code
stringlengths 31
1.05M
| apis
list | extract_api
stringlengths 97
1.91M
|
---|---|---|
#!/usr/bin/python
import numpy as np
import inkscapeMadeEasy.inkscapeMadeEasy_Base as inkBase
import inkscapeMadeEasy.inkscapeMadeEasy_Draw as inkDraw
# reference: https://www.electronics-tutorials.ws/resources/transformer-symbols.html
class transformer(inkBase.inkscapeMadeEasy):
def add(self, vector, delta):
# vector does not need to be numpy array. delta will be converted to numpy array. Numpy can then deal with np.array + list
return vector + np.array(delta)
# ---------------------------------------------
def drawTransfWinding(self, parent, position=[0, 0], label='transfWinding', size=50, flagTapped=False, wireExtraSize=0,
forceEven=True, turnRadius=3.5,polarityIndication=0,flagAddSideTerminals=False):
""" draws one winding of the transformer
parent: parent object
position: position [x,y]. the center of the winding will be places at this position
label: label of the object (it can be repeated)
size: size of the coil (default 50)
flagTapped: add central tap
wireExtraSize: extra terminal wire length
forceEven: force even number of coil turns
turnRadius: radius of each turn
polarityIndication: 0: no indication 1: indication in one size -1: indication in the other side
flagAddSideTerminals (bool): used to create side terminas for transformers
"""
elem = self.createGroup(parent, label)
Nturns = int(size / (2 * turnRadius))
# makes sure Nturns is even
if forceEven and Nturns % 2 == 1:
Nturns -= 1
# terminals
length = size / 2 + wireExtraSize - (turnRadius * 2) * (Nturns / 2)
if flagAddSideTerminals:
inkDraw.line.relCoords(elem, [[-length, 0], [0, -20]], self.add(position, [-(turnRadius * 2) * (Nturns / 2), 0]))
inkDraw.line.relCoords(elem, [[length, 0], [0, -20]], self.add(position, [(turnRadius * 2) * (Nturns / 2), 0]))
else:
inkDraw.line.relCoords(elem, [[-length, 0]], self.add(position, [-(turnRadius * 2) * (Nturns / 2), 0]))
inkDraw.line.relCoords(elem, [[length, 0]], self.add(position, [(turnRadius * 2) * (Nturns / 2), 0]))
# wire loops
center = -(Nturns / 2) * (turnRadius * 2) + turnRadius
for i in range(Nturns):
inkDraw.ellipseArc.centerAngStartAngEnd(elem, self.add(position, [center, 0]), turnRadius, turnRadius + 2, 0.0, 180.0, [0, 0],
largeArc=False)
center += 2 * turnRadius
# tapped
if flagTapped:
myLine = inkDraw.lineStyle.set(lineWidth=1.0, lineColor=inkDraw.color.defined('black'), fillColor=inkDraw.color.defined('black'))
inkDraw.line.relCoords(elem, [[0, -20]], position,lineStyle=myLine)
# phase indication
if polarityIndication!=0:
inkDraw.circle.centerRadius(elem, self.add(position, [-polarityIndication*(size / 2 - 5), -5]), 0.6)
return elem # ---------------------------------------------
def inductor(self, parent, position=[0, 0], angleDeg=0, coreType='air', flagTapped=False, flagVolt=True, voltName='v', flagCurr=True,
currName='i', invertArrows=False, convention='passive', wireExtraSize=0):
""" draws an inductor
parent: parent object
position: position [x,y]
angleDeg: rotation angle in degrees counter-clockwise (default 0)
coreType='air', 'iron', 'ferrite'
flagTapped: add taps to the windings
flagVolt: indicates whether the voltage arrow must be drawn (default: true)
voltName: voltage drop name (default: v)
flagCurr: indicates whether the current arrow must be drawn (default: true)
currName: current drop name (default: i)
invertArrows: invert V/I arrow directions (default: False)
convention: passive/active sign convention. available types: 'passive' (default) , 'active'
wireExtraSize: additional length added to the terminals. If negative, the length will be reduced. default: 0)
"""
group = self.createGroup(parent)
elem = self.createGroup(group)
sizeCoil = 50
turnRadius = 3
#draw winding
self.drawTransfWinding(elem, position=position, size=sizeCoil - 10, flagTapped=False, wireExtraSize=wireExtraSize + 5,
forceEven=True, turnRadius=turnRadius, polarityIndication=0, flagAddSideTerminals=False)
# manual tap
if flagTapped:
inkDraw.line.relCoords(elem, [[0, -10]], position)
if flagVolt:
if coreType.lower() == 'air':
posY = 8
else:
posY = 15
if convention == 'passive':
self.drawVoltArrowSimple(group, self.add(position, [0,posY]), name=voltName, color=self.voltageColor, angleDeg=angleDeg,
invertArrows=not invertArrows, size=sizeCoil - 20, invertCurvatureDirection=False, extraAngleText=0.0)
if convention == 'active':
self.drawVoltArrowSimple(group, self.add(position, [0, posY]), name=voltName, color=self.voltageColor, angleDeg=angleDeg,
invertArrows= invertArrows, size=sizeCoil - 20, invertCurvatureDirection=False, extraAngleText=0.0)
if flagCurr:
posText = -( sizeCoil / 2 -10)
self.drawCurrArrowSimple(group, self.add(position, [posText - wireExtraSize,-5]), name=currName, color=self.currentColor,
angleDeg=angleDeg, invertArrows=invertArrows,invertTextSide=False, size=10)
# core
if coreType.lower() == 'iron':
inkDraw.line.relCoords(elem, [[40, 0]], self.add(position, [-20,8.5]))
inkDraw.line.relCoords(elem, [[40, 0]], self.add(position, [-20,11.5]))
if coreType.lower() == 'ferrite':
myDash = inkDraw.lineStyle.createDashedLinePattern(dashLength=3.0, gapLength=3.0)
myDashedStyle = inkDraw.lineStyle.set(lineWidth=0.8, strokeDashArray=myDash)
inkDraw.line.relCoords(elem, [[40, 0]], self.add(position, [-20,8.5]), lineStyle=myDashedStyle)
inkDraw.line.relCoords(elem, [[40, 0]], self.add(position, [-20,11.5]), lineStyle=myDashedStyle)
if angleDeg != 0:
self.rotateElement(group, position, angleDeg)
return group
# ---------------------------------------------
def drawTransformer(self, parent, position=[0, 0], angleDeg=0, transformerLabel='',
coreType='air', stepType='one2one', flagPolaritySymbol=False, nCoils=[1, 1], invertPolarity=[False, False],
flagTapped=[False, False], flagVolt=[True, True], voltName=['v', 'v'], flagCurr=[True, True], currName=['i', 'i'],
invertArrows=[False, False], convention=['passive', 'passive'], wireExtraSize=0):
""" draws a transformer
parent: parent object
position: position [x,y]
label: label of the object (it can be repeated)
angleDeg: rotation angle in degrees counter-clockwise (default 0)
coreType='air', 'iron', 'ferrite'
stepType='up', 'down', 'one2one'
flagPolaritySymbol: if True, add the dots to indicate the phase of the primary and secondary
nCoils: (list) integer number of coils of the primary and secondary
invertPolarity: (list) inverts phase symbol of the primary and secondary
flagTapped: (list) add taps to the windings
flagVolt: (list) indicates whether the voltage arrow must be drawn (default: true)
voltName: (list) voltage drop name (default: v)
flagCurr: (list) indicates whether the current arrow must be drawn (default: true)
currName: (list) current drop name (default: i)
invertArrows: (list) invert V/I arrow directions (default: False)
convention: (list) passive/active sign convention. available types: 'passive' (default) , 'active'
wireExtraSize: additional length added to the terminals. If negative, the length will be reduced. default: 0)
"""
group = self.createGroup(parent)
elem = self.createGroup(group)
# ----------------------
# primary
# ----------------------
extraSize = 0
if nCoils[0] == 1:
sizeCoil = 50
posCoil = [position]
turnRadius = 3.5
if nCoils[0] == 2:
sizeCoil = 25
posCoil = [self.add(position, [0, -17.5]), self.add(position, [0, 17.5])]
turnRadius = 3.0
# step up/down only if primary/secondary have 1 coil each
if nCoils[0] == 1 and nCoils[1] == 1:
if stepType == 'up':
extraSize = 5
sizeCoil -= 10
for pos in posCoil:
# polarity indication
polarity=0
if flagPolaritySymbol and invertPolarity[0]:
polarity=1
if flagPolaritySymbol and not invertPolarity[0]:
polarity=-1
#draw winding
wind = self.drawTransfWinding(elem, position=self.add(pos, [-10, 0]), size=sizeCoil, flagTapped=flagTapped[0],
wireExtraSize=wireExtraSize + extraSize, forceEven=True, turnRadius=turnRadius, polarityIndication= polarity,
flagAddSideTerminals=True)
self.rotateElement(wind, self.add(pos, [-10, 0]), 90)
if flagVolt[0]:
distX=-30
if convention[0] == 'passive':
self.drawVoltArrowSimple(group, self.add(pos, [distX, 0]), name=voltName[0], color=self.voltageColor, angleDeg=angleDeg + 90,
invertArrows=invertArrows[0], size=sizeCoil - 10, invertCurvatureDirection=True, extraAngleText=0.0)
if convention[0] == 'active':
self.drawVoltArrowSimple(group, self.add(pos, [distX, 0]), name=voltName[0], color=self.voltageColor, angleDeg=angleDeg + 90,
invertArrows=not invertArrows[0], size=sizeCoil - 10, invertCurvatureDirection=True, extraAngleText=0.0)
if flagCurr[0]:
posText = -( sizeCoil / 2 -5)
invertTextSide=True
arrowDir = invertArrows[0]
if flagPolaritySymbol and invertPolarity[0]:
posText = -( sizeCoil / 2 -5)
invertTextSide=True
arrowDir = invertArrows[0]
if flagPolaritySymbol and not invertPolarity[0]:
posText = ( sizeCoil / 2 -5)
invertTextSide=False
arrowDir = not invertArrows[0]
self.drawCurrArrowSimple(group, self.add(pos, [-20, posText - wireExtraSize]), name=currName[0], color=self.currentColor,
angleDeg=angleDeg, invertArrows=arrowDir,invertTextSide=invertTextSide, size=10)
# ----------------------
# secondary
# ----------------------
extraSize = 0
if nCoils[1] == 1:
sizeCoil = 50
posCoil = [position]
turnRadius = 3.5
offsetCurrText = 0
if nCoils[1] == 2:
sizeCoil = 25
posCoil = [self.add(position, [0, -17.5]), self.add(position, [0, 17.5])]
turnRadius = 3.0
offsetCurrText = -3
# step up/down only if primary/secondary have 1 coil each
if nCoils[0] == 1 and nCoils[1] == 1:
if stepType == 'down':
extraSize = 5
sizeCoil -= 10
for pos in posCoil:
# polarity indication
polarity=0
if flagPolaritySymbol and invertPolarity[1]:
polarity=-1
if flagPolaritySymbol and not invertPolarity[1]:
polarity=1
wind = self.drawTransfWinding(elem, position=self.add(pos, [10, 0]), size=sizeCoil, flagTapped=flagTapped[1],
wireExtraSize=wireExtraSize + extraSize, forceEven=True, turnRadius=turnRadius, polarityIndication=polarity,
flagAddSideTerminals=True)
self.rotateElement(wind, self.add(pos, [10, 0]), -90)
if flagVolt[1]:
if convention[1] == 'passive':
self.drawVoltArrowSimple(group, self.add(pos, [30, 0]), name=voltName[1], color=self.voltageColor, angleDeg=angleDeg + 90,
invertArrows=not invertArrows[1], size=sizeCoil - 10, invertCurvatureDirection=False, extraAngleText=0.0)
if convention[1] == 'active':
self.drawVoltArrowSimple(group, self.add(pos, [30, 0]), name=voltName[1], color=self.voltageColor, angleDeg=angleDeg + 90,
invertArrows= invertArrows[1], size=sizeCoil - 10, invertCurvatureDirection=False, extraAngleText=0.0)
if flagCurr[1]:
posText = -( sizeCoil / 2 -5)
invertTextSide=True
arrowDir = invertArrows[1]
if flagPolaritySymbol and invertPolarity[0]:
posText = -( sizeCoil / 2 -5)
invertTextSide=True
arrowDir = invertArrows[1]
if flagPolaritySymbol and not invertPolarity[1]:
posText = ( sizeCoil / 2 -5)
invertTextSide=False
arrowDir = not invertArrows[1]
self.drawCurrArrowSimple(group, self.add(pos, [20, posText - wireExtraSize]), name=currName[1], color=self.currentColor,
angleDeg=angleDeg, invertArrows=arrowDir,invertTextSide=invertTextSide, size=10)
# core
if coreType.lower() == 'iron':
inkDraw.line.relCoords(elem, [[0, 50]], self.add(position, [1.5, -25]))
inkDraw.line.relCoords(elem, [[0, 50]], self.add(position, [-1.5, -25]))
if coreType.lower() == 'ferrite':
myDash = inkDraw.lineStyle.createDashedLinePattern(dashLength=3.0, gapLength=3.0)
myDashedStyle = inkDraw.lineStyle.set(lineWidth=0.8, strokeDashArray=myDash)
inkDraw.line.relCoords(elem, [[0, 50]], self.add(position, [1.5, -25]), lineStyle=myDashedStyle)
inkDraw.line.relCoords(elem, [[0, 50]], self.add(position, [-1.5, -25]), lineStyle=myDashedStyle)
if angleDeg != 0:
self.rotateElement(group, position, angleDeg)
return group
|
[
"inkscapeMadeEasy.inkscapeMadeEasy_Draw.line.relCoords",
"inkscapeMadeEasy.inkscapeMadeEasy_Draw.lineStyle.createDashedLinePattern",
"inkscapeMadeEasy.inkscapeMadeEasy_Draw.color.defined",
"numpy.array",
"inkscapeMadeEasy.inkscapeMadeEasy_Draw.lineStyle.set"
] |
[((475, 490), 'numpy.array', 'np.array', (['delta'], {}), '(delta)\n', (483, 490), True, 'import numpy as np\n'), ((2803, 2871), 'inkscapeMadeEasy.inkscapeMadeEasy_Draw.line.relCoords', 'inkDraw.line.relCoords', (['elem', '[[0, -20]]', 'position'], {'lineStyle': 'myLine'}), '(elem, [[0, -20]], position, lineStyle=myLine)\n', (2825, 2871), True, 'import inkscapeMadeEasy.inkscapeMadeEasy_Draw as inkDraw\n'), ((4618, 4668), 'inkscapeMadeEasy.inkscapeMadeEasy_Draw.line.relCoords', 'inkDraw.line.relCoords', (['elem', '[[0, -10]]', 'position'], {}), '(elem, [[0, -10]], position)\n', (4640, 4668), True, 'import inkscapeMadeEasy.inkscapeMadeEasy_Draw as inkDraw\n'), ((6045, 6117), 'inkscapeMadeEasy.inkscapeMadeEasy_Draw.lineStyle.createDashedLinePattern', 'inkDraw.lineStyle.createDashedLinePattern', ([], {'dashLength': '(3.0)', 'gapLength': '(3.0)'}), '(dashLength=3.0, gapLength=3.0)\n', (6086, 6117), True, 'import inkscapeMadeEasy.inkscapeMadeEasy_Draw as inkDraw\n'), ((6146, 6206), 'inkscapeMadeEasy.inkscapeMadeEasy_Draw.lineStyle.set', 'inkDraw.lineStyle.set', ([], {'lineWidth': '(0.8)', 'strokeDashArray': 'myDash'}), '(lineWidth=0.8, strokeDashArray=myDash)\n', (6167, 6206), True, 'import inkscapeMadeEasy.inkscapeMadeEasy_Draw as inkDraw\n'), ((14343, 14415), 'inkscapeMadeEasy.inkscapeMadeEasy_Draw.lineStyle.createDashedLinePattern', 'inkDraw.lineStyle.createDashedLinePattern', ([], {'dashLength': '(3.0)', 'gapLength': '(3.0)'}), '(dashLength=3.0, gapLength=3.0)\n', (14384, 14415), True, 'import inkscapeMadeEasy.inkscapeMadeEasy_Draw as inkDraw\n'), ((14444, 14504), 'inkscapeMadeEasy.inkscapeMadeEasy_Draw.lineStyle.set', 'inkDraw.lineStyle.set', ([], {'lineWidth': '(0.8)', 'strokeDashArray': 'myDash'}), '(lineWidth=0.8, strokeDashArray=myDash)\n', (14465, 14504), True, 'import inkscapeMadeEasy.inkscapeMadeEasy_Draw as inkDraw\n'), ((2717, 2747), 'inkscapeMadeEasy.inkscapeMadeEasy_Draw.color.defined', 'inkDraw.color.defined', (['"""black"""'], {}), "('black')\n", (2738, 2747), True, 'import inkscapeMadeEasy.inkscapeMadeEasy_Draw as inkDraw\n'), ((2759, 2789), 'inkscapeMadeEasy.inkscapeMadeEasy_Draw.color.defined', 'inkDraw.color.defined', (['"""black"""'], {}), "('black')\n", (2780, 2789), True, 'import inkscapeMadeEasy.inkscapeMadeEasy_Draw as inkDraw\n')]
|
# -*- coding: utf-8 -*-
"""
SCRIPT TO TEST DG CLASSIFICATION
@date: 2018.04.10
@author: <NAME> (<EMAIL>)
"""
# IMPORTS
from time import time
from sys import stdout
import h5py
import numpy as np
#from matplotlib import pyplot as plt
import math
from transforms3d import euler
from sklearn.model_selection import train_test_split
from sklearn import preprocessing, decomposition
#from sklearn.metrics import confusion_matrix
# ENSURE REPRODUCIBILITY ######################################################
import os
import random
import tensorflow as tf
from keras import backend as K
def reset_random():
os.environ['PYTHONHASHSEED'] = '0'
np.random.seed(1337)
random.seed(12345)
session_conf = tf.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1)
tf.set_random_seed(123)
sess = tf.Session(graph=tf.get_default_graph(), config=session_conf)
K.set_session(sess)
reset_random()
###############################################################################
from keras.models import Model
from keras.layers import Input, Dense, GaussianNoise, BatchNormalization, Dropout
from keras import utils, regularizers
from keras.optimizers import SGD, Adam
from keras.callbacks import EarlyStopping
#%% LOAD SOURCE DATA
dir_dataset_dg = '/home/simao/Drive/PhD/0-Datasets/UC2017/DG10/DG10_dataset_euler.h5'
# Open H5 files to read
f = h5py.File(dir_dataset_dg,'r')
# Load static gesture data set
X = f['Predictors']
T = f['Target']
U = f['User']
X = np.asarray(X).transpose([2,0,1])
T = np.asarray(T).transpose()[:,0]
U = np.asarray(U).transpose()[:,0]
# Dataset statistics
for u in np.unique(U):
print('User %i: %i samples out of total %i (%.1f%%)' % (u, sum(U==u), len(U), sum(U==u)/len(U)*100))
#%% PREPROCESSING (SET INDEPENDENT)
def Tinv(T):
r = T[:3,:3]
rinv = r.transpose()
p = T[:3,3]
T2 = np.eye(4)
T2[:3,:3] = rinv
T2[:3,3] = np.matmul(rinv,-p)
return T2
# Backup data:
Xb = X.copy()
print('Preprocessing data : ')
# For EULER dataset only:
X[:,:,3:6] = X[:,:,3:6] / 180 * math.pi
# Angle lifiting function
def angle_lift(y, n):
for i in range(1, n):
if np.isclose(y[i] - y[i-1], 2*np.pi, atol=0.1):
# low to high
y[i] -= 2*np.pi
elif np.isclose(y[i] - y[i-1], -2*np.pi, atol=0.1):
y[i] += 2*np.pi
# for each sample
for i,sample in enumerate(X):
### LIFT EULER ANGLES
n = np.argwhere(np.all(sample==0,axis=1))
n = n[0] if len(n)>0 else sample.shape[0]
angle_lift(sample[:,3], int(n))
angle_lift(sample[:,4], int(n))
angle_lift(sample[:,5], int(n))
###############################################################
### Establish the base coordinate frame for the gesture sample
# We can either use the first of the last frame of the gesture as the
# transformation basis. For the following two lines, comment out the one
# you don't want.
zeroind = 0 #FIRST
# zeroind = np.append(np.argwhere(np.all(sample==0,axis=1)), sample.shape[0])[0] - 1 #LAST
f0 = sample[zeroind].copy() # frame zero
### YAW CORRECTION ONLY (ORIGINAL SOLUTION)
# Create basis homogeneous transformation matrix
# t0 = np.eye(4)
# t0[:3,:3] = euler.euler2mat(f0[3],0,0,'rzyx')
# t0[:3,3] = f0[:3]
r0p = np.matrix(euler.euler2mat(f0[3],0,0,'rzyx')) ** -1
p0 = np.matrix(f0[:3].reshape((-1,1)))
# for each gesture frame
for j,frame in enumerate(sample):
if np.all(frame==0) : break
# t1 = np.eye(4)
# t1[:3,:3] = euler.euler2mat(frame[3],frame[4],frame[5],axes='rzyx')
# t1[:3,-1] = frame[:3]
# t2 = np.dot(Tinv(t0),t1)
# framep = frame
# framep[:3] = t2[:3,-1]
# framep[3:6] = euler.mat2euler(t2[:3,:3],axes='rzyx')
# X[i,j] = framep
p1 = np.matrix(frame[:3].reshape((-1,1)))
p2 = r0p * (p1 - p0)
frame[:3] = np.squeeze(p2)
frame[3] = frame[3] - f0[3]
### QUATERNION IMPLEMENTATION
# q0 = f0[3:7] # quaternion components
# # Create basis transformation matrix
# t0 = np.eye(4)
# t0[:3,:3] = quaternions.quat2mat(q0)
# t0[:3,-1] = f0[:3]
# r0 = quaternions.quat2mat(q0)
# # for each gesture frame
# for j,frame in enumerate(sample):
# if np.all(frame==0) : break
# t1 = np.eye(4)
# t1[:3,:3] = quaternions.quat2mat(frame[3:7])
# t1[:3,-1] = frame[:3]
# t2 = np.matmul(Tinv(t1), t0)
# framep = frame
# framep[:3] = t2[:3,-1]
# framep[3:7] = quaternions.mat2quat(t2[:3,:3])
# X[i,j] = framep
stdout.write('\r% 5.1f%%' % ((i+1)/(X.shape[0])*100))
stdout.write('\n')
#%% SET SPLITTTING
#ind_all = np.asarray(range(X.shape[0]))
#
## Data splitting 1 : all -> train and rest
#sss = StratifiedShuffleSplit(n_splits=1, test_size=0.4, random_state=42).split(ind_all,T)
#ind_train,ind_test = next(sss)
#
## Data splitting 2 : test -> validation and test
#sss = StratifiedShuffleSplit(n_splits=1, test_size=0.5, random_state=42).split(ind_test,T[ind_test])
#i1, i2 = next(sss)
#ind_val = ind_test[i1]
#ind_test = ind_test[i2]
#
#X_train = X[ind_train,:,:]
#X_val = X[ind_val,:,:]
#X_test = X[ind_test,:,:]
ind_all = np.arange(X.shape[0])
ind_train, ind_test = train_test_split(ind_all,
shuffle=True,
stratify=T[ind_all],
test_size=0.3,
random_state=42)
ind_val, ind_test = train_test_split(ind_test,
shuffle=True,
stratify=T[ind_test],
test_size=0.5,
random_state=41)
## Set user 8 aside
ind_train_u8 = ind_train[U[ind_train]==8] # indexes of samples of U8
ind_train = ind_train[U[ind_train]!=8] # remove U8 samples
# number of samples to replace in each set
n_train = ind_train_u8.shape[0]
n_val = n_train // 2
n_test = n_train - n_val
ind_val = np.concatenate((ind_val, ind_train_u8[:n_val])) # append u8 samples
ind_test = np.concatenate((ind_test, ind_train_u8[-n_test:]))
ind_train = np.concatenate((ind_train, ind_val[:n_val], ind_test[:n_test]))
ind_val = ind_val[n_val:] # remove first n_val samples
ind_test = ind_test[n_test:] # remove first n_test samples
X_train = X[ind_train,:]
X_val = X[ind_val,:]
X_test = X[ind_test,:]
t_train = T[ind_train]
t_val = T[ind_val]
t_test = T[ind_test]
u_train = U[ind_train]
u_val = U[ind_val]
u_test = U[ind_test]
#%% PRESCALING FEATURE EXTRACTION
# Variable scaling:
tmpX = X_train.reshape((-1,X_train.shape[2]))
tmpX = tmpX[~np.all(tmpX==0,1),] # DO NOT USE PADDING TO STANDARDIZE
scaler = preprocessing.StandardScaler().fit(tmpX)
def standardize(X,scaler):
old_shape = X.shape
X = X.reshape((-1,X.shape[2]))
padIdx = np.all(X==0,axis=1)
X = scaler.transform(X)
X[padIdx] = 0
X = X.reshape(old_shape)
return X
X_train = standardize(X_train,scaler)
X_val = standardize(X_val,scaler)
X_test = standardize(X_test,scaler)
# One hot-encoding
def tsonehotencoding(t,x,maxclasses):
T = np.zeros((x.shape[0],x.shape[1],maxclasses))
# function to turn sample indexes
for i,sample in enumerate(x):
T[i,:,t[i]-1] = 1
return T
#T_train = utils.to_categorical(T[ind_train]-1,10)
#T_val = utils.to_categorical(T[ind_val]-1,10)
#T_test = utils.to_categorical(T[ind_test]-1,10)
#%% EXTRACT FEATURES
# FEATURE SET 3 (PCA TS)
def tspvfeatures(X):
Xf = np.zeros(X.shape)
# For each sample
for i,sample in enumerate(X):
# Find first index of padding:
padind = np.append(np.argwhere(np.all(sample==0,axis=1)), sample.shape[0])[0]
# For each timestep
for j in range(padind):
pca = decomposition.PCA().fit(sample[:j+1])
Xf[i][j] = pca.components_[0]
return Xf
F_train = tspvfeatures(X_train)
F_val = tspvfeatures(X_val)
F_test = tspvfeatures(X_test)
# Encode targets
T_train = tsonehotencoding(T[ind_train], X_train, 10)
T_val = tsonehotencoding(T[ind_val], X_val, 10)
T_test = tsonehotencoding(T[ind_test], X_test, 10)
def tsunroll(X,T):
x = []
t = []
for i,sample in enumerate(X):
ind_include = ~np.all(sample==0,axis=1)
sample = sample[ind_include]
x.append(sample)
t.append(T[i][ind_include])
return np.concatenate(x), np.concatenate(t)
def tsunroll_testsubset(X,T):
#function to unroll the test set. we are only interested at a limited
#subset of timesteps (25, 50, 75 and 100% of gesture completion)
x = []
t = []
# For each sample
for i,sample in enumerate(X):
ind_include = ~np.all(sample==0,axis=1)
sample = sample[ind_include]
ind_subset = (sample.shape[0] - 1) * np.asarray([0.25,0.5,0.75,1.0])
ind_subset = np.ceil(ind_subset).astype(np.int)
x.append(sample[ind_subset])
t.append(T[i][ind_subset])
return np.concatenate(x), np.concatenate(t)
# Feature scaling
tmpX = F_train.reshape((-1,F_train.shape[2]))
tmpX = tmpX[~np.all(tmpX==0,1),] # DO NOT USE PADDING TO STANDARDIZE
scaler_features = preprocessing.StandardScaler().fit(tmpX)
F_train = standardize(F_train, scaler_features)
F_val = standardize(F_val, scaler_features)
F_test = standardize(F_test, scaler_features)
### Change data structure for training and testing ###
# Testing subset
FT_train,TT_train = tsunroll_testsubset(F_train,T_train)
FT_val,TT_val = tsunroll_testsubset(F_val,T_val)
FT_test,TT_test = tsunroll_testsubset(F_test[u_test!=8],T_test[u_test!=8])
FT_test8,TT_test8 = tsunroll_testsubset(F_test[u_test==8],T_test[u_test==8])
# Training
F_train,T_train = tsunroll(F_train,T_train)
F_val,T_val = tsunroll(F_val,T_val)
F_test,T_test = tsunroll(F_test,T_test)
###############################################################################
#%% DEFINE NETWORK
# CONTROL RANDOM GENERATION
reset_random()
new_seed = int(time())
#
inputs = Input(shape=(F_train.shape[1],))
x = Dense(512, activation='tanh')(inputs)
x = GaussianNoise(0.1)(x)
x = BatchNormalization()(x)
x = Dropout(0.5)(x)
x = Dense(256, activation='tanh')(x)
x = GaussianNoise(0.05)(x)
x = BatchNormalization()(x)
outputs = Dense(T_train.shape[1], activation='softmax')(x)
net = Model(inputs, outputs, name='DG_FFNN')
#opt = SGD(lr=0.01, decay=1e-7)
opt = Adam(0.0001, decay=1e-6)
net.compile(optimizer=opt,
loss='categorical_crossentropy',
metrics=['acc'])
# Show network summary:
net.summary()
# Train and time:
timestart = time()
history = net.fit(x=F_train,y=T_train,
validation_data=(F_val,T_val),
batch_size=256,
epochs=1000,
callbacks=[EarlyStopping('val_loss',patience=8)],
verbose=1)
print('Training time: %.1f seconds.' % (time() - timestart))
# Evaluate and score
timestart = time()
acc_train = []
acc_train.append(net.evaluate(FT_train[0::4],TT_train[0::4])[1] * 100)
acc_train.append(net.evaluate(FT_train[1::4],TT_train[1::4])[1] * 100)
acc_train.append(net.evaluate(FT_train[2::4],TT_train[2::4])[1] * 100)
acc_train.append(net.evaluate(FT_train[3::4],TT_train[3::4])[1] * 100)
acc_val = []
acc_val.append(net.evaluate(FT_val[0::4],TT_val[0::4])[1] * 100)
acc_val.append(net.evaluate(FT_val[1::4],TT_val[1::4])[1] * 100)
acc_val.append(net.evaluate(FT_val[2::4],TT_val[2::4])[1] * 100)
acc_val.append(net.evaluate(FT_val[3::4],TT_val[3::4])[1] * 100)
acc_test = []
acc_test.append(net.evaluate(FT_test[0::4],TT_test[0::4])[1] * 100)
acc_test.append(net.evaluate(FT_test[1::4],TT_test[1::4])[1] * 100)
acc_test.append(net.evaluate(FT_test[2::4],TT_test[2::4])[1] * 100)
acc_test.append(net.evaluate(FT_test[3::4],TT_test[3::4])[1] * 100)
acc_test8 = []
acc_test8.append(net.evaluate(FT_test8[0::4],TT_test8[0::4])[1] * 100)
acc_test8.append(net.evaluate(FT_test8[1::4],TT_test8[1::4])[1] * 100)
acc_test8.append(net.evaluate(FT_test8[2::4],TT_test8[2::4])[1] * 100)
acc_test8.append(net.evaluate(FT_test8[3::4],TT_test8[3::4])[1] * 100)
print('Testing time: %.1f seconds.' % (time() - timestart))
print('TRAIN: %.1f | %.1f | %.1f | %.1f' % (acc_train[0],acc_train[1],acc_train[2],acc_train[3]))
print(' VAL: %.1f | %.1f | %.1f | %.1f' % (acc_val[0],acc_val[1],acc_val[2],acc_val[3]))
print(' TEST: %.1f | %.1f | %.1f | %.1f' % (acc_test[0],acc_test[1],acc_test[2],acc_test[3]))
print('TEST8: %.1f | %.1f | %.1f | %.1f' % (acc_test8[0],acc_test8[1],acc_test8[2],acc_test8[3]))
print('Seed: %i' % new_seed)
#%% PLOT F_TEST
from matplotlib import pyplot as plt
from sklearn.manifold import TSNE
plt.rc('font', family='serif')
plt.rc('xtick', labelsize='x-small')
plt.rc('ytick', labelsize='x-small')
plt.rc('text', usetex=True)
plt.rc('legend', edgecolor=(0,0,0),fancybox=False)
plt.rc('lines', markeredgewidth=0.5,linewidth=0.5)
x = decomposition.PCA(n_components=2).fit(FT_train).transform(FT_train)
#x = TSNE(n_components=2, early_exaggeration=8,init='pca').fit_transform(F_test)
t = np.argmax(TT_train,axis=1)
k = ['$J_{0.25}$', '$J_{0.50}$', '$J_{0.75}$', '$J_{1.00}$']
cmap = plt.get_cmap('tab10',10)
f = plt.figure(figsize=(7.12,1.8))
for i in range(4):
if i==0:
ax = plt.subplot(1,4,i+1)
plt.ylabel('PC2')
plt.xlabel('PC1')
else:
ax = plt.subplot(1,4,i+1,sharex=ax,sharey=ax)
ax.set_yticklabels=[]
xi = x[i::4]
ti = t[i::4]
for j in range(10):
xij = xi[ti==j]
plt.scatter(xij[:,0],xij[:,1],s=12,c=cmap.colors[j],edgecolors='k',linewidths=0.5,alpha=0.8)
plt.text(0.98,0.98,k[i], horizontalalignment='right',verticalalignment='top', transform=ax.transAxes)
lg_labels = np.unique(ti+1).tolist()
lg = ax.legend(lg_labels,markerfirst=True,ncol=11,handletextpad=0.2,columnspacing=0.3,borderpad=.1,
bbox_to_anchor=(0.7,-0.1),loc='upper right')
lg.get_frame().set_linewidth(0.5)
f.tight_layout(pad=0.0)
f.savefig('test.pdf',bbox_inches='tight',pad_inches=0.0,dpi=300)
f.savefig('test.png',bbox_inches='tight',pad_inches=0.0,dpi=300)
|
[
"sys.stdout.write",
"numpy.random.seed",
"sklearn.preprocessing.StandardScaler",
"numpy.argmax",
"sklearn.model_selection.train_test_split",
"keras.models.Model",
"tensorflow.ConfigProto",
"matplotlib.pyplot.figure",
"numpy.isclose",
"numpy.arange",
"keras.layers.Input",
"tensorflow.get_default_graph",
"numpy.unique",
"tensorflow.set_random_seed",
"random.seed",
"matplotlib.pyplot.rc",
"h5py.File",
"matplotlib.pyplot.get_cmap",
"numpy.ceil",
"keras.layers.Dropout",
"numpy.asarray",
"keras.backend.set_session",
"keras.optimizers.Adam",
"matplotlib.pyplot.text",
"numpy.squeeze",
"matplotlib.pyplot.ylabel",
"numpy.concatenate",
"numpy.all",
"keras.layers.BatchNormalization",
"matplotlib.pyplot.subplot",
"matplotlib.pyplot.scatter",
"numpy.zeros",
"transforms3d.euler.euler2mat",
"time.time",
"keras.layers.Dense",
"keras.callbacks.EarlyStopping",
"sklearn.decomposition.PCA",
"numpy.matmul",
"numpy.eye",
"matplotlib.pyplot.xlabel",
"keras.layers.GaussianNoise"
] |
[((1394, 1424), 'h5py.File', 'h5py.File', (['dir_dataset_dg', '"""r"""'], {}), "(dir_dataset_dg, 'r')\n", (1403, 1424), False, 'import h5py\n'), ((1645, 1657), 'numpy.unique', 'np.unique', (['U'], {}), '(U)\n', (1654, 1657), True, 'import numpy as np\n'), ((4708, 4726), 'sys.stdout.write', 'stdout.write', (['"""\n"""'], {}), "('\\n')\n", (4720, 4726), False, 'from sys import stdout\n'), ((5284, 5305), 'numpy.arange', 'np.arange', (['X.shape[0]'], {}), '(X.shape[0])\n', (5293, 5305), True, 'import numpy as np\n'), ((5329, 5425), 'sklearn.model_selection.train_test_split', 'train_test_split', (['ind_all'], {'shuffle': '(True)', 'stratify': 'T[ind_all]', 'test_size': '(0.3)', 'random_state': '(42)'}), '(ind_all, shuffle=True, stratify=T[ind_all], test_size=0.3,\n random_state=42)\n', (5345, 5425), False, 'from sklearn.model_selection import train_test_split\n'), ((5598, 5697), 'sklearn.model_selection.train_test_split', 'train_test_split', (['ind_test'], {'shuffle': '(True)', 'stratify': 'T[ind_test]', 'test_size': '(0.5)', 'random_state': '(41)'}), '(ind_test, shuffle=True, stratify=T[ind_test], test_size=\n 0.5, random_state=41)\n', (5614, 5697), False, 'from sklearn.model_selection import train_test_split\n'), ((6124, 6171), 'numpy.concatenate', 'np.concatenate', (['(ind_val, ind_train_u8[:n_val])'], {}), '((ind_val, ind_train_u8[:n_val]))\n', (6138, 6171), True, 'import numpy as np\n'), ((6203, 6253), 'numpy.concatenate', 'np.concatenate', (['(ind_test, ind_train_u8[-n_test:])'], {}), '((ind_test, ind_train_u8[-n_test:]))\n', (6217, 6253), True, 'import numpy as np\n'), ((6266, 6329), 'numpy.concatenate', 'np.concatenate', (['(ind_train, ind_val[:n_val], ind_test[:n_test])'], {}), '((ind_train, ind_val[:n_val], ind_test[:n_test]))\n', (6280, 6329), True, 'import numpy as np\n'), ((10134, 10166), 'keras.layers.Input', 'Input', ([], {'shape': '(F_train.shape[1],)'}), '(shape=(F_train.shape[1],))\n', (10139, 10166), False, 'from keras.layers import Input, Dense, GaussianNoise, BatchNormalization, Dropout\n'), ((10442, 10480), 'keras.models.Model', 'Model', (['inputs', 'outputs'], {'name': '"""DG_FFNN"""'}), "(inputs, outputs, name='DG_FFNN')\n", (10447, 10480), False, 'from keras.models import Model\n'), ((10520, 10545), 'keras.optimizers.Adam', 'Adam', (['(0.0001)'], {'decay': '(1e-06)'}), '(0.0001, decay=1e-06)\n', (10524, 10545), False, 'from keras.optimizers import SGD, Adam\n'), ((10717, 10723), 'time.time', 'time', ([], {}), '()\n', (10721, 10723), False, 'from time import time\n'), ((11069, 11075), 'time.time', 'time', ([], {}), '()\n', (11073, 11075), False, 'from time import time\n'), ((12796, 12826), 'matplotlib.pyplot.rc', 'plt.rc', (['"""font"""'], {'family': '"""serif"""'}), "('font', family='serif')\n", (12802, 12826), True, 'from matplotlib import pyplot as plt\n'), ((12827, 12863), 'matplotlib.pyplot.rc', 'plt.rc', (['"""xtick"""'], {'labelsize': '"""x-small"""'}), "('xtick', labelsize='x-small')\n", (12833, 12863), True, 'from matplotlib import pyplot as plt\n'), ((12864, 12900), 'matplotlib.pyplot.rc', 'plt.rc', (['"""ytick"""'], {'labelsize': '"""x-small"""'}), "('ytick', labelsize='x-small')\n", (12870, 12900), True, 'from matplotlib import pyplot as plt\n'), ((12901, 12928), 'matplotlib.pyplot.rc', 'plt.rc', (['"""text"""'], {'usetex': '(True)'}), "('text', usetex=True)\n", (12907, 12928), True, 'from matplotlib import pyplot as plt\n'), ((12929, 12982), 'matplotlib.pyplot.rc', 'plt.rc', (['"""legend"""'], {'edgecolor': '(0, 0, 0)', 'fancybox': '(False)'}), "('legend', edgecolor=(0, 0, 0), fancybox=False)\n", (12935, 12982), True, 'from matplotlib import pyplot as plt\n'), ((12980, 13031), 'matplotlib.pyplot.rc', 'plt.rc', (['"""lines"""'], {'markeredgewidth': '(0.5)', 'linewidth': '(0.5)'}), "('lines', markeredgewidth=0.5, linewidth=0.5)\n", (12986, 13031), True, 'from matplotlib import pyplot as plt\n'), ((13191, 13218), 'numpy.argmax', 'np.argmax', (['TT_train'], {'axis': '(1)'}), '(TT_train, axis=1)\n', (13200, 13218), True, 'import numpy as np\n'), ((13287, 13312), 'matplotlib.pyplot.get_cmap', 'plt.get_cmap', (['"""tab10"""', '(10)'], {}), "('tab10', 10)\n", (13299, 13312), True, 'from matplotlib import pyplot as plt\n'), ((13317, 13348), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(7.12, 1.8)'}), '(figsize=(7.12, 1.8))\n', (13327, 13348), True, 'from matplotlib import pyplot as plt\n'), ((656, 676), 'numpy.random.seed', 'np.random.seed', (['(1337)'], {}), '(1337)\n', (670, 676), True, 'import numpy as np\n'), ((681, 699), 'random.seed', 'random.seed', (['(12345)'], {}), '(12345)\n', (692, 699), False, 'import random\n'), ((724, 802), 'tensorflow.ConfigProto', 'tf.ConfigProto', ([], {'intra_op_parallelism_threads': '(1)', 'inter_op_parallelism_threads': '(1)'}), '(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1)\n', (738, 802), True, 'import tensorflow as tf\n'), ((807, 830), 'tensorflow.set_random_seed', 'tf.set_random_seed', (['(123)'], {}), '(123)\n', (825, 830), True, 'import tensorflow as tf\n'), ((908, 927), 'keras.backend.set_session', 'K.set_session', (['sess'], {}), '(sess)\n', (921, 927), True, 'from keras import backend as K\n'), ((1882, 1891), 'numpy.eye', 'np.eye', (['(4)'], {}), '(4)\n', (1888, 1891), True, 'import numpy as np\n'), ((1928, 1947), 'numpy.matmul', 'np.matmul', (['rinv', '(-p)'], {}), '(rinv, -p)\n', (1937, 1947), True, 'import numpy as np\n'), ((4654, 4711), 'sys.stdout.write', 'stdout.write', (["('\\r% 5.1f%%' % ((i + 1) / X.shape[0] * 100))"], {}), "('\\r% 5.1f%%' % ((i + 1) / X.shape[0] * 100))\n", (4666, 4711), False, 'from sys import stdout\n'), ((6971, 6993), 'numpy.all', 'np.all', (['(X == 0)'], {'axis': '(1)'}), '(X == 0, axis=1)\n', (6977, 6993), True, 'import numpy as np\n'), ((7257, 7303), 'numpy.zeros', 'np.zeros', (['(x.shape[0], x.shape[1], maxclasses)'], {}), '((x.shape[0], x.shape[1], maxclasses))\n', (7265, 7303), True, 'import numpy as np\n'), ((7658, 7675), 'numpy.zeros', 'np.zeros', (['X.shape'], {}), '(X.shape)\n', (7666, 7675), True, 'import numpy as np\n'), ((10113, 10119), 'time.time', 'time', ([], {}), '()\n', (10117, 10119), False, 'from time import time\n'), ((10171, 10200), 'keras.layers.Dense', 'Dense', (['(512)'], {'activation': '"""tanh"""'}), "(512, activation='tanh')\n", (10176, 10200), False, 'from keras.layers import Input, Dense, GaussianNoise, BatchNormalization, Dropout\n'), ((10213, 10231), 'keras.layers.GaussianNoise', 'GaussianNoise', (['(0.1)'], {}), '(0.1)\n', (10226, 10231), False, 'from keras.layers import Input, Dense, GaussianNoise, BatchNormalization, Dropout\n'), ((10239, 10259), 'keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (10257, 10259), False, 'from keras.layers import Input, Dense, GaussianNoise, BatchNormalization, Dropout\n'), ((10267, 10279), 'keras.layers.Dropout', 'Dropout', (['(0.5)'], {}), '(0.5)\n', (10274, 10279), False, 'from keras.layers import Input, Dense, GaussianNoise, BatchNormalization, Dropout\n'), ((10287, 10316), 'keras.layers.Dense', 'Dense', (['(256)'], {'activation': '"""tanh"""'}), "(256, activation='tanh')\n", (10292, 10316), False, 'from keras.layers import Input, Dense, GaussianNoise, BatchNormalization, Dropout\n'), ((10324, 10343), 'keras.layers.GaussianNoise', 'GaussianNoise', (['(0.05)'], {}), '(0.05)\n', (10337, 10343), False, 'from keras.layers import Input, Dense, GaussianNoise, BatchNormalization, Dropout\n'), ((10351, 10371), 'keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (10369, 10371), False, 'from keras.layers import Input, Dense, GaussianNoise, BatchNormalization, Dropout\n'), ((10385, 10430), 'keras.layers.Dense', 'Dense', (['T_train.shape[1]'], {'activation': '"""softmax"""'}), "(T_train.shape[1], activation='softmax')\n", (10390, 10430), False, 'from keras.layers import Input, Dense, GaussianNoise, BatchNormalization, Dropout\n'), ((13758, 13867), 'matplotlib.pyplot.text', 'plt.text', (['(0.98)', '(0.98)', 'k[i]'], {'horizontalalignment': '"""right"""', 'verticalalignment': '"""top"""', 'transform': 'ax.transAxes'}), "(0.98, 0.98, k[i], horizontalalignment='right', verticalalignment=\n 'top', transform=ax.transAxes)\n", (13766, 13867), True, 'from matplotlib import pyplot as plt\n'), ((1511, 1524), 'numpy.asarray', 'np.asarray', (['X'], {}), '(X)\n', (1521, 1524), True, 'import numpy as np\n'), ((2176, 2224), 'numpy.isclose', 'np.isclose', (['(y[i] - y[i - 1])', '(2 * np.pi)'], {'atol': '(0.1)'}), '(y[i] - y[i - 1], 2 * np.pi, atol=0.1)\n', (2186, 2224), True, 'import numpy as np\n'), ((2464, 2491), 'numpy.all', 'np.all', (['(sample == 0)'], {'axis': '(1)'}), '(sample == 0, axis=1)\n', (2470, 2491), True, 'import numpy as np\n'), ((3518, 3536), 'numpy.all', 'np.all', (['(frame == 0)'], {}), '(frame == 0)\n', (3524, 3536), True, 'import numpy as np\n'), ((3951, 3965), 'numpy.squeeze', 'np.squeeze', (['p2'], {}), '(p2)\n', (3961, 3965), True, 'import numpy as np\n'), ((6830, 6860), 'sklearn.preprocessing.StandardScaler', 'preprocessing.StandardScaler', ([], {}), '()\n', (6858, 6860), False, 'from sklearn import preprocessing, decomposition\n'), ((8531, 8548), 'numpy.concatenate', 'np.concatenate', (['x'], {}), '(x)\n', (8545, 8548), True, 'import numpy as np\n'), ((8550, 8567), 'numpy.concatenate', 'np.concatenate', (['t'], {}), '(t)\n', (8564, 8567), True, 'import numpy as np\n'), ((9122, 9139), 'numpy.concatenate', 'np.concatenate', (['x'], {}), '(x)\n', (9136, 9139), True, 'import numpy as np\n'), ((9141, 9158), 'numpy.concatenate', 'np.concatenate', (['t'], {}), '(t)\n', (9155, 9158), True, 'import numpy as np\n'), ((9311, 9341), 'sklearn.preprocessing.StandardScaler', 'preprocessing.StandardScaler', ([], {}), '()\n', (9339, 9341), False, 'from sklearn import preprocessing, decomposition\n'), ((13394, 13418), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(4)', '(i + 1)'], {}), '(1, 4, i + 1)\n', (13405, 13418), True, 'from matplotlib import pyplot as plt\n'), ((13423, 13440), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""PC2"""'], {}), "('PC2')\n", (13433, 13440), True, 'from matplotlib import pyplot as plt\n'), ((13449, 13466), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""PC1"""'], {}), "('PC1')\n", (13459, 13466), True, 'from matplotlib import pyplot as plt\n'), ((13490, 13536), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(4)', '(i + 1)'], {'sharex': 'ax', 'sharey': 'ax'}), '(1, 4, i + 1, sharex=ax, sharey=ax)\n', (13501, 13536), True, 'from matplotlib import pyplot as plt\n'), ((13656, 13760), 'matplotlib.pyplot.scatter', 'plt.scatter', (['xij[:, 0]', 'xij[:, 1]'], {'s': '(12)', 'c': 'cmap.colors[j]', 'edgecolors': '"""k"""', 'linewidths': '(0.5)', 'alpha': '(0.8)'}), "(xij[:, 0], xij[:, 1], s=12, c=cmap.colors[j], edgecolors='k',\n linewidths=0.5, alpha=0.8)\n", (13667, 13760), True, 'from matplotlib import pyplot as plt\n'), ((13877, 13894), 'numpy.unique', 'np.unique', (['(ti + 1)'], {}), '(ti + 1)\n', (13886, 13894), True, 'import numpy as np\n'), ((859, 881), 'tensorflow.get_default_graph', 'tf.get_default_graph', ([], {}), '()\n', (879, 881), True, 'import tensorflow as tf\n'), ((1548, 1561), 'numpy.asarray', 'np.asarray', (['T'], {}), '(T)\n', (1558, 1561), True, 'import numpy as np\n'), ((1583, 1596), 'numpy.asarray', 'np.asarray', (['U'], {}), '(U)\n', (1593, 1596), True, 'import numpy as np\n'), ((2289, 2338), 'numpy.isclose', 'np.isclose', (['(y[i] - y[i - 1])', '(-2 * np.pi)'], {'atol': '(0.1)'}), '(y[i] - y[i - 1], -2 * np.pi, atol=0.1)\n', (2299, 2338), True, 'import numpy as np\n'), ((3351, 3387), 'transforms3d.euler.euler2mat', 'euler.euler2mat', (['f0[3]', '(0)', '(0)', '"""rzyx"""'], {}), "(f0[3], 0, 0, 'rzyx')\n", (3366, 3387), False, 'from transforms3d import euler\n'), ((6765, 6785), 'numpy.all', 'np.all', (['(tmpX == 0)', '(1)'], {}), '(tmpX == 0, 1)\n', (6771, 6785), True, 'import numpy as np\n'), ((8397, 8424), 'numpy.all', 'np.all', (['(sample == 0)'], {'axis': '(1)'}), '(sample == 0, axis=1)\n', (8403, 8424), True, 'import numpy as np\n'), ((8843, 8870), 'numpy.all', 'np.all', (['(sample == 0)'], {'axis': '(1)'}), '(sample == 0, axis=1)\n', (8849, 8870), True, 'import numpy as np\n'), ((8950, 8984), 'numpy.asarray', 'np.asarray', (['[0.25, 0.5, 0.75, 1.0]'], {}), '([0.25, 0.5, 0.75, 1.0])\n', (8960, 8984), True, 'import numpy as np\n'), ((9237, 9257), 'numpy.all', 'np.all', (['(tmpX == 0)', '(1)'], {}), '(tmpX == 0, 1)\n', (9243, 9257), True, 'import numpy as np\n'), ((10906, 10943), 'keras.callbacks.EarlyStopping', 'EarlyStopping', (['"""val_loss"""'], {'patience': '(8)'}), "('val_loss', patience=8)\n", (10919, 10943), False, 'from keras.callbacks import EarlyStopping\n'), ((11014, 11020), 'time.time', 'time', ([], {}), '()\n', (11018, 11020), False, 'from time import time\n'), ((12273, 12279), 'time.time', 'time', ([], {}), '()\n', (12277, 12279), False, 'from time import time\n'), ((9003, 9022), 'numpy.ceil', 'np.ceil', (['ind_subset'], {}), '(ind_subset)\n', (9010, 9022), True, 'import numpy as np\n'), ((13037, 13070), 'sklearn.decomposition.PCA', 'decomposition.PCA', ([], {'n_components': '(2)'}), '(n_components=2)\n', (13054, 13070), False, 'from sklearn import preprocessing, decomposition\n'), ((7810, 7837), 'numpy.all', 'np.all', (['(sample == 0)'], {'axis': '(1)'}), '(sample == 0, axis=1)\n', (7816, 7837), True, 'import numpy as np\n'), ((7936, 7955), 'sklearn.decomposition.PCA', 'decomposition.PCA', ([], {}), '()\n', (7953, 7955), False, 'from sklearn import preprocessing, decomposition\n')]
|
# -*- coding: utf-8 -*-
"""
Colorization models for deepzipper
Author: <NAME>
"""
import tensorflow as tf
from utils import load_and_preprocess_single
import matplotlib.pyplot as plt
import numpy as np
import random
import time
import os
# LOAD AND PREPROCESS DATA
image_folder = 'train_images'
image_paths = [os.path.join('train_images', image_name) for image_name in os.listdir(image_folder)]
n_paths = len(image_paths)
batch_size = 32
buffer_size = 1000
AUTOTUNE = tf.data.experimental.AUTOTUNE
train_generator = tf.data.Dataset.from_tensor_slices(image_paths[:int(0.8*n_paths)])
train_generator = train_generator.map(load_and_preprocess_single, num_parallel_calls=AUTOTUNE).shuffle(buffer_size)
train_generator = train_generator.batch(batch_size)
train_generator = train_generator.prefetch(buffer_size=AUTOTUNE)
test_generator = tf.data.Dataset.from_tensor_slices(image_paths[int(0.8*n_paths):])
test_generator = test_generator.map(load_and_preprocess_single, num_parallel_calls=AUTOTUNE).shuffle(buffer_size)
test_generator = test_generator.batch(batch_size)
test_generator = test_generator.prefetch(buffer_size=AUTOTUNE)
# DEFINE MODELS
# BASELINE
def ConvNet():
model = Sequential()
model.add(InputLayer(input_shape=(32, 32, 1)))
model.add(Conv2D(64, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(64, (3, 3), activation='relu', padding='same', strides=2))
model.add(Conv2D(128, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(128, (3, 3), activation='relu', padding='same', strides=2))
model.add(Conv2D(256, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(256, (3, 3), activation='relu', padding='same', strides=2))
model.add(Conv2D(512, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(256, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(128, (3, 3), activation='relu', padding='same'))
model.add(UpSampling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu', padding='same'))
model.add(UpSampling2D((2, 2)))
model.add(Conv2D(32, (3, 3), activation='relu', padding='same'))
model.add(UpSampling2D((2, 2)))
model.add(Conv2D(2, (3, 3), activation='tanh', padding='same'))
model.compile(optimizer='adam', loss='mse')
return model
class ConvNet_Rec(tf.keras.Model):
"""
Convolutional Auto-Encoder (Reconstruction):
Encoder: Conv2D
Decoder: Conv2D + Depth2Space (Pixel shuffle)
"""
def __init__(self, input_shape=(32,32,1)):
super(ConvNet_Rec, self).__init__()
self.encoder = tf.keras.Sequential([
tf.keras.layers.InputLayer(input_shape),
tf.keras.layers.Conv2D(filters=32, kernel_size=3, strides=(2, 2), activation='relu'),
tf.keras.layers.Conv2D(filters=64, kernel_size=3, strides=(1, 1), activation='relu'),
tf.keras.layers.Conv2D(filters=128, kernel_size=3, strides=(2, 2), activation='relu'),
tf.keras.layers.Conv2D(filters=256, kernel_size=3, strides=(1, 1), activation='relu'),
tf.keras.layers.Conv2D(filters=512, kernel_size=3, strides=(2, 2), activation='relu')])
encoder_shape = self.encoder.layers[-1].output_shape
self.decoder = tf.keras.Sequential([
tf.keras.layers.InputLayer(input_shape=(encoder_shape[1:])),
tf.keras.layers.Lambda(lambda x : tf.nn.depth_to_space(x, 2)),
tf.keras.layers.Conv2D(filters=256, kernel_size=2, strides=(1, 1), activation='relu', padding='same'),
tf.keras.layers.Lambda(lambda x : tf.nn.depth_to_space(x, 2)),
tf.keras.layers.Conv2D(filters=128, kernel_size=2, strides=(1, 1), activation='relu', padding='same'),
tf.keras.layers.Lambda(lambda x : tf.nn.depth_to_space(x, 2)),
tf.keras.layers.Conv2D(filters=64, kernel_size=2, strides=(1, 1), activation='relu', padding='same'),
tf.keras.layers.Lambda(lambda x : tf.nn.depth_to_space(x, 2)),
tf.keras.layers.Conv2D(filters=32, kernel_size=2, strides=(1, 1), activation='relu', padding='same'),
tf.keras.layers.Lambda(lambda x : tf.nn.depth_to_space(x, 2)),
tf.keras.layers.Conv2D(filters=1, kernel_size=2, strides=(1, 1), activation='relu', padding='same')])
def call(self, image):
encoded_image = self.encoder(image)
final_image = self.decoder(encoded_image)
return final_image
# SET OPTIMIZER
optimizer = tf.keras.optimizers.Adam(1e-3)
def compute_loss(model, image):
pred_image = model(image)
return tf.keras.losses.mean_absolute_error(pred_image, image)
def compute_gradients(model, x):
with tf.GradientTape() as tape:
loss = compute_loss(model, x)
return tape.gradient(loss, model.trainable_variables), loss
def apply_gradients(optimizer, gradients, variables):
optimizer.apply_gradients(zip(gradients, variables))
# SAMPLE FROM MODEL
def generate_and_save_images(model, epoch, n_samples=3):
fig = plt.figure(figsize=(32,32))
for i in range(n_samples):
sample_ix = random.randint(0, len(image_paths))
image_path = image_paths[sample_ix]
test_input = load_and_preprocess_single(image_path)
test_input = np.expand_dims(test_input, 0)
pred_image = model(test_input)
plt.subplot(2, 2*n_samples, 2*(i+1))
plt.imshow(pred_image[0,:,:,0], cmap='gray')
plt.subplot(2, 2*n_samples, 2*i+1)
plt.imshow(test_input[0,:,:,0], cmap='gray')
plt.axis('off')
plt.savefig('image_at_epoch_{:04d}.png'.format(epoch))
plt.show()
# TRAIN MODEL
def train(model, train_generator, test_generator, epochs=5, sample=False):
for epoch in range(1, epochs + 1):
start_time = time.time()
for step, train_x in enumerate(train_generator):
gradients, loss = compute_gradients(model, train_x)
apply_gradients(optimizer, gradients, model.trainable_variables)
if step%10 == 0 and sample: generate_and_save_images(model, epoch)
end_time = time.time()
if epoch % 1 == 0:
print('Epoch: {}, time elapse for current epoch {}'.format(epoch, end_time - start_time))
if sample: generate_and_save_images(model, epoch)
return model
if __name__ == '__main__':
model = train(ConvNet_Rec(), train_generator, test_generator)
|
[
"matplotlib.pyplot.subplot",
"matplotlib.pyplot.show",
"tensorflow.keras.layers.Conv2D",
"matplotlib.pyplot.imshow",
"numpy.expand_dims",
"matplotlib.pyplot.axis",
"time.time",
"tensorflow.keras.layers.InputLayer",
"tensorflow.nn.depth_to_space",
"matplotlib.pyplot.figure",
"tensorflow.keras.optimizers.Adam",
"tensorflow.GradientTape",
"utils.load_and_preprocess_single",
"os.path.join",
"os.listdir",
"tensorflow.keras.losses.mean_absolute_error"
] |
[((4620, 4651), 'tensorflow.keras.optimizers.Adam', 'tf.keras.optimizers.Adam', (['(0.001)'], {}), '(0.001)\n', (4644, 4651), True, 'import tensorflow as tf\n'), ((334, 374), 'os.path.join', 'os.path.join', (['"""train_images"""', 'image_name'], {}), "('train_images', image_name)\n", (346, 374), False, 'import os\n'), ((4729, 4783), 'tensorflow.keras.losses.mean_absolute_error', 'tf.keras.losses.mean_absolute_error', (['pred_image', 'image'], {}), '(pred_image, image)\n', (4764, 4783), True, 'import tensorflow as tf\n'), ((5185, 5213), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(32, 32)'}), '(figsize=(32, 32))\n', (5195, 5213), True, 'import matplotlib.pyplot as plt\n'), ((5796, 5806), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5804, 5806), True, 'import matplotlib.pyplot as plt\n'), ((393, 417), 'os.listdir', 'os.listdir', (['image_folder'], {}), '(image_folder)\n', (403, 417), False, 'import os\n'), ((4830, 4847), 'tensorflow.GradientTape', 'tf.GradientTape', ([], {}), '()\n', (4845, 4847), True, 'import tensorflow as tf\n'), ((5373, 5411), 'utils.load_and_preprocess_single', 'load_and_preprocess_single', (['image_path'], {}), '(image_path)\n', (5399, 5411), False, 'from utils import load_and_preprocess_single\n'), ((5434, 5463), 'numpy.expand_dims', 'np.expand_dims', (['test_input', '(0)'], {}), '(test_input, 0)\n', (5448, 5463), True, 'import numpy as np\n'), ((5515, 5557), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(2 * n_samples)', '(2 * (i + 1))'], {}), '(2, 2 * n_samples, 2 * (i + 1))\n', (5526, 5557), True, 'import matplotlib.pyplot as plt\n'), ((5561, 5608), 'matplotlib.pyplot.imshow', 'plt.imshow', (['pred_image[0, :, :, 0]'], {'cmap': '"""gray"""'}), "(pred_image[0, :, :, 0], cmap='gray')\n", (5571, 5608), True, 'import matplotlib.pyplot as plt\n'), ((5615, 5655), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(2 * n_samples)', '(2 * i + 1)'], {}), '(2, 2 * n_samples, 2 * i + 1)\n', (5626, 5655), True, 'import matplotlib.pyplot as plt\n'), ((5659, 5706), 'matplotlib.pyplot.imshow', 'plt.imshow', (['test_input[0, :, :, 0]'], {'cmap': '"""gray"""'}), "(test_input[0, :, :, 0], cmap='gray')\n", (5669, 5706), True, 'import matplotlib.pyplot as plt\n'), ((5713, 5728), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (5721, 5728), True, 'import matplotlib.pyplot as plt\n'), ((5970, 5981), 'time.time', 'time.time', ([], {}), '()\n', (5979, 5981), False, 'import time\n'), ((6283, 6294), 'time.time', 'time.time', ([], {}), '()\n', (6292, 6294), False, 'import time\n'), ((2709, 2748), 'tensorflow.keras.layers.InputLayer', 'tf.keras.layers.InputLayer', (['input_shape'], {}), '(input_shape)\n', (2735, 2748), True, 'import tensorflow as tf\n'), ((2763, 2851), 'tensorflow.keras.layers.Conv2D', 'tf.keras.layers.Conv2D', ([], {'filters': '(32)', 'kernel_size': '(3)', 'strides': '(2, 2)', 'activation': '"""relu"""'}), "(filters=32, kernel_size=3, strides=(2, 2),\n activation='relu')\n", (2785, 2851), True, 'import tensorflow as tf\n'), ((2862, 2950), 'tensorflow.keras.layers.Conv2D', 'tf.keras.layers.Conv2D', ([], {'filters': '(64)', 'kernel_size': '(3)', 'strides': '(1, 1)', 'activation': '"""relu"""'}), "(filters=64, kernel_size=3, strides=(1, 1),\n activation='relu')\n", (2884, 2950), True, 'import tensorflow as tf\n'), ((2961, 3050), 'tensorflow.keras.layers.Conv2D', 'tf.keras.layers.Conv2D', ([], {'filters': '(128)', 'kernel_size': '(3)', 'strides': '(2, 2)', 'activation': '"""relu"""'}), "(filters=128, kernel_size=3, strides=(2, 2),\n activation='relu')\n", (2983, 3050), True, 'import tensorflow as tf\n'), ((3061, 3150), 'tensorflow.keras.layers.Conv2D', 'tf.keras.layers.Conv2D', ([], {'filters': '(256)', 'kernel_size': '(3)', 'strides': '(1, 1)', 'activation': '"""relu"""'}), "(filters=256, kernel_size=3, strides=(1, 1),\n activation='relu')\n", (3083, 3150), True, 'import tensorflow as tf\n'), ((3161, 3250), 'tensorflow.keras.layers.Conv2D', 'tf.keras.layers.Conv2D', ([], {'filters': '(512)', 'kernel_size': '(3)', 'strides': '(2, 2)', 'activation': '"""relu"""'}), "(filters=512, kernel_size=3, strides=(2, 2),\n activation='relu')\n", (3183, 3250), True, 'import tensorflow as tf\n'), ((3382, 3439), 'tensorflow.keras.layers.InputLayer', 'tf.keras.layers.InputLayer', ([], {'input_shape': 'encoder_shape[1:]'}), '(input_shape=encoder_shape[1:])\n', (3408, 3439), True, 'import tensorflow as tf\n'), ((3532, 3637), 'tensorflow.keras.layers.Conv2D', 'tf.keras.layers.Conv2D', ([], {'filters': '(256)', 'kernel_size': '(2)', 'strides': '(1, 1)', 'activation': '"""relu"""', 'padding': '"""same"""'}), "(filters=256, kernel_size=2, strides=(1, 1),\n activation='relu', padding='same')\n", (3554, 3637), True, 'import tensorflow as tf\n'), ((3724, 3829), 'tensorflow.keras.layers.Conv2D', 'tf.keras.layers.Conv2D', ([], {'filters': '(128)', 'kernel_size': '(2)', 'strides': '(1, 1)', 'activation': '"""relu"""', 'padding': '"""same"""'}), "(filters=128, kernel_size=2, strides=(1, 1),\n activation='relu', padding='same')\n", (3746, 3829), True, 'import tensorflow as tf\n'), ((3916, 4020), 'tensorflow.keras.layers.Conv2D', 'tf.keras.layers.Conv2D', ([], {'filters': '(64)', 'kernel_size': '(2)', 'strides': '(1, 1)', 'activation': '"""relu"""', 'padding': '"""same"""'}), "(filters=64, kernel_size=2, strides=(1, 1),\n activation='relu', padding='same')\n", (3938, 4020), True, 'import tensorflow as tf\n'), ((4107, 4211), 'tensorflow.keras.layers.Conv2D', 'tf.keras.layers.Conv2D', ([], {'filters': '(32)', 'kernel_size': '(2)', 'strides': '(1, 1)', 'activation': '"""relu"""', 'padding': '"""same"""'}), "(filters=32, kernel_size=2, strides=(1, 1),\n activation='relu', padding='same')\n", (4129, 4211), True, 'import tensorflow as tf\n'), ((4298, 4402), 'tensorflow.keras.layers.Conv2D', 'tf.keras.layers.Conv2D', ([], {'filters': '(1)', 'kernel_size': '(2)', 'strides': '(1, 1)', 'activation': '"""relu"""', 'padding': '"""same"""'}), "(filters=1, kernel_size=2, strides=(1, 1), activation\n ='relu', padding='same')\n", (4320, 4402), True, 'import tensorflow as tf\n'), ((3490, 3516), 'tensorflow.nn.depth_to_space', 'tf.nn.depth_to_space', (['x', '(2)'], {}), '(x, 2)\n', (3510, 3516), True, 'import tensorflow as tf\n'), ((3682, 3708), 'tensorflow.nn.depth_to_space', 'tf.nn.depth_to_space', (['x', '(2)'], {}), '(x, 2)\n', (3702, 3708), True, 'import tensorflow as tf\n'), ((3874, 3900), 'tensorflow.nn.depth_to_space', 'tf.nn.depth_to_space', (['x', '(2)'], {}), '(x, 2)\n', (3894, 3900), True, 'import tensorflow as tf\n'), ((4065, 4091), 'tensorflow.nn.depth_to_space', 'tf.nn.depth_to_space', (['x', '(2)'], {}), '(x, 2)\n', (4085, 4091), True, 'import tensorflow as tf\n'), ((4256, 4282), 'tensorflow.nn.depth_to_space', 'tf.nn.depth_to_space', (['x', '(2)'], {}), '(x, 2)\n', (4276, 4282), True, 'import tensorflow as tf\n')]
|
#!/usr/bin/env python
import numpy as np
import pathlib
import re
import tensorflow as tf
class tfDataset():
def __init__(self, img_path: pathlib.Path):
"""
Loads images from a path in the form:
path/{category}/*.jpg
"""
self._img_path = img_path
self._dataset = tf.data.Dataset.list_files(
str(img_path/'*/*.jpg')
)
def image_count(self):
return len(list(
self._img_path.glob('*/*.jpg')
))
def class_names(self, dir_pattern='.*'):
class_names = [
c.name for c in self._img_path.glob('*')
if re.match(dir_pattern, c.name)
]
return np.array(class_names)
if __name__ == "__main__":
pass
|
[
"numpy.array",
"re.match"
] |
[((693, 714), 'numpy.array', 'np.array', (['class_names'], {}), '(class_names)\n', (701, 714), True, 'import numpy as np\n'), ((638, 667), 're.match', 're.match', (['dir_pattern', 'c.name'], {}), '(dir_pattern, c.name)\n', (646, 667), False, 'import re\n')]
|
from quail.egg import Egg
import numpy as np
import pytest
def test_spc():
presented=[[['cat', 'bat', 'hat', 'goat'],['zoo', 'animal', 'zebra', 'horse']]]
recalled=[[['bat', 'cat', 'goat', 'hat'],['animal', 'horse', 'zoo']]]
egg = Egg(pres=presented,rec=recalled)
assert np.array_equal(egg.analyze('spc').data.values,[np.array([ 1., 1., 1., 1.]),np.array([ 1., 1., 0., 1.])])
def test_analysis_spc_multisubj():
presented=[[['cat', 'bat', 'hat', 'goat'],['zoo', 'animal', 'zebra', 'horse']],[['cat', 'bat', 'hat', 'goat'],['zoo', 'animal', 'zebra', 'horse']]]
recalled=[[['bat', 'cat', 'goat', 'hat'],['animal', 'horse', 'zoo']],[['bat', 'cat', 'goat', 'hat'],['animal', 'horse', 'zoo']]]
multisubj_egg = Egg(pres=presented,rec=recalled)
assert np.allclose(multisubj_egg.analyze('spc').data.values,np.array([[ 1., 1., 1., 1.],[ 1., 1., 0., 1.],[ 1., 1., 1., 1.],[ 1., 1., 0., 1.]]))
def test_spc_best_euclidean():
presented=[[[10, 20, 30, 40],[10, 20, 30, 40]]]
recalled=[[[20, 10, 40, 30],[20, 40, 10]]]
egg = Egg(pres=presented,rec=recalled)
assert np.allclose(egg.analyze('spc', match='best', distance='euclidean', features='item').data.values,[np.array([1., 1., 1., 1.]),np.array([1., 1., 0., 1.])])
def test_spc_best_euclidean():
presented = [[[{'item' : i, 'feature1' : i*10} for i in range(1, 5)] for i in range(2)]]
recalled=[[[{'item' : i, 'feature1' : i*10} for i in [2, 1, 4, 3]],[{'item' : i, 'feature1' : i*10} for i in [2, 4, 1]]]]
egg = Egg(pres=presented,rec=recalled)
assert np.allclose(egg.analyze('spc', match='best', distance='euclidean', features='feature1').data.values,[np.array([1., 1., 1., 1.]),np.array([1., 1., 0., 1.])])
def test_spc_best_euclidean_3d():
presented = [[[{'item' : i, 'feature1' : [i*10, 0, 0]} for i in range(1, 5)] for i in range(2)]]
recalled=[[[{'item' : i, 'feature1' : [i*10, 0, 0]} for i in [2, 1, 4, 3]],[{'item' : i, 'feature1' : [i*10, 0, 0]} for i in [2, 4, 1]]]]
egg = Egg(pres=presented,rec=recalled)
assert np.array_equal(egg.analyze('spc', match='best', distance='euclidean', features='feature1').data.values,[np.array([1., 1., 1., 1.]),np.array([1., 1., 0., 1.])])
def test_spc_best_euclidean_3d_2features():
presented = [[[{'item' : i, 'feature1' : [i*10, 0, 0], 'feature2' : [i*10, 0, 0]} for i in range(1, 5)] for i in range(2)]]
recalled=[[[{'item' : i, 'feature1' : [i*10, 0, 0], 'feature2': [i*10, 0, 0]} for i in [2, 1, 4, 3]],[{'item' : i, 'feature1' : [i*10, 0, 0], 'feature2': [i*10, 0, 0]} for i in [2, 4, 1]]]]
egg = Egg(pres=presented,rec=recalled)
assert np.array_equal(egg.analyze('spc', match='best', distance='euclidean', features=['feature1', 'feature2']).data.values,[np.array([1., 1., 1., 1.]),np.array([1., 1., 0., 1.])])
def test_spc_best_euclidean_3d_features_not_set():
presented = [[[{'item' : i, 'feature1' : [i*10, 0, 0]} for i in range(1, 5)] for i in range(2)]]
recalled=[[[{'item' : i, 'feature1' : [i*10, 0, 0]} for i in [2, 1, 4, 3]],[{'item' : i, 'feature1' : [i*10, 0, 0]} for i in [2, 4, 1]]]]
egg = Egg(pres=presented,rec=recalled)
assert np.array_equal(egg.analyze('spc', match='best', distance='euclidean', features='feature1').data.values,[np.array([1., 1., 1., 1.]),np.array([1., 1., 0., 1.])])
def test_spc_best_euclidean_3d_exception_no_features():
presented=[[[[10, 0, 0], [20, 0, 0], [30, 0, 0], [40, 0, 0]],
[[10, 0, 0], [20, 0, 0], [30, 0, 0], [40, 0, 0]]]]
recalled=[[[[20, 0, 0], [10, 0, 0], [40, 0, 0], [30, 0, 0]],
[[20, 0, 0], [40, 0, 0], [10, 0, 0]]]]
egg = Egg(pres=presented,rec=recalled)
with pytest.raises(Exception):
assert np.array_equal(egg.analyze('spc', match='best', distance='euclidean').data.values,[np.array([1., 1., 1., 1.]),np.array([1., 1., 0., 1.])])
def test_spc_best_euclidean_3d_exception_item_specified():
presented=[[[[10, 0, 0], [20, 0, 0], [30, 0, 0], [40, 0, 0]],
[[10, 0, 0], [20, 0, 0], [30, 0, 0], [40, 0, 0]]]]
recalled=[[[[20, 0, 0], [10, 0, 0], [40, 0, 0], [30, 0, 0]],
[[20, 0, 0], [40, 0, 0], [10, 0, 0]]]]
egg = Egg(pres=presented,rec=recalled)
assert np.array_equal(egg.analyze('spc', match='best', distance='euclidean', features='item').data.values,[np.array([1., 1., 1., 1.]),np.array([1., 1., 0., 1.])])
def test_spc_best_correlation_3d():
presented=[[[[10, 0, 10], [20, 0, 0], [30, 0, -10], [40, 0, -20]],
[[10, 0, 10], [20, 0, 0], [30, 0, -10], [40, 0, -20]]]]
recalled=[[[[20, 0, 0], [10, 0, 10], [40, 0, -20], [30, 0, -10]],
[[20, 0, 0], [40, 0, -20], [10, 0, 10]]]]
egg = Egg(pres=presented,rec=recalled)
assert np.array_equal(egg.analyze('spc', match='best', distance='correlation', features='item').data.values,[np.array([1., 1., 1., 1.]),np.array([1., 1., 0., 1.])])
def test_spc_smooth_correlation_3d():
presented=[[[[10, 0, 10], [20, 0, 0], [30, 0, -10], [40, 0, -20]],
[[10, 0, 10], [20, 0, 0], [30, 0, -10], [40, 0, -20]]]]
recalled=[[[[20, 0, 0], [10, 0, 10], [40, 0, -20], [30, 0, -10]],
[[20, 0, 0], [40, 0, -20], [10, 0, 10]]]]
egg = Egg(pres=presented,rec=recalled)
egg.analyze('spc', match='smooth', distance='euclidean', features='item').data.values
|
[
"numpy.array",
"pytest.raises",
"quail.egg.Egg"
] |
[((244, 277), 'quail.egg.Egg', 'Egg', ([], {'pres': 'presented', 'rec': 'recalled'}), '(pres=presented, rec=recalled)\n', (247, 277), False, 'from quail.egg import Egg\n'), ((740, 773), 'quail.egg.Egg', 'Egg', ([], {'pres': 'presented', 'rec': 'recalled'}), '(pres=presented, rec=recalled)\n', (743, 773), False, 'from quail.egg import Egg\n'), ((1075, 1108), 'quail.egg.Egg', 'Egg', ([], {'pres': 'presented', 'rec': 'recalled'}), '(pres=presented, rec=recalled)\n', (1078, 1108), False, 'from quail.egg import Egg\n'), ((1533, 1566), 'quail.egg.Egg', 'Egg', ([], {'pres': 'presented', 'rec': 'recalled'}), '(pres=presented, rec=recalled)\n', (1536, 1566), False, 'from quail.egg import Egg\n'), ((2022, 2055), 'quail.egg.Egg', 'Egg', ([], {'pres': 'presented', 'rec': 'recalled'}), '(pres=presented, rec=recalled)\n', (2025, 2055), False, 'from quail.egg import Egg\n'), ((2603, 2636), 'quail.egg.Egg', 'Egg', ([], {'pres': 'presented', 'rec': 'recalled'}), '(pres=presented, rec=recalled)\n', (2606, 2636), False, 'from quail.egg import Egg\n'), ((3126, 3159), 'quail.egg.Egg', 'Egg', ([], {'pres': 'presented', 'rec': 'recalled'}), '(pres=presented, rec=recalled)\n', (3129, 3159), False, 'from quail.egg import Egg\n'), ((3649, 3682), 'quail.egg.Egg', 'Egg', ([], {'pres': 'presented', 'rec': 'recalled'}), '(pres=presented, rec=recalled)\n', (3652, 3682), False, 'from quail.egg import Egg\n'), ((4193, 4226), 'quail.egg.Egg', 'Egg', ([], {'pres': 'presented', 'rec': 'recalled'}), '(pres=presented, rec=recalled)\n', (4196, 4226), False, 'from quail.egg import Egg\n'), ((4710, 4743), 'quail.egg.Egg', 'Egg', ([], {'pres': 'presented', 'rec': 'recalled'}), '(pres=presented, rec=recalled)\n', (4713, 4743), False, 'from quail.egg import Egg\n'), ((5231, 5264), 'quail.egg.Egg', 'Egg', ([], {'pres': 'presented', 'rec': 'recalled'}), '(pres=presented, rec=recalled)\n', (5234, 5264), False, 'from quail.egg import Egg\n'), ((837, 939), 'numpy.array', 'np.array', (['[[1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 0.0, 1.0], [1.0, 1.0, 1.0, 1.0], [1.0, \n 1.0, 0.0, 1.0]]'], {}), '([[1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 0.0, 1.0], [1.0, 1.0, 1.0, 1.0],\n [1.0, 1.0, 0.0, 1.0]])\n', (845, 939), True, 'import numpy as np\n'), ((3691, 3715), 'pytest.raises', 'pytest.raises', (['Exception'], {}), '(Exception)\n', (3704, 3715), False, 'import pytest\n'), ((335, 365), 'numpy.array', 'np.array', (['[1.0, 1.0, 1.0, 1.0]'], {}), '([1.0, 1.0, 1.0, 1.0])\n', (343, 365), True, 'import numpy as np\n'), ((366, 396), 'numpy.array', 'np.array', (['[1.0, 1.0, 0.0, 1.0]'], {}), '([1.0, 1.0, 0.0, 1.0])\n', (374, 396), True, 'import numpy as np\n'), ((1216, 1246), 'numpy.array', 'np.array', (['[1.0, 1.0, 1.0, 1.0]'], {}), '([1.0, 1.0, 1.0, 1.0])\n', (1224, 1246), True, 'import numpy as np\n'), ((1243, 1273), 'numpy.array', 'np.array', (['[1.0, 1.0, 0.0, 1.0]'], {}), '([1.0, 1.0, 0.0, 1.0])\n', (1251, 1273), True, 'import numpy as np\n'), ((1678, 1708), 'numpy.array', 'np.array', (['[1.0, 1.0, 1.0, 1.0]'], {}), '([1.0, 1.0, 1.0, 1.0])\n', (1686, 1708), True, 'import numpy as np\n'), ((1705, 1735), 'numpy.array', 'np.array', (['[1.0, 1.0, 0.0, 1.0]'], {}), '([1.0, 1.0, 0.0, 1.0])\n', (1713, 1735), True, 'import numpy as np\n'), ((2170, 2200), 'numpy.array', 'np.array', (['[1.0, 1.0, 1.0, 1.0]'], {}), '([1.0, 1.0, 1.0, 1.0])\n', (2178, 2200), True, 'import numpy as np\n'), ((2197, 2227), 'numpy.array', 'np.array', (['[1.0, 1.0, 0.0, 1.0]'], {}), '([1.0, 1.0, 0.0, 1.0])\n', (2205, 2227), True, 'import numpy as np\n'), ((2765, 2795), 'numpy.array', 'np.array', (['[1.0, 1.0, 1.0, 1.0]'], {}), '([1.0, 1.0, 1.0, 1.0])\n', (2773, 2795), True, 'import numpy as np\n'), ((2792, 2822), 'numpy.array', 'np.array', (['[1.0, 1.0, 0.0, 1.0]'], {}), '([1.0, 1.0, 0.0, 1.0])\n', (2800, 2822), True, 'import numpy as np\n'), ((3274, 3304), 'numpy.array', 'np.array', (['[1.0, 1.0, 1.0, 1.0]'], {}), '([1.0, 1.0, 1.0, 1.0])\n', (3282, 3304), True, 'import numpy as np\n'), ((3301, 3331), 'numpy.array', 'np.array', (['[1.0, 1.0, 0.0, 1.0]'], {}), '([1.0, 1.0, 0.0, 1.0])\n', (3309, 3331), True, 'import numpy as np\n'), ((4337, 4367), 'numpy.array', 'np.array', (['[1.0, 1.0, 1.0, 1.0]'], {}), '([1.0, 1.0, 1.0, 1.0])\n', (4345, 4367), True, 'import numpy as np\n'), ((4364, 4394), 'numpy.array', 'np.array', (['[1.0, 1.0, 0.0, 1.0]'], {}), '([1.0, 1.0, 0.0, 1.0])\n', (4372, 4394), True, 'import numpy as np\n'), ((4856, 4886), 'numpy.array', 'np.array', (['[1.0, 1.0, 1.0, 1.0]'], {}), '([1.0, 1.0, 1.0, 1.0])\n', (4864, 4886), True, 'import numpy as np\n'), ((4883, 4913), 'numpy.array', 'np.array', (['[1.0, 1.0, 0.0, 1.0]'], {}), '([1.0, 1.0, 0.0, 1.0])\n', (4891, 4913), True, 'import numpy as np\n'), ((3815, 3845), 'numpy.array', 'np.array', (['[1.0, 1.0, 1.0, 1.0]'], {}), '([1.0, 1.0, 1.0, 1.0])\n', (3823, 3845), True, 'import numpy as np\n'), ((3842, 3872), 'numpy.array', 'np.array', (['[1.0, 1.0, 0.0, 1.0]'], {}), '([1.0, 1.0, 0.0, 1.0])\n', (3850, 3872), True, 'import numpy as np\n')]
|
import sys
import argparse
import logging
import numpy as np
from scipy.spatial import distance_matrix
np.set_printoptions(precision=5)
np.set_printoptions(suppress=True)
# Logging options
logging.basicConfig(
# filename=os.path.join(dir_path, 'thomson_problem.log'),
level=logging.INFO,
format='%(asctime)s %(levelname)-8s %(message)s',
datefmt='%Y-%m-%d %H:%M:%S'
)
# Define the parser used to process the command line input and then add a bunch of arguments
parser = argparse.ArgumentParser(
prog='thomson',
description='Find approximate solutions to the Thomson problem in arbitrary dimension',
allow_abbrev=False
)
parser.add_argument(
'-n',
metavar='dimension',
type=int,
required=False,
default=3,
help='the dimension of Euclidean space (default: 3)'
)
parser.add_argument(
'-m',
metavar='points',
type=int,
required=False,
default=8,
help='the number of point particles on the (n-1) sphere (default: 8)'
)
parser.add_argument(
'-p',
metavar='power',
type=int,
required=False,
default=1,
help='the power of the inverse radius in the potential energy function (default: 1)'
)
parser.add_argument(
'-eps',
metavar='epsilon',
type=float,
required=False,
default=0.1,
help='the gradient descent epsilon - the step size (default: 0.1)'
)
parser.add_argument(
'-max_iter',
metavar='max_iteration',
type=int,
required=False,
default=1e3,
help='the number of steps of gradient descent the program will take (default: 1000)'
)
def generate_random_vectors_of_unit_norm(n, m, fixed_seed=False):
if fixed_seed:
np.random.seed(0)
# List comprehensions are great
vector_lst = [generate_random_vector_of_unit_norm(n) for _ in range(m)]
return np.stack(vector_lst, axis=0)
def generate_random_vector_of_unit_norm(n):
x = np.random.standard_normal(n)
x = x/np.linalg.norm(x)
return x
def calculate_total_energy(array, p=1):
n = len(array[0])
m = len(array)
energy = 0
dm = distance_matrix(array, array)
mask = np.ones(dm.shape, dtype=bool)
np.fill_diagonal(mask, 0)
energy = (1.0/dm[mask]).sum()/2.0
# This is equivalent to the calculation above, not
# sure which is faster or whether it matters
# for i in range(m):
# for j in range(i+1,m):
# energy += 1.0/dm[i, j]
return energy
def grad_func(array, p=1):
m = len(array)
n = len(array[0])
grad_mtx = np.zeros([m, n])
dm = distance_matrix(array, array)
for i in range(m):
grad = 0.0
# iterate over all points j where i != j
for j in range(m):
if i == j:
pass
else:
new_vec = (array[i] - array[j])/dm[i, j]**(p+1)
grad = grad + new_vec
grad_mtx[i] = -2.0*p*grad
return grad_mtx
def minimise_energy(w_init, max_iter=1e3, eps=0.01, p=1):
logging.debug("Starting energy minimisation")
v = w_init
e = calculate_total_energy(w_init, p=p)
logging.debug("Energy of inital configuration is: {}".format(e))
# iterate over max_energy_iter
for n in range(int(max_iter)):
logging.debug("{}/{}".format(n, int(max_iter)))
# One step of vanilla gradient descent
v = v - eps*grad_func(v, p=p)
# Normalise each row so that the points are still on the unit sphere
norm_of_rows = np.linalg.norm(v, axis=1)
v = v/norm_of_rows[:, np.newaxis]
energy = calculate_total_energy(v)
logging.debug("Energy : {}".format(energy))
return v
def run_once(n, m, p, eps, max_iter):
w_init = generate_random_vectors_of_unit_norm(n=n, m=m)
logging.info("Initial energy: {}".format(calculate_total_energy(w_init, p=p)))
logging.debug("Initial configuration:")
logging.debug("{}".format(repr(w_init)))
# sanity check that the norms are close to unity
logging.debug("Norms of init vectors are:")
[logging.debug(np.linalg.norm(w_init[i])) for i in range(m)]
configuration = minimise_energy(w_init=w_init, eps=eps, max_iter=max_iter, p=p)
energy = calculate_total_energy(configuration, p=p)
np.savetxt('n={}_m={}_p={}.txt'.format(n, m, p), configuration)
logging.info("Minimised energy: {}".format(energy))
logging.debug("Final configuration after energy minimisation:")
logging.debug(repr(configuration))
def main():
args = parser.parse_args()
n = args.n
m = args.m
p = args.p
eps = args.eps
max_iter = args.max_iter
run_once(n=n, m=m, p=p, eps=eps, max_iter=max_iter)
if __name__ == '__main__':
main()
# TODO: add a boolean flag to write the position of the particles to a file
|
[
"numpy.stack",
"numpy.fill_diagonal",
"numpy.set_printoptions",
"logging.debug",
"argparse.ArgumentParser",
"logging.basicConfig",
"numpy.random.seed",
"numpy.zeros",
"numpy.ones",
"scipy.spatial.distance_matrix",
"numpy.random.standard_normal",
"numpy.linalg.norm"
] |
[((105, 137), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'precision': '(5)'}), '(precision=5)\n', (124, 137), True, 'import numpy as np\n'), ((138, 172), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'suppress': '(True)'}), '(suppress=True)\n', (157, 172), True, 'import numpy as np\n'), ((192, 315), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.INFO', 'format': '"""%(asctime)s %(levelname)-8s %(message)s"""', 'datefmt': '"""%Y-%m-%d %H:%M:%S"""'}), "(level=logging.INFO, format=\n '%(asctime)s %(levelname)-8s %(message)s', datefmt='%Y-%m-%d %H:%M:%S')\n", (211, 315), False, 'import logging\n'), ((491, 647), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'prog': '"""thomson"""', 'description': '"""Find approximate solutions to the Thomson problem in arbitrary dimension"""', 'allow_abbrev': '(False)'}), "(prog='thomson', description=\n 'Find approximate solutions to the Thomson problem in arbitrary dimension',\n allow_abbrev=False)\n", (514, 647), False, 'import argparse\n'), ((2135, 2163), 'numpy.stack', 'np.stack', (['vector_lst'], {'axis': '(0)'}), '(vector_lst, axis=0)\n', (2143, 2163), True, 'import numpy as np\n'), ((2219, 2247), 'numpy.random.standard_normal', 'np.random.standard_normal', (['n'], {}), '(n)\n', (2244, 2247), True, 'import numpy as np\n'), ((2397, 2426), 'scipy.spatial.distance_matrix', 'distance_matrix', (['array', 'array'], {}), '(array, array)\n', (2412, 2426), False, 'from scipy.spatial import distance_matrix\n'), ((2439, 2468), 'numpy.ones', 'np.ones', (['dm.shape'], {'dtype': 'bool'}), '(dm.shape, dtype=bool)\n', (2446, 2468), True, 'import numpy as np\n'), ((2473, 2498), 'numpy.fill_diagonal', 'np.fill_diagonal', (['mask', '(0)'], {}), '(mask, 0)\n', (2489, 2498), True, 'import numpy as np\n'), ((2842, 2858), 'numpy.zeros', 'np.zeros', (['[m, n]'], {}), '([m, n])\n', (2850, 2858), True, 'import numpy as np\n'), ((2868, 2897), 'scipy.spatial.distance_matrix', 'distance_matrix', (['array', 'array'], {}), '(array, array)\n', (2883, 2897), False, 'from scipy.spatial import distance_matrix\n'), ((3301, 3346), 'logging.debug', 'logging.debug', (['"""Starting energy minimisation"""'], {}), "('Starting energy minimisation')\n", (3314, 3346), False, 'import logging\n'), ((4153, 4192), 'logging.debug', 'logging.debug', (['"""Initial configuration:"""'], {}), "('Initial configuration:')\n", (4166, 4192), False, 'import logging\n'), ((4296, 4339), 'logging.debug', 'logging.debug', (['"""Norms of init vectors are:"""'], {}), "('Norms of init vectors are:')\n", (4309, 4339), False, 'import logging\n'), ((4677, 4740), 'logging.debug', 'logging.debug', (['"""Final configuration after energy minimisation:"""'], {}), "('Final configuration after energy minimisation:')\n", (4690, 4740), False, 'import logging\n'), ((1992, 2009), 'numpy.random.seed', 'np.random.seed', (['(0)'], {}), '(0)\n', (2006, 2009), True, 'import numpy as np\n'), ((2258, 2275), 'numpy.linalg.norm', 'np.linalg.norm', (['x'], {}), '(x)\n', (2272, 2275), True, 'import numpy as np\n'), ((3788, 3813), 'numpy.linalg.norm', 'np.linalg.norm', (['v'], {'axis': '(1)'}), '(v, axis=1)\n', (3802, 3813), True, 'import numpy as np\n'), ((4359, 4384), 'numpy.linalg.norm', 'np.linalg.norm', (['w_init[i]'], {}), '(w_init[i])\n', (4373, 4384), True, 'import numpy as np\n')]
|
#!/usr/bin/env python
"""
NAME
suServer - websocket server for su data
RETURNS
returns a json string
"""
from datetime import datetime
import sys
import asyncio
import json
import websockets
import numpy as np
import scipy.signal as sig
#import pprint
#print("loading obspy...")
from obspy.io.segy.segy import _read_su
#print("... done.")
# FIXME - this only works with 3.5, not 3.6
if sys.version_info == (3, 6):
raise "** must use python v3.4 or 3.5"
class Segy(object):
"""Local version of the SU/SEGY file"""
def __init__(self):
self.filename = None
self.hdrs = None
self.traces = None
self.nsamps = 0
self.dt = 0
self.segyfile = None
def getPSD(self, ens):
"""
Calculate and return average power spectral density for ensemble
`ens` using Welch's method
"""
print('in getpsd, ens=', ens, self)
if not self.segyfile:
raise Exception("File not opened")
enstrcs = [t for t in self.segyfile.traces if t.header.original_field_record_number == ens]
psds = [sig.welch(t.data, fs=1/self.dt, scaling='spectrum') for t in enstrcs]
# psds is [(f,psd), (f,psd)...]
freqs = psds[0][0]
psdonly = [p for (f, p) in psds]
psdonly = np.array(psdonly).transpose()
psdavg = np.mean(psdonly, 1)
print(freqs.shape, psdavg.shape)
return(freqs, psdavg)
def getTrc(self, trcNum=0):
""" Get trace `trcNum` and return a python dict"""
pass
segy = Segy()
#print(segy)
def getTrc(t, headonly=True, decimate=False, t1=-1, t2=-1, flo=None, fhi=None):
"""Convert a segy trace to a python dict
An obspy SegyTrace t is converted to a python dict with optional
filtering of the data.
Parameters:
-----------
t : SegyTrc object
headonly : bool, optional
If True, only return the trace headers, with `samps` set to an
empty array.
flo, fhi : number
If `flo` and `fhi` are specified, filter the data before return.
t1, t2 : number
If `t1` and `t2` are specified > 0, window the data and return only those
Returns:
--------
dict
Dictionary with keys `tracl`, `tracr`, `ffid`, `offset`, and `samps`
(at a minimum; see the code for the full list)
"""
dt = t.header.sample_interval_in_ms_for_this_trace/(1000.*1000.)
nsamps = t.header.number_of_samples_in_this_trace
samps = []
ampscale = 1
if not headonly:
# because I used headonly in the original open,
# the data are read anew from file every time data is
# referenced (check this)
d = t.data # read from file?
#print('in gettrc', decimate)
if decimate:
#print('decimate', decimate, dt)
try:
d = sig.decimate(d, q=10, zero_phase=True)
dt = dt*10
except:
print('decimate failed')
return
if t1 > 0 and t2 > 0:
i1 = int(t1/dt)
i2 = int(t2/dt)
d = d[i1:i2]
tarr=np.arange(i1*dt,(i2+1)*dt,dt)
#print(i1,i2, dt,len(d), len(tarr))
else:
tarr=np.arange(0,nsamps*dt,dt)
max = np.max(d)
min = np.min(d)
ampscale = (max-min)
if ampscale != 0:
d /= (max-min)
#print("amp", ampscale, max, min)
# if a filter is requested...
if flo and fhi:
fnyq = 0.5/dt
#print(flo, fhi, fnyq)
if flo>fnyq or fhi>fnyq:
raise Exception('invalid frequencies')
b,a = sig.butter(8,[flo/fnyq, fhi/fnyq], 'bandpass')
# print(flo, fhi, fnyq, b, a)
y = sig.filtfilt(b, a, d)
# .tolist needed so that json can serialize it (it can't hand numpy arrays)
varr = y.tolist()
else: # otherwise use raw data
varr = d.tolist()
# create the samps array
samps = [{'t':t,'v':v} for (t,v) in zip(tarr,varr)]
trc = {"tracl": t.header.trace_sequence_number_within_line,
"tracr": t.header.trace_sequence_number_within_segy_file,
"ffid": t.header.original_field_record_number,
"offset": t.header.distance_from_center_of_the_source_point_to_the_center_of_the_receiver_group,
"ampscale" : "{}".format(ampscale),
"nsamps": len(samps),
"dt": dt,
"samps": samps}
return trc
def handleMsg(msgJ):
"""Process the message in msgJ.
Parameters:
msgJ: dict
Dictionary with command sent from client
Returns:
string
JSON string with command response
Commands are of the form:
{'cmd' : 'getCCC', 'param0': 'param0val', ...}
Response is a string of the form (note that JSON is picky that keys
and strings should be enclosed in double quotes:
'{"cmd" : "getCmd", "cmd" : "<response>"}'
{'cmd':'getHello'} -> {"cmd":"getHello", "hello": "world"}
{'cmd':'getSegyHdrs', filename: f} ->
{"cmd":"getSegyHdrs", "segyhdrs":
{ns:nsamps, dt:dt: hdrs:[hdr1, hdr2...]}}
FIXME FIXME - this currently returns "segy", not "ensemble" as the key
WARNING - you must call getSegyHdrs first
flo and fhi are optional. If they are not present, no filtering
{'cmd':'getEnsemble', filename:f, ensemble:n, [flo:flo, fhi: fhi]} ->
{"cmd":"getEnsemble", "segy":
{ns:nsamps, dt:dt: traces:[trc1, trc2...]}}
"""
print('msgJ: {}'.format(msgJ))
if msgJ['cmd'].lower() == 'getsegyhdrs':
filename = msgJ['filename']
print('getting segyhdr >{}<, filename: {}'.format(msgJ, filename))
t0 =datetime.now()
if segy.filename != filename:
# new file - open it
try:
s = _read_su(filename, headonly=True)
segy.filename = filename
segy.segyfile = s
except:
ret = json.dumps({"cmd":"readSegy", "error": "Error reading file {}".format(filename)})
return ret
print("ntrcs = {}".format(len(segy.segyfile.traces)))
hdrs = [getTrc(t, headonly=True) for t in segy.segyfile.traces]
nsamps = segy.segyfile.traces[0].header.number_of_samples_in_this_trace
dt = segy.segyfile.traces[0].header.sample_interval_in_ms_for_this_trace/(1000.*1000.)
segy.nsamps = nsamps
segy.dt = dt
segy.hdrs = hdrs
ret = json.dumps({"cmd": "readSegyHdrs",
"segy" : json.dumps({"dt":dt, "ns":nsamps,
"filename": segy.filename,
"hdrs":hdrs})})
return ret
if msgJ['cmd'].lower() == 'getensemble':
print('getting ens', msgJ)
if segy.segyfile is None:
ret = json.dumps({"cmd":"getEnsemble", "error": "Error reading ensemble"})
return ret
decimate = False
try:
ens = int(msgJ['ensemble'])
try:
decimate = msgJ['decimate']
print('dec t', decimate)
except:
decimate=False
print('dec f', decimate)
try:
t1 = float(msgJ['t1'])
t2 = float(msgJ['t2'])
except:
t1=-1
t2=-1
try:
flo = float(msgJ['flo'])
fhi = float(msgJ['fhi'])
print(flo, fhi)
traces = [getTrc(t,headonly=False, decimate=decimate, t1=t1, t2=t2, flo=flo, fhi=fhi) for t in segy.segyfile.traces if t.header.original_field_record_number == ens]
except:
print('err filt')
traces = [getTrc(t,headonly=False,decimate=decimate, t1=t1,t2=t2) for t in segy.segyfile.traces if t.header.original_field_record_number == ens]
except:
print('err ens', ens, decimate)
ret = json.dumps({"cmd":"getEnsemble", "error": "Error reading ensemble number"})
return ret
print("ens = {} ntrc={}".format(ens, len(traces)))
# dt/nsamps could change from the original due to decimation
dt = traces[0]["dt"]
nsamps = traces[0]["nsamps"]
print('dt, nsamps', dt, nsamps)
#print(json.dumps(traces[0]))
ret = json.dumps({"cmd": "segy",
"segy" : json.dumps({"dt":dt, "ns":nsamps,
"filename": segy.filename,
"traces":traces})})
return ret
if msgJ["cmd"].lower() == "getpsd":
if segy.segyfile is None:
ret = json.dumps({"cmd":"getpsd",
"error": "Error reading ensemble"})
return ret
try:
ens = int(msgJ['ensemble'])
print(ens)
(f,psd) = segy.getPSD(ens)
except:
print('err ens/psd')
ret = json.dumps({"cmd":"getPSD",
"error": "Error reading ensemble number"})
return ret
# FIXME - this should be cmd:getPSD, psd:{...}
return json.dumps({"cmd":"getPSD", "ensemble":ens,
"filename": segy.filename,
"freqs":f.tolist(), "psd":psd.tolist()})
if msgJ["cmd"].lower() == "gethello":
ret = json.dumps({"cmd": "hello", "hello": "world"})
return ret
#async def api(ws, path):
# all this is stolen from the websockets tutorial.
@asyncio.coroutine
def api(ws, path):
while True:
try:
# msg = await ws.recv()
# get a websockets string
msg = yield from ws.recv()
print('msg', msg)
try:
msgJ = json.loads(msg)
except json.decoder.JSONDecodeError:
print("error decoding msg >{}<".format(msg))
continue
print("got json msgJ >{}<".format(msgJ))
# and handle it...
retJ = handleMsg(msgJ)
#print(retJ)
# and return the response to the client
yield from ws.send(retJ)
# await ws.send(retJ)
except websockets.ConnectionClosed:
print('connection closed')
return
ss = websockets.serve(api, 'localhost', 9191)
# all this is stolen from the websockets tutorial.
try:
print("ready...")
sys.stdout.flush()
asyncio.get_event_loop().run_until_complete(ss)
asyncio.get_event_loop().run_forever()
except KeyboardInterrupt:
print("bye")
|
[
"obspy.io.segy.segy._read_su",
"websockets.serve",
"scipy.signal.welch",
"scipy.signal.filtfilt",
"asyncio.get_event_loop",
"json.loads",
"json.dumps",
"numpy.max",
"numpy.mean",
"sys.stdout.flush",
"numpy.min",
"numpy.arange",
"numpy.array",
"scipy.signal.decimate",
"datetime.datetime.now",
"scipy.signal.butter"
] |
[((10545, 10585), 'websockets.serve', 'websockets.serve', (['api', '"""localhost"""', '(9191)'], {}), "(api, 'localhost', 9191)\n", (10561, 10585), False, 'import websockets\n'), ((10668, 10686), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (10684, 10686), False, 'import sys\n'), ((1354, 1373), 'numpy.mean', 'np.mean', (['psdonly', '(1)'], {}), '(psdonly, 1)\n', (1361, 1373), True, 'import numpy as np\n'), ((3307, 3316), 'numpy.max', 'np.max', (['d'], {}), '(d)\n', (3313, 3316), True, 'import numpy as np\n'), ((3331, 3340), 'numpy.min', 'np.min', (['d'], {}), '(d)\n', (3337, 3340), True, 'import numpy as np\n'), ((5834, 5848), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (5846, 5848), False, 'from datetime import datetime\n'), ((9611, 9657), 'json.dumps', 'json.dumps', (["{'cmd': 'hello', 'hello': 'world'}"], {}), "({'cmd': 'hello', 'hello': 'world'})\n", (9621, 9657), False, 'import json\n'), ((1111, 1164), 'scipy.signal.welch', 'sig.welch', (['t.data'], {'fs': '(1 / self.dt)', 'scaling': '"""spectrum"""'}), "(t.data, fs=1 / self.dt, scaling='spectrum')\n", (1120, 1164), True, 'import scipy.signal as sig\n'), ((3156, 3193), 'numpy.arange', 'np.arange', (['(i1 * dt)', '((i2 + 1) * dt)', 'dt'], {}), '(i1 * dt, (i2 + 1) * dt, dt)\n', (3165, 3193), True, 'import numpy as np\n'), ((3266, 3295), 'numpy.arange', 'np.arange', (['(0)', '(nsamps * dt)', 'dt'], {}), '(0, nsamps * dt, dt)\n', (3275, 3295), True, 'import numpy as np\n'), ((3700, 3751), 'scipy.signal.butter', 'sig.butter', (['(8)', '[flo / fnyq, fhi / fnyq]', '"""bandpass"""'], {}), "(8, [flo / fnyq, fhi / fnyq], 'bandpass')\n", (3710, 3751), True, 'import scipy.signal as sig\n'), ((3806, 3827), 'scipy.signal.filtfilt', 'sig.filtfilt', (['b', 'a', 'd'], {}), '(b, a, d)\n', (3818, 3827), True, 'import scipy.signal as sig\n'), ((7014, 7083), 'json.dumps', 'json.dumps', (["{'cmd': 'getEnsemble', 'error': 'Error reading ensemble'}"], {}), "({'cmd': 'getEnsemble', 'error': 'Error reading ensemble'})\n", (7024, 7083), False, 'import json\n'), ((8890, 8954), 'json.dumps', 'json.dumps', (["{'cmd': 'getpsd', 'error': 'Error reading ensemble'}"], {}), "({'cmd': 'getpsd', 'error': 'Error reading ensemble'})\n", (8900, 8954), False, 'import json\n'), ((10691, 10715), 'asyncio.get_event_loop', 'asyncio.get_event_loop', ([], {}), '()\n', (10713, 10715), False, 'import asyncio\n'), ((10743, 10767), 'asyncio.get_event_loop', 'asyncio.get_event_loop', ([], {}), '()\n', (10765, 10767), False, 'import asyncio\n'), ((1307, 1324), 'numpy.array', 'np.array', (['psdonly'], {}), '(psdonly)\n', (1315, 1324), True, 'import numpy as np\n'), ((2865, 2903), 'scipy.signal.decimate', 'sig.decimate', (['d'], {'q': '(10)', 'zero_phase': '(True)'}), '(d, q=10, zero_phase=True)\n', (2877, 2903), True, 'import scipy.signal as sig\n'), ((5957, 5990), 'obspy.io.segy.segy._read_su', '_read_su', (['filename'], {'headonly': '(True)'}), '(filename, headonly=True)\n', (5965, 5990), False, 'from obspy.io.segy.segy import _read_su\n'), ((6691, 6768), 'json.dumps', 'json.dumps', (["{'dt': dt, 'ns': nsamps, 'filename': segy.filename, 'hdrs': hdrs}"], {}), "({'dt': dt, 'ns': nsamps, 'filename': segy.filename, 'hdrs': hdrs})\n", (6701, 6768), False, 'import json\n'), ((8156, 8232), 'json.dumps', 'json.dumps', (["{'cmd': 'getEnsemble', 'error': 'Error reading ensemble number'}"], {}), "({'cmd': 'getEnsemble', 'error': 'Error reading ensemble number'})\n", (8166, 8232), False, 'import json\n'), ((8603, 8688), 'json.dumps', 'json.dumps', (["{'dt': dt, 'ns': nsamps, 'filename': segy.filename, 'traces': traces}"], {}), "({'dt': dt, 'ns': nsamps, 'filename': segy.filename, 'traces':\n traces})\n", (8613, 8688), False, 'import json\n'), ((9189, 9260), 'json.dumps', 'json.dumps', (["{'cmd': 'getPSD', 'error': 'Error reading ensemble number'}"], {}), "({'cmd': 'getPSD', 'error': 'Error reading ensemble number'})\n", (9199, 9260), False, 'import json\n'), ((10005, 10020), 'json.loads', 'json.loads', (['msg'], {}), '(msg)\n', (10015, 10020), False, 'import json\n')]
|
from __future__ import print_function
import gym
import math
import random
import numpy as np
import matplotlib
from collections import namedtuple
from itertools import count
import time
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import os
import gym_graph
from visdom import Visdom
## setup viz
viz = Visdom()
startup_sec = 2
while not viz.check_connection() and startup_sec > 0:
time.sleep(0.1)
startup_sec -= 0.1
assert viz.check_connection(), 'No visualization connection could be formed quickly. Is the server running? '
env = gym.make("simple-static-graph-v0").unwrapped
Transition = namedtuple('Transition',
('state', 'action', 'next_state', 'reward'))
class ReplayMemory(object):
def __init__(self, capacity):
self.capacity = capacity
self.memory = []
self.position = 0
def push(self, *args):
"""Saves a transition."""
if len(self.memory) < self.capacity:
self.memory.append(None)
self.memory[self.position] = Transition(*args)
self.position = (self.position + 1) % self.capacity
def sample(self, batch_size):
return random.sample(self.memory, batch_size)
def __len__(self):
return len(self.memory)
state_size = len(env.reset())
nb_actions = env.action_space.n
class DQN(torch.nn.Module):
def __init__(self, n_feature, n_output):
super(DQN, self).__init__()
self.num_actions = n_output
self.dense1 = torch.nn.Linear(n_feature, 1024) # hidden layer
self.dense2 = torch.nn.Linear(1024, 2048) # hidden layer
self.fc1_adv = nn.Linear(in_features=2048, out_features=512)
self.fc1_val = nn.Linear(in_features=2048, out_features=512)
#
self.fc2_adv = nn.Linear(in_features=512, out_features=self.num_actions)
self.fc2_val = nn.Linear(in_features=512, out_features=1)
#
self.relu = nn.ReLU()
self.out = self.calc_out
def calc_out(self, val, adv, x):
return val + adv - adv.mean(1).unsqueeze(1).expand(x.size(0), self.num_actions)
def forward(self, x):
x = self.relu(self.dense1(x))
# x = self.relu(self.dense2(x))
# # x = self.relu(self.dense2(x))
# print(x.shape)
# x = x.view(x.size(0), -1)
# print(x.shape)
#
adv = self.relu(self.fc1_adv(x))
val = self.relu(self.fc1_val(x))
#
adv = self.fc2_adv(adv)
val = self.fc2_val(val)
x = self.out(val, adv, x)
return x
device = "cpu"
BATCH_SIZE = 128
GAMMA = 0.95
EPS_START = 0.9
EPS_END = 0.05
EPS_DECAY = 50
TARGET_UPDATE = 10
ROLLING_MEAN_100 = 0
policy_net = DQN(state_size, nb_actions)
target_net = DQN(state_size, nb_actions)
if os.path.exists("./dqn_graph.pt"):
try:
print( "Found existing dqn model. Loading from checkpoint.")
policy_net.load_state_dict(torch.load('./dqn_graph.pt'))
except:
print ("Failed to load existing model checkpoint file. Starting from scratch.")
pass
target_net.load_state_dict(policy_net.state_dict())
target_net.eval()
optimizer = optim.Adam(policy_net.parameters())
memory = ReplayMemory(10000)
steps_done = 0
def select_action(state):
global steps_done
sample = random.random()
eps_threshold = EPS_END + (EPS_START - EPS_END) * \
math.exp(-1. * steps_done / EPS_DECAY)
steps_done += 1
s = state.unsqueeze(0).to(device)
if sample > eps_threshold:
with torch.no_grad():
action = policy_net(s)[0].max(0)[1]
view = action.view(1, 1)
return view
else:
return torch.tensor([[random.randrange(nb_actions)]], device=device, dtype=torch.long)
episode_durations = []
episode_scores = []
mean_scores = []
score_win = None
step_win = None
scatter_win = None
text_win = None
mean_score_win = None
loss_win = None
def plot():
X = np.array(range(0, len(episode_scores)))
scores = np.array(episode_scores)
steps = np.array(episode_steps)
mean_100 = np.array(mean_scores)
losses_np = np.array(losses)
global score_win
global step_win
global scatter_win
global mean_score_win
global loss_win
if not score_win:
score_win = viz.line(
Y=scores,
X=X,
opts = dict(
title="Episode Reward",
xlabel="Episode",
ylabel="Reward"
)
)
else:
viz.line(Y=scores, X=X, update="replace", win=score_win)
if not step_win:
step_win = viz.line(
Y=steps,
X=X,
opts=dict(
title="Episode Steps",
xlabel="Episode",
ylabel="# Steps"
)
)
else:
viz.line(Y=steps, X=X, update="replace", win=step_win)
if len(losses) > 0:
if not loss_win:
loss_win = viz.line(
Y=losses_np,
X=np.array(range(0, len(losses))),
opts=dict(
title="Loss",
xlabel="Step",
ylabel="Loss Value",
)
)
else:
viz.line(Y=losses_np, X=np.array(range(0, len(losses))), update="replace", win=loss_win)
# if not scatter_win:
# scatter_win = viz.scatter(
# Y=scores,
# X=np.expand_dims(np.array([steps]), 1),
# opts = dict(
# title="Steps vs. Reward",
# xlabel="Episode Steps",
# ylabel="Episode Reward"
# )
# )
# else:
# viz.scatter(Y=scores, X=steps, update="replace", win=duration_win)
if len(mean_100) > 0:
if not mean_score_win:
mean_score_win = viz.line(
Y=mean_100,
X=np.array(range(0, len(mean_100))),
opts = dict(
title="Rolling Mean of Previous 100 Episodes",
xlabel="Episodes",
ylabel="Episode Reward"
)
)
else:
viz.line(Y=mean_100, X=np.array(range(0, len(mean_100))), update="replace", win=mean_score_win)
def optimize_model():
if len(memory) < BATCH_SIZE:
return
transitions = memory.sample(BATCH_SIZE)
# Transpose the batch (see http://stackoverflow.com/a/19343/3343043 for
# detailed explanation).
batch = Transition(*zip(*transitions))
# Compute a mask of non-final states and concatenate the batch elements
non_final_mask = torch.tensor(tuple(map(lambda s: s is not None,
batch.next_state)), device=device, dtype=torch.uint8)
non_final_next_states = torch.cat([torch.tensor(s) for s in batch.next_state
if s is not None])
state_batch = torch.cat(batch.state)
action_batch = torch.cat(batch.action)
reward_batch = torch.cat(batch.reward)
# Compute Q(s_t, a) - the model computes Q(s_t), then we select the
# columns of actions taken
s = state_batch.reshape((BATCH_SIZE, state_size))
state_action_values = policy_net(s).gather(1, action_batch)
# Compute V(s_{t+1}) for all next states.
next_state_values = torch.zeros(BATCH_SIZE, device=device)
k = non_final_next_states
i = 0
for s in non_final_mask:
if (s.item() == 1):
item = torch.tensor(tuple(k[i:i+state_size])).unsqueeze(0).to(device)
pred = target_net(item)
# print(pred.max(0)[0][0].detach())
# print(pred.max(0)[1].detach())
next_state_values[i] = pred.max(0)[0][0].detach()
i += 1
# Compute the expected Q values
expected_state_action_values = (next_state_values * GAMMA) + reward_batch
# Compute Huber loss
loss = F.smooth_l1_loss(state_action_values, expected_state_action_values.unsqueeze(1))
losses.append(loss.item())
# Optimize the model
optimizer.zero_grad()
loss.backward()
for param in policy_net.parameters():
# try:
param.grad.data.clamp_(-1, 1)
# except Exception as e:
# print(str(e))
optimizer.step()
episode_steps = []
losses = []
i_episode = 0
MIN_EPSIODES = 250
MIN_SCORE = 9500
while ROLLING_MEAN_100 <= MIN_SCORE:
i_episode +=1
print ("starting episode: ", i_episode)
# for i_episode in range(num_episodes):
# Initialize the environment and state
state = torch.FloatTensor(env.reset())
r = 0
steps = 0
for t in count():
# Select and perform an action
action = select_action(state)
_state, reward, done, info = env.step(action.item())
steps += 1
reward = torch.tensor([reward], device=device, dtype=torch.float)
r += reward
if not done:
next_state = torch.tensor(_state, device=device, dtype=torch.float)
else:
next_state = None
# Store the transition in memory
memory.push(state, action, next_state, reward)
state = next_state
# Perform one step of the optimization (on the target network)
optimize_model()
if done:
episode_durations.append(t + 1)
episode_scores.append(r)
episode_steps.append(steps)
print("Episode reward: ", r)
print("Episode steps: ", steps)
plot()
break
# Update the target network
if i_episode % TARGET_UPDATE == 0:
target_net.load_state_dict(policy_net.state_dict())
torch.save(target_net.state_dict(),'./dqn_graph.pt')
if i_episode > 100:
ROLLING_MEAN_100 = np.mean(episode_scores[i_episode-100:i_episode])
print("Rolling mean score (100): ", ROLLING_MEAN_100)
mean_scores.append(ROLLING_MEAN_100)
print('Training Complete after ', i_episode, "episodes!")
|
[
"random.sample",
"visdom.Visdom",
"torch.cat",
"numpy.mean",
"torch.no_grad",
"torch.load",
"os.path.exists",
"torch.nn.Linear",
"torch.zeros",
"itertools.count",
"time.sleep",
"random.random",
"math.exp",
"torch.nn.ReLU",
"gym.make",
"numpy.array",
"collections.namedtuple",
"random.randrange",
"torch.tensor"
] |
[((360, 368), 'visdom.Visdom', 'Visdom', ([], {}), '()\n', (366, 368), False, 'from visdom import Visdom\n'), ((661, 730), 'collections.namedtuple', 'namedtuple', (['"""Transition"""', "('state', 'action', 'next_state', 'reward')"], {}), "('Transition', ('state', 'action', 'next_state', 'reward'))\n", (671, 730), False, 'from collections import namedtuple\n'), ((2822, 2854), 'os.path.exists', 'os.path.exists', (['"""./dqn_graph.pt"""'], {}), "('./dqn_graph.pt')\n", (2836, 2854), False, 'import os\n'), ((443, 458), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (453, 458), False, 'import time\n'), ((601, 635), 'gym.make', 'gym.make', (['"""simple-static-graph-v0"""'], {}), "('simple-static-graph-v0')\n", (609, 635), False, 'import gym\n'), ((3339, 3354), 'random.random', 'random.random', ([], {}), '()\n', (3352, 3354), False, 'import random\n'), ((4034, 4058), 'numpy.array', 'np.array', (['episode_scores'], {}), '(episode_scores)\n', (4042, 4058), True, 'import numpy as np\n'), ((4071, 4094), 'numpy.array', 'np.array', (['episode_steps'], {}), '(episode_steps)\n', (4079, 4094), True, 'import numpy as np\n'), ((4110, 4131), 'numpy.array', 'np.array', (['mean_scores'], {}), '(mean_scores)\n', (4118, 4131), True, 'import numpy as np\n'), ((4148, 4164), 'numpy.array', 'np.array', (['losses'], {}), '(losses)\n', (4156, 4164), True, 'import numpy as np\n'), ((6963, 6985), 'torch.cat', 'torch.cat', (['batch.state'], {}), '(batch.state)\n', (6972, 6985), False, 'import torch\n'), ((7005, 7028), 'torch.cat', 'torch.cat', (['batch.action'], {}), '(batch.action)\n', (7014, 7028), False, 'import torch\n'), ((7048, 7071), 'torch.cat', 'torch.cat', (['batch.reward'], {}), '(batch.reward)\n', (7057, 7071), False, 'import torch\n'), ((7364, 7402), 'torch.zeros', 'torch.zeros', (['BATCH_SIZE'], {'device': 'device'}), '(BATCH_SIZE, device=device)\n', (7375, 7402), False, 'import torch\n'), ((8648, 8655), 'itertools.count', 'count', ([], {}), '()\n', (8653, 8655), False, 'from itertools import count\n'), ((1213, 1251), 'random.sample', 'random.sample', (['self.memory', 'batch_size'], {}), '(self.memory, batch_size)\n', (1226, 1251), False, 'import random\n'), ((1540, 1572), 'torch.nn.Linear', 'torch.nn.Linear', (['n_feature', '(1024)'], {}), '(n_feature, 1024)\n', (1555, 1572), False, 'import torch\n'), ((1612, 1639), 'torch.nn.Linear', 'torch.nn.Linear', (['(1024)', '(2048)'], {}), '(1024, 2048)\n', (1627, 1639), False, 'import torch\n'), ((1680, 1725), 'torch.nn.Linear', 'nn.Linear', ([], {'in_features': '(2048)', 'out_features': '(512)'}), '(in_features=2048, out_features=512)\n', (1689, 1725), True, 'import torch.nn as nn\n'), ((1749, 1794), 'torch.nn.Linear', 'nn.Linear', ([], {'in_features': '(2048)', 'out_features': '(512)'}), '(in_features=2048, out_features=512)\n', (1758, 1794), True, 'import torch.nn as nn\n'), ((1828, 1885), 'torch.nn.Linear', 'nn.Linear', ([], {'in_features': '(512)', 'out_features': 'self.num_actions'}), '(in_features=512, out_features=self.num_actions)\n', (1837, 1885), True, 'import torch.nn as nn\n'), ((1909, 1951), 'torch.nn.Linear', 'nn.Linear', ([], {'in_features': '(512)', 'out_features': '(1)'}), '(in_features=512, out_features=1)\n', (1918, 1951), True, 'import torch.nn as nn\n'), ((1982, 1991), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (1989, 1991), True, 'import torch.nn as nn\n'), ((8831, 8887), 'torch.tensor', 'torch.tensor', (['[reward]'], {'device': 'device', 'dtype': 'torch.float'}), '([reward], device=device, dtype=torch.float)\n', (8843, 8887), False, 'import torch\n'), ((9778, 9828), 'numpy.mean', 'np.mean', (['episode_scores[i_episode - 100:i_episode]'], {}), '(episode_scores[i_episode - 100:i_episode])\n', (9785, 9828), True, 'import numpy as np\n'), ((2969, 2997), 'torch.load', 'torch.load', (['"""./dqn_graph.pt"""'], {}), "('./dqn_graph.pt')\n", (2979, 2997), False, 'import torch\n'), ((3419, 3458), 'math.exp', 'math.exp', (['(-1.0 * steps_done / EPS_DECAY)'], {}), '(-1.0 * steps_done / EPS_DECAY)\n', (3427, 3458), False, 'import math\n'), ((3560, 3575), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (3573, 3575), False, 'import torch\n'), ((6836, 6851), 'torch.tensor', 'torch.tensor', (['s'], {}), '(s)\n', (6848, 6851), False, 'import torch\n'), ((8954, 9008), 'torch.tensor', 'torch.tensor', (['_state'], {'device': 'device', 'dtype': 'torch.float'}), '(_state, device=device, dtype=torch.float)\n', (8966, 9008), False, 'import torch\n'), ((3727, 3755), 'random.randrange', 'random.randrange', (['nb_actions'], {}), '(nb_actions)\n', (3743, 3755), False, 'import random\n')]
|
import neuro
import pickle
import os.path
import numpy as np
import matplotlib.pyplot as plt
import os
import data_collector
import time
import datetime
earth_population = 8000
zero_human = 1/(earth_population*2)
doomsday = 1735689600
max_gini_index = 70
min_lat = -90
max_lat = 90
min_lng = -180
max_lng = 180
covid_reports_files = './data/datasets/'
files = os.listdir(covid_reports_files)
input_nodes = 9 # время, заболевших, умерших, выздоровевших, уровень жизни, широта, долгота, население, соседи?
hidden_nodes = 200 # экспериментально
output_nodes = 3 # множители заболевших, умерших, выздоровевших
learning_rate = 0.15 # экспериментально
if os.path.isfile('neuro.pickle'):
with open('neuro.pickle', 'rb') as f:
n = pickle.load(f)
else:
n = neuro.NeuralNetwork(input_nodes, hidden_nodes, output_nodes, learning_rate)
collector = data_collector.Country_info_collector()
epochs = 2
for e in range(epochs):
for file_idx in range(len(files)-1):
for country_idx in range(len(collector.countries)):
country_name = collector.countries[country_idx]['name']
next_time_str = files[file_idx+1].split('.')[0]
now_time_str = files[file_idx].split('.')[0]
now_time = time.mktime(datetime.datetime.strptime(now_time_str, "%m-%d-%Y").timetuple())/doomsday
gini = collector.gini(country_name)
print(gini)
gini_ratio = gini/max_gini_index
lat = (collector.latlng(country_name)[0] - min_lat)/(max_lat - min_lat)
lng = (collector.latlng(country_name)[1] - min_lng)/(max_lng - min_lng)
population = (collector.population(country_name))/earth_population
borders_index = collector.borders(country_name, now_time_str)
next_infected = collector.infected(country_name,next_time_str) + zero_human
now_infected = collector.infected(country_name,now_time_str) + zero_human
next_dead = collector.dead(country_name,next_time_str) + zero_human
now_dead = collector.dead(country_name,now_time_str) + zero_human
next_recovered = collector.recovered(country_name,next_time_str) + zero_human
now_recovered = collector.recovered(country_name,now_time_str) + zero_human
infected_ratio = (next_infected/now_infected)/earth_population + zero_human
dead_ratio = (next_dead/now_dead)/earth_population + zero_human
recovered_ratio = (next_recovered/now_recovered)/earth_population + zero_human
inputs_data = [now_time, now_infected/earth_population, now_dead/earth_population, now_recovered/earth_population, gini_ratio, lat, lng, population ,borders_index]
targets_data = [infected_ratio, dead_ratio, recovered_ratio]
inputs = np.asfarray(inputs_data)
targets = np.asfarray(targets_data)
n.train(inputs, targets)
with open('neuro.pickle', 'wb') as f:
pickle.dump(n, f)
inputs_data = [1587040866/doomsday, 0.021032, 0.001020, 0.012, 0.4, 0.6, 0.8, 0.0004, 0.00003323]
inputs = np.asfarray(inputs_data)
outputs = n.query(inputs)
label = np.argmax(outputs)
print("ответ", label)
|
[
"pickle.dump",
"numpy.argmax",
"data_collector.Country_info_collector",
"numpy.asfarray",
"os.path.isfile",
"pickle.load",
"neuro.NeuralNetwork",
"datetime.datetime.strptime",
"os.listdir"
] |
[((382, 413), 'os.listdir', 'os.listdir', (['covid_reports_files'], {}), '(covid_reports_files)\n', (392, 413), False, 'import os\n'), ((681, 711), 'os.path.isfile', 'os.path.isfile', (['"""neuro.pickle"""'], {}), "('neuro.pickle')\n", (695, 711), False, 'import os\n'), ((2943, 2967), 'numpy.asfarray', 'np.asfarray', (['inputs_data'], {}), '(inputs_data)\n', (2954, 2967), True, 'import numpy as np\n'), ((3004, 3022), 'numpy.argmax', 'np.argmax', (['outputs'], {}), '(outputs)\n', (3013, 3022), True, 'import numpy as np\n'), ((788, 863), 'neuro.NeuralNetwork', 'neuro.NeuralNetwork', (['input_nodes', 'hidden_nodes', 'output_nodes', 'learning_rate'], {}), '(input_nodes, hidden_nodes, output_nodes, learning_rate)\n', (807, 863), False, 'import neuro\n'), ((878, 917), 'data_collector.Country_info_collector', 'data_collector.Country_info_collector', ([], {}), '()\n', (915, 917), False, 'import data_collector\n'), ((760, 774), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (771, 774), False, 'import pickle\n'), ((2813, 2830), 'pickle.dump', 'pickle.dump', (['n', 'f'], {}), '(n, f)\n', (2824, 2830), False, 'import pickle\n'), ((2670, 2694), 'numpy.asfarray', 'np.asfarray', (['inputs_data'], {}), '(inputs_data)\n', (2681, 2694), True, 'import numpy as np\n'), ((2710, 2735), 'numpy.asfarray', 'np.asfarray', (['targets_data'], {}), '(targets_data)\n', (2721, 2735), True, 'import numpy as np\n'), ((1245, 1297), 'datetime.datetime.strptime', 'datetime.datetime.strptime', (['now_time_str', '"""%m-%d-%Y"""'], {}), "(now_time_str, '%m-%d-%Y')\n", (1271, 1297), False, 'import datetime\n')]
|
import numpy as np
import pandas as pd
import pytest
from sklearn.ensemble import ExtraTreesClassifier, RandomForestClassifier
from sklearn.base import ClassifierMixin
from sklearn.pipeline import Pipeline
from poniard import PoniardClassifier
def test_add():
clf = PoniardClassifier()
clf.add_estimators([ExtraTreesClassifier()])
clf + {"rf2": RandomForestClassifier()}
assert len(clf.estimators_) == len(clf._base_estimators) + 2
assert "rf2" in clf.estimators_
assert "ExtraTreesClassifier" in clf.estimators_
def test_remove():
clf = PoniardClassifier()
clf.remove_estimators(["RandomForestClassifier"])
clf - ["LogisticRegression"]
assert len(clf.estimators_) == len(clf._base_estimators) - 2
def test_remove_fitted():
clf = PoniardClassifier()
y = np.array([0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1])
x = pd.DataFrame(np.random.normal(size=(len(y), 5)))
clf.setup(x, y)
clf.fit()
clf.remove_estimators(["RandomForestClassifier"], drop_results=True)
assert len(clf.estimators_) == len(clf._base_estimators) - 1
assert clf.show_results().shape[0] == len(clf._base_estimators) - 1
assert "RandomForestClassifier" not in clf.show_results().index
@pytest.mark.parametrize(
"include_preprocessor,output_type", [(True, Pipeline), (False, ClassifierMixin)]
)
def test_get(include_preprocessor, output_type):
clf = PoniardClassifier(estimators=[RandomForestClassifier()])
y = np.array([0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1])
x = pd.DataFrame(np.random.normal(size=(len(y), 5)))
clf.setup(x, y)
clf.fit()
estimator = clf.get_estimator(
"RandomForestClassifier", include_preprocessor=include_preprocessor
)
assert isinstance(estimator, output_type)
|
[
"sklearn.ensemble.RandomForestClassifier",
"poniard.PoniardClassifier",
"sklearn.ensemble.ExtraTreesClassifier",
"numpy.array",
"pytest.mark.parametrize"
] |
[((1228, 1337), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""include_preprocessor,output_type"""', '[(True, Pipeline), (False, ClassifierMixin)]'], {}), "('include_preprocessor,output_type', [(True,\n Pipeline), (False, ClassifierMixin)])\n", (1251, 1337), False, 'import pytest\n'), ((273, 292), 'poniard.PoniardClassifier', 'PoniardClassifier', ([], {}), '()\n', (290, 292), False, 'from poniard import PoniardClassifier\n'), ((571, 590), 'poniard.PoniardClassifier', 'PoniardClassifier', ([], {}), '()\n', (588, 590), False, 'from poniard import PoniardClassifier\n'), ((781, 800), 'poniard.PoniardClassifier', 'PoniardClassifier', ([], {}), '()\n', (798, 800), False, 'from poniard import PoniardClassifier\n'), ((809, 855), 'numpy.array', 'np.array', (['[0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1]'], {}), '([0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1])\n', (817, 855), True, 'import numpy as np\n'), ((1464, 1510), 'numpy.array', 'np.array', (['[0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1]'], {}), '([0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1])\n', (1472, 1510), True, 'import numpy as np\n'), ((317, 339), 'sklearn.ensemble.ExtraTreesClassifier', 'ExtraTreesClassifier', ([], {}), '()\n', (337, 339), False, 'from sklearn.ensemble import ExtraTreesClassifier, RandomForestClassifier\n'), ((360, 384), 'sklearn.ensemble.RandomForestClassifier', 'RandomForestClassifier', ([], {}), '()\n', (382, 384), False, 'from sklearn.ensemble import ExtraTreesClassifier, RandomForestClassifier\n'), ((1429, 1453), 'sklearn.ensemble.RandomForestClassifier', 'RandomForestClassifier', ([], {}), '()\n', (1451, 1453), False, 'from sklearn.ensemble import ExtraTreesClassifier, RandomForestClassifier\n')]
|
import numpy as np
import torch
from torch.autograd import Variable
import matplotlib.pyplot as plt
from scipy.stats import gaussian_kde, norm
from torch.distributions import multivariate_normal
from tqdm import tqdm
# ## debugging
def numpy_p(x):
return 1/3 * norm.pdf(x, -2, 1) + 2/3 * norm.pdf(x, 2, 1)
def numpy_p_far(x):
return 1/2 * norm.pdf(x, -10, 1) + 1/2 * norm.pdf(x, 10, 1)
def numpy_p_complex(x):
return (1/7) * norm.pdf(x, -2,3) + (2/7) * norm.pdf(x, 2,1) + (3/7) * norm.pdf(x, 5,5) + (1/7) * norm.pdf(x, 6,0.5)
def numpy_multi(x):
mean = torch.Tensor([0, 0])
covariance = torch.tensor([[5, 2], [2, 1]])
return norm.pdf(x, mean, covariance)
'''
Runs T number of iterations of Stein Variational
Descent to move the given initial parrticles in the
direction of the target desnity p. The step sizes
are determined by AdaGrad.
Input: p - target density
k - kernel
x - initial set of points
T - number of iterations
alpha - momentum constant
fudge - AdaGrad fudge factor
step - step size scale
Output: final set of points after T iterations.
'''
def svgd(p, kern, x, T, alpha=0.9, fudge=1e-6, step=1e-1, mean=None, covariance=None):
assert len(x.shape) == 2
n, d = x.shape
x = torch.Tensor(x)
## Put the most likely x at the front of the array (leading gradient).
x = put_max_first(x, p)
accumulated_grad = torch.zeros((n, d))
# gauss = multivariate_normal.MultivariateNormal(mean, covariance)
# target = gauss.sample(torch.Size([n]))
for i in tqdm(range(T)):
### debugging
if i % 50 == 0 or i == T-1:
# TODO: Change mean and varince here.
# twoDimPlotter(x, target)
# bigDimPlotter(x,target)
plt.figure()
xs = np.arange(-20, 20, 0.01)
plt.plot(xs, numpy_p_complex(xs), 'r')
g = gaussian_kde(x.numpy().reshape(-1))
plt.plot(xs, g(xs), 'g')
# plt.show()
plt.savefig('../../../nparticles/500_n{}.png'.format(i))
varx = Variable(x, requires_grad = True)
grad_logp = grad_log(p, varx)
kernel, grad_kernel = kern(x)
phi = torch.matmul(kernel, grad_logp)/n + torch.mean(grad_kernel, dim=1).view(n, d)
# print(grad_logp)
if i == 0:
accumulated_grad += phi**2
else:
accumulated_grad = alpha * accumulated_grad + (1-alpha) * phi**2
stepsize = fudge + torch.sqrt(accumulated_grad)
x = x + torch.div(step * phi, stepsize)
# break
return x
'''
Build the RBF kernel matrix and grad_kernel matrix
given a set of points x.
Input: n x d set of points - x
Output: n x n kernel matrix, n x n x d grad_kernel matrix
'''
def RBF_kernel(x):
n, d = tuple(x.size())
pairdist = torch.zeros((n, n))
for i in range(n):
for j in range(n):
pairdist[i][j] = torch.dist(x[i], x[j])
med = torch.median(pairdist)
h = med**2 / np.log(n)
kernel = torch.exp(-(1/h) * pairdist**2)
grad_kernel = torch.zeros((n, n, d))
for i in range(n):
for j in range(n):
grad_kernel[i][j] = 2/h * kernel[i][j] * (x[i]-x[j])
return torch.Tensor(kernel), torch.Tensor(grad_kernel)
'''
Returns RBF kernel.
Input: bandwith of the kernel - h
Output: a function that returns the RBF kernel
'''
def RBF(h):
def kernel(x1,x2):
return np.exp(-(1/h) * torch.norm(x1 - x2)**2)
return kernel
'''
Returns the gradient of the RBF kernel w.r.t. x2
'''
def RBF_grad(x1,x2):
return (2) * (x1 - x2) * np.exp(-torch.norm(x1 -x2)**2)
'''
Takes the gradient of the log of the unnormalized
probability distribution.
Input: p - unnormalized probability distribution
x - set of current particles
Output: gradient of log of distribution p at point x
'''
def grad_log(p, x):
n, d = tuple(x.size())
grad_log = []
for i in range(len(x)):
# if float(p(x[i])) < 1e-35:
# grad_log.append(grad_log[-1])
# continue
# print ("p(x) is {}".format(p(x[i])))
logp = p(x[i])
# print ("logp us {}".format(logp))
logp.backward()
# print ("the grad is {}".format(x.grad.data[i]))
grad_log.append(x.grad.data[i].numpy())
grad_log = np.array(grad_log).reshape((n, d))
return torch.Tensor(grad_log)
'''
Build the kernel matrix.
Input: k - kernel function
x - set of current particules
Output: matrix containing the kernel evaluated at each pair of points
'''
def k_matrix(k, k_grad, x):
#import pdb; pdb.set_trace()
n = len(x)
kernel_matrix, grad_kernel_matrix = [], []
for i in range(n):
kernel_matrix.append([])
grad_kernel_matrix.append([])
for j in range(n):
kernel_val = k(x[i], x[j])
kernel_matrix[-1].append(float(kernel_val))
#kernel_val.backward()
kernel_grad = k_grad(x[i], x[j])
grad_kernel_matrix[-1].append(float(kernel_grad))
#x.grad.data.zero_()
return torch.Tensor(kernel_matrix), torch.Tensor(grad_kernel_matrix)
'''
Returns the same array with the element with highest probability first.
Input: x - array of samples
p - probability distribution
Output: arrays of samples with highest probability element first.
'''
def put_max_first(x, p):
n = len(x)
best_index = -1
best_prob = -1
for i in range(n):
prob_i = p(x[i])
if float(prob_i) > float(best_prob):
best_prob = prob_i
best_index = i
tmp = x[0]
x[0] = x[best_index]
x[best_index] = tmp
return x
'''
Plots a scatter plot of two dimensional target samples and particules.
Input: x - particules
target - target distribution to sample from
'''
def bigDimPlotter(x, target):
n = x.shape[0]
dim1, dim2 = x.numpy()[:,0], x.numpy()[:,1]
target1, target2 = target.numpy()[:,0], target.numpy()[:,1]
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(dim1, dim2, s=10, c='b', marker="x", label='particles')
ax.scatter(target1, target2, s=10, c='r', marker="o", label='target')
plt.legend(loc='upper right');
plt.xlim((-5,10))
plt.ylim((-5,10))
plt.show()
|
[
"torch.sqrt",
"matplotlib.pyplot.figure",
"numpy.arange",
"torch.median",
"torch.dist",
"torch.exp",
"torch.Tensor",
"torch.zeros",
"torch.matmul",
"torch.mean",
"matplotlib.pyplot.show",
"matplotlib.pyplot.ylim",
"torch.autograd.Variable",
"matplotlib.pyplot.legend",
"torch.norm",
"matplotlib.pyplot.xlim",
"numpy.log",
"scipy.stats.norm.pdf",
"numpy.array",
"torch.div",
"torch.tensor"
] |
[((576, 596), 'torch.Tensor', 'torch.Tensor', (['[0, 0]'], {}), '([0, 0])\n', (588, 596), False, 'import torch\n'), ((614, 644), 'torch.tensor', 'torch.tensor', (['[[5, 2], [2, 1]]'], {}), '([[5, 2], [2, 1]])\n', (626, 644), False, 'import torch\n'), ((656, 685), 'scipy.stats.norm.pdf', 'norm.pdf', (['x', 'mean', 'covariance'], {}), '(x, mean, covariance)\n', (664, 685), False, 'from scipy.stats import gaussian_kde, norm\n'), ((1274, 1289), 'torch.Tensor', 'torch.Tensor', (['x'], {}), '(x)\n', (1286, 1289), False, 'import torch\n'), ((1416, 1435), 'torch.zeros', 'torch.zeros', (['(n, d)'], {}), '((n, d))\n', (1427, 1435), False, 'import torch\n'), ((2830, 2849), 'torch.zeros', 'torch.zeros', (['(n, n)'], {}), '((n, n))\n', (2841, 2849), False, 'import torch\n'), ((2962, 2984), 'torch.median', 'torch.median', (['pairdist'], {}), '(pairdist)\n', (2974, 2984), False, 'import torch\n'), ((3026, 3061), 'torch.exp', 'torch.exp', (['(-(1 / h) * pairdist ** 2)'], {}), '(-(1 / h) * pairdist ** 2)\n', (3035, 3061), False, 'import torch\n'), ((3076, 3098), 'torch.zeros', 'torch.zeros', (['(n, n, d)'], {}), '((n, n, d))\n', (3087, 3098), False, 'import torch\n'), ((4358, 4380), 'torch.Tensor', 'torch.Tensor', (['grad_log'], {}), '(grad_log)\n', (4370, 4380), False, 'import torch\n'), ((5985, 5997), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (5995, 5997), True, 'import matplotlib.pyplot as plt\n'), ((6177, 6206), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""upper right"""'}), "(loc='upper right')\n", (6187, 6206), True, 'import matplotlib.pyplot as plt\n'), ((6212, 6230), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(-5, 10)'], {}), '((-5, 10))\n', (6220, 6230), True, 'import matplotlib.pyplot as plt\n'), ((6234, 6252), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(-5, 10)'], {}), '((-5, 10))\n', (6242, 6252), True, 'import matplotlib.pyplot as plt\n'), ((6256, 6266), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6264, 6266), True, 'import matplotlib.pyplot as plt\n'), ((2083, 2114), 'torch.autograd.Variable', 'Variable', (['x'], {'requires_grad': '(True)'}), '(x, requires_grad=True)\n', (2091, 2114), False, 'from torch.autograd import Variable\n'), ((3002, 3011), 'numpy.log', 'np.log', (['n'], {}), '(n)\n', (3008, 3011), True, 'import numpy as np\n'), ((3225, 3245), 'torch.Tensor', 'torch.Tensor', (['kernel'], {}), '(kernel)\n', (3237, 3245), False, 'import torch\n'), ((3247, 3272), 'torch.Tensor', 'torch.Tensor', (['grad_kernel'], {}), '(grad_kernel)\n', (3259, 3272), False, 'import torch\n'), ((5077, 5104), 'torch.Tensor', 'torch.Tensor', (['kernel_matrix'], {}), '(kernel_matrix)\n', (5089, 5104), False, 'import torch\n'), ((5106, 5138), 'torch.Tensor', 'torch.Tensor', (['grad_kernel_matrix'], {}), '(grad_kernel_matrix)\n', (5118, 5138), False, 'import torch\n'), ((266, 284), 'scipy.stats.norm.pdf', 'norm.pdf', (['x', '(-2)', '(1)'], {}), '(x, -2, 1)\n', (274, 284), False, 'from scipy.stats import gaussian_kde, norm\n'), ((293, 310), 'scipy.stats.norm.pdf', 'norm.pdf', (['x', '(2)', '(1)'], {}), '(x, 2, 1)\n', (301, 310), False, 'from scipy.stats import gaussian_kde, norm\n'), ((349, 368), 'scipy.stats.norm.pdf', 'norm.pdf', (['x', '(-10)', '(1)'], {}), '(x, -10, 1)\n', (357, 368), False, 'from scipy.stats import gaussian_kde, norm\n'), ((377, 395), 'scipy.stats.norm.pdf', 'norm.pdf', (['x', '(10)', '(1)'], {}), '(x, 10, 1)\n', (385, 395), False, 'from scipy.stats import gaussian_kde, norm\n'), ((525, 544), 'scipy.stats.norm.pdf', 'norm.pdf', (['x', '(6)', '(0.5)'], {}), '(x, 6, 0.5)\n', (533, 544), False, 'from scipy.stats import gaussian_kde, norm\n'), ((1779, 1791), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (1789, 1791), True, 'import matplotlib.pyplot as plt\n'), ((1809, 1833), 'numpy.arange', 'np.arange', (['(-20)', '(20)', '(0.01)'], {}), '(-20, 20, 0.01)\n', (1818, 1833), True, 'import numpy as np\n'), ((2488, 2516), 'torch.sqrt', 'torch.sqrt', (['accumulated_grad'], {}), '(accumulated_grad)\n', (2498, 2516), False, 'import torch\n'), ((2533, 2564), 'torch.div', 'torch.div', (['(step * phi)', 'stepsize'], {}), '(step * phi, stepsize)\n', (2542, 2564), False, 'import torch\n'), ((2929, 2951), 'torch.dist', 'torch.dist', (['x[i]', 'x[j]'], {}), '(x[i], x[j])\n', (2939, 2951), False, 'import torch\n'), ((4312, 4330), 'numpy.array', 'np.array', (['grad_log'], {}), '(grad_log)\n', (4320, 4330), True, 'import numpy as np\n'), ((497, 514), 'scipy.stats.norm.pdf', 'norm.pdf', (['x', '(5)', '(5)'], {}), '(x, 5, 5)\n', (505, 514), False, 'from scipy.stats import gaussian_kde, norm\n'), ((2207, 2238), 'torch.matmul', 'torch.matmul', (['kernel', 'grad_logp'], {}), '(kernel, grad_logp)\n', (2219, 2238), False, 'import torch\n'), ((440, 458), 'scipy.stats.norm.pdf', 'norm.pdf', (['x', '(-2)', '(3)'], {}), '(x, -2, 3)\n', (448, 458), False, 'from scipy.stats import gaussian_kde, norm\n'), ((469, 486), 'scipy.stats.norm.pdf', 'norm.pdf', (['x', '(2)', '(1)'], {}), '(x, 2, 1)\n', (477, 486), False, 'from scipy.stats import gaussian_kde, norm\n'), ((2243, 2273), 'torch.mean', 'torch.mean', (['grad_kernel'], {'dim': '(1)'}), '(grad_kernel, dim=1)\n', (2253, 2273), False, 'import torch\n'), ((3450, 3469), 'torch.norm', 'torch.norm', (['(x1 - x2)'], {}), '(x1 - x2)\n', (3460, 3469), False, 'import torch\n'), ((3608, 3627), 'torch.norm', 'torch.norm', (['(x1 - x2)'], {}), '(x1 - x2)\n', (3618, 3627), False, 'import torch\n')]
|
import numpy as np
import numba
from typing import List, Callable
from scipy.constants import speed_of_light
from divergence_approx import div_vec_approx, gradient_vec
"""Adams-Bashforth 2-step method coeffs"""
adams_bashforth2_c0: float = 3. / 2.
adams_bashforth2_c1: float = -1. / 2.
"""Adams-Bashforth 3-step method coeffs"""
adams_bashforth3_c0: float = 23. / 12.
adams_bashforth3_c1: float = -4. / 3.
adams_bashforth3_c2: float = 5. / 12.
"""Adams-Bashforth 4-step method coeffs"""
adams_bashforth4_c0: float = 55. / 24.
adams_bashforth4_c1: float = -59. / 24.
adams_bashforth4_c2: float = 37. / 24.
adams_bashforth4_c3: float = -3. / 8.
"""Adams-Bashforth 5-step method coeffs"""
adams_bashforth5_c0: float = 1901. / 720.
adams_bashforth5_c1: float = -1387. / 360.
adams_bashforth5_c2: float = 109. / 30.
adams_bashforth5_c3: float = -637. / 360.
adams_bashforth5_c4: float = 251. / 720.
@numba.jit(nopython=True, parallel=True, nogil=True)
def f_function(params: List[float]) -> float:
"""
:param params: List of float custom function parameters
:return: float scalar
:examples:
"""
if params[0] == 0. or params[0] == params[1]:
return 0.
if np.abs(params[1]**2 / params[0] * (params[1] - params[0])) >= 20.:
return 0.
if params[1] > params[0] > 0.:
return np.exp(-(params[1]**2 / (params[0] * (params[1] - params[0]))))
else:
return 0.
@numba.jit(nopython=True, parallel=True, nogil=True)
def proportion_linear(time_right: float,
time_between: float,
time_step: float) -> tuple:
"""
:param time_right: right border in time
:param time_between: time between borders
:param time_step: step in time between borders
:return: _Iterable_(alpha, beta)
Typical usage example:
time_between = 1.98
time_step = time_2 - time_1
alpha, beta = proportion_linear(time_2, time_between, time_step)
assert alpha + beta == 1
assert alpha > beta
"""
beta = (time_between - time_right) / time_step
return (1 - beta), beta
@numba.jit(nopython=True, parallel=True, nogil=True)
def component_next_euler(vec_integral: np.array = None,
vec_integral_1: np.array = None,
vec_integral_2: np.array = None,
vec_integral_3: np.array = None,
vec_integral_4: np.array = None,
vec_cur: np.array = None,
vec_cur_1: np.array = None,
vec_cur_2: np.array = None,
vec_cur_3: np.array = None,
delta: float = 0.1,
**kwargs) -> np.array:
return vec_integral * 2 * delta + vec_cur_1
@numba.jit(nopython=True, parallel=True, nogil=True)
def component_next_euler2(vec_integral: np.array = None,
vec_integral_1: np.array = None,
vec_integral_2: np.array = None,
vec_integral_3: np.array = None,
vec_integral_4: np.array = None,
vec_cur: np.array = None,
vec_cur_1: np.array = None,
vec_cur_2: np.array = None,
vec_cur_3: np.array = None,
delta: float = 0.1,
**kwargs) -> np.array:
return 8 * vec_cur - 8 * vec_cur_2 + vec_cur_3 + 12 * delta * vec_integral_1
@numba.jit(nopython=True, parallel=True, nogil=True)
def component_next_adams(vec_integral: np.array = None,
vec_integral_1: np.array = None,
vec_integral_2: np.array = None,
vec_integral_3: np.array = None,
vec_integral_4: np.array = None,
vec_cur: np.array = None,
vec_cur_1: np.array = None,
vec_cur_2: np.array = None,
vec_cur_3: np.array = None,
delta: float = 0.1,
**kwargs) -> np.array:
return vec_cur + delta * vec_integral
@numba.jit(nopython=True, parallel=True, nogil=True)
def component_next_adams2(vec_integral: np.array = None,
vec_integral_1: np.array = None,
vec_integral_2: np.array = None,
vec_integral_3: np.array = None,
vec_integral_4: np.array = None,
vec_cur: np.array = None,
vec_cur_1: np.array = None,
vec_cur_2: np.array = None,
vec_cur_3: np.array = None,
delta: float = 0.1,
**kwargs) -> np.array:
return vec_cur + delta * (adams_bashforth2_c0 * vec_integral +
adams_bashforth2_c1 * vec_integral_1)
@numba.jit(nopython=True, parallel=True, nogil=True)
def component_next_adams3(vec_integral: np.array = None,
vec_integral_1: np.array = None,
vec_integral_2: np.array = None,
vec_integral_3: np.array = None,
vec_integral_4: np.array = None,
vec_cur: np.array = None,
vec_cur_1: np.array = None,
vec_cur_2: np.array = None,
vec_cur_3: np.array = None,
delta: float = 0.1,
**kwargs):
return vec_cur + delta * (adams_bashforth3_c0 * vec_integral +
adams_bashforth3_c1 * vec_integral_1 +
adams_bashforth3_c2 * vec_integral_2)
@numba.jit(nopython=True, parallel=True, nogil=True)
def component_next_adams4(vec_integral: np.array = None,
vec_integral_1: np.array = None,
vec_integral_2: np.array = None,
vec_integral_3: np.array = None,
vec_integral_4: np.array = None,
vec_cur: np.array = None,
vec_cur_1: np.array = None,
vec_cur_2: np.array = None,
vec_cur_3: np.array = None,
delta: float = 0.1,
**kwargs):
return vec_cur + delta * (adams_bashforth4_c0 * vec_integral +
adams_bashforth4_c1 * vec_integral_1 +
adams_bashforth4_c2 * vec_integral_2 +
adams_bashforth4_c3 * vec_integral_3)
@numba.jit(nopython=True, parallel=True, nogil=True)
def component_next_adams5(vec_integral: np.array = None,
vec_integral_1: np.array = None,
vec_integral_2: np.array = None,
vec_integral_3: np.array = None,
vec_integral_4: np.array = None,
vec_cur: np.array = None,
vec_cur_1: np.array = None,
vec_cur_2: np.array = None,
vec_cur_3: np.array = None,
delta: float = 0.1,
**kwargs):
return vec_cur + delta * (adams_bashforth5_c0 * vec_integral +
adams_bashforth5_c1 * vec_integral_1 +
adams_bashforth5_c2 * vec_integral_2 +
adams_bashforth5_c3 * vec_integral_3 +
adams_bashforth5_c4 * vec_integral_4)
class ProblemSolving:
# ------------------------------------------------------------------------------------------
number_of_frames: int # Количество разбиений объекта
number_of_steps: int # Количество временных шагов эксперимента
time_step: float # Временной шаг для процесса во времени
max_time: float # Максимальное время расчёта
timeline: np.array # Массив временных отметок в виде массива numpy
timeline_index: np.array # Массив индексов временных отметок в виде массива numpy
_time_current_: int # Обозначение текущего времени отсчёта
# ------------------------------------------------------------------------------------------
free_function: Callable # Функция правой части
free_function_params: List[float] # Параметры функции правой части
orientation: np.array # Массив типа numpy - нормированный вектор направления распространения волны
component_next_func: Callable # Функция для поиска следующей компоненты по определению первой производной
# ------------------------------------------------------------------------------------------
Q: np.array # Массив данных поверхностных зарядов на объекте на каждый временной шаг
P: np.array # Массив данных временных производных пов. зарядов на объекте на каждый шаг
G: np.array # Массив данных векторов касательных токов на объекте на каждый шаг
D: np.array # Массив данных временных произв. векторов кас. токов на объекте на каждый шаг
# ------------------------------------------------------------------------------------------
frames: np.array # Массив данных разбиений на решаемом объекте
collocations: np.array # Массив данных коллокаций на решаемом объекте
norms: np.array # Массив данных нормалей к разбиениям на объекте
neighbours: np.array # Массив индексов соседей для каждой ячейки разбиения
tau: np.array # Параметры запаздывания во времени по объекту
coefficients_G1: np.array # Массив данных коэффициентов для первого интегрального ядра G1: NxNx3
coefficients_G2: np.array # Массив данных коэффициентов для первого интегрального ядра G2: NxNx3
coefficients_G3: np.array # Массив данных коэффициентов для первого интегрального ядра G3: NxNx1
def __init__(self,
time_step: float,
max_time: float,
number_of_frames: int,
free_function: Callable = f_function,
free_function_params: List[float] = None,
component_next_func: Callable = component_next_euler2,
orientation: np.array = np.array([0., 1., 0.]),
frames: np.array = None,
collocations: np.array = None,
norms: np.array = None,
neighbours: np.array = None,
collocation_distances: np.array = None,
coefficients_G1: np.array = None,
coefficients_G2: np.array = None,
coefficients_G3: np.array = None):
"""
:param time_step: - step in time for non-stationary experiment
:param max_time: - maximum time of observation
:param number_of_frames: - number of frames in object
"""
# Блок метаинформации
self.time_step = time_step
self.max_time = max_time
self.timeline = np.arange(0, max_time, time_step)
self.timeline_index = np.arange(0, self.timeline.shape[0], 1)
self.number_of_frames = number_of_frames
self.number_of_steps = len(self.timeline_index) - 1
self._time_current_ = 1 # t
# Блок входных данных задачи
self.free_function = free_function
self.free_function_params = free_function_params
if orientation is None:
self.orientation = np.array([0., 1., 0.])
else:
self.orientation = np.array(orientation) / np.sqrt(np.array(orientation) @ np.array(orientation))
self.component_next_func = component_next_func
# Блок выходных данных
self.Q = np.zeros((self.number_of_frames, 2, 1)) # np.array of (N, t, 1) elements
self.P = np.zeros((self.number_of_frames, 2, 1)) # np.array of (N, t, 1) elements
self.G = np.zeros((self.number_of_frames, 2, 3)) # np.array of (N, t, 3) elements
self.D = np.zeros((self.number_of_frames, 1, 3)) # np.array of (N, t-1, 3) elements
# Блок обязательно считанных ранее данных фигур, касательно объекта, на котором решаем
self.frames = frames
self.collocations = collocations
self.norms = norms
self.neighbours = neighbours
self.tau = collocation_distances
self.coefficients_G1 = coefficients_G1
self.coefficients_G2 = coefficients_G2
self.coefficients_G3 = coefficients_G3
def time_index_between(self,
time: float) -> tuple:
"""
:param time: - scalar or np.array
:return: tuple of np.arrays
"""
return np.array(np.floor(time / self.time_step), dtype="int"), \
np.array(np.ceil(time / self.time_step), dtype="int")
def time_index(self,
time: float) -> np.array:
"""
:param time: - scalar or np.array
:return: np.array of indexes
"""
return np.array(np.round(time / self.time_step), dtype="int")
def get_Q_element(self,
time: float = 0.0,
frame: int = 0) -> float:
"""
:param time: - scalar
:param frame: - scalar
:return: float scalar
"""
if frame < 0 or frame >= self.number_of_frames:
return 0.0
if time < 0:
return 0.0
elif time > self.timeline[self._time_current_]:
return 0.0
else:
time_ind = self.time_index(time)
return self.Q[frame, time_ind, 0]
def get_Q_vec(self,
time: float = 0.0) -> np.array:
"""
:param time: - scalar
:return: np.array of (N, ) elements
"""
if time < 0:
return np.zeros(self.number_of_frames)
elif time > self.timeline[self._time_current_]:
return np.zeros(self.number_of_frames)
else:
time_ind = self.time_index(time)
return self.Q[:, time_ind, 0]
def get_Q_element_ind(self,
index: int = 0,
frame: int = 0) -> float:
"""
:param index: - scalar int
:param frame: - scalar int
:return: float scalar
"""
if frame < 0 or frame >= self.number_of_frames:
return 0.0
if index < 0:
return 0.0
elif index > self._time_current_:
return 0.0
else:
return self.Q[frame, index, 0]
def get_Q_vec_ind(self,
index: int = 0) -> np.array:
"""
:param index: - scalar int
:return: np.array of (N, ) elements
"""
if index < 0:
return np.zeros(self.number_of_frames)
elif index > self._time_current_:
return np.zeros(self.number_of_frames)
else:
return self.Q[:, index, 0]
def get_P_element(self,
time: float = 0.0,
frame: int = 0) -> float:
"""
:param time: - scalar
:param frame: - scalar
:return: float scalar
"""
if frame < 0 or frame >= self.number_of_frames:
return 0.0
if time < 0:
return 0.0
elif time > self.timeline[self._time_current_]:
return 0.0
else:
time_ind = self.time_index(time)
return self.P[frame, time_ind, 0]
def get_P_vec(self,
time: float = 0.0) -> np.array:
"""
:param time: - scalar
:return: np.array of (N, ) elements
"""
if time < 0:
return np.zeros(self.number_of_frames)
elif time > self.timeline[self._time_current_]:
return np.zeros(self.number_of_frames)
else:
time_ind = self.time_index(time)
return self.P[:, time_ind, 0]
def get_P_element_ind(self,
index: int = 0,
frame: int = 0) -> float:
"""
:param index: - scalar int
:param frame: - scalar int
:return: float scalar
"""
if frame < 0 or frame >= self.number_of_frames:
return 0.0
if index < 0:
return 0.0
elif index > self._time_current_:
return 0.0
else:
return self.P[frame, index, 0]
def get_P_vec_ind(self,
index: int = 0) -> np.array:
"""
:param index: - scalar int
:return: np.array of (N, ) elements
"""
if index < 0:
return np.zeros(self.number_of_frames)
elif index > self._time_current_:
return np.zeros(self.number_of_frames)
else:
return self.P[:, index, 0]
def get_G_element(self,
time: float = 0.0,
frame: int = 0) -> np.array:
"""
:param time: - scalar
:param frame: - scalar
:return: np.array of 3 numbers in (i, j, k)
"""
if frame < 0 or frame >= self.number_of_frames:
return np.zeros(3)
if time < 0:
return np.zeros(3)
elif time > self.timeline[self._time_current_]:
return np.zeros(3)
else:
time_ind = self.time_index(time)
return self.G[frame, time_ind]
def get_G_vec(self,
time: float = 0.0) -> np.array:
"""
:param time: - scalar
:return: np.array of (N, 3) elements
"""
if time < 0:
return np.zeros((self.number_of_frames, 3))
elif time > self.timeline[self._time_current_]:
return np.zeros((self.number_of_frames, 3))
else:
time_ind = self.time_index(time)
return self.G[:, time_ind]
def get_G_element_ind(self,
index: int = 0,
frame: int = 0) -> np.array:
"""
:param index: - scalar int
:param frame: - scalar int
:return: np.array of 3 numbers in (i, j, k)
"""
if frame < 0 or frame >= self.number_of_frames:
return np.zeros(3)
if index < 0:
return np.zeros(3)
elif index > self._time_current_:
return np.zeros(3)
else:
return self.G[frame, index]
def get_G_vec_ind(self,
index: int = 0) -> np.array:
"""
:param index: - scalar int
:return: np.array of (N, 3) elements
"""
if index < 0:
return np.zeros((self.number_of_frames, 3))
elif index > self._time_current_:
return np.zeros((self.number_of_frames, 3))
else:
return self.G[:, index]
def get_D_element(self,
time: float = 0.0,
frame: int = 0) -> np.array:
"""
:param time: - scalar
:param frame: - scalar
:return: np.array of 3 numbers in (i, j, k)
"""
if frame < 0 or frame >= self.number_of_frames:
return np.zeros(3)
if time < 0:
return np.zeros(3)
elif time > self.timeline[self._time_current_]:
return np.zeros(3)
else:
time_ind = self.time_index(time)
return self.D[frame, time_ind]
def get_D_vec(self,
time: float = 0.0) -> np.array:
"""
:param time: - scalar
:return: np.array of (N, 3) elements
"""
if time < 0:
return np.zeros((self.number_of_frames, 3))
elif time > self.timeline[self._time_current_]:
return np.zeros((self.number_of_frames, 3))
else:
time_ind = self.time_index(time)
return self.D[:, time_ind]
def get_D_element_ind(self,
index: int = 0,
frame: int = 0) -> np.array:
"""
:param index: - scalar int
:param frame: - scalar int
:return: np.array of 3 numbers in (i, j, k)
"""
if frame < 0 or frame >= self.number_of_frames:
return np.zeros(3)
if index < 0:
return np.zeros(3)
elif index > self._time_current_ - 1:
return np.zeros(3)
else:
return self.D[frame, index]
def get_D_vec_ind(self,
index: int = 0) -> np.array:
"""
:param index: - scalar int
:return: np.array of 3 numbers in (i, j, k)
"""
if index < 0:
return np.zeros((self.number_of_frames, 3))
elif index > self._time_current_ - 1:
return np.zeros((self.number_of_frames, 3))
else:
return self.D[:, index]
def time_current_get(self, mode: int = 0):
"""
:param mode: integer key for interpret what to return
:return: if mode == 0 returns integer index, else returns real time count
"""
if mode == 0:
return self._time_current_
else:
return self.timeline[self._time_current_]
def time_current_inc(self):
if self._time_current_ != self.max_time:
self._time_current_ += 1
def set_State(self,
new_Q: np.array = None,
new_P: np.array = None,
new_G: np.array = None,
new_D: np.array = None):
if new_Q is None:
self.Q = np.concatenate((self.Q, np.zeros((self.number_of_frames, 1))), axis=1)
else:
self.Q = np.concatenate((self.Q, new_Q.reshape((self.number_of_frames, 1))), axis=1)
if new_P is None:
self.P = np.concatenate((self.P, np.zeros((self.number_of_frames, 1))), axis=1)
else:
self.P = np.concatenate((self.P, new_P.reshape((self.number_of_frames, 1))), axis=1)
if new_G is None:
self.G = np.concatenate((self.G, np.zeros((self.number_of_frames, 3))), axis=1)
else:
self.G = np.concatenate((self.G, new_G.reshape((self.number_of_frames, 3))), axis=1)
if new_D is None:
self.D = np.concatenate((self.D, np.zeros((self.number_of_frames, 3))), axis=1)
else:
self.D = np.concatenate((self.D, new_D.reshape((self.number_of_frames, 3))), axis=1)
self.time_current_inc()
def step(self):
time = self.timeline[self._time_current_]
f_vec = np.zeros((self.number_of_frames, 3))
for i in range(self.number_of_frames):
coord = self.collocations[i][2]
f_vec[i] = np.cross(self.orientation * self.free_function((speed_of_light * time - coord, 1)), self.norms[i])
|
[
"numpy.abs",
"numpy.ceil",
"numpy.floor",
"numpy.zeros",
"numpy.array",
"numpy.arange",
"numba.jit",
"numpy.exp",
"numpy.round"
] |
[((901, 952), 'numba.jit', 'numba.jit', ([], {'nopython': '(True)', 'parallel': '(True)', 'nogil': '(True)'}), '(nopython=True, parallel=True, nogil=True)\n', (910, 952), False, 'import numba\n'), ((1421, 1472), 'numba.jit', 'numba.jit', ([], {'nopython': '(True)', 'parallel': '(True)', 'nogil': '(True)'}), '(nopython=True, parallel=True, nogil=True)\n', (1430, 1472), False, 'import numba\n'), ((2114, 2165), 'numba.jit', 'numba.jit', ([], {'nopython': '(True)', 'parallel': '(True)', 'nogil': '(True)'}), '(nopython=True, parallel=True, nogil=True)\n', (2123, 2165), False, 'import numba\n'), ((2808, 2859), 'numba.jit', 'numba.jit', ([], {'nopython': '(True)', 'parallel': '(True)', 'nogil': '(True)'}), '(nopython=True, parallel=True, nogil=True)\n', (2817, 2859), False, 'import numba\n'), ((3546, 3597), 'numba.jit', 'numba.jit', ([], {'nopython': '(True)', 'parallel': '(True)', 'nogil': '(True)'}), '(nopython=True, parallel=True, nogil=True)\n', (3555, 3597), False, 'import numba\n'), ((4234, 4285), 'numba.jit', 'numba.jit', ([], {'nopython': '(True)', 'parallel': '(True)', 'nogil': '(True)'}), '(nopython=True, parallel=True, nogil=True)\n', (4243, 4285), False, 'import numba\n'), ((5027, 5078), 'numba.jit', 'numba.jit', ([], {'nopython': '(True)', 'parallel': '(True)', 'nogil': '(True)'}), '(nopython=True, parallel=True, nogil=True)\n', (5036, 5078), False, 'import numba\n'), ((5878, 5929), 'numba.jit', 'numba.jit', ([], {'nopython': '(True)', 'parallel': '(True)', 'nogil': '(True)'}), '(nopython=True, parallel=True, nogil=True)\n', (5887, 5929), False, 'import numba\n'), ((6796, 6847), 'numba.jit', 'numba.jit', ([], {'nopython': '(True)', 'parallel': '(True)', 'nogil': '(True)'}), '(nopython=True, parallel=True, nogil=True)\n', (6805, 6847), False, 'import numba\n'), ((1191, 1251), 'numpy.abs', 'np.abs', (['(params[1] ** 2 / params[0] * (params[1] - params[0]))'], {}), '(params[1] ** 2 / params[0] * (params[1] - params[0]))\n', (1197, 1251), True, 'import numpy as np\n'), ((1326, 1391), 'numpy.exp', 'np.exp', (['(-(params[1] ** 2 / (params[0] * (params[1] - params[0]))))'], {}), '(-(params[1] ** 2 / (params[0] * (params[1] - params[0]))))\n', (1332, 1391), True, 'import numpy as np\n'), ((10382, 10407), 'numpy.array', 'np.array', (['[0.0, 1.0, 0.0]'], {}), '([0.0, 1.0, 0.0])\n', (10390, 10407), True, 'import numpy as np\n'), ((11128, 11161), 'numpy.arange', 'np.arange', (['(0)', 'max_time', 'time_step'], {}), '(0, max_time, time_step)\n', (11137, 11161), True, 'import numpy as np\n'), ((11192, 11231), 'numpy.arange', 'np.arange', (['(0)', 'self.timeline.shape[0]', '(1)'], {}), '(0, self.timeline.shape[0], 1)\n', (11201, 11231), True, 'import numpy as np\n'), ((11863, 11902), 'numpy.zeros', 'np.zeros', (['(self.number_of_frames, 2, 1)'], {}), '((self.number_of_frames, 2, 1))\n', (11871, 11902), True, 'import numpy as np\n'), ((11964, 12003), 'numpy.zeros', 'np.zeros', (['(self.number_of_frames, 2, 1)'], {}), '((self.number_of_frames, 2, 1))\n', (11972, 12003), True, 'import numpy as np\n'), ((12065, 12104), 'numpy.zeros', 'np.zeros', (['(self.number_of_frames, 2, 3)'], {}), '((self.number_of_frames, 2, 3))\n', (12073, 12104), True, 'import numpy as np\n'), ((12166, 12205), 'numpy.zeros', 'np.zeros', (['(self.number_of_frames, 1, 3)'], {}), '((self.number_of_frames, 1, 3))\n', (12174, 12205), True, 'import numpy as np\n'), ((22728, 22764), 'numpy.zeros', 'np.zeros', (['(self.number_of_frames, 3)'], {}), '((self.number_of_frames, 3))\n', (22736, 22764), True, 'import numpy as np\n'), ((11613, 11638), 'numpy.array', 'np.array', (['[0.0, 1.0, 0.0]'], {}), '([0.0, 1.0, 0.0])\n', (11621, 11638), True, 'import numpy as np\n'), ((13189, 13220), 'numpy.round', 'np.round', (['(time / self.time_step)'], {}), '(time / self.time_step)\n', (13197, 13220), True, 'import numpy as np\n'), ((13988, 14019), 'numpy.zeros', 'np.zeros', (['self.number_of_frames'], {}), '(self.number_of_frames)\n', (13996, 14019), True, 'import numpy as np\n'), ((14949, 14980), 'numpy.zeros', 'np.zeros', (['self.number_of_frames'], {}), '(self.number_of_frames)\n', (14957, 14980), True, 'import numpy as np\n'), ((15880, 15911), 'numpy.zeros', 'np.zeros', (['self.number_of_frames'], {}), '(self.number_of_frames)\n', (15888, 15911), True, 'import numpy as np\n'), ((16841, 16872), 'numpy.zeros', 'np.zeros', (['self.number_of_frames'], {}), '(self.number_of_frames)\n', (16849, 16872), True, 'import numpy as np\n'), ((17352, 17363), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (17360, 17363), True, 'import numpy as np\n'), ((17404, 17415), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (17412, 17415), True, 'import numpy as np\n'), ((17819, 17855), 'numpy.zeros', 'np.zeros', (['(self.number_of_frames, 3)'], {}), '((self.number_of_frames, 3))\n', (17827, 17855), True, 'import numpy as np\n'), ((18417, 18428), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (18425, 18428), True, 'import numpy as np\n'), ((18470, 18481), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (18478, 18481), True, 'import numpy as np\n'), ((18834, 18870), 'numpy.zeros', 'np.zeros', (['(self.number_of_frames, 3)'], {}), '((self.number_of_frames, 3))\n', (18842, 18870), True, 'import numpy as np\n'), ((19352, 19363), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (19360, 19363), True, 'import numpy as np\n'), ((19404, 19415), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (19412, 19415), True, 'import numpy as np\n'), ((19819, 19855), 'numpy.zeros', 'np.zeros', (['(self.number_of_frames, 3)'], {}), '((self.number_of_frames, 3))\n', (19827, 19855), True, 'import numpy as np\n'), ((20417, 20428), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (20425, 20428), True, 'import numpy as np\n'), ((20470, 20481), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (20478, 20481), True, 'import numpy as np\n'), ((20845, 20881), 'numpy.zeros', 'np.zeros', (['(self.number_of_frames, 3)'], {}), '((self.number_of_frames, 3))\n', (20853, 20881), True, 'import numpy as np\n'), ((11681, 11702), 'numpy.array', 'np.array', (['orientation'], {}), '(orientation)\n', (11689, 11702), True, 'import numpy as np\n'), ((12873, 12904), 'numpy.floor', 'np.floor', (['(time / self.time_step)'], {}), '(time / self.time_step)\n', (12881, 12904), True, 'import numpy as np\n'), ((12946, 12976), 'numpy.ceil', 'np.ceil', (['(time / self.time_step)'], {}), '(time / self.time_step)\n', (12953, 12976), True, 'import numpy as np\n'), ((14095, 14126), 'numpy.zeros', 'np.zeros', (['self.number_of_frames'], {}), '(self.number_of_frames)\n', (14103, 14126), True, 'import numpy as np\n'), ((15042, 15073), 'numpy.zeros', 'np.zeros', (['self.number_of_frames'], {}), '(self.number_of_frames)\n', (15050, 15073), True, 'import numpy as np\n'), ((15987, 16018), 'numpy.zeros', 'np.zeros', (['self.number_of_frames'], {}), '(self.number_of_frames)\n', (15995, 16018), True, 'import numpy as np\n'), ((16934, 16965), 'numpy.zeros', 'np.zeros', (['self.number_of_frames'], {}), '(self.number_of_frames)\n', (16942, 16965), True, 'import numpy as np\n'), ((17491, 17502), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (17499, 17502), True, 'import numpy as np\n'), ((17931, 17967), 'numpy.zeros', 'np.zeros', (['(self.number_of_frames, 3)'], {}), '((self.number_of_frames, 3))\n', (17939, 17967), True, 'import numpy as np\n'), ((18543, 18554), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (18551, 18554), True, 'import numpy as np\n'), ((18932, 18968), 'numpy.zeros', 'np.zeros', (['(self.number_of_frames, 3)'], {}), '((self.number_of_frames, 3))\n', (18940, 18968), True, 'import numpy as np\n'), ((19491, 19502), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (19499, 19502), True, 'import numpy as np\n'), ((19931, 19967), 'numpy.zeros', 'np.zeros', (['(self.number_of_frames, 3)'], {}), '((self.number_of_frames, 3))\n', (19939, 19967), True, 'import numpy as np\n'), ((20547, 20558), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (20555, 20558), True, 'import numpy as np\n'), ((20947, 20983), 'numpy.zeros', 'np.zeros', (['(self.number_of_frames, 3)'], {}), '((self.number_of_frames, 3))\n', (20955, 20983), True, 'import numpy as np\n'), ((21763, 21799), 'numpy.zeros', 'np.zeros', (['(self.number_of_frames, 1)'], {}), '((self.number_of_frames, 1))\n', (21771, 21799), True, 'import numpy as np\n'), ((21992, 22028), 'numpy.zeros', 'np.zeros', (['(self.number_of_frames, 1)'], {}), '((self.number_of_frames, 1))\n', (22000, 22028), True, 'import numpy as np\n'), ((22221, 22257), 'numpy.zeros', 'np.zeros', (['(self.number_of_frames, 3)'], {}), '((self.number_of_frames, 3))\n', (22229, 22257), True, 'import numpy as np\n'), ((22450, 22486), 'numpy.zeros', 'np.zeros', (['(self.number_of_frames, 3)'], {}), '((self.number_of_frames, 3))\n', (22458, 22486), True, 'import numpy as np\n'), ((11713, 11734), 'numpy.array', 'np.array', (['orientation'], {}), '(orientation)\n', (11721, 11734), True, 'import numpy as np\n'), ((11737, 11758), 'numpy.array', 'np.array', (['orientation'], {}), '(orientation)\n', (11745, 11758), True, 'import numpy as np\n')]
|
#--------------------------------- utils.py file ---------------------------------------#
"""
This file contains utility functions and classes that support the TBNN-s class.
This includes cleaning and processing functions.
"""
# ------------ Import statements
import os
import timeit
import numpy as np
from tbnns import constants
import tensorflow as tf
def downsampleIdx(n_total, downsample):
"""
Produces a set of indices to index into a numpy array and shuffle/downsample it.
Arguments:
n_total -- int, total size of the array in that dimensionalization
downsample -- number that controls how we downsample the data
before saving it to disk. If None, no downsampling or shuffling is
done. If this number is more than 1, then it represents the number
of examples we want to save; if it is less than 1, it represents the
ratio of all training examples we want to save.
Returns:
idx -- numpy array of ints of size (n_take), which contains the indices
that we are supposed to take for downsampling.
"""
idx_tot = np.arange(n_total)
if downsample is None:
return idx_tot
np.random.shuffle(idx_tot)
assert downsample > 0, "downsample must be greater than 0!"
if int(downsample) > 1:
n_take = int(downsample)
if n_take > n_total:
print("Warning! This dataset has fewer than {} usable points. "
+ "All of them will be taken.".format(n_take))
n_take = n_total
else:
n_take = int(downsample * n_total)
if n_take > n_total: n_take = n_total # catches bug where downsample = 1.1
idx = idx_tot[0:n_take]
return idx
def cleanDiffusivity(diff, g=None, test_inputs=None, n_std=None,
prt_default=None, gamma_min=None, clip_elements=False,
bump_diff=True, verbose=True):
"""
This function is called to post-process the diffusivity and g produced for stability
Arguments:
diff -- numpy array of shape (n_useful, 3, 3) containing the originally predicted
diffusivity tensor
g -- numpy array of shape (n_useful, NUM_BASIS) containing the factor that multiplies
each tensor basis to produce the tensor diffusivity. Optional, if None it is not
used.
test_inputs -- numpy array of shape (n_useful, NUM_FEATURES) containing the test
point features that produced the diffusivity tensor we are dealing
with. Optional, if None it is not used.
n_std -- float, number of standard deviations around the training mean that each
test feature is allowed to be. Optional, if None, default value is read from
constants.py
prt_default -- float, default value of turbulent Prandlt number used when cleaning
diffusivities that are outright negative. Optional, if None is passed,
default value is read from constants.py
gamma_min -- float, minimum value of gamma = diffusivity/turbulent viscosity allowed.
Used to clean values that are positive but too close to zero. Optional,
if None is passed, default value is read from constants.py
clip_elements -- bool, optional argument. This decides whether we clip elements of
the matrix to make sure they are not too big or too small. By
default, this is False, so no clipping is applied.
bump_diff -- bool, optional argument. This decides whether we bump the
diagonal elements of the matrix in case the eigenvalues are
positive but small. This helps with stability, so it's True by default.
verbose -- optional argument, boolean that says whether we print some extra
information to the screen.
Returns:
diff -- numpy array of shape (n_useful, 3, 3) containing the post-processed
diffusivity tensor
g -- numpy array of shape (n_useful, NUM_BASIS) containing the post-processed
factor that multiplies each tensor basis to produce the tensor diffusivity.
If g=None is the argument, then this is NOT returned.
"""
# Get default values if None is passed
if n_std is None:
n_std = constants.N_STD
if prt_default is None:
prt_default = constants.PRT_DEFAULT
if gamma_min is None:
gamma_min = constants.GAMMA_MIN
print("Cleaning predicted diffusivity... ", end="", flush=True)
tic = timeit.default_timer()
# (1) Here, make sure that there is no input more or less than n_std away
# from the mean. Since test_inputs was normalized, it should not be more
# than n_std or less than -n_std if we don't want test points too different
# from the training data. We are cleaning points that, by a very simple measure,
# denote extrapolation from the training set
mask_ext = np.zeros(diff.shape[0], dtype=bool)
if test_inputs is not None:
mask_ext = (np.amax(test_inputs,axis=1) > n_std) + \
(np.amin(test_inputs,axis=1) < -n_std)
diff, g = applyMask(diff, g, mask_ext, prt_default)
num_ext = np.sum(mask_ext) # total number of entries affected by this step
#--------------------------------------------------------------------
# (2) Here, make sure all matrix entries are bounded according to gamma_min.
# Diagonal elements must be positive, between 1/gamma_min and gamma_min.
# Off-diagonal can be negative, but must lie between -1/gamma_min and 1/gamma_min.
num_clip = 0
if clip_elements:
for i in range(3):
for j in range(3):
if i == j: min = gamma_min
else: min = -1.0/gamma_min
max = 1.0/gamma_min
diff, num = clipElements(diff, i, j, min, max)
num_clip += num
#--------------------------------------------------------------------
# (3) Here, make sure that all matrices are positive-semidefinite. For a general real
# matrix, this holds iff its symmetric part is positive semi-definite
diff_sym = 0.5*(diff+np.transpose(diff,axes=(0,2,1))) # symmetric part of diff
eig_all, _ = np.linalg.eigh(diff_sym)
eig_min = np.amin(eig_all, axis=1)
diff, g = applyMask(diff, g, eig_min < 0, prt_default)
num_eig = np.sum(eig_min < 0) # number of entries with negative eigenvalue
#--------------------------------------------------------------------
# (4) Add a complement to increase the minimum eigenvalues beyond gamma_min
if bump_diff:
complement = np.zeros_like(eig_min)
mask = (eig_min >= 0) * (eig_min < gamma_min)
complement[mask] = gamma_min - eig_min[mask]
assert (complement >= 0).all(), "Negative complement. Something is wrong..."
diff[:,0,0] = diff[:,0,0] + complement
diff[:,1,1] = diff[:,1,1] + complement
diff[:,2,2] = diff[:,2,2] + complement
if g is not None: g[:,0] = g[:,0] + complement
num_bump = np.sum((eig_min<gamma_min)*(eig_min>=0)) # small, positive eigenvalue
#--------------------------------------------------------------------
# (5) Here, make sure that no diffusivities have negative diagonals.
# After cleaning non-PSD, all diagonals should be positive. Throw error if a negative
# one is found
t = np.amin([diff[:,0,0],diff[:,1,1],diff[:,2,2]],axis=0) # minimum diagonal entry
assert (t >= 0).all(), "Negative diagonal detected. That's not supposed to happen"
#--------------------------------------------------------------------
# Calculate minimum real part of eigenvalue and minimum diagonal entry
# after cleaning
diff_sym = 0.5*(diff+np.transpose(diff,axes=(0,2,1)))
eig_all, _ = np.linalg.eigh(diff_sym)
min_eig = np.amin(eig_all)
min_diag = np.amin(np.concatenate((diff[:,0,0], diff[:,1,1], diff[:,2,2])),axis=0)
# Print information
toc = timeit.default_timer()
print("Done! It took {:.1f}s".format(toc-tic), flush=True)
if verbose:
if test_inputs is not None:
print("{} points ({:.2f}% of total) were cleaned due to outlier inputs."\
.format(num_ext, 100.0*num_ext/diff.shape[0]), flush=True)
if clip_elements:
print("{} entries ({:.2f}% of total) were clipped due to extreme values."\
.format(num_clip, 100.0*num_clip/(9*diff.shape[0])), flush=True)
print("{} points ({:.2f}% of total) were cleaned due to non-PSD matrices."\
.format(num_eig, 100.0*num_eig/diff.shape[0]), flush=True)
if bump_diff:
print("{} points ({:.2f}% of total) were almost non-PSD and got fixed."\
.format(num_bump, 100.0*num_bump/diff.shape[0]), flush=True)
print("In cleaned diffusivity: min eigenvalue of "
+ "symmetric part = {:g}".format(min_eig)
+ ", minimum diagonal entry = {:g}".format(min_diag), flush=True)
if g is None: return diff
else: return diff, g
def clipElements(diff, i, j, min, max):
"""
Clips one entry of the diffusivity matrix diff
Arguments:
diff -- numpy array of shape (n_useful, 3, 3) containing the originally predicted
diffusivity tensor
i -- first index over which we clip, 0 <= i <= 2
j -- second index over which we clip, 0 <= i <= 2
min -- minimum value that clipped entry can have
max -- maximum value that clipped entry can have
Returns:
diff -- numpy array of shape (n_useful, 3, 3) containing the clipped
diffusivity tensor
num -- total number of entries affected by this clipping
"""
# counts how many elements we are modifying
num = np.sum(diff[:,i,j]<min) + np.sum(diff[:,i,j]>max)
diff[diff[:,i,j]<min,i,j] = min
diff[diff[:,i,j]>max,i,j] = max
return diff, num
def applyMask(diff, g, mask, prt_default):
"""
This simple function applies a mask to diff and g.
Arguments:
diff -- numpy array of shape (n_useful, 3, 3) containing the originally predicted
diffusivity tensor
g -- numpy array of shape (n_useful, NUM_BASIS) containing the factor that multiplies
each tensor basis to produce the tensor diffusivity. Can be None.
mask -- boolean numpy array of shape (n_useful,) containing a mask which is True
in the places we want to blank out
prt_default -- float, default value of turbulent Prandlt number used when cleaning
diffusivities that are outright negative. If None is passed, default
value is read from constants.py
Returns:
diff -- numpy array of shape (n_useful, 3, 3) containing the post-processed
diffusivity tensor
g -- numpy array of shape (n_useful, NUM_BASIS) containing the post-processed
factor that multiplies each tensor basis to produce the tensor diffusivity.
If g=None in the argument, then None is returned.
"""
if prt_default is None:
prt_default = constants.PRT_DEFAULT
diff[mask,:,:] = 0.0
diff[mask,0,0] = 1.0/prt_default
diff[mask,1,1] = 1.0/prt_default
diff[mask,2,2] = 1.0/prt_default
if g is not None:
g[mask, :] = 0
g[mask, 0] = 1.0/prt_default
return diff, g
def calculateLogGamma(uc, gradc, nu_t, tf_flag=False):
"""
This function calculates log(gamma), where gamma=1/Pr_t, given u'c', gradc, and
eddy viscosity
Arguments:
uc -- np.array or tensor containing the u'c' vector, shape [None, 3]
gradc -- np.array or tensor containing the concentration gradient, shape [None, 3]
nu_t -- np.array or tensor containing the eddy viscosity, shape [None,]
tf_flag -- optional argument, bool which says whether we are dealing with tensorflow
tensors or with numpy arrays.
Returns:
log(gamma) -- np.array or tensor containing the natural log of gamma, shape [None,]
"""
if tf_flag:
alpha_t = tf.reduce_sum(-1.0*uc*gradc, axis=1)/tf.reduce_sum(gradc*gradc, axis=1)
gamma = alpha_t/nu_t
gamma = tf.maximum(gamma, constants.GAMMA_MIN)
gamma = tf.minimum(gamma, 1.0/constants.GAMMA_MIN)
return tf.log(gamma)
else:
alpha_t = np.sum(-1.0*uc*gradc, axis=1) / np.sum(gradc**2, axis=1)
gamma = alpha_t/nu_t
gamma[gamma<constants.GAMMA_MIN] = constants.GAMMA_MIN
gamma[gamma>1.0/constants.GAMMA_MIN] = 1.0/constants.GAMMA_MIN
return np.log(gamma)
def cleanAnisotropy(b, test_inputs=None, b_default_rans=None, n_std=None, verbose=True):
"""
This function is called to post-process the anisotropy b for realizability
Arguments:
b -- numpy array of shape (n_useful, 3, 3) containing the originally predicted
anisotropy tensor
test_inputs -- numpy array of shape (n_useful, NUM_FEATURES) containing the test
point features that produced the anisotropy tensor we are dealing
with. Optional, if None it is not used.
b_default_rans -- numpy array containing the default anisotropy tensor in RANS.
Shape is (num_points, 3, 3)
n_std -- float, number of standard deviations around the training mean that each
test feature is allowed to be. Optional, if None, default value is read from
constants.py
verbose -- optional argument, boolean that says whether we print some extra
information to the screen.
Returns:
b -- numpy array of shape (n_useful, 3, 3) containing the post-processed
anisotropy tensor
"""
# Get default values if None is passed
if n_std is None:
n_std = constants.N_STD
print("Cleaning predicted anisotropy tensor... ", end="", flush=True)
tic = timeit.default_timer()
# (1) Here, make sure that there is no input more or less than n_std away
# from the mean. Since test_inputs was normalized, it should not be more
# than n_std or less than -n_std if we don't want test points too different
# from the training data. We are cleaning points that, by a very simple measure,
# denote extrapolation from the training set
mask_ext = np.zeros(b.shape[0], dtype=bool)
if test_inputs is not None:
mask_ext = (np.amax(test_inputs,axis=1) > n_std) + \
(np.amin(test_inputs,axis=1) < -n_std)
num_ext = np.sum(mask_ext) # total number of entries affected by this step
if num_ext > 0: b[mask_ext, :, :] = b_default_rans[mask_ext, :, :]
#--------------------------------------------------------------------
# (2) Here, make sure all matrix entries are realizable.
b, n_real, _, = makeRealizableFast(b)
#--------------------------------------------------------------------
# Make sure no tensor entry disobeys the criterium in Ling et al. JFM 2016
mask = np.zeros(b.shape[0], dtype=bool)
for i in range(3):
for j in range(3):
if i == j:
mask = mask + (b[:,i,j] > 2.0/3)
mask = mask + (b[:,i,j] < -1.0/3)
else:
mask = mask + (b[:,i,j] > 0.5)
mask = mask + (b[:,i,j] < -0.5)
eig_all, _ = np.linalg.eigh(b)
mask = mask + (eig_all[:, 2] < (3.0*np.abs(eig_all[:, 1]) - eig_all[:, 1])/2.0)
mask = mask + (eig_all[:, 2] > 1.0/3 - eig_all[:, 1])
n_fail = np.sum(mask)
# Print information
toc = timeit.default_timer()
print("Done! It took {:.1f}s".format(toc-tic), flush=True)
if verbose:
if test_inputs is not None:
print("{} points ({:.2f}% of total) were cleaned due to outlier inputs."\
.format(num_ext, 100.0*num_ext/b.shape[0]), flush=True)
print("{} points ({:.2f}% of total) were cleaned due to non-realizable tensors."\
.format(n_real, 100.0*n_real/b.shape[0]), flush=True)
print("In cleaned anisotropy tensor: {} violations detected".format(n_fail))
return b
def makeRealizableFast(b):
"""
This function takes in Reynolds stress anisotropy tensor and makes it realizable
This function is based on code written by Dr. <NAME>. It checks that each
point represents a realizable turbulence state by verifying that it lies within
the barycentric map (c.f. Banerjee et al., Journal of Turbulence, 2017 and
Emory and Iaccarino, CTR Research Briefs, 2014). If a point lies outside the
triangle, it is moved to the nearest point on the boundary of the triangle.
Arguments:
b -- a numpy array of shape (num_points, 3, 3) containing the Reynolds
stress anisotropy components
Returns:
b -- corrected anisotropy tensor, shape (num_points, 3, 3)
n_fails -- number of points failing the realizability test
ind_fail -- numpy array of shape (num_points,) containing 1 if the original data
was not realizable, and 0 if it was realizable
"""
# Functions to transform between eigenvalues, barycentric weights, and barycentric coordinates
def eval_to_C(evalues):
C1 = evalues[0] - evalues[1]
C2 = 2.*(evalues[1] - evalues[2])
C3 = 3.*evalues[2] + 1.
C3 = 1. - C1 - C2 # Uncomment to verify sum(Ci) = 1
return C1, C2, C3
def C_to_x(C1, C2, C3):
x = np.zeros(2)
x[0] = C1 + 0.5*C3
x[1] = C3*np.sqrt(3)/2.
return x
def x_to_C(x):
C3 = x[1]*2./np.sqrt(3)
C1 = x[0] - 0.5*C3
C2 = 1. - C1 - C3
return C1, C2, C3
def C_to_eval(C1, C2, C3):
evalues = np.zeros(3)
evalues[0] = C1 + 0.5*C2 + C3/3. - 1./3.
evalues[1] = 0.5*C2 + C3/3. - 1./3.
evalues[2] = C3/3. - 1./3.
return evalues
# Get number of points, initialize number of realizability violations
num_points = b.shape[0]
n_fails = 0
ind_fail = np.zeros((num_points))
# Unit vectors defining edges opposite vertices 1, 2, 3
e1 = np.array([0.5, np.sqrt(3)/2.])
e1 = e1 / np.linalg.norm(e1)
e2 = e1
e2[0] = -1.*e2[0]
e3 = np.array([1., 0.])
e1perp = np.array([e1[1], -1.*e1[0]])
e2perp = np.array([-1.*e2[1], e2[0]])
e3perp = np.array([e3[1], e3[0]])
eperp_mat = np.transpose(np.array([e1perp, e2perp, e3perp]))
pert = 1.e-8
# Array of vertices 1, 2, 3: i.e. v1 = v[:, 0]
v = np.array([[1., 0., 0.5], [0., 0., np.sqrt(3)/2.]])
# Verify that b is symmetric with zero trace
b = 0.5 * (b + np.transpose(b, (0, 2, 1)))
trace_b = np.trace(b, axis1=1, axis2=2)
for i in range(3):
b[:, i, i] = b[:, i, i] - 1./3. * trace_b
# Loop over points to check realizability and project to barycentric map if necessary
for i in range(num_points):
# Initialize point's realizability indicator
fail_ID = 0
# Compute eigenvalues and eigenvectors
this_b = b[i, :, :]
evalues, evectors = np.linalg.eig(this_b)
sort = np.argsort(evalues)
sort = np.flip(sort,axis=0)
evalues = evalues[sort]
evectors = evectors[:, sort]
# Check realizability, correct if necessary
# Correction procedure: for each vertex, determine if outside triangle
# opposite edge - if yes, project to nearest point on that edge.
# At end, if still outside triangle, go to nearest vertex.
C1, C2, C3 = eval_to_C(evalues)
x = C_to_x(C1, C2, C3)
if C1 < 0.0:
fail_ID = 1
x = np.dot(x, e1)*e1 + pert*e1perp
C1, C2, C3 = x_to_C(x)
if C2 < 0.0:
fail_ID = 1
x = np.dot(x - e3, e2)*e2 + e3 + pert*e2perp
C1, C2, C3 = x_to_C(x)
if C3 < 0.0:
fail_ID = 1
x = np.dot(x, e3)*e3 + pert*e3perp
C1, C2, C3 = x_to_C(x)
if (C1 < 0.0) or (C2 < 0.0) or (C3 < 0.0):
delta_v = np.zeros(3)
for j in range(3):
v_temp = v[:, j]
delta_v[j] = np.linalg.norm(x - v_temp)
ind_min = np.argmin(delta_v)
x = v[:, ind_min] + pert*(eperp_mat[:, np.mod(ind_min-1, 3)] + eperp_mat[:, np.mod(ind_min+1, 3)])
# Compute corrected anisotropy tensor
if fail_ID == 1:
evalues = C_to_eval(C1, C2, C3)
this_b = np.dot(np.dot(evectors, np.diag(evalues)), np.linalg.inv(evectors))
b[i, :, :] = this_b
n_fails += 1
ind_fail[i] = fail_ID
# Verify that b is symmetric with zero trace
b = 0.5 * (b + np.transpose(b, (0, 2, 1)))
trace_b = np.trace(b, axis1=1, axis2=2)
for i in range(3):
b[:, i, i] = b[:, i, i] - 1./3. * trace_b
return b, n_fails, ind_fail
def suppressWarnings():
"""
This function suppresses several warnings from Tensorflow.
"""
if type(tf.contrib) != type(tf): tf.contrib._warning = None
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
os.environ['KMP_WARNINGS'] = 'off'
|
[
"numpy.trace",
"tensorflow.reduce_sum",
"numpy.sum",
"numpy.amin",
"numpy.abs",
"tensorflow.maximum",
"numpy.argmin",
"numpy.argsort",
"numpy.arange",
"numpy.linalg.norm",
"numpy.diag",
"numpy.zeros_like",
"numpy.transpose",
"numpy.linalg.eig",
"tensorflow.minimum",
"numpy.random.shuffle",
"numpy.mod",
"numpy.linalg.inv",
"tensorflow.log",
"numpy.dot",
"numpy.concatenate",
"numpy.flip",
"numpy.log",
"timeit.default_timer",
"numpy.zeros",
"numpy.amax",
"numpy.linalg.eigh",
"numpy.array",
"tensorflow.compat.v1.logging.set_verbosity",
"numpy.sqrt"
] |
[((1223, 1241), 'numpy.arange', 'np.arange', (['n_total'], {}), '(n_total)\n', (1232, 1241), True, 'import numpy as np\n'), ((1315, 1341), 'numpy.random.shuffle', 'np.random.shuffle', (['idx_tot'], {}), '(idx_tot)\n', (1332, 1341), True, 'import numpy as np\n'), ((4838, 4860), 'timeit.default_timer', 'timeit.default_timer', ([], {}), '()\n', (4858, 4860), False, 'import timeit\n'), ((5265, 5300), 'numpy.zeros', 'np.zeros', (['diff.shape[0]'], {'dtype': 'bool'}), '(diff.shape[0], dtype=bool)\n', (5273, 5300), True, 'import numpy as np\n'), ((5535, 5551), 'numpy.sum', 'np.sum', (['mask_ext'], {}), '(mask_ext)\n', (5541, 5551), True, 'import numpy as np\n'), ((6621, 6645), 'numpy.linalg.eigh', 'np.linalg.eigh', (['diff_sym'], {}), '(diff_sym)\n', (6635, 6645), True, 'import numpy as np\n'), ((6662, 6686), 'numpy.amin', 'np.amin', (['eig_all'], {'axis': '(1)'}), '(eig_all, axis=1)\n', (6669, 6686), True, 'import numpy as np\n'), ((6772, 6791), 'numpy.sum', 'np.sum', (['(eig_min < 0)'], {}), '(eig_min < 0)\n', (6778, 6791), True, 'import numpy as np\n'), ((7840, 7902), 'numpy.amin', 'np.amin', (['[diff[:, 0, 0], diff[:, 1, 1], diff[:, 2, 2]]'], {'axis': '(0)'}), '([diff[:, 0, 0], diff[:, 1, 1], diff[:, 2, 2]], axis=0)\n', (7847, 7902), True, 'import numpy as np\n'), ((8292, 8316), 'numpy.linalg.eigh', 'np.linalg.eigh', (['diff_sym'], {}), '(diff_sym)\n', (8306, 8316), True, 'import numpy as np\n'), ((8332, 8348), 'numpy.amin', 'np.amin', (['eig_all'], {}), '(eig_all)\n', (8339, 8348), True, 'import numpy as np\n'), ((8491, 8513), 'timeit.default_timer', 'timeit.default_timer', ([], {}), '()\n', (8511, 8513), False, 'import timeit\n'), ((14682, 14704), 'timeit.default_timer', 'timeit.default_timer', ([], {}), '()\n', (14702, 14704), False, 'import timeit\n'), ((15109, 15141), 'numpy.zeros', 'np.zeros', (['b.shape[0]'], {'dtype': 'bool'}), '(b.shape[0], dtype=bool)\n', (15117, 15141), True, 'import numpy as np\n'), ((15319, 15335), 'numpy.sum', 'np.sum', (['mask_ext'], {}), '(mask_ext)\n', (15325, 15335), True, 'import numpy as np\n'), ((15839, 15871), 'numpy.zeros', 'np.zeros', (['b.shape[0]'], {'dtype': 'bool'}), '(b.shape[0], dtype=bool)\n', (15847, 15871), True, 'import numpy as np\n'), ((16183, 16200), 'numpy.linalg.eigh', 'np.linalg.eigh', (['b'], {}), '(b)\n', (16197, 16200), True, 'import numpy as np\n'), ((16359, 16371), 'numpy.sum', 'np.sum', (['mask'], {}), '(mask)\n', (16365, 16371), True, 'import numpy as np\n'), ((16426, 16448), 'timeit.default_timer', 'timeit.default_timer', ([], {}), '()\n', (16446, 16448), False, 'import timeit\n'), ((18975, 18995), 'numpy.zeros', 'np.zeros', (['num_points'], {}), '(num_points)\n', (18983, 18995), True, 'import numpy as np\n'), ((19182, 19202), 'numpy.array', 'np.array', (['[1.0, 0.0]'], {}), '([1.0, 0.0])\n', (19190, 19202), True, 'import numpy as np\n'), ((19215, 19246), 'numpy.array', 'np.array', (['[e1[1], -1.0 * e1[0]]'], {}), '([e1[1], -1.0 * e1[0]])\n', (19223, 19246), True, 'import numpy as np\n'), ((19258, 19289), 'numpy.array', 'np.array', (['[-1.0 * e2[1], e2[0]]'], {}), '([-1.0 * e2[1], e2[0]])\n', (19266, 19289), True, 'import numpy as np\n'), ((19301, 19325), 'numpy.array', 'np.array', (['[e3[1], e3[0]]'], {}), '([e3[1], e3[0]])\n', (19309, 19325), True, 'import numpy as np\n'), ((19642, 19671), 'numpy.trace', 'np.trace', (['b'], {'axis1': '(1)', 'axis2': '(2)'}), '(b, axis1=1, axis2=2)\n', (19650, 19671), True, 'import numpy as np\n'), ((21773, 21802), 'numpy.trace', 'np.trace', (['b'], {'axis1': '(1)', 'axis2': '(2)'}), '(b, axis1=1, axis2=2)\n', (21781, 21802), True, 'import numpy as np\n'), ((22153, 22215), 'tensorflow.compat.v1.logging.set_verbosity', 'tf.compat.v1.logging.set_verbosity', (['tf.compat.v1.logging.ERROR'], {}), '(tf.compat.v1.logging.ERROR)\n', (22187, 22215), True, 'import tensorflow as tf\n'), ((7042, 7064), 'numpy.zeros_like', 'np.zeros_like', (['eig_min'], {}), '(eig_min)\n', (7055, 7064), True, 'import numpy as np\n'), ((7483, 7529), 'numpy.sum', 'np.sum', (['((eig_min < gamma_min) * (eig_min >= 0))'], {}), '((eig_min < gamma_min) * (eig_min >= 0))\n', (7489, 7529), True, 'import numpy as np\n'), ((8377, 8438), 'numpy.concatenate', 'np.concatenate', (['(diff[:, 0, 0], diff[:, 1, 1], diff[:, 2, 2])'], {}), '((diff[:, 0, 0], diff[:, 1, 1], diff[:, 2, 2]))\n', (8391, 8438), True, 'import numpy as np\n'), ((10359, 10386), 'numpy.sum', 'np.sum', (['(diff[:, i, j] < min)'], {}), '(diff[:, i, j] < min)\n', (10365, 10386), True, 'import numpy as np\n'), ((10385, 10412), 'numpy.sum', 'np.sum', (['(diff[:, i, j] > max)'], {}), '(diff[:, i, j] > max)\n', (10391, 10412), True, 'import numpy as np\n'), ((12879, 12917), 'tensorflow.maximum', 'tf.maximum', (['gamma', 'constants.GAMMA_MIN'], {}), '(gamma, constants.GAMMA_MIN)\n', (12889, 12917), True, 'import tensorflow as tf\n'), ((12935, 12979), 'tensorflow.minimum', 'tf.minimum', (['gamma', '(1.0 / constants.GAMMA_MIN)'], {}), '(gamma, 1.0 / constants.GAMMA_MIN)\n', (12945, 12979), True, 'import tensorflow as tf\n'), ((12994, 13007), 'tensorflow.log', 'tf.log', (['gamma'], {}), '(gamma)\n', (13000, 13007), True, 'import tensorflow as tf\n'), ((13295, 13308), 'numpy.log', 'np.log', (['gamma'], {}), '(gamma)\n', (13301, 13308), True, 'import numpy as np\n'), ((18376, 18387), 'numpy.zeros', 'np.zeros', (['(2)'], {}), '(2)\n', (18384, 18387), True, 'import numpy as np\n'), ((18657, 18668), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (18665, 18668), True, 'import numpy as np\n'), ((19117, 19135), 'numpy.linalg.norm', 'np.linalg.norm', (['e1'], {}), '(e1)\n', (19131, 19135), True, 'import numpy as np\n'), ((19356, 19390), 'numpy.array', 'np.array', (['[e1perp, e2perp, e3perp]'], {}), '([e1perp, e2perp, e3perp])\n', (19364, 19390), True, 'import numpy as np\n'), ((20064, 20085), 'numpy.linalg.eig', 'np.linalg.eig', (['this_b'], {}), '(this_b)\n', (20077, 20085), True, 'import numpy as np\n'), ((20102, 20121), 'numpy.argsort', 'np.argsort', (['evalues'], {}), '(evalues)\n', (20112, 20121), True, 'import numpy as np\n'), ((20138, 20159), 'numpy.flip', 'np.flip', (['sort'], {'axis': '(0)'}), '(sort, axis=0)\n', (20145, 20159), True, 'import numpy as np\n'), ((6545, 6579), 'numpy.transpose', 'np.transpose', (['diff'], {'axes': '(0, 2, 1)'}), '(diff, axes=(0, 2, 1))\n', (6557, 6579), True, 'import numpy as np\n'), ((8241, 8275), 'numpy.transpose', 'np.transpose', (['diff'], {'axes': '(0, 2, 1)'}), '(diff, axes=(0, 2, 1))\n', (8253, 8275), True, 'import numpy as np\n'), ((12760, 12800), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(-1.0 * uc * gradc)'], {'axis': '(1)'}), '(-1.0 * uc * gradc, axis=1)\n', (12773, 12800), True, 'import tensorflow as tf\n'), ((12797, 12833), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(gradc * gradc)'], {'axis': '(1)'}), '(gradc * gradc, axis=1)\n', (12810, 12833), True, 'import tensorflow as tf\n'), ((13048, 13081), 'numpy.sum', 'np.sum', (['(-1.0 * uc * gradc)'], {'axis': '(1)'}), '(-1.0 * uc * gradc, axis=1)\n', (13054, 13081), True, 'import numpy as np\n'), ((13080, 13106), 'numpy.sum', 'np.sum', (['(gradc ** 2)'], {'axis': '(1)'}), '(gradc ** 2, axis=1)\n', (13086, 13106), True, 'import numpy as np\n'), ((18511, 18521), 'numpy.sqrt', 'np.sqrt', (['(3)'], {}), '(3)\n', (18518, 18521), True, 'import numpy as np\n'), ((19599, 19625), 'numpy.transpose', 'np.transpose', (['b', '(0, 2, 1)'], {}), '(b, (0, 2, 1))\n', (19611, 19625), True, 'import numpy as np\n'), ((21067, 21078), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (21075, 21078), True, 'import numpy as np\n'), ((21225, 21243), 'numpy.argmin', 'np.argmin', (['delta_v'], {}), '(delta_v)\n', (21234, 21243), True, 'import numpy as np\n'), ((21730, 21756), 'numpy.transpose', 'np.transpose', (['b', '(0, 2, 1)'], {}), '(b, (0, 2, 1))\n', (21742, 21756), True, 'import numpy as np\n'), ((5355, 5383), 'numpy.amax', 'np.amax', (['test_inputs'], {'axis': '(1)'}), '(test_inputs, axis=1)\n', (5362, 5383), True, 'import numpy as np\n'), ((5417, 5445), 'numpy.amin', 'np.amin', (['test_inputs'], {'axis': '(1)'}), '(test_inputs, axis=1)\n', (5424, 5445), True, 'import numpy as np\n'), ((15196, 15224), 'numpy.amax', 'np.amax', (['test_inputs'], {'axis': '(1)'}), '(test_inputs, axis=1)\n', (15203, 15224), True, 'import numpy as np\n'), ((15258, 15286), 'numpy.amin', 'np.amin', (['test_inputs'], {'axis': '(1)'}), '(test_inputs, axis=1)\n', (15265, 15286), True, 'import numpy as np\n'), ((18435, 18445), 'numpy.sqrt', 'np.sqrt', (['(3)'], {}), '(3)\n', (18442, 18445), True, 'import numpy as np\n'), ((19086, 19096), 'numpy.sqrt', 'np.sqrt', (['(3)'], {}), '(3)\n', (19093, 19096), True, 'import numpy as np\n'), ((21175, 21201), 'numpy.linalg.norm', 'np.linalg.norm', (['(x - v_temp)'], {}), '(x - v_temp)\n', (21189, 21201), True, 'import numpy as np\n'), ((21541, 21564), 'numpy.linalg.inv', 'np.linalg.inv', (['evectors'], {}), '(evectors)\n', (21554, 21564), True, 'import numpy as np\n'), ((19505, 19515), 'numpy.sqrt', 'np.sqrt', (['(3)'], {}), '(3)\n', (19512, 19515), True, 'import numpy as np\n'), ((20652, 20665), 'numpy.dot', 'np.dot', (['x', 'e1'], {}), '(x, e1)\n', (20658, 20665), True, 'import numpy as np\n'), ((20925, 20938), 'numpy.dot', 'np.dot', (['x', 'e3'], {}), '(x, e3)\n', (20931, 20938), True, 'import numpy as np\n'), ((21522, 21538), 'numpy.diag', 'np.diag', (['evalues'], {}), '(evalues)\n', (21529, 21538), True, 'import numpy as np\n'), ((16242, 16263), 'numpy.abs', 'np.abs', (['eig_all[:, 1]'], {}), '(eig_all[:, 1])\n', (16248, 16263), True, 'import numpy as np\n'), ((20784, 20802), 'numpy.dot', 'np.dot', (['(x - e3)', 'e2'], {}), '(x - e3, e2)\n', (20790, 20802), True, 'import numpy as np\n'), ((21296, 21318), 'numpy.mod', 'np.mod', (['(ind_min - 1)', '(3)'], {}), '(ind_min - 1, 3)\n', (21302, 21318), True, 'import numpy as np\n'), ((21333, 21355), 'numpy.mod', 'np.mod', (['(ind_min + 1)', '(3)'], {}), '(ind_min + 1, 3)\n', (21339, 21355), True, 'import numpy as np\n')]
|
# -*- coding: utf-8 -*-
"""
Created on Tue Nov 17 17:43:51 2020
@author: emc1977
"""
# Energy of the system can be found as
# 1/2*kb*(sqrt(x1^2+(Lb+x2)^2)-Lb)^2
# 1/2*ka*(sqrt(x1^2+(La-x2)^2)-La)^2
# -F1x1-F2x2
import sympy
import numpy as np
x,y = sympy.symbols('x,y')
#need the following to create functions out of symbolix expressions
from sympy.utilities.lambdify import lambdify
from sympy import symbols, Matrix, Function, simplify, exp, hessian, solve, init_printing
init_printing()
ka=9.
kb=2.
La=10.
Lb=10.
F1=2.
F2=4.
X = Matrix([x,y])
f = Matrix([0.5*(ka*((x**2+(La-y)**2)**0.5 - La)**2)+0.5*(kb*((x**2+(Lb+y)**2)**0.5 - Lb)**2)-F1*x-F2*y])
print(np.shape(f))
#Since the Hessian is 2x2, then the Jacobian should be 2x1 (for the matrix multiplication)
gradf = simplify(f.jacobian(X)).transpose()
# #Create function that will take the values of x, y and return a jacobian
# #matrix with values
fgradf = lambdify([x,y], gradf)
print('Jacobian f', gradf)
hessianf = simplify(hessian(f, X))
# #Create a function that will return a Jessian matrix with values
fhessianf = lambdify([x,y], hessianf)
print('Hessian f', hessianf)
def Newton_Raphson_Optimize(Grad, Hess, x,y, epsilon=0.000001, nMax = 200):
#Initialization
i = 0
iter_x, iter_y, iter_count = np.empty(0),np.empty(0), np.empty(0)
error = 10
X = np.array([x,y])
#Looping as long as error is greater than epsilon
while np.linalg.norm(error) > epsilon and i < nMax:
i +=1
iter_x = np.append(iter_x,x)
iter_y = np.append(iter_y,y)
iter_count = np.append(iter_count ,i)
print(X)
X_prev = X
#X had dimensions (2,) while the 2nd term (2,1), so it had to be converted to 1D
X = X - np.matmul(np.linalg.inv(Hess(x,y)), Grad(x,y)).flatten()
error = X - X_prev
x,y = X[0], X[1]
return X, iter_x,iter_y, iter_count
root,iter_x,iter_y, iter_count = Newton_Raphson_Optimize(fgradf,fhessianf,1,1)
print(root)
|
[
"sympy.symbols",
"numpy.empty",
"sympy.utilities.lambdify.lambdify",
"sympy.Matrix",
"numpy.shape",
"numpy.append",
"sympy.init_printing",
"sympy.hessian",
"numpy.array",
"numpy.linalg.norm"
] |
[((263, 283), 'sympy.symbols', 'sympy.symbols', (['"""x,y"""'], {}), "('x,y')\n", (276, 283), False, 'import sympy\n'), ((494, 509), 'sympy.init_printing', 'init_printing', ([], {}), '()\n', (507, 509), False, 'from sympy import symbols, Matrix, Function, simplify, exp, hessian, solve, init_printing\n'), ((563, 577), 'sympy.Matrix', 'Matrix', (['[x, y]'], {}), '([x, y])\n', (569, 577), False, 'from sympy import symbols, Matrix, Function, simplify, exp, hessian, solve, init_printing\n'), ((584, 732), 'sympy.Matrix', 'Matrix', (['[0.5 * (ka * ((x ** 2 + (La - y) ** 2) ** 0.5 - La) ** 2) + 0.5 * (kb * ((x **\n 2 + (Lb + y) ** 2) ** 0.5 - Lb) ** 2) - F1 * x - F2 * y]'], {}), '([0.5 * (ka * ((x ** 2 + (La - y) ** 2) ** 0.5 - La) ** 2) + 0.5 * (\n kb * ((x ** 2 + (Lb + y) ** 2) ** 0.5 - Lb) ** 2) - F1 * x - F2 * y])\n', (590, 732), False, 'from sympy import symbols, Matrix, Function, simplify, exp, hessian, solve, init_printing\n'), ((954, 977), 'sympy.utilities.lambdify.lambdify', 'lambdify', (['[x, y]', 'gradf'], {}), '([x, y], gradf)\n', (962, 977), False, 'from sympy.utilities.lambdify import lambdify\n'), ((1124, 1150), 'sympy.utilities.lambdify.lambdify', 'lambdify', (['[x, y]', 'hessianf'], {}), '([x, y], hessianf)\n', (1132, 1150), False, 'from sympy.utilities.lambdify import lambdify\n'), ((693, 704), 'numpy.shape', 'np.shape', (['f'], {}), '(f)\n', (701, 704), True, 'import numpy as np\n'), ((1028, 1041), 'sympy.hessian', 'hessian', (['f', 'X'], {}), '(f, X)\n', (1035, 1041), False, 'from sympy import symbols, Matrix, Function, simplify, exp, hessian, solve, init_printing\n'), ((1389, 1405), 'numpy.array', 'np.array', (['[x, y]'], {}), '([x, y])\n', (1397, 1405), True, 'import numpy as np\n'), ((1327, 1338), 'numpy.empty', 'np.empty', (['(0)'], {}), '(0)\n', (1335, 1338), True, 'import numpy as np\n'), ((1339, 1350), 'numpy.empty', 'np.empty', (['(0)'], {}), '(0)\n', (1347, 1350), True, 'import numpy as np\n'), ((1352, 1363), 'numpy.empty', 'np.empty', (['(0)'], {}), '(0)\n', (1360, 1363), True, 'import numpy as np\n'), ((1552, 1572), 'numpy.append', 'np.append', (['iter_x', 'x'], {}), '(iter_x, x)\n', (1561, 1572), True, 'import numpy as np\n'), ((1590, 1610), 'numpy.append', 'np.append', (['iter_y', 'y'], {}), '(iter_y, y)\n', (1599, 1610), True, 'import numpy as np\n'), ((1632, 1656), 'numpy.append', 'np.append', (['iter_count', 'i'], {}), '(iter_count, i)\n', (1641, 1656), True, 'import numpy as np\n'), ((1473, 1494), 'numpy.linalg.norm', 'np.linalg.norm', (['error'], {}), '(error)\n', (1487, 1494), True, 'import numpy as np\n')]
|
# -*- coding: utf-8 -*-
# Copyright 2020 PyePAL authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Methods to validate inputs for the PAL classes"""
import collections
import warnings
from typing import Any, Iterable, List, Sequence, Union
import numpy as np
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.model_selection import GridSearchCV, RandomizedSearchCV
__all__ = [
"base_validate_models",
"validate_beta_scale",
"validate_coef_var",
"validate_coregionalized_gpy",
"validate_delta",
"validate_epsilon",
"validate_gbdt_models",
"validate_goals",
"validate_gpy_model",
"validate_interquartile_scaler",
"validate_ndim",
"validate_njobs",
"validate_nt_models",
"validate_number_models",
"validate_optimizers",
"validate_positive_integer_list",
"validate_sklearn_gpr_models",
]
def validate_ndim(ndim: Any) -> int:
"""Make sure that the number of dimensions makes sense
Args:
ndim (Any): number of dimensions
Raises:
ValueError: If the number of dimensions is not an integer
ValueError: If the number of dimensions is not greater than 0
Returns:
int: the number of dimensions
"""
if not isinstance(ndim, int):
raise ValueError("The number of dimensions, ndim, must be a positive integer")
if ndim <= 0:
raise ValueError("ndmin must be greater than 0")
return ndim
def validate_delta(delta: Any) -> float:
"""Make sure that delta is in a reasonable range
Args:
delta (Any): Delta hyperparameter
Raises:
ValueError: Delta must be in [0,1].
Returns:
float: delta
"""
if (delta > 1) | (delta < 0):
raise ValueError("The delta values must be in [0,1]")
return delta
def validate_beta_scale(beta_scale: Any) -> float:
"""
Args:
beta_scale (Any): scaling factor for beta
Raises:
ValueError: If beta is smaller than 0
Returns:
float: scaling factor for beta
"""
if beta_scale < 0:
raise ValueError("The beta_scale values must be positive")
return beta_scale
def validate_epsilon(epsilon: Any, ndim: int) -> np.ndarray:
"""Validate epsilon and return a np.array
Args:
epsilon (Any): Epsilon hyperparameter
ndim (int): Number of dimensions/objectives
Raises:
ValueError: If epsilon is a list there must be one float per dimension
ValueError: Epsilon must be in [0,1]
ValueError: If epsilon is an array there must be one float per dimension
Returns:
np.ndarray: Array of one epsilon per objective
"""
if isinstance(epsilon, list):
if len(epsilon) != ndim:
raise ValueError(
"If epsilon is provided as a list,\
there must be one float per dimension"
)
for value in epsilon:
if (value > 1) | (value < 0):
raise ValueError("The epsilon values must be in [0,1]")
return np.array(epsilon)
if isinstance(epsilon, np.ndarray):
if len(epsilon) != ndim:
raise ValueError(
"If epsilon is provided as a array,\
there must be one float per dimension"
)
for value in epsilon:
if (value > 1) | (value < 0):
raise ValueError("The epsilon values must be in [0,1]")
return epsilon
if (epsilon > 1) | (epsilon < 0):
raise ValueError("The epsilon values must be in [0,1]")
warnings.warn(
"""Only one epsilon value provided,
will automatically expand to use the same value in every dimension""",
UserWarning,
)
return np.array([epsilon] * ndim)
def validate_goals( # pylint:disable=too-many-branches
goals: Any, ndim: int
) -> np.ndarray:
"""Create a valid array of goals. 1 for maximization, -1
for objectives that are to be minimized.
Args:
goals (Any): List of goals,
typically provideded as strings 'max' for maximization
and 'min' for minimization
ndim (int): number of dimensions
Raises:
ValueError: If goals is a list and the length is not equal to ndim
ValueError: If goals is a list and the elements
are not strings 'min', 'max' or -1 and 1
Returns:
np.ndarray: Array of -1 and 1
"""
if goals is None:
warnings.warn(
"No goals provided, will assume that every dimension should be maximized",
UserWarning,
)
return np.array([1] * ndim)
if isinstance(goals, list):
if len(goals) != ndim:
raise ValueError("If goals is a list, the length must be equal to the ndim")
for goal in goals:
if not isinstance(goal, str) | (goal != 1) | (goal != -1):
raise ValueError("If goals is a list, it must be a list of strings")
clean_goals = []
for goal in goals:
if isinstance(goal, str):
if "max" in goal.lower():
clean_goals.append(1)
elif "min" in goal.lower():
clean_goals.append(-1)
else:
raise ValueError("The strings in the goals list must be min or max")
elif isinstance(goal, int):
if goal == 1:
clean_goals.append(1)
elif goal == -1:
clean_goals.append(-1)
else:
raise ValueError("The ints in the goals list must be 1 or -1")
assert len(clean_goals) == ndim
return np.array(clean_goals)
raise ValueError(
"Goal can be set to None or must be a list of strings\
or -1 and 1 of length equal to ndim"
)
def base_validate_models(models: Any) -> list:
"""Currently no validation as the predict and train function
are implemented independet of the base class"""
if models:
return models
raise ValueError("You must provide some models to initialize pyepal")
def validate_number_models(models: Any, ndim: int):
"""Make sure that there are as many models as objectives
Args:
models (Any): List of models
ndim (int): Number of objectives
Raises:
ValueError: If the number of models does not equal the number of objectives
"""
if not isinstance(models, list):
raise ValueError("You must provide a list of models. One model per objective")
if len(models) != ndim:
raise ValueError("You must provide a list of models. One model per objective")
def validate_gpy_model(models: Any):
"""Make sure that all elements of the list a GPRegression models"""
import GPy # pylint:disable=import-outside-toplevel
for model in models:
if not isinstance(model, GPy.models.GPRegression):
raise ValueError("The models must be an instance of GPy.model")
def validate_coregionalized_gpy(models: Any):
"""Make sure that model is a coregionalized GPR model"""
if not isinstance(models, list):
raise ValueError("You must provide a list of models with one element")
from ..models.coregionalized import ( # pylint:disable=import-outside-toplevel
GPCoregionalizedRegression,
)
if not isinstance(models[0], GPCoregionalizedRegression):
raise ValueError(
"Model must be a GPCoregionalized regression object from this package!"
)
def validate_njobs(njobs: Any) -> int:
"""Make sure that njobs is an int > 1"""
if not isinstance(njobs, int):
raise ValueError("njobs musst be of type int")
if njobs < 1:
raise ValueError("njobs must be a number greater equal 1")
return njobs
def validate_coef_var(coef_var: Any):
"""Make sure that the coef_var makes sense"""
if not isinstance(coef_var, (float, int)):
raise ValueError("coef_var must be of type float or int")
if coef_var <= 0:
raise ValueError("coef_var must be greater 0")
return coef_var
def _validate_sklearn_gpr_model(model: Any) -> GaussianProcessRegressor:
"""Make sure that we deal with a GaussianProcessRegressor instance,
if it is a fitted random or grid search instance, extract the model"""
if isinstance(model, (RandomizedSearchCV, GridSearchCV)):
try:
if isinstance(model.best_estimator_, GaussianProcessRegressor):
return model.best_estimator_
raise ValueError(
"""If you provide a grid or random search instance,
it needs to contain a GaussianProcessRegressor instance."""
)
except AttributeError as not_fitted_exception:
raise ValueError(
"If you provide a grid or random search instance it needs to be fitted."
) from not_fitted_exception
elif isinstance(model, GaussianProcessRegressor):
return model
raise ValueError("You need to provide a GaussianProcessRegressor instance.")
def validate_sklearn_gpr_models(
models: Any, ndim: int
) -> List[GaussianProcessRegressor]:
"""Make sure that there is a list of GPR models, one model per objective"""
validate_number_models(models, ndim)
models_validated = []
for model in models:
models_validated.append(_validate_sklearn_gpr_model(model))
return models_validated
def _validate_quantile_loss(lightgbmregressor):
try:
alpha = lightgbmregressor.alpha
loss = lightgbmregressor.objective
except AttributeError as missing_attribute:
raise ValueError(
"""Make sure that you initialize at
least the first and last model with quantile loss.
"""
) from missing_attribute
if loss != "quantile":
raise ValueError(
"""Make sure that you initialize at
least the first and last model with quantile loss.
"""
)
assert alpha > 0
def validate_gbdt_models(models: Any, ndim: int) -> List[Iterable]:
"""Make sure that the number of iterables is equal to the number of objectives
and that every iterable contains three LGBMRegressors.
Also, we check that at least the first and last models use quantile loss"""
validate_number_models(models, ndim)
from lightgbm import LGBMRegressor # pylint:disable=import-outside-toplevel
for model_tuple in models:
if len(model_tuple) != 3:
raise ValueError(
"""The model list must contain
tuples with three LGBMRegressor instances.
"""
)
for counter, model in enumerate(model_tuple):
if not isinstance(model, LGBMRegressor):
raise ValueError(
"""The model list must contain
tuples with three LGBMRegressor instances.
"""
)
if counter != 1:
_validate_quantile_loss(model)
return models
def validate_interquartile_scaler(interquartile_scaler: Any) -> float:
"""Make sure that the interquartile_scaler makes sense"""
if not isinstance(interquartile_scaler, (float, int)):
raise ValueError("interquartile_scaler must be a number.")
if interquartile_scaler < 0:
raise ValueError("interquartile_scaler must be a number greater 0.")
return interquartile_scaler
def _is_jaxoptimizer(optimizer: Any) -> bool:
from ..models.nt import JaxOptimizer # pylint:disable=import-outside-toplevel
return isinstance(optimizer, JaxOptimizer)
def validate_optimizers(optimizers: Any, ndim: int) -> Sequence:
"""Make sure that we can work with a Sequence if JaxOptimizer"""
if not isinstance(optimizers, Sequence):
raise ValueError("You must have one optimizer per objective.")
if not len(optimizers) == ndim:
raise ValueError(
"If you provide a sequence it must have one optimizer per objective."
)
for optimizer in optimizers:
if not _is_jaxoptimizer(optimizer):
raise ValueError(
"You need to provide a `pyepal.models.nt.JaxOptimizer` instance"
)
return optimizers
def validate_nt_models(models: Any, ndim: int) -> Sequence:
"""Make sure that we can work with a sequence of
:py:func:`pyepal.pal.models.nt.NTModel`"""
from pyepal.models.nt import NTModel # pylint:disable=import-outside-toplevel
if not isinstance(models, collections.Sequence):
raise ValueError(
"You need to provide a sequence of `pyepal.models.nt.NTModel` instances"
)
for model in models:
if not len(models) == ndim:
raise ValueError("You need to provide one model per objective.")
if not isinstance(model, NTModel):
raise ValueError(
"You need to provide a sequence of `pyepal.models.nt.NTModel` instances"
)
return models
def validate_positive_integer_list(
seq: Any, ndim: int, parameter_name: str = "Parameter"
) -> Sequence[int]:
"""Can be used, e.g., to validate and standardize the ensemble size
and epochs input"""
if not isinstance(seq, collections.Sequence):
if (not isinstance(seq, int)) or (seq < 1):
raise ValueError(f"{parameter_name} must be a positive integer")
return [seq] * ndim
if not len(seq) == ndim:
raise ValueError(
f"If you provide a sequence for {parameter_name} its length must match \
the number of objectives"
)
for elem in seq:
if (not isinstance(elem, int)) or (elem < 1):
raise ValueError(f"{parameter_name} must be a positive integer")
return seq
def validate_ranges(ranges: Any, ndim: int) -> Union[None, np.ndarray]:
"""Make sure that it has the correct numnber of elements and that all
elements are positive."""
if not isinstance(ranges, (np.ndarray, list)):
return None
if not len(ranges) == ndim:
raise ValueError(
"The number of elements in ranges must match the number of objectives."
)
for elem in ranges:
if not elem > 0:
raise ValueError("Ranges must be positive.")
return np.array(ranges)
|
[
"warnings.warn",
"numpy.array"
] |
[((4101, 4244), 'warnings.warn', 'warnings.warn', (['"""Only one epsilon value provided,\nwill automatically expand to use the same value in every dimension"""', 'UserWarning'], {}), '(\n """Only one epsilon value provided,\nwill automatically expand to use the same value in every dimension"""\n , UserWarning)\n', (4114, 4244), False, 'import warnings\n'), ((4269, 4295), 'numpy.array', 'np.array', (['([epsilon] * ndim)'], {}), '([epsilon] * ndim)\n', (4277, 4295), True, 'import numpy as np\n'), ((14782, 14798), 'numpy.array', 'np.array', (['ranges'], {}), '(ranges)\n', (14790, 14798), True, 'import numpy as np\n'), ((3576, 3593), 'numpy.array', 'np.array', (['epsilon'], {}), '(epsilon)\n', (3584, 3593), True, 'import numpy as np\n'), ((4988, 5098), 'warnings.warn', 'warnings.warn', (['"""No goals provided, will assume that every dimension should be maximized"""', 'UserWarning'], {}), "(\n 'No goals provided, will assume that every dimension should be maximized',\n UserWarning)\n", (5001, 5098), False, 'import warnings\n'), ((5141, 5161), 'numpy.array', 'np.array', (['([1] * ndim)'], {}), '([1] * ndim)\n', (5149, 5161), True, 'import numpy as np\n'), ((6219, 6240), 'numpy.array', 'np.array', (['clean_goals'], {}), '(clean_goals)\n', (6227, 6240), True, 'import numpy as np\n')]
|
import enum
import os
import re
from typing import Optional, Tuple
import numpy as np
from scipy.ndimage import median_filter
from skimage.io import imread
OCTOPUSLITE_FILEPATTERN = (
"img_channel(?P<channel>[0-9]+)_position(?P<position>[0-9]+)"
"_time(?P<time>[0-9]+)_z(?P<z>[0-9]+)"
)
@enum.unique
class Channels(enum.Enum):
BRIGHTFIELD = 0
GFP = 1
RFP = 2
IRFP = 3
PHASE = 4
WEIGHTS = 50
MASK_IRFP = 96
MASK_RFP = 97
MASK_GFP = 98
MASK = 99
def remove_outliers(x: np.ndarray) -> np.ndarray:
"""Remove bright outlier pixels from an image.
Parameters
----------
x : np.ndarray
An input image containing bright outlier pixels.
Returns
-------
x : np.ndarray
An image with the bright outlier pixels removed.
"""
med_x = median_filter(x, size=2)
mask = x > med_x
x = x * (1 - mask) + (mask * med_x)
return x
def remove_background(x: np.ndarray) -> np.ndarray:
"""Remove background using a polynomial surface.
Parameters
----------
x : np.ndarray
An input image .
Returns
-------
corrected : np.ndarray
The corrected input image, with the background removed.
"""
maskh, maskw = estimate_mask(x)
x = x.astype(np.float32)
bg = estimate_background(x[maskh, maskw])
corrected = x[maskh, maskw] - bg
corrected = corrected - np.min(corrected)
x[maskh, maskw] = corrected
return x
def estimate_background(x: np.ndarray) -> np.ndarray:
"""Estimate background using a second order polynomial surface.
Estimate the background of an image using a second-order polynomial surface
assuming sparse signal in the image. Essentially a massive least-squares
fit of the image to the polynomial.
Parameters
----------
x : np.ndarray
An input image which is to be used for estimating the background.
Returns
-------
background_estimate : np.ndarray
A second order polynomial surface representing the estimated background
of the image.
"""
# set up arrays for params and the output surface
A = np.zeros((x.shape[0] * x.shape[1], 6))
background_estimate = np.zeros((x.shape[1], x.shape[0]))
u, v = np.meshgrid(
np.arange(x.shape[1], dtype=np.float32),
np.arange(x.shape[0], dtype=np.float32),
)
A[:, 0] = 1.0
A[:, 1] = np.reshape(u, (x.shape[0] * x.shape[1],))
A[:, 2] = np.reshape(v, (x.shape[0] * x.shape[1],))
A[:, 3] = A[:, 1] * A[:, 1]
A[:, 4] = A[:, 1] * A[:, 2]
A[:, 5] = A[:, 2] * A[:, 2]
# convert to a matrix
A = np.matrix(A)
# calculate the parameters
k = np.linalg.inv(A.T * A) * A.T
k = np.squeeze(np.array(np.dot(k, np.ravel(x))))
# calculate the surface
background_estimate = (
k[0] + k[1] * u + k[2] * v + k[3] * u * u + k[4] * u * v + k[5] * v * v
)
return background_estimate
def estimate_mask(x: np.ndarray) -> Tuple[slice]:
"""Estimate the mask of a frame.
Masking may occur when frame registration has been performed.
Parameters
----------
x : np.ndarray
An input image which is to be used for estimating the background.
Returns
-------
mask : tuple (2,)
Slices representing the mask of the image.
"""
if hasattr(x, "compute"):
x = x.compute()
nonzero = np.nonzero(x)
sh = slice(np.min(nonzero[0]), np.max(nonzero[0]) + 1, 1)
sw = slice(np.min(nonzero[1]), np.max(nonzero[1]) + 1, 1)
return sh, sw
def parse_filename(filename: os.PathLike) -> dict:
"""Parse an OctopusLite filename and retreive metadata from the file.
Parameters
----------
filename : PathLike
The full path to a file to parse.
Returns
-------
metadata : dict
A dictionary containing the parsed metadata.
"""
pth, filename = os.path.split(filename)
params = re.match(OCTOPUSLITE_FILEPATTERN, filename)
metadata = {
"filename": filename,
"channel": Channels(int(params.group("channel"))),
"time": params.group("time"),
"position": params.group("position"),
"z": params.group("z"),
# "timestamp": os.stat(filename).st_mtime,
}
return metadata
def image_generator(files, crop: Optional[tuple] = None):
"""Image generator for iterative procesess
For many timelapse data related procesess (such as calculating mean values
and localising objects), using a generator function to iterative load single
frames is quicker than computing each frame and calculating using dask.
Parameters
----------
files : list
A list of image files which you wish to iterate over. Can be easily
generated using the DaskOctopusLiteLoader function 'files'.
E.g. image_generator(DaskOctopusLiteLoader.files('channel name'))
crop : tuple, optional
An optional tuple which can be used to perform a centred crop on the
image data.
Yields
------
img : np.ndarray
An image loaded from the given filename at that iteration.
"""
if crop is None:
for filename in files:
img = imread(filename)
yield img
else:
for filename in files:
img = imread(filename)
img = crop_image(img, crop)
yield img
def crop_image(img, crop):
"""Crops a central window from an input image given a crop area size tuple
Parameters
----------
img : np.ndarray
Input image.
crop : tuple
An tuple which is used to perform a centred crop on the
image data.
"""
shape = img.shape
dims = img.ndim
cslice = lambda d: slice(
int((shape[d] - crop[d]) // 2), int((shape[d] - crop[d]) // 2 + crop[d])
)
crops = tuple([cslice(d) for d in range(dims)])
img = img[crops]
return img
|
[
"numpy.matrix",
"numpy.ravel",
"numpy.zeros",
"re.match",
"numpy.nonzero",
"numpy.min",
"numpy.max",
"numpy.arange",
"numpy.reshape",
"numpy.linalg.inv",
"os.path.split",
"scipy.ndimage.median_filter",
"skimage.io.imread"
] |
[((827, 851), 'scipy.ndimage.median_filter', 'median_filter', (['x'], {'size': '(2)'}), '(x, size=2)\n', (840, 851), False, 'from scipy.ndimage import median_filter\n'), ((2153, 2191), 'numpy.zeros', 'np.zeros', (['(x.shape[0] * x.shape[1], 6)'], {}), '((x.shape[0] * x.shape[1], 6))\n', (2161, 2191), True, 'import numpy as np\n'), ((2218, 2252), 'numpy.zeros', 'np.zeros', (['(x.shape[1], x.shape[0])'], {}), '((x.shape[1], x.shape[0]))\n', (2226, 2252), True, 'import numpy as np\n'), ((2414, 2455), 'numpy.reshape', 'np.reshape', (['u', '(x.shape[0] * x.shape[1],)'], {}), '(u, (x.shape[0] * x.shape[1],))\n', (2424, 2455), True, 'import numpy as np\n'), ((2470, 2511), 'numpy.reshape', 'np.reshape', (['v', '(x.shape[0] * x.shape[1],)'], {}), '(v, (x.shape[0] * x.shape[1],))\n', (2480, 2511), True, 'import numpy as np\n'), ((2643, 2655), 'numpy.matrix', 'np.matrix', (['A'], {}), '(A)\n', (2652, 2655), True, 'import numpy as np\n'), ((3406, 3419), 'numpy.nonzero', 'np.nonzero', (['x'], {}), '(x)\n', (3416, 3419), True, 'import numpy as np\n'), ((3912, 3935), 'os.path.split', 'os.path.split', (['filename'], {}), '(filename)\n', (3925, 3935), False, 'import os\n'), ((3949, 3992), 're.match', 're.match', (['OCTOPUSLITE_FILEPATTERN', 'filename'], {}), '(OCTOPUSLITE_FILEPATTERN, filename)\n', (3957, 3992), False, 'import re\n'), ((1408, 1425), 'numpy.min', 'np.min', (['corrected'], {}), '(corrected)\n', (1414, 1425), True, 'import numpy as np\n'), ((2286, 2325), 'numpy.arange', 'np.arange', (['x.shape[1]'], {'dtype': 'np.float32'}), '(x.shape[1], dtype=np.float32)\n', (2295, 2325), True, 'import numpy as np\n'), ((2335, 2374), 'numpy.arange', 'np.arange', (['x.shape[0]'], {'dtype': 'np.float32'}), '(x.shape[0], dtype=np.float32)\n', (2344, 2374), True, 'import numpy as np\n'), ((2696, 2718), 'numpy.linalg.inv', 'np.linalg.inv', (['(A.T * A)'], {}), '(A.T * A)\n', (2709, 2718), True, 'import numpy as np\n'), ((3435, 3453), 'numpy.min', 'np.min', (['nonzero[0]'], {}), '(nonzero[0])\n', (3441, 3453), True, 'import numpy as np\n'), ((3497, 3515), 'numpy.min', 'np.min', (['nonzero[1]'], {}), '(nonzero[1])\n', (3503, 3515), True, 'import numpy as np\n'), ((3455, 3473), 'numpy.max', 'np.max', (['nonzero[0]'], {}), '(nonzero[0])\n', (3461, 3473), True, 'import numpy as np\n'), ((3517, 3535), 'numpy.max', 'np.max', (['nonzero[1]'], {}), '(nonzero[1])\n', (3523, 3535), True, 'import numpy as np\n'), ((5218, 5234), 'skimage.io.imread', 'imread', (['filename'], {}), '(filename)\n', (5224, 5234), False, 'from skimage.io import imread\n'), ((5316, 5332), 'skimage.io.imread', 'imread', (['filename'], {}), '(filename)\n', (5322, 5332), False, 'from skimage.io import imread\n'), ((2763, 2774), 'numpy.ravel', 'np.ravel', (['x'], {}), '(x)\n', (2771, 2774), True, 'import numpy as np\n')]
|
"""
Copyright (C) 2019 <NAME>, ETH Zurich
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
"""
import numpy as np
from scipy.stats import norm
from functools import partial
from sklearn.decomposition import PCA
from drnet.models.baselines.baseline import Baseline
class GPS(Baseline):
def __init__(self):
super(GPS, self).__init__()
self.gps = None
self.pca = None
def install_grf(self):
from rpy2.robjects.packages import importr
import rpy2.robjects.packages as rpackages
from rpy2.robjects.vectors import StrVector
import rpy2.robjects as robjects
# robjects.r.options(download_file_method='curl')
# package_names = ["causaldrf"]
# utils = rpackages.importr('utils')
# utils.chooseCRANmirror(ind=0)
# utils.chooseCRANmirror(ind=0)
#
# names_to_install = [x for x in package_names if not rpackages.isinstalled(x)]
# if len(names_to_install) > 0:
# utils.install_packages(StrVector(names_to_install))
return importr("causaldrf")
def _build(self, **kwargs):
from rpy2.robjects import numpy2ri, pandas2ri
gps = self.install_grf()
self.gps = gps
numpy2ri.activate()
pandas2ri.activate()
self.with_exposure = kwargs["with_exposure"]
return [None for _ in range(kwargs["num_treatments"])]
def predict(self, x):
def get_x_by_idx(idx):
data = [x[0][idx], x[1][idx]]
if len(x) == 1:
data[0] = np.expand_dims(data[0], axis=0)
if self.with_exposure:
data += [x[2][idx]]
return data
if self.pca is not None:
x[0] = self.pca.transform(x[0])
results = np.zeros((len(x[0],)))
for treatment_idx in range(len(self.model)):
indices = np.where(x[1] == treatment_idx)[0]
this_x = get_x_by_idx(indices)
y_pred = np.array(self.predict_for_model(self.model[treatment_idx], this_x))
results[indices] = y_pred
return results
def predict_for_model(self, old_model, x):
import rpy2.robjects as robjects
from rpy2.robjects import Formula, pandas2ri
distribution, model = old_model
r = robjects.r
gps = distribution.pdf(x[-1])
data_frame = pandas2ri.py2ri(
Baseline.to_data_frame(np.column_stack([x[-1], gps]), column_names=["T", "gps"])
)
result = r.predict(model, data_frame)
return np.array(result)
def fit_generator_for_model(self, model, train_generator, train_steps, val_generator, val_steps, num_epochs):
all_outputs = []
for _ in range(train_steps):
generator_output = next(train_generator)
x, y = generator_output[0], generator_output[1]
all_outputs.append((x, y))
x, y = zip(*all_outputs)
x = map(partial(np.concatenate, axis=0), zip(*x))
y = np.concatenate(y, axis=0)
if x[0].shape[-1] > 200:
self.pca = PCA(16, svd_solver="randomized")
x[0] = self.pca.fit_transform(x[0])
treatment_xy = self.split_by_treatment(x, y)
for key in treatment_xy.keys():
x, y = treatment_xy[key]
self.model[int(key)] = self.build_drf_model(x, y)
def build_drf_model(self, x_old, y):
from rpy2.robjects.vectors import StrVector, FactorVector, FloatVector, IntVector
from rpy2.robjects import Formula, pandas2ri
x, ts = x_old[:, :-1], x_old[:, -1]
tmp = np.concatenate([x, np.reshape(ts, (-1, 1)), np.reshape(y, (-1, 1))], axis=-1)
data_frame = pandas2ri.py2ri(
Baseline.to_data_frame(tmp, column_names=np.arange(0, tmp.shape[-1] - 2).tolist() + ["T", "Y"])
)
result = self.gps.hi_est(Y="Y",
treat="T",
treat_formula=Formula('T ~ ' + '+'.join(data_frame.names[:-2])),
outcome_formula=Formula('Y ~ T + I(T^2) + gps + T * gps'),
data=data_frame,
grid_val=FloatVector([float(tt) for tt in np.linspace(0, 1, 256)]),
treat_mod="Normal",
link_function="log") # link_function is not used with treat_mod = "Normal".
treatment_model, model = result[1], result[2]
fitted_values = treatment_model.rx2('fitted.values')
distribution = norm(np.mean(fitted_values), np.std(fitted_values))
return distribution, model
def preprocess(self, x):
if self.with_exposure:
return np.concatenate([x[0], np.reshape(x[2], (-1, 1))], axis=-1)
else:
return x[0]
def postprocess(self, y):
return y[:, -1]
|
[
"functools.partial",
"rpy2.robjects.packages.importr",
"rpy2.robjects.numpy2ri.activate",
"numpy.std",
"rpy2.robjects.pandas2ri.activate",
"numpy.expand_dims",
"numpy.mean",
"numpy.array",
"sklearn.decomposition.PCA",
"numpy.where",
"numpy.column_stack",
"numpy.reshape",
"rpy2.robjects.Formula",
"numpy.linspace",
"numpy.arange",
"numpy.concatenate"
] |
[((2039, 2059), 'rpy2.robjects.packages.importr', 'importr', (['"""causaldrf"""'], {}), "('causaldrf')\n", (2046, 2059), False, 'from rpy2.robjects.packages import importr\n'), ((2212, 2231), 'rpy2.robjects.numpy2ri.activate', 'numpy2ri.activate', ([], {}), '()\n', (2229, 2231), False, 'from rpy2.robjects import numpy2ri, pandas2ri\n'), ((2240, 2260), 'rpy2.robjects.pandas2ri.activate', 'pandas2ri.activate', ([], {}), '()\n', (2258, 2260), False, 'from rpy2.robjects import Formula, pandas2ri\n'), ((3530, 3546), 'numpy.array', 'np.array', (['result'], {}), '(result)\n', (3538, 3546), True, 'import numpy as np\n'), ((3979, 4004), 'numpy.concatenate', 'np.concatenate', (['y'], {'axis': '(0)'}), '(y, axis=0)\n', (3993, 4004), True, 'import numpy as np\n'), ((3925, 3956), 'functools.partial', 'partial', (['np.concatenate'], {'axis': '(0)'}), '(np.concatenate, axis=0)\n', (3932, 3956), False, 'from functools import partial\n'), ((4062, 4094), 'sklearn.decomposition.PCA', 'PCA', (['(16)'], {'svd_solver': '"""randomized"""'}), "(16, svd_solver='randomized')\n", (4065, 4094), False, 'from sklearn.decomposition import PCA\n'), ((5548, 5570), 'numpy.mean', 'np.mean', (['fitted_values'], {}), '(fitted_values)\n', (5555, 5570), True, 'import numpy as np\n'), ((5572, 5593), 'numpy.std', 'np.std', (['fitted_values'], {}), '(fitted_values)\n', (5578, 5593), True, 'import numpy as np\n'), ((2532, 2563), 'numpy.expand_dims', 'np.expand_dims', (['data[0]'], {'axis': '(0)'}), '(data[0], axis=0)\n', (2546, 2563), True, 'import numpy as np\n'), ((2855, 2886), 'numpy.where', 'np.where', (['(x[1] == treatment_idx)'], {}), '(x[1] == treatment_idx)\n', (2863, 2886), True, 'import numpy as np\n'), ((3401, 3430), 'numpy.column_stack', 'np.column_stack', (['[x[-1], gps]'], {}), '([x[-1], gps])\n', (3416, 3430), True, 'import numpy as np\n'), ((4600, 4623), 'numpy.reshape', 'np.reshape', (['ts', '(-1, 1)'], {}), '(ts, (-1, 1))\n', (4610, 4623), True, 'import numpy as np\n'), ((4625, 4647), 'numpy.reshape', 'np.reshape', (['y', '(-1, 1)'], {}), '(y, (-1, 1))\n', (4635, 4647), True, 'import numpy as np\n'), ((5047, 5088), 'rpy2.robjects.Formula', 'Formula', (['"""Y ~ T + I(T^2) + gps + T * gps"""'], {}), "('Y ~ T + I(T^2) + gps + T * gps')\n", (5054, 5088), False, 'from rpy2.robjects import Formula, pandas2ri\n'), ((5732, 5757), 'numpy.reshape', 'np.reshape', (['x[2]', '(-1, 1)'], {}), '(x[2], (-1, 1))\n', (5742, 5757), True, 'import numpy as np\n'), ((5215, 5237), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(256)'], {}), '(0, 1, 256)\n', (5226, 5237), True, 'import numpy as np\n'), ((4750, 4781), 'numpy.arange', 'np.arange', (['(0)', '(tmp.shape[-1] - 2)'], {}), '(0, tmp.shape[-1] - 2)\n', (4759, 4781), True, 'import numpy as np\n')]
|
import unittest
from ..fsf import *
import numpy as np
from numpy.testing import assert_array_equal, assert_array_almost_equal
class TestFSF(unittest.TestCase):
def setUp(self) -> None:
self.A = np.array([[0, 1], [-2, -3]])
self.b = np.array([[0], [1]])
self.poles = np.array([-3, -4])
def test_place(self):
# si
k = place(self.A, self.b, self.poles)
assert_array_equal(k, [10, 4])
# mi
A = np.array([[0, 1, 0], [-1, -2, 0], [0, 0, -4]])
B = np.array([[0, -1], [1, 0], [0, 1]])
poles = np.array([-1, -3, -4])
K = place(A, B, poles)
assert_array_almost_equal(np.roots(np.poly(A - B @ K)), [-4, -3, -1])
# bad input
self.assertRaises(ValueError, place, self.A, self.b.T, self.poles)
self.assertRaises(ValueError, place, self.A, np.array([[0], [0]]), self.poles)
|
[
"numpy.poly",
"numpy.testing.assert_array_equal",
"numpy.array"
] |
[((210, 238), 'numpy.array', 'np.array', (['[[0, 1], [-2, -3]]'], {}), '([[0, 1], [-2, -3]])\n', (218, 238), True, 'import numpy as np\n'), ((256, 276), 'numpy.array', 'np.array', (['[[0], [1]]'], {}), '([[0], [1]])\n', (264, 276), True, 'import numpy as np\n'), ((298, 316), 'numpy.array', 'np.array', (['[-3, -4]'], {}), '([-3, -4])\n', (306, 316), True, 'import numpy as np\n'), ((411, 441), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['k', '[10, 4]'], {}), '(k, [10, 4])\n', (429, 441), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((468, 514), 'numpy.array', 'np.array', (['[[0, 1, 0], [-1, -2, 0], [0, 0, -4]]'], {}), '([[0, 1, 0], [-1, -2, 0], [0, 0, -4]])\n', (476, 514), True, 'import numpy as np\n'), ((527, 562), 'numpy.array', 'np.array', (['[[0, -1], [1, 0], [0, 1]]'], {}), '([[0, -1], [1, 0], [0, 1]])\n', (535, 562), True, 'import numpy as np\n'), ((579, 601), 'numpy.array', 'np.array', (['[-1, -3, -4]'], {}), '([-1, -3, -4])\n', (587, 601), True, 'import numpy as np\n'), ((860, 880), 'numpy.array', 'np.array', (['[[0], [0]]'], {}), '([[0], [0]])\n', (868, 880), True, 'import numpy as np\n'), ((676, 694), 'numpy.poly', 'np.poly', (['(A - B @ K)'], {}), '(A - B @ K)\n', (683, 694), True, 'import numpy as np\n')]
|
import sys
import time
import os
import torch
import random
import sklearn
# Ignore sklearn related warnings
import warnings
warnings.filterwarnings("ignore", category=RuntimeWarning)
import numpy as np
import torch.nn as nn
import torchvision.utils as vutils
import torch.optim as optim
import finetune_utils as ftu
import model_utils as mu
import model_3d as m3d
import sim_utils as su
import mask_utils as masku
import wandb
os.environ['WANDB_DIR'] = os.environ['BASE_DIR']
sys.path.append('../backbone')
from model_3d import DpcRnn, SupervisedDpcRnn
from tqdm import tqdm
from copy import deepcopy
from collections import defaultdict
sys.path.append('../utils')
from utils import AverageMeter, AccuracyTable, ConfusionMeter, save_checkpoint, \
denorm, calc_topk_accuracy, calc_per_class_multilabel_counts
def get_modality_list(modalities):
modes = []
for m in mu.ModeList:
if m in modalities:
modes.append(m)
return modes
def get_modality_restore_ckpts(args):
ckpts = {}
for m in args.modes:
# Replacing - with _ because of the way parser works
ckpt = getattr(args, m.replace('-', '_') + "_restore_ckpt")
ckpts[m] = ckpt
if ckpt is not None:
print("Mode: {} is being restored from: {}".format(m, ckpt))
return ckpts
class ModalitySyncer(nn.Module):
def get_feature_extractor_based_on_mode(self, mode_params):
if mode_params.mode.split('-')[0] in [mu.ImgMode, mu.AudioMode]:
return m3d.ImageFetCombiner(mode_params.img_fet_dim, mode_params.img_fet_segments)
else:
assert False, "Invalid mode provided: {}".format(mode_params)
def __init__(self, args):
super(ModalitySyncer, self).__init__()
self.losses = args["losses"]
self.mode0_dim = args["mode_0_params"].final_dim
self.mode1_dim = args["mode_1_params"].final_dim
self.mode0_fet_extractor = self.get_feature_extractor_based_on_mode(args["mode_0_params"])
self.mode1_fet_extractor = self.get_feature_extractor_based_on_mode(args["mode_1_params"])
self.instance_mask = args["instance_mask"]
self.common_dim = min(self.mode0_dim, self.mode1_dim) // 2
# input is B x dim0, B x dim1
self.mode1_to_common = nn.Sequential()
self.mode0_to_common = nn.Sequential()
self.mode_losses = [mu.DenseCosSimLoss]
self.simHandler = nn.ModuleDict(
{
mu.AlignLoss: su.AlignSimHandler(self.instance_mask),
mu.CosSimLoss: su.CosSimHandler(),
mu.CorrLoss: su.CorrSimHandler(),
mu.DenseCorrLoss: su.DenseCorrSimHandler(self.instance_mask),
mu.DenseCosSimLoss: su.DenseCosSimHandler(self.instance_mask),
}
)
# Perform initialization
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def get_total_loss(self, mode0, mode1):
loss = torch.tensor(0.0).to(mode0.device)
stats = {}
for lossKey in self.mode_losses:
lossVal0, stat = self.simHandler[lossKey](mode0, mode1)
lossVal1, _ = self.simHandler[lossKey](mode1, mode0)
lossVal = (lossVal0 + lossVal1) * 0.5
loss += lossVal
stats[lossKey] = stat
return loss, stats
def forward(self, input0, input1):
assert len(input0.shape) == 5, "{}".format(input0.shape)
# inputs are B, N, D, S, S
y0 = self.mode0_fet_extractor(input0)
y1 = self.mode1_fet_extractor(input1)
# outputs are B * N, dim
B, N, _ = y1.shape
y0_in_space_common = self.mode0_to_common(y0.view(B * N, -1)).view(B, N, -1)
y1_in_space_common = self.mode1_to_common(y1.view(B * N, -1)).view(B, N, -1)
return self.get_total_loss(y0_in_space_common, y1_in_space_common)
class SupervisedModalitySyncer(ModalitySyncer):
def __init__(self, args):
super(SupervisedModalitySyncer, self).__init__(args)
# input is B x dim0, B x dim1
self.mode1_to_common = m3d.NonLinearProjection(args["mode_0_params"].img_fet_dim, self.common_dim)
self.mode0_to_common = m3d.NonLinearProjection(args["mode_1_params"].img_fet_dim, self.common_dim)
self.mode_losses = [mu.AlignLoss]
def forward(self, input0, input1):
# input is B, N, D or B, 1, D
assert len(input0.shape) == 3, "{}".format(input0.shape)
B, _, D = input0.shape
# outputs are B, dim
y0_in_space_common = self.mode0_to_common(input0.view(B, -1)).view(B, 1, -1)
y1_in_space_common = self.mode1_to_common(input1.view(B, -1)).view(B, 1, -1)
loss, stats = self.get_total_loss(y0_in_space_common, y1_in_space_common)
return loss, stats, None
class AttentionModalitySyncer(SupervisedModalitySyncer):
def __init__(self, args):
super(AttentionModalitySyncer, self).__init__(args)
# input is B x N x dim0 x s x s, B x 1 x dim1
self.mode0_attention_fn = m3d.AttentionProjection(
args["mode_0_params"].img_fet_dim,
(args["mode_0_params"].img_fet_segments, args["mode_0_params"].img_fet_segments))
self.mode1_attention_fn = m3d.AttentionProjection(
args["mode_1_params"].img_fet_dim,
(args["mode_1_params"].img_fet_segments, args["mode_1_params"].img_fet_segments))
self.mode_losses = [mu.AlignLoss]
def forward(self, input0, input1):
# input0, input1 is B, N, D/D', S, S
assert len(input0.shape) == 5, "{}".format(input0.shape)
assert len(input1.shape) == 5, "{}".format(input1.shape)
B, N, D, S, S = input0.shape
y0, attn0 = self.mode0_attention_fn.applyAttention(input0)
y1, attn1 = self.mode1_attention_fn.applyAttention(input1)
# outputs are B, dim
y0_in_space_common = self.mode0_to_common(y0.view(B, -1)).view(B, 1, -1)
y1_in_space_common = self.mode1_to_common(y1.view(B, -1)).view(B, 1, -1)
loss, stats = self.get_total_loss(y0_in_space_common, y1_in_space_common)
return loss, stats, {'0': attn0, '1': attn1}
class MultiModalModelTrainer(nn.Module):
def addImgGrid(self, data):
'''
Plots image frames in different subsections
'''
# shape of data[mode] batch, num_seq, seq_len, IC, IH, IW
for mode in self.modes:
IC = data[mode].shape[3]
if IC == 3:
images = data[mode].detach().cpu()[:, 0, 0, ...]
else:
# Plot the summation instead
images = data[mode].detach().cpu()[:, 0, 0, ...].mean(dim=1, keepdim=True)
# Shape is batch, IC, IH, IW
grid = vutils.make_grid(images, nrow=int(np.sqrt(images.shape[0])))
self.writer_train.add_image('images/frames/{}'.format(mode), grid, 0)
if self.use_wandb:
wandb.log({'images/frames/{}'.format(mode): [wandb.Image(grid)]}, step=self.iteration)
def addAttnGrid(self, attn):
'''
Plots attention frames in different modalities; can be directly compared to added imgs
'''
# shape of data[mode], batch, 1, 1, S0, S1
for key in attn.keys():
images = attn[key].detach().cpu()[:, 0, 0, ...].unsqueeze(1)
# Shape is batch, 1, S, S
grid = vutils.make_grid(images, nrow=int(np.sqrt(images.shape[0])))
self.writer_train.add_image('attn/map/{}'.format(key), grid, 0)
if self.use_wandb:
wandb.log({'attn/map/{}'.format(key): [wandb.Image(grid)]}, step=self.iteration)
def get_modality_feature_extractor(self, final_feature_size, last_size, mode):
if mode.split('-')[0] in [mu.ImgMode, mu.AudioMode]:
return m3d.ImageFetCombiner(final_feature_size, last_size)
else:
assert False, "Invalid mode provided: {}".format(mode)
def __init__(self, args):
super(MultiModalModelTrainer, self).__init__()
self.args = args
self.modes = args["modalities"]
self.model_type = args["model"]
self.models = nn.ModuleDict(args["models"])
self.losses = args["losses"]
self.num_classes = args["num_classes"]
self.data_sources = args["data_sources"]
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.attention = args['attention']
# Gradient accumulation step interval
self.grad_step_interval = 4
self.vis_log_freq = args["vis_log_freq"]
# Model log writers
self.img_path = args["img_path"]
self.model_path = args["model_path"]
self.model_name = self.model_path.split('/')[-2]
self.writer_train, self.writer_val = mu.get_writers(self.img_path)
# wandb
self.use_wandb = args["wandb_project_name"] != ""
if self.use_wandb:
wandb.init(project=args["wandb_project_name"])
wandb.run.name = self.model_name
wandb.run.save()
wandb.watch(list(self.models.values()))
print("Model path is:", self.model_path, self.img_path)
# multilabel training for supervision
self.multilabel_supervision = args["multilabel_supervision"]
self.shouldFinetune = args["ft_freq"] > 0
self.finetuneSkip = 1 if not self.multilabel_supervision else 5
transform = mu.get_transforms(args)
if not args['test']:
self.train_loader = mu.get_dataset_loaders(args, transform, 'train')
self.val_loader = mu.get_dataset_loaders(args, transform, 'val')
if args['test']:
test_transform = mu.get_test_transforms(args)
self.test_loader = mu.get_dataset_loaders(args, test_transform, 'test', test_split=args['test_split'])
self.num_classes = args["num_classes"]
self.l2_norm = True
self.temp = args["temp"] if self.l2_norm else 1.0
self.common_dim = 128
self.cpc_projections = nn.ModuleDict({m: nn.Sequential() for m in self.modes})
self.denormalize = denorm()
self.val_criterion_base = nn.CrossEntropyLoss()
self.val_criterion = lambda x, y: self.val_criterion_base(x, y.float().argmax(dim=1))
self.criteria = {
mu.CPCLoss: self.val_criterion,
mu.CooperativeLoss: nn.L1Loss(),
mu.SupervisionLoss: nn.CrossEntropyLoss() if not self.multilabel_supervision else
mu.BinaryFocalLossWithLogits(),
mu.HierarchicalLoss: mu.BinaryFocalLossWithLogits(),
mu.WeighedHierarchicalLoss: {m: m3d.WeighedLoss(num_losses=2, device=self.device) for m in self.modes},
}
self.CooperativeLossLabel = mu.CooperativeLoss
print('Modes being used:', self.modes)
self.compiled_features = {m: self.get_modality_feature_extractor(
self.models[m].final_feature_size, self.models[m].last_size, m) for m in self.modes}
self.interModeDotHandler = su.InterModeDotHandler(last_size=None)
self.B0 = self.B1 = self.args["batch_size"]
self.standard_grid_mask = {
m: masku.process_mask(
masku.get_standard_grid_mask(
self.B0,
self.B1,
self.args["pred_step"],
self.models[m].last_size,
device=self.device
)
) for m in self.modes
}
self.standard_instance_mask = masku.process_mask(
masku.get_standard_instance_mask(self.B0, self.B1, self.args["pred_step"], device=self.device)
)
self.standard_video_level_mask = masku.process_mask(
torch.eye(self.B0, device=self.device).reshape(self.B0, 1, self.B0, 1)
)
self.modeSyncers = nn.ModuleDict()
self.mode_pairs = [(m0, m1) for m0 in self.modes for m1 in self.modes if m0 < m1]
self.sync_wt = self.args["msync_wt"]
for (m0, m1) in self.mode_pairs:
num_seq = self.args["num_seq"]
mode_align_args = {
"losses": self.losses,
"mode_0_params": self.get_mode_params(m0),
"mode_1_params": self.get_mode_params(m1),
"dim_layer_1": 64,
"instance_mask": None,
}
# Have to explicitly send these to the GPU as they're present in a dict
modality_syncer = ModalitySyncer
if self.model_type == mu.ModelSupervised:
mode_align_args['instance_mask'] = self.standard_video_level_mask
if self.attention:
modality_syncer = AttentionModalitySyncer
else:
modality_syncer = SupervisedModalitySyncer
else:
instance_mask_m0_m1 = masku.process_mask(
masku.get_standard_instance_mask(self.B0, self.B1, num_seq, self.device)
)
mode_align_args['instance_mask'] = instance_mask_m0_m1
self.modeSyncers[self.get_tuple_name(m0, m1)] = modality_syncer(mode_align_args).to(self.device)
print("[NOTE] Losses used: ", self.losses)
self.cosSimHandler = su.CosSimHandler()
self.dot_wt = args["dot_wt"]
# Use a smaller learning rate if the backbone is already trained
degradeBackboneLR = 1.0
if args["tune_bb"] > 0:
degradeBackboneLR = args["tune_bb"]
backboneLr = {
'params':
[p for k in self.models.keys() for p in self.models[k].parameters()],
'lr': args["lr"] * degradeBackboneLR
}
miscLr = {
'params': [p for model in list(self.modeSyncers.values()) for p in model.parameters()],
'lr': args["lr"]
}
self.optimizer = optim.Adam(
[miscLr, backboneLr],
lr=args["lr"],
weight_decay=args["wd"]
)
patience = 10
self.lr_scheduler = optim.lr_scheduler.ReduceLROnPlateau(
self.optimizer, verbose=True, patience=patience, min_lr=1e-5
)
self.model_finetuner = ftu.QuickSupervisedModelTrainer(self.num_classes, self.modes)
self.iteration = 0
self.accuracyKList = [1, 3]
self.init_knowledge_distillation()
self.init_hierarchical()
def init_hierarchical(self):
self.hierarchical = self.args['hierarchical']
def init_knowledge_distillation(self):
self.kd_weight = 0.1
self.temperature = 2.5
self.distill = self.args['distill']
if self.distill:
self.student_modes = self.args['student_modes']
else:
self.student_modes = self.modes
for mode in self.modes:
if mode not in self.student_modes:
self.models[mode].eval()
# Freeze the models if they are not students
for param in self.models[mode].parameters():
param.requires_grad = False
@staticmethod
def get_tuple_name(m0, m1):
return "{}|{}".format(m0[0] + m0[-1], m1[0] + m1[-1])
def get_mode_params(self, mode):
if mode.split('-')[0] in [mu.ImgMode, mu.AudioMode]:
return mu.ModeParams(
mode,
self.models[mode].param['feature_size'],
self.models[mode].last_size,
self.models[mode].param['feature_size']
)
else:
assert False, "Incorrect mode: {}".format(mode)
def get_feature_pair_score(self, pred_features, gt_features):
"""
(pred/gt)features: [B, N, D, S, S]
Special case for a few instances would be with S=1
Returns 6D pair score tensor
"""
B1, N1, D1, S1, S1 = pred_features.shape
B2, N2, D2, S2, S2 = gt_features.shape
assert (D1, S1) == (D2, S2), \
"Mismatch between pred and gt features: {}, {}".format(pred_features.shape, gt_features.shape)
# dot product D dimension in pred-GT pair, get a 6d tensor. First 3 dims are from pred, last 3 dims are from GT.
preds = pred_features.permute(0, 1, 3, 4, 2).contiguous().view(B1 * N1 * S1 * S1, D1) / self.temp
gts = gt_features.permute(0, 1, 3, 4, 2).contiguous().view(B2 * N2 * S2 * S2, D2).transpose(0, 1) / self.temp
# Get the corresponding scores of each region in the matrix with each other region i.e.
# total last_size ** 4 combinations. Note that we have pred_step ** 2 such pairs as well
score = torch.matmul(preds, gts).view(B1, N1, S1*S1, B2, N2, S2*S2)
return score
def log_visuals(self, input_seq, mode):
if input_seq.size(0) > 5:
input_seq = input_seq[:5]
ic = 3
if mode.split('-')[0] in [mu.AudioMode]:
denormed_img = vutils.make_grid(input_seq)
else:
if mode.split('-')[0] not in [mu.ImgMode, mu.AudioMode]:
assert input_seq.shape[2] in [1, 2, 3, 17], "Invalid shape: {}".format(input_seq.shape)
input_seq = torch.abs(input_seq)
input_seq = input_seq.sum(dim=2, keepdim=True)
input_seq = input_seq / 0.25
input_seq[input_seq > 1] = 1.0
input_seq[input_seq != input_seq] = 0.0
ic = 1
img_dim = input_seq.shape[-1]
assert img_dim in [64, 128, 224], "imgs_dim: {}, input_seq: {}".format(img_dim, input_seq.shape)
grid_img = vutils.make_grid(
input_seq.transpose(2, 3).contiguous().view(-1, ic, img_dim, img_dim),
nrow=self.args["num_seq"] * self.args["seq_len"]
)
if mode.startswith("imgs"):
denormed_img = self.denormalize(grid_img)
else:
denormed_img = grid_img
self.writer_train.add_image('input_seq/{}'.format(mode), denormed_img, self.iteration)
if self.use_wandb:
wandb.log({'input_seq/{}'.format(mode): [wandb.Image(denormed_img)]}, step=self.iteration)
def log_metrics(self, losses_dict, stats, writer, prefix):
for loss in self.losses:
for mode in losses_dict[loss].keys():
val = losses_dict[loss][mode].val if hasattr(losses_dict[loss][mode], 'val') else losses_dict[loss][mode]
writer.add_scalar(
prefix + '/losses/' + loss + '/' + str(mode),
val,
self.iteration
)
if self.use_wandb:
wandb.log({prefix + '/losses/' + loss + '/' + str(mode): val}, step=self.iteration)
for loss in stats.keys():
for mode in stats[loss].keys():
for stat in stats[loss][mode].keys():
val = stats[loss][mode][stat].val if hasattr(stats[loss][mode][stat], 'val') else stats[loss][mode][stat]
writer.add_scalar(
prefix + '/stats/' + loss + '/' + str(mode) + '/' + str(stat),
val,
self.iteration
)
if self.use_wandb:
wandb.log({prefix + '/stats/' + loss + '/' + str(mode) + '/' + str(stat): val}, step=self.iteration)
def perform_self_supervised_forward_passes(self, data, feature_dict):
NS = self.args["pred_step"]
pred_features, gt_all_features, agg_features, probabilities = {}, {}, {}, {}
flat_scores = {}
if self.shouldFinetune:
feature_dict['Y'].append(data['labels'][::self.finetuneSkip])
for mode in self.modes:
if not mode in data.keys():
continue
B = data[mode].shape[0]
input_seq = data[mode].to(self.device)
# assert input_seq.shape[0] == self.args["batch_size"]
SQ = self.models[mode].last_size ** 2
pred_features[mode], gt_features, gt_all_features[mode], probs, X = \
self.models[mode](input_seq, ret_rep=True)
gt_all_features[mode] = self.cpc_projections[mode](gt_all_features[mode])
pred_features[mode] = self.cpc_projections[mode](pred_features[mode])
probabilities[mode] = probs
# score is a 6d tensor: [B, P, SQ, B', N', SQ]
score_ = self.get_feature_pair_score(pred_features[mode], gt_features)
flat_scores[mode] = score_.view(B * NS * SQ, -1)
if self.shouldFinetune:
feature_dict['X'][mode].append(X.reshape(X.shape[0], -1)[::self.finetuneSkip].detach().cpu())
del input_seq
return pred_features, gt_all_features, agg_features, flat_scores, probabilities, feature_dict
def update_supervised_loss_stats(self, logit, supervised_target, stats, loss_dict, mode, eval=False):
B = supervised_target.shape[0]
if self.multilabel_supervision:
if eval:
# Intermediate counters for per-class TP, TN, FP, FN
tp, tn, fp, fn, top1_single, top3_single, all_single = calc_per_class_multilabel_counts(torch.sigmoid(logit), supervised_target)
counter = dict(tp=tp, tn=tn, fp=fp, fn=fn, top1_single=top1_single, top3_single=top3_single, all_single=all_single)
if not 'multilabel_counts' in stats[mu.SupervisionLoss][mode].keys():
stats[mu.SupervisionLoss][mode]['multilabel_counts'] = counter
else:
stats[mu.SupervisionLoss][mode]['multilabel_counts']['tp'] += counter['tp']
stats[mu.SupervisionLoss][mode]['multilabel_counts']['tn'] += counter['tn']
stats[mu.SupervisionLoss][mode]['multilabel_counts']['fp'] += counter['fp']
stats[mu.SupervisionLoss][mode]['multilabel_counts']['fn'] += counter['fn']
stats[mu.SupervisionLoss][mode]['multilabel_counts']['top1_single'] += counter['top1_single']
stats[mu.SupervisionLoss][mode]['multilabel_counts']['top3_single'] += counter['top3_single']
stats[mu.SupervisionLoss][mode]['multilabel_counts']['all_single'] += counter['all_single']
else:
# Compute and log top-k accuracy
topKs = calc_topk_accuracy(logit, supervised_target, self.accuracyKList)
for i in range(len(self.accuracyKList)):
stats[mu.SupervisionLoss][mode]["acc" + str(self.accuracyKList[i])].update(topKs[i].item(), B)
# Compute supervision loss
if not self.multilabel_supervision:
supervised_target = supervised_target.view(-1)
else:
supervised_target = supervised_target.float()
loss_dict[mu.SupervisionLoss][mode] = \
self.criteria[mu.SupervisionLoss](logit, supervised_target)
def update_supervised_hierarchical_loss_stats(self, logits, targets, stats, loss_dict, mode, eval=False):
B = targets['video'].shape[0]
# Compute and log top-k accuracy for video level
topKs = calc_topk_accuracy(logits['main'], targets['video'], self.accuracyKList)
for i in range(len(self.accuracyKList)):
stats[mu.SupervisionLoss][mode]["acc" + str(self.accuracyKList[i])].update(topKs[i].item(), B)
# Compute supervision hierarchical loss
loss_dict[mu.SupervisionLoss][mode] = \
self.criteria[mu.SupervisionLoss](logits['main'], targets['video'].view(-1))
loss_dict[mu.HierarchicalLoss][mode] = \
self.criteria[mu.HierarchicalLoss](logits['side'], targets['atomic'].float()) * 10.0
if mu.WeighedHierarchicalLoss in self.losses:
loss_dict[mu.WeighedHierarchicalLoss][mode] = self.criteria[mu.WeighedHierarchicalLoss][mode](
[loss_dict[mu.SupervisionLoss][mode], loss_dict[mu.HierarchicalLoss][mode]]
)
def update_self_supervised_metrics(self, gt_all_features, flat_scores, probabilities, stats, data, eval=False):
NS, N = self.args["pred_step"], self.args["num_seq"]
loss_dict = {k: {} for k in self.losses}
for mode in flat_scores.keys():
B = data[mode].shape[0]
SQ = self.models[mode].last_size ** 2
target_flattened = self.standard_grid_mask[mode].view(self.B0 * NS * SQ, self.B1 * NS * SQ)[:B * NS * SQ, :B * NS * SQ]
# CPC loss
if mu.CPCLoss in self.losses:
score_flat = flat_scores[mode]
target = target_flattened
target_lbl = target.float().argmax(dim=1)
# Compute and log performance metrics
topKs = calc_topk_accuracy(score_flat, target_lbl, self.accuracyKList)
for i in range(len(self.accuracyKList)):
stats[mu.CPCLoss][mode]["acc" + str(self.accuracyKList[i])].update(topKs[i].item(), B)
# Compute CPC loss for independent model training
loss_dict[mu.CPCLoss][mode] = self.criteria[mu.CPCLoss](score_flat, target)
# Supervision loss
if mu.SupervisionLoss in self.losses:
probability = probabilities[mode]
supervised_target = data['labels'].to(self.device)
self.update_supervised_loss_stats(probability, supervised_target, stats, loss_dict, mode, eval)
if mu.CooperativeLoss in self.losses:
for (m0, m1) in self.mode_pairs:
if (m0 not in flat_scores.keys()) or (m1 not in flat_scores.keys()):
continue
tupName = self.get_tuple_name(m0, m1)
# Cdot related losses
comp_gt_all0 = self.compiled_features[m0](gt_all_features[m0]).unsqueeze(3).unsqueeze(3)
comp_gt_all1 = self.compiled_features[m1](gt_all_features[m1]).unsqueeze(3).unsqueeze(3)
cdot0 = self.interModeDotHandler.get_cluster_dots(comp_gt_all0)
cdot1 = self.interModeDotHandler.get_cluster_dots(comp_gt_all1)
B, NS, B2, NS = cdot0.shape
assert cdot0.shape == cdot1.shape == (B, NS, B2, NS), \
"Invalid shapes: {}, {}, {}".format(cdot0.shape, cdot1.shape, (B, NS, B2, NS))
cos_sim_dot_loss = self.criteria[self.CooperativeLossLabel](cdot0, cdot1)
loss_dict[self.CooperativeLossLabel][tupName] = self.dot_wt * cos_sim_dot_loss
# Modality sync loss
sync_loss, mode_stats = self.modeSyncers[tupName](gt_all_features[m0], gt_all_features[m1])
# stats: dict modeLoss -> specificStat
for modeLoss in mode_stats.keys():
for stat in mode_stats[modeLoss].keys():
stats[modeLoss][tupName][stat].update(mode_stats[modeLoss][stat].item(), B)
loss_dict[mu.ModeSim][tupName] = self.sync_wt * sync_loss
return loss_dict, stats
@staticmethod
def categorical_cross_entropy(logits, b):
la = torch.nn.functional.log_softmax(logits, dim=1)
return -(b * la).sum(dim=1).mean()
def kd_loss_criterion(self, results, labels):
"""
Compute the knowledge-distillation (KD) loss given outputs, labels.
:param results: Expect the dictionary returned by forward()
:param labels: GT label for the batch
"""
w = self.kd_weight
t = self.temperature
gt_loss = self.criteria[mu.SupervisionLoss](results['outs'], labels)
kd_loss = 0.0
for v in results["teacher_outs"]:
kd_loss += self.categorical_cross_entropy(
results["outs"] / t,
torch.nn.functional.softmax(v / t, dim=1)
)
kd_loss /= len(results["teacher_outs"])
# Weigh kd_loss with t^2 to preserve scale of gradients
final_loss = (kd_loss * w * t * t) + (gt_loss * (1 - w))
return {
"loss": final_loss,
"gt_loss": gt_loss,
"kd_loss": kd_loss
}
def update_distillation_loss_stats(self, logits, supervised_target, loss_dict):
for mode in self.student_modes:
results = {
'outs': logits[mode]['main'],
'teacher_outs': [logits[m]['main'] for m in self.modes if m != mode]
}
losses = self.kd_loss_criterion(results, supervised_target.view(-1))
loss_dict[mu.DistillLoss][mode] = losses['kd_loss']
def get_supervised_forward_pass_results(self, data):
results = {'feature': {}, 'logits': {}, 'grid': {}, 'attn': {}}
for mode in self.modes:
input_seq = data[mode].to(self.device)
feature, main_logit, side_logit, grid, attn = self.models[mode](input_seq)
results['feature'][mode], results['grid'][mode], results['attn'][mode] = \
feature, grid, attn
results['logits'][mode] = {'main': main_logit, 'side': side_logit}
del input_seq
return results
def perform_supervised_forward_passes(self, data, feature_dict):
if self.shouldFinetune:
key = 'video_labels' if 'video_labels' in data else 'labels'
feature_dict['Y'].append(data[key][::self.finetuneSkip])
results = self.get_supervised_forward_pass_results(data)
features, attentions, logits = results['grid'], results['attn'], results['logits']
for mode in self.modes:
if self.shouldFinetune:
feature = results['feature'][mode]
feature_dict['X'][mode].append(
feature.reshape(feature.shape[0], -1)[::self.finetuneSkip].detach().cpu())
# features: B x D; clip level feature
return features, logits, attentions, feature_dict
def update_supervised_metrics(self, features, logits, stats, attentions, data, eval=False):
B, NS, N = self.args["batch_size"], self.args["pred_step"], self.args["num_seq"]
loss_dict = defaultdict(lambda: {})
for mode in self.modes:
# Hierarchical loss - normal or auto-weighed
if self.hierarchical:
logit = logits[mode]
targets = {
'video': data['video_labels'].to(self.device),
'atomic': data['atomic_labels'].to(self.device),
}
self.update_supervised_hierarchical_loss_stats(logit, targets, stats, loss_dict, mode, eval)
elif mu.SupervisionLoss in self.losses:
# Supervision loss only if hierarchical loss is not present
logit = logits[mode]['main']
supervised_target = data['labels'].to(self.device)
self.update_supervised_loss_stats(logit, supervised_target, stats, loss_dict, mode, eval)
if mu.DistillLoss in self.losses:
supervised_target = data['labels'].to(self.device)
self.update_distillation_loss_stats(logits, supervised_target, loss_dict)
if mu.AlignLoss in self.losses:
for (m0, m1) in self.mode_pairs:
# In the supervised setting, we receive B x N x D and B x D' features (block, clip level respectively)
# Currently we receive only B x D' x s x s i.e. clip level features
tupName = self.get_tuple_name(m0, m1)
# Modality sync loss
sync_loss, mode_stats, attns = self.modeSyncers[tupName](features[m0], features[m1])
if attns:
attentions['{}_in_{}'.format(m0, tupName)] = attns['0']
attentions['{}_in_{}'.format(m1, tupName)] = attns['1']
# stats: dict modeLoss -> specificStat
for modeLoss in mode_stats.keys():
for stat in mode_stats[modeLoss].keys():
stats[modeLoss][tupName][stat].update(mode_stats[modeLoss][stat].item(), B)
loss_dict[mu.AlignLoss][tupName] = self.sync_wt * sync_loss
return loss_dict, stats
def pretty_print_stats(self, stats):
grouped_stats = {}
for k, v in stats.items():
a, b = k.split('/')[:2]
middle = (a, b)
if middle not in grouped_stats:
grouped_stats[middle] = []
grouped_stats[middle].append((k, v))
for v in grouped_stats.values():
print(sorted(v))
def perform_self_supervised_pass(self, data, feature_dict, stats, eval):
_, gt_all_features, agg_features, flat_scores, probabilities, feature_dict = \
self.perform_self_supervised_forward_passes(data, feature_dict)
loss_dict, stats = \
self.update_self_supervised_metrics(gt_all_features, flat_scores, probabilities, stats, data, eval)
return loss_dict, stats, feature_dict, {}
def perform_supervised_pass(self, data, feature_dict, stats, eval):
features, logits, attentions, feature_dict = self.perform_supervised_forward_passes(data, feature_dict)
loss_dict, stats = self.update_supervised_metrics(features, logits, stats, attentions, data, eval)
etc = {'attn': attentions}
if self.hierarchical:
etc['atomic_labels'] = data['atomic_labels'].cpu().detach()
for m, v in logits.items():
etc['atomic_preds_{}'.format(m)] = v['side'].cpu().detach()
video_labels = 'video_labels' if self.hierarchical else 'labels'
if eval:
etc['video_labels'] = data[video_labels].cpu().detach()
for m, v in logits.items():
etc['video_preds_{}'.format(m)] = v['main'].cpu().detach()
return loss_dict, stats, feature_dict, etc
def perform_pass(self, data, feature_dict, stats, eval=False):
if self.model_type == mu.ModelSSL:
return self.perform_self_supervised_pass(data, feature_dict, stats, eval)
elif self.model_type == mu.ModelSupervised:
return self.perform_supervised_pass(data, feature_dict, stats, eval)
def aggregate_finetune_set(self, feature_dict):
if self.shouldFinetune:
feature_dict['X'] = {k: torch.cat(v) for k, v in feature_dict['X'].items()}
feature_dict['Y'] = torch.cat(feature_dict['Y']).reshape(-1).detach()
return feature_dict
def compute_atomic_action_stats(self, etcs, stats):
def torch_to_numpy(y_pred, y_true):
y_pred = torch.sigmoid(y_pred)
return y_pred.cpu().detach().numpy(), y_true.cpu().detach().long().numpy()
def map_score_avg(aps):
return aps[aps == aps].mean()
def map_score_weighted(aps, y_true):
aps[aps != aps] = 0
unique, support = np.unique(np.concatenate([np.nonzero(t)[0] for t in y_true]), return_counts=True)
counts = np.zeros(448)
counts[unique] = support
print('Num missing classes:', (counts/counts.sum() < 1e-8).sum())
return np.average(aps, weights=counts)
def map_score_all(y_pred, y_true):
y_pred, y_true = torch_to_numpy(y_pred, y_true)
aps = sklearn.metrics.average_precision_score(y_true, y_pred, average=None)
return map_score_avg(aps), map_score_weighted(aps, y_true)
for m in self.modes:
avg, wgt = map_score_all(etcs['atomic_preds_{}'.format(m)], etcs['atomic_labels'])
stats['map/avg/{}'.format(m[0] + m[-1])] = avg
stats['map/weighted/{}'.format(m[0] + m[-1])] = wgt
def train_epoch(self, epoch):
self.train()
print("Model path is:", self.model_path)
for mode in self.models.keys():
if mode in self.student_modes:
self.models[mode].train()
for mode in self.modeSyncers.keys():
self.modeSyncers[mode].train()
losses_dict, stats = mu.init_loggers(self.losses)
B = self.args["batch_size"]
train = {'X': {m: [] for m in self.modes}, 'Y': []}
tq = tqdm(self.train_loader, desc="Train: Ep {}".format(epoch), position=0)
self.optimizer.zero_grad()
etcs, overall_stats = {}, {}
for idx, data in enumerate(tq):
loss_dict, stats, train, etc = self.perform_pass(data, train, stats)
loss = torch.tensor(0.0).to(self.device)
# Only include losses which are part of self.losses i.e. not super, hierarchical if we're using weighed loss
for l in loss_dict.keys():
for v in loss_dict[l].keys():
losses_dict[l][v].update(loss_dict[l][v].item(), B)
if l in self.losses:
loss += loss_dict[l][v]
loss.backward()
if idx % self.grad_step_interval:
self.optimizer.step()
self.optimizer.zero_grad()
overall_stats = mu.get_stats_dict(losses_dict, stats)
tq_stats = mu.shorten_stats(overall_stats)
tq.set_postfix(tq_stats)
del loss
# Perform logging
if self.iteration % self.vis_log_freq == 0:
# Log attention
if 'attn' in etc:
self.addAttnGrid(etc['attn'])
# Log images
self.addImgGrid(data)
for mode in self.modes:
if mode in data.keys():
# Log visuals of the complete input seq
self.log_visuals(data[mode], mode)
# Don't need attn anymore
if 'attn' in etc:
del etc['attn']
for k, v in etc.items():
if k not in etcs:
etcs[k] = []
etcs[k].append(v)
if idx % self.args["print_freq"] == 0:
self.log_metrics(losses_dict, stats, self.writer_train, prefix='local')
self.iteration += 1
for k in etcs.keys():
etcs[k] = torch.cat(etcs[k])
if self.hierarchical:
self.compute_atomic_action_stats(etcs, overall_stats)
print("Overall train stats:")
self.pretty_print_stats(overall_stats)
# log to wandb
if self.use_wandb:
wandb.log({'train/' + k: v for k, v in overall_stats.items()}, step=self.iteration)
train = self.aggregate_finetune_set(train)
return losses_dict, stats, train
def eval_mode(self):
self.eval()
for mode in self.models.keys():
if mode in self.student_modes:
self.models[mode].eval()
self.models[mode].eval_mode()
for mode in self.modeSyncers.keys():
self.modeSyncers[mode].eval()
def validate_epoch(self, epoch):
self.eval_mode()
losses_dict, stats = mu.init_loggers(self.losses)
overall_loss = AverageMeter()
B = self.args["batch_size"]
tq_stats = {}
val = {'X': {m: [] for m in self.modes}, 'Y': []}
etcs, overall_stats = {}, {}
with torch.no_grad():
tq = tqdm(self.val_loader, desc="Val: Ep {}".format(epoch), position=0)
for idx, data in enumerate(tq):
loss_dict, stats, val, etc = self.perform_pass(data, val, stats, eval=True)
# Perform logging - Handle val separately
# if self.iteration % self.vis_log_freq == 0:
# # Log attention
# if 'attn' in etc:
# self.addAttnGrid(etc['attn'])
# # Log images
# self.addImgGrid(data)
# for mode in self.modes:
# self.log_visuals(data[mode], mode)
loss = torch.tensor(0.0).to(self.device)
for l in loss_dict.keys():
for v in loss_dict[l].keys():
losses_dict[l][v].update(loss_dict[l][v].item(), B)
if l in self.losses:
loss += loss_dict[l][v]
overall_loss.update(loss.item(), B)
# Don't need attn anymore
if 'attn' in etc:
del etc['attn']
for k, v in etc.items():
if k not in etcs:
etcs[k] = []
etcs[k].append(v)
overall_stats = mu.get_stats_dict(losses_dict, stats)
tq_stats = mu.shorten_stats(overall_stats)
tq.set_postfix(tq_stats)
for k in etcs.keys():
etcs[k] = torch.cat(etcs[k])
if self.hierarchical:
self.compute_atomic_action_stats(etcs, overall_stats)
# compute validation metrics
mu.compute_val_metrics(overall_stats)
for loss in stats.keys():
for mode in stats[loss].keys():
mu.compute_val_metrics(stats[loss][mode], prefix='{}_{}'.format(loss, mode))
# log to wandb
if self.use_wandb:
wandb.log({'val/' + k: v for k, v in overall_stats.items()}, step=self.iteration)
print("Overall val stats:")
self.pretty_print_stats(overall_stats)
val = self.aggregate_finetune_set(val)
return overall_loss, losses_dict, stats, val
def test(self):
self.eval_mode()
losses_dict, stats = mu.init_loggers(self.losses)
overall_loss = AverageMeter()
B = self.args["batch_size"]
tq_stats = {}
val = {'X': {m: [] for m in self.modes}, 'Y': []}
etcs, overall_stats = {}, {}
with torch.no_grad():
tq = tqdm(self.test_loader, desc="Test:", position=0)
for idx, data in enumerate(tq):
for k in data.keys():
data[k] = data[k].squeeze(0)
loss_dict, stats, val, etc = self.perform_pass(data, val, stats, eval=True)
loss = torch.tensor(0.0).to(self.device)
for l in loss_dict.keys():
for v in loss_dict[l].keys():
losses_dict[l][v].update(loss_dict[l][v].item(), B)
if l in self.losses:
loss += loss_dict[l][v]
overall_loss.update(loss.item(), B)
# Don't need attn anymore
if 'attn' in etc:
del etc['attn']
for k, v in etc.items():
if k not in etcs:
etcs[k] = []
etcs[k].append(v)
overall_stats = mu.get_stats_dict(losses_dict, stats)
tq_stats = mu.shorten_stats(overall_stats)
tq.set_postfix(tq_stats)
for k in etcs.keys():
etcs[k] = torch.cat(etcs[k])
if self.hierarchical:
self.compute_atomic_action_stats(etcs, overall_stats)
# compute validation metrics
mu.compute_val_metrics(overall_stats)
for loss in stats.keys():
for mode in stats[loss].keys():
mu.compute_val_metrics(stats[loss][mode], prefix='{}_{}'.format(loss, mode))
# log to wandb
if self.use_wandb:
wandb.log({'val/' + k: v for k, v in overall_stats.items()}, step=self.iteration)
print("Overall val stats:")
self.pretty_print_stats(overall_stats)
val = self.aggregate_finetune_set(val)
return overall_loss, losses_dict, stats, val
def train_module(self):
best_acc = {m: 0.0 for m in self.modes}
for epoch in range(self.args["start_epoch"], self.args["epochs"]):
train_losses, train_stats, trainD = self.train_epoch(epoch)
eval_epoch = epoch % self.args["eval_freq"] == 0
if eval_epoch:
ovr_loss, val_losses, val_stats, valD = self.validate_epoch(epoch)
self.lr_scheduler.step(ovr_loss.avg)
# Log fine-tune performance
# FIXME (haofeng): This below doesn't work with multi label supervision
if self.shouldFinetune and not self.multilabel_supervision:
if (epoch % self.args["ft_freq"] == 0) and eval_epoch:
self.model_finetuner.evaluate_classification(trainD, valD)
if not self.args["debug"]:
train_clustering_dict = self.model_finetuner.evaluate_clustering(trainD, tag='train')
# val_clustering_dict = self.model_finetuner.evaluate_clustering(valD, tag='val')
if self.use_wandb:
for n, d in zip(['train'], [train_clustering_dict]): # , val_clustering_dict])
for k0, d0 in d.items():
wandb.log({'cluster/{}_{}_{}'.format(n, k0, k1): v for k1, v in d0.items()}, step=self.iteration)
# save curve
self.log_metrics(train_losses, train_stats, self.writer_train, prefix='global')
if eval_epoch:
self.log_metrics(val_losses, val_stats, self.writer_val, prefix='global')
# save check_point for each mode individually
for modality in self.modes:
loss = mu.CPCLoss
if loss not in self.losses:
loss = mu.SupervisionLoss
is_best = val_stats[loss][modality][1].avg > best_acc[modality]
best_acc[modality] = max(val_stats[loss][modality][1].avg, best_acc[modality])
state = {
'epoch': epoch + 1,
'mode': modality,
'net': self.args["net"],
'state_dict': self.models[modality].state_dict(),
'best_acc': best_acc[modality],
'optimizer': self.optimizer.state_dict(),
'iteration': self.iteration
}
for (m0, m1) in self.mode_pairs:
if modality not in [m0, m1]:
tupName = self.get_tuple_name(m0, m1)
state['mode_syncer_{}'.format(tupName)] = self.modeSyncers[tupName].state_dict()
save_checkpoint(
state=state,
mode=modality,
is_best=is_best,
filename=os.path.join(
self.model_path, 'mode_' + modality + '_epoch%s.pth.tar' % str(epoch + 1)
),
gap=3,
keep_all=False
)
print('Training from ep %d to ep %d finished' % (self.args["start_epoch"], self.args["epochs"]))
total_stats = {
'train': {
'losses': train_losses,
'stats': train_stats,
},
}
if eval_epoch:
total_stats['val'] = {
'losses': val_losses,
'stats': val_stats,
}
return total_stats
def get_backbone_for_modality(args, mode):
tmp_args = deepcopy(args)
tmp_args.mode = mode
tmp_args_dict = deepcopy(vars(tmp_args))
model = None
print('Current model being used is: {}'.format(args.model))
if mode == mu.AudioMode:
model = m3d.AudioVGGEncoder(tmp_args_dict)
else:
if args.model == mu.ModelSSL:
model = DpcRnn(tmp_args_dict)
elif args.model == mu.ModelSupervised:
model = SupervisedDpcRnn(tmp_args_dict)
else:
assert False, "Invalid model type: {}".format(args.model)
if args.restore_ckpts[mode] is not None:
print(mode, args.restore_ckpts[mode])
# First try to load it hoping it's stored without the dataParallel
print('Model saved in dataParallel form')
model = m3d.get_parallel_model(model)
model = mu.load_model(model, args.restore_ckpts[mode])
else:
model = m3d.get_parallel_model(model)
# Freeze the required layers
if args.train_what == 'last':
for name, param in model.resnet.named_parameters():
param.requires_grad = False
if args.test:
for param in model.parameters():
param.requires_grad = False
print('\n=========Check Grad: {}============'.format(mode))
param_list = ['-'.join(name.split('.')[:2])
for name, param in model.named_parameters()
if not param.requires_grad]
print(set(param_list))
print('=================================\n')
return model.to(args.device)
def run_multi_modal_training(args):
torch.manual_seed(0)
np.random.seed(0)
# Update the batch size according to the number of GPUs
if torch.cuda.is_available():
args.batch_size *= torch.cuda.device_count()
args.num_workers *= int(np.sqrt(2 * torch.cuda.device_count()))
args.num_classes = mu.get_num_classes(args.dataset)
args.device = torch.device('cuda') if torch.cuda.is_available() else torch.device("cpu")
# FIXME: support multiple views from the same modality
args.modes = get_modality_list(args.modalities)
args.student_modes = get_modality_list(args.students)
args.restore_ckpts = get_modality_restore_ckpts(args)
args.old_lr = None
args.img_path, args.model_path = mu.set_multi_modal_path(args)
models = {}
for mode in args.modes:
models[mode] = get_backbone_for_modality(args, mode)
# Restore from an earlier checkpoint
args_dict = deepcopy(vars(args))
args_dict["models"] = models
args_dict["data_sources"] = '_'.join(args_dict["modes"]) + "_labels"
model_trainer = MultiModalModelTrainer(args_dict)
model_trainer = model_trainer.to(args.device)
stats = None
if args.test:
stats = model_trainer.test()
else:
stats = model_trainer.train_module()
return model_trainer, stats
if __name__ == '__main__':
parser = mu.get_multi_modal_model_train_args()
args = parser.parse_args()
run_multi_modal_training(args)
|
[
"wandb.run.save",
"model_utils.compute_val_metrics",
"numpy.random.seed",
"torch.eye",
"utils.calc_topk_accuracy",
"model_3d.DpcRnn",
"model_3d.ImageFetCombiner",
"torch.cat",
"sim_utils.CorrSimHandler",
"torch.cuda.device_count",
"collections.defaultdict",
"sim_utils.AlignSimHandler",
"torch.nn.ModuleDict",
"torch.nn.init.constant_",
"model_3d.AudioVGGEncoder",
"model_utils.get_num_classes",
"sim_utils.InterModeDotHandler",
"torch.device",
"torch.no_grad",
"sys.path.append",
"sim_utils.DenseCorrSimHandler",
"torch.nn.init.kaiming_normal_",
"utils.AverageMeter",
"model_utils.get_transforms",
"model_utils.set_multi_modal_path",
"torch.optim.lr_scheduler.ReduceLROnPlateau",
"mask_utils.get_standard_instance_mask",
"sim_utils.DenseCosSimHandler",
"model_3d.NonLinearProjection",
"torch.nn.functional.log_softmax",
"sklearn.metrics.average_precision_score",
"model_utils.get_multi_modal_model_train_args",
"torch.matmul",
"model_utils.shorten_stats",
"model_utils.load_model",
"copy.deepcopy",
"tqdm.tqdm",
"numpy.average",
"mask_utils.get_standard_grid_mask",
"model_utils.get_writers",
"torch.manual_seed",
"model_3d.get_parallel_model",
"model_utils.init_loggers",
"utils.denorm",
"model_3d.WeighedLoss",
"torch.optim.Adam",
"torch.cuda.is_available",
"finetune_utils.QuickSupervisedModelTrainer",
"model_utils.get_test_transforms",
"warnings.filterwarnings",
"torch.nn.Sequential",
"model_utils.get_dataset_loaders",
"torch.nn.L1Loss",
"model_utils.get_stats_dict",
"torch.nn.CrossEntropyLoss",
"numpy.zeros",
"torch.nn.functional.softmax",
"torchvision.utils.make_grid",
"model_3d.SupervisedDpcRnn",
"torch.sigmoid",
"sim_utils.CosSimHandler",
"wandb.init",
"wandb.Image",
"model_utils.BinaryFocalLossWithLogits",
"numpy.nonzero",
"model_3d.AttentionProjection",
"torch.tensor",
"torch.abs",
"model_utils.ModeParams",
"numpy.sqrt"
] |
[((126, 184), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {'category': 'RuntimeWarning'}), "('ignore', category=RuntimeWarning)\n", (149, 184), False, 'import warnings\n'), ((480, 510), 'sys.path.append', 'sys.path.append', (['"""../backbone"""'], {}), "('../backbone')\n", (495, 510), False, 'import sys\n'), ((642, 669), 'sys.path.append', 'sys.path.append', (['"""../utils"""'], {}), "('../utils')\n", (657, 669), False, 'import sys\n'), ((47676, 47690), 'copy.deepcopy', 'deepcopy', (['args'], {}), '(args)\n', (47684, 47690), False, 'from copy import deepcopy\n'), ((49220, 49240), 'torch.manual_seed', 'torch.manual_seed', (['(0)'], {}), '(0)\n', (49237, 49240), False, 'import torch\n'), ((49245, 49262), 'numpy.random.seed', 'np.random.seed', (['(0)'], {}), '(0)\n', (49259, 49262), True, 'import numpy as np\n'), ((49331, 49356), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (49354, 49356), False, 'import torch\n'), ((49507, 49539), 'model_utils.get_num_classes', 'mu.get_num_classes', (['args.dataset'], {}), '(args.dataset)\n', (49525, 49539), True, 'import model_utils as mu\n'), ((49922, 49951), 'model_utils.set_multi_modal_path', 'mu.set_multi_modal_path', (['args'], {}), '(args)\n', (49945, 49951), True, 'import model_utils as mu\n'), ((50553, 50590), 'model_utils.get_multi_modal_model_train_args', 'mu.get_multi_modal_model_train_args', ([], {}), '()\n', (50588, 50590), True, 'import model_utils as mu\n'), ((2308, 2323), 'torch.nn.Sequential', 'nn.Sequential', ([], {}), '()\n', (2321, 2323), True, 'import torch.nn as nn\n'), ((2355, 2370), 'torch.nn.Sequential', 'nn.Sequential', ([], {}), '()\n', (2368, 2370), True, 'import torch.nn as nn\n'), ((4359, 4434), 'model_3d.NonLinearProjection', 'm3d.NonLinearProjection', (["args['mode_0_params'].img_fet_dim", 'self.common_dim'], {}), "(args['mode_0_params'].img_fet_dim, self.common_dim)\n", (4382, 4434), True, 'import model_3d as m3d\n'), ((4466, 4541), 'model_3d.NonLinearProjection', 'm3d.NonLinearProjection', (["args['mode_1_params'].img_fet_dim", 'self.common_dim'], {}), "(args['mode_1_params'].img_fet_dim, self.common_dim)\n", (4489, 4541), True, 'import model_3d as m3d\n'), ((5315, 5460), 'model_3d.AttentionProjection', 'm3d.AttentionProjection', (["args['mode_0_params'].img_fet_dim", "(args['mode_0_params'].img_fet_segments, args['mode_0_params'].img_fet_segments\n )"], {}), "(args['mode_0_params'].img_fet_dim, (args[\n 'mode_0_params'].img_fet_segments, args['mode_0_params'].img_fet_segments))\n", (5338, 5460), True, 'import model_3d as m3d\n'), ((5515, 5660), 'model_3d.AttentionProjection', 'm3d.AttentionProjection', (["args['mode_1_params'].img_fet_dim", "(args['mode_1_params'].img_fet_segments, args['mode_1_params'].img_fet_segments\n )"], {}), "(args['mode_1_params'].img_fet_dim, (args[\n 'mode_1_params'].img_fet_segments, args['mode_1_params'].img_fet_segments))\n", (5538, 5660), True, 'import model_3d as m3d\n'), ((8450, 8479), 'torch.nn.ModuleDict', 'nn.ModuleDict', (["args['models']"], {}), "(args['models'])\n", (8463, 8479), True, 'import torch.nn as nn\n'), ((9088, 9117), 'model_utils.get_writers', 'mu.get_writers', (['self.img_path'], {}), '(self.img_path)\n', (9102, 9117), True, 'import model_utils as mu\n'), ((9730, 9753), 'model_utils.get_transforms', 'mu.get_transforms', (['args'], {}), '(args)\n', (9747, 9753), True, 'import model_utils as mu\n'), ((10420, 10428), 'utils.denorm', 'denorm', ([], {}), '()\n', (10426, 10428), False, 'from utils import AverageMeter, AccuracyTable, ConfusionMeter, save_checkpoint, denorm, calc_topk_accuracy, calc_per_class_multilabel_counts\n'), ((10464, 10485), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (10483, 10485), True, 'import torch.nn as nn\n'), ((11335, 11373), 'sim_utils.InterModeDotHandler', 'su.InterModeDotHandler', ([], {'last_size': 'None'}), '(last_size=None)\n', (11357, 11373), True, 'import sim_utils as su\n'), ((12151, 12166), 'torch.nn.ModuleDict', 'nn.ModuleDict', ([], {}), '()\n', (12164, 12166), True, 'import torch.nn as nn\n'), ((13562, 13580), 'sim_utils.CosSimHandler', 'su.CosSimHandler', ([], {}), '()\n', (13578, 13580), True, 'import sim_utils as su\n'), ((14179, 14251), 'torch.optim.Adam', 'optim.Adam', (['[miscLr, backboneLr]'], {'lr': "args['lr']", 'weight_decay': "args['wd']"}), "([miscLr, backboneLr], lr=args['lr'], weight_decay=args['wd'])\n", (14189, 14251), True, 'import torch.optim as optim\n'), ((14349, 14453), 'torch.optim.lr_scheduler.ReduceLROnPlateau', 'optim.lr_scheduler.ReduceLROnPlateau', (['self.optimizer'], {'verbose': '(True)', 'patience': 'patience', 'min_lr': '(1e-05)'}), '(self.optimizer, verbose=True, patience\n =patience, min_lr=1e-05)\n', (14385, 14453), True, 'import torch.optim as optim\n'), ((14502, 14563), 'finetune_utils.QuickSupervisedModelTrainer', 'ftu.QuickSupervisedModelTrainer', (['self.num_classes', 'self.modes'], {}), '(self.num_classes, self.modes)\n', (14533, 14563), True, 'import finetune_utils as ftu\n'), ((23482, 23554), 'utils.calc_topk_accuracy', 'calc_topk_accuracy', (["logits['main']", "targets['video']", 'self.accuracyKList'], {}), "(logits['main'], targets['video'], self.accuracyKList)\n", (23500, 23554), False, 'from utils import AverageMeter, AccuracyTable, ConfusionMeter, save_checkpoint, denorm, calc_topk_accuracy, calc_per_class_multilabel_counts\n'), ((27464, 27510), 'torch.nn.functional.log_softmax', 'torch.nn.functional.log_softmax', (['logits'], {'dim': '(1)'}), '(logits, dim=1)\n', (27495, 27510), False, 'import torch\n'), ((30454, 30478), 'collections.defaultdict', 'defaultdict', (['(lambda : {})'], {}), '(lambda : {})\n', (30465, 30478), False, 'from collections import defaultdict\n'), ((36357, 36385), 'model_utils.init_loggers', 'mu.init_loggers', (['self.losses'], {}), '(self.losses)\n', (36372, 36385), True, 'import model_utils as mu\n'), ((39303, 39331), 'model_utils.init_loggers', 'mu.init_loggers', (['self.losses'], {}), '(self.losses)\n', (39318, 39331), True, 'import model_utils as mu\n'), ((39355, 39369), 'utils.AverageMeter', 'AverageMeter', ([], {}), '()\n', (39367, 39369), False, 'from utils import AverageMeter, AccuracyTable, ConfusionMeter, save_checkpoint, denorm, calc_topk_accuracy, calc_per_class_multilabel_counts\n'), ((41249, 41286), 'model_utils.compute_val_metrics', 'mu.compute_val_metrics', (['overall_stats'], {}), '(overall_stats)\n', (41271, 41286), True, 'import model_utils as mu\n'), ((41866, 41894), 'model_utils.init_loggers', 'mu.init_loggers', (['self.losses'], {}), '(self.losses)\n', (41881, 41894), True, 'import model_utils as mu\n'), ((41918, 41932), 'utils.AverageMeter', 'AverageMeter', ([], {}), '()\n', (41930, 41932), False, 'from utils import AverageMeter, AccuracyTable, ConfusionMeter, save_checkpoint, denorm, calc_topk_accuracy, calc_per_class_multilabel_counts\n'), ((43440, 43477), 'model_utils.compute_val_metrics', 'mu.compute_val_metrics', (['overall_stats'], {}), '(overall_stats)\n', (43462, 43477), True, 'import model_utils as mu\n'), ((47888, 47922), 'model_3d.AudioVGGEncoder', 'm3d.AudioVGGEncoder', (['tmp_args_dict'], {}), '(tmp_args_dict)\n', (47907, 47922), True, 'import model_3d as m3d\n'), ((48429, 48458), 'model_3d.get_parallel_model', 'm3d.get_parallel_model', (['model'], {}), '(model)\n', (48451, 48458), True, 'import model_3d as m3d\n'), ((48475, 48521), 'model_utils.load_model', 'mu.load_model', (['model', 'args.restore_ckpts[mode]'], {}), '(model, args.restore_ckpts[mode])\n', (48488, 48521), True, 'import model_utils as mu\n'), ((48548, 48577), 'model_3d.get_parallel_model', 'm3d.get_parallel_model', (['model'], {}), '(model)\n', (48570, 48577), True, 'import model_3d as m3d\n'), ((49385, 49410), 'torch.cuda.device_count', 'torch.cuda.device_count', ([], {}), '()\n', (49408, 49410), False, 'import torch\n'), ((49582, 49607), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (49605, 49607), False, 'import torch\n'), ((49558, 49578), 'torch.device', 'torch.device', (['"""cuda"""'], {}), "('cuda')\n", (49570, 49578), False, 'import torch\n'), ((49613, 49632), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (49625, 49632), False, 'import torch\n'), ((1526, 1601), 'model_3d.ImageFetCombiner', 'm3d.ImageFetCombiner', (['mode_params.img_fet_dim', 'mode_params.img_fet_segments'], {}), '(mode_params.img_fet_dim, mode_params.img_fet_segments)\n', (1546, 1601), True, 'import model_3d as m3d\n'), ((8102, 8153), 'model_3d.ImageFetCombiner', 'm3d.ImageFetCombiner', (['final_feature_size', 'last_size'], {}), '(final_feature_size, last_size)\n', (8122, 8153), True, 'import model_3d as m3d\n'), ((9232, 9278), 'wandb.init', 'wandb.init', ([], {'project': "args['wandb_project_name']"}), "(project=args['wandb_project_name'])\n", (9242, 9278), False, 'import wandb\n'), ((9336, 9352), 'wandb.run.save', 'wandb.run.save', ([], {}), '()\n', (9350, 9352), False, 'import wandb\n'), ((9815, 9863), 'model_utils.get_dataset_loaders', 'mu.get_dataset_loaders', (['args', 'transform', '"""train"""'], {}), "(args, transform, 'train')\n", (9837, 9863), True, 'import model_utils as mu\n'), ((9894, 9940), 'model_utils.get_dataset_loaders', 'mu.get_dataset_loaders', (['args', 'transform', '"""val"""'], {}), "(args, transform, 'val')\n", (9916, 9940), True, 'import model_utils as mu\n'), ((9996, 10024), 'model_utils.get_test_transforms', 'mu.get_test_transforms', (['args'], {}), '(args)\n', (10018, 10024), True, 'import model_utils as mu\n'), ((10056, 10144), 'model_utils.get_dataset_loaders', 'mu.get_dataset_loaders', (['args', 'test_transform', '"""test"""'], {'test_split': "args['test_split']"}), "(args, test_transform, 'test', test_split=args[\n 'test_split'])\n", (10078, 10144), True, 'import model_utils as mu\n'), ((10683, 10694), 'torch.nn.L1Loss', 'nn.L1Loss', ([], {}), '()\n', (10692, 10694), True, 'import torch.nn as nn\n'), ((10867, 10897), 'model_utils.BinaryFocalLossWithLogits', 'mu.BinaryFocalLossWithLogits', ([], {}), '()\n', (10895, 10897), True, 'import model_utils as mu\n'), ((11864, 11962), 'mask_utils.get_standard_instance_mask', 'masku.get_standard_instance_mask', (['self.B0', 'self.B1', "self.args['pred_step']"], {'device': 'self.device'}), "(self.B0, self.B1, self.args['pred_step'],\n device=self.device)\n", (11896, 11962), True, 'import mask_utils as masku\n'), ((15606, 15741), 'model_utils.ModeParams', 'mu.ModeParams', (['mode', "self.models[mode].param['feature_size']", 'self.models[mode].last_size', "self.models[mode].param['feature_size']"], {}), "(mode, self.models[mode].param['feature_size'], self.models[\n mode].last_size, self.models[mode].param['feature_size'])\n", (15619, 15741), True, 'import model_utils as mu\n'), ((17220, 17247), 'torchvision.utils.make_grid', 'vutils.make_grid', (['input_seq'], {}), '(input_seq)\n', (17236, 17247), True, 'import torchvision.utils as vutils\n'), ((22698, 22762), 'utils.calc_topk_accuracy', 'calc_topk_accuracy', (['logit', 'supervised_target', 'self.accuracyKList'], {}), '(logit, supervised_target, self.accuracyKList)\n', (22716, 22762), False, 'from utils import AverageMeter, AccuracyTable, ConfusionMeter, save_checkpoint, denorm, calc_topk_accuracy, calc_per_class_multilabel_counts\n'), ((34921, 34942), 'torch.sigmoid', 'torch.sigmoid', (['y_pred'], {}), '(y_pred)\n', (34934, 34942), False, 'import torch\n'), ((35316, 35329), 'numpy.zeros', 'np.zeros', (['(448)'], {}), '(448)\n', (35324, 35329), True, 'import numpy as np\n'), ((35464, 35495), 'numpy.average', 'np.average', (['aps'], {'weights': 'counts'}), '(aps, weights=counts)\n', (35474, 35495), True, 'import numpy as np\n'), ((35618, 35687), 'sklearn.metrics.average_precision_score', 'sklearn.metrics.average_precision_score', (['y_true', 'y_pred'], {'average': 'None'}), '(y_true, y_pred, average=None)\n', (35657, 35687), False, 'import sklearn\n'), ((37370, 37407), 'model_utils.get_stats_dict', 'mu.get_stats_dict', (['losses_dict', 'stats'], {}), '(losses_dict, stats)\n', (37387, 37407), True, 'import model_utils as mu\n'), ((37431, 37462), 'model_utils.shorten_stats', 'mu.shorten_stats', (['overall_stats'], {}), '(overall_stats)\n', (37447, 37462), True, 'import model_utils as mu\n'), ((38465, 38483), 'torch.cat', 'torch.cat', (['etcs[k]'], {}), '(etcs[k])\n', (38474, 38483), False, 'import torch\n'), ((39539, 39554), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (39552, 39554), False, 'import torch\n'), ((41087, 41105), 'torch.cat', 'torch.cat', (['etcs[k]'], {}), '(etcs[k])\n', (41096, 41105), False, 'import torch\n'), ((42102, 42117), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (42115, 42117), False, 'import torch\n'), ((42136, 42184), 'tqdm.tqdm', 'tqdm', (['self.test_loader'], {'desc': '"""Test:"""', 'position': '(0)'}), "(self.test_loader, desc='Test:', position=0)\n", (42140, 42184), False, 'from tqdm import tqdm\n'), ((43278, 43296), 'torch.cat', 'torch.cat', (['etcs[k]'], {}), '(etcs[k])\n', (43287, 43296), False, 'import torch\n'), ((47991, 48012), 'model_3d.DpcRnn', 'DpcRnn', (['tmp_args_dict'], {}), '(tmp_args_dict)\n', (47997, 48012), False, 'from model_3d import DpcRnn, SupervisedDpcRnn\n'), ((2506, 2544), 'sim_utils.AlignSimHandler', 'su.AlignSimHandler', (['self.instance_mask'], {}), '(self.instance_mask)\n', (2524, 2544), True, 'import sim_utils as su\n'), ((2577, 2595), 'sim_utils.CosSimHandler', 'su.CosSimHandler', ([], {}), '()\n', (2593, 2595), True, 'import sim_utils as su\n'), ((2626, 2645), 'sim_utils.CorrSimHandler', 'su.CorrSimHandler', ([], {}), '()\n', (2643, 2645), True, 'import sim_utils as su\n'), ((2681, 2723), 'sim_utils.DenseCorrSimHandler', 'su.DenseCorrSimHandler', (['self.instance_mask'], {}), '(self.instance_mask)\n', (2703, 2723), True, 'import sim_utils as su\n'), ((2761, 2802), 'sim_utils.DenseCosSimHandler', 'su.DenseCosSimHandler', (['self.instance_mask'], {}), '(self.instance_mask)\n', (2782, 2802), True, 'import sim_utils as su\n'), ((2952, 3022), 'torch.nn.init.kaiming_normal_', 'nn.init.kaiming_normal_', (['m.weight'], {'mode': '"""fan_out"""', 'nonlinearity': '"""relu"""'}), "(m.weight, mode='fan_out', nonlinearity='relu')\n", (2975, 3022), True, 'import torch.nn as nn\n'), ((3239, 3256), 'torch.tensor', 'torch.tensor', (['(0.0)'], {}), '(0.0)\n', (3251, 3256), False, 'import torch\n'), ((8658, 8683), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (8681, 8683), False, 'import torch\n'), ((10354, 10369), 'torch.nn.Sequential', 'nn.Sequential', ([], {}), '()\n', (10367, 10369), True, 'import torch.nn as nn\n'), ((10728, 10749), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (10747, 10749), True, 'import torch.nn as nn\n'), ((10802, 10832), 'model_utils.BinaryFocalLossWithLogits', 'mu.BinaryFocalLossWithLogits', ([], {}), '()\n', (10830, 10832), True, 'import model_utils as mu\n'), ((10943, 10992), 'model_3d.WeighedLoss', 'm3d.WeighedLoss', ([], {'num_losses': '(2)', 'device': 'self.device'}), '(num_losses=2, device=self.device)\n', (10958, 10992), True, 'import model_3d as m3d\n'), ((11515, 11636), 'mask_utils.get_standard_grid_mask', 'masku.get_standard_grid_mask', (['self.B0', 'self.B1', "self.args['pred_step']", 'self.models[m].last_size'], {'device': 'self.device'}), "(self.B0, self.B1, self.args['pred_step'], self\n .models[m].last_size, device=self.device)\n", (11543, 11636), True, 'import mask_utils as masku\n'), ((16929, 16953), 'torch.matmul', 'torch.matmul', (['preds', 'gts'], {}), '(preds, gts)\n', (16941, 16953), False, 'import torch\n'), ((17463, 17483), 'torch.abs', 'torch.abs', (['input_seq'], {}), '(input_seq)\n', (17472, 17483), False, 'import torch\n'), ((25094, 25156), 'utils.calc_topk_accuracy', 'calc_topk_accuracy', (['score_flat', 'target_lbl', 'self.accuracyKList'], {}), '(score_flat, target_lbl, self.accuracyKList)\n', (25112, 25156), False, 'from utils import AverageMeter, AccuracyTable, ConfusionMeter, save_checkpoint, denorm, calc_topk_accuracy, calc_per_class_multilabel_counts\n'), ((28128, 28169), 'torch.nn.functional.softmax', 'torch.nn.functional.softmax', (['(v / t)'], {'dim': '(1)'}), '(v / t, dim=1)\n', (28155, 28169), False, 'import torch\n'), ((34636, 34648), 'torch.cat', 'torch.cat', (['v'], {}), '(v)\n', (34645, 34648), False, 'import torch\n'), ((40896, 40933), 'model_utils.get_stats_dict', 'mu.get_stats_dict', (['losses_dict', 'stats'], {}), '(losses_dict, stats)\n', (40913, 40933), True, 'import model_utils as mu\n'), ((40961, 40992), 'model_utils.shorten_stats', 'mu.shorten_stats', (['overall_stats'], {}), '(overall_stats)\n', (40977, 40992), True, 'import model_utils as mu\n'), ((43087, 43124), 'model_utils.get_stats_dict', 'mu.get_stats_dict', (['losses_dict', 'stats'], {}), '(losses_dict, stats)\n', (43104, 43124), True, 'import model_utils as mu\n'), ((43152, 43183), 'model_utils.shorten_stats', 'mu.shorten_stats', (['overall_stats'], {}), '(overall_stats)\n', (43168, 43183), True, 'import model_utils as mu\n'), ((48080, 48111), 'model_3d.SupervisedDpcRnn', 'SupervisedDpcRnn', (['tmp_args_dict'], {}), '(tmp_args_dict)\n', (48096, 48111), False, 'from model_3d import DpcRnn, SupervisedDpcRnn\n'), ((3103, 3133), 'torch.nn.init.constant_', 'nn.init.constant_', (['m.weight', '(1)'], {}), '(m.weight, 1)\n', (3120, 3133), True, 'import torch.nn as nn\n'), ((3150, 3178), 'torch.nn.init.constant_', 'nn.init.constant_', (['m.bias', '(0)'], {}), '(m.bias, 0)\n', (3167, 3178), True, 'import torch.nn as nn\n'), ((12042, 12080), 'torch.eye', 'torch.eye', (['self.B0'], {'device': 'self.device'}), '(self.B0, device=self.device)\n', (12051, 12080), False, 'import torch\n'), ((13209, 13281), 'mask_utils.get_standard_instance_mask', 'masku.get_standard_instance_mask', (['self.B0', 'self.B1', 'num_seq', 'self.device'], {}), '(self.B0, self.B1, num_seq, self.device)\n', (13241, 13281), True, 'import mask_utils as masku\n'), ((21531, 21551), 'torch.sigmoid', 'torch.sigmoid', (['logit'], {}), '(logit)\n', (21544, 21551), False, 'import torch\n'), ((36783, 36800), 'torch.tensor', 'torch.tensor', (['(0.0)'], {}), '(0.0)\n', (36795, 36800), False, 'import torch\n'), ((49455, 49480), 'torch.cuda.device_count', 'torch.cuda.device_count', ([], {}), '()\n', (49478, 49480), False, 'import torch\n'), ((7064, 7088), 'numpy.sqrt', 'np.sqrt', (['images.shape[0]'], {}), '(images.shape[0])\n', (7071, 7088), True, 'import numpy as np\n'), ((7707, 7731), 'numpy.sqrt', 'np.sqrt', (['images.shape[0]'], {}), '(images.shape[0])\n', (7714, 7731), True, 'import numpy as np\n'), ((18410, 18435), 'wandb.Image', 'wandb.Image', (['denormed_img'], {}), '(denormed_img)\n', (18421, 18435), False, 'import wandb\n'), ((40242, 40259), 'torch.tensor', 'torch.tensor', (['(0.0)'], {}), '(0.0)\n', (40254, 40259), False, 'import torch\n'), ((42433, 42450), 'torch.tensor', 'torch.tensor', (['(0.0)'], {}), '(0.0)\n', (42445, 42450), False, 'import torch\n'), ((7265, 7282), 'wandb.Image', 'wandb.Image', (['grid'], {}), '(grid)\n', (7276, 7282), False, 'import wandb\n'), ((7896, 7913), 'wandb.Image', 'wandb.Image', (['grid'], {}), '(grid)\n', (7907, 7913), False, 'import wandb\n'), ((34720, 34748), 'torch.cat', 'torch.cat', (["feature_dict['Y']"], {}), "(feature_dict['Y'])\n", (34729, 34748), False, 'import torch\n'), ((35239, 35252), 'numpy.nonzero', 'np.nonzero', (['t'], {}), '(t)\n', (35249, 35252), True, 'import numpy as np\n')]
|
# <NAME>/Feb 2022
import numpy as np
from numpy import linalg as LA
import matplotlib
import matplotlib.dates
import datetime
from alive_progress import alive_bar
from floodsystem.datafetcher import fetch_measure_levels
from floodsystem.station import MonitoringStation
from floodsystem.flood import stations_level_over_threshold
from floodsystem.station import inconsistent_typical_range_stations
def polyfit(dates,levels,p): #LC Task 2F
x = matplotlib.dates.date2num(dates) #converts into days since the year 0001
d0 = x[0] #shift of graph
x = x - d0
y = levels
try:
p_coeff = np.polyfit(x,y,p)
poly = np.poly1d(p_coeff) #converts to the right form for numpy to use
return poly, d0 #coefficients of polynomial of order p
except(LA):
return np.poly1d(0), d0 #returns the polynomial expression and shift
def risk_definition(risk): #define the boundaries for risks
boundaries = (0, 0.8, 1.5, 2) #these can be changed based on results
if risk == None:
return "unknown"
if risk < boundaries[1]:
return "low"
if risk < boundaries[2]:
return "moderate"
if risk < boundaries[3]:
return "high"
else:
return "severe"
def issue_warnings(stations, p=4, dt=1):
stations_by_risk = []
risk_of_towns = {}
first_deriv_weight, second_deriv_weight = (5, 0.1) #weighting of the derivatives, can be changed
count = 0
inconsistent_stations = inconsistent_typical_range_stations(stations)
unsafe_stations_name = stations_level_over_threshold(stations, 0.8) #0.8 can be changed as desired
unsafe_stations = [station for station in stations for name, level in unsafe_stations_name if station.name == name]
with alive_bar(len(stations)) as bar:
for station in stations:
if station in inconsistent_stations:
pass
if not station.latest_level_consistent():
inconsistent_stations.append(station) #gets rid of inconsistent stations
if station not in unsafe_stations:
stations_by_risk.append((station, station.relative_water_level(), risk_definition(station.relative_water_level())))
try:
dates, levels = fetch_measure_levels(station.measure_id, dt=datetime.timedelta(days=dt)) #fetched plotting data
except (KeyError):
inconsistent_stations.append(station)
try:
levels = np.array(levels)
levels = (levels - station.typical_range[0]) / (station.typical_range[1] - station.typical_range[0])
except (TypeError, ValueError): #makes sure bad data doenst break the program
inconsistent_stations.append(station)
try:
poly, d0 = polyfit(dates,levels,p)
except (IndexError, ValueError, TypeError):
inconsistent_stations.append(station)
first_deriv = poly.deriv()
second_deriv = poly.deriv(2)
risk_value = poly(0)
risk_value += first_deriv(0) * first_deriv_weight
risk_value += second_deriv(0) * second_deriv_weight #
if (risk_value is None) or (station.relative_water_level() is None):
inconsistent_stations.append(station)
elif risk_value < station.relative_water_level():
risk_value = station.relative_water_level()
stations_by_risk.append((station, risk_value, risk_definition(risk_value)))
if (station.town not in risk_of_towns.keys()) or (risk_value > risk_of_towns[station.town]):
risk_of_towns[station.town] = risk_value
else:
stations_by_risk.append((station, 0, risk_definition(0)))
count = count + 1
bar()
if count > 100:
break
return risk_of_towns
|
[
"floodsystem.station.inconsistent_typical_range_stations",
"floodsystem.flood.stations_level_over_threshold",
"numpy.poly1d",
"numpy.polyfit",
"numpy.array",
"datetime.timedelta",
"matplotlib.dates.date2num"
] |
[((486, 518), 'matplotlib.dates.date2num', 'matplotlib.dates.date2num', (['dates'], {}), '(dates)\n', (511, 518), False, 'import matplotlib\n'), ((1851, 1896), 'floodsystem.station.inconsistent_typical_range_stations', 'inconsistent_typical_range_stations', (['stations'], {}), '(stations)\n', (1886, 1896), False, 'from floodsystem.station import inconsistent_typical_range_stations\n'), ((1924, 1968), 'floodsystem.flood.stations_level_over_threshold', 'stations_level_over_threshold', (['stations', '(0.8)'], {}), '(stations, 0.8)\n', (1953, 1968), False, 'from floodsystem.flood import stations_level_over_threshold\n'), ((758, 777), 'numpy.polyfit', 'np.polyfit', (['x', 'y', 'p'], {}), '(x, y, p)\n', (768, 777), True, 'import numpy as np\n'), ((793, 811), 'numpy.poly1d', 'np.poly1d', (['p_coeff'], {}), '(p_coeff)\n', (802, 811), True, 'import numpy as np\n'), ((1016, 1028), 'numpy.poly1d', 'np.poly1d', (['(0)'], {}), '(0)\n', (1025, 1028), True, 'import numpy as np\n'), ((2897, 2913), 'numpy.array', 'np.array', (['levels'], {}), '(levels)\n', (2905, 2913), True, 'import numpy as np\n'), ((2711, 2738), 'datetime.timedelta', 'datetime.timedelta', ([], {'days': 'dt'}), '(days=dt)\n', (2729, 2738), False, 'import datetime\n')]
|
#!/usr/bin/python
# -*- coding: utf-8 -*-
import numpy as np
import numpy.ma as ma
import itertools
class TPM:
"""
A collecton of static methods to calculate transition probability matrix of a
descrete markov process from an unbalanced panel data
"""
@staticmethod
def f(x):
"""
simple helper function
>>> a = 10
>>> b = [1,2,3]
>>> x = (a, b)
>>> f(x)
[10, 10, 10]
:param x:
:return:
"""
if x is None:
return
return [x[0]]* len(x[1])
@staticmethod
def get_bins(array, bins=100):
"""
Calculate in which *tile a given number of an array is. If bins=100 the function returns
an array of percentiles where each number is a percentile
>>> import numpy as np
>>> array = np.array(range(20))
>>> array
[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19]
>>> get_bins(array, bins=10)
[0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9]
>>> np.random.shuffle(array) # shuffle the array
>>> array
[10 14 0 1 12 4 3 17 15 9 7 11 13 8 18 5 16 6 2 19]
>>> get_bins(array, bins=10)
[5 7 0 0 6 2 1 8 7 4 3 5 6 4 9 2 8 3 1 9]
:param array: 1D numpy array. **must not contain NaNs**
:param bins: number of states or bins in which the data should be splitted
:return: np.array() preserving the order of elements
"""
if array is None:
return
assert(isinstance(array, type(np.array((1,))))), "input must be {}, not {}".format(type(np.array((1,))),
type(array))
assert(len(array) > bins), "len(array) must be bigger than number of states. Given len(array)= {} , bins= {}".format(len(array), bins)
sorted_indx = np.argsort(array)
bin_size = len(array)/bins
# split array into bins
splitted_in_bins = np.array_split(sorted_indx, bins)
# convert values in bins into states
splitted_in_bins = np.array(list(map(lambda z: TPM.f(z), zip(range(bins), splitted_in_bins))))
# flatten the array with states
tiles = [item for sublist in splitted_in_bins for item in sublist]
# create a dictionary with information on which state corresponds to which index
states_dict = dict(zip(sorted_indx, tiles))
# return an identical to input_array array of states
return np.array(list(map(lambda z: states_dict[z], range(len(array)))))
@staticmethod
def calculate_states(array, n_states=100):
"""
Enhances a method get_bins by accepting an array with NaN values and ignoring them.
It preserves the order of original array and returns NaN on the same place as in input.
>>> import numpy as np
>>> array = np.array(list(map(lambda x: float(x), range(20))))
[ 0. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19.]
>>> array[np.random.randint(0, len(array), size=int(len(array)*0.2))] = np.NaN
[nan 1. 2. nan nan 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. nan 17. 18. 19.]
>>> calculate_states(array, n_states=10)
[nan 0. 0. nan nan 1. 1. 2. 2. 3. 3. 4. 4. 5. 5. 6. nan 7. 8. 9.]
>>> np.random.shuffle(array)
[ 8. nan 14. 5. nan nan 10. 13. 9. 18. 1. nan 11. 7. 12. 17. 2. 15. 6. 19.]
>>> calculate_states(array, n_states=10)
[ 2. nan 5. 1. nan nan 3. 5. 3. 8. 0. nan 4. 2. 4. 7. 0. 6. 1. 9.]
:param array: 1D numpy array.
:param n_states: number of states or bins in which the data should be splitted
:return: np.array() preserving the order of elements
"""
if array is None:
return
mask = np.invert(np.array(ma.masked_invalid(array).mask))
shrinked_array = array[np.array(mask)]
shrinked_array = TPM.get_bins(shrinked_array, bins=n_states)
# expand array back to original size
# extremely inefficient code here
expanded_array = list()
p = 0
for indx in mask:
if indx:
expanded_array.append(shrinked_array[p])
p += 1
else:
expanded_array.append(np.NaN)
return np.array(expanded_array)
@staticmethod
def convert_to_states(array, n_states=100):
"""
converts a 2D numpy array into an identical 2D numpy array with values being replaced
by a corresponding state, where states are calculated in accordance with calculate_states()
function.
>>> import numpy as np
>>> data = list()
>>> for i in range(10):
>>> a = np.array(list(map(lambda x: float(x), range(10))))
>>> a[np.random.randint(0, len(a), size=int(len(a)*0.2))] = np.NaN
>>> data.append(a)
>>> array = np.array(data).T
>>> print(array) # very primitive unbalanced panel
[[ 0. nan nan nan 0. 0. nan 0. 0. 0.]
[ 1. 1. nan 1. 1. nan 1. 1. 1. 1.]
[nan 2. 2. 2. 2. 2. 2. 2. 2. 2.]
[ 3. 3. 3. 3. 3. nan nan 3. nan 3.]
[nan 4. 4. 4. 4. 4. 4. 4. 4. 4.]
[ 5. 5. 5. 5. 5. 5. 5. nan 5. 5.]
[ 6. 6. 6. nan 6. 6. 6. 6. nan nan]
[ 7. 7. 7. 7. nan 7. 7. 7. 7. 7.]
[ 8. 8. 8. 8. nan 8. 8. nan 8. 8.]
[ 9. 9. 9. 9. 9. 9. 9. 9. 9. 9.]]
>>> array = convert_to_states(array, n_states=5)
>>> print(array) # resulting convertion into 5 states
[[ 0. nan nan nan 0. 0. nan 0. 0. 0.]
[ 0. 0. nan 0. 0. nan 0. 0. 0. 0.]
[nan 0. 0. 0. 1. 0. 0. 1. 1. 1.]
[ 1. 1. 0. 1. 1. nan nan 1. nan 1.]
[nan 1. 1. 1. 2. 1. 1. 2. 1. 2.]
[ 1. 2. 1. 2. 2. 1. 1. nan 2. 2.]
[ 2. 2. 2. nan 3. 2. 2. 2. nan nan]
[ 2. 3. 2. 2. nan 2. 2. 3. 2. 3.]
[ 3. 3. 3. 3. nan 3. 3. nan 3. 3.]
[ 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.]]
>>> data = list()
>>> for i in range(10): # generate unbalanced panel
>>> a = np.array(list(map(lambda x: float(x), range(10))))
>>> a[np.random.randint(0, len(a), size=int(len(a)*0.2))] = np.NaN
>>> np.random.shuffle(a)
>>> data.append(a)
>>> array = np.array(data).T
>>> print(array) # randomly shuffled unbalanced panel
[[ 9. 6. 6. 2. 2. 1. nan nan 9. 7.]
[nan 7. nan 8. nan 4. 5. 8. 8. 9.]
[ 0. 1. 7. nan 8. 7. nan 6. 4. 0.]
[ 3. nan 0. nan 4. nan 2. 4. 0. 1.]
[ 7. 4. 4. 1. 0. 3. 8. 9. nan 2.]
[ 8. 3. 8. 7. 6. 2. 0. 0. nan nan]
[nan 9. 9. 9. 9. 0. 6. 1. 2. nan]
[ 5. 2. 3. 5. nan 5. 9. 3. 1. 5.]
[ 4. nan 2. 6. 7. nan 3. 7. 6. 4.]
[ 1. 8. 1. 3. 3. 9. 7. 2. 3. 3.]]
>>> array = convert_to_states(array, n_states=5)
>>> print(array) # resulting convertion into 5 states
[[ 4. 2. 2. 0. 0. 0. nan nan 4. 3.]
[nan 2. nan 3. nan 2. 1. 3. 3. 4.]
[ 0. 0. 3. nan 3. 3. nan 2. 2. 0.]
[ 1. nan 0. nan 1. nan 0. 2. 0. 0.]
[ 2. 1. 2. 0. 0. 1. 3. 4. nan 1.]
[ 3. 1. 3. 2. 2. 1. 0. 0. nan nan]
[nan 4. 4. 4. 4. 0. 2. 0. 1. nan]
[ 2. 0. 1. 1. nan 2. 4. 1. 0. 2.]
[ 1. nan 1. 2. 2. nan 1. 3. 2. 2.]
[ 0. 3. 0. 1. 1. 4. 2. 1. 1. 1.]]
:param array: 2D numpy array.
:param n_states: number of states or bins in which the data should be splitted
:return: np.array() of states being calculated along columns, preserving np.NaNs
"""
if array is None:
return
assert(isinstance(array, type(np.array((2, 2))))), "input must be {}, not {}".format(type(np.array((2, 2))),
type(array))
assert(len(array.shape) == 2), "array must be 2 dimentional, not {}".format(array.shape)
return np.apply_along_axis(TPM.calculate_states, 0, array, n_states=n_states)
@staticmethod
def calculate_tpm(array, n_states=100, markov_order=1):
"""
Calculate a transition probability matrix of a descrete markov process given an unbalanced panel.
The input array is treated as an unbalanced panel data. For example each row is a firm and each
entry is a growth rate of this firm in a given period of time (columns). *np.nan* means a missing
entry.
The function:
1. calculates states for each entry in a given array. For example, if the number of states is equal to 100, the function calculates in which percentile a given entry is.
2. omits all transitions from a missing entry and to a missing entry. For example, *nan -> 0.* (see array[0, 0] & array[0,1] in the code below) or *5. -> nan* (see array[1, 0] & array[1,1] in the code below)
3. calculates frequencies of transitions from one state to another and returns it as a transition probability matrix
>>> data = list()
>>> for i in range(10): # generate unbalanced panel
>>> a = np.array(list(map(lambda x: float(x), range(10))))
>>> a[np.random.randint(0, len(a), size=int(len(a)*0.2))] = np.NaN
>>> np.random.shuffle(a)
>>> data.append(a)
>>> array = np.array(data).T
>>> print(array) # randomly shuffled unbalanced panel
[[nan 0. 1. 5. 9. 5. nan 8. 0. 4.]
[ 5. nan 8. 9. 8. 0. 7. 9. 8. 0.]
[ 8. 4. 9. 8. nan 3. 3. 1. 3. 1.]
[ 9. 7. 7. nan 6. 8. 9. nan nan nan]
[nan 2. nan nan 1. 4. 4. 3. nan 6.]
[ 4. 5. 4. 7. 3. 9. 8. 5. 9. 7.]
[ 6. 8. 6. 1. 4. nan 5. 4. 1. 3.]
[ 3. 3. 0. 4. nan 1. 6. 7. 7. 8.]
[ 7. 6. 3. 3. 5. 2. 2. 6. 4. nan]
[ 1. 9. nan 6. 7. 7. nan nan 6. 9.]]
>>> print(array.shape)
(10, 10)
>>> tpm = calculate_tpm(array, n_states=5)
>>> tpm
[[0.14285714 0.42857143 0.28571429 0. 0.14285714]
[0.46153846 0.15384615 0.15384615 0. 0.23076923]
[0.14285714 0.28571429 0.28571429 0.21428571 0.07142857]
[0.25 0.25 0.25 0. 0.25 ]
[0. 0. 0.16666667 0.83333333 0. ]]
>>> print(tpm.shape)
(5, 5)
:param array: 2D numpy array representing an unbalanced panel data
:param n_states: number of states or bins in which the data should be splitted
:param markov_order: order of the markov process
:return: np.array() containing transition probability matrix
"""
if array is None:
return
assert(isinstance(array, type(np.array((2, 2))))), "input must be {}, not {}".format(type(np.array((2, 2))),
type(array))
assert(len(array.shape) == 2), "array must be 2 dimentional, not {}".format(array.shape)
# convert values into markov process states
states_matrix = TPM.convert_to_states(array, n_states=n_states)
# calculate frequencies
all_possible_jumps = np.zeros(shape=(n_states, n_states))
for index in range(states_matrix.shape[1]-2):
# collect all possible jumps
g = states_matrix[:, index:index+2]
# filter all rows with NaN
g = g[~np.isnan(g).any(axis=1)]
unique_pairs, count_pairs = np.unique(g, axis=0, return_counts=True)
#unique_pairs = tuple(map(lambda y: tuple([int(y[0]), int(y[1])]), unique_pairs))
# inefficient code here
for indx, key in enumerate(unique_pairs):
all_possible_jumps[int(key[0]), int(key[1])] += count_pairs[indx]
sum_rows = np.sum(all_possible_jumps, axis=1)
# divide each row on its sum
return np.divide(all_possible_jumps.T, sum_rows).T
if __name__ == "__main__":
# test case 1 get_bins
print("<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<")
print("What get_bins() function is doing?")
array = np.array(range(20))
print(array)
r = TPM.get_bins(array, bins=10)
print(r)
np.random.shuffle(array)
print(r)
r = TPM.get_bins(array, bins=10)
print(r)
print(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>")
print()
# test case 2 calculates_states
print("<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<")
print("What calculate_states() function is doing?")
array = np.array(list(map(lambda x: float(x), range(20))))
print(array)
array[np.random.randint(0, len(array), size=int(len(array)*0.2))] = np.NaN
print(array)
r = TPM.calculate_states(array, n_states=10)
print(r)
np.random.shuffle(array)
print(array)
r = TPM.calculate_states(array, n_states=10)
print(r)
print(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>")
print()
# test case 3 convert_to_states
# artificially create an unbalanced panel
print("<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<")
print("What convert_to_states() function is doing?")
data = list()
for i in range(10):
a = np.array(list(map(lambda x: float(x), range(10))))
a[np.random.randint(0, len(a), size=int(len(a)*0.2))] = np.NaN
np.random.shuffle(a)
data.append(a)
array = np.array(data).T
print(array)
print(array.shape)
states_matrix = TPM.convert_to_states(array, n_states=5)
print(states_matrix)
print(states_matrix.shape)
print(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>")
print()
# test case 4 calculate_tpm
# artificially create an unbalanced panel
print("<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<")
print("What calculate_tpm() function is doing?")
data = list()
for i in range(10):
a = np.array(list(map(lambda x: float(x), range(10))))
a[np.random.randint(0, len(a), size=int(len(a)*0.2))] = np.NaN
np.random.shuffle(a)
data.append(a)
array = np.array(data).T
print(array)
print(array.shape)
tpm_matrix = TPM.calculate_tpm(array, n_states=5)
print(tpm_matrix)
print(tpm_matrix.shape)
print(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>")
print()
|
[
"numpy.divide",
"numpy.sum",
"numpy.unique",
"numpy.zeros",
"numpy.ma.masked_invalid",
"numpy.isnan",
"numpy.argsort",
"numpy.apply_along_axis",
"numpy.array",
"numpy.array_split",
"numpy.random.shuffle"
] |
[((12699, 12723), 'numpy.random.shuffle', 'np.random.shuffle', (['array'], {}), '(array)\n', (12716, 12723), True, 'import numpy as np\n'), ((13262, 13286), 'numpy.random.shuffle', 'np.random.shuffle', (['array'], {}), '(array)\n', (13279, 13286), True, 'import numpy as np\n'), ((1869, 1886), 'numpy.argsort', 'np.argsort', (['array'], {}), '(array)\n', (1879, 1886), True, 'import numpy as np\n'), ((1981, 2014), 'numpy.array_split', 'np.array_split', (['sorted_indx', 'bins'], {}), '(sorted_indx, bins)\n', (1995, 2014), True, 'import numpy as np\n'), ((4355, 4379), 'numpy.array', 'np.array', (['expanded_array'], {}), '(expanded_array)\n', (4363, 4379), True, 'import numpy as np\n'), ((8359, 8429), 'numpy.apply_along_axis', 'np.apply_along_axis', (['TPM.calculate_states', '(0)', 'array'], {'n_states': 'n_states'}), '(TPM.calculate_states, 0, array, n_states=n_states)\n', (8378, 8429), True, 'import numpy as np\n'), ((11657, 11693), 'numpy.zeros', 'np.zeros', ([], {'shape': '(n_states, n_states)'}), '(shape=(n_states, n_states))\n', (11665, 11693), True, 'import numpy as np\n'), ((12297, 12331), 'numpy.sum', 'np.sum', (['all_possible_jumps'], {'axis': '(1)'}), '(all_possible_jumps, axis=1)\n', (12303, 12331), True, 'import numpy as np\n'), ((13829, 13849), 'numpy.random.shuffle', 'np.random.shuffle', (['a'], {}), '(a)\n', (13846, 13849), True, 'import numpy as np\n'), ((13887, 13901), 'numpy.array', 'np.array', (['data'], {}), '(data)\n', (13895, 13901), True, 'import numpy as np\n'), ((14518, 14538), 'numpy.random.shuffle', 'np.random.shuffle', (['a'], {}), '(a)\n', (14535, 14538), True, 'import numpy as np\n'), ((14576, 14590), 'numpy.array', 'np.array', (['data'], {}), '(data)\n', (14584, 14590), True, 'import numpy as np\n'), ((3919, 3933), 'numpy.array', 'np.array', (['mask'], {}), '(mask)\n', (3927, 3933), True, 'import numpy as np\n'), ((11966, 12006), 'numpy.unique', 'np.unique', (['g'], {'axis': '(0)', 'return_counts': '(True)'}), '(g, axis=0, return_counts=True)\n', (11975, 12006), True, 'import numpy as np\n'), ((12386, 12427), 'numpy.divide', 'np.divide', (['all_possible_jumps.T', 'sum_rows'], {}), '(all_possible_jumps.T, sum_rows)\n', (12395, 12427), True, 'import numpy as np\n'), ((1585, 1599), 'numpy.array', 'np.array', (['(1,)'], {}), '((1,))\n', (1593, 1599), True, 'import numpy as np\n'), ((1643, 1657), 'numpy.array', 'np.array', (['(1,)'], {}), '((1,))\n', (1651, 1657), True, 'import numpy as np\n'), ((8120, 8136), 'numpy.array', 'np.array', (['(2, 2)'], {}), '((2, 2))\n', (8128, 8136), True, 'import numpy as np\n'), ((8180, 8196), 'numpy.array', 'np.array', (['(2, 2)'], {}), '((2, 2))\n', (8188, 8196), True, 'import numpy as np\n'), ((11245, 11261), 'numpy.array', 'np.array', (['(2, 2)'], {}), '((2, 2))\n', (11253, 11261), True, 'import numpy as np\n'), ((11305, 11321), 'numpy.array', 'np.array', (['(2, 2)'], {}), '((2, 2))\n', (11313, 11321), True, 'import numpy as np\n'), ((3855, 3879), 'numpy.ma.masked_invalid', 'ma.masked_invalid', (['array'], {}), '(array)\n', (3872, 3879), True, 'import numpy.ma as ma\n'), ((11900, 11911), 'numpy.isnan', 'np.isnan', (['g'], {}), '(g)\n', (11908, 11911), True, 'import numpy as np\n')]
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Xtreme RGB Colourspace
======================
Defines the *Xtreme RGB* colourspace:
- :attr:`XTREME_RGB_COLOURSPACE`.
See Also
--------
`RGB Colourspaces IPython Notebook
<http://nbviewer.ipython.org/github/colour-science/colour-ipython/blob/master/notebooks/models/rgb.ipynb>`_ # noqa
References
----------
.. [1] http://www.hutchcolor.com/profiles/XtremeRGB.zip
(Last accessed 12 April 2014)
"""
from __future__ import division, unicode_literals
import numpy as np
from colour.colorimetry import ILLUMINANTS
from colour.models import RGB_Colourspace, normalised_primary_matrix
__author__ = 'Colour Developers'
__copyright__ = 'Copyright (C) 2013 - 2014 - Colour Developers'
__license__ = 'New BSD License - http://opensource.org/licenses/BSD-3-Clause'
__maintainer__ = 'Colour Developers'
__email__ = '<EMAIL>'
__status__ = 'Production'
__all__ = ['XTREME_RGB_PRIMARIES',
'XTREME_RGB_WHITEPOINT',
'XTREME_RGB_TO_XYZ_MATRIX',
'XYZ_TO_XTREME_RGB_MATRIX',
'XTREME_RGB_TRANSFER_FUNCTION',
'XTREME_RGB_INVERSE_TRANSFER_FUNCTION',
'XTREME_RGB_COLOURSPACE']
XTREME_RGB_PRIMARIES = np.array(
[[1, 0],
[0, 1],
[0, 0]])
"""
*Xtreme RGB* colourspace primaries.
XTREME_RGB_PRIMARIES : ndarray, (3, 2)
"""
XTREME_RGB_WHITEPOINT = ILLUMINANTS.get(
'CIE 1931 2 Degree Standard Observer').get('D50')
"""
*Xtreme RGB* colourspace whitepoint.
XTREME_RGB_WHITEPOINT : tuple
"""
XTREME_RGB_TO_XYZ_MATRIX = normalised_primary_matrix(XTREME_RGB_PRIMARIES,
XTREME_RGB_WHITEPOINT)
"""
*Xtreme RGB* colourspace to *CIE XYZ* colourspace matrix.
XTREME_RGB_TO_XYZ_MATRIX : array_like, (3, 3)
"""
XYZ_TO_XTREME_RGB_MATRIX = np.linalg.inv(XTREME_RGB_TO_XYZ_MATRIX)
"""
*CIE XYZ* colourspace to *Xtreme RGB* colourspace matrix.
XYZ_TO_XTREME_RGB_MATRIX : array_like, (3, 3)
"""
XTREME_RGB_TRANSFER_FUNCTION = lambda x: x ** (1 / 2.2)
"""
Transfer function from linear to *Xtreme RGB* colourspace.
XTREME_RGB_TRANSFER_FUNCTION : object
"""
XTREME_RGB_INVERSE_TRANSFER_FUNCTION = lambda x: x ** 2.2
"""
Inverse transfer function from *Xtreme RGB* colourspace to linear.
XTREME_RGB_INVERSE_TRANSFER_FUNCTION : object
"""
XTREME_RGB_COLOURSPACE = RGB_Colourspace(
'Xtreme RGB',
XTREME_RGB_PRIMARIES,
XTREME_RGB_WHITEPOINT,
XTREME_RGB_TO_XYZ_MATRIX,
XYZ_TO_XTREME_RGB_MATRIX,
XTREME_RGB_TRANSFER_FUNCTION,
XTREME_RGB_INVERSE_TRANSFER_FUNCTION)
"""
*Xtreme RGB* colourspace.
XTREME_RGB_COLOURSPACE : RGB_Colourspace
"""
|
[
"colour.models.normalised_primary_matrix",
"colour.models.RGB_Colourspace",
"colour.colorimetry.ILLUMINANTS.get",
"numpy.linalg.inv",
"numpy.array"
] |
[((1215, 1249), 'numpy.array', 'np.array', (['[[1, 0], [0, 1], [0, 0]]'], {}), '([[1, 0], [0, 1], [0, 0]])\n', (1223, 1249), True, 'import numpy as np\n'), ((1549, 1619), 'colour.models.normalised_primary_matrix', 'normalised_primary_matrix', (['XTREME_RGB_PRIMARIES', 'XTREME_RGB_WHITEPOINT'], {}), '(XTREME_RGB_PRIMARIES, XTREME_RGB_WHITEPOINT)\n', (1574, 1619), False, 'from colour.models import RGB_Colourspace, normalised_primary_matrix\n'), ((1814, 1853), 'numpy.linalg.inv', 'np.linalg.inv', (['XTREME_RGB_TO_XYZ_MATRIX'], {}), '(XTREME_RGB_TO_XYZ_MATRIX)\n', (1827, 1853), True, 'import numpy as np\n'), ((2337, 2539), 'colour.models.RGB_Colourspace', 'RGB_Colourspace', (['"""Xtreme RGB"""', 'XTREME_RGB_PRIMARIES', 'XTREME_RGB_WHITEPOINT', 'XTREME_RGB_TO_XYZ_MATRIX', 'XYZ_TO_XTREME_RGB_MATRIX', 'XTREME_RGB_TRANSFER_FUNCTION', 'XTREME_RGB_INVERSE_TRANSFER_FUNCTION'], {}), "('Xtreme RGB', XTREME_RGB_PRIMARIES, XTREME_RGB_WHITEPOINT,\n XTREME_RGB_TO_XYZ_MATRIX, XYZ_TO_XTREME_RGB_MATRIX,\n XTREME_RGB_TRANSFER_FUNCTION, XTREME_RGB_INVERSE_TRANSFER_FUNCTION)\n", (2352, 2539), False, 'from colour.models import RGB_Colourspace, normalised_primary_matrix\n'), ((1374, 1428), 'colour.colorimetry.ILLUMINANTS.get', 'ILLUMINANTS.get', (['"""CIE 1931 2 Degree Standard Observer"""'], {}), "('CIE 1931 2 Degree Standard Observer')\n", (1389, 1428), False, 'from colour.colorimetry import ILLUMINANTS\n')]
|
import numpy as np
import pickle as pkl
import os
import pandas as pd
# Creates a dictionary, path_dict, with all of the required path information for the following
# functions including save directory and finding the s2p-output
# Parameters:
# fdir - the path to the original recording file
# fname - the name of the original recording file
# threshold_scaling_values - the corresponding threshold_scaling value used
# by the automatic script
def define_paths(fdir, fname):
path_dict = {}
# define paths for loading s2p data
path_dict['s2p_dir'] = os.path.join(fdir, 'suite2p', 'plane0')
path_dict['s2p_F_path'] = os.path.join(path_dict['s2p_dir'], 'F.npy')
path_dict['s2p_Fneu_path'] = os.path.join(path_dict['s2p_dir'], 'Fneu.npy')
path_dict['s2p_iscell_path'] = os.path.join(path_dict['s2p_dir'], 'iscell.npy')
path_dict['s2p_ops_path'] = os.path.join(path_dict['s2p_dir'], 'ops.npy')
# define savepaths for converted output data
path_dict['csv_savepath'] = os.path.join(fdir, f'{fname}_s2p_data.csv')
path_dict['npy_savepath'] = os.path.join(fdir, f'{fname}_s2p_neuropil_corrected_signals.npy')
return path_dict
#Takes the path information from path_dict and uses it to load and save the files
#they direct towards
def load_s2p_data(path_dict):
s2p_data_dict = {}
# load s2p data
s2p_data_dict['F_data'] = np.load(path_dict['s2p_F_path'], allow_pickle=True)
s2p_data_dict['Fneu_data'] = np.load(path_dict['s2p_Fneu_path'], allow_pickle=True)
s2p_data_dict['iscell_data'] = np.load(path_dict['s2p_iscell_path'], allow_pickle=True)
s2p_data_dict['ops_data'] = np.load(path_dict['s2p_ops_path'], allow_pickle=True).item()
return s2p_data_dict
#Calls the previous two and finally saves the converted files as csv and npy files
def csv_npy_save(fdir, fname):
path_dict = define_paths(fdir, fname)
s2p_data_dict = load_s2p_data(path_dict)
npil_corr_signals = s2p_data_dict['F_data'] - s2p_data_dict['ops_data']['neucoeff'] * s2p_data_dict['Fneu_data']
iscell_npil_corr_data = npil_corr_signals[s2p_data_dict['iscell_data'][:,0].astype('bool'),:]
# save cell activity data as a csv with ROIs on y axis and samples on x axis
np.save(path_dict['npy_savepath'], iscell_npil_corr_data) # this saves the user-curated neuropil corrected signals as an npy file
pd.DataFrame(data=iscell_npil_corr_data).to_csv(path_dict['csv_savepath'], index=False, header=False) # this saves the same data as a csv file
|
[
"pandas.DataFrame",
"numpy.load",
"numpy.save",
"os.path.join"
] |
[((635, 674), 'os.path.join', 'os.path.join', (['fdir', '"""suite2p"""', '"""plane0"""'], {}), "(fdir, 'suite2p', 'plane0')\n", (647, 674), False, 'import os\n'), ((706, 749), 'os.path.join', 'os.path.join', (["path_dict['s2p_dir']", '"""F.npy"""'], {}), "(path_dict['s2p_dir'], 'F.npy')\n", (718, 749), False, 'import os\n'), ((783, 829), 'os.path.join', 'os.path.join', (["path_dict['s2p_dir']", '"""Fneu.npy"""'], {}), "(path_dict['s2p_dir'], 'Fneu.npy')\n", (795, 829), False, 'import os\n'), ((865, 913), 'os.path.join', 'os.path.join', (["path_dict['s2p_dir']", '"""iscell.npy"""'], {}), "(path_dict['s2p_dir'], 'iscell.npy')\n", (877, 913), False, 'import os\n'), ((946, 991), 'os.path.join', 'os.path.join', (["path_dict['s2p_dir']", '"""ops.npy"""'], {}), "(path_dict['s2p_dir'], 'ops.npy')\n", (958, 991), False, 'import os\n'), ((1074, 1117), 'os.path.join', 'os.path.join', (['fdir', 'f"""{fname}_s2p_data.csv"""'], {}), "(fdir, f'{fname}_s2p_data.csv')\n", (1086, 1117), False, 'import os\n'), ((1150, 1215), 'os.path.join', 'os.path.join', (['fdir', 'f"""{fname}_s2p_neuropil_corrected_signals.npy"""'], {}), "(fdir, f'{fname}_s2p_neuropil_corrected_signals.npy')\n", (1162, 1215), False, 'import os\n'), ((1454, 1505), 'numpy.load', 'np.load', (["path_dict['s2p_F_path']"], {'allow_pickle': '(True)'}), "(path_dict['s2p_F_path'], allow_pickle=True)\n", (1461, 1505), True, 'import numpy as np\n'), ((1539, 1593), 'numpy.load', 'np.load', (["path_dict['s2p_Fneu_path']"], {'allow_pickle': '(True)'}), "(path_dict['s2p_Fneu_path'], allow_pickle=True)\n", (1546, 1593), True, 'import numpy as np\n'), ((1629, 1685), 'numpy.load', 'np.load', (["path_dict['s2p_iscell_path']"], {'allow_pickle': '(True)'}), "(path_dict['s2p_iscell_path'], allow_pickle=True)\n", (1636, 1685), True, 'import numpy as np\n'), ((2318, 2375), 'numpy.save', 'np.save', (["path_dict['npy_savepath']", 'iscell_npil_corr_data'], {}), "(path_dict['npy_savepath'], iscell_npil_corr_data)\n", (2325, 2375), True, 'import numpy as np\n'), ((1718, 1771), 'numpy.load', 'np.load', (["path_dict['s2p_ops_path']"], {'allow_pickle': '(True)'}), "(path_dict['s2p_ops_path'], allow_pickle=True)\n", (1725, 1771), True, 'import numpy as np\n'), ((2452, 2492), 'pandas.DataFrame', 'pd.DataFrame', ([], {'data': 'iscell_npil_corr_data'}), '(data=iscell_npil_corr_data)\n', (2464, 2492), True, 'import pandas as pd\n')]
|
from typing import Optional, Tuple
import numpy as np
from sklearn import datasets
from torch.utils.data import DataLoader, Dataset
import torch
# import torch.multiprocessing as multiprocessing
# multiprocessing.set_start_method("spawn")
# class DensityDataset:
# def __init__(self, data, dtype=np.float32):
# self.data = data
# self.dtype = dtype
# def __len__(self):
# return len(self.data)
# def __getitem__(self, idx: int) -> np.ndarray:
# data = self.data[idx]
# return np.np.ndarray(data, dtype=self.dtype)
def add_dataset_args(parser):
parser.add_argument(
"--seed",
type=int,
default=123,
help="number of data points for training",
)
parser.add_argument(
"--dataset",
type=str,
default="noisysine",
help="Dataset to be used for visualization",
)
parser.add_argument(
"--n_samples",
type=int,
default=5_000,
help="number of data points for training",
)
parser.add_argument(
"--noise",
type=float,
default=0.1,
help="number of data points for training",
)
parser.add_argument(
"--n_train",
type=int,
default=2_000,
help="number of data points for training",
)
parser.add_argument(
"--n_valid",
type=int,
default=1_000,
help="number of data points for training",
)
return parser
class DensityDataset(Dataset):
def __init__(self, n_samples: int = 10_000, noise: float = 0.1, seed: int = 123):
self.n_samples = n_samples
self.seed = seed
self.noise = noise
self.reset()
def __len__(self):
return len(self.data)
def __getitem__(self, idx: int) -> torch.Tensor:
data = self.data[idx]
return data
def reset(self):
self._create_data()
def _create_data(self):
raise NotImplementedError
class GenericDataset(DensityDataset):
def __init__(self, data):
self.data = data
def get_data(
N: int = 30,
input_noise: float = 0.15,
output_noise: float = 0.15,
N_test: int = 400,
) -> Tuple[np.ndnp.ndarray, np.ndnp.ndarray, np.ndnp.ndarray]:
np.random.seed(0)
X = np.linspace(-1, 1, N)
Y = X + 0.2 * np.power(X, 3.0) + 0.5 * np.power(0.5 + X, 2.0) * np.sin(4.0 * X)
Y += output_noise * np.random.randn(N)
Y -= np.mean(Y)
Y /= np.std(Y)
X += input_noise * np.random.randn(N)
assert X.shape == (N,)
assert Y.shape == (N,)
X_test = np.linspace(-1.2, 1.2, N_test)
return X[:, None], Y[:, None], X_test[:, None]
class SCurveDataset(DensityDataset):
def _create_data(self):
data, _ = datasets.make_s_curve(
n_samples=self.n_samples, noise=self.noise, random_state=self.seed
)
data = data[:, [0, 2]]
self.data = data
class BlobsDataset(DensityDataset):
def _create_data(self):
data, _ = datasets.make_blobs(n_samples=self.n_samples, random_state=self.seed)
self.data = data
class MoonsDataset(DensityDataset):
def _create_data(self):
data, _ = datasets.make_moons(
n_samples=self.n_samples, noise=self.noise, random_state=self.seed
)
self.data = data
class SwissRollDataset(DensityDataset):
def _create_data(self):
data, _ = datasets.make_swiss_roll(
n_samples=self.n_samples, noise=self.noise, random_state=self.seed
)
data = data[:, [0, 2]]
self.data = data
class NoisySineDataset(DensityDataset):
def _create_data(self):
rng = np.random.RandomState(seed=self.seed)
x = np.abs(2 * rng.randn(1, self.n_samples))
y = np.sin(x) + 0.25 * rng.randn(1, self.n_samples)
self.data = np.vstack((x, y)).T
class CheckBoard(DensityDataset):
def _create_data(self):
rng = np.random.RandomState(self.seed)
x1 = rng.rand(self.n_samples) * 4 - 2
x2_ = rng.rand(self.n_samples) - rng.randint(0, 2, self.n_samples) * 2
x2 = x2_ + (np.floor(x1) % 2)
data = np.concatenate([x1[:, None], x2[:, None]], 1) * 2
self.data = data + 0.001 * rng.randn(*data.shape)
|
[
"numpy.random.seed",
"numpy.concatenate",
"numpy.random.randn",
"numpy.std",
"numpy.power",
"numpy.floor",
"sklearn.datasets.make_blobs",
"numpy.random.RandomState",
"sklearn.datasets.make_moons",
"sklearn.datasets.make_swiss_roll",
"numpy.mean",
"numpy.sin",
"numpy.linspace",
"sklearn.datasets.make_s_curve",
"numpy.vstack"
] |
[((2267, 2284), 'numpy.random.seed', 'np.random.seed', (['(0)'], {}), '(0)\n', (2281, 2284), True, 'import numpy as np\n'), ((2293, 2314), 'numpy.linspace', 'np.linspace', (['(-1)', '(1)', 'N'], {}), '(-1, 1, N)\n', (2304, 2314), True, 'import numpy as np\n'), ((2451, 2461), 'numpy.mean', 'np.mean', (['Y'], {}), '(Y)\n', (2458, 2461), True, 'import numpy as np\n'), ((2471, 2480), 'numpy.std', 'np.std', (['Y'], {}), '(Y)\n', (2477, 2480), True, 'import numpy as np\n'), ((2593, 2623), 'numpy.linspace', 'np.linspace', (['(-1.2)', '(1.2)', 'N_test'], {}), '(-1.2, 1.2, N_test)\n', (2604, 2623), True, 'import numpy as np\n'), ((2423, 2441), 'numpy.random.randn', 'np.random.randn', (['N'], {}), '(N)\n', (2438, 2441), True, 'import numpy as np\n'), ((2505, 2523), 'numpy.random.randn', 'np.random.randn', (['N'], {}), '(N)\n', (2520, 2523), True, 'import numpy as np\n'), ((2761, 2854), 'sklearn.datasets.make_s_curve', 'datasets.make_s_curve', ([], {'n_samples': 'self.n_samples', 'noise': 'self.noise', 'random_state': 'self.seed'}), '(n_samples=self.n_samples, noise=self.noise,\n random_state=self.seed)\n', (2782, 2854), False, 'from sklearn import datasets\n'), ((3013, 3082), 'sklearn.datasets.make_blobs', 'datasets.make_blobs', ([], {'n_samples': 'self.n_samples', 'random_state': 'self.seed'}), '(n_samples=self.n_samples, random_state=self.seed)\n', (3032, 3082), False, 'from sklearn import datasets\n'), ((3192, 3283), 'sklearn.datasets.make_moons', 'datasets.make_moons', ([], {'n_samples': 'self.n_samples', 'noise': 'self.noise', 'random_state': 'self.seed'}), '(n_samples=self.n_samples, noise=self.noise,\n random_state=self.seed)\n', (3211, 3283), False, 'from sklearn import datasets\n'), ((3415, 3511), 'sklearn.datasets.make_swiss_roll', 'datasets.make_swiss_roll', ([], {'n_samples': 'self.n_samples', 'noise': 'self.noise', 'random_state': 'self.seed'}), '(n_samples=self.n_samples, noise=self.noise,\n random_state=self.seed)\n', (3439, 3511), False, 'from sklearn import datasets\n'), ((3671, 3708), 'numpy.random.RandomState', 'np.random.RandomState', ([], {'seed': 'self.seed'}), '(seed=self.seed)\n', (3692, 3708), True, 'import numpy as np\n'), ((3940, 3972), 'numpy.random.RandomState', 'np.random.RandomState', (['self.seed'], {}), '(self.seed)\n', (3961, 3972), True, 'import numpy as np\n'), ((2383, 2398), 'numpy.sin', 'np.sin', (['(4.0 * X)'], {}), '(4.0 * X)\n', (2389, 2398), True, 'import numpy as np\n'), ((3774, 3783), 'numpy.sin', 'np.sin', (['x'], {}), '(x)\n', (3780, 3783), True, 'import numpy as np\n'), ((3842, 3859), 'numpy.vstack', 'np.vstack', (['(x, y)'], {}), '((x, y))\n', (3851, 3859), True, 'import numpy as np\n'), ((4151, 4196), 'numpy.concatenate', 'np.concatenate', (['[x1[:, None], x2[:, None]]', '(1)'], {}), '([x1[:, None], x2[:, None]], 1)\n', (4165, 4196), True, 'import numpy as np\n'), ((2333, 2349), 'numpy.power', 'np.power', (['X', '(3.0)'], {}), '(X, 3.0)\n', (2341, 2349), True, 'import numpy as np\n'), ((2358, 2380), 'numpy.power', 'np.power', (['(0.5 + X)', '(2.0)'], {}), '(0.5 + X, 2.0)\n', (2366, 2380), True, 'import numpy as np\n'), ((4118, 4130), 'numpy.floor', 'np.floor', (['x1'], {}), '(x1)\n', (4126, 4130), True, 'import numpy as np\n')]
|
"""
2-layer controller.
"""
from aw_nas import utils, assert_rollout_type
from aw_nas.utils import DistributedDataParallel
from aw_nas.controller.base import BaseController
from aw_nas.btcs.layer2.search_space import (
Layer2Rollout,
Layer2DiffRollout,
DenseMicroRollout,
DenseMicroDiffRollout,
StagewiseMacroRollout,
StagewiseMacroDiffRollout,
SinkConnectMacroDiffRollout,
)
from collections import OrderedDict
import numpy as np
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
try:
# from torch.nn.SyncBatchNorm import convert_sync_batch_norm as convert_sync_bn
from torch.nn import SyncBatchNorm
convert_sync_bn = SyncBatchNorm.convert_sync_batchnorm
except ImportError:
convert_sync_bn = lambda m: m
class Layer2Optimizer(optim.Optimizer):
def __init__(self, params, **opt_cfg):
super(Layer2Optimizer, self).__init__([torch.tensor([])], defaults={})
macro_opt_type = opt_cfg["macro"].pop("type")
micro_opt_type = opt_cfg["micro"].pop("type")
# currently width alphas & macro-alpha share the same optimizer
self.macro_optimizer = getattr(optim, macro_opt_type)(
nn.ParameterList(params[0:2]), **opt_cfg["macro"]
) # after adding width-alphas, as 2nd
self.micro_optimizer = getattr(optim, micro_opt_type)(
nn.ParameterList(params[2:]), **opt_cfg["micro"]
)
def step(self):
self.macro_optimizer.step()
self.micro_optimizer.step()
torch.optim.layer2 = Layer2Optimizer # add patch the torch optim
class Layer2DiffController(BaseController, nn.Module):
NAME = "layer2-differentiable"
def __init__(
self,
search_space,
rollout_type,
mode="eval",
device="cuda",
macro_controller_type="random_sample",
macro_controller_cfg={},
micro_controller_type="random_sample",
micro_controller_cfg={},
inspect_hessian_every=-1,
save_alphas_every=-1,
multiprocess=False,
schedule_cfg=None,
):
super(Layer2DiffController, self).__init__(
search_space, rollout_type, schedule_cfg=schedule_cfg
)
nn.Module.__init__(self)
self.search_space = search_space
self.rollout_type = rollout_type
self.device = device
self.to(self.device)
self.inspect_hessian_every = inspect_hessian_every
self.inspect_hessian = False
self.save_alphas_every = save_alphas_every
self.save_alphas = False
self.saved_dict = {
"macro": [],
"micro": [],
"width": [],
}
self.multiprocess = multiprocess
# the macro/micro controllers
if macro_controller_type == "macro-stagewise-diff":
self.macro_controller = MacroStagewiseDiffController(
self.search_space.macro_search_space,
macro_controller_type,
device=self.device,
multiprocess=self.multiprocess,
**macro_controller_cfg,
)
elif macro_controller_type == "macro-sink-connect-diff":
self.macro_controller = MacroSinkConnectDiffController(
self.search_space.macro_search_space,
macro_controller_type,
device=self.device,
multiprocess=self.multiprocess,
**macro_controller_cfg,
)
else:
raise NotImplementedError()
if micro_controller_type == "micro-dense-diff":
self.micro_controller = MicroDenseDiffController(
self.search_space.micro_search_space,
micro_controller_type,
device=self.device,
multiprocess=self.multiprocess,
**micro_controller_cfg,
)
else:
raise NotImplementedError()
object.__setattr__(self, "parallel_model", self)
self._parallelize()
def _parallelize(self):
if self.multiprocess:
net = convert_sync_bn(self).to(self.device)
object.__setattr__(
self,
"parallel_model",
DistributedDataParallel(
self, (self.device,), find_unused_parameters=True
),
)
def on_epoch_start(self, epoch):
super(Layer2DiffController, self).on_epoch_start(epoch)
if self.inspect_hessian_every >= 0 and epoch % self.inspect_hessian_every == 0:
self.inspect_hessian = True
if self.save_alphas_every >= 0 and epoch % self.save_alphas_every == 0:
self.save_alphas = True
# save alphas every epoch
if self.save_alphas:
self.saved_dict["macro"].append(
[alpha.data.cpu() for alpha in self.macro_controller.cg_alphas]
)
self.saved_dict["micro"].append(
[alpha.data.cpu() for alpha in self.micro_controller.cg_alphas]
)
self.saved_dict["width"].append(
[
width_alpha.cpu()
for width_alpha in self.macro_controller.width_alphas
]
)
self.macro_controller.on_epoch_start(epoch)
self.micro_controller.on_epoch_start(epoch)
def set_device(self, device):
self.device = device
self.to(device)
def set_mode(self, mode):
super(Layer2DiffController, self).set_mode(mode)
if mode == "train":
nn.Module.train(self)
elif mode == "eval":
nn.Module.eval(self)
else:
raise Exception("Unrecognized mode: {}".format(mode))
def parameters(self, recurse=False):
# FIXME: normal nn.module.parameters() use recurse=True to acquire all params
param_list = nn.ParameterList([])
param_list.extend(self.macro_controller.parameters())
param_list.extend(self.micro_controller.parameters())
return param_list
def _entropy_loss(self):
return (
self.macro_controller._entropy_loss()
+ self.micro_controller._entropy_loss()
)
def sample(self, n=1, batch_size=1):
if self.multiprocess:
return self.parallel_model.forward(n=n, batch_size=batch_size)
else:
return self.forward(n=n, batch_size=batch_size)
def forward(self, n=1, batch_size=1):
rollouts = []
macro_rollouts = self.macro_controller.forward(n=n, batch_size=batch_size)
micro_rollouts = self.micro_controller.forward(n=n, batch_size=batch_size)
for i in range(n):
rollouts.append(
Layer2DiffRollout(
macro_rollouts[i], micro_rollouts[i], self.search_space
)
)
return rollouts
def gradient(self, loss, return_grads=True, zero_grads=True):
if zero_grads:
self.zero_grad()
if self.inspect_hessian:
for name, param in self.named_parameters():
max_eig = utils.torch_utils.max_eig_of_hessian(loss, param)
self.logger.info("Max eigenvalue of Hessian of %s: %f", name, max_eig)
_loss = loss + self._entropy_loss()
_loss.backward()
if return_grads:
return utils.get_numpy(_loss), [
(k, v.grad.clone()) for k, v in self.named_parameters()
]
return utils.get_numpy(_loss)
def step_current_gradient(self, optimizer):
self.macro_controller.step_current_gradient(optimizer.macro_optimizer)
self.micro_controller.step_current_gradient(optimizer.micro_optimizer)
def step_gradient(self, gradients, optimizer):
self.macro_controller.step_gradient(gradients[0], optimizer.macro_optimizer)
self.micro_controller.step_gradient(gradients[1], optimizer.micro_optimizer)
def step(self, rollouts, optimizer, perf_name):
macro_rollouts = [r.macro for r in rollouts]
micro_rollouts = [r.micro for r in rollouts]
macro_loss = self.macro_controller.step(
macro_rollouts, optimizer.macro_optimizer, perf_name
)
micro_loss = self.micro_controller.step(
micro_rollouts, optimizer.micro_optimizer, perf_name
)
return macro_loss, micro_loss
def summary(self, rollouts, log=False, log_prefix="", step=None):
macro_rollouts = [r.macro for r in rollouts]
micro_rollouts = [r.micro for r in rollouts]
self.macro_controller.summary(
macro_rollouts, log=log, log_prefix=log_prefix, step=None
)
self.micro_controller.summary(
micro_rollouts, log=log, log_prefix=log_prefix, step=None
)
def save(self, path):
"""Save the parameters to disk."""
torch.save({"epoch": self.epoch, "state_dict": self.state_dict()}, path)
self.logger.info("Saved controller network to %s", path)
"""save alphas"""
if self.save_alphas_every is not None:
# os.path.dirname means the parent path of the `PATH`
torch.save(
self.saved_dict,
os.path.join(os.path.dirname(os.path.dirname(path)), "alphas.pth"),
)
def load(self, path):
"""Load the parameters from disk."""
checkpoint = torch.load(path, map_location=torch.device("cpu"))
self.load_state_dict(checkpoint["state_dict"])
self.on_epoch_start(checkpoint["epoch"])
self.logger.info("Loaded controller network from %s", path)
# since the layer2controller.parameters() is a list of [macro_parameters(), micro_parameters()], we need to override the zero_grad() since it used model.parameters()
def zero_grad(self):
for param in self.parameters():
for p in param:
if p.grad is not None:
p.grad.detach_()
p.grad.zero_()
@classmethod
def supported_rollout_types(cls):
return ["layer2", "layer2-differentiable"]
class GetArchMacro(torch.autograd.Function):
@staticmethod
def forward(
ctx,
search_space,
op_weights,
device,
i_stage,
):
stage_conn = torch.zeros(
(
search_space.stage_node_nums[i_stage],
search_space.stage_node_nums[i_stage],
)
).to(device)
stage_conn[search_space.idxes[i_stage]] = op_weights
ctx.save_for_backward(
torch.as_tensor(op_weights), torch.as_tensor(search_space.idxes[i_stage])
)
return stage_conn
@staticmethod
def backward(ctx, grad_output):
op_weights, idxes = ctx.saved_tensors
op_weights_grad = grad_output[idxes[0], idxes[1]]
return None, op_weights_grad, None, None, None
class MacroStagewiseDiffController(BaseController, nn.Module):
NAME = "macro-stagewise-diff"
SCHEDULABLE_ATTRS = [
"gumbel_temperature",
"entropy_coeff",
"force_uniform",
"width_gumbel_temperature",
"width_entropy_coeff",
]
def __init__(
self,
search_space,
rollout_type,
mode="eval",
device="cuda",
use_prob=False,
gumbel_hard=False,
gumbel_temperature=1.0,
use_sigmoid=False,
use_edge_normalization=False,
entropy_coeff=0.01,
max_grad_norm=None,
force_uniform=False,
full_init=False, # use all-one initialization and big flops reg
progressive_pruning_th=None,
multiprocess=False,
per_stage_width=True, # default use per stage width
width_entropy_coeff=0.01,
width_gumbel_temperature=1.0,
schedule_cfg=None,
):
super(MacroStagewiseDiffController, self).__init__(
search_space, rollout_type, schedule_cfg=schedule_cfg
)
nn.Module.__init__(self)
self.device = device
# sampling
self.use_prob = use_prob
self.gumbel_hard = gumbel_hard
self.gumbel_temperature = gumbel_temperature
self.use_sigmoid = use_sigmoid
# use_prob / use_sigmoid should not the True at the same time
# if both false use plain gumbel softmax
assert not (use_prob and use_sigmoid)
# edge normalization
self.use_edge_normalization = use_edge_normalization
# training
self.entropy_coeff = entropy_coeff
self.max_grad_norm = max_grad_norm
self.force_uniform = force_uniform
self.progressive_pruning_th = progressive_pruning_th
self.width_choice = self.search_space.width_choice
self.multiprocess = multiprocess
self.per_stage_width = per_stage_width
self.width_gumbel_temperature = width_gumbel_temperature
self.width_entropy_coeff = width_entropy_coeff
# generate parameters
self.full_init = full_init
if not self.full_init:
init_value = 1.0e-3
else:
init_value = 1.0
self.cg_alphas = nn.ParameterList(
[
nn.Parameter(
init_value * torch.randn(sum(self.search_space.num_possible_edges))
)
]
)
# width choices [#cells , #width_choice]
if self.width_choice is not None:
if not self.per_stage_width:
self.width_alphas = nn.ParameterList(
[
nn.Parameter(
init_value
* torch.randn(
len(self.search_space.cell_layout),
len(self.width_choice),
)
)
]
)
else:
self.width_alphas = nn.ParameterList(
[
nn.Parameter(
init_value
* torch.randn(
len(self.search_space.stage_node_nums),
len(self.width_choice),
)
)
]
)
self.stage_num_alphas = (
self.search_space.num_possible_edges
) # used for competible with sink-connecting ss
if self.use_edge_normalization:
raise NotImplementedError("MacroDiffController does not support edge-norm")
else:
self.cg_betas = None
self.get_arch = GetArchMacro()
self.to(self.device)
def set_mode(self, mode):
super(MacroStagewiseDiffController, self).set_mode(mode)
if mode == "train":
nn.Module.train(self)
elif mode == "eval":
nn.Module.eval(self)
else:
raise Exception("Unrecognized mode: {}".format(mode))
def set_device(self, device):
self.device = device
self.to(device)
def progressive_pruning(self):
for alpha in self.cg_alphas:
# inpalce replace alphas that smaller than the pruning threshold, no grad
alpha.data = alpha * (alpha.gt(self.progressive_pruning_th).float())
def forward(self, n=1, batch_size=1):
return self.sample(n=n, batch_size=batch_size)
def sample(self, n=1, batch_size=1):
if self.progressive_pruning_th is not None:
self.progressive_pruning()
width_arch, width_logits = self.sample_width(n=n, batch_size=batch_size)
rollouts = []
for i_sample in range(n):
# op_weights.shape: [num_edges, [batch_size,] num_ops]
# edge_norms.shape: [num_edges] do not have batch_size.
op_weights_list = []
edge_norms_list = []
sampled_list = []
logits_list = []
for alphas in self.cg_alphas:
if (
self.progressive_pruning_th is not None
and self.progressive_pruning_th > 0
):
alphas = alphas.clamp(self.progressive_pruning_th, 1.0e4)
else:
pass
if self.force_uniform: # cg_alpha parameters will not be in the graph
# NOTE: `force_uniform` config does not affects edge_norms (betas),
# if one wants a force_uniform search, keep `use_edge_normalization=False`
alphas = torch.zeros_like(alphas)
if batch_size > 1:
expanded_alpha = (
alphas.reshape([alphas.shape[0], 1, alphas.shape[1]])
.repeat([1, batch_size, 1])
.reshape([-1, alphas.shape[-1]])
)
else:
expanded_alpha = alphas
if self.use_prob:
sampled = F.softmax(
expanded_alpha / self.gumbel_temperature, dim=-1
)
elif self.use_sigmoid:
sampled = utils.relaxed_bernoulli_sample(
expanded_alpha, self.gumbel_temperature
)
else:
# gumbel sampling
sampled, _ = utils.gumbel_softmax(
expanded_alpha, self.gumbel_temperature, hard=False
)
if self.gumbel_hard:
op_weights = utils.straight_through(sampled)
else:
op_weights = sampled
if batch_size > 1:
sampled = sampled.reshape([-1, batch_size, op_weights.shape[-1]])
op_weights = op_weights.reshape(
[-1, batch_size, op_weights.shape[-1]]
)
op_weights_list.append(op_weights)
sampled_list.append(utils.get_numpy(sampled))
# logits_list.append(utils.get_numpy(alphas))
logits_list.append(alphas)
stage_conns = []
split_op_weights = torch.split(op_weights, self.stage_num_alphas)
for i_stage in range(self.search_space.stage_num):
stage_conn = self.get_arch.apply(
self.search_space,
split_op_weights[i_stage],
self.device,
i_stage,
)
stage_conns.append(stage_conn)
rollouts.append(
StagewiseMacroDiffRollout(
arch=stage_conns,
sampled=sampled_list,
logits=logits_list,
width_arch=width_arch[i_sample],
width_logits=width_logits[i_sample],
search_space=self.search_space,
)
)
return rollouts
def sample_width(self, n=1, batch_size=1):
assert batch_size == 1, "sample_width should not have batch size > 1"
width_sampled_list = []
width_logits_list = []
width_op_weights_list = []
for _ in range(n):
# sample the width alphas
for width_alphas in self.width_alphas:
if self.force_uniform: # cg_alpha parameters will not be in the graph
# NOTE: `force_uniform` config does not affects edge_norms (betas),
# if one wants a force_uniform search, keep `use_edge_normalization=False`
width_alphas = torch.zeros_like(width_alphas)
if batch_size > 1:
expanded_width_alpha = (
width_alphas.reshape(
[width_alphas.shape[0], 1, width_alphas.shape[1]]
)
.repeat([1, batch_size, 1])
.reshape([-1, width_alphas.shape[-1]])
)
else:
expanded_width_alpha = width_alphas
if self.use_prob:
width_sampled = F.softmax(
expanded_width_alpha / self.width_gumbel_temperature, dim=-1
)
elif self.use_sigmoid:
width_sampled = utils.relaxed_bernoulli_sample(
expanded_width_alpha, self.width_gumbel_temperature
)
else:
# gumbel sampling
width_sampled, _ = utils.gumbel_softmax(
expanded_width_alpha, self.width_gumbel_temperature, hard=False
)
if self.gumbel_hard:
width_op_weights = utils.straight_through(width_sampled)
else:
width_op_weights = width_sampled
if batch_size > 1:
width_sampled = width_sampled.reshape(
[-1, batch_size, width_op_weights.shape[-1]]
)
width_op_weights = width_op_weights.reshape(
[-1, batch_size, width_op_weights.shape[-1]]
)
if not self.per_stage_width:
width_op_weights_full = width_op_weights
width_sampled_full = width_sampled
width_alphas_full = width_alphas
else:
# the last stage has one more node
node_list = self.search_space.stage_node_nums.copy()
# let the 1st stage num_node -1
# to let all reduction cell uses the width-alphas of next stage
node_list[0] = node_list[0] - 1
width_op_weights_full = torch.cat(
[
width_op_weights[idx_stage].repeat(num_nodes - 1, 1)
for idx_stage, num_nodes in enumerate(node_list)
]
)
width_sampled_full = torch.cat(
[
width_sampled[idx_stage].repeat(num_nodes - 1, 1)
for idx_stage, num_nodes in enumerate(node_list)
]
)
width_alphas_full = torch.cat(
[
width_alphas[idx_stage].repeat(num_nodes - 1, 1)
for idx_stage, num_nodes in enumerate(node_list)
]
)
width_op_weights_list.append(width_op_weights_full)
width_sampled_list.append(utils.get_numpy(width_sampled_full))
# logits_list.append(utils.get_numpy(alphas))
width_logits_list.append(width_alphas_full)
return width_op_weights_list, width_logits_list
def save(self, path):
"""Save the parameters to disk."""
torch.save({"epoch": self.epoch, "state_dict": self.state_dict()}, path)
self.logger.info("Saved controller network to %s", path)
def load(self, path):
"""Load the parameters from disk."""
checkpoint = torch.load(path, map_location=torch.device("cpu"))
self.load_state_dict(checkpoint["state_dict"])
self.on_epoch_start(checkpoint["epoch"])
self.logger.info("Loaded controller network from %s", path)
def _entropy_loss(self):
ent_loss = 0.0
if self.entropy_coeff > 0:
alphas = self.cg_alphas[0].split(
[i - 1 for i in self.search_space.stage_node_nums]
)
probs = [F.softmax(alpha, dim=-1) for alpha in self.cg_alphas]
ent_loss = (
self.entropy_coeff
* sum(-(torch.log(prob) * prob).sum() for prob in probs)
+ ent_loss
)
if self.width_entropy_coeff > 0:
width_alphas = self.width_alphas
probs = [F.softmax(alpha, dim=-1) for alpha in self.width_alphas]
ent_loss = (
self.width_entropy_coeff
* sum(-(torch.log(prob) * prob).sum() for prob in probs)
+ ent_loss
)
return ent_loss
def gradient(self, loss, return_grads=True, zero_grads=True):
raise NotImplementedError(
"the grad function is implemented in the layer2diffcontroller.gradient()"
)
def step_current_gradient(self, optimizer):
if self.max_grad_norm is not None:
torch.nn.utils.clip_grad_norm_(self.parameters(), self.max_grad_norm)
optimizer.step()
def step_gradient(self, gradients, optimizer):
self.zero_grad()
named_params = dict(self.named_parameters())
for k, grad in gradients:
named_params[k].grad = grad
# clip the gradients
if self.max_grad_norm is not None:
torch.nn.utils.clip_grad_norm_(self.parameters(), self.max_grad_norm)
# apply the gradients
optimizer.step()
def step(self, rollouts, optimizer, perf_name): # very memory inefficient
self.zero_grad()
losses = [r.get_perf(perf_name) for r in rollouts]
optimizer.step()
[l.backward() for l in losses]
return np.mean([l.detach().cpu().numpy() for l in losses])
def __getstate__(self):
state = super(MacroStagewiseDiffController, self).__getstate__().copy()
del state["get_arch"]
return state
def __setstate__(self, state):
super(MacroStagewiseDiffController, self).__setstate__(state)
self.get_arch = GetArchMacro()
def summary(self, rollouts, log=False, log_prefix="", step=None):
num = len(rollouts)
logits_list = [
[utils.get_numpy(logits) for logits in r.logits] for r in rollouts
]
_ss = self.search_space
if self.gumbel_hard:
cg_logprobs = [0.0 for _ in range(_ss.num_cell_groups)]
cg_entros = [0.0 for _ in range(_ss.num_cell_groups)]
for rollout, logits in zip(rollouts, logits_list):
for cg_idx, (vec, cg_logits) in enumerate(zip(rollout.arch, logits)):
prob = utils.softmax(cg_logits)
logprob = np.log(prob)
if self.gumbel_hard:
inds = np.argmax(utils.get_numpy(vec.op_weights), axis=-1)
cg_logprobs[cg_idx] += np.sum(logprob[range(len(inds)), inds])
cg_entros[cg_idx] += -(prob * logprob).sum()
# mean across rollouts
if self.gumbel_hard:
cg_logprobs = [s / num for s in cg_logprobs]
total_logprob = sum(cg_logprobs)
cg_logprobs_str = ",".join(["{:.2f}".format(n) for n in cg_logprobs])
cg_entros = [s / num for s in cg_entros]
total_entro = sum(cg_entros)
cg_entro_str = ",".join(["{:.2f}".format(n) for n in cg_entros])
if log:
# maybe log the summary
self.logger.info(
"%s%d rollouts: %s ENTROPY: %2f (%s)",
log_prefix,
num,
"-LOG_PROB: %.2f (%s) ;" % (-total_logprob, cg_logprobs_str)
if self.gumbel_hard
else "",
total_entro,
cg_entro_str,
)
if step is not None and not self.writer.is_none():
if self.gumbel_hard:
self.writer.add_scalar("log_prob", total_logprob, step)
self.writer.add_scalar("entropy", total_entro, step)
stats = [
(n + " ENTRO", entro) for n, entro in zip(_ss.cell_group_names, cg_entros)
]
if self.gumbel_hard:
stats += [
(n + " LOGPROB", logprob)
for n, logprob in zip(_ss.cell_group_names, cg_logprobs)
]
return OrderedDict(stats)
@classmethod
def supported_rollout_types(cls):
return ["macro-stagewise", "macro-stagewise-diff", "macro-sink-connect-diff"]
class GetArchMacroSinkConnect(torch.autograd.Function):
@staticmethod
def forward(
ctx,
search_space,
op_weights,
device,
i_stage,
):
stage_conn = torch.zeros(
(
search_space.stage_node_nums[i_stage],
search_space.stage_node_nums[i_stage],
)
).to(device)
stage_conn[np.arange(len(op_weights)) + 1, np.arange(len(op_weights))] = 1
stage_conn[-1, : len(op_weights)] = op_weights
ctx.save_for_backward(
torch.as_tensor(op_weights), torch.as_tensor(search_space.idxes[i_stage])
)
return stage_conn
@staticmethod
def backward(ctx, grad_output):
op_weights, idxes = ctx.saved_tensors
op_weights_grad = grad_output[-1, : len(op_weights)]
return None, op_weights_grad, None, None, None
class MacroSinkConnectDiffController(MacroStagewiseDiffController):
NAME = "macro-sink-connect-diff"
# The TF_NAS-like macro search space(sink-based connecting)
# during each stage, before the reduction node, a `sinking point` aggregate the output of each node's output with softmax
# noted that cg-alpha here should denote whether connected or not
def __init__(self, *args, **kwargs):
super(MacroSinkConnectDiffController, self).__init__(*args, **kwargs)
if not self.full_init:
self.cg_alphas = nn.ParameterList(
[
nn.Parameter(
1e-3
* torch.randn(
sum([n - 1 for n in self.search_space.stage_node_nums])
)
)
]
)
else:
self.cg_alphas = nn.ParameterList(
[
nn.Parameter(
torch.ones(
sum([n - 1 for n in self.search_space.stage_node_nums])
)
)
]
)
assert (
self.use_sigmoid == False
) # sink-connecting should introduce competition in edges
self.get_arch = GetArchMacroSinkConnect()
self.stage_num_alphas = [n - 1 for n in self.search_space.stage_node_nums]
self.to(self.device) # move the newly generated cg_alphas to cuda
# The only difference with MacroStageWiseDiffController's sample is that the arch is packed into `sink-connect-diff-rollout`
def sample(self, n=1, batch_size=1):
# if use progressive pruning
if self.progressive_pruning_th is not None:
self.progressive_pruning()
width_arch, width_logits = self.sample_width(n=n, batch_size=batch_size)
rollouts = []
for i_sample in range(n):
# op_weights.shape: [num_edges, [batch_size,] num_ops]
# edge_norms.shape: [num_edges] do not have batch_size.
op_weights_list = []
edge_norms_list = []
sampled_list = []
logits_list = []
for alphas in self.cg_alphas:
splits = [i - 1 for i in self.search_space.stage_node_nums]
op_weights = []
sampleds = []
for alpha in alphas.split(splits):
if (
self.force_uniform
): # cg_alpha parameters will not be in the graph
# NOTE: `force_uniform` config does not affects edge_norms (betas),
# if one wants a force_uniform search, keep `use_edge_normalization=False`
alpha = torch.zeros_like(alpha)
if batch_size > 1:
expanded_alpha = (
alpha.reshape([alpha.shape[0], 1, alpha.shape[1]])
.repeat([1, batch_size, 1])
.reshape([-1, alpha.shape[-1]])
)
else:
expanded_alpha = alpha
if self.use_prob:
sampled = F.softmax(
expanded_alpha / self.gumbel_temperature, dim=-1
)
elif self.use_sigmoid:
sampled = utils.relaxed_bernoulli_sample(
expanded_alpha, self.gumbel_temperature
)
else:
# gumbel sampling
sampled, _ = utils.gumbel_softmax(
expanded_alpha, self.gumbel_temperature, hard=False
)
if self.gumbel_hard:
op_weight = utils.straight_through(sampled)
else:
op_weight = sampled
if batch_size > 1:
sampled = sampled.reshape([-1, batch_size, op_weight.shape[-1]])
op_weight = op_weight.reshape(
[-1, batch_size, op_weight.shape[-1]]
)
op_weights.append(op_weight)
sampleds.append(sampled)
op_weights = torch.cat(op_weights)
sampleds = torch.cat(sampleds)
op_weights_list.append(op_weights)
sampled_list.append(utils.get_numpy(sampleds))
logits_list.append(alphas)
stage_conns = []
split_op_weights = torch.split(op_weights, self.stage_num_alphas)
for i_stage in range(self.search_space.stage_num):
stage_conn = self.get_arch.apply(
self.search_space,
split_op_weights[i_stage],
self.device,
i_stage,
)
stage_conns.append(stage_conn)
rollouts.append(
SinkConnectMacroDiffRollout(
arch=stage_conns,
sampled=sampled_list,
logits=logits_list,
width_arch=width_arch[i_sample],
width_logits=width_logits[i_sample],
search_space=self.search_space,
)
)
return rollouts
def __setstate__(self, state):
super(MacroSinkConnectDiffController, self).__setstate__(state)
self.get_arch = GetArchMacroSinkConnect()
class GetArchMicro(torch.autograd.Function):
@staticmethod
def forward(ctx, search_space, op_weights, device):
empty_arch = torch.zeros(
(
search_space._num_nodes,
search_space._num_nodes,
search_space.num_op_choices,
)
).to(device)
empty_arch[search_space.idx] = op_weights
ctx.save_for_backward(
torch.as_tensor(op_weights), torch.as_tensor(search_space.idx)
)
return empty_arch
@staticmethod
def backward(ctx, grad_output):
op_weights, idxes = ctx.saved_tensors
op_weights_grad = grad_output[idxes[0], idxes[1]]
return None, op_weights_grad, None
class MicroDenseDiffController(BaseController, nn.Module):
NAME = "micro-dense-diff"
SCHEDULABLE_ATTRS = ["gumbel_temperature", "entropy_coeff", "force_uniform"]
def __init__(
self,
search_space,
rollout_type,
mode="eval",
device="cuda",
use_prob=False,
gumbel_hard=False,
gumbel_temperature=1.0,
use_sigmoid=True,
use_edge_normalization=False,
entropy_coeff=0.01,
max_grad_norm=None,
force_uniform=False,
full_init=False,
progressive_pruning_th=None,
multiprocess=False,
schedule_cfg=None,
):
super(MicroDenseDiffController, self).__init__(
search_space, rollout_type, schedule_cfg=schedule_cfg
)
nn.Module.__init__(self)
self.device = device
# sampling
self.use_prob = use_prob
self.use_sigmoid = use_sigmoid
self.gumbel_hard = gumbel_hard
self.gumbel_temperature = gumbel_temperature
assert not (use_prob and use_sigmoid)
# edge normalization
self.use_edge_normalization = use_edge_normalization
# training
self.entropy_coeff = entropy_coeff
self.max_grad_norm = max_grad_norm
self.force_uniform = force_uniform
self.full_init = full_init
self.progressive_pruning_th = progressive_pruning_th
self.multiprocess = multiprocess
_num_init_nodes = self.search_space.num_init_nodes
_num_edges_list = [
sum(
_num_init_nodes + i
for i in range(self.search_space.get_num_steps(i_cg))
)
for i_cg in range(self.search_space.num_cell_groups)
]
if not self.full_init:
self.cg_alphas = nn.ParameterList(
[
nn.Parameter(
1e-3
* torch.randn(
_num_edges,
len(self.search_space.cell_shared_primitives[i_cg]),
)
) # shape: [num_edges, num_ops]
for i_cg, _num_edges in enumerate(_num_edges_list)
]
)
else:
self.cg_alphas = nn.ParameterList(
[
nn.Parameter(
1
* torch.ones(
_num_edges,
len(self.search_space.cell_shared_primitives[i_cg]),
)
) # shape: [num_edges, num_ops]
for i_cg, _num_edges in enumerate(_num_edges_list)
]
)
if self.use_edge_normalization:
raise NotImplementedError("MicroDenseController does not support edge-norm")
else:
self.cg_betas = None
self.get_arch = GetArchMicro()
self.to(self.device)
def set_mode(self, mode):
super(MicroDenseDiffController, self).set_mode(mode)
if mode == "train":
nn.Module.train(self)
elif mode == "eval":
nn.Module.eval(self)
else:
raise Exception("Unrecognized mode: {}".format(mode))
def set_device(self, device):
self.device = device
self.to(device)
def progressive_pruning(self):
for alpha in self.cg_alphas:
# inpalce replace alphas that smaller than the pruning threshold, no grad
alpha.data = alpha * (alpha.gt(self.progressive_pruning_th).float())
def forward(self, n=1, batch_size=1): # pylint: disable=arguments-differ
return self.sample(n=n, batch_size=batch_size)
def sample(self, n=1, batch_size=1):
if self.progressive_pruning_th is not None:
self.progressive_pruning()
rollouts = []
for _ in range(n):
# op_weights.shape: [num_edges, [batch_size,] num_ops]
# edge_norms.shape: [num_edges] do not have batch_size.
op_weights_list = []
edge_norms_list = []
sampled_list = []
logits_list = []
for alphas in self.cg_alphas:
if self.force_uniform: # cg_alpha parameters will not be in the graph
# NOTE: `force_uniform` config does not affects edge_norms (betas),
# if one wants a force_uniform search, keep `use_edge_normalization=False`
alphas = torch.zeros_like(alphas)
if batch_size > 1:
expanded_alpha = (
alphas.reshape([alphas.shape[0], 1, alphas.shape[1]])
.repeat([1, batch_size, 1])
.reshape([-1, alphas.shape[-1]])
)
else:
expanded_alpha = alphas
if self.use_prob:
# probability as sample
sampled = F.softmax(
expanded_alpha / self.gumbel_temperature, dim=-1
)
elif self.use_sigmoid:
sampled = utils.relaxed_bernoulli_sample(
expanded_alpha, self.gumbel_temperature
)
else:
# gumbel sampling
sampled, _ = utils.gumbel_softmax(
expanded_alpha, self.gumbel_temperature, hard=False
)
if self.gumbel_hard:
op_weights = utils.straight_through(sampled)
else:
op_weights = sampled
if batch_size > 1:
sampled = sampled.reshape([-1, batch_size, op_weights.shape[-1]])
op_weights = op_weights.reshape(
[-1, batch_size, op_weights.shape[-1]]
)
op_weights_list.append(op_weights)
sampled_list.append(utils.get_numpy(sampled))
# logits_list.append(utils.get_numpy(alphas))
logits_list.append((alphas))
if self.use_edge_normalization:
raise NotImplementedError
else:
arch_list = []
logits_arch_list = []
for op_weights in op_weights_list:
arch = self.get_arch.apply(
self.search_space, op_weights, self.device
)
arch_list.append(arch)
for logits in logits_list:
logits_arch = self.get_arch.apply(
self.search_space, logits, self.device
)
logits_arch_list.append(logits_arch)
rollouts.append(
DenseMicroDiffRollout(
arch_list,
sampled_list,
logits_list,
logits_arch_list,
search_space=self.search_space,
)
)
return rollouts
def save(self, path):
"""Save the parameters to disk."""
torch.save({"epoch": self.epoch, "state_dict": self.state_dict()}, path)
self.logger.info("Saved controller network to %s", path)
def load(self, path):
"""Load the parameters from disk."""
checkpoint = torch.load(path, map_location=torch.device("cpu"))
self.load_state_dict(checkpoint["state_dict"])
self.on_epoch_start(checkpoint["epoch"])
self.logger.info("Loaded controller network from %s", path)
def _entropy_loss(self):
if self.entropy_coeff > 0:
probs = [F.softmax(alpha, dim=-1) for alpha in self.cg_alphas]
return self.entropy_coeff * sum(
-(torch.log(prob) * prob).sum() for prob in probs
)
return 0.0
def gradient(self, loss, return_grads=True, zero_grads=True):
raise NotImplementedError(
"the grad function is implemented in the layer2diffcontroller.gradient()"
)
def step_current_gradient(self, optimizer):
if self.max_grad_norm is not None:
torch.nn.utils.clip_grad_norm_(self.parameters(), self.max_grad_norm)
optimizer.step()
def step_gradient(self, gradients, optimizer):
self.zero_grad()
named_params = dict(self.named_parameters())
for k, grad in gradients:
named_params[k].grad = grad
# clip the gradients
if self.max_grad_norm is not None:
torch.nn.utils.clip_grad_norm_(self.parameters(), self.max_grad_norm)
# apply the gradients
optimizer.step()
def step(self, rollouts, optimizer, perf_name): # very memory inefficient
self.zero_grad()
losses = [r.get_perf(perf_name) for r in rollouts]
optimizer.step()
[l.backward() for l in losses]
return np.mean([l.detach().cpu().numpy() for l in losses])
def __getstate__(self):
state = super(MicroDenseDiffController, self).__getstate__().copy()
del state["get_arch"]
return state
def __setstate__(self, state):
super(MicroDenseDiffController, self).__setstate__(state)
self.get_arch = GetArchMicro()
def summary(self, rollouts, log=False, log_prefix="", step=None):
num = len(rollouts)
logits_list = [
[utils.get_numpy(logits) for logits in r.logits] for r in rollouts
]
_ss = self.search_space
if self.gumbel_hard:
cg_logprobs = [0.0 for _ in range(_ss.num_cell_groups)]
cg_entros = [0.0 for _ in range(_ss.num_cell_groups)]
for rollout, logits in zip(rollouts, logits_list):
for cg_idx, (vec, cg_logits) in enumerate(zip(rollout.arch, logits)):
prob = utils.softmax(cg_logits)
logprob = np.log(prob)
if self.gumbel_hard:
inds = np.argmax(utils.get_numpy(vec), axis=-1)
cg_logprobs[cg_idx] += np.sum(logprob[range(len(inds)), inds])
cg_entros[cg_idx] += -(prob * logprob).sum()
# mean across rollouts
if self.gumbel_hard:
cg_logprobs = [s / num for s in cg_logprobs]
total_logprob = sum(cg_logprobs)
cg_logprobs_str = ",".join(["{:.2f}".format(n) for n in cg_logprobs])
cg_entros = [s / num for s in cg_entros]
total_entro = sum(cg_entros)
cg_entro_str = ",".join(["{:.2f}".format(n) for n in cg_entros])
if log:
# maybe log the summary
self.logger.info(
"%s%d rollouts: %s ENTROPY: %2f (%s)",
log_prefix,
num,
"-LOG_PROB: %.2f (%s) ;" % (-total_logprob, cg_logprobs_str)
if self.gumbel_hard
else "",
total_entro,
cg_entro_str,
)
if step is not None and not self.writer.is_none():
if self.gumbel_hard:
self.writer.add_scalar("log_prob", total_logprob, step)
self.writer.add_scalar("entropy", total_entro, step)
stats = [
(n + " ENTRO", entro) for n, entro in zip(_ss.cell_group_names, cg_entros)
]
if self.gumbel_hard:
stats += [
(n + " LOGPROB", logprob)
for n, logprob in zip(_ss.cell_group_names, cg_logprobs)
]
return OrderedDict(stats)
@classmethod
def supported_rollout_types(cls):
return ["micro-dense", "micro-dense-diff"]
|
[
"aw_nas.utils.gumbel_softmax",
"aw_nas.utils.get_numpy",
"torch.cat",
"torch.device",
"aw_nas.btcs.layer2.search_space.SinkConnectMacroDiffRollout",
"aw_nas.btcs.layer2.search_space.Layer2DiffRollout",
"aw_nas.utils.torch_utils.max_eig_of_hessian",
"os.path.dirname",
"torch.nn.ParameterList",
"torch.zeros",
"torch.log",
"torch.zeros_like",
"torch.split",
"torch.nn.Module.__init__",
"aw_nas.utils.softmax",
"torch.nn.Module.eval",
"aw_nas.utils.relaxed_bernoulli_sample",
"torch.nn.Module.train",
"numpy.log",
"aw_nas.btcs.layer2.search_space.StagewiseMacroDiffRollout",
"aw_nas.utils.DistributedDataParallel",
"torch.nn.functional.softmax",
"aw_nas.utils.straight_through",
"aw_nas.btcs.layer2.search_space.DenseMicroDiffRollout",
"collections.OrderedDict",
"torch.as_tensor",
"torch.tensor"
] |
[((2257, 2281), 'torch.nn.Module.__init__', 'nn.Module.__init__', (['self'], {}), '(self)\n', (2275, 2281), True, 'import torch.nn as nn\n'), ((5941, 5961), 'torch.nn.ParameterList', 'nn.ParameterList', (['[]'], {}), '([])\n', (5957, 5961), True, 'import torch.nn as nn\n'), ((7560, 7582), 'aw_nas.utils.get_numpy', 'utils.get_numpy', (['_loss'], {}), '(_loss)\n', (7575, 7582), False, 'from aw_nas import utils, assert_rollout_type\n'), ((12062, 12086), 'torch.nn.Module.__init__', 'nn.Module.__init__', (['self'], {}), '(self)\n', (12080, 12086), True, 'import torch.nn as nn\n'), ((28177, 28195), 'collections.OrderedDict', 'OrderedDict', (['stats'], {}), '(stats)\n', (28188, 28195), False, 'from collections import OrderedDict\n'), ((36406, 36430), 'torch.nn.Module.__init__', 'nn.Module.__init__', (['self'], {}), '(self)\n', (36424, 36430), True, 'import torch.nn as nn\n'), ((47194, 47212), 'collections.OrderedDict', 'OrderedDict', (['stats'], {}), '(stats)\n', (47205, 47212), False, 'from collections import OrderedDict\n'), ((1229, 1258), 'torch.nn.ParameterList', 'nn.ParameterList', (['params[0:2]'], {}), '(params[0:2])\n', (1245, 1258), True, 'import torch.nn as nn\n'), ((1401, 1429), 'torch.nn.ParameterList', 'nn.ParameterList', (['params[2:]'], {}), '(params[2:])\n', (1417, 1429), True, 'import torch.nn as nn\n'), ((5628, 5649), 'torch.nn.Module.train', 'nn.Module.train', (['self'], {}), '(self)\n', (5643, 5649), True, 'import torch.nn as nn\n'), ((10655, 10682), 'torch.as_tensor', 'torch.as_tensor', (['op_weights'], {}), '(op_weights)\n', (10670, 10682), False, 'import torch\n'), ((10684, 10728), 'torch.as_tensor', 'torch.as_tensor', (['search_space.idxes[i_stage]'], {}), '(search_space.idxes[i_stage])\n', (10699, 10728), False, 'import torch\n'), ((14935, 14956), 'torch.nn.Module.train', 'nn.Module.train', (['self'], {}), '(self)\n', (14950, 14956), True, 'import torch.nn as nn\n'), ((28900, 28927), 'torch.as_tensor', 'torch.as_tensor', (['op_weights'], {}), '(op_weights)\n', (28915, 28927), False, 'import torch\n'), ((28929, 28973), 'torch.as_tensor', 'torch.as_tensor', (['search_space.idxes[i_stage]'], {}), '(search_space.idxes[i_stage])\n', (28944, 28973), False, 'import torch\n'), ((35315, 35342), 'torch.as_tensor', 'torch.as_tensor', (['op_weights'], {}), '(op_weights)\n', (35330, 35342), False, 'import torch\n'), ((35344, 35377), 'torch.as_tensor', 'torch.as_tensor', (['search_space.idx'], {}), '(search_space.idx)\n', (35359, 35377), False, 'import torch\n'), ((38731, 38752), 'torch.nn.Module.train', 'nn.Module.train', (['self'], {}), '(self)\n', (38746, 38752), True, 'import torch.nn as nn\n'), ((942, 958), 'torch.tensor', 'torch.tensor', (['[]'], {}), '([])\n', (954, 958), False, 'import torch\n'), ((4283, 4357), 'aw_nas.utils.DistributedDataParallel', 'DistributedDataParallel', (['self', '(self.device,)'], {'find_unused_parameters': '(True)'}), '(self, (self.device,), find_unused_parameters=True)\n', (4306, 4357), False, 'from aw_nas.utils import DistributedDataParallel\n'), ((5691, 5711), 'torch.nn.Module.eval', 'nn.Module.eval', (['self'], {}), '(self)\n', (5705, 5711), True, 'import torch.nn as nn\n'), ((6795, 6869), 'aw_nas.btcs.layer2.search_space.Layer2DiffRollout', 'Layer2DiffRollout', (['macro_rollouts[i]', 'micro_rollouts[i]', 'self.search_space'], {}), '(macro_rollouts[i], micro_rollouts[i], self.search_space)\n', (6812, 6869), False, 'from aw_nas.btcs.layer2.search_space import Layer2Rollout, Layer2DiffRollout, DenseMicroRollout, DenseMicroDiffRollout, StagewiseMacroRollout, StagewiseMacroDiffRollout, SinkConnectMacroDiffRollout\n'), ((7182, 7231), 'aw_nas.utils.torch_utils.max_eig_of_hessian', 'utils.torch_utils.max_eig_of_hessian', (['loss', 'param'], {}), '(loss, param)\n', (7218, 7231), False, 'from aw_nas import utils, assert_rollout_type\n'), ((7433, 7455), 'aw_nas.utils.get_numpy', 'utils.get_numpy', (['_loss'], {}), '(_loss)\n', (7448, 7455), False, 'from aw_nas import utils, assert_rollout_type\n'), ((9506, 9525), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (9518, 9525), False, 'import torch\n'), ((10379, 10475), 'torch.zeros', 'torch.zeros', (['(search_space.stage_node_nums[i_stage], search_space.stage_node_nums[i_stage])'], {}), '((search_space.stage_node_nums[i_stage], search_space.\n stage_node_nums[i_stage]))\n', (10390, 10475), False, 'import torch\n'), ((14998, 15018), 'torch.nn.Module.eval', 'nn.Module.eval', (['self'], {}), '(self)\n', (15012, 15018), True, 'import torch.nn as nn\n'), ((18339, 18385), 'torch.split', 'torch.split', (['op_weights', 'self.stage_num_alphas'], {}), '(op_weights, self.stage_num_alphas)\n', (18350, 18385), False, 'import torch\n'), ((18791, 18988), 'aw_nas.btcs.layer2.search_space.StagewiseMacroDiffRollout', 'StagewiseMacroDiffRollout', ([], {'arch': 'stage_conns', 'sampled': 'sampled_list', 'logits': 'logits_list', 'width_arch': 'width_arch[i_sample]', 'width_logits': 'width_logits[i_sample]', 'search_space': 'self.search_space'}), '(arch=stage_conns, sampled=sampled_list, logits=\n logits_list, width_arch=width_arch[i_sample], width_logits=width_logits\n [i_sample], search_space=self.search_space)\n', (18816, 18988), False, 'from aw_nas.btcs.layer2.search_space import Layer2Rollout, Layer2DiffRollout, DenseMicroRollout, DenseMicroDiffRollout, StagewiseMacroRollout, StagewiseMacroDiffRollout, SinkConnectMacroDiffRollout\n'), ((22943, 22978), 'aw_nas.utils.get_numpy', 'utils.get_numpy', (['width_sampled_full'], {}), '(width_sampled_full)\n', (22958, 22978), False, 'from aw_nas import utils, assert_rollout_type\n'), ((23490, 23509), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (23502, 23509), False, 'import torch\n'), ((23919, 23943), 'torch.nn.functional.softmax', 'F.softmax', (['alpha'], {'dim': '(-1)'}), '(alpha, dim=-1)\n', (23928, 23943), True, 'import torch.nn.functional as F\n'), ((24254, 24278), 'torch.nn.functional.softmax', 'F.softmax', (['alpha'], {'dim': '(-1)'}), '(alpha, dim=-1)\n', (24263, 24278), True, 'import torch.nn.functional as F\n'), ((26062, 26085), 'aw_nas.utils.get_numpy', 'utils.get_numpy', (['logits'], {}), '(logits)\n', (26077, 26085), False, 'from aw_nas import utils, assert_rollout_type\n'), ((26493, 26517), 'aw_nas.utils.softmax', 'utils.softmax', (['cg_logits'], {}), '(cg_logits)\n', (26506, 26517), False, 'from aw_nas import utils, assert_rollout_type\n'), ((26544, 26556), 'numpy.log', 'np.log', (['prob'], {}), '(prob)\n', (26550, 26556), True, 'import numpy as np\n'), ((28547, 28643), 'torch.zeros', 'torch.zeros', (['(search_space.stage_node_nums[i_stage], search_space.stage_node_nums[i_stage])'], {}), '((search_space.stage_node_nums[i_stage], search_space.\n stage_node_nums[i_stage]))\n', (28558, 28643), False, 'import torch\n'), ((33617, 33638), 'torch.cat', 'torch.cat', (['op_weights'], {}), '(op_weights)\n', (33626, 33638), False, 'import torch\n'), ((33666, 33685), 'torch.cat', 'torch.cat', (['sampleds'], {}), '(sampleds)\n', (33675, 33685), False, 'import torch\n'), ((33913, 33959), 'torch.split', 'torch.split', (['op_weights', 'self.stage_num_alphas'], {}), '(op_weights, self.stage_num_alphas)\n', (33924, 33959), False, 'import torch\n'), ((34365, 34564), 'aw_nas.btcs.layer2.search_space.SinkConnectMacroDiffRollout', 'SinkConnectMacroDiffRollout', ([], {'arch': 'stage_conns', 'sampled': 'sampled_list', 'logits': 'logits_list', 'width_arch': 'width_arch[i_sample]', 'width_logits': 'width_logits[i_sample]', 'search_space': 'self.search_space'}), '(arch=stage_conns, sampled=sampled_list, logits=\n logits_list, width_arch=width_arch[i_sample], width_logits=width_logits\n [i_sample], search_space=self.search_space)\n', (34392, 34564), False, 'from aw_nas.btcs.layer2.search_space import Layer2Rollout, Layer2DiffRollout, DenseMicroRollout, DenseMicroDiffRollout, StagewiseMacroRollout, StagewiseMacroDiffRollout, SinkConnectMacroDiffRollout\n'), ((35033, 35130), 'torch.zeros', 'torch.zeros', (['(search_space._num_nodes, search_space._num_nodes, search_space.num_op_choices)'], {}), '((search_space._num_nodes, search_space._num_nodes, search_space\n .num_op_choices))\n', (35044, 35130), False, 'import torch\n'), ((38794, 38814), 'torch.nn.Module.eval', 'nn.Module.eval', (['self'], {}), '(self)\n', (38808, 38814), True, 'import torch.nn as nn\n'), ((42469, 42582), 'aw_nas.btcs.layer2.search_space.DenseMicroDiffRollout', 'DenseMicroDiffRollout', (['arch_list', 'sampled_list', 'logits_list', 'logits_arch_list'], {'search_space': 'self.search_space'}), '(arch_list, sampled_list, logits_list,\n logits_arch_list, search_space=self.search_space)\n', (42490, 42582), False, 'from aw_nas.btcs.layer2.search_space import Layer2Rollout, Layer2DiffRollout, DenseMicroRollout, DenseMicroDiffRollout, StagewiseMacroRollout, StagewiseMacroDiffRollout, SinkConnectMacroDiffRollout\n'), ((43075, 43094), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (43087, 43094), False, 'import torch\n'), ((43354, 43378), 'torch.nn.functional.softmax', 'F.softmax', (['alpha'], {'dim': '(-1)'}), '(alpha, dim=-1)\n', (43363, 43378), True, 'import torch.nn.functional as F\n'), ((45090, 45113), 'aw_nas.utils.get_numpy', 'utils.get_numpy', (['logits'], {}), '(logits)\n', (45105, 45113), False, 'from aw_nas import utils, assert_rollout_type\n'), ((45521, 45545), 'aw_nas.utils.softmax', 'utils.softmax', (['cg_logits'], {}), '(cg_logits)\n', (45534, 45545), False, 'from aw_nas import utils, assert_rollout_type\n'), ((45572, 45584), 'numpy.log', 'np.log', (['prob'], {}), '(prob)\n', (45578, 45584), True, 'import numpy as np\n'), ((16680, 16704), 'torch.zeros_like', 'torch.zeros_like', (['alphas'], {}), '(alphas)\n', (16696, 16704), False, 'import torch\n'), ((17119, 17178), 'torch.nn.functional.softmax', 'F.softmax', (['(expanded_alpha / self.gumbel_temperature)'], {'dim': '(-1)'}), '(expanded_alpha / self.gumbel_temperature, dim=-1)\n', (17128, 17178), True, 'import torch.nn.functional as F\n'), ((17696, 17727), 'aw_nas.utils.straight_through', 'utils.straight_through', (['sampled'], {}), '(sampled)\n', (17718, 17727), False, 'from aw_nas import utils, assert_rollout_type\n'), ((18139, 18163), 'aw_nas.utils.get_numpy', 'utils.get_numpy', (['sampled'], {}), '(sampled)\n', (18154, 18163), False, 'from aw_nas import utils, assert_rollout_type\n'), ((19803, 19833), 'torch.zeros_like', 'torch.zeros_like', (['width_alphas'], {}), '(width_alphas)\n', (19819, 19833), False, 'import torch\n'), ((20351, 20422), 'torch.nn.functional.softmax', 'F.softmax', (['(expanded_width_alpha / self.width_gumbel_temperature)'], {'dim': '(-1)'}), '(expanded_width_alpha / self.width_gumbel_temperature, dim=-1)\n', (20360, 20422), True, 'import torch.nn.functional as F\n'), ((20982, 21019), 'aw_nas.utils.straight_through', 'utils.straight_through', (['width_sampled'], {}), '(width_sampled)\n', (21004, 21019), False, 'from aw_nas import utils, assert_rollout_type\n'), ((33774, 33799), 'aw_nas.utils.get_numpy', 'utils.get_numpy', (['sampleds'], {}), '(sampleds)\n', (33789, 33799), False, 'from aw_nas import utils, assert_rollout_type\n'), ((40141, 40165), 'torch.zeros_like', 'torch.zeros_like', (['alphas'], {}), '(alphas)\n', (40157, 40165), False, 'import torch\n'), ((40625, 40684), 'torch.nn.functional.softmax', 'F.softmax', (['(expanded_alpha / self.gumbel_temperature)'], {'dim': '(-1)'}), '(expanded_alpha / self.gumbel_temperature, dim=-1)\n', (40634, 40684), True, 'import torch.nn.functional as F\n'), ((41202, 41233), 'aw_nas.utils.straight_through', 'utils.straight_through', (['sampled'], {}), '(sampled)\n', (41224, 41233), False, 'from aw_nas import utils, assert_rollout_type\n'), ((41645, 41669), 'aw_nas.utils.get_numpy', 'utils.get_numpy', (['sampled'], {}), '(sampled)\n', (41660, 41669), False, 'from aw_nas import utils, assert_rollout_type\n'), ((9329, 9350), 'os.path.dirname', 'os.path.dirname', (['path'], {}), '(path)\n', (9344, 9350), False, 'import os\n'), ((17294, 17365), 'aw_nas.utils.relaxed_bernoulli_sample', 'utils.relaxed_bernoulli_sample', (['expanded_alpha', 'self.gumbel_temperature'], {}), '(expanded_alpha, self.gumbel_temperature)\n', (17324, 17365), False, 'from aw_nas import utils, assert_rollout_type\n'), ((17505, 17578), 'aw_nas.utils.gumbel_softmax', 'utils.gumbel_softmax', (['expanded_alpha', 'self.gumbel_temperature'], {'hard': '(False)'}), '(expanded_alpha, self.gumbel_temperature, hard=False)\n', (17525, 17578), False, 'from aw_nas import utils, assert_rollout_type\n'), ((20544, 20632), 'aw_nas.utils.relaxed_bernoulli_sample', 'utils.relaxed_bernoulli_sample', (['expanded_width_alpha', 'self.width_gumbel_temperature'], {}), '(expanded_width_alpha, self.\n width_gumbel_temperature)\n', (20574, 20632), False, 'from aw_nas import utils, assert_rollout_type\n'), ((20773, 20862), 'aw_nas.utils.gumbel_softmax', 'utils.gumbel_softmax', (['expanded_width_alpha', 'self.width_gumbel_temperature'], {'hard': '(False)'}), '(expanded_width_alpha, self.width_gumbel_temperature,\n hard=False)\n', (20793, 20862), False, 'from aw_nas import utils, assert_rollout_type\n'), ((26631, 26662), 'aw_nas.utils.get_numpy', 'utils.get_numpy', (['vec.op_weights'], {}), '(vec.op_weights)\n', (26646, 26662), False, 'from aw_nas import utils, assert_rollout_type\n'), ((32012, 32035), 'torch.zeros_like', 'torch.zeros_like', (['alpha'], {}), '(alpha)\n', (32028, 32035), False, 'import torch\n'), ((32486, 32545), 'torch.nn.functional.softmax', 'F.softmax', (['(expanded_alpha / self.gumbel_temperature)'], {'dim': '(-1)'}), '(expanded_alpha / self.gumbel_temperature, dim=-1)\n', (32495, 32545), True, 'import torch.nn.functional as F\n'), ((33114, 33145), 'aw_nas.utils.straight_through', 'utils.straight_through', (['sampled'], {}), '(sampled)\n', (33136, 33145), False, 'from aw_nas import utils, assert_rollout_type\n'), ((40800, 40871), 'aw_nas.utils.relaxed_bernoulli_sample', 'utils.relaxed_bernoulli_sample', (['expanded_alpha', 'self.gumbel_temperature'], {}), '(expanded_alpha, self.gumbel_temperature)\n', (40830, 40871), False, 'from aw_nas import utils, assert_rollout_type\n'), ((41011, 41084), 'aw_nas.utils.gumbel_softmax', 'utils.gumbel_softmax', (['expanded_alpha', 'self.gumbel_temperature'], {'hard': '(False)'}), '(expanded_alpha, self.gumbel_temperature, hard=False)\n', (41031, 41084), False, 'from aw_nas import utils, assert_rollout_type\n'), ((45659, 45679), 'aw_nas.utils.get_numpy', 'utils.get_numpy', (['vec'], {}), '(vec)\n', (45674, 45679), False, 'from aw_nas import utils, assert_rollout_type\n'), ((32677, 32748), 'aw_nas.utils.relaxed_bernoulli_sample', 'utils.relaxed_bernoulli_sample', (['expanded_alpha', 'self.gumbel_temperature'], {}), '(expanded_alpha, self.gumbel_temperature)\n', (32707, 32748), False, 'from aw_nas import utils, assert_rollout_type\n'), ((32908, 32981), 'aw_nas.utils.gumbel_softmax', 'utils.gumbel_softmax', (['expanded_alpha', 'self.gumbel_temperature'], {'hard': '(False)'}), '(expanded_alpha, self.gumbel_temperature, hard=False)\n', (32928, 32981), False, 'from aw_nas import utils, assert_rollout_type\n'), ((43471, 43486), 'torch.log', 'torch.log', (['prob'], {}), '(prob)\n', (43480, 43486), False, 'import torch\n'), ((24057, 24072), 'torch.log', 'torch.log', (['prob'], {}), '(prob)\n', (24066, 24072), False, 'import torch\n'), ((24401, 24416), 'torch.log', 'torch.log', (['prob'], {}), '(prob)\n', (24410, 24416), False, 'import torch\n')]
|
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import os
from nose.tools import nottest
import numpy as np
import tvm
from tvm.contrib import graph_runtime, util
from tvm import relay
import tvm.micro as micro
from tvm.relay.testing import resnet
# Use the host emulated micro device, because it's simpler and faster to test.
DEVICE_TYPE = "host"
BINUTIL_PREFIX = ""
HOST_SESSION = micro.Session(DEVICE_TYPE, BINUTIL_PREFIX)
# TODO(weberlo): Add example program to test scalar double/int TVMValue serialization.
def test_add():
"""Test a program which performs addition."""
shape = (1024,)
dtype = "float32"
# Construct TVM expression.
tvm_shape = tvm.convert(shape)
A = tvm.placeholder(tvm_shape, name="A", dtype=dtype)
B = tvm.placeholder(tvm_shape, name="B", dtype=dtype)
C = tvm.compute(A.shape, lambda *i: A(*i) + B(*i), name="C")
s = tvm.create_schedule(C.op)
func_name = "fadd"
c_mod = tvm.build(s, [A, B, C], target="c", name=func_name)
with HOST_SESSION as sess:
micro_mod = sess.create_micro_mod(c_mod)
micro_func = micro_mod[func_name]
ctx = tvm.micro_dev(0)
a = tvm.nd.array(np.random.uniform(size=shape).astype(dtype), ctx)
b = tvm.nd.array(np.random.uniform(size=shape).astype(dtype), ctx)
c = tvm.nd.array(np.zeros(shape, dtype=dtype), ctx)
micro_func(a, b, c)
tvm.testing.assert_allclose(
c.asnumpy(), a.asnumpy() + b.asnumpy())
def test_workspace_add():
"""Test a program which uses a workspace."""
shape = (1024,)
dtype = "float32"
# Construct TVM expression.
tvm_shape = tvm.convert(shape)
A = tvm.placeholder(tvm_shape, name="A", dtype=dtype)
B = tvm.placeholder(tvm_shape, name="B", dtype=dtype)
B = tvm.compute(A.shape, lambda *i: A(*i) + 1, name="B")
C = tvm.compute(A.shape, lambda *i: B(*i) + 1, name="C")
s = tvm.create_schedule(C.op)
func_name = "fadd_two_workspace"
c_mod = tvm.build(s, [A, C], target="c", name=func_name)
with HOST_SESSION as sess:
micro_mod = sess.create_micro_mod(c_mod)
micro_func = micro_mod[func_name]
ctx = tvm.micro_dev(0)
a = tvm.nd.array(np.random.uniform(size=shape).astype(dtype), ctx)
c = tvm.nd.array(np.zeros(shape, dtype=dtype), ctx)
micro_func(a, c)
tvm.testing.assert_allclose(
c.asnumpy(), a.asnumpy() + 2.0)
def test_graph_runtime():
"""Test a program which uses the graph runtime."""
shape = (1024,)
dtype = "float32"
# Construct Relay program.
x = relay.var("x", relay.TensorType(shape=shape, dtype=dtype))
xx = relay.multiply(x, x)
z = relay.add(xx, relay.const(1.0))
func = relay.Function([x], z)
with HOST_SESSION as sess:
mod, params = sess.build(func)
mod.set_input(**params)
x_in = np.random.uniform(size=shape[0]).astype(dtype)
mod.run(x=x_in)
result = mod.get_output(0).asnumpy()
tvm.testing.assert_allclose(
result, x_in * x_in + 1.0)
def test_resnet_random():
"""Test ResNet18 inference with random weights and inputs."""
resnet_func, params = resnet.get_workload(num_classes=10,
num_layers=18,
image_shape=(3, 32, 32))
# Remove the final softmax layer, because uTVM does not currently support it.
resnet_func_no_sm = relay.Function(resnet_func.params,
resnet_func.body.args[0],
resnet_func.ret_type)
with HOST_SESSION as sess:
# TODO(weberlo): Use `resnet_func` once we have libc support.
mod, params = sess.build(resnet_func_no_sm, params=params)
mod.set_input(**params)
# Generate random input.
data = np.random.uniform(size=mod.get_input(0).shape)
mod.run(data=data)
result = mod.get_output(0).asnumpy()
# We gave a random input, so all we want is a result with some nonzero
# entries.
assert result.sum() != 0.0
# TODO(weberlo): Enable this test or move the code somewhere else.
@nottest
def test_resnet_pretrained():
"""Test classification with a pretrained ResNet18 model."""
import mxnet as mx
from mxnet.gluon.model_zoo.vision import get_model
from mxnet.gluon.utils import download
from PIL import Image
# TODO(weberlo) there's a significant amount of overlap between here and
# `tutorials/frontend/from_mxnet.py`. Should refactor.
dtype = "float32"
# Fetch a mapping from class IDs to human-readable labels.
synset_url = "".join(["https://gist.githubusercontent.com/zhreshold/",
"4d0b62f3d01426887599d4f7ede23ee5/raw/",
"596b27d23537e5a1b5751d2b0481ef172f58b539/",
"imagenet1000_clsid_to_human.txt"])
synset_name = "synset.txt"
download(synset_url, synset_name)
with open(synset_name) as f:
synset = eval(f.read())
# Read raw image and preprocess into the format ResNet can work on.
img_name = "cat.png"
download("https://github.com/dmlc/mxnet.js/blob/master/data/cat.png?raw=true",
img_name)
image = Image.open(img_name).resize((224, 224))
image = np.array(image) - np.array([123., 117., 104.])
image /= np.array([58.395, 57.12, 57.375])
image = image.transpose((2, 0, 1))
image = image[np.newaxis, :]
image = tvm.nd.array(image.astype(dtype))
block = get_model("resnet18_v1", pretrained=True)
func, params = relay.frontend.from_mxnet(block,
shape={"data": image.shape})
with HOST_SESSION as sess:
mod, params = sess.build(func, params=params)
# Set model weights.
mod.set_input(**params)
# Execute with `image` as the input.
mod.run(data=image)
# Get outputs.
tvm_output = mod.get_output(0)
prediction_idx = np.argmax(tvm_output.asnumpy()[0])
prediction = synset[prediction_idx]
assert prediction == "tiger cat"
if __name__ == "__main__":
test_add()
test_workspace_add()
test_graph_runtime()
test_resnet_random()
|
[
"tvm.convert",
"tvm.create_schedule",
"tvm.relay.Function",
"tvm.testing.assert_allclose",
"mxnet.gluon.utils.download",
"tvm.relay.multiply",
"tvm.relay.frontend.from_mxnet",
"mxnet.gluon.model_zoo.vision.get_model",
"tvm.relay.const",
"numpy.random.uniform",
"tvm.relay.testing.resnet.get_workload",
"tvm.placeholder",
"numpy.zeros",
"tvm.relay.TensorType",
"tvm.build",
"PIL.Image.open",
"numpy.array",
"tvm.micro.Session",
"tvm.micro_dev"
] |
[((1123, 1165), 'tvm.micro.Session', 'micro.Session', (['DEVICE_TYPE', 'BINUTIL_PREFIX'], {}), '(DEVICE_TYPE, BINUTIL_PREFIX)\n', (1136, 1165), True, 'import tvm.micro as micro\n'), ((1412, 1430), 'tvm.convert', 'tvm.convert', (['shape'], {}), '(shape)\n', (1423, 1430), False, 'import tvm\n'), ((1439, 1488), 'tvm.placeholder', 'tvm.placeholder', (['tvm_shape'], {'name': '"""A"""', 'dtype': 'dtype'}), "(tvm_shape, name='A', dtype=dtype)\n", (1454, 1488), False, 'import tvm\n'), ((1497, 1546), 'tvm.placeholder', 'tvm.placeholder', (['tvm_shape'], {'name': '"""B"""', 'dtype': 'dtype'}), "(tvm_shape, name='B', dtype=dtype)\n", (1512, 1546), False, 'import tvm\n'), ((1620, 1645), 'tvm.create_schedule', 'tvm.create_schedule', (['C.op'], {}), '(C.op)\n', (1639, 1645), False, 'import tvm\n'), ((1682, 1733), 'tvm.build', 'tvm.build', (['s', '[A, B, C]'], {'target': '"""c"""', 'name': 'func_name'}), "(s, [A, B, C], target='c', name=func_name)\n", (1691, 1733), False, 'import tvm\n'), ((2388, 2406), 'tvm.convert', 'tvm.convert', (['shape'], {}), '(shape)\n', (2399, 2406), False, 'import tvm\n'), ((2415, 2464), 'tvm.placeholder', 'tvm.placeholder', (['tvm_shape'], {'name': '"""A"""', 'dtype': 'dtype'}), "(tvm_shape, name='A', dtype=dtype)\n", (2430, 2464), False, 'import tvm\n'), ((2473, 2522), 'tvm.placeholder', 'tvm.placeholder', (['tvm_shape'], {'name': '"""B"""', 'dtype': 'dtype'}), "(tvm_shape, name='B', dtype=dtype)\n", (2488, 2522), False, 'import tvm\n'), ((2653, 2678), 'tvm.create_schedule', 'tvm.create_schedule', (['C.op'], {}), '(C.op)\n', (2672, 2678), False, 'import tvm\n'), ((2729, 2777), 'tvm.build', 'tvm.build', (['s', '[A, C]'], {'target': '"""c"""', 'name': 'func_name'}), "(s, [A, C], target='c', name=func_name)\n", (2738, 2777), False, 'import tvm\n'), ((3411, 3431), 'tvm.relay.multiply', 'relay.multiply', (['x', 'x'], {}), '(x, x)\n', (3425, 3431), False, 'from tvm import relay\n'), ((3483, 3505), 'tvm.relay.Function', 'relay.Function', (['[x]', 'z'], {}), '([x], z)\n', (3497, 3505), False, 'from tvm import relay\n'), ((3942, 4017), 'tvm.relay.testing.resnet.get_workload', 'resnet.get_workload', ([], {'num_classes': '(10)', 'num_layers': '(18)', 'image_shape': '(3, 32, 32)'}), '(num_classes=10, num_layers=18, image_shape=(3, 32, 32))\n', (3961, 4017), False, 'from tvm.relay.testing import resnet\n'), ((4216, 4303), 'tvm.relay.Function', 'relay.Function', (['resnet_func.params', 'resnet_func.body.args[0]', 'resnet_func.ret_type'], {}), '(resnet_func.params, resnet_func.body.args[0], resnet_func.\n ret_type)\n', (4230, 4303), False, 'from tvm import relay\n'), ((5731, 5764), 'mxnet.gluon.utils.download', 'download', (['synset_url', 'synset_name'], {}), '(synset_url, synset_name)\n', (5739, 5764), False, 'from mxnet.gluon.utils import download\n'), ((5932, 6024), 'mxnet.gluon.utils.download', 'download', (['"""https://github.com/dmlc/mxnet.js/blob/master/data/cat.png?raw=true"""', 'img_name'], {}), "('https://github.com/dmlc/mxnet.js/blob/master/data/cat.png?raw=true',\n img_name)\n", (5940, 6024), False, 'from mxnet.gluon.utils import download\n'), ((6158, 6191), 'numpy.array', 'np.array', (['[58.395, 57.12, 57.375]'], {}), '([58.395, 57.12, 57.375])\n', (6166, 6191), True, 'import numpy as np\n'), ((6323, 6364), 'mxnet.gluon.model_zoo.vision.get_model', 'get_model', (['"""resnet18_v1"""'], {'pretrained': '(True)'}), "('resnet18_v1', pretrained=True)\n", (6332, 6364), False, 'from mxnet.gluon.model_zoo.vision import get_model\n'), ((6384, 6445), 'tvm.relay.frontend.from_mxnet', 'relay.frontend.from_mxnet', (['block'], {'shape': "{'data': image.shape}"}), "(block, shape={'data': image.shape})\n", (6409, 6445), False, 'from tvm import relay\n'), ((1871, 1887), 'tvm.micro_dev', 'tvm.micro_dev', (['(0)'], {}), '(0)\n', (1884, 1887), False, 'import tvm\n'), ((2915, 2931), 'tvm.micro_dev', 'tvm.micro_dev', (['(0)'], {}), '(0)\n', (2928, 2931), False, 'import tvm\n'), ((3358, 3400), 'tvm.relay.TensorType', 'relay.TensorType', ([], {'shape': 'shape', 'dtype': 'dtype'}), '(shape=shape, dtype=dtype)\n', (3374, 3400), False, 'from tvm import relay\n'), ((3454, 3470), 'tvm.relay.const', 'relay.const', (['(1.0)'], {}), '(1.0)\n', (3465, 3470), False, 'from tvm import relay\n'), ((3750, 3804), 'tvm.testing.assert_allclose', 'tvm.testing.assert_allclose', (['result', '(x_in * x_in + 1.0)'], {}), '(result, x_in * x_in + 1.0)\n', (3777, 3804), False, 'import tvm\n'), ((6098, 6113), 'numpy.array', 'np.array', (['image'], {}), '(image)\n', (6106, 6113), True, 'import numpy as np\n'), ((6116, 6147), 'numpy.array', 'np.array', (['[123.0, 117.0, 104.0]'], {}), '([123.0, 117.0, 104.0])\n', (6124, 6147), True, 'import numpy as np\n'), ((2063, 2091), 'numpy.zeros', 'np.zeros', (['shape'], {'dtype': 'dtype'}), '(shape, dtype=dtype)\n', (2071, 2091), True, 'import numpy as np\n'), ((3032, 3060), 'numpy.zeros', 'np.zeros', (['shape'], {'dtype': 'dtype'}), '(shape, dtype=dtype)\n', (3040, 3060), True, 'import numpy as np\n'), ((6046, 6066), 'PIL.Image.open', 'Image.open', (['img_name'], {}), '(img_name)\n', (6056, 6066), False, 'from PIL import Image\n'), ((3625, 3657), 'numpy.random.uniform', 'np.random.uniform', ([], {'size': 'shape[0]'}), '(size=shape[0])\n', (3642, 3657), True, 'import numpy as np\n'), ((1913, 1942), 'numpy.random.uniform', 'np.random.uniform', ([], {'size': 'shape'}), '(size=shape)\n', (1930, 1942), True, 'import numpy as np\n'), ((1988, 2017), 'numpy.random.uniform', 'np.random.uniform', ([], {'size': 'shape'}), '(size=shape)\n', (2005, 2017), True, 'import numpy as np\n'), ((2957, 2986), 'numpy.random.uniform', 'np.random.uniform', ([], {'size': 'shape'}), '(size=shape)\n', (2974, 2986), True, 'import numpy as np\n')]
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import numpy as np
from timeit import Timer
a = np.array([1, 2, 3, 4])
print(a + 1)
2**a
b = np.ones(4) + 1
a - b
a * b
j = np.arange(5)
2**(j + 1) - j
c = np.ones((3, 3))
# NOT matrix multiplication!
print(c * c)
print(c.dot(c))
a = np.arange(10)
b = a[0::2]
c = a[1::2]
print(b,c)
print(b + c)
a = list(range(10))
b = a[0::2]
c = a[1::2]
print(b,c)
print([b[i] + c[i] for i in range(len(b))])
iterable = (2**x for x in range(5))
a = np.fromiter(iterable, int)
print(a)
iterable = (2^(3*x) for x in range(5))
a = np.fromiter(iterable, int)
print(a)
print(min(Timer(setup="""
import numpy as np
a = np.arange(10)
""",
stmt="""
b = a[0::2]
c = a[1::2]
b + c
""").repeat(5,1000)))
print(min(Timer(setup="""
a = list(range(10))
""",
stmt="""
b = a[0::2]
c = a[1::2]
[b[i] + c[i] for i in range(len(b))]
""").repeat(5,1000)))
print(min(Timer(setup="import numpy as np\na = np.arange(10000)",
stmt="a + 1").repeat(5,1000)))
print(min(Timer(setup="l = range(10000)",
stmt="[i+1 for i in l]").repeat(5,1000)))
|
[
"timeit.Timer",
"numpy.ones",
"numpy.array",
"numpy.arange",
"numpy.fromiter"
] |
[((95, 117), 'numpy.array', 'np.array', (['[1, 2, 3, 4]'], {}), '([1, 2, 3, 4])\n', (103, 117), True, 'import numpy as np\n'), ((171, 183), 'numpy.arange', 'np.arange', (['(5)'], {}), '(5)\n', (180, 183), True, 'import numpy as np\n'), ((204, 219), 'numpy.ones', 'np.ones', (['(3, 3)'], {}), '((3, 3))\n', (211, 219), True, 'import numpy as np\n'), ((283, 296), 'numpy.arange', 'np.arange', (['(10)'], {}), '(10)\n', (292, 296), True, 'import numpy as np\n'), ((486, 512), 'numpy.fromiter', 'np.fromiter', (['iterable', 'int'], {}), '(iterable, int)\n', (497, 512), True, 'import numpy as np\n'), ((566, 592), 'numpy.fromiter', 'np.fromiter', (['iterable', 'int'], {}), '(iterable, int)\n', (577, 592), True, 'import numpy as np\n'), ((140, 150), 'numpy.ones', 'np.ones', (['(4)'], {}), '(4)\n', (147, 150), True, 'import numpy as np\n'), ((613, 719), 'timeit.Timer', 'Timer', ([], {'setup': '"""\nimport numpy as np\na = np.arange(10)\n"""', 'stmt': '"""\nb = a[0::2]\nc = a[1::2]\nb + c\n"""'}), '(setup="""\nimport numpy as np\na = np.arange(10)\n""", stmt=\n """\nb = a[0::2]\nc = a[1::2]\nb + c\n""")\n', (618, 719), False, 'from timeit import Timer\n'), ((743, 863), 'timeit.Timer', 'Timer', ([], {'setup': '"""\na = list(range(10))\n"""', 'stmt': '"""\nb = a[0::2]\nc = a[1::2]\n[b[i] + c[i] for i in range(len(b))]\n"""'}), '(setup="""\na = list(range(10))\n""", stmt=\n """\nb = a[0::2]\nc = a[1::2]\n[b[i] + c[i] for i in range(len(b))]\n""")\n', (748, 863), False, 'from timeit import Timer\n'), ((887, 959), 'timeit.Timer', 'Timer', ([], {'setup': '"""import numpy as np\na = np.arange(10000)"""', 'stmt': '"""a + 1"""'}), '(setup="""import numpy as np\na = np.arange(10000)""", stmt=\'a + 1\')\n', (892, 959), False, 'from timeit import Timer\n'), ((991, 1047), 'timeit.Timer', 'Timer', ([], {'setup': '"""l = range(10000)"""', 'stmt': '"""[i+1 for i in l]"""'}), "(setup='l = range(10000)', stmt='[i+1 for i in l]')\n", (996, 1047), False, 'from timeit import Timer\n')]
|
import pickle
from pathlib import Path
import numpy as np
from second.core import box_np_ops
from second.data.dataset import Dataset, get_dataset_class
from second.data.kitti_dataset import KittiDataset
import second.data.nuscenes_dataset as nuds
from second.utils.progress_bar import progress_bar_iter as prog_bar
from concurrent.futures import ProcessPoolExecutor
def create_groundtruth_database(dataset_class_name,
data_path,
info_path=None,
used_classes=None,
database_save_path=None,
db_info_save_path=None,
relative_path=True,
add_rgb=False,
lidar_only=False,
bev_only=False,
coors_range=None):
dataset = get_dataset_class(dataset_class_name)(
info_path=info_path,
root_path=data_path,
)
root_path = Path(data_path)
if database_save_path is None:
database_save_path = root_path / 'gt_database'
else:
database_save_path = Path(database_save_path)
if db_info_save_path is None:
db_info_save_path = root_path / "dbinfos_train.pkl"
database_save_path.mkdir(parents=True, exist_ok=True)
all_db_infos = {}
group_counter = 0
for j in prog_bar(list(range(len(dataset)))):
image_idx = j
sensor_data = dataset.get_sensor_data(j)
if "image_idx" in sensor_data["metadata"]:
image_idx = sensor_data["metadata"]["image_idx"]
points = sensor_data["lidar"]["points"]
annos = sensor_data["lidar"]["annotations"]
gt_boxes = annos["boxes"]
names = annos["names"]
group_dict = {}
group_ids = np.full([gt_boxes.shape[0]], -1, dtype=np.int64)
if "group_ids" in annos:
group_ids = annos["group_ids"]
else:
group_ids = np.arange(gt_boxes.shape[0], dtype=np.int64)
difficulty = np.zeros(gt_boxes.shape[0], dtype=np.int32)
if "difficulty" in annos:
difficulty = annos["difficulty"]
num_obj = gt_boxes.shape[0]
point_indices = box_np_ops.points_in_rbbox(points, gt_boxes)
for i in range(num_obj):
filename = f"{image_idx}_{names[i]}_{i}.bin"
filepath = database_save_path / filename
gt_points = points[point_indices[:, i]]
gt_points[:, :3] -= gt_boxes[i, :3]
with open(filepath, 'w') as f:
gt_points.tofile(f)
if (used_classes is None) or names[i] in used_classes:
if relative_path:
db_path = str(database_save_path.stem + "/" + filename)
else:
db_path = str(filepath)
db_info = {
"name": names[i],
"path": db_path,
"image_idx": image_idx,
"gt_idx": i,
"box3d_lidar": gt_boxes[i],
"num_points_in_gt": gt_points.shape[0],
"difficulty": difficulty[i],
# "group_id": -1,
# "bbox": bboxes[i],
}
local_group_id = group_ids[i]
# if local_group_id >= 0:
if local_group_id not in group_dict:
group_dict[local_group_id] = group_counter
group_counter += 1
db_info["group_id"] = group_dict[local_group_id]
if "score" in annos:
db_info["score"] = annos["score"][i]
if names[i] in all_db_infos:
all_db_infos[names[i]].append(db_info)
else:
all_db_infos[names[i]] = [db_info]
for k, v in all_db_infos.items():
print(f"load {len(v)} {k} database infos")
with open(db_info_save_path, 'wb') as f:
pickle.dump(all_db_infos, f)
def create_groundtruth_database_with_sweep_info(dataset_class_name,
data_path,
info_path=None,
used_classes=None,
database_save_path=None,
db_info_save_path=None,
relative_path=True,
add_rgb=False,
lidar_only=False,
bev_only=False,
coors_range=None):
dataset = get_dataset_class(dataset_class_name)(
info_path=info_path,
root_path=data_path,
)
root_path = Path(data_path)
if database_save_path is None:
database_save_path = root_path / 'gt_database_with_sweep_info'
else:
database_save_path = Path(database_save_path)
if db_info_save_path is None:
db_info_save_path = root_path / "dbinfos_train_with_sweep_info.pkl"
database_save_path.mkdir(parents=True, exist_ok=True)
all_db_infos = {}
group_counter = 0
for j in prog_bar(list(range(len(dataset)))):
image_idx = j
sensor_data = dataset.get_sensor_data(j)
if "image_idx" in sensor_data["metadata"]:
image_idx = sensor_data["metadata"]["image_idx"]
assert("sweep_points_list" in sensor_data["lidar"])
sweep_points_list = sensor_data["lidar"]["sweep_points_list"]
assert("sweep_annotations" in sensor_data["lidar"])
sweep_gt_boxes_list = sensor_data["lidar"]["sweep_annotations"]["boxes_list"]
sweep_gt_tokens_list = sensor_data["lidar"]["sweep_annotations"]["tokens_list"]
sweep_gt_names_list = sensor_data["lidar"]["sweep_annotations"]["names_list"]
# we focus on the objects in the first frame
# and find the bounding box index of the same object in every frame
points = sensor_data["lidar"]["points"]
annos = sensor_data["lidar"]["annotations"]
names = annos["names"]
gt_boxes = annos["boxes"]
attrs = annos["attrs"]
tokens = sweep_gt_tokens_list[0]
# sanity check with redundancy
assert(len(sweep_gt_boxes_list) == len(sweep_gt_tokens_list) == len(sweep_gt_names_list))
assert(len(gt_boxes) == len(attrs) == len(tokens))
assert(np.all(names == sweep_gt_names_list[0]))
assert(np.all(gt_boxes == sweep_gt_boxes_list[0]))
# on every frame, we mask points inside each bounding box
# but we are not looking at every bounding box
sweep_point_indices_list = []
for sweep_points, sweep_gt_boxes in zip(sweep_points_list, sweep_gt_boxes_list):
sweep_point_indices_list.append(box_np_ops.points_in_rbbox(sweep_points, sweep_gt_boxes))
# crop point cloud based on boxes in the current frame
point_indices = box_np_ops.points_in_rbbox(points, gt_boxes)
#
group_dict = {}
group_ids = np.full([gt_boxes.shape[0]], -1, dtype=np.int64)
if "group_ids" in annos:
group_ids = annos["group_ids"]
else:
group_ids = np.arange(gt_boxes.shape[0], dtype=np.int64)
#
difficulty = np.zeros(gt_boxes.shape[0], dtype=np.int32)
if "difficulty" in annos:
difficulty = annos["difficulty"]
num_obj = gt_boxes.shape[0]
for i in range(num_obj):
filename = f"{image_idx}_{names[i]}_{i}.bin"
filepath = database_save_path / filename
# only use non-key frame boxes when the object is moving
if attrs[i] in ['vehicle.moving', 'cycle.with_rider', 'pedestrian.moving']:
gt_points_list = []
for t in range(len(sweep_points_list)):
# fast pass for most frames
if i < len(sweep_gt_tokens_list[t]) and sweep_gt_tokens_list[t][i] == tokens[i]:
box_idx = i
else:
I = np.flatnonzero(tokens[i] == sweep_gt_tokens_list[t])
if len(I) == 0: continue
elif len(I) == 1: box_idx = I[0]
else: raise ValueError('Identical object tokens')
gt_points_list.append(sweep_points_list[t][sweep_point_indices_list[t][:, box_idx]])
gt_points = np.concatenate(gt_points_list, axis=0)[:, [0, 1, 2, 4]]
else:
gt_points = points[point_indices[:, i]]
# offset points based on the bounding box in the current frame
gt_points[:, :3] -= gt_boxes[i, :3]
with open(filepath, 'w') as f:
gt_points.tofile(f)
if (used_classes is None) or names[i] in used_classes:
if relative_path:
db_path = str(database_save_path.stem + "/" + filename)
else:
db_path = str(filepath)
db_info = {
"name": names[i],
"path": db_path,
"image_idx": image_idx,
"gt_idx": i,
"box3d_lidar": gt_boxes[i],
"num_points_in_gt": gt_points.shape[0],
"difficulty": difficulty[i]
}
local_group_id = group_ids[i]
if local_group_id not in group_dict:
group_dict[local_group_id] = group_counter
group_counter += 1
db_info["group_id"] = group_dict[local_group_id]
if "score" in annos:
db_info["score"] = annos["score"][i]
if names[i] in all_db_infos:
all_db_infos[names[i]].append(db_info)
else:
all_db_infos[names[i]] = [db_info]
for k, v in all_db_infos.items():
print(f"load {len(v)} {k} database infos")
with open(db_info_save_path, 'wb') as f:
pickle.dump(all_db_infos, f)
|
[
"numpy.full",
"pickle.dump",
"numpy.concatenate",
"numpy.flatnonzero",
"numpy.zeros",
"second.core.box_np_ops.points_in_rbbox",
"pathlib.Path",
"numpy.arange",
"second.data.dataset.get_dataset_class",
"numpy.all"
] |
[((1058, 1073), 'pathlib.Path', 'Path', (['data_path'], {}), '(data_path)\n', (1062, 1073), False, 'from pathlib import Path\n'), ((4946, 4961), 'pathlib.Path', 'Path', (['data_path'], {}), '(data_path)\n', (4950, 4961), False, 'from pathlib import Path\n'), ((939, 976), 'second.data.dataset.get_dataset_class', 'get_dataset_class', (['dataset_class_name'], {}), '(dataset_class_name)\n', (956, 976), False, 'from second.data.dataset import Dataset, get_dataset_class\n'), ((1203, 1227), 'pathlib.Path', 'Path', (['database_save_path'], {}), '(database_save_path)\n', (1207, 1227), False, 'from pathlib import Path\n'), ((1869, 1917), 'numpy.full', 'np.full', (['[gt_boxes.shape[0]]', '(-1)'], {'dtype': 'np.int64'}), '([gt_boxes.shape[0]], -1, dtype=np.int64)\n', (1876, 1917), True, 'import numpy as np\n'), ((2098, 2141), 'numpy.zeros', 'np.zeros', (['gt_boxes.shape[0]'], {'dtype': 'np.int32'}), '(gt_boxes.shape[0], dtype=np.int32)\n', (2106, 2141), True, 'import numpy as np\n'), ((2282, 2326), 'second.core.box_np_ops.points_in_rbbox', 'box_np_ops.points_in_rbbox', (['points', 'gt_boxes'], {}), '(points, gt_boxes)\n', (2308, 2326), False, 'from second.core import box_np_ops\n'), ((4052, 4080), 'pickle.dump', 'pickle.dump', (['all_db_infos', 'f'], {}), '(all_db_infos, f)\n', (4063, 4080), False, 'import pickle\n'), ((4827, 4864), 'second.data.dataset.get_dataset_class', 'get_dataset_class', (['dataset_class_name'], {}), '(dataset_class_name)\n', (4844, 4864), False, 'from second.data.dataset import Dataset, get_dataset_class\n'), ((5107, 5131), 'pathlib.Path', 'Path', (['database_save_path'], {}), '(database_save_path)\n', (5111, 5131), False, 'from pathlib import Path\n'), ((6609, 6648), 'numpy.all', 'np.all', (['(names == sweep_gt_names_list[0])'], {}), '(names == sweep_gt_names_list[0])\n', (6615, 6648), True, 'import numpy as np\n'), ((6665, 6707), 'numpy.all', 'np.all', (['(gt_boxes == sweep_gt_boxes_list[0])'], {}), '(gt_boxes == sweep_gt_boxes_list[0])\n', (6671, 6707), True, 'import numpy as np\n'), ((7149, 7193), 'second.core.box_np_ops.points_in_rbbox', 'box_np_ops.points_in_rbbox', (['points', 'gt_boxes'], {}), '(points, gt_boxes)\n', (7175, 7193), False, 'from second.core import box_np_ops\n'), ((7250, 7298), 'numpy.full', 'np.full', (['[gt_boxes.shape[0]]', '(-1)'], {'dtype': 'np.int64'}), '([gt_boxes.shape[0]], -1, dtype=np.int64)\n', (7257, 7298), True, 'import numpy as np\n'), ((7490, 7533), 'numpy.zeros', 'np.zeros', (['gt_boxes.shape[0]'], {'dtype': 'np.int32'}), '(gt_boxes.shape[0], dtype=np.int32)\n', (7498, 7533), True, 'import numpy as np\n'), ((10285, 10313), 'pickle.dump', 'pickle.dump', (['all_db_infos', 'f'], {}), '(all_db_infos, f)\n', (10296, 10313), False, 'import pickle\n'), ((2032, 2076), 'numpy.arange', 'np.arange', (['gt_boxes.shape[0]'], {'dtype': 'np.int64'}), '(gt_boxes.shape[0], dtype=np.int64)\n', (2041, 2076), True, 'import numpy as np\n'), ((7413, 7457), 'numpy.arange', 'np.arange', (['gt_boxes.shape[0]'], {'dtype': 'np.int64'}), '(gt_boxes.shape[0], dtype=np.int64)\n', (7422, 7457), True, 'import numpy as np\n'), ((7003, 7059), 'second.core.box_np_ops.points_in_rbbox', 'box_np_ops.points_in_rbbox', (['sweep_points', 'sweep_gt_boxes'], {}), '(sweep_points, sweep_gt_boxes)\n', (7029, 7059), False, 'from second.core import box_np_ops\n'), ((8661, 8699), 'numpy.concatenate', 'np.concatenate', (['gt_points_list'], {'axis': '(0)'}), '(gt_points_list, axis=0)\n', (8675, 8699), True, 'import numpy as np\n'), ((8294, 8346), 'numpy.flatnonzero', 'np.flatnonzero', (['(tokens[i] == sweep_gt_tokens_list[t])'], {}), '(tokens[i] == sweep_gt_tokens_list[t])\n', (8308, 8346), True, 'import numpy as np\n')]
|
# -*- encoding: utf-8 -*-
"""Script for analyzing data from the simulated primary and follow-up
experiments."""
# Allow importing modules from parent directory.
import sys
sys.path.append('..')
from fdr import lsu, tst, qvalue
from fwer import bonferroni, sidak, hochberg, holm_bonferroni
from permutation import tfr_permutation_test
import numpy as np
from repeat import fwer_replicability as repl
from util import grid_model_counts as counts
"""Load the simulated datasets."""
fpath = '/home/puolival/multipy_data'
fname_primary = fpath + '/primary.npy'
fname_followup = fname_primary.replace('primary', 'follow-up')
print('Loading simulated datasets ..')
primary_data, followup_data = (np.load(fname_primary),
np.load(fname_followup))
print('Done.')
# Extract p-values
pvals_pri, pvals_fol = (primary_data.flat[0]['pvals'],
followup_data.flat[0]['pvals'])
# Extract raw data for permutation testing
rvs_a_pri, rvs_b_pri = (primary_data.flat[0]['rvs_a'],
primary_data.flat[0]['rvs_b'])
rvs_a_fol, rvs_b_fol = (followup_data.flat[0]['rvs_a'],
followup_data.flat[0]['rvs_b'])
"""Define analysis parameters."""
n_iterations, n_effect_sizes, nl, _ = np.shape(pvals_pri)
emph_primary = 0.1
alpha = 0.05
method = qvalue
sl = 30 # TODO: save to .npy file.
"""Compute reproducibility rates."""
rr = np.zeros([n_iterations, n_effect_sizes])
for ind in np.ndindex(n_iterations, n_effect_sizes):
print('Analysis iteration %3d' % (1+ind[0]))
replicable = repl(pvals_pri[ind].flatten(), pvals_fol[ind].flatten(),
emph_primary, method, alpha)
replicable = np.reshape(replicable, [nl, nl])
rr[ind] = counts(replicable, nl, sl)[0]
"""Save data to disk."""
output_fpath = fpath
output_fname = output_fpath + ('/result-%s.npy' % method.__name__)
np.save(output_fname, {'rr': rr})
print('Results saved to disk.')
|
[
"sys.path.append",
"numpy.ndindex",
"numpy.save",
"numpy.load",
"numpy.zeros",
"util.grid_model_counts",
"numpy.shape",
"numpy.reshape"
] |
[((173, 194), 'sys.path.append', 'sys.path.append', (['""".."""'], {}), "('..')\n", (188, 194), False, 'import sys\n'), ((1262, 1281), 'numpy.shape', 'np.shape', (['pvals_pri'], {}), '(pvals_pri)\n', (1270, 1281), True, 'import numpy as np\n'), ((1408, 1448), 'numpy.zeros', 'np.zeros', (['[n_iterations, n_effect_sizes]'], {}), '([n_iterations, n_effect_sizes])\n', (1416, 1448), True, 'import numpy as np\n'), ((1461, 1501), 'numpy.ndindex', 'np.ndindex', (['n_iterations', 'n_effect_sizes'], {}), '(n_iterations, n_effect_sizes)\n', (1471, 1501), True, 'import numpy as np\n'), ((1886, 1919), 'numpy.save', 'np.save', (['output_fname', "{'rr': rr}"], {}), "(output_fname, {'rr': rr})\n", (1893, 1919), True, 'import numpy as np\n'), ((696, 718), 'numpy.load', 'np.load', (['fname_primary'], {}), '(fname_primary)\n', (703, 718), True, 'import numpy as np\n'), ((751, 774), 'numpy.load', 'np.load', (['fname_followup'], {}), '(fname_followup)\n', (758, 774), True, 'import numpy as np\n'), ((1694, 1726), 'numpy.reshape', 'np.reshape', (['replicable', '[nl, nl]'], {}), '(replicable, [nl, nl])\n', (1704, 1726), True, 'import numpy as np\n'), ((1741, 1767), 'util.grid_model_counts', 'counts', (['replicable', 'nl', 'sl'], {}), '(replicable, nl, sl)\n', (1747, 1767), True, 'from util import grid_model_counts as counts\n')]
|
from collections import defaultdict, Counter, OrderedDict, namedtuple, deque
from typing import List, Dict, Any, Tuple, Iterable, Set, Optional
import numpy as np
import tensorflow as tf
from dpu_utils.tfutils import unsorted_segment_logsumexp, pick_indices_from_probs
from dpu_utils.mlutils.vocabulary import Vocabulary
from dpu_utils.tfmodels import AsyncGGNN
from .model import Model, ModelTestResult, write_to_minibatch
BIG_NUMBER = 1e7
SMALL_NUMBER = 1e-7
# These are special non-terminal symbols that are expanded to literals, either from
# a small dict that we collect during training, or by copying from the context.
ROOT_NONTERMINAL = 'Expression'
VARIABLE_NONTERMINAL = 'Variable'
LITERAL_NONTERMINALS = ['IntLiteral', 'CharLiteral', 'StringLiteral']
LAST_USED_TOKEN_NAME = '<LAST TOK>'
EXPANSION_LABELED_EDGE_TYPE_NAMES = ["Child"]
EXPANSION_UNLABELED_EDGE_TYPE_NAMES = ["Parent", "NextUse", "NextToken", "NextSibling", "NextSubtree",
"InheritedToSynthesised"]
class MissingProductionException(Exception):
pass
ExpansionInformation = namedtuple("ExpansionInformation", ["node_to_type", "node_to_label", "node_to_prod_id", "node_to_children", "node_to_parent",
"node_to_synthesised_attr_node", "node_to_inherited_attr_node",
"variable_to_last_use_id", "node_to_representation",
"node_to_labeled_incoming_edges", "node_to_unlabeled_incoming_edges",
"context_token_representations", "context_token_mask", "context_tokens",
"literal_production_choice_normalizer",
"nodes_to_expand", "expansion_logprob", "num_expansions",
])
def clone_list_defaultdict(dict_to_clone) -> defaultdict:
return defaultdict(list, {key: list(value) for (key, value) in dict_to_clone.items()})
def clone_expansion_info(expansion_info: ExpansionInformation, increment_expansion_counter: bool=False) -> ExpansionInformation:
"""Create a clone of the expansion information with fresh copies of all (morally) mutable components."""
return ExpansionInformation(node_to_type=dict(expansion_info.node_to_type),
node_to_label=dict(expansion_info.node_to_label),
node_to_prod_id=dict(expansion_info.node_to_prod_id),
node_to_children=clone_list_defaultdict(expansion_info.node_to_children),
node_to_parent=dict(expansion_info.node_to_parent),
node_to_synthesised_attr_node=dict(expansion_info.node_to_synthesised_attr_node),
node_to_inherited_attr_node=dict(expansion_info.node_to_inherited_attr_node),
variable_to_last_use_id=dict(expansion_info.variable_to_last_use_id),
node_to_representation=dict(expansion_info.node_to_representation),
node_to_labeled_incoming_edges=dict(expansion_info.node_to_labeled_incoming_edges),
node_to_unlabeled_incoming_edges=dict(expansion_info.node_to_unlabeled_incoming_edges),
context_token_representations=expansion_info.context_token_representations,
context_token_mask=expansion_info.context_token_mask,
context_tokens=expansion_info.context_tokens,
literal_production_choice_normalizer=expansion_info.literal_production_choice_normalizer,
nodes_to_expand=deque(expansion_info.nodes_to_expand),
expansion_logprob=[expansion_info.expansion_logprob[0]],
num_expansions=expansion_info.num_expansions + (1 if increment_expansion_counter else 0))
def get_tokens_from_expansion(expansion_info: ExpansionInformation, root_node: int) -> List[str]:
def dfs(node: int) -> List[str]:
children = expansion_info.node_to_children.get(node)
if children is None:
return [expansion_info.node_to_label[node]]
else:
return [tok
for child in children
for tok in dfs(child)]
return dfs(root_node)
def raw_rhs_to_tuple(symbol_to_kind, symbol_to_label, rhs_ids: Iterable[int]) -> Tuple:
rhs = []
for rhs_node_id in rhs_ids:
rhs_node_kind = symbol_to_kind[str(rhs_node_id)]
if rhs_node_kind == "Token":
rhs.append(symbol_to_label[str(rhs_node_id)])
else:
rhs.append(rhs_node_kind)
return tuple(rhs)
def get_restricted_edge_types(hyperparameters: Dict[str, Any]):
expansion_labeled_edge_types = OrderedDict(
(name, edge_id) for (edge_id, name) in enumerate(n for n in EXPANSION_LABELED_EDGE_TYPE_NAMES
if n not in hyperparameters.get('exclude_edge_types', [])))
expansion_unlabeled_edge_types = OrderedDict(
(name, edge_id) for (edge_id, name) in enumerate(n for n in EXPANSION_UNLABELED_EDGE_TYPE_NAMES
if n not in hyperparameters.get('exclude_edge_types', [])))
return expansion_labeled_edge_types, expansion_unlabeled_edge_types
class NAGDecoder(object):
"""
Class implementing Neural Attribute Grammar decoding.
It is important to note that the training code (batched) and testing code (non-batched, to
ease beam search) are fairly independent.
At train time, we know the target values for all nodes in the graph, and hence can
compute representations for all nodes in one go (using a standard AsyncGNN).
We then read out the representation for all nodes at which we make predictions,
pass them through a layer to obtain logits for these, and then use cross-entropy
loss to optimize them.
At test time, we need to deal with a dynamic structure of the graph. To handle this,
we query the NN step-wise, using three kinds of operations:
* Context + Initialization: This produces the representation of the first few nodes
in the expansion graph (i.e., corresponding to the last variable / token / root
node).
* Message passing: This does one-step propagation in the AysncGNN (exposed as
operation 'eg_step_propagation_result'), producing the representation of one
new node.
* Predict expansion: Project a node representation to a decision how to expand
it (exposed as ops 'eg_*production_choice_probs').
All the construction of edges, sampling, beam search, etc. is handled in pure
Python.
In comments and documentation in this class, shape annotations are often provided, in which
abbreviations are used:
- B ~ "Batch size": Number of NAG graphs in the current batch (corresponds to number
of contexts).
- GP ~ "Grammar Productions": Number of NAG graph nodes at which we need to choose a
production from the grammar.
- VP ~ "Variable Productions": Number of NAG graph nodes at which we need to choose a
variable from the context.
- LP ~ "Literal Productions": Number of NAG graph nodes at which we need to choose a
literal from the context.
- D ~ "Dimension": Dimension of the node representations in the core (async) GNN.
Hyperparameter "eg_hidden_size".
"""
@staticmethod
def get_default_hyperparameters() -> Dict[str, Any]:
defaults = {
'eg_token_vocab_size': 100,
'eg_literal_vocab_size': 10,
'eg_max_variable_choices': 10,
'eg_propagation_substeps': 50,
'eg_hidden_size': 64,
'eg_edge_label_size': 16,
'exclude_edge_types': [],
'eg_graph_rnn_cell': 'GRU', # GRU or RNN
'eg_graph_rnn_activation': 'tanh', # tanh, ReLU
'eg_use_edge_bias': False,
'eg_use_vars_for_production_choice': True, # Use mean-pooled variable representation as input for production choice
'eg_update_last_variable_use_representation': True,
'eg_use_literal_copying': True,
'eg_use_context_attention': True,
'eg_max_context_tokens': 500,
}
return defaults
def __init__(self, context_model: Model):
# We simply share all internal data structures with the context model, so store it:
self.__context_model = context_model
pass
@property
def hyperparameters(self):
return self.__context_model.hyperparameters
@property
def metadata(self):
return self.__context_model.metadata
@property
def parameters(self):
return self.__context_model.parameters
@property
def placeholders(self):
return self.__context_model.placeholders
@property
def ops(self):
return self.__context_model.ops
@property
def sess(self):
return self.__context_model.sess
def train_log(self, msg) -> None:
return self.__context_model.train_log(msg)
def test_log(self, msg) -> None:
return self.__context_model.test_log(msg)
# ---------- Constructing the core model ----------
def make_parameters(self):
# Use an OrderedDict so that we can rely on the iteration order later.
self.__expansion_labeled_edge_types, self.__expansion_unlabeled_edge_types = \
get_restricted_edge_types(self.hyperparameters)
eg_token_vocab_size = len(self.metadata['eg_token_vocab'])
eg_hidden_size = self.hyperparameters['eg_hidden_size']
eg_edge_label_size = self.hyperparameters['eg_edge_label_size']
self.parameters['eg_token_embeddings'] = \
tf.get_variable(name='eg_token_embeddings',
shape=[eg_token_vocab_size, eg_hidden_size],
initializer=tf.random_normal_initializer(),
)
# TODO: Should be more generic than being fixed to the number productions...
if eg_edge_label_size > 0:
self.parameters['eg_edge_label_embeddings'] = \
tf.get_variable(name='eg_edge_label_embeddings',
shape=[len(self.metadata['eg_edge_label_vocab']), eg_edge_label_size],
initializer=tf.random_normal_initializer(),
)
def make_placeholders(self, is_train: bool) -> None:
self.placeholders['eg_node_token_ids'] = tf.placeholder(tf.int32,
[None],
name="eg_node_token_ids")
# List of lists of lists of (embeddings of) labels of edges L_{r,s,e}: Labels of edges of type
# e propagating in step s.
# Restrictions: len(L_{s,e}) = len(S_{s,e}) [see __make_train_placeholders]
self.placeholders['eg_edge_label_ids'] = \
[[tf.placeholder(dtype=tf.int32,
shape=[None],
name="eg_edge_label_step%i_typ%i" % (step, edge_typ))
for edge_typ in range(len(self.__expansion_labeled_edge_types))]
for step in range(self.hyperparameters['eg_propagation_substeps'])]
if is_train:
self.__make_train_placeholders()
else:
self.__make_test_placeholders()
def __make_train_placeholders(self):
eg_edge_type_num = len(self.__expansion_labeled_edge_types) + len(self.__expansion_unlabeled_edge_types)
# Initial nodes I: Node IDs that will have no (active) incoming edges.
self.placeholders['eg_initial_node_ids'] = \
tf.placeholder(dtype=tf.int32, shape=[None], name="eg_initial_node_ids")
# Sending nodes S_{s,e}: Source node ids of edges of type e propagating in step s.
# Restrictions: If v in S_{s,e}, then v in R_{s'} for s' < s or v in I.
self.placeholders['eg_sending_node_ids'] = \
[[tf.placeholder(dtype=tf.int32,
shape=[None],
name="eg_sending_node_ids_step%i_edgetyp%i" % (step, edge_typ))
for edge_typ in range(eg_edge_type_num)]
for step in range(self.hyperparameters['eg_propagation_substeps'])]
# Normalised edge target nodes T_{s}: Targets of edges propagating in step s, normalised to a
# continuous range starting from 0. This is used for aggregating messages from the sending nodes.
self.placeholders['eg_msg_target_node_ids'] = \
[tf.placeholder(dtype=tf.int32,
shape=[None],
name="eg_msg_targets_nodes_step%i" % (step,))
for step in range(self.hyperparameters['eg_propagation_substeps'])]
# Receiving nodes R_{s}: Target node ids of aggregated messages in propagation step s.
# Restrictions: If v in R_{s}, v not in R_{s'} for all s' != s and v not in I
self.placeholders['eg_receiving_node_ids'] = \
[tf.placeholder(dtype=tf.int32,
shape=[None],
name="eg_receiving_nodes_step%i" % (step,))
for step in range(self.hyperparameters['eg_propagation_substeps'])]
# Number of receiving nodes N_{s}
# Restrictions: N_{s} = len(R_{s})
self.placeholders['eg_receiving_node_nums'] = \
tf.placeholder(dtype=tf.int32,
shape=[self.hyperparameters['eg_propagation_substeps']],
name="eg_receiving_nodes_nums")
self.placeholders['eg_production_nodes'] = \
tf.placeholder(dtype=tf.int32, shape=[None], name="eg_production_nodes")
if self.hyperparameters['eg_use_vars_for_production_choice']:
self.placeholders['eg_production_var_last_use_node_ids'] = \
tf.placeholder(dtype=tf.int32,
shape=[None],
name="eg_production_var_last_use_node_ids")
self.placeholders['eg_production_var_last_use_node_ids_target_ids'] = \
tf.placeholder(dtype=tf.int32,
shape=[None],
name="eg_production_var_last_use_node_ids_target_ids")
self.placeholders['eg_production_node_choices'] = \
tf.placeholder(dtype=tf.int32, shape=[None], name="eg_production_node_choices")
if self.hyperparameters['eg_use_context_attention']:
self.placeholders['eg_production_to_context_id'] = \
tf.placeholder(dtype=tf.int32, shape=[None], name="eg_production_to_context_id")
self.placeholders['eg_varproduction_nodes'] = \
tf.placeholder(dtype=tf.int32, shape=[None], name='eg_varproduction_nodes')
self.placeholders['eg_varproduction_options_nodes'] = \
tf.placeholder(dtype=tf.int32,
shape=[None, self.hyperparameters['eg_max_variable_choices']],
name='eg_varproduction_options_nodes')
self.placeholders['eg_varproduction_options_mask'] = \
tf.placeholder(dtype=tf.float32,
shape=[None, self.hyperparameters['eg_max_variable_choices']],
name='eg_varproduction_options_mask')
self.placeholders['eg_varproduction_node_choices'] = \
tf.placeholder(dtype=tf.int32,
shape=[None],
name='eg_varproduction_node_choices')
self.placeholders['eg_litproduction_nodes'] = {}
self.placeholders['eg_litproduction_node_choices'] = {}
self.placeholders['eg_litproduction_to_context_id'] = {}
self.placeholders['eg_litproduction_choice_normalizer'] = {}
for literal_kind in LITERAL_NONTERMINALS:
self.placeholders['eg_litproduction_nodes'][literal_kind] = \
tf.placeholder(dtype=tf.int32,
shape=[None],
name="eg_litproduction_nodes_%s" % literal_kind)
self.placeholders['eg_litproduction_node_choices'][literal_kind] = \
tf.placeholder(dtype=tf.int32,
shape=[None],
name="eg_litproduction_node_choices_%s" % literal_kind)
if self.hyperparameters['eg_use_literal_copying']:
self.placeholders['eg_litproduction_to_context_id'][literal_kind] = \
tf.placeholder(dtype=tf.int32,
shape=[None],
name="eg_litproduction_to_context_id_%s" % literal_kind)
self.placeholders['eg_litproduction_choice_normalizer'][literal_kind] = \
tf.placeholder(dtype=tf.int32,
shape=[None],
name="eg_litproduction_choice_normalizer_%s" % literal_kind)
def __make_test_placeholders(self):
eg_h_dim = self.hyperparameters['eg_hidden_size']
self.placeholders['eg_production_node_representation'] = \
tf.placeholder(dtype=tf.float32,
shape=[eg_h_dim],
name="eg_production_node_representation")
if self.hyperparameters['eg_use_vars_for_production_choice']:
self.placeholders['eg_production_var_representations'] = \
tf.placeholder(dtype=tf.float32,
shape=[None, eg_h_dim],
name="eg_production_var_representations")
if self.hyperparameters["eg_use_literal_copying"] or self.hyperparameters['eg_use_context_attention']:
self.placeholders['context_token_representations'] = \
tf.placeholder(dtype=tf.float32,
shape=[self.hyperparameters['eg_max_context_tokens'], eg_h_dim],
name='context_token_representations')
self.placeholders['eg_varproduction_node_representation'] = \
tf.placeholder(dtype=tf.float32,
shape=[eg_h_dim],
name="eg_varproduction_node_representation")
self.placeholders['eg_num_variable_choices'] = \
tf.placeholder(dtype=tf.int32, shape=[], name='eg_num_variable_choices')
self.placeholders['eg_varproduction_options_representations'] = \
tf.placeholder(dtype=tf.float32,
shape=[None, eg_h_dim],
name="eg_varproduction_options_representations")
self.placeholders['eg_litproduction_node_representation'] = \
tf.placeholder(dtype=tf.float32,
shape=[eg_h_dim],
name="eg_litproduction_node_representation")
if self.hyperparameters['eg_use_literal_copying']:
self.placeholders['eg_litproduction_choice_normalizer'] = \
tf.placeholder(dtype=tf.int32,
shape=[None],
name="eg_litproduction_choice_normalizer")
# Used for one-step message propagation of expansion graph:
eg_edge_type_num = len(self.__expansion_labeled_edge_types) + len(self.__expansion_unlabeled_edge_types)
self.placeholders['eg_msg_source_representations'] = \
[tf.placeholder(dtype=tf.float32,
shape=[None, eg_h_dim],
name="eg_msg_source_representations_etyp%i" % (edge_typ,))
for edge_typ in range(eg_edge_type_num)]
self.placeholders['eg_msg_target_label_id'] =\
tf.placeholder(dtype=tf.int32, shape=[], name='eg_msg_target_label_id')
def make_model(self, is_train: bool=True):
if is_train:
self.__make_train_model()
else:
self.__make_test_model()
def __embed_edge_labels(self, num_eg_substeps: int) -> List[List[tf.Tensor]]:
edge_labels = []
for step in range(num_eg_substeps):
step_edge_labels = []
for edge_typ in range(len(self.__expansion_labeled_edge_types)):
if self.hyperparameters['eg_edge_label_size'] > 0:
edge_label_embeddings = \
tf.nn.embedding_lookup(self.parameters['eg_edge_label_embeddings'],
self.placeholders['eg_edge_label_ids'][step][edge_typ])
else:
edge_label_embeddings = \
tf.zeros(shape=[tf.shape(self.placeholders['eg_edge_label_ids'][step][edge_typ])[0],
0])
step_edge_labels.append(edge_label_embeddings)
edge_labels.append(step_edge_labels)
return edge_labels
def __make_train_model(self):
# Pick CG representation where possible, and use embedding otherwise:
eg_node_label_embeddings = \
tf.nn.embedding_lookup(self.parameters['eg_token_embeddings'],
self.placeholders['eg_node_token_ids'])
eg_initial_node_representations = \
tf.where(condition=self.ops['eg_node_representation_use_from_context'],
x=self.ops['eg_node_representations_from_context'],
y=eg_node_label_embeddings)
# ----- (3) Compute representations of expansion graph using an async GNN submodel:
eg_h_dim = self.hyperparameters['eg_hidden_size']
eg_hypers = {name.replace("eg_", "", 1): value
for (name, value) in self.hyperparameters.items()
if name.startswith("eg_")}
eg_hypers['propagation_rounds'] = 1
eg_hypers['num_labeled_edge_types'] = len(self.__expansion_labeled_edge_types)
eg_hypers['num_unlabeled_edge_types'] = len(self.__expansion_unlabeled_edge_types)
with tf.variable_scope("ExpansionGraph"):
eg_model = AsyncGGNN(eg_hypers)
# Note that we only use a single async schedule here, so every argument is wrapped in
# [] to use the generic code supporting many schedules:
eg_node_representations = \
eg_model.async_ggnn_layer(
eg_initial_node_representations,
[self.placeholders['eg_initial_node_ids']],
[self.placeholders['eg_sending_node_ids']],
[self.__embed_edge_labels(self.hyperparameters['eg_propagation_substeps'])],
[self.placeholders['eg_msg_target_node_ids']],
[self.placeholders['eg_receiving_node_ids']],
[self.placeholders['eg_receiving_node_nums']])
# ----- (4) Finally, try to predict the right productions:
# === Grammar productions:
eg_production_node_representations = \
tf.gather(params=eg_node_representations,
indices=self.placeholders['eg_production_nodes']) # Shape [num_choice_nodes, D]
if self.hyperparameters['eg_use_vars_for_production_choice']:
variable_representations_at_prod_choice = \
tf.gather(params=eg_node_representations,
indices=self.placeholders['eg_production_var_last_use_node_ids'])
variable_representations_at_prod_choice = \
tf.unsorted_segment_mean(
data=variable_representations_at_prod_choice,
segment_ids=self.placeholders['eg_production_var_last_use_node_ids_target_ids'],
num_segments=tf.shape(eg_production_node_representations)[0])
else:
variable_representations_at_prod_choice = None
eg_production_choice_logits = \
self.__make_production_choice_logits_model(
eg_production_node_representations,
variable_representations_at_prod_choice,
self.ops.get('context_token_representations'),
self.placeholders.get('context_token_mask'),
self.placeholders.get('eg_production_to_context_id'))
# === Variable productions
eg_varproduction_node_representations = \
tf.gather(params=eg_node_representations,
indices=self.placeholders['eg_varproduction_nodes']) # Shape: [VP, D]
eg_varproduction_options_nodes_flat = \
tf.reshape(self.placeholders['eg_varproduction_options_nodes'],
shape=[-1]) # Shape [VP * eg_max_variable_choices]
eg_varproduction_options_representations = \
tf.reshape(tf.gather(params=eg_node_representations,
indices=eg_varproduction_options_nodes_flat
), # Shape: [VP * eg_max_variable_choices, D]
shape=[-1, self.hyperparameters['eg_max_variable_choices'], eg_h_dim]
) # Shape: [VP, eg_max_variable_choices, D]
eg_varproduction_choice_logits = \
self.__make_variable_choice_logits_model(
eg_varproduction_node_representations,
eg_varproduction_options_representations,
) # Shape: [VP, eg_max_variable_choices]
# Mask out unused choice options out:
eg_varproduction_choice_logits += \
(1.0 - self.placeholders['eg_varproduction_options_mask']) * -BIG_NUMBER
# === Literal productions
literal_logits = {}
for literal_kind in LITERAL_NONTERMINALS:
eg_litproduction_representation = \
tf.gather(params=eg_node_representations,
indices=self.placeholders['eg_litproduction_nodes'][literal_kind]
) # Shape: [LP, D]
eg_litproduction_to_context_id, eg_litproduction_choice_normalizer = None, None
if self.hyperparameters['eg_use_literal_copying']:
eg_litproduction_to_context_id = \
self.placeholders['eg_litproduction_to_context_id'][literal_kind]
eg_litproduction_choice_normalizer = \
self.placeholders['eg_litproduction_choice_normalizer'][literal_kind]
literal_logits[literal_kind] = \
self.__make_literal_choice_logits_model(
literal_kind,
eg_litproduction_representation,
self.ops.get('context_token_representations'),
self.placeholders.get('context_token_mask'),
eg_litproduction_to_context_id,
eg_litproduction_choice_normalizer,
)
# (5) Compute loss:
raw_prod_loss = \
tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=eg_production_choice_logits,
labels=self.placeholders['eg_production_node_choices'])
raw_var_loss = \
tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=eg_varproduction_choice_logits,
labels=self.placeholders['eg_varproduction_node_choices'])
# Normalize all losses by number of actual decisions made, which differ from batch to batch.
# Can't use tf.reduce_mean because these can be empty, and reduce_mean gives NaN for those:
prod_loss = tf.reduce_sum(raw_prod_loss) / (tf.cast(tf.size(raw_prod_loss), dtype=tf.float32) + SMALL_NUMBER)
var_loss = tf.reduce_sum(raw_var_loss) / (tf.cast(tf.size(raw_var_loss), dtype=tf.float32) + SMALL_NUMBER)
if len(LITERAL_NONTERMINALS) > 0:
raw_lit_loss = [tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=literal_logits[literal_kind],
labels=self.placeholders['eg_litproduction_node_choices'][literal_kind])
for literal_kind in LITERAL_NONTERMINALS]
raw_lit_loss = tf.concat(raw_lit_loss, axis=0)
lit_loss = tf.reduce_sum(raw_lit_loss) / (tf.cast(tf.size(raw_lit_loss), dtype=tf.float32) + SMALL_NUMBER)
else:
raw_lit_loss = [0.0]
lit_loss = 0.0
self.ops['loss'] = prod_loss + var_loss + lit_loss
# TODO: If we want to batch this per sample, then we need an extra placeholder that maps productions/variables to
# samples and use unsorted_segment_sum to gather together all the logprobs from all productions.
self.ops['log_probs'] = -tf.reduce_sum(raw_prod_loss) - tf.reduce_sum(raw_var_loss) - tf.reduce_sum(raw_lit_loss)
def __make_test_model(self):
# Almost everywhere, we need to add extra dimensions to account for the fact that in training,
# we need to handle several samples in one batch, whereas we don't do that during test:
context_token_representations = self.placeholders.get('context_token_representations')
context_token_masks = self.placeholders.get('context_token_mask')
if context_token_representations is not None:
context_token_representations = tf.expand_dims(context_token_representations, axis=0)
# === Grammar productions:
if self.hyperparameters['eg_use_vars_for_production_choice']:
pooled_variable_representations_at_prod_choice = \
tf.reduce_mean(self.placeholders['eg_production_var_representations'], axis=0)
pooled_variable_representations_at_prod_choice = \
tf.expand_dims(pooled_variable_representations_at_prod_choice, axis=0)
else:
pooled_variable_representations_at_prod_choice = None
eg_production_choice_logits = \
self.__make_production_choice_logits_model(
tf.expand_dims(self.placeholders['eg_production_node_representation'], axis=0),
pooled_variable_representations_at_prod_choice,
context_token_representations,
context_token_masks,
production_to_context_id=tf.constant([0], dtype=tf.int32))
self.ops['eg_production_choice_probs'] = tf.nn.softmax(eg_production_choice_logits)[0]
# === Variable productions
eg_varproduction_choice_logits = \
self.__make_variable_choice_logits_model(
tf.expand_dims(self.placeholders['eg_varproduction_node_representation'], axis=0),
tf.expand_dims(self.placeholders['eg_varproduction_options_representations'], axis=0),
)
eg_varproduction_choice_logits = tf.squeeze(eg_varproduction_choice_logits, axis=0)
self.ops['eg_varproduction_choice_probs'] = tf.nn.softmax(eg_varproduction_choice_logits, dim=-1)
# === Literal productions
self.ops['eg_litproduction_choice_probs'] = {}
for literal_kind in LITERAL_NONTERMINALS:
literal_logits = \
self.__make_literal_choice_logits_model(
literal_kind,
tf.expand_dims(self.placeholders['eg_litproduction_node_representation'], axis=0),
context_token_representations,
context_token_masks,
tf.constant([0], dtype=tf.int32),
self.placeholders.get('eg_litproduction_choice_normalizer'),
)
self.ops['eg_litproduction_choice_probs'][literal_kind] = \
tf.nn.softmax(literal_logits, axis=-1)[0]
# Expose one-step message propagation in expansion graph:
eg_hypers = {name.replace("eg_", "", 1): value
for (name, value) in self.hyperparameters.items()
if name.startswith("eg_")}
eg_hypers['propagation_rounds'] = 1
eg_hypers['num_labeled_edge_types'] = len(self.__expansion_labeled_edge_types)
eg_hypers['num_unlabeled_edge_types'] = len(self.__expansion_unlabeled_edge_types)
with tf.variable_scope("ExpansionGraph"):
eg_model = AsyncGGNN(eg_hypers)
# First, embed edge labels. We only need the first step:
edge_labels = self.__embed_edge_labels(1)[0]
all_sending_representations = \
tf.concat(self.placeholders['eg_msg_source_representations'], axis=0)
msg_target_ids = tf.zeros([tf.shape(all_sending_representations)[0]], dtype=tf.int32)
receiving_node_num = tf.constant(1, dtype=tf.int32)
# Get node label embedding:
target_node_label_embeddings =\
tf.nn.embedding_lookup(
self.parameters['eg_token_embeddings'],
tf.expand_dims(self.placeholders['eg_msg_target_label_id'], axis=0),
) # Shape [1, eg_h_dim]
with tf.variable_scope("async_ggnn/prop_round0"):
self.ops['eg_step_propagation_result'] = \
eg_model.propagate_one_step(self.placeholders['eg_msg_source_representations'],
edge_labels,
msg_target_ids,
receiving_node_num,
target_node_label_embeddings)[0]
def __make_production_choice_logits_model(
self,
production_node_representations: tf.Tensor,
variable_representations_at_prod_choice: Optional[tf.Tensor],
context_representations: Optional[tf.Tensor],
context_representations_mask: Optional[tf.Tensor],
production_to_context_id: Optional[tf.Tensor],
) -> tf.Tensor:
"""
Args:
production_node_representations: Representations of nodes at which we choose grammar
productions. Shape: [GP, D]
variable_representations_at_prod_choice: [Optional] Representations of the current
values of variables at nodes at which we choose grammar productions. Shape: [GP, D]
context_representations: [Optional] Representations of nodes in context.
Shape: [B, eg_max_context_tokens, D]
context_representations_mask: [Optional] 0/1 mask marking which entries in
context_representations are meaningful. Shape: [B, eg_max_context_tokens]
production_to_context_id: [Optional] Map from entries in
production_node_representations to the context. Shape: [GP]
Returns:
Logits for the choices of grammar production rules in the current batch.
Shape: [GP, eg_production_num]
"""
eg_production_choice_inputs = [production_node_representations]
if self.hyperparameters['eg_use_vars_for_production_choice']:
eg_production_choice_inputs.append(variable_representations_at_prod_choice)
if self.hyperparameters.get('eg_use_context_attention', False):
context_token_representations = \
tf.gather(params=context_representations,
indices=production_to_context_id) # Shape [GP, eg_max_context_tokens, D]
attention_scores = \
tf.matmul(a=tf.expand_dims(production_node_representations, axis=1), # Shape [GP, 1, D]
b=context_token_representations, # Shape [GP, eg_max_context_tokens, D]
transpose_b=True) # Shape [GP, 1, eg_max_context_tokens]
attention_scores = tf.squeeze(attention_scores, axis=1) # Shape [GP, eg_max_context_tokens]
context_masks = tf.gather(params=context_representations_mask,
indices=production_to_context_id)
context_masks = (1 - context_masks) * -BIG_NUMBER
attention_scores += context_masks
attention_weight = tf.nn.softmax(attention_scores)
weighted_context_token_representations = \
context_token_representations * tf.expand_dims(attention_weight, axis=-1) # Shape [num_choice_nodes, eg_max_context_tokens, D]
context_representations = \
tf.reduce_sum(weighted_context_token_representations, axis=1) # Shape [num_choice_nodes, D]
eg_production_choice_inputs.append(context_representations)
eg_production_choice_input = tf.concat(eg_production_choice_inputs, axis=1)
return tf.layers.dense(eg_production_choice_input,
units=self.metadata['eg_production_num'],
activation=None,
kernel_initializer=tf.glorot_uniform_initializer(),
name="grammar_choice_representation_to_logits",
)
def __make_variable_choice_logits_model(
self,
varchoice_node_representation: tf.Tensor,
varchoice_options_representations: tf.Tensor) -> tf.Tensor:
"""
Args:
varchoice_node_representation: Representations of nodes at which we choose
variables. Shape: [VP, D]
varchoice_options_representations: Representations of variables that we can
choose at each choice node.
Shape: [VP, num_variable_choices, D]
Returns:
Logits for the choices of variables in the current batch.
Shape: [VP, num_variable_choices]
"""
varchoice_options_inner_prod = \
tf.einsum('sd,svd->sv',
varchoice_node_representation,
varchoice_options_representations) # Shape: [VP, num_variable_choices]
varchoice_node_representation_repeated = \
tf.tile(tf.expand_dims(varchoice_node_representation, axis=-2),
multiples=[1,
tf.shape(varchoice_options_representations)[1],
1],
) # Shape: [VP, num_variable_choices, D]
varchoice_final_options_representations = \
tf.concat([varchoice_node_representation_repeated,
varchoice_options_representations,
tf.expand_dims(varchoice_options_inner_prod, axis=-1)],
axis=-1) # Shape: [VP, num_variable_choices, 2*D + 1]
varchoice_logits = \
tf.layers.dense(varchoice_final_options_representations,
units=1,
use_bias=False,
activation=None,
kernel_initializer=tf.glorot_uniform_initializer(),
name="varchoice_representation_to_logits",
) # Shape: [VP, num_variable_choices, 1]
return tf.squeeze(varchoice_logits, axis=-1) # Shape: [VP, num_variable_choices]
def __make_literal_choice_logits_model(
self,
literal_kind: str,
litproduction_node_representations: tf.Tensor,
context_representations: Optional[tf.Tensor],
context_representations_mask: Optional[tf.Tensor],
litproduction_to_context_id: Optional[tf.Tensor],
litproduction_choice_normalizer: Optional[tf.Tensor]
) -> tf.Tensor:
"""
Args:
literal_kind: Kind of literal we are generating.
litproduction_node_representations: Representations of nodes at which we choose
literals. Shape: [LP, D]
context_representations: [Optional] Representations of nodes in context.
Shape: [B, eg_max_context_tokens, D]
context_representations_mask: [Optional] 0/1 mask marking which entries in
context_representations are meaningful. Shape: [B, eg_max_context_tokens]
litproduction_to_context_id: [Optional] Map from entries in
litproduction_node_representations to the context. Shape: [LP]
litproduction_choice_normalizer: [Optional] If copying from the context
tokens, some of them may refer to the same token (potentially one
present in the vocab). This tensor allows normalisation in these cases,
by assigning the same ID to all occurrences of the same token (usually
the first one).
Shape: [LP, eg_max_context_tokens + literal_vocab_size]
Returns:
Logits for the choices of literal production rules in the current batch.
Shape:
If using copying: [LP, literal_vocab_size + eg_max_context_tokens]
Otherwise: [LP, literal_vocab_size]
"""
literal_logits = \
tf.layers.dense(litproduction_node_representations,
units=len(self.metadata["eg_literal_vocabs"][literal_kind]),
activation=None,
kernel_initializer=tf.glorot_uniform_initializer(),
name="%s_literal_choice_representation_to_logits" % literal_kind,
) # Shape [LP, lit_vocab_size]
if not self.hyperparameters['eg_use_literal_copying']:
return literal_logits
# Do dot product with the context tokens:
context_token_representations = \
tf.gather(params=context_representations,
indices=litproduction_to_context_id) # Shape [LP, eg_max_context_tokens, D]
copy_scores = \
tf.matmul(a=tf.expand_dims(litproduction_node_representations, axis=1), # Shape [LP, 1, D]
b=context_token_representations, # Shape [LP, eg_max_context_tokens, D]
transpose_b=True) # Shape [LP, 1, eg_max_context_tokens]
copy_scores = tf.squeeze(copy_scores, axis=1) # Shape [LP, eg_max_context_tokens]
context_masks = tf.gather(params=context_representations_mask,
indices=litproduction_to_context_id)
context_masks = (1 - context_masks) * -BIG_NUMBER # Mask out unused context tokens
copy_scores += context_masks
vocab_choices_and_copy_scores = \
tf.concat([literal_logits, copy_scores],
axis=1) # Shape [num_choice_nodes, literal_vocab_size + eg_max_context_tokens]
# Now collapse logits relating to the same token (e.g., by showing up several times in context):
normalized_vocab_choices_and_copy_logits = \
unsorted_segment_logsumexp(scores=tf.reshape(vocab_choices_and_copy_scores, shape=[-1]),
segment_ids=litproduction_choice_normalizer,
num_segments=tf.shape(litproduction_choice_normalizer)[0])
num_literal_options = len(self.metadata["eg_literal_vocabs"][literal_kind])
num_literal_options += self.hyperparameters['eg_max_context_tokens']
return tf.reshape(normalized_vocab_choices_and_copy_logits,
shape=[-1, num_literal_options])
# ---------- Data loading (raw data to learning-ready data) ----------
@staticmethod
def init_metadata(raw_metadata: Dict[str, Any]) -> None:
raw_metadata['eg_token_counter'] = Counter()
raw_metadata['eg_literal_counters'] = defaultdict(Counter)
raw_metadata['eg_production_vocab'] = defaultdict(set)
@staticmethod
def load_metadata_from_sample(raw_sample: Dict[str, Any], raw_metadata: Dict[str, Any]) -> None:
symbol_id_to_kind = raw_sample['SymbolKinds']
symbol_id_to_label = raw_sample['SymbolLabels']
for symbol_label in symbol_id_to_label.values():
raw_metadata['eg_token_counter'][symbol_label] += 1
for (node_id, symbol_kind) in symbol_id_to_kind.items():
raw_metadata['eg_token_counter'][symbol_kind] += 1
if symbol_kind in LITERAL_NONTERMINALS:
literal = symbol_id_to_label[node_id]
raw_metadata['eg_literal_counters'][symbol_kind][literal] += 1
last_token_before_hole = raw_sample['ContextGraph']['NodeLabels'][str(raw_sample['LastTokenBeforeHole'])]
raw_metadata['eg_token_counter'][last_token_before_hole] += 1
for (lhs_id, rhs_ids) in raw_sample['Productions'].items():
lhs_kind = symbol_id_to_kind[str(lhs_id)]
rhs = raw_rhs_to_tuple(symbol_id_to_kind, symbol_id_to_label, rhs_ids)
raw_metadata['eg_production_vocab'][lhs_kind].add(rhs)
def finalise_metadata(self, raw_metadata_list: List[Dict[str, Any]], final_metadata: Dict[str, Any]) -> None:
# First, merge all needed information:
merged_token_counter = Counter()
merged_literal_counters = {literal_kind: Counter() for literal_kind in LITERAL_NONTERMINALS}
merged_production_vocab = defaultdict(set)
for raw_metadata in raw_metadata_list:
merged_token_counter += raw_metadata['eg_token_counter']
for literal_kind in LITERAL_NONTERMINALS:
merged_literal_counters[literal_kind] += raw_metadata['eg_literal_counters'][literal_kind]
for lhs, rhs_options in raw_metadata['eg_production_vocab'].items():
merged_production_vocab[lhs].update(rhs_options)
final_metadata['eg_token_vocab'] = \
Vocabulary.create_vocabulary(merged_token_counter,
max_size=self.hyperparameters['eg_token_vocab_size'])
final_metadata["eg_literal_vocabs"] = {}
for literal_kind in LITERAL_NONTERMINALS:
final_metadata["eg_literal_vocabs"][literal_kind] = \
Vocabulary.create_vocabulary(merged_literal_counters[literal_kind],
count_threshold=0,
max_size=self.hyperparameters['eg_literal_vocab_size'])
next_production_id = 0
eg_production_vocab = defaultdict(dict)
next_edge_label_id = 0
eg_edge_label_vocab = defaultdict(dict)
for lhs, rhs_options in sorted(merged_production_vocab.items(), key=lambda t: t[0]):
final_metadata['eg_token_vocab'].add_or_get_id(lhs)
for rhs in sorted(rhs_options):
production_id = eg_production_vocab[lhs].get(rhs)
if production_id is None:
production_id = next_production_id
eg_production_vocab[lhs][rhs] = production_id
next_production_id += 1
for (rhs_symbol_index, symbol) in enumerate(rhs):
final_metadata['eg_token_vocab'].add_or_get_id(symbol)
eg_edge_label_vocab[(production_id, rhs_symbol_index)] = next_edge_label_id
next_edge_label_id += 1
final_metadata["eg_production_vocab"] = eg_production_vocab
final_metadata["eg_edge_label_vocab"] = eg_edge_label_vocab
final_metadata['eg_production_num'] = next_production_id
self.train_log("Imputed grammar:")
for lhs, rhs_options in eg_production_vocab.items():
for rhs, idx in sorted(rhs_options.items(), key=lambda v: v[1]):
self.train_log(" %s -[%02i]-> %s" % (str(lhs), idx, " ".join(rhs)))
self.train_log("Known literals:")
for literal_kind in LITERAL_NONTERMINALS:
self.train_log(" %s: %s" % (literal_kind, sorted(final_metadata['eg_literal_vocabs'][literal_kind].token_to_id.keys())))
@staticmethod
def __load_expansiongraph_data_from_sample(hyperparameters: Dict[str, Any],
metadata: Dict[str, Any],
raw_sample: Dict[str, Any],
result_holder: Dict[str, Any],
is_train: bool) -> None:
result_holder['eg_node_labels'] = []
# "Downwards" version of a node (depends on parents & pred's). Keys are IDs from symbol expansion record:
node_to_inherited_id = {} # type: Dict[int, int]
# "Upwards" version of a node (depends on children). Keys are IDs from symbol expansion record:
node_to_synthesised_id = {} # type: Dict[int, int]
# Maps variable name to the id of the node where it was last used. Keys are variable names, values are from fresh space next to symbol expansion record:
last_used_node_id = {} # type: Dict[str, int]
# First, we create node ids for the bits of the context graph that we want to re-use
# and populate the intermediate data structures with them:
prod_root_node = min(int(v) for v in raw_sample['Productions'].keys())
node_to_inherited_id[prod_root_node] = 0
result_holder['eg_node_labels'].append(metadata['eg_token_vocab'].get_id_or_unk(ROOT_NONTERMINAL))
last_used_node_id[LAST_USED_TOKEN_NAME] = -1
node_to_synthesised_id[last_used_node_id[LAST_USED_TOKEN_NAME]] = 1
result_holder['eg_node_labels'].append(metadata['eg_token_vocab'].get_id_or_unk(
raw_sample['ContextGraph']['NodeLabels'][str(raw_sample['LastTokenBeforeHole'])]))
if not is_train:
result_holder['eg_variable_eg_node_ids'] = {}
result_holder['eg_last_token_eg_node_id'] = node_to_synthesised_id[last_used_node_id[LAST_USED_TOKEN_NAME]]
for var, cg_graph_var_node_id in raw_sample['LastUseOfVariablesInScope'].items():
eg_var_node_id = len(result_holder['eg_node_labels'])
result_holder['eg_node_labels'].append(metadata['eg_token_vocab'].get_id_or_unk(var))
last_used_node_id[var] = -len(last_used_node_id) - 1
node_to_synthesised_id[last_used_node_id[var]] = eg_var_node_id
if not is_train:
result_holder['eg_variable_eg_node_ids'][var] = eg_var_node_id
if is_train:
NAGDecoder.__load_expansiongraph_training_data_from_sample(hyperparameters, metadata, raw_sample, prod_root_node,
node_to_inherited_id, node_to_synthesised_id, last_used_node_id,
result_holder)
else:
def collect_tokens(node: int) -> List[str]:
node_tokens = []
children = raw_sample['Productions'].get(str(node)) or []
for child_id in children:
if str(child_id) not in raw_sample['Productions']:
child_label = raw_sample['SymbolLabels'].get(str(child_id)) or raw_sample['SymbolKinds'][str(child_id)]
node_tokens.append(child_label)
else:
node_tokens.extend(collect_tokens(child_id))
return node_tokens
result_holder['eg_tokens'] = collect_tokens(prod_root_node)
result_holder['eg_root_node'] = node_to_inherited_id[prod_root_node]
def compute_incoming_edges(self, nonterminal_nodes: Set[str], expansion_info: ExpansionInformation, node_id: int) -> None:
assert (node_id not in expansion_info.node_to_unlabeled_incoming_edges)
incoming_labeled_edges = defaultdict(list) # type: Dict[str, List[Tuple[int, int]]]
incoming_unlabeled_edges = defaultdict(list) # type: Dict[str, List[int]]
is_inherited_attr_node = node_id in expansion_info.node_to_synthesised_attr_node
if is_inherited_attr_node:
node_type = expansion_info.node_to_type[node_id]
node_label = expansion_info.node_to_label[node_id]
node_parent = expansion_info.node_to_parent[node_id]
prod_id = expansion_info.node_to_prod_id[node_parent]
this_node_child_index = expansion_info.node_to_children[node_parent].index(node_id)
child_edge_label = self.metadata['eg_edge_label_vocab'][(prod_id, this_node_child_index)]
incoming_labeled_edges['Child'].append((node_parent, child_edge_label))
if node_type == VARIABLE_NONTERMINAL:
incoming_unlabeled_edges['NextUse'].append(
expansion_info.node_to_synthesised_attr_node[expansion_info.variable_to_last_use_id[node_label]])
if node_type not in nonterminal_nodes:
incoming_unlabeled_edges['NextToken'].append(expansion_info.node_to_synthesised_attr_node[
expansion_info.variable_to_last_use_id[
LAST_USED_TOKEN_NAME]])
node_siblings = expansion_info.node_to_children[node_parent]
node_child_idx = node_siblings.index(node_id)
if node_child_idx > 0:
incoming_unlabeled_edges['NextSibling'].append(
expansion_info.node_to_synthesised_attr_node[node_siblings[node_child_idx - 1]])
incoming_unlabeled_edges['NextSubtree'].append(expansion_info.node_to_synthesised_attr_node[
expansion_info.variable_to_last_use_id[
LAST_USED_TOKEN_NAME]])
else:
inherited_node = expansion_info.node_to_inherited_attr_node[node_id]
for child_node in expansion_info.node_to_children[inherited_node]:
incoming_unlabeled_edges['Parent'].append(expansion_info.node_to_synthesised_attr_node[child_node])
incoming_unlabeled_edges['InheritedToSynthesised'].append(inherited_node)
expansion_info.node_to_labeled_incoming_edges[node_id] = incoming_labeled_edges
expansion_info.node_to_unlabeled_incoming_edges[node_id] = incoming_unlabeled_edges
@staticmethod
def __load_expansiongraph_training_data_from_sample(
hyperparameters: Dict[str, Any], metadata: Dict[str, Any],
raw_sample: Dict[str, Any], prod_root_node: int, node_to_inherited_id: Dict[int, int],
node_to_synthesised_id: Dict[int, int], last_used_node_id: Dict[str, int],
result_holder: Dict[str, Any]) -> None:
# Shortcuts and temp data we use during construction:
symbol_to_kind = raw_sample['SymbolKinds'] # type: Dict[str, str]
symbol_to_prod = raw_sample['Productions'] # type: Dict[str, List[int]]
symbol_to_label = raw_sample['SymbolLabels'] # type: Dict[str, str]
variables_in_scope = list(sorted(raw_sample['LastUseOfVariablesInScope'].keys())) # type: List[str]
# These are the things we'll use in the end:
eg_node_id_to_prod_id = [] # type: List[Tuple[int, int]] # Pairs of (node id, chosen production id)
eg_node_id_to_varchoice = [] # type: List[Tuple[int, List[int], int]] # Triples of (node id, [id of last var use], index of correct var)
eg_node_id_to_literal_choice = defaultdict(list) # type: Dict[str, List[Tuple[int, int]]] # Maps literal kind to pairs of (node id, chosen literal id)
eg_prod_node_to_var_last_uses = {} # type: Dict[int, np.ndarray] # Dict from production node id to [id of last var use]
eg_schedule = [] # type: List[Dict[str, List[Tuple[int, int, Optional[int]]]]] # edge type name to edges of that type in each expansion step.
# We will use these to pick literals:
eg_literal_tok_to_idx = {}
if hyperparameters['eg_use_literal_copying']:
eg_literal_choice_normalizer_maps = {}
# For each literal kind, we compute a "normalizer map", which we use to identify
# choices that correspond to the same literal (e.g., when using a literal several
# times in context)
for literal_kind in LITERAL_NONTERMINALS:
# Collect all choices (vocab + things we can copy from):
literal_vocab = metadata['eg_literal_vocabs'][literal_kind]
literal_choices = \
literal_vocab.id_to_token \
+ result_holder['context_nonkeyword_tokens'][:hyperparameters['eg_max_context_tokens']]
first_tok_occurrences = {}
num_choices = hyperparameters['eg_max_context_tokens'] + len(literal_vocab)
normalizer_map = np.arange(num_choices, dtype=np.int16)
for (token_idx, token) in enumerate(literal_choices):
first_occ = first_tok_occurrences.get(token)
if first_occ is not None:
normalizer_map[token_idx] = first_occ
else:
first_tok_occurrences[token] = token_idx
eg_literal_tok_to_idx[literal_kind] = first_tok_occurrences
eg_literal_choice_normalizer_maps[literal_kind] = normalizer_map
result_holder['eg_literal_choice_normalizer_maps'] = eg_literal_choice_normalizer_maps
else:
for literal_kind in LITERAL_NONTERMINALS:
eg_literal_tok_to_idx[literal_kind] = metadata['eg_literal_vocabs'][literal_kind].token_to_id
# Map prods onto internal numbering and compute propagation schedule:
def declare_new_node(sym_exp_node_id: int, is_synthesised: bool) -> int:
new_node_id = len(result_holder['eg_node_labels'])
node_label = symbol_to_label.get(str(sym_exp_node_id)) or symbol_to_kind[str(sym_exp_node_id)]
result_holder['eg_node_labels'].append(metadata['eg_token_vocab'].get_id_or_unk(node_label))
if is_synthesised:
node_to_synthesised_id[sym_exp_node_id] = new_node_id
else:
node_to_inherited_id[sym_exp_node_id] = new_node_id
return new_node_id
def expand_node(node_id: int) -> None:
rhs_node_ids = symbol_to_prod.get(str(node_id))
if rhs_node_ids is None:
# In the case that we have no children, the downwards and upwards version of our node are the same:
node_to_synthesised_id[node_id] = node_to_inherited_id[node_id]
return
declare_new_node(node_id, is_synthesised=True)
# Figure out which production id this one is is and store it away:
rhs = raw_rhs_to_tuple(symbol_to_kind, symbol_to_label, rhs_node_ids)
known_lhs_productions = metadata['eg_production_vocab'][symbol_to_kind[str(node_id)]]
if rhs not in known_lhs_productions:
raise MissingProductionException("%s -> %s" % (symbol_to_kind[str(node_id)], rhs))
prod_id = known_lhs_productions[rhs]
eg_node_id_to_prod_id.append((node_to_inherited_id[node_id], prod_id))
if hyperparameters['eg_use_vars_for_production_choice']:
eg_prod_node_to_var_last_uses[node_to_inherited_id[node_id]] = \
np.array([node_to_synthesised_id[last_used_node_id[varchoice]] for varchoice in variables_in_scope], dtype=np.int16)
# print("Expanding %i using rule %i %s -> %s" % (node_to_inherited_id[node_id], prod_id,
# symbol_to_label.get(str(node_id)) or symbol_to_kind[str(node_id)],
# tuple([symbol_to_kind[str(rhs_node_id)] for rhs_node_id in rhs_node_ids])))
# Visit all children, in left-to-right order, descending into them if needed
last_sibling = None
parent_inwards_edges = defaultdict(list) # type: Dict[str, List[Tuple[int, int, Optional[int]]]]
parent_inwards_edges['InheritedToSynthesised'].append((node_to_inherited_id[node_id],
node_to_synthesised_id[node_id],
None))
for (rhs_symbol_idx, child_id) in enumerate(rhs_node_ids):
child_inherited_id = declare_new_node(child_id, is_synthesised=False)
child_inwards_edges = defaultdict(list) # type: Dict[str, List[Tuple[int, int, Optional[int]]]]
child_edge_label_id = metadata['eg_edge_label_vocab'][(prod_id, rhs_symbol_idx)]
child_inwards_edges['Child'].append((node_to_inherited_id[node_id], child_inherited_id, child_edge_label_id))
# Connection from left sibling, and prepare to be connected to the right sibling:
if last_sibling is not None:
child_inwards_edges['NextSibling'].append((node_to_synthesised_id[last_sibling], child_inherited_id, None))
last_sibling = child_id
# Connection from the last generated leaf ("next action" in "A syntactic neural model for general-purpose code generation", Yin & Neubig '17):
child_inwards_edges['NextSubtree'].append((node_to_synthesised_id[last_used_node_id[LAST_USED_TOKEN_NAME]],
child_inherited_id,
None))
# Check if we are terminal (token) node and add appropriate edges if that's the case:
if str(child_id) not in symbol_to_prod:
child_inwards_edges['NextToken'].append((node_to_synthesised_id[last_used_node_id[LAST_USED_TOKEN_NAME]],
child_inherited_id,
None))
last_used_node_id[LAST_USED_TOKEN_NAME] = child_id
# If we are a variable or literal, we also need to store information to train to make the right choice:
child_kind = symbol_to_kind[str(child_id)]
if child_kind == VARIABLE_NONTERMINAL:
var_name = symbol_to_label[str(child_id)]
# print(" Chose variable %s" % var_name)
last_var_use_id = last_used_node_id[var_name]
cur_variable_to_last_use_ids = [node_to_synthesised_id[last_used_node_id[varchoice]] for varchoice in variables_in_scope]
varchoice_id = variables_in_scope.index(var_name)
eg_node_id_to_varchoice.append((node_to_inherited_id[node_id], cur_variable_to_last_use_ids, varchoice_id))
child_inwards_edges['NextUse'].append((node_to_synthesised_id[last_var_use_id], child_inherited_id, None))
if hyperparameters['eg_update_last_variable_use_representation']:
last_used_node_id[var_name] = child_id
elif child_kind in LITERAL_NONTERMINALS:
literal = symbol_to_label[str(child_id)]
# print(" Chose literal %s" % literal)
literal_id = eg_literal_tok_to_idx[child_kind].get(literal)
# In the case that a literal is not in the vocab and not in the context, the above will return None,
# so map that explicitly to the id for UNK:
if literal_id is None:
literal_id = metadata['eg_literal_vocabs'][child_kind].get_id_or_unk(literal)
eg_node_id_to_literal_choice[child_kind].append((node_to_inherited_id[node_id], literal_id))
# Store the edges leading to new node, recurse into it, and mark its upwards connection for later:
eg_schedule.append(child_inwards_edges)
expand_node(child_id)
parent_inwards_edges['Parent'].append((node_to_synthesised_id[child_id], node_to_synthesised_id[node_id], None))
eg_schedule.append(parent_inwards_edges)
expand_node(prod_root_node)
expansion_labeled_edge_types, expansion_unlabeled_edge_types = get_restricted_edge_types(hyperparameters)
def split_schedule_step(step: Dict[str, List[Tuple[int, int, Optional[int]]]]) -> List[List[Tuple[int, int]]]:
total_edge_types = len(expansion_labeled_edge_types) + len(expansion_unlabeled_edge_types)
step_by_edge = [[] for _ in range(total_edge_types)] # type: List[List[Tuple[int, int]]]
for (label, edges) in step.items():
edges = [(v, w) for (v, w, _) in edges] # Strip off (optional) label:
if label in expansion_labeled_edge_types:
step_by_edge[expansion_labeled_edge_types[label]] = edges
elif label in expansion_unlabeled_edge_types:
step_by_edge[len(expansion_labeled_edge_types) + expansion_unlabeled_edge_types[label]] = edges
return step_by_edge
def edge_labels_from_schedule_step(step: Dict[str, List[Tuple[int, int, Optional[int]]]]) -> List[List[int]]:
labels_by_edge = [[] for _ in range(len(expansion_labeled_edge_types))] # type: List[List[int]]
for (label, edges) in step.items():
if label in expansion_labeled_edge_types:
label_ids = [l for (_, _, l) in edges] # Keep only edge label
labels_by_edge[expansion_labeled_edge_types[label]] = label_ids
return labels_by_edge
# print("Schedule:")
# initialised_nodes = set()
# initialised_nodes = initialised_nodes | result_holder['eg_node_id_to_cg_node_id'].keys()
# for step_id, expansion_step in enumerate(eg_schedule):
# print(" Step %i" % step_id)
# initialised_this_step = set()
# for edge_type in EXPANSION_UNLABELED_EDGE_TYPE_NAMES + EXPANSION_LABELED_EDGE_TYPE_NAMES:
# for (v, w, _) in expansion_step[edge_type]:
# assert v in initialised_nodes
# assert w not in initialised_nodes
# initialised_this_step.add(w)
# for newly_computed_node in initialised_this_step:
# node_label_id = result_holder['eg_node_labels'][newly_computed_node]
# print(" Node Label for %i: %i (reversed %s)"
# % (newly_computed_node, node_label_id, metadata['eg_token_vocab'].id_to_token[node_label_id]))
# for edge_type in EXPANSION_UNLABELED_EDGE_TYPE_NAMES + EXPANSION_LABELED_EDGE_TYPE_NAMES:
# edges = expansion_step[edge_type]
# if len(edges) > 0:
# initialised_nodes = initialised_nodes | initialised_this_step
# print(" %s edges: [%s]" % (edge_type,
# ", ".join("(%s -[%s]> %s)" % (v, l, w) for (v, w, l) in edges)))
# print("Variable choices:\n %s" % (str(eg_node_id_to_varchoice)))
# print("Literal choices: \n %s" % (str(eg_node_id_to_literal_choice)))
if hyperparameters['eg_use_vars_for_production_choice']:
result_holder['eg_production_node_id_to_var_last_use_node_ids'] = eg_prod_node_to_var_last_uses
result_holder['eg_node_id_to_prod_id'] = np.array(eg_node_id_to_prod_id, dtype=np.int16)
result_holder['eg_node_id_to_varchoice'] = eg_node_id_to_varchoice
result_holder['eg_node_id_to_literal_choice'] = {}
for literal_kind in LITERAL_NONTERMINALS:
literal_choice_data = eg_node_id_to_literal_choice.get(literal_kind)
if literal_choice_data is None:
literal_choice_data = np.empty(shape=[0, 2], dtype=np.uint16)
else:
literal_choice_data = np.array(literal_choice_data, dtype=np.uint16)
result_holder['eg_node_id_to_literal_choice'][literal_kind] = literal_choice_data
result_holder['eg_schedule'] = [split_schedule_step(step) for step in eg_schedule]
result_holder['eg_edge_label_ids'] = [edge_labels_from_schedule_step(step) for step in eg_schedule]
@staticmethod
def load_data_from_sample(hyperparameters: Dict[str, Any], metadata: Dict[str, Any], raw_sample: Dict[str, Any],
result_holder: Dict[str, Any], is_train: bool=True) -> bool:
try:
NAGDecoder.__load_expansiongraph_data_from_sample(hyperparameters, metadata,
raw_sample=raw_sample, result_holder=result_holder, is_train=is_train)
if "eg_schedule" in result_holder and len(result_holder['eg_schedule']) >= hyperparameters['eg_propagation_substeps']:
print("Dropping example using %i propagation steps in schedule" % (len(result_holder['eg_schedule']),))
return False
except MissingProductionException as e:
print("Dropping example using unknown production rule %s" % (str(e),))
return False
except Exception as e:
print("Dropping example because an error happened %s" % (str(e),))
return False
return True
# ---------- Minibatch construction ----------
def init_minibatch(self, batch_data: Dict[str, Any]) -> None:
total_edge_types = len(self.__expansion_labeled_edge_types) + len(self.__expansion_unlabeled_edge_types)
batch_data['eg_node_offset'] = 0
batch_data['next_step_target_node_id'] = [0 for _ in range(self.hyperparameters['eg_propagation_substeps'])]
batch_data['eg_node_token_ids'] = []
batch_data['eg_initial_node_ids'] = []
batch_data['eg_sending_node_ids'] = [[[] for _ in range(total_edge_types)]
for _ in range(self.hyperparameters['eg_propagation_substeps'])]
batch_data['eg_edge_label_ids'] = [[[] for _ in range(len(self.__expansion_labeled_edge_types))]
for _ in range(self.hyperparameters['eg_propagation_substeps'])]
batch_data['eg_msg_target_node_ids'] = [[[] for _ in range(total_edge_types)]
for _ in range(self.hyperparameters['eg_propagation_substeps'])]
batch_data['eg_receiving_node_ids'] = [[] for _ in range(self.hyperparameters['eg_propagation_substeps'])]
batch_data['eg_receiving_node_nums'] = [0 for _ in range(self.hyperparameters['eg_propagation_substeps'])]
batch_data['eg_production_nodes'] = []
if self.hyperparameters['eg_use_vars_for_production_choice']:
batch_data['eg_prod_idx_offset'] = 0
batch_data['eg_production_var_last_use_node_ids'] = []
batch_data['eg_production_var_last_use_node_ids_target_ids'] = []
batch_data['eg_production_node_choices'] = []
if self.hyperparameters.get('eg_use_context_attention', False):
batch_data['eg_production_to_context_id'] = []
batch_data['eg_varproduction_nodes'] = []
batch_data['eg_varproduction_options_nodes'] = []
batch_data['eg_varproduction_options_mask'] = []
batch_data['eg_varproduction_node_choices'] = []
batch_data['eg_litproduction_nodes'] = {literal_kind: [] for literal_kind in LITERAL_NONTERMINALS}
batch_data['eg_litproduction_node_choices'] = {literal_kind: [] for literal_kind in LITERAL_NONTERMINALS}
batch_data['eg_litproduction_to_context_id'] = {literal_kind: [] for literal_kind in LITERAL_NONTERMINALS}
batch_data['eg_litproduction_choice_normalizer'] = {literal_kind: [] for literal_kind in LITERAL_NONTERMINALS}
def __extend_minibatch_by_expansion_graph_train_from_sample(self, batch_data: Dict[str, Any],
sample: Dict[str, Any]) -> None:
this_sample_id = batch_data['samples_in_batch'] - 1 # Counter already incremented when we get called
total_edge_types = len(self.__expansion_labeled_edge_types) + len(self.__expansion_unlabeled_edge_types)
for (step_num, schedule_step) in enumerate(sample['eg_schedule']):
eg_node_id_to_step_target_id = OrderedDict()
for edge_type in range(total_edge_types):
for (source, target) in schedule_step[edge_type]:
batch_data['eg_sending_node_ids'][step_num][edge_type].append(source + batch_data['eg_node_offset'])
step_target_id = eg_node_id_to_step_target_id.get(target)
if step_target_id is None:
step_target_id = batch_data['next_step_target_node_id'][step_num]
batch_data['next_step_target_node_id'][step_num] += 1
eg_node_id_to_step_target_id[target] = step_target_id
batch_data['eg_msg_target_node_ids'][step_num][edge_type].append(step_target_id)
for edge_type in range(len(self.__expansion_labeled_edge_types)):
batch_data['eg_edge_label_ids'][step_num][edge_type].extend(sample['eg_edge_label_ids'][step_num][edge_type])
for eg_target_node_id in eg_node_id_to_step_target_id.keys():
batch_data['eg_receiving_node_ids'][step_num].append(eg_target_node_id + batch_data['eg_node_offset'])
batch_data['eg_receiving_node_nums'][step_num] += len(eg_node_id_to_step_target_id)
# ----- Data related to the production choices:
batch_data['eg_production_nodes'].extend(sample['eg_node_id_to_prod_id'][:, 0] + batch_data['eg_node_offset'])
batch_data['eg_production_node_choices'].extend(sample['eg_node_id_to_prod_id'][:, 1])
if self.hyperparameters['eg_use_context_attention']:
batch_data['eg_production_to_context_id'].extend([this_sample_id] * sample['eg_node_id_to_prod_id'].shape[0])
if self.hyperparameters['eg_use_vars_for_production_choice']:
for (prod_index, prod_node_id) in enumerate(sample['eg_node_id_to_prod_id'][:, 0]):
var_last_uses_at_prod_node_id = sample['eg_production_node_id_to_var_last_use_node_ids'][prod_node_id]
batch_data['eg_production_var_last_use_node_ids'].extend(var_last_uses_at_prod_node_id + batch_data['eg_node_offset'])
overall_prod_index = prod_index + batch_data['eg_prod_idx_offset']
batch_data['eg_production_var_last_use_node_ids_target_ids'].extend([overall_prod_index] * len(var_last_uses_at_prod_node_id))
for (eg_varproduction_node_id, eg_varproduction_options_node_ids, chosen_id) in sample['eg_node_id_to_varchoice']:
batch_data['eg_varproduction_nodes'].append(eg_varproduction_node_id + batch_data['eg_node_offset'])
# Restrict to number of choices that we want to allow, make sure we keep the correct one:
eg_varproduction_correct_node_id = eg_varproduction_options_node_ids[chosen_id]
eg_varproduction_distractor_node_ids = eg_varproduction_options_node_ids[:chosen_id] + eg_varproduction_options_node_ids[chosen_id + 1:]
np.random.shuffle(eg_varproduction_distractor_node_ids)
eg_varproduction_options_node_ids = [eg_varproduction_correct_node_id]
eg_varproduction_options_node_ids.extend(eg_varproduction_distractor_node_ids[:self.hyperparameters['eg_max_variable_choices'] - 1])
num_of_options = len(eg_varproduction_options_node_ids)
if num_of_options == 0:
raise Exception("Sample is choosing a variable from an empty set.")
num_padding = self.hyperparameters['eg_max_variable_choices'] - num_of_options
eg_varproduction_options_mask = [1.] * num_of_options + [0.] * num_padding
eg_varproduction_options_node_ids = np.array(eg_varproduction_options_node_ids + [0] * num_padding)
batch_data['eg_varproduction_options_nodes'].append(eg_varproduction_options_node_ids + batch_data['eg_node_offset'])
batch_data['eg_varproduction_options_mask'].append(eg_varproduction_options_mask)
batch_data['eg_varproduction_node_choices'].append(0) # We've reordered so that the correct choice is always first
for literal_kind in LITERAL_NONTERMINALS:
# Shape [num_choice_nodes, 2], with (v, c) meaning that at eg node v, we want to choose literal c:
literal_choices = sample['eg_node_id_to_literal_choice'][literal_kind]
if self.hyperparameters['eg_use_literal_copying']:
# Prepare normalizer. We'll use an unsorted_segment_sum on the model side, and that only operates on a flattened shape
# So here, we repeat the normalizer an appropriate number of times, but shifting by the number of choices
normalizer_map = sample['eg_literal_choice_normalizer_maps'][literal_kind]
num_choices_so_far = sum(choice_nodes.shape[0] for choice_nodes in batch_data['eg_litproduction_nodes'][literal_kind])
num_choices_this_sample = literal_choices.shape[0]
repeated_normalizer_map = np.tile(np.expand_dims(normalizer_map, axis=0),
reps=[num_choices_this_sample, 1])
flattened_normalizer_offsets = np.repeat((np.arange(num_choices_this_sample) + num_choices_so_far) * len(normalizer_map),
repeats=len(normalizer_map))
normalizer_offsets = np.reshape(flattened_normalizer_offsets, [-1, len(normalizer_map)])
batch_data['eg_litproduction_choice_normalizer'][literal_kind].append(
np.reshape(repeated_normalizer_map + normalizer_offsets, -1))
batch_data['eg_litproduction_to_context_id'][literal_kind].append([this_sample_id] * literal_choices.shape[0])
batch_data['eg_litproduction_nodes'][literal_kind].append(literal_choices[:, 0] + batch_data['eg_node_offset'])
batch_data['eg_litproduction_node_choices'][literal_kind].append(literal_choices[:, 1])
def extend_minibatch_by_sample(self, batch_data: Dict[str, Any], sample: Dict[str, Any]) -> None:
batch_data['eg_node_token_ids'].extend(sample['eg_node_labels'])
self.__extend_minibatch_by_expansion_graph_train_from_sample(batch_data, sample)
batch_data['eg_node_offset'] += len(sample['eg_node_labels'])
if self.hyperparameters['eg_use_vars_for_production_choice']:
batch_data['eg_prod_idx_offset'] += len(sample['eg_node_id_to_prod_id'][:, 0])
def finalise_minibatch(self, batch_data: Dict[str, Any], minibatch: Dict[tf.Tensor, Any]) -> None:
total_edge_types = len(self.__expansion_labeled_edge_types) + len(self.__expansion_unlabeled_edge_types)
flat_batch_keys = ['eg_node_token_ids', 'eg_initial_node_ids', 'eg_receiving_node_nums',
'eg_production_nodes', 'eg_production_node_choices',
'eg_varproduction_nodes', 'eg_varproduction_options_nodes',
'eg_varproduction_options_mask',
'eg_varproduction_node_choices']
if self.hyperparameters['eg_use_vars_for_production_choice']:
flat_batch_keys.extend(['eg_production_var_last_use_node_ids',
'eg_production_var_last_use_node_ids_target_ids',
])
if self.hyperparameters['eg_use_context_attention']:
flat_batch_keys.append('eg_production_to_context_id')
for key in flat_batch_keys:
write_to_minibatch(minibatch, self.placeholders[key], batch_data[key])
for step in range(self.hyperparameters['eg_propagation_substeps']):
write_to_minibatch(minibatch,
self.placeholders['eg_msg_target_node_ids'][step],
np.concatenate(batch_data['eg_msg_target_node_ids'][step]))
write_to_minibatch(minibatch,
self.placeholders['eg_receiving_node_ids'][step],
batch_data['eg_receiving_node_ids'][step])
for edge_type_idx in range(total_edge_types):
write_to_minibatch(minibatch,
self.placeholders['eg_sending_node_ids'][step][edge_type_idx],
batch_data['eg_sending_node_ids'][step][edge_type_idx])
for edge_type_idx in range(len(self.__expansion_labeled_edge_types)):
write_to_minibatch(minibatch,
self.placeholders['eg_edge_label_ids'][step][edge_type_idx],
batch_data['eg_edge_label_ids'][step][edge_type_idx])
for literal_kind in LITERAL_NONTERMINALS:
write_to_minibatch(minibatch,
self.placeholders['eg_litproduction_nodes'][literal_kind],
np.concatenate(batch_data['eg_litproduction_nodes'][literal_kind], axis=0))
write_to_minibatch(minibatch,
self.placeholders['eg_litproduction_node_choices'][literal_kind],
np.concatenate(batch_data['eg_litproduction_node_choices'][literal_kind], axis=0))
if self.hyperparameters['eg_use_literal_copying']:
write_to_minibatch(minibatch,
self.placeholders['eg_litproduction_to_context_id'][literal_kind],
np.concatenate(batch_data['eg_litproduction_to_context_id'][literal_kind], axis=0))
write_to_minibatch(minibatch,
self.placeholders['eg_litproduction_choice_normalizer'][literal_kind],
np.concatenate(batch_data['eg_litproduction_choice_normalizer'][literal_kind], axis=0))
# ---------- Test-time code ----------
def generate_suggestions_for_one_sample(self,
test_sample: Dict[str, Any],
raw_sample,
sample_idx,
initial_eg_node_representations: tf.Tensor,
beam_size: int=3,
max_decoding_steps: int=100,
context_tokens: Optional[List[str]]=None,
context_token_representations: Optional[tf.Tensor]=None,
context_token_mask: Optional[np.ndarray]=None,
) -> ModelTestResult:
production_id_to_production = {} # type: Dict[int, Tuple[str, Iterable[str]]]
for (nonterminal, nonterminal_rules) in self.metadata['eg_production_vocab'].items():
for (expansion, prod_id) in nonterminal_rules.items():
production_id_to_production[prod_id] = (nonterminal, expansion)
max_used_eg_node_id = initial_eg_node_representations.shape[0]
def declare_new_node(expansion_info: ExpansionInformation, parent_node: int, node_type: str) -> int:
nonlocal max_used_eg_node_id
new_node_id = max_used_eg_node_id
new_synthesised_node_id = max_used_eg_node_id + 1
max_used_eg_node_id += 2
expansion_info.node_to_parent[new_node_id] = parent_node
expansion_info.node_to_children[parent_node].append(new_node_id)
expansion_info.node_to_type[new_node_id] = node_type
expansion_info.node_to_label[new_node_id] = node_type
expansion_info.node_to_label[new_synthesised_node_id] = node_type
expansion_info.node_to_synthesised_attr_node[new_node_id] = new_synthesised_node_id
expansion_info.node_to_inherited_attr_node[new_synthesised_node_id] = new_node_id
return new_node_id
def get_node_attributes(expansion_info: ExpansionInformation, node_id: int) -> tf.Tensor:
"""
Return attributes associated with node, either from cache in expansion information or by
calling the model to compute a representation according to the edge information in
the expansion_info.
"""
node_attributes = expansion_info.node_to_representation.get(node_id)
if node_attributes is None:
node_label = expansion_info.node_to_label[node_id]
if node_label == VARIABLE_NONTERMINAL:
node_label = ROOT_NONTERMINAL
if node_id not in expansion_info.node_to_unlabeled_incoming_edges:
self.compute_incoming_edges(self.metadata['eg_production_vocab'].keys(), expansion_info, node_id)
msg_prop_data = {self.placeholders['eg_msg_target_label_id']: self.metadata['eg_token_vocab'].get_id_or_unk(node_label)}
for labeled_edge_typ in self.__expansion_labeled_edge_types.keys():
source_node_ids = [v for (v, _) in expansion_info.node_to_labeled_incoming_edges[node_id][labeled_edge_typ]]
edge_labels = [l for (_, l) in expansion_info.node_to_labeled_incoming_edges[node_id][labeled_edge_typ]]
if len(source_node_ids) == 0:
sender_repr = np.empty(shape=[0, self.hyperparameters['eg_hidden_size']])
else:
sender_repr = [get_node_attributes(expansion_info, source_node_id) for source_node_id in source_node_ids]
labeled_edge_typ_idx = self.__expansion_labeled_edge_types[labeled_edge_typ]
msg_prop_data[self.placeholders['eg_msg_source_representations'][labeled_edge_typ_idx]] = sender_repr
msg_prop_data[self.placeholders['eg_edge_label_ids'][0][labeled_edge_typ_idx]] = edge_labels
for unlabeled_edge_typ in self.__expansion_unlabeled_edge_types.keys():
source_node_ids = expansion_info.node_to_unlabeled_incoming_edges[node_id][unlabeled_edge_typ]
if len(source_node_ids) == 0:
sender_repr = np.empty(shape=[0, self.hyperparameters['eg_hidden_size']])
else:
sender_repr = [get_node_attributes(expansion_info, source_node_id) for source_node_id in source_node_ids]
shifted_edge_type_id = len(self.__expansion_labeled_edge_types) + self.__expansion_unlabeled_edge_types[unlabeled_edge_typ]
msg_prop_data[self.placeholders['eg_msg_source_representations'][shifted_edge_type_id]] = sender_repr
# print("Computing attributes for %i (label %s) with following edges:" % (node_id, node_label))
# for labeled_edge_type in EXPANSION_LABELED_EDGE_TYPE_NAMES + EXPANSION_UNLABELED_EDGE_TYPE_NAMES:
# edges = expansion_info.node_to_labeled_incoming_edges[node_id][labeled_edge_type]
# if len(edges) > 0:
# print(" %s edges: [%s]" % (labeled_edge_type,
# ", ".join("(%s, %s)" % (w, node_id) for w in edges)))
node_attributes = self.sess.run(self.ops['eg_step_propagation_result'], feed_dict=msg_prop_data)
expansion_info.node_to_representation[node_id] = node_attributes
return node_attributes
def sample_productions(expansion_info: ExpansionInformation, node_to_expand: int) -> List[Tuple[Iterable[str], int, float]]:
prod_query_data = {}
write_to_minibatch(prod_query_data,
self.placeholders['eg_production_node_representation'],
get_node_attributes(expansion_info, node_to_expand))
if self.hyperparameters['eg_use_vars_for_production_choice']:
vars_in_scope = list(expansion_info.variable_to_last_use_id.keys())
vars_in_scope.remove(LAST_USED_TOKEN_NAME)
vars_in_scope_representations = [get_node_attributes(expansion_info, expansion_info.variable_to_last_use_id[var])
for var in vars_in_scope]
write_to_minibatch(prod_query_data,
self.placeholders['eg_production_var_representations'],
vars_in_scope_representations)
if self.hyperparameters['eg_use_literal_copying'] or self.hyperparameters['eg_use_context_attention']:
write_to_minibatch(prod_query_data,
self.placeholders['context_token_representations'],
expansion_info.context_token_representations)
write_to_minibatch(prod_query_data,
self.placeholders['context_token_mask'],
expansion_info.context_token_mask)
production_probs = self.sess.run(self.ops['eg_production_choice_probs'], feed_dict=prod_query_data)
result = []
# print("### Prod probs: %s" % (str(production_probs),))
for picked_production_index in pick_indices_from_probs(production_probs, beam_size):
prod_lhs, prod_rhs = production_id_to_production[picked_production_index]
# TODO: This should be ensured by appropriate masking in the model
if prod_lhs == expansion_info.node_to_type[node_to_expand]:
assert prod_lhs == expansion_info.node_to_type[node_to_expand]
result.append((prod_rhs, picked_production_index, production_probs[picked_production_index]))
return result
def sample_variable(expansion_info: ExpansionInformation, node_id: int) -> List[Tuple[str, float]]:
vars_in_scope = list(expansion_info.variable_to_last_use_id.keys())
vars_in_scope.remove(LAST_USED_TOKEN_NAME)
vars_in_scope_representations = [get_node_attributes(expansion_info, expansion_info.variable_to_last_use_id[var])
for var in vars_in_scope]
var_query_data = {self.placeholders['eg_num_variable_choices']: len(vars_in_scope)}
write_to_minibatch(var_query_data, self.placeholders['eg_varproduction_options_representations'], vars_in_scope_representations)
# We choose the variable name based on the information of the /parent/ node:
parent_node = expansion_info.node_to_parent[node_id]
write_to_minibatch(var_query_data, self.placeholders['eg_varproduction_node_representation'], get_node_attributes(expansion_info, parent_node))
var_probs = self.sess.run(self.ops['eg_varproduction_choice_probs'], feed_dict=var_query_data)
result = []
# print("### Var probs: %s" % (str(var_probs),))
for picked_var_index in pick_indices_from_probs(var_probs, beam_size):
result.append((vars_in_scope[picked_var_index], var_probs[picked_var_index]))
return result
def sample_literal(expansion_info: ExpansionInformation, node_id: int) -> List[Tuple[str, float]]:
literal_kind_to_sample = expansion_info.node_to_type[node_id]
lit_query_data = {}
# We choose the literal based on the information of the /parent/ node:
parent_node = expansion_info.node_to_parent[node_id]
write_to_minibatch(lit_query_data, self.placeholders['eg_litproduction_node_representation'], get_node_attributes(expansion_info, parent_node))
if self.hyperparameters["eg_use_literal_copying"]:
write_to_minibatch(lit_query_data,
self.placeholders['context_token_representations'],
expansion_info.context_token_representations)
write_to_minibatch(lit_query_data,
self.placeholders['context_token_mask'],
expansion_info.context_token_mask)
write_to_minibatch(lit_query_data,
self.placeholders['eg_litproduction_choice_normalizer'],
expansion_info.literal_production_choice_normalizer[literal_kind_to_sample])
lit_probs = self.sess.run(self.ops['eg_litproduction_choice_probs'][literal_kind_to_sample],
feed_dict=lit_query_data)
result = []
# print("### Var probs: %s" % (str(lit_probs),))
literal_vocab = self.metadata["eg_literal_vocabs"][literal_kind_to_sample]
literal_vocab_size = len(literal_vocab)
for picked_lit_index in pick_indices_from_probs(lit_probs, beam_size):
if picked_lit_index < literal_vocab_size:
result.append((literal_vocab.id_to_token[picked_lit_index], lit_probs[picked_lit_index]))
else:
result.append((expansion_info.context_tokens[picked_lit_index - literal_vocab_size], lit_probs[picked_lit_index]))
return result
def expand_node(expansion_info: ExpansionInformation) -> List[ExpansionInformation]:
if len(expansion_info.nodes_to_expand) == 0:
return [expansion_info]
if expansion_info.num_expansions > max_decoding_steps:
return []
node_to_expand = expansion_info.nodes_to_expand.popleft()
type_to_expand = expansion_info.node_to_type[node_to_expand]
expansions = []
if type_to_expand in self.metadata['eg_production_vocab']:
# Case production from grammar
for (prod_rhs, prod_id, prod_probability) in sample_productions(expansion_info, node_to_expand):
picked_rhs_expansion_info = clone_expansion_info(expansion_info, increment_expansion_counter=True)
picked_rhs_expansion_info.node_to_prod_id[node_to_expand] = prod_id
picked_rhs_expansion_info.expansion_logprob[0] = picked_rhs_expansion_info.expansion_logprob[0] + np.log(prod_probability)
# print("Expanding %i using rule %s -> %s with prob %.3f in %s (tree prob %.3f)."
# % (node_to_expand, type_to_expand, prod_rhs, prod_probability,
# " ".join(get_tokens_from_expansion(expansion_info, root_node)),
# np.exp(expansion_info.expansion_logprob[0])))
# Declare all children
for child_node_type in prod_rhs:
child_node_id = declare_new_node(picked_rhs_expansion_info, node_to_expand, child_node_type)
# print(" Child %i (type %s)" % (child_node_id, child_node_type))
# Mark the children as expansions. As we do depth-first, push them to front of the queue; and as
# extendleft reverses the order and we do left-to-right, reverse that reversal:
picked_rhs_expansion_info.nodes_to_expand.extendleft(reversed(picked_rhs_expansion_info.node_to_children[node_to_expand]))
expansions.append(picked_rhs_expansion_info)
elif type_to_expand == VARIABLE_NONTERMINAL:
# Case choose variable name.
if len(expansion_info.variable_to_last_use_id.keys()) > 1: # Only continue if at least one var is in scope (not just LAST_USED_TOKEN_NAME)
for (child_label, var_probability) in sample_variable(expansion_info, node_to_expand):
# print("Expanding %i by using variable %s with prob %.3f in %s (tree prob %.3f)."
# % (node_to_expand, child_label, var_probability,
# " ".join(get_tokens_from_expansion(expansion_info, root_node)),
# np.exp(expansion_info.expansion_logprob[0])))
child_expansion_info = clone_expansion_info(expansion_info)
child_expansion_info.node_to_synthesised_attr_node[node_to_expand] = node_to_expand # synthesised and inherited are the same for leafs
child_expansion_info.node_to_label[node_to_expand] = child_label
self.compute_incoming_edges(self.metadata['eg_production_vocab'].keys(), child_expansion_info, node_to_expand) # This needs to be done now before we update the variable-to-last-use info
child_expansion_info.expansion_logprob[0] = child_expansion_info.expansion_logprob[0] + np.log(var_probability)
if self.hyperparameters['eg_update_last_variable_use_representation']:
child_expansion_info.variable_to_last_use_id[child_label] = node_to_expand
child_expansion_info.variable_to_last_use_id[LAST_USED_TOKEN_NAME] = node_to_expand
expansions.append(child_expansion_info)
elif type_to_expand in LITERAL_NONTERMINALS:
for (picked_literal, literal_probability) in sample_literal(expansion_info, node_to_expand):
# print("Expanding %i by using literal %s with prob %.3f in %s (tree prob %.3f)."
# % (node_to_expand, picked_literal, literal_probability,
# " ".join(get_tokens_from_expansion(expansion_info, root_node)),
# np.exp(expansion_info.expansion_logprob[0])))
picked_literal_expansion_info = clone_expansion_info(expansion_info)
picked_literal_expansion_info.node_to_synthesised_attr_node[node_to_expand] = node_to_expand # synthesised and inherited are the same for leafs
picked_literal_expansion_info.node_to_label[node_to_expand] = picked_literal
self.compute_incoming_edges(self.metadata['eg_production_vocab'].keys(), picked_literal_expansion_info,
node_to_expand)
picked_literal_expansion_info.expansion_logprob[0] = picked_literal_expansion_info.expansion_logprob[0] + np.log(literal_probability)
picked_literal_expansion_info.variable_to_last_use_id[LAST_USED_TOKEN_NAME] = node_to_expand
expansions.append(picked_literal_expansion_info)
else:
# Case node is a terminal: Do nothing
# print("Handling leaf node %i (label %s)" % (node_to_expand, expansion_info.node_to_label[node_to_expand]))
expansion_info.node_to_synthesised_attr_node[node_to_expand] = node_to_expand # synthesised and inherited are the same for leafs
self.compute_incoming_edges(self.metadata['eg_production_vocab'].keys(), expansion_info, node_to_expand) # This needs to be done now before we update the variable-to-last-use info
expansion_info.variable_to_last_use_id[LAST_USED_TOKEN_NAME] = node_to_expand
expansions = [expansion_info]
return expansions
if self.hyperparameters['eg_use_literal_copying']:
literal_production_choice_normalizer = {}
for literal_kind in LITERAL_NONTERMINALS:
# Collect all choices (vocab + things we can copy from):
literal_vocab = self.metadata['eg_literal_vocabs'][literal_kind]
literal_choices = literal_vocab.id_to_token + context_tokens
first_tok_occurrences = {}
num_choices = len(literal_vocab) + self.hyperparameters['eg_max_context_tokens']
normalizer_map = np.arange(num_choices, dtype=np.int16)
for (token_idx, token) in enumerate(literal_choices):
first_occ = first_tok_occurrences.get(token)
if first_occ is not None:
normalizer_map[token_idx] = first_occ
else:
first_tok_occurrences[token] = token_idx
literal_production_choice_normalizer[literal_kind] = normalizer_map
else:
literal_production_choice_normalizer = None
root_node = test_sample['eg_root_node']
initial_variable_to_last_use_id = test_sample['eg_variable_eg_node_ids']
initial_variable_to_last_use_id[LAST_USED_TOKEN_NAME] = test_sample['eg_last_token_eg_node_id']
initial_node_to_representation = {node_id: initial_eg_node_representations[node_id]
for node_id in initial_variable_to_last_use_id.values()}
initial_node_to_representation[root_node] = initial_eg_node_representations[root_node]
initial_info = ExpansionInformation(node_to_type={root_node: ROOT_NONTERMINAL},
node_to_label={root_node: ROOT_NONTERMINAL},
node_to_prod_id={},
node_to_children=defaultdict(list),
node_to_parent={},
node_to_synthesised_attr_node={node_id: node_id for node_id in initial_node_to_representation.keys()},
node_to_inherited_attr_node={},
variable_to_last_use_id=initial_variable_to_last_use_id,
node_to_representation=initial_node_to_representation,
node_to_labeled_incoming_edges={root_node: defaultdict(list)},
node_to_unlabeled_incoming_edges={root_node: defaultdict(list)},
context_token_representations=context_token_representations,
context_token_mask=context_token_mask,
context_tokens=context_tokens,
literal_production_choice_normalizer=literal_production_choice_normalizer,
nodes_to_expand=deque([root_node]),
expansion_logprob=[0.0],
num_expansions=0)
beams = [initial_info]
while any(len(b.nodes_to_expand) > 0 for b in beams):
new_beams = [new_beam
for beam in beams
for new_beam in expand_node(beam)]
beams = sorted(new_beams, key=lambda b: -b.expansion_logprob[0])[:beam_size] # Pick top K beams
self.test_log("Sample Number: " + str(sample_idx))
self.test_log(raw_sample["Filename"])
self.test_log(raw_sample['HoleSpan'] + " " + raw_sample['HoleLineSpan'])
self.test_log(str(raw_sample['HoleTokensBefore']) + " " + str(raw_sample['HoleTokensAfter']))
self.test_log("Groundtruth: %s" % (" ".join(test_sample['eg_tokens']),))
all_predictions = [] # type: List[Tuple[List[str], float]]
for (k, beam_info) in enumerate(beams):
kth_result = get_tokens_from_expansion(beam_info, root_node)
all_predictions.append((kth_result, np.exp(beam_info.expansion_logprob[0])))
self.test_log(" @%i Prob. %.3f: %s" % (k+1, np.exp(beam_info.expansion_logprob[0]), " ".join(kth_result)))
if len(beams) == 0:
self.test_log("No beams finished!")
return ModelTestResult(test_sample['eg_tokens'], all_predictions)
|
[
"tensorflow.einsum",
"tensorflow.reduce_sum",
"numpy.empty",
"tensorflow.reshape",
"collections.defaultdict",
"numpy.arange",
"numpy.exp",
"collections.deque",
"tensorflow.nn.softmax",
"tensorflow.size",
"tensorflow.gather",
"tensorflow.concat",
"tensorflow.variable_scope",
"tensorflow.placeholder",
"numpy.reshape",
"tensorflow.squeeze",
"collections.Counter",
"numpy.random.shuffle",
"tensorflow.nn.embedding_lookup",
"tensorflow.reduce_mean",
"tensorflow.constant",
"tensorflow.random_normal_initializer",
"tensorflow.where",
"tensorflow.expand_dims",
"numpy.concatenate",
"tensorflow.glorot_uniform_initializer",
"numpy.log",
"numpy.expand_dims",
"tensorflow.shape",
"numpy.array",
"collections.namedtuple",
"collections.OrderedDict",
"dpu_utils.tfutils.pick_indices_from_probs",
"dpu_utils.mlutils.vocabulary.Vocabulary.create_vocabulary",
"tensorflow.nn.sparse_softmax_cross_entropy_with_logits",
"dpu_utils.tfmodels.AsyncGGNN"
] |
[((1096, 1608), 'collections.namedtuple', 'namedtuple', (['"""ExpansionInformation"""', "['node_to_type', 'node_to_label', 'node_to_prod_id', 'node_to_children',\n 'node_to_parent', 'node_to_synthesised_attr_node',\n 'node_to_inherited_attr_node', 'variable_to_last_use_id',\n 'node_to_representation', 'node_to_labeled_incoming_edges',\n 'node_to_unlabeled_incoming_edges', 'context_token_representations',\n 'context_token_mask', 'context_tokens',\n 'literal_production_choice_normalizer', 'nodes_to_expand',\n 'expansion_logprob', 'num_expansions']"], {}), "('ExpansionInformation', ['node_to_type', 'node_to_label',\n 'node_to_prod_id', 'node_to_children', 'node_to_parent',\n 'node_to_synthesised_attr_node', 'node_to_inherited_attr_node',\n 'variable_to_last_use_id', 'node_to_representation',\n 'node_to_labeled_incoming_edges', 'node_to_unlabeled_incoming_edges',\n 'context_token_representations', 'context_token_mask', 'context_tokens',\n 'literal_production_choice_normalizer', 'nodes_to_expand',\n 'expansion_logprob', 'num_expansions'])\n", (1106, 1608), False, 'from collections import defaultdict, Counter, OrderedDict, namedtuple, deque\n'), ((11015, 11073), 'tensorflow.placeholder', 'tf.placeholder', (['tf.int32', '[None]'], {'name': '"""eg_node_token_ids"""'}), "(tf.int32, [None], name='eg_node_token_ids')\n", (11029, 11073), True, 'import tensorflow as tf\n'), ((12232, 12304), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': 'tf.int32', 'shape': '[None]', 'name': '"""eg_initial_node_ids"""'}), "(dtype=tf.int32, shape=[None], name='eg_initial_node_ids')\n", (12246, 12304), True, 'import tensorflow as tf\n'), ((13983, 14107), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': 'tf.int32', 'shape': "[self.hyperparameters['eg_propagation_substeps']]", 'name': '"""eg_receiving_nodes_nums"""'}), "(dtype=tf.int32, shape=[self.hyperparameters[\n 'eg_propagation_substeps']], name='eg_receiving_nodes_nums')\n", (13997, 14107), True, 'import tensorflow as tf\n'), ((14223, 14295), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': 'tf.int32', 'shape': '[None]', 'name': '"""eg_production_nodes"""'}), "(dtype=tf.int32, shape=[None], name='eg_production_nodes')\n", (14237, 14295), True, 'import tensorflow as tf\n'), ((14942, 15021), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': 'tf.int32', 'shape': '[None]', 'name': '"""eg_production_node_choices"""'}), "(dtype=tf.int32, shape=[None], name='eg_production_node_choices')\n", (14956, 15021), True, 'import tensorflow as tf\n'), ((15315, 15390), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': 'tf.int32', 'shape': '[None]', 'name': '"""eg_varproduction_nodes"""'}), "(dtype=tf.int32, shape=[None], name='eg_varproduction_nodes')\n", (15329, 15390), True, 'import tensorflow as tf\n'), ((15468, 15605), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': 'tf.int32', 'shape': "[None, self.hyperparameters['eg_max_variable_choices']]", 'name': '"""eg_varproduction_options_nodes"""'}), "(dtype=tf.int32, shape=[None, self.hyperparameters[\n 'eg_max_variable_choices']], name='eg_varproduction_options_nodes')\n", (15482, 15605), True, 'import tensorflow as tf\n'), ((15730, 15868), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': 'tf.float32', 'shape': "[None, self.hyperparameters['eg_max_variable_choices']]", 'name': '"""eg_varproduction_options_mask"""'}), "(dtype=tf.float32, shape=[None, self.hyperparameters[\n 'eg_max_variable_choices']], name='eg_varproduction_options_mask')\n", (15744, 15868), True, 'import tensorflow as tf\n'), ((15993, 16080), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': 'tf.int32', 'shape': '[None]', 'name': '"""eg_varproduction_node_choices"""'}), "(dtype=tf.int32, shape=[None], name=\n 'eg_varproduction_node_choices')\n", (16007, 16080), True, 'import tensorflow as tf\n'), ((17746, 17843), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': 'tf.float32', 'shape': '[eg_h_dim]', 'name': '"""eg_production_node_representation"""'}), "(dtype=tf.float32, shape=[eg_h_dim], name=\n 'eg_production_node_representation')\n", (17760, 17843), True, 'import tensorflow as tf\n'), ((18688, 18788), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': 'tf.float32', 'shape': '[eg_h_dim]', 'name': '"""eg_varproduction_node_representation"""'}), "(dtype=tf.float32, shape=[eg_h_dim], name=\n 'eg_varproduction_node_representation')\n", (18702, 18788), True, 'import tensorflow as tf\n'), ((18907, 18979), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': 'tf.int32', 'shape': '[]', 'name': '"""eg_num_variable_choices"""'}), "(dtype=tf.int32, shape=[], name='eg_num_variable_choices')\n", (18921, 18979), True, 'import tensorflow as tf\n'), ((19066, 19176), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': 'tf.float32', 'shape': '[None, eg_h_dim]', 'name': '"""eg_varproduction_options_representations"""'}), "(dtype=tf.float32, shape=[None, eg_h_dim], name=\n 'eg_varproduction_options_representations')\n", (19080, 19176), True, 'import tensorflow as tf\n'), ((19309, 19409), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': 'tf.float32', 'shape': '[eg_h_dim]', 'name': '"""eg_litproduction_node_representation"""'}), "(dtype=tf.float32, shape=[eg_h_dim], name=\n 'eg_litproduction_node_representation')\n", (19323, 19409), True, 'import tensorflow as tf\n'), ((20308, 20379), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': 'tf.int32', 'shape': '[]', 'name': '"""eg_msg_target_label_id"""'}), "(dtype=tf.int32, shape=[], name='eg_msg_target_label_id')\n", (20322, 20379), True, 'import tensorflow as tf\n'), ((21631, 21738), 'tensorflow.nn.embedding_lookup', 'tf.nn.embedding_lookup', (["self.parameters['eg_token_embeddings']", "self.placeholders['eg_node_token_ids']"], {}), "(self.parameters['eg_token_embeddings'], self.\n placeholders['eg_node_token_ids'])\n", (21653, 21738), True, 'import tensorflow as tf\n'), ((21825, 21986), 'tensorflow.where', 'tf.where', ([], {'condition': "self.ops['eg_node_representation_use_from_context']", 'x': "self.ops['eg_node_representations_from_context']", 'y': 'eg_node_label_embeddings'}), "(condition=self.ops['eg_node_representation_use_from_context'], x=\n self.ops['eg_node_representations_from_context'], y=\n eg_node_label_embeddings)\n", (21833, 21986), True, 'import tensorflow as tf\n'), ((23550, 23646), 'tensorflow.gather', 'tf.gather', ([], {'params': 'eg_node_representations', 'indices': "self.placeholders['eg_production_nodes']"}), "(params=eg_node_representations, indices=self.placeholders[\n 'eg_production_nodes'])\n", (23559, 23646), True, 'import tensorflow as tf\n'), ((24890, 24989), 'tensorflow.gather', 'tf.gather', ([], {'params': 'eg_node_representations', 'indices': "self.placeholders['eg_varproduction_nodes']"}), "(params=eg_node_representations, indices=self.placeholders[\n 'eg_varproduction_nodes'])\n", (24899, 24989), True, 'import tensorflow as tf\n'), ((25085, 25160), 'tensorflow.reshape', 'tf.reshape', (["self.placeholders['eg_varproduction_options_nodes']"], {'shape': '[-1]'}), "(self.placeholders['eg_varproduction_options_nodes'], shape=[-1])\n", (25095, 25160), True, 'import tensorflow as tf\n'), ((27416, 27564), 'tensorflow.nn.sparse_softmax_cross_entropy_with_logits', 'tf.nn.sparse_softmax_cross_entropy_with_logits', ([], {'logits': 'eg_production_choice_logits', 'labels': "self.placeholders['eg_production_node_choices']"}), "(logits=\n eg_production_choice_logits, labels=self.placeholders[\n 'eg_production_node_choices'])\n", (27462, 27564), True, 'import tensorflow as tf\n'), ((27625, 27779), 'tensorflow.nn.sparse_softmax_cross_entropy_with_logits', 'tf.nn.sparse_softmax_cross_entropy_with_logits', ([], {'logits': 'eg_varproduction_choice_logits', 'labels': "self.placeholders['eg_varproduction_node_choices']"}), "(logits=\n eg_varproduction_choice_logits, labels=self.placeholders[\n 'eg_varproduction_node_choices'])\n", (27671, 27779), True, 'import tensorflow as tf\n'), ((31214, 31264), 'tensorflow.squeeze', 'tf.squeeze', (['eg_varproduction_choice_logits'], {'axis': '(0)'}), '(eg_varproduction_choice_logits, axis=0)\n', (31224, 31264), True, 'import tensorflow as tf\n'), ((31317, 31370), 'tensorflow.nn.softmax', 'tf.nn.softmax', (['eg_varproduction_choice_logits'], {'dim': '(-1)'}), '(eg_varproduction_choice_logits, dim=-1)\n', (31330, 31370), True, 'import tensorflow as tf\n'), ((37122, 37168), 'tensorflow.concat', 'tf.concat', (['eg_production_choice_inputs'], {'axis': '(1)'}), '(eg_production_choice_inputs, axis=1)\n', (37131, 37168), True, 'import tensorflow as tf\n'), ((38272, 38365), 'tensorflow.einsum', 'tf.einsum', (['"""sd,svd->sv"""', 'varchoice_node_representation', 'varchoice_options_representations'], {}), "('sd,svd->sv', varchoice_node_representation,\n varchoice_options_representations)\n", (38281, 38365), True, 'import tensorflow as tf\n'), ((39569, 39606), 'tensorflow.squeeze', 'tf.squeeze', (['varchoice_logits'], {'axis': '(-1)'}), '(varchoice_logits, axis=-1)\n', (39579, 39606), True, 'import tensorflow as tf\n'), ((42134, 42212), 'tensorflow.gather', 'tf.gather', ([], {'params': 'context_representations', 'indices': 'litproduction_to_context_id'}), '(params=context_representations, indices=litproduction_to_context_id)\n', (42143, 42212), True, 'import tensorflow as tf\n'), ((42601, 42632), 'tensorflow.squeeze', 'tf.squeeze', (['copy_scores'], {'axis': '(1)'}), '(copy_scores, axis=1)\n', (42611, 42632), True, 'import tensorflow as tf\n'), ((42695, 42783), 'tensorflow.gather', 'tf.gather', ([], {'params': 'context_representations_mask', 'indices': 'litproduction_to_context_id'}), '(params=context_representations_mask, indices=\n litproduction_to_context_id)\n', (42704, 42783), True, 'import tensorflow as tf\n'), ((42997, 43045), 'tensorflow.concat', 'tf.concat', (['[literal_logits, copy_scores]'], {'axis': '(1)'}), '([literal_logits, copy_scores], axis=1)\n', (43006, 43045), True, 'import tensorflow as tf\n'), ((43760, 43849), 'tensorflow.reshape', 'tf.reshape', (['normalized_vocab_choices_and_copy_logits'], {'shape': '[-1, num_literal_options]'}), '(normalized_vocab_choices_and_copy_logits, shape=[-1,\n num_literal_options])\n', (43770, 43849), True, 'import tensorflow as tf\n'), ((44070, 44079), 'collections.Counter', 'Counter', ([], {}), '()\n', (44077, 44079), False, 'from collections import defaultdict, Counter, OrderedDict, namedtuple, deque\n'), ((44126, 44146), 'collections.defaultdict', 'defaultdict', (['Counter'], {}), '(Counter)\n', (44137, 44146), False, 'from collections import defaultdict, Counter, OrderedDict, namedtuple, deque\n'), ((44193, 44209), 'collections.defaultdict', 'defaultdict', (['set'], {}), '(set)\n', (44204, 44209), False, 'from collections import defaultdict, Counter, OrderedDict, namedtuple, deque\n'), ((45525, 45534), 'collections.Counter', 'Counter', ([], {}), '()\n', (45532, 45534), False, 'from collections import defaultdict, Counter, OrderedDict, namedtuple, deque\n'), ((45670, 45686), 'collections.defaultdict', 'defaultdict', (['set'], {}), '(set)\n', (45681, 45686), False, 'from collections import defaultdict, Counter, OrderedDict, namedtuple, deque\n'), ((46168, 46277), 'dpu_utils.mlutils.vocabulary.Vocabulary.create_vocabulary', 'Vocabulary.create_vocabulary', (['merged_token_counter'], {'max_size': "self.hyperparameters['eg_token_vocab_size']"}), "(merged_token_counter, max_size=self.\n hyperparameters['eg_token_vocab_size'])\n", (46196, 46277), False, 'from dpu_utils.mlutils.vocabulary import Vocabulary\n'), ((46791, 46808), 'collections.defaultdict', 'defaultdict', (['dict'], {}), '(dict)\n', (46802, 46808), False, 'from collections import defaultdict, Counter, OrderedDict, namedtuple, deque\n'), ((46870, 46887), 'collections.defaultdict', 'defaultdict', (['dict'], {}), '(dict)\n', (46881, 46887), False, 'from collections import defaultdict, Counter, OrderedDict, namedtuple, deque\n'), ((52121, 52138), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (52132, 52138), False, 'from collections import defaultdict, Counter, OrderedDict, namedtuple, deque\n'), ((52216, 52233), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (52227, 52233), False, 'from collections import defaultdict, Counter, OrderedDict, namedtuple, deque\n'), ((55835, 55852), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (55846, 55852), False, 'from collections import defaultdict, Counter, OrderedDict, namedtuple, deque\n'), ((67964, 68011), 'numpy.array', 'np.array', (['eg_node_id_to_prod_id'], {'dtype': 'np.int16'}), '(eg_node_id_to_prod_id, dtype=np.int16)\n', (67972, 68011), True, 'import numpy as np\n'), ((3929, 3966), 'collections.deque', 'deque', (['expansion_info.nodes_to_expand'], {}), '(expansion_info.nodes_to_expand)\n', (3934, 3966), False, 'from collections import defaultdict, Counter, OrderedDict, namedtuple, deque\n'), ((13125, 13220), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': 'tf.int32', 'shape': '[None]', 'name': "('eg_msg_targets_nodes_step%i' % (step,))"}), "(dtype=tf.int32, shape=[None], name=\n 'eg_msg_targets_nodes_step%i' % (step,))\n", (13139, 13220), True, 'import tensorflow as tf\n'), ((13603, 13696), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': 'tf.int32', 'shape': '[None]', 'name': "('eg_receiving_nodes_step%i' % (step,))"}), "(dtype=tf.int32, shape=[None], name=\n 'eg_receiving_nodes_step%i' % (step,))\n", (13617, 13696), True, 'import tensorflow as tf\n'), ((14456, 14549), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': 'tf.int32', 'shape': '[None]', 'name': '"""eg_production_var_last_use_node_ids"""'}), "(dtype=tf.int32, shape=[None], name=\n 'eg_production_var_last_use_node_ids')\n", (14470, 14549), True, 'import tensorflow as tf\n'), ((14707, 14811), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': 'tf.int32', 'shape': '[None]', 'name': '"""eg_production_var_last_use_node_ids_target_ids"""'}), "(dtype=tf.int32, shape=[None], name=\n 'eg_production_var_last_use_node_ids_target_ids')\n", (14721, 14811), True, 'import tensorflow as tf\n'), ((15165, 15250), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': 'tf.int32', 'shape': '[None]', 'name': '"""eg_production_to_context_id"""'}), "(dtype=tf.int32, shape=[None], name='eg_production_to_context_id'\n )\n", (15179, 15250), True, 'import tensorflow as tf\n'), ((16525, 16623), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': 'tf.int32', 'shape': '[None]', 'name': "('eg_litproduction_nodes_%s' % literal_kind)"}), "(dtype=tf.int32, shape=[None], name=\n 'eg_litproduction_nodes_%s' % literal_kind)\n", (16539, 16623), True, 'import tensorflow as tf\n'), ((16778, 16883), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': 'tf.int32', 'shape': '[None]', 'name': "('eg_litproduction_node_choices_%s' % literal_kind)"}), "(dtype=tf.int32, shape=[None], name=\n 'eg_litproduction_node_choices_%s' % literal_kind)\n", (16792, 16883), True, 'import tensorflow as tf\n'), ((18051, 18154), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': 'tf.float32', 'shape': '[None, eg_h_dim]', 'name': '"""eg_production_var_representations"""'}), "(dtype=tf.float32, shape=[None, eg_h_dim], name=\n 'eg_production_var_representations')\n", (18065, 18154), True, 'import tensorflow as tf\n'), ((18407, 18547), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': 'tf.float32', 'shape': "[self.hyperparameters['eg_max_context_tokens'], eg_h_dim]", 'name': '"""context_token_representations"""'}), "(dtype=tf.float32, shape=[self.hyperparameters[\n 'eg_max_context_tokens'], eg_h_dim], name='context_token_representations')\n", (18421, 18547), True, 'import tensorflow as tf\n'), ((19606, 19698), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': 'tf.int32', 'shape': '[None]', 'name': '"""eg_litproduction_choice_normalizer"""'}), "(dtype=tf.int32, shape=[None], name=\n 'eg_litproduction_choice_normalizer')\n", (19620, 19698), True, 'import tensorflow as tf\n'), ((20014, 20134), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': 'tf.float32', 'shape': '[None, eg_h_dim]', 'name': "('eg_msg_source_representations_etyp%i' % (edge_typ,))"}), "(dtype=tf.float32, shape=[None, eg_h_dim], name=\n 'eg_msg_source_representations_etyp%i' % (edge_typ,))\n", (20028, 20134), True, 'import tensorflow as tf\n'), ((22579, 22614), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""ExpansionGraph"""'], {}), "('ExpansionGraph')\n", (22596, 22614), True, 'import tensorflow as tf\n'), ((22639, 22659), 'dpu_utils.tfmodels.AsyncGGNN', 'AsyncGGNN', (['eg_hypers'], {}), '(eg_hypers)\n', (22648, 22659), False, 'from dpu_utils.tfmodels import AsyncGGNN\n'), ((23838, 23950), 'tensorflow.gather', 'tf.gather', ([], {'params': 'eg_node_representations', 'indices': "self.placeholders['eg_production_var_last_use_node_ids']"}), "(params=eg_node_representations, indices=self.placeholders[\n 'eg_production_var_last_use_node_ids'])\n", (23847, 23950), True, 'import tensorflow as tf\n'), ((25300, 25391), 'tensorflow.gather', 'tf.gather', ([], {'params': 'eg_node_representations', 'indices': 'eg_varproduction_options_nodes_flat'}), '(params=eg_node_representations, indices=\n eg_varproduction_options_nodes_flat)\n', (25309, 25391), True, 'import tensorflow as tf\n'), ((26280, 26393), 'tensorflow.gather', 'tf.gather', ([], {'params': 'eg_node_representations', 'indices': "self.placeholders['eg_litproduction_nodes'][literal_kind]"}), "(params=eg_node_representations, indices=self.placeholders[\n 'eg_litproduction_nodes'][literal_kind])\n", (26289, 26393), True, 'import tensorflow as tf\n'), ((28025, 28053), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['raw_prod_loss'], {}), '(raw_prod_loss)\n', (28038, 28053), True, 'import tensorflow as tf\n'), ((28142, 28169), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['raw_var_loss'], {}), '(raw_var_loss)\n', (28155, 28169), True, 'import tensorflow as tf\n'), ((28627, 28658), 'tensorflow.concat', 'tf.concat', (['raw_lit_loss'], {'axis': '(0)'}), '(raw_lit_loss, axis=0)\n', (28636, 28658), True, 'import tensorflow as tf\n'), ((29234, 29261), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['raw_lit_loss'], {}), '(raw_lit_loss)\n', (29247, 29261), True, 'import tensorflow as tf\n'), ((29762, 29815), 'tensorflow.expand_dims', 'tf.expand_dims', (['context_token_representations'], {'axis': '(0)'}), '(context_token_representations, axis=0)\n', (29776, 29815), True, 'import tensorflow as tf\n'), ((30001, 30079), 'tensorflow.reduce_mean', 'tf.reduce_mean', (["self.placeholders['eg_production_var_representations']"], {'axis': '(0)'}), "(self.placeholders['eg_production_var_representations'], axis=0)\n", (30015, 30079), True, 'import tensorflow as tf\n'), ((30159, 30229), 'tensorflow.expand_dims', 'tf.expand_dims', (['pooled_variable_representations_at_prod_choice'], {'axis': '(0)'}), '(pooled_variable_representations_at_prod_choice, axis=0)\n', (30173, 30229), True, 'import tensorflow as tf\n'), ((30422, 30500), 'tensorflow.expand_dims', 'tf.expand_dims', (["self.placeholders['eg_production_node_representation']"], {'axis': '(0)'}), "(self.placeholders['eg_production_node_representation'], axis=0)\n", (30436, 30500), True, 'import tensorflow as tf\n'), ((30774, 30816), 'tensorflow.nn.softmax', 'tf.nn.softmax', (['eg_production_choice_logits'], {}), '(eg_production_choice_logits)\n', (30787, 30816), True, 'import tensorflow as tf\n'), ((30969, 31054), 'tensorflow.expand_dims', 'tf.expand_dims', (["self.placeholders['eg_varproduction_node_representation']"], {'axis': '(0)'}), "(self.placeholders['eg_varproduction_node_representation'],\n axis=0)\n", (30983, 31054), True, 'import tensorflow as tf\n'), ((31068, 31158), 'tensorflow.expand_dims', 'tf.expand_dims', (["self.placeholders['eg_varproduction_options_representations']"], {'axis': '(0)'}), "(self.placeholders['eg_varproduction_options_representations'\n ], axis=0)\n", (31082, 31158), True, 'import tensorflow as tf\n'), ((32591, 32626), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""ExpansionGraph"""'], {}), "('ExpansionGraph')\n", (32608, 32626), True, 'import tensorflow as tf\n'), ((32651, 32671), 'dpu_utils.tfmodels.AsyncGGNN', 'AsyncGGNN', (['eg_hypers'], {}), '(eg_hypers)\n', (32660, 32671), False, 'from dpu_utils.tfmodels import AsyncGGNN\n'), ((32860, 32929), 'tensorflow.concat', 'tf.concat', (["self.placeholders['eg_msg_source_representations']"], {'axis': '(0)'}), "(self.placeholders['eg_msg_source_representations'], axis=0)\n", (32869, 32929), True, 'import tensorflow as tf\n'), ((33061, 33091), 'tensorflow.constant', 'tf.constant', (['(1)'], {'dtype': 'tf.int32'}), '(1, dtype=tf.int32)\n', (33072, 33091), True, 'import tensorflow as tf\n'), ((35656, 35731), 'tensorflow.gather', 'tf.gather', ([], {'params': 'context_representations', 'indices': 'production_to_context_id'}), '(params=context_representations, indices=production_to_context_id)\n', (35665, 35731), True, 'import tensorflow as tf\n'), ((36242, 36278), 'tensorflow.squeeze', 'tf.squeeze', (['attention_scores'], {'axis': '(1)'}), '(attention_scores, axis=1)\n', (36252, 36278), True, 'import tensorflow as tf\n'), ((36361, 36446), 'tensorflow.gather', 'tf.gather', ([], {'params': 'context_representations_mask', 'indices': 'production_to_context_id'}), '(params=context_representations_mask, indices=production_to_context_id\n )\n', (36370, 36446), True, 'import tensorflow as tf\n'), ((36620, 36651), 'tensorflow.nn.softmax', 'tf.nn.softmax', (['attention_scores'], {}), '(attention_scores)\n', (36633, 36651), True, 'import tensorflow as tf\n'), ((36907, 36968), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['weighted_context_token_representations'], {'axis': '(1)'}), '(weighted_context_token_representations, axis=1)\n', (36920, 36968), True, 'import tensorflow as tf\n'), ((38514, 38568), 'tensorflow.expand_dims', 'tf.expand_dims', (['varchoice_node_representation'], {'axis': '(-2)'}), '(varchoice_node_representation, axis=-2)\n', (38528, 38568), True, 'import tensorflow as tf\n'), ((45584, 45593), 'collections.Counter', 'Counter', ([], {}), '()\n', (45591, 45593), False, 'from collections import defaultdict, Counter, OrderedDict, namedtuple, deque\n'), ((46496, 46642), 'dpu_utils.mlutils.vocabulary.Vocabulary.create_vocabulary', 'Vocabulary.create_vocabulary', (['merged_literal_counters[literal_kind]'], {'count_threshold': '(0)', 'max_size': "self.hyperparameters['eg_literal_vocab_size']"}), "(merged_literal_counters[literal_kind],\n count_threshold=0, max_size=self.hyperparameters['eg_literal_vocab_size'])\n", (46524, 46642), False, 'from dpu_utils.mlutils.vocabulary import Vocabulary\n'), ((60443, 60460), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (60454, 60460), False, 'from collections import defaultdict, Counter, OrderedDict, namedtuple, deque\n'), ((72879, 72892), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (72890, 72892), False, 'from collections import defaultdict, Counter, OrderedDict, namedtuple, deque\n'), ((75793, 75848), 'numpy.random.shuffle', 'np.random.shuffle', (['eg_varproduction_distractor_node_ids'], {}), '(eg_varproduction_distractor_node_ids)\n', (75810, 75848), True, 'import numpy as np\n'), ((76491, 76554), 'numpy.array', 'np.array', (['(eg_varproduction_options_node_ids + [0] * num_padding)'], {}), '(eg_varproduction_options_node_ids + [0] * num_padding)\n', (76499, 76554), True, 'import numpy as np\n'), ((90086, 90138), 'dpu_utils.tfutils.pick_indices_from_probs', 'pick_indices_from_probs', (['production_probs', 'beam_size'], {}), '(production_probs, beam_size)\n', (90109, 90138), False, 'from dpu_utils.tfutils import unsorted_segment_logsumexp, pick_indices_from_probs\n'), ((91830, 91875), 'dpu_utils.tfutils.pick_indices_from_probs', 'pick_indices_from_probs', (['var_probs', 'beam_size'], {}), '(var_probs, beam_size)\n', (91853, 91875), False, 'from dpu_utils.tfutils import unsorted_segment_logsumexp, pick_indices_from_probs\n'), ((93681, 93726), 'dpu_utils.tfutils.pick_indices_from_probs', 'pick_indices_from_probs', (['lit_probs', 'beam_size'], {}), '(lit_probs, beam_size)\n', (93704, 93726), False, 'from dpu_utils.tfutils import unsorted_segment_logsumexp, pick_indices_from_probs\n'), ((10387, 10417), 'tensorflow.random_normal_initializer', 'tf.random_normal_initializer', ([], {}), '()\n', (10415, 10417), True, 'import tensorflow as tf\n'), ((11491, 11594), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': 'tf.int32', 'shape': '[None]', 'name': "('eg_edge_label_step%i_typ%i' % (step, edge_typ))"}), "(dtype=tf.int32, shape=[None], name=\n 'eg_edge_label_step%i_typ%i' % (step, edge_typ))\n", (11505, 11594), True, 'import tensorflow as tf\n'), ((12544, 12657), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': 'tf.int32', 'shape': '[None]', 'name': "('eg_sending_node_ids_step%i_edgetyp%i' % (step, edge_typ))"}), "(dtype=tf.int32, shape=[None], name=\n 'eg_sending_node_ids_step%i_edgetyp%i' % (step, edge_typ))\n", (12558, 12657), True, 'import tensorflow as tf\n'), ((17110, 17216), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': 'tf.int32', 'shape': '[None]', 'name': "('eg_litproduction_to_context_id_%s' % literal_kind)"}), "(dtype=tf.int32, shape=[None], name=\n 'eg_litproduction_to_context_id_%s' % literal_kind)\n", (17124, 17216), True, 'import tensorflow as tf\n'), ((17392, 17502), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': 'tf.int32', 'shape': '[None]', 'name': "('eg_litproduction_choice_normalizer_%s' % literal_kind)"}), "(dtype=tf.int32, shape=[None], name=\n 'eg_litproduction_choice_normalizer_%s' % literal_kind)\n", (17406, 17502), True, 'import tensorflow as tf\n'), ((28308, 28474), 'tensorflow.nn.sparse_softmax_cross_entropy_with_logits', 'tf.nn.sparse_softmax_cross_entropy_with_logits', ([], {'logits': 'literal_logits[literal_kind]', 'labels': "self.placeholders['eg_litproduction_node_choices'][literal_kind]"}), "(logits=literal_logits[\n literal_kind], labels=self.placeholders['eg_litproduction_node_choices'\n ][literal_kind])\n", (28354, 28474), True, 'import tensorflow as tf\n'), ((28682, 28709), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['raw_lit_loss'], {}), '(raw_lit_loss)\n', (28695, 28709), True, 'import tensorflow as tf\n'), ((29204, 29231), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['raw_var_loss'], {}), '(raw_var_loss)\n', (29217, 29231), True, 'import tensorflow as tf\n'), ((30691, 30723), 'tensorflow.constant', 'tf.constant', (['[0]'], {'dtype': 'tf.int32'}), '([0], dtype=tf.int32)\n', (30702, 30723), True, 'import tensorflow as tf\n'), ((31653, 31738), 'tensorflow.expand_dims', 'tf.expand_dims', (["self.placeholders['eg_litproduction_node_representation']"], {'axis': '(0)'}), "(self.placeholders['eg_litproduction_node_representation'],\n axis=0)\n", (31667, 31738), True, 'import tensorflow as tf\n'), ((31848, 31880), 'tensorflow.constant', 'tf.constant', (['[0]'], {'dtype': 'tf.int32'}), '([0], dtype=tf.int32)\n', (31859, 31880), True, 'import tensorflow as tf\n'), ((32073, 32111), 'tensorflow.nn.softmax', 'tf.nn.softmax', (['literal_logits'], {'axis': '(-1)'}), '(literal_logits, axis=-1)\n', (32086, 32111), True, 'import tensorflow as tf\n'), ((33296, 33363), 'tensorflow.expand_dims', 'tf.expand_dims', (["self.placeholders['eg_msg_target_label_id']"], {'axis': '(0)'}), "(self.placeholders['eg_msg_target_label_id'], axis=0)\n", (33310, 33363), True, 'import tensorflow as tf\n'), ((33428, 33471), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""async_ggnn/prop_round0"""'], {}), "('async_ggnn/prop_round0')\n", (33445, 33471), True, 'import tensorflow as tf\n'), ((36755, 36796), 'tensorflow.expand_dims', 'tf.expand_dims', (['attention_weight'], {'axis': '(-1)'}), '(attention_weight, axis=-1)\n', (36769, 36796), True, 'import tensorflow as tf\n'), ((37399, 37430), 'tensorflow.glorot_uniform_initializer', 'tf.glorot_uniform_initializer', ([], {}), '()\n', (37428, 37430), True, 'import tensorflow as tf\n'), ((38976, 39029), 'tensorflow.expand_dims', 'tf.expand_dims', (['varchoice_options_inner_prod'], {'axis': '(-1)'}), '(varchoice_options_inner_prod, axis=-1)\n', (38990, 39029), True, 'import tensorflow as tf\n'), ((39380, 39411), 'tensorflow.glorot_uniform_initializer', 'tf.glorot_uniform_initializer', ([], {}), '()\n', (39409, 39411), True, 'import tensorflow as tf\n'), ((41744, 41775), 'tensorflow.glorot_uniform_initializer', 'tf.glorot_uniform_initializer', ([], {}), '()\n', (41773, 41775), True, 'import tensorflow as tf\n'), ((42324, 42382), 'tensorflow.expand_dims', 'tf.expand_dims', (['litproduction_node_representations'], {'axis': '(1)'}), '(litproduction_node_representations, axis=1)\n', (42338, 42382), True, 'import tensorflow as tf\n'), ((43345, 43398), 'tensorflow.reshape', 'tf.reshape', (['vocab_choices_and_copy_scores'], {'shape': '[-1]'}), '(vocab_choices_and_copy_scores, shape=[-1])\n', (43355, 43398), True, 'import tensorflow as tf\n'), ((57208, 57246), 'numpy.arange', 'np.arange', (['num_choices'], {'dtype': 'np.int16'}), '(num_choices, dtype=np.int16)\n', (57217, 57246), True, 'import numpy as np\n'), ((59803, 59923), 'numpy.array', 'np.array', (['[node_to_synthesised_id[last_used_node_id[varchoice]] for varchoice in\n variables_in_scope]'], {'dtype': 'np.int16'}), '([node_to_synthesised_id[last_used_node_id[varchoice]] for\n varchoice in variables_in_scope], dtype=np.int16)\n', (59811, 59923), True, 'import numpy as np\n'), ((60985, 61002), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (60996, 61002), False, 'from collections import defaultdict, Counter, OrderedDict, namedtuple, deque\n'), ((68359, 68398), 'numpy.empty', 'np.empty', ([], {'shape': '[0, 2]', 'dtype': 'np.uint16'}), '(shape=[0, 2], dtype=np.uint16)\n', (68367, 68398), True, 'import numpy as np\n'), ((68455, 68501), 'numpy.array', 'np.array', (['literal_choice_data'], {'dtype': 'np.uint16'}), '(literal_choice_data, dtype=np.uint16)\n', (68463, 68501), True, 'import numpy as np\n'), ((80639, 80697), 'numpy.concatenate', 'np.concatenate', (["batch_data['eg_msg_target_node_ids'][step]"], {}), "(batch_data['eg_msg_target_node_ids'][step])\n", (80653, 80697), True, 'import numpy as np\n'), ((81717, 81791), 'numpy.concatenate', 'np.concatenate', (["batch_data['eg_litproduction_nodes'][literal_kind]"], {'axis': '(0)'}), "(batch_data['eg_litproduction_nodes'][literal_kind], axis=0)\n", (81731, 81791), True, 'import numpy as np\n'), ((81963, 82048), 'numpy.concatenate', 'np.concatenate', (["batch_data['eg_litproduction_node_choices'][literal_kind]"], {'axis': '(0)'}), "(batch_data['eg_litproduction_node_choices'][literal_kind],\n axis=0)\n", (81977, 82048), True, 'import numpy as np\n'), ((100676, 100714), 'numpy.arange', 'np.arange', (['num_choices'], {'dtype': 'np.int16'}), '(num_choices, dtype=np.int16)\n', (100685, 100714), True, 'import numpy as np\n'), ((102026, 102043), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (102037, 102043), False, 'from collections import defaultdict, Counter, OrderedDict, namedtuple, deque\n'), ((103189, 103207), 'collections.deque', 'deque', (['[root_node]'], {}), '([root_node])\n', (103194, 103207), False, 'from collections import defaultdict, Counter, OrderedDict, namedtuple, deque\n'), ((10842, 10872), 'tensorflow.random_normal_initializer', 'tf.random_normal_initializer', ([], {}), '()\n', (10870, 10872), True, 'import tensorflow as tf\n'), ((20938, 21066), 'tensorflow.nn.embedding_lookup', 'tf.nn.embedding_lookup', (["self.parameters['eg_edge_label_embeddings']", "self.placeholders['eg_edge_label_ids'][step][edge_typ]"], {}), "(self.parameters['eg_edge_label_embeddings'], self.\n placeholders['eg_edge_label_ids'][step][edge_typ])\n", (20960, 21066), True, 'import tensorflow as tf\n'), ((28065, 28087), 'tensorflow.size', 'tf.size', (['raw_prod_loss'], {}), '(raw_prod_loss)\n', (28072, 28087), True, 'import tensorflow as tf\n'), ((28181, 28202), 'tensorflow.size', 'tf.size', (['raw_var_loss'], {}), '(raw_var_loss)\n', (28188, 28202), True, 'import tensorflow as tf\n'), ((29173, 29201), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['raw_prod_loss'], {}), '(raw_prod_loss)\n', (29186, 29201), True, 'import tensorflow as tf\n'), ((35884, 35939), 'tensorflow.expand_dims', 'tf.expand_dims', (['production_node_representations'], {'axis': '(1)'}), '(production_node_representations, axis=1)\n', (35898, 35939), True, 'import tensorflow as tf\n'), ((43536, 43577), 'tensorflow.shape', 'tf.shape', (['litproduction_choice_normalizer'], {}), '(litproduction_choice_normalizer)\n', (43544, 43577), True, 'import tensorflow as tf\n'), ((77816, 77854), 'numpy.expand_dims', 'np.expand_dims', (['normalizer_map'], {'axis': '(0)'}), '(normalizer_map, axis=0)\n', (77830, 77854), True, 'import numpy as np\n'), ((78377, 78437), 'numpy.reshape', 'np.reshape', (['(repeated_normalizer_map + normalizer_offsets)', '(-1)'], {}), '(repeated_normalizer_map + normalizer_offsets, -1)\n', (78387, 78437), True, 'import numpy as np\n'), ((82292, 82378), 'numpy.concatenate', 'np.concatenate', (["batch_data['eg_litproduction_to_context_id'][literal_kind]"], {'axis': '(0)'}), "(batch_data['eg_litproduction_to_context_id'][literal_kind],\n axis=0)\n", (82306, 82378), True, 'import numpy as np\n'), ((82563, 82654), 'numpy.concatenate', 'np.concatenate', (["batch_data['eg_litproduction_choice_normalizer'][literal_kind]"], {'axis': '(0)'}), "(batch_data['eg_litproduction_choice_normalizer'][\n literal_kind], axis=0)\n", (82577, 82654), True, 'import numpy as np\n'), ((102618, 102635), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (102629, 102635), False, 'from collections import defaultdict, Counter, OrderedDict, namedtuple, deque\n'), ((102727, 102744), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (102738, 102744), False, 'from collections import defaultdict, Counter, OrderedDict, namedtuple, deque\n'), ((104289, 104327), 'numpy.exp', 'np.exp', (['beam_info.expansion_logprob[0]'], {}), '(beam_info.expansion_logprob[0])\n', (104295, 104327), True, 'import numpy as np\n'), ((24270, 24314), 'tensorflow.shape', 'tf.shape', (['eg_production_node_representations'], {}), '(eg_production_node_representations)\n', (24278, 24314), True, 'import tensorflow as tf\n'), ((28721, 28742), 'tensorflow.size', 'tf.size', (['raw_lit_loss'], {}), '(raw_lit_loss)\n', (28728, 28742), True, 'import tensorflow as tf\n'), ((32969, 33006), 'tensorflow.shape', 'tf.shape', (['all_sending_representations'], {}), '(all_sending_representations)\n', (32977, 33006), True, 'import tensorflow as tf\n'), ((38635, 38678), 'tensorflow.shape', 'tf.shape', (['varchoice_options_representations'], {}), '(varchoice_options_representations)\n', (38643, 38678), True, 'import tensorflow as tf\n'), ((86185, 86244), 'numpy.empty', 'np.empty', ([], {'shape': "[0, self.hyperparameters['eg_hidden_size']]"}), "(shape=[0, self.hyperparameters['eg_hidden_size']])\n", (86193, 86244), True, 'import numpy as np\n'), ((87024, 87083), 'numpy.empty', 'np.empty', ([], {'shape': "[0, self.hyperparameters['eg_hidden_size']]"}), "(shape=[0, self.hyperparameters['eg_hidden_size']])\n", (87032, 87083), True, 'import numpy as np\n'), ((95092, 95116), 'numpy.log', 'np.log', (['prod_probability'], {}), '(prod_probability)\n', (95098, 95116), True, 'import numpy as np\n'), ((104387, 104425), 'numpy.exp', 'np.exp', (['beam_info.expansion_logprob[0]'], {}), '(beam_info.expansion_logprob[0])\n', (104393, 104425), True, 'import numpy as np\n'), ((77999, 78033), 'numpy.arange', 'np.arange', (['num_choices_this_sample'], {}), '(num_choices_this_sample)\n', (78008, 78033), True, 'import numpy as np\n'), ((97600, 97623), 'numpy.log', 'np.log', (['var_probability'], {}), '(var_probability)\n', (97606, 97623), True, 'import numpy as np\n'), ((99183, 99210), 'numpy.log', 'np.log', (['literal_probability'], {}), '(literal_probability)\n', (99189, 99210), True, 'import numpy as np\n'), ((21217, 21281), 'tensorflow.shape', 'tf.shape', (["self.placeholders['eg_edge_label_ids'][step][edge_typ]"], {}), "(self.placeholders['eg_edge_label_ids'][step][edge_typ])\n", (21225, 21281), True, 'import tensorflow as tf\n')]
|
from glob import glob
import zipfile
import shutil
import os
import json
import numpy as np
import nibabel as nib
import matplotlib.pyplot as plt
"""
find all zip files, unzip one by one
for each unzipped content:
get patient ID according to zip filename
save T1 weighted nifit as format "mri5726_NACC626353" zipname followed by patient ID
Note:
request MRIs from NACC are all 3T
"""
def read_json(jsonfile):
with open(jsonfile) as f:
return json.load(f)
def get_Series(json_files):
pool = []
for jsonfile in json_files:
data = read_json(jsonfile)
if 'SeriesDescription' not in data:
pool.append('unknown')
else:
pool.append(data['SeriesDescription'])
return pool
def get_zipname(path):
return path.split('/')[-1].strip('ni.zip')
def unzip_folder(path):
target_path = '/data/datasets/NACC15RAW/'+get_zipname(path)+'/'
with zipfile.ZipFile(path, 'r') as zip_ref:
zip_ref.extractall(target_path)
# print('unzip ' + target_path + ' done!')
return target_path
def delete_folder(path):
shutil.rmtree(path)
# print('delete ' + path + ' done!')
def find_json(path):
pool = []
for root, dirs, files in os.walk(path):
for file in files:
if file.endswith('.json'):
pool.append(os.path.join(root, file))
return pool
def find_nifti(path):
pool = []
for root, dirs, files in os.walk(path):
for file in files:
if file.endswith('.nii'):
pool.append(os.path.join(root, file))
return pool
def condition_series(serie):
if 'T1' in serie or 't1' in serie:
return True
if 'MPRAGE' in serie or 'mprage' in serie or 'mp-rage' in serie or 'MP-RAGE' in serie:
return True
if 'T2' in serie or 't2' in serie:
return False
if 'FLAIR' in serie or 'flair' in serie or 'Flair' in serie:
return False
if 'Localizer' in serie or 'localizer' in serie:
return False
if 'DTI' in serie:
return False
if 'calibration' in serie:
return False
return True
def save_image(niftifile, serie):
image = nib.load(niftifile).get_data().squeeze()
if len(image.shape) != 3:
return
if min(image.shape) < 80:
return
if not condition_series(serie):
return
x, y, z = image.shape
zipname = niftifile.split('/')[4]
print(zipname, image.shape)
save_path = '/data/datasets/NACC15RAW/images/'+zipname+'/'
if not os.path.exists(save_path):
os.mkdir(save_path)
imagename = serie + '##' + niftifile.split('/')[-1].replace('.nii', '.jpg')
plt.subplot(131)
plt.imshow(image[x//2, :, :], cmap='gray')
plt.subplot(132)
plt.imshow(image[:, y//2, :], cmap='gray')
plt.subplot(133)
plt.imshow(image[:, :, z//2], cmap='gray')
plt.savefig(save_path+imagename)
plt.close()
def process(zipfile):
target_path = unzip_folder(zipfile)
json_files = find_json(target_path)
series = get_Series(json_files)
for i, jsonfile in enumerate(json_files):
niftifile = jsonfile.replace('.json', '.nii')
serie = series[i]
try:
save_image(niftifile, serie)
except:
pass
delete_folder(target_path)
def process_json(zipfile, ET, RT, FA, SS):
target_path = unzip_folder(zipfile)
json_files = find_json(target_path)
series = get_Series(json_files)
for i, jsonfile in enumerate(json_files):
if condition_series(series[i]):
jf = read_json(jsonfile)
if 'MRAcquisitionType' not in jf or jf['MRAcquisitionType'] != '3D': continue
if 'EchoTime' not in jf or float(jf['EchoTime']) > 0.1: continue
if 'RepetitionTime' not in jf or float(jf['RepetitionTime']) > 0.1: continue
if 'FlipAngle' not in jf: continue
if 'ScanningSequence' not in jf: continue
ET.append(float(jf['EchoTime']))
RT.append(float(jf['RepetitionTime']))
FA.append(float(jf['FlipAngle']))
SS.append(jf['ScanningSequence'])
print(series[i], "has echo time", jf['EchoTime'], '**** RepTime', jf['RepetitionTime'], '*** FlipAngle', jf['FlipAngle'])
delete_folder(target_path)
if __name__ == "__main__":
zip_files = glob('/data/datasets/NACC15RAW/mri*.zip')
ET, RT, FA, SS = [], [], [], []
for zip_file in zip_files[:100]:
process_json(zip_file, ET, RT, FA, SS)
ET = np.array(ET)
print("ET: ", np.mean(ET), "+/-", np.std(ET))
RT = np.array(RT)
print("RT: ", np.mean(RT), "+/-", np.std(RT))
FA = np.array(FA)
print("FA: ", np.mean(FA), "+/-", np.std(FA))
print("scaning sequence ", SS)
|
[
"matplotlib.pyplot.subplot",
"os.mkdir",
"json.load",
"zipfile.ZipFile",
"nibabel.load",
"numpy.std",
"matplotlib.pyplot.imshow",
"matplotlib.pyplot.close",
"os.walk",
"os.path.exists",
"numpy.mean",
"numpy.array",
"glob.glob",
"shutil.rmtree",
"os.path.join",
"matplotlib.pyplot.savefig"
] |
[((1100, 1119), 'shutil.rmtree', 'shutil.rmtree', (['path'], {}), '(path)\n', (1113, 1119), False, 'import shutil\n'), ((1226, 1239), 'os.walk', 'os.walk', (['path'], {}), '(path)\n', (1233, 1239), False, 'import os\n'), ((1443, 1456), 'os.walk', 'os.walk', (['path'], {}), '(path)\n', (1450, 1456), False, 'import os\n'), ((2663, 2679), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(131)'], {}), '(131)\n', (2674, 2679), True, 'import matplotlib.pyplot as plt\n'), ((2684, 2728), 'matplotlib.pyplot.imshow', 'plt.imshow', (['image[x // 2, :, :]'], {'cmap': '"""gray"""'}), "(image[x // 2, :, :], cmap='gray')\n", (2694, 2728), True, 'import matplotlib.pyplot as plt\n'), ((2731, 2747), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(132)'], {}), '(132)\n', (2742, 2747), True, 'import matplotlib.pyplot as plt\n'), ((2752, 2796), 'matplotlib.pyplot.imshow', 'plt.imshow', (['image[:, y // 2, :]'], {'cmap': '"""gray"""'}), "(image[:, y // 2, :], cmap='gray')\n", (2762, 2796), True, 'import matplotlib.pyplot as plt\n'), ((2799, 2815), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(133)'], {}), '(133)\n', (2810, 2815), True, 'import matplotlib.pyplot as plt\n'), ((2820, 2864), 'matplotlib.pyplot.imshow', 'plt.imshow', (['image[:, :, z // 2]'], {'cmap': '"""gray"""'}), "(image[:, :, z // 2], cmap='gray')\n", (2830, 2864), True, 'import matplotlib.pyplot as plt\n'), ((2867, 2901), 'matplotlib.pyplot.savefig', 'plt.savefig', (['(save_path + imagename)'], {}), '(save_path + imagename)\n', (2878, 2901), True, 'import matplotlib.pyplot as plt\n'), ((2904, 2915), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (2913, 2915), True, 'import matplotlib.pyplot as plt\n'), ((4337, 4378), 'glob.glob', 'glob', (['"""/data/datasets/NACC15RAW/mri*.zip"""'], {}), "('/data/datasets/NACC15RAW/mri*.zip')\n", (4341, 4378), False, 'from glob import glob\n'), ((4508, 4520), 'numpy.array', 'np.array', (['ET'], {}), '(ET)\n', (4516, 4520), True, 'import numpy as np\n'), ((4580, 4592), 'numpy.array', 'np.array', (['RT'], {}), '(RT)\n', (4588, 4592), True, 'import numpy as np\n'), ((4652, 4664), 'numpy.array', 'np.array', (['FA'], {}), '(FA)\n', (4660, 4664), True, 'import numpy as np\n'), ((465, 477), 'json.load', 'json.load', (['f'], {}), '(f)\n', (474, 477), False, 'import json\n'), ((921, 947), 'zipfile.ZipFile', 'zipfile.ZipFile', (['path', '"""r"""'], {}), "(path, 'r')\n", (936, 947), False, 'import zipfile\n'), ((2524, 2549), 'os.path.exists', 'os.path.exists', (['save_path'], {}), '(save_path)\n', (2538, 2549), False, 'import os\n'), ((2559, 2578), 'os.mkdir', 'os.mkdir', (['save_path'], {}), '(save_path)\n', (2567, 2578), False, 'import os\n'), ((4539, 4550), 'numpy.mean', 'np.mean', (['ET'], {}), '(ET)\n', (4546, 4550), True, 'import numpy as np\n'), ((4559, 4569), 'numpy.std', 'np.std', (['ET'], {}), '(ET)\n', (4565, 4569), True, 'import numpy as np\n'), ((4611, 4622), 'numpy.mean', 'np.mean', (['RT'], {}), '(RT)\n', (4618, 4622), True, 'import numpy as np\n'), ((4631, 4641), 'numpy.std', 'np.std', (['RT'], {}), '(RT)\n', (4637, 4641), True, 'import numpy as np\n'), ((4683, 4694), 'numpy.mean', 'np.mean', (['FA'], {}), '(FA)\n', (4690, 4694), True, 'import numpy as np\n'), ((4703, 4713), 'numpy.std', 'np.std', (['FA'], {}), '(FA)\n', (4709, 4713), True, 'import numpy as np\n'), ((1335, 1359), 'os.path.join', 'os.path.join', (['root', 'file'], {}), '(root, file)\n', (1347, 1359), False, 'import os\n'), ((1551, 1575), 'os.path.join', 'os.path.join', (['root', 'file'], {}), '(root, file)\n', (1563, 1575), False, 'import os\n'), ((2172, 2191), 'nibabel.load', 'nib.load', (['niftifile'], {}), '(niftifile)\n', (2180, 2191), True, 'import nibabel as nib\n')]
|
import numpy as _np
import scipy.sparse as _sp
from ._basis_utils import _shuffle_sites
####################################################
# set of helper functions to implement the partial #
# trace of lattice density matrices. They do not #
# have any checks and states are assumed to be #
# in the non-symmetry reduced basis. #
####################################################
def _lattice_partial_trace_pure(psi,sub_sys_A,L,sps,return_rdm="A"):
"""
This function computes the partial trace of a dense pure state psi over set of sites sub_sys_A and returns
reduced DM. Vectorisation available.
"""
psi_v=_lattice_reshape_pure(psi,sub_sys_A,L,sps)
if return_rdm == "A":
return _np.squeeze(_np.einsum("...ij,...kj->...ik",psi_v,psi_v.conj())),None
elif return_rdm == "B":
return None,_np.squeeze(_np.einsum("...ji,...jk->...ik",psi_v.conj(),psi_v))
elif return_rdm == "both":
return _np.squeeze(_np.einsum("...ij,...kj->...ik",psi_v,psi_v.conj())),_np.squeeze(_np.einsum("...ji,...jk->...ik",psi_v.conj(),psi_v))
def _lattice_partial_trace_mixed(rho,sub_sys_A,L,sps,return_rdm="A"):
"""
This function computes the partial trace of a set of dense mixed states rho over set of sites sub_sys_A
and returns reduced DM. Vectorisation available.
"""
rho_v=_lattice_reshape_mixed(rho,sub_sys_A,L,sps)
if return_rdm == "A":
return _np.einsum("...jlkl->...jk",rho_v),None
elif return_rdm == "B":
return None,_np.einsum("...ljlk->...jk",rho_v.conj())
elif return_rdm == "both":
return _np.einsum("...jlkl->...jk",rho_v),_np.einsum("...ljlk->...jk",rho_v.conj())
def _lattice_partial_trace_sparse_pure(psi,sub_sys_A,L,sps,return_rdm="A"):
"""
This function computes the partial trace of a sparse pure state psi over set of sites sub_sys_A and returns
reduced DM.
"""
psi=_lattice_reshape_sparse_pure(psi,sub_sys_A,L,sps)
if return_rdm == "A":
return psi.dot(psi.H),None
elif return_rdm == "B":
return None,psi.H.dot(psi)
elif return_rdm == "both":
return psi.dot(psi.H),psi.H.dot(psi)
def _lattice_reshape_pure(psi,sub_sys_A,L,sps):
"""
This function reshapes the dense pure state psi over the Hilbert space defined by sub_sys_A and its complement.
Vectorisation available.
"""
extra_dims = psi.shape[:-1]
n_dims = len(extra_dims)
sub_sys_B = set(range(L))-set(sub_sys_A)
sub_sys_A = tuple(sub_sys_A)
sub_sys_B = tuple(sub_sys_B)
L_A = len(sub_sys_A)
L_B = len(sub_sys_B)
Ns_A = (sps**L_A)
Ns_B = (sps**L_B)
T_tup = sub_sys_A+sub_sys_B
psi_v = _shuffle_sites(sps,T_tup,psi)
psi_v = psi_v.reshape(extra_dims+(Ns_A,Ns_B))
return psi_v
'''
def _lattice_reshape_pure(psi,sub_sys_A,L,sps):
"""
This function reshapes the dense pure state psi over the Hilbert space defined by sub_sys_A and its complement.
Vectorisation available.
"""
extra_dims = psi.shape[:-1]
n_dims = len(extra_dims)
sub_sys_B = set(range(L))-set(sub_sys_A)
sub_sys_A = tuple(sub_sys_A)
sub_sys_B = tuple(sub_sys_B)
L_A = len(sub_sys_A)
L_B = len(sub_sys_B)
Ns_A = (sps**L_A)
Ns_B = (sps**L_B)
T_tup = sub_sys_A+sub_sys_B
T_tup = tuple(range(n_dims)) + tuple(n_dims + s for s in T_tup)
R_tup = extra_dims + tuple(sps for i in range(L))
psi_v = psi.reshape(R_tup) # DM where index is given per site as rho_v[i_1,...,i_L,j_1,...j_L]
psi_v = psi_v.transpose(T_tup) # take transpose to reshuffle indices
psi_v = psi_v.reshape(extra_dims+(Ns_A,Ns_B))
return psi_v
'''
def _lattice_reshape_mixed(rho,sub_sys_A,L,sps):
"""
This function reshapes the dense mixed state psi over the Hilbert space defined by sub_sys_A and its complement.
Vectorisation available.
"""
extra_dims = rho.shape[:-2]
n_dims = len(extra_dims)
sub_sys_B = set(range(L))-set(sub_sys_A)
sub_sys_A = tuple(sub_sys_A)
sub_sys_B = tuple(sub_sys_B)
L_A = len(sub_sys_A)
L_B = len(sub_sys_B)
Ns_A = (sps**L_A)
Ns_B = (sps**L_B)
# T_tup tells numpy how to reshuffle the indices such that when I reshape the array to the
# 4-_tensor rho_{ik,jl} i,j are for sub_sys_A and k,l are for sub_sys_B
# which means I need (sub_sys_A,sub_sys_B,sub_sys_A+L,sub_sys_B+L)
T_tup = sub_sys_A+sub_sys_B
T_tup = tuple(T_tup) + tuple(L+s for s in T_tup)
rho = rho.reshape(extra_dims+(-1,))
rho_v = _shuffle_sites(sps,T_tup,rho)
return rho_v.reshape(extra_dims+(Ns_A,Ns_B,Ns_A,Ns_B))
'''
def _lattice_reshape_mixed(rho,sub_sys_A,L,sps):
"""
This function reshapes the dense mixed state psi over the Hilbert space defined by sub_sys_A and its complement.
Vectorisation available.
"""
extra_dims = rho.shape[:-2]
n_dims = len(extra_dims)
sub_sys_B = set(range(L))-set(sub_sys_A)
sub_sys_A = tuple(sub_sys_A)
sub_sys_B = tuple(sub_sys_B)
L_A = len(sub_sys_A)
L_B = len(sub_sys_B)
Ns_A = (sps**L_A)
Ns_B = (sps**L_B)
# T_tup tells numpy how to reshuffle the indices such that when I reshape the array to the
# 4-_tensor rho_{ik,jl} i,j are for sub_sys_A and k,l are for sub_sys_B
# which means I need (sub_sys_A,sub_sys_B,sub_sys_A+L,sub_sys_B+L)
T_tup = sub_sys_A+sub_sys_B
T_tup = tuple(range(n_dims)) + tuple(s+n_dims for s in T_tup) + tuple(L+n_dims+s for s in T_tup)
R_tup = extra_dims + tuple(sps for i in range(2*L))
rho_v = rho.reshape(R_tup) # DM where index is given per site as rho_v[i_1,...,i_L,j_1,...j_L]
rho_v = rho_v.transpose(T_tup) # take transpose to reshuffle indices
return rho_v.reshape(extra_dims+(Ns_A,Ns_B,Ns_A,Ns_B))
'''
def _lattice_reshape_sparse_pure(psi,sub_sys_A,L,sps):
"""
This function reshapes the sparse pure state psi over the Hilbert space defined by sub_sys_A and its complement.
"""
sub_sys_B = set(range(L))-set(sub_sys_A)
sub_sys_A = tuple(sub_sys_A)
sub_sys_B = tuple(sub_sys_B)
L_A = len(sub_sys_A)
L_B = len(sub_sys_B)
Ns_A = (sps**L_A)
Ns_B = (sps**L_B)
psi = psi.tocoo()
T_tup = sub_sys_A+sub_sys_B
# reshuffle indices for the sub-systems.
# j = sum( j[i]*(sps**i) for i in range(L))
# this reshuffles the j[i] similar to the transpose operation
# on the dense arrays psi_v.transpose(T_tup)
if T_tup != tuple(range(L)):
indx = _np.zeros(psi.col.shape,dtype=psi.col.dtype)
for i_old,i_new in enumerate(T_tup):
indx += ((psi.col//(sps**(L-i_new-1))) % sps)*(sps**(L-i_old-1))
else:
indx = psi.col
# A = _np.array([0,1,2,3,4,5,6,7,8,9,10,11])
# print("make shift way of reshaping array")
# print("A = {}".format(A))
# print("A.reshape((3,4)): \n {}".format(A.reshape((3,4))))
# print("rows: A.reshape((3,4))/4: \n {}".format(A.reshape((3,4))/4))
# print("cols: A.reshape((3,4))%4: \n {}".format(A.reshape((3,4))%4))
psi._shape = (Ns_A,Ns_B)
psi.row[:] = indx / Ns_B
psi.col[:] = indx % Ns_B
return psi.tocsr()
def _tensor_reshape_pure(psi,sub_sys_A,Ns_l,Ns_r):
extra_dims = psi.shape[:-1]
if sub_sys_A == "left":
return psi.reshape(extra_dims+(Ns_l,Ns_r))
else:
n_dims = len(extra_dims)
T_tup = tuple(range(n_dims))+(n_dims+1,n_dims)
psi_v = psi.reshape(extra_dims+(Ns_l,Ns_r))
return psi_v.transpose(T_tup)
def _tensor_reshape_sparse_pure(psi,sub_sys_A,Ns_l,Ns_r):
psi = psi.tocoo()
# make shift way of reshaping array
# j = j_l + Ns_r * j_l
# j_l = j / Ns_r
# j_r = j % Ns_r
if sub_sys_A == "left":
psi._shape = (Ns_l,Ns_r)
psi.row[:] = psi.col / Ns_r
psi.col[:] = psi.col % Ns_r
return psi.tocsr()
else:
psi._shape = (Ns_l,Ns_r)
psi.row[:] = psi.col / Ns_r
psi.col[:] = psi.col % Ns_r
return psi.T.tocsr()
def _tensor_reshape_mixed(rho,sub_sys_A,Ns_l,Ns_r):
extra_dims = rho.shape[:-2]
if sub_sys_A == "left":
return rho.reshape(extra_dims+(Ns_l,Ns_r,Ns_l,Ns_r))
else:
n_dims = len(extra_dims)
T_tup = tuple(range(n_dims))+(n_dims+1,n_dims)+(n_dims+3,n_dims+2)
rho_v = rho.reshape(extra_dims+(Ns_l,Ns_r,Ns_l,Ns_r))
return rho_v.transpose(T_tup)
def _tensor_partial_trace_pure(psi,sub_sys_A,Ns_l,Ns_r,return_rdm="A"):
psi_v = _tensor_reshape_pure(psi,sub_sys_A,Ns_l,Ns_r)
if return_rdm == "A":
return _np.squeeze(_np.einsum("...ij,...kj->...ik",psi_v,psi_v.conj())),None
elif return_rdm == "B":
return None,_np.squeeze(_np.einsum("...ji,...jk->...ik",psi_v.conj(),psi_v))
elif return_rdm == "both":
return _np.squeeze(_np.einsum("...ij,...kj->...ik",psi_v,psi_v.conj())),_np.squeeze(_np.einsum("...ji,...jk->...ik",psi_v.conj(),psi_v))
def _tensor_partial_trace_sparse_pure(psi,sub_sys_A,Ns_l,Ns_r,return_rdm="A"):
psi = _tensor_reshape_sparse_pure(psi,sub_sys_A,Ns_l,Ns_r)
if return_rdm == "A":
return psi.dot(psi.H),None
elif return_rdm == "B":
return None,psi.H.dot(psi)
elif return_rdm == "both":
return psi.dot(psi.H),psi.H.dot(psi)
def _tensor_partial_trace_mixed(rho,sub_sys_A,Ns_l,Ns_r,return_rdm="A"):
rho_v = _tensor_reshape_mixed(rho,sub_sys_A,Ns_l,Ns_r)
if return_rdm == "A":
return _np.squeeze(_np.einsum("...ijkj->...ik",rho_v)),None
elif return_rdm == "B":
return None,_np.squeeze(_np.einsum("...jijk->...ik",rho_v.conj()))
elif return_rdm == "both":
return _np.squeeze(_np.einsum("...ijkj->...ik",rho_v)),_np.squeeze(_np.einsum("...jijk->...ik",rho_v.conj()))
|
[
"numpy.zeros",
"numpy.einsum"
] |
[((6095, 6140), 'numpy.zeros', '_np.zeros', (['psi.col.shape'], {'dtype': 'psi.col.dtype'}), '(psi.col.shape, dtype=psi.col.dtype)\n', (6104, 6140), True, 'import numpy as _np\n'), ((1385, 1420), 'numpy.einsum', '_np.einsum', (['"""...jlkl->...jk"""', 'rho_v'], {}), "('...jlkl->...jk', rho_v)\n", (1395, 1420), True, 'import numpy as _np\n'), ((8788, 8823), 'numpy.einsum', '_np.einsum', (['"""...ijkj->...ik"""', 'rho_v'], {}), "('...ijkj->...ik', rho_v)\n", (8798, 8823), True, 'import numpy as _np\n'), ((1543, 1578), 'numpy.einsum', '_np.einsum', (['"""...jlkl->...jk"""', 'rho_v'], {}), "('...jlkl->...jk', rho_v)\n", (1553, 1578), True, 'import numpy as _np\n'), ((8972, 9007), 'numpy.einsum', '_np.einsum', (['"""...ijkj->...ik"""', 'rho_v'], {}), "('...ijkj->...ik', rho_v)\n", (8982, 9007), True, 'import numpy as _np\n')]
|
import torch
import numpy as np
__all__ = ["CosineDistance"]
#NOTE: see https://github.com/pytorch/pytorch/issues/8069
#TODO: update acos_safe once PR mentioned in above link is merged and available
def _acos_safe(x: torch.Tensor, eps: float=1e-4):
slope = np.arccos(1.0 - eps) / eps
# TODO: stop doing this allocation once sparse gradients with NaNs (like in
# th.where) are handled differently.
buf = torch.empty_like(x)
good = torch.abs(x) <= 1.0 - eps
bad = ~good
sign = torch.sign(x[bad])
buf[good] = torch.acos(x[good])
buf[bad] = torch.acos(sign * (1.0 - eps)) - slope * sign * (torch.abs(x[bad]) - 1.0 + eps)
return buf
'''
def _acos_safe(x: torch.Tensor, eps: float=1e-4):
sign = torch.sign(x)
slope = np.arccos(1.0 - eps) / eps
return torch.where(torch.abs(x) <= 1.0 - eps,
torch.acos(x),
torch.acos(sign * (1.0 - eps)) - slope * sign * (torch.abs(x) - 1.0 + eps)
)
'''
class CosineDistance(torch.nn.CosineSimilarity):
def __init__(self,
dim: int=1,
epsilon: float=1e-4,
normalized: bool=True,
):
super(CosineDistance, self).__init__(dim=dim, eps=epsilon)
self.normalized = normalized
self.epsilon = epsilon
def forward(self,
gt: torch.Tensor,
pred: torch.Tensor,
weights: torch.Tensor=None, # float tensor
mask: torch.Tensor=None, # byte tensor
) -> torch.Tensor:
dot = torch.sum(gt * pred, dim=self.dim) if self.normalized\
else super(CosineDistance, self).forward(gt, pred)
# return torch.acos(dot) / np.pi #NOTE: (eps) clamping should also fix the nan grad issue (traditional [-1, 1] clamping does not)
# return torch.acos(torch.clamp(dot, min=-1.0 + self.epsilon, max=1.0 - self.epsilon)) / np.pi
return _acos_safe(dot, eps=self.epsilon) / np.pi
|
[
"torch.sum",
"torch.sign",
"torch.abs",
"torch.empty_like",
"numpy.arccos",
"torch.acos"
] |
[((422, 441), 'torch.empty_like', 'torch.empty_like', (['x'], {}), '(x)\n', (438, 441), False, 'import torch\n'), ((506, 524), 'torch.sign', 'torch.sign', (['x[bad]'], {}), '(x[bad])\n', (516, 524), False, 'import torch\n'), ((541, 560), 'torch.acos', 'torch.acos', (['x[good]'], {}), '(x[good])\n', (551, 560), False, 'import torch\n'), ((264, 284), 'numpy.arccos', 'np.arccos', (['(1.0 - eps)'], {}), '(1.0 - eps)\n', (273, 284), True, 'import numpy as np\n'), ((453, 465), 'torch.abs', 'torch.abs', (['x'], {}), '(x)\n', (462, 465), False, 'import torch\n'), ((576, 606), 'torch.acos', 'torch.acos', (['(sign * (1.0 - eps))'], {}), '(sign * (1.0 - eps))\n', (586, 606), False, 'import torch\n'), ((1545, 1579), 'torch.sum', 'torch.sum', (['(gt * pred)'], {'dim': 'self.dim'}), '(gt * pred, dim=self.dim)\n', (1554, 1579), False, 'import torch\n'), ((625, 642), 'torch.abs', 'torch.abs', (['x[bad]'], {}), '(x[bad])\n', (634, 642), False, 'import torch\n')]
|
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
#
# Copyright (c) 2019, Eurecat / UPF
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of the <organization> nor the
# names of its contributors may be used to endorse or promote products
# derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
#
# @file test_script_mics.py
# @author <NAME>
# @date 29/07/2019
#
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
import numpy as np
from masp import shoebox_room_sim as srs
import time
import librosa
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# SETUP
# Room definition
room = np.array([10.2, 7.1, 3.2])
# Desired RT per octave band, and time to truncate the responses
rt60 = np.array([1., 0.8, 0.7, 0.6, 0.5])
nBands = len(rt60)
# Generate octave bands
band_centerfreqs = np.empty(nBands)
band_centerfreqs[0] = 125
for nb in range(1, nBands):
band_centerfreqs[nb] = 2 * band_centerfreqs[nb-1]
# Absorption for approximately achieving the RT60 above - row per band
abs_wall = srs.find_abs_coeffs_from_rt(room, rt60)[0]
# Critical distance for the room
_, d_critical, _ = srs.room_stats(room, abs_wall)
# Receiver position
rec = np.array([ [4.5, 3.4, 1.5], [2.0, 3.1, 1.4] ])
nRec = rec.shape[0]
# Source positions
src = np.array([ [6.2, 2.0, 1.8], [7.9, 3.3, 1.75], [5.8, 5.0, 1.9] ])
nSrc = src.shape[0]
# Mic orientations and directivities
mic_specs = np.array([ [1, 0, 0, 0.5], # cardioid looking to the front
[-1, 0, 0, 0.25]]) # hypercardioid looking backwards
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# RUN SIMULATOR
# Echogram
tic = time.time()
maxlim = 1.5 # just stop if the echogram goes beyond that time ( or just set it to max(rt60) )
limits = np.minimum(rt60, maxlim)
# Compute echograms
# abs_echograms, rec_echograms, echograms = srs.compute_echograms_mic(room, src, rec, abs_wall, limits, mic_specs);
abs_echograms = srs.compute_echograms_mic(room, src, rec, abs_wall, limits, mic_specs);
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# RENDERING
# In this case all the information (receiver directivity especially) is already
# encoded in the echograms, hence they are rendered directly to discrete RIRs
fs = 48000
mic_rirs = srs.render_rirs_mic(abs_echograms, band_centerfreqs, fs)
toc = time.time()
print('Elapsed time is ' + str(toc-tic) + 'seconds.')
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# GENERATE SOUND SCENES
# Each source is convolved with the respective mic IR, and summed with
# the rest of the sources to create the microphone mixed signals
sourcepath = '../../data/milk_cow_blues_4src.wav'
src_sigs = librosa.core.load(sourcepath, sr=None, mono=False)[0].T[:,:nSrc]
mic_sigs = srs.apply_source_signals_mic(mic_rirs, src_sigs)
|
[
"numpy.minimum",
"masp.shoebox_room_sim.render_rirs_mic",
"numpy.empty",
"masp.shoebox_room_sim.apply_source_signals_mic",
"time.time",
"librosa.core.load",
"masp.shoebox_room_sim.find_abs_coeffs_from_rt",
"numpy.array",
"masp.shoebox_room_sim.compute_echograms_mic",
"masp.shoebox_room_sim.room_stats"
] |
[((2087, 2113), 'numpy.array', 'np.array', (['[10.2, 7.1, 3.2]'], {}), '([10.2, 7.1, 3.2])\n', (2095, 2113), True, 'import numpy as np\n'), ((2187, 2222), 'numpy.array', 'np.array', (['[1.0, 0.8, 0.7, 0.6, 0.5]'], {}), '([1.0, 0.8, 0.7, 0.6, 0.5])\n', (2195, 2222), True, 'import numpy as np\n'), ((2285, 2301), 'numpy.empty', 'np.empty', (['nBands'], {}), '(nBands)\n', (2293, 2301), True, 'import numpy as np\n'), ((2589, 2619), 'masp.shoebox_room_sim.room_stats', 'srs.room_stats', (['room', 'abs_wall'], {}), '(room, abs_wall)\n', (2603, 2619), True, 'from masp import shoebox_room_sim as srs\n'), ((2647, 2691), 'numpy.array', 'np.array', (['[[4.5, 3.4, 1.5], [2.0, 3.1, 1.4]]'], {}), '([[4.5, 3.4, 1.5], [2.0, 3.1, 1.4]])\n', (2655, 2691), True, 'import numpy as np\n'), ((2740, 2802), 'numpy.array', 'np.array', (['[[6.2, 2.0, 1.8], [7.9, 3.3, 1.75], [5.8, 5.0, 1.9]]'], {}), '([[6.2, 2.0, 1.8], [7.9, 3.3, 1.75], [5.8, 5.0, 1.9]])\n', (2748, 2802), True, 'import numpy as np\n'), ((2875, 2919), 'numpy.array', 'np.array', (['[[1, 0, 0, 0.5], [-1, 0, 0, 0.25]]'], {}), '([[1, 0, 0, 0.5], [-1, 0, 0, 0.25]])\n', (2883, 2919), True, 'import numpy as np\n'), ((3135, 3146), 'time.time', 'time.time', ([], {}), '()\n', (3144, 3146), False, 'import time\n'), ((3252, 3276), 'numpy.minimum', 'np.minimum', (['rt60', 'maxlim'], {}), '(rt60, maxlim)\n', (3262, 3276), True, 'import numpy as np\n'), ((3430, 3500), 'masp.shoebox_room_sim.compute_echograms_mic', 'srs.compute_echograms_mic', (['room', 'src', 'rec', 'abs_wall', 'limits', 'mic_specs'], {}), '(room, src, rec, abs_wall, limits, mic_specs)\n', (3455, 3500), True, 'from masp import shoebox_room_sim as srs\n'), ((3780, 3836), 'masp.shoebox_room_sim.render_rirs_mic', 'srs.render_rirs_mic', (['abs_echograms', 'band_centerfreqs', 'fs'], {}), '(abs_echograms, band_centerfreqs, fs)\n', (3799, 3836), True, 'from masp import shoebox_room_sim as srs\n'), ((3844, 3855), 'time.time', 'time.time', ([], {}), '()\n', (3853, 3855), False, 'import time\n'), ((4295, 4343), 'masp.shoebox_room_sim.apply_source_signals_mic', 'srs.apply_source_signals_mic', (['mic_rirs', 'src_sigs'], {}), '(mic_rirs, src_sigs)\n', (4323, 4343), True, 'from masp import shoebox_room_sim as srs\n'), ((2493, 2532), 'masp.shoebox_room_sim.find_abs_coeffs_from_rt', 'srs.find_abs_coeffs_from_rt', (['room', 'rt60'], {}), '(room, rt60)\n', (2520, 2532), True, 'from masp import shoebox_room_sim as srs\n'), ((4218, 4268), 'librosa.core.load', 'librosa.core.load', (['sourcepath'], {'sr': 'None', 'mono': '(False)'}), '(sourcepath, sr=None, mono=False)\n', (4235, 4268), False, 'import librosa\n')]
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import argparse
import datetime
import json
import logging
import os
import random
import time
from pathlib import Path
import cv2
import numpy as np
import torch
from PIL import Image
from torch.utils.data import DataLoader, DistributedSampler
from torch.utils.data import Dataset
import datasets
import util.misc as utils
from datasets import get_coco_api_from_dataset
from datasets.coco import make_coco_transforms
from engine import evaluate, train_one_epoch
from models import build_model
logger = logging.getLogger(__name__)
def parse_textds_json(json_path, image_root, profile=False):
content = load_json(json_path)
d = []
for gt in content['data_list']:
img_path = os.path.join(image_root, gt['img_name'])
if not os.path.exists(img_path):
if profile:
logger.warning('image not exists - {} '.format(img_path))
continue
polygons = []
texts = []
legibility_list = [] # 清晰文字,默认:true
language_list = []
for annotation in gt['annotations']:
if len(annotation['polygon']) == 0: # or len(annotation['text']) == 0:
continue
polygons.append(np.array(annotation['polygon']).reshape(-1, 2))
texts.append(annotation['text'])
legibility_list.append(not annotation['illegibility'])
language_list.append(annotation['language'])
for char_annotation in annotation['chars']:
if len(char_annotation['polygon']) == 0 or len(char_annotation['char']) == 0:
continue
polygons.append(char_annotation['polygon'])
texts.append(char_annotation['char'])
legibility_list.append(not char_annotation['illegibility'])
language_list.append(char_annotation['language'])
if len(polygons) > 0:
d.append({'img_path': img_path, 'polygons': np.array(polygons), 'texts': texts,
'legibility': legibility_list,
'language': language_list})
return d
def load_json(file_path: str):
with open(file_path, 'r', encoding='utf8') as f:
content = json.load(f)
return content
class JsonDataset(Dataset):
"""
"""
@classmethod
def load_json(cls, json_path, mode='train'):
d = []
if isinstance(json_path, list):
img_root = [os.path.join(os.path.dirname(p), mode) for p in json_path]
for j_path, i_root in zip(json_path, img_root):
print(i_root, j_path)
d.extend(parse_textds_json(json_path=j_path, image_root=i_root))
else:
image_root = os.path.join(os.path.dirname(json_path), mode)
d = parse_textds_json(json_path=json_path, image_root=image_root)
return d
def __init__(self, json_path, mode='train', language='english',
rect=False, psize=(640, 640), area_limit=80.0, scale=0.125,
auto_fit=False, dict_out=True, profile=False, transforms=None):
super().__init__()
self.mode = mode
self.arbitary_text_mode = not rect
self.out_img_size = psize
self.auto_fit = auto_fit
self.dict_item = dict_out
self.min_area = area_limit
self.scale = scale
self.profile = profile
self.data = self.load_json(json_path=json_path, mode=mode)
print(f'dataset: {len(self.data)}')
self._transforms = transforms
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
item = self.data[idx]
image_path = item['img_path']
if not os.path.exists(image_path):
if self.profile:
logger.warning(f'NO Exists - {image_path}')
return self.__getitem__(random.randint(0, len(self) - 1))
text_polys = item['polygons']
legibles = item['legibility']
cvimg = cv2.imread(image_path)
cvimg = cv2.cvtColor(cvimg, cv2.COLOR_BGR2RGB)
if self._transforms is not None:
cvimg, text_polys, legibles = self._transforms(cvimg, text_polys, legibles)
return cvimg, text_polys, legibles
class SimpleJsonDataset(JsonDataset):
def __init__(self, json_path, mode='train', language='english', rect=False, psize=(640, 640), area_limit=80.0,
scale=0.125, auto_fit=False, dict_out=True, profile=False, transforms=None, target_transforms=None):
super().__init__(json_path, mode, language, rect, psize, area_limit, scale, auto_fit, dict_out, profile,
transforms)
self._target_transforms = target_transforms
def __getitem__(self, idx):
item = self.data[idx]
image_path = item['img_path']
target = {'image_id': torch.tensor(idx, dtype=torch.int64)}
if not os.path.exists(image_path):
if self.profile:
logger.warning(f'NO Exists - {image_path}')
return self.__getitem__(random.randint(0, len(self) - 1))
pimg = Image.open(image_path)
cvimg = pimg.copy()
pimg.close()
target['orig_size'] = torch.tensor(pimg.size, dtype=torch.int64)
classes = [0 for _ in item['polygons']]
iscrowd = [0 for _ in item['polygons']]
target['labels'] = torch.tensor(classes, dtype=torch.int64)
target['iscrowd'] = torch.tensor(iscrowd)
if 'bbox' not in item and 'polygons' in item:
polys = item['polygons']
if not isinstance(polys, np.ndarray):
polys = np.array(polys)
bboxes = [None] * polys.shape[0]
for pi, poly in enumerate(polys):
x0 = np.min(poly[..., 0])
y0 = np.min(poly[..., 1])
x1 = np.max(poly[..., 0])
y1 = np.max(poly[..., 1])
bboxes[pi] = (x0, y0, x1, y1)
target['boxes'] = torch.as_tensor(bboxes, dtype=torch.float32).reshape(-1, 4)
if self._transforms:
cvimg, item = self._transforms(cvimg, target)
return cvimg, item
def get_args_parser():
parser = argparse.ArgumentParser('Set transformer detector', add_help=False)
parser.add_argument('--lr', default=1e-4, type=float)
parser.add_argument('--lr_backbone', default=1e-5, type=float)
parser.add_argument('--batch_size', default=2, type=int)
parser.add_argument('--weight_decay', default=1e-4, type=float)
parser.add_argument('--epochs', default=300, type=int)
parser.add_argument('--lr_drop', default=200, type=int)
parser.add_argument('--clip_max_norm', default=0.1, type=float,
help='gradient clipping max norm')
# Model parameters
parser.add_argument('--frozen_weights', type=str, default=None,
help="Path to the pretrained model. If set, only the mask head will be trained")
# * Backbone
parser.add_argument('--backbone', default='resnet50', type=str,
help="Name of the convolutional backbone to use")
parser.add_argument('--dilation', action='store_true',
help="If true, we replace stride with dilation in the last convolutional block (DC5)")
parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine', 'learned'),
help="Type of positional embedding to use on top of the image features")
# * Transformer
parser.add_argument('--enc_layers', default=6, type=int,
help="Number of encoding layers in the transformer")
parser.add_argument('--dec_layers', default=6, type=int,
help="Number of decoding layers in the transformer")
parser.add_argument('--dim_feedforward', default=2048, type=int,
help="Intermediate size of the feedforward layers in the transformer blocks")
parser.add_argument('--hidden_dim', default=256, type=int,
help="Size of the embeddings (dimension of the transformer)")
parser.add_argument('--dropout', default=0.1, type=float,
help="Dropout applied in the transformer")
parser.add_argument('--nheads', default=8, type=int,
help="Number of attention heads inside the transformer's attentions")
parser.add_argument('--num_queries', default=100, type=int,
help="Number of query slots")
parser.add_argument('--pre_norm', action='store_true')
# * Segmentation
parser.add_argument('--masks', action='store_true',
help="Train segmentation head if the flag is provided")
# Loss
parser.add_argument('--no_aux_loss', dest='aux_loss', action='store_false',
help="Disables auxiliary decoding losses (loss at each layer)")
# * Matcher
parser.add_argument('--set_cost_class', default=1, type=float,
help="Class coefficient in the matching cost")
parser.add_argument('--set_cost_bbox', default=5, type=float,
help="L1 box coefficient in the matching cost")
parser.add_argument('--set_cost_giou', default=2, type=float,
help="giou box coefficient in the matching cost")
# * Loss coefficients
parser.add_argument('--mask_loss_coef', default=1, type=float)
parser.add_argument('--dice_loss_coef', default=1, type=float)
parser.add_argument('--bbox_loss_coef', default=5, type=float)
parser.add_argument('--giou_loss_coef', default=2, type=float)
parser.add_argument('--eos_coef', default=0.1, type=float,
help="Relative classification weight of the no-object class")
# dataset parameters
parser.add_argument('--dataset_file', default='coco')
parser.add_argument('--coco_path', type=str)
parser.add_argument('--coco_panoptic_path', type=str)
parser.add_argument('--remove_difficult', action='store_true')
parser.add_argument('--output_dir', default='',
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', action='store_true')
parser.add_argument('--num_workers', default=2, type=int)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
return parser
def main(args):
utils.init_distributed_mode(args)
print("git:\n {}\n".format(utils.get_sha()))
if args.frozen_weights is not None:
assert args.masks, "Frozen training is meant for segmentation only"
print(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
model, criterion, postprocessors = build_model(args)
model.to(device)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('number of params:', n_parameters)
param_dicts = [
{"params": [p for n, p in model_without_ddp.named_parameters() if "backbone" not in n and p.requires_grad]},
{
"params": [p for n, p in model_without_ddp.named_parameters() if "backbone" in n and p.requires_grad],
"lr": args.lr_backbone,
},
]
optimizer = torch.optim.AdamW(param_dicts, lr=args.lr,
weight_decay=args.weight_decay)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop)
train_json = [
'/content/icpr2018/train.json',
'/content/das/train.json',
'/content/ctw1500/train.json',
]
val_json = [
'/content/icpr2018/val.json',
'/content/das/val.json',
'/content/ctw1500/val.json',
]
dataset_train = SimpleJsonDataset(json_path=train_json, mode='train', transforms=make_coco_transforms('train'))
dataset_val = SimpleJsonDataset(json_path=val_json, mode='val', transforms=make_coco_transforms('val'))
if args.distributed:
sampler_train = DistributedSampler(dataset_train)
sampler_val = DistributedSampler(dataset_val, shuffle=False)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
batch_sampler_train = torch.utils.data.BatchSampler(
sampler_train, args.batch_size, drop_last=True)
data_loader_train = DataLoader(dataset_train, batch_sampler=batch_sampler_train,
collate_fn=utils.collate_fn, num_workers=args.num_workers)
data_loader_val = DataLoader(dataset_val, args.batch_size, sampler=sampler_val,
drop_last=False, collate_fn=utils.collate_fn, num_workers=args.num_workers)
if args.dataset_file == "coco_panoptic":
# We also evaluate AP during panoptic training, on original coco DS
coco_val = datasets.coco.build("val", args)
base_ds = get_coco_api_from_dataset(coco_val)
else:
base_ds = get_coco_api_from_dataset(dataset_val)
if args.frozen_weights is not None:
checkpoint = torch.load(args.frozen_weights, map_location='cpu')
model_without_ddp.detr.load_state_dict(checkpoint['model'])
output_dir = Path(args.output_dir)
if args.resume:
if args.resume.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.resume, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.resume, map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model'])
if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
args.start_epoch = checkpoint['epoch'] + 1
if args.eval:
test_stats, coco_evaluator = evaluate(model, criterion, postprocessors,
data_loader_val, base_ds, device, args.output_dir)
if args.output_dir:
utils.save_on_master(coco_evaluator.coco_eval["bbox"].eval, output_dir / "eval.pth")
return
print("Start training")
start_time = time.time()
model.accumulate = 100
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
sampler_train.set_epoch(epoch)
model.step = epoch * args.batch_size
train_stats = train_one_epoch(
model, criterion, data_loader_train, optimizer, device, epoch,
args.clip_max_norm)
lr_scheduler.step()
if args.output_dir:
checkpoint_paths = [output_dir / 'checkpoint.pth']
# extra checkpoint before LR drop and every 100 epochs
if (epoch + 1) % args.lr_drop == 0 or (epoch + 1) % 100 == 0:
checkpoint_paths.append(output_dir / f'checkpoint{epoch:04}.pth')
for checkpoint_path in checkpoint_paths:
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args,
}, checkpoint_path)
# test_stats, coco_evaluator = evaluate(
# model, criterion, postprocessors, data_loader_val, base_ds, device, args.output_dir
# )
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
# **{f'test_{k}': v for k, v in test_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
if args.output_dir and utils.is_main_process():
with (output_dir / "log.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
# for evaluation logs
# if coco_evaluator is not None:
# (output_dir / 'eval').mkdir(exist_ok=True)
# if "bbox" in coco_evaluator.coco_eval:
# filenames = ['latest.pth']
# if epoch % 50 == 0:
# filenames.append(f'{epoch:03}.pth')
# for name in filenames:
# torch.save(coco_evaluator.coco_eval["bbox"].eval,
# output_dir / "eval" / name)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser('DETR training and evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)
|
[
"numpy.random.seed",
"argparse.ArgumentParser",
"torch.optim.lr_scheduler.StepLR",
"torch.utils.data.RandomSampler",
"torch.optim.AdamW",
"json.dumps",
"pathlib.Path",
"torch.device",
"util.misc.is_main_process",
"os.path.join",
"util.misc.init_distributed_mode",
"datasets.coco.build",
"torch.utils.data.DataLoader",
"cv2.cvtColor",
"torch.nn.parallel.DistributedDataParallel",
"torch.load",
"os.path.exists",
"os.path.dirname",
"numpy.max",
"random.seed",
"torch.utils.data.SequentialSampler",
"models.build_model",
"torch.as_tensor",
"torch.hub.load_state_dict_from_url",
"util.misc.get_rank",
"engine.train_one_epoch",
"torch.manual_seed",
"util.misc.save_on_master",
"numpy.min",
"torch.utils.data.BatchSampler",
"json.load",
"time.time",
"PIL.Image.open",
"cv2.imread",
"torch.utils.data.DistributedSampler",
"engine.evaluate",
"datasets.coco.make_coco_transforms",
"numpy.array",
"util.misc.get_sha",
"torch.tensor",
"logging.getLogger",
"datasets.get_coco_api_from_dataset"
] |
[((577, 604), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (594, 604), False, 'import logging\n'), ((6230, 6297), 'argparse.ArgumentParser', 'argparse.ArgumentParser', (['"""Set transformer detector"""'], {'add_help': '(False)'}), "('Set transformer detector', add_help=False)\n", (6253, 6297), False, 'import argparse\n'), ((10994, 11027), 'util.misc.init_distributed_mode', 'utils.init_distributed_mode', (['args'], {}), '(args)\n', (11021, 11027), True, 'import util.misc as utils\n'), ((11225, 11250), 'torch.device', 'torch.device', (['args.device'], {}), '(args.device)\n', (11237, 11250), False, 'import torch\n'), ((11335, 11358), 'torch.manual_seed', 'torch.manual_seed', (['seed'], {}), '(seed)\n', (11352, 11358), False, 'import torch\n'), ((11363, 11383), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (11377, 11383), True, 'import numpy as np\n'), ((11388, 11405), 'random.seed', 'random.seed', (['seed'], {}), '(seed)\n', (11399, 11405), False, 'import random\n'), ((11446, 11463), 'models.build_model', 'build_model', (['args'], {}), '(args)\n', (11457, 11463), False, 'from models import build_model\n'), ((12128, 12202), 'torch.optim.AdamW', 'torch.optim.AdamW', (['param_dicts'], {'lr': 'args.lr', 'weight_decay': 'args.weight_decay'}), '(param_dicts, lr=args.lr, weight_decay=args.weight_decay)\n', (12145, 12202), False, 'import torch\n'), ((12256, 12312), 'torch.optim.lr_scheduler.StepLR', 'torch.optim.lr_scheduler.StepLR', (['optimizer', 'args.lr_drop'], {}), '(optimizer, args.lr_drop)\n', (12287, 12312), False, 'import torch\n'), ((13137, 13214), 'torch.utils.data.BatchSampler', 'torch.utils.data.BatchSampler', (['sampler_train', 'args.batch_size'], {'drop_last': '(True)'}), '(sampler_train, args.batch_size, drop_last=True)\n', (13166, 13214), False, 'import torch\n'), ((13249, 13373), 'torch.utils.data.DataLoader', 'DataLoader', (['dataset_train'], {'batch_sampler': 'batch_sampler_train', 'collate_fn': 'utils.collate_fn', 'num_workers': 'args.num_workers'}), '(dataset_train, batch_sampler=batch_sampler_train, collate_fn=\n utils.collate_fn, num_workers=args.num_workers)\n', (13259, 13373), False, 'from torch.utils.data import DataLoader, DistributedSampler\n'), ((13426, 13568), 'torch.utils.data.DataLoader', 'DataLoader', (['dataset_val', 'args.batch_size'], {'sampler': 'sampler_val', 'drop_last': '(False)', 'collate_fn': 'utils.collate_fn', 'num_workers': 'args.num_workers'}), '(dataset_val, args.batch_size, sampler=sampler_val, drop_last=\n False, collate_fn=utils.collate_fn, num_workers=args.num_workers)\n', (13436, 13568), False, 'from torch.utils.data import DataLoader, DistributedSampler\n'), ((14092, 14113), 'pathlib.Path', 'Path', (['args.output_dir'], {}), '(args.output_dir)\n', (14096, 14113), False, 'from pathlib import Path\n'), ((15135, 15146), 'time.time', 'time.time', ([], {}), '()\n', (15144, 15146), False, 'import time\n'), ((769, 809), 'os.path.join', 'os.path.join', (['image_root', "gt['img_name']"], {}), "(image_root, gt['img_name'])\n", (781, 809), False, 'import os\n'), ((2259, 2271), 'json.load', 'json.load', (['f'], {}), '(f)\n', (2268, 2271), False, 'import json\n'), ((4023, 4045), 'cv2.imread', 'cv2.imread', (['image_path'], {}), '(image_path)\n', (4033, 4045), False, 'import cv2\n'), ((4062, 4100), 'cv2.cvtColor', 'cv2.cvtColor', (['cvimg', 'cv2.COLOR_BGR2RGB'], {}), '(cvimg, cv2.COLOR_BGR2RGB)\n', (4074, 4100), False, 'import cv2\n'), ((5138, 5160), 'PIL.Image.open', 'Image.open', (['image_path'], {}), '(image_path)\n', (5148, 5160), False, 'from PIL import Image\n'), ((5240, 5282), 'torch.tensor', 'torch.tensor', (['pimg.size'], {'dtype': 'torch.int64'}), '(pimg.size, dtype=torch.int64)\n', (5252, 5282), False, 'import torch\n'), ((5407, 5447), 'torch.tensor', 'torch.tensor', (['classes'], {'dtype': 'torch.int64'}), '(classes, dtype=torch.int64)\n', (5419, 5447), False, 'import torch\n'), ((5476, 5497), 'torch.tensor', 'torch.tensor', (['iscrowd'], {}), '(iscrowd)\n', (5488, 5497), False, 'import torch\n'), ((11314, 11330), 'util.misc.get_rank', 'utils.get_rank', ([], {}), '()\n', (11328, 11330), True, 'import util.misc as utils\n'), ((11557, 11628), 'torch.nn.parallel.DistributedDataParallel', 'torch.nn.parallel.DistributedDataParallel', (['model'], {'device_ids': '[args.gpu]'}), '(model, device_ids=[args.gpu])\n', (11598, 11628), False, 'import torch\n'), ((12857, 12890), 'torch.utils.data.DistributedSampler', 'DistributedSampler', (['dataset_train'], {}), '(dataset_train)\n', (12875, 12890), False, 'from torch.utils.data import DataLoader, DistributedSampler\n'), ((12913, 12959), 'torch.utils.data.DistributedSampler', 'DistributedSampler', (['dataset_val'], {'shuffle': '(False)'}), '(dataset_val, shuffle=False)\n', (12931, 12959), False, 'from torch.utils.data import DataLoader, DistributedSampler\n'), ((12994, 13039), 'torch.utils.data.RandomSampler', 'torch.utils.data.RandomSampler', (['dataset_train'], {}), '(dataset_train)\n', (13024, 13039), False, 'import torch\n'), ((13062, 13109), 'torch.utils.data.SequentialSampler', 'torch.utils.data.SequentialSampler', (['dataset_val'], {}), '(dataset_val)\n', (13096, 13109), False, 'import torch\n'), ((13738, 13770), 'datasets.coco.build', 'datasets.coco.build', (['"""val"""', 'args'], {}), "('val', args)\n", (13757, 13770), False, 'import datasets\n'), ((13789, 13824), 'datasets.get_coco_api_from_dataset', 'get_coco_api_from_dataset', (['coco_val'], {}), '(coco_val)\n', (13814, 13824), False, 'from datasets import get_coco_api_from_dataset\n'), ((13853, 13891), 'datasets.get_coco_api_from_dataset', 'get_coco_api_from_dataset', (['dataset_val'], {}), '(dataset_val)\n', (13878, 13891), False, 'from datasets import get_coco_api_from_dataset\n'), ((13954, 14005), 'torch.load', 'torch.load', (['args.frozen_weights'], {'map_location': '"""cpu"""'}), "(args.frozen_weights, map_location='cpu')\n", (13964, 14005), False, 'import torch\n'), ((14809, 14906), 'engine.evaluate', 'evaluate', (['model', 'criterion', 'postprocessors', 'data_loader_val', 'base_ds', 'device', 'args.output_dir'], {}), '(model, criterion, postprocessors, data_loader_val, base_ds, device,\n args.output_dir)\n', (14817, 14906), False, 'from engine import evaluate, train_one_epoch\n'), ((15368, 15470), 'engine.train_one_epoch', 'train_one_epoch', (['model', 'criterion', 'data_loader_train', 'optimizer', 'device', 'epoch', 'args.clip_max_norm'], {}), '(model, criterion, data_loader_train, optimizer, device,\n epoch, args.clip_max_norm)\n', (15383, 15470), False, 'from engine import evaluate, train_one_epoch\n'), ((17334, 17345), 'time.time', 'time.time', ([], {}), '()\n', (17343, 17345), False, 'import time\n'), ((825, 849), 'os.path.exists', 'os.path.exists', (['img_path'], {}), '(img_path)\n', (839, 849), False, 'import os\n'), ((3742, 3768), 'os.path.exists', 'os.path.exists', (['image_path'], {}), '(image_path)\n', (3756, 3768), False, 'import os\n'), ((4881, 4917), 'torch.tensor', 'torch.tensor', (['idx'], {'dtype': 'torch.int64'}), '(idx, dtype=torch.int64)\n', (4893, 4917), False, 'import torch\n'), ((4935, 4961), 'os.path.exists', 'os.path.exists', (['image_path'], {}), '(image_path)\n', (4949, 4961), False, 'import os\n'), ((11060, 11075), 'util.misc.get_sha', 'utils.get_sha', ([], {}), '()\n', (11073, 11075), True, 'import util.misc as utils\n'), ((12668, 12697), 'datasets.coco.make_coco_transforms', 'make_coco_transforms', (['"""train"""'], {}), "('train')\n", (12688, 12697), False, 'from datasets.coco import make_coco_transforms\n'), ((12778, 12805), 'datasets.coco.make_coco_transforms', 'make_coco_transforms', (['"""val"""'], {}), "('val')\n", (12798, 12805), False, 'from datasets.coco import make_coco_transforms\n'), ((14203, 14291), 'torch.hub.load_state_dict_from_url', 'torch.hub.load_state_dict_from_url', (['args.resume'], {'map_location': '"""cpu"""', 'check_hash': '(True)'}), "(args.resume, map_location='cpu',\n check_hash=True)\n", (14237, 14291), False, 'import torch\n'), ((14344, 14387), 'torch.load', 'torch.load', (['args.resume'], {'map_location': '"""cpu"""'}), "(args.resume, map_location='cpu')\n", (14354, 14387), False, 'import torch\n'), ((14989, 15077), 'util.misc.save_on_master', 'utils.save_on_master', (["coco_evaluator.coco_eval['bbox'].eval", "(output_dir / 'eval.pth')"], {}), "(coco_evaluator.coco_eval['bbox'].eval, output_dir /\n 'eval.pth')\n", (15009, 15077), True, 'import util.misc as utils\n'), ((16642, 16665), 'util.misc.is_main_process', 'utils.is_main_process', ([], {}), '()\n', (16663, 16665), True, 'import util.misc as utils\n'), ((2774, 2800), 'os.path.dirname', 'os.path.dirname', (['json_path'], {}), '(json_path)\n', (2789, 2800), False, 'import os\n'), ((5664, 5679), 'numpy.array', 'np.array', (['polys'], {}), '(polys)\n', (5672, 5679), True, 'import numpy as np\n'), ((5793, 5813), 'numpy.min', 'np.min', (['poly[..., 0]'], {}), '(poly[..., 0])\n', (5799, 5813), True, 'import numpy as np\n'), ((5835, 5855), 'numpy.min', 'np.min', (['poly[..., 1]'], {}), '(poly[..., 1])\n', (5841, 5855), True, 'import numpy as np\n'), ((5877, 5897), 'numpy.max', 'np.max', (['poly[..., 0]'], {}), '(poly[..., 0])\n', (5883, 5897), True, 'import numpy as np\n'), ((5919, 5939), 'numpy.max', 'np.max', (['poly[..., 1]'], {}), '(poly[..., 1])\n', (5925, 5939), True, 'import numpy as np\n'), ((17679, 17700), 'pathlib.Path', 'Path', (['args.output_dir'], {}), '(args.output_dir)\n', (17683, 17700), False, 'from pathlib import Path\n'), ((2003, 2021), 'numpy.array', 'np.array', (['polygons'], {}), '(polygons)\n', (2011, 2021), True, 'import numpy as np\n'), ((2497, 2515), 'os.path.dirname', 'os.path.dirname', (['p'], {}), '(p)\n', (2512, 2515), False, 'import os\n'), ((6016, 6060), 'torch.as_tensor', 'torch.as_tensor', (['bboxes'], {'dtype': 'torch.float32'}), '(bboxes, dtype=torch.float32)\n', (6031, 6060), False, 'import torch\n'), ((1265, 1296), 'numpy.array', 'np.array', (["annotation['polygon']"], {}), "(annotation['polygon'])\n", (1273, 1296), True, 'import numpy as np\n'), ((16749, 16770), 'json.dumps', 'json.dumps', (['log_stats'], {}), '(log_stats)\n', (16759, 16770), False, 'import json\n')]
|
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
"""
@File : DecisionTree.py
@Author : <NAME>
@Emial : <EMAIL>
@Date : 2022/02/21 16:59
@Description : 决策树
"""
import time
import numpy as np
def loadData(fileName):
"""
加载文件
@Args:
fileName: 加载的文件路径
@Returns:
dataArr: 数据集
labelArr: 标签集
@Riase:
"""
# 存放数据和标记
dataArr = []
labelArr = []
# 读取文件
fr = open(fileName)
# 遍历文件中的每一行
for line in fr.readlines():
curLine = line.strip().split(',')
# 将数据进行了二值化处理
dataArr.append([int(int(num) > 128) for num in curLine[1:]])
# 标签
labelArr.append(int(curLine[0]))
return dataArr, labelArr
def majorClass(labelArr):
"""
找到当前标签集中数目最多的标签
@Args:
labelArr: 标签集
@Returns:
出现次数最多的标签
@Riase:
"""
# 存储不同类别标签数目
classDict = {}
# 遍历所有标签
maxtimes = -1
maxClass = 0
for i in range(len(labelArr)):
if labelArr[i] in classDict.keys():
classDict[labelArr[i]] += 1
else:
classDict[labelArr[i]] = 1
# 只找出现次数最多的标签
if classDict[labelArr[i]] > maxtimes:
maxtimes = classDict[labelArr[i]]
maxClass = labelArr[i]
# 降序排序
# classSort = sorted(classDict.items(), key=lambda x: x[1], reverse=True)
# 返回出现次数最多的标签
return maxClass
# return classSort[0][0]
def calc_H_D(trainLabelArr):
"""
计算数据集D的经验熵
@Args:
trainLabelArr: 数据集的标签集
@Returns:
H_D: 经验熵
@Riase:
"""
# 初始化H_D
H_D = 0
# 使用集合处理trainLabelSet
trainLabelSet = set([label for label in trainLabelArr])
# 遍历
for i in trainLabelSet:
# 计算 |Ck|/|D|
p = trainLabelArr[trainLabelArr == i].size / trainLabelArr.size
# 经验熵累加求和
H_D += -1 * p * np.log2(p)
return H_D
def calcH_D_A(trainDataArr_DevFeature, trianLabelArr):
"""
计算经验条件熵
@Args:
trainDataArr_DevFeature: 切割后只有feature那列数据的数组
trianLabelArr: 标签集
@Returns:
H_D_A: 经验条件熵
@Riase:
"""
# 初始化H_D_A
H_D_A = 0
trainDataSet = set([label for label in trainDataArr_DevFeature])
# 遍历特征
for i in trainDataSet:
# 计算H(D|A)
H_D_A += trainDataArr_DevFeature[trainDataArr_DevFeature == i].size / trainDataArr_DevFeature.size \
* calc_H_D(trianLabelArr[trainDataArr_DevFeature == i])
return H_D_A
def calcBestFeature(trainDataList, trainLabelList):
"""
计算信息增益最大的特征
@Args:
trainDataList: 数据集
trainLabelList: 数据集标签
@Returns:
maxFeature: 信息增益最大的特征
maxG_D_A: 最大信息增益值
@Riase:
"""
trainDataArr = np.array(trainDataList)
trainLabelArr = np.array(trainLabelList)
# 获取特征数目
featureNum = trainDataArr.shape[1]
# 初始化最大信息增益
maxG_D_A = -1
# 初始化最大信息增益的特征
maxFeature = -1
# 计算经验熵
H_D = calc_H_D(trainLabelArr)
# 遍历每一个特征
for feature in range(featureNum):
# 计算条件熵H(D|A)
# 选取一列特征
trainDataArr_DevideByFeature = np.array(trainDataArr[:, feature].flat)
# 计算信息增益G(D|A)
G_D_A = H_D - calcH_D_A(trainDataArr_DevideByFeature, trainLabelArr)
# 更新最大的信息增益以及对应的feature
if G_D_A > maxG_D_A:
maxG_D_A = G_D_A
maxFeature = feature
return maxFeature, maxG_D_A
def getSubDataArr(trainDataArr, trainLabelArr, A, a):
"""
更新数据集和标签集
@Args:
trainDataArr: 要更新的数据集
trainLabelArr: 要更新的标签集
A: 要去除的特征索引
a: 当data[A]== a时,说明该行样本时要保留的
@Returns:
retDataArr: 新的数据集
retLabelArr: 新的标签集
@Riase:
"""
retDataArr = []
retLabelArr = []
# 对当前数据的每一个样本进行遍历
for i in range(len(trainDataArr)):
# 如果当前样本的特征为指定特征值a
if trainDataArr[i][A] == a:
# 那么将该样本的第A个特征切割掉,放入返回的数据集中
retDataArr.append(trainDataArr[i][0:A] + trainDataArr[i][A+1:])
#将该样本的标签放入返回标签集中
retLabelArr.append(trainLabelArr[i])
# 返回新的数据集和标签集
return retDataArr, retLabelArr
def createTree(*dataSet):
"""
递归创建决策树
@Args:
dataSet: (trainDataList, trainLabelList)
@Returns:
treeDict: 树节点
@Riase:
"""
# 设置阈值Epsilon
Epsilon = 0.1
trainDataList = dataSet[0][0]
trainLabelList = dataSet[0][1]
print("Start a node...", len(trainDataList[0]), len(trainLabelList))
classDict = {i for i in trainLabelList}
# 数据集D中所有实例属于同一类
if len(classDict) == 1:
return trainLabelList[0]
# 如果A为空集,则置T为单节点数,并将D中实例数最大的类Ck作为该节点的类,返回T
# 即如果已经没有特征可以用来再分化了,就返回占大多数的类别
if len(trainDataList[0]) == 0:
return majorClass(trainLabelList)
# 否则,选择信息增益最大的特征
Ag, EpsilonGet = calcBestFeature(trainDataList, trainLabelList)
# 信息增益小于阈值Epsilon,置为单节点树
if EpsilonGet < Epsilon:
return majorClass(trainLabelList)
# 否则,对Ag的每一可能值ai,依Ag=ai将D分割为若干非空子集Di,将Di中实例数最大的
# 类作为标记,构建子节点,由节点及其子节点构成树T,返回T
treeDict = {Ag:{}}
# 特征值为0时,进入0分支
# getSubDataArr(trainDataList, trainLabelList, Ag, 0):在当前数据集中切割当前feature,返回新的数据集和标签集
treeDict[Ag][0] = createTree(getSubDataArr(trainDataList, trainLabelList, Ag, 0))
treeDict[Ag][1] = createTree(getSubDataArr(trainDataList, trainLabelList, Ag, 1))
return treeDict
def predict(testDataList, tree):
"""
预测标签
@Args:
testDataList: 测试集
tree: 决策树
@Returns:
预测结果
@Riase:
"""
# 死循环,直到找到一个有效地分类
while True:
# 因为有时候当前字典只有一个节点
# 例如{73: {0: {74:6}}}看起来节点很多,但是对于字典的最顶层来说,只有73一个key,其余都是value
# 若还是采用for来读取的话不太合适,所以使用下行这种方式读取key和value
(key, value), = tree.items()
if type(tree[key]).__name__ == "dict":
dataVal = testDataList[key]
del testDataList[key]
# 将tree更新为其子节点的字典
tree = value[dataVal]
if type(tree).__name__ == "int":
return tree
else:
return value
def model_test(testDataList, testLabelList, tree):
"""
测试准确率
@Args:
testDataList: 测试数据集
testLabelList: 测试数据集标签
tree: 决策树
@Returns:
准确率
@Riase:
"""
# 错误判断次数
errorCnt = 0
#遍历测试集中每一个测试样本
for i in range(len(testDataList)):
#判断预测与标签中结果是否一致
if testLabelList[i] != predict(testDataList[i], tree):
errorCnt += 1
#返回准确率
return 1 - errorCnt / len(testDataList)
if __name__ == '__main__':
# 开始时间
start = time.time()
# 获取训练集
print("Start read transSet......")
trainDataList, trainLabelList = loadData('../data/mnist_train.csv')
# 获取测试集
print("Start read testSet......")
testDataList, testLabelList = loadData('../data/mnist_test.csv')
# 创建决策树
print("Start create tree......")
tree = createTree((trainDataList, trainLabelList))
print("tree is:", tree)
# 测试准确率
print("Start test......")
accur = model_test(testDataList, testLabelList, tree)
print("The accur is:{}".format(accur))
# 结束时间
end = time.time()
print("Time span: {}".format(end - start))
|
[
"numpy.log2",
"numpy.array",
"time.time"
] |
[((2776, 2799), 'numpy.array', 'np.array', (['trainDataList'], {}), '(trainDataList)\n', (2784, 2799), True, 'import numpy as np\n'), ((2820, 2844), 'numpy.array', 'np.array', (['trainLabelList'], {}), '(trainLabelList)\n', (2828, 2844), True, 'import numpy as np\n'), ((6624, 6635), 'time.time', 'time.time', ([], {}), '()\n', (6633, 6635), False, 'import time\n'), ((7178, 7189), 'time.time', 'time.time', ([], {}), '()\n', (7187, 7189), False, 'import time\n'), ((3150, 3189), 'numpy.array', 'np.array', (['trainDataArr[:, feature].flat'], {}), '(trainDataArr[:, feature].flat)\n', (3158, 3189), True, 'import numpy as np\n'), ((1893, 1903), 'numpy.log2', 'np.log2', (['p'], {}), '(p)\n', (1900, 1903), True, 'import numpy as np\n')]
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Dec 1 20:33:32 2019
@authors:
<NAME> (<EMAIL>)
<NAME> (<EMAIL>)
"""
from collections import Counter
from scipy import signal
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use('TkAgg')
class EmotionalSlice:
"""
This class performs the slicing of emotion and heart rate instances
of the experiment participants. Besides, it generates synthetic data
of the HR vector according to the size of the emotional slice.
"""
def __init__(self):
"""
Default constructor
Returns
-------
None.
"""
self.hr_plot_dir = 'miband/plot/' # Heart rate plot subdirectory
self.hrData = {} # Heart rate dataset tagged with emotion class
self.timeBetweenInstances = 60 # Time distance between instances (seconds)
self.sliceSize = 30 # Slice size
self.sliceLimit = 3 # Slice size limit
#%% dataLoad
def dataLoad(self):
"""
It loads the tagged dataset from a dictionary to a list.
tagHrList: imei, hrTimestamp, emotionts, emotion, activity,
hr, longitude, latitude, and altitude
Returns
-------
None.
"""
self.tagHrList = []
for k, v in self.hrData.items():
for k1, v1 in v.items():
if 'emotion' in v1:
temp = []
for key, value in v1.items():
temp.append(value)
self.tagHrList.append([int(temp[0]), int(k1), int(temp[1]), temp[2],
temp[3], int(temp[4]), float(temp[5]),
float(temp[6])])
#%% initSlice
def initSlice(self):
""" Init a slice
"""
self.start = int(self.previous[1]) # First time-stamp
self.hr = [] # Heart rate list initialization
self.ts = [] # Time-stamp list initialization
self.emotions = [] # Emotion list initialization
self.instancesCounter = 0 # Instances counter
#%% hr_norm
def hr_norm(self, hr_data):
"""
Normalize heart rate data
Parameters
----------
hr_data : List
DESCRIPTION. Heart rate data
Returns
-------
list
DESCRIPTION. Normalized heart rate
"""
min_value = list(filter(lambda x: (x[0] == self.previous[0]), self.minmax))[0][1]
max_value = list(filter(lambda x: (x[0] == self.previous[0]), self.minmax))[0][2]
return ([(i - min_value) / (max_value - min_value) for i in hr_data])
#%% duplication_ts method
def duplication_ts(self, hr_norm, sliceSize):
"""
Generates the duplication of time series values to adjust the number of HR instances
according to the fixed size of the Emotional Slicing.
Parameters
----------
hr_norm : list
DESCRIPTION. Heart Rate list normalized
sliceSize : int
DESCRIPTION. Slice size
Returns
-------
hr : list
DESCRIPTION. Heart Rate list with duplication of time series values
"""
hr = np.zeros(sliceSize)
i = 0
flag = True
while flag:
if sliceSize - len(hr_norm) <= 0:
segment = np.abs(sliceSize - len(hr_norm))
hr[i] = hr_norm[i:segment] # it Loses the initial segment of the signal data
else:
b = hr_norm[0 : sliceSize - len(hr_norm)]
goal = np.hstack((hr_norm, b))
while len(goal) != sliceSize:
b = hr_norm[0 : sliceSize - len(goal)]
goal = np.hstack((goal, b))
hr = goal
i += 1
flag = False
return hr
#%% closeSlice
def closeSlice(self):
"""
It closes a slice conformed by instances of heart rate and timestamp
with emotion, activity, and location data.
Returns
-------
None.
"""
if (self.instancesCounter > self.sliceLimit):
sliceDuration = int(self.ts[self.instancesCounter - 1]) - int(self.ts[0])
emotionsCounter = Counter(self.emotions)
hrCounter = Counter(self.hr)
if len(hrCounter) > 1:
self.predominantEmotion = max(zip(
emotionsCounter.values(), # Emotion counting
emotionsCounter.keys() # Emotion name
))
if self.instancesCounter < self.sliceSize:
self.ohr = self.hr
self.ots = self.ts
self.addSyntheticData()
else:
#self.slicePlot() # It plots an emotional slicing with a fixed size of HR instances.
self.ohr = []
self.ots = []
self.labels.append([
self.current[0], # IMEI
self.slicesCounter, # Slice consecutive
self.catEmotion(), # Categorical emotion
self.predominantEmotion[1], # Emotion name
self.predominantEmotion[0] # Total instances with this emotion
])
self.hr_sliceSize_norm = self.hr_norm(self.hr) if len(self.hr) == self.sliceSize else []
self.ohr_norm = self.hr_norm(self.ohr) if self.ohr else []
quadrant = self.catVA() # 10 Valence and Arousal quadrant
self.features.append([
self.previous[0], # 0 IMEI
self.slicesCounter, # 1 Slice consecutive
self.hr, # 2 Heart rate list
self.instancesCounter, # 3 Instances number
sliceDuration, # 4 Slice duration (seconds)
self.previous[4], # 5 Activity name
self.catActivity(), # 6 Categorical activity
self.catEmotion(), # 7 Categorical emotion
self.predominantEmotion[1], # 8 Emotion name
self.predominantEmotion[0], # 9 Emotion instances total
list(quadrant.keys())[0], # 10 Valence and Arousal quadrant number
quadrant.get(list(quadrant.keys())[0]), # 11 Valence and Arousal quadrant
self.ts, # 12 Heart Rate time-stamp
int(self.previous[2]), # 13 Emotion time-stamp
self.hr_sliceSize_norm, # 14 Normalized Heart rate y with the same lenght of slice size
self.previous[6], # 15 longitude
self.previous[7], # 16 latitude
# 17 Assigns normalized HR with resampled HR time series values if the segment size limit is lower than the slice size.
self.hr_sliceSize_norm if self.hr_sliceSize_norm else self.ohr_norm,
# 18 Assigns normalized HR with duplicate time series values if the segment size limit is lower than the slice size.
list(self.hr_sliceSize_norm if self.hr_sliceSize_norm else self.duplication_ts(
self.hr_norm(self.hr), self.sliceSize))
])
self.slicesCounter = self.slicesCounter + 1
self.initSlice()
else:
self.initSlice()
else:
self.initSlice()
#%% addInstanceToSlice
def addInstanceToSlice(self):
"""
Add data instances to a slice.
Returns
-------
None.
"""
self.ts.append(self.current[1])
self.hr.append(self.current[5])
self.emotions.append(self.current[3])
self.instancesCounter = self.instancesCounter + 1
if self.instancesCounter >= self.sliceSize:
self.closeSlice()
#%% buildSlices
def buildSlices(self, slice_plot_dir, hrData, timeBetweenInstances,
sliceSize, sliceLimit):
"""
Slice of emotions algorithm. Define the heart rate vectors with
the emotional blocks and it balances the vector size with the
resampling of the signal through the Fourier series.
Parameters
----------
slice_plot_dir : String
DESCRIPTION. Emotional slicing plot subdirectory
hrData : dictionary
DESCRIPTION. Heart rate dataset tagged with emotion class.
timeBetweenInstances : int
DESCRIPTION. Time distance between instances (seconds)
sliceSize : int
DESCRIPTION. Slice size
sliceLimit : int
DESCRIPTION. Slice size limit
Returns
-------
None.
"""
self.plotDir = slice_plot_dir
self.hrData = hrData
self.dataLoad()
self.timeBetweenInstances = timeBetweenInstances # Time distance between instances (seconds), default = 120
self.features = [] # Fatures list
self.labels = [] # Labels list
self.sliceSize = sliceSize # Slice size, default = 20
self.sliceLimit = sliceLimit # Slice limit size, default = 2
self.slicesCounter = 0
self.previous = self.tagHrList[0]
self.initSlice()
self.current = self.previous # Save the first instance
self.addInstanceToSlice()
self.getMinMaxByImei()
for row in range(1, len(self.tagHrList)):
self.previous = self.tagHrList[row - 1]
self.current = self.tagHrList[row]
if self.previous[0] == self.current[0]: # Are the IMEIs the same?
if int(self.current[1]) - int(self.previous[1]) <= self.timeBetweenInstances: # Is the instance in the same slice?
if self.current[4].lower() == 'pelicula'.lower(): # Is the activity a movie?
if self.previous[3] != self.current[3]: # Is the emotion the same?
self.closeSlice()
self.addInstanceToSlice()
else:
self.addInstanceToSlice()
else:
self.closeSlice()
self.addInstanceToSlice()
else:
self.closeSlice()
self.addInstanceToSlice()
#%% getMinMaxByImei
def getMinMaxByImei(self):
"""
Get the minimum and maximum heart rate values of all participants.
Returns
-------
None.
"""
imeiList = list(set(map(lambda x:x[0], self.tagHrList)))
newList = [[] for i in range(len(imeiList))]
for imei, hrts, ets, e, a, hr, lo, la in self.tagHrList:
newList[imeiList.index(imei)].append(hr)
self.minmax = []
for i in range(len(newList)):
self.minmax.append([imeiList[i], min(newList[i]), max(newList[i])])
#%% addSyntheticData
def addSyntheticData(self):
"""
This method verifies slices of less than 30 instances and
adds synthetic data with resampling of heart rate and timestamp.
Resample ts to num samples using Fourier method.
Returns
-------
None.
"""
x = np.asarray(self.ots)
y = np.asarray(self.ohr)
f1 = signal.resample(y, self.sliceSize)
f = [int(round(i)) for i in f1]
max_x = len(x) - 1
xnew1 = np.linspace(x[0], x[max_x], self.sliceSize, endpoint = True)
xnew = [int(i) for i in xnew1]
self.ots = xnew
self.ohr = f
#self.resampledSlicePlot(x, y, f, xnew, max_x) # It plots a adjusted slice
#%% resampledSlicePlot
def resampledSlicePlot(self, x, y, f, xnew, max_x):
"""
This method generates the resampled heart rate and emotion slice plot.
Parameters
----------
x : array
DESCRIPTION. Timestamp
y : array
DESCRIPTION. Heart rate
f : array
DESCRIPTION. Heart rate resampled using Fourier method
xnew : array
DESCRIPTION. timestamp resampled
max_x : int
DESCRIPTION. Maximum timestamp
Returns
-------
None.
"""
plt.figure(figsize = (18, 8))
plt.xticks(fontsize = 20)
plt.yticks(fontsize = 20)
plt.plot(x, y, 'go-', xnew, f, '.-', x[max_x], y[0], 'ro')
text = 'Slice of ' + str(self.sliceSize)+' HR instances of participant ' + str(self.previous[0]) +' labeled "'+ self.predominantEmotion[1] + '"'
plt.title(text, fontsize = 22)
plt.xlabel('Time series', fontsize = 20)
plt.ylabel('Heart rate', fontsize = 20)
plt.legend(['data', 'Fourier method resampled'], loc='best', prop={'size': 22})
plt.savefig(self.plotDir + 'hr_resampled_'+ str(self.slicesCounter) + '_' + str(self.previous[0]) + '.svg')
plt.close()
#%% slicePlot
def slicePlot(self):
"""
This method plots an Emotional Slicing with a fixed size of HR instances.
Returns
-------
None.
"""
x = [int(i) for i in self.ts]
y = [int(round(i)) for i in self.hr]
plt.figure(figsize=(18,8))
plt.xticks(fontsize = 20)
plt.yticks(fontsize = 20)
text = 'Slice of ' + str(self.sliceSize)+' HR instances of participant ' + str(self.previous[0]) +' labeled "'+ self.predominantEmotion[1] + '"'
plt.title(text, fontsize = 18)
plt.xlabel('Time series', fontsize = 20)
plt.ylabel('Heart rate', fontsize = 20)
plt.plot(x, y)
plt.savefig(self.plotDir + 'hr_'+ str(self.slicesCounter) + '_' + str(self.previous[0]) + '.svg')
plt.close()
#%% Categorical imei
def catEmotion(self):
"""
Convert nominal emotion to categorical emotion.
Returns
-------
catEmotion : int
DESCRIPTION. Categorical emotion
"""
emotionID = {
'feliz': 0,
'divertido': 1,
'alegre': 2,
'contento': 3,
'satisfecho': 4,
'calmado': 5,
'relajado': 6,
'cansado': 7,
'aburrido':8,
'deprimido':9,
'avergonzado':10,
'triste':11,
'estresado':12,
'asustado':13,
'enojado':14,
'en pánico':15,
'neutral':16
}
return (emotionID.get(self.predominantEmotion[1]))
#%% Categorical Valence and Arousal quadrant
def catVA(self):
"""
It groups emotions by arousal and valence quadrant.
Returns
-------
quadrant : int
DESCRIPTION. Categorical quadrant
"""
quadrant = {}
emotion = self.catEmotion()
if emotion >= 0 and emotion <= 3:
quadrant = {0: 'HVHA'}
elif emotion >= 4 and emotion <= 7:
quadrant = {1: 'HVLA'}
elif emotion >= 8 and emotion <= 11:
quadrant = {2: 'LVLA'}
elif emotion >= 12 and emotion <= 15:
quadrant = {3: 'LVHA'}
else:
quadrant = {4: 'Neutral'}
return (quadrant)
#%% Categorical activity
def catActivity(self):
"""
Convert nominal activity to categorical activity.
Returns
-------
catActivity : int
DESCRIPTION. Categorical activity
"""
activityID = {
'trabajar': 0,
'estudiar': 1,
'leer': 2,
'ejercitar': 3,
'conducir': 4,
'cita': 5,
'descansar': 6,
'comprar': 7,
'amigos':8,
'festejar':9,
'alimentar':10,
'pelicula':11,
'limpiar':12,
'viajar':13,
'jugar':14,
'dormir':15,
'asearse':16,
'caminar': 17,
'esperar': 18,
'casa': 19,
'cuidarse': 20
}
return (activityID.get(self.previous[4]))
|
[
"matplotlib.pyplot.title",
"matplotlib.pyplot.plot",
"scipy.signal.resample",
"matplotlib.pyplot.close",
"numpy.asarray",
"matplotlib.pyplot.yticks",
"numpy.zeros",
"matplotlib.pyplot.legend",
"collections.Counter",
"numpy.hstack",
"matplotlib.pyplot.figure",
"matplotlib.use",
"numpy.linspace",
"matplotlib.pyplot.ylabel",
"matplotlib.pyplot.xticks",
"matplotlib.pyplot.xlabel"
] |
[((272, 295), 'matplotlib.use', 'matplotlib.use', (['"""TkAgg"""'], {}), "('TkAgg')\n", (286, 295), False, 'import matplotlib\n'), ((3573, 3592), 'numpy.zeros', 'np.zeros', (['sliceSize'], {}), '(sliceSize)\n', (3581, 3592), True, 'import numpy as np\n'), ((12613, 12633), 'numpy.asarray', 'np.asarray', (['self.ots'], {}), '(self.ots)\n', (12623, 12633), True, 'import numpy as np\n'), ((12646, 12666), 'numpy.asarray', 'np.asarray', (['self.ohr'], {}), '(self.ohr)\n', (12656, 12666), True, 'import numpy as np\n'), ((12680, 12714), 'scipy.signal.resample', 'signal.resample', (['y', 'self.sliceSize'], {}), '(y, self.sliceSize)\n', (12695, 12714), False, 'from scipy import signal\n'), ((12798, 12856), 'numpy.linspace', 'np.linspace', (['x[0]', 'x[max_x]', 'self.sliceSize'], {'endpoint': '(True)'}), '(x[0], x[max_x], self.sliceSize, endpoint=True)\n', (12809, 12856), True, 'import numpy as np\n'), ((13652, 13679), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(18, 8)'}), '(figsize=(18, 8))\n', (13662, 13679), True, 'import matplotlib.pyplot as plt\n'), ((13690, 13713), 'matplotlib.pyplot.xticks', 'plt.xticks', ([], {'fontsize': '(20)'}), '(fontsize=20)\n', (13700, 13713), True, 'import matplotlib.pyplot as plt\n'), ((13724, 13747), 'matplotlib.pyplot.yticks', 'plt.yticks', ([], {'fontsize': '(20)'}), '(fontsize=20)\n', (13734, 13747), True, 'import matplotlib.pyplot as plt\n'), ((13758, 13816), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y', '"""go-"""', 'xnew', 'f', '""".-"""', 'x[max_x]', 'y[0]', '"""ro"""'], {}), "(x, y, 'go-', xnew, f, '.-', x[max_x], y[0], 'ro')\n", (13766, 13816), True, 'import matplotlib.pyplot as plt\n'), ((13978, 14006), 'matplotlib.pyplot.title', 'plt.title', (['text'], {'fontsize': '(22)'}), '(text, fontsize=22)\n', (13987, 14006), True, 'import matplotlib.pyplot as plt\n'), ((14017, 14055), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time series"""'], {'fontsize': '(20)'}), "('Time series', fontsize=20)\n", (14027, 14055), True, 'import matplotlib.pyplot as plt\n'), ((14066, 14103), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Heart rate"""'], {'fontsize': '(20)'}), "('Heart rate', fontsize=20)\n", (14076, 14103), True, 'import matplotlib.pyplot as plt\n'), ((14114, 14193), 'matplotlib.pyplot.legend', 'plt.legend', (["['data', 'Fourier method resampled']"], {'loc': '"""best"""', 'prop': "{'size': 22}"}), "(['data', 'Fourier method resampled'], loc='best', prop={'size': 22})\n", (14124, 14193), True, 'import matplotlib.pyplot as plt\n'), ((14318, 14329), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (14327, 14329), True, 'import matplotlib.pyplot as plt\n'), ((14622, 14649), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(18, 8)'}), '(figsize=(18, 8))\n', (14632, 14649), True, 'import matplotlib.pyplot as plt\n'), ((14657, 14680), 'matplotlib.pyplot.xticks', 'plt.xticks', ([], {'fontsize': '(20)'}), '(fontsize=20)\n', (14667, 14680), True, 'import matplotlib.pyplot as plt\n'), ((14691, 14714), 'matplotlib.pyplot.yticks', 'plt.yticks', ([], {'fontsize': '(20)'}), '(fontsize=20)\n', (14701, 14714), True, 'import matplotlib.pyplot as plt\n'), ((14878, 14906), 'matplotlib.pyplot.title', 'plt.title', (['text'], {'fontsize': '(18)'}), '(text, fontsize=18)\n', (14887, 14906), True, 'import matplotlib.pyplot as plt\n'), ((14917, 14955), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time series"""'], {'fontsize': '(20)'}), "('Time series', fontsize=20)\n", (14927, 14955), True, 'import matplotlib.pyplot as plt\n'), ((14966, 15003), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Heart rate"""'], {'fontsize': '(20)'}), "('Heart rate', fontsize=20)\n", (14976, 15003), True, 'import matplotlib.pyplot as plt\n'), ((15014, 15028), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y'], {}), '(x, y)\n', (15022, 15028), True, 'import matplotlib.pyplot as plt\n'), ((15143, 15154), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (15152, 15154), True, 'import matplotlib.pyplot as plt\n'), ((4673, 4695), 'collections.Counter', 'Counter', (['self.emotions'], {}), '(self.emotions)\n', (4680, 4695), False, 'from collections import Counter\n'), ((4720, 4736), 'collections.Counter', 'Counter', (['self.hr'], {}), '(self.hr)\n', (4727, 4736), False, 'from collections import Counter\n'), ((3961, 3984), 'numpy.hstack', 'np.hstack', (['(hr_norm, b)'], {}), '((hr_norm, b))\n', (3970, 3984), True, 'import numpy as np\n'), ((4117, 4137), 'numpy.hstack', 'np.hstack', (['(goal, b)'], {}), '((goal, b))\n', (4126, 4137), True, 'import numpy as np\n')]
|
import pytest
import numpy
from pyckmeans.knee import KneeLocator
@pytest.mark.parametrize('direction', ['increasing', 'decreasing'])
@pytest.mark.parametrize('curve', ['convex', 'concave'])
def test_simple(direction, curve):
x = numpy.array([1.0, 2.0, 3.0 ,4.0, 5.0, 6.0, 7.0, 8.0, 9.0 ])
y = numpy.array([1.0, 2.2, 3.4, 4.5, 7.0, 10.0, 15.0, 22.0, 30.0])
kl_0 = KneeLocator(x, y, curve=curve, direction=direction, interp_method='interp1d')
print('kl_0.knee:', kl_0.knee)
print('kl_0.elbow:', kl_0.elbow)
print('kl_0.norm_elbow:', kl_0.norm_elbow)
print('kl_0.elbow_y:', kl_0.elbow_y)
print('kl_0.norm_elbow_y:', kl_0.norm_elbow_y)
print('kl_0.all_elbows:', kl_0.all_elbows)
print('kl_0.all_norm_elbows:', kl_0.all_norm_elbows)
print('kl_0.all_elbows_y:', kl_0.all_elbows_y)
print('kl_0.all_norm_elbows_y:', kl_0.all_norm_elbows_y)
kl_1 = KneeLocator(x, y, curve=curve, direction=direction, interp_method='polynomial')
with pytest.raises(ValueError):
KneeLocator(x, y, curve=curve, direction=direction, interp_method='XYZ')
|
[
"pytest.mark.parametrize",
"pytest.raises",
"pyckmeans.knee.KneeLocator",
"numpy.array"
] |
[((69, 135), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""direction"""', "['increasing', 'decreasing']"], {}), "('direction', ['increasing', 'decreasing'])\n", (92, 135), False, 'import pytest\n'), ((137, 192), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""curve"""', "['convex', 'concave']"], {}), "('curve', ['convex', 'concave'])\n", (160, 192), False, 'import pytest\n'), ((236, 294), 'numpy.array', 'numpy.array', (['[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0]'], {}), '([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0])\n', (247, 294), False, 'import numpy\n'), ((307, 369), 'numpy.array', 'numpy.array', (['[1.0, 2.2, 3.4, 4.5, 7.0, 10.0, 15.0, 22.0, 30.0]'], {}), '([1.0, 2.2, 3.4, 4.5, 7.0, 10.0, 15.0, 22.0, 30.0])\n', (318, 369), False, 'import numpy\n'), ((382, 459), 'pyckmeans.knee.KneeLocator', 'KneeLocator', (['x', 'y'], {'curve': 'curve', 'direction': 'direction', 'interp_method': '"""interp1d"""'}), "(x, y, curve=curve, direction=direction, interp_method='interp1d')\n", (393, 459), False, 'from pyckmeans.knee import KneeLocator\n'), ((899, 978), 'pyckmeans.knee.KneeLocator', 'KneeLocator', (['x', 'y'], {'curve': 'curve', 'direction': 'direction', 'interp_method': '"""polynomial"""'}), "(x, y, curve=curve, direction=direction, interp_method='polynomial')\n", (910, 978), False, 'from pyckmeans.knee import KneeLocator\n'), ((989, 1014), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (1002, 1014), False, 'import pytest\n'), ((1024, 1096), 'pyckmeans.knee.KneeLocator', 'KneeLocator', (['x', 'y'], {'curve': 'curve', 'direction': 'direction', 'interp_method': '"""XYZ"""'}), "(x, y, curve=curve, direction=direction, interp_method='XYZ')\n", (1035, 1096), False, 'from pyckmeans.knee import KneeLocator\n')]
|
# evaluate_hypotheses.py
# This script evaluates our preregistered hypotheses using
# the doctopics file produced by MALLET.
# This version of evaluate_hypotheses is redesigned to permit
# being called repeatedly as a function from measure_variation.
import sys, csv
import numpy as np
from scipy.spatial.distance import cosine
from collections import Counter
def getdoc(anid):
'''
Gets the docid part of a character id
'''
if '|' in anid:
thedoc = anid.split('|')[0]
elif '_' in anid:
thedoc = anid.split('|')[0]
else:
print('error', anid)
thedoc = anid
return thedoc
def understand_why(selfcomp, social, structural, hypidx, whethercorrect):
'''
We know whether the model got this hypothesis wrong or right.
Now, using the hypothesis-index (just its number in the list
of hypotheses), we want to assign credit or blame to the relevant
class of hypotheses.
'''
hypidx = int(hypidx)
if hypidx <= 6:
selfcomp[whethercorrect] += 1
if hypidx >= 7 and hypidx <= 46:
structural[whethercorrect] += 1
elif hypidx >= 47 and hypidx <= 56:
social[whethercorrect] += 1
elif hypidx >= 57 and hypidx <= 73:
structural[whethercorrect] += 1
elif hypidx >= 74 and hypidx <= 84:
social[whethercorrect] += 1
elif hypidx == 85 or hypidx == 86:
structural[whethercorrect] += 1
elif hypidx >= 87 and hypidx <= 92:
social[whethercorrect] += 1
elif hypidx >= 93:
selfcomp[whethercorrect] += 1
def evaluate_a_model(doctopic_path):
hypotheses = []
significant_persons = set()
with open('../../evaluation/hypotheses.tsv', encoding = 'utf-8') as f:
reader = csv.DictReader(f, delimiter = '\t')
for row in reader:
ids = [row['firstsim'], row['secondsim'], row['distractor']]
for anid in ids:
if '_' in anid:
anid = anid.replace('_', '|')
significant_persons.add(anid)
hypotheses.append(row)
numtopics = 0
chardict = dict()
with open(doctopic_path, encoding = 'utf-8') as f:
for line in f:
fields = line.strip().split('\t')
charid = fields[1]
if charid not in significant_persons:
continue
else:
vector = np.array(fields[2 : ], dtype = 'float32')
veclen = len(vector)
if numtopics == 0:
numtopics = veclen
elif numtopics != veclen:
print('error: should not change once set')
chardict[charid] = vector
right = 0
wrong = 0
answers = []
social = Counter()
structural = Counter()
selfcomp = Counter()
for idx, h in enumerate(hypotheses):
skip = False
ids = [h['firstsim'], h['secondsim'], h['distractor']]
first = chardict[h['firstsim']]
second = chardict[h['secondsim']]
distract = chardict[h['distractor']]
hypothesisnum = h['hypothesisnum']
pair_cos = cosine(first, second)
# first comparison
distraction1cos = cosine(first, distract)
if distraction1cos < pair_cos:
wrong += 1
understand_why(selfcomp, social, structural, hypothesisnum, 'wrong')
elif distraction1cos == pair_cos:
print('error')
else:
right += 1
understand_why(selfcomp, social, structural, hypothesisnum, 'right')
# second comparison
distraction2cos = cosine(second, distract)
if distraction2cos < pair_cos:
wrong += 1
understand_why(selfcomp, social, structural, hypothesisnum, 'wrong')
elif distraction2cos == pair_cos:
print('error')
else:
right += 1
understand_why(selfcomp, social, structural, hypothesisnum, 'right')
print('Cosine: ', right / (wrong + right))
total = right / (wrong + right)
selftotal = selfcomp['right'] / (selfcomp['wrong'] + selfcomp['right'])
soctotal = social['right'] / (social['wrong'] + social['right'])
structotal = structural['right'] / (structural['wrong'] + structural['right'])
return total, selftotal, soctotal, structotal
|
[
"csv.DictReader",
"collections.Counter",
"scipy.spatial.distance.cosine",
"numpy.array"
] |
[((2758, 2767), 'collections.Counter', 'Counter', ([], {}), '()\n', (2765, 2767), False, 'from collections import Counter\n'), ((2785, 2794), 'collections.Counter', 'Counter', ([], {}), '()\n', (2792, 2794), False, 'from collections import Counter\n'), ((2810, 2819), 'collections.Counter', 'Counter', ([], {}), '()\n', (2817, 2819), False, 'from collections import Counter\n'), ((1756, 1789), 'csv.DictReader', 'csv.DictReader', (['f'], {'delimiter': '"""\t"""'}), "(f, delimiter='\\t')\n", (1770, 1789), False, 'import sys, csv\n'), ((3138, 3159), 'scipy.spatial.distance.cosine', 'cosine', (['first', 'second'], {}), '(first, second)\n', (3144, 3159), False, 'from scipy.spatial.distance import cosine\n'), ((3215, 3238), 'scipy.spatial.distance.cosine', 'cosine', (['first', 'distract'], {}), '(first, distract)\n', (3221, 3238), False, 'from scipy.spatial.distance import cosine\n'), ((3628, 3652), 'scipy.spatial.distance.cosine', 'cosine', (['second', 'distract'], {}), '(second, distract)\n', (3634, 3652), False, 'from scipy.spatial.distance import cosine\n'), ((2399, 2436), 'numpy.array', 'np.array', (['fields[2:]'], {'dtype': '"""float32"""'}), "(fields[2:], dtype='float32')\n", (2407, 2436), True, 'import numpy as np\n')]
|
# 数据处理部分之前的代码,加入部分数据处理的库
import gzip
import json
import os
import random
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
import numpy as np
import paddle.fluid as fluid
import pandas as pd
from PIL import Image
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear
def load_data(mode='train'):
datafile = 'work/mnist.json.gz'
print('loading mnist dataset from {} ......'.format(datafile))
# 加载json数据文件
data = json.load(gzip.open(datafile))
print('mnist dataset load done')
# 读取到的数据区分训练集,验证集,测试集
train_set, val_set, eval_set = data
if mode == 'train':
# 获得训练数据集
imgs, labels = train_set[0], train_set[1]
elif mode == 'valid':
# 获得验证数据集
imgs, labels = val_set[0], val_set[1]
elif mode == 'eval':
# 获得测试数据集
imgs, labels = eval_set[0], eval_set[1]
else:
raise Exception("mode can only be one of ['train', 'valid', 'eval']")
print("{}-数据集数量: {}".format(mode, len(imgs)))
# 校验数据
imgs_length = len(imgs)
# 校验数据
assert len(imgs) == len(labels), \
"length of train_imgs({}) should be the same as train_labels({})".format(len(imgs), len(labels))
# 获得数据集长度
imgs_length = len(imgs)
# 定义数据集每个数据的序号,根据序号读取数据
index_list = list(range(imgs_length))
# 读入数据时用到的批次大小
BATCHSIZE = 100
IMG_ROWS = 28
IMG_COLS = 28
# 定义数据生成器
def data_generator():
if mode == 'train':
# 训练模式下打乱数据
random.shuffle(index_list)
imgs_list = []
labels_list = []
for i in index_list:
# 将数据处理成希望的格式,比如类型为float32,shape为[1, 28, 28]
img = np.reshape(imgs[i], [1, IMG_ROWS, IMG_COLS]).astype('float32')
label = np.reshape(labels[i], [1]).astype('int64')
imgs_list.append(img)
labels_list.append(label)
if len(imgs_list) == BATCHSIZE:
# 获得一个batchsize的数据,并返回
yield np.array(imgs_list), np.array(labels_list)
# 清空数据读取列表
imgs_list = []
labels_list = []
# 如果剩余数据的数目小于BATCHSIZE,
# 则剩余数据一起构成一个大小为len(imgs_list)的mini-batch
if len(imgs_list) > 0:
yield np.array(imgs_list), np.array(labels_list)
return data_generator
# 数据处理部分之后的代码,数据读取的部分调用Load_data函数
# 定义网络结构,同上一节所使用的网络结构
# 多层卷积神经网络实现
class MNIST(fluid.dygraph.Layer):
def __init__(self, name_scope):
super(MNIST, self).__init__(name_scope)
# 定义卷积层,输出特征通道num_filters设置为20,卷积核的大小filter_size为5,卷积步长stride=1,padding=2
# 激活函数使用relu
self.conv1 = Conv2D(num_channels=1, num_filters=20, filter_size=5, stride=1, padding=2, act='relu')
# 定义池化层,池化核pool_size=2,池化步长为2,选择最大池化方式
self.pool1 = Pool2D(pool_size=2, pool_stride=2, pool_type='max')
# 定义卷积层,输出特征通道num_filters设置为20,卷积核的大小filter_size为5,卷积步长stride=1,padding=2
self.conv2 = Conv2D(num_channels=20, num_filters=20, filter_size=5, stride=1, padding=2, act='relu')
# 定义池化层,池化核pool_size=2,池化步长为2,选择最大池化方式
self.pool2 = Pool2D(pool_size=2, pool_stride=2, pool_type='max')
# 定义一层全连接层,输出维度是1,不使用激活函数
self.fc = Linear(input_dim=980, output_dim=10, act="softmax")
# 定义网络前向计算过程,卷积后紧接着使用池化层,最后使用全连接层计算最终输出
def forward(self, inputs, label=None):
x = self.conv1(inputs)
x = self.pool1(x)
x = self.conv2(x)
x = self.pool2(x)
x = fluid.layers.reshape(x, [x.shape[0], -1])
x = self.fc(x)
# 如果label不是None,则计算分类精度并返回
if label is not None:
# print(label)
acc = fluid.layers.accuracy(input=x, label=label)
return x, acc
else:
return x
def trian_model():
# 训练配置,并启动训练过程
with fluid.dygraph.guard():
model = MNIST("mnist")
model.train()
# 调用加载数据的函数
train_loader = load_data('train')
# 创建异步数据读取器
place = fluid.CPUPlace()
data_loader = fluid.io.DataLoader.from_generator(capacity=5, return_list=True)
data_loader.set_batch_generator(train_loader, places=place)
optimizer = fluid.optimizer.SGDOptimizer(learning_rate=0.001, parameter_list=model.parameters())
EPOCH_NUM = 10
iter = 0
iters = []
losses = []
accs = []
for epoch_id in range(EPOCH_NUM):
for batch_id, data in enumerate(data_loader):
# 准备数据,变得更加简洁
image_data, label_data = data
image = fluid.dygraph.to_variable(image_data)
label = fluid.dygraph.to_variable(label_data)
# 前向计算的过程
predict, acc = model(image, label)
# 计算损失,取一个批次样本损失的平均值
# loss = fluid.layers.square_error_cost(predict, label)
# 损失函数改为交叉熵
loss = fluid.layers.cross_entropy(predict, label)
avg_loss = fluid.layers.mean(loss)
# 每训练了200批次的数据,打印下当前Loss的情况
if batch_id % 200 == 0:
print("epoch: {}, batch: {}, loss is: {}, acc is {}".format(epoch_id, batch_id, avg_loss.numpy(),
acc.numpy()))
iters.append(iter)
losses.append(avg_loss.numpy())
accs.append(acc.numpy())
iter = iter + 100
# show_trianning(iters, accs)
# 后向传播,更新参数的过程
avg_loss.backward()
optimizer.minimize(avg_loss)
model.clear_gradients()
show_trianning(iters, losses)
show_trianning(iters, accs)
# 保存模型参数
fluid.save_dygraph(model.state_dict(), 'mnist')
def show_trianning(iters, losses):
# 画出训练过程中Loss的变化曲线
plt.figure()
plt.title("trainning", fontsize=24)
plt.xlabel("iter", fontsize=14)
plt.ylabel("trainning", fontsize=14)
plt.plot(iters, losses, color='red', label='train loss')
plt.grid()
plt.show()
# 读取一张本地的样例图片,转变成模型输入的格式
def load_image(img_path):
# 从img_path中读取图像,并转为灰度图
im = Image.open(img_path).convert('L')
# im.show()
im = im.resize((28, 28), Image.ANTIALIAS)
im = np.array(im).reshape(1, 1, 28, 28).astype(np.float32)
# 图像归一化
im = 1.0 - im / 255.
return im
def eval_model():
# 定义预测过程
with fluid.dygraph.guard():
model = MNIST("mnist")
params_file_path = 'mnist'
img_path = r'work/example_0.png'
# 加载模型参数
model_dict, _ = fluid.load_dygraph("mnist")
model.load_dict(model_dict)
model.eval()
tensor_img = load_image(img_path)
# 模型反馈10个分类标签的对应概率
results = model(fluid.dygraph.to_variable(tensor_img))
# 取概率最大的标签作为预测输出
lab = np.argsort(results.numpy())
print(lab)
print("本次预测的数字是: ", lab[0][-1])
def show_test_img():
example = mpimg.imread('work/example_0.png')
# 显示图像
plt.imshow(example)
plt.show()
def test_model():
with fluid.dygraph.guard():
print('start evaluation .......')
# 加载模型参数
model = MNIST("mnist")
model_state_dict, _ = fluid.load_dygraph('mnist')
model.load_dict(model_state_dict)
model.eval()
eval_loader = load_data('eval')
acc_set = []
avg_loss_set = []
for batch_id, data in enumerate(eval_loader()):
x_data, y_data = data
img = fluid.dygraph.to_variable(x_data)
label = fluid.dygraph.to_variable(y_data)
prediction, acc = model(img, label)
loss = fluid.layers.cross_entropy(input=prediction, label=label)
avg_loss = fluid.layers.mean(loss)
acc_set.append(float(acc.numpy()))
avg_loss_set.append(float(avg_loss.numpy()))
# 计算多个batch的平均损失和准确率
acc_val_mean = np.array(acc_set).mean()
avg_loss_val_mean = np.array(avg_loss_set).mean()
print('loss={}, acc={}'.format(avg_loss_val_mean, acc_val_mean))
record_result(avg_loss_val_mean, acc_val_mean)
def record_result(avg_loss_val_mean, acc_val_mean):
result_path = r'results.csv'
if not os.path.exists(result_path):
result = pd.DataFrame(columns=('loss', 'acc'))
row = {'loss': avg_loss_val_mean, 'acc': acc_val_mean}
result = result.append(row, ignore_index=True)
result.to_csv('results.csv', index=True)
else:
result = pd.read_csv(result_path, index_col=[0])
row = {'loss': avg_loss_val_mean, 'acc': acc_val_mean}
result = result.append(row, ignore_index=True)
os.remove(result_path)
result.to_csv('results.csv', index=True)
print("record done")
if __name__ == '__main__':
# load_data()
# trian_model()
# show_test_img()
# eval_model()
# test_model()
for i in range(2):
trian_model()
# eval_model()
test_model()
|
[
"matplotlib.pyplot.title",
"os.remove",
"pandas.read_csv",
"random.shuffle",
"matplotlib.pyplot.figure",
"paddle.fluid.io.DataLoader.from_generator",
"paddle.fluid.dygraph.nn.Linear",
"paddle.fluid.layers.mean",
"pandas.DataFrame",
"matplotlib.pyplot.imshow",
"os.path.exists",
"paddle.fluid.dygraph.guard",
"numpy.reshape",
"paddle.fluid.layers.cross_entropy",
"matplotlib.image.imread",
"matplotlib.pyplot.show",
"paddle.fluid.layers.reshape",
"paddle.fluid.dygraph.nn.Pool2D",
"paddle.fluid.dygraph.to_variable",
"paddle.fluid.CPUPlace",
"paddle.fluid.dygraph.nn.Conv2D",
"matplotlib.pyplot.ylabel",
"matplotlib.pyplot.grid",
"paddle.fluid.layers.accuracy",
"gzip.open",
"matplotlib.pyplot.plot",
"PIL.Image.open",
"numpy.array",
"paddle.fluid.load_dygraph",
"matplotlib.pyplot.xlabel"
] |
[((4923, 4935), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (4933, 4935), True, 'import matplotlib.pyplot as plt\n'), ((4937, 4972), 'matplotlib.pyplot.title', 'plt.title', (['"""trainning"""'], {'fontsize': '(24)'}), "('trainning', fontsize=24)\n", (4946, 4972), True, 'import matplotlib.pyplot as plt\n'), ((4974, 5005), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""iter"""'], {'fontsize': '(14)'}), "('iter', fontsize=14)\n", (4984, 5005), True, 'import matplotlib.pyplot as plt\n'), ((5007, 5043), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""trainning"""'], {'fontsize': '(14)'}), "('trainning', fontsize=14)\n", (5017, 5043), True, 'import matplotlib.pyplot as plt\n'), ((5045, 5101), 'matplotlib.pyplot.plot', 'plt.plot', (['iters', 'losses'], {'color': '"""red"""', 'label': '"""train loss"""'}), "(iters, losses, color='red', label='train loss')\n", (5053, 5101), True, 'import matplotlib.pyplot as plt\n'), ((5103, 5113), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (5111, 5113), True, 'import matplotlib.pyplot as plt\n'), ((5115, 5125), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5123, 5125), True, 'import matplotlib.pyplot as plt\n'), ((5903, 5937), 'matplotlib.image.imread', 'mpimg.imread', (['"""work/example_0.png"""'], {}), "('work/example_0.png')\n", (5915, 5937), True, 'import matplotlib.image as mpimg\n'), ((5947, 5966), 'matplotlib.pyplot.imshow', 'plt.imshow', (['example'], {}), '(example)\n', (5957, 5966), True, 'import matplotlib.pyplot as plt\n'), ((5968, 5978), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5976, 5978), True, 'import matplotlib.pyplot as plt\n'), ((448, 467), 'gzip.open', 'gzip.open', (['datafile'], {}), '(datafile)\n', (457, 467), False, 'import gzip\n'), ((2282, 2372), 'paddle.fluid.dygraph.nn.Conv2D', 'Conv2D', ([], {'num_channels': '(1)', 'num_filters': '(20)', 'filter_size': '(5)', 'stride': '(1)', 'padding': '(2)', 'act': '"""relu"""'}), "(num_channels=1, num_filters=20, filter_size=5, stride=1, padding=2,\n act='relu')\n", (2288, 2372), False, 'from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear\n'), ((2425, 2476), 'paddle.fluid.dygraph.nn.Pool2D', 'Pool2D', ([], {'pool_size': '(2)', 'pool_stride': '(2)', 'pool_type': '"""max"""'}), "(pool_size=2, pool_stride=2, pool_type='max')\n", (2431, 2476), False, 'from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear\n'), ((2568, 2659), 'paddle.fluid.dygraph.nn.Conv2D', 'Conv2D', ([], {'num_channels': '(20)', 'num_filters': '(20)', 'filter_size': '(5)', 'stride': '(1)', 'padding': '(2)', 'act': '"""relu"""'}), "(num_channels=20, num_filters=20, filter_size=5, stride=1, padding=2,\n act='relu')\n", (2574, 2659), False, 'from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear\n'), ((2712, 2763), 'paddle.fluid.dygraph.nn.Pool2D', 'Pool2D', ([], {'pool_size': '(2)', 'pool_stride': '(2)', 'pool_type': '"""max"""'}), "(pool_size=2, pool_stride=2, pool_type='max')\n", (2718, 2763), False, 'from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear\n'), ((2804, 2855), 'paddle.fluid.dygraph.nn.Linear', 'Linear', ([], {'input_dim': '(980)', 'output_dim': '(10)', 'act': '"""softmax"""'}), "(input_dim=980, output_dim=10, act='softmax')\n", (2810, 2855), False, 'from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear\n'), ((3029, 3070), 'paddle.fluid.layers.reshape', 'fluid.layers.reshape', (['x', '[x.shape[0], -1]'], {}), '(x, [x.shape[0], -1])\n', (3049, 3070), True, 'import paddle.fluid as fluid\n'), ((3292, 3313), 'paddle.fluid.dygraph.guard', 'fluid.dygraph.guard', ([], {}), '()\n', (3311, 3313), True, 'import paddle.fluid as fluid\n'), ((3430, 3446), 'paddle.fluid.CPUPlace', 'fluid.CPUPlace', ([], {}), '()\n', (3444, 3446), True, 'import paddle.fluid as fluid\n'), ((3463, 3527), 'paddle.fluid.io.DataLoader.from_generator', 'fluid.io.DataLoader.from_generator', ([], {'capacity': '(5)', 'return_list': '(True)'}), '(capacity=5, return_list=True)\n', (3497, 3527), True, 'import paddle.fluid as fluid\n'), ((5438, 5459), 'paddle.fluid.dygraph.guard', 'fluid.dygraph.guard', ([], {}), '()\n', (5457, 5459), True, 'import paddle.fluid as fluid\n'), ((5579, 5606), 'paddle.fluid.load_dygraph', 'fluid.load_dygraph', (['"""mnist"""'], {}), "('mnist')\n", (5597, 5606), True, 'import paddle.fluid as fluid\n'), ((6005, 6026), 'paddle.fluid.dygraph.guard', 'fluid.dygraph.guard', ([], {}), '()\n', (6024, 6026), True, 'import paddle.fluid as fluid\n'), ((6124, 6151), 'paddle.fluid.load_dygraph', 'fluid.load_dygraph', (['"""mnist"""'], {}), "('mnist')\n", (6142, 6151), True, 'import paddle.fluid as fluid\n'), ((6995, 7022), 'os.path.exists', 'os.path.exists', (['result_path'], {}), '(result_path)\n', (7009, 7022), False, 'import os\n'), ((7035, 7072), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': "('loss', 'acc')"}), "(columns=('loss', 'acc'))\n", (7047, 7072), True, 'import pandas as pd\n'), ((7240, 7279), 'pandas.read_csv', 'pd.read_csv', (['result_path'], {'index_col': '[0]'}), '(result_path, index_col=[0])\n', (7251, 7279), True, 'import pandas as pd\n'), ((7388, 7410), 'os.remove', 'os.remove', (['result_path'], {}), '(result_path)\n', (7397, 7410), False, 'import os\n'), ((1336, 1362), 'random.shuffle', 'random.shuffle', (['index_list'], {}), '(index_list)\n', (1350, 1362), False, 'import random\n'), ((3168, 3211), 'paddle.fluid.layers.accuracy', 'fluid.layers.accuracy', ([], {'input': 'x', 'label': 'label'}), '(input=x, label=label)\n', (3189, 3211), True, 'import paddle.fluid as fluid\n'), ((5210, 5230), 'PIL.Image.open', 'Image.open', (['img_path'], {}), '(img_path)\n', (5220, 5230), False, 'from PIL import Image\n'), ((5728, 5765), 'paddle.fluid.dygraph.to_variable', 'fluid.dygraph.to_variable', (['tensor_img'], {}), '(tensor_img)\n', (5753, 5765), True, 'import paddle.fluid as fluid\n'), ((6358, 6391), 'paddle.fluid.dygraph.to_variable', 'fluid.dygraph.to_variable', (['x_data'], {}), '(x_data)\n', (6383, 6391), True, 'import paddle.fluid as fluid\n'), ((6403, 6436), 'paddle.fluid.dygraph.to_variable', 'fluid.dygraph.to_variable', (['y_data'], {}), '(y_data)\n', (6428, 6436), True, 'import paddle.fluid as fluid\n'), ((6486, 6543), 'paddle.fluid.layers.cross_entropy', 'fluid.layers.cross_entropy', ([], {'input': 'prediction', 'label': 'label'}), '(input=prediction, label=label)\n', (6512, 6543), True, 'import paddle.fluid as fluid\n'), ((6558, 6581), 'paddle.fluid.layers.mean', 'fluid.layers.mean', (['loss'], {}), '(loss)\n', (6575, 6581), True, 'import paddle.fluid as fluid\n'), ((3906, 3943), 'paddle.fluid.dygraph.to_variable', 'fluid.dygraph.to_variable', (['image_data'], {}), '(image_data)\n', (3931, 3943), True, 'import paddle.fluid as fluid\n'), ((3956, 3993), 'paddle.fluid.dygraph.to_variable', 'fluid.dygraph.to_variable', (['label_data'], {}), '(label_data)\n', (3981, 3993), True, 'import paddle.fluid as fluid\n'), ((4161, 4203), 'paddle.fluid.layers.cross_entropy', 'fluid.layers.cross_entropy', (['predict', 'label'], {}), '(predict, label)\n', (4187, 4203), True, 'import paddle.fluid as fluid\n'), ((4220, 4243), 'paddle.fluid.layers.mean', 'fluid.layers.mean', (['loss'], {}), '(loss)\n', (4237, 4243), True, 'import paddle.fluid as fluid\n'), ((6709, 6726), 'numpy.array', 'np.array', (['acc_set'], {}), '(acc_set)\n', (6717, 6726), True, 'import numpy as np\n'), ((6756, 6778), 'numpy.array', 'np.array', (['avg_loss_set'], {}), '(avg_loss_set)\n', (6764, 6778), True, 'import numpy as np\n'), ((1480, 1524), 'numpy.reshape', 'np.reshape', (['imgs[i]', '[1, IMG_ROWS, IMG_COLS]'], {}), '(imgs[i], [1, IMG_ROWS, IMG_COLS])\n', (1490, 1524), True, 'import numpy as np\n'), ((1554, 1580), 'numpy.reshape', 'np.reshape', (['labels[i]', '[1]'], {}), '(labels[i], [1])\n', (1564, 1580), True, 'import numpy as np\n'), ((1927, 1946), 'numpy.array', 'np.array', (['imgs_list'], {}), '(imgs_list)\n', (1935, 1946), True, 'import numpy as np\n'), ((1948, 1969), 'numpy.array', 'np.array', (['labels_list'], {}), '(labels_list)\n', (1956, 1969), True, 'import numpy as np\n'), ((5306, 5318), 'numpy.array', 'np.array', (['im'], {}), '(im)\n', (5314, 5318), True, 'import numpy as np\n'), ((1723, 1742), 'numpy.array', 'np.array', (['imgs_list'], {}), '(imgs_list)\n', (1731, 1742), True, 'import numpy as np\n'), ((1744, 1765), 'numpy.array', 'np.array', (['labels_list'], {}), '(labels_list)\n', (1752, 1765), True, 'import numpy as np\n')]
|
import abc
import logging.config
import os
import numpy as np
from rec_to_nwb.processing.time.continuous_time_extractor import \
ContinuousTimeExtractor
from rec_to_nwb.processing.time.timestamp_converter import TimestampConverter
path = os.path.dirname(os.path.abspath(__file__))
logging.config.fileConfig(
fname=os.path.join(str(path), os.pardir, os.pardir,
os.pardir, 'logging.conf'),
disable_existing_loggers=False)
logger = logging.getLogger(__name__)
class TimestampManager(abc.ABC):
def __init__(self, directories, continuous_time_directories):
self.directories = directories
self.continuous_time_directories = continuous_time_directories
self.continuous_time_extractor = ContinuousTimeExtractor()
self.timestamp_converter = TimestampConverter()
self.number_of_datasets = self._get_number_of_datasets()
self.file_lengths_in_datasets = self.__calculate_file_lengths_in_datasets()
@abc.abstractmethod
def _get_timestamps(self, dataset_id):
pass
def retrieve_real_timestamps(self, dataset_id, convert_timestamps=True):
timestamps_ids = self.read_timestamps_ids(dataset_id)
if not convert_timestamps:
return timestamps_ids
continuous_time = self.continuous_time_extractor.get_continuous_time_array_file(
self.continuous_time_directories[dataset_id])
return self.timestamp_converter.convert_timestamps(continuous_time, timestamps_ids)
def read_timestamps_ids(self, dataset_id):
return self._get_timestamps(dataset_id)
def get_final_data_shape(self):
return sum(self.file_lengths_in_datasets),
def get_number_of_datasets(self):
return self.number_of_datasets
def get_file_lengths_in_datasets(self):
return self.file_lengths_in_datasets
def __calculate_file_lengths_in_datasets(self):
return [self._get_data_shape(i) for i in range(self.number_of_datasets)]
def _get_number_of_datasets(self):
return np.shape(self.directories)[0]
def _get_data_shape(self, dataset_num):
return np.shape(self.read_timestamps_ids(dataset_num))[0]
|
[
"rec_to_nwb.processing.time.continuous_time_extractor.ContinuousTimeExtractor",
"numpy.shape",
"os.path.abspath",
"rec_to_nwb.processing.time.timestamp_converter.TimestampConverter"
] |
[((260, 285), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (275, 285), False, 'import os\n'), ((747, 772), 'rec_to_nwb.processing.time.continuous_time_extractor.ContinuousTimeExtractor', 'ContinuousTimeExtractor', ([], {}), '()\n', (770, 772), False, 'from rec_to_nwb.processing.time.continuous_time_extractor import ContinuousTimeExtractor\n'), ((808, 828), 'rec_to_nwb.processing.time.timestamp_converter.TimestampConverter', 'TimestampConverter', ([], {}), '()\n', (826, 828), False, 'from rec_to_nwb.processing.time.timestamp_converter import TimestampConverter\n'), ((2049, 2075), 'numpy.shape', 'np.shape', (['self.directories'], {}), '(self.directories)\n', (2057, 2075), True, 'import numpy as np\n')]
|
from numpy.random import seed
import tensorflow
def set_seed():
seed(1)
tensorflow.random.set_seed(2)
|
[
"tensorflow.random.set_seed",
"numpy.random.seed"
] |
[((69, 76), 'numpy.random.seed', 'seed', (['(1)'], {}), '(1)\n', (73, 76), False, 'from numpy.random import seed\n'), ((81, 110), 'tensorflow.random.set_seed', 'tensorflow.random.set_seed', (['(2)'], {}), '(2)\n', (107, 110), False, 'import tensorflow\n')]
|
import os
import utils
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from experiments_manager import ExperimentsManager
from sklearn.preprocessing import MinMaxScaler
from device_session_classifier import DeviceSessionClassifier
from device_sequence_classifier import DeviceSequenceClassifier
from device_classifier import DeviceClassifier
from multiple_device_classifier import MultipleDeviceClassifier
from sklearn import metrics
sns.set_style("white")
def eval_classifier(
classifier,
dataset,
model_name,
dataset_name,
classification_method,
seq_len,
opt_seq_len,
metrics_headers,
metrics_dir):
dataset_metrics, confusion_matrix = classifier.eval_on_dataset(dataset)
shape = dataset_metrics['class'].shape
dataset_metrics['device'] = np.full(shape, classifier.dev_name)
dataset_metrics['model'] = np.full(shape, model_name)
dataset_metrics['dataset'] = np.full(shape, dataset_name)
dataset_metrics['classification_method'] = np.full(shape, classification_method)
dataset_metrics['seq_len'] = np.full(shape, seq_len)
dataset_metrics['opt_seq_len'] = np.full(shape, opt_seq_len)
os.makedirs(metrics_dir, exist_ok=True)
conf_matrix_dir = os.path.join(metrics_dir, 'confusion_matrix')
os.makedirs(conf_matrix_dir, exist_ok=True)
metrics_csv = os.path.join(metrics_dir, 'metrics.csv')
confusion_matrix_csv = os.path.join(
conf_matrix_dir, '{}_{}_{}_{}.csv'.format(model_name, dataset_name, 'session', seq_len))
if os.path.exists(metrics_csv):
header = False
else:
header = metrics_headers
# dataset_metrics_df = pd.DataFrame({k: [v] for k, v in dataset_metrics.items()}, columns=metrics_headers)
dataset_metrics_df = pd.DataFrame(dataset_metrics, columns=metrics_headers)
dataset_metrics_df.to_csv(metrics_csv, mode='a', header=header, index=False)
pd.DataFrame(confusion_matrix).to_csv(confusion_matrix_csv)
def run_experiment_with_datasets_devices(exp, datasets, devices, models_dir, metrics_dir):
y_col = 'device_category'
use_cols = pd.read_csv(os.path.abspath('data/use_cols.csv'))
metrics_headers = list(pd.read_csv(os.path.abspath('data/metrics_headers.csv')))
for dataset_name in datasets:
print('@', dataset_name)
dataset = utils.load_data_from_csv('data/{}.csv'.format(dataset_name), use_cols=use_cols)
for dev_name in devices:
print('@@', dev_name)
for model_pkl in os.listdir(os.path.join(models_dir, dev_name)):
model_name = os.path.splitext(model_pkl)[0]
print('@@@', model_name)
exp(y_col, use_cols, metrics_headers, models_dir, metrics_dir, dataset_name, dataset, dev_name, model_pkl, model_name)
def run_multi_dev_experiments(datasets, dev_model_csv, pred_methods):
y_col = 'device_category'
use_cols = pd.read_csv(os.path.abspath('data/use_cols.csv'))
metrics_headers = list(pd.read_csv(os.path.abspath('data/metrics_headers.csv')))
dev_model_combos = pd.read_csv(dev_model_csv)
for dataset_name in datasets:
print('@', dataset_name)
dataset = utils.load_data_from_csv('data/{}.csv'.format(dataset_name), use_cols=use_cols)
for idx, dev_model_combo in dev_model_combos.iterrows():
print('@@', dev_model_combo)
for pred_method in pred_methods:
multi_dev_cls = MultipleDeviceClassifier(
dev_model_combo,
is_model_pkl=True,
pred_method=pred_method,
use_cols=use_cols,
y_col=y_col)
eval_classifier(
classifier=multi_dev_cls,
dataset=dataset,
model_name=dev_model_combo.to_dict(),
dataset_name=dataset_name,
classification_method='multi_dev',
seq_len=dev_model_combo.to_dict(),
opt_seq_len=dev_model_combo.to_dict(),
metrics_headers=metrics_headers,
metrics_dir=metrics_dir)
def dev_sess_cls_exp(
y_col,
use_cols,
metrics_headers,
models_dir,
metrics_dir,
dataset_name,
dataset,
dev_name,
model_pkl,
model_name):
# Device session classifier
print("@@@@ Device session classifier")
dev_sess_cls = DeviceSessionClassifier(
dev_name,
os.path.join(models_dir, dev_name, model_pkl),
is_model_pkl=True,
use_cols=use_cols,
y_col=y_col)
eval_classifier(
classifier=dev_sess_cls,
dataset=dataset,
model_name=model_name,
dataset_name=dataset_name,
classification_method='session',
seq_len=1,
opt_seq_len=1,
metrics_headers=metrics_headers,
metrics_dir=metrics_dir)
def dev_seq_cls_exp(
y_col,
use_cols,
metrics_headers,
models_dir,
metrics_dir,
dataset_name,
dataset,
dev_name,
model_pkl,
model_name):
# Device sequence classifier
print("@@@@ Device sequence classifier")
dev_seq_cls = DeviceSequenceClassifier(
dev_name,
os.path.join(models_dir, dev_name, model_pkl),
is_model_pkl=True,
use_cols=use_cols,
y_col=y_col)
if dataset_name == 'train':
update = True
else:
update = False
opt_seq_len = dev_seq_cls.find_opt_seq_len(dataset, update=update)
print('{} seq_length: {}, optimal sequence length: {}'
.format(dataset_name, dev_seq_cls.opt_seq_len, opt_seq_len))
eval_classifier(
classifier=dev_seq_cls,
dataset=dataset,
model_name=model_name,
dataset_name=dataset_name,
classification_method='sequence',
seq_len=dev_seq_cls.opt_seq_len,
opt_seq_len=opt_seq_len,
metrics_headers=metrics_headers,
metrics_dir=metrics_dir)
datasets = ['validation', 'test']
devices = list(pd.read_csv(os.path.abspath('data/devices.csv')))
models_dir = os.path.abspath('models')
metrics_dir = os.path.abspath('metrics/sess_cls')
run_experiment_with_datasets_devices(dev_sess_cls_exp, datasets, devices, models_dir, metrics_dir)
datasets = ['train', 'validation', 'test']
models_dir = os.path.abspath('models/best')
metrics_dir = os.path.abspath('metrics/seq_cls')
run_experiment_with_datasets_devices(dev_seq_cls_exp, datasets, devices, models_dir, metrics_dir)
opt_models_metrics_csv = os.path.join(metrics_dir,'metrics.csv')
opt_models_metrics = pd.read_csv(opt_models_metrics_csv)
train_metrics = opt_models_metrics.groupby('dataset').get_group('train')
dev_model_combos = {dev_name: [{'model': dev_metrics['model'], 'opt_seq_len': dev_metrics['opt_seq_len']}]
for dev_name, dev_metrics in train_metrics.groupby('device')}
multi_dev_models_dir = os.path.join('models/multi_dev')
os.makedirs(multi_dev_models_dir, exist_ok=True)
dev_model_csv = os.path.join(multi_dev_models_dir, 'dev_model.csv')
pd.DataFrame(dev_model_combos).to_csv(dev_model_csv)
pred_methods = ['first', 'random', 'all']
run_multi_dev_experiments(datasets, dev_model_csv, pred_methods)
print('YAYYY!!!')
#
# device = 'watch'
# other_device = 'watch'
# model_pkl = r'models/{0}/{0}_cart_entropy_100_samples_leaf.pkl'.format(device)
# dataset_csv = 'data/validation.csv'
# sc = DeviceSequenceClassifier(device, model_pkl, is_model_pkl=True)
#
# def perform_feature_scaling(x_train):
# scaler = MinMaxScaler()
# scaler.fit(x_train)
# return scaler.transform(x_train)
#
#
# m = sc.load_model_from_pkl(model_pkl)
#
# validation = sc.load_data_from_csv(dataset_csv)
#
#
# all_sess = sc.split_data(validation)[0]
# other_dev_sess = validation.groupby(sc.y_col).get_group(other_device)
# other_dev_sess = sc.split_data(other_dev_sess)[0]
#
# opt_seq_len = sc.find_opt_seq_len(validation)
# seqs = [other_dev_sess[i:i+seq_len] for i in range(len(other_dev_sess)-seq_len)]
#
# # seq_len = 1
# # seqs = [sessions[0:seq_len]]
#
# classification = 1 if device == other_device else 0
#
# y_actual = [classification] * 100
# x = m.predict(other_dev_sess)
# print(metrics.accuracy_score(y_actual,x))
# pred = sc.predict(seqs)
# y_actual = [classification] * len(seqs)
# print(metrics.accuracy_score(y_actual,pred))
# print(pred)
# print("YAYY!!")
|
[
"numpy.full",
"seaborn.set_style",
"os.path.abspath",
"pandas.DataFrame",
"os.makedirs",
"pandas.read_csv",
"os.path.exists",
"os.path.splitext",
"multiple_device_classifier.MultipleDeviceClassifier",
"os.path.join"
] |
[((480, 502), 'seaborn.set_style', 'sns.set_style', (['"""white"""'], {}), "('white')\n", (493, 502), True, 'import seaborn as sns\n'), ((6227, 6252), 'os.path.abspath', 'os.path.abspath', (['"""models"""'], {}), "('models')\n", (6242, 6252), False, 'import os\n'), ((6267, 6302), 'os.path.abspath', 'os.path.abspath', (['"""metrics/sess_cls"""'], {}), "('metrics/sess_cls')\n", (6282, 6302), False, 'import os\n'), ((6460, 6490), 'os.path.abspath', 'os.path.abspath', (['"""models/best"""'], {}), "('models/best')\n", (6475, 6490), False, 'import os\n'), ((6505, 6539), 'os.path.abspath', 'os.path.abspath', (['"""metrics/seq_cls"""'], {}), "('metrics/seq_cls')\n", (6520, 6539), False, 'import os\n'), ((6665, 6705), 'os.path.join', 'os.path.join', (['metrics_dir', '"""metrics.csv"""'], {}), "(metrics_dir, 'metrics.csv')\n", (6677, 6705), False, 'import os\n'), ((6726, 6761), 'pandas.read_csv', 'pd.read_csv', (['opt_models_metrics_csv'], {}), '(opt_models_metrics_csv)\n', (6737, 6761), True, 'import pandas as pd\n'), ((7049, 7081), 'os.path.join', 'os.path.join', (['"""models/multi_dev"""'], {}), "('models/multi_dev')\n", (7061, 7081), False, 'import os\n'), ((7082, 7130), 'os.makedirs', 'os.makedirs', (['multi_dev_models_dir'], {'exist_ok': '(True)'}), '(multi_dev_models_dir, exist_ok=True)\n', (7093, 7130), False, 'import os\n'), ((7147, 7198), 'os.path.join', 'os.path.join', (['multi_dev_models_dir', '"""dev_model.csv"""'], {}), "(multi_dev_models_dir, 'dev_model.csv')\n", (7159, 7198), False, 'import os\n'), ((871, 906), 'numpy.full', 'np.full', (['shape', 'classifier.dev_name'], {}), '(shape, classifier.dev_name)\n', (878, 906), True, 'import numpy as np\n'), ((938, 964), 'numpy.full', 'np.full', (['shape', 'model_name'], {}), '(shape, model_name)\n', (945, 964), True, 'import numpy as np\n'), ((998, 1026), 'numpy.full', 'np.full', (['shape', 'dataset_name'], {}), '(shape, dataset_name)\n', (1005, 1026), True, 'import numpy as np\n'), ((1074, 1111), 'numpy.full', 'np.full', (['shape', 'classification_method'], {}), '(shape, classification_method)\n', (1081, 1111), True, 'import numpy as np\n'), ((1145, 1168), 'numpy.full', 'np.full', (['shape', 'seq_len'], {}), '(shape, seq_len)\n', (1152, 1168), True, 'import numpy as np\n'), ((1206, 1233), 'numpy.full', 'np.full', (['shape', 'opt_seq_len'], {}), '(shape, opt_seq_len)\n', (1213, 1233), True, 'import numpy as np\n'), ((1238, 1277), 'os.makedirs', 'os.makedirs', (['metrics_dir'], {'exist_ok': '(True)'}), '(metrics_dir, exist_ok=True)\n', (1249, 1277), False, 'import os\n'), ((1300, 1345), 'os.path.join', 'os.path.join', (['metrics_dir', '"""confusion_matrix"""'], {}), "(metrics_dir, 'confusion_matrix')\n", (1312, 1345), False, 'import os\n'), ((1350, 1393), 'os.makedirs', 'os.makedirs', (['conf_matrix_dir'], {'exist_ok': '(True)'}), '(conf_matrix_dir, exist_ok=True)\n', (1361, 1393), False, 'import os\n'), ((1412, 1452), 'os.path.join', 'os.path.join', (['metrics_dir', '"""metrics.csv"""'], {}), "(metrics_dir, 'metrics.csv')\n", (1424, 1452), False, 'import os\n'), ((1598, 1625), 'os.path.exists', 'os.path.exists', (['metrics_csv'], {}), '(metrics_csv)\n', (1612, 1625), False, 'import os\n'), ((1829, 1883), 'pandas.DataFrame', 'pd.DataFrame', (['dataset_metrics'], {'columns': 'metrics_headers'}), '(dataset_metrics, columns=metrics_headers)\n', (1841, 1883), True, 'import pandas as pd\n'), ((3125, 3151), 'pandas.read_csv', 'pd.read_csv', (['dev_model_csv'], {}), '(dev_model_csv)\n', (3136, 3151), True, 'import pandas as pd\n'), ((2179, 2215), 'os.path.abspath', 'os.path.abspath', (['"""data/use_cols.csv"""'], {}), "('data/use_cols.csv')\n", (2194, 2215), False, 'import os\n'), ((2979, 3015), 'os.path.abspath', 'os.path.abspath', (['"""data/use_cols.csv"""'], {}), "('data/use_cols.csv')\n", (2994, 3015), False, 'import os\n'), ((4576, 4621), 'os.path.join', 'os.path.join', (['models_dir', 'dev_name', 'model_pkl'], {}), '(models_dir, dev_name, model_pkl)\n', (4588, 4621), False, 'import os\n'), ((5368, 5413), 'os.path.join', 'os.path.join', (['models_dir', 'dev_name', 'model_pkl'], {}), '(models_dir, dev_name, model_pkl)\n', (5380, 5413), False, 'import os\n'), ((6176, 6211), 'os.path.abspath', 'os.path.abspath', (['"""data/devices.csv"""'], {}), "('data/devices.csv')\n", (6191, 6211), False, 'import os\n'), ((7199, 7229), 'pandas.DataFrame', 'pd.DataFrame', (['dev_model_combos'], {}), '(dev_model_combos)\n', (7211, 7229), True, 'import pandas as pd\n'), ((1969, 1999), 'pandas.DataFrame', 'pd.DataFrame', (['confusion_matrix'], {}), '(confusion_matrix)\n', (1981, 1999), True, 'import pandas as pd\n'), ((2256, 2299), 'os.path.abspath', 'os.path.abspath', (['"""data/metrics_headers.csv"""'], {}), "('data/metrics_headers.csv')\n", (2271, 2299), False, 'import os\n'), ((3056, 3099), 'os.path.abspath', 'os.path.abspath', (['"""data/metrics_headers.csv"""'], {}), "('data/metrics_headers.csv')\n", (3071, 3099), False, 'import os\n'), ((2576, 2610), 'os.path.join', 'os.path.join', (['models_dir', 'dev_name'], {}), '(models_dir, dev_name)\n', (2588, 2610), False, 'import os\n'), ((3502, 3624), 'multiple_device_classifier.MultipleDeviceClassifier', 'MultipleDeviceClassifier', (['dev_model_combo'], {'is_model_pkl': '(True)', 'pred_method': 'pred_method', 'use_cols': 'use_cols', 'y_col': 'y_col'}), '(dev_model_combo, is_model_pkl=True, pred_method=\n pred_method, use_cols=use_cols, y_col=y_col)\n', (3526, 3624), False, 'from multiple_device_classifier import MultipleDeviceClassifier\n'), ((2642, 2669), 'os.path.splitext', 'os.path.splitext', (['model_pkl'], {}), '(model_pkl)\n', (2658, 2669), False, 'import os\n')]
|
from . import Cosmology, MassFunction, HaloPhysics
import numpy as np
from scipy.special import spherical_jn
from scipy.integrate import simps
class MassIntegrals:
"""
Class to compute and store the various mass integrals of the form
.. math::
I_p^{q_1,q_2}(k_1,...k_p) = \\int n(m)b^{(q_1)}(m)b^{(q_2)}\\frac{m^p}{\\rho_M^p}u(k_1|m)..u(k_p|m)dm
which are needed to compute the power spectrum model. Here :math:`b^{(q)}` is the q-th order bias (with :math:`b^{0}=1`),
:math:`u(k|m)` is the normalized halo profile and :math:`n(m)` is the mass function.
All integrals are performed via Simpson's rule over a specified mass range, and are simply returned if they are already computed.
For the :math:`I_1^{1,0} = I_1^1` integral, the integral must be corrected to ensure that we recover the bias consistency relation :math:`I_1^1 \\rightarrow 1` as :math:`k \\rightarrow 0`.
This requires an infinite mass range, so we instead approximate;
.. math::
I_1^1(k)_{\mathrm{corrected}} = I_1^1(k) + ( 1 - I_1^1(0) ) \\frac{u(k|m_min)}{u(k|0)}
for normalized halo profile :math:`u(k|m)`.
Note that this can also be used to compute :math:`{}_iJ_p^{q_1,q_2}` and :math:`{}_iK_p^{q_1,q_2}[f]` type integrals required for the exclusion counts covariance.
Args:
cosmology (Cosmology): Instance of the Cosmology class containing relevant cosmology and functions.
mass_function (MassFunction): Instance of the MassFunction class, containing the mass function and bias.
halo_physics (HaloPhysics): Instance of the HaloPhysics class, containing the halo profiles and concentrations.
kh_vector (np.ndarray): Array (or float) of wavenumbers in :math:`h\mathrm{Mpc}^{-1}` units from which to compute mass integrals.
Keyword Args:
min_logM_h (float): Minimum mass in :math:`\log_{10}(M/h^{-1}M_\mathrm{sun})` units, default: 6.001.
max_logM_h (float): Maximum mass in :math:`\log_{10}(M/h^{-1}M_\mathrm{sun})` units, default: 16.999.
npoints (int): Number of logarithmically spaced mass grid points, default: 10000.
verb (bool): If true output useful messages througout run-time, default: False.
"""
def __init__(self,cosmology,mass_function,halo_physics,kh_vector,min_logM_h=6.001, max_logM_h=16.999, npoints=int(1e4),verb=False,m_low=-1):
"""
Initialize the class with relevant model hyperparameters.
"""
# Write attributes, if they're of the correct type
if isinstance(cosmology, Cosmology):
self.cosmology = cosmology
else:
raise TypeError('cosmology input must be an instance of the Cosmology class!')
if isinstance(mass_function, MassFunction):
self.mass_function = mass_function
else:
raise TypeError('mass_function input must be an instance of the MassFunction class!')
if isinstance(halo_physics, HaloPhysics):
self.halo_physics = halo_physics
else:
raise TypeError('halo_physics input must be an instance of the HaloPhysics class!')
# Run some important checks
interp_min = self.halo_physics.min_logM_h
interp_max = self.halo_physics.max_logM_h
assert min_logM_h >= interp_min, 'Minimum mass must be greater than the interpolation limit (10^%.2f)'%interp_min
assert max_logM_h <= interp_max, 'Minimum mass must be less than the interpolation limit (10^%.2f)'%interp_max
# Save other attributes
self.min_logM_h = min_logM_h
self.max_logM_h = max_logM_h
self.npoints = npoints
self.verb = verb
# Define a mass vector for computations
self.logM_h_grid = np.linspace(self.min_logM_h,self.max_logM_h, self.npoints)
# Load and convert masses and wavenumbers
self.m_h_grid = 10.**self.logM_h_grid # in Msun/h
self.kh_vectors = kh_vector # in h/Mpc
self.N_k = len(self.kh_vectors) # define number of k points
def compute_I_00(self):
"""Compute the I_0^0 integral, if not already computed.
Returns:
float: Value of :math:`I_0^0`
"""
if not hasattr(self,'I_00'):
self.I_00 = simps(self._I_p_q1q2_integrand(0,0,0),self.logM_h_grid)
return self.I_00.copy()
def compute_I_01(self):
"""Compute the I_0^1 integral, if not already computed.
Returns:
float: Value of :math:`I_0^1`
"""
if not hasattr(self,'I_01'):
self.I_01 = simps(self._I_p_q1q2_integrand(0,1,0),self.logM_h_grid)
return self.I_01.copy()
def compute_I_02(self):
"""Compute the I_0^2 integral, if not already computed.
Returns:
float: Value of :math:`I_0^2`
"""
if not hasattr(self,'I_02'):
self.I_02 = simps(self._I_p_q1q2_integrand(0,2,0),self.logM_h_grid)
return self.I_02.copy()
def compute_I_10(self, apply_correction = False):
"""Compute the I_1^0 integral, if not already computed. Also apply the correction noted in the class header if required.
When computing :math:`{}_i J_1^1` type integrals (over a finite mass bin), the correction should *not* be applied.
Keyword Args:
apply_correction (bool): Whether to apply the correction in the class header to ensure the bias consistency relation is upheld.
Returns:
float: Array of :math:`I_1^0` values for each k.
"""
if not hasattr(self,'I_10'):
self.I_10 = simps(self._I_p_q1q2_integrand(1,0,0),self.logM_h_grid)
if apply_correction:
A = 1. - simps(self._I_p_q1q2_integrand(1,0,0,zero_k=True),self.logM_h_grid)
# compute window functions
min_m_h = np.power(10.,self.min_logM_h)
min_window = self.halo_physics.halo_profile(min_m_h,self.kh_vectors).ravel()
zero_window = self.halo_physics.halo_profile(min_m_h,0.).ravel()
self.I_10 += A*min_window/zero_window
return self.I_10.copy()
def compute_I_11(self,apply_correction = True):
"""Compute the :math:`I_1^1(k)` integral, if not already computed. Also apply the correction noted in the class header if required.
When computing :math:`{}_i J_1^1` type integrals (over a finite mass bin), the correction should *not* be applied.
Keyword Args:
apply_correction (bool): Whether to apply the correction in the class header to ensure the bias consistency relation is upheld.
Returns:
np.ndarray: Array of :math:`I_1^1` values for each k.
"""
if not hasattr(self,'I_11'):
# Compute the integral over the utilized mass range
self.I_11 = simps(self._I_p_q1q2_integrand(1,1,0),self.logM_h_grid,axis=1)
if apply_correction:
A = 1. - simps(self._I_p_q1q2_integrand(1,1,0,zero_k=True),self.logM_h_grid)
# compute window functions
min_m_h = np.power(10.,self.min_logM_h)
min_window = self.halo_physics.halo_profile(min_m_h,self.kh_vectors).ravel()
zero_window = self.halo_physics.halo_profile(min_m_h,0.).ravel()
self.I_11 += A*min_window/zero_window
return self.I_11.copy()
def compute_I_111(self):
"""Compute the :math:`I_1^{1,1}(k)` integral, if not already computed.
Returns:
np.ndarray: Array of :math:`I_1^{1,1}` values for each k.
"""
if not hasattr(self,'I_111'):
self.I_111 = simps(self._I_p_q1q2_integrand(1,1,1),self.logM_h_grid,axis=1)
return self.I_111.copy()
def compute_I_12(self,apply_correction = True):
"""Compute the :math:`I_1^2(k)` integral, if not already computed. Also apply the correction noted in the class header if required.
When computing :math:`{}_i J_1^2` type integrals (over a finite mass bin), the correction should *not* be applied.
Keyword Args:
apply_correction (bool): Whether to apply the correction in the class header to ensure the bias consistency relation is upheld.
Returns:
np.ndarray: Array of :math:`I_1^2` values for each k.
"""
if not hasattr(self,'I_12'):
self.I_12 = simps(self._I_p_q1q2_integrand(1,2,0),self.logM_h_grid)
if apply_correction:
A = - simps(self._I_p_q1q2_integrand(1,2,0,zero_k=True),self.logM_h_grid)
# compute window functions
min_m_h = np.power(10.,self.min_logM_h)
min_window = self.halo_physics.halo_profile(min_m_h,self.kh_vectors).ravel()
zero_window = self.halo_physics.halo_profile(min_m_h,0.).ravel()
self.I_12 += A*min_window/zero_window
return self.I_12.copy()
def compute_I_20(self):
"""Compute the :math:`I_2^0(k,k)` integral, if not already computed. Note that we assume both k-vectors are the same here.
Returns:
np.ndarray: Array of :math:`I_2^0` values for each k.
"""
if not hasattr(self,'I_20'):
self.I_20 = simps(self._I_p_q1q2_integrand(2,0,0),self.logM_h_grid,axis=1)
return self.I_20.copy()
def compute_I_21(self):
"""Compute the :math:`I_2^1(k,k)` integral, if not already computed. Note that we assume both k-vectors are the same here.
Returns:
np.ndarray: Array of :math:`I_2^1` values for each k.
"""
if not hasattr(self,'I_21'):
self.I_21 = simps(self._I_p_q1q2_integrand(2,1,0),self.logM_h_grid,axis=1)
return self.I_21.copy()
def _I_p_q1q2_integrand(self,p,q1,q2,zero_k=False):
"""Compute the integrand of the :math:`I_p^{q1,q2}` function defined in the class description.
This is done over the :math:`\log_{10}(M/h^{-1}M_\mathrm{sun}) grid defined in the __init__ function.
Note that this is the same as the integrand for the :math:`{}_i J_p^{q1,q2}` function (for integrals over a finite mass range).
It also assumes an integration variable :math:`\log_{10}(M/h^{-1}M_\mathrm{sun}) and integrates for each k in the k-vector specified in the class definition.
If zero_k is set, it returns the value of the integrand at :math:`k = 0` instead.
Args:
p (int): Number of halo profiles to include.
q1 (int): Order of the first bias term.
q2 (int): Order of the second bias term.
Keyword Args:
zero_k (bool): If True, return the integral evaluated at k = 0. Default: False.
"""
assert type(p)==type(q1)==type(q2)==int
if p==0:
fourier_profiles = 1.
else:
if zero_k:
fourier_profiles = np.power(self.halo_physics.halo_profile(self.m_h_grid,-1,norm_only=True),p)
else:
fourier_profiles = np.power(self._compute_fourier_profile(),p)
# Compute d(n(M))/d(log10(M/h^{-1}Msun))
dn_dlogm = self._compute_mass_function()
return dn_dlogm * fourier_profiles * self._return_bias(q1) * self._return_bias(q2)
def _compute_fourier_profile(self):
"""
Compute the halo profile :math:`m / \rho u(k|m)` for specified masses and k if not already computed.
Returns:
np.ndarray: array of :math:`m / \rho u(k|m)` values.
"""
if not hasattr(self,'fourier_profile'):
self.fourier_profile = self.halo_physics.halo_profile(self.m_h_grid,self.kh_vectors)
return self.fourier_profile.copy()
def _compute_mass_function(self):
"""Compute the mass function for specified masses if not already computed.
Returns:
np.ndarray: :math:`dn/d\log_{10}(M/h^{-1}M_\mathrm{sun})` array
"""
if not hasattr(self,'mass_function_grid'):
self.mass_function_grid = self.mass_function.mass_function(self.m_h_grid)
return self.mass_function_grid.copy()
def _compute_linear_bias(self):
"""Compute the linear bias function for specified masses if not already computed.
Returns:
np.ndarray: Array of Eulerian linear biases :math:`b_1^E(m)`
"""
if not hasattr(self,'linear_bias_grid'):
self.linear_bias_grid = self.mass_function.linear_halo_bias(self.m_h_grid)
return self.linear_bias_grid.copy()
def _compute_second_order_bias(self):
"""Compute the second order bias function for specified masses if not already computed.
Returns:
np.ndarray: Array of second order Eulerian biases :math:`b_2^E(m)`
"""
if not hasattr(self,'second_order_bias_grid'):
self.second_order_bias_grid = self.mass_function.second_order_bias(self.m_h_grid)
return self.second_order_bias_grid.copy()
def _return_bias(self,q):
"""Return the q-th order halo bias function for all masses in the self.logM_h_grid attribute.
Args:
q (int): Order of bias. Setting q = 0 returns unity. Currently only :math:`q\leq 2` is implemented.
Returns:
np.ndarray: Array of q-th order Eulerian biases.
"""
if q==0:
return 1.
elif q==1:
return self._compute_linear_bias()
elif q==2:
return self._compute_second_order_bias()
else:
raise Exception('%-th order bias not yet implemented!'%q)
def _K_p_q1q2_f_integrand(self,p,q1,q2,f_exclusion,alpha):
"""Compute the integrand of the :math:`{}_iK_p^{q1,q2}[f]` functions defined in Philcox et al. (2020).
This is done over the :math:`\log_{10}(M/h^{-1}M_\mathrm{sun}) grid defined in the __init__ function.
Note that the upper mass limit should be infinity (or some large value) for these types of integrals.
It also assumes an integration variable :math:`\log_{10}(M/h^{-1}M_\mathrm{sun}) and integrates for each k in the k-vector specified in the class definition.
If zero_k is set, it returns the value of the integrand at :math:`k = 0` instead.
Args:
p (int): Number of halo profiles to include.
q1 (int): Order of the first bias term.
q2 (int): Order of the second bias term.
f_exclusion (function): Arbitrary function of the exclusion radius :math:`R_\mathrm{ex}` to be included in the integrand.
alpha (float): Dimensionless ratio of exclusion to Lagrangian halo radius.
"""
assert type(p)==type(q1)==type(q2)==int
if p==0:
fourier_profiles = 1.
else:
fourier_profiles = np.power(self._compute_fourier_profile(),p)
# Compute exclusion radius
if not hasattr(self,'R_ex'):
R_ex = np.power(3.*self.m_h_grid/(4.*np.pi*self.cosmology.rhoM),1./3.)
R_ex += np.power(3.*min(self.m_h_grid)/(4.*np.pi*self.cosmology.rhoM),1./3.)
self.R_ex = R_ex.reshape(1,-1) * alpha
# Compute d(n(M))/d(log10(M/h^{-1}Msun))
dn_dlogm = self._compute_mass_function()
return dn_dlogm * fourier_profiles * self._return_bias(q1) * self._return_bias(q2) * f_exclusion(self.R_ex)
def compute_K_Theta_01(self,alpha):
"""Compute the :math:`K_0^1[\Theta](k)` integral, if not already computed. :math:`Theta` is the Fourier transform of the exclusion window function.
Arguments:
alpha (float): Dimensionless ratio of exclusion to Lagrangian halo radius
Returns:
np.ndarray: Array of :math:`K_0^1[\Theta](k)` values for each k.
"""
# Define function
Theta = lambda R: 4.*np.pi*R**2./self.kh_vectors.reshape(-1,1)*spherical_jn(1,self.kh_vectors.reshape(-1,1)*R)
if not hasattr(self,'K_Theta_01'):
self.K_Theta_01 = simps(self._K_p_q1q2_f_integrand(0,1,0,Theta,alpha),self.logM_h_grid,axis=1)
return self.K_Theta_01.copy()
def compute_K_Theta_10(self,alpha):
"""Compute the :math:`K_1^0[\Theta](k)` integral, if not already computed. :math:`Theta` is the Fourier transform of the exclusion window function.
Arguments:
alpha (float): Dimensionless ratio of exclusion to Lagrangian halo radius
Returns:
np.ndarray: Array of :math:`K_1^0[\Theta](k)` values for each k.
"""
# Define function
Theta = lambda R: 4.*np.pi*R**2./self.kh_vectors.reshape(-1,1)*spherical_jn(1,self.kh_vectors.reshape(-1,1)*R)
if not hasattr(self,'K_Theta_10'):
self.K_Theta_10 = simps(self._K_p_q1q2_f_integrand(1,0,0,Theta,alpha),self.logM_h_grid,axis=1)
return self.K_Theta_10.copy()
def compute_K_S_01(self,alpha, S_L_interpolator):
"""Compute the :math:`K_0^1[S](k)` integral, if not already computed. :math:`S` is the integral of the 2PCF windowed by the halo exclusion function of radius :math:`R_\mathrm{ex}``.
Arguments:
alpha (float): Dimensionless ratio of exclusion to Lagrangian halo radius
S_L_interpolator (interp1d): Interpolator for the linear :math:`S(R_\mathrm{ex})` function
Returns:
np.ndarray: Array of :math:`K_0^1[S](k)` values for each k.
"""
if not hasattr(self,'K_S_01'):
self.K_S_01 = simps(self._K_p_q1q2_f_integrand(0,1,0,S_L_interpolator,alpha),self.logM_h_grid,axis=1)
return self.K_S_01.copy()
def compute_K_S_21(self,alpha, S_NL_interpolator):
"""Compute the :math:`K_2^1[S](k)` integral, if not already computed. :math:`S` is the integral of the 2PCF windowed by the halo exclusion function of radius :math:`R_\mathrm{ex}``. Note this function uses the non-linear form.
Arguments:
alpha (float): Dimensionless ratio of exclusion to Lagrangian halo radius
S_NL_interpolator (interp1d): Interpolator for the non-linear :math:`S(R_\mathrm{ex})` function
Returns:
np.ndarray: Array of :math:`K_2^1[S](k)` values for each k.
"""
if not hasattr(self,'K_S_21'):
self.K_S_21 = simps(self._K_p_q1q2_f_integrand(2,1,0,S_NL_interpolator,alpha),self.logM_h_grid,axis=1)
return self.K_S_21.copy()
def compute_K_V_11(self,alpha):
"""Compute the :math:`K_1^1[V](k)` integral, if not already computed. :mathrm:`V` is the volume of the exclusion window function.
Arguments:
alpha (float): Dimensionless ratio of exclusion to Lagrangian halo radius
Returns:
np.ndarray: Array of :math:`K_1^1[V](k)` values for each k.
"""
# Define function
V = lambda R: 4.*np.pi*R**3./3.
if not hasattr(self,'K_V_11'):
self.K_V_11 = simps(self._K_p_q1q2_f_integrand(1,1,0,V,alpha),self.logM_h_grid,axis=1)
return self.K_V_11.copy()
def compute_K_V_20(self,alpha):
"""Compute the :math:`K_2^0[V](k)` integral, if not already computed. :mathrm:`V` is the volume of the exclusion window function.
Arguments:
alpha (float): Dimensionless ratio of exclusion to Lagrangian halo radius
Returns:
np.ndarray: Array of :math:`K_2^0[V](k)` values for each k.
"""
# Define function
V = lambda R: 4.*np.pi*R**3./3.
if not hasattr(self,'K_V_20'):
self.K_V_20 = simps(self._K_p_q1q2_f_integrand(2,0,0,V,alpha),self.logM_h_grid,axis=1)
return self.K_V_20.copy()
def compute_K_PTheta_11(self,alpha, PTheta_interpolator):
"""Compute the :math:`K_2^1[P \ast \Theta](k)` integral, if not already computed. :math:`\Theta` is the Fourier transform of the exclusion window function which is convolved with the power spectrum.
Arguments:
alpha (float): Dimensionless ratio of exclusion to Lagrangian halo radius
PTheta_interpolator (interp1d): Interpolator for the non-linear :math:`S(R_\mathrm{ex})` function
Returns:
np.ndarray: Array of :math:`K_1^1[P\ast \Theta](k)` values for each k.
"""
if not hasattr(self,'K_PTheta_11'):
self.K_PTheta_11 = simps(self._K_p_q1q2_f_integrand(1,1,0,PTheta_interpolator,alpha),self.logM_h_grid,axis=1)
return self.K_PTheta_11.copy()
|
[
"numpy.power",
"numpy.linspace"
] |
[((3743, 3802), 'numpy.linspace', 'np.linspace', (['self.min_logM_h', 'self.max_logM_h', 'self.npoints'], {}), '(self.min_logM_h, self.max_logM_h, self.npoints)\n', (3754, 3802), True, 'import numpy as np\n'), ((14928, 15006), 'numpy.power', 'np.power', (['(3.0 * self.m_h_grid / (4.0 * np.pi * self.cosmology.rhoM))', '(1.0 / 3.0)'], {}), '(3.0 * self.m_h_grid / (4.0 * np.pi * self.cosmology.rhoM), 1.0 / 3.0)\n', (14936, 15006), True, 'import numpy as np\n'), ((5844, 5875), 'numpy.power', 'np.power', (['(10.0)', 'self.min_logM_h'], {}), '(10.0, self.min_logM_h)\n', (5852, 5875), True, 'import numpy as np\n'), ((7095, 7126), 'numpy.power', 'np.power', (['(10.0)', 'self.min_logM_h'], {}), '(10.0, self.min_logM_h)\n', (7103, 7126), True, 'import numpy as np\n'), ((8639, 8670), 'numpy.power', 'np.power', (['(10.0)', 'self.min_logM_h'], {}), '(10.0, self.min_logM_h)\n', (8647, 8670), True, 'import numpy as np\n')]
|
import numpy as np
import pickle
import cv2
from sklearn.model_selection import train_test_split
import pickle
import tensorflow as tf
from tensorflow.keras import Sequential
from tensorflow.keras import layers
data = pickle.loads(open('output/embeddings.pickle', "rb").read())
x = d = np.array(data["embeddings"])
y = pickle.loads(open('./output/le.pickle', "rb").read()).fit_transform(data["names"])
x_train, x_test, y_train, y_test = train_test_split(x, y)
train_images = x_train / 255.0
test_images = x_test / 255.0
print(train_images.shape)
print(test_images.shape)
#
model = tf.keras.Sequential([
# tf.keras.layers.Flatten(input_shape=(11, 11)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dense(32, activation='relu'),
tf.keras.layers.Dense(14)
])
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
model.fit(train_images, y_train, epochs=120)
test_loss, test_acc = model.evaluate(test_images, y_test, verbose=2)
print('\nTest accuracy:', test_acc)
model.save('output/nn_model')
# f = open('output/', "wb")
# f.write(pickle.dumps(model))
# f.close()
|
[
"sklearn.model_selection.train_test_split",
"tensorflow.keras.losses.SparseCategoricalCrossentropy",
"numpy.array",
"tensorflow.keras.layers.Dense"
] |
[((287, 315), 'numpy.array', 'np.array', (["data['embeddings']"], {}), "(data['embeddings'])\n", (295, 315), True, 'import numpy as np\n'), ((440, 462), 'sklearn.model_selection.train_test_split', 'train_test_split', (['x', 'y'], {}), '(x, y)\n', (456, 462), False, 'from sklearn.model_selection import train_test_split\n'), ((667, 712), 'tensorflow.keras.layers.Dense', 'tf.keras.layers.Dense', (['(128)'], {'activation': '"""relu"""'}), "(128, activation='relu')\n", (688, 712), True, 'import tensorflow as tf\n'), ((718, 762), 'tensorflow.keras.layers.Dense', 'tf.keras.layers.Dense', (['(64)'], {'activation': '"""relu"""'}), "(64, activation='relu')\n", (739, 762), True, 'import tensorflow as tf\n'), ((768, 812), 'tensorflow.keras.layers.Dense', 'tf.keras.layers.Dense', (['(32)'], {'activation': '"""relu"""'}), "(32, activation='relu')\n", (789, 812), True, 'import tensorflow as tf\n'), ((818, 843), 'tensorflow.keras.layers.Dense', 'tf.keras.layers.Dense', (['(14)'], {}), '(14)\n', (839, 843), True, 'import tensorflow as tf\n'), ((900, 963), 'tensorflow.keras.losses.SparseCategoricalCrossentropy', 'tf.keras.losses.SparseCategoricalCrossentropy', ([], {'from_logits': '(True)'}), '(from_logits=True)\n', (945, 963), True, 'import tensorflow as tf\n')]
|
import autoarray as aa
import numpy as np
from test_autoarray.mock.mock_inversion import MockPixelizationGrid, MockRegMapper
class TestRegularizationinstance:
def test__regularization_matrix__compare_to_regularization_util(self):
pixel_neighbors = np.array(
[
[1, 3, 7, 2],
[4, 2, 0, -1],
[1, 5, 3, -1],
[4, 6, 0, -1],
[7, 1, 5, 3],
[4, 2, 8, -1],
[7, 3, 0, -1],
[4, 8, 6, -1],
[7, 5, -1, -1],
]
)
pixel_neighbors_size = np.array([4, 3, 3, 3, 4, 3, 3, 3, 2])
pixelization_grid = MockPixelizationGrid(
pixel_neighbors=pixel_neighbors, pixel_neighbors_size=pixel_neighbors_size
)
mapper = MockRegMapper(pixelization_grid=pixelization_grid)
reg = aa.reg.Constant(coefficient=1.0)
regularization_matrix = reg.regularization_matrix_from_mapper(mapper=mapper)
regularization_matrix_util = aa.util.regularization.constant_regularization_matrix_from_pixel_neighbors(
coefficient=1.0,
pixel_neighbors=pixel_neighbors,
pixel_neighbors_size=pixel_neighbors_size,
)
assert (regularization_matrix == regularization_matrix_util).all()
class TestRegularizationWeighted:
def test__weights__compare_to_regularization_util(self):
reg = aa.reg.AdaptiveBrightness(inner_coefficient=10.0, outer_coefficient=15.0)
pixel_signals = np.array([0.21, 0.586, 0.45])
mapper = MockRegMapper(pixel_signals=pixel_signals)
weights = reg.regularization_weights_from_mapper(mapper=mapper)
weights_util = aa.util.regularization.adaptive_regularization_weights_from_pixel_signals(
inner_coefficient=10.0, outer_coefficient=15.0, pixel_signals=pixel_signals
)
assert (weights == weights_util).all()
def test__regularization_matrix__compare_to_regularization_util(self):
reg = aa.reg.AdaptiveBrightness(
inner_coefficient=1.0, outer_coefficient=2.0, signal_scale=1.0
)
pixel_neighbors = np.array(
[
[1, 4, -1, -1],
[2, 4, 0, -1],
[3, 4, 5, 1],
[5, 2, -1, -1],
[5, 0, 1, 2],
[2, 3, 4, -1],
]
)
pixel_neighbors_size = np.array([2, 3, 4, 2, 4, 3])
pixel_signals = np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0])
pixelization_grid = MockPixelizationGrid(
pixel_neighbors=pixel_neighbors, pixel_neighbors_size=pixel_neighbors_size
)
mapper = MockRegMapper(
pixelization_grid=pixelization_grid, pixel_signals=pixel_signals
)
regularization_matrix = reg.regularization_matrix_from_mapper(mapper=mapper)
regularization_weights = aa.util.regularization.adaptive_regularization_weights_from_pixel_signals(
pixel_signals=pixel_signals, inner_coefficient=1.0, outer_coefficient=2.0
)
regularization_matrix_util = aa.util.regularization.weighted_regularization_matrix_from_pixel_neighbors(
regularization_weights=regularization_weights,
pixel_neighbors=pixel_neighbors,
pixel_neighbors_size=pixel_neighbors_size,
)
assert (regularization_matrix == regularization_matrix_util).all()
|
[
"autoarray.reg.AdaptiveBrightness",
"test_autoarray.mock.mock_inversion.MockRegMapper",
"autoarray.util.regularization.adaptive_regularization_weights_from_pixel_signals",
"autoarray.util.regularization.constant_regularization_matrix_from_pixel_neighbors",
"test_autoarray.mock.mock_inversion.MockPixelizationGrid",
"numpy.array",
"autoarray.reg.Constant",
"autoarray.util.regularization.weighted_regularization_matrix_from_pixel_neighbors"
] |
[((264, 412), 'numpy.array', 'np.array', (['[[1, 3, 7, 2], [4, 2, 0, -1], [1, 5, 3, -1], [4, 6, 0, -1], [7, 1, 5, 3], [\n 4, 2, 8, -1], [7, 3, 0, -1], [4, 8, 6, -1], [7, 5, -1, -1]]'], {}), '([[1, 3, 7, 2], [4, 2, 0, -1], [1, 5, 3, -1], [4, 6, 0, -1], [7, 1,\n 5, 3], [4, 2, 8, -1], [7, 3, 0, -1], [4, 8, 6, -1], [7, 5, -1, -1]])\n', (272, 412), True, 'import numpy as np\n'), ((622, 659), 'numpy.array', 'np.array', (['[4, 3, 3, 3, 4, 3, 3, 3, 2]'], {}), '([4, 3, 3, 3, 4, 3, 3, 3, 2])\n', (630, 659), True, 'import numpy as np\n'), ((689, 790), 'test_autoarray.mock.mock_inversion.MockPixelizationGrid', 'MockPixelizationGrid', ([], {'pixel_neighbors': 'pixel_neighbors', 'pixel_neighbors_size': 'pixel_neighbors_size'}), '(pixel_neighbors=pixel_neighbors, pixel_neighbors_size=\n pixel_neighbors_size)\n', (709, 790), False, 'from test_autoarray.mock.mock_inversion import MockPixelizationGrid, MockRegMapper\n'), ((826, 876), 'test_autoarray.mock.mock_inversion.MockRegMapper', 'MockRegMapper', ([], {'pixelization_grid': 'pixelization_grid'}), '(pixelization_grid=pixelization_grid)\n', (839, 876), False, 'from test_autoarray.mock.mock_inversion import MockPixelizationGrid, MockRegMapper\n'), ((892, 924), 'autoarray.reg.Constant', 'aa.reg.Constant', ([], {'coefficient': '(1.0)'}), '(coefficient=1.0)\n', (907, 924), True, 'import autoarray as aa\n'), ((1048, 1225), 'autoarray.util.regularization.constant_regularization_matrix_from_pixel_neighbors', 'aa.util.regularization.constant_regularization_matrix_from_pixel_neighbors', ([], {'coefficient': '(1.0)', 'pixel_neighbors': 'pixel_neighbors', 'pixel_neighbors_size': 'pixel_neighbors_size'}), '(\n coefficient=1.0, pixel_neighbors=pixel_neighbors, pixel_neighbors_size=\n pixel_neighbors_size)\n', (1122, 1225), True, 'import autoarray as aa\n'), ((1451, 1524), 'autoarray.reg.AdaptiveBrightness', 'aa.reg.AdaptiveBrightness', ([], {'inner_coefficient': '(10.0)', 'outer_coefficient': '(15.0)'}), '(inner_coefficient=10.0, outer_coefficient=15.0)\n', (1476, 1524), True, 'import autoarray as aa\n'), ((1550, 1579), 'numpy.array', 'np.array', (['[0.21, 0.586, 0.45]'], {}), '([0.21, 0.586, 0.45])\n', (1558, 1579), True, 'import numpy as np\n'), ((1598, 1640), 'test_autoarray.mock.mock_inversion.MockRegMapper', 'MockRegMapper', ([], {'pixel_signals': 'pixel_signals'}), '(pixel_signals=pixel_signals)\n', (1611, 1640), False, 'from test_autoarray.mock.mock_inversion import MockPixelizationGrid, MockRegMapper\n'), ((1738, 1898), 'autoarray.util.regularization.adaptive_regularization_weights_from_pixel_signals', 'aa.util.regularization.adaptive_regularization_weights_from_pixel_signals', ([], {'inner_coefficient': '(10.0)', 'outer_coefficient': '(15.0)', 'pixel_signals': 'pixel_signals'}), '(\n inner_coefficient=10.0, outer_coefficient=15.0, pixel_signals=pixel_signals\n )\n', (1811, 1898), True, 'import autoarray as aa\n'), ((2050, 2143), 'autoarray.reg.AdaptiveBrightness', 'aa.reg.AdaptiveBrightness', ([], {'inner_coefficient': '(1.0)', 'outer_coefficient': '(2.0)', 'signal_scale': '(1.0)'}), '(inner_coefficient=1.0, outer_coefficient=2.0,\n signal_scale=1.0)\n', (2075, 2143), True, 'import autoarray as aa\n'), ((2189, 2294), 'numpy.array', 'np.array', (['[[1, 4, -1, -1], [2, 4, 0, -1], [3, 4, 5, 1], [5, 2, -1, -1], [5, 0, 1, 2],\n [2, 3, 4, -1]]'], {}), '([[1, 4, -1, -1], [2, 4, 0, -1], [3, 4, 5, 1], [5, 2, -1, -1], [5, \n 0, 1, 2], [2, 3, 4, -1]])\n', (2197, 2294), True, 'import numpy as np\n'), ((2455, 2483), 'numpy.array', 'np.array', (['[2, 3, 4, 2, 4, 3]'], {}), '([2, 3, 4, 2, 4, 3])\n', (2463, 2483), True, 'import numpy as np\n'), ((2508, 2548), 'numpy.array', 'np.array', (['[1.0, 2.0, 3.0, 4.0, 5.0, 6.0]'], {}), '([1.0, 2.0, 3.0, 4.0, 5.0, 6.0])\n', (2516, 2548), True, 'import numpy as np\n'), ((2578, 2679), 'test_autoarray.mock.mock_inversion.MockPixelizationGrid', 'MockPixelizationGrid', ([], {'pixel_neighbors': 'pixel_neighbors', 'pixel_neighbors_size': 'pixel_neighbors_size'}), '(pixel_neighbors=pixel_neighbors, pixel_neighbors_size=\n pixel_neighbors_size)\n', (2598, 2679), False, 'from test_autoarray.mock.mock_inversion import MockPixelizationGrid, MockRegMapper\n'), ((2715, 2794), 'test_autoarray.mock.mock_inversion.MockRegMapper', 'MockRegMapper', ([], {'pixelization_grid': 'pixelization_grid', 'pixel_signals': 'pixel_signals'}), '(pixelization_grid=pixelization_grid, pixel_signals=pixel_signals)\n', (2728, 2794), False, 'from test_autoarray.mock.mock_inversion import MockPixelizationGrid, MockRegMapper\n'), ((2937, 3090), 'autoarray.util.regularization.adaptive_regularization_weights_from_pixel_signals', 'aa.util.regularization.adaptive_regularization_weights_from_pixel_signals', ([], {'pixel_signals': 'pixel_signals', 'inner_coefficient': '(1.0)', 'outer_coefficient': '(2.0)'}), '(\n pixel_signals=pixel_signals, inner_coefficient=1.0, outer_coefficient=2.0)\n', (3010, 3090), True, 'import autoarray as aa\n'), ((3146, 3353), 'autoarray.util.regularization.weighted_regularization_matrix_from_pixel_neighbors', 'aa.util.regularization.weighted_regularization_matrix_from_pixel_neighbors', ([], {'regularization_weights': 'regularization_weights', 'pixel_neighbors': 'pixel_neighbors', 'pixel_neighbors_size': 'pixel_neighbors_size'}), '(\n regularization_weights=regularization_weights, pixel_neighbors=\n pixel_neighbors, pixel_neighbors_size=pixel_neighbors_size)\n', (3220, 3353), True, 'import autoarray as aa\n')]
|
# Author: Ruthger
import logging
from typing import Optional, Tuple
import random
from PIL.Image import Image
import numpy as np
from keras.models import load_model
import h5py
from keras.preprocessing.image import img_to_array
import io
logger = logging.getLogger(__name__)
# Prediction result datatype, simply stores the name and freshness
class PredictionRes:
name: str
fresh: bool
def __init__(self, name: str, fresh: float) -> None:
self.name = name
self.fresh = fresh
# Utility function that extracts freshness and name components from a unified label, e.g. "freshApple"
def extract_label_components(name: str) -> Tuple[str, bool]:
rotten = True
if name.startswith("fresh"):
fruit_name = name.split("fresh")[-1]
rotten = False
if name.startswith("rotten"):
fruit_name = name.split("rotten")[-1]
return (fruit_name, not rotten)
# Partial abstract Classifier class, provides boiler plate for label conversion
# but implementors are expected to specialize _predict and _retrain;
class Classifier:
labels = {}
image_type: str
image_x: int
image_y: int
def __init__(self, labels, image_type, image_x, image_y) -> None:
self.labels = labels
self.image_type = image_type
self.image_x = image_x
self.image_y = image_y
def classify(self, image: Image) -> Optional[PredictionRes]:
res = self._predict(image)
if res == None:
logger.info("failed to predict")
return None
try:
fruit_name = self.labels[res]
except:
logger.info("Could not get the correct label")
fruit_name = "Unknown" # Means our labels don't match which is probably user error
fruit_name, fresh = extract_label_components(fruit_name)
return PredictionRes(fruit_name, fresh)
def _predict(self, _: Image) -> Optional[int]:
logger.info("BASE CLASSIFIER")
assert False
def retrain(self, images: list[Tuple[str, Image]]):
# Remap labels from text to internal numbers (since ML models work on numbers)
labels_swap = {}
for k,v in self.labels.items():
labels_swap[v] = k
mapped = [(labels_swap[image[0]], image[1]) for image in images]
return self._retrain(mapped)
def _retrain(self, _: list[Tuple[int, Image]]) -> None:
logger.info("BASE CLASSIFIER RETRAIN")
assert False
# Simple random clasifier, mainly serves for testing purposes, does not support retraining.
class RandomClassifier(Classifier):
def __init__(self, labels) -> None:
super().__init__(labels, "L", 0, 0)
def _predict(self, _: Image) -> Optional[int]:
logger.info("RANDOM CLASSIFIER")
return random.randrange(0, len(self.labels))
# Classifier implementation supporing keras models
# internally stored as an h5 file.
class KerasClassifier(Classifier):
model_bytes: bytes
# Loads the h5 file from memory and loads the actual keras model
def _load_model(self):
with h5py.File(io.BytesIO(self.model_bytes)) as h5:
return load_model(h5)
def __init__(self, h5: bytes, labels, image_type, image_x, image_y) -> None:
super().__init__(labels, image_type, image_x, image_y)
self.model_bytes = h5
# Load the model once to trigger any errors that may occur later
self._load_model()
# Converts the image into expected dimensions and encoding
def _fix_image(self, img: Image) -> Image:
return img.resize((self.image_x, self.image_y)).convert(self.image_type)
def _predict(self, image: Image) -> Optional[int]:
logger.info("KERAS CLASSIFIER")
model = self._load_model()
image = self._fix_image(image)
# wrap into a numpy array as predict expects a batch
img_data = np.array([img_to_array(image)])
try:
predictions = np.argmax(model.predict(img_data), axis=1)
except Exception as e:
logger.info("KERAS ERROR OOPS")
logger.info(e)
return None
return int(predictions[0])
def _retrain(self, images: list[Tuple[int, Image]]) -> Optional[Classifier]:
logger.info("KERAS CLASSIFIER RETRAIN")
try:
model = self._load_model()
# Transform the PIL images to expected format
X_train = np.asarray([img_to_array(self._fix_image(image[1])) for image in images])
Y_train = np.asarray([image[0] for image in images])
model.fit(X_train, Y_train, epochs=5)
# resave the model so that its a distinct new model
h5bytes = io.BytesIO(bytearray())
with h5py.File(h5bytes, mode='w') as h5:
model.save(h5)
# Create a new instance with the new h5, but pass the same meta data
return KerasClassifier(h5bytes.getvalue(), self.labels, self.image_type, self.image_x, self.image_y)
except Exception as e:
logger.info(e)
return None
# Classifier implementation for SciKit models,
# SciKit models themselves are also just pickled in storage, so no special conversion is needed
class SciKitClassifier(Classifier):
model = None
def __init__(self, model, labels, image_type, image_x, image_y) -> None:
super().__init__(labels, image_type, image_x, image_y)
self.model = model
def _predict(self, image: Image) -> Optional[int]:
logger.info("SCIKIT CLASSIFIER")
image = image.resize((self.image_x, self.image_y)).convert(self.image_type)
img_data = np.asarray(image.getdata(), dtype=np.int32).flatten()
return int(self.model.predict([img_data])[0])
def _retrain(self, _: list[Tuple[int, Image]]) -> None:
assert False, "SCIKIT RETRAIN IS NOT IMPLEMENTED YET"
|
[
"keras.models.load_model",
"io.BytesIO",
"h5py.File",
"numpy.asarray",
"keras.preprocessing.image.img_to_array",
"logging.getLogger"
] |
[((250, 277), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (267, 277), False, 'import logging\n'), ((3179, 3193), 'keras.models.load_model', 'load_model', (['h5'], {}), '(h5)\n', (3189, 3193), False, 'from keras.models import load_model\n'), ((4580, 4622), 'numpy.asarray', 'np.asarray', (['[image[0] for image in images]'], {}), '([image[0] for image in images])\n', (4590, 4622), True, 'import numpy as np\n'), ((3123, 3151), 'io.BytesIO', 'io.BytesIO', (['self.model_bytes'], {}), '(self.model_bytes)\n', (3133, 3151), False, 'import io\n'), ((3930, 3949), 'keras.preprocessing.image.img_to_array', 'img_to_array', (['image'], {}), '(image)\n', (3942, 3949), False, 'from keras.preprocessing.image import img_to_array\n'), ((4826, 4854), 'h5py.File', 'h5py.File', (['h5bytes'], {'mode': '"""w"""'}), "(h5bytes, mode='w')\n", (4835, 4854), False, 'import h5py\n')]
|
""" Module to analyze vessel pulsatility during the heart cycle in ecg-gated CT
radius change - area change - volume change
Authors: <NAME> and <NAME>. Created 2019.
"""
import os
import sys
import time
import openpyxl
import pirt
import numpy as np
import visvis as vv
from stentseg.utils.datahandling import select_dir, loadvol, loadmodel, loadmesh
from stentseg.stentdirect.stentgraph import create_mesh
from stentseg.motion.vis import create_mesh_with_abs_displacement
from stentseg.utils import PointSet, fitting
from lspeas.utils.vis import showModelsStatic
from lspeas.utils.deforminfo import DeformInfo
from lspeas.utils.curvature import measure_curvature #todo: check xyz vs zyx!
from lspeas.utils import meshlib
assert openpyxl.__version__ < "2.4", "Do pip install openpyxl==2.3.5"
#todo: move function to lspeas utils?
def load_excel_centerline(basedirCenterline, vol, ptcode, ctcode, filename=None):
""" Load centerline data from excel
Centerline exported from Terarecon; X Y Z coordinates in colums
"""
if filename is None:
filename = '{}_{}_centerline.xlsx'.format(ptcode,ctcode)
excel_location = os.path.join(basedirCenterline,ptcode)
#read sheet
try:
wb = openpyxl.load_workbook(os.path.join(excel_location,filename),read_only=True)
except FileNotFoundError:
wb = openpyxl.load_workbook(os.path.join(basedirCenterline,filename),read_only=True)
sheet = wb.get_sheet_by_name(wb.sheetnames[0]) # data on first sheet
colStart = 2 # col C
rowStart = 1 # row 2 excel
coordx = sheet.columns[colStart][rowStart:]
coordy = sheet.columns[colStart+1][rowStart:]
coordz = sheet.columns[colStart+2][rowStart:]
#convert to values
coordx = [obj.value for obj in coordx]
coordy = [obj.value for obj in coordy]
coordz = [obj.value for obj in coordz]
#from list to array
centerlineX = np.asarray(coordx, dtype=np.float32)
centerlineY = np.asarray(coordy, dtype=np.float32)
centerlineZ = np.asarray(coordz, dtype=np.float32)
centerlineZ = np.flip(centerlineZ, axis=0) # z of volume is also flipped
# convert centerline coordinates to world coordinates (mm)
origin = vol1.origin # z,y,x
sampling = vol1.sampling # z,y,x
centerlineX = centerlineX*sampling[2] +origin[2]
centerlineY = centerlineY*sampling[1] +origin[1]
centerlineZ = (centerlineZ-0.5*vol1.shape[0])*sampling[0] + origin[0]
return centerlineX, centerlineY, centerlineZ
# Select the ssdf basedir
basedir = select_dir(
os.getenv('LSPEAS_BASEDIR', ''),
r'D:\LSPEAS\LSPEAS_ssdf',
r'F:\LSPEAS_ssdf_backup',
r'F:\LSPEAS_ssdf_BACKUP')
basedirMesh = select_dir(
r'D:\Profiles\koenradesma\SURFdrive\UTdrive\MedDataMimics\LSPEAS_Mimics',
r'C:\Users\Maaike\SURFdrive\UTdrive\MedDataMimics\LSPEAS_Mimics',
r"C:\stack\data\lspeas\vaatwand")
basedirCenterline = select_dir(
r"C:\stack\data\lspeas\vaatwand",
r'D:\Profiles\koenradesma\SURFdrive\UTdrive\LSPEAS_centerlines_terarecon',
r'C:\Users\Maaike\SURFdrive\UTdrive\LSPEAS_centerlines_terarecon',
r"C:\stack\data\lspeas\vaatwand")
# Select dataset
ptcode = 'LSPEAS_003'
ctcode1 = 'discharge'
cropname = 'ring'
modelname = 'modelavgreg'
cropvol = 'stent'
drawModelLines = False # True or False
drawRingMesh, ringMeshDisplacement = True, False
meshColor = [(1,1,0,1)]
removeStent = True # for iso visualization
dimensions = 'xyz'
showAxis = False
showVol = 'ISO' # MIP or ISO or 2D or None
showvol2D = False
drawVessel = True
clim = (0,2500)
clim2D = -200,500 # MPR
clim2 = (0,2)
isoTh = 180 # 250
## Load data
# Load CT image data for reference, and deform data to measure motion
try:
# If we run this script without restart, we can re-use volume and deforms
vol1
deforms
except NameError:
vol1 = loadvol(basedir, ptcode, ctcode1, cropvol, 'avgreg').vol
s_deforms = loadvol(basedir, ptcode, ctcode1, cropvol, 'deforms')
deforms = [s_deforms[key] for key in dir(s_deforms) if key.startswith('deform')]
deforms = [pirt.DeformationFieldBackward(*fields) for fields in deforms]
# Load vessel mesh (mimics)
# We make sure that it is a mesh without faces, which makes our sampling easier
try:
ppvessel
except NameError:
# Load mesh with visvis, then put in our meshlib.Mesh() and let it ensure that
# the mesh is closed, check the winding, etc. so that we can cut it with planes,
# and reliably calculate volume.
filename = '{}_{}_neck.stl'.format(ptcode,ctcode1)
vesselMesh = loadmesh(basedirMesh, ptcode[-3:], filename) #inverts Z
vv.processing.unwindFaces(vesselMesh)
vesselMesh = meshlib.Mesh(vesselMesh._vertices)
vesselMesh.ensure_closed()
ppvessel = PointSet(vesselMesh.get_flat_vertices()) # Must be flat!
# Load ring model
try:
modelmesh1
except NameError:
s1 = loadmodel(basedir, ptcode, ctcode1, cropname, modelname)
if drawRingMesh:
if not ringMeshDisplacement:
modelmesh1 = create_mesh(s1.model, 0.7) # Param is thickness
else:
modelmesh1 = create_mesh_with_abs_displacement(s1.model, radius = 0.7, dim=dimensions)
# Load vessel centerline (excel terarecon) (is very fast)
centerline = PointSet(np.column_stack(
load_excel_centerline(basedirCenterline, vol1, ptcode, ctcode1, filename=None)))
## Setup visualization
# Show ctvolume, vessel mesh, ring model - this uses figure 1 and clears it
axes1, cbars = showModelsStatic(ptcode, ctcode1, [vol1], [s1], [modelmesh1],
[vv.BaseMesh(*vesselMesh.get_vertices_and_faces())],
showVol, clim, isoTh, clim2, clim2D, drawRingMesh,
ringMeshDisplacement, drawModelLines, showvol2D, showAxis,
drawVessel, vesselType=1,
climEditor=True, removeStent=removeStent, meshColor=meshColor)
axes1 = axes1[0]
axes1.position = 0, 0, 0.6, 1
# Show or hide the volume (showing is nice, but also slows things down)
tex3d = axes1.wobjects[1]
tex3d.visible = False
# VesselMeshes
vesselVisMesh1 = axes1.wobjects[4]
vesselVisMesh1.cullFaces = "front" # Show the back
# vesselVisMesh2 = vv.Mesh(axes1, *vesselMesh.get_vertices_and_faces())
vesselVisMesh2 = vv.Mesh(axes1, np.zeros((6, 3), np.float32), np.zeros((3, 3), np.int32))
vesselVisMesh2.cullFaces = "back"
vesselVisMesh2.faceColor = "red"
# Show the centerline
vv.plot(centerline, ms='.', ls='', mw=8, mc='b', alpha=0.5)
# Initialize 2D view
axes2 = vv.Axes(vv.gcf())
axes2.position = 0.65, 0.05, 0.3, 0.4
axes2.daspectAuto = False
axes2.camera = '2d'
axes2.axis.showGrid = True
axes2.axis.axisColor = 'k'
# Initialize axes to put widgets and labels in
container = vv.Wibject(vv.gcf())
container.position = 0.65, 0.5, 0.3, 0.5
# Create labels to show measurements
labelpool = []
for i in range(16):
label = vv.Label(container)
label.fontSize = 11
label.position = 10, 100 + 25 * i, -20, 25
labelpool.append(label)
# Initialize sliders and buttons
slider_ref = vv.Slider(container, fullRange=(1, len(centerline)-2), value=10)
slider_ves = vv.Slider(container, fullRange=(1, len(centerline)-2), value=10)
button_go = vv.PushButton(container, "Take all measurements (incl. volume)")
slider_ref.position = 10, 5, -20, 25
slider_ves.position = 10, 40, -20, 25
button_go.position = 10, 70, -20, 25
button_go.bgcolor = slider_ref.bgcolor = slider_ves.bgcolor = 0.8, 0.8, 1.0
# Initialize line objects for showing the plane orthogonal to centerline
slider_ref.line_plane = vv.plot([], [], [], axes=axes1, ls='-', lw=3, lc='w', alpha = 0.9)
slider_ves.line_plane = vv.plot([], [], [], axes=axes1, ls='-', lw=3, lc='y', alpha = 0.9)
# Initialize line objects for showing selected points close to that plane
slider_ref.line_3d = vv.plot([], [], [], axes=axes1, ms='.', ls='', mw=8, mc='w', alpha = 0.9)
slider_ves.line_3d = vv.plot([], [], [], axes=axes1, ms='.', ls='', mw=8, mc='y', alpha = 0.9)
# Initialize line objects for showing selected points and ellipse in 2D
line_2d = vv.plot([], [], axes=axes2, ms='.', ls='', mw=8, mc='y')
line_ellipse1 = vv.plot([], [], axes=axes2, ms='', ls='-', lw=2, lc='b')
line_ellipse2 = vv.plot([], [], axes=axes2, ms='', ls='+', lw=2, lc='b')
## Functions to update visualization and do measurements
def get_plane_points_from_centerline_index(i):
""" Get a set of points that lie on the plane orthogonal to the centerline
at the given index. The points are such that they can be drawn as a line for
visualization purposes. The plane equation can be obtained via a plane-fit.
"""
if True:
# Cubic fit of the centerline
i = max(1.1, min(i, centerline.shape[0] - 2.11))
# Sample center point and two points right below/above, using
# "cardinal" interpolating (C1-continuous), or "basic" approximating (C2-continious).
pp = []
for j in [i - 0.1, i, i + 0.1]:
index = int(j)
t = j - index
coefs = pirt.interp.get_cubic_spline_coefs(t, "basic")
samples = centerline[index - 1], centerline[index], centerline[index + 1], centerline[index + 2]
pp.append(samples[0] * coefs[0] + samples[1] * coefs[1] + samples[2] * coefs[2] + samples[3] * coefs[3])
# Get center point and vector pointing down the centerline
p = pp[1]
vec1 = (pp[2] - pp[1]).normalize()
else:
# Linear fit of the centerline
i = max(0, min(i, centerline.shape[0] - 2))
index = int(i)
t = i - index
# Sample two points of interest
pa, pb = centerline[index], centerline[index + 1]
# Get center point and vector pointing down the centerline
p = t * pb + (1 - t) * pa
vec1 = (pb - pa).normalize()
# Get two orthogonal vectors that define the plane that is orthogonal
# to the above vector. We can use an arbitrary vector to get the first,
# but there is a tiiiiiny chance that it is equal to vec1 so that the
# normal collapese.
vec2 = vec1.cross([0, 1, 0])
if vec2.norm() == 0:
vec2 = vec1.cross((1, 0, 0))
vec3 = vec1.cross(vec2)
# Sample some point on the plane and get the plane's equation
pp = PointSet(3)
radius = 6
pp.append(p)
for t in np.linspace(0, 2 * np.pi, 12):
pp.append(p + np.sin(t) * radius * vec2 + np.cos(t) * radius * vec3)
return pp
def get_vessel_points_from_plane_points(pp):
""" Select points from the vessel points that are very close to the plane
defined by the given plane points. Returns a 2D and a 3D point set.
"""
abcd = fitting.fit_plane(pp)
# Get 2d and 3d coordinates of points that lie (almost) on the plane
# pp2 = fitting.project_to_plane(ppvessel, abcd)
# pp3 = fitting.project_from_plane(pp2, abcd)
signed_distances = fitting.signed_distance_to_plane(ppvessel, abcd)
distances = np.abs(signed_distances)
# Select points to consider. This is just to reduce the search space somewhat.
selection = np.where(distances < 5)[0]
# We assume that each tree points in ppvessel makes up a triangle (face)
# We make sure of that when we load the mesh.
# Select first index of each face (every 3 vertices is 1 face), and remove duplicates
selection_faces = set(3 * (selection // 3))
# Now iterate over the faces (triangles), and check each edge. If the two
# points are on different sides of the plane, then we interpolate on the
# edge to get the exact spot where the edge intersects the plane.
sampled_pp3 = PointSet(3)
visited_edges = set()
for fi in selection_faces: # for each face index
for edge in [(fi + 0, fi + 1), (fi + 0, fi + 2), (fi + 1, fi + 2)]:
if signed_distances[edge[0]] * signed_distances[edge[1]] < 0:
if edge not in visited_edges:
visited_edges.add(edge)
d1, d2 = distances[edge[0]], distances[edge[1]]
w1, w2 = d2 / (d1 + d2), d1 / (d1 + d2)
p = w1 * ppvessel[edge[0]] + w2 * ppvessel[edge[1]]
sampled_pp3.append(p)
return fitting.project_to_plane(sampled_pp3, abcd), sampled_pp3
def get_distance_along_centerline():
""" Get the distance along the centerline between the two reference points,
(using linear interpolation at the ends).
"""
i1 = slider_ref.value
i2 = slider_ves.value
index1 = int(np.ceil(i1))
index2 = int(np.floor(i2))
t1 = i1 - index1 # -1 < t1 <= 0
t2 = i2 - index2 # 0 <= t2 < 1
dist = 0
dist += -t1 * (centerline[index1] - centerline[index1 - 1]).norm()
dist += +t2 * (centerline[index2] - centerline[index2 + 1]).norm()
for index in range(index1, index2):
dist += (centerline[index + 1] - centerline[index]).norm()
return float(dist)
def triangle_area(p1, p2, p3):
""" Calcualate triangle area based on its three vertices.
"""
# Use Heron's formula to calculate a triangle's area
# https://www.mathsisfun.com/geometry/herons-formula.html
a = p1.distance(p2)
b = p2.distance(p3)
c = p3.distance(p1)
s = (a + b + c) / 2
return (s * (s - a) * (s - b) * (s - c)) ** 0.5
def deform_points_2d(pp2, plane):
""" Given a 2D pointset (and the plane that they are on),
return a list with the deformed versions of that pointset.
"""
pp3 = fitting.project_from_plane(pp2, plane) #todo: shouldn't origin be subtracted?! see dynamic.py
deformed = []
for phase in range(len(deforms)):
deform = deforms[phase]
dx = deform.get_field_in_points(pp3, 0) #todo: shouldn't this be z=0 y=1 x=2! see dynamic.py; adapt in all functions?!
dy = deform.get_field_in_points(pp3, 1)
dz = deform.get_field_in_points(pp3, 2)
deform_vectors = PointSet(np.stack([dx, dy, dz], 1))
pp3_deformed = pp3 + deform_vectors
deformed.append(fitting.project_to_plane(pp3_deformed, plane))
return deformed
def measure_centerline_strain():
""" Measure the centerline strain.
"""
i1 = slider_ref.value
i2 = slider_ves.value
# Get the centerline section of interest
index1 = int(np.ceil(i1))
index2 = int(np.floor(i2))
section = centerline[index1:index2 + 1]
# get this section of the centerline for each phase
sections = []
for phase in range(len(deforms)):
deform = deforms[phase]
dx = deform.get_field_in_points(section, 0)
dy = deform.get_field_in_points(section, 1)
dz = deform.get_field_in_points(section, 2)
deform_vectors = PointSet(np.stack([dx, dy, dz], 1))
sections.append(section + deform_vectors)
# Measure the strain of the full section, by measuring the total length in each phase.
lengths = []
for phase in range(len(deforms)):
section = sections[phase]
length = sum(float(section[i].distance(section[i + 1]))
for i in range(len(section) - 1))
lengths.append(length)
if min(lengths) == 0:
return 0
else:
# Strain as delta-length divided by initial length
return (max(lengths) - min(lengths)) / min(lengths)
# ... or as what Wikipedia calls "stretch ratio">
# return max(lengths) / min(lengths)
def take_measurements(measure_volume_change):
""" This gets called when the slider is releases. We take measurements and
update the corresponding texts and visualizations.
"""
# Get points that form the contour of the vessel in 2D
pp = get_plane_points_from_centerline_index(slider_ves.value)
pp2, pp3 = get_vessel_points_from_plane_points(pp)
plane = pp2.plane
# Collect measurements in a dict. That way we can process it in one step at the end
measurements = {}
# Store slider positions, so we can reproduce this measurement later
measurements["centerline indices"] = slider_ref.value, slider_ves.value
# Early exit?
if len(pp2) == 0:
line_2d.SetPoints(pp2)
line_ellipse1.SetPoints(pp2)
line_ellipse2.SetPoints(pp2)
vesselVisMesh2.SetFaces(np.zeros((3, 3), np.int32))
vesselVisMesh2.SetNormals(None)
process_measurements(measurements)
return
# Measure length of selected part of the centerline and the strain in that section
measurements["centerline distance"] = get_distance_along_centerline()
measurements["centerline strain"] = measure_centerline_strain()
# Measure centerline curvature
curvature_mean, curvature_max, curvature_max_pos, curvature_max_change = measure_curvature(centerline, deforms)
measurements["curvature mean"] = DeformInfo(curvature_mean)
measurements["curvature max"] = DeformInfo(curvature_max)
measurements["curvature max pos"] = DeformInfo(curvature_max_pos)
measurements["curvature max change"] = curvature_max_change
# Get ellipse and its center point
ellipse = fitting.fit_ellipse(pp2)
p0 = PointSet([ellipse[0], ellipse[1]])
# Sample ellipse to calculate its area
pp_ellipse = fitting.sample_ellipse(ellipse, 256) # results in N + 1 points
area = 0
for i in range(len(pp_ellipse)-1):
area += triangle_area(p0, pp_ellipse[i], pp_ellipse[i + 1])
# measurements["reference area"] = float(area)
# Do a quick check to be sure that this triangle-approximation is close enough
assert abs(area - fitting.area(ellipse)) < 2, "area mismatch" # mm2 typically ~ 0.1 mm2
# Measure ellipse area (and how it changes)
measurements["ellipse area"] = DeformInfo(unit="mm2")
for pp_ellipse_def in deform_points_2d(pp_ellipse, plane):
area = 0
for i in range(len(pp_ellipse_def)-1):
area += triangle_area(p0, pp_ellipse_def[i], pp_ellipse_def[i + 1])
measurements["ellipse area"].append(area)
# # Measure expansion of ellipse in 256 locations?
# # Measure distances from center to ellipse edge. We first get the distances
# # in each face, for each point. Then we aggregate these distances to
# # expansion measures. So in the end we have 256 expansion measures.
# distances_per_point = [[] for i in range(len(pp_ellipse))]
# for pp_ellipse_def in deform_points_2d(pp_ellipse, plane):
# # todo: Should distance be measured to p0 or to p0 in that phase?
# for i, d in enumerate(pp_ellipse_def.distance(p0)):
# distances_per_point[i].append(float(d))
# distances_per_point = distances_per_point[:-1] # Because pp_ellipse[-1] == pp_ellipse[0]
# #
# measurements["expansions"] = DeformInfo() # 256 values, not 10
# for i in range(len(distances_per_point)):
# distances = distances_per_point[i]
# measurements["expansions"].append((max(distances) - min(distances)) / min(distances))
# Measure radii of ellipse major and minor axis (and how it changes)
pp_ellipse4 = fitting.sample_ellipse(ellipse, 4) # major, minor, major, minor
measurements["ellipse expansion major1"] = DeformInfo(unit="mm")
measurements["ellipse expansion minor1"] = DeformInfo(unit="mm")
measurements["ellipse expansion major2"] = DeformInfo(unit="mm")
measurements["ellipse expansion minor2"] = DeformInfo(unit="mm")
for pp_ellipse4_def in deform_points_2d(pp_ellipse4, plane):
measurements["ellipse expansion major1"].append(float( pp_ellipse4_def[0].distance(p0) ))
measurements["ellipse expansion minor1"].append(float( pp_ellipse4_def[1].distance(p0) ))
measurements["ellipse expansion major2"].append(float( pp_ellipse4_def[2].distance(p0) ))
measurements["ellipse expansion minor2"].append(float( pp_ellipse4_def[3].distance(p0) ))
# Measure how the volume changes - THIS BIT IS COMPUTATIONALLY EXPENSIVE
submesh = meshlib.Mesh(np.zeros((3, 3)))
if measure_volume_change:
# Update the submesh
plane1 = fitting.fit_plane(get_plane_points_from_centerline_index(slider_ref.value))
plane2 = fitting.fit_plane(get_plane_points_from_centerline_index(slider_ves.value))
plane2 = [-x for x in plane2] # flip the plane upside doen
submesh = vesselMesh.cut_plane(plane1).cut_plane(plane2)
# Measure its motion
measurements["volume"] = DeformInfo(unit="mm3")
submesh._ori_vertices = submesh._vertices.copy()
for phase in range(len(deforms)):
deform = deforms[phase]
submesh._vertices = submesh._ori_vertices.copy()
dx = deform.get_field_in_points(submesh._vertices, 0)
dy = deform.get_field_in_points(submesh._vertices, 1)
dz = deform.get_field_in_points(submesh._vertices, 2)
submesh._vertices[:, 0] += dx
submesh._vertices[:, 1] += dy
submesh._vertices[:, 2] += dz
measurements["volume"].append(submesh.volume())
# Show measurements
process_measurements(measurements)
# Update line objects
line_2d.SetPoints(pp2)
line_ellipse1.SetPoints(fitting.sample_ellipse(ellipse))
major_minor = PointSet(2)
for p in [p0, pp_ellipse4[0], p0, pp_ellipse4[2], p0, pp_ellipse4[1], p0, pp_ellipse4[3]]:
major_minor.append(p)
line_ellipse2.SetPoints(major_minor)
axes2.SetLimits(margin=0.12)
# Update submesh object
vertices, faces = submesh.get_vertices_and_faces()
vesselVisMesh2.SetVertices(vertices)
vesselVisMesh2.SetFaces(np.zeros((3, 3), np.int32) if len(faces) == 0 else faces)
vesselVisMesh2.SetNormals(None)
# Global value that will be a dictionary with measurements
mm = {}
def process_measurements(measurements):
""" Show measurements. Now the results are shown in a label object, but we could do anything here ...
"""
# Store in global for further processing
mm.clear()
mm.update(measurements)
# Print in shell
print("Measurements:")
for key, val in measurements.items():
val = val.summary if isinstance(val, DeformInfo) else val
print(key.rjust(16) + ": " + str(val))
# Show in labels
index = 0
for key, val in measurements.items():
val = val.summary if isinstance(val, DeformInfo) else val
val = "{:0.4g}".format(val) if isinstance(val, float) else val
labelpool[index].text = key + ": " + str(val)
index += 1
# Clean remaining labels
for index in range(index, len(labelpool)):
labelpool[index].text = ""
def on_sliding(e):
""" When the slider is moved, update the centerline position indicator.
"""
slider = e.owner
pp = get_plane_points_from_centerline_index(slider.value)
slider.line_plane.SetPoints(pp)
def on_sliding_done(e):
""" When the slider is released, update the whole thing.
"""
slider = e.owner
pp = get_plane_points_from_centerline_index(slider.value)
slider.line_plane.SetPoints(pp)
take_measurements(False) # dont do volume
def on_button_press(e):
""" When the button is pressed, take measurements.
"""
take_measurements(True)
def set_sliders(value_ref, value_ves):
""" Set the sliders to a specific position, e.g. to reproduce a measurement.
"""
slider_ref.value = value_ref
slider_ves.value = value_ves
# Connect!
slider_ref.eventSliding.Bind(on_sliding)
slider_ves.eventSliding.Bind(on_sliding)
slider_ref.eventSliderChanged.Bind(on_sliding_done)
slider_ves.eventSliderChanged.Bind(on_sliding_done)
button_go.eventMouseDown.Bind(on_button_press)
#todo: visualize mesh with motion and use colors to represent radius change
#todo: add torsion and angular rotation of centerline
|
[
"numpy.abs",
"stentseg.utils.datahandling.loadmodel",
"stentseg.utils.fitting.project_to_plane",
"stentseg.utils.fitting.project_from_plane",
"numpy.floor",
"pirt.DeformationFieldBackward",
"stentseg.utils.fitting.fit_ellipse",
"stentseg.utils.fitting.area",
"numpy.sin",
"os.path.join",
"visvis.processing.unwindFaces",
"visvis.Label",
"stentseg.utils.fitting.fit_plane",
"visvis.PushButton",
"lspeas.utils.deforminfo.DeformInfo",
"stentseg.utils.datahandling.loadmesh",
"numpy.linspace",
"stentseg.motion.vis.create_mesh_with_abs_displacement",
"pirt.interp.get_cubic_spline_coefs",
"lspeas.utils.curvature.measure_curvature",
"numpy.stack",
"stentseg.utils.datahandling.loadvol",
"numpy.ceil",
"visvis.gcf",
"numpy.asarray",
"numpy.cos",
"stentseg.utils.fitting.signed_distance_to_plane",
"stentseg.utils.datahandling.select_dir",
"os.getenv",
"stentseg.stentdirect.stentgraph.create_mesh",
"numpy.flip",
"visvis.plot",
"stentseg.utils.PointSet",
"numpy.zeros",
"stentseg.utils.fitting.sample_ellipse",
"numpy.where",
"lspeas.utils.meshlib.Mesh"
] |
[((2749, 2960), 'stentseg.utils.datahandling.select_dir', 'select_dir', (['"""D:\\\\Profiles\\\\koenradesma\\\\SURFdrive\\\\UTdrive\\\\MedDataMimics\\\\LSPEAS_Mimics"""', '"""C:\\\\Users\\\\Maaike\\\\SURFdrive\\\\UTdrive\\\\MedDataMimics\\\\LSPEAS_Mimics"""', '"""C:\\\\stack\\\\data\\\\lspeas\\\\vaatwand"""'], {}), "(\n 'D:\\\\Profiles\\\\koenradesma\\\\SURFdrive\\\\UTdrive\\\\MedDataMimics\\\\LSPEAS_Mimics'\n , 'C:\\\\Users\\\\Maaike\\\\SURFdrive\\\\UTdrive\\\\MedDataMimics\\\\LSPEAS_Mimics',\n 'C:\\\\stack\\\\data\\\\lspeas\\\\vaatwand')\n", (2759, 2960), False, 'from stentseg.utils.datahandling import select_dir, loadvol, loadmodel, loadmesh\n'), ((2973, 3220), 'stentseg.utils.datahandling.select_dir', 'select_dir', (['"""C:\\\\stack\\\\data\\\\lspeas\\\\vaatwand"""', '"""D:\\\\Profiles\\\\koenradesma\\\\SURFdrive\\\\UTdrive\\\\LSPEAS_centerlines_terarecon"""', '"""C:\\\\Users\\\\Maaike\\\\SURFdrive\\\\UTdrive\\\\LSPEAS_centerlines_terarecon"""', '"""C:\\\\stack\\\\data\\\\lspeas\\\\vaatwand"""'], {}), "('C:\\\\stack\\\\data\\\\lspeas\\\\vaatwand',\n 'D:\\\\Profiles\\\\koenradesma\\\\SURFdrive\\\\UTdrive\\\\LSPEAS_centerlines_terarecon'\n , 'C:\\\\Users\\\\Maaike\\\\SURFdrive\\\\UTdrive\\\\LSPEAS_centerlines_terarecon',\n 'C:\\\\stack\\\\data\\\\lspeas\\\\vaatwand')\n", (2983, 3220), False, 'from stentseg.utils.datahandling import select_dir, loadvol, loadmodel, loadmesh\n'), ((6543, 6602), 'visvis.plot', 'vv.plot', (['centerline'], {'ms': '"""."""', 'ls': '""""""', 'mw': '(8)', 'mc': '"""b"""', 'alpha': '(0.5)'}), "(centerline, ms='.', ls='', mw=8, mc='b', alpha=0.5)\n", (6550, 6602), True, 'import visvis as vv\n'), ((7342, 7406), 'visvis.PushButton', 'vv.PushButton', (['container', '"""Take all measurements (incl. volume)"""'], {}), "(container, 'Take all measurements (incl. volume)')\n", (7355, 7406), True, 'import visvis as vv\n'), ((7700, 7764), 'visvis.plot', 'vv.plot', (['[]', '[]', '[]'], {'axes': 'axes1', 'ls': '"""-"""', 'lw': '(3)', 'lc': '"""w"""', 'alpha': '(0.9)'}), "([], [], [], axes=axes1, ls='-', lw=3, lc='w', alpha=0.9)\n", (7707, 7764), True, 'import visvis as vv\n'), ((7792, 7856), 'visvis.plot', 'vv.plot', (['[]', '[]', '[]'], {'axes': 'axes1', 'ls': '"""-"""', 'lw': '(3)', 'lc': '"""y"""', 'alpha': '(0.9)'}), "([], [], [], axes=axes1, ls='-', lw=3, lc='y', alpha=0.9)\n", (7799, 7856), True, 'import visvis as vv\n'), ((7956, 8027), 'visvis.plot', 'vv.plot', (['[]', '[]', '[]'], {'axes': 'axes1', 'ms': '"""."""', 'ls': '""""""', 'mw': '(8)', 'mc': '"""w"""', 'alpha': '(0.9)'}), "([], [], [], axes=axes1, ms='.', ls='', mw=8, mc='w', alpha=0.9)\n", (7963, 8027), True, 'import visvis as vv\n'), ((8052, 8123), 'visvis.plot', 'vv.plot', (['[]', '[]', '[]'], {'axes': 'axes1', 'ms': '"""."""', 'ls': '""""""', 'mw': '(8)', 'mc': '"""y"""', 'alpha': '(0.9)'}), "([], [], [], axes=axes1, ms='.', ls='', mw=8, mc='y', alpha=0.9)\n", (8059, 8123), True, 'import visvis as vv\n'), ((8212, 8268), 'visvis.plot', 'vv.plot', (['[]', '[]'], {'axes': 'axes2', 'ms': '"""."""', 'ls': '""""""', 'mw': '(8)', 'mc': '"""y"""'}), "([], [], axes=axes2, ms='.', ls='', mw=8, mc='y')\n", (8219, 8268), True, 'import visvis as vv\n'), ((8287, 8343), 'visvis.plot', 'vv.plot', (['[]', '[]'], {'axes': 'axes2', 'ms': '""""""', 'ls': '"""-"""', 'lw': '(2)', 'lc': '"""b"""'}), "([], [], axes=axes2, ms='', ls='-', lw=2, lc='b')\n", (8294, 8343), True, 'import visvis as vv\n'), ((8362, 8418), 'visvis.plot', 'vv.plot', (['[]', '[]'], {'axes': 'axes2', 'ms': '""""""', 'ls': '"""+"""', 'lw': '(2)', 'lc': '"""b"""'}), "([], [], axes=axes2, ms='', ls='+', lw=2, lc='b')\n", (8369, 8418), True, 'import visvis as vv\n'), ((1180, 1219), 'os.path.join', 'os.path.join', (['basedirCenterline', 'ptcode'], {}), '(basedirCenterline, ptcode)\n', (1192, 1219), False, 'import os\n'), ((1945, 1981), 'numpy.asarray', 'np.asarray', (['coordx'], {'dtype': 'np.float32'}), '(coordx, dtype=np.float32)\n', (1955, 1981), True, 'import numpy as np\n'), ((2001, 2037), 'numpy.asarray', 'np.asarray', (['coordy'], {'dtype': 'np.float32'}), '(coordy, dtype=np.float32)\n', (2011, 2037), True, 'import numpy as np\n'), ((2057, 2093), 'numpy.asarray', 'np.asarray', (['coordz'], {'dtype': 'np.float32'}), '(coordz, dtype=np.float32)\n', (2067, 2093), True, 'import numpy as np\n'), ((2113, 2141), 'numpy.flip', 'np.flip', (['centerlineZ'], {'axis': '(0)'}), '(centerlineZ, axis=0)\n', (2120, 2141), True, 'import numpy as np\n'), ((2606, 2637), 'os.getenv', 'os.getenv', (['"""LSPEAS_BASEDIR"""', '""""""'], {}), "('LSPEAS_BASEDIR', '')\n", (2615, 2637), False, 'import os\n'), ((6388, 6416), 'numpy.zeros', 'np.zeros', (['(6, 3)', 'np.float32'], {}), '((6, 3), np.float32)\n', (6396, 6416), True, 'import numpy as np\n'), ((6418, 6444), 'numpy.zeros', 'np.zeros', (['(3, 3)', 'np.int32'], {}), '((3, 3), np.int32)\n', (6426, 6444), True, 'import numpy as np\n'), ((6644, 6652), 'visvis.gcf', 'vv.gcf', ([], {}), '()\n', (6650, 6652), True, 'import visvis as vv\n'), ((6871, 6879), 'visvis.gcf', 'vv.gcf', ([], {}), '()\n', (6877, 6879), True, 'import visvis as vv\n'), ((7013, 7032), 'visvis.Label', 'vv.Label', (['container'], {}), '(container)\n', (7021, 7032), True, 'import visvis as vv\n'), ((10463, 10474), 'stentseg.utils.PointSet', 'PointSet', (['(3)'], {}), '(3)\n', (10471, 10474), False, 'from stentseg.utils import PointSet, fitting\n'), ((10523, 10552), 'numpy.linspace', 'np.linspace', (['(0)', '(2 * np.pi)', '(12)'], {}), '(0, 2 * np.pi, 12)\n', (10534, 10552), True, 'import numpy as np\n'), ((10870, 10891), 'stentseg.utils.fitting.fit_plane', 'fitting.fit_plane', (['pp'], {}), '(pp)\n', (10887, 10891), False, 'from stentseg.utils import PointSet, fitting\n'), ((11097, 11145), 'stentseg.utils.fitting.signed_distance_to_plane', 'fitting.signed_distance_to_plane', (['ppvessel', 'abcd'], {}), '(ppvessel, abcd)\n', (11129, 11145), False, 'from stentseg.utils import PointSet, fitting\n'), ((11163, 11187), 'numpy.abs', 'np.abs', (['signed_distances'], {}), '(signed_distances)\n', (11169, 11187), True, 'import numpy as np\n'), ((11838, 11849), 'stentseg.utils.PointSet', 'PointSet', (['(3)'], {}), '(3)\n', (11846, 11849), False, 'from stentseg.utils import PointSet, fitting\n'), ((13731, 13769), 'stentseg.utils.fitting.project_from_plane', 'fitting.project_from_plane', (['pp2', 'plane'], {}), '(pp2, plane)\n', (13757, 13769), False, 'from stentseg.utils import PointSet, fitting\n'), ((17019, 17057), 'lspeas.utils.curvature.measure_curvature', 'measure_curvature', (['centerline', 'deforms'], {}), '(centerline, deforms)\n', (17036, 17057), False, 'from lspeas.utils.curvature import measure_curvature\n'), ((17096, 17122), 'lspeas.utils.deforminfo.DeformInfo', 'DeformInfo', (['curvature_mean'], {}), '(curvature_mean)\n', (17106, 17122), False, 'from lspeas.utils.deforminfo import DeformInfo\n'), ((17160, 17185), 'lspeas.utils.deforminfo.DeformInfo', 'DeformInfo', (['curvature_max'], {}), '(curvature_max)\n', (17170, 17185), False, 'from lspeas.utils.deforminfo import DeformInfo\n'), ((17227, 17256), 'lspeas.utils.deforminfo.DeformInfo', 'DeformInfo', (['curvature_max_pos'], {}), '(curvature_max_pos)\n', (17237, 17256), False, 'from lspeas.utils.deforminfo import DeformInfo\n'), ((17379, 17403), 'stentseg.utils.fitting.fit_ellipse', 'fitting.fit_ellipse', (['pp2'], {}), '(pp2)\n', (17398, 17403), False, 'from stentseg.utils import PointSet, fitting\n'), ((17414, 17448), 'stentseg.utils.PointSet', 'PointSet', (['[ellipse[0], ellipse[1]]'], {}), '([ellipse[0], ellipse[1]])\n', (17422, 17448), False, 'from stentseg.utils import PointSet, fitting\n'), ((17513, 17549), 'stentseg.utils.fitting.sample_ellipse', 'fitting.sample_ellipse', (['ellipse', '(256)'], {}), '(ellipse, 256)\n', (17535, 17549), False, 'from stentseg.utils import PointSet, fitting\n'), ((18018, 18040), 'lspeas.utils.deforminfo.DeformInfo', 'DeformInfo', ([], {'unit': '"""mm2"""'}), "(unit='mm2')\n", (18028, 18040), False, 'from lspeas.utils.deforminfo import DeformInfo\n'), ((19386, 19420), 'stentseg.utils.fitting.sample_ellipse', 'fitting.sample_ellipse', (['ellipse', '(4)'], {}), '(ellipse, 4)\n', (19408, 19420), False, 'from stentseg.utils import PointSet, fitting\n'), ((19499, 19520), 'lspeas.utils.deforminfo.DeformInfo', 'DeformInfo', ([], {'unit': '"""mm"""'}), "(unit='mm')\n", (19509, 19520), False, 'from lspeas.utils.deforminfo import DeformInfo\n'), ((19569, 19590), 'lspeas.utils.deforminfo.DeformInfo', 'DeformInfo', ([], {'unit': '"""mm"""'}), "(unit='mm')\n", (19579, 19590), False, 'from lspeas.utils.deforminfo import DeformInfo\n'), ((19639, 19660), 'lspeas.utils.deforminfo.DeformInfo', 'DeformInfo', ([], {'unit': '"""mm"""'}), "(unit='mm')\n", (19649, 19660), False, 'from lspeas.utils.deforminfo import DeformInfo\n'), ((19709, 19730), 'lspeas.utils.deforminfo.DeformInfo', 'DeformInfo', ([], {'unit': '"""mm"""'}), "(unit='mm')\n", (19719, 19730), False, 'from lspeas.utils.deforminfo import DeformInfo\n'), ((21586, 21597), 'stentseg.utils.PointSet', 'PointSet', (['(2)'], {}), '(2)\n', (21594, 21597), False, 'from stentseg.utils import PointSet, fitting\n'), ((4012, 4065), 'stentseg.utils.datahandling.loadvol', 'loadvol', (['basedir', 'ptcode', 'ctcode1', 'cropvol', '"""deforms"""'], {}), "(basedir, ptcode, ctcode1, cropvol, 'deforms')\n", (4019, 4065), False, 'from stentseg.utils.datahandling import select_dir, loadvol, loadmodel, loadmesh\n'), ((4663, 4707), 'stentseg.utils.datahandling.loadmesh', 'loadmesh', (['basedirMesh', 'ptcode[-3:]', 'filename'], {}), '(basedirMesh, ptcode[-3:], filename)\n', (4671, 4707), False, 'from stentseg.utils.datahandling import select_dir, loadvol, loadmodel, loadmesh\n'), ((4724, 4761), 'visvis.processing.unwindFaces', 'vv.processing.unwindFaces', (['vesselMesh'], {}), '(vesselMesh)\n', (4749, 4761), True, 'import visvis as vv\n'), ((4780, 4814), 'lspeas.utils.meshlib.Mesh', 'meshlib.Mesh', (['vesselMesh._vertices'], {}), '(vesselMesh._vertices)\n', (4792, 4814), False, 'from lspeas.utils import meshlib\n'), ((4995, 5051), 'stentseg.utils.datahandling.loadmodel', 'loadmodel', (['basedir', 'ptcode', 'ctcode1', 'cropname', 'modelname'], {}), '(basedir, ptcode, ctcode1, cropname, modelname)\n', (5004, 5051), False, 'from stentseg.utils.datahandling import select_dir, loadvol, loadmodel, loadmesh\n'), ((11291, 11314), 'numpy.where', 'np.where', (['(distances < 5)'], {}), '(distances < 5)\n', (11299, 11314), True, 'import numpy as np\n'), ((12436, 12479), 'stentseg.utils.fitting.project_to_plane', 'fitting.project_to_plane', (['sampled_pp3', 'abcd'], {}), '(sampled_pp3, abcd)\n', (12460, 12479), False, 'from stentseg.utils import PointSet, fitting\n'), ((12746, 12757), 'numpy.ceil', 'np.ceil', (['i1'], {}), '(i1)\n', (12753, 12757), True, 'import numpy as np\n'), ((12777, 12789), 'numpy.floor', 'np.floor', (['i2'], {}), '(i2)\n', (12785, 12789), True, 'import numpy as np\n'), ((14549, 14560), 'numpy.ceil', 'np.ceil', (['i1'], {}), '(i1)\n', (14556, 14560), True, 'import numpy as np\n'), ((14580, 14592), 'numpy.floor', 'np.floor', (['i2'], {}), '(i2)\n', (14588, 14592), True, 'import numpy as np\n'), ((20301, 20317), 'numpy.zeros', 'np.zeros', (['(3, 3)'], {}), '((3, 3))\n', (20309, 20317), True, 'import numpy as np\n'), ((20767, 20789), 'lspeas.utils.deforminfo.DeformInfo', 'DeformInfo', ([], {'unit': '"""mm3"""'}), "(unit='mm3')\n", (20777, 20789), False, 'from lspeas.utils.deforminfo import DeformInfo\n'), ((21534, 21565), 'stentseg.utils.fitting.sample_ellipse', 'fitting.sample_ellipse', (['ellipse'], {}), '(ellipse)\n', (21556, 21565), False, 'from stentseg.utils import PointSet, fitting\n'), ((1283, 1321), 'os.path.join', 'os.path.join', (['excel_location', 'filename'], {}), '(excel_location, filename)\n', (1295, 1321), False, 'import os\n'), ((3938, 3990), 'stentseg.utils.datahandling.loadvol', 'loadvol', (['basedir', 'ptcode', 'ctcode1', 'cropvol', '"""avgreg"""'], {}), "(basedir, ptcode, ctcode1, cropvol, 'avgreg')\n", (3945, 3990), False, 'from stentseg.utils.datahandling import select_dir, loadvol, loadmodel, loadmesh\n'), ((4168, 4206), 'pirt.DeformationFieldBackward', 'pirt.DeformationFieldBackward', (['*fields'], {}), '(*fields)\n', (4197, 4206), False, 'import pirt\n'), ((9201, 9247), 'pirt.interp.get_cubic_spline_coefs', 'pirt.interp.get_cubic_spline_coefs', (['t', '"""basic"""'], {}), "(t, 'basic')\n", (9235, 9247), False, 'import pirt\n'), ((14177, 14202), 'numpy.stack', 'np.stack', (['[dx, dy, dz]', '(1)'], {}), '([dx, dy, dz], 1)\n', (14185, 14202), True, 'import numpy as np\n'), ((14274, 14319), 'stentseg.utils.fitting.project_to_plane', 'fitting.project_to_plane', (['pp3_deformed', 'plane'], {}), '(pp3_deformed, plane)\n', (14298, 14319), False, 'from stentseg.utils import PointSet, fitting\n'), ((14983, 15008), 'numpy.stack', 'np.stack', (['[dx, dy, dz]', '(1)'], {}), '([dx, dy, dz], 1)\n', (14991, 15008), True, 'import numpy as np\n'), ((16540, 16566), 'numpy.zeros', 'np.zeros', (['(3, 3)', 'np.int32'], {}), '((3, 3), np.int32)\n', (16548, 16566), True, 'import numpy as np\n'), ((21959, 21985), 'numpy.zeros', 'np.zeros', (['(3, 3)', 'np.int32'], {}), '((3, 3), np.int32)\n', (21967, 21985), True, 'import numpy as np\n'), ((1405, 1446), 'os.path.join', 'os.path.join', (['basedirCenterline', 'filename'], {}), '(basedirCenterline, filename)\n', (1417, 1446), False, 'import os\n'), ((5138, 5164), 'stentseg.stentdirect.stentgraph.create_mesh', 'create_mesh', (['s1.model', '(0.7)'], {}), '(s1.model, 0.7)\n', (5149, 5164), False, 'from stentseg.stentdirect.stentgraph import create_mesh\n'), ((5228, 5299), 'stentseg.motion.vis.create_mesh_with_abs_displacement', 'create_mesh_with_abs_displacement', (['s1.model'], {'radius': '(0.7)', 'dim': 'dimensions'}), '(s1.model, radius=0.7, dim=dimensions)\n', (5261, 5299), False, 'from stentseg.motion.vis import create_mesh_with_abs_displacement\n'), ((17859, 17880), 'stentseg.utils.fitting.area', 'fitting.area', (['ellipse'], {}), '(ellipse)\n', (17871, 17880), False, 'from stentseg.utils import PointSet, fitting\n'), ((10605, 10614), 'numpy.cos', 'np.cos', (['t'], {}), '(t)\n', (10611, 10614), True, 'import numpy as np\n'), ((10577, 10586), 'numpy.sin', 'np.sin', (['t'], {}), '(t)\n', (10583, 10586), True, 'import numpy as np\n')]
|
from multiprocessing.sharedctypes import Value
import numpy as np
import warnings
from ..core import Bullet
from ..scene_maker import BulletSceneMaker
from ..collision_checker import BulletCollisionChecker
from ..robots import PandaDualArm
import gym
import pybullet as p
from gym import spaces
from gym.envs.registration import register
class PandaDualArmEnvBase:
def __init__(self, render=False, arm_distance=0.4, task_ll=[0, -0.5, 0], task_ul=[0.5, 0.5, 0.5]):
self.is_render = render
self.bullet = Bullet(render=render)
self.scene_maker = BulletSceneMaker(self.bullet)
self.robot = PandaDualArm(
self.bullet,
panda1_position=[0,arm_distance/2,0],
panda2_position=[0,-arm_distance/2,0]
)
self._make_env()
self.checker = BulletCollisionChecker(self.bullet)
self.task_ll = task_ll
self.task_ul = task_ul
def _make_env(self):
self.scene_maker.create_plane(z_offset=-0.4)
self.scene_maker.create_table(length=2.0, width=1.5, height=0.4, x_offset=0.5)
self.bullet.place_visualizer(
target_position=np.zeros(3),
distance=1.6,
yaw=45,
pitch=-30
)
def render(
self,
mode: str,
width: int = 720,
height: int = 480,
target_position: np.ndarray = np.zeros(3),
distance: float = 1.4,
yaw: float = 45,
pitch: float = -30,
roll: float = 0,
):
return self.bullet.render(
mode,
width=width,
height=height,
target_position=target_position,
distance=distance,
yaw=yaw,
pitch=pitch,
roll=roll,
)
def get_random_configuration(self, collision_free=False):
if not collision_free:
return self.robot.get_random_joint_angles(set=False)
else:
random_joint_angles = None
with self.robot.no_set_joint():
for i in range(100):
self.robot.get_random_joint_angles(set=True)
if not self.checker.is_collision():
random_joint_angles = self.robot.get_joint_angles()
break
return random_joint_angles
def get_random_free_configuration_in_taskspace(self, panda1_first=True):
if panda1_first:
first_robot = self.robot.panda1
second_robot = self.robot.panda2
else:
first_robot = self.robot.panda2
second_robot = self.robot.panda1
for robot in [first_robot, second_robot]:
while True:
robot.get_random_joint_angles(set=True)
ee_position = robot.get_ee_position()
is_collision_free = not self.checker.is_collision()
is_in_taskspace = np.all(self.task_ll < ee_position) \
& np.all(ee_position < self.task_ul)
if is_collision_free & is_in_taskspace:
break
return self.robot.get_joint_angles()
def reset(self):
joints_init = self.get_random_configuration(collision_free=True)
if joints_init is not None:
self.robot.set_joint_angles(joints_init)
return joints_init
else:
warnings.warn('env.reset() can`t find feasible reset configuration')
return None
def is_limit(self):
joint_angles = self.robot.get_joint_angles()
is_ll = np.any(joint_angles == self.robot.joint_ll)
is_ul = np.any(joint_angles == self.robot.joint_ul)
return is_ll | is_ul
def is_collision(self, joint_angles=None):
if joint_angles is None:
joint_angles = self.robot.get_joint_angles()
result = False
with self.robot.no_set_joint():
self.robot.set_joint_angles(joint_angles)
if self.checker.is_collision():
result = True
return result | self.is_limit()
def set_debug_mode(self):
self.bullet.physics_client.configureDebugVisualizer(p.COV_ENABLE_GUI, 1)
self.bullet.physics_client.configureDebugVisualizer(p.COV_ENABLE_MOUSE_PICKING, 1)
# joint_angles = self.worker.get_joint_angles()
# self.param_idxs = []
# for idx in self.worker.ctrl_joint_idxs:
# name = self.worker.joint_info[idx]["joint_name"].decode("utf-8")
# param_idx = self.bullet.physics_client.addUserDebugParameter(
# name,-4,4,
# joint_angles[idx]
# )
# self.param_idxs.append(param_idx)
def do_debug_mode(self):
joint_param_values = []
for param in self.param_idxs:
joint_param_values.append(p.readUserDebugParameter(param))
self.worker.set_joint_angles(joint_param_values)
class PandaDualArmGymEnv(PandaDualArmEnvBase, gym.Env):
""" joint
"""
def __init__(self, render=False, reward_type="joint", level=0.1):
self.reward_type = reward_type
self.level = level
super().__init__(render=render, arm_distance=0.4)
self.n_obs = 1
self.task_ll = np.array([-1.2, -1.2, -1.2])
self.task_ul = np.array([1.2, 1.2, 1.2])
self.observation_space = spaces.Dict(dict(
observation=spaces.Box(-1, 1, shape=(1,), dtype=np.float32),
achieved_goal=spaces.Box(
self.robot.joint_ll,
self.robot.joint_ul,
shape=(self.robot.n_joints,),
dtype=np.float32
),
desired_goal=spaces.Box(
self.robot.joint_ll,
self.robot.joint_ul,
shape=(self.robot.n_joints,),
dtype=np.float32
),
))
self.action_space = spaces.Box(-1.0, 1.0, shape=(self.robot.n_joints,), dtype=np.float32)
self._goal = None
self.eps = 0.1
self.max_joint_change = 0.1
@property
def goal(self):
return self._goal.copy()
@goal.setter
def goal(self, arr: np.ndarray):
self._goal = arr
def get_observation(self):
return dict(
observation=0.,
achieved_goal=self.robot.get_joint_angles(),
desired_goal=self.goal,
)
def set_action(self, action: np.ndarray):
joint_prev = self.robot.get_joint_angles()
action = action.copy()
action = np.clip(action, self.action_space.low, self.action_space.high)
joint_target = self.robot.get_joint_angles()
joint_target += action * self.max_joint_change
joint_target = np.clip(joint_target, self.robot.joint_ll, self.robot.joint_ul)
if self.checker.is_collision() & self.is_limit():
self.robot.set_joint_angles(joint_prev)
self._collision_flag = True
self._collision_flag = False
self.robot.set_joint_angles(joint_target)
def is_success(self, joint_curr: np.ndarray, joint_goal: np.ndarray):
return np.linalg.norm(joint_curr - joint_goal) < self.eps
def reset(self):
random_joint1 = self.get_random_configuration(collision_free=True)
while True:
random_joint2 = self.get_random_configuration(collision_free=False)
goal = random_joint1 + (random_joint2 - random_joint1) * self.level
if not self.is_collision(goal):
self.robot.set_joint_angles(goal)
goal_ee = self.robot.get_ee_position()
break
self.start = random_joint1
self.goal = goal
self.robot.set_joint_angles(self.start)
start_ee = self.robot.get_ee_position()
if self.is_render:
ee1, ee2 = start_ee[:3], start_ee[3:]
self.scene_maker.view_position("goal1", goal_ee[:3])
self.scene_maker.view_position("goal2", goal_ee[3:])
self.scene_maker.view_position("curr1", start_ee[:3])
self.scene_maker.view_position("curr2", start_ee[3:])
return self.get_observation()
def step(self, action: np.ndarray):
self.set_action(action)
obs_ = self.get_observation()
done = False
info = dict(
is_success=self.is_success(obs_["achieved_goal"], obs_["desired_goal"]),
actions=action.copy(),
collisions=self._collision_flag,
)
reward = self.compute_reward(obs_["achieved_goal"], obs_["desired_goal"], info)
if self.is_render:
self.scene_maker.view_position("curr1", self.robot.get_ee_position()[:3])
self.scene_maker.view_position("curr2", self.robot.get_ee_position()[3:])
return obs_, reward, done, info
def compute_reward(self, achieved_goal, desired_goal, info):
if len(achieved_goal.shape) == 2:
actions = np.array([i["actions"] for i in info])
collisions = np.array([i["collisions"] for i in info])
else:
actions = info["actions"]
collisions = info["collisions"]
r = - np.linalg.norm(achieved_goal-desired_goal, axis=-1)
if "action" in self.reward_type:
r -= np.linalg.norm(actions, axis=-1) / 10
if "col" in self.reward_type:
r -= collisions * 1.
return r
class PandaDualArmGymEnvSingle(PandaDualArmEnvBase, gym.Env):
""" joint
"""
def __init__(self, render=False, reward_type="joint", arm="left", level=1.0):
self.arm = arm
self.reward_type = reward_type
self.level = level
super().__init__(render=render, arm_distance=0.4)
if self.arm == "left":
self.worker = self.robot.panda1
self.coworker = self.robot.panda2
elif self.arm == "right":
self.worker = self.robot.panda2
self.coworker = self.robot.panda1
self.n_obs = 7
#self.task_ll = np.array([-1.2, -1.2, -1.2])
#self.task_ul = np.array([1.2, 1.2, 1.2])
self.observation_space = spaces.Dict(dict(
observation=spaces.Box(
low=self.coworker.joint_ll,
high=self.coworker.joint_ul,
shape=(self.coworker.n_joints,),
dtype=np.float32
),
achieved_goal=spaces.Box(
self.worker.joint_ll,
self.worker.joint_ul,
shape=(self.worker.n_joints,),
dtype=np.float32
),
desired_goal=spaces.Box(
self.worker.joint_ll,
self.worker.joint_ul,
shape=(self.worker.n_joints,),
dtype=np.float32
),
))
self.action_space = spaces.Box(-1.0, 1.0, shape=(self.worker.n_joints,), dtype=np.float32)
self._goal = None
self.eps = 0.1
self.max_joint_change = 0.1
@property
def goal(self):
return self._goal.copy()
@goal.setter
def goal(self, arr: np.ndarray):
self._goal = arr
# def get_worker_joint_angle(self):
# if self.arm == "left":
# return self.robot.get_joint_angles()[:7]
# elif self.arm == "right":
# return self.robot.get_joint_angles()[7:]
# raise ValueError("wrong arm type")
# def get_coworker_joint_angle(self):
# if self.arm == "left":
# return self.robot.get_joint_angles()[7:]
# elif self.arm == "right":
# return self.robot.get_joint_angles()[:7]
# raise ValueError("wrong arm type")
# def set_worker_joint_angle(self, worker_joint_angles):
# curr_joint_angles = self.robot.get_joint_angles()
# if self.arm == "left":
# target_joint_angles = np.hstack([worker_joint_angles, curr_joint_angles[7:]])
# elif self.arm == "right":
# target_joint_angles = np.hstack([curr_joint_angles[:7], worker_joint_angles])
# else:
# raise ValueError("wrong arm type")
# self.robot.set_joint_angles(target_joint_angles)
def get_observation(self):
return dict(
observation=self.coworker.get_joint_angles(),
achieved_goal=self.worker.get_joint_angles(),
desired_goal=self.goal,
)
def set_action(self, action: np.ndarray):
joint_prev = self.worker.get_joint_angles()
action = action.copy()
action = np.clip(action, self.action_space.low, self.action_space.high)
joint_target = joint_prev.copy()
joint_target += action * self.max_joint_change
self.worker.set_joint_angles(joint_target)
if self.checker.is_collision():
self.worker.set_joint_angles(joint_prev)
self._collision_flag = True
else:
self._collision_flag = False
def is_success(self, joint_curr: np.ndarray, joint_goal: np.ndarray):
return np.linalg.norm(joint_curr - joint_goal) < self.eps
def reset(self):
random_start_joints = self.get_random_configuration(collision_free=True)
if self.arm == "left":
random_joints_worker = random_start_joints[:7]
random_joints_coworker = random_start_joints[7:]
elif self.arm == "right":
random_joints_worker = random_start_joints[7:]
random_joints_coworker = random_start_joints[:7]
while True:
random_joints_worker2 = self.worker.get_random_joint_angles(set=True)
#random_joint2 = self.get_random_configuration(collision_free=False)
goal = random_joints_worker + (random_joints_worker2 - random_joints_worker) * self.level
self.worker.set_joint_angles(goal)
self.coworker.set_joint_angles(random_joints_coworker)
if not self.is_collision():
goal_ee = self.robot.get_ee_position()
break
self.start = random_joints_worker
self.goal = goal
self.robot.set_joint_angles(random_start_joints)
start_ee = self.robot.get_ee_position()
if self.is_render:
self.scene_maker.view_position("goal1", goal_ee[:3])
self.scene_maker.view_position("goal2", goal_ee[3:])
self.scene_maker.view_position("curr1", start_ee[:3])
self.scene_maker.view_position("curr2", start_ee[3:])
return self.get_observation()
def step(self, action: np.ndarray):
self.set_action(action)
obs_ = self.get_observation()
done = False
info = dict(
is_success=self.is_success(obs_["achieved_goal"], obs_["desired_goal"]),
actions=action.copy(),
collisions=self._collision_flag,
)
reward = self.compute_reward(obs_["achieved_goal"], obs_["desired_goal"], info)
if self.is_render:
self.scene_maker.view_position("curr1", self.robot.get_ee_position()[:3])
self.scene_maker.view_position("curr2", self.robot.get_ee_position()[3:])
return obs_, reward, done, info
def compute_reward(self, achieved_goal, desired_goal, info):
if len(achieved_goal.shape) == 2:
actions = np.array([i["actions"] for i in info])
collisions = np.array([i["collisions"] for i in info])
else:
actions = info["actions"]
collisions = info["collisions"]
r = - np.linalg.norm(achieved_goal-desired_goal, axis=-1)
if "action" in self.reward_type:
r -= np.linalg.norm(actions, axis=-1) / 10
if "col" in self.reward_type:
r -= collisions * 1.
return r
register(
id='MyPandaDualArmReach-v0',
entry_point='pybullet_wrapper:PandaDualArmGymEnv',
max_episode_steps=100,
)
register(
id='MyPandaDualArmReach-v1',
entry_point='pybullet_wrapper:PandaDualArmGymEnvSingle',
max_episode_steps=100,
)
|
[
"numpy.zeros",
"numpy.all",
"numpy.clip",
"numpy.any",
"pybullet.readUserDebugParameter",
"numpy.array",
"gym.spaces.Box",
"numpy.linalg.norm",
"warnings.warn",
"gym.envs.registration.register"
] |
[((15825, 15941), 'gym.envs.registration.register', 'register', ([], {'id': '"""MyPandaDualArmReach-v0"""', 'entry_point': '"""pybullet_wrapper:PandaDualArmGymEnv"""', 'max_episode_steps': '(100)'}), "(id='MyPandaDualArmReach-v0', entry_point=\n 'pybullet_wrapper:PandaDualArmGymEnv', max_episode_steps=100)\n", (15833, 15941), False, 'from gym.envs.registration import register\n'), ((15952, 16074), 'gym.envs.registration.register', 'register', ([], {'id': '"""MyPandaDualArmReach-v1"""', 'entry_point': '"""pybullet_wrapper:PandaDualArmGymEnvSingle"""', 'max_episode_steps': '(100)'}), "(id='MyPandaDualArmReach-v1', entry_point=\n 'pybullet_wrapper:PandaDualArmGymEnvSingle', max_episode_steps=100)\n", (15960, 16074), False, 'from gym.envs.registration import register\n'), ((1389, 1400), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (1397, 1400), True, 'import numpy as np\n'), ((3594, 3637), 'numpy.any', 'np.any', (['(joint_angles == self.robot.joint_ll)'], {}), '(joint_angles == self.robot.joint_ll)\n', (3600, 3637), True, 'import numpy as np\n'), ((3654, 3697), 'numpy.any', 'np.any', (['(joint_angles == self.robot.joint_ul)'], {}), '(joint_angles == self.robot.joint_ul)\n', (3660, 3697), True, 'import numpy as np\n'), ((5276, 5304), 'numpy.array', 'np.array', (['[-1.2, -1.2, -1.2]'], {}), '([-1.2, -1.2, -1.2])\n', (5284, 5304), True, 'import numpy as np\n'), ((5328, 5353), 'numpy.array', 'np.array', (['[1.2, 1.2, 1.2]'], {}), '([1.2, 1.2, 1.2])\n', (5336, 5353), True, 'import numpy as np\n'), ((5938, 6007), 'gym.spaces.Box', 'spaces.Box', (['(-1.0)', '(1.0)'], {'shape': '(self.robot.n_joints,)', 'dtype': 'np.float32'}), '(-1.0, 1.0, shape=(self.robot.n_joints,), dtype=np.float32)\n', (5948, 6007), False, 'from gym import spaces\n'), ((6579, 6641), 'numpy.clip', 'np.clip', (['action', 'self.action_space.low', 'self.action_space.high'], {}), '(action, self.action_space.low, self.action_space.high)\n', (6586, 6641), True, 'import numpy as np\n'), ((6773, 6836), 'numpy.clip', 'np.clip', (['joint_target', 'self.robot.joint_ll', 'self.robot.joint_ul'], {}), '(joint_target, self.robot.joint_ll, self.robot.joint_ul)\n', (6780, 6836), True, 'import numpy as np\n'), ((10883, 10953), 'gym.spaces.Box', 'spaces.Box', (['(-1.0)', '(1.0)'], {'shape': '(self.worker.n_joints,)', 'dtype': 'np.float32'}), '(-1.0, 1.0, shape=(self.worker.n_joints,), dtype=np.float32)\n', (10893, 10953), False, 'from gym import spaces\n'), ((12596, 12658), 'numpy.clip', 'np.clip', (['action', 'self.action_space.low', 'self.action_space.high'], {}), '(action, self.action_space.low, self.action_space.high)\n', (12603, 12658), True, 'import numpy as np\n'), ((3407, 3475), 'warnings.warn', 'warnings.warn', (['"""env.reset() can`t find feasible reset configuration"""'], {}), "('env.reset() can`t find feasible reset configuration')\n", (3420, 3475), False, 'import warnings\n'), ((7164, 7203), 'numpy.linalg.norm', 'np.linalg.norm', (['(joint_curr - joint_goal)'], {}), '(joint_curr - joint_goal)\n', (7178, 7203), True, 'import numpy as np\n'), ((8982, 9020), 'numpy.array', 'np.array', (["[i['actions'] for i in info]"], {}), "([i['actions'] for i in info])\n", (8990, 9020), True, 'import numpy as np\n'), ((9046, 9087), 'numpy.array', 'np.array', (["[i['collisions'] for i in info]"], {}), "([i['collisions'] for i in info])\n", (9054, 9087), True, 'import numpy as np\n'), ((9198, 9251), 'numpy.linalg.norm', 'np.linalg.norm', (['(achieved_goal - desired_goal)'], {'axis': '(-1)'}), '(achieved_goal - desired_goal, axis=-1)\n', (9212, 9251), True, 'import numpy as np\n'), ((13084, 13123), 'numpy.linalg.norm', 'np.linalg.norm', (['(joint_curr - joint_goal)'], {}), '(joint_curr - joint_goal)\n', (13098, 13123), True, 'import numpy as np\n'), ((15353, 15391), 'numpy.array', 'np.array', (["[i['actions'] for i in info]"], {}), "([i['actions'] for i in info])\n", (15361, 15391), True, 'import numpy as np\n'), ((15417, 15458), 'numpy.array', 'np.array', (["[i['collisions'] for i in info]"], {}), "([i['collisions'] for i in info])\n", (15425, 15458), True, 'import numpy as np\n'), ((15569, 15622), 'numpy.linalg.norm', 'np.linalg.norm', (['(achieved_goal - desired_goal)'], {'axis': '(-1)'}), '(achieved_goal - desired_goal, axis=-1)\n', (15583, 15622), True, 'import numpy as np\n'), ((1150, 1161), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (1158, 1161), True, 'import numpy as np\n'), ((4866, 4897), 'pybullet.readUserDebugParameter', 'p.readUserDebugParameter', (['param'], {}), '(param)\n', (4890, 4897), True, 'import pybullet as p\n'), ((9309, 9341), 'numpy.linalg.norm', 'np.linalg.norm', (['actions'], {'axis': '(-1)'}), '(actions, axis=-1)\n', (9323, 9341), True, 'import numpy as np\n'), ((15680, 15712), 'numpy.linalg.norm', 'np.linalg.norm', (['actions'], {'axis': '(-1)'}), '(actions, axis=-1)\n', (15694, 15712), True, 'import numpy as np\n'), ((2931, 2965), 'numpy.all', 'np.all', (['(self.task_ll < ee_position)'], {}), '(self.task_ll < ee_position)\n', (2937, 2965), True, 'import numpy as np\n'), ((3004, 3038), 'numpy.all', 'np.all', (['(ee_position < self.task_ul)'], {}), '(ee_position < self.task_ul)\n', (3010, 3038), True, 'import numpy as np\n'), ((5429, 5476), 'gym.spaces.Box', 'spaces.Box', (['(-1)', '(1)'], {'shape': '(1,)', 'dtype': 'np.float32'}), '(-1, 1, shape=(1,), dtype=np.float32)\n', (5439, 5476), False, 'from gym import spaces\n'), ((5508, 5613), 'gym.spaces.Box', 'spaces.Box', (['self.robot.joint_ll', 'self.robot.joint_ul'], {'shape': '(self.robot.n_joints,)', 'dtype': 'np.float32'}), '(self.robot.joint_ll, self.robot.joint_ul, shape=(self.robot.\n n_joints,), dtype=np.float32)\n', (5518, 5613), False, 'from gym import spaces\n'), ((5716, 5821), 'gym.spaces.Box', 'spaces.Box', (['self.robot.joint_ll', 'self.robot.joint_ul'], {'shape': '(self.robot.n_joints,)', 'dtype': 'np.float32'}), '(self.robot.joint_ll, self.robot.joint_ul, shape=(self.robot.\n n_joints,), dtype=np.float32)\n', (5726, 5821), False, 'from gym import spaces\n'), ((10215, 10338), 'gym.spaces.Box', 'spaces.Box', ([], {'low': 'self.coworker.joint_ll', 'high': 'self.coworker.joint_ul', 'shape': '(self.coworker.n_joints,)', 'dtype': 'np.float32'}), '(low=self.coworker.joint_ll, high=self.coworker.joint_ul, shape=(\n self.coworker.n_joints,), dtype=np.float32)\n', (10225, 10338), False, 'from gym import spaces\n'), ((10447, 10555), 'gym.spaces.Box', 'spaces.Box', (['self.worker.joint_ll', 'self.worker.joint_ul'], {'shape': '(self.worker.n_joints,)', 'dtype': 'np.float32'}), '(self.worker.joint_ll, self.worker.joint_ul, shape=(self.worker.\n n_joints,), dtype=np.float32)\n', (10457, 10555), False, 'from gym import spaces\n'), ((10658, 10766), 'gym.spaces.Box', 'spaces.Box', (['self.worker.joint_ll', 'self.worker.joint_ul'], {'shape': '(self.worker.n_joints,)', 'dtype': 'np.float32'}), '(self.worker.joint_ll, self.worker.joint_ul, shape=(self.worker.\n n_joints,), dtype=np.float32)\n', (10668, 10766), False, 'from gym import spaces\n')]
|
import gym
import gym_flowers
import numpy as np
import os
os.environ['LD_LIBRARY_PATH']+=':'+os.environ['HOME']+'/.mujoco/mjpro150/bin:'
# env = gym.make('ModularArm012-v0')
env = gym.make('MultiTaskFetchArm4-v5')
obs = env.reset()
goal = np.array([-1,-1,-1])
task = 2
env.unwrapped.reset_task_goal(goal, task)
env.render()
task_id = [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11], [12, 13, 14],[15,16,17],[18,19,20],[21,22,23], [24,25,26], [27,28,29],[30,31,32],[33,34,35]]
n_tasks = env.unwrapped.nb_tasks
for i in range(100000):
act = np.array([1,0,0,0.1])
obs = env.step(act)
# print(obs[0]['observation'][9:15])
for i in range(n_tasks):
ag = obs[0]['achieved_goal']
g = np.zeros([3 * n_tasks])
g[task_id[i]] = obs[0]['desired_goal'][task_id[task]]
task_descr = np.zeros([n_tasks])
task_descr[i] = 1
r = env.unwrapped.compute_reward(ag, g, task_descr=task_descr, info={})
print('Task ', i, 'reward', r)
# print(ag)
# print(g)
env.render()
|
[
"numpy.zeros",
"numpy.array",
"gym.make"
] |
[((182, 215), 'gym.make', 'gym.make', (['"""MultiTaskFetchArm4-v5"""'], {}), "('MultiTaskFetchArm4-v5')\n", (190, 215), False, 'import gym\n'), ((241, 263), 'numpy.array', 'np.array', (['[-1, -1, -1]'], {}), '([-1, -1, -1])\n', (249, 263), True, 'import numpy as np\n'), ((543, 567), 'numpy.array', 'np.array', (['[1, 0, 0, 0.1]'], {}), '([1, 0, 0, 0.1])\n', (551, 567), True, 'import numpy as np\n'), ((708, 731), 'numpy.zeros', 'np.zeros', (['[3 * n_tasks]'], {}), '([3 * n_tasks])\n', (716, 731), True, 'import numpy as np\n'), ((815, 834), 'numpy.zeros', 'np.zeros', (['[n_tasks]'], {}), '([n_tasks])\n', (823, 834), True, 'import numpy as np\n')]
|
import numpy as np
import os
import keras
from keras.applications import inception_v3, inception_resnet_v2, vgg19
from keras.models import Sequential
from keras.layers.core import Dense, Flatten
from keras.layers.convolutional import Conv2D
from keras.optimizers import Adam
def build_model(input_shape, with_one_by_one=True,
keep_training_pretrained=False,
pretrained_class=vgg19.VGG19,
num_dense=64,
):
model = Sequential()
# # # 1x1 convolution to make sure we only have 3 channels
n_channels_for_pretrained = 3
one_by_one = Conv2D(n_channels_for_pretrained, 1,
padding="same",
input_shape=input_shape)
one_by_one.trainable = with_one_by_one
model.add(one_by_one)
pretrained_input_shape = tuple([n_channels_for_pretrained,
*input_shape[1:]])
pretrained_layers = pretrained_class(
include_top=False,
input_shape=pretrained_input_shape
)
for layer in pretrained_layers.layers:
layer.trainable = keep_training_pretrained
model.add(pretrained_layers)
model.add(Flatten())
model.add(Dense(2*num_dense, activation=None))
model.add(keras.layers.PReLU())
model.add(Dense(num_dense, activation=None))
model.add(keras.layers.PReLU())
model.add(Dense(1, activation=None))
return model
def compile_model(model, logger_filename,
adam_lr=0.001,
):
learning_rate = adam_lr
adam = Adam(lr=learning_rate)
model.compile(loss="mean_squared_error",
optimizer=adam,
)
# can only manually set weights _after_ compiling
one_by_one_weights = np.zeros((1, 1, 5, 3))
for i in range(3):
# by default, irg should be RGB
one_by_one_weights[0, 0, 3-i, i] = 1.
model.layers[0].set_weights(
[one_by_one_weights,
np.zeros(3)])
if os.path.exists(logger_filename):
logger_filename_tmp = logger_filename + ".old"
os.rename(logger_filename, logger_filename_tmp)
return model
|
[
"keras.layers.core.Dense",
"os.rename",
"numpy.zeros",
"keras.optimizers.Adam",
"os.path.exists",
"keras.layers.PReLU",
"keras.layers.convolutional.Conv2D",
"keras.layers.core.Flatten",
"keras.models.Sequential"
] |
[((486, 498), 'keras.models.Sequential', 'Sequential', ([], {}), '()\n', (496, 498), False, 'from keras.models import Sequential\n'), ((614, 691), 'keras.layers.convolutional.Conv2D', 'Conv2D', (['n_channels_for_pretrained', '(1)'], {'padding': '"""same"""', 'input_shape': 'input_shape'}), "(n_channels_for_pretrained, 1, padding='same', input_shape=input_shape)\n", (620, 691), False, 'from keras.layers.convolutional import Conv2D\n'), ((1570, 1592), 'keras.optimizers.Adam', 'Adam', ([], {'lr': 'learning_rate'}), '(lr=learning_rate)\n', (1574, 1592), False, 'from keras.optimizers import Adam\n'), ((1773, 1795), 'numpy.zeros', 'np.zeros', (['(1, 1, 5, 3)'], {}), '((1, 1, 5, 3))\n', (1781, 1795), True, 'import numpy as np\n'), ((1998, 2029), 'os.path.exists', 'os.path.exists', (['logger_filename'], {}), '(logger_filename)\n', (2012, 2029), False, 'import os\n'), ((1189, 1198), 'keras.layers.core.Flatten', 'Flatten', ([], {}), '()\n', (1196, 1198), False, 'from keras.layers.core import Dense, Flatten\n'), ((1214, 1251), 'keras.layers.core.Dense', 'Dense', (['(2 * num_dense)'], {'activation': 'None'}), '(2 * num_dense, activation=None)\n', (1219, 1251), False, 'from keras.layers.core import Dense, Flatten\n'), ((1265, 1285), 'keras.layers.PReLU', 'keras.layers.PReLU', ([], {}), '()\n', (1283, 1285), False, 'import keras\n'), ((1301, 1334), 'keras.layers.core.Dense', 'Dense', (['num_dense'], {'activation': 'None'}), '(num_dense, activation=None)\n', (1306, 1334), False, 'from keras.layers.core import Dense, Flatten\n'), ((1350, 1370), 'keras.layers.PReLU', 'keras.layers.PReLU', ([], {}), '()\n', (1368, 1370), False, 'import keras\n'), ((1386, 1411), 'keras.layers.core.Dense', 'Dense', (['(1)'], {'activation': 'None'}), '(1, activation=None)\n', (1391, 1411), False, 'from keras.layers.core import Dense, Flatten\n'), ((2094, 2141), 'os.rename', 'os.rename', (['logger_filename', 'logger_filename_tmp'], {}), '(logger_filename, logger_filename_tmp)\n', (2103, 2141), False, 'import os\n'), ((1976, 1987), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (1984, 1987), True, 'import numpy as np\n')]
|
import os
os.chdir('osmFISH_Ziesel/')
import numpy as np
import pandas as pd
import matplotlib
matplotlib.use('qt5agg')
matplotlib.rcParams['pdf.fonttype'] = 42
matplotlib.rcParams['ps.fonttype'] = 42
import matplotlib.pyplot as plt
import scipy.stats as st
from matplotlib.lines import Line2D
import pickle
with open ('data/SpaGE_pkl/osmFISH_Cortex.pkl', 'rb') as f:
datadict = pickle.load(f)
osmFISH_data = datadict['osmFISH_data']
del datadict
Gene_Order = osmFISH_data.columns
### SpaGE
SpaGE_imputed_Ziesel = pd.read_csv('Results/SpaGE_LeaveOneOut.csv',header=0,index_col=0,sep=',')
SpaGE_imputed_Ziesel = SpaGE_imputed_Ziesel.loc[:,Gene_Order]
SpaGE_Corr_Ziesel = pd.Series(index = Gene_Order)
for i in Gene_Order:
SpaGE_Corr_Ziesel[i] = st.spearmanr(osmFISH_data[i],SpaGE_imputed_Ziesel[i])[0]
### gimVI
gimVI_imputed_Ziesel = pd.read_csv('Results/gimVI_LeaveOneOut.csv',header=0,index_col=0,sep=',')
gimVI_imputed_Ziesel = gimVI_imputed_Ziesel.loc[:,[x.upper() for x in np.array(Gene_Order,dtype='str')]]
gimVI_Corr_Ziesel = pd.Series(index = Gene_Order)
for i in Gene_Order:
gimVI_Corr_Ziesel[i] = st.spearmanr(osmFISH_data[i],gimVI_imputed_Ziesel[str(i).upper()])[0]
gimVI_Corr_Ziesel[np.isnan(gimVI_Corr_Ziesel)] = 0
### Seurat
Seurat_imputed_Ziesel = pd.read_csv('Results/Seurat_LeaveOneOut.csv',header=0,index_col=0,sep=',').T
Seurat_imputed_Ziesel = Seurat_imputed_Ziesel.loc[:,Gene_Order]
Seurat_Corr_Ziesel = pd.Series(index = Gene_Order)
for i in Gene_Order:
Seurat_Corr_Ziesel[i] = st.spearmanr(osmFISH_data[i],Seurat_imputed_Ziesel[i])[0]
### Liger
Liger_imputed_Ziesel = pd.read_csv('Results/Liger_LeaveOneOut.csv',header=0,index_col=0,sep=',').T
Liger_imputed_Ziesel = Liger_imputed_Ziesel.loc[:,Gene_Order]
Liger_Corr_Ziesel = pd.Series(index = Gene_Order)
for i in Gene_Order:
Liger_Corr_Ziesel[i] = st.spearmanr(osmFISH_data[i],Liger_imputed_Ziesel[i])[0]
Liger_Corr_Ziesel[np.isnan(Liger_Corr_Ziesel)] = 0
os.chdir('osmFISH_AllenVISp/')
### SpaGE
SpaGE_imputed_AllenVISp = pd.read_csv('Results/SpaGE_LeaveOneOut.csv',header=0,index_col=0,sep=',')
SpaGE_imputed_AllenVISp = SpaGE_imputed_AllenVISp.loc[:,Gene_Order]
SpaGE_Corr_AllenVISp = pd.Series(index = Gene_Order)
for i in Gene_Order:
SpaGE_Corr_AllenVISp[i] = st.spearmanr(osmFISH_data[i],SpaGE_imputed_AllenVISp[i])[0]
### gimVI
gimVI_imputed_AllenVISp = pd.read_csv('Results/gimVI_LeaveOneOut.csv',header=0,index_col=0,sep=',')
gimVI_imputed_AllenVISp = gimVI_imputed_AllenVISp.loc[:,[x.upper() for x in np.array(Gene_Order,dtype='str')]]
gimVI_Corr_AllenVISp = pd.Series(index = Gene_Order)
for i in Gene_Order:
gimVI_Corr_AllenVISp[i] = st.spearmanr(osmFISH_data[i],gimVI_imputed_AllenVISp[str(i).upper()])[0]
gimVI_Corr_AllenVISp[np.isnan(gimVI_Corr_AllenVISp)] = 0
### Seurat
Seurat_imputed_AllenVISp = pd.read_csv('Results/Seurat_LeaveOneOut.csv',header=0,index_col=0,sep=',').T
Seurat_imputed_AllenVISp = Seurat_imputed_AllenVISp.loc[:,Gene_Order]
Seurat_Corr_AllenVISp = pd.Series(index = Gene_Order)
for i in Gene_Order:
Seurat_Corr_AllenVISp[i] = st.spearmanr(osmFISH_data[i],Seurat_imputed_AllenVISp[i])[0]
### Liger
Liger_imputed_AllenVISp = pd.read_csv('Results/Liger_LeaveOneOut.csv',header=0,index_col=0,sep=',').T
Liger_imputed_AllenVISp = Liger_imputed_AllenVISp.loc[:,Gene_Order]
Liger_Corr_AllenVISp = pd.Series(index = Gene_Order)
for i in Gene_Order:
Liger_Corr_AllenVISp[i] = st.spearmanr(osmFISH_data[i],Liger_imputed_AllenVISp[i])[0]
Liger_Corr_AllenVISp[np.isnan(Liger_Corr_AllenVISp)] = 0
os.chdir('osmFISH_AllenSSp/')
### SpaGE
SpaGE_imputed_AllenSSp = pd.read_csv('Results/SpaGE_LeaveOneOut.csv',header=0,index_col=0,sep=',')
SpaGE_imputed_AllenSSp = SpaGE_imputed_AllenSSp.loc[:,Gene_Order]
SpaGE_Corr_AllenSSp = pd.Series(index = Gene_Order)
for i in Gene_Order:
SpaGE_Corr_AllenSSp[i] = st.spearmanr(osmFISH_data[i],SpaGE_imputed_AllenSSp[i])[0]
### gimVI
gimVI_imputed_AllenSSp = pd.read_csv('Results/gimVI_LeaveOneOut.csv',header=0,index_col=0,sep=',')
gimVI_imputed_AllenSSp = gimVI_imputed_AllenSSp.loc[:,[x.upper() for x in np.array(Gene_Order,dtype='str')]]
gimVI_Corr_AllenSSp = pd.Series(index = Gene_Order)
for i in Gene_Order:
gimVI_Corr_AllenSSp[i] = st.spearmanr(osmFISH_data[i],gimVI_imputed_AllenSSp[str(i).upper()])[0]
gimVI_Corr_AllenSSp[np.isnan(gimVI_Corr_AllenSSp)] = 0
### Seurat
Seurat_imputed_AllenSSp = pd.read_csv('Results/Seurat_LeaveOneOut.csv',header=0,index_col=0,sep=',').T
Seurat_imputed_AllenSSp = Seurat_imputed_AllenSSp.loc[:,Gene_Order]
Seurat_Corr_AllenSSp = pd.Series(index = Gene_Order)
for i in Gene_Order:
Seurat_Corr_AllenSSp[i] = st.spearmanr(osmFISH_data[i],Seurat_imputed_AllenSSp[i])[0]
### Liger
Liger_imputed_AllenSSp = pd.read_csv('Results/Liger_LeaveOneOut.csv',header=0,index_col=0,sep=',').T
Liger_imputed_AllenSSp = Liger_imputed_AllenSSp.loc[:,Gene_Order]
Liger_Corr_AllenSSp = pd.Series(index = Gene_Order)
for i in Gene_Order:
Liger_Corr_AllenSSp[i] = st.spearmanr(osmFISH_data[i],Liger_imputed_AllenSSp[i])[0]
Liger_Corr_AllenSSp[np.isnan(Liger_Corr_AllenSSp)] = 0
### Comparison plots
plt.style.use('ggplot')
fig, ax = plt.subplots(figsize=(5, 3))
ax.boxplot([SpaGE_Corr_Ziesel, Seurat_Corr_Ziesel, Liger_Corr_Ziesel,gimVI_Corr_Ziesel],
positions = [1,5,9,13],boxprops=dict(color='red'),
capprops=dict(color='red'),whiskerprops=dict(color='red'),flierprops=dict(color='red', markeredgecolor='red'),
medianprops=dict(color='red'))
ax.boxplot([SpaGE_Corr_AllenVISp, Seurat_Corr_AllenVISp, Liger_Corr_AllenVISp,gimVI_Corr_AllenVISp],
positions = [2,6,10,14],boxprops=dict(color='blue'),
capprops=dict(color='blue'),whiskerprops=dict(color='blue'),flierprops=dict(color='blue', markeredgecolor='blue'),
medianprops=dict(color='blue'))
ax.boxplot([SpaGE_Corr_AllenSSp, Seurat_Corr_AllenSSp, Liger_Corr_AllenSSp,gimVI_Corr_AllenSSp],
positions = [3,7,11,15],boxprops=dict(color='purple'),
capprops=dict(color='purple'),whiskerprops=dict(color='purple'),flierprops=dict(color='purple', markeredgecolor='purple'),
medianprops=dict(color='purple'))
y = SpaGE_Corr_Ziesel
x = np.random.normal(1, 0.05, len(y))
plt.plot(x, y, 'k.', alpha=0.2)
y = SpaGE_Corr_AllenVISp
x = np.random.normal(2, 0.05, len(y))
plt.plot(x, y, 'k.', alpha=0.2)
y = SpaGE_Corr_AllenSSp
x = np.random.normal(3, 0.05, len(y))
plt.plot(x, y, 'k.', alpha=0.2)
y = Seurat_Corr_Ziesel
x = np.random.normal(5, 0.05, len(y))
plt.plot(x, y, 'k.', alpha=0.2)
y = Seurat_Corr_AllenVISp
x = np.random.normal(6, 0.05, len(y))
plt.plot(x, y, 'k.', alpha=0.2)
y = Seurat_Corr_AllenSSp
x = np.random.normal(7, 0.05, len(y))
plt.plot(x, y, 'k.', alpha=0.2)
y = Liger_Corr_Ziesel
x = np.random.normal(9, 0.05, len(y))
plt.plot(x, y, 'k.', alpha=0.2)
y = Liger_Corr_AllenVISp
x = np.random.normal(10, 0.05, len(y))
plt.plot(x, y, 'k.', alpha=0.2)
y = Liger_Corr_AllenSSp
x = np.random.normal(11, 0.05, len(y))
plt.plot(x, y, 'k.', alpha=0.2)
y = gimVI_Corr_Ziesel
x = np.random.normal(13, 0.05, len(y))
plt.plot(x, y, 'k.', alpha=0.2)
y = gimVI_Corr_AllenVISp
x = np.random.normal(14, 0.05, len(y))
plt.plot(x, y, 'k.', alpha=0.2)
y = gimVI_Corr_AllenSSp
x = np.random.normal(15, 0.05, len(y))
plt.plot(x, y, 'k.', alpha=0.2)
plt.xticks((2,6,10,14),('SpaGE','Seurat', 'Liger','gimVI'),size=12)
plt.yticks(size=8)
plt.gca().set_ylim([-0.4,0.8])
plt.ylabel('Spearman Correlation',size=12)
colors = ['red', 'blue', 'purple']
lines = [Line2D([0], [0], color=c, linewidth=3, linestyle='-') for c in colors]
labels = ['Ziesel', 'AllenVISp','AllenSSp']
plt.legend(lines, labels)
plt.show()
|
[
"matplotlib.pyplot.show",
"matplotlib.pyplot.plot",
"matplotlib.lines.Line2D",
"pandas.read_csv",
"matplotlib.pyplot.legend",
"matplotlib.pyplot.yticks",
"scipy.stats.spearmanr",
"numpy.isnan",
"matplotlib.pyplot.style.use",
"matplotlib.use",
"pickle.load",
"pandas.Series",
"numpy.array",
"matplotlib.pyplot.gca",
"matplotlib.pyplot.ylabel",
"matplotlib.pyplot.xticks",
"matplotlib.pyplot.subplots",
"os.chdir"
] |
[((11, 38), 'os.chdir', 'os.chdir', (['"""osmFISH_Ziesel/"""'], {}), "('osmFISH_Ziesel/')\n", (19, 38), False, 'import os\n'), ((102, 126), 'matplotlib.use', 'matplotlib.use', (['"""qt5agg"""'], {}), "('qt5agg')\n", (116, 126), False, 'import matplotlib\n'), ((546, 622), 'pandas.read_csv', 'pd.read_csv', (['"""Results/SpaGE_LeaveOneOut.csv"""'], {'header': '(0)', 'index_col': '(0)', 'sep': '""","""'}), "('Results/SpaGE_LeaveOneOut.csv', header=0, index_col=0, sep=',')\n", (557, 622), True, 'import pandas as pd\n'), ((708, 735), 'pandas.Series', 'pd.Series', ([], {'index': 'Gene_Order'}), '(index=Gene_Order)\n', (717, 735), True, 'import pandas as pd\n'), ((882, 958), 'pandas.read_csv', 'pd.read_csv', (['"""Results/gimVI_LeaveOneOut.csv"""'], {'header': '(0)', 'index_col': '(0)', 'sep': '""","""'}), "('Results/gimVI_LeaveOneOut.csv', header=0, index_col=0, sep=',')\n", (893, 958), True, 'import pandas as pd\n'), ((1087, 1114), 'pandas.Series', 'pd.Series', ([], {'index': 'Gene_Order'}), '(index=Gene_Order)\n', (1096, 1114), True, 'import pandas as pd\n'), ((1496, 1523), 'pandas.Series', 'pd.Series', ([], {'index': 'Gene_Order'}), '(index=Gene_Order)\n', (1505, 1523), True, 'import pandas as pd\n'), ((1836, 1863), 'pandas.Series', 'pd.Series', ([], {'index': 'Gene_Order'}), '(index=Gene_Order)\n', (1845, 1863), True, 'import pandas as pd\n'), ((2030, 2060), 'os.chdir', 'os.chdir', (['"""osmFISH_AllenVISp/"""'], {}), "('osmFISH_AllenVISp/')\n", (2038, 2060), False, 'import os\n'), ((2101, 2177), 'pandas.read_csv', 'pd.read_csv', (['"""Results/SpaGE_LeaveOneOut.csv"""'], {'header': '(0)', 'index_col': '(0)', 'sep': '""","""'}), "('Results/SpaGE_LeaveOneOut.csv', header=0, index_col=0, sep=',')\n", (2112, 2177), True, 'import pandas as pd\n'), ((2272, 2299), 'pandas.Series', 'pd.Series', ([], {'index': 'Gene_Order'}), '(index=Gene_Order)\n', (2281, 2299), True, 'import pandas as pd\n'), ((2455, 2531), 'pandas.read_csv', 'pd.read_csv', (['"""Results/gimVI_LeaveOneOut.csv"""'], {'header': '(0)', 'index_col': '(0)', 'sep': '""","""'}), "('Results/gimVI_LeaveOneOut.csv', header=0, index_col=0, sep=',')\n", (2466, 2531), True, 'import pandas as pd\n'), ((2669, 2696), 'pandas.Series', 'pd.Series', ([], {'index': 'Gene_Order'}), '(index=Gene_Order)\n', (2678, 2696), True, 'import pandas as pd\n'), ((3102, 3129), 'pandas.Series', 'pd.Series', ([], {'index': 'Gene_Order'}), '(index=Gene_Order)\n', (3111, 3129), True, 'import pandas as pd\n'), ((3460, 3487), 'pandas.Series', 'pd.Series', ([], {'index': 'Gene_Order'}), '(index=Gene_Order)\n', (3469, 3487), True, 'import pandas as pd\n'), ((3666, 3695), 'os.chdir', 'os.chdir', (['"""osmFISH_AllenSSp/"""'], {}), "('osmFISH_AllenSSp/')\n", (3674, 3695), False, 'import os\n'), ((3735, 3811), 'pandas.read_csv', 'pd.read_csv', (['"""Results/SpaGE_LeaveOneOut.csv"""'], {'header': '(0)', 'index_col': '(0)', 'sep': '""","""'}), "('Results/SpaGE_LeaveOneOut.csv', header=0, index_col=0, sep=',')\n", (3746, 3811), True, 'import pandas as pd\n'), ((3903, 3930), 'pandas.Series', 'pd.Series', ([], {'index': 'Gene_Order'}), '(index=Gene_Order)\n', (3912, 3930), True, 'import pandas as pd\n'), ((4083, 4159), 'pandas.read_csv', 'pd.read_csv', (['"""Results/gimVI_LeaveOneOut.csv"""'], {'header': '(0)', 'index_col': '(0)', 'sep': '""","""'}), "('Results/gimVI_LeaveOneOut.csv', header=0, index_col=0, sep=',')\n", (4094, 4159), True, 'import pandas as pd\n'), ((4294, 4321), 'pandas.Series', 'pd.Series', ([], {'index': 'Gene_Order'}), '(index=Gene_Order)\n', (4303, 4321), True, 'import pandas as pd\n'), ((4719, 4746), 'pandas.Series', 'pd.Series', ([], {'index': 'Gene_Order'}), '(index=Gene_Order)\n', (4728, 4746), True, 'import pandas as pd\n'), ((5071, 5098), 'pandas.Series', 'pd.Series', ([], {'index': 'Gene_Order'}), '(index=Gene_Order)\n', (5080, 5098), True, 'import pandas as pd\n'), ((5293, 5316), 'matplotlib.pyplot.style.use', 'plt.style.use', (['"""ggplot"""'], {}), "('ggplot')\n", (5306, 5316), True, 'import matplotlib.pyplot as plt\n'), ((5328, 5356), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(5, 3)'}), '(figsize=(5, 3))\n', (5340, 5356), True, 'import matplotlib.pyplot as plt\n'), ((6432, 6463), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y', '"""k."""'], {'alpha': '(0.2)'}), "(x, y, 'k.', alpha=0.2)\n", (6440, 6463), True, 'import matplotlib.pyplot as plt\n'), ((6530, 6561), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y', '"""k."""'], {'alpha': '(0.2)'}), "(x, y, 'k.', alpha=0.2)\n", (6538, 6561), True, 'import matplotlib.pyplot as plt\n'), ((6627, 6658), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y', '"""k."""'], {'alpha': '(0.2)'}), "(x, y, 'k.', alpha=0.2)\n", (6635, 6658), True, 'import matplotlib.pyplot as plt\n'), ((6723, 6754), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y', '"""k."""'], {'alpha': '(0.2)'}), "(x, y, 'k.', alpha=0.2)\n", (6731, 6754), True, 'import matplotlib.pyplot as plt\n'), ((6822, 6853), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y', '"""k."""'], {'alpha': '(0.2)'}), "(x, y, 'k.', alpha=0.2)\n", (6830, 6853), True, 'import matplotlib.pyplot as plt\n'), ((6920, 6951), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y', '"""k."""'], {'alpha': '(0.2)'}), "(x, y, 'k.', alpha=0.2)\n", (6928, 6951), True, 'import matplotlib.pyplot as plt\n'), ((7015, 7046), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y', '"""k."""'], {'alpha': '(0.2)'}), "(x, y, 'k.', alpha=0.2)\n", (7023, 7046), True, 'import matplotlib.pyplot as plt\n'), ((7114, 7145), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y', '"""k."""'], {'alpha': '(0.2)'}), "(x, y, 'k.', alpha=0.2)\n", (7122, 7145), True, 'import matplotlib.pyplot as plt\n'), ((7212, 7243), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y', '"""k."""'], {'alpha': '(0.2)'}), "(x, y, 'k.', alpha=0.2)\n", (7220, 7243), True, 'import matplotlib.pyplot as plt\n'), ((7308, 7339), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y', '"""k."""'], {'alpha': '(0.2)'}), "(x, y, 'k.', alpha=0.2)\n", (7316, 7339), True, 'import matplotlib.pyplot as plt\n'), ((7407, 7438), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y', '"""k."""'], {'alpha': '(0.2)'}), "(x, y, 'k.', alpha=0.2)\n", (7415, 7438), True, 'import matplotlib.pyplot as plt\n'), ((7505, 7536), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y', '"""k."""'], {'alpha': '(0.2)'}), "(x, y, 'k.', alpha=0.2)\n", (7513, 7536), True, 'import matplotlib.pyplot as plt\n'), ((7540, 7614), 'matplotlib.pyplot.xticks', 'plt.xticks', (['(2, 6, 10, 14)', "('SpaGE', 'Seurat', 'Liger', 'gimVI')"], {'size': '(12)'}), "((2, 6, 10, 14), ('SpaGE', 'Seurat', 'Liger', 'gimVI'), size=12)\n", (7550, 7614), True, 'import matplotlib.pyplot as plt\n'), ((7609, 7627), 'matplotlib.pyplot.yticks', 'plt.yticks', ([], {'size': '(8)'}), '(size=8)\n', (7619, 7627), True, 'import matplotlib.pyplot as plt\n'), ((7661, 7704), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Spearman Correlation"""'], {'size': '(12)'}), "('Spearman Correlation', size=12)\n", (7671, 7704), True, 'import matplotlib.pyplot as plt\n'), ((7867, 7892), 'matplotlib.pyplot.legend', 'plt.legend', (['lines', 'labels'], {}), '(lines, labels)\n', (7877, 7892), True, 'import matplotlib.pyplot as plt\n'), ((7894, 7904), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (7902, 7904), True, 'import matplotlib.pyplot as plt\n'), ((400, 414), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (411, 414), False, 'import pickle\n'), ((1256, 1283), 'numpy.isnan', 'np.isnan', (['gimVI_Corr_Ziesel'], {}), '(gimVI_Corr_Ziesel)\n', (1264, 1283), True, 'import numpy as np\n'), ((1328, 1405), 'pandas.read_csv', 'pd.read_csv', (['"""Results/Seurat_LeaveOneOut.csv"""'], {'header': '(0)', 'index_col': '(0)', 'sep': '""","""'}), "('Results/Seurat_LeaveOneOut.csv', header=0, index_col=0, sep=',')\n", (1339, 1405), True, 'import pandas as pd\n'), ((1672, 1748), 'pandas.read_csv', 'pd.read_csv', (['"""Results/Liger_LeaveOneOut.csv"""'], {'header': '(0)', 'index_col': '(0)', 'sep': '""","""'}), "('Results/Liger_LeaveOneOut.csv', header=0, index_col=0, sep=',')\n", (1683, 1748), True, 'import pandas as pd\n'), ((1992, 2019), 'numpy.isnan', 'np.isnan', (['Liger_Corr_Ziesel'], {}), '(Liger_Corr_Ziesel)\n', (2000, 2019), True, 'import numpy as np\n'), ((2847, 2877), 'numpy.isnan', 'np.isnan', (['gimVI_Corr_AllenVISp'], {}), '(gimVI_Corr_AllenVISp)\n', (2855, 2877), True, 'import numpy as np\n'), ((2925, 3002), 'pandas.read_csv', 'pd.read_csv', (['"""Results/Seurat_LeaveOneOut.csv"""'], {'header': '(0)', 'index_col': '(0)', 'sep': '""","""'}), "('Results/Seurat_LeaveOneOut.csv', header=0, index_col=0, sep=',')\n", (2936, 3002), True, 'import pandas as pd\n'), ((3287, 3363), 'pandas.read_csv', 'pd.read_csv', (['"""Results/Liger_LeaveOneOut.csv"""'], {'header': '(0)', 'index_col': '(0)', 'sep': '""","""'}), "('Results/Liger_LeaveOneOut.csv', header=0, index_col=0, sep=',')\n", (3298, 3363), True, 'import pandas as pd\n'), ((3625, 3655), 'numpy.isnan', 'np.isnan', (['Liger_Corr_AllenVISp'], {}), '(Liger_Corr_AllenVISp)\n', (3633, 3655), True, 'import numpy as np\n'), ((4469, 4498), 'numpy.isnan', 'np.isnan', (['gimVI_Corr_AllenSSp'], {}), '(gimVI_Corr_AllenSSp)\n', (4477, 4498), True, 'import numpy as np\n'), ((4545, 4622), 'pandas.read_csv', 'pd.read_csv', (['"""Results/Seurat_LeaveOneOut.csv"""'], {'header': '(0)', 'index_col': '(0)', 'sep': '""","""'}), "('Results/Seurat_LeaveOneOut.csv', header=0, index_col=0, sep=',')\n", (4556, 4622), True, 'import pandas as pd\n'), ((4901, 4977), 'pandas.read_csv', 'pd.read_csv', (['"""Results/Liger_LeaveOneOut.csv"""'], {'header': '(0)', 'index_col': '(0)', 'sep': '""","""'}), "('Results/Liger_LeaveOneOut.csv', header=0, index_col=0, sep=',')\n", (4912, 4977), True, 'import pandas as pd\n'), ((5233, 5262), 'numpy.isnan', 'np.isnan', (['Liger_Corr_AllenSSp'], {}), '(Liger_Corr_AllenSSp)\n', (5241, 5262), True, 'import numpy as np\n'), ((7750, 7803), 'matplotlib.lines.Line2D', 'Line2D', (['[0]', '[0]'], {'color': 'c', 'linewidth': '(3)', 'linestyle': '"""-"""'}), "([0], [0], color=c, linewidth=3, linestyle='-')\n", (7756, 7803), False, 'from matplotlib.lines import Line2D\n'), ((788, 842), 'scipy.stats.spearmanr', 'st.spearmanr', (['osmFISH_data[i]', 'SpaGE_imputed_Ziesel[i]'], {}), '(osmFISH_data[i], SpaGE_imputed_Ziesel[i])\n', (800, 842), True, 'import scipy.stats as st\n'), ((1577, 1632), 'scipy.stats.spearmanr', 'st.spearmanr', (['osmFISH_data[i]', 'Seurat_imputed_Ziesel[i]'], {}), '(osmFISH_data[i], Seurat_imputed_Ziesel[i])\n', (1589, 1632), True, 'import scipy.stats as st\n'), ((1916, 1970), 'scipy.stats.spearmanr', 'st.spearmanr', (['osmFISH_data[i]', 'Liger_imputed_Ziesel[i]'], {}), '(osmFISH_data[i], Liger_imputed_Ziesel[i])\n', (1928, 1970), True, 'import scipy.stats as st\n'), ((2355, 2412), 'scipy.stats.spearmanr', 'st.spearmanr', (['osmFISH_data[i]', 'SpaGE_imputed_AllenVISp[i]'], {}), '(osmFISH_data[i], SpaGE_imputed_AllenVISp[i])\n', (2367, 2412), True, 'import scipy.stats as st\n'), ((3186, 3244), 'scipy.stats.spearmanr', 'st.spearmanr', (['osmFISH_data[i]', 'Seurat_imputed_AllenVISp[i]'], {}), '(osmFISH_data[i], Seurat_imputed_AllenVISp[i])\n', (3198, 3244), True, 'import scipy.stats as st\n'), ((3543, 3600), 'scipy.stats.spearmanr', 'st.spearmanr', (['osmFISH_data[i]', 'Liger_imputed_AllenVISp[i]'], {}), '(osmFISH_data[i], Liger_imputed_AllenVISp[i])\n', (3555, 3600), True, 'import scipy.stats as st\n'), ((3985, 4041), 'scipy.stats.spearmanr', 'st.spearmanr', (['osmFISH_data[i]', 'SpaGE_imputed_AllenSSp[i]'], {}), '(osmFISH_data[i], SpaGE_imputed_AllenSSp[i])\n', (3997, 4041), True, 'import scipy.stats as st\n'), ((4802, 4859), 'scipy.stats.spearmanr', 'st.spearmanr', (['osmFISH_data[i]', 'Seurat_imputed_AllenSSp[i]'], {}), '(osmFISH_data[i], Seurat_imputed_AllenSSp[i])\n', (4814, 4859), True, 'import scipy.stats as st\n'), ((5153, 5209), 'scipy.stats.spearmanr', 'st.spearmanr', (['osmFISH_data[i]', 'Liger_imputed_AllenSSp[i]'], {}), '(osmFISH_data[i], Liger_imputed_AllenSSp[i])\n', (5165, 5209), True, 'import scipy.stats as st\n'), ((7629, 7638), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (7636, 7638), True, 'import matplotlib.pyplot as plt\n'), ((1029, 1062), 'numpy.array', 'np.array', (['Gene_Order'], {'dtype': '"""str"""'}), "(Gene_Order, dtype='str')\n", (1037, 1062), True, 'import numpy as np\n'), ((2608, 2641), 'numpy.array', 'np.array', (['Gene_Order'], {'dtype': '"""str"""'}), "(Gene_Order, dtype='str')\n", (2616, 2641), True, 'import numpy as np\n'), ((4234, 4267), 'numpy.array', 'np.array', (['Gene_Order'], {'dtype': '"""str"""'}), "(Gene_Order, dtype='str')\n", (4242, 4267), True, 'import numpy as np\n')]
|
import numpy as np
import jax.numpy as jnp
def radial_profile(data):
"""
Compute the radial profile of 2d image
:param data: 2d image
:return: radial profile
"""
center = data.shape[0]/2
y, x = jnp.indices((data.shape))
r = jnp.sqrt((x - center)**2 + (y - center)**2)
r = r.astype('int32')
tbin = jnp.bincount(r.ravel(), data.ravel())
nr = jnp.bincount(r.ravel())
radialprofile = tbin / nr
return radialprofile
def measure_power_spectrum(map_data, pixel_size):
"""
measures power 2d data
:param power: map (nxn)
:param pixel_size: pixel_size (rad/pixel)
:return: ell
:return: power spectrum
"""
data_ft = jnp.fft.fftshift(jnp.fft.fft2(map_data)) / map_data.shape[0]
nyquist = np.int(map_data.shape[0]/2)
power_spectrum_1d = radial_profile(jnp.real(data_ft*jnp.conj(data_ft)))[:nyquist] * (pixel_size)**2
k = np.arange(power_spectrum_1d.shape[0])
ell = 2. * np.pi * k / pixel_size / 360
return ell, power_spectrum_1d
def make_power_map(power_spectrum, size, kps=None, zero_freq_val=1e7):
#Ok we need to make a map of the power spectrum in Fourier space
k1 = np.fft.fftfreq(size)
k2 = np.fft.fftfreq(size)
kcoords = np.meshgrid(k1,k2)
# Now we can compute the k vector
k = np.sqrt(kcoords[0]**2 + kcoords[1]**2)
if kps is None:
kps = np.linspace(0,0.5,len(power_spectrum))
# And we can interpolate the PS at these positions
ps_map = np.interp(k.flatten(), kps, power_spectrum).reshape([size,size])
ps_map = ps_map
ps_map[0,0] = zero_freq_val
return ps_map # Carefull, this is not fftshifted
|
[
"numpy.meshgrid",
"jax.numpy.fft.fft2",
"numpy.fft.fftfreq",
"numpy.arange",
"numpy.int",
"jax.numpy.conj",
"jax.numpy.indices",
"jax.numpy.sqrt",
"numpy.sqrt"
] |
[((209, 232), 'jax.numpy.indices', 'jnp.indices', (['data.shape'], {}), '(data.shape)\n', (220, 232), True, 'import jax.numpy as jnp\n'), ((241, 288), 'jax.numpy.sqrt', 'jnp.sqrt', (['((x - center) ** 2 + (y - center) ** 2)'], {}), '((x - center) ** 2 + (y - center) ** 2)\n', (249, 288), True, 'import jax.numpy as jnp\n'), ((726, 755), 'numpy.int', 'np.int', (['(map_data.shape[0] / 2)'], {}), '(map_data.shape[0] / 2)\n', (732, 755), True, 'import numpy as np\n'), ((863, 900), 'numpy.arange', 'np.arange', (['power_spectrum_1d.shape[0]'], {}), '(power_spectrum_1d.shape[0])\n', (872, 900), True, 'import numpy as np\n'), ((1122, 1142), 'numpy.fft.fftfreq', 'np.fft.fftfreq', (['size'], {}), '(size)\n', (1136, 1142), True, 'import numpy as np\n'), ((1150, 1170), 'numpy.fft.fftfreq', 'np.fft.fftfreq', (['size'], {}), '(size)\n', (1164, 1170), True, 'import numpy as np\n'), ((1183, 1202), 'numpy.meshgrid', 'np.meshgrid', (['k1', 'k2'], {}), '(k1, k2)\n', (1194, 1202), True, 'import numpy as np\n'), ((1244, 1286), 'numpy.sqrt', 'np.sqrt', (['(kcoords[0] ** 2 + kcoords[1] ** 2)'], {}), '(kcoords[0] ** 2 + kcoords[1] ** 2)\n', (1251, 1286), True, 'import numpy as np\n'), ((670, 692), 'jax.numpy.fft.fft2', 'jnp.fft.fft2', (['map_data'], {}), '(map_data)\n', (682, 692), True, 'import jax.numpy as jnp\n'), ((809, 826), 'jax.numpy.conj', 'jnp.conj', (['data_ft'], {}), '(data_ft)\n', (817, 826), True, 'import jax.numpy as jnp\n')]
|
"""
This module illustrates how to generate a three-dimensional plot and a
contour plot.
For the example, the f(x,y) = x**2 * y**3 will be reproduced.
"""
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d
X = np.linspace(-2, 2)
Y = np.linspace(-1, 1)
x, y = np.meshgrid(X, Y)
z = x**2 * y**3
fig = plt.figure()
ax = fig.add_subplot(projection="3d")
ax.plot_surface(x, y, z)
ax.set_xlabel("$x$", usetex=True)
ax.set_ylabel("$y$", usetex=True)
ax.set_zlabel("$z$", usetex=True)
ax.set_title("Graph of the function $f(x,y) = x^2y^3$", usetex=True)
plt.show()
fig, ax = plt.subplots()
ax.contour(x, y, z)
ax.set_title("Contour of $f(x) = x^2y^3$", usetex=True)
ax.set_xlabel("$x$", usetex=True)
ax.set_ylabel("$y$", usetex=True)
plt.show()
|
[
"numpy.meshgrid",
"matplotlib.pyplot.show",
"matplotlib.pyplot.figure",
"numpy.linspace",
"matplotlib.pyplot.subplots"
] |
[((247, 265), 'numpy.linspace', 'np.linspace', (['(-2)', '(2)'], {}), '(-2, 2)\n', (258, 265), True, 'import numpy as np\n'), ((270, 288), 'numpy.linspace', 'np.linspace', (['(-1)', '(1)'], {}), '(-1, 1)\n', (281, 288), True, 'import numpy as np\n'), ((297, 314), 'numpy.meshgrid', 'np.meshgrid', (['X', 'Y'], {}), '(X, Y)\n', (308, 314), True, 'import numpy as np\n'), ((338, 350), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (348, 350), True, 'import matplotlib.pyplot as plt\n'), ((587, 597), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (595, 597), True, 'import matplotlib.pyplot as plt\n'), ((609, 623), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (621, 623), True, 'import matplotlib.pyplot as plt\n'), ((769, 779), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (777, 779), True, 'import matplotlib.pyplot as plt\n')]
|
import os
import inspect
import numpy as np
from scipy.sparse import coo_matrix
from composites.laminate import read_stack
from structsolve import solve
from meshless.espim.read_mesh import read_mesh
from meshless.espim.plate2d_calc_k0 import calc_k0
from meshless.espim.plate2d_add_k0s import add_k0s
THISDIR = os.path.dirname(inspect.getfile(inspect.currentframe()))
def test_calc_linear_static():
mesh = read_mesh(os.path.join(THISDIR, 'nastran_plate_16_nodes.dat'))
E11 = 71.e9
nu = 0.33
plyt = 0.007
lam = read_stack([0], plyt=plyt, laminaprop=(E11, E11, nu))
for tria in mesh.elements.values():
tria.prop = lam
for node in mesh.nodes.values():
node.prop = lam
for prop_from_nodes in [False, True]:
for k0s_method in ['cell-based', 'cell-based-no-smoothing']: #, 'edge-based'
k0 = calc_k0(mesh, prop_from_nodes)
add_k0s(k0, mesh, prop_from_nodes, k0s_method, alpha=0.2)
k0run = k0.copy()
dof = 5
n = k0.shape[0] // dof
fext = np.zeros(n*dof, dtype=np.float64)
fext[mesh.nodes[4].index*dof + 2] = 500.
fext[mesh.nodes[7].index*dof + 2] = 500.
fext[mesh.nodes[5].index*dof + 2] = 1000.
fext[mesh.nodes[6].index*dof + 2] = 1000.
i, j = np.indices(k0run.shape)
# boundary conditions
for nid in [1, 10, 11, 12]:
for j in [0, 1, 2, 3]:
k0run[mesh.nodes[nid].index*dof+j, :] = 0
k0run[:, mesh.nodes[nid].index*dof+j] = 0
k0run = coo_matrix(k0run)
u = solve(k0run, fext, silent=True)
ans = np.loadtxt(os.path.join(THISDIR, 'nastran_plate_16_nodes.result.txt'),
dtype=float)
xyz = np.array([n.xyz for n in mesh.nodes.values()])
ind = np.lexsort((xyz[:, 1], xyz[:, 0]))
xyz = xyz[ind]
nodes = np.array(list(mesh.nodes.values()))[ind]
pick = [n.index for n in nodes]
assert np.allclose(u[2::5][pick].reshape(4, 4).T, ans, rtol=0.05)
if __name__ == '__main__':
test_calc_linear_static()
|
[
"numpy.lexsort",
"meshless.espim.plate2d_calc_k0.calc_k0",
"numpy.zeros",
"numpy.indices",
"scipy.sparse.coo_matrix",
"composites.laminate.read_stack",
"structsolve.solve",
"inspect.currentframe",
"os.path.join",
"meshless.espim.plate2d_add_k0s.add_k0s"
] |
[((535, 588), 'composites.laminate.read_stack', 'read_stack', (['[0]'], {'plyt': 'plyt', 'laminaprop': '(E11, E11, nu)'}), '([0], plyt=plyt, laminaprop=(E11, E11, nu))\n', (545, 588), False, 'from composites.laminate import read_stack\n'), ((347, 369), 'inspect.currentframe', 'inspect.currentframe', ([], {}), '()\n', (367, 369), False, 'import inspect\n'), ((425, 476), 'os.path.join', 'os.path.join', (['THISDIR', '"""nastran_plate_16_nodes.dat"""'], {}), "(THISDIR, 'nastran_plate_16_nodes.dat')\n", (437, 476), False, 'import os\n'), ((858, 888), 'meshless.espim.plate2d_calc_k0.calc_k0', 'calc_k0', (['mesh', 'prop_from_nodes'], {}), '(mesh, prop_from_nodes)\n', (865, 888), False, 'from meshless.espim.plate2d_calc_k0 import calc_k0\n'), ((901, 958), 'meshless.espim.plate2d_add_k0s.add_k0s', 'add_k0s', (['k0', 'mesh', 'prop_from_nodes', 'k0s_method'], {'alpha': '(0.2)'}), '(k0, mesh, prop_from_nodes, k0s_method, alpha=0.2)\n', (908, 958), False, 'from meshless.espim.plate2d_add_k0s import add_k0s\n'), ((1065, 1100), 'numpy.zeros', 'np.zeros', (['(n * dof)'], {'dtype': 'np.float64'}), '(n * dof, dtype=np.float64)\n', (1073, 1100), True, 'import numpy as np\n'), ((1332, 1355), 'numpy.indices', 'np.indices', (['k0run.shape'], {}), '(k0run.shape)\n', (1342, 1355), True, 'import numpy as np\n'), ((1615, 1632), 'scipy.sparse.coo_matrix', 'coo_matrix', (['k0run'], {}), '(k0run)\n', (1625, 1632), False, 'from scipy.sparse import coo_matrix\n'), ((1649, 1680), 'structsolve.solve', 'solve', (['k0run', 'fext'], {'silent': '(True)'}), '(k0run, fext, silent=True)\n', (1654, 1680), False, 'from structsolve import solve\n'), ((1886, 1920), 'numpy.lexsort', 'np.lexsort', (['(xyz[:, 1], xyz[:, 0])'], {}), '((xyz[:, 1], xyz[:, 0]))\n', (1896, 1920), True, 'import numpy as np\n'), ((1710, 1768), 'os.path.join', 'os.path.join', (['THISDIR', '"""nastran_plate_16_nodes.result.txt"""'], {}), "(THISDIR, 'nastran_plate_16_nodes.result.txt')\n", (1722, 1768), False, 'import os\n')]
|
"""
A Reccurent Neural Network (LSTM) implementation example using TensorFlow library
"""
import AlphaBase
import os
import tensorflow as tf
#from tensorflow.models.rnn import rnn, rnn_cell
import numpy as np
import LanguageSource as LanguageSource
import LangTestData as langTestData
# Get training data
lang_data_dir = '/home/frank/data/LanguageDetectionModel/exp_data_test'
alpha_file_name = 'alpha_dog.pk'
if os.path.isfile(alpha_file_name):
alpha_set = AlphaBase.AlphaBase.load_object_from_file(alpha_file_name)
else:
alpha_set = AlphaBase.AlphaBase()
alpha_set.start(lang_data_dir, 10000000)
alpha_set.compress(0.999)
alpha_set.save_object_to_file(alpha_file_name)
print('alpha size:', alpha_set.alpha_size, 'alpha compressed size', alpha_set.alpha_compressed_size)
lang_data = LanguageSource.LanguageSource(alpha_set)
lang_data.begin(lang_data_dir)
# Parameters
learning_rate = 0.00001
training_cycles = 100000000
batch_size = 128
display_step = 10
# Network Parameters
# number of characters in the set of languages, also the size of the one-hot vector encoding characters
n_input = alpha_set.alpha_compressed_size
n_steps = 64 # time steps
n_hidden = 512 # hidden layer num of features
n_classes = 21 # total number of class, (the number of languages in the database)
# Get test data
lang_db_test = langTestData.LangTestData()
x_test, y_test = lang_db_test.read_data('/home/frank/data/LanguageDetectionModel/europarl.test', n_steps)
test_data = lang_data.get_ml_data_matrix(n_input, x_test) # get one-hot version of data
y_test2 = [lang_data.language_name_to_index[y_l] for y_l in y_test] # convert the language names to indexes
test_label = lang_data.get_class_rep(y_test2, n_classes) # convert the class indexes to one-hot vectors
test_len = len(y_test) # get the number of test strings
# tf Graph
# input
x = tf.placeholder("float", [n_steps, None, n_input])
# desired output
y = tf.placeholder("float", [None, n_classes])
# Tensorflow LSTM cell requires 2x n_hidden length (state & cell)
i_state = tf.placeholder("float", [None, 2 * n_hidden])
# Define weights
weights = {
'hidden': tf.Variable(tf.random_normal([n_input, n_hidden])), # Hidden layer weights
'out': tf.Variable(tf.random_normal([n_hidden, n_classes]))
}
biases = {
'hidden': tf.Variable(tf.random_normal([n_hidden])),
'out': tf.Variable(tf.random_normal([n_classes]))
}
def lm_rnn(_x, _i_state, _weights, _biases):
# Reformat _x from [ ] to [n_steps*batch_size x n_input]
xin = tf.reshape(_x, [-1, n_input])
# Linear activation
xin = tf.matmul(xin, _weights['hidden']) + _biases['hidden']
# Split data because rnn cell needs a list of inputs for the RNN inner loop
xin = tf.split(0, n_steps, xin) # n_steps * (batch_size, n_hidden)
# Define a lstm cell with tensorflow
lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(n_hidden, forget_bias=0.95)
# lstm_cell = rnn_cell.LSTMCell(n_hidden, use_peepholes=True, cell_clip=2, forget_bias=0.99)
# Get lstm cell output
# outputs - a list of n_step matrix of shape [? x n_hidden]
# states - a list of n_step vectors of size [2*n_hidden]
outputs, states = tf.nn.rnn(lstm_cell, xin, initial_state=_i_state)
# Linear activation
# Get inner loop last output
logits = tf.matmul(outputs[-1], _weights['out']) + _biases['out']
return logits
predictions = lm_rnn(x, i_state, weights, biases)
# Define loss and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(predictions, y)) # Softmax loss
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) # Adam Optimizer
# Evaluate model
correct_predictions = tf.equal(tf.argmax(predictions, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_predictions, tf.float32))
# Initializing the variables
init = tf.initialize_all_variables()
# Launch the graph
with tf.Session() as sess:
sess.run(init)
step = 1
# Keep training until reach max iterations
while step * batch_size < training_cycles:
# batch_xs - list (of length batch_size) of strings each of length n_input,
# batch_ys - list (of length batch_size) of language ids (strings, example: 'bg','ep',...)
batch_xs, batch_ys = lang_data.get_next_batch_one_hot(batch_size, n_steps)
# Fit training using batch data
sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys,
i_state: np.zeros((batch_size, 2 * n_hidden))})
if step % display_step == 0:
# Calculate batch accuracy
acc = sess.run(accuracy, feed_dict={x: batch_xs, y: batch_ys,
i_state: np.zeros((batch_size, 2 * n_hidden))})
# Calculate batch loss
loss = sess.run(cost, feed_dict={x: batch_xs, y: batch_ys,
i_state: np.zeros((batch_size, 2 * n_hidden))})
# Read a new batch for validation
batch_xs, batch_ys = lang_data.get_next_batch_one_hot(batch_size, n_steps)
acc_val = sess.run(accuracy, feed_dict={x: batch_xs, y: batch_ys,
i_state: np.zeros((batch_size, 2 * n_hidden))})
# Calculate batch loss
loss_val = sess.run(cost, feed_dict={x: batch_xs, y: batch_ys,
i_state: np.zeros((batch_size, 2 * n_hidden))})
print("Iter " + str(step*batch_size) + ", Minibatch Loss= " +
"{:.6f}".format(loss) +
", Training Accuracy= " + "{:.5f}".format(acc) + ", Validation Loss=" +
"{:.6f}".format(loss_val) + ", Validation Accuracy= " + "{:.5f}".format(acc_val))
step += 1
print("Optimization Finished!")
# Calculate accuracy
"""
acc_sum = 0.0
for i in range(test_len):
test_string = x_test_nat[i]
test_x_mat = lang_data.get_ml_data_matrix_3([test_string])
y_t = lang_data.language_name_to_index[y_test[i]]
test_y_mat = lang_data.get_class_rep([y_t], n_classes)
acc = sess.run(accuracy, feed_dict={x: test_x_mat, y: test_y_mat,
i_state: np.zeros((1, 2 * n_hidden))})
acc_sum += acc
print(i, acc, acc_sum)
"""
print("Testing Accuracy:", sess.run(accuracy, feed_dict={x: test_data, y: test_label,
i_state: np.zeros((test_len, 2 * n_hidden))}))
|
[
"tensorflow.reshape",
"tensorflow.matmul",
"os.path.isfile",
"AlphaBase.AlphaBase.load_object_from_file",
"tensorflow.split",
"AlphaBase.AlphaBase",
"tensorflow.nn.softmax_cross_entropy_with_logits",
"tensorflow.placeholder",
"LangTestData.LangTestData",
"tensorflow.nn.rnn_cell.BasicLSTMCell",
"tensorflow.cast",
"tensorflow.initialize_all_variables",
"tensorflow.Session",
"tensorflow.random_normal",
"tensorflow.argmax",
"numpy.zeros",
"LanguageSource.LanguageSource",
"tensorflow.nn.rnn",
"tensorflow.train.AdamOptimizer"
] |
[((416, 447), 'os.path.isfile', 'os.path.isfile', (['alpha_file_name'], {}), '(alpha_file_name)\n', (430, 447), False, 'import os\n'), ((808, 848), 'LanguageSource.LanguageSource', 'LanguageSource.LanguageSource', (['alpha_set'], {}), '(alpha_set)\n', (837, 848), True, 'import LanguageSource as LanguageSource\n'), ((1338, 1365), 'LangTestData.LangTestData', 'langTestData.LangTestData', ([], {}), '()\n', (1363, 1365), True, 'import LangTestData as langTestData\n'), ((1856, 1905), 'tensorflow.placeholder', 'tf.placeholder', (['"""float"""', '[n_steps, None, n_input]'], {}), "('float', [n_steps, None, n_input])\n", (1870, 1905), True, 'import tensorflow as tf\n'), ((1927, 1969), 'tensorflow.placeholder', 'tf.placeholder', (['"""float"""', '[None, n_classes]'], {}), "('float', [None, n_classes])\n", (1941, 1969), True, 'import tensorflow as tf\n'), ((2046, 2091), 'tensorflow.placeholder', 'tf.placeholder', (['"""float"""', '[None, 2 * n_hidden]'], {}), "('float', [None, 2 * n_hidden])\n", (2060, 2091), True, 'import tensorflow as tf\n'), ((3848, 3877), 'tensorflow.initialize_all_variables', 'tf.initialize_all_variables', ([], {}), '()\n', (3875, 3877), True, 'import tensorflow as tf\n'), ((465, 523), 'AlphaBase.AlphaBase.load_object_from_file', 'AlphaBase.AlphaBase.load_object_from_file', (['alpha_file_name'], {}), '(alpha_file_name)\n', (506, 523), False, 'import AlphaBase\n'), ((546, 567), 'AlphaBase.AlphaBase', 'AlphaBase.AlphaBase', ([], {}), '()\n', (565, 567), False, 'import AlphaBase\n'), ((2521, 2550), 'tensorflow.reshape', 'tf.reshape', (['_x', '[-1, n_input]'], {}), '(_x, [-1, n_input])\n', (2531, 2550), True, 'import tensorflow as tf\n'), ((2732, 2757), 'tensorflow.split', 'tf.split', (['(0)', 'n_steps', 'xin'], {}), '(0, n_steps, xin)\n', (2740, 2757), True, 'import tensorflow as tf\n'), ((2852, 2908), 'tensorflow.nn.rnn_cell.BasicLSTMCell', 'tf.nn.rnn_cell.BasicLSTMCell', (['n_hidden'], {'forget_bias': '(0.95)'}), '(n_hidden, forget_bias=0.95)\n', (2880, 2908), True, 'import tensorflow as tf\n'), ((3181, 3230), 'tensorflow.nn.rnn', 'tf.nn.rnn', (['lstm_cell', 'xin'], {'initial_state': '_i_state'}), '(lstm_cell, xin, initial_state=_i_state)\n', (3190, 3230), True, 'import tensorflow as tf\n'), ((3480, 3535), 'tensorflow.nn.softmax_cross_entropy_with_logits', 'tf.nn.softmax_cross_entropy_with_logits', (['predictions', 'y'], {}), '(predictions, y)\n', (3519, 3535), True, 'import tensorflow as tf\n'), ((3699, 3724), 'tensorflow.argmax', 'tf.argmax', (['predictions', '(1)'], {}), '(predictions, 1)\n', (3708, 3724), True, 'import tensorflow as tf\n'), ((3726, 3741), 'tensorflow.argmax', 'tf.argmax', (['y', '(1)'], {}), '(y, 1)\n', (3735, 3741), True, 'import tensorflow as tf\n'), ((3769, 3809), 'tensorflow.cast', 'tf.cast', (['correct_predictions', 'tf.float32'], {}), '(correct_predictions, tf.float32)\n', (3776, 3809), True, 'import tensorflow as tf\n'), ((3903, 3915), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (3913, 3915), True, 'import tensorflow as tf\n'), ((2149, 2186), 'tensorflow.random_normal', 'tf.random_normal', (['[n_input, n_hidden]'], {}), '([n_input, n_hidden])\n', (2165, 2186), True, 'import tensorflow as tf\n'), ((2236, 2275), 'tensorflow.random_normal', 'tf.random_normal', (['[n_hidden, n_classes]'], {}), '([n_hidden, n_classes])\n', (2252, 2275), True, 'import tensorflow as tf\n'), ((2316, 2344), 'tensorflow.random_normal', 'tf.random_normal', (['[n_hidden]'], {}), '([n_hidden])\n', (2332, 2344), True, 'import tensorflow as tf\n'), ((2370, 2399), 'tensorflow.random_normal', 'tf.random_normal', (['[n_classes]'], {}), '([n_classes])\n', (2386, 2399), True, 'import tensorflow as tf\n'), ((2586, 2620), 'tensorflow.matmul', 'tf.matmul', (['xin', "_weights['hidden']"], {}), "(xin, _weights['hidden'])\n", (2595, 2620), True, 'import tensorflow as tf\n'), ((3302, 3341), 'tensorflow.matmul', 'tf.matmul', (['outputs[-1]', "_weights['out']"], {}), "(outputs[-1], _weights['out'])\n", (3311, 3341), True, 'import tensorflow as tf\n'), ((3565, 3616), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', ([], {'learning_rate': 'learning_rate'}), '(learning_rate=learning_rate)\n', (3587, 3616), True, 'import tensorflow as tf\n'), ((4471, 4507), 'numpy.zeros', 'np.zeros', (['(batch_size, 2 * n_hidden)'], {}), '((batch_size, 2 * n_hidden))\n', (4479, 4507), True, 'import numpy as np\n'), ((6520, 6554), 'numpy.zeros', 'np.zeros', (['(test_len, 2 * n_hidden)'], {}), '((test_len, 2 * n_hidden))\n', (6528, 6554), True, 'import numpy as np\n'), ((4717, 4753), 'numpy.zeros', 'np.zeros', (['(batch_size, 2 * n_hidden)'], {}), '((batch_size, 2 * n_hidden))\n', (4725, 4753), True, 'import numpy as np\n'), ((4916, 4952), 'numpy.zeros', 'np.zeros', (['(batch_size, 2 * n_hidden)'], {}), '((batch_size, 2 * n_hidden))\n', (4924, 4952), True, 'import numpy as np\n'), ((5228, 5264), 'numpy.zeros', 'np.zeros', (['(batch_size, 2 * n_hidden)'], {}), '((batch_size, 2 * n_hidden))\n', (5236, 5264), True, 'import numpy as np\n'), ((5435, 5471), 'numpy.zeros', 'np.zeros', (['(batch_size, 2 * n_hidden)'], {}), '((batch_size, 2 * n_hidden))\n', (5443, 5471), True, 'import numpy as np\n')]
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat Apr 18 18:20:34 2020
@author: ishidaira
"""
from cvxopt import matrix
import numpy as np
from numpy import linalg
import cvxopt
from numpy import linalg as LA
from sklearn import preprocessing
from imblearn.over_sampling import SMOTE
import pandas as pd
from sklearn.model_selection import train_test_split
import seaborn as sns
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
from precision import precision
from imblearn.over_sampling import SVMSMOTE
from fsvmClass import HYP_SVM
# three kernel functions
def linear_kernel(x1, x2):
return np.dot(x1, x2)
# param p
def polynomial_kernel(x, y, p=1.5):
return (1 + np.dot(x, y)) ** p
# param sigmma
def gaussian_kernel(x, y, sigma=1.0):
# print(-linalg.norm(x-y)**2)
x = np.asarray(x)
y = np.asarray(y)
return np.exp((-linalg.norm(x - y) ** 2) / (2 * (sigma ** 2)))
class BFSVM(object):
# initial function
def __init__(self, kernel=None, fuzzyvalue='Logistic',databalance='origine',a = 4, b = 3, C=None, P=None, sigma=None):
self.kernel = kernel
self.C = C
self.P = P
self.sigma = sigma
self.fuzzyvalue = fuzzyvalue
self.a = a
self.b = b
self.databalance = databalance
if self.C is not None: self.C = float(self.C)
def mvalue(self, X_train, X_test,y_train):
# print('fuzzy value:', self.fuzzyvalue )
clf = HYP_SVM(kernel='polynomial', C=1.5, P=1.5)
clf.m_func(X_train,X_test,y_train)
clf.fit(X_train,X_test, y_train)
score = clf.project(X_train)-clf.b
if self.fuzzyvalue=='Lin':
m_value = (score-max(score))/(max(score)-min(score))
elif self.fuzzyvalue=='Bridge':
s_up = np.percentile(score,55)
s_down = np.percentile(score,45)
m_value = np.zeros((len(score)))
for i in range(len(score)):
if score[i]>s_up:
m_value[i] = 1
elif score[i]<=s_down:
m_value[i] = 0
else:
m_value[i] = (score[i]-s_down)/(s_up-s_down)
elif self.fuzzyvalue=='Logistic':
a = self.a
b = self.b
m_value = np.zeros((len(score)))
for i in range(len(score)):
m_value[i] = np.exp(a*score[i]+b)/(np.exp(a*score[i]+b)+1)
self.m_value = m_value
def fit(self, X_train, X_test, y):
# extract the number of samples and attributes of train and test
n_samples, n_features = X_train.shape
nt_samples, nt_features = X_test.shape
# initialize a 2n*2n matrix of Kernel function K(xi,xj)
self.K = np.zeros((2*n_samples, 2*n_samples))
for i in range(n_samples):
for j in range(n_samples):
if self.kernel == 'polynomial':
self.K[i, j] = polynomial_kernel(X_train[i], X_train[j],self.P)
elif self.kernel == 'gaussian':
self.K[i, j] = gaussian_kernel(X_train[i], X_train[j], self.sigma)
else:
self.K[i, j] = linear_kernel(X_train[i], X_train[j])
# print(K[i,j])
X_train = np.asarray(X_train)
X_test = np.asarray(X_test)
# P = K(xi,xj)
P = cvxopt.matrix(self.K)
# q = [-1,...,-1,-2,...,-2]
q = np.concatenate((np.ones(n_samples) * -1,np.ones(n_samples) * -2))
q = cvxopt.matrix(q)
#equality constraints
# A = [1,...,1,0,...,0]
A = np.concatenate((np.ones(n_samples) * 1,np.zeros(n_samples)))
A = cvxopt.matrix(A)
A = matrix(A, (1, 2*n_samples), 'd') # changes done
# b = [0.0]
b = cvxopt.matrix(0.0)
#inequality constraints
if self.C is None:
# tmp1 = -1 as diagonal, n*n
tmp1 = np.diag(np.ones(n_samples) * -1)
# tmp1 = 2*tmp1 n*2n
tmp1 = np.hstack((tmp1,tmp1))
# tmp2 = n*2n, the second matrix n*n diagonal as -1
tmp2 = np.diag(np.ones(n_samples) * -1)
tmp2 = np.hstack((np.diag(np.zeros(n_samples)),tmp2))
G = cvxopt.matrix(np.vstack((tmp1, tmp2)))
G = matrix(G, (6*n_samples,2*n_samples), 'd')
# h = [0,0,0,...,0] 2n*1
h = cvxopt.matrix(np.zeros(2*n_samples))
else:
# tmp1 = -1 as diagonal, n*n
tmp1 = np.diag(np.ones(n_samples) * -1)
# tmp1 = 2*tmp1 n*2n
tmp1 = np.hstack((tmp1,tmp1))
# tmp2 = n*2n, the second matrix n*n diagonal as -1
tmp2 = np.diag(np.ones(n_samples) * -1)
tmp2 = np.hstack((np.diag(np.zeros(n_samples)),tmp2))
tmp3 = np.identity(n_samples)
# tmp3 = 2*tmp3 n*2n
tmp3 = np.hstack((tmp3,tmp3))
# tmp4 = n*2n, the second matrix n*n diagonal as 1
tmp4 = np.identity(n_samples)
tmp4 = np.hstack((np.diag(np.zeros(n_samples)),tmp4))
# G = tmp1,tmp2,tmp3,tmp4 shape 4n*2n
G = cvxopt.matrix(np.vstack((tmp1,tmp2,tmp3,tmp4)))
#G = matrix(G, (6*n_samples,2*n_samples), 'd')
# h = 4n*1
tmp1 = np.zeros(2*n_samples)
tmp2 = np.ones(n_samples) * self.C * self.m_value
tmp3 = np.ones(n_samples) * self.C * (1 - self.m_value)
h = cvxopt.matrix(np.hstack((tmp1,tmp2,tmp3)))
# solve QP problem
solution = cvxopt.solvers.qp(P, q, G, h, A, b)
# print(solution['status'])
# Lagrange multipliers
# a = [epsilon1,...,epsilonN,beta1,...,betaN]
a = np.ravel(solution['x'])
epsilon = a[:n_samples]
beta = a[n_samples:]
# Support vectors have non zero lagrange multipliers
sv = np.array(list(epsilon+beta > 1e-5) and list(beta > 1e-5))
ind = np.arange(len(epsilon))[sv]
self.epsilon_org = epsilon
self.epsilon = epsilon[sv]
self.beta_org = beta
self.beta = beta[sv]
self.sv = X_train[sv]
self.sv_y = y[sv]
self.sv_yorg = y
X_train = np.asarray(X_train)
self.K = self.K[:n_samples,:n_samples]
# Intercept
self.b = 0
for n in range(len(self.epsilon)):
self.b -= np.sum(self.epsilon * self.K[ind[n], sv])
self.b /= len(self.epsilon)
# Weight vector
if self.kernel == 'polynomial' or 'gaussian' or 'linear':
self.w = np.zeros(n_features)
for n in range(len(self.epsilon)):
self.w += self.epsilon[n] * self.sv[n]
else:
self.w = None
def project(self, X):
if self.w is None:
return np.dot(X, self.w) + self.b
else:
y_predict = np.zeros(len(X))
X = np.asarray(X)
for i in range(len(X)):
s = 0
for epsilon,sv in zip(self.epsilon,self.sv):
if self.kernel == 'polynomial':
s += epsilon * polynomial_kernel(sv, X[i], self.P)
elif self.kernel == 'gaussian':
s += epsilon * gaussian_kernel(X[i], sv, self.sigma)
else:
s += epsilon * linear_kernel(X[i], sv)
y_predict[i] = s
# print(y_predict[i])
return y_predict + self.b
# predict function
def predict(self, X):
return np.sign(self.project(X))
# Test Code for _LSSVMtrain
def fsvmTrain(SamplingMethode):
train = pd.read_csv("../data.csv", header=0)
for col in train.columns:
for i in range(1000):
train[col][i] = int(train[col][i])
features = train.columns[1:21]
X = train[features]
y = train['Creditability']
min_max_scaler = preprocessing.MinMaxScaler()
X = min_max_scaler.fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
if SamplingMethode == 'upSampling':
X_train, y_train = upSampling(X_train,y_train)
elif SamplingMethode == 'lowSampling':
y_train = np.array(y_train)
y_train = y_train.reshape(len(y_train), 1)
train = np.append(y_train, np.array(X_train), axis=1)
train = pd.DataFrame(train)
train = np.array(lowSampling(train))
X_train = train[:,1:]
y_train = train[:,0]
X_train = np.asarray(X_train)
y_train = np.asarray(y_train)
for i in range(len(y_train)):
if y_train[i] == 0:
y_train[i] = -1
clf = BFSVM(kernel='polynomial',C=1.5, P=1.5)
clf.mvalue(X_train,X_test, y_train)
clf.fit(X_train,X_test, y_train)
y_predict = clf.predict(X_test)
y_test = np.array(y_test)
for i in range(len(y_test)):
if y_test[i] == 0:
y_test[i] = -1
print(np.mean(y_predict!=y_test))
precision(y_predict,y_test)
if __name__ == '__main__':
fsvmTrain('lowSampling')
|
[
"numpy.sum",
"numpy.ravel",
"pandas.read_csv",
"sklearn.model_selection.train_test_split",
"sklearn.preprocessing.MinMaxScaler",
"numpy.ones",
"numpy.mean",
"numpy.linalg.norm",
"numpy.exp",
"pandas.DataFrame",
"numpy.identity",
"fsvmClass.HYP_SVM",
"cvxopt.solvers.qp",
"cvxopt.matrix",
"numpy.asarray",
"numpy.hstack",
"numpy.percentile",
"numpy.dot",
"numpy.vstack",
"precision.precision",
"numpy.zeros",
"numpy.array"
] |
[((643, 657), 'numpy.dot', 'np.dot', (['x1', 'x2'], {}), '(x1, x2)\n', (649, 657), True, 'import numpy as np\n'), ((838, 851), 'numpy.asarray', 'np.asarray', (['x'], {}), '(x)\n', (848, 851), True, 'import numpy as np\n'), ((860, 873), 'numpy.asarray', 'np.asarray', (['y'], {}), '(y)\n', (870, 873), True, 'import numpy as np\n'), ((7789, 7825), 'pandas.read_csv', 'pd.read_csv', (['"""../data.csv"""'], {'header': '(0)'}), "('../data.csv', header=0)\n", (7800, 7825), True, 'import pandas as pd\n'), ((8044, 8072), 'sklearn.preprocessing.MinMaxScaler', 'preprocessing.MinMaxScaler', ([], {}), '()\n', (8070, 8072), False, 'from sklearn import preprocessing\n'), ((8152, 8205), 'sklearn.model_selection.train_test_split', 'train_test_split', (['X', 'y'], {'test_size': '(0.2)', 'random_state': '(0)'}), '(X, y, test_size=0.2, random_state=0)\n', (8168, 8205), False, 'from sklearn.model_selection import train_test_split\n'), ((8649, 8668), 'numpy.asarray', 'np.asarray', (['X_train'], {}), '(X_train)\n', (8659, 8668), True, 'import numpy as np\n'), ((8683, 8702), 'numpy.asarray', 'np.asarray', (['y_train'], {}), '(y_train)\n', (8693, 8702), True, 'import numpy as np\n'), ((8974, 8990), 'numpy.array', 'np.array', (['y_test'], {}), '(y_test)\n', (8982, 8990), True, 'import numpy as np\n'), ((9120, 9148), 'precision.precision', 'precision', (['y_predict', 'y_test'], {}), '(y_predict, y_test)\n', (9129, 9148), False, 'from precision import precision\n'), ((1487, 1529), 'fsvmClass.HYP_SVM', 'HYP_SVM', ([], {'kernel': '"""polynomial"""', 'C': '(1.5)', 'P': '(1.5)'}), "(kernel='polynomial', C=1.5, P=1.5)\n", (1494, 1529), False, 'from fsvmClass import HYP_SVM\n'), ((2776, 2816), 'numpy.zeros', 'np.zeros', (['(2 * n_samples, 2 * n_samples)'], {}), '((2 * n_samples, 2 * n_samples))\n', (2784, 2816), True, 'import numpy as np\n'), ((3297, 3316), 'numpy.asarray', 'np.asarray', (['X_train'], {}), '(X_train)\n', (3307, 3316), True, 'import numpy as np\n'), ((3334, 3352), 'numpy.asarray', 'np.asarray', (['X_test'], {}), '(X_test)\n', (3344, 3352), True, 'import numpy as np\n'), ((3389, 3410), 'cvxopt.matrix', 'cvxopt.matrix', (['self.K'], {}), '(self.K)\n', (3402, 3410), False, 'import cvxopt\n'), ((3538, 3554), 'cvxopt.matrix', 'cvxopt.matrix', (['q'], {}), '(q)\n', (3551, 3554), False, 'import cvxopt\n'), ((3720, 3736), 'cvxopt.matrix', 'cvxopt.matrix', (['A'], {}), '(A)\n', (3733, 3736), False, 'import cvxopt\n'), ((3758, 3792), 'cvxopt.matrix', 'matrix', (['A', '(1, 2 * n_samples)', '"""d"""'], {}), "(A, (1, 2 * n_samples), 'd')\n", (3764, 3792), False, 'from cvxopt import matrix\n'), ((3839, 3857), 'cvxopt.matrix', 'cvxopt.matrix', (['(0.0)'], {}), '(0.0)\n', (3852, 3857), False, 'import cvxopt\n'), ((5642, 5677), 'cvxopt.solvers.qp', 'cvxopt.solvers.qp', (['P', 'q', 'G', 'h', 'A', 'b'], {}), '(P, q, G, h, A, b)\n', (5659, 5677), False, 'import cvxopt\n'), ((5820, 5843), 'numpy.ravel', 'np.ravel', (["solution['x']"], {}), "(solution['x'])\n", (5828, 5843), True, 'import numpy as np\n'), ((6333, 6352), 'numpy.asarray', 'np.asarray', (['X_train'], {}), '(X_train)\n', (6343, 6352), True, 'import numpy as np\n'), ((9088, 9116), 'numpy.mean', 'np.mean', (['(y_predict != y_test)'], {}), '(y_predict != y_test)\n', (9095, 9116), True, 'import numpy as np\n'), ((722, 734), 'numpy.dot', 'np.dot', (['x', 'y'], {}), '(x, y)\n', (728, 734), True, 'import numpy as np\n'), ((4080, 4103), 'numpy.hstack', 'np.hstack', (['(tmp1, tmp1)'], {}), '((tmp1, tmp1))\n', (4089, 4103), True, 'import numpy as np\n'), ((4369, 4415), 'cvxopt.matrix', 'matrix', (['G', '(6 * n_samples, 2 * n_samples)', '"""d"""'], {}), "(G, (6 * n_samples, 2 * n_samples), 'd')\n", (4375, 4415), False, 'from cvxopt import matrix\n'), ((4662, 4685), 'numpy.hstack', 'np.hstack', (['(tmp1, tmp1)'], {}), '((tmp1, tmp1))\n', (4671, 4685), True, 'import numpy as np\n'), ((4899, 4921), 'numpy.identity', 'np.identity', (['n_samples'], {}), '(n_samples)\n', (4910, 4921), True, 'import numpy as np\n'), ((4974, 4997), 'numpy.hstack', 'np.hstack', (['(tmp3, tmp3)'], {}), '((tmp3, tmp3))\n', (4983, 4997), True, 'import numpy as np\n'), ((5079, 5101), 'numpy.identity', 'np.identity', (['n_samples'], {}), '(n_samples)\n', (5090, 5101), True, 'import numpy as np\n'), ((5384, 5407), 'numpy.zeros', 'np.zeros', (['(2 * n_samples)'], {}), '(2 * n_samples)\n', (5392, 5407), True, 'import numpy as np\n'), ((6513, 6554), 'numpy.sum', 'np.sum', (['(self.epsilon * self.K[ind[n], sv])'], {}), '(self.epsilon * self.K[ind[n], sv])\n', (6519, 6554), True, 'import numpy as np\n'), ((6703, 6723), 'numpy.zeros', 'np.zeros', (['n_features'], {}), '(n_features)\n', (6711, 6723), True, 'import numpy as np\n'), ((7037, 7050), 'numpy.asarray', 'np.asarray', (['X'], {}), '(X)\n', (7047, 7050), True, 'import numpy as np\n'), ((8363, 8380), 'numpy.array', 'np.array', (['y_train'], {}), '(y_train)\n', (8371, 8380), True, 'import numpy as np\n'), ((8510, 8529), 'pandas.DataFrame', 'pd.DataFrame', (['train'], {}), '(train)\n', (8522, 8529), True, 'import pandas as pd\n'), ((1825, 1849), 'numpy.percentile', 'np.percentile', (['score', '(55)'], {}), '(score, 55)\n', (1838, 1849), True, 'import numpy as np\n'), ((1870, 1894), 'numpy.percentile', 'np.percentile', (['score', '(45)'], {}), '(score, 45)\n', (1883, 1894), True, 'import numpy as np\n'), ((3677, 3696), 'numpy.zeros', 'np.zeros', (['n_samples'], {}), '(n_samples)\n', (3685, 3696), True, 'import numpy as np\n'), ((4328, 4351), 'numpy.vstack', 'np.vstack', (['(tmp1, tmp2)'], {}), '((tmp1, tmp2))\n', (4337, 4351), True, 'import numpy as np\n'), ((4479, 4502), 'numpy.zeros', 'np.zeros', (['(2 * n_samples)'], {}), '(2 * n_samples)\n', (4487, 4502), True, 'import numpy as np\n'), ((5248, 5283), 'numpy.vstack', 'np.vstack', (['(tmp1, tmp2, tmp3, tmp4)'], {}), '((tmp1, tmp2, tmp3, tmp4))\n', (5257, 5283), True, 'import numpy as np\n'), ((5566, 5595), 'numpy.hstack', 'np.hstack', (['(tmp1, tmp2, tmp3)'], {}), '((tmp1, tmp2, tmp3))\n', (5575, 5595), True, 'import numpy as np\n'), ((6939, 6956), 'numpy.dot', 'np.dot', (['X', 'self.w'], {}), '(X, self.w)\n', (6945, 6956), True, 'import numpy as np\n'), ((8467, 8484), 'numpy.array', 'np.array', (['X_train'], {}), '(X_train)\n', (8475, 8484), True, 'import numpy as np\n'), ((894, 912), 'numpy.linalg.norm', 'linalg.norm', (['(x - y)'], {}), '(x - y)\n', (905, 912), False, 'from numpy import linalg\n'), ((3476, 3494), 'numpy.ones', 'np.ones', (['n_samples'], {}), '(n_samples)\n', (3483, 3494), True, 'import numpy as np\n'), ((3500, 3518), 'numpy.ones', 'np.ones', (['n_samples'], {}), '(n_samples)\n', (3507, 3518), True, 'import numpy as np\n'), ((3654, 3672), 'numpy.ones', 'np.ones', (['n_samples'], {}), '(n_samples)\n', (3661, 3672), True, 'import numpy as np\n'), ((4003, 4021), 'numpy.ones', 'np.ones', (['n_samples'], {}), '(n_samples)\n', (4010, 4021), True, 'import numpy as np\n'), ((4194, 4212), 'numpy.ones', 'np.ones', (['n_samples'], {}), '(n_samples)\n', (4201, 4212), True, 'import numpy as np\n'), ((4585, 4603), 'numpy.ones', 'np.ones', (['n_samples'], {}), '(n_samples)\n', (4592, 4603), True, 'import numpy as np\n'), ((4776, 4794), 'numpy.ones', 'np.ones', (['n_samples'], {}), '(n_samples)\n', (4783, 4794), True, 'import numpy as np\n'), ((5425, 5443), 'numpy.ones', 'np.ones', (['n_samples'], {}), '(n_samples)\n', (5432, 5443), True, 'import numpy as np\n'), ((5487, 5505), 'numpy.ones', 'np.ones', (['n_samples'], {}), '(n_samples)\n', (5494, 5505), True, 'import numpy as np\n'), ((4257, 4276), 'numpy.zeros', 'np.zeros', (['n_samples'], {}), '(n_samples)\n', (4265, 4276), True, 'import numpy as np\n'), ((4839, 4858), 'numpy.zeros', 'np.zeros', (['n_samples'], {}), '(n_samples)\n', (4847, 4858), True, 'import numpy as np\n'), ((5140, 5159), 'numpy.zeros', 'np.zeros', (['n_samples'], {}), '(n_samples)\n', (5148, 5159), True, 'import numpy as np\n'), ((2411, 2435), 'numpy.exp', 'np.exp', (['(a * score[i] + b)'], {}), '(a * score[i] + b)\n', (2417, 2435), True, 'import numpy as np\n'), ((2433, 2457), 'numpy.exp', 'np.exp', (['(a * score[i] + b)'], {}), '(a * score[i] + b)\n', (2439, 2457), True, 'import numpy as np\n')]
|
from unittest import TestCase
import moderngl
import numpy
import platform
class ContextTests(TestCase):
def test_create_destroy(self):
"""Create and destroy a context"""
for _ in range(25):
ctx = moderngl.create_context(standalone=True)
ctx.release()
def test_context_switch(self):
"""Ensure context switching is working"""
ctx1 = moderngl.create_context(standalone=True)
ctx2 = moderngl.create_context(standalone=True)
with ctx1 as ctx:
buffer1 = ctx.buffer(reserve=1024)
with ctx2 as ctx:
buffer2 = ctx.buffer(reserve=1024)
self.assertEqual(buffer1.glo, buffer2.glo)
ctx1.release()
ctx2.release()
def test_exit(self):
"""Ensure the previous context was activated on exit"""
ctx1 = moderngl.create_context(standalone=True)
ctx2 = moderngl.create_context(standalone=True)
with ctx1 as ctx:
ctx.buffer(reserve=1024)
# Will error out if no context is active "moderngl.error.Error: cannot create buffer"
ctx1.buffer(reserve=1024)
ctx1.release()
ctx2.release()
def test_share(self):
"""Create resources with shared context"""
if platform.system().lower() in ["darwin", "linux"]:
self.skipTest('Context sharing not supported on darwin')
data1 = numpy.array([1, 2, 3, 4], dtype='u1')
data2 = numpy.array([4, 3, 2, 1], dtype='u1')
ctx1 = moderngl.create_context(standalone=True)
ctx2 = moderngl.create_context(standalone=True, share=True)
with ctx1 as ctx:
b1 = ctx.buffer(data=data1)
with ctx2 as ctx:
b2 = ctx.buffer(data=data2)
# Because the resources are shared the name should increment
self.assertEqual(b1.glo, 1)
self.assertEqual(b2.glo, 2)
# Ensure we can read the same buffer data in both contexts
with ctx1:
self.assertEqual(b1.read(), b'\x01\x02\x03\x04')
self.assertEqual(b2.read(), b'\x04\x03\x02\x01')
with ctx2:
self.assertEqual(b1.read(), b'\x01\x02\x03\x04')
self.assertEqual(b2.read(), b'\x04\x03\x02\x01')
ctx1.release()
ctx2.release()
def test_extensions(self):
ctx = moderngl.create_context(standalone=True)
# self.assertTrue("GL_ARB_vertex_array_object" in ctx.extensions)
# self.assertTrue("GL_ARB_transform_feedback2" in ctx.extensions)
# self.assertTrue("GL_ARB_shader_subroutine" in ctx.extensions)
self.assertIsInstance(ctx.extensions, set)
self.assertTrue(len(ctx.extensions) > 0)
ctx.release()
def test_attributes(self):
"""Ensure enums are present in the context instance"""
ctx = moderngl.create_context(standalone=True)
# Flags
self.assertIsInstance(ctx.NOTHING, int)
self.assertIsInstance(ctx.BLEND, int)
self.assertIsInstance(ctx.DEPTH_TEST, int)
self.assertIsInstance(ctx.CULL_FACE, int)
self.assertIsInstance(ctx.RASTERIZER_DISCARD, int)
self.assertIsInstance(ctx.PROGRAM_POINT_SIZE, int)
# Primitive modes
self.assertIsInstance(ctx.POINTS, int)
self.assertIsInstance(ctx.LINES, int)
self.assertIsInstance(ctx.LINE_LOOP, int)
self.assertIsInstance(ctx.LINE_STRIP, int)
self.assertIsInstance(ctx.TRIANGLES, int)
self.assertIsInstance(ctx.TRIANGLE_STRIP, int)
self.assertIsInstance(ctx.TRIANGLE_FAN, int)
self.assertIsInstance(ctx.LINES_ADJACENCY, int)
self.assertIsInstance(ctx.LINE_STRIP_ADJACENCY, int)
self.assertIsInstance(ctx.TRIANGLES_ADJACENCY, int)
self.assertIsInstance(ctx.TRIANGLE_STRIP_ADJACENCY, int)
self.assertIsInstance(ctx.PATCHES, int)
# Texture filters
self.assertIsInstance(ctx.LINEAR, int)
self.assertIsInstance(ctx.NEAREST, int)
self.assertIsInstance(ctx.NEAREST_MIPMAP_NEAREST, int)
self.assertIsInstance(ctx.LINEAR_MIPMAP_LINEAR, int)
self.assertIsInstance(ctx.LINEAR_MIPMAP_NEAREST, int)
self.assertIsInstance(ctx.NEAREST_MIPMAP_LINEAR, int)
# Blend functions
self.assertIsInstance(ctx.ZERO, int)
self.assertIsInstance(ctx.ONE, int)
self.assertIsInstance(ctx.SRC_COLOR, int)
self.assertIsInstance(ctx.ONE_MINUS_SRC_COLOR, int)
self.assertIsInstance(ctx.SRC_ALPHA, int)
self.assertIsInstance(ctx.ONE_MINUS_SRC_ALPHA, int)
self.assertIsInstance(ctx.DST_ALPHA, int)
self.assertIsInstance(ctx.ONE_MINUS_DST_ALPHA, int)
self.assertIsInstance(ctx.DST_COLOR, int)
self.assertIsInstance(ctx.ONE_MINUS_DST_COLOR, int)
# Blend shortcuts
self.assertIsInstance(ctx.DEFAULT_BLENDING, tuple)
self.assertIsInstance(ctx.ADDITIVE_BLENDING, tuple)
self.assertIsInstance(ctx.PREMULTIPLIED_ALPHA, tuple)
# Blend equations
self.assertIsInstance(ctx.FUNC_ADD, int)
self.assertIsInstance(ctx.FUNC_SUBTRACT, int)
self.assertIsInstance(ctx.FUNC_REVERSE_SUBTRACT, int)
self.assertIsInstance(ctx.MIN, int)
self.assertIsInstance(ctx.MAX, int)
# Provoking vertex
self.assertIsInstance(ctx.FIRST_VERTEX_CONVENTION, int)
self.assertIsInstance(ctx.LAST_VERTEX_CONVENTION, int)
def test_enable_direct(self):
ctx = moderngl.create_context(standalone=True)
ctx.error # consume error during initialization
# We already support this, but it's a safe value
GL_PROGRAM_POINT_SIZE = 0x8642
ctx.enable_direct(GL_PROGRAM_POINT_SIZE)
self.assertEqual(ctx.error, "GL_NO_ERROR")
ctx.disable_direct(GL_PROGRAM_POINT_SIZE)
self.assertEqual(ctx.error, "GL_NO_ERROR")
|
[
"platform.system",
"numpy.array",
"moderngl.create_context"
] |
[((400, 440), 'moderngl.create_context', 'moderngl.create_context', ([], {'standalone': '(True)'}), '(standalone=True)\n', (423, 440), False, 'import moderngl\n'), ((456, 496), 'moderngl.create_context', 'moderngl.create_context', ([], {'standalone': '(True)'}), '(standalone=True)\n', (479, 496), False, 'import moderngl\n'), ((856, 896), 'moderngl.create_context', 'moderngl.create_context', ([], {'standalone': '(True)'}), '(standalone=True)\n', (879, 896), False, 'import moderngl\n'), ((912, 952), 'moderngl.create_context', 'moderngl.create_context', ([], {'standalone': '(True)'}), '(standalone=True)\n', (935, 952), False, 'import moderngl\n'), ((1418, 1455), 'numpy.array', 'numpy.array', (['[1, 2, 3, 4]'], {'dtype': '"""u1"""'}), "([1, 2, 3, 4], dtype='u1')\n", (1429, 1455), False, 'import numpy\n'), ((1472, 1509), 'numpy.array', 'numpy.array', (['[4, 3, 2, 1]'], {'dtype': '"""u1"""'}), "([4, 3, 2, 1], dtype='u1')\n", (1483, 1509), False, 'import numpy\n'), ((1526, 1566), 'moderngl.create_context', 'moderngl.create_context', ([], {'standalone': '(True)'}), '(standalone=True)\n', (1549, 1566), False, 'import moderngl\n'), ((1582, 1634), 'moderngl.create_context', 'moderngl.create_context', ([], {'standalone': '(True)', 'share': '(True)'}), '(standalone=True, share=True)\n', (1605, 1634), False, 'import moderngl\n'), ((2355, 2395), 'moderngl.create_context', 'moderngl.create_context', ([], {'standalone': '(True)'}), '(standalone=True)\n', (2378, 2395), False, 'import moderngl\n'), ((2847, 2887), 'moderngl.create_context', 'moderngl.create_context', ([], {'standalone': '(True)'}), '(standalone=True)\n', (2870, 2887), False, 'import moderngl\n'), ((5504, 5544), 'moderngl.create_context', 'moderngl.create_context', ([], {'standalone': '(True)'}), '(standalone=True)\n', (5527, 5544), False, 'import moderngl\n'), ((232, 272), 'moderngl.create_context', 'moderngl.create_context', ([], {'standalone': '(True)'}), '(standalone=True)\n', (255, 272), False, 'import moderngl\n'), ((1282, 1299), 'platform.system', 'platform.system', ([], {}), '()\n', (1297, 1299), False, 'import platform\n')]
|
import gym
import random
import numpy as np
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten
from tensorflow.keras.optimizers import Adam
from rl.agents import DQNAgent
from rl.policy import BoltzmannQPolicy
from rl.memory import SequentialMemory
env = gym.make('CartPole-v1')
state_space = env.observation_space.shape[0]
action_space = env.action_space.n
#Create a deep learning model with keras
def build_model(state_space, action_space):
model = Sequential()
model.add(Flatten(input_shape = (1, state_space)))
model.add(Dense(24, activation = 'relu' ))
model.add(Dense(24, activation = 'relu' ))
model.add(Dense(action_space, activation = 'linear' ))
return model
# Build the agent with Keras-RL
def build_agent(model, actions):
policy = BoltzmannQPolicy()
memory = SequentialMemory(limit = 50000, window_length=1)
dqn = DQNAgent(model = model, memory = memory, policy = policy, nb_actions = actions, nb_steps_warmup = 10, target_model_update = 1e-2)
return dqn
#create the model
model = build_model(state_space, action_space)
# create agent
dqn = build_agent(model, action_space)
dqn.compile(Adam(lr=1e-3), metrics = ['mae'])
dqn.fit(env, nb_steps = 10000, visualize = False ,verbose = 1)
# print(model.summary())
# test the trained model
scores = dqn.test(env, nb_episodes = 100, visualize = False)
print(np.mean(scores.history['episode_reward']))
# visualize
_ = dqn.test(env, nb_episodes=10, visualize = True)
|
[
"rl.memory.SequentialMemory",
"gym.make",
"tensorflow.keras.layers.Dense",
"rl.policy.BoltzmannQPolicy",
"numpy.mean",
"tensorflow.keras.optimizers.Adam",
"tensorflow.keras.models.Sequential",
"rl.agents.DQNAgent",
"tensorflow.keras.layers.Flatten"
] |
[((303, 326), 'gym.make', 'gym.make', (['"""CartPole-v1"""'], {}), "('CartPole-v1')\n", (311, 326), False, 'import gym\n'), ((504, 516), 'tensorflow.keras.models.Sequential', 'Sequential', ([], {}), '()\n', (514, 516), False, 'from tensorflow.keras.models import Sequential\n'), ((821, 839), 'rl.policy.BoltzmannQPolicy', 'BoltzmannQPolicy', ([], {}), '()\n', (837, 839), False, 'from rl.policy import BoltzmannQPolicy\n'), ((853, 899), 'rl.memory.SequentialMemory', 'SequentialMemory', ([], {'limit': '(50000)', 'window_length': '(1)'}), '(limit=50000, window_length=1)\n', (869, 899), False, 'from rl.memory import SequentialMemory\n'), ((912, 1033), 'rl.agents.DQNAgent', 'DQNAgent', ([], {'model': 'model', 'memory': 'memory', 'policy': 'policy', 'nb_actions': 'actions', 'nb_steps_warmup': '(10)', 'target_model_update': '(0.01)'}), '(model=model, memory=memory, policy=policy, nb_actions=actions,\n nb_steps_warmup=10, target_model_update=0.01)\n', (920, 1033), False, 'from rl.agents import DQNAgent\n'), ((1192, 1206), 'tensorflow.keras.optimizers.Adam', 'Adam', ([], {'lr': '(0.001)'}), '(lr=0.001)\n', (1196, 1206), False, 'from tensorflow.keras.optimizers import Adam\n'), ((1408, 1449), 'numpy.mean', 'np.mean', (["scores.history['episode_reward']"], {}), "(scores.history['episode_reward'])\n", (1415, 1449), True, 'import numpy as np\n'), ((531, 568), 'tensorflow.keras.layers.Flatten', 'Flatten', ([], {'input_shape': '(1, state_space)'}), '(input_shape=(1, state_space))\n', (538, 568), False, 'from tensorflow.keras.layers import Dense, Flatten\n'), ((586, 614), 'tensorflow.keras.layers.Dense', 'Dense', (['(24)'], {'activation': '"""relu"""'}), "(24, activation='relu')\n", (591, 614), False, 'from tensorflow.keras.layers import Dense, Flatten\n'), ((633, 661), 'tensorflow.keras.layers.Dense', 'Dense', (['(24)'], {'activation': '"""relu"""'}), "(24, activation='relu')\n", (638, 661), False, 'from tensorflow.keras.layers import Dense, Flatten\n'), ((680, 720), 'tensorflow.keras.layers.Dense', 'Dense', (['action_space'], {'activation': '"""linear"""'}), "(action_space, activation='linear')\n", (685, 720), False, 'from tensorflow.keras.layers import Dense, Flatten\n')]
|
import os
import pickle
import random
import numpy as np
from carla.env.env_rendering import EnvRenderer, get_gt_factors
from carla.train_agent import env_fnc
from PIL import Image
from tqdm import tqdm
def check_dir(directory):
if not os.path.exists(directory):
print('{} not exist. calling mkdir!'.format(directory))
os.makedirs(directory)
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--env', type=str, default='MiniGrid-Contextual-v0')
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--norm_obs', default=False, action='store_true')
parser.add_argument('--context_config', help="which context configuration to load")
parser.add_argument('--n_samples', type=int, default=100)
parser.add_argument('--root_path', type=str, default='')
parser.add_argument('--tile_size', type=int, default=8)
parser.add_argument('--reward', help="choose reward configuration")
parser.add_argument('--grid_size', type=int, default=8)
parser.add_argument('--n_objects', type=int, default=4)
args = parser.parse_args()
env_kwargs = dict(env_id=args.env, seed=args.seed, norm_obs=args.norm_obs, tile_size=args.tile_size,
context_config=args.context_config, reward=args.reward, contextual=True,
grid_size=args.grid_size, n_objects=args.n_objects)
env = env_fnc(**env_kwargs)()
max_n_goodies = env.unwrapped.n_goodies
max_n_obstacles = env.unwrapped.n_obstacles
total_objects = max_n_goodies + max_n_obstacles + 2 # +2 for agent and goal
env_renderer = EnvRenderer(total_objects=total_objects, grid_size=args.grid_size,
tile_size=args.tile_size, context_config=args.context_config)
sample_counter = {}
for i in tqdm(range(args.n_samples)):
env.unwrapped.random_context = True
env.unwrapped.n_obstacles = np.random.randint(0, max_n_obstacles + 1)
env.unwrapped.n_goodies = np.random.randint(0, max_n_goodies + 1)
obs = env.reset()
# set random agent direction
env.unwrapped.agent_dir = np.random.randint(0, 4)
gt, agent_pos, agent_dir = get_gt_factors(env.unwrapped, total_objects, max_n_goodies, max_n_obstacles)
valid_pos, valid_pos_transformed = env_renderer.get_empty_positions(agent_pos, agent_dir)
# set random agent position
agent_pos = random.choice(valid_pos_transformed)
img = env_renderer.render_gt(gt, agent_pos, agent_dir)
context = np.argmax(obs['context'])
context = str(context)
if context in sample_counter:
sample_counter[context] += 1
else:
sample_counter[context] = 0
img_path = os.path.join(args.root_path, context)
check_dir(img_path)
im = Image.fromarray(img)
im.save('{}/{}.jpg'.format(img_path, sample_counter[context]))
with open('{}/{}.pkl'.format(img_path, sample_counter[context]), 'wb') as f:
pickle.dump(gt, f)
|
[
"pickle.dump",
"os.makedirs",
"argparse.ArgumentParser",
"carla.env.env_rendering.EnvRenderer",
"numpy.argmax",
"os.path.exists",
"carla.train_agent.env_fnc",
"carla.env.env_rendering.get_gt_factors",
"random.choice",
"numpy.random.randint",
"PIL.Image.fromarray",
"os.path.join"
] |
[((431, 456), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (454, 456), False, 'import argparse\n'), ((1661, 1793), 'carla.env.env_rendering.EnvRenderer', 'EnvRenderer', ([], {'total_objects': 'total_objects', 'grid_size': 'args.grid_size', 'tile_size': 'args.tile_size', 'context_config': 'args.context_config'}), '(total_objects=total_objects, grid_size=args.grid_size,\n tile_size=args.tile_size, context_config=args.context_config)\n', (1672, 1793), False, 'from carla.env.env_rendering import EnvRenderer, get_gt_factors\n'), ((246, 271), 'os.path.exists', 'os.path.exists', (['directory'], {}), '(directory)\n', (260, 271), False, 'import os\n'), ((345, 367), 'os.makedirs', 'os.makedirs', (['directory'], {}), '(directory)\n', (356, 367), False, 'import os\n'), ((1443, 1464), 'carla.train_agent.env_fnc', 'env_fnc', ([], {}), '(**env_kwargs)\n', (1450, 1464), False, 'from carla.train_agent import env_fnc\n'), ((1970, 2011), 'numpy.random.randint', 'np.random.randint', (['(0)', '(max_n_obstacles + 1)'], {}), '(0, max_n_obstacles + 1)\n', (1987, 2011), True, 'import numpy as np\n'), ((2046, 2085), 'numpy.random.randint', 'np.random.randint', (['(0)', '(max_n_goodies + 1)'], {}), '(0, max_n_goodies + 1)\n', (2063, 2085), True, 'import numpy as np\n'), ((2184, 2207), 'numpy.random.randint', 'np.random.randint', (['(0)', '(4)'], {}), '(0, 4)\n', (2201, 2207), True, 'import numpy as np\n'), ((2243, 2319), 'carla.env.env_rendering.get_gt_factors', 'get_gt_factors', (['env.unwrapped', 'total_objects', 'max_n_goodies', 'max_n_obstacles'], {}), '(env.unwrapped, total_objects, max_n_goodies, max_n_obstacles)\n', (2257, 2319), False, 'from carla.env.env_rendering import EnvRenderer, get_gt_factors\n'), ((2476, 2512), 'random.choice', 'random.choice', (['valid_pos_transformed'], {}), '(valid_pos_transformed)\n', (2489, 2512), False, 'import random\n'), ((2596, 2621), 'numpy.argmax', 'np.argmax', (["obs['context']"], {}), "(obs['context'])\n", (2605, 2621), True, 'import numpy as np\n'), ((2806, 2843), 'os.path.join', 'os.path.join', (['args.root_path', 'context'], {}), '(args.root_path, context)\n', (2818, 2843), False, 'import os\n'), ((2886, 2906), 'PIL.Image.fromarray', 'Image.fromarray', (['img'], {}), '(img)\n', (2901, 2906), False, 'from PIL import Image\n'), ((3075, 3093), 'pickle.dump', 'pickle.dump', (['gt', 'f'], {}), '(gt, f)\n', (3086, 3093), False, 'import pickle\n')]
|
#!/usr/bin/env python
# coding: utf-8
from nltk.tokenize import sent_tokenize
from nltk import word_tokenize
from sklearn.model_selection import train_test_split
from nltk.stem.snowball import SnowballStemmer
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import KFold
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import BernoulliNB, MultinomialNB
from sklearn import datasets
from pandas import DataFrame
import nltk
import numpy as np
import nltk.stem
from sklearn.pipeline import Pipeline
from sklearn.metrics import confusion_matrix, accuracy_score
import itertools
from sklearn.linear_model import LogisticRegression
import os
from sklearn.svm import SVC
from numpy import random
def load_text(pos_path, neg_path):
#pos_path = 'rt-polarity.pos'
#neg_path = 'rt-polarity.neg'
f_pos = open(pos_path, 'r', encoding='ISO-8859-1')
f_neg = open(neg_path, 'r', encoding='ISO-8859-1')
all_sentences = []
for sentence in sent_tokenize(f_pos.read()):
all_sentences.append({'context': sentence, 'sentiment': 'positive'})
for sentence in sent_tokenize(f_neg.read()):
all_sentences.append({'context': sentence, 'sentiment': 'negative'})
f_pos.close()
f_neg.close()
return all_sentences
def create_df(sentences_with_class):
sent = DataFrame(sentences_with_class)
return sent
# generate all possible combinations of parameters (including default)
def generate_parameter():
list_of_parameters = [['lemm', 'stem', None], # use lemmatize or stem
[None, 'english'], # use stopword or not
[0, 0.1, 0.01] # min_df
]
para_groups = list(itertools.product(*list_of_parameters))
return para_groups
# analyzer for use in CountVectorizer
stemmer = SnowballStemmer('english')
class StemmedCountVectorizer(CountVectorizer):
def build_analyzer(self):
analyzer = super(StemmedCountVectorizer, self).build_analyzer()
return lambda doc: ([stemmer.stem(w) for w in analyzer(doc)])
lemmatizer = nltk.stem.WordNetLemmatizer()
class LemmCountVectorizer(CountVectorizer):
def build_analyzer(self):
analyzer = super(LemmCountVectorizer, self).build_analyzer()
return lambda doc: ([stemmer.stem(w) for w in analyzer(doc)])
def random_model(test_X):
random_results = []
two_outcomes = ['positive', 'negative']
for line in test_X:
random_results.append(random.choice(two_outcomes))
return random_results
def run_Classifier(para_groups, clfs, train):
# set up all containers for test results
all_scores = []
all_paras = []
all_clf_pipes = []
#all_conf_mat = []
with open('accuracy_summarys_final.txt', 'a+') as f:
current_iter = 1
for clf in clfs:
f.write('\n---------------------------------------------\n')
f.write('Current experimenting type of classifier: ' + str(clf) + ' \n\n\n')
for paras in para_groups:
print('current iteration: ' + str(current_iter))
current_iter = current_iter + 1
if (paras[0] == 'lemm'):
vectorizer = LemmCountVectorizer(min_df=paras[2], analyzer="word", stop_words=paras[1])
if (paras[0] == 'stem'):
vectorizer = StemmedCountVectorizer(min_df=paras[2], analyzer="word", stop_words=paras[1])
else:
vectorizer = CountVectorizer(min_df=paras[2], stop_words=paras[1])
pipe = Pipeline([
('count_vectorizer', vectorizer),
('classifier', clf)
])
kf_clf_scores = []
kf_random_scores = []
# use cross-validation
X = train.context
kf = KFold(n_splits= 8, shuffle=True)
for train_index, test_index in kf.split(X):
train_X = df.iloc[train_index]['context'].values
train_Y = df.iloc[train_index]['sentiment'].values
test_X = df.iloc[test_index]['context'].values
test_Y = df.iloc[test_index]['sentiment'].values
pipe.fit(train_X, train_Y)
random_Y = random_model(test_X)
current_clf_score = accuracy_score(test_Y, pipe.predict(test_X))
random_score = accuracy_score(test_Y, random_Y)
kf_clf_scores.append(current_clf_score)
kf_random_scores.append(random_score)
all_scores.append(sum(kf_clf_scores)/len(kf_clf_scores))
all_paras.append(paras)
all_clf_pipes.append(pipe)
f.write('Parameters: ' + str(paras) + '\n')
f.write('Score: ' + str(sum(kf_clf_scores)/len(kf_clf_scores)) + '\n')
f.write('Random Model Score: ' + str(sum(kf_random_scores)/len(kf_random_scores)) + '\n\n')
return all_scores, all_paras, all_clf_pipes
def find_best_model(all_scores, all_paras, pipes, clfs, para_groups):
best_clf_pipes = []
best_paras = []
with open('best_models_final.txt', 'a+') as best:
i = 0
for clf in clfs:
subarr_acc = all_scores[i : i+len(para_groups)-1]
best_acc = max(subarr_acc)
best_idx = subarr_acc.index(max(subarr_acc))
i = i + len(para_groups)
best.write('The best ' + str(clf) + ' used the following parameters: ' + str(all_paras[best_idx]) + ' \n')
best.write('Train Accuracy: ' + str(best_acc) + '\n')
best.write('--------------------------------------\n')
best_paras.append(all_paras[best_idx])
best_clf_pipes.append(pipes[best_idx])
return best_clf_pipes, best_paras
# this function has been discarded
def test_best_model(clf_pipes, paras, test_df):
clfs = [BernoulliNB(), LogisticRegression(solver='lbfgs', max_iter=400), SVC(kernel = 'linear'), MultinomialNB()]
with open('best_models_final.txt', 'a+') as best:
best.write('\n\n\nBelow are test accuracies and confusion matrices of the above best models: \n\n')
for i in range(len(clf_pipes)):
Y_predict = clf_pipes[i].predict(test_df.context)
model_acc = accuracy_score(test_df.sentiment, Y_predict)
con_m = confusion_matrix(test_df.sentiment, Y_predict)
best.write('Best ' + str(clfs[i]) + ' \n')
best.write('Test Accuracy: ' + str(best_acc) + '\n')
best.write('Confusion matrix: ' + str(con_m) )
best.write('--------------------------------------\n')
# run_test_set is similar to run_Classifier but without implementation of cross-validation
def run_test_set(clfs, para_groups, training_set_df, test_set_df):
with open('best_models_test_set_final.txt', 'a+') as best:
for i in range(len(clfs)):
print('current iteration: ' + str(i))
paras = para_groups[i]
if (paras[0] == 'lemm'):
vectorizer = LemmCountVectorizer(min_df=paras[2], analyzer="word", stop_words=paras[1])
if (paras[0] == 'stem'):
vectorizer = StemmedCountVectorizer(min_df=paras[2], analyzer="word", stop_words=paras[1])
else:
vectorizer = CountVectorizer(min_df=paras[2], stop_words=paras[1])
pipe = Pipeline([
('count_vectorizer', vectorizer),
('classifier', clfs[i])
])
pipe.fit(training_set_df.context,training_set_df.sentiment)
test_y_hat = pipe.predict(test_set_df.context)
test_acc = accuracy_score(test_set_df.sentiment, test_y_hat)
conf_mtx = confusion_matrix(test_set_df.sentiment, test_y_hat, labels = ['positive', 'negative'])
best.write(str(clfs[i]) + ' with parameters: ' + str(para_groups[i]) +
' has test accuracy: ' + str(test_acc) + '\n')
best.write('Its confusion matrix is\n' + str(conf_mtx) + '\n\n')
df = create_df(load_text(r'rt-polarity.pos', r'rt-polarity.neg'))
para_groups = generate_parameter()
train_df, test_df = train_test_split(df, test_size=0.2)
clfs = [BernoulliNB(), LogisticRegression(solver='lbfgs', max_iter=400), SVC(kernel = 'linear'), MultinomialNB()]
all_scores, all_paras, all_clf_pipes = run_Classifier(para_groups, clfs, train_df)
find_best_model(all_scores, all_paras, all_clf_pipes, clfs, para_groups)
print('Running clfs on test set...')
# manually examine the best clfs and parameters in 'best_models.txt' and typed the data below
best_para_groups = [('stem', None, 0) , ('stem', None, 0), ('stem', None, 0), ('lemm', None, 0) ]
run_test_set(clfs, best_para_groups, train_df, test_df)
|
[
"pandas.DataFrame",
"numpy.random.choice",
"nltk.stem.snowball.SnowballStemmer",
"sklearn.metrics.confusion_matrix",
"sklearn.feature_extraction.text.CountVectorizer",
"sklearn.naive_bayes.MultinomialNB",
"nltk.stem.WordNetLemmatizer",
"sklearn.model_selection.train_test_split",
"sklearn.metrics.accuracy_score",
"sklearn.model_selection.KFold",
"sklearn.linear_model.LogisticRegression",
"sklearn.svm.SVC",
"sklearn.pipeline.Pipeline",
"itertools.product",
"sklearn.naive_bayes.BernoulliNB"
] |
[((1878, 1904), 'nltk.stem.snowball.SnowballStemmer', 'SnowballStemmer', (['"""english"""'], {}), "('english')\n", (1893, 1904), False, 'from nltk.stem.snowball import SnowballStemmer\n'), ((2142, 2171), 'nltk.stem.WordNetLemmatizer', 'nltk.stem.WordNetLemmatizer', ([], {}), '()\n', (2169, 2171), False, 'import nltk\n'), ((8813, 8848), 'sklearn.model_selection.train_test_split', 'train_test_split', (['df'], {'test_size': '(0.2)'}), '(df, test_size=0.2)\n', (8829, 8848), False, 'from sklearn.model_selection import train_test_split\n'), ((1376, 1407), 'pandas.DataFrame', 'DataFrame', (['sentences_with_class'], {}), '(sentences_with_class)\n', (1385, 1407), False, 'from pandas import DataFrame\n'), ((8858, 8871), 'sklearn.naive_bayes.BernoulliNB', 'BernoulliNB', ([], {}), '()\n', (8869, 8871), False, 'from sklearn.naive_bayes import BernoulliNB, MultinomialNB\n'), ((8873, 8921), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {'solver': '"""lbfgs"""', 'max_iter': '(400)'}), "(solver='lbfgs', max_iter=400)\n", (8891, 8921), False, 'from sklearn.linear_model import LogisticRegression\n'), ((8923, 8943), 'sklearn.svm.SVC', 'SVC', ([], {'kernel': '"""linear"""'}), "(kernel='linear')\n", (8926, 8943), False, 'from sklearn.svm import SVC\n'), ((8947, 8962), 'sklearn.naive_bayes.MultinomialNB', 'MultinomialNB', ([], {}), '()\n', (8960, 8962), False, 'from sklearn.naive_bayes import BernoulliNB, MultinomialNB\n'), ((1764, 1802), 'itertools.product', 'itertools.product', (['*list_of_parameters'], {}), '(*list_of_parameters)\n', (1781, 1802), False, 'import itertools\n'), ((6335, 6348), 'sklearn.naive_bayes.BernoulliNB', 'BernoulliNB', ([], {}), '()\n', (6346, 6348), False, 'from sklearn.naive_bayes import BernoulliNB, MultinomialNB\n'), ((6350, 6398), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {'solver': '"""lbfgs"""', 'max_iter': '(400)'}), "(solver='lbfgs', max_iter=400)\n", (6368, 6398), False, 'from sklearn.linear_model import LogisticRegression\n'), ((6400, 6420), 'sklearn.svm.SVC', 'SVC', ([], {'kernel': '"""linear"""'}), "(kernel='linear')\n", (6403, 6420), False, 'from sklearn.svm import SVC\n'), ((6424, 6439), 'sklearn.naive_bayes.MultinomialNB', 'MultinomialNB', ([], {}), '()\n', (6437, 6439), False, 'from sklearn.naive_bayes import BernoulliNB, MultinomialNB\n'), ((2537, 2564), 'numpy.random.choice', 'random.choice', (['two_outcomes'], {}), '(two_outcomes)\n', (2550, 2564), False, 'from numpy import random\n'), ((6748, 6792), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['test_df.sentiment', 'Y_predict'], {}), '(test_df.sentiment, Y_predict)\n', (6762, 6792), False, 'from sklearn.metrics import confusion_matrix, accuracy_score\n'), ((6813, 6859), 'sklearn.metrics.confusion_matrix', 'confusion_matrix', (['test_df.sentiment', 'Y_predict'], {}), '(test_df.sentiment, Y_predict)\n', (6829, 6859), False, 'from sklearn.metrics import confusion_matrix, accuracy_score\n'), ((7947, 8016), 'sklearn.pipeline.Pipeline', 'Pipeline', (["[('count_vectorizer', vectorizer), ('classifier', clfs[i])]"], {}), "([('count_vectorizer', vectorizer), ('classifier', clfs[i])])\n", (7955, 8016), False, 'from sklearn.pipeline import Pipeline\n'), ((8246, 8295), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['test_set_df.sentiment', 'test_y_hat'], {}), '(test_set_df.sentiment, test_y_hat)\n', (8260, 8295), False, 'from sklearn.metrics import confusion_matrix, accuracy_score\n'), ((8332, 8420), 'sklearn.metrics.confusion_matrix', 'confusion_matrix', (['test_set_df.sentiment', 'test_y_hat'], {'labels': "['positive', 'negative']"}), "(test_set_df.sentiment, test_y_hat, labels=['positive',\n 'negative'])\n", (8348, 8420), False, 'from sklearn.metrics import confusion_matrix, accuracy_score\n'), ((3709, 3774), 'sklearn.pipeline.Pipeline', 'Pipeline', (["[('count_vectorizer', vectorizer), ('classifier', clf)]"], {}), "([('count_vectorizer', vectorizer), ('classifier', clf)])\n", (3717, 3774), False, 'from sklearn.pipeline import Pipeline\n'), ((4030, 4061), 'sklearn.model_selection.KFold', 'KFold', ([], {'n_splits': '(8)', 'shuffle': '(True)'}), '(n_splits=8, shuffle=True)\n', (4035, 4061), False, 'from sklearn.model_selection import KFold\n'), ((7848, 7901), 'sklearn.feature_extraction.text.CountVectorizer', 'CountVectorizer', ([], {'min_df': 'paras[2]', 'stop_words': 'paras[1]'}), '(min_df=paras[2], stop_words=paras[1])\n', (7863, 7901), False, 'from sklearn.feature_extraction.text import CountVectorizer\n'), ((3623, 3676), 'sklearn.feature_extraction.text.CountVectorizer', 'CountVectorizer', ([], {'min_df': 'paras[2]', 'stop_words': 'paras[1]'}), '(min_df=paras[2], stop_words=paras[1])\n', (3638, 3676), False, 'from sklearn.feature_extraction.text import CountVectorizer\n'), ((4660, 4692), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['test_Y', 'random_Y'], {}), '(test_Y, random_Y)\n', (4674, 4692), False, 'from sklearn.metrics import confusion_matrix, accuracy_score\n')]
|
import datetime
import pytest
from fuzzyfields import Timestamp, MalformedFieldError
from . import has_pandas, requires_pandas
if has_pandas:
import numpy
import pandas
else:
class numpy:
@classmethod
def datetime64(cls, x):
pass
class pandas:
@classmethod
def to_datetime(cls, x):
pass
@requires_pandas
@pytest.mark.parametrize('value', [
'not a date', '10/notAMonth/2016',
'2016-00-01', '2016-13-13', '2016-01-00', '2016-02-30'
])
def test_malformed(value):
v = Timestamp()
with pytest.raises(MalformedFieldError) as e:
v.parse(value)
assert str(e.value) == f"Malformed field: expected date, got '{value}'"
@requires_pandas
@pytest.mark.parametrize('dayfirst', [False, True])
@pytest.mark.parametrize('yearfirst', [False, True])
@pytest.mark.parametrize('value', [
'11 March 2016', '11th March 2016', 'March 11th 2016', '11 mar 2016',
'2016-03-11', '2016/03/11', '2016.03.11', '20160311',
])
def test_unambiguous(dayfirst, yearfirst, value):
expect = pandas.to_datetime('11 March 2016')
v = Timestamp(dayfirst=dayfirst, yearfirst=yearfirst)
assert v.parse(value) == expect
@requires_pandas
def test_ambiguous():
"""European notation is preferred to the American one by default
"""
expect = pandas.to_datetime('10 nov 2012')
v = Timestamp()
assert v.parse('10/11/2012') == expect
assert v.parse('10/11/12') == expect
assert v.parse('10-11-12') == expect
assert v.parse('10.11.12') == expect
v = Timestamp(dayfirst=False)
assert v.parse('11/10/12') == expect
@requires_pandas
def test_leapyear():
v = Timestamp()
with pytest.raises(MalformedFieldError) as e:
v.parse('2015/02/29')
assert str(e.value) == "Malformed field: expected date, got '2015/02/29'"
assert v.parse('2016/02/29') == pandas.to_datetime('29 feb 2016')
@requires_pandas
@pytest.mark.parametrize('output,expect', [
('pandas', pandas.to_datetime('2012-11-10')),
('numpy', numpy.datetime64('2012-11-10')),
('datetime', datetime.datetime(2012, 11, 10)),
('%Y/%m/%d', '2012/11/10'),
('%m %Y', '11 2012'),
])
def test_format(output, expect):
v = Timestamp(output=output)
assert v.parse('10/11/12') == expect
@requires_pandas
@pytest.mark.parametrize('value,expect', [
('1677-09-21', '1677-09-22'),
('1677-09-22', '1677-09-22'),
('1677-09-23', '1677-09-23'),
('2262-04-10', '2262-04-10'),
('2262-04-11', '2262-04-11'),
('2262-04-12', '2262-04-11'),
])
def test_outofbounds_pandas(value, expect, recwarn):
v = Timestamp()
assert v.parse(value) == pandas.to_datetime(expect)
if value == expect:
assert not recwarn
else:
assert len(recwarn) == 1
assert str(recwarn.pop().message) == (
f'Timestamp {value} 00:00:00 is out of bounds; forcing it to '
f'{expect}')
@requires_pandas
@pytest.mark.parametrize('output,value,expect', [
('numpy', '1000-01-01', numpy.datetime64('1000-01-01')),
('numpy', '5000-01-01', numpy.datetime64('5000-01-01')),
('datetime', '1000-01-01', datetime.datetime(1000, 1, 1)),
('datetime', '5000-01-01', datetime.datetime(5000, 1, 1)),
('%Y-%m-%d', '1000-01-01', '1000-01-01'),
('%Y-%m-%d', '5000-01-01', '5000-01-01'),
])
def test_outofbounds_notpandas(output, value, expect, recwarn):
"""Only output='pandas' has the problem of clipping
"""
v = Timestamp(output=output)
assert v.parse(value) == expect
assert not recwarn
|
[
"fuzzyfields.Timestamp",
"numpy.datetime64",
"datetime.datetime",
"pytest.raises",
"pandas.to_datetime",
"pytest.mark.parametrize"
] |
[((381, 510), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""value"""', "['not a date', '10/notAMonth/2016', '2016-00-01', '2016-13-13',\n '2016-01-00', '2016-02-30']"], {}), "('value', ['not a date', '10/notAMonth/2016',\n '2016-00-01', '2016-13-13', '2016-01-00', '2016-02-30'])\n", (404, 510), False, 'import pytest\n'), ((733, 783), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""dayfirst"""', '[False, True]'], {}), "('dayfirst', [False, True])\n", (756, 783), False, 'import pytest\n'), ((785, 836), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""yearfirst"""', '[False, True]'], {}), "('yearfirst', [False, True])\n", (808, 836), False, 'import pytest\n'), ((838, 1004), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""value"""', "['11 March 2016', '11th March 2016', 'March 11th 2016', '11 mar 2016',\n '2016-03-11', '2016/03/11', '2016.03.11', '20160311']"], {}), "('value', ['11 March 2016', '11th March 2016',\n 'March 11th 2016', '11 mar 2016', '2016-03-11', '2016/03/11',\n '2016.03.11', '20160311'])\n", (861, 1004), False, 'import pytest\n'), ((2316, 2552), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""value,expect"""', "[('1677-09-21', '1677-09-22'), ('1677-09-22', '1677-09-22'), ('1677-09-23',\n '1677-09-23'), ('2262-04-10', '2262-04-10'), ('2262-04-11',\n '2262-04-11'), ('2262-04-12', '2262-04-11')]"], {}), "('value,expect', [('1677-09-21', '1677-09-22'), (\n '1677-09-22', '1677-09-22'), ('1677-09-23', '1677-09-23'), (\n '2262-04-10', '2262-04-10'), ('2262-04-11', '2262-04-11'), (\n '2262-04-12', '2262-04-11')])\n", (2339, 2552), False, 'import pytest\n'), ((552, 563), 'fuzzyfields.Timestamp', 'Timestamp', ([], {}), '()\n', (561, 563), False, 'from fuzzyfields import Timestamp, MalformedFieldError\n'), ((1071, 1106), 'pandas.to_datetime', 'pandas.to_datetime', (['"""11 March 2016"""'], {}), "('11 March 2016')\n", (1089, 1106), False, 'import pandas\n'), ((1115, 1164), 'fuzzyfields.Timestamp', 'Timestamp', ([], {'dayfirst': 'dayfirst', 'yearfirst': 'yearfirst'}), '(dayfirst=dayfirst, yearfirst=yearfirst)\n', (1124, 1164), False, 'from fuzzyfields import Timestamp, MalformedFieldError\n'), ((1332, 1365), 'pandas.to_datetime', 'pandas.to_datetime', (['"""10 nov 2012"""'], {}), "('10 nov 2012')\n", (1350, 1365), False, 'import pandas\n'), ((1374, 1385), 'fuzzyfields.Timestamp', 'Timestamp', ([], {}), '()\n', (1383, 1385), False, 'from fuzzyfields import Timestamp, MalformedFieldError\n'), ((1561, 1586), 'fuzzyfields.Timestamp', 'Timestamp', ([], {'dayfirst': '(False)'}), '(dayfirst=False)\n', (1570, 1586), False, 'from fuzzyfields import Timestamp, MalformedFieldError\n'), ((1676, 1687), 'fuzzyfields.Timestamp', 'Timestamp', ([], {}), '()\n', (1685, 1687), False, 'from fuzzyfields import Timestamp, MalformedFieldError\n'), ((2230, 2254), 'fuzzyfields.Timestamp', 'Timestamp', ([], {'output': 'output'}), '(output=output)\n', (2239, 2254), False, 'from fuzzyfields import Timestamp, MalformedFieldError\n'), ((2626, 2637), 'fuzzyfields.Timestamp', 'Timestamp', ([], {}), '()\n', (2635, 2637), False, 'from fuzzyfields import Timestamp, MalformedFieldError\n'), ((3483, 3507), 'fuzzyfields.Timestamp', 'Timestamp', ([], {'output': 'output'}), '(output=output)\n', (3492, 3507), False, 'from fuzzyfields import Timestamp, MalformedFieldError\n'), ((573, 607), 'pytest.raises', 'pytest.raises', (['MalformedFieldError'], {}), '(MalformedFieldError)\n', (586, 607), False, 'import pytest\n'), ((1697, 1731), 'pytest.raises', 'pytest.raises', (['MalformedFieldError'], {}), '(MalformedFieldError)\n', (1710, 1731), False, 'import pytest\n'), ((1883, 1916), 'pandas.to_datetime', 'pandas.to_datetime', (['"""29 feb 2016"""'], {}), "('29 feb 2016')\n", (1901, 1916), False, 'import pandas\n'), ((2667, 2693), 'pandas.to_datetime', 'pandas.to_datetime', (['expect'], {}), '(expect)\n', (2685, 2693), False, 'import pandas\n'), ((1995, 2027), 'pandas.to_datetime', 'pandas.to_datetime', (['"""2012-11-10"""'], {}), "('2012-11-10')\n", (2013, 2027), False, 'import pandas\n'), ((2044, 2074), 'numpy.datetime64', 'numpy.datetime64', (['"""2012-11-10"""'], {}), "('2012-11-10')\n", (2060, 2074), False, 'import numpy\n'), ((2094, 2125), 'datetime.datetime', 'datetime.datetime', (['(2012)', '(11)', '(10)'], {}), '(2012, 11, 10)\n', (2111, 2125), False, 'import datetime\n'), ((3032, 3062), 'numpy.datetime64', 'numpy.datetime64', (['"""1000-01-01"""'], {}), "('1000-01-01')\n", (3048, 3062), False, 'import numpy\n'), ((3093, 3123), 'numpy.datetime64', 'numpy.datetime64', (['"""5000-01-01"""'], {}), "('5000-01-01')\n", (3109, 3123), False, 'import numpy\n'), ((3157, 3186), 'datetime.datetime', 'datetime.datetime', (['(1000)', '(1)', '(1)'], {}), '(1000, 1, 1)\n', (3174, 3186), False, 'import datetime\n'), ((3220, 3249), 'datetime.datetime', 'datetime.datetime', (['(5000)', '(1)', '(1)'], {}), '(5000, 1, 1)\n', (3237, 3249), False, 'import datetime\n')]
|
from .filters import Filter
import numpy as np
from astropy.io import fits
from scipy.constants import c
class SED:
"""
Represents an SED
Wavelength is given in micron,
Fnu is in Jy.
"""
def __init__(self, wavelengths, fnu, ferr=None):
if (ferr is not None) and (len(ferr.shape) > 1) and (ferr.shape[0] != 2):
raise ValueError('SED ferr should be either 1-dimensional '
'(symmetric errors) or shape (2, N) (lower, '
'upper error)')
self.wavelengths = np.array(wavelengths)
self.fnu = np.array(fnu)
self.ferr = ferr
def __mul__(self, other):
new = self.copy()
new.fnu = self.fnu * other
if self.ferr is not None:
new.ferr = self.ferr * other
return new
def __truediv__(self, other):
new = self.copy()
new.fnu = self.fnu / other
if self.ferr is not None:
new.ferr = self.ferr / other
return new
def copy(self):
"""Returns a copy"""
return type(self)(self.wavelengths.copy(), self.fnu.copy())
class HighresSED(SED):
"""
Represents an SED that is sampled at high spectral resolution, probably
originating from a library of models.
"""
def __init__(self, wavelengths, fnu, ferr=None):
super().__init__(wavelengths, fnu, ferr)
@classmethod
def from_cigale_fits(cls, filename, flux_column='Fnu', fluxfactor=1,
hdu_index=1, combine_column_list=True):
'''
Create a full SED from a cigale output (name_best_fit.fits) and convert
to Jy.
fluxfactor : float, default: 1. The factor with which we multiply
the flux to convert it to Jy, on top of the default mJy to Jy
conversion. If the CIGALE INPUT was (mistakingly) in Jy, set this
to 1e3.
combine_column_list : bool, default True.
Only used if flux_column is iterable. If True, return a single
HighresSED, where the flux is the sum of the given flux columns.
If False, return an equally large list of HighresSEDs.
'''
hdu = fits.open(filename)[hdu_index]
wavelengths = hdu.data['wavelength'] / 1e3 # from nm to micron
def get_fnu(fluxcol):
fnu = hdu.data[fluxcol] * fluxfactor
if fluxcol == 'Fnu':
fnu /= 1e3 # From mJy to Jy
else: # from W/nm to per W/Hz
fnu = np.square(wavelengths) * fnu / (c * 1e3)
return fnu
if isinstance(flux_column, (list, tuple)):
if not combine_column_list:
return [cls(wavelengths, get_fnu(fluxcol)) for fluxcol in flux_column]
fnu = sum([get_fnu(fluxcol) for fluxcol in flux_column])
else:
fnu = get_fnu(flux_column)
return cls(wavelengths, fnu)
def to_broadband(self, filters, quick=False):
'''
Transforms the full SED to broadband (returns new BroadbandSED).
Parameters
----------
filters : iterable
The elements should be either of class `Filter`, or strings from
which a filter can be created. When calling this function multiple
times, create the `Filter`s beforehand so you can reuse them.
If using strings, the `Filter`s will be loaded from disk which is
slow.
quick : bool, default False
If True, take the flux closest to the filters pivot wavelength,
instead of doing the convolution.
'''
ffilters = [] # make sure to copy
fnu_bands = []
for filt in filters:
if not isinstance(filt, Filter):
filt = Filter(filt)
ffilters.append(filt)
if quick:
best_idx = np.searchsorted(self.wavelengths, filt.pivot_wavelength())
fnu = self.fnu[best_idx]
else:
fnu = filt.convolve(self.wavelengths, self.fnu)
fnu_bands.append(fnu)
return BroadbandSED(ffilters, fnu_bands)
def blueshift(self, z):
'''
Blueshift the spectrum (to bring it to restframe), by shifting
all wavelengths.
'''
# Divide by (1+z) becaues fnu (F_nu dnu = F_lambda dlambda stays
# constant when redshifting). See Hogg 2002 and Hogg 2000 on K-correction.
self.fnu = self.fnu / (1 + z)
self.wavelengths = self.wavelengths / (1+z)
def redshift(self, z):
'''Redshift the model spectrum, by shifting all wavelengths.'''
self.fnu = self.fnu * (1 + z)
self.wavelengths = self.wavelengths * (1 + z)
class BroadbandSED(SED):
"""
An SED measured over a few broadbands.
"""
def __init__(self, filters, fnu, ferr=None):
wavelengths = []
filter_objs = [] # create new copy so we can modify list
for filt in filters:
if not isinstance(filt, Filter):
filt = Filter(filt)
filter_objs.append(filt)
wavelengths.append(filt.pivot_wavelength())
super().__init__(wavelengths, fnu, ferr)
self.filters = filter_objs
def k_correct(self, z, modelSED):
"""Perform a K-correction, assuming an underlying model SED. Returns
a new BroadbandSED with the corrected values.
For each broadband, the model SED is scaled to the appropriate level,
so its normalization does not matter. The modelSED is redshifted
(matching the BroadbandSED before doing the K-correct).
"""
# isinstance fails due to multiple model imports
if not 'HighresSED' in str(type(modelSED)):
raise ValueError('modelSED must be a HighresSED, was', type(modelSED))
model_broad = modelSED.to_broadband(self.filters)
fnu_kcorr = []
for i, filt in enumerate(self.filters):
scalef = self.fnu[i] / model_broad.fnu[i]
model_f = modelSED * scalef
model_f.blueshift(z)
fnu_band = filt.convolve(model_f.wavelengths, model_f.fnu)
fnu_kcorr.append(fnu_band)
return BroadbandSED(self.filters, fnu_kcorr)
def copy(self):
"""Returns a copy"""
return type(self)(self.filters, self.fnu.copy(), self.ferr.copy())
|
[
"numpy.square",
"numpy.array",
"astropy.io.fits.open"
] |
[((564, 585), 'numpy.array', 'np.array', (['wavelengths'], {}), '(wavelengths)\n', (572, 585), True, 'import numpy as np\n'), ((605, 618), 'numpy.array', 'np.array', (['fnu'], {}), '(fnu)\n', (613, 618), True, 'import numpy as np\n'), ((2210, 2229), 'astropy.io.fits.open', 'fits.open', (['filename'], {}), '(filename)\n', (2219, 2229), False, 'from astropy.io import fits\n'), ((2536, 2558), 'numpy.square', 'np.square', (['wavelengths'], {}), '(wavelengths)\n', (2545, 2558), True, 'import numpy as np\n')]
|
import tensorflow as tf
import numpy as np
def load_cifar10(num_batch_train, num_batch_test, mode='RGB'):
"""Load CIFAR-10 dataset with Tensorflow built-in function.
Generate and shuffle CIFAR-10 iterators via using tf.data.Data.
:param num_batch_train: An integer.
:param num_batch_test: An integer.
:param mode: String in {'RGB', 'HSV', 'TUV'}
:return train_slice, test_slice: Iterator for training and testing data.
"""
assert isinstance(num_batch_train, int)
assert isinstance(num_batch_test, int)
dataset = tf.keras.datasets.cifar10
(x_train, y_train), (x_test, y_test) = dataset.load_data()
# By converting dtype to make Tensorflow automatically use GPU.
x_train = tf.image.convert_image_dtype(x_train, tf.float32)
x_test = tf.image.convert_image_dtype(x_test, tf.float32)
if mode == 'RGB':
pass
elif mode == 'HSV':
x_train = tf.image.rgb_to_hsv(x_train)
x_test = tf.image.rgb_to_hsv(x_test)
elif mode == 'TUV':
x_train = tf.image.rgb_to_hsv(x_train)
x_test = tf.image.rgb_to_hsv(x_test)
x_train, x_test = hsv_to_tuv(x_train), hsv_to_tuv(x_test)
else:
raise NotImplementedError(
'Input mode is not valid, could be RGB, HSV, TUV, your input: {}'.format(mode))
train_slice = tf.data.Dataset.from_tensor_slices((x_train, y_train))
test_slice = tf.data.Dataset.from_tensor_slices((x_test, y_test))
train_slice = train_slice.shuffle(x_train.shape[0])
train_slice = train_slice.batch(num_batch_train)
test_slice = test_slice.batch(num_batch_test)
train_slice = train_slice.prefetch(buffer_size=num_batch_train)
test_slice = test_slice.prefetch(buffer_size=num_batch_test)
return train_slice, test_slice
def inverse_specific_labeled_images(img, label, anomaly_label):
"""Inverse images which has specific labels via negative images and plus 1.
:param img: Floating point images in range of [0.0, 1.0]
with shape [batch_size, image_size, image_size, image_channel].
:param label: A integer tensor with shape [batch_size,].
:param anomaly_label: An integer in range [0, 9].
:return img: Images with some batch inversed with same shape as input images.
"""
assert isinstance(anomaly_label, int)
assert anomaly_label >= 0
assert anomaly_label < 10
mask_anomaly = tf.where(tf.equal(label, anomaly_label), tf.ones(label.shape), tf.zeros(label.shape))
if len(img._shape_as_list()) == 4:
batch_size = mask_anomaly.shape[0]
mask_anomaly = tf.reshape(mask_anomaly, [batch_size, 1, 1, 1])
elif len(img._shape_as_list()) == 2:
pass
else:
raise NotImplementedError('Your img._shape_as_list(): {}'.format(img._shape_as_list()))
mask_normal = 1.0 - mask_anomaly
img = tf.cast(img, tf.float32)
img = tf.subtract(
tf.multiply(tf.ones(img.shape), mask_anomaly), tf.multiply(img, mask_anomaly)) + tf.multiply(img, mask_normal)
return img
def inverse_multiple_labeled_images(img, label, anomaly_label):
"""Inverse images which has specific labels via negative images and plus 1.
:param img: Floating point images in range of [0.0, 1.0]
with shape [batch_size, image_size, image_size, image_channel].
:param label: A integer tensor with shape [batch_size,].
:param anomaly_label: A list of integer of [0, 9]
:return img: Images with some batch inversed with same shape as input images.
"""
assert isinstance(anomaly_label, list)
mask_anomaly = tf.where(tf.equal(label, anomaly_label[0]), tf.ones(label.shape), tf.zeros(label.shape))
for idx, i in enumerate(anomaly_label[1::]):
# Accumulate the anomaly mask from all of elements in anomaly_label.
# Each of loop will detect each label that in the anomaly_label or not?
# If True then, put the mask_anomaly as 1 otherwise, 0.
if idx < len(anomaly_label[1::]):
# Checking that the idx does not go out of anomaly mask idx.
mask_anomaly = tf.add(
tf.where(tf.equal(label, anomaly_label[idx + 1]),
tf.ones(label.shape), tf.zeros(label.shape)),
mask_anomaly)
# For checking for given labels and anomaly masks work correctly.
# print(f'label {label}')
# print(f'mask_anomaly {mask_anomaly}')
if len(img._shape_as_list()) == 4:
batch_size = mask_anomaly.shape[0]
mask_anomaly = tf.reshape(mask_anomaly, [batch_size, 1, 1, 1])
elif len(img._shape_as_list()) == 2:
pass
else:
raise NotImplementedError('Your img._shape_as_list(): {}'.format(
img._shape_as_list()))
mask_normal = 1.0 - mask_anomaly
img = tf.cast(img, tf.float32)
img = tf.subtract(
tf.multiply(tf.ones(img.shape), mask_anomaly),
tf.multiply(img, mask_anomaly)) + tf.multiply(img, mask_normal)
return img
def hsv_to_tuv(hsv_img):
"""Convert HSV space images into TUV space images.
Note: TUV is purposed image space by Obad<NAME>.
:param hsv_img: Floating point HSV images in range of [0.0, 1.0]
with shape [batch_size, image_size, image_size, image_channel].
Degree has an unit as radiance.
:return: tuv_img: Floating point TUV images with same shape as input images.
"""
t = tf.sin(hsv_img[:, :, :, 0])*hsv_img[:, :, :, 1]
u = tf.cos(hsv_img[:, :, :, 0])*hsv_img[:, :, :, 1]
v = hsv_img[:, :, :, 2]
tuv_img = tf.stack([t, u, v], axis=-1)
return tuv_img
def tuv_to_hsv(tuv_img):
"""Converting TUV space images back to HSV space images.
:param tuv_img: Floating point TUV images in range of [0.0, 1.0]
with shape [batch_size, image_size, image_size, image_channel].
Degree has an unit as radiance.
:return hsv_img: Floating point HSV images with same shape as input images.
"""
h = tf.atan(tuv_img[:, :, :, 0]/tuv_img[:, :, :, 1])
s = tuv_img[:, :, :, 0]/tf.sin(h)
v = tuv_img[:, :, :, 2]
hsv_img = tf.stack([h, s, v], axis=-1)
return hsv_img
def rearrange_label_loss(locat_label, locat_loss):
"""Load TXT files which contain a label and a loss for each test images.
Rearrange labels in order and using that orders to reorder losses.
:param locat_label: A string shows location of TXT file.
:param locat_loss: A string shows location of TXT file.
:return rearrange_label, rearrange_loss: Tensors of rearranged labels and losses.
"""
label = np.loadtxt(locat_label, dtype=np.uint8, delimiter='\n')
loss = np.loadtxt(locat_loss, dtype=np.float32, delimiter='\n')
rearrange_label = []
rearrange_loss = []
index = np.argsort(label)
for i in index:
rearrange_label.append(label[i])
rearrange_loss.append(loss[i])
return rearrange_label, rearrange_loss
|
[
"tensorflow.ones",
"tensorflow.sin",
"tensorflow.reshape",
"tensorflow.image.rgb_to_hsv",
"tensorflow.data.Dataset.from_tensor_slices",
"tensorflow.stack",
"tensorflow.cast",
"numpy.argsort",
"tensorflow.zeros",
"tensorflow.multiply",
"numpy.loadtxt",
"tensorflow.atan",
"tensorflow.cos",
"tensorflow.equal",
"tensorflow.image.convert_image_dtype"
] |
[((725, 774), 'tensorflow.image.convert_image_dtype', 'tf.image.convert_image_dtype', (['x_train', 'tf.float32'], {}), '(x_train, tf.float32)\n', (753, 774), True, 'import tensorflow as tf\n'), ((788, 836), 'tensorflow.image.convert_image_dtype', 'tf.image.convert_image_dtype', (['x_test', 'tf.float32'], {}), '(x_test, tf.float32)\n', (816, 836), True, 'import tensorflow as tf\n'), ((1325, 1379), 'tensorflow.data.Dataset.from_tensor_slices', 'tf.data.Dataset.from_tensor_slices', (['(x_train, y_train)'], {}), '((x_train, y_train))\n', (1359, 1379), True, 'import tensorflow as tf\n'), ((1397, 1449), 'tensorflow.data.Dataset.from_tensor_slices', 'tf.data.Dataset.from_tensor_slices', (['(x_test, y_test)'], {}), '((x_test, y_test))\n', (1431, 1449), True, 'import tensorflow as tf\n'), ((2836, 2860), 'tensorflow.cast', 'tf.cast', (['img', 'tf.float32'], {}), '(img, tf.float32)\n', (2843, 2860), True, 'import tensorflow as tf\n'), ((4775, 4799), 'tensorflow.cast', 'tf.cast', (['img', 'tf.float32'], {}), '(img, tf.float32)\n', (4782, 4799), True, 'import tensorflow as tf\n'), ((5548, 5576), 'tensorflow.stack', 'tf.stack', (['[t, u, v]'], {'axis': '(-1)'}), '([t, u, v], axis=-1)\n', (5556, 5576), True, 'import tensorflow as tf\n'), ((5985, 6035), 'tensorflow.atan', 'tf.atan', (['(tuv_img[:, :, :, 0] / tuv_img[:, :, :, 1])'], {}), '(tuv_img[:, :, :, 0] / tuv_img[:, :, :, 1])\n', (5992, 6035), True, 'import tensorflow as tf\n'), ((6114, 6142), 'tensorflow.stack', 'tf.stack', (['[h, s, v]'], {'axis': '(-1)'}), '([h, s, v], axis=-1)\n', (6122, 6142), True, 'import tensorflow as tf\n'), ((6590, 6645), 'numpy.loadtxt', 'np.loadtxt', (['locat_label'], {'dtype': 'np.uint8', 'delimiter': '"""\n"""'}), "(locat_label, dtype=np.uint8, delimiter='\\n')\n", (6600, 6645), True, 'import numpy as np\n'), ((6657, 6713), 'numpy.loadtxt', 'np.loadtxt', (['locat_loss'], {'dtype': 'np.float32', 'delimiter': '"""\n"""'}), "(locat_loss, dtype=np.float32, delimiter='\\n')\n", (6667, 6713), True, 'import numpy as np\n'), ((6775, 6792), 'numpy.argsort', 'np.argsort', (['label'], {}), '(label)\n', (6785, 6792), True, 'import numpy as np\n'), ((2399, 2429), 'tensorflow.equal', 'tf.equal', (['label', 'anomaly_label'], {}), '(label, anomaly_label)\n', (2407, 2429), True, 'import tensorflow as tf\n'), ((2431, 2451), 'tensorflow.ones', 'tf.ones', (['label.shape'], {}), '(label.shape)\n', (2438, 2451), True, 'import tensorflow as tf\n'), ((2453, 2474), 'tensorflow.zeros', 'tf.zeros', (['label.shape'], {}), '(label.shape)\n', (2461, 2474), True, 'import tensorflow as tf\n'), ((2581, 2628), 'tensorflow.reshape', 'tf.reshape', (['mask_anomaly', '[batch_size, 1, 1, 1]'], {}), '(mask_anomaly, [batch_size, 1, 1, 1])\n', (2591, 2628), True, 'import tensorflow as tf\n'), ((2973, 3002), 'tensorflow.multiply', 'tf.multiply', (['img', 'mask_normal'], {}), '(img, mask_normal)\n', (2984, 3002), True, 'import tensorflow as tf\n'), ((3581, 3614), 'tensorflow.equal', 'tf.equal', (['label', 'anomaly_label[0]'], {}), '(label, anomaly_label[0])\n', (3589, 3614), True, 'import tensorflow as tf\n'), ((3616, 3636), 'tensorflow.ones', 'tf.ones', (['label.shape'], {}), '(label.shape)\n', (3623, 3636), True, 'import tensorflow as tf\n'), ((3638, 3659), 'tensorflow.zeros', 'tf.zeros', (['label.shape'], {}), '(label.shape)\n', (3646, 3659), True, 'import tensorflow as tf\n'), ((4507, 4554), 'tensorflow.reshape', 'tf.reshape', (['mask_anomaly', '[batch_size, 1, 1, 1]'], {}), '(mask_anomaly, [batch_size, 1, 1, 1])\n', (4517, 4554), True, 'import tensorflow as tf\n'), ((4920, 4949), 'tensorflow.multiply', 'tf.multiply', (['img', 'mask_normal'], {}), '(img, mask_normal)\n', (4931, 4949), True, 'import tensorflow as tf\n'), ((5402, 5429), 'tensorflow.sin', 'tf.sin', (['hsv_img[:, :, :, 0]'], {}), '(hsv_img[:, :, :, 0])\n', (5408, 5429), True, 'import tensorflow as tf\n'), ((5458, 5485), 'tensorflow.cos', 'tf.cos', (['hsv_img[:, :, :, 0]'], {}), '(hsv_img[:, :, :, 0])\n', (5464, 5485), True, 'import tensorflow as tf\n'), ((6062, 6071), 'tensorflow.sin', 'tf.sin', (['h'], {}), '(h)\n', (6068, 6071), True, 'import tensorflow as tf\n'), ((914, 942), 'tensorflow.image.rgb_to_hsv', 'tf.image.rgb_to_hsv', (['x_train'], {}), '(x_train)\n', (933, 942), True, 'import tensorflow as tf\n'), ((960, 987), 'tensorflow.image.rgb_to_hsv', 'tf.image.rgb_to_hsv', (['x_test'], {}), '(x_test)\n', (979, 987), True, 'import tensorflow as tf\n'), ((2939, 2969), 'tensorflow.multiply', 'tf.multiply', (['img', 'mask_anomaly'], {}), '(img, mask_anomaly)\n', (2950, 2969), True, 'import tensorflow as tf\n'), ((4886, 4916), 'tensorflow.multiply', 'tf.multiply', (['img', 'mask_anomaly'], {}), '(img, mask_anomaly)\n', (4897, 4916), True, 'import tensorflow as tf\n'), ((1030, 1058), 'tensorflow.image.rgb_to_hsv', 'tf.image.rgb_to_hsv', (['x_train'], {}), '(x_train)\n', (1049, 1058), True, 'import tensorflow as tf\n'), ((1076, 1103), 'tensorflow.image.rgb_to_hsv', 'tf.image.rgb_to_hsv', (['x_test'], {}), '(x_test)\n', (1095, 1103), True, 'import tensorflow as tf\n'), ((2904, 2922), 'tensorflow.ones', 'tf.ones', (['img.shape'], {}), '(img.shape)\n', (2911, 2922), True, 'import tensorflow as tf\n'), ((4843, 4861), 'tensorflow.ones', 'tf.ones', (['img.shape'], {}), '(img.shape)\n', (4850, 4861), True, 'import tensorflow as tf\n'), ((4106, 4145), 'tensorflow.equal', 'tf.equal', (['label', 'anomaly_label[idx + 1]'], {}), '(label, anomaly_label[idx + 1])\n', (4114, 4145), True, 'import tensorflow as tf\n'), ((4172, 4192), 'tensorflow.ones', 'tf.ones', (['label.shape'], {}), '(label.shape)\n', (4179, 4192), True, 'import tensorflow as tf\n'), ((4194, 4215), 'tensorflow.zeros', 'tf.zeros', (['label.shape'], {}), '(label.shape)\n', (4202, 4215), True, 'import tensorflow as tf\n')]
|
#!/usr/bin/env python
import matplotlib
import matplotlib.pyplot as plt
import numpy
import os
from cycler import cycler
# Set matplotlib defaults to agree with MATLAB code
plt.rc("legend", framealpha=None)
plt.rc("legend", edgecolor='black')
plt.rc("font", family="serif")
# Following option for TeX text seems to not work with EPS figures?
#plt.rc("text", usetex=True)
# NOTE: set clip_on=False in plotting to get consistent style with MATLAB
def mlmc_plot(filename, nvert, error_bars=False):
"""
Utility to generate MLMC diagnostic plots based on
input text file generated by MLMC driver code mlmc_test.
mlmc_plot(filename, nvert, error_bars=False)
Inputs:
filename: string, (base of) filename with output from mlmc_test routine
nvert : int, number of vertical plots <= 3
nvert == 1 generates fig1: (1),(2) fig2: (5),(6)
nvert == 2 generates fig1: (1),(2),(5),(6)
nvert == 3 generates fig1: (1)-(6)
error_bars: bool, flag to add error bars in plots of level differences
Outputs:
Matplotlib figure(s) for
Convergence tests
(1) Var[P_l - P_{l-1}] per level
(2) E[|P_l - P_{l-1}|] per level
(3) cost per level
(4) kurtosis per level
Complexity tests
(5) number of samples per level
(6) normalised cost per accuracy target
"""
#
# read in data
#
# Default file extension is .txt if none supplied
if not os.path.splitext(filename)[1]:
file = open(filename + ".txt", "r")
else:
file = open(filename, "r")
# Declare lists for data
del1 = []
del2 = []
var1 = []
var2 = []
kur1 = []
chk1 = []
cost = []
l = []
epss = []
mlmc_cost = []
std_cost = []
Ns = []
ls = []
# Default values for number of samples and file_version
N = 0
file_version = 0.8
complexity_flag = False # first read convergence tests rather than complexity tests
for line in file:
# Recognise file version line from the fact that it starts with '*** MLMC file version'
if line[0:21] == '*** MLMC file version':
file_version = float(line[23:30])
# Recognise number of samples line from the fact that it starts with '*** using'
if line[0:9] == '*** using':
N = int(line[14:20])
# Recognise whether we should switch to reading complexity tests
if line[0:19] == '*** MLMC complexity':
complexity_flag = True # now start to read complexity tests
# Recognise MLMC complexity test lines from the fact that line[0] is an integer
# Also need complexity_flag == True because line[0] is an integer also identifies
# the convergence test lines
if '0' <= line[0] <= '9' and complexity_flag:
splitline = [float(x) for x in line.split()]
epss.append(splitline[0])
mlmc_cost.append(splitline[2])
std_cost.append(splitline[3])
Ns.append(splitline[5:])
ls.append(list(range(0,len(splitline[5:]))))
# Recognise convergence test lines from the fact that line[1] is an integer
# and possibly also line[0] (or line[0] is whitespace)
if (line[0] == ' ' or '0' <= line[0] <= '9') and '0' <= line[1] <= '9':
splitline = [float(x) for x in line.split()]
l.append(splitline[0])
del1.append(splitline[1])
del2.append(splitline[2])
var1.append(splitline[3])
var2.append(splitline[4])
kur1.append(splitline[5])
chk1.append(splitline[6])
cost.append(splitline[7])
continue
if (file_version < 0.9):
if (error_bars):
raise Warning("Cannot plot error bars -- no value of N in file")
error_bars = False
# Compute variance of variance ( correct up to O(1/N) )
if (error_bars):
vvr1 = [ v**2 * (kur - 1.0) for (v, kur) in zip(var1,kur1)]
#
# plot figures
#
# Fudge to get comparable size to default MATLAB fig size
width_MATLAB = 0.9*8; height_MATLAB = 0.9*6.5;
plt.figure(figsize=([width_MATLAB, height_MATLAB*0.75*nvert]))
plt.rc('axes', prop_cycle=(cycler('color', ['k']) *
cycler('linestyle', ['--', ':']) *
cycler('marker', ['*'])))
# Var[P_l - P_{l-1}] per level
plt.subplot(nvert, 2, 1)
plt.plot(l, numpy.log2(var2), label=r'$P_\ell$', clip_on=False)
plt.plot(l[1:], numpy.log2(var1[1:]), label=r'$P_\ell - P_{\ell-1}$', clip_on=False)
plt.xlabel('level $\ell$')
plt.ylabel(r'$\mathrm{log}_2(\mathrm{variance})$')
plt.legend(loc='lower left', fontsize='medium')
axis = plt.axis(); plt.axis([0, max(l), axis[2], axis[3]])
if (error_bars):
plt.plot(l[1:], numpy.log2(numpy.maximum(numpy.abs(numpy.array(var1[1:]) -
3.0*numpy.sqrt(vvr1[1:])/numpy.sqrt(N)), 1e-10)), '-r.', clip_on=False)
plt.plot(l[1:], numpy.log2( numpy.abs(numpy.array(var1[1:]) +
3.0*numpy.sqrt(vvr1[1:])/numpy.sqrt(N)) ), '-r.', clip_on=False)
# E[|P_l - P_{l-1}|] per level
plt.subplot(nvert, 2, 2)
plt.plot(l, numpy.log2(numpy.abs(del2)), label=r'$P_\ell$', clip_on=False)
plt.plot(l[1:], numpy.log2(numpy.abs(del1[1:])), label=r'$P_\ell - P_{\ell-1}$', clip_on=False)
plt.xlabel('level $\ell$')
plt.ylabel(r'$\mathrm{log}_2(|\mathrm{mean}|)$')
plt.legend(loc='lower left', fontsize='medium')
axis = plt.axis(); plt.axis([0, max(l), axis[2], axis[3]])
if (error_bars):
plt.plot(l[1:], numpy.log2(numpy.maximum(numpy.abs(numpy.array(del1[1:]) -
3.0*numpy.sqrt(var1[1:])/numpy.sqrt(N)), 1e-10)), '-r.', clip_on=False)
plt.plot(l[1:], numpy.log2( numpy.abs(numpy.array(del1[1:]) +
3.0*numpy.sqrt(var1[1:])/numpy.sqrt(N)) ), '-r.', clip_on=False)
if nvert == 3:
# consistency check
# plt.subplot(nvert, 2, 3)
# plt.plot(l[1:], chk1[1:], '*--')
# plt.xlabel('level $\ell$')
# plt.ylabel(r'consistency check')
# axis = plt.axis(); plt.axis([0, max(l), axis[2], axis[3]])
# cost per level
plt.subplot(nvert, 2, 3)
plt.plot(l, numpy.log2(cost), '*--', clip_on=False)
plt.xlabel('level $\ell$')
plt.ylabel(r'$\log_2$ cost per sample')
axis = plt.axis(); plt.axis([0, max(l), axis[2], axis[3]])
# kurtosis per level
plt.subplot(nvert, 2, 4)
plt.plot(l[1:], kur1[1:], '*--', clip_on=False)
plt.xlabel('level $\ell$')
plt.ylabel(r'kurtosis')
axis = plt.axis(); plt.axis([0, max(l), axis[2], axis[3]])
if nvert == 1:
# Fix subplot spacing
plt.subplots_adjust(wspace=0.3)
plt.subplots_adjust(hspace=0.4)
plt.figure(figsize=(width_MATLAB, height_MATLAB*0.75*nvert))
marker_styles = ['o', 'x', 'd', '*', 's']
plt.rc('axes', prop_cycle=(cycler('color', ['k']) *
cycler('linestyle', ['--']) *
cycler('marker', marker_styles)))
# number of samples per level
plt.subplot(nvert, 2, 2*nvert-1)
for (eps, ll, n) in zip(epss, ls, Ns):
plt.semilogy(ll, n, label=eps, markerfacecolor='none', clip_on=False)
plt.xlabel('level $\ell$')
plt.ylabel('$N_\ell$')
plt.legend(loc='upper right', frameon=True, fontsize='medium')
axis = plt.axis(); plt.axis([0, max([max(x) for x in ls]), axis[2], axis[3]])
plt.rc('axes', prop_cycle=(cycler('color', ['k']) *
cycler('linestyle', ['--', ':']) *
cycler('marker', ['*'])))
# normalised cost for given accuracy
eps = numpy.array(epss)
std_cost = numpy.array(std_cost)
mlmc_cost = numpy.array(mlmc_cost)
I = numpy.argsort(eps)
plt.subplot(nvert, 2, 2*nvert)
plt.loglog(eps[I], eps[I]**2 * std_cost[I], '*-', label='Std MC', clip_on=False)
plt.loglog(eps[I], eps[I]**2 * mlmc_cost[I], '*--', label='MLMC', clip_on=False)
plt.xlabel(r'accuracy $\varepsilon$')
plt.ylabel(r'$\varepsilon^2$ cost')
plt.legend(fontsize='medium')
axis = plt.axis(); plt.axis([min(eps), max(eps), axis[2], axis[3]])
# Fix subplot spacing
plt.subplots_adjust(wspace=0.3)
plt.subplots_adjust(hspace=0.4)
if __name__ == "__main__":
import sys
mlmc_plot(sys.argv[1], nvert=3)
plt.savefig(sys.argv[1].replace(".txt", ".eps"))
|
[
"matplotlib.pyplot.loglog",
"matplotlib.pyplot.subplot",
"cycler.cycler",
"numpy.abs",
"matplotlib.pyplot.plot",
"numpy.log2",
"matplotlib.pyplot.legend",
"matplotlib.pyplot.axis",
"numpy.argsort",
"matplotlib.pyplot.figure",
"numpy.array",
"matplotlib.pyplot.rc",
"os.path.splitext",
"matplotlib.pyplot.subplots_adjust",
"matplotlib.pyplot.ylabel",
"matplotlib.pyplot.semilogy",
"matplotlib.pyplot.xlabel",
"numpy.sqrt"
] |
[((175, 208), 'matplotlib.pyplot.rc', 'plt.rc', (['"""legend"""'], {'framealpha': 'None'}), "('legend', framealpha=None)\n", (181, 208), True, 'import matplotlib.pyplot as plt\n'), ((209, 244), 'matplotlib.pyplot.rc', 'plt.rc', (['"""legend"""'], {'edgecolor': '"""black"""'}), "('legend', edgecolor='black')\n", (215, 244), True, 'import matplotlib.pyplot as plt\n'), ((245, 275), 'matplotlib.pyplot.rc', 'plt.rc', (['"""font"""'], {'family': '"""serif"""'}), "('font', family='serif')\n", (251, 275), True, 'import matplotlib.pyplot as plt\n'), ((4217, 4281), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '[width_MATLAB, height_MATLAB * 0.75 * nvert]'}), '(figsize=[width_MATLAB, height_MATLAB * 0.75 * nvert])\n', (4227, 4281), True, 'import matplotlib.pyplot as plt\n'), ((4500, 4524), 'matplotlib.pyplot.subplot', 'plt.subplot', (['nvert', '(2)', '(1)'], {}), '(nvert, 2, 1)\n', (4511, 4524), True, 'import matplotlib.pyplot as plt\n'), ((4694, 4721), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""level $\\\\ell$"""'], {}), "('level $\\\\ell$')\n", (4704, 4721), True, 'import matplotlib.pyplot as plt\n'), ((4725, 4776), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""$\\\\mathrm{log}_2(\\\\mathrm{variance})$"""'], {}), "('$\\\\mathrm{log}_2(\\\\mathrm{variance})$')\n", (4735, 4776), True, 'import matplotlib.pyplot as plt\n'), ((4780, 4827), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""lower left"""', 'fontsize': '"""medium"""'}), "(loc='lower left', fontsize='medium')\n", (4790, 4827), True, 'import matplotlib.pyplot as plt\n'), ((4839, 4849), 'matplotlib.pyplot.axis', 'plt.axis', ([], {}), '()\n', (4847, 4849), True, 'import matplotlib.pyplot as plt\n'), ((5287, 5311), 'matplotlib.pyplot.subplot', 'plt.subplot', (['nvert', '(2)', '(2)'], {}), '(nvert, 2, 2)\n', (5298, 5311), True, 'import matplotlib.pyplot as plt\n'), ((5503, 5530), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""level $\\\\ell$"""'], {}), "('level $\\\\ell$')\n", (5513, 5530), True, 'import matplotlib.pyplot as plt\n'), ((5534, 5583), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""$\\\\mathrm{log}_2(|\\\\mathrm{mean}|)$"""'], {}), "('$\\\\mathrm{log}_2(|\\\\mathrm{mean}|)$')\n", (5544, 5583), True, 'import matplotlib.pyplot as plt\n'), ((5587, 5634), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""lower left"""', 'fontsize': '"""medium"""'}), "(loc='lower left', fontsize='medium')\n", (5597, 5634), True, 'import matplotlib.pyplot as plt\n'), ((5646, 5656), 'matplotlib.pyplot.axis', 'plt.axis', ([], {}), '()\n', (5654, 5656), True, 'import matplotlib.pyplot as plt\n'), ((7313, 7349), 'matplotlib.pyplot.subplot', 'plt.subplot', (['nvert', '(2)', '(2 * nvert - 1)'], {}), '(nvert, 2, 2 * nvert - 1)\n', (7324, 7349), True, 'import matplotlib.pyplot as plt\n'), ((7471, 7498), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""level $\\\\ell$"""'], {}), "('level $\\\\ell$')\n", (7481, 7498), True, 'import matplotlib.pyplot as plt\n'), ((7502, 7525), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""$N_\\\\ell$"""'], {}), "('$N_\\\\ell$')\n", (7512, 7525), True, 'import matplotlib.pyplot as plt\n'), ((7529, 7591), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""upper right"""', 'frameon': '(True)', 'fontsize': '"""medium"""'}), "(loc='upper right', frameon=True, fontsize='medium')\n", (7539, 7591), True, 'import matplotlib.pyplot as plt\n'), ((7603, 7613), 'matplotlib.pyplot.axis', 'plt.axis', ([], {}), '()\n', (7611, 7613), True, 'import matplotlib.pyplot as plt\n'), ((7907, 7924), 'numpy.array', 'numpy.array', (['epss'], {}), '(epss)\n', (7918, 7924), False, 'import numpy\n'), ((7940, 7961), 'numpy.array', 'numpy.array', (['std_cost'], {}), '(std_cost)\n', (7951, 7961), False, 'import numpy\n'), ((7978, 8000), 'numpy.array', 'numpy.array', (['mlmc_cost'], {}), '(mlmc_cost)\n', (7989, 8000), False, 'import numpy\n'), ((8009, 8027), 'numpy.argsort', 'numpy.argsort', (['eps'], {}), '(eps)\n', (8022, 8027), False, 'import numpy\n'), ((8032, 8064), 'matplotlib.pyplot.subplot', 'plt.subplot', (['nvert', '(2)', '(2 * nvert)'], {}), '(nvert, 2, 2 * nvert)\n', (8043, 8064), True, 'import matplotlib.pyplot as plt\n'), ((8067, 8154), 'matplotlib.pyplot.loglog', 'plt.loglog', (['eps[I]', '(eps[I] ** 2 * std_cost[I])', '"""*-"""'], {'label': '"""Std MC"""', 'clip_on': '(False)'}), "(eps[I], eps[I] ** 2 * std_cost[I], '*-', label='Std MC', clip_on\n =False)\n", (8077, 8154), True, 'import matplotlib.pyplot as plt\n'), ((8154, 8241), 'matplotlib.pyplot.loglog', 'plt.loglog', (['eps[I]', '(eps[I] ** 2 * mlmc_cost[I])', '"""*--"""'], {'label': '"""MLMC"""', 'clip_on': '(False)'}), "(eps[I], eps[I] ** 2 * mlmc_cost[I], '*--', label='MLMC', clip_on\n =False)\n", (8164, 8241), True, 'import matplotlib.pyplot as plt\n'), ((8241, 8278), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""accuracy $\\\\varepsilon$"""'], {}), "('accuracy $\\\\varepsilon$')\n", (8251, 8278), True, 'import matplotlib.pyplot as plt\n'), ((8283, 8318), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""$\\\\varepsilon^2$ cost"""'], {}), "('$\\\\varepsilon^2$ cost')\n", (8293, 8318), True, 'import matplotlib.pyplot as plt\n'), ((8323, 8352), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'fontsize': '"""medium"""'}), "(fontsize='medium')\n", (8333, 8352), True, 'import matplotlib.pyplot as plt\n'), ((8364, 8374), 'matplotlib.pyplot.axis', 'plt.axis', ([], {}), '()\n', (8372, 8374), True, 'import matplotlib.pyplot as plt\n'), ((8456, 8487), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'wspace': '(0.3)'}), '(wspace=0.3)\n', (8475, 8487), True, 'import matplotlib.pyplot as plt\n'), ((8492, 8523), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'hspace': '(0.4)'}), '(hspace=0.4)\n', (8511, 8523), True, 'import matplotlib.pyplot as plt\n'), ((4545, 4561), 'numpy.log2', 'numpy.log2', (['var2'], {}), '(var2)\n', (4555, 4561), False, 'import numpy\n'), ((4621, 4641), 'numpy.log2', 'numpy.log2', (['var1[1:]'], {}), '(var1[1:])\n', (4631, 4641), False, 'import numpy\n'), ((6358, 6382), 'matplotlib.pyplot.subplot', 'plt.subplot', (['nvert', '(2)', '(3)'], {}), '(nvert, 2, 3)\n', (6369, 6382), True, 'import matplotlib.pyplot as plt\n'), ((6451, 6478), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""level $\\\\ell$"""'], {}), "('level $\\\\ell$')\n", (6461, 6478), True, 'import matplotlib.pyplot as plt\n'), ((6486, 6525), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""$\\\\log_2$ cost per sample"""'], {}), "('$\\\\log_2$ cost per sample')\n", (6496, 6525), True, 'import matplotlib.pyplot as plt\n'), ((6541, 6551), 'matplotlib.pyplot.axis', 'plt.axis', ([], {}), '()\n', (6549, 6551), True, 'import matplotlib.pyplot as plt\n'), ((6631, 6655), 'matplotlib.pyplot.subplot', 'plt.subplot', (['nvert', '(2)', '(4)'], {}), '(nvert, 2, 4)\n', (6642, 6655), True, 'import matplotlib.pyplot as plt\n'), ((6664, 6711), 'matplotlib.pyplot.plot', 'plt.plot', (['l[1:]', 'kur1[1:]', '"""*--"""'], {'clip_on': '(False)'}), "(l[1:], kur1[1:], '*--', clip_on=False)\n", (6672, 6711), True, 'import matplotlib.pyplot as plt\n'), ((6720, 6747), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""level $\\\\ell$"""'], {}), "('level $\\\\ell$')\n", (6730, 6747), True, 'import matplotlib.pyplot as plt\n'), ((6755, 6777), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""kurtosis"""'], {}), "('kurtosis')\n", (6765, 6777), True, 'import matplotlib.pyplot as plt\n'), ((6794, 6804), 'matplotlib.pyplot.axis', 'plt.axis', ([], {}), '()\n', (6802, 6804), True, 'import matplotlib.pyplot as plt\n'), ((6904, 6935), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'wspace': '(0.3)'}), '(wspace=0.3)\n', (6923, 6935), True, 'import matplotlib.pyplot as plt\n'), ((6944, 6975), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'hspace': '(0.4)'}), '(hspace=0.4)\n', (6963, 6975), True, 'import matplotlib.pyplot as plt\n'), ((6984, 7048), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(width_MATLAB, height_MATLAB * 0.75 * nvert)'}), '(figsize=(width_MATLAB, height_MATLAB * 0.75 * nvert))\n', (6994, 7048), True, 'import matplotlib.pyplot as plt\n'), ((7397, 7466), 'matplotlib.pyplot.semilogy', 'plt.semilogy', (['ll', 'n'], {'label': 'eps', 'markerfacecolor': '"""none"""', 'clip_on': '(False)'}), "(ll, n, label=eps, markerfacecolor='none', clip_on=False)\n", (7409, 7466), True, 'import matplotlib.pyplot as plt\n'), ((1515, 1541), 'os.path.splitext', 'os.path.splitext', (['filename'], {}), '(filename)\n', (1531, 1541), False, 'import os\n'), ((5343, 5358), 'numpy.abs', 'numpy.abs', (['del2'], {}), '(del2)\n', (5352, 5358), False, 'import numpy\n'), ((5430, 5449), 'numpy.abs', 'numpy.abs', (['del1[1:]'], {}), '(del1[1:])\n', (5439, 5449), False, 'import numpy\n'), ((6403, 6419), 'numpy.log2', 'numpy.log2', (['cost'], {}), '(cost)\n', (6413, 6419), False, 'import numpy\n'), ((4434, 4457), 'cycler.cycler', 'cycler', (['"""marker"""', "['*']"], {}), "('marker', ['*'])\n", (4440, 4457), False, 'from cycler import cycler\n'), ((7240, 7271), 'cycler.cycler', 'cycler', (['"""marker"""', 'marker_styles'], {}), "('marker', marker_styles)\n", (7246, 7271), False, 'from cycler import cycler\n'), ((7829, 7852), 'cycler.cycler', 'cycler', (['"""marker"""', "['*']"], {}), "('marker', ['*'])\n", (7835, 7852), False, 'from cycler import cycler\n'), ((4312, 4334), 'cycler.cycler', 'cycler', (['"""color"""', "['k']"], {}), "('color', ['k'])\n", (4318, 4334), False, 'from cycler import cycler\n'), ((4368, 4400), 'cycler.cycler', 'cycler', (['"""linestyle"""', "['--', ':']"], {}), "('linestyle', ['--', ':'])\n", (4374, 4400), False, 'from cycler import cycler\n'), ((7123, 7145), 'cycler.cycler', 'cycler', (['"""color"""', "['k']"], {}), "('color', ['k'])\n", (7129, 7145), False, 'from cycler import cycler\n'), ((7179, 7206), 'cycler.cycler', 'cycler', (['"""linestyle"""', "['--']"], {}), "('linestyle', ['--'])\n", (7185, 7206), False, 'from cycler import cycler\n'), ((7707, 7729), 'cycler.cycler', 'cycler', (['"""color"""', "['k']"], {}), "('color', ['k'])\n", (7713, 7729), False, 'from cycler import cycler\n'), ((7763, 7795), 'cycler.cycler', 'cycler', (['"""linestyle"""', "['--', ':']"], {}), "('linestyle', ['--', ':'])\n", (7769, 7795), False, 'from cycler import cycler\n'), ((5139, 5160), 'numpy.array', 'numpy.array', (['var1[1:]'], {}), '(var1[1:])\n', (5150, 5160), False, 'import numpy\n'), ((5946, 5967), 'numpy.array', 'numpy.array', (['del1[1:]'], {}), '(del1[1:])\n', (5957, 5967), False, 'import numpy\n'), ((4972, 4993), 'numpy.array', 'numpy.array', (['var1[1:]'], {}), '(var1[1:])\n', (4983, 4993), False, 'import numpy\n'), ((5200, 5213), 'numpy.sqrt', 'numpy.sqrt', (['N'], {}), '(N)\n', (5210, 5213), False, 'import numpy\n'), ((5779, 5800), 'numpy.array', 'numpy.array', (['del1[1:]'], {}), '(del1[1:])\n', (5790, 5800), False, 'import numpy\n'), ((6007, 6020), 'numpy.sqrt', 'numpy.sqrt', (['N'], {}), '(N)\n', (6017, 6020), False, 'import numpy\n'), ((5033, 5046), 'numpy.sqrt', 'numpy.sqrt', (['N'], {}), '(N)\n', (5043, 5046), False, 'import numpy\n'), ((5179, 5199), 'numpy.sqrt', 'numpy.sqrt', (['vvr1[1:]'], {}), '(vvr1[1:])\n', (5189, 5199), False, 'import numpy\n'), ((5840, 5853), 'numpy.sqrt', 'numpy.sqrt', (['N'], {}), '(N)\n', (5850, 5853), False, 'import numpy\n'), ((5986, 6006), 'numpy.sqrt', 'numpy.sqrt', (['var1[1:]'], {}), '(var1[1:])\n', (5996, 6006), False, 'import numpy\n'), ((5012, 5032), 'numpy.sqrt', 'numpy.sqrt', (['vvr1[1:]'], {}), '(vvr1[1:])\n', (5022, 5032), False, 'import numpy\n'), ((5819, 5839), 'numpy.sqrt', 'numpy.sqrt', (['var1[1:]'], {}), '(var1[1:])\n', (5829, 5839), False, 'import numpy\n')]
|
import os
import numpy as np
import matplotlib.pyplot as plt
from skimage.color import rgb2xyz
import cv2
import warnings
def svd_trunc(I):
U, S, V_T = np.linalg.svd(I, full_matrices=False)
U = U * S
U = U[:,:3]
V_T = V_T[:3,:]
return U, V_T
def set_mesh(px_size=7e-4, res=(100, 100)):
[X, Y] = np.meshgrid(np.arange(res[0]), np.arange(res[1]))
X = (X - res[0]/2) * px_size
Y = (Y - res[1]/2) * px_size
return X, Y
def render_sphere(X, Y, light, r_ratio):
"""
center: Sphere center
light: Direction of point light source
rad: Sphere radius in centimeters
pxSize: Size of pixel in micrometers
res: Image resolution
"""
x_max = np.max(X)
y_max = np.max(Y)
min_max = np.min([x_max, y_max])
rad = min_max * r_ratio
Z = np.sqrt(rad**2+0j-X**2-Y**2)
X[np.real(Z) == 0] = 0
Y[np.real(Z) == 0] = 0
Z = np.real(Z)
F = np.array([X, Y, Z])
if light is None:
return F
image = np.einsum('ijk,i->jk', F, light)
image[image < 0] = 0
return image
def norm_lights(lights):
N = lights.shape[0]
norm = np.linalg.norm(lights, axis=1)
norm = np.tile(norm, (1, 3)).reshape(N, 3)
lights = np.divide(lights, norm)
return lights
def get_lights(N = 10):
"""
N: Number of light sources
lights: N light sources set equidistant on a circle about z = 1 with radius
sqrt(2)
"""
lights = np.zeros((N, 3))
M = N - 1
base = 2 * np.pi / M
for k in range(M):
x = np.cos(base * k)
y = np.sin(base * k)
z = 1
lights[k] = [x, y, z]
lights[M] = [0, 0, np.sqrt(2)]
lights = norm_lights(lights)
return lights
def get_data(sphere = True):
"""
Sphere:
"""
if sphere:
I, L_T, s = get_data_sphere()
else:
I, L_T, s = get_data_face()
return I, L_T, s
def get_data_sphere(path="./output/", N=9, px_size=7e-4, res=(300, 300), r_ratio=0.9):
lights = get_lights(N)
spheres = []
X, Y = set_mesh(px_size, res)
for i, light in enumerate(lights):
name = "sphere_" + str(i) + ".png"
X, Y = set_mesh(px_size, res)
sphere = render_sphere(X, Y, light, r_ratio)
spheres.append(sphere.ravel())
out_path = path + name
if not os.path.isdir(path):
os.mkdir(path)
plt.imsave(out_path, sphere, cmap='gray')
if i == 0:
s = sphere.shape
spheres = np.array(spheres)
return spheres, lights, s
def get_data_face(path='../../Data/FaceData/'):
path_files = os.listdir(path)
imgs = sorted([''.join([path, _]) for _ in path_files if _.endswith('.tif')])
L_file = [''.join([path, _]) for _ in path_files if _.endswith('.npy')][0]
L = np.load(L_file)
Img = cv2.imread(imgs[0], -1)
s = Img.shape[:2]
P = Img[:,:,0].flatten().shape[0]
I = np.zeros((7, P))
for k, img in enumerate(imgs):
i = rgb2xyz(cv2.imread(img, -1))
lum = i[:,:,1].flatten()
I[k,:] = lum
return I, L, s
def integrateFrankot(zx, zy, pad = 512):
"""
Question 1 (j)
Implement the Frankot-Chellappa algorithm for enforcing integrability
and normal integration
Parameters
----------
zx : numpy.ndarray
The image of derivatives of the depth along the x image dimension
zy : tuple
The image of derivatives of the depth along the y image dimension
pad : float
The size of the full FFT used for the reconstruction
Returns
----------
z: numpy.ndarray
The image, of the same size as the derivatives, of estimated depths
at each point
"""
# Raise error if the shapes of the gradients don't match
if not zx.shape == zy.shape:
raise ValueError('Sizes of both gradients must match!')
# Pad the array FFT with a size we specify
h, w = pad, pad
# Fourier transform of gradients for projection
Zx = np.fft.fftshift(np.fft.fft2(zx, (h, w)))
Zy = np.fft.fftshift(np.fft.fft2(zy, (h, w)))
j = 1j
# Frequency grid
[wx, wy] = np.meshgrid(np.linspace(-np.pi, np.pi, w),
np.linspace(-np.pi, np.pi, h))
absFreq = wx**2 + wy**2
# Perform the actual projection
with warnings.catch_warnings():
warnings.simplefilter('ignore')
z = (-j*wx*Zx-j*wy*Zy)/absFreq
# Set (undefined) mean value of the surface depth to 0
z[0, 0] = 0.
z = np.fft.ifftshift(z)
# Invert the Fourier transform for the depth
z = np.real(np.fft.ifft2(z))
z = z[:zx.shape[0], :zx.shape[1]]
return z
|
[
"os.mkdir",
"numpy.load",
"numpy.einsum",
"numpy.linalg.svd",
"numpy.linalg.norm",
"numpy.arange",
"numpy.sin",
"matplotlib.pyplot.imsave",
"numpy.tile",
"numpy.fft.ifft2",
"numpy.fft.ifftshift",
"warnings.simplefilter",
"numpy.max",
"warnings.catch_warnings",
"numpy.real",
"numpy.linspace",
"numpy.divide",
"numpy.min",
"numpy.fft.fft2",
"numpy.cos",
"os.listdir",
"os.path.isdir",
"numpy.zeros",
"cv2.imread",
"numpy.array",
"numpy.sqrt"
] |
[((157, 194), 'numpy.linalg.svd', 'np.linalg.svd', (['I'], {'full_matrices': '(False)'}), '(I, full_matrices=False)\n', (170, 194), True, 'import numpy as np\n'), ((701, 710), 'numpy.max', 'np.max', (['X'], {}), '(X)\n', (707, 710), True, 'import numpy as np\n'), ((723, 732), 'numpy.max', 'np.max', (['Y'], {}), '(Y)\n', (729, 732), True, 'import numpy as np\n'), ((747, 769), 'numpy.min', 'np.min', (['[x_max, y_max]'], {}), '([x_max, y_max])\n', (753, 769), True, 'import numpy as np\n'), ((806, 848), 'numpy.sqrt', 'np.sqrt', (['(rad ** 2 + 0.0j - X ** 2 - Y ** 2)'], {}), '(rad ** 2 + 0.0j - X ** 2 - Y ** 2)\n', (813, 848), True, 'import numpy as np\n'), ((897, 907), 'numpy.real', 'np.real', (['Z'], {}), '(Z)\n', (904, 907), True, 'import numpy as np\n'), ((921, 940), 'numpy.array', 'np.array', (['[X, Y, Z]'], {}), '([X, Y, Z])\n', (929, 940), True, 'import numpy as np\n'), ((994, 1026), 'numpy.einsum', 'np.einsum', (['"""ijk,i->jk"""', 'F', 'light'], {}), "('ijk,i->jk', F, light)\n", (1003, 1026), True, 'import numpy as np\n'), ((1132, 1162), 'numpy.linalg.norm', 'np.linalg.norm', (['lights'], {'axis': '(1)'}), '(lights, axis=1)\n', (1146, 1162), True, 'import numpy as np\n'), ((1223, 1246), 'numpy.divide', 'np.divide', (['lights', 'norm'], {}), '(lights, norm)\n', (1232, 1246), True, 'import numpy as np\n'), ((1443, 1459), 'numpy.zeros', 'np.zeros', (['(N, 3)'], {}), '((N, 3))\n', (1451, 1459), True, 'import numpy as np\n'), ((2494, 2511), 'numpy.array', 'np.array', (['spheres'], {}), '(spheres)\n', (2502, 2511), True, 'import numpy as np\n'), ((2610, 2626), 'os.listdir', 'os.listdir', (['path'], {}), '(path)\n', (2620, 2626), False, 'import os\n'), ((2796, 2811), 'numpy.load', 'np.load', (['L_file'], {}), '(L_file)\n', (2803, 2811), True, 'import numpy as np\n'), ((2823, 2846), 'cv2.imread', 'cv2.imread', (['imgs[0]', '(-1)'], {}), '(imgs[0], -1)\n', (2833, 2846), False, 'import cv2\n'), ((2915, 2931), 'numpy.zeros', 'np.zeros', (['(7, P)'], {}), '((7, P))\n', (2923, 2931), True, 'import numpy as np\n'), ((4502, 4521), 'numpy.fft.ifftshift', 'np.fft.ifftshift', (['z'], {}), '(z)\n', (4518, 4521), True, 'import numpy as np\n'), ((334, 351), 'numpy.arange', 'np.arange', (['res[0]'], {}), '(res[0])\n', (343, 351), True, 'import numpy as np\n'), ((353, 370), 'numpy.arange', 'np.arange', (['res[1]'], {}), '(res[1])\n', (362, 370), True, 'import numpy as np\n'), ((1535, 1551), 'numpy.cos', 'np.cos', (['(base * k)'], {}), '(base * k)\n', (1541, 1551), True, 'import numpy as np\n'), ((1564, 1580), 'numpy.sin', 'np.sin', (['(base * k)'], {}), '(base * k)\n', (1570, 1580), True, 'import numpy as np\n'), ((1649, 1659), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (1656, 1659), True, 'import numpy as np\n'), ((2385, 2426), 'matplotlib.pyplot.imsave', 'plt.imsave', (['out_path', 'sphere'], {'cmap': '"""gray"""'}), "(out_path, sphere, cmap='gray')\n", (2395, 2426), True, 'import matplotlib.pyplot as plt\n'), ((4013, 4036), 'numpy.fft.fft2', 'np.fft.fft2', (['zx', '(h, w)'], {}), '(zx, (h, w))\n', (4024, 4036), True, 'import numpy as np\n'), ((4063, 4086), 'numpy.fft.fft2', 'np.fft.fft2', (['zy', '(h, w)'], {}), '(zy, (h, w))\n', (4074, 4086), True, 'import numpy as np\n'), ((4148, 4177), 'numpy.linspace', 'np.linspace', (['(-np.pi)', 'np.pi', 'w'], {}), '(-np.pi, np.pi, w)\n', (4159, 4177), True, 'import numpy as np\n'), ((4206, 4235), 'numpy.linspace', 'np.linspace', (['(-np.pi)', 'np.pi', 'h'], {}), '(-np.pi, np.pi, h)\n', (4217, 4235), True, 'import numpy as np\n'), ((4311, 4336), 'warnings.catch_warnings', 'warnings.catch_warnings', ([], {}), '()\n', (4334, 4336), False, 'import warnings\n'), ((4346, 4377), 'warnings.simplefilter', 'warnings.simplefilter', (['"""ignore"""'], {}), "('ignore')\n", (4367, 4377), False, 'import warnings\n'), ((4588, 4603), 'numpy.fft.ifft2', 'np.fft.ifft2', (['z'], {}), '(z)\n', (4600, 4603), True, 'import numpy as np\n'), ((841, 851), 'numpy.real', 'np.real', (['Z'], {}), '(Z)\n', (848, 851), True, 'import numpy as np\n'), ((868, 878), 'numpy.real', 'np.real', (['Z'], {}), '(Z)\n', (875, 878), True, 'import numpy as np\n'), ((1174, 1195), 'numpy.tile', 'np.tile', (['norm', '(1, 3)'], {}), '(norm, (1, 3))\n', (1181, 1195), True, 'import numpy as np\n'), ((2329, 2348), 'os.path.isdir', 'os.path.isdir', (['path'], {}), '(path)\n', (2342, 2348), False, 'import os\n'), ((2362, 2376), 'os.mkdir', 'os.mkdir', (['path'], {}), '(path)\n', (2370, 2376), False, 'import os\n'), ((2988, 3007), 'cv2.imread', 'cv2.imread', (['img', '(-1)'], {}), '(img, -1)\n', (2998, 3007), False, 'import cv2\n')]
|
"""
Utililities
===========
This module holds all the core utility functions used throughout the library.
These functions are intended to simplify common tasks and to make their
output and functionality consistent where needed.
"""
import json
import os
from typing import Dict, List
import numpy as np # type: ignore
from comtypes.client import CreateObject # type: ignore
from _ctypes import COMError # type: ignore
from frewpy.models.exceptions import FrewError, NodeError
def _check_frew_path(file_path) -> None:
if not isinstance(file_path, str):
raise FrewError("The path must be a string.")
if not os.path.exists(file_path):
raise FrewError("Path to Frew model does not exist.")
if not file_path.lower().endswith(".fwd"):
raise FrewError("Path must be to a valid Frew model.")
def model_to_json(file_path) -> str:
""" Converts a `.fwd` Frew model to a `.json` Frew model.
Parameters
----------
file_path : str
Absolute file path to the '.fwd' Frew model.
Returns
-------
json_path : str
The new file path of the json file.
"""
_check_frew_path(file_path)
json_path: str = f'{file_path.rsplit(".", 1)[0]}.json'
try:
model = CreateObject("frewLib.FrewComAuto")
except OSError:
os.remove(file_path)
raise FrewError("Failed to create a COM object.")
try:
model.Open(file_path)
except COMError:
raise FrewError("Failed to open the Frew model.")
model.SaveAs(json_path)
model.Close()
return json_path
def check_json_path(file_path: str) -> None:
""" Checks whether the path is a valid json path.
Parameters
----------
file_path : str
Absolute file path to the Frew model.
Raises
------
FrewError
If the path is not a string, doesn't exists or is not to a json file.
"""
if not isinstance(file_path, str):
raise FrewError(
f"""
File path must be a string. Value {file_path} of type {type
(file_path)} given.
"""
)
if not os.path.exists(file_path):
raise FrewError("Frew model file path does not exists.")
if not file_path.lower().endswith(".json"):
raise FrewError(
"""
File extension must be a .json. Please use model_to_json to
convert it. Import this function from frewpy.utils.
"""
)
def load_data(file_path: str) -> Dict[str, list]:
""" Loads the json file in as a Python dictionary.
Parameters
----------
file_path : str
Absolute file path to the Frew model.
Returns
-------
json_data : Dict[str, list]
A Python dictionary of the data held within the json model file.
"""
with open(file_path) as file:
return json.loads(file.read())
def clear_results(json_data: dict) -> dict:
""" Clears the results in the json file so that it can be analysed using
the COM interface.
Parameters
----------
json_data : dict
A Python dictionary of the data held within the json model file.
Returns
-------
json_data : dict
A Python dictionary of the data held within the json model file without
the results.
"""
if json_data.get("Frew Results", False):
del json_data["Frew Results"]
return json_data
def get_titles(json_data: dict) -> Dict[str, str]:
""" Returns the titles within the json model.
Parameters
----------
json_data : dict
A Python dictionary of the data held within the json model file.
Returns
-------
titles : Dict[str, str]
The project titles including Job Number, Job Title, Sub Title,
Calculation Heading, Initials, and Notes.
"""
try:
return json_data["OasysHeader"][0]["Titles"][0]
except KeyError:
raise FrewError("Unable to retreive title information.")
except IndexError:
raise FrewError("Unable to retreive title information.")
def get_file_history(json_data: dict) -> List[Dict[str, str]]:
""" Returns the file history of the Frew model.
Parameters
----------
json_data : dict
A Python dictionary of the data held within the json model file.
Returns
-------
file_history : List[Dict[str, str]]
Records of when the file has been opened in Frew and by which user.
"""
try:
return json_data["File history"]
except KeyError:
raise FrewError("Unable to retreive file history.")
def get_file_version(json_data: Dict[str, list]) -> str:
""" Returns the file version of the Frew model.
Parameters
----------
json_data : dict
A Python dictionary of the data held within the json model file.
Returns
-------
file_version : str
The version of the model file showing the exact build of Frew.
"""
try:
return json_data["OasysHeader"][0]["Program title"][0]["FileVersion"]
except KeyError:
raise FrewError("Unable to retreive file version.")
except IndexError:
raise FrewError("Unable to retreive file version.")
def get_frew_version(json_data: dict) -> str:
""" Returns the frew version required for the Frew model.
Parameters
----------
json_data : dict
A Python dictionary of the data held within the json model file.
Returns
-------
frew_version : str
The overall Frew version in which the model was created.
"""
try:
return json_data["OasysHeader"][0]["Program title"][0]["Version"]
except KeyError:
raise FrewError("Unable to retreive Frew model version.")
except IndexError:
raise FrewError("Unable to retreive Frew model version.")
def get_num_stages(json_data: dict) -> int:
""" Returns the number of stages in the model.
Parameters
----------
json_data : dict
A Python dictionary of the data held within the json model file.
Returns
-------
num_stages : int
The number of stages in the Frew model.
"""
try:
return len(json_data["Stages"])
except KeyError:
raise FrewError("Unable to retrieve the number of stages.")
def get_stage_names(json_data: dict) -> List[str]:
""" Returns the names of the stages within the Frew model.
Parameters
----------
json_data : dict
A Python dictionary of the data held within the json model file.
Returns
-------
stage_names : List[str]
A list of the names of stages within the Frew model.
"""
num_stages: int = get_num_stages(json_data)
return [json_data["Stages"][stage]["Name"] for stage in range(num_stages)]
def get_num_nodes(json_data: dict) -> int:
""" Returns the number of nodes in the Frew model.
Parameters
----------
json_data : dict
A Python dictionary of the data held within the json model file.
Returns
-------
num_nodes : int
The number of nodes present in each stage. This will always
just be 1 integer, and the function will raise an error if it is not
the same for every stage.
"""
num_stages = get_num_stages(json_data)
num_nodes: List[int] = []
for stage in range(num_stages):
if not json_data["Stages"][stage].get("GeoFrewNodes", False):
return 0
num_nodes.append(len(json_data["Stages"][stage]["GeoFrewNodes"]))
unique_num_nodes = np.unique(np.array(num_nodes))
if len(unique_num_nodes) == 1:
return unique_num_nodes[0]
raise NodeError("Number of nodes is not unique for every stage.")
def get_num_design_cases(json_data: dict) -> int:
""" Returns the number of design cases present in the model.
Parameters
----------
json_data : dict
A Python dictionary of the data held within the json model file.
Returns
-------
num_design_cases : int
The number of design cases in the Frew model.
"""
check_results_present(json_data)
return len(json_data["Frew Results"])
def get_design_case_names(json_data: dict) -> List[str]:
""" Returns the names of the design cases present in the model.
Parameters
----------
json_data : dict
A Python dictionary of the data held within the json model file.
Returns
-------
design_case_names : List[str]
The names of the design cases in the Frew model.
"""
check_results_present(json_data)
return [
design_case["GeoPartialFactorSet"]["Name"]
for design_case in json_data["Frew Results"]
]
def check_results_present(json_data: dict):
if not json_data.get("Frew Results", False):
raise FrewError(
"""
No results in the model, please analyse the model first.
"""
)
|
[
"os.remove",
"frewpy.models.exceptions.FrewError",
"os.path.exists",
"numpy.array",
"comtypes.client.CreateObject",
"frewpy.models.exceptions.NodeError"
] |
[((7631, 7690), 'frewpy.models.exceptions.NodeError', 'NodeError', (['"""Number of nodes is not unique for every stage."""'], {}), "('Number of nodes is not unique for every stage.')\n", (7640, 7690), False, 'from frewpy.models.exceptions import FrewError, NodeError\n'), ((580, 619), 'frewpy.models.exceptions.FrewError', 'FrewError', (['"""The path must be a string."""'], {}), "('The path must be a string.')\n", (589, 619), False, 'from frewpy.models.exceptions import FrewError, NodeError\n'), ((631, 656), 'os.path.exists', 'os.path.exists', (['file_path'], {}), '(file_path)\n', (645, 656), False, 'import os\n'), ((672, 719), 'frewpy.models.exceptions.FrewError', 'FrewError', (['"""Path to Frew model does not exist."""'], {}), "('Path to Frew model does not exist.')\n", (681, 719), False, 'from frewpy.models.exceptions import FrewError, NodeError\n'), ((781, 829), 'frewpy.models.exceptions.FrewError', 'FrewError', (['"""Path must be to a valid Frew model."""'], {}), "('Path must be to a valid Frew model.')\n", (790, 829), False, 'from frewpy.models.exceptions import FrewError, NodeError\n'), ((1249, 1284), 'comtypes.client.CreateObject', 'CreateObject', (['"""frewLib.FrewComAuto"""'], {}), "('frewLib.FrewComAuto')\n", (1261, 1284), False, 'from comtypes.client import CreateObject\n'), ((2117, 2142), 'os.path.exists', 'os.path.exists', (['file_path'], {}), '(file_path)\n', (2131, 2142), False, 'import os\n'), ((2158, 2208), 'frewpy.models.exceptions.FrewError', 'FrewError', (['"""Frew model file path does not exists."""'], {}), "('Frew model file path does not exists.')\n", (2167, 2208), False, 'from frewpy.models.exceptions import FrewError, NodeError\n'), ((2271, 2443), 'frewpy.models.exceptions.FrewError', 'FrewError', (['"""\n File extension must be a .json. Please use model_to_json to\n convert it. Import this function from frewpy.utils.\n """'], {}), '(\n """\n File extension must be a .json. Please use model_to_json to\n convert it. Import this function from frewpy.utils.\n """\n )\n', (2280, 2443), False, 'from frewpy.models.exceptions import FrewError, NodeError\n'), ((8773, 8878), 'frewpy.models.exceptions.FrewError', 'FrewError', (['"""\n No results in the model, please analyse the model first.\n """'], {}), '(\n """\n No results in the model, please analyse the model first.\n """\n )\n', (8782, 8878), False, 'from frewpy.models.exceptions import FrewError, NodeError\n'), ((1313, 1333), 'os.remove', 'os.remove', (['file_path'], {}), '(file_path)\n', (1322, 1333), False, 'import os\n'), ((1348, 1391), 'frewpy.models.exceptions.FrewError', 'FrewError', (['"""Failed to create a COM object."""'], {}), "('Failed to create a COM object.')\n", (1357, 1391), False, 'from frewpy.models.exceptions import FrewError, NodeError\n'), ((1466, 1509), 'frewpy.models.exceptions.FrewError', 'FrewError', (['"""Failed to open the Frew model."""'], {}), "('Failed to open the Frew model.')\n", (1475, 1509), False, 'from frewpy.models.exceptions import FrewError, NodeError\n'), ((3914, 3964), 'frewpy.models.exceptions.FrewError', 'FrewError', (['"""Unable to retreive title information."""'], {}), "('Unable to retreive title information.')\n", (3923, 3964), False, 'from frewpy.models.exceptions import FrewError, NodeError\n'), ((4002, 4052), 'frewpy.models.exceptions.FrewError', 'FrewError', (['"""Unable to retreive title information."""'], {}), "('Unable to retreive title information.')\n", (4011, 4052), False, 'from frewpy.models.exceptions import FrewError, NodeError\n'), ((4530, 4575), 'frewpy.models.exceptions.FrewError', 'FrewError', (['"""Unable to retreive file history."""'], {}), "('Unable to retreive file history.')\n", (4539, 4575), False, 'from frewpy.models.exceptions import FrewError, NodeError\n'), ((5062, 5107), 'frewpy.models.exceptions.FrewError', 'FrewError', (['"""Unable to retreive file version."""'], {}), "('Unable to retreive file version.')\n", (5071, 5107), False, 'from frewpy.models.exceptions import FrewError, NodeError\n'), ((5145, 5190), 'frewpy.models.exceptions.FrewError', 'FrewError', (['"""Unable to retreive file version."""'], {}), "('Unable to retreive file version.')\n", (5154, 5190), False, 'from frewpy.models.exceptions import FrewError, NodeError\n'), ((5666, 5717), 'frewpy.models.exceptions.FrewError', 'FrewError', (['"""Unable to retreive Frew model version."""'], {}), "('Unable to retreive Frew model version.')\n", (5675, 5717), False, 'from frewpy.models.exceptions import FrewError, NodeError\n'), ((5755, 5806), 'frewpy.models.exceptions.FrewError', 'FrewError', (['"""Unable to retreive Frew model version."""'], {}), "('Unable to retreive Frew model version.')\n", (5764, 5806), False, 'from frewpy.models.exceptions import FrewError, NodeError\n'), ((6216, 6269), 'frewpy.models.exceptions.FrewError', 'FrewError', (['"""Unable to retrieve the number of stages."""'], {}), "('Unable to retrieve the number of stages.')\n", (6225, 6269), False, 'from frewpy.models.exceptions import FrewError, NodeError\n'), ((7530, 7549), 'numpy.array', 'np.array', (['num_nodes'], {}), '(num_nodes)\n', (7538, 7549), True, 'import numpy as np\n')]
|
#!/usr/bin/env python
# Author: <NAME> (<EMAIL>)
##########################
# Plotting configuration
##########################
from XtDac.DivideAndConquer import matplotlibConfig
# Use a matplotlib backend which does not show plots to the user
# (they will be saved in files)
import matplotlib
matplotlib.use("Agg")
rcParams = matplotlibConfig.getConfig()
for k, v in rcParams.iteritems():
matplotlib.rcParams[k] = v
###########################
import argparse
import os
import sys
import functools
import numpy
import warnings
import math
import logging
import multiprocessing
import scipy.stats
import time as timemod
try:
import astropy.io.fits as pyfits
except:
# If this fail there is no way out
import pyfits
pass
from XtDac.DivideAndConquer import GridGen
from XtDac.DivideAndConquer import HardwareUnit
from XtDac.DivideAndConquer import InterestingRegion
from XtDac.DivideAndConquer import Results
from XtDac.DivideAndConquer import TimeIntervalConsolidator
from XtDac.DivideAndConquer import XMMWCS
from XtDac.DivideAndConquer import Box
from XtDac.FixedBinSearch import Likelihood
from XtDac.FixedBinSearch import fitsRegions
time, X, Y, tstart, tstop, event_header = (None, None, None, None, None, None)
# Set up the logger (its verbosity level will be changed later on
# using the value provided by the user)
logging.basicConfig(level=logging.DEBUG)
log = logging.getLogger("XtDac")
def validFITSfile(arg):
if not os.path.isfile(arg):
log.error("The file %s does not exist!" % arg)
sys.exit()
# Try to open it to see if it is a FITS file
try:
fits_file = pyfits.open(arg)
except:
log.error("The file %s is not a valid FITS file" % arg)
sys.exit()
else:
fits_file.close()
return arg
# def _initProcess(count, eventFile):
#
# global counter
# global time, X, Y, tstart, tstop
#
# counter = count
#
# # Read these here, so they will be read only one time for each of the
# # processes spawn by multiprocessing
# with pyfits.open(eventFile) as fitsFile:
#
# time = fitsFile['EVENTS'].data.field("TIME")
# X = fitsFile['EVENTS'].data.field("X")
# Y = fitsFile['EVENTS'].data.field("Y")
#
# # Sort by time
# idx = numpy.argsort(time)
# time = time[idx]
# X = X[idx]
# Y = Y[idx]
#
# tstart = fitsFile['EVENTS'].header.get("TSTART")
# tstop = fitsFile['EVENTS'].header.get("TSTOP")
#
def trueWorker(box_def, eventFile, nullHypProb, totRegions, bkgIdx=None):
box = Box.Box(*box_def)
box.setEventfile(eventFile)
box.readEvents(True, time, X, Y, tstart, tstop)
if (bkgIdx is not None):
# Use custom background (usually when looking in regions close to
# bright sources)
box.setBackground(bkgIdx)
# sys.stderr.write(str(box.nOutOfRegion))
if (box.isEmpty() or box.nInRegion < 2 or box.filledArea < 0.5):
results = []
else:
results = box.findExcesses(nullHypProb)
# box.clearMemory()
return results
def array2string(array):
return ",".join(map(lambda x: "%s" % x, array))
# from memory_profiler import profile
def _process_regions(eventfile, typeIerror, regions, n_cpus, log):
# Define a wrapper for the trueWorker to avoid duplicating all arguments
workerWrapper = functools.partial(trueWorker,
eventFile=eventfile,
nullHypProb=typeIerror,
totRegions=len(regions),
bkgIdx=None)
# Send each region to one worker to be processed,
# and collect the results
n_regions = len(regions)
results = []
# This is the unit for reporting progress
chunk_size = 30
progress_unit = max(chunk_size * n_cpus, n_regions / 20)
#progress_unit = max(n_cpus, int(float(n_regions) / 10.0))
if n_cpus > 1:
# Parallel version
log.debug("Starting a pool of %s python processes" % n_cpus)
pool = multiprocessing.Pool(n_cpus,
# initializer=_initProcess,
# initargs=(counter, args.eventfile)
)
log.debug("Feeding the regions to the processes...")
for i, result in enumerate(pool.imap(workerWrapper, regions, chunksize=chunk_size)):
if (i + 1) % progress_unit == 0 or (i + 1) == n_regions:
log.info("%s out of %s regions completed (%.0f percent)" % (i + 1, n_regions,
(i + 1) / float(n_regions) * 100))
results.append(result)
pool.close()
pool.join()
else:
# Serial version
log.debug("Using serial version (only 1 CPU)")
for i, region in enumerate(regions):
results.append(workerWrapper(region))
if (i + 1) % progress_unit == 0 or (i + 1) == n_regions:
log.info("%s out of %s regions completed (%.0f percent)" % (i + 1, n_regions,
(i + 1) / float(n_regions) * 100))
assert len(results) == n_regions, "Something went wrong in the computation. The number of results doesn't match " \
"the number of regions"
return results
# @profile
def go(args):
global time, X, Y, tstart, tstop, event_header
# Set up the logger
levels = {'info': logging.INFO, 'debug': logging.DEBUG}
log.level = levels[args.verbosity]
log.debug("Command line: %s" % (" ".join(sys.argv)))
# Instantiate the HardwareUnit class
log.debug("Probing Hardware Unit...")
hwu = HardwareUnit.hardwareUnitFactory(args.eventfile)
log.debug("probed %s" % hwu.getName())
log.debug("done")
log.debug("Reading event file...")
# Remember: X, Y, tstart, tstop, time, event_header are global variables (module-level)
with pyfits.open(args.eventfile) as fitsFile:
# Get events
X_ = fitsFile['EVENTS'].data.field("X")
Y_ = fitsFile['EVENTS'].data.field("Y")
time_ = fitsFile['EVENTS'].data.field("TIME")
# Order them by time
# Note that this is advanced slicing, hence it returns a COPY of X_, Y_ and time_.
# That's why we delete them explicitly immediately after, to save memory
idx = numpy.argsort(time_)
time = time_[idx]
X = X_[idx]
Y = Y_[idx]
event_header = fitsFile['EVENTS'].header
# Get the start of the first GTI and the stop of the last one
gti_starts = []
gti_stops = []
for ext in fitsFile[1:]:
if ext.header['EXTNAME'] == 'GTI':
gti_starts.append(ext.data.field("START").min())
gti_stops.append(ext.data.field("STOP").max())
# Since we might have randomized the times (in the Chandra pipeline, in the xtc_filter_event_file script),
# we need to make sure that the tstart is either the beginning of the first GTI or the time of the first event
tstart = min(min(gti_starts), time_.min() - 1e-3)
tstop = max(max(gti_stops), time_.max() + 1e-3)
# Now make arrays read-only so they will never be copied
X.setflags(write=False)
Y.setflags(write=False)
time.setflags(write=False)
# Save memory
del X_, Y_, time_
log.debug("done")
# Instantiate the GridGen class and generate the grid
# of regions
log.debug("Generating grid...")
if hwu.getName().find("ACIS")==0:
# Chandra. Automatically compute the step size, as the average
# size of the PSF in the detector
try:
import psf
import caldb4
from astropy.coordinates import SkyCoord
import astropy.units as u
except ImportError:
raise RuntimeError("Cannot import psf and/or caldb4 and or astropy module from CIAO. "
"Is CIAO python configured?")
cdb = caldb4.Caldb(telescope="CHANDRA", product="REEF")
reef = cdb.search[0]
extno = cdb.extno()
# Replace the trailing '[..]' block number specifier
reef = reef.split('[')[0] + "[{}]".format(extno + 1)
pdata = psf.psfInit(reef)
# Get the coordinates of the events at the corners of the CCD
# (don't use the minimum and maximum of X and Y because the CCD is rotated
# with respect to sky coordinates)
# Get the corners
minx = X.min()
maxx = X.max()
miny = Y.min()
maxy = Y.max()
corner_1 = [minx, Y[X == minx].max()]
corner_2 = [X[Y == maxy].max(), maxy]
corner_3 = [X[Y == miny].max(), miny]
corner_4 = [maxx, Y[X == maxx].max()]
# Get the aim point
ra_pointing = event_header.get('RA_PNT')
dec_pointing = event_header.get('DEC_PNT')
system = event_header.get("RADECSYS")
if system is None:
system = 'ICRS'
wcs = XMMWCS.XMMWCS(args.eventfile, X, Y)
x_pointing, y_pointing = wcs.sky2xy([[ra_pointing, dec_pointing]])[0]
# Computing maximum distance between corners and the pointing
distances_to_corners = numpy.linalg.norm(numpy.array([x_pointing, y_pointing]) -
numpy.array([corner_1, corner_2, corner_3, corner_4]),
axis=1)
max_distance = distances_to_corners.max()
pointing = SkyCoord(ra=ra_pointing * u.degree, dec=dec_pointing * u.degree, frame=system.lower())
def get_theta(x_, y_):
point = wcs.xy2sky([[x_, y_]])[0]
c1 = SkyCoord(ra=point[0] * u.degree, dec=point[1] * u.degree, frame=system.lower())
this_theta = c1.separation(pointing)
# Return it in arcmin
return this_theta.to(u.arcmin).value
def get_psf_size(x_, y_):
theta = get_theta(x_, y_)
return psf.psfSize(pdata, 1.5, theta, 0.0, 0.68)
gg = GridGen.GridGenChandra(hwu)
gg.makeGrid(x_pointing, y_pointing, get_psf_size, max_distance)
else:
# Something else. Use provided step size
gg = GridGen.GridGen(hwu)
gg.makeGrid(args.regionsize, 'sky', args.multiplicity)
log.debug("done")
# Get the boxes definitions
regions = gg.getBoxes()
# with open('test_variable_size.reg','w+') as f:
#
# for spec in regions:
#
# reg = Box.Box(*spec)
#
# f.write("%s" % "".join(reg.getDs9Region()))
#sys.exit(0)
n_events = time.shape[0]
log.info("Processing interval %s - %s (duration: %s s, %s events)"
% (tstart, tstop, tstop - tstart, n_events))
results = _process_regions(args.eventfile, args.typeIerror, regions, args.ncpus, log)
log.debug("done")
log.debug("Selecting interesting regions with more than one interval...")
interesting_regions = []
for i, intervals in enumerate(results):
# Remember: intervals contains the edges of the intervals
if len(intervals) > 2:
box = Box.Box(*regions[i])
box.setEventfile(args.eventfile)
box.readEvents(preLoaded=True, time=time, X=X, Y=Y, tstart=tstart, tstop=tstop)
#if args.writeRegionFiles == 'yes':
# box.writeRegion("%s_exc%i.reg" % (root_filename, i + 1))
# box.writeRegion("%s_exc%i.reg" % (root_filename, i + 1))
log.debug("Region %i has %i intervals" % (i+1, len(intervals)-1))
box.writeRegion("interesting_region_%i.reg" % (i+1))
for j,(t1,t2) in enumerate(zip(intervals[:-1],intervals[1:])):
log.debug(" %i : %s - %s (%s s long)" % (j+1, t1, t2, t2-t1))
thisInterestingRegion = InterestingRegion.InterestingRegion(box, intervals,
time, X, Y, tstart, tstop)
interesting_regions.append(thisInterestingRegion)
log.debug("done")
log.debug("Removing overlapping intervals...")
consolidator = TimeIntervalConsolidator.TimeIntervalConsolidator(interesting_regions)
cleanedIntervals = consolidator.consolidate()
log.debug("done")
log.info("Kept %s intervals" % len(cleanedIntervals))
if args.sigmaThreshold > 0:
# Import here to avoid to override the .use directive in xtdac
import matplotlib.pyplot as plt
# Now for each cleaned interval perform a likelihood analysis on a region
# larger than the box. This is needed otherwise it is too difficult to distinguish
# a PSF-like excess and a flat-like excess
log.info("Computing final significance...")
finalCandidates = []
for i, interval in enumerate(cleanedIntervals):
log.info("Processing interval %s of %s" % (i + 1, len(cleanedIntervals)))
this_interval_duration = interval.tstop - interval.tstart
log.info("duration: %.1f s" % this_interval_duration)
if this_interval_duration > args.max_duration:
log.info("Duration is longer than the maximum allowed of %.1f" % (args.max_duration))
continue
if interval.nEvents < args.min_number_of_events:
log.info("Less than %s events, discarding candidate with %s events" % (args.min_number_of_events,
interval.nEvents))
continue
boxx, boxy = interval.interestingRegion.getCenterPhysicalCoordinates()
boxw, boxh = interval.interestingRegion.box.width, interval.interestingRegion.box.height
# Search region is 25 arcsec of radius
if hwu.getName().find("ACIS")==0:
# For Chandra, let's adapt to the size of the PSF (but keep a minimum size of
# at least 50 px)
box_size_arcsec = max([boxw, boxh]) * hwu.getPixelScale()
radius = max(20.0, (box_size_arcsec /2.0) * 1.5 / hwu.getPixelScale())
log.info("Radius for search region: %s px" % radius)
else:
radius = 40.0 / hwu.getPixelScale()
searchRegionStr = 'physical;circle(%s,%s,%s)' % (boxx, boxy, radius)
log.info("Search region string: %s" % searchRegionStr)
idx = (time >= interval.tstart) & (time <= interval.tstop)
assert X[idx].shape[0] > 0
assert Y[idx].shape[0] > 0
with warnings.catch_warnings():
# Cause all warnings to be ignored
warnings.simplefilter("ignore")
searchRegionDef = fitsRegions.FitsRegion(X[idx], Y[idx], time[idx],
event_header, searchRegionStr)
# This is actually a loop of only one iteration
for x, y, t, regfilter, reg in searchRegionDef.iteritems():
xmin = boxx - radius
xmax = boxx + radius
ymin = boxy - radius
ymax = boxy + radius
if hwu.getName().find("ACIS") == 0:
# For Chandra, let's adapt to the size of the PSF, but make at least
# twice the size of the pixel (remember, this is in pixels)
r_binsize = max(radius / 60.0, 2.0)
else:
r_binsize = 40.0 / hwu.getPixelScale() / 10.0
assert (xmax-xmin) / r_binsize > 3.0, "Not enough bins for likelihood!"
searchRegion = Likelihood.Region(xmin, xmax,
ymin, ymax,
r_binsize, regfilter,
args.expomap, args.eventfile)
ls = Likelihood.Likelihood(x, y, searchRegion)
# Build the likelihood model
# Bkg model (isotropic)
iso = Likelihood.Isotropic("bkg", 1.0)
m = Likelihood.GlobalModel("likeModel") + iso
try:
ls.setModel(m)
except UnboundLocalError:
import pdb;pdb.set_trace()
# Minimize the mlogLike to get the background level
like0 = ls.minimize(verbose=0)
# Small TS map to figure out the source position
trial_x = numpy.linspace(boxx - boxw / 2.0, boxx + boxw / 2.0, 16)
trial_y = numpy.linspace(boxy - boxh / 2.0, boxy + boxh / 2.0, 16)
ra, dec = interval.interestingRegion.getCenterSkyCoordinates()
maxTS = 0
_best_x = None
_best_y = None
TSmap = numpy.zeros([trial_y.shape[0], trial_x.shape[0]])
# import cProfile, pstats, StringIO
# pr = cProfile.Profile()
# pr.enable()
for k, srcx in enumerate(trial_x):
for h, srcy in enumerate(trial_y):
sys.stderr.write(".")
# Now fit adding a source at the position of the maximum of the
# image of this region
# srcx, srcy = ls.getMaximumPosition()
if h == 0:
# This is the very first loop. Make the image of the PSF.
# We assume that the PSF does not change much within the region, so we
# will use the same image for all the next iterations
thisSrc = Likelihood.PointSource("testSrc", srcx, srcy, args.eventfile, hwu)
psffile = thisSrc.outfile
else:
# Re-use the psf file already computed
thisSrc = Likelihood.PointSource("testSrc", srcx, srcy,
args.eventfile, hwu,
psffile)
pass
m += thisSrc
ls.setModel(m)
like1 = ls.minimize(verbose=0)
TS = 2 * (like0 - like1)
TSmap[h, k] = TS
if TS > maxTS:
maxTS = TS
_best_x = srcx
_best_y = srcy
with warnings.catch_warnings():
# Cause all warnings to be ignored
warnings.simplefilter("ignore")
this_fig = ls.plot()
this_fig.savefig("c_%.4f_%.4f_%i.png" % (ra,dec,i))
plt.close(this_fig)
m.removeSource("testSrc")
# pr.disable()
# s = StringIO.StringIO()
# sortby = 'cumulative'
# ps = pstats.Stats(pr, stream=s).sort_stats(sortby)
# ps.print_stats()
# print s.getvalue()
# sys.exit(0)
sys.stderr.write("\n")
significance = math.sqrt(max(TSmap.max(), 0))
log.info("number of events: %s" % interval.nEvents)
log.info("Region @ (RA,Dec) = (%.4f,%.4f) (%.3f - %.3f s) "
"-> %.1f sigma" % (ra, dec,
interval.tstart,
interval.tstop,
significance))
if significance >= args.sigmaThreshold:
log.debug("Keeping candidate")
# One-sided probability of a n sigma effect
prob = scipy.stats.norm().sf(significance) / 2.0
interval.probability = prob
interval._best_localization = (_best_x, _best_y)
finalCandidates.append(interval)
plt.imshow(TSmap, interpolation='none', origin='lower')
plt.colorbar()
plt.savefig("exc%s_tsmap.png" % i, tight_layout=True)
plt.close()
else:
log.debug("Discarding candidate")
# plt.imshow(TSmap, interpolation='none', origin='lower')
# plt.savefig("exc%s.png" % i, tight_layout=True)
log.debug("done")
else:
log.debug("Threshold for final significance is <= 0, no likelihood analysis will be performed")
finalCandidates = cleanedIntervals
# The probability has not been computed, so let's assign -1
for c in finalCandidates:
c.probability = -1
pass
log.debug("Preparing the summary Ascii file...")
root_filename = ".".join(os.path.basename(args.eventfile).split(".")[:-1])
# I need to read the WCS from the event file, if transient_pos is true
wcs = None
if args.transient_pos:
wcs = XMMWCS.XMMWCS(args.eventfile, X, Y)
with open("%s_res.txt" % root_filename, "w+") as f:
f.write("#RA Dec Tstart Tstop Probability\n")
for i, interval in enumerate(finalCandidates):
if args.transient_pos:
# Write the position of the transient
points = wcs.xy2sky([list(interval._best_localization)])
ra, dec = points[0]
else:
# Write the position of the center of the region containing the transient
ra, dec = interval.interestingRegion.getCenterSkyCoordinates()
# Find the first and last event in the interval
idx = (time >= interval.tstart) & (time <= interval.tstop)
first_event_timestamp = time[idx].min()
last_event_timestamp = time[idx].max()
f.write("%.4f %.4f %.3f %.3f %.3g\n" % (ra, dec, first_event_timestamp - 1e-2, last_event_timestamp + 1e-2,
interval.probability))
if args.writeRegionFiles == 'yes':
interval.interestingRegion.box.writeRegion("%s_candidate_%i.reg" % (root_filename, i + 1))
log.debug("done")
jobStop = timemod.time()
if args.html_summary:
log.debug("Preparing the summary HTML file...")
# Summarize the results in a HTML file
resultsSummary = Results.Summary()
resultsSummary.addJobInfo(jobStop - jobStart, args.ncpus, args.typeIerror)
resultsSummary.addObsInfo(args.eventfile, hwu.getName(), tstart, tstop, n_events)
resultsSummary.addWholeHWUlightCurve(time, tstart, tstop, figsize=(8, 8))
resultsSummary.addResults(map(lambda interval: interval.interestingRegion, finalCandidates))
root_filename = ".".join(os.path.basename(args.eventfile).split(".")[:-1])
resultsSummary.write("%s_res.html" % root_filename)
log.debug("done")
pass
if __name__ == "__main__":
jobStart = timemod.time()
# Define and parse input arguments
desc = '''EXTraS Divide-and-Conquer algorithm to find
transients.'''
parser = argparse.ArgumentParser(description=desc)
parser.add_argument("-e", "--eventfile",
help="Event file to use (already cleaned and selected in" +
" energy and quadrant/CCD)",
required=True, type=validFITSfile)
parser.add_argument("-x", "--expomap",
help="Exposure map for the whole observation. It is only" +
" needed to figure out gaps and masked pixels",
required=True, type=validFITSfile)
parser.add_argument("-b", "--backgroundRegion", help="Custom background circle. To be" +
" specified as ra,dec,radius. For example '-b 187.5," +
"-23.2,10' corresponds to a circle with 10 arcsec " +
"radius centered on R.A., Dec. = (187.5, -23.2)",
required=False, default=None)
parser.add_argument("-m", "--multiplicity", help="Control the overlap of the regions." +
" A multiplicity of 2 means the centers of the regions are" +
" shifted by 1/2 of the region size (they overlap by 50 percent)," +
" a multiplicity of 4 means they are shifted by 1/4 of " +
" their size (they overlap by 75 percent), and so on.",
required=False, default=2.0, type=float)
parser.add_argument("-c", "--ncpus", help="Number of CPUs to use (default=1)",
type=int, default=1, required=False)
parser.add_argument("-p", "--typeIerror",
help="Type I error probability for the Bayesian Blocks " +
"algorithm.",
type=float,
default=1e-5,
required=False)
parser.add_argument("-s", "--sigmaThreshold",
help="Threshold for the final significance. All intervals found " +
"by the bayesian blocks " +
"algorithm which does not surpass this threshold will not be saved in the " +
"final file.",
type=float,
default=5.0,
required=False)
parser.add_argument("-r", "--regionsize",
help="Approximate side for the square regions in which the" +
" search will be performed (Default: 60 arcsec)",
type=float,
default=60,
required=False)
parser.add_argument("--max_duration",
help="Do not consider candidate transients with a duration longer then max_duration",
type=float,
default=1e9,
required=False)
parser.add_argument("--min_number_of_events",
help="Do not consider candidate transients with less than this number of events",
type=int,
default=0,
required=False)
parser.add_argument("-w", "--writeRegionFiles",
help="Write a ds9 region file for each region with excesses?",
type=str,
default='yes',
required=False,
choices=['yes', 'no'])
parser.add_argument('--transient_pos', dest='transient_pos', action='store_true')
parser.set_defaults(transient_pos=False)
parser.add_argument('--no-html', dest='html_summary', action='store_false')
parser.set_defaults(html_summary=True)
parser.add_argument("-v", "--verbosity",
required=False,
default='info',
choices=['info', 'debug'])
args = parser.parse_args()
go(args)
|
[
"matplotlib.pyplot.savefig",
"argparse.ArgumentParser",
"XtDac.FixedBinSearch.Likelihood.PointSource",
"numpy.argsort",
"XtDac.DivideAndConquer.XMMWCS.XMMWCS",
"os.path.isfile",
"XtDac.DivideAndConquer.TimeIntervalConsolidator.TimeIntervalConsolidator",
"XtDac.DivideAndConquer.Results.Summary",
"XtDac.DivideAndConquer.GridGen.GridGenChandra",
"XtDac.FixedBinSearch.Likelihood.GlobalModel",
"warnings.simplefilter",
"matplotlib.pyplot.imshow",
"matplotlib.pyplot.close",
"matplotlib.pyplot.colorbar",
"caldb4.Caldb",
"XtDac.DivideAndConquer.HardwareUnit.hardwareUnitFactory",
"warnings.catch_warnings",
"numpy.linspace",
"XtDac.DivideAndConquer.InterestingRegion.InterestingRegion",
"XtDac.DivideAndConquer.Box.Box",
"psf.psfSize",
"XtDac.DivideAndConquer.matplotlibConfig.getConfig",
"XtDac.DivideAndConquer.GridGen.GridGen",
"os.path.basename",
"pyfits.open",
"XtDac.FixedBinSearch.fitsRegions.FitsRegion",
"XtDac.FixedBinSearch.Likelihood.Region",
"matplotlib.use",
"multiprocessing.Pool",
"sys.exit",
"logging.basicConfig",
"XtDac.FixedBinSearch.Likelihood.Isotropic",
"numpy.zeros",
"time.time",
"psf.psfInit",
"numpy.array",
"XtDac.FixedBinSearch.Likelihood.Likelihood",
"pdb.set_trace",
"sys.stderr.write",
"logging.getLogger"
] |
[((300, 321), 'matplotlib.use', 'matplotlib.use', (['"""Agg"""'], {}), "('Agg')\n", (314, 321), False, 'import matplotlib\n'), ((334, 362), 'XtDac.DivideAndConquer.matplotlibConfig.getConfig', 'matplotlibConfig.getConfig', ([], {}), '()\n', (360, 362), False, 'from XtDac.DivideAndConquer import matplotlibConfig\n'), ((1353, 1393), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.DEBUG'}), '(level=logging.DEBUG)\n', (1372, 1393), False, 'import logging\n'), ((1400, 1426), 'logging.getLogger', 'logging.getLogger', (['"""XtDac"""'], {}), "('XtDac')\n", (1417, 1426), False, 'import logging\n'), ((2596, 2613), 'XtDac.DivideAndConquer.Box.Box', 'Box.Box', (['*box_def'], {}), '(*box_def)\n', (2603, 2613), False, 'from XtDac.DivideAndConquer import Box\n'), ((5862, 5910), 'XtDac.DivideAndConquer.HardwareUnit.hardwareUnitFactory', 'HardwareUnit.hardwareUnitFactory', (['args.eventfile'], {}), '(args.eventfile)\n', (5894, 5910), False, 'from XtDac.DivideAndConquer import HardwareUnit\n'), ((12414, 12484), 'XtDac.DivideAndConquer.TimeIntervalConsolidator.TimeIntervalConsolidator', 'TimeIntervalConsolidator.TimeIntervalConsolidator', (['interesting_regions'], {}), '(interesting_regions)\n', (12463, 12484), False, 'from XtDac.DivideAndConquer import TimeIntervalConsolidator\n'), ((22482, 22496), 'time.time', 'timemod.time', ([], {}), '()\n', (22494, 22496), True, 'import time as timemod\n'), ((23246, 23260), 'time.time', 'timemod.time', ([], {}), '()\n', (23258, 23260), True, 'import time as timemod\n'), ((23425, 23466), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': 'desc'}), '(description=desc)\n', (23448, 23466), False, 'import argparse\n'), ((1465, 1484), 'os.path.isfile', 'os.path.isfile', (['arg'], {}), '(arg)\n', (1479, 1484), False, 'import os\n'), ((1550, 1560), 'sys.exit', 'sys.exit', ([], {}), '()\n', (1558, 1560), False, 'import sys\n'), ((1641, 1657), 'pyfits.open', 'pyfits.open', (['arg'], {}), '(arg)\n', (1652, 1657), False, 'import pyfits\n'), ((4122, 4150), 'multiprocessing.Pool', 'multiprocessing.Pool', (['n_cpus'], {}), '(n_cpus)\n', (4142, 4150), False, 'import multiprocessing\n'), ((6120, 6147), 'pyfits.open', 'pyfits.open', (['args.eventfile'], {}), '(args.eventfile)\n', (6131, 6147), False, 'import pyfits\n'), ((6552, 6572), 'numpy.argsort', 'numpy.argsort', (['time_'], {}), '(time_)\n', (6565, 6572), False, 'import numpy\n'), ((8234, 8283), 'caldb4.Caldb', 'caldb4.Caldb', ([], {'telescope': '"""CHANDRA"""', 'product': '"""REEF"""'}), "(telescope='CHANDRA', product='REEF')\n", (8246, 8283), False, 'import caldb4\n'), ((8480, 8497), 'psf.psfInit', 'psf.psfInit', (['reef'], {}), '(reef)\n', (8491, 8497), False, 'import psf\n'), ((9248, 9283), 'XtDac.DivideAndConquer.XMMWCS.XMMWCS', 'XMMWCS.XMMWCS', (['args.eventfile', 'X', 'Y'], {}), '(args.eventfile, X, Y)\n', (9261, 9283), False, 'from XtDac.DivideAndConquer import XMMWCS\n'), ((10304, 10331), 'XtDac.DivideAndConquer.GridGen.GridGenChandra', 'GridGen.GridGenChandra', (['hwu'], {}), '(hwu)\n', (10326, 10331), False, 'from XtDac.DivideAndConquer import GridGen\n'), ((10480, 10500), 'XtDac.DivideAndConquer.GridGen.GridGen', 'GridGen.GridGen', (['hwu'], {}), '(hwu)\n', (10495, 10500), False, 'from XtDac.DivideAndConquer import GridGen\n'), ((21260, 21295), 'XtDac.DivideAndConquer.XMMWCS.XMMWCS', 'XMMWCS.XMMWCS', (['args.eventfile', 'X', 'Y'], {}), '(args.eventfile, X, Y)\n', (21273, 21295), False, 'from XtDac.DivideAndConquer import XMMWCS\n'), ((22653, 22670), 'XtDac.DivideAndConquer.Results.Summary', 'Results.Summary', ([], {}), '()\n', (22668, 22670), False, 'from XtDac.DivideAndConquer import Results\n'), ((1744, 1754), 'sys.exit', 'sys.exit', ([], {}), '()\n', (1752, 1754), False, 'import sys\n'), ((10248, 10289), 'psf.psfSize', 'psf.psfSize', (['pdata', '(1.5)', 'theta', '(0.0)', '(0.68)'], {}), '(pdata, 1.5, theta, 0.0, 0.68)\n', (10259, 10289), False, 'import psf\n'), ((11410, 11430), 'XtDac.DivideAndConquer.Box.Box', 'Box.Box', (['*regions[i]'], {}), '(*regions[i])\n', (11417, 11430), False, 'from XtDac.DivideAndConquer import Box\n'), ((12106, 12184), 'XtDac.DivideAndConquer.InterestingRegion.InterestingRegion', 'InterestingRegion.InterestingRegion', (['box', 'intervals', 'time', 'X', 'Y', 'tstart', 'tstop'], {}), '(box, intervals, time, X, Y, tstart, tstop)\n', (12141, 12184), False, 'from XtDac.DivideAndConquer import InterestingRegion\n'), ((16367, 16399), 'XtDac.FixedBinSearch.Likelihood.Isotropic', 'Likelihood.Isotropic', (['"""bkg"""', '(1.0)'], {}), "('bkg', 1.0)\n", (16387, 16399), False, 'from XtDac.FixedBinSearch import Likelihood\n'), ((16785, 16841), 'numpy.linspace', 'numpy.linspace', (['(boxx - boxw / 2.0)', '(boxx + boxw / 2.0)', '(16)'], {}), '(boxx - boxw / 2.0, boxx + boxw / 2.0, 16)\n', (16799, 16841), False, 'import numpy\n'), ((16864, 16920), 'numpy.linspace', 'numpy.linspace', (['(boxy - boxh / 2.0)', '(boxy + boxh / 2.0)', '(16)'], {}), '(boxy - boxh / 2.0, boxy + boxh / 2.0, 16)\n', (16878, 16920), False, 'import numpy\n'), ((17095, 17144), 'numpy.zeros', 'numpy.zeros', (['[trial_y.shape[0], trial_x.shape[0]]'], {}), '([trial_y.shape[0], trial_x.shape[0]])\n', (17106, 17144), False, 'import numpy\n'), ((19405, 19427), 'sys.stderr.write', 'sys.stderr.write', (['"""\n"""'], {}), "('\\n')\n", (19421, 19427), False, 'import sys\n'), ((9483, 9520), 'numpy.array', 'numpy.array', (['[x_pointing, y_pointing]'], {}), '([x_pointing, y_pointing])\n', (9494, 9520), False, 'import numpy\n'), ((9572, 9625), 'numpy.array', 'numpy.array', (['[corner_1, corner_2, corner_3, corner_4]'], {}), '([corner_1, corner_2, corner_3, corner_4])\n', (9583, 9625), False, 'import numpy\n'), ((14890, 14915), 'warnings.catch_warnings', 'warnings.catch_warnings', ([], {}), '()\n', (14913, 14915), False, 'import warnings\n'), ((14986, 15017), 'warnings.simplefilter', 'warnings.simplefilter', (['"""ignore"""'], {}), "('ignore')\n", (15007, 15017), False, 'import warnings\n'), ((15053, 15138), 'XtDac.FixedBinSearch.fitsRegions.FitsRegion', 'fitsRegions.FitsRegion', (['X[idx]', 'Y[idx]', 'time[idx]', 'event_header', 'searchRegionStr'], {}), '(X[idx], Y[idx], time[idx], event_header, searchRegionStr\n )\n', (15075, 15138), False, 'from XtDac.FixedBinSearch import fitsRegions\n'), ((15965, 16063), 'XtDac.FixedBinSearch.Likelihood.Region', 'Likelihood.Region', (['xmin', 'xmax', 'ymin', 'ymax', 'r_binsize', 'regfilter', 'args.expomap', 'args.eventfile'], {}), '(xmin, xmax, ymin, ymax, r_binsize, regfilter, args.\n expomap, args.eventfile)\n', (15982, 16063), False, 'from XtDac.FixedBinSearch import Likelihood\n'), ((16228, 16269), 'XtDac.FixedBinSearch.Likelihood.Likelihood', 'Likelihood.Likelihood', (['x', 'y', 'searchRegion'], {}), '(x, y, searchRegion)\n', (16249, 16269), False, 'from XtDac.FixedBinSearch import Likelihood\n'), ((16417, 16452), 'XtDac.FixedBinSearch.Likelihood.GlobalModel', 'Likelihood.GlobalModel', (['"""likeModel"""'], {}), "('likeModel')\n", (16439, 16452), False, 'from XtDac.FixedBinSearch import Likelihood\n'), ((20247, 20302), 'matplotlib.pyplot.imshow', 'plt.imshow', (['TSmap'], {'interpolation': '"""none"""', 'origin': '"""lower"""'}), "(TSmap, interpolation='none', origin='lower')\n", (20257, 20302), True, 'import matplotlib.pyplot as plt\n'), ((20319, 20333), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {}), '()\n', (20331, 20333), True, 'import matplotlib.pyplot as plt\n'), ((20350, 20403), 'matplotlib.pyplot.savefig', 'plt.savefig', (["('exc%s_tsmap.png' % i)"], {'tight_layout': '(True)'}), "('exc%s_tsmap.png' % i, tight_layout=True)\n", (20361, 20403), True, 'import matplotlib.pyplot as plt\n'), ((20420, 20431), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (20429, 20431), True, 'import matplotlib.pyplot as plt\n'), ((16576, 16591), 'pdb.set_trace', 'pdb.set_trace', ([], {}), '()\n', (16589, 16591), False, 'import pdb\n'), ((17379, 17400), 'sys.stderr.write', 'sys.stderr.write', (['"""."""'], {}), "('.')\n", (17395, 17400), False, 'import sys\n'), ((21076, 21108), 'os.path.basename', 'os.path.basename', (['args.eventfile'], {}), '(args.eventfile)\n', (21092, 21108), False, 'import os\n'), ((17912, 17978), 'XtDac.FixedBinSearch.Likelihood.PointSource', 'Likelihood.PointSource', (['"""testSrc"""', 'srcx', 'srcy', 'args.eventfile', 'hwu'], {}), "('testSrc', srcx, srcy, args.eventfile, hwu)\n", (17934, 17978), False, 'from XtDac.FixedBinSearch import Likelihood\n'), ((18154, 18229), 'XtDac.FixedBinSearch.Likelihood.PointSource', 'Likelihood.PointSource', (['"""testSrc"""', 'srcx', 'srcy', 'args.eventfile', 'hwu', 'psffile'], {}), "('testSrc', srcx, srcy, args.eventfile, hwu, psffile)\n", (18176, 18229), False, 'from XtDac.FixedBinSearch import Likelihood\n'), ((23060, 23092), 'os.path.basename', 'os.path.basename', (['args.eventfile'], {}), '(args.eventfile)\n', (23076, 23092), False, 'import os\n'), ((18757, 18782), 'warnings.catch_warnings', 'warnings.catch_warnings', ([], {}), '()\n', (18780, 18782), False, 'import warnings\n'), ((18877, 18908), 'warnings.simplefilter', 'warnings.simplefilter', (['"""ignore"""'], {}), "('ignore')\n", (18898, 18908), False, 'import warnings\n'), ((19068, 19087), 'matplotlib.pyplot.close', 'plt.close', (['this_fig'], {}), '(this_fig)\n', (19077, 19087), True, 'import matplotlib.pyplot as plt\n')]
|
from numpy.core.numeric import outer
import torch
from torch import log, mean, nn
import torch.nn.functional as F
import numpy as np
class VGAE_Encoder(nn.Module):
def __init__(self, n_in, n_hid, n_out, adj=None):
super(VGAE_Encoder, self).__init__()
self.n_out = n_out
self.base_gcn = GraphConv2(n_in, n_hid, adj=adj)
self.gcn1 = GraphConv2(n_hid, n_out, activation=F.elu, adj=adj)
self.gcn2 = GraphConv2(n_out, n_out, activation=F.elu, adj=adj)
self.gcn3 = GraphConv2(n_out, n_out*2, activation=lambda x:x, adj=adj)
def forward(self, x):
hidden = self.base_gcn(x)
out = self.gcn1(hidden)
out = self.gcn2(out)
out = self.gcn3(out)
mean = out[:, :self.n_out]
std = out[:, self.n_out:]
return mean, std
def set_gcn_adj(self, adj):
self.base_gcn.adj = adj
self.gcn1.adj = adj
self.gcn2.adj = adj
self.gcn3.adj = adj
class VAE_Encoder(nn.Module):
def __init__(self, n_in, n_hidden, n_out, keep_prob=1.0) -> None:
super(VAE_Encoder, self).__init__()
self.n_out = n_out
self.layer1 = nn.Linear(n_in, n_hidden)
self.layer2 = nn.Linear(n_hidden, n_out)
self.layer3 = nn.Linear(n_hidden, n_out)
self._init_weight()
def _init_weight(self):
for m in self.modules():
if isinstance(m, nn.Linear):
nn.init.xavier_normal_(m.weight.data)
m.bias.data.fill_(0.01)
def forward(self, inputs):
h0 = self.layer1(inputs)
h0 = F.relu(h0)
mean = self.layer2(h0)
logvar = self.layer3(h0)
# logvar = F.hardtanh(logvar, min_val=0, max_val=30)
return mean, logvar
class VAE_Bernulli_Decoder(nn.Module):
def __init__(self, n_in, n_hidden, n_out, keep_prob=1.0) -> None:
super(VAE_Bernulli_Decoder, self).__init__()
self.layer1 = nn.Linear(n_in, n_hidden)
self.layer2 = nn.Linear(n_hidden, n_out)
self._init_weight()
def _init_weight(self):
for m in self.modules():
if isinstance(m, nn.Linear):
nn.init.xavier_normal_(m.weight.data)
m.bias.data.fill_(0.01)
def forward(self, inputs):
h0 = self.layer1(inputs)
h0 = F.relu(h0)
x_hat = self.layer2(h0)
return x_hat
class Encoder(nn.Module):
def __init__(self, n_in, n_hid, n_out, adj=None):
super(Encoder,self).__init__()
self.n_out = n_out
self.base_gcn = GraphConv2(n_in, n_hid, adj=adj)
self.gcn1 = GraphConv2(n_hid, n_out, activation=F.elu, adj=adj)
self.gcn2 = GraphConv2(n_out, n_out, activation=F.elu, adj=adj)
self.gcn3 = GraphConv2(n_out, n_out, activation=lambda x:x, adj=adj)
def forward(self, x):
hidden = self.base_gcn(x)
out = self.gcn1(hidden)
out = self.gcn2(out)
out = self.gcn3(out)
alpha = torch.exp(out/4)
alpha = F.hardtanh(alpha, min_val=1e-2, max_val=30)
return alpha
def set_gcn_adj(self, adj):
self.base_gcn.adj = adj
self.gcn1.adj = adj
self.gcn2.adj = adj
self.gcn3.adj = adj
class Encoder2(nn.Module):
def __init__(self, n_in, n_hidden, n_out, keep_prob=1.0) -> None:
super(Encoder2, self).__init__()
self.n_out = n_out
self.layer1 = nn.Linear(n_in, n_hidden)
self.layer2 = nn.Linear(n_hidden, n_out)
self._init_weight()
def _init_weight(self):
for m in self.modules():
if isinstance(m, nn.Linear):
nn.init.xavier_normal_(m.weight.data)
m.bias.data.fill_(0.01)
def forward(self, inputs):
h0 = self.layer1(inputs)
h0 = F.relu(h0)
out = self.layer2(h0)
alpha = torch.exp(out/4)
alpha = F.hardtanh(alpha, min_val=1e-2, max_val=30)
return alpha
class Encoder3(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim, keep_prob=1.0) -> None:
super(Encoder3, self).__init__()
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.relu1 = nn.ReLU()
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
self.relu2 = nn.ReLU()
self.fc3 = nn.Linear(hidden_dim, hidden_dim)
self.relu3 = nn.ReLU()
self.fc4 = nn.Linear(hidden_dim, output_dim)
# self._init_weight()
# def _init_weight(self):
# for m in self.modules():
# if isinstance(m, nn.Linear):
# nn.init.xavier_normal_(m.weight.data)
# m.bias.data.fill_(0.01)
def forward(self, x):
out = x.view(x.size(0), -1)
out = self.fc1(out)
out = self.relu1(out)
out = self.fc2(out)
out = self.relu2(out)
out = self.fc3(out)
out = self.relu3(out)
out = self.fc4(out)
# out = torch.exp(out/4)
# out = F.hardtanh(out, min_val=1e-2, max_val=30)
return out
class VGAE_Decoder(nn.Module):
def __init__(self, n_in, n_hid, n_out, n_label, keep_prob=1.0):
super(VGAE_Decoder,self).__init__()
self.n_label = n_label
self.layer1 = nn.Sequential(nn.Linear(n_in,n_hid),
nn.Tanh(),
nn.Dropout(1-keep_prob))
self.layer2 = nn.Sequential(nn.Linear(n_hid,n_hid),
nn.ELU(),
nn.Dropout(1-keep_prob))
self.fc_out = nn.Linear(n_hid,n_out)
self._init_weight()
def _init_weight(self):
for m in self.modules():
if isinstance(m, nn.Linear):
nn.init.xavier_normal_(m.weight.data)
m.bias.data.fill_(0.01)
def forward(self, z):
h0 = self.layer1(z)
h1 = self.layer2(h0)
features_hat = self.fc_out(h1)
labels_hat = z[:, -self.n_label:]
adj_hat = dot_product_decode(z)
return features_hat, labels_hat, adj_hat
class Decoder(nn.Module):
def __init__(self, n_in, n_hid, n_out, n_label, keep_prob=1.0):
super(Decoder,self).__init__()
self.n_label = n_label
self.layer1 = nn.Sequential(nn.Linear(n_in,n_hid),
nn.Tanh(),
nn.Dropout(1-keep_prob))
self.layer2 = nn.Sequential(nn.Linear(n_hid,n_hid),
nn.ELU(),
nn.Dropout(1-keep_prob))
self.layer3 = nn.Sequential(nn.Linear(n_in,n_hid),
nn.Tanh(),
nn.Dropout(1-keep_prob))
self.layer4 = nn.Sequential(nn.Linear(n_hid,n_label),
nn.ELU(),
nn.Dropout(1-keep_prob))
self.fc_out = nn.Linear(n_hid,n_out)
self._init_weight()
def _init_weight(self):
for m in self.modules():
if isinstance(m, nn.Linear):
nn.init.xavier_normal_(m.weight.data)
m.bias.data.fill_(0.01)
def forward(self, z):
h0 = self.layer1(z)
h1 = self.layer2(h0)
features_hat = self.fc_out(h1)
h2 = self.layer3(z)
h3 = self.layer4(h2)
labels_hat = h3
adj_hat = dot_product_decode(z)
return features_hat, labels_hat, adj_hat
class GraphConv(nn.Module):
def __init__(self, n_in, n_out, adj, activation = F.relu, **kwargs):
super(GraphConv, self).__init__(**kwargs)
self.weight = glorot_init(n_in, n_out)
self.adj = adj
self.activation = activation
def forward(self, inputs):
x = inputs
x = torch.mm(x,self.weight)
x = torch.mm(self.adj, x)
outputs = self.activation(x)
return outputs
class GraphConv2(nn.Module):
def __init__(self, n_in, n_out, activation = F.relu, adj=None, **kwargs):
super(GraphConv2, self).__init__(**kwargs)
self.weight = glorot_init(n_in, n_out)
self.adj = adj
self.activation = activation
def forward(self, inputs):
x = inputs
x = torch.mm(x,self.weight)
x = torch.spmm(self.adj, x)
outputs = self.activation(x)
return outputs
def dot_product_decode(Z):
A_pred = torch.sigmoid(torch.matmul(Z,Z.t()))
return A_pred
def glorot_init(input_dim, output_dim):
init_range = np.sqrt(6.0/(input_dim + output_dim))
initial = torch.rand(input_dim, output_dim)*2*init_range - init_range
return nn.Parameter(initial)
|
[
"torch.nn.Parameter",
"torch.nn.Dropout",
"torch.nn.ReLU",
"torch.rand",
"torch.nn.Tanh",
"torch.nn.init.xavier_normal_",
"torch.mm",
"torch.spmm",
"torch.exp",
"torch.nn.ELU",
"torch.nn.functional.hardtanh",
"torch.nn.Linear",
"torch.nn.functional.relu",
"numpy.sqrt"
] |
[((8286, 8325), 'numpy.sqrt', 'np.sqrt', (['(6.0 / (input_dim + output_dim))'], {}), '(6.0 / (input_dim + output_dim))\n', (8293, 8325), True, 'import numpy as np\n'), ((8409, 8430), 'torch.nn.Parameter', 'nn.Parameter', (['initial'], {}), '(initial)\n', (8421, 8430), False, 'from torch import log, mean, nn\n'), ((1170, 1195), 'torch.nn.Linear', 'nn.Linear', (['n_in', 'n_hidden'], {}), '(n_in, n_hidden)\n', (1179, 1195), False, 'from torch import log, mean, nn\n'), ((1218, 1244), 'torch.nn.Linear', 'nn.Linear', (['n_hidden', 'n_out'], {}), '(n_hidden, n_out)\n', (1227, 1244), False, 'from torch import log, mean, nn\n'), ((1267, 1293), 'torch.nn.Linear', 'nn.Linear', (['n_hidden', 'n_out'], {}), '(n_hidden, n_out)\n', (1276, 1293), False, 'from torch import log, mean, nn\n'), ((1605, 1615), 'torch.nn.functional.relu', 'F.relu', (['h0'], {}), '(h0)\n', (1611, 1615), True, 'import torch.nn.functional as F\n'), ((1954, 1979), 'torch.nn.Linear', 'nn.Linear', (['n_in', 'n_hidden'], {}), '(n_in, n_hidden)\n', (1963, 1979), False, 'from torch import log, mean, nn\n'), ((2002, 2028), 'torch.nn.Linear', 'nn.Linear', (['n_hidden', 'n_out'], {}), '(n_hidden, n_out)\n', (2011, 2028), False, 'from torch import log, mean, nn\n'), ((2332, 2342), 'torch.nn.functional.relu', 'F.relu', (['h0'], {}), '(h0)\n', (2338, 2342), True, 'import torch.nn.functional as F\n'), ((2992, 3010), 'torch.exp', 'torch.exp', (['(out / 4)'], {}), '(out / 4)\n', (3001, 3010), False, 'import torch\n'), ((3025, 3068), 'torch.nn.functional.hardtanh', 'F.hardtanh', (['alpha'], {'min_val': '(0.01)', 'max_val': '(30)'}), '(alpha, min_val=0.01, max_val=30)\n', (3035, 3068), True, 'import torch.nn.functional as F\n'), ((3428, 3453), 'torch.nn.Linear', 'nn.Linear', (['n_in', 'n_hidden'], {}), '(n_in, n_hidden)\n', (3437, 3453), False, 'from torch import log, mean, nn\n'), ((3476, 3502), 'torch.nn.Linear', 'nn.Linear', (['n_hidden', 'n_out'], {}), '(n_hidden, n_out)\n', (3485, 3502), False, 'from torch import log, mean, nn\n'), ((3814, 3824), 'torch.nn.functional.relu', 'F.relu', (['h0'], {}), '(h0)\n', (3820, 3824), True, 'import torch.nn.functional as F\n'), ((3871, 3889), 'torch.exp', 'torch.exp', (['(out / 4)'], {}), '(out / 4)\n', (3880, 3889), False, 'import torch\n'), ((3904, 3947), 'torch.nn.functional.hardtanh', 'F.hardtanh', (['alpha'], {'min_val': '(0.01)', 'max_val': '(30)'}), '(alpha, min_val=0.01, max_val=30)\n', (3914, 3947), True, 'import torch.nn.functional as F\n'), ((4140, 4172), 'torch.nn.Linear', 'nn.Linear', (['input_dim', 'hidden_dim'], {}), '(input_dim, hidden_dim)\n', (4149, 4172), False, 'from torch import log, mean, nn\n'), ((4194, 4203), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (4201, 4203), False, 'from torch import log, mean, nn\n'), ((4223, 4256), 'torch.nn.Linear', 'nn.Linear', (['hidden_dim', 'hidden_dim'], {}), '(hidden_dim, hidden_dim)\n', (4232, 4256), False, 'from torch import log, mean, nn\n'), ((4278, 4287), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (4285, 4287), False, 'from torch import log, mean, nn\n'), ((4307, 4340), 'torch.nn.Linear', 'nn.Linear', (['hidden_dim', 'hidden_dim'], {}), '(hidden_dim, hidden_dim)\n', (4316, 4340), False, 'from torch import log, mean, nn\n'), ((4362, 4371), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (4369, 4371), False, 'from torch import log, mean, nn\n'), ((4391, 4424), 'torch.nn.Linear', 'nn.Linear', (['hidden_dim', 'output_dim'], {}), '(hidden_dim, output_dim)\n', (4400, 4424), False, 'from torch import log, mean, nn\n'), ((5498, 5521), 'torch.nn.Linear', 'nn.Linear', (['n_hid', 'n_out'], {}), '(n_hid, n_out)\n', (5507, 5521), False, 'from torch import log, mean, nn\n'), ((6697, 6720), 'torch.nn.Linear', 'nn.Linear', (['n_hid', 'n_out'], {}), '(n_hid, n_out)\n', (6706, 6720), False, 'from torch import log, mean, nn\n'), ((7562, 7586), 'torch.mm', 'torch.mm', (['x', 'self.weight'], {}), '(x, self.weight)\n', (7570, 7586), False, 'import torch\n'), ((7598, 7619), 'torch.mm', 'torch.mm', (['self.adj', 'x'], {}), '(self.adj, x)\n', (7606, 7619), False, 'import torch\n'), ((8011, 8035), 'torch.mm', 'torch.mm', (['x', 'self.weight'], {}), '(x, self.weight)\n', (8019, 8035), False, 'import torch\n'), ((8047, 8070), 'torch.spmm', 'torch.spmm', (['self.adj', 'x'], {}), '(self.adj, x)\n', (8057, 8070), False, 'import torch\n'), ((5258, 5280), 'torch.nn.Linear', 'nn.Linear', (['n_in', 'n_hid'], {}), '(n_in, n_hid)\n', (5267, 5280), False, 'from torch import log, mean, nn\n'), ((5297, 5306), 'torch.nn.Tanh', 'nn.Tanh', ([], {}), '()\n', (5304, 5306), False, 'from torch import log, mean, nn\n'), ((5324, 5349), 'torch.nn.Dropout', 'nn.Dropout', (['(1 - keep_prob)'], {}), '(1 - keep_prob)\n', (5334, 5349), False, 'from torch import log, mean, nn\n'), ((5385, 5408), 'torch.nn.Linear', 'nn.Linear', (['n_hid', 'n_hid'], {}), '(n_hid, n_hid)\n', (5394, 5408), False, 'from torch import log, mean, nn\n'), ((5425, 5433), 'torch.nn.ELU', 'nn.ELU', ([], {}), '()\n', (5431, 5433), False, 'from torch import log, mean, nn\n'), ((5451, 5476), 'torch.nn.Dropout', 'nn.Dropout', (['(1 - keep_prob)'], {}), '(1 - keep_prob)\n', (5461, 5476), False, 'from torch import log, mean, nn\n'), ((6201, 6223), 'torch.nn.Linear', 'nn.Linear', (['n_in', 'n_hid'], {}), '(n_in, n_hid)\n', (6210, 6223), False, 'from torch import log, mean, nn\n'), ((6240, 6249), 'torch.nn.Tanh', 'nn.Tanh', ([], {}), '()\n', (6247, 6249), False, 'from torch import log, mean, nn\n'), ((6267, 6292), 'torch.nn.Dropout', 'nn.Dropout', (['(1 - keep_prob)'], {}), '(1 - keep_prob)\n', (6277, 6292), False, 'from torch import log, mean, nn\n'), ((6328, 6351), 'torch.nn.Linear', 'nn.Linear', (['n_hid', 'n_hid'], {}), '(n_hid, n_hid)\n', (6337, 6351), False, 'from torch import log, mean, nn\n'), ((6368, 6376), 'torch.nn.ELU', 'nn.ELU', ([], {}), '()\n', (6374, 6376), False, 'from torch import log, mean, nn\n'), ((6394, 6419), 'torch.nn.Dropout', 'nn.Dropout', (['(1 - keep_prob)'], {}), '(1 - keep_prob)\n', (6404, 6419), False, 'from torch import log, mean, nn\n'), ((6455, 6477), 'torch.nn.Linear', 'nn.Linear', (['n_in', 'n_hid'], {}), '(n_in, n_hid)\n', (6464, 6477), False, 'from torch import log, mean, nn\n'), ((6494, 6503), 'torch.nn.Tanh', 'nn.Tanh', ([], {}), '()\n', (6501, 6503), False, 'from torch import log, mean, nn\n'), ((6521, 6546), 'torch.nn.Dropout', 'nn.Dropout', (['(1 - keep_prob)'], {}), '(1 - keep_prob)\n', (6531, 6546), False, 'from torch import log, mean, nn\n'), ((6582, 6607), 'torch.nn.Linear', 'nn.Linear', (['n_hid', 'n_label'], {}), '(n_hid, n_label)\n', (6591, 6607), False, 'from torch import log, mean, nn\n'), ((6624, 6632), 'torch.nn.ELU', 'nn.ELU', ([], {}), '()\n', (6630, 6632), False, 'from torch import log, mean, nn\n'), ((6650, 6675), 'torch.nn.Dropout', 'nn.Dropout', (['(1 - keep_prob)'], {}), '(1 - keep_prob)\n', (6660, 6675), False, 'from torch import log, mean, nn\n'), ((1445, 1482), 'torch.nn.init.xavier_normal_', 'nn.init.xavier_normal_', (['m.weight.data'], {}), '(m.weight.data)\n', (1467, 1482), False, 'from torch import log, mean, nn\n'), ((2176, 2213), 'torch.nn.init.xavier_normal_', 'nn.init.xavier_normal_', (['m.weight.data'], {}), '(m.weight.data)\n', (2198, 2213), False, 'from torch import log, mean, nn\n'), ((3654, 3691), 'torch.nn.init.xavier_normal_', 'nn.init.xavier_normal_', (['m.weight.data'], {}), '(m.weight.data)\n', (3676, 3691), False, 'from torch import log, mean, nn\n'), ((5668, 5705), 'torch.nn.init.xavier_normal_', 'nn.init.xavier_normal_', (['m.weight.data'], {}), '(m.weight.data)\n', (5690, 5705), False, 'from torch import log, mean, nn\n'), ((6867, 6904), 'torch.nn.init.xavier_normal_', 'nn.init.xavier_normal_', (['m.weight.data'], {}), '(m.weight.data)\n', (6889, 6904), False, 'from torch import log, mean, nn\n'), ((8338, 8371), 'torch.rand', 'torch.rand', (['input_dim', 'output_dim'], {}), '(input_dim, output_dim)\n', (8348, 8371), False, 'import torch\n')]
|
""" Find a nearby root of the coupled radial/angular Teukolsky equations.
TODO Documentation.
"""
from __future__ import division, print_function, absolute_import
import logging
import numpy as np
from scipy import optimize
from .angular import sep_const_closest, C_and_sep_const_closest
from . import radial
# TODO some documentation here, better documentation throughout
class NearbyRootFinder(object):
"""Object to find and store results from simultaneous roots of
radial and angular QNM equations, following the
Leaver and Cook-Zalutskiy approach.
Parameters
----------
a: float [default: 0.]
Dimensionless spin of black hole, 0 <= a < 1.
s: int [default: -2]
Spin of field of interest
m: int [default: 2]
Azimuthal number of mode of interest
A_closest_to: complex [default: 4.+0.j]
Complex value close to desired separation constant. This is
intended for tracking the l-number of a sequence starting
from the analytically-known value at a=0
l_max: int [default: 20]
Maximum value of l to include in the spherical-spheroidal
matrix for finding separation constant and mixing
coefficients. Must be sufficiently larger than l of interest
that angular spectral method can converge. The number of
l's needed for convergence depends on a.
omega_guess: complex [default: .5-.5j]
Initial guess of omega for root-finding
tol: float [default: sqrt(double epsilon)]
Tolerance for root-finding omega
cf_tol: float [defailt: 1e-10]
Tolerance for continued fraction calculation
n_inv: int [default: 0]
Inversion number of radial infinite continued fraction,
which selects overtone number of interest
Nr: int [default: 300]
Truncation number of radial infinite continued
fraction. Must be sufficiently large for convergence.
Nr_min: int [default: 300]
Floor for Nr (for dynamic control of Nr)
Nr_max: int [default: 4000]
Ceiling for Nr (for dynamic control of Nr)
r_N: complex [default: 1.]
Seed value taken for truncation of infinite continued
fraction. UNUSED, REMOVE
"""
def __init__(self, *args, **kwargs):
# Set defaults before using values in kwargs
self.a = 0.
self.s = -2
self.m = 2
self.A0 = 4.+0.j
self.l_max = 20
self.omega_guess = .5-.5j
self.tol = np.sqrt(np.finfo(float).eps)
self.cf_tol = 1e-10
self.n_inv = 0
self.Nr = 300
self.Nr_min = 300
self.Nr_max = 4000
self.r_N = 1.
self.set_params(**kwargs)
def set_params(self, *args, **kwargs):
"""Set the parameters for root finding. Parameters are
described in the class documentation. Finally calls
:meth:`clear_results`.
"""
# TODO This violates DRY, do better.
self.a = kwargs.get('a', self.a)
self.s = kwargs.get('s', self.s)
self.m = kwargs.get('m', self.m)
self.A0 = kwargs.get('A_closest_to', self.A0)
self.l_max = kwargs.get('l_max', self.l_max)
self.omega_guess = kwargs.get('omega_guess', self.omega_guess)
self.tol = kwargs.get('tol', self.tol)
self.cf_tol = kwargs.get('cf_tol', self.cf_tol)
self.n_inv = kwargs.get('n_inv', self.n_inv)
self.Nr = kwargs.get('Nr', self.Nr)
self.Nr_min = kwargs.get('Nr_min', self.Nr_min)
self.Nr_max = kwargs.get('Nr_max', self.Nr_max)
self.r_N = kwargs.get('r_N', self.r_N)
# Optional pole factors
self.poles = np.array([])
# TODO: Check that values make sense
self.clear_results()
def clear_results(self):
"""Clears the stored results from last call of :meth:`do_solve`"""
self.solved = False
self.opt_res = None
self.omega = None
self.A = None
self.C = None
self.cf_err = None
self.n_frac = None
self.poles = np.array([])
def __call__(self, x):
"""Internal function for usage with optimize.root, for an
instance of this class to act like a function for
root-finding. optimize.root only works with reals so we pack
and unpack complexes into float[2]
"""
omega = x[0] + 1.j*x[1]
# oblateness parameter
c = self.a * omega
# Separation constant at this a*omega
A = sep_const_closest(self.A0, self.s, c, self.m,
self.l_max)
# We are trying to find a root of this function:
# inv_err = radial.leaver_cf_trunc_inversion(omega, self.a,
# self.s, self.m, A,
# self.n_inv,
# self.Nr, self.r_N)
# TODO!
# Determine the value to use for cf_tol based on
# the Jacobian, cf_tol = |d cf(\omega)/d\omega| tol.
inv_err, self.cf_err, self.n_frac = radial.leaver_cf_inv_lentz(omega, self.a,
self.s, self.m, A,
self.n_inv, self.cf_tol,
self.Nr_min, self.Nr_max)
# logging.info("Lentz terminated with cf_err={}, n_frac={}".format(self.cf_err, self.n_frac))
# Insert optional poles
pole_factors = np.prod(omega - self.poles)
supp_err = inv_err / pole_factors
return [np.real(supp_err), np.imag(supp_err)]
def do_solve(self):
"""Try to find a root of the continued fraction equation,
using the parameters that have been set in :meth:`set_params`."""
# For the default (hybr) method, tol sets 'xtol', the
# tolerance on omega.
self.opt_res = optimize.root(self,
[np.real(self.omega_guess), np.imag(self.omega_guess)],
method = 'hybr', tol = self.tol)
if (not self.opt_res.success):
tmp_opt_res = self.opt_res
self.clear_results()
self.opt_res = tmp_opt_res
return None
self.solved = True
self.omega = self.opt_res.x[0] + 1.j*self.opt_res.x[1]
c = self.a * self.omega
# As far as I can tell, scipy.linalg.eig already normalizes
# the eigenvector to unit norm, and the coefficient with the
# largest norm is real
self.A, self.C = C_and_sep_const_closest(self.A0,
self.s, c,
self.m, self.l_max)
return self.omega
def get_cf_err(self):
"""Return the continued fraction error and the number of
iterations in the last evaluation of the continued fraction.
Returns
-------
cf_err: float
n_frac: int
"""
return self.cf_err, self.n_frac
def set_poles(self, poles=[]):
""" Set poles to multiply error function.
Parameters
----------
poles: array_like as complex numbers [default: []]
"""
self.poles = np.array(poles).astype(complex)
|
[
"numpy.finfo",
"numpy.imag",
"numpy.array",
"numpy.real",
"numpy.prod"
] |
[((3914, 3926), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (3922, 3926), True, 'import numpy as np\n'), ((4322, 4334), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (4330, 4334), True, 'import numpy as np\n'), ((5821, 5848), 'numpy.prod', 'np.prod', (['(omega - self.poles)'], {}), '(omega - self.poles)\n', (5828, 5848), True, 'import numpy as np\n'), ((5908, 5925), 'numpy.real', 'np.real', (['supp_err'], {}), '(supp_err)\n', (5915, 5925), True, 'import numpy as np\n'), ((5927, 5944), 'numpy.imag', 'np.imag', (['supp_err'], {}), '(supp_err)\n', (5934, 5944), True, 'import numpy as np\n'), ((2511, 2526), 'numpy.finfo', 'np.finfo', (['float'], {}), '(float)\n', (2519, 2526), True, 'import numpy as np\n'), ((6285, 6310), 'numpy.real', 'np.real', (['self.omega_guess'], {}), '(self.omega_guess)\n', (6292, 6310), True, 'import numpy as np\n'), ((6312, 6337), 'numpy.imag', 'np.imag', (['self.omega_guess'], {}), '(self.omega_guess)\n', (6319, 6337), True, 'import numpy as np\n'), ((7600, 7615), 'numpy.array', 'np.array', (['poles'], {}), '(poles)\n', (7608, 7615), True, 'import numpy as np\n')]
|
import glob, os, pickle, datetime, time, re, pprint
import matplotlib.pyplot as plt
import numpy as np
from src import plotter, graphs
from src.mltoolbox.metrics import METRICS
from src.utils import *
from shutil import copyfile, rmtree
def main():
# SETUP BEGIN
"""
x01 : reg only uniform edges avg on 8 tests
x02 : reg cycles avg on 8 tests
x03 : reg all with avg on 16 tests
x04 : svm
"""
test_suite_root = './test_log/paper/'
test_suite_code = 'conv_real_reg'
test_suite_pattern = 'test_*n_exp*'
log_pattern = re.compile(r'.*') # re.compile(r'.*mse_log\.gz$')
excluded_graphs = []
# SETUP END
# list paths of all folders of tests that satisfy the setting pattern
test_folder_paths = [s.replace('\\', '/') for s in list(glob.iglob(
os.path.normpath("{}{}/{}".format(
test_suite_root,
test_suite_code,
test_suite_pattern
).replace('\\', '/'))))
]
# if paths list if empty abort with error
if len(test_folder_paths) == 0:
raise Exception("Empty test folder paths list")
# setup file and metrics (are initially taken from the first simulation in the path list)
setup = None
setup_metrics = set([])
setup_real_metrics = set([])
"""
logs = {
$TEST_FOLDER_PATH : {
$TEST_LOG_FILENAME : $LOG_ARRAY
}
}
"""
logs = {}
for test_folder_path in test_folder_paths[:]:
if re.match(r'.*.AVG$', test_folder_path):
# if the folder is result of a previous merge then skip it
test_folder_paths.remove(test_folder_path)
continue
try:
# open current test setup file
with open("{}/.setup.pkl".format(test_folder_path), 'rb') as setup_file:
_setup = pickle.load(setup_file)
except:
print("No setup file to open")
raise
if setup is None:
# is setup variable is not set then set setup and setup metrics equal to those
# of the current opened test folder
setup = _setup
setup_metrics = set(setup['metrics'])
setup_real_metrics = set(setup['real_metrics'])
else:
# is setup is already set then intersect metrics and real metrics to keep only
# those shared among all test folders
setup_metrics &= set(setup['metrics'])
setup_real_metrics &= set(setup['real_metrics'])
logs[test_folder_path] = {}
# list all logs inside current test folder escaping problematic characters
test_logs_paths = [s.replace('\\', '/') for s in list(
glob.iglob(
os.path.normpath(os.path.join(glob.escape(test_folder_path), '*.gz')).replace('\\', '/'))
)
]
print("Extract logs from {}".format(test_folder_path))
# loop through all logs inside current test folder
for test_log_path in test_logs_paths:
# take only the name of the log file
test_log_filename = test_log_path.split('/')[-1]
# split graph's name and log name
test_log_graph, test_log_name = test_log_filename.split('_', 1)
if "avg_iter_time_log" in test_log_name or "max_iter_time_log" in test_log_name:
# avg_iter_time and max_iter_time need to be treated in a particular way since made
# by tuples and not by single float values
logs[test_folder_path][test_log_filename] = [
tuple([float(s.split(",")[0]), float(s.split(",")[1])]) for s in np.loadtxt(test_log_path, str)
]
elif log_pattern.match(test_log_filename) or test_log_name in ['iter_time.gz', 'iter_time.txt.gz']:
# load log into dict normally without preprocessing values
logs[test_folder_path][test_log_filename] = np.loadtxt(test_log_path)
# get the list of all logs' names of the first test folder without duplicates
avg_log_names = set(logs[test_folder_paths[0]].keys())
for i in range(1, len(test_folder_paths)):
# intersect with all other folders' logs' names
avg_log_names &= set(logs[test_folder_paths[i]].keys())
"""
avg_logs = {
$LOG_X_NAME : [$LOG_X_TEST#1, $LOG_X_TEST#2, ...],
...
$LOG_Y_NAME : [$LOG_Y_TEST#1, $LOG_Y_TEST#2, ...],
...
}
"""
avg_logs = {}
min_log_lengths = {} # $LOG_NAME : $MIN_LOG_LENGTH
new_setup_graphs_names = set([])
for test_folder_path in logs:
for log_name in list(avg_log_names):
new_setup_graphs_names.add(log_name.split('_', maxsplit=1)[0])
if log_name not in avg_logs:
avg_logs[log_name] = []
min_log_lengths[log_name] = math.inf
avg_logs[log_name].append(logs[test_folder_path][log_name])
min_log_lengths[log_name] = min(min_log_lengths[log_name], len(logs[test_folder_path][log_name]))
for log_name in list(avg_log_names):
print("Create merged {}".format(log_name))
avg_logs[log_name] = [l[0:min_log_lengths[log_name]] for l in avg_logs[log_name]]
avg_logs[log_name] = np.array(np.sum(avg_logs[log_name], axis=0)) / len(avg_logs[log_name])
new_ordered_setup_graphs_names = []
for graph in setup['graphs']:
if graph in list(new_setup_graphs_names):
new_ordered_setup_graphs_names.append(graph)
setup['graphs'] = graphs.generate_n_nodes_graphs_list(setup['n'], new_ordered_setup_graphs_names)
setup['metrics'] = list(setup_metrics)
setup['real_metrics'] = list(setup_real_metrics)
avg_output_dir = os.path.normpath(os.path.join(
test_folder_paths[0].rsplit('/', maxsplit=1)[0],
test_folder_paths[0].rsplit('/', maxsplit=1)[1].split('conflict')[0] + '.AVG'
))
if os.path.exists(avg_output_dir):
if input(
"Folder {} already exists, continuing will cause the loss of all data already inside it, continue "
"anyway? (type 'y' or 'yes' to continue or any other key to abort)".format(avg_output_dir)) not in [
'y', 'yes']:
raise Exception("Script aborted")
rmtree(avg_output_dir)
os.makedirs(avg_output_dir)
for log_name in avg_logs:
dest = os.path.normpath(os.path.join(
avg_output_dir,
log_name
))
np.savetxt(dest, avg_logs[log_name], delimiter=',')
print('Saved {}'.format(log_name, dest))
with open(os.path.join(avg_output_dir, '.setup.pkl'), "wb") as f:
pickle.dump(setup, f, pickle.HIGHEST_PROTOCOL)
print('Setup dumped into {}'.format(os.path.join(avg_output_dir, '.setup.pkl')))
# Fill descriptor with setup dictionary
descriptor = """>>> Test Descriptor File
AVERAGE TEST OUTPUT FILE
Date: {}
Tests merged: {}\n
""".format(str(datetime.datetime.fromtimestamp(time.time())),
pprint.PrettyPrinter(indent=4).pformat(test_folder_paths))
for k, v in setup.items():
descriptor += "{} = {}\n".format(k, v)
descriptor += "\n"
with open(os.path.join(avg_output_dir, '.descriptor.txt'), "w") as f:
f.write(descriptor)
print('Descriptor file created at {}'.format(os.path.join(avg_output_dir, '.descriptor.txt')))
if __name__ == '__main__':
main()
|
[
"pickle.dump",
"numpy.sum",
"os.makedirs",
"numpy.savetxt",
"os.path.exists",
"re.match",
"time.time",
"src.graphs.generate_n_nodes_graphs_list",
"pprint.PrettyPrinter",
"pickle.load",
"glob.escape",
"numpy.loadtxt",
"shutil.rmtree",
"os.path.join",
"re.compile"
] |
[((562, 578), 're.compile', 're.compile', (['""".*"""'], {}), "('.*')\n", (572, 578), False, 'import glob, os, pickle, datetime, time, re, pprint\n'), ((5525, 5604), 'src.graphs.generate_n_nodes_graphs_list', 'graphs.generate_n_nodes_graphs_list', (["setup['n']", 'new_ordered_setup_graphs_names'], {}), "(setup['n'], new_ordered_setup_graphs_names)\n", (5560, 5604), False, 'from src import plotter, graphs\n'), ((5912, 5942), 'os.path.exists', 'os.path.exists', (['avg_output_dir'], {}), '(avg_output_dir)\n', (5926, 5942), False, 'import glob, os, pickle, datetime, time, re, pprint\n'), ((6301, 6328), 'os.makedirs', 'os.makedirs', (['avg_output_dir'], {}), '(avg_output_dir)\n', (6312, 6328), False, 'import glob, os, pickle, datetime, time, re, pprint\n'), ((1479, 1516), 're.match', 're.match', (['""".*.AVG$"""', 'test_folder_path'], {}), "('.*.AVG$', test_folder_path)\n", (1487, 1516), False, 'import glob, os, pickle, datetime, time, re, pprint\n'), ((6274, 6296), 'shutil.rmtree', 'rmtree', (['avg_output_dir'], {}), '(avg_output_dir)\n', (6280, 6296), False, 'from shutil import copyfile, rmtree\n'), ((6474, 6525), 'numpy.savetxt', 'np.savetxt', (['dest', 'avg_logs[log_name]'], {'delimiter': '""","""'}), "(dest, avg_logs[log_name], delimiter=',')\n", (6484, 6525), True, 'import numpy as np\n'), ((6654, 6700), 'pickle.dump', 'pickle.dump', (['setup', 'f', 'pickle.HIGHEST_PROTOCOL'], {}), '(setup, f, pickle.HIGHEST_PROTOCOL)\n', (6665, 6700), False, 'import glob, os, pickle, datetime, time, re, pprint\n'), ((6392, 6430), 'os.path.join', 'os.path.join', (['avg_output_dir', 'log_name'], {}), '(avg_output_dir, log_name)\n', (6404, 6430), False, 'import glob, os, pickle, datetime, time, re, pprint\n'), ((6590, 6632), 'os.path.join', 'os.path.join', (['avg_output_dir', '""".setup.pkl"""'], {}), "(avg_output_dir, '.setup.pkl')\n", (6602, 6632), False, 'import glob, os, pickle, datetime, time, re, pprint\n'), ((7195, 7242), 'os.path.join', 'os.path.join', (['avg_output_dir', '""".descriptor.txt"""'], {}), "(avg_output_dir, '.descriptor.txt')\n", (7207, 7242), False, 'import glob, os, pickle, datetime, time, re, pprint\n'), ((1832, 1855), 'pickle.load', 'pickle.load', (['setup_file'], {}), '(setup_file)\n', (1843, 1855), False, 'import glob, os, pickle, datetime, time, re, pprint\n'), ((5258, 5292), 'numpy.sum', 'np.sum', (['avg_logs[log_name]'], {'axis': '(0)'}), '(avg_logs[log_name], axis=0)\n', (5264, 5292), True, 'import numpy as np\n'), ((6745, 6787), 'os.path.join', 'os.path.join', (['avg_output_dir', '""".setup.pkl"""'], {}), "(avg_output_dir, '.setup.pkl')\n", (6757, 6787), False, 'import glob, os, pickle, datetime, time, re, pprint\n'), ((6996, 7007), 'time.time', 'time.time', ([], {}), '()\n', (7005, 7007), False, 'import glob, os, pickle, datetime, time, re, pprint\n'), ((7019, 7049), 'pprint.PrettyPrinter', 'pprint.PrettyPrinter', ([], {'indent': '(4)'}), '(indent=4)\n', (7039, 7049), False, 'import glob, os, pickle, datetime, time, re, pprint\n'), ((7336, 7383), 'os.path.join', 'os.path.join', (['avg_output_dir', '""".descriptor.txt"""'], {}), "(avg_output_dir, '.descriptor.txt')\n", (7348, 7383), False, 'import glob, os, pickle, datetime, time, re, pprint\n'), ((3940, 3965), 'numpy.loadtxt', 'np.loadtxt', (['test_log_path'], {}), '(test_log_path)\n', (3950, 3965), True, 'import numpy as np\n'), ((3644, 3674), 'numpy.loadtxt', 'np.loadtxt', (['test_log_path', 'str'], {}), '(test_log_path, str)\n', (3654, 3674), True, 'import numpy as np\n'), ((2758, 2787), 'glob.escape', 'glob.escape', (['test_folder_path'], {}), '(test_folder_path)\n', (2769, 2787), False, 'import glob, os, pickle, datetime, time, re, pprint\n')]
|
import numpy as np
from skimage.metrics import structural_similarity, peak_signal_noise_ratio
import functools
# Data format: H W C
__all__ = [
'psnr',
'ssim',
'sam',
'ergas',
'mpsnr',
'mssim',
'mpsnr_max'
]
def psnr(output, target, data_range=1):
return peak_signal_noise_ratio(target, output, data_range=data_range)
def ssim(img1, img2, **kwargs):
return structural_similarity(img1, img2, channel_axis=2, **kwargs)
def sam(img1, img2, eps=1e-8):
"""
Spectral Angle Mapper which defines the spectral similarity between two spectra
"""
tmp1 = np.sum(img1*img2, axis=2) + eps
tmp2 = np.sqrt(np.sum(img1**2, axis=2)) + eps
tmp3 = np.sqrt(np.sum(img2**2, axis=2)) + eps
tmp4 = tmp1 / tmp2 / tmp3
angle = np.arccos(tmp4.clip(-1, 1))
return np.mean(np.real(angle))
def ergas(output, target, r=1):
b = target.shape[-1]
ergas = 0
for i in range(b):
ergas += np.mean((target[:, :, i]-output[:, :, i])**2) / (np.mean(target[:, :, i])**2)
ergas = 100*r*np.sqrt(ergas/b)
return ergas
# ---------------------------------------------------------------------------- #
# BandWise Metrics #
# ---------------------------------------------------------------------------- #
def bandwise(func):
@functools.wraps(func)
def warpped(output, target, *args, **kwargs):
C = output.shape[-1]
total = 0
for ch in range(C):
x = output[:, :, ch]
y = target[:, :, ch]
total += func(x, y, *args, **kwargs)
return total / C
return warpped
@bandwise
def mpsnr(output, target, data_range=1):
return psnr(target, output, data_range=data_range)
def mssim(img1, img2, **kwargs):
return ssim(img1, img2, **kwargs)
def mpsnr_max(output, target):
""" Different from mpsnr, this function use max value of
each channel (instead of 1 or 255) as the peak signal.
"""
total = 0.
for k in range(target.shape[-1]):
peak = np.amax(target[:, :, k])**2
mse = np.mean((output[:, :, k]-target[:, :, k])**2)
total += 10*np.log10(peak / mse)
return total / target.shape[-1]
|
[
"numpy.sum",
"numpy.amax",
"skimage.metrics.structural_similarity",
"numpy.mean",
"numpy.real",
"functools.wraps",
"numpy.log10",
"skimage.metrics.peak_signal_noise_ratio",
"numpy.sqrt"
] |
[((291, 353), 'skimage.metrics.peak_signal_noise_ratio', 'peak_signal_noise_ratio', (['target', 'output'], {'data_range': 'data_range'}), '(target, output, data_range=data_range)\n', (314, 353), False, 'from skimage.metrics import structural_similarity, peak_signal_noise_ratio\n'), ((399, 458), 'skimage.metrics.structural_similarity', 'structural_similarity', (['img1', 'img2'], {'channel_axis': '(2)'}), '(img1, img2, channel_axis=2, **kwargs)\n', (420, 458), False, 'from skimage.metrics import structural_similarity, peak_signal_noise_ratio\n'), ((1354, 1375), 'functools.wraps', 'functools.wraps', (['func'], {}), '(func)\n', (1369, 1375), False, 'import functools\n'), ((603, 630), 'numpy.sum', 'np.sum', (['(img1 * img2)'], {'axis': '(2)'}), '(img1 * img2, axis=2)\n', (609, 630), True, 'import numpy as np\n'), ((824, 838), 'numpy.real', 'np.real', (['angle'], {}), '(angle)\n', (831, 838), True, 'import numpy as np\n'), ((1049, 1067), 'numpy.sqrt', 'np.sqrt', (['(ergas / b)'], {}), '(ergas / b)\n', (1056, 1067), True, 'import numpy as np\n'), ((2117, 2166), 'numpy.mean', 'np.mean', (['((output[:, :, k] - target[:, :, k]) ** 2)'], {}), '((output[:, :, k] - target[:, :, k]) ** 2)\n', (2124, 2166), True, 'import numpy as np\n'), ((654, 679), 'numpy.sum', 'np.sum', (['(img1 ** 2)'], {'axis': '(2)'}), '(img1 ** 2, axis=2)\n', (660, 679), True, 'import numpy as np\n'), ((704, 729), 'numpy.sum', 'np.sum', (['(img2 ** 2)'], {'axis': '(2)'}), '(img2 ** 2, axis=2)\n', (710, 729), True, 'import numpy as np\n'), ((953, 1002), 'numpy.mean', 'np.mean', (['((target[:, :, i] - output[:, :, i]) ** 2)'], {}), '((target[:, :, i] - output[:, :, i]) ** 2)\n', (960, 1002), True, 'import numpy as np\n'), ((2075, 2099), 'numpy.amax', 'np.amax', (['target[:, :, k]'], {}), '(target[:, :, k])\n', (2082, 2099), True, 'import numpy as np\n'), ((2183, 2203), 'numpy.log10', 'np.log10', (['(peak / mse)'], {}), '(peak / mse)\n', (2191, 2203), True, 'import numpy as np\n'), ((1002, 1026), 'numpy.mean', 'np.mean', (['target[:, :, i]'], {}), '(target[:, :, i])\n', (1009, 1026), True, 'import numpy as np\n')]
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on %(date)s
@author: <NAME>
"""
import pandas as pd
import numpy as np
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import mean_squared_error
# Power outage class
def f(row):
"""function that categories days with more than 8 outages as extreme,
3-8 outages as bad, and 0-2 as normal"""
if row['Total_outages'] > 8:
val = 2
elif row['Total_outages'] > 2:
val = 1
else:
val = 0
return val
# Load data function: load data for neural network training
# Input: None
# Output: x_train, y_train, x_test, y_test
def load_data():
data = pd.read_csv('../../Data/WeatherOutagesAllJerry.csv')
data = data.dropna(how = 'all')
data['category'] = data.apply(f, axis=1)
data.head()
# Seperate training and testing dataset
train,test=train_test_split(data,test_size=0.1,random_state=567)
x_train = train[['Day_length_hr','Avg_Temp_F','Avg_humidity_percent','Avg_windspeed_mph','Max_windspeed_mph',
'Precipitation_in','Event_thunderstorm']]
y_train = train['category']
x_test = test[['Day_length_hr','Avg_Temp_F','Avg_humidity_percent','Avg_windspeed_mph','Max_windspeed_mph',
'Precipitation_in','Event_thunderstorm']]
y_test = test['category']
# data normalization
x_train = preprocessing.normalize(x_train) # training dataset
x_test = preprocessing.normalize(x_test) #testing dataset
return x_train, y_train, x_test, y_test
# Oversample algoritm
# This function oversample from under-reprented class
# Input: X-feature, y-response, R1-oversample ratio for bad case, R2-oversample ratio for extreme case
# Output: X_resam, y_resam
def balance_sample(X, y, R1, R2):
from imblearn.over_sampling import RandomOverSampler
# Apply the random over-sampling
ros = RandomOverSampler(ratio=R1,random_state=6)
x_res, y_res = ros.fit_sample(X[y!=2], y[y!=2])
ros2 = RandomOverSampler(ratio=R2,random_state=6)
x_res2, y_res2 = ros2.fit_sample(X[y!=1], y[y!=1])
X_resam = np.concatenate((x_res,x_res2[y_res2==2]), axis=0)
y_resam = np.concatenate((y_res, y_res2[y_res2==2]),axis=0)
return X_resam, y_resam
def neural_network_clf(x_train, y_train, x_test, y_test):
clf = MLPClassifier(max_iter=1000,activation='identity', solver='lbfgs',
alpha=1e-5,hidden_layer_sizes=(5, 3), random_state=1)
clf.fit(x_train, y_train)
y_train_pred = clf.predict(x_train)
y_test_pred = clf.predict(x_test)
print("Train error for normalized data",mean_squared_error(y_train,y_train_pred))
print("Test error for normalized data",mean_squared_error(y_test,y_test_pred))
|
[
"pandas.read_csv",
"sklearn.model_selection.train_test_split",
"imblearn.over_sampling.RandomOverSampler",
"sklearn.preprocessing.normalize",
"sklearn.neural_network.MLPClassifier",
"sklearn.metrics.mean_squared_error",
"numpy.concatenate"
] |
[((787, 839), 'pandas.read_csv', 'pd.read_csv', (['"""../../Data/WeatherOutagesAllJerry.csv"""'], {}), "('../../Data/WeatherOutagesAllJerry.csv')\n", (798, 839), True, 'import pandas as pd\n'), ((997, 1052), 'sklearn.model_selection.train_test_split', 'train_test_split', (['data'], {'test_size': '(0.1)', 'random_state': '(567)'}), '(data, test_size=0.1, random_state=567)\n', (1013, 1052), False, 'from sklearn.model_selection import train_test_split\n'), ((1498, 1530), 'sklearn.preprocessing.normalize', 'preprocessing.normalize', (['x_train'], {}), '(x_train)\n', (1521, 1530), False, 'from sklearn import preprocessing\n'), ((1563, 1594), 'sklearn.preprocessing.normalize', 'preprocessing.normalize', (['x_test'], {}), '(x_test)\n', (1586, 1594), False, 'from sklearn import preprocessing\n'), ((2002, 2045), 'imblearn.over_sampling.RandomOverSampler', 'RandomOverSampler', ([], {'ratio': 'R1', 'random_state': '(6)'}), '(ratio=R1, random_state=6)\n', (2019, 2045), False, 'from imblearn.over_sampling import RandomOverSampler\n'), ((2108, 2151), 'imblearn.over_sampling.RandomOverSampler', 'RandomOverSampler', ([], {'ratio': 'R2', 'random_state': '(6)'}), '(ratio=R2, random_state=6)\n', (2125, 2151), False, 'from imblearn.over_sampling import RandomOverSampler\n'), ((2221, 2273), 'numpy.concatenate', 'np.concatenate', (['(x_res, x_res2[y_res2 == 2])'], {'axis': '(0)'}), '((x_res, x_res2[y_res2 == 2]), axis=0)\n', (2235, 2273), True, 'import numpy as np\n'), ((2285, 2337), 'numpy.concatenate', 'np.concatenate', (['(y_res, y_res2[y_res2 == 2])'], {'axis': '(0)'}), '((y_res, y_res2[y_res2 == 2]), axis=0)\n', (2299, 2337), True, 'import numpy as np\n'), ((2435, 2563), 'sklearn.neural_network.MLPClassifier', 'MLPClassifier', ([], {'max_iter': '(1000)', 'activation': '"""identity"""', 'solver': '"""lbfgs"""', 'alpha': '(1e-05)', 'hidden_layer_sizes': '(5, 3)', 'random_state': '(1)'}), "(max_iter=1000, activation='identity', solver='lbfgs', alpha=\n 1e-05, hidden_layer_sizes=(5, 3), random_state=1)\n", (2448, 2563), False, 'from sklearn.neural_network import MLPClassifier\n'), ((2735, 2776), 'sklearn.metrics.mean_squared_error', 'mean_squared_error', (['y_train', 'y_train_pred'], {}), '(y_train, y_train_pred)\n', (2753, 2776), False, 'from sklearn.metrics import mean_squared_error\n'), ((2820, 2859), 'sklearn.metrics.mean_squared_error', 'mean_squared_error', (['y_test', 'y_test_pred'], {}), '(y_test, y_test_pred)\n', (2838, 2859), False, 'from sklearn.metrics import mean_squared_error\n')]
|
# Copyright (C) 2020. Huawei Technologies Co., Ltd. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
# The author of this file is: https://github.com/mg2015started
import numpy as np
def get_split_batch(batch):
"""memory.sample() returns a batch of experiences, but we want an array
for each element in the memory (s, a, r, s', done)"""
states_mb = np.array([each[0][0] for each in batch])
# print(states_mb.shape)
actions_mb = np.array([each[0][1] for each in batch])
# print(actions_mb.shape)
rewards_mb = np.array([each[0][2] for each in batch])
# print(rewards_mb.shape)
next_states_mb = np.array([each[0][3] for each in batch])
# print(next_states_mb.shape)
dones_mb = np.array([each[0][4] for each in batch])
return states_mb, actions_mb, rewards_mb, next_states_mb, dones_mb
def OU(action, mu=0, theta=0.15, sigma=0.3):
# noise = np.ones(action_dim) * mu
noise = theta * (mu - action) + sigma * np.random.randn(1)
# noise = noise + d_noise
return noise
def calculate_angle(ego_location, goal_location, ego_direction):
# calculate vector direction
goal_location = np.array(goal_location)
ego_location = np.array(ego_location)
goal_vector = goal_location - ego_location
L_g_vector = np.sqrt(goal_vector.dot(goal_vector))
ego_vector = np.array(
[np.cos(ego_direction * np.pi / 180), np.sin(ego_direction * np.pi / 180)]
)
L_e_vector = np.sqrt(ego_vector.dot(ego_vector))
cos_angle = goal_vector.dot(ego_vector) / (L_g_vector * L_e_vector)
angle = (np.arccos(cos_angle)) * 180 / np.pi
if np.cross(goal_vector, ego_vector) > 0:
angle = -angle
return angle
def calculate_distance(location_a, location_b):
""" calculate distance between a and b"""
return np.linalg.norm(location_a - location_b)
|
[
"numpy.random.randn",
"numpy.cross",
"numpy.sin",
"numpy.linalg.norm",
"numpy.array",
"numpy.cos",
"numpy.arccos"
] |
[((1393, 1433), 'numpy.array', 'np.array', (['[each[0][0] for each in batch]'], {}), '([each[0][0] for each in batch])\n', (1401, 1433), True, 'import numpy as np\n'), ((1480, 1520), 'numpy.array', 'np.array', (['[each[0][1] for each in batch]'], {}), '([each[0][1] for each in batch])\n', (1488, 1520), True, 'import numpy as np\n'), ((1568, 1608), 'numpy.array', 'np.array', (['[each[0][2] for each in batch]'], {}), '([each[0][2] for each in batch])\n', (1576, 1608), True, 'import numpy as np\n'), ((1660, 1700), 'numpy.array', 'np.array', (['[each[0][3] for each in batch]'], {}), '([each[0][3] for each in batch])\n', (1668, 1700), True, 'import numpy as np\n'), ((1750, 1790), 'numpy.array', 'np.array', (['[each[0][4] for each in batch]'], {}), '([each[0][4] for each in batch])\n', (1758, 1790), True, 'import numpy as np\n'), ((2179, 2202), 'numpy.array', 'np.array', (['goal_location'], {}), '(goal_location)\n', (2187, 2202), True, 'import numpy as np\n'), ((2222, 2244), 'numpy.array', 'np.array', (['ego_location'], {}), '(ego_location)\n', (2230, 2244), True, 'import numpy as np\n'), ((2830, 2869), 'numpy.linalg.norm', 'np.linalg.norm', (['(location_a - location_b)'], {}), '(location_a - location_b)\n', (2844, 2869), True, 'import numpy as np\n'), ((2644, 2677), 'numpy.cross', 'np.cross', (['goal_vector', 'ego_vector'], {}), '(goal_vector, ego_vector)\n', (2652, 2677), True, 'import numpy as np\n'), ((1993, 2011), 'numpy.random.randn', 'np.random.randn', (['(1)'], {}), '(1)\n', (2008, 2011), True, 'import numpy as np\n'), ((2383, 2418), 'numpy.cos', 'np.cos', (['(ego_direction * np.pi / 180)'], {}), '(ego_direction * np.pi / 180)\n', (2389, 2418), True, 'import numpy as np\n'), ((2420, 2455), 'numpy.sin', 'np.sin', (['(ego_direction * np.pi / 180)'], {}), '(ego_direction * np.pi / 180)\n', (2426, 2455), True, 'import numpy as np\n'), ((2601, 2621), 'numpy.arccos', 'np.arccos', (['cos_angle'], {}), '(cos_angle)\n', (2610, 2621), True, 'import numpy as np\n')]
|
# coding=utf-8
# Copyright 2018 The DisentanglementLib Authors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""translation dataset."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import cv2
from disentanglement_lib.data.ground_truth import ground_truth_data
from disentanglement_lib.data.ground_truth import util
import numpy as np
import gin
from six.moves import range
def to_honeycomb(x):
x1 = np.zeros(x.shape)
x1[:, 0] = x[:, 0] + (x[:, 1] % 2) * 0.5
x1[:, 1] = x[:, 1] / 2 * np.sqrt(3)
return x1
@gin.configurable("translation")
class Translation(ground_truth_data.GroundTruthData):
"""Translation dataset.
"""
def __init__(self, pos_type: int, radius=10):
# By default, all factors (including shape) are considered ground truth
# factors.
factors = np.zeros((22 * 22, 2))
factors[:, 0] = np.arange(22 * 22) // 22
factors[:, 1] = np.arange(22 * 22) % 22
factors = factors
if pos_type == 0:
pos = factors * 2 # cartesian
elif pos_type == 1:
pos = to_honeycomb(factors) * 2
elif pos_type == 2:
r = 1 + factors[:, 0] / 22 * 20
theta = factors[:, 1] / 22 * 2 * np.pi
pos = np.zeros((22 * 22, 2))
pos[:, 1] = r * np.cos(theta) + 32
pos[:, 0] = r * np.sin(theta) + 32
else:
raise NotImplementedError()
self.data_shape = [64, 64, 1]
self.factor_sizes = [22, 22]
self.pos = pos
self.latent_factor_indices = np.zeros(self.factor_sizes, dtype=np.int)
for i in range(self.factor_sizes[0]):
self.latent_factor_indices[i] = self.factor_sizes[0] * i + np.arange(self.factor_sizes[1])
self.data = np.zeros([len(self)] + self.data_shape, dtype=np.float32)
index = 0
for i in range(self.factor_sizes[0]):
for j in range(self.factor_sizes[1]):
img = np.zeros(self.data_shape)
cv2.circle(img, (10, 10), radius, (1.0,), -1)
M = np.float32([[1, 0, pos[index, 0]], [0, 1, pos[index, 1]]])
self.data[index, :, :, 0] = cv2.warpAffine(img, M, (64, 64))
index += 1
@property
def num_factors(self):
return len(self.factor_sizes)
@property
def factors_num_values(self):
return self.factor_sizes
@property
def observation_shape(self):
return self.data_shape
def sample_factors(self, num, random_state):
"""Sample a batch of factors Y."""
factors = [random_state.randint(i, size=num) for i in self.factors_num_values]
return np.stack(factors, axis=1)
def sample_observations_from_factors(self, factors, random_state):
indices = self.latent_factor_indices[factors[:, 0], factors[:, 1]]
return self.data[indices]
def _sample_factor(self, i, num, random_state):
return random_state.randint(self.factor_sizes[i], size=num)
def set_img(original, i, j, img):
h, w, _ = img.shape
if i + h > 64:
original[i:i + h, j:j + w] = img[:min(-1, 64 - i - h)]
else:
original[i:i + h, j:j + w] = img
return original
|
[
"numpy.stack",
"cv2.circle",
"six.moves.range",
"numpy.float32",
"numpy.zeros",
"cv2.warpAffine",
"numpy.sin",
"numpy.arange",
"numpy.cos",
"gin.configurable",
"numpy.sqrt"
] |
[((1125, 1156), 'gin.configurable', 'gin.configurable', (['"""translation"""'], {}), "('translation')\n", (1141, 1156), False, 'import gin\n'), ((1005, 1022), 'numpy.zeros', 'np.zeros', (['x.shape'], {}), '(x.shape)\n', (1013, 1022), True, 'import numpy as np\n'), ((1097, 1107), 'numpy.sqrt', 'np.sqrt', (['(3)'], {}), '(3)\n', (1104, 1107), True, 'import numpy as np\n'), ((1415, 1437), 'numpy.zeros', 'np.zeros', (['(22 * 22, 2)'], {}), '((22 * 22, 2))\n', (1423, 1437), True, 'import numpy as np\n'), ((2150, 2191), 'numpy.zeros', 'np.zeros', (['self.factor_sizes'], {'dtype': 'np.int'}), '(self.factor_sizes, dtype=np.int)\n', (2158, 2191), True, 'import numpy as np\n'), ((2209, 2236), 'six.moves.range', 'range', (['self.factor_sizes[0]'], {}), '(self.factor_sizes[0])\n', (2214, 2236), False, 'from six.moves import range\n'), ((2457, 2484), 'six.moves.range', 'range', (['self.factor_sizes[0]'], {}), '(self.factor_sizes[0])\n', (2462, 2484), False, 'from six.moves import range\n'), ((3266, 3291), 'numpy.stack', 'np.stack', (['factors'], {'axis': '(1)'}), '(factors, axis=1)\n', (3274, 3291), True, 'import numpy as np\n'), ((1462, 1480), 'numpy.arange', 'np.arange', (['(22 * 22)'], {}), '(22 * 22)\n', (1471, 1480), True, 'import numpy as np\n'), ((1511, 1529), 'numpy.arange', 'np.arange', (['(22 * 22)'], {}), '(22 * 22)\n', (1520, 1529), True, 'import numpy as np\n'), ((2507, 2534), 'six.moves.range', 'range', (['self.factor_sizes[1]'], {}), '(self.factor_sizes[1])\n', (2512, 2534), False, 'from six.moves import range\n'), ((2309, 2340), 'numpy.arange', 'np.arange', (['self.factor_sizes[1]'], {}), '(self.factor_sizes[1])\n', (2318, 2340), True, 'import numpy as np\n'), ((2558, 2583), 'numpy.zeros', 'np.zeros', (['self.data_shape'], {}), '(self.data_shape)\n', (2566, 2583), True, 'import numpy as np\n'), ((2600, 2645), 'cv2.circle', 'cv2.circle', (['img', '(10, 10)', 'radius', '(1.0,)', '(-1)'], {}), '(img, (10, 10), radius, (1.0,), -1)\n', (2610, 2645), False, 'import cv2\n'), ((2666, 2724), 'numpy.float32', 'np.float32', (['[[1, 0, pos[index, 0]], [0, 1, pos[index, 1]]]'], {}), '([[1, 0, pos[index, 0]], [0, 1, pos[index, 1]]])\n', (2676, 2724), True, 'import numpy as np\n'), ((2769, 2801), 'cv2.warpAffine', 'cv2.warpAffine', (['img', 'M', '(64, 64)'], {}), '(img, M, (64, 64))\n', (2783, 2801), False, 'import cv2\n'), ((1843, 1865), 'numpy.zeros', 'np.zeros', (['(22 * 22, 2)'], {}), '((22 * 22, 2))\n', (1851, 1865), True, 'import numpy as np\n'), ((1894, 1907), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (1900, 1907), True, 'import numpy as np\n'), ((1941, 1954), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (1947, 1954), True, 'import numpy as np\n')]
|
import PyQt5
import os
import imutils
import cv2
import numpy as np
from PIL import Image as im
from PyQt5 import QtWidgets, uic, QtGui
from PyQt5.QtGui import QGuiApplication
import sys
#Image augmentation GUI App
def contour_crop_no_resize(image,dim):
'''
Contour and crop the image (generally used in brain mri images and object detection)
:param image: cv2 object
'''
resized = cv2.resize(image, dim, interpolation = cv2.INTER_AREA)
return resized
def contour_crop_resize(image,dim):
'''
Contour and crop the image (generally used in brain mri images and object detection)
:param image: cv2 object
'''
grayscale=cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
grayscale=cv2.GaussianBlur(grayscale,(5,5),0)
threshold_image=cv2.threshold(grayscale,45,255,cv2.THRESH_BINARY)[1]
threshold_image=cv2.erode(threshold_image,None,iterations=2)
threshold_image=cv2.dilate(threshold_image,None,iterations=2)
contour=cv2.findContours(threshold_image.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
contour=imutils.grab_contours(contour)
c=max(contour,key=cv2.contourArea)
extreme_pnts_left=tuple(c[c[:,:,0].argmin()][0])
extreme_pnts_right=tuple(c[c[:,:,0].argmax()][0])
extreme_pnts_top=tuple(c[c[:,:,1].argmin()][0])
extreme_pnts_bot=tuple(c[c[:,:,1].argmax()][0])
new_image=image[extreme_pnts_top[1]:extreme_pnts_bot[1],extreme_pnts_left[0]:extreme_pnts_right[0]]
resized = cv2.resize(new_image, dim, interpolation = cv2.INTER_AREA)
return resized
def brightness_increase(image,brightness):
'''
increase the brightness of the image
:param image: cv2 object
:param brightness: brightness increasing level
'''
bright=np.ones(image.shape,dtype="uint8")*brightness
brightincreased=cv2.add(image,bright)
return brightincreased
def decrease_brightness(image,brightness):
'''
decrease the brightness of the image
:param image: cv2 object
:param brightness: brightness decreasing level
'''
bright=np.ones(image.shape,dtype="uint8")*50
brightdecrease=cv2.subtract(image,bright)
return brightdecrease
def rotate(image,angle=90, scale=1.0):
'''
Rotate the image
:param image: cv2 object
:param image: image to be processed
:param angle: Rotation angle in degrees. Positive values mean counter-clockwise rotation (the coordinate origin is assumed to be the top-left corner).
:param scale: Isotropic scale factor.
'''
w = image.shape[1]
h = image.shape[0]
#rotate matrix
M = cv2.getRotationMatrix2D((w/2,h/2), angle, scale)
#rotate
image = cv2.warpAffine(image,M,(w,h))
return image
def flip(image,axis):
'''
Flip the image
:param image: cv2 object
:param axis: axis to flip
'''
flip=cv2.flip(image,axis)
return flip
def sharpen(image):
'''
Sharpen the image
:param image: cv2 object
'''
sharpening=np.array([ [-1,-1,-1],
[-1,10,-1],
[-1,-1,-1] ])
sharpened=cv2.filter2D(image,-1,sharpening)
return sharpened
def shear(image,axis):
'''
Shear the image
:param image: cv2 object
:param axis: axis which image will be sheared
'''
rows, cols, dim = image.shape
if axis==0:
M = np.float32([[1, 0.5, 0],
[0, 1 , 0],
[0, 0 , 1]])
elif axis==1:
M = np.float32([[1, 0, 0],
[0.5, 1, 0],
[0, 0, 1]])
sheared_img = cv2.warpPerspective(image,M,(int(cols*1.5),int(rows*1.5)))
return sheared_img
class Ui(QtWidgets.QMainWindow):
def __init__(self):
super(Ui, self).__init__()
uic.loadUi('augmentation.ui', self)
self.show()
self.setWindowTitle("Image Augmentor")
mypixmap=QtGui.QPixmap("2582365.ico")
my_icon=QtGui.QIcon(mypixmap)
self.setWindowIcon(my_icon)
self.lineEdit=self.findChild(QtWidgets.QLineEdit,'lineEdit')
self.checkBox = self.findChild(QtWidgets.QCheckBox,'checkBox_1')
self.checkBox_2=self.findChild(QtWidgets.QCheckBox,'checkBox_2')
self.checkBox_3=self.findChild(QtWidgets.QCheckBox,'checkBox_3')
self.checkBox_4=self.findChild(QtWidgets.QCheckBox,'checkBox_4')
self.checkBox_5=self.findChild(QtWidgets.QCheckBox,'checkBox_5')
self.checkBox_6=self.findChild(QtWidgets.QCheckBox,'checkBox_6')
self.checkBox_7=self.findChild(QtWidgets.QCheckBox,'checkBox_7')
self.button=self.findChild(QtWidgets.QPushButton,'pushButton')
self.button2=self.findChild(QtWidgets.QPushButton,'pushButton_2')
self.button3=self.findChild(QtWidgets.QPushButton,'pushButton_3')
self.button2.clicked.connect(self.clear)
self.button3.clicked.connect(self.clearline)
self.progress=self.findChild(QtWidgets.QProgressBar,'progressBar')
self.spin1=self.findChild(QtWidgets.QSpinBox,'spinBox')
self.spin2=self.findChild(QtWidgets.QSpinBox,'spinBox_2')
self.button.clicked.connect(self.submit)
def clearline(self):
self.lineEdit.clear()
def clear(self):
if self.button2.text()=="Clear Choices":
self.button2.setText("Toggle")
self.checkBox.setChecked(False)
self.checkBox_2.setChecked(False)
self.checkBox_3.setChecked(False)
self.checkBox_4.setChecked(False)
self.checkBox_5.setChecked(False)
self.checkBox_6.setChecked(False)
self.checkBox_7.setChecked(False)
elif self.button2.text()=="Toggle":
self.button2.setText("Clear Choices")
self.checkBox.setChecked(True)
self.checkBox_2.setChecked(True)
self.checkBox_3.setChecked(True)
self.checkBox_4.setChecked(True)
self.checkBox_5.setChecked(True)
self.checkBox_6.setChecked(True)
self.checkBox_7.setChecked(True)
def submit(self):
counter=0
dim=(int(self.spin1.value()),int(self.spin2.value()))
path=self.lineEdit.text()
if str(path).startswith('"') and str(path).endswith('"'):
path=path[1:-1]
my_path=str(path).split("\\")
folder_name=my_path.copy().pop()
my_path_popped=my_path[:-1]
# using list comprehension
def listToString(s):
# initialize an empty string
str1 = ""
# traverse in the string
for ele in s:
str1 += ele
str1 += "/"
# return string
return str1
poppedString=listToString(my_path_popped)
if not os.path.exists(poppedString):
msg = QtWidgets.QMessageBox()
msg.setIcon(QtWidgets.QMessageBox.Critical)
msg.setText("Error")
msg.setInformativeText("Change your path!")
msg.setWindowTitle("Error!")
msg.setDetailedText("Program could not find the path you provided.")
msg.setStandardButtons(QtWidgets.QMessageBox.Ok | QtWidgets.QMessageBox.Cancel)
msg.exec_()
String=listToString(my_path)
i=float(0.000001)
aug_path=poppedString+"/augmented_"+folder_name
if not os.path.exists(aug_path):
os.makedirs(aug_path)
for subdir, dirs, files in os.walk(String):
for file in files:
QGuiApplication.processEvents()
filepath = subdir + "/" + file
imagem=cv2.imread(filepath)
resized=0
if self.checkBox.isChecked():
cv2.imwrite(aug_path+"/cntrdrszd_"+file,contour_crop_resize(imagem,dim))
resized=contour_crop_resize(imagem,dim)
else:
cv2.imwrite(aug_path+"/rszd_"+file,contour_crop_no_resize(imagem,dim))
resized=contour_crop_no_resize(imagem,dim)
if self.checkBox_2.isChecked():
cv2.imwrite(aug_path+"/brinc_"+file,brightness_increase(resized,50))
if self.checkBox_3.isChecked():
cv2.imwrite(aug_path+"/brdec_"+file,decrease_brightness(resized,50))
if self.checkBox_4.isChecked():
cv2.imwrite(aug_path+"/rtd90_"+file,rotate(resized,90,1))
cv2.imwrite(aug_path+"/rtd45_"+file,rotate(resized,45,1))
cv2.imwrite(aug_path+"/rtd30_"+file,rotate(resized,30,1))
cv2.imwrite(aug_path+"/rtd270_"+file,rotate(resized,270,1))
cv2.imwrite(aug_path+"/rtd315_"+file,rotate(resized,315,1))
cv2.imwrite(aug_path+"/rtd330_"+file,rotate(resized,330,1))
if self.checkBox_2.isChecked():
cv2.imwrite(aug_path+"/binc_rtd90_"+file,rotate(brightness_increase(resized,50),90,1))
cv2.imwrite(aug_path+"/binc_rtd45_"+file,rotate(brightness_increase(resized,50),45,1))
cv2.imwrite(aug_path+"/binc_rtd30_"+file,rotate(brightness_increase(resized,50),30,1))
cv2.imwrite(aug_path+"/binc_rtd270_"+file,rotate(brightness_increase(resized,50),270,1))
cv2.imwrite(aug_path+"/binc_rtd315_"+file,rotate(brightness_increase(resized,50),315,1))
cv2.imwrite(aug_path+"/binc_rtd330_"+file,rotate(brightness_increase(resized,50),330,1))
if self.checkBox_3.isChecked():
cv2.imwrite(aug_path+"/bdec_rtd90_"+file,rotate(decrease_brightness(resized,50),90,1))
cv2.imwrite(aug_path+"/bdec_rtd45_"+file,rotate(decrease_brightness(resized,50),45,1))
cv2.imwrite(aug_path+"/bdec_rtd30_"+file,rotate(decrease_brightness(resized,50),30,1))
cv2.imwrite(aug_path+"/bdec_rtd270_"+file,rotate(decrease_brightness(resized,50),270,1))
cv2.imwrite(aug_path+"/bdec_rtd315_"+file,rotate(decrease_brightness(resized,50),315,1))
cv2.imwrite(aug_path+"/bdec_rtd330_"+file,rotate(decrease_brightness(resized,50),330,1))
if self.checkBox_5.isChecked():
cv2.imwrite(aug_path+"/flipxy_"+file,flip(resized,-1))
cv2.imwrite(aug_path+"/flipx_"+file,flip(resized,0))
cv2.imwrite(aug_path+"/flipy_"+file,flip(resized,1))
if self.checkBox_2.isChecked():
cv2.imwrite(aug_path+"/binc_flipxy_"+file,flip(brightness_increase(resized,50),-1))
cv2.imwrite(aug_path+"/binc_flipx_"+file,flip(brightness_increase(resized,50),0))
cv2.imwrite(aug_path+"/bdec_flipy_"+file,flip(brightness_increase(resized,50),1))
if self.checkBox_3.isChecked():
cv2.imwrite(aug_path+"/bdec_flipxy_"+file,flip(decrease_brightness(resized,50),-1))
cv2.imwrite(aug_path+"/bdec_flipx_"+file,flip(decrease_brightness(resized,50),0))
cv2.imwrite(aug_path+"/bdec_flipy_"+file,flip(decrease_brightness(resized,50),1))
if self.checkBox_4.isChecked():
cv2.imwrite(aug_path+"/rtd90_flipxy_"+file,flip(rotate(resized,90,1),-1))
cv2.imwrite(aug_path+"/rtd45_flipxy_"+file,flip(rotate(resized,45,1),-1))
cv2.imwrite(aug_path+"/rtd30_flipxy_"+file,flip(rotate(resized,30,1),-1))
cv2.imwrite(aug_path+"/rtd270_flipxy_"+file,flip(rotate(resized,270,1),-1))
cv2.imwrite(aug_path+"/rtd315_flipxy_"+file,flip(rotate(resized,315,1),-1))
cv2.imwrite(aug_path+"/rtd330_flipxy_"+file,flip(rotate(resized,330,1),-1))
cv2.imwrite(aug_path+"/rtd90_flipx_"+file,flip(rotate(resized,90,1),0))
cv2.imwrite(aug_path+"/rtd45_flipx_"+file,flip(rotate(resized,45,1),0))
cv2.imwrite(aug_path+"/rtd30_flipx_"+file,flip(rotate(resized,30,1),0))
cv2.imwrite(aug_path+"/rtd270_flipx_"+file,flip(rotate(resized,270,1),0))
cv2.imwrite(aug_path+"/rtd315_flipx_"+file,flip(rotate(resized,315,1),0))
cv2.imwrite(aug_path+"/rtd330_flipx_"+file,flip(rotate(resized,330,1),0))
cv2.imwrite(aug_path+"/rtd90_flipy_"+file,flip(rotate(resized,90,1),1))
cv2.imwrite(aug_path+"/rtd45_flipy_"+file,flip(rotate(resized,45,1),1))
cv2.imwrite(aug_path+"/rtd30_flipy_"+file,flip(rotate(resized,30,1),1))
cv2.imwrite(aug_path+"/rtd270_flipy_"+file,flip(rotate(resized,270,1),1))
cv2.imwrite(aug_path+"/rtd315_flipy_"+file,flip(rotate(resized,315,1),1))
cv2.imwrite(aug_path+"/rtd330_flipy_"+file,flip(rotate(resized,330,1),1))
if self.checkBox_4.isChecked() and self.checkBox_2.isChecked():
cv2.imwrite(aug_path+"/binc_rtd90_flipxy_"+file,flip(rotate(brightness_increase(resized,50),90,1),-1))
cv2.imwrite(aug_path+"/binc_rtd45_flipxy_"+file,flip(rotate(brightness_increase(resized,50),45,1),-1))
cv2.imwrite(aug_path+"/binc_rtd30_flipxy_"+file,flip(rotate(brightness_increase(resized,50),30,1),-1))
cv2.imwrite(aug_path+"/binc_rtd270_flipxy_"+file,flip(rotate(brightness_increase(resized,50),270,1),-1))
cv2.imwrite(aug_path+"/binc_rtd315_flipxy_"+file,flip(rotate(brightness_increase(resized,50),315,1),-1))
cv2.imwrite(aug_path+"/binc_rtd330_flipxy_"+file,flip(rotate(brightness_increase(resized,50),330,1),-1))
cv2.imwrite(aug_path+"/binc_rtd90_flipx_"+file,flip(rotate(brightness_increase(resized,50),90,1),0))
cv2.imwrite(aug_path+"/binc_rtd45_flipx_"+file,flip(rotate(brightness_increase(resized,50),45,1),0))
cv2.imwrite(aug_path+"/binc_rtd30_flipx_"+file,flip(rotate(brightness_increase(resized,50),30,1),0))
cv2.imwrite(aug_path+"/binc_rtd270_flipx_"+file,flip(rotate(brightness_increase(resized,50),270,1),0))
cv2.imwrite(aug_path+"/binc_rtd315_flipx_"+file,flip(rotate(brightness_increase(resized,50),315,1),0))
cv2.imwrite(aug_path+"/binc_rtd330_flipx_"+file,flip(rotate(brightness_increase(resized,50),330,1),0))
cv2.imwrite(aug_path+"/binc_rtd90_flipy_"+file,flip(rotate(brightness_increase(resized,50),90,1),1))
cv2.imwrite(aug_path+"/binc_rtd45_flipy_"+file,flip(rotate(brightness_increase(resized,50),45,1),1))
cv2.imwrite(aug_path+"/binc_rtd30_flipy_"+file,flip(rotate(brightness_increase(resized,50),30,1),1))
cv2.imwrite(aug_path+"/binc_rtd270_flipy_"+file,flip(rotate(brightness_increase(resized,50),270,1),1))
cv2.imwrite(aug_path+"/binc_rtd315_flipy_"+file,flip(rotate(brightness_increase(resized,50),315,1),1))
cv2.imwrite(aug_path+"/binc_rtd330_flipy_"+file,flip(rotate(brightness_increase(resized,50),330,1),1))
if self.checkBox_4.isChecked() and self.checkBox_3.isChecked():
cv2.imwrite(aug_path+"/bdec_rtd90_flipxy_"+file,flip(rotate(decrease_brightness(resized,50),90,1),-1))
cv2.imwrite(aug_path+"/bdec_rtd45_flipxy_"+file,flip(rotate(decrease_brightness(resized,50),45,1),-1))
cv2.imwrite(aug_path+"/bdec_rtd30_flipxy_"+file,flip(rotate(decrease_brightness(resized,50),30,1),-1))
cv2.imwrite(aug_path+"/bdec_rtd270_flipxy_"+file,flip(rotate(decrease_brightness(resized,50),270,1),-1))
cv2.imwrite(aug_path+"/bdec_rtd315_flipxy_"+file,flip(rotate(decrease_brightness(resized,50),315,1),-1))
cv2.imwrite(aug_path+"/bdec_rtd330_flipxy_"+file,flip(rotate(decrease_brightness(resized,50),330,1),-1))
cv2.imwrite(aug_path+"/bdec_rtd90_flipx_"+file,flip(rotate(decrease_brightness(resized,50),90,1),0))
cv2.imwrite(aug_path+"/bdec_rtd45_flipx_"+file,flip(rotate(decrease_brightness(resized,50),45,1),0))
cv2.imwrite(aug_path+"/bdec_rtd30_flipx_"+file,flip(rotate(decrease_brightness(resized,50),30,1),0))
cv2.imwrite(aug_path+"/bdec_rtd270_flipx_"+file,flip(rotate(decrease_brightness(resized,50),270,1),0))
cv2.imwrite(aug_path+"/bdec_rtd315_flipx_"+file,flip(rotate(decrease_brightness(resized,50),315,1),0))
cv2.imwrite(aug_path+"/bdec_rtd330_flipx_"+file,flip(rotate(decrease_brightness(resized,50),330,1),0))
cv2.imwrite(aug_path+"/bdec_rtd90_flipy_"+file,flip(rotate(decrease_brightness(resized,50),90,1),1))
cv2.imwrite(aug_path+"/bdec_rtd45_flipy_"+file,flip(rotate(decrease_brightness(resized,50),45,1),1))
cv2.imwrite(aug_path+"/bdec_rtd30_flipy_"+file,flip(rotate(decrease_brightness(resized,50),30,1),1))
cv2.imwrite(aug_path+"/bdec_rtd270_flipy_"+file,flip(rotate(decrease_brightness(resized,50),270,1),1))
cv2.imwrite(aug_path+"/bdec_rtd315_flipy_"+file,flip(rotate(decrease_brightness(resized,50),315,1),1))
cv2.imwrite(aug_path+"/bdec_rtd330_flipy_"+file,flip(rotate(decrease_brightness(resized,50),330,1),1))
if self.checkBox_6.isChecked():
cv2.imwrite(aug_path+"/shrpnd_"+file,sharpen(resized))
if self.checkBox_2.isChecked():
cv2.imwrite(aug_path+"/binc_shrpnd_"+file,sharpen(brightness_increase(resized,50)))
if self.checkBox_3.isChecked():
cv2.imwrite(aug_path+"/bdec_shrpnd_"+file,sharpen(decrease_brightness(resized,50)))
if self.checkBox_4.isChecked():
cv2.imwrite(aug_path+"/rtd90_shrpnd_"+file,sharpen(rotate(resized,90,1)))
cv2.imwrite(aug_path+"/rtd45_shrpnd_"+file,sharpen(rotate(resized,45,1)))
cv2.imwrite(aug_path+"/rtd30_shrpnd_"+file,sharpen(rotate(resized,30,1)))
cv2.imwrite(aug_path+"/rtd270_shrpnd_"+file,sharpen(rotate(resized,270,1)))
cv2.imwrite(aug_path+"/rtd315_shrpnd_"+file,sharpen(rotate(resized,315,1)))
cv2.imwrite(aug_path+"/rtd330_shrpnd_"+file,sharpen(rotate(resized,330,1)))
if self.checkBox_5.isChecked():
cv2.imwrite(aug_path+"/flipxy_shrpnd_"+file,sharpen(flip(resized,-1)))
cv2.imwrite(aug_path+"/flipx_shrpnd_"+file,sharpen(flip(resized,0)))
cv2.imwrite(aug_path+"/flipy_shrpnd"+file,sharpen(flip(resized,1)))
if self.checkBox_4.isChecked() and self.checkBox_2.isChecked():
cv2.imwrite(aug_path+"/binc_rtd90_shrpnd_"+file,sharpen(rotate(brightness_increase(resized,50),90,1)))
cv2.imwrite(aug_path+"/binc_rtd45_shrpnd_"+file,sharpen(rotate(brightness_increase(resized,50),45,1)))
cv2.imwrite(aug_path+"/binc_rtd30_shrpnd_"+file,sharpen(rotate(brightness_increase(resized,50),30,1)))
cv2.imwrite(aug_path+"/binc_rtd270_shrpnd_"+file,sharpen(rotate(brightness_increase(resized,50),270,1)))
cv2.imwrite(aug_path+"/binc_rtd315_shrpnd_"+file,sharpen(rotate(brightness_increase(resized,50),315,1)))
cv2.imwrite(aug_path+"/binc_rtd330_shrpnd_"+file,sharpen(rotate(brightness_increase(resized,50),330,1)))
if self.checkBox_4.isChecked() and self.checkBox_3.isChecked():
cv2.imwrite(aug_path+"/bdec_rtd90_shrpnd_"+file,sharpen(rotate(decrease_brightness(resized,50),90,1)))
cv2.imwrite(aug_path+"/bdec_rtd45_shrpnd_"+file,sharpen(rotate(decrease_brightness(resized,50),45,1)))
cv2.imwrite(aug_path+"/bdec_rtd30_shrpnd_"+file,sharpen(rotate(decrease_brightness(resized,50),30,1)))
cv2.imwrite(aug_path+"/bdec_rtd270_shrpnd_"+file,sharpen(rotate(decrease_brightness(resized,50),270,1)))
cv2.imwrite(aug_path+"/bdec_rtd315_shrpnd_"+file,sharpen(rotate(decrease_brightness(resized,50),315,1)))
cv2.imwrite(aug_path+"/bdec_rtd330_shrpnd_"+file,sharpen(rotate(decrease_brightness(resized,50),330,1)))
if self.checkBox_5.isChecked() and self.checkBox_2.isChecked():
cv2.imwrite(aug_path+"/binc_flipxy_shrpnd_"+file,sharpen(flip(brightness_increase(resized,50),-1)))
cv2.imwrite(aug_path+"/binc_flipx_shrpnd_"+file,sharpen(flip(brightness_increase(resized,50),0)))
cv2.imwrite(aug_path+"/binc_flipy_shrpnd_"+file,sharpen(flip(brightness_increase(resized,50),1)))
if self.checkBox_5.isChecked() and self.checkBox_3.isChecked():
cv2.imwrite(aug_path+"/bdec_flipxy_shrpnd_"+file,sharpen(flip(decrease_brightness(resized,50),-1)))
cv2.imwrite(aug_path+"/bdec_flipx_shrpnd_"+file,sharpen(flip(decrease_brightness(resized,50),0)))
cv2.imwrite(aug_path+"/bdec_flipy_shrpnd_"+file,sharpen(flip(decrease_brightness(resized,50),1)))
if self.checkBox_5.isChecked() and self.checkBox_4.isChecked():
cv2.imwrite(aug_path+"/rtd90_flipxy_shrpnd_"+file,sharpen(flip(rotate(resized,90,1),-1)))
cv2.imwrite(aug_path+"/rtd45_flipxy_shrpnd_"+file,sharpen(flip(rotate(resized,45,1),-1)))
cv2.imwrite(aug_path+"/rtd30_flipxy_shrpnd_"+file,sharpen(flip(rotate(resized,30,1),-1)))
cv2.imwrite(aug_path+"/rtd270_flipxy_shrpnd_"+file,sharpen(flip(rotate(resized,270,1),-1)))
cv2.imwrite(aug_path+"/rtd315_flipxy_shrpnd_"+file,sharpen(flip(rotate(resized,315,1),-1)))
cv2.imwrite(aug_path+"/rtd330_flipxy_shrpnd_"+file,sharpen(flip(rotate(resized,330,1),-1)))
cv2.imwrite(aug_path+"/rtd90_flipx_shrpnd_"+file,sharpen(flip(rotate(resized,90,1),0)))
cv2.imwrite(aug_path+"/rtd45_flipx_shrpnd_"+file,sharpen(flip(rotate(resized,45,1),0)))
cv2.imwrite(aug_path+"/rtd30_flipx_shrpnd_"+file,sharpen(flip(rotate(resized,30,1),0)))
cv2.imwrite(aug_path+"/rtd270_flipx_shrpnd_"+file,sharpen(flip(rotate(resized,270,1),0)))
cv2.imwrite(aug_path+"/rtd315_flipx_shrpnd_"+file,sharpen(flip(rotate(resized,315,1),0)))
cv2.imwrite(aug_path+"/rtd330_flipx_shrpnd_"+file,sharpen(flip(rotate(resized,330,1),0)))
cv2.imwrite(aug_path+"/rtd90_flipy_shrpnd_"+file,sharpen(flip(rotate(resized,90,1),1)))
cv2.imwrite(aug_path+"/rtd45_flipy_shrpnd_"+file,sharpen(flip(rotate(resized,45,1),1)))
cv2.imwrite(aug_path+"/rtd30_flipy_shrpnd_"+file,sharpen(flip(rotate(resized,30,1),1)))
cv2.imwrite(aug_path+"/rtd270_flipy_shrpnd_"+file,sharpen(flip(rotate(resized,270,1),1)))
cv2.imwrite(aug_path+"/rtd315_flipy_shrpnd_"+file,sharpen(flip(rotate(resized,315,1),1)))
cv2.imwrite(aug_path+"/rtd330_flipy_shrpnd_"+file,sharpen(flip(rotate(resized,330,1),1)))
if self.checkBox_7.isChecked():
cv2.imwrite(aug_path+"/shrdx_"+file,shear(resized,0))
cv2.imwrite(aug_path+"/shrdy_"+file,shear(resized,1))
if self.checkBox_2.isChecked():
cv2.imwrite(aug_path+"/binc_shrdx_"+file,shear(brightness_increase(resized,50),0))
cv2.imwrite(aug_path+"/binc_shrdy_"+file,shear(brightness_increase(resized,50),1))
if self.checkBox_3.isChecked():
cv2.imwrite(aug_path+"/bdec_shrdx_"+file,shear(decrease_brightness(resized,50),0))
cv2.imwrite(aug_path+"/bdec_shrdy_"+file,shear(decrease_brightness(resized,50),1))
if self.checkBox_4.isChecked():
cv2.imwrite(aug_path+"/rtd90_shrdx_"+file,shear(rotate(resized,90,1),0))
cv2.imwrite(aug_path+"/rtd45_shrdx_"+file,shear(rotate(resized,45,1),0))
cv2.imwrite(aug_path+"/rtd30_shrdx_"+file,shear(rotate(resized,30,1),0))
cv2.imwrite(aug_path+"/rtd270_shrdx_"+file,shear(rotate(resized,270,1),0))
cv2.imwrite(aug_path+"/rtd315_shrdx_"+file,shear(rotate(resized,315,1),0))
cv2.imwrite(aug_path+"/rtd330_shrdx_"+file,shear(rotate(resized,330,1),0))
cv2.imwrite(aug_path+"/rtd90_shrdy_"+file,shear(rotate(resized,90,1),1))
cv2.imwrite(aug_path+"/rtd45_shrdy_"+file,shear(rotate(resized,45,1),1))
cv2.imwrite(aug_path+"/rtd30_shrdy_"+file,shear(rotate(resized,30,1),1))
cv2.imwrite(aug_path+"/rtd270_shrdy_"+file,shear(rotate(resized,270,1),1))
cv2.imwrite(aug_path+"/rtd315_shrdy_"+file,shear(rotate(resized,315,1),1))
cv2.imwrite(aug_path+"/rtd330_shrdy_"+file,shear(rotate(resized,330,1),1))
if self.checkBox_5.isChecked():
cv2.imwrite(aug_path+"/flipxy_shrdx_"+file,shear(flip(resized,-1),0))
cv2.imwrite(aug_path+"/flipx_shrdx_"+file,shear(flip(resized,0),0))
cv2.imwrite(aug_path+"/flipy_shrdx"+file,shear(flip(resized,1),0))
cv2.imwrite(aug_path+"/flipxy_shrdy_"+file,shear(flip(resized,-1),1))
cv2.imwrite(aug_path+"/flipx_shrdy_"+file,shear(flip(resized,0),1))
cv2.imwrite(aug_path+"/flipy_shrdy"+file,shear(flip(resized,1),1))
if self.checkBox_6.isChecked():
cv2.imwrite(aug_path+"/shrpnd_shrdx"+file,shear(sharpen(resized),0))
cv2.imwrite(aug_path+"/shrpnd_shrdy"+file,shear(sharpen(resized),1))
if self.checkBox_4.isChecked() and self.checkBox_2.isChecked():
cv2.imwrite(aug_path+"/binc_rtd90_shrdx_"+file,shear(rotate(brightness_increase(resized,50),90,1),0))
cv2.imwrite(aug_path+"/binc_rtd45_shrdx_"+file,shear(rotate(brightness_increase(resized,50),45,1),0))
cv2.imwrite(aug_path+"/binc_rtd30_shrdx_"+file,shear(rotate(brightness_increase(resized,50),30,1),0))
cv2.imwrite(aug_path+"/binc_rtd270_shrdx_"+file,shear(rotate(brightness_increase(resized,50),270,1),0))
cv2.imwrite(aug_path+"/binc_rtd315_shrdx_"+file,shear(rotate(brightness_increase(resized,50),315,1),0))
cv2.imwrite(aug_path+"/binc_rtd330_shrdx_"+file,shear(rotate(brightness_increase(resized,50),330,1),0))
cv2.imwrite(aug_path+"/binc_rtd90_shrdy_"+file,shear(rotate(brightness_increase(resized,50),90,1),1))
cv2.imwrite(aug_path+"/binc_rtd45_shrdy_"+file,shear(rotate(brightness_increase(resized,50),45,1),1))
cv2.imwrite(aug_path+"/binc_rtd30_shrdy_"+file,shear(rotate(brightness_increase(resized,50),30,1),1))
cv2.imwrite(aug_path+"/binc_rtd270_shrdy_"+file,shear(rotate(brightness_increase(resized,50),270,1),1))
cv2.imwrite(aug_path+"/binc_rtd315_shrdy_"+file,shear(rotate(brightness_increase(resized,50),315,1),1))
cv2.imwrite(aug_path+"/binc_rtd330_shrdy_"+file,shear(rotate(brightness_increase(resized,50),330,1),1))
if self.checkBox_4.isChecked() and self.checkBox_3.isChecked():
cv2.imwrite(aug_path+"/bdec_rtd90_shrdx_"+file,shear(rotate(decrease_brightness(resized,50),90,1),0))
cv2.imwrite(aug_path+"/bdec_rtd45_shrdx_"+file,shear(rotate(decrease_brightness(resized,50),45,1),0))
cv2.imwrite(aug_path+"/bdec_rtd30_shrdx_"+file,shear(rotate(decrease_brightness(resized,50),30,1),0))
cv2.imwrite(aug_path+"/bdec_rtd270_shrdx_"+file,shear(rotate(decrease_brightness(resized,50),270,1),0))
cv2.imwrite(aug_path+"/bdec_rtd315_shrdx_"+file,shear(rotate(decrease_brightness(resized,50),315,1),0))
cv2.imwrite(aug_path+"/bdec_rtd330_shrdx_"+file,shear(rotate(decrease_brightness(resized,50),330,1),0))
cv2.imwrite(aug_path+"/bdec_rtd90_shrdy_"+file,shear(rotate(decrease_brightness(resized,50),90,1),1))
cv2.imwrite(aug_path+"/bdec_rtd45_shrdy_"+file,shear(rotate(decrease_brightness(resized,50),45,1),1))
cv2.imwrite(aug_path+"/bdec_rtd30_shrdy_"+file,shear(rotate(decrease_brightness(resized,50),30,1),1))
cv2.imwrite(aug_path+"/bdec_rtd270_shrdy_"+file,shear(rotate(decrease_brightness(resized,50),270,1),1))
cv2.imwrite(aug_path+"/bdec_rtd315_shrdy_"+file,shear(rotate(decrease_brightness(resized,50),315,1),1))
cv2.imwrite(aug_path+"/bdec_rtd330_shrdy_"+file,shear(rotate(decrease_brightness(resized,50),330,1),1))
if self.checkBox_5.isChecked() and self.checkBox_2.isChecked():
cv2.imwrite(aug_path+"/binc_flipxy_shrdx_"+file,shear(flip(brightness_increase(resized,50),-1),0))
cv2.imwrite(aug_path+"/binc_flipx_shrdx_"+file,shear(flip(brightness_increase(resized,50),0),0))
cv2.imwrite(aug_path+"/binc_flipy_shrdx_"+file,shear(flip(brightness_increase(resized,50),1),0))
cv2.imwrite(aug_path+"/binc_flipxy_shrdy_"+file,shear(flip(brightness_increase(resized,50),-1),1))
cv2.imwrite(aug_path+"/binc_flipx_shrdy_"+file,shear(flip(brightness_increase(resized,50),0),1))
cv2.imwrite(aug_path+"/binc_flipy_shrdy_"+file,shear(flip(brightness_increase(resized,50),1),1))
if self.checkBox_5.isChecked() and self.checkBox_3.isChecked():
cv2.imwrite(aug_path+"/bdec_flipxy_shrdx_"+file,shear(flip(decrease_brightness(resized,50),-1),0))
cv2.imwrite(aug_path+"/bdec_flipx_shrdx_"+file,shear(flip(decrease_brightness(resized,50),0),0))
cv2.imwrite(aug_path+"/bdec_flipy_shrdx_"+file,shear(flip(decrease_brightness(resized,50),1),0))
cv2.imwrite(aug_path+"/bdec_flipxy_shrdy_"+file,shear(flip(decrease_brightness(resized,50),-1),1))
cv2.imwrite(aug_path+"/bdec_flipx_shrdy_"+file,shear(flip(decrease_brightness(resized,50),0),1))
cv2.imwrite(aug_path+"/bdec_flipy_shrdy_"+file,shear(flip(decrease_brightness(resized,50),1),1))
if self.checkBox_5.isChecked() and self.checkBox_4.isChecked():
cv2.imwrite(aug_path+"/rtd90_flipxy_shrdx_"+file,shear(flip(rotate(resized,90,1),-1),0))
cv2.imwrite(aug_path+"/rtd45_flipxy_shrdx_"+file,shear(flip(rotate(resized,45,1),-1),0))
cv2.imwrite(aug_path+"/rtd30_flipxy_shrdx_"+file,shear(flip(rotate(resized,30,1),-1),0))
cv2.imwrite(aug_path+"/rtd270_flipxy_shrdx_"+file,shear(flip(rotate(resized,270,1),-1),0))
cv2.imwrite(aug_path+"/rtd315_flipxy_shrdx_"+file,shear(flip(rotate(resized,315,1),-1),0))
cv2.imwrite(aug_path+"/rtd330_flipxy_shrdx_"+file,shear(flip(rotate(resized,330,1),-1),0))
cv2.imwrite(aug_path+"/rtd90_flipx_shrdx_"+file,shear(flip(rotate(resized,90,1),0),0))
cv2.imwrite(aug_path+"/rtd45_flipx_shrdx_"+file,shear(flip(rotate(resized,45,1),0),0))
cv2.imwrite(aug_path+"/rtd30_flipx_shrdx_"+file,shear(flip(rotate(resized,30,1),0),0))
cv2.imwrite(aug_path+"/rtd270_flipx_shrdx_"+file,shear(flip(rotate(resized,270,1),0),0))
cv2.imwrite(aug_path+"/rtd315_flipx_shrdx_"+file,shear(flip(rotate(resized,315,1),0),0))
cv2.imwrite(aug_path+"/rtd330_flipx_shrdx_"+file,shear(flip(rotate(resized,330,1),0),0))
cv2.imwrite(aug_path+"/rtd90_flipy_shrdx_"+file,shear(flip(rotate(resized,90,1),1),0))
cv2.imwrite(aug_path+"/rtd45_flipy_shrdx_"+file,shear(flip(rotate(resized,45,1),1),0))
cv2.imwrite(aug_path+"/rtd30_flipy_shrdx_"+file,shear(flip(rotate(resized,30,1),1),0))
cv2.imwrite(aug_path+"/rtd270_flipy_shrdx_"+file,shear(flip(rotate(resized,270,1),1),0))
cv2.imwrite(aug_path+"/rtd315_flipy_shrdx_"+file,shear(flip(rotate(resized,315,1),1),0))
cv2.imwrite(aug_path+"/rtd330_flipy_shrdx_"+file,shear(flip(rotate(resized,330,1),1),0))
cv2.imwrite(aug_path+"/rtd90_flipxy_shrdy_"+file,shear(flip(rotate(resized,90,1),-1),1))
cv2.imwrite(aug_path+"/rtd45_flipxy_shrdy_"+file,shear(flip(rotate(resized,45,1),-1),1))
cv2.imwrite(aug_path+"/rtd30_flipxy_shrdy_"+file,shear(flip(rotate(resized,30,1),-1),1))
cv2.imwrite(aug_path+"/rtd270_flipxy_shrdy_"+file,shear(flip(rotate(resized,270,1),-1),1))
cv2.imwrite(aug_path+"/rtd315_flipxy_shrdy_"+file,shear(flip(rotate(resized,315,1),-1),1))
cv2.imwrite(aug_path+"/rtd330_flipxy_shrdy_"+file,shear(flip(rotate(resized,330,1),-1),1))
cv2.imwrite(aug_path+"/rtd90_flipx_shrdy_"+file,shear(flip(rotate(resized,90,1),0),1))
cv2.imwrite(aug_path+"/rtd45_flipx_shrdy_"+file,shear(flip(rotate(resized,45,1),0),1))
cv2.imwrite(aug_path+"/rtd30_flipx_shrdy_"+file,shear(flip(rotate(resized,30,1),0),1))
cv2.imwrite(aug_path+"/rtd270_flipx_shrdy_"+file,shear(flip(rotate(resized,270,1),0),1))
cv2.imwrite(aug_path+"/rtd315_flipx_shrdy_"+file,shear(flip(rotate(resized,315,1),0),1))
cv2.imwrite(aug_path+"/rtd330_flipx_shrdy_"+file,shear(flip(rotate(resized,330,1),0),1))
cv2.imwrite(aug_path+"/rtd90_flipy_shrdy_"+file,shear(flip(rotate(resized,90,1),1),1))
cv2.imwrite(aug_path+"/rtd45_flipy_shrdy_"+file,shear(flip(rotate(resized,45,1),1),1))
cv2.imwrite(aug_path+"/rtd30_flipy_shrdy_"+file,shear(flip(rotate(resized,30,1),1),1))
cv2.imwrite(aug_path+"/rtd270_flipy_shrdy_"+file,shear(flip(rotate(resized,270,1),1),1))
cv2.imwrite(aug_path+"/rtd315_flipy_shrdy_"+file,shear(flip(rotate(resized,315,1),1),1))
cv2.imwrite(aug_path+"/rtd330_flipy_shrdy_"+file,shear(flip(rotate(resized,330,1),1),1))
if self.progress.value!=0 and counter==0:
i+=float(float(100)/float(len(files)))
self.progress.setValue(i)
print(counter,self.progress.value())
if 99==self.progress.value() and counter==0:
self.progress.setValue(0)
counter+=1
msg = QtWidgets.QMessageBox()
msg.setIcon(QtWidgets.QMessageBox.Information)
msg.setText("Information")
msg.setInformativeText("Completed!")
msg.setWindowTitle("Finished")
msg.setDetailedText("Your process has been succesfully completed.")
msg.setStandardButtons(QtWidgets.QMessageBox.Ok | QtWidgets.QMessageBox.Cancel)
msg.exec_()
elif 100<=self.progress.value() and counter==0:
counter+=1
self.progress.setValue(0)
msg = QtWidgets.QMessageBox()
msg.setIcon(QtWidgets.QMessageBox.Information)
msg.setText("Information")
msg.setInformativeText("Completed!")
msg.setWindowTitle("Finished")
msg.setDetailedText("Your process has been succesfully completed.")
msg.setStandardButtons(QtWidgets.QMessageBox.Ok | QtWidgets.QMessageBox.Cancel)
msg.exec_()
app = QtWidgets.QApplication(sys.argv)
app.setStyle('Fusion')
window = Ui()
app.exec_()
|
[
"cv2.GaussianBlur",
"os.walk",
"numpy.ones",
"PyQt5.uic.loadUi",
"cv2.warpAffine",
"PyQt5.QtWidgets.QApplication",
"cv2.erode",
"cv2.getRotationMatrix2D",
"cv2.subtract",
"cv2.filter2D",
"cv2.dilate",
"cv2.cvtColor",
"os.path.exists",
"cv2.resize",
"PyQt5.QtGui.QPixmap",
"imutils.grab_contours",
"cv2.flip",
"cv2.add",
"PyQt5.QtGui.QIcon",
"PyQt5.QtWidgets.QMessageBox",
"os.makedirs",
"cv2.threshold",
"numpy.float32",
"cv2.imread",
"numpy.array",
"PyQt5.QtGui.QGuiApplication.processEvents"
] |
[((38929, 38961), 'PyQt5.QtWidgets.QApplication', 'QtWidgets.QApplication', (['sys.argv'], {}), '(sys.argv)\n', (38951, 38961), False, 'from PyQt5 import QtWidgets, uic, QtGui\n'), ((422, 474), 'cv2.resize', 'cv2.resize', (['image', 'dim'], {'interpolation': 'cv2.INTER_AREA'}), '(image, dim, interpolation=cv2.INTER_AREA)\n', (432, 474), False, 'import cv2\n'), ((689, 728), 'cv2.cvtColor', 'cv2.cvtColor', (['image', 'cv2.COLOR_BGR2GRAY'], {}), '(image, cv2.COLOR_BGR2GRAY)\n', (701, 728), False, 'import cv2\n'), ((743, 781), 'cv2.GaussianBlur', 'cv2.GaussianBlur', (['grayscale', '(5, 5)', '(0)'], {}), '(grayscale, (5, 5), 0)\n', (759, 781), False, 'import cv2\n'), ((874, 920), 'cv2.erode', 'cv2.erode', (['threshold_image', 'None'], {'iterations': '(2)'}), '(threshold_image, None, iterations=2)\n', (883, 920), False, 'import cv2\n'), ((940, 987), 'cv2.dilate', 'cv2.dilate', (['threshold_image', 'None'], {'iterations': '(2)'}), '(threshold_image, None, iterations=2)\n', (950, 987), False, 'import cv2\n'), ((1097, 1127), 'imutils.grab_contours', 'imutils.grab_contours', (['contour'], {}), '(contour)\n', (1118, 1127), False, 'import imutils\n'), ((1507, 1563), 'cv2.resize', 'cv2.resize', (['new_image', 'dim'], {'interpolation': 'cv2.INTER_AREA'}), '(new_image, dim, interpolation=cv2.INTER_AREA)\n', (1517, 1563), False, 'import cv2\n'), ((1859, 1881), 'cv2.add', 'cv2.add', (['image', 'bright'], {}), '(image, bright)\n', (1866, 1881), False, 'import cv2\n'), ((2169, 2196), 'cv2.subtract', 'cv2.subtract', (['image', 'bright'], {}), '(image, bright)\n', (2181, 2196), False, 'import cv2\n'), ((2656, 2709), 'cv2.getRotationMatrix2D', 'cv2.getRotationMatrix2D', (['(w / 2, h / 2)', 'angle', 'scale'], {}), '((w / 2, h / 2), angle, scale)\n', (2679, 2709), False, 'import cv2\n'), ((2731, 2763), 'cv2.warpAffine', 'cv2.warpAffine', (['image', 'M', '(w, h)'], {}), '(image, M, (w, h))\n', (2745, 2763), False, 'import cv2\n'), ((2913, 2934), 'cv2.flip', 'cv2.flip', (['image', 'axis'], {}), '(image, axis)\n', (2921, 2934), False, 'import cv2\n'), ((3063, 3115), 'numpy.array', 'np.array', (['[[-1, -1, -1], [-1, 10, -1], [-1, -1, -1]]'], {}), '([[-1, -1, -1], [-1, 10, -1], [-1, -1, -1]])\n', (3071, 3115), True, 'import numpy as np\n'), ((3177, 3212), 'cv2.filter2D', 'cv2.filter2D', (['image', '(-1)', 'sharpening'], {}), '(image, -1, sharpening)\n', (3189, 3212), False, 'import cv2\n'), ((800, 852), 'cv2.threshold', 'cv2.threshold', (['grayscale', '(45)', '(255)', 'cv2.THRESH_BINARY'], {}), '(grayscale, 45, 255, cv2.THRESH_BINARY)\n', (813, 852), False, 'import cv2\n'), ((1792, 1827), 'numpy.ones', 'np.ones', (['image.shape'], {'dtype': '"""uint8"""'}), "(image.shape, dtype='uint8')\n", (1799, 1827), True, 'import numpy as np\n'), ((2111, 2146), 'numpy.ones', 'np.ones', (['image.shape'], {'dtype': '"""uint8"""'}), "(image.shape, dtype='uint8')\n", (2118, 2146), True, 'import numpy as np\n'), ((3448, 3495), 'numpy.float32', 'np.float32', (['[[1, 0.5, 0], [0, 1, 0], [0, 0, 1]]'], {}), '([[1, 0.5, 0], [0, 1, 0], [0, 0, 1]])\n', (3458, 3495), True, 'import numpy as np\n'), ((3898, 3933), 'PyQt5.uic.loadUi', 'uic.loadUi', (['"""augmentation.ui"""', 'self'], {}), "('augmentation.ui', self)\n", (3908, 3933), False, 'from PyQt5 import QtWidgets, uic, QtGui\n'), ((4025, 4053), 'PyQt5.QtGui.QPixmap', 'QtGui.QPixmap', (['"""2582365.ico"""'], {}), "('2582365.ico')\n", (4038, 4053), False, 'from PyQt5 import QtWidgets, uic, QtGui\n'), ((4071, 4092), 'PyQt5.QtGui.QIcon', 'QtGui.QIcon', (['mypixmap'], {}), '(mypixmap)\n', (4082, 4092), False, 'from PyQt5 import QtWidgets, uic, QtGui\n'), ((7775, 7790), 'os.walk', 'os.walk', (['String'], {}), '(String)\n', (7782, 7790), False, 'import os\n'), ((3584, 3631), 'numpy.float32', 'np.float32', (['[[1, 0, 0], [0.5, 1, 0], [0, 0, 1]]'], {}), '([[1, 0, 0], [0.5, 1, 0], [0, 0, 1]])\n', (3594, 3631), True, 'import numpy as np\n'), ((7047, 7075), 'os.path.exists', 'os.path.exists', (['poppedString'], {}), '(poppedString)\n', (7061, 7075), False, 'import os\n'), ((7096, 7119), 'PyQt5.QtWidgets.QMessageBox', 'QtWidgets.QMessageBox', ([], {}), '()\n', (7117, 7119), False, 'from PyQt5 import QtWidgets, uic, QtGui\n'), ((7655, 7679), 'os.path.exists', 'os.path.exists', (['aug_path'], {}), '(aug_path)\n', (7669, 7679), False, 'import os\n'), ((7704, 7725), 'os.makedirs', 'os.makedirs', (['aug_path'], {}), '(aug_path)\n', (7715, 7725), False, 'import os\n'), ((7859, 7890), 'PyQt5.QtGui.QGuiApplication.processEvents', 'QGuiApplication.processEvents', ([], {}), '()\n', (7888, 7890), False, 'from PyQt5.QtGui import QGuiApplication\n'), ((7983, 8003), 'cv2.imread', 'cv2.imread', (['filepath'], {}), '(filepath)\n', (7993, 8003), False, 'import cv2\n'), ((37695, 37718), 'PyQt5.QtWidgets.QMessageBox', 'QtWidgets.QMessageBox', ([], {}), '()\n', (37716, 37718), False, 'from PyQt5 import QtWidgets, uic, QtGui\n'), ((38381, 38404), 'PyQt5.QtWidgets.QMessageBox', 'QtWidgets.QMessageBox', ([], {}), '()\n', (38402, 38404), False, 'from PyQt5 import QtWidgets, uic, QtGui\n')]
|
"""Testing for Showalter Index only. While MetPy handles all five parameters,
the Showalter Index was contributed to MetPy by the GeoCAT team because of the
skewt_params function. Additionally, a discrepancy between NCL and MetPy
calculations of CAPE has been identified. After validating the CAPE value by
hand using the method outlined in Hobbs 2006, it was determined that the MetPy
calculation was closer to the CAPE value than the NCL calculation. To overcome
any issues with validating the dataset, it was decided that skewt_params would
only test against the Showalter Index for validation and not against all five
parameters.
Citation:
<NAME>., and <NAME>, 2006:
Atmospheric Science: An Introductory Survey. 2nd ed. Academic Press,
pg 345
"""
import sys
import metpy.calc as mpcalc
import numpy as np
import xarray as xr
import numpy.testing as nt
from metpy.units import units
import geocat.datafiles as gdf
import pandas as pd
# Import from directory structure if coverage test, or from installed
# packages otherwise
if "--cov" in str(sys.argv):
from src.geocat.comp import get_skewt_vars, showalter_index
else:
from geocat.comp import get_skewt_vars, showalter_index
ds = pd.read_csv(gdf.get('ascii_files/sounding.testdata'),
delimiter='\\s+',
header=None)
# get ground truth from ncl run netcdf file
try:
out = xr.open_dataset(
"skewt_params_output.nc"
) # Generated by running ncl_tests/skewt_params_test.ncl
except:
out = xr.open_dataset("test/skewt_params_output.nc")
# Extract the data from ds
p = ds[1].values * units.hPa # Pressure [mb/hPa]
tc = (ds[5].values + 2) * units.degC # Temperature [C]
tdc = ds[9].values * units.degC # Dew pt temp [C]
pro = mpcalc.parcel_profile(p, tc[0], tdc[0]).to('degC')
# Extract Showalter Index from NCL out file and convert to int
Shox = np.round(out['Shox']) # Use np.round to avoid rounding issues
NCL_shox = int(Shox[0]) # Convert to int
def test_shox_vals():
# Showalter index
shox = showalter_index(p, tc, tdc)
shox = shox[0].magnitude
# Place calculated values in iterable list
vals = np.round(shox).astype(int)
# Compare calculated values with expected
nt.assert_equal(vals, NCL_shox)
def test_get_skewt_vars():
"""With respect to the note in test_vars, the MetPy calculated values for
Plcl, Tlcl, Pwat, and CAPE along with the tested value for Showalter Index
are pre-defined in this test.
This test is to ensure that the values of each are being read,
assigned, and placed correctly in get_skewt_vars.
"""
expected = 'Plcl= 927 Tlcl[C]= 24 Shox= 3 Pwat[cm]= 5 Cape[J]= 2958'
result = get_skewt_vars(p, tc, tdc, pro)
nt.assert_equal(result, expected)
|
[
"metpy.calc.parcel_profile",
"xarray.open_dataset",
"geocat.datafiles.get",
"geocat.comp.showalter_index",
"geocat.comp.get_skewt_vars",
"numpy.testing.assert_equal",
"numpy.round"
] |
[((1864, 1885), 'numpy.round', 'np.round', (["out['Shox']"], {}), "(out['Shox'])\n", (1872, 1885), True, 'import numpy as np\n'), ((1207, 1247), 'geocat.datafiles.get', 'gdf.get', (['"""ascii_files/sounding.testdata"""'], {}), "('ascii_files/sounding.testdata')\n", (1214, 1247), True, 'import geocat.datafiles as gdf\n'), ((1373, 1414), 'xarray.open_dataset', 'xr.open_dataset', (['"""skewt_params_output.nc"""'], {}), "('skewt_params_output.nc')\n", (1388, 1414), True, 'import xarray as xr\n'), ((2027, 2054), 'geocat.comp.showalter_index', 'showalter_index', (['p', 'tc', 'tdc'], {}), '(p, tc, tdc)\n', (2042, 2054), False, 'from geocat.comp import get_skewt_vars, showalter_index\n'), ((2221, 2252), 'numpy.testing.assert_equal', 'nt.assert_equal', (['vals', 'NCL_shox'], {}), '(vals, NCL_shox)\n', (2236, 2252), True, 'import numpy.testing as nt\n'), ((2690, 2721), 'geocat.comp.get_skewt_vars', 'get_skewt_vars', (['p', 'tc', 'tdc', 'pro'], {}), '(p, tc, tdc, pro)\n', (2704, 2721), False, 'from geocat.comp import get_skewt_vars, showalter_index\n'), ((2726, 2759), 'numpy.testing.assert_equal', 'nt.assert_equal', (['result', 'expected'], {}), '(result, expected)\n', (2741, 2759), True, 'import numpy.testing as nt\n'), ((1503, 1549), 'xarray.open_dataset', 'xr.open_dataset', (['"""test/skewt_params_output.nc"""'], {}), "('test/skewt_params_output.nc')\n", (1518, 1549), True, 'import xarray as xr\n'), ((1742, 1781), 'metpy.calc.parcel_profile', 'mpcalc.parcel_profile', (['p', 'tc[0]', 'tdc[0]'], {}), '(p, tc[0], tdc[0])\n', (1763, 1781), True, 'import metpy.calc as mpcalc\n'), ((2143, 2157), 'numpy.round', 'np.round', (['shox'], {}), '(shox)\n', (2151, 2157), True, 'import numpy as np\n')]
|
import grblas
import numba
import numpy as np
from typing import Union, Tuple
from .container import Flat, Pivot
from .schema import SchemaMismatchError
from .oputils import jitted_op
class SizeMismatchError(Exception):
pass
# Sentinel to indicate the fill values come from the object to which we are aligning
_fill_like = object()
def align(a: Union[Flat, Pivot], b: Union[Flat, Pivot], op=None, afill=None, bfill=None):
"""
Dispatched to align_pivots if both a and b and Pivots.
Otherwise dispatches to align_flats, converting any Pivots to Flats using .flatten()
"""
if a.schema is not b.schema:
raise SchemaMismatchError("Objects have different schemas")
if afill is not None and afill is b:
afill = _fill_like
if bfill is not None and bfill is a:
bfill = _fill_like
a_type = type(a)
b_type = type(b)
if a_type is Pivot and b_type is Pivot:
return align_pivots(a, b, op=op, afill=afill, bfill=bfill)
elif a_type is Flat and b_type is Flat:
return align_flats(a, b, op=op, afill=afill, bfill=bfill)
elif a_type is Pivot:
return align_flats(a.flatten(), b, op=op, afill=afill, bfill=bfill)
else:
return align_flats(a, b.flatten(), op=op, afill=afill, bfill=bfill)
def align_flats(a: Flat, b: Flat, op=None, afill=None, bfill=None):
"""
Aligns two Flats, returning two Pivots with matching left and top dimensions.
If a and b are already aligned, returns Flats instead of Pivots.
If op is provided, returns a single Pivot. Otherwise returns a 2-tuple of Pivots
afill and bfill are used to determine the kind of alignment
afill=None, bfill=None -> inner join
afill!=None, bfill=None -> left join
afill=None, bfill!=None -> right join
afill!=None, bfill!=None -> outer join
:param a: Flat
:param b: Flat
:param op: grblas.BinaryOp (default None)
:param afill: scalar or Flat (default None)
:param bfill: scalar or Flat (default None)
:return: Pivot or (Pivot, Pivot)
"""
if a.schema is not b.schema:
raise SchemaMismatchError("Objects have different schemas")
if afill is not None and afill is b:
afill = _fill_like
if bfill is not None and bfill is a:
bfill = _fill_like
# Determine which object is a subset of the other, or if they are fully disjoint
mismatched_dims = a.dims ^ b.dims
if not mismatched_dims:
result = _already_aligned_flats(a, b, op, afill, bfill)
elif a.dims - b.dims == mismatched_dims: # b is the subset
a = a.pivot(top=mismatched_dims)
result = _align_subset(a, b, op, afill, bfill)
elif b.dims - a.dims == mismatched_dims: # a is the subset
b = b.pivot(top=mismatched_dims)
result = _align_subset(b, a, op, bfill, afill, reversed=True)
else: # disjoint
matched_dims = a.dims & b.dims
if matched_dims: # partial disjoint
a = a.pivot(left=matched_dims)
b = b.pivot(left=matched_dims)
result = _align_partial_disjoint(a, b, op, afill, bfill)
else: # full disjoint
result = _align_fully_disjoint(a, b, op)
return result
def align_pivots(a: Pivot, b: Pivot, op=None, afill=None, bfill=None):
"""
Aligns two Pivots, returning two Pivots with matching left and top dimensions.
If op is provided, returns a single Pivot. Otherwise returns a 2-tuple of Pivots
afill and bfill are used to determine the kind of alignment
afill=None, bfill=None -> inner join
afill!=None, bfill=None -> left join
afill=None, bfill!=None -> right join
afill!=None, bfill!=None -> outer join
:param a: Pivot
:param b: Pivot
:param op: grblas.BinaryOp (default None)
:param afill: scalar or Flat (default None)
:param bfill: scalar or Flat (default None)
:return: Pivot or (Pivot, Pivot)
"""
if a.schema is not b.schema:
raise SchemaMismatchError("Objects have different schemas")
if afill is not None and afill is b:
afill = _fill_like
if bfill is not None and bfill is a:
bfill = _fill_like
# Determine which object is a subset of the other, or if they are fully disjoint
a_dims = a.left | a.top
b_dims = b.left | b.top
mismatched_dims = a_dims ^ b_dims
if not mismatched_dims:
result = _already_aligned_pivots(a, b.pivot(left=a.left), op, afill, bfill)
elif a_dims - b_dims == mismatched_dims: # b is the subset
a = a.pivot(top=mismatched_dims)
result = _align_subset(a, b.flatten(), op, afill, bfill)
elif b_dims - a_dims == mismatched_dims: # a is the subset
b = b.pivot(top=mismatched_dims)
result = _align_subset(b, a.flatten(), op, bfill, afill, reversed=True)
else: # disjoint
matched_dims = a_dims & b_dims
if matched_dims: # partial disjoint
a = a.pivot(left=matched_dims)
b = b.pivot(left=matched_dims)
result = _align_partial_disjoint(a, b, op, afill, bfill)
else: # full disjoint
result = _align_fully_disjoint(a.flatten(), b.flatten(), op)
return result
def _already_aligned_flats(a: Flat, b: Flat, op=None, afill=None, bfill=None) -> Union[Flat, Tuple[Flat, Flat]]:
"""
a.dims must equal b.dims
"""
assert a.dims == b.dims, f"Mismatching dimensions {a.dims ^ b.dims}"
# Create a2 and b2 as expanded, filled vectors
a2, b2 = a.vector, b.vector
if afill is _fill_like:
a2 = a2.dup()
a2(~a2.S) << b2
elif afill is not None:
a2 = grblas.Vector.new(a2.dtype, size=a2.size)
a2(b2.S) << afill
a2(a.vector.S) << a.vector
if bfill is _fill_like:
b2 = b2.dup()
b2(~b2.S) << a2
elif bfill is not None:
b2 = grblas.Vector.new(b2.dtype, size=b2.size)
b2(a2.S) << bfill
b2(b.vector.S) << b.vector
# Handle op
if op is None:
return Flat(a2, a.schema, a.dims), Flat(b2, b.schema, b.dims)
else:
result = a2.ewise_mult(b2, op=op)
return Flat(result.new(), a.schema, a.dims)
def _already_aligned_pivots(a: Pivot, b: Pivot, op=None, afill=None, bfill=None) -> Union[Pivot, Tuple[Pivot, Pivot]]:
"""
a.left must equal b.left
a.top must equal b.top
"""
assert a.left == b.left, f"Mismatching left dimensions {a.left ^ b.left}"
assert a.top == b.top, f"Mismatching top dimensions {a.top ^ b.top}"
# Create a2 and b2 as expanded, filled matrices
a2, b2 = a.matrix, b.matrix
if afill is _fill_like:
a2 = a2.dup()
a2(~a2.S) << b2
elif afill is not None:
a2 = grblas.Matrix.new(a2.dtype, nrows=a2.nrows, ncols=a2.ncols)
a2(b2.S) << afill
a2(a.matrix.S) << a.matrix
if bfill is _fill_like:
b2 = b2.dup()
b2(~b2.S) << a2
elif bfill is not None:
b2 = grblas.Matrix.new(b2.dtype, nrows=b2.nrows, ncols=b2.ncols)
b2(a2.S) << bfill
b2(b.matrix.S) << b.matrix
# Handle op
if op is None:
return Pivot(a2, a.schema, a.left, a.top), Pivot(b2, b.schema, b.left, b.top)
else:
result = a2.ewise_mult(b2, op=op)
return Pivot(result.new(), a.schema, a.left, a.top)
def _align_subset(x: Pivot, sub: Flat, op=None, afill=None, bfill=None, reversed=False) -> Union[Pivot, Tuple[Pivot, Pivot]]:
"""
x must have mismatched dims on top
sub must have dims exactly matching x.left
"""
x2 = x.matrix
size = sub.vector.size
if x2.nrows != size:
raise SizeMismatchError(f"nrows {x2.nrows} != size {size}")
# Convert sub's values into the diagonal of a matrix
index, vals = sub.vector.to_values()
diag = grblas.Matrix.from_values(index, index, vals, nrows=size, ncols=size)
# Multiply the diagonal matrix by the shape of x (any_first will only take values from diag)
# This performs a broadcast of sub's values to the corresponding locations in x
y2 = diag.mxm(x2, grblas.semiring.any_first).new()
# mxm is an intersection operation, so mismatched codes are missing in m_broadcast
if op is None or afill is not None:
# Check if sub contained more rows than are present in m_broadcast
v_x = y2.reduce_rows(grblas.monoid.any).new()
if v_x.nvals < sub.vector.nvals:
# Find mismatched codes and add them in with the NULL
v_x(~v_x.S, replace=True)[:] << sub.vector
# Update y2 with values lost from mxm
y2[:, 0] << v_x # Column 0 is the code for all_dims == NULL
if afill is not None:
# Fill corresponding elements of x2 if afill
if afill is not _fill_like:
v_x(v_x.S) << afill
x2 = x2.dup()
x2(v_x.S)[:, 0] << v_x
if bfill is _fill_like:
y2(~y2.S) << x2
elif bfill is not None:
ybackup = y2
y2 = grblas.Matrix.new(y2.dtype, nrows=y2.nrows, ncols=y2.ncols)
y2(x2.S) << bfill
y2(ybackup.S) << ybackup
# Handle op
if op is None:
x = Pivot(x2, x.schema, x.left, x.top)
y = Pivot(y2, x.schema, x.left, x.top)
return (y, x) if reversed else (x, y)
else:
result = y2.ewise_mult(x2, op=op) if reversed else x2.ewise_mult(y2, op=op)
return Pivot(result.new(), x.schema, x.left, x.top)
def _align_fully_disjoint(x: Flat, y: Flat, op=None) -> Union[Pivot, Tuple[Pivot, Pivot]]:
"""
x.dims must have no overlap with y.dims
"""
xm = grblas.Matrix.new(x.vector.dtype, x.vector.size, 1)
xm[:, 0] << x.vector
ym = grblas.Matrix.new(y.vector.dtype, y.vector.size, 1)
ym[:, 0] << y.vector
# Perform the cross-joins. Values from only a single input are used per calculation
xr = xm.mxm(ym.T, grblas.semiring.any_first)
yr = xm.mxm(ym.T, grblas.semiring.any_second)
if op is None:
return (
Pivot(xr.new(), x.schema, left=x.dims, top=y.dims),
Pivot(yr.new(), x.schema, left=x.dims, top=y.dims)
)
else:
result = xr.new()
result(accum=op) << yr
return Pivot(result, x.schema, left=x.dims, top=y.dims)
def _align_partial_disjoint(x: Pivot, y: Pivot, op=None, afill=None, bfill=None) -> Union[Pivot, Tuple[Pivot, Pivot]]:
"""
x.left must match y.left
x.top must have no overlap with y.top
"""
assert x.left == y.left
matched_dims = x.left
mismatched_dims = x.top | y.top
top_mask = x.schema.build_bitmask(mismatched_dims)
# Compute the size and offsets of the cross join computation
x1 = x.matrix.apply(grblas.unary.one).new().reduce_rows(grblas.monoid.plus['INT64']).new()
y1 = y.matrix.apply(grblas.unary.one).new().reduce_rows(grblas.monoid.plus['INT64']).new()
combo = x1.ewise_add(y1, grblas.monoid.times).new()
# Mask back into x1 and y1 to contain only what applies to each (unless filling to match)
if op is None:
xmask = x1.S if afill is None else None
ymask = y1.S if bfill is None else None
x1(mask=xmask) << combo
y1(mask=ymask) << combo
x1_size = int(x1.reduce().value)
y1_size = int(y1.reduce().value)
else: # op is provided, will only have a single return object
# Trim x1 to final size, then compute result_size
if afill is None and bfill is None: # intersecting values only
x1 << x1.ewise_mult(y1, grblas.monoid.times)
elif afill is None: # size same as x
x1(x1.S, replace=True) << combo
elif bfill is None: # size same as y
x1(y1.S, replace=True) << combo
else:
x1 = combo
result_size = int(x1.reduce().value)
combo_idx, combo_offset = combo.to_values()
# Extract input arrays in hypercsr format
xs = x.matrix.ss.export(format='hypercsr', sort=True)
xs_rows = xs['rows']
xs_indptr = xs['indptr']
xs_col_indices = xs['col_indices']
xs_values = xs['values']
ys = y.matrix.ss.export(format='hypercsr', sort=True)
ys_rows = ys['rows']
ys_indptr = ys['indptr']
ys_col_indices = ys['col_indices']
ys_values = ys['values']
if op is None:
# Build output data structures
r1_rows = np.zeros((x1_size,), dtype=np.uint64)
r1_cols = np.zeros((x1_size,), dtype=np.uint64)
r1_vals = np.zeros((x1_size,), dtype=xs['values'].dtype)
r2_rows = np.zeros((y1_size,), dtype=np.uint64)
r2_cols = np.zeros((y1_size,), dtype=np.uint64)
r2_vals = np.zeros((y1_size,), dtype=ys['values'].dtype)
_align_partial_disjoint_numba(
combo_idx,
xs_rows, xs_indptr, xs_col_indices, xs_values,
ys_rows, ys_indptr, ys_col_indices, ys_values,
r1_rows, r1_cols, r1_vals,
r2_rows, r2_cols, r2_vals,
afill is not None, bfill is not None,
afill if afill is not None and afill is not _fill_like else None,
bfill if bfill is not None and bfill is not _fill_like else None
)
return (
Pivot(grblas.Matrix.from_values(r1_rows, r1_cols, r1_vals, nrows=x.matrix.nrows, ncols=top_mask + 1),
x.schema, matched_dims, mismatched_dims),
Pivot(grblas.Matrix.from_values(r2_rows, r2_cols, r2_vals, nrows=x.matrix.nrows, ncols=top_mask + 1),
x.schema, matched_dims, mismatched_dims)
)
else:
unified_input_dtype = grblas.dtypes.unify(
grblas.dtypes.lookup_dtype(xs['values'].dtype),
grblas.dtypes.lookup_dtype(ys['values'].dtype)
)
output_dtype_str = op.types[grblas.dtypes.lookup_dtype(unified_input_dtype).name]
op = jitted_op(op)
# Build output data structures
r_rows = np.zeros((result_size,), dtype=np.uint64)
r_cols = np.zeros((result_size,), dtype=np.uint64)
r_vals = np.zeros((result_size,), dtype=grblas.dtypes.lookup_dtype(output_dtype_str).np_type)
_align_partial_disjoint_numba_op(
op, combo_idx,
xs_rows, xs_indptr, xs_col_indices, xs_values,
ys_rows, ys_indptr, ys_col_indices, ys_values,
r_rows, r_cols, r_vals,
afill is not None, bfill is not None,
afill if afill is not None and afill is not _fill_like else None,
bfill if bfill is not None and bfill is not _fill_like else None
)
return (
Pivot(grblas.Matrix.from_values(r_rows, r_cols, r_vals), x.schema, matched_dims, mismatched_dims)
)
@numba.njit
def _align_partial_disjoint_numba(
combo_idx,
xs_rows, xs_indptr, xs_col_indices, xs_values,
ys_rows, ys_indptr, ys_col_indices, ys_values,
r1_rows, r1_cols, r1_vals,
r2_rows, r2_cols, r2_vals,
fill_x, fill_y, # boolean
x_fillval, y_fillval, # scalar or None
):
# xi/yi are the current index of xs/ys, not necessarily in sync with combo_idx due to mismatched codes
xi = 0
yi = 0
xoffset = 0
yoffset = 0
for row in combo_idx:
# Find xrow and yrow, if available
xrow, yrow = -1, -1
if xi < len(xs_rows) and xs_rows[xi] == row:
xrow = xi
xi += 1
if yi < len(ys_rows) and ys_rows[yi] == row:
yrow = yi
yi += 1
# Iterate over x and y indices for this row
if xrow >= 0 and yrow >= 0:
for xj in range(xs_indptr[xrow], xs_indptr[xrow + 1]):
for yj in range(ys_indptr[yrow], ys_indptr[yrow + 1]):
r1_rows[xoffset] = row
r2_rows[yoffset] = row
col_idx = xs_col_indices[xj] + ys_col_indices[yj]
r1_cols[xoffset] = col_idx
r2_cols[yoffset] = col_idx
r1_vals[xoffset] = xs_values[xj]
r2_vals[yoffset] = ys_values[yj]
xoffset += 1
yoffset += 1
elif xrow >= 0:
for xj in range(xs_indptr[xrow], xs_indptr[xrow + 1]):
r1_rows[xoffset] = row
r1_cols[xoffset] = xs_col_indices[xj]
r1_vals[xoffset] = xs_values[xj]
xoffset += 1
if fill_y:
r2_rows[yoffset] = row
r2_cols[yoffset] = xs_col_indices[xj]
if y_fillval is None:
r2_vals[yoffset] = xs_values[xj]
else:
r2_vals[yoffset] = y_fillval
yoffset += 1
elif yrow >= 0:
for yj in range(ys_indptr[yrow], ys_indptr[yrow + 1]):
r2_rows[yoffset] = row
r2_cols[yoffset] = ys_col_indices[yj]
r2_vals[yoffset] = ys_values[yj]
yoffset += 1
if fill_x:
r1_rows[xoffset] = row
r1_cols[xoffset] = ys_col_indices[yj]
if x_fillval is None:
r1_vals[xoffset] = ys_values[yj]
else:
r1_vals[xoffset] = x_fillval
xoffset += 1
else:
raise Exception("Unhandled row")
@numba.njit
def _align_partial_disjoint_numba_op(
op, combo_idx,
xs_rows, xs_indptr, xs_col_indices, xs_values,
ys_rows, ys_indptr, ys_col_indices, ys_values,
r_rows, r_cols, r_vals,
fill_x, fill_y, # boolean
x_fillval, y_fillval, # scalar or None
):
# xi/yi are the current index of xs/ys, not necessarily in sync with combo_idx due to mismatched codes
xi = 0
yi = 0
offset = 0
for row in combo_idx:
# Find xrow and yrow, if available
xrow, yrow = -1, -1
if xi < len(xs_rows) and xs_rows[xi] == row:
xrow = xi
xi += 1
if yi < len(ys_rows) and ys_rows[yi] == row:
yrow = yi
yi += 1
# Iterate over x and y indices for this row
if xrow >= 0 and yrow >= 0:
for xj in range(xs_indptr[xrow], xs_indptr[xrow + 1]):
for yj in range(ys_indptr[yrow], ys_indptr[yrow + 1]):
r_rows[offset] = row
col_idx = xs_col_indices[xj] + ys_col_indices[yj]
r_cols[offset] = col_idx
# Could do the computation here between r1 and r2 rather than keeping them separate
r_vals[offset] = op(xs_values[xj], ys_values[yj])
offset += 1
elif xrow >= 0:
if not fill_y:
continue
for xj in range(xs_indptr[xrow], xs_indptr[xrow + 1]):
r_rows[offset] = row
r_cols[offset] = xs_col_indices[xj]
other_val = xs_values[xj] if y_fillval is None else y_fillval
r_vals[offset] = op(xs_values[xj], other_val)
offset += 1
elif yrow >= 0:
if not fill_x:
continue
for yj in range(ys_indptr[yrow], ys_indptr[yrow + 1]):
r_rows[offset] = row
r_cols[offset] = ys_col_indices[yj]
other_val = ys_values[yj] if x_fillval is None else x_fillval
r_vals[offset] = op(ys_values[yj], other_val)
offset += 1
else:
raise Exception("Unhandled row")
|
[
"grblas.Vector.new",
"numpy.zeros",
"grblas.Matrix.new",
"grblas.dtypes.lookup_dtype",
"grblas.Matrix.from_values"
] |
[((7765, 7834), 'grblas.Matrix.from_values', 'grblas.Matrix.from_values', (['index', 'index', 'vals'], {'nrows': 'size', 'ncols': 'size'}), '(index, index, vals, nrows=size, ncols=size)\n', (7790, 7834), False, 'import grblas\n'), ((9584, 9635), 'grblas.Matrix.new', 'grblas.Matrix.new', (['x.vector.dtype', 'x.vector.size', '(1)'], {}), '(x.vector.dtype, x.vector.size, 1)\n', (9601, 9635), False, 'import grblas\n'), ((9670, 9721), 'grblas.Matrix.new', 'grblas.Matrix.new', (['y.vector.dtype', 'y.vector.size', '(1)'], {}), '(y.vector.dtype, y.vector.size, 1)\n', (9687, 9721), False, 'import grblas\n'), ((12307, 12344), 'numpy.zeros', 'np.zeros', (['(x1_size,)'], {'dtype': 'np.uint64'}), '((x1_size,), dtype=np.uint64)\n', (12315, 12344), True, 'import numpy as np\n'), ((12363, 12400), 'numpy.zeros', 'np.zeros', (['(x1_size,)'], {'dtype': 'np.uint64'}), '((x1_size,), dtype=np.uint64)\n', (12371, 12400), True, 'import numpy as np\n'), ((12419, 12465), 'numpy.zeros', 'np.zeros', (['(x1_size,)'], {'dtype': "xs['values'].dtype"}), "((x1_size,), dtype=xs['values'].dtype)\n", (12427, 12465), True, 'import numpy as np\n'), ((12484, 12521), 'numpy.zeros', 'np.zeros', (['(y1_size,)'], {'dtype': 'np.uint64'}), '((y1_size,), dtype=np.uint64)\n', (12492, 12521), True, 'import numpy as np\n'), ((12540, 12577), 'numpy.zeros', 'np.zeros', (['(y1_size,)'], {'dtype': 'np.uint64'}), '((y1_size,), dtype=np.uint64)\n', (12548, 12577), True, 'import numpy as np\n'), ((12596, 12642), 'numpy.zeros', 'np.zeros', (['(y1_size,)'], {'dtype': "ys['values'].dtype"}), "((y1_size,), dtype=ys['values'].dtype)\n", (12604, 12642), True, 'import numpy as np\n'), ((13858, 13899), 'numpy.zeros', 'np.zeros', (['(result_size,)'], {'dtype': 'np.uint64'}), '((result_size,), dtype=np.uint64)\n', (13866, 13899), True, 'import numpy as np\n'), ((13917, 13958), 'numpy.zeros', 'np.zeros', (['(result_size,)'], {'dtype': 'np.uint64'}), '((result_size,), dtype=np.uint64)\n', (13925, 13958), True, 'import numpy as np\n'), ((5621, 5662), 'grblas.Vector.new', 'grblas.Vector.new', (['a2.dtype'], {'size': 'a2.size'}), '(a2.dtype, size=a2.size)\n', (5638, 5662), False, 'import grblas\n'), ((5840, 5881), 'grblas.Vector.new', 'grblas.Vector.new', (['b2.dtype'], {'size': 'b2.size'}), '(b2.dtype, size=b2.size)\n', (5857, 5881), False, 'import grblas\n'), ((6696, 6755), 'grblas.Matrix.new', 'grblas.Matrix.new', (['a2.dtype'], {'nrows': 'a2.nrows', 'ncols': 'a2.ncols'}), '(a2.dtype, nrows=a2.nrows, ncols=a2.ncols)\n', (6713, 6755), False, 'import grblas\n'), ((6933, 6992), 'grblas.Matrix.new', 'grblas.Matrix.new', (['b2.dtype'], {'nrows': 'b2.nrows', 'ncols': 'b2.ncols'}), '(b2.dtype, nrows=b2.nrows, ncols=b2.ncols)\n', (6950, 6992), False, 'import grblas\n'), ((8974, 9033), 'grblas.Matrix.new', 'grblas.Matrix.new', (['y2.dtype'], {'nrows': 'y2.nrows', 'ncols': 'y2.ncols'}), '(y2.dtype, nrows=y2.nrows, ncols=y2.ncols)\n', (8991, 9033), False, 'import grblas\n'), ((13566, 13612), 'grblas.dtypes.lookup_dtype', 'grblas.dtypes.lookup_dtype', (["xs['values'].dtype"], {}), "(xs['values'].dtype)\n", (13592, 13612), False, 'import grblas\n'), ((13626, 13672), 'grblas.dtypes.lookup_dtype', 'grblas.dtypes.lookup_dtype', (["ys['values'].dtype"], {}), "(ys['values'].dtype)\n", (13652, 13672), False, 'import grblas\n'), ((14536, 14585), 'grblas.Matrix.from_values', 'grblas.Matrix.from_values', (['r_rows', 'r_cols', 'r_vals'], {}), '(r_rows, r_cols, r_vals)\n', (14561, 14585), False, 'import grblas\n'), ((13153, 13251), 'grblas.Matrix.from_values', 'grblas.Matrix.from_values', (['r1_rows', 'r1_cols', 'r1_vals'], {'nrows': 'x.matrix.nrows', 'ncols': '(top_mask + 1)'}), '(r1_rows, r1_cols, r1_vals, nrows=x.matrix.nrows,\n ncols=top_mask + 1)\n', (13178, 13251), False, 'import grblas\n'), ((13327, 13425), 'grblas.Matrix.from_values', 'grblas.Matrix.from_values', (['r2_rows', 'r2_cols', 'r2_vals'], {'nrows': 'x.matrix.nrows', 'ncols': '(top_mask + 1)'}), '(r2_rows, r2_cols, r2_vals, nrows=x.matrix.nrows,\n ncols=top_mask + 1)\n', (13352, 13425), False, 'import grblas\n'), ((13719, 13766), 'grblas.dtypes.lookup_dtype', 'grblas.dtypes.lookup_dtype', (['unified_input_dtype'], {}), '(unified_input_dtype)\n', (13745, 13766), False, 'import grblas\n'), ((14007, 14051), 'grblas.dtypes.lookup_dtype', 'grblas.dtypes.lookup_dtype', (['output_dtype_str'], {}), '(output_dtype_str)\n', (14033, 14051), False, 'import grblas\n')]
|
import torch
import librosa
import numpy as np
import mlflow.pytorch
import torch.nn.functional as F
import matplotlib.pyplot as plt
from librosa.feature import mfcc
def predict(model, x):
n_mfcc = 40
sample_rate = 22050
mel_coefficients = mfcc(x, sample_rate, n_mfcc=n_mfcc)
time_frames = mel_coefficients.shape[-1]
chunks = int(np.ceil(time_frames / 160))
pad_size = (chunks * 160) - time_frames
mfcc_pad = np.pad(mel_coefficients, ((0, 0), (0, pad_size)), mode="wrap")
mfcc_split = np.split(mfcc_pad, 160, axis=1)
mfcc_batch = np.stack(mfcc_split)
probabilities = model(torch.FloatTensor(mfcc_batch).to("cuda"))
classifications = torch.argmax(probabilities, dim=-1)
sequence = torch.reshape(classifications, (1, -1))
original_length = x.size
predictions = F.interpolate(sequence.unsqueeze(0).to(torch.float), original_length, mode='linear')
predictions = torch.squeeze(predictions).to(torch.int64)
return predictions
def main():
model_path = "mlruns/0/ec90ba732dec470492d3d6e7089e644b/artifacts/model"
model = mlflow.pytorch.load_model(model_path)
audio, _ = librosa.load("data/reddit/1vtdusf08us21-DASH_240.wav")
predictions = predict(model, audio)
predictions = predictions.cpu().detach().numpy()
fig, ax = plt.subplots()
ax.plot(audio)
ax.fill_between(np.arange(len(predictions)), 0, 1, color="green", where=predictions==1, alpha=0.3, transform=ax.get_xaxis_transform())
ax.fill_between(np.arange(len(predictions)), 0, 1, color="red", where=predictions==2, alpha=0.3, transform=ax.get_xaxis_transform())
plt.show()
if __name__ == "__main__":
main()
|
[
"numpy.pad",
"numpy.stack",
"matplotlib.pyplot.show",
"numpy.ceil",
"torch.argmax",
"torch.FloatTensor",
"matplotlib.pyplot.subplots",
"numpy.split",
"torch.squeeze",
"librosa.load",
"torch.reshape",
"librosa.feature.mfcc"
] |
[((257, 292), 'librosa.feature.mfcc', 'mfcc', (['x', 'sample_rate'], {'n_mfcc': 'n_mfcc'}), '(x, sample_rate, n_mfcc=n_mfcc)\n', (261, 292), False, 'from librosa.feature import mfcc\n'), ((443, 505), 'numpy.pad', 'np.pad', (['mel_coefficients', '((0, 0), (0, pad_size))'], {'mode': '"""wrap"""'}), "(mel_coefficients, ((0, 0), (0, pad_size)), mode='wrap')\n", (449, 505), True, 'import numpy as np\n'), ((523, 554), 'numpy.split', 'np.split', (['mfcc_pad', '(160)'], {'axis': '(1)'}), '(mfcc_pad, 160, axis=1)\n', (531, 554), True, 'import numpy as np\n'), ((573, 593), 'numpy.stack', 'np.stack', (['mfcc_split'], {}), '(mfcc_split)\n', (581, 593), True, 'import numpy as np\n'), ((684, 719), 'torch.argmax', 'torch.argmax', (['probabilities'], {'dim': '(-1)'}), '(probabilities, dim=-1)\n', (696, 719), False, 'import torch\n'), ((735, 774), 'torch.reshape', 'torch.reshape', (['classifications', '(1, -1)'], {}), '(classifications, (1, -1))\n', (748, 774), False, 'import torch\n'), ((1150, 1204), 'librosa.load', 'librosa.load', (['"""data/reddit/1vtdusf08us21-DASH_240.wav"""'], {}), "('data/reddit/1vtdusf08us21-DASH_240.wav')\n", (1162, 1204), False, 'import librosa\n'), ((1312, 1326), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (1324, 1326), True, 'import matplotlib.pyplot as plt\n'), ((1628, 1638), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1636, 1638), True, 'import matplotlib.pyplot as plt\n'), ((355, 381), 'numpy.ceil', 'np.ceil', (['(time_frames / 160)'], {}), '(time_frames / 160)\n', (362, 381), True, 'import numpy as np\n'), ((926, 952), 'torch.squeeze', 'torch.squeeze', (['predictions'], {}), '(predictions)\n', (939, 952), False, 'import torch\n'), ((620, 649), 'torch.FloatTensor', 'torch.FloatTensor', (['mfcc_batch'], {}), '(mfcc_batch)\n', (637, 649), False, 'import torch\n')]
|
import numpy as np
from sklearn.preprocessing import Imputer, StandardScaler
from matplotlib import pyplot as plt
data = np.load('sample.npy')
# Plot raw data.
plt.figure(1)
plt.plot(data)
# Impute missing values.
imputer = Imputer()
data = imputer.fit_transform(data)
plt.figure(2)
plt.plot(data)
# Scale data.
scaler = StandardScaler()
data = scaler.fit_transform(data)
plt.figure(3)
plt.plot(data)
plt.show()
|
[
"numpy.load",
"sklearn.preprocessing.StandardScaler",
"matplotlib.pyplot.show",
"matplotlib.pyplot.plot",
"sklearn.preprocessing.Imputer",
"matplotlib.pyplot.figure"
] |
[((122, 143), 'numpy.load', 'np.load', (['"""sample.npy"""'], {}), "('sample.npy')\n", (129, 143), True, 'import numpy as np\n'), ((162, 175), 'matplotlib.pyplot.figure', 'plt.figure', (['(1)'], {}), '(1)\n', (172, 175), True, 'from matplotlib import pyplot as plt\n'), ((176, 190), 'matplotlib.pyplot.plot', 'plt.plot', (['data'], {}), '(data)\n', (184, 190), True, 'from matplotlib import pyplot as plt\n'), ((227, 236), 'sklearn.preprocessing.Imputer', 'Imputer', ([], {}), '()\n', (234, 236), False, 'from sklearn.preprocessing import Imputer, StandardScaler\n'), ((273, 286), 'matplotlib.pyplot.figure', 'plt.figure', (['(2)'], {}), '(2)\n', (283, 286), True, 'from matplotlib import pyplot as plt\n'), ((287, 301), 'matplotlib.pyplot.plot', 'plt.plot', (['data'], {}), '(data)\n', (295, 301), True, 'from matplotlib import pyplot as plt\n'), ((326, 342), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (340, 342), False, 'from sklearn.preprocessing import Imputer, StandardScaler\n'), ((378, 391), 'matplotlib.pyplot.figure', 'plt.figure', (['(3)'], {}), '(3)\n', (388, 391), True, 'from matplotlib import pyplot as plt\n'), ((392, 406), 'matplotlib.pyplot.plot', 'plt.plot', (['data'], {}), '(data)\n', (400, 406), True, 'from matplotlib import pyplot as plt\n'), ((408, 418), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (416, 418), True, 'from matplotlib import pyplot as plt\n')]
|
# 3rd party modules
import gym
import numpy as np
import subprocess
import os
from gym import spaces
from basilisk_env.simulators import opNavSimulator
class opNavEnv(gym.Env):
"""
OpNav scenario. The spacecraft must decide when to point at the ground (which generates a
reward) versus pointing at the sun (which increases the sim duration).
"""
def __init__(self):
self.__version__ = "0.0.2"
print("Basilisk OpNav Mode Management Sim - Version {}".format(self.__version__))
# General variables defining the environment
self.max_length =int(40) # Specify the maximum number of planning intervals
# Tell the environment that it doesn't have a sim attribute...
self.sim_init = 0
self.simulator = None
self.reward_total = 0
# Set up options, constants for this environment
self.step_duration = 50. # Set step duration equal to 60 minute
self.reward_mult = 1.
low = -1e16
high = 1e16
self.observation_space = spaces.Box(low, high,shape=(4,1))
self.obs = np.zeros([4,])
self.debug_states = np.zeros([12,])
## Action Space description
# 0 - earth pointing (mission objective)
# 1 - sun pointing (power objective)
# 2 - desaturation (required for long-term pointing)
self.action_space = spaces.Discrete(2)
# Store what the agent tried
self.curr_episode = -1
self.action_episode_memory = []
self.curr_step = 0
self.episode_over = False
def _seed(self):
np.random.seed()
return
def step(self, action):
"""
The agent takes a step in the environment.
Parameters
----------
action : int
Returns
-------
ob, reward, episode_over, info : tuple
ob (object) :
an environment-specific object representing your observation of
the environment.
reward (float) :
amount of reward achieved by the previous action. The scale
varies between environments, but the goal is always to increase
your total reward.
episode_over (bool) :
whether it's time to reset the environment again. Most (but not
all) tasks are divided up into well-defined episodes, and done
being True indicates the episode has terminated. (For example,
perhaps the pole tipped too far, or you lost your last life.)
info (dict) :
diagnostic information useful for debugging. It can sometimes
be useful for learning (for example, it might contain the raw
probabilities behind the environment's last state change).
However, official evaluations of your agent are not allowed to
use this for learning.
"""
if self.sim_init == 0:
self.simulator = opNavSimulator.scenario_OpNav(1., 1., self.step_duration)
self.sim_init = 1
if self.curr_step%10 == 0:
print("At step ", self.curr_step, " of ", self.max_length)
if self.curr_step >= self.max_length:
self.episode_over = True
prev_ob = self._get_state()
self._take_action(action)
reward = self._get_reward()
self.reward_total += reward
ob = self._get_state()
if self.sim_over:
self.episode_over = True
print("End of episode")
if self.episode_over:
info = {'episode':{
'r': self.reward_total,
'l': self.curr_step},
'full_states': self.debug_states,
'obs': ob
}
self.simulator.close_gracefully() # Stop spice from blowing up
self.sim_init = 0
else:
info={
'full_states': self.debug_states,
'obs': ob
}
self.curr_step += 1
return ob, reward, self.episode_over, info
def _take_action(self, action):
'''
Interfaces with the simulator to
:param action:
:return:
'''
self.action_episode_memory[self.curr_episode].append(action)
# Let the simulator handle action management:
self.obs, self.debug_states, self.sim_over = self.simulator.run_sim(action)
def _get_reward(self):
"""
Reward is based on time spent with the inertial attitude pointed towards the ground within a given tolerance.
"""
reward = 0
real = np.array([self.debug_states[3],self.debug_states[4], self.debug_states[5]])
nav = np.array([self.debug_states[0],self.debug_states[1], self.debug_states[2]])
nav -= real
nav *= 1./np.linalg.norm(real)
if self.action_episode_memory[self.curr_episode][-1] == 1:
reward = np.linalg.norm(self.reward_mult / (1. + np.linalg.norm(nav)**2.0))
return reward
def reset(self):
"""
Reset the state of the environment and returns an initial observation.
Returns
-------
observation (object): the initial observation of the space.
"""
self.action_episode_memory.append([])
self.episode_over = False
self.curr_step = 0
self.reward_total = 0
self.simulator = opNavSimulator.scenario_OpNav(1., 1., self.step_duration)
self.sim_init=1
return self.simulator.obs
def _render(self, mode='human', close=False):
return
def _get_state(self):
"""Get the observation.
WIP: Work out which error representation to give the algo."""
return self.simulator.obs
|
[
"numpy.random.seed",
"basilisk_env.simulators.opNavSimulator.scenario_OpNav",
"gym.spaces.Discrete",
"numpy.zeros",
"numpy.array",
"gym.spaces.Box",
"numpy.linalg.norm"
] |
[((1050, 1085), 'gym.spaces.Box', 'spaces.Box', (['low', 'high'], {'shape': '(4, 1)'}), '(low, high, shape=(4, 1))\n', (1060, 1085), False, 'from gym import spaces\n'), ((1103, 1116), 'numpy.zeros', 'np.zeros', (['[4]'], {}), '([4])\n', (1111, 1116), True, 'import numpy as np\n'), ((1146, 1160), 'numpy.zeros', 'np.zeros', (['[12]'], {}), '([12])\n', (1154, 1160), True, 'import numpy as np\n'), ((1389, 1407), 'gym.spaces.Discrete', 'spaces.Discrete', (['(2)'], {}), '(2)\n', (1404, 1407), False, 'from gym import spaces\n'), ((1608, 1624), 'numpy.random.seed', 'np.random.seed', ([], {}), '()\n', (1622, 1624), True, 'import numpy as np\n'), ((4719, 4795), 'numpy.array', 'np.array', (['[self.debug_states[3], self.debug_states[4], self.debug_states[5]]'], {}), '([self.debug_states[3], self.debug_states[4], self.debug_states[5]])\n', (4727, 4795), True, 'import numpy as np\n'), ((4809, 4885), 'numpy.array', 'np.array', (['[self.debug_states[0], self.debug_states[1], self.debug_states[2]]'], {}), '([self.debug_states[0], self.debug_states[1], self.debug_states[2]])\n', (4817, 4885), True, 'import numpy as np\n'), ((5510, 5569), 'basilisk_env.simulators.opNavSimulator.scenario_OpNav', 'opNavSimulator.scenario_OpNav', (['(1.0)', '(1.0)', 'self.step_duration'], {}), '(1.0, 1.0, self.step_duration)\n', (5539, 5569), False, 'from basilisk_env.simulators import opNavSimulator\n'), ((3045, 3104), 'basilisk_env.simulators.opNavSimulator.scenario_OpNav', 'opNavSimulator.scenario_OpNav', (['(1.0)', '(1.0)', 'self.step_duration'], {}), '(1.0, 1.0, self.step_duration)\n', (3074, 3104), False, 'from basilisk_env.simulators import opNavSimulator\n'), ((4923, 4943), 'numpy.linalg.norm', 'np.linalg.norm', (['real'], {}), '(real)\n', (4937, 4943), True, 'import numpy as np\n'), ((5073, 5092), 'numpy.linalg.norm', 'np.linalg.norm', (['nav'], {}), '(nav)\n', (5087, 5092), True, 'import numpy as np\n')]
|
import os
import random
import sys
import numpy as np
import pytest
sys.path.append(os.path.join(os.path.dirname(__file__)))
sys.path.append("\\".join(os.path.dirname(__file__).split("\\")[:-2]))
sys.path.append(os.path.join(os.path.dirname(__file__), "../../"))
from src.distributed_reflectors.reflector import Reflector
SEED = 0
PI = np.pi
straight_collision_and_clear_miss = (
np.array([[-3, 0, 0], [-3, 0, PI / 2]]),
1.0,
np.array([0, 0, PI / 2]),
np.array([1, 0]),
np.array([[0, 0, PI], [-3, 0, PI / 2]]),
)
barely_misses = (
np.array([[-1.0, 0, PI / 4], [-1.0, 0, -PI / 4]]),
1.0,
np.array([0, 0, PI / 2]),
np.array([0, 0]),
np.array([[-1.0, 0, PI / 4], [-1.0, 0, -PI / 4]]),
)
near_misses_but_hit = (
np.array([[-0.99, 0, PI / 4], [-0.99, 0, -PI / 4]]),
1.0,
np.array([0, 0, PI / 2]),
np.array([1, 1]),
np.array([[0.0, 0.99, 3 * PI / 4], [0.0, -0.99, 5 * PI / 4]]),
)
hit = (
np.array([[-np.sqrt(3) / 2, 0, PI / 6], [-np.sqrt(3) / 2, 0, -PI / 6]]),
1.0,
np.array([0, 0, PI / 2]),
np.array([1, 1]),
np.array([[0, 0.5, 5 * PI / 6], [0.0, -0.5, 7 * PI / 6]]),
)
def test_reflector_instantiation():
length = 2.0
coordinates = 5 * np.random.randn(3)
reflector = Reflector(length, coordinates)
assert isinstance(reflector, Reflector)
assert 0 <= reflector.angle <= np.pi
@pytest.mark.parametrize(
"particle_coordinates,length,reflector_coordinates,expected_collisions,expected_new_coordinates",
[straight_collision_and_clear_miss, barely_misses, near_misses_but_hit, hit],
)
def test_correct_collision_detections(
particle_coordinates,
length,
reflector_coordinates,
expected_collisions,
expected_new_coordinates,
):
reflector = Reflector(length, reflector_coordinates)
collisions = reflector.will_collide(particle_coordinates)
np.testing.assert_equal(collisions, expected_collisions)
@pytest.mark.parametrize(
"particle_coordinates,length,reflector_coordinates,expected_collisions,expected_new_coordinates",
[straight_collision_and_clear_miss, barely_misses, near_misses_but_hit, hit],
)
def test_correct_collision_coordinates(
particle_coordinates,
length,
reflector_coordinates,
expected_collisions,
expected_new_coordinates,
):
reflector = Reflector(length, reflector_coordinates)
particle_collisions = reflector.will_collide(particle_coordinates)
new_coordinates = reflector.get_new_coordinates(
particle_coordinates, particle_collisions
)
np.testing.assert_allclose(new_coordinates, expected_new_coordinates, atol=10 ** -5)
|
[
"src.distributed_reflectors.reflector.Reflector",
"numpy.random.randn",
"os.path.dirname",
"numpy.testing.assert_allclose",
"numpy.array",
"numpy.testing.assert_equal",
"pytest.mark.parametrize",
"numpy.sqrt"
] |
[((1387, 1600), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""particle_coordinates,length,reflector_coordinates,expected_collisions,expected_new_coordinates"""', '[straight_collision_and_clear_miss, barely_misses, near_misses_but_hit, hit]'], {}), "(\n 'particle_coordinates,length,reflector_coordinates,expected_collisions,expected_new_coordinates'\n , [straight_collision_and_clear_miss, barely_misses,\n near_misses_but_hit, hit])\n", (1410, 1600), False, 'import pytest\n'), ((1945, 2158), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""particle_coordinates,length,reflector_coordinates,expected_collisions,expected_new_coordinates"""', '[straight_collision_and_clear_miss, barely_misses, near_misses_but_hit, hit]'], {}), "(\n 'particle_coordinates,length,reflector_coordinates,expected_collisions,expected_new_coordinates'\n , [straight_collision_and_clear_miss, barely_misses,\n near_misses_but_hit, hit])\n", (1968, 2158), False, 'import pytest\n'), ((391, 430), 'numpy.array', 'np.array', (['[[-3, 0, 0], [-3, 0, PI / 2]]'], {}), '([[-3, 0, 0], [-3, 0, PI / 2]])\n', (399, 430), True, 'import numpy as np\n'), ((445, 469), 'numpy.array', 'np.array', (['[0, 0, PI / 2]'], {}), '([0, 0, PI / 2])\n', (453, 469), True, 'import numpy as np\n'), ((475, 491), 'numpy.array', 'np.array', (['[1, 0]'], {}), '([1, 0])\n', (483, 491), True, 'import numpy as np\n'), ((497, 536), 'numpy.array', 'np.array', (['[[0, 0, PI], [-3, 0, PI / 2]]'], {}), '([[0, 0, PI], [-3, 0, PI / 2]])\n', (505, 536), True, 'import numpy as np\n'), ((563, 612), 'numpy.array', 'np.array', (['[[-1.0, 0, PI / 4], [-1.0, 0, -PI / 4]]'], {}), '([[-1.0, 0, PI / 4], [-1.0, 0, -PI / 4]])\n', (571, 612), True, 'import numpy as np\n'), ((627, 651), 'numpy.array', 'np.array', (['[0, 0, PI / 2]'], {}), '([0, 0, PI / 2])\n', (635, 651), True, 'import numpy as np\n'), ((657, 673), 'numpy.array', 'np.array', (['[0, 0]'], {}), '([0, 0])\n', (665, 673), True, 'import numpy as np\n'), ((679, 728), 'numpy.array', 'np.array', (['[[-1.0, 0, PI / 4], [-1.0, 0, -PI / 4]]'], {}), '([[-1.0, 0, PI / 4], [-1.0, 0, -PI / 4]])\n', (687, 728), True, 'import numpy as np\n'), ((761, 812), 'numpy.array', 'np.array', (['[[-0.99, 0, PI / 4], [-0.99, 0, -PI / 4]]'], {}), '([[-0.99, 0, PI / 4], [-0.99, 0, -PI / 4]])\n', (769, 812), True, 'import numpy as np\n'), ((827, 851), 'numpy.array', 'np.array', (['[0, 0, PI / 2]'], {}), '([0, 0, PI / 2])\n', (835, 851), True, 'import numpy as np\n'), ((857, 873), 'numpy.array', 'np.array', (['[1, 1]'], {}), '([1, 1])\n', (865, 873), True, 'import numpy as np\n'), ((879, 940), 'numpy.array', 'np.array', (['[[0.0, 0.99, 3 * PI / 4], [0.0, -0.99, 5 * PI / 4]]'], {}), '([[0.0, 0.99, 3 * PI / 4], [0.0, -0.99, 5 * PI / 4]])\n', (887, 940), True, 'import numpy as np\n'), ((1043, 1067), 'numpy.array', 'np.array', (['[0, 0, PI / 2]'], {}), '([0, 0, PI / 2])\n', (1051, 1067), True, 'import numpy as np\n'), ((1073, 1089), 'numpy.array', 'np.array', (['[1, 1]'], {}), '([1, 1])\n', (1081, 1089), True, 'import numpy as np\n'), ((1095, 1152), 'numpy.array', 'np.array', (['[[0, 0.5, 5 * PI / 6], [0.0, -0.5, 7 * PI / 6]]'], {}), '([[0, 0.5, 5 * PI / 6], [0.0, -0.5, 7 * PI / 6]])\n', (1103, 1152), True, 'import numpy as np\n'), ((1268, 1298), 'src.distributed_reflectors.reflector.Reflector', 'Reflector', (['length', 'coordinates'], {}), '(length, coordinates)\n', (1277, 1298), False, 'from src.distributed_reflectors.reflector import Reflector\n'), ((1777, 1817), 'src.distributed_reflectors.reflector.Reflector', 'Reflector', (['length', 'reflector_coordinates'], {}), '(length, reflector_coordinates)\n', (1786, 1817), False, 'from src.distributed_reflectors.reflector import Reflector\n'), ((1885, 1941), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['collisions', 'expected_collisions'], {}), '(collisions, expected_collisions)\n', (1908, 1941), True, 'import numpy as np\n'), ((2336, 2376), 'src.distributed_reflectors.reflector.Reflector', 'Reflector', (['length', 'reflector_coordinates'], {}), '(length, reflector_coordinates)\n', (2345, 2376), False, 'from src.distributed_reflectors.reflector import Reflector\n'), ((2562, 2651), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['new_coordinates', 'expected_new_coordinates'], {'atol': '(10 ** -5)'}), '(new_coordinates, expected_new_coordinates, atol=\n 10 ** -5)\n', (2588, 2651), True, 'import numpy as np\n'), ((99, 124), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (114, 124), False, 'import os\n'), ((227, 252), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (242, 252), False, 'import os\n'), ((1233, 1251), 'numpy.random.randn', 'np.random.randn', (['(3)'], {}), '(3)\n', (1248, 1251), True, 'import numpy as np\n'), ((153, 178), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (168, 178), False, 'import os\n'), ((969, 979), 'numpy.sqrt', 'np.sqrt', (['(3)'], {}), '(3)\n', (976, 979), True, 'import numpy as np\n'), ((999, 1009), 'numpy.sqrt', 'np.sqrt', (['(3)'], {}), '(3)\n', (1006, 1009), True, 'import numpy as np\n')]
|
import random
from typing import List, Tuple, Union
import numpy as np
from srl.base.define import ContinuousAction, DiscreteAction, DiscreteSpaceType, RLObservation
from srl.base.env.spaces.box import BoxSpace
class ArrayContinuousSpace(BoxSpace):
def __init__(
self,
size: int,
low: Union[float, np.ndarray] = -np.inf,
high: Union[float, np.ndarray] = np.inf,
) -> None:
self._size = size
super().__init__((self.size,), low, high)
@property
def size(self):
return self._size
def sample(self, invalid_actions: List[DiscreteSpaceType] = []) -> List[float]:
return super().sample(invalid_actions).tolist()
# --- action discrete
def get_action_discrete_info(self) -> int:
return self._n
def action_discrete_encode(self, val: List[float]) -> DiscreteAction:
raise NotImplementedError
def action_discrete_decode(self, val: DiscreteAction) -> List[float]:
return super().action_discrete_decode(val).tolist()
# --- action continuous
def get_action_continuous_info(self) -> Tuple[int, np.ndarray, np.ndarray]:
return super().get_action_continuous_info()
# def action_continuous_encode(self, val: float) -> ContinuousAction:
# raise NotImplementedError
def action_continuous_decode(self, val: ContinuousAction) -> List[float]:
return val
# --- observation discrete
def get_observation_discrete_info(self) -> Tuple[Tuple[int, ...], np.ndarray, np.ndarray]:
return super().get_observation_discrete_info()
def observation_discrete_encode(self, val: List[float]) -> RLObservation:
return super().observation_discrete_encode(np.asarray(val))
# --- observation continuous
def get_observation_continuous_info(self) -> Tuple[Tuple[int, ...], np.ndarray, np.ndarray]:
return super().get_observation_continuous_info()
def observation_continuous_encode(self, val: List[float]) -> RLObservation:
return super().observation_continuous_encode(np.asarray(val))
|
[
"numpy.asarray"
] |
[((1716, 1731), 'numpy.asarray', 'np.asarray', (['val'], {}), '(val)\n', (1726, 1731), True, 'import numpy as np\n'), ((2055, 2070), 'numpy.asarray', 'np.asarray', (['val'], {}), '(val)\n', (2065, 2070), True, 'import numpy as np\n')]
|
#!/usr/bin/env python3
import collections
import glob
import os
import pandas as pd
import numpy as np
import torch.nn.functional as F
import PIL.Image as Image
from inference.base_image_utils import get_scale_size, image2batch, choose_center_full_size_crop_params
from inference.metrics.fid.fid_score import _compute_statistics_of_images, \
calculate_frechet_distance
from inference.metrics.fid.inception import InceptionV3
from inference.metrics.lpips import LPIPSLossWrapper
from inference.perspective import load_video_frames_from_folder, FlowPredictor
from inference.segmentation import SegmentationModule
from inference.encode_and_animate import calc_segmentation_posterior_error, sum_dicts
from inference.metrics.ssim import SSIM
import constants
MOVABLE_CLASSES = [2, 21]
def calc_optical_flow_metrics(flow_predictor, frames, movable_mask):
if not movable_mask.any():
return dict(flow_l2=float('nan'))
assert not (frames < 0).any() and not (frames > 1).any()
flows = flow_predictor.predict_flow(frames * 2 - 1)[1]
flows_x, flows_y = flows[:, [0]], flows[:, [1]]
flow_x_median = float(flows_x[movable_mask.expand_as(flows_x)].abs().mean())
flow_y_median = float(flows_y[movable_mask.expand_as(flows_y)].abs().mean())
result = dict(flow_l2=(flow_x_median ** 2 + flow_y_median ** 2) ** 0.5)
return result
def batch2pil(batch):
np_batch = ((batch.permute(0, 2, 3, 1) / 2 + 0.5) * 255).clamp(0, 255).cpu().numpy().astype('uint8')
return [Image.fromarray(ar) for ar in np_batch]
def main(args):
segmentation_network = SegmentationModule(os.path.expandvars(args.segm_network)).cuda()
segmentation_network.eval()
lpips_criterion = LPIPSLossWrapper(args.lpips_network).cuda()
flow_predictor = FlowPredictor(os.path.expandvars(args.flow_network))
all_metrics = []
all_metrics_idx = []
# load generated images
gen_frame_paths = list(glob.glob(os.path.join(os.path.expandvars(args.gen_images), '*.jpg')))
gen_frames_as_img = []
for fname in gen_frame_paths:
frame = Image.open(fname).convert('RGB')
frame_batch = image2batch(frame).cuda() / 2 + 0.5
assert not (frame_batch < 0).any() and not (frame_batch > 1).any()
frame_img = batch2pil(frame_batch)[0]
gen_frames_as_img.append(frame_img)
# load gt-images, scale, crop and segment
gt_frame_paths = list(glob.glob(os.path.join(os.path.expandvars(args.gt_images), '*.jpg')))
gt_frames_as_img = []
for fname in gt_frame_paths:
frame = Image.open(fname).convert('RGB')
frame = frame.resize(get_scale_size(args.resolution, frame.size))
frame_batch = image2batch(frame).cuda() / 2 + 0.5
assert not (frame_batch < 0).any() and not (frame_batch > 1).any()
scaled_size = get_scale_size(args.resolution, frame_batch.shape[2:])
frame_batch = F.interpolate(frame_batch, size=scaled_size, mode='bilinear', align_corners=False)
crop_y1, crop_y2, crop_x1, crop_x2 = choose_center_full_size_crop_params(*frame_batch.shape[2:])
frame_batch = frame_batch[:, :, crop_y1:crop_y2, crop_x1:crop_x2]
frame_img = batch2pil(frame_batch)[0]
gt_frames_as_img.append(frame_img)
# compute FID between generated images and gt
print('Calculating FID for images...')
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[2048]
fid_model = InceptionV3([block_idx]).cuda()
fid_gt_means, fid_gt_std = _compute_statistics_of_images(gt_frames_as_img, fid_model,
batch_size=args.batch,
dims=2048, cuda=True, keep_size=False)
fid_gen_means, fid_gen_std = _compute_statistics_of_images(gen_frames_as_img, fid_model,
batch_size=args.batch,
dims=2048, cuda=True, keep_size=False)
fid = dict()
fid['fid_images'] = float(calculate_frechet_distance(fid_gt_means, fid_gt_std, fid_gen_means, fid_gen_std))
# load generated videos
for src_path in sorted(glob.glob(os.path.join(args.gen_videos, '*'))):
if not os.path.isdir(src_path):
continue
print(f'Processing {src_path}')
if src_path.endswith('/'):
src_path = src_path[:-1]
vname = os.path.basename(src_path)
frames = load_video_frames_from_folder(src_path, frame_template=args.frametemplate) / 2 + 0.5
assert not (frames < 0).any() and not (frames > 1).any()
# get mask from the first frame
cur_segm_scores = segmentation_network.predict(frames[:1].cuda(), imgSizes=[args.resolution])
cur_segm_proba = F.softmax(cur_segm_scores, dim=1)
movable_scores = cur_segm_proba[:, MOVABLE_CLASSES].max(1, keepdim=True)[0]
immovable_scores = cur_segm_proba[:, [c for c in range(cur_segm_proba.shape[1])
if c not in MOVABLE_CLASSES]].max(1, keepdim=True)[0]
shift_mask = (movable_scores > immovable_scores).float()
print('Flow metrics...')
flow_metrics = calc_optical_flow_metrics(flow_predictor, frames, shift_mask > 0)
print('LPIPS metrics...')
cur_metrics = collections.defaultdict(float)
lpips = []
for l in range(1, frames.shape[0], args.batch):
r = min(l + args.batch, frames.shape[0])
lpips.append(float(lpips_criterion(frames[l:r].cuda() * (1 - shift_mask), frames[0].cuda() * (1 - shift_mask))))
cur_metrics['lpips_gen'] = np.mean(lpips)
sum_dicts(cur_metrics, flow_metrics)
all_metrics.append(cur_metrics)
all_metrics_idx.append(vname)
# load real images, from which the videos were generated, scale, crop and segment
real_frame_paths = list(glob.glob(os.path.join(os.path.expandvars(args.real_images), '*.jpg')))
real_frames_as_img = []
real_frames_with_segm = {}
for fname in real_frame_paths:
frame = Image.open(fname).convert('RGB')
frame = frame.resize(get_scale_size(args.resolution, frame.size))
# check the interval of stored numbers: 0..1 || -1..1 || 0..255
frame_batch = image2batch(frame).cuda()
frame_batch = (frame_batch - frame_batch.min()) / (frame_batch.max() - frame_batch.min())
assert not (frame_batch < 0).any() and not (frame_batch > 1).any()
scaled_size = get_scale_size(args.resolution, frame_batch.shape[2:])
frame_batch = F.interpolate(frame_batch, size=scaled_size, mode='bilinear', align_corners=False)
crop_y1, crop_y2, crop_x1, crop_x2 = choose_center_full_size_crop_params(*frame_batch.shape[2:])
frame_batch = frame_batch[:, :, crop_y1:crop_y2, crop_x1:crop_x2]
frame_img = batch2pil(frame_batch)[0]
real_frames_as_img.append(frame_img)
cur_segm_scores = segmentation_network.predict(frame_batch, imgSizes=[args.resolution])
cur_segm_proba = F.softmax(cur_segm_scores, dim=1)
f_id = os.path.splitext(os.path.basename(fname))[0]
real_frames_with_segm[f_id] = (frame_batch, cur_segm_proba)
# load videos -- animated real images
animated_frames_by_i = collections.defaultdict(list)
for src_path in sorted(glob.glob(os.path.join(args.animated_images, '*'))):
if not os.path.isdir(src_path):
continue
print(f'Processing {src_path}')
if src_path.endswith('/'):
src_path = src_path[:-1]
vname = os.path.basename(src_path)
frames = load_video_frames_from_folder(src_path, frame_template=args.frametemplate) / 2 + 0.5
assert not (frames < 0).any() and not (frames > 1).any()
for i, fr in enumerate(batch2pil(frames)):
animated_frames_by_i[i].append(fr)
cur_real_frame = None
cur_real_segm_proba = None
for frname, (fr, segm) in real_frames_with_segm.items():
if vname.startswith(frname):
cur_real_frame = fr
cur_real_segm_proba = segm
break
assert cur_real_frame is not None, (vname, real_frames_with_segm.keys())
movable_scores = cur_real_segm_proba[:, MOVABLE_CLASSES].max(1, keepdim=True)[0]
immovable_scores = cur_real_segm_proba[:, [c for c in range(cur_real_segm_proba.shape[1])
if c not in MOVABLE_CLASSES]].max(1, keepdim=True)[0]
shift_mask = (movable_scores > immovable_scores).float()
print('Flow metrics...')
flow_metrics = calc_optical_flow_metrics(flow_predictor, frames, shift_mask > 0)
print('LPIPS metrics...')
cur_metrics = collections.defaultdict(float)
cur_metrics['lpips_1_frame'] = float(lpips_criterion(frames[:1], cur_real_frame))
lpips = []
for l in range(0, frames.shape[0], args.batch):
r = min(l + args.batch, frames.shape[0])
lpips.append(float(lpips_criterion(frames[l:r].cuda() * (1 - shift_mask), cur_real_frame.cuda() * (1 - shift_mask))))
cur_metrics['lpips_anim'] = np.mean(lpips)
sum_dicts(cur_metrics, flow_metrics)
all_metrics.append(cur_metrics)
all_metrics_idx.append(vname)
print('Calculating FID...')
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[2048]
fid_model = InceptionV3([block_idx]).cuda()
fid_real_means, fid_real_std = _compute_statistics_of_images(real_frames_as_img, fid_model,
batch_size=args.batch,
dims=2048, cuda=True, keep_size=False)
for i, cur_gen_frames in animated_frames_by_i.items():
if i % args.skipframe != 0:
continue
cur_fid_means, cur_fid_std = _compute_statistics_of_images(cur_gen_frames, fid_model,
batch_size=args.batch,
dims=2048, cuda=True, keep_size=False)
fid[f'fid_{i}'] = float(calculate_frechet_distance(fid_real_means, fid_real_std,
cur_fid_means, cur_fid_std))
all_metrics.append(fid)
all_metrics_idx.append('global_metrics')
os.makedirs(os.path.dirname(args.outpath), exist_ok=True)
sum_metrics = pd.DataFrame(all_metrics, index=all_metrics_idx)
sum_metrics.to_csv(args.outpath, sep='\t')
if __name__ == '__main__':
import argparse
aparser = argparse.ArgumentParser()
aparser.add_argument('--outpath', type=str, default='results/metrics.csv', help='Path to file to write metrics to')
aparser.add_argument('--gen-images', type=str, default='results/generated/256/images', help='Path to generated images')
aparser.add_argument('--gt-images', type=str, default='results/gt_images', help='Path to gt-images')
aparser.add_argument('--gen-videos', type=str, default='results/generated/256/noise',
help='Path to generated videos (separate folder with frames for each video)')
aparser.add_argument('--animated-images', type=str,
default='results/encode_and_animate_results/test_images/02_eoif',
help='Path to animated images (separate folder with frames for each video)')
aparser.add_argument('--real-images', type=str, default='results/test_images', help='Path to real input images')
aparser.add_argument('--frametemplate', type=str,
default='{:05}.jpg',
help='Template to generate frame file names')
aparser.add_argument('--resolution', type=int, default=256, help='Resolution of generated frames')
aparser.add_argument('--skipframe', type=int, default=10, help='How many frames to skip before evaluating FID')
aparser.add_argument('--batch', type=int, default=69, help='Batch size for FID and LPIPS calculation')
aparser.add_argument('--segm-network', type=str,
default=os.path.join(constants.RESULT_DIR, 'pretrained_models/ade20k-resnet50dilated-ppm_deepsup'),
help='Path to ade20k-resnet50dilated-ppm_deepsup')
aparser.add_argument('--flow-network', type=str,
default=os.path.join(constants.RESULT_DIR, 'pretrained_models/SuperSloMo.ckpt'),
help='Path to SuperSloMo.ckpt')
aparser.add_argument('--lpips-network', type=str,
default=os.path.join(constants.RESULT_DIR, 'pretrained_models/lpips_models/vgg.pth'),
help='Path to vgg.pth')
main(aparser.parse_args())
|
[
"inference.base_image_utils.image2batch",
"inference.perspective.load_video_frames_from_folder",
"argparse.ArgumentParser",
"collections.defaultdict",
"numpy.mean",
"inference.encode_and_animate.sum_dicts",
"os.path.join",
"pandas.DataFrame",
"inference.base_image_utils.get_scale_size",
"os.path.dirname",
"inference.metrics.fid.inception.InceptionV3",
"os.path.basename",
"os.path.expandvars",
"inference.base_image_utils.choose_center_full_size_crop_params",
"os.path.isdir",
"inference.metrics.fid.fid_score._compute_statistics_of_images",
"torch.nn.functional.softmax",
"PIL.Image.open",
"inference.metrics.lpips.LPIPSLossWrapper",
"PIL.Image.fromarray",
"torch.nn.functional.interpolate",
"inference.metrics.fid.fid_score.calculate_frechet_distance"
] |
[((3471, 3596), 'inference.metrics.fid.fid_score._compute_statistics_of_images', '_compute_statistics_of_images', (['gt_frames_as_img', 'fid_model'], {'batch_size': 'args.batch', 'dims': '(2048)', 'cuda': '(True)', 'keep_size': '(False)'}), '(gt_frames_as_img, fid_model, batch_size=args.\n batch, dims=2048, cuda=True, keep_size=False)\n', (3500, 3596), False, 'from inference.metrics.fid.fid_score import _compute_statistics_of_images, calculate_frechet_distance\n'), ((3747, 3873), 'inference.metrics.fid.fid_score._compute_statistics_of_images', '_compute_statistics_of_images', (['gen_frames_as_img', 'fid_model'], {'batch_size': 'args.batch', 'dims': '(2048)', 'cuda': '(True)', 'keep_size': '(False)'}), '(gen_frames_as_img, fid_model, batch_size=args\n .batch, dims=2048, cuda=True, keep_size=False)\n', (3776, 3873), False, 'from inference.metrics.fid.fid_score import _compute_statistics_of_images, calculate_frechet_distance\n'), ((7309, 7338), 'collections.defaultdict', 'collections.defaultdict', (['list'], {}), '(list)\n', (7332, 7338), False, 'import collections\n'), ((9520, 9647), 'inference.metrics.fid.fid_score._compute_statistics_of_images', '_compute_statistics_of_images', (['real_frames_as_img', 'fid_model'], {'batch_size': 'args.batch', 'dims': '(2048)', 'cuda': '(True)', 'keep_size': '(False)'}), '(real_frames_as_img, fid_model, batch_size=\n args.batch, dims=2048, cuda=True, keep_size=False)\n', (9549, 9647), False, 'from inference.metrics.fid.fid_score import _compute_statistics_of_images, calculate_frechet_distance\n'), ((10516, 10564), 'pandas.DataFrame', 'pd.DataFrame', (['all_metrics'], {'index': 'all_metrics_idx'}), '(all_metrics, index=all_metrics_idx)\n', (10528, 10564), True, 'import pandas as pd\n'), ((10676, 10701), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (10699, 10701), False, 'import argparse\n'), ((1504, 1523), 'PIL.Image.fromarray', 'Image.fromarray', (['ar'], {}), '(ar)\n', (1519, 1523), True, 'import PIL.Image as Image\n'), ((1788, 1825), 'os.path.expandvars', 'os.path.expandvars', (['args.flow_network'], {}), '(args.flow_network)\n', (1806, 1825), False, 'import os\n'), ((2815, 2869), 'inference.base_image_utils.get_scale_size', 'get_scale_size', (['args.resolution', 'frame_batch.shape[2:]'], {}), '(args.resolution, frame_batch.shape[2:])\n', (2829, 2869), False, 'from inference.base_image_utils import get_scale_size, image2batch, choose_center_full_size_crop_params\n'), ((2892, 2979), 'torch.nn.functional.interpolate', 'F.interpolate', (['frame_batch'], {'size': 'scaled_size', 'mode': '"""bilinear"""', 'align_corners': '(False)'}), "(frame_batch, size=scaled_size, mode='bilinear', align_corners\n =False)\n", (2905, 2979), True, 'import torch.nn.functional as F\n'), ((3021, 3080), 'inference.base_image_utils.choose_center_full_size_crop_params', 'choose_center_full_size_crop_params', (['*frame_batch.shape[2:]'], {}), '(*frame_batch.shape[2:])\n', (3056, 3080), False, 'from inference.base_image_utils import get_scale_size, image2batch, choose_center_full_size_crop_params\n'), ((4042, 4127), 'inference.metrics.fid.fid_score.calculate_frechet_distance', 'calculate_frechet_distance', (['fid_gt_means', 'fid_gt_std', 'fid_gen_means', 'fid_gen_std'], {}), '(fid_gt_means, fid_gt_std, fid_gen_means, fid_gen_std\n )\n', (4068, 4127), False, 'from inference.metrics.fid.fid_score import _compute_statistics_of_images, calculate_frechet_distance\n'), ((4418, 4444), 'os.path.basename', 'os.path.basename', (['src_path'], {}), '(src_path)\n', (4434, 4444), False, 'import os\n'), ((4780, 4813), 'torch.nn.functional.softmax', 'F.softmax', (['cur_segm_scores'], {'dim': '(1)'}), '(cur_segm_scores, dim=1)\n', (4789, 4813), True, 'import torch.nn.functional as F\n'), ((5345, 5375), 'collections.defaultdict', 'collections.defaultdict', (['float'], {}), '(float)\n', (5368, 5375), False, 'import collections\n'), ((5664, 5678), 'numpy.mean', 'np.mean', (['lpips'], {}), '(lpips)\n', (5671, 5678), True, 'import numpy as np\n'), ((5687, 5723), 'inference.encode_and_animate.sum_dicts', 'sum_dicts', (['cur_metrics', 'flow_metrics'], {}), '(cur_metrics, flow_metrics)\n', (5696, 5723), False, 'from inference.encode_and_animate import calc_segmentation_posterior_error, sum_dicts\n'), ((6523, 6577), 'inference.base_image_utils.get_scale_size', 'get_scale_size', (['args.resolution', 'frame_batch.shape[2:]'], {}), '(args.resolution, frame_batch.shape[2:])\n', (6537, 6577), False, 'from inference.base_image_utils import get_scale_size, image2batch, choose_center_full_size_crop_params\n'), ((6600, 6687), 'torch.nn.functional.interpolate', 'F.interpolate', (['frame_batch'], {'size': 'scaled_size', 'mode': '"""bilinear"""', 'align_corners': '(False)'}), "(frame_batch, size=scaled_size, mode='bilinear', align_corners\n =False)\n", (6613, 6687), True, 'import torch.nn.functional as F\n'), ((6729, 6788), 'inference.base_image_utils.choose_center_full_size_crop_params', 'choose_center_full_size_crop_params', (['*frame_batch.shape[2:]'], {}), '(*frame_batch.shape[2:])\n', (6764, 6788), False, 'from inference.base_image_utils import get_scale_size, image2batch, choose_center_full_size_crop_params\n'), ((7077, 7110), 'torch.nn.functional.softmax', 'F.softmax', (['cur_segm_scores'], {'dim': '(1)'}), '(cur_segm_scores, dim=1)\n', (7086, 7110), True, 'import torch.nn.functional as F\n'), ((7610, 7636), 'os.path.basename', 'os.path.basename', (['src_path'], {}), '(src_path)\n', (7626, 7636), False, 'import os\n'), ((8795, 8825), 'collections.defaultdict', 'collections.defaultdict', (['float'], {}), '(float)\n', (8818, 8825), False, 'import collections\n'), ((9211, 9225), 'numpy.mean', 'np.mean', (['lpips'], {}), '(lpips)\n', (9218, 9225), True, 'import numpy as np\n'), ((9235, 9271), 'inference.encode_and_animate.sum_dicts', 'sum_dicts', (['cur_metrics', 'flow_metrics'], {}), '(cur_metrics, flow_metrics)\n', (9244, 9271), False, 'from inference.encode_and_animate import calc_segmentation_posterior_error, sum_dicts\n'), ((9926, 10049), 'inference.metrics.fid.fid_score._compute_statistics_of_images', '_compute_statistics_of_images', (['cur_gen_frames', 'fid_model'], {'batch_size': 'args.batch', 'dims': '(2048)', 'cuda': '(True)', 'keep_size': '(False)'}), '(cur_gen_frames, fid_model, batch_size=args.\n batch, dims=2048, cuda=True, keep_size=False)\n', (9955, 10049), False, 'from inference.metrics.fid.fid_score import _compute_statistics_of_images, calculate_frechet_distance\n'), ((10452, 10481), 'os.path.dirname', 'os.path.dirname', (['args.outpath'], {}), '(args.outpath)\n', (10467, 10481), False, 'import os\n'), ((1709, 1745), 'inference.metrics.lpips.LPIPSLossWrapper', 'LPIPSLossWrapper', (['args.lpips_network'], {}), '(args.lpips_network)\n', (1725, 1745), False, 'from inference.metrics.lpips import LPIPSLossWrapper\n'), ((2614, 2657), 'inference.base_image_utils.get_scale_size', 'get_scale_size', (['args.resolution', 'frame.size'], {}), '(args.resolution, frame.size)\n', (2628, 2657), False, 'from inference.base_image_utils import get_scale_size, image2batch, choose_center_full_size_crop_params\n'), ((3408, 3432), 'inference.metrics.fid.inception.InceptionV3', 'InceptionV3', (['[block_idx]'], {}), '([block_idx])\n', (3419, 3432), False, 'from inference.metrics.fid.inception import InceptionV3\n'), ((4190, 4224), 'os.path.join', 'os.path.join', (['args.gen_videos', '"""*"""'], {}), "(args.gen_videos, '*')\n", (4202, 4224), False, 'import os\n'), ((4243, 4266), 'os.path.isdir', 'os.path.isdir', (['src_path'], {}), '(src_path)\n', (4256, 4266), False, 'import os\n'), ((6162, 6205), 'inference.base_image_utils.get_scale_size', 'get_scale_size', (['args.resolution', 'frame.size'], {}), '(args.resolution, frame.size)\n', (6176, 6205), False, 'from inference.base_image_utils import get_scale_size, image2batch, choose_center_full_size_crop_params\n'), ((7377, 7416), 'os.path.join', 'os.path.join', (['args.animated_images', '"""*"""'], {}), "(args.animated_images, '*')\n", (7389, 7416), False, 'import os\n'), ((7435, 7458), 'os.path.isdir', 'os.path.isdir', (['src_path'], {}), '(src_path)\n', (7448, 7458), False, 'import os\n'), ((9453, 9477), 'inference.metrics.fid.inception.InceptionV3', 'InceptionV3', (['[block_idx]'], {}), '([block_idx])\n', (9464, 9477), False, 'from inference.metrics.fid.inception import InceptionV3\n'), ((10211, 10299), 'inference.metrics.fid.fid_score.calculate_frechet_distance', 'calculate_frechet_distance', (['fid_real_means', 'fid_real_std', 'cur_fid_means', 'cur_fid_std'], {}), '(fid_real_means, fid_real_std, cur_fid_means,\n cur_fid_std)\n', (10237, 10299), False, 'from inference.metrics.fid.fid_score import _compute_statistics_of_images, calculate_frechet_distance\n'), ((12195, 12289), 'os.path.join', 'os.path.join', (['constants.RESULT_DIR', '"""pretrained_models/ade20k-resnet50dilated-ppm_deepsup"""'], {}), "(constants.RESULT_DIR,\n 'pretrained_models/ade20k-resnet50dilated-ppm_deepsup')\n", (12207, 12289), False, 'import os\n'), ((12449, 12520), 'os.path.join', 'os.path.join', (['constants.RESULT_DIR', '"""pretrained_models/SuperSloMo.ckpt"""'], {}), "(constants.RESULT_DIR, 'pretrained_models/SuperSloMo.ckpt')\n", (12461, 12520), False, 'import os\n'), ((12666, 12742), 'os.path.join', 'os.path.join', (['constants.RESULT_DIR', '"""pretrained_models/lpips_models/vgg.pth"""'], {}), "(constants.RESULT_DIR, 'pretrained_models/lpips_models/vgg.pth')\n", (12678, 12742), False, 'import os\n'), ((1608, 1645), 'os.path.expandvars', 'os.path.expandvars', (['args.segm_network'], {}), '(args.segm_network)\n', (1626, 1645), False, 'import os\n'), ((1953, 1988), 'os.path.expandvars', 'os.path.expandvars', (['args.gen_images'], {}), '(args.gen_images)\n', (1971, 1988), False, 'import os\n'), ((2078, 2095), 'PIL.Image.open', 'Image.open', (['fname'], {}), '(fname)\n', (2088, 2095), True, 'import PIL.Image as Image\n'), ((2430, 2464), 'os.path.expandvars', 'os.path.expandvars', (['args.gt_images'], {}), '(args.gt_images)\n', (2448, 2464), False, 'import os\n'), ((2552, 2569), 'PIL.Image.open', 'Image.open', (['fname'], {}), '(fname)\n', (2562, 2569), True, 'import PIL.Image as Image\n'), ((4462, 4536), 'inference.perspective.load_video_frames_from_folder', 'load_video_frames_from_folder', (['src_path'], {'frame_template': 'args.frametemplate'}), '(src_path, frame_template=args.frametemplate)\n', (4491, 4536), False, 'from inference.perspective import load_video_frames_from_folder, FlowPredictor\n'), ((5941, 5977), 'os.path.expandvars', 'os.path.expandvars', (['args.real_images'], {}), '(args.real_images)\n', (5959, 5977), False, 'import os\n'), ((6100, 6117), 'PIL.Image.open', 'Image.open', (['fname'], {}), '(fname)\n', (6110, 6117), True, 'import PIL.Image as Image\n'), ((6302, 6320), 'inference.base_image_utils.image2batch', 'image2batch', (['frame'], {}), '(frame)\n', (6313, 6320), False, 'from inference.base_image_utils import get_scale_size, image2batch, choose_center_full_size_crop_params\n'), ((7143, 7166), 'os.path.basename', 'os.path.basename', (['fname'], {}), '(fname)\n', (7159, 7166), False, 'import os\n'), ((7654, 7728), 'inference.perspective.load_video_frames_from_folder', 'load_video_frames_from_folder', (['src_path'], {'frame_template': 'args.frametemplate'}), '(src_path, frame_template=args.frametemplate)\n', (7683, 7728), False, 'from inference.perspective import load_video_frames_from_folder, FlowPredictor\n'), ((2133, 2151), 'inference.base_image_utils.image2batch', 'image2batch', (['frame'], {}), '(frame)\n', (2144, 2151), False, 'from inference.base_image_utils import get_scale_size, image2batch, choose_center_full_size_crop_params\n'), ((2682, 2700), 'inference.base_image_utils.image2batch', 'image2batch', (['frame'], {}), '(frame)\n', (2693, 2700), False, 'from inference.base_image_utils import get_scale_size, image2batch, choose_center_full_size_crop_params\n')]
|
import numpy as np
def CheckScore(board):
Win = Loss = Tie = False
zeros = np.where(board == 0)
if np.all(board[0,0:3] == 1) or np.all(board[1,0:3] == 1) or np.all(board[2,0:3] == 1):
Win = True
elif np.all(board[0:3,0] == 1) or np.all(board[0:3,1] == 1) or np.all(board[0:3,2] == 1):
Win = True
elif board[0,0] == 1 and board[1,1] == 1 and board[2,2] == 1:
Win = True
elif board[2,0] == 1 and board[1,1] == 1 and board[0,2] == 1:
Win = True
elif np.all(board[0,0:3] == 2) or np.all(board[1,0:3] == 2) or np.all(board[2,0:3] == 2):
Loss = True
elif np.all(board[0:3,0] == 2) or np.all(board[0:3,1] == 2) or np.all(board[0:3,2] == 2):
Loss = True
elif board[0,0] == 2 and board[1,1] == 2 and board[2,2] == 2:
Loss = True
elif board[2,0] == 2 and board[1,1] == 2 and board[0,2] == 2:
Loss = True
elif len(zeros[0]) == 0:
Tie = True
else: print("board:",board)
return Win, Loss, Tie
|
[
"numpy.where",
"numpy.all"
] |
[((84, 104), 'numpy.where', 'np.where', (['(board == 0)'], {}), '(board == 0)\n', (92, 104), True, 'import numpy as np\n'), ((112, 138), 'numpy.all', 'np.all', (['(board[0, 0:3] == 1)'], {}), '(board[0, 0:3] == 1)\n', (118, 138), True, 'import numpy as np\n'), ((141, 167), 'numpy.all', 'np.all', (['(board[1, 0:3] == 1)'], {}), '(board[1, 0:3] == 1)\n', (147, 167), True, 'import numpy as np\n'), ((170, 196), 'numpy.all', 'np.all', (['(board[2, 0:3] == 1)'], {}), '(board[2, 0:3] == 1)\n', (176, 196), True, 'import numpy as np\n'), ((225, 251), 'numpy.all', 'np.all', (['(board[0:3, 0] == 1)'], {}), '(board[0:3, 0] == 1)\n', (231, 251), True, 'import numpy as np\n'), ((254, 280), 'numpy.all', 'np.all', (['(board[0:3, 1] == 1)'], {}), '(board[0:3, 1] == 1)\n', (260, 280), True, 'import numpy as np\n'), ((283, 309), 'numpy.all', 'np.all', (['(board[0:3, 2] == 1)'], {}), '(board[0:3, 2] == 1)\n', (289, 309), True, 'import numpy as np\n'), ((517, 543), 'numpy.all', 'np.all', (['(board[0, 0:3] == 2)'], {}), '(board[0, 0:3] == 2)\n', (523, 543), True, 'import numpy as np\n'), ((546, 572), 'numpy.all', 'np.all', (['(board[1, 0:3] == 2)'], {}), '(board[1, 0:3] == 2)\n', (552, 572), True, 'import numpy as np\n'), ((575, 601), 'numpy.all', 'np.all', (['(board[2, 0:3] == 2)'], {}), '(board[2, 0:3] == 2)\n', (581, 601), True, 'import numpy as np\n'), ((631, 657), 'numpy.all', 'np.all', (['(board[0:3, 0] == 2)'], {}), '(board[0:3, 0] == 2)\n', (637, 657), True, 'import numpy as np\n'), ((660, 686), 'numpy.all', 'np.all', (['(board[0:3, 1] == 2)'], {}), '(board[0:3, 1] == 2)\n', (666, 686), True, 'import numpy as np\n'), ((689, 715), 'numpy.all', 'np.all', (['(board[0:3, 2] == 2)'], {}), '(board[0:3, 2] == 2)\n', (695, 715), True, 'import numpy as np\n')]
|
#!/usr/bin/python3
#
# Monitor GUI for an array of CBRS boards to watch power levels
# and temperature across time along with a user-controlled
# value for frequency, gain, and others.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
# INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
# PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
# FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
# OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
#
# (c) <EMAIL> 2018
########################################################################
## Main window
########################################################################
from PyQt5.QtWidgets import QMainWindow
from PyQt5.QtWidgets import QSplashScreen
from PyQt5.QtWidgets import QWidget
from PyQt5.QtCore import Qt
from PyQt5.QtGui import QPixmap
class MainWindow(QMainWindow):
def __init__(self, irises, settings, parent=None, chan=None, **kwargs):
QMainWindow.__init__(self, parent)
self._splash = QSplashScreen(self, QPixmap('data/logo.tif'))
self._splash.show()
self.setAttribute(Qt.WA_DeleteOnClose)
self.setWindowTitle("CBRS Array Monitor")
self.setMinimumSize(800, 600)
self._settings = settings
self.addDockWidget(Qt.TopDockWidgetArea, TopLevelControlPanel(irises=irises, settings=settings, parent=self))
#start the window
self.setCentralWidget(MainStatusWindow(irises=irises, parent=self, chan=chan))
#load previous settings
print("Loading %s"%self._settings.fileName())
if self._settings.contains("MainWindow/geometry"): self.restoreGeometry(self._settings.value("MainWindow/geometry"))
if self._settings.contains("MainWindow/state"): self.restoreState(self._settings.value("MainWindow/state"))
#load complete
self._splash.finish(self)
def closeEvent(self, event):
#stash settings
self._settings.setValue("MainWindow/geometry", self.saveGeometry())
self._settings.setValue("MainWindow/state", self.saveState())
########################################################################
## Status window
########################################################################
from PyQt5.QtWidgets import QWidget
from PyQt5.QtWidgets import QFormLayout
from PyQt5.QtWidgets import QHBoxLayout
class MainStatusWindow(QWidget):
def __init__(self, irises, parent=None, chan=None):
QWidget.__init__(self, parent)
hbox = QHBoxLayout(self)
for i, iris in enumerate(irises):
if i%8 == 0:
form = QFormLayout()
hbox.addLayout(form)
serial = iris.getHardwareInfo()['serial']
statusDisplay = SingleIrisStatus(iris, self, chan)
form.addRow(serial, statusDisplay)
########################################################################
## Single status display
########################################################################
from PyQt5.QtWidgets import QWidget
from PyQt5.QtWidgets import QProgressBar
from PyQt5.QtWidgets import QHBoxLayout
from PyQt5.QtWidgets import QVBoxLayout
from PyQt5.QtWidgets import QLabel
from PyQt5.QtCore import QTimer
from PyQt5.QtCore import pyqtSignal
import numpy as np
class SingleIrisStatus(QWidget):
parserComplete = pyqtSignal(dict)
def __init__(self, iris, parent=None, chan=None):
self.chan = [0,1] if chan is None else [chan]
QWidget.__init__(self, parent)
self._iris = iris
layout = QHBoxLayout(self)
vbox = QVBoxLayout()
layout.addLayout(vbox)
self._progressBars = list()
self._errorMessages = list()
for ch in [0,1]:
pbar = QProgressBar(self)
vbox.addWidget(pbar)
pbar.setRange(-100, 0)
pbar.setFormat("Ch%s %%v dBfs"%("AB"[ch]))
pbar.setValue(-100)
self._progressBars.append(pbar)
txt = QLabel(self)
vbox.addWidget(txt)
self._errorMessages.append(txt)
self._txt = QLabel(self)
layout.addWidget(self._txt)
self._timer = QTimer(self)
self._timer.setSingleShot(True)
self._timer.setInterval(1000)
self._timer.timeout.connect(self._handleTimeout)
self._timer.start()
self.parserComplete.connect(self._handleParserComplete)
def _handleParserComplete(self, results):
self._thread.join()
self._thread = None
for ch in self.chan:
self._progressBars[ch].setValue(results[ch]['pwr'])
if 'err' in results[ch]:
self._errorMessages[ch].setText('<font color="red">%s</font>'%(results[ch]['err']))
else:
self._errorMessages[ch].setText(' ')
self._txt.setText('%g C'%results['temp'])
#print('_handleParserComplete %s'%str(results))
self._timer.start()
def _handleTimeout(self):
self._thread = threading.Thread(target=self._workThread)
self._thread.start()
def _workThread(self):
results = dict()
for ch in self.chan:
samps = self._iris.readRegisters('RX_SNOOPER', ch, 1024)
samps = np.array([complex(float(np.int16(s & 0xffff)), float(np.int16(s >> 16))) for s in samps])/float(1 << 15)
result = toneGood(samps)
results[ch] = result
results['temp'] = float(self._iris.readSensor('LMS7_TEMP'))
self.parserComplete.emit(results)
########################################################################
## tone parsing logic
########################################################################
from sklk_widgets import LogPowerFFT
SAMP_RATE = 10e6
TONE_FS = 1e6
FILT_BW = 30e6
def toneGood(samps, tone=TONE_FS, fs=SAMP_RATE, low_thresh=0.01, high_thresh=0.7, spur_threshes=[10,12,15,20], ignore_dc=False, suppress=100e3):
"""
Check to see if a tone is received as expected, e.g., for testing boards by
transmitting a tone and receiving it in loopback mode.
Rejects if receive power is too low or too high, or if the next n spurious tones are higher than spur_threshes.
Suppress DC and carriers adjacent to tone, according to ignore_dc and suppress.
"""
result = dict(ret=False)
ps = LogPowerFFT(samps)
dc_bin = len(samps)//2
tone_bin = dc_bin + int(np.round(len(samps)*tone/fs)) #todo: check
result['pwr'] = ps[tone_bin]
avg = np.mean(np.abs(samps))
result['avg'] = avg
if avg < low_thresh:
result['err'] = "Tone power too low."
return result
if avg > high_thresh or np.amax(np.abs(samps)) > 1.0:
result['err'] = "Tone power too high -- likely clipping."
return result
if np.argmax(ps) != tone_bin:
result['err'] = "Tone is not highest signal."
return result
if(ignore_dc): #ignore DC
ps[dc_bin] = np.min(ps) #-100
n_suppress = int(np.round(len(samps)*suppress/fs))
#print(n_suppress, np.min(ps),tone_bin)
ps[tone_bin+1:tone_bin+1+n_suppress] = np.min(ps)
ps[tone_bin-n_suppress:tone_bin] = np.min(ps)
s_power = np.sort(ps)
for i,thresh in enumerate(spur_threshes):
if s_power[-i-2] > ps[tone_bin] - thresh:
result['err'] = 'Spur %d is too high! It is %f, tone is %f' % (i+1, s_power[-i-2], ps[tone_bin])
return result
result['ret'] = True
return result
def setupIris(iris, chan):
for ch in [0, 1]:
iris.setSampleRate(SOAPY_SDR_RX, ch, SAMP_RATE)
iris.setSampleRate(SOAPY_SDR_TX, ch, SAMP_RATE)
iris.setBandwidth(SOAPY_SDR_RX, ch, FILT_BW)
iris.setBandwidth(SOAPY_SDR_TX, ch, FILT_BW)
iris.writeSetting(SOAPY_SDR_TX, ch, 'TSP_TSG_CONST', str(1 << 12))
iris.setFrequency(SOAPY_SDR_TX, ch, 'BB', TONE_FS)
iris.writeSetting('FE_ENABLE_CAL_PATH', 'true')
if chan is not None:
iris.writeSetting(SOAPY_SDR_TX, int(not chan), "ENABLE_CHANNEL","false")
iris.writeSetting(SOAPY_SDR_RX, int(not chan), "ENABLE_CHANNEL","false")
########################################################################
## Top level control panel
########################################################################
from PyQt5.QtWidgets import QDockWidget
from PyQt5.QtWidgets import QDoubleSpinBox
from PyQt5.QtWidgets import QHBoxLayout
from PyQt5.QtWidgets import QFormLayout
from PyQt5.QtWidgets import QGroupBox
from PyQt5.QtWidgets import QWidget
from sklk_widgets import FreqEntryWidget
from SoapySDR import *
import functools
import threading
class TopLevelControlPanel(QDockWidget):
def __init__(self, irises, settings, parent = None):
QDockWidget.__init__(self, "Control panel", parent)
self.setObjectName("TopLevelControlPanel")
self._irises = irises
self._settings = settings
widget = QWidget(self)
self.setWidget(widget)
layout = QHBoxLayout(widget)
form = QFormLayout()
layout.addLayout(form)
freq = self._settings.value('TopLevelControlPanel/tddFrequency', 3.6e9, float)
self._handleTddFreqChange(freq)
tddFrequencyEntry = FreqEntryWidget(widget)
tddFrequencyEntry.setValue(freq)
tddFrequencyEntry.valueChanged.connect(self._handleTddFreqChange)
form.addRow("TDD Frequency", tddFrequencyEntry)
for dirName, direction in (("Tx controls", SOAPY_SDR_TX), ("Rx controls", SOAPY_SDR_RX)):
groupBox = QGroupBox(dirName, widget)
hbox = QHBoxLayout(groupBox)
layout.addWidget(groupBox)
for i, gainName in enumerate(irises[0].listGains(direction, 0)):
if i%2 == 0:
form = QFormLayout()
hbox.addLayout(form)
value = self._settings.value('TopLevelControlPanel/%sGain%s'%('Rx' if direction == SOAPY_SDR_RX else 'Tx', gainName), 0.0, float)
self._handleGainChange(direction, gainName, value)
edit = QDoubleSpinBox(widget)
form.addRow(gainName, edit)
r = irises[0].getGainRange(direction, 0, gainName)
edit.setRange(r.minimum(), r.maximum())
if r.step() != 0: edit.setSingleStep(r.step())
edit.setSuffix(' dB')
edit.setValue(value)
edit.valueChanged.connect(functools.partial(self._handleGainChange, direction, gainName))
def _handleTddFreqChange(self, newFreq):
for direction in (SOAPY_SDR_RX, SOAPY_SDR_TX):
threads = [threading.Thread(target=functools.partial(iris.setFrequency, direction, 0, "RF", newFreq)) for iris in self._irises]
for t in threads: t.start()
for t in threads: t.join()
self._settings.setValue('TopLevelControlPanel/tddFrequency', newFreq)
def _handleGainChange(self, direction, gainName, newValue):
for ch in [0, 1]:
threads = [threading.Thread(target=functools.partial(iris.setGain, direction, ch, gainName, newValue)) for iris in self._irises]
for t in threads: t.start()
for t in threads: t.join()
self._settings.setValue('TopLevelControlPanel/%sGain%s'%('Rx' if direction == SOAPY_SDR_RX else 'Tx', gainName), newValue)
########################################################################
## Invoke the application
########################################################################
from PyQt5.QtWidgets import QApplication
from PyQt5.QtCore import QSettings
from sklk_widgets import DeviceSelectionDialog
import SoapySDR
import argparse
import threading
import sys
if __name__ == '__main__':
app = QApplication(sys.argv)
#parser = argparse.ArgumentParser()
#args = parser.parse_args()
chan = None #set to 0 or 1 for only testing one channel (better performance in CBRS)
serials = sys.argv[1:]
if serials: handles = [dict(driver='iris',serial=s) for s in serials]
else:
handles = [h for h in SoapySDR.Device.enumerate(dict(driver='iris')) if 'CBRS' in h['frontend']]
irises = SoapySDR.Device(handles)
threads = [threading.Thread(target=setupIris, args=[iris,chan]) for iris in irises]
for t in threads: t.start()
for t in threads: t.join()
settings = QSettings(QSettings.IniFormat, QSettings.UserScope, "Skylark", "CBRSArrayMonitor")
w = MainWindow(irises=irises, settings=settings, chan=chan)
w.show()
sys.exit(app.exec_())
|
[
"PyQt5.QtCore.pyqtSignal",
"numpy.abs",
"PyQt5.QtWidgets.QMainWindow.__init__",
"numpy.argmax",
"PyQt5.QtWidgets.QDockWidget.__init__",
"PyQt5.QtWidgets.QVBoxLayout",
"PyQt5.QtWidgets.QApplication",
"sklk_widgets.FreqEntryWidget",
"PyQt5.QtWidgets.QLabel",
"PyQt5.QtWidgets.QWidget",
"PyQt5.QtCore.QSettings",
"PyQt5.QtWidgets.QWidget.__init__",
"PyQt5.QtCore.QTimer",
"threading.Thread",
"functools.partial",
"PyQt5.QtWidgets.QHBoxLayout",
"PyQt5.QtWidgets.QGroupBox",
"sklk_widgets.LogPowerFFT",
"numpy.sort",
"numpy.min",
"PyQt5.QtWidgets.QDoubleSpinBox",
"PyQt5.QtGui.QPixmap",
"SoapySDR.Device",
"PyQt5.QtWidgets.QProgressBar",
"numpy.int16",
"PyQt5.QtWidgets.QFormLayout"
] |
[((3545, 3561), 'PyQt5.QtCore.pyqtSignal', 'pyqtSignal', (['dict'], {}), '(dict)\n', (3555, 3561), False, 'from PyQt5.QtCore import pyqtSignal\n'), ((6522, 6540), 'sklk_widgets.LogPowerFFT', 'LogPowerFFT', (['samps'], {}), '(samps)\n', (6533, 6540), False, 'from sklk_widgets import LogPowerFFT\n'), ((7292, 7302), 'numpy.min', 'np.min', (['ps'], {}), '(ps)\n', (7298, 7302), True, 'import numpy as np\n'), ((7342, 7352), 'numpy.min', 'np.min', (['ps'], {}), '(ps)\n', (7348, 7352), True, 'import numpy as np\n'), ((7368, 7379), 'numpy.sort', 'np.sort', (['ps'], {}), '(ps)\n', (7375, 7379), True, 'import numpy as np\n'), ((11913, 11935), 'PyQt5.QtWidgets.QApplication', 'QApplication', (['sys.argv'], {}), '(sys.argv)\n', (11925, 11935), False, 'from PyQt5.QtWidgets import QApplication\n'), ((12328, 12352), 'SoapySDR.Device', 'SoapySDR.Device', (['handles'], {}), '(handles)\n', (12343, 12352), False, 'import SoapySDR\n'), ((12520, 12606), 'PyQt5.QtCore.QSettings', 'QSettings', (['QSettings.IniFormat', 'QSettings.UserScope', '"""Skylark"""', '"""CBRSArrayMonitor"""'], {}), "(QSettings.IniFormat, QSettings.UserScope, 'Skylark',\n 'CBRSArrayMonitor')\n", (12529, 12606), False, 'from PyQt5.QtCore import QSettings\n'), ((1167, 1201), 'PyQt5.QtWidgets.QMainWindow.__init__', 'QMainWindow.__init__', (['self', 'parent'], {}), '(self, parent)\n', (1187, 1201), False, 'from PyQt5.QtWidgets import QMainWindow\n'), ((2670, 2700), 'PyQt5.QtWidgets.QWidget.__init__', 'QWidget.__init__', (['self', 'parent'], {}), '(self, parent)\n', (2686, 2700), False, 'from PyQt5.QtWidgets import QWidget\n'), ((2716, 2733), 'PyQt5.QtWidgets.QHBoxLayout', 'QHBoxLayout', (['self'], {}), '(self)\n', (2727, 2733), False, 'from PyQt5.QtWidgets import QHBoxLayout\n'), ((3679, 3709), 'PyQt5.QtWidgets.QWidget.__init__', 'QWidget.__init__', (['self', 'parent'], {}), '(self, parent)\n', (3695, 3709), False, 'from PyQt5.QtWidgets import QWidget\n'), ((3753, 3770), 'PyQt5.QtWidgets.QHBoxLayout', 'QHBoxLayout', (['self'], {}), '(self)\n', (3764, 3770), False, 'from PyQt5.QtWidgets import QHBoxLayout\n'), ((3786, 3799), 'PyQt5.QtWidgets.QVBoxLayout', 'QVBoxLayout', ([], {}), '()\n', (3797, 3799), False, 'from PyQt5.QtWidgets import QVBoxLayout\n'), ((4293, 4305), 'PyQt5.QtWidgets.QLabel', 'QLabel', (['self'], {}), '(self)\n', (4299, 4305), False, 'from PyQt5.QtWidgets import QLabel\n'), ((4365, 4377), 'PyQt5.QtCore.QTimer', 'QTimer', (['self'], {}), '(self)\n', (4371, 4377), False, 'from PyQt5.QtCore import QTimer\n'), ((5201, 5242), 'threading.Thread', 'threading.Thread', ([], {'target': 'self._workThread'}), '(target=self._workThread)\n', (5217, 5242), False, 'import threading\n'), ((6691, 6704), 'numpy.abs', 'np.abs', (['samps'], {}), '(samps)\n', (6697, 6704), True, 'import numpy as np\n'), ((6977, 6990), 'numpy.argmax', 'np.argmax', (['ps'], {}), '(ps)\n', (6986, 6990), True, 'import numpy as np\n'), ((7132, 7142), 'numpy.min', 'np.min', (['ps'], {}), '(ps)\n', (7138, 7142), True, 'import numpy as np\n'), ((8914, 8965), 'PyQt5.QtWidgets.QDockWidget.__init__', 'QDockWidget.__init__', (['self', '"""Control panel"""', 'parent'], {}), "(self, 'Control panel', parent)\n", (8934, 8965), False, 'from PyQt5.QtWidgets import QDockWidget\n'), ((9099, 9112), 'PyQt5.QtWidgets.QWidget', 'QWidget', (['self'], {}), '(self)\n', (9106, 9112), False, 'from PyQt5.QtWidgets import QWidget\n'), ((9161, 9180), 'PyQt5.QtWidgets.QHBoxLayout', 'QHBoxLayout', (['widget'], {}), '(widget)\n', (9172, 9180), False, 'from PyQt5.QtWidgets import QHBoxLayout\n'), ((9196, 9209), 'PyQt5.QtWidgets.QFormLayout', 'QFormLayout', ([], {}), '()\n', (9207, 9209), False, 'from PyQt5.QtWidgets import QFormLayout\n'), ((9397, 9420), 'sklk_widgets.FreqEntryWidget', 'FreqEntryWidget', (['widget'], {}), '(widget)\n', (9412, 9420), False, 'from sklk_widgets import FreqEntryWidget\n'), ((12368, 12421), 'threading.Thread', 'threading.Thread', ([], {'target': 'setupIris', 'args': '[iris, chan]'}), '(target=setupIris, args=[iris, chan])\n', (12384, 12421), False, 'import threading\n'), ((1245, 1269), 'PyQt5.QtGui.QPixmap', 'QPixmap', (['"""data/logo.tif"""'], {}), "('data/logo.tif')\n", (1252, 1269), False, 'from PyQt5.QtGui import QPixmap\n'), ((3948, 3966), 'PyQt5.QtWidgets.QProgressBar', 'QProgressBar', (['self'], {}), '(self)\n', (3960, 3966), False, 'from PyQt5.QtWidgets import QProgressBar\n'), ((4184, 4196), 'PyQt5.QtWidgets.QLabel', 'QLabel', (['self'], {}), '(self)\n', (4190, 4196), False, 'from PyQt5.QtWidgets import QLabel\n'), ((9714, 9740), 'PyQt5.QtWidgets.QGroupBox', 'QGroupBox', (['dirName', 'widget'], {}), '(dirName, widget)\n', (9723, 9740), False, 'from PyQt5.QtWidgets import QGroupBox\n'), ((9760, 9781), 'PyQt5.QtWidgets.QHBoxLayout', 'QHBoxLayout', (['groupBox'], {}), '(groupBox)\n', (9771, 9781), False, 'from PyQt5.QtWidgets import QHBoxLayout\n'), ((2824, 2837), 'PyQt5.QtWidgets.QFormLayout', 'QFormLayout', ([], {}), '()\n', (2835, 2837), False, 'from PyQt5.QtWidgets import QFormLayout\n'), ((6859, 6872), 'numpy.abs', 'np.abs', (['samps'], {}), '(samps)\n', (6865, 6872), True, 'import numpy as np\n'), ((10245, 10267), 'PyQt5.QtWidgets.QDoubleSpinBox', 'QDoubleSpinBox', (['widget'], {}), '(widget)\n', (10259, 10267), False, 'from PyQt5.QtWidgets import QDoubleSpinBox\n'), ((9954, 9967), 'PyQt5.QtWidgets.QFormLayout', 'QFormLayout', ([], {}), '()\n', (9965, 9967), False, 'from PyQt5.QtWidgets import QFormLayout\n'), ((10615, 10677), 'functools.partial', 'functools.partial', (['self._handleGainChange', 'direction', 'gainName'], {}), '(self._handleGainChange, direction, gainName)\n', (10632, 10677), False, 'import functools\n'), ((10827, 10892), 'functools.partial', 'functools.partial', (['iris.setFrequency', 'direction', '(0)', '"""RF"""', 'newFreq'], {}), "(iris.setFrequency, direction, 0, 'RF', newFreq)\n", (10844, 10892), False, 'import functools\n'), ((11215, 11281), 'functools.partial', 'functools.partial', (['iris.setGain', 'direction', 'ch', 'gainName', 'newValue'], {}), '(iris.setGain, direction, ch, gainName, newValue)\n', (11232, 11281), False, 'import functools\n'), ((5467, 5486), 'numpy.int16', 'np.int16', (['(s & 65535)'], {}), '(s & 65535)\n', (5475, 5486), True, 'import numpy as np\n'), ((5496, 5513), 'numpy.int16', 'np.int16', (['(s >> 16)'], {}), '(s >> 16)\n', (5504, 5513), True, 'import numpy as np\n')]
|
#!/usr/bin/env python3
import numpy as np
from computeCostMulti import computeCostMulti
def gradientDescentMulti(X, y, theta, alpha, num_iters):
#GRADIENTDESCENTMULTI Performs gradient descent to learn theta
# theta = GRADIENTDESCENTMULTI(x, y, theta, alpha, num_iters) updates theta by
# taking num_iters gradient steps with learning rate alpha
# Initialize some useful values
m = y.shape[0] # number of training examples
J_history = np.reshape(np.zeros((num_iters, 1)), (num_iters, 1))
for i in range(num_iters):
# ====================== YOUR CODE HERE ======================
# Instructions: Perform a single gradient step on the parameter vector
# theta.
#
# Hint: While debugging, it can be useful to print out the values
# of the cost function (computeCostMulti) and gradient here.
#
theta = np.subtract(theta, (alpha / m) * np.dot(np.subtract(np.dot(X, theta), y).T, X).T)
# ============================================================
# Save the cost J in every iteration
J_history[i, 0] = computeCostMulti(X, y, theta)
return (theta, J_history)
|
[
"numpy.dot",
"numpy.zeros",
"computeCostMulti.computeCostMulti"
] |
[((479, 503), 'numpy.zeros', 'np.zeros', (['(num_iters, 1)'], {}), '((num_iters, 1))\n', (487, 503), True, 'import numpy as np\n'), ((1147, 1176), 'computeCostMulti.computeCostMulti', 'computeCostMulti', (['X', 'y', 'theta'], {}), '(X, y, theta)\n', (1163, 1176), False, 'from computeCostMulti import computeCostMulti\n'), ((973, 989), 'numpy.dot', 'np.dot', (['X', 'theta'], {}), '(X, theta)\n', (979, 989), True, 'import numpy as np\n')]
|
##technically, this means that I don't have to force floats in my division
from __future__ import division, absolute_import
##this makes the plot lines thicker, darker, etc.
from matplotlib import rc,rcParams
rc('text', usetex=True)
rc('axes', linewidth=2)
rc('font', weight='bold')
##importing the needed modules
import astropy.stats
import glob
import math
import matplotlib.pyplot as plt
from matplotlib import ticker
from matplotlib.ticker import FormatStrFormatter
import numpy as np
import os
import pandas as pd
from scipy import integrate,optimize,spatial
##for plotting 3D
from mpl_toolkits.mplot3d import Axes3D
##making global-like text sizes
class Vars(object):
size_xlabel = 22
size_ylabel = 22
size_text = 20
size_tick = 20
size_legend = 20
va = Vars()
##Victor's functions
##used for importing the needed data files
##used for creating bins for histograms, etc. automatically (not hard coding)
__author__ =['<NAME>']
__copyright__ =["Copyright 2016 <NAME>, Index function"]
__email__ =['<EMAIL>']
__maintainer__ =['<NAME>']
def Index(directory, datatype):
"""
Indexes the files in a directory `directory' with a
specific data type.
Parameters
----------
directory: str
Absolute path to the folder that is indexed.
datatype: str
Data type of the files to be indexed in the folder.
Returns
-------
file_array: array_like
np.array of indexed files in the folder 'directory'
with specific datatype.
Examples
--------
>>> Index('~/data', '.txt')
>>> array(['A.txt', 'Z'.txt', ...])
"""
assert(os.path.exists(directory))
files = np.array(glob.glob('{0}/*{1}'.format(directory, datatype)))
return files
def myceil(x, base=10):
"""
Returns the upper-bound integer of 'x' in base 'base'.
Parameters
----------
x: float
number to be approximated to closest number to 'base'
base: float
base used to calculate the closest 'largest' number
Returns
-------
n_high: float
Closest float number to 'x', i.e. upper-bound float.
Example
-------
>>>> myceil(12,10)
20
>>>>
>>>> myceil(12.05, 0.1)
12.10000
"""
n_high = float(base*math.ceil(float(x)/base))
return n_high
def myfloor(x, base=10):
"""
Returns the lower-bound integer of 'x' in base 'base'
Parameters
----------
x: float
number to be approximated to closest number of 'base'
base: float
base used to calculate the closest 'smallest' number
Returns
-------
n_low: float
Closest float number to 'x', i.e. lower-bound float.
Example
-------
>>>> myfloor(12, 5)
>>>> 10
"""
n_low = float(base*math.floor(float(x)/base))
return n_low
def Bins_array_create(arr, base=10):
"""
Generates array between [arr.min(), arr.max()] in steps of `base`.
Parameters
----------
arr: array_like, Shape (N,...), One-dimensional
Array of numerical elements
base: float, optional (default=10)
Interval between bins
Returns
-------
bins_arr: array_like
Array of bin edges for given arr
"""
base = float(base)
arr = np.array(arr)
assert(arr.ndim==1)
arr_min = myfloor(arr.min(), base=base)
arr_max = myceil( arr.max(), base=base)
bins_arr = np.arange(arr_min, arr_max+0.5*base, base)
return bins_arr
###############################################################################
def sph_to_cart(ra,dec,cz,h):
"""
Converts spherical coordinates to Cartesian coordinates.
Parameters
----------
ra: array-like
right-ascension of galaxies in degrees
dec: array-like
declination of galaxies in degrees
cz: array-like
velocity of galaxies in km/s
h: float-like
the Hubble constant; 70 for experimental, 100 for theoretical
Returns
-------
coords: array-like, shape = N by 3
x, y, and z coordinates
"""
cz_dist = cz/float(h) #converts velocity into distance
x_arr = cz_dist*np.cos(np.radians(ra))*np.cos(np.radians(dec))
y_arr = cz_dist*np.sin(np.radians(ra))*np.cos(np.radians(dec))
z_arr = cz_dist*np.sin(np.radians(dec))
coords = np.column_stack((x_arr,y_arr,z_arr))
return coords
###############################################################################
##actually a rather obsolete function, as I could just sort by distance, since
##N is the same for all cases
##Need something like this for Density in a Sphere method
def calc_dens_nn(n_val,r_val):
"""
Returns densities of spheres with radius being the distance to the
nth nearest neighbor.
Parameters
----------
n_val = integer
The 'N' from Nth nearest neighbor
r_val = array-like
An array with the distances to the Nth nearest neighbor for
each galaxy
Returns
-------
dens: array-like
An array with the densities of the spheres created with radii
to the Nth nearest neighbor.
"""
dens = np.array([(3.*(n_val+1)/(4.*np.pi*r_val[hh]**3))\
for hh in xrange(len(r_val))])
return dens
###############################################################################
def plot_calcs(mass,bins,dlogM):
"""
Returns values for plotting the stellar mass function and
mass ratios
Parameters
----------
mass: array-like
A 1D array with mass values, assumed to be in order based on the
density of the environment
bins: array-like
A 1D array with the values which will be used as the bin edges
by the histogram function
dlogM: float-like
The log difference between bin edges
Returns
-------
bin_centers: array-like
An array with the medians mass values of the mass bins
mass_freq: array-like
Contains the number density values of each mass bin
ratio_dict: dictionary-like
A dictionary with three keys, corresponding to the divisors
2,4, and 10 (as the percentile cuts are based on these
divisions). Each key has the density-cut, mass ratios for
that specific cut (50/50 for 2; 25/75 for 4; 10/90 for 10).
bin_centers_fin: array-like
An array with the mean mass values of the galaxies in each mass bin
"""
mass_counts, edges = np.histogram(mass,bins)
bin_centers = 0.5*(edges[:-1]+edges[1:])
mass_freq = mass_counts/float(len(mass))/dlogM
ratio_dict = {}
frac_val = [2,4,10]
yerr = []
bin_centers_fin = []
for ii in frac_val:
ratio_dict[ii] = {}
frac_data = int(len(mass)/ii)
# Calculations for the lower density cut
frac_mass = mass[0:frac_data]
counts, edges = np.histogram(frac_mass,bins)
# Calculations for the higher density cut
frac_mass_2 = mass[-frac_data:]
counts_2, edges_2 = np.histogram(frac_mass_2,bins)
# Ratio determination
ratio_counts = (1.*counts_2)/(1.*counts)
non_zero = np.isfinite(ratio_counts)
ratio_counts_1 = ratio_counts[non_zero]
# print 'len ratio_counts: {0}'.format(len(ratio_counts_1))
ratio_dict[ii] = ratio_counts_1
temp_yerr = (counts_2*1.)/(counts*1.)* \
np.sqrt(1./counts + 1./counts_2)
temp_yerr_1 = temp_yerr[non_zero]
# print 'len yerr: {0}'.format(len(temp_yerr_1))
yerr.append(temp_yerr_1)
bin_centers_1 = bin_centers[non_zero]
# print 'len bin_cens: {0}'.format(len(bin_centers_1))
bin_centers_fin.append(bin_centers_1)
mass_freq_list = [[] for xx in xrange(2)]
mass_freq_list[0] = mass_freq
mass_freq_list[1] = np.sqrt(mass_counts)/float(len(mass))/dlogM
mass_freq = np.array(mass_freq_list)
ratio_dict_list = [[] for xx in xrange(2)]
ratio_dict_list[0] = ratio_dict
ratio_dict_list[1] = yerr
ratio_dict = ratio_dict_list
return bin_centers, mass_freq, ratio_dict, bin_centers_fin
###############################################################################
def bin_func(mass_dist,bins,kk,bootstrap=False):
"""
Returns median distance to Nth nearest neighbor
Parameters
----------
mass_dist: array-like
An array with mass values in at index 0 (when transformed) and distance
to the Nth nearest neighbor in the others
Example: 6239 by 7
Has mass values and distances to 6 Nth nearest neighbors
bins: array-like
A 1D array with the values which will be used as the bin edges
kk: integer-like
The index of mass_dist (transformed) where the appropriate distance
array may be found
Optional
--------
bootstrap == True
Calculates the bootstrap errors associated with each median distance
value. Creates an array housing arrays containing the actual distance
values associated with every galaxy in a specific bin. Bootstrap error
is then performed using astropy, and upper and lower one sigma values
are found for each median value. These are added to a list with the
median distances, and then converted to an array and returned in place
of just 'medians.'
Returns
-------
medians: array-like
An array with the median distance to the Nth nearest neighbor from
all the galaxies in each of the bins
"""
edges = bins
bin_centers = 0.5*(edges[:-1]+edges[1:])
# print 'length bins:'
# print len(bins)
digitized = np.digitize(mass_dist.T[0],edges)
digitized -= int(1)
bin_nums = np.unique(digitized)
bin_nums_list = list(bin_nums)
if (len(bin_centers)) in bin_nums_list:
bin_nums_list.remove(len(bin_centers))
bin_nums = np.array(bin_nums_list)
medians = np.array([np.nanmedian(mass_dist.T[kk][digitized==ii])\
for ii in bin_nums])
if bootstrap == True:
dist_in_bin = np.array([(mass_dist.T[kk][digitized==ii])\
for ii in bin_nums])
for vv in xrange(len(dist_in_bin)):
if len(dist_in_bin[vv]) == 0:
# dist_in_bin_list = list(dist_in_bin[vv])
# dist_in_bin[vv] = np.zeros(len(dist_in_bin[0]))
dist_in_bin[vv] = np.nan
low_err_test = np.array([np.percentile(astropy.stats.bootstrap\
(dist_in_bin[vv],bootnum=1000,bootfunc=np.median),16)\
for vv in xrange(len(dist_in_bin))])
high_err_test = np.array([np.percentile(astropy.stats.bootstrap\
(dist_in_bin[vv],bootnum=1000,bootfunc=np.median),84)\
for vv in xrange(len(dist_in_bin))])
med_list = [[] for yy in xrange(3)]
med_list[0] = medians
med_list[1] = low_err_test
med_list[2] = high_err_test
medians = np.array(med_list)
# print len(medians)
# print len(non_zero_bins)
return medians
###############################################################################
def hist_calcs(mass,bins,dlogM):
"""
Returns dictionaries with the counts for the upper
and lower density portions; calculates the
three different percentile cuts for each mass
array given
Parameters
----------
mass: array-like
A 1D array with log stellar mass values, assumed
to be an order which corresponds to the ascending
densities; (necessary, as the index cuts are based
on this)
bins: array-like
A 1D array with the values which will be used as the bin edges
dlogM: float-like
The log difference between bin edges
Returns
-------
hist_dict_low: dictionary-like
A dictionary with three keys (the frac vals), with arrays
as values. The values for the lower density cut; also has three error
keys
hist_dict_high: dictionary-like
A dictionary with three keys (the frac vals), with arrays
as values. The values for the higher density cut; also has three error
keys
"""
hist_dict_low = {}
hist_dict_high = {}
bin_cens_low = {}
bin_cens_high = {}
frac_val = np.array([2,4,10])
##given the fractional value, returns the index
frac_dict = {2:0,4:1,10:2}
edges = bins
bin_centers = 0.5 * (edges[:-1]+edges[1:])
low_err = [[] for xx in xrange(len(frac_val))]
high_err = [[] for xx in xrange(len(frac_val))]
for ii in frac_val:
frac_data = int(len(mass)/ii)
frac_mass = mass[0:frac_data]
counts, edges = np.histogram(frac_mass,bins)
low_counts = (counts/float(len(frac_mass))/dlogM)
non_zero = (low_counts!=0)
low_counts_1 = low_counts[non_zero]
hist_dict_low[ii] = low_counts_1
bin_cens_low[ii] = bin_centers[non_zero]
##So... I don't actually know if I need to be calculating error
##on the mocks. I thought I didn't, but then, I swear someone
##*ahem (Victor)* said to. So I am. Guess I'm not sure they're
##useful. But I'll have them if necessary. And ECO at least
##needs them.
low_err = np.sqrt(counts)/len(frac_mass)/dlogM
low_err_1 = low_err[non_zero]
err_key = 'err_{0}'.format(ii)
hist_dict_low[err_key] = low_err_1
frac_mass_2 = mass[-frac_data:]
counts_2, edges_2 = np.histogram(frac_mass_2,bins)
high_counts = counts_2/float(len(frac_mass_2))/dlogM
non_zero = (high_counts!=0)
high_counts_1 = high_counts[non_zero]
hist_dict_high[ii] = high_counts_1
bin_cens_high[ii] = bin_centers[non_zero]
high_err = np.sqrt(counts_2)/len(frac_mass_2)/dlogM
high_err_1 = high_err[non_zero]
hist_dict_high[err_key] = high_err_1
return hist_dict_low, hist_dict_high, bin_cens_low, bin_cens_high
###############################################################################
def plot_halo_frac(bin_centers,y_vals,ax,plot_idx,text=False):
titles = [1,2,3,5,10,20]
ax.set_xlim(9.1,11.9)
ax.set_xticks(np.arange(9.5,12.,0.5))
ax.tick_params(axis='x', which='major', labelsize=16)
if text == True:
title_here = 'n = {0}'.format(titles[plot_idx])
ax.text(0.05, 0.95, title_here,horizontalalignment='left', \
verticalalignment='top',transform=ax.transAxes,fontsize=18)
if plot_idx == 4:
ax.set_xlabel('$\log\ (M_{*}/M_{\odot})$',fontsize=20)
ax.plot(bin_centers,y_vals,color='silver')
def plot_mean_halo_frac(bin_centers,mean_vals,ax,std):
ax.errorbar(bin_centers,mean_vals,yerr=std,color='darkmagenta')
###############################################################################
###############################################################################
###############################################################################
###############################################################################
###############################################################################
##Importing the ECO Data!!!
eco_path = r"C:\Users\Hannah\Desktop\Vanderbilt_REU\Stellar_mass_env_density"
eco_path += r"\Catalogs\ECO_true"
eco_cols = np.array([2,4,10,15,16,19,20,21])
##the newest file from the online database
ECO_true = (Index(eco_path,'.csv'))
names = ['logMhalo','dec','cent_sat','group_ID','Mr','cz','ra','logMstar']
##the [0] is necessary for it to take the string. Otherwise, ECO_true is a
##numpy array
PD_eco = pd.read_csv(ECO_true[0], usecols=(eco_cols),header=None, \
skiprows=1,names=names)
eco_comp = PD_eco[PD_eco.logMstar >= 9.1]
ra_eco = eco_comp.ra
dec_eco = eco_comp.dec
cz_eco = eco_comp.cz
mass_eco = eco_comp.logMstar
logMhalo = eco_comp.logMhalo
cent_sat = eco_comp.cent_sat
group_ID = eco_comp.group_ID
Mr_eco = eco_comp.Mr
###############################################################################
###############################################################################
###############################################################################
###############################################################################
###############################################################################
##Importing mock data!!!
dirpath = r"C:\Users\Hannah\Desktop\Vanderbilt_REU\Stellar_mass_env_Density"
dirpath+= r"\Catalogs\Beta_M1_Behroozi\ab_matching"
dirpath+= r"\Resolve_plk_5001_so_mvir_hod1_scatter0p2_mock1_ECO_Mocks"
ECO_cats = (Index(dirpath,'.dat'))
usecols = (0,1,2,4,7,13,20,25)
names = ['ra','dec','cz','Halo_ID','halo_cent_sat','logMstar',
'group_ID','group_cent_sat']
PD = [[] for ii in xrange(len(ECO_cats))]
##creating a list of panda dataframes
for ii in xrange(len(ECO_cats)):
temp_PD = (pd.read_csv(ECO_cats[ii],sep="\s+", usecols= usecols,
header=None, skiprows=2,names=names))
PD[ii] = temp_PD
##making stellar mass cuts, with stellar mass completeness limit (all should
##pass, but just in case), and max limit being that of ECO's most massive
##galaxy
PD_comp_1 = [(PD[ii][PD[ii].logMstar >= 9.1]) for ii in xrange(len(ECO_cats))]
PD_comp = [(PD_comp_1[ii][PD_comp_1[ii].logMstar <=11.77])
for ii in xrange(len(ECO_cats))]
##this resets the indices in the pd dataframe, meaning they will be
##counted/indexed as if the galaxies with stellar masses outside of the limit
##were never there
[(PD_comp[ii].reset_index(drop=True,inplace=True))
for ii in xrange(len(ECO_cats))]
##finding the min and max stellar mass galaxy of each catalog
##not necessary for the abundance matched mocks, but useful to have in here
##in case I have to run non ABD matched
##I was thinking to use the maximum min value and the minumum max value, so
##that there would be no empty bins on either side, but I think it's a moot
##point. Also, I already set a min and max on all the stellar masses.
##There could possibly be one mock at some point that would have less than
##the normal number of bins, but my other code should make up for that
min_max_mass_arr = []
for ii in xrange(len(PD_comp)):
min_max_mass_arr.append(max(PD_comp[ii].logMstar))
min_max_mass_arr.append(min(PD_comp[ii].logMstar))
min_max_mass_arr = np.array(min_max_mass_arr)
##could change this at some point
dlogM = 0.2
##bins inherently use even decimal points, so this forces odd
bins = Bins_array_create(min_max_mass_arr,dlogM)
bins+= 0.1
bins_list = list(bins)
##double checking to make sure that there is no mass bin edge past 11.7
for ii in bins:
if ii > 11.77:
bins_list.remove(ii)
bins = np.array(bins_list)
ra_arr = np.array([(PD_comp[ii].ra) for ii in xrange(len(PD_comp))])
dec_arr = np.array([(PD_comp[ii].dec) for ii in xrange(len(PD_comp))])
cz_arr = np.array([(PD_comp[ii].cz) for ii in xrange(len(PD_comp))])
mass_arr = np.array([(PD_comp[ii].logMstar) for ii in xrange(len(PD_comp))])
halo_id_arr = np.array([(PD_comp[ii].Halo_ID) for ii in xrange(len(PD_comp))])
halo_cent_sat_arr = np.array([(PD_comp[ii].halo_cent_sat)
for ii in xrange(len(PD_comp))])
group_id_arr = np.array([(PD_comp[ii].group_ID)
for ii in xrange(len(PD_comp))])
group_cent_sat_arr = np.array([(PD_comp[ii].group_cent_sat)
for ii in xrange(len(PD_comp))])
###############################################################################
###############################################################################
###############################################################################
##Variables and dictionaries for later use throughout.
##calulating the number of bins for later reference
num_of_mocks = len(PD_comp)
num_of_bins = int(len(bins) - 1)
neigh_dict = {1:0,2:1,3:2,5:3,10:4,20:5}
frac_dict = {2:0,4:1,10:2}
neigh_vals = np.array([1,2,3,5,10,20])
frac_vals = np.array([2,4,10])
###############################################################################
###############################################################################
###############################################################################
##Setting up ECO first
coords_eco = sph_to_cart(ra_eco,dec_eco,cz_eco,70)
eco_neigh_tree = spatial.cKDTree(coords_eco)
##neigh_vals index seems weird, but is so that if neighbor values change, the
##code is dynamic
##I believe the zero index is getting the distances to the neighbors
##the 1st index gives the index of the neighbor
eco_tree_dist = np.array(eco_neigh_tree.query(coords_eco,neigh_vals[-1]+1)[0])
##I'm not sure that I'll need this, but here's an array with the indices
eco_neigh_idx = np.array(eco_neigh_tree.query(coords_eco,neigh_vals[-1]+1)[1])
##some explaining: eco_tree_dist is number of galaxies by number of neighbors
##in shape. For example, 6000 by 21. Using T makes it 21 by 6000. Then, using
##[neigh_vals], I choose only the rows which are relevant. This makes it, for
##example, 6 by 6000. Then, I use T again, returning it to 6000 by 6.
##Added in front of all of this is the log mass of each galaxy. None of the
##orders changed, so it's fine. There are now len(neigh_vals)+1 columns
eco_mass_dist = np.column_stack((mass_eco,eco_tree_dist.T[neigh_vals].T))
##the xrange is directing to which column the indices are to be sorted by
##start with one, since the first column is mass
##the total number of columns will be 1+len(neigh_vals)
##sorted from smallest distance to largest
##[::-1] reversed the indices, so those with the largest distances to their
##nearest neighbors, and thus in the least dense areas, are listed first
eco_idx = [np.argsort(eco_mass_dist.T[kk])[::-1] for kk in \
xrange(1,len(neigh_vals)+1)]
##should have all of the masses put in order depending on the environment of
##their galaxy (from least dense to most)
eco_mass_dat = np.array([eco_mass_dist.T[0][eco_idx[kk]] for kk in \
xrange(len(neigh_vals))])
###############################################################################
###############################################################################
###############################################################################
###############################################################################
###############################################################################
###############################################################################
##Changing the data from degrees and velocity to Cartesian system
coords_test = np.array([sph_to_cart(ra_arr[vv],dec_arr[vv],cz_arr[vv],70)\
for vv in xrange(len(ECO_cats))])
##Lists which will house information from the cKD tree
nn_arr_temp = [[] for uu in xrange(len(coords_test))]
nn_arr = [[] for xx in xrange(len(coords_test))]
nn_idx = [[] for zz in xrange(len(coords_test))]
##Creating the cKD tree for nearest neighbors, and having it find the distances
##nn_arr houses the actual distances
##nn_idx houses the index of the galaxy which is the nth nearest neighbor
for vv in xrange(num_of_mocks):
nn_arr_temp[vv] = spatial.cKDTree(coords_test[vv])
nn_arr[vv] = np.array(nn_arr_temp[vv].query(coords_test[vv],\
neigh_vals[-1]+1)[0])
nn_idx[vv] = np.array(nn_arr_temp[vv].query(coords_test[vv],\
neigh_vals[-1]+1)[1])
##nn_specs is a list, with 8 elements, one for each mock
##each list has a series of numpy arrays, however many galaxies there are in
##that mock
##these arrays give the distances to the nearest neighbors of interest
nn_specs = [(np.array(nn_arr).T[ii].T[neigh_vals].T) for ii in\
xrange(num_of_mocks)]
##houses the same info as nn_specs, except now, the logMstar of each galaxy is
##the first term of the numpy array
nn_mass_dist = np.array([(np.column_stack((mass_arr[qq],nn_specs[qq])))\
for qq in xrange(num_of_mocks)])
##houses the indexes of the neighbors of interest for each galaxy
nn_neigh_idx = np.array([(np.array(nn_idx).T[ii].T[neigh_vals].T) \
for ii in xrange(num_of_mocks)])
###############################################################################
##nn_dist_sorting is a dictionary which has a key for every mock, and then keys for
##each nn value. Each nn_dist_sorting[mock][nn] has however many elements as there are galaxies in
##that specific mock. These elements are 1 by 2 arrays, with the logMstar of the
##galaxy and the distance to its nth nearest neighbor
##dist_sort_mass is the dictionary of mocks of nn's with the logMstars sorted
##according to the distance to the nth nearest neighbor. This was sorted using
##large to small distance, so low to high density.
nn_dist_sorting = {}
dist_sort_mass = {}
##for use with density in a sphere
# nn_dens = {}
# mass_dat = {}
ratio_info = {}
bin_cens_diff = {}
# mass_freq = [[] for xx in xrange(len(coords_test))]
mass_freq = {}
for ii in xrange(num_of_mocks):
nn_dist_sorting[ii] = {}
dist_sort_mass[ii] = {}
##for use with density in a sphere
# nn_dens[ii] = {}
# mass_dat[ii] = {}
ratio_info[ii] = {}
bin_cens_diff[ii] = {}
for jj in xrange(len(neigh_vals)):
nn_dist_sorting[ii][(neigh_vals[jj])] = np.column_stack((nn_mass_dist[ii].T\
[0],np.array(nn_mass_dist[ii].T[xrange(1,len(neigh_vals)+1)[jj]])))
##smallest distance to largest (before reverse) Reversed, so then the
##largest distances are first, meaning the least dense environments
##gives indices of the sorted distances
dist_sort_idx = np.argsort(np.array(nn_dist_sorting[ii][neigh_vals[jj]].T\
[1]))[::-1]
##using the index to sort the masses for each mock according to each nn
dist_sort_mass[ii][(neigh_vals[jj])] = (nn_dist_sorting[ii][neigh_vals\
[jj]][dist_sort_idx].T[0])
##this created a dictionary with arrays containing the logMstar and
##environment densities . a moot point for nn environment, but this may
##be useful when I switch out nn for density of a sphere
# nn_dens[ii][(neigh_vals[jj])] = np.column_stack((nn_mass_dist[ii].T\
# [0],calc_dens_nn(neigh_vals[jj],\
# nn_mass_dist[ii].T[range(1,len(neigh_vals)+1)[jj]])))
##lowest density to highest
# idx = np.array(nn_dens[ii][neigh_vals[jj]].T[1].argsort())
# mass_dat[ii][(neigh_vals[jj])] = (nn_dens[ii][neigh_vals[jj]]\
# [idx].T[0])
##bin_centers is the median mass value of each bin; good for plotting
##to make things seem equally spaced
##mass_freq is now a dictionary with keys for each mock. Each key
##houses two arrays. one with the frequency values and another with
##Poisson errors
##ratio_info is a dictionary with mock number of keys to other
##dictionaries. Then, there are keys for each nn. These give back a
##list. The first list item is a dictionary with three keys (2,4,10),
##corresponding to the fractional cuts that we made
##The next item is a list of three arrays, housing the corresponding
##errors
##bin_cens_diff is so that, for the off chance of empty bins, we have
##the proper bins to plot the ratio_info with (actually, this is
##probably useful for the ratio cuts and larger mass bins. idk)
bin_centers, mass_freq[ii], ratio_info[ii][neigh_vals[jj]],\
bin_cens_diff[ii][neigh_vals[jj]] = \
plot_calcs(dist_sort_mass[ii][neigh_vals[jj]],bins,dlogM)
##all_mock_meds is a dictionary with 6 keys, for the nn vals. These have keys
##for each mock. These keys gve back arrays with the median distance
##values to the nth neighbor for each mass bins
##this previously had some code to give back the appropriate x-coordinates for
##plotting, but the number of medians is all the same... on the off chance that
##for some reason this throws an error in the future, the original code is in
##pickling.
all_mock_meds = {}
for jj in xrange(len(nn_mass_dist[vv].T)-1):
all_mock_meds[neigh_vals[jj]] = {}
for vv in xrange(num_of_mocks):
all_mock_meds[neigh_vals[jj]][vv] = (bin_func(nn_mass_dist[vv],\
bins,(jj+1)))
##this is for debugging; shows the number of medians listed for each nn for
##each mock. if these are not all the same, there is a problem, and the
##extra code may, in fact, be needed
# for vv in xrange(8):
# for jj in xrange(6):
# print len(all_mock_meds[neigh_vals[jj]][vv])
##Bands for median distances
##I am torn about eventually turning this into a function. I think there are
##a fair amount of variables, etc. between the different times that I do this
##that if this were a function, it would need to intake a lot of arguments
##This works by counting the number of columns in one median distance array.
##Then, after making sure there are the same number of medians in each case,
##it begins to make a matrix of arrays, 13 rows by 8 columns. So, it inserted
##the medians of each mock vertically. Then, it can take the max/min of each
##row! This definitely came from Victor.
##Returns a dictionary with keys which are strings of the nn vals. Each key
##gives a list of two numpy arrays, the first being the max for each bin
##and the second being the min.
band_for_medians = {}
for nn in neigh_vals:
for ii in xrange(num_of_mocks):
med_str = '{0}'.format(nn)
num_of_meds = all_mock_meds[nn][ii]
if len(num_of_meds) == num_of_bins:
n_elem = len(num_of_meds)
else:
while len(num_of_meds) < num_of_bins:
num_of_meds_list = list(num_of_meds)
num_of_meds_list.append(np.nan)
num_of_meds = np.array(num_of_meds_list)
n_elem = len(num_of_meds)
if ii == 0:
med_matrix = np.zeros((n_elem,1))
med_matrix = np.insert(med_matrix,len(med_matrix.T),num_of_meds,1)
med_matrix = np.array(np.delete(med_matrix,0,axis=1))
med_matrix_max = np.array([np.nanmax(med_matrix[kk]) for kk in \
xrange(len(med_matrix))])
med_matrix_min = np.array([np.nanmin(med_matrix[kk]) for kk in \
xrange(len(med_matrix))])
band_for_medians[med_str] = [med_matrix_max,med_matrix_min]
###############################################################################
##First thing to know: ratio_info. It's a dictionary with a key for each mock
##and then a key for each neighbor value. This gives a list, one with 2 items.
##The first is a dictionary with three keys, one for each frac val. The second
##is a list of three numpy arrays. Each array has the error on the
##corresponding frac val numbers
##Plot_ratio_arr is a dictionary (funny, since you'd think it's an array,right)
##It has a key for each nn, a key for each frac val, and a key for each mock
##We just ignore the error. It was calculated for fun? I'm not sure if it will
##ever be useful for anything, but just in case? I used to have it be an
##option in the function (plot_calcs, I think).
plot_ratio_arr = {}
for ii in neigh_vals:
plot_ratio_arr[ii] = {}
for hh in frac_vals:
plot_ratio_arr[ii][hh] = {}
for jj in xrange(num_of_mocks):
plot_ratio_arr[ii][hh][jj] = ratio_info[jj][ii][0][hh]
band_for_ratios = {}
##This code works just as the code for the median bands does
##Apparently, there's an all Nan axis encountered somewhere, but that's okay
for nn in neigh_vals:
for vv in frac_vals:
bin_str = '{0}_{1}'.format(nn,vv)
for cc in xrange(num_of_mocks):
num_of_rats = plot_ratio_arr[nn][vv][cc]
if len(num_of_rats) == num_of_bins:
n_elem = len(num_of_rats)
else:
while len(num_of_rats) < num_of_bins:
num_of_rats_list = list(num_of_rats)
num_of_rats_list.append(np.nan)
num_of_rats = np.array(num_of_rats_list)
n_elem = len(num_of_rats)
if cc == 0:
rat_matrix = np.zeros((n_elem,1))
rat_matrix = np.insert(rat_matrix,len(rat_matrix.T),num_of_rats,1)
rat_matrix = np.array(np.delete(rat_matrix,0,axis=1))
for kk in xrange(len(rat_matrix)):
##this is kind of a hack, because there was no better way to get
##around the infinities
rat_matrix[kk][rat_matrix[kk] == np.inf] = np.nan
rat_matrix_max = [np.nanmax(rat_matrix[kk]) \
for kk in xrange(len(rat_matrix))]
rat_matrix_min = [np.nanmin(rat_matrix[kk]) \
for kk in xrange(len(rat_matrix))]
band_for_ratios[bin_str] = [rat_matrix_max,rat_matrix_min]
###New code for creating the band for the stellar mass function
###I'm just assuming that each mock will have the same number of bins
band_for_mass_func = {}
for jj in xrange(num_of_mocks):
mfunc_arr = mass_freq[jj][0]
n_elem = len(mfunc_arr)
if jj == 0:
mfunc_matrix = np.zeros((n_elem,1))
mfunc_matrix = np.insert(mfunc_matrix,len(mfunc_matrix.T),mfunc_arr,1)
mfunc_matrix = np.array(np.delete(mfunc_matrix,0,axis=1))
mfunc_mat_max = [np.max(mfunc_matrix[kk]) for kk in xrange(len(mfunc_matrix))]
mfunc_mat_min = [np.min(mfunc_matrix[kk]) for kk in xrange(len(mfunc_matrix))]
###############################################################################
##may need for later... when dealinng with histogram bands
nn_keys = np.sort(neigh_dict.keys())
col_keys = np.sort(frac_dict.keys())
###############################################################################
###############################################################################
###############################################################################
###############################################################################
###############################################################################
##Beginning the process of calculating how many galaxies in a specific mass bin
##have their nth nearest neighbor in the same halo as them
##truth_vals will be a dictionary with keys for each mock and then keys for
##each nn value; a boolean type array. This structure amazes me and I have a
##difficult time imagining I came up with it myself...
truth_vals = {}
for ii in xrange(len(halo_id_arr)):
truth_vals[ii] = {}
for jj in neigh_vals:
halo_id_neigh = halo_id_arr[ii][nn_neigh_idx[ii].T[neigh_dict[jj]]].values
truth_vals[ii][jj] = halo_id_neigh==halo_id_arr[ii].values
##halo_frac is a dictionary much like the truth values. Number of mocks for keys,
##then number of nearest neighbors. For each mock, neighbor, specific mass bin,
##it lists the fraction of galaxies with nn in their same halo
##I also have a hard time remembering developing this code... I imagine it was
##a messy process. But it worked out in the end!
halo_frac = {}
for ii in xrange(len(mass_arr)):
halo_frac[ii] = {}
mass_binning = np.digitize(mass_arr[ii],bins)
bins_to_use = list(np.unique(mass_binning))
if (len(bins)-1) not in bins_to_use:
bins_to_use.append(len(bins)-1)
if len(bins) in bins_to_use:
bins_to_use.remove(len(bins))
for jj in neigh_vals:
one_zero = truth_vals[ii][jj].astype(int)
frac = []
for xx in bins_to_use:
truth_binning = one_zero[mass_binning==xx]
num_in_bin = len(truth_binning)
if num_in_bin == 0:
num_in_bin = np.nan
num_same_halo = np.count_nonzero(truth_binning==1)
frac.append(num_same_halo/(1.*num_in_bin))
halo_frac[ii][jj] = frac
##Finding the mean fraction for each mass bin in the separate mocks. Also
##finding the standard deviation, to use as error
mean_mock_halo_frac = {}
for ii in neigh_vals:
for jj in xrange(len(halo_frac)):
bin_str = '{0}'.format(ii)
oo_arr = halo_frac[jj][ii]
n_o_elem = len(oo_arr)
if jj == 0:
oo_tot = np.zeros((n_o_elem,1))
oo_tot = np.insert(oo_tot,len(oo_tot.T),oo_arr,1)
oo_tot = np.array(np.delete(oo_tot,0,axis=1))
oo_tot_mean = [np.nanmean(oo_tot[uu]) for uu in xrange(len(oo_tot))]
oo_tot_std = [np.nanstd(oo_tot[uu])/np.sqrt(len(halo_frac)) \
for uu in xrange(len(oo_tot))]
mean_mock_halo_frac[bin_str] = np.array([oo_tot_mean,oo_tot_std])
###############################################################################
##Plotting the mean halo frac for the mocks for each nn value
nrow = int(2)
ncol = int(3)
fig,axes = plt.subplots(nrows=nrow,ncols=ncol, \
figsize=(12,12),sharex=True,sharey=True)
axes_flat = axes.flatten()
zz = int(0)
while zz <=4:
for jj in neigh_vals:
for kk in xrange(len(halo_frac)):
if kk == 0:
value = True
else:
value = False
plot_halo_frac(bin_centers,halo_frac[kk][jj],axes_flat[zz],zz,\
text = value)
nn_str = '{0}'.format(jj)
plot_mean_halo_frac(bin_centers,mean_mock_halo_frac[nn_str][0],\
axes_flat[zz],mean_mock_halo_frac[nn_str][1])
zz += 1
plt.subplots_adjust(top=0.97,bottom=0.1,left=0.03,right=0.99,hspace=0.10,\
wspace=0.12)
plt.show()
|
[
"matplotlib.rc",
"numpy.nanmedian",
"pandas.read_csv",
"numpy.argsort",
"numpy.histogram",
"numpy.arange",
"scipy.spatial.cKDTree",
"numpy.unique",
"numpy.nanmean",
"os.path.exists",
"numpy.isfinite",
"numpy.max",
"matplotlib.pyplot.subplots",
"numpy.radians",
"matplotlib.pyplot.show",
"numpy.min",
"matplotlib.pyplot.subplots_adjust",
"numpy.digitize",
"numpy.delete",
"numpy.nanmax",
"numpy.count_nonzero",
"numpy.nanstd",
"numpy.zeros",
"numpy.nanmin",
"numpy.array",
"numpy.column_stack",
"numpy.sqrt"
] |
[((210, 233), 'matplotlib.rc', 'rc', (['"""text"""'], {'usetex': '(True)'}), "('text', usetex=True)\n", (212, 233), False, 'from matplotlib import rc, rcParams\n'), ((234, 257), 'matplotlib.rc', 'rc', (['"""axes"""'], {'linewidth': '(2)'}), "('axes', linewidth=2)\n", (236, 257), False, 'from matplotlib import rc, rcParams\n'), ((258, 283), 'matplotlib.rc', 'rc', (['"""font"""'], {'weight': '"""bold"""'}), "('font', weight='bold')\n", (260, 283), False, 'from matplotlib import rc, rcParams\n'), ((15824, 15864), 'numpy.array', 'np.array', (['[2, 4, 10, 15, 16, 19, 20, 21]'], {}), '([2, 4, 10, 15, 16, 19, 20, 21])\n', (15832, 15864), True, 'import numpy as np\n'), ((16117, 16202), 'pandas.read_csv', 'pd.read_csv', (['ECO_true[0]'], {'usecols': 'eco_cols', 'header': 'None', 'skiprows': '(1)', 'names': 'names'}), '(ECO_true[0], usecols=eco_cols, header=None, skiprows=1, names=names\n )\n', (16128, 16202), True, 'import pandas as pd\n'), ((18847, 18873), 'numpy.array', 'np.array', (['min_max_mass_arr'], {}), '(min_max_mass_arr)\n', (18855, 18873), True, 'import numpy as np\n'), ((19213, 19232), 'numpy.array', 'np.array', (['bins_list'], {}), '(bins_list)\n', (19221, 19232), True, 'import numpy as np\n'), ((20394, 20424), 'numpy.array', 'np.array', (['[1, 2, 3, 5, 10, 20]'], {}), '([1, 2, 3, 5, 10, 20])\n', (20402, 20424), True, 'import numpy as np\n'), ((20435, 20455), 'numpy.array', 'np.array', (['[2, 4, 10]'], {}), '([2, 4, 10])\n', (20443, 20455), True, 'import numpy as np\n'), ((20790, 20817), 'scipy.spatial.cKDTree', 'spatial.cKDTree', (['coords_eco'], {}), '(coords_eco)\n', (20805, 20817), False, 'from scipy import integrate, optimize, spatial\n'), ((21740, 21798), 'numpy.column_stack', 'np.column_stack', (['(mass_eco, eco_tree_dist.T[neigh_vals].T)'], {}), '((mass_eco, eco_tree_dist.T[neigh_vals].T))\n', (21755, 21798), True, 'import numpy as np\n'), ((37326, 37411), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'nrows': 'nrow', 'ncols': 'ncol', 'figsize': '(12, 12)', 'sharex': '(True)', 'sharey': '(True)'}), '(nrows=nrow, ncols=ncol, figsize=(12, 12), sharex=True, sharey=True\n )\n', (37338, 37411), True, 'import matplotlib.pyplot as plt\n'), ((37943, 38036), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'top': '(0.97)', 'bottom': '(0.1)', 'left': '(0.03)', 'right': '(0.99)', 'hspace': '(0.1)', 'wspace': '(0.12)'}), '(top=0.97, bottom=0.1, left=0.03, right=0.99, hspace=0.1,\n wspace=0.12)\n', (37962, 38036), True, 'import matplotlib.pyplot as plt\n'), ((38041, 38051), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (38049, 38051), True, 'import matplotlib.pyplot as plt\n'), ((1668, 1693), 'os.path.exists', 'os.path.exists', (['directory'], {}), '(directory)\n', (1682, 1693), False, 'import os\n'), ((3306, 3319), 'numpy.array', 'np.array', (['arr'], {}), '(arr)\n', (3314, 3319), True, 'import numpy as np\n'), ((3449, 3495), 'numpy.arange', 'np.arange', (['arr_min', '(arr_max + 0.5 * base)', 'base'], {}), '(arr_min, arr_max + 0.5 * base, base)\n', (3458, 3495), True, 'import numpy as np\n'), ((4367, 4405), 'numpy.column_stack', 'np.column_stack', (['(x_arr, y_arr, z_arr)'], {}), '((x_arr, y_arr, z_arr))\n', (4382, 4405), True, 'import numpy as np\n'), ((6498, 6522), 'numpy.histogram', 'np.histogram', (['mass', 'bins'], {}), '(mass, bins)\n', (6510, 6522), True, 'import numpy as np\n'), ((8069, 8093), 'numpy.array', 'np.array', (['mass_freq_list'], {}), '(mass_freq_list)\n', (8077, 8093), True, 'import numpy as np\n'), ((9888, 9922), 'numpy.digitize', 'np.digitize', (['mass_dist.T[0]', 'edges'], {}), '(mass_dist.T[0], edges)\n', (9899, 9922), True, 'import numpy as np\n'), ((9973, 9993), 'numpy.unique', 'np.unique', (['digitized'], {}), '(digitized)\n', (9982, 9993), True, 'import numpy as np\n'), ((10150, 10173), 'numpy.array', 'np.array', (['bin_nums_list'], {}), '(bin_nums_list)\n', (10158, 10173), True, 'import numpy as np\n'), ((12670, 12690), 'numpy.array', 'np.array', (['[2, 4, 10]'], {}), '([2, 4, 10])\n', (12678, 12690), True, 'import numpy as np\n'), ((17391, 17487), 'pandas.read_csv', 'pd.read_csv', (['ECO_cats[ii]'], {'sep': '"""\\\\s+"""', 'usecols': 'usecols', 'header': 'None', 'skiprows': '(2)', 'names': 'names'}), "(ECO_cats[ii], sep='\\\\s+', usecols=usecols, header=None,\n skiprows=2, names=names)\n", (17402, 17487), True, 'import pandas as pd\n'), ((23626, 23658), 'scipy.spatial.cKDTree', 'spatial.cKDTree', (['coords_test[vv]'], {}), '(coords_test[vv])\n', (23641, 23658), False, 'from scipy import integrate, optimize, spatial\n'), ((33868, 33902), 'numpy.delete', 'np.delete', (['mfunc_matrix', '(0)'], {'axis': '(1)'}), '(mfunc_matrix, 0, axis=1)\n', (33877, 33902), True, 'import numpy as np\n'), ((33919, 33943), 'numpy.max', 'np.max', (['mfunc_matrix[kk]'], {}), '(mfunc_matrix[kk])\n', (33925, 33943), True, 'import numpy as np\n'), ((33998, 34022), 'numpy.min', 'np.min', (['mfunc_matrix[kk]'], {}), '(mfunc_matrix[kk])\n', (34004, 34022), True, 'import numpy as np\n'), ((35723, 35754), 'numpy.digitize', 'np.digitize', (['mass_arr[ii]', 'bins'], {}), '(mass_arr[ii], bins)\n', (35734, 35754), True, 'import numpy as np\n'), ((37100, 37135), 'numpy.array', 'np.array', (['[oo_tot_mean, oo_tot_std]'], {}), '([oo_tot_mean, oo_tot_std])\n', (37108, 37135), True, 'import numpy as np\n'), ((6937, 6966), 'numpy.histogram', 'np.histogram', (['frac_mass', 'bins'], {}), '(frac_mass, bins)\n', (6949, 6966), True, 'import numpy as np\n'), ((7091, 7122), 'numpy.histogram', 'np.histogram', (['frac_mass_2', 'bins'], {}), '(frac_mass_2, bins)\n', (7103, 7122), True, 'import numpy as np\n'), ((7232, 7257), 'numpy.isfinite', 'np.isfinite', (['ratio_counts'], {}), '(ratio_counts)\n', (7243, 7257), True, 'import numpy as np\n'), ((10331, 10394), 'numpy.array', 'np.array', (['[mass_dist.T[kk][digitized == ii] for ii in bin_nums]'], {}), '([mass_dist.T[kk][digitized == ii] for ii in bin_nums])\n', (10339, 10394), True, 'import numpy as np\n'), ((11310, 11328), 'numpy.array', 'np.array', (['med_list'], {}), '(med_list)\n', (11318, 11328), True, 'import numpy as np\n'), ((13109, 13138), 'numpy.histogram', 'np.histogram', (['frac_mass', 'bins'], {}), '(frac_mass, bins)\n', (13121, 13138), True, 'import numpy as np\n'), ((13961, 13992), 'numpy.histogram', 'np.histogram', (['frac_mass_2', 'bins'], {}), '(frac_mass_2, bins)\n', (13973, 13992), True, 'import numpy as np\n'), ((14692, 14717), 'numpy.arange', 'np.arange', (['(9.5)', '(12.0)', '(0.5)'], {}), '(9.5, 12.0, 0.5)\n', (14701, 14717), True, 'import numpy as np\n'), ((22181, 22212), 'numpy.argsort', 'np.argsort', (['eco_mass_dist.T[kk]'], {}), '(eco_mass_dist.T[kk])\n', (22191, 22212), True, 'import numpy as np\n'), ((24347, 24392), 'numpy.column_stack', 'np.column_stack', (['(mass_arr[qq], nn_specs[qq])'], {}), '((mass_arr[qq], nn_specs[qq]))\n', (24362, 24392), True, 'import numpy as np\n'), ((30707, 30739), 'numpy.delete', 'np.delete', (['med_matrix', '(0)'], {'axis': '(1)'}), '(med_matrix, 0, axis=1)\n', (30716, 30739), True, 'import numpy as np\n'), ((33746, 33767), 'numpy.zeros', 'np.zeros', (['(n_elem, 1)'], {}), '((n_elem, 1))\n', (33754, 33767), True, 'import numpy as np\n'), ((35777, 35800), 'numpy.unique', 'np.unique', (['mass_binning'], {}), '(mass_binning)\n', (35786, 35800), True, 'import numpy as np\n'), ((36862, 36890), 'numpy.delete', 'np.delete', (['oo_tot', '(0)'], {'axis': '(1)'}), '(oo_tot, 0, axis=1)\n', (36871, 36890), True, 'import numpy as np\n'), ((36909, 36931), 'numpy.nanmean', 'np.nanmean', (['oo_tot[uu]'], {}), '(oo_tot[uu])\n', (36919, 36931), True, 'import numpy as np\n'), ((4221, 4236), 'numpy.radians', 'np.radians', (['dec'], {}), '(dec)\n', (4231, 4236), True, 'import numpy as np\n'), ((4290, 4305), 'numpy.radians', 'np.radians', (['dec'], {}), '(dec)\n', (4300, 4305), True, 'import numpy as np\n'), ((4336, 4351), 'numpy.radians', 'np.radians', (['dec'], {}), '(dec)\n', (4346, 4351), True, 'import numpy as np\n'), ((7510, 7548), 'numpy.sqrt', 'np.sqrt', (['(1.0 / counts + 1.0 / counts_2)'], {}), '(1.0 / counts + 1.0 / counts_2)\n', (7517, 7548), True, 'import numpy as np\n'), ((8000, 8020), 'numpy.sqrt', 'np.sqrt', (['mass_counts'], {}), '(mass_counts)\n', (8007, 8020), True, 'import numpy as np\n'), ((10204, 10250), 'numpy.nanmedian', 'np.nanmedian', (['mass_dist.T[kk][digitized == ii]'], {}), '(mass_dist.T[kk][digitized == ii])\n', (10216, 10250), True, 'import numpy as np\n'), ((30585, 30606), 'numpy.zeros', 'np.zeros', (['(n_elem, 1)'], {}), '((n_elem, 1))\n', (30593, 30606), True, 'import numpy as np\n'), ((30770, 30795), 'numpy.nanmax', 'np.nanmax', (['med_matrix[kk]'], {}), '(med_matrix[kk])\n', (30779, 30795), True, 'import numpy as np\n'), ((30873, 30898), 'numpy.nanmin', 'np.nanmin', (['med_matrix[kk]'], {}), '(med_matrix[kk])\n', (30882, 30898), True, 'import numpy as np\n'), ((32929, 32961), 'numpy.delete', 'np.delete', (['rat_matrix', '(0)'], {'axis': '(1)'}), '(rat_matrix, 0, axis=1)\n', (32938, 32961), True, 'import numpy as np\n'), ((33205, 33230), 'numpy.nanmax', 'np.nanmax', (['rat_matrix[kk]'], {}), '(rat_matrix[kk])\n', (33214, 33230), True, 'import numpy as np\n'), ((33306, 33331), 'numpy.nanmin', 'np.nanmin', (['rat_matrix[kk]'], {}), '(rat_matrix[kk])\n', (33315, 33331), True, 'import numpy as np\n'), ((36274, 36310), 'numpy.count_nonzero', 'np.count_nonzero', (['(truth_binning == 1)'], {}), '(truth_binning == 1)\n', (36290, 36310), True, 'import numpy as np\n'), ((36759, 36782), 'numpy.zeros', 'np.zeros', (['(n_o_elem, 1)'], {}), '((n_o_elem, 1))\n', (36767, 36782), True, 'import numpy as np\n'), ((36982, 37003), 'numpy.nanstd', 'np.nanstd', (['oo_tot[uu]'], {}), '(oo_tot[uu])\n', (36991, 37003), True, 'import numpy as np\n'), ((4198, 4212), 'numpy.radians', 'np.radians', (['ra'], {}), '(ra)\n', (4208, 4212), True, 'import numpy as np\n'), ((4267, 4281), 'numpy.radians', 'np.radians', (['ra'], {}), '(ra)\n', (4277, 4281), True, 'import numpy as np\n'), ((13719, 13734), 'numpy.sqrt', 'np.sqrt', (['counts'], {}), '(counts)\n', (13726, 13734), True, 'import numpy as np\n'), ((14273, 14290), 'numpy.sqrt', 'np.sqrt', (['counts_2'], {}), '(counts_2)\n', (14280, 14290), True, 'import numpy as np\n'), ((26170, 26220), 'numpy.array', 'np.array', (['nn_dist_sorting[ii][neigh_vals[jj]].T[1]'], {}), '(nn_dist_sorting[ii][neigh_vals[jj]].T[1])\n', (26178, 26220), True, 'import numpy as np\n'), ((30475, 30501), 'numpy.array', 'np.array', (['num_of_meds_list'], {}), '(num_of_meds_list)\n', (30483, 30501), True, 'import numpy as np\n'), ((32799, 32820), 'numpy.zeros', 'np.zeros', (['(n_elem, 1)'], {}), '((n_elem, 1))\n', (32807, 32820), True, 'import numpy as np\n'), ((32677, 32703), 'numpy.array', 'np.array', (['num_of_rats_list'], {}), '(num_of_rats_list)\n', (32685, 32703), True, 'import numpy as np\n'), ((24088, 24104), 'numpy.array', 'np.array', (['nn_arr'], {}), '(nn_arr)\n', (24096, 24104), True, 'import numpy as np\n'), ((24544, 24560), 'numpy.array', 'np.array', (['nn_idx'], {}), '(nn_idx)\n', (24552, 24560), True, 'import numpy as np\n')]
|
import matplotlib.pyplot as plt
import numpy as np
def plotLine(c0, c1, ax):
t = np.linspace(0, 1, 11)
c = (c1 - c0) * t + c0
ax.plot(c.real, c.imag)
def plotCircle(c0, r, ax):
t = np.linspace(0, 1, 1001) * 2 * np.pi
s = c0 + r * np.exp(1j * t)
ax.plot(s.real, s.imag)
def plotEllipse(c0, a, b, phi, ax):
t = np.linspace(0, 1, 1001) * 2 * np.pi
c = np.exp(1j * t)
s = c0 + (c.real * a + 1j * c.imag * b) * np.exp(1j * phi)
ax.plot(s.real, s.imag)
def plotDistribution(s0, s1, fig=None, axes=None, info=None, hotThresh=10000):
from waveforms.math.fit import get_threshold_info, mult_gaussian_pdf
if info is None:
info = get_threshold_info(s0, s1)
thr, phi = info['threshold'], info['phi']
visibility, p0, p1 = info['visibility']
# print(
# f"thr={thr:.6f}, phi={phi:.6f}, visibility={visibility:.3f}, {p0}, {1-p1}"
# )
if axes is not None:
ax1, ax2 = axes
else:
if fig is None:
fig = plt.figure()
ax1 = fig.add_subplot(121)
ax2 = fig.add_subplot(122)
if (len(s0) + len(s1)) < hotThresh:
ax1.plot(np.real(s0), np.imag(s0), '.', alpha=0.2)
ax1.plot(np.real(s1), np.imag(s1), '.', alpha=0.2)
else:
_, *bins = np.histogram2d(np.real(np.hstack([s0, s1])),
np.imag(np.hstack([s0, s1])),
bins=50)
H0, *_ = np.histogram2d(np.real(s0),
np.imag(s0),
bins=bins,
density=True)
H1, *_ = np.histogram2d(np.real(s1),
np.imag(s1),
bins=bins,
density=True)
vlim = max(np.max(np.abs(H0)), np.max(np.abs(H1)))
ax1.imshow(H1.T - H0.T,
alpha=(np.fmax(H0.T, H1.T) / vlim).clip(0, 1),
interpolation='nearest',
origin='lower',
cmap='coolwarm',
vmin=-vlim,
vmax=vlim,
extent=(bins[0][0], bins[0][-1], bins[1][0], bins[1][-1]))
ax1.axis('equal')
ax1.set_xticks([])
ax1.set_yticks([])
for s in ax1.spines.values():
s.set_visible(False)
# c0, c1 = info['center']
# a0, b0, a1, b1 = info['std']
params = info['params']
r0, i0, r1, i1 = params[0][0], params[1][0], params[0][1], params[1][1]
a0, b0, a1, b1 = params[0][2], params[1][2], params[0][3], params[1][3]
c0 = (r0 + 1j * i0) * np.exp(1j * phi)
c1 = (r1 + 1j * i1) * np.exp(1j * phi)
plotEllipse(c0, 2 * a0, 2 * b0, phi, ax1)
plotEllipse(c1, 2 * a1, 2 * b1, phi, ax1)
im0, im1 = info['idle']
lim = min(im0.min(), im1.min()), max(im0.max(), im1.max())
t = (np.linspace(lim[0], lim[1], 3) + 1j * thr) * np.exp(-1j * phi)
ax1.plot(t.imag, t.real, 'k--')
ax1.plot(np.real(c0), np.imag(c0), 'o', color='C3')
ax1.plot(np.real(c1), np.imag(c1), 'o', color='C4')
re0, re1 = info['signal']
x, a, b, c = info['cdf']
n0, bins0, *_ = ax2.hist(re0, bins=50, alpha=0.5)
n1, bins1, *_ = ax2.hist(re1, bins=50, alpha=0.5)
ax2.plot(
x,
np.sum(n0) * (bins0[1] - bins0[0]) * mult_gaussian_pdf(
x, [r0, r1], [a0, a1], [params[0][4], 1 - params[0][4]]))
ax2.plot(
x,
np.sum(n1) * (bins1[1] - bins1[0]) * mult_gaussian_pdf(
x, [r0, r1], [a0, a1], [params[0][5], 1 - params[0][5]]))
ax2.set_ylabel('Count')
ax2.set_xlabel('Projection Axes')
ax3 = ax2.twinx()
ax3.plot(x, a)
ax3.plot(x, b)
ax3.plot(x, c)
ax3.set_ylim(0, 1.1)
ax3.vlines(thr, 0, 1.1, 'k')
ax3.set_ylabel('Probility')
return info
ALLXYSeq = [('I', 'I'), ('X', 'X'), ('Y', 'Y'), ('X', 'Y'), ('Y', 'X'),
('X/2', 'I'), ('Y/2', 'I'), ('X/2', 'Y/2'), ('Y/2', 'X/2'),
('X/2', 'Y'), ('Y/2', 'X'), ('X', 'Y/2'), ('Y', 'X/2'),
('X/2', 'X'), ('X', 'X/2'), ('Y/2', 'Y'), ('Y', 'Y/2'), ('X', 'I'),
('Y', 'I'), ('X/2', 'X/2'), ('Y/2', 'Y/2')]
def plotALLXY(data, ax=None):
assert len(data) % len(ALLXYSeq) == 0
if ax is None:
ax = plt.gca()
ax.plot(np.array(data), 'o-')
repeat = len(data) // len(ALLXYSeq)
ax.set_xticks(np.arange(len(ALLXYSeq)) * repeat + 0.5 * (repeat - 1))
ax.set_xticklabels([','.join(seq) for seq in ALLXYSeq], rotation=60)
ax.grid(which='major')
|
[
"numpy.fmax",
"numpy.abs",
"numpy.sum",
"matplotlib.pyplot.gca",
"numpy.hstack",
"numpy.imag",
"matplotlib.pyplot.figure",
"numpy.array",
"numpy.exp",
"numpy.real",
"numpy.linspace",
"waveforms.math.fit.mult_gaussian_pdf",
"waveforms.math.fit.get_threshold_info"
] |
[((87, 108), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(11)'], {}), '(0, 1, 11)\n', (98, 108), True, 'import numpy as np\n'), ((387, 403), 'numpy.exp', 'np.exp', (['(1.0j * t)'], {}), '(1.0j * t)\n', (393, 403), True, 'import numpy as np\n'), ((684, 710), 'waveforms.math.fit.get_threshold_info', 'get_threshold_info', (['s0', 's1'], {}), '(s0, s1)\n', (702, 710), False, 'from waveforms.math.fit import get_threshold_info, mult_gaussian_pdf\n'), ((2607, 2625), 'numpy.exp', 'np.exp', (['(1.0j * phi)'], {}), '(1.0j * phi)\n', (2613, 2625), True, 'import numpy as np\n'), ((2650, 2668), 'numpy.exp', 'np.exp', (['(1.0j * phi)'], {}), '(1.0j * phi)\n', (2656, 2668), True, 'import numpy as np\n'), ((2905, 2924), 'numpy.exp', 'np.exp', (['(-1.0j * phi)'], {}), '(-1.0j * phi)\n', (2911, 2924), True, 'import numpy as np\n'), ((2973, 2984), 'numpy.real', 'np.real', (['c0'], {}), '(c0)\n', (2980, 2984), True, 'import numpy as np\n'), ((2986, 2997), 'numpy.imag', 'np.imag', (['c0'], {}), '(c0)\n', (2993, 2997), True, 'import numpy as np\n'), ((3029, 3040), 'numpy.real', 'np.real', (['c1'], {}), '(c1)\n', (3036, 3040), True, 'import numpy as np\n'), ((3042, 3053), 'numpy.imag', 'np.imag', (['c1'], {}), '(c1)\n', (3049, 3053), True, 'import numpy as np\n'), ((4269, 4278), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (4276, 4278), True, 'import matplotlib.pyplot as plt\n'), ((4292, 4306), 'numpy.array', 'np.array', (['data'], {}), '(data)\n', (4300, 4306), True, 'import numpy as np\n'), ((201, 224), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(1001)'], {}), '(0, 1, 1001)\n', (212, 224), True, 'import numpy as np\n'), ((254, 270), 'numpy.exp', 'np.exp', (['(1.0j * t)'], {}), '(1.0j * t)\n', (260, 270), True, 'import numpy as np\n'), ((343, 366), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(1001)'], {}), '(0, 1, 1001)\n', (354, 366), True, 'import numpy as np\n'), ((448, 466), 'numpy.exp', 'np.exp', (['(1.0j * phi)'], {}), '(1.0j * phi)\n', (454, 466), True, 'import numpy as np\n'), ((1009, 1021), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (1019, 1021), True, 'import matplotlib.pyplot as plt\n'), ((1150, 1161), 'numpy.real', 'np.real', (['s0'], {}), '(s0)\n', (1157, 1161), True, 'import numpy as np\n'), ((1163, 1174), 'numpy.imag', 'np.imag', (['s0'], {}), '(s0)\n', (1170, 1174), True, 'import numpy as np\n'), ((1209, 1220), 'numpy.real', 'np.real', (['s1'], {}), '(s1)\n', (1216, 1220), True, 'import numpy as np\n'), ((1222, 1233), 'numpy.imag', 'np.imag', (['s1'], {}), '(s1)\n', (1229, 1233), True, 'import numpy as np\n'), ((1465, 1476), 'numpy.real', 'np.real', (['s0'], {}), '(s0)\n', (1472, 1476), True, 'import numpy as np\n'), ((1510, 1521), 'numpy.imag', 'np.imag', (['s0'], {}), '(s0)\n', (1517, 1521), True, 'import numpy as np\n'), ((1644, 1655), 'numpy.real', 'np.real', (['s1'], {}), '(s1)\n', (1651, 1655), True, 'import numpy as np\n'), ((1689, 1700), 'numpy.imag', 'np.imag', (['s1'], {}), '(s1)\n', (1696, 1700), True, 'import numpy as np\n'), ((2860, 2890), 'numpy.linspace', 'np.linspace', (['lim[0]', 'lim[1]', '(3)'], {}), '(lim[0], lim[1], 3)\n', (2871, 2890), True, 'import numpy as np\n'), ((3311, 3385), 'waveforms.math.fit.mult_gaussian_pdf', 'mult_gaussian_pdf', (['x', '[r0, r1]', '[a0, a1]', '[params[0][4], 1 - params[0][4]]'], {}), '(x, [r0, r1], [a0, a1], [params[0][4], 1 - params[0][4]])\n', (3328, 3385), False, 'from waveforms.math.fit import get_threshold_info, mult_gaussian_pdf\n'), ((3470, 3544), 'waveforms.math.fit.mult_gaussian_pdf', 'mult_gaussian_pdf', (['x', '[r0, r1]', '[a0, a1]', '[params[0][5], 1 - params[0][5]]'], {}), '(x, [r0, r1], [a0, a1], [params[0][5], 1 - params[0][5]])\n', (3487, 3544), False, 'from waveforms.math.fit import get_threshold_info, mult_gaussian_pdf\n'), ((1303, 1322), 'numpy.hstack', 'np.hstack', (['[s0, s1]'], {}), '([s0, s1])\n', (1312, 1322), True, 'import numpy as np\n'), ((1367, 1386), 'numpy.hstack', 'np.hstack', (['[s0, s1]'], {}), '([s0, s1])\n', (1376, 1386), True, 'import numpy as np\n'), ((1817, 1827), 'numpy.abs', 'np.abs', (['H0'], {}), '(H0)\n', (1823, 1827), True, 'import numpy as np\n'), ((1837, 1847), 'numpy.abs', 'np.abs', (['H1'], {}), '(H1)\n', (1843, 1847), True, 'import numpy as np\n'), ((3274, 3284), 'numpy.sum', 'np.sum', (['n0'], {}), '(n0)\n', (3280, 3284), True, 'import numpy as np\n'), ((3433, 3443), 'numpy.sum', 'np.sum', (['n1'], {}), '(n1)\n', (3439, 3443), True, 'import numpy as np\n'), ((1909, 1928), 'numpy.fmax', 'np.fmax', (['H0.T', 'H1.T'], {}), '(H0.T, H1.T)\n', (1916, 1928), True, 'import numpy as np\n')]
|
import lorm
from lorm.manif import Sphere2
from lorm.funcs import ManifoldObjectiveFunction
from nfft import nfsft
import numpy as np
import copy as cp
class plan(ManifoldObjectiveFunction):
def __init__(self, M, N, alpha, L, equality_constraint=False, closed=True):
'''
plan for computing the (polynomial) L^2 discrepancy for points measures on the sphere S^2
E(mu,nu_M) = D(mu,nu_M)^2 + alpha/M sum_{i=1}^M (dist(x_i,x_{i-1}) - L)_+^2, (if equality_constraint == False)
E(mu,nu_M) = D(mu,nu_M)^2 + alpha/M sum_{i=1}^M (dist(x_i,x_{i-1}) - L)^2, (if equality_constraint == True)
M - number of points
N - polynomial degree
'''
self._M = M
self._N = N
self._nfsft_plan = nfsft.plan(M, N)
self._lambda_hat = nfsft.SphericalFourierCoefficients(N)
for n in range(N+1):
self._lambda_hat[n,:] = 1./((2*n-1)*(2*n+1)*(2*n+3))
self._mu_hat = nfsft.SphericalFourierCoefficients(N)
self._mu_hat[0,0] = 1
self._weights = np.sqrt(4*np.pi) * np.ones([M,1],dtype=float) / M
self._alpha = alpha
self._L = L
self._equality_constraint = equality_constraint
self._closed = closed
def f(point_array_coords):
lengths = self._eval_lengths(point_array_coords)
pos_diff_lengths = self._M*lengths-self._L
if self._equality_constraint == False:
pos_diff_lengths[ pos_diff_lengths < 0] = 0
err_vector = self._eval_error_vector(point_array_coords)
return np.real(np.sum(err_vector.array*err_vector.array.conjugate()*self._lambda_hat.array)) + self._alpha * 1./self._M*np.sum((pos_diff_lengths)**2)
def grad(point_array_coords):
le = self._eval_error_vector(point_array_coords)
le *= self._lambda_hat
# we already set the point_array_coords in _eval_error_vector
grad = 2*np.real(self._nfsft_plan.compute_gradYmatrix_multiplication(le)) * self._weights + self._alpha*1./self._M*self._eval_grad_sum_lengths_squared(point_array_coords)
return grad
def hess_mult(base_point_array_coords, tangent_array_coords):
norm = np.linalg.norm(tangent_array_coords)
h = 1e-12
return norm*(self._grad(base_point_array_coords + h*tangent_array_coords/norm) - self._grad(base_point_array_coords))/h
ManifoldObjectiveFunction.__init__(self,Sphere2(),f,grad=grad,hess_mult=hess_mult, parameterized=True)
def _eval_error_vector(self,point_array_coords):
self._nfsft_plan.set_local_coords(point_array_coords)
err_vector = self._nfsft_plan.compute_Ymatrix_adjoint_multiplication(self._weights, self._N)
err_vector -= self._mu_hat
return err_vector
def _eval_lengths(self,point_array_coords):
lengths = np.zeros([self._M])
theta = point_array_coords[:,0]
dp = np.zeros([self._M])
dp[:] = point_array_coords[:,1]
dp[0] -= point_array_coords[self._M-1,1]
dp[1:self._M] -= point_array_coords[0:self._M-1,1]
ct = np.cos(theta)
st = np.sin(theta)
if self._closed:
lengths[0] = np.sqrt(2 * (1 - ct[0]*ct[self._M-1] - np.cos(dp[0])*st[0]*st[self._M-1]))
lengths[1:self._M] = np.sqrt(2 * (1 - ct[1:self._M]*ct[0:self._M-1]- np.cos(dp[1:self._M])*st[1:self._M]*st[0:self._M-1]))
return lengths
def _eval_grad_lengths1(self,point_array_coords):
grad_lengths = np.zeros([self._M,2])
theta = point_array_coords[:,0]
dp = np.zeros([self._M])
dp[:] = point_array_coords[:,1]
dp[0] -= point_array_coords[self._M-1,1]
dp[1:self._M] -= point_array_coords[0:self._M-1,1]
ct = np.cos(theta)
st = np.sin(theta)
lengths = self._eval_lengths(point_array_coords)
if self._closed:
grad_lengths[0,0] = (st[0]*ct[self._M-1] - np.cos(dp[0])*ct[0]*st[self._M-1])/lengths[0]
grad_lengths[0,1] = np.sin(dp[0])*st[0]*st[self._M-1]/lengths[0]
grad_lengths[1:self._M,0] = (st[1:self._M]*ct[0:self._M-1] - np.cos(dp[1:self._M])*ct[1:self._M]*st[0:self._M-1])/lengths[1:self._M]
grad_lengths[1:self._M,1] = np.sin(dp[1:self._M])*st[1:self._M]*st[0:self._M-1]/lengths[1:self._M]
return grad_lengths
def _eval_grad_lengths2(self,point_array_coords):
grad_lengths = np.zeros([self._M,2])
theta = point_array_coords[:,0]
dp = np.zeros([self._M])
dp[:] = point_array_coords[:,1]
dp[0] -= point_array_coords[self._M-1,1]
dp[1:self._M] -= point_array_coords[0:self._M-1,1]
ct = np.cos(theta)
st = np.sin(theta)
lengths = self._eval_lengths(point_array_coords)
if self._closed:
grad_lengths[self._M-1,0] = (ct[0]*st[self._M-1] - np.cos(dp[0])*st[0]*ct[self._M-1])/lengths[0]
grad_lengths[self._M-1,1] = -np.sin(dp[0])*st[0]*st[self._M-1]/lengths[0]
grad_lengths[0:self._M-1,0] = (ct[1:self._M]*st[0:self._M-1] - np.cos(dp[1:self._M])*st[1:self._M]*ct[0:self._M-1])/lengths[1:self._M]
grad_lengths[0:self._M-1,1] = -np.sin(dp[1:self._M])*st[1:self._M]*st[0:self._M-1]/lengths[1:self._M]
return grad_lengths
def _eval_grad_sum_lengths_squared(self,point_array_coords):
lengths = self._eval_lengths(point_array_coords).reshape([self._M,1])
grad_lengths1 = self._eval_grad_lengths1(point_array_coords)
grad_lengths2 = self._eval_grad_lengths2(point_array_coords)
grad = np.zeros((self._M,2))
pos_diff_lengths = self._M*lengths-self._L
if self._equality_constraint == False:
pos_diff_lengths[ pos_diff_lengths < 0] = 0
grad[0,:] += pos_diff_lengths[0]*grad_lengths1[0,:]
grad[1:self._M,:] += pos_diff_lengths[1:self._M]*grad_lengths1[1:self._M,:]
grad[self._M-1,:] += pos_diff_lengths[0]*grad_lengths2[self._M-1,:]
grad[0:self._M-1,:] += pos_diff_lengths[1:self._M]*grad_lengths2[0:self._M-1,:]
return 2*self._M*grad
|
[
"numpy.sum",
"nfft.nfsft.plan",
"numpy.zeros",
"nfft.nfsft.SphericalFourierCoefficients",
"lorm.manif.Sphere2",
"numpy.ones",
"numpy.sin",
"numpy.linalg.norm",
"numpy.cos",
"numpy.sqrt"
] |
[((765, 781), 'nfft.nfsft.plan', 'nfsft.plan', (['M', 'N'], {}), '(M, N)\n', (775, 781), False, 'from nfft import nfsft\n'), ((809, 846), 'nfft.nfsft.SphericalFourierCoefficients', 'nfsft.SphericalFourierCoefficients', (['N'], {}), '(N)\n', (843, 846), False, 'from nfft import nfsft\n'), ((964, 1001), 'nfft.nfsft.SphericalFourierCoefficients', 'nfsft.SphericalFourierCoefficients', (['N'], {}), '(N)\n', (998, 1001), False, 'from nfft import nfsft\n'), ((2890, 2909), 'numpy.zeros', 'np.zeros', (['[self._M]'], {}), '([self._M])\n', (2898, 2909), True, 'import numpy as np\n'), ((2963, 2982), 'numpy.zeros', 'np.zeros', (['[self._M]'], {}), '([self._M])\n', (2971, 2982), True, 'import numpy as np\n'), ((3144, 3157), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (3150, 3157), True, 'import numpy as np\n'), ((3171, 3184), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (3177, 3184), True, 'import numpy as np\n'), ((3545, 3567), 'numpy.zeros', 'np.zeros', (['[self._M, 2]'], {}), '([self._M, 2])\n', (3553, 3567), True, 'import numpy as np\n'), ((3620, 3639), 'numpy.zeros', 'np.zeros', (['[self._M]'], {}), '([self._M])\n', (3628, 3639), True, 'import numpy as np\n'), ((3801, 3814), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (3807, 3814), True, 'import numpy as np\n'), ((3828, 3841), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (3834, 3841), True, 'import numpy as np\n'), ((4458, 4480), 'numpy.zeros', 'np.zeros', (['[self._M, 2]'], {}), '([self._M, 2])\n', (4466, 4480), True, 'import numpy as np\n'), ((4533, 4552), 'numpy.zeros', 'np.zeros', (['[self._M]'], {}), '([self._M])\n', (4541, 4552), True, 'import numpy as np\n'), ((4714, 4727), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (4720, 4727), True, 'import numpy as np\n'), ((4741, 4754), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (4747, 4754), True, 'import numpy as np\n'), ((5615, 5637), 'numpy.zeros', 'np.zeros', (['(self._M, 2)'], {}), '((self._M, 2))\n', (5623, 5637), True, 'import numpy as np\n'), ((2241, 2277), 'numpy.linalg.norm', 'np.linalg.norm', (['tangent_array_coords'], {}), '(tangent_array_coords)\n', (2255, 2277), True, 'import numpy as np\n'), ((2482, 2491), 'lorm.manif.Sphere2', 'Sphere2', ([], {}), '()\n', (2489, 2491), False, 'from lorm.manif import Sphere2\n'), ((1056, 1074), 'numpy.sqrt', 'np.sqrt', (['(4 * np.pi)'], {}), '(4 * np.pi)\n', (1063, 1074), True, 'import numpy as np\n'), ((1075, 1103), 'numpy.ones', 'np.ones', (['[M, 1]'], {'dtype': 'float'}), '([M, 1], dtype=float)\n', (1082, 1103), True, 'import numpy as np\n'), ((1704, 1733), 'numpy.sum', 'np.sum', (['(pos_diff_lengths ** 2)'], {}), '(pos_diff_lengths ** 2)\n', (1710, 1733), True, 'import numpy as np\n'), ((4281, 4302), 'numpy.sin', 'np.sin', (['dp[1:self._M]'], {}), '(dp[1:self._M])\n', (4287, 4302), True, 'import numpy as np\n'), ((4059, 4072), 'numpy.sin', 'np.sin', (['dp[0]'], {}), '(dp[0])\n', (4065, 4072), True, 'import numpy as np\n'), ((4173, 4194), 'numpy.cos', 'np.cos', (['dp[1:self._M]'], {}), '(dp[1:self._M])\n', (4179, 4194), True, 'import numpy as np\n'), ((5106, 5127), 'numpy.cos', 'np.cos', (['dp[1:self._M]'], {}), '(dp[1:self._M])\n', (5112, 5127), True, 'import numpy as np\n'), ((5218, 5239), 'numpy.sin', 'np.sin', (['dp[1:self._M]'], {}), '(dp[1:self._M])\n', (5224, 5239), True, 'import numpy as np\n'), ((3389, 3410), 'numpy.cos', 'np.cos', (['dp[1:self._M]'], {}), '(dp[1:self._M])\n', (3395, 3410), True, 'import numpy as np\n'), ((3980, 3993), 'numpy.cos', 'np.cos', (['dp[0]'], {}), '(dp[0])\n', (3986, 3993), True, 'import numpy as np\n'), ((4901, 4914), 'numpy.cos', 'np.cos', (['dp[0]'], {}), '(dp[0])\n', (4907, 4914), True, 'import numpy as np\n'), ((4989, 5002), 'numpy.sin', 'np.sin', (['dp[0]'], {}), '(dp[0])\n', (4995, 5002), True, 'import numpy as np\n'), ((3275, 3288), 'numpy.cos', 'np.cos', (['dp[0]'], {}), '(dp[0])\n', (3281, 3288), True, 'import numpy as np\n')]
|
# Copyright 2020 The FastEstimator Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import unittest
import numpy as np
import tensorflow as tf
import torch
import fastestimator as fe
class TestExp(unittest.TestCase):
def test_exp_np_input(self):
n = np.array([-2., 2, 1])
obj1 = fe.backend.exp(n)
obj2 = np.array([0.13533528, 7.3890561, 2.71828183])
self.assertTrue(np.allclose(obj1, obj2))
def test_exp_tf_input(self):
t = tf.constant([-2., 2, 1])
obj1 = fe.backend.exp(t)
obj2 = np.array([0.13533528, 7.3890561, 2.71828183])
self.assertTrue(np.allclose(obj1, obj2))
def test_exp_torch_input(self):
t = torch.tensor([-2., 2, 1])
obj1 = fe.backend.exp(t)
obj2 = np.array([0.13533528, 7.3890561, 2.71828183])
self.assertTrue(np.allclose(obj1, obj2))
|
[
"numpy.allclose",
"tensorflow.constant",
"fastestimator.backend.exp",
"numpy.array",
"torch.tensor"
] |
[((874, 896), 'numpy.array', 'np.array', (['[-2.0, 2, 1]'], {}), '([-2.0, 2, 1])\n', (882, 896), True, 'import numpy as np\n'), ((911, 928), 'fastestimator.backend.exp', 'fe.backend.exp', (['n'], {}), '(n)\n', (925, 928), True, 'import fastestimator as fe\n'), ((944, 989), 'numpy.array', 'np.array', (['[0.13533528, 7.3890561, 2.71828183]'], {}), '([0.13533528, 7.3890561, 2.71828183])\n', (952, 989), True, 'import numpy as np\n'), ((1085, 1110), 'tensorflow.constant', 'tf.constant', (['[-2.0, 2, 1]'], {}), '([-2.0, 2, 1])\n', (1096, 1110), True, 'import tensorflow as tf\n'), ((1125, 1142), 'fastestimator.backend.exp', 'fe.backend.exp', (['t'], {}), '(t)\n', (1139, 1142), True, 'import fastestimator as fe\n'), ((1158, 1203), 'numpy.array', 'np.array', (['[0.13533528, 7.3890561, 2.71828183]'], {}), '([0.13533528, 7.3890561, 2.71828183])\n', (1166, 1203), True, 'import numpy as np\n'), ((1302, 1328), 'torch.tensor', 'torch.tensor', (['[-2.0, 2, 1]'], {}), '([-2.0, 2, 1])\n', (1314, 1328), False, 'import torch\n'), ((1343, 1360), 'fastestimator.backend.exp', 'fe.backend.exp', (['t'], {}), '(t)\n', (1357, 1360), True, 'import fastestimator as fe\n'), ((1376, 1421), 'numpy.array', 'np.array', (['[0.13533528, 7.3890561, 2.71828183]'], {}), '([0.13533528, 7.3890561, 2.71828183])\n', (1384, 1421), True, 'import numpy as np\n'), ((1014, 1037), 'numpy.allclose', 'np.allclose', (['obj1', 'obj2'], {}), '(obj1, obj2)\n', (1025, 1037), True, 'import numpy as np\n'), ((1228, 1251), 'numpy.allclose', 'np.allclose', (['obj1', 'obj2'], {}), '(obj1, obj2)\n', (1239, 1251), True, 'import numpy as np\n'), ((1446, 1469), 'numpy.allclose', 'np.allclose', (['obj1', 'obj2'], {}), '(obj1, obj2)\n', (1457, 1469), True, 'import numpy as np\n')]
|
# (c) 2019-2021, <NAME> @ ETH Zurich
# Computer-assisted Applications in Medicine (CAiM) Group, Prof. <NAME>
import tensorflow as tf
import numpy as np
import logging
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
class DiceLoss(tf.losses.Loss):
"""
Dice loss
References
----------
.. Adapted from https://github.com/baumgach/acdc_segmenter
"""
def __init__(self, epsilon=1e-10, use_hard_pred=False, **kwargs):
super().__init__()
self.only_foreground = kwargs.get('only_foreground', False)
self.epsilon = epsilon
self.use_hard_pred = use_hard_pred
mode = kwargs.get('mode', None)
if mode == 'macro':
self.sum_over_labels = False
self.sum_over_batches = False
elif mode == 'macro_robust':
self.sum_over_labels = False
self.sum_over_batches = True
elif mode == 'micro':
self.sum_over_labels = True
self.sum_over_batches = False
elif mode is None:
self.sum_over_labels = kwargs.get('per_structure') # Intentionally no default value
self.sum_over_batches = kwargs.get('sum_over_batches', False)
else:
raise ValueError("Encountered unexpected 'mode' in dice_loss: '%s'" % mode)
def call(self, labels, logits):
dice_per_img_per_lab = self.get_dice(logits=logits, labels=labels)
if self.only_foreground:
if self.sum_over_batches:
loss = 1 - tf.reduce_mean(dice_per_img_per_lab[:-1])
else:
loss = 1 - tf.reduce_mean(dice_per_img_per_lab[:, :-1])
else:
loss = 1 - tf.reduce_mean(dice_per_img_per_lab)
return loss
def get_dice(self, labels, logits):
ndims = logits.get_shape().ndims
prediction = logits
# prediction = tf.nn.softmax(logits)
if self.use_hard_pred:
# This casts the predictions to binary 0 or 1
prediction = tf.one_hot(tf.argmax(prediction, axis=-1), depth=tf.shape(prediction)[-1])
intersection = tf.multiply(prediction, labels)
if ndims == 5:
reduction_axes = [1, 2, 3]
else:
reduction_axes = [1, 2]
if self.sum_over_batches:
reduction_axes = [0] + reduction_axes
if self.sum_over_labels:
reduction_axes += [reduction_axes[-1] + 1] # also sum over the last axis
# Reduce the maps over all dimensions except the batch and the label index
i = tf.reduce_sum(intersection, axis=reduction_axes)
l = tf.reduce_sum(prediction, axis=reduction_axes)
r = tf.reduce_sum(labels, axis=reduction_axes)
dice_per_img_per_lab = 2 * i / (l + r + self.epsilon)
return dice_per_img_per_lab
class CrossEntropyWeighted(tf.losses.Loss):
"""
Weighted cross entropy loss with logits
"""
def __init__(self, class_weights, key_out=None, name='CrossEntropyWeigthed', **kwargs):
super(CrossEntropyWeighted, self).__init__(name=name, **kwargs)
self.class_weights = class_weights
self.n_class = len(self.class_weights)
self.key_out = key_out
@tf.function
def call(self, labels, logits):
flat_logits = tf.reshape(logits, [-1, self.n_class])
flat_labels = tf.reshape(labels, [-1, self.n_class])
class_weights = tf.constant(np.array(self.class_weights, dtype=np.float32))
weight_map = tf.multiply(flat_labels, class_weights)
weight_map = tf.reduce_sum(weight_map, axis=1)
loss_map = tf.nn.softmax_cross_entropy_with_logits(logits=flat_logits, labels=flat_labels)
weighted_loss = tf.multiply(loss_map, weight_map)
loss = tf.reduce_mean(weighted_loss)
return loss
def get_loss(name_loss, class_weights=None):
"""
Parses the parameters to get the correct loss
Parameters
----------
name_loss : str
Name of the loss function to use
class_weights : list (of floats) or None
Weights of the different classes employed
Returns
-------
tf.losses.Loss
Loss function as required by a tf model
"""
if name_loss == 'dice':
return DiceLoss(mode='macro_robust', only_foreground=True)
elif name_loss == 'crossentropy':
if class_weights is None:
raise Exception("class_weights should be declared for weighted cross entropy")
return CrossEntropyWeighted(class_weights)
else:
raise Exception("The loss {} has not been implemented".format(name_loss))
|
[
"tensorflow.reduce_sum",
"tensorflow.nn.softmax_cross_entropy_with_logits",
"tensorflow.argmax",
"tensorflow.reshape",
"tensorflow.reduce_mean",
"tensorflow.multiply",
"tensorflow.shape",
"numpy.array",
"logging.getLogger"
] |
[((181, 208), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (198, 208), False, 'import logging\n'), ((2124, 2155), 'tensorflow.multiply', 'tf.multiply', (['prediction', 'labels'], {}), '(prediction, labels)\n', (2135, 2155), True, 'import tensorflow as tf\n'), ((2570, 2618), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['intersection'], {'axis': 'reduction_axes'}), '(intersection, axis=reduction_axes)\n', (2583, 2618), True, 'import tensorflow as tf\n'), ((2631, 2677), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['prediction'], {'axis': 'reduction_axes'}), '(prediction, axis=reduction_axes)\n', (2644, 2677), True, 'import tensorflow as tf\n'), ((2690, 2732), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['labels'], {'axis': 'reduction_axes'}), '(labels, axis=reduction_axes)\n', (2703, 2732), True, 'import tensorflow as tf\n'), ((3301, 3339), 'tensorflow.reshape', 'tf.reshape', (['logits', '[-1, self.n_class]'], {}), '(logits, [-1, self.n_class])\n', (3311, 3339), True, 'import tensorflow as tf\n'), ((3362, 3400), 'tensorflow.reshape', 'tf.reshape', (['labels', '[-1, self.n_class]'], {}), '(labels, [-1, self.n_class])\n', (3372, 3400), True, 'import tensorflow as tf\n'), ((3508, 3547), 'tensorflow.multiply', 'tf.multiply', (['flat_labels', 'class_weights'], {}), '(flat_labels, class_weights)\n', (3519, 3547), True, 'import tensorflow as tf\n'), ((3569, 3602), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['weight_map'], {'axis': '(1)'}), '(weight_map, axis=1)\n', (3582, 3602), True, 'import tensorflow as tf\n'), ((3623, 3702), 'tensorflow.nn.softmax_cross_entropy_with_logits', 'tf.nn.softmax_cross_entropy_with_logits', ([], {'logits': 'flat_logits', 'labels': 'flat_labels'}), '(logits=flat_logits, labels=flat_labels)\n', (3662, 3702), True, 'import tensorflow as tf\n'), ((3727, 3760), 'tensorflow.multiply', 'tf.multiply', (['loss_map', 'weight_map'], {}), '(loss_map, weight_map)\n', (3738, 3760), True, 'import tensorflow as tf\n'), ((3777, 3806), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['weighted_loss'], {}), '(weighted_loss)\n', (3791, 3806), True, 'import tensorflow as tf\n'), ((3438, 3484), 'numpy.array', 'np.array', (['self.class_weights'], {'dtype': 'np.float32'}), '(self.class_weights, dtype=np.float32)\n', (3446, 3484), True, 'import numpy as np\n'), ((1699, 1735), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['dice_per_img_per_lab'], {}), '(dice_per_img_per_lab)\n', (1713, 1735), True, 'import tensorflow as tf\n'), ((2036, 2066), 'tensorflow.argmax', 'tf.argmax', (['prediction'], {'axis': '(-1)'}), '(prediction, axis=-1)\n', (2045, 2066), True, 'import tensorflow as tf\n'), ((1530, 1571), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['dice_per_img_per_lab[:-1]'], {}), '(dice_per_img_per_lab[:-1])\n', (1544, 1571), True, 'import tensorflow as tf\n'), ((1617, 1661), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['dice_per_img_per_lab[:, :-1]'], {}), '(dice_per_img_per_lab[:, :-1])\n', (1631, 1661), True, 'import tensorflow as tf\n'), ((2074, 2094), 'tensorflow.shape', 'tf.shape', (['prediction'], {}), '(prediction)\n', (2082, 2094), True, 'import tensorflow as tf\n')]
|
__version__ = '1.0.0-rc.1'
__author__ = '<NAME>, <NAME>, <NAME>, <NAME>'
import json
import os
import random
import numpy as np
import torch
from transformers import AutoTokenizer
from rate_severity_of_toxic_comments.dataset import AVAILABLE_DATASET_TYPES
from rate_severity_of_toxic_comments.embedding import AVAILABLE_EMBEDDINGS
from rate_severity_of_toxic_comments.model import AVAILABLE_ARCHITECTURES
from rate_severity_of_toxic_comments.preprocessing import AVAILABLE_PREPROCESSING_PIPELINES
from rate_severity_of_toxic_comments.tokenizer import NaiveTokenizer, create_recurrent_model_tokenizer
_bad_words = []
AVAILABLE_MODES = ['recurrent', 'pretrained', 'debug']
def fix_random_seed(seed):
"""
Fix random seed.
Parameters
----------
seed : int
Seed for random state.
"""
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
def obfuscator(text):
"""
Censors bad words.
Parameters
----------
text : str
Text to censor.
Returns
-------
text : str
Censored text.
"""
global _bad_words
if len(_bad_words) == 0:
with open('res/bad_words.txt') as file:
bad_words = [l.rstrip() for l in file.readlines() if len(l) > 2]
bad_words = [l for l in bad_words if len(l) > 2]
_bad_words = list(sorted(bad_words, key=len, reverse=True))
for word in _bad_words:
visible = min(len(word) // 3, 3)
censorship = word[0:visible] + \
((len(word) - visible * 2) * '*') + word[-visible:]
text = text.replace(word, censorship)
return text
def parse_config(default_filepath, local_filepath=None):
"""
Parses the configuration file.
Parameters
----------
default_filepath : str
Default configuration filepath.
local_filepath : str, optional
Local configuration filepath.
Returns
-------
config : dict
Configuration dictionary.
"""
default = open(default_filepath)
config = json.load(default)
if os.path.exists(local_filepath):
with open(local_filepath) as local:
import collections.abc
def deep_update(d, u):
for k, v in u.items():
if isinstance(v, collections.abc.Mapping):
d[k] = deep_update(d.get(k, {}), v)
else:
d[k] = v
return d
config = deep_update(config, json.load(local))
validate_config(config)
return config
def process_config(df, config):
"""
Parses the configuration dictionary.
Parameters
----------
df : pandas.core.frame.DataFrame
Dataset.
config : dict
Configuration dictionary.
Returns
-------
support_bag : dict
Configuration dictionary.
"""
support_bag = {}
if config['options']['run_mode'] == 'pretrained':
support_bag['tokenizer'] = AutoTokenizer.from_pretrained(
config['pretrained']['model_name'])
elif config['options']['run_mode'] == 'recurrent':
tokenizer, embedding_matrix = create_recurrent_model_tokenizer(
config, df)
support_bag['tokenizer'] = tokenizer
support_bag['embedding_matrix'] = embedding_matrix
elif config['options']['run_mode'] == 'debug':
support_bag['tokenizer'] = NaiveTokenizer()
support_bag['tokenizer'].set_vocab({'[UNK]': 0, '[PAD]': 1})
if config['options']['seed']:
fix_random_seed(config['options']['seed'])
return support_bag
def validate_config(config):
"""
Validates the configuration dictionary.
Parameters
----------
config : dict
Configuration dictionary.
"""
if config['options']['run_mode'] not in AVAILABLE_MODES:
raise ValueError('Invalid configuration! Run Mode not supported')
elif config['recurrent']['architecture'] not in AVAILABLE_ARCHITECTURES:
raise ValueError(
'Invalid configuration! Recurrent architecture not supported')
elif not all([p in AVAILABLE_PREPROCESSING_PIPELINES for p in config['recurrent']['preprocessing']]):
raise ValueError(
'Invalid configuration! Preprocessing pipeline not supported')
elif (config['recurrent']['embedding_type'], config['recurrent']['embedding_dimension']) not in AVAILABLE_EMBEDDINGS:
raise ValueError(
'Invalid configuration! Embedding type and dimension not supported')
elif config['training']['dataset']['type'] not in AVAILABLE_DATASET_TYPES:
raise ValueError('Invalid configuration! Dataset type not supported')
elif config['evaluation']['dataset']['type'] not in AVAILABLE_DATASET_TYPES:
raise ValueError('Invalid configuration! Dataset type not supported')
if not all(item in config['options'].keys() for item in
['run_mode', 'use_gpu', 'wandb']):
raise ValueError(
"Invalid configuration! Value missing under 'options'")
elif not all(item in config['pretrained'].keys() for item in
['model_name', 'output_features']):
raise ValueError(
"Invalid configuration! Value missing under 'pretrained'")
elif not all(item in config['recurrent'].keys() for item in
['architecture', 'preprocessing', 'vocab_file', 'embedding_type', 'embedding_dimension', 'hidden_dim']):
raise ValueError(
"Invalid configuration! Value missing under 'recurrent'")
elif not all(item in config['training'].keys() for item in
['epochs', 'train_batch_size', 'valid_batch_size', 'learning_rate', 'dataset']):
raise ValueError(
"Invalid configuration! Value missing under 'training'")
elif not all(item in config['evaluation'].keys() for item in
['dataset']):
raise ValueError(
"Invalid configuration! Value missing under 'evaluation'")
elif config['training']['dataset']['type'] == 'pairwise' and 'loss_margin' not in config['training']['dataset']:
raise ValueError(
'Pairwise dataset requires a margin attribute!')
elif config['evaluation']['dataset']['type'] == 'pairwise' and 'loss_margin' not in config['evaluation']['dataset']:
raise ValueError(
'Pairwise dataset requires a margin attribute!')
|
[
"rate_severity_of_toxic_comments.tokenizer.NaiveTokenizer",
"json.load",
"numpy.random.seed",
"rate_severity_of_toxic_comments.tokenizer.create_recurrent_model_tokenizer",
"torch.manual_seed",
"os.path.exists",
"torch.cuda.manual_seed",
"transformers.AutoTokenizer.from_pretrained",
"random.seed",
"torch.cuda.is_available"
] |
[((825, 848), 'torch.manual_seed', 'torch.manual_seed', (['seed'], {}), '(seed)\n', (842, 848), False, 'import torch\n'), ((853, 873), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (867, 873), True, 'import numpy as np\n'), ((878, 895), 'random.seed', 'random.seed', (['seed'], {}), '(seed)\n', (889, 895), False, 'import random\n'), ((903, 928), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (926, 928), False, 'import torch\n'), ((2114, 2132), 'json.load', 'json.load', (['default'], {}), '(default)\n', (2123, 2132), False, 'import json\n'), ((2140, 2170), 'os.path.exists', 'os.path.exists', (['local_filepath'], {}), '(local_filepath)\n', (2154, 2170), False, 'import os\n'), ((938, 966), 'torch.cuda.manual_seed', 'torch.cuda.manual_seed', (['seed'], {}), '(seed)\n', (960, 966), False, 'import torch\n'), ((3059, 3124), 'transformers.AutoTokenizer.from_pretrained', 'AutoTokenizer.from_pretrained', (["config['pretrained']['model_name']"], {}), "(config['pretrained']['model_name'])\n", (3088, 3124), False, 'from transformers import AutoTokenizer\n'), ((3231, 3275), 'rate_severity_of_toxic_comments.tokenizer.create_recurrent_model_tokenizer', 'create_recurrent_model_tokenizer', (['config', 'df'], {}), '(config, df)\n', (3263, 3275), False, 'from rate_severity_of_toxic_comments.tokenizer import NaiveTokenizer, create_recurrent_model_tokenizer\n'), ((2574, 2590), 'json.load', 'json.load', (['local'], {}), '(local)\n', (2583, 2590), False, 'import json\n'), ((3479, 3495), 'rate_severity_of_toxic_comments.tokenizer.NaiveTokenizer', 'NaiveTokenizer', ([], {}), '()\n', (3493, 3495), False, 'from rate_severity_of_toxic_comments.tokenizer import NaiveTokenizer, create_recurrent_model_tokenizer\n')]
|
from pymc import *
from numpy import ones, array
n = 5*ones(4,dtype=int)
dose=array([-.86,-.3,-.05,.73])
@stochastic
def alpha(value=-1.):
return 0.
@stochastic
def beta(value=10.):
return 0.
@deterministic
def theta(a=alpha, b=beta, d=dose):
"""theta = inv_logit(a+b)"""
return invlogit(a+b*d)
@observed
@stochastic(dtype=int)
def deaths(value=array([0,1,3,5],dtype=float), n=n, p=theta):
"""deaths ~ binomial(n, p)"""
return binomial_like(value, n, p)
|
[
"numpy.array",
"numpy.ones"
] |
[((79, 112), 'numpy.array', 'array', (['[-0.86, -0.3, -0.05, 0.73]'], {}), '([-0.86, -0.3, -0.05, 0.73])\n', (84, 112), False, 'from numpy import ones, array\n'), ((56, 74), 'numpy.ones', 'ones', (['(4)'], {'dtype': 'int'}), '(4, dtype=int)\n', (60, 74), False, 'from numpy import ones, array\n'), ((366, 398), 'numpy.array', 'array', (['[0, 1, 3, 5]'], {'dtype': 'float'}), '([0, 1, 3, 5], dtype=float)\n', (371, 398), False, 'from numpy import ones, array\n')]
|
import numpy as np
import matplotlib.pyplot as plt
import sys
pose_file = sys.argv[1]
poses = np.load(pose_file)
x, y, z = poses[:30, 0, -1], poses[:30, 1, -1], poses[:30, 2, -1]
# Creating figure
fig = plt.figure(figsize = (10, 7))
ax = plt.axes(projection ="3d")
# Creating plot
ax.scatter3D(x, y, z, color = "green")
plt.title("poses")
plt.show()
|
[
"matplotlib.pyplot.title",
"numpy.load",
"matplotlib.pyplot.show",
"matplotlib.pyplot.axes",
"matplotlib.pyplot.figure"
] |
[((95, 113), 'numpy.load', 'np.load', (['pose_file'], {}), '(pose_file)\n', (102, 113), True, 'import numpy as np\n'), ((205, 232), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 7)'}), '(figsize=(10, 7))\n', (215, 232), True, 'import matplotlib.pyplot as plt\n'), ((240, 265), 'matplotlib.pyplot.axes', 'plt.axes', ([], {'projection': '"""3d"""'}), "(projection='3d')\n", (248, 265), True, 'import matplotlib.pyplot as plt\n'), ((324, 342), 'matplotlib.pyplot.title', 'plt.title', (['"""poses"""'], {}), "('poses')\n", (333, 342), True, 'import matplotlib.pyplot as plt\n'), ((343, 353), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (351, 353), True, 'import matplotlib.pyplot as plt\n')]
|
"""
In this file, we analyse the action library generated by Teacher1 and Teacher2.
Through
1. filtering out actions that decrease rho less effectively
2. filtering out actions that occur less frequently
3. filtering out "do nothing" action
4. add your filtering rules...,
we obtain an action space in the form of numpy array.
author: <NAME>
mail: <EMAIL>
"""
import os
import numpy as np
import pandas as pd
def read_data(tabs):
data = None
for tab in tabs:
if data is None:
data = pd.read_csv(tab, header=None)
else:
data = pd.concat((data, pd.read_csv(tab, header=None)))
return data
def filter_data(data):
data['del'] = False
for row in range(len(data) - 1):
if data.iloc[row, 12] - data.iloc[row + 1, 14] < 0.02:
# this action decreases rho less than 2%
data.iloc[row, -1] = True
if data.iloc[row, 7] == 'None':
# this action is "do nothing"
data.iloc[row, -1] = True
return data
def save_action_space(data, save_path, threshold=0):
actions = data.iloc[:, -495:-1].astype(np.int16)
actions['action_list'] = actions.apply(lambda s: str([i for i in s.values]), axis=1)
nums = pd.value_counts(actions['action_list'])
# filter out actions that occur less frequently
# the actions that occur times less than the threshold would be filtered out
action_space = np.array([eval(item) for item in nums[nums >= threshold].index.values])
file = os.path.join(save_path, 'actions%d.npy' % action_space.shape[0])
np.save(file, action_space)
print('generate an action space with the size of %d' % action_space.shape[0])
if __name__ == "__main__":
# hyper-parameters
TABLES = ["./Experiences1.csv", "./Experiences2.csv"] # Use your own data
SAVE_PATH = "../ActionSpace"
THRESHOLD = 1
data = read_data(TABLES)
data = filter_data(data)
save_action_space(data, SAVE_PATH, THRESHOLD)
|
[
"pandas.read_csv",
"numpy.save",
"os.path.join",
"pandas.value_counts"
] |
[((1242, 1281), 'pandas.value_counts', 'pd.value_counts', (["actions['action_list']"], {}), "(actions['action_list'])\n", (1257, 1281), True, 'import pandas as pd\n'), ((1517, 1581), 'os.path.join', 'os.path.join', (['save_path', "('actions%d.npy' % action_space.shape[0])"], {}), "(save_path, 'actions%d.npy' % action_space.shape[0])\n", (1529, 1581), False, 'import os\n'), ((1586, 1613), 'numpy.save', 'np.save', (['file', 'action_space'], {}), '(file, action_space)\n', (1593, 1613), True, 'import numpy as np\n'), ((530, 559), 'pandas.read_csv', 'pd.read_csv', (['tab'], {'header': 'None'}), '(tab, header=None)\n', (541, 559), True, 'import pandas as pd\n'), ((610, 639), 'pandas.read_csv', 'pd.read_csv', (['tab'], {'header': 'None'}), '(tab, header=None)\n', (621, 639), True, 'import pandas as pd\n')]
|
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Extracts non-empty patches of extracted stafflines.
Extracts vertical slices of the image where glyphs are expected
(see `staffline_extractor.py`), and takes horizontal windows of the slice which
will be clustered. Some patches will have a glyph roughly in their center, and
the corresponding cluster centroids will be labeled as such.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import logging
import apache_beam as beam
from apache_beam import metrics
from moonlight.staves import staffline_extractor
from moonlight.util import more_iter_tools
import numpy as np
from six.moves import filter
import tensorflow as tf
def _filter_patch(patch, min_num_dark_pixels=10):
unused_patch_name, patch = patch
return np.greater_equal(np.sum(np.less(patch, 0.5)), min_num_dark_pixels)
class StafflinePatchesDoFn(beam.DoFn):
"""Runs the staffline patches graph."""
def __init__(self, patch_height, patch_width, num_stafflines, timeout_ms,
max_patches_per_page):
self.patch_height = patch_height
self.patch_width = patch_width
self.num_stafflines = num_stafflines
self.timeout_ms = timeout_ms
self.max_patches_per_page = max_patches_per_page
self.total_pages_counter = metrics.Metrics.counter(self.__class__,
'total_pages')
self.failed_pages_counter = metrics.Metrics.counter(self.__class__,
'failed_pages')
self.successful_pages_counter = metrics.Metrics.counter(
self.__class__, 'successful_pages')
self.empty_pages_counter = metrics.Metrics.counter(self.__class__,
'empty_pages')
self.total_patches_counter = metrics.Metrics.counter(
self.__class__, 'total_patches')
self.emitted_patches_counter = metrics.Metrics.counter(
self.__class__, 'emitted_patches')
def start_bundle(self):
self.extractor = staffline_extractor.StafflinePatchExtractor(
patch_height=self.patch_height,
patch_width=self.patch_width,
run_options=tf.RunOptions(timeout_in_ms=self.timeout_ms))
self.session = tf.Session(graph=self.extractor.graph)
def process(self, png_path):
self.total_pages_counter.inc()
try:
with self.session.as_default():
patches_iter = self.extractor.page_patch_iterator(png_path)
# pylint: disable=broad-except
except Exception:
logging.exception('Skipping failed music score (%s)', png_path)
self.failed_pages_counter.inc()
return
patches_iter = filter(_filter_patch, patches_iter)
if 0 < self.max_patches_per_page:
# Subsample patches.
patches = more_iter_tools.iter_sample(patches_iter,
self.max_patches_per_page)
else:
patches = list(patches_iter)
if not patches:
self.empty_pages_counter.inc()
self.total_patches_counter.inc(len(patches))
# Serialize each patch as an Example.
for patch_name, patch in patches:
example = tf.train.Example()
example.features.feature['name'].bytes_list.value.append(
patch_name.encode('utf-8'))
example.features.feature['features'].float_list.value.extend(
patch.ravel())
example.features.feature['height'].int64_list.value.append(patch.shape[0])
example.features.feature['width'].int64_list.value.append(patch.shape[1])
yield example
self.successful_pages_counter.inc()
# Patches are sub-sampled by this point.
self.emitted_patches_counter.inc(len(patches))
def finish_bundle(self):
self.session.close()
del self.extractor
del self.session
|
[
"apache_beam.metrics.Metrics.counter",
"logging.exception",
"tensorflow.train.Example",
"moonlight.util.more_iter_tools.iter_sample",
"tensorflow.Session",
"numpy.less",
"tensorflow.RunOptions",
"six.moves.filter"
] |
[((1860, 1914), 'apache_beam.metrics.Metrics.counter', 'metrics.Metrics.counter', (['self.__class__', '"""total_pages"""'], {}), "(self.__class__, 'total_pages')\n", (1883, 1914), False, 'from apache_beam import metrics\n'), ((2002, 2057), 'apache_beam.metrics.Metrics.counter', 'metrics.Metrics.counter', (['self.__class__', '"""failed_pages"""'], {}), "(self.__class__, 'failed_pages')\n", (2025, 2057), False, 'from apache_beam import metrics\n'), ((2150, 2209), 'apache_beam.metrics.Metrics.counter', 'metrics.Metrics.counter', (['self.__class__', '"""successful_pages"""'], {}), "(self.__class__, 'successful_pages')\n", (2173, 2209), False, 'from apache_beam import metrics\n'), ((2250, 2304), 'apache_beam.metrics.Metrics.counter', 'metrics.Metrics.counter', (['self.__class__', '"""empty_pages"""'], {}), "(self.__class__, 'empty_pages')\n", (2273, 2304), False, 'from apache_beam import metrics\n'), ((2393, 2449), 'apache_beam.metrics.Metrics.counter', 'metrics.Metrics.counter', (['self.__class__', '"""total_patches"""'], {}), "(self.__class__, 'total_patches')\n", (2416, 2449), False, 'from apache_beam import metrics\n'), ((2494, 2552), 'apache_beam.metrics.Metrics.counter', 'metrics.Metrics.counter', (['self.__class__', '"""emitted_patches"""'], {}), "(self.__class__, 'emitted_patches')\n", (2517, 2552), False, 'from apache_beam import metrics\n'), ((2818, 2856), 'tensorflow.Session', 'tf.Session', ([], {'graph': 'self.extractor.graph'}), '(graph=self.extractor.graph)\n', (2828, 2856), True, 'import tensorflow as tf\n'), ((3236, 3271), 'six.moves.filter', 'filter', (['_filter_patch', 'patches_iter'], {}), '(_filter_patch, patches_iter)\n', (3242, 3271), False, 'from six.moves import filter\n'), ((1389, 1408), 'numpy.less', 'np.less', (['patch', '(0.5)'], {}), '(patch, 0.5)\n', (1396, 1408), True, 'import numpy as np\n'), ((3354, 3422), 'moonlight.util.more_iter_tools.iter_sample', 'more_iter_tools.iter_sample', (['patches_iter', 'self.max_patches_per_page'], {}), '(patches_iter, self.max_patches_per_page)\n', (3381, 3422), False, 'from moonlight.util import more_iter_tools\n'), ((3716, 3734), 'tensorflow.train.Example', 'tf.train.Example', ([], {}), '()\n', (3732, 3734), True, 'import tensorflow as tf\n'), ((2753, 2797), 'tensorflow.RunOptions', 'tf.RunOptions', ([], {'timeout_in_ms': 'self.timeout_ms'}), '(timeout_in_ms=self.timeout_ms)\n', (2766, 2797), True, 'import tensorflow as tf\n'), ((3102, 3165), 'logging.exception', 'logging.exception', (['"""Skipping failed music score (%s)"""', 'png_path'], {}), "('Skipping failed music score (%s)', png_path)\n", (3119, 3165), False, 'import logging\n')]
|
from casadi import Opti, sin, cos, tan, vertcat
import numpy as np
import matplotlib.pyplot as plt
def bicycle_robot_model(q, u, L=0.3, dt=0.01):
"""
Implements the discrete time dynamics of your robot.
i.e. this function implements F in
q_{t+1} = F(q_{t}, u_{t})
dt is the discretization timestep.
L is the axel-to-axel length of the car.
q = array of casadi MX.sym symbolic variables [x, y, theta, phi].
u = array of casadi MX.sym symbolic variables [u1, u2] (velocity and steering inputs).
Use the casadi sin, cos, tan functions.
The casadi vertcat or vcat functions may also be useful. Note that to turn a list of
casadi expressions into a column vector of those expressions, you should use vertcat or
vcat. vertcat takes as input a variable number of arguments, and vcat takes as input a list.
Example:
x = MX.sym('x')
y = MX.sym('y')
z = MX.sym('z')
q = vertcat(x + y, y, z) # makes a 3x1 matrix with entries x + y, y, and z.
# OR
q = vcat([x + y, y, z]) # makes a 3x1 matrix with entries x + y, y, and z.
"""
x, y, theta, sigma = q[0], q[1], q[2], q[3]
v, w = u[0], u[1]
x_dot = v * cos(theta)
y_dot = v * sin(theta)
theta_dot = v * tan(sigma) / L
sigma_dot = w
result = vertcat(x + x_dot * dt,
y + y_dot * dt,
theta + theta_dot * dt,
sigma + sigma_dot * dt)
return result
def initial_cond(q_start: np.ndarray, q_goal: np.ndarray, n):
"""
Construct an initial guess for a solution to "warm start" the optimization.
An easy way to initialize our optimization is to say that our robot will move
in a straight line in configuration space. Of course, this isn't always possible
since our dynamics are nonholonomic, but we don't necessarily need our initial
condition to be feasible. We just want it to be closer to the final trajectory
than any of the other simple initialization strategies (random, all zero, etc).
We'll set our initial guess for the inputs to zeros to hopefully bias our solver into
picking low control inputs
n is the number of timesteps.
This function will return two arrays:
q0 is an array of shape (4, n+1) representing the initial guess for the state
optimization variables.
u0 is an array of shape (2, n) representing the initial guess for the state
optimization variables.
"""
q0 = np.zeros((4, n + 1))
u0 = np.zeros((2, n))
# Your code here.
q0 = np.linspace(q_start, q_goal, n + 1)
return q0, u0
def objective_func(q, u, q_goal, Q, R, P):
"""
Implements the objective function. q is an array of states and u is an array of inputs. Together,
these two arrays contain all the optimization variables in our problem.
In particular,
q has shape (4, N+1), so that each column of q is an array q[:, i] = [q0, q1, q2, q3]
(i.e. [x, y, theta, phi]), the state at time-step i.
u has shape (2, N), so that each column of u is an array u[:, i] = [u1, u2], the two control inputs
(velocity and steering) of the bicycle model.
This function should create an expression of the form
sum_{i = 1, ..., N} ((q(i) - q_goal)^T * Q * (q(i) - q_goal) + (u(i)^T * R * u(i)))
+ (q(N+1) - q_goal)^T * P * (q(N+1) - q_goal)
Note: When dealing with casadi symbolic variables, you can use @ for matrix multiplication,
and * for standard, numpy-style element-wise (or broadcasted) multiplication.
"""
n = q.shape[1] - 1
obj = 0
for i in range(n):
qi = q[:, i]
ui = u[:, i]
# Define one term of the summation here: ((q(i) - q_goal)^T * Q * (q(i) - q_goal) + (u(i)^T * R * u(i)))
term = (qi - q_goal).T @ Q @ (qi - q_goal) + (ui.T @ R @ ui)
obj += term
q_last = q[:, n]
# Define the last term here: (q(N+1) - q_goal)^T * P * (q(N+1) - q_goal)
term_last = (q[:, n] - q_goal).T @ P @ (q[:, n] - q_goal)
obj += term_last
return obj
def constraints(q, u, q_lb, q_ub, u_lb, u_ub, obs_list, q_start, q_goal, L=0.3, dt=0.01):
"""
Constructs a list where each entry is a casadi.MX symbolic expression representing
a constraint of our optimization problem.
q has shape (4, N+1), so that each column of q is an array q[:, i] = [q0, q1, q2, q3]
(i.e. [x, y, theta, phi]), the state at time-step i.
u has shape (2, N), so that each column of u is an array u[:, i] = [u1, u2], the two control inputs
(velocity and steering) of the bicycle model.
q_lb is a size (4,) array [x_lb, y_lb, theta_lb, phi_lb] containing lower bounds for each state variable.
q_ub is a size (4,) array [x_ub, y_ub, theta_ub, phi_ub] containing upper bounds for each state variable.
u_lb is a size (2,) array [u1_lb, u2_lb] containing lower bounds for each input.
u_ub is a size (2,) array [u1_ub, u2_ub] containing upper bounds for each input.
obs_list is a list of obstacles, where each obstacle is represented by 3-tuple (x, y, r)
representing the (x, y) center of the obstacle and its radius r. All obstacles are modelled as
circles.
q_start is a size (4,) array representing the starting state of the plan.
q_goal is a size (4,) array representing the goal state of the plan.
L is the axel-to-axel length of the car.
dt is the discretization timestep.
"""
constraints = []
# State constraints
constraints.extend([q_lb[0] <= q[0, :], q[0, :] <= q_ub[0]])
constraints.extend([q_lb[1] <= q[1, :], q[1, :] <= q_ub[1]])
constraints.extend([q_lb[2] <= q[2, :], q[2, :] <= q_ub[2]])
constraints.extend([q_lb[3] <= q[3, :], q[3, :] <= q_ub[3]])
# Input constraints
constraints.extend([u_lb[0] <= u[0, :], u[0, :] <= u_ub[0]])
constraints.extend([u_lb[1] <= u[1, :], u[1, :] <= u_ub[1]])
# Dynamics constraints
for t in range(q.shape[1] - 1):
q_t = q[:, t]
q_tp1 = q[:, t + 1]
u_t = u[:, t]
constraints.append(q_tp1 - bicycle_robot_model(q=q_t, u=u_t, L=L, dt=dt) == 0)
# Obstacle constraints
for obj in obs_list:
obj_x, obj_y, obj_r = obj
for t in range(q.shape[1]):
constraints.append(
(q[0, t] - obj_x) ** 2 + (q[1, t] - obj_y) ** 2 >= obj_r ** 2) # Define the obstacle constraints.
# Initial and final state constraints
constraints.append(q[:, 0] == q_start) # Constraint on start state.
constraints.append(q[:, -1] == q_goal) # Constraint on final state.
return constraints
def plan_to_pose(q_start: np.ndarray, q_goal: np.ndarray, q_lb, q_ub, u_lb, u_ub, obs_list, L=0.3, n=1000, dt=0.01):
"""
Plans a path from q_start to q_goal.
q_lb, q_ub are the state lower and upper bounds repspectively.
u_lb, u_ub are the input lower and upper bounds repspectively.
obs_list is the list of obstacles, each given as a tuple (x, y, r).
L is the length of the car.
n is the number of timesteps.
dt is the discretization timestep.
Returns a plan (shape (4, n+1)) of waypoints and a sequence of inputs
(shape (2, n)) of inputs at each timestep.
"""
opti = Opti()
q = opti.variable(4, n + 1)
u = opti.variable(2, n)
Q = np.diag([1, 1, 2, 0.1])
R = 2 * np.diag([1, 0.5])
P = n * Q
q0, u0 = initial_cond(q_start, q_goal, n)
obj = objective_func(q, u, q_goal, Q, R, P)
opti.minimize(obj)
opti.subject_to(constraints(q, u, q_lb, q_ub, u_lb, u_ub, obs_list, q_start, q_goal, dt=dt))
opti.set_initial(q, q0.T)
opti.set_initial(u, u0)
###### CONSTRUCT SOLVER AND SOLVE ######
opti.solver('ipopt')
p_opts = {"expand": False}
s_opts = {"max_iter": 1e4}
opti.solver('ipopt', p_opts, s_opts)
sol = opti.solve()
plan = sol.value(q)
inputs = sol.value(u)
return plan, inputs
def plot(plan, inputs, times, q_lb, q_ub, obs_list):
# Trajectory plot
ax = plt.subplot(1, 1, 1)
ax.set_aspect(1)
ax.set_xlim(q_lb[0], q_ub[0])
ax.set_ylim(q_lb[1], q_ub[1])
for obs in obs_list:
xc, yc, r = obs
circle = plt.Circle((xc, yc), r, color='black')
ax.add_artist(circle)
plan_x = plan[0, :]
plan_y = plan[1, :]
ax.plot(plan_x, plan_y, color='green')
plt.xlabel("X (m)")
plt.ylabel("Y (m)")
plt.show()
# States plot
plt.plot(times, plan[0, :], label='x')
plt.plot(times, plan[1, :], label='y')
plt.plot(times, plan[2, :], label='theta')
plt.plot(times, plan[3, :], label='phi')
plt.xlabel('Time (s)')
plt.legend()
plt.show()
# Inputs plot
plt.plot(times[:-1], inputs[0, :], label='u1')
plt.plot(times[:-1], inputs[1, :], label='u2')
plt.xlabel('Time (s)')
plt.legend()
plt.show()
def main():
###### PROBLEM PARAMS ######
n = 1000
dt = 0.01
L = 0.3
xy_low = [-5, -1]
xy_high = [10, 10]
phi_max = 0.6
u1_max = 2
u2_max = 3
obs_list = [[5, 5, 1], [-3, 4, 1], [4, 2, 2]]
q_start = np.array([0, 0, 0, 0])
q_goal = np.array([7, 3, 0, 0])
###### SETUP PROBLEM ######
q_lb = xy_low + [-1000, -phi_max]
q_ub = xy_high + [1000, phi_max]
u_lb = [-u1_max, -u2_max]
u_ub = [u1_max, u2_max]
###### CONSTRUCT SOLVER AND SOLVE ######
plan, inputs = plan_to_pose(q_start, q_goal, q_lb, q_ub, u_lb, u_ub, obs_list, L=L, n=n, dt=dt)
###### PLOT ######
times = np.arange(0.0, (n + 1) * dt, dt)
print("Final Position:", plan[:4, -1])
plot(plan, inputs, times, q_lb, q_ub, obs_list)
if __name__ == '__main__':
main()
|
[
"casadi.tan",
"matplotlib.pyplot.subplot",
"matplotlib.pyplot.show",
"matplotlib.pyplot.plot",
"matplotlib.pyplot.legend",
"casadi.cos",
"numpy.zeros",
"matplotlib.pyplot.ylabel",
"casadi.sin",
"casadi.vertcat",
"casadi.Opti",
"numpy.array",
"numpy.arange",
"numpy.linspace",
"matplotlib.pyplot.Circle",
"numpy.diag",
"matplotlib.pyplot.xlabel"
] |
[((1314, 1406), 'casadi.vertcat', 'vertcat', (['(x + x_dot * dt)', '(y + y_dot * dt)', '(theta + theta_dot * dt)', '(sigma + sigma_dot * dt)'], {}), '(x + x_dot * dt, y + y_dot * dt, theta + theta_dot * dt, sigma + \n sigma_dot * dt)\n', (1321, 1406), False, 'from casadi import Opti, sin, cos, tan, vertcat\n'), ((2501, 2521), 'numpy.zeros', 'np.zeros', (['(4, n + 1)'], {}), '((4, n + 1))\n', (2509, 2521), True, 'import numpy as np\n'), ((2531, 2547), 'numpy.zeros', 'np.zeros', (['(2, n)'], {}), '((2, n))\n', (2539, 2547), True, 'import numpy as np\n'), ((2580, 2615), 'numpy.linspace', 'np.linspace', (['q_start', 'q_goal', '(n + 1)'], {}), '(q_start, q_goal, n + 1)\n', (2591, 2615), True, 'import numpy as np\n'), ((7244, 7250), 'casadi.Opti', 'Opti', ([], {}), '()\n', (7248, 7250), False, 'from casadi import Opti, sin, cos, tan, vertcat\n'), ((7321, 7344), 'numpy.diag', 'np.diag', (['[1, 1, 2, 0.1]'], {}), '([1, 1, 2, 0.1])\n', (7328, 7344), True, 'import numpy as np\n'), ((8026, 8046), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(1)', '(1)'], {}), '(1, 1, 1)\n', (8037, 8046), True, 'import matplotlib.pyplot as plt\n'), ((8369, 8388), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""X (m)"""'], {}), "('X (m)')\n", (8379, 8388), True, 'import matplotlib.pyplot as plt\n'), ((8393, 8412), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Y (m)"""'], {}), "('Y (m)')\n", (8403, 8412), True, 'import matplotlib.pyplot as plt\n'), ((8418, 8428), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (8426, 8428), True, 'import matplotlib.pyplot as plt\n'), ((8452, 8490), 'matplotlib.pyplot.plot', 'plt.plot', (['times', 'plan[0, :]'], {'label': '"""x"""'}), "(times, plan[0, :], label='x')\n", (8460, 8490), True, 'import matplotlib.pyplot as plt\n'), ((8495, 8533), 'matplotlib.pyplot.plot', 'plt.plot', (['times', 'plan[1, :]'], {'label': '"""y"""'}), "(times, plan[1, :], label='y')\n", (8503, 8533), True, 'import matplotlib.pyplot as plt\n'), ((8538, 8580), 'matplotlib.pyplot.plot', 'plt.plot', (['times', 'plan[2, :]'], {'label': '"""theta"""'}), "(times, plan[2, :], label='theta')\n", (8546, 8580), True, 'import matplotlib.pyplot as plt\n'), ((8585, 8625), 'matplotlib.pyplot.plot', 'plt.plot', (['times', 'plan[3, :]'], {'label': '"""phi"""'}), "(times, plan[3, :], label='phi')\n", (8593, 8625), True, 'import matplotlib.pyplot as plt\n'), ((8631, 8653), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time (s)"""'], {}), "('Time (s)')\n", (8641, 8653), True, 'import matplotlib.pyplot as plt\n'), ((8658, 8670), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (8668, 8670), True, 'import matplotlib.pyplot as plt\n'), ((8675, 8685), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (8683, 8685), True, 'import matplotlib.pyplot as plt\n'), ((8709, 8755), 'matplotlib.pyplot.plot', 'plt.plot', (['times[:-1]', 'inputs[0, :]'], {'label': '"""u1"""'}), "(times[:-1], inputs[0, :], label='u1')\n", (8717, 8755), True, 'import matplotlib.pyplot as plt\n'), ((8760, 8806), 'matplotlib.pyplot.plot', 'plt.plot', (['times[:-1]', 'inputs[1, :]'], {'label': '"""u2"""'}), "(times[:-1], inputs[1, :], label='u2')\n", (8768, 8806), True, 'import matplotlib.pyplot as plt\n'), ((8812, 8834), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time (s)"""'], {}), "('Time (s)')\n", (8822, 8834), True, 'import matplotlib.pyplot as plt\n'), ((8839, 8851), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (8849, 8851), True, 'import matplotlib.pyplot as plt\n'), ((8856, 8866), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (8864, 8866), True, 'import matplotlib.pyplot as plt\n'), ((9112, 9134), 'numpy.array', 'np.array', (['[0, 0, 0, 0]'], {}), '([0, 0, 0, 0])\n', (9120, 9134), True, 'import numpy as np\n'), ((9148, 9170), 'numpy.array', 'np.array', (['[7, 3, 0, 0]'], {}), '([7, 3, 0, 0])\n', (9156, 9170), True, 'import numpy as np\n'), ((9523, 9555), 'numpy.arange', 'np.arange', (['(0.0)', '((n + 1) * dt)', 'dt'], {}), '(0.0, (n + 1) * dt, dt)\n', (9532, 9555), True, 'import numpy as np\n'), ((1209, 1219), 'casadi.cos', 'cos', (['theta'], {}), '(theta)\n', (1212, 1219), False, 'from casadi import Opti, sin, cos, tan, vertcat\n'), ((1236, 1246), 'casadi.sin', 'sin', (['theta'], {}), '(theta)\n', (1239, 1246), False, 'from casadi import Opti, sin, cos, tan, vertcat\n'), ((7357, 7374), 'numpy.diag', 'np.diag', (['[1, 0.5]'], {}), '([1, 0.5])\n', (7364, 7374), True, 'import numpy as np\n'), ((8203, 8241), 'matplotlib.pyplot.Circle', 'plt.Circle', (['(xc, yc)', 'r'], {'color': '"""black"""'}), "((xc, yc), r, color='black')\n", (8213, 8241), True, 'import matplotlib.pyplot as plt\n'), ((1267, 1277), 'casadi.tan', 'tan', (['sigma'], {}), '(sigma)\n', (1270, 1277), False, 'from casadi import Opti, sin, cos, tan, vertcat\n')]
|
# -*- coding: utf-8 -*-
"""
Created on Wed Nov 18 12:49:59 2020
@author: tonim
"""
# -*- coding: utf-8 -*-
"""
Created on Mon Nov 16 09:01:01 2020
Models 1 and 2
@author: Tonima
"""
#%% Data import and prep
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import keras
from keras.models import Model
from keras.layers import Input,Conv2D,Convolution2D, Dense, MaxPool2D, Dropout, Flatten, Concatenate, AvgPool2D, Dropout
from keras.optimizers import Adam, Adagrad, SGD, RMSprop
from keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import ReduceLROnPlateau, EarlyStopping
from keras.utils import plot_model
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix, plot_confusion_matrix, ConfusionMatrixDisplay
import matplotlib.pyplot as plt
trdata = ImageDataGenerator(validation_split=0.2, rescale=(1./255),featurewise_center=True)
traindata = trdata.flow_from_directory(directory="Torso",target_size=(224,224),batch_size=4, shuffle=True, subset=('training'), class_mode='categorical',color_mode='grayscale')
valdata = trdata.flow_from_directory(directory="Torso",target_size=(224,224), batch_size=4,shuffle=True, subset=('validation'), class_mode='categorical', color_mode='grayscale')
tsdata = ImageDataGenerator(rescale=(1./255))
# testdata = tsdata.flow_from_directory(directory="test", shuffle= False, target_size=(224,224), class_mode='categorical')
testdata = tsdata.flow_from_directory(directory="Torso_test", shuffle=True,batch_size=786, target_size=(224,224), class_mode='categorical',color_mode='grayscale')
class_names=[ "DV lower","DV Upper", "LAT Lower","LAT Upper",]
#%% trial model 1
from kerastuner import HyperParameters
from kerastuner.tuners import Hyperband, RandomSearch
print('Model making is under process')
def model_builder(hp):
act='swish'
hp_units=hp.Int('units', min_value = 60, max_value = 120, step = 4)#optimal value from min to max is chosen
hp_units2=hp.Int('units', min_value = 42, max_value = 84, step = 2)#optimal value from min to max is chosen
hp_lr=hp.Float('learning_rate', min_value=1e-4, max_value=1e-2, step=1e-4)
def conv_block(x,filters):
c1=Conv2D(filters=filters[0], kernel_size=(1,5), activation=act,padding='same')(x)
c2=Conv2D(filters=filters[1], kernel_size=(5,1), activation=act,padding='same')(x)
c_o=Concatenate(axis=3)([c1,c2])
return c_o
def reduc_block(x):
x=Conv2D(8,(1,1), activation=act, padding='same')(x)
c1=Conv2D(filters=32, kernel_size=(1,1),activation=act,padding='same')(x)
c11=Conv2D(filters=32, kernel_size=(3,3),activation=act,padding='same')(c1)
c12=Conv2D(filters=32, kernel_size=(3,3),activation=act,padding='same')(c11)
c2=Conv2D(filters=32, kernel_size=(3,3),activation=act,padding='same')(x)
c3=MaxPool2D((1))(c2)
out=Concatenate(axis=1)([c12,c2,c3])
#out=MaxPool2D(3,3)(out)
return out
def fire_module(x):
# Squeeze layer
x1 = Convolution2D(4,(1,1),activation=(act),padding='same')(x)
# Expand layer 1x1 filters
c1 = Conv2D(16, (1,1), activation=(act),padding='same')(x1)
# Expand layer 3x3 filters
c2 = Conv2D(16, (3,3),activation=(act), padding='same')(x1)
# concatenate outputs
y = Concatenate(axis=1)([c1,c2])
return y
ins=Input(shape=(224,224,1))
l1=(conv_block(ins,[32,32]))# if filters=[32,32]-->filter[0]=32, filter[1]=32
l1=fire_module(l1)
l2=(AvgPool2D(pool_size=(2,2), strides=(2)))(l1)
l31=(conv_block(l2,filters=[32,32]))
l32=(reduc_block(l31))
l4=(AvgPool2D(pool_size=(2,2), strides=(2)))(l32)
l5=(Flatten())(l4)
l5=Dropout(0.2)(l5)
l6=(Dense(units=hp_units,activation='relu'))(l5)
l7=(Dense(units=hp_units2, activation='relu'))(l6)
l8=(Dense(4, activation='softmax'))(l7)# 1 can be replaced with 2 or more when it itsnt a binary classification anymore
M1=Model(inputs=ins, outputs=l8)
print(M1.summary())
M1.compile(optimizer=Adagrad(learning_rate=hp_lr), loss='categorical_crossentropy',metrics=['accuracy'])
return M1
tuner = RandomSearch(model_builder,tune_new_entries=True,objective='val_accuracy',executions_per_trial=1, max_trials=2,overwrite=(True))
#tuner.search_space_summary()
hist=tuner.search(x = traindata, epochs =2, verbose =1, validation_data=valdata, steps_per_epoch=10)
#hist=M1.fit(traindata, epochs = 1, verbose =1, validation_data=valdata, steps_per_epoch=50)
print('Model built')
best_model = tuner.get_best_models(num_models=1)[0]
best_model.save('bestmodel.h5')
#%% trial model 2
import numpy
from kerastuner import HyperParameters
from keras import utils
from kerastuner.tuners import Hyperband, RandomSearch
print('Model making is under process')
def model_builder2(hp):
hp_units=hp.Int('units', min_value = 60, max_value = 120, step = 4)#optimal value from min to max is chosen
hp_units2=hp.Int('units', min_value = 42, max_value = 84, step = 2)#optimal value from min to max is chosen
hp_lr2=hp.Float('learning_rate', min_value=1e-4, max_value=1e-2, step=1e-4)
k_1x1="kernal_1x1"
k_1x3="kernal_1x3"
k_3x1="kernal_3x1"
k_3x3="kernal_3x3"
mx="maxpool"
conc="concatenate"
sq="squeeze"
ex="expand"
def conv3_1_3(x,filters,act):
c1=Conv2D(filters=filters[0], kernel_size=(1,3), activation=act,padding='same')(x)
c2=Conv2D(filters=filters[0], kernel_size=(3,1), activation=act,padding='same')(c1)
return c2
def conv3_1_conc(x,filters,act):
c1=Conv2D(filters=filters, kernel_size=(1,3), activation=act,padding='same')(x)
c2=Conv2D(filters=filters, kernel_size=(1,3), activation=act,padding='same')(x)
conc=Concatenate(axis=3)([c1,c2])
return conc
def reduc_block(x):
x=Conv2D(8,(1,1), activation=act, padding='same')(x)
c1=Conv2D(filters=32, kernel_size=(1,1),activation=act,padding='same')(x)
c11=Conv2D(filters=32, kernel_size=(3,3),activation=act,padding='same')(c1)
c12=Conv2D(filters=32, kernel_size=(3,3),activation=act,padding='same')(c11)
c2=Conv2D(filters=32, kernel_size=(3,3),activation=act,padding='same')(x)
c3=MaxPool2D((1))(c2)
out=Concatenate(axis=3)([c12,c2,c3])
out=MaxPool2D(4,4)(out)
return out
def fire_module(x):
# Squeeze layer
x1 = Convolution2D(4,(1,1),activation=(act),padding='same')(x)
# Expand layer 1x1 filters
c1 = Conv2D(8, (1,1), activation=(act),padding='same')(x1)
# Expand layer 3x3 filters
c2 = Conv2D(8, (3,3),activation=(act), padding='same')(x1)
# concatenate outputs
y = Concatenate(axis=3)([c1,c2])
return y
act='swish'
ins1=Input(shape=(224,224,1))
ins=fire_module(ins1)
l1a=conv3_1_3(ins, [32], act)
l1b=conv3_1_3(ins, [32], act)
l1=Concatenate(axis=3)([l1a,l1b])
l2=MaxPool2D(pool_size=(4,4) )(l1)
l3=Conv2D(filters=32,kernel_size=3,strides=1,padding='same')(l2)
l3=reduc_block(l3)
l4=conv3_1_conc(l3, 32, act)
l5=AvgPool2D(pool_size=(2,2),strides=4)(l4)
l5=(Flatten())(l5)
l5=Dropout(0.2)(l5)
l6=(Dense(units=hp_units,activation='relu'))(l5)
l7=(Dense(units=hp_units2, activation='relu'))(l6)
l8=(Dense(4, activation='softmax'))(l7)
M2=Model(inputs=ins1, outputs=l8)
print(M2.summary())
#plot_model(M1)
#('Failed to import pydot. You must `pip install pydot` and install graphviz (https://graphviz.gitlab.io/download/), ', 'for `pydotprint` to work.'
M2.compile(optimizer=Adagrad(learning_rate=hp_lr2), loss='categorical_crossentropy',metrics=['accuracy'])
return M2
tuner2 = RandomSearch(model_builder2,tune_new_entries=True,objective='val_accuracy',executions_per_trial=2, max_trials=2,overwrite=(True))
#tuner.search_space_summary()
hist=tuner2.search(x = traindata, epochs = 3, verbose =1, validation_data=valdata, steps_per_epoch=20)
#hist=M1.fit(traindata, epochs = 1, verbose =1, validation_data=valdata, steps_per_epoch=50)
print('Model built')
best_model2 = tuner2.get_best_models(num_models=1)[0]
best_model2.save('bestmodel2.h5')
#%% training
from pytictoc import TicToc
t = TicToc() #create instance of class
t.tic() #Start timer
print(best_model2.summary())
callback=EarlyStopping(monitor="val_loss",min_delta=0,patience=40,verbose=1,mode="auto",baseline=None,restore_best_weights=False)
#hist1 = best_model.fit(x = traindata, epochs =100, verbose =1, validation_data=valdata,steps_per_epoch = 25)
hist2 = best_model2.fit(x = traindata, epochs =100, verbose =1, validation_data=valdata,steps_per_epoch = 50)
t.toc()
# plt.plot(hist1.history["accuracy"])#
# plt.plot(hist1.history['val_accuracy'])
# #plt.plot(hist.history["loss"])
# #plt.plot(hist.history["val_loss"])
# plt.title("model 1")
# plt.ylabel("Accuracy")
# plt.xlabel("Epoch")
# plt.legend(["Accuracy","Validation Accuracy","loss", "val_loss"])
# plt.show()
plt.plot(hist2.history["accuracy"])#
plt.plot(hist2.history['val_accuracy'])
#plt.plot(hist.history["loss"])
#plt.plot(hist.history["val_loss"])
plt.title("model 2")
plt.ylabel("Accuracy")
plt.xlabel("Epoch")
plt.legend(["Accuracy","Validation Accuracy","loss", "val_loss"])
plt.show()
max(hist2.history["accuracy"])
max(hist2.history['val_accuracy'])
#%% testing
from keras.utils.np_utils import to_categorical
import os, cv2
from sklearn.utils import shuffle
import sklearn
from sklearn.model_selection import train_test_split
plt.show()
inputs=testdata
data, tlabel= inputs.next()
meh=numpy.array([[1,1,1,1]])#used to generate % of class belonging
prediction1=np.zeros((len(data),4))
prediction2=np.zeros((len(data),4))
for i in range(len(data)):
image = data[i].reshape(1,224,224,1)
#image = image/255
#prediction1[i] = best_model.predict(image)
prediction2[i] = best_model2.predict(image)
#p1 = np.argmax(prediction1,axis=1)
p2 = np.argmax(prediction2,axis=1)
test_label=np.argmax(tlabel,axis=1)
#cf_matrix1=confusion_matrix(test_label,p1)
cf_matrix2=confusion_matrix(test_label,p2)
#disp1=ConfusionMatrixDisplay(cf_matrix1,display_labels=(class_names))
disp2=ConfusionMatrixDisplay(cf_matrix2,display_labels=(class_names))
#disp1 = disp1.plot()
disp2 = disp2.plot()
plt.show()
# print("-----------------------------------------------------------------------")
# print(cf_matrix1, cf_matrix2)
# print("-----------------------------------------------------------------------")
# print("Precision, Recall, F1-score:")
# print(classification_report(test_label,p1, target_names=class_names))
print("Precision, Recall, F1-score:")
print(classification_report(test_label,p2, target_names=class_names))
misclassification2=test_label-p2
def condition(misclassification2):return misclassification2!=0
output=[idx for idx, element in enumerate(misclassification2) if condition (element)]
print(output)
plt.figure(figsize=(4,4))
for images,labels in testdata:
for i in range (output):
ax=plt.subplot(3,3,i+1)
plt.imshow(images[i].numpy().astype("uint8"))
plt.title(int(labels[i]))
#plt.axis("off")
#%%
#%% testing single image
from keras.preprocessing import image
import numpy as np
# select a sample image path
img_path8="D:/x ray/#CLASSES/Torso_test/LAT Upper/1.2.826.0.1.3680043.2.876.17357.1.6.0.20200817105801.2.1.jpg"
#img_path8="D:/x ray/#CLASSES/Torso_test/DV Lower/1.2.826.0.1.3680043.2.876.8248.1.3.1.20170511212235.2.39.jpg"
#img_path8="D:/x ray/#CLASSES/Torso_test/DV Upper/1.2.276.0.7230010.3.0.3.5.1.11072342.4025358845.jpg"
#img_path8="D:/x ray/#CLASSES/Torso_test/LAT Lower/1.2.276.0.7230010.3.0.3.5.1.11215350.830898152.jpg" #sample DV upper image
imgxray=image.load_img(img_path8, target_size=(224,224,1),color_mode='grayscale')
imgxray.show()
img = cv2.imread(img_path8,0)
edges = cv2.Canny(img,100,200)
plt.subplot(121),plt.imshow(img,cmap = 'gray')
plt.title('Original Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(edges,cmap = 'gray')
plt.title('Edge Image'), plt.xticks([]), plt.yticks([])
imgxray=np.asarray(imgxray)
imgxray=np.expand_dims(imgxray,axis=0)
imgxray=np.rot90(imgxray,1,(1,2))
#resize or not to resize
#imgxray=imgxray.reshape(1,224,224,1)
y=best_model2.predict(imgxray)
print('prediction probability is: ')
print(y)
class_labels = list(traindata.class_indices.keys())
0
y_predict = np.argmax(y,axis=1)
print("model prediction is: ",class_labels[y_predict[0]])
#%%
import tensorflow as tf
#meh=numpy.array([[1,1,1,1]])
#or
meh1=numpy.array([[1,0,0,0]])
meh2=numpy.array([[0,1,0,0]])
meh3=numpy.array([[0,0,1,0]])
meh4=numpy.array([[0,0,0,1]])
testlocal="D:/x ray/#CLASSES/Torso_test/LAT Upper/1.2.826.0.1.3680043.2.876.17440.2.5.1.20201101122147.2.3.jpg"
img = keras.preprocessing.image.load_img(
testlocal, target_size=(224,224), color_mode='grayscale')
img_array = keras.preprocessing.image.img_to_array(img)
img_array = tf.expand_dims(img_array, 0) # Create batch axis
PRED = best_model2.predict(img_array)
score = PRED[0]
a1=np.max(100*np.multiply(meh1,score))
a2=np.max(100*np.multiply(meh2,score))
a3=np.max(100*np.multiply(meh3,score))
a4=np.max(100*np.multiply(meh4,score))
print(
"This image is %.2f percent DV Lower, %.2f percent DV Upper,%.2f percent LAT Lower and %.2f percent LAT Upper."
% (a1,a2,a3,a4)
)
#or
# ans=(np.argmax(np.multiply(meh,score)))
# print("The image belongs to class %.2f"
# % (ans)
# )
|
[
"matplotlib.pyplot.title",
"keras.preprocessing.image.ImageDataGenerator",
"numpy.argmax",
"keras.layers.MaxPool2D",
"keras.optimizers.Adagrad",
"keras.models.Model",
"sklearn.metrics.classification_report",
"keras.preprocessing.image.img_to_array",
"matplotlib.pyplot.figure",
"numpy.rot90",
"pytictoc.TicToc",
"keras.layers.Input",
"keras.layers.AvgPool2D",
"numpy.multiply",
"matplotlib.pyplot.imshow",
"matplotlib.pyplot.yticks",
"keras.layers.Flatten",
"keras.preprocessing.image.load_img",
"matplotlib.pyplot.xticks",
"cv2.Canny",
"matplotlib.pyplot.show",
"keras.layers.Convolution2D",
"keras.layers.Dropout",
"matplotlib.pyplot.legend",
"numpy.asarray",
"keras.layers.Concatenate",
"keras.layers.Conv2D",
"kerastuner.tuners.RandomSearch",
"matplotlib.pyplot.ylabel",
"tensorflow.expand_dims",
"matplotlib.pyplot.subplot",
"matplotlib.pyplot.plot",
"numpy.expand_dims",
"cv2.imread",
"keras.callbacks.EarlyStopping",
"numpy.array",
"keras.layers.Dense",
"sklearn.metrics.confusion_matrix",
"matplotlib.pyplot.xlabel",
"sklearn.metrics.ConfusionMatrixDisplay"
] |
[((927, 1015), 'keras.preprocessing.image.ImageDataGenerator', 'ImageDataGenerator', ([], {'validation_split': '(0.2)', 'rescale': '(1.0 / 255)', 'featurewise_center': '(True)'}), '(validation_split=0.2, rescale=1.0 / 255,\n featurewise_center=True)\n', (945, 1015), False, 'from keras.preprocessing.image import ImageDataGenerator\n'), ((1377, 1414), 'keras.preprocessing.image.ImageDataGenerator', 'ImageDataGenerator', ([], {'rescale': '(1.0 / 255)'}), '(rescale=1.0 / 255)\n', (1395, 1414), False, 'from keras.preprocessing.image import ImageDataGenerator\n'), ((4330, 4464), 'kerastuner.tuners.RandomSearch', 'RandomSearch', (['model_builder'], {'tune_new_entries': '(True)', 'objective': '"""val_accuracy"""', 'executions_per_trial': '(1)', 'max_trials': '(2)', 'overwrite': '(True)'}), "(model_builder, tune_new_entries=True, objective='val_accuracy',\n executions_per_trial=1, max_trials=2, overwrite=True)\n", (4342, 4464), False, 'from kerastuner.tuners import Hyperband, RandomSearch\n'), ((8022, 8158), 'kerastuner.tuners.RandomSearch', 'RandomSearch', (['model_builder2'], {'tune_new_entries': '(True)', 'objective': '"""val_accuracy"""', 'executions_per_trial': '(2)', 'max_trials': '(2)', 'overwrite': '(True)'}), "(model_builder2, tune_new_entries=True, objective=\n 'val_accuracy', executions_per_trial=2, max_trials=2, overwrite=True)\n", (8034, 8158), False, 'from kerastuner.tuners import Hyperband, RandomSearch\n'), ((8541, 8549), 'pytictoc.TicToc', 'TicToc', ([], {}), '()\n', (8547, 8549), False, 'from pytictoc import TicToc\n'), ((8638, 8769), 'keras.callbacks.EarlyStopping', 'EarlyStopping', ([], {'monitor': '"""val_loss"""', 'min_delta': '(0)', 'patience': '(40)', 'verbose': '(1)', 'mode': '"""auto"""', 'baseline': 'None', 'restore_best_weights': '(False)'}), "(monitor='val_loss', min_delta=0, patience=40, verbose=1, mode\n ='auto', baseline=None, restore_best_weights=False)\n", (8651, 8769), False, 'from keras.callbacks import ReduceLROnPlateau, EarlyStopping\n'), ((9318, 9353), 'matplotlib.pyplot.plot', 'plt.plot', (["hist2.history['accuracy']"], {}), "(hist2.history['accuracy'])\n", (9326, 9353), True, 'import matplotlib.pyplot as plt\n'), ((9356, 9395), 'matplotlib.pyplot.plot', 'plt.plot', (["hist2.history['val_accuracy']"], {}), "(hist2.history['val_accuracy'])\n", (9364, 9395), True, 'import matplotlib.pyplot as plt\n'), ((9467, 9487), 'matplotlib.pyplot.title', 'plt.title', (['"""model 2"""'], {}), "('model 2')\n", (9476, 9487), True, 'import matplotlib.pyplot as plt\n'), ((9489, 9511), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Accuracy"""'], {}), "('Accuracy')\n", (9499, 9511), True, 'import matplotlib.pyplot as plt\n'), ((9513, 9532), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Epoch"""'], {}), "('Epoch')\n", (9523, 9532), True, 'import matplotlib.pyplot as plt\n'), ((9534, 9601), 'matplotlib.pyplot.legend', 'plt.legend', (["['Accuracy', 'Validation Accuracy', 'loss', 'val_loss']"], {}), "(['Accuracy', 'Validation Accuracy', 'loss', 'val_loss'])\n", (9544, 9601), True, 'import matplotlib.pyplot as plt\n'), ((9601, 9611), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (9609, 9611), True, 'import matplotlib.pyplot as plt\n'), ((9870, 9880), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (9878, 9880), True, 'import matplotlib.pyplot as plt\n'), ((9932, 9959), 'numpy.array', 'numpy.array', (['[[1, 1, 1, 1]]'], {}), '([[1, 1, 1, 1]])\n', (9943, 9959), False, 'import numpy\n'), ((10302, 10332), 'numpy.argmax', 'np.argmax', (['prediction2'], {'axis': '(1)'}), '(prediction2, axis=1)\n', (10311, 10332), True, 'import numpy as np\n'), ((10344, 10369), 'numpy.argmax', 'np.argmax', (['tlabel'], {'axis': '(1)'}), '(tlabel, axis=1)\n', (10353, 10369), True, 'import numpy as np\n'), ((10426, 10458), 'sklearn.metrics.confusion_matrix', 'confusion_matrix', (['test_label', 'p2'], {}), '(test_label, p2)\n', (10442, 10458), False, 'from sklearn.metrics import classification_report, confusion_matrix, plot_confusion_matrix, ConfusionMatrixDisplay\n'), ((10537, 10599), 'sklearn.metrics.ConfusionMatrixDisplay', 'ConfusionMatrixDisplay', (['cf_matrix2'], {'display_labels': 'class_names'}), '(cf_matrix2, display_labels=class_names)\n', (10559, 10599), False, 'from sklearn.metrics import classification_report, confusion_matrix, plot_confusion_matrix, ConfusionMatrixDisplay\n'), ((10647, 10657), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (10655, 10657), True, 'import matplotlib.pyplot as plt\n'), ((11292, 11318), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(4, 4)'}), '(figsize=(4, 4))\n', (11302, 11318), True, 'import matplotlib.pyplot as plt\n'), ((12118, 12194), 'keras.preprocessing.image.load_img', 'image.load_img', (['img_path8'], {'target_size': '(224, 224, 1)', 'color_mode': '"""grayscale"""'}), "(img_path8, target_size=(224, 224, 1), color_mode='grayscale')\n", (12132, 12194), False, 'from keras.preprocessing import image\n'), ((12217, 12241), 'cv2.imread', 'cv2.imread', (['img_path8', '(0)'], {}), '(img_path8, 0)\n', (12227, 12241), False, 'import os, cv2\n'), ((12250, 12274), 'cv2.Canny', 'cv2.Canny', (['img', '(100)', '(200)'], {}), '(img, 100, 200)\n', (12259, 12274), False, 'import os, cv2\n'), ((12502, 12521), 'numpy.asarray', 'np.asarray', (['imgxray'], {}), '(imgxray)\n', (12512, 12521), True, 'import numpy as np\n'), ((12531, 12562), 'numpy.expand_dims', 'np.expand_dims', (['imgxray'], {'axis': '(0)'}), '(imgxray, axis=0)\n', (12545, 12562), True, 'import numpy as np\n'), ((12571, 12599), 'numpy.rot90', 'np.rot90', (['imgxray', '(1)', '(1, 2)'], {}), '(imgxray, 1, (1, 2))\n', (12579, 12599), True, 'import numpy as np\n'), ((12813, 12833), 'numpy.argmax', 'np.argmax', (['y'], {'axis': '(1)'}), '(y, axis=1)\n', (12822, 12833), True, 'import numpy as np\n'), ((12964, 12991), 'numpy.array', 'numpy.array', (['[[1, 0, 0, 0]]'], {}), '([[1, 0, 0, 0]])\n', (12975, 12991), False, 'import numpy\n'), ((12995, 13022), 'numpy.array', 'numpy.array', (['[[0, 1, 0, 0]]'], {}), '([[0, 1, 0, 0]])\n', (13006, 13022), False, 'import numpy\n'), ((13026, 13053), 'numpy.array', 'numpy.array', (['[[0, 0, 1, 0]]'], {}), '([[0, 0, 1, 0]])\n', (13037, 13053), False, 'import numpy\n'), ((13057, 13084), 'numpy.array', 'numpy.array', (['[[0, 0, 0, 1]]'], {}), '([[0, 0, 0, 1]])\n', (13068, 13084), False, 'import numpy\n'), ((13202, 13299), 'keras.preprocessing.image.load_img', 'keras.preprocessing.image.load_img', (['testlocal'], {'target_size': '(224, 224)', 'color_mode': '"""grayscale"""'}), "(testlocal, target_size=(224, 224),\n color_mode='grayscale')\n", (13236, 13299), False, 'import keras\n'), ((13314, 13357), 'keras.preprocessing.image.img_to_array', 'keras.preprocessing.image.img_to_array', (['img'], {}), '(img)\n', (13352, 13357), False, 'import keras\n'), ((13371, 13399), 'tensorflow.expand_dims', 'tf.expand_dims', (['img_array', '(0)'], {}), '(img_array, 0)\n', (13385, 13399), True, 'import tensorflow as tf\n'), ((3536, 3562), 'keras.layers.Input', 'Input', ([], {'shape': '(224, 224, 1)'}), '(shape=(224, 224, 1))\n', (3541, 3562), False, 'from keras.layers import Input, Conv2D, Convolution2D, Dense, MaxPool2D, Dropout, Flatten, Concatenate, AvgPool2D, Dropout\n'), ((4141, 4170), 'keras.models.Model', 'Model', ([], {'inputs': 'ins', 'outputs': 'l8'}), '(inputs=ins, outputs=l8)\n', (4146, 4170), False, 'from keras.models import Model\n'), ((7066, 7092), 'keras.layers.Input', 'Input', ([], {'shape': '(224, 224, 1)'}), '(shape=(224, 224, 1))\n', (7071, 7092), False, 'from keras.layers import Input, Conv2D, Convolution2D, Dense, MaxPool2D, Dropout, Flatten, Concatenate, AvgPool2D, Dropout\n'), ((7656, 7686), 'keras.models.Model', 'Model', ([], {'inputs': 'ins1', 'outputs': 'l8'}), '(inputs=ins1, outputs=l8)\n', (7661, 7686), False, 'from keras.models import Model\n'), ((11025, 11088), 'sklearn.metrics.classification_report', 'classification_report', (['test_label', 'p2'], {'target_names': 'class_names'}), '(test_label, p2, target_names=class_names)\n', (11046, 11088), False, 'from sklearn.metrics import classification_report, confusion_matrix, plot_confusion_matrix, ConfusionMatrixDisplay\n'), ((12276, 12292), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(121)'], {}), '(121)\n', (12287, 12292), True, 'import matplotlib.pyplot as plt\n'), ((12293, 12321), 'matplotlib.pyplot.imshow', 'plt.imshow', (['img'], {'cmap': '"""gray"""'}), "(img, cmap='gray')\n", (12303, 12321), True, 'import matplotlib.pyplot as plt\n'), ((12324, 12351), 'matplotlib.pyplot.title', 'plt.title', (['"""Original Image"""'], {}), "('Original Image')\n", (12333, 12351), True, 'import matplotlib.pyplot as plt\n'), ((12353, 12367), 'matplotlib.pyplot.xticks', 'plt.xticks', (['[]'], {}), '([])\n', (12363, 12367), True, 'import matplotlib.pyplot as plt\n'), ((12369, 12383), 'matplotlib.pyplot.yticks', 'plt.yticks', (['[]'], {}), '([])\n', (12379, 12383), True, 'import matplotlib.pyplot as plt\n'), ((12385, 12401), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(122)'], {}), '(122)\n', (12396, 12401), True, 'import matplotlib.pyplot as plt\n'), ((12402, 12432), 'matplotlib.pyplot.imshow', 'plt.imshow', (['edges'], {'cmap': '"""gray"""'}), "(edges, cmap='gray')\n", (12412, 12432), True, 'import matplotlib.pyplot as plt\n'), ((12435, 12458), 'matplotlib.pyplot.title', 'plt.title', (['"""Edge Image"""'], {}), "('Edge Image')\n", (12444, 12458), True, 'import matplotlib.pyplot as plt\n'), ((12460, 12474), 'matplotlib.pyplot.xticks', 'plt.xticks', (['[]'], {}), '([])\n', (12470, 12474), True, 'import matplotlib.pyplot as plt\n'), ((12476, 12490), 'matplotlib.pyplot.yticks', 'plt.yticks', (['[]'], {}), '([])\n', (12486, 12490), True, 'import matplotlib.pyplot as plt\n'), ((3679, 3717), 'keras.layers.AvgPool2D', 'AvgPool2D', ([], {'pool_size': '(2, 2)', 'strides': '(2)'}), '(pool_size=(2, 2), strides=2)\n', (3688, 3717), False, 'from keras.layers import Input, Conv2D, Convolution2D, Dense, MaxPool2D, Dropout, Flatten, Concatenate, AvgPool2D, Dropout\n'), ((3803, 3841), 'keras.layers.AvgPool2D', 'AvgPool2D', ([], {'pool_size': '(2, 2)', 'strides': '(2)'}), '(pool_size=(2, 2), strides=2)\n', (3812, 3841), False, 'from keras.layers import Input, Conv2D, Convolution2D, Dense, MaxPool2D, Dropout, Flatten, Concatenate, AvgPool2D, Dropout\n'), ((3858, 3867), 'keras.layers.Flatten', 'Flatten', ([], {}), '()\n', (3865, 3867), False, 'from keras.layers import Input, Conv2D, Convolution2D, Dense, MaxPool2D, Dropout, Flatten, Concatenate, AvgPool2D, Dropout\n'), ((3881, 3893), 'keras.layers.Dropout', 'Dropout', (['(0.2)'], {}), '(0.2)\n', (3888, 3893), False, 'from keras.layers import Input, Conv2D, Convolution2D, Dense, MaxPool2D, Dropout, Flatten, Concatenate, AvgPool2D, Dropout\n'), ((3907, 3947), 'keras.layers.Dense', 'Dense', ([], {'units': 'hp_units', 'activation': '"""relu"""'}), "(units=hp_units, activation='relu')\n", (3912, 3947), False, 'from keras.layers import Input, Conv2D, Convolution2D, Dense, MaxPool2D, Dropout, Flatten, Concatenate, AvgPool2D, Dropout\n'), ((3961, 4002), 'keras.layers.Dense', 'Dense', ([], {'units': 'hp_units2', 'activation': '"""relu"""'}), "(units=hp_units2, activation='relu')\n", (3966, 4002), False, 'from keras.layers import Input, Conv2D, Convolution2D, Dense, MaxPool2D, Dropout, Flatten, Concatenate, AvgPool2D, Dropout\n'), ((4017, 4047), 'keras.layers.Dense', 'Dense', (['(4)'], {'activation': '"""softmax"""'}), "(4, activation='softmax')\n", (4022, 4047), False, 'from keras.layers import Input, Conv2D, Convolution2D, Dense, MaxPool2D, Dropout, Flatten, Concatenate, AvgPool2D, Dropout\n'), ((7196, 7215), 'keras.layers.Concatenate', 'Concatenate', ([], {'axis': '(3)'}), '(axis=3)\n', (7207, 7215), False, 'from keras.layers import Input, Conv2D, Convolution2D, Dense, MaxPool2D, Dropout, Flatten, Concatenate, AvgPool2D, Dropout\n'), ((7235, 7262), 'keras.layers.MaxPool2D', 'MaxPool2D', ([], {'pool_size': '(4, 4)'}), '(pool_size=(4, 4))\n', (7244, 7262), False, 'from keras.layers import Input, Conv2D, Convolution2D, Dense, MaxPool2D, Dropout, Flatten, Concatenate, AvgPool2D, Dropout\n'), ((7275, 7335), 'keras.layers.Conv2D', 'Conv2D', ([], {'filters': '(32)', 'kernel_size': '(3)', 'strides': '(1)', 'padding': '"""same"""'}), "(filters=32, kernel_size=3, strides=1, padding='same')\n", (7281, 7335), False, 'from keras.layers import Input, Conv2D, Convolution2D, Dense, MaxPool2D, Dropout, Flatten, Concatenate, AvgPool2D, Dropout\n'), ((7403, 7441), 'keras.layers.AvgPool2D', 'AvgPool2D', ([], {'pool_size': '(2, 2)', 'strides': '(4)'}), '(pool_size=(2, 2), strides=4)\n', (7412, 7441), False, 'from keras.layers import Input, Conv2D, Convolution2D, Dense, MaxPool2D, Dropout, Flatten, Concatenate, AvgPool2D, Dropout\n'), ((7453, 7462), 'keras.layers.Flatten', 'Flatten', ([], {}), '()\n', (7460, 7462), False, 'from keras.layers import Input, Conv2D, Convolution2D, Dense, MaxPool2D, Dropout, Flatten, Concatenate, AvgPool2D, Dropout\n'), ((7476, 7488), 'keras.layers.Dropout', 'Dropout', (['(0.2)'], {}), '(0.2)\n', (7483, 7488), False, 'from keras.layers import Input, Conv2D, Convolution2D, Dense, MaxPool2D, Dropout, Flatten, Concatenate, AvgPool2D, Dropout\n'), ((7502, 7542), 'keras.layers.Dense', 'Dense', ([], {'units': 'hp_units', 'activation': '"""relu"""'}), "(units=hp_units, activation='relu')\n", (7507, 7542), False, 'from keras.layers import Input, Conv2D, Convolution2D, Dense, MaxPool2D, Dropout, Flatten, Concatenate, AvgPool2D, Dropout\n'), ((7556, 7597), 'keras.layers.Dense', 'Dense', ([], {'units': 'hp_units2', 'activation': '"""relu"""'}), "(units=hp_units2, activation='relu')\n", (7561, 7597), False, 'from keras.layers import Input, Conv2D, Convolution2D, Dense, MaxPool2D, Dropout, Flatten, Concatenate, AvgPool2D, Dropout\n'), ((7612, 7642), 'keras.layers.Dense', 'Dense', (['(4)'], {'activation': '"""softmax"""'}), "(4, activation='softmax')\n", (7617, 7642), False, 'from keras.layers import Input, Conv2D, Convolution2D, Dense, MaxPool2D, Dropout, Flatten, Concatenate, AvgPool2D, Dropout\n'), ((11392, 11416), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(3)', '(3)', '(i + 1)'], {}), '(3, 3, i + 1)\n', (11403, 11416), True, 'import matplotlib.pyplot as plt\n'), ((13494, 13518), 'numpy.multiply', 'np.multiply', (['meh1', 'score'], {}), '(meh1, score)\n', (13505, 13518), True, 'import numpy as np\n'), ((13534, 13558), 'numpy.multiply', 'np.multiply', (['meh2', 'score'], {}), '(meh2, score)\n', (13545, 13558), True, 'import numpy as np\n'), ((13574, 13598), 'numpy.multiply', 'np.multiply', (['meh3', 'score'], {}), '(meh3, score)\n', (13585, 13598), True, 'import numpy as np\n'), ((13614, 13638), 'numpy.multiply', 'np.multiply', (['meh4', 'score'], {}), '(meh4, score)\n', (13625, 13638), True, 'import numpy as np\n'), ((2315, 2393), 'keras.layers.Conv2D', 'Conv2D', ([], {'filters': 'filters[0]', 'kernel_size': '(1, 5)', 'activation': 'act', 'padding': '"""same"""'}), "(filters=filters[0], kernel_size=(1, 5), activation=act, padding='same')\n", (2321, 2393), False, 'from keras.layers import Input, Conv2D, Convolution2D, Dense, MaxPool2D, Dropout, Flatten, Concatenate, AvgPool2D, Dropout\n'), ((2407, 2485), 'keras.layers.Conv2D', 'Conv2D', ([], {'filters': 'filters[1]', 'kernel_size': '(5, 1)', 'activation': 'act', 'padding': '"""same"""'}), "(filters=filters[1], kernel_size=(5, 1), activation=act, padding='same')\n", (2413, 2485), False, 'from keras.layers import Input, Conv2D, Convolution2D, Dense, MaxPool2D, Dropout, Flatten, Concatenate, AvgPool2D, Dropout\n'), ((2500, 2519), 'keras.layers.Concatenate', 'Concatenate', ([], {'axis': '(3)'}), '(axis=3)\n', (2511, 2519), False, 'from keras.layers import Input, Conv2D, Convolution2D, Dense, MaxPool2D, Dropout, Flatten, Concatenate, AvgPool2D, Dropout\n'), ((2585, 2634), 'keras.layers.Conv2D', 'Conv2D', (['(8)', '(1, 1)'], {'activation': 'act', 'padding': '"""same"""'}), "(8, (1, 1), activation=act, padding='same')\n", (2591, 2634), False, 'from keras.layers import Input, Conv2D, Convolution2D, Dense, MaxPool2D, Dropout, Flatten, Concatenate, AvgPool2D, Dropout\n'), ((2648, 2718), 'keras.layers.Conv2D', 'Conv2D', ([], {'filters': '(32)', 'kernel_size': '(1, 1)', 'activation': 'act', 'padding': '"""same"""'}), "(filters=32, kernel_size=(1, 1), activation=act, padding='same')\n", (2654, 2718), False, 'from keras.layers import Input, Conv2D, Convolution2D, Dense, MaxPool2D, Dropout, Flatten, Concatenate, AvgPool2D, Dropout\n'), ((2732, 2802), 'keras.layers.Conv2D', 'Conv2D', ([], {'filters': '(32)', 'kernel_size': '(3, 3)', 'activation': 'act', 'padding': '"""same"""'}), "(filters=32, kernel_size=(3, 3), activation=act, padding='same')\n", (2738, 2802), False, 'from keras.layers import Input, Conv2D, Convolution2D, Dense, MaxPool2D, Dropout, Flatten, Concatenate, AvgPool2D, Dropout\n'), ((2817, 2887), 'keras.layers.Conv2D', 'Conv2D', ([], {'filters': '(32)', 'kernel_size': '(3, 3)', 'activation': 'act', 'padding': '"""same"""'}), "(filters=32, kernel_size=(3, 3), activation=act, padding='same')\n", (2823, 2887), False, 'from keras.layers import Input, Conv2D, Convolution2D, Dense, MaxPool2D, Dropout, Flatten, Concatenate, AvgPool2D, Dropout\n'), ((2902, 2972), 'keras.layers.Conv2D', 'Conv2D', ([], {'filters': '(32)', 'kernel_size': '(3, 3)', 'activation': 'act', 'padding': '"""same"""'}), "(filters=32, kernel_size=(3, 3), activation=act, padding='same')\n", (2908, 2972), False, 'from keras.layers import Input, Conv2D, Convolution2D, Dense, MaxPool2D, Dropout, Flatten, Concatenate, AvgPool2D, Dropout\n'), ((2985, 2997), 'keras.layers.MaxPool2D', 'MaxPool2D', (['(1)'], {}), '(1)\n', (2994, 2997), False, 'from keras.layers import Input, Conv2D, Convolution2D, Dense, MaxPool2D, Dropout, Flatten, Concatenate, AvgPool2D, Dropout\n'), ((3017, 3036), 'keras.layers.Concatenate', 'Concatenate', ([], {'axis': '(1)'}), '(axis=1)\n', (3028, 3036), False, 'from keras.layers import Input, Conv2D, Convolution2D, Dense, MaxPool2D, Dropout, Flatten, Concatenate, AvgPool2D, Dropout\n'), ((3168, 3224), 'keras.layers.Convolution2D', 'Convolution2D', (['(4)', '(1, 1)'], {'activation': 'act', 'padding': '"""same"""'}), "(4, (1, 1), activation=act, padding='same')\n", (3181, 3224), False, 'from keras.layers import Input, Conv2D, Convolution2D, Dense, MaxPool2D, Dropout, Flatten, Concatenate, AvgPool2D, Dropout\n'), ((3276, 3326), 'keras.layers.Conv2D', 'Conv2D', (['(16)', '(1, 1)'], {'activation': 'act', 'padding': '"""same"""'}), "(16, (1, 1), activation=act, padding='same')\n", (3282, 3326), False, 'from keras.layers import Input, Conv2D, Convolution2D, Dense, MaxPool2D, Dropout, Flatten, Concatenate, AvgPool2D, Dropout\n'), ((3381, 3431), 'keras.layers.Conv2D', 'Conv2D', (['(16)', '(3, 3)'], {'activation': 'act', 'padding': '"""same"""'}), "(16, (3, 3), activation=act, padding='same')\n", (3387, 3431), False, 'from keras.layers import Input, Conv2D, Convolution2D, Dense, MaxPool2D, Dropout, Flatten, Concatenate, AvgPool2D, Dropout\n'), ((3480, 3499), 'keras.layers.Concatenate', 'Concatenate', ([], {'axis': '(1)'}), '(axis=1)\n', (3491, 3499), False, 'from keras.layers import Input, Conv2D, Convolution2D, Dense, MaxPool2D, Dropout, Flatten, Concatenate, AvgPool2D, Dropout\n'), ((4222, 4250), 'keras.optimizers.Adagrad', 'Adagrad', ([], {'learning_rate': 'hp_lr'}), '(learning_rate=hp_lr)\n', (4229, 4250), False, 'from keras.optimizers import Adam, Adagrad, SGD, RMSprop\n'), ((5560, 5638), 'keras.layers.Conv2D', 'Conv2D', ([], {'filters': 'filters[0]', 'kernel_size': '(1, 3)', 'activation': 'act', 'padding': '"""same"""'}), "(filters=filters[0], kernel_size=(1, 3), activation=act, padding='same')\n", (5566, 5638), False, 'from keras.layers import Input, Conv2D, Convolution2D, Dense, MaxPool2D, Dropout, Flatten, Concatenate, AvgPool2D, Dropout\n'), ((5652, 5730), 'keras.layers.Conv2D', 'Conv2D', ([], {'filters': 'filters[0]', 'kernel_size': '(3, 1)', 'activation': 'act', 'padding': '"""same"""'}), "(filters=filters[0], kernel_size=(3, 1), activation=act, padding='same')\n", (5658, 5730), False, 'from keras.layers import Input, Conv2D, Convolution2D, Dense, MaxPool2D, Dropout, Flatten, Concatenate, AvgPool2D, Dropout\n'), ((5814, 5889), 'keras.layers.Conv2D', 'Conv2D', ([], {'filters': 'filters', 'kernel_size': '(1, 3)', 'activation': 'act', 'padding': '"""same"""'}), "(filters=filters, kernel_size=(1, 3), activation=act, padding='same')\n", (5820, 5889), False, 'from keras.layers import Input, Conv2D, Convolution2D, Dense, MaxPool2D, Dropout, Flatten, Concatenate, AvgPool2D, Dropout\n'), ((5903, 5978), 'keras.layers.Conv2D', 'Conv2D', ([], {'filters': 'filters', 'kernel_size': '(1, 3)', 'activation': 'act', 'padding': '"""same"""'}), "(filters=filters, kernel_size=(1, 3), activation=act, padding='same')\n", (5909, 5978), False, 'from keras.layers import Input, Conv2D, Convolution2D, Dense, MaxPool2D, Dropout, Flatten, Concatenate, AvgPool2D, Dropout\n'), ((5994, 6013), 'keras.layers.Concatenate', 'Concatenate', ([], {'axis': '(3)'}), '(axis=3)\n', (6005, 6013), False, 'from keras.layers import Input, Conv2D, Convolution2D, Dense, MaxPool2D, Dropout, Flatten, Concatenate, AvgPool2D, Dropout\n'), ((6090, 6139), 'keras.layers.Conv2D', 'Conv2D', (['(8)', '(1, 1)'], {'activation': 'act', 'padding': '"""same"""'}), "(8, (1, 1), activation=act, padding='same')\n", (6096, 6139), False, 'from keras.layers import Input, Conv2D, Convolution2D, Dense, MaxPool2D, Dropout, Flatten, Concatenate, AvgPool2D, Dropout\n'), ((6153, 6223), 'keras.layers.Conv2D', 'Conv2D', ([], {'filters': '(32)', 'kernel_size': '(1, 1)', 'activation': 'act', 'padding': '"""same"""'}), "(filters=32, kernel_size=(1, 1), activation=act, padding='same')\n", (6159, 6223), False, 'from keras.layers import Input, Conv2D, Convolution2D, Dense, MaxPool2D, Dropout, Flatten, Concatenate, AvgPool2D, Dropout\n'), ((6237, 6307), 'keras.layers.Conv2D', 'Conv2D', ([], {'filters': '(32)', 'kernel_size': '(3, 3)', 'activation': 'act', 'padding': '"""same"""'}), "(filters=32, kernel_size=(3, 3), activation=act, padding='same')\n", (6243, 6307), False, 'from keras.layers import Input, Conv2D, Convolution2D, Dense, MaxPool2D, Dropout, Flatten, Concatenate, AvgPool2D, Dropout\n'), ((6322, 6392), 'keras.layers.Conv2D', 'Conv2D', ([], {'filters': '(32)', 'kernel_size': '(3, 3)', 'activation': 'act', 'padding': '"""same"""'}), "(filters=32, kernel_size=(3, 3), activation=act, padding='same')\n", (6328, 6392), False, 'from keras.layers import Input, Conv2D, Convolution2D, Dense, MaxPool2D, Dropout, Flatten, Concatenate, AvgPool2D, Dropout\n'), ((6407, 6477), 'keras.layers.Conv2D', 'Conv2D', ([], {'filters': '(32)', 'kernel_size': '(3, 3)', 'activation': 'act', 'padding': '"""same"""'}), "(filters=32, kernel_size=(3, 3), activation=act, padding='same')\n", (6413, 6477), False, 'from keras.layers import Input, Conv2D, Convolution2D, Dense, MaxPool2D, Dropout, Flatten, Concatenate, AvgPool2D, Dropout\n'), ((6490, 6502), 'keras.layers.MaxPool2D', 'MaxPool2D', (['(1)'], {}), '(1)\n', (6499, 6502), False, 'from keras.layers import Input, Conv2D, Convolution2D, Dense, MaxPool2D, Dropout, Flatten, Concatenate, AvgPool2D, Dropout\n'), ((6522, 6541), 'keras.layers.Concatenate', 'Concatenate', ([], {'axis': '(3)'}), '(axis=3)\n', (6533, 6541), False, 'from keras.layers import Input, Conv2D, Convolution2D, Dense, MaxPool2D, Dropout, Flatten, Concatenate, AvgPool2D, Dropout\n'), ((6568, 6583), 'keras.layers.MaxPool2D', 'MaxPool2D', (['(4)', '(4)'], {}), '(4, 4)\n', (6577, 6583), False, 'from keras.layers import Input, Conv2D, Convolution2D, Dense, MaxPool2D, Dropout, Flatten, Concatenate, AvgPool2D, Dropout\n'), ((6682, 6738), 'keras.layers.Convolution2D', 'Convolution2D', (['(4)', '(1, 1)'], {'activation': 'act', 'padding': '"""same"""'}), "(4, (1, 1), activation=act, padding='same')\n", (6695, 6738), False, 'from keras.layers import Input, Conv2D, Convolution2D, Dense, MaxPool2D, Dropout, Flatten, Concatenate, AvgPool2D, Dropout\n'), ((6790, 6839), 'keras.layers.Conv2D', 'Conv2D', (['(8)', '(1, 1)'], {'activation': 'act', 'padding': '"""same"""'}), "(8, (1, 1), activation=act, padding='same')\n", (6796, 6839), False, 'from keras.layers import Input, Conv2D, Convolution2D, Dense, MaxPool2D, Dropout, Flatten, Concatenate, AvgPool2D, Dropout\n'), ((6894, 6943), 'keras.layers.Conv2D', 'Conv2D', (['(8)', '(3, 3)'], {'activation': 'act', 'padding': '"""same"""'}), "(8, (3, 3), activation=act, padding='same')\n", (6900, 6943), False, 'from keras.layers import Input, Conv2D, Convolution2D, Dense, MaxPool2D, Dropout, Flatten, Concatenate, AvgPool2D, Dropout\n'), ((6992, 7011), 'keras.layers.Concatenate', 'Concatenate', ([], {'axis': '(3)'}), '(axis=3)\n', (7003, 7011), False, 'from keras.layers import Input, Conv2D, Convolution2D, Dense, MaxPool2D, Dropout, Flatten, Concatenate, AvgPool2D, Dropout\n'), ((7912, 7941), 'keras.optimizers.Adagrad', 'Adagrad', ([], {'learning_rate': 'hp_lr2'}), '(learning_rate=hp_lr2)\n', (7919, 7941), False, 'from keras.optimizers import Adam, Adagrad, SGD, RMSprop\n')]
|
from numpy import array2string
from numpy import delete
from numpy import s_
from numpy import concatenate
from keras.models import model_from_json
from sklearn.preprocessing import MinMaxScaler
from connectDB import ConnectDB
import argparse
import time
class Predict(object):
SYMBOL = 0
ID_COIN = 1
def __init__(self):
self.db = ConnectDB()
self.scaler = MinMaxScaler(feature_range=(0, 1))
self.n_hours = 1
def get_y(self, values):
y = delete(values, s_[1:], 1).reshape(-1)
return y
def load_model(self):
json_file = open('models/model_%s.json'%coin[self.SYMBOL], 'r')
loaded_model_json = json_file.read()
json_file.close()
model = model_from_json(loaded_model_json)
model.load_weights("weights/weight_%s.h5"%coin[self.SYMBOL])
return model
def save_to_db(self, inv_yhat, inv_y, id_coin):
time_create = int(time.time())
price_predict = array2string(inv_yhat, separator=',')
price_actual = array2string(inv_y, separator=',')
price_preidct_last = inv_yhat[-1]
price_predict_previous = inv_yhat[-2]
price_actual_last = inv_y[-1]
price_actual_previous = inv_y[-2]
self.db.insert_history_prediction(id_coin, time_create, price_actual, price_predict,
price_preidct_last, price_predict_previous, price_actual_last, price_actual_previous)
def normalize_data(self, dataset, n_time_predicts=1, n_features=1, dropnan=True):
values = dataset.values
values = values.astype('float32')
values = self.scaler.fit_transform(values)
values = values.reshape((n_time_predicts, 1, n_features))
return values
def make_predict(self, model, test_X, n_features = 1):
yhat = model.predict(test_X)
test_X = test_X.reshape((test_X.shape[0], self.n_hours*n_features))
inv_yhat = self.invert_scaling(yhat, test_X, n_features)
return inv_yhat
def invert_scaling(self, test_y, test_X_reshape, n_features):
inv_y = concatenate((test_y, test_X_reshape[:, -(n_features - 1):]), axis=1)
inv_y = self.scaler.inverse_transform(inv_y)
inv_y = inv_y[:,0]
return inv_y
def make_predict_price_coin(self, coin):
dataset = self.db.get_data_predict_by_id(coin[self.ID_COIN])
inv_y = self.get_y(dataset.values)
n_features = len(dataset.columns)
n_time_predicts = len(dataset)
test_X = self.normalize_data(dataset, n_time_predicts=n_time_predicts, n_features=n_features)
model = self.load_model()
inv_yhat = self.make_predict(model, test_X, n_features=n_features)
self.save_to_db(inv_yhat, inv_y, coin[self.ID_COIN])
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Forecast coin price with deep learning.")
parser.add_argument('-id',type=int,help="-id id coin")
parser.add_argument('-symbol',type=str,help="-symbol symbol coin")
args = parser.parse_args()
coin = [args.symbol, args.id]
predict = Predict()
predict.make_predict_price_coin(coin)
|
[
"argparse.ArgumentParser",
"connectDB.ConnectDB",
"numpy.array2string",
"sklearn.preprocessing.MinMaxScaler",
"time.time",
"keras.models.model_from_json",
"numpy.delete",
"numpy.concatenate"
] |
[((2798, 2876), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Forecast coin price with deep learning."""'}), "(description='Forecast coin price with deep learning.')\n", (2821, 2876), False, 'import argparse\n'), ((353, 364), 'connectDB.ConnectDB', 'ConnectDB', ([], {}), '()\n', (362, 364), False, 'from connectDB import ConnectDB\n'), ((387, 421), 'sklearn.preprocessing.MinMaxScaler', 'MinMaxScaler', ([], {'feature_range': '(0, 1)'}), '(feature_range=(0, 1))\n', (399, 421), False, 'from sklearn.preprocessing import MinMaxScaler\n'), ((734, 768), 'keras.models.model_from_json', 'model_from_json', (['loaded_model_json'], {}), '(loaded_model_json)\n', (749, 768), False, 'from keras.models import model_from_json\n'), ((975, 1012), 'numpy.array2string', 'array2string', (['inv_yhat'], {'separator': '""","""'}), "(inv_yhat, separator=',')\n", (987, 1012), False, 'from numpy import array2string\n'), ((1036, 1070), 'numpy.array2string', 'array2string', (['inv_y'], {'separator': '""","""'}), "(inv_y, separator=',')\n", (1048, 1070), False, 'from numpy import array2string\n'), ((2076, 2144), 'numpy.concatenate', 'concatenate', (['(test_y, test_X_reshape[:, -(n_features - 1):])'], {'axis': '(1)'}), '((test_y, test_X_reshape[:, -(n_features - 1):]), axis=1)\n', (2087, 2144), False, 'from numpy import concatenate\n'), ((938, 949), 'time.time', 'time.time', ([], {}), '()\n', (947, 949), False, 'import time\n'), ((489, 514), 'numpy.delete', 'delete', (['values', 's_[1:]', '(1)'], {}), '(values, s_[1:], 1)\n', (495, 514), False, 'from numpy import delete\n')]
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.