stop_words': '', 'replacement': '', 'phrases': '', 'level_select': 'article', 'num_topics': 10, 'passes': '20', 'database': 'CaseLaw_v2', 'journal': 'all', 'jurisdiction_select': 'all', 'auth_s': '', 'family_select': 'both', 'min_occurrence': '-1', 'max_occurrence': '-1', 'doc_count': '500', 'ngrams' : False, 'model_name' : 'test', 'rand' : True} """ test_qry_obj = {'start': 'year', 'end': 'year', 'f_start': '-1', 'f_end': '-1', 'qry': 'apple OR banana', 'maximum_hits': '100', 'method': 'multilevel_lda', 'stop_words': '', 'replacement': '', 'phrases': '', 'level_select': 'article', 'num_topics': 10, 'passes': '20', 'database': 'Pubmed', 'journal': 'all', 'jurisdiction_select': 'all', 'auth_s': '', 'family_select': 'both', 'min_occurrence': '-1', 'max_occurrence': '-1', 'doc_count': '10', 'ngrams' : True, 'model_name' : 'test', 'rand' : False} me = ModelEvaluation(test_qry_obj) me.run_lda_coherence(test=True) me.write_eval(STORAGE_PATH + "test_pubmed_eval.csv")
[ "pandas.DataFrame", "tqdm.tqdm", "numpy.errstate", "searcher.es_search.SearchResults_ES", "gensim.models.LdaModel", "numpy.arange", "searcher.corpus_manager.CorpusManager", "gensim.models.CoherenceModel" ]
[((637, 666), 'searcher.corpus_manager.CorpusManager', 'CorpusManager', (['self.query_obj'], {}), '(self.query_obj)\n', (650, 666), False, 'from searcher.corpus_manager import CorpusManager\n'), ((752, 868), 'searcher.es_search.SearchResults_ES', 'SearchResults_ES', (["self.query_obj['database']"], {'qry_obj': 'self.query_obj', 'rand': "self.query_obj['rand']", 'cleaned': '(True)'}), "(self.query_obj['database'], qry_obj=self.query_obj, rand=\n self.query_obj['rand'], cleaned=True)\n", (768, 868), False, 'from searcher.es_search import SearchResults_ES\n'), ((1587, 1782), 'gensim.models.LdaModel', 'gensim.models.LdaModel', ([], {'corpus': 'self.corpus', 'id2word': 'self.dictionary.dct', 'num_topics': 'ntopics', 'random_state': 'seed', 'chunksize': '(100)', 'passes': '(5)', 'alpha': 'a', 'eta': 'b', 'eval_every': '(5)', 'per_word_topics': '(True)'}), '(corpus=self.corpus, id2word=self.dictionary.dct,\n num_topics=ntopics, random_state=seed, chunksize=100, passes=5, alpha=a,\n eta=b, eval_every=5, per_word_topics=True)\n', (1609, 1782), False, 'import gensim\n'), ((2158, 2266), 'gensim.models.CoherenceModel', 'CoherenceModel', ([], {'model': 'lda_model', 'texts': 'self.raw_corpus', 'dictionary': 'self.dictionary.dct', 'coherence': '"""c_v"""'}), "(model=lda_model, texts=self.raw_corpus, dictionary=self.\n dictionary.dct, coherence='c_v')\n", (2172, 2266), False, 'from gensim.models import CoherenceModel\n'), ((4608, 4635), 'pandas.DataFrame', 'pd.DataFrame', (['model_results'], {}), '(model_results)\n', (4620, 4635), True, 'import pandas as pd\n'), ((1325, 1463), 'searcher.es_search.SearchResults_ES', 'SearchResults_ES', (["self.query_obj['database']"], {'qry_obj': 'self.query_obj', 'rand': "self.query_obj['rand']", 'tokenized': '(True)', 'cm': 'self.dictionary'}), "(self.query_obj['database'], qry_obj=self.query_obj, rand=\n self.query_obj['rand'], tokenized=True, cm=self.dictionary)\n", (1341, 1463), False, 'from searcher.es_search import SearchResults_ES\n'), ((2269, 2298), 'numpy.errstate', 'np.errstate', ([], {'invalid': '"""ignore"""'}), "(invalid='ignore')\n", (2280, 2298), True, 'import numpy as np\n'), ((2658, 2796), 'searcher.es_search.SearchResults_ES', 'SearchResults_ES', (["self.query_obj['database']"], {'qry_obj': 'self.query_obj', 'rand': "self.query_obj['rand']", 'tokenized': '(True)', 'cm': 'self.dictionary'}), "(self.query_obj['database'], qry_obj=self.query_obj, rand=\n self.query_obj['rand'], tokenized=True, cm=self.dictionary)\n", (2674, 2796), False, 'from searcher.es_search import SearchResults_ES\n'), ((2816, 2952), 'searcher.es_search.SearchResults_ES', 'SearchResults_ES', (["self.query_obj['database']"], {'qry_obj': 'self.query_obj', 'rand': "self.query_obj['rand']", 'cleaned': '(True)', 'cm': 'self.dictionary'}), "(self.query_obj['database'], qry_obj=self.query_obj, rand=\n self.query_obj['rand'], cleaned=True, cm=self.dictionary)\n", (2832, 2952), False, 'from searcher.es_search import SearchResults_ES\n'), ((3269, 3292), 'numpy.arange', 'np.arange', (['(0.01)', '(1)', '(0.3)'], {}), '(0.01, 1, 0.3)\n', (3278, 3292), True, 'import numpy as np\n'), ((3384, 3407), 'numpy.arange', 'np.arange', (['(0.01)', '(1)', '(0.3)'], {}), '(0.01, 1, 0.3)\n', (3393, 3407), True, 'import numpy as np\n'), ((3880, 3908), 'tqdm.tqdm', 'tqdm.tqdm', ([], {'total': 'total_count'}), '(total=total_count)\n', (3889, 3908), False, 'import tqdm\n')]
import numpy as np from PulseGenerator import Pulse # physical constants planck = 4.13566751691e-15 # ev s hbarfs = planck * 1e15 / (2 * np.pi) #ev fs ev_nm = 1239.842 opt_t = np.linspace(900,1100,10)/hbarfs def build_fitness_function( nbins=30, tl_duration=19.0, e_carrier=2.22, e_shaper=0.3, total_duration=1000.0, avgtimes=[1200.0],): # Load necessary quantites es = np.load("operators/es.npy") fcf_e = np.load("operators/fcf_e.npy") Pce = np.load("operators/Pce.npy") Pte = np.load("operators/Pte.npy") # Ultrafast laser parameters width_tl = tl_duration/hbarfs width_total = total_duration/hbarfs w0 = e_carrier elow = e_carrier - e_shaper/2.0 ehigh = e_carrier + e_shaper/2.0 de = (ehigh - elow)/nbins opt_times = np.array(avgtimes)/hbarfs def make_shaped_pulse(veci, veca): intensities = veci angles = veca intensities[intensities<0] = 0.0 intensities[intensities>1] = 1.0 intensities[angles<0] = 0.0 intensities[angles>2*np.pi] = 2 * np.pi amplitudes = np.sqrt(intensities) * np.exp(1j * angles) gp = Pulse(elow, de, amplitudes, width_tl, width_total, w0=w0) return gp def prop_with_pulse(gp, times): preps = gp.get_preps(times,es) for i in range(len(es)): preps[i,:] *= np.exp(-1j * es[i] * times) * fcf_e[i] * (-1.0/1j) pt = np.array([psi.T.conj().dot(Pte).dot(psi) for psi in preps.T]).real pc = np.array([psi.T.conj().dot(Pce).dot(psi) for psi in preps.T]).real return pt, pc def evaluate(veci,veca): g = make_shaped_pulse(veci,veca) pt, pc = prop_with_pulse(g, opt_times) return np.sum(pt)/np.sum(pc + pt) return evaluate if __name__ == "__main__": # Build a fitness function that represents shaped pulse control of # cis-trans isomerization of retinal in bacteriorhodopsin. The paremeters # below are those used in the paper: # https://aip.scitation.org/doi/abs/10.1063/1.5003389 # nbins is the number of pixels on the pulse shaper. The final fitness # function has nbins x 2 dimensions: # - nbins values between 0 and 1 that give the transparency of the shaper # at that pixel. #- nbins angles (periodic, 0 to 2 pi radians) that give the delay applied # by the shaper at that pixel. # Values outside those bounds are truncated. # Parameters # ------------------------------------------------------------------------- # nbins: number of controllable elements on the pulse shaper # tl_duration: duration of the seed pulse to the shaper, in fs. # e_carrier: carrier energy of the seed pulse, in eV. # e_shaper: bandwidth of the shaper, in eV. # total_duration: soft limit on the total pulse length, in fs. # avgtimes: time points at which the isomer ratio is computed and averaged # to obtain the final fitness ("control interval"). fitness = build_fitness_function( nbins=30, tl_duration=19.0, e_carrier=2.22, e_shaper=0.3, total_duration=1000.0, avgtimes=np.linspace(900,1100,10)) # evaluate some pulses values = [fitness(np.random.rand(30), 2 * np.pi * np.random.rand(30)) for k in range(6)]
[ "numpy.load", "numpy.sum", "PulseGenerator.Pulse", "numpy.array", "numpy.exp", "numpy.linspace", "numpy.random.rand", "numpy.sqrt" ]
[((177, 203), 'numpy.linspace', 'np.linspace', (['(900)', '(1100)', '(10)'], {}), '(900, 1100, 10)\n', (188, 203), True, 'import numpy as np\n'), ((429, 456), 'numpy.load', 'np.load', (['"""operators/es.npy"""'], {}), "('operators/es.npy')\n", (436, 456), True, 'import numpy as np\n'), ((469, 499), 'numpy.load', 'np.load', (['"""operators/fcf_e.npy"""'], {}), "('operators/fcf_e.npy')\n", (476, 499), True, 'import numpy as np\n'), ((510, 538), 'numpy.load', 'np.load', (['"""operators/Pce.npy"""'], {}), "('operators/Pce.npy')\n", (517, 538), True, 'import numpy as np\n'), ((549, 577), 'numpy.load', 'np.load', (['"""operators/Pte.npy"""'], {}), "('operators/Pte.npy')\n", (556, 577), True, 'import numpy as np\n'), ((825, 843), 'numpy.array', 'np.array', (['avgtimes'], {}), '(avgtimes)\n', (833, 843), True, 'import numpy as np\n'), ((1186, 1243), 'PulseGenerator.Pulse', 'Pulse', (['elow', 'de', 'amplitudes', 'width_tl', 'width_total'], {'w0': 'w0'}), '(elow, de, amplitudes, width_tl, width_total, w0=w0)\n', (1191, 1243), False, 'from PulseGenerator import Pulse\n'), ((1130, 1150), 'numpy.sqrt', 'np.sqrt', (['intensities'], {}), '(intensities)\n', (1137, 1150), True, 'import numpy as np\n'), ((1153, 1174), 'numpy.exp', 'np.exp', (['(1.0j * angles)'], {}), '(1.0j * angles)\n', (1159, 1174), True, 'import numpy as np\n'), ((1764, 1774), 'numpy.sum', 'np.sum', (['pt'], {}), '(pt)\n', (1770, 1774), True, 'import numpy as np\n'), ((1775, 1790), 'numpy.sum', 'np.sum', (['(pc + pt)'], {}), '(pc + pt)\n', (1781, 1790), True, 'import numpy as np\n'), ((3199, 3225), 'numpy.linspace', 'np.linspace', (['(900)', '(1100)', '(10)'], {}), '(900, 1100, 10)\n', (3210, 3225), True, 'import numpy as np\n'), ((3276, 3294), 'numpy.random.rand', 'np.random.rand', (['(30)'], {}), '(30)\n', (3290, 3294), True, 'import numpy as np\n'), ((3308, 3326), 'numpy.random.rand', 'np.random.rand', (['(30)'], {}), '(30)\n', (3322, 3326), True, 'import numpy as np\n'), ((1397, 1426), 'numpy.exp', 'np.exp', (['(-1.0j * es[i] * times)'], {}), '(-1.0j * es[i] * times)\n', (1403, 1426), True, 'import numpy as np\n')]
import os, sys import argparse import numpy as np import gzip # image processing from PIL import Image import cv2 from ipfml import utils from ipfml.processing import transform, segmentation import matplotlib.pyplot as plt from estimators import estimate, estimators_list data_output = 'data/generated' def write_progress(progress): barWidth = 180 output_str = "[" pos = barWidth * progress for i in range(barWidth): if i < pos: output_str = output_str + "=" elif i == pos: output_str = output_str + ">" else: output_str = output_str + " " output_str = output_str + "] " + str(int(progress * 100.0)) + " %\r" print(output_str) sys.stdout.write("\033[F") def main(): parser = argparse.ArgumentParser(description="Check complexity of each zone of scene using estimator during rendering") parser.add_argument('--folder', type=str, help='folder where scenes with png scene file are stored') parser.add_argument('--estimators', type=str, help='list of estimators', default='l_mean,l_variance') parser.add_argument('--output', type=str, help='output data filename', required=True) args = parser.parse_args() p_folder = args.folder p_estimators = [ i.strip() for i in args.estimators.split(',') ] p_output = args.output print(p_estimators) folders = [ f for f in os.listdir(p_folder) if 'min_max' not in f ] n_zones = 16 if not os.path.exists(data_output): os.makedirs(data_output) datafile = open(os.path.join(data_output, p_output), 'w') for i, scene in enumerate(sorted(folders)): zones = [] zones_indices = np.arange(n_zones) for _ in zones_indices: zones.append([]) scene_folder = os.path.join(p_folder, scene) # get all images and extract estimator for each blocks images = sorted([ i for i in os.listdir(scene_folder) if '.png' in i ]) # get reference image img_path = os.path.join(scene_folder, images[0]) img_arr = np.array(Image.open(img_path)) blocks = segmentation.divide_in_blocks(img_arr, (200, 200)) for index, b in enumerate(blocks): # extract data and write into file x = [] for estimator in p_estimators: estimated = estimate(estimator, b) if not isinstance(estimated, np.float64): for v in estimated: x.append(v) else: x.append(estimated) line = scene + ';' + img_path + ';' + str(index) + ';' for v in x: line += str(v) + ';' line += '\n' datafile.write(line) write_progress((i * n_zones + index + 1) / (float(len(folders)) * float(n_zones))) datafile.close() if __name__ == "__main__": main()
[ "sys.stdout.write", "os.makedirs", "argparse.ArgumentParser", "estimators.estimate", "os.path.exists", "ipfml.processing.segmentation.divide_in_blocks", "PIL.Image.open", "numpy.arange", "os.path.join", "os.listdir" ]
[((720, 746), 'sys.stdout.write', 'sys.stdout.write', (['"""\x1b[F"""'], {}), "('\\x1b[F')\n", (736, 746), False, 'import os, sys\n'), ((775, 890), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Check complexity of each zone of scene using estimator during rendering"""'}), "(description=\n 'Check complexity of each zone of scene using estimator during rendering')\n", (798, 890), False, 'import argparse\n'), ((1471, 1498), 'os.path.exists', 'os.path.exists', (['data_output'], {}), '(data_output)\n', (1485, 1498), False, 'import os, sys\n'), ((1508, 1532), 'os.makedirs', 'os.makedirs', (['data_output'], {}), '(data_output)\n', (1519, 1532), False, 'import os, sys\n'), ((1554, 1589), 'os.path.join', 'os.path.join', (['data_output', 'p_output'], {}), '(data_output, p_output)\n', (1566, 1589), False, 'import os, sys\n'), ((1689, 1707), 'numpy.arange', 'np.arange', (['n_zones'], {}), '(n_zones)\n', (1698, 1707), True, 'import numpy as np\n'), ((1806, 1835), 'os.path.join', 'os.path.join', (['p_folder', 'scene'], {}), '(p_folder, scene)\n', (1818, 1835), False, 'import os, sys\n'), ((2030, 2067), 'os.path.join', 'os.path.join', (['scene_folder', 'images[0]'], {}), '(scene_folder, images[0])\n', (2042, 2067), False, 'import os, sys\n'), ((2136, 2186), 'ipfml.processing.segmentation.divide_in_blocks', 'segmentation.divide_in_blocks', (['img_arr', '(200, 200)'], {}), '(img_arr, (200, 200))\n', (2165, 2186), False, 'from ipfml.processing import transform, segmentation\n'), ((1396, 1416), 'os.listdir', 'os.listdir', (['p_folder'], {}), '(p_folder)\n', (1406, 1416), False, 'import os, sys\n'), ((2096, 2116), 'PIL.Image.open', 'Image.open', (['img_path'], {}), '(img_path)\n', (2106, 2116), False, 'from PIL import Image\n'), ((2390, 2412), 'estimators.estimate', 'estimate', (['estimator', 'b'], {}), '(estimator, b)\n', (2398, 2412), False, 'from estimators import estimate, estimators_list\n'), ((1937, 1961), 'os.listdir', 'os.listdir', (['scene_folder'], {}), '(scene_folder)\n', (1947, 1961), False, 'import os, sys\n')]
import csv import json import multiprocessing as mp import os import random import signal import string import sys import traceback from datetime import datetime, timedelta from itertools import repeat import nest_asyncio import numpy as np from cate.core import DATA_STORE_REGISTRY, ds from cate.core.ds import DataAccessError nest_asyncio.apply() # header for CSV report header_row = ['ECV-Name', 'Dataset-ID', 'supported', 'open(1)', 'open_bbox(2)', 'cache(3)', 'map(4)', 'comment'] results_csv = f'test_cci_data_support_{datetime.date(datetime.now())}.csv' # Not supported vector data: vector_data = ['esacci.ICESHEETS.mon.IND.GMB.GRACE-instrument.GRACE.VARIOUS.1-3.greenland_gmb_time_series', 'esacci.ICESHEETS.unspecified.Unspecified.CFL.multi-sensor.multi-platform.UNSPECIFIED.v3-0.greenland', 'esacci.ICESHEETS.unspecified.Unspecified.GLL.multi-sensor.multi-platform.UNSPECIFIED.v1-3.greenland', 'esacci.ICESHEETS.yr.Unspecified.GMB.GRACE-instrument.GRACE.UNSPECIFIED.1-2.greenland_gmb_timeseries', 'esacci.ICESHEETS.yr.Unspecified.GMB.GRACE-instrument.GRACE.UNSPECIFIED.1-4.greenland_gmb_time_series', 'esacci.ICESHEETS.yr.Unspecified.GMB.GRACE-instrument.GRACE.UNSPECIFIED.1-5.greenland_gmb_time_series'] # time out in order to cancel datasets which are taking longer than a certain time TIMEOUT_TIME = 120 class TimeOutException(Exception): pass def alarm_handler(signum, frame): print(f'[{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}] ALARM signal received') raise TimeOutException(f'Time out after {TIMEOUT_TIME} seconds.') # Utility functions def append_dict_as_row(file_name, dict_of_elem, field_names): # Open file in append mode with open(file_name, 'a+', newline='') as write_obj: # Create a writer object from csv module dict_writer = csv.DictWriter(write_obj, fieldnames=field_names) # Add dictionary as wor in the csv dict_writer.writerow(dict_of_elem) write_obj.close() def update_csv(results_csv, header_row, results_for_dataset_collection): if not os.path.isfile(results_csv): with open(results_csv, 'w', newline='') as file: writer = csv.writer(file) writer.writerow(header_row) append_dict_as_row(results_csv, results_for_dataset_collection, header_row) def get_region(dataset): bbox_maxx = dataset.meta_info['bbox_maxx'] bbox_minx = dataset.meta_info['bbox_minx'] bbox_maxy = dataset.meta_info['bbox_maxy'] bbox_miny = dataset.meta_info['bbox_miny'] indx = random.uniform(float(bbox_minx), float(bbox_maxx)) indy = random.uniform(float(bbox_miny), float(bbox_maxy)) if indx == float(bbox_maxx): if indx > 0: indx = indx - 1 else: indx = indx + 1 if indy == float(bbox_maxy): if indy > 0: indy = indy - 1 else: indy = indy + 1 if indx == float(bbox_minx): indx = indx + 1 if indy == float(bbox_miny): indy = indy + 1 region = [float("{:.1f}".format(indx)), float("{:.1f}".format(indy)), float( "{:.1f}".format((indx + 0.1))), float("{:.1f}".format((indy + 0.1)))] return region def check_for_processing(cube, summary_row, time_range): signal.signal(signal.SIGALRM, alarm_handler) signal.alarm(TIMEOUT_TIME) try: try: var = list(cube.data_vars)[0] except IndexError: summary_row['open_bbox(2)'] = 'no' comment_1 = f'Failed at getting first variable from list {list(cube.data_vars)}: {sys.exc_info()[:2]}' return summary_row, comment_1 try: np.sum(cube[var]) print(f'[{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}] The requested time range is {time_range}. ' f'The cubes actual first time stamp is {cube.time.min()} ' f'and last {cube.time.max()}.') summary_row['open_bbox(2)'] = 'yes' comment_1 = '' except: summary_row['open_bbox(2)'] = 'no' comment_1 = f'Failed executing np.sum(cube[{var}]): {sys.exc_info()[:2]}' except TimeOutException: summary_row['open_bbox(2)'] = 'no' comment_1 = sys.exc_info()[:2] signal.alarm(0) return summary_row, comment_1 def check_write_to_disc(summary_row, comment_2, data_source, time_range, variables, region, lds): signal.signal(signal.SIGALRM, alarm_handler) signal.alarm(TIMEOUT_TIME) if comment_2 is not None: return summary_row, comment_2 rand_string = f"test{random.choice(string.ascii_lowercase)}{random.choice(string.octdigits)}" # needed when tests run in parallel try: data_source.make_local(rand_string, time_range=time_range, var_names=variables, region=region) local_ds = ds.open_dataset(f'local.{rand_string}') local_ds.close() summary_row['cache(3)'] = 'yes' comment_2 = '' except DataAccessError: summary_row['cache(3)'] = 'no' comment_2 = f'local.{rand_string}: Failed saving to disc with: {sys.exc_info()[:2]}' except TimeOutException: summary_row['cache(3)'] = 'no' comment_2 = sys.exc_info()[:2] except: summary_row['cache(3)'] = 'no' comment_2 = f'Failed saving to disc with: {sys.exc_info()[:2]}' lds.remove_data_source(f"local.{rand_string}") signal.alarm(0) return summary_row, comment_2 def check_for_visualization(cube, summary_row, variables): var_with_lat_lon_right_order = [] vars = [] comment_3 = None signal.signal(signal.SIGALRM, alarm_handler) signal.alarm(TIMEOUT_TIME) try: for var in cube.data_vars: vars.append(var) if cube[var].dims[-2:] == ('lat', 'lon'): if len(cube.lat.shape) == 1 and len(cube.lon.shape) == 1: if cube.lat.size > 0 and cube.lon.size > 0: var_with_lat_lon_right_order.append(var) else: comment_3 = f'cube.lat.size: {cube.lat.size}, cube.lon.size: {cube.lon.size}.' else: comment_3 = f'cube.lat.shape: {cube.lat.shape}, cube.lon.shape: {cube.lon.shape}.' else: comment_3 = f'Last two dimensions of variable {var}: {cube[var].dims[-2:]}.' if len(var_with_lat_lon_right_order) > 0: summary_row['map(4)'] = 'yes' comment_3 = '' else: summary_row['map(4)'] = 'no' if len(vars) == 0: comment_3 = f'Dataset has none of the requested variables: {variables}.' if comment_3 is None: comment_3 = f'None of variables: {vars} has lat and lon in correct order.' except TimeOutException: summary_row['map(4)'] = 'no' comment_3 = sys.exc_info()[:2] signal.alarm(0) return summary_row, comment_3 def check_for_support(data_id): if 'sinusoidal' in data_id: supported = False reason = f"There is no support for sinusoidal datasets, please use the equivalent dataset with 'geographic' in" \ f" the dataset_id." elif 'L2P' in data_id: supported = False reason = f"There is no support for L2P datasets, because problems are expected." elif 'esacci.FIRE.mon.L3S' in data_id: supported = False reason = f"There is no support for FIRE L3S datasets, because problems are expected." elif 'esacci.SEALEVEL.satellite-orbit-frequency.L1' in data_id: supported = False reason = f"There is no support for SEALEVEL satellite-orbit-frequency datasets, because problems are expected." elif data_id in vector_data: supported = False reason = f"There is no support for vector data." else: supported = True reason = None return supported, reason def _all_tests_no(summary_row, comment_1, open_wo_subset_only=False): summary_row['open_bbox(2)'] = 'no' summary_row['cache(3)'] = 'no' summary_row['map(4)'] = 'no' if open_wo_subset_only: summary_row['open(1)'] = 'yes' summary_row['comment'] = f'(1) Dataset can open without spatial subset only; (2) {comment_1}' else: summary_row['open(1)'] = 'no' summary_row['comment'] = f'{comment_1}' update_csv(results_csv, header_row, summary_row) def test_open_ds(data, store, lds): comment_1 = None comment_2 = None comment_3 = None open_wo_subset_only = False data_id = data.id summary_row = {'ECV-Name': data_id.split('.')[1], 'Dataset-ID': data_id} supported, reason = check_for_support(data_id) if not supported: summary_row['supported'] = 'no' comment_1 = reason _all_tests_no(summary_row, comment_1) return else: summary_row['supported'] = 'yes' try: data_source = store.query(ds_id=data_id)[0] except: comment_1 = f'Failed getting data description while executing ' \ f'store.query(ds_id={data_id})[0] with: {sys.exc_info()[:2]}' _all_tests_no(summary_row, comment_1) return data_source.update_file_list() if len(data_source._file_list) == 0: comment_1 = f'Has no file list.' _all_tests_no(summary_row, comment_1) return region = get_region(data_source) try: time_range = tuple( t.strftime('%Y-%m-%d') for t in [data_source._file_list[0][1], data_source._file_list[1][2]]) except IndexError: try: time_range = tuple( t.strftime('%Y-%m-%d') for t in [data_source._file_list[0][1], data_source._file_list[0][2]]) except: time_range = None except: time_range = None var_list = [] s_not_to_be_in_var = ['longitude', 'latitude', 'lat', 'lon', 'bounds', 'bnds', 'date', 'Longitude', 'Latitude'] if len(data_source.meta_info['variables']) > 3: while len(var_list) < 1: for var in random.choices(data_source.meta_info['variables'], k=2): if not (any(s_part in var['name'] for s_part in s_not_to_be_in_var)) and var[ 'name'] not in var_list: var_list.append(var['name']) else: for var in data_source.meta_info['variables']: if not (any(s_part in var['name'] for s_part in s_not_to_be_in_var)) and var[ 'name'] not in var_list: var_list.append(var['name']) try: print(f'[{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}] Opening cube for data_id {data_id} with {var_list} ' f'and time range {time_range}.') cube = data_source.open_dataset(time_range=time_range, var_names=var_list) vars_in_cube = [] for var in var_list: if var in cube.data_vars: vars_in_cube.append(var) if len(vars_in_cube) == 0: comment_1 = f'Requested variables {var_list} for subset are not in dataset.' _all_tests_no(summary_row, comment_1, open_wo_subset_only) return summary_row['open(1)'] = 'yes' open_wo_subset_only = True except: traceback_file_url = generate_traceback_file(data_id, time_range, var_list, None) _all_tests_no(summary_row, traceback_file_url, open_wo_subset_only) return try: print(f'[{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}] Opening cube for data_id {data_id} with {var_list} ' f'and region {region} and time range {time_range}.') cube = data_source.open_dataset(time_range=time_range, var_names=var_list, region=region) summary_row['open(1)'] = 'yes' open_wo_subset_only = False except ValueError: track = traceback.format_exc() if 'Can not select a region outside dataset boundaries.' in track: try: region = '141.6, -18.7, 141.7, -18.6' print(f'[{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}] Opening cube for data_id {data_id} with ' f'{var_list} and region {region}.') cube = data_source.open_dataset(time_range=time_range, var_names=var_list, region=region) open_wo_subset_only = False except: traceback_file_url = generate_traceback_file(data_id, time_range, var_list, region) _all_tests_no(summary_row, traceback_file_url, open_wo_subset_only) return else: traceback_file_url = generate_traceback_file(data_id, time_range, var_list, region) _all_tests_no(summary_row, traceback_file_url, open_wo_subset_only) return except IndexError: print(f'[{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}] Index error happening at stage 2. for {data_id}') traceback_file_url = generate_traceback_file(data_id, time_range, var_list, region) _all_tests_no(summary_row, traceback_file_url, open_wo_subset_only) return except: track = traceback.format_exc() if 'does not seem to have any datasets in given time range' in track: try: time_range = (time_range[0], time_range[1] + timedelta(days=4)) print(f'[{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}] Opening cube for data_id {data_id} ' f'with {var_list}.') cube = data_source.open_dataset(time_range=time_range, var_names=var_list, region=region) open_wo_subset_only = False except IndexError: print(f'[{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}] Index error happening at stage 3. ' f'for {data_id}') traceback_file_url = generate_traceback_file(data_id, time_range, var_list, region) _all_tests_no(summary_row, traceback_file_url, open_wo_subset_only) return except: traceback_file_url = generate_traceback_file(data_id, time_range, var_list, region) _all_tests_no(summary_row, traceback_file_url, open_wo_subset_only) return else: traceback_file_url = generate_traceback_file(data_id, time_range, var_list, region) _all_tests_no(summary_row, traceback_file_url, open_wo_subset_only) return vars_in_cube = [] for var in var_list: if var in cube.data_vars: vars_in_cube.append(var) if len(vars_in_cube) == 0: comment_1 = f'Requested variables {var_list} for subset are not in dataset.' _all_tests_no(summary_row, comment_1, open_wo_subset_only) return print(f'[{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}] Checking cube for data_id {data_id} for processing.') summary_row, comment_1 = check_for_processing(cube, summary_row, time_range) print(f'[{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}] Checking cube for data_id {data_id} for visualization.') summary_row, comment_3 = check_for_visualization(cube, summary_row, var_list) print(f'[{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}] Closing cube for data_id {data_id}') cube.close() print(f'[{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}] Checking cube {data_id} for writing to disk.') summary_row, comment_2 = check_write_to_disc(summary_row, comment_2, data_source, time_range, var_list, region, lds) if comment_1 and (comment_1 == comment_3): summary_row['comment'] = f'{comment_1}' else: if comment_1: if comment_1 == comment_2 == comment_3: summary_row['comment'] = f'{comment_1}' else: comment_1 = f'(1) {comment_1}; ' if comment_2: comment_2 = f'(2) {comment_2}; ' if comment_3: comment_3 = f'(3) {comment_3}; ' summary_row['comment'] = f'{comment_1} {comment_2} {comment_3}' update_csv(results_csv, header_row, summary_row) def generate_traceback_file(data_id, time_range, var_list, region): dir_for_traceback = f'error_traceback/{datetime.date(datetime.now())}' if not os.path.exists(dir_for_traceback): os.mkdir(dir_for_traceback) traceback_file = f'{dir_for_traceback}/{data_id}.txt' with open(traceback_file, 'a') as trace_f: trace_f.write(f'[{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}] Request: \n' f'data_source.open_dataset(time_range={time_range}, var_names={var_list}, region={region})\n') trace_f.write('\n') trace_f.write(traceback.format_exc()) traceback_file_url = f'https://github.com/CCI-Tools/cate-e2e/blob/master/testing-cci-datasets/{traceback_file}' return traceback_file_url def sort_csv(input_csv, output_csv): with open(input_csv, 'r', newline='') as f_input: csv_input = csv.DictReader(f_input) data = sorted(csv_input, key=lambda row: (row['Dataset-ID'])) with open(output_csv, 'w', newline='') as f_output: csv_output = csv.DictWriter(f_output, fieldnames=csv_input.fieldnames) csv_output.writeheader() csv_output.writerows(data) # creating summary csv def read_all_result_rows(path, header_row): test_data_sets_list = [] with open(path) as csvfile: reader = csv.DictReader(csvfile, fieldnames=header_row, delimiter=',') firstline = True for row in reader: if firstline: # skip first line firstline = False continue test_data_sets_list.append(row) return test_data_sets_list def get_list_of_ecvs(data_sets): ecvs = [] for dataset in data_sets: if dataset['ECV-Name'] in ecvs: continue else: ecvs.append(dataset['ECV-Name']) ecvs.append('ALL_ECVS') return ecvs def count_success_fail(data_sets, ecv): supported = 0 not_supported = 0 open_success = 0 open_fail = 0 open_bbox_success = 0 open_bbox_fail = 0 cache_success = 0 cache_fail = 0 visualize_success = 0 visualize_fail = 0 if 'ALL_ECVS' not in ecv: for dataset in data_sets: if ecv in dataset['ECV-Name']: if 'yes' in dataset['supported']: supported += 1 if 'yes' in dataset['open(1)']: open_success += 1 else: open_fail += 1 if 'yes' in dataset['open_bbox(2)']: open_bbox_success += 1 else: open_bbox_fail += 1 if 'yes' in dataset['cache(3)']: cache_success += 1 else: cache_fail += 1 if 'yes' in dataset['map(4)']: visualize_success += 1 else: visualize_fail += 1 else: not_supported += 1 total_number_of_datasets = sum([supported, not_supported]) else: for dataset in data_sets: if 'yes' in dataset['supported']: supported += 1 if 'yes' in dataset['open(1)']: open_success += 1 else: open_fail += 1 if 'yes' in dataset['open_bbox(2)']: open_bbox_success += 1 else: open_bbox_fail += 1 if 'yes' in dataset['cache(3)']: cache_success += 1 else: cache_fail += 1 if 'yes' in dataset['map(4)']: visualize_success += 1 else: visualize_fail += 1 else: not_supported += 1 total_number_of_datasets = len(data_sets) supported_percentage = 100 * supported / total_number_of_datasets open_success_percentage = 100 * open_success / (total_number_of_datasets - not_supported) open_bbox_success_percentage = 100 * open_bbox_success / (total_number_of_datasets - not_supported) visualize_success_percentage = 100 * visualize_success / (total_number_of_datasets - not_supported) cache_success_percentage = 100 * cache_success / (total_number_of_datasets - not_supported) summary_row_new = {'ecv': ecv, 'supported': supported, 'open_success': open_success, 'open_fail': open_bbox_fail, 'open_bbox_success': open_bbox_success, 'open_bbox_fail': open_fail, 'cache_success': cache_success, 'cache_fail': cache_fail, 'visualize_success': visualize_success, 'visualize_fail': visualize_fail, 'supported_percentage': supported_percentage, 'open_success_percentage': open_success_percentage, 'open_bbox_success_percentage': open_bbox_success_percentage, 'visualize_success_percentage': visualize_success_percentage, 'cache_success_percentage': cache_success_percentage, 'total_number_of_datasets': total_number_of_datasets } return summary_row_new def create_list_of_failed(test_data_sets, failed_csv, header_row): for dataset in test_data_sets: if dataset['supported'] == 'yes' and (dataset['open(1)'] == 'no' or dataset['open_bbox(2)'] == 'no' or dataset['cache(3)'] == 'no' or dataset['map(4)'] == 'no'): update_csv(failed_csv, header_row, dataset) def create_dict_of_ids_with_verification_flags(data_sets): dict_with_verify_flags = {} for dataset in data_sets: verify_flags = [] if 'yes' in dataset['open(1)']: verify_flags.append('open') if 'yes' in dataset['open_bbox(2)']: verify_flags.append('open_bbox') if 'yes' in dataset['cache(3)']: verify_flags.append('cache') if 'yes' in dataset['map(4)']: verify_flags.append('map') dict_with_verify_flags[dataset['Dataset-ID']] = {'verification_flags': verify_flags} return dict_with_verify_flags def main(): store = DATA_STORE_REGISTRY.get_data_store('esa_cci_odp_os') data_sets = store.query() lds = DATA_STORE_REGISTRY.get_data_store('local') start_time = datetime.now() with mp.Pool(mp.cpu_count() - 1, maxtasksperchild=1) as pool: pool.starmap(test_open_ds, zip(data_sets, repeat(store), repeat(lds))) pool.close() pool.join() sort_csv(results_csv, f'sorted_{results_csv}') test_data_sets = read_all_result_rows(f'sorted_{results_csv}', header_row) ecvs = get_list_of_ecvs(test_data_sets) failed_csv = f'failed_{results_csv}' create_list_of_failed(test_data_sets, failed_csv, header_row) sort_csv(failed_csv, f'sorted_{failed_csv}') with open(results_csv, 'r', newline='') as f_input: csv_input = csv.DictReader(f_input) data = sorted(csv_input, key=lambda row: (row['Dataset-ID'])) with open(f'sorted_{results_csv}', 'w', newline='') as f_output: csv_output = csv.DictWriter(f_output, fieldnames=csv_input.fieldnames) csv_output.writeheader() csv_output.writerows(data) summary_csv = f'summary_sorted_{results_csv}' header_summary = ['ecv', 'supported', 'open_success', 'open_fail', 'open_bbox_success', 'open_bbox_fail', 'cache_success', 'cache_fail', 'visualize_success', 'visualize_fail', 'supported_percentage', 'open_success_percentage', 'open_bbox_success_percentage', 'cache_success_percentage', 'visualize_success_percentage', 'total_number_of_datasets'] for ecv in ecvs: results_summary_row = count_success_fail(test_data_sets, ecv) update_csv(summary_csv, header_summary, results_summary_row) dict_with_verify_flags = create_dict_of_ids_with_verification_flags(test_data_sets) with open(f'DrsID_verification_flags_{datetime.date(datetime.now())}.json', 'w') as f: json.dump(dict_with_verify_flags, f, indent=4) if os.path.exists(results_csv): os.remove(results_csv) else: print(f'[{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}] The file {results_csv} does not exist.') if os.path.exists(failed_csv): os.remove(failed_csv) else: print(f'[{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}] The file {failed_csv} does not exist.') print(f'[{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}] Test run finished on {datetime.date(datetime.now())}.') print(f'[{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}] Test run took {datetime.now() - start_time}') if __name__ == '__main__': main()
[ "os.mkdir", "os.remove", "numpy.sum", "random.choices", "os.path.isfile", "sys.exc_info", "csv.DictWriter", "multiprocessing.cpu_count", "cate.core.ds.open_dataset", "os.path.exists", "datetime.timedelta", "traceback.format_exc", "cate.core.DATA_STORE_REGISTRY.get_data_store", "signal.alarm", "nest_asyncio.apply", "datetime.datetime.now", "json.dump", "csv.writer", "csv.DictReader", "signal.signal", "itertools.repeat", "random.choice" ]
[((330, 350), 'nest_asyncio.apply', 'nest_asyncio.apply', ([], {}), '()\n', (348, 350), False, 'import nest_asyncio\n'), ((3313, 3357), 'signal.signal', 'signal.signal', (['signal.SIGALRM', 'alarm_handler'], {}), '(signal.SIGALRM, alarm_handler)\n', (3326, 3357), False, 'import signal\n'), ((3362, 3388), 'signal.alarm', 'signal.alarm', (['TIMEOUT_TIME'], {}), '(TIMEOUT_TIME)\n', (3374, 3388), False, 'import signal\n'), ((4306, 4321), 'signal.alarm', 'signal.alarm', (['(0)'], {}), '(0)\n', (4318, 4321), False, 'import signal\n'), ((4461, 4505), 'signal.signal', 'signal.signal', (['signal.SIGALRM', 'alarm_handler'], {}), '(signal.SIGALRM, alarm_handler)\n', (4474, 4505), False, 'import signal\n'), ((4510, 4536), 'signal.alarm', 'signal.alarm', (['TIMEOUT_TIME'], {}), '(TIMEOUT_TIME)\n', (4522, 4536), False, 'import signal\n'), ((5445, 5460), 'signal.alarm', 'signal.alarm', (['(0)'], {}), '(0)\n', (5457, 5460), False, 'import signal\n'), ((5634, 5678), 'signal.signal', 'signal.signal', (['signal.SIGALRM', 'alarm_handler'], {}), '(signal.SIGALRM, alarm_handler)\n', (5647, 5678), False, 'import signal\n'), ((5683, 5709), 'signal.alarm', 'signal.alarm', (['TIMEOUT_TIME'], {}), '(TIMEOUT_TIME)\n', (5695, 5709), False, 'import signal\n'), ((6934, 6949), 'signal.alarm', 'signal.alarm', (['(0)'], {}), '(0)\n', (6946, 6949), False, 'import signal\n'), ((22645, 22697), 'cate.core.DATA_STORE_REGISTRY.get_data_store', 'DATA_STORE_REGISTRY.get_data_store', (['"""esa_cci_odp_os"""'], {}), "('esa_cci_odp_os')\n", (22679, 22697), False, 'from cate.core import DATA_STORE_REGISTRY, ds\n'), ((22738, 22781), 'cate.core.DATA_STORE_REGISTRY.get_data_store', 'DATA_STORE_REGISTRY.get_data_store', (['"""local"""'], {}), "('local')\n", (22772, 22781), False, 'from cate.core import DATA_STORE_REGISTRY, ds\n'), ((22800, 22814), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (22812, 22814), False, 'from datetime import datetime, timedelta\n'), ((24638, 24665), 'os.path.exists', 'os.path.exists', (['results_csv'], {}), '(results_csv)\n', (24652, 24665), False, 'import os\n'), ((24822, 24848), 'os.path.exists', 'os.path.exists', (['failed_csv'], {}), '(failed_csv)\n', (24836, 24848), False, 'import os\n'), ((1879, 1928), 'csv.DictWriter', 'csv.DictWriter', (['write_obj'], {'fieldnames': 'field_names'}), '(write_obj, fieldnames=field_names)\n', (1893, 1928), False, 'import csv\n'), ((2127, 2154), 'os.path.isfile', 'os.path.isfile', (['results_csv'], {}), '(results_csv)\n', (2141, 2154), False, 'import os\n'), ((4872, 4911), 'cate.core.ds.open_dataset', 'ds.open_dataset', (['f"""local.{rand_string}"""'], {}), "(f'local.{rand_string}')\n", (4887, 4911), False, 'from cate.core import DATA_STORE_REGISTRY, ds\n'), ((16262, 16295), 'os.path.exists', 'os.path.exists', (['dir_for_traceback'], {}), '(dir_for_traceback)\n', (16276, 16295), False, 'import os\n'), ((16305, 16332), 'os.mkdir', 'os.mkdir', (['dir_for_traceback'], {}), '(dir_for_traceback)\n', (16313, 16332), False, 'import os\n'), ((16974, 16997), 'csv.DictReader', 'csv.DictReader', (['f_input'], {}), '(f_input)\n', (16988, 16997), False, 'import csv\n'), ((17146, 17203), 'csv.DictWriter', 'csv.DictWriter', (['f_output'], {'fieldnames': 'csv_input.fieldnames'}), '(f_output, fieldnames=csv_input.fieldnames)\n', (17160, 17203), False, 'import csv\n'), ((17419, 17480), 'csv.DictReader', 'csv.DictReader', (['csvfile'], {'fieldnames': 'header_row', 'delimiter': '""","""'}), "(csvfile, fieldnames=header_row, delimiter=',')\n", (17433, 17480), False, 'import csv\n'), ((23410, 23433), 'csv.DictReader', 'csv.DictReader', (['f_input'], {}), '(f_input)\n', (23424, 23433), False, 'import csv\n'), ((23595, 23652), 'csv.DictWriter', 'csv.DictWriter', (['f_output'], {'fieldnames': 'csv_input.fieldnames'}), '(f_output, fieldnames=csv_input.fieldnames)\n', (23609, 23652), False, 'import csv\n'), ((24583, 24629), 'json.dump', 'json.dump', (['dict_with_verify_flags', 'f'], {'indent': '(4)'}), '(dict_with_verify_flags, f, indent=4)\n', (24592, 24629), False, 'import json\n'), ((24675, 24697), 'os.remove', 'os.remove', (['results_csv'], {}), '(results_csv)\n', (24684, 24697), False, 'import os\n'), ((24858, 24879), 'os.remove', 'os.remove', (['failed_csv'], {}), '(failed_csv)\n', (24867, 24879), False, 'import os\n'), ((543, 557), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (555, 557), False, 'from datetime import datetime, timedelta\n'), ((2234, 2250), 'csv.writer', 'csv.writer', (['file'], {}), '(file)\n', (2244, 2250), False, 'import csv\n'), ((3709, 3726), 'numpy.sum', 'np.sum', (['cube[var]'], {}), '(cube[var])\n', (3715, 3726), True, 'import numpy as np\n'), ((4631, 4668), 'random.choice', 'random.choice', (['string.ascii_lowercase'], {}), '(string.ascii_lowercase)\n', (4644, 4668), False, 'import random\n'), ((4670, 4701), 'random.choice', 'random.choice', (['string.octdigits'], {}), '(string.octdigits)\n', (4683, 4701), False, 'import random\n'), ((10120, 10175), 'random.choices', 'random.choices', (["data_source.meta_info['variables']"], {'k': '(2)'}), "(data_source.meta_info['variables'], k=2)\n", (10134, 10175), False, 'import random\n'), ((11885, 11907), 'traceback.format_exc', 'traceback.format_exc', ([], {}), '()\n', (11905, 11907), False, 'import traceback\n'), ((13162, 13184), 'traceback.format_exc', 'traceback.format_exc', ([], {}), '()\n', (13182, 13184), False, 'import traceback\n'), ((16691, 16713), 'traceback.format_exc', 'traceback.format_exc', ([], {}), '()\n', (16711, 16713), False, 'import traceback\n'), ((4283, 4297), 'sys.exc_info', 'sys.exc_info', ([], {}), '()\n', (4295, 4297), False, 'import sys\n'), ((5248, 5262), 'sys.exc_info', 'sys.exc_info', ([], {}), '()\n', (5260, 5262), False, 'import sys\n'), ((6911, 6925), 'sys.exc_info', 'sys.exc_info', ([], {}), '()\n', (6923, 6925), False, 'import sys\n'), ((16233, 16247), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (16245, 16247), False, 'from datetime import datetime, timedelta\n'), ((22832, 22846), 'multiprocessing.cpu_count', 'mp.cpu_count', ([], {}), '()\n', (22844, 22846), True, 'import multiprocessing as mp\n'), ((22931, 22944), 'itertools.repeat', 'repeat', (['store'], {}), '(store)\n', (22937, 22944), False, 'from itertools import repeat\n'), ((22946, 22957), 'itertools.repeat', 'repeat', (['lds'], {}), '(lds)\n', (22952, 22957), False, 'from itertools import repeat\n'), ((25093, 25107), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (25105, 25107), False, 'from datetime import datetime, timedelta\n'), ((25189, 25203), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (25201, 25203), False, 'from datetime import datetime, timedelta\n'), ((1494, 1508), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1506, 1508), False, 'from datetime import datetime, timedelta\n'), ((5139, 5153), 'sys.exc_info', 'sys.exc_info', ([], {}), '()\n', (5151, 5153), False, 'import sys\n'), ((5369, 5383), 'sys.exc_info', 'sys.exc_info', ([], {}), '()\n', (5381, 5383), False, 'import sys\n'), ((9148, 9162), 'sys.exc_info', 'sys.exc_info', ([], {}), '()\n', (9160, 9162), False, 'import sys\n'), ((14818, 14832), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (14830, 14832), False, 'from datetime import datetime, timedelta\n'), ((15014, 15028), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (15026, 15028), False, 'from datetime import datetime, timedelta\n'), ((15214, 15228), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (15226, 15228), False, 'from datetime import datetime, timedelta\n'), ((15329, 15343), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (15341, 15343), False, 'from datetime import datetime, timedelta\n'), ((24540, 24554), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (24552, 24554), False, 'from datetime import datetime, timedelta\n'), ((25010, 25024), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (25022, 25024), False, 'from datetime import datetime, timedelta\n'), ((25127, 25141), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (25139, 25141), False, 'from datetime import datetime, timedelta\n'), ((3621, 3635), 'sys.exc_info', 'sys.exc_info', ([], {}), '()\n', (3633, 3635), False, 'import sys\n'), ((4170, 4184), 'sys.exc_info', 'sys.exc_info', ([], {}), '()\n', (4182, 4184), False, 'import sys\n'), ((10634, 10648), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (10646, 10648), False, 'from datetime import datetime, timedelta\n'), ((11506, 11520), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (11518, 11520), False, 'from datetime import datetime, timedelta\n'), ((13341, 13358), 'datetime.timedelta', 'timedelta', ([], {'days': '(4)'}), '(days=4)\n', (13350, 13358), False, 'from datetime import datetime, timedelta\n'), ((16464, 16478), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (16476, 16478), False, 'from datetime import datetime, timedelta\n'), ((24726, 24740), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (24738, 24740), False, 'from datetime import datetime, timedelta\n'), ((24908, 24922), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (24920, 24922), False, 'from datetime import datetime, timedelta\n'), ((3749, 3763), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (3761, 3763), False, 'from datetime import datetime, timedelta\n'), ((12854, 12868), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (12866, 12868), False, 'from datetime import datetime, timedelta\n'), ((12080, 12094), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (12092, 12094), False, 'from datetime import datetime, timedelta\n'), ((13386, 13400), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (13398, 13400), False, 'from datetime import datetime, timedelta\n'), ((13720, 13734), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (13732, 13734), False, 'from datetime import datetime, timedelta\n')]
import numpy as np import pandas as pd from perceptron import MLP import seaborn as sns import matplotlib.pyplot as plt if __name__ == "__main__": # create a dataset to train and test a network x_train = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) y_train = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) # create a Multilayer Perceptron with one hidden layer mlp = MLP(4, [2], 4, bias=False) # train network x = mlp.train(x_train, y_train, 1, 0.2, verbose=True) # plot a MSE for each outputs and avg output mlp.plot_mse('example_plot') # plot activations on hidden layer each training session list_epochs = [i+1 for i in range(1000)] df_hidden = pd.DataFrame(mlp.hidden_activates, columns=['1 neuron', '2 neuron']) df_epoch = pd.DataFrame(list_epochs, columns=['epochs']) df = pd.concat([df_epoch, df_hidden], axis=1) plt.clf() sns.lineplot(x='epochs', y='value', hue='variable', data=pd.melt(df, ['epochs']),legend=False) plt.legend(title = "Hidden_layer") plt.savefig('hidden.png') # get first prediction x_test = np.array([1, 0, 0, 0]) outputs = mlp.predict(x_test) print("Network believes that is equal to {}".format(outputs)) x_test = np.array([0, 1, 0, 0]) # get second prediction outputs = mlp.predict(x_test) print("Network believes that is equal to {}".format(outputs)) x_test = np.array([0, 0, 1, 0]) # get third prediction outputs = mlp.predict(x_test) print("Network believes that is equal to {}".format(outputs)) x_test = np.array([0, 0, 0, 1]) # get fourth prediction outputs = mlp.predict(x_test) print("Network believes that is equal to {}".format(outputs))
[ "pandas.DataFrame", "matplotlib.pyplot.clf", "matplotlib.pyplot.legend", "numpy.array", "pandas.melt", "perceptron.MLP", "pandas.concat", "matplotlib.pyplot.savefig" ]
[((219, 285), 'numpy.array', 'np.array', (['[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]'], {}), '([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]])\n', (227, 285), True, 'import numpy as np\n'), ((300, 366), 'numpy.array', 'np.array', (['[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]'], {}), '([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]])\n', (308, 366), True, 'import numpy as np\n'), ((437, 463), 'perceptron.MLP', 'MLP', (['(4)', '[2]', '(4)'], {'bias': '(False)'}), '(4, [2], 4, bias=False)\n', (440, 463), False, 'from perceptron import MLP\n'), ((748, 816), 'pandas.DataFrame', 'pd.DataFrame', (['mlp.hidden_activates'], {'columns': "['1 neuron', '2 neuron']"}), "(mlp.hidden_activates, columns=['1 neuron', '2 neuron'])\n", (760, 816), True, 'import pandas as pd\n'), ((832, 877), 'pandas.DataFrame', 'pd.DataFrame', (['list_epochs'], {'columns': "['epochs']"}), "(list_epochs, columns=['epochs'])\n", (844, 877), True, 'import pandas as pd\n'), ((887, 927), 'pandas.concat', 'pd.concat', (['[df_epoch, df_hidden]'], {'axis': '(1)'}), '([df_epoch, df_hidden], axis=1)\n', (896, 927), True, 'import pandas as pd\n'), ((932, 941), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (939, 941), True, 'import matplotlib.pyplot as plt\n'), ((1059, 1091), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'title': '"""Hidden_layer"""'}), "(title='Hidden_layer')\n", (1069, 1091), True, 'import matplotlib.pyplot as plt\n'), ((1098, 1123), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""hidden.png"""'], {}), "('hidden.png')\n", (1109, 1123), True, 'import matplotlib.pyplot as plt\n'), ((1169, 1191), 'numpy.array', 'np.array', (['[1, 0, 0, 0]'], {}), '([1, 0, 0, 0])\n', (1177, 1191), True, 'import numpy as np\n'), ((1305, 1327), 'numpy.array', 'np.array', (['[0, 1, 0, 0]'], {}), '([0, 1, 0, 0])\n', (1313, 1327), True, 'import numpy as np\n'), ((1470, 1492), 'numpy.array', 'np.array', (['[0, 0, 1, 0]'], {}), '([0, 0, 1, 0])\n', (1478, 1492), True, 'import numpy as np\n'), ((1634, 1656), 'numpy.array', 'np.array', (['[0, 0, 0, 1]'], {}), '([0, 0, 0, 1])\n', (1642, 1656), True, 'import numpy as np\n'), ((1017, 1040), 'pandas.melt', 'pd.melt', (['df', "['epochs']"], {}), "(df, ['epochs'])\n", (1024, 1040), True, 'import pandas as pd\n')]
from __future__ import print_function, absolute_import, division # makes these scripts backward compatible with python 2.6 and 2.7 # Importing the base class from co_simulation_base_io import CoSimulationBaseIO # Other imports import numpy as np import co_simulation_tools as cs_tools def Create(solvers, solver_name, level): return SDoFIO(solvers, solver_name, level) class SDoFIO(CoSimulationBaseIO): def ImportData(self, data_settings, from_client): data_name = data_settings["data_name"] io_settings = data_settings["io_settings"] data_array = np.array([]) cs_tools.ImportArrayFromSolver(from_client, data_name, data_array) sdof_solver = self.solvers[self.solver_name] sdof_data_settings = sdof_solver.GetDataDefinition(data_settings["data_name"]) value = sum(data_array) if "io_options" in io_settings: if "swap_sign" in io_settings["io_options"]: value *= -1.0 data_identifier = sdof_data_settings["data_identifier"] sdof_solver.SetData(data_identifier, value) def ExportData(self, data_settings, to_client): sdof_solver = self.solvers[self.solver_name] sdof_data_settings = sdof_solver.GetDataDefinition(data_settings["data_name"]) sdof_data_settings["data_name"] = data_settings["data_name"] if not sdof_data_settings["data_format"] == "scalar_value": raise Exception('SDoFIO can only handle scalar values') sdof_solver = self.solvers[self.solver_name] data_identifier = sdof_data_settings["data_identifier"] x = sdof_solver.GetData(data_identifier) sdof_data_settings["scalar_value"] = x to_client.ImportData(sdof_data_settings, to_client)
[ "co_simulation_tools.ImportArrayFromSolver", "numpy.array" ]
[((586, 598), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (594, 598), True, 'import numpy as np\n'), ((607, 673), 'co_simulation_tools.ImportArrayFromSolver', 'cs_tools.ImportArrayFromSolver', (['from_client', 'data_name', 'data_array'], {}), '(from_client, data_name, data_array)\n', (637, 673), True, 'import co_simulation_tools as cs_tools\n')]
import copy import itertools import seaborn as sns import glob import os import math import matplotlib.pyplot as plt import matplotlib.image as mpimg import imutils import numpy as np from pre_processing import Pre_Processing import cv2 import scipy.special import time import matplotlib vehicle_info = "vehicle_info" class Car(): def __init__(self): self.car_length, self.car_width, self.center_of_vehicles = list(), list(), list() self.vehicles = dict() self.vehicles["red"] = dict() self.vehicles["blue"] = dict() self.pre_process = Pre_Processing() self.car_length = None self.car_width = None self.car_length_sim = None self.height = None self.width = None self.show_image = None self.output_folder = None self.process_number = None def getCarDimensions(self): """ Return car length and car width""" return (self.car_length, self.car_width) def getImageDimensions(self): """ Return heigth and width""" return (self.height, self.width) def edgesofTheCar(self, box_points, width_of_car): # rect_points = list() points_on_vehicle = box_points.tolist() advance_points = list() points_on_width = list() x = list(range(4)) y = list(range(1,4)) y.append(0) nodes_coverage = list(zip(x,y)) for i,j in nodes_coverage: # print(box_points, box_points[i][0]) ed_edges = np.sqrt(np.square(np.array(box_points[j][0]) - np.array(box_points[i][0])) + np.square(np.array(box_points[j][1]) - np.array(box_points[i][1]))) # print("\n width_of_car ", width_of_car) # print("ed edges of the car ", ed_edges) if(ed_edges > width_of_car * 1.1): """ We need to find three points on the side of a vehicle """ mid_point = [(int(box_points[i][0]) + int(box_points[j][0])) // 2, (int(box_points[i][1]) + int(box_points[j][1])) // 2] mid_point_1 = [(int(mid_point[0]) + int(box_points[i][0])) // 2, (int(mid_point[1]) + int(box_points[i][1])) // 2] mid_point_2 = [(int(mid_point[0]) + int(box_points[j][0])) // 2, (int(mid_point[1]) + int(box_points[j][1])) // 2] advance_points.extend([mid_point_1, mid_point_2]) else: mid_point = [(int(box_points[i][0]) + int(box_points[j][0])) // 2, (int(box_points[i][1]) + int(box_points[j][1])) // 2] points_on_width.append(mid_point) # rect_points.append(mid_point) points_on_vehicle.append(mid_point) # last_midpoint_point = [(int(box_points[0][0]) + int(box_points[-1][0])) // 2, (int(box_points[0][1]) + int(box_points[-1][1])) // 2] # points_on_vehicle.append(last_midpoint_point) points_on_vehicle.extend(advance_points) return points_on_vehicle, points_on_width def extractVehicleContoursFromMask(self): for vehicle_color in self.vehicles: contours, hierarchy = cv2.findContours(self.vehicles[vehicle_color]["mask"].copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) self.vehicles[vehicle_color]["contour"] = contours # print(len(self.vehicles[vehicle_color]["contour"]), hierarchy) self.vehicles[vehicle_color].pop('mask', None) def geometricOperationOnVehicle(self, image, time_efficiency): """ Finds number of things related to the vehicles: 1. min_area_rect (OBB == Object Oriented Bounding Box)(returns the center, (width, height), angle) 2. center_of_car (center of vehicle in image) 3. angle_of_rect (orientation of rectangle in image) 4. vehicle_nodes (8 points on vehicle including box_points) 5. car_length 6. car_width Args: vehicles ([dictionary]): [information about vehicles] """ c_length, c_width, center_of_vehicles = list(), list(), list() vehicle_info = "vehicle_info" t0 = time.time() print("\n------- Vehicle Extraction Pipeline ------") print("\n------- Extracting Geometric Information of vehicles ------") for vehicle_color in self.vehicles: print("\n{} Vehicle \n".format(str.capitalize((vehicle_color)))) self.vehicles[vehicle_color][vehicle_info] = dict() count_id = 0 for i, contour in enumerate(self.vehicles[vehicle_color]["contour"]): # print ("Vehicle {} # {}, Shape = {}, Area = {}, Arc_Length = {} ".format(vehicle_color, i, contour.shape, # cv2.contourArea(contour), cv2.arcLength(contour, closed=False))) print ("Vehicle {} # {}, Area = {}, Arc_Length = {} ".format(vehicle_color, i, cv2.contourArea(contour), cv2.arcLength(contour, closed=False))) if cv2.contourArea(contour) > 60: self.vehicles[vehicle_color][vehicle_info][str(count_id)] = dict() self.vehicles[vehicle_color]["dimensions"] = dict() M = cv2.moments(contour) # self.vehicles[vehicle_color]["moments"] = M # print("Moments of contour are = ", M) # mid_x = M["m10"] / M["m00"] # mid_y = M["m01"] / M["m00"] # self.vehicles["blue"]["center_of_car"] = (mid_x, mid_y) # print("vehicles center_of_car = ", self.vehicles["blue"]["center_of_car"]) x, y, width, height = cv2.boundingRect(contour) rect = cv2.minAreaRect(contour) box = cv2.boxPoints(rect) box = np.int0(box) img = cv2.polylines(image.copy(), [box], True, (0,255,0), 2) temp_img = cv2.rectangle(image.copy(), (x,y), (x + width, y + height), (0,204,255), 2) # temp_img = cv2.line(image.copy(), tuple([box[1][0], box[1][1]]), tuple([box[2][0], box[2][1]]), (128,128,128), 3) # cv2.circle(img, tuple([int(rect[0][0]), int(rect[0][1])]), 5, (204, 0, 204), -1) ### cv2.norm(box[0] - box[1], cv2.NORM_L2) ## square_root((x2-x1)**2 + (y2-y1)**2) dist_p_12 = math.sqrt(math.pow(int(round(box[0][0])) - int(round(box[1][0])), 2) + math.pow(int(round(box[0][1])) - int(round(box[1][1])), 2)) ## square_root((x3-x2)**2 + (y3-y2)**2) dist_p_23 = math.sqrt(math.pow(int(round(box[1][0])) - int(round(box[2][0])), 2) + math.pow(int(round(box[1][1])) - int(round(box[2][1])), 2)) c_length.append(max(dist_p_12, dist_p_23)) c_width.append(min(dist_p_12, dist_p_23)) center_of_vehicles.append((int(rect[0][0]), int(rect[0][1]))) vehicle_nodes, nodes_on_width = self.edgesofTheCar(box, min(dist_p_12, dist_p_23)) vehicle_center = ((box[0][0] + box[1][0] + box[2][0] + box[3][0]) / len(box), (box[0][1] + box[1][1] + box[2][1] + box[3][1]) / len(box)) # cv2.circle(img, tuple([int(vehicle_center[0]), int(vehicle_center[1])]), 8, (0, 255, 255), -1) # print(edgesofTheCar(box)) # print("vehicle_nodes array", np.array(vehicle_nodes)) self.vehicles[vehicle_color][vehicle_info][str(count_id)]["bounding_rect"] = cv2.boundingRect(contour) self.vehicles[vehicle_color][vehicle_info][str(count_id)]["min_area_rect"] = rect self.vehicles[vehicle_color][vehicle_info][str(count_id)]["center_of_car"] = (rect[0][0], rect[0][1]) # vehicle_center # /int(rect[0][0], int(rect[0][1])) self.vehicles[vehicle_color][vehicle_info][str(count_id)]["angle_of_rect"] = rect[2] self.vehicles[vehicle_color][vehicle_info][str(count_id)]["vehicle_nodes"] = vehicle_nodes self.vehicles[vehicle_color][vehicle_info][str(count_id)]["nodes_on_width"] = nodes_on_width """ Corner Points and Nodes of Vehicles """ # cv2.rectangle(img, (x, y),(x + width, y + height), (255, 255, 0), -1) cv2.circle(img, tuple([int(vehicle_nodes[0][0]), int(vehicle_nodes[0][1])]), 5, (255, 255, 0), -1) ## Light Sky blue , Node 0 cv2.circle(img, tuple([int(vehicle_nodes[1][0]), int(vehicle_nodes[1][1])]), 5, (127, 0, 255), -1) ## Lipstic Pink , Node 1 cv2.circle(img, tuple([int(vehicle_nodes[2][0]), int(vehicle_nodes[2][1])]), 5, (255, 51, 153), -1) ## Purple color , Node 2 cv2.circle(img, tuple([int(vehicle_nodes[3][0]), int(vehicle_nodes[3][1])]), 5, (255, 0, 0), -1) ## Dark Blue , Node 3 cv2.circle(img, tuple([int(vehicle_nodes[4][0]), int(vehicle_nodes[4][1])]), 5, (50, 255, 255), -1) ## Yellow , Node 4 (Mid_0_1) cv2.circle(img, tuple([int(vehicle_nodes[5][0]), int(vehicle_nodes[5][1])]), 5, (50, 255, 255), -1) ## Yellow , Node 5 (Mid_1_2) cv2.circle(img, tuple([int(vehicle_nodes[6][0]), int(vehicle_nodes[6][1])]), 5, (50, 255, 255), -1) ## Yellow , Node 6 (Mid_2_3) cv2.circle(img, tuple([int(vehicle_nodes[7][0]), int(vehicle_nodes[7][1])]), 5, (50, 255, 255), -1) ## Yellow , Node 7 (Mid_3_4) cv2.circle(img, tuple([int(vehicle_nodes[8][0]), int(vehicle_nodes[8][1])]), 5, (0, 255, 0), -1) ## Green , Node 8 (Mid_4_1) cv2.circle(img, tuple([int(vehicle_nodes[9][0]), int(vehicle_nodes[9][1])]), 5, (0, 255, 0), -1) ## Green , Node 9 (Mid_4_2) cv2.circle(img, tuple([int(vehicle_nodes[10][0]), int(vehicle_nodes[10][1])]), 5, (0, 255, 0), -1) ## Green , Node 10 (Mid_7_3) cv2.circle(img, tuple([int(vehicle_nodes[11][0]), int(vehicle_nodes[11][1])]), 5, (0, 255, 0), -1) ## Green , Node 11 (Mid_7_4) count_id += 1 # print("vehicles center_of_car = {} \n".format(self.vehicles[vehicle_color][vehicle_info][str(count_id)]["center_of_car"])) # if self.show_image: # self.pre_process.showImage(" Axis Aligned Bounding Boxes Vs Oriented Bounding Boxes", np.hstack([temp_img, img])) self.vehicles[vehicle_color].pop("contour", None) # c_length.sort() # c_width.sort() # self.car_length = round(sum(c_length)) # self.car_width = round(c_width) self.car_length = sum(c_length) / len(c_length) self.car_width = sum(c_width) / len(c_length) # self.car_length = round(min(c_length)) # round(max(c_length)),, default -> round(max(c_length)) # self.car_width = round(max(c_width)) for vehicle_color in self.vehicles: self.vehicles[vehicle_color]["dimensions"]["car_length"] = self.car_length self.vehicles[vehicle_color]["dimensions"]["car_length_sim"] = self.car_length_sim self.vehicles[vehicle_color]["dimensions"]["car_width"] = self.car_width t1 = time.time() print("\n---- Dimensions of Vehicles -------\n") print("car_length = ", self.car_length) print("car_width = ", self.car_width) if self.show_image: self.pre_process.showImage("Axis Aligned Bounding Boxes Vs Oriented Bounding Boxes", np.hstack([temp_img, img]), time=800) cv2.imwrite(self.output_folder + "{}_AABB_OBB.jpg".format(self.process_number), np.hstack([temp_img, img])) self.process_number += 1 time_efficiency["calc_vehicle_nodes"] = t1-t0 # print("total time taken", t1-t0) def extractingCrashPoint(self, image, time_efficiency): """ Distance calculation between vehicles nodes and extracting the crash point """ t0 = time.time() nodes_of_vehicles = [self.vehicles[vehicle_color]["vehicle_info"][str(v_id)]["vehicle_nodes"] for vehicle_color in self.vehicles for v_id in self.vehicles[vehicle_color]["vehicle_info"]] crash_ed_cal = list() for vehicle1_nodes, vehicle2_nodes in itertools.combinations(nodes_of_vehicles, 2): point_dist = list() crash_img = image.copy() for point_1 in vehicle1_nodes: cv2.circle(crash_img, tuple(point_1), radius=3, color=(0, 255, 0), thickness=-1) for point_2 in vehicle2_nodes: cv2.circle(crash_img, tuple(point_2), radius=3, color=(255, 0, 0), thickness=-1) crash_ed = cv2.norm(np.array(point_1) - np.array(point_2), cv2.NORM_L2) # print("crash_ed", crash_ed) point_dist.append([crash_ed, point_1, point_2]) # print("point_dist", point_dist) # cv2.imshow("crash point analyzation", crash_img) # cv2.waitKey(50) # cv2.destroyAllWindows() # cv2.imshow("crash point analyzation", crash_img) # cv2.waitKey(0) crash_ed_cal.append(min(point_dist)) # print("crash euclidean distance calculation for the two vehicles", crash_ed_cal) min_dist = min(crash_ed_cal) crash_point = [(int(round(min_dist[1][0])) + int(round(min_dist[2][0]))) // 2, (int(round(min_dist[1][1])) + int(round(min_dist[2][1]))) // 2] for vehicle_color in self.vehicles: self.vehicles[vehicle_color]["crash_point"] = dict() self.vehicles[vehicle_color]["crash_point"]["coordinates"] = crash_point self.vehicles[vehicle_color]["crash_point"]["dist_to_vehicle"] = min_dist[0] t1 = time.time() cv2.circle(crash_img, tuple(crash_point), 8, (0, 128, 255), -1) # print("crash point = ", tuple(crash_point)) cv2.imwrite(self.output_folder + "{}_crash_point_visualization.jpg".format(self.process_number), crash_img) self.process_number += 1 if self.show_image: self.pre_process.showImage("crash point visualization", crash_img, time=800) time_efficiency["calc_crash_pt"] = t1-t0 # print("total time taken", t1-t0) return crash_point def extractTriangle(self, image, time_efficiency): """ Triangle Extraction """ t0 = time.time() for vehicle_color in self.vehicles: for vehicle_id in self.vehicles[vehicle_color]['vehicle_info']: test = np.zeros_like(image) test_image = image #.copy() x, y, w, h = self.vehicles[vehicle_color]['vehicle_info'][vehicle_id]["bounding_rect"] box_points = self.vehicles[vehicle_color]['vehicle_info'][vehicle_id]["vehicle_nodes"][:4] # ROI = image[y:y+h, x:x+w] roi = cv2.fillPoly(test, np.array([box_points]), (255, 255, 255)) roi = cv2.bitwise_and(test_image, test_image, mask=roi[:,:,0]) # cv2.imshow("ROI", roi) roi = cv2.bitwise_not(roi) gray = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY) blur = cv2.blur(gray, (3, 3), 0) # cv2.threshold(blur, 10, 255, cv2.THRESH_BINARY) _, thresh = cv2.threshold(blur, 15, 255, cv2.THRESH_BINARY) thresh = cv2.bitwise_not(thresh) # if self.show_image: # cv2.imshow("gray", gray) # cv2.imshow("blur", blur) # cv2.imshow("thresh", thresh) # cv2.imshow("after applying NOT ", thresh) # cv2.waitKey(400) # # kernel = np.zeros((4,4), np.uint8) # # dilate = cv2.dilate(thresh, kernel) # # dilate = cv2.bitwise_not(dilate) # # rect_kernel = cv2.getStructuringElement( cv2.MORPH_RECT,(5,5)) # # dilate = cv2.dilate(thresh, rect_kernel ) cnts, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) cnt = max(cnts, key=cv2.contourArea) # print("number of selected contours", len(cnts)) # print("") # print("contour shape ", cnt.shape) # # peri = cv2.arcLength(contour, True) # # approx = cv2.approxPolyDP(contour, 0.04 * peri, True) # # # if the shape is a triangle, it will have 3 vertices # # print("len(approx)", len(approx)) # # if len(approx) == 3: # # print("triangle") rect = cv2.minAreaRect(cnt) # print("mid values", tuple([int(rect[0][0]), int(rect[0][1])])) # cv2.circle(img, tuple(self.vehicles[vehicle_color]["crash_point"]["coordinates"]), 5, (0, 128, 255), -1) cv2.circle(test_image, (int(rect[0][0]), int(rect[0][1])), 2, (255, 128, 0), -1 ) self.vehicles[vehicle_color]['vehicle_info'][vehicle_id]["triangle_position"] = tuple([int(rect[0][0]), int(rect[0][1])]) t1 = time.time() cv2.destroyAllWindows() cv2.imwrite(self.output_folder + "{}_triangle_extraction.jpg".format(self.process_number), test_image) self.process_number += 1 time_efficiency["tri_ext"] = t1-t0 # print("total time taken", t1-t0) def pointNearNodes(self, nodes, point): distances = np.sqrt(np.square(nodes[:, 0] - point[0]) + np.square(nodes[:, 1] - point[1])) distances = distances.reshape(distances.shape[0], -1) dist_nodes = np.hstack((distances, nodes)) near_nodes = dist_nodes[dist_nodes[:, 0].argsort()] return near_nodes def extractingAnglesForVehicles(self, image, time_efficiency): t0 = time.time() print("\n-------- Extracting Angle of Vehicles -------\n") for vehicle_color in self.vehicles: print("{} Vehicle".format(str.capitalize(vehicle_color))) for vehicle_id in self.vehicles[vehicle_color]["vehicle_info"]: points_along_width = np.asarray(self.vehicles[vehicle_color]["vehicle_info"][vehicle_id]["nodes_on_width"], np.int32) box = self.vehicles[vehicle_color]["vehicle_info"][vehicle_id]["vehicle_nodes"][:4] triangle_position = np.asarray(self.vehicles[vehicle_color]["vehicle_info"][vehicle_id]["triangle_position"], np.int32) nodes_near_triangle = self.pointNearNodes(points_along_width, triangle_position) nodes_near_triangle = nodes_near_triangle[:,1:] point_1 = nodes_near_triangle[1] point_2 = nodes_near_triangle[0] x = [round(point_1[0]), round(point_2[0])] y = [round(point_1[1]), round(point_2[1])] dy = y[1] - y[0] dx = x[1] - x[0] rads = math.atan2(dy,dx) angle_of_vehicle = math.degrees(rads) ## Extrapolation based on the angle extracted length = 25 extrap_point_x = int(round(point_2[0] + length * 1.1 * math.cos(angle_of_vehicle * np.pi / 180.0))) extrap_point_y = int(round(point_2[1] + length * 1.1 * math.sin(angle_of_vehicle * np.pi / 180.0))) cv2.line(image, tuple( [int(point_2[0]), int(point_2[1])]), tuple([extrap_point_x, extrap_point_y]), (255, 255, 0), 2) # (0, 100, 255) ### Orientation vehicle based on angle computed using position of the triangle angle_of_vehicle = (-angle_of_vehicle if angle_of_vehicle < 0 else ( -angle_of_vehicle + 360 )) print("V{}, Angle = {} ".format(vehicle_id, angle_of_vehicle)) self.vehicles[vehicle_color]["vehicle_info"][vehicle_id]["angle_of_car"] = angle_of_vehicle # cv2.polylines(image, np.array([box]), True, (36, 255, 12), 3) # cv2.imshow("Angles For Vehicles", image) # cv2.waitKey(0) t1 = time.time() if self.show_image: self.pre_process.showImage("Angles For Vehicles", image, time=800) cv2.imwrite(self.output_folder + "{}_angles_for_vehicles.jpg".format(self.process_number), image) self.process_number += 1 time_efficiency["angle_cal"] = t1-t0 # print("total time taken", t1-t0) def settingVehiclesInfo(self, v_color, vehicle_dist_pivot): del self.vehicles[v_color]["vehicle_info"] self.vehicles[v_color]["vehicle_info"] = dict() print("\n Arranging the snapshots for {} vehicle in order".format(v_color)) for v_id in range(len(vehicle_dist_pivot)): # print("vehicle number =", v_id) self.vehicles[v_color]["vehicle_info"][str(v_id)] = vehicle_dist_pivot[int(v_id)][2] def extractVehicleProjectedSide(self, v_color, side): orient_count = 0 side_name = side[0] side_value = np.array(side[1]) oriented_vehicles = list() for v_id in self.vehicles[v_color]["vehicle_info"]: # print(v_id, "angle of the car ", round(vehicles[v_color]["vehicle_info"][v_id]["angle_of_car"])) veh_angle = self.vehicles[v_color]["vehicle_info"][v_id]["angle_of_car"] points_along_width = np.asarray(self.vehicles[v_color]["vehicle_info"][v_id]["nodes_on_width"], np.int32) triangle_position = np.asarray(self.vehicles[v_color]["vehicle_info"][v_id]["triangle_position"], np.int32) nodes_near_triangle = self.pointNearNodes(points_along_width, triangle_position) nodes_near_triangle = nodes_near_triangle[:, 1:] front_point = nodes_near_triangle[0] dx = side_value[:, 0] - front_point[0] dy = side_value[:, 1] - front_point[1] projected_angles = np.arctan2(dy, dx) projected_angles = projected_angles * 180 / np.pi side_results = [-round(angle) if angle < 0 else (-round(angle) + 360) for angle in projected_angles ] # print(side_results) # print("vehicle's angle exist on the projected side", side_name, "= ", round(veh_angle) in side_results) if round(veh_angle) in side_results: print("V{} is oriented towards the projected side = {}".format(v_id, side_name)) oriented_vehicles.append(v_id) orient_count += 1 return orient_count, oriented_vehicles def extractLeastDistanceVehicle(self, v_color): side_dist_calc = list() ### Least distant vehicle from the frame of the image for v_id in self.vehicles[v_color]["vehicle_info"]: waypoint_of_vehicle = self.vehicles[v_color]["vehicle_info"][v_id]["center_of_car"] Dy_min = cv2.norm(np.array(waypoint_of_vehicle) - np.array([waypoint_of_vehicle[0], 0]), cv2.NORM_L2) ## Top Dx_min = cv2.norm(np.array(waypoint_of_vehicle) - np.array([0, waypoint_of_vehicle[1]]), cv2.NORM_L2) ## Left Dy_max = cv2.norm(np.array(waypoint_of_vehicle) - np.array([waypoint_of_vehicle[0], self.height]), cv2.NORM_L2) ## Bottom Dx_max = cv2.norm(np.array(waypoint_of_vehicle) - np.array([self.width, waypoint_of_vehicle[1]]), cv2.NORM_L2) ## Right self.vehicles[v_color]["vehicle_info"][v_id]["distance_from_boundary"] = min([(Dy_min, "top"), (Dx_min, "left"), (Dy_max, "bottom"), (Dx_max, "right")]) side_dist_calc.append(self.vehicles[v_color]["vehicle_info"][v_id]["distance_from_boundary"]) print("V{}, min distance from sketch boundary = {}".format(v_id , self.vehicles[v_color]["vehicle_info"][v_id]["distance_from_boundary"])) print("V{} has the least distance from sketch boundary".format(side_dist_calc.index(min(side_dist_calc)))) least_distant = str(side_dist_calc.index(min(side_dist_calc))) self.vehicles[v_color]["least_distant_vehicle"] = self.vehicles[v_color]["vehicle_info"][least_distant] return least_distant, side_dist_calc def sideDistances(self, v_color, v_id, projected_side): waypoint_of_vehicle = self.vehicles[v_color]["vehicle_info"][v_id]["center_of_car"] if projected_side == "TOP": dist = cv2.norm(np.array(waypoint_of_vehicle) - np.array([waypoint_of_vehicle[0], 0]), cv2.NORM_L2) ## Top elif projected_side == "LEFT": dist = cv2.norm(np.array(waypoint_of_vehicle) - np.array([0, waypoint_of_vehicle[1]]), cv2.NORM_L2) ## Left elif projected_side == "BOTTOM": dist = cv2.norm(np.array(waypoint_of_vehicle) - np.array([waypoint_of_vehicle[0], self.height]), cv2.NORM_L2) ## Bottom elif projected_side == "RIGHT": dist = cv2.norm(np.array(waypoint_of_vehicle) - np.array([self.width, waypoint_of_vehicle[1]]), cv2.NORM_L2) ## Right else: None return dist def distanceFromInitialVehicle(self, v_color, initial_vehicle): dist_from_pivot = list() for v_id in self.vehicles[v_color]["vehicle_info"]: init_vehicle_center = initial_vehicle[2]['center_of_car'] vehicle_center = self.vehicles[v_color]["vehicle_info"][v_id]["center_of_car"] # print("initial vehicle center", init_vehicle_center) # print("vehicle_center", vehicle_center) dist = cv2.norm(np.array(vehicle_center) - np.array(init_vehicle_center), cv2.NORM_L2) dist_from_pivot.append([dist, v_id, self.vehicles[v_color]["vehicle_info"][v_id]]) dist_from_pivot = np.array(dist_from_pivot) dist_from_pivot = dist_from_pivot[dist_from_pivot[:, 0].argsort()].tolist() return dist_from_pivot def extractSideDistanceOfVehicles(self, v_color, projected_side, orien_veh_ids): project_dist = list() dist_from_pivot = list() if orien_veh_ids: for v_id in self.vehicles[v_color]["vehicle_info"].keys(): dist = self.sideDistances(v_color, v_id, projected_side) project_dist.append([dist, v_id, self.vehicles[v_color]["vehicle_info"][v_id]]) project_dist = np.array(project_dist) initial_vehicle = project_dist[project_dist[:, 0].argsort()][-1] dist_from_pivot = self.distanceFromInitialVehicle(v_color, initial_vehicle) else: for v_id in self.vehicles[v_color]["vehicle_info"]: dist = self.sideDistances(v_color, v_id, projected_side) dist_from_pivot.append([dist, v_id, self.vehicles[v_color]["vehicle_info"][v_id]]) return dist_from_pivot def generateSequenceOfMovements(self, image, time_efficiency): """ Extracting the sequence of movements of vehicles and aligning them from start to crash point and beyond """ h, w = image.shape[:2] range_w = list(range(0, w)) range_h = list(range(0, h)) ## The frame of the image is splitted into section and used to create a point of reference to calculate the sequence of movement h_top = [0] * len(range_w) TOP = list(zip(range_w, h_top)) h_bottom = [h] * len(range_w) BOTTOM = list(zip(range_w, h_bottom)) w_left = [0] * len(range_h) LEFT = list(zip(w_left, range_h)) w_right = [w] * len(range_h) RIGHT = list(zip(w_right, range_h)) enviro_frame = {"TOP": TOP, "BOTTOM": BOTTOM, "LEFT": LEFT, "RIGHT": RIGHT} t0 = time.time() print("\n--------- Extracting the Sequence of Movements of vehicles ----------") for v_color in self.vehicles: vehicle_dist_pivot = list() print("\n------ {} Vehicle -----".format(str.capitalize(v_color))) ### Least distant vehicle from the frame of the image least_distant, side_dist_calc = self.extractLeastDistanceVehicle(v_color) # print("side_dist_calc", side_dist_calc) vehicles_projection = list() for side in enviro_frame.items(): orient_count, oriented_vehicles = self.extractVehicleProjectedSide(v_color, side) vehicles_projection.append([orient_count, side[0], oriented_vehicles]) vehicles_projection = np.array(vehicles_projection) veh_proj_counts = vehicles_projection[vehicles_projection[:, 0].argsort()][-2:] ## last vehicles projected side snapshot count is greater than the second last vehicle, if not then switch to distance based calculation. if veh_proj_counts[-1][0] > veh_proj_counts[-2][0]: veh_proj_side = vehicles_projection[vehicles_projection[:, 0].argsort()][-1][1] print("Final Projected Side = ", veh_proj_side) print("oriented vehicles", vehicles_projection) # proj_dist_veh = np.array(self.extractSideDistanceOfVehicles( # v_color, veh_proj_side, vehicles_projection[vehicles_projection[:, 0].argsort()][-1][2])) proj_dist_veh = np.array(self.extractSideDistanceOfVehicles(v_color, veh_proj_side, True)) else: veh_proj_side = str.upper(self.vehicles[v_color]["vehicle_info"][least_distant]["distance_from_boundary"][1]) proj_dist_veh = np.array(self.extractSideDistanceOfVehicles(v_color, veh_proj_side, False)) proj_dist_veh = proj_dist_veh[proj_dist_veh[:, 0].argsort()] #[::-1] print([proj_dist_veh[:,:2]]) print("Starting Vehicle Index (ID) = ", proj_dist_veh[0][1]) start_veh_id = proj_dist_veh[0][1] # proj_dist_veh[-1][1] self.vehicles[v_color]["initial_vehicle"] = self.vehicles[v_color]["vehicle_info"][start_veh_id] init_veh_center = self.vehicles[v_color]["initial_vehicle"]['center_of_car'] cv2.circle(image, (int(init_veh_center[0]), int(init_veh_center[1]) ), radius=5, color=(255, 255, 0), thickness=-1) self.settingVehiclesInfo(v_color, proj_dist_veh.tolist()) # print(proj_dist_veh) t1 = time.time() ### Annotating the boxpoints and the arranging the sequences for vehicle_color in self.vehicles: for i, vehicle_id in enumerate(self.vehicles[vehicle_color]["vehicle_info"]): box = self.vehicles[vehicle_color]["vehicle_info"][vehicle_id]["vehicle_nodes"][:4] # print("angle of the car ", self.vehicles[vehicle_color]["vehicle_info"][vehicle_id]["angle_of_car"]) center_x, center_y = ((box[0][0] + box[1][0] + box[2][0] + box[3][0]) // 4, (box[0][1] + box[1][1] + box[2][1] + box[3][1]) // 4) # cv2.circle(image, (center_x, center_y), radius = 12 - 2*i , color = (255, 255, 0), thickness = -1) cv2.putText(image, str(i), (center_x - 5, center_y - 5), cv2.FONT_HERSHEY_PLAIN, 1.5, (0, 0, 0), 2) cv2.polylines(image, np.array([box]), True, (0, 255, 255), 2) if self.show_image: self.pre_process.showImage("Sequence of Movements", image, time=600) # cv2.imshow("Sequence of Movements", image) # cv2.waitKey(0) # cv2.destroyAllWindows() cv2.imwrite(self.output_folder + "{}_sequence_of_movements.jpg".format(self.process_number), image) self.process_number += 1 time_efficiency["seq_movement"] = t1-t0 # print("total time taken", t1-t0) def extractCrashImpactNodes(self, image, time_efficiency): """ Twelve box-point crash impact model for locating the crash point on the vehicle and the point of deformation""" t0 = time.time() # print("\n--------- Extracting The Crash Impact Nodes Of vehicles----------\n") for vehicle_color in self.vehicles: for vehicle_id in self.vehicles[vehicle_color]["vehicle_info"]: self.vehicles[vehicle_color]["vehicle_info"][vehicle_id]["oriented_nodes"] = dict() angle = self.vehicles[vehicle_color]["vehicle_info"][vehicle_id]["angle_of_car"] # print("vehicle color",vehicle_color, "vehicle_id", vehicle_id) self.vehicles[vehicle_color]["vehicle_info"][vehicle_id]["crashed"] = False ### Using the angle and the position of triangle to localize longest and shortest sides of the vehicles pivot_node = np.asarray(self.vehicles[vehicle_color]["vehicle_info"][vehicle_id]["vehicle_nodes"][0], np.float32) vehicle_box_points = np.asarray(self.vehicles[vehicle_color]["vehicle_info"][vehicle_id]["vehicle_nodes"][:4], np.float32) vehicle_side_points = np.asarray(self.vehicles[vehicle_color]["vehicle_info"][vehicle_id]["vehicle_nodes"][4:8], np.float32) vehicle_extreme_points = np.asarray(self.vehicles[vehicle_color]["vehicle_info"][vehicle_id]["vehicle_nodes"][8:], np.float32) triangle_position = np.asarray(self.vehicles[vehicle_color]["vehicle_info"][vehicle_id]["triangle_position"], np.float32) front_nodes = self.pointNearNodes(vehicle_box_points, triangle_position)[:2] front_nodes = front_nodes[:,1:] front_side = self.pointNearNodes(front_nodes, pivot_node) front_side = front_side[:,1:] interval_one = list(range(0, 91)) + list(range(271, 361)) interval_two = list(range(91, 271)) if (round(angle) in interval_one): front_left = front_side[1] ### longer_side ... Left_side front_right = front_side[0] ### shorter_side ... Right_side # print("angle greater than 270 and less than 90", angle) elif (round(angle) in interval_two): front_left = front_side[0] ### shorter_side ... Left_side front_right = front_side[1] ### longer_side ... Right_side # print("angle less than 270 and greater than 90", angle) else: None # if (270 <= angle or angle <= 90): # front_left = front_side[1] ### longer_side ... Left_side # front_right = front_side[0] ### shorter_side ... Right_side # print("angle greater than 270 and less than 90", angle) # # print("front side", front_side) # # print("front_left nodes", front_left) # # print("front_right nodes", front_right) # elif (270 > angle or angle >= 91): # front_left = front_side[0] ### longer_side ... Left_side # front_right = front_side[1] ### shorter_side ... Right_side # print("angle less than 270 and greater than 90", angle) # # print("front side", front_side) # # print("front_left nodes", front_left) # # print("front_right nodes", front_right) # cv2.circle(image, tuple([int(front_left[0]), int(front_left[1])]), 8, (255, 255, 0), -1) # cv2.circle(image, tuple([int(front_right[0]), int(front_right[1])]), 8, (0, 255, 255), -1) vehicle_corners = self.pointNearNodes(vehicle_box_points, front_left)[1:] vehicle_corners = vehicle_corners[:,1:] rear_left = vehicle_corners[1] rear_right = vehicle_corners[2] vehicle_sides = self.pointNearNodes(vehicle_side_points, front_left) vehicle_sides = vehicle_sides[:,1:] front_mid = vehicle_sides[0] left_mid = vehicle_sides[1] right_mid = vehicle_sides[2] rear_mid = vehicle_sides[3] vehicle_extremes = self.pointNearNodes(vehicle_extreme_points, front_left) vehicle_extremes = vehicle_extremes[:,1:] front_left_mid = vehicle_extremes[0] front_right_mid = vehicle_extremes[1] rear_left_mid = vehicle_extremes[2] rear_right_mid = vehicle_extremes[3] cv2.circle(image, tuple([int(front_left[0]), int(front_left[1])]), 9, (128, 128, 256), -1) self.vehicles[vehicle_color]["vehicle_info"][vehicle_id]["oriented_nodes"]["front_left"] = front_left.tolist() self.vehicles[vehicle_color]["vehicle_info"][vehicle_id]["oriented_nodes"]["front_left_mid"] = front_left_mid.tolist() self.vehicles[vehicle_color]["vehicle_info"][vehicle_id]["oriented_nodes"]["left_mid"] = left_mid.tolist() self.vehicles[vehicle_color]["vehicle_info"][vehicle_id]["oriented_nodes"]["rear_left_mid"] = rear_left_mid.tolist() self.vehicles[vehicle_color]["vehicle_info"][vehicle_id]["oriented_nodes"]["rear_left"] = rear_left.tolist() self.vehicles[vehicle_color]["vehicle_info"][vehicle_id]["oriented_nodes"]["rear_mid"] = rear_mid.tolist() self.vehicles[vehicle_color]["vehicle_info"][vehicle_id]["oriented_nodes"]["rear_right"] = rear_right.tolist() self.vehicles[vehicle_color]["vehicle_info"][vehicle_id]["oriented_nodes"]["rear_right_mid"] = rear_right_mid.tolist() self.vehicles[vehicle_color]["vehicle_info"][vehicle_id]["oriented_nodes"]["right_mid"] = right_mid.tolist() self.vehicles[vehicle_color]["vehicle_info"][vehicle_id]["oriented_nodes"]["front_right_mid"] = front_right_mid.tolist() self.vehicles[vehicle_color]["vehicle_info"][vehicle_id]["oriented_nodes"]["front_right"] = front_right.tolist() self.vehicles[vehicle_color]["vehicle_info"][vehicle_id]["oriented_nodes"]["front_mid"] = front_mid.tolist() self.vehicles[vehicle_color]["vehicle_info"][vehicle_id]["oriented_nodes_array"] = [["front_left", front_left.tolist()], ["front_left_mid", front_left_mid.tolist()], ["left_mid", left_mid.tolist()], ["rear_left_mid", rear_left_mid.tolist()], ["rear_left", rear_left.tolist()], ["rear_mid", rear_mid.tolist()], ["rear_right", rear_right.tolist()], ["rear_right_mid", rear_right_mid.tolist()], ["right_mid", right_mid.tolist()], ["front_right_mid", front_right_mid.tolist()], ["front_right", front_right.tolist()], ["front_mid", front_mid.tolist()]] t1 = time.time() for vehicle_color in self.vehicles: for vehicle_id in self.vehicles[vehicle_color]["vehicle_info"]: for oriented_node in self.vehicles[vehicle_color]["vehicle_info"][vehicle_id]["oriented_nodes"]: point = self.vehicles[vehicle_color]["vehicle_info"][vehicle_id]["oriented_nodes"][oriented_node] cv2.circle(image, tuple([int(point[0]), int(point[1])]), 4, (0, 255, 0), -1) if self.show_image: cv2.imshow("vehicle sides", image) cv2.waitKey(15) if self.show_image: self.pre_process.showImage("vehicle sides", image, time=800) cv2.destroyAllWindows() cv2.imwrite(self.output_folder + "{}_twelve_point_model_sides.jpg".format(self.process_number), image) self.process_number += 1 time_efficiency["oriented_nodes"] = t1-t0 # print("time taken = ", t1-t0) def extractCrashPointOnVehicle(self, impact_image, time_efficiency, external, external_impact_points, crash_impact_locations): """ Crash Impact of the Individual Vehicles """ # impact_points = list() t0 = time.time() for i, vehicle_color in enumerate(self.vehicles): print("\n------- Proposed Crash Impact Point on the {} Vehicle ------".format(str.capitalize(vehicle_color))) self.vehicles[vehicle_color]["impact_point_details"] = dict() min_dist = self.vehicles[vehicle_color]["crash_point"]["dist_to_vehicle"] impact_points = {0 : "front_left", 1: "front_left_mid", 2: "left_mid", 3: "rear_left_mid", 4: "rear_left", 5: "rear_mid", 6: "rear_right", 7: "rear_right_mid", 8: "right_mid", 9 : "front_right_mid", 10: "front_right", 11: "front_mid"} for vehicle_vid in list(self.vehicles[vehicle_color]["vehicle_info"]): #[-2:]: oriented_nodes_array = np.array(self.vehicles[vehicle_color]["vehicle_info"][vehicle_vid]["oriented_nodes_array"], dtype=object) crash_point = self.vehicles[vehicle_color]["crash_point"]["coordinates"] oriented_nodes_label = np.arange(0, len(oriented_nodes_array[:, 0].tolist())) oriented_nodes_label = oriented_nodes_label.reshape(oriented_nodes_label.shape[0], -1) oriented_nodes_values = np.asarray(oriented_nodes_array[:, 1].tolist()) edist_crash_nodes = np.sqrt(((oriented_nodes_values[:, 0] - crash_point[0]) ** 2 + (oriented_nodes_values[:, 1] - crash_point[1]) ** 2)) edist_crash_nodes = edist_crash_nodes.reshape(edist_crash_nodes.shape[0], -1) edist_crash_nodes = np.hstack([edist_crash_nodes, oriented_nodes_label]) first_impact_side, second_impact_side = edist_crash_nodes[edist_crash_nodes[:, 0].argsort()][:2] if float(first_impact_side[0]) <= min_dist: vehicle_impact_side = impact_points[int(first_impact_side[1])] second_impact_side = impact_points[int(second_impact_side[1])] vehicle_side_coord = oriented_nodes_values[int(first_impact_side[1])] # print("\n") # print(str.capitalize(vehicle_color), "Vehicle") print("Snapshot of vehicle = ", vehicle_vid) print("Minimum distance from crash point to vehicle = {} pixels".format(min_dist)) print("Vehicle impact side internal annotation = ", vehicle_impact_side) print("Vehicle second nearest impact side = ", second_impact_side) ### Adjustment to the internal annotator sides if vehicle_impact_side == 'front_left_mid': if second_impact_side == "front_left": vehicle_impact_side = "front_left" else: vehicle_impact_side = "left_mid" elif vehicle_impact_side == 'rear_left_mid': if second_impact_side == "rear_left": vehicle_impact_side = "rear_left" else: vehicle_impact_side = "left_mid" elif vehicle_impact_side == 'rear_right_mid': if second_impact_side == "rear_right": vehicle_impact_side = "rear_right" else: vehicle_impact_side = "right_mid" elif vehicle_impact_side == 'front_right_mid': if second_impact_side == "front_right": vehicle_impact_side = "front_right" else: vehicle_impact_side = "right_mid" else: None self.vehicles[vehicle_color]["impact_point_details"]["snapshot"] = vehicle_vid self.vehicles[vehicle_color]["impact_point_details"]["internal_impact_side"] = vehicle_impact_side if external: self.vehicles[vehicle_color]["impact_point_details"]["external_impact_side"] = external_impact_points[vehicle_color] print("Vehicle impact side external validity = ", external_impact_points[vehicle_color]) self.vehicles[vehicle_color]["impact_point_details"]["side_coordinates"] = vehicle_side_coord.tolist() self.vehicles[vehicle_color]["impact_point_details"]["reference_deformations"] = crash_impact_locations[vehicle_impact_side] self.vehicles[vehicle_color]["vehicle_info"][vehicle_vid]["crashed"] = True # impact_points.append([vehicle_color, vehicle_vid, vehicle_side, vehicle_side_coord]) print("Vehicle impact side internal adjusted = ", vehicle_impact_side) print("Vehicle side coordinates = ", vehicle_side_coord) print("Possible reference deformation group = ", self.vehicles[vehicle_color]["impact_point_details"]["reference_deformations"]) color = [(0, 255, 255), (255, 255, 0), (51, 255, 128), (128, 55, 160)] cv2.circle(impact_image, tuple([int(vehicle_side_coord[0]), int(vehicle_side_coord[1])]), 6, color[i], -1) # cv2.imshow("impact point on the vehicles", impact_image) # cv2.waitKey(0) # cv2.destroyAllWindows() t1 = time.time() if self.show_image: self.pre_process.showImage("impact point on the vehicles", impact_image, time=800) cv2.imwrite(self.output_folder + "{}_crash_point_on_vehicles.jpg".format(self.process_number), impact_image) self.process_number += 1 time_efficiency["skt_veh_impact"] = t1-t0 # print("\ntime taken", t1-t0) def setColorBoundary(self, red_boundary, blue_boundary): self.pre_process.red_car_boundary = red_boundary self.pre_process.blue_car_boundary = blue_boundary def extractVehicleInformation(self, image_path, time_efficiency, show_image, output_folder, external, external_impact_points, crash_impact_locations, car_length_sim): image = self.pre_process.readImage(image_path=image_path) print("Image Dimensions", image.shape[:2]) self.height, self.width = image.shape[:2] self.car_length_sim = car_length_sim self.show_image = show_image self.output_folder = os.path.join(output_folder, "car/") if not os.path.exists(self.output_folder): os.makedirs(self.output_folder) # self.output_folder = os.path.join(output_folder, "car/") self.process_number = 0 """ Resize the image """ # image = self.pre_process.resize(image=image) # print("Image Dimensions after resizing", image.shape[:2]) """ Get Mask for the Image dimension """ mask = self.pre_process.getMask(image=image) self.pre_process.showImage('image original', image, time=800) """ Transform image HSV colorspace and threshold the image""" hsv = self.pre_process.changeColorSpace(image, cv2.COLOR_BGR2HSV) mask_r, mask_b = self.pre_process.getMaskWithRange(image=hsv) result_r = self.pre_process.bitwiseAndOperation(image=image, mask=mask_r) result_b = self.pre_process.bitwiseAndOperation(image=image, mask=mask_b) mask_result_r = np.hstack([cv2.merge([mask_r, mask_r, mask_r]), result_r]) mask_result_b = np.hstack([cv2.merge([mask_b, mask_b, mask_b]), result_b]) blend_masks_r_b = self.pre_process.bitwiseOrOperation(mask_b, mask_r) blend_masks_res = self.pre_process.bitwiseOrOperation(result_b, result_r) """ Blurring the masks of the red and blue cars """ mask_r_blur = self.pre_process.blurImage(mask_r, (5, 5), 0) # (5, 5) mask_b_blur = self.pre_process.blurImage(mask_b, (3, 3), 0) # (3, 3) """ Morphological Operations """ opening_r = self.pre_process.applyMorphologicalOperation( image=mask_r_blur, kernel_window=(5, 5), morph_operation=cv2.MORPH_OPEN) opening_b = self.pre_process.applyMorphologicalOperation( image=mask_b_blur, kernel_window=(5, 5), morph_operation=cv2.MORPH_OPEN) time_efficiency["preprocess"] = 0.0 """ Print or show images on screen""" # self.pre_process.showImage('mask and result for red car', mask_result_r) # self.pre_process.showImage('mask and result for blue car', mask_result_b) # self.pre_process.showImage("masks blue and red car", blend_masks_r_b) # self.pre_process.showImage('result blue and red car', blend_masks_res) # self.pre_process.showImage("Opening Operation on Red and Blue Cars", np.hstack([opening_b, opening_r])) """ Plot Images""" # self.pre_process.plotFigure(image=mask_result_r, cmap="brg", title="Red Car") # self.pre_process.plotFigure(image=mask_result_b, cmap="brg", title="Blue Car") # self.pre_process.plotFigure(image=blend_masks_r_b, cmap="brg", title="masks blue and red car") # self.pre_process.plotFigure(image=blend_masks_res, cmap="brg", title="result blue and red car") # self.pre_process.plotFigure(image=np.hstack([opening_b, opening_r]), cmap="brg", title="Opening Operation on Red and Blue Cars") """ Saving the figure""" cv2.imwrite(self.output_folder + "{}_mask_result_r.jpg".format(self.process_number), mask_result_r) cv2.imwrite(self.output_folder + "{}_mask_result_b.jpg".format(self.process_number), mask_result_b) self.process_number += 1 cv2.imwrite(self.output_folder + "{}_blend_masks_r_b.jpg".format(self.process_number), blend_masks_r_b) cv2.imwrite(self.output_folder + "{}_blend_masks_res.jpg".format(self.process_number), blend_masks_res) self.process_number += 1 cv2.imwrite(self.output_folder + "{}_opening_morph.jpg".format(self.process_number), np.hstack([opening_b, opening_r])) self.process_number += 1 self.vehicles["red"]["mask"] = opening_r self.vehicles["blue"]["mask"] = opening_b self.extractVehicleContoursFromMask() self.geometricOperationOnVehicle(image.copy(), time_efficiency) crash_point = self.extractingCrashPoint(image.copy(), time_efficiency) self.extractTriangle(image.copy(), time_efficiency) self.extractingAnglesForVehicles(image.copy(), time_efficiency) self.generateSequenceOfMovements(image.copy(), time_efficiency) self.extractCrashImpactNodes(image.copy(), time_efficiency) self.extractCrashPointOnVehicle(image.copy(), time_efficiency, external, external_impact_points, crash_impact_locations) return self.vehicles, time_efficiency
[ "numpy.arctan2", "cv2.bitwise_and", "math.atan2", "cv2.arcLength", "cv2.boxPoints", "cv2.minAreaRect", "cv2.imshow", "os.path.join", "cv2.contourArea", "numpy.zeros_like", "cv2.cvtColor", "os.path.exists", "math.cos", "pre_processing.Pre_Processing", "cv2.destroyAllWindows", "cv2.boundingRect", "cv2.bitwise_not", "numpy.int0", "cv2.waitKey", "numpy.asarray", "numpy.square", "math.sin", "numpy.hstack", "itertools.combinations", "cv2.merge", "math.degrees", "os.makedirs", "cv2.threshold", "cv2.moments", "cv2.blur", "time.time", "numpy.array", "cv2.findContours", "numpy.sqrt" ]
[((592, 608), 'pre_processing.Pre_Processing', 'Pre_Processing', ([], {}), '()\n', (606, 608), False, 'from pre_processing import Pre_Processing\n'), ((4137, 4148), 'time.time', 'time.time', ([], {}), '()\n', (4146, 4148), False, 'import time\n'), ((11776, 11787), 'time.time', 'time.time', ([], {}), '()\n', (11785, 11787), False, 'import time\n'), ((12543, 12554), 'time.time', 'time.time', ([], {}), '()\n', (12552, 12554), False, 'import time\n'), ((12865, 12909), 'itertools.combinations', 'itertools.combinations', (['nodes_of_vehicles', '(2)'], {}), '(nodes_of_vehicles, 2)\n', (12887, 12909), False, 'import itertools\n'), ((14525, 14536), 'time.time', 'time.time', ([], {}), '()\n', (14534, 14536), False, 'import time\n'), ((15189, 15200), 'time.time', 'time.time', ([], {}), '()\n', (15198, 15200), False, 'import time\n'), ((17970, 17981), 'time.time', 'time.time', ([], {}), '()\n', (17979, 17981), False, 'import time\n'), ((17990, 18013), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (18011, 18013), False, 'import cv2\n'), ((18489, 18518), 'numpy.hstack', 'np.hstack', (['(distances, nodes)'], {}), '((distances, nodes))\n', (18498, 18518), True, 'import numpy as np\n'), ((18686, 18697), 'time.time', 'time.time', ([], {}), '()\n', (18695, 18697), False, 'import time\n'), ((20968, 20979), 'time.time', 'time.time', ([], {}), '()\n', (20977, 20979), False, 'import time\n'), ((21920, 21937), 'numpy.array', 'np.array', (['side[1]'], {}), '(side[1])\n', (21928, 21937), True, 'import numpy as np\n'), ((26594, 26619), 'numpy.array', 'np.array', (['dist_from_pivot'], {}), '(dist_from_pivot)\n', (26602, 26619), True, 'import numpy as np\n'), ((28604, 28615), 'time.time', 'time.time', ([], {}), '()\n', (28613, 28615), False, 'import time\n'), ((31282, 31293), 'time.time', 'time.time', ([], {}), '()\n', (31291, 31293), False, 'import time\n'), ((32889, 32900), 'time.time', 'time.time', ([], {}), '()\n', (32898, 32900), False, 'import time\n'), ((40940, 40951), 'time.time', 'time.time', ([], {}), '()\n', (40949, 40951), False, 'import time\n'), ((41658, 41681), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (41679, 41681), False, 'import cv2\n'), ((42169, 42180), 'time.time', 'time.time', ([], {}), '()\n', (42178, 42180), False, 'import time\n'), ((47813, 47824), 'time.time', 'time.time', ([], {}), '()\n', (47822, 47824), False, 'import time\n'), ((48845, 48880), 'os.path.join', 'os.path.join', (['output_folder', '"""car/"""'], {}), "(output_folder, 'car/')\n", (48857, 48880), False, 'import os\n'), ((12210, 12236), 'numpy.hstack', 'np.hstack', (['[temp_img, img]'], {}), '([temp_img, img])\n', (12219, 12236), True, 'import numpy as np\n'), ((22271, 22359), 'numpy.asarray', 'np.asarray', (["self.vehicles[v_color]['vehicle_info'][v_id]['nodes_on_width']", 'np.int32'], {}), "(self.vehicles[v_color]['vehicle_info'][v_id]['nodes_on_width'],\n np.int32)\n", (22281, 22359), True, 'import numpy as np\n'), ((22389, 22481), 'numpy.asarray', 'np.asarray', (["self.vehicles[v_color]['vehicle_info'][v_id]['triangle_position']", 'np.int32'], {}), "(self.vehicles[v_color]['vehicle_info'][v_id]['triangle_position'\n ], np.int32)\n", (22399, 22481), True, 'import numpy as np\n'), ((22829, 22847), 'numpy.arctan2', 'np.arctan2', (['dy', 'dx'], {}), '(dy, dx)\n', (22839, 22847), True, 'import numpy as np\n'), ((27183, 27205), 'numpy.array', 'np.array', (['project_dist'], {}), '(project_dist)\n', (27191, 27205), True, 'import numpy as np\n'), ((29392, 29421), 'numpy.array', 'np.array', (['vehicles_projection'], {}), '(vehicles_projection)\n', (29400, 29421), True, 'import numpy as np\n'), ((48896, 48930), 'os.path.exists', 'os.path.exists', (['self.output_folder'], {}), '(self.output_folder)\n', (48910, 48930), False, 'import os\n'), ((48944, 48975), 'os.makedirs', 'os.makedirs', (['self.output_folder'], {}), '(self.output_folder)\n', (48955, 48975), False, 'import os\n'), ((52451, 52484), 'numpy.hstack', 'np.hstack', (['[opening_b, opening_r]'], {}), '([opening_b, opening_r])\n', (52460, 52484), True, 'import numpy as np\n'), ((12083, 12109), 'numpy.hstack', 'np.hstack', (['[temp_img, img]'], {}), '([temp_img, img])\n', (12092, 12109), True, 'import numpy as np\n'), ((15344, 15364), 'numpy.zeros_like', 'np.zeros_like', (['image'], {}), '(image)\n', (15357, 15364), True, 'import numpy as np\n'), ((15768, 15826), 'cv2.bitwise_and', 'cv2.bitwise_and', (['test_image', 'test_image'], {'mask': 'roi[:, :, 0]'}), '(test_image, test_image, mask=roi[:, :, 0])\n', (15783, 15826), False, 'import cv2\n'), ((15888, 15908), 'cv2.bitwise_not', 'cv2.bitwise_not', (['roi'], {}), '(roi)\n', (15903, 15908), False, 'import cv2\n'), ((15932, 15969), 'cv2.cvtColor', 'cv2.cvtColor', (['roi', 'cv2.COLOR_BGR2GRAY'], {}), '(roi, cv2.COLOR_BGR2GRAY)\n', (15944, 15969), False, 'import cv2\n'), ((15993, 16018), 'cv2.blur', 'cv2.blur', (['gray', '(3, 3)', '(0)'], {}), '(gray, (3, 3), 0)\n', (16001, 16018), False, 'import cv2\n'), ((16113, 16160), 'cv2.threshold', 'cv2.threshold', (['blur', '(15)', '(255)', 'cv2.THRESH_BINARY'], {}), '(blur, 15, 255, cv2.THRESH_BINARY)\n', (16126, 16160), False, 'import cv2\n'), ((16186, 16209), 'cv2.bitwise_not', 'cv2.bitwise_not', (['thresh'], {}), '(thresh)\n', (16201, 16209), False, 'import cv2\n'), ((16848, 16914), 'cv2.findContours', 'cv2.findContours', (['thresh', 'cv2.RETR_EXTERNAL', 'cv2.CHAIN_APPROX_NONE'], {}), '(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)\n', (16864, 16914), False, 'import cv2\n'), ((17479, 17499), 'cv2.minAreaRect', 'cv2.minAreaRect', (['cnt'], {}), '(cnt)\n', (17494, 17499), False, 'import cv2\n'), ((18335, 18368), 'numpy.square', 'np.square', (['(nodes[:, 0] - point[0])'], {}), '(nodes[:, 0] - point[0])\n', (18344, 18368), True, 'import numpy as np\n'), ((18371, 18404), 'numpy.square', 'np.square', (['(nodes[:, 1] - point[1])'], {}), '(nodes[:, 1] - point[1])\n', (18380, 18404), True, 'import numpy as np\n'), ((18992, 19093), 'numpy.asarray', 'np.asarray', (["self.vehicles[vehicle_color]['vehicle_info'][vehicle_id]['nodes_on_width']", 'np.int32'], {}), "(self.vehicles[vehicle_color]['vehicle_info'][vehicle_id][\n 'nodes_on_width'], np.int32)\n", (19002, 19093), True, 'import numpy as np\n'), ((19225, 19329), 'numpy.asarray', 'np.asarray', (["self.vehicles[vehicle_color]['vehicle_info'][vehicle_id]['triangle_position']", 'np.int32'], {}), "(self.vehicles[vehicle_color]['vehicle_info'][vehicle_id][\n 'triangle_position'], np.int32)\n", (19235, 19329), True, 'import numpy as np\n'), ((19811, 19829), 'math.atan2', 'math.atan2', (['dy', 'dx'], {}), '(dy, dx)\n', (19821, 19829), False, 'import math\n'), ((19864, 19882), 'math.degrees', 'math.degrees', (['rads'], {}), '(rads)\n', (19876, 19882), False, 'import math\n'), ((33631, 33736), 'numpy.asarray', 'np.asarray', (["self.vehicles[vehicle_color]['vehicle_info'][vehicle_id]['vehicle_nodes'][0]", 'np.float32'], {}), "(self.vehicles[vehicle_color]['vehicle_info'][vehicle_id][\n 'vehicle_nodes'][0], np.float32)\n", (33641, 33736), True, 'import numpy as np\n'), ((33769, 33875), 'numpy.asarray', 'np.asarray', (["self.vehicles[vehicle_color]['vehicle_info'][vehicle_id]['vehicle_nodes'][:4]", 'np.float32'], {}), "(self.vehicles[vehicle_color]['vehicle_info'][vehicle_id][\n 'vehicle_nodes'][:4], np.float32)\n", (33779, 33875), True, 'import numpy as np\n'), ((33909, 34016), 'numpy.asarray', 'np.asarray', (["self.vehicles[vehicle_color]['vehicle_info'][vehicle_id]['vehicle_nodes'][4:8]", 'np.float32'], {}), "(self.vehicles[vehicle_color]['vehicle_info'][vehicle_id][\n 'vehicle_nodes'][4:8], np.float32)\n", (33919, 34016), True, 'import numpy as np\n'), ((34053, 34159), 'numpy.asarray', 'np.asarray', (["self.vehicles[vehicle_color]['vehicle_info'][vehicle_id]['vehicle_nodes'][8:]", 'np.float32'], {}), "(self.vehicles[vehicle_color]['vehicle_info'][vehicle_id][\n 'vehicle_nodes'][8:], np.float32)\n", (34063, 34159), True, 'import numpy as np\n'), ((34192, 34298), 'numpy.asarray', 'np.asarray', (["self.vehicles[vehicle_color]['vehicle_info'][vehicle_id]['triangle_position']", 'np.float32'], {}), "(self.vehicles[vehicle_color]['vehicle_info'][vehicle_id][\n 'triangle_position'], np.float32)\n", (34202, 34298), True, 'import numpy as np\n'), ((43001, 43111), 'numpy.array', 'np.array', (["self.vehicles[vehicle_color]['vehicle_info'][vehicle_vid][\n 'oriented_nodes_array']"], {'dtype': 'object'}), "(self.vehicles[vehicle_color]['vehicle_info'][vehicle_vid][\n 'oriented_nodes_array'], dtype=object)\n", (43009, 43111), True, 'import numpy as np\n'), ((43560, 43679), 'numpy.sqrt', 'np.sqrt', (['((oriented_nodes_values[:, 0] - crash_point[0]) ** 2 + (\n oriented_nodes_values[:, 1] - crash_point[1]) ** 2)'], {}), '((oriented_nodes_values[:, 0] - crash_point[0]) ** 2 + (\n oriented_nodes_values[:, 1] - crash_point[1]) ** 2)\n', (43567, 43679), True, 'import numpy as np\n'), ((43820, 43872), 'numpy.hstack', 'np.hstack', (['[edist_crash_nodes, oriented_nodes_label]'], {}), '([edist_crash_nodes, oriented_nodes_label])\n', (43829, 43872), True, 'import numpy as np\n'), ((49853, 49888), 'cv2.merge', 'cv2.merge', (['[mask_r, mask_r, mask_r]'], {}), '([mask_r, mask_r, mask_r])\n', (49862, 49888), False, 'import cv2\n'), ((49936, 49971), 'cv2.merge', 'cv2.merge', (['[mask_b, mask_b, mask_b]'], {}), '([mask_b, mask_b, mask_b])\n', (49945, 49971), False, 'import cv2\n'), ((5159, 5183), 'cv2.contourArea', 'cv2.contourArea', (['contour'], {}), '(contour)\n', (5174, 5183), False, 'import cv2\n'), ((5374, 5394), 'cv2.moments', 'cv2.moments', (['contour'], {}), '(contour)\n', (5385, 5394), False, 'import cv2\n'), ((5840, 5865), 'cv2.boundingRect', 'cv2.boundingRect', (['contour'], {}), '(contour)\n', (5856, 5865), False, 'import cv2\n'), ((5893, 5917), 'cv2.minAreaRect', 'cv2.minAreaRect', (['contour'], {}), '(contour)\n', (5908, 5917), False, 'import cv2\n'), ((5945, 5964), 'cv2.boxPoints', 'cv2.boxPoints', (['rect'], {}), '(rect)\n', (5958, 5964), False, 'import cv2\n'), ((5991, 6003), 'numpy.int0', 'np.int0', (['box'], {}), '(box)\n', (5998, 6003), True, 'import numpy as np\n'), ((7851, 7876), 'cv2.boundingRect', 'cv2.boundingRect', (['contour'], {}), '(contour)\n', (7867, 7876), False, 'import cv2\n'), ((15705, 15727), 'numpy.array', 'np.array', (['[box_points]'], {}), '([box_points])\n', (15713, 15727), True, 'import numpy as np\n'), ((23787, 23816), 'numpy.array', 'np.array', (['waypoint_of_vehicle'], {}), '(waypoint_of_vehicle)\n', (23795, 23816), True, 'import numpy as np\n'), ((23819, 23856), 'numpy.array', 'np.array', (['[waypoint_of_vehicle[0], 0]'], {}), '([waypoint_of_vehicle[0], 0])\n', (23827, 23856), True, 'import numpy as np\n'), ((23910, 23939), 'numpy.array', 'np.array', (['waypoint_of_vehicle'], {}), '(waypoint_of_vehicle)\n', (23918, 23939), True, 'import numpy as np\n'), ((23942, 23979), 'numpy.array', 'np.array', (['[0, waypoint_of_vehicle[1]]'], {}), '([0, waypoint_of_vehicle[1]])\n', (23950, 23979), True, 'import numpy as np\n'), ((24033, 24062), 'numpy.array', 'np.array', (['waypoint_of_vehicle'], {}), '(waypoint_of_vehicle)\n', (24041, 24062), True, 'import numpy as np\n'), ((24065, 24112), 'numpy.array', 'np.array', (['[waypoint_of_vehicle[0], self.height]'], {}), '([waypoint_of_vehicle[0], self.height])\n', (24073, 24112), True, 'import numpy as np\n'), ((24168, 24197), 'numpy.array', 'np.array', (['waypoint_of_vehicle'], {}), '(waypoint_of_vehicle)\n', (24176, 24197), True, 'import numpy as np\n'), ((24200, 24246), 'numpy.array', 'np.array', (['[self.width, waypoint_of_vehicle[1]]'], {}), '([self.width, waypoint_of_vehicle[1]])\n', (24208, 24246), True, 'import numpy as np\n'), ((25265, 25294), 'numpy.array', 'np.array', (['waypoint_of_vehicle'], {}), '(waypoint_of_vehicle)\n', (25273, 25294), True, 'import numpy as np\n'), ((25297, 25334), 'numpy.array', 'np.array', (['[waypoint_of_vehicle[0], 0]'], {}), '([waypoint_of_vehicle[0], 0])\n', (25305, 25334), True, 'import numpy as np\n'), ((26402, 26426), 'numpy.array', 'np.array', (['vehicle_center'], {}), '(vehicle_center)\n', (26410, 26426), True, 'import numpy as np\n'), ((26429, 26458), 'numpy.array', 'np.array', (['init_vehicle_center'], {}), '(init_vehicle_center)\n', (26437, 26458), True, 'import numpy as np\n'), ((32133, 32148), 'numpy.array', 'np.array', (['[box]'], {}), '([box])\n', (32141, 32148), True, 'import numpy as np\n'), ((5057, 5081), 'cv2.contourArea', 'cv2.contourArea', (['contour'], {}), '(contour)\n', (5072, 5081), False, 'import cv2\n'), ((5083, 5119), 'cv2.arcLength', 'cv2.arcLength', (['contour'], {'closed': '(False)'}), '(contour, closed=False)\n', (5096, 5119), False, 'import cv2\n'), ((25425, 25454), 'numpy.array', 'np.array', (['waypoint_of_vehicle'], {}), '(waypoint_of_vehicle)\n', (25433, 25454), True, 'import numpy as np\n'), ((25457, 25494), 'numpy.array', 'np.array', (['[0, waypoint_of_vehicle[1]]'], {}), '([0, waypoint_of_vehicle[1]])\n', (25465, 25494), True, 'import numpy as np\n'), ((41465, 41499), 'cv2.imshow', 'cv2.imshow', (['"""vehicle sides"""', 'image'], {}), "('vehicle sides', image)\n", (41475, 41499), False, 'import cv2\n'), ((41524, 41539), 'cv2.waitKey', 'cv2.waitKey', (['(15)'], {}), '(15)\n', (41535, 41539), False, 'import cv2\n'), ((1587, 1613), 'numpy.array', 'np.array', (['box_points[j][0]'], {}), '(box_points[j][0])\n', (1595, 1613), True, 'import numpy as np\n'), ((1616, 1642), 'numpy.array', 'np.array', (['box_points[i][0]'], {}), '(box_points[i][0])\n', (1624, 1642), True, 'import numpy as np\n'), ((1656, 1682), 'numpy.array', 'np.array', (['box_points[j][1]'], {}), '(box_points[j][1])\n', (1664, 1682), True, 'import numpy as np\n'), ((1685, 1711), 'numpy.array', 'np.array', (['box_points[i][1]'], {}), '(box_points[i][1])\n', (1693, 1711), True, 'import numpy as np\n'), ((13361, 13378), 'numpy.array', 'np.array', (['point_1'], {}), '(point_1)\n', (13369, 13378), True, 'import numpy as np\n'), ((13421, 13438), 'numpy.array', 'np.array', (['point_2'], {}), '(point_2)\n', (13429, 13438), True, 'import numpy as np\n'), ((25587, 25616), 'numpy.array', 'np.array', (['waypoint_of_vehicle'], {}), '(waypoint_of_vehicle)\n', (25595, 25616), True, 'import numpy as np\n'), ((25619, 25666), 'numpy.array', 'np.array', (['[waypoint_of_vehicle[0], self.height]'], {}), '([waypoint_of_vehicle[0], self.height])\n', (25627, 25666), True, 'import numpy as np\n'), ((20063, 20105), 'math.cos', 'math.cos', (['(angle_of_vehicle * np.pi / 180.0)'], {}), '(angle_of_vehicle * np.pi / 180.0)\n', (20071, 20105), False, 'import math\n'), ((20180, 20222), 'math.sin', 'math.sin', (['(angle_of_vehicle * np.pi / 180.0)'], {}), '(angle_of_vehicle * np.pi / 180.0)\n', (20188, 20222), False, 'import math\n'), ((25760, 25789), 'numpy.array', 'np.array', (['waypoint_of_vehicle'], {}), '(waypoint_of_vehicle)\n', (25768, 25789), True, 'import numpy as np\n'), ((25792, 25838), 'numpy.array', 'np.array', (['[self.width, waypoint_of_vehicle[1]]'], {}), '([self.width, waypoint_of_vehicle[1]])\n', (25800, 25838), True, 'import numpy as np\n')]
import numpy as np import math class Aligner: def __init__(self,coordFile): self.coordFile=coordFile self._natoms=0 self._symbols=[] self._resids = [] self._atomids = [] self._resnames = [] self._x=[] self._y=[] self._z=[] self.read() def read(self): fileHandler=open(self.coordFile,"r") lines=fileHandler.readlines() for line in lines: if line.startswith('HETATM') or line.startswith('ATOM'): self._atomids.append(int(line[6:11])) self._symbols.append(line[12:16]) self._resnames.append(line[17:20]) self._resids.append(int(line[22:26])) self._x.append(float(line[30:38])) self._y.append(float(line[38:46])) self._z.append(float(line[46:54])) self._natoms +=1 fileHandler.close() def align(self,iatom= None,jatom = None,target_dir= None): if not iatom or not jatom: iatom,jatom = self.findMoleculeAxis() if not target_dir: target_dir = [0.0, 0.0, 1.0] coords=np.zeros((3,self._natoms),dtype=float) coords[0,:]=self._x coords[1,:]=self._y coords[2,:]=self._z vec1=[ coords[0,iatom-1] - coords[0,jatom-1], coords[1,iatom-1] - coords[1,jatom-1], coords[2,iatom-1] - coords[2,jatom-1] ] coords=do_align(vec1,target_dir,coords) self._x = list(coords[0,:]) self._y = list(coords[1,:]) self._z = list(coords[2,:]) def write(self,outfile = 'out.pdb'): filehandler = open(outfile,'w') for i in range(self._natoms): filehandler.write('%-6s%5d %-4s %3s %4d %8.3f%8.3f%8.3f\n'% ( 'ATOM', self._atomids[i], self._symbols[i], self._resnames[i], self._resids[i], self._x[i],self._y[i],self._z[i] ) ) filehandler.close() def moveTo(self,transPos,atomID = None): ''' tranPos: coordinate of target point, where COM or atomID will be moved ''' if atomID: xref = self.x[atomID-1] yref = self.y[atomID-1] zref = self.z[atomID-1] else: xcom = sum(self._x)/self._natoms ycom = sum(self._y)/self._natoms zcom = sum(self._z)/self._natoms xref = xcom; yref = ycom; zref = zcom for i in range(self._natoms): self._x[i] = self._x[i] - xref + transPos[0] self._y[i] = self._y[i] - yref + transPos[1] self._z[i] = self._z[i] - zref + transPos[2] def moveBy(self, transVector): for i in range(self.natoms): self.x[i] += transVector[0] self.y[i] += transVector[1] self.z[i] += transVector[2] def findMoleculeAxis(self): pairs = [] dist = [] for i in range(self._natoms-1): for j in range(i+1,self._natoms): dx = self._x[i] - self._x[j] dy = self._y[i] - self._y[j] dz = self._z[i] - self._z[j] dist.append(dx**2 + dy**2 + dz**2) pairs.append((i,j)) argmax = np.argmax(dist) return pairs[argmax][0] + 1, pairs[argmax][1] + 1 def merge(self,other): self._natoms += other._natoms self._symbols += other._symbols self._resids += [resid+self._resids[-1] for resid in other._resids] self._atomids += [atomid+self._atomids[-1] for atomid in other._atomids] self._resnames += other._resnames self._x += other._x self._y += other._y self._z += other._z @property def x(self): return self._x @property def y(self): return self._y @property def z(self): return self._z @property def natoms(self): return self._natoms @property def symbols(self): return self._symbols @property def resnames(self): return self._resnames @property def atomids(self): return self._atomids def getAlignMatrix(v,c): ''' https://math.stackexchange.com/questions/180418/calculate-rotation-matrix-to-align-vector-a-to-vector-b-in-3d ''' alignMat=np.zeros((3,3),dtype=float) iMat=np.zeros((3,3),dtype=float) vx=np.zeros((3,3),dtype=float) iMat[0,0]=1.0 iMat[1,1]=1.0 iMat[2,2]=1.0 vx[0,0]=0.0 vx[0,1]=-v[2] vx[0,2]=v[1] vx[1,0]=v[2] vx[1,1]=0.0 vx[1,2]=-v[0] vx[2,0]=-v[1] vx[2,1]=v[0] vx[2,2]=0.0 factor=1.0/(1.0+c) alignMat=iMat + vx + np.matmul(vx,vx) * factor return alignMat def getRotMatrix(rotAxis,angle): rotMat=np.zeros((3,3),dtype=float) angle = angle * 0.0174533 # degree to radian cos = math.cosine(angle) sin = math.sine(anlge) _cos_ = 1 - cos u = rotAxis / np.linalg.norm(u) ux = u[0]; uy = u[1]; uz = u[2] uxy = ux * uy uyz = uy * uz uzx = uz * ux uxx = ux * ux uyy = uy * uy uzz = uz * uz rotMat[0,0] = cos + (uxx * _cos_) rotMat[0,1] = (uxy * _cos_) - (uz * sin) rotMat[0,2] = (uzx * _cos_) + (uy * sin) rotMat[1,0] = (uxy * _cos_) + (uz * sin) rotMat[1,1] = cos + (uyy * _cos_) rotMat[1,2] = (uyz * _cos_) - (ux * sin) rotMat[2,0] = (uzx * _cos_) - (uy * sin) rotMat[2,1] = (uyz * _cos_) + (ux * sin) rotMat[2,2] = cos + (uzz*_cos_) return rotMat def do_align(u,v,coords): u=u/np.linalg.norm(u) v=v/np.linalg.norm(v) normal=np.cross(u,v) c=np.dot(u,v) if abs(abs(c)-1)<10e-10: # if vectors are antiparallel coords= coords * -1 return coords alignMat=getAlignMatrix(normal,c) coords=np.matmul(alignMat,coords) return(coords) # m0 =Aligner('hemcel.pdb') # m0.align(5,294,[0,0,1]) # m0.moveTo([10,0,0]) # # molecule0.write('out0.pdb') # m1 = Aligner('cellulose_2.pdb') # m1.align(2,246,[0,0,1]) # m1.moveTo([0,0,0]) # m0.merge(m1) # m0.write('out-merged.pdb')
[ "numpy.argmax", "numpy.cross", "numpy.zeros", "math.cosine", "math.sine", "numpy.linalg.norm", "numpy.matmul", "numpy.dot" ]
[((4770, 4799), 'numpy.zeros', 'np.zeros', (['(3, 3)'], {'dtype': 'float'}), '((3, 3), dtype=float)\n', (4778, 4799), True, 'import numpy as np\n'), ((4807, 4836), 'numpy.zeros', 'np.zeros', (['(3, 3)'], {'dtype': 'float'}), '((3, 3), dtype=float)\n', (4815, 4836), True, 'import numpy as np\n'), ((4842, 4871), 'numpy.zeros', 'np.zeros', (['(3, 3)'], {'dtype': 'float'}), '((3, 3), dtype=float)\n', (4850, 4871), True, 'import numpy as np\n'), ((5237, 5266), 'numpy.zeros', 'np.zeros', (['(3, 3)'], {'dtype': 'float'}), '((3, 3), dtype=float)\n', (5245, 5266), True, 'import numpy as np\n'), ((5332, 5350), 'math.cosine', 'math.cosine', (['angle'], {}), '(angle)\n', (5343, 5350), False, 'import math\n'), ((5361, 5377), 'math.sine', 'math.sine', (['anlge'], {}), '(anlge)\n', (5370, 5377), False, 'import math\n'), ((6116, 6130), 'numpy.cross', 'np.cross', (['u', 'v'], {}), '(u, v)\n', (6124, 6130), True, 'import numpy as np\n'), ((6136, 6148), 'numpy.dot', 'np.dot', (['u', 'v'], {}), '(u, v)\n', (6142, 6148), True, 'import numpy as np\n'), ((6318, 6345), 'numpy.matmul', 'np.matmul', (['alignMat', 'coords'], {}), '(alignMat, coords)\n', (6327, 6345), True, 'import numpy as np\n'), ((1237, 1277), 'numpy.zeros', 'np.zeros', (['(3, self._natoms)'], {'dtype': 'float'}), '((3, self._natoms), dtype=float)\n', (1245, 1277), True, 'import numpy as np\n'), ((3621, 3636), 'numpy.argmax', 'np.argmax', (['dist'], {}), '(dist)\n', (3630, 3636), True, 'import numpy as np\n'), ((5422, 5439), 'numpy.linalg.norm', 'np.linalg.norm', (['u'], {}), '(u)\n', (5436, 5439), True, 'import numpy as np\n'), ((6059, 6076), 'numpy.linalg.norm', 'np.linalg.norm', (['u'], {}), '(u)\n', (6073, 6076), True, 'import numpy as np\n'), ((6085, 6102), 'numpy.linalg.norm', 'np.linalg.norm', (['v'], {}), '(v)\n', (6099, 6102), True, 'import numpy as np\n'), ((5138, 5155), 'numpy.matmul', 'np.matmul', (['vx', 'vx'], {}), '(vx, vx)\n', (5147, 5155), True, 'import numpy as np\n')]
import logging from pathlib import Path from typing import BinaryIO, Callable, Dict, Iterable, NewType, Union, IO import numpy from absl import flags from cv2.cv2 import IMREAD_COLOR, imdecode, cvtColor, COLOR_RGB2BGR from injector import Binder, Module, inject, singleton import ffmpeg import subprocess from rep0st.db.post import Post, Type log = logging.getLogger(__name__) FLAGS = flags.FLAGS flags.DEFINE_string('rep0st_media_path', '', 'Path to media directory used by rep0st to save media.') _MediaDirectory = NewType('_MediaDirectory', Path) def _readline(stream: IO[bytes]) -> Union[None, str]: out_bytes = bytes() c = stream.read(1) if not c: return None while c != b'\n': out_bytes += c c = stream.read(1) return out_bytes.decode('ascii').strip() class _MediaFlagModule(Module): def configure(self, binder: Binder) -> None: media_path = Path(FLAGS.rep0st_media_path) if FLAGS.rep0st_media_path == '' or not media_path.is_dir(): raise NotADirectoryError( 'rep0st_media_path has to be set to an existing directory.') binder.bind(_MediaDirectory, to=media_path) class DecodeMediaServiceModule(Module): def configure(self, binder: Binder): binder.bind(DecodeMediaService) @singleton class DecodeMediaService: def _decode_image(self, data: numpy.ndarray) -> numpy.ndarray: try: img = imdecode(data, IMREAD_COLOR) if img is None: raise ImageDecodeException("Could not decode image") return img except: raise ImageDecodeException("Could not decode image") def decode_image_from_buffer(self, data: bytes) -> Iterable[numpy.ndarray]: try: data = numpy.frombuffer(data, dtype=numpy.uint8) except (IOError, OSError) as e: raise NoMediaFoundException('Could not data from buffer') from e yield self._decode_image(data) def decode_image_from_file(self, file: BinaryIO) -> Iterable[numpy.ndarray]: try: data = numpy.fromfile(file, dtype=numpy.uint8) except (IOError, OSError) as e: raise NoMediaFoundException( f'Could not read data from file {file}') from e yield self._decode_image(data) def decode_video_from_file(self, file: BinaryIO) -> Iterable[numpy.ndarray]: cmd = ffmpeg.input( 'pipe:', vsync=0, skip_frame='nokey', hide_banner=None, threads=1, loglevel='error').output( 'pipe:', vcodec='ppm', format='rawvideo') proc = subprocess.Popen( cmd.compile(), stdin=file, stdout=subprocess.PIPE, stderr=subprocess.PIPE) while True: format = _readline(proc.stdout) if not format: break if format != 'P6': raise NotImplementedError( 'frames returned by ffmpeg cannot be decoded due to an unsupported format' ) width, height = [int(x) for x in _readline(proc.stdout).split(' ')] max_value = int(_readline(proc.stdout)) if max_value != 255: raise NotImplementedError(f'max_value has to be 255, it is {max_value}') in_bytes = proc.stdout.read(width * height * 3) if not in_bytes: raise BufferError('could not read the full frame') in_frame = numpy.frombuffer(in_bytes, numpy.uint8).reshape([height, width, 3]) in_frame = cvtColor(in_frame, COLOR_RGB2BGR) yield in_frame retcode = proc.wait(timeout=1) if retcode != 0: err = proc.stderr.read().decode('utf-8') raise SyntaxError(err) class ReadMediaServiceModule(Module): def configure(self, binder: Binder): binder.install(DecodeMediaServiceModule) binder.install(_MediaFlagModule) binder.bind(ReadMediaService) class NoMediaFoundException(Exception): pass class ImageDecodeException(Exception): pass @singleton class ReadMediaService: media_dir: Path decode_media_service: DecodeMediaService decoders: Dict[Type, Callable[[Iterable[numpy.ndarray]], BinaryIO]] @inject def __init__(self, media_dir: _MediaDirectory, decode_media_service: DecodeMediaService): self.media_dir = media_dir self.decode_media_service = decode_media_service self.decoders = { Type.IMAGE: self.decode_media_service.decode_image_from_file, Type.VIDEO: self.decode_media_service.decode_video_from_file, } def get_images(self, post: Post) -> Iterable[numpy.ndarray]: media_file = self.media_dir / post.image if post.fullsize: fullsize_media_file = self.media_dir / 'full' / post.fullsize if not fullsize_media_file.is_file(): log.error( f'Fullsize image for {post.id} not found at {fullsize_media_file.absolute()}. Falling back to resized image' ) else: log.debug(f'Using fullsize image {fullsize_media_file.absolute()}') media_file = fullsize_media_file if post.type not in self.decoders: raise NotImplementedError( f'Decoder needed for {post} for type {post.type} is not implemented') try: with media_file.open("rb") as f: for image in self.decoders[post.type](f): yield image except (IOError, OSError) as e: raise NoMediaFoundException( f'Could not read images for post {post.id} from file {media_file.absolute()}' ) from e
[ "numpy.fromfile", "numpy.frombuffer", "absl.flags.DEFINE_string", "pathlib.Path", "cv2.cv2.imdecode", "ffmpeg.input", "typing.NewType", "cv2.cv2.cvtColor", "logging.getLogger" ]
[((351, 378), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (368, 378), False, 'import logging\n'), ((399, 504), 'absl.flags.DEFINE_string', 'flags.DEFINE_string', (['"""rep0st_media_path"""', '""""""', '"""Path to media directory used by rep0st to save media."""'], {}), "('rep0st_media_path', '',\n 'Path to media directory used by rep0st to save media.')\n", (418, 504), False, 'from absl import flags\n'), ((539, 571), 'typing.NewType', 'NewType', (['"""_MediaDirectory"""', 'Path'], {}), "('_MediaDirectory', Path)\n", (546, 571), False, 'from typing import BinaryIO, Callable, Dict, Iterable, NewType, Union, IO\n'), ((903, 932), 'pathlib.Path', 'Path', (['FLAGS.rep0st_media_path'], {}), '(FLAGS.rep0st_media_path)\n', (907, 932), False, 'from pathlib import Path\n'), ((1393, 1421), 'cv2.cv2.imdecode', 'imdecode', (['data', 'IMREAD_COLOR'], {}), '(data, IMREAD_COLOR)\n', (1401, 1421), False, 'from cv2.cv2 import IMREAD_COLOR, imdecode, cvtColor, COLOR_RGB2BGR\n'), ((1694, 1735), 'numpy.frombuffer', 'numpy.frombuffer', (['data'], {'dtype': 'numpy.uint8'}), '(data, dtype=numpy.uint8)\n', (1710, 1735), False, 'import numpy\n'), ((1980, 2019), 'numpy.fromfile', 'numpy.fromfile', (['file'], {'dtype': 'numpy.uint8'}), '(file, dtype=numpy.uint8)\n', (1994, 2019), False, 'import numpy\n'), ((3367, 3400), 'cv2.cv2.cvtColor', 'cvtColor', (['in_frame', 'COLOR_RGB2BGR'], {}), '(in_frame, COLOR_RGB2BGR)\n', (3375, 3400), False, 'from cv2.cv2 import IMREAD_COLOR, imdecode, cvtColor, COLOR_RGB2BGR\n'), ((2274, 2375), 'ffmpeg.input', 'ffmpeg.input', (['"""pipe:"""'], {'vsync': '(0)', 'skip_frame': '"""nokey"""', 'hide_banner': 'None', 'threads': '(1)', 'loglevel': '"""error"""'}), "('pipe:', vsync=0, skip_frame='nokey', hide_banner=None,\n threads=1, loglevel='error')\n", (2286, 2375), False, 'import ffmpeg\n'), ((3248, 3287), 'numpy.frombuffer', 'numpy.frombuffer', (['in_bytes', 'numpy.uint8'], {}), '(in_bytes, numpy.uint8)\n', (3264, 3287), False, 'import numpy\n')]
# MIT License # xlr8 # Copyright (c) 2022 Ethereal AI # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import numpy as np import scipy.sparse as sp from scipy import linalg from scipy.sparse.linalg import svds from sklearn.base import BaseEstimator, TransformerMixin from sklearn.utils import check_array, check_random_state from sklearn.utils.extmath import (randomized_range_finder, safe_sparse_dot, svd_flip) from sklearn.utils.sparsefuncs import mean_variance_axis __all__ = ["TruncatedSVD"] class TruncatedSVD(TransformerMixin, BaseEstimator): """Dimensionality reduction using truncated SVD (aka LSA). This transformer performs linear dimensionality reduction by means of truncated singular value decomposition (SVD). Contrary to PCA, this estimator does not center the data before computing the singular value decomposition. This means it can work with sparse matrices efficiently. In particular, truncated SVD works on term count/tf-idf matrices as returned by the vectorizers in :mod:`sklearn.feature_extraction.text`. In that context, it is known as latent semantic analysis (LSA). This estimator supports two algorithms: a fast randomized SVD solver, and a "naive" algorithm that uses ARPACK as an eigensolver on `X * X.T` or `X.T * X`, whichever is more efficient. Read more in the :ref:`User Guide <LSA>`. Parameters ---------- n_components : int, default=2 Desired dimensionality of output data. Must be strictly less than the number of features. The default value is useful for visualisation. For LSA, a value of 100 is recommended. n_iter : int, default=5 Number of iterations for randomized SVD solver. Not used by ARPACK. The default is larger than the default in :func:`~sklearn.utils.extmath.randomized_svd` to handle sparse matrices that may have large slowly decaying spectrum. random_state : int, RandomState instance or None, default=None Used during randomized svd. Pass an int for reproducible results across multiple function calls. See :term:`Glossary <random_state>`. tol : float, default=0.0 Tolerance for ARPACK. 0 means machine precision. Ignored by randomized SVD solver. Attributes ---------- components_ : ndarray of shape (n_components, n_features) The right singular vectors of the input data. explained_variance_ : ndarray of shape (n_components,) The variance of the training samples transformed by a projection to each component. explained_variance_ratio_ : ndarray of shape (n_components,) Percentage of variance explained by each of the selected components. singular_values_ : ndarray od shape (n_components,) The singular values corresponding to each of the selected components. The singular values are equal to the 2-norms of the ``n_components`` variables in the lower-dimensional space. n_features_in_ : int Number of features seen during :term:`fit`. .. versionadded:: 0.24 feature_names_in_ : ndarray of shape (`n_features_in_`,) Names of features seen during :term:`fit`. Defined only when `X` has feature names that are all strings. .. versionadded:: 1.0 See Also -------- DictionaryLearning : Find a dictionary that sparsely encodes data. FactorAnalysis : A simple linear generative model with Gaussian latent variables. IncrementalPCA : Incremental principal components analysis. KernelPCA : Kernel Principal component analysis. NMF : Non-Negative Matrix Factorization. PCA : Principal component analysis. Notes ----- SVD suffers from a problem called "sign indeterminacy", which means the sign of the ``components_`` and the output from transform depend on the algorithm and random state. To work around this, fit instances of this class to data once, then keep the instance around to do transformations. References ---------- Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions Halko, et al., 2009 (arXiv:909) https://arxiv.org/pdf/0909.4061.pdf Examples -------- >>> from sklearn.decomposition import TruncatedSVD >>> from scipy.sparse import csr_matrix >>> import numpy as np >>> np.random.seed(0) >>> X_dense = np.random.rand(100, 100) >>> X_dense[:, 2 * np.arange(50)] = 0 >>> X = csr_matrix(X_dense) >>> svd = TruncatedSVD(n_components=5, n_iter=7, random_state=42) >>> svd.fit(X) TruncatedSVD(n_components=5, n_iter=7, random_state=42) >>> print(svd.explained_variance_ratio_) [0.0157... 0.0512... 0.0499... 0.0479... 0.0453...] >>> print(svd.explained_variance_ratio_.sum()) 0.2102... >>> print(svd.singular_values_) [35.2410... 4.5981... 4.5420... 4.4486... 4.3288...] """ def __init__( self, n_components=2, *, n_oversamples=10, n_iter=5, random_state=None, tol=0.0, ): self.n_components = n_components self.n_oversamples = n_oversamples self.n_iter = n_iter self.random_state = random_state self.tol = tol def randomized_svd( self, M, n_components, *, n_oversamples=10, n_iter="auto", power_iteration_normalizer="auto", transpose="auto", flip_sign=True, random_state="warn", ): """Computes a truncated randomized SVD. This method solves the fixed-rank approximation problem described in the Halko et al paper (problem (1.5), p5). Parameters ---------- M : {ndarray, sparse matrix} Matrix to decompose. n_components : int Number of singular values and vectors to extract. n_oversamples : int, default=10 Additional number of random vectors to sample the range of M so as to ensure proper conditioning. The total number of random vectors used to find the range of M is n_components + n_oversamples. Smaller number can improve speed but can negatively impact the quality of approximation of singular vectors and singular values. Users might wish to increase this parameter up to `2*k - n_components` where k is the effective rank, for large matrices, noisy problems, matrices with slowly decaying spectrums, or to increase precision accuracy. See Halko et al (pages 5, 23 and 26). n_iter : int or 'auto', default='auto' Number of power iterations. It can be used to deal with very noisy problems. When 'auto', it is set to 4, unless `n_components` is small (< .1 * min(X.shape)) in which case `n_iter` is set to 7. This improves precision with few components. Note that in general users should rather increase `n_oversamples` before increasing `n_iter` as the principle of the randomized method is to avoid usage of these more costly power iterations steps. When `n_components` is equal or greater to the effective matrix rank and the spectrum does not present a slow decay, `n_iter=0` or `1` should even work fine in theory (see Halko et al paper, page 9). .. versionchanged:: 0.18 power_iteration_normalizer : {'auto', 'QR', 'LU', 'none'}, default='auto' Whether the power iterations are normalized with step-by-step QR factorization (the slowest but most accurate), 'none' (the fastest but numerically unstable when `n_iter` is large, e.g. typically 5 or larger), or 'LU' factorization (numerically stable but can lose slightly in accuracy). The 'auto' mode applies no normalization if `n_iter` <= 2 and switches to LU otherwise. .. versionadded:: 0.18 transpose : bool or 'auto', default='auto' Whether the algorithm should be applied to M.T instead of M. The result should approximately be the same. The 'auto' mode will trigger the transposition if M.shape[1] > M.shape[0] since this implementation of randomized SVD tend to be a little faster in that case. .. versionchanged:: 0.18 flip_sign : bool, default=True The output of a singular value decomposition is only unique up to a permutation of the signs of the singular vectors. If `flip_sign` is set to `True`, the sign ambiguity is resolved by making the largest loadings for each component in the left singular vectors positive. random_state : int, RandomState instance or None, default='warn' The seed of the pseudo random number generator to use when shuffling the data, i.e. getting the random vectors to initialize the algorithm. Pass an int for reproducible results across multiple function calls. See :term:`Glossary <random_state>`. .. versionchanged:: 1.2 The previous behavior (`random_state=0`) is deprecated, and from v1.2 the default value will be `random_state=None`. Set the value of `random_state` explicitly to suppress the deprecation warning. Notes ----- This algorithm finds a (usually very good) approximate truncated singular value decomposition using randomization to speed up the computations. It is particularly fast on large matrices on which you wish to extract only a small number of components. In order to obtain further speed up, `n_iter` can be set <=2 (at the cost of loss of precision). To increase the precision it is recommended to increase `n_oversamples`, up to `2*k-n_components` where k is the effective rank. Usually, `n_components` is chosen to be greater than k so increasing `n_oversamples` up to `n_components` should be enough. References ---------- * Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions (Algorithm 4.3) Halko, et al., 2009 https://arxiv.org/abs/0909.4061 * A randomized algorithm for the decomposition of matrices <NAME>, <NAME> and <NAME> * An implementation of a randomized algorithm for principal component analysis <NAME> et al. 2014 """ if random_state == "warn": random_state = 0 random_state = check_random_state(random_state) n_random = n_components + n_oversamples n_samples, n_features = M.shape if transpose == "auto": transpose = n_samples < n_features if transpose: # this implementation is a bit faster with smaller shape[1] M = M.T Q = randomized_range_finder( M, size=n_random, n_iter=n_iter, power_iteration_normalizer=power_iteration_normalizer, random_state=random_state, ) # project M to the (k + p) dimensional space using the basis vectors B = safe_sparse_dot(Q.T, M) # compute the SVD on the thin matrix: (k + p) wide Uhat, s, Vt = linalg.svd( B, full_matrices=False, check_finite=False, overwrite_a=True ) del B U = np.dot(Q, Uhat) if flip_sign: if not transpose: U, Vt = svd_flip(U, Vt) else: # In case of transpose u_based_decision=false # to actually flip based on u and not v. U, Vt = svd_flip(U, Vt, u_based_decision=False) if transpose: # transpose back the results according to the input convention return Vt[:n_components, :].T, s[:n_components], U[:, :n_components].T else: return U[:, :n_components], s[:n_components], Vt[:n_components, :] def fit(self, X, y=None): """Fit model on training data X. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training data. y : Ignored Not used, present here for API consistency by convention. Returns ------- self : object Returns the transformer object. """ self.fit_transform(X) return self def fit_transform(self, X, y=None): """Fit model to X and perform dimensionality reduction on X. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training data. y : Ignored Not used, present here for API consistency by convention. Returns ------- X_new : ndarray of shape (n_samples, n_components) Reduced version of X. This will always be a dense array. """ # X = self._validate_data(X, accept_sparse=["csr", "csc"], ensure_min_features=2) random_state = check_random_state(self.random_state) k = self.n_components n_features = X.shape[1] if k >= n_features: raise ValueError( "n_components must be < n_features; got %d >= %d" % (k, n_features) ) U, Sigma, VT = self.randomized_svd( X, self.n_components, n_oversamples=self.n_oversamples, power_iteration_normalizer="none", n_iter=self.n_iter, random_state=random_state, ) self.components_ = VT # As a result of the SVD approximation error on X ~ U @ Sigma @ V.T, # X @ V is not the same as U @ Sigma X_transformed = safe_sparse_dot(X, self.components_.T) return X_transformed def transform(self, X): """Perform dimensionality reduction on X. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) New data. Returns ------- X_new : ndarray of shape (n_samples, n_components) Reduced version of X. This will always be a dense array. """ # X = self._validate_data(X, accept_sparse=["csr", "csc"], reset=False) return safe_sparse_dot(X, self.components_.T) def _more_tags(self): return {"preserves_dtype": [np.float64, np.float32]}
[ "sklearn.utils.check_random_state", "sklearn.utils.extmath.randomized_range_finder", "scipy.linalg.svd", "sklearn.utils.extmath.svd_flip", "sklearn.utils.extmath.safe_sparse_dot", "numpy.dot" ]
[((11843, 11875), 'sklearn.utils.check_random_state', 'check_random_state', (['random_state'], {}), '(random_state)\n', (11861, 11875), False, 'from sklearn.utils import check_array, check_random_state\n'), ((12171, 12318), 'sklearn.utils.extmath.randomized_range_finder', 'randomized_range_finder', (['M'], {'size': 'n_random', 'n_iter': 'n_iter', 'power_iteration_normalizer': 'power_iteration_normalizer', 'random_state': 'random_state'}), '(M, size=n_random, n_iter=n_iter,\n power_iteration_normalizer=power_iteration_normalizer, random_state=\n random_state)\n', (12194, 12318), False, 'from sklearn.utils.extmath import randomized_range_finder, safe_sparse_dot, svd_flip\n'), ((12471, 12494), 'sklearn.utils.extmath.safe_sparse_dot', 'safe_sparse_dot', (['Q.T', 'M'], {}), '(Q.T, M)\n', (12486, 12494), False, 'from sklearn.utils.extmath import randomized_range_finder, safe_sparse_dot, svd_flip\n'), ((12577, 12649), 'scipy.linalg.svd', 'linalg.svd', (['B'], {'full_matrices': '(False)', 'check_finite': '(False)', 'overwrite_a': '(True)'}), '(B, full_matrices=False, check_finite=False, overwrite_a=True)\n', (12587, 12649), False, 'from scipy import linalg\n'), ((12699, 12714), 'numpy.dot', 'np.dot', (['Q', 'Uhat'], {}), '(Q, Uhat)\n', (12705, 12714), True, 'import numpy as np\n'), ((14372, 14409), 'sklearn.utils.check_random_state', 'check_random_state', (['self.random_state'], {}), '(self.random_state)\n', (14390, 14409), False, 'from sklearn.utils import check_array, check_random_state\n'), ((15071, 15109), 'sklearn.utils.extmath.safe_sparse_dot', 'safe_sparse_dot', (['X', 'self.components_.T'], {}), '(X, self.components_.T)\n', (15086, 15109), False, 'from sklearn.utils.extmath import randomized_range_finder, safe_sparse_dot, svd_flip\n'), ((15621, 15659), 'sklearn.utils.extmath.safe_sparse_dot', 'safe_sparse_dot', (['X', 'self.components_.T'], {}), '(X, self.components_.T)\n', (15636, 15659), False, 'from sklearn.utils.extmath import randomized_range_finder, safe_sparse_dot, svd_flip\n'), ((12792, 12807), 'sklearn.utils.extmath.svd_flip', 'svd_flip', (['U', 'Vt'], {}), '(U, Vt)\n', (12800, 12807), False, 'from sklearn.utils.extmath import randomized_range_finder, safe_sparse_dot, svd_flip\n'), ((12969, 13008), 'sklearn.utils.extmath.svd_flip', 'svd_flip', (['U', 'Vt'], {'u_based_decision': '(False)'}), '(U, Vt, u_based_decision=False)\n', (12977, 13008), False, 'from sklearn.utils.extmath import randomized_range_finder, safe_sparse_dot, svd_flip\n')]
#!/usr/bin/env python # _*_coding:utf-8_*_ """ @Project: Project4 @File : app.py @Author : <NAME> @Time : 2021/12/3 """ import dash from dash import dcc from dash import html from dash.dependencies import Input, Output, State import pandas as pd import numpy as np from surprise import KNNBasic, Reader, Dataset import warnings warnings.filterwarnings("ignore") def get_top_10(new_rate): new_rate = pd.DataFrame({'movieID': movieID, 'rate': new_rate}) new_rate['iid'] = new_rate['movieID'].map(lambda x: trainset.to_inner_iid(x)) iid_to_rate = {iid: rate for iid, rate in zip(new_rate['iid'], new_rate['rate'])} est_rate = [] for mid, iid, rate in zip(new_rate['movieID'], new_rate['iid'], new_rate['rate']): if rate != 0: est_rate.append(-1) continue nei_rate = [] nei_weight = [] kneighbors = algo.get_neighbors(iid, 20) for nei in kneighbors: r = iid_to_rate[nei] if r == 0: continue nei_rate.append(r) nei_weight.append(algo.sim[iid, nei]) if len(nei_rate) == 0: est_rate.append(movie_avg[mid]) else: est_rate.append(np.average(nei_rate, weights=nei_weight)) new_rate['est_rate'] = est_rate top10 = new_rate.sort_values(['est_rate'], ascending=False)[:10]['movieID'].tolist() return top10 def get_movie_src(id): src = "https://liangfgithub.github.io/MovieImages/{}.jpg?raw=true" return src.format(id) def get_image_oneline(id_list, rank=None): children = [] if rank is None: for id in id_list: ch = html.Div(style={'width': '18%', 'display': 'inline-block', "margin-right": "15px"}, children=[ html.Img(src=get_movie_src(id), style={"margin-bottom": "15px"}), html.Div(movieid_to_name[id]) ]) children.append(ch) else: for id, rk in zip(id_list, rank): ch = html.Div(style={'width': '18%', 'display': 'inline-block', "margin-right": "15px"}, children=[ html.H3('Top {}'.format(rk)), html.Img(src=get_movie_src(id), style={"margin-bottom": "15px"}), html.Div(movieid_to_name[id]) ]) children.append(ch) return html.Div(style={'textAlign': 'center', 'align-items': 'center'}, children=children) def get_image(id_list, rank=None): children = [] if rank is None: for i in range(0, len(id_list) - 2, 5): five_list = id_list[i:i+5] children.append(get_image_oneline(five_list)) children.append(html.Hr(style={"margin-bottom": "25px", "margin-top": "25px"})) return html.Div(style={'textAlign': 'center', 'align-items': 'center'}, children=children) else: for i in range(0, len(id_list) - 2, 5): five_list = id_list[i:i+5] children.append(get_image_oneline(five_list, rank[i:i+5])) children.append(html.Hr(style={"margin-bottom": "25px", "margin-top": "25px"})) return html.Div(style={'textAlign': 'center', 'align-items': 'center'}, children=children) def get_image_oneline_radio(id_list): children = [] for id in id_list: ch = html.Div(style={'width': '18%', 'display': 'inline-block', "margin-right": "15px"}, children=[ html.Img(src=get_movie_src(id), style={"margin-bottom": "15px"}), html.Div(movieid_to_name[id], style={"margin-bottom": "15px"}), dcc.RadioItems( id='rating_input_{}'.format(id), options=[{'label': str(i), 'value': str(i)} for i in range(1, 6)], value=None, labelStyle={'display': 'inline-block'} ) ]) children.append(ch) return html.Div(style={'textAlign': 'center', 'align-items': 'center'}, children=children) def get_image_radio(id_list): children = [] for i in range(0, len(id_list) - 2, 5): five_list = id_list[i:i+5] children.append(get_image_oneline_radio(five_list)) children.append(html.Hr(style={"margin-bottom": "30px", "margin-top": "30px"})) return html.Div(style={'textAlign': 'center', 'align-items': 'center', "margin-top": "15px", "maxHeight": "650px", "overflow": "scroll"}, children=children) tabs_styles = { 'height': '44px' } tab_style = { 'borderBottom': '1px solid #d6d6d6', 'padding': '6px', 'fontWeight': 'bold' } tab_selected_style = { 'borderTop': '1px solid #d6d6d6', 'borderBottom': '1px solid #d6d6d6', 'backgroundColor': '#119DFF', 'color': 'white', 'padding': '6px' } button_style = {'background-color': '#228B22', 'font-size': '20px', 'color': 'white', 'height': '60px', 'width': '250px'} myurl = "https://liangfgithub.github.io/MovieData/" ratings = pd.read_csv(myurl + 'ratings.dat?raw=true', header=None, sep=':').dropna(axis=1) ratings.columns = ['UserID', 'MovieID', 'Rating', 'Timestamp'] ratings.drop(['Timestamp'], axis=1, inplace=True) movies = pd.read_csv(myurl + 'movies.dat?raw=true', header=None, sep='::', encoding='latin1') movies.columns = ['MovieID', 'Title', 'Genres'] movieid_to_name = {} for key, value in zip(movies['MovieID'], movies['Title']): movieid_to_name[key] = value movies['Genres'] = movies['Genres'].map(lambda s: s.split('|')) genre_list = ["Action", "Adventure", "Animation", "Children's", "Comedy", "Crime", "Documentary", "Drama", "Fantasy", "Film-Noir", "Horror", "Musical", "Mystery", "Romance", "Sci-Fi", "Thriller", "War", "Western"] movieID = np.sort(ratings['MovieID'].unique()).tolist() id_displaying = movieID[:50] states = [State('rating_input_{}'.format(id), 'value') for id in id_displaying] for g in genre_list: movies[g] = movies['Genres'].map(lambda x: 1 if g in x else 0) movie_pop = ratings.groupby(['MovieID'])['Rating'].agg(['mean', 'count']).reset_index() genre_popular_10 = pd.DataFrame() # geren_highrate_10 = pd.DataFrame() for genre in genre_list: movie_spe_genre = movies.loc[movies[genre] == 1, ['MovieID', 'Title']] movie_spe_genre = pd.merge(movie_spe_genre, movie_pop, on='MovieID') # movie_spe_genre.sort_values(['count'], ascending=False)[:10]['MovieID'].values.tolist() most_popular_10 = movie_spe_genre.sort_values(['count'], ascending=False)[:10]['MovieID'].values.tolist() # high_rated_10 = movie_spe_genre[movie_spe_genre['count'] >= 10] # high_rated_10 = high_rated_10.sort_values(['mean'], ascending=False)[:10]['MovieID'].values.tolist() genre_popular_10[genre] = most_popular_10 # geren_highrate_10[genre] = high_rated_10 # model # A reader is still needed but only the rating_scale param is requiered. reader = Reader(rating_scale=(1, 5)) # The columns must correspond to user id, item id and ratings (in that order). data = Dataset.load_from_df(ratings[['UserID', 'MovieID', 'Rating']], reader) sim_options = {'name': 'cosine', 'user_based': False} trainset = data.build_full_trainset() algo = KNNBasic(k=20, min_k=1, sim_options=sim_options) algo.fit(trainset) movie_avg = {i: avg for i, avg in zip(movie_pop['MovieID'], movie_pop['mean'])} def get_movie_src(idx): src = "https://liangfgithub.github.io/MovieImages/{}.jpg?raw=true" return src.format(idx) def get_sys1_output(): children = [ html.H2('Please select your favorite genre'), html.Div(style={'width': '100%', 'display': 'flex', 'align-items': 'center', 'justify-content': 'center'}, children=[ dcc.Dropdown( id='genre_dropdown', options=[{'label': g, 'value': g} for g in genre_list], placeholder="Select a Genre", clearable=False, style={'width': '350px', "margin-bottom": "15px"} ) ]), html.Button('Get Recommendations', id='genre_button', n_clicks=0, style = button_style), html.Hr(style={"margin-bottom": "25px", "margin-top": "25px"}), html.Div(style={'width': '100%', 'display': 'inline'}, children=[ html.H2('Movies you might like'), html.Div(id='genre_output', children=None) ]) ] return html.Div(children=children) def get_sys2_output(): children = [ html.H2('Please rate some movies then click the button', style={"margin-bottom": "15px"}), html.H2('Wait for about 10 seconds then scroll to the bottom to see the recommendations', style={"margin-bottom": "15px"}), html.Button('Get Recommendations', id='rating_button', n_clicks=0, style=button_style), get_image_radio(id_displaying), html.Hr(style={"margin-bottom": "25px", "margin-top": "25px"}), html.Div(style={'width': '100%', 'display': 'inline'}, children=[ html.H2('Movies you might like'), html.Div(id='rating_output', children=None) ]) ] return html.Div(children=children) app = dash.Dash(__name__, suppress_callback_exceptions=True) app.layout = html.Div(style={'textAlign': 'center', 'align-items': 'center'}, children=[ dcc.Tabs(id='system_tab', value='tab_1', children=[ dcc.Tab(label='System1: Recommender by Genre', value='tab_1', style=tab_style, selected_style=tab_selected_style), dcc.Tab(label='System2: Recommender by Rating', value='tab_2', style=tab_style, selected_style=tab_selected_style), ], style=tabs_styles), html.Div(id='sys_output', children=None) ]) # tab callback @app.callback( Output('sys_output', 'children'), Input('system_tab', 'value')) def update_sys_out(system): if system == 'tab_1': return get_sys1_output() else: return get_sys2_output() @app.callback(Output('genre_output', 'children'), Input('genre_button', 'n_clicks'), State('genre_dropdown', 'value'), prevent_initial_call=True) def update_output(n_clicks, genre): return [get_image(genre_popular_10[genre].values.tolist())] @app.callback(Output("rating_output", "children"), Input('rating_button', 'n_clicks'), states, prevent_initial_call=True) def update_rating_output(n_clicks, *rates): new_rate = [] for rate in rates: if rate is None: new_rate.append(0) else: new_rate.append(int(rate)) new_rate = new_rate + [0] * (len(movieID) - len(new_rate)) recommend_id = get_top_10(new_rate) return [get_image(recommend_id, rank=[i+1 for i in range(10)])] if __name__ == '__main__': # style={"maxHeight": "250px", "overflow": "scroll"} app.run_server(debug=False)
[ "pandas.DataFrame", "dash.html.H2", "dash.Dash", "numpy.average", "surprise.Dataset.load_from_df", "pandas.read_csv", "surprise.Reader", "warnings.filterwarnings", "dash.html.Div", "pandas.merge", "dash.dependencies.State", "dash.html.Button", "dash.dcc.Tab", "dash.dependencies.Input", "dash.dcc.Dropdown", "surprise.KNNBasic", "dash.html.Hr", "dash.dependencies.Output" ]
[((335, 368), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (358, 368), False, 'import warnings\n'), ((5181, 5270), 'pandas.read_csv', 'pd.read_csv', (["(myurl + 'movies.dat?raw=true')"], {'header': 'None', 'sep': '"""::"""', 'encoding': '"""latin1"""'}), "(myurl + 'movies.dat?raw=true', header=None, sep='::', encoding=\n 'latin1')\n", (5192, 5270), True, 'import pandas as pd\n'), ((6144, 6158), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (6156, 6158), True, 'import pandas as pd\n'), ((6936, 6963), 'surprise.Reader', 'Reader', ([], {'rating_scale': '(1, 5)'}), '(rating_scale=(1, 5))\n', (6942, 6963), False, 'from surprise import KNNBasic, Reader, Dataset\n'), ((7050, 7120), 'surprise.Dataset.load_from_df', 'Dataset.load_from_df', (["ratings[['UserID', 'MovieID', 'Rating']]", 'reader'], {}), "(ratings[['UserID', 'MovieID', 'Rating']], reader)\n", (7070, 7120), False, 'from surprise import KNNBasic, Reader, Dataset\n'), ((7235, 7283), 'surprise.KNNBasic', 'KNNBasic', ([], {'k': '(20)', 'min_k': '(1)', 'sim_options': 'sim_options'}), '(k=20, min_k=1, sim_options=sim_options)\n', (7243, 7283), False, 'from surprise import KNNBasic, Reader, Dataset\n'), ((9284, 9338), 'dash.Dash', 'dash.Dash', (['__name__'], {'suppress_callback_exceptions': '(True)'}), '(__name__, suppress_callback_exceptions=True)\n', (9293, 9338), False, 'import dash\n'), ((411, 463), 'pandas.DataFrame', 'pd.DataFrame', (["{'movieID': movieID, 'rate': new_rate}"], {}), "({'movieID': movieID, 'rate': new_rate})\n", (423, 463), True, 'import pandas as pd\n'), ((2341, 2429), 'dash.html.Div', 'html.Div', ([], {'style': "{'textAlign': 'center', 'align-items': 'center'}", 'children': 'children'}), "(style={'textAlign': 'center', 'align-items': 'center'}, children=\n children)\n", (2349, 2429), False, 'from dash import html\n'), ((3852, 3940), 'dash.html.Div', 'html.Div', ([], {'style': "{'textAlign': 'center', 'align-items': 'center'}", 'children': 'children'}), "(style={'textAlign': 'center', 'align-items': 'center'}, children=\n children)\n", (3860, 3940), False, 'from dash import html\n'), ((4224, 4381), 'dash.html.Div', 'html.Div', ([], {'style': "{'textAlign': 'center', 'align-items': 'center', 'margin-top': '15px',\n 'maxHeight': '650px', 'overflow': 'scroll'}", 'children': 'children'}), "(style={'textAlign': 'center', 'align-items': 'center',\n 'margin-top': '15px', 'maxHeight': '650px', 'overflow': 'scroll'},\n children=children)\n", (4232, 4381), False, 'from dash import html\n'), ((6319, 6369), 'pandas.merge', 'pd.merge', (['movie_spe_genre', 'movie_pop'], {'on': '"""MovieID"""'}), "(movie_spe_genre, movie_pop, on='MovieID')\n", (6327, 6369), True, 'import pandas as pd\n'), ((8517, 8544), 'dash.html.Div', 'html.Div', ([], {'children': 'children'}), '(children=children)\n', (8525, 8544), False, 'from dash import html\n'), ((9249, 9276), 'dash.html.Div', 'html.Div', ([], {'children': 'children'}), '(children=children)\n', (9257, 9276), False, 'from dash import html\n'), ((9857, 9889), 'dash.dependencies.Output', 'Output', (['"""sys_output"""', '"""children"""'], {}), "('sys_output', 'children')\n", (9863, 9889), False, 'from dash.dependencies import Input, Output, State\n'), ((9895, 9923), 'dash.dependencies.Input', 'Input', (['"""system_tab"""', '"""value"""'], {}), "('system_tab', 'value')\n", (9900, 9923), False, 'from dash.dependencies import Input, Output, State\n'), ((10070, 10104), 'dash.dependencies.Output', 'Output', (['"""genre_output"""', '"""children"""'], {}), "('genre_output', 'children')\n", (10076, 10104), False, 'from dash.dependencies import Input, Output, State\n'), ((10120, 10153), 'dash.dependencies.Input', 'Input', (['"""genre_button"""', '"""n_clicks"""'], {}), "('genre_button', 'n_clicks')\n", (10125, 10153), False, 'from dash.dependencies import Input, Output, State\n'), ((10169, 10201), 'dash.dependencies.State', 'State', (['"""genre_dropdown"""', '"""value"""'], {}), "('genre_dropdown', 'value')\n", (10174, 10201), False, 'from dash.dependencies import Input, Output, State\n'), ((10345, 10380), 'dash.dependencies.Output', 'Output', (['"""rating_output"""', '"""children"""'], {}), "('rating_output', 'children')\n", (10351, 10380), False, 'from dash.dependencies import Input, Output, State\n'), ((10396, 10430), 'dash.dependencies.Input', 'Input', (['"""rating_button"""', '"""n_clicks"""'], {}), "('rating_button', 'n_clicks')\n", (10401, 10430), False, 'from dash.dependencies import Input, Output, State\n'), ((2753, 2841), 'dash.html.Div', 'html.Div', ([], {'style': "{'textAlign': 'center', 'align-items': 'center'}", 'children': 'children'}), "(style={'textAlign': 'center', 'align-items': 'center'}, children=\n children)\n", (2761, 2841), False, 'from dash import html\n'), ((3113, 3201), 'dash.html.Div', 'html.Div', ([], {'style': "{'textAlign': 'center', 'align-items': 'center'}", 'children': 'children'}), "(style={'textAlign': 'center', 'align-items': 'center'}, children=\n children)\n", (3121, 3201), False, 'from dash import html\n'), ((4978, 5043), 'pandas.read_csv', 'pd.read_csv', (["(myurl + 'ratings.dat?raw=true')"], {'header': 'None', 'sep': '""":"""'}), "(myurl + 'ratings.dat?raw=true', header=None, sep=':')\n", (4989, 5043), True, 'import pandas as pd\n'), ((7556, 7600), 'dash.html.H2', 'html.H2', (['"""Please select your favorite genre"""'], {}), "('Please select your favorite genre')\n", (7563, 7600), False, 'from dash import html\n'), ((8132, 8222), 'dash.html.Button', 'html.Button', (['"""Get Recommendations"""'], {'id': '"""genre_button"""', 'n_clicks': '(0)', 'style': 'button_style'}), "('Get Recommendations', id='genre_button', n_clicks=0, style=\n button_style)\n", (8143, 8222), False, 'from dash import html\n'), ((8249, 8311), 'dash.html.Hr', 'html.Hr', ([], {'style': "{'margin-bottom': '25px', 'margin-top': '25px'}"}), "(style={'margin-bottom': '25px', 'margin-top': '25px'})\n", (8256, 8311), False, 'from dash import html\n'), ((8594, 8688), 'dash.html.H2', 'html.H2', (['"""Please rate some movies then click the button"""'], {'style': "{'margin-bottom': '15px'}"}), "('Please rate some movies then click the button', style={\n 'margin-bottom': '15px'})\n", (8601, 8688), False, 'from dash import html\n'), ((8693, 8825), 'dash.html.H2', 'html.H2', (['"""Wait for about 10 seconds then scroll to the bottom to see the recommendations"""'], {'style': "{'margin-bottom': '15px'}"}), "(\n 'Wait for about 10 seconds then scroll to the bottom to see the recommendations'\n , style={'margin-bottom': '15px'})\n", (8700, 8825), False, 'from dash import html\n'), ((8825, 8916), 'dash.html.Button', 'html.Button', (['"""Get Recommendations"""'], {'id': '"""rating_button"""', 'n_clicks': '(0)', 'style': 'button_style'}), "('Get Recommendations', id='rating_button', n_clicks=0, style=\n button_style)\n", (8836, 8916), False, 'from dash import html\n'), ((8981, 9043), 'dash.html.Hr', 'html.Hr', ([], {'style': "{'margin-bottom': '25px', 'margin-top': '25px'}"}), "(style={'margin-bottom': '25px', 'margin-top': '25px'})\n", (8988, 9043), False, 'from dash import html\n'), ((4149, 4211), 'dash.html.Hr', 'html.Hr', ([], {'style': "{'margin-bottom': '30px', 'margin-top': '30px'}"}), "(style={'margin-bottom': '30px', 'margin-top': '30px'})\n", (4156, 4211), False, 'from dash import html\n'), ((9777, 9817), 'dash.html.Div', 'html.Div', ([], {'id': '"""sys_output"""', 'children': 'None'}), "(id='sys_output', children=None)\n", (9785, 9817), False, 'from dash import html\n'), ((1218, 1258), 'numpy.average', 'np.average', (['nei_rate'], {'weights': 'nei_weight'}), '(nei_rate, weights=nei_weight)\n', (1228, 1258), True, 'import numpy as np\n'), ((2674, 2736), 'dash.html.Hr', 'html.Hr', ([], {'style': "{'margin-bottom': '25px', 'margin-top': '25px'}"}), "(style={'margin-bottom': '25px', 'margin-top': '25px'})\n", (2681, 2736), False, 'from dash import html\n'), ((3034, 3096), 'dash.html.Hr', 'html.Hr', ([], {'style': "{'margin-bottom': '25px', 'margin-top': '25px'}"}), "(style={'margin-bottom': '25px', 'margin-top': '25px'})\n", (3041, 3096), False, 'from dash import html\n'), ((3479, 3541), 'dash.html.Div', 'html.Div', (['movieid_to_name[id]'], {'style': "{'margin-bottom': '15px'}"}), "(movieid_to_name[id], style={'margin-bottom': '15px'})\n", (3487, 3541), False, 'from dash import html\n'), ((7766, 7962), 'dash.dcc.Dropdown', 'dcc.Dropdown', ([], {'id': '"""genre_dropdown"""', 'options': "[{'label': g, 'value': g} for g in genre_list]", 'placeholder': '"""Select a Genre"""', 'clearable': '(False)', 'style': "{'width': '350px', 'margin-bottom': '15px'}"}), "(id='genre_dropdown', options=[{'label': g, 'value': g} for g in\n genre_list], placeholder='Select a Genre', clearable=False, style={\n 'width': '350px', 'margin-bottom': '15px'})\n", (7778, 7962), False, 'from dash import dcc\n'), ((8400, 8432), 'dash.html.H2', 'html.H2', (['"""Movies you might like"""'], {}), "('Movies you might like')\n", (8407, 8432), False, 'from dash import html\n'), ((8446, 8488), 'dash.html.Div', 'html.Div', ([], {'id': '"""genre_output"""', 'children': 'None'}), "(id='genre_output', children=None)\n", (8454, 8488), False, 'from dash import html\n'), ((9131, 9163), 'dash.html.H2', 'html.H2', (['"""Movies you might like"""'], {}), "('Movies you might like')\n", (9138, 9163), False, 'from dash import html\n'), ((9177, 9220), 'dash.html.Div', 'html.Div', ([], {'id': '"""rating_output"""', 'children': 'None'}), "(id='rating_output', children=None)\n", (9185, 9220), False, 'from dash import html\n'), ((1853, 1882), 'dash.html.Div', 'html.Div', (['movieid_to_name[id]'], {}), '(movieid_to_name[id])\n', (1861, 1882), False, 'from dash import html\n'), ((2253, 2282), 'dash.html.Div', 'html.Div', (['movieid_to_name[id]'], {}), '(movieid_to_name[id])\n', (2261, 2282), False, 'from dash import html\n'), ((9498, 9616), 'dash.dcc.Tab', 'dcc.Tab', ([], {'label': '"""System1: Recommender by Genre"""', 'value': '"""tab_1"""', 'style': 'tab_style', 'selected_style': 'tab_selected_style'}), "(label='System1: Recommender by Genre', value='tab_1', style=\n tab_style, selected_style=tab_selected_style)\n", (9505, 9616), False, 'from dash import dcc\n'), ((9625, 9744), 'dash.dcc.Tab', 'dcc.Tab', ([], {'label': '"""System2: Recommender by Rating"""', 'value': '"""tab_2"""', 'style': 'tab_style', 'selected_style': 'tab_selected_style'}), "(label='System2: Recommender by Rating', value='tab_2', style=\n tab_style, selected_style=tab_selected_style)\n", (9632, 9744), False, 'from dash import dcc\n')]
from OSIM.Simulation.NetToComp import NetToComp from OSIM.Modeling.CircuitSystemEquations import CircuitSystemEquations from OSIM.Simulation.CircuitAnalysis.CircuitAnalyser import CircuitAnalyser import numpy as np seq = CircuitSystemEquations(NetToComp('GilberMixerEasy.net').getComponents()) ca = CircuitAnalyser(seq) mag = ca.getGain("V1","Q1C",180e9) print("gain") print(mag) ca.printDCOp(["vCurMirror","Q7IT","Q6C","RFPlus","Q1C"]) #imp1_180 = ca.getImpedanceAt("V1",180e9) #imp3_180 = ca.getImpedanceAt("V3",180e9) #imp4_18 = ca.getImpedanceAt("V4",18e9) #imp5_18 = ca.getImpedanceAt("V5",18e9) #print("IMP1_180 @180G: %s"%str(imp1_180)) #print("IMP3_180 @180G: %s"%str(imp3_180)) #print("IMP4_18 @18G: %s"%str((imp4_18))) #print("IMP5_18 @18G: %s"%str(imp5_18)) #print(imp6) #v1 = seq.getCompByName("V1").setInnerImpedance(imp[0]) #seq.getCompByName("V3").setInnerImpedance(imp[0]) #print(v1.getInnerImpedance()) #ca.plot_smith(ca.getSPAnalysis_linx(175e9,185e9,1e9,["V3"])) #ca.plot_lin(ca.getACAnalysis_linx("V1",["Q1C"],170e9,190e9,1e9)[0]) res = ca.getTrans(0,1e-10,1e-13,["Q3C","Q1C","LOPlus","RFPlus"]) #mag = ca.getGain("V1","Q1C",180e9) #print(mag) # how to get a diff-Signal out = np.zeros((2,res[0].shape[1]),dtype = np.float64) for i in range(res[0].shape[1]): out[0][i] = (res[0])[0][i] out[1][i] = (res[0])[1][i] - (res[0])[2][i] ca.plot_lin([out,["diffout"],"transient"]) print("Max %G "%np.amax(out[1][:])) toFile = open("Gilbert_out_OSIM.csv", 'w') for i in range (res[0].shape[1]): t = str((res[0])[0][i]) plot = str(out[1][i]) wline = "".join((t,",",plot,"\n")) toFile.write(wline) toFile.close() ca.plot_lin(res)
[ "numpy.zeros", "OSIM.Simulation.NetToComp.NetToComp", "OSIM.Simulation.CircuitAnalysis.CircuitAnalyser.CircuitAnalyser", "numpy.amax" ]
[((300, 320), 'OSIM.Simulation.CircuitAnalysis.CircuitAnalyser.CircuitAnalyser', 'CircuitAnalyser', (['seq'], {}), '(seq)\n', (315, 320), False, 'from OSIM.Simulation.CircuitAnalysis.CircuitAnalyser import CircuitAnalyser\n'), ((1206, 1254), 'numpy.zeros', 'np.zeros', (['(2, res[0].shape[1])'], {'dtype': 'np.float64'}), '((2, res[0].shape[1]), dtype=np.float64)\n', (1214, 1254), True, 'import numpy as np\n'), ((1427, 1445), 'numpy.amax', 'np.amax', (['out[1][:]'], {}), '(out[1][:])\n', (1434, 1445), True, 'import numpy as np\n'), ((245, 277), 'OSIM.Simulation.NetToComp.NetToComp', 'NetToComp', (['"""GilberMixerEasy.net"""'], {}), "('GilberMixerEasy.net')\n", (254, 277), False, 'from OSIM.Simulation.NetToComp import NetToComp\n')]
import numpy as np def get_fuel_v1(mass): return int(np.floor(mass / 3) - 2) def get_fuel_v2(mass): fuel = int(np.floor(mass / 3) - 2) if fuel <= 0: return 0 else: return fuel + get_fuel_v2(fuel) def load_inputs(filename): with open(filename) as f: return [int(line.strip()) for line in f] module_masses = load_inputs("input.txt") module_fuels = map(get_fuel_v2, module_masses) total = sum(module_fuels) print("Total: ", total)
[ "numpy.floor" ]
[((58, 76), 'numpy.floor', 'np.floor', (['(mass / 3)'], {}), '(mass / 3)\n', (66, 76), True, 'import numpy as np\n'), ((121, 139), 'numpy.floor', 'np.floor', (['(mass / 3)'], {}), '(mass / 3)\n', (129, 139), True, 'import numpy as np\n')]
import os import sys import numpy as np from scipy import signal import matplotlib.pyplot as plt import optotrak.calibrationcore as cc from utils.logger import * #import analysis.delayedfeedback.database as db #import analysis.delayedfeedback.datalayer as dtl import analysis.delayedfeedback.analyze_delayedfeedback as adf datapath = "../../../data/delayedfeedback" procpath = "../../../processed/delayedfeedback" def read_optotrak_offline_trajectory(blockpath): opto_filename = os.path.join(os.path.dirname(__file__), blockpath, "REC-001.OPTO.npy") data = np.load(opto_filename).astype(float) data[np.abs(data) > 1.0e6] = np.NAN return data def read_optotrak_odau(blockpath): odau_filename = os.path.join(os.path.dirname(__file__), blockpath, "REC-001.ODAU.npy") data = np.load(odau_filename).astype(float) return data def read_online_trajectory(blockpath): nplogfilename = os.path.join(os.path.dirname(__file__), blockpath + "/datarecorder.pkl") print("Reading {}".format(nplogfilename)) nplog = NPLog.from_file(nplogfilename) #print("Arrays logged: {}".format(nplog.get_names())) t, data = nplog.stack("realtimedata") framenumbers = np.squeeze(np.array([record.framenr for record in data])) trajectory = np.squeeze(np.array([record.data for record in data])) trajectory[np.abs(trajectory) > 1.0e6] = np.NAN x = np.arange(framenumbers[0], framenumbers[-1], 1) tr = np.stack([np.interp(x, framenumbers, trajectory[:, 0]), np.interp(x, framenumbers, trajectory[:, 1]), np.interp(x, framenumbers, trajectory[:, 2]),], axis=-1) t = np.interp(x, framenumbers, t) frametimes = np.squeeze(np.array([record.timestamp for record in data])) frametimes = np.interp(x, framenumbers, frametimes) # Best linear fit of frametimes to remove jitter n = len(frametimes) r = np.vstack([range(n), np.ones(n)]) ab = frametimes.dot(np.linalg.pinv(r)) tfit = ab.dot(r) return tfit, tr def realign(data1, data2): n = 10000 sh = 0 r = np.ones([n, 4]) r[:, :3] = data1[sh:sh+n] sh = 0 d = np.ones([n, 4]) d[:, :3] = data2[sh:sh+n] x = np.dot(r.T, np.linalg.pinv(d.T)) r = r[:, :3] d = np.dot(x, d.T).T[:, :3] d = np.ones([data2.shape[0], 4]) d[:, :3] = data2 data2 = np.dot(x, d.T).T[:, :3] return data2 def list_dirs(dirpath): return [os.path.join(dirpath, o) for o in os.listdir(dirpath) if os.path.isdir(os.path.join(dirpath,o))] def list_dirs_tree(dirpath): return [x[0] for x in os.walk(dirpath)][1:] def ensure_dir_exists(dirpath): if not os.path.exists(dirpath): os.makedirs(dirpath) def iterate_all_blocks(callback): subjectpathes = list_dirs(datapath) for subjectpath in subjectpathes: print("Session path \"{}\"".format(subjectpath)) blockpaths = list_dirs(subjectpath) for blockpath in blockpaths: print("Block path \"{}\"".format(blockpath)) callback(blockpath) def recover_dropped_frames(blockpath): savepath = blockpath.replace(datapath, procpath) savepath = os.path.join(os.path.dirname(__file__), savepath) if not os.path.exists(os.path.join(savepath, "optical.npy")): print("Reading block {}".format(blockpath)) exit() t, data = read_online_trajectory(blockpath) print("Recovered shape: {}".format(data.shape)) print("Saving to: {}".format(savepath)) ensure_dir_exists(savepath) np.save(os.path.join(savepath, "timestamps.npy"), t) np.save(os.path.join(savepath, "optical.npy"), data) def project_to_screen(blockpath): recover_dropped_frames(blockpath) savepath = blockpath.replace(datapath, procpath) savepath = os.path.join(os.path.dirname(__file__), savepath) if not os.path.exists(os.path.join(savepath, "screen_trajectory.npy")): calibration = cc.ProjectionCalibration() calibration.load_from_file(os.path.join(datapath, "projection_calibration.pkl")) trajectory = np.load(os.path.join(savepath, "optical.npy")) screen_data = calibration.apply_calibration(trajectory) np.save(os.path.join(savepath, "screen_trajectory.npy"), screen_data) def read_restored_trajectory(blockpath): recover_dropped_frames(blockpath) #print("Reading OPTO block {}".format(blockpath)) savepath = blockpath.replace(datapath, procpath) savepath = os.path.join(os.path.dirname(__file__), savepath) timestamps = np.load(os.path.join(savepath, "timestamps.npy")) trajectory = np.load(os.path.join(savepath, "optical.npy")) return timestamps, trajectory def read_projected_to_screen(blockpath): project_to_screen(blockpath) #print("Reading projected to screen data block {}".format(blockpath)) savepath = blockpath.replace(datapath, procpath) savepath = os.path.join(os.path.dirname(__file__), savepath) timestamps = np.load(os.path.join(savepath, "timestamps.npy")) trajectory = np.load(os.path.join(savepath, "screen_trajectory.npy")) return timestamps, trajectory def read_sync_EMG(blockpath): #print("Reading ODAU block {}".format(blockpath)) data = read_optotrak_odau(blockpath) #print(data.shape) sync = data[:, 0] emg = data[:, 1:] return sync, emg def filter_EMG(emg, fnyq=0.5 * 1200, fcut=15): b, a = signal.butter(2, fcut*1.25/fnyq) y = signal.filtfilt(b, a, np.abs(emg), axis=0, padlen=150) return y def filter_trajectory(x, fnyq=0.5 * 120, fcut=15): b, a = signal.butter(2, fcut*1.25/fnyq) y = signal.filtfilt(b, a, x, axis=0, padlen=150) return y def plot_EMG(emg, filtered): plt.plot(emg) plt.plot(filtered) plt.plot(np.arange(len(filtered))[::10], filtered[::10]) plt.show() return def plot_EMG_FFT(x): NFFT = 1024 # the length of the windowing segments Fs = 1200 #int(1.0 / dt) # the sampling frequency fig, (ax1, ax2) = plt.subplots(nrows=2) ax1.plot(np.abs(x)) Pxx, freqs, bins, im = ax2.specgram(x, NFFT=NFFT, Fs=Fs, noverlap=900) # The `specgram` method returns 4 objects. They are: # - Pxx: the periodogram # - freqs: the frequency vector # - bins: the centers of the time bins # - im: the matplotlib.image.AxesImage instance representing the data in the plot plt.show() #np.save(os.path.join(savepath, "EMG.npy"), data) def block_processor_filter_emg(blockpath): sync, emg = read_sync_EMG(blockpath) #emg = emg[:20000] filtered = filter_EMG(emg, fcut=1)[::10] # every 10-th t, trajectory = read_restored_trajectory(blockpath) print(filtered.shape, trajectory.shape) velocity = np.diff(trajectory, axis=0) acceleration = np.diff(velocity, axis=0) n = len(acceleration) print(n, filtered.shape, trajectory.shape) if np.abs(len(filtered) - len(trajectory)) > 5: return nx = 4 lag = 45 xy = np.hstack([filtered[:n-lag], trajectory[lag:n], velocity[lag:n], acceleration[lag:n]]) #xy = np.hstack([filtered[:n], trajectory[:n], velocity[:n], acceleration[:n]]) # Remove NaNs invalid = np.any(np.isnan(xy), axis=1) xy = xy[np.logical_not(invalid)] # Center the data xy_mean = np.nanmean(xy, axis=0) cxy = xy - xy_mean # Whiten the data w = 1.0 / np.sqrt(np.sum(cxy**2, axis=0)/len(cxy)) wxy = w * cxy # Cross-correlation a, b = wxy[:, :nx], wxy[:, nx:] for i in range(a.shape[1]): for j in range(b.shape[1]): cc = np.abs(signal.correlate(a[:, i], b[:, j])) t = len(cc) t0 = int(t/2) lag = np.argmax(cc)-t0 print(i, j, lag) plt.plot(range(-t0, t-t0), cc) plt.show() # Covariance matrix wxytwxy = np.dot(wxy.T, wxy)/len(wxy) plt.imshow(wxytwxy) plt.show() # Decode trajectory from EMG cov_xy = wxytwxy[:nx, nx:] cov_yx = wxytwxy[nx:, :nx] cov_xx = wxytwxy[:nx, :nx] print(wxytwxy.shape, cov_xy.shape) ystar = np.dot(cov_yx, np.linalg.inv(cov_xx)).dot(wxy[:, :nx].T).T print(ystar.shape) n = 2000 plt.plot(ystar[:n, :3] + [0, 5, 10]) plt.plot(wxy[:n, nx:nx+3] + [0, 5, 10]) plt.show() plt.plot(wxy[:, nx+1], wxy[:, nx+2]) plt.plot(ystar[:, 1], ystar[:, 2]) plt.show() #exit() #plot_EMG(emg, 10*filtered) #exit() def block_processor_optmial_filter(blockpath): sync, emg = read_sync_EMG(blockpath) nemg = emg.shape[-1] t, trajectory = read_restored_trajectory(blockpath) velocity = np.diff(trajectory, axis=0) acceleration = np.diff(velocity, axis=0) #velocity = filter_trajectory(velocity, fcut=30) # returns all NaNs #acceleration = filter_trajectory(acceleration) # returns all NaNs filtertype = "blocksum" if filtertype == "blocksum": # Block sum filer emg = np.abs(emg) emg = np.reshape(emg, newshape=(len(trajectory), emg.shape[-1], -1)) emg = np.sum(emg, axis=-1) elif filtertype == "lowpass": emg = filter_EMG(emg, fcut=50)[::10] # every 10-th #plt.plot(emg[:2000]) #plt.show() # Low-pass filter n = len(acceleration) if np.abs(len(emg) - len(trajectory)) > 5: return minlag = -60 maxlag = -10 x = np.vstack([emg[-minlag+lag:n+lag, i] for i in range(emg.shape[-1]) for lag in range(minlag, maxlag)]).T #x = np.hstack([emg[-minlag+lag:n+lag] for lag in range(minlag, maxlag)]) y = np.hstack([trajectory[-minlag:n], velocity[-minlag:n], acceleration[-minlag:n]]) xy = np.hstack([x, y]) # Remove NaNs invalid = np.any(np.isnan(xy), axis=1) ninvalid = np.count_nonzero(invalid) print("Invalid samples: {}% ({} of {})".format(100*ninvalid/len(xy), ninvalid, len(xy))) xy = xy[np.logical_not(invalid)] # Center the data xy_mean = np.nanmean(xy, axis=0) cxy = xy - xy_mean # Whiten the data w = 1.0 / np.sqrt(np.sum(cxy**2, axis=0)/len(cxy)) wxy = w * cxy nx = x.shape[1] print("Regressor size: {}".format(nx)) # Covariance matrix wxytwxy = np.dot(wxy.T, wxy)/len(wxy) #plt.imshow(wxytwxy) #plt.title("Covariance matrix") #plt.show() # Decode trajectory from EMG cov_xy = wxytwxy[:nx, nx:] cov_yx = wxytwxy[nx:, :nx] cov_xx = wxytwxy[:nx, :nx] cov_yy = wxytwxy[nx:, nx:] # PCA E, V = np.linalg.eigh(cxy.T.dot(cxy)[:4, :4]/len(cxy)) print("EMG eigenvalues: {}".format(E/np.max(E))) # Optimal decoder decoder = np.dot(cov_yx, np.linalg.inv(cov_xx)) decoder_covar = cov_yy - np.dot(cov_yx, np.linalg.inv(cov_xx).dot(cov_xy)) #print(decoder.shape) #plt.imshow(decoder) #plt.show() for i in range(0, 3): for iemg in range(nemg): plt.subplot(3, nemg, iemg + nemg*i+1) plt.plot(decoder[i*3:(i+1)*3, iemg*nx/nemg:(iemg+1)*nx/nemg].T) plt.title("Ch {}, {}".format(iemg, ["position", "velocity", "acceleration"][i])) plt.show() ystar = decoder.dot(wxy[:, :nx].T).T n = 20000 for f, feat in zip(range(0, 3), ["position", "velocity", "acceleration"]): fig = plt.figure() fig.suptitle(feat) for i, coorname in zip(range(0, 3), ["x", "y", "z"]): # coordinates plt.subplot(3, 1, i+1) k = f*3 + i yi = ystar[:n, k] ei = decoder_covar[k, k] plt.fill_between(range(len(yi)), yi-ei, yi+ei, alpha=0.2, linewidth=1) plt.plot(yi, linewidth=1) plt.plot(wxy[:n, nx+k], linewidth=1) plt.title(coorname) plt.show() if __name__ == "__main__": # Recover the missing frames iterate_all_blocks(recover_dropped_frames) iterate_all_blocks(project_to_screen) #exit() # Filter the EMG iterate_all_blocks(block_processor_optmial_filter) exit() datapath = "../../../data/delayedfeedback" procpath = "../../../processed/delayedfeedback" subjectpathes = list_dirs(datapath) for subjectpath in subjectpathes: print("Session path \"{}\"".format(subjectpath)) blockpaths = list_dirs(subjectpath) for blockpath in blockpaths: print("Block path \"{}\"".format(blockpath)) savepath = blockpath.replace(datapath, procpath) if not os.path.exists(savepath): print("Reading block {}".format(blockpath)) t, data = read_online_trajectory(blockpath) print("Recovered shape: {}".format(data.shape)) print("Saving to: {}".format(savepath)) ensure_dir_exists(savepath) np.save(os.path.join(savepath, "timestamps.npy"), t) np.save(os.path.join(savepath, "optical.npy"), data)
[ "matplotlib.pyplot.title", "numpy.load", "numpy.abs", "numpy.sum", "numpy.argmax", "os.walk", "numpy.ones", "numpy.isnan", "matplotlib.pyplot.figure", "numpy.arange", "numpy.interp", "os.path.join", "numpy.linalg.pinv", "numpy.nanmean", "matplotlib.pyplot.imshow", "os.path.dirname", "numpy.logical_not", "os.path.exists", "numpy.max", "matplotlib.pyplot.subplots", "scipy.signal.butter", "matplotlib.pyplot.show", "scipy.signal.correlate", "numpy.hstack", "numpy.linalg.inv", "numpy.dot", "os.listdir", "matplotlib.pyplot.subplot", "numpy.count_nonzero", "os.makedirs", "scipy.signal.filtfilt", "matplotlib.pyplot.plot", "optotrak.calibrationcore.ProjectionCalibration", "numpy.diff", "numpy.array" ]
[((1394, 1441), 'numpy.arange', 'np.arange', (['framenumbers[0]', 'framenumbers[-1]', '(1)'], {}), '(framenumbers[0], framenumbers[-1], 1)\n', (1403, 1441), True, 'import numpy as np\n'), ((1659, 1688), 'numpy.interp', 'np.interp', (['x', 'framenumbers', 't'], {}), '(x, framenumbers, t)\n', (1668, 1688), True, 'import numpy as np\n'), ((1784, 1822), 'numpy.interp', 'np.interp', (['x', 'framenumbers', 'frametimes'], {}), '(x, framenumbers, frametimes)\n', (1793, 1822), True, 'import numpy as np\n'), ((2115, 2130), 'numpy.ones', 'np.ones', (['[n, 4]'], {}), '([n, 4])\n', (2122, 2130), True, 'import numpy as np\n'), ((2185, 2200), 'numpy.ones', 'np.ones', (['[n, 4]'], {}), '([n, 4])\n', (2192, 2200), True, 'import numpy as np\n'), ((2340, 2368), 'numpy.ones', 'np.ones', (['[data2.shape[0], 4]'], {}), '([data2.shape[0], 4])\n', (2347, 2368), True, 'import numpy as np\n'), ((5470, 5506), 'scipy.signal.butter', 'signal.butter', (['(2)', '(fcut * 1.25 / fnyq)'], {}), '(2, fcut * 1.25 / fnyq)\n', (5483, 5506), False, 'from scipy import signal\n'), ((5648, 5684), 'scipy.signal.butter', 'signal.butter', (['(2)', '(fcut * 1.25 / fnyq)'], {}), '(2, fcut * 1.25 / fnyq)\n', (5661, 5684), False, 'from scipy import signal\n'), ((5689, 5733), 'scipy.signal.filtfilt', 'signal.filtfilt', (['b', 'a', 'x'], {'axis': '(0)', 'padlen': '(150)'}), '(b, a, x, axis=0, padlen=150)\n', (5704, 5733), False, 'from scipy import signal\n'), ((5782, 5795), 'matplotlib.pyplot.plot', 'plt.plot', (['emg'], {}), '(emg)\n', (5790, 5795), True, 'import matplotlib.pyplot as plt\n'), ((5800, 5818), 'matplotlib.pyplot.plot', 'plt.plot', (['filtered'], {}), '(filtered)\n', (5808, 5818), True, 'import matplotlib.pyplot as plt\n'), ((5884, 5894), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5892, 5894), True, 'import matplotlib.pyplot as plt\n'), ((6062, 6083), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'nrows': '(2)'}), '(nrows=2)\n', (6074, 6083), True, 'import matplotlib.pyplot as plt\n'), ((6438, 6448), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6446, 6448), True, 'import matplotlib.pyplot as plt\n'), ((6788, 6815), 'numpy.diff', 'np.diff', (['trajectory'], {'axis': '(0)'}), '(trajectory, axis=0)\n', (6795, 6815), True, 'import numpy as np\n'), ((6835, 6860), 'numpy.diff', 'np.diff', (['velocity'], {'axis': '(0)'}), '(velocity, axis=0)\n', (6842, 6860), True, 'import numpy as np\n'), ((7034, 7126), 'numpy.hstack', 'np.hstack', (['[filtered[:n - lag], trajectory[lag:n], velocity[lag:n], acceleration[lag:n]]'], {}), '([filtered[:n - lag], trajectory[lag:n], velocity[lag:n],\n acceleration[lag:n]])\n', (7043, 7126), True, 'import numpy as np\n'), ((7346, 7368), 'numpy.nanmean', 'np.nanmean', (['xy'], {'axis': '(0)'}), '(xy, axis=0)\n', (7356, 7368), True, 'import numpy as np\n'), ((7834, 7844), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (7842, 7844), True, 'import matplotlib.pyplot as plt\n'), ((7916, 7935), 'matplotlib.pyplot.imshow', 'plt.imshow', (['wxytwxy'], {}), '(wxytwxy)\n', (7926, 7935), True, 'import matplotlib.pyplot as plt\n'), ((7940, 7950), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (7948, 7950), True, 'import matplotlib.pyplot as plt\n'), ((8233, 8269), 'matplotlib.pyplot.plot', 'plt.plot', (['(ystar[:n, :3] + [0, 5, 10])'], {}), '(ystar[:n, :3] + [0, 5, 10])\n', (8241, 8269), True, 'import matplotlib.pyplot as plt\n'), ((8274, 8315), 'matplotlib.pyplot.plot', 'plt.plot', (['(wxy[:n, nx:nx + 3] + [0, 5, 10])'], {}), '(wxy[:n, nx:nx + 3] + [0, 5, 10])\n', (8282, 8315), True, 'import matplotlib.pyplot as plt\n'), ((8318, 8328), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (8326, 8328), True, 'import matplotlib.pyplot as plt\n'), ((8334, 8374), 'matplotlib.pyplot.plot', 'plt.plot', (['wxy[:, nx + 1]', 'wxy[:, nx + 2]'], {}), '(wxy[:, nx + 1], wxy[:, nx + 2])\n', (8342, 8374), True, 'import matplotlib.pyplot as plt\n'), ((8375, 8409), 'matplotlib.pyplot.plot', 'plt.plot', (['ystar[:, 1]', 'ystar[:, 2]'], {}), '(ystar[:, 1], ystar[:, 2])\n', (8383, 8409), True, 'import matplotlib.pyplot as plt\n'), ((8414, 8424), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (8422, 8424), True, 'import matplotlib.pyplot as plt\n'), ((8673, 8700), 'numpy.diff', 'np.diff', (['trajectory'], {'axis': '(0)'}), '(trajectory, axis=0)\n', (8680, 8700), True, 'import numpy as np\n'), ((8720, 8745), 'numpy.diff', 'np.diff', (['velocity'], {'axis': '(0)'}), '(velocity, axis=0)\n', (8727, 8745), True, 'import numpy as np\n'), ((9623, 9708), 'numpy.hstack', 'np.hstack', (['[trajectory[-minlag:n], velocity[-minlag:n], acceleration[-minlag:n]]'], {}), '([trajectory[-minlag:n], velocity[-minlag:n], acceleration[-minlag:n]]\n )\n', (9632, 9708), True, 'import numpy as np\n'), ((9713, 9730), 'numpy.hstack', 'np.hstack', (['[x, y]'], {}), '([x, y])\n', (9722, 9730), True, 'import numpy as np\n'), ((9812, 9837), 'numpy.count_nonzero', 'np.count_nonzero', (['invalid'], {}), '(invalid)\n', (9828, 9837), True, 'import numpy as np\n'), ((10009, 10031), 'numpy.nanmean', 'np.nanmean', (['xy'], {'axis': '(0)'}), '(xy, axis=0)\n', (10019, 10031), True, 'import numpy as np\n'), ((11169, 11179), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (11177, 11179), True, 'import matplotlib.pyplot as plt\n'), ((502, 527), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (517, 527), False, 'import os\n'), ((734, 759), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (749, 759), False, 'import os\n'), ((934, 959), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (949, 959), False, 'import os\n'), ((1213, 1258), 'numpy.array', 'np.array', (['[record.framenr for record in data]'], {}), '([record.framenr for record in data])\n', (1221, 1258), True, 'import numpy as np\n'), ((1289, 1331), 'numpy.array', 'np.array', (['[record.data for record in data]'], {}), '([record.data for record in data])\n', (1297, 1331), True, 'import numpy as np\n'), ((1718, 1765), 'numpy.array', 'np.array', (['[record.timestamp for record in data]'], {}), '([record.timestamp for record in data])\n', (1726, 1765), True, 'import numpy as np\n'), ((1975, 1992), 'numpy.linalg.pinv', 'np.linalg.pinv', (['r'], {}), '(r)\n', (1989, 1992), True, 'import numpy as np\n'), ((2252, 2271), 'numpy.linalg.pinv', 'np.linalg.pinv', (['d.T'], {}), '(d.T)\n', (2266, 2271), True, 'import numpy as np\n'), ((2482, 2506), 'os.path.join', 'os.path.join', (['dirpath', 'o'], {}), '(dirpath, o)\n', (2494, 2506), False, 'import os\n'), ((2706, 2729), 'os.path.exists', 'os.path.exists', (['dirpath'], {}), '(dirpath)\n', (2720, 2729), False, 'import os\n'), ((2739, 2759), 'os.makedirs', 'os.makedirs', (['dirpath'], {}), '(dirpath)\n', (2750, 2759), False, 'import os\n'), ((3225, 3250), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (3240, 3250), False, 'import os\n'), ((3865, 3890), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (3880, 3890), False, 'import os\n'), ((4000, 4026), 'optotrak.calibrationcore.ProjectionCalibration', 'cc.ProjectionCalibration', ([], {}), '()\n', (4024, 4026), True, 'import optotrak.calibrationcore as cc\n'), ((4550, 4575), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (4565, 4575), False, 'import os\n'), ((4612, 4652), 'os.path.join', 'os.path.join', (['savepath', '"""timestamps.npy"""'], {}), "(savepath, 'timestamps.npy')\n", (4624, 4652), False, 'import os\n'), ((4679, 4716), 'os.path.join', 'os.path.join', (['savepath', '"""optical.npy"""'], {}), "(savepath, 'optical.npy')\n", (4691, 4716), False, 'import os\n'), ((4983, 5008), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (4998, 5008), False, 'import os\n'), ((5045, 5085), 'os.path.join', 'os.path.join', (['savepath', '"""timestamps.npy"""'], {}), "(savepath, 'timestamps.npy')\n", (5057, 5085), False, 'import os\n'), ((5112, 5159), 'os.path.join', 'os.path.join', (['savepath', '"""screen_trajectory.npy"""'], {}), "(savepath, 'screen_trajectory.npy')\n", (5124, 5159), False, 'import os\n'), ((5533, 5544), 'numpy.abs', 'np.abs', (['emg'], {}), '(emg)\n', (5539, 5544), True, 'import numpy as np\n'), ((6097, 6106), 'numpy.abs', 'np.abs', (['x'], {}), '(x)\n', (6103, 6106), True, 'import numpy as np\n'), ((7246, 7258), 'numpy.isnan', 'np.isnan', (['xy'], {}), '(xy)\n', (7254, 7258), True, 'import numpy as np\n'), ((7280, 7303), 'numpy.logical_not', 'np.logical_not', (['invalid'], {}), '(invalid)\n', (7294, 7303), True, 'import numpy as np\n'), ((7884, 7902), 'numpy.dot', 'np.dot', (['wxy.T', 'wxy'], {}), '(wxy.T, wxy)\n', (7890, 7902), True, 'import numpy as np\n'), ((9003, 9014), 'numpy.abs', 'np.abs', (['emg'], {}), '(emg)\n', (9009, 9014), True, 'import numpy as np\n'), ((9106, 9126), 'numpy.sum', 'np.sum', (['emg'], {'axis': '(-1)'}), '(emg, axis=-1)\n', (9112, 9126), True, 'import numpy as np\n'), ((9775, 9787), 'numpy.isnan', 'np.isnan', (['xy'], {}), '(xy)\n', (9783, 9787), True, 'import numpy as np\n'), ((9943, 9966), 'numpy.logical_not', 'np.logical_not', (['invalid'], {}), '(invalid)\n', (9957, 9966), True, 'import numpy as np\n'), ((10262, 10280), 'numpy.dot', 'np.dot', (['wxy.T', 'wxy'], {}), '(wxy.T, wxy)\n', (10268, 10280), True, 'import numpy as np\n'), ((10713, 10734), 'numpy.linalg.inv', 'np.linalg.inv', (['cov_xx'], {}), '(cov_xx)\n', (10726, 10734), True, 'import numpy as np\n'), ((11338, 11350), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (11348, 11350), True, 'import matplotlib.pyplot as plt\n'), ((11793, 11803), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (11801, 11803), True, 'import matplotlib.pyplot as plt\n'), ((571, 593), 'numpy.load', 'np.load', (['opto_filename'], {}), '(opto_filename)\n', (578, 593), True, 'import numpy as np\n'), ((617, 629), 'numpy.abs', 'np.abs', (['data'], {}), '(data)\n', (623, 629), True, 'import numpy as np\n'), ((803, 825), 'numpy.load', 'np.load', (['odau_filename'], {}), '(odau_filename)\n', (810, 825), True, 'import numpy as np\n'), ((1348, 1366), 'numpy.abs', 'np.abs', (['trajectory'], {}), '(trajectory)\n', (1354, 1366), True, 'import numpy as np\n'), ((1462, 1506), 'numpy.interp', 'np.interp', (['x', 'framenumbers', 'trajectory[:, 0]'], {}), '(x, framenumbers, trajectory[:, 0])\n', (1471, 1506), True, 'import numpy as np\n'), ((1528, 1572), 'numpy.interp', 'np.interp', (['x', 'framenumbers', 'trajectory[:, 1]'], {}), '(x, framenumbers, trajectory[:, 1])\n', (1537, 1572), True, 'import numpy as np\n'), ((1594, 1638), 'numpy.interp', 'np.interp', (['x', 'framenumbers', 'trajectory[:, 2]'], {}), '(x, framenumbers, trajectory[:, 2])\n', (1603, 1638), True, 'import numpy as np\n'), ((1938, 1948), 'numpy.ones', 'np.ones', (['n'], {}), '(n)\n', (1945, 1948), True, 'import numpy as np\n'), ((2303, 2317), 'numpy.dot', 'np.dot', (['x', 'd.T'], {}), '(x, d.T)\n', (2309, 2317), True, 'import numpy as np\n'), ((2402, 2416), 'numpy.dot', 'np.dot', (['x', 'd.T'], {}), '(x, d.T)\n', (2408, 2416), True, 'import numpy as np\n'), ((2516, 2535), 'os.listdir', 'os.listdir', (['dirpath'], {}), '(dirpath)\n', (2526, 2535), False, 'import os\n'), ((3288, 3325), 'os.path.join', 'os.path.join', (['savepath', '"""optical.npy"""'], {}), "(savepath, 'optical.npy')\n", (3300, 3325), False, 'import os\n'), ((3604, 3644), 'os.path.join', 'os.path.join', (['savepath', '"""timestamps.npy"""'], {}), "(savepath, 'timestamps.npy')\n", (3616, 3644), False, 'import os\n'), ((3665, 3702), 'os.path.join', 'os.path.join', (['savepath', '"""optical.npy"""'], {}), "(savepath, 'optical.npy')\n", (3677, 3702), False, 'import os\n'), ((3928, 3975), 'os.path.join', 'os.path.join', (['savepath', '"""screen_trajectory.npy"""'], {}), "(savepath, 'screen_trajectory.npy')\n", (3940, 3975), False, 'import os\n'), ((4062, 4114), 'os.path.join', 'os.path.join', (['datapath', '"""projection_calibration.pkl"""'], {}), "(datapath, 'projection_calibration.pkl')\n", (4074, 4114), False, 'import os\n'), ((4145, 4182), 'os.path.join', 'os.path.join', (['savepath', '"""optical.npy"""'], {}), "(savepath, 'optical.npy')\n", (4157, 4182), False, 'import os\n'), ((4264, 4311), 'os.path.join', 'os.path.join', (['savepath', '"""screen_trajectory.npy"""'], {}), "(savepath, 'screen_trajectory.npy')\n", (4276, 4311), False, 'import os\n'), ((10958, 10999), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(3)', 'nemg', '(iemg + nemg * i + 1)'], {}), '(3, nemg, iemg + nemg * i + 1)\n', (10969, 10999), True, 'import matplotlib.pyplot as plt\n'), ((11008, 11087), 'matplotlib.pyplot.plot', 'plt.plot', (['decoder[i * 3:(i + 1) * 3, iemg * nx / nemg:(iemg + 1) * nx / nemg].T'], {}), '(decoder[i * 3:(i + 1) * 3, iemg * nx / nemg:(iemg + 1) * nx / nemg].T)\n', (11016, 11087), True, 'import matplotlib.pyplot as plt\n'), ((11467, 11491), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(3)', '(1)', '(i + 1)'], {}), '(3, 1, i + 1)\n', (11478, 11491), True, 'import matplotlib.pyplot as plt\n'), ((11677, 11702), 'matplotlib.pyplot.plot', 'plt.plot', (['yi'], {'linewidth': '(1)'}), '(yi, linewidth=1)\n', (11685, 11702), True, 'import matplotlib.pyplot as plt\n'), ((11715, 11753), 'matplotlib.pyplot.plot', 'plt.plot', (['wxy[:n, nx + k]'], {'linewidth': '(1)'}), '(wxy[:n, nx + k], linewidth=1)\n', (11723, 11753), True, 'import matplotlib.pyplot as plt\n'), ((11764, 11783), 'matplotlib.pyplot.title', 'plt.title', (['coorname'], {}), '(coorname)\n', (11773, 11783), True, 'import matplotlib.pyplot as plt\n'), ((2553, 2577), 'os.path.join', 'os.path.join', (['dirpath', 'o'], {}), '(dirpath, o)\n', (2565, 2577), False, 'import os\n'), ((2639, 2655), 'os.walk', 'os.walk', (['dirpath'], {}), '(dirpath)\n', (2646, 2655), False, 'import os\n'), ((7441, 7465), 'numpy.sum', 'np.sum', (['(cxy ** 2)'], {'axis': '(0)'}), '(cxy ** 2, axis=0)\n', (7447, 7465), True, 'import numpy as np\n'), ((7645, 7679), 'scipy.signal.correlate', 'signal.correlate', (['a[:, i]', 'b[:, j]'], {}), '(a[:, i], b[:, j])\n', (7661, 7679), False, 'from scipy import signal\n'), ((7749, 7762), 'numpy.argmax', 'np.argmax', (['cc'], {}), '(cc)\n', (7758, 7762), True, 'import numpy as np\n'), ((10104, 10128), 'numpy.sum', 'np.sum', (['(cxy ** 2)'], {'axis': '(0)'}), '(cxy ** 2, axis=0)\n', (10110, 10128), True, 'import numpy as np\n'), ((10645, 10654), 'numpy.max', 'np.max', (['E'], {}), '(E)\n', (10651, 10654), True, 'import numpy as np\n'), ((12520, 12544), 'os.path.exists', 'os.path.exists', (['savepath'], {}), '(savepath)\n', (12534, 12544), False, 'import os\n'), ((8148, 8169), 'numpy.linalg.inv', 'np.linalg.inv', (['cov_xx'], {}), '(cov_xx)\n', (8161, 8169), True, 'import numpy as np\n'), ((10780, 10801), 'numpy.linalg.inv', 'np.linalg.inv', (['cov_xx'], {}), '(cov_xx)\n', (10793, 10801), True, 'import numpy as np\n'), ((12859, 12899), 'os.path.join', 'os.path.join', (['savepath', '"""timestamps.npy"""'], {}), "(savepath, 'timestamps.npy')\n", (12871, 12899), False, 'import os\n'), ((12928, 12965), 'os.path.join', 'os.path.join', (['savepath', '"""optical.npy"""'], {}), "(savepath, 'optical.npy')\n", (12940, 12965), False, 'import os\n')]
import numpy as np import time from keras.callbacks import TensorBoard, ModelCheckpoint from keras.models import Model, Input, load_model from keras.layers.core import Activation from keras.layers.core import Dense, Dropout from keras.layers import concatenate from keras.initializers import he_normal from DataGenerator import DataGenerator class MLP: """ Creates an MLP that predicts side advantage in a given chess position. This class compiles a keras model, as well as evaluates pre-existing models. To create training data, see stockfish_eval.py """ def __init__(self, model_name, pretrained_weights, epochs=200, batch_size=128, activation_func='relu', dropout=0.2, num_classes=2): np.random.seed(42) self.model_filename = model_name + '.model' self.model_name = model_name self.pretrained_weights = pretrained_weights self.epochs = epochs self.batch_size = batch_size self.activation_func = activation_func self.dropout = dropout self.num_classes = num_classes self.model = None def train_with_datagen(self): tensorboard = TensorBoard(log_dir="logs\\{}{}".format(self.model_name, time.time())) epoch_path = str(self.model_name) + '-{epoch:02d}.model' checkpoint = ModelCheckpoint(epoch_path, period=4) # training_boards = list(np.load('known_scores(2.7).npy').item().items()) # val_boards = list(np.load('test_set(166438)_old.npy').item().items()) training_boards = list(np.load('train(18000000)_new.npy').item().items()) val_boards = list(np.load('test(2000000)_new.npy').item().items()) # training_boards = list(np.load('expanded_train(3600000).npy').item().items()) # val_boards = list(np.load('expanded_test(400000).npy').item().items()) # training_boards = list(np.load('train_set(5000000)_FICS.npy').item().items()) # val_boards = list(np.load('test_set(500000)_FICS.npy').item().items()) if self.num_classes > 0: print('Ternary classification') training_generator = DataGenerator(training_boards, batch_size=128, categorical=True) validation_generator = DataGenerator(val_boards, batch_size=128, categorical=True) self.ternary_classifier() else: training_generator = DataGenerator(training_boards, batch_size=128) validation_generator = DataGenerator(val_boards, batch_size=128) self.regression_with_encoder() self.model.fit_generator(generator=training_generator, validation_data=validation_generator, use_multiprocessing=True, workers=2, epochs=32, verbose=True, callbacks=[tensorboard, checkpoint]) # Classify White Win / Black Win / Draw states def ternary_classifier(self): board_input = Input(shape=((64 * 12) + 7,), name='board_input') x = Dense(1024)(board_input) x = Activation(activation=self.activation_func)(x) x = Dropout(rate=self.dropout)(x) x = Dense(512)(x) x = Activation(activation=self.activation_func)(x) x = Dropout(rate=self.dropout)(x) x = Dense(256)(x) x = Activation(activation=self.activation_func)(x) x = Dropout(rate=self.dropout)(x) main_output = Dense(3, name='main_output')(x) main_output = Activation(activation='softmax')(main_output) self.model = Model(inputs=[board_input], outputs=[main_output]) self.model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) # Classify White Win/Black Win states def binary_classifier(self): board_input = Input(shape=((64 * 12) + 3,), name='board_input') x = Dense(1024)(board_input) x = Activation(activation=self.activation_func)(x) x = Dropout(self.dropout)(x) x = Dense(512)(x) x = Activation(activation=self.activation_func)(x) x = Dropout(self.dropout)(x) x = Dense(256)(x) x = Activation(activation=self.activation_func)(x) x = Dropout(self.dropout)(x) main_output = Dense(1, name='main_output')(x) main_output = Activation(activation='sigmoid')(main_output) self.model = Model(inputs=[board_input], outputs=[main_output]) self.model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) def regression(self): board_input = Input(shape=((64 * 12) + 7,), name='board_input') x = Dense(2048)(board_input) x = Activation(activation=self.activation_func)(x) x = Dropout(self.dropout)(x) x = Dense(2048)(x) x = Activation(activation=self.activation_func)(x) x = Dropout(self.dropout)(x) x = Dense(2048)(x) x = Activation(activation=self.activation_func)(x) x = Dropout(self.dropout)(x) main_output = Dense(1, name='main_output')(x) main_output = Activation(activation='tanh')(main_output) self.model = Model(inputs=[board_input], outputs=[main_output]) self.model.compile(optimizer='adam', loss='mean_squared_error', metrics=['mse']) def regression_with_encoder(self): encoder = load_model('encoder_new_relu-06.model') # encoder_model = Model(inputs=encoder.input, outputs=encoder.get_layer('activation_3').output) board_input = Input(shape=((64 * 12) + 7,), name='board_input') encoded = Dense(512, name='encoder_1', weights=encoder.get_layer('encoder_1').get_weights())(board_input) encoded = Activation(activation='relu', name='act1')(encoded) encoded = Dense(256, name='encoder_2', weights=encoder.get_layer('encoder_2').get_weights())(encoded) encoded = Activation(activation='relu', name='act2')(encoded) encoded = Dense(128, name='encoder_3', weights=encoder.get_layer('encoder_3').get_weights())(encoded) encoded = Activation(activation='relu', name='act3')(encoded) x = Dense(2048, name='eval_1')(board_input) x = Activation(activation=self.activation_func, name='act4')(x) x = Dropout(self.dropout, name='drop1')(x) x = Dense(2048, name='eval_2')(x) x = Activation(activation=self.activation_func, name='act5')(x) x = Dropout(self.dropout, name='drop2')(x) x = Dense(2048, name='eval_3')(x) x = Activation(activation=self.activation_func, name='act6')(x) x = Dropout(self.dropout, name='drop3')(x) main_output = Dense(1, name='evaluation')(x) main_output = Activation(activation='tanh', name='final_output')(main_output) self.model = Model(inputs=[board_input], outputs=[main_output]) self.model.compile(optimizer='adam', loss='mean_squared_error', metrics=['mse']) print(self.model.summary()) if __name__ == '__main__': NN_regression_encoder = MLP('regression_18mill', num_classes=0, activation_func='relu', pretrained_weights=None, dropout=0.25) NN_regression_encoder.train_with_datagen()
[ "keras.models.load_model", "keras.layers.core.Dense", "numpy.load", "numpy.random.seed", "keras.callbacks.ModelCheckpoint", "keras.layers.core.Activation", "keras.models.Input", "keras.models.Model", "time.time", "DataGenerator.DataGenerator", "keras.layers.core.Dropout" ]
[((844, 862), 'numpy.random.seed', 'np.random.seed', (['(42)'], {}), '(42)\n', (858, 862), True, 'import numpy as np\n'), ((1429, 1466), 'keras.callbacks.ModelCheckpoint', 'ModelCheckpoint', (['epoch_path'], {'period': '(4)'}), '(epoch_path, period=4)\n', (1444, 1466), False, 'from keras.callbacks import TensorBoard, ModelCheckpoint\n'), ((3156, 3203), 'keras.models.Input', 'Input', ([], {'shape': '(64 * 12 + 7,)', 'name': '"""board_input"""'}), "(shape=(64 * 12 + 7,), name='board_input')\n", (3161, 3203), False, 'from keras.models import Model, Input, load_model\n'), ((3746, 3796), 'keras.models.Model', 'Model', ([], {'inputs': '[board_input]', 'outputs': '[main_output]'}), '(inputs=[board_input], outputs=[main_output])\n', (3751, 3796), False, 'from keras.models import Model, Input, load_model\n'), ((4056, 4103), 'keras.models.Input', 'Input', ([], {'shape': '(64 * 12 + 3,)', 'name': '"""board_input"""'}), "(shape=(64 * 12 + 3,), name='board_input')\n", (4061, 4103), False, 'from keras.models import Model, Input, load_model\n'), ((4631, 4681), 'keras.models.Model', 'Model', ([], {'inputs': '[board_input]', 'outputs': '[main_output]'}), '(inputs=[board_input], outputs=[main_output])\n', (4636, 4681), False, 'from keras.models import Model, Input, load_model\n'), ((4881, 4928), 'keras.models.Input', 'Input', ([], {'shape': '(64 * 12 + 7,)', 'name': '"""board_input"""'}), "(shape=(64 * 12 + 7,), name='board_input')\n", (4886, 4928), False, 'from keras.models import Model, Input, load_model\n'), ((5456, 5506), 'keras.models.Model', 'Model', ([], {'inputs': '[board_input]', 'outputs': '[main_output]'}), '(inputs=[board_input], outputs=[main_output])\n', (5461, 5506), False, 'from keras.models import Model, Input, load_model\n'), ((5709, 5748), 'keras.models.load_model', 'load_model', (['"""encoder_new_relu-06.model"""'], {}), "('encoder_new_relu-06.model')\n", (5719, 5748), False, 'from keras.models import Model, Input, load_model\n'), ((5875, 5922), 'keras.models.Input', 'Input', ([], {'shape': '(64 * 12 + 7,)', 'name': '"""board_input"""'}), "(shape=(64 * 12 + 7,), name='board_input')\n", (5880, 5922), False, 'from keras.models import Model, Input, load_model\n'), ((7158, 7208), 'keras.models.Model', 'Model', ([], {'inputs': '[board_input]', 'outputs': '[main_output]'}), '(inputs=[board_input], outputs=[main_output])\n', (7163, 7208), False, 'from keras.models import Model, Input, load_model\n'), ((2237, 2301), 'DataGenerator.DataGenerator', 'DataGenerator', (['training_boards'], {'batch_size': '(128)', 'categorical': '(True)'}), '(training_boards, batch_size=128, categorical=True)\n', (2250, 2301), False, 'from DataGenerator import DataGenerator\n'), ((2337, 2396), 'DataGenerator.DataGenerator', 'DataGenerator', (['val_boards'], {'batch_size': '(128)', 'categorical': '(True)'}), '(val_boards, batch_size=128, categorical=True)\n', (2350, 2396), False, 'from DataGenerator import DataGenerator\n'), ((2482, 2528), 'DataGenerator.DataGenerator', 'DataGenerator', (['training_boards'], {'batch_size': '(128)'}), '(training_boards, batch_size=128)\n', (2495, 2528), False, 'from DataGenerator import DataGenerator\n'), ((2564, 2605), 'DataGenerator.DataGenerator', 'DataGenerator', (['val_boards'], {'batch_size': '(128)'}), '(val_boards, batch_size=128)\n', (2577, 2605), False, 'from DataGenerator import DataGenerator\n'), ((3219, 3230), 'keras.layers.core.Dense', 'Dense', (['(1024)'], {}), '(1024)\n', (3224, 3230), False, 'from keras.layers.core import Dense, Dropout\n'), ((3256, 3299), 'keras.layers.core.Activation', 'Activation', ([], {'activation': 'self.activation_func'}), '(activation=self.activation_func)\n', (3266, 3299), False, 'from keras.layers.core import Activation\n'), ((3315, 3341), 'keras.layers.core.Dropout', 'Dropout', ([], {'rate': 'self.dropout'}), '(rate=self.dropout)\n', (3322, 3341), False, 'from keras.layers.core import Dense, Dropout\n'), ((3358, 3368), 'keras.layers.core.Dense', 'Dense', (['(512)'], {}), '(512)\n', (3363, 3368), False, 'from keras.layers.core import Dense, Dropout\n'), ((3384, 3427), 'keras.layers.core.Activation', 'Activation', ([], {'activation': 'self.activation_func'}), '(activation=self.activation_func)\n', (3394, 3427), False, 'from keras.layers.core import Activation\n'), ((3443, 3469), 'keras.layers.core.Dropout', 'Dropout', ([], {'rate': 'self.dropout'}), '(rate=self.dropout)\n', (3450, 3469), False, 'from keras.layers.core import Dense, Dropout\n'), ((3486, 3496), 'keras.layers.core.Dense', 'Dense', (['(256)'], {}), '(256)\n', (3491, 3496), False, 'from keras.layers.core import Dense, Dropout\n'), ((3512, 3555), 'keras.layers.core.Activation', 'Activation', ([], {'activation': 'self.activation_func'}), '(activation=self.activation_func)\n', (3522, 3555), False, 'from keras.layers.core import Activation\n'), ((3571, 3597), 'keras.layers.core.Dropout', 'Dropout', ([], {'rate': 'self.dropout'}), '(rate=self.dropout)\n', (3578, 3597), False, 'from keras.layers.core import Dense, Dropout\n'), ((3624, 3652), 'keras.layers.core.Dense', 'Dense', (['(3)'], {'name': '"""main_output"""'}), "(3, name='main_output')\n", (3629, 3652), False, 'from keras.layers.core import Dense, Dropout\n'), ((3678, 3710), 'keras.layers.core.Activation', 'Activation', ([], {'activation': '"""softmax"""'}), "(activation='softmax')\n", (3688, 3710), False, 'from keras.layers.core import Activation\n'), ((4119, 4130), 'keras.layers.core.Dense', 'Dense', (['(1024)'], {}), '(1024)\n', (4124, 4130), False, 'from keras.layers.core import Dense, Dropout\n'), ((4156, 4199), 'keras.layers.core.Activation', 'Activation', ([], {'activation': 'self.activation_func'}), '(activation=self.activation_func)\n', (4166, 4199), False, 'from keras.layers.core import Activation\n'), ((4215, 4236), 'keras.layers.core.Dropout', 'Dropout', (['self.dropout'], {}), '(self.dropout)\n', (4222, 4236), False, 'from keras.layers.core import Dense, Dropout\n'), ((4253, 4263), 'keras.layers.core.Dense', 'Dense', (['(512)'], {}), '(512)\n', (4258, 4263), False, 'from keras.layers.core import Dense, Dropout\n'), ((4279, 4322), 'keras.layers.core.Activation', 'Activation', ([], {'activation': 'self.activation_func'}), '(activation=self.activation_func)\n', (4289, 4322), False, 'from keras.layers.core import Activation\n'), ((4338, 4359), 'keras.layers.core.Dropout', 'Dropout', (['self.dropout'], {}), '(self.dropout)\n', (4345, 4359), False, 'from keras.layers.core import Dense, Dropout\n'), ((4376, 4386), 'keras.layers.core.Dense', 'Dense', (['(256)'], {}), '(256)\n', (4381, 4386), False, 'from keras.layers.core import Dense, Dropout\n'), ((4402, 4445), 'keras.layers.core.Activation', 'Activation', ([], {'activation': 'self.activation_func'}), '(activation=self.activation_func)\n', (4412, 4445), False, 'from keras.layers.core import Activation\n'), ((4461, 4482), 'keras.layers.core.Dropout', 'Dropout', (['self.dropout'], {}), '(self.dropout)\n', (4468, 4482), False, 'from keras.layers.core import Dense, Dropout\n'), ((4509, 4537), 'keras.layers.core.Dense', 'Dense', (['(1)'], {'name': '"""main_output"""'}), "(1, name='main_output')\n", (4514, 4537), False, 'from keras.layers.core import Dense, Dropout\n'), ((4563, 4595), 'keras.layers.core.Activation', 'Activation', ([], {'activation': '"""sigmoid"""'}), "(activation='sigmoid')\n", (4573, 4595), False, 'from keras.layers.core import Activation\n'), ((4944, 4955), 'keras.layers.core.Dense', 'Dense', (['(2048)'], {}), '(2048)\n', (4949, 4955), False, 'from keras.layers.core import Dense, Dropout\n'), ((4981, 5024), 'keras.layers.core.Activation', 'Activation', ([], {'activation': 'self.activation_func'}), '(activation=self.activation_func)\n', (4991, 5024), False, 'from keras.layers.core import Activation\n'), ((5040, 5061), 'keras.layers.core.Dropout', 'Dropout', (['self.dropout'], {}), '(self.dropout)\n', (5047, 5061), False, 'from keras.layers.core import Dense, Dropout\n'), ((5078, 5089), 'keras.layers.core.Dense', 'Dense', (['(2048)'], {}), '(2048)\n', (5083, 5089), False, 'from keras.layers.core import Dense, Dropout\n'), ((5105, 5148), 'keras.layers.core.Activation', 'Activation', ([], {'activation': 'self.activation_func'}), '(activation=self.activation_func)\n', (5115, 5148), False, 'from keras.layers.core import Activation\n'), ((5164, 5185), 'keras.layers.core.Dropout', 'Dropout', (['self.dropout'], {}), '(self.dropout)\n', (5171, 5185), False, 'from keras.layers.core import Dense, Dropout\n'), ((5202, 5213), 'keras.layers.core.Dense', 'Dense', (['(2048)'], {}), '(2048)\n', (5207, 5213), False, 'from keras.layers.core import Dense, Dropout\n'), ((5229, 5272), 'keras.layers.core.Activation', 'Activation', ([], {'activation': 'self.activation_func'}), '(activation=self.activation_func)\n', (5239, 5272), False, 'from keras.layers.core import Activation\n'), ((5288, 5309), 'keras.layers.core.Dropout', 'Dropout', (['self.dropout'], {}), '(self.dropout)\n', (5295, 5309), False, 'from keras.layers.core import Dense, Dropout\n'), ((5336, 5364), 'keras.layers.core.Dense', 'Dense', (['(1)'], {'name': '"""main_output"""'}), "(1, name='main_output')\n", (5341, 5364), False, 'from keras.layers.core import Dense, Dropout\n'), ((5391, 5420), 'keras.layers.core.Activation', 'Activation', ([], {'activation': '"""tanh"""'}), "(activation='tanh')\n", (5401, 5420), False, 'from keras.layers.core import Activation\n'), ((6058, 6100), 'keras.layers.core.Activation', 'Activation', ([], {'activation': '"""relu"""', 'name': '"""act1"""'}), "(activation='relu', name='act1')\n", (6068, 6100), False, 'from keras.layers.core import Activation\n'), ((6247, 6289), 'keras.layers.core.Activation', 'Activation', ([], {'activation': '"""relu"""', 'name': '"""act2"""'}), "(activation='relu', name='act2')\n", (6257, 6289), False, 'from keras.layers.core import Activation\n'), ((6436, 6478), 'keras.layers.core.Activation', 'Activation', ([], {'activation': '"""relu"""', 'name': '"""act3"""'}), "(activation='relu', name='act3')\n", (6446, 6478), False, 'from keras.layers.core import Activation\n'), ((6501, 6527), 'keras.layers.core.Dense', 'Dense', (['(2048)'], {'name': '"""eval_1"""'}), "(2048, name='eval_1')\n", (6506, 6527), False, 'from keras.layers.core import Dense, Dropout\n'), ((6553, 6609), 'keras.layers.core.Activation', 'Activation', ([], {'activation': 'self.activation_func', 'name': '"""act4"""'}), "(activation=self.activation_func, name='act4')\n", (6563, 6609), False, 'from keras.layers.core import Activation\n'), ((6625, 6660), 'keras.layers.core.Dropout', 'Dropout', (['self.dropout'], {'name': '"""drop1"""'}), "(self.dropout, name='drop1')\n", (6632, 6660), False, 'from keras.layers.core import Dense, Dropout\n'), ((6677, 6703), 'keras.layers.core.Dense', 'Dense', (['(2048)'], {'name': '"""eval_2"""'}), "(2048, name='eval_2')\n", (6682, 6703), False, 'from keras.layers.core import Dense, Dropout\n'), ((6719, 6775), 'keras.layers.core.Activation', 'Activation', ([], {'activation': 'self.activation_func', 'name': '"""act5"""'}), "(activation=self.activation_func, name='act5')\n", (6729, 6775), False, 'from keras.layers.core import Activation\n'), ((6791, 6826), 'keras.layers.core.Dropout', 'Dropout', (['self.dropout'], {'name': '"""drop2"""'}), "(self.dropout, name='drop2')\n", (6798, 6826), False, 'from keras.layers.core import Dense, Dropout\n'), ((6843, 6869), 'keras.layers.core.Dense', 'Dense', (['(2048)'], {'name': '"""eval_3"""'}), "(2048, name='eval_3')\n", (6848, 6869), False, 'from keras.layers.core import Dense, Dropout\n'), ((6885, 6941), 'keras.layers.core.Activation', 'Activation', ([], {'activation': 'self.activation_func', 'name': '"""act6"""'}), "(activation=self.activation_func, name='act6')\n", (6895, 6941), False, 'from keras.layers.core import Activation\n'), ((6957, 6992), 'keras.layers.core.Dropout', 'Dropout', (['self.dropout'], {'name': '"""drop3"""'}), "(self.dropout, name='drop3')\n", (6964, 6992), False, 'from keras.layers.core import Dense, Dropout\n'), ((7019, 7046), 'keras.layers.core.Dense', 'Dense', (['(1)'], {'name': '"""evaluation"""'}), "(1, name='evaluation')\n", (7024, 7046), False, 'from keras.layers.core import Dense, Dropout\n'), ((7072, 7122), 'keras.layers.core.Activation', 'Activation', ([], {'activation': '"""tanh"""', 'name': '"""final_output"""'}), "(activation='tanh', name='final_output')\n", (7082, 7122), False, 'from keras.layers.core import Activation\n'), ((1329, 1340), 'time.time', 'time.time', ([], {}), '()\n', (1338, 1340), False, 'import time\n'), ((1661, 1695), 'numpy.load', 'np.load', (['"""train(18000000)_new.npy"""'], {}), "('train(18000000)_new.npy')\n", (1668, 1695), True, 'import numpy as np\n'), ((1738, 1770), 'numpy.load', 'np.load', (['"""test(2000000)_new.npy"""'], {}), "('test(2000000)_new.npy')\n", (1745, 1770), True, 'import numpy as np\n')]
""" Testing driver LatinHypercubeDriver.""" import unittest from random import seed from types import GeneratorType import numpy as np from openmdao.api import IndepVarComp, Group, Problem, Component from openmdao.test.paraboloid import Paraboloid from openmdao.test.util import assert_rel_error from openmdao.drivers.latinhypercube_driver import LatinHypercubeDriver, OptimizedLatinHypercubeDriver from openmdao.drivers.latinhypercube_driver import _is_latin_hypercube, _rand_latin_hypercube, _mmlhs, _LHC_Individual class TestLatinHypercubeDriver(unittest.TestCase): def setUp(self): self.seed() self.hypercube_sizes = ((3, 1), (5, 5), (20, 8)) def seed(self): # seedval = None self.seedval = 1 seed(self.seedval) np.random.seed(self.seedval) def test_rand_latin_hypercube(self): for n, k in self.hypercube_sizes: test_lhc = _rand_latin_hypercube(n, k) self.assertTrue(_is_latin_hypercube(test_lhc)) def _test_mmlhs_latin(self, n, k): p = 1 population = 3 generations = 6 test_lhc = _rand_latin_hypercube(n, k) best_lhc = _LHC_Individual(test_lhc, 1, p) mmphi_initial = best_lhc.mmphi() for q in (1, 2, 5, 10, 20, 50, 100): lhc_start = _LHC_Individual(test_lhc, q, p) lhc_opt = _mmlhs(lhc_start, population, generations) if lhc_opt.mmphi() < best_lhc.mmphi(): best_lhc = lhc_opt self.assertTrue( best_lhc.mmphi() < mmphi_initial, "'_mmlhs' didn't yield lower phi. Seed was {}".format(self.seedval)) def test_mmlhs_latin(self): for n, k in self.hypercube_sizes: self._test_mmlhs_latin(n, k) def test_algorithm_coverage_lhc(self): prob = Problem() root = prob.root = Group() root.add('p1', IndepVarComp('x', 50.0), promotes=['*']) root.add('p2', IndepVarComp('y', 50.0), promotes=['*']) root.add('comp', Paraboloid(), promotes=['*']) prob.driver = LatinHypercubeDriver(100) prob.driver.add_desvar('x', lower=-50.0, upper=50.0) prob.driver.add_desvar('y', lower=-50.0, upper=50.0) prob.driver.add_objective('f_xy') prob.setup(check=False) runList = prob.driver._build_runlist() prob.run() # Ensure generated run list is a generator self.assertTrue( (type(runList) == GeneratorType), "_build_runlist did not return a generator.") # Add run list to dictionaries xDict = [] yDict = [] countRuns = 0 for inputLine in runList: countRuns += 1 x, y = dict(inputLine).values() xDict.append(np.floor(x)) yDict.append(np.floor(y)) # Assert we had the correct number of runs self.assertTrue( countRuns == 100, "Incorrect number of runs generated.") # Assert all input values in range [-50,50] valuesInRange = True for value in xDict + yDict: if value < (-50) or value > 49: valuesInRange = False self.assertTrue( valuesInRange, "One of the input values was outside the given range.") # Assert a single input in each interval [n,n+1] for n = [-50,49] self.assertTrue( len(xDict) == 100, "One of the intervals wasn't covered.") self.assertTrue( len(yDict) == 100, "One of the intervals wasn't covered.") def test_algorithm_coverage_olhc(self): prob = Problem() root = prob.root = Group() root.add('p1', IndepVarComp('x', 50.0), promotes=['*']) root.add('p2', IndepVarComp('y', 50.0), promotes=['*']) root.add('comp', Paraboloid(), promotes=['*']) prob.driver = OptimizedLatinHypercubeDriver(100, population=5) prob.driver.add_desvar('x', lower=-50.0, upper=50.0) prob.driver.add_desvar('y', lower=-50.0, upper=50.0) prob.driver.add_objective('f_xy') prob.setup(check=False) runList = prob.driver._build_runlist() prob.run() # Ensure generated run list is a generator self.assertTrue( (type(runList) == GeneratorType), "_build_runlist did not return a generator.") # Add run list to dictionaries xDict = [] yDict = [] countRuns = 0 for inputLine in runList: countRuns += 1 x, y = dict(inputLine).values() xDict.append(np.floor(x)) yDict.append(np.floor(y)) # Assert we had the correct number of runs self.assertTrue( countRuns == 100, "Incorrect number of runs generated.") # Assert all input values in range [-50,50] valuesInRange = True for value in xDict + yDict: if value < (-50) or value > 49: valuesInRange = False self.assertTrue( valuesInRange, "One of the input values was outside the given range.") # Assert a single input in each interval [n,n+1] for n = [-50,49] self.assertTrue( len(xDict) == 100, "One of the intervals wasn't covered.") self.assertTrue( len(yDict) == 100, "One of the intervals wasn't covered.") ''' def test_seed_works(self): ''' class ParaboloidArray(Component): """ Evaluates the equation f(x,y) = (x-3)^2 + xy + (y+4)^2 - 3 """ def __init__(self): super(ParaboloidArray, self).__init__() self.add_param('X', val=np.array([0., 0.])) self.add_output('f_xy', val=0.0) self._history = [] def solve_nonlinear(self, params, unknowns, resids): """f(x,y) = (x-3)^2 + xy + (y+4)^2 - 3 """ x = params['X'][0] y = params['X'][1] self._history.append((x, y)) unknowns['f_xy'] = (x-3.0)**2 + x*y + (y+4.0)**2 - 3.0 class TestLatinHypercubeDriverArray(unittest.TestCase): def test_rand_latin_hypercube(self): top = Problem() root = top.root = Group() root.add('p1', IndepVarComp('X', np.array([50., 50.])), promotes=['*']) root.add('comp', ParaboloidArray(), promotes=['*']) top.driver = OptimizedLatinHypercubeDriver(num_samples=4, seed=0, population=20, generations=4, norm_method=2) top.driver.add_desvar('X', lower=np.array([-50., -50.]), upper=np.array([50., 50.])) top.driver.add_objective('f_xy') top.setup(check=False) top.run() results = top.root.comp._history #assert_rel_error(self, results[0][0], -11.279662, 1e-4) #assert_rel_error(self, results[0][1], -32.120265, 1e-4) #assert_rel_error(self, results[1][0], 40.069084, 1e-4) #assert_rel_error(self, results[1][1], -11.377920, 1e-4) #assert_rel_error(self, results[2][0], 10.5913699, 1e-4) #assert_rel_error(self, results[2][1], 41.147352826, 1e-4) #assert_rel_error(self, results[3][0], -39.06031971, 1e-4) #assert_rel_error(self, results[3][1], 22.29432501, 1e-4) if __name__ == "__main__": unittest.main()
[ "unittest.main", "openmdao.api.IndepVarComp", "numpy.random.seed", "openmdao.api.Problem", "openmdao.drivers.latinhypercube_driver.LatinHypercubeDriver", "numpy.floor", "openmdao.drivers.latinhypercube_driver._rand_latin_hypercube", "random.seed", "openmdao.drivers.latinhypercube_driver._mmlhs", "openmdao.drivers.latinhypercube_driver._LHC_Individual", "openmdao.drivers.latinhypercube_driver.OptimizedLatinHypercubeDriver", "openmdao.api.Group", "openmdao.drivers.latinhypercube_driver._is_latin_hypercube", "numpy.array", "openmdao.test.paraboloid.Paraboloid" ]
[((7420, 7435), 'unittest.main', 'unittest.main', ([], {}), '()\n', (7433, 7435), False, 'import unittest\n'), ((753, 771), 'random.seed', 'seed', (['self.seedval'], {}), '(self.seedval)\n', (757, 771), False, 'from random import seed\n'), ((780, 808), 'numpy.random.seed', 'np.random.seed', (['self.seedval'], {}), '(self.seedval)\n', (794, 808), True, 'import numpy as np\n'), ((1125, 1152), 'openmdao.drivers.latinhypercube_driver._rand_latin_hypercube', '_rand_latin_hypercube', (['n', 'k'], {}), '(n, k)\n', (1146, 1152), False, 'from openmdao.drivers.latinhypercube_driver import _is_latin_hypercube, _rand_latin_hypercube, _mmlhs, _LHC_Individual\n'), ((1172, 1203), 'openmdao.drivers.latinhypercube_driver._LHC_Individual', '_LHC_Individual', (['test_lhc', '(1)', 'p'], {}), '(test_lhc, 1, p)\n', (1187, 1203), False, 'from openmdao.drivers.latinhypercube_driver import _is_latin_hypercube, _rand_latin_hypercube, _mmlhs, _LHC_Individual\n'), ((1834, 1843), 'openmdao.api.Problem', 'Problem', ([], {}), '()\n', (1841, 1843), False, 'from openmdao.api import IndepVarComp, Group, Problem, Component\n'), ((1871, 1878), 'openmdao.api.Group', 'Group', ([], {}), '()\n', (1876, 1878), False, 'from openmdao.api import IndepVarComp, Group, Problem, Component\n'), ((2086, 2111), 'openmdao.drivers.latinhypercube_driver.LatinHypercubeDriver', 'LatinHypercubeDriver', (['(100)'], {}), '(100)\n', (2106, 2111), False, 'from openmdao.drivers.latinhypercube_driver import LatinHypercubeDriver, OptimizedLatinHypercubeDriver\n'), ((3709, 3718), 'openmdao.api.Problem', 'Problem', ([], {}), '()\n', (3716, 3718), False, 'from openmdao.api import IndepVarComp, Group, Problem, Component\n'), ((3746, 3753), 'openmdao.api.Group', 'Group', ([], {}), '()\n', (3751, 3753), False, 'from openmdao.api import IndepVarComp, Group, Problem, Component\n'), ((3961, 4009), 'openmdao.drivers.latinhypercube_driver.OptimizedLatinHypercubeDriver', 'OptimizedLatinHypercubeDriver', (['(100)'], {'population': '(5)'}), '(100, population=5)\n', (3990, 4009), False, 'from openmdao.drivers.latinhypercube_driver import LatinHypercubeDriver, OptimizedLatinHypercubeDriver\n'), ((6280, 6289), 'openmdao.api.Problem', 'Problem', ([], {}), '()\n', (6287, 6289), False, 'from openmdao.api import IndepVarComp, Group, Problem, Component\n'), ((6316, 6323), 'openmdao.api.Group', 'Group', ([], {}), '()\n', (6321, 6323), False, 'from openmdao.api import IndepVarComp, Group, Problem, Component\n'), ((6488, 6589), 'openmdao.drivers.latinhypercube_driver.OptimizedLatinHypercubeDriver', 'OptimizedLatinHypercubeDriver', ([], {'num_samples': '(4)', 'seed': '(0)', 'population': '(20)', 'generations': '(4)', 'norm_method': '(2)'}), '(num_samples=4, seed=0, population=20,\n generations=4, norm_method=2)\n', (6517, 6589), False, 'from openmdao.drivers.latinhypercube_driver import LatinHypercubeDriver, OptimizedLatinHypercubeDriver\n'), ((916, 943), 'openmdao.drivers.latinhypercube_driver._rand_latin_hypercube', '_rand_latin_hypercube', (['n', 'k'], {}), '(n, k)\n', (937, 943), False, 'from openmdao.drivers.latinhypercube_driver import _is_latin_hypercube, _rand_latin_hypercube, _mmlhs, _LHC_Individual\n'), ((1314, 1345), 'openmdao.drivers.latinhypercube_driver._LHC_Individual', '_LHC_Individual', (['test_lhc', 'q', 'p'], {}), '(test_lhc, q, p)\n', (1329, 1345), False, 'from openmdao.drivers.latinhypercube_driver import _is_latin_hypercube, _rand_latin_hypercube, _mmlhs, _LHC_Individual\n'), ((1368, 1410), 'openmdao.drivers.latinhypercube_driver._mmlhs', '_mmlhs', (['lhc_start', 'population', 'generations'], {}), '(lhc_start, population, generations)\n', (1374, 1410), False, 'from openmdao.drivers.latinhypercube_driver import _is_latin_hypercube, _rand_latin_hypercube, _mmlhs, _LHC_Individual\n'), ((1903, 1926), 'openmdao.api.IndepVarComp', 'IndepVarComp', (['"""x"""', '(50.0)'], {}), "('x', 50.0)\n", (1915, 1926), False, 'from openmdao.api import IndepVarComp, Group, Problem, Component\n'), ((1967, 1990), 'openmdao.api.IndepVarComp', 'IndepVarComp', (['"""y"""', '(50.0)'], {}), "('y', 50.0)\n", (1979, 1990), False, 'from openmdao.api import IndepVarComp, Group, Problem, Component\n'), ((2033, 2045), 'openmdao.test.paraboloid.Paraboloid', 'Paraboloid', ([], {}), '()\n', (2043, 2045), False, 'from openmdao.test.paraboloid import Paraboloid\n'), ((3778, 3801), 'openmdao.api.IndepVarComp', 'IndepVarComp', (['"""x"""', '(50.0)'], {}), "('x', 50.0)\n", (3790, 3801), False, 'from openmdao.api import IndepVarComp, Group, Problem, Component\n'), ((3842, 3865), 'openmdao.api.IndepVarComp', 'IndepVarComp', (['"""y"""', '(50.0)'], {}), "('y', 50.0)\n", (3854, 3865), False, 'from openmdao.api import IndepVarComp, Group, Problem, Component\n'), ((3908, 3920), 'openmdao.test.paraboloid.Paraboloid', 'Paraboloid', ([], {}), '()\n', (3918, 3920), False, 'from openmdao.test.paraboloid import Paraboloid\n'), ((973, 1002), 'openmdao.drivers.latinhypercube_driver._is_latin_hypercube', '_is_latin_hypercube', (['test_lhc'], {}), '(test_lhc)\n', (992, 1002), False, 'from openmdao.drivers.latinhypercube_driver import _is_latin_hypercube, _rand_latin_hypercube, _mmlhs, _LHC_Individual\n'), ((2796, 2807), 'numpy.floor', 'np.floor', (['x'], {}), '(x)\n', (2804, 2807), True, 'import numpy as np\n'), ((2834, 2845), 'numpy.floor', 'np.floor', (['y'], {}), '(y)\n', (2842, 2845), True, 'import numpy as np\n'), ((4693, 4704), 'numpy.floor', 'np.floor', (['x'], {}), '(x)\n', (4701, 4704), True, 'import numpy as np\n'), ((4731, 4742), 'numpy.floor', 'np.floor', (['y'], {}), '(y)\n', (4739, 4742), True, 'import numpy as np\n'), ((5805, 5825), 'numpy.array', 'np.array', (['[0.0, 0.0]'], {}), '([0.0, 0.0])\n', (5813, 5825), True, 'import numpy as np\n'), ((6366, 6388), 'numpy.array', 'np.array', (['[50.0, 50.0]'], {}), '([50.0, 50.0])\n', (6374, 6388), True, 'import numpy as np\n'), ((6678, 6702), 'numpy.array', 'np.array', (['[-50.0, -50.0]'], {}), '([-50.0, -50.0])\n', (6686, 6702), True, 'import numpy as np\n'), ((6708, 6730), 'numpy.array', 'np.array', (['[50.0, 50.0]'], {}), '([50.0, 50.0])\n', (6716, 6730), True, 'import numpy as np\n')]
from matplotlib import pyplot as plt from matplotlib import rcParams import numpy as np import pickle import copy as cp import gs2_plotting as gplot from plot_phi2_vs_time import plot_phi2_ky_vs_t def my_single_task(ifile,run,myin,myout,mygrids,mytime,myfields,stitching=False): # Compute and save to dat file if not run.only_plot: # OB 140918 ~ mygrids.ny = naky. Before, ny was defined as mygrids.ny, but I have changed it to ny specified in the input file, so we have both. # (Same for x, and I replaced all further ny,nx that should have been naky and nakx, respectively) spec_names = [] for ispec in range(myout['nspec']): spec_names.append(myin['species_parameters_'+str(ispec+1)]['type']) qflx = get_dict_item('es_heat_flux',myout) vflx = get_dict_item('es_mom_flux',myout) if myout['es_heat_flux_present'] and myout['es_mom_flux_present']: # avoid divide by zero with qflx # in this case, set pi/Q = 0 dum = np.copy(qflx) zerotest = dum==0 dum[zerotest] = vflx[zerotest]*100000 pioq = np.copy(np.divide(vflx,dum)) else: pioq = np.arange(1,dtype=float) # need to multiply this by rhoc/(g_exb*rmaj**2) #prandtl = np.copy(vflx[:,0]*tprim[0]/(qflx[:,0]*q) (pflx_kxky,pflx_kxky_tavg) = get_dict_item('es_part_flux_by_mode', myout, mygrids=mygrids, mytime=mytime) (qflx_kxky,qflx_kxky_tavg) = get_dict_item('es_heat_flux_by_mode', myout, mygrids=mygrids, mytime=mytime) (vflx_kxky,vflx_kxky_tavg) = get_dict_item('es_mom_flux_by_mode', myout, mygrids=mygrids, mytime=mytime) (pflx_vpth, pflx_vpth_tavg) = get_dict_item('es_part_sym', myout, mygrids=mygrids, mytime=mytime) (qflx_vpth, qflx_vpth_tavg) = get_dict_item('es_heat_sym', myout, mygrids=mygrids, mytime=mytime) (vflx_vpth, vflx_vpth_tavg) = get_dict_item('es_mom_sym', myout, mygrids=mygrids, mytime=mytime) (phi2_kxky,phi2_kxky_tavg) = get_dict_item('phi2_by_mode', myout, mygrids=mygrids, mytime=mytime) # Save computed quantities OB 140918 ~ added tri,kap to saved dat. datfile_name = run.work_dir + run.dirs[ifile] + run.out_dir + run.files[ifile] + '.fluxes.dat' mydict = {'pflx':get_dict_item('es_part_flux',myout),'qflx':qflx,'vflx':vflx,'xchange':get_dict_item('es_energy_exchange',myout), 'pflx_kxky':pflx_kxky,'qflx_kxky':qflx_kxky,'vflx_kxky':vflx_kxky, 'pflx_kxky_tavg':pflx_kxky_tavg,'qflx_kxky_tavg':qflx_kxky_tavg,'vflx_kxky_tavg':vflx_kxky_tavg, 'pflx_vpth_tavg':pflx_vpth_tavg,'qflx_vpth_tavg':qflx_vpth_tavg,'vflx_vpth_tavg':vflx_vpth_tavg, 'pioq':pioq,'nvpa':mygrids.nvpa,'ntheta':mygrids.ntheta,'nx':myin['kt_grids_box_parameters']['nx'],'ny':myin['kt_grids_box_parameters']['ny'], 'nxmid':mygrids.nxmid,'islin':get_boolean(myin, 'nonlinear_terms_knobs', 'nonlinear_mode', 'off'), 'nspec':myout['nspec'],'spec_names':spec_names, 'naky':mygrids.ny,'nakx':mygrids.nx,'kx':mygrids.kx,'ky':mygrids.ky,'time':mytime.time,'time_steady':mytime.time_steady,'it_min':mytime.it_min,'it_max':mytime.it_max, 'phi2_avg':myfields.phi2_avg,'phi2_by_ky':get_dict_item('phi2_by_ky', myout),'has_flowshear':get_boolean(myin, 'dist_fn_knobs', 'g_exb', 0., negate = True), 'phi2_kxky_tavg':phi2_kxky_tavg,'phi2_kxky':phi2_kxky, 'tri':myin['theta_grid_parameters']['tri'],'kap':myin['theta_grid_parameters']['akappa']} with open(datfile_name,'wb') as datfile: pickle.dump(mydict,datfile) # Save time obj datfile_name = run.work_dir + run.dirs[ifile] + run.out_dir + run.files[ifile] + '.time.dat' with open(datfile_name,'wb') as datfile: pickle.dump(mytime,datfile) # Save grid obj datfile_name = run.work_dir + run.dirs[ifile] + run.out_dir + run.files[ifile] + '.grids.dat' with open(datfile_name,'wb') as datfile: pickle.dump(mygrids,datfile) # Read from dat files else: datfile_name = run.work_dir + run.dirs[ifile] + run.out_dir + run.files[ifile] + '.fluxes.dat' with open(datfile_name,'rb') as datfile: mydict = pickle.load(datfile) datfile_name = run.work_dir + run.dirs[ifile] + run.out_dir + run.files[ifile] + '.time.dat' with open(datfile_name,'rb') as datfile: mytime = pickle.load(datfile) datfile_name = run.work_dir + run.dirs[ifile] + run.out_dir + run.files[ifile] + '.grids.dat' with open(datfile_name,'rb') as datfile: mygrids = pickle.load(datfile) if not run.no_plot and not stitching: # plot fluxes for this single file plot_fluxes(ifile,run,mytime,mydict) # OB 140918 ~ Gets boolean properties and defaults if not in input file. # myin is the input file dictionary. # namelist is the namelist within the input file. # item is the item within the namelist. # if myin[namelist][item] == matches, return # if negate, then == changes to != # default is what is returned if the desired key could not be found def get_boolean(myin, namelist, item, matches, negate = False, default = False): try: return (myin[namelist][item] != matches and negate) or (myin[namelist][item] == matches and not negate) except: # Could not find key in list. return default # OB 140918 ~ Clean up the long list of if "XYZ_present" above with this function # name is the key in myout that belongs to the data of interest. # For kx_ky and vpar_theta quantities, we use mytime and mygrids. # Note that if the key is not present, the passed arrays do not have the correct dims. # This will likely lead to crashes if they are used later, so before use we should probably always check if _present. def get_dict_item(name, myout, mygrids=None, mytime=None): if "by_mode" in name: if myout[name+'_present']: ndims = myout[name].ndim lslice, rslice = [slice(None)] * ndims, [slice(None)] * ndims lslice[ndims-1] = slice(0,mygrids.nxmid) rslice[ndims-1] = slice(mygrids.nxmid,mygrids.nx) value_kxky = np.concatenate((myout[name][tuple(rslice)],myout[name][tuple(lslice)]),axis=ndims-1) return (value_kxky,mytime.timeavg(value_kxky)) else: return (((np.arange(1,dtype=float)),np.arange(1,dtype=float))) elif "sym" in name: # TODO OB ~ N.B. not yet tested since I didn't have an out.nc file that contained "XYZ_sym" data if myout[name+'_present']: return (myout[name],mytime.timeavg(myout[name])) else: return (((np.arange(1,dtype=float)),np.arange(1,dtype=float))) else: if myout[name+"_present"]: value = myout[name] else: value = np.arange(1,dtype=float) return value # OB ~ function to plot a heatmap of heat flux vs triangularity and elongation. def trikap(run): # Only execute if plotting if run.no_plot: return print("Plotting scan of triangularity vs elongation...") Nfile = len(run.fnames) # Init arrays of data used in scan. full_fluxes = [dict() for ifile in range(Nfile)] full_time = [dict() for ifile in range(Nfile)] # Initialize fluxes and grids from .dat files. for ifile in range(Nfile): datfile_name = run.work_dir + run.dirs[ifile] + run.out_dir + run.files[ifile] + '.fluxes.dat' with open(datfile_name,'rb') as datfile: full_fluxes[ifile] = pickle.load(datfile) datfile_name = run.work_dir + run.dirs[ifile] + run.out_dir + run.files[ifile] + '.time.dat' with open(datfile_name,'rb') as datfile: full_time[ifile] = pickle.load(datfile) # Uses nspec from first file. Will quit if not constant between files. nspec = full_fluxes[0]['nspec'] print("Number of species " + str(nspec)) tri,kap = np.zeros(Nfile),np.zeros(Nfile) for ifile in range(Nfile): tri[ifile] = full_fluxes[ifile]['tri'] kap[ifile] = full_fluxes[ifile]['kap'] if full_fluxes[ifile]['nspec'] != nspec: quit("Number of species varies between files - exiting") tris = sorted(list(set(tri))) kaps = sorted(list(set(kap))) print("Triangularity values: " + str(tris)) print("Elongation values: " + str(kaps)) if len(tris) * len(kaps) != Nfile: quit("Too few files added to populate the scan - exiting") qflx = np.zeros((len(tris), len(kaps), nspec)) for itri in range(len(tris)): for ikap in range(len(kaps)): for ifile in range(Nfile): if tri[ifile] == tris[itri] and kap[ifile] == kaps[ikap]: for ispec in range(nspec): qflx[itri,ikap,ispec] = full_time[ifile].timeavg(full_fluxes[ifile]['qflx'][:,ispec]) spec_names = full_fluxes[0]['spec_names'] pdflist = [] tmp_pdf_id=0 for ispec in range(nspec): print("Plotting for species: " + spec_names[ispec]) gplot.plot_2d(qflx[:,:,ispec],tris,kaps,np.min(qflx[:,:,ispec]),np.max(qflx[:,:,ispec]),cmp='Reds',xlab='$\delta$',ylab='$\kappa$',title='$Q_{GS2}$: ' + spec_names[ispec]) tmp_pdfname = 'tmp'+str(tmp_pdf_id) gplot.save_plot(tmp_pdfname, run) pdflist.append(tmp_pdfname) tmp_pdf_id += 1 merged_pdfname = 'tri_kap_scan' gplot.merge_pdfs(pdflist, merged_pdfname, run) def stitching_fluxes(run): # Only executed if we want to plot the data if run.no_plot: return Nfile = len(run.fnames) full_fluxes = [dict() for ifile in range(Nfile)] full_time = [dict() for ifile in range(Nfile)] full_grids = [dict() for ifile in range(Nfile)] # Reading .dat file for each run # and calc how long the stitched array will be Nt_tot = 0 for ifile in range(Nfile): datfile_name = run.work_dir + run.dirs[ifile] + run.out_dir + run.files[ifile] + '.fluxes.dat' with open(datfile_name,'rb') as datfile: full_fluxes[ifile] = pickle.load(datfile) datfile_name = run.work_dir + run.dirs[ifile] + run.out_dir + run.files[ifile] + '.time.dat' with open(datfile_name,'rb') as datfile: full_time[ifile] = pickle.load(datfile) Nt_tot += full_fluxes[ifile]['pflx'].shape[0] if ifile > 0: Nt_tot -= 1 # removing duplicate at restart point # A lot of stuff is the same for all runs islin = full_fluxes[0]['islin'] has_flowshear = full_fluxes[0]['has_flowshear'] twin = full_time[0].twin nspec = full_fluxes[0]['nspec'] spec_names = full_fluxes[0]['spec_names'] nx = full_fluxes[0]['nx'] ny = full_fluxes[0]['ny'] naky = full_fluxes[0]['naky'] nakx = full_fluxes[0]['nakx'] kx = full_fluxes[0]['kx'] ky = full_fluxes[0]['ky'] datfile_name = run.work_dir + run.dirs[0] + run.out_dir + run.files[0] + '.grids.dat' with open(datfile_name,'rb') as datfile: my_grids = pickle.load(datfile) # Stitching the arrays together stitch_my_time = cp.deepcopy(full_time[0]) stitch_my_time.ntime = Nt_tot stitch_my_time.time = np.zeros(Nt_tot) stitch_pflx = np.zeros((Nt_tot,nspec)) stitch_qflx = np.zeros((Nt_tot,nspec)) stitch_vflx = np.zeros((Nt_tot,nspec)) stitch_pioq = np.zeros((Nt_tot,nspec)) stitch_pflx_kxky = np.zeros((Nt_tot,nspec,naky,nakx)) stitch_qflx_kxky = np.zeros((Nt_tot,nspec,naky,nakx)) stitch_vflx_kxky = np.zeros((Nt_tot,nspec,naky,nakx)) stitch_pflx_kxky_tavg = np.zeros((nspec,naky,nakx)) stitch_qflx_kxky_tavg = np.zeros((nspec,naky,nakx)) stitch_vflx_kxky_tavg = np.zeros((nspec,naky,nakx)) stitch_phi2_avg = np.zeros(Nt_tot) stitch_phi2_by_ky = np.zeros((Nt_tot,naky)) stitch_phi2_kxky = np.zeros((Nt_tot,naky,nakx)) stitch_phi2_kxky_tavg = np.zeros((naky,nakx)) it_tot = 0 for ifile in range(Nfile): if ifile == 0: it_range = range(full_time[0].ntime) else: it_range = range(1,full_time[ifile].ntime) # excluding duplicate when restarting for it in it_range: stitch_my_time.time[it_tot] = full_time[ifile].time[it] for ispec in range(nspec): stitch_pflx[it_tot,ispec] = full_fluxes[ifile]['pflx'][it,ispec] stitch_qflx[it_tot,ispec] = full_fluxes[ifile]['qflx'][it,ispec] stitch_vflx[it_tot,ispec] = full_fluxes[ifile]['vflx'][it,ispec] stitch_pioq[it_tot,ispec] = full_fluxes[ifile]['pioq'][it,ispec] for ikx in range(nakx): for iky in range(naky): stitch_pflx_kxky[it_tot,ispec,iky,ikx] = full_fluxes[ifile]['pflx_kxky'][it,ispec,iky,ikx] stitch_qflx_kxky[it_tot,ispec,iky,ikx] = full_fluxes[ifile]['qflx_kxky'][it,ispec,iky,ikx] stitch_vflx_kxky[it_tot,ispec,iky,ikx] = full_fluxes[ifile]['vflx_kxky'][it,ispec,iky,ikx] for ikx in range(nakx): for iky in range(naky): stitch_phi2_kxky[it_tot,iky,ikx] = full_fluxes[ifile]['phi2_kxky'][it,iky,ikx] stitch_phi2_avg[it_tot] = full_fluxes[ifile]['phi2_avg'][it] stitch_phi2_by_ky[it_tot,:] = full_fluxes[ifile]['phi2_by_ky'][it,:] it_tot += 1 stitch_my_time.it_min = int(np.ceil((1.0-twin)*stitch_my_time.ntime)) stitch_my_time.it_max = stitch_my_time.ntime-1 stitch_my_time.time_steady = stitch_my_time.time[stitch_my_time.it_min:stitch_my_time.it_max] stitch_my_time.ntime_steady = stitch_my_time.time_steady.size # Computing time averaged versions of stitched fluxes vs (kx,ky) OB 140918 ~ New timeavg doesn't need us to explicitly loop over. stitch_phi2_kxky_tavg = stitch_my_time.timeavg(stitch_phi2_kxky) stitch_pflx_kxky_tavg = stitch_my_time.timeavg(stitch_pflx_kxky) stitch_qflx_kxky_tavg = stitch_my_time.timeavg(stitch_qflx_kxky) stitch_vflx_kxky_tavg = stitch_my_time.timeavg(stitch_vflx_kxky) # Plotting the stitched fluxes ifile = None stitch_dict = {'pflx':stitch_pflx,'qflx':stitch_qflx,'vflx':stitch_vflx,'pioq':stitch_pioq, 'nx':nx,'ny':ny,'islin':islin,'has_flowshear':has_flowshear,'nspec':nspec,'spec_names':spec_names, 'naky':naky,'nakx':nakx,'kx':kx,'ky':ky,'phi2_avg':stitch_phi2_avg,'phi2_by_ky':stitch_phi2_by_ky, 'pflx_kxky_tavg':stitch_pflx_kxky_tavg,'qflx_kxky_tavg':stitch_qflx_kxky_tavg, 'vflx_kxky_tavg':stitch_vflx_kxky_tavg,'phi2_kxky_tavg':stitch_phi2_kxky_tavg} plot_fluxes(ifile,run,stitch_my_time,stitch_dict) def plot_fluxes(ifile,run,mytime,mydict): islin = mydict['islin'] has_flowshear = mydict['has_flowshear'] # t grid time = mytime.time time_steady = mytime.time_steady it_min = mytime.it_min it_max = mytime.it_max # k grids nx = mydict['nx'] ny = mydict['ny'] naky = mydict['naky'] nakx = mydict['nakx'] kx = mydict['kx'] ky = mydict['ky'] # species nspec = mydict['nspec'] spec_names = mydict['spec_names'] # fluxes vs t pflx = mydict['pflx'] qflx = mydict['qflx'] vflx = mydict['vflx'] pioq = mydict['pioq'] # fluxes vs (kx,ky) pflx_kxky_tavg = mydict['pflx_kxky_tavg'] qflx_kxky_tavg = mydict['qflx_kxky_tavg'] vflx_kxky_tavg = mydict['vflx_kxky_tavg'] # potential phi2_avg = mydict['phi2_avg'] phi2_by_ky = mydict['phi2_by_ky'] phi2_kxky_tavg = mydict['phi2_kxky_tavg'] print() print(">>> producing plots of fluxes vs time...") print("-- plotting avg(phi2)") write_fluxes_vs_t = False tmp_pdf_id = 1 pdflist = [] if phi2_avg is not None: title = '$\\langle|\phi^{2}|\\rangle_{\\theta,k_x,k_y}$' if islin: title = '$\ln$'+title gplot.plot_1d(time,np.log(phi2_avg),'$t (a/v_{t})$',title) else: gplot.plot_1d(time,phi2_avg,'$t (a/v_{t})$',title) plt.grid(True) write_fluxes_vs_t = True tmp_pdfname = 'tmp'+str(tmp_pdf_id) gplot.save_plot(tmp_pdfname, run, ifile) pdflist.append(tmp_pdfname) tmp_pdf_id = tmp_pdf_id+1 print("-- plotting particle flux") if pflx is not None: title = '$\Gamma_{GS2}$' plot_flux_vs_t(islin,nspec,spec_names,mytime,pflx,title) write_fluxes_vs_t = True tmp_pdfname = 'tmp'+str(tmp_pdf_id) gplot.save_plot(tmp_pdfname, run, ifile) pdflist.append(tmp_pdfname) tmp_pdf_id = tmp_pdf_id+1 print("-- plotting heat flux") if qflx is not None: title = '$Q_{GS2}$' plot_flux_vs_t(islin,nspec,spec_names,mytime,qflx,title) write_fluxes_vs_t = True tmp_pdfname = 'tmp'+str(tmp_pdf_id) gplot.save_plot(tmp_pdfname, run, ifile) pdflist.append(tmp_pdfname) tmp_pdf_id = tmp_pdf_id+1 print("-- plotting momentum flux") if vflx is not None: title = '$\Pi_{GS2}$' plot_flux_vs_t(islin,nspec,spec_names,mytime,vflx,title,) write_fluxes_vs_t = True tmp_pdfname = 'tmp'+str(tmp_pdf_id) gplot.save_plot(tmp_pdfname, run, ifile) pdflist.append(tmp_pdfname) tmp_pdf_id = tmp_pdf_id+1 #if myout['es_energy_exchange_present']: # title = 'energy exchange' # gplot.plot_1d(mytime.time,self.xchange,"$t (v_t/a)$",title) # write_fluxes_vs_t = True # tmp_pdfname = 'tmp'+str(tmp_pdf_id) # gplot.save_plot(tmp_pdfname, run, ifile) # pdflist.append(tmp_pdfname) # tmp_pdf_id = tmp_pdf_id+1 print("-- plotting momentum/heat flux ratio") if pioq is not None: title = '$\Pi_{GS2}/Q_{GS2}$' for idx in range(nspec): plt.plot(mytime.time_steady,pioq[it_min:it_max,idx],label=spec_names[idx]) plt.title(title) plt.xlabel('$t (a/v_t)$') plt.legend() plt.grid(True) write_fluxes_vs_t = True tmp_pdfname = 'tmp'+str(tmp_pdf_id) gplot.save_plot(tmp_pdfname, run, ifile) pdflist.append(tmp_pdfname) tmp_pdf_id = tmp_pdf_id+1 print("-- plotting phi2 by ky") if phi2_by_ky is not None: title = '$\\langle|\phi^{2}|\\rangle_{\\theta,k_x}$' # Create list of colors cmap = plt.get_cmap('nipy_spectral') my_colors = [cmap(i) for i in np.linspace(0,1,naky-1)] if islin: title = '$\\ln$' + title plt.semilogy(time, np.log(phi2_by_ky[:,0]),label='ky = '+'{:5.3f}'.format(ky[0]),linestyle='dashed',color='black') for iky in range(1,naky) : plt.semilogy(time, np.log(phi2_by_ky[:,iky]),label='ky = '+'{:5.3f}'.format(ky[iky]),color=my_colors[iky-1]) else: plt.plot(time, phi2_by_ky[:,0],label='ky = '+'{:5.3f}'.format(ky[0]),linestyle='dashed',color='black') for iky in range(1,naky) : plt.semilogy(time, phi2_by_ky[:,iky],label='ky = '+'{:5.3f}'.format(ky[iky]),color=my_colors[iky-1]) plt.xlabel('$t (a/v_t)$') plt.title(title) plt.legend(prop={'size': 11}, ncol=6) plt.grid(True) write_fluxes_vs_t = True tmp_pdfname = 'tmp'+str(tmp_pdf_id) gplot.save_plot(tmp_pdfname, run, ifile) pdflist.append(tmp_pdfname) if naky>4: tmp_pdf_id = tmp_pdf_id+1 title = '$\\langle|\phi^{2}|\\rangle_{\\theta,k_x}$ for low $k_y$' #plt.figure(figsize=(8,8)) # NDCDEL if islin: title = '$\\ln$' + title plt.semilogy(time, np.log(phi2_by_ky[:,0]),label='ky = '+'{:5.3f}'.format(ky[0]),linestyle='dashed',color='black') for iky in range(1,5) : plt.semilogy(time, np.log(phi2_by_ky[:,iky]),label='ky = '+'{:5.3f}'.format(ky[iky]),color=my_colors[iky-1]) else: plt.plot(time[:], phi2_by_ky[:,0],label='ky = '+'{:5.3f}'.format(ky[0]),linestyle='dashed',color='black') #for iky in range(1,4) :# NDCDEL for iky in range(1,5) : plt.semilogy(time[:], phi2_by_ky[:,iky],label='ky = '+'{:5.3f}'.format(ky[iky]),color=my_colors[iky-1]) #plt.xlabel('$t$') # NDCDEL plt.xlabel('$t (a/v_t)$') #plt.ylabel('$\\langle|\phi^{2}|\\rangle_{\\theta,k_x}$') # NDCDEL plt.title(title) plt.legend() plt.grid(True) # NDCDEL #axes = plt.gca() #axes.set_xlim([0,500]) #plt.savefig('terrific.pdf') # endNDCDEL write_fluxes_vs_t = True tmp_pdfname = 'tmp'+str(tmp_pdf_id) gplot.save_plot(tmp_pdfname, run, ifile) pdflist.append(tmp_pdfname) tmp_pdf_id = tmp_pdf_id+1 title = '$\\langle|\phi^{2}|\\rangle_{\\theta,k_x}$ for high $k_y$' if islin: title = '$\\ln$' + title for iky in range(naky-5,naky) : plt.semilogy(time, np.log(phi2_by_ky[:,iky]),label='ky = '+'{:5.3f}'.format(ky[iky]),color=my_colors[iky-1]) else: for iky in range(naky-5,naky) : plt.semilogy(time, phi2_by_ky[:,iky],label='ky = '+'{:5.3f}'.format(ky[iky]),color=my_colors[iky-1]) plt.xlabel('$t (a/v_t)$') plt.title(title) plt.legend() plt.grid(True) write_fluxes_vs_t = True tmp_pdfname = 'tmp'+str(tmp_pdf_id) gplot.save_plot(tmp_pdfname, run, ifile) pdflist.append(tmp_pdfname) if write_fluxes_vs_t: merged_pdfname = 'fluxes_vs_t' if ifile==None: # This is the case when we stitch fluxes together merged_pdfname += '_'+run.scan_name gplot.merge_pdfs(pdflist, merged_pdfname, run, ifile) print('complete') print() print('producing plots of fluxes vs (kx,ky)...', end='') write_fluxes_vs_kxky = False tmp_pdf_id = 1 pdflist = [] # Plot phi2 averaged over t and theta, vs (kx,ky) plot_phi2_vs_kxky(kx,ky,phi2_kxky_tavg,has_flowshear) tmp_pdfname = 'tmp'+str(tmp_pdf_id) gplot.save_plot(tmp_pdfname, run, ifile) pdflist.append(tmp_pdfname) tmp_pdf_id += 1 if pflx_kxky_tavg is not None: title = '$\Gamma_{GS2}$' for ispec in range(nspec): plot_flux_vs_kxky(ispec,spec_names,kx,ky,pflx_kxky_tavg,title,has_flowshear) tmp_pdfname = 'tmp'+str(tmp_pdf_id) gplot.save_plot(tmp_pdfname, run, ifile) pdflist.append(tmp_pdfname) tmp_pdf_id = tmp_pdf_id+1 write_fluxes_vs_kxky = True if qflx_kxky_tavg is not None: title = '$Q_{GS2}$' for ispec in range(nspec): plot_flux_vs_kxky(ispec,spec_names,kx,ky,qflx_kxky_tavg,title,has_flowshear) tmp_pdfname = 'tmp'+str(tmp_pdf_id) gplot.save_plot(tmp_pdfname, run, ifile) pdflist.append(tmp_pdfname) tmp_pdf_id = tmp_pdf_id+1 write_fluxes_vs_kxky = True if vflx_kxky_tavg is not None: title = '$\Pi_{GS2}$' for ispec in range(nspec): plot_flux_vs_kxky(ispec,spec_names,kx,ky,vflx_kxky_tavg,title,has_flowshear) tmp_pdfname = 'tmp'+str(tmp_pdf_id) gplot.save_plot(tmp_pdfname, run, ifile) pdflist.append(tmp_pdfname) tmp_pdf_id = tmp_pdf_id+1 write_fluxes_vs_kxky = True if write_fluxes_vs_kxky: merged_pdfname = 'fluxes_vs_kxky' if ifile==None: # This is the case when we stitch fluxes together merged_pdfname += '_'+run.scan_name gplot.merge_pdfs(pdflist, merged_pdfname, run, ifile) print('complete') #print() #print('producing plots of fluxes vs (vpa,theta)...',end='') #write_vpathetasym = False #tmp_pdf_id = 1 #pdflist = [] #if pflx_vpth_tavg is not None and mygrids.vpa is not None: # title = '$\Gamma_{GS2}$' # plot_flux_vs_vpth(mygrids,pflx_vpth_tavg,title) # write_vpathetasym = True # tmp_pdfname = 'tmp'+str(tmp_pdf_id) # gplot.save_plot(tmp_pdfname, run, ifile) # pdflist.append(tmp_pdfname) # tmp_pdf_id = tmp_pdf_id+1 #if qflx_vpth_tavg is not None and mygrids.vpa is not None: # title = '$Q_{GS2}$' # plot_flux_vs_vpth(mygrids,qflx_vpth_tavg,title) # write_vpathetasym = True # tmp_pdfname = 'tmp'+str(tmp_pdf_id) # gplot.save_plot(tmp_pdfname, run, ifile) # pdflist.append(tmp_pdfname) # tmp_pdf_id = tmp_pdf_id+1 #if vflx_vpth_tavg is not None and mygrids.vpa is not None: # title = '$\Pi_{GS2}$' # plot_flux_vs_vpth(mygrids,vflx_vpth_tavg,title) # write_vpathetasym = True # tmp_pdfname = 'tmp'+str(tmp_pdf_id) # gplot.save_plot(tmp_pdfname, run, ifile) # pdflist.append(tmp_pdfname) # tmp_pdf_id = tmp_pdf_id+1 #if write_vpathetasym: # merged_pdfname = 'fluxes_vs_vpa_theta' # gplot.merge_pdfs(pdflist, merged_pdfname, run, ifile) #print('complete') def plot_flux_vs_t(islin,nspec,spec_names,mytime,flx,title,): fig=plt.figure(figsize=(12,8)) dum = np.empty(mytime.ntime_steady) if islin: title = '$\\ln($' + title + '$)$' # generate a curve for each species # on the same plot # plot time-traces for each species for idx in range(nspec): # get the time-averaged flux if islin: plt.plot(mytime.time,np.log(flx[:,idx]),label=spec_names[idx]) else: plt.plot(mytime.time,flx[:,idx],label=spec_names[idx]) # plot time-averages for idx in range(nspec): if islin: flxavg = mytime.timeavg(np.log(np.absolute(flx[:,idx]))) dum.fill(flxavg) else: flxavg = mytime.timeavg(flx[:,idx]) dum.fill(flxavg) plt.plot(mytime.time_steady,dum,'--') print('flux avg for '+spec_names[idx]+': '+str(flxavg)) plt.xlabel('$t (a/v_t)$') plt.xlim([mytime.time[0],mytime.time[-1]]) plt.title(title) plt.legend() plt.grid(True) return fig def plot_flux_vs_kxky(ispec,spec_names,kx,ky,flx,title,has_flowshear): from gs2_plotting import plot_2d if has_flowshear: xlab = '$\\bar{k}_{x}\\rho_i$' else: xlab = '$k_{x}\\rho_i$' ylab = '$k_{y}\\rho_i$' cmap = 'Blues' # 'Reds','Blues' z = flx[ispec,:,:] # OB 140918 ~ Don't take absolute value of fluxes. z_min, z_max = 0.0, z.max() title = 'Contributions to ' + title if ispec > 1: title += ' (impurity ' + str(ispec-1) + ')' else: title += ' (' + spec_names[ispec] + 's)' fig = plot_2d(np.transpose(z),kx,ky,z_min,z_max,xlab,ylab,title,cmap) return fig def plot_phi2_vs_kxky(kx,ky,phi2,has_flowshear): from gs2_plotting import plot_2d title = '$\\langle\\vert\\hat{\\varphi}_k\\vert ^2\\rangle_{t,\\theta}$' title += ' $\\forall$ $k_y > 0$' if has_flowshear: xlab = '$\\bar{k}_{x}\\rho_i$' else: xlab = '$k_{x}\\rho_i$' ylab = '$k_{y}\\rho_i$' cmap = 'RdBu'# 'RdBu_r','Blues' z = phi2[1:,:] # taking out zonal modes because they are much larger z_min, z_max = z.min(), z.max() use_logcolor = True fig = plot_2d(np.transpose(z),kx,ky[1:],z_min,z_max,xlab,ylab,title,cmap,use_logcolor) return fig def plot_flux_vs_vpth(mygrids,flx,title): from gs2_plotting import plot_2d xlab = '$\\theta$' ylab = '$v_{\parallel}$' cmap = 'RdBu' for idx in range(flx.shape[0]): z = flx[idx,:,:] z_min, z_max = z.min(), z.max() fig = plot_2d(z,mygrids.theta,mygrids.vpa,z_min,z_max,xlab,ylab,title+' (is= '+str(idx+1)+')',cmap) return fig
[ "matplotlib.pyplot.title", "numpy.absolute", "pickle.dump", "numpy.empty", "matplotlib.pyplot.figure", "pickle.load", "numpy.arange", "gs2_plotting.plot_1d", "numpy.copy", "numpy.transpose", "numpy.max", "numpy.linspace", "numpy.divide", "copy.deepcopy", "numpy.ceil", "matplotlib.pyplot.get_cmap", "matplotlib.pyplot.legend", "numpy.min", "gs2_plotting.save_plot", "matplotlib.pyplot.grid", "matplotlib.pyplot.xlim", "gs2_plotting.merge_pdfs", "matplotlib.pyplot.plot", "numpy.log", "numpy.zeros", "matplotlib.pyplot.xlabel" ]
[((9739, 9785), 'gs2_plotting.merge_pdfs', 'gplot.merge_pdfs', (['pdflist', 'merged_pdfname', 'run'], {}), '(pdflist, merged_pdfname, run)\n', (9755, 9785), True, 'import gs2_plotting as gplot\n'), ((11442, 11467), 'copy.deepcopy', 'cp.deepcopy', (['full_time[0]'], {}), '(full_time[0])\n', (11453, 11467), True, 'import copy as cp\n'), ((11528, 11544), 'numpy.zeros', 'np.zeros', (['Nt_tot'], {}), '(Nt_tot)\n', (11536, 11544), True, 'import numpy as np\n'), ((11564, 11589), 'numpy.zeros', 'np.zeros', (['(Nt_tot, nspec)'], {}), '((Nt_tot, nspec))\n', (11572, 11589), True, 'import numpy as np\n'), ((11607, 11632), 'numpy.zeros', 'np.zeros', (['(Nt_tot, nspec)'], {}), '((Nt_tot, nspec))\n', (11615, 11632), True, 'import numpy as np\n'), ((11650, 11675), 'numpy.zeros', 'np.zeros', (['(Nt_tot, nspec)'], {}), '((Nt_tot, nspec))\n', (11658, 11675), True, 'import numpy as np\n'), ((11693, 11718), 'numpy.zeros', 'np.zeros', (['(Nt_tot, nspec)'], {}), '((Nt_tot, nspec))\n', (11701, 11718), True, 'import numpy as np\n'), ((11746, 11783), 'numpy.zeros', 'np.zeros', (['(Nt_tot, nspec, naky, nakx)'], {}), '((Nt_tot, nspec, naky, nakx))\n', (11754, 11783), True, 'import numpy as np\n'), ((11804, 11841), 'numpy.zeros', 'np.zeros', (['(Nt_tot, nspec, naky, nakx)'], {}), '((Nt_tot, nspec, naky, nakx))\n', (11812, 11841), True, 'import numpy as np\n'), ((11862, 11899), 'numpy.zeros', 'np.zeros', (['(Nt_tot, nspec, naky, nakx)'], {}), '((Nt_tot, nspec, naky, nakx))\n', (11870, 11899), True, 'import numpy as np\n'), ((11925, 11954), 'numpy.zeros', 'np.zeros', (['(nspec, naky, nakx)'], {}), '((nspec, naky, nakx))\n', (11933, 11954), True, 'import numpy as np\n'), ((11981, 12010), 'numpy.zeros', 'np.zeros', (['(nspec, naky, nakx)'], {}), '((nspec, naky, nakx))\n', (11989, 12010), True, 'import numpy as np\n'), ((12037, 12066), 'numpy.zeros', 'np.zeros', (['(nspec, naky, nakx)'], {}), '((nspec, naky, nakx))\n', (12045, 12066), True, 'import numpy as np\n'), ((12088, 12104), 'numpy.zeros', 'np.zeros', (['Nt_tot'], {}), '(Nt_tot)\n', (12096, 12104), True, 'import numpy as np\n'), ((12129, 12153), 'numpy.zeros', 'np.zeros', (['(Nt_tot, naky)'], {}), '((Nt_tot, naky))\n', (12137, 12153), True, 'import numpy as np\n'), ((12176, 12206), 'numpy.zeros', 'np.zeros', (['(Nt_tot, naky, nakx)'], {}), '((Nt_tot, naky, nakx))\n', (12184, 12206), True, 'import numpy as np\n'), ((12233, 12255), 'numpy.zeros', 'np.zeros', (['(naky, nakx)'], {}), '((naky, nakx))\n', (12241, 12255), True, 'import numpy as np\n'), ((22706, 22746), 'gs2_plotting.save_plot', 'gplot.save_plot', (['tmp_pdfname', 'run', 'ifile'], {}), '(tmp_pdfname, run, ifile)\n', (22721, 22746), True, 'import gs2_plotting as gplot\n'), ((25738, 25765), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(12, 8)'}), '(figsize=(12, 8))\n', (25748, 25765), True, 'from matplotlib import pyplot as plt\n'), ((25775, 25804), 'numpy.empty', 'np.empty', (['mytime.ntime_steady'], {}), '(mytime.ntime_steady)\n', (25783, 25804), True, 'import numpy as np\n'), ((26590, 26615), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""$t (a/v_t)$"""'], {}), "('$t (a/v_t)$')\n", (26600, 26615), True, 'from matplotlib import pyplot as plt\n'), ((26620, 26663), 'matplotlib.pyplot.xlim', 'plt.xlim', (['[mytime.time[0], mytime.time[-1]]'], {}), '([mytime.time[0], mytime.time[-1]])\n', (26628, 26663), True, 'from matplotlib import pyplot as plt\n'), ((26667, 26683), 'matplotlib.pyplot.title', 'plt.title', (['title'], {}), '(title)\n', (26676, 26683), True, 'from matplotlib import pyplot as plt\n'), ((26688, 26700), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (26698, 26700), True, 'from matplotlib import pyplot as plt\n'), ((26705, 26719), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (26713, 26719), True, 'from matplotlib import pyplot as plt\n'), ((8257, 8272), 'numpy.zeros', 'np.zeros', (['Nfile'], {}), '(Nfile)\n', (8265, 8272), True, 'import numpy as np\n'), ((8273, 8288), 'numpy.zeros', 'np.zeros', (['Nfile'], {}), '(Nfile)\n', (8281, 8288), True, 'import numpy as np\n'), ((9604, 9637), 'gs2_plotting.save_plot', 'gplot.save_plot', (['tmp_pdfname', 'run'], {}), '(tmp_pdfname, run)\n', (9619, 9637), True, 'import gs2_plotting as gplot\n'), ((11363, 11383), 'pickle.load', 'pickle.load', (['datfile'], {}), '(datfile)\n', (11374, 11383), False, 'import pickle\n'), ((13802, 13846), 'numpy.ceil', 'np.ceil', (['((1.0 - twin) * stitch_my_time.ntime)'], {}), '((1.0 - twin) * stitch_my_time.ntime)\n', (13809, 13846), True, 'import numpy as np\n'), ((16457, 16471), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (16465, 16471), True, 'from matplotlib import pyplot as plt\n'), ((16557, 16597), 'gs2_plotting.save_plot', 'gplot.save_plot', (['tmp_pdfname', 'run', 'ifile'], {}), '(tmp_pdfname, run, ifile)\n', (16572, 16597), True, 'import gs2_plotting as gplot\n'), ((16915, 16955), 'gs2_plotting.save_plot', 'gplot.save_plot', (['tmp_pdfname', 'run', 'ifile'], {}), '(tmp_pdfname, run, ifile)\n', (16930, 16955), True, 'import gs2_plotting as gplot\n'), ((17264, 17304), 'gs2_plotting.save_plot', 'gplot.save_plot', (['tmp_pdfname', 'run', 'ifile'], {}), '(tmp_pdfname, run, ifile)\n', (17279, 17304), True, 'import gs2_plotting as gplot\n'), ((17620, 17660), 'gs2_plotting.save_plot', 'gplot.save_plot', (['tmp_pdfname', 'run', 'ifile'], {}), '(tmp_pdfname, run, ifile)\n', (17635, 17660), True, 'import gs2_plotting as gplot\n'), ((18322, 18338), 'matplotlib.pyplot.title', 'plt.title', (['title'], {}), '(title)\n', (18331, 18338), True, 'from matplotlib import pyplot as plt\n'), ((18347, 18372), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""$t (a/v_t)$"""'], {}), "('$t (a/v_t)$')\n", (18357, 18372), True, 'from matplotlib import pyplot as plt\n'), ((18381, 18393), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (18391, 18393), True, 'from matplotlib import pyplot as plt\n'), ((18402, 18416), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (18410, 18416), True, 'from matplotlib import pyplot as plt\n'), ((18502, 18542), 'gs2_plotting.save_plot', 'gplot.save_plot', (['tmp_pdfname', 'run', 'ifile'], {}), '(tmp_pdfname, run, ifile)\n', (18517, 18542), True, 'import gs2_plotting as gplot\n'), ((18788, 18817), 'matplotlib.pyplot.get_cmap', 'plt.get_cmap', (['"""nipy_spectral"""'], {}), "('nipy_spectral')\n", (18800, 18817), True, 'from matplotlib import pyplot as plt\n'), ((19520, 19545), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""$t (a/v_t)$"""'], {}), "('$t (a/v_t)$')\n", (19530, 19545), True, 'from matplotlib import pyplot as plt\n'), ((19554, 19570), 'matplotlib.pyplot.title', 'plt.title', (['title'], {}), '(title)\n', (19563, 19570), True, 'from matplotlib import pyplot as plt\n'), ((19579, 19616), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'prop': "{'size': 11}", 'ncol': '(6)'}), "(prop={'size': 11}, ncol=6)\n", (19589, 19616), True, 'from matplotlib import pyplot as plt\n'), ((19626, 19640), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (19634, 19640), True, 'from matplotlib import pyplot as plt\n'), ((19726, 19766), 'gs2_plotting.save_plot', 'gplot.save_plot', (['tmp_pdfname', 'run', 'ifile'], {}), '(tmp_pdfname, run, ifile)\n', (19741, 19766), True, 'import gs2_plotting as gplot\n'), ((22324, 22377), 'gs2_plotting.merge_pdfs', 'gplot.merge_pdfs', (['pdflist', 'merged_pdfname', 'run', 'ifile'], {}), '(pdflist, merged_pdfname, run, ifile)\n', (22340, 22377), True, 'import gs2_plotting as gplot\n'), ((24215, 24268), 'gs2_plotting.merge_pdfs', 'gplot.merge_pdfs', (['pdflist', 'merged_pdfname', 'run', 'ifile'], {}), '(pdflist, merged_pdfname, run, ifile)\n', (24231, 24268), True, 'import gs2_plotting as gplot\n'), ((26483, 26522), 'matplotlib.pyplot.plot', 'plt.plot', (['mytime.time_steady', 'dum', '"""--"""'], {}), "(mytime.time_steady, dum, '--')\n", (26491, 26522), True, 'from matplotlib import pyplot as plt\n'), ((27314, 27329), 'numpy.transpose', 'np.transpose', (['z'], {}), '(z)\n', (27326, 27329), True, 'import numpy as np\n'), ((27913, 27928), 'numpy.transpose', 'np.transpose', (['z'], {}), '(z)\n', (27925, 27928), True, 'import numpy as np\n'), ((1070, 1083), 'numpy.copy', 'np.copy', (['qflx'], {}), '(qflx)\n', (1077, 1083), True, 'import numpy as np\n'), ((1245, 1270), 'numpy.arange', 'np.arange', (['(1)'], {'dtype': 'float'}), '(1, dtype=float)\n', (1254, 1270), True, 'import numpy as np\n'), ((3743, 3771), 'pickle.dump', 'pickle.dump', (['mydict', 'datfile'], {}), '(mydict, datfile)\n', (3754, 3771), False, 'import pickle\n'), ((3958, 3986), 'pickle.dump', 'pickle.dump', (['mytime', 'datfile'], {}), '(mytime, datfile)\n', (3969, 3986), False, 'import pickle\n'), ((4174, 4203), 'pickle.dump', 'pickle.dump', (['mygrids', 'datfile'], {}), '(mygrids, datfile)\n', (4185, 4203), False, 'import pickle\n'), ((4431, 4451), 'pickle.load', 'pickle.load', (['datfile'], {}), '(datfile)\n', (4442, 4451), False, 'import pickle\n'), ((4624, 4644), 'pickle.load', 'pickle.load', (['datfile'], {}), '(datfile)\n', (4635, 4644), False, 'import pickle\n'), ((4819, 4839), 'pickle.load', 'pickle.load', (['datfile'], {}), '(datfile)\n', (4830, 4839), False, 'import pickle\n'), ((7861, 7881), 'pickle.load', 'pickle.load', (['datfile'], {}), '(datfile)\n', (7872, 7881), False, 'import pickle\n'), ((8065, 8085), 'pickle.load', 'pickle.load', (['datfile'], {}), '(datfile)\n', (8076, 8085), False, 'import pickle\n'), ((9419, 9444), 'numpy.min', 'np.min', (['qflx[:, :, ispec]'], {}), '(qflx[:, :, ispec])\n', (9425, 9444), True, 'import numpy as np\n'), ((9443, 9468), 'numpy.max', 'np.max', (['qflx[:, :, ispec]'], {}), '(qflx[:, :, ispec])\n', (9449, 9468), True, 'import numpy as np\n'), ((10408, 10428), 'pickle.load', 'pickle.load', (['datfile'], {}), '(datfile)\n', (10419, 10428), False, 'import pickle\n'), ((10612, 10632), 'pickle.load', 'pickle.load', (['datfile'], {}), '(datfile)\n', (10623, 10632), False, 'import pickle\n'), ((16398, 16451), 'gs2_plotting.plot_1d', 'gplot.plot_1d', (['time', 'phi2_avg', '"""$t (a/v_{t})$"""', 'title'], {}), "(time, phi2_avg, '$t (a/v_{t})$', title)\n", (16411, 16451), True, 'import gs2_plotting as gplot\n'), ((18239, 18316), 'matplotlib.pyplot.plot', 'plt.plot', (['mytime.time_steady', 'pioq[it_min:it_max, idx]'], {'label': 'spec_names[idx]'}), '(mytime.time_steady, pioq[it_min:it_max, idx], label=spec_names[idx])\n', (18247, 18316), True, 'from matplotlib import pyplot as plt\n'), ((20769, 20794), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""$t (a/v_t)$"""'], {}), "('$t (a/v_t)$')\n", (20779, 20794), True, 'from matplotlib import pyplot as plt\n'), ((20886, 20902), 'matplotlib.pyplot.title', 'plt.title', (['title'], {}), '(title)\n', (20895, 20902), True, 'from matplotlib import pyplot as plt\n'), ((20915, 20927), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (20925, 20927), True, 'from matplotlib import pyplot as plt\n'), ((20940, 20954), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (20948, 20954), True, 'from matplotlib import pyplot as plt\n'), ((21204, 21244), 'gs2_plotting.save_plot', 'gplot.save_plot', (['tmp_pdfname', 'run', 'ifile'], {}), '(tmp_pdfname, run, ifile)\n', (21219, 21244), True, 'import gs2_plotting as gplot\n'), ((21843, 21868), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""$t (a/v_t)$"""'], {}), "('$t (a/v_t)$')\n", (21853, 21868), True, 'from matplotlib import pyplot as plt\n'), ((21881, 21897), 'matplotlib.pyplot.title', 'plt.title', (['title'], {}), '(title)\n', (21890, 21897), True, 'from matplotlib import pyplot as plt\n'), ((21910, 21922), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (21920, 21922), True, 'from matplotlib import pyplot as plt\n'), ((21935, 21949), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (21943, 21949), True, 'from matplotlib import pyplot as plt\n'), ((22047, 22087), 'gs2_plotting.save_plot', 'gplot.save_plot', (['tmp_pdfname', 'run', 'ifile'], {}), '(tmp_pdfname, run, ifile)\n', (22062, 22087), True, 'import gs2_plotting as gplot\n'), ((23052, 23092), 'gs2_plotting.save_plot', 'gplot.save_plot', (['tmp_pdfname', 'run', 'ifile'], {}), '(tmp_pdfname, run, ifile)\n', (23067, 23092), True, 'import gs2_plotting as gplot\n'), ((23454, 23494), 'gs2_plotting.save_plot', 'gplot.save_plot', (['tmp_pdfname', 'run', 'ifile'], {}), '(tmp_pdfname, run, ifile)\n', (23469, 23494), True, 'import gs2_plotting as gplot\n'), ((23858, 23898), 'gs2_plotting.save_plot', 'gplot.save_plot', (['tmp_pdfname', 'run', 'ifile'], {}), '(tmp_pdfname, run, ifile)\n', (23873, 23898), True, 'import gs2_plotting as gplot\n'), ((26154, 26211), 'matplotlib.pyplot.plot', 'plt.plot', (['mytime.time', 'flx[:, idx]'], {'label': 'spec_names[idx]'}), '(mytime.time, flx[:, idx], label=spec_names[idx])\n', (26162, 26211), True, 'from matplotlib import pyplot as plt\n'), ((1191, 1211), 'numpy.divide', 'np.divide', (['vflx', 'dum'], {}), '(vflx, dum)\n', (1200, 1211), True, 'import numpy as np\n'), ((6623, 6648), 'numpy.arange', 'np.arange', (['(1)'], {'dtype': 'float'}), '(1, dtype=float)\n', (6632, 6648), True, 'import numpy as np\n'), ((6649, 6674), 'numpy.arange', 'np.arange', (['(1)'], {'dtype': 'float'}), '(1, dtype=float)\n', (6658, 6674), True, 'import numpy as np\n'), ((7142, 7167), 'numpy.arange', 'np.arange', (['(1)'], {'dtype': 'float'}), '(1, dtype=float)\n', (7151, 7167), True, 'import numpy as np\n'), ((16332, 16348), 'numpy.log', 'np.log', (['phi2_avg'], {}), '(phi2_avg)\n', (16338, 16348), True, 'import numpy as np\n'), ((18856, 18883), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(naky - 1)'], {}), '(0, 1, naky - 1)\n', (18867, 18883), True, 'import numpy as np\n'), ((18967, 18991), 'numpy.log', 'np.log', (['phi2_by_ky[:, 0]'], {}), '(phi2_by_ky[:, 0])\n', (18973, 18991), True, 'import numpy as np\n'), ((26086, 26105), 'numpy.log', 'np.log', (['flx[:, idx]'], {}), '(flx[:, idx])\n', (26092, 26105), True, 'import numpy as np\n'), ((6978, 7003), 'numpy.arange', 'np.arange', (['(1)'], {'dtype': 'float'}), '(1, dtype=float)\n', (6987, 7003), True, 'import numpy as np\n'), ((7004, 7029), 'numpy.arange', 'np.arange', (['(1)'], {'dtype': 'float'}), '(1, dtype=float)\n', (7013, 7029), True, 'import numpy as np\n'), ((19137, 19163), 'numpy.log', 'np.log', (['phi2_by_ky[:, iky]'], {}), '(phi2_by_ky[:, iky])\n', (19143, 19163), True, 'import numpy as np\n'), ((20099, 20123), 'numpy.log', 'np.log', (['phi2_by_ky[:, 0]'], {}), '(phi2_by_ky[:, 0])\n', (20105, 20123), True, 'import numpy as np\n'), ((26329, 26353), 'numpy.absolute', 'np.absolute', (['flx[:, idx]'], {}), '(flx[:, idx])\n', (26340, 26353), True, 'import numpy as np\n'), ((20274, 20300), 'numpy.log', 'np.log', (['phi2_by_ky[:, iky]'], {}), '(phi2_by_ky[:, iky])\n', (20280, 20300), True, 'import numpy as np\n'), ((21554, 21580), 'numpy.log', 'np.log', (['phi2_by_ky[:, iky]'], {}), '(phi2_by_ky[:, iky])\n', (21560, 21580), True, 'import numpy as np\n')]
# code for a local TFlite (Tensor Flow Lite) test, assuming an env where tflite is installed, see instructions below """ sample zipped test env should be available here: https://github.com/lineality/tensorflow_lite_in_aws_lambda_function to use pre-made-zipped tflite env for python 3.8: $ unzip env.zip $ source env/bin/activate (env) $ python3 local_tflite_test.py Note: you can install python3.8 separately if your default is something else. """ """ To install the tensorflow lite package (follow official tensorfow docs) use: pip3 install --extra-index-url https://google-coral.github.io/py-repo/ tflite_runtime # instruction code to create python env (for uploading to AWS): # only tflite_runtime is needed, numpy is included with tflite $ python3 -m venv env; source env/bin/activate $ pip install --upgrade pip $ pip3 install --extra-index-url https://google-coral.github.io/py-repo/ tflite_runtime $ pip freeze > requirements.txt # drill down to -> env/lib/python3.8/sitepackages # this makes the main zip file $ zip -r9 ../../../../function.zip . # make a lambda_function.py file # later update this with real code $ touch lambda_function.py # In project-root folder: # add .py file to your zip file $ zip -g ./function.zip -r lambda_function.py # to update the .py file (depending on OS) # edit file in the ziped archive # or re-add a new .py to replace the old by repeating the same step from above $ zip -g ./function.zip -r lambda_function.py """ """ Workflow: 1. get user_input 2. S3: Connect to S3 (Make resource and client) 3. download zip file from S3 4. extract zip and put in /tmp/ 5. load model 6. make prediction 7. clear /tmp/ 8. export result """ """ Sample Ouput: { "statusCode": 200, "about": "output_of_Tensorflow_ML_model", "body": -0.07657486200332642 } """ """ Sample input: { "s3_file_name": "model.tflite", "s3_bucket_name": "api-sample-bucket1", "user_input_for_X": 3.04 } """ # import librarires import tflite_runtime.interpreter as tflite from tflite_runtime.interpreter import Interpreter import pathlib # not needed? import numpy as np # not needed? import glob # for directory file search #from zipfile import ZipFile # Optional def run_model(): # set up TF interpreter (point at .tflite model) interpreter = Interpreter('model.tflite') # for terminal print("Model Loaded Successfully.") ############### # Set up Model ############### # set up interpreter interpreter.allocate_tensors() # Get input and output tensors. input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() # X: input data X_raw_input = [[0.37094948,0.37094948,0.37094948,0.37094948]] ## for testing #X_raw_input = [[0.37094948]] # formatting: convert raw input number to an numpy array input_data = np.asarray(X_raw_input, dtype=np.float32) # y: using model, produce predicted y from X input interpreter.set_tensor(input_details[0]['index'], input_data) # Start interpreter interpreter.invoke() ################## # Make Prediction ################## # Make Prediction tflite_prediction_results = interpreter.get_tensor(output_details[0]['index']) # for terminal print("Prediction: y =", tflite_prediction_results) ############################ # process and format output ############################ """ - remove brackets (remove from matrix/array), isolate just the number - make type -> float """ tflite_prediction_results = tflite_prediction_results[0] tflite_prediction_results = float( tflite_prediction_results[0] ) ############### # Final Output ############### status_code = 200 output = tflite_prediction_results return { 'statusCode': status_code, 'about': "output_of_Tensorflow_ML_model", 'body': output } run_model()
[ "numpy.asarray", "tflite_runtime.interpreter.Interpreter" ]
[((2302, 2329), 'tflite_runtime.interpreter.Interpreter', 'Interpreter', (['"""model.tflite"""'], {}), "('model.tflite')\n", (2313, 2329), False, 'from tflite_runtime.interpreter import Interpreter\n'), ((2876, 2917), 'numpy.asarray', 'np.asarray', (['X_raw_input'], {'dtype': 'np.float32'}), '(X_raw_input, dtype=np.float32)\n', (2886, 2917), True, 'import numpy as np\n')]
# this is the python implementation for the credit risk project import os import numpy as np import pandas as pd import re from math import sqrt import time import string import matplotlib import matplotlib.pyplot as plt import nltk import sklearn from sklearn import preprocessing from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.model_selection import GridSearchCV from sklearn.model_selection import train_test_split from sklearn.model_selection import KFold from sklearn.model_selection import RepeatedKFold from sklearn.model_selection import cross_val_score from sklearn.metrics.pairwise import euclidean_distances from sklearn.metrics.pairwise import cosine_distances from sklearn.metrics.pairwise import cosine_similarity from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix from sklearn.metrics import f1_score from sklearn.inspection import permutation_importance from nltk.stem import PorterStemmer from nltk.corpus import stopwords # set environment os.chdir(r'C:\Users\wmwms\OneDrive - George Mason University\Academics\2020Fall\CS584\HW2') os.getcwd() # load data train_data = pd.read_csv(r"data\1600106342_882043_train.csv", header = 0)#, nrows = 2000) test_data = pd.read_csv(r"data\1600106342_8864183_test.csv", header = 0)#, nrows = 1000) test_data.head # explore #train_data.head #train_data.iloc[0] #test_data.head #test_data.iloc[0] #train_data.dtypes #train_data.describe() #test_data.describe() #train_data.isnull().sum() #test_data.isnull().sum() train_data.cov() train_data.corr() #%matplotlib inline #train_data.boxplot() #pd.plotting.parallel_coordinates(train_data,'credit') # check y value distribution train_data['credit'].value_counts() # make train data balanced temp_train_data = train_data[train_data['credit']==0] temp_train_data_1 = train_data[train_data['credit']==1] temp_train_data.shape temp_train_data_1.shape # balanced data has F1 score 0.64 #train_data = temp_train_data.sample(n = 7841, replace = False).append(temp_train_data_1) #train_data.shape # increse 0 counts to 2x, F1 score 0.66 train_data = temp_train_data.sample(n = 7841*2, replace = False).append(temp_train_data_1) train_data.shape # increse 0 counts to 3x, F1 score 0.65 #train_data = temp_train_data.sample(n = 7841*3, replace = False).append(temp_train_data_1) #train_data.shape # data pre-processing X_train = train_data.copy() X_train = X_train.iloc[:,0:12] Y_train = train_data['credit'] X_train.shape Y_train.shape X_test = test_data.copy() X_test.shape # convert string to numeric from sklearn.preprocessing import LabelEncoder lb_make = LabelEncoder() X_train.groupby('F10')['F10'].nunique() X_train["F10cat"] = lb_make.fit_transform(X_train["F10"]) X_train[["F10","F10cat"]].dtypes X_train.groupby('F10cat')['F10cat'].nunique() X_train['F10cat'].head del X_train['F10'] X_train.head lb_make = LabelEncoder() X_train.groupby('F11')['F11'].nunique() X_train["F11cat"] = lb_make.fit_transform(X_train["F11"]) X_train[["F11","F11cat"]].dtypes X_train.groupby('F11cat')['F11cat'].nunique() X_train['F11cat'].head del X_train['F11'] del X_train['id'] X_train.head lb_make = LabelEncoder() X_test.groupby('F10')['F10'].nunique() X_test["F10cat"] = lb_make.fit_transform(X_test["F10"]) X_test[["F10","F10cat"]].dtypes X_test.groupby('F10cat')['F10cat'].nunique() X_test['F10cat'].head del X_test['F10'] X_test.head lb_make = LabelEncoder() X_test.groupby('F11')['F11'].nunique() X_test["F11cat"] = lb_make.fit_transform(X_test["F11"]) X_test[["F11","F11cat"]].dtypes X_test.groupby('F11cat')['F11cat'].nunique() X_test['F11cat'].head del X_test['F11'] del X_test['id'] X_test.head new_test_data = X_test Y_test = pd.DataFrame([0] * len(X_test.index)) # delete column(s) del X_train['F3'] del X_test['F3'] new_test_data.shape X_train.shape Y_train.shape X_test.shape Y_test.shape new_data_train = X_test new_data_test = Y_test X_train, X_test, Y_train, Y_test = train_test_split(X_train, Y_train, test_size = 0.33, shuffle = True) # data standardization X_train = preprocessing.scale(X_train) X_test = preprocessing.scale(X_test) # data normalization #X_train = preprocessing.normalize(X_train) #X_test = preprocessing.normalize(X_test) pd.DataFrame(X_train).cov() pd.DataFrame(X_train).corr() ################################################################################### # preliminary models # Decision Trees # F1: 0.58 ''' from sklearn import tree X_train, X_test, Y_train, Y_test = train_test_split(X_train, Y_train, test_size=0.8, random_state=1) maxdepths = [2,3,4,5,6,7,8,9,10,15,20,25,30,35,40,45,50] trainAcc = np.zeros(len(maxdepths)) testAcc = np.zeros(len(maxdepths)) index = 0 for depth in maxdepths: clf = tree.DecisionTreeClassifier(max_depth=depth) clf = clf.fit(X_train, Y_train) Y_predTrain = clf.predict(X_train) Y_predTest = clf.predict(X_test) trainAcc[index] = accuracy_score(Y_train, Y_predTrain) testAcc[index] = accuracy_score(Y_test, Y_predTest) index += 1 plt.plot(maxdepths,trainAcc,'ro-',maxdepths,testAcc,'bv--') plt.legend(['Training Accuracy','Test Accuracy']) plt.xlabel('Max depth') plt.ylabel('Accuracy') ''' ################################################################################### ''' # KNN # F1: 0.64 from sklearn.neighbors import KNeighborsClassifier import matplotlib.pyplot as plt %matplotlib inline numNeighbors = [1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50] trainAcc = [] testAcc = [] for k in numNeighbors: clf = KNeighborsClassifier(n_neighbors=k, metric='minkowski', p=2) clf.fit(X_train, Y_train) Y_predTrain = clf.predict(X_train) Y_predTest = clf.predict(X_test) trainAcc.append(accuracy_score(Y_train, Y_predTrain)) testAcc.append(accuracy_score(Y_test, Y_predTest)) plt.plot(numNeighbors, trainAcc, 'ro-', numNeighbors, testAcc,'bv--') plt.legend(['Training Accuracy','Test Accuracy']) plt.xlabel('Number of neighbors') plt.ylabel('Accuracy') ''' ################################################################################### # RandomForest # F1: 0.64 with balanced data from sklearn import ensemble from sklearn.tree import DecisionTreeClassifier numBaseClassifiers = 500 maxdepth = 10 trainAcc = [] testAcc = [] new_test_data.head clf = ensemble.RandomForestClassifier(n_estimators=numBaseClassifiers) clf.fit(X_train, Y_train) Y_predTrain = clf.predict(X_train) #Y_predTest = clf.predict(new_test_data) #trainAcc.append(accuracy_score(Y_train, Y_predTrain)) #testAcc.append(accuracy_score(Y_test, Y_predTest)) #trainAcc #testAcc #Y_predTest ################################################################################### # cross validation # cv = KFold(n_splits = 10, random_state = 1, shuffle = True) cv = RepeatedKFold(n_splits = 10, n_repeats = 3, random_state = 1) scores = cross_val_score(clf,X_train, Y_train, scoring = 'accuracy', cv = cv, n_jobs = -1) print('Accuracy: %.3f (%.3f)' % (np.mean(scores), np.std(scores))) # F1 score F1 = f1_score(Y_train,Y_predTrain, average = 'weighted') print('F1 score: %.3f' % F1) # feature importance # found F3 to be of great importance yet its variance is large importances = clf.feature_importances_ std = np.std([tree.feature_importances_ for tree in clf.estimators_], axis=0) indices = np.argsort(importances)[::-1] print("Feature ranking:") for f in range(X_train.shape[1]): print("%d. feature %d (%f)" % (f + 1, indices[f], importances[indices[f]])) plt.figure() plt.title("Feature importances") plt.bar(range(X_train.shape[1]), importances[indices], color="r", yerr=std[indices], align="center") plt.xticks(range(X_train.shape[1]), indices) plt.xlim([-1, X_train.shape[1]]) plt.show() ################################################################################### # prediction Y_predTest = clf.predict(new_test_data) # output sub = pd.DataFrame(Y_predTest) #sub = sub[0:] submission = open("submission.txt","w") submission.write(sub.to_string(index = False)) submission.close() ###################################################################################
[ "sklearn.ensemble.RandomForestClassifier", "matplotlib.pyplot.title", "matplotlib.pyplot.xlim", "pandas.DataFrame", "matplotlib.pyplot.show", "sklearn.preprocessing.scale", "os.getcwd", "sklearn.model_selection.train_test_split", "pandas.read_csv", "sklearn.model_selection.cross_val_score", "numpy.std", "sklearn.preprocessing.LabelEncoder", "numpy.argsort", "sklearn.metrics.f1_score", "matplotlib.pyplot.figure", "numpy.mean", "sklearn.model_selection.RepeatedKFold", "os.chdir" ]
[((1085, 1192), 'os.chdir', 'os.chdir', (['"""C:\\\\Users\\\\wmwms\\\\OneDrive - George Mason University\\\\Academics\\\\2020Fall\\\\CS584\\\\HW2"""'], {}), "(\n 'C:\\\\Users\\\\wmwms\\\\OneDrive - George Mason University\\\\Academics\\\\2020Fall\\\\CS584\\\\HW2'\n )\n", (1093, 1192), False, 'import os\n'), ((1177, 1188), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (1186, 1188), False, 'import os\n'), ((1215, 1273), 'pandas.read_csv', 'pd.read_csv', (['"""data\\\\1600106342_882043_train.csv"""'], {'header': '(0)'}), "('data\\\\1600106342_882043_train.csv', header=0)\n", (1226, 1273), True, 'import pandas as pd\n'), ((1305, 1363), 'pandas.read_csv', 'pd.read_csv', (['"""data\\\\1600106342_8864183_test.csv"""'], {'header': '(0)'}), "('data\\\\1600106342_8864183_test.csv', header=0)\n", (1316, 1363), True, 'import pandas as pd\n'), ((2693, 2707), 'sklearn.preprocessing.LabelEncoder', 'LabelEncoder', ([], {}), '()\n', (2705, 2707), False, 'from sklearn.preprocessing import LabelEncoder\n'), ((2951, 2965), 'sklearn.preprocessing.LabelEncoder', 'LabelEncoder', ([], {}), '()\n', (2963, 2965), False, 'from sklearn.preprocessing import LabelEncoder\n'), ((3227, 3241), 'sklearn.preprocessing.LabelEncoder', 'LabelEncoder', ([], {}), '()\n', (3239, 3241), False, 'from sklearn.preprocessing import LabelEncoder\n'), ((3477, 3491), 'sklearn.preprocessing.LabelEncoder', 'LabelEncoder', ([], {}), '()\n', (3489, 3491), False, 'from sklearn.preprocessing import LabelEncoder\n'), ((4017, 4081), 'sklearn.model_selection.train_test_split', 'train_test_split', (['X_train', 'Y_train'], {'test_size': '(0.33)', 'shuffle': '(True)'}), '(X_train, Y_train, test_size=0.33, shuffle=True)\n', (4033, 4081), False, 'from sklearn.model_selection import train_test_split\n'), ((4120, 4148), 'sklearn.preprocessing.scale', 'preprocessing.scale', (['X_train'], {}), '(X_train)\n', (4139, 4148), False, 'from sklearn import preprocessing\n'), ((4158, 4185), 'sklearn.preprocessing.scale', 'preprocessing.scale', (['X_test'], {}), '(X_test)\n', (4177, 4185), False, 'from sklearn import preprocessing\n'), ((6336, 6400), 'sklearn.ensemble.RandomForestClassifier', 'ensemble.RandomForestClassifier', ([], {'n_estimators': 'numBaseClassifiers'}), '(n_estimators=numBaseClassifiers)\n', (6367, 6400), False, 'from sklearn import ensemble\n'), ((6814, 6869), 'sklearn.model_selection.RepeatedKFold', 'RepeatedKFold', ([], {'n_splits': '(10)', 'n_repeats': '(3)', 'random_state': '(1)'}), '(n_splits=10, n_repeats=3, random_state=1)\n', (6827, 6869), False, 'from sklearn.model_selection import RepeatedKFold\n'), ((6885, 6961), 'sklearn.model_selection.cross_val_score', 'cross_val_score', (['clf', 'X_train', 'Y_train'], {'scoring': '"""accuracy"""', 'cv': 'cv', 'n_jobs': '(-1)'}), "(clf, X_train, Y_train, scoring='accuracy', cv=cv, n_jobs=-1)\n", (6900, 6961), False, 'from sklearn.model_selection import cross_val_score\n'), ((7051, 7101), 'sklearn.metrics.f1_score', 'f1_score', (['Y_train', 'Y_predTrain'], {'average': '"""weighted"""'}), "(Y_train, Y_predTrain, average='weighted')\n", (7059, 7101), False, 'from sklearn.metrics import f1_score\n'), ((7262, 7333), 'numpy.std', 'np.std', (['[tree.feature_importances_ for tree in clf.estimators_]'], {'axis': '(0)'}), '([tree.feature_importances_ for tree in clf.estimators_], axis=0)\n', (7268, 7333), True, 'import numpy as np\n'), ((7530, 7542), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (7540, 7542), True, 'import matplotlib.pyplot as plt\n'), ((7543, 7575), 'matplotlib.pyplot.title', 'plt.title', (['"""Feature importances"""'], {}), "('Feature importances')\n", (7552, 7575), True, 'import matplotlib.pyplot as plt\n'), ((7730, 7762), 'matplotlib.pyplot.xlim', 'plt.xlim', (['[-1, X_train.shape[1]]'], {}), '([-1, X_train.shape[1]])\n', (7738, 7762), True, 'import matplotlib.pyplot as plt\n'), ((7763, 7773), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (7771, 7773), True, 'import matplotlib.pyplot as plt\n'), ((7929, 7953), 'pandas.DataFrame', 'pd.DataFrame', (['Y_predTest'], {}), '(Y_predTest)\n', (7941, 7953), True, 'import pandas as pd\n'), ((7357, 7380), 'numpy.argsort', 'np.argsort', (['importances'], {}), '(importances)\n', (7367, 7380), True, 'import numpy as np\n'), ((4295, 4316), 'pandas.DataFrame', 'pd.DataFrame', (['X_train'], {}), '(X_train)\n', (4307, 4316), True, 'import pandas as pd\n'), ((4323, 4344), 'pandas.DataFrame', 'pd.DataFrame', (['X_train'], {}), '(X_train)\n', (4335, 4344), True, 'import pandas as pd\n'), ((7000, 7015), 'numpy.mean', 'np.mean', (['scores'], {}), '(scores)\n', (7007, 7015), True, 'import numpy as np\n'), ((7017, 7031), 'numpy.std', 'np.std', (['scores'], {}), '(scores)\n', (7023, 7031), True, 'import numpy as np\n')]
from ._functions import pdist import numpy as np def smote(minority_data_points, k=1): ''' SMOTE (Synthetic Minority Oversampling TEchnique). Used to generate more data points for minority class or imbalanced learning. Parameters ---------- minority_data_points : numpy.array Inputs or data points corresponding to the minority class. k : int Number of neighbors to consider. Returns ------- new_points : numpy.array New generated data points (Excluding data points passed to the function). :code:`k*minority_data_points.shape[0]` points will be generated. ''' npoints = minority_data_points.shape[0] nfeatures = minority_data_points.shape[1] # Calculate distance between each point and evry other point distances = pdist(minority_data_points, minority_data_points) # Get indices of closest k neigbours for each point indices = np.argsort(distances, axis=1)[:, 1:k+1] # Get the closest k neighbours for each point neighbours = minority_data_points[indices].squeeze() neighbours = neighbours.reshape(k*npoints, nfeatures) # Calculate diffrence between points and k neighbours minority_data_points_dups = minority_data_points[np.tile(np.arange(npoints).reshape(npoints, 1), k)] minority_data_points_dups = minority_data_points_dups.reshape(k*npoints, nfeatures) diff = neighbours - minority_data_points_dups # Create new data points random_floats = np.random.uniform(0, 1, (npoints*k)) new_points = minority_data_points_dups + (diff.T*random_floats).T return new_points
[ "numpy.argsort", "numpy.random.uniform", "numpy.arange" ]
[((1508, 1544), 'numpy.random.uniform', 'np.random.uniform', (['(0)', '(1)', '(npoints * k)'], {}), '(0, 1, npoints * k)\n', (1525, 1544), True, 'import numpy as np\n'), ((950, 979), 'numpy.argsort', 'np.argsort', (['distances'], {'axis': '(1)'}), '(distances, axis=1)\n', (960, 979), True, 'import numpy as np\n'), ((1276, 1294), 'numpy.arange', 'np.arange', (['npoints'], {}), '(npoints)\n', (1285, 1294), True, 'import numpy as np\n')]
import numpy as np import argparse import glob import amrex_plot_tools as amrex if __name__ == "__main__": import pylab as plt rkey, ikey = amrex.get_particle_keys() t = [] fee = [] fexR = [] fexI = [] fxx = [] pupt = [] files = sorted(glob.glob("plt[0-9][0-9][0-9][0-9][0-9]")) print(files[0], files[-1]) for f in files: plotfile = f #"plt"+str(i).zfill(5) idata, rdata = amrex.read_particle_data(plotfile, ptype="neutrinos") p = rdata[0] t.append(p[rkey["time"]]) fee.append(p[rkey["f00_Re"]]) fexR.append(p[rkey["f01_Re"]]) fexI.append(p[rkey["f01_Im"]]) fxx.append(p[rkey["f11_Re"]]) pupt.append(p[rkey["pupt"]]) fee = np.array(fee) fexR = np.array(fexR) fexI = np.array(fexI) fxx = np.array(fxx) t = np.array(t) print(t) fig = plt.gcf() fig.set_size_inches(8, 8) plt.plot(t, fee, 'b-',linewidth=0.5,label="f00_Re") plt.plot(t, fexR, 'g-',linewidth=0.5,label="f01_Re") plt.plot(t, fexI, 'r-',linewidth=0.5,label="f01_Im") plt.plot(t, fxx, 'k-',linewidth=0.5,label="f11_Re") x = fexR y = fexI z = 0.5*(fee-fxx) plt.plot(t, np.sqrt(x**2+y**2+z**2),linewidth=0.5,label="radius") plt.grid() plt.legend() ax = plt.gca() ax.set_xlabel(r'$t$ (s)') ax.set_ylabel(r'$f$') plt.savefig('single_neutrino.png')
[ "pylab.grid", "pylab.savefig", "numpy.array", "amrex_plot_tools.get_particle_keys", "glob.glob", "pylab.gcf", "pylab.gca", "amrex_plot_tools.read_particle_data", "pylab.legend", "pylab.plot", "numpy.sqrt" ]
[((150, 175), 'amrex_plot_tools.get_particle_keys', 'amrex.get_particle_keys', ([], {}), '()\n', (173, 175), True, 'import amrex_plot_tools as amrex\n'), ((762, 775), 'numpy.array', 'np.array', (['fee'], {}), '(fee)\n', (770, 775), True, 'import numpy as np\n'), ((787, 801), 'numpy.array', 'np.array', (['fexR'], {}), '(fexR)\n', (795, 801), True, 'import numpy as np\n'), ((813, 827), 'numpy.array', 'np.array', (['fexI'], {}), '(fexI)\n', (821, 827), True, 'import numpy as np\n'), ((838, 851), 'numpy.array', 'np.array', (['fxx'], {}), '(fxx)\n', (846, 851), True, 'import numpy as np\n'), ((860, 871), 'numpy.array', 'np.array', (['t'], {}), '(t)\n', (868, 871), True, 'import numpy as np\n'), ((896, 905), 'pylab.gcf', 'plt.gcf', ([], {}), '()\n', (903, 905), True, 'import pylab as plt\n'), ((941, 994), 'pylab.plot', 'plt.plot', (['t', 'fee', '"""b-"""'], {'linewidth': '(0.5)', 'label': '"""f00_Re"""'}), "(t, fee, 'b-', linewidth=0.5, label='f00_Re')\n", (949, 994), True, 'import pylab as plt\n'), ((997, 1051), 'pylab.plot', 'plt.plot', (['t', 'fexR', '"""g-"""'], {'linewidth': '(0.5)', 'label': '"""f01_Re"""'}), "(t, fexR, 'g-', linewidth=0.5, label='f01_Re')\n", (1005, 1051), True, 'import pylab as plt\n'), ((1054, 1108), 'pylab.plot', 'plt.plot', (['t', 'fexI', '"""r-"""'], {'linewidth': '(0.5)', 'label': '"""f01_Im"""'}), "(t, fexI, 'r-', linewidth=0.5, label='f01_Im')\n", (1062, 1108), True, 'import pylab as plt\n'), ((1111, 1164), 'pylab.plot', 'plt.plot', (['t', 'fxx', '"""k-"""'], {'linewidth': '(0.5)', 'label': '"""f11_Re"""'}), "(t, fxx, 'k-', linewidth=0.5, label='f11_Re')\n", (1119, 1164), True, 'import pylab as plt\n'), ((1291, 1301), 'pylab.grid', 'plt.grid', ([], {}), '()\n', (1299, 1301), True, 'import pylab as plt\n'), ((1306, 1318), 'pylab.legend', 'plt.legend', ([], {}), '()\n', (1316, 1318), True, 'import pylab as plt\n'), ((1328, 1337), 'pylab.gca', 'plt.gca', ([], {}), '()\n', (1335, 1337), True, 'import pylab as plt\n'), ((1398, 1432), 'pylab.savefig', 'plt.savefig', (['"""single_neutrino.png"""'], {}), "('single_neutrino.png')\n", (1409, 1432), True, 'import pylab as plt\n'), ((276, 317), 'glob.glob', 'glob.glob', (['"""plt[0-9][0-9][0-9][0-9][0-9]"""'], {}), "('plt[0-9][0-9][0-9][0-9][0-9]')\n", (285, 317), False, 'import glob\n'), ((451, 504), 'amrex_plot_tools.read_particle_data', 'amrex.read_particle_data', (['plotfile'], {'ptype': '"""neutrinos"""'}), "(plotfile, ptype='neutrinos')\n", (475, 504), True, 'import amrex_plot_tools as amrex\n'), ((1228, 1261), 'numpy.sqrt', 'np.sqrt', (['(x ** 2 + y ** 2 + z ** 2)'], {}), '(x ** 2 + y ** 2 + z ** 2)\n', (1235, 1261), True, 'import numpy as np\n')]
import matplotlib.pyplot as plt from matplotlib.cm import ScalarMappable from matplotlib.colors import Normalize import numpy as np def hill_slopes(rule, transactions): """Visualize rule as hill slopes. **Reference:** <NAME>. et al. (2020). Visualization of Numerical Association Rules by Hill Slopes. In: <NAME>., <NAME>., <NAME>., <NAME>. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2020. IDEAL 2020. Lecture Notes in Computer Science(), vol 12489. Springer, Cham. https://doi.org/10.1007/978-3-030-62362-3_10 Args: rule (Rule): Association rule to visualize. transactions (pandas.DataFrame): Transactions as a DataFrame. Returns: tuple[matplotlib.figure.Figure, matplotlib.axes.Axes]: Figure and Axes of plot. """ features = rule.antecedent + rule.consequent num_features = len(features) support = np.empty(num_features) max_index = -1 max_support = -1 match_x = None x_count = 0 for i, f in enumerate(features): if f.dtype != 'cat': match = (transactions[f.name] <= f.max_val) & (transactions[f.name] >= f.min_val) else: match = transactions[f.name] == f.categories[0] supp_count = match.sum() supp = supp_count / len(transactions) support[i] = supp if supp >= max_support: max_support = supp max_index = i match_x = match x_count = supp_count confidence = np.empty(num_features) for i, y in enumerate(features): if i == max_index: confidence[i] = 2 continue if y.dtype != 'cat': match_y = (transactions[y.name] <= y.max_val) & (transactions[y.name] >= y.min_val) else: match_y = transactions[y.name] == y.categories[0] supp_count = (match_x & match_y).sum() confidence[i] = supp_count / x_count indices = np.argsort(confidence)[::-1] confidence = confidence[indices] confidence[0] = max_support support = support[indices] length = np.sqrt(support ** 2 + confidence ** 2) position = np.empty(num_features) position[0] = length[0] / 2 for i, ln in enumerate(length[1:]): position[i + 1] = position[i] + length[i] / 2 + confidence[i + 1] + ln / 2 s = (length + support + confidence) / 2 a = s * (s - length) * (s - support) * (s - confidence) if np.all(a >= 0): a = np.sqrt(a) height = 2 * a / length x = np.sqrt(support ** 2 - height ** 2) vec = np.concatenate((-length / 2, -length / 2 + x, length / 2)) vec = (vec.reshape(3, num_features) + position).T.reshape(len(vec)) height = np.concatenate((height, np.zeros(len(vec) - num_features))) height = np.reshape(height, (3, num_features)).T.reshape(len(vec)) height = np.concatenate((np.zeros(1), height))[:len(vec)] fig, ax = _ribbon(vec, height) ax.set_ylabel('Location') ax.set_yticks(range(num_features + 1)) ax.set_yticklabels(range(num_features + 1)) ax.set_zlabel('Height') ax.view_init(30, 240) return fig, ax def _ribbon(x, z, width=0.5): fig, ax = plt.subplots(subplot_kw={'projection': '3d'}) xi = np.linspace(x[:-1], x[1:], num=100, axis=1).flatten() zi = np.interp(xi, x, z) xx = np.column_stack((-np.ones(len(zi)), np.ones(len(zi)))) * width + 1 yy = np.column_stack((xi, xi)) zz = np.column_stack((zi, zi)) scalar_map = ScalarMappable(Normalize(vmin=0, vmax=zi.max())) colors = scalar_map.to_rgba(zz) ax.plot_surface(xx, yy, zz, rstride=1, cstride=1, facecolors=colors) fig.colorbar(scalar_map, shrink=0.5, aspect=10) return fig, ax
[ "numpy.concatenate", "numpy.empty", "numpy.zeros", "numpy.argsort", "numpy.reshape", "numpy.linspace", "numpy.column_stack", "numpy.interp", "matplotlib.pyplot.subplots", "numpy.all", "numpy.sqrt" ]
[((893, 915), 'numpy.empty', 'np.empty', (['num_features'], {}), '(num_features)\n', (901, 915), True, 'import numpy as np\n'), ((1499, 1521), 'numpy.empty', 'np.empty', (['num_features'], {}), '(num_features)\n', (1507, 1521), True, 'import numpy as np\n'), ((2088, 2127), 'numpy.sqrt', 'np.sqrt', (['(support ** 2 + confidence ** 2)'], {}), '(support ** 2 + confidence ** 2)\n', (2095, 2127), True, 'import numpy as np\n'), ((2143, 2165), 'numpy.empty', 'np.empty', (['num_features'], {}), '(num_features)\n', (2151, 2165), True, 'import numpy as np\n'), ((2434, 2448), 'numpy.all', 'np.all', (['(a >= 0)'], {}), '(a >= 0)\n', (2440, 2448), True, 'import numpy as np\n'), ((3226, 3271), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'subplot_kw': "{'projection': '3d'}"}), "(subplot_kw={'projection': '3d'})\n", (3238, 3271), True, 'import matplotlib.pyplot as plt\n'), ((3345, 3364), 'numpy.interp', 'np.interp', (['xi', 'x', 'z'], {}), '(xi, x, z)\n', (3354, 3364), True, 'import numpy as np\n'), ((3451, 3476), 'numpy.column_stack', 'np.column_stack', (['(xi, xi)'], {}), '((xi, xi))\n', (3466, 3476), True, 'import numpy as np\n'), ((3486, 3511), 'numpy.column_stack', 'np.column_stack', (['(zi, zi)'], {}), '((zi, zi))\n', (3501, 3511), True, 'import numpy as np\n'), ((1945, 1967), 'numpy.argsort', 'np.argsort', (['confidence'], {}), '(confidence)\n', (1955, 1967), True, 'import numpy as np\n'), ((2462, 2472), 'numpy.sqrt', 'np.sqrt', (['a'], {}), '(a)\n', (2469, 2472), True, 'import numpy as np\n'), ((2517, 2552), 'numpy.sqrt', 'np.sqrt', (['(support ** 2 - height ** 2)'], {}), '(support ** 2 - height ** 2)\n', (2524, 2552), True, 'import numpy as np\n'), ((2568, 2626), 'numpy.concatenate', 'np.concatenate', (['(-length / 2, -length / 2 + x, length / 2)'], {}), '((-length / 2, -length / 2 + x, length / 2))\n', (2582, 2626), True, 'import numpy as np\n'), ((3282, 3325), 'numpy.linspace', 'np.linspace', (['x[:-1]', 'x[1:]'], {'num': '(100)', 'axis': '(1)'}), '(x[:-1], x[1:], num=100, axis=1)\n', (3293, 3325), True, 'import numpy as np\n'), ((2798, 2835), 'numpy.reshape', 'np.reshape', (['height', '(3, num_features)'], {}), '(height, (3, num_features))\n', (2808, 2835), True, 'import numpy as np\n'), ((2889, 2900), 'numpy.zeros', 'np.zeros', (['(1)'], {}), '(1)\n', (2897, 2900), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- # @Time : 2020/12/12 # @Author : <NAME> # @GitHub : https://github.com/lartpang from functools import wraps import numpy as np import torch def reduce_score(score: torch.Tensor, mean_on_loss: bool = True): if mean_on_loss: loss = (1 - score).mean() else: loss = 1 - score.mean() return loss def reduce_loss(loss: torch.Tensor, reduction: str = "mean") -> torch.Tensor: """ :param loss: loss tensor :param reduction: mean, sum, or none """ if reduction == "mean": loss = loss.mean() elif reduction == "sum": loss = loss.sum() elif reduction == "none": pass else: raise NotImplementedError return loss def check_args(func): """ Decorator that checks the validity of the parameters. """ @wraps(func) def wrapper(logits, gts=None, **kwargs): if logits.ndim != 4: raise ValueError( f"Only support N,C,H,W logits, but get {logits.shape} and {logits.type()}" ) if gts is not None: if gts.ndim != 4 or gts.shape[1] != 1: raise ValueError(f"Only support N,1,H,W gts, but get {gts.shape} and {gts.type()}") if logits.shape[0] != gts.shape[0] or logits.shape[2:] != gts.shape[2:]: raise ValueError( f"Logits {logits.shape} and gts {gts.shape} must have the same size." ) if not 1 <= logits.shape[1] <= gts.max(): raise ValueError( "The num_classes of logits is not compatible with the one of gts." ) return func(logits, gts, **kwargs) return wrapper def cal_sparse_coef(curr_iter, num_iter, method="linear", extra_args=None): if extra_args is None: extra_args = {} def _linear(curr_iter, milestones=(0.3, 0.7), coef_range=(0, 1)): min_point, max_point = min(milestones), max(milestones) min_coef, max_coef = min(coef_range), max(coef_range) if curr_iter < (num_iter * min_point): coef = min_coef elif curr_iter > (num_iter * max_point): coef = max_coef else: ratio = (max_coef - min_coef) / (num_iter * (max_point - min_point)) coef = ratio * (curr_iter - num_iter * min_point) return coef def _cos(curr_iter, coef_range=(0, 1)): min_coef, max_coef = min(coef_range), max(coef_range) normalized_coef = (1 - np.cos(curr_iter / num_iter * np.pi)) / 2 coef = normalized_coef * (max_coef - min_coef) + min_coef return coef def _constant(curr_iter, constant=1.0): return constant _funcs = dict( linear=_linear, cos=_cos, constant=_constant, ) coef = _funcs[method](curr_iter, **extra_args) return coef
[ "numpy.cos", "functools.wraps" ]
[((835, 846), 'functools.wraps', 'wraps', (['func'], {}), '(func)\n', (840, 846), False, 'from functools import wraps\n'), ((2511, 2547), 'numpy.cos', 'np.cos', (['(curr_iter / num_iter * np.pi)'], {}), '(curr_iter / num_iter * np.pi)\n', (2517, 2547), True, 'import numpy as np\n')]
# import unittest from pandas import DataFrame from pandas.tools.describe import value_range import numpy as np def test_value_range(): df = DataFrame(np.random.randn(5, 5)) df.ix[0, 2] = -5 df.ix[2, 0] = 5 res = value_range(df) assert(res['Minimum'] == -5) assert(res['Maximum'] == 5) df.ix[0, 1] = np.NaN assert(res['Minimum'] == -5) assert(res['Maximum'] == 5)
[ "numpy.random.randn", "pandas.tools.describe.value_range" ]
[((234, 249), 'pandas.tools.describe.value_range', 'value_range', (['df'], {}), '(df)\n', (245, 249), False, 'from pandas.tools.describe import value_range\n'), ((159, 180), 'numpy.random.randn', 'np.random.randn', (['(5)', '(5)'], {}), '(5, 5)\n', (174, 180), True, 'import numpy as np\n')]
# Training to a set of multiple objects (e.g. ShapeNet or DTU) # tensorboard logs available in logs/<expname> import imp import sys import os from unittest.mock import patch sys.path.insert( 0, os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) ) sys.path.insert( 0, os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "src")) ) sys.path.insert( 0, os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "train")) ) import warnings import trainlib from model import make_model, loss from render import NeRFRenderer from data import get_split_dataset import util import numpy as np import torch.nn.functional as F import torch import tqdm from dotmap import DotMap from data.AppearanceDataset import AppearanceDataset from random import randint from torchvision.transforms.functional_tensor import crop def extra_args(parser): parser.add_argument( "--batch_size", "-B", type=int, default=4, help="Object batch size ('SB')" ) parser.add_argument( "--nviews", "-V", type=str, default="1", help="Number of source views (multiview); put multiple (space delim) to pick randomly per batch ('NV')", ) parser.add_argument( "--freeze_enc", action="store_true", default=None, help="Freeze encoder weights and only train MLP", ) parser.add_argument( "--no_bbox_step", type=int, default=100000, help="Step to stop using bbox sampling", ) parser.add_argument( "--fixed_test", action="store_true", default=None, help="Freeze encoder weights and only train MLP", ) parser.add_argument( "--dset_ind", "-ID", type=int, default=0, help="Index of scene to be modified in dataset" ) parser.add_argument( "--appdir", "-DA", type=str, default=None, help="Appearance Dataset directory" ) parser.add_argument( "--appearance_format", "-FA", type=str, default=None, help="Appearance format, eth3d (only for now)", ) parser.add_argument( "--app_ind", "-IA", type=int, default=0, help="Index of image to be used for appearance harmonization" ) parser.add_argument( "--load_app_encoder", action="store_true", default=None, help="Load an appearance encoder's weights", ) parser.add_argument( "--freeze_app_enc", action="store_true", default=None, help="Freeze appearance encoder weights and only train MLP", ) parser.add_argument( "--app_enc_off", action="store_true", default=None, help="Train without appearance encoder enhancements", ) parser.add_argument( "--freeze_f1", action="store_true", default=None, help="Freeze first multi-view network weights and only train later MLP", ) parser.add_argument( "--refencdir", "-DRE", type=str, default=None, help="Reference encoder directory (used for loss)" ) parser.add_argument( "--patch_dim", "-P", type=int, default=128, help="The H and W dimension of image patches (power of 2)" ) parser.add_argument( "--subpatch_factor", "-PS", type=int, default=1, help="patch_dim / subpatch_factor * 2 = subpatches rendered and composed (power of 2)" ) parser.add_argument( "--vis_step_off", action="store_true", default=None, help="Skip the visualization steps of our scene", ) return parser args, conf = util.args.parse_args(extra_args, training=True, default_ray_batch_size=128) device = util.get_cuda(args.gpu_id[0]) app_size = None app_size_h = conf.get_int("data.app_data.img_size_h", None) app_size_w = conf.get_int("data.app_data.img_size_w", None) if (app_size_h is not None and app_size_w is not None): app_size = (app_size_h, app_size_w) dset, val_dset, _ = get_split_dataset(args.dataset_format, args.datadir) if not args.app_enc_off: dset_app = AppearanceDataset(args.appdir, "train", image_size=app_size, img_ind=args.app_ind) print( "dset z_near {}, z_far {}, lindisp {}".format(dset.z_near, dset.z_far, dset.lindisp) ) net = make_model( conf["model"], app_enc_on = not args.app_enc_off, stop_encoder_grad=args.freeze_enc, stop_app_encoder_grad=args.freeze_app_enc, stop_f1_grad=args.freeze_f1 ).to(device=device) if args.freeze_enc: print("Encoder frozen") net.encoder.eval() if args.app_enc_off: print("Appearance encoder OFF (training normally)") else: print("Appearance encoder on") if args.freeze_app_enc: print("Appearance encoder weights frozen") net.app_encoder.eval() renderer = NeRFRenderer.from_conf(conf["renderer"], lindisp=dset.lindisp,).to( device=device ) # Parallize render_par = renderer.bind_parallel(net, args.gpu_id).eval() nviews = list(map(int, args.nviews.split())) class PixelNeRF_ATrainer(trainlib.Trainer): def __init__(self): super().__init__(net, dset, val_dset, args, conf["train"], device=device) self.renderer_state_path = "%s/%s/_renderer" % ( self.args.checkpoints_path, self.args.name, ) self.lambda_coarse = conf.get_float("loss.lambda_coarse") self.lambda_fine = conf.get_float("loss.lambda_fine", 1.0) print( "lambda coarse {} and fine {}".format(self.lambda_coarse, self.lambda_fine) ) self.rgb_coarse_crit = loss.get_rgb_loss(conf["loss.rgb"], True) if "rgb_fine" in conf["loss"]: print("using fine loss") fine_loss_conf = conf["loss.rgb_fine"] self.rgb_fine_crit = loss.get_rgb_loss(fine_loss_conf, False) # Loss configuration for appearance specific losses self.lambda_density_coarse = conf.get_float("loss.lambda_density_coarse") self.lambda_density_fine = conf.get_float("loss.lambda_density_fine") self.lambda_ref_coarse = conf.get_float("loss.lambda_ref_coarse") self.lambda_ref_fine = conf.get_float("loss.lambda_ref_fine") print("lambda coarse density {}, fine density {}, reference coarse {}, and reference fine {}".format( self.lambda_density_coarse, self.lambda_density_fine, self.lambda_ref_coarse, self.lambda_ref_fine )) density_loss_conf = conf["loss.density"] self.density_app_crit = loss.get_density_loss(density_loss_conf) self.ref_app_crit = loss.ReferenceColorLoss(conf, args.refencdir).to(device=device) if args.resume: if os.path.exists(self.renderer_state_path): renderer.load_state_dict( torch.load(self.renderer_state_path, map_location=device) ) self.z_near = dset.z_near self.z_far = dset.z_far self.use_bbox = args.no_bbox_step > 0 # Premeptively our dataset as we train on a single scene self.nerf_data = dset[args.dset_ind] SB = args.batch_size NV, _, H, W = self.nerf_data["images"].shape self.nerf_data["images"] = self.nerf_data["images"].unsqueeze(0).expand(SB, NV, 3, H, W) self.nerf_data["poses"] = self.nerf_data["poses"].unsqueeze(0).expand(SB, NV, 4, 4) self.nerf_data["focal"] = self.nerf_data["focal"].unsqueeze(0).expand(SB, 2) self.nerf_data["c"] = self.nerf_data["c"].unsqueeze(0).expand(SB, 2) # Decide whether you're training with or without the appearance encoder self.app_enc_on = not args.app_enc_off self.calc_losses = self.calc_losses_app if self.app_enc_on else self.calc_losses_no_app # If we are, that means we're using a background and patch loss if self.app_enc_on: self.appearance_img = dset_app[args.app_ind]["images"].unsqueeze(0).to(device=device) self.patch_dim = args.patch_dim self.subpatch_factor = args.subpatch_factor self.ssh_dim = (256, 256) # Original processing resolution of SHH Encoder else: self.appearance_img = None # Choose whether to skip visualizing our scene every epoch self.vis_step_on = not args.vis_step_off def post_batch(self, epoch, batch): renderer.sched_step(args.batch_size) def extra_save_state(self): torch.save(renderer.state_dict(), self.renderer_state_path) def choose_views(self, data): all_images = data["images"].to(device=device) # (SB, NV, 3, H, W) all_poses = data["poses"].to(device=device) # (SB, NV, 4, 4) SB, NV, _, _, _ = all_images.shape curr_nviews = nviews[torch.randint(0, len(nviews), ()).item()] if curr_nviews == 1: image_ord = torch.randint(0, NV, (SB, 1)).to(device=device) else: image_ord = torch.empty((SB, curr_nviews), dtype=torch.long).to(device=device) for obj_idx in range(SB): if curr_nviews > 1: # Somewhat inefficient, don't know better way image_ord[obj_idx] = torch.from_numpy( np.random.choice(NV, curr_nviews, replace=False) ) src_images = util.batched_index_select_nd( all_images, image_ord ) # (SB, NS, 3, H, W) src_poses = util.batched_index_select_nd(all_poses, image_ord) # (SB, NS, 4, 4) return src_images, src_poses def encode_chosen_views(self, data, src_images, src_poses): all_focals = data["focal"] # (SB) all_c = data.get("c") # (SB) net.encode( src_images, src_poses, all_focals.to(device=device), c=all_c.to(device=device) if all_c is not None else None, ) def rand_rays(self, data, is_train=True, global_step=0): if "images" not in data: return {} all_images = data["images"].to(device=device) # (SB, NV, 3, H, W) SB, NV, _, H, W = all_images.shape all_poses = data["poses"].to(device=device) # (SB, NV, 4, 4) all_bboxes = data.get("bbox") # (SB, NV, 4) cmin rmin cmax rmax all_focals = data["focal"] # (SB) if self.use_bbox and global_step >= args.no_bbox_step: self.use_bbox = False print(">>> Stopped using bbox sampling @ iter", global_step) if not is_train or not self.use_bbox: all_bboxes = None all_rgb_gt = [] all_rays = [] for obj_idx in range(SB): if all_bboxes is not None: bboxes = all_bboxes[obj_idx] images = all_images[obj_idx] # (NV, 3, H, W) poses = all_poses[obj_idx] # (NV, 4, 4) focal = all_focals[obj_idx] c = None if "c" in data: c = data["c"][obj_idx] images_0to1 = images * 0.5 + 0.5 cam_rays = util.gen_rays( poses, W, H, focal, self.z_near, self.z_far, c=c ) # (NV, H, W, 8) rgb_gt_all = images_0to1 rgb_gt_all = ( rgb_gt_all.permute(0, 2, 3, 1).contiguous().reshape(-1, 3) ) # (NV, H, W, 3) if all_bboxes is not None: pix = util.bbox_sample(bboxes, args.ray_batch_size) pix_inds = pix[..., 0] * H * W + pix[..., 1] * W + pix[..., 2] else: pix_inds = torch.randint(0, NV * H * W, (args.ray_batch_size,)) rgb_gt = rgb_gt_all[pix_inds] # (ray_batch_size, 3) rays = cam_rays.view(-1, cam_rays.shape[-1])[pix_inds].to( device=device ) # (ray_batch_size, 8) all_rgb_gt.append(rgb_gt) all_rays.append(rays) all_rgb_gt = torch.stack(all_rgb_gt) # (SB, ray_batch_size, 3) all_rays = torch.stack(all_rays) # (SB, ray_batch_size, 8) all_bboxes = all_poses = all_images = None return all_rays, all_rgb_gt def patch_rays(self, data): if "images" not in data: return {} all_images = data["images"].to(device=device) # (SB, NV, 3, H, W) SB, NV, _, H, W = all_images.shape all_poses = data["poses"].to(device=device) # (SB, NV, 4, 4) all_focals = data["focal"] # (SB) all_rgb_gt = [] all_rays = [] for obj_idx in range(SB): images = all_images[obj_idx] # (NV, 3, H, W) poses = all_poses[obj_idx] # (NV, 4, 4) focal = all_focals[obj_idx] c = None if "c" in data: c = data["c"][obj_idx] images_0to1 = images * 0.5 + 0.5 cam_rays = util.gen_rays( poses, W, H, focal, self.z_near, self.z_far, c=c ).permute(0, 3, 1, 2) rgb_gt_all = images_0to1 rgb_gt_all = ( rgb_gt_all.permute(0, 2, 3, 1).contiguous().reshape(-1, 3) ).reshape(NV, 3, H, W) P = self.patch_dim i = randint(0, H - P) j = randint(0, W - P) rgb_gt = crop(rgb_gt_all, i, j, P, P) rays = crop(cam_rays, i, j, P, P) all_rgb_gt.append(rgb_gt) all_rays.append(rays) all_rgb_gt = torch.stack(all_rgb_gt) # (SB, ray_batch_size, 3) all_rays = torch.stack(all_rays) # (SB, ray_batch_size, 8) image_ord = torch.randint(0, NV, (SB, 1)).to(device=device) all_rays = util.batched_index_select_nd(all_rays, image_ord) all_rgb_gt = util.batched_index_select_nd(all_rgb_gt, image_ord).reshape(SB, -1, 3) all_poses = all_images = None return all_rays, all_rgb_gt def encode_back_patch(self): P = self.patch_dim back_patch = util.get_random_patch(self.appearance_img, P, P) back_patch = F.interpolate(back_patch, size=self.ssh_dim, mode="area") self.ref_app_crit.encode_targets(back_patch) def reg_pass(self, all_rays): return DotMap(render_par(all_rays, want_weights=True, app_pass=False)) def app_pass(self, app_imgs, all_rays): # Appearance encoder encoding net.app_encoder.encode(app_imgs) render_dict = DotMap(render_par(all_rays, want_weights=True, app_pass=True)) return render_dict def nerf_loss(self, render_dict, all_rgb_gt, loss_dict): # Compute our standard PixelNeRF loss coarse = render_dict.coarse fine = render_dict.fine using_fine = len(fine) > 0 rgb_loss = self.rgb_coarse_crit(coarse.rgb, all_rgb_gt) * self.lambda_coarse loss_dict["rc"] = rgb_loss.item() if using_fine: fine_loss = self.rgb_fine_crit(fine.rgb, all_rgb_gt) * self.lambda_fine rgb_loss += fine_loss loss_dict["rf"] = fine_loss.item() return rgb_loss def depth_loss(self, app_render_dict, reg_render_dict, loss_dict): coarse_reg = reg_render_dict.coarse fine_reg = reg_render_dict.fine coarse_app = app_render_dict.coarse fine_app = app_render_dict.fine using_fine_app = len(fine_app) > 0 density_app_loss = self.density_app_crit(coarse_reg.depth.detach(), coarse_app.depth) * self.lambda_density_coarse loss_dict["dc"] = density_app_loss.item() if using_fine_app: density_app_loss_fine = self.density_app_crit(fine_reg.depth.detach(), fine_app.depth) * self.lambda_density_fine density_app_loss += density_app_loss_fine loss_dict["df"] = density_app_loss_fine.item() return density_app_loss def app_loss(self, src_images, subpatch_dicts, loss_dict): SB, _, D, H, W = src_images.shape P = self.patch_dim # Going to assume fine network is here. If its an issue, change later. coarse_app_rgb, fine_app_rgb = util.recompose_subpatch_render_dicts_rgb(subpatch_dicts, SB, P, self.subpatch_factor) app_rgb_coarse = util.ssh_normalization(coarse_app_rgb) app_rgb_coarse = F.interpolate(app_rgb_coarse, size=self.ssh_dim, mode="area") ref_app_loss = self.ref_app_crit(app_rgb_coarse) * self.lambda_ref_coarse loss_dict["rec"] = ref_app_loss.item() app_rgb_fine = util.ssh_normalization(fine_app_rgb) app_rgb_fine = F.interpolate(app_rgb_fine, size=self.ssh_dim, mode="area") ref_app_loss_fine = self.ref_app_crit(app_rgb_fine) * self.lambda_ref_fine ref_app_loss += ref_app_loss_fine loss_dict["ref"] = ref_app_loss.item() return ref_app_loss def calc_losses_no_app(self, data, app_data, is_train=True, global_step=0): # Establish the views we'll be using to train src_images, src_poses = self.choose_views(data) # Encode our chosen views self.encode_chosen_views(data, src_images, src_poses) # Choose our standard randomly-smapled rays for our regular pass nerf_rays, nerf_rays_gt = self.rand_rays(data, is_train, global_step) # Render out our scene with our ground truth model reg_render_dict = self.reg_pass(nerf_rays) loss_dict = {} # Compute our standard NeRF losses and losses associated with appearance encoder loss = self.nerf_loss(reg_render_dict, nerf_rays_gt, loss_dict) if is_train: loss.backward() loss_dict["t"] = loss.item() return loss_dict def calc_losses_app(self, data, app_data, is_train=True, global_step=0): # Establish the views we'll be using to train src_images, src_poses = self.choose_views(data) # Encode our chosen views self.encode_chosen_views(data, src_images, src_poses) # Choose our standard randomly-smapled rays for our regular pass nerf_rays, nerf_rays_gt = self.rand_rays(data, is_train, global_step) # Render out our scene with our ground truth model reg_render_dict = self.reg_pass(nerf_rays) # Encode a random patch from the background image self.encode_back_patch() # Render out our scene using appearance encoding and trainable F2 app_render_dict = self.app_pass(app_data, nerf_rays) loss_dict = {} # Compute our standard NeRF losses and losses associated with appearance encoder nerf_loss = self.nerf_loss(app_render_dict, nerf_rays_gt, loss_dict) # Compute our density loss using the depthmap from our ground truth depth_loss = self.depth_loss(app_render_dict, reg_render_dict, loss_dict) reg_render_dict = app_render_dict = None # Choose rays corresponding to an image patch at our disposal patch_rays, _ = self.patch_rays(data) # Decompose this patch into smaller subpatches subpatch_rays = util.decompose_to_subpatches(patch_rays, self.subpatch_factor) # Render out these subpatches subpatch_dicts = [] for i in range(self.subpatch_factor): row = [] for j in range(self.subpatch_factor): row.append(self.app_pass(app_data, subpatch_rays[i][j])) subpatch_dicts.append(row) # Compute our appearance loss using our appearance encoder and these subpatches app_loss = self.app_loss(src_images, subpatch_dicts, loss_dict) # Compute our standard NeRF loss loss = nerf_loss + depth_loss + app_loss if is_train: loss.backward() loss_dict["t"] = loss.item() return loss_dict def train_step(self, data, app_data, global_step): return self.calc_losses(data, app_data, is_train=True, global_step=global_step) def eval_step(self, data, app_data, global_step): renderer.eval() losses = self.calc_losses(data, app_data, is_train=False, global_step=global_step) renderer.train() return losses def vis_step(self, data, global_step, idx=None): if "images" not in data: return {} if idx is None: batch_idx = np.random.randint(0, data["images"].shape[0]) else: print(idx) batch_idx = idx images = data["images"][batch_idx].to(device=device) # (NV, 3, H, W) if self.app_enc_on: app_images = self.appearance_img poses = data["poses"][batch_idx].to(device=device) # (NV, 4, 4) focal = data["focal"][batch_idx : batch_idx + 1] # (1) c = data.get("c") if c is not None: c = c[batch_idx : batch_idx + 1] # (1) NV, _, H, W = images.shape cam_rays = util.gen_rays( poses, W, H, focal, self.z_near, self.z_far, c=c ) # (NV, H, W, 8) images_0to1 = images * 0.5 + 0.5 # (NV, 3, H, W) curr_nviews = nviews[torch.randint(0, len(nviews), (1,)).item()] views_src = np.sort(np.random.choice(NV, curr_nviews, replace=False)) view_dest = np.random.randint(0, NV - curr_nviews) for vs in range(curr_nviews): view_dest += view_dest >= views_src[vs] views_src = torch.from_numpy(views_src) # set renderer net to eval mode renderer.eval() source_views = ( images_0to1[views_src] .permute(0, 2, 3, 1) .cpu() .numpy() .reshape(-1, H, W, 3) ) gt = images_0to1[view_dest].permute(1, 2, 0).cpu().numpy().reshape(H, W, 3) with torch.no_grad(): test_rays = cam_rays[view_dest] # (H, W, 8) test_images = images[views_src] # (NS, 3, H, W) net.encode( test_images.unsqueeze(0), poses[views_src].unsqueeze(0), focal.to(device=device), c=c.to(device=device) if c is not None else None, ) if self.app_enc_on: net.app_encoder.encode(app_images) test_rays = test_rays.reshape(1, H * W, -1) render_dict = DotMap(render_par(test_rays, want_weights=True)) coarse = render_dict.coarse fine = render_dict.fine using_fine = len(fine) > 0 alpha_coarse_np = coarse.weights[0].sum(dim=-1).cpu().numpy().reshape(H, W) rgb_coarse_np = coarse.rgb[0].cpu().numpy().reshape(H, W, 3) depth_coarse_np = coarse.depth[0].cpu().numpy().reshape(H, W) if using_fine: alpha_fine_np = fine.weights[0].sum(dim=1).cpu().numpy().reshape(H, W) depth_fine_np = fine.depth[0].cpu().numpy().reshape(H, W) rgb_fine_np = fine.rgb[0].cpu().numpy().reshape(H, W, 3) print("c rgb min {} max {}".format(rgb_coarse_np.min(), rgb_coarse_np.max())) print( "c alpha min {}, max {}".format( alpha_coarse_np.min(), alpha_coarse_np.max() ) ) alpha_coarse_cmap = util.cmap(alpha_coarse_np) / 255 depth_coarse_cmap = util.cmap(depth_coarse_np) / 255 vis_list = [ *source_views, gt, depth_coarse_cmap, rgb_coarse_np, alpha_coarse_cmap, ] if self.app_enc_on: app_images_0to1 = app_images * 0.5 + 0.5 # (NV, 3, H, W) Wa = app_images.shape[-1] app_gt = app_images_0to1[batch_idx].permute(1, 2, 0).cpu().numpy().reshape(H, Wa, 3) vis_list.append(app_gt) vis_coarse = np.hstack(vis_list) vis = vis_coarse if using_fine: print("f rgb min {} max {}".format(rgb_fine_np.min(), rgb_fine_np.max())) print( "f alpha min {}, max {}".format( alpha_fine_np.min(), alpha_fine_np.max() ) ) depth_fine_cmap = util.cmap(depth_fine_np) / 255 alpha_fine_cmap = util.cmap(alpha_fine_np) / 255 vis_list = [ *source_views, gt, depth_fine_cmap, rgb_fine_np, alpha_fine_cmap, ] if self.app_enc_on: vis_list.append(app_gt) vis_fine = np.hstack(vis_list) vis = np.vstack((vis_coarse, vis_fine)) rgb_psnr = rgb_fine_np else: rgb_psnr = rgb_coarse_np psnr = util.psnr(rgb_psnr, gt) vals = {"psnr": psnr} print("psnr", psnr) # set the renderer network back to train mode renderer.train() return vis, vals def start(self): def fmt_loss_str(losses): return "loss " + (" ".join(k + ":" + str(losses[k]) for k in losses)) step_id = self.start_iter_id progress = tqdm.tqdm(bar_format="[{rate_fmt}] ") for epoch in range(self.num_epochs): self.writer.add_scalar( "lr", self.optim.param_groups[0]["lr"], global_step=step_id ) batch = 0 for _ in range(self.num_epoch_repeats): losses = self.train_step(self.nerf_data, self.appearance_img, global_step=step_id) loss_str = fmt_loss_str(losses) if batch % self.print_interval == 0: print( "E", epoch, "B", batch, loss_str, " lr", self.optim.param_groups[0]["lr"], ) if batch % self.eval_interval == 0: self.net.eval() with torch.no_grad(): test_losses = self.eval_step(self.nerf_data, self.appearance_img, global_step=step_id) self.net.train() test_loss_str = fmt_loss_str(test_losses) self.writer.add_scalars("train", losses, global_step=step_id) self.writer.add_scalars( "test", test_losses, global_step=step_id ) print("*** Eval:", "E", epoch, "B", batch, test_loss_str, " lr") if batch % self.save_interval == 0 and (epoch > 0 or batch > 0): print("saving") if self.managed_weight_saving: self.net.save_weights(self.args) else: torch.save( self.net.state_dict(), self.default_net_state_path ) torch.save(self.optim.state_dict(), self.optim_state_path) if self.lr_scheduler is not None: torch.save( self.lr_scheduler.state_dict(), self.lrsched_state_path ) torch.save({"iter": step_id + 1}, self.iter_state_path) self.extra_save_state() if self.vis_step_on and batch % self.vis_interval == 0: print("generating visualization") # Render out the scene self.net.eval() with torch.no_grad(): vis, vis_vals = self.vis_step( self.nerf_data, global_step=step_id ) if vis_vals is not None: self.writer.add_scalars( "vis", vis_vals, global_step=step_id ) self.net.train() if vis is not None: import imageio vis_u8 = (vis * 255).astype(np.uint8) imageio.imwrite( os.path.join( self.visual_path, "{:04}_{:04}_vis.png".format(epoch, batch), ), vis_u8, ) if ( batch == self.num_total_batches - 1 or batch % self.accu_grad == self.accu_grad - 1 ): # torch.nn.utils.clip_grad_norm_(net.parameters(), 0.5) self.optim.step() self.optim.zero_grad() self.post_batch(epoch, batch) step_id += 1 batch += 1 progress.update(1) if self.lr_scheduler is not None: self.lr_scheduler.step() trainer = PixelNeRF_ATrainer() trainer.start()
[ "torch.empty", "numpy.random.randint", "util.get_cuda", "util.decompose_to_subpatches", "torch.no_grad", "util.gen_rays", "data.get_split_dataset", "random.randint", "os.path.dirname", "render.NeRFRenderer.from_conf", "os.path.exists", "torch.load", "util.args.parse_args", "model.loss.item", "util.recompose_subpatch_render_dicts_rgb", "util.get_random_patch", "numpy.random.choice", "data.AppearanceDataset.AppearanceDataset", "tqdm.tqdm", "model.loss.ReferenceColorLoss", "torch.randint", "util.ssh_normalization", "util.psnr", "numpy.hstack", "model.loss.get_density_loss", "model.make_model", "model.loss.backward", "util.cmap", "numpy.vstack", "torch.from_numpy", "util.batched_index_select_nd", "util.bbox_sample", "torch.stack", "model.loss.get_rgb_loss", "torch.save", "torch.nn.functional.interpolate", "torchvision.transforms.functional_tensor.crop" ]
[((3595, 3670), 'util.args.parse_args', 'util.args.parse_args', (['extra_args'], {'training': '(True)', 'default_ray_batch_size': '(128)'}), '(extra_args, training=True, default_ray_batch_size=128)\n', (3615, 3670), False, 'import util\n'), ((3680, 3709), 'util.get_cuda', 'util.get_cuda', (['args.gpu_id[0]'], {}), '(args.gpu_id[0])\n', (3693, 3709), False, 'import util\n'), ((3964, 4016), 'data.get_split_dataset', 'get_split_dataset', (['args.dataset_format', 'args.datadir'], {}), '(args.dataset_format, args.datadir)\n', (3981, 4016), False, 'from data import get_split_dataset\n'), ((4057, 4144), 'data.AppearanceDataset.AppearanceDataset', 'AppearanceDataset', (['args.appdir', '"""train"""'], {'image_size': 'app_size', 'img_ind': 'args.app_ind'}), "(args.appdir, 'train', image_size=app_size, img_ind=args.\n app_ind)\n", (4074, 4144), False, 'from data.AppearanceDataset import AppearanceDataset\n'), ((4245, 4419), 'model.make_model', 'make_model', (["conf['model']"], {'app_enc_on': '(not args.app_enc_off)', 'stop_encoder_grad': 'args.freeze_enc', 'stop_app_encoder_grad': 'args.freeze_app_enc', 'stop_f1_grad': 'args.freeze_f1'}), "(conf['model'], app_enc_on=not args.app_enc_off,\n stop_encoder_grad=args.freeze_enc, stop_app_encoder_grad=args.\n freeze_app_enc, stop_f1_grad=args.freeze_f1)\n", (4255, 4419), False, 'from model import make_model, loss\n'), ((4756, 4818), 'render.NeRFRenderer.from_conf', 'NeRFRenderer.from_conf', (["conf['renderer']"], {'lindisp': 'dset.lindisp'}), "(conf['renderer'], lindisp=dset.lindisp)\n", (4778, 4818), False, 'from render import NeRFRenderer\n'), ((5527, 5568), 'model.loss.get_rgb_loss', 'loss.get_rgb_loss', (["conf['loss.rgb']", '(True)'], {}), "(conf['loss.rgb'], True)\n", (5544, 5568), False, 'from model import make_model, loss\n'), ((6484, 6524), 'model.loss.get_density_loss', 'loss.get_density_loss', (['density_loss_conf'], {}), '(density_loss_conf)\n', (6505, 6524), False, 'from model import make_model, loss\n'), ((9288, 9339), 'util.batched_index_select_nd', 'util.batched_index_select_nd', (['all_images', 'image_ord'], {}), '(all_images, image_ord)\n', (9316, 9339), False, 'import util\n'), ((9403, 9453), 'util.batched_index_select_nd', 'util.batched_index_select_nd', (['all_poses', 'image_ord'], {}), '(all_poses, image_ord)\n', (9431, 9453), False, 'import util\n'), ((11856, 11879), 'torch.stack', 'torch.stack', (['all_rgb_gt'], {}), '(all_rgb_gt)\n', (11867, 11879), False, 'import torch\n'), ((11926, 11947), 'torch.stack', 'torch.stack', (['all_rays'], {}), '(all_rays)\n', (11937, 11947), False, 'import torch\n'), ((13354, 13377), 'torch.stack', 'torch.stack', (['all_rgb_gt'], {}), '(all_rgb_gt)\n', (13365, 13377), False, 'import torch\n'), ((13424, 13445), 'torch.stack', 'torch.stack', (['all_rays'], {}), '(all_rays)\n', (13435, 13445), False, 'import torch\n'), ((13561, 13610), 'util.batched_index_select_nd', 'util.batched_index_select_nd', (['all_rays', 'image_ord'], {}), '(all_rays, image_ord)\n', (13589, 13610), False, 'import util\n'), ((13861, 13909), 'util.get_random_patch', 'util.get_random_patch', (['self.appearance_img', 'P', 'P'], {}), '(self.appearance_img, P, P)\n', (13882, 13909), False, 'import util\n'), ((13931, 13988), 'torch.nn.functional.interpolate', 'F.interpolate', (['back_patch'], {'size': 'self.ssh_dim', 'mode': '"""area"""'}), "(back_patch, size=self.ssh_dim, mode='area')\n", (13944, 13988), True, 'import torch.nn.functional as F\n'), ((15970, 16060), 'util.recompose_subpatch_render_dicts_rgb', 'util.recompose_subpatch_render_dicts_rgb', (['subpatch_dicts', 'SB', 'P', 'self.subpatch_factor'], {}), '(subpatch_dicts, SB, P, self.\n subpatch_factor)\n', (16010, 16060), False, 'import util\n'), ((16082, 16120), 'util.ssh_normalization', 'util.ssh_normalization', (['coarse_app_rgb'], {}), '(coarse_app_rgb)\n', (16104, 16120), False, 'import util\n'), ((16146, 16207), 'torch.nn.functional.interpolate', 'F.interpolate', (['app_rgb_coarse'], {'size': 'self.ssh_dim', 'mode': '"""area"""'}), "(app_rgb_coarse, size=self.ssh_dim, mode='area')\n", (16159, 16207), True, 'import torch.nn.functional as F\n'), ((16361, 16397), 'util.ssh_normalization', 'util.ssh_normalization', (['fine_app_rgb'], {}), '(fine_app_rgb)\n', (16383, 16397), False, 'import util\n'), ((16421, 16480), 'torch.nn.functional.interpolate', 'F.interpolate', (['app_rgb_fine'], {'size': 'self.ssh_dim', 'mode': '"""area"""'}), "(app_rgb_fine, size=self.ssh_dim, mode='area')\n", (16434, 16480), True, 'import torch.nn.functional as F\n'), ((17501, 17512), 'model.loss.item', 'loss.item', ([], {}), '()\n', (17510, 17512), False, 'from model import make_model, loss\n'), ((18919, 18981), 'util.decompose_to_subpatches', 'util.decompose_to_subpatches', (['patch_rays', 'self.subpatch_factor'], {}), '(patch_rays, self.subpatch_factor)\n', (18947, 18981), False, 'import util\n'), ((19604, 19615), 'model.loss.item', 'loss.item', ([], {}), '()\n', (19613, 19615), False, 'from model import make_model, loss\n'), ((20718, 20781), 'util.gen_rays', 'util.gen_rays', (['poses', 'W', 'H', 'focal', 'self.z_near', 'self.z_far'], {'c': 'c'}), '(poses, W, H, focal, self.z_near, self.z_far, c=c)\n', (20731, 20781), False, 'import util\n'), ((21051, 21089), 'numpy.random.randint', 'np.random.randint', (['(0)', '(NV - curr_nviews)'], {}), '(0, NV - curr_nviews)\n', (21068, 21089), True, 'import numpy as np\n'), ((21200, 21227), 'torch.from_numpy', 'torch.from_numpy', (['views_src'], {}), '(views_src)\n', (21216, 21227), False, 'import torch\n'), ((23574, 23593), 'numpy.hstack', 'np.hstack', (['vis_list'], {}), '(vis_list)\n', (23583, 23593), True, 'import numpy as np\n'), ((24468, 24491), 'util.psnr', 'util.psnr', (['rgb_psnr', 'gt'], {}), '(rgb_psnr, gt)\n', (24477, 24491), False, 'import util\n'), ((24851, 24888), 'tqdm.tqdm', 'tqdm.tqdm', ([], {'bar_format': '"""[{rate_fmt}] """'}), "(bar_format='[{rate_fmt}] ')\n", (24860, 24888), False, 'import tqdm\n'), ((229, 254), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (244, 254), False, 'import os\n'), ((318, 343), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (333, 343), False, 'import os\n'), ((414, 439), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (429, 439), False, 'import os\n'), ((5729, 5769), 'model.loss.get_rgb_loss', 'loss.get_rgb_loss', (['fine_loss_conf', '(False)'], {}), '(fine_loss_conf, False)\n', (5746, 5769), False, 'from model import make_model, loss\n'), ((6657, 6697), 'os.path.exists', 'os.path.exists', (['self.renderer_state_path'], {}), '(self.renderer_state_path)\n', (6671, 6697), False, 'import os\n'), ((10991, 11054), 'util.gen_rays', 'util.gen_rays', (['poses', 'W', 'H', 'focal', 'self.z_near', 'self.z_far'], {'c': 'c'}), '(poses, W, H, focal, self.z_near, self.z_far, c=c)\n', (11004, 11054), False, 'import util\n'), ((13110, 13127), 'random.randint', 'randint', (['(0)', '(H - P)'], {}), '(0, H - P)\n', (13117, 13127), False, 'from random import randint\n'), ((13144, 13161), 'random.randint', 'randint', (['(0)', '(W - P)'], {}), '(0, W - P)\n', (13151, 13161), False, 'from random import randint\n'), ((13184, 13212), 'torchvision.transforms.functional_tensor.crop', 'crop', (['rgb_gt_all', 'i', 'j', 'P', 'P'], {}), '(rgb_gt_all, i, j, P, P)\n', (13188, 13212), False, 'from torchvision.transforms.functional_tensor import crop\n'), ((13232, 13258), 'torchvision.transforms.functional_tensor.crop', 'crop', (['cam_rays', 'i', 'j', 'P', 'P'], {}), '(cam_rays, i, j, P, P)\n', (13236, 13258), False, 'from torchvision.transforms.functional_tensor import crop\n'), ((17460, 17475), 'model.loss.backward', 'loss.backward', ([], {}), '()\n', (17473, 17475), False, 'from model import make_model, loss\n'), ((19563, 19578), 'model.loss.backward', 'loss.backward', ([], {}), '()\n', (19576, 19578), False, 'from model import make_model, loss\n'), ((20161, 20206), 'numpy.random.randint', 'np.random.randint', (['(0)', "data['images'].shape[0]"], {}), "(0, data['images'].shape[0])\n", (20178, 20206), True, 'import numpy as np\n'), ((20981, 21029), 'numpy.random.choice', 'np.random.choice', (['NV', 'curr_nviews'], {'replace': '(False)'}), '(NV, curr_nviews, replace=False)\n', (20997, 21029), True, 'import numpy as np\n'), ((21568, 21583), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (21581, 21583), False, 'import torch\n'), ((23025, 23051), 'util.cmap', 'util.cmap', (['alpha_coarse_np'], {}), '(alpha_coarse_np)\n', (23034, 23051), False, 'import util\n'), ((23086, 23112), 'util.cmap', 'util.cmap', (['depth_coarse_np'], {}), '(depth_coarse_np)\n', (23095, 23112), False, 'import util\n'), ((24294, 24313), 'numpy.hstack', 'np.hstack', (['vis_list'], {}), '(vis_list)\n', (24303, 24313), True, 'import numpy as np\n'), ((24332, 24365), 'numpy.vstack', 'np.vstack', (['(vis_coarse, vis_fine)'], {}), '((vis_coarse, vis_fine))\n', (24341, 24365), True, 'import numpy as np\n'), ((6553, 6598), 'model.loss.ReferenceColorLoss', 'loss.ReferenceColorLoss', (['conf', 'args.refencdir'], {}), '(conf, args.refencdir)\n', (6576, 6598), False, 'from model import make_model, loss\n'), ((11334, 11379), 'util.bbox_sample', 'util.bbox_sample', (['bboxes', 'args.ray_batch_size'], {}), '(bboxes, args.ray_batch_size)\n', (11350, 11379), False, 'import util\n'), ((11504, 11556), 'torch.randint', 'torch.randint', (['(0)', '(NV * H * W)', '(args.ray_batch_size,)'], {}), '(0, NV * H * W, (args.ray_batch_size,))\n', (11517, 11556), False, 'import torch\n'), ((13494, 13523), 'torch.randint', 'torch.randint', (['(0)', 'NV', '(SB, 1)'], {}), '(0, NV, (SB, 1))\n', (13507, 13523), False, 'import torch\n'), ((13632, 13683), 'util.batched_index_select_nd', 'util.batched_index_select_nd', (['all_rgb_gt', 'image_ord'], {}), '(all_rgb_gt, image_ord)\n', (13660, 13683), False, 'import util\n'), ((23920, 23944), 'util.cmap', 'util.cmap', (['depth_fine_np'], {}), '(depth_fine_np)\n', (23929, 23944), False, 'import util\n'), ((23981, 24005), 'util.cmap', 'util.cmap', (['alpha_fine_np'], {}), '(alpha_fine_np)\n', (23990, 24005), False, 'import util\n'), ((6761, 6818), 'torch.load', 'torch.load', (['self.renderer_state_path'], {'map_location': 'device'}), '(self.renderer_state_path, map_location=device)\n', (6771, 6818), False, 'import torch\n'), ((8826, 8855), 'torch.randint', 'torch.randint', (['(0)', 'NV', '(SB, 1)'], {}), '(0, NV, (SB, 1))\n', (8839, 8855), False, 'import torch\n'), ((8912, 8960), 'torch.empty', 'torch.empty', (['(SB, curr_nviews)'], {'dtype': 'torch.long'}), '((SB, curr_nviews), dtype=torch.long)\n', (8923, 8960), False, 'import torch\n'), ((9191, 9239), 'numpy.random.choice', 'np.random.choice', (['NV', 'curr_nviews'], {'replace': '(False)'}), '(NV, curr_nviews, replace=False)\n', (9207, 9239), True, 'import numpy as np\n'), ((12774, 12837), 'util.gen_rays', 'util.gen_rays', (['poses', 'W', 'H', 'focal', 'self.z_near', 'self.z_far'], {'c': 'c'}), '(poses, W, H, focal, self.z_near, self.z_far, c=c)\n', (12787, 12837), False, 'import util\n'), ((26959, 27014), 'torch.save', 'torch.save', (["{'iter': step_id + 1}", 'self.iter_state_path'], {}), "({'iter': step_id + 1}, self.iter_state_path)\n", (26969, 27014), False, 'import torch\n'), ((25741, 25756), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (25754, 25756), False, 'import torch\n'), ((27311, 27326), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (27324, 27326), False, 'import torch\n')]
"""The example: - creates waveform file from two i_data and q_data vectors - sends the file to the SGT100A instrument - activates the waveform You have the option of auto-scaling the samples to the full range with the parameter 'auto_scale' """ import numpy as np from RsSgt import * RsSgt.assert_minimum_version('4.70.1') sgt = RsSgt('TCPIP::10.214.1.57::HISLIP') print(sgt.utilities.idn_string) sgt.utilities.reset() pc_wv_file = r'c:\temp\arbFileExample.wv' instr_wv_file = '/var/user/InstrDemoFile.wv' # Creating the I/Q vectors as lists: i_data / q_data # Samples clock clock_freq = 600e6 # wave clock wave_freq = 120e6 # Scale factor - change it to less or more that 1 if you want to see the autoscaling capability of the create_waveform_file...() methods scale_factor = 0.8 time_vector = np.arange(0, 50 / wave_freq, 1 / clock_freq) # I-component an Q-component data i_data = np.cos(2 * np.pi * wave_freq * time_vector) * scale_factor q_data = np.sin(2 * np.pi * wave_freq * time_vector) * scale_factor # Take those samples and create a wv file, send it to the instrument with the name instr_wv_file (not auto-scaled) result = sgt.arb_files.create_waveform_file_from_samples(i_data, q_data, pc_wv_file, clock_freq=100E6, auto_scale=False, comment='Created from I/Q vectors') sgt.arb_files.send_waveform_file_to_instrument(pc_wv_file, instr_wv_file) # Selecting the waveform and load it in the ARB sgt.source.bb.arbitrary.waveform.set_select(instr_wv_file) sgt.source.frequency.fixed.set_value(1.1E9) sgt.source.power.level.immediate.set_amplitude(-11.1) # Turning on the ARB baseband sgt.source.bb.arbitrary.set_state(True) # Turning on the RF out state sgt.output.state.set_value(True) sgt.close()
[ "numpy.sin", "numpy.arange", "numpy.cos" ]
[((803, 847), 'numpy.arange', 'np.arange', (['(0)', '(50 / wave_freq)', '(1 / clock_freq)'], {}), '(0, 50 / wave_freq, 1 / clock_freq)\n', (812, 847), True, 'import numpy as np\n'), ((891, 934), 'numpy.cos', 'np.cos', (['(2 * np.pi * wave_freq * time_vector)'], {}), '(2 * np.pi * wave_freq * time_vector)\n', (897, 934), True, 'import numpy as np\n'), ((959, 1002), 'numpy.sin', 'np.sin', (['(2 * np.pi * wave_freq * time_vector)'], {}), '(2 * np.pi * wave_freq * time_vector)\n', (965, 1002), True, 'import numpy as np\n')]
# Copyright (c) 2020, salesforce.com, inc. # All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # For full license text, see the LICENSE file in the repo root # or https://opensource.org/licenses/BSD-3-Clause import random import numpy as np from ai_economist.foundation.base.registrar import Registry class BaseAgent: """Base class for Agent classes. Instances of Agent classes are created for each agent in the environment. Agent instances are stateful, capturing location, inventory, endogenous variables, and any additional state fields created by environment components during construction (see BaseComponent.get_additional_state_fields in base_component.py). They also provide a simple API for getting/setting actions for each of their registered action subspaces (which depend on the components used to build the environment). Args: idx (int or str): Index that uniquely identifies the agent object amongst the other agent objects registered in its environment. multi_action_mode (bool): Whether to allow the agent to take one action for each of its registered action subspaces each timestep (if True), or to limit the agent to take only one action each timestep (if False). """ name = "" def __init__(self, idx=None, multi_action_mode=None): assert self.name if idx is None: idx = 0 if multi_action_mode is None: multi_action_mode = False if isinstance(idx, str): self._idx = idx else: self._idx = int(idx) self.multi_action_mode = bool(multi_action_mode) self.single_action_map = ( {} ) # Used to convert single-action-mode actions to the general format self.action = dict() self.action_dim = dict() self._action_names = [] self._multi_action_dict = {} self._unique_actions = 0 self._total_actions = 0 self.state = dict(loc=[0, 0], inventory={}, escrow={}, endogenous={}) self._registered_inventory = False self._registered_endogenous = False self._registered_components = False self._noop_action_dict = dict() # Special flag to allow logic for multi-action-mode agents # that are not given any actions. self._passive_multi_action_agent = False # If this gets set to true, we can make masks faster self._one_component_single_action = False self._premask = None @property def idx(self): """Index used to identify this agent. Must be unique within the environment.""" return self._idx def register_inventory(self, resources): """Used during environment construction to populate inventory/escrow fields.""" assert not self._registered_inventory for entity_name in resources: self.inventory[entity_name] = 0 self.escrow[entity_name] = 0 self._registered_inventory = True def register_endogenous(self, endogenous): """Used during environment construction to populate endogenous state fields.""" assert not self._registered_endogenous for entity_name in endogenous: self.endogenous[entity_name] = 0 self._registered_endogenous = True def _incorporate_component(self, action_name, n): extra_n = ( 1 if self.multi_action_mode else 0 ) # Each sub-action has a NO-OP in multi action mode) self.action[action_name] = 0 self.action_dim[action_name] = n + extra_n self._action_names.append(action_name) self._multi_action_dict[action_name] = False self._unique_actions += 1 if self.multi_action_mode: self._total_actions += n + extra_n else: for action_n in range(1, n + 1): self._total_actions += 1 self.single_action_map[int(self._total_actions)] = [ action_name, action_n, ] def register_components(self, components): """Used during environment construction to set up state/action spaces.""" assert not self._registered_components for component in components: n = component.get_n_actions(self.name) if n is None: continue # Most components will have a single action-per-agent, so n is an int if isinstance(n, int): if n == 0: continue self._incorporate_component(component.name, n) # They can also internally handle multiple actions-per-agent, # so n is an tuple or list elif isinstance(n, (tuple, list)): for action_sub_name, n_ in n: if n_ == 0: continue if "." in action_sub_name: raise NameError( "Sub-action {} of component {} " "is illegally named.".format( action_sub_name, component.name ) ) self._incorporate_component( "{}.{}".format(component.name, action_sub_name), n_ ) # If that's not what we got something is funky. else: raise TypeError( "Received unexpected type ({}) from {}.get_n_actions('{}')".format( type(n), component.name, self.name ) ) for k, v in component.get_additional_state_fields(self.name).items(): self.state[k] = v # Currently no actions are available to this agent. Give it a placeholder. if len(self.action) == 0 and self.multi_action_mode: self._incorporate_component("PassiveAgentPlaceholder", 0) self._passive_multi_action_agent = True elif len(self.action) == 1 and not self.multi_action_mode: self._one_component_single_action = True self._premask = np.ones(1 + self._total_actions, dtype=np.float32) self._registered_components = True self._noop_action_dict = {k: v * 0 for k, v in self.action.items()} verbose = False if verbose: print(self.name, self.idx, "constructed action map:") for k, v in self.single_action_map.items(): print("single action map:", k, v) for k, v in self.action.items(): print("action:", k, v) for k, v in self.action_dim.items(): print("action_dim:", k, v) @property def action_spaces(self): """ if self.multi_action_mode == True: Returns an integer array with length equal to the number of action subspaces that the agent registered. The i'th element of the array indicates the number of actions associated with the i'th action subspace. In multi_action_mode, each subspace includes a NO-OP. Note: self._action_names describes which action subspace each element of the array refers to. Example: >> self.multi_action_mode True >> self.action_spaces [2, 5] >> self._action_names ["Build", "Gather"] # [1 Build action + Build NO-OP, 4 Gather actions + Gather NO-OP] if self.multi_action_mode == False: Returns a single integer equal to the total number of actions that the agent can take. Example: >> self.multi_action_mode False >> self.action_spaces 6 >> self._action_names ["Build", "Gather"] # 1 NO-OP + 1 Build action + 4 Gather actions. """ if self.multi_action_mode: action_dims = [] for m in self._action_names: action_dims.append(np.array(self.action_dim[m]).reshape(-1)) return np.concatenate(action_dims).astype(np.int32) n_actions = 1 # (NO-OP) for m in self._action_names: n_actions += self.action_dim[m] return n_actions @property def loc(self): """2D list of [row, col] representing agent's location in the environment.""" return self.state["loc"] @property def endogenous(self): """Dictionary representing endogenous quantities (i.e. "Labor"). Example: >> self.endogenous {"Labor": 30.25} """ return self.state["endogenous"] @property def inventory(self): """Dictionary representing quantities of resources in agent's inventory. Example: >> self.inventory {"Wood": 3, "Stone": 20, "Coin": 1002.83} """ return self.state["inventory"] @property def escrow(self): """Dictionary representing quantities of resources in agent's escrow. https://en.wikipedia.org/wiki/Escrow Escrow is used to manage any portion of the agent's inventory that is reserved for a particular purpose. Typically, something enters escrow as part of a contractual arrangement to disburse that something when another condition is met. An example is found in the ContinuousDoubleAuction Component class (see ../components/continuous_double_auction.py). When an agent creates an order to sell a unit of Wood, for example, the component moves one unit of Wood from the agent's inventory to its escrow. If another agent buys the Wood, it is moved from escrow to the other agent's inventory. By placing the Wood in escrow, it prevents the first agent from using it for something else (i.e. building a house). Notes: The inventory and escrow share the same keys. An agent's endowment refers to the total quantity it has in its inventory and escrow. Escrow is provided to simplify inventory management but its intended semantics are not enforced directly. It is up to Component classes to enforce these semantics. Example: >> self.inventory {"Wood": 0, "Stone": 1, "Coin": 3} """ return self.state["escrow"] def inventory_to_escrow(self, resource, amount): """Move some amount of a resource from agent inventory to agent escrow. Amount transferred is capped to the amount of resource in agent inventory. Args: resource (str): The name of the resource to move (i.e. "Wood", "Coin"). amount (float): The amount to be moved from inventory to escrow. Must be positive. Returns: Amount of resource actually transferred. Will be less than amount argument if amount argument exceeded the amount of resource in the inventory. Calculated as: transferred = np.minimum(self.state["inventory"][resource], amount) """ assert amount >= 0 transferred = float(np.minimum(self.state["inventory"][resource], amount)) self.state["inventory"][resource] -= transferred self.state["escrow"][resource] += transferred return float(transferred) def escrow_to_inventory(self, resource, amount): """Move some amount of a resource from agent escrow to agent inventory. Amount transferred is capped to the amount of resource in agent escrow. Args: resource (str): The name of the resource to move (i.e. "Wood", "Coin"). amount (float): The amount to be moved from escrow to inventory. Must be positive. Returns: Amount of resource actually transferred. Will be less than amount argument if amount argument exceeded the amount of resource in escrow. Calculated as: transferred = np.minimum(self.state["escrow"][resource], amount) """ assert amount >= 0 transferred = float(np.minimum(self.state["escrow"][resource], amount)) self.state["escrow"][resource] -= transferred self.state["inventory"][resource] += transferred return float(transferred) def total_endowment(self, resource): """Get the combined inventory+escrow endowment of resource. Args: resource (str): Name of the resource Returns: The amount of resource in the agents inventory and escrow. """ return self.inventory[resource] + self.escrow[resource] def reset_actions(self, component=None): """Reset all actions to the NO-OP action (the 0'th action index). If component is specified, only reset action(s) for that component. """ if not component: self.action.update(self._noop_action_dict) else: for k, v in self.action.items(): if "." in component: if k.lower() == component.lower(): self.action[k] = v * 0 else: base_component = k.split(".")[0] if base_component.lower() == component.lower(): self.action[k] = v * 0 def has_component(self, component_name): """Returns True if the agent has component_name as a registered subaction.""" return bool(component_name in self.action) def get_random_action(self): """ Select a component at random and randomly choose one of its actions (other than NO-OP). """ random_component = random.choice(self._action_names) component_action = random.choice( list(range(1, self.action_dim[random_component])) ) return {random_component: component_action} def get_component_action(self, component_name, sub_action_name=None): """ Return the action(s) taken for component_name component, or None if the agent does not use that component. """ if sub_action_name is not None: return self.action.get(component_name + "." + sub_action_name, None) matching_names = [ m for m in self._action_names if m.split(".")[0] == component_name ] if len(matching_names) == 0: return None if len(matching_names) == 1: return self.action.get(matching_names[0], None) return [self.action.get(m, None) for m in matching_names] def set_component_action(self, component_name, action): """Set the action(s) taken for component_name component.""" if component_name not in self.action: raise KeyError( "Agent {} of type {} does not have {} registered as a subaction".format( self.idx, self.name, component_name ) ) if self._multi_action_dict[component_name]: self.action[component_name] = np.array(action, dtype=np.int32) else: self.action[component_name] = int(action) def populate_random_actions(self): """Fill the action buffer with random actions. This is for testing.""" for component, d in self.action_dim.items(): if isinstance(d, int): self.set_component_action(component, np.random.randint(0, d)) else: d_array = np.array(d) self.set_component_action( component, np.floor(np.random.rand(*d_array.shape) * d_array) ) def parse_actions(self, actions): """Parse the actions array to fill each component's action buffers.""" if self.multi_action_mode: assert len(actions) == self._unique_actions if len(actions) == 1: self.set_component_action(self._action_names[0], actions[0]) else: for action_name, action in zip(self._action_names, actions): self.set_component_action(action_name, int(action)) # Single action mode else: # Action was supplied as an index of a specific subaction. # No need to do any lookup. if isinstance(actions, dict): if len(actions) == 0: return assert len(actions) == 1 action_name = list(actions.keys())[0] action = list(actions.values())[0] if action == 0: return self.set_component_action(action_name, action) # Action was supplied as an index into the full set of combined actions else: action = int(actions) # Universal NO-OP if action == 0: return action_name, action = self.single_action_map.get(action) self.set_component_action(action_name, action) def flatten_masks(self, mask_dict): """Convert a dictionary of component action masks into a single mask vector.""" if self._one_component_single_action: self._premask[1:] = mask_dict[self._action_names[0]] return self._premask no_op_mask = [1] if self._passive_multi_action_agent: return np.array(no_op_mask).astype(np.float32) list_of_masks = [] if not self.multi_action_mode: list_of_masks.append(no_op_mask) for m in self._action_names: if m not in mask_dict: raise KeyError("No mask provided for {} (agent {})".format(m, self.idx)) if self.multi_action_mode: list_of_masks.append(no_op_mask) list_of_masks.append(mask_dict[m]) return np.concatenate(list_of_masks).astype(np.float32) agent_registry = Registry(BaseAgent) """The registry for Agent classes. This creates a registry object for Agent classes. This registry requires that all added classes are subclasses of BaseAgent. To make an Agent class available through the registry, decorate the class definition with @agent_registry.add. Example: from ai_economist.foundation.base.base_agent import BaseAgent, agent_registry @agent_registry.add class ExampleAgent(BaseAgent): name = "Example" pass assert agent_registry.has("Example") AgentClass = agent_registry.get("Example") agent = AgentClass(...) assert isinstance(agent, ExampleAgent) Notes: The foundation package exposes the agent registry as: foundation.agents An Agent class that is defined and registered following the above example will only be visible in foundation.agents if defined/registered in a file that is imported in ../agents/__init__.py. """
[ "numpy.minimum", "ai_economist.foundation.base.registrar.Registry", "numpy.ones", "random.choice", "numpy.random.randint", "numpy.array", "numpy.random.rand", "numpy.concatenate" ]
[((18196, 18215), 'ai_economist.foundation.base.registrar.Registry', 'Registry', (['BaseAgent'], {}), '(BaseAgent)\n', (18204, 18215), False, 'from ai_economist.foundation.base.registrar import Registry\n'), ((13972, 14005), 'random.choice', 'random.choice', (['self._action_names'], {}), '(self._action_names)\n', (13985, 14005), False, 'import random\n'), ((11394, 11447), 'numpy.minimum', 'np.minimum', (["self.state['inventory'][resource]", 'amount'], {}), "(self.state['inventory'][resource], amount)\n", (11404, 11447), True, 'import numpy as np\n'), ((12385, 12435), 'numpy.minimum', 'np.minimum', (["self.state['escrow'][resource]", 'amount'], {}), "(self.state['escrow'][resource], amount)\n", (12395, 12435), True, 'import numpy as np\n'), ((15329, 15361), 'numpy.array', 'np.array', (['action'], {'dtype': 'np.int32'}), '(action, dtype=np.int32)\n', (15337, 15361), True, 'import numpy as np\n'), ((6232, 6282), 'numpy.ones', 'np.ones', (['(1 + self._total_actions)'], {'dtype': 'np.float32'}), '(1 + self._total_actions, dtype=np.float32)\n', (6239, 6282), True, 'import numpy as np\n'), ((15759, 15770), 'numpy.array', 'np.array', (['d'], {}), '(d)\n', (15767, 15770), True, 'import numpy as np\n'), ((18128, 18157), 'numpy.concatenate', 'np.concatenate', (['list_of_masks'], {}), '(list_of_masks)\n', (18142, 18157), True, 'import numpy as np\n'), ((8274, 8301), 'numpy.concatenate', 'np.concatenate', (['action_dims'], {}), '(action_dims)\n', (8288, 8301), True, 'import numpy as np\n'), ((15690, 15713), 'numpy.random.randint', 'np.random.randint', (['(0)', 'd'], {}), '(0, d)\n', (15707, 15713), True, 'import numpy as np\n'), ((17665, 17685), 'numpy.array', 'np.array', (['no_op_mask'], {}), '(no_op_mask)\n', (17673, 17685), True, 'import numpy as np\n'), ((8213, 8241), 'numpy.array', 'np.array', (['self.action_dim[m]'], {}), '(self.action_dim[m])\n', (8221, 8241), True, 'import numpy as np\n'), ((15854, 15884), 'numpy.random.rand', 'np.random.rand', (['*d_array.shape'], {}), '(*d_array.shape)\n', (15868, 15884), True, 'import numpy as np\n')]
from modeldata import from_downloaded as modeldata_from_downloaded import log from utilities import get_ncfiles_in_dir,get_variable_name,get_variable_name_reverse from utilities import convert_time_to_datetime,get_n_months,get_l_time_range,add_month_to_timestamp from netCDF4 import Dataset from datetime import datetime,timedelta import numpy as np import os def variables_at_depth(input_dir,output_dir,model_name, i_times=[0],i_depths=[0], variables=['u','v','mld','salinity','temp','sea_ice_cover'], filename_format='%Y%m%d',log_file='edt/extract_depth.log'): filenames = get_ncfiles_in_dir(input_dir) for filename in filenames: netcdf = Dataset(input_dir+filename) modeldata = modeldata_from_downloaded(netcdf,variables,model_name,i_times=i_times,i_depths=i_depths) output_path = modeldata.get_output_path(output_dir,filename_format=filename_format) if os.path.exists(output_path): log.info(log_file,f'File already exists, skipping: {output_path}') netcdf.close() continue log.info(log_file,f'Extracting depth layers {str(i_depths)} and saving to file: {output_path}') _ = modeldata.write_to_netcdf(output_dir,filename_format=filename_format) netcdf.close() def monthly_files(input_path,output_dir,model_name,log_file='edt/extract_monthly.log'): netcdf = Dataset(input_path) # keep original variables: find general name from model specific name model_variables = list(set(netcdf.variables.keys())-set(netcdf.dimensions.keys())) variables = [] for model_variable in model_variables: variables.append(get_variable_name_reverse(model_name,model_variable)) time_var = get_variable_name(model_name,'time') time = convert_time_to_datetime(netcdf[time_var][:],netcdf[time_var].units) n_months = get_n_months(time[0],time[-1]) date0 = datetime(time[0].year,time[0].month,1) for i in range(n_months): start_date = add_month_to_timestamp(date0,i) end_date = add_month_to_timestamp(date0,i+1)-timedelta(days=1) l_times = get_l_time_range(time,start_date,end_date) i_times = np.where(l_times)[0] modeldata = modeldata_from_downloaded(netcdf,variables,model_name,i_times=i_times) output_path = modeldata.get_output_path(output_dir,filename_format='%Y%m') if os.path.exists(output_path): log.info(log_file,f'File already exists, skipping: {output_path}') continue log.info(log_file,f'Writing monthly data to file: {output_path}') _ = modeldata.write_to_netcdf(output_dir,filename_format='%Y%m') netcdf.close()
[ "netCDF4.Dataset", "utilities.get_variable_name", "utilities.get_variable_name_reverse", "utilities.add_month_to_timestamp", "utilities.get_ncfiles_in_dir", "utilities.convert_time_to_datetime", "utilities.get_l_time_range", "os.path.exists", "datetime.datetime", "modeldata.from_downloaded", "log.info", "numpy.where", "utilities.get_n_months", "datetime.timedelta" ]
[((653, 682), 'utilities.get_ncfiles_in_dir', 'get_ncfiles_in_dir', (['input_dir'], {}), '(input_dir)\n', (671, 682), False, 'from utilities import get_ncfiles_in_dir, get_variable_name, get_variable_name_reverse\n'), ((1438, 1457), 'netCDF4.Dataset', 'Dataset', (['input_path'], {}), '(input_path)\n', (1445, 1457), False, 'from netCDF4 import Dataset\n'), ((1775, 1812), 'utilities.get_variable_name', 'get_variable_name', (['model_name', '"""time"""'], {}), "(model_name, 'time')\n", (1792, 1812), False, 'from utilities import get_ncfiles_in_dir, get_variable_name, get_variable_name_reverse\n'), ((1823, 1892), 'utilities.convert_time_to_datetime', 'convert_time_to_datetime', (['netcdf[time_var][:]', 'netcdf[time_var].units'], {}), '(netcdf[time_var][:], netcdf[time_var].units)\n', (1847, 1892), False, 'from utilities import convert_time_to_datetime, get_n_months, get_l_time_range, add_month_to_timestamp\n'), ((1907, 1938), 'utilities.get_n_months', 'get_n_months', (['time[0]', 'time[-1]'], {}), '(time[0], time[-1])\n', (1919, 1938), False, 'from utilities import convert_time_to_datetime, get_n_months, get_l_time_range, add_month_to_timestamp\n'), ((1950, 1990), 'datetime.datetime', 'datetime', (['time[0].year', 'time[0].month', '(1)'], {}), '(time[0].year, time[0].month, 1)\n', (1958, 1990), False, 'from datetime import datetime, timedelta\n'), ((731, 760), 'netCDF4.Dataset', 'Dataset', (['(input_dir + filename)'], {}), '(input_dir + filename)\n', (738, 760), False, 'from netCDF4 import Dataset\n'), ((779, 875), 'modeldata.from_downloaded', 'modeldata_from_downloaded', (['netcdf', 'variables', 'model_name'], {'i_times': 'i_times', 'i_depths': 'i_depths'}), '(netcdf, variables, model_name, i_times=i_times,\n i_depths=i_depths)\n', (804, 875), True, 'from modeldata import from_downloaded as modeldata_from_downloaded\n'), ((971, 998), 'os.path.exists', 'os.path.exists', (['output_path'], {}), '(output_path)\n', (985, 998), False, 'import os\n'), ((2040, 2072), 'utilities.add_month_to_timestamp', 'add_month_to_timestamp', (['date0', 'i'], {}), '(date0, i)\n', (2062, 2072), False, 'from utilities import convert_time_to_datetime, get_n_months, get_l_time_range, add_month_to_timestamp\n'), ((2161, 2205), 'utilities.get_l_time_range', 'get_l_time_range', (['time', 'start_date', 'end_date'], {}), '(time, start_date, end_date)\n', (2177, 2205), False, 'from utilities import convert_time_to_datetime, get_n_months, get_l_time_range, add_month_to_timestamp\n'), ((2263, 2336), 'modeldata.from_downloaded', 'modeldata_from_downloaded', (['netcdf', 'variables', 'model_name'], {'i_times': 'i_times'}), '(netcdf, variables, model_name, i_times=i_times)\n', (2288, 2336), True, 'from modeldata import from_downloaded as modeldata_from_downloaded\n'), ((2428, 2455), 'os.path.exists', 'os.path.exists', (['output_path'], {}), '(output_path)\n', (2442, 2455), False, 'import os\n'), ((2565, 2631), 'log.info', 'log.info', (['log_file', 'f"""Writing monthly data to file: {output_path}"""'], {}), "(log_file, f'Writing monthly data to file: {output_path}')\n", (2573, 2631), False, 'import log\n'), ((1012, 1079), 'log.info', 'log.info', (['log_file', 'f"""File already exists, skipping: {output_path}"""'], {}), "(log_file, f'File already exists, skipping: {output_path}')\n", (1020, 1079), False, 'import log\n'), ((1706, 1759), 'utilities.get_variable_name_reverse', 'get_variable_name_reverse', (['model_name', 'model_variable'], {}), '(model_name, model_variable)\n', (1731, 1759), False, 'from utilities import get_ncfiles_in_dir, get_variable_name, get_variable_name_reverse\n'), ((2091, 2127), 'utilities.add_month_to_timestamp', 'add_month_to_timestamp', (['date0', '(i + 1)'], {}), '(date0, i + 1)\n', (2113, 2127), False, 'from utilities import convert_time_to_datetime, get_n_months, get_l_time_range, add_month_to_timestamp\n'), ((2125, 2142), 'datetime.timedelta', 'timedelta', ([], {'days': '(1)'}), '(days=1)\n', (2134, 2142), False, 'from datetime import datetime, timedelta\n'), ((2222, 2239), 'numpy.where', 'np.where', (['l_times'], {}), '(l_times)\n', (2230, 2239), True, 'import numpy as np\n'), ((2469, 2536), 'log.info', 'log.info', (['log_file', 'f"""File already exists, skipping: {output_path}"""'], {}), "(log_file, f'File already exists, skipping: {output_path}')\n", (2477, 2536), False, 'import log\n')]
import math from pandas import DataFrame import numpy as np from __init__fuzzy import * def experiment(sliding_number=3, hidden_node=15): dat_nn = np.asarray(scaler.fit_transform(dat)) X_train_size = int(len(dat_nn)*0.7) sliding = np.array(list(SlidingWindow(dat_nn, sliding_number))) X_train_nn = sliding[:X_train_size] y_train_nn = dat_nn[sliding_number:X_train_size+sliding_number].reshape(-1,1) X_test_nn = sliding[X_train_size:] y_test_nn = dat_nn[X_train_size+sliding_number-1:].reshape(-1,1) y_actual_test = dat[X_train_size+sliding_number-1:].tolist() estimator = KerasRegressor(learning_rate=0.01, hidden_nodes=[hidden_node], steps=5000, optimize='Adam') estimator.fit(X_train_nn, y_train_nn) y_pred = scaler.inverse_transform(estimator.predict(X_test_nn)) score_mape = mean_absolute_error(y_pred, y_actual_test) score_rmse = math.sqrt(mean_squared_error(y_pred,y_actual_test)) np.savez('model_saved/BPNN_%s_%s' % (sliding_number, score_mape), y_pred=y_pred, y_true=y_actual_test) return sliding_number, score_rmse, score_mape result = [[experiment(sliding_number=i) for i in np.arange(2,6)] for j in np.arange(10)] #np.savez("BPNN_epochs",result=result) results = DataFrame(np.array(result).reshape(-1,3), columns=["sliding_number","rmse","mae"]) results.to_csv('experiment_logs/bpnn_experiment.csv')
[ "numpy.array", "numpy.savez", "numpy.arange" ]
[((948, 1055), 'numpy.savez', 'np.savez', (["('model_saved/BPNN_%s_%s' % (sliding_number, score_mape))"], {'y_pred': 'y_pred', 'y_true': 'y_actual_test'}), "('model_saved/BPNN_%s_%s' % (sliding_number, score_mape), y_pred=\n y_pred, y_true=y_actual_test)\n", (956, 1055), True, 'import numpy as np\n'), ((1176, 1189), 'numpy.arange', 'np.arange', (['(10)'], {}), '(10)\n', (1185, 1189), True, 'import numpy as np\n'), ((1151, 1166), 'numpy.arange', 'np.arange', (['(2)', '(6)'], {}), '(2, 6)\n', (1160, 1166), True, 'import numpy as np\n'), ((1250, 1266), 'numpy.array', 'np.array', (['result'], {}), '(result)\n', (1258, 1266), True, 'import numpy as np\n')]
# -*- encoding:utf-8 -*- from __future__ import print_function import os, codecs, re import random import numpy as np from datetime import datetime from collections import defaultdict, Counter from nltk.stem.porter import PorterStemmer import reader from utils import AGENT_FIRST_THRESHOLD, AGENT_SECOND_THRESHOLD, VISITOR_FIRST_THRESHOLD, VISITOR_SECOND_THRESHOLD BASE_DIR = 'data' THREAD_PATH = os.path.join(BASE_DIR,'chat_sequences.txt') UTTERANCE_LENGTH_PATH = os.path.join(BASE_DIR,'utt_length.txt') NULL_TOKEN = "X" def encode_time_bucket(interval, speaker): if speaker == "Agent": if interval < AGENT_FIRST_THRESHOLD: return "AGENT_TIME_1" elif interval < AGENT_SECOND_THRESHOLD: return "AGENT_TIME_2" else: return "AGENT_TIME_3" elif speaker == "Visitor": if interval < VISITOR_FIRST_THRESHOLD: return "VISITOR_TIME_1" elif interval < VISITOR_SECOND_THRESHOLD: return "VISITOR_TIME_2" else: return "VISITOR_TIME_3" def load_target_sessions(threshold): s_set=[] with open(UTTERANCE_LENGTH_PATH, 'rt') as f: for line in f: data=line.strip().split() sid=data[0] ulen=int(data[1]) if ulen < threshold: continue s_set.append(sid) return s_set def load_topn_words(sessions, N): word_lists = [] for w_list in sessions.values(): word_lists.extend(w_list) c = Counter(word_lists) word_lists = dict(c.most_common(N)).keys() return word_lists def make_session_text(): session_set = load_target_sessions(threshold=4) fsession_agent = codecs.open(reader.AGENT_SESSION_PATH, 'w', encoding='utf-8') fsession_visitor = codecs.open(reader.VISITOR_SESSION_PATH, 'w', encoding='utf-8') with codecs.open(THREAD_PATH, 'r', encoding='utf-8') as f: f.next() current_id = 'EXID' prev_utt_dt = None prev_speaker = None agent_text_list = [] visitor_text_list = [] for idx, line in enumerate(f): if idx % 1000 == 0: print("Reading {}th line".format(idx)) data = line.strip().split('|') session_id = data[0] if session_id not in session_set or len(data) != 6: continue speaker = data[2] type = data[4] # 2013-10-01T00:02:47+00:00 current_utt_dt = datetime.strptime(data[5][:19], '%Y-%m-%dT%H:%M:%S') if session_id != current_id and current_id != 'EXID': current_id = session_id num_agent_words = len(agent_text_list) num_visitor_words = len(visitor_text_list) # save agent sessions print(current_id, file=fsession_agent, end=' ') for ix in range(num_agent_words-1): print(agent_text_list[ix], file=fsession_agent, end=' ') print(agent_text_list[-1], file=fsession_agent) agent_text_list[:] = [] # save visitor sessions print(current_id, file=fsession_visitor, end=' ') for ix in range(num_visitor_words-1): print(visitor_text_list[ix], file=fsession_visitor, end=' ') print(visitor_text_list[-1], file=fsession_visitor) visitor_text_list[:] = [] prev_utt_dt = None elif session_id != current_id and current_id == 'EXID': current_id = session_id elif session_id == current_id: pass else: print("Unexpected errors on reading threads") exit() if type == 'URL': text = 'URLLINK' tokens = [text] else: text = data[3].strip().lower() text = re.sub(r'<a href>.*<\a>', 'HTMLLINK', text) text = re.sub(r'http://[\w./]+', 'URLLINK', text) tokens = [re.sub(r'\W+', '', t) for t in re.split(r'\s+', text)] tokens = [t for t in tokens if t != ""] if prev_utt_dt is not None and prev_speaker != speaker: time_bucket = encode_time(prev_utt_dt, current_utt_dt, speaker) agent_text_list.append(time_bucket) visitor_text_list.append(time_bucket) if speaker == "Agent": for t in tokens: agent_text_list.append(t) visitor_text_list.append(NULL_TOKEN) elif speaker == "Visitor": for t in tokens: agent_text_list.append(NULL_TOKEN) visitor_text_list.append(t) else: print("Probably errors on data. line num:{}".format(idx)) exit() prev_speaker = speaker prev_utt_dt = current_utt_dt # For the last session num_agent_words = len(agent_text_list) num_visitor_words = len(visitor_text_list) # save agent sessions print(current_id, file=fsession_agent, end=' ') for ix in range(num_agent_words - 1): print(agent_text_list[ix], file=fsession_agent, end=' ') print(agent_text_list[-1], file=fsession_agent) agent_text_list[:] = [] # save visitor sessions print(current_id, file=fsession_visitor, end=' ') for ix in range(num_visitor_words - 1): print(visitor_text_list[ix], file=fsession_visitor, end=' ') print(visitor_text_list[-1], file=fsession_visitor) visitor_text_list[:] = [] fsession_agent.close() fsession_visitor.close() def make_stemmed_text(): # Create p_stemmer of class PorterStemmer p_stemmer = PorterStemmer() print('Stemming agent sessions.') fout_agent = codecs.open(reader.AGENT_PRE_PATH, 'w', encoding='utf-8') with codecs.open(reader.AGENT_NOPRE_PATH, 'r', encoding='utf-8') as fsession_agent: for idx, line in enumerate(fsession_agent): if idx % 1000 == 0: print("Reading {}th line".format(idx)) data = line.strip().split() session_id = data[0] words = data[1:] num_words = len(words) print(session_id, file=fout_agent, end=' ') for ix in range(num_words-1): w = words[ix] if 'AGENT_' in w or 'VISITOR_' in w: print(w, file=fout_agent, end=' ') else: print(p_stemmer.stem(w), file=fout_agent, end=' ') print(p_stemmer.stem(words[-1]), file=fout_agent) fout_agent.close() print('Stemming visitor sessions.') fout_visitor = codecs.open(reader.VISITOR_PRE_PATH, 'w', encoding='utf-8') with codecs.open(reader.VISITOR_NOPRE_PATH, 'r', encoding='utf-8') as fsession_visitor: for idx, line in enumerate(fsession_visitor): if idx % 1000 == 0: print("Reading {}th line".format(idx)) data = line.strip().split() session_id = data[0] words = data[1:] num_words = len(words) print(session_id, file=fout_visitor, end=' ') for ix in range(num_words - 1): w = words[ix] if 'AGENT_' in w or 'VISITOR_' in w: print(w, file=fout_visitor, end=' ') else: print(p_stemmer.stem(w), file=fout_visitor, end=' ') print(p_stemmer.stem(words[-1]), file=fout_visitor) fout_visitor.close() def transform_label(session_label): for sid, label in session_label.items(): if label == "Very Dissatisfied" or label == "Dissatisfied": # 1 if satisfaction shows negativity label_int = 1 else: label_int = 0 session_label[sid] = label_int return session_label def transform_sequence(sequences, word_indices): new_sequences = defaultdict(list) for sid, sequence in sequences.items(): for s_ix, w in enumerate(sequence): if w not in word_indices: index = word_indices[NULL_TOKEN] else: index = word_indices[w] new_sequences[sid].append(index) return new_sequences def transform_sequence_using_topn(sequences, word_indices, wv, top_words): new_sequences = defaultdict(list) candidate_matching = {} for sid, sequence in sequences.items(): for s_ix, w in enumerate(sequence): if w not in word_indices: index = word_indices[NULL_TOKEN] elif w not in top_words: if w in candidate_matching: index = word_indices[candidate_matching[w]] else: candidate, _ = wv.most_similar(positive=[w], topn=1)[0] candidate_matching[w] = candidate if candidate in word_indices: index = word_indices[candidate] else: index = word_indices[NULL_TOKEN] else: index = word_indices[w] new_sequences[sid].append(index) return new_sequences def transform_labeled_data_listform(sequences, labels): sids = sequences.keys() X, y = [], [] for sid in sids: seq = sequences[sid] label = labels[sid] X.append(seq) y.append(label) return X, y def filter_labeled_data(sequences, labels): seq_keys = set(sequences.keys()) label_keys = set(labels.keys()) common_keys = seq_keys & label_keys new_sequences = {} new_labels = {} for k in common_keys: new_sequences[k] = sequences[k] new_labels[k] = labels[k] return new_sequences, new_labels def random_oversampling(X, y, seed): random.seed(seed) satisfaction_counter = Counter(y) (major_label, major_cnt), (minor_label, minor_cnt) = satisfaction_counter.most_common(2) minor_indices = [i for i, x in enumerate(y) if x == minor_label] all_indices = [i for i in range(0, len(y))] for i in range(major_cnt / minor_cnt - 2): all_indices.extend(minor_indices) rest_cnt = major_cnt % minor_cnt all_indices.extend(random.sample(minor_indices, rest_cnt)) new_X = [X[i] for i in all_indices] new_y = [y[i] for i in all_indices] return new_X, new_y def get_wordvectors_from_keyedvectors(keyedVectors, seed): vocab_list_wo_NULL = keyedVectors.vocab.keys() embedding_dim = keyedVectors.syn0.shape[1] if NULL_TOKEN in vocab_list_wo_NULL: vocab_list_wo_NULL.remove(NULL_TOKEN) vocab_list = [NULL_TOKEN] + vocab_list_wo_NULL # X should be located at 0 word_indices = {} for vocab_index in range(1, len(vocab_list)): w = vocab_list[vocab_index] word_indices[w] = vocab_index # index for out-of-vocabulary words np.random.seed(seed) word_indices[NULL_TOKEN] = 0 vocab_size = len(word_indices) embedding_matrix = np.zeros((vocab_size, embedding_dim), dtype=np.float32) # Out-of-vocabulary word is zero-vector embedding_matrix[0] = np.random.random(size=keyedVectors.syn0.shape[1]) / 5 - 0.1 for word in vocab_list_wo_NULL: i = word_indices[word] embedding_vector = keyedVectors.word_vec(word) embedding_matrix[i] = embedding_vector return vocab_size, embedding_dim, word_indices, embedding_matrix if __name__ == '__main__': make_session_text() make_stemmed_text()
[ "numpy.random.seed", "codecs.open", "re.split", "random.sample", "nltk.stem.porter.PorterStemmer", "numpy.zeros", "collections.defaultdict", "datetime.datetime.strptime", "numpy.random.random", "random.seed", "collections.Counter", "os.path.join", "re.sub" ]
[((414, 458), 'os.path.join', 'os.path.join', (['BASE_DIR', '"""chat_sequences.txt"""'], {}), "(BASE_DIR, 'chat_sequences.txt')\n", (426, 458), False, 'import os, codecs, re\n'), ((483, 523), 'os.path.join', 'os.path.join', (['BASE_DIR', '"""utt_length.txt"""'], {}), "(BASE_DIR, 'utt_length.txt')\n", (495, 523), False, 'import os, codecs, re\n'), ((1577, 1596), 'collections.Counter', 'Counter', (['word_lists'], {}), '(word_lists)\n', (1584, 1596), False, 'from collections import defaultdict, Counter\n'), ((1779, 1840), 'codecs.open', 'codecs.open', (['reader.AGENT_SESSION_PATH', '"""w"""'], {'encoding': '"""utf-8"""'}), "(reader.AGENT_SESSION_PATH, 'w', encoding='utf-8')\n", (1790, 1840), False, 'import os, codecs, re\n'), ((1865, 1928), 'codecs.open', 'codecs.open', (['reader.VISITOR_SESSION_PATH', '"""w"""'], {'encoding': '"""utf-8"""'}), "(reader.VISITOR_SESSION_PATH, 'w', encoding='utf-8')\n", (1876, 1928), False, 'import os, codecs, re\n'), ((6039, 6054), 'nltk.stem.porter.PorterStemmer', 'PorterStemmer', ([], {}), '()\n', (6052, 6054), False, 'from nltk.stem.porter import PorterStemmer\n'), ((6114, 6171), 'codecs.open', 'codecs.open', (['reader.AGENT_PRE_PATH', '"""w"""'], {'encoding': '"""utf-8"""'}), "(reader.AGENT_PRE_PATH, 'w', encoding='utf-8')\n", (6125, 6171), False, 'import os, codecs, re\n'), ((7036, 7095), 'codecs.open', 'codecs.open', (['reader.VISITOR_PRE_PATH', '"""w"""'], {'encoding': '"""utf-8"""'}), "(reader.VISITOR_PRE_PATH, 'w', encoding='utf-8')\n", (7047, 7095), False, 'import os, codecs, re\n'), ((8336, 8353), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (8347, 8353), False, 'from collections import defaultdict, Counter\n'), ((8772, 8789), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (8783, 8789), False, 'from collections import defaultdict, Counter\n'), ((10289, 10306), 'random.seed', 'random.seed', (['seed'], {}), '(seed)\n', (10300, 10306), False, 'import random\n'), ((10335, 10345), 'collections.Counter', 'Counter', (['y'], {}), '(y)\n', (10342, 10345), False, 'from collections import defaultdict, Counter\n'), ((11399, 11419), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (11413, 11419), True, 'import numpy as np\n'), ((11516, 11571), 'numpy.zeros', 'np.zeros', (['(vocab_size, embedding_dim)'], {'dtype': 'np.float32'}), '((vocab_size, embedding_dim), dtype=np.float32)\n', (11524, 11571), True, 'import numpy as np\n'), ((1941, 1988), 'codecs.open', 'codecs.open', (['THREAD_PATH', '"""r"""'], {'encoding': '"""utf-8"""'}), "(THREAD_PATH, 'r', encoding='utf-8')\n", (1952, 1988), False, 'import os, codecs, re\n'), ((6182, 6241), 'codecs.open', 'codecs.open', (['reader.AGENT_NOPRE_PATH', '"""r"""'], {'encoding': '"""utf-8"""'}), "(reader.AGENT_NOPRE_PATH, 'r', encoding='utf-8')\n", (6193, 6241), False, 'import os, codecs, re\n'), ((7106, 7167), 'codecs.open', 'codecs.open', (['reader.VISITOR_NOPRE_PATH', '"""r"""'], {'encoding': '"""utf-8"""'}), "(reader.VISITOR_NOPRE_PATH, 'r', encoding='utf-8')\n", (7117, 7167), False, 'import os, codecs, re\n'), ((10712, 10750), 'random.sample', 'random.sample', (['minor_indices', 'rest_cnt'], {}), '(minor_indices, rest_cnt)\n', (10725, 10750), False, 'import random\n'), ((2593, 2645), 'datetime.datetime.strptime', 'datetime.strptime', (['data[5][:19]', '"""%Y-%m-%dT%H:%M:%S"""'], {}), "(data[5][:19], '%Y-%m-%dT%H:%M:%S')\n", (2610, 2645), False, 'from datetime import datetime\n'), ((11644, 11693), 'numpy.random.random', 'np.random.random', ([], {'size': 'keyedVectors.syn0.shape[1]'}), '(size=keyedVectors.syn0.shape[1])\n', (11660, 11693), True, 'import numpy as np\n'), ((4081, 4124), 're.sub', 're.sub', (['"""<a href>.*<\\\\a>"""', '"""HTMLLINK"""', 'text'], {}), "('<a href>.*<\\\\a>', 'HTMLLINK', text)\n", (4087, 4124), False, 'import os, codecs, re\n'), ((4149, 4191), 're.sub', 're.sub', (['"""http://[\\\\w./]+"""', '"""URLLINK"""', 'text'], {}), "('http://[\\\\w./]+', 'URLLINK', text)\n", (4155, 4191), False, 'import os, codecs, re\n'), ((4219, 4240), 're.sub', 're.sub', (['"""\\\\W+"""', '""""""', 't'], {}), "('\\\\W+', '', t)\n", (4225, 4240), False, 'import os, codecs, re\n'), ((4250, 4272), 're.split', 're.split', (['"""\\\\s+"""', 'text'], {}), "('\\\\s+', text)\n", (4258, 4272), False, 'import os, codecs, re\n')]
""" Script to get all the tiles from available scenes, aoi and date range for Planetscope or Skysat Author: @developmentseed Run: python3 get_planet_tiles.py --geojson=supersites.geojson \ --api_key=xxxxx \ --collections=PSScene3Band \ --start_date=2020,1,1 \ --end_date=2020,1,10 \ --cloud_cover=0.05 \ --zoom=16 \ --out_tex=test.txt """ import os import sys import requests from requests.auth import HTTPBasicAuth import numpy as np import json import requests import mercantile import numpy as np import argparse from datetime import date from planet import api client = api.ClientV1() def stats(geometry, collections, start_date, end_date, cc, PL_API_KEY): """Retrieve Stats ---- Args: collections: ['PSOrthoTile', 'REOrthoTile', 'PSScene3Band', 'PSScene4Band', 'SkySatScene'] geometry: geojson for the sites start_date: "2020-04-01T00:00:00.000Z" end_date: same format as start_date cc: cloud cover in 0.05 (5%) """ # filter for items the overlap with our chosen geometry geometry_filter = { "type": "GeometryFilter", "field_name": "geometry", "config": geometry } # filter images acquired in a certain date range date_range_filter = { "type": "DateRangeFilter", "field_name": "acquired", "config": { "gte": start_date, "lte": end_date } } # filter any images which are more than 50% clouds cloud_cover_filter = { "type": "RangeFilter", "field_name": "cloud_cover", "config": { "lte": cc } } config = { "type": "AndFilter", "config": [geometry_filter, cloud_cover_filter, date_range_filter] } # Stats API request object stats_endpoint_request = { "interval": "day", "item_types": collections, "filter": config } # build a filter for the AOI query = api.filters.and_filter( api.filters.geom_filter(geometry), api.filters.range_filter('cloud_cover', gt=0), api.filters.range_filter('cloud_cover', lt=float(cc)), api.filters.date_range("acquired", gte=start_date, lte=end_date) ) # we are requesting <collect type> imagery item_types = collections request = api.filters.build_search_request(query, item_types) # this will cause an exception if there are any API related errors results = client.quick_search(request) return results.get() def search(geometry, collections, start_date, end_date, cc, PL_API_KEY ): """Search for Data.""" print('PL_API_KEY: ', PL_API_KEY) print('geometry: ', geometry) print('collections: ', collections) print('start_date, end_date: ', start_date, end_date) print('cc: ', cc) # filter for items the overlap with our chosen geometry geometry_filter = { "type": "GeometryFilter", "field_name": "geometry", "config": geometry } # filter images acquired in a certain date range date_range_filter = { "type": "DateRangeFilter", "field_name": "acquired", "config": { "gte": start_date, "lte":end_date } } # filter any images which are more than 50% clouds cloud_cover_filter = { "type": "RangeFilter", "field_name": "cloud_cover", "config": { "lte": cc } } config = { "type": "AndFilter", "config": [geometry_filter, cloud_cover_filter, date_range_filter] } # Stats API request object stats_endpoint_request = { "interval": "day", "item_types": collections, "filter": config } # fire off the POST request #'https://api.planet.com/data/v1/quick-search', result = requests.post('https://api.planet.com/data/v1/quick-search', auth=HTTPBasicAuth(PL_API_KEY, ''), json=stats_endpoint_request) # build a filter for the AOI query = api.filters.and_filter( api.filters.geom_filter(geometry), api.filters.range_filter('cloud_cover', gt=0), api.filters.range_filter('cloud_cover', lt=float(cc)), api.filters.date_range("acquired", gte=start_date, lte=end_date) ) # we are requesting <collect type> imagery item_types = collections request = api.filters.build_search_request(query, item_types) # this will cause an exception if there are any API related errors results = client.quick_search(request) return results.get() def get_scene_ids_aoi(site_aois, start_date, end_date, cc, collections, api_key): """get scene ids """ results = {feat["properties"]["label"] : stats(feat["geometry"], collections, start_date, end_date, cc, api_key) for feat in site_aois["features"]} results_PS = {feat["properties"]["label"] : search(feat["geometry"], collections, start_date, end_date, cc, api_key) for feat in site_aois["features"]} results_PS = {feat["properties"]["label"] : search(feat["geometry"], collections, start_date, end_date, cc, api_key) for feat in site_aois["features"]} aois_scene_ids = [{ aoi: [[f['id'], f['geometry']['coordinates']]for f in results_PS[aoi]['features']] } for aoi in results_PS.keys()] print(f"Total of {collections} scenes per sites") for k, r in results.items(): print(k) im = r.get("buckets", []) total = sum([f["count"] for f in im]) print(total) print("---") return aois_scene_ids def revert_coordinates(coordinates): """convert coordinates to bbox Args: coordinates(list): geometry coordiantes of the aoi Return: bbox(list): [xmin, ymin, xmax, ymax] """ coordinates = np.asarray(coordinates) lats = coordinates[:,:,1] lons = coordinates[:,:,0] bbox = [lons.min(), lats.min(), lons.max(), lats.max()] return bbox def tile_indices(bbox, ZOOM_LEVEL): """get mercantile bounds Args: bbox(list): [xmin, ymin, xmax, ymax] of the aoi ZOOM_LEVEL(int): zoom level, e.g. 16 Returns: tile_bounds (list): tile bounds of AOI """ start_x, start_y, _ = mercantile.tile(bbox[0], bbox[3], ZOOM_LEVEL) end_x, end_y, _ = mercantile.tile(bbox[2], bbox[1], ZOOM_LEVEL) tile_bounds = [[start_x, end_x], [start_y, end_y]] return tile_bounds def get_tile_xy(geojson, start_date, end_date, cc, collections, ZOOM_LEVEL, api_key): """get tile range for pss scenes Args: geojson (geojson): polygons of the AOIs; start_date(iso date): date in iso format, e.g. "2020-04-01T00:00:00.000Z" end_date(iso date): date in iso format, e.g. "2020-04-03T00:00:00.000Z" cc(float): cloud cover, e.g. 0.05; collections(list): planet image products, e.g.['PSOrthoTile','PSScene3Band','SkySatScene'] """ scene_tiles_range = [] aoi_scene_coverage = get_scene_ids_aoi(geojson, start_date, end_date, cc, collections, api_key) for aoi in aoi_scene_coverage: for item in aoi.values(): for scene_id, coor in item: bbox = revert_coordinates(coor) tiles = tile_indices(bbox, ZOOM_LEVEL) scene_tiles_range.append([scene_id, tiles]) return scene_tiles_range def get_tiles(tile_rangs): """get each scene id and the tile x y bounds Args: tile_rangs(list): save scene id and x y bounds ###########tile_range####### #[['20200529_003832_100d', [[53910, 53961], [24896, 24921]]]]# Returns: tile_xyz(list): a list contains scene id, x, y, z. ########################### """ tile_xyz = [] for item in tile_rangs: for x_bound in range(item[1][0][0], item[1][0][1] + 1): for y_bound in range(item[1][1][0], item[1][1][1]): tile_xyz.append(f'{item[0]}-{x_bound}-{y_bound}-16') return tile_xyz def write_txt(tile_file, out_tex): """write tile in format of 'pss_scene_id-x-y-z' to a txt file """ with open(out_tex, 'w') as out: for tile in tile_file: out.write(tile) out.write('\n') def main(geojson, api_key, collections, start_date, end_date, cloud_cover, zoom, out_tex): """get all the tiles """ with open(geojson, 'r') as geo: geojson = json.load(geo) collections = [collections] year_s, mon_s, day_s = start_date.split(',') year_e, mon_e, day_e = end_date.split(',') start_date = f'{date(int(year_s), int(mon_s), int(day_s))}T00:00:00.000Z' end_date = f'{date(int(year_e), int(mon_e), int(day_e))}T00:00:00.000Z' zoom = int(zoom) print("#"*40) print(f'start date is {start_date} and end date is {end_date}\n') tile_range = get_tile_xy(geojson, start_date, end_date, float(cloud_cover), collections, int(zoom), api_key) tiles_pss_aois = get_tiles(tile_range) print(f'total output tiles are {len(tiles_pss_aois)}\n') write_txt(tiles_pss_aois, out_tex) print(f'write all the tiles in {out_tex} at current directory \n') print("#"*40) def parse_arg(args): desc = "get_planet_tiles" dhf = argparse.RawTextHelpFormatter parse0 = argparse.ArgumentParser(description= desc, formatter_class=dhf) parse0.add_argument('--geojson', help="aoi API endpoit in https://") parse0.add_argument('--api_key', help="planet api key") parse0.add_argument('--collections', help="Planet product as a list") parse0.add_argument('--start_date', help="start date in format of: year, month, day") parse0.add_argument('--end_date', help="start date in format of: year, month, day") parse0.add_argument('--cloud_cover', help='cloud cover in float, e.g. 0.05 for under 5%') parse0.add_argument('--zoom', help='OSM zoom level, e.g. 16') parse0.add_argument('--out_tex', help='txt name to save all the output tiles') return vars(parse0.parse_args(args)) def cli(): args = parse_arg(sys.argv[1:]) main(**args) if __name__ == "__main__": cli()
[ "json.load", "argparse.ArgumentParser", "numpy.asarray", "planet.api.filters.geom_filter", "planet.api.filters.date_range", "planet.api.filters.range_filter", "requests.auth.HTTPBasicAuth", "planet.api.filters.build_search_request", "mercantile.tile", "planet.api.ClientV1" ]
[((666, 680), 'planet.api.ClientV1', 'api.ClientV1', ([], {}), '()\n', (678, 680), False, 'from planet import api\n'), ((2330, 2381), 'planet.api.filters.build_search_request', 'api.filters.build_search_request', (['query', 'item_types'], {}), '(query, item_types)\n', (2362, 2381), False, 'from planet import api\n'), ((4324, 4375), 'planet.api.filters.build_search_request', 'api.filters.build_search_request', (['query', 'item_types'], {}), '(query, item_types)\n', (4356, 4375), False, 'from planet import api\n'), ((5775, 5798), 'numpy.asarray', 'np.asarray', (['coordinates'], {}), '(coordinates)\n', (5785, 5798), True, 'import numpy as np\n'), ((6207, 6252), 'mercantile.tile', 'mercantile.tile', (['bbox[0]', 'bbox[3]', 'ZOOM_LEVEL'], {}), '(bbox[0], bbox[3], ZOOM_LEVEL)\n', (6222, 6252), False, 'import mercantile\n'), ((6275, 6320), 'mercantile.tile', 'mercantile.tile', (['bbox[2]', 'bbox[1]', 'ZOOM_LEVEL'], {}), '(bbox[2], bbox[1], ZOOM_LEVEL)\n', (6290, 6320), False, 'import mercantile\n'), ((9267, 9329), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': 'desc', 'formatter_class': 'dhf'}), '(description=desc, formatter_class=dhf)\n', (9290, 9329), False, 'import argparse\n'), ((2012, 2045), 'planet.api.filters.geom_filter', 'api.filters.geom_filter', (['geometry'], {}), '(geometry)\n', (2035, 2045), False, 'from planet import api\n'), ((2053, 2098), 'planet.api.filters.range_filter', 'api.filters.range_filter', (['"""cloud_cover"""'], {'gt': '(0)'}), "('cloud_cover', gt=0)\n", (2077, 2098), False, 'from planet import api\n'), ((2167, 2231), 'planet.api.filters.date_range', 'api.filters.date_range', (['"""acquired"""'], {'gte': 'start_date', 'lte': 'end_date'}), "('acquired', gte=start_date, lte=end_date)\n", (2189, 2231), False, 'from planet import api\n'), ((4006, 4039), 'planet.api.filters.geom_filter', 'api.filters.geom_filter', (['geometry'], {}), '(geometry)\n', (4029, 4039), False, 'from planet import api\n'), ((4047, 4092), 'planet.api.filters.range_filter', 'api.filters.range_filter', (['"""cloud_cover"""'], {'gt': '(0)'}), "('cloud_cover', gt=0)\n", (4071, 4092), False, 'from planet import api\n'), ((4161, 4225), 'planet.api.filters.date_range', 'api.filters.date_range', (['"""acquired"""'], {'gte': 'start_date', 'lte': 'end_date'}), "('acquired', gte=start_date, lte=end_date)\n", (4183, 4225), False, 'from planet import api\n'), ((8382, 8396), 'json.load', 'json.load', (['geo'], {}), '(geo)\n', (8391, 8396), False, 'import json\n'), ((3870, 3899), 'requests.auth.HTTPBasicAuth', 'HTTPBasicAuth', (['PL_API_KEY', '""""""'], {}), "(PL_API_KEY, '')\n", (3883, 3899), False, 'from requests.auth import HTTPBasicAuth\n')]
import numpy as np # transfer functions def sigmoid(x): return 1 / (1 + np.exp(-x)) # derivative of sigmoid def dsigmoid(y): return np.multiply(y, (1.0 - y)) def tanh(x): return np.tanh(x) # derivative for tanh sigmoid def dtanh(y): return 1 - np.multiply(y, y)
[ "numpy.exp", "numpy.multiply", "numpy.tanh" ]
[((144, 167), 'numpy.multiply', 'np.multiply', (['y', '(1.0 - y)'], {}), '(y, 1.0 - y)\n', (155, 167), True, 'import numpy as np\n'), ((196, 206), 'numpy.tanh', 'np.tanh', (['x'], {}), '(x)\n', (203, 206), True, 'import numpy as np\n'), ((268, 285), 'numpy.multiply', 'np.multiply', (['y', 'y'], {}), '(y, y)\n', (279, 285), True, 'import numpy as np\n'), ((78, 88), 'numpy.exp', 'np.exp', (['(-x)'], {}), '(-x)\n', (84, 88), True, 'import numpy as np\n')]
#!/usr/local/bin/python3 # solver2021.py : 2021 Sliding tile puzzle solver # # Code by: <NAME> (hatha), <NAME> (aagond) # # Based on skeleton code by D. Crandall & B551 Staff, September 2021 # #References used are as follows: #1. https://www.quora.com/How-do-I-create-a-nested-list-from-a-flat-one-in-Python to create list of lists in compact manner #2. a) Test code given by CSCI B551 team for Left,right, up, down, Icc, Ic, Occ, Oc moves. #2. b) for tweaking given code using a different approach. #3. To find coordinates of elements in a nested list, I referred https://stackoverflow.com/questions/53319487/finding-the-index-of-elements-in-nested-list?rq=1 import sys import numpy as np import copy from queue import PriorityQueue ROWS=5 COLS=5 def printable_board(board): return [ ('%3d ')*COLS % board[j:(j+COLS)] for j in range(0, ROWS*COLS, COLS) ] def heuristic_used(board): #Split the board and took corners, vertices of inner ring and the center most element. groups=[1,5,21,25,13,8,12,18,14] """ groups is a combination of following 3 subgroups 1 _ _ _ 5 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 8 _ _ _ _ _ _ _ _ _ 13 _ _ _ 12 _14 _ _ _ _ _ _ _ _ _ _ _ _ _ 18 _ _ 21 _ _ _ 25 _ _ _ _ _ _ _ _ _ _ Corners of the goal state Center most element of goal state Vertices of Inner ring Subgroup 1 Subgroup 2 Subgroup 3 """ # Tupled coordinates of selected groups of goal state goal_coord=[(0,0),(0,4),(4,0),(4,4),(2,2),(1,2),(2,1),(3,2),(2,3)] coordinates=[] #Below section stores coordinates of selected group from current state in a list: coordinates for tile in groups: for ind, row in enumerate(board): if tile in row: coordinates.append((ind,row.index(tile))) min_dist_list=[] #Below part finds the shortest Manhattan distance to it's goal state for i in range(len(goal_coord)): dist1= abs(goal_coord[i][0]-coordinates[i][0])+abs(goal_coord[i][1]-coordinates[i][1]) dist2= ROWS-abs(goal_coord[i][0]-coordinates[i][0])+abs(goal_coord[i][1]-coordinates[i][1]) dist3= abs(goal_coord[i][0]-coordinates[i][0])+COLS-abs(goal_coord[i][1]-coordinates[i][1]) dist4= ROWS-abs(goal_coord[i][0]-coordinates[i][0]) +COLS-abs(goal_coord[1][0]-coordinates[i][1]) min_dist_list.append(min(dist1,dist2,dist3,dist4)) #Returns Max of manhattan of subgroup1 + Middle element + Max of manhattan of subgroup3 return max(min_dist_list[:3])+ min_dist_list[4]+ max(min_dist_list[5:]) def move_right(board, row): boardR=copy.deepcopy(board) boardR[row] = boardR[row][-1:] + boardR[row][:-1] return boardR def move_left(board, row): #"""Move the given row to one position left""" #print('Row : ', row, '\nBoard L :', board[row]) boardL=copy.deepcopy(board) boardL[row] = boardL[row][1:] + boardL[row][:1] return boardL def rotate_right(board,row,residual): board[row] = [board[row][0]] +[residual] + board[row][1:] #print(' Rotate\n:' ,(board)) residual=board[row].pop() return residual def rotate_left(board,row,residual): board[row] = board[row][:-1] + [residual] + [board[row][-1]] residual=board[row].pop(0) return residual def move_clockwise(board): """Move the outer ring clockwise""" boardC=copy.deepcopy(board) boardC[0]=[boardC[1][0]]+boardC[0] #print(boardC) residual=boardC[0].pop() #print(residual) boardC=transpose_board(boardC) #print(np.array(boardC)) residual=rotate_right(boardC,-1,residual) #print(residual) boardC=transpose_board(boardC) residual=rotate_left(boardC,-1,residual) boardC=transpose_board(boardC) residual=rotate_left(boardC,0,residual) boardC=transpose_board(boardC) return boardC def move_cclockwise(board): """Move the outer ring counter-clockwise""" boardCC=copy.deepcopy(board) boardCC[0]=boardCC[0]+[boardCC[1][-1]] residual=boardCC[0].pop(0) boardCC=transpose_board(boardCC) residual=rotate_right(boardCC,0,residual) boardCC=transpose_board(boardCC) residual=rotate_right(boardCC,-1,residual) boardCC=transpose_board(boardCC) residual=rotate_left(boardCC,-1,residual) boardCC=transpose_board(boardCC) return boardCC def transpose_board(board): """Transpose the board --> change row to column""" boardT=copy.deepcopy(board) return [list(col) for col in zip(*boardT)] # return a list of possible successor states def successors(current_state): next_state = [] for i in range(ROWS): boardL = move_left(current_state,i) boardR = move_right(current_state,i) boardU = transpose_board(move_left(transpose_board(current_state), i)) boardD = transpose_board(move_right(transpose_board(current_state), i)) next_state.append([boardL, "L"+ str(i+1)]) next_state.append([boardR, "R"+ str(i+1)]) next_state.append([boardU, "U"+str(i+1)]) next_state.append([boardD, "D"+str(i+1)]) boardOC = move_clockwise(current_state) next_state.append([boardOC, "Oc"]) boardOCC = move_cclockwise(current_state) next_state.append([boardOCC, "Occ"]) boardIC=np.array(current_state) inner_board=boardIC[1:-1,1:-1].tolist() inner_board = move_clockwise(inner_board) boardIC[1:-1,1:-1]=np.array(inner_board) boardIC=boardIC.tolist() next_state.append([boardIC, "Ic"]) boardICC=np.array(current_state) inner_board=boardICC[1:-1,1:-1].tolist() inner_board = move_cclockwise(inner_board) boardICC[1:-1,1:-1]=np.array(inner_board) boardICC=boardICC.tolist() next_state.append([boardICC, "Icc"]) return next_state # check if we've reached the goal def is_goal(current_state): goal_state= [[1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15], [16, 17, 18, 19, 20], [21, 22, 23, 24, 25]] return current_state == goal_state def solve(initial_board): initial_board_list= list(initial_board) #Referred below to find non-clunky way of creating nested list from list #https://www.quora.com/How-do-I-create-a-nested-list-from-a-flat-one-in-Python original_board = [initial_board_list[i:i + ROWS] for i in range(0, len(initial_board_list), ROWS)] fringe = PriorityQueue() fringe.put((0,original_board,'',0)) already_visited=[] already_visited.append(original_board) while fringe : cost_heuristic , current_state, route_taken, count_steps =fringe.get() steps = count_steps+1 #Increase the cost after every move if is_goal(current_state): route_taken=route_taken.split(",") route_taken.pop() #Remove last comma return route_taken for state_move in successors(current_state): next_state, moves = state_move[0], state_move[1] if next_state not in already_visited: already_visited.append(next_state) fringe.put((heuristic_used(next_state)+steps,next_state, route_taken+moves+",", steps)) return [] #In case no steps needed/fringe empty #Please don't modify anything below this line if __name__ == "__main__": if(len(sys.argv) != 2): raise(Exception("Error: expected a board filename")) start_state = [] with open(sys.argv[1], 'r') as file: for line in file: start_state += [ int(i) for i in line.split() ] if len(start_state) != ROWS*COLS: raise(Exception("Error: couldn't parse start state file")) print("Start state: \n" +"\n".join(printable_board(tuple(start_state)))) print("Solving...") route = solve(tuple(start_state)) print("Solution found in " + str(len(route)) + " moves:" + "\n" + " ".join(route))
[ "queue.PriorityQueue", "copy.deepcopy", "numpy.array" ]
[((2976, 2996), 'copy.deepcopy', 'copy.deepcopy', (['board'], {}), '(board)\n', (2989, 2996), False, 'import copy\n'), ((3220, 3240), 'copy.deepcopy', 'copy.deepcopy', (['board'], {}), '(board)\n', (3233, 3240), False, 'import copy\n'), ((3738, 3758), 'copy.deepcopy', 'copy.deepcopy', (['board'], {}), '(board)\n', (3751, 3758), False, 'import copy\n'), ((4299, 4319), 'copy.deepcopy', 'copy.deepcopy', (['board'], {}), '(board)\n', (4312, 4319), False, 'import copy\n'), ((4791, 4811), 'copy.deepcopy', 'copy.deepcopy', (['board'], {}), '(board)\n', (4804, 4811), False, 'import copy\n'), ((5624, 5647), 'numpy.array', 'np.array', (['current_state'], {}), '(current_state)\n', (5632, 5647), True, 'import numpy as np\n'), ((5761, 5782), 'numpy.array', 'np.array', (['inner_board'], {}), '(inner_board)\n', (5769, 5782), True, 'import numpy as np\n'), ((5869, 5892), 'numpy.array', 'np.array', (['current_state'], {}), '(current_state)\n', (5877, 5892), True, 'import numpy as np\n'), ((6009, 6030), 'numpy.array', 'np.array', (['inner_board'], {}), '(inner_board)\n', (6017, 6030), True, 'import numpy as np\n'), ((6707, 6722), 'queue.PriorityQueue', 'PriorityQueue', ([], {}), '()\n', (6720, 6722), False, 'from queue import PriorityQueue\n')]
#!/usr/bin/env python3 import LinearResponseVariationalBayes as vb import LinearResponseVariationalBayes.SparseObjectives as obj_lib import LinearResponseVariationalBayes.OptimizationUtils as opt_lib import autograd.numpy as np import numpy.testing as np_test import unittest class QuadraticModel(object): def __init__(self, dim): self.dim = dim self.param = vb.VectorParam('theta', size=dim) vec = np.linspace(0.1, 0.3, num=dim) self.matrix = np.outer(vec, vec) + np.eye(dim) self.vec = vec self.objective = obj_lib.Objective(self.param, self.get_objective) def get_objective(self): theta = self.param.get() objective = 0.5 * theta.T @ self.matrix @ theta + self.vec @ theta return objective # Testing functions that use the fact that the optimum has a closed form. def get_true_optimum_theta(self): theta = -1 * np.linalg.solve(self.matrix, self.vec) return theta def get_true_optimum(self): # ...in the free parameterization. theta = self.get_true_optimum_theta() self.param.set_vector(theta) return self.param.get_free() class TestOptimizationUtils(unittest.TestCase): def test_optimzation_utils(self): model = QuadraticModel(3) init_x = np.zeros(model.dim) opt_x, opt_result = opt_lib.minimize_objective_bfgs( model.objective, init_x, precondition=False) np_test.assert_array_almost_equal( model.get_true_optimum(), opt_result.x) np_test.assert_array_almost_equal( model.get_true_optimum(), opt_x) opt_x, opt_result = opt_lib.minimize_objective_trust_ncg( model.objective, init_x, precondition=False) np_test.assert_array_almost_equal( model.get_true_optimum(), opt_result.x) np_test.assert_array_almost_equal( model.get_true_optimum(), opt_x) hessian, inv_hess_sqrt, hessian_corrected = \ opt_lib.set_objective_preconditioner(model.objective, init_x) np_test.assert_array_almost_equal(model.matrix, hessian) opt_x, opt_result = opt_lib.minimize_objective_bfgs( model.objective, init_x, precondition=True) np_test.assert_array_almost_equal(model.get_true_optimum(), opt_x) opt_x, opt_result = opt_lib.minimize_objective_trust_ncg( model.objective, init_x, precondition=True) np_test.assert_array_almost_equal(model.get_true_optimum(), opt_x) def test_repeated_optimization(self): model = QuadraticModel(3) init_x = np.zeros(model.dim) def initial_optimization(x): new_x = np.random.random(len(x)) return new_x, new_x def take_gradient_step(x): grad = model.objective.fun_free_grad(x) return x - 0.5 * grad, x opt_x, converged, x_conv, f_conv, grad_conv, obj_opt, opt_results = \ opt_lib.repeatedly_optimize( model.objective, take_gradient_step, init_x, initial_optimization_fun=initial_optimization, keep_intermediate_optimizations=True, max_iter=1000) np_test.assert_array_almost_equal( model.get_true_optimum(), opt_x, decimal=4) class TestMatrixSquareRoot(unittest.TestCase): def test_sym_matrix_inv_sqrt(self): a_vec = np.array([1, 2, 3]) b_vec = np.array([0, 1, 3]) c_vec = np.array([0, 3, 3]) # a_vec = a_vec /np.linalg.norm(a_vec) # b_vec = b_vec /np.linalg.norm(b_vec) # c_vec = c_vec / np.linalg.norm(c_vec) a = np.outer(a_vec, a_vec) + \ np.outer(b_vec, b_vec) + \ np.outer(c_vec, c_vec) # Test with no eigenvalue trimming a_inv_sqrt, a_corrected = opt_lib.get_sym_matrix_inv_sqrt(a) np_test.assert_array_almost_equal( np.linalg.inv(a), a_inv_sqrt @ a_inv_sqrt.T) np_test.assert_array_almost_equal(a, a_corrected) # Check the eigenvalue trimming. eig_val, eig_vec = np.linalg.eigh(a) min_ev = eig_val[0] + 0.5 * (eig_val[1] - eig_val[0]) max_ev = eig_val[2] - 0.5 * (eig_val[2] - eig_val[1]) a_inv_sqrt, a_corrected = opt_lib.get_sym_matrix_inv_sqrt( a, ev_min=min_ev) eig_val_test, _ = np.linalg.eigh(np.linalg.inv(a_inv_sqrt @ a_inv_sqrt.T)) np_test.assert_array_almost_equal(min_ev, eig_val_test[0]) np_test.assert_array_almost_equal(eig_val[1:2], eig_val_test[1:2]) a_inv_sqrt, a_corrected = opt_lib.get_sym_matrix_inv_sqrt( a, ev_max=max_ev) eig_val_test, _ = np.linalg.eigh(np.linalg.inv(a_inv_sqrt @ a_inv_sqrt.T)) np_test.assert_array_almost_equal(max_ev, eig_val_test[2]) np_test.assert_array_almost_equal(eig_val[0:1], eig_val_test[0:1]) a_inv_sqrt, a_corrected = opt_lib.get_sym_matrix_inv_sqrt( a, ev_min=min_ev, ev_max=max_ev) eig_val_test, _ = np.linalg.eigh(np.linalg.inv(a_inv_sqrt @ a_inv_sqrt.T)) np_test.assert_array_almost_equal(min_ev, eig_val_test[0]) np_test.assert_array_almost_equal(max_ev, eig_val_test[2]) np_test.assert_array_almost_equal(eig_val[1], eig_val_test[1]) if __name__ == '__main__': unittest.main()
[ "unittest.main", "LinearResponseVariationalBayes.OptimizationUtils.minimize_objective_trust_ncg", "LinearResponseVariationalBayes.OptimizationUtils.get_sym_matrix_inv_sqrt", "LinearResponseVariationalBayes.OptimizationUtils.repeatedly_optimize", "LinearResponseVariationalBayes.SparseObjectives.Objective", "autograd.numpy.linalg.eigh", "autograd.numpy.outer", "autograd.numpy.eye", "autograd.numpy.linalg.solve", "autograd.numpy.array", "autograd.numpy.zeros", "autograd.numpy.linspace", "autograd.numpy.linalg.inv", "LinearResponseVariationalBayes.OptimizationUtils.minimize_objective_bfgs", "numpy.testing.assert_array_almost_equal", "LinearResponseVariationalBayes.VectorParam", "LinearResponseVariationalBayes.OptimizationUtils.set_objective_preconditioner" ]
[((5354, 5369), 'unittest.main', 'unittest.main', ([], {}), '()\n', (5367, 5369), False, 'import unittest\n'), ((381, 414), 'LinearResponseVariationalBayes.VectorParam', 'vb.VectorParam', (['"""theta"""'], {'size': 'dim'}), "('theta', size=dim)\n", (395, 414), True, 'import LinearResponseVariationalBayes as vb\n'), ((430, 460), 'autograd.numpy.linspace', 'np.linspace', (['(0.1)', '(0.3)'], {'num': 'dim'}), '(0.1, 0.3, num=dim)\n', (441, 460), True, 'import autograd.numpy as np\n'), ((565, 614), 'LinearResponseVariationalBayes.SparseObjectives.Objective', 'obj_lib.Objective', (['self.param', 'self.get_objective'], {}), '(self.param, self.get_objective)\n', (582, 614), True, 'import LinearResponseVariationalBayes.SparseObjectives as obj_lib\n'), ((1311, 1330), 'autograd.numpy.zeros', 'np.zeros', (['model.dim'], {}), '(model.dim)\n', (1319, 1330), True, 'import autograd.numpy as np\n'), ((1360, 1436), 'LinearResponseVariationalBayes.OptimizationUtils.minimize_objective_bfgs', 'opt_lib.minimize_objective_bfgs', (['model.objective', 'init_x'], {'precondition': '(False)'}), '(model.objective, init_x, precondition=False)\n', (1391, 1436), True, 'import LinearResponseVariationalBayes.OptimizationUtils as opt_lib\n'), ((1662, 1748), 'LinearResponseVariationalBayes.OptimizationUtils.minimize_objective_trust_ncg', 'opt_lib.minimize_objective_trust_ncg', (['model.objective', 'init_x'], {'precondition': '(False)'}), '(model.objective, init_x, precondition=\n False)\n', (1698, 1748), True, 'import LinearResponseVariationalBayes.OptimizationUtils as opt_lib\n'), ((2007, 2068), 'LinearResponseVariationalBayes.OptimizationUtils.set_objective_preconditioner', 'opt_lib.set_objective_preconditioner', (['model.objective', 'init_x'], {}), '(model.objective, init_x)\n', (2043, 2068), True, 'import LinearResponseVariationalBayes.OptimizationUtils as opt_lib\n'), ((2077, 2133), 'numpy.testing.assert_array_almost_equal', 'np_test.assert_array_almost_equal', (['model.matrix', 'hessian'], {}), '(model.matrix, hessian)\n', (2110, 2133), True, 'import numpy.testing as np_test\n'), ((2163, 2238), 'LinearResponseVariationalBayes.OptimizationUtils.minimize_objective_bfgs', 'opt_lib.minimize_objective_bfgs', (['model.objective', 'init_x'], {'precondition': '(True)'}), '(model.objective, init_x, precondition=True)\n', (2194, 2238), True, 'import LinearResponseVariationalBayes.OptimizationUtils as opt_lib\n'), ((2356, 2441), 'LinearResponseVariationalBayes.OptimizationUtils.minimize_objective_trust_ncg', 'opt_lib.minimize_objective_trust_ncg', (['model.objective', 'init_x'], {'precondition': '(True)'}), '(model.objective, init_x, precondition=True\n )\n', (2392, 2441), True, 'import LinearResponseVariationalBayes.OptimizationUtils as opt_lib\n'), ((2619, 2638), 'autograd.numpy.zeros', 'np.zeros', (['model.dim'], {}), '(model.dim)\n', (2627, 2638), True, 'import autograd.numpy as np\n'), ((2970, 3150), 'LinearResponseVariationalBayes.OptimizationUtils.repeatedly_optimize', 'opt_lib.repeatedly_optimize', (['model.objective', 'take_gradient_step', 'init_x'], {'initial_optimization_fun': 'initial_optimization', 'keep_intermediate_optimizations': '(True)', 'max_iter': '(1000)'}), '(model.objective, take_gradient_step, init_x,\n initial_optimization_fun=initial_optimization,\n keep_intermediate_optimizations=True, max_iter=1000)\n', (2997, 3150), True, 'import LinearResponseVariationalBayes.OptimizationUtils as opt_lib\n'), ((3445, 3464), 'autograd.numpy.array', 'np.array', (['[1, 2, 3]'], {}), '([1, 2, 3])\n', (3453, 3464), True, 'import autograd.numpy as np\n'), ((3481, 3500), 'autograd.numpy.array', 'np.array', (['[0, 1, 3]'], {}), '([0, 1, 3])\n', (3489, 3500), True, 'import autograd.numpy as np\n'), ((3517, 3536), 'autograd.numpy.array', 'np.array', (['[0, 3, 3]'], {}), '([0, 3, 3])\n', (3525, 3536), True, 'import autograd.numpy as np\n'), ((3870, 3904), 'LinearResponseVariationalBayes.OptimizationUtils.get_sym_matrix_inv_sqrt', 'opt_lib.get_sym_matrix_inv_sqrt', (['a'], {}), '(a)\n', (3901, 3904), True, 'import LinearResponseVariationalBayes.OptimizationUtils as opt_lib\n'), ((4013, 4062), 'numpy.testing.assert_array_almost_equal', 'np_test.assert_array_almost_equal', (['a', 'a_corrected'], {}), '(a, a_corrected)\n', (4046, 4062), True, 'import numpy.testing as np_test\n'), ((4132, 4149), 'autograd.numpy.linalg.eigh', 'np.linalg.eigh', (['a'], {}), '(a)\n', (4146, 4149), True, 'import autograd.numpy as np\n'), ((4309, 4358), 'LinearResponseVariationalBayes.OptimizationUtils.get_sym_matrix_inv_sqrt', 'opt_lib.get_sym_matrix_inv_sqrt', (['a'], {'ev_min': 'min_ev'}), '(a, ev_min=min_ev)\n', (4340, 4358), True, 'import LinearResponseVariationalBayes.OptimizationUtils as opt_lib\n'), ((4463, 4521), 'numpy.testing.assert_array_almost_equal', 'np_test.assert_array_almost_equal', (['min_ev', 'eig_val_test[0]'], {}), '(min_ev, eig_val_test[0])\n', (4496, 4521), True, 'import numpy.testing as np_test\n'), ((4530, 4596), 'numpy.testing.assert_array_almost_equal', 'np_test.assert_array_almost_equal', (['eig_val[1:2]', 'eig_val_test[1:2]'], {}), '(eig_val[1:2], eig_val_test[1:2])\n', (4563, 4596), True, 'import numpy.testing as np_test\n'), ((4632, 4681), 'LinearResponseVariationalBayes.OptimizationUtils.get_sym_matrix_inv_sqrt', 'opt_lib.get_sym_matrix_inv_sqrt', (['a'], {'ev_max': 'max_ev'}), '(a, ev_max=max_ev)\n', (4663, 4681), True, 'import LinearResponseVariationalBayes.OptimizationUtils as opt_lib\n'), ((4786, 4844), 'numpy.testing.assert_array_almost_equal', 'np_test.assert_array_almost_equal', (['max_ev', 'eig_val_test[2]'], {}), '(max_ev, eig_val_test[2])\n', (4819, 4844), True, 'import numpy.testing as np_test\n'), ((4853, 4919), 'numpy.testing.assert_array_almost_equal', 'np_test.assert_array_almost_equal', (['eig_val[0:1]', 'eig_val_test[0:1]'], {}), '(eig_val[0:1], eig_val_test[0:1])\n', (4886, 4919), True, 'import numpy.testing as np_test\n'), ((4955, 5019), 'LinearResponseVariationalBayes.OptimizationUtils.get_sym_matrix_inv_sqrt', 'opt_lib.get_sym_matrix_inv_sqrt', (['a'], {'ev_min': 'min_ev', 'ev_max': 'max_ev'}), '(a, ev_min=min_ev, ev_max=max_ev)\n', (4986, 5019), True, 'import LinearResponseVariationalBayes.OptimizationUtils as opt_lib\n'), ((5124, 5182), 'numpy.testing.assert_array_almost_equal', 'np_test.assert_array_almost_equal', (['min_ev', 'eig_val_test[0]'], {}), '(min_ev, eig_val_test[0])\n', (5157, 5182), True, 'import numpy.testing as np_test\n'), ((5191, 5249), 'numpy.testing.assert_array_almost_equal', 'np_test.assert_array_almost_equal', (['max_ev', 'eig_val_test[2]'], {}), '(max_ev, eig_val_test[2])\n', (5224, 5249), True, 'import numpy.testing as np_test\n'), ((5258, 5320), 'numpy.testing.assert_array_almost_equal', 'np_test.assert_array_almost_equal', (['eig_val[1]', 'eig_val_test[1]'], {}), '(eig_val[1], eig_val_test[1])\n', (5291, 5320), True, 'import numpy.testing as np_test\n'), ((483, 501), 'autograd.numpy.outer', 'np.outer', (['vec', 'vec'], {}), '(vec, vec)\n', (491, 501), True, 'import autograd.numpy as np\n'), ((504, 515), 'autograd.numpy.eye', 'np.eye', (['dim'], {}), '(dim)\n', (510, 515), True, 'import autograd.numpy as np\n'), ((916, 954), 'autograd.numpy.linalg.solve', 'np.linalg.solve', (['self.matrix', 'self.vec'], {}), '(self.matrix, self.vec)\n', (931, 954), True, 'import autograd.numpy as np\n'), ((3769, 3791), 'autograd.numpy.outer', 'np.outer', (['c_vec', 'c_vec'], {}), '(c_vec, c_vec)\n', (3777, 3791), True, 'import autograd.numpy as np\n'), ((3960, 3976), 'autograd.numpy.linalg.inv', 'np.linalg.inv', (['a'], {}), '(a)\n', (3973, 3976), True, 'import autograd.numpy as np\n'), ((4413, 4453), 'autograd.numpy.linalg.inv', 'np.linalg.inv', (['(a_inv_sqrt @ a_inv_sqrt.T)'], {}), '(a_inv_sqrt @ a_inv_sqrt.T)\n', (4426, 4453), True, 'import autograd.numpy as np\n'), ((4736, 4776), 'autograd.numpy.linalg.inv', 'np.linalg.inv', (['(a_inv_sqrt @ a_inv_sqrt.T)'], {}), '(a_inv_sqrt @ a_inv_sqrt.T)\n', (4749, 4776), True, 'import autograd.numpy as np\n'), ((5074, 5114), 'autograd.numpy.linalg.inv', 'np.linalg.inv', (['(a_inv_sqrt @ a_inv_sqrt.T)'], {}), '(a_inv_sqrt @ a_inv_sqrt.T)\n', (5087, 5114), True, 'import autograd.numpy as np\n'), ((3691, 3713), 'autograd.numpy.outer', 'np.outer', (['a_vec', 'a_vec'], {}), '(a_vec, a_vec)\n', (3699, 3713), True, 'import autograd.numpy as np\n'), ((3730, 3752), 'autograd.numpy.outer', 'np.outer', (['b_vec', 'b_vec'], {}), '(b_vec, b_vec)\n', (3738, 3752), True, 'import autograd.numpy as np\n')]
from MyAIGuide.data import GoogleFitDataTCX, DATA_DIR, get_google_fit_steps, collect_activities_from_dir, get_google_fit_activities import pandas as pd import numpy as np TEST_PARTICIPANT = DATA_DIR / 'Participant2Anonymized' TCX_FILE = "2018-11-05T16_46_19-05_00_PT17M6S_Marche à pied.tcx" TCX_DIR = DATA_DIR / "Participant1" / "GoogleFitData" / "smartphone1" / "Activités" TEST_TCX = TCX_DIR / TCX_FILE i = pd.date_range("2015-11-19", periods=1550, freq="1D") sLength = len(i) empty = pd.Series(np.zeros(sLength)).values d = { "steps": empty, "denivelation": empty, "kneePain": empty, "handsAndFingerPain": empty, "foreheadAndEyesPain": empty, "forearmElbowPain": empty, "aroundEyesPain": empty, "shoulderNeckPain": empty, "movesSteps": empty, "googlefitSteps": empty, "elevation_gain": empty, "elevation_loss": empty, "calories": empty, } data = pd.DataFrame(data=d, index=i) def test_get_google_fit_steps(): new_data = get_google_fit_steps(fname=TEST_PARTICIPANT, data=data) assert isinstance(new_data, pd.DataFrame) assert sum(new_data["googlefitSteps"]) > 0 def test_google_fit_data_tcx(): instance = GoogleFitDataTCX(TEST_TCX) def test_collect_activities_from_dir(): df = collect_activities_from_dir(TCX_DIR) assert "calories", "elevation_gain" in df assert "dateTime", "elevation_loss" in df def test_get_google_fit_activities(): new_data = get_google_fit_activities(fname=TCX_DIR, data=data) assert isinstance(new_data, pd.DataFrame) assert sum(new_data["elevation_gain"]) > 0 assert sum(new_data["elevation_loss"]) > 0 assert sum(new_data["calories"]) > 0
[ "pandas.DataFrame", "MyAIGuide.data.GoogleFitDataTCX", "pandas.date_range", "numpy.zeros", "MyAIGuide.data.get_google_fit_steps", "MyAIGuide.data.collect_activities_from_dir", "MyAIGuide.data.get_google_fit_activities" ]
[((412, 464), 'pandas.date_range', 'pd.date_range', (['"""2015-11-19"""'], {'periods': '(1550)', 'freq': '"""1D"""'}), "('2015-11-19', periods=1550, freq='1D')\n", (425, 464), True, 'import pandas as pd\n'), ((904, 933), 'pandas.DataFrame', 'pd.DataFrame', ([], {'data': 'd', 'index': 'i'}), '(data=d, index=i)\n', (916, 933), True, 'import pandas as pd\n'), ((984, 1039), 'MyAIGuide.data.get_google_fit_steps', 'get_google_fit_steps', ([], {'fname': 'TEST_PARTICIPANT', 'data': 'data'}), '(fname=TEST_PARTICIPANT, data=data)\n', (1004, 1039), False, 'from MyAIGuide.data import GoogleFitDataTCX, DATA_DIR, get_google_fit_steps, collect_activities_from_dir, get_google_fit_activities\n'), ((1182, 1208), 'MyAIGuide.data.GoogleFitDataTCX', 'GoogleFitDataTCX', (['TEST_TCX'], {}), '(TEST_TCX)\n', (1198, 1208), False, 'from MyAIGuide.data import GoogleFitDataTCX, DATA_DIR, get_google_fit_steps, collect_activities_from_dir, get_google_fit_activities\n'), ((1260, 1296), 'MyAIGuide.data.collect_activities_from_dir', 'collect_activities_from_dir', (['TCX_DIR'], {}), '(TCX_DIR)\n', (1287, 1296), False, 'from MyAIGuide.data import GoogleFitDataTCX, DATA_DIR, get_google_fit_steps, collect_activities_from_dir, get_google_fit_activities\n'), ((1444, 1495), 'MyAIGuide.data.get_google_fit_activities', 'get_google_fit_activities', ([], {'fname': 'TCX_DIR', 'data': 'data'}), '(fname=TCX_DIR, data=data)\n', (1469, 1495), False, 'from MyAIGuide.data import GoogleFitDataTCX, DATA_DIR, get_google_fit_steps, collect_activities_from_dir, get_google_fit_activities\n'), ((500, 517), 'numpy.zeros', 'np.zeros', (['sLength'], {}), '(sLength)\n', (508, 517), True, 'import numpy as np\n')]
#!/usr/bin/env python3 import numpy as np from functools import partial class TailBoost: def __init__(self, urm): self.weights = list() self.urm = urm self.__create_weights() self.update_scores = partial(np.vectorize(lambda weight, score: score * weight), self.weights) def __create_weights(self): num_users = self.urm.shape[0] num_items = self.urm.shape[1] item_popularity = self.urm.sum(axis=0).squeeze() for item_id in range(num_items): m_j = item_popularity[0, item_id] # WARNING: THIS CAN BE 0!!! if m_j == 0: m_j = 1 self.weights.append(np.log(num_users / m_j)) self.weights = np.array(self.weights)
[ "numpy.array", "numpy.log", "numpy.vectorize" ]
[((726, 748), 'numpy.array', 'np.array', (['self.weights'], {}), '(self.weights)\n', (734, 748), True, 'import numpy as np\n'), ((244, 294), 'numpy.vectorize', 'np.vectorize', (['(lambda weight, score: score * weight)'], {}), '(lambda weight, score: score * weight)\n', (256, 294), True, 'import numpy as np\n'), ((678, 701), 'numpy.log', 'np.log', (['(num_users / m_j)'], {}), '(num_users / m_j)\n', (684, 701), True, 'import numpy as np\n')]
import numpy as np import matplotlib.pyplot as plt from signals.fourier import fourier from signals.analysis import ClimbingAgent def test_fourier(): fs = 100 length = 100.0 n = fs * length x = np.linspace(0., length, n) y = np.sin(10. * 2. * np.pi * x) y += 0.75 * np.sin(20. * 2. * np.pi * x) y += 0.5 * np.sin(30. * 2. * np.pi * x) y += 0.25 * np.sin(40. * 2. * np.pi * x) xf, yf = fourier(y, fs) plt.subplot(2, 1, 1) plt.plot(x, y) plt.subplot(2, 1, 2) plt.plot(xf, yf) plt.show() def test_agent(): values = [1, 2, 3, 2, 1] delta = 2 agent = ClimbingAgent(values, 4, delta, 1) print([i for i in agent.range()]) print([i for i in agent.range(True)]) agent.climb() print([i for i in agent.range()]) print([i for i in agent.range(True)]) print([i for i in range(delta, 15, delta * 2 + 1)]) if __name__ == "__main__": # test_fourier() test_agent()
[ "matplotlib.pyplot.subplot", "matplotlib.pyplot.show", "matplotlib.pyplot.plot", "signals.analysis.ClimbingAgent", "numpy.sin", "signals.fourier.fourier", "numpy.linspace" ]
[((214, 241), 'numpy.linspace', 'np.linspace', (['(0.0)', 'length', 'n'], {}), '(0.0, length, n)\n', (225, 241), True, 'import numpy as np\n'), ((249, 279), 'numpy.sin', 'np.sin', (['(10.0 * 2.0 * np.pi * x)'], {}), '(10.0 * 2.0 * np.pi * x)\n', (255, 279), True, 'import numpy as np\n'), ((425, 439), 'signals.fourier.fourier', 'fourier', (['y', 'fs'], {}), '(y, fs)\n', (432, 439), False, 'from signals.fourier import fourier\n'), ((445, 465), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(1)', '(1)'], {}), '(2, 1, 1)\n', (456, 465), True, 'import matplotlib.pyplot as plt\n'), ((470, 484), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y'], {}), '(x, y)\n', (478, 484), True, 'import matplotlib.pyplot as plt\n'), ((489, 509), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(1)', '(2)'], {}), '(2, 1, 2)\n', (500, 509), True, 'import matplotlib.pyplot as plt\n'), ((514, 530), 'matplotlib.pyplot.plot', 'plt.plot', (['xf', 'yf'], {}), '(xf, yf)\n', (522, 530), True, 'import matplotlib.pyplot as plt\n'), ((535, 545), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (543, 545), True, 'import matplotlib.pyplot as plt\n'), ((621, 655), 'signals.analysis.ClimbingAgent', 'ClimbingAgent', (['values', '(4)', 'delta', '(1)'], {}), '(values, 4, delta, 1)\n', (634, 655), False, 'from signals.analysis import ClimbingAgent\n'), ((294, 324), 'numpy.sin', 'np.sin', (['(20.0 * 2.0 * np.pi * x)'], {}), '(20.0 * 2.0 * np.pi * x)\n', (300, 324), True, 'import numpy as np\n'), ((338, 368), 'numpy.sin', 'np.sin', (['(30.0 * 2.0 * np.pi * x)'], {}), '(30.0 * 2.0 * np.pi * x)\n', (344, 368), True, 'import numpy as np\n'), ((383, 413), 'numpy.sin', 'np.sin', (['(40.0 * 2.0 * np.pi * x)'], {}), '(40.0 * 2.0 * np.pi * x)\n', (389, 413), True, 'import numpy as np\n')]
import numpy as np ''' Label any new implementation of von-Zeipel cylinders in another spacetime by prefixing VZC, followed by the id of the spacetime. ''' class VZCBase(): def __init__(self, l, r0, r_range=(2, 18), num=10000, verbose=True): self.r_in, self.r_out = r_range self.num = num self.r = np.linspace(self.r_in, self.r_out, num=self.num, endpoint=True) self.verbose = verbose self.l = l self.r0 = r0 def compute_theta(self): raise NotImplementedError() def horizon(self, theta): raise NotImplementedError() def get_r(self): return self.r def get_r0(self): return self.r0 def set_r0(self, r_new): self.r0 = r_new
[ "numpy.linspace" ]
[((345, 408), 'numpy.linspace', 'np.linspace', (['self.r_in', 'self.r_out'], {'num': 'self.num', 'endpoint': '(True)'}), '(self.r_in, self.r_out, num=self.num, endpoint=True)\n', (356, 408), True, 'import numpy as np\n')]
# Copyright (c) 2016-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from caffe2.python import core from hypothesis import given import caffe2.python.hypothesis_test_util as hu import hypothesis.strategies as st import numpy as np def _string_lists(alphabet=None): return st.lists( elements=st.text(alphabet=alphabet, average_size=3), min_size=0, max_size=3) class TestStringOps(hu.HypothesisTestCase): @given(strings=_string_lists()) def test_string_prefix(self, strings): length = 3 # although we are utf-8 encoding below to avoid python exceptions, # StringPrefix op deals with byte-length prefixes, which may produce # an invalid utf-8 string. The goal here is just to avoid python # complaining about the unicode -> str conversion. strings = np.array( [a.encode('utf-8') for a in strings], dtype=np.object ) def string_prefix_ref(strings): return ( np.array([a[:length] for a in strings], dtype=object), ) op = core.CreateOperator( 'StringPrefix', ['strings'], ['stripped'], length=length) self.assertReferenceChecks( hu.cpu_do, op, [strings], string_prefix_ref) @given(strings=_string_lists()) def test_string_suffix(self, strings): length = 3 strings = np.array( [a.encode('utf-8') for a in strings], dtype=np.object ) def string_suffix_ref(strings): return ( np.array([a[-length:] for a in strings], dtype=object), ) op = core.CreateOperator( 'StringSuffix', ['strings'], ['stripped'], length=length) self.assertReferenceChecks( hu.cpu_do, op, [strings], string_suffix_ref) @given(strings=st.text(alphabet=['a', 'b'], average_size=3)) def test_string_starts_with(self, strings): prefix = 'a' strings = np.array( [str(a) for a in strings], dtype=np.object ) def string_starts_with_ref(strings): return ( np.array([a.startswith(prefix) for a in strings], dtype=bool), ) op = core.CreateOperator( 'StringStartsWith', ['strings'], ['bools'], prefix=prefix) self.assertReferenceChecks( hu.cpu_do, op, [strings], string_starts_with_ref) @given(strings=st.text(alphabet=['a', 'b'], average_size=3)) def test_string_ends_with(self, strings): suffix = 'a' strings = np.array( [str(a) for a in strings], dtype=np.object ) def string_ends_with_ref(strings): return ( np.array([a.endswith(suffix) for a in strings], dtype=bool), ) op = core.CreateOperator( 'StringEndsWith', ['strings'], ['bools'], suffix=suffix) self.assertReferenceChecks( hu.cpu_do, op, [strings], string_ends_with_ref) if __name__ == "__main__": import unittest unittest.main()
[ "unittest.main", "caffe2.python.core.CreateOperator", "hypothesis.strategies.text", "numpy.array" ]
[((4080, 4095), 'unittest.main', 'unittest.main', ([], {}), '()\n', (4093, 4095), False, 'import unittest\n'), ((1833, 1910), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""StringPrefix"""', "['strings']", "['stripped']"], {'length': 'length'}), "('StringPrefix', ['strings'], ['stripped'], length=length)\n", (1852, 1910), False, 'from caffe2.python import core\n'), ((2454, 2531), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""StringSuffix"""', "['strings']", "['stripped']"], {'length': 'length'}), "('StringSuffix', ['strings'], ['stripped'], length=length)\n", (2473, 2531), False, 'from caffe2.python import core\n'), ((3112, 3190), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""StringStartsWith"""', "['strings']", "['bools']"], {'prefix': 'prefix'}), "('StringStartsWith', ['strings'], ['bools'], prefix=prefix)\n", (3131, 3190), False, 'from caffe2.python import core\n'), ((3770, 3846), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""StringEndsWith"""', "['strings']", "['bools']"], {'suffix': 'suffix'}), "('StringEndsWith', ['strings'], ['bools'], suffix=suffix)\n", (3789, 3846), False, 'from caffe2.python import core\n'), ((1056, 1098), 'hypothesis.strategies.text', 'st.text', ([], {'alphabet': 'alphabet', 'average_size': '(3)'}), '(alphabet=alphabet, average_size=3)\n', (1063, 1098), True, 'import hypothesis.strategies as st\n'), ((2730, 2774), 'hypothesis.strategies.text', 'st.text', ([], {'alphabet': "['a', 'b']", 'average_size': '(3)'}), "(alphabet=['a', 'b'], average_size=3)\n", (2737, 2774), True, 'import hypothesis.strategies as st\n'), ((3394, 3438), 'hypothesis.strategies.text', 'st.text', ([], {'alphabet': "['a', 'b']", 'average_size': '(3)'}), "(alphabet=['a', 'b'], average_size=3)\n", (3401, 3438), True, 'import hypothesis.strategies as st\n'), ((1750, 1803), 'numpy.array', 'np.array', (['[a[:length] for a in strings]'], {'dtype': 'object'}), '([a[:length] for a in strings], dtype=object)\n', (1758, 1803), True, 'import numpy as np\n'), ((2370, 2424), 'numpy.array', 'np.array', (['[a[-length:] for a in strings]'], {'dtype': 'object'}), '([a[-length:] for a in strings], dtype=object)\n', (2378, 2424), True, 'import numpy as np\n')]
import numpy as np from . import compute_max_angle def gensk97(N): # See http://dx.doi.org/10.1016/j.jsb.2006.06.002 and references therein N = int(N) h = -1.0 + (2.0/(N-1))*np.arange(0,N) theta = np.arccos(h) phi_base = np.zeros_like(theta) phi_base[1:(N-1)] = ((3.6/np.sqrt(N))/np.sqrt(1 - h[1:(N-1)]**2)) phi = np.cumsum(phi_base) phi[0] = 0 phi[N-1] = 0 stheta = np.sin(theta) dirs = np.vstack([np.cos(phi)*stheta, np.sin(phi)*stheta, np.cos(theta)]).T return dirs class SK97Quadrature: @staticmethod def compute_degree(N,rad,usFactor): ang = compute_max_angle(N,rad,usFactor) return SK97Quadrature.get_degree(ang) @staticmethod def get_degree(maxAngle): degree = np.ceil((3.6/maxAngle)**2) cmaxAng = 3.6/np.sqrt(degree) return degree, cmaxAng @staticmethod def get_quad_points(degree,sym = None): verts = gensk97(degree) p = np.array(verts) w = (4.0*np.pi/len(verts)) * np.ones(len(verts)) if sym is None: return p, w else: validPs = sym.in_asymunit(p) return p[validPs], w[validPs] * (np.sum(w) / np.sum(w[validPs]))
[ "numpy.zeros_like", "numpy.sum", "numpy.ceil", "numpy.cumsum", "numpy.sin", "numpy.array", "numpy.arange", "numpy.cos", "numpy.arccos", "numpy.sqrt" ]
[((214, 226), 'numpy.arccos', 'np.arccos', (['h'], {}), '(h)\n', (223, 226), True, 'import numpy as np\n'), ((242, 262), 'numpy.zeros_like', 'np.zeros_like', (['theta'], {}), '(theta)\n', (255, 262), True, 'import numpy as np\n'), ((343, 362), 'numpy.cumsum', 'np.cumsum', (['phi_base'], {}), '(phi_base)\n', (352, 362), True, 'import numpy as np\n'), ((409, 422), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (415, 422), True, 'import numpy as np\n'), ((305, 333), 'numpy.sqrt', 'np.sqrt', (['(1 - h[1:N - 1] ** 2)'], {}), '(1 - h[1:N - 1] ** 2)\n', (312, 333), True, 'import numpy as np\n'), ((761, 791), 'numpy.ceil', 'np.ceil', (['((3.6 / maxAngle) ** 2)'], {}), '((3.6 / maxAngle) ** 2)\n', (768, 791), True, 'import numpy as np\n'), ((965, 980), 'numpy.array', 'np.array', (['verts'], {}), '(verts)\n', (973, 980), True, 'import numpy as np\n'), ((187, 202), 'numpy.arange', 'np.arange', (['(0)', 'N'], {}), '(0, N)\n', (196, 202), True, 'import numpy as np\n'), ((293, 303), 'numpy.sqrt', 'np.sqrt', (['N'], {}), '(N)\n', (300, 303), True, 'import numpy as np\n'), ((810, 825), 'numpy.sqrt', 'np.sqrt', (['degree'], {}), '(degree)\n', (817, 825), True, 'import numpy as np\n'), ((485, 498), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (491, 498), True, 'import numpy as np\n'), ((445, 456), 'numpy.cos', 'np.cos', (['phi'], {}), '(phi)\n', (451, 456), True, 'import numpy as np\n'), ((465, 476), 'numpy.sin', 'np.sin', (['phi'], {}), '(phi)\n', (471, 476), True, 'import numpy as np\n'), ((1187, 1196), 'numpy.sum', 'np.sum', (['w'], {}), '(w)\n', (1193, 1196), True, 'import numpy as np\n'), ((1199, 1217), 'numpy.sum', 'np.sum', (['w[validPs]'], {}), '(w[validPs])\n', (1205, 1217), True, 'import numpy as np\n')]
# Python Script to initialize a Peripheral Architecture: # Developed by <NAME> as part of the Piranhas Toolkit # Questions & bugs: <EMAIL> import numpy as np from piranhas import * import math # Run Intialization Parameters: param = param_init_all() scale = param.scale fovea = param.fovea e0_in_deg = param.e0_in_deg visual_field_radius_in_deg = param.visual_field_radius_in_deg deg_per_pixel = param.deg_per_pixel # Get Peripheral Architecture Parameters # Given the scale, compute the N_e and N_theta parameters. # You can also uncomment this line and input any values for N_e and N_theta. # Please refer to Freeman & Simoncelli, 2011 to check what values of scale # are biologically plausible for V1 and V2 receptive field sizes. N_param = get_pooling_parameters(scale,e0_in_deg,visual_field_radius_in_deg,deg_per_pixel) N_e = N_param[0] N_theta = N_param[1] #visual flag? visual = 0 # The peripheral_regions data structure allows you to do anything you want with the pooling regions. peripheral_filters = generate_pooling_regios_vector_smooth(deg_per_pixel,N_e,N_theta,visual_field_radius_in_deg,fovea,e0_in_deg,visual) ################################## # Compute Peripheral Mask Stream # ################################## # size might have changed after removing peripheral regions inside fovea param_check = np.shape(peripheral_filters.regions) N_theta = param_check[0] N_e = param_check[1] peri_height = param_check[2] peri_width = param_check[3] select_mask_stream = np.empty((N_theta*N_e,peri_height,peri_width),dtype=object) select_mask_label = np.zeros((peri_height,peri_width)) for z in range(1,N_theta*N_e): i1 = np.mod(z,N_theta) if i1==0: i1 = N_theta j1 = np.round(np.floor((z-0.1)/N_theta)+1) select_mask_stream[z-1,:,:] = np.squeeze(peripheral_filters.regions[i1-1,j1-1,:,:]) select_loc = np.where(select_mask_stream[z-1,:,:]>0) select_mask_label[select_loc[0],select_loc[1]] = z-1 ################### # Get Foveal Mask # ################### dist_mask = np.empty(N_theta) for i in range(0,N_theta): point_vector = np.empty(np.shape(peripheral_filters.offsets_r[i][0])[0]) for j in range(0,np.shape(peripheral_filters.offsets_r[i][0])[0]): #Compute L2 norm (euclidean distance from center of fixation) point_buff = np.linalg.norm([peripheral_filters.offsets_r[i][0][j],peripheral_filters.offsets_c[i][0][j]]) point_vector[j] = abs(point_buff) dist_mask[i] = min(point_vector) del point_vector # Compute Foveal Radius foveal_radius = np.ceil(np.mean(dist_mask)) foveal_radius_px = foveal_radius foveal_radius_deg = foveal_radius * deg_per_pixel foveal_mask = np.zeros((peri_height,peri_width)) mid_point_w = np.round(peri_width/2) mid_point_h = np.round(peri_height/2) for i in range(0,peri_width): for j in range(0,peri_height): if np.sqrt(pow( i-mid_point_w,2) + pow(j-mid_point_h,2)) <= foveal_radius: foveal_mask[j][i] = 1 ###################### # Create Filter bank # ###################### # To do. # We have to add the gabor filter bank here. visual_mask = 0 #################################### # Create list of Foveal_parameters # #################################### foveal_param = foveal_param_init_all() foveal_param.N_theta = N_theta; foveal_param.N_e = N_e; #foveal_param.wave_num = wave_num; #foveal_param.orien = orien; foveal_param.peri_height = peri_height; foveal_param.peri_width = peri_width; foveal_param.select_mask_stream = select_mask_stream; foveal_param.select_mask_label = select_mask_label; foveal_param.foveal_mask = foveal_mask; foveal_param.foveal_radius_px = foveal_radius_px; foveal_param.foveal_radius_deg = foveal_radius_deg; #foveal_param.filter_bank = filter_bank; #foveal_param.filter_bank_stream = filter_bank_stream; foveal_param.peripheral_filters = peripheral_filters; foveal_param.visual_mask = visual_mask; foveal_param.deg_per_pixel = deg_per_pixel; foveal_param.monitor.pixel_res_width = param.pixel_res_width; foveal_param.monitor.pixel_res_height = param.pixel_res_height; foveal_param.monitor.mon_width = param.mon_width; foveal_param.monitor.mon_height = param.mon_height; foveal_param.monitor.view_dist = param.view_dist;
[ "numpy.empty", "numpy.floor", "numpy.zeros", "numpy.mod", "numpy.shape", "numpy.where", "numpy.mean", "numpy.linalg.norm", "numpy.squeeze", "numpy.round" ]
[((1329, 1365), 'numpy.shape', 'np.shape', (['peripheral_filters.regions'], {}), '(peripheral_filters.regions)\n', (1337, 1365), True, 'import numpy as np\n'), ((1492, 1556), 'numpy.empty', 'np.empty', (['(N_theta * N_e, peri_height, peri_width)'], {'dtype': 'object'}), '((N_theta * N_e, peri_height, peri_width), dtype=object)\n', (1500, 1556), True, 'import numpy as np\n'), ((1572, 1607), 'numpy.zeros', 'np.zeros', (['(peri_height, peri_width)'], {}), '((peri_height, peri_width))\n', (1580, 1607), True, 'import numpy as np\n'), ((2004, 2021), 'numpy.empty', 'np.empty', (['N_theta'], {}), '(N_theta)\n', (2012, 2021), True, 'import numpy as np\n'), ((2621, 2656), 'numpy.zeros', 'np.zeros', (['(peri_height, peri_width)'], {}), '((peri_height, peri_width))\n', (2629, 2656), True, 'import numpy as np\n'), ((2671, 2695), 'numpy.round', 'np.round', (['(peri_width / 2)'], {}), '(peri_width / 2)\n', (2679, 2695), True, 'import numpy as np\n'), ((2708, 2733), 'numpy.round', 'np.round', (['(peri_height / 2)'], {}), '(peri_height / 2)\n', (2716, 2733), True, 'import numpy as np\n'), ((1645, 1663), 'numpy.mod', 'np.mod', (['z', 'N_theta'], {}), '(z, N_theta)\n', (1651, 1663), True, 'import numpy as np\n'), ((1766, 1826), 'numpy.squeeze', 'np.squeeze', (['peripheral_filters.regions[i1 - 1, j1 - 1, :, :]'], {}), '(peripheral_filters.regions[i1 - 1, j1 - 1, :, :])\n', (1776, 1826), True, 'import numpy as np\n'), ((1836, 1881), 'numpy.where', 'np.where', (['(select_mask_stream[z - 1, :, :] > 0)'], {}), '(select_mask_stream[z - 1, :, :] > 0)\n', (1844, 1881), True, 'import numpy as np\n'), ((2501, 2519), 'numpy.mean', 'np.mean', (['dist_mask'], {}), '(dist_mask)\n', (2508, 2519), True, 'import numpy as np\n'), ((2270, 2369), 'numpy.linalg.norm', 'np.linalg.norm', (['[peripheral_filters.offsets_r[i][0][j], peripheral_filters.offsets_c[i][0][j]]'], {}), '([peripheral_filters.offsets_r[i][0][j], peripheral_filters.\n offsets_c[i][0][j]])\n', (2284, 2369), True, 'import numpy as np\n'), ((1706, 1735), 'numpy.floor', 'np.floor', (['((z - 0.1) / N_theta)'], {}), '((z - 0.1) / N_theta)\n', (1714, 1735), True, 'import numpy as np\n'), ((2074, 2118), 'numpy.shape', 'np.shape', (['peripheral_filters.offsets_r[i][0]'], {}), '(peripheral_filters.offsets_r[i][0])\n', (2082, 2118), True, 'import numpy as np\n'), ((2141, 2185), 'numpy.shape', 'np.shape', (['peripheral_filters.offsets_r[i][0]'], {}), '(peripheral_filters.offsets_r[i][0])\n', (2149, 2185), True, 'import numpy as np\n')]
#!/usr/bin/python import os import sys import numpy import datetime import re # Probability of correctness fq_prob_list = [0.725, 0.9134, 0.936204542, 0.949544344, 0.959009084, 0.966350507, 0.972348887, 0.977420444, 0.981813627, 0.985688689, 0.98915505, 0.992290754, 0.995153429, 0.997786834, 0.999999999] fq_char_list = [str(unichr(min(int(33 - 10 * numpy.math.log10(1 -p)), 73))) for p in fq_prob_list] NUM_FQ_CHAR = len(fq_char_list) - 1 def log_print(print_str): os.system("echo '" + str(print_str) + "'") ################################################################################ # Separate the path to a file from the filename (filepath -> path,filename) def GetPathAndName(pathfilename): ls=pathfilename.split('/') filename=ls[-1] if len(ls)==1: return '',filename path='/'.join(ls[0:-1])+'/' return path, filename # Compute the complementary sequence from a base sequence def compleseq(seq): newseq="" for base in seq: if base=="A": base="T" elif base=="C": base="G" elif base=="G": base="C" elif base=="T": base="A" elif base=="-": base="-" elif base=="a": base="t" elif base=="c": base="g" elif base=="g": base="c" elif base=="t": base="a" newseq=base+newseq return newseq def lower_mismatch_bowtie(SR_seq,mismatch): if mismatch == ['']: return SR_seq SR_seq_list = list(SR_seq) for c in mismatch: pos = int(c.split(':')[0]) SR_seq_list[pos] = SR_seq_list[pos].lower() return ''.join(SR_seq_list) # Turn a cps repetition count list into a complete list (insert 1 for things which aren't repeated) def expandidx_list(line): L_p_seq_ls = [] ls = line.strip().split('\t') if (len(ls)<2): L_ls=[] p_ls=[] else: p_ls = ls[0].split(',') L_ls = ls[1].split(',') temp_p=-1 i=0 for p in p_ls: L_p_seq_ls.extend( [onestr]*(int(p)-temp_p-1)) L_p_seq_ls.append(L_ls[i]) temp_p=int(p) i+=1 return L_p_seq_ls ################################################################################ # Compute majority sequence from the candidates def optimize_seq(temp_candidate_ls): result = "" max_n = 0 temp_candidate_set = set(temp_candidate_ls) for temp_candidate in temp_candidate_set: if temp_candidate!='' : n = temp_candidate_ls.count(temp_candidate) if n > max_n: result = temp_candidate max_n =n return[ result, max_n ] ################################################################################ # Uncompress a cps back to the original sequence def uncompress_seq(temp_SR_idx_seq_list,seq): result = "" i=0 for s in seq: result=result+s*int(temp_SR_idx_seq_list[i]) i+=1 return result def Convertord(SR_idx_seq_list): result = '' for s in SR_idx_seq_list: result = result + chr(int(s)+48) return result ################################################################################ if len(sys.argv) >= 2: LR_SR_mapping_filename = sys.argv[1] LR_readname_filename = sys.argv[2] else: log_print("usage :./correct_nonredundant.py LR_SR.map.aa_tmp LR.fa.readname") log_print("usage : python correct_nonredundant.py LR_SR.map.aa_tmp LR.fa.readname") sys.exit(1) LR_read_name_list = [""] readname_file = open(LR_readname_filename,'r') i = 0 # Load all the long read names for line in readname_file: i = i + 1 fields = line.strip().split() read_int = int(fields[0]) for j in range(i - read_int): # Fill in missing readname entries LR_read_name_list.append("") LR_read_name_list.append(fields[1]) path,filename = GetPathAndName(LR_SR_mapping_filename) tmp = open(LR_SR_mapping_filename,'r') full_read_file=open(path + 'full_'+ filename,'w') corrected_read_file=open(path + 'corrected_'+ filename,'w') corrected_read_fq_file=open(path + 'corrected_'+ filename +'.fq','w') uncorrected_read_file = open(path + 'uncorrected_'+ filename,'w') zerostr="0" onestr="1" t0 = datetime.datetime.now() # For each long read, perform correction for tmp_line in tmp: # Separate the tmp line into it's components tmp_ls = tmp_line.split('yue') LR_seq = tmp_ls[0] LR_idx_seq = tmp_ls[1] SR_ls_ls = tmp_ls[2].split(';') read_name = tmp_ls[3] read_int = int(read_name[0:]) if tmp_ls[2] == '': log_print(read_name + "\tno alignment") continue ls_SR_seq = tmp_ls[4].split('kinfai') ls_SR_idx_seq = tmp_ls[5].split('kinfai') start_pt_ls = [] NSR_ls = [] mismatch_ls = [] indel_pt_set_ls = [] insert_pt_ls_ls = [] del_pt_list = [] del_pt_set=set() crt_pt_ls = set() crt_pt_dict={} all_seq_idx_list=[] all_del_seq_list=[] temp_all_seq_idx=[] LR_seq = LR_seq.strip()+'ZX'*25 # extend the long read with ZX in order to handle short reads which go past the end of the long read L_LR_seq = len(LR_seq) a=L_LR_seq-1 LR_idx_seq_ls = LR_idx_seq.strip().split('\t') if len(LR_idx_seq_ls) > 1: p_ls = LR_idx_seq_ls[0].strip().split(',') else: p_ls=[] crt_pt_ls.update(set(numpy.array(p_ls,dtype='int'))) crt_pt_ls.update(set(range(a-50,a) )) ######################################################################################################### end_pt_ls = [] i=0 # For each short read mapped to this long read coverage_list = [0] * L_LR_seq for SR in SR_ls_ls: SR_ls = SR.split(',') pos = int(SR_ls[1]) pos -=1 if pos<0: i+=1 continue start_pt_ls.append(pos) SR_seq = ls_SR_seq[i] L =len(SR_seq.strip()) NSR_ls.append(SR_ls[0]) mismatch= SR_ls[2] insert_pt_set= set() temp_del_dt= {} indel_pt_set =set() # If there's a mismatch (of any kind) between the SR and LR if not mismatch == '': mismatch_pos_ls = map(int, re.findall(r'\d+',mismatch)) mismatch_type_ls = re.findall('>|\+|-', mismatch) mismatch_seq_ls = re.findall('\w+', mismatch) j=0 # For all of the mismatches for mismatch_type in mismatch_type_ls: # Convert the CIGAR information into an internal representation by position if mismatch_type == '+': del_pt = mismatch_pos_ls[j] + pos del_pt_set.add(del_pt) temp_del_dt[mismatch_pos_ls[j]] = mismatch_seq_ls[2*j+1] indel_pt_set.add(mismatch_pos_ls[j]) L -= len(mismatch_seq_ls[2*j+1]) elif mismatch_type == '-': L_insert = len(mismatch_seq_ls[2*j+1]) L += L_insert if L_insert>1: log_print("warning inert >2 bp") insert_pt_set.add(mismatch_pos_ls[j]) indel_pt_set.add(mismatch_pos_ls[j]) else: p_ls.append(mismatch_pos_ls[j]) j+=1 # Compute coverage information (percentage of LR covered by SR) end_pt_ls.append(pos + L - 1) n_rep = int(SR_ls[0].split('_')[1]) coverage_list[pos : (pos + L)] = [(coverage_list[k] + n_rep) for k in range(pos, pos + L)] insert_pt_ls_ls.append(insert_pt_set) del_pt_list.append(temp_del_dt) indel_pt_set_ls.append(indel_pt_set) i+=1 start_pt =min(start_pt_ls) ######################################################################################################## if start_pt_ls == []: log_print(read_name) log_print("no alignments, empty") continue ######################################################################################################### # Clip the 3 and 5 prime ends of the long read, which are uncovered by short reads temp_LR_idx_seq_list = expandidx_list(LR_idx_seq) temp_LR_idx_seq_list.extend( [onestr]*( len(LR_seq) - len(temp_LR_idx_seq_list)) ) # handle the ZX stuff #max_start_pt100 = 100 + max(start_pt_ls) end_pt = max(end_pt_ls)+1 five_end_seq = uncompress_seq(temp_LR_idx_seq_list[0:(start_pt+1)], LR_seq[0:(start_pt+1)]) # Note: the end and start pos of SRs are not used for correction three_end_seq="" if ((end_pt-1) < (len(LR_seq)-50)): three_end_seq = uncompress_seq(temp_LR_idx_seq_list[(end_pt-1):(len(LR_seq)-50)], LR_seq[(end_pt-1):(len(LR_seq)-50)]) temp_LR_seq = LR_seq[start_pt:end_pt].strip() coverage_list = [ fq_char_list[min( coverage_list[i], NUM_FQ_CHAR)] for i in range(start_pt, end_pt)] L_temp_LR_seq = len(temp_LR_seq) temp_LR_idx_seq_list = temp_LR_idx_seq_list[start_pt:end_pt] temp_LR_idx_seq_list.extend( [onestr]*( L_temp_LR_seq - len(temp_LR_idx_seq_list)) ) uncorrected_read_file.write('>' + LR_read_name_list[read_int] +'\n') # Note: the end and start pos of SRs are not used for correction L_temp_LR_idx_seq_list = len(temp_LR_idx_seq_list) uncorrected_read_file.write(uncompress_seq(temp_LR_idx_seq_list[1:(L_temp_LR_idx_seq_list-1)], temp_LR_seq[1:(L_temp_LR_idx_seq_list-1)]).replace('X','').replace('Z','') +'\n') ######################################################################################################### i=0 # Iterate over the short reads, make the short read as long as the long read (TODO: HOLY SCHAMOLY!) for NSR in NSR_ls: insert_pt_set = insert_pt_ls_ls[i] temp_del_dt = del_pt_list[i] indel_pt_set = indel_pt_set_ls[i] len_space = start_pt_ls[i] SR_seq = ls_SR_seq[i] SR_idx_seq = ls_SR_idx_seq[i] i+=1 n_rep = int(NSR.split('_')[1]) ls = SR_idx_seq.strip().split('\t') if len(ls)==0: p_ls=[] else: p_ls = ls[0].split(',') SR_idx_seq_list = expandidx_list(SR_idx_seq) SR_idx_seq_list.extend([onestr]*(len(SR_seq)-len(SR_idx_seq_list))) if NSR[0]=='-': SR_seq = compleseq(SR_seq) SR_idx_seq_list = SR_idx_seq_list[::-1] SR_seq_list=list(SR_seq) SR_idx_seq_list[0]=zerostr SR_idx_seq_list[-1]= zerostr SR_del_seq_list = ['=']*len(SR_seq_list) # Equals sign is used to indicate a deletion deleted_idx_list=[] indel_pt_ls = list(indel_pt_set) indel_pt_ls.sort() # Go over all the indel points for this short read and rewrite them to use the long read position for pt in indel_pt_ls: if pt in insert_pt_set: SR_seq_list.insert(pt-1,'-') SR_idx_seq_list.insert(pt-1,onestr) SR_del_seq_list.insert(pt-1,'=') if temp_del_dt.has_key(pt): L=len(temp_del_dt[pt]) pt-=1 del SR_seq_list[pt:pt+L] del SR_del_seq_list[pt:pt+L] SR_del_seq_list[pt-1] = uncompress_seq(SR_idx_seq_list[pt:pt+L], temp_del_dt[pt+1]) del SR_idx_seq_list[pt:pt+L] SR_del_seq = ''.join(SR_del_seq_list) ############### (I_ls,) = numpy.nonzero(numpy.array(SR_idx_seq_list,dtype='int')>1) I_ls = len_space + I_ls crt_pt_ls.update(set(I_ls)) #############DISPLAY####################################### # Add everything we can learn from this SR into the master correction list crt_pt_ls.update( set(numpy.array(list(insert_pt_set),dtype='int')+len_space-1) ) SR_idx_seq = Convertord(SR_idx_seq_list) SR_seq = ''.join(SR_seq_list) ############FILL UP LEFT SIDE############################ temp_SR_seq = zerostr*(len_space-start_pt) + SR_seq temp_SR_idx_seq = zerostr*(len_space-start_pt) + SR_idx_seq temp_SR_del_seq = zerostr*(len_space-start_pt) + SR_del_seq temp = numpy.copy(SR_seq_list) SR_seq_list = [zerostr]*(len_space-start_pt) SR_seq_list.extend(temp) temp = numpy.copy(SR_idx_seq_list) SR_idx_seq_list =[zerostr]*(len_space-start_pt) SR_idx_seq_list.extend(temp) temp = numpy.copy(SR_del_seq_list) SR_del_seq_list =[zerostr]*(len_space-start_pt) SR_del_seq_list.extend(temp) ############FILL UP RIGHT SIDE############################ temp_SR_seq = temp_SR_seq + zerostr*(L_temp_LR_seq - len(temp_SR_seq)) temp_SR_idx_seq = temp_SR_idx_seq + zerostr*(L_temp_LR_seq - len(temp_SR_idx_seq)) temp_SR_del_seq = temp_SR_del_seq + zerostr*(L_temp_LR_seq - len(temp_SR_del_seq)) SR_seq_list.extend( [zerostr]*(L_temp_LR_seq - len(SR_seq_list))) SR_idx_seq_list.extend([zerostr]*(L_temp_LR_seq - len(SR_idx_seq_list))) SR_del_seq_list.extend([zerostr]*(L_temp_LR_seq - len(SR_del_seq_list))) ############### all_seq_idx_list.append([SR_seq_list, SR_idx_seq_list, n_rep]) all_del_seq_list.append([SR_del_seq_list, n_rep]) ######################################################################################################### # Sort the correction points based on position crt_pt_sorted_array = numpy.array(numpy.sort(list(crt_pt_ls))) temp_index_ls = numpy.searchsorted(crt_pt_sorted_array,[start_pt,end_pt]) crt_repos_ls = crt_pt_sorted_array[temp_index_ls[0]:temp_index_ls[1]] - start_pt temp_LR_seq_list = list(temp_LR_seq) i = 0 # Compute coverage information for the long read for x in temp_LR_seq_list: n = int(temp_LR_idx_seq_list[i]) temp_LR_seq_list[i] = x*n coverage_list[i] = coverage_list[i] * n i+=1 # Make the corrections (+,>,HC) for crt_repos in crt_repos_ls: temp_candidate_ls = [] # For each SR for temp_SR_seq_idx_list in all_seq_idx_list: # list(list(list())) x = temp_SR_seq_idx_list[0][crt_repos] # base n = int(temp_SR_seq_idx_list[1][crt_repos]) # repeat of the base n_rep =int( temp_SR_seq_idx_list[2]) # repeat of the short read pre_x = temp_SR_seq_idx_list[0][max(0,crt_repos-1)] post_x = temp_SR_seq_idx_list[0][min(len(temp_SR_seq_idx_list[0])-1, crt_repos+1)] if n>0 and x!='N' and pre_x!='N' and post_x!='N': temp_candidate_ls.extend([x*n]*n_rep) [optimal_seq, n_max] = optimize_seq(temp_candidate_ls) if optimal_seq!='': if optimal_seq=='-': optimal_seq='' temp_LR_seq_list[crt_repos] = optimal_seq coverage_list[crt_repos] = fq_char_list[min( n_max, NUM_FQ_CHAR)] * len(optimal_seq) ######################################################################################################### coverage_L = len(temp_LR_seq_list) ######################################################################################################### del_pt_sorted_array = numpy.array(numpy.sort(list(del_pt_set))) temp_del_index_ls = numpy.searchsorted(del_pt_sorted_array,[start_pt-1,end_pt]) del_repos_ls = del_pt_sorted_array[temp_del_index_ls[0]:temp_index_ls[1]] - start_pt -2 Npredel=0 # Make the corrections (-) for del_repos in del_repos_ls: temp_candidate_ls = [] # For each SR for SR_del_seq_list_ls in all_del_seq_list: SR_del_seq_list = SR_del_seq_list_ls[0] n_rep = SR_del_seq_list_ls[1] if not SR_del_seq_list[del_repos] == '0': temp_candidate_ls.extend([SR_del_seq_list[del_repos]]*n_rep) [optimal_seq, n_max] = optimize_seq(temp_candidate_ls) if optimal_seq!='' and optimal_seq!='=': del_repos_Npredel_1 = del_repos+Npredel+1 temp_LR_seq_list.insert(del_repos_Npredel_1, optimal_seq) coverage_list.insert(del_repos_Npredel_1, fq_char_list[min( n_max, NUM_FQ_CHAR)] * len(optimal_seq)) coverage_L +=1 Npredel+=1 ######################################################################################################### final_seq = ''.join(temp_LR_seq_list[1:(coverage_L-1)]) # create the corrected long read, Note: the end and start pos of SRs are not used for correction coverage_seq = ''.join(coverage_list[1:(coverage_L-1)]) # Coverage data, turns into quality in the output fastq ######################################################################################################### full_read_file.write('>' + LR_read_name_list[read_int]+'\n') full_read_file.write(five_end_seq + final_seq.replace('X','').replace('Z','') + three_end_seq + '\n') corrected_seq = final_seq.replace('X','').replace('Z','') coverage = 1. * sum((cvrg != fq_char_list[0]) for cvrg in coverage_seq) / len(corrected_seq) corrected_read_file.write('>' + LR_read_name_list[read_int] + '|' + "{0:.2f}".format(round(coverage, 2)) + '\n') corrected_read_file.write(corrected_seq + '\n') corrected_read_fq_file.write('@' + LR_read_name_list[read_int] + '|' + "{0:.2f}".format(round(coverage, 2)) + '\n') corrected_read_fq_file.write(corrected_seq + '\n') corrected_read_fq_file.write('+\n') corrected_read_fq_file.write(coverage_seq.replace('X','').replace('Z','') + '\n') tmp.close() full_read_file.close() corrected_read_file.close() corrected_read_fq_file.close() uncorrected_read_file.close() log_print(datetime.datetime.now()-t0)
[ "numpy.copy", "numpy.searchsorted", "re.findall", "numpy.array", "numpy.math.log10", "datetime.datetime.now", "sys.exit" ]
[((4481, 4504), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (4502, 4504), False, 'import datetime\n'), ((3719, 3730), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (3727, 3730), False, 'import sys\n'), ((13758, 13817), 'numpy.searchsorted', 'numpy.searchsorted', (['crt_pt_sorted_array', '[start_pt, end_pt]'], {}), '(crt_pt_sorted_array, [start_pt, end_pt])\n', (13776, 13817), False, 'import numpy\n'), ((15528, 15591), 'numpy.searchsorted', 'numpy.searchsorted', (['del_pt_sorted_array', '[start_pt - 1, end_pt]'], {}), '(del_pt_sorted_array, [start_pt - 1, end_pt])\n', (15546, 15591), False, 'import numpy\n'), ((12422, 12445), 'numpy.copy', 'numpy.copy', (['SR_seq_list'], {}), '(SR_seq_list)\n', (12432, 12445), False, 'import numpy\n'), ((12548, 12575), 'numpy.copy', 'numpy.copy', (['SR_idx_seq_list'], {}), '(SR_idx_seq_list)\n', (12558, 12575), False, 'import numpy\n'), ((12685, 12712), 'numpy.copy', 'numpy.copy', (['SR_del_seq_list'], {}), '(SR_del_seq_list)\n', (12695, 12712), False, 'import numpy\n'), ((17931, 17954), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (17952, 17954), False, 'import datetime\n'), ((5617, 5647), 'numpy.array', 'numpy.array', (['p_ls'], {'dtype': '"""int"""'}), "(p_ls, dtype='int')\n", (5628, 5647), False, 'import numpy\n'), ((6500, 6531), 're.findall', 're.findall', (['""">|\\\\+|-"""', 'mismatch'], {}), "('>|\\\\+|-', mismatch)\n", (6510, 6531), False, 'import re\n'), ((6561, 6589), 're.findall', 're.findall', (['"""\\\\w+"""', 'mismatch'], {}), "('\\\\w+', mismatch)\n", (6571, 6589), False, 'import re\n'), ((6440, 6468), 're.findall', 're.findall', (['"""\\\\d+"""', 'mismatch'], {}), "('\\\\d+', mismatch)\n", (6450, 6468), False, 'import re\n'), ((11716, 11757), 'numpy.array', 'numpy.array', (['SR_idx_seq_list'], {'dtype': '"""int"""'}), "(SR_idx_seq_list, dtype='int')\n", (11727, 11757), False, 'import numpy\n'), ((576, 599), 'numpy.math.log10', 'numpy.math.log10', (['(1 - p)'], {}), '(1 - p)\n', (592, 599), False, 'import numpy\n')]
import os import json import argparse import sys import numpy as np from logger import Logger from pathlib import Path from joblib import Parallel, delayed from modeling.model import KuramotoSystem, plot_interaction from plotting.animate import Animator from plotting.plot_solution import PlotSetup CONFIG_NAME = 'config', 'json' PHASES_NAME = 'oscillators', 'npy' NOTES_NAME = 'notes', 'txt' TIME_NAME = 'time', 'npy' LOG_NAME = 'log', 'txt' def model(config, fmt: (str, PlotSetup) = 'simulation'): """Prepare and run a cortical sheet simulation based on the passed config dictionary""" nodes_side = config['sqrt_nodes'] time = config['time'] gain_ratio = config['gain_ratio'] torus = True # Init model gain = gain_ratio*nodes_side**2 kuramoto = KuramotoSystem( (nodes_side, nodes_side), config['system'], gain, boundary=torus ) # Run Model time_eval = np.linspace(0, time, config['frames']) try: solution = kuramoto.solve( (0, time), config['ODE_method'], # too stiff for 'RK45', use 'LSODA',‘BDF’,'Radau' config['continuous_soln'], time_eval, config['max_delta_t'], config['zero_ics'], ) osc_state = solution.y.reshape((nodes_side, nodes_side, solution.t.shape[0])) time = solution.t msg = solution.message except Exception as e: print('Integration failed!') osc_state = None time = None msg = f'{e}' if config['save_numpy']: fmt = save_data(fmt, config, osc_state, time, msg) return osc_state, time, fmt def save_data(fmt, config, osc_state=None, time=None, solver_notes=None): """Load the result of a simulation run to the target directory""" import subprocess git_hash = subprocess.check_output(["git", "describe", "--always"]).strip() git_url = subprocess.check_output(["git", "config", "--get", "remote.origin.url"]).strip() solver_notes += f'\n\nCode used for this run:\n' \ f' git url: {git_url}\n' \ f' commit hash: {git_hash}' fmt = fmt if hasattr(fmt, 'file_name') else PlotSetup(label=fmt) print(f'Saving to {fmt.directory}') with open(fmt.file_name(*CONFIG_NAME), 'w') as f: json.dump(config, f, indent=2) with open(fmt.file_name(*NOTES_NAME), 'w') as f: if solver_notes: f.write(solver_notes) if osc_state is not None: np.save(fmt.file_name(*PHASES_NAME), osc_state) if time is not None: np.save(fmt.file_name(*TIME_NAME), time) return fmt def load_data(data_folder): """Load the data (result of a simulation run) from the target directory""" fmt = PlotSetup(base_folder=data_folder, readonly=True) with open(fmt.file_name(*CONFIG_NAME)) as f: config = json.load(f) osc_state = np.load(fmt.file_name(*PHASES_NAME)) time = np.load(fmt.file_name(*TIME_NAME)) return config, osc_state, time, fmt def plot(config=None, osc_states=None, time=None, data_folder=None, fmt=None, cleanup=True): """Plot a gif of the phase evolution over time for the given data, optionally loaded from disk""" # No data provided explicitly, need to load from the passed folder if data_folder is not None and (config is None or osc_states is None or time is None): config, osc_states, time, fmt = load_data(data_folder) # Insufficient info provided, we don't know what to plot! elif data_folder is None and (config is None or osc_states is None or time is None): raise KeyError('Both the data_folder and the data contents were left blank!') vid = Animator(config, fmt) vid.animate(osc_states, time, cleanup=cleanup) plot_interaction(config['sqrt_nodes'], config['system'], config['gain_ratio'], out_fmt=fmt) def run(config_set: str = 'local_sync', config_file: str = 'model_config.json', base_path='plots', do_plot=True): """Run a model based on the passed config file and immediately plot the results""" path_fmt = PlotSetup(base_path, config_set) sys.stdout = Logger(path_fmt.file_name(*LOG_NAME)) with open(Path(config_file).resolve()) as f: var = json.load(f) config = var[config_set] oscillator_state, time, path_fmt = model(config, path_fmt) if do_plot: plot(config=config, osc_states=oscillator_state, time=time, fmt=path_fmt) def sweep(var_name, start, stop, steps, n_jobs=-2, config_set='gain_sweep', config_file: str = 'model_config.json', base_path='plots'): with open(Path(config_file).resolve()) as f: var = json.load(f) base_config = var[config_set] conf_str = json.dumps(base_config) var_key = '"<sweep-var>"' if var_key not in conf_str: raise KeyError('The swept config set must have the target variable replaced by \'"<sweep-var>"\'') base_fmt = PlotSetup(base_folder=base_path, label=f'{config_set}_sweep') var_values = np.linspace(start, stop, steps, endpoint=True) all_configs = [] file_fmts = [] for value in var_values: str_here = conf_str.replace(var_key, str(round(value, 4))) config = json.loads(str_here) fmt = PlotSetup(base_folder=base_fmt.directory, label=f'{var_name}={value:.2f}') all_configs.append(config) file_fmts.append(fmt) Parallel(n_jobs=n_jobs, verbose=20)( delayed(model)(all_configs[i], file_fmts[i]) for i in range(len(all_configs)) ) def main(): """Function to run""" parser = argparse.ArgumentParser(description='Select model_config scenario & path (optional):') parser.add_argument('--set', metavar='scenario | variable set', type=str, nargs='?', help='model_config.json key like global_sync', default='test_set') parser.add_argument('--path', metavar='directory to config.json', type=str, nargs='?', help='model_config.json path, default is pwd', default='model_config.json') parser.add_argument('--out', metavar='output directory', type=str, nargs='?', help='base path to output raw data and plots', default='plots') parser.add_argument('--plot', action='store_true', help='Whether to plot the results right away') parser.add_argument('--sweep', action='store_true', help='Whether to plot the results right away') parser.add_argument('--var', metavar='variable', type=str, nargs='?', help='Name of variable being swept', default='Var') parser.add_argument('--start', metavar='sweep start', type=float, nargs='?', help='Start value of the sweep variable', default=0.0) parser.add_argument('--stop', metavar='sweep stop', type=float, nargs='?', help='End value of the sweep variable, included', default=1.0) parser.add_argument('--steps', metavar='num steps', type=int, nargs='?', help='Number of steps in the sweep', default=10) parser.add_argument('--jobs', metavar='num jobs', type=int, nargs='?', help='Number of parallel jobs to run', default=-2) args = parser.parse_args() if args.sweep: sweep(args.var, args.start, args.stop, args.steps, args.jobs, args.set, args.path, args.out) else: run(args.set, args.path, base_path=args.out, do_plot=args.plot) if __name__ == '__main__': main()
[ "json.dump", "json.load", "argparse.ArgumentParser", "json.loads", "subprocess.check_output", "plotting.animate.Animator", "json.dumps", "modeling.model.KuramotoSystem", "pathlib.Path", "numpy.linspace", "joblib.Parallel", "plotting.plot_solution.PlotSetup", "joblib.delayed", "modeling.model.plot_interaction" ]
[((788, 873), 'modeling.model.KuramotoSystem', 'KuramotoSystem', (['(nodes_side, nodes_side)', "config['system']", 'gain'], {'boundary': 'torus'}), "((nodes_side, nodes_side), config['system'], gain, boundary=torus\n )\n", (802, 873), False, 'from modeling.model import KuramotoSystem, plot_interaction\n'), ((940, 978), 'numpy.linspace', 'np.linspace', (['(0)', 'time', "config['frames']"], {}), "(0, time, config['frames'])\n", (951, 978), True, 'import numpy as np\n'), ((2776, 2825), 'plotting.plot_solution.PlotSetup', 'PlotSetup', ([], {'base_folder': 'data_folder', 'readonly': '(True)'}), '(base_folder=data_folder, readonly=True)\n', (2785, 2825), False, 'from plotting.plot_solution import PlotSetup\n'), ((3717, 3738), 'plotting.animate.Animator', 'Animator', (['config', 'fmt'], {}), '(config, fmt)\n', (3725, 3738), False, 'from plotting.animate import Animator\n'), ((3795, 3891), 'modeling.model.plot_interaction', 'plot_interaction', (["config['sqrt_nodes']", "config['system']", "config['gain_ratio']"], {'out_fmt': 'fmt'}), "(config['sqrt_nodes'], config['system'], config[\n 'gain_ratio'], out_fmt=fmt)\n", (3811, 3891), False, 'from modeling.model import KuramotoSystem, plot_interaction\n'), ((4106, 4138), 'plotting.plot_solution.PlotSetup', 'PlotSetup', (['base_path', 'config_set'], {}), '(base_path, config_set)\n', (4115, 4138), False, 'from plotting.plot_solution import PlotSetup\n'), ((4735, 4758), 'json.dumps', 'json.dumps', (['base_config'], {}), '(base_config)\n', (4745, 4758), False, 'import json\n'), ((4945, 5006), 'plotting.plot_solution.PlotSetup', 'PlotSetup', ([], {'base_folder': 'base_path', 'label': 'f"""{config_set}_sweep"""'}), "(base_folder=base_path, label=f'{config_set}_sweep')\n", (4954, 5006), False, 'from plotting.plot_solution import PlotSetup\n'), ((5025, 5071), 'numpy.linspace', 'np.linspace', (['start', 'stop', 'steps'], {'endpoint': '(True)'}), '(start, stop, steps, endpoint=True)\n', (5036, 5071), True, 'import numpy as np\n'), ((5596, 5687), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Select model_config scenario & path (optional):"""'}), "(description=\n 'Select model_config scenario & path (optional):')\n", (5619, 5687), False, 'import argparse\n'), ((2214, 2234), 'plotting.plot_solution.PlotSetup', 'PlotSetup', ([], {'label': 'fmt'}), '(label=fmt)\n', (2223, 2234), False, 'from plotting.plot_solution import PlotSetup\n'), ((2338, 2368), 'json.dump', 'json.dump', (['config', 'f'], {'indent': '(2)'}), '(config, f, indent=2)\n', (2347, 2368), False, 'import json\n'), ((2892, 2904), 'json.load', 'json.load', (['f'], {}), '(f)\n', (2901, 2904), False, 'import json\n'), ((4258, 4270), 'json.load', 'json.load', (['f'], {}), '(f)\n', (4267, 4270), False, 'import json\n'), ((4673, 4685), 'json.load', 'json.load', (['f'], {}), '(f)\n', (4682, 4685), False, 'import json\n'), ((5225, 5245), 'json.loads', 'json.loads', (['str_here'], {}), '(str_here)\n', (5235, 5245), False, 'import json\n'), ((5260, 5334), 'plotting.plot_solution.PlotSetup', 'PlotSetup', ([], {'base_folder': 'base_fmt.directory', 'label': 'f"""{var_name}={value:.2f}"""'}), "(base_folder=base_fmt.directory, label=f'{var_name}={value:.2f}')\n", (5269, 5334), False, 'from plotting.plot_solution import PlotSetup\n'), ((5406, 5441), 'joblib.Parallel', 'Parallel', ([], {'n_jobs': 'n_jobs', 'verbose': '(20)'}), '(n_jobs=n_jobs, verbose=20)\n', (5414, 5441), False, 'from joblib import Parallel, delayed\n'), ((1849, 1905), 'subprocess.check_output', 'subprocess.check_output', (["['git', 'describe', '--always']"], {}), "(['git', 'describe', '--always'])\n", (1872, 1905), False, 'import subprocess\n'), ((1928, 2000), 'subprocess.check_output', 'subprocess.check_output', (["['git', 'config', '--get', 'remote.origin.url']"], {}), "(['git', 'config', '--get', 'remote.origin.url'])\n", (1951, 2000), False, 'import subprocess\n'), ((5451, 5465), 'joblib.delayed', 'delayed', (['model'], {}), '(model)\n', (5458, 5465), False, 'from joblib import Parallel, delayed\n'), ((4209, 4226), 'pathlib.Path', 'Path', (['config_file'], {}), '(config_file)\n', (4213, 4226), False, 'from pathlib import Path\n'), ((4624, 4641), 'pathlib.Path', 'Path', (['config_file'], {}), '(config_file)\n', (4628, 4641), False, 'from pathlib import Path\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ :Description: Larva segmentation :Authors: (c) <NAME> <<EMAIL>> :Date: 2020-08-120 """ import os import cv2 as cv import numpy as np # from scipy.io import loadmat from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter from glob import iglob # import json #class NumpyDataEncoder(json.JSONEncoder): # """JSON serializer of numpy types""" # def default(self, obj): # if isinstance(obj, np.integer): # return int(obj) # elif isinstance(obj, np.floating): # return float(obj) # elif isinstance(obj, np.ndarray): # return obj.tolist() # return super(NumpyDataEncoder, self).default(obj) if __name__ == '__main__': parser = ArgumentParser(description='Larva segmentation.', formatter_class=ArgumentDefaultsHelpFormatter, conflict_handler='resolve') parser.add_argument("-d", "--outp-dir", default=None, help='Output directory. The input directory is used by default.') parser.add_argument('input', metavar='INPUT', nargs='+', help='Wildcards of input video files to be processed') args = parser.parse_args() # # Load annotations # 0 area # 1 perimeter # 2 spine length # 3 fluorescence # 4 frame number # 5 larval number (identity) # 6 x coordinate # 7 y coordinate # B7Larva1 .. B7Larva4: array[array]] # anno = loadmat('v44_v45/B7L.mat') # Prepare output directory if args.outp_dir and not os.path.exists(args.outp_dir): os.makedirs(args.outp_dir) nfiles = 0 for wlc in args.input: for ifname in iglob(wlc): nfiles += 1 print('Processing {} ...'.format(ifname)) #with open(ifname, 'rb') as finp: cap = cv.VideoCapture(ifname) fps = cap.get(cv.CAP_PROP_FPS) width = int(cap.get(cv.CAP_PROP_FRAME_WIDTH)) height = int(cap.get(cv.CAP_PROP_FRAME_HEIGHT)) #ofname = oa.path.split(ifname)[1] ofname = os.path.join(args.outp_dir, 'v4_v5_f.05_clahe32.avi') print(' fps: {}, size: {}x{}\n\toutput: {}'.format(fps, width, height, ofname)) # Define the codec and create VideoWriter object.The output is stored in 'outpy.avi' file. # Define the fps to be equal to 10. Also frame size is passed. # FMP4, MJPG, XVID #fourcc = cv.VideoWriter_fourcc(*'MJPG') out = cv.VideoWriter(ofname, cv.VideoWriter_fourcc(*'XVID'), fps, (width, height)) if not cap: exit(1) title = os.path.split(ifname)[1] #cv.namedWindow(title, cv.WINDOW_NORMAL) #wWnd = 1600 #rfont = width / wWnd #cv.resizeWindow(title, wWnd, int(height / rfont)) #rfont = max(1, rfont) nframe = 0 while cap.isOpened(): # Capture frame-by-frame ret, frame = cap.read() if not ret: assert frame is None break nframe += 1 #_, _, w, _ = cv.getWindowImageRect(title) #rfont = max(1, width / w) #cv.putText(frame,'Recording ...', # (20, 20 + int(24 * rfont)), # bottomLeftCornerOfText # cv.FONT_HERSHEY_SIMPLEX, # rfont, # Font size # (7, 7, 255), # Color # 1 + round(rfont)) # Line thickness, px cv.imshow(title, frame) # Convert to grayscale gray = cv.cvtColor(frame,cv.COLOR_BGR2GRAY) # Apply CLAHE (Contrast Limited Adaptive Histogram Equalization) clahe = cv.createCLAHE(clipLimit=32.0, tileGridSize=(8,8)) # clipLimit=40 / 255 Threshold for contrast limiting. gray = clahe.apply(gray) # Adaprive optimal thresholds: THRESH_OTSU, THRESH_TRIANGLE ret, thresh = cv.threshold(gray, 0, 255, cv.THRESH_BINARY_INV + cv.THRESH_OTSU) # THRESH_TRIANGLE cv.imshow(title + '_thresh', thresh) # cv.imshow(title + '_gray', frame) # Noise removal kernel = np.ones((3, 3), np.uint8) # 3, 3 opening = cv.morphologyEx(thresh, cv.MORPH_OPEN, kernel, iterations=2) # orig: 2 # opening = cv.dilate(thresh, kernel, iterations=2) # 3 cv.imshow(title + '_opening', opening) # opening = thresh # # Background identification sure_bg = cv.dilate(opening, kernel, iterations=3) # orig: 3 # #sure_bg = cv.morphologyEx(opening, cv.MORPH_OPEN, kernel, iterations=2) # 2 # cv.imshow(title + '_bg', sure_bg) # # sure_bg = opening # Foreground identification dist_transform = cv.distanceTransform(opening, cv.DIST_L2, 5) # 5 or 3 ret, sure_fg = cv.threshold(dist_transform, 0.05 * dist_transform.max(), 255, 0) # 0.7 [0.5 - deliv]] # Remaining areas sure_fg = np.uint8(sure_fg) unknown = cv.subtract(sure_bg, sure_fg) # cv.imshow(title + '_unknown', unknown) # Marker labelling ret, markers = cv.connectedComponents(sure_fg) # Add one to all labels so that sure background is not 0, but 1 markers = markers + 1 # Mark the region of unknown with zero markers[unknown == 255] = 0 # Apply watershed markers = cv.watershed(frame, markers) frame[markers == -1] = [255,0,0] cv.imshow(title + '_gray', frame) # Save output video out.write(frame) #cv.imwrite("frame%d.jpg" % count, frame) # Wait 10 ms for a 'q' to exit or capture the next frame key = cv.waitKey(10) & 0xFF # Quit: escape, e or q if key in (27, ord('e'), ord('q')): break # Pause: Spacebar or p elif key in (32, ord('p')): cv.waitKey(-1) cap.release() out.release() cv.destroyAllWindows() # destroy all opened windows
[ "argparse.ArgumentParser", "cv2.VideoWriter_fourcc", "numpy.ones", "glob.iglob", "cv2.imshow", "os.path.join", "cv2.subtract", "cv2.dilate", "cv2.cvtColor", "os.path.exists", "cv2.connectedComponents", "cv2.destroyAllWindows", "numpy.uint8", "cv2.waitKey", "cv2.morphologyEx", "cv2.createCLAHE", "cv2.distanceTransform", "os.makedirs", "cv2.threshold", "cv2.watershed", "cv2.VideoCapture", "os.path.split" ]
[((698, 827), 'argparse.ArgumentParser', 'ArgumentParser', ([], {'description': '"""Larva segmentation."""', 'formatter_class': 'ArgumentDefaultsHelpFormatter', 'conflict_handler': '"""resolve"""'}), "(description='Larva segmentation.', formatter_class=\n ArgumentDefaultsHelpFormatter, conflict_handler='resolve')\n", (712, 827), False, 'from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter\n'), ((1439, 1465), 'os.makedirs', 'os.makedirs', (['args.outp_dir'], {}), '(args.outp_dir)\n', (1450, 1465), False, 'import os\n'), ((1519, 1529), 'glob.iglob', 'iglob', (['wlc'], {}), '(wlc)\n', (1524, 1529), False, 'from glob import iglob\n'), ((1406, 1435), 'os.path.exists', 'os.path.exists', (['args.outp_dir'], {}), '(args.outp_dir)\n', (1420, 1435), False, 'import os\n'), ((1637, 1660), 'cv2.VideoCapture', 'cv.VideoCapture', (['ifname'], {}), '(ifname)\n', (1652, 1660), True, 'import cv2 as cv\n'), ((1845, 1898), 'os.path.join', 'os.path.join', (['args.outp_dir', '"""v4_v5_f.05_clahe32.avi"""'], {}), "(args.outp_dir, 'v4_v5_f.05_clahe32.avi')\n", (1857, 1898), False, 'import os\n'), ((5231, 5253), 'cv2.destroyAllWindows', 'cv.destroyAllWindows', ([], {}), '()\n', (5251, 5253), True, 'import cv2 as cv\n'), ((2240, 2270), 'cv2.VideoWriter_fourcc', 'cv.VideoWriter_fourcc', (["*'XVID'"], {}), "(*'XVID')\n", (2261, 2270), True, 'import cv2 as cv\n'), ((2332, 2353), 'os.path.split', 'os.path.split', (['ifname'], {}), '(ifname)\n', (2345, 2353), False, 'import os\n'), ((2999, 3022), 'cv2.imshow', 'cv.imshow', (['title', 'frame'], {}), '(title, frame)\n', (3008, 3022), True, 'import cv2 as cv\n'), ((3061, 3098), 'cv2.cvtColor', 'cv.cvtColor', (['frame', 'cv.COLOR_BGR2GRAY'], {}), '(frame, cv.COLOR_BGR2GRAY)\n', (3072, 3098), True, 'import cv2 as cv\n'), ((3179, 3230), 'cv2.createCLAHE', 'cv.createCLAHE', ([], {'clipLimit': '(32.0)', 'tileGridSize': '(8, 8)'}), '(clipLimit=32.0, tileGridSize=(8, 8))\n', (3193, 3230), True, 'import cv2 as cv\n'), ((3397, 3462), 'cv2.threshold', 'cv.threshold', (['gray', '(0)', '(255)', '(cv.THRESH_BINARY_INV + cv.THRESH_OTSU)'], {}), '(gray, 0, 255, cv.THRESH_BINARY_INV + cv.THRESH_OTSU)\n', (3409, 3462), True, 'import cv2 as cv\n'), ((3486, 3522), 'cv2.imshow', 'cv.imshow', (["(title + '_thresh')", 'thresh'], {}), "(title + '_thresh', thresh)\n", (3495, 3522), True, 'import cv2 as cv\n'), ((3597, 3622), 'numpy.ones', 'np.ones', (['(3, 3)', 'np.uint8'], {}), '((3, 3), np.uint8)\n', (3604, 3622), True, 'import numpy as np\n'), ((3646, 3706), 'cv2.morphologyEx', 'cv.morphologyEx', (['thresh', 'cv.MORPH_OPEN', 'kernel'], {'iterations': '(2)'}), '(thresh, cv.MORPH_OPEN, kernel, iterations=2)\n', (3661, 3706), True, 'import cv2 as cv\n'), ((3781, 3819), 'cv2.imshow', 'cv.imshow', (["(title + '_opening')", 'opening'], {}), "(title + '_opening', opening)\n", (3790, 3819), True, 'import cv2 as cv\n'), ((3891, 3931), 'cv2.dilate', 'cv.dilate', (['opening', 'kernel'], {'iterations': '(3)'}), '(opening, kernel, iterations=3)\n', (3900, 3931), True, 'import cv2 as cv\n'), ((4144, 4188), 'cv2.distanceTransform', 'cv.distanceTransform', (['opening', 'cv.DIST_L2', '(5)'], {}), '(opening, cv.DIST_L2, 5)\n', (4164, 4188), True, 'import cv2 as cv\n'), ((4342, 4359), 'numpy.uint8', 'np.uint8', (['sure_fg'], {}), '(sure_fg)\n', (4350, 4359), True, 'import numpy as np\n'), ((4374, 4403), 'cv2.subtract', 'cv.subtract', (['sure_bg', 'sure_fg'], {}), '(sure_bg, sure_fg)\n', (4385, 4403), True, 'import cv2 as cv\n'), ((4496, 4527), 'cv2.connectedComponents', 'cv.connectedComponents', (['sure_fg'], {}), '(sure_fg)\n', (4518, 4527), True, 'import cv2 as cv\n'), ((4733, 4761), 'cv2.watershed', 'cv.watershed', (['frame', 'markers'], {}), '(frame, markers)\n', (4745, 4761), True, 'import cv2 as cv\n'), ((4803, 4836), 'cv2.imshow', 'cv.imshow', (["(title + '_gray')", 'frame'], {}), "(title + '_gray', frame)\n", (4812, 4836), True, 'import cv2 as cv\n'), ((5009, 5023), 'cv2.waitKey', 'cv.waitKey', (['(10)'], {}), '(10)\n', (5019, 5023), True, 'import cv2 as cv\n'), ((5173, 5187), 'cv2.waitKey', 'cv.waitKey', (['(-1)'], {}), '(-1)\n', (5183, 5187), True, 'import cv2 as cv\n')]
""" Adapted from https://github.com/leoxiaobin/deep-high-resolution-net.pytorch Original licence: Copyright (c) Microsoft, under the MIT License. """ from abc import ABC, abstractmethod import copy import random import cv2 import numpy as np from albumentations import ( Compose, Normalize, ) import tensorflow as tf from ..transforms import ( get_affine_transform, affine_transform, fliplr_joints, half_body_transform, ) class BaseDataset(ABC): def __init__(self, config, root: str, image_set: str, is_train: str): self.num_joints = 0 self.is_train = is_train self.root = root self.image_set = image_set self.scale_factor = config.dataset.scale_factor self.rotation_factor = config.dataset.rot_factor self.flip = config.dataset.flip self.half_body_prob = config.dataset.half_body_prob self.half_body_num_joints = config.dataset.half_body_num_joints self.color_rgb = config.dataset.color_rgb self.input_w = config.model.input_width self.input_h = config.model.input_height self.output_w = config.model.output_width self.output_h = config.model.output_height self.aspect_ratio = self.input_w * 1.0 / self.input_h self.sigma = config.model.sigma self.transform = Compose([ Normalize( mean=config.model.mean, std=config.model.std), ]) self.flip_pairs = None self.upper_body_ids = None self.lower_body_ids = None self.db = [] self.output_types = { 'inputs': tf.float32, 'target': tf.float32, 'target_weight': tf.float32, 'image_file': tf.string, 'file_name': tf.string, 'joints': tf.float32, 'joints_visible': tf.float32, 'center': tf.float32, 'scale': tf.float32, 'rotation': tf.float32, 'score': tf.float32, } @abstractmethod def _get_db(self): raise NotImplementedError @abstractmethod def evaluate(self, preds, output_dir, all_boxes, img_path): raise NotImplementedError def __len__(self): return len(self.db) def __getitem__(self, idx): db_rec = copy.deepcopy(self.db[idx]) image_file = db_rec['image'] file_name = db_rec['file_name'] if 'file_name' in db_rec else '' img = cv2.imread( image_file, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION) if img is None: raise ValueError('Fail to read {}'.format(image_file)) if self.color_rgb: img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) joints = db_rec['joints_3d'] joints_visible = db_rec['joints_3d_visible'] c = db_rec['center'] s = db_rec['scale'] score = db_rec['score'] if 'score' in db_rec else 1 r = 0 # augmentation if self.is_train: if (np.sum(joints_visible[:, 0]) > self.half_body_num_joints and np.random.rand() < self.half_body_prob): c_half_body, s_half_body = half_body_transform( joints, joints_visible, self.num_joints, self.upper_body_ids, self.aspect_ratio) if c_half_body is not None and s_half_body is not None: c = c_half_body s = s_half_body sf = self.scale_factor rf = self.rotation_factor s = s * np.clip(np.random.randn() * sf + 1, 1 - sf, 1 + sf) r = np.clip(np.random.randn() * rf, -rf * 2, rf * 2) \ if random.random() <= 0.6 else 0 if self.flip and random.random() <= 0.5: img = img[:, ::-1, :] joints, joints_visible = fliplr_joints( joints, joints_visible, img.shape[1], self.flip_pairs) c[0] = img.shape[1] - c[0] - 1 trans = get_affine_transform(c, s, r, (self.input_w, self.input_h)) img = cv2.warpAffine( img, trans, (self.input_w, self.input_h), flags=cv2.INTER_LINEAR) if self.transform: img = self.transform(image=img)['image'] for i in range(self.num_joints): if joints_visible[i, 0] > 0.0: joints[i, 0:2] = affine_transform(joints[i, 0:2], trans) target, target_weight = self._generate_target(joints, joints_visible) return { 'inputs': img, 'target': target, 'target_weight': target_weight, 'image_file': image_file, 'file_name': file_name, 'joints': joints, 'joints_visible': joints_visible, 'center': c, 'scale': s, 'rotation': r, 'score': score } def generator(self): """Generator for `tf.data.Dataset.from_generator`. """ indices = list(range(len(self))) if self.is_train: random.shuffle(indices) for idx in indices: yield self[idx] def _generate_target(self, joints: np.ndarray, joints_visible: np.ndarray): """Generate target map. Args: joints : [num_joints, 3] joints_visible: [num_joints, 3] Returns: target: [self.output_height, self.output_width, num_joints] target_weight: 1: visible, 0: invisible """ target_weight = np.ones((self.num_joints, 1), dtype=np.float32) target_weight[:, 0] = joints_visible[:, 0] target = np.zeros( (self.output_h, self.output_w, self.num_joints), dtype=np.float32) tmp_size = self.sigma * 3 for joint_id in range(self.num_joints): heatmap_vis = joints_visible[joint_id, 0] target_weight[joint_id] = heatmap_vis feat_stride = [ self.input_w / self.output_w, self.input_h / self.output_h, ] mu_x = joints[joint_id][0] / feat_stride[0] mu_y = joints[joint_id][1] / feat_stride[1] # Check that any part of the gaussian is in-bounds ul = [mu_x - tmp_size, mu_y - tmp_size] br = [mu_x + tmp_size + 1, mu_y + tmp_size + 1] if (ul[0] >= self.output_w or ul[1] >= self.output_h or br[0] < 0 or br[1] < 0): target_weight[joint_id] = 0 if target_weight[joint_id] == 0: continue x = np.arange(0, self.output_w, 1, np.float32) y = np.arange(0, self.output_h, 1, np.float32) y = y[:, None] if target_weight[joint_id] > 0.5: target[..., joint_id] = np.exp( -((x - mu_x) ** 2 + (y - mu_y) ** 2) / (2 * self.sigma ** 2)) return target, target_weight
[ "copy.deepcopy", "numpy.sum", "numpy.random.randn", "cv2.cvtColor", "random.shuffle", "numpy.random.rand", "numpy.zeros", "numpy.ones", "cv2.imread", "cv2.warpAffine", "random.random", "numpy.arange", "numpy.exp", "albumentations.Normalize" ]
[((2316, 2343), 'copy.deepcopy', 'copy.deepcopy', (['self.db[idx]'], {}), '(self.db[idx])\n', (2329, 2343), False, 'import copy\n'), ((2470, 2542), 'cv2.imread', 'cv2.imread', (['image_file', '(cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION)'], {}), '(image_file, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION)\n', (2480, 2542), False, 'import cv2\n'), ((4155, 4240), 'cv2.warpAffine', 'cv2.warpAffine', (['img', 'trans', '(self.input_w, self.input_h)'], {'flags': 'cv2.INTER_LINEAR'}), '(img, trans, (self.input_w, self.input_h), flags=cv2.INTER_LINEAR\n )\n', (4169, 4240), False, 'import cv2\n'), ((5629, 5676), 'numpy.ones', 'np.ones', (['(self.num_joints, 1)'], {'dtype': 'np.float32'}), '((self.num_joints, 1), dtype=np.float32)\n', (5636, 5676), True, 'import numpy as np\n'), ((5746, 5821), 'numpy.zeros', 'np.zeros', (['(self.output_h, self.output_w, self.num_joints)'], {'dtype': 'np.float32'}), '((self.output_h, self.output_w, self.num_joints), dtype=np.float32)\n', (5754, 5821), True, 'import numpy as np\n'), ((2694, 2730), 'cv2.cvtColor', 'cv2.cvtColor', (['img', 'cv2.COLOR_BGR2RGB'], {}), '(img, cv2.COLOR_BGR2RGB)\n', (2706, 2730), False, 'import cv2\n'), ((5161, 5184), 'random.shuffle', 'random.shuffle', (['indices'], {}), '(indices)\n', (5175, 5184), False, 'import random\n'), ((6742, 6784), 'numpy.arange', 'np.arange', (['(0)', 'self.output_w', '(1)', 'np.float32'], {}), '(0, self.output_w, 1, np.float32)\n', (6751, 6784), True, 'import numpy as np\n'), ((6801, 6843), 'numpy.arange', 'np.arange', (['(0)', 'self.output_h', '(1)', 'np.float32'], {}), '(0, self.output_h, 1, np.float32)\n', (6810, 6843), True, 'import numpy as np\n'), ((1357, 1412), 'albumentations.Normalize', 'Normalize', ([], {'mean': 'config.model.mean', 'std': 'config.model.std'}), '(mean=config.model.mean, std=config.model.std)\n', (1366, 1412), False, 'from albumentations import Compose, Normalize\n'), ((6958, 7026), 'numpy.exp', 'np.exp', (['(-((x - mu_x) ** 2 + (y - mu_y) ** 2) / (2 * self.sigma ** 2))'], {}), '(-((x - mu_x) ** 2 + (y - mu_y) ** 2) / (2 * self.sigma ** 2))\n', (6964, 7026), True, 'import numpy as np\n'), ((3020, 3048), 'numpy.sum', 'np.sum', (['joints_visible[:, 0]'], {}), '(joints_visible[:, 0])\n', (3026, 3048), True, 'import numpy as np\n'), ((3101, 3117), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (3115, 3117), True, 'import numpy as np\n'), ((3764, 3779), 'random.random', 'random.random', ([], {}), '()\n', (3777, 3779), False, 'import random\n'), ((3824, 3839), 'random.random', 'random.random', ([], {}), '()\n', (3837, 3839), False, 'import random\n'), ((3702, 3719), 'numpy.random.randn', 'np.random.randn', ([], {}), '()\n', (3717, 3719), True, 'import numpy as np\n'), ((3634, 3651), 'numpy.random.randn', 'np.random.randn', ([], {}), '()\n', (3649, 3651), True, 'import numpy as np\n')]
# <NAME>, 18/04/2018 # Project 2018, Iris Dataset Analysis # https://web.microsoftstream.com/video/74b18405-5ee1-47f0-a42d-e8831a453a91 # https://docs.scipy.org/doc/numpy/reference/generated/numpy.amin.html # https://docs.scipy.org/doc/numpy-1.14.0/reference/generated/numpy.amax.html # https://web.microsoftstream.com/video/f0788c1c-c7bd-4347-98ac-477186938ed7 # http://scikit-learn.org/stable/auto_examples/datasets/plot_iris_dataset.html # https://matplotlib.org/ # https://stackoverflow.com/questions/455612/limiting-floats-to-two-decimal-points import numpy # http://www.numpy.org/ data = numpy.genfromtxt("data/iris.csv", delimiter = ",") import matplotlib.pyplot as pl # https://matplotlib.org/ # Four variables, Petal length, Petal width, Sepal length and Sepal width # To identify the data in each variable set = "Setosa" ver = "Versicolor" vir = "Virginica" petlen = data[:,2] # first column petal length petwid = data[:,3] # second column petal width seplen = data[:,0] # third column sepal length sepwid = data[:,1] # fourth Column sepal width # to calculate the maximum of each variable petlenmax = numpy.amax(data[:,2]) petwidmax = numpy.amax(data[:,3]) seplenmax = numpy.amax(data[:,0]) sepwidmax = numpy.amax(data[:,1]) # to calculate the minimum of each variable petlenmin = numpy.amin(data[:,2]) petwidmin = numpy.amin(data[:,3]) seplenmin = numpy.amin(data[:,0]) sepwidmin = numpy.amin(data[:,1]) # To calculate the mean of each variable petlenmean = round(numpy.mean(data[:,2]),2) petwidmean = round(numpy.mean(data[:,3]),2) seplenmean = round(numpy.mean(data[:,0]),2) sepwidmean = round(numpy.mean(data[:,1]),2) # To calculate the standard deviation from the mean of each variable petlenstd = round(numpy.std(data[:,2]),3) petwidstd = round(numpy.std(data[:,3]),3) seplenstd = round(numpy.std(data[:,0]),3) sepwidstd = round(numpy.std(data[:,1]),3) # To identify the data of just the Setosa class of Iris setpetlen = data[1:50,2] setpetwid = data[1:50,3] setseplen = data[1:50,0] setsepwid = data[1:50,1] # To calculate the maximum of each variable in the Setosa class of Iris setpetlenmax = numpy.amax(data[1:50,2]) setpetwidmax = numpy.amax(data[1:50,3]) setseplenmax = numpy.amax(data[1:50,0]) setsepwidmax = numpy.amax(data[1:50,1]) # To calculate the minimum of each variable in the Setosa class of Iris setpetlenmin = numpy.amin(data[1:50,2]) setpetwidmin = numpy.amin(data[1:50,3]) setseplenmin = numpy.amin(data[1:50,0]) setsepwidmin = numpy.amin(data[1:50,1]) # To calculate the mean of each variable for the Setosa class of Iris setpetlenmean = numpy.mean(data[1:50,2]) setpetwidmean = numpy.mean(data[1:50,3]) setseplenmean = numpy.mean(data[1:50,0]) setsepwidmean = numpy.mean(data[1:50,1]) # To identify the data of just the Versicolor class of Iris verpetlen = data[51:100,2] verpetwid = data[51:100,3] verseplen = data[51:100,0] versepwid = data[51:100,1] # To calculate the maximum of each variable in the Versicolor class of Iris verpetlenmax = numpy.amax(data[51:100,2]) verpetwidmax = numpy.amax(data[51:100,3]) verseplenmax = numpy.amax(data[51:100,0]) versepwidmax = numpy.amax(data[51:100,1]) # To calculate the minimum of each variable in the Versicolor class of Iris verpetlenmin = numpy.amin(data[51:100,2]) verpetwidmin = numpy.amin(data[51:100,3]) verseplenmin = numpy.amin(data[51:100,0]) versepwidmin = numpy.amin(data[51:100,1]) # To calculate the mean of each variable for the Versicolor class of Iris verpetlenmean = numpy.mean(data[51:100,2]) verpetwidmean = numpy.mean(data[51:100,3]) verseplenmean = numpy.mean(data[51:100,0]) versepwidmean = numpy.mean(data[51:100,1]) # To identify the data of just the Virginica class of Iris virpetlen = data[101:150,2] virpetwid = data[101:150,3] virseplen = data[101:150,0] virsepwid = data[101:150,1] # To calculate the maximum of each variable in the Virginica class of Iris virpetlenmax = numpy.amax(data[101:150,2]) virpetwidmax = numpy.amax(data[101:150,3]) virseplenmax = numpy.amax(data[101:150,0]) virsepwidmax = numpy.amax(data[101:150,1]) # To calculate the minimum of each variable in the Virginica class of Iris virpetlenmin = numpy.amin(data[101:150,2]) virpetwidmin = numpy.amin(data[101:150,3]) virseplenmin = numpy.amin(data[101:150,0]) virsepwidmin = numpy.amin(data[101:150,1]) # To calculate the mean of each variable for the Virginica class of Iris virpetlenmean = numpy.mean(data[101:150,2]) virpetwidmean = numpy.mean(data[101:150,3]) virseplenmean = numpy.mean(data[101:150,0]) virsepwidmean = numpy.mean(data[101:150,1]) # To calculate the standard deviation from the mean for the Virginica class of Iris virpetlenstd = numpy.std(data[101:150,2]) virpetwidstd = numpy.std(data[101:150,3]) virseplenstd = numpy.std(data[101:150,0]) virsepwidstd = numpy.std(data[101:150,1]) if setpetlenmax > verpetlenmax and setpetlenmax > virpetlenmax: print ("The", set, "class has the highest maximum petal length with", setpetlenmax, "cm") elif verpetlenmax > setpetlenmax and verpetlenmax > virpetlenmax: print ("The", ver, "class has the highest maximum petal length with", verpetlenmax, "cm") else: print ("The", vir , "class has the highest maximum petal length with", virpetlenmax, "cm") if setpetlenmin < verpetlenmin and setpetlenmin < virpetlenmin: print ("The", set, "class has the lowest minimum petal length with", setpetlenmin, "cm") elif verpetlenmin < setpetlenmin and verpetlenmin < virpetlenmin: print ("The", ver, "class has the lowest minimum petal length with", verpetlenmin, "cm") else: print ("The", vir , "class has the lowest petal minimum length with", virpetlenmin, "cm") print ("The average petal length across all the classes is", petlenmean, "cm with a standard deviation of", petlenstd) if setpetwidmax > verpetwidmax and setpetwidmax > virpetwidmax: print ("The", set, "class has the highest maximum petal width with", setpetwidmax, "cm") elif verpetwidmax > setpetwidmax and verpetwidmax > virpetwidmax: print ("The", ver, "class has the highest maximum petal width with", verpetwidmax, "cm") else: print ("The", vir , "class has the highest maximum petal width with", virpetwidmax, "cm") if setpetwidmin < verpetwidmin and setpetwidmin < virpetwidmin: print ("The", set, "class has the lowest minimum petal width with", setpetwidmin, "cm") elif verpetwidmin < setpetwidmin and verpetwidmin < virpetwidmin: print ("The", ver, "class has the lowest minimum petal width with", verpetwidmin, "cm") else: print ("The", vir , "class has the lowest petal minimum width with", virpetwidmin, "cm") print ("The average petal width across all the classes is", petwidmean, "cm with a standard deviation of", petwidstd) if setseplenmax > verseplenmax and setseplenmax > virseplenmax: print ("The", set, "class has the highest maximum sepal length with", setseplenmax, "cm") elif verseplenmax > setseplenmax and verseplenmax > virseplenmax: print ("The", ver, "class has the highest maximum sepal length with", verseplenmax, "cm") else: print ("The", vir , "class has the highest maximum sepal length with", virseplenmax, "cm") if setseplenmin < verseplenmin and setseplenmin < virseplenmin: print ("The", set, "class has the lowest minimum sepal length with", setseplenmin, "cm") elif verseplenmin < setseplenmin and verseplenmin < virseplenmin: print ("The", ver, "class has the lowest minimum sepal length with", verseplenmin, "cm") else: print ("The", vir , "class has the lowest sepal minimum length with", virseplenmin, "cm") print ("The average sepal length across all the classes is", seplenmean, "cm with a standard deviation of", seplenstd) if setsepwidmax > versepwidmax and setsepwidmax > virsepwidmax: print ("The", set, "class has the highest maximum sepal width with", setsepwidmax, "cm") elif versepwidmax > setsepwidmax and versepwidmax > virsepwidmax: print ("The", ver, "class has the highest maximum sepal width with", versepwidmax, "cm") else: print ("The", vir , "class has the highest maximum sepal width with", virsepwidmax, "cm") if setsepwidmin < versepwidmin and setsepwidmin < virsepwidmin: print ("The", set, "class has the lowest minimum sepal width with", setsepwidmin, "cm") elif versepwidmin < setsepwidmin and versepwidmin < virsepwidmin: print ("The", ver, "class has the lowest minimum sepal width with", versepwidmin, "cm") else: print ("The", vir , "class has the lowest sepal minimum width with", virsepwidmin, "cm") print ("The average sepal width across all the classes is", sepwidmean, "cm with a standard deviation of", sepwidstd) pl.title("Petals") pl.xlabel("Petal Length cm") pl.ylabel("Petal Width cm") pl.scatter(setpetlen, setpetwid) pl.scatter(verpetlen, verpetwid) pl.scatter(virpetlen, virpetwid) pl.scatter(petlenmean, petwidmean) pl.legend(["Setosa", "Versicolor", "Virginica", "Overall Mean"]) pl.show() pl.title("Sepals") pl.xlabel("Sepal Length cm") pl.ylabel("Sepal Width cm") pl.scatter(setseplen, setsepwid) pl.scatter(verseplen, versepwid) pl.scatter(virseplen, virsepwid) pl.scatter(seplenmean,sepwidmean) pl.legend(["Setosa", "Versicolor", "Virginica", "Overall Mean"]) pl.show()
[ "matplotlib.pyplot.title", "matplotlib.pyplot.show", "numpy.amin", "numpy.std", "matplotlib.pyplot.scatter", "matplotlib.pyplot.legend", "numpy.genfromtxt", "numpy.amax", "numpy.mean", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel" ]
[((598, 646), 'numpy.genfromtxt', 'numpy.genfromtxt', (['"""data/iris.csv"""'], {'delimiter': '""","""'}), "('data/iris.csv', delimiter=',')\n", (614, 646), False, 'import numpy\n'), ((1124, 1146), 'numpy.amax', 'numpy.amax', (['data[:, 2]'], {}), '(data[:, 2])\n', (1134, 1146), False, 'import numpy\n'), ((1158, 1180), 'numpy.amax', 'numpy.amax', (['data[:, 3]'], {}), '(data[:, 3])\n', (1168, 1180), False, 'import numpy\n'), ((1192, 1214), 'numpy.amax', 'numpy.amax', (['data[:, 0]'], {}), '(data[:, 0])\n', (1202, 1214), False, 'import numpy\n'), ((1226, 1248), 'numpy.amax', 'numpy.amax', (['data[:, 1]'], {}), '(data[:, 1])\n', (1236, 1248), False, 'import numpy\n'), ((1305, 1327), 'numpy.amin', 'numpy.amin', (['data[:, 2]'], {}), '(data[:, 2])\n', (1315, 1327), False, 'import numpy\n'), ((1339, 1361), 'numpy.amin', 'numpy.amin', (['data[:, 3]'], {}), '(data[:, 3])\n', (1349, 1361), False, 'import numpy\n'), ((1373, 1395), 'numpy.amin', 'numpy.amin', (['data[:, 0]'], {}), '(data[:, 0])\n', (1383, 1395), False, 'import numpy\n'), ((1407, 1429), 'numpy.amin', 'numpy.amin', (['data[:, 1]'], {}), '(data[:, 1])\n', (1417, 1429), False, 'import numpy\n'), ((2131, 2156), 'numpy.amax', 'numpy.amax', (['data[1:50, 2]'], {}), '(data[1:50, 2])\n', (2141, 2156), False, 'import numpy\n'), ((2171, 2196), 'numpy.amax', 'numpy.amax', (['data[1:50, 3]'], {}), '(data[1:50, 3])\n', (2181, 2196), False, 'import numpy\n'), ((2211, 2236), 'numpy.amax', 'numpy.amax', (['data[1:50, 0]'], {}), '(data[1:50, 0])\n', (2221, 2236), False, 'import numpy\n'), ((2251, 2276), 'numpy.amax', 'numpy.amax', (['data[1:50, 1]'], {}), '(data[1:50, 1])\n', (2261, 2276), False, 'import numpy\n'), ((2364, 2389), 'numpy.amin', 'numpy.amin', (['data[1:50, 2]'], {}), '(data[1:50, 2])\n', (2374, 2389), False, 'import numpy\n'), ((2404, 2429), 'numpy.amin', 'numpy.amin', (['data[1:50, 3]'], {}), '(data[1:50, 3])\n', (2414, 2429), False, 'import numpy\n'), ((2444, 2469), 'numpy.amin', 'numpy.amin', (['data[1:50, 0]'], {}), '(data[1:50, 0])\n', (2454, 2469), False, 'import numpy\n'), ((2484, 2509), 'numpy.amin', 'numpy.amin', (['data[1:50, 1]'], {}), '(data[1:50, 1])\n', (2494, 2509), False, 'import numpy\n'), ((2596, 2621), 'numpy.mean', 'numpy.mean', (['data[1:50, 2]'], {}), '(data[1:50, 2])\n', (2606, 2621), False, 'import numpy\n'), ((2637, 2662), 'numpy.mean', 'numpy.mean', (['data[1:50, 3]'], {}), '(data[1:50, 3])\n', (2647, 2662), False, 'import numpy\n'), ((2678, 2703), 'numpy.mean', 'numpy.mean', (['data[1:50, 0]'], {}), '(data[1:50, 0])\n', (2688, 2703), False, 'import numpy\n'), ((2719, 2744), 'numpy.mean', 'numpy.mean', (['data[1:50, 1]'], {}), '(data[1:50, 1])\n', (2729, 2744), False, 'import numpy\n'), ((3006, 3033), 'numpy.amax', 'numpy.amax', (['data[51:100, 2]'], {}), '(data[51:100, 2])\n', (3016, 3033), False, 'import numpy\n'), ((3048, 3075), 'numpy.amax', 'numpy.amax', (['data[51:100, 3]'], {}), '(data[51:100, 3])\n', (3058, 3075), False, 'import numpy\n'), ((3090, 3117), 'numpy.amax', 'numpy.amax', (['data[51:100, 0]'], {}), '(data[51:100, 0])\n', (3100, 3117), False, 'import numpy\n'), ((3132, 3159), 'numpy.amax', 'numpy.amax', (['data[51:100, 1]'], {}), '(data[51:100, 1])\n', (3142, 3159), False, 'import numpy\n'), ((3251, 3278), 'numpy.amin', 'numpy.amin', (['data[51:100, 2]'], {}), '(data[51:100, 2])\n', (3261, 3278), False, 'import numpy\n'), ((3293, 3320), 'numpy.amin', 'numpy.amin', (['data[51:100, 3]'], {}), '(data[51:100, 3])\n', (3303, 3320), False, 'import numpy\n'), ((3335, 3362), 'numpy.amin', 'numpy.amin', (['data[51:100, 0]'], {}), '(data[51:100, 0])\n', (3345, 3362), False, 'import numpy\n'), ((3377, 3404), 'numpy.amin', 'numpy.amin', (['data[51:100, 1]'], {}), '(data[51:100, 1])\n', (3387, 3404), False, 'import numpy\n'), ((3495, 3522), 'numpy.mean', 'numpy.mean', (['data[51:100, 2]'], {}), '(data[51:100, 2])\n', (3505, 3522), False, 'import numpy\n'), ((3538, 3565), 'numpy.mean', 'numpy.mean', (['data[51:100, 3]'], {}), '(data[51:100, 3])\n', (3548, 3565), False, 'import numpy\n'), ((3581, 3608), 'numpy.mean', 'numpy.mean', (['data[51:100, 0]'], {}), '(data[51:100, 0])\n', (3591, 3608), False, 'import numpy\n'), ((3624, 3651), 'numpy.mean', 'numpy.mean', (['data[51:100, 1]'], {}), '(data[51:100, 1])\n', (3634, 3651), False, 'import numpy\n'), ((3914, 3942), 'numpy.amax', 'numpy.amax', (['data[101:150, 2]'], {}), '(data[101:150, 2])\n', (3924, 3942), False, 'import numpy\n'), ((3957, 3985), 'numpy.amax', 'numpy.amax', (['data[101:150, 3]'], {}), '(data[101:150, 3])\n', (3967, 3985), False, 'import numpy\n'), ((4000, 4028), 'numpy.amax', 'numpy.amax', (['data[101:150, 0]'], {}), '(data[101:150, 0])\n', (4010, 4028), False, 'import numpy\n'), ((4043, 4071), 'numpy.amax', 'numpy.amax', (['data[101:150, 1]'], {}), '(data[101:150, 1])\n', (4053, 4071), False, 'import numpy\n'), ((4162, 4190), 'numpy.amin', 'numpy.amin', (['data[101:150, 2]'], {}), '(data[101:150, 2])\n', (4172, 4190), False, 'import numpy\n'), ((4205, 4233), 'numpy.amin', 'numpy.amin', (['data[101:150, 3]'], {}), '(data[101:150, 3])\n', (4215, 4233), False, 'import numpy\n'), ((4248, 4276), 'numpy.amin', 'numpy.amin', (['data[101:150, 0]'], {}), '(data[101:150, 0])\n', (4258, 4276), False, 'import numpy\n'), ((4291, 4319), 'numpy.amin', 'numpy.amin', (['data[101:150, 1]'], {}), '(data[101:150, 1])\n', (4301, 4319), False, 'import numpy\n'), ((4409, 4437), 'numpy.mean', 'numpy.mean', (['data[101:150, 2]'], {}), '(data[101:150, 2])\n', (4419, 4437), False, 'import numpy\n'), ((4453, 4481), 'numpy.mean', 'numpy.mean', (['data[101:150, 3]'], {}), '(data[101:150, 3])\n', (4463, 4481), False, 'import numpy\n'), ((4497, 4525), 'numpy.mean', 'numpy.mean', (['data[101:150, 0]'], {}), '(data[101:150, 0])\n', (4507, 4525), False, 'import numpy\n'), ((4541, 4569), 'numpy.mean', 'numpy.mean', (['data[101:150, 1]'], {}), '(data[101:150, 1])\n', (4551, 4569), False, 'import numpy\n'), ((4669, 4696), 'numpy.std', 'numpy.std', (['data[101:150, 2]'], {}), '(data[101:150, 2])\n', (4678, 4696), False, 'import numpy\n'), ((4711, 4738), 'numpy.std', 'numpy.std', (['data[101:150, 3]'], {}), '(data[101:150, 3])\n', (4720, 4738), False, 'import numpy\n'), ((4753, 4780), 'numpy.std', 'numpy.std', (['data[101:150, 0]'], {}), '(data[101:150, 0])\n', (4762, 4780), False, 'import numpy\n'), ((4795, 4822), 'numpy.std', 'numpy.std', (['data[101:150, 1]'], {}), '(data[101:150, 1])\n', (4804, 4822), False, 'import numpy\n'), ((8638, 8656), 'matplotlib.pyplot.title', 'pl.title', (['"""Petals"""'], {}), "('Petals')\n", (8646, 8656), True, 'import matplotlib.pyplot as pl\n'), ((8657, 8685), 'matplotlib.pyplot.xlabel', 'pl.xlabel', (['"""Petal Length cm"""'], {}), "('Petal Length cm')\n", (8666, 8685), True, 'import matplotlib.pyplot as pl\n'), ((8686, 8713), 'matplotlib.pyplot.ylabel', 'pl.ylabel', (['"""Petal Width cm"""'], {}), "('Petal Width cm')\n", (8695, 8713), True, 'import matplotlib.pyplot as pl\n'), ((8714, 8746), 'matplotlib.pyplot.scatter', 'pl.scatter', (['setpetlen', 'setpetwid'], {}), '(setpetlen, setpetwid)\n', (8724, 8746), True, 'import matplotlib.pyplot as pl\n'), ((8747, 8779), 'matplotlib.pyplot.scatter', 'pl.scatter', (['verpetlen', 'verpetwid'], {}), '(verpetlen, verpetwid)\n', (8757, 8779), True, 'import matplotlib.pyplot as pl\n'), ((8780, 8812), 'matplotlib.pyplot.scatter', 'pl.scatter', (['virpetlen', 'virpetwid'], {}), '(virpetlen, virpetwid)\n', (8790, 8812), True, 'import matplotlib.pyplot as pl\n'), ((8813, 8847), 'matplotlib.pyplot.scatter', 'pl.scatter', (['petlenmean', 'petwidmean'], {}), '(petlenmean, petwidmean)\n', (8823, 8847), True, 'import matplotlib.pyplot as pl\n'), ((8848, 8912), 'matplotlib.pyplot.legend', 'pl.legend', (["['Setosa', 'Versicolor', 'Virginica', 'Overall Mean']"], {}), "(['Setosa', 'Versicolor', 'Virginica', 'Overall Mean'])\n", (8857, 8912), True, 'import matplotlib.pyplot as pl\n'), ((8913, 8922), 'matplotlib.pyplot.show', 'pl.show', ([], {}), '()\n', (8920, 8922), True, 'import matplotlib.pyplot as pl\n'), ((8927, 8945), 'matplotlib.pyplot.title', 'pl.title', (['"""Sepals"""'], {}), "('Sepals')\n", (8935, 8945), True, 'import matplotlib.pyplot as pl\n'), ((8946, 8974), 'matplotlib.pyplot.xlabel', 'pl.xlabel', (['"""Sepal Length cm"""'], {}), "('Sepal Length cm')\n", (8955, 8974), True, 'import matplotlib.pyplot as pl\n'), ((8975, 9002), 'matplotlib.pyplot.ylabel', 'pl.ylabel', (['"""Sepal Width cm"""'], {}), "('Sepal Width cm')\n", (8984, 9002), True, 'import matplotlib.pyplot as pl\n'), ((9003, 9035), 'matplotlib.pyplot.scatter', 'pl.scatter', (['setseplen', 'setsepwid'], {}), '(setseplen, setsepwid)\n', (9013, 9035), True, 'import matplotlib.pyplot as pl\n'), ((9036, 9068), 'matplotlib.pyplot.scatter', 'pl.scatter', (['verseplen', 'versepwid'], {}), '(verseplen, versepwid)\n', (9046, 9068), True, 'import matplotlib.pyplot as pl\n'), ((9069, 9101), 'matplotlib.pyplot.scatter', 'pl.scatter', (['virseplen', 'virsepwid'], {}), '(virseplen, virsepwid)\n', (9079, 9101), True, 'import matplotlib.pyplot as pl\n'), ((9102, 9136), 'matplotlib.pyplot.scatter', 'pl.scatter', (['seplenmean', 'sepwidmean'], {}), '(seplenmean, sepwidmean)\n', (9112, 9136), True, 'import matplotlib.pyplot as pl\n'), ((9136, 9200), 'matplotlib.pyplot.legend', 'pl.legend', (["['Setosa', 'Versicolor', 'Virginica', 'Overall Mean']"], {}), "(['Setosa', 'Versicolor', 'Virginica', 'Overall Mean'])\n", (9145, 9200), True, 'import matplotlib.pyplot as pl\n'), ((9201, 9210), 'matplotlib.pyplot.show', 'pl.show', ([], {}), '()\n', (9208, 9210), True, 'import matplotlib.pyplot as pl\n'), ((1490, 1512), 'numpy.mean', 'numpy.mean', (['data[:, 2]'], {}), '(data[:, 2])\n', (1500, 1512), False, 'import numpy\n'), ((1534, 1556), 'numpy.mean', 'numpy.mean', (['data[:, 3]'], {}), '(data[:, 3])\n', (1544, 1556), False, 'import numpy\n'), ((1578, 1600), 'numpy.mean', 'numpy.mean', (['data[:, 0]'], {}), '(data[:, 0])\n', (1588, 1600), False, 'import numpy\n'), ((1622, 1644), 'numpy.mean', 'numpy.mean', (['data[:, 1]'], {}), '(data[:, 1])\n', (1632, 1644), False, 'import numpy\n'), ((1735, 1756), 'numpy.std', 'numpy.std', (['data[:, 2]'], {}), '(data[:, 2])\n', (1744, 1756), False, 'import numpy\n'), ((1777, 1798), 'numpy.std', 'numpy.std', (['data[:, 3]'], {}), '(data[:, 3])\n', (1786, 1798), False, 'import numpy\n'), ((1819, 1840), 'numpy.std', 'numpy.std', (['data[:, 0]'], {}), '(data[:, 0])\n', (1828, 1840), False, 'import numpy\n'), ((1861, 1882), 'numpy.std', 'numpy.std', (['data[:, 1]'], {}), '(data[:, 1])\n', (1870, 1882), False, 'import numpy\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2019/3/20 16:25 # @Author : <NAME> # @Site : # @File : memnet.py # @Software: PyCharm # @Github : https://github.com/stevehamwu import pickle import numpy as np import torch import torch.nn as nn import torch.nn.functional as F def position_encoding(sentence_size, embedding_size): encoding = np.ones((embedding_size, sentence_size), dtype=np.float32) ls = sentence_size + 1 le = embedding_size + 1 for i in range(1, le): for j in range(1, ls): encoding[i - 1, j - 1] = (i - (le - 1) / 2) * (j - (ls - 1) / 2) encoding = 1 + 4 * encoding / embedding_size / sentence_size return np.transpose(encoding) class MemN2N(nn.Module): def __init__(self, batch_size, vocab_size, embedding_dim, sentence_size, memory_size, hops, num_classes, dropout=0.5, fix_embed=True, name='MemN2N'): super(MemN2N, self).__init__() self.batch_size = batch_size self.embedding_dim = embedding_dim self.sentence_size = sentence_size self.memory_size = memory_size self.hops = hops self.num_classes = num_classes self.fix_embed = fix_embed self.name = name self.encoding = torch.from_numpy(position_encoding(1, sentence_size * embedding_dim)) self.Embedding = nn.Embedding(vocab_size, embedding_dim) self.fc = nn.Linear(3 * embedding_dim, num_classes) self.dropout = nn.Dropout(dropout) def init_weights(self, embeddings): if embeddings is not None: self.Embedding.weight.data.copy_(embeddings) self.Embedding.weight.requires_grad = not self.fix_embed def set_device(self, device): self.encoding = self.encoding.to(device) def forward(self, stories, queries): q_emb0 = self.Embedding(queries) q_emb = q_emb0.view(-1, 1, 3 * self.embedding_dim) u_0 = torch.sum(q_emb * self.encoding, 1) u = [u_0] for i in range(self.hops): m_emb0 = self.Embedding(stories) m_emb = m_emb0.view(-1, self.memory_size, 1, 3 * self.embedding_dim) m = torch.sum(m_emb * self.encoding, -2) u_temp = u[-1].unsqueeze(-1).transpose(-2, -1) dotted = torch.sum(m * u_temp, -1) probs = F.softmax(dotted, -1) probs_temp = probs.unsqueeze(-1).transpose(-2, -1) c_emb0 = self.Embedding(stories) c_emb = c_emb0.view(-1, self.memory_size, 1, 3 * self.embedding_dim) c_temp = torch.sum(c_emb * self.encoding, -2) c = c_temp.transpose(-2, -1) o_k = torch.sum(c * probs_temp, -1) u_k = u[-1] + o_k u.append(u_k) outputs = self.dropout(self.fc(u_k)) return outputs def gradient_noise_and_clip(self, parameters, device, noise_stddev=1e-3, max_clip=40.0): parameters = list(filter(lambda p: p.grad is not None, parameters)) norm = nn.utils.clip_grad_norm_(parameters, max_clip) for p in parameters: noise = torch.randn(p.size()) * noise_stddev noise = noise.to(device) p.grad.data.add_(noise) return norm # class MemN2N(nn.Module): # def __init__(self, # batch_size, # vocab_size, # embedding_dim, # sentence_size, # memory_size, # hops, # num_classes, # dropout=0.5, # fix_embed=True, # name='MemN2N'): # super(MemN2N, self).__init__() # self.batch_size = batch_size # self.embedding_dim = embedding_dim # self.sentence_size = sentence_size # self.memory_size = memory_size # self.hops = hops # self.num_classes = num_classes # self.fix_embed = fix_embed # self.name = name # # self.encoding = torch.from_numpy(position_encoding(1, sentence_size * embedding_dim)) # self.Embedding = nn.Embedding(vocab_size, embedding_dim, padding_idx=0) # # self.fc = nn.Linear(3 * embedding_dim, num_classes) # self.dropout = nn.Dropout(dropout) # # self.fc = nn.Sequential( # # nn.Linear(2 * self.sentence_rnn_size, linear_hidden_dim), # # nn.ReLU(inplace=True), # # nn.Dropout(dropout), # # nn.Linear(linear_hidden_dim, num_classes) # # ) # # def init_weights(self, embeddings): # if embeddings is not None: # self.Embedding = self.Embedding.from_pretrained( # embeddings, freeze=self.fix_embed) # # def set_device(self, device): # self.encoding = self.encoding.to(device) # # def forward(self, stories, queries): # q_emb0 = self.Embedding(queries) # q_emb = q_emb0.view(-1, 1, 3 * self.embedding_dim) # u_0 = torch.sum(q_emb * self.encoding, 1, keepdim=True).expand(q_emb.size(0), stories.size(1), q_emb.size(-1)) # u = [u_0] # # for i in range(self.hops): # m_emb0 = self.Embedding(stories) # m_emb = m_emb0.view(self.batch_size, -1, self.memory_size, 1, 3 * self.embedding_dim) # m = torch.sum(m_emb * self.encoding, -2) # # u_temp = u[-1].unsqueeze(-1).transpose(-2, -1) # dotted = torch.sum(m * u_temp, -1) # probs = F.softmax(dotted, -1) # probs_temp = probs.unsqueeze(-1).transpose(-2, -1) # # c_emb0 = self.Embedding(stories) # c_emb = c_emb0.view(self.batch_size, -1, self.memory_size, 1, 3 * self.embedding_dim) # c_temp = torch.sum(c_emb * self.encoding, -2) # c = c_temp.transpose(-2, -1) # o_k = torch.sum(c * probs_temp, -1) # u_k = u[-1] + o_k # u.append(u_k) # # outputs = self.fc(u_k) # return outputs
[ "torch.nn.Dropout", "torch.nn.utils.clip_grad_norm_", "torch.nn.Embedding", "numpy.transpose", "numpy.ones", "torch.nn.functional.softmax", "torch.nn.Linear", "torch.sum" ]
[((367, 425), 'numpy.ones', 'np.ones', (['(embedding_size, sentence_size)'], {'dtype': 'np.float32'}), '((embedding_size, sentence_size), dtype=np.float32)\n', (374, 425), True, 'import numpy as np\n'), ((692, 714), 'numpy.transpose', 'np.transpose', (['encoding'], {}), '(encoding)\n', (704, 714), True, 'import numpy as np\n'), ((1511, 1550), 'torch.nn.Embedding', 'nn.Embedding', (['vocab_size', 'embedding_dim'], {}), '(vocab_size, embedding_dim)\n', (1523, 1550), True, 'import torch.nn as nn\n'), ((1570, 1611), 'torch.nn.Linear', 'nn.Linear', (['(3 * embedding_dim)', 'num_classes'], {}), '(3 * embedding_dim, num_classes)\n', (1579, 1611), True, 'import torch.nn as nn\n'), ((1635, 1654), 'torch.nn.Dropout', 'nn.Dropout', (['dropout'], {}), '(dropout)\n', (1645, 1654), True, 'import torch.nn as nn\n'), ((2097, 2132), 'torch.sum', 'torch.sum', (['(q_emb * self.encoding)', '(1)'], {}), '(q_emb * self.encoding, 1)\n', (2106, 2132), False, 'import torch\n'), ((3196, 3242), 'torch.nn.utils.clip_grad_norm_', 'nn.utils.clip_grad_norm_', (['parameters', 'max_clip'], {}), '(parameters, max_clip)\n', (3220, 3242), True, 'import torch.nn as nn\n'), ((2329, 2365), 'torch.sum', 'torch.sum', (['(m_emb * self.encoding)', '(-2)'], {}), '(m_emb * self.encoding, -2)\n', (2338, 2365), False, 'import torch\n'), ((2447, 2472), 'torch.sum', 'torch.sum', (['(m * u_temp)', '(-1)'], {}), '(m * u_temp, -1)\n', (2456, 2472), False, 'import torch\n'), ((2493, 2514), 'torch.nn.functional.softmax', 'F.softmax', (['dotted', '(-1)'], {}), '(dotted, -1)\n', (2502, 2514), True, 'import torch.nn.functional as F\n'), ((2726, 2762), 'torch.sum', 'torch.sum', (['(c_emb * self.encoding)', '(-2)'], {}), '(c_emb * self.encoding, -2)\n', (2735, 2762), False, 'import torch\n'), ((2823, 2852), 'torch.sum', 'torch.sum', (['(c * probs_temp)', '(-1)'], {}), '(c * probs_temp, -1)\n', (2832, 2852), False, 'import torch\n')]
#encoding:UTF-8 import gym import matplotlib import numpy as np import sys from collections import defaultdict if "../" not in sys.path: sys.path.append("../") from lib.envs.blackjack import BlackjackEnv from lib import plotting matplotlib.style.use('ggplot') env = BlackjackEnv() def make_epsilon_greedy_policy(Q, epsilon, nA): """ Creates an epsilon-greedy policy based on a given Q-function and epsilon. Args: Q: A dictionary that maps from state -> action-values. Each value is a numpy array of length nA (see below) epsilon: The probability to select a random action . float between 0 and 1. nA: Number of actions in the environment. Returns: A function that takes the observation as an argument and returns the probabilities for each action in the form of a numpy array of length nA. """ def policy_fn(observation): A = np.ones(nA, dtype=float) * epsilon / nA best_action = np.argmax(Q[observation]) A[best_action] += (1.0 - epsilon) return A return policy_fn def mc_control_epsilon_greedy(env, num_episodes, discount_factor=1.0, epsilon=0.1): """ Monte Carlo Control using Epsilon-Greedy policies. Finds an optimal epsilon-greedy policy. Args: env: OpenAI gym environment. num_episodes: Number of episodes to sample. discount_factor: Gamma discount factor. epsilon: Chance the sample a random action. Float betwen 0 and 1. Returns: A tuple (Q, policy). Q is a dictionary mapping state -> action values. policy is a function that takes an observation as an argument and returns action probabilities """ # Keeps track of sum and count of returns for each state # to calculate an average. We could use an array to save all # returns (like in the book) but that's memory inefficient. returns_sum = defaultdict(float) returns_count = defaultdict(float) # The final action-value function. # A nested dictionary that maps state -> (action -> action-value). Q = defaultdict(lambda: np.zeros(env.action_space.n)) # The policy we're following policy = make_epsilon_greedy_policy(Q, epsilon, env.action_space.n) for i_episode in range(1, num_episodes + 1): if i_episode % 1000 == 0: print("\rEpisode {}/{}.".format(i_episode, num_episodes)) sys.stdout.flush() episode = [] state = env.reset() for t in range(100): probs = policy(state) action = np.random.choice(np.arange(len(probs)), p=probs) next_state, reward, done, _ = env.step(action) episode.append((state, action, reward)) if done: break state = next_state sa_in_episode = set([(tuple(x[0]), x[1]) for x in episode]) for state, action in sa_in_episode: sa_pair = (state, action) first_occurence_idx = next(i for i,x in enumerate(episode) if x[0] == state and x[1] == action) G = sum([x[2]*(discount_factor**i) for i,x in enumerate(episode[first_occurence_idx:])]) returns_sum[sa_pair] += G returns_count[sa_pair] += 1.0 Q[state][action] = returns_sum[sa_pair] / returns_count[sa_pair] return Q, policy Q, policy = mc_control_epsilon_greedy(env, num_episodes=500000, epsilon=0.1) # For plotting: Create value function from action-value function # by picking the best action at each state V = defaultdict(float) for state, actions in Q.items(): action_value = np.max(actions) V[state] = action_value plotting.plot_value_function(V, title="Optimal Value Function")
[ "sys.path.append", "lib.plotting.plot_value_function", "matplotlib.style.use", "numpy.argmax", "numpy.zeros", "numpy.ones", "collections.defaultdict", "numpy.max", "sys.stdout.flush", "lib.envs.blackjack.BlackjackEnv" ]
[((237, 267), 'matplotlib.style.use', 'matplotlib.style.use', (['"""ggplot"""'], {}), "('ggplot')\n", (257, 267), False, 'import matplotlib\n'), ((275, 289), 'lib.envs.blackjack.BlackjackEnv', 'BlackjackEnv', ([], {}), '()\n', (287, 289), False, 'from lib.envs.blackjack import BlackjackEnv\n'), ((3649, 3667), 'collections.defaultdict', 'defaultdict', (['float'], {}), '(float)\n', (3660, 3667), False, 'from collections import defaultdict\n'), ((3764, 3827), 'lib.plotting.plot_value_function', 'plotting.plot_value_function', (['V'], {'title': '"""Optimal Value Function"""'}), "(V, title='Optimal Value Function')\n", (3792, 3827), False, 'from lib import plotting\n'), ((143, 165), 'sys.path.append', 'sys.path.append', (['"""../"""'], {}), "('../')\n", (158, 165), False, 'import sys\n'), ((1958, 1976), 'collections.defaultdict', 'defaultdict', (['float'], {}), '(float)\n', (1969, 1976), False, 'from collections import defaultdict\n'), ((1997, 2015), 'collections.defaultdict', 'defaultdict', (['float'], {}), '(float)\n', (2008, 2015), False, 'from collections import defaultdict\n'), ((3720, 3735), 'numpy.max', 'np.max', (['actions'], {}), '(actions)\n', (3726, 3735), True, 'import numpy as np\n'), ((997, 1022), 'numpy.argmax', 'np.argmax', (['Q[observation]'], {}), '(Q[observation])\n', (1006, 1022), True, 'import numpy as np\n'), ((2159, 2187), 'numpy.zeros', 'np.zeros', (['env.action_space.n'], {}), '(env.action_space.n)\n', (2167, 2187), True, 'import numpy as np\n'), ((2469, 2487), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (2485, 2487), False, 'import sys\n'), ((935, 959), 'numpy.ones', 'np.ones', (['nA'], {'dtype': 'float'}), '(nA, dtype=float)\n', (942, 959), True, 'import numpy as np\n')]
import sys import getopt import numpy as np import matplotlib.pyplot as plt import scipy def usage(): print("""Usage: -o, --output [output_file_name] Output file name (Required) -h, --help Print this message (Optional) """) def init_params(): ''' Initializes the parameters for the log and plot directory. ''' log_file_directory = 'logs' plots_directory = 'plots' def process_args(): ''' Reads the arguments from the command line. The acceptable arguments are -h and -o. Processes them as required. ''' print("Processing arguments ...") try: opts, args = getopt.getopt(sys.argv[1:], "ho:", ["help", "output="]) except getopt.GetoptError as err: print(str(err)) usage() sys.exit(2) global output_file_name, scenario_name for opt, arg in opts: if opt in ("-h", "--help"): usage() sys.exit() elif opt in ("-o", "--output"): output_file_name = arg try: output_file_name except: print("Error: Output file name not defined") usage() sys.exit(2) else: # output_file_name = log_file_directory + "/" + output_file_name output_file_name_split = output_file_name.split('_') scenario_name = "" for k,n in enumerate(output_file_name_split[1:]): scenario_name += n if k != len(output_file_name_split[1:]) -1: scenario_name += '_' print("---Output File Name: " + output_file_name) print("Done processing argument!") print("") def get_complex_output(): """ Reads from a file at output_file_name as a complex 64 bit array. Then reshapes this into a column vector and returns. """ print("Getting output waveform...") complex_output= np.fromfile(output_file_name, dtype = 'complex64').reshape(-1,1) print("---Length: " + str(len(complex_output))) print("Done getting output waveform!") print("") return complex_output def process_output(complex_output): ''' Reads the complex output vector. Using a rolling window of window_length, tries to figure out the windowing for when we have silence (and ambient noise) and when there is signal received. Based on this, estimates the SNR for the given timestep, and produces an array of tuples, each of the type, (timestep, SNR) ''' t = np.arange(0, len(complex_output)) power = np.abs(complex_output) plt.plot(t, power) plt.show() def main(): init_params() process_args() complex_output = get_complex_output() # plt.plot(complex_output[300000:400000]) # plt.show() process_output(complex_output) if __name__ == '__main__': main()
[ "numpy.abs", "getopt.getopt", "matplotlib.pyplot.plot", "matplotlib.pyplot.show", "numpy.fromfile", "sys.exit" ]
[((2385, 2407), 'numpy.abs', 'np.abs', (['complex_output'], {}), '(complex_output)\n', (2391, 2407), True, 'import numpy as np\n'), ((2411, 2429), 'matplotlib.pyplot.plot', 'plt.plot', (['t', 'power'], {}), '(t, power)\n', (2419, 2429), True, 'import matplotlib.pyplot as plt\n'), ((2432, 2442), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2440, 2442), True, 'import matplotlib.pyplot as plt\n'), ((639, 694), 'getopt.getopt', 'getopt.getopt', (['sys.argv[1:]', '"""ho:"""', "['help', 'output=']"], {}), "(sys.argv[1:], 'ho:', ['help', 'output='])\n", (652, 694), False, 'import getopt\n'), ((767, 778), 'sys.exit', 'sys.exit', (['(2)'], {}), '(2)\n', (775, 778), False, 'import sys\n'), ((907, 917), 'sys.exit', 'sys.exit', ([], {}), '()\n', (915, 917), False, 'import sys\n'), ((1100, 1111), 'sys.exit', 'sys.exit', (['(2)'], {}), '(2)\n', (1108, 1111), False, 'import sys\n'), ((1769, 1817), 'numpy.fromfile', 'np.fromfile', (['output_file_name'], {'dtype': '"""complex64"""'}), "(output_file_name, dtype='complex64')\n", (1780, 1817), True, 'import numpy as np\n')]
import pandas as pd import talib import numpy as np import os path = os.getcwd()+'\\' # 读取数据 Data = pd.read_table(path+'res\\999999.txt', delim_whitespace=True, encoding='gbk') Data = Data[:-1] Data.columns = ['time', 'openp', 'highp', 'lowp', 'closep', 'volume', 'amount'] # 计算指标,汇总到indicators里 def myMACD(price, fastperiod=12, slowperiod=26, signalperiod=9): ewma12 = pd.ewma(price, span=fastperiod) ewma26 = pd.ewma(price, span=slowperiod) dif = ewma12 - ewma26 dea = pd.ewma(dif, span=signalperiod) bar = (dif - dea) # 有些地方的bar = (dif-dea)*2,但是talib中MACD的计算是bar = (dif-dea)*1 return dif, dea, bar #添加数据标签 def getLabel(x): if x == 0: return 0 else: return int(x/abs(x)) label = list(map(getLabel,np.diff(Data['closep']))) label = [0]+label MACD, signal, hist = talib.MACD(Data['closep'].values, fastperiod=12, slowperiod=26, signalperiod=9) DIF, DEA, BAR = myMACD(Data['closep'].values, fastperiod=12, slowperiod=26, signalperiod=9) EMA5 = talib.EMA(Data['closep'].values, timeperiod=5) K, D = talib.STOCH(Data['highp'].values, Data['lowp'].values, Data['closep'].values, fastk_period=14, slowk_period=3, slowk_matype=0, slowd_period=3, slowd_matype=0) RSI = talib.RSI(Data['closep'].values, timeperiod=14) indicators = np.column_stack((MACD, DIF, DEA, EMA5, K, D, RSI,label))[35:] np.savetxt(path+'res\\indicators.txt',indicators,delimiter=',',fmt='%.3f')
[ "talib.MACD", "talib.EMA", "os.getcwd", "pandas.ewma", "numpy.savetxt", "talib.STOCH", "numpy.diff", "talib.RSI", "numpy.column_stack", "pandas.read_table" ]
[((102, 180), 'pandas.read_table', 'pd.read_table', (["(path + 'res\\\\999999.txt')"], {'delim_whitespace': '(True)', 'encoding': '"""gbk"""'}), "(path + 'res\\\\999999.txt', delim_whitespace=True, encoding='gbk')\n", (115, 180), True, 'import pandas as pd\n'), ((820, 899), 'talib.MACD', 'talib.MACD', (["Data['closep'].values"], {'fastperiod': '(12)', 'slowperiod': '(26)', 'signalperiod': '(9)'}), "(Data['closep'].values, fastperiod=12, slowperiod=26, signalperiod=9)\n", (830, 899), False, 'import talib\n'), ((999, 1045), 'talib.EMA', 'talib.EMA', (["Data['closep'].values"], {'timeperiod': '(5)'}), "(Data['closep'].values, timeperiod=5)\n", (1008, 1045), False, 'import talib\n'), ((1053, 1220), 'talib.STOCH', 'talib.STOCH', (["Data['highp'].values", "Data['lowp'].values", "Data['closep'].values"], {'fastk_period': '(14)', 'slowk_period': '(3)', 'slowk_matype': '(0)', 'slowd_period': '(3)', 'slowd_matype': '(0)'}), "(Data['highp'].values, Data['lowp'].values, Data['closep'].\n values, fastk_period=14, slowk_period=3, slowk_matype=0, slowd_period=3,\n slowd_matype=0)\n", (1064, 1220), False, 'import talib\n'), ((1256, 1303), 'talib.RSI', 'talib.RSI', (["Data['closep'].values"], {'timeperiod': '(14)'}), "(Data['closep'].values, timeperiod=14)\n", (1265, 1303), False, 'import talib\n'), ((1380, 1459), 'numpy.savetxt', 'np.savetxt', (["(path + 'res\\\\indicators.txt')", 'indicators'], {'delimiter': '""","""', 'fmt': '"""%.3f"""'}), "(path + 'res\\\\indicators.txt', indicators, delimiter=',', fmt='%.3f')\n", (1390, 1459), True, 'import numpy as np\n'), ((70, 81), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (79, 81), False, 'import os\n'), ((378, 409), 'pandas.ewma', 'pd.ewma', (['price'], {'span': 'fastperiod'}), '(price, span=fastperiod)\n', (385, 409), True, 'import pandas as pd\n'), ((423, 454), 'pandas.ewma', 'pd.ewma', (['price'], {'span': 'slowperiod'}), '(price, span=slowperiod)\n', (430, 454), True, 'import pandas as pd\n'), ((491, 522), 'pandas.ewma', 'pd.ewma', (['dif'], {'span': 'signalperiod'}), '(dif, span=signalperiod)\n', (498, 522), True, 'import pandas as pd\n'), ((1317, 1374), 'numpy.column_stack', 'np.column_stack', (['(MACD, DIF, DEA, EMA5, K, D, RSI, label)'], {}), '((MACD, DIF, DEA, EMA5, K, D, RSI, label))\n', (1332, 1374), True, 'import numpy as np\n'), ((754, 777), 'numpy.diff', 'np.diff', (["Data['closep']"], {}), "(Data['closep'])\n", (761, 777), True, 'import numpy as np\n')]
# torch import hydra.utils import torch # built-in import copy import os import datetime import time import numpy as np import math # logging import wandb # project import probspec_routines as ps_routines from tester import test import ckconv from torchmetrics import Accuracy import antialiasing from optim import construct_optimizer, construct_scheduler, CLASSES_DATASET # typing from typing import Dict from omegaconf import OmegaConf def save_to_wandb( model: torch.nn.Module, optimizer: torch.optim.Optimizer, lr_scheduler, cfg: OmegaConf, name: str = None, epoch: int = None, ): filename = f"{name}.pt" if epoch is not None: filename = "checkpoint.pt" path = os.path.join(wandb.run.dir, filename) torch.save( { "model": model.module.state_dict(), "optimizer": optimizer.state_dict(), "lr_scheduler": lr_scheduler.state_dict(), "epoch": epoch, }, path, ) # Call wandb to save the object, syncing it directly wandb.save(path) def train( model: torch.nn.Module, dataloaders: Dict[str, torch.utils.data.DataLoader], cfg: OmegaConf, epoch_start: int = 0, ): criterion = { "AddProblem": torch.nn.functional.mse_loss, "CopyMemory": torch.nn.CrossEntropyLoss, "MNIST": torch.nn.CrossEntropyLoss, "sMNIST": torch.nn.CrossEntropyLoss, "CIFAR10": torch.nn.CrossEntropyLoss, "sCIFAR10": torch.nn.CrossEntropyLoss, "CIFAR100": torch.nn.CrossEntropyLoss, "STL10": torch.nn.CrossEntropyLoss, "Cityscapes": torch.nn.CrossEntropyLoss, "VOC": torch.nn.CrossEntropyLoss, "Imagenet": torch.nn.CrossEntropyLoss, "Imagenet64": torch.nn.CrossEntropyLoss, "Imagenet32": torch.nn.CrossEntropyLoss, "Imagenet16": torch.nn.CrossEntropyLoss, "Imagenet8": torch.nn.CrossEntropyLoss, "SpeechCommands": torch.nn.CrossEntropyLoss, "CharTrajectories": torch.nn.CrossEntropyLoss, }[cfg.dataset] train_function = { "AddProblem": ps_routines.add_problem_train, "CopyMemory": ps_routines.copy_problem_train, "MNIST": classification_train, "sMNIST": classification_train, "CIFAR10": classification_train, "sCIFAR10": classification_train, "CIFAR100": classification_train, "Imagenet": classification_train, "Imagenet64": classification_train, "Imagenet32": classification_train, "Imagenet16": classification_train, "Imagenet8": classification_train, "STL10": classification_train, "SpeechCommands": classification_train, "CharTrajectories": classification_train, }[cfg.dataset] # Define optimizer and scheduler optimizer = construct_optimizer(model, cfg) lr_scheduler = construct_scheduler(optimizer, cfg) # train network _ = train_function( model=model, criterion=criterion, optimizer=optimizer, dataloaders=dataloaders, lr_scheduler=lr_scheduler, cfg=cfg, epoch_start=epoch_start, ) save_to_wandb(model, optimizer, lr_scheduler, cfg, name="final_model") return model, optimizer, lr_scheduler def classification_train( model: torch.nn.Module, criterion: torch.nn.Module, optimizer: torch.optim.Optimizer, dataloaders: Dict[str, torch.utils.data.DataLoader], lr_scheduler, cfg: OmegaConf, epoch_start: int = 0, ): # DEBUG # torch.autograd.set_detect_anomaly(True) weight_regularizer = ckconv.nn.LnLoss( weight_loss=cfg.train.weight_decay, norm_type=2 ) limit_regularizer = ckconv.nn.LimitLnLoss( weight_loss=cfg.train.mask_l2_norm, norm_type=2 ) # norm_regularizer = ckconv.nn.regularizers.MagnitudeRegularization( # weight_loss=cfg.magnitude_reg, norm_type=2 # ) # TODO: This necessary? # Permuter for psMNIST if cfg.dataset == "sMNIST" and cfg.dataset_params.permuted: permutation = torch.Tensor(np.random.permutation(784).astype(np.float64)).long() # Save in the config # cfg.dataset_params.permutation = permutation # Noise for noise-padded sCIFAR10 if cfg.dataset == "sCIFAR10" and cfg.dataset_params.noise_padded: rands = torch.randn(1, 1000 - 32, 96) # Training parameters epochs = cfg.train.epochs # Testcases: override epochs if cfg.testcase.load or cfg.testcase.save: epochs = cfg.testcase.epochs device = cfg.device criterion = criterion().to(device) # Log limits, before training log_limits(model, step=0) # Save best performing weights best_model_wts = copy.deepcopy(model.state_dict()) best_acc = 0.0 best_top5 = 0.0 best_loss = 999 # Counter for epochs without improvement epochs_no_improvement = 0 max_epochs_no_improvement = 100 if cfg.testcase.save or cfg.testcase.load: testcase_losses = [] # iterate over epochs for epoch in range(epoch_start, epochs + epoch_start): print("Epoch {}/{}".format(epoch + 1, epochs + epoch_start)) print("-" * 30) # Print current learning rate for param_group in optimizer.param_groups: print("Learning Rate: {}".format(param_group["lr"])) print("-" * 30) # log learning_rate of the epoch wandb.log({"lr": optimizer.param_groups[0]["lr"]}, step=epoch + 1) # Each epoch consist of training and validation for phase in ["train", "validation"]: phase_start_time = time.time() if phase == "train": model.train() else: model.eval() # Accumulate accuracy and loss running_loss = 0 running_corrects = 0 running_gabor_reg = 0.0 total = 0 if phase == "validation" and cfg.train.report_top5_acc: top5 = Accuracy( num_classes=CLASSES_DATASET[cfg.dataset], top_k=5, compute_on_step=False, ) # iterate over data for data in dataloaders[phase]: # DALI has a different dataloader output format if cfg.dataset == "Imagenet": data = (data[0]["data"], data[0]["label"].squeeze(1)) inputs, labels = data # Add padding if noise_padding if cfg.dataset_params.noise_padded and cfg.dataset == "sCIFAR10": inputs = torch.cat( ( inputs.permute(0, 2, 1, 3).reshape(inputs.shape[0], 32, 96), rands.repeat(inputs.shape[0], 1, 1), ), dim=1, ).permute(0, 2, 1) else: # Make sequential if sMNIST or sCIFAR10 if cfg.dataset in ["sMNIST", "sCIFAR10"]: _, in_channels, x, y = inputs.shape inputs = inputs.view(-1, in_channels, x * y) # Permute if psMNIST if cfg.dataset_params.permuted and cfg.dataset == "sMNIST": inputs = inputs[:, :, permutation] inputs = inputs.to(device) labels = labels.to(device) optimizer.zero_grad() train = phase == "train" with torch.set_grad_enabled(train): # FwrdPhase: inputs = torch.dropout(inputs, cfg.net.dropout_in, train) outputs = model(inputs) _, preds = torch.max(outputs, 1) loss = criterion(outputs, labels) # Regularization: if cfg.train.weight_decay > 0.0: loss = loss + weight_regularizer(model) if cfg.train.mask_l2_norm > 0.0: loss = loss + limit_regularizer(model) # if cfg.magnitude_reg > 0.0: # loss = loss + norm_regularizer(model) if cfg.kernel.regularize: gabor_reg = antialiasing.regularize_gabornet( model, cfg.kernel.regularize_params.res, cfg.kernel.regularize_params.factor, cfg.kernel.regularize_params.target, cfg.kernel.regularize_params.fn, cfg.kernel.regularize_params.method, gauss_stddevs=cfg.kernel.regularize_params.gauss_stddevs, ) loss += gabor_reg running_gabor_reg += gabor_reg # DEBUG # modules = antialiasing.get_flexconv_modules(model) # for t in ['sines', 'gausses', 'gabor']: # freqs = [] # for module in modules: # freqs.append(antialiasing.gabor_layer_frequencies(module, t, config.regularize_gabornet_method)) # freqs = torch.stack(freqs) # print(f"{t} frequencies: {freqs[0]}") # print(f"Lambda: {config.regularize_gabornet_lambda}") # print(f"Resolution: {config.regularize_gabornet_res}") # print(f"Total regularization term (incl. lambda): {gabor_reg:.8f}") if cfg.testcase.save or cfg.testcase.load: testcase_losses.append(loss.item()) # Backward pass: if phase == "train": loss.backward() if cfg.train.grad_clip > 0: torch.nn.utils.clip_grad_norm_( model.parameters(), cfg.train.grad_clip ) optimizer.step() # update the lr_scheduler if isinstance( lr_scheduler, ( torch.optim.lr_scheduler.CosineAnnealingLR, ckconv.nn.LinearWarmUp_LRScheduler, ), ): lr_scheduler.step() # statistics running_loss += loss.item() * inputs.size(0) running_corrects += (preds == labels).sum().item() total += labels.size(0) if phase == "validation" and cfg.train.report_top5_acc: pred_sm = torch.nn.functional.softmax(outputs, dim=1) # torchmetrics.Accuracy requires everything to be on CPU top5(pred_sm.to("cpu"), labels.to("cpu")) if total >= cfg.testcase.batches: break # Log GaborNet frequencies if cfg.kernel.regularize and phase == "train": stats = antialiasing.get_gabornet_summaries( model, cfg.kernel.regularize_params.target, cfg.kernel.regularize_params.method, ) wandb.log(stats, step=epoch + 1) # statistics of the epoch epoch_loss = running_loss / total epoch_acc = running_corrects / total epoch_gabor_reg = running_gabor_reg / total if phase == "validation" and cfg.train.report_top5_acc: epoch_top5 = top5.compute() print( "{} Loss: {:.4f} Acc: {:.4f} Top-5: {:.4f}".format( phase, epoch_loss, epoch_acc, epoch_top5 ) ) else: epoch_top5 = 0.0 print( "{} Loss: {:.4f} Acc: {:.4f}".format(phase, epoch_loss, epoch_acc) ) print(f"GaborNet regularization: {epoch_gabor_reg:.8f}") print(datetime.datetime.now()) phase_end_time = time.time() phase_time = phase_end_time - phase_start_time # log statistics of the epoch wandb.log( { "accuracy" + "_" + phase: epoch_acc, "accuracy_top5" + "_" + phase: epoch_top5, "loss" + "_" + phase: epoch_loss, "gabor_reg" + "_" + phase: epoch_gabor_reg, phase + "_time": phase_time, }, step=epoch + 1, ) # If better validation accuracy, replace best weights and compute the test performance if phase == "validation" and epoch_acc >= best_acc: # Updates to the weights will not happen if the accuracy is equal but loss does not diminish if (epoch_acc == best_acc) and (epoch_loss > best_loss): pass else: best_acc = epoch_acc best_top5 = epoch_top5 best_loss = epoch_loss best_model_wts = copy.deepcopy(model.state_dict()) save_to_wandb(model, optimizer, lr_scheduler, cfg, epoch=epoch + 1) # Log best results so far and the weights of the model. wandb.run.summary["best_val_accuracy"] = best_acc wandb.run.summary["best_val_loss"] = best_loss # Clean CUDA Memory del inputs, outputs, labels torch.cuda.empty_cache() # Perform test and log results if cfg.dataset in ["SpeechCommands", "CharTrajectories"]: test_acc, test_top5 = test(model, dataloaders["test"], cfg) else: test_acc = best_acc test_top5 = best_top5 wandb.run.summary["best_test_accuracy"] = test_acc wandb.run.summary["best_test_top5"] = test_top5 wandb.log( {"accuracy_test": test_acc, "accuracy_top5_test": test_top5}, step=epoch + 1, ) # Reset counter of epochs without progress epochs_no_improvement = 0 elif phase == "validation" and epoch_acc < best_acc: # Otherwise, increase counter epochs_no_improvement += 1 # Log limits log_limits(model, epoch + 1) # Update scheduler if ( isinstance(lr_scheduler, torch.optim.lr_scheduler.ReduceLROnPlateau) and phase == "validation" ): lr_scheduler.step(epoch_acc) # Update scheduler if isinstance(lr_scheduler, torch.optim.lr_scheduler.MultiStepLR) or isinstance( lr_scheduler, torch.optim.lr_scheduler.ExponentialLR ): lr_scheduler.step() print() # Check how many epochs without improvement have passed, and, if required, stop training. if epochs_no_improvement == max_epochs_no_improvement: print( f"Stopping training due to {epochs_no_improvement} epochs of no improvement in validation accuracy." ) break # Report best results print("Best Val Acc: {:.4f}".format(best_acc)) if cfg.train.report_top5_acc: print("Best Val Top-5: {:.4f}".format(best_top5)) # Load best model weights model.load_state_dict(best_model_wts) # Print learned limits _print_learned_limits(model) # Testcases: load/save losses for comparison if cfg.testcase.save: testcase_losses = np.array(testcase_losses) with open(hydra.utils.to_absolute_path(cfg.testcase.path), 'wb') as f: np.save(f, testcase_losses, allow_pickle=True) if cfg.testcase.load: testcase_losses = np.array(testcase_losses) with open(hydra.utils.to_absolute_path(cfg.testcase.path), 'rb') as f: target_losses = np.load(f, allow_pickle=True) if np.allclose(testcase_losses, target_losses): print("Testcase passed!") else: diff = np.sum(testcase_losses - target_losses) raise AssertionError(f"Testcase failed: diff = {diff:.8f}") # Return model return model def log_limits(model, step): log = {} limitss = get_limits(model) for i, limits in enumerate(limitss): log.update({f"limit_{i}_{k}": v for (k, v) in limits.items()}) wandb.log(log, step=step) def get_limits(model): limitss = [] for m in model.modules(): if isinstance(m, ckconv.nn.FlexConv): limits = m.mask_params.detach().cpu() # top, bottom, left, right if m.kernel_dim_linear == 1: (mean, std) = limits.squeeze() limitss.append( { "mean": mean, "std": std, } ) elif m.kernel_dim_linear == 2: (mean_y, std_y), (mean_x, std_x) = limits limitss.append( { "mean_y": mean_y, "std_y": std_y, "mean_x": mean_x, "std_x": std_x, } ) return limitss def _print_learned_limits(model): limits_final = [] print(50 * "-") print("Learned limits:") for m in model.modules(): if isinstance(m, ckconv.nn.FlexConv): limits = m.mask_params.detach().cpu() limits_final.append(limits) print(limits) print(50 * "-")
[ "wandb.log", "numpy.load", "numpy.sum", "numpy.allclose", "torch.randn", "optim.construct_optimizer", "tester.test", "torch.dropout", "os.path.join", "antialiasing.get_gabornet_summaries", "antialiasing.regularize_gabornet", "datetime.datetime.now", "ckconv.nn.LnLoss", "ckconv.nn.LimitLnLoss", "numpy.save", "torch.max", "torch.set_grad_enabled", "wandb.save", "numpy.random.permutation", "time.time", "torchmetrics.Accuracy", "optim.construct_scheduler", "torch.nn.functional.softmax", "numpy.array", "torch.cuda.empty_cache" ]
[((715, 752), 'os.path.join', 'os.path.join', (['wandb.run.dir', 'filename'], {}), '(wandb.run.dir, filename)\n', (727, 752), False, 'import os\n'), ((1052, 1068), 'wandb.save', 'wandb.save', (['path'], {}), '(path)\n', (1062, 1068), False, 'import wandb\n'), ((2831, 2862), 'optim.construct_optimizer', 'construct_optimizer', (['model', 'cfg'], {}), '(model, cfg)\n', (2850, 2862), False, 'from optim import construct_optimizer, construct_scheduler, CLASSES_DATASET\n'), ((2882, 2917), 'optim.construct_scheduler', 'construct_scheduler', (['optimizer', 'cfg'], {}), '(optimizer, cfg)\n', (2901, 2917), False, 'from optim import construct_optimizer, construct_scheduler, CLASSES_DATASET\n'), ((3619, 3684), 'ckconv.nn.LnLoss', 'ckconv.nn.LnLoss', ([], {'weight_loss': 'cfg.train.weight_decay', 'norm_type': '(2)'}), '(weight_loss=cfg.train.weight_decay, norm_type=2)\n', (3635, 3684), False, 'import ckconv\n'), ((3723, 3793), 'ckconv.nn.LimitLnLoss', 'ckconv.nn.LimitLnLoss', ([], {'weight_loss': 'cfg.train.mask_l2_norm', 'norm_type': '(2)'}), '(weight_loss=cfg.train.mask_l2_norm, norm_type=2)\n', (3744, 3793), False, 'import ckconv\n'), ((16937, 16962), 'wandb.log', 'wandb.log', (['log'], {'step': 'step'}), '(log, step=step)\n', (16946, 16962), False, 'import wandb\n'), ((4356, 4385), 'torch.randn', 'torch.randn', (['(1)', '(1000 - 32)', '(96)'], {}), '(1, 1000 - 32, 96)\n', (4367, 4385), False, 'import torch\n'), ((5434, 5500), 'wandb.log', 'wandb.log', (["{'lr': optimizer.param_groups[0]['lr']}"], {'step': '(epoch + 1)'}), "({'lr': optimizer.param_groups[0]['lr']}, step=epoch + 1)\n", (5443, 5500), False, 'import wandb\n'), ((16090, 16115), 'numpy.array', 'np.array', (['testcase_losses'], {}), '(testcase_losses)\n', (16098, 16115), True, 'import numpy as np\n'), ((16306, 16331), 'numpy.array', 'np.array', (['testcase_losses'], {}), '(testcase_losses)\n', (16314, 16331), True, 'import numpy as np\n'), ((16480, 16523), 'numpy.allclose', 'np.allclose', (['testcase_losses', 'target_losses'], {}), '(testcase_losses, target_losses)\n', (16491, 16523), True, 'import numpy as np\n'), ((5635, 5646), 'time.time', 'time.time', ([], {}), '()\n', (5644, 5646), False, 'import time\n'), ((12362, 12373), 'time.time', 'time.time', ([], {}), '()\n', (12371, 12373), False, 'import time\n'), ((12488, 12725), 'wandb.log', 'wandb.log', (["{('accuracy' + '_' + phase): epoch_acc, ('accuracy_top5' + '_' + phase):\n epoch_top5, ('loss' + '_' + phase): epoch_loss, ('gabor_reg' + '_' +\n phase): epoch_gabor_reg, (phase + '_time'): phase_time}"], {'step': '(epoch + 1)'}), "({('accuracy' + '_' + phase): epoch_acc, ('accuracy_top5' + '_' +\n phase): epoch_top5, ('loss' + '_' + phase): epoch_loss, ('gabor_reg' +\n '_' + phase): epoch_gabor_reg, (phase + '_time'): phase_time}, step=\n epoch + 1)\n", (12497, 12725), False, 'import wandb\n'), ((16207, 16253), 'numpy.save', 'np.save', (['f', 'testcase_losses'], {'allow_pickle': '(True)'}), '(f, testcase_losses, allow_pickle=True)\n', (16214, 16253), True, 'import numpy as np\n'), ((16439, 16468), 'numpy.load', 'np.load', (['f'], {'allow_pickle': '(True)'}), '(f, allow_pickle=True)\n', (16446, 16468), True, 'import numpy as np\n'), ((16596, 16635), 'numpy.sum', 'np.sum', (['(testcase_losses - target_losses)'], {}), '(testcase_losses - target_losses)\n', (16602, 16635), True, 'import numpy as np\n'), ((6015, 6102), 'torchmetrics.Accuracy', 'Accuracy', ([], {'num_classes': 'CLASSES_DATASET[cfg.dataset]', 'top_k': '(5)', 'compute_on_step': '(False)'}), '(num_classes=CLASSES_DATASET[cfg.dataset], top_k=5, compute_on_step\n =False)\n', (6023, 6102), False, 'from torchmetrics import Accuracy\n'), ((11295, 11416), 'antialiasing.get_gabornet_summaries', 'antialiasing.get_gabornet_summaries', (['model', 'cfg.kernel.regularize_params.target', 'cfg.kernel.regularize_params.method'], {}), '(model, cfg.kernel.regularize_params.\n target, cfg.kernel.regularize_params.method)\n', (11330, 11416), False, 'import antialiasing\n'), ((11507, 11539), 'wandb.log', 'wandb.log', (['stats'], {'step': '(epoch + 1)'}), '(stats, step=epoch + 1)\n', (11516, 11539), False, 'import wandb\n'), ((12308, 12331), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (12329, 12331), False, 'import datetime\n'), ((7564, 7593), 'torch.set_grad_enabled', 'torch.set_grad_enabled', (['train'], {}), '(train)\n', (7586, 7593), False, 'import torch\n'), ((7657, 7705), 'torch.dropout', 'torch.dropout', (['inputs', 'cfg.net.dropout_in', 'train'], {}), '(inputs, cfg.net.dropout_in, train)\n', (7670, 7705), False, 'import torch\n'), ((7781, 7802), 'torch.max', 'torch.max', (['outputs', '(1)'], {}), '(outputs, 1)\n', (7790, 7802), False, 'import torch\n'), ((10912, 10955), 'torch.nn.functional.softmax', 'torch.nn.functional.softmax', (['outputs'], {'dim': '(1)'}), '(outputs, dim=1)\n', (10939, 10955), False, 'import torch\n'), ((13873, 13897), 'torch.cuda.empty_cache', 'torch.cuda.empty_cache', ([], {}), '()\n', (13895, 13897), False, 'import torch\n'), ((14386, 14477), 'wandb.log', 'wandb.log', (["{'accuracy_test': test_acc, 'accuracy_top5_test': test_top5}"], {'step': '(epoch + 1)'}), "({'accuracy_test': test_acc, 'accuracy_top5_test': test_top5},\n step=epoch + 1)\n", (14395, 14477), False, 'import wandb\n'), ((8325, 8614), 'antialiasing.regularize_gabornet', 'antialiasing.regularize_gabornet', (['model', 'cfg.kernel.regularize_params.res', 'cfg.kernel.regularize_params.factor', 'cfg.kernel.regularize_params.target', 'cfg.kernel.regularize_params.fn', 'cfg.kernel.regularize_params.method'], {'gauss_stddevs': 'cfg.kernel.regularize_params.gauss_stddevs'}), '(model, cfg.kernel.regularize_params.res,\n cfg.kernel.regularize_params.factor, cfg.kernel.regularize_params.\n target, cfg.kernel.regularize_params.fn, cfg.kernel.regularize_params.\n method, gauss_stddevs=cfg.kernel.regularize_params.gauss_stddevs)\n', (8357, 8614), False, 'import antialiasing\n'), ((14073, 14110), 'tester.test', 'test', (['model', "dataloaders['test']", 'cfg'], {}), "(model, dataloaders['test'], cfg)\n", (14077, 14110), False, 'from tester import test\n'), ((4093, 4119), 'numpy.random.permutation', 'np.random.permutation', (['(784)'], {}), '(784)\n', (4114, 4119), True, 'import numpy as np\n')]
#%% import torch from torch import optim, nn from torchvision import models, transforms model = models.vgg16(pretrained=True) #%% class FeatureExtractor(nn.Module): def __init__(self, model): super(FeatureExtractor, self).__init__() # Extract VGG-16 Feature Layers self.features = list(model.features) self.features = nn.Sequential(*self.features) # Extract VGG-16 Average Pooling Layer self.pooling = model.avgpool # Convert the image into one-dimensional vector self.flatten = nn.Flatten() # Extract the first part of fully-connected layer from VGG16 self.fc = model.classifier[0] def forward(self, x): # It will take the input 'x' until it returns the feature vector called 'out' out = self.features(x) out = self.pooling(out) out = self.flatten(out) out = self.fc(out) return out # Initialize the model model = models.vgg16(pretrained=True) new_model = FeatureExtractor(model) # Change the device to GPU device = torch.device('cuda:0' if torch.cuda.is_available() else "cpu") new_model = new_model.to(device) #%% import numpy as np # Transform the image, so it becomes readable with the model transform = transforms.Compose([ transforms.ToPILImage(), transforms.CenterCrop(512), transforms.Resize(224), transforms.ToTensor() ]) # Will contain the feature features = [] #%% import cv2 # # Read the file img = cv2.imread('1.jpg') # Transform the image img = transform(img) # Reshape the image. PyTorch model reads 4-dimensional tensor # [batch_size, channels, width, height] img = img.reshape(1, 3, 224, 224) img = img.to(device) # We only extract features, so we don't need gradient with torch.no_grad(): # Extract the feature from the image feature = new_model(img) # Convert to NumPy Array, Reshape it, and save it to features variable features.append(feature.cpu().detach().numpy().reshape(-1)) # Convert to NumPy Array features = np.array(features) # %% features # %% len(features[0]) # %% from lshash import LSHash lsh = LSHash(6, 8) df = [[0.929, 0.9404, 0.82372, 0.3335, 1.0, 0.654, 0.1, 0.72], [0.9239, 0.94, 1.0 , 0.596, 0.973, 0.338, 0.20, 0.1 ]] lsh.index(df[1]) lsh.query(df[0],distance_func='cosine') # %% lsh = 0 # %% x = -0.02 y = -0.003 z = -0.3 d = (x-y) / (z-y) # %% d # %% a= [1, 2 ,3] b = [] b = a + b b # %%
[ "lshash.LSHash", "torch.nn.Sequential", "torchvision.transforms.Resize", "torchvision.transforms.ToPILImage", "torchvision.transforms.ToTensor", "cv2.imread", "numpy.array", "torch.cuda.is_available", "torchvision.transforms.CenterCrop", "torchvision.models.vgg16", "torch.no_grad", "torch.nn.Flatten" ]
[((97, 126), 'torchvision.models.vgg16', 'models.vgg16', ([], {'pretrained': '(True)'}), '(pretrained=True)\n', (109, 126), False, 'from torchvision import models, transforms\n'), ((881, 910), 'torchvision.models.vgg16', 'models.vgg16', ([], {'pretrained': '(True)'}), '(pretrained=True)\n', (893, 910), False, 'from torchvision import models, transforms\n'), ((1421, 1440), 'cv2.imread', 'cv2.imread', (['"""1.jpg"""'], {}), "('1.jpg')\n", (1431, 1440), False, 'import cv2\n'), ((1955, 1973), 'numpy.array', 'np.array', (['features'], {}), '(features)\n', (1963, 1973), True, 'import numpy as np\n'), ((2048, 2060), 'lshash.LSHash', 'LSHash', (['(6)', '(8)'], {}), '(6, 8)\n', (2054, 2060), False, 'from lshash import LSHash\n'), ((1700, 1715), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (1713, 1715), False, 'import torch\n'), ((336, 365), 'torch.nn.Sequential', 'nn.Sequential', (['*self.features'], {}), '(*self.features)\n', (349, 365), False, 'from torch import optim, nn\n'), ((509, 521), 'torch.nn.Flatten', 'nn.Flatten', ([], {}), '()\n', (519, 521), False, 'from torch import optim, nn\n'), ((1009, 1034), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (1032, 1034), False, 'import torch\n'), ((1200, 1223), 'torchvision.transforms.ToPILImage', 'transforms.ToPILImage', ([], {}), '()\n', (1221, 1223), False, 'from torchvision import models, transforms\n'), ((1227, 1253), 'torchvision.transforms.CenterCrop', 'transforms.CenterCrop', (['(512)'], {}), '(512)\n', (1248, 1253), False, 'from torchvision import models, transforms\n'), ((1257, 1279), 'torchvision.transforms.Resize', 'transforms.Resize', (['(224)'], {}), '(224)\n', (1274, 1279), False, 'from torchvision import models, transforms\n'), ((1283, 1304), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (1302, 1304), False, 'from torchvision import models, transforms\n')]
import pandas as pd import csv import numpy as np from datetime import datetime import json import os from shapely.geometry import shape, Point from fuzzywuzzy import process ## TODO implement string similarity for crime categories ## TODO reiterate through this data set once a week for discrepancies ## Aggregating Legacy and Current Crime Tracking System df1 = pd.read_csv("https://data.boston.gov/dataset/6220d948-eae2-4e4b-8723-2dc8e67722a3/resource/12cb3883-56f5-47de-afa5-3b1cf61b257b/download/tmp3bg1m024.csv") df = pd.read_csv("https://data.boston.gov/dataset/eefad66a-e805-4b35-b170-d26e2028c373/resource/ba5ed0e2-e901-438c-b2e0-4acfc3c452b9/download/crime-incident-reports-july-2012-august-2015-source-legacy-system.csv", low_memory=False) ## pulling test data from geojson geo = {} with open('./json_files/boston.geojson') as constraints: geo = json.load(constraints) ## defining functions def colComparison(df1,df2,colname1,colname2): result = [] for item in set(df1[colname1]): if item.upper() in set(df2[colname2]): result.append(item) else: continue return result def mergeCols(col1,col2): return np.concatenate((col1.values, col2.values)) def totime(d): result = 0 try: result = datetime.strptime(d, '%m/%d/%Y %H:%M:%S %p').strftime("%H") except: result = datetime.strptime(d, '%Y-%m-%d %H:%M:%S').strftime("%H") return result def toyear(d): result = 0 try: result = datetime.strptime(d, '%m/%d/%Y %H:%M:%S %p').strftime("%Y") except: result = datetime.strptime(d, '%Y-%m-%d %H:%M:%S').strftime("%Y") return result ## classifying crime to neighborhoods def classify(location): result = "" y = float(location.split(", ")[0][1:len(location.split(", ")[0])]) x = float(location.split(", ")[1][0:len(location.split(", ")[1])-1]) point = Point(x,y) for feature in geo["features"]: nb_name = feature["properties"]["Name"] area = shape(feature["geometry"]) if(area.contains(point)): if(nb_name == "Chester Square"): print("In CS") result = nb_name break else: continue return result newCategories = df1["OFFENSE_CODE_GROUP"].unique() def legacyToNew(category): highest = process.extractOne(category, newCategories) if(highest[1] < 50): return category else: return highest[0] # Recategorizing legacy crime categories df["OFFENSE_CODE_GROUP"] = df["INCIDENT_TYPE_DESCRIPTION"].apply(legacyToNew) data = {} data["id"] = mergeCols(df["COMPNOS"],df1["INCIDENT_NUMBER"]) data["category"] = mergeCols(df["OFFENSE_CODE_GROUP"],df1["OFFENSE_CODE_GROUP"]) data["year"] = mergeCols(df["Year"],df1["YEAR"]) data["month"]= mergeCols(df["Month"],df1["MONTH"]) data["day_of_Week"]= mergeCols(df["DAY_WEEK"], df1["DAY_OF_WEEK"]) data["ucr_oart"] = mergeCols(df["UCRPART"], df1["UCR_PART"]) data["lat"] = mergeCols(df["X"], df1["Lat"]) data["long"] = mergeCols(df["Y"] , df1["Long"]) data["location"] = mergeCols(df["Location"], df1["Location"]) data["street"] = mergeCols(df["STREETNAME"], df1["STREET"]) data["date"] = mergeCols(df["FROMDATE"], df1["OCCURRED_ON_DATE"]) crime = pd.DataFrame(data) # Creating time Field, Classifying Crime, Saving base level dataset crime["time"] = crime["date"].apply(totime) crime["year"] = crime["date"].apply(toyear) print("classifying") crime["neighborhood"] = crime["location"].apply(classify) crime.to_csv("./csv_files/boston_crime.csv") # Aggregating Dataset aggregate = crime.groupby(["neighborhood","category","year","time"]).agg('count') aggregate.rename(columns={'id':'value'}, inplace=True) aggregate.reset_index(inplace=True) aggregate[["neighborhood","category","year","time","value"]].to_csv("./csv_files/crime.csv")
[ "pandas.DataFrame", "shapely.geometry.Point", "json.load", "pandas.read_csv", "fuzzywuzzy.process.extractOne", "datetime.datetime.strptime", "shapely.geometry.shape", "numpy.concatenate" ]
[((366, 530), 'pandas.read_csv', 'pd.read_csv', (['"""https://data.boston.gov/dataset/6220d948-eae2-4e4b-8723-2dc8e67722a3/resource/12cb3883-56f5-47de-afa5-3b1cf61b257b/download/tmp3bg1m024.csv"""'], {}), "(\n 'https://data.boston.gov/dataset/6220d948-eae2-4e4b-8723-2dc8e67722a3/resource/12cb3883-56f5-47de-afa5-3b1cf61b257b/download/tmp3bg1m024.csv'\n )\n", (377, 530), True, 'import pandas as pd\n'), ((526, 762), 'pandas.read_csv', 'pd.read_csv', (['"""https://data.boston.gov/dataset/eefad66a-e805-4b35-b170-d26e2028c373/resource/ba5ed0e2-e901-438c-b2e0-4acfc3c452b9/download/crime-incident-reports-july-2012-august-2015-source-legacy-system.csv"""'], {'low_memory': '(False)'}), "(\n 'https://data.boston.gov/dataset/eefad66a-e805-4b35-b170-d26e2028c373/resource/ba5ed0e2-e901-438c-b2e0-4acfc3c452b9/download/crime-incident-reports-july-2012-august-2015-source-legacy-system.csv'\n , low_memory=False)\n", (537, 762), True, 'import pandas as pd\n'), ((3259, 3277), 'pandas.DataFrame', 'pd.DataFrame', (['data'], {}), '(data)\n', (3271, 3277), True, 'import pandas as pd\n'), ((863, 885), 'json.load', 'json.load', (['constraints'], {}), '(constraints)\n', (872, 885), False, 'import json\n'), ((1177, 1219), 'numpy.concatenate', 'np.concatenate', (['(col1.values, col2.values)'], {}), '((col1.values, col2.values))\n', (1191, 1219), True, 'import numpy as np\n'), ((1897, 1908), 'shapely.geometry.Point', 'Point', (['x', 'y'], {}), '(x, y)\n', (1902, 1908), False, 'from shapely.geometry import shape, Point\n'), ((2338, 2381), 'fuzzywuzzy.process.extractOne', 'process.extractOne', (['category', 'newCategories'], {}), '(category, newCategories)\n', (2356, 2381), False, 'from fuzzywuzzy import process\n'), ((2007, 2033), 'shapely.geometry.shape', 'shape', (["feature['geometry']"], {}), "(feature['geometry'])\n", (2012, 2033), False, 'from shapely.geometry import shape, Point\n'), ((1277, 1321), 'datetime.datetime.strptime', 'datetime.strptime', (['d', '"""%m/%d/%Y %H:%M:%S %p"""'], {}), "(d, '%m/%d/%Y %H:%M:%S %p')\n", (1294, 1321), False, 'from datetime import datetime\n'), ((1498, 1542), 'datetime.datetime.strptime', 'datetime.strptime', (['d', '"""%m/%d/%Y %H:%M:%S %p"""'], {}), "(d, '%m/%d/%Y %H:%M:%S %p')\n", (1515, 1542), False, 'from datetime import datetime\n'), ((1366, 1407), 'datetime.datetime.strptime', 'datetime.strptime', (['d', '"""%Y-%m-%d %H:%M:%S"""'], {}), "(d, '%Y-%m-%d %H:%M:%S')\n", (1383, 1407), False, 'from datetime import datetime\n'), ((1587, 1628), 'datetime.datetime.strptime', 'datetime.strptime', (['d', '"""%Y-%m-%d %H:%M:%S"""'], {}), "(d, '%Y-%m-%d %H:%M:%S')\n", (1604, 1628), False, 'from datetime import datetime\n')]
import torch from collections import OrderedDict from torch.nn import utils, functional as F from torch.optim import Adam from torch.backends import cudnn from model import build_model, weights_init import scipy.misc as sm import numpy as np import os import cv2 from loss import bce_iou_loss # normalize the predicted SOD probability map def normPRED(d): ma = torch.max(d) mi = torch.min(d) dn = (d - mi) / (ma - mi) return dn Dataset_dict = {'e': 'ECSSD', 'p': 'PASCALS', 'd': 'DUTOMRON', 'h': 'HKU-IS', 's': 'SOD', 't': 'DUTS_TE'} class Solver(object): def __init__(self, train_loader, test_loader, config): self.train_loader = train_loader self.test_loader = test_loader self.config = config self.iter_size = config.iter_size self.show_every = config.show_every self.lr_decay_epoch = [20, ] self.build_model() self.loss = bce_iou_loss if config.mode == 'test': print('Loading pre-trained model from %s...' % self.config.model) if self.config.cuda: self.net.load_state_dict(torch.load(self.config.model)) else: self.net.load_state_dict(torch.load(self.config.model, map_location='cpu')) self.net.eval() # print the network information and parameter numbers def print_network(self, model, name): num_params = 0 for p in model.parameters(): num_params += p.numel() print(name) print(model) print("The number of parameters: {}".format(num_params)) # build the network def build_model(self): self.net = build_model(self.config.arch) if self.config.cuda: self.net = self.net.cuda() self.net.train() self.net.apply(weights_init) if self.config.load == '': self.net.base.load_state_dict(torch.load(self.config.pretrained_model)) else: self.net.load_state_dict(torch.load(self.config.load)) self.lr = self.config.lr self.wd = self.config.wd self.optimizer = Adam(filter(lambda p: p.requires_grad, self.net.parameters()), lr=self.lr, weight_decay=self.wd) # self.print_network(self.net, 'BINet Structure') def test(self): self.net.eval() for i, data_batch in enumerate(self.test_loader): images, name, im_size = data_batch['image'], data_batch['name'][0], np.asarray(data_batch['size']) im_size = im_size[1], im_size[0] # print(im_size) with torch.no_grad(): if self.config.cuda: images = images.cuda() preds = self.net(images)[1] preds = normPRED(torch.sigmoid(preds)) pred = np.squeeze(preds.cpu().data.numpy()) multi_fuse = 255 * pred multi_fuse = cv2.resize(multi_fuse, dsize=im_size, interpolation=cv2.INTER_LINEAR) cv2.imwrite(os.path.join(self.config.test_fold, name[:-4] + '.png'), multi_fuse) print(Dataset_dict[self.config.sal_mode] + ' Test Done!') def deep_supervision_loss(self, preds, gt): losses = [] for pred in preds: losses.append(self.loss(pred, gt)) sum_loss = losses[0] + losses[1] + losses[2] / 2 + losses[3] / 4 + losses[4] / 8 + losses[5] / 8 return sum_loss # training phase def train(self): iter_num = len(self.train_loader.dataset) // self.config.batch_size for epoch in range(self.config.epoch): self.net.zero_grad() for i, data_batch in enumerate(self.train_loader): sal_image, sal_label = data_batch['sal_image'], data_batch['sal_label'] if (sal_image.size(2) != sal_label.size(2)) or (sal_image.size(3) != sal_label.size(3)): print('IMAGE ERROR, PASSING```') continue if self.config.cuda: # cudnn.benchmark = True sal_image, sal_label = sal_image.cuda(), sal_label.cuda() sal_preds = self.net(sal_image) sum_loss = self.deep_supervision_loss(sal_preds, sal_label) self.optimizer.zero_grad() sum_loss.backward() self.optimizer.step() if i % (self.show_every // self.config.batch_size) == 0: if i == 0: x_showEvery = 1 print( 'epoch: [%2d/%2d], iter: [%5d/%5d] || sum_loss : %10.4f' % ( epoch, self.config.epoch, i, iter_num, sum_loss.cpu().data)) print('Learning rate: ' + str(self.lr)) if (epoch + 1) % self.config.epoch_save == 0: torch.save(self.net.state_dict(), '%s/models/epoch_%d.pth' % (self.config.save_folder, epoch + 1)) if epoch in self.lr_decay_epoch: self.lr = self.lr * 0.1 self.optimizer = Adam(filter(lambda p: p.requires_grad, self.net.parameters()), lr=self.lr, weight_decay=self.wd) torch.save(self.net.state_dict(), '%s/models/final.pth' % self.config.save_folder)
[ "model.build_model", "torch.load", "numpy.asarray", "torch.sigmoid", "torch.max", "torch.no_grad", "os.path.join", "torch.min", "cv2.resize" ]
[((367, 379), 'torch.max', 'torch.max', (['d'], {}), '(d)\n', (376, 379), False, 'import torch\n'), ((389, 401), 'torch.min', 'torch.min', (['d'], {}), '(d)\n', (398, 401), False, 'import torch\n'), ((1659, 1688), 'model.build_model', 'build_model', (['self.config.arch'], {}), '(self.config.arch)\n', (1670, 1688), False, 'from model import build_model, weights_init\n'), ((1897, 1937), 'torch.load', 'torch.load', (['self.config.pretrained_model'], {}), '(self.config.pretrained_model)\n', (1907, 1937), False, 'import torch\n'), ((1990, 2018), 'torch.load', 'torch.load', (['self.config.load'], {}), '(self.config.load)\n', (2000, 2018), False, 'import torch\n'), ((2481, 2511), 'numpy.asarray', 'np.asarray', (["data_batch['size']"], {}), "(data_batch['size'])\n", (2491, 2511), True, 'import numpy as np\n'), ((2603, 2618), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (2616, 2618), False, 'import torch\n'), ((2928, 2997), 'cv2.resize', 'cv2.resize', (['multi_fuse'], {'dsize': 'im_size', 'interpolation': 'cv2.INTER_LINEAR'}), '(multi_fuse, dsize=im_size, interpolation=cv2.INTER_LINEAR)\n', (2938, 2997), False, 'import cv2\n'), ((1116, 1145), 'torch.load', 'torch.load', (['self.config.model'], {}), '(self.config.model)\n', (1126, 1145), False, 'import torch\n'), ((1206, 1255), 'torch.load', 'torch.load', (['self.config.model'], {'map_location': '"""cpu"""'}), "(self.config.model, map_location='cpu')\n", (1216, 1255), False, 'import torch\n'), ((2777, 2797), 'torch.sigmoid', 'torch.sigmoid', (['preds'], {}), '(preds)\n', (2790, 2797), False, 'import torch\n'), ((3026, 3081), 'os.path.join', 'os.path.join', (['self.config.test_fold', "(name[:-4] + '.png')"], {}), "(self.config.test_fold, name[:-4] + '.png')\n", (3038, 3081), False, 'import os\n')]
# -------------------------------------------------------- # P2ORM: Formulation, Inference & Application # Licensed under The MIT License [see LICENSE for details] # Written by <NAME> # -------------------------------------------------------- import numpy as np import os import ntpath import torch import scipy.io as sio import sys from PIL import Image import cv2 import matplotlib.pyplot as plt plt.switch_backend('agg') # use matplotlib without gui support sys.path.append('../..') from lib.dataset.gen_label_methods import order4_to_order_pixwise, order8_to_order_pixwise, \ occ_order_pred_to_edge_prob, occ_order_pred_to_ori, nms_edge_order_ori, nms_occ_order, order8_to_order_pixwise_np PI = 3.1416 curr_path = os.path.abspath(os.path.dirname(__file__)) def plot_train_metrics(train_writer, config, epoch, train_loss, train_mIoUs, train_mF1s, train_AP_edge): """plot loss and metrics on tensorboard""" train_writer.add_scalar('loss_epoch', train_loss, epoch) train_writer.add_scalar('AP_edge', train_AP_edge, epoch) if config.network.task_type == 'occ_order': train_order_mIoU = sum(train_mIoUs) / float(len(train_mIoUs)) train_writer.add_scalar('meanIoU_all', train_order_mIoU, epoch) train_writer.add_scalar('meanIoU_E', train_mIoUs[0], epoch) train_writer.add_scalar('meanIoU_S', train_mIoUs[1], epoch) train_writer.add_scalar('meanF1_E', train_mF1s[0], epoch) train_writer.add_scalar('meanF1_S', train_mF1s[1], epoch) if config.dataset.connectivity == 8: train_writer.add_scalar('meanIoU_SE', train_mIoUs[2], epoch) train_writer.add_scalar('meanIoU_NE', train_mIoUs[3], epoch) train_writer.add_scalar('meanF1_SE', train_mF1s[2], epoch) train_writer.add_scalar('meanF1_NE', train_mF1s[3], epoch) elif config.network.task_type == 'occ_ori': train_writer.add_scalar('meanIoU_edge', train_mIoUs[0], epoch) train_writer.add_scalar('meanF1_edge', train_mF1s[0], epoch) def plot_val_metrics(val_writer, config, epoch, val_loss, val_mIoUs, val_mF1s, val_AP_edge): val_writer.add_scalar('loss_epoch', val_loss, epoch) val_writer.add_scalar('AP_edge', val_AP_edge, epoch) if config.network.task_type == 'occ_order': val_order_mIoU = sum(val_mIoUs) / float(len(val_mIoUs)) val_writer.add_scalar('loss_epoch', val_loss, epoch) val_writer.add_scalar('meanIoU_all', val_order_mIoU, epoch) val_writer.add_scalar('meanIoU_E', val_mIoUs[0], epoch) val_writer.add_scalar('meanIoU_S', val_mIoUs[1], epoch) val_writer.add_scalar('meanF1_E', val_mF1s[0], epoch) val_writer.add_scalar('meanF1_S', val_mF1s[1], epoch) if config.dataset.connectivity == 8: val_writer.add_scalar('meanIoU_SE', val_mIoUs[2], epoch) val_writer.add_scalar('meanIoU_NE', val_mIoUs[3], epoch) val_writer.add_scalar('meanF1_SE', val_mF1s[2], epoch) val_writer.add_scalar('meanF1_NE', val_mF1s[3], epoch) elif config.network.task_type == 'occ_ori': val_writer.add_scalar('meanIoU_edge', val_mIoUs[0], epoch) val_writer.add_scalar('meanF1_edge', val_mF1s[0], epoch) def viz_and_log(inputs, net_out, targets, viz_writers, idx, epoch, config): """ visualize train/val samples on tensorboard :param inputs: network input, tensor, N,C,H,W :param net_out: network input, tensor, N,C,H,W :param targets: tuple, (N,H,W ; N,H,W) """ # viz model input mean_values = torch.tensor(config.dataset.pixel_means, dtype=inputs.dtype).view(3, 1, 1) std_values = torch.tensor(config.dataset.pixel_stds, dtype=inputs.dtype).view(3, 1, 1) model_in_vis = inputs[0, :3, :, :].cpu() * std_values + mean_values # =>[0, 1] H, W = model_in_vis.shape[-2:] viz_writers[idx].add_image('Input', model_in_vis, epoch) if config.network.task_type == 'occ_order': edge_gt = targets[-1].unsqueeze(1).float() # N,1,H,W # gen occ order pred order_gt_E = targets[0][0, :, :].view(-1, H, W).cpu() # 1,H,W order_gt_S = targets[1][0, :, :].view(-1, H, W).cpu() _, ind_pred_h = net_out[0, :3, :, :].topk(1, dim=0, largest=True, sorted=True) # 1,H,W _, ind_pred_v = net_out[0, 3:6, :, :].topk(1, dim=0, largest=True, sorted=True) if config.dataset.connectivity == 8: order_gt_SE = targets[2][0, :, :].view(-1, H, W).cpu() # 1,H,W order_gt_NE = targets[3][0, :, :].view(-1, H, W).cpu() _, ind_pred_SE = net_out[0, 6:9, :, :].topk(1, dim=0, largest=True, sorted=True) # 1,H,W _, ind_pred_NE = net_out[0, 9:12, :, :].topk(1, dim=0, largest=True, sorted=True) # gen occ edge prob from occ order edge_prob_pred, _ = occ_order_pred_to_edge_prob(net_out, config.dataset.connectivity) # N,1,H,W # plot viz_writers[idx].add_image('occ_order_E.1.gt', order_gt_E.float() / 2, epoch) viz_writers[idx].add_image('occ_order_S.1.gt', order_gt_S.float() / 2, epoch) viz_writers[idx].add_image('occ_order_E.2.pred', ind_pred_h.float() / 2, epoch) viz_writers[idx].add_image('occ_order_S.2.pred', ind_pred_v.float() / 2, epoch) if config.dataset.connectivity == 8: viz_writers[idx].add_image('occ_order_SE.1.gt', order_gt_SE.float() / 2, epoch) viz_writers[idx].add_image('occ_order_NE.1.gt', order_gt_NE.float() / 2, epoch) viz_writers[idx].add_image('occ_order_SE.2.pred', ind_pred_SE.float() / 2, epoch) viz_writers[idx].add_image('occ_order_NE.2.pred', ind_pred_NE.float() / 2, epoch) viz_writers[idx].add_image('Occ_edge.1.gt', edge_gt[0], epoch) viz_writers[idx].add_image('Occ_edge.2.pred', edge_prob_pred[0], epoch) elif config.network.task_type == 'occ_ori': edge_gt = targets[-1].unsqueeze(1).float() # N,1,H,W edge_prob_pred = net_out[:, 0, :, :].unsqueeze(1) # N,1,H,W ori_gt = targets[0].unsqueeze(1).float() # N,1,H,W ori_gt = (torch.clamp(ori_gt, -PI, PI) + PI) / PI / 2 # [-PI,PI] => [0,1] ori_pred = net_out[:, 1, :, :].unsqueeze(1) # N,1,H,W ori_pred = (torch.clamp(ori_pred, -PI, PI) + PI) / PI / 2 # [-PI,PI] => [0,1] viz_writers[idx].add_image('Occ_edge.1.gt', edge_gt[0], epoch) viz_writers[idx].add_image('Occ_edge.2.pred', edge_prob_pred[0], epoch) viz_writers[idx].add_image('occ_ori.1.gt', ori_gt[0], epoch) viz_writers[idx].add_image('occ_ori.2.pred', ori_pred[0], epoch) def viz_and_save(net_in, net_out, img_abs_path, out_dir, config, epoch): """save current sample predictions in res dir w/ .mat predictions(if exist)""" file_name = img_abs_path[0].split('/')[-1] img_suffix = '.{}'.format(file_name.split('.')[-1]) img_name = file_name.replace(img_suffix, '') # set res dirs and paths valset_name = config.dataset.test_dataset root_eval_dir = os.path.join(out_dir, 'test_{}_{}'.format(epoch, valset_name)) lbl_eval_dir = os.path.join(root_eval_dir, 'res_mat') img_eval_dir = os.path.join(root_eval_dir, 'images') if not os.path.exists(root_eval_dir): os.makedirs(root_eval_dir) if not os.path.exists(lbl_eval_dir): os.makedirs(lbl_eval_dir) if not os.path.exists(img_eval_dir): os.makedirs(img_eval_dir) rgb_path = os.path.join(img_eval_dir, '{}_img_v.png'.format(img_name)) occ_edge_prob_path = os.path.join(img_eval_dir, '{}_lab_v_g.png'.format(img_name)) occ_ori_path = os.path.join(img_eval_dir, '{}_lab_v_g_ori.png'.format(img_name)) # get original img and save mean_values = torch.tensor(config.dataset.pixel_means, dtype=net_in.dtype).view(3, 1, 1) std_values = torch.tensor(config.dataset.pixel_stds, dtype=net_in.dtype).view(3, 1, 1) img_in_vis = net_in[0, :3, :, :].cpu() * std_values + mean_values img_in_vis = np.transpose(img_in_vis.numpy(), (1, 2, 0)).astype(np.float32) # 3,H,W => H,W,3 Image.fromarray((img_in_vis * 255.).astype(np.uint8)).save(rgb_path) H, W = img_in_vis.shape[:2] if config.network.task_type == 'occ_order': # gen occ edge/ori/order pred occ_edge_prob, occ_order_exist_prob = occ_order_pred_to_edge_prob(net_out, config.dataset.connectivity) # N,1,H,W occ_ori = occ_order_pred_to_ori(net_out, config.dataset.connectivity) # N,1,H,W _, occ_order_pair_E = net_out[0, :3, :, :].topk(1, dim=0, largest=True, sorted=True) # 1,H,W; [0,1,2] _, occ_order_pair_S = net_out[0, 3:6, :, :].topk(1, dim=0, largest=True, sorted=True) if config.dataset.connectivity == 8: _, occ_order_pair_SE = net_out[0, 6:9, :, :].topk(1, dim=0, largest=True, sorted=True) # 1,H,W; [0,1,2] _, occ_order_pair_NE = net_out[0, 9:12, :, :].topk(1, dim=0, largest=True, sorted=True) # get pixel-wise occlusion order maps (occ_edge + occ_order along directions) if config.dataset.connectivity == 4: occ_order_pix = order4_to_order_pixwise(occ_edge_prob, occ_order_pair_E, occ_order_pair_S) # H,W,9 elif config.dataset.connectivity == 8: occ_order_pix = order8_to_order_pixwise(occ_edge_prob, occ_order_pair_E, occ_order_pair_S, occ_order_pair_SE, occ_order_pair_NE) # H,W,9 # gen occ edge prob and occ ori for vis occ_edge_prob_vis = np.array(occ_edge_prob.cpu()[0, 0, :, :] * 255, dtype=np.uint8) # [0,1] => [0,255] occ_ori_vis = (np.array(occ_ori.cpu())[0, 0, :, :] / PI + 1) / 2. * 255. # [-PI,PI] => [0,255] # save pred occ order imgs occ_order_pair_E = np.array(occ_order_pair_E.cpu()).reshape(H, W).astype(np.float32) # 1,H,W => H,W,1 occ_order_pair_S = np.array(occ_order_pair_S.cpu()).reshape(H, W).astype(np.float32) # 1,H,W => H,W,1 if config.dataset.connectivity == 8: occ_order_pair_SE = np.array(occ_order_pair_SE.cpu()).reshape(H, W).astype(np.float32) # 1,H,W => H,W,1 occ_order_pair_NE = np.array(occ_order_pair_NE.cpu()).reshape(H, W).astype(np.float32) # 1,H,W => H,W,1 if not config.TEST.out_nms_res: # save imgs of occ order occ_order_E_path = os.path.join(img_eval_dir, '{}_lab_v_g_order_E.png'.format(img_name)) occ_order_S_path = os.path.join(img_eval_dir, '{}_lab_v_g_order_S.png'.format(img_name)) Image.fromarray((occ_order_pair_E / 2. * 255.).astype(np.uint8), mode='L').save(occ_order_E_path) Image.fromarray((occ_order_pair_S / 2. * 255.).astype(np.uint8), mode='L').save(occ_order_S_path) if config.dataset.connectivity == 8: occ_order_SE_path = os.path.join(img_eval_dir, '{}_lab_v_g_order_SE.png'.format(img_name)) occ_order_NE_path = os.path.join(img_eval_dir, '{}_lab_v_g_order_NE.png'.format(img_name)) Image.fromarray((occ_order_pair_SE / 2. * 255.).astype(np.uint8), mode='L').save(occ_order_SE_path) Image.fromarray((occ_order_pair_NE / 2. * 255.).astype(np.uint8), mode='L').save(occ_order_NE_path) # save pixel-wise occ order npz occ_order_pix_dir = os.path.join(lbl_eval_dir, 'test_order_pred') if not os.path.exists(occ_order_pix_dir): os.makedirs(occ_order_pix_dir) occ_order_pix_path = os.path.join(occ_order_pix_dir, '{}-order-pix.npz'.format(img_name)) np.savez_compressed(occ_order_pix_path, order=occ_order_pix.astype(np.int8)) # save occ_edge and occ_ori Image.fromarray(occ_edge_prob_vis, mode='L').save(occ_edge_prob_path) Image.fromarray(occ_ori_vis.astype(np.uint8), mode='L').save(occ_ori_path) else: # apply nms on occ_edge or occ_order (not used for evaluation in matlab) occ_edge_prob_nms_path = os.path.join(img_eval_dir, '{}_lab_v_g_nms.png'.format(img_name)) occ_order_E_nms_path = os.path.join(img_eval_dir, '{}_lab_v_g_order_E_nms.png'.format(img_name)) occ_order_S_nms_path = os.path.join(img_eval_dir, '{}_lab_v_g_order_S_nms.png'.format(img_name)) occ_order_SE_nms_path = os.path.join(img_eval_dir, '{}_lab_v_g_order_SE_nms.png'.format(img_name)) occ_order_NE_nms_path = os.path.join(img_eval_dir, '{}_lab_v_g_order_NE_nms.png'.format(img_name)) if config.TEST.nms_method == 'pixel-wise': # nms on occ_edge_prob and out occ_edge, occ_order, occ_ori occ_edge_prob_nms, occ_order_pix_nms, occ_order_pair_nms, occ_ori_nms = \ nms_edge_order_ori(occ_edge_prob_vis, occ_order_pix, occ_ori_vis, config.TEST.occ_thresh) occ_ori_nms_path = os.path.join(img_eval_dir, '{}_lab_v_g_ori_nms.png'.format(img_name)) Image.fromarray(occ_ori_nms.astype(np.uint8), mode='L').save(occ_ori_nms_path) elif config.TEST.nms_method == 'pairwise': # nms occ_order_prob and out occ_edge, occ_order (not for eval) occ_order_exist_prob_vis = np.array(occ_order_exist_prob.cpu()[0, :, :, :]*255, dtype=np.uint8).transpose((1, 2, 0)) # [0,1] => [0,255], HxWxC occ_order_pair = np.stack((occ_order_pair_E, occ_order_pair_S, occ_order_pair_SE, occ_order_pair_NE), axis=2) # H,W,4 occ_order_pair_nms, occ_edge_prob_nms = nms_occ_order(occ_order_exist_prob_vis, occ_order_pair, config.TEST.occ_thresh) occ_order_pix_nms = order8_to_order_pixwise_np(occ_edge_prob_nms, occ_order_pair_nms) # save imgs of occ_edge and occ_order Image.fromarray((occ_edge_prob_nms * 255).astype(np.uint8), mode='L').save(occ_edge_prob_nms_path) Image.fromarray(((occ_order_pair_nms[:, :, 0]+1)/2.*255.).astype(np.uint8), mode='L').save(occ_order_E_nms_path) Image.fromarray(((occ_order_pair_nms[:, :, 1]+1)/2.*255.).astype(np.uint8), mode='L').save(occ_order_S_nms_path) Image.fromarray(((occ_order_pair_nms[:, :, 2]+1)/2.*255.).astype(np.uint8), mode='L').save(occ_order_SE_nms_path) Image.fromarray(((occ_order_pair_nms[:, :, 3]+1)/2.*255.).astype(np.uint8), mode='L').save(occ_order_NE_nms_path) # save pixel-wise occ_order after nms occ_order_nms_dir = os.path.join(lbl_eval_dir, 'test_order_nms_pred') if not os.path.exists(occ_order_nms_dir): os.makedirs(occ_order_nms_dir) occ_order_pix_nms_path = os.path.join(occ_order_nms_dir, '{}-order-pix.npz'.format(img_name)) np.savez_compressed(occ_order_pix_nms_path, order=occ_order_pix_nms.astype(np.int8)) elif config.network.task_type == 'occ_ori': occ_edge_prob_vis = np.array(net_out.cpu()[0, 0, :, :] * 255., dtype=np.uint8) # [0, 1] => [0, 255] occ_ori = torch.clamp(net_out[0, 1, :, :], -PI, PI) occ_ori_vis = (np.array(occ_ori.cpu()) / PI + 1) / 2. * 255. # [-PI, PI] => [0, 255] Image.fromarray(occ_edge_prob_vis, mode='L').save(occ_edge_prob_path) Image.fromarray(occ_ori_vis.astype(np.uint8), mode='L').save(occ_ori_path) # save .mat res for edge/ori eval if matlab GT exists if config.dataset.val_w_mat_gt: matlab_tool = MATLAB(root_eval_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (valset_name, 'test', epoch)) preds_list = [occ_edge_prob_vis, occ_ori_vis] save_res_matlab(matlab_tool, {'lab_v_g': preds_list}, img_name) def plot_conf_mat(confusion_mat, out_path, epoch, title=''): """plot confusion matrix and save""" fig_conf = plt.figure() axe = fig_conf.add_subplot(111) cax = axe.matshow(confusion_mat, vmin=0, vmax=1) fig_conf.colorbar(cax), plt.xlabel('Predicted class'), plt.ylabel('GT class') axe.set_title(title) fig_conf.savefig(os.path.join(out_path, '{}_{}.png'.format(title, epoch))) def check_occ_order_pred(order_gt, order_pred): """ convert gt and pred to colormap to check 3-class pairwise occ order pred :param order_gt: tensor H,W :param order_pred: tensor H,W :return: numpy 3,H,W """ H, W = order_gt.shape order_gt = np.array(order_gt.cpu()).reshape(H, W) order_pred = np.array(order_pred.cpu()) order_color = np.ones((H, W, 3)) / 2 # gray for no occ order_color[order_gt == 0, :] = np.array([0, 0, 0]) # black for class 0 order_color[order_gt == 2, :] = np.array([1, 1, 1]) # white for class 2 order_color[(order_gt == 0) * (order_pred == 0), :] = np.array([0, 1, 0]) # green for Correct pred order_color[(order_gt == 0) * (order_pred == 2), :] = np.array([1, 0, 0]) # red for inverse cls pred order_color[(order_gt == 1) * (order_pred != 1), :] = np.array([1, 0, 0]) order_color[(order_gt == 2) * (order_pred == 2), :] = np.array([0, 1, 0]) order_color[(order_gt == 2) * (order_pred == 0), :] = np.array([1, 0, 0]) return order_color.astype(np.float32).transpose((2, 0, 1)) # H,W,3 => 3,H,W def save_res_matlab(matlab_tool, labs_pred, image_path): """ save curr sample pred and gt as .mat for eval in matlab :param matlab_tool: :param labs_pred: dict of preds {label: value} ; value [0~255] :param images_path: :return: """ PI = 3.1416 short_path = ntpath.basename(image_path) # return file name f_name = os.path.splitext(short_path)[0] # rm .ext if 'rgb' in f_name: f_name = f_name.replace('-rgb', '') org_gt_name = '{}{}'.format(f_name, matlab_tool.gt_type) org_gt_path = os.path.join(matlab_tool.org_gt_dir, org_gt_name) out_gt_path = os.path.join(matlab_tool.out_gt_dir, '{}.mat'.format(f_name)) for out_label, preds_np in labs_pred.items(): pred_name = '%s_%s.mat' % (f_name, out_label) out_pred_path = os.path.join(matlab_tool.out_pred_dir, pred_name) pred_edge = preds_np[0] # [0,255] pred_ori = preds_np[1] # [0,255] H, W = pred_edge.shape[:2] if '.mat' in org_gt_name: org_gt = sio.loadmat(org_gt_path) gts = org_gt['gtStruct']['gt_theta'][0][0][0] out_gt = np.zeros((H, W, gts.shape[0] * 2)) for anno_idx in range(0, gts.shape[0]): # annotator idx edge_map = gts[anno_idx][:, :, 0] # [0, 1] ori_map = gts[anno_idx][:, :, 1] # [-PI, PI] out_gt[:, :, anno_idx * 2] = edge_map out_gt[:, :, anno_idx * 2 + 1] = ori_map elif '.png' in org_gt_name: # .png gt edge_map = cv2.imread(org_gt_path, cv2.IMREAD_UNCHANGED).astype(np.float32) / 255 # [0, 255] => [0, 1] if len(edge_map.shape) == 3: edge_map = edge_map[:, :, 0] ori_map = np.zeros((H, W)) out_gt = np.zeros((H, W, 2)) out_gt[:, :, 0] = edge_map out_gt[:, :, 1] = ori_map sio.savemat(out_gt_path, {'gt_edge_theta': out_gt}) pred_edge = pred_edge / 255.0 # [0, 255] => [0, 1] pred_ori = pred_ori.astype(np.float32) / 255. * 2 * PI - PI # [0, 255] => [-PI, PI] sio.savemat(out_pred_path, {'edge_ori': {'edge': pred_edge, 'ori': pred_ori}}) class MATLAB: def __init__(self, res_dir, valset_name): self.title = valset_name self.res_dir = res_dir self.out_root_dir = os.path.join(self.res_dir, 'res_mat') self.out_gt_dir = os.path.join(self.out_root_dir, 'test_gt') self.out_pred_dir = os.path.join(self.out_root_dir, 'test_pred') if 'nyu' in valset_name: self.org_gt_dir = os.path.join(curr_path, '../..', 'data/NYUv2_OR/data/') self.gt_type = '.mat' elif 'BSDSownership' in valset_name: self.org_gt_dir = os.path.join(curr_path, '../..', 'data/BSDS300/BSDS_theta/testOri_mat') self.gt_type = '.mat' elif 'ibims' in valset_name or 'interiornet' in valset_name: self.org_gt_dir = os.path.join(curr_path, '../..', 'data/iBims1_OR/data/') self.gt_type = '.mat' if not os.path.exists(self.out_root_dir): os.makedirs(self.out_root_dir) if not os.path.exists(self.out_gt_dir): os.makedirs(self.out_gt_dir) if not os.path.exists(self.out_pred_dir): os.makedirs(self.out_pred_dir)
[ "lib.dataset.gen_label_methods.occ_order_pred_to_ori", "scipy.io.loadmat", "numpy.ones", "matplotlib.pyplot.figure", "lib.dataset.gen_label_methods.occ_order_pred_to_edge_prob", "os.path.join", "lib.dataset.gen_label_methods.order8_to_order_pixwise_np", "sys.path.append", "lib.dataset.gen_label_methods.nms_occ_order", "os.path.dirname", "os.path.exists", "lib.dataset.gen_label_methods.order8_to_order_pixwise", "numpy.stack", "lib.dataset.gen_label_methods.nms_edge_order_ori", "torch.clamp", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.switch_backend", "lib.dataset.gen_label_methods.order4_to_order_pixwise", "ntpath.basename", "os.makedirs", "numpy.zeros", "scipy.io.savemat", "cv2.imread", "numpy.array", "os.path.splitext", "PIL.Image.fromarray", "matplotlib.pyplot.xlabel", "torch.tensor" ]
[((399, 424), 'matplotlib.pyplot.switch_backend', 'plt.switch_backend', (['"""agg"""'], {}), "('agg')\n", (417, 424), True, 'import matplotlib.pyplot as plt\n'), ((463, 487), 'sys.path.append', 'sys.path.append', (['"""../.."""'], {}), "('../..')\n", (478, 487), False, 'import sys\n'), ((741, 766), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (756, 766), False, 'import os\n'), ((7087, 7125), 'os.path.join', 'os.path.join', (['root_eval_dir', '"""res_mat"""'], {}), "(root_eval_dir, 'res_mat')\n", (7099, 7125), False, 'import os\n'), ((7145, 7182), 'os.path.join', 'os.path.join', (['root_eval_dir', '"""images"""'], {}), "(root_eval_dir, 'images')\n", (7157, 7182), False, 'import os\n'), ((15667, 15679), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (15677, 15679), True, 'import matplotlib.pyplot as plt\n'), ((16409, 16428), 'numpy.array', 'np.array', (['[0, 0, 0]'], {}), '([0, 0, 0])\n', (16417, 16428), True, 'import numpy as np\n'), ((16486, 16505), 'numpy.array', 'np.array', (['[1, 1, 1]'], {}), '([1, 1, 1])\n', (16494, 16505), True, 'import numpy as np\n'), ((16585, 16604), 'numpy.array', 'np.array', (['[0, 1, 0]'], {}), '([0, 1, 0])\n', (16593, 16604), True, 'import numpy as np\n'), ((16689, 16708), 'numpy.array', 'np.array', (['[1, 0, 0]'], {}), '([1, 0, 0])\n', (16697, 16708), True, 'import numpy as np\n'), ((16795, 16814), 'numpy.array', 'np.array', (['[1, 0, 0]'], {}), '([1, 0, 0])\n', (16803, 16814), True, 'import numpy as np\n'), ((16873, 16892), 'numpy.array', 'np.array', (['[0, 1, 0]'], {}), '([0, 1, 0])\n', (16881, 16892), True, 'import numpy as np\n'), ((16951, 16970), 'numpy.array', 'np.array', (['[1, 0, 0]'], {}), '([1, 0, 0])\n', (16959, 16970), True, 'import numpy as np\n'), ((17349, 17376), 'ntpath.basename', 'ntpath.basename', (['image_path'], {}), '(image_path)\n', (17364, 17376), False, 'import ntpath\n'), ((17592, 17641), 'os.path.join', 'os.path.join', (['matlab_tool.org_gt_dir', 'org_gt_name'], {}), '(matlab_tool.org_gt_dir, org_gt_name)\n', (17604, 17641), False, 'import os\n'), ((4815, 4880), 'lib.dataset.gen_label_methods.occ_order_pred_to_edge_prob', 'occ_order_pred_to_edge_prob', (['net_out', 'config.dataset.connectivity'], {}), '(net_out, config.dataset.connectivity)\n', (4842, 4880), False, 'from lib.dataset.gen_label_methods import order4_to_order_pixwise, order8_to_order_pixwise, occ_order_pred_to_edge_prob, occ_order_pred_to_ori, nms_edge_order_ori, nms_occ_order, order8_to_order_pixwise_np\n'), ((7194, 7223), 'os.path.exists', 'os.path.exists', (['root_eval_dir'], {}), '(root_eval_dir)\n', (7208, 7223), False, 'import os\n'), ((7225, 7251), 'os.makedirs', 'os.makedirs', (['root_eval_dir'], {}), '(root_eval_dir)\n', (7236, 7251), False, 'import os\n'), ((7263, 7291), 'os.path.exists', 'os.path.exists', (['lbl_eval_dir'], {}), '(lbl_eval_dir)\n', (7277, 7291), False, 'import os\n'), ((7293, 7318), 'os.makedirs', 'os.makedirs', (['lbl_eval_dir'], {}), '(lbl_eval_dir)\n', (7304, 7318), False, 'import os\n'), ((7330, 7358), 'os.path.exists', 'os.path.exists', (['img_eval_dir'], {}), '(img_eval_dir)\n', (7344, 7358), False, 'import os\n'), ((7360, 7385), 'os.makedirs', 'os.makedirs', (['img_eval_dir'], {}), '(img_eval_dir)\n', (7371, 7385), False, 'import os\n'), ((8257, 8322), 'lib.dataset.gen_label_methods.occ_order_pred_to_edge_prob', 'occ_order_pred_to_edge_prob', (['net_out', 'config.dataset.connectivity'], {}), '(net_out, config.dataset.connectivity)\n', (8284, 8322), False, 'from lib.dataset.gen_label_methods import order4_to_order_pixwise, order8_to_order_pixwise, occ_order_pred_to_edge_prob, occ_order_pred_to_ori, nms_edge_order_ori, nms_occ_order, order8_to_order_pixwise_np\n'), ((8352, 8411), 'lib.dataset.gen_label_methods.occ_order_pred_to_ori', 'occ_order_pred_to_ori', (['net_out', 'config.dataset.connectivity'], {}), '(net_out, config.dataset.connectivity)\n', (8373, 8411), False, 'from lib.dataset.gen_label_methods import order4_to_order_pixwise, order8_to_order_pixwise, occ_order_pred_to_edge_prob, occ_order_pred_to_ori, nms_edge_order_ori, nms_occ_order, order8_to_order_pixwise_np\n'), ((15797, 15826), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Predicted class"""'], {}), "('Predicted class')\n", (15807, 15826), True, 'import matplotlib.pyplot as plt\n'), ((15828, 15850), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""GT class"""'], {}), "('GT class')\n", (15838, 15850), True, 'import matplotlib.pyplot as plt\n'), ((16331, 16349), 'numpy.ones', 'np.ones', (['(H, W, 3)'], {}), '((H, W, 3))\n', (16338, 16349), True, 'import numpy as np\n'), ((17410, 17438), 'os.path.splitext', 'os.path.splitext', (['short_path'], {}), '(short_path)\n', (17426, 17438), False, 'import os\n'), ((17851, 17900), 'os.path.join', 'os.path.join', (['matlab_tool.out_pred_dir', 'pred_name'], {}), '(matlab_tool.out_pred_dir, pred_name)\n', (17863, 17900), False, 'import os\n'), ((18925, 18976), 'scipy.io.savemat', 'sio.savemat', (['out_gt_path', "{'gt_edge_theta': out_gt}"], {}), "(out_gt_path, {'gt_edge_theta': out_gt})\n", (18936, 18976), True, 'import scipy.io as sio\n'), ((19140, 19218), 'scipy.io.savemat', 'sio.savemat', (['out_pred_path', "{'edge_ori': {'edge': pred_edge, 'ori': pred_ori}}"], {}), "(out_pred_path, {'edge_ori': {'edge': pred_edge, 'ori': pred_ori}})\n", (19151, 19218), True, 'import scipy.io as sio\n'), ((19373, 19410), 'os.path.join', 'os.path.join', (['self.res_dir', '"""res_mat"""'], {}), "(self.res_dir, 'res_mat')\n", (19385, 19410), False, 'import os\n'), ((19437, 19479), 'os.path.join', 'os.path.join', (['self.out_root_dir', '"""test_gt"""'], {}), "(self.out_root_dir, 'test_gt')\n", (19449, 19479), False, 'import os\n'), ((19508, 19552), 'os.path.join', 'os.path.join', (['self.out_root_dir', '"""test_pred"""'], {}), "(self.out_root_dir, 'test_pred')\n", (19520, 19552), False, 'import os\n'), ((3555, 3615), 'torch.tensor', 'torch.tensor', (['config.dataset.pixel_means'], {'dtype': 'inputs.dtype'}), '(config.dataset.pixel_means, dtype=inputs.dtype)\n', (3567, 3615), False, 'import torch\n'), ((3647, 3706), 'torch.tensor', 'torch.tensor', (['config.dataset.pixel_stds'], {'dtype': 'inputs.dtype'}), '(config.dataset.pixel_stds, dtype=inputs.dtype)\n', (3659, 3706), False, 'import torch\n'), ((7684, 7744), 'torch.tensor', 'torch.tensor', (['config.dataset.pixel_means'], {'dtype': 'net_in.dtype'}), '(config.dataset.pixel_means, dtype=net_in.dtype)\n', (7696, 7744), False, 'import torch\n'), ((7777, 7836), 'torch.tensor', 'torch.tensor', (['config.dataset.pixel_stds'], {'dtype': 'net_in.dtype'}), '(config.dataset.pixel_stds, dtype=net_in.dtype)\n', (7789, 7836), False, 'import torch\n'), ((9050, 9124), 'lib.dataset.gen_label_methods.order4_to_order_pixwise', 'order4_to_order_pixwise', (['occ_edge_prob', 'occ_order_pair_E', 'occ_order_pair_S'], {}), '(occ_edge_prob, occ_order_pair_E, occ_order_pair_S)\n', (9073, 9124), False, 'from lib.dataset.gen_label_methods import order4_to_order_pixwise, order8_to_order_pixwise, occ_order_pred_to_edge_prob, occ_order_pred_to_ori, nms_edge_order_ori, nms_occ_order, order8_to_order_pixwise_np\n'), ((11257, 11302), 'os.path.join', 'os.path.join', (['lbl_eval_dir', '"""test_order_pred"""'], {}), "(lbl_eval_dir, 'test_order_pred')\n", (11269, 11302), False, 'import os\n'), ((14365, 14414), 'os.path.join', 'os.path.join', (['lbl_eval_dir', '"""test_order_nms_pred"""'], {}), "(lbl_eval_dir, 'test_order_nms_pred')\n", (14377, 14414), False, 'import os\n'), ((14905, 14946), 'torch.clamp', 'torch.clamp', (['net_out[0, 1, :, :]', '(-PI)', 'PI'], {}), '(net_out[0, 1, :, :], -PI, PI)\n', (14916, 14946), False, 'import torch\n'), ((18079, 18103), 'scipy.io.loadmat', 'sio.loadmat', (['org_gt_path'], {}), '(org_gt_path)\n', (18090, 18103), True, 'import scipy.io as sio\n'), ((18183, 18217), 'numpy.zeros', 'np.zeros', (['(H, W, gts.shape[0] * 2)'], {}), '((H, W, gts.shape[0] * 2))\n', (18191, 18217), True, 'import numpy as np\n'), ((19617, 19672), 'os.path.join', 'os.path.join', (['curr_path', '"""../.."""', '"""data/NYUv2_OR/data/"""'], {}), "(curr_path, '../..', 'data/NYUv2_OR/data/')\n", (19629, 19672), False, 'import os\n'), ((20094, 20127), 'os.path.exists', 'os.path.exists', (['self.out_root_dir'], {}), '(self.out_root_dir)\n', (20108, 20127), False, 'import os\n'), ((20129, 20159), 'os.makedirs', 'os.makedirs', (['self.out_root_dir'], {}), '(self.out_root_dir)\n', (20140, 20159), False, 'import os\n'), ((20175, 20206), 'os.path.exists', 'os.path.exists', (['self.out_gt_dir'], {}), '(self.out_gt_dir)\n', (20189, 20206), False, 'import os\n'), ((20208, 20236), 'os.makedirs', 'os.makedirs', (['self.out_gt_dir'], {}), '(self.out_gt_dir)\n', (20219, 20236), False, 'import os\n'), ((20252, 20285), 'os.path.exists', 'os.path.exists', (['self.out_pred_dir'], {}), '(self.out_pred_dir)\n', (20266, 20285), False, 'import os\n'), ((20287, 20317), 'os.makedirs', 'os.makedirs', (['self.out_pred_dir'], {}), '(self.out_pred_dir)\n', (20298, 20317), False, 'import os\n'), ((9209, 9325), 'lib.dataset.gen_label_methods.order8_to_order_pixwise', 'order8_to_order_pixwise', (['occ_edge_prob', 'occ_order_pair_E', 'occ_order_pair_S', 'occ_order_pair_SE', 'occ_order_pair_NE'], {}), '(occ_edge_prob, occ_order_pair_E, occ_order_pair_S,\n occ_order_pair_SE, occ_order_pair_NE)\n', (9232, 9325), False, 'from lib.dataset.gen_label_methods import order4_to_order_pixwise, order8_to_order_pixwise, occ_order_pred_to_edge_prob, occ_order_pred_to_ori, nms_edge_order_ori, nms_occ_order, order8_to_order_pixwise_np\n'), ((11322, 11355), 'os.path.exists', 'os.path.exists', (['occ_order_pix_dir'], {}), '(occ_order_pix_dir)\n', (11336, 11355), False, 'import os\n'), ((11373, 11403), 'os.makedirs', 'os.makedirs', (['occ_order_pix_dir'], {}), '(occ_order_pix_dir)\n', (11384, 11403), False, 'import os\n'), ((12675, 12769), 'lib.dataset.gen_label_methods.nms_edge_order_ori', 'nms_edge_order_ori', (['occ_edge_prob_vis', 'occ_order_pix', 'occ_ori_vis', 'config.TEST.occ_thresh'], {}), '(occ_edge_prob_vis, occ_order_pix, occ_ori_vis, config.\n TEST.occ_thresh)\n', (12693, 12769), False, 'from lib.dataset.gen_label_methods import order4_to_order_pixwise, order8_to_order_pixwise, occ_order_pred_to_edge_prob, occ_order_pred_to_ori, nms_edge_order_ori, nms_occ_order, order8_to_order_pixwise_np\n'), ((14434, 14467), 'os.path.exists', 'os.path.exists', (['occ_order_nms_dir'], {}), '(occ_order_nms_dir)\n', (14448, 14467), False, 'import os\n'), ((14485, 14515), 'os.makedirs', 'os.makedirs', (['occ_order_nms_dir'], {}), '(occ_order_nms_dir)\n', (14496, 14515), False, 'import os\n'), ((18781, 18797), 'numpy.zeros', 'np.zeros', (['(H, W)'], {}), '((H, W))\n', (18789, 18797), True, 'import numpy as np\n'), ((18819, 18838), 'numpy.zeros', 'np.zeros', (['(H, W, 2)'], {}), '((H, W, 2))\n', (18827, 18838), True, 'import numpy as np\n'), ((19782, 19853), 'os.path.join', 'os.path.join', (['curr_path', '"""../.."""', '"""data/BSDS300/BSDS_theta/testOri_mat"""'], {}), "(curr_path, '../..', 'data/BSDS300/BSDS_theta/testOri_mat')\n", (19794, 19853), False, 'import os\n'), ((11648, 11692), 'PIL.Image.fromarray', 'Image.fromarray', (['occ_edge_prob_vis'], {'mode': '"""L"""'}), "(occ_edge_prob_vis, mode='L')\n", (11663, 11692), False, 'from PIL import Image\n'), ((13278, 13374), 'numpy.stack', 'np.stack', (['(occ_order_pair_E, occ_order_pair_S, occ_order_pair_SE, occ_order_pair_NE)'], {'axis': '(2)'}), '((occ_order_pair_E, occ_order_pair_S, occ_order_pair_SE,\n occ_order_pair_NE), axis=2)\n', (13286, 13374), True, 'import numpy as np\n'), ((13436, 13515), 'lib.dataset.gen_label_methods.nms_occ_order', 'nms_occ_order', (['occ_order_exist_prob_vis', 'occ_order_pair', 'config.TEST.occ_thresh'], {}), '(occ_order_exist_prob_vis, occ_order_pair, config.TEST.occ_thresh)\n', (13449, 13515), False, 'from lib.dataset.gen_label_methods import order4_to_order_pixwise, order8_to_order_pixwise, occ_order_pred_to_edge_prob, occ_order_pred_to_ori, nms_edge_order_ori, nms_occ_order, order8_to_order_pixwise_np\n'), ((13552, 13617), 'lib.dataset.gen_label_methods.order8_to_order_pixwise_np', 'order8_to_order_pixwise_np', (['occ_edge_prob_nms', 'occ_order_pair_nms'], {}), '(occ_edge_prob_nms, occ_order_pair_nms)\n', (13578, 13617), False, 'from lib.dataset.gen_label_methods import order4_to_order_pixwise, order8_to_order_pixwise, occ_order_pred_to_edge_prob, occ_order_pred_to_ori, nms_edge_order_ori, nms_occ_order, order8_to_order_pixwise_np\n'), ((15055, 15099), 'PIL.Image.fromarray', 'Image.fromarray', (['occ_edge_prob_vis'], {'mode': '"""L"""'}), "(occ_edge_prob_vis, mode='L')\n", (15070, 15099), False, 'from PIL import Image\n'), ((19987, 20043), 'os.path.join', 'os.path.join', (['curr_path', '"""../.."""', '"""data/iBims1_OR/data/"""'], {}), "(curr_path, '../..', 'data/iBims1_OR/data/')\n", (19999, 20043), False, 'import os\n'), ((6090, 6118), 'torch.clamp', 'torch.clamp', (['ori_gt', '(-PI)', 'PI'], {}), '(ori_gt, -PI, PI)\n', (6101, 6118), False, 'import torch\n'), ((6238, 6268), 'torch.clamp', 'torch.clamp', (['ori_pred', '(-PI)', 'PI'], {}), '(ori_pred, -PI, PI)\n', (6249, 6268), False, 'import torch\n'), ((18596, 18641), 'cv2.imread', 'cv2.imread', (['org_gt_path', 'cv2.IMREAD_UNCHANGED'], {}), '(org_gt_path, cv2.IMREAD_UNCHANGED)\n', (18606, 18641), False, 'import cv2\n')]
import numpy from chainer import cuda from chainer import optimizer class RMSpropGraves(optimizer.Optimizer): """<NAME> RMSprop. See http://arxiv.org/abs/1308.0850 """ def __init__(self, lr=1e-4, alpha=0.95, momentum=0.9, eps=1e-4): # Default parameter values are the ones in the original paper. self.lr = lr self.alpha = alpha self.eps = eps self.momentum = momentum def init_state_cpu(self, param, grad): n = numpy.zeros_like(param) g = numpy.zeros_like(param) delta = numpy.zeros_like(param) return n, g, delta def init_state_gpu(self, param, grad): n = cuda.zeros_like(param) g = cuda.zeros_like(param) delta = cuda.zeros_like(param) return n, g, delta def update_one_cpu(self, param, grad, state): n, g, delta = state n *= self.alpha n += (1 - self.alpha) * grad * grad g *= self.alpha g += (1 - self.alpha) * grad delta *= self.momentum delta -= self.lr * grad / numpy.sqrt(n - g * g + self.eps) param += delta def update_one_gpu(self, param, grad, state): n, g, delta = state cuda.elementwise( 'T grad, T lr, T alpha, T momentum, T eps', 'T param, T avg_n, T avg_g, T delta', '''avg_n = alpha * avg_n + (1 - alpha) * grad * grad; avg_g = alpha * avg_g + (1 - alpha) * grad; delta = delta * momentum - lr * grad * rsqrt(avg_n - avg_g * avg_g + eps); param += delta;''', 'rmsprop_graves')(grad, self.lr, self.alpha, self.momentum, self.eps, param, n, g, delta)
[ "chainer.cuda.elementwise", "numpy.zeros_like", "chainer.cuda.zeros_like", "numpy.sqrt" ]
[((486, 509), 'numpy.zeros_like', 'numpy.zeros_like', (['param'], {}), '(param)\n', (502, 509), False, 'import numpy\n'), ((522, 545), 'numpy.zeros_like', 'numpy.zeros_like', (['param'], {}), '(param)\n', (538, 545), False, 'import numpy\n'), ((562, 585), 'numpy.zeros_like', 'numpy.zeros_like', (['param'], {}), '(param)\n', (578, 585), False, 'import numpy\n'), ((669, 691), 'chainer.cuda.zeros_like', 'cuda.zeros_like', (['param'], {}), '(param)\n', (684, 691), False, 'from chainer import cuda\n'), ((704, 726), 'chainer.cuda.zeros_like', 'cuda.zeros_like', (['param'], {}), '(param)\n', (719, 726), False, 'from chainer import cuda\n'), ((743, 765), 'chainer.cuda.zeros_like', 'cuda.zeros_like', (['param'], {}), '(param)\n', (758, 765), False, 'from chainer import cuda\n'), ((1066, 1098), 'numpy.sqrt', 'numpy.sqrt', (['(n - g * g + self.eps)'], {}), '(n - g * g + self.eps)\n', (1076, 1098), False, 'import numpy\n'), ((1209, 1595), 'chainer.cuda.elementwise', 'cuda.elementwise', (['"""T grad, T lr, T alpha, T momentum, T eps"""', '"""T param, T avg_n, T avg_g, T delta"""', '"""avg_n = alpha * avg_n + (1 - alpha) * grad * grad;\n avg_g = alpha * avg_g + (1 - alpha) * grad;\n delta = delta * momentum -\n lr * grad * rsqrt(avg_n - avg_g * avg_g + eps);\n param += delta;"""', '"""rmsprop_graves"""'], {}), '(\'T grad, T lr, T alpha, T momentum, T eps\',\n \'T param, T avg_n, T avg_g, T delta\',\n """avg_n = alpha * avg_n + (1 - alpha) * grad * grad;\n avg_g = alpha * avg_g + (1 - alpha) * grad;\n delta = delta * momentum -\n lr * grad * rsqrt(avg_n - avg_g * avg_g + eps);\n param += delta;"""\n , \'rmsprop_graves\')\n', (1225, 1595), False, 'from chainer import cuda\n')]
import csv import tqdm import logging import numpy as np from os import path from collections import deque import chainer import chainerrl from chainer import serializers from chainer.backends import cuda from src.abstract.agent import Agent from src.finger.model import QFunction from src.utilities.behaviour import AgentBehaviour from src.visualise.visualise import visualise_agent from src.finger.finger_agent_environment import FingerAgentEnv class FingerAgent(Agent): def __init__(self, layout_config, agent_params, finger, train, verbose=True): self.logger = logging.getLogger(__name__) self.env = FingerAgentEnv(layout_config, agent_params, finger, train) # Agent Configuration. optimizer_name = 'Adam' if agent_params is None else agent_params['optimizer_name'] lr = 0.001 if agent_params is None else agent_params['learning_rate'] dropout_ratio = 0.2 if agent_params is None else int(agent_params['dropout_ratio']) n_units = 512 if agent_params is None else int(agent_params['n_units']) device_id = 0 if agent_params is None else int(agent_params['device_id']) pre_load = False if agent_params is None else bool(agent_params['pre_load']) self.gpu = True if agent_params is None else bool(agent_params['gpu']) self.save_path = path.join('data', 'models', 'finger') if agent_params is None \ else agent_params['save_path'] gamma = 0.99 if agent_params is None else float(agent_params['discount']) replay_size = 10 ** 6 if agent_params is None else int(agent_params['replay_buffer']) self.episodes = 1000000 if agent_params is None else int(agent_params['episodes']) self.log_interval = 1000 if agent_params is None else int(agent_params['log_interval']) self.log_filename = agent_params['log_file'] self.verbose = verbose self.q_func = QFunction(embed_size=self.env.observation_space.shape[0], dropout_ratio=dropout_ratio, n_actions=self.env.action_space.n, n_hidden_channels=n_units) if pre_load: serializers.load_npz(path.join(self.save_path, 'best', 'model.npz'), self.q_func) if self.gpu: self.q_func.to_gpu(device_id) if optimizer_name == 'Adam': self.optimizer = chainer.optimizers.Adam(alpha=lr) elif optimizer_name == 'RMSprop': self.optimizer = chainer.optimizers.RMSprop(lr=lr) else: self.optimizer = chainer.optimizers.MomentumSGD(lr=lr) self.optimizer.setup(self.q_func) # Use epsilon-greedy for exploration/exploitation with linear decay. explorer = chainerrl.explorers.LinearDecayEpsilonGreedy(start_epsilon=0.1, end_epsilon=0.01, decay_steps=int(self.episodes / 4), random_action_func=self.env.action_space.sample) # DQN uses Experience Replay. replay_buffer = chainerrl.replay_buffers.prioritized.PrioritizedReplayBuffer(capacity=replay_size) phi = lambda x: x.astype(np.float32, copy=False) # Now create an agent that will interact with the environment. self.agent = chainerrl.agents.DoubleDQN(q_function=self.q_func, optimizer=self.optimizer, replay_buffer=replay_buffer, gamma=gamma, explorer=explorer, replay_start_size=50000, update_interval=1000, target_update_interval=1000, target_update_method='soft', phi=phi) self.error_list = deque([0], maxlen=1000) self.reward_list = deque([0], maxlen=1000) if train: chainer.config.train = True if self.verbose: self.pbar = tqdm.tqdm(total=self.episodes, ascii=True, bar_format='{l_bar}{n}, {remaining}\n') else: self.pbar = tqdm.tqdm(total=self.episodes) else: chainer.config.train = False self.behaviour_log = AgentBehaviour("finger") def train(self, episodes): """ Function to start agent training. Finger agent uses Double DQN with Prioritised Experience Reply. :param episodes: number of training trials to run. """ progress_bar = ProgressBar(self.pbar, episodes) chainerrl.experiments.train_agent_with_evaluation( agent=self.agent, env=self.env, steps=episodes, # Train the agent for n steps eval_n_steps=None, # We evaluate for episodes, not time eval_n_episodes=10, # 10 episodes are sampled for each evaluation eval_interval=self.log_interval, # Evaluate the agent after every 1000 steps outdir=self.save_path, # Save everything to 'data/models' directory train_max_episode_len=5, # Maximum length of each episode successful_score=4.5, # Stopping rule logger=self.logger, step_hooks=[progress_bar] ) def save_log_data(self, data, mode='w'): """ Function to save intermediate training logs. :param data: list of training data to save for evaluation later. :param mode: open file in write or append mode. """ with open(path.join("data", "training", self.log_filename), mode) as f: writer = csv.writer(f) writer.writerow(data) def evaluate(self, sentence, **kwargs): sat_desired = kwargs['sat_desired'] # run the sentence. eval_log = self.type_sentence(sentence, sat_desired, True) with open(path.join("data", "output", self.log_filename), "w", newline="") as f: writer = csv.writer(f) writer.writerows(eval_log) self.behaviour_log.save() self.logger.info("Generating Video.") # TODO: This is from legacy code. Need to update. visualise_agent(True, False, path.join("data", "output", self.log_filename), None, path.join("data", "output", "FingerAgent.mp4")) def type_char(self, char, sat_d, is_eye_present=False): """ finger movement to a single character. :param char: character to type. :param sat_d: desired SAT to type with. :param is_eye_present: true if eyes are on target else false """ # set target char key to press. self.env.target = char self.env.hit = 0 # set the desired sat to use. self.env.sat_desired = self.env.sat_desired_list.index(sat_d) # set vision status. self.env.vision_status = is_eye_present # calculate finger location estimate. self.env.calc_max_finger_loc() # set belief with current evidence. self.env.set_belief() # choose the best action with max Q-values action, q_val = self.choose_best_action() # act on the action. _, reward, done, info = self.env.step(action) return info['mt'], reward, done, q_val def type_sentence(self, sentence, sat_desired, is_eye_present=False): """ Types the sentence using only the finger. :param is_eye_present: true if eyes are on target else false :param sat_desired: hwo accurately to type. value between 0 (low accuracy) to 1 (high accuracy). :param sentence: string to be typed with finger. :return: test_data : list with eye and action data for the typed sentence. """ self.env.reset() test_data = [] self.logger.debug("Typing: %s" % sentence) # Initial data to append to the test data which will be saved and used in visualization test_data.append(["model time", "fingerloc x", "fingerloc y", "action x", "action y", "type"]) test_data.append([round(self.env.model_time, 4), self.env.finger_location[0], self.env.finger_location[1], "", "", "start"]) self.behaviour_log.clear_data() for char in sentence: self.env.action_type = 0 # setting ballistic action # Keep taking actions with same target until peck or max step reached. for i in range(10): mt, reward, done, q_val = self.type_char(char, sat_desired, is_eye_present) self.behaviour_log.add_datapoint(time=self.env.model_time, char=char, sentence=sentence, sat_true=self.env.sat_true_list[self.env.sat_true], sat_desired=sat_desired, qval=q_val, actiontype=self.env.action_type, reward=reward, entropy=self.env.finger_loc_entropy, accuracy=self.env.hit) if self.env.action_type == 0: test_data.append([round(self.env.model_time, 4), self.env.finger_location[0], self.env.finger_location[1], "", "", 'move']) else: test_data.append([round(self.env.model_time, 4), self.env.finger_location[0], self.env.finger_location[1], self.env.finger_location[0], self.env.finger_location[1], 'peck']) if done: break return test_data def choose_best_action(self): """ Function to choose best action given action-value map. """ state = self.env.preprocess_belief() if self.gpu: q_values = cuda.to_cpu(chainer.as_array( self.q_func(cuda.to_gpu(state.reshape((1, self.env.observation_space.shape[0])), device=0)) .q_values).reshape((-1,))) else: q_values = chainer.as_array(self.q_func(state.reshape((1, self.env.observation_space.shape[0]))) .q_values).reshape((-1,)) best_action = np.where(q_values == np.amax(q_values))[0] return np.random.choice(best_action), np.amax(q_values) def calculate_Qvalue(self): """ Function that calculates MaxQ for actions. Choose the best action type by comparing the maximum q values for both action types "move" and "peck" :return: action-value map. """ action_value = {} for action in self.env.actions: action_value[action] = {} action_value[action]["SAT"] = {} action_value[action]["best_q"] = -np.inf for sat in self.env.sat_true_list: self.env.action_type = self.env.actions.index(action) self.env.sat_true = self.env.sat_true_list.index(sat) # set belief with current evidence. self.env.set_belief() state = self.env.preprocess_belief() if self.gpu: q_values = cuda.to_cpu(chainer.as_array( self.q_func(cuda.to_gpu(state.reshape((1, self.env.observation_space.shape[0])), device=0)) .q_values).reshape((-1,))) else: q_values = chainer.as_array(self.q_func(state.reshape((1, self.env.observation_space.shape[0]))) .q_values).reshape((-1,)) action_value[action]["SAT"][self.env.sat_true] = {"q_values": q_values, "max_q": np.max(q_values)} if np.max(q_values) > action_value[action]["best_q"]: action_value[action]["best_q"] = np.max(q_values) return action_value def load(self): """ Function to load pre-trained data. """ serializers.load_npz(path.join(self.save_path, 'best', 'model.npz'), self.q_func) chainer.config.train = False class ProgressBar(chainerrl.experiments.hooks.StepHook): """ Hook class to update progress bar. """ def __init__(self, pbar, max_length): self.pbar = pbar self.max = max_length def __call__(self, env, agent, step): self.pbar.update() if self.max <= step: self.pbar.close()
[ "src.utilities.behaviour.AgentBehaviour", "chainerrl.replay_buffers.prioritized.PrioritizedReplayBuffer", "numpy.random.choice", "chainer.optimizers.Adam", "tqdm.tqdm", "csv.writer", "chainer.optimizers.MomentumSGD", "collections.deque", "numpy.amax", "numpy.max", "chainerrl.agents.DoubleDQN", "src.finger.model.QFunction", "chainer.optimizers.RMSprop", "src.finger.finger_agent_environment.FingerAgentEnv", "os.path.join", "chainerrl.experiments.train_agent_with_evaluation", "logging.getLogger" ]
[((582, 609), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (599, 609), False, 'import logging\n'), ((630, 688), 'src.finger.finger_agent_environment.FingerAgentEnv', 'FingerAgentEnv', (['layout_config', 'agent_params', 'finger', 'train'], {}), '(layout_config, agent_params, finger, train)\n', (644, 688), False, 'from src.finger.finger_agent_environment import FingerAgentEnv\n'), ((1911, 2069), 'src.finger.model.QFunction', 'QFunction', ([], {'embed_size': 'self.env.observation_space.shape[0]', 'dropout_ratio': 'dropout_ratio', 'n_actions': 'self.env.action_space.n', 'n_hidden_channels': 'n_units'}), '(embed_size=self.env.observation_space.shape[0], dropout_ratio=\n dropout_ratio, n_actions=self.env.action_space.n, n_hidden_channels=n_units\n )\n', (1920, 2069), False, 'from src.finger.model import QFunction\n'), ((3089, 3176), 'chainerrl.replay_buffers.prioritized.PrioritizedReplayBuffer', 'chainerrl.replay_buffers.prioritized.PrioritizedReplayBuffer', ([], {'capacity': 'replay_size'}), '(capacity=\n replay_size)\n', (3149, 3176), False, 'import chainerrl\n'), ((3323, 3587), 'chainerrl.agents.DoubleDQN', 'chainerrl.agents.DoubleDQN', ([], {'q_function': 'self.q_func', 'optimizer': 'self.optimizer', 'replay_buffer': 'replay_buffer', 'gamma': 'gamma', 'explorer': 'explorer', 'replay_start_size': '(50000)', 'update_interval': '(1000)', 'target_update_interval': '(1000)', 'target_update_method': '"""soft"""', 'phi': 'phi'}), "(q_function=self.q_func, optimizer=self.optimizer,\n replay_buffer=replay_buffer, gamma=gamma, explorer=explorer,\n replay_start_size=50000, update_interval=1000, target_update_interval=\n 1000, target_update_method='soft', phi=phi)\n", (3349, 3587), False, 'import chainerrl\n'), ((3794, 3817), 'collections.deque', 'deque', (['[0]'], {'maxlen': '(1000)'}), '([0], maxlen=1000)\n', (3799, 3817), False, 'from collections import deque\n'), ((3845, 3868), 'collections.deque', 'deque', (['[0]'], {'maxlen': '(1000)'}), '([0], maxlen=1000)\n', (3850, 3868), False, 'from collections import deque\n'), ((4577, 4880), 'chainerrl.experiments.train_agent_with_evaluation', 'chainerrl.experiments.train_agent_with_evaluation', ([], {'agent': 'self.agent', 'env': 'self.env', 'steps': 'episodes', 'eval_n_steps': 'None', 'eval_n_episodes': '(10)', 'eval_interval': 'self.log_interval', 'outdir': 'self.save_path', 'train_max_episode_len': '(5)', 'successful_score': '(4.5)', 'logger': 'self.logger', 'step_hooks': '[progress_bar]'}), '(agent=self.agent, env=\n self.env, steps=episodes, eval_n_steps=None, eval_n_episodes=10,\n eval_interval=self.log_interval, outdir=self.save_path,\n train_max_episode_len=5, successful_score=4.5, logger=self.logger,\n step_hooks=[progress_bar])\n', (4626, 4880), False, 'import chainerrl\n'), ((1334, 1371), 'os.path.join', 'path.join', (['"""data"""', '"""models"""', '"""finger"""'], {}), "('data', 'models', 'finger')\n", (1343, 1371), False, 'from os import path\n'), ((2371, 2404), 'chainer.optimizers.Adam', 'chainer.optimizers.Adam', ([], {'alpha': 'lr'}), '(alpha=lr)\n', (2394, 2404), False, 'import chainer\n'), ((4266, 4290), 'src.utilities.behaviour.AgentBehaviour', 'AgentBehaviour', (['"""finger"""'], {}), "('finger')\n", (4280, 4290), False, 'from src.utilities.behaviour import AgentBehaviour\n'), ((5617, 5630), 'csv.writer', 'csv.writer', (['f'], {}), '(f)\n', (5627, 5630), False, 'import csv\n'), ((5960, 5973), 'csv.writer', 'csv.writer', (['f'], {}), '(f)\n', (5970, 5973), False, 'import csv\n'), ((6191, 6237), 'os.path.join', 'path.join', (['"""data"""', '"""output"""', 'self.log_filename'], {}), "('data', 'output', self.log_filename)\n", (6200, 6237), False, 'from os import path\n'), ((6269, 6315), 'os.path.join', 'path.join', (['"""data"""', '"""output"""', '"""FingerAgent.mp4"""'], {}), "('data', 'output', 'FingerAgent.mp4')\n", (6278, 6315), False, 'from os import path\n'), ((10318, 10347), 'numpy.random.choice', 'np.random.choice', (['best_action'], {}), '(best_action)\n', (10334, 10347), True, 'import numpy as np\n'), ((10349, 10366), 'numpy.amax', 'np.amax', (['q_values'], {}), '(q_values)\n', (10356, 10366), True, 'import numpy as np\n'), ((12035, 12081), 'os.path.join', 'path.join', (['self.save_path', '"""best"""', '"""model.npz"""'], {}), "(self.save_path, 'best', 'model.npz')\n", (12044, 12081), False, 'from os import path\n'), ((2179, 2225), 'os.path.join', 'path.join', (['self.save_path', '"""best"""', '"""model.npz"""'], {}), "(self.save_path, 'best', 'model.npz')\n", (2188, 2225), False, 'from os import path\n'), ((2476, 2509), 'chainer.optimizers.RMSprop', 'chainer.optimizers.RMSprop', ([], {'lr': 'lr'}), '(lr=lr)\n', (2502, 2509), False, 'import chainer\n'), ((2553, 2590), 'chainer.optimizers.MomentumSGD', 'chainer.optimizers.MomentumSGD', ([], {'lr': 'lr'}), '(lr=lr)\n', (2583, 2590), False, 'import chainer\n'), ((3985, 4072), 'tqdm.tqdm', 'tqdm.tqdm', ([], {'total': 'self.episodes', 'ascii': '(True)', 'bar_format': '"""{l_bar}{n}, {remaining}\n"""'}), "(total=self.episodes, ascii=True, bar_format=\n '{l_bar}{n}, {remaining}\\n')\n", (3994, 4072), False, 'import tqdm\n'), ((4147, 4177), 'tqdm.tqdm', 'tqdm.tqdm', ([], {'total': 'self.episodes'}), '(total=self.episodes)\n', (4156, 4177), False, 'import tqdm\n'), ((5534, 5582), 'os.path.join', 'path.join', (['"""data"""', '"""training"""', 'self.log_filename'], {}), "('data', 'training', self.log_filename)\n", (5543, 5582), False, 'from os import path\n'), ((5868, 5914), 'os.path.join', 'path.join', (['"""data"""', '"""output"""', 'self.log_filename'], {}), "('data', 'output', self.log_filename)\n", (5877, 5914), False, 'from os import path\n'), ((10280, 10297), 'numpy.amax', 'np.amax', (['q_values'], {}), '(q_values)\n', (10287, 10297), True, 'import numpy as np\n'), ((11730, 11746), 'numpy.max', 'np.max', (['q_values'], {}), '(q_values)\n', (11736, 11746), True, 'import numpy as np\n'), ((11768, 11784), 'numpy.max', 'np.max', (['q_values'], {}), '(q_values)\n', (11774, 11784), True, 'import numpy as np\n'), ((11872, 11888), 'numpy.max', 'np.max', (['q_values'], {}), '(q_values)\n', (11878, 11888), True, 'import numpy as np\n')]
import os import sys import cv2 import numpy as np from tqdm import tqdm def eval_phys_data_single_pendulum(data_filepath, num_vids, num_frms, save_path): from eval_phys_single_pendulum import eval_physics, phys_vars_list phys = {p_var:[] for p_var in phys_vars_list} for n in tqdm(range(num_vids)): seq_filepath = os.path.join(data_filepath, str(n)) frames = [] for p in range(num_frms): frame_p = cv2.imread(os.path.join(seq_filepath, str(p)+'.png')) frames.append(frame_p) phys_tmp = eval_physics(frames) for p_var in phys_vars_list: phys[p_var].append(phys_tmp[p_var]) for p_var in phys_vars_list: phys[p_var] = np.array(phys[p_var]) np.save(save_path, phys) def eval_phys_data_double_pendulum(data_filepath, num_vids, num_frms, save_path): from eval_phys_double_pendulum import eval_physics, phys_vars_list phys = {p_var:[] for p_var in phys_vars_list} for n in tqdm(range(num_vids)): seq_filepath = os.path.join(data_filepath, str(n)) frames = [] for p in range(num_frms): frame_p = cv2.imread(os.path.join(seq_filepath, str(p)+'.png')) frames.append(frame_p) phys_tmp = eval_physics(frames) for p_var in phys_vars_list: phys[p_var].append(phys_tmp[p_var]) for p_var in phys_vars_list: phys[p_var] = np.array(phys[p_var]) # remove outliers thresh_1 = np.nanpercentile(np.abs(phys['vel_theta_1']), 98) thresh_2 = np.nanpercentile(np.abs(phys['vel_theta_2']), 98) for n in range(num_vids): for p in range(num_frms): if (not np.isnan(phys['vel_theta_1'][n, p]) and np.abs(phys['vel_theta_1'][n, p]) >= thresh_1) \ or (not np.isnan(phys['vel_theta_2'][n, p]) and np.abs(phys['vel_theta_2'][n, p]) >= thresh_2): phys['vel_theta_1'][n, p] = np.nan phys['vel_theta_2'][n, p] = np.nan phys['kinetic energy'][n, p] = np.nan phys['total energy'][n, p] = np.nan np.save(save_path, phys) def eval_phys_data_elastic_pendulum(data_filepath, num_vids, num_frms, save_path): from eval_phys_elastic_pendulum import eval_physics, phys_vars_list phys = {p_var:[] for p_var in phys_vars_list} for n in tqdm(range(num_vids)): seq_filepath = os.path.join(data_filepath, str(n)) frames = [] for p in range(num_frms): frame_p = cv2.imread(os.path.join(seq_filepath, str(p)+'.png')) frames.append(frame_p) phys_tmp = eval_physics(frames) for p_var in phys_vars_list: phys[p_var].append(phys_tmp[p_var]) for p_var in phys_vars_list: phys[p_var] = np.array(phys[p_var]) # remove outliers thresh_1 = np.nanpercentile(np.abs(phys['vel_theta_1']), 98) thresh_2 = np.nanpercentile(np.abs(phys['vel_theta_2']), 98) thresh_z = np.nanpercentile(np.abs(phys['vel_z']), 98) for n in range(num_vids): for p in range(num_frms): if (not np.isnan(phys['vel_theta_1'][n, p]) and np.abs(phys['vel_theta_1'][n, p]) >= thresh_1) \ or (not np.isnan(phys['vel_theta_2'][n, p]) and np.abs(phys['vel_theta_2'][n, p]) >= thresh_2) \ or (not np.isnan(phys['vel_z'][n, p]) and np.abs(phys['vel_z'][n, p]) >= thresh_z): phys['vel_theta_1'][n, p] = np.nan phys['vel_theta_2'][n, p] = np.nan phys['vel_z'][n, p] = np.nan phys['kinetic energy'][n, p] = np.nan phys['total energy'][n, p] = np.nan np.save(save_path, phys) if __name__ == '__main__': dataset = str(sys.argv[1]) data_filepath = str(sys.argv[2]) save_path = os.path.join(data_filepath, 'phys_vars.npy') if dataset == 'single_pendulum': eval_phys_data_single_pendulum(data_filepath, 1200, 60, save_path) elif dataset == 'double_pendulum': eval_phys_data_double_pendulum(data_filepath, 1100, 60, save_path) elif dataset == 'elastic_pendulum': eval_phys_data_elastic_pendulum(data_filepath, 1200, 60, save_path) else: assert False, 'Unknown system...'
[ "numpy.save", "numpy.abs", "numpy.isnan", "numpy.array", "eval_phys_elastic_pendulum.eval_physics", "os.path.join" ]
[((746, 770), 'numpy.save', 'np.save', (['save_path', 'phys'], {}), '(save_path, phys)\n', (753, 770), True, 'import numpy as np\n'), ((2086, 2110), 'numpy.save', 'np.save', (['save_path', 'phys'], {}), '(save_path, phys)\n', (2093, 2110), True, 'import numpy as np\n'), ((3629, 3653), 'numpy.save', 'np.save', (['save_path', 'phys'], {}), '(save_path, phys)\n', (3636, 3653), True, 'import numpy as np\n'), ((3767, 3811), 'os.path.join', 'os.path.join', (['data_filepath', '"""phys_vars.npy"""'], {}), "(data_filepath, 'phys_vars.npy')\n", (3779, 3811), False, 'import os\n'), ((558, 578), 'eval_phys_elastic_pendulum.eval_physics', 'eval_physics', (['frames'], {}), '(frames)\n', (570, 578), False, 'from eval_phys_elastic_pendulum import eval_physics, phys_vars_list\n'), ((719, 740), 'numpy.array', 'np.array', (['phys[p_var]'], {}), '(phys[p_var])\n', (727, 740), True, 'import numpy as np\n'), ((1256, 1276), 'eval_phys_elastic_pendulum.eval_physics', 'eval_physics', (['frames'], {}), '(frames)\n', (1268, 1276), False, 'from eval_phys_elastic_pendulum import eval_physics, phys_vars_list\n'), ((1417, 1438), 'numpy.array', 'np.array', (['phys[p_var]'], {}), '(phys[p_var])\n', (1425, 1438), True, 'import numpy as np\n'), ((1494, 1521), 'numpy.abs', 'np.abs', (["phys['vel_theta_1']"], {}), "(phys['vel_theta_1'])\n", (1500, 1521), True, 'import numpy as np\n'), ((1559, 1586), 'numpy.abs', 'np.abs', (["phys['vel_theta_2']"], {}), "(phys['vel_theta_2'])\n", (1565, 1586), True, 'import numpy as np\n'), ((2598, 2618), 'eval_phys_elastic_pendulum.eval_physics', 'eval_physics', (['frames'], {}), '(frames)\n', (2610, 2618), False, 'from eval_phys_elastic_pendulum import eval_physics, phys_vars_list\n'), ((2759, 2780), 'numpy.array', 'np.array', (['phys[p_var]'], {}), '(phys[p_var])\n', (2767, 2780), True, 'import numpy as np\n'), ((2836, 2863), 'numpy.abs', 'np.abs', (["phys['vel_theta_1']"], {}), "(phys['vel_theta_1'])\n", (2842, 2863), True, 'import numpy as np\n'), ((2901, 2928), 'numpy.abs', 'np.abs', (["phys['vel_theta_2']"], {}), "(phys['vel_theta_2'])\n", (2907, 2928), True, 'import numpy as np\n'), ((2966, 2987), 'numpy.abs', 'np.abs', (["phys['vel_z']"], {}), "(phys['vel_z'])\n", (2972, 2987), True, 'import numpy as np\n'), ((1676, 1711), 'numpy.isnan', 'np.isnan', (["phys['vel_theta_1'][n, p]"], {}), "(phys['vel_theta_1'][n, p])\n", (1684, 1711), True, 'import numpy as np\n'), ((1716, 1749), 'numpy.abs', 'np.abs', (["phys['vel_theta_1'][n, p]"], {}), "(phys['vel_theta_1'][n, p])\n", (1722, 1749), True, 'import numpy as np\n'), ((1785, 1820), 'numpy.isnan', 'np.isnan', (["phys['vel_theta_2'][n, p]"], {}), "(phys['vel_theta_2'][n, p])\n", (1793, 1820), True, 'import numpy as np\n'), ((1825, 1858), 'numpy.abs', 'np.abs', (["phys['vel_theta_2'][n, p]"], {}), "(phys['vel_theta_2'][n, p])\n", (1831, 1858), True, 'import numpy as np\n'), ((3077, 3112), 'numpy.isnan', 'np.isnan', (["phys['vel_theta_1'][n, p]"], {}), "(phys['vel_theta_1'][n, p])\n", (3085, 3112), True, 'import numpy as np\n'), ((3117, 3150), 'numpy.abs', 'np.abs', (["phys['vel_theta_1'][n, p]"], {}), "(phys['vel_theta_1'][n, p])\n", (3123, 3150), True, 'import numpy as np\n'), ((3186, 3221), 'numpy.isnan', 'np.isnan', (["phys['vel_theta_2'][n, p]"], {}), "(phys['vel_theta_2'][n, p])\n", (3194, 3221), True, 'import numpy as np\n'), ((3226, 3259), 'numpy.abs', 'np.abs', (["phys['vel_theta_2'][n, p]"], {}), "(phys['vel_theta_2'][n, p])\n", (3232, 3259), True, 'import numpy as np\n'), ((3295, 3324), 'numpy.isnan', 'np.isnan', (["phys['vel_z'][n, p]"], {}), "(phys['vel_z'][n, p])\n", (3303, 3324), True, 'import numpy as np\n'), ((3329, 3356), 'numpy.abs', 'np.abs', (["phys['vel_z'][n, p]"], {}), "(phys['vel_z'][n, p])\n", (3335, 3356), True, 'import numpy as np\n')]
import pickle import numpy as np import librosa import pandas as pd from raw_audio_create_dict import split_data dict_path = '/scratch/speech/raw_audio_dataset/raw_audio_full.pkl' file = open(dict_path, 'rb') data = pickle.load(file) audio_path = '/scratch/speech/raw_audio_dataset/audio_paths_labels_updated.csv' df = pd.read_csv(audio_path) thresh = 128000 sr_standard = 16000 input_new = [] seq_length_new = [] for i, utterance in enumerate(data['input']): if len(utterance) < thresh: utterance_new = np.tile(utterance, thresh // len(utterance) + 1) utterance_new = utterance_new[0:thresh] input_new.append(utterance_new) seq_length_new.append(len(utterance_new)) elif len(utterance) > thresh: utterance_new, sr = librosa.load(df['file'][i], sr = thresh/(len(utterance)/sr_standard)) utterance_new = utterance_new[0:thresh] input_new.append(utterance_new) seq_length_new.append(len(utterance_new)) else: input_new.append(utterance) seq_length_new.append(len(utterance)) dataset_updated = {'input': np.array(input_new), 'target': np.array(data['target']), 'seq_length': seq_length_new} full_set_new = '/scratch/speech/raw_audio_dataset/raw_audio_full_equal_lengths.pkl' train_set_new = '/scratch/speech/raw_audio_dataset/raw_audio_train_equal_lengths.pkl' test_set_new = '/scratch/speech/raw_audio_dataset/raw_audio_test_equal_lengths.pkl' train, test = split_data(dataset_updated) with open(full_set_new, 'wb') as f: pickle.dump(dataset_updated, f) with open(train_set_new, 'wb') as f: pickle.dump(train, f) with open(test_set_new, 'wb') as f: pickle.dump(test, f)
[ "pickle.dump", "pandas.read_csv", "pickle.load", "numpy.array", "raw_audio_create_dict.split_data" ]
[((217, 234), 'pickle.load', 'pickle.load', (['file'], {}), '(file)\n', (228, 234), False, 'import pickle\n'), ((321, 344), 'pandas.read_csv', 'pd.read_csv', (['audio_path'], {}), '(audio_path)\n', (332, 344), True, 'import pandas as pd\n'), ((1455, 1482), 'raw_audio_create_dict.split_data', 'split_data', (['dataset_updated'], {}), '(dataset_updated)\n', (1465, 1482), False, 'from raw_audio_create_dict import split_data\n'), ((1098, 1117), 'numpy.array', 'np.array', (['input_new'], {}), '(input_new)\n', (1106, 1117), True, 'import numpy as np\n'), ((1129, 1153), 'numpy.array', 'np.array', (["data['target']"], {}), "(data['target'])\n", (1137, 1153), True, 'import numpy as np\n'), ((1523, 1554), 'pickle.dump', 'pickle.dump', (['dataset_updated', 'f'], {}), '(dataset_updated, f)\n', (1534, 1554), False, 'import pickle\n'), ((1596, 1617), 'pickle.dump', 'pickle.dump', (['train', 'f'], {}), '(train, f)\n', (1607, 1617), False, 'import pickle\n'), ((1658, 1678), 'pickle.dump', 'pickle.dump', (['test', 'f'], {}), '(test, f)\n', (1669, 1678), False, 'import pickle\n')]
#!/usr/bin/env python import roslib; roslib.load_manifest('numpy_eigen'); roslib.load_manifest('rostest'); import numpy_eigen import numpy_eigen.test as npe import numpy import sys # http://docs.python.org/library/unittest.html#test-cases import unittest import generator_config typeTag2NumpyTypeObjectMap = dict() typeTag2NumpyTypeObjectMap['int'] = numpy.intc typeTag2NumpyTypeObjectMap['float'] = numpy.float32 typeTag2NumpyTypeObjectMap['double'] = numpy.float64 typeTag2NumpyTypeObjectMap['uchar'] = numpy.uint8 typeTag2NumpyTypeObjectMap['long'] = numpy.int_ class TestEigen(unittest.TestCase): def assertMatrixClose(self,numpyM,eigenM,testType): self.assertEqual(numpyM.size,eigenM.size) if eigenM.ndim == 1: # The eigen conversion code will take a 1xN or Nx1 and turn # it into a single dimension matrix. if numpyM.ndim == 1: # The original matrix was 1d...compare the 1d types. self.assertEqual(numpyM.shape[0],eigenM.shape[0], testType) self.assertTrue(numpy.max(numpy.abs(numpyM - eigenM)) < 1e-10, testType) elif numpyM.ndim == 2: # The original matrix was 2d...compare the 1d dimension # with the eigen matrix if numpyM.shape[0] == 1: # Row vector self.assertEqual(numpyM.shape[1],eigenM.shape[0], testType) if eigenM.shape[0] > 0: self.assertTrue(numpy.max(numpy.abs(numpyM[0,:] - eigenM)) < 1e-10, testType) elif numpyM.shape[1] == 1: # column vector self.assertEqual(numpyM.shape[0],eigenM.shape[0], testType) if eigenM.shape[0] > 0: self.assertTrue(numpy.max(numpy.abs(numpyM[:,0] - eigenM)) < 1e-10, testType) else: self.fail('%s: The output matrix is a vector but none of the input matrix dimensions are 1: %s' % (testType,numpyM.shape)) else: self.fail('%s: Unexpected number of dimensions in the numpy input matrix: %d' % (testType,numpyM.ndim)) elif eigenM.ndim == 2: self.assertEqual(numpyM.shape[0],eigenM.shape[0], testType) self.assertEqual(numpyM.shape[1],eigenM.shape[1], testType) if numpyM.shape[0] > 0 and numpyM.shape[1] > 0: self.assertTrue(numpy.max(numpy.abs(numpyM - eigenM)) < 1e-10, testType) else: self.fail('%s: Unexpected number of dimensions in the numpy output matrix: %d' % (testType, eigenM.ndim)) def matrixTests(self,t,i,j): assert typeTag2NumpyTypeObjectMap[t] npType = typeTag2NumpyTypeObjectMap[t]; row_limit = generator_config.MaximalStaticDimension + 1 col_limit = generator_config.MaximalStaticDimension + 1 rows_dim_is_dynamic = (i == 'D') cols_dim_is_dynamic = (j == 'D') ii = i; jj = j; if not rows_dim_is_dynamic: ii = int(ii) if not cols_dim_is_dynamic: jj = int(jj) fname = 'test_%s_%s_%s' % (t,i,j) for R in range(0,row_limit): for C in range(0,col_limit): for transposeFirst in range(1): testType = 'Testing %s with input array[%d,%d]%s' % (fname, R, C, ('^T' if transposeFirst else '')) # Create a random matrix. if transposeFirst: numpyM = numpy.random.random([C,R]).astype(dtype = npType).T else: numpyM = numpy.random.random([R,C]).astype(dtype = npType) assert numpyM.dtype == npType try: # Try to pass it in to the pass-through function eigenM = npe.__dict__[fname](numpyM) # There was no error...check that this was okay. rows_dim_is_dynamic or self.assertEqual(R, ii, testType) cols_dim_is_dynamic or self.assertEqual(C, jj, testType) # Check that the matrices are the same. self.assertMatrixClose(numpyM,eigenM, testType) except TypeError as inst: # There was a type error. Check that this was expected. self.assertFalse( (rows_dim_is_dynamic or R == ii) and (cols_dim_is_dynamic or C == jj), testType) def vectorTests(self,t,i,j): x = 1 # um... def test_eigen(self): if numpy_eigen.IsBroken : self.skipTest("numpy_eigen is broken (see #137)"); T = generator_config.typeTags N = generator_config.dimTags for t in T: for i in N: for j in N: self.matrixTests(t,i,j) if __name__ == '__main__': import rostest rostest.rosrun('numpy_eigen', 'test_eigen', TestEigen)
[ "numpy.abs", "roslib.load_manifest", "rostest.rosrun", "numpy.random.random" ]
[((37, 72), 'roslib.load_manifest', 'roslib.load_manifest', (['"""numpy_eigen"""'], {}), "('numpy_eigen')\n", (57, 72), False, 'import roslib\n'), ((74, 105), 'roslib.load_manifest', 'roslib.load_manifest', (['"""rostest"""'], {}), "('rostest')\n", (94, 105), False, 'import roslib\n'), ((5047, 5101), 'rostest.rosrun', 'rostest.rosrun', (['"""numpy_eigen"""', '"""test_eigen"""', 'TestEigen'], {}), "('numpy_eigen', 'test_eigen', TestEigen)\n", (5061, 5101), False, 'import rostest\n'), ((1083, 1109), 'numpy.abs', 'numpy.abs', (['(numpyM - eigenM)'], {}), '(numpyM - eigenM)\n', (1092, 1109), False, 'import numpy\n'), ((2462, 2488), 'numpy.abs', 'numpy.abs', (['(numpyM - eigenM)'], {}), '(numpyM - eigenM)\n', (2471, 2488), False, 'import numpy\n'), ((3689, 3716), 'numpy.random.random', 'numpy.random.random', (['[R, C]'], {}), '([R, C])\n', (3708, 3716), False, 'import numpy\n'), ((3578, 3605), 'numpy.random.random', 'numpy.random.random', (['[C, R]'], {}), '([C, R])\n', (3597, 3605), False, 'import numpy\n'), ((1525, 1557), 'numpy.abs', 'numpy.abs', (['(numpyM[0, :] - eigenM)'], {}), '(numpyM[0, :] - eigenM)\n', (1534, 1557), False, 'import numpy\n'), ((1830, 1862), 'numpy.abs', 'numpy.abs', (['(numpyM[:, 0] - eigenM)'], {}), '(numpyM[:, 0] - eigenM)\n', (1839, 1862), False, 'import numpy\n')]
""" This script is for thermodynamic model for sortseq data for the paper MAVE-NN: learning genotype-phenotype maps from multiplex assays of variant effect <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME> """ # Standard imports import numpy as np from numpy.core.fromnumeric import sort import pandas as pd import warnings import os from datetime import datetime import json import argparse import matplotlib.pyplot as plt # Turn off Tensorflow GPU warnings os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" warnings.filterwarnings("ignore") # Standard TensorFlow imports import tensorflow as tf import tensorflow.keras.backend as K from tensorflow.keras.initializers import Constant # Import MAVE-NN import mavenn # Import base class from mavenn.src.layers.gpmap import GPMapLayer from mavenn.src.utils import _x_to_mat # Fix the seed, default seed is seed=1234 mavenn.src.utils.set_seed() # Get the date to append to the saved model name today = datetime.now() date_str = today.strftime("%Y.%m.%d.%Hh.%Mm") # Get the models dictionary from the json input file. input_file = open("sortseq_thermo_param.json") models_dict = json.load(input_file) # Define custom G-P map layer class sortseqGPMapLayer(GPMapLayer): """ Represents a four-stage thermodynamic model containing the states: 1. free DNA 2. CPR-DNA binding 3. RNAP-DNA binding 4. CPR and RNAP both bounded to DNA and interact """ def __init__(self, tf_start, tf_end, rnap_start, rnap_end, *args, **kwargs): """Construct layer instance.""" # Call superclass super().__init__(*args, **kwargs) # set attributes self.tf_start = tf_start # transcription factor starting position self.tf_end = tf_end # transcription factor ending position self.L_tf = tf_end - tf_start # length of transcription factor self.rnap_start = rnap_start # RNAP starting position self.rnap_end = rnap_end # RNAP ending position self.L_rnap = rnap_end - rnap_start # length of RNAP self.C = kwargs["C"] # define bias/chemical potential weight for TF/CRP energy self.theta_tf_0 = self.add_weight(name='theta_tf_0', shape=(1,), initializer=Constant(1.), trainable=True, regularizer=self.regularizer) # define bias/chemical potential weight for rnap energy self.theta_rnap_0 = self.add_weight(name='theta_rnap_0', shape=(1,), initializer=Constant(1.), trainable=True, regularizer=self.regularizer) # initialize the theta_tf theta_tf_shape = (1, self.L_tf, self.C) theta_tf_init = np.random.randn(*theta_tf_shape)/np.sqrt(self.L_tf) # define the weights of the layer corresponds to theta_tf self.theta_tf = self.add_weight(name='theta_tf', shape=theta_tf_shape, initializer=Constant(theta_tf_init), trainable=True, regularizer=self.regularizer) # define theta_rnap parameters theta_rnap_shape = (1, self.L_rnap, self.C) theta_rnap_init = np.random.randn(*theta_rnap_shape)/np.sqrt(self.L_rnap) # define the weights of the layer corresponds to theta_rnap self.theta_rnap = self.add_weight(name='theta_rnap', shape=theta_rnap_shape, initializer=Constant(theta_rnap_init), trainable=True, regularizer=self.regularizer) # define trainable real number G_I, representing interaction Gibbs energy self.theta_dG_I = self.add_weight(name='theta_dG_I', shape=(1,), initializer=Constant(-4), trainable=True, regularizer=self.regularizer) def call(self, x): """Process layer input and return output. x: (tensor) Input tensor that represents one-hot encoded sequence values. """ # 1kT = 0.616 kcal/mol at body temperature kT = 0.616 # extract locations of binding sites from entire lac-promoter sequence. # for transcription factor and rnap x_tf = x[:, self.C * self.tf_start:self.C * self.tf_end] x_rnap = x[:, self.C * self.rnap_start: self.C * self.rnap_end] # reshape according to tf and rnap lengths. x_tf = tf.reshape(x_tf, [-1, self.L_tf, self.C]) x_rnap = tf.reshape(x_rnap, [-1, self.L_rnap, self.C]) # compute delta G for crp binding G_C = self.theta_tf_0 + \ tf.reshape(K.sum(self.theta_tf * x_tf, axis=[1, 2]), shape=[-1, 1]) # compute delta G for rnap binding G_R = self.theta_rnap_0 + \ tf.reshape(K.sum(self.theta_rnap * x_rnap, axis=[1, 2]), shape=[-1, 1]) G_I = self.theta_dG_I # compute phi numerator_of_rate = K.exp(-G_R/kT) + K.exp(-(G_C+G_R+G_I)/kT) denom_of_rate = 1.0 + K.exp(-G_C/kT) + K.exp(-G_R/kT) + K.exp(-(G_C+G_R+G_I)/kT) phi = numerator_of_rate/denom_of_rate return phi def main(args): # Set dataset name dataset_name = "sortseq" # Set type of GP map model_type = "custom" # Set learning rate learning_rate = args.learning_rate # Set number of epochs epochs = args.epochs # Get parameters dict params_dict = models_dict[model_type] # Read dataset from the paper dataset instead of MAVENN dataset data_df = pd.read_csv(f"../datasets/{dataset_name}_data.csv.gz") print(data_df) # Get and report sequence length L = len(data_df.loc[0, "x"]) print(f"Sequence length: {L:d} ") # Preview dataset print("data_df:") # Split dataset trainval_df, test_df = mavenn.split_dataset(data_df) # Preview trainval_df print("trainval_df:") # Define model # Create model instance model = mavenn.Model( custom_gpmap=sortseqGPMapLayer, **params_dict["model_params"], gpmap_kwargs=params_dict["gpmap_kwargs"], ) # Set training data model.set_data( x=trainval_df["x"], y=trainval_df[[col for col in trainval_df if col.startswith("ct")]], validation_flags=trainval_df["validation"], ) # Train model model.fit(learning_rate=learning_rate, epochs=epochs, **params_dict["fit_params"]) # Save trained model to file model_name = (f"../models/sortseq_thermodynamic_mpa_{date_str}") model.save(model_name) # simulate new dataset with trained model num_models = args.num_models sim_models = model.bootstrap(data_df=data_df, num_models=num_models, initialize_from_self=True) # save simulated models for i in range(num_models): model_name = (f"../models/sortseq_thermodynamic_mpa_model_{i}_{date_str}") sim_models[i].save(model_name) if __name__ == "__main__": parser = argparse.ArgumentParser(description="sortseq Thermodynamic Model") parser.add_argument( "-e", "--epochs", default=2000, type=int, help="Number of epochs" ) parser.add_argument( "-lr", "--learning_rate", default=1e-4, type=float, help="Learning Rate" ) parser.add_argument( "-ns", "--num_models", default=20, type=int, help="number of simulation models" ) args = parser.parse_args() main(args)
[ "json.load", "tensorflow.keras.backend.sum", "argparse.ArgumentParser", "warnings.filterwarnings", "pandas.read_csv", "numpy.random.randn", "tensorflow.reshape", "mavenn.Model", "tensorflow.keras.initializers.Constant", "tensorflow.keras.backend.exp", "mavenn.split_dataset", "mavenn.src.utils.set_seed", "datetime.datetime.now", "numpy.sqrt" ]
[((500, 533), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (523, 533), False, 'import warnings\n'), ((859, 886), 'mavenn.src.utils.set_seed', 'mavenn.src.utils.set_seed', ([], {}), '()\n', (884, 886), False, 'import mavenn\n'), ((945, 959), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (957, 959), False, 'from datetime import datetime\n'), ((1122, 1143), 'json.load', 'json.load', (['input_file'], {}), '(input_file)\n', (1131, 1143), False, 'import json\n'), ((6246, 6300), 'pandas.read_csv', 'pd.read_csv', (['f"""../datasets/{dataset_name}_data.csv.gz"""'], {}), "(f'../datasets/{dataset_name}_data.csv.gz')\n", (6257, 6300), True, 'import pandas as pd\n'), ((6522, 6551), 'mavenn.split_dataset', 'mavenn.split_dataset', (['data_df'], {}), '(data_df)\n', (6542, 6551), False, 'import mavenn\n'), ((6665, 6786), 'mavenn.Model', 'mavenn.Model', ([], {'custom_gpmap': 'sortseqGPMapLayer', 'gpmap_kwargs': "params_dict['gpmap_kwargs']"}), "(custom_gpmap=sortseqGPMapLayer, **params_dict['model_params'],\n gpmap_kwargs=params_dict['gpmap_kwargs'])\n", (6677, 6786), False, 'import mavenn\n'), ((7732, 7798), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""sortseq Thermodynamic Model"""'}), "(description='sortseq Thermodynamic Model')\n", (7755, 7798), False, 'import argparse\n'), ((5095, 5136), 'tensorflow.reshape', 'tf.reshape', (['x_tf', '[-1, self.L_tf, self.C]'], {}), '(x_tf, [-1, self.L_tf, self.C])\n', (5105, 5136), True, 'import tensorflow as tf\n'), ((5154, 5199), 'tensorflow.reshape', 'tf.reshape', (['x_rnap', '[-1, self.L_rnap, self.C]'], {}), '(x_rnap, [-1, self.L_rnap, self.C])\n', (5164, 5199), True, 'import tensorflow as tf\n'), ((3084, 3116), 'numpy.random.randn', 'np.random.randn', (['*theta_tf_shape'], {}), '(*theta_tf_shape)\n', (3099, 3116), True, 'import numpy as np\n'), ((3117, 3135), 'numpy.sqrt', 'np.sqrt', (['self.L_tf'], {}), '(self.L_tf)\n', (3124, 3135), True, 'import numpy as np\n'), ((3651, 3685), 'numpy.random.randn', 'np.random.randn', (['*theta_rnap_shape'], {}), '(*theta_rnap_shape)\n', (3666, 3685), True, 'import numpy as np\n'), ((3686, 3706), 'numpy.sqrt', 'np.sqrt', (['self.L_rnap'], {}), '(self.L_rnap)\n', (3693, 3706), True, 'import numpy as np\n'), ((5657, 5673), 'tensorflow.keras.backend.exp', 'K.exp', (['(-G_R / kT)'], {}), '(-G_R / kT)\n', (5662, 5673), True, 'import tensorflow.keras.backend as K\n'), ((5674, 5704), 'tensorflow.keras.backend.exp', 'K.exp', (['(-(G_C + G_R + G_I) / kT)'], {}), '(-(G_C + G_R + G_I) / kT)\n', (5679, 5704), True, 'import tensorflow.keras.backend as K\n'), ((5763, 5793), 'tensorflow.keras.backend.exp', 'K.exp', (['(-(G_C + G_R + G_I) / kT)'], {}), '(-(G_C + G_R + G_I) / kT)\n', (5768, 5793), True, 'import tensorflow.keras.backend as K\n'), ((2443, 2456), 'tensorflow.keras.initializers.Constant', 'Constant', (['(1.0)'], {}), '(1.0)\n', (2451, 2456), False, 'from tensorflow.keras.initializers import Constant\n'), ((2829, 2842), 'tensorflow.keras.initializers.Constant', 'Constant', (['(1.0)'], {}), '(1.0)\n', (2837, 2842), False, 'from tensorflow.keras.initializers import Constant\n'), ((3382, 3405), 'tensorflow.keras.initializers.Constant', 'Constant', (['theta_tf_init'], {}), '(theta_tf_init)\n', (3390, 3405), False, 'from tensorflow.keras.initializers import Constant\n'), ((3965, 3990), 'tensorflow.keras.initializers.Constant', 'Constant', (['theta_rnap_init'], {}), '(theta_rnap_init)\n', (3973, 3990), False, 'from tensorflow.keras.initializers import Constant\n'), ((4360, 4372), 'tensorflow.keras.initializers.Constant', 'Constant', (['(-4)'], {}), '(-4)\n', (4368, 4372), False, 'from tensorflow.keras.initializers import Constant\n'), ((5300, 5340), 'tensorflow.keras.backend.sum', 'K.sum', (['(self.theta_tf * x_tf)'], {'axis': '[1, 2]'}), '(self.theta_tf * x_tf, axis=[1, 2])\n', (5305, 5340), True, 'import tensorflow.keras.backend as K\n'), ((5483, 5527), 'tensorflow.keras.backend.sum', 'K.sum', (['(self.theta_rnap * x_rnap)'], {'axis': '[1, 2]'}), '(self.theta_rnap * x_rnap, axis=[1, 2])\n', (5488, 5527), True, 'import tensorflow.keras.backend as K\n'), ((5746, 5762), 'tensorflow.keras.backend.exp', 'K.exp', (['(-G_R / kT)'], {}), '(-G_R / kT)\n', (5751, 5762), True, 'import tensorflow.keras.backend as K\n'), ((5729, 5745), 'tensorflow.keras.backend.exp', 'K.exp', (['(-G_C / kT)'], {}), '(-G_C / kT)\n', (5734, 5745), True, 'import tensorflow.keras.backend as K\n')]
############################################################################ # This Python file is part of PyFEM, the code that accompanies the book: # # # # 'Non-Linear Finite Element Analysis of Solids and Structures' # # <NAME>, <NAME>, <NAME> and <NAME> # # <NAME> and Sons, 2012, ISBN 978-0470666449 # # # # The code is written by <NAME>, <NAME> and <NAME>. # # # # The latest stable version can be downloaded from the web-site: # # http://www.wiley.com/go/deborst # # # # A github repository, with the most up to date version of the code, # # can be found here: # # https://github.com/jjcremmers/PyFEM # # # # The code is open source and intended for educational and scientific # # purposes only. If you use PyFEM in your research, the developers would # # be grateful if you could cite the book. # # # # Disclaimer: # # The authors reserve all rights but do not guarantee that the code is # # free from errors. Furthermore, the authors shall not be liable in any # # event caused by the use of the program. # ############################################################################ from pyfem.util.dataStructures import Properties from pyfem.util.dataStructures import GlobalData from numpy import zeros, array from pyfem.fem.Assembly import assembleInternalForce, assembleTangentStiffness from numpy import zeros, array from pyfem.fem.Assembly import assembleInternalForce, assembleTangentStiffness ################################# # Step 1: # # Initialize (Delta a) # ################################# class DissipationNRGSolver: def __init__( self , props , globdat ): self.tol = 1.0e-4 print("asd") def run( self , props , globdat ): globdat.cycle += 1 dofCount = len(globdat.dofs) a = globdat.state Da = globdat.Dstate Da[:] = zeros( dofCount ) fint = zeros( dofCount ) fext = zeros( dofCount ) print('=================================') print(' Load step %i' % globdat.cycle) print('=================================') print(' NR iter : L2-norm residual') #fext = fext + Dfext globdat.iiter = 0 K = assembleTangentStiffness( props, globdat ) error = 1. while error > self.tol: globdat.iiter += 1 da = globdat.dofs.solve( K, fext-fint ) Da[:] += da[:] a [:] += da[:] fint = assembleInternalForce ( props, globdat ) K = assembleTangentStiffness( props, globdat ) error = globdat.dofs.norm( fext-fint ) print(' Iter', globdat.iiter, ':', error) if globdat.iiter == self.iterMax: raise RuntimeError('Newton-Raphson iterations did not converge!') # Converged elements.commitHistory() if globdat.cycle == 10: globdat.active = False
[ "pyfem.fem.Assembly.assembleTangentStiffness", "numpy.zeros", "pyfem.fem.Assembly.assembleInternalForce" ]
[((2668, 2683), 'numpy.zeros', 'zeros', (['dofCount'], {}), '(dofCount)\n', (2673, 2683), False, 'from numpy import zeros, array\n'), ((2699, 2714), 'numpy.zeros', 'zeros', (['dofCount'], {}), '(dofCount)\n', (2704, 2714), False, 'from numpy import zeros, array\n'), ((2731, 2746), 'numpy.zeros', 'zeros', (['dofCount'], {}), '(dofCount)\n', (2736, 2746), False, 'from numpy import zeros, array\n'), ((3007, 3047), 'pyfem.fem.Assembly.assembleTangentStiffness', 'assembleTangentStiffness', (['props', 'globdat'], {}), '(props, globdat)\n', (3031, 3047), False, 'from pyfem.fem.Assembly import assembleInternalForce, assembleTangentStiffness\n'), ((3253, 3290), 'pyfem.fem.Assembly.assembleInternalForce', 'assembleInternalForce', (['props', 'globdat'], {}), '(props, globdat)\n', (3274, 3290), False, 'from pyfem.fem.Assembly import assembleInternalForce, assembleTangentStiffness\n'), ((3310, 3350), 'pyfem.fem.Assembly.assembleTangentStiffness', 'assembleTangentStiffness', (['props', 'globdat'], {}), '(props, globdat)\n', (3334, 3350), False, 'from pyfem.fem.Assembly import assembleInternalForce, assembleTangentStiffness\n')]
# -*- encoding: utf-8 -*- ''' @File : kdTree.py @Contact : <EMAIL> @Modify Time @Author @Version @Desciption ------------ ----------- -------- ----------- 2020/1/4 21:27 guzhouweihu 1.0 None ''' import math from collections import namedtuple import time from random import random import numpy as np import heapq from priority_queue import MaxHeap class kdNode(object): def __init__(self, point, split_dim, left, right): self.point = point self.split_dim = split_dim self.left = left self.right = right class kdTree(object): def __init__(self, dataset): self.k = len(dataset[0]) def createNode(split_dim, dataset): if not dataset: return None dataset.sort(key=lambda x: x[split_dim]) split_pos = len(dataset) // 2 mid_pnt = dataset[split_pos] split_next_dim = (split_dim + 1) % self.k return kdNode(mid_pnt, split_dim, createNode(split_next_dim, dataset[:split_pos]), createNode(split_next_dim, dataset[split_pos + 1:])) self.root = createNode(0, dataset) def nearest(self, x, near_k=1, p=2): self.k_nearest = [(-np.inf, None)] * near_k def travel(node): if not node == None: dist = x[node.split_dim] - node.point[node.split_dim] travel(node.left if dist < 0 else node.right) cur_dist = np.linalg.norm(np.array(x) - np.array(node.point), p) heapq.heappushpop(self.k_nearest, (-cur_dist, node)) if -(self.k_nearest[0][0]) > abs(dist): travel(node.right if dist < 0 else node.left) travel(self.root) self.k_nearest = np.array([i[1].point for i in heapq.nlargest(near_k, self.k_nearest)]) return self.k_nearest def nearest_useMyqueue(self, target, near_k=1, p=2): priorityQueue = MaxHeap(near_k, lambda x: x[0]) def travel(node): if not node == None: dist = target[node.split_dim] - node.point[node.split_dim] travel(node.left if dist < 0 else node.right) cur_dist = np.linalg.norm(np.array(target) - np.array(node.point), p) priorityQueue.insert_keep_size((cur_dist, node)) max_item = priorityQueue.get_max() if max_item[0] > abs(dist): travel(node.right if dist < 0 else node.left) travel(self.root) res = [] for i in range(near_k): res.insert(0, priorityQueue.del_max()[1].point) return res # 中序遍历 def preorder(root): if root.left: preorder(root.left) print(root.point) if root.right: preorder(root.right) if __name__ == "__main__": data = [[2, 3], [5, 4], [9, 6], [4, 7], [8, 1], [7, 2]] kd = kdTree(data) preorder(kd.root) # 产生一个k维随机向量,每维分量值在0~1之间 def random_point(k): return [random() for _ in range(k)] # 产生n个k维随机向量 def random_points(k, n): return [random_point(k) for _ in range(n)] N = 40000 data = random_points(3, N) kd2 = kdTree(data) # 构建包含四十万个3维空间样本点的kd树 result2 = kd2.nearest([0.1, 0.5, 0.8], 5, 2) result3 = kd2.nearest_useMyqueue([0.1, 0.5, 0.8], 5, 2) print(result2) print(np.array(result3))
[ "heapq.heappushpop", "heapq.nlargest", "priority_queue.MaxHeap", "random.random", "numpy.array" ]
[((2013, 2044), 'priority_queue.MaxHeap', 'MaxHeap', (['near_k', '(lambda x: x[0])'], {}), '(near_k, lambda x: x[0])\n', (2020, 2044), False, 'from priority_queue import MaxHeap\n'), ((3428, 3445), 'numpy.array', 'np.array', (['result3'], {}), '(result3)\n', (3436, 3445), True, 'import numpy as np\n'), ((3059, 3067), 'random.random', 'random', ([], {}), '()\n', (3065, 3067), False, 'from random import random\n'), ((1601, 1653), 'heapq.heappushpop', 'heapq.heappushpop', (['self.k_nearest', '(-cur_dist, node)'], {}), '(self.k_nearest, (-cur_dist, node))\n', (1618, 1653), False, 'import heapq\n'), ((1860, 1898), 'heapq.nlargest', 'heapq.nlargest', (['near_k', 'self.k_nearest'], {}), '(near_k, self.k_nearest)\n', (1874, 1898), False, 'import heapq\n'), ((1545, 1556), 'numpy.array', 'np.array', (['x'], {}), '(x)\n', (1553, 1556), True, 'import numpy as np\n'), ((1559, 1579), 'numpy.array', 'np.array', (['node.point'], {}), '(node.point)\n', (1567, 1579), True, 'import numpy as np\n'), ((2284, 2300), 'numpy.array', 'np.array', (['target'], {}), '(target)\n', (2292, 2300), True, 'import numpy as np\n'), ((2303, 2323), 'numpy.array', 'np.array', (['node.point'], {}), '(node.point)\n', (2311, 2323), True, 'import numpy as np\n')]
''' ''' __debug = False from collections import namedtuple , Counter import copy, sys import numpy as np try: from src import core,file from src.TWL06 import twl except: import core,file from TWL06 import twl def pattern(word,utf8=False): pattern = np.zeros(len(word),dtype="int") index = 0 if utf8: seen = "" else: seen = bytearray("","ascii") for i,letter in enumerate(word): try: if not letter in seen: pattern[i] = index for j,nextLetter in enumerate(word[i+1:]): if letter == nextLetter: pattern[i] = index pattern[j+i+1] = index seen.append(letter) index += 1 except TypeError: print("ERROR: Check that the input is a bytearray, or utf8=True is set") return return pattern class tupleArray: array = np.empty([]) def __init__(self,cipher): wordList = cipher.strip().split(bytes([ord(" ")])) self.array = np.empty(len(wordList),dtype=tuple) wordTuple = namedtuple('wordTuple','word original length solved pattern') for i,j in enumerate(wordList): self.array[i] = wordTuple(word=bytearray(j),original=j,length=len(j),solved=np.array([False]*len(j)),pattern=pattern(j)) def show(self,file=sys.stdout): for word in self.array: for j,letter in enumerate(word.word): if word.solved[j]: print(chr(letter).lower(),end="",file=file) else: print(chr(letter).upper(),end="",file=file) print(" ",end="",file=file) print("\n",end="",file=file) def scrap(self): for word in self.array: for i in range(len(word.word)): word.word[i] = word.original[i] for i in range(len(word.solved)): word.solved[i] = False def simpleCheck(self): for word in self.array: if word.length == 1 and word.solved[0] == True and word[0] not in bytearray("aio","ascii"): return [False,word] elif not (False in word.solved) and not (twl.check(str(word.word,"utf-8")) or word.word in bytearray("aio","ascii")): return [False,word] return [True,bytearray("","ascii")] def fullCheck(self): for word in self.array: for bool in word.solved: if not bool: return False return True def wordPossibilities(plaintext,tupleArray): possibilities = [] for word in tupleArray.array: if np.array_equal(word.pattern,pattern(plaintext)): possibilities.append(str(word.original,"utf-8")) count = Counter(possibilities) possibilities = sorted(possibilities, key=lambda x: -count[x]) sortedP = [] for i in possibilities: i = bytearray(i.lower(),"ascii") if not i in sortedP: sortedP.append(i) return sortedP class cipherAlphabet: current = np.zeros(26,dtype="object") def __init__(self): for i,letter in enumerate(bytearray("abcdefghijklmnopqrstuvwxyz","ascii")): self.current[i] = [letter,False] found = [] def show(self,file=sys.stdout): for i in range(26): print(chr(97+i),end=" ",file=file) output = np.zeros(26,dtype=int) for i,letter in enumerate(self.current): if letter[1]: output[letter[0] - 97] = i + 65 print(file=file) for i in output: if i != 0: print(chr(i),end=" ",file=file) else: print(" ",end=" ",file=file) print(file=file) def set(self,plaintext,ciphertext): done = bytearray("","ascii") ### CHECK: for plain,cipher in zip(plaintext,ciphertext): for p,c in self.found: for i,j in zip(p,c): if (i == plain) ^ (j == cipher): return 1 ### SET: for plain,cipher in zip(plaintext,ciphertext): if not (plaintext,ciphertext) in self.found: self.found.append((plaintext,ciphertext)) index = (cipher-97)%26 if not self.current[index][1]: self.current[index][0] = plain self.current[index][1] = True done += bytes([cipher]) return 0 def scrap(self,found=False): for i,letter in enumerate(self.current): if letter[1]: self.current[i] = [i+97,False] if found: self.found = [] def fill(self): missingCipher = [] for i,letter in enumerate(self.current): if not letter[1]: missingCipher.append(i+97) for plain in range(97,123): for i,cipher in enumerate(self.current): if cipher[0] == plain and cipher[1]: break else: self.set(bytes([plain]),bytes([missingCipher[0]])) missingCipher = missingCipher[1:] def shift(alphabet,tupleArray): for cipher,plain in enumerate(alphabet.current): if plain[1]: cipher += 65 plain = plain[0] for word in tupleArray.array: for i,letter in enumerate(word.word): if letter == cipher and word.solved[i] == False: word.word[i] = plain word.solved[i] = True return 0 def recursiveSolve(words, tupleArray, accepted=[], recursionCounter = 0,newWords=[]): ''' It will recursively try all inputs given to it against all possibilities in the text, depending on repeated letter patterns, and return a list of completed words, as (plaintext, ciphertext) tuples >>> from substitution import recursiveSolve, tupleArray >>> t = tupleArray(bytearray("JL NJIWI","ascii")) >>> recursiveSolve(['hi','there'],t) [(bytearray(b'hi'), bytearray(b'jl')), (bytearray(b'there'), bytearray(b'njiwi'))] >>> t.show() hi there ''' if len(words) == 0: return accepted word = bytearray(words[0],"ascii") alphabet = cipherAlphabet() for i,solution in enumerate(wordPossibilities(word,tupleArray)): tupleArray.scrap() alphabet.scrap(found=True) for plain,cipher in accepted: alphabet.set(plain,cipher) if alphabet.set(word,solution) == 1: continue else: shift(alphabet,tupleArray) check = tupleArray.simpleCheck() if __debug: print(check[1]) if not check[0] and check[1].word in newWords: check[0] = True if not check[0]: if __debug: bool = True else: bool = input("is "+str(check[1].word)+" a word? ")[0] == 'y' CURSOR_UP_ONE = '\x1b[1A' ERASE_LINE = '\x1b[2K' print(CURSOR_UP_ONE+ERASE_LINE+"\r",end="") if bool: twl.add(check[1].word) check[0] = True newWords.append(check[1].word) if check[0]: maybeReturn = recursiveSolve(words[1:],tupleArray,accepted + [(word,solution)],recursionCounter+1,newWords=newWords) else: continue if maybeReturn: return maybeReturn def flatten(L): if L == None: yield None for item in L: if type(item) == type(bytearray("","ascii")): yield item else: yield from flatten(item) def recursiveGuess(masterArray,alphabet,minWord=6,failCount=0,newWords=[]): tupleArray = copy.deepcopy(masterArray) if tupleArray.fullCheck(): return tupleArray unknowns = [] for word in tupleArray.array: if word.length < minWord: continue possibles = recursiveCheck(word,alphabet) if possibles == None: continue for test in flatten([possibles]): if test == word.word: break elif alphabet.set(test,word.original.lower()) == 1: continue else: shift(alphabet,tupleArray) check = tupleArray.simpleCheck() if not check[0] and not check[1].word in newWords: if __debug: bool = True else: bool = input("is "+str(check[1].word)+" a word? ")[0] == 'y' CURSOR_UP_ONE = '\x1b[1A' ERASE_LINE = '\x1b[2K' print(CURSOR_UP_ONE+ERASE_LINE+"\r",end="") if bool: twl.add(check[1].word) check[0] = True newWords.append(check[1].word) if check[0]: a = recursiveGuess(tupleArray,alphabet,minWord,failCount,newWords) if a: return a else: failCount += 1 break else: tupleArray = copy.deepcopy(masterArray) continue else: return masterArray def recursiveCheck(masterTuple,alphabet,found=None): wordTuple = copy.deepcopy(masterTuple) returnValue = [] if found: for i in range(len(wordTuple.word)): if wordTuple.word[i] == wordTuple.original[found[0]] and wordTuple.solved[i] == False: wordTuple.word[i] = found[1] wordTuple.solved[i] = True start = bytearray("","ascii") index = 0 for i,letter in enumerate(wordTuple.word): if wordTuple.solved[i] == True: start += bytes([letter]) else: index = i break if len(start) == 0: return None if len(start) == wordTuple.length: if twl.check(str(wordTuple.word,'utf-8')): return wordTuple.word else: return None for possible in twl.children(str(start,"utf-8")): if possible == '$': continue for plain,_ in alphabet.found: if ord(possible) in plain: break else: a = recursiveCheck(wordTuple,alphabet,(index,ord(possible))) if a: returnValue.append(a) return returnValue def finalCheck(tupleArray, alphabet): ''' This occurs when a letter is missed because it only occurs at the start of the word, where recursiveCheck misses it as it cannot be checked directly using twl ''' for word in tupleArray.array: if (len(word.solved) > 1 and not word.solved[0]) and not ( False in word.solved[1:]): possible = [] orig = word.word[0] for l in range(26): word.word[0] = l+97 if twl.check(str(word.word,"utf-8")): possible.append((bytes([l+97]),bytes([orig+32]))) if len(possible) == 1: alphabet.set(possible[0][0],possible[0][1]) word.word[0] = orig return alphabet
[ "copy.deepcopy", "TWL06.twl.add", "numpy.empty", "numpy.zeros", "collections.namedtuple", "collections.Counter" ]
[((767, 779), 'numpy.empty', 'np.empty', (['[]'], {}), '([])\n', (775, 779), True, 'import numpy as np\n'), ((2282, 2304), 'collections.Counter', 'Counter', (['possibilities'], {}), '(possibilities)\n', (2289, 2304), False, 'from collections import namedtuple, Counter\n'), ((2535, 2563), 'numpy.zeros', 'np.zeros', (['(26)'], {'dtype': '"""object"""'}), "(26, dtype='object')\n", (2543, 2563), True, 'import numpy as np\n'), ((6297, 6323), 'copy.deepcopy', 'copy.deepcopy', (['masterArray'], {}), '(masterArray)\n', (6310, 6323), False, 'import copy, sys\n'), ((7443, 7469), 'copy.deepcopy', 'copy.deepcopy', (['masterTuple'], {}), '(masterTuple)\n', (7456, 7469), False, 'import copy, sys\n'), ((926, 988), 'collections.namedtuple', 'namedtuple', (['"""wordTuple"""', '"""word original length solved pattern"""'], {}), "('wordTuple', 'word original length solved pattern')\n", (936, 988), False, 'from collections import namedtuple, Counter\n'), ((2814, 2837), 'numpy.zeros', 'np.zeros', (['(26)'], {'dtype': 'int'}), '(26, dtype=int)\n', (2822, 2837), True, 'import numpy as np\n'), ((5775, 5797), 'TWL06.twl.add', 'twl.add', (['check[1].word'], {}), '(check[1].word)\n', (5782, 5797), False, 'from TWL06 import twl\n'), ((7303, 7329), 'copy.deepcopy', 'copy.deepcopy', (['masterArray'], {}), '(masterArray)\n', (7316, 7329), False, 'import copy, sys\n'), ((7032, 7054), 'TWL06.twl.add', 'twl.add', (['check[1].word'], {}), '(check[1].word)\n', (7039, 7054), False, 'from TWL06 import twl\n')]
import math from abc import ABC from typing import Optional, Callable import numpy as np from .. import distances from .part_reward import PartReward class PartVelocityReward(PartReward, ABC): """ A reward that punishes (linear and angular) movement of parts. """ def __init__(self, name_prefix: str, max_linear_velocity: float = 1.0, max_angular_velocity: float = math.pi, intermediate_timestep_reward_scale: Optional[float] = 0.0, final_timestep_reward_scale: Optional[float] = 0.25, abbreviated_name: Optional[str] = None, reward_condition: Optional[Callable[[], bool]] = None): """ :param name_prefix: the name prefix of the specific instance of the PartVelocityReward; the complete reward name is name_prefix + "part_velocity_reward" :param max_linear_velocity: the maximum linear velocity to use for normalizing the (unscaled) reward to lie in [-1, 0]; the reward is clipped at -1 if the sum of linear and angular velocity is higher than max_linear_velocity + min_linear_velocity :param max_angular_velocity: the maximum angular velocity to use for normalizing the (unscaled) reward to lie in [-1, 0] :param intermediate_timestep_reward_scale: scaling factor (applied to the reward at every step in which the gym environment does not terminate) :param final_timestep_reward_scale: scaling factor (applied to the reward at the step in which the gym environment terminates) :param abbreviated_name: an abbreviation of the name of the reward that is displayed with the value of the reward at the end of each episode (by the gym environment) :param reward_condition: a custom condition that specifies if the reward is active (i.e. the reward is only calculated if reward_condition() is True, otherwise the calculate_reward() returns 0) """ super().__init__(name_prefix + "_part_velocity_reward", intermediate_timestep_reward_scale, final_timestep_reward_scale, clip=True, abbreviated_name=abbreviated_name, reward_condition=reward_condition) self.__distance_measure = distances.ssd_log_distance self.__max_cost_per_part = max_linear_velocity + max_angular_velocity def _calculate_reward_unnormalized(self) -> float: velocities = np.array([part.scene_object.get_velocity() for part in self._get_parts()]) linear_velocities = np.linalg.norm(velocities[:, 0], axis=-1) angular_velocities = np.linalg.norm(velocities[:, 1], axis=-1) average_linear_velocity = np.mean(linear_velocities) average_angular_velocity = np.mean(angular_velocities) cost = average_linear_velocity + average_angular_velocity return -cost def _get_min_reward_unnormalized(self) -> float: return -self.__max_cost_per_part * len(self._get_parts())
[ "numpy.mean", "numpy.linalg.norm" ]
[((3156, 3197), 'numpy.linalg.norm', 'np.linalg.norm', (['velocities[:, 0]'], {'axis': '(-1)'}), '(velocities[:, 0], axis=-1)\n', (3170, 3197), True, 'import numpy as np\n'), ((3227, 3268), 'numpy.linalg.norm', 'np.linalg.norm', (['velocities[:, 1]'], {'axis': '(-1)'}), '(velocities[:, 1], axis=-1)\n', (3241, 3268), True, 'import numpy as np\n'), ((3303, 3329), 'numpy.mean', 'np.mean', (['linear_velocities'], {}), '(linear_velocities)\n', (3310, 3329), True, 'import numpy as np\n'), ((3365, 3392), 'numpy.mean', 'np.mean', (['angular_velocities'], {}), '(angular_velocities)\n', (3372, 3392), True, 'import numpy as np\n')]
import platform import cv2 import timeit import argparse import os import sys import multiprocessing as mp import geopandas mp.set_start_method('spawn', force=True) import utils.dataframe import numpy as np from utils import raster_processing, to_agol, features, dataframe import rasterio.warp import rasterio.crs import torch #import ray from collections import defaultdict from os import makedirs, path from pathlib import Path from torch.utils.data import DataLoader from skimage.morphology import square, dilation from tqdm import tqdm from dataset import XViewDataset from models import XViewFirstPlaceLocModel, XViewFirstPlaceClsModel from loguru import logger from osgeo import gdal import shapely class Options(object): def __init__(self, pre_path='input/pre', post_path='input/post', out_loc_path='output/loc', out_dmg_path='output/dmg', out_overlay_path='output/over', model_config='configs/model.yaml', model_weights='weights/weight.pth', geo_profile=None, use_gpu=False, vis=False): self.in_pre_path = pre_path self.in_post_path = post_path self.out_loc_path = out_loc_path self.out_cls_path = out_dmg_path self.out_overlay_path = out_overlay_path self.model_config_path = model_config self.model_weight_path = model_weights self.geo_profile = geo_profile self.is_use_gpu = use_gpu self.is_vis = vis class Files(object): def __init__(self, ident, pre_directory, post_directory, output_directory, pre, post): self.ident = ident self.pre = pre_directory.joinpath(pre).resolve() self.post = post_directory.joinpath(post).resolve() self.loc = output_directory.joinpath('loc').joinpath(f'{self.ident}.tif').resolve() self.dmg = output_directory.joinpath('dmg').joinpath(f'{self.ident}.tif').resolve() self.over = output_directory.joinpath('over').joinpath(f'{self.ident}.tif').resolve() self.profile = self.get_profile() self.transform = self.profile["transform"] self.opts = Options(pre_path=self.pre, post_path=self.post, out_loc_path=self.loc, out_dmg_path=self.dmg, out_overlay_path=self.over, geo_profile=self.profile, vis=True, use_gpu=True ) def get_profile(self): with rasterio.open(self.pre) as src: return src.profile def make_output_structure(output_path): """ Creates directory structure for outputs. :param output_path: Output path :return: True if succussful """ Path(f"{output_path}/mosaics").mkdir(parents=True, exist_ok=True) Path(f"{output_path}/chips/pre").mkdir(parents=True, exist_ok=True) Path(f"{output_path}/chips/post").mkdir(parents=True, exist_ok=True) Path(f"{output_path}/loc").mkdir(parents=True, exist_ok=True) Path(f"{output_path}/dmg").mkdir(parents=True, exist_ok=True) Path(f"{output_path}/over").mkdir(parents=True, exist_ok=True) Path(f"{output_path}/vector").mkdir(parents=True, exist_ok=True) Path(f"{output_path}/vrt").mkdir(parents=True, exist_ok=True) return True def get_files(dirname, extensions=['.png', '.tif', '.jpg']): """ Gathers list of files for processing from path recursively. :param dirname: path to parse :param extensions: extensions to match :return: list of files matching extensions """ dir_path = Path(dirname) files = dir_path.glob('**/*') match = [path.resolve() for path in files if path.suffix in extensions] assert len(match) > 0, logger.critical(f'No image files found in {dir_path.resolve()}') return match def reproject_helper(args, raster_tuple, procnum, return_dict, resolution): """ Helper function for reprojection """ (pre_post, src_crs, raster_file) = raster_tuple basename = raster_file.stem dest_file = args.staging_directory.joinpath('pre').joinpath(f'{basename}.tif') try: return_dict[procnum] = (pre_post, raster_processing.reproject(raster_file, dest_file, src_crs, args.destination_crs, resolution)) except ValueError: return None def postprocess_and_write(result_dict): """ Postprocess results from inference and write results to file :param result_dict: dictionary containing all required opts for each example """ _thr = [0.38, 0.13, 0.14] pred_coefs = [1.0] * 4 # not 12, b/c already took mean over 3 in each subset loc_coefs = [1.0] * 4 preds = [] _i = -1 for k,v in result_dict.items(): if 'cls' in k: _i += 1 # Todo: I think the below can just be replaced by v['cls'] -- should check msk = v['cls'].numpy() preds.append(msk * pred_coefs[_i]) preds = np.asarray(preds).astype('float').sum(axis=0) / np.sum(pred_coefs) / 255 loc_preds = [] _i = -1 for k,v in result_dict.items(): if 'loc' in k: _i += 1 msk = v['loc'].numpy() loc_preds.append(msk * loc_coefs[_i]) loc_preds = np.asarray(loc_preds).astype('float').sum(axis=0) / np.sum(loc_coefs) / 255 msk_dmg = preds[..., 1:].argmax(axis=2) + 1 msk_loc = (1 * ((loc_preds > _thr[0]) | ((loc_preds > _thr[1]) & (msk_dmg > 1) & (msk_dmg < 4)) | ((loc_preds > _thr[2]) & (msk_dmg > 1)))).astype('uint8') msk_dmg = msk_dmg * msk_loc _msk = (msk_dmg == 2) if _msk.sum() > 0: _msk = dilation(_msk, square(5)) msk_dmg[_msk & msk_dmg == 1] = 2 msk_dmg = msk_dmg.astype('uint8') loc = msk_loc cls = msk_dmg sample_result_dict = result_dict['34loc'] sample_result_dict['geo_profile'].update(dtype=rasterio.uint8) dst = rasterio.open(sample_result_dict['out_loc_path'], 'w', **sample_result_dict['geo_profile']) dst.write(loc, 1) dst.close() dst = rasterio.open(sample_result_dict['out_cls_path'], 'w', **sample_result_dict['geo_profile']) dst.write(cls, 1) dst.close() if sample_result_dict['is_vis']: raster_processing.create_composite(sample_result_dict['in_pre_path'], cls, sample_result_dict['out_overlay_path'], sample_result_dict['geo_profile'], ) def run_inference(loader, model_wrapper, write_output=False, mode='loc', return_dict=None): results = defaultdict(list) with torch.no_grad(): # This is really important to not explode memory with gradients! for ii, result_dict in tqdm(enumerate(loader), total=len(loader)): #print(result_dict['in_pre_path']) debug=False #if '116' in result_dict['in_pre_path'][0]: # import ipdb; ipdb.set_trace() # debug=True out = model_wrapper.forward(result_dict['img'],debug=debug) # Save prediction tensors for testing # Todo: Create argument for turning on debug/trace/test data # pred_path = Path('/home/ubuntu/debug/output/preds') # makedirs(pred_path, exist_ok=True) # torch.save(out, pred_path / f'preds_{mode}_{ii}.pt') out = out.detach().cpu() del result_dict['img'] if 'pre_image' in result_dict: result_dict['pre_image'] = result_dict['pre_image'].cpu().numpy() if 'post_img' in result_dict: result_dict['post_image'] = result_dict['post_image'].cpu().numpy() if mode == 'loc': result_dict['loc'] = out elif mode == 'cls': result_dict['cls'] = out else: raise ValueError('Incorrect mode -- must be loc or cls') # Do this one separately because you can't return a class from a dataloader result_dict['geo_profile'] = [loader.dataset.pairs[idx].opts.geo_profile for idx in result_dict['idx']] for k,v in result_dict.items(): results[k] = results[k] + list(v) # Making a list results_list = [dict(zip(results,t)) for t in zip(*results.values())] if write_output: pred_folder = args.output_directory / 'preds' logger.info('Writing results...') makedirs(pred_folder, exist_ok=True) for result in tqdm(results_list, total=len(results_list)): # TODO: Multithread this to make it more efficient/maybe eliminate it from workflow if mode == 'loc': cv2.imwrite(path.join(pred_folder, result['in_pre_path'].split('/')[-1].replace('.tif', '_part1.png')), np.array(result['loc'])[...], [cv2.IMWRITE_PNG_COMPRESSION, 9]) elif mode == 'cls': cv2.imwrite(path.join(pred_folder, result['in_pre_path'].split('/')[-1].replace('.tif', '_part1.png')), np.array(result['cls'])[..., :3], [cv2.IMWRITE_PNG_COMPRESSION, 9]) cv2.imwrite(path.join(pred_folder, result['in_pre_path'].split('/')[-1].replace('.tif', '_part2.png')), np.array(result['cls'])[..., 2:], [cv2.IMWRITE_PNG_COMPRESSION, 9]) if return_dict is None: return results_list else: return_dict[f'{model_wrapper.model_size}{mode}'] = results_list def check_data(images): """ Check that our image pairs contain useful data. Note: This only check the first band of each file. :param images: Images to check for data :return: True if both images contain useful data. False if either contains no useful date. """ for image in images: with rasterio.open(image) as src: layer = src.read(1) if layer.sum() == 0: return False return True def parse_args(): parser = argparse.ArgumentParser(description='Create arguments for xView 2 handler.') parser.add_argument('--pre_directory', metavar='/path/to/pre/files/', type=Path, required=True, help='Directory containing pre-disaster imagery. This is searched recursively.') parser.add_argument('--post_directory', metavar='/path/to/post/files/', type=Path, required=True, help='Directory containing post-disaster imagery. This is searched recursively.') parser.add_argument('--output_directory', metavar='/path/to/output/', type=Path, required=True, help='Directory to store output files. This will be created if it does not exist. Existing files may be overwritten.') parser.add_argument('--n_procs', default=4, help="Number of processors for multiprocessing", type=int) parser.add_argument('--batch_size', default=16, help="Number of chips to run inference on at once", type=int) parser.add_argument('--num_workers', default=8, help="Number of workers loading data into RAM. Recommend 4 * num_gpu", type=int) parser.add_argument('--pre_crs', help='The Coordinate Reference System (CRS) for the pre-disaster imagery. This will only be utilized if images lack CRS data. May be WKT, EPSG (ex. "EPSG:4326"), or PROJ string.') parser.add_argument('--post_crs', help='The Coordinate Reference System (CRS) for the post-disaster imagery. This will only be utilized if images lack CRS data. May be WKT, EPSG (ex. "EPSG:4326"), or PROJ string.') parser.add_argument('--destination_crs', default=None, help='The Coordinate Reference System (CRS) for the output overlays. May be WKT, EPSG (ex. "EPSG:4326"), or PROJ string. Leave blank to calculate the approriate UTM zone.') # Todo: Create warning/force change when not using a CRS that utilizes meters for base units parser.add_argument('--dp_mode', default=False, action='store_true', help='Run models serially, but using DataParallel') parser.add_argument('--output_resolution', default=None, help='Override minimum resolution calculator. This should be a lower resolution (higher number) than source imagery for decreased inference time. Must be in units of destinationCRS.') parser.add_argument('--save_intermediates', default=False, action='store_true', help='Store intermediate runfiles') parser.add_argument('--aoi_file', default=None, help='Shapefile or GeoJSON file of AOI polygons') parser.add_argument('--agol_user', default=None, help='ArcGIS online username') parser.add_argument('--agol_password', default=None, help='ArcGIS online password') parser.add_argument('--agol_feature_service', default=None, help='ArcGIS online feature service to append damage polygons.') return parser.parse_args() @logger.catch() def main(): t0 = timeit.default_timer() # Determine if items are being pushed to AGOL agol_push = to_agol.agol_arg_check(args.agol_user, args.agol_password, args.agol_feature_service) # Make file structure make_output_structure(args.output_directory) # Create input CRS objects from our pre/post inputs if args.pre_crs: args.pre_crs = rasterio.crs.CRS.from_string(args.pre_crs) if args.post_crs: args.post_crs = rasterio.crs.CRS.from_string(args.post_crs) # Retrieve files form input directories logger.info('Retrieving files...') pre_files = get_files(args.pre_directory) logger.debug(f'Retrieved {len(pre_files)} pre files from {args.pre_directory}') post_files = get_files(args.post_directory) logger.debug(f'Retrieved {len(post_files)} pre files from {args.post_directory}') # Create VRTs # Todo: Why are we doing this? pre_vrt = raster_processing.create_vrt(pre_files, args.output_directory.joinpath('vrt/pre_vrt.vrt')) post_vrt = raster_processing.create_vrt(post_files, args.output_directory.joinpath('vrt/post_vrt.vrt')) # Create geopandas dataframes of raster footprints # Todo: make sure we have valid rasters before proceeding pre_df = utils.dataframe.make_footprint_df(pre_files) post_df = utils.dataframe.make_footprint_df(post_files) # Create destination CRS object from argument, else determine UTM zone and create CRS object dest_crs = utils.dataframe.get_utm(pre_df) logger.info(f'Calculated CRS: {dest_crs}') if args.destination_crs: args.destination_crs = rasterio.crs.CRS.from_string(args.destination_crs) logger.info(f'Calculated CRS overridden by passed argument: {args.destination_crs}') else: args.destination_crs = dest_crs # Ensure CRS is projected. This prevents a lot of problems downstream. assert args.destination_crs.is_projected, logger.critical('CRS is not projected. Please use a projected CRS') # Process DF pre_df = utils.dataframe.process_df(pre_df, args.destination_crs) post_df = utils.dataframe.process_df(post_df, args.destination_crs) # Get AOI files and calculate intersect if args.aoi_file: aoi_df = dataframe.make_aoi_df(args.aoi_file) else: aoi_df = None extent = utils.dataframe.get_intersect(pre_df, post_df, args, aoi_df) logger.info(f'Calculated extent: {extent}') # Calculate destination resolution res = dataframe.get_max_res(pre_df, post_df) logger.info(f'Calculated resolution: {res}') if args.output_resolution: res = (args.output_resolution, args.output_resolution) logger.info(f'Calculated resolution overridden by passed argument: {res}') logger.info("Creating pre mosaic...") pre_mosaic = raster_processing.create_mosaic( [str(file) for file in pre_df.filename], Path(f"{args.output_directory}/mosaics/pre.tif"), pre_df.crs, args.destination_crs, extent, res, aoi_df ) logger.info("Creating post mosaic...") post_mosaic = raster_processing.create_mosaic( [str(file) for file in post_df.filename], Path(f"{args.output_directory}/mosaics/post.tif"), post_df.crs, args.destination_crs, extent, res, aoi_df ) logger.info('Chipping...') pre_chips = raster_processing.create_chips(pre_mosaic, args.output_directory.joinpath('chips').joinpath('pre'), extent) logger.debug(f'Num pre chips: {len(pre_chips)}') post_chips = raster_processing.create_chips(post_mosaic, args.output_directory.joinpath('chips').joinpath('post'), extent) logger.debug(f'Num post chips: {len(post_chips)}') assert len(pre_chips) == len(post_chips), logger.error('Chip numbers mismatch') # Defining dataset and dataloader pairs = [] for idx, (pre, post) in enumerate(zip(pre_chips, post_chips)): if not check_data([pre, post]): continue pairs.append(Files( pre.stem, args.pre_directory, args.post_directory, args.output_directory, pre, post) ) eval_loc_dataset = XViewDataset(pairs, 'loc') eval_loc_dataloader = DataLoader(eval_loc_dataset, batch_size=args.batch_size, num_workers=args.num_workers, shuffle=False, pin_memory=True) eval_cls_dataset = XViewDataset(pairs, 'cls') eval_cls_dataloader = DataLoader(eval_cls_dataset, batch_size=args.batch_size, num_workers=args.num_workers, shuffle=False, pin_memory=True) # Todo: If on a one GPU machine (or other unsupported GPU count), force DP mode if args.dp_mode: results_dict = {} for sz in ['34', '50', '92', '154']: logger.info(f'Running models of size {sz}...') return_dict = {} loc_wrapper = XViewFirstPlaceLocModel(sz, dp_mode=args.dp_mode) run_inference(eval_loc_dataloader, loc_wrapper, args.save_intermediates, 'loc', return_dict) del loc_wrapper cls_wrapper = XViewFirstPlaceClsModel(sz, dp_mode=args.dp_mode) run_inference(eval_cls_dataloader, cls_wrapper, args.save_intermediates, 'cls', return_dict) del cls_wrapper results_dict.update({k:v for k,v in return_dict.items()}) # Todo: Make GPU partition for four GPU machines elif torch.cuda.device_count() == 2: # For 2-GPU machines [TESTED] # Loading model loc_gpus = {'34':[0,0,0], '50':[1,1,1], '92':[0,0,0], '154':[1,1,1]} cls_gpus = {'34':[1,1,1], '50':[0,0,0], '92':[1,1,1], '154':[0,0,0]} results_dict = {} # Running inference logger.info('Running inference...') for sz in loc_gpus.keys(): logger.info(f'Running models of size {sz}...') loc_wrapper = XViewFirstPlaceLocModel(sz, devices=loc_gpus[sz]) cls_wrapper = XViewFirstPlaceClsModel(sz, devices=cls_gpus[sz]) # Running inference logger.info('Running inference...') # Run inference in parallel processes manager = mp.Manager() return_dict = manager.dict() jobs = [] # Launch multiprocessing jobs for different pytorch jobs p1 = mp.Process(target=run_inference, args=(eval_cls_dataloader, cls_wrapper, args.save_intermediates, 'cls', return_dict)) p2 = mp.Process(target=run_inference, args=(eval_loc_dataloader, loc_wrapper, args.save_intermediates, 'loc', return_dict)) p1.start() p2.start() jobs.append(p1) jobs.append(p2) for proc in jobs: proc.join() results_dict.update({k:v for k,v in return_dict.items()}) elif torch.cuda.device_count() == 8: # For 8-GPU machines # TODO: Test! # Loading model loc_gpus = {'34':[0,0,0], '50':[1,1,1], '92':[2,2,2], '154':[3,3,3]} cls_gpus = {'34':[4,4,4], '50':[5,5,5], '92':[6,6,6], '154':[7,7,7]} results_dict = {} # Run inference in parallel processes manager = mp.Manager() return_dict = manager.dict() jobs = [] for sz in loc_gpus.keys(): logger.info(f'Adding jobs for size {sz}...') loc_wrapper = XViewFirstPlaceLocModel(sz, devices=loc_gpus[sz]) cls_wrapper = XViewFirstPlaceClsModel(sz, devices=cls_gpus[sz]) # DEBUG #run_inference(eval_loc_dataloader, # loc_wrapper, # True, # Don't write intermediate outputs # 'loc', # return_dict) #import ipdb; ipdb.set_trace() # Launch multiprocessing jobs for different pytorch jobs jobs.append(mp.Process(target=run_inference, args=(eval_cls_dataloader, cls_wrapper, args.save_intermediates, # Don't write intermediate outputs 'cls', return_dict)) ) jobs.append(mp.Process(target=run_inference, args=(eval_loc_dataloader, loc_wrapper, args.save_intermediates, # Don't write intermediate outputs 'loc', return_dict)) ) logger.info('Running inference...') for proc in jobs: proc.start() for proc in jobs: proc.join() results_dict.update({k:v for k,v in return_dict.items()}) else: raise ValueError('Must use either 2 or 8 GPUs') # Quick check to make sure the samples in cls and loc are in the same order #assert(results_dict['34loc'][4]['in_pre_path'] == results_dict['34cls'][4]['in_pre_path']) results_list = [{k:v[i] for k,v in results_dict.items()} for i in range(len(results_dict['34cls'])) ] # Running postprocessing p = mp.Pool(args.n_procs) #postprocess_and_write(results_list[0]) f_p = postprocess_and_write p.map(f_p, results_list) # Create damage and overlay mosaics logger.info("Creating damage mosaic") dmg_path = Path(args.output_directory) / 'dmg' damage_files = [x for x in get_files(dmg_path)] damage_mosaic = raster_processing.create_mosaic( [str(file) for file in damage_files], Path(f'{args.output_directory}/mosaics/damage.tif'), None, None, None, res ) logger.info("Creating overlay mosaic") p = Path(args.output_directory) / "over" overlay_files = [x for x in get_files(p)] overlay_mosaic = raster_processing.create_mosaic( [str(file) for file in overlay_files], Path(f'{args.output_directory}/mosaics/overlay.tif'), None, None, None, res ) # Get files for creating vector file and/or pushing to AGOL logger.info("Generating vector data") dmg_files = get_files(Path(args.output_directory) / 'dmg') polygons = features.create_polys(dmg_files) polygons.geometry = polygons.geometry.simplify(1) aoi = features.create_aoi_poly(polygons) centroids = features.create_centroids(polygons) centroids.crs = polygons.crs logger.info(f'Polygons created: {len(polygons)}') logger.info(f"AOI hull area: {aoi.geometry[0].area}") # Create output file logger.info('Writing output file') vector_out = Path(args.output_directory).joinpath('vector') / 'damage.gpkg' features.write_output(polygons, vector_out, layer='damage') features.write_output(aoi, vector_out, 'aoi') features.write_output(centroids, vector_out, 'centroids') if agol_push: try: to_agol.agol_helper(args, polygons, aoi, centroids) except Exception as e: logger.warning(f'AGOL push failed. Error: {e}') # Complete elapsed = timeit.default_timer() - t0 logger.success(f'Run complete in {elapsed / 60:.3f} min') def init(): # Todo: Fix this global at some point global args args = parse_args() # Configure our logger and push our inputs # Todo: Capture sys info (gpu, procs, etc) logger.remove() logger.configure( handlers=[ dict(sink=sys.stderr, format="[{level}] {message}", level='INFO'), dict(sink=args.output_directory / 'log'/ f'xv2.log', enqueue=True, level='DEBUG', backtrace=True), ], ) logger.opt(exception=True) # Scrub args of AGOL username and password and log them for debugging clean_args = {k:v for (k,v) in args.__dict__.items() if k != 'agol_password' if k != 'agol_user'} logger.debug(f'Run from:{__file__}') for k, v in clean_args.items(): logger.debug(f'{k}: {v}') # Add system info to log logger.debug(f'System: {platform.platform()}') logger.debug(f'Python: {sys.version}') logger.debug(f'Torch: {torch.__version__}') logger.debug(f'GDAL: {gdal.__version__}') logger.debug(f'Rasterio: {rasterio.__version__}') logger.debug(f'Shapely: {shapely.__version__}') # Log CUDA device info cuda_dev_num = torch.cuda.device_count() logger.debug(f'CUDA devices avail: {cuda_dev_num}') for i in range(0, cuda_dev_num): logger.debug(f'CUDA properties for device {i}: {torch.cuda.get_device_properties(i)}') if cuda_dev_num == 0: raise ValueError('No GPU devices found. GPU required for inference.') logger.info('Starting...') if os.name == 'nt': from multiprocessing import freeze_support freeze_support() main() if __name__ == '__main__': init()
[ "utils.features.create_aoi_poly", "numpy.sum", "argparse.ArgumentParser", "models.XViewFirstPlaceClsModel", "multiprocessing.set_start_method", "utils.to_agol.agol_arg_check", "torch.cuda.device_count", "collections.defaultdict", "pathlib.Path", "utils.dataframe.make_aoi_df", "loguru.logger.remove", "utils.raster_processing.reproject", "utils.features.create_centroids", "torch.no_grad", "utils.dataframe.get_max_res", "torch.utils.data.DataLoader", "utils.to_agol.agol_helper", "loguru.logger.warning", "loguru.logger.catch", "utils.features.write_output", "utils.raster_processing.create_composite", "os.path.resolve", "utils.features.create_polys", "numpy.asarray", "models.XViewFirstPlaceLocModel", "loguru.logger.critical", "skimage.morphology.square", "loguru.logger.success", "multiprocessing.Pool", "dataset.XViewDataset", "loguru.logger.debug", "loguru.logger.opt", "os.makedirs", "loguru.logger.error", "timeit.default_timer", "multiprocessing.Manager", "platform.platform", "loguru.logger.info", "torch.cuda.get_device_properties", "numpy.array", "multiprocessing.Process", "multiprocessing.freeze_support" ]
[((126, 166), 'multiprocessing.set_start_method', 'mp.set_start_method', (['"""spawn"""'], {'force': '(True)'}), "('spawn', force=True)\n", (145, 166), True, 'import multiprocessing as mp\n'), ((13038, 13052), 'loguru.logger.catch', 'logger.catch', ([], {}), '()\n', (13050, 13052), False, 'from loguru import logger\n'), ((3712, 3725), 'pathlib.Path', 'Path', (['dirname'], {}), '(dirname)\n', (3716, 3725), False, 'from pathlib import Path\n'), ((6778, 6795), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (6789, 6795), False, 'from collections import defaultdict\n'), ((10332, 10408), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Create arguments for xView 2 handler."""'}), "(description='Create arguments for xView 2 handler.')\n", (10355, 10408), False, 'import argparse\n'), ((13075, 13097), 'timeit.default_timer', 'timeit.default_timer', ([], {}), '()\n', (13095, 13097), False, 'import timeit\n'), ((13165, 13255), 'utils.to_agol.agol_arg_check', 'to_agol.agol_arg_check', (['args.agol_user', 'args.agol_password', 'args.agol_feature_service'], {}), '(args.agol_user, args.agol_password, args.\n agol_feature_service)\n', (13187, 13255), False, 'from utils import raster_processing, to_agol, features, dataframe\n'), ((13610, 13644), 'loguru.logger.info', 'logger.info', (['"""Retrieving files..."""'], {}), "('Retrieving files...')\n", (13621, 13644), False, 'from loguru import logger\n'), ((14561, 14603), 'loguru.logger.info', 'logger.info', (['f"""Calculated CRS: {dest_crs}"""'], {}), "(f'Calculated CRS: {dest_crs}')\n", (14572, 14603), False, 'from loguru import logger\n'), ((14980, 15047), 'loguru.logger.critical', 'logger.critical', (['"""CRS is not projected. Please use a projected CRS"""'], {}), "('CRS is not projected. Please use a projected CRS')\n", (14995, 15047), False, 'from loguru import logger\n'), ((15439, 15482), 'loguru.logger.info', 'logger.info', (['f"""Calculated extent: {extent}"""'], {}), "(f'Calculated extent: {extent}')\n", (15450, 15482), False, 'from loguru import logger\n'), ((15533, 15571), 'utils.dataframe.get_max_res', 'dataframe.get_max_res', (['pre_df', 'post_df'], {}), '(pre_df, post_df)\n', (15554, 15571), False, 'from utils import raster_processing, to_agol, features, dataframe\n'), ((15576, 15620), 'loguru.logger.info', 'logger.info', (['f"""Calculated resolution: {res}"""'], {}), "(f'Calculated resolution: {res}')\n", (15587, 15620), False, 'from loguru import logger\n'), ((15804, 15841), 'loguru.logger.info', 'logger.info', (['"""Creating pre mosaic..."""'], {}), "('Creating pre mosaic...')\n", (15815, 15841), False, 'from loguru import logger\n'), ((16104, 16142), 'loguru.logger.info', 'logger.info', (['"""Creating post mosaic..."""'], {}), "('Creating post mosaic...')\n", (16115, 16142), False, 'from loguru import logger\n'), ((16409, 16435), 'loguru.logger.info', 'logger.info', (['"""Chipping..."""'], {}), "('Chipping...')\n", (16420, 16435), False, 'from loguru import logger\n'), ((16842, 16879), 'loguru.logger.error', 'logger.error', (['"""Chip numbers mismatch"""'], {}), "('Chip numbers mismatch')\n", (16854, 16879), False, 'from loguru import logger\n'), ((17290, 17316), 'dataset.XViewDataset', 'XViewDataset', (['pairs', '"""loc"""'], {}), "(pairs, 'loc')\n", (17302, 17316), False, 'from dataset import XViewDataset\n'), ((17343, 17466), 'torch.utils.data.DataLoader', 'DataLoader', (['eval_loc_dataset'], {'batch_size': 'args.batch_size', 'num_workers': 'args.num_workers', 'shuffle': '(False)', 'pin_memory': '(True)'}), '(eval_loc_dataset, batch_size=args.batch_size, num_workers=args.\n num_workers, shuffle=False, pin_memory=True)\n', (17353, 17466), False, 'from torch.utils.data import DataLoader\n'), ((17640, 17666), 'dataset.XViewDataset', 'XViewDataset', (['pairs', '"""cls"""'], {}), "(pairs, 'cls')\n", (17652, 17666), False, 'from dataset import XViewDataset\n'), ((17693, 17816), 'torch.utils.data.DataLoader', 'DataLoader', (['eval_cls_dataset'], {'batch_size': 'args.batch_size', 'num_workers': 'args.num_workers', 'shuffle': '(False)', 'pin_memory': '(True)'}), '(eval_cls_dataset, batch_size=args.batch_size, num_workers=args.\n num_workers, shuffle=False, pin_memory=True)\n', (17703, 17816), False, 'from torch.utils.data import DataLoader\n'), ((23399, 23420), 'multiprocessing.Pool', 'mp.Pool', (['args.n_procs'], {}), '(args.n_procs)\n', (23406, 23420), True, 'import multiprocessing as mp\n'), ((23571, 23608), 'loguru.logger.info', 'logger.info', (['"""Creating damage mosaic"""'], {}), "('Creating damage mosaic')\n", (23582, 23608), False, 'from loguru import logger\n'), ((23937, 23975), 'loguru.logger.info', 'logger.info', (['"""Creating overlay mosaic"""'], {}), "('Creating overlay mosaic')\n", (23948, 23975), False, 'from loguru import logger\n'), ((24359, 24396), 'loguru.logger.info', 'logger.info', (['"""Generating vector data"""'], {}), "('Generating vector data')\n", (24370, 24396), False, 'from loguru import logger\n'), ((24475, 24507), 'utils.features.create_polys', 'features.create_polys', (['dmg_files'], {}), '(dmg_files)\n', (24496, 24507), False, 'from utils import raster_processing, to_agol, features, dataframe\n'), ((24572, 24606), 'utils.features.create_aoi_poly', 'features.create_aoi_poly', (['polygons'], {}), '(polygons)\n', (24596, 24606), False, 'from utils import raster_processing, to_agol, features, dataframe\n'), ((24623, 24658), 'utils.features.create_centroids', 'features.create_centroids', (['polygons'], {}), '(polygons)\n', (24648, 24658), False, 'from utils import raster_processing, to_agol, features, dataframe\n'), ((24750, 24803), 'loguru.logger.info', 'logger.info', (['f"""AOI hull area: {aoi.geometry[0].area}"""'], {}), "(f'AOI hull area: {aoi.geometry[0].area}')\n", (24761, 24803), False, 'from loguru import logger\n'), ((24834, 24868), 'loguru.logger.info', 'logger.info', (['"""Writing output file"""'], {}), "('Writing output file')\n", (24845, 24868), False, 'from loguru import logger\n'), ((24953, 25012), 'utils.features.write_output', 'features.write_output', (['polygons', 'vector_out'], {'layer': '"""damage"""'}), "(polygons, vector_out, layer='damage')\n", (24974, 25012), False, 'from utils import raster_processing, to_agol, features, dataframe\n'), ((25017, 25062), 'utils.features.write_output', 'features.write_output', (['aoi', 'vector_out', '"""aoi"""'], {}), "(aoi, vector_out, 'aoi')\n", (25038, 25062), False, 'from utils import raster_processing, to_agol, features, dataframe\n'), ((25067, 25124), 'utils.features.write_output', 'features.write_output', (['centroids', 'vector_out', '"""centroids"""'], {}), "(centroids, vector_out, 'centroids')\n", (25088, 25124), False, 'from utils import raster_processing, to_agol, features, dataframe\n'), ((25374, 25431), 'loguru.logger.success', 'logger.success', (['f"""Run complete in {elapsed / 60:.3f} min"""'], {}), "(f'Run complete in {elapsed / 60:.3f} min')\n", (25388, 25431), False, 'from loguru import logger\n'), ((25628, 25643), 'loguru.logger.remove', 'logger.remove', ([], {}), '()\n', (25641, 25643), False, 'from loguru import logger\n'), ((25896, 25922), 'loguru.logger.opt', 'logger.opt', ([], {'exception': '(True)'}), '(exception=True)\n', (25906, 25922), False, 'from loguru import logger\n'), ((26104, 26140), 'loguru.logger.debug', 'logger.debug', (['f"""Run from:{__file__}"""'], {}), "(f'Run from:{__file__}')\n", (26116, 26140), False, 'from loguru import logger\n'), ((26296, 26334), 'loguru.logger.debug', 'logger.debug', (['f"""Python: {sys.version}"""'], {}), "(f'Python: {sys.version}')\n", (26308, 26334), False, 'from loguru import logger\n'), ((26339, 26382), 'loguru.logger.debug', 'logger.debug', (['f"""Torch: {torch.__version__}"""'], {}), "(f'Torch: {torch.__version__}')\n", (26351, 26382), False, 'from loguru import logger\n'), ((26387, 26428), 'loguru.logger.debug', 'logger.debug', (['f"""GDAL: {gdal.__version__}"""'], {}), "(f'GDAL: {gdal.__version__}')\n", (26399, 26428), False, 'from loguru import logger\n'), ((26433, 26482), 'loguru.logger.debug', 'logger.debug', (['f"""Rasterio: {rasterio.__version__}"""'], {}), "(f'Rasterio: {rasterio.__version__}')\n", (26445, 26482), False, 'from loguru import logger\n'), ((26487, 26534), 'loguru.logger.debug', 'logger.debug', (['f"""Shapely: {shapely.__version__}"""'], {}), "(f'Shapely: {shapely.__version__}')\n", (26499, 26534), False, 'from loguru import logger\n'), ((26582, 26607), 'torch.cuda.device_count', 'torch.cuda.device_count', ([], {}), '()\n', (26605, 26607), False, 'import torch\n'), ((26612, 26663), 'loguru.logger.debug', 'logger.debug', (['f"""CUDA devices avail: {cuda_dev_num}"""'], {}), "(f'CUDA devices avail: {cuda_dev_num}')\n", (26624, 26663), False, 'from loguru import logger\n'), ((26906, 26932), 'loguru.logger.info', 'logger.info', (['"""Starting..."""'], {}), "('Starting...')\n", (26917, 26932), False, 'from loguru import logger\n'), ((3775, 3789), 'os.path.resolve', 'path.resolve', ([], {}), '()\n', (3787, 3789), False, 'from os import makedirs, path\n'), ((6346, 6499), 'utils.raster_processing.create_composite', 'raster_processing.create_composite', (["sample_result_dict['in_pre_path']", 'cls', "sample_result_dict['out_overlay_path']", "sample_result_dict['geo_profile']"], {}), "(sample_result_dict['in_pre_path'], cls,\n sample_result_dict['out_overlay_path'], sample_result_dict['geo_profile'])\n", (6380, 6499), False, 'from utils import raster_processing, to_agol, features, dataframe\n'), ((6805, 6820), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (6818, 6820), False, 'import torch\n'), ((8650, 8683), 'loguru.logger.info', 'logger.info', (['"""Writing results..."""'], {}), "('Writing results...')\n", (8661, 8683), False, 'from loguru import logger\n'), ((8692, 8728), 'os.makedirs', 'makedirs', (['pred_folder'], {'exist_ok': '(True)'}), '(pred_folder, exist_ok=True)\n', (8700, 8728), False, 'from os import makedirs, path\n'), ((14724, 14813), 'loguru.logger.info', 'logger.info', (['f"""Calculated CRS overridden by passed argument: {args.destination_crs}"""'], {}), "(\n f'Calculated CRS overridden by passed argument: {args.destination_crs}')\n", (14735, 14813), False, 'from loguru import logger\n'), ((15292, 15328), 'utils.dataframe.make_aoi_df', 'dataframe.make_aoi_df', (['args.aoi_file'], {}), '(args.aoi_file)\n', (15313, 15328), False, 'from utils import raster_processing, to_agol, features, dataframe\n'), ((15724, 15798), 'loguru.logger.info', 'logger.info', (['f"""Calculated resolution overridden by passed argument: {res}"""'], {}), "(f'Calculated resolution overridden by passed argument: {res}')\n", (15735, 15798), False, 'from loguru import logger\n'), ((15949, 15997), 'pathlib.Path', 'Path', (['f"""{args.output_directory}/mosaics/pre.tif"""'], {}), "(f'{args.output_directory}/mosaics/pre.tif')\n", (15953, 15997), False, 'from pathlib import Path\n'), ((16252, 16301), 'pathlib.Path', 'Path', (['f"""{args.output_directory}/mosaics/post.tif"""'], {}), "(f'{args.output_directory}/mosaics/post.tif')\n", (16256, 16301), False, 'from pathlib import Path\n'), ((23624, 23651), 'pathlib.Path', 'Path', (['args.output_directory'], {}), '(args.output_directory)\n', (23628, 23651), False, 'from pathlib import Path\n'), ((23819, 23870), 'pathlib.Path', 'Path', (['f"""{args.output_directory}/mosaics/damage.tif"""'], {}), "(f'{args.output_directory}/mosaics/damage.tif')\n", (23823, 23870), False, 'from pathlib import Path\n'), ((23984, 24011), 'pathlib.Path', 'Path', (['args.output_directory'], {}), '(args.output_directory)\n', (23988, 24011), False, 'from pathlib import Path\n'), ((24176, 24228), 'pathlib.Path', 'Path', (['f"""{args.output_directory}/mosaics/overlay.tif"""'], {}), "(f'{args.output_directory}/mosaics/overlay.tif')\n", (24180, 24228), False, 'from pathlib import Path\n'), ((25342, 25364), 'timeit.default_timer', 'timeit.default_timer', ([], {}), '()\n', (25362, 25364), False, 'import timeit\n'), ((26185, 26210), 'loguru.logger.debug', 'logger.debug', (['f"""{k}: {v}"""'], {}), "(f'{k}: {v}')\n", (26197, 26210), False, 'from loguru import logger\n'), ((27017, 27033), 'multiprocessing.freeze_support', 'freeze_support', ([], {}), '()\n', (27031, 27033), False, 'from multiprocessing import freeze_support\n'), ((2867, 2897), 'pathlib.Path', 'Path', (['f"""{output_path}/mosaics"""'], {}), "(f'{output_path}/mosaics')\n", (2871, 2897), False, 'from pathlib import Path\n'), ((2937, 2969), 'pathlib.Path', 'Path', (['f"""{output_path}/chips/pre"""'], {}), "(f'{output_path}/chips/pre')\n", (2941, 2969), False, 'from pathlib import Path\n'), ((3009, 3042), 'pathlib.Path', 'Path', (['f"""{output_path}/chips/post"""'], {}), "(f'{output_path}/chips/post')\n", (3013, 3042), False, 'from pathlib import Path\n'), ((3082, 3108), 'pathlib.Path', 'Path', (['f"""{output_path}/loc"""'], {}), "(f'{output_path}/loc')\n", (3086, 3108), False, 'from pathlib import Path\n'), ((3148, 3174), 'pathlib.Path', 'Path', (['f"""{output_path}/dmg"""'], {}), "(f'{output_path}/dmg')\n", (3152, 3174), False, 'from pathlib import Path\n'), ((3214, 3241), 'pathlib.Path', 'Path', (['f"""{output_path}/over"""'], {}), "(f'{output_path}/over')\n", (3218, 3241), False, 'from pathlib import Path\n'), ((3281, 3310), 'pathlib.Path', 'Path', (['f"""{output_path}/vector"""'], {}), "(f'{output_path}/vector')\n", (3285, 3310), False, 'from pathlib import Path\n'), ((3350, 3376), 'pathlib.Path', 'Path', (['f"""{output_path}/vrt"""'], {}), "(f'{output_path}/vrt')\n", (3354, 3376), False, 'from pathlib import Path\n'), ((4298, 4397), 'utils.raster_processing.reproject', 'raster_processing.reproject', (['raster_file', 'dest_file', 'src_crs', 'args.destination_crs', 'resolution'], {}), '(raster_file, dest_file, src_crs, args.\n destination_crs, resolution)\n', (4325, 4397), False, 'from utils import raster_processing, to_agol, features, dataframe\n'), ((5121, 5139), 'numpy.sum', 'np.sum', (['pred_coefs'], {}), '(pred_coefs)\n', (5127, 5139), True, 'import numpy as np\n'), ((5419, 5436), 'numpy.sum', 'np.sum', (['loc_coefs'], {}), '(loc_coefs)\n', (5425, 5436), True, 'import numpy as np\n'), ((5772, 5781), 'skimage.morphology.square', 'square', (['(5)'], {}), '(5)\n', (5778, 5781), False, 'from skimage.morphology import square, dilation\n'), ((18152, 18198), 'loguru.logger.info', 'logger.info', (['f"""Running models of size {sz}..."""'], {}), "(f'Running models of size {sz}...')\n", (18163, 18198), False, 'from loguru import logger\n'), ((18254, 18303), 'models.XViewFirstPlaceLocModel', 'XViewFirstPlaceLocModel', (['sz'], {'dp_mode': 'args.dp_mode'}), '(sz, dp_mode=args.dp_mode)\n', (18277, 18303), False, 'from models import XViewFirstPlaceLocModel, XViewFirstPlaceClsModel\n'), ((18594, 18643), 'models.XViewFirstPlaceClsModel', 'XViewFirstPlaceClsModel', (['sz'], {'dp_mode': 'args.dp_mode'}), '(sz, dp_mode=args.dp_mode)\n', (18617, 18643), False, 'from models import XViewFirstPlaceLocModel, XViewFirstPlaceClsModel\n'), ((19042, 19067), 'torch.cuda.device_count', 'torch.cuda.device_count', ([], {}), '()\n', (19065, 19067), False, 'import torch\n'), ((19476, 19511), 'loguru.logger.info', 'logger.info', (['"""Running inference..."""'], {}), "('Running inference...')\n", (19487, 19511), False, 'from loguru import logger\n'), ((24423, 24450), 'pathlib.Path', 'Path', (['args.output_directory'], {}), '(args.output_directory)\n', (24427, 24450), False, 'from pathlib import Path\n'), ((25169, 25220), 'utils.to_agol.agol_helper', 'to_agol.agol_helper', (['args', 'polygons', 'aoi', 'centroids'], {}), '(args, polygons, aoi, centroids)\n', (25188, 25220), False, 'from utils import raster_processing, to_agol, features, dataframe\n'), ((19560, 19606), 'loguru.logger.info', 'logger.info', (['f"""Running models of size {sz}..."""'], {}), "(f'Running models of size {sz}...')\n", (19571, 19606), False, 'from loguru import logger\n'), ((19633, 19682), 'models.XViewFirstPlaceLocModel', 'XViewFirstPlaceLocModel', (['sz'], {'devices': 'loc_gpus[sz]'}), '(sz, devices=loc_gpus[sz])\n', (19656, 19682), False, 'from models import XViewFirstPlaceLocModel, XViewFirstPlaceClsModel\n'), ((19709, 19758), 'models.XViewFirstPlaceClsModel', 'XViewFirstPlaceClsModel', (['sz'], {'devices': 'cls_gpus[sz]'}), '(sz, devices=cls_gpus[sz])\n', (19732, 19758), False, 'from models import XViewFirstPlaceLocModel, XViewFirstPlaceClsModel\n'), ((19804, 19839), 'loguru.logger.info', 'logger.info', (['"""Running inference..."""'], {}), "('Running inference...')\n", (19815, 19839), False, 'from loguru import logger\n'), ((19913, 19925), 'multiprocessing.Manager', 'mp.Manager', ([], {}), '()\n', (19923, 19925), True, 'import multiprocessing as mp\n'), ((20076, 20198), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'run_inference', 'args': "(eval_cls_dataloader, cls_wrapper, args.save_intermediates, 'cls', return_dict)"}), "(target=run_inference, args=(eval_cls_dataloader, cls_wrapper,\n args.save_intermediates, 'cls', return_dict))\n", (20086, 20198), True, 'import multiprocessing as mp\n'), ((20368, 20490), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'run_inference', 'args': "(eval_loc_dataloader, loc_wrapper, args.save_intermediates, 'loc', return_dict)"}), "(target=run_inference, args=(eval_loc_dataloader, loc_wrapper,\n args.save_intermediates, 'loc', return_dict))\n", (20378, 20490), True, 'import multiprocessing as mp\n'), ((20884, 20909), 'torch.cuda.device_count', 'torch.cuda.device_count', ([], {}), '()\n', (20907, 20909), False, 'import torch\n'), ((21359, 21371), 'multiprocessing.Manager', 'mp.Manager', ([], {}), '()\n', (21369, 21371), True, 'import multiprocessing as mp\n'), ((22798, 22833), 'loguru.logger.info', 'logger.info', (['"""Running inference..."""'], {}), "('Running inference...')\n", (22809, 22833), False, 'from loguru import logger\n'), ((24886, 24913), 'pathlib.Path', 'Path', (['args.output_directory'], {}), '(args.output_directory)\n', (24890, 24913), False, 'from pathlib import Path\n'), ((25264, 25311), 'loguru.logger.warning', 'logger.warning', (['f"""AGOL push failed. Error: {e}"""'], {}), "(f'AGOL push failed. Error: {e}')\n", (25278, 25311), False, 'from loguru import logger\n'), ((26269, 26288), 'platform.platform', 'platform.platform', ([], {}), '()\n', (26286, 26288), False, 'import platform\n'), ((21475, 21519), 'loguru.logger.info', 'logger.info', (['f"""Adding jobs for size {sz}..."""'], {}), "(f'Adding jobs for size {sz}...')\n", (21486, 21519), False, 'from loguru import logger\n'), ((21546, 21595), 'models.XViewFirstPlaceLocModel', 'XViewFirstPlaceLocModel', (['sz'], {'devices': 'loc_gpus[sz]'}), '(sz, devices=loc_gpus[sz])\n', (21569, 21595), False, 'from models import XViewFirstPlaceLocModel, XViewFirstPlaceClsModel\n'), ((21622, 21671), 'models.XViewFirstPlaceClsModel', 'XViewFirstPlaceClsModel', (['sz'], {'devices': 'cls_gpus[sz]'}), '(sz, devices=cls_gpus[sz])\n', (21645, 21671), False, 'from models import XViewFirstPlaceLocModel, XViewFirstPlaceClsModel\n'), ((26757, 26792), 'torch.cuda.get_device_properties', 'torch.cuda.get_device_properties', (['i'], {}), '(i)\n', (26789, 26792), False, 'import torch\n'), ((9112, 9135), 'numpy.array', 'np.array', (["result['loc']"], {}), "(result['loc'])\n", (9120, 9135), True, 'import numpy as np\n'), ((22085, 22207), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'run_inference', 'args': "(eval_cls_dataloader, cls_wrapper, args.save_intermediates, 'cls', return_dict)"}), "(target=run_inference, args=(eval_cls_dataloader, cls_wrapper,\n args.save_intermediates, 'cls', return_dict))\n", (22095, 22207), True, 'import multiprocessing as mp\n'), ((22449, 22571), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'run_inference', 'args': "(eval_loc_dataloader, loc_wrapper, args.save_intermediates, 'loc', return_dict)"}), "(target=run_inference, args=(eval_loc_dataloader, loc_wrapper,\n args.save_intermediates, 'loc', return_dict))\n", (22459, 22571), True, 'import multiprocessing as mp\n'), ((5073, 5090), 'numpy.asarray', 'np.asarray', (['preds'], {}), '(preds)\n', (5083, 5090), True, 'import numpy as np\n'), ((5367, 5388), 'numpy.asarray', 'np.asarray', (['loc_preds'], {}), '(loc_preds)\n', (5377, 5388), True, 'import numpy as np\n'), ((9402, 9425), 'numpy.array', 'np.array', (["result['cls']"], {}), "(result['cls'])\n", (9410, 9425), True, 'import numpy as np\n'), ((9628, 9651), 'numpy.array', 'np.array', (["result['cls']"], {}), "(result['cls'])\n", (9636, 9651), True, 'import numpy as np\n')]
# -*- encoding=utf-8 -*- # Took and modified the BaseCamera class, and changed the Camera Class # Original Source: https://blog.miguelgrinberg.com/post/flask-video-streaming-revisited # Original Code Repository: https://github.com/miguelgrinberg/flask-video-streaming # Modified a little bit in inference method from face mask detection repository # Code of inference: https://github.com/AIZOOTech/FaceMaskDetection import io import cv2 import time import uuid import gridfs import config import numpy as np from smtplib import SMTP from datetime import datetime from threading import Thread, Timer from email.mime.text import MIMEText from email.mime.image import MIMEImage from model.load_model import tf_inference from email.mime.multipart import MIMEMultipart from model.utils import decode_bbox, single_class_non_max_suppression ALERT_TRIGGER = dict() # Used for fixing a time period to the alert class BaseCamera(object): threads = dict() # background thread that reads frames from camera frames = dict() # current frame is stored here by background thread sources = dict() def __init__(self, _id, source): """Start the background camera thread if it isn't running yet.""" self._id = str(_id) self.sources[self._id] = source if BaseCamera.threads.get(self._id) is None: # start background frame thread BaseCamera.threads[self._id] = Thread( target=self._thread, args=(self._id, self.sources[self._id]) ) BaseCamera.threads[self._id].start() # wait until frames are available while self.get_frame() is None: time.sleep(0) def get_frame(self): """Return the current camera frame.""" try: return BaseCamera.frames[self._id] except: return None @staticmethod def _frames(_id, source): """"Generator that returns frames from the camera.""" raise RuntimeError('Must be implemented by subclasses.') @classmethod def _thread(cls, _id, source): """Camera background thread.""" print('Starting camera thread.') frames_iterator = cls._frames(_id, source) for frame in frames_iterator: BaseCamera.frames[_id] = frame time.sleep(0) class Camera(BaseCamera): def __init__(self, _id): cam = config.db['cameras'].find_one({'_id': _id}) super(Camera, self).__init__(_id, cam['url']) @staticmethod def _frames(_id, source): global ALERT_TRIGGER camera = cv2.VideoCapture(source) ALERT_TRIGGER[_id] = False status = True if camera.isOpened(): while status: (status, img) = camera.read() if status: settings = config.db['settings'].find_one({"id": 0}) has_violation = inference(img, settings['confidence'], iou_thresh=0.5, target_shape=(260, 260), draw_result=True ) jpg = cv2.imencode('.jpg', img)[1] if has_violation and not ALERT_TRIGGER[_id]: ALERT_TRIGGER[_id] = True _trigger = Timer(settings['lock_duration'], trigger, args=(_id,)) _trigger.start() _alert = Thread(target=alert, args=(jpg, _id)) _alert.start() io_buf = io.BytesIO(jpg) frame = io_buf.getvalue() io_buf.close() yield frame def inference(image, conf_thresh=0.5, iou_thresh=0.4, target_shape=(160, 160), draw_result=True ): ''' Main function of detection inference :param image: 3D numpy array of image :param conf_thresh: the min threshold of classification probabity. :param iou_thresh: the IOU threshold of NMS :param target_shape: the model input size. :param draw_result: whether to daw bounding box to the image. :param show_result: whether to display the image. :return: ''' has_violation = False height, width, _ = image.shape image_resized = cv2.resize(image, target_shape) image_np = image_resized / 255.0 image_exp = np.expand_dims(image_np, axis=0) y_bboxes_output, y_cls_output = tf_inference( config.SESS, config.GRAPH, image_exp ) # remove the batch dimension, for batch is always 1 for inference. y_bboxes = decode_bbox(config.ANCHORS_EXP, y_bboxes_output)[0] y_cls = y_cls_output[0] # To speed up, do single class NMS, not multiple classes NMS. bbox_max_scores = np.max(y_cls, axis=1) bbox_max_score_classes = np.argmax(y_cls, axis=1) # keep_idx is the alive bounding box after nms. keep_idxs = single_class_non_max_suppression(y_bboxes, bbox_max_scores, conf_thresh=conf_thresh, iou_thresh=iou_thresh, ) for idx in keep_idxs: conf = float(bbox_max_scores[idx]) class_id = bbox_max_score_classes[idx] bbox = y_bboxes[idx] # clip the coordinate, avoid the value exceed the image boundary. xmin = max(0, int(bbox[0] * width)) ymin = max(0, int(bbox[1] * height)) xmax = min(int(bbox[2] * width), width) ymax = min(int(bbox[3] * height), height) if draw_result: if class_id == 0: color = (0, 255, 0) else: has_violation = True color = (0, 0, 255) cv2.rectangle(image, (xmin, ymin), (xmax, ymax), color, 2) cv2.putText(image, "%s: %.2f" % (config.ID2CLASS[class_id], conf), (xmin + 2, ymin - 2), cv2.FONT_HERSHEY_SIMPLEX, 0.8, color ) return has_violation def trigger(_id): global ALERT_TRIGGER ALERT_TRIGGER[_id] = False def alert(image, _id): cam = config.db['cameras'].find_one({'_id': uuid.UUID(_id)}) if cam['supervisor_id'] != -1: sec = config.db['security'].find_one({ '_id': uuid.UUID(cam['supervisor_id']) }) send_mail(sec, cam, image) store_image(cam, image) def send_mail(receiver, camera, image): msg = MIMEMultipart() msg['Subject'] = 'IDFMI Alert' msg['From'] = config.EMAIL_ADDRESS msg['To'] = receiver['email'] msg.attach(MIMEText( f"""Dear Mr. {receiver['last_name']}, We have detected a violation on {camera['location']}. You can find the violation picture attached with this email. Please check the picture. regards, IDFMI Team""" )) msg.attach(MIMEImage(image.tostring(), name="ViolationPic.jpg")) smtp = SMTP(config.SMTP_SERVER, config.SMTP_PORT) smtp.ehlo() smtp.starttls() smtp.ehlo() smtp.login(config.EMAIL_ADDRESS, config.EMAIL_PASSWORD) smtp.sendmail(config.EMAIL_ADDRESS, receiver['email'], msg.as_string()) smtp.quit() def store_image(camera, image): # searching for the location of the camera roomName = camera['location'] fs = gridfs.GridFS(config.db) # gridFS instance now = datetime.now().strftime("%Y-%m-%d %H:%M:%S") # get time # Converting the picture to bytes io_buf = io.BytesIO(image) frame = io_buf.getvalue() io_buf.close() fs.put(frame, date=now, room=roomName) # save image into DB.
[ "model.utils.decode_bbox", "threading.Timer", "numpy.argmax", "email.mime.text.MIMEText", "model.utils.single_class_non_max_suppression", "cv2.rectangle", "cv2.imencode", "smtplib.SMTP", "email.mime.multipart.MIMEMultipart", "numpy.max", "uuid.UUID", "datetime.datetime.now", "cv2.resize", "threading.Thread", "io.BytesIO", "model.load_model.tf_inference", "time.sleep", "cv2.putText", "numpy.expand_dims", "cv2.VideoCapture", "gridfs.GridFS" ]
[((4487, 4518), 'cv2.resize', 'cv2.resize', (['image', 'target_shape'], {}), '(image, target_shape)\n', (4497, 4518), False, 'import cv2\n'), ((4572, 4604), 'numpy.expand_dims', 'np.expand_dims', (['image_np'], {'axis': '(0)'}), '(image_np, axis=0)\n', (4586, 4604), True, 'import numpy as np\n'), ((4641, 4691), 'model.load_model.tf_inference', 'tf_inference', (['config.SESS', 'config.GRAPH', 'image_exp'], {}), '(config.SESS, config.GRAPH, image_exp)\n', (4653, 4691), False, 'from model.load_model import tf_inference\n'), ((4965, 4986), 'numpy.max', 'np.max', (['y_cls'], {'axis': '(1)'}), '(y_cls, axis=1)\n', (4971, 4986), True, 'import numpy as np\n'), ((5016, 5040), 'numpy.argmax', 'np.argmax', (['y_cls'], {'axis': '(1)'}), '(y_cls, axis=1)\n', (5025, 5040), True, 'import numpy as np\n'), ((5110, 5222), 'model.utils.single_class_non_max_suppression', 'single_class_non_max_suppression', (['y_bboxes', 'bbox_max_scores'], {'conf_thresh': 'conf_thresh', 'iou_thresh': 'iou_thresh'}), '(y_bboxes, bbox_max_scores, conf_thresh=\n conf_thresh, iou_thresh=iou_thresh)\n', (5142, 5222), False, 'from model.utils import decode_bbox, single_class_non_max_suppression\n'), ((6888, 6903), 'email.mime.multipart.MIMEMultipart', 'MIMEMultipart', ([], {}), '()\n', (6901, 6903), False, 'from email.mime.multipart import MIMEMultipart\n'), ((7383, 7425), 'smtplib.SMTP', 'SMTP', (['config.SMTP_SERVER', 'config.SMTP_PORT'], {}), '(config.SMTP_SERVER, config.SMTP_PORT)\n', (7387, 7425), False, 'from smtplib import SMTP\n'), ((7754, 7778), 'gridfs.GridFS', 'gridfs.GridFS', (['config.db'], {}), '(config.db)\n', (7767, 7778), False, 'import gridfs\n'), ((7917, 7934), 'io.BytesIO', 'io.BytesIO', (['image'], {}), '(image)\n', (7927, 7934), False, 'import io\n'), ((2616, 2640), 'cv2.VideoCapture', 'cv2.VideoCapture', (['source'], {}), '(source)\n', (2632, 2640), False, 'import cv2\n'), ((4797, 4845), 'model.utils.decode_bbox', 'decode_bbox', (['config.ANCHORS_EXP', 'y_bboxes_output'], {}), '(config.ANCHORS_EXP, y_bboxes_output)\n', (4808, 4845), False, 'from model.utils import decode_bbox, single_class_non_max_suppression\n'), ((7027, 7292), 'email.mime.text.MIMEText', 'MIMEText', (['f"""Dear Mr. {receiver[\'last_name\']},\n\n We have detected a violation on {camera[\'location\']}. \n You can find the violation picture attached with this email. \n Please check the picture.\n\n regards,\n IDFMI Team"""'], {}), '(\n f"""Dear Mr. {receiver[\'last_name\']},\n\n We have detected a violation on {camera[\'location\']}. \n You can find the violation picture attached with this email. \n Please check the picture.\n\n regards,\n IDFMI Team"""\n )\n', (7035, 7292), False, 'from email.mime.text import MIMEText\n'), ((1421, 1489), 'threading.Thread', 'Thread', ([], {'target': 'self._thread', 'args': '(self._id, self.sources[self._id])'}), '(target=self._thread, args=(self._id, self.sources[self._id]))\n', (1427, 1489), False, 'from threading import Thread, Timer\n'), ((2338, 2351), 'time.sleep', 'time.sleep', (['(0)'], {}), '(0)\n', (2348, 2351), False, 'import time\n'), ((6017, 6075), 'cv2.rectangle', 'cv2.rectangle', (['image', '(xmin, ymin)', '(xmax, ymax)', 'color', '(2)'], {}), '(image, (xmin, ymin), (xmax, ymax), color, 2)\n', (6030, 6075), False, 'import cv2\n'), ((6088, 6219), 'cv2.putText', 'cv2.putText', (['image', "('%s: %.2f' % (config.ID2CLASS[class_id], conf))", '(xmin + 2, ymin - 2)', 'cv2.FONT_HERSHEY_SIMPLEX', '(0.8)', 'color'], {}), "(image, '%s: %.2f' % (config.ID2CLASS[class_id], conf), (xmin + \n 2, ymin - 2), cv2.FONT_HERSHEY_SIMPLEX, 0.8, color)\n", (6099, 6219), False, 'import cv2\n'), ((6608, 6622), 'uuid.UUID', 'uuid.UUID', (['_id'], {}), '(_id)\n', (6617, 6622), False, 'import uuid\n'), ((7808, 7822), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (7820, 7822), False, 'from datetime import datetime\n'), ((1693, 1706), 'time.sleep', 'time.sleep', (['(0)'], {}), '(0)\n', (1703, 1706), False, 'import time\n'), ((6726, 6757), 'uuid.UUID', 'uuid.UUID', (["cam['supervisor_id']"], {}), "(cam['supervisor_id'])\n", (6735, 6757), False, 'import uuid\n'), ((3708, 3723), 'io.BytesIO', 'io.BytesIO', (['jpg'], {}), '(jpg)\n', (3718, 3723), False, 'import io\n'), ((3293, 3318), 'cv2.imencode', 'cv2.imencode', (['""".jpg"""', 'img'], {}), "('.jpg', img)\n", (3305, 3318), False, 'import cv2\n'), ((3472, 3526), 'threading.Timer', 'Timer', (["settings['lock_duration']", 'trigger'], {'args': '(_id,)'}), "(settings['lock_duration'], trigger, args=(_id,))\n", (3477, 3526), False, 'from threading import Thread, Timer\n'), ((3601, 3638), 'threading.Thread', 'Thread', ([], {'target': 'alert', 'args': '(jpg, _id)'}), '(target=alert, args=(jpg, _id))\n', (3607, 3638), False, 'from threading import Thread, Timer\n')]
from pathlib import Path from typing import Iterable from os.path import basename, splitext import sys from difflib import context_diff import click import numpy as np from sadedegel.dataset._core import safe_json_load from sadedegel.dataset import load_sentence_corpus, file_paths def file_diff(i1: Iterable, i2: Iterable): l1, l2 = list(i1), list(i2) if len(l1) != len(l2): click.secho(f"Iterable sizes are not equal {len(l1)} != {len(l2)}") s1, s2 = set(l1), set(l2) if len(s1) != len(s2): click.secho(f"Set sizes are not equal {len(s1)} != {len(s2)}") for e1 in list(s1): if e1 not in s2: click.secho(f"{e1} in I1 but not in I2") for e2 in list(s2): if e2 not in s1: click.secho(f"{e2} in I2 but not in I1") @click.command() def cli(): sents = load_sentence_corpus(False) fns = [splitext(basename(fp))[0] for fp in file_paths()] reference = dict((fn, sent['sentences']) for fn, sent in zip(fns, sents)) for fn in fns: anno_path = Path('sadedegel/work/Labeled') / f"{fn}_labeled.json" if anno_path.exists(): anno = safe_json_load(anno_path) anno_sents = [s['content'] for s in anno['sentences']] _ = np.array([s['deletedInRound'] for s in anno['sentences']]) refe_sents = reference[fn] if refe_sents != anno_sents: click.secho(f"Mismatch in number of sentences for document {fn}", fg="red") diff = context_diff(refe_sents, anno_sents) click.secho('\n'.join(diff), fg="red") sys.exit(1) else: click.secho(f"MATCH: {fn}", fg="green") else: click.secho(f"Annotated corpus member {anno_path} not found.", fg="red") if __name__ == '__main__': cli()
[ "sadedegel.dataset._core.safe_json_load", "os.path.basename", "sadedegel.dataset.load_sentence_corpus", "click.command", "difflib.context_diff", "sadedegel.dataset.file_paths", "pathlib.Path", "numpy.array", "click.secho", "sys.exit" ]
[((802, 817), 'click.command', 'click.command', ([], {}), '()\n', (815, 817), False, 'import click\n'), ((841, 868), 'sadedegel.dataset.load_sentence_corpus', 'load_sentence_corpus', (['(False)'], {}), '(False)\n', (861, 868), False, 'from sadedegel.dataset import load_sentence_corpus, file_paths\n'), ((655, 695), 'click.secho', 'click.secho', (['f"""{e1} in I1 but not in I2"""'], {}), "(f'{e1} in I1 but not in I2')\n", (666, 695), False, 'import click\n'), ((758, 798), 'click.secho', 'click.secho', (['f"""{e2} in I2 but not in I1"""'], {}), "(f'{e2} in I2 but not in I1')\n", (769, 798), False, 'import click\n'), ((917, 929), 'sadedegel.dataset.file_paths', 'file_paths', ([], {}), '()\n', (927, 929), False, 'from sadedegel.dataset import load_sentence_corpus, file_paths\n'), ((1050, 1080), 'pathlib.Path', 'Path', (['"""sadedegel/work/Labeled"""'], {}), "('sadedegel/work/Labeled')\n", (1054, 1080), False, 'from pathlib import Path\n'), ((1155, 1180), 'sadedegel.dataset._core.safe_json_load', 'safe_json_load', (['anno_path'], {}), '(anno_path)\n', (1169, 1180), False, 'from sadedegel.dataset._core import safe_json_load\n'), ((1265, 1323), 'numpy.array', 'np.array', (["[s['deletedInRound'] for s in anno['sentences']]"], {}), "([s['deletedInRound'] for s in anno['sentences']])\n", (1273, 1323), True, 'import numpy as np\n'), ((1745, 1817), 'click.secho', 'click.secho', (['f"""Annotated corpus member {anno_path} not found."""'], {'fg': '"""red"""'}), "(f'Annotated corpus member {anno_path} not found.', fg='red')\n", (1756, 1817), False, 'import click\n'), ((890, 902), 'os.path.basename', 'basename', (['fp'], {}), '(fp)\n', (898, 902), False, 'from os.path import basename, splitext\n'), ((1422, 1497), 'click.secho', 'click.secho', (['f"""Mismatch in number of sentences for document {fn}"""'], {'fg': '"""red"""'}), "(f'Mismatch in number of sentences for document {fn}', fg='red')\n", (1433, 1497), False, 'import click\n'), ((1522, 1558), 'difflib.context_diff', 'context_diff', (['refe_sents', 'anno_sents'], {}), '(refe_sents, anno_sents)\n', (1534, 1558), False, 'from difflib import context_diff\n'), ((1632, 1643), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (1640, 1643), False, 'import sys\n'), ((1678, 1717), 'click.secho', 'click.secho', (['f"""MATCH: {fn}"""'], {'fg': '"""green"""'}), "(f'MATCH: {fn}', fg='green')\n", (1689, 1717), False, 'import click\n')]
import slidingwindow as sw import numpy as np import cv2 def splitAlphaMask(image): """ Splits the last channel of an image from the rest of the channels. Useful for splitting away the alpha channel of an image and treating it as the image mask. The input image should be a NumPy array of shape [h,w,c]. The return value is a tuple of the image channels and the mask. """ channels = image[:, :, 0 : image.shape[2]-1] mask = image[:, :, image.shape[2]-1] return channels, mask def isolatePixels(image, mask, maskValue): """ Creates a copy of the supplied image where all pixels whose mask value does not match the specified value are set to zero. """ pixelsToIgnore = np.nonzero(mask != maskValue) isolated = image.copy() isolated[pixelsToIgnore] = 0 return isolated def extractConnectedComponents(image, mask, ignoreZero = False, preciseBounds = False): """ Uses the OpenCV "connected components" algorithm to extract individual image segments that are represented by contiguous areas of identical values in the image mask. The return value is a dictionary whose keys are the unique values in the mask, and whose values are the list of bounds representing each of the contiguous areas for each key. If `preciseBounds` is False then each list item is a simple rectangle, represented by tuple of (x,y,w,h). If `preciseBounds` is True then each list item is a rotated rectangle, represented by a tuple of (centre, size, rotation). """ # Create the dictionary to hold the mappings from mask value to list of bounds instancesForValues = {} # Iterate over each unique value in the mask maskValues = np.unique(mask) for maskValue in maskValues: # If we have been asked to ignore mask value zero, do so if maskValue == 0 and ignoreZero == True: continue # Zero-out the pixels for all of the other mask values valueInstances = isolatePixels(mask, mask, maskValue) # Use the "connected components" algorithm to extract the subsets for each contiguous area of the current mask value ret, markers, stats, centroids = cv2.connectedComponentsWithStats(valueInstances) # Add the bounds for each identified instance to our mappings instancesForValues[maskValue] = [] instances = np.unique(markers) for instance in instances: # Ignore instance zero, which contains the entire image if instance != 0: # Determine if we are retrieving simple bounds or precise bounds for each instance if preciseBounds == True: # Compute the precise bounds of the instance contiguous = np.ascontiguousarray(isolatePixels(mask, markers, instance), dtype=np.uint8) _, contours, hierarchy = cv2.findContours(contiguous, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) instancesForValues[maskValue].append(cv2.minAreaRect(contours[0])) else: # Extract the simple bounds of the instance x = stats[instance, cv2.CC_STAT_LEFT] y = stats[instance, cv2.CC_STAT_TOP] w = stats[instance, cv2.CC_STAT_WIDTH] h = stats[instance, cv2.CC_STAT_HEIGHT] instancesForValues[maskValue].append( (x,y,w,h) ) return instancesForValues def extract(image, bounds): """ Extracts a subset of an image, given a tuple of (x,y,w,h). """ x,y,w,h = bounds return sw.SlidingWindow(x, y, w, h, sw.DimOrder.HeightWidthChannel).apply(image)
[ "slidingwindow.SlidingWindow", "numpy.unique", "numpy.nonzero", "cv2.connectedComponentsWithStats", "cv2.minAreaRect", "cv2.findContours" ]
[((689, 718), 'numpy.nonzero', 'np.nonzero', (['(mask != maskValue)'], {}), '(mask != maskValue)\n', (699, 718), True, 'import numpy as np\n'), ((1646, 1661), 'numpy.unique', 'np.unique', (['mask'], {}), '(mask)\n', (1655, 1661), True, 'import numpy as np\n'), ((2085, 2133), 'cv2.connectedComponentsWithStats', 'cv2.connectedComponentsWithStats', (['valueInstances'], {}), '(valueInstances)\n', (2117, 2133), False, 'import cv2\n'), ((2252, 2270), 'numpy.unique', 'np.unique', (['markers'], {}), '(markers)\n', (2261, 2270), True, 'import numpy as np\n'), ((3285, 3345), 'slidingwindow.SlidingWindow', 'sw.SlidingWindow', (['x', 'y', 'w', 'h', 'sw.DimOrder.HeightWidthChannel'], {}), '(x, y, w, h, sw.DimOrder.HeightWidthChannel)\n', (3301, 3345), True, 'import slidingwindow as sw\n'), ((2687, 2757), 'cv2.findContours', 'cv2.findContours', (['contiguous', 'cv2.RETR_EXTERNAL', 'cv2.CHAIN_APPROX_NONE'], {}), '(contiguous, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)\n', (2703, 2757), False, 'import cv2\n'), ((2800, 2828), 'cv2.minAreaRect', 'cv2.minAreaRect', (['contours[0]'], {}), '(contours[0])\n', (2815, 2828), False, 'import cv2\n')]
# Copyright 2020 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Callable, List import numpy as np from sklearn.metrics import confusion_matrix import torch from torch import nn class Deep(nn.Module): def __init__(self, configuration_list: List[int], activation=None, is_cuda: bool = False): super().__init__() if activation is None: activation = lambda x: x _weights_list = [] _bias_list = [] for i in range(len(configuration_list) - 1): weights_prototype = torch.tensor(np.zeros((configuration_list[i], configuration_list[i + 1])), dtype=torch.float, device="cuda" if is_cuda else None) _weights_list.append(nn.Parameter(nn.init.xavier_normal_(weights_prototype), requires_grad=True)) _bias_list.append(nn.Parameter(torch.zeros(configuration_list[i + 1], device="cuda" if is_cuda else None), requires_grad=True)) self._weights = nn.ParameterList(_weights_list) self._biases = nn.ParameterList(_bias_list) self._activation = activation @property def weights(self) -> nn.ParameterList: return self._weights @weights.setter def weights(self, value): self._weights = value @property def biases(self) -> nn.ParameterList: return self._biases @biases.setter def biases(self, value): self._biases = value @property def activation(self) -> Callable: return self._activation def forward(self, inputs) -> torch.Tensor: for weights, bias in zip(self.weights, self.biases): inputs = inputs.mm(weights) + bias inputs = self.activation(inputs) _probs = torch.softmax(inputs, dim=1) return _probs def get_loss(self, inputs, y_true) -> torch.Tensor: # Shape: (inputs.length, output_units) _outputs = self.forward(inputs) # Add 1e-13 to prevent NaN _logmul_outputs = torch.log(_outputs + 1e-13) * y_true _logsum = torch.sum(_logmul_outputs, dim=1) _logsum_mean = torch.mean(_logsum) # Convert to positive number return -_logsum_mean def count_params(self): name_and_dim_tuples = list() for parameter in self.named_parameters(): name_and_dim_tuples.append((parameter[0], tuple(parameter[1].shape))) total_parameters = np.sum(p.numel() for p in self.parameters()) return {"layers": name_and_dim_tuples, "element_count": total_parameters} def train(model: nn.Module, x, y, n_epochs: int, learning_rate: float, verbose: int = 0): optimizer = torch.optim.SGD(params=model.parameters(), lr=learning_rate, momentum=0.99) for epoch in range(1, n_epochs + 1): loss = model.get_loss(x, y) loss.backward() optimizer.step() if verbose > 0: print(f"Epoha {epoch}:\tgubitak = {loss:.06f}") optimizer.zero_grad() def eval(model, inputs): return model.forward(inputs).detach().cpu().numpy() def eval_metrics(model, inputs, y_real, prefix: str or None = None): if prefix is None: prefix = "" y_pred = eval(model, inputs).argmax(axis=1) y_real = y_real.detach().cpu().numpy() cm = confusion_matrix(y_real, y_pred) cm_diag = np.diag(cm) sums = [np.sum(cm, axis=y) for y in [None, 0, 1]] sums[0] = np.maximum(1, sums[0]) for i in range(1, len(sums)): sums[i][sums[i] == 0] = 1 accuracy = np.sum(cm_diag) / sums[0] precision, recall = [np.mean(cm_diag / x) for x in sums[1:]] f1 = (2 * precision * recall) / (precision + recall) return {f"{prefix}acc": accuracy, f"{prefix}pr": precision, f"{prefix}re": recall, f"{prefix}f1": f1}
[ "torch.mean", "numpy.maximum", "numpy.sum", "torch.nn.init.xavier_normal_", "numpy.zeros", "torch.softmax", "numpy.mean", "torch.nn.ParameterList", "torch.zeros", "sklearn.metrics.confusion_matrix", "torch.sum", "torch.log", "numpy.diag" ]
[((3934, 3966), 'sklearn.metrics.confusion_matrix', 'confusion_matrix', (['y_real', 'y_pred'], {}), '(y_real, y_pred)\n', (3950, 3966), False, 'from sklearn.metrics import confusion_matrix\n'), ((3981, 3992), 'numpy.diag', 'np.diag', (['cm'], {}), '(cm)\n', (3988, 3992), True, 'import numpy as np\n'), ((4063, 4085), 'numpy.maximum', 'np.maximum', (['(1)', 'sums[0]'], {}), '(1, sums[0])\n', (4073, 4085), True, 'import numpy as np\n'), ((1639, 1670), 'torch.nn.ParameterList', 'nn.ParameterList', (['_weights_list'], {}), '(_weights_list)\n', (1655, 1670), False, 'from torch import nn\n'), ((1694, 1722), 'torch.nn.ParameterList', 'nn.ParameterList', (['_bias_list'], {}), '(_bias_list)\n', (1710, 1722), False, 'from torch import nn\n'), ((2396, 2424), 'torch.softmax', 'torch.softmax', (['inputs'], {'dim': '(1)'}), '(inputs, dim=1)\n', (2409, 2424), False, 'import torch\n'), ((2709, 2742), 'torch.sum', 'torch.sum', (['_logmul_outputs'], {'dim': '(1)'}), '(_logmul_outputs, dim=1)\n', (2718, 2742), False, 'import torch\n'), ((2766, 2785), 'torch.mean', 'torch.mean', (['_logsum'], {}), '(_logsum)\n', (2776, 2785), False, 'import torch\n'), ((4006, 4024), 'numpy.sum', 'np.sum', (['cm'], {'axis': 'y'}), '(cm, axis=y)\n', (4012, 4024), True, 'import numpy as np\n'), ((4170, 4185), 'numpy.sum', 'np.sum', (['cm_diag'], {}), '(cm_diag)\n', (4176, 4185), True, 'import numpy as np\n'), ((4221, 4241), 'numpy.mean', 'np.mean', (['(cm_diag / x)'], {}), '(cm_diag / x)\n', (4228, 4241), True, 'import numpy as np\n'), ((2654, 2681), 'torch.log', 'torch.log', (['(_outputs + 1e-13)'], {}), '(_outputs + 1e-13)\n', (2663, 2681), False, 'import torch\n'), ((1101, 1161), 'numpy.zeros', 'np.zeros', (['(configuration_list[i], configuration_list[i + 1])'], {}), '((configuration_list[i], configuration_list[i + 1]))\n', (1109, 1161), True, 'import numpy as np\n'), ((1355, 1396), 'torch.nn.init.xavier_normal_', 'nn.init.xavier_normal_', (['weights_prototype'], {}), '(weights_prototype)\n', (1377, 1396), False, 'from torch import nn\n'), ((1462, 1536), 'torch.zeros', 'torch.zeros', (['configuration_list[i + 1]'], {'device': "('cuda' if is_cuda else None)"}), "(configuration_list[i + 1], device='cuda' if is_cuda else None)\n", (1473, 1536), False, 'import torch\n')]
''' Copyright 2022 Airbus SAS Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' import math import numpy as np import pandas as pd from os.path import join, dirname from copy import deepcopy from climateeconomics.core.core_resources.resource_model.resource_model import ResourceModel from energy_models.core.stream_type.resources_models.resource_glossary import ResourceGlossary from climateeconomics.core.tools.Hubbert_Curve import compute_Hubbert_regression from sos_trades_core.tools.base_functions.exp_min import compute_dfunc_with_exp_min,\ compute_func_with_exp_min class OrderOfMagnitude(): KILO = 'k' # USD_PER_USton = 'USD/USton' # MILLION_TONNES='million_tonnes' magnitude_factor = { KILO: 10 ** 3 # USD_PER_USton:1/0.907 # MILLION_TONNES: 10**6 } class CopperResourceModel(ResourceModel): """ Resource model General implementation of a resource model, to be inherited by specific models for each type of resource """ resource_name=ResourceGlossary.Copper['name'] def configure_parameters(self, inputs_dict): super().configure_parameters(inputs_dict) self.sectorisation_dict = inputs_dict['sectorisation'] self.resource_max_price = inputs_dict['resource_max_price'] #Units conversion oil_barrel_to_tonnes = 6.84 bcm_to_Mt = 1 / 1.379 kU_to_Mt = 10 ** -6 #To convert from 1E6 oil_barrel to Mt conversion_factor = 1.0 #Average copper price rise and decrease price_rise = 1.494 price_decrease = 0.95 def convert_demand(self, demand): self.resource_demand=demand self.resource_demand[self.resource_name]=demand[self.resource_name] def get_global_demand(self, demand): energy_demand = self.sectorisation_dict['power_generation'] self.resource_demand=demand self.resource_demand[self.resource_name]=demand[self.resource_name] * (100 / energy_demand) self.conversion_factor = 100 / energy_demand def sigmoid(self, ratio, sigmoid_min ): ''' function sigmoid redefined for the ratio : sigmoid([-10;10])->[0;1] becomes sigmoid([1;0])->[sigmoid_min, resource_max_price] (ratio = 1 matches sigmoids' lower bound, and ratio = 0 matches sigmoid's upper bound) ''' x= -20*ratio +10 sig = 1/ (1 + math.exp(-x)) return sig*(self.resource_max_price-sigmoid_min) + sigmoid_min def compute_price(self): """ price function depends on the ratio use_stock/demand price(ratio) = (price_max - price_min)(1-ratio) + price_min """ # dataframe initialization self.resource_price['price'] = np.insert(np.zeros(len(self.years)-1), 0, self.resource_price_data.loc[0, 'price']) resource_price_dict = self.resource_price.to_dict() self.resource_demand = self.resources_demand[['years', self.resource_name]] self.get_global_demand(self.resource_demand) demand = deepcopy(self.resource_demand[self.resource_name].values) demand_limited = compute_func_with_exp_min( np.array(demand), 1.0e-10) self.ratio_usable_demand = np.maximum(self.use_stock[self.sub_resource_list[0]].values / demand_limited, 1E-15) for year_cost in self.years[1:] : resource_price_dict['price'][year_cost] = \ (self.resource_max_price - self.resource_price_data.loc[0, 'price']) *\ (1- self.ratio_usable_demand[year_cost - self.year_start]) + self.resource_price_data.loc[0, 'price'] self.resource_price= pd.DataFrame.from_dict(resource_price_dict) def get_d_price_d_demand (self, year_start, year_end, nb_years, grad_use, grad_price): ascending_price_resource_list = list( self.resource_price_data.sort_values(by=['price'])['resource_type']) demand = deepcopy(self.resource_demand[self.resource_name].values) demand_limited = compute_func_with_exp_min(np.array(demand), 1.0e-10) grad_demand_limited = compute_dfunc_with_exp_min(np.array(demand), 1.0e-10) self.ratio_usable_demand = np.maximum(self.use_stock[self.sub_resource_list[0]].values / demand_limited, 1E-15) # # ------------------------------------------------ # # price is cst *u/v function with u = use and v = demand # # price gradient is cst * (u'v - uv') / v^2 for year_demand in range(year_start + 1, year_end + 1): for resource_type in ascending_price_resource_list: for year in range(year_start + 1, year_demand + 1): #grad_price = cst * u'v / v^2 (cst < 0) if self.use_stock[self.sub_resource_list[0]][year_demand]/demand_limited[year_demand - year_start] > 1E-15 : grad_price[year_demand - year_start, year - year_start] = \ -(self.resource_max_price - self.resource_price_data.loc[0, 'price']) * \ grad_use[resource_type][year_demand - year_start, year - year_start]* grad_demand_limited[year_demand - year_start] / demand_limited[year_demand - year_start] ## grad_price -= cst * uv' / v^2 (cst < 0) if year == year_demand : grad_price[year_demand - year_start, year - year_start] += (self.resource_max_price - self.resource_price_data.loc[0, 'price']) *\ self.use_stock[self.sub_resource_list[0]][year_demand]\ * self.conversion_factor * grad_demand_limited[year_demand - year_start]/ demand_limited[year_demand - year_start] **2 return grad_price
[ "copy.deepcopy", "math.exp", "numpy.maximum", "pandas.DataFrame.from_dict", "numpy.array" ]
[((3565, 3622), 'copy.deepcopy', 'deepcopy', (['self.resource_demand[self.resource_name].values'], {}), '(self.resource_demand[self.resource_name].values)\n', (3573, 3622), False, 'from copy import deepcopy\n'), ((3757, 3845), 'numpy.maximum', 'np.maximum', (['(self.use_stock[self.sub_resource_list[0]].values / demand_limited)', '(1e-15)'], {}), '(self.use_stock[self.sub_resource_list[0]].values /\n demand_limited, 1e-15)\n', (3767, 3845), True, 'import numpy as np\n'), ((4205, 4248), 'pandas.DataFrame.from_dict', 'pd.DataFrame.from_dict', (['resource_price_dict'], {}), '(resource_price_dict)\n', (4227, 4248), True, 'import pandas as pd\n'), ((4496, 4553), 'copy.deepcopy', 'deepcopy', (['self.resource_demand[self.resource_name].values'], {}), '(self.resource_demand[self.resource_name].values)\n', (4504, 4553), False, 'from copy import deepcopy\n'), ((4766, 4854), 'numpy.maximum', 'np.maximum', (['(self.use_stock[self.sub_resource_list[0]].values / demand_limited)', '(1e-15)'], {}), '(self.use_stock[self.sub_resource_list[0]].values /\n demand_limited, 1e-15)\n', (4776, 4854), True, 'import numpy as np\n'), ((3693, 3709), 'numpy.array', 'np.array', (['demand'], {}), '(demand)\n', (3701, 3709), True, 'import numpy as np\n'), ((4611, 4627), 'numpy.array', 'np.array', (['demand'], {}), '(demand)\n', (4619, 4627), True, 'import numpy as np\n'), ((4695, 4711), 'numpy.array', 'np.array', (['demand'], {}), '(demand)\n', (4703, 4711), True, 'import numpy as np\n'), ((2889, 2901), 'math.exp', 'math.exp', (['(-x)'], {}), '(-x)\n', (2897, 2901), False, 'import math\n')]
""" Collection of utility functions """ from numpy.random import RandomState import pandas as pd import numpy as np import os import functools from networkx.algorithms import bipartite import logging def make_random_bipartite_data(group1, group2, p, seed): """ :type group1: list :param group1: Ids of first group :type group2: list :param group2: Ids of second group :type p: float :param p: probability of existence of 1 edge :type seed: int :param seed: seed for random generator :rtype: list :return: all edges in the graph """ logging.info(" creating a bipartite graph between {} items in group1, {} " "items in group2 and edge probability {}".format( len(group1), len(group2), p)) if len(group1) == 0 or len(group2) == 0 or p == 0: return [] bp = pd.DataFrame.from_records(list(bipartite.random_graph(len(group1), len(group2), p, seed).edges()), columns=["from", "to"]) logging.info(" (bipartite index created, now resolving item values)") # as all "to" nodes are from the second group, # but numbered by networkx in range(len(group1),len(group1)+len(group2)) # we need to deduct len(group1) to have proper indexes. bp["to"] -= len(group1) bp["from"] = bp.apply(lambda x: group1[x["from"]], axis=1) bp["to"] = bp.apply(lambda x: group2[x["to"]], axis=1) logging.info(" (resolution done, now converting to tuples)") out = [tuple(x) for x in bp.to_records(index=False)] logging.info(" (exiting bipartite)") return out def assign_random_proportions(name1, name2, group1, group2, seed): state = RandomState(seed) assignments = state.rand(len(group1), len(group2)) assignments = assignments / assignments.sum(axis=1, keepdims=True) data = pd.DataFrame(assignments, index=group1, columns=group2).stack().reset_index(level=[0, 1]) data.rename(columns={"level_0": name1, "level_1": name2, 0: "weight"}, inplace=True) return data def make_random_assign(set1, set2, seed): """Assign randomly a member of set2 to each member of set1 :return: a dataframe with as many rows as set1 """ chosen_froms = RandomState(seed).choice(set2, size=len(set1)) return pd.DataFrame({"set1": set1, "chosen_from_set2": chosen_froms}) def merge_2_dicts(dict1, dict2, value_merge_func=None): """ :param dict1: first dictionary to be merged :param dict2: first dictionary to be merged :param value_merge_func: specifies how to merge 2 values if present in both dictionaries :type value_merge_func: function (value1, value) => value :return: """ if dict1 is None and dict2 is None: return {} if dict2 is None: return dict1 if dict1 is None: return dict2 def merged_value(key): if key not in dict1: return dict2[key] elif key not in dict2: return dict1[key] else: if value_merge_func is None: raise ValueError( "Conflict in merged dictionaries: merge function not " "provided but key {} exists in both dictionaries".format( key)) return value_merge_func(dict1[key], dict2[key]) keys = set(dict1.keys()) | set(dict2.keys()) return {key: merged_value(key) for key in keys} def df_concat(d1, d2): return pd.concat([d1, d2], ignore_index=True, copy=False) def merge_dicts(dicts, merge_func=None): """ :param dicts: list of dictionnaries to be merged :type dicts: list[dict] :param merge_func: :type merge_func: function :return: one single dictionary containing all entries received """ from itertools import tee # check if the input list or iterator is empty dict_backup, test = tee(iter(dicts)) try: next(test) except StopIteration: return {} return functools.reduce(lambda d1, d2: merge_2_dicts(d1, d2, merge_func), dict_backup) def setup_logging(): logging.basicConfig( format='%(asctime)s %(message)s', level=logging.INFO) # stolen from http://stackoverflow.com/questions/1835018/ # python-check-if-an-object-is-a-list-or-tuple-but-not-string#answer-1835259 def is_sequence(arg): return type(arg) is list or type(arg) is tuple or type(arg) is set def build_ids(size, id_start=0, prefix="id_", max_length=10): """ builds a sequencial list of string ids of specified size """ return [prefix + str(x).zfill(max_length) for x in np.arange(id_start, id_start + size)] def log_dataframe_sample(msg, df): if df.shape[0] == 0: logging.info("{}: [empty]".format(msg)) else: logging.info("{}: \n {}".format(msg, df.sample(min(df.shape[0], 15)))) def cap_to_total(values, target_total): """ return a copy of values with the largest values possible s.t.: - all return values are <= the original ones - their sum is == total - """ excedent = np.sum(values) - target_total if excedent <= 0: return values elif values[-1] >= excedent: return values[:-1] + [values[-1] - excedent] else: return cap_to_total(values[:-1], target_total) + [0] def ensure_folder_exists(folder): if not os.path.exists(folder): os.makedirs(folder) def ensure_non_existing_dir(folder): """ makes sure the specified directory does not exist, potentially deleting any file or folder it contains """ if not os.path.exists(folder): return if os.path.isfile(folder): os.remove(folder) else: for f in os.listdir(folder): full_path = os.path.join(folder, f) ensure_non_existing_dir(full_path) os.rmdir(folder) def latest_date_before(starting_date, upper_bound, time_step): """ Looks for the latest result_date s.t result_date = starting_date + n * time_step for any integer n result_date <= upper_bound :type starting_date: pd.Timestamp :type upper_bound: pd.Timestamp :type time_step: pd.Timedelta :return: pd.Timestamp """ result = starting_date while result > upper_bound: result -= time_step while upper_bound - result >= time_step: result += time_step return result def load_all_logs(folder): """ loads all csv file contained in this folder and retun them as one dictionary where the key is the filename without the extension """ all_logs = {} for file_name in os.listdir(folder): full_path = os.path.join(folder, file_name) logs = pd.read_csv(full_path, index_col=None) log_id = file_name[:-4] all_logs[log_id] = logs return all_logs
[ "pandas.DataFrame", "os.listdir", "os.remove", "numpy.sum", "os.makedirs", "logging.basicConfig", "pandas.read_csv", "os.path.exists", "numpy.random.RandomState", "logging.info", "os.path.isfile", "numpy.arange", "os.rmdir", "os.path.join", "pandas.concat" ]
[((1027, 1097), 'logging.info', 'logging.info', (['""" (bipartite index created, now resolving item values)"""'], {}), "(' (bipartite index created, now resolving item values)')\n", (1039, 1097), False, 'import logging\n'), ((1442, 1503), 'logging.info', 'logging.info', (['""" (resolution done, now converting to tuples)"""'], {}), "(' (resolution done, now converting to tuples)')\n", (1454, 1503), False, 'import logging\n'), ((1565, 1602), 'logging.info', 'logging.info', (['""" (exiting bipartite)"""'], {}), "(' (exiting bipartite)')\n", (1577, 1602), False, 'import logging\n'), ((1700, 1717), 'numpy.random.RandomState', 'RandomState', (['seed'], {}), '(seed)\n', (1711, 1717), False, 'from numpy.random import RandomState\n'), ((2385, 2447), 'pandas.DataFrame', 'pd.DataFrame', (["{'set1': set1, 'chosen_from_set2': chosen_froms}"], {}), "({'set1': set1, 'chosen_from_set2': chosen_froms})\n", (2397, 2447), True, 'import pandas as pd\n'), ((3556, 3606), 'pandas.concat', 'pd.concat', (['[d1, d2]'], {'ignore_index': '(True)', 'copy': '(False)'}), '([d1, d2], ignore_index=True, copy=False)\n', (3565, 3606), True, 'import pandas as pd\n'), ((4182, 4255), 'logging.basicConfig', 'logging.basicConfig', ([], {'format': '"""%(asctime)s %(message)s"""', 'level': 'logging.INFO'}), "(format='%(asctime)s %(message)s', level=logging.INFO)\n", (4201, 4255), False, 'import logging\n'), ((5739, 5761), 'os.path.isfile', 'os.path.isfile', (['folder'], {}), '(folder)\n', (5753, 5761), False, 'import os\n'), ((6729, 6747), 'os.listdir', 'os.listdir', (['folder'], {}), '(folder)\n', (6739, 6747), False, 'import os\n'), ((5184, 5198), 'numpy.sum', 'np.sum', (['values'], {}), '(values)\n', (5190, 5198), True, 'import numpy as np\n'), ((5462, 5484), 'os.path.exists', 'os.path.exists', (['folder'], {}), '(folder)\n', (5476, 5484), False, 'import os\n'), ((5494, 5513), 'os.makedirs', 'os.makedirs', (['folder'], {}), '(folder)\n', (5505, 5513), False, 'import os\n'), ((5692, 5714), 'os.path.exists', 'os.path.exists', (['folder'], {}), '(folder)\n', (5706, 5714), False, 'import os\n'), ((5771, 5788), 'os.remove', 'os.remove', (['folder'], {}), '(folder)\n', (5780, 5788), False, 'import os\n'), ((5817, 5835), 'os.listdir', 'os.listdir', (['folder'], {}), '(folder)\n', (5827, 5835), False, 'import os\n'), ((5940, 5956), 'os.rmdir', 'os.rmdir', (['folder'], {}), '(folder)\n', (5948, 5956), False, 'import os\n'), ((6769, 6800), 'os.path.join', 'os.path.join', (['folder', 'file_name'], {}), '(folder, file_name)\n', (6781, 6800), False, 'import os\n'), ((6816, 6854), 'pandas.read_csv', 'pd.read_csv', (['full_path'], {'index_col': 'None'}), '(full_path, index_col=None)\n', (6827, 6854), True, 'import pandas as pd\n'), ((2327, 2344), 'numpy.random.RandomState', 'RandomState', (['seed'], {}), '(seed)\n', (2338, 2344), False, 'from numpy.random import RandomState\n'), ((4711, 4747), 'numpy.arange', 'np.arange', (['id_start', '(id_start + size)'], {}), '(id_start, id_start + size)\n', (4720, 4747), True, 'import numpy as np\n'), ((5861, 5884), 'os.path.join', 'os.path.join', (['folder', 'f'], {}), '(folder, f)\n', (5873, 5884), False, 'import os\n'), ((1855, 1910), 'pandas.DataFrame', 'pd.DataFrame', (['assignments'], {'index': 'group1', 'columns': 'group2'}), '(assignments, index=group1, columns=group2)\n', (1867, 1910), True, 'import pandas as pd\n')]
import sys path = '../../../' sys.path.append(path) from pdeopt.tools import get_data import numpy as np directories = [ 'Starter10/', 'Starter11/', 'Starter111/', 'Starter2/', 'Starter439/', 'Starter66/', 'Starter744/', 'Starter7552/', 'Starter758/', 'Starter7822/'] # I want to have these methods in my tabular: method_tuple = [ [2 , '5. FOM proj. BFGS'], [25,'1(a) standard lag.'], [54,'1(b) standard uni.'], [26,'Qian et al. 2017'], ] max_time_0 = 0. max_time_1 = 0. max_time_2 = 0. max_time_3 = 0. min_time_0 = 10000. min_time_1 = 10000. min_time_2 = 10000. min_time_3 = 10000. sum_0 = [] sum_1 = [] sum_2 = [] sum_3 = [] max_iter_0 = 0. max_iter_1 = 0. max_iter_2 = 0. max_iter_3 = 0. min_iter_0 = 10000. min_iter_1 = 10000. min_iter_2 = 10000. min_iter_3 = 10000. iters_0 = [] iters_1 = [] iters_2 = [] iters_3 = [] sum_FOC_0 = [] sum_FOC_1 = [] sum_FOC_2 = [] sum_FOC_3 = [] # print('THIS IS THE MU FOR EXC10') mu_opt = [0.01, 0.1, 8.37317446, 6.57227607, 0.46651735, 1.88354107] mu_opt_norm = np.linalg.norm(mu_opt) sum_muerror_0 = [] sum_muerror_1 = [] sum_muerror_2 = [] sum_muerror_3 = [] for directory in directories: times_full_0 , _ , mu_error_0, FOC_0 = get_data(directory,method_tuple[0][0], mu_error_=True, FOC=True) total_time = times_full_0[-1] sum_muerror_0.append(mu_error_0[-1]) sum_FOC_0.append(FOC_0[-1]) sum_0.append(total_time) min_time_0 = min(min_time_0, total_time) max_time_0 = max(max_time_0, total_time) iterations = len(times_full_0)-1 iters_0.append(iterations) min_iter_0 = min(min_iter_0, iterations) max_iter_0 = max(max_iter_0, iterations) times_full_1 , _ , mu_error_1, FOC_1 = get_data(directory,method_tuple[1][0], mu_error_=True, FOC=True) total_time = times_full_1[-1] sum_muerror_1.append(mu_error_1[-1]) sum_FOC_1.append(FOC_1[-1]) sum_1.append(total_time) min_time_1 = min(min_time_1, total_time) max_time_1 = max(max_time_1, total_time) iterations = len(times_full_1)-1 iters_1.append(iterations) min_iter_1 = min(min_iter_1, iterations) max_iter_1 = max(max_iter_1, iterations) times_full_2 , _ , mu_error_2, FOC_2 = get_data(directory,method_tuple[2][0], mu_error_=True, FOC=True) total_time = times_full_2[-1] sum_muerror_2.append(mu_error_2[-1]) sum_FOC_2.append(FOC_2[-1]) sum_2.append(total_time) min_time_2 = min(min_time_2, total_time) max_time_2 = max(max_time_2, total_time) iterations = len(times_full_2)-1 iters_2.append(iterations) min_iter_2 = min(min_iter_2, iterations) max_iter_2 = max(max_iter_2, iterations) times_full_3 , _ , mu_error_3, FOC_3 = get_data(directory,method_tuple[3][0], mu_error_=True, FOC=True) total_time = times_full_3[-1] sum_muerror_3.append(mu_error_3[-1]) sum_FOC_3.append(FOC_3[-1]) sum_3.append(total_time) min_time_3 = min(min_time_3, total_time) max_time_3 = max(max_time_3, total_time) iterations = len(times_full_3)-1 iters_3.append(iterations) min_iter_3 = min(min_iter_3, iterations) max_iter_3 = max(max_iter_3, iterations) average_times_0 = sum(sum_0)/len(directories) average_times_1 = sum(sum_1)/len(directories) average_times_2 = sum(sum_2)/len(directories) average_times_3 = sum(sum_3)/len(directories) average_iters_0 = sum(iters_0)/len(directories) average_iters_1 = sum(iters_1)/len(directories) average_iters_2 = sum(iters_2)/len(directories) average_iters_3 = sum(iters_3)/len(directories) average_mu_error_0 = sum(sum_muerror_0)/len(directories) average_mu_error_1 = sum(sum_muerror_1)/len(directories) average_mu_error_2 = sum(sum_muerror_2)/len(directories) average_mu_error_3 = sum(sum_muerror_3)/len(directories) average_FOC_0 = sum(sum_FOC_0)/len(directories) average_FOC_1 = sum(sum_FOC_1)/len(directories) average_FOC_2 = sum(sum_FOC_2)/len(directories) average_FOC_3 = sum(sum_FOC_3)/len(directories) from tabulate import tabulate print('AVERAGE time of the algorithms min and max:\n ') headers = ['Method', 'average [s]', 'min [s]', 'max [s]', 'av. speed-up'] table = [[method_tuple[0][1], average_times_0, min_time_0, max_time_0, '--'], [method_tuple[3][1], average_times_3, min_time_3, max_time_3, average_times_0/average_times_3], [method_tuple[1][1], average_times_1, min_time_1, max_time_1, average_times_0/average_times_1], [method_tuple[2][1], average_times_2, min_time_2, max_time_2, average_times_0/average_times_2] ] print(tabulate(table, headers=headers, tablefmt='github', floatfmt='.2f')) #print(tabulate(table, headers=headers, tablefmt='latex', floatfmt='.2f')) print() print('AVERAGE ITERATIONS of the algorithms min and max:\n ') headers = ['Method', 'average it.', 'min it.', 'max it.', 'av. rel.error.', 'av. FOC cond.'] table = [[method_tuple[0][1], average_iters_0, min_iter_0, max_iter_0, average_mu_error_0/mu_opt_norm, average_FOC_0], [method_tuple[3][1], average_iters_3, min_iter_3, max_iter_3, average_mu_error_3/mu_opt_norm, average_FOC_3], [method_tuple[1][1], average_iters_1, min_iter_1, max_iter_1, average_mu_error_1/mu_opt_norm, average_FOC_1], [method_tuple[2][1], average_iters_2, min_iter_2, max_iter_2, average_mu_error_2/mu_opt_norm, average_FOC_2] ] print(tabulate(table, headers=headers, tablefmt='github', floatfmt='.8f')) #print(tabulate(table, headers=headers, tablefmt='latex', floatfmt='.8f')) print() print() # all together headers = ['Method', 'average [s]', 'min [s]', 'max [s]', 'speed-up', 'av. it. ', 'min it.', 'max it.', 'rel.error.', 'FOC cond.'] table = [[method_tuple[0][1], average_times_0, min_time_0, max_time_0, '--' , average_iters_0, min_iter_0, max_iter_0, average_mu_error_0/mu_opt_norm, average_FOC_0], [method_tuple[3][1], average_times_3, min_time_3, max_time_3, average_times_0/average_times_3, average_iters_3, min_iter_3, max_iter_3, average_mu_error_3/mu_opt_norm, average_FOC_3], [method_tuple[1][1], average_times_1, min_time_1, max_time_1, average_times_0/average_times_1, average_iters_1, min_iter_1, max_iter_1, average_mu_error_1/mu_opt_norm, average_FOC_1], [method_tuple[2][1], average_times_2, min_time_2, max_time_2, average_times_0/average_times_2, average_iters_2, min_iter_2, max_iter_2, average_mu_error_2/mu_opt_norm, average_FOC_2] ] print(tabulate(table, headers=headers, tablefmt='github', floatfmt='.8f'))
[ "sys.path.append", "tabulate.tabulate", "numpy.linalg.norm", "pdeopt.tools.get_data" ]
[((30, 51), 'sys.path.append', 'sys.path.append', (['path'], {}), '(path)\n', (45, 51), False, 'import sys\n'), ((1265, 1287), 'numpy.linalg.norm', 'np.linalg.norm', (['mu_opt'], {}), '(mu_opt)\n', (1279, 1287), True, 'import numpy as np\n'), ((1440, 1505), 'pdeopt.tools.get_data', 'get_data', (['directory', 'method_tuple[0][0]'], {'mu_error_': '(True)', 'FOC': '(True)'}), '(directory, method_tuple[0][0], mu_error_=True, FOC=True)\n', (1448, 1505), False, 'from pdeopt.tools import get_data\n'), ((1942, 2007), 'pdeopt.tools.get_data', 'get_data', (['directory', 'method_tuple[1][0]'], {'mu_error_': '(True)', 'FOC': '(True)'}), '(directory, method_tuple[1][0], mu_error_=True, FOC=True)\n', (1950, 2007), False, 'from pdeopt.tools import get_data\n'), ((2445, 2510), 'pdeopt.tools.get_data', 'get_data', (['directory', 'method_tuple[2][0]'], {'mu_error_': '(True)', 'FOC': '(True)'}), '(directory, method_tuple[2][0], mu_error_=True, FOC=True)\n', (2453, 2510), False, 'from pdeopt.tools import get_data\n'), ((2947, 3012), 'pdeopt.tools.get_data', 'get_data', (['directory', 'method_tuple[3][0]'], {'mu_error_': '(True)', 'FOC': '(True)'}), '(directory, method_tuple[3][0], mu_error_=True, FOC=True)\n', (2955, 3012), False, 'from pdeopt.tools import get_data\n'), ((4782, 4849), 'tabulate.tabulate', 'tabulate', (['table'], {'headers': 'headers', 'tablefmt': '"""github"""', 'floatfmt': '""".2f"""'}), "(table, headers=headers, tablefmt='github', floatfmt='.2f')\n", (4790, 4849), False, 'from tabulate import tabulate\n'), ((5581, 5648), 'tabulate.tabulate', 'tabulate', (['table'], {'headers': 'headers', 'tablefmt': '"""github"""', 'floatfmt': '""".8f"""'}), "(table, headers=headers, tablefmt='github', floatfmt='.8f')\n", (5589, 5648), False, 'from tabulate import tabulate\n'), ((6675, 6742), 'tabulate.tabulate', 'tabulate', (['table'], {'headers': 'headers', 'tablefmt': '"""github"""', 'floatfmt': '""".8f"""'}), "(table, headers=headers, tablefmt='github', floatfmt='.8f')\n", (6683, 6742), False, 'from tabulate import tabulate\n')]