code
stringlengths
31
1.05M
apis
list
extract_api
stringlengths
97
1.91M
# ------------------------------------------------------------------------------------------ # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License (MIT). See LICENSE in the repo root for license information. # ------------------------------------------------------------------------------------------ from typing import Any, List, Optional import numpy as np import pytest import torch from torch.cuda.amp import GradScaler from torch.nn import Identity from InnerEye.Common import common_util from InnerEye.Common.common_util import MetricsDataframeLoggers from InnerEye.Common.output_directories import OutputFolderForTests from InnerEye.ML.common import ModelExecutionMode from InnerEye.ML.config import SegmentationModelBase from InnerEye.ML.configs.classification.DummyClassification import DummyClassification from InnerEye.ML.deep_learning_config import DeepLearningConfig from InnerEye.ML.model_training import model_train from InnerEye.ML.model_training_steps import ModelTrainingStepsForScalarModel, TrainValidateParameters, \ get_scalar_model_inputs_and_labels from InnerEye.ML.models.architectures.base_model import BaseModel, CropSizeConstraints from InnerEye.ML.models.parallel.data_parallel import DataParallelModel from InnerEye.ML.pipelines.forward_pass import SegmentationForwardPass from InnerEye.ML.utils import ml_util from InnerEye.ML.utils.device_aware_module import DeviceAwareModule from InnerEye.ML.utils.io_util import ImageDataType from InnerEye.ML.utils.metrics_util import SummaryWriters from InnerEye.ML.utils.model_util import ModelAndInfo from Tests.ML.configs.ClassificationModelForTesting import ClassificationModelForTesting from Tests.ML.models.architectures.DummyScalarModel import DummyScalarModel from Tests.ML.util import machine_has_gpu, no_gpu_available from Tests.ML.util import get_default_checkpoint_handler class SimpleModel(BaseModel): def __init__(self, input_channels: int, channels: list, n_classes: int, kernel_size: int, insert_value_in_output: Optional[float] = None, crop_size_constraints: CropSizeConstraints = None): super().__init__(input_channels=input_channels, name="SimpleModel", crop_size_constraints=crop_size_constraints) self.channels = channels self.n_classes = n_classes self.kernel_size = kernel_size self.insert_value_in_output = insert_value_in_output self._model = torch.nn.Sequential( torch.nn.Conv3d(input_channels, channels[0], kernel_size=self.kernel_size), torch.nn.ConvTranspose3d(channels[0], n_classes, kernel_size=self.kernel_size) ) def forward(self, x: Any) -> Any: # type: ignore x = self._model(x) if self.insert_value_in_output: x[..., 0] = self.insert_value_in_output return x def get_all_child_layers(self) -> List[torch.nn.Module]: return list(self._model.children()) @pytest.mark.parametrize("value_to_insert", [1.0, np.NaN, np.Inf]) @pytest.mark.parametrize("in_training_mode", [True, False]) def test_anomaly_detection(value_to_insert: float, in_training_mode: bool) -> None: """ Test anomaly detection for the segmentation forward pass. :param value_to_insert: The value to insert in the image image (nan, inf, or a valid float) :param in_training_mode: If true, run the segmentation forward pass in training mode, otherwise use the settings for running on the validation set. :return: """ image_size = [1, 1, 4, 4, 4] labels_size = [1, 2, 4, 4, 4] mask_size = [1, 4, 4, 4] crop_size = (4, 4, 4) inference_stride_size = (2, 2, 2) ground_truth_ids = ["Lung"] # image to run inference on image = torch.from_numpy(np.random.uniform(size=image_size).astype(ImageDataType.IMAGE.value)) # labels for criterion labels = torch.from_numpy(np.random.uniform(size=labels_size).astype(ImageDataType.SEGMENTATION.value)) # create a random mask if required mask = torch.from_numpy((np.round(np.random.uniform(size=mask_size)).astype(dtype=ImageDataType.MASK.value))) config = SegmentationModelBase( crop_size=crop_size, inference_stride_size=inference_stride_size, image_channels=["ct"], ground_truth_ids=ground_truth_ids, should_validate=False, detect_anomaly=True ) model_and_info = ModelAndInfo(config=config, model_execution_mode=ModelExecutionMode.TRAIN, checkpoint_path=None) model_and_info._model: BaseModel = SimpleModel(1, [1], 2, 2) # type: ignore model_and_info.create_summary_and_adjust_model_for_gpus() model_and_info.try_create_optimizer_and_load_from_checkpoint() config.use_gpu = False model = model_and_info.model optimizer = model_and_info.optimizer # Create the loss criterion criterion = lambda x, y: torch.tensor(value_to_insert, requires_grad=True) pipeline = SegmentationForwardPass(model, config, batch_size=1, optimizer=optimizer, in_training_mode=in_training_mode, criterion=criterion) image[0, 0, 0, 0, 0] = value_to_insert if np.isnan(value_to_insert) or np.isinf(value_to_insert): with pytest.raises(RuntimeError) as ex: pipeline.forward_pass_patches(patches=image, mask=mask, labels=labels) assert f"loss computation returned {value_to_insert}" in str(ex) else: pipeline.forward_pass_patches(patches=image, mask=mask, labels=labels) @pytest.mark.gpu @pytest.mark.skipif(no_gpu_available, reason="Testing AMP requires a GPU") @pytest.mark.parametrize("use_model_parallel", [False, True]) @pytest.mark.parametrize("use_mixed_precision", [False, True]) @pytest.mark.parametrize("execution_mode", [ModelExecutionMode.TRAIN, ModelExecutionMode.TEST]) def test_amp_activated(use_model_parallel: bool, execution_mode: ModelExecutionMode, use_mixed_precision: bool) -> None: """ Tests the mix precision flag and the model parallel flag. """ assert machine_has_gpu, "This test must be executed on a GPU machine." assert torch.cuda.device_count() > 1, "This test must be executed on a multi-GPU machine" # image, labels, and mask to run forward and backward passes image = torch.from_numpy(np.random.uniform(size=[1, 1, 4, 4, 4]).astype(ImageDataType.IMAGE.value)) labels = torch.from_numpy(np.random.uniform(size=[1, 2, 4, 4, 4]).astype(ImageDataType.SEGMENTATION.value)) mask = torch.from_numpy((np.round(np.random.uniform(size=[1, 4, 4, 4])).astype(dtype=ImageDataType.MASK.value))) crop_size = (4, 4, 4) model_config = SegmentationModelBase(crop_size=crop_size, image_channels=["ct"], ground_truth_ids=["Lung"], use_mixed_precision=use_mixed_precision, use_model_parallel=use_model_parallel, should_validate=False) assert model_config.use_gpu model_and_info = ModelAndInfo(config=model_config, model_execution_mode=execution_mode, checkpoint_path=None) model_and_info._model = SimpleModel(1, [1], 2, 2) # type: ignore # Move the model to the GPU. This is mostly to avoid issues with AMP, which has trouble # with first using a GPU model and later using a CPU-based one. try: model_and_info.create_summary_and_adjust_model_for_gpus() except NotImplementedError as ex: if use_model_parallel: # The SimpleModel does not implement model partitioning, and should hence fail at this step. assert "Model partitioning is not implemented" in str(ex) return else: raise ValueError(f"Expected this call to succeed, but got: {ex}") model_and_info.try_create_optimizer_and_load_from_checkpoint() model = model_and_info.model optimizer = model_and_info.optimizer # This is the same logic spelt out in adjust_model_for_gpus use_data_parallel = (execution_mode == ModelExecutionMode.TRAIN) or (not use_model_parallel) if use_data_parallel: assert isinstance(model, DataParallelModel) gradient_scaler = GradScaler() if use_mixed_precision else None criterion = lambda x, y: torch.tensor([0.0], requires_grad=True).cuda() pipeline = SegmentationForwardPass(model, model_config, batch_size=1, optimizer=optimizer, gradient_scaler=gradient_scaler, criterion=criterion) logits, _ = pipeline._compute_loss(image, labels) # When using DataParallel, we expect to get a list of tensors back, one per GPU. if use_data_parallel: assert isinstance(logits, list) first_logit = logits[0] else: first_logit = logits if use_mixed_precision: assert first_logit.dtype == torch.float16 else: assert first_logit.dtype == torch.float32 # Verify that forward and backward passes do not throw an exception pipeline._forward_pass(patches=image, mask=mask, labels=labels) @pytest.mark.skipif(common_util.is_windows(), reason="Has issues on windows build") @pytest.mark.cpu_and_gpu @pytest.mark.parametrize("use_gpu_override", [False, True]) def test_use_gpu_flag(use_gpu_override: bool) -> None: config = DeepLearningConfig(should_validate=False) # On a model that does not have a use_gpu_override, the use_gpu flag should return True exactly when a GPU is # actually present. assert config.use_gpu == machine_has_gpu if machine_has_gpu: # If a GPU is present, the use_gpu flag should exactly return whatever the override says # (we can run in CPU mode even on a GPU) config.use_gpu = use_gpu_override assert config.use_gpu == use_gpu_override else: if use_gpu_override: # We are on a machine without a GPU, but the override says we should use the GPU: fail. with pytest.raises(ValueError) as ex: config.use_gpu = use_gpu_override assert "use_gpu to True if there is not CUDA capable GPU present" in str(ex) else: config.use_gpu = use_gpu_override assert config.use_gpu == use_gpu_override @pytest.mark.azureml def test_mean_teacher_model(test_output_dirs: OutputFolderForTests) -> None: """ Test training and weight updates of the mean teacher model computation. """ def _get_parameters_of_model(model: DeviceAwareModule) -> Any: """ Returns the iterator of model parameters """ if isinstance(model, DataParallelModel): return model.module.parameters() else: return model.parameters() config = DummyClassification() config.set_output_to(test_output_dirs.root_dir) checkpoint_handler = get_default_checkpoint_handler(model_config=config, project_root=test_output_dirs.root_dir) config.num_epochs = 1 # Set train batch size to be arbitrary big to ensure we have only one training step # i.e. one mean teacher update. config.train_batch_size = 100 # Train without mean teacher model_train(config, checkpoint_handler=checkpoint_handler) # Retrieve the weight after one epoch model_and_info = ModelAndInfo(config=config, model_execution_mode=ModelExecutionMode.TEST, checkpoint_path=config.get_path_to_checkpoint(epoch=1)) model_and_info.try_create_model_and_load_from_checkpoint() model = model_and_info.model model_weight = next(_get_parameters_of_model(model)) # Get the starting weight of the mean teacher model ml_util.set_random_seed(config.get_effective_random_seed()) model_and_info_mean_teacher = ModelAndInfo(config=config, model_execution_mode=ModelExecutionMode.TEST, checkpoint_path=None) model_and_info_mean_teacher.try_create_model_and_load_from_checkpoint() model_and_info_mean_teacher.try_create_mean_teacher_model_and_load_from_checkpoint() mean_teach_model = model_and_info_mean_teacher.mean_teacher_model assert mean_teach_model is not None # for mypy initial_weight_mean_teacher_model = next(_get_parameters_of_model(mean_teach_model)) # Now train with mean teacher and check the update of the weight alpha = 0.999 config.mean_teacher_alpha = alpha model_train(config, checkpoint_handler=checkpoint_handler) # Retrieve weight of mean teacher model saved in the checkpoint model_and_info_mean_teacher = ModelAndInfo(config=config, model_execution_mode=ModelExecutionMode.TEST, checkpoint_path=config.get_path_to_checkpoint(1)) model_and_info_mean_teacher.try_create_mean_teacher_model_and_load_from_checkpoint() mean_teacher_model = model_and_info_mean_teacher.mean_teacher_model assert mean_teacher_model is not None # for mypy result_weight = next(_get_parameters_of_model(mean_teacher_model)) # Retrieve the associated student weight model_and_info_mean_teacher.try_create_model_and_load_from_checkpoint() student_model = model_and_info_mean_teacher.model student_model_weight = next(_get_parameters_of_model(student_model)) # Assert that the student weight corresponds to the weight of a simple training without mean teacher # computation assert student_model_weight.allclose(model_weight) # Check the update of the parameters assert torch.all(alpha * initial_weight_mean_teacher_model + (1 - alpha) * student_model_weight == result_weight) @pytest.mark.gpu @pytest.mark.skipif(no_gpu_available, reason="Testing AMP requires a GPU") @pytest.mark.parametrize("use_mixed_precision", [False, True]) @pytest.mark.parametrize("execution_mode", [ModelExecutionMode.TRAIN, ModelExecutionMode.VAL]) def test_amp_and_parallel_for_scalar_models(test_output_dirs: OutputFolderForTests, execution_mode: ModelExecutionMode, use_mixed_precision: bool) -> None: """ Tests the mix precision flag and data parallel for scalar models. """ class ClassificationModelWithIdentity(ClassificationModelForTesting): def create_model(self) -> Any: return DummyScalarModel(expected_image_size_zyx=config.expected_image_size_zyx, activation=Identity(), use_mixed_precision=use_mixed_precision) assert machine_has_gpu, "This test must be executed on a GPU machine." assert torch.cuda.device_count() > 1, "This test must be executed on a multi-GPU machine" config = ClassificationModelWithIdentity() config.use_mixed_precision = use_mixed_precision model_and_info = ModelAndInfo(config=config, model_execution_mode=execution_mode, checkpoint_path=None) model_and_info.try_create_model_load_from_checkpoint_and_adjust() model = model_and_info.model # This is the same logic spelt out in update_model_for_multiple_gpu # execution_mode == ModelExecutionMode.TRAIN or (not use_model_parallel), which is always True in our case use_data_parallel = True if use_data_parallel: assert isinstance(model, DataParallelModel) data_loaders = config.create_data_loaders() gradient_scaler = GradScaler() if use_mixed_precision else None train_val_parameters: TrainValidateParameters = TrainValidateParameters( model=model, data_loader=data_loaders[execution_mode], in_training_mode=execution_mode == ModelExecutionMode.TRAIN, gradient_scaler=gradient_scaler, dataframe_loggers=MetricsDataframeLoggers(test_output_dirs.root_dir), summary_writers=SummaryWriters(train=None, val=None) # type: ignore ) training_steps = ModelTrainingStepsForScalarModel(config, train_val_parameters) sample = list(data_loaders[execution_mode])[0] model_input = get_scalar_model_inputs_and_labels(config, model, sample) logits, posteriors, loss = training_steps._compute_model_output_and_loss(model_input) # When using DataParallel, we expect to get a list of tensors back, one per GPU. if use_data_parallel: assert isinstance(logits, list) first_logit = logits[0] else: first_logit = logits if use_mixed_precision: assert first_logit.dtype == torch.float16 assert posteriors.dtype == torch.float16 # BCEWithLogitsLoss outputs float32, even with float16 args assert loss.dtype == torch.float32 else: assert first_logit.dtype == torch.float32 assert posteriors.dtype == torch.float32 assert loss.dtype == torch.float32 # Verify that forward pass does not throw. It would for example if it fails to gather tensors or not convert # float16 to float32 _, _, _ = training_steps._compute_model_output_and_loss(model_input)
[ "InnerEye.Common.common_util.MetricsDataframeLoggers", "torch.nn.ConvTranspose3d", "InnerEye.ML.config.SegmentationModelBase", "numpy.isnan", "torch.cuda.device_count", "pytest.mark.skipif", "pytest.mark.parametrize", "InnerEye.ML.utils.model_util.ModelAndInfo", "torch.nn.Conv3d", "InnerEye.ML.deep_learning_config.DeepLearningConfig", "pytest.raises", "InnerEye.ML.utils.metrics_util.SummaryWriters", "InnerEye.ML.configs.classification.DummyClassification.DummyClassification", "InnerEye.ML.model_training_steps.get_scalar_model_inputs_and_labels", "InnerEye.ML.pipelines.forward_pass.SegmentationForwardPass", "numpy.isinf", "torch.cuda.amp.GradScaler", "torch.nn.Identity", "InnerEye.ML.model_training.model_train", "numpy.random.uniform", "InnerEye.Common.common_util.is_windows", "InnerEye.ML.model_training_steps.ModelTrainingStepsForScalarModel", "Tests.ML.util.get_default_checkpoint_handler", "torch.tensor", "torch.all" ]
[((2985, 3050), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""value_to_insert"""', '[1.0, np.NaN, np.Inf]'], {}), "('value_to_insert', [1.0, np.NaN, np.Inf])\n", (3008, 3050), False, 'import pytest\n'), ((3052, 3110), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""in_training_mode"""', '[True, False]'], {}), "('in_training_mode', [True, False])\n", (3075, 3110), False, 'import pytest\n'), ((5744, 5817), 'pytest.mark.skipif', 'pytest.mark.skipif', (['no_gpu_available'], {'reason': '"""Testing AMP requires a GPU"""'}), "(no_gpu_available, reason='Testing AMP requires a GPU')\n", (5762, 5817), False, 'import pytest\n'), ((5819, 5879), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""use_model_parallel"""', '[False, True]'], {}), "('use_model_parallel', [False, True])\n", (5842, 5879), False, 'import pytest\n'), ((5881, 5942), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""use_mixed_precision"""', '[False, True]'], {}), "('use_mixed_precision', [False, True])\n", (5904, 5942), False, 'import pytest\n'), ((5944, 6042), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""execution_mode"""', '[ModelExecutionMode.TRAIN, ModelExecutionMode.TEST]'], {}), "('execution_mode', [ModelExecutionMode.TRAIN,\n ModelExecutionMode.TEST])\n", (5967, 6042), False, 'import pytest\n'), ((9677, 9735), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""use_gpu_override"""', '[False, True]'], {}), "('use_gpu_override', [False, True])\n", (9700, 9735), False, 'import pytest\n'), ((14214, 14287), 'pytest.mark.skipif', 'pytest.mark.skipif', (['no_gpu_available'], {'reason': '"""Testing AMP requires a GPU"""'}), "(no_gpu_available, reason='Testing AMP requires a GPU')\n", (14232, 14287), False, 'import pytest\n'), ((14289, 14350), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""use_mixed_precision"""', '[False, True]'], {}), "('use_mixed_precision', [False, True])\n", (14312, 14350), False, 'import pytest\n'), ((14352, 14449), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""execution_mode"""', '[ModelExecutionMode.TRAIN, ModelExecutionMode.VAL]'], {}), "('execution_mode', [ModelExecutionMode.TRAIN,\n ModelExecutionMode.VAL])\n", (14375, 14449), False, 'import pytest\n'), ((4164, 4363), 'InnerEye.ML.config.SegmentationModelBase', 'SegmentationModelBase', ([], {'crop_size': 'crop_size', 'inference_stride_size': 'inference_stride_size', 'image_channels': "['ct']", 'ground_truth_ids': 'ground_truth_ids', 'should_validate': '(False)', 'detect_anomaly': '(True)'}), "(crop_size=crop_size, inference_stride_size=\n inference_stride_size, image_channels=['ct'], ground_truth_ids=\n ground_truth_ids, should_validate=False, detect_anomaly=True)\n", (4185, 4363), False, 'from InnerEye.ML.config import SegmentationModelBase\n'), ((4430, 4530), 'InnerEye.ML.utils.model_util.ModelAndInfo', 'ModelAndInfo', ([], {'config': 'config', 'model_execution_mode': 'ModelExecutionMode.TRAIN', 'checkpoint_path': 'None'}), '(config=config, model_execution_mode=ModelExecutionMode.TRAIN,\n checkpoint_path=None)\n', (4442, 4530), False, 'from InnerEye.ML.utils.model_util import ModelAndInfo\n'), ((5000, 5133), 'InnerEye.ML.pipelines.forward_pass.SegmentationForwardPass', 'SegmentationForwardPass', (['model', 'config'], {'batch_size': '(1)', 'optimizer': 'optimizer', 'in_training_mode': 'in_training_mode', 'criterion': 'criterion'}), '(model, config, batch_size=1, optimizer=optimizer,\n in_training_mode=in_training_mode, criterion=criterion)\n', (5023, 5133), False, 'from InnerEye.ML.pipelines.forward_pass import SegmentationForwardPass\n'), ((6898, 7101), 'InnerEye.ML.config.SegmentationModelBase', 'SegmentationModelBase', ([], {'crop_size': 'crop_size', 'image_channels': "['ct']", 'ground_truth_ids': "['Lung']", 'use_mixed_precision': 'use_mixed_precision', 'use_model_parallel': 'use_model_parallel', 'should_validate': '(False)'}), "(crop_size=crop_size, image_channels=['ct'],\n ground_truth_ids=['Lung'], use_mixed_precision=use_mixed_precision,\n use_model_parallel=use_model_parallel, should_validate=False)\n", (6919, 7101), False, 'from InnerEye.ML.config import SegmentationModelBase\n'), ((7352, 7448), 'InnerEye.ML.utils.model_util.ModelAndInfo', 'ModelAndInfo', ([], {'config': 'model_config', 'model_execution_mode': 'execution_mode', 'checkpoint_path': 'None'}), '(config=model_config, model_execution_mode=execution_mode,\n checkpoint_path=None)\n', (7364, 7448), False, 'from InnerEye.ML.utils.model_util import ModelAndInfo\n'), ((8682, 8820), 'InnerEye.ML.pipelines.forward_pass.SegmentationForwardPass', 'SegmentationForwardPass', (['model', 'model_config'], {'batch_size': '(1)', 'optimizer': 'optimizer', 'gradient_scaler': 'gradient_scaler', 'criterion': 'criterion'}), '(model, model_config, batch_size=1, optimizer=\n optimizer, gradient_scaler=gradient_scaler, criterion=criterion)\n', (8705, 8820), False, 'from InnerEye.ML.pipelines.forward_pass import SegmentationForwardPass\n'), ((9804, 9845), 'InnerEye.ML.deep_learning_config.DeepLearningConfig', 'DeepLearningConfig', ([], {'should_validate': '(False)'}), '(should_validate=False)\n', (9822, 9845), False, 'from InnerEye.ML.deep_learning_config import DeepLearningConfig\n'), ((9587, 9611), 'InnerEye.Common.common_util.is_windows', 'common_util.is_windows', ([], {}), '()\n', (9609, 9611), False, 'from InnerEye.Common import common_util\n'), ((11226, 11247), 'InnerEye.ML.configs.classification.DummyClassification.DummyClassification', 'DummyClassification', ([], {}), '()\n', (11245, 11247), False, 'from InnerEye.ML.configs.classification.DummyClassification import DummyClassification\n'), ((11325, 11421), 'Tests.ML.util.get_default_checkpoint_handler', 'get_default_checkpoint_handler', ([], {'model_config': 'config', 'project_root': 'test_output_dirs.root_dir'}), '(model_config=config, project_root=\n test_output_dirs.root_dir)\n', (11355, 11421), False, 'from Tests.ML.util import get_default_checkpoint_handler\n'), ((11695, 11753), 'InnerEye.ML.model_training.model_train', 'model_train', (['config'], {'checkpoint_handler': 'checkpoint_handler'}), '(config, checkpoint_handler=checkpoint_handler)\n', (11706, 11753), False, 'from InnerEye.ML.model_training import model_train\n'), ((12291, 12390), 'InnerEye.ML.utils.model_util.ModelAndInfo', 'ModelAndInfo', ([], {'config': 'config', 'model_execution_mode': 'ModelExecutionMode.TEST', 'checkpoint_path': 'None'}), '(config=config, model_execution_mode=ModelExecutionMode.TEST,\n checkpoint_path=None)\n', (12303, 12390), False, 'from InnerEye.ML.utils.model_util import ModelAndInfo\n'), ((12988, 13046), 'InnerEye.ML.model_training.model_train', 'model_train', (['config'], {'checkpoint_handler': 'checkpoint_handler'}), '(config, checkpoint_handler=checkpoint_handler)\n', (12999, 13046), False, 'from InnerEye.ML.model_training import model_train\n'), ((14087, 14197), 'torch.all', 'torch.all', (['(alpha * initial_weight_mean_teacher_model + (1 - alpha) *\n student_model_weight == result_weight)'], {}), '(alpha * initial_weight_mean_teacher_model + (1 - alpha) *\n student_model_weight == result_weight)\n', (14096, 14197), False, 'import torch\n'), ((15410, 15500), 'InnerEye.ML.utils.model_util.ModelAndInfo', 'ModelAndInfo', ([], {'config': 'config', 'model_execution_mode': 'execution_mode', 'checkpoint_path': 'None'}), '(config=config, model_execution_mode=execution_mode,\n checkpoint_path=None)\n', (15422, 15500), False, 'from InnerEye.ML.utils.model_util import ModelAndInfo\n'), ((16481, 16543), 'InnerEye.ML.model_training_steps.ModelTrainingStepsForScalarModel', 'ModelTrainingStepsForScalarModel', (['config', 'train_val_parameters'], {}), '(config, train_val_parameters)\n', (16513, 16543), False, 'from InnerEye.ML.model_training_steps import ModelTrainingStepsForScalarModel, TrainValidateParameters, get_scalar_model_inputs_and_labels\n'), ((16613, 16670), 'InnerEye.ML.model_training_steps.get_scalar_model_inputs_and_labels', 'get_scalar_model_inputs_and_labels', (['config', 'model', 'sample'], {}), '(config, model, sample)\n', (16647, 16670), False, 'from InnerEye.ML.model_training_steps import ModelTrainingStepsForScalarModel, TrainValidateParameters, get_scalar_model_inputs_and_labels\n'), ((4935, 4984), 'torch.tensor', 'torch.tensor', (['value_to_insert'], {'requires_grad': '(True)'}), '(value_to_insert, requires_grad=True)\n', (4947, 4984), False, 'import torch\n'), ((5375, 5400), 'numpy.isnan', 'np.isnan', (['value_to_insert'], {}), '(value_to_insert)\n', (5383, 5400), True, 'import numpy as np\n'), ((5404, 5429), 'numpy.isinf', 'np.isinf', (['value_to_insert'], {}), '(value_to_insert)\n', (5412, 5429), True, 'import numpy as np\n'), ((6370, 6395), 'torch.cuda.device_count', 'torch.cuda.device_count', ([], {}), '()\n', (6393, 6395), False, 'import torch\n'), ((8545, 8557), 'torch.cuda.amp.GradScaler', 'GradScaler', ([], {}), '()\n', (8555, 8557), False, 'from torch.cuda.amp import GradScaler\n'), ((15205, 15230), 'torch.cuda.device_count', 'torch.cuda.device_count', ([], {}), '()\n', (15228, 15230), False, 'import torch\n'), ((15995, 16007), 'torch.cuda.amp.GradScaler', 'GradScaler', ([], {}), '()\n', (16005, 16007), False, 'from torch.cuda.amp import GradScaler\n'), ((2508, 2582), 'torch.nn.Conv3d', 'torch.nn.Conv3d', (['input_channels', 'channels[0]'], {'kernel_size': 'self.kernel_size'}), '(input_channels, channels[0], kernel_size=self.kernel_size)\n', (2523, 2582), False, 'import torch\n'), ((2596, 2674), 'torch.nn.ConvTranspose3d', 'torch.nn.ConvTranspose3d', (['channels[0]', 'n_classes'], {'kernel_size': 'self.kernel_size'}), '(channels[0], n_classes, kernel_size=self.kernel_size)\n', (2620, 2674), False, 'import torch\n'), ((5444, 5471), 'pytest.raises', 'pytest.raises', (['RuntimeError'], {}), '(RuntimeError)\n', (5457, 5471), False, 'import pytest\n'), ((16325, 16375), 'InnerEye.Common.common_util.MetricsDataframeLoggers', 'MetricsDataframeLoggers', (['test_output_dirs.root_dir'], {}), '(test_output_dirs.root_dir)\n', (16348, 16375), False, 'from InnerEye.Common.common_util import MetricsDataframeLoggers\n'), ((16401, 16437), 'InnerEye.ML.utils.metrics_util.SummaryWriters', 'SummaryWriters', ([], {'train': 'None', 'val': 'None'}), '(train=None, val=None)\n', (16415, 16437), False, 'from InnerEye.ML.utils.metrics_util import SummaryWriters\n'), ((3792, 3826), 'numpy.random.uniform', 'np.random.uniform', ([], {'size': 'image_size'}), '(size=image_size)\n', (3809, 3826), True, 'import numpy as np\n'), ((3919, 3954), 'numpy.random.uniform', 'np.random.uniform', ([], {'size': 'labels_size'}), '(size=labels_size)\n', (3936, 3954), True, 'import numpy as np\n'), ((6547, 6586), 'numpy.random.uniform', 'np.random.uniform', ([], {'size': '[1, 1, 4, 4, 4]'}), '(size=[1, 1, 4, 4, 4])\n', (6564, 6586), True, 'import numpy as np\n'), ((6652, 6691), 'numpy.random.uniform', 'np.random.uniform', ([], {'size': '[1, 2, 4, 4, 4]'}), '(size=[1, 2, 4, 4, 4])\n', (6669, 6691), True, 'import numpy as np\n'), ((8620, 8659), 'torch.tensor', 'torch.tensor', (['[0.0]'], {'requires_grad': '(True)'}), '([0.0], requires_grad=True)\n', (8632, 8659), False, 'import torch\n'), ((10447, 10472), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (10460, 10472), False, 'import pytest\n'), ((4074, 4107), 'numpy.random.uniform', 'np.random.uniform', ([], {'size': 'mask_size'}), '(size=mask_size)\n', (4091, 4107), True, 'import numpy as np\n'), ((6772, 6808), 'numpy.random.uniform', 'np.random.uniform', ([], {'size': '[1, 4, 4, 4]'}), '(size=[1, 4, 4, 4])\n', (6789, 6808), True, 'import numpy as np\n'), ((15029, 15039), 'torch.nn.Identity', 'Identity', ([], {}), '()\n', (15037, 15039), False, 'from torch.nn import Identity\n')]
# generate overexposure samples from clear images # author: @LucasX import argparse import os import random from multiprocessing import Queue, Process import cv2 import numpy as np parser = argparse.ArgumentParser() parser.add_argument('-orig_dir', type=str, default='C:/Users/LucasX/Desktop/ShelfExposure/normal') parser.add_argument('-outpur_dir', type=str, default='C:/Users/LucasX/Desktop/ShelfExposure/exposure') parser.add_argument('-alpha', type=float, default=2.0) parser.add_argument('-beta', type=float, default=0.0) parser.add_argument('-procs', type=int, default=2) parser.add_argument('-show', type=bool, default=False) args = vars(parser.parse_args()) print('-' * 100) for key, value in args.items(): print('%s = %s' % (key, value)) print('-' * 100) def modify_img_saturation(img_f): """ modify image saturation to imitate overexposure effect :param img_f: :return: """ if img_f.endswith('.jpg') or img_f.endswith('.png') or img_f.endswith('.jpeg'): if not os.path.exists(args['outpur_dir']): os.makedirs(args['outpur_dir']) image = cv2.imread(img_f) overexposure_image = np.zeros(image.shape, image.dtype) # alpha = args['alpha'] alpha = random.randint(2, 10) for y in range(image.shape[0]): for x in range(image.shape[1]): for c in range(image.shape[2]): overexposure_image[y, x, c] = np.clip(alpha * image[y, x, c] + args['beta'], 0, 255) if args['show'] and overexposure_image is not None: cv2.imshow('overexposure_image', overexposure_image) cv2.waitKey(0) cv2.destroyAllWindows() cv2.imwrite(os.path.join(args['outpur_dir'], os.path.basename(img_f)), overexposure_image) print('[INFO] generate overexposure image {} successfully'.format(os.path.basename(img_f))) def multi_proc_modify_img_saturation(imgs_queue): """ modify image saturation to imitate overexposure effect in multi-processing mode :param imgs_queue: :return: """ if not imgs_queue.empty(): img_f = imgs_queue.get() if img_f.endswith('.jpg') or img_f.endswith('.png') or img_f.endswith('.jpeg'): if not os.path.exists(args['outpur_dir']): os.makedirs(args['outpur_dir']) image = cv2.imread(img_f) overexposure_image = np.zeros(image.shape, image.dtype) # alpha = args['alpha'] alpha = random.randint(2, 10) for y in range(image.shape[0]): for x in range(image.shape[1]): for c in range(image.shape[2]): overexposure_image[y, x, c] = np.clip(alpha * image[y, x, c] + args['beta'], 0, 255) if args['show'] and overexposure_image is not None: cv2.imshow('overexposure_image', overexposure_image) cv2.waitKey(0) cv2.destroyAllWindows() cv2.imwrite(os.path.join(args['outpur_dir'], os.path.basename(img_f)), overexposure_image) print('[INFO] generate overexposure image {} successfully'.format(os.path.basename(img_f))) if __name__ == '__main__': # multi-thread processing version imgs_queue = Queue() for img_f in os.listdir(args['orig_dir']): imgs_queue.put(os.path.join(args['orig_dir'], img_f)) for i in range(args['procs']): Process(target=multi_proc_modify_img_saturation, args=(imgs_queue,)).start() # single-thread processing version # for img_f in os.listdir(args['orig_dir']): # modify_img_saturation(os.path.join(args['orig_dir'], img_f))
[ "argparse.ArgumentParser", "random.randint", "os.makedirs", "cv2.waitKey", "cv2.destroyAllWindows", "os.path.basename", "numpy.zeros", "os.path.exists", "numpy.clip", "cv2.imread", "multiprocessing.Queue", "multiprocessing.Process", "cv2.imshow", "os.path.join", "os.listdir" ]
[((192, 217), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (215, 217), False, 'import argparse\n'), ((3309, 3316), 'multiprocessing.Queue', 'Queue', ([], {}), '()\n', (3314, 3316), False, 'from multiprocessing import Queue, Process\n'), ((3334, 3362), 'os.listdir', 'os.listdir', (["args['orig_dir']"], {}), "(args['orig_dir'])\n", (3344, 3362), False, 'import os\n'), ((1148, 1165), 'cv2.imread', 'cv2.imread', (['img_f'], {}), '(img_f)\n', (1158, 1165), False, 'import cv2\n'), ((1196, 1230), 'numpy.zeros', 'np.zeros', (['image.shape', 'image.dtype'], {}), '(image.shape, image.dtype)\n', (1204, 1230), True, 'import numpy as np\n'), ((1279, 1300), 'random.randint', 'random.randint', (['(2)', '(10)'], {}), '(2, 10)\n', (1293, 1300), False, 'import random\n'), ((1052, 1086), 'os.path.exists', 'os.path.exists', (["args['outpur_dir']"], {}), "(args['outpur_dir'])\n", (1066, 1086), False, 'import os\n'), ((1100, 1131), 'os.makedirs', 'os.makedirs', (["args['outpur_dir']"], {}), "(args['outpur_dir'])\n", (1111, 1131), False, 'import os\n'), ((1613, 1665), 'cv2.imshow', 'cv2.imshow', (['"""overexposure_image"""', 'overexposure_image'], {}), "('overexposure_image', overexposure_image)\n", (1623, 1665), False, 'import cv2\n'), ((1678, 1692), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (1689, 1692), False, 'import cv2\n'), ((1705, 1728), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (1726, 1728), False, 'import cv2\n'), ((2392, 2409), 'cv2.imread', 'cv2.imread', (['img_f'], {}), '(img_f)\n', (2402, 2409), False, 'import cv2\n'), ((2444, 2478), 'numpy.zeros', 'np.zeros', (['image.shape', 'image.dtype'], {}), '(image.shape, image.dtype)\n', (2452, 2478), True, 'import numpy as np\n'), ((2535, 2556), 'random.randint', 'random.randint', (['(2)', '(10)'], {}), '(2, 10)\n', (2549, 2556), False, 'import random\n'), ((3387, 3424), 'os.path.join', 'os.path.join', (["args['orig_dir']", 'img_f'], {}), "(args['orig_dir'], img_f)\n", (3399, 3424), False, 'import os\n'), ((1783, 1806), 'os.path.basename', 'os.path.basename', (['img_f'], {}), '(img_f)\n', (1799, 1806), False, 'import os\n'), ((1903, 1926), 'os.path.basename', 'os.path.basename', (['img_f'], {}), '(img_f)\n', (1919, 1926), False, 'import os\n'), ((2288, 2322), 'os.path.exists', 'os.path.exists', (["args['outpur_dir']"], {}), "(args['outpur_dir'])\n", (2302, 2322), False, 'import os\n'), ((2340, 2371), 'os.makedirs', 'os.makedirs', (["args['outpur_dir']"], {}), "(args['outpur_dir'])\n", (2351, 2371), False, 'import os\n'), ((2893, 2945), 'cv2.imshow', 'cv2.imshow', (['"""overexposure_image"""', 'overexposure_image'], {}), "('overexposure_image', overexposure_image)\n", (2903, 2945), False, 'import cv2\n'), ((2962, 2976), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (2973, 2976), False, 'import cv2\n'), ((2993, 3016), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (3014, 3016), False, 'import cv2\n'), ((3470, 3538), 'multiprocessing.Process', 'Process', ([], {'target': 'multi_proc_modify_img_saturation', 'args': '(imgs_queue,)'}), '(target=multi_proc_modify_img_saturation, args=(imgs_queue,))\n', (3477, 3538), False, 'from multiprocessing import Queue, Process\n'), ((1485, 1539), 'numpy.clip', 'np.clip', (["(alpha * image[y, x, c] + args['beta'])", '(0)', '(255)'], {}), "(alpha * image[y, x, c] + args['beta'], 0, 255)\n", (1492, 1539), True, 'import numpy as np\n'), ((3075, 3098), 'os.path.basename', 'os.path.basename', (['img_f'], {}), '(img_f)\n', (3091, 3098), False, 'import os\n'), ((3199, 3222), 'os.path.basename', 'os.path.basename', (['img_f'], {}), '(img_f)\n', (3215, 3222), False, 'import os\n'), ((2757, 2811), 'numpy.clip', 'np.clip', (["(alpha * image[y, x, c] + args['beta'])", '(0)', '(255)'], {}), "(alpha * image[y, x, c] + args['beta'], 0, 255)\n", (2764, 2811), True, 'import numpy as np\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Nov 28 16:40:41 2020 <NAME> <EMAIL> BME Bogazici University Istanbul / Uskudar @author: abas """ import numpy as np import pytorch_lightning as pl import torch import torchvision from torch.utils.data import Dataset, DataLoader from preprocess import transformation,scaler,normalizer,smoother import pandas as pd from scipy.fft import fft,ifft class dataset(Dataset): """ This function initializes the dataset. Args: path (string): Input path gtpath (string,optional): Path for ground truths. Default to None responseCol (string,optional): If ınput dataset has the response in it you can simply assign it to this value. Note: 0 for first, 1 for second column same as python. Take that into account phase (str, optional): Defaults to 'train'. preprocess (bool, optional): Switch for preprocess. Defaults to True. smooth (bool, optional): Switch for smoothing. Defaults to True. normalise (bool, optional): Switch for normalise. Defaults to True. transform (bool, optional): Switch for yeo-johnson power transformation. Defaults to True. """ def __init__(self,path,gtpath=None,responseCol=-1,phase='train',preprocess=True,smooth=True,normalise=True,transform=True): self.normalise=normalise self.exc=pd.read_excel(path) self.phase=phase self.smooth=smooth self.normalise=normalise self.transform=transform self.preprocess=preprocess if gtpath is not None: self.response=np.load(gtpath) else: self.response=np.array(self.exc.iloc[:,responseCol]) self.excarr=np.array(self.exc.drop(self.exc.columns[[responseCol]],axis=1)) if phase=='train': self.excarr=np.array(self.exc) if self.preprocess: self.excarr=normalizer(self.excarr) self.excarr=smoother(self.excarr) self.excarr,self.scale=scaler(self.excarr) self.excarr,self.transformater=transformation(self.excarr) def __len__(self): return len(self.excarr) def __getitem__(self,idx=None): spectrum=self.excarr[idx,:] response=self.response[idx] age=torch.tensor(self.exc.iloc[idx,1]).type(torch.float32) return age,torch.tensor(spectrum).type(torch.float32).unsqueeze(0),torch.tensor(response).type(torch.long)
[ "preprocess.normalizer", "numpy.load", "preprocess.scaler", "pandas.read_excel", "preprocess.transformation", "numpy.array", "torch.tensor", "preprocess.smoother" ]
[((1431, 1450), 'pandas.read_excel', 'pd.read_excel', (['path'], {}), '(path)\n', (1444, 1450), True, 'import pandas as pd\n'), ((1661, 1676), 'numpy.load', 'np.load', (['gtpath'], {}), '(gtpath)\n', (1668, 1676), True, 'import numpy as np\n'), ((1717, 1756), 'numpy.array', 'np.array', (['self.exc.iloc[:, responseCol]'], {}), '(self.exc.iloc[:, responseCol])\n', (1725, 1756), True, 'import numpy as np\n'), ((1913, 1931), 'numpy.array', 'np.array', (['self.exc'], {}), '(self.exc)\n', (1921, 1931), True, 'import numpy as np\n'), ((2005, 2028), 'preprocess.normalizer', 'normalizer', (['self.excarr'], {}), '(self.excarr)\n', (2015, 2028), False, 'from preprocess import transformation, scaler, normalizer, smoother\n'), ((2057, 2078), 'preprocess.smoother', 'smoother', (['self.excarr'], {}), '(self.excarr)\n', (2065, 2078), False, 'from preprocess import transformation, scaler, normalizer, smoother\n'), ((2118, 2137), 'preprocess.scaler', 'scaler', (['self.excarr'], {}), '(self.excarr)\n', (2124, 2137), False, 'from preprocess import transformation, scaler, normalizer, smoother\n'), ((2185, 2212), 'preprocess.transformation', 'transformation', (['self.excarr'], {}), '(self.excarr)\n', (2199, 2212), False, 'from preprocess import transformation, scaler, normalizer, smoother\n'), ((2438, 2473), 'torch.tensor', 'torch.tensor', (['self.exc.iloc[idx, 1]'], {}), '(self.exc.iloc[idx, 1])\n', (2450, 2473), False, 'import torch\n'), ((2577, 2599), 'torch.tensor', 'torch.tensor', (['response'], {}), '(response)\n', (2589, 2599), False, 'import torch\n'), ((2521, 2543), 'torch.tensor', 'torch.tensor', (['spectrum'], {}), '(spectrum)\n', (2533, 2543), False, 'import torch\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ @author: lry """ import scipy.io as sio import numpy as np sep = [20,40,61,103] # please pay attention to this seperation , setted according to the spectral response function of different sensors. # setting global parameters patch_size = 16 patch_size1 = 16 patch_size2 = 16 patch_num = 2 batch_size = patch_size*patch_size*patch_num gap = 12 # the interval between two adjacent patches, must smaller than 'patch_size' sigmaInit = 0.01 lastTrain = 0 # go on the former training Pretrain = 500 # the number of iteration for pretraining Maxiter = 3000 # the max iterations for training # try 2000 3000 4000 step = 100 # save the model every "step" iterations learning_rate = 0.0001 max_grad_norm = 0.1 # saving path path = './result_fusion' filename = "../processed_data/.." print("Loading data") data = sio.loadmat(filename) Xl_3d = data['xl'] Xl_bicubic = data['xl_bicubic'] # this is the bibubic-interpolated xl image acquired with matlab Xg_3d = data['xg'] scale = data['scale'][0][0] Trans_data = data['P'] N1,N2,dimX = data['xh'].shape s1,s2 = data['xl'].shape[0], data['xl'].shape[1] dimXg = Xg_3d.shape[2] Xl_2d = np.reshape(Xl_3d,[-1,dimX]) num = s1*s2 # the number of low-resolution pixels f2_1 = 9 # 1D filter size f3_1 = 5 # 2D filter size hidden_size_local = 30 hidden_size_global = 20 gener_hidden_size = 20 enc_q = enc_k = hidden_size_global * 2 enc_v = hidden_size_global * 2 enc_k_z = enc_v_z = 30 dec_q = 30 filter_num_1 = 20 filter_num_2 = 20 filter_num_3 = hidden_size_global*2*dimXg #### hidden_size_global*2*dimXg f_1 = 5 f_2 = 3 f_3 = 1 H3_1 = dimX dimZ = dimXg*hidden_size_global # dimension of z
[ "numpy.reshape", "scipy.io.loadmat" ]
[((935, 956), 'scipy.io.loadmat', 'sio.loadmat', (['filename'], {}), '(filename)\n', (946, 956), True, 'import scipy.io as sio\n'), ((1262, 1291), 'numpy.reshape', 'np.reshape', (['Xl_3d', '[-1, dimX]'], {}), '(Xl_3d, [-1, dimX])\n', (1272, 1291), True, 'import numpy as np\n')]
# %% import pandas as pd import numpy as np from datetime import datetime import os import pickle import matplotlib.pyplot as plt import scipy.special as sc from scipy.stats import norm from scipy.stats import lognorm import copy exec(open('../env_vars.py').read()) dir_data = os.environ['dir_data'] dir_picklejar = os.environ['dir_picklejar'] dir_code_methods = os.environ['dir_code_methods'] # %% # Output of this script is the data frame data_day_limits exec(open(os.path.join(os.path.realpath(dir_code_methods), 'setup-day-limits.py')).read()) # %% execute_test = False if execute_test: # Sanity check: are there any duplicates in the hours_since_start_day column? for participant in dict_knitted_with_puffmarker.keys(): for days in dict_knitted_with_puffmarker[participant].keys(): current_data = dict_knitted_with_puffmarker[participant][days] if len(current_data.index) > 0: which_idx_dup = current_data['hours_since_start_day'].duplicated() which_idx_dup = np.array(which_idx_dup) if np.sum(which_idx_dup*1.)>0: print((participant, days, np.cumsum(which_idx_dup))) # prints those participant-days with duplicates # found: 1 selfreport and 1 random ema with exactly the same hours_since_start_day # the selfreport will eventually be dropped since when_smoke=4 # %% # Test out the function execute_test = False if execute_test: use_this_id = None use_this_days = None # Test out the function latent_poisson_process_ex1 # pre-quit print(latent_poisson_process_ex1(latent_dict = latent_data[use_this_id][use_this_days], params = {'lambda': 0.14})) # post-quit print(latent_poisson_process_ex1(latent_dict = latent_data[use_this_id][use_this_days], params = {'lambda': 0.14})) # %% # Test out the function execute_test = False if execute_test: use_this_id = None use_this_days = None # Test out the function latent_poisson_process_ex2 # pre-quit print(latent_poisson_process_ex2(latent_dict = latent_data[use_this_id][use_this_days], params = {'lambda_prequit': 0.14, 'lambda_postquit': 0.75})) # post-quit print(latent_poisson_process_ex2(latent_dict = latent_data[use_this_id][use_this_days], params = {'lambda_prequit': 0.14, 'lambda_postquit': 0.75})) # %% # Test out the class execute_test = False if execute_test: tmp_latent_data = copy.deepcopy(latent_data) lat_pp_ex1 = latent(data=tmp_latent_data, model=latent_poisson_process_ex1, params = {'lambda': 0.14}) print(lat_pp_ex1.model) print(lat_pp_ex1.params) print(lat_pp_ex1.compute_total_pp(use_params = None)) lat_pp_ex1.update_params(new_params = {'lambda': 0.77}) print(lat_pp_ex1.model) print(lat_pp_ex1.params) print(lat_pp_ex1.compute_total_pp(use_params = None)) # %% # Another test on the class execute_test = False if execute_test: tmp_latent_data = copy.deepcopy(latent_data) lat_pp_ex2 = latent(data=tmp_latent_data, model=latent_poisson_process_ex2, params = {'lambda_prequit': 0.14, 'lambda_postquit': 0.75}) print(lat_pp_ex2.model) print(lat_pp_ex2.params) print(lat_pp_ex2.compute_total_pp(use_params = None)) lat_pp_ex2.update_params(new_params = {'lambda_prequit': 0.05, 'lambda_postquit': 0.25}) print(lat_pp_ex2.model) print(lat_pp_ex2.params) print(lat_pp_ex2.compute_total_pp(use_params = None)) # %% # Test out the function execute_test = False if execute_test: use_participant = None use_days = None tmp_clean_data = copy.deepcopy(clean_data[use_participant][use_days]) # keep clean_data[use_participant][use_days] untouched tmp_latent_data = copy.deepcopy(latent_data[use_participant][use_days]) # keep latent_data[use_participant][use_days] untouched tmp_clean_data, tmp_latent_data = matching(observed_dict = tmp_clean_data, latent_dict = tmp_latent_data) print(tmp_clean_data) print(tmp_latent_data) print(clean_data[use_participant][use_days]) # Check that this object remains unmodified print(latent_data[use_participant][use_days]) # Check that this object remains unmodified # %% # Test out the function execute_test = False if execute_test: use_participant = None use_days = None tmp_clean_data = copy.deepcopy(clean_data[use_participant][use_days]) # keep clean_data[use_participant][use_days] untouched tmp_latent_data = copy.deepcopy(latent_data[use_participant][use_days]) if len(tmp_latent_data['matched']) > 0: res = selfreport_mem(observed_dict = tmp_clean_data, latent_dict = tmp_latent_data) print(res) # %% # Test out the function execute_test = False if execute_test: use_participant = None use_days = None tmp_clean_data = copy.deepcopy(clean_data[use_participant][use_days]) # keep clean_data[use_participant][use_days] untouched tmp_latent_data = copy.deepcopy(latent_data[use_participant][use_days]) res = selfreport_mem_total(observed_dict = tmp_clean_data, latent_dict = tmp_latent_data, params = {'p':0.9}) print(res) # %% # Another test of the function execute_test = False if execute_test: tmp_clean_data = copy.deepcopy(clean_data) # keep clean_data untouched tmp_latent_data = copy.deepcopy(latent_data) # keep latent_data untouched # Sanity check: are there observed events which are NOT matched to latent events? all_matched = True for use_this_id in tmp_clean_data.keys(): for use_this_days in tmp_clean_data[use_this_id].keys(): observed = tmp_clean_data[use_this_id][use_this_days] latent = tmp_latent_data[use_this_id][use_this_days] res = selfreport_mem_total(observed_dict = observed, latent_dict = latent, params = {'p':0.9}) if res== -np.inf: all_matched = False print(("NOT all matched", use_this_id, use_this_days, res)) if all_matched: print("all observed events are matched to latent events") # %% # Test out the class execute_test = False if execute_test: tmp_clean_data = copy.deepcopy(clean_data) # keep clean_data untouched tmp_latent_data = copy.deepcopy(latent_data) # keep latent_data untouched sr_mem = measurement_model(data=tmp_clean_data, model=selfreport_mem_total, latent = tmp_latent_data, model_params={'p':0.9}) print(sr_mem.model_params) print(sr_mem.compute_total_mem()) sr_mem.update_params(new_params = {'p':0.4}) print(sr_mem.model_params) print(sr_mem.compute_total_mem())
[ "copy.deepcopy", "numpy.sum", "os.path.realpath", "numpy.cumsum", "numpy.array" ]
[((2457, 2483), 'copy.deepcopy', 'copy.deepcopy', (['latent_data'], {}), '(latent_data)\n', (2470, 2483), False, 'import copy\n'), ((2978, 3004), 'copy.deepcopy', 'copy.deepcopy', (['latent_data'], {}), '(latent_data)\n', (2991, 3004), False, 'import copy\n'), ((3608, 3660), 'copy.deepcopy', 'copy.deepcopy', (['clean_data[use_participant][use_days]'], {}), '(clean_data[use_participant][use_days])\n', (3621, 3660), False, 'import copy\n'), ((3739, 3792), 'copy.deepcopy', 'copy.deepcopy', (['latent_data[use_participant][use_days]'], {}), '(latent_data[use_participant][use_days])\n', (3752, 3792), False, 'import copy\n'), ((4341, 4393), 'copy.deepcopy', 'copy.deepcopy', (['clean_data[use_participant][use_days]'], {}), '(clean_data[use_participant][use_days])\n', (4354, 4393), False, 'import copy\n'), ((4472, 4525), 'copy.deepcopy', 'copy.deepcopy', (['latent_data[use_participant][use_days]'], {}), '(latent_data[use_participant][use_days])\n', (4485, 4525), False, 'import copy\n'), ((4820, 4872), 'copy.deepcopy', 'copy.deepcopy', (['clean_data[use_participant][use_days]'], {}), '(clean_data[use_participant][use_days])\n', (4833, 4872), False, 'import copy\n'), ((4951, 5004), 'copy.deepcopy', 'copy.deepcopy', (['latent_data[use_participant][use_days]'], {}), '(latent_data[use_participant][use_days])\n', (4964, 5004), False, 'import copy\n'), ((5231, 5256), 'copy.deepcopy', 'copy.deepcopy', (['clean_data'], {}), '(clean_data)\n', (5244, 5256), False, 'import copy\n'), ((5308, 5334), 'copy.deepcopy', 'copy.deepcopy', (['latent_data'], {}), '(latent_data)\n', (5321, 5334), False, 'import copy\n'), ((6144, 6169), 'copy.deepcopy', 'copy.deepcopy', (['clean_data'], {}), '(clean_data)\n', (6157, 6169), False, 'import copy\n'), ((6221, 6247), 'copy.deepcopy', 'copy.deepcopy', (['latent_data'], {}), '(latent_data)\n', (6234, 6247), False, 'import copy\n'), ((1037, 1060), 'numpy.array', 'np.array', (['which_idx_dup'], {}), '(which_idx_dup)\n', (1045, 1060), True, 'import numpy as np\n'), ((482, 516), 'os.path.realpath', 'os.path.realpath', (['dir_code_methods'], {}), '(dir_code_methods)\n', (498, 516), False, 'import os\n'), ((1080, 1107), 'numpy.sum', 'np.sum', (['(which_idx_dup * 1.0)'], {}), '(which_idx_dup * 1.0)\n', (1086, 1107), True, 'import numpy as np\n'), ((1154, 1178), 'numpy.cumsum', 'np.cumsum', (['which_idx_dup'], {}), '(which_idx_dup)\n', (1163, 1178), True, 'import numpy as np\n')]
from .alphabet import protein_alphabet, dna_alphabet, rna_alphabet from .alignment import Alignment, ReferenceMapping import numpy as np from Bio import pairwise2 from Bio.SubsMat import MatrixInfo def _get_substitution_matrix(alphabet): """ Return a tuple with default parameters `(substitution_matrix, gap_open, gap_extend) for the given alphabet. """ if alphabet == protein_alphabet: return MatrixInfo.blosum50, -8, -8 elif alphabet == dna_alphabet: return ({ ('A', 'A'): 5, ('C', 'A'): -4, ('C', 'C'): 5, ('G', 'A'): -4, ('G', 'C'): -4, ('G', 'G'): 5, ('T', 'A'): -4, ('T', 'C'): -4, ('T', 'G'): -4, ('T', 'T'): 5 }, -2, -0.5) elif alphabet == rna_alphabet: return ({ ('A', 'A'): 5, ('C', 'A'): -4, ('C', 'C'): 5, ('G', 'A'): -4, ('G', 'C'): -4, ('G', 'G'): 5, ('U', 'A'): -4, ('U', 'C'): -4, ('U', 'G'): -4, ('U', 'U'): 5 }, -2, -0.5) else: raise ValueError('explicit substitution_matrix missing on alignment with alphabet that is not protein, dna,' ' or rna') def search(align, seq, move_to_top=False, substitution_matrix=None, gap_open=None, gap_extend=None): """ Searches for the best match to the given sequence in the given alignment, and returns its index. If `move_to_top == True`, the sequence is swapped with the first alignment sequence. The return value remains the position of the sequence before it got moved. The default substitution matrix is BLOSUM50 for proteins and NUC.4.4 for DNA. A version of NUC.4.4 with T replaced by U is used by default for RNA. For any other alphabets, a substitution matrix needs to be specified (that is a dict from pairs of letters to scores). The function currently does not work on multi-alphabet alignments. """ if len(align.alphabets) == 0 or len(align) == 0: raise ValueError('search on empty alignment.') if len(align.alphabets) > 1: raise ValueError('search not implemented on multi-alphabet alignments.') if len(seq) == 0: raise ValueError('search with empty sequence.') alphabet = align.alphabets[0][0] if substitution_matrix is None: substitution_matrix, default_gap_open, default_gap_extend = _get_substitution_matrix(alphabet) if gap_open is None: gap_open = default_gap_open if gap_extend is None: gap_extend = default_gap_extend # make sure the sequence is a string seq = ''.join(seq) # turn alignment into sequence of strings, stripping gaps if not alphabet.has_gap: raise ValueError('search requires the alignment alphabet to have a gap.') gap_char = alphabet[0] align_seqs = [''.join(x for x in _ if x != gap_char) for _ in np.asarray(align[:, :])] scores = [] for i, align_seq in enumerate(align_seqs): scores.append(pairwise2.align.globalds(seq, align_seq, substitution_matrix, gap_open, gap_extend, one_alignment_only=True, score_only=True, penalize_end_gaps=False)) # find the highest scoring sequence best_id = np.argmax(scores) # swap to first position? if move_to_top: align.swap(0, best_id) return best_id def filter_rows(align, max_gaps=0.5): """ Return a new alignment where rows that have too many gaps are removed (a fraction larger than max_gaps). """ if len(align) == 0: return Alignment() gap_structure = align.get_gap_structure() gap_fractions = np.mean(gap_structure, axis=1) mask = (gap_fractions <= max_gaps) return align[mask] def align_to_sequence(align, seq, ref_idx_names=None, truncate=False, force_idx=None): """ Set the reference mapping for the alignment according to the given sequence. By default, the function searches for the best match to `seq` within the alignment, and uses this match to infer a mapping between alignment columns and positions in `seq`. Columns that do not match any position in `seq` are marked with `None`. If `truncate` is `True`, the columns that do not have a match in `seq` are removed. If `force_idx` is set, the search is not done, and only the sequence at that position is used for the matching. By default, the positions in `seq` are numbered consecutively, starting from 0. If `ref_idx_names` is given, position `i` in `seq` will have name `ref_idx_names[i]`, and these names will be used in the reference mapping that will be attached to the alignment. Currently this only works for single alphabet alignments, and the alphabet needs to be protein, DNA, or RNA. The position of the matched sequence in the alignment, and the accuracy of the match, are returned in a dictionary. """ if len(align) == 0: # nothing to do return align if len(align.alphabets) > 1: raise ValueError('align_to_sequence not implemented on multi-alphabet alignments.') alphabet = align.alphabets[0][0] substitution_matrix, gap_open, gap_extend = _get_substitution_matrix(alphabet) if force_idx is None: # find the best matching sequence force_idx = search(align, seq, substitution_matrix=substitution_matrix, gap_open=gap_open, gap_extend=gap_extend) # find the best match gap_ch = alphabet[0] # need the alignment sequence without gaps align_seq = np.asarray(align.data[force_idx])[0] align_gap_mask = (align_seq == gap_ch) align_seq_no_gaps = align_seq[~align_gap_mask] align_seq_no_gaps_as_str = ''.join(align_seq_no_gaps) seq = ''.join(seq) p_al = pairwise2.align.globalds(seq, align_seq_no_gaps_as_str, substitution_matrix, gap_open, gap_extend, penalize_end_gaps=False) # this will be the mapping from indices in alignment to indices in `seq` ref_idxs = np.asarray([None for _ in range(len(align_seq))]) # the ungapped positions in p_al[0][0] correspond to positions in the reference sequence # let's label them p_al_ref_idxs = np.asarray([None for _ in range(len(p_al[0][0]))]) p_al_ref_idxs[np.asarray(list(p_al[0][0])) != gap_ch] = list(range(len(seq))) # now the ungapped positions in p_al[0][1] correspond to ungapped positions in the alignment sequence ref_idxs[~align_gap_mask] = p_al_ref_idxs[np.asarray(list(p_al[0][1])) != gap_ch] # calculate some details details = {'align_accuracy': np.mean( [a == b for a, b in zip(p_al[0][0], p_al[0][1]) if a != gap_ch and b != gap_ch]), 'idx': force_idx} # do we want to truncate the alignment? if truncate: # noinspection PyComparisonWithNone truncate_mask = (ref_idxs != None) align.truncate_columns(truncate_mask, in_place=True) ref_idxs = ref_idxs[truncate_mask] if ref_idx_names is not None: ref_seq = [ref_idx_names[_] if _ is not None else None for _ in ref_idxs] else: ref_seq = ref_idxs align.reference = ReferenceMapping(list(ref_seq)) return details
[ "numpy.asarray", "Bio.pairwise2.align.globalds", "numpy.mean", "numpy.argmax" ]
[((3260, 3277), 'numpy.argmax', 'np.argmax', (['scores'], {}), '(scores)\n', (3269, 3277), True, 'import numpy as np\n'), ((3655, 3685), 'numpy.mean', 'np.mean', (['gap_structure'], {'axis': '(1)'}), '(gap_structure, axis=1)\n', (3662, 3685), True, 'import numpy as np\n'), ((5770, 5897), 'Bio.pairwise2.align.globalds', 'pairwise2.align.globalds', (['seq', 'align_seq_no_gaps_as_str', 'substitution_matrix', 'gap_open', 'gap_extend'], {'penalize_end_gaps': '(False)'}), '(seq, align_seq_no_gaps_as_str, substitution_matrix,\n gap_open, gap_extend, penalize_end_gaps=False)\n', (5794, 5897), False, 'from Bio import pairwise2\n'), ((5546, 5579), 'numpy.asarray', 'np.asarray', (['align.data[force_idx]'], {}), '(align.data[force_idx])\n', (5556, 5579), True, 'import numpy as np\n'), ((2848, 2871), 'numpy.asarray', 'np.asarray', (['align[:, :]'], {}), '(align[:, :])\n', (2858, 2871), True, 'import numpy as np\n'), ((2959, 3118), 'Bio.pairwise2.align.globalds', 'pairwise2.align.globalds', (['seq', 'align_seq', 'substitution_matrix', 'gap_open', 'gap_extend'], {'one_alignment_only': '(True)', 'score_only': '(True)', 'penalize_end_gaps': '(False)'}), '(seq, align_seq, substitution_matrix, gap_open,\n gap_extend, one_alignment_only=True, score_only=True, penalize_end_gaps\n =False)\n', (2983, 3118), False, 'from Bio import pairwise2\n')]
import numpy as np from ._Epsilon import Epsilon class UCB1(Epsilon): """ Agente que soluciona el problema del el Bandido Multibrazo (Multi-Armed Bandit) mediante el uso de una estrategia UCB1 Parámetros ---------- bandits : array of Bandit Vector con los bandidos con los que se debe jugar Métodos ------- run : Realiza una serie de tiradas con los bandidos seleccionados por el algoritmo update: Actualiza los valores adicionales después de una tirada select : Selecciona un bandido para jugar en la próxima tirada average_reward : Obtención de la recompensa promedio plot : Representación gráfica del histórico de tiradas References ---------- <NAME>, <NAME>, and <NAME>. "A survey of online experiment design with the stochastic multi-armed bandit." arXiv preprint arXiv:1510.00757 (2015). """ def select(self): total = len(self._rewards) if total < self._num_bandits: bandit = total else: ucb = [0] * self._num_bandits for i in range(self._num_bandits): ucb[i] = self._mean[i] + np.sqrt(2 * np.log(total) / self._plays[i]) max_bandits = np.where(ucb == np.max(ucb))[0] bandit = np.random.choice(max_bandits) return bandit class UCB2(Epsilon): """ Agente que soluciona el problema del el Bandido Multibrazo (Multi-Armed Bandit) mediante el uso de una estrategia UCB2 Parámetros ---------- bandits : array of Bandit Vector con los bandidos con los que se debe jugar alpha : float Parámetro que se influye en el ratio de aprendizaje del algoritmo Métodos ------- run : Realiza una serie de tiradas con los bandidos seleccionados por el algoritmo update: Actualiza los valores adicionales después de una tirada select : Selecciona un bandido para jugar en la próxima tirada average_reward : Obtención de la recompensa promedio plot : Representación gráfica del histórico de tiradas References ---------- <NAME>, <NAME>, and <NAME>. "A survey of online experiment design with the stochastic multi-armed bandit." arXiv preprint arXiv:1510.00757 (2015). """ def __init__(self, bandits, alpha=0.1): self.alpha = alpha self._mean = [0] * len(bandits) super(UCB2, self).__init__(bandits) def select(self): total = len(self._rewards) if total == 0: bandit = np.random.choice(self._num_bandits) else: ucb = [0] * num_bandits for i in range(num_bandits): try: tau = int(np.ceil((1 + self.alpha) ** self._plays[i])) if np.log(np.e * total / tau) > 0: bonus = np.sqrt((1. + self.alpha) * np.log(np.e * total / tau) / (2 * tau)) else: bonus = 0 except: bonus = 0 if np.isnan(bonus): ucb[i] = self._mean[i] else: ucb[i] = self._mean[i] + bonus max_bandits = np.where(ucb == np.max(ucb))[0] bandit = np.random.choice(max_bandits) return bandit class UCB1Tuned(Epsilon): """ Agente que soluciona el problema del el Bandido Multibrazo (Multi-Armed Bandit) mediante el uso de una estrategia UCB1-Tuned Parámetros ---------- bandits : array of Bandit Vector con los bandidos con los que se debe jugar Métodos ------- run : Realiza una serie de tiradas con los bandidos seleccionados por el algoritmo update: Actualiza los valores adicionales después de una tirada select : Selecciona un bandido para jugar en la próxima tirada average_reward : Obtención de la recompensa promedio plot : Representación gráfica del histórico de tiradas References ---------- <NAME>, <NAME>, and <NAME>. "A survey of online experiment design with the stochastic multi-armed bandit." arXiv preprint arXiv:1510.00757 (2015). """ def __init__(self, bandits): self._mean2 = [0] * len(bandits) super(UCB1Tuned, self).__init__(bandits) def update(self, bandit, reward): # Actualización de la media de los cuadrados self._mean2[bandit] = (1 - 1.0/self._plays[bandit]) * self._mean2[bandit] \ + 1.0/self._plays[bandit] * reward ** 2 def select(self): total = len(self._rewards) if total == 0: bandit = np.random.choice(self._num_bandits) else: ucb = [0] * self._num_bandits for i in range(self._num_bandits): if self._plays[i] == 0: v = self._mean2[i] - self._mean[i] ** 2 + np.sqrt(2 * np.log(total)) else: v = self._mean2[i] - self._mean[i] ** 2 + np.sqrt(2 * np.log(total) / self._plays[i]) ucb[i] = self._mean[i] + np.sqrt(np.log(total) * np.min([1/4, v])) max_bandits = np.where(ucb == np.max(ucb))[0] bandit = np.random.choice(max_bandits) return bandit class UCBNormal(Epsilon): """ Agente que soluciona el problema del el Bandido Multibrazo (Multi-Armed Bandit) mediante el uso de una estrategia UCB-Normal Parámetros ---------- bandits : array of Bandit Vector con los bandidos con los que se debe jugar Métodos ------- run : Realiza una serie de tiradas con los bandidos seleccionados por el algoritmo update: Actualiza los valores adicionales después de una tirada select : Selecciona un bandido para jugar en la próxima tirada average_reward : Obtención de la recompensa promedio plot : Representación gráfica del histórico de tiradas References ---------- <NAME>, <NAME>, and <NAME>. "A survey of online experiment design with the stochastic multi-armed bandit." arXiv preprint arXiv:1510.00757 (2015). """ def __init__(self, bandits): self._rewards2 = [0] * len(bandits) super(UCBNormal, self).__init__(bandits) def update(self, bandit, reward): self._rewards2[bandit] += reward ** 2 def select(self): total = len(self._rewards) # Número de veces mínimo que debe jugar cada bandido if total > 0: min_plays = np.ceil(8 * np.log(total)) else: min_plays = 1 # En caso de que algún bandido no jugase el mínimo de veces se selecciona ese if np.any(np.array(self._plays) < min_plays): min_bandit = np.where(np.array(self._plays) < min_plays)[0] bandit = np.random.choice(min_bandit) else: ucb = [0] * self._num_bandits for i in range(self._num_bandits): if self._plays[i] > 1: bonus = 16 * (self._rewards2[i] - self._plays[i] * self._mean[i]**2) / (self._plays[i] - 1) bonus *= np.log(total - 1) / self._plays[i] bonus = np.sqrt(bonus) ucb[i] = self._mean[i] + bonus else: ucb[i] = self._mean[i] max_bandits = np.where(ucb == np.max(ucb))[0] bandit = np.random.choice(max_bandits) return bandit class UCBV(Epsilon): """ Agente que soluciona el problema del el Bandido Multibrazo (Multi-Armed Bandit) mediante el uso de una estrategia UCBV Parámetros ---------- bandits : array of Bandit Vector con los bandidos con los que se debe jugar b : float Hiperparámetro para seleccionar el ration de aprendizaje Métodos ------- run : Realiza una serie de tiradas con los bandidos seleccionados por el algoritmo update: Actualiza los valores adicionales después de una tirada select : Selecciona un bandido para jugar en la próxima tirada average_reward : Obtención de la recompensa promedio plot : Representación gráfica del histórico de tiradas References ---------- <NAME>, <NAME>, and <NAME>. "Exploration-exploitation trade-off using variance estimates in multi-armed bandits." Theoretical Computer Science, Volume 410, Issue 19, 28 April 2009, Pages 1876-1902 (https://doi.org/10.1016/j.tcs.2009.01.016) """ def __init__(self, bandits, b=3): self.b = b self._mean2 = [0] * len(bandits) super(UCBV, self).__init__(bandits) def update(self, bandit, reward): self._mean2[bandit] += reward**2 def select(self): num_bandits = len(self.bandits) total = len(self._rewards) if total < num_bandits: bandit = total else: ucb = [0] * num_bandits for i in range(num_bandits): var = self._mean2[i] / self._plays[i] - self._mean[i]**2 ucb[i] = self._mean[i] ucb[i] += np.sqrt(2 * var * np.log(total) / self._plays[i]) ucb[i] += self.b * np.log(total) / self._plays[i] max_bandits = np.where(ucb == np.max(ucb))[0] bandit = np.random.choice(max_bandits)
[ "numpy.log", "numpy.ceil", "numpy.isnan", "numpy.max", "numpy.min", "numpy.array", "numpy.random.choice", "numpy.sqrt" ]
[((1368, 1397), 'numpy.random.choice', 'np.random.choice', (['max_bandits'], {}), '(max_bandits)\n', (1384, 1397), True, 'import numpy as np\n'), ((2717, 2752), 'numpy.random.choice', 'np.random.choice', (['self._num_bandits'], {}), '(self._num_bandits)\n', (2733, 2752), True, 'import numpy as np\n'), ((3484, 3513), 'numpy.random.choice', 'np.random.choice', (['max_bandits'], {}), '(max_bandits)\n', (3500, 3513), True, 'import numpy as np\n'), ((4978, 5013), 'numpy.random.choice', 'np.random.choice', (['self._num_bandits'], {}), '(self._num_bandits)\n', (4994, 5013), True, 'import numpy as np\n'), ((5571, 5600), 'numpy.random.choice', 'np.random.choice', (['max_bandits'], {}), '(max_bandits)\n', (5587, 5600), True, 'import numpy as np\n'), ((7279, 7307), 'numpy.random.choice', 'np.random.choice', (['min_bandit'], {}), '(min_bandit)\n', (7295, 7307), True, 'import numpy as np\n'), ((7898, 7927), 'numpy.random.choice', 'np.random.choice', (['max_bandits'], {}), '(max_bandits)\n', (7914, 7927), True, 'import numpy as np\n'), ((9943, 9972), 'numpy.random.choice', 'np.random.choice', (['max_bandits'], {}), '(max_bandits)\n', (9959, 9972), True, 'import numpy as np\n'), ((3262, 3277), 'numpy.isnan', 'np.isnan', (['bonus'], {}), '(bonus)\n', (3270, 3277), True, 'import numpy as np\n'), ((7150, 7171), 'numpy.array', 'np.array', (['self._plays'], {}), '(self._plays)\n', (7158, 7171), True, 'import numpy as np\n'), ((6982, 6995), 'numpy.log', 'np.log', (['total'], {}), '(total)\n', (6988, 6995), True, 'import numpy as np\n'), ((7667, 7681), 'numpy.sqrt', 'np.sqrt', (['bonus'], {}), '(bonus)\n', (7674, 7681), True, 'import numpy as np\n'), ((1331, 1342), 'numpy.max', 'np.max', (['ucb'], {}), '(ucb)\n', (1337, 1342), True, 'import numpy as np\n'), ((2908, 2951), 'numpy.ceil', 'np.ceil', (['((1 + self.alpha) ** self._plays[i])'], {}), '((1 + self.alpha) ** self._plays[i])\n', (2915, 2951), True, 'import numpy as np\n'), ((2976, 3002), 'numpy.log', 'np.log', (['(np.e * total / tau)'], {}), '(np.e * total / tau)\n', (2982, 3002), True, 'import numpy as np\n'), ((3447, 3458), 'numpy.max', 'np.max', (['ucb'], {}), '(ucb)\n', (3453, 3458), True, 'import numpy as np\n'), ((5534, 5545), 'numpy.max', 'np.max', (['ucb'], {}), '(ucb)\n', (5540, 5545), True, 'import numpy as np\n'), ((7220, 7241), 'numpy.array', 'np.array', (['self._plays'], {}), '(self._plays)\n', (7228, 7241), True, 'import numpy as np\n'), ((7604, 7621), 'numpy.log', 'np.log', (['(total - 1)'], {}), '(total - 1)\n', (7610, 7621), True, 'import numpy as np\n'), ((7861, 7872), 'numpy.max', 'np.max', (['ucb'], {}), '(ucb)\n', (7867, 7872), True, 'import numpy as np\n'), ((9807, 9820), 'numpy.log', 'np.log', (['total'], {}), '(total)\n', (9813, 9820), True, 'import numpy as np\n'), ((9906, 9917), 'numpy.max', 'np.max', (['ucb'], {}), '(ucb)\n', (9912, 9917), True, 'import numpy as np\n'), ((5445, 5458), 'numpy.log', 'np.log', (['total'], {}), '(total)\n', (5451, 5458), True, 'import numpy as np\n'), ((5461, 5479), 'numpy.min', 'np.min', (['[1 / 4, v]'], {}), '([1 / 4, v])\n', (5467, 5479), True, 'import numpy as np\n'), ((9740, 9753), 'numpy.log', 'np.log', (['total'], {}), '(total)\n', (9746, 9753), True, 'import numpy as np\n'), ((1248, 1261), 'numpy.log', 'np.log', (['total'], {}), '(total)\n', (1254, 1261), True, 'import numpy as np\n'), ((5244, 5257), 'numpy.log', 'np.log', (['total'], {}), '(total)\n', (5250, 5257), True, 'import numpy as np\n'), ((3068, 3094), 'numpy.log', 'np.log', (['(np.e * total / tau)'], {}), '(np.e * total / tau)\n', (3074, 3094), True, 'import numpy as np\n'), ((5355, 5368), 'numpy.log', 'np.log', (['total'], {}), '(total)\n', (5361, 5368), True, 'import numpy as np\n')]
import Globals import tkinter as tk from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL,simpledialog,\ PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, \ FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk import os from os.path import normpath, basename from PIL import Image, ImageTk import cv2 from cv2 import imread, IMREAD_ANYCOLOR, IMREAD_ANYDEPTH, imwrite import pydicom from matplotlib.figure import Figure from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg import matplotlib as mpl from matplotlib import cm import matplotlib.pyplot as plt from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2Tk import numpy as np def drawProfiles(even): #LAG DVH PLOT return def processDoseplan_usingReferencePoint(only_one): ################ RT Plan ###################### #Find each coordinate in mm to isocenter relative to first element in doseplan iso_1 = abs(Globals.DVH_dataset_doseplan.ImagePositionPatient[0] - Globals.DVH_isocenter_mm[0]) iso_2 = abs(Globals.DVH_dataset_doseplan.ImagePositionPatient[1] - Globals.DVH_isocenter_mm[1]) iso_3 = abs(Globals.DVH_dataset_doseplan.ImagePositionPatient[2] - Globals.DVH_isocenter_mm[2]) #Given as [x,y,z] in patient coordinates Globals.DVH_isocenter_mm = [iso_1, iso_2, iso_3] try: Globals.DVH_vertical = int(Globals.DVH_vertical) except: messagebox.showerror("Error", "Could not read the vertical displacements\n (Code: displacements to integer)") return try: Globals.DVH_lateral = int(Globals.DVH_lateral) except: messagebox.showerror("Error", "Could not read the lateral displacements\n (Code: displacements to integer)") return try: Globals.DVH_longitudinal = int(Globals.DVH_longitudinal) except: messagebox.showerror("Error", "Could not read the longitudinal displacements\n (Code: displacements to integer)") return lateral = Globals.DVH_lateral longit = Globals.DVHlongitudinal vertical = Globals.DVH_vertical isocenter_px = np.zeros(3) distance_in_doseplan_ROI_reference_point_px = [] if(Globals.DVH_dataset_doseplan.PixelSpacing==[1, 1]): #make isocenter coordinates into pixel values isocenter_px[0] = np.round(iso_1) isocenter_px[1] = np.round(iso_2) isocenter_px[2] = np.round(iso_3) #find the pixel distance from reference point to ROI corners distance_in_doseplan_ROI_reference_point_px.append([np.round(Globals.DVH_distance_reference_point_ROI[0][0]),\ np.round(Globals.DVH_distance_reference_point_ROI[0][1])]) distance_in_doseplan_ROI_reference_point_px.append([np.round(Globals.DVH_distance_reference_point_ROI[1][0]),\ np.round(Globals.DVH_distance_reference_point_ROI[1][1])]) distance_in_doseplan_ROI_reference_point_px.append([np.round(Globals.DVH_distance_reference_point_ROI[2][0]),\ np.round(Globals.DVH_distance_reference_point_ROI[2][1])]) distance_in_doseplan_ROI_reference_point_px.append([np.round(Globals.DVH_distance_reference_point_ROI[3][0]),\ np.round(Globals.DVH_distance_reference_point_ROI[3][1])]) #Input to px lateral_px = np.round(lateral) vertical_px = np.round(vertical) longit_px = np.round(longit) #displacment to px doseplan_lateral_displacement_px = np.round(Globals.DVH_doseplan_lateral_displacement) doseplan_vertical_displacement_px = np.round(Globals.DVH_doseplan_vertical_displacement) doseplan_longitudinal_displacement_px = np.round(Globals.DVH_doseplan_longitudianl_displacement) elif(Globals.DVH_dataset_doseplan.PixelSpacing==[2, 2]): #make isocenter coordinates into pixel values isocenter_px[0] = np.round(iso_1/2) isocenter_px[1] = np.round(iso_2/2) isocenter_px[2] = np.round(iso_3/2) #find the pixel distance from reference point to ROI corners distance_in_doseplan_ROI_reference_point_px.append([np.round((Globals.DVH_distance_reference_point_ROI[0][0])/2),\ np.round((Globals.DVH_distance_reference_point_ROI[0][1])/2)]) distance_in_doseplan_ROI_reference_point_px.append([np.round((Globals.DVH_distance_reference_point_ROI[1][0])/2),\ np.round((Globals.DVH_distance_reference_point_ROI[1][1])/2)]) distance_in_doseplan_ROI_reference_point_px.append([np.round((Globals.DVH_distance_reference_point_ROI[2][0])/2),\ np.round((Globals.DVH_distance_reference_point_ROI[2][1])/2)]) distance_in_doseplan_ROI_reference_point_px.append([np.round((Globals.DVH_distance_reference_point_ROI[3][0])/2),\ np.round((Globals.DVH_distance_reference_point_ROI[3][1])/2)]) #Input to px lateral_px = np.round(lateral/2) vertical_px = np.round(vertical/2) longit_px = np.round(longit/2) #displacment to pc doseplan_lateral_displacement_px = np.round((Globals.DVH_doseplan_lateral_displacement)/2) doseplan_vertical_displacement_px = np.round((Globals.DVH_doseplan_vertical_displacement)/2) doseplan_longitudinal_displacement_px = np.round((Globals.DVH_doseplan_longitudianl_displacement)/2) else: #make isocenter coordinates into pixel values isocenter_px[0] = np.round(iso_1/3) isocenter_px[1] = np.round(iso_2/3) isocenter_px[2] = np.round(iso_3/3) #find the pixel distance from reference point to ROI corners distance_in_doseplan_ROI_reference_point_px.append([np.round((Globals.DVH_distance_reference_point_ROI[0][0])/3),\ np.round((Globals.DVH_distance_reference_point_ROI[0][1])/3)]) distance_in_doseplan_ROI_reference_point_px.append([np.round((Globals.DVH_distance_reference_point_ROI[1][0])/3),\ np.round((Globals.DVH_distance_reference_point_ROI[1][1])/3)]) distance_in_doseplan_ROI_reference_point_px.append([np.round((Globals.DVH_distance_reference_point_ROI[2][0])/3),\ np.round((Globals.DVH_distance_reference_point_ROI[2][1])/3)]) distance_in_doseplan_ROI_reference_point_px.append([np.round((Globals.DVH_distance_reference_point_ROI[3][0])/3),\ np.round((Globals.DVH_distance_reference_point_ROI[3][1])/3)]) #Input to px lateral_px = np.round(lateral/3) vertical_px = np.round(vertical/3) longit_px = np.round(longit/3) #displacment to pc doseplan_lateral_displacement_px = np.round((Globals.DVH_doseplan_lateral_displacement)/3) doseplan_vertical_displacement_px = np.round((Globals.DVH_doseplan_vertical_displacement)/3) doseplan_longitudinal_displacement_px = np.round((Globals.DVH_doseplan_longitudianl_displacement)/3) temp_ref_point_doseplan = np.zeros(3) #Finding reference point in doseplan if(Globals.DVH_doseplan_patient_position=='HFS'): temp_ref_point_doseplan[0] = int(isocenter_px[0]+ doseplan_lateral_displacement_px - lateral_px) temp_ref_point_doseplan[1] = int(isocenter_px[1]- doseplan_vertical_displacement_px + vertical_px) temp_ref_point_doseplan[2] = int(isocenter_px[2]+ doseplan_longitudinal_displacement_px - longit_px) elif(Globals.DVH_doseplan_patient_position=='HFP'): temp_ref_point_doseplan[0] = isocenter_px[0]- doseplan_lateral_displacement_px+ lateral_px temp_ref_point_doseplan[1] = isocenter_px[1]+ doseplan_vertical_displacement_px - vertical_px temp_ref_point_doseplan[2] = isocenter_px[2]+ doseplan_longitudinal_displacement_px - longit_px elif(Globals.DVH_doseplan_patient_position=='HFDR'): temp_ref_point_doseplan[0] = isocenter_px[0]- doseplan_vertical_displacement_px + vertical_px temp_ref_point_doseplan[1] = isocenter_px[1]+ doseplan_lateral_displacement_px - lateral_px temp_ref_point_doseplan[2] = isocenter_px[2]+ doseplan_longitudinal_displacement_px - longit_px elif(Globals.DVH_doseplan_patient_position=='HFDL'): temp_ref_point_doseplan[0] = isocenter_px[0]+ doseplan_vertical_displacement_px - vertical_px temp_ref_point_doseplan[1] = isocenter_px[1]- doseplan_lateral_displacement_px + lateral_px temp_ref_point_doseplan[2] = isocenter_px[2]+ doseplan_longitudinal_displacement_px - longit_px elif(Globals.DVH_doseplan_patient_position=='FFS'): temp_ref_point_doseplan[0] = isocenter_px[0]- doseplan_lateral_displacement_px + lateral_px temp_ref_point_doseplan[1] = isocenter_px[1]+ doseplan_vertical_displacement_px - vertical_px temp_ref_point_doseplan[2] = isocenter_px[2]- doseplan_longitudinal_displacement_px + longit_px elif(Globals.DVH_doseplan_patient_position=='FFP'): temp_ref_point_doseplan[0] = isocenter_px[0]+ doseplan_lateral_displacement_px- lateral_px temp_ref_point_doseplan[1] = isocenter_px[1]- doseplan_vertical_displacement_px + vertical_px temp_ref_point_doseplan[2] = isocenter_px[2]- doseplan_longitudinal_displacement_px + longit_px elif(Globals.DVH_doseplan_patient_position=='FFDR'): temp_ref_point_doseplan[0] = isocenter_px[0]- doseplan_vertical_displacement_px + vertical_px temp_ref_point_doseplan[1] = isocenter_px[1]- doseplan_lateral_displacement_px + lateral_px temp_ref_point_doseplan[2] = isocenter_px[2]- doseplan_longitudinal_displacement_px + longit_px else: temp_ref_point_doseplan[0] = isocenter_px[0] + doseplan_vertical_displacement_px - vertical_px temp_ref_point_doseplan[1] = isocenter_px[1] + doseplan_lateral_displacement_px - lateral_px temp_ref_point_doseplan[2] = isocenter_px[2]- doseplan_longitudinal_displacement_px + longit_px Globals.DVH_reference_point_in_doseplan = temp_ref_point_doseplan reference_point = np.zeros(3) ######################## Doseplan ################################## #dataset_swapped is now the dataset entered the same way as expected with film (slice, rows, columns) #isocenter_px and reference_point is not turned according to the doseplan and film orientation. if(Globals.DVH_dataset_doseplan.ImageOrientationPatient==[1, 0, 0, 0, 1, 0]): reference_point[0] = temp_ref_point_doseplan[2] reference_point[1] = temp_ref_point_doseplan[1] reference_point[2] = temp_ref_point_doseplan[0] if(Globals.DVH_film_orientation.get()=='Coronal'): dataset_swapped = np.swapaxes(Globals.DVH_dataset_doseplan.pixel_array, 0,1) temp_ref = reference_point[0] reference_point[0] = reference_point[1] reference_point[1] = temp_ref elif(Globals.DVH_film_orientation.get()=='Sagittal'): dataset_swapped = np.swapaxes(Globals.DVH_dataset_doseplan.pixel_array, 0,2) temp_ref = reference_point[0] reference_point[0] = reference_point[2] reference_point[2] = temp_ref elif(Globals.DVH_film_orientation.get()=='Axial'): dataset_swapped = Globals.DVH_dataset_doseplan.pixel_array else: messagebox.showerror("Error", "Something has gone wrong here.") clearAll() return elif(Globals.DVH_dataset_doseplan.ImageOrientationPatient==[1, 0, 0, 0, 0, 1]): reference_point[0] = temp_ref_point_doseplan[1] reference_point[1] = temp_ref_point_doseplan[2] reference_point[2] = temp_ref_point_doseplan[0] if(Globals.DVH_film_orientation.get()=='Coronal'): dataset_swapped = Globals.DVH_dataset_doseplan.pixel_array elif(Globals.DCH_film_orientation.get()=='Sagittal'): dataset_swapped = np.swapaxes(Globals.DVH_dataset_doseplan.pixel_array, 0,2) temp_ref = reference_point[0] reference_point[0] = reference_point[2] reference_point[2] = temp_ref dataset_swapped = np.swapaxes(dataset_swapped, 1,2) temp_ref = reference_point[1] reference_point[1] = reference_point[2] reference_point[2] = temp_ref elif(Globals.DVH_film_orientation.get()=='Axial'): dataset_swapped = np.swapaxes(Globals.DVH_dataset_doseplan.pixel_array, 0,1) temp_ref = reference_point[0] reference_point[0] = reference_point[1] reference_point[1] = temp_ref else: messagebox.showerror("Error", "Something has gone wrong.") clearAll() return elif(Globals.DVH_dataset_doseplan.ImageOrientationPatient==[0, 1, 0, 1, 0, 0]): reference_point[0] = temp_ref_point_doseplan[2] reference_point[1] = temp_ref_point_doseplan[0] reference_point[2] = temp_ref_point_doseplan[1] if(Globals.DVH_film_orientation.get()=='Coronal'): dataset_swapped = np.swapaxes(Globals.DVH_dataset_doseplan.pixel_array, 0,2) temp_ref = reference_point[0] reference_point[0] = reference_point[2] reference_point[2] = temp_ref dataset_swapped = np.swapaxes(dataset_swapped, 1,2) temp_ref = reference_point[1] reference_point[1] = reference_point[2] reference_point[2] = temp_ref elif(Globals.DVH_film_orientation.get()=='Sagittal'): dataset_swapped = np.swapaxes(Globals.DVH_dataset_doseplan.pixel_array, 0,1) temp_ref = reference_point[0] reference_point[0] = reference_point[1] reference_point[1] = temp_ref dataset_swapped = np.swapaxes(dataset_swapped, 1,2) temp_ref = reference_point[1] reference_point[1] = reference_point[2] reference_point[2] = temp_ref elif(Globals.DVH_film_orientation.get()=='Axial'): dataset_swapped = np.swapaxes(Globals.DVH_dataset_doseplan.pixel_array, 1,2) temp_ref = reference_point[1] reference_point[1] = reference_point[2] reference_point[2] = temp_ref else: messagebox.showerror("Error", "Something has gone wrong.") clearAll() return elif(Globals.DVH_dataset_doseplan.ImageOrientationPatient==[0, 1, 0, 0, 0, 1]): reference_point[0] = temp_ref_point_doseplan[0] reference_point[1] = temp_ref_point_doseplan[2] reference_point[2] = temp_ref_point_doseplan[1] if(Globals.DVH_film_orientation.get()=='Coronal'): dataset_swapped = np.swapaxes(Globals.DVH_dataset_doseplan.pixel_array, 0,2) temp_ref = reference_point[0] reference_point[0] = reference_point[2] reference_point[2] = temp_ref elif(Globals.DVH_film_orientation.get()=='Sagittal'): dataset_swapped = np.swapaxes(Globals.DVH_dataset_doseplan.pixel_array, 1,2) temp_ref = reference_point[1] reference_point[1] = reference_point[2] reference_point[2] = temp_ref elif(Globals.DVH_film_orientation.get()=='Axial'): dataset_swapped = np.swapaxes(Globals.DVH_dataset_doseplan.pixel_array, 0,1) temp_ref = reference_point[0] reference_point[0] = reference_point[1] reference_point[1] = temp_ref dataset_swapped = np.swapaxes(dataset_swapped, 1,2) temp_ref = reference_point[1] reference_point[1] = reference_point[2] reference_point[2] = temp_ref else: messagebox.showerror("Error", "Something has gone wrong.") clearAll() return elif(Globals.DVH_dataset_doseplan.ImageOrientationPatient==[0, 0, 1, 1, 0, 0]): reference_point[0] = temp_ref_point_doseplan[1] reference_point[1] = temp_ref_point_doseplan[0] reference_point[2] = temp_ref_point_doseplan[2] if(Globals.DVH_film_orientation.get()=='Coronal'): dataset_swapped = np.swapaxes(Globals.DVH_dataset_doseplan.pixel_array, 1,2) temp_ref = reference_point[1] reference_point[1] = reference_point[2] reference_point[2] = temp_ref elif(Globals.DVH_film_orientation.get()=='Sagittal'): dataset_swapped = np.swapaxes(Globals.DVH_dataset_doseplan.pixel_array, 0,1) temp_ref = reference_point[0] reference_point[0] = reference_point[1] reference_point[1] = temp_ref elif(Globals.DVH_film_orientation.get()=='Axial'): dataset_swapped = np.swapaxes(Globals.DVH_dataset_doseplan.pixel_array, 0,1) temp_ref = reference_point[0] reference_point[0] = reference_point[1] reference_point[1] = temp_ref dataset_swapped = np.swapaxes(dataset_swapped, 0,2) temp_ref = reference_point[0] reference_point[0] = reference_point[2] reference_point[2] = temp_ref else: messagebox.showerror("Error", "Something has gone wrong.") clearAll() return elif(Globals.DVH_dataset_doseplan.ImageOrientationPatient==[0, 0, 1, 0, 1, 0]): reference_point[0] = temp_ref_point_doseplan[0] reference_point[1] = temp_ref_point_doseplan[1] reference_point[2] = temp_ref_point_doseplan[2] if(Globals.DVH_film_orientation.get()=='Coronal'): dataset_swapped = np.swapaxes(Globals.DVH_dataset_doseplan.pixel_array, 0,2) temp_ref = reference_point[0] reference_point[0] = reference_point[2] reference_point[2] = temp_ref dataset_swapped = np.swapaxes(dataset_swapped, 0,1) temp_ref = reference_point[0] reference_point[0] = reference_point[1] reference_point[1] = temp_ref elif(Globals.DVH_film_orientation.get()=='Sagittal'): dataset_swapped = Globals.DVH_dataset_doseplan.pixel_array elif(Globals.DCH_film_orientation.get()=='Axial'): dataset_swapped = np.swapaxes(Globals.DVH_dataset_doseplan.pixel_array, 0,2) temp_ref = reference_point[0] reference_point[0] = reference_point[2] reference_point[2] = temp_ref else: messagebox.showerror("Error", "Something has gone wrong.") clearAll() return else: messagebox.showerror("Error", "Something has gone wrong.") clearAll() return if(reference_point[0]<0 or reference_point[0]>dataset_swapped.shape[0]): messagebox.showerror("Error", "Reference point is outside of dosematrix\n\ (Code: first dimension, number of frames in dosematrix)") return if(reference_point[1]<0 or reference_point[1]>dataset_swapped.shape[1]): messagebox.showerror("Error", "Reference point is outside of dosematrix\n\ (Code: second dimension, rows in dosematrix)") return if(reference_point[2]<0 or reference_point[2]>dataset_swapped.shape[2]): messagebox.showerror("Error", "Reference point is outside of dosematrix\n\ (Code: third dimension, columns in dosematrix)") return dose_slice = dataset_swapped[int(reference_point[0]),:,:] #calculate the coordinates of the Region of Interest in doseplan (marked on the film) #and checks if it actualy exists in dosematrix doseplan_ROI_coords = [] top_left_test_side = False; top_left_test_down = False top_right_test_side = False; top_right_test_down = False bottom_left_test_side = False; bottom_left_test_down = False bottom_right_test_side = False; bottom_right_test_down = False top_left_side_corr = 0; top_left_down_corr = 0 top_right_side_corr = 0; top_right_down_corr = 0 bottom_left_side_corr = 0; bottom_left_down_corr = 0 bottom_right_side_corr = 0; bottom_right_down_corr = 0 top_left_to_side = reference_point[2] - distance_in_doseplan_ROI_reference_point_px[0][0] top_left_down = reference_point[1] - distance_in_doseplan_ROI_reference_point_px[0][1] if(top_left_to_side < 0): top_left_test_side = True top_left_side_corr = abs(top_left_to_side) top_left_to_side = 0 if(top_left_to_side > dose_slice.shape[1]): messagebox.showerror("Fatal Error", "Fatal error: marked ROI is out of range in doseplan. Try again") clearAll() return if(top_left_down < 0): top_left_test_down = True top_left_down_corr = abs(top_left_down) top_left_down = 0 if(top_left_down > dose_slice.shape[0]): messagebox.showerror("Fatal Error", "Fatal error: marked ROI is out of range in doseplan. Try again") clearAll() return top_right_to_side = reference_point[2] - distance_in_doseplan_ROI_reference_point_px[1][0] top_right_down = reference_point[1] - distance_in_doseplan_ROI_reference_point_px[1][1] if(top_right_to_side < 0): messagebox.showerror("Fatal Error", "Fatal error: marked ROI is out of range in doseplan. Try again") clearAll() return if(top_right_to_side > dose_slice.shape[1]): top_right_test_side = True top_right_side_corr = top_right_to_side - dose_slice.shape[1] top_right_to_side = dose_slice.shape[1] if(top_right_down < 0): top_right_test_down = True top_right_down_corr = abs(top_right_down) top_right_down = 0 if(top_right_down > dose_slice.shape[0]): messagebox.showerror("Fatal Error", "Fatal error: marked ROI is out of range in doseplan. Try again") clearAll() return bottom_left_to_side = reference_point[2] - distance_in_doseplan_ROI_reference_point_px[2][0] bottom_left_down = reference_point[1] - distance_in_doseplan_ROI_reference_point_px[2][1] if(bottom_left_to_side < 0): bottom_left_test_side = True bottom_left_side_corr = abs(bottom_left_to_side) bottom_left_to_side = 0 if(bottom_left_to_side > dose_slice.shape[1]): messagebox.showerror("Fatal Error", "Fatal error: marked ROI is out of range in doseplan. Try again") clearAll() return if(bottom_left_down < 0): messagebox.showerror("Fatal Error", "Fatal error: marked ROI is out of range in doseplan. Try again") clearAll() return if(bottom_left_down > dose_slice.shape[0]): bottom_left_down_corr = bottom_left_down - dose_slice.shape[0] bottom_left_down = dose_slice.shape[0] bottom_left_test_down = True bottom_right_to_side = reference_point[2] - distance_in_doseplan_ROI_reference_point_px[3][0] bottom_right_down = reference_point[1] - distance_in_doseplan_ROI_reference_point_px[3][1] if(bottom_right_to_side < 0): messagebox.showerror("Fatal Error", "Fatal error: marked ROI is out of range in doseplan. Try again") clearAll() return if(bottom_right_to_side > dose_slice.shape[1]): bottom_right_side_corr = bottom_right_to_side - dose_slice.shape[1] bottom_right_to_side = dose_slice.shape[1] bottom_right_test_side = True if(bottom_right_down < 0): messagebox.showerror("Fatal Error", "Fatal error: marked ROI is out of range in doseplan. Try again") clearAll() return if(bottom_right_down > dose_slice.shape[0]): bottom_right_down_corr = bottom_right_down - dose_slice.shape[0] bottom_right_down = dose_slice.shape[0] bottom_right_test_down = True if(top_right_test_side or top_right_test_down or top_left_test_side or top_left_test_down \ or bottom_right_test_side or bottom_right_test_down or bottom_left_test_side or bottom_left_test_down): ROI_info = "Left side: " + str(max(top_left_side_corr, bottom_left_side_corr)) + " pixels.\n"\ + "Right side: " + str(max(top_right_side_corr, bottom_right_side_corr)) + " pixels.\n "\ + "Top side: " + str(max(top_left_down_corr, top_right_down_corr)) + " pixels.\n"\ + "Bottom side: " + str(max(bottom_left_down_corr, bottom_right_down_corr)) + " pixels." messagebox.showinfo("ROI info", "The ROI marked on the film did not fit with the size of the doseplan and had to \ be cut.\n" + ROI_info ) doseplan_ROI_coords.append([top_left_to_side, top_left_down]) doseplan_ROI_coords.append([top_right_to_side, top_right_down]) doseplan_ROI_coords.append([bottom_left_to_side, bottom_left_down]) doseplan_ROI_coords.append([bottom_right_to_side, bottom_right_down]) if only_one: Globals.DVH_doseplan_dataset_ROI = \ dose_slice[int(top_left_down):int(bottom_left_down), int(top_left_to_side):int(top_right_to_side)] img=Globals.DVH_doseplan_dataset_ROI if(Globals.DVH_dataset_doseplan.PixelSpacing==[1, 1]): img = cv2.resize(img, dsize=(img.shape[1]*5,img.shape[0]*5)) elif(Globals.DVH_dataset_doseplan.PixelSpacing==[2, 2]): img = cv2.resize(img, dsize=(img.shape[1]*10,img.shape[0]*10)) else: img = cv2.resize(img, dsize=(img.shape[1]*15,img.shape[0]*15)) mx=np.max(img) Globals.DVH_max_dose_doseplan = mx*Globals.DVH_dose_scaling_doseplan img = img/mx PIL_img_doseplan_ROI = Image.fromarray(np.uint8(cm.viridis(img)*255)) wid = PIL_img_doseplan_ROI.width;heig = PIL_img_doseplan_ROI.height doseplan_canvas = tk.Canvas(Globals.DVH_film_panedwindow) doseplan_canvas.grid(row=2, column=0, sticky=N+S+W+E) Globals.DVH_film_panedwindow.add(doseplan_canvas, \ height=max(heig, Globals.profiles_doseplan_text_image.height()), \ width=wid + Globals.profiles_doseplan_text_image.width()) doseplan_canvas.config(bg='#ffffff', relief=FLAT, highlightthickness=0, \ height=max(heig, Globals.profiles_doseplan_text_image.height()), \ width=wid + Globals.profiles_doseplan_text_image.width()) Globals.DVH_doseplan_write_image = tk.Canvas(doseplan_canvas) Globals.DVH_doseplan_write_image.grid(row=0,column=1,sticky=N+S+W+E) Globals.DVH_doseplan_write_image.config(bg='#ffffff', relief=FLAT, highlightthickness=0, width=wid, height=heig) doseplan_text_image_canvas = tk.Canvas(doseplan_canvas) doseplan_text_image_canvas.grid(row=0,column=0,sticky=N+S+W+E) doseplan_text_image_canvas.config(bg='#ffffff', relief=FLAT, highlightthickness=0, \ width=Globals.profiles_doseplan_text_image.width(), height=Globals.profiles_doseplan_text_image.height()) scaled_image_visual = PIL_img_doseplan_ROI scaled_image_visual = ImageTk.PhotoImage(image=scaled_image_visual) Globals.DVH_doseplan_write_image_width = scaled_image_visual.width() Globals.DVH_doseplan_write_image_height = scaled_image_visual.height() Globals.DVH_doseplan_write_image.create_image(0,0,image=scaled_image_visual, anchor="nw") Globals.DVH_doseplan_write_image.image = scaled_image_visual doseplan_text_image_canvas.create_image(0,0,image=Globals.profiles_doseplan_text_image, anchor="nw") doseplan_text_image_canvas.image=Globals.profiles_doseplan_text_image drawProfiles(False) else: img=dose_slice[int(top_left_down):int(bottom_left_down), int(top_left_to_side):int(top_right_to_side)] Globals.DVH_doseplan_dataset_ROI_several.append(img) Globals.DVH_number_of_doseplans+=1 if(Globals.DVH_dataset_doseplan.PixelSpacing==[1, 1]): Globals.DVH_several_img.append(cv2.resize(img, dsize=(img.shape[1]*5,img.shape[0]*5))) elif(Globals.DVH_dataset_doseplan.PixelSpacing==[2, 2]): Globals.DVH_several_img.append(cv2.resize(img, dsize=(img.shape[1]*10,img.shape[0]*10))) else: Globals.DVH_several_img.append(cv2.resize(img, dsize=(img.shape[1]*15,img.shape[0]*15))) def processDoseplan_usingIsocenter(only_one): ################ RT Plan ###################### #Find each coordinate in mm to isocenter relative to first element in doseplan iso_1 = abs(Globals.DVH_dataset_doseplan.ImagePositionPatient[0] - Globals.DVH_isocenter_mm[0]) iso_2 = abs(Globals.DVH_dataset_doseplan.ImagePositionPatient[1] - Globals.DVH_isocenter_mm[1]) iso_3 = abs(Globals.DVH_dataset_doseplan.ImagePositionPatient[2] - Globals.DVH_isocenter_mm[2]) #Given as [x,y,z] in patient coordinates Globals.DVH_isocenter_mm = [iso_1, iso_2, iso_3] #Isocenter in pixel relative to the first element in the doseplan isocenter_px = np.zeros(3) distance_in_doseplan_ROI_reference_point_px = [] if(Globals.DVH_dataset_doseplan.PixelSpacing==[1, 1]): isocenter_px[0] = np.round(iso_1)#np.round(Globals.profiles_isocenter_mm[0]) isocenter_px[1] = np.round(iso_2)#np.round(Globals.profiles_isocenter_mm[1]) isocenter_px[2] = np.round(iso_3)#np.round(Globals.profiles_isocenter_mm[2]) #Change distance in film to pixel in doseplan distance_in_doseplan_ROI_reference_point_px.append([np.round(Globals.DVH_distance_isocenter_ROI[0][0]),\ np.round(Globals.DVH_distance_isocenter_ROI[0][1])]) distance_in_doseplan_ROI_reference_point_px.append([np.round(Globals.DVH_distance_isocenter_ROI[1][0]),\ np.round(Globals.DVH_distance_isocenter_ROI[1][1])]) distance_in_doseplan_ROI_reference_point_px.append([np.round(Globals.DVH_distance_isocenter_ROI[2][0]),\ np.round(Globals.DVH_distance_isocenter_ROI[2][1])]) distance_in_doseplan_ROI_reference_point_px.append([np.round(Globals.DVH_distance_isocenter_ROI[3][0]),\ np.round(Globals.DVH_distance_isocenter_ROI[3][1])]) elif(Globals.DVH_dataset_doseplan.PixelSpacing==[2, 2]): isocenter_px[0] = np.round(iso_1/2)#np.round(Globals.profiles_isocenter_mm[0]/2) isocenter_px[1] = np.round(iso_2/2)#np.round(Globals.profiles_isocenter_mm[1]/2) isocenter_px[2] = np.round(iso_3/2)#np.round(Globals.profiles_isocenter_mm[2]/2) #Change distance in film to pixel in doseplan distance_in_doseplan_ROI_reference_point_px.append([np.round((Globals.DVH_distance_isocenter_ROI[0][0])/2),\ np.round((Globals.DVH_distance_isocenter_ROI[0][1])/2)]) distance_in_doseplan_ROI_reference_point_px.append([np.round((Globals.DVH_distance_isocenter_ROI[1][0])/2),\ np.round((Globals.DVH_distance_isocenter_ROI[1][1])/2)]) distance_in_doseplan_ROI_reference_point_px.append([np.round((Globals.DVH_distance_isocenter_ROI[2][0])/2),\ np.round((Globals.DVH_distance_isocenter_ROI[2][1])/2)]) distance_in_doseplan_ROI_reference_point_px.append([np.round((Globals.DVH_distance_isocenter_ROI[3][0])/2),\ np.round((Globals.DVH_distance_isocenter_ROI[3][1])/2)]) else: isocenter_px[0] = np.round(iso_1/3)#np.round(Globals.profiles_isocenter_mm[0]/3) isocenter_px[1] = np.round(iso_2/3)#np.round(Globals.profiles_isocenter_mm[1]/3) isocenter_px[2] = np.round(iso_3/3)#np.round(Globals.profiles_isocenter_mm[2]/3) #Change distance in film to pixel in doseplan distance_in_doseplan_ROI_reference_point_px.append([np.round((Globals.DVH_distance_isocenter_ROI[0][0])/3),\ np.round((Globals.DVH_distance_isocenter_ROI[0][1])/3)]) distance_in_doseplan_ROI_reference_point_px.append([np.round((Globals.DVH_distance_isocenter_ROI[1][0])/3),\ np.round((Globals.DVH_distance_isocenter_ROI[1][1])/3)]) distance_in_doseplan_ROI_reference_point_px.append([np.round((Globals.DVH_distance_isocenter_ROI[2][0])/3),\ np.round((Globals.DVH_distance_isocenter_ROI[2][1])/3)]) distance_in_doseplan_ROI_reference_point_px.append([np.round((Globals.DVH_distance_isocenter_ROI[3][0])/3),\ np.round((Globals.DVH_distance_isocenter_ROI[3][1])/3)]) reference_point = np.zeros(3) ######################## Doseplan ################################## #dataset_swapped is now the dataset entered the same way as expected with film (slice, rows, columns) #isocenter_px and reference_point is not turned according to the doseplan and film orientation. if(Globals.DVH_dataset_doseplan.ImageOrientationPatient==[1, 0, 0, 0, 1, 0]): reference_point[0] = isocenter_px[2] reference_point[1] = isocenter_px[1] reference_point[2] = isocenter_px[0] if(Globals.DVH_film_orientation.get()=='Coronal'): dataset_swapped = np.swapaxes(Globals.DVH_dataset_doseplan.pixel_array, 0,1) temp_ref = reference_point[0] reference_point[0] = reference_point[1] reference_point[1] = temp_ref elif(Globals.DVH_film_orientation.get()=='Sagittal'): dataset_swapped = np.swapaxes(Globals.DVH_dataset_doseplan.pixel_array, 0,2) temp_ref = reference_point[0] reference_point[0] = reference_point[2] reference_point[2] = temp_ref elif(Globals.DVH_film_orientation.get()=='Axial'): dataset_swapped = Globals.DVH_dataset_doseplan.pixel_array else: messagebox.showerror("Error", "Something has gone wrong here.") clearAll() return elif(Globals.DVH_dataset_doseplan.ImageOrientationPatient==[1, 0, 0, 0, 0, 1]): reference_point[0] = isocenter_px[1] reference_point[1] = isocenter_px[2] reference_point[2] = isocenter_px[0] if(Globals.DVH_film_orientation.get()=='Coronal'): dataset_swapped = Globals.DVH_dataset_doseplan.pixel_array elif(Globals.DVH_film_orientation.get()=='Sagittal'): dataset_swapped = np.swapaxes(Globals.DVH_dataset_doseplan.pixel_array, 0,2) temp_ref = reference_point[0] reference_point[0] = reference_point[2] reference_point[2] = temp_ref dataset_swapped = np.swapaxes(dataset_swapped, 1,2) temp_ref = reference_point[1] reference_point[1] = reference_point[2] reference_point[2] = temp_ref elif(Globals.DVH_film_orientation.get()=='Axial'): dataset_swapped = np.swapaxes(Globals.DVH_dataset_doseplan.pixel_array, 0,1) temp_ref = reference_point[0] reference_point[0] = reference_point[1] reference_point[1] = temp_ref else: messagebox.showerror("Error", "Something has gone wrong.") clearAll() return elif(Globals.DVH_dataset_doseplan.ImageOrientationPatient==[0, 1, 0, 1, 0, 0]): reference_point[0] = isocenter_px[2] reference_point[1] = isocenter_px[0] reference_point[2] = isocenter_px[1] if(Globals.DVH_film_orientation.get()=='Coronal'): dataset_swapped = np.swapaxes(Globals.DVH_dataset_doseplan.pixel_array, 0,2) temp_ref = reference_point[0] reference_point[0] = reference_point[2] reference_point[2] = temp_ref dataset_swapped = np.swapaxes(dataset_swapped, 1,2) temp_ref = reference_point[1] reference_point[1] = reference_point[2] reference_point[2] = temp_ref elif(Globals.DVH_film_orientation.get()=='Sagittal'): dataset_swapped = np.swapaxes(Globals.DVH_dataset_doseplan.pixel_array, 0,1) temp_ref = reference_point[0] reference_point[0] = reference_point[1] reference_point[1] = temp_ref dataset_swapped = np.swapaxes(dataset_swapped, 1,2) temp_ref = reference_point[1] reference_point[1] = reference_point[2] reference_point[2] = temp_ref elif(Globals.DVH_film_orientation.get()=='Axial'): dataset_swapped = np.swapaxes(Globals.DVH_dataset_doseplan.pixel_array, 1,2) temp_ref = reference_point[1] reference_point[1] = reference_point[2] reference_point[2] = temp_ref else: messagebox.showerror("Error", "Something has gone wrong.") clearAll() return elif(Globals.DVH_dataset_doseplan.ImageOrientationPatient==[0, 1, 0, 0, 0, 1]): reference_point[0] = isocenter_px[0] reference_point[1] = isocenter_px[2] reference_point[2] = isocenter_px[1] if(Globals.DVH_film_orientation.get()=='Coronal'): dataset_swapped = np.swapaxes(Globals.DVH_dataset_doseplan.pixel_array, 0,2) temp_ref = reference_point[0] reference_point[0] = reference_point[2] reference_point[2] = temp_ref elif(Globals.DVH_film_orientation.get()=='Sagittal'): dataset_swapped = np.swapaxes(Globals.DVH_dataset_doseplan.pixel_array, 1,2) temp_ref = reference_point[1] reference_point[1] = reference_point[2] reference_point[2] = temp_ref elif(Globals.DVH_film_orientation.get()=='Axial'): dataset_swapped = np.swapaxes(Globals.DVH_dataset_doseplan.pixel_array, 0,1) temp_ref = reference_point[0] reference_point[0] = reference_point[1] reference_point[1] = temp_ref dataset_swapped = np.swapaxes(dataset_swapped, 1,2) temp_ref = reference_point[1] reference_point[1] = reference_point[2] reference_point[2] = temp_ref else: messagebox.showerror("Error", "Something has gone wrong.") clearAll() return elif(Globals.DVH_dataset_doseplan.ImageOrientationPatient==[0, 0, 1, 1, 0, 0]): reference_point[0] = isocenter_px[1] reference_point[1] = isocenter_px[0] reference_point[2] = isocenter_px[2] if(Globals.DVH_film_orientation.get()=='Coronal'): dataset_swapped = np.swapaxes(Globals.DVH_dataset_doseplan.pixel_array, 1,2) temp_ref = reference_point[1] reference_point[1] = reference_point[2] reference_point[2] = temp_ref elif(Globals.DVH_film_orientation.get()=='Sagittal'): dataset_swapped = np.swapaxes(Globals.DVH_dataset_doseplan.pixel_array, 0,1) temp_ref = reference_point[0] reference_point[0] = reference_point[1] reference_point[1] = temp_ref elif(Globals.DVH_film_orientation.get()=='Axial'): dataset_swapped = np.swapaxes(Globals.DVH_dataset_doseplan.pixel_array, 0,1) temp_ref = reference_point[0] reference_point[0] = reference_point[1] reference_point[1] = temp_ref dataset_swapped = np.swapaxes(dataset_swapped, 0,2) temp_ref = reference_point[0] reference_point[0] = reference_point[2] reference_point[2] = temp_ref else: messagebox.showerror("Error", "Something has gone wrong.") clearAll() return elif(Globals.DVH_dataset_doseplan.ImageOrientationPatient==[0, 0, 1, 0, 1, 0]): reference_point[0] = isocenter_px[0] reference_point[1] = isocenter_px[1] reference_point[2] = isocenter_px[2] if(Globals.DVH_film_orientation.get()=='Coronal'): dataset_swapped = np.swapaxes(Globals.DVH_dataset_doseplan.pixel_array, 0,2) temp_ref = reference_point[0] reference_point[0] = reference_point[2] reference_point[2] = temp_ref dataset_swapped = np.swapaxes(dataset_swapped, 0,1) temp_ref = reference_point[0] reference_point[0] = reference_point[1] reference_point[1] = temp_ref elif(Globals.DVH_film_orientation.get()=='Sagittal'): dataset_swapped = Globals.DVH_dataset_doseplan.pixel_array elif(Globals.DVH_film_orientation.get()=='Axial'): dataset_swapped = np.swapaxes(Globals.DVH_dataset_doseplan.pixel_array, 0,2) temp_ref = reference_point[0] reference_point[0] = reference_point[2] reference_point[2] = temp_ref else: messagebox.showerror("Error", "Something has gone wrong.") clearAll() return else: messagebox.showerror("Error", "Something has gone wrong.") clearAll() return ####################### Match film and doseplan ############################### #Pick the slice where the reference point is (this is the slice-position of the film) if Globals.DVH_dataset_doseplan.PixelSpacing == [1, 1]: offset = int(np.round(Globals.DVH_offset)) dose_slice = dataset_swapped[int(reference_point[0]) + offset] elif Globals.DVH_dataset_doseplan.PixelSpacing == [2, 2]: offset = int(np.round(Globals.DVH_offset/2)) dose_slice = dataset_swapped[int(reference_point[0] + offset)] else: offset = int(np.round(Globals.DVH_offset/3)) dose_slice = dataset_swapped[int(reference_point[0]) + offset] #calculate the coordinates of the Region of Interest in doseplan (marked on the film) #and checks if it actualy exists in dosematrix doseplan_ROI_coords = [] top_left_test_side = False; top_left_test_down = False top_right_test_side = False; top_right_test_down = False bottom_left_test_side = False; bottom_left_test_down = False bottom_right_test_side = False; bottom_right_test_down = False top_left_side_corr = 0; top_left_down_corr = 0 top_right_side_corr = 0; top_right_down_corr = 0 bottom_left_side_corr = 0; bottom_left_down_corr = 0 bottom_right_side_corr = 0; bottom_right_down_corr = 0 top_left_to_side = reference_point[2] - distance_in_doseplan_ROI_reference_point_px[0][0] top_left_down = reference_point[1] - distance_in_doseplan_ROI_reference_point_px[0][1] if(top_left_to_side < 0): top_left_test_side = True top_left_side_corr = abs(top_left_to_side) top_left_to_side = 0 if(top_left_to_side > dose_slice.shape[1]): messagebox.showerror("Fatal Error", "Fatal error: marked ROI is out of range in doseplan. Try again") clearAll() return if(top_left_down < 0): top_left_test_down = True top_left_down_corr = abs(top_left_down) top_left_down = 0 if(top_left_down > dose_slice.shape[0]): messagebox.showerror("Fatal Error", "Fatal error: marked ROI is out of range in doseplan. Try again") clearAll() return top_right_to_side = reference_point[2] - distance_in_doseplan_ROI_reference_point_px[1][0] top_right_down = reference_point[1] - distance_in_doseplan_ROI_reference_point_px[1][1] if(top_right_to_side < 0): messagebox.showerror("Fatal Error", "Fatal error: marked ROI is out of range in doseplan. Try again") clearAll() return if(top_right_to_side > dose_slice.shape[1]): top_right_test_side = True top_right_side_corr = top_right_to_side - dose_slice.shape[1] top_right_to_side = dose_slice.shape[1] if(top_right_down < 0): top_right_test_down = True top_right_down_corr = abs(top_right_down) top_right_down = 0 if(top_right_down > dose_slice.shape[0]): messagebox.showerror("Fatal Error", "Fatal error: marked ROI is out of range in doseplan. Try again") clearAll() return bottom_left_to_side = reference_point[2] - distance_in_doseplan_ROI_reference_point_px[2][0] bottom_left_down = reference_point[1] - distance_in_doseplan_ROI_reference_point_px[2][1] if(bottom_left_to_side < 0): bottom_left_test_side = True bottom_left_side_corr = abs(bottom_left_to_side) bottom_left_to_side = 0 if(bottom_left_to_side > dose_slice.shape[1]): messagebox.showerror("Fatal Error", "Fatal error: marked ROI is out of range in doseplan. Try again") clearAll() return if(bottom_left_down < 0): messagebox.showerror("Fatal Error", "Fatal error: marked ROI is out of range in doseplan. Try again") clearAll() return if(bottom_left_down > dose_slice.shape[0]): bottom_left_down_corr = bottom_left_down - dose_slice.shape[0] bottom_left_down = dose_slice.shape[0] bottom_left_test_down = True bottom_right_to_side = reference_point[2] - distance_in_doseplan_ROI_reference_point_px[3][0] bottom_right_down = reference_point[1] - distance_in_doseplan_ROI_reference_point_px[3][1] if(bottom_right_to_side < 0): messagebox.showerror("Fatal Error", "Fatal error: marked ROI is out of range in doseplan. Try again") clearAll() return if(bottom_right_to_side > dose_slice.shape[1]): bottom_right_side_corr = bottom_right_to_side - dose_slice.shape[1] bottom_right_to_side = dose_slice.shape[1] bottom_right_test_side = True if(bottom_right_down < 0): messagebox.showerror("Fatal Error", "Fatal error: marked ROI is out of range in doseplan. Try again") clearAll() return if(bottom_right_down > dose_slice.shape[0]): bottom_right_down_corr = bottom_right_down - dose_slice.shape[0] bottom_right_down = dose_slice.shape[0] bottom_right_test_down = True if(top_right_test_side or top_right_test_down or top_left_test_side or top_left_test_down \ or bottom_right_test_side or bottom_right_test_down or bottom_left_test_side or bottom_left_test_down): ROI_info = "Left side: " + str(max(top_left_side_corr, bottom_left_side_corr)) + " pixels.\n"\ + "Right side: " + str(max(top_right_side_corr, bottom_right_side_corr)) + " pixels.\n "\ + "Top side: " + str(max(top_left_down_corr, top_right_down_corr)) + " pixels.\n"\ + "Bottom side: " + str(max(bottom_left_down_corr, bottom_right_down_corr)) + " pixels." messagebox.showinfo("ROI info", "The ROI marked on the film did not fit with the size of the doseplan and had to \ be cut.\n" + ROI_info ) doseplan_ROI_coords.append([top_left_to_side, top_left_down]) doseplan_ROI_coords.append([top_right_to_side, top_right_down]) doseplan_ROI_coords.append([bottom_left_to_side, bottom_left_down]) doseplan_ROI_coords.append([bottom_right_to_side, bottom_right_down]) #dose_slice = cv2.flip(dose_slice, 1) if(only_one): Globals.DVH_doseplan_dataset_ROI = \ dose_slice[int(top_left_down):int(bottom_left_down), int(top_left_to_side):int(top_right_to_side)] img=Globals.DVH_doseplan_dataset_ROI if(Globals.DVH_dataset_doseplan.PixelSpacing==[1, 1]): img = cv2.resize(img, dsize=(img.shape[1]*5,img.shape[0]*5)) elif(Globals.DVH_dataset_doseplan.PixelSpacing==[2, 2]): img = cv2.resize(img, dsize=(img.shape[1]*10,img.shape[0]*10)) else: img = cv2.resize(img, dsize=(img.shape[1]*15,img.shape[0]*15)) mx=np.max(img) Globals.DVH_max_dose_doseplan = mx*Globals.DVH_dose_scaling_doseplan max_dose = mx*Globals.DVH_dose_scaling_doseplan img = img/mx PIL_img_doseplan_ROI = Image.fromarray(np.uint8(cm.viridis(img)*255)) wid = PIL_img_doseplan_ROI.width;heig = PIL_img_doseplan_ROI.height doseplan_canvas = tk.Canvas(Globals.DVH_film_panedwindow) doseplan_canvas.grid(row=2, column=0, sticky=N+S+W+E) Globals.DVH_film_panedwindow.add(doseplan_canvas, \ height=max(heig, Globals.profiles_doseplan_text_image.height()), \ width=wid + Globals.profiles_doseplan_text_image.width()) doseplan_canvas.config(bg='#ffffff', relief=FLAT, highlightthickness=0, \ height=max(heig, Globals.profiles_doseplan_text_image.height()), \ width=wid + Globals.profiles_doseplan_text_image.width()) Globals.DVH_doseplan_write_image = tk.Canvas(doseplan_canvas) Globals.DVH_doseplan_write_image.grid(row=0,column=1,sticky=N+S+W+E) Globals.DVH_doseplan_write_image.config(bg='#ffffff', relief=FLAT, highlightthickness=0, width=wid, height=heig) doseplan_text_image_canvas = tk.Canvas(doseplan_canvas) doseplan_text_image_canvas.grid(row=0,column=0,sticky=N+S+W+E) doseplan_text_image_canvas.config(bg='#ffffff', relief=FLAT, highlightthickness=0, \ width=Globals.profiles_doseplan_text_image.width(), height=Globals.profiles_doseplan_text_image.height()) scaled_image_visual = PIL_img_doseplan_ROI scaled_image_visual = ImageTk.PhotoImage(image=scaled_image_visual) Globals.DVH_doseplan_write_image_width = scaled_image_visual.width() Globals.DVH_doseplan_write_image_height = scaled_image_visual.height() Globals.DVH_doseplan_write_image.create_image(0,0,image=scaled_image_visual, anchor="nw") Globals.DVH_doseplan_write_image.image = scaled_image_visual doseplan_text_image_canvas.create_image(0,0,image=Globals.profiles_doseplan_text_image, anchor="nw") doseplan_text_image_canvas.image=Globals.profiles_doseplan_text_image drawProfiles(False) else: img=dose_slice[int(top_left_down):int(bottom_left_down), int(top_left_to_side):int(top_right_to_side)] Globals.DVH_doseplan_dataset_ROI_several.append(img) Globals.DVH_number_of_doseplans+=1 if(Globals.DVH_dataset_doseplan.PixelSpacing==[1, 1]): Globals.DVH_several_img.append(cv2.resize(img, dsize=(img.shape[1]*5,img.shape[0]*5))) elif(Globals.DVH_dataset_doseplan.PixelSpacing==[2, 2]): Globals.DVH_several_img.append(cv2.resize(img, dsize=(img.shape[1]*10,img.shape[0]*10))) else: Globals.DVH_several_img.append(cv2.resize(img, dsize=(img.shape[1]*15,img.shape[0]*15))) def UploadDoseplan(only_one): file = filedialog.askopenfilename() ext = os.path.splitext(file)[-1].lower() if(not(ext == '.dcm')): if(ext == ""): return else: messagebox.showerror("Error", "The file must be a *.dcm file") return current_folder = os.getcwd() parent = os.path.dirname(file) os.chdir(parent) dataset = pydicom.dcmread(file) try: dose_summation_type = dataset.DoseSummationType except: messagebox.showerror("Error", "Could not upload the doseplan correctly. Try again or another file.\n (Code: dose summation)") return if(not(dose_summation_type == "PLAN")): ok = messagebox.askokcancel("Dose summation", "You did not upload the full doseplan. Do you want to continue?") if not ok: return os.chdir(current_folder) doseplan_dataset = dataset.pixel_array #Check that the resolution is either 1x1x1, 2x2x2 or 3x3x3 if(not((dataset.PixelSpacing==[1, 1] and dataset.SliceThickness==1) \ or (dataset.PixelSpacing==[2, 2] and dataset.SliceThickness==2) \ or (dataset.PixelSpacing==[3, 3] and dataset.SliceThickness==3))): messagebox.showerror("Error", "The resolution in doseplan must be 1x1x1, 2x2x2 or 3x3x3") return #Check that the datamatrix is in right angles to the coordinate system if(not(dataset.ImageOrientationPatient==[1, 0, 0, 0, 1, 0] or \ dataset.ImageOrientationPatient==[1, 0, 0, 0, 0, 1] or \ dataset.ImageOrientationPatient==[0, 1, 0, 1, 0, 0] or \ dataset.ImageOrientationPatient==[0, 1, 0, 0, 0, 1] or \ dataset.ImageOrientationPatient==[0, 0, 1, 1, 0, 0] or \ dataset.ImageOrientationPatient==[0, 0, 1, 0, 1, 0])): messagebox.showerror("Error", "The Image Orientation (Patient) must be parallel to one of the main axis and perpendicular to the two others.") return if not only_one and Globals.DVH_number_of_doseplans > 1: if(not (Globals.DVH_dataset_doseplan.PixelSpacing==dataset.PixelSpacing)): messagebox.showerror("Error", "Resolution of the doseplans must be equal. \n(Code: UploadDoseplan)") return if(not (Globals.DVH_dataset_doseplan.DoseGridScaling == dataset.DoseGridScaling)): messagebox.showerror("Error", "Dose grid scaling of the doseplans must be equal. \n(Code: UploadDoseplan)") return Globals.DVH_dataset_doseplan = dataset Globals.DVH_dose_scaling_doseplan = dataset.DoseGridScaling Globals.DVH_test_if_added_doseplan = True if(Globals.DVH_test_if_added_rtplan): if(Globals.DVH_isocenter_or_reference_point == "Isocenter"): processDoseplan_usingIsocenter(only_one) elif(Globals.DVH_isocenter_or_reference_point == "Ref_point"): processDoseplan_usingReferencePoint(only_one) else: messagebox.showerror("Error", "Something went wrong. Try again.\n (Code: processDoseplan)") return if only_one: Globals.DVH_upload_button_doseplan.config(state=DISABLED) if not only_one: filename = basename(normpath(file)) textbox_filename = tk.Text(Globals.DVH_doseplans_scroll_frame, width = 30, height = 1) textbox_filename.insert(INSERT, filename) textbox_filename.config(bg='#ffffff', font=('calibri', '12'), state=DISABLED, relief=FLAT) textbox_filename.grid(row = Globals.DVH_number_of_doseplans_row_count, column = 0, sticky=N+S+W+E, pady=(10,10), padx=(10,10)) Globals.DVH_doseplans_scroll_frame.grid_columnconfigure(Globals.DVH_doseplans_grid_config_count, weight=0) Globals.DVH_doseplans_scroll_frame.grid_rowconfigure(Globals.DVH_doseplans_grid_config_count, weight=0) Globals.DVH_doseplans_filenames.append(textbox_filename) Globals.DVH_doseplans_grid_config_count+=1; textbox_factor = tk.Text(Globals.DVH_doseplans_scroll_frame, width = 6, height = 1) textbox_factor.insert(INSERT, "Factor: ") textbox_factor.config(bg='#ffffff', font=('calibri', '12'), state=DISABLED, relief=FLAT) textbox_factor.grid(row = Globals.profiles_number_of_doseplans_row_count, column = 1, sticky=N+S+W+E, pady=(10,10), padx=(10,10)) Globals.DVH_doseplans_scroll_frame.grid_columnconfigure(Globals.DVH_doseplans_grid_config_count, weight=0) Globals.DVH_doseplans_scroll_frame.grid_rowconfigure(Globals.DVH_doseplans_grid_config_count, weight=0) Globals.DVH_doseplans_factor_text.append(textbox_factor) Globals.DVH_doseplans_grid_config_count+=1; textbox_factor_input = tk.Text(Globals.DVH_doseplans_scroll_frame) textbox_factor_input.insert(INSERT, " ") textbox_factor_input.config(bg='#E5f9ff', font=('calibri', '12'), state=NORMAL, bd = 2) textbox_factor_input.grid(row = Globals.DVH_number_of_doseplans_row_count, column = 1, sticky=N+S+W+E, pady=(10,10), padx=(30,10)) Globals.DVH_doseplans_scroll_frame.grid_columnconfigure(Globals.DVH_doseplans_grid_config_count, weight=0) Globals.DVH_doseplans_scroll_frame.grid_rowconfigure(Globals.DVH_doseplans_grid_config_count, weight=0) Globals.DVH_doseplans_factor_input.append(textbox_factor_input) Globals.DVH_number_of_doseplans_row_count+=1 Globals.DVH_doseplans_grid_config_count+=1; def UploadDoseplan_button_function(): yes = messagebox.askyesno("Question", "Are you going to upload several doseplans and/or use a factor on a plan?") if not yes: UploadDoseplan(True) return several_doseplans_window = tk.Toplevel(Globals.tab5_canvas) several_doseplans_window.geometry("600x500+10+10") several_doseplans_window.grab_set() doseplans_over_all_frame = tk.Frame(several_doseplans_window, bd=0, relief=FLAT) doseplans_over_all_canvas = Canvas(doseplans_over_all_frame) doseplans_xscrollbar = Scrollbar(doseplans_over_all_frame, orient=HORIZONTAL, command=doseplans_over_all_canvas.xview) doseplans_yscrollbar = Scrollbar(doseplans_over_all_frame, command=doseplans_over_all_canvas.yview) Globals.DVH_doseplans_scroll_frame = ttk.Frame(doseplans_over_all_canvas) Globals.DVH_doseplans_scroll_frame.bind("<Configure>", lambda e: doseplans_over_all_canvas.configure(scrollregion=doseplans_over_all_canvas.bbox('all'))) doseplans_over_all_canvas.create_window((0,0), window=Globals.DVH_doseplans_scroll_frame, anchor='nw') doseplans_over_all_canvas.configure(xscrollcommand=doseplans_xscrollbar.set, yscrollcommand=doseplans_yscrollbar.set) doseplans_over_all_frame.config(highlightthickness=0, bg='#ffffff') doseplans_over_all_canvas.config(highlightthickness=0, bg='#ffffff') doseplans_over_all_frame.pack(expand=True, fill=BOTH) doseplans_over_all_canvas.grid(row=0, column=0, sticky=N+S+E+W) doseplans_over_all_frame.grid_columnconfigure(0, weight=1) doseplans_over_all_frame.grid_rowconfigure(0, weight=1) doseplans_xscrollbar.grid(row=1, column=0, sticky=E+W) doseplans_over_all_frame.grid_columnconfigure(1, weight=0) doseplans_over_all_frame.grid_rowconfigure(1, weight=0) doseplans_yscrollbar.grid(row=0, column=1, sticky=N+S) doseplans_over_all_frame.grid_columnconfigure(2, weight=0) doseplans_over_all_frame.grid_rowconfigure(2, weight=0) upload_doseplan_frame = tk.Frame(Globals.DVH_doseplans_scroll_frame) upload_doseplan_frame.grid(row=0, column = 0, padx = (30,30), pady=(30,0), sticky=N+S+E+W) Globals.DVH_doseplans_scroll_frame.grid_columnconfigure(0, weight=0) Globals.DVH_doseplans_scroll_frame.grid_rowconfigure(0, weight=0) upload_doseplan_frame.config(bg = '#ffffff') upload_button_doseplan = tk.Button(upload_doseplan_frame, text='Browse', image=Globals.profiles_add_doseplans_button_image,\ cursor='hand2', font=('calibri', '14'), relief=FLAT, state=ACTIVE, command=lambda: UploadDoseplan(False)) upload_button_doseplan.pack(expand=True, fill=BOTH) upload_button_doseplan.configure(bg='#ffffff', activebackground='#ffffff', activeforeground='#ffffff', highlightthickness=0) upload_button_doseplan.image = Globals.profiles_add_doseplans_button_image def closeUploadDoseplans(): if(len(Globals.DVH_doseplan_dataset_ROI_several) == 0): messagebox.showinfo("INFO", "No doseplan has been uploaded") return for i in range(len(Globals.DVH_doseplan_dataset_ROI_several)): if Globals.DVH_doseplans_factor_input[i].get("1.0", 'end-1c') == " ": factor = 1 else: try: factor = float(Globals.DVH_doseplans_factor_input[i].get("1.0", 'end-1c')) except: messagebox.showerror("Error", "Invalid factor. Must be number.\n (Code: closeUploadDoseplans)") return if i == 0: doseplan_ROI = Globals.DVH_doseplan_dataset_ROI_several[i] doseplan_ROI= doseplan_ROI*factor img_ROI = Globals.DVH_several_img[i] img_ROI = img_ROI*factor else: doseplan_ROI+= factor*Globals.DVH_doseplan_dataset_ROI_several[i] img_ROI+= factor*Globals.DVH_several_img[i] mx=np.max(img_ROI) #max_dose = mx*Globals.DVH_dose_scaling_doseplan img_ROI = img_ROI/mx PIL_img_doseplan_ROI = Image.fromarray(np.uint8(cm.viridis(img_ROI)*255)) wid = PIL_img_doseplan_ROI.width;heig = PIL_img_doseplan_ROI.height doseplan_canvas = tk.Canvas(Globals.DVH_film_panedwindow) doseplan_canvas.grid(row=2, column=0, sticky=N+S+W+E) Globals.DVH_film_panedwindow.add(doseplan_canvas, \ height=max(heig, Globals.profiles_doseplan_text_image.height()), \ width=wid + Globals.profiles_doseplan_text_image.width()) doseplan_canvas.config(bg='#ffffff', relief=FLAT, highlightthickness=0, \ height=max(heig, Globals.profiles_doseplan_text_image.height()), \ width=wid + Globals.profiles_doseplan_text_image.width()) Globals.DVH_doseplan_write_image = tk.Canvas(doseplan_canvas) Globals.DVH_doseplan_write_image.grid(row=0,column=1,sticky=N+S+W+E) Globals.DVH_doseplan_write_image.config(bg='#ffffff', relief=FLAT, highlightthickness=0, width=wid, height=heig) doseplan_text_image_canvas = tk.Canvas(doseplan_canvas) doseplan_text_image_canvas.grid(row=0,column=0,sticky=N+S+W+E) doseplan_text_image_canvas.config(bg='#ffffff', relief=FLAT, highlightthickness=0, \ width=Globals.profiles_doseplan_text_image.width(), height=Globals.profiles_doseplan_text_image.height()) scaled_image_visual = PIL_img_doseplan_ROI scaled_image_visual = ImageTk.PhotoImage(image=scaled_image_visual) Globals.DVH_doseplan_write_image_width = scaled_image_visual.width() Globals.DVH_doseplan_write_image_height = scaled_image_visual.height() Globals.DVH_doseplan_write_image.create_image(0,0,image=scaled_image_visual, anchor="nw") Globals.DVH_doseplan_write_image.image = scaled_image_visual doseplan_text_image_canvas.create_image(0,0,image=Globals.profiles_doseplan_text_image, anchor="nw") doseplan_text_image_canvas.image=Globals.profiles_doseplan_text_image Globals.DVH_doseplan_dataset_ROI = doseplan_ROI Globals.DVH_upload_button_doseplan.config(state=DISABLED) several_doseplans_window.after(500, lambda: several_doseplans_window.destroy()) drawProfiles(False) doseplans_done_button_frame = tk.Frame(Globals.DVH_doseplans_scroll_frame) doseplans_done_button_frame.grid(row=0, column = 1, padx=(0,40), pady=(30,0), sticky=N+S+W+E) doseplans_done_button_frame.config(bg='#ffffff') Globals.DVH_doseplans_scroll_frame.grid_rowconfigure(3, weight=0) Globals.DVH_doseplans_scroll_frame.grid_columnconfigure(3, weight=0) doseplans_done_button = tk.Button(doseplans_done_button_frame, text='Done', image=Globals.done_button_image,\ cursor='hand2', font=('calibri', '14'), relief=FLAT, state=ACTIVE, command=closeUploadDoseplans) doseplans_done_button.pack(expand=True, fill=BOTH) doseplans_done_button.configure(bg='#ffffff', activebackground='#ffffff', activeforeground='#ffffff', highlightthickness=0) doseplans_done_button.image = Globals.done_button_image filename_title = tk.Text(Globals.DVH_doseplans_scroll_frame, width = 15, height= 1) filename_title.insert(INSERT, "Filename") filename_title.grid(row=2, column=0, sticky=N+S+E+W, pady=(40,0), padx=(45,15)) filename_title.config(bg='#ffffff', relief=FLAT, state=DISABLED, font=('calibri', '15', 'bold')) Globals.DVH_doseplans_scroll_frame.grid_rowconfigure(1, weight=0) Globals.DVH_doseplans_scroll_frame.grid_columnconfigure(1, weight=0) factor_title = tk.Text(Globals.DVH_doseplans_scroll_frame, width=30, height=2) factor_title.insert(INSERT, "Here you can write a factor to use \non the doseplan. Defaults to 1.") factor_title.grid(row=2, column=1, sticky=N+W+S+E, pady=(37,10), padx=(15,25)) factor_title.config(bg='#ffffff', relief=FLAT, state=DISABLED, font=('calibri', '15', 'bold')) Globals.DVH_doseplans_scroll_frame.grid_columnconfigure(2,weight=0) Globals.DVH_doseplans_scroll_frame.grid_rowconfigure(2, weight=0) def UploadRTplan(): file = filedialog.askopenfilename() ext = os.path.splitext(file)[-1].lower() if(not(ext == '.dcm')): if(ext == ""): return else: messagebox.showerror("Error", "The file must be a *.dcm file") return current_folder = os.getcwd() parent = os.path.dirname(file) os.chdir(parent) dataset = pydicom.dcmread(file) os.chdir(current_folder) Globals.DVH_dataset_rtplan = dataset #Isocenter given in mm from origo in patient coordinate system try: isocenter_mm = dataset.BeamSequence[0].ControlPointSequence[0].IsocenterPosition Globals.DVH_isocenter_mm = isocenter_mm except: messagebox.showerror("Error", "Could not read the RT plan file. Try again or try another file.\n\ (Code: isocenter reading)") return try: Globals.DVH_doseplan_vertical_displacement = dataset.PatientSetupSequence[0].TableTopVerticalSetupDisplacement except: messagebox.showerror("Error", "Could not read the RT plan file. Try again or try another file. \n\ (Code: vertical table displacement)") try: Globals.DVH_doseplan_lateral_displacement = dataset.PatientSetupSequence[0].TableTopLateralSetupDisplacement except: messagebox.showerror("Error", "Could not read the RT plan file. Try again or try another file-\n\ (Code: lateral table displacement)") try: Globals.DVH_doseplan_longitudianl_displacement = dataset.PatientSetupSequence[0].TableTopLongitudinalSetupDisplacement except: messagebox.showerror("Error", "Could not read the RT plan file. Try again or try another file\n\ (Code: longitudinal table displacement)") try: patient_position = dataset.PatientSetupSequence[0].PatientPosition Globals.DVH_doseplan_patient_position = patient_position except: messagebox.showerror("Error", "Could not read the RT plan file. Try again or try another file\n\ (Code: Patient position)") if(not(patient_position=='HFS' or patient_position=='HFP' or patient_position=='HFDR' or patient_position == 'HFDL'\ or patient_position=='FFDR' or patient_position=='FFDL' or patient_position=='FFP' or patient_position=='FFS')): messagebox.showerror("Error", "Fidora does only support patient positions: \n\ HFS, HFP, HFDR, HFDL, FFP, FFS, FFDR, FFDL") return Globals.DVH_test_if_added_rtplan = True Globals.DVH_upload_button_doseplan.config(state=ACTIVE) Globals.DVH_upload_button_rtplan.config(state=DISABLED) def pixel_to_dose(P,a,b,c): ret = c + b/(P-a) return ret def markIsocenter(img, new_window_isocenter_tab, image_canvas, cv2Img): if(len(Globals.DVH_mark_isocenter_oval)>0): image_canvas.delete(Globals.DVH_mark_isocenter_up_down_line[0]) image_canvas.delete(Globals.DVH_mark_isocenter_right_left_line[0]) image_canvas.delete(Globals.DVH_mark_isocenter_oval[0]) Globals.DVH_mark_isocenter_oval=[] Globals.DVH_mark_isocenter_right_left_line=[] Globals.DVH_mark_isocenter_up_down_line=[] Globals.DVH_iscoenter_coords = [] img_mark_isocenter = ImageTk.PhotoImage(image=img) mark_isocenter_window = tk.Toplevel(new_window_isocenter_tab) mark_isocenter_window.geometry("1035x620+10+10") mark_isocenter_window.grab_set() mark_isocenter_over_all_frame = tk.Frame(mark_isocenter_window, bd=0, relief=FLAT) mark_isocenter_over_all_canvas = Canvas(mark_isocenter_over_all_frame) mark_isocenter_xscrollbar = Scrollbar(mark_isocenter_over_all_frame, orient=HORIZONTAL, command=mark_isocenter_over_all_canvas.xview) mark_isocenter_yscrollbar = Scrollbar(mark_isocenter_over_all_frame, command=mark_isocenter_over_all_canvas.yview) mark_isocenter_scroll_frame = ttk.Frame(mark_isocenter_over_all_canvas) mark_isocenter_scroll_frame.bind("<Configure>", lambda e: mark_isocenter_over_all_canvas.configure(scrollregion=mark_isocenter_over_all_canvas.bbox('all'))) mark_isocenter_over_all_canvas.create_window((0,0), window=mark_isocenter_scroll_frame, anchor='nw') mark_isocenter_over_all_canvas.configure(xscrollcommand=mark_isocenter_xscrollbar.set, yscrollcommand=mark_isocenter_yscrollbar.set) mark_isocenter_over_all_frame.config(highlightthickness=0, bg='#ffffff') mark_isocenter_over_all_canvas.config(highlightthickness=0, bg='#ffffff') mark_isocenter_over_all_frame.pack(expand=True, fill=BOTH) mark_isocenter_over_all_canvas.grid(row=0, column=0, sticky=N+S+E+W) mark_isocenter_over_all_frame.grid_columnconfigure(0, weight=1) mark_isocenter_over_all_frame.grid_rowconfigure(0, weight=1) mark_isocenter_xscrollbar.grid(row=1, column=0, sticky=E+W) mark_isocenter_over_all_frame.grid_columnconfigure(1, weight=0) mark_isocenter_over_all_frame.grid_rowconfigure(1, weight=0) mark_isocenter_yscrollbar.grid(row=0, column=1, sticky=N+S) mark_isocenter_over_all_frame.grid_columnconfigure(2, weight=0) mark_isocenter_over_all_frame.grid_rowconfigure(2, weight=0) mark_isocenter_image_canvas = tk.Canvas(mark_isocenter_scroll_frame) mark_isocenter_image_canvas.grid(row=0,column=0, rowspan=10, columnspan=3, sticky=N+S+E+W, padx=(0,0), pady=(0,0)) mark_isocenter_scroll_frame.grid_columnconfigure(0, weight=0) mark_isocenter_scroll_frame.grid_rowconfigure(0, weight=0) mark_isocenter_image_canvas.create_image(0,0,image=img_mark_isocenter,anchor="nw") mark_isocenter_image_canvas.image = img_mark_isocenter mark_isocenter_image_canvas.config(cursor='hand2', bg='#ffffff', relief=FLAT, bd=0, \ scrollregion=mark_isocenter_image_canvas.bbox(ALL), height=img_mark_isocenter.height(), width=img_mark_isocenter.width()) mark_isocenter_image_canvas.grid_propagate(0) def findCoords(event): mark_isocenter_image_canvas.create_oval(event.x-2, event.y-2, event.x+2, event.y+2, fill='red') if(Globals.DVH_iscoenter_coords==[]): Globals.DVH_iscoenter_coords.append([event.x, event.y]) mark_isocenter_image_canvas.config(cursor='hand2') elif(len(Globals.DVH_iscoenter_coords)==1): Globals.DVH_iscoenter_coords.append([event.x, event.y]) Globals.DVH_film_isocenter = [Globals.DVH_iscoenter_coords[0][0], Globals.DVH_iscoenter_coords[1][1]] x1,y1 = Globals.DVH_iscoenter_coords[0] x4,y4 = Globals.DVH_iscoenter_coords[1] x2 = x1;y3=y4 y2=2*Globals.DVH_film_isocenter[1]-y1 x3=2*Globals.DVH_film_isocenter[0]-x4 up_down_line = image_canvas.create_line(int(x1/2),int(y1/2),int(x2/2),int(y2/2),fill='purple', smooth=1, width=2) right_left_line = image_canvas.create_line(int(x3/2),int(y3/2),int(x4/2),int(y4/2), fill='purple', smooth=1, width=2) oval = image_canvas.create_oval(int(Globals.DVH_film_isocenter[0]/2)-3, int(Globals.DVH_film_isocenter[1]/2)-3,\ int(Globals.DVH_film_isocenter[0]/2)+3, int(Globals.DVH_film_isocenter[1]/2)+3, fill='red') Globals.DVH_mark_isocenter_up_down_line.append(up_down_line) Globals.DVH_mark_isocenter_right_left_line.append(right_left_line) Globals.DVH_mark_isocenter_oval.append(oval) mark_isocenter_window.after(500, lambda: mark_isocenter_window.destroy()) Globals.DVH_isocenter_check = True if(Globals.DVH_ROI_check): Globals.DVH_done_button.config(state=ACTIVE) mark_isocenter_image_canvas.bind("<Button 1>",findCoords) def markReferencePoint(img, new_window_reference_point_tab, image_canvas_reference_tab, cv2Img): if(len(Globals.DVH_mark_reference_point_oval)>0): image_canvas_reference_tab.delete(Globals.DVH_mark_reference_point_oval[0]) Globals.DVH_mark_reference_point_oval=[] img_mark_reference_point = ImageTk.PhotoImage(image=img) mark_reference_point_window = tk.Toplevel(new_window_reference_point_tab) mark_reference_point_window.geometry("1035x620+10+10") mark_reference_point_window.grab_set() mark_reference_point_over_all_frame = tk.Frame(mark_reference_point_window, bd=0, relief=FLAT) mark_reference_point_over_all_canvas = Canvas(mark_reference_point_over_all_frame) mark_reference_point_xscrollbar = Scrollbar(mark_reference_point_over_all_frame, orient=HORIZONTAL, command=mark_reference_point_over_all_canvas.xview) mark_reference_point_yscrollbar = Scrollbar(mark_reference_point_over_all_frame, command=mark_reference_point_over_all_canvas.yview) mark_reference_point_scroll_frame = ttk.Frame(mark_reference_point_over_all_canvas) mark_reference_point_scroll_frame.bind("<Configure>", lambda e: mark_reference_point_over_all_canvas.configure(scrollregion=mark_reference_point_over_all_canvas.bbox('all'))) mark_reference_point_over_all_canvas.create_window((0,0), window=mark_reference_point_scroll_frame, anchor='nw') mark_reference_point_over_all_canvas.configure(xscrollcommand=mark_reference_point_xscrollbar.set, yscrollcommand=mark_reference_point_yscrollbar.set) mark_reference_point_over_all_frame.config(highlightthickness=0, bg='#ffffff') mark_reference_point_over_all_canvas.config(highlightthickness=0, bg='#ffffff') mark_reference_point_over_all_frame.pack(expand=True, fill=BOTH) mark_reference_point_over_all_canvas.grid(row=0, column=0, sticky=N+S+E+W) mark_reference_point_over_all_frame.grid_columnconfigure(0, weight=1) mark_reference_point_over_all_frame.grid_rowconfigure(0, weight=1) mark_reference_point_xscrollbar.grid(row=1, column=0, sticky=E+W) mark_reference_point_over_all_frame.grid_columnconfigure(1, weight=0) mark_reference_point_over_all_frame.grid_rowconfigure(1, weight=0) mark_reference_point_yscrollbar.grid(row=0, column=1, sticky=N+S) mark_reference_point_over_all_frame.grid_columnconfigure(2, weight=0) mark_reference_point_over_all_frame.grid_rowconfigure(2, weight=0) mark_reference_point_image_canvas = tk.Canvas(mark_reference_point_scroll_frame) mark_reference_point_image_canvas.grid(row=0,column=0, rowspan=10, columnspan=3, sticky=N+S+E+W, padx=(0,0), pady=(0,0)) mark_reference_point_scroll_frame.grid_columnconfigure(0, weight=0) mark_reference_point_scroll_frame.grid_rowconfigure(0, weight=0) mark_reference_point_image_canvas.create_image(0,0,image=img_mark_reference_point,anchor="nw") mark_reference_point_image_canvas.image = img_mark_reference_point mark_reference_point_image_canvas.config(cursor='hand2', bg='#ffffff', relief=FLAT, bd=0, \ scrollregion=mark_reference_point_image_canvas.bbox(ALL), height=img_mark_reference_point.height(), width=img_mark_reference_point.width()) mark_reference_point_image_canvas.grid_propagate(0) def findCoords(event): mark_reference_point_image_canvas.create_oval(event.x-2, event.y-2, event.x+2, event.y+2, fill='red') Globals.DVH_film_reference_point = [event.x, event.y] oval = image_canvas_reference_tab.create_oval(int(Globals.DVH_film_reference_point[0]/2)-3, \ int(Globals.DVH_film_reference_point[1]/2)-3, int(Globals.DVH_film_reference_point[0]/2)+3, \ int(Globals.DVH_film_reference_point[1]/2)+3, fill='red') Globals.DVH_mark_reference_point_oval.append(oval) mark_reference_point_window.after(500, lambda: mark_reference_point_window.destroy()) Globals.DVH_reference_point_check = True if(Globals.DVH_ROI_reference_point_check): Globals.DVH_done_button_reference_point.config(state=ACTIVE) mark_reference_point_image_canvas.bind("<Button 1>",findCoords) def markROI(img, tab, canvas, ref_point_test): if(len(Globals.DVH_mark_ROI_rectangle)>0): canvas.delete(Globals.DVH_mark_ROI_rectangle[0]) Globals.DVH_mark_ROI_rectangle = [] Globals.DVH_ROI_coords = [] img_mark_ROI = ImageTk.PhotoImage(image=img) mark_ROI_window = tk.Toplevel(tab) mark_ROI_window.geometry("1035x620+10+10") mark_ROI_window.grab_set() mark_ROI_over_all_frame = tk.Frame(mark_ROI_window, bd=0, relief=FLAT) mark_ROI_over_all_canvas = Canvas(mark_ROI_over_all_frame) mark_ROI_xscrollbar = Scrollbar(mark_ROI_over_all_frame, orient=HORIZONTAL, command=mark_ROI_over_all_canvas.xview) mark_ROI_yscrollbar = Scrollbar(mark_ROI_over_all_frame, command=mark_ROI_over_all_canvas.yview) mark_ROI_scroll_frame = ttk.Frame(mark_ROI_over_all_canvas) mark_ROI_scroll_frame.bind("<Configure>", lambda e: mark_ROI_over_all_canvas.configure(scrollregion=mark_ROI_over_all_canvas.bbox('all'))) mark_ROI_over_all_canvas.create_window((0,0), window=mark_ROI_scroll_frame, anchor='nw') mark_ROI_over_all_canvas.configure(xscrollcommand=mark_ROI_xscrollbar.set, yscrollcommand=mark_ROI_yscrollbar.set) mark_ROI_over_all_frame.config(highlightthickness=0, bg='#ffffff') mark_ROI_over_all_canvas.config(highlightthickness=0, bg='#ffffff') mark_ROI_over_all_frame.pack(expand=True, fill=BOTH) mark_ROI_over_all_canvas.grid(row=0, column=0, sticky=N+S+E+W) mark_ROI_over_all_frame.grid_columnconfigure(0, weight=1) mark_ROI_over_all_frame.grid_rowconfigure(0, weight=1) mark_ROI_xscrollbar.grid(row=1, column=0, sticky=E+W) mark_ROI_over_all_frame.grid_columnconfigure(1, weight=0) mark_ROI_over_all_frame.grid_rowconfigure(1, weight=0) mark_ROI_yscrollbar.grid(row=0, column=1, sticky=N+S) mark_ROI_over_all_frame.grid_columnconfigure(2, weight=0) mark_ROI_over_all_frame.grid_rowconfigure(2, weight=0) mark_ROI_image_canvas = tk.Canvas(mark_ROI_scroll_frame) mark_ROI_image_canvas.grid(row=0,column=0, rowspan=10, columnspan=3, sticky=N+S+E+W, padx=(0,0), pady=(0,0)) mark_ROI_scroll_frame.grid_columnconfigure(0, weight=0) mark_ROI_scroll_frame.grid_rowconfigure(0, weight=0) mark_ROI_image_canvas.create_image(0,0,image=img_mark_ROI,anchor="nw") mark_ROI_image_canvas.image = img_mark_ROI mark_ROI_image_canvas.config(bg='#E5f9ff', relief=FLAT, bd=0, \ scrollregion=mark_ROI_image_canvas.bbox(ALL), height=img_mark_ROI.height(), width=img_mark_ROI.width()) mark_ROI_image_canvas.grid_propagate(0) rectangle = mark_ROI_image_canvas.create_rectangle(0,0,0,0,outline='green') rectangle_top_corner = [] rectangle_bottom_corner = [] def buttonPushed(event): rectangle_top_corner.append([event.x, event.y]) def buttonMoving(event): mark_ROI_image_canvas.coords(rectangle, rectangle_top_corner[0][0], rectangle_top_corner[0][1], \ event.x, event.y) def buttonReleased(event): rectangle_bottom_corner.append([event.x, event.y]) mark_ROI_image_canvas.coords(rectangle, rectangle_top_corner[0][0], rectangle_top_corner[0][1],\ rectangle_bottom_corner[0][0], rectangle_bottom_corner[0][1]) mark_ROI_image_canvas.itemconfig(rectangle, outline='Blue') ### Husk at koordinatene går bortover så nedover! Top left - top right - bottom left - bottom right Globals.DVH_ROI_coords.append([rectangle_top_corner[0][0], rectangle_top_corner[0][1]]) Globals.DVH_ROI_coords.append([rectangle_bottom_corner[0][0], rectangle_top_corner[0][1]]) Globals.DVH_ROI_coords.append([rectangle_top_corner[0][0], rectangle_bottom_corner[0][1]]) Globals.DVH_ROI_coords.append([rectangle_bottom_corner[0][0], rectangle_bottom_corner[0][1]]) rect = canvas.create_rectangle(int((rectangle_top_corner[0][0])/2), int((rectangle_top_corner[0][1])/2),\ int((rectangle_bottom_corner[0][0])/2), int((rectangle_bottom_corner[0][1])/2), outline='Blue', width=2) Globals.DVH_mark_ROI_rectangle.append(rect) if(ref_point_test): Globals.DVH_ROI_reference_point_check = True if(Globals.DVH_reference_point_check): Globals.DVH_done_button_reference_point.config(state=ACTIVE) else: Globals.DVH_ROI_check = True if(Globals.DVH_isocenter_check): Globals.DVH_done_button.config(state=ACTIVE) mark_ROI_window.after(500, lambda: mark_ROI_window.destroy()) mark_ROI_image_canvas.bind("<B1-Motion>", buttonMoving) mark_ROI_image_canvas.bind("<Button-1>", buttonPushed) mark_ROI_image_canvas.bind("<ButtonRelease-1>", buttonReleased) def UploadFilm(): if(Globals.DVH_film_orientation.get() == '-'): messagebox.showerror("Missing parameter", "Film orientation missing \n (Code: UploadFilm)") return if Globals.DVH_film_factor_input.get("1.0", 'end-1c') == " ": Globals.DVH_film_factor = 1 else: try: Globals.DVH_film_factor = float(Globals.DVH_film_factor_input.get("1.0", 'end-1c')) except: messagebox.showerror("Missing parameter", "Film factor invalid format. \n (Code: UploadFilm)") return file = filedialog.askopenfilename() ext = os.path.splitext(file)[-1].lower() if(ext == '.tif'): current_folder = os.getcwd() parent = os.path.dirname(file) os.chdir(parent) img = Image.open(file) img = img.transpose(Image.FLIP_LEFT_RIGHT) cv2Img = cv2.imread(basename(normpath(file)), cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH) cv2Img = cv2.medianBlur(cv2Img, 5) if(cv2Img is None): messagebox.showerror("Error", "Something has gone wrong. Check that the filename does not contain Æ,Ø,Å") return if(cv2Img.shape[2] == 3): if(cv2Img.shape[0]==1270 and cv2Img.shape[1]==1016): cv2Img = abs(cv2Img-Globals.correctionMatrix127) cv2Img = np.clip(cv2Img, 0, 65535) cv2Img = cv2.flip(cv2Img,1) img_scaled = img.resize((508, 635), Image.ANTIALIAS) img_scaled = ImageTk.PhotoImage(image=img_scaled) Globals.DVH_film_dataset = cv2Img Globals.DVH_film_dataset_red_channel = cv2Img[:,:,2] else: messagebox.showerror("Error","The resolution of the image is not consistent with dpi") return else: messagebox.showerror("Error","The uploaded image need to be in RGB-format") return os.chdir(current_folder) if(not (img.width == 1016)): messagebox.showerror("Error", "Dpi in image has to be 127") return Globals.DVH_film_orientation_menu.configure(state=DISABLED) Globals.DVH_film_factor_input.config(state=DISABLED) h = 635 + 20 w = 508 + 625 new_window = tk.Toplevel(Globals.tab5) new_window.geometry("%dx%d+0+0" % (w, h)) new_window.grab_set() new_window_over_all_frame = tk.Frame(new_window, bd=0, relief=FLAT) new_window_over_all_canvas = Canvas(new_window_over_all_frame) new_window_xscrollbar = Scrollbar(new_window_over_all_frame, orient=HORIZONTAL, command=new_window_over_all_canvas.xview) new_window_yscrollbar = Scrollbar(new_window_over_all_frame, command=new_window_over_all_canvas.yview) new_window_scroll_frame = ttk.Frame(new_window_over_all_canvas) new_window_scroll_frame.bind("<Configure>", lambda e: new_window_over_all_canvas.configure(scrollregion=new_window_over_all_canvas.bbox('all'))) new_window_over_all_canvas.create_window((0,0), window=new_window_scroll_frame, anchor='nw') new_window_over_all_canvas.configure(xscrollcommand=new_window_xscrollbar.set, yscrollcommand=new_window_yscrollbar.set) new_window_over_all_frame.config(highlightthickness=0, bg='#ffffff') new_window_over_all_canvas.config(highlightthickness=0, bg='#ffffff') new_window_over_all_frame.pack(expand=True, fill=BOTH) new_window_over_all_canvas.grid(row=0, column=0, sticky=N+S+E+W) new_window_over_all_frame.grid_columnconfigure(0, weight=1) new_window_over_all_frame.grid_rowconfigure(0, weight=1) new_window_xscrollbar.grid(row=1, column=0, sticky=E+W) new_window_over_all_frame.grid_columnconfigure(1, weight=0) new_window_over_all_frame.grid_rowconfigure(1, weight=0) new_window_yscrollbar.grid(row=0, column=1, sticky=N+S) new_window_over_all_frame.grid_columnconfigure(2, weight=0) new_window_over_all_frame.grid_rowconfigure(2, weight=0) new_window_explain_text = tk.Text(new_window_scroll_frame, height= 3, width=120) new_window_explain_text.insert(INSERT, \ "To match the film with the doseplan you have to mark either isocenter or a reference point\ on the film of your choice.In the case of the reference point you \nwill be asked to input the \ lenght in lateral, longitudinal and vertical to a reference point used in the linac. It the \ reference point in the film is the same as \nthe one in the phantom/linac you can input all zeros,\ in other cases your input is in mm. Later you will have the oppertunity to make small\ adjustments \nto the placement of either the reference point or isocenter.") new_window_explain_text.config(state=DISABLED, font=('calibri', '13', 'bold'), bg = '#ffffff', relief=FLAT) new_window_explain_text.grid(row=0, column=0, columnspan=5, sticky=N+S+W+E, pady=(15,5), padx=(10,10)) new_window_scroll_frame.grid_rowconfigure(0, weight=0) new_window_scroll_frame.grid_columnconfigure(0, weight=0) new_window_notebook = ttk.Notebook(new_window_scroll_frame) new_window_notebook.borderWidth=0 new_window_notebook.grid(row=2, column=0, columnspan=5, sticky=E+W+N+S, pady=(0,0), padx =(0,0)) new_window_scroll_frame.grid_rowconfigure(4, weight=0) new_window_scroll_frame.grid_columnconfigure(4, weight=0) new_window_isocenter_tab = ttk.Frame(new_window_notebook) new_window_notebook.add(new_window_isocenter_tab, text='Isocenter') new_window_reference_point_tab = ttk.Frame(new_window_notebook) new_window_notebook.add(new_window_reference_point_tab, text='Reference point') new_window_manually_tab = ttk.Frame(new_window_notebook) new_window_notebook.add(new_window_manually_tab, text='Manually') image_canvas = tk.Canvas(new_window_isocenter_tab) image_canvas.grid(row=0,column=0, rowspan=12, columnspan=3, sticky=N+S+E+W, padx=(0,0), pady=(0,0)) new_window_isocenter_tab.grid_rowconfigure(1, weight=0) new_window_isocenter_tab.grid_columnconfigure(1, weight=0) image_canvas.create_image(0,0,image=img_scaled,anchor="nw") image_canvas.image = img_scaled image_canvas.config(bg='#ffffff', relief=FLAT, bd=0, scrollregion=image_canvas.bbox(ALL), \ height=img_scaled.height(), width=img_scaled.width()) image_canvas.grid_propagate(0) image_canvas_reference_tab = tk.Canvas(new_window_reference_point_tab) image_canvas_reference_tab.grid(row=0,column=0, rowspan=10, columnspan=3, sticky=N+S+E+W, padx=(0,0), pady=(0,0)) new_window_reference_point_tab.grid_rowconfigure(1, weight=0) new_window_reference_point_tab.grid_columnconfigure(1, weight=0) image_canvas_reference_tab.create_image(0,0,image=img_scaled,anchor="nw") image_canvas_reference_tab.image = img_scaled image_canvas_reference_tab.config(bg='#ffffff', relief=FLAT, bd=0, scrollregion=image_canvas.bbox(ALL), \ height=img_scaled.height(), width=img_scaled.width()) image_canvas_reference_tab.grid_propagate(0) film_window_mark_isocenter_text = tk.Text(new_window_isocenter_tab, width=55, height=7) film_window_mark_isocenter_text.insert(INSERT, \ "When clicking the button \"Mark isocenter\" a window showing \n\ the image will appear and you are to click on the markers \n\ made on the film upon irradiation to find the isocenter. Start \n\ with the marker showing the direction of the film (see the \n\ specifications in main window). When both marks are made \n\ you will see the isocenter in the image. If you are not happy \n\ with the placement click the button again and repeat.") film_window_mark_isocenter_text.config(bg='#ffffff', relief=FLAT, bd=0, state=DISABLED, font=('calibri', '11')) film_window_mark_isocenter_text.grid(row=0, column=3, rowspan=3, sticky=N+S+E+W, padx=(10,10), pady=(10,0)) new_window_isocenter_tab.columnconfigure(2, weight=0) new_window_isocenter_tab.rowconfigure(2, weight=0) film_window_mark_reference_point_text = tk.Text(new_window_reference_point_tab, width=55, height=5) film_window_mark_reference_point_text.insert(INSERT, \ "When clicking the button \"Mark point\" a window showing \n\ the image will appear and you are to click on the marker \n\ made on the film upon irradiation to find the point. When\n\ the mark are made you will see the isocenter in the image.\n\ If you are not happy with the placement click the button \n\ again and repeat.") film_window_mark_reference_point_text.config(bg='#ffffff', relief=FLAT, bd=0, state=DISABLED, font=('calibri', '11')) film_window_mark_reference_point_text.grid(row=0, column=3, rowspan=3, sticky=N+S+E+W, padx=(10,10), pady=(5,0)) new_window_reference_point_tab.columnconfigure(2, weight=0) new_window_reference_point_tab.rowconfigure(2, weight=0) mark_isocenter_button_frame = tk.Frame(new_window_isocenter_tab) mark_isocenter_button_frame.grid(row=3, column=3, padx=(10,10), pady=(0,10)) mark_isocenter_button_frame.configure(bg='#ffffff') new_window_isocenter_tab.grid_columnconfigure(3, weight=0) new_window_isocenter_tab.grid_rowconfigure(3, weight=0) mark_isocenter_button = tk.Button(mark_isocenter_button_frame, text='Browse', image=Globals.profiles_mark_isocenter_button_image,\ cursor='hand2',font=('calibri', '14'), relief=FLAT, state=ACTIVE, command=lambda: markIsocenter(img, new_window_isocenter_tab, image_canvas, cv2Img)) mark_isocenter_button.pack(expand=True, fill=BOTH) mark_isocenter_button.config(bg='#ffffff', activebackground='#ffffff', activeforeground='#ffffff', highlightthickness=0) mark_isocenter_button.image=Globals.profiles_mark_isocenter_button_image mark_point_button_frame = tk.Frame(new_window_reference_point_tab) mark_point_button_frame.grid(row=3, column=3, padx=(10,10), pady=(30,0)) mark_point_button_frame.configure(bg='#ffffff') new_window_reference_point_tab.grid_columnconfigure(3, weight=0) new_window_reference_point_tab.grid_rowconfigure(3, weight=0) mark_point_button = tk.Button(mark_point_button_frame, text='Browse', image=Globals.profiles_mark_point_button_image,\ cursor='hand2',font=('calibri', '14'), relief=FLAT, state=ACTIVE, command=lambda: \ markReferencePoint(img, new_window_reference_point_tab, image_canvas_reference_tab, cv2Img)) mark_point_button.pack(expand=True, fill=BOTH) mark_point_button.config(bg='#ffffff', activebackground='#ffffff', activeforeground='#ffffff', highlightthickness=0) mark_point_button.image=Globals.profiles_mark_point_button_image write_displacement_relative_to_reference_point = tk.Text(new_window_reference_point_tab, width = 55, height=3) write_displacement_relative_to_reference_point.insert(INSERT, "\ If the marked reference points in the film does not match\n\ the reference point in the phantom you can write the\n\ displacemnet here (in mm). Defaults to zero ") write_displacement_relative_to_reference_point.grid(row=4, column=3, rowspan=2, sticky=N+S+E+W, padx=(10,10), pady=(0,10)) write_displacement_relative_to_reference_point.config(bg='#ffffff', relief=FLAT, bd=0, state=DISABLED, font=('calibri', '11')) new_window_reference_point_tab.grid_rowconfigure(6, weight=0) new_window_reference_point_tab.grid_columnconfigure(6, weight=0) input_lateral_text = tk.Text(new_window_reference_point_tab, width=12, height=1) input_lateral_text.insert(INSERT, "Lateral:") input_lateral_text.config(bg='#ffffff', relief=FLAT, bd=0, state=DISABLED, font=('calibri', '10')) input_lateral_text.grid(row=5, column=3, sticky=N+S, padx=(0,250), pady=(25,0)) new_window_reference_point_tab.grid_rowconfigure(10, weight=0) new_window_reference_point_tab.grid_rowconfigure(10, weight=0) Globals.DVH_input_lateral_displacement = tk.Text(new_window_reference_point_tab, width=5, height=1) Globals.DVH_input_lateral_displacement.insert(INSERT, " ") Globals.DVH_input_lateral_displacement.config(bg='#E5f9ff', relief=GROOVE, bd=2, state=NORMAL, font=('calibri', '11')) Globals.DVH_input_lateral_displacement.grid(row=5, column=3, padx=(0,285), pady=(35,0)) new_window_reference_point_tab.grid_rowconfigure(7, weight=0) new_window_reference_point_tab.grid_columnconfigure(7, weight=0) input_vertical_text = tk.Text(new_window_reference_point_tab, width=12, height=1) input_vertical_text.insert(INSERT, "Vertical:") input_vertical_text.config(bg='#ffffff', relief=FLAT, bd=0, state=DISABLED, font=('calibri', '10')) input_vertical_text.grid(row=5, column=3, sticky=N+S, padx=(0,0), pady=(25,0)) new_window_reference_point_tab.grid_rowconfigure(11, weight=0) new_window_reference_point_tab.grid_rowconfigure(11, weight=0) Globals.DVH_input_vertical_displacement = tk.Text(new_window_reference_point_tab, width=4, height=1) Globals.DVH_input_vertical_displacement.insert(INSERT, " ") Globals.DVH_input_vertical_displacement.config(bg='#E5f9ff', relief=GROOVE, bd=2, state=NORMAL, font=('calibri', '11')) Globals.DVH_input_vertical_displacement.grid(row=5, column=3, padx=(0,25), pady=(35,0)) new_window_reference_point_tab.grid_rowconfigure(8, weight=0) new_window_reference_point_tab.grid_columnconfigure(8, weight=0) input_long_text = tk.Text(new_window_reference_point_tab, width=12, height=1) input_long_text.insert(INSERT, "Longitudinal:") input_long_text.config(bg='#ffffff', relief=FLAT, bd=0, state=DISABLED, font=('calibri', '10')) input_long_text.grid(row=5, column=3, sticky=N+S, padx=(250,0), pady=(25,0)) new_window_reference_point_tab.grid_rowconfigure(12, weight=0) new_window_reference_point_tab.grid_rowconfigure(12, weight=0) Globals.DVH_input_longitudinal_displacement = tk.Text(new_window_reference_point_tab, width=5, height=1) Globals.DVH_input_longitudinal_displacement.insert(INSERT, " ") Globals.DVH_input_longitudinal_displacement.config(bg='#E5f9ff', relief=GROOVE, bd=2, state=NORMAL, font=('calibri', '11')) Globals.DVH_input_longitudinal_displacement.grid(row=5, column=3, padx=(240,0), pady=(35,0)) new_window_reference_point_tab.grid_rowconfigure(9, weight=0) new_window_reference_point_tab.grid_columnconfigure(9, weight=0) film_window_mark_ROI_text = tk.Text(new_window_isocenter_tab, width=55, height=7) film_window_mark_ROI_text.insert(INSERT, \ "When clicking the button \"Mark ROI\" a window showing the\n\ image will appear and you are to drag a rectangle marking \n\ the region of interest. Fidora will assume the film has been\n\ scanned in either portrait or landscape orientation. When\n\ the ROI has been marked it will appear on the image. If you\n\ are not happy with the placement click the button again.") film_window_mark_ROI_text.config(bg='#ffffff', relief=FLAT, bd=0, state=DISABLED, font=('calibri', '11')) film_window_mark_ROI_text.grid(row=5, column=3, rowspan=4, sticky=N+S+E+W, padx=(10,10), pady=(0,0)) new_window_isocenter_tab.grid_columnconfigure(4, weight=0) new_window_isocenter_tab.grid_rowconfigure(4, weight=0) film_window_mark_ROI_reference_point_text = tk.Text(new_window_reference_point_tab, width=55, height=5) film_window_mark_ROI_reference_point_text.insert(INSERT, \ "When clicking the button \"Mark ROI\" a window showing the\n\ image will appear and you are to drag a rectangle marking \n\ the region of interest. Fidora will assume the film has been\n\ scanned in either portrait or landscape orientation. When\n\ the ROI has been marked it will appear on the image. If you\n\ are not happy with the placement click the button again.") film_window_mark_ROI_reference_point_text.config(bg='#ffffff', relief=FLAT, bd=0, state=DISABLED, font=('calibri', '11')) film_window_mark_ROI_reference_point_text.grid(row=6, column=3, rowspan=3, sticky=N+E+W, padx=(10,10), pady=(10,0)) new_window_reference_point_tab.grid_columnconfigure(4, weight=0) new_window_reference_point_tab.grid_rowconfigure(4, weight=0) mark_ROI_button_frame = tk.Frame(new_window_isocenter_tab) mark_ROI_button_frame.grid(row=8, column=3, padx=(10,0), pady=(0,5)) mark_ROI_button_frame.configure(bg='#ffffff') new_window_isocenter_tab.grid_columnconfigure(5, weight=0) new_window_isocenter_tab.grid_rowconfigure(5, weight=0) mark_ROI_button = tk.Button(mark_ROI_button_frame, text='Browse', image=Globals.profiles_mark_ROI_button_image,\ cursor='hand2',font=('calibri', '14'), relief=FLAT, state=ACTIVE, command=lambda: markROI(img, new_window_isocenter_tab, image_canvas, False)) mark_ROI_button.pack(expand=True, fill=BOTH) mark_ROI_button.config(bg='#ffffff', activebackground='#ffffff', activeforeground='#ffffff', highlightthickness=0) mark_ROI_button.image=Globals.profiles_mark_ROI_button_image slice_offset_text = tk.Text(new_window_isocenter_tab, width=25, height=1) slice_offset_text.insert(INSERT, "Slice offset, mm (default 0):") slice_offset_text.config(state=DISABLED, font=('calibri', '10'), bd = 0, relief=FLAT) slice_offset_text.grid(row=9, column=3, padx=(5,110), pady=(0,0)) new_window_isocenter_tab.grid_columnconfigure(6, weight=0) new_window_isocenter_tab.grid_rowconfigure(6, weight=0) Globals.DVH_slice_offset = tk.Text(new_window_isocenter_tab, width=8, height=1) Globals.DVH_slice_offset.grid(row=9, column=3, padx=(110,10), pady=(0,0)) Globals.DVH_slice_offset.insert(INSERT, " ") Globals.DVH_slice_offset.config(state=NORMAL, font=('calibri', '10'), bd = 2, bg='#ffffff') new_window_isocenter_tab.grid_columnconfigure(7, weight=0) new_window_isocenter_tab.grid_rowconfigure(7, weight=0) mark_ROI_button_reference_point_frame = tk.Frame(new_window_reference_point_tab) mark_ROI_button_reference_point_frame.grid(row=9, column=3, padx=(10,10), pady=(0,5)) mark_ROI_button_reference_point_frame.configure(bg='#ffffff') new_window_reference_point_tab.grid_columnconfigure(5, weight=0) new_window_reference_point_tab.grid_rowconfigure(5, weight=0) mark_ROI_reference_point_button = tk.Button(mark_ROI_button_reference_point_frame, text='Browse', image=Globals.profiles_mark_ROI_button_image,\ cursor='hand2',font=('calibri', '14'), relief=FLAT, state=ACTIVE, command=lambda: markROI(img, new_window_reference_point_tab, image_canvas_reference_tab, True)) mark_ROI_reference_point_button.pack(expand=True, fill=BOTH) mark_ROI_reference_point_button.config(bg='#ffffff', activebackground='#ffffff', activeforeground='#ffffff', highlightthickness=0) mark_ROI_reference_point_button.image=Globals.profiles_mark_ROI_button_image def finishFilmMarkers(ref_test): Globals.DVH_slice_offset.config(state=DISABLED) if(ref_test): if(not(Globals.DVH_input_lateral_displacement.get("1.0",'end-1c')==" ")): try: test = float(Globals.DVH_input_lateral_displacement.get("1.0",'end-1c')) Globals.DVH_lateral = test except: messagebox.showerror("Error", "The displacements must be numbers\n (Code: lateral displacement)") return else: Globals.DVH_lateral = 0 if(not(Globals.DVH_input_longitudinal_displacement.get("1.0",'end-1c')==" ")): try: test = float(Globals.DVH_input_longitudinal_displacement.get("1.0", 'end-1c')) Globals.DVH_longitudinal = test except: messagebox.showerror("Error", "The displacements must be numbers\n (Code: longitudinal displacement)") return else: Globals.DVH_longitudinal = 0 if(not(Globals.DVH_input_vertical_displacement.get("1.0",'end-1c')==" ")): try: test = float(Globals.DVH_input_vertical_displacement.get("1.0", 'end-1c')) Globals.DVH_vertical = test except: messagebox.showerror("Error", "The displacements must be numbers\n (Code: vertical displacement)") return else: Globals.DVH_vertical = 0 Globals.DVH_input_vertical_displacement.config(state=DISABLED) Globals.DVH_input_longitudinal_displacement.config(state=DISABLED) Globals.DVH_input_lateral_displacement.config(state=DISABLED) else: if not Globals.DVH_slice_offset.get("1.0",'end-1c')==" ": try: offset = float(Globals.DVH_slice_offset.get("1.0",'end-1c')) Globals.DVH_offset = offset except: messagebox.showerror("Error", "Slice offset must be a number \n(Code: finishFilmMarkers(false)") return else: Globals.DVH_offset = 0 if(ref_test): choose_batch_window = tk.Toplevel(new_window_reference_point_tab) else: choose_batch_window = tk.Toplevel(new_window_isocenter_tab) choose_batch_window.geometry("670x380+50+50") choose_batch_window.grab_set() choose_batch_frame = tk.Frame(choose_batch_window) choose_batch_frame.pack(expand=True, fill=BOTH) choose_batch_frame.configure(bg='#ffffff') batch_cnt = 0 weight_cnt = 0 read = open('calibration.txt', 'r') lines = read.readlines() read.close() row_cnt=0 for l in lines: words = l.split() line = "Batch nr. : " + words[2] + ". Date: " + words[0] + " " + words[1] + "." write_batch_nr = tk.Text(choose_batch_frame, width=10, height=1) write_batch_nr.grid(row=row_cnt, column=0, sticky=N+S+W+E, padx=(10,5), pady=(10,10)) choose_batch_frame.grid_columnconfigure(weight_cnt, weight=0) choose_batch_frame.grid_rowconfigure(weight_cnt, weight=0) write_batch_nr.insert(INSERT, "Batch nr.: ") write_batch_nr.config(state=DISABLED, bd = 0, font=('calibri', '12', 'bold')) weight_cnt+=1 write_batch = tk.Text(choose_batch_frame, width=20, height=1) write_batch.grid(row=row_cnt, column=1, sticky=N+S+W+E, padx=(10,5), pady=(10,10)) choose_batch_frame.grid_columnconfigure(weight_cnt, weight=0) choose_batch_frame.grid_rowconfigure(weight_cnt, weight=0) write_batch.insert(INSERT, words[2]) write_batch.config(state=DISABLED, bd = 0, font=('calibri', '12')) weight_cnt+=1 write_batch_date = tk.Text(choose_batch_frame, width=8, height=1) write_batch_date.grid(row=row_cnt, column=2, sticky=N+S+W+E, padx=(10,5), pady=(10,10)) choose_batch_frame.grid_columnconfigure(weight_cnt, weight=0) choose_batch_frame.grid_rowconfigure(weight_cnt, weight=0) write_batch_date.insert(INSERT, "Date: ") write_batch_date.config(state=DISABLED, bd = 0, font=('calibri', '12', 'bold')) weight_cnt+=1 write_date = tk.Text(choose_batch_frame, width=30, height=1) write_date.grid(row=row_cnt, column=3, sticky=N+S+W+E, padx=(10,5), pady=(10,10)) choose_batch_frame.grid_columnconfigure(weight_cnt, weight=0) choose_batch_frame.grid_rowconfigure(weight_cnt, weight=0) write_date.insert(INSERT, words[0] + ", " + words[1] + "") write_date.config(state=DISABLED, bd = 0, font=('calibri', '12')) weight_cnt+=1 Radiobutton(choose_batch_frame, text='',bg='#ffffff', cursor='hand2',font=('calibri', '14'), \ variable=Globals.DVH_film_batch, value=batch_cnt).grid(row=row_cnt, \ column=4, sticky=N+S+W+E, padx=(5,5), pady=(10,10)) choose_batch_frame.grid_columnconfigure(weight_cnt, weight=0) choose_batch_frame.grid_rowconfigure(weight_cnt, weight=0) weight_cnt+=1;row_cnt+=1;batch_cnt+=1 def set_batch(): choose_batch_window.destroy() f = open('calibration.txt', 'r') lines = f.readlines() words = lines[Globals.DVH_film_batch.get()].split() Globals.DVH_popt_red[0] = float(words[3]) Globals.DVH_popt_red[1] = float(words[4]) Globals.DVH_popt_red[2] = float(words[5]) f.close() Globals.DVH_film_dataset_ROI_red_channel_dose = np.zeros((Globals.DVH_film_dataset_ROI_red_channel.shape[0],\ Globals.DVH_film_dataset_ROI_red_channel.shape[1])) for i in range(Globals.DVH_film_dataset_ROI_red_channel_dose.shape[0]): for j in range(Globals.DVH_film_dataset_ROI_red_channel_dose.shape[1]): Globals.DVH_film_dataset_ROI_red_channel_dose[i,j] = Globals.DVH_film_factor*\ pixel_to_dose(Globals.DVH_film_dataset_ROI_red_channel[i,j], \ Globals.DVH_popt_red[0], Globals.DVH_popt_red[1], Globals.DVH_popt_red[2]) Globals.DVH_film_dataset_red_channel_dose = np.zeros((Globals.DVH_film_dataset_red_channel.shape[0],\ Globals.DVH_film_dataset_red_channel.shape[1])) for i in range(Globals.DVH_film_dataset_red_channel_dose.shape[0]): for j in range(Globals.DVH_film_dataset_red_channel_dose.shape[1]): Globals.DVH_film_dataset_red_channel_dose[i,j] = Globals.DVH_film_factor*\ pixel_to_dose(Globals.DVH_film_dataset_red_channel[i,j], \ Globals.DVH_popt_red[0], Globals.DVH_popt_red[1], Globals.DVH_popt_red[2]) Globals.DVH_film_write_image.create_image(0,0,image=scaled_image_visual, anchor="nw") Globals.DVH_film_write_image.image = scaled_image_visual mx_film=np.max(Globals.DVH_film_dataset_ROI_red_channel_dose) Globals.DVH_max_dose_film = mx_film img_film = Globals.DVH_film_dataset_ROI_red_channel_dose img_film = img_film/mx_film PIL_img_film = Image.fromarray(np.uint8(cm.viridis(img_film)*255)) scaled_image_visual_film = ImageTk.PhotoImage(image=PIL_img_film) Globals.DVH_film_dose_write_image.create_image(0,0,image=scaled_image_visual_film, anchor="nw") Globals.DVH_film_dose_write_image.image = scaled_image_visual_film film_scanned_image_text_canvas.create_image(0,0,image=Globals.profiles_scanned_image_text_image, anchor="nw") film_scanned_image_text_canvas.image = Globals.profiles_scanned_image_text_image film_dose_map_image_text_canvas.create_image(0,0, image=Globals.profiles_film_dose_map_text_image, anchor="nw") film_dose_map_image_text_canvas.image=Globals.profiles_film_dose_map_text_image new_window.destroy() set_batch_button_frame = tk.Frame(choose_batch_frame) set_batch_button_frame.grid(row=row_cnt, column=1, columnspan=3, padx=(10,0), pady=(5,5)) set_batch_button_frame.configure(bg='#ffffff') choose_batch_frame.grid_columnconfigure(weight_cnt, weight=0) choose_batch_frame.grid_rowconfigure(weight_cnt, weight=0) set_batch_button = tk.Button(set_batch_button_frame, text='OK', image=Globals.done_button_image, cursor='hand2',\ font=('calibri', '14'), relief=FLAT, state=ACTIVE, command=set_batch) set_batch_button.pack(expand=True, fill=BOTH) set_batch_button.image=Globals.done_button_image img_ROI = Globals.DVH_film_dataset[Globals.DVH_ROI_coords[0][1]:Globals.DVH_ROI_coords[2][1],\ Globals.DVH_ROI_coords[0][0]:Globals.DVH_ROI_coords[1][0], :] img_ROI_red_channel = img_ROI[:,:,2] Globals.DVH_film_variable_ROI_coords = [Globals.DVH_ROI_coords[0][1], Globals.DVH_ROI_coords[2][1],\ Globals.DVH_ROI_coords[0][0], Globals.DVH_ROI_coords[1][0]] Globals.DVH_film_dataset_ROI = img_ROI Globals.DVH_film_dataset_ROI_red_channel = img_ROI_red_channel R = img_ROI[:,:,2];B = img_ROI[:,:,0]; G = img_ROI[:,:,1] img_ROI_RGB = np.zeros(img_ROI.shape) img_ROI_RGB[:,:,0]=R; img_ROI_RGB[:,:,1]=G; img_ROI_RGB[:,:,2]=B PIL_img_ROI = (img_ROI_RGB/256).astype('uint8') PIL_img_ROI = Image.fromarray(PIL_img_ROI, 'RGB') #PIL_img_ROI = Image.fromarray((img_ROI_RGB * 255).astype(np.uint8), 'RGB') wid = PIL_img_ROI.width;heig = PIL_img_ROI.height #film_window_write_image = tk.Canvas(film_window_scroll_frame) film_image_canvas = tk.Canvas(Globals.DVH_film_panedwindow) film_image_canvas.grid(row=0,column=0, sticky=N+S+W+E) Globals.DVH_film_panedwindow.add(film_image_canvas, \ height=max(heig,Globals.profiles_scanned_image_text_image.height()), \ width=wid + Globals.profiles_scanned_image_text_image.width()) film_image_canvas.config(bg='#ffffff', relief=FLAT, highlightthickness=0, \ height=max(heig,Globals.profiles_scanned_image_text_image.height()), \ width=wid + Globals.profiles_scanned_image_text_image.width()) film_dose_canvas = tk.Canvas(Globals.DVH_film_panedwindow) film_dose_canvas.grid(row=1,column=0, sticky=N+S+W+E) Globals.DVH_film_panedwindow.add(film_dose_canvas, \ height=max(heig,Globals.profiles_film_dose_map_text_image.height()), \ width=wid + Globals.profiles_film_dose_map_text_image.width()) film_dose_canvas.config(bg='#ffffff', relief=FLAT, highlightthickness=0, \ height=max(heig,Globals.profiles_film_dose_map_text_image.height()), \ width=wid + Globals.profiles_film_dose_map_text_image.width()) Globals.DVH_film_write_image = tk.Canvas(film_image_canvas) Globals.DVH_film_write_image.grid(row=0,column=1,sticky=N+S+W+E) Globals.DVH_film_write_image.config(bg='#ffffff', relief=FLAT, highlightthickness=0, width=wid, height=heig) Globals.DVH_film_dose_write_image = tk.Canvas(film_dose_canvas) Globals.DVH_film_dose_write_image.grid(row=0,column=1,sticky=N+S+W+E) Globals.DVH_film_dose_write_image.config(bg='#ffffff', relief=FLAT, highlightthickness=0, width=wid, height=heig) film_scanned_image_text_canvas=tk.Canvas(film_image_canvas) film_scanned_image_text_canvas.grid(row=0,column=0,sticky=N+S+W+E) film_scanned_image_text_canvas.config(bg='#ffffff', relief=FLAT, highlightthickness=0, \ height=Globals.profiles_scanned_image_text_image.height(), width=Globals.profiles_scanned_image_text_image.width()) film_dose_map_image_text_canvas=tk.Canvas(film_dose_canvas) film_dose_map_image_text_canvas.grid(row=0,column=0,sticky=N+S+W+E) film_dose_map_image_text_canvas.config(bg='#ffffff', relief=FLAT, highlightthickness=0, \ height=Globals.profiles_film_dose_map_text_image.height(), width=Globals.profiles_film_dose_map_text_image.width()) scaled_image_visual = PIL_img_ROI scaled_image_visual = ImageTk.PhotoImage(image=scaled_image_visual) Globals.DVH_upload_button_doseplan.config(state=DISABLED) Globals.DVH_upload_button_rtplan.config(state=ACTIVE) Globals.DVH_upload_button_film.config(state=DISABLED) #Beregne avstand mellom ROI og isocenter gitt i mm # [top left[mot venstre, oppover], top right[mot venstre (høyre blir negativ), oppover], bottom left, bottom right] if(ref_test): Globals.DVH_distance_reference_point_ROI.append([(Globals.DVH_film_reference_point[0]-Globals.DVH_ROI_coords[0][0])*0.2, \ (Globals.DVH_film_reference_point[1] -Globals.DVH_ROI_coords[0][1])*0.2]) Globals.DVH_distance_reference_point_ROI.append([(Globals.DVH_film_reference_point[0] - Globals.DVH_ROI_coords[1][0])*0.2,\ (Globals.DVH_film_reference_point[1] - Globals.DVH_ROI_coords[1][1])*0.2]) Globals.DVH_distance_reference_point_ROI.append([(Globals.DVH_film_reference_point[0] - Globals.DVH_ROI_coords[2][0])*0.2,\ (Globals.DVH_film_reference_point[1] - Globals.DVH_ROI_coords[2][1])*0.2]) Globals.DVH_distance_reference_point_ROI.append([(Globals.DVH_film_reference_point[0] - Globals.DVH_ROI_coords[3][0])*0.2,\ (Globals.DVH_film_reference_point[1] - Globals.DVH_ROI_coords[3][1])*0.2]) Globals.DVH_isocenter_or_reference_point = "Ref_point" else: Globals.DVH_distance_isocenter_ROI.append([(Globals.DVH_film_isocenter[0]-Globals.DVH_ROI_coords[0][0])*0.2, \ (Globals.DVH_film_isocenter[1] -Globals.DVH_ROI_coords[0][1])*0.2]) Globals.DVH_distance_isocenter_ROI.append([(Globals.DVH_film_isocenter[0] - Globals.DVH_ROI_coords[1][0])*0.2,\ (Globals.DVH_film_isocenter[1] - Globals.DVH_ROI_coords[1][1])*0.2]) Globals.DVH_distance_isocenter_ROI.append([(Globals.DVH_film_isocenter[0] - Globals.DVH_ROI_coords[2][0])*0.2,\ (Globals.DVH_film_isocenter[1] - Globals.DVH_ROI_coords[2][1])*0.2]) Globals.DVH_distance_isocenter_ROI.append([(Globals.DVH_film_isocenter[0] - Globals.DVH_ROI_coords[3][0])*0.2,\ (Globals.DVH_film_isocenter[1] - Globals.DVH_ROI_coords[3][1])*0.2]) Globals.DVH_isocenter_or_reference_point = "Isocenter" done_button_frame = tk.Frame(new_window_isocenter_tab) done_button_frame.grid(row=10, column=3, padx=(10,10), pady=(5,5), sticky=N+S+W+E) done_button_frame.configure(bg='#ffffff') new_window_isocenter_tab.grid_columnconfigure(5, weight=0) new_window_isocenter_tab.grid_rowconfigure(5, weight=0) Globals.DVH_done_button = tk.Button(done_button_frame, text='Done', image=Globals.done_button_image,\ cursor='hand2', font=('calibri', '14'), relief=FLAT, state=DISABLED, command=lambda: finishFilmMarkers(False)) Globals.DVH_done_button.pack(expand=True, fill=BOTH) Globals.DVH_done_button.config(bg='#ffffff', activebackground='#ffffff', activeforeground='#ffffff', highlightthickness=0) Globals.DVH_done_button.image=Globals.done_button_image done_button_reference_point_frame = tk.Frame(new_window_reference_point_tab) done_button_reference_point_frame.grid(row=10, column=3, padx=(10,10), pady=(5,5), sticky=N+S+W+E) done_button_reference_point_frame.configure(bg='#ffffff') new_window_reference_point_tab.grid_columnconfigure(5, weight=0) new_window_reference_point_tab.grid_rowconfigure(5, weight=0) Globals.DVH_done_button_reference_point= tk.Button(done_button_reference_point_frame, text='Done', image=Globals.done_button_image,\ cursor='hand2', font=('calibri', '14'), relief=FLAT, state=DISABLED, command=lambda: finishFilmMarkers(True)) Globals.DVH_done_button_reference_point.pack(expand=True, fill=BOTH) Globals.DVH_done_button_reference_point.config(bg='#ffffff', activebackground='#ffffff', activeforeground='#ffffff', highlightthickness=0) Globals.DVH_done_button_reference_point.image=Globals.done_button_image elif(ext==""): return else: messagebox.showerror("Error", "The file must be a *.tif file") def help_showPlanes(): new_window = tk.Toplevel(Globals.tab5) w = Globals.profiles_showPlanes_image.width() h = Globals.profiles_showPlanes_image.height() new_window.geometry("%dx%d+0+0" % (w, h)) new_window.grab_set() canvas = tk.Canvas(new_window) canvas.config(relief=FLAT, bg='#ffffff', highlightthickness=0) canvas.create_image(0, 0, image=Globals.profiles_showPlanes_image, anchor='nw') canvas.pack(expand=True, fill=BOTH)
[ "Globals.profiles_doseplan_text_image.width", "Globals.DVH_doseplans_filenames.append", "Globals.DVH_input_lateral_displacement.config", "Globals.profiles_showPlanes_image.width", "Globals.DVH_distance_reference_point_ROI.append", "Globals.DCH_film_orientation.get", "os.path.dirname", "tkinter.filedialog.askopenfilename", "tkinter.ttk.Frame", "numpy.max", "Globals.profiles_film_dose_map_text_image.height", "Globals.DVH_doseplans_scroll_frame.grid_rowconfigure", "Globals.DVH_doseplan_dataset_ROI_several.append", "tkinter.messagebox.showinfo", "Globals.DVH_input_vertical_displacement.config", "cv2.flip", "Globals.DVH_doseplans_factor_input.append", "tkinter.ttk.Notebook", "Globals.DVH_slice_offset.get", "PIL.ImageTk.PhotoImage", "PIL.Image.open", "Globals.DVH_mark_isocenter_up_down_line.append", "Globals.DVH_done_button.config", "Globals.DVH_input_lateral_displacement.get", "tkinter.messagebox.askyesno", "Globals.profiles_doseplan_text_image.height", "tkinter.Text", "Globals.DVH_slice_offset.grid", "Globals.DVH_film_factor_input.get", "Globals.profiles_film_dose_map_text_image.width", "Globals.DVH_input_longitudinal_displacement.grid", "os.chdir", "Globals.DVH_film_write_image.grid", "tkinter.Toplevel", "os.path.normpath", "Globals.DVH_mark_reference_point_oval.append", "Globals.DVH_input_vertical_displacement.grid", "Globals.DVH_film_orientation.get", "Globals.DVH_input_longitudinal_displacement.insert", "tkinter.Canvas", "Globals.DVH_film_orientation_menu.configure", "tkinter.Scrollbar", "Globals.DVH_film_dose_write_image.create_image", "Globals.DVH_distance_isocenter_ROI.append", "os.path.splitext", "Globals.DVH_mark_ROI_rectangle.append", "PIL.Image.fromarray", "Globals.DVH_doseplans_scroll_frame.grid_columnconfigure", "Globals.DVH_film_write_image.config", "Globals.DVH_film_factor_input.config", "Globals.DVH_upload_button_doseplan.config", "Globals.DVH_done_button.pack", "Globals.DVH_film_dose_write_image.config", "Globals.DVH_input_longitudinal_displacement.config", "Globals.DVH_done_button_reference_point.config", "numpy.clip", "Globals.DVH_upload_button_rtplan.config", "Globals.DVH_iscoenter_coords.append", "tkinter.Frame", "Globals.DVH_doseplan_write_image.create_image", "Globals.profiles_scanned_image_text_image.width", "Globals.DVH_ROI_coords.append", "Globals.DVH_slice_offset.insert", "Globals.profiles_scanned_image_text_image.height", "Globals.DVH_film_write_image.create_image", "Globals.profiles_showPlanes_image.height", "numpy.swapaxes", "cv2.resize", "Globals.DVH_input_lateral_displacement.insert", "pydicom.dcmread", "Globals.DVH_film_batch.get", "Globals.DVH_input_vertical_displacement.get", "tkinter.messagebox.showerror", "os.getcwd", "numpy.zeros", "tkinter.Radiobutton", "Globals.DVH_done_button_reference_point.pack", "cv2.medianBlur", "Globals.DVH_doseplans_factor_text.append", "numpy.round", "tkinter.Button", "Globals.DVH_doseplan_write_image.config", "Globals.DVH_mark_isocenter_oval.append", "Globals.DVH_slice_offset.config", "matplotlib.cm.viridis", "Globals.DVH_input_lateral_displacement.grid", "tkinter.messagebox.askokcancel", "Globals.DVH_upload_button_film.config", "Globals.DVH_mark_isocenter_right_left_line.append", "Globals.DVH_input_vertical_displacement.insert", "Globals.DVH_doseplan_write_image.grid", "Globals.DVH_film_dose_write_image.grid", "Globals.DVH_input_longitudinal_displacement.get" ]
[((2165, 2176), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (2173, 2176), True, 'import numpy as np\n'), ((6927, 6938), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (6935, 6938), True, 'import numpy as np\n'), ((9940, 9951), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (9948, 9951), True, 'import numpy as np\n'), ((28706, 28717), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (28714, 28717), True, 'import numpy as np\n'), ((32116, 32127), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (32124, 32127), True, 'import numpy as np\n'), ((50068, 50096), 'tkinter.filedialog.askopenfilename', 'filedialog.askopenfilename', ([], {}), '()\n', (50094, 50096), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((50346, 50357), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (50355, 50357), False, 'import os\n'), ((50371, 50392), 'os.path.dirname', 'os.path.dirname', (['file'], {}), '(file)\n', (50386, 50392), False, 'import os\n'), ((50397, 50413), 'os.chdir', 'os.chdir', (['parent'], {}), '(parent)\n', (50405, 50413), False, 'import os\n'), ((50428, 50449), 'pydicom.dcmread', 'pydicom.dcmread', (['file'], {}), '(file)\n', (50443, 50449), False, 'import pydicom\n'), ((50887, 50911), 'os.chdir', 'os.chdir', (['current_folder'], {}), '(current_folder)\n', (50895, 50911), False, 'import os\n'), ((55491, 55602), 'tkinter.messagebox.askyesno', 'messagebox.askyesno', (['"""Question"""', '"""Are you going to upload several doseplans and/or use a factor on a plan?"""'], {}), "('Question',\n 'Are you going to upload several doseplans and/or use a factor on a plan?')\n", (55510, 55602), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((55695, 55727), 'tkinter.Toplevel', 'tk.Toplevel', (['Globals.tab5_canvas'], {}), '(Globals.tab5_canvas)\n', (55706, 55727), True, 'import tkinter as tk\n'), ((55859, 55912), 'tkinter.Frame', 'tk.Frame', (['several_doseplans_window'], {'bd': '(0)', 'relief': 'FLAT'}), '(several_doseplans_window, bd=0, relief=FLAT)\n', (55867, 55912), True, 'import tkinter as tk\n'), ((55945, 55977), 'tkinter.Canvas', 'Canvas', (['doseplans_over_all_frame'], {}), '(doseplans_over_all_frame)\n', (55951, 55977), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((56006, 56106), 'tkinter.Scrollbar', 'Scrollbar', (['doseplans_over_all_frame'], {'orient': 'HORIZONTAL', 'command': 'doseplans_over_all_canvas.xview'}), '(doseplans_over_all_frame, orient=HORIZONTAL, command=\n doseplans_over_all_canvas.xview)\n', (56015, 56106), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((56129, 56205), 'tkinter.Scrollbar', 'Scrollbar', (['doseplans_over_all_frame'], {'command': 'doseplans_over_all_canvas.yview'}), '(doseplans_over_all_frame, command=doseplans_over_all_canvas.yview)\n', (56138, 56205), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((56248, 56284), 'tkinter.ttk.Frame', 'ttk.Frame', (['doseplans_over_all_canvas'], {}), '(doseplans_over_all_canvas)\n', (56257, 56284), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((57461, 57505), 'tkinter.Frame', 'tk.Frame', (['Globals.DVH_doseplans_scroll_frame'], {}), '(Globals.DVH_doseplans_scroll_frame)\n', (57469, 57505), True, 'import tkinter as tk\n'), ((57605, 57673), 'Globals.DVH_doseplans_scroll_frame.grid_columnconfigure', 'Globals.DVH_doseplans_scroll_frame.grid_columnconfigure', (['(0)'], {'weight': '(0)'}), '(0, weight=0)\n', (57660, 57673), False, 'import Globals\n'), ((57678, 57743), 'Globals.DVH_doseplans_scroll_frame.grid_rowconfigure', 'Globals.DVH_doseplans_scroll_frame.grid_rowconfigure', (['(0)'], {'weight': '(0)'}), '(0, weight=0)\n', (57730, 57743), False, 'import Globals\n'), ((61764, 61808), 'tkinter.Frame', 'tk.Frame', (['Globals.DVH_doseplans_scroll_frame'], {}), '(Globals.DVH_doseplans_scroll_frame)\n', (61772, 61808), True, 'import tkinter as tk\n'), ((61964, 62029), 'Globals.DVH_doseplans_scroll_frame.grid_rowconfigure', 'Globals.DVH_doseplans_scroll_frame.grid_rowconfigure', (['(3)'], {'weight': '(0)'}), '(3, weight=0)\n', (62016, 62029), False, 'import Globals\n'), ((62034, 62102), 'Globals.DVH_doseplans_scroll_frame.grid_columnconfigure', 'Globals.DVH_doseplans_scroll_frame.grid_columnconfigure', (['(3)'], {'weight': '(0)'}), '(3, weight=0)\n', (62089, 62102), False, 'import Globals\n'), ((62132, 62322), 'tkinter.Button', 'tk.Button', (['doseplans_done_button_frame'], {'text': '"""Done"""', 'image': 'Globals.done_button_image', 'cursor': '"""hand2"""', 'font': "('calibri', '14')", 'relief': 'FLAT', 'state': 'ACTIVE', 'command': 'closeUploadDoseplans'}), "(doseplans_done_button_frame, text='Done', image=Globals.\n done_button_image, cursor='hand2', font=('calibri', '14'), relief=FLAT,\n state=ACTIVE, command=closeUploadDoseplans)\n", (62141, 62322), True, 'import tkinter as tk\n'), ((62593, 62656), 'tkinter.Text', 'tk.Text', (['Globals.DVH_doseplans_scroll_frame'], {'width': '(15)', 'height': '(1)'}), '(Globals.DVH_doseplans_scroll_frame, width=15, height=1)\n', (62600, 62656), True, 'import tkinter as tk\n'), ((62895, 62960), 'Globals.DVH_doseplans_scroll_frame.grid_rowconfigure', 'Globals.DVH_doseplans_scroll_frame.grid_rowconfigure', (['(1)'], {'weight': '(0)'}), '(1, weight=0)\n', (62947, 62960), False, 'import Globals\n'), ((62965, 63033), 'Globals.DVH_doseplans_scroll_frame.grid_columnconfigure', 'Globals.DVH_doseplans_scroll_frame.grid_columnconfigure', (['(1)'], {'weight': '(0)'}), '(1, weight=0)\n', (63020, 63033), False, 'import Globals\n'), ((63054, 63117), 'tkinter.Text', 'tk.Text', (['Globals.DVH_doseplans_scroll_frame'], {'width': '(30)', 'height': '(2)'}), '(Globals.DVH_doseplans_scroll_frame, width=30, height=2)\n', (63061, 63117), True, 'import tkinter as tk\n'), ((63408, 63476), 'Globals.DVH_doseplans_scroll_frame.grid_columnconfigure', 'Globals.DVH_doseplans_scroll_frame.grid_columnconfigure', (['(2)'], {'weight': '(0)'}), '(2, weight=0)\n', (63463, 63476), False, 'import Globals\n'), ((63480, 63545), 'Globals.DVH_doseplans_scroll_frame.grid_rowconfigure', 'Globals.DVH_doseplans_scroll_frame.grid_rowconfigure', (['(2)'], {'weight': '(0)'}), '(2, weight=0)\n', (63532, 63545), False, 'import Globals\n'), ((63578, 63606), 'tkinter.filedialog.askopenfilename', 'filedialog.askopenfilename', ([], {}), '()\n', (63604, 63606), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((63856, 63867), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (63865, 63867), False, 'import os\n'), ((63881, 63902), 'os.path.dirname', 'os.path.dirname', (['file'], {}), '(file)\n', (63896, 63902), False, 'import os\n'), ((63907, 63923), 'os.chdir', 'os.chdir', (['parent'], {}), '(parent)\n', (63915, 63923), False, 'import os\n'), ((63938, 63959), 'pydicom.dcmread', 'pydicom.dcmread', (['file'], {}), '(file)\n', (63953, 63959), False, 'import pydicom\n'), ((63964, 63988), 'os.chdir', 'os.chdir', (['current_folder'], {}), '(current_folder)\n', (63972, 63988), False, 'import os\n'), ((66091, 66146), 'Globals.DVH_upload_button_doseplan.config', 'Globals.DVH_upload_button_doseplan.config', ([], {'state': 'ACTIVE'}), '(state=ACTIVE)\n', (66132, 66146), False, 'import Globals\n'), ((66151, 66206), 'Globals.DVH_upload_button_rtplan.config', 'Globals.DVH_upload_button_rtplan.config', ([], {'state': 'DISABLED'}), '(state=DISABLED)\n', (66190, 66206), False, 'import Globals\n'), ((66818, 66847), 'PIL.ImageTk.PhotoImage', 'ImageTk.PhotoImage', ([], {'image': 'img'}), '(image=img)\n', (66836, 66847), False, 'from PIL import Image, ImageTk\n'), ((66876, 66913), 'tkinter.Toplevel', 'tk.Toplevel', (['new_window_isocenter_tab'], {}), '(new_window_isocenter_tab)\n', (66887, 66913), True, 'import tkinter as tk\n'), ((67041, 67091), 'tkinter.Frame', 'tk.Frame', (['mark_isocenter_window'], {'bd': '(0)', 'relief': 'FLAT'}), '(mark_isocenter_window, bd=0, relief=FLAT)\n', (67049, 67091), True, 'import tkinter as tk\n'), ((67129, 67166), 'tkinter.Canvas', 'Canvas', (['mark_isocenter_over_all_frame'], {}), '(mark_isocenter_over_all_frame)\n', (67135, 67166), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((67200, 67310), 'tkinter.Scrollbar', 'Scrollbar', (['mark_isocenter_over_all_frame'], {'orient': 'HORIZONTAL', 'command': 'mark_isocenter_over_all_canvas.xview'}), '(mark_isocenter_over_all_frame, orient=HORIZONTAL, command=\n mark_isocenter_over_all_canvas.xview)\n', (67209, 67310), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((67338, 67429), 'tkinter.Scrollbar', 'Scrollbar', (['mark_isocenter_over_all_frame'], {'command': 'mark_isocenter_over_all_canvas.yview'}), '(mark_isocenter_over_all_frame, command=\n mark_isocenter_over_all_canvas.yview)\n', (67347, 67429), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((67460, 67501), 'tkinter.ttk.Frame', 'ttk.Frame', (['mark_isocenter_over_all_canvas'], {}), '(mark_isocenter_over_all_canvas)\n', (67469, 67501), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((68760, 68798), 'tkinter.Canvas', 'tk.Canvas', (['mark_isocenter_scroll_frame'], {}), '(mark_isocenter_scroll_frame)\n', (68769, 68798), True, 'import tkinter as tk\n'), ((71568, 71597), 'PIL.ImageTk.PhotoImage', 'ImageTk.PhotoImage', ([], {'image': 'img'}), '(image=img)\n', (71586, 71597), False, 'from PIL import Image, ImageTk\n'), ((71632, 71675), 'tkinter.Toplevel', 'tk.Toplevel', (['new_window_reference_point_tab'], {}), '(new_window_reference_point_tab)\n', (71643, 71675), True, 'import tkinter as tk\n'), ((71821, 71877), 'tkinter.Frame', 'tk.Frame', (['mark_reference_point_window'], {'bd': '(0)', 'relief': 'FLAT'}), '(mark_reference_point_window, bd=0, relief=FLAT)\n', (71829, 71877), True, 'import tkinter as tk\n'), ((71921, 71964), 'tkinter.Canvas', 'Canvas', (['mark_reference_point_over_all_frame'], {}), '(mark_reference_point_over_all_frame)\n', (71927, 71964), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((72004, 72126), 'tkinter.Scrollbar', 'Scrollbar', (['mark_reference_point_over_all_frame'], {'orient': 'HORIZONTAL', 'command': 'mark_reference_point_over_all_canvas.xview'}), '(mark_reference_point_over_all_frame, orient=HORIZONTAL, command=\n mark_reference_point_over_all_canvas.xview)\n', (72013, 72126), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((72160, 72263), 'tkinter.Scrollbar', 'Scrollbar', (['mark_reference_point_over_all_frame'], {'command': 'mark_reference_point_over_all_canvas.yview'}), '(mark_reference_point_over_all_frame, command=\n mark_reference_point_over_all_canvas.yview)\n', (72169, 72263), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((72300, 72347), 'tkinter.ttk.Frame', 'ttk.Frame', (['mark_reference_point_over_all_canvas'], {}), '(mark_reference_point_over_all_canvas)\n', (72309, 72347), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((73732, 73776), 'tkinter.Canvas', 'tk.Canvas', (['mark_reference_point_scroll_frame'], {}), '(mark_reference_point_scroll_frame)\n', (73741, 73776), True, 'import tkinter as tk\n'), ((75638, 75667), 'PIL.ImageTk.PhotoImage', 'ImageTk.PhotoImage', ([], {'image': 'img'}), '(image=img)\n', (75656, 75667), False, 'from PIL import Image, ImageTk\n'), ((75690, 75706), 'tkinter.Toplevel', 'tk.Toplevel', (['tab'], {}), '(tab)\n', (75701, 75706), True, 'import tkinter as tk\n'), ((75816, 75860), 'tkinter.Frame', 'tk.Frame', (['mark_ROI_window'], {'bd': '(0)', 'relief': 'FLAT'}), '(mark_ROI_window, bd=0, relief=FLAT)\n', (75824, 75860), True, 'import tkinter as tk\n'), ((75892, 75923), 'tkinter.Canvas', 'Canvas', (['mark_ROI_over_all_frame'], {}), '(mark_ROI_over_all_frame)\n', (75898, 75923), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((75951, 76049), 'tkinter.Scrollbar', 'Scrollbar', (['mark_ROI_over_all_frame'], {'orient': 'HORIZONTAL', 'command': 'mark_ROI_over_all_canvas.xview'}), '(mark_ROI_over_all_frame, orient=HORIZONTAL, command=\n mark_ROI_over_all_canvas.xview)\n', (75960, 76049), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((76071, 76145), 'tkinter.Scrollbar', 'Scrollbar', (['mark_ROI_over_all_frame'], {'command': 'mark_ROI_over_all_canvas.yview'}), '(mark_ROI_over_all_frame, command=mark_ROI_over_all_canvas.yview)\n', (76080, 76145), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((76175, 76210), 'tkinter.ttk.Frame', 'ttk.Frame', (['mark_ROI_over_all_canvas'], {}), '(mark_ROI_over_all_canvas)\n', (76184, 76210), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((77343, 77375), 'tkinter.Canvas', 'tk.Canvas', (['mark_ROI_scroll_frame'], {}), '(mark_ROI_scroll_frame)\n', (77352, 77375), True, 'import tkinter as tk\n'), ((80666, 80694), 'tkinter.filedialog.askopenfilename', 'filedialog.askopenfilename', ([], {}), '()\n', (80692, 80694), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((117283, 117308), 'tkinter.Toplevel', 'tk.Toplevel', (['Globals.tab5'], {}), '(Globals.tab5)\n', (117294, 117308), True, 'import tkinter as tk\n'), ((117317, 117358), 'Globals.profiles_showPlanes_image.width', 'Globals.profiles_showPlanes_image.width', ([], {}), '()\n', (117356, 117358), False, 'import Globals\n'), ((117367, 117409), 'Globals.profiles_showPlanes_image.height', 'Globals.profiles_showPlanes_image.height', ([], {}), '()\n', (117407, 117409), False, 'import Globals\n'), ((117496, 117517), 'tkinter.Canvas', 'tk.Canvas', (['new_window'], {}), '(new_window)\n', (117505, 117517), True, 'import tkinter as tk\n'), ((2369, 2384), 'numpy.round', 'np.round', (['iso_1'], {}), '(iso_1)\n', (2377, 2384), True, 'import numpy as np\n'), ((2411, 2426), 'numpy.round', 'np.round', (['iso_2'], {}), '(iso_2)\n', (2419, 2426), True, 'import numpy as np\n'), ((2453, 2468), 'numpy.round', 'np.round', (['iso_3'], {}), '(iso_3)\n', (2461, 2468), True, 'import numpy as np\n'), ((3342, 3359), 'numpy.round', 'np.round', (['lateral'], {}), '(lateral)\n', (3350, 3359), True, 'import numpy as np\n'), ((3382, 3400), 'numpy.round', 'np.round', (['vertical'], {}), '(vertical)\n', (3390, 3400), True, 'import numpy as np\n'), ((3421, 3437), 'numpy.round', 'np.round', (['longit'], {}), '(longit)\n', (3429, 3437), True, 'import numpy as np\n'), ((3509, 3560), 'numpy.round', 'np.round', (['Globals.DVH_doseplan_lateral_displacement'], {}), '(Globals.DVH_doseplan_lateral_displacement)\n', (3517, 3560), True, 'import numpy as np\n'), ((3605, 3657), 'numpy.round', 'np.round', (['Globals.DVH_doseplan_vertical_displacement'], {}), '(Globals.DVH_doseplan_vertical_displacement)\n', (3613, 3657), True, 'import numpy as np\n'), ((3706, 3762), 'numpy.round', 'np.round', (['Globals.DVH_doseplan_longitudianl_displacement'], {}), '(Globals.DVH_doseplan_longitudianl_displacement)\n', (3714, 3762), True, 'import numpy as np\n'), ((18578, 18732), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Error"""', '"""Reference point is outside of dosematrix\n (Code: first dimension, number of frames in dosematrix)"""'], {}), '(\'Error\',\n """Reference point is outside of dosematrix\n (Code: first dimension, number of frames in dosematrix)"""\n )\n', (18598, 18732), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((18823, 18966), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Error"""', '"""Reference point is outside of dosematrix\n (Code: second dimension, rows in dosematrix)"""'], {}), '(\'Error\',\n """Reference point is outside of dosematrix\n (Code: second dimension, rows in dosematrix)"""\n )\n', (18843, 18966), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((19057, 19202), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Error"""', '"""Reference point is outside of dosematrix\n (Code: third dimension, columns in dosematrix)"""'], {}), '(\'Error\',\n """Reference point is outside of dosematrix\n (Code: third dimension, columns in dosematrix)"""\n )\n', (19077, 19202), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((20318, 20423), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Fatal Error"""', '"""Fatal error: marked ROI is out of range in doseplan. Try again"""'], {}), "('Fatal Error',\n 'Fatal error: marked ROI is out of range in doseplan. Try again')\n", (20338, 20423), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((20642, 20747), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Fatal Error"""', '"""Fatal error: marked ROI is out of range in doseplan. Try again"""'], {}), "('Fatal Error',\n 'Fatal error: marked ROI is out of range in doseplan. Try again')\n", (20662, 20747), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((21009, 21114), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Fatal Error"""', '"""Fatal error: marked ROI is out of range in doseplan. Try again"""'], {}), "('Fatal Error',\n 'Fatal error: marked ROI is out of range in doseplan. Try again')\n", (21029, 21114), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((21541, 21646), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Fatal Error"""', '"""Fatal error: marked ROI is out of range in doseplan. Try again"""'], {}), "('Fatal Error',\n 'Fatal error: marked ROI is out of range in doseplan. Try again')\n", (21561, 21646), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((22087, 22192), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Fatal Error"""', '"""Fatal error: marked ROI is out of range in doseplan. Try again"""'], {}), "('Fatal Error',\n 'Fatal error: marked ROI is out of range in doseplan. Try again')\n", (22107, 22192), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((22261, 22366), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Fatal Error"""', '"""Fatal error: marked ROI is out of range in doseplan. Try again"""'], {}), "('Fatal Error',\n 'Fatal error: marked ROI is out of range in doseplan. Try again')\n", (22281, 22366), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((22840, 22945), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Fatal Error"""', '"""Fatal error: marked ROI is out of range in doseplan. Try again"""'], {}), "('Fatal Error',\n 'Fatal error: marked ROI is out of range in doseplan. Try again')\n", (22860, 22945), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((23232, 23337), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Fatal Error"""', '"""Fatal error: marked ROI is out of range in doseplan. Try again"""'], {}), "('Fatal Error',\n 'Fatal error: marked ROI is out of range in doseplan. Try again')\n", (23252, 23337), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((24201, 24361), 'tkinter.messagebox.showinfo', 'messagebox.showinfo', (['"""ROI info"""', '("""The ROI marked on the film did not fit with the size of the doseplan and had to be cut.\n"""\n + ROI_info)'], {}), '(\'ROI info\', \n """The ROI marked on the film did not fit with the size of the doseplan and had to be cut.\n"""\n + ROI_info)\n', (24220, 24361), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((25233, 25244), 'numpy.max', 'np.max', (['img'], {}), '(img)\n', (25239, 25244), True, 'import numpy as np\n'), ((25524, 25563), 'tkinter.Canvas', 'tk.Canvas', (['Globals.DVH_film_panedwindow'], {}), '(Globals.DVH_film_panedwindow)\n', (25533, 25563), True, 'import tkinter as tk\n'), ((26119, 26145), 'tkinter.Canvas', 'tk.Canvas', (['doseplan_canvas'], {}), '(doseplan_canvas)\n', (26128, 26145), True, 'import tkinter as tk\n'), ((26154, 26230), 'Globals.DVH_doseplan_write_image.grid', 'Globals.DVH_doseplan_write_image.grid', ([], {'row': '(0)', 'column': '(1)', 'sticky': '(N + S + W + E)'}), '(row=0, column=1, sticky=N + S + W + E)\n', (26191, 26230), False, 'import Globals\n'), ((26231, 26347), 'Globals.DVH_doseplan_write_image.config', 'Globals.DVH_doseplan_write_image.config', ([], {'bg': '"""#ffffff"""', 'relief': 'FLAT', 'highlightthickness': '(0)', 'width': 'wid', 'height': 'heig'}), "(bg='#ffffff', relief=FLAT,\n highlightthickness=0, width=wid, height=heig)\n", (26270, 26347), False, 'import Globals\n'), ((26382, 26408), 'tkinter.Canvas', 'tk.Canvas', (['doseplan_canvas'], {}), '(doseplan_canvas)\n', (26391, 26408), True, 'import tkinter as tk\n'), ((26773, 26818), 'PIL.ImageTk.PhotoImage', 'ImageTk.PhotoImage', ([], {'image': 'scaled_image_visual'}), '(image=scaled_image_visual)\n', (26791, 26818), False, 'from PIL import Image, ImageTk\n'), ((26983, 27079), 'Globals.DVH_doseplan_write_image.create_image', 'Globals.DVH_doseplan_write_image.create_image', (['(0)', '(0)'], {'image': 'scaled_image_visual', 'anchor': '"""nw"""'}), "(0, 0, image=\n scaled_image_visual, anchor='nw')\n", (27028, 27079), False, 'import Globals\n'), ((27492, 27544), 'Globals.DVH_doseplan_dataset_ROI_several.append', 'Globals.DVH_doseplan_dataset_ROI_several.append', (['img'], {}), '(img)\n', (27539, 27544), False, 'import Globals\n'), ((28856, 28871), 'numpy.round', 'np.round', (['iso_1'], {}), '(iso_1)\n', (28864, 28871), True, 'import numpy as np\n'), ((28941, 28956), 'numpy.round', 'np.round', (['iso_2'], {}), '(iso_2)\n', (28949, 28956), True, 'import numpy as np\n'), ((29026, 29041), 'numpy.round', 'np.round', (['iso_3'], {}), '(iso_3)\n', (29034, 29041), True, 'import numpy as np\n'), ((42210, 42315), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Fatal Error"""', '"""Fatal error: marked ROI is out of range in doseplan. Try again"""'], {}), "('Fatal Error',\n 'Fatal error: marked ROI is out of range in doseplan. Try again')\n", (42230, 42315), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((42534, 42639), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Fatal Error"""', '"""Fatal error: marked ROI is out of range in doseplan. Try again"""'], {}), "('Fatal Error',\n 'Fatal error: marked ROI is out of range in doseplan. Try again')\n", (42554, 42639), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((42901, 43006), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Fatal Error"""', '"""Fatal error: marked ROI is out of range in doseplan. Try again"""'], {}), "('Fatal Error',\n 'Fatal error: marked ROI is out of range in doseplan. Try again')\n", (42921, 43006), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((43433, 43538), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Fatal Error"""', '"""Fatal error: marked ROI is out of range in doseplan. Try again"""'], {}), "('Fatal Error',\n 'Fatal error: marked ROI is out of range in doseplan. Try again')\n", (43453, 43538), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((43979, 44084), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Fatal Error"""', '"""Fatal error: marked ROI is out of range in doseplan. Try again"""'], {}), "('Fatal Error',\n 'Fatal error: marked ROI is out of range in doseplan. Try again')\n", (43999, 44084), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((44153, 44258), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Fatal Error"""', '"""Fatal error: marked ROI is out of range in doseplan. Try again"""'], {}), "('Fatal Error',\n 'Fatal error: marked ROI is out of range in doseplan. Try again')\n", (44173, 44258), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((44732, 44837), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Fatal Error"""', '"""Fatal error: marked ROI is out of range in doseplan. Try again"""'], {}), "('Fatal Error',\n 'Fatal error: marked ROI is out of range in doseplan. Try again')\n", (44752, 44837), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((45124, 45229), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Fatal Error"""', '"""Fatal error: marked ROI is out of range in doseplan. Try again"""'], {}), "('Fatal Error',\n 'Fatal error: marked ROI is out of range in doseplan. Try again')\n", (45144, 45229), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((46093, 46253), 'tkinter.messagebox.showinfo', 'messagebox.showinfo', (['"""ROI info"""', '("""The ROI marked on the film did not fit with the size of the doseplan and had to be cut.\n"""\n + ROI_info)'], {}), '(\'ROI info\', \n """The ROI marked on the film did not fit with the size of the doseplan and had to be cut.\n"""\n + ROI_info)\n', (46112, 46253), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((47174, 47185), 'numpy.max', 'np.max', (['img'], {}), '(img)\n', (47180, 47185), True, 'import numpy as np\n'), ((47521, 47560), 'tkinter.Canvas', 'tk.Canvas', (['Globals.DVH_film_panedwindow'], {}), '(Globals.DVH_film_panedwindow)\n', (47530, 47560), True, 'import tkinter as tk\n'), ((48116, 48142), 'tkinter.Canvas', 'tk.Canvas', (['doseplan_canvas'], {}), '(doseplan_canvas)\n', (48125, 48142), True, 'import tkinter as tk\n'), ((48151, 48227), 'Globals.DVH_doseplan_write_image.grid', 'Globals.DVH_doseplan_write_image.grid', ([], {'row': '(0)', 'column': '(1)', 'sticky': '(N + S + W + E)'}), '(row=0, column=1, sticky=N + S + W + E)\n', (48188, 48227), False, 'import Globals\n'), ((48228, 48344), 'Globals.DVH_doseplan_write_image.config', 'Globals.DVH_doseplan_write_image.config', ([], {'bg': '"""#ffffff"""', 'relief': 'FLAT', 'highlightthickness': '(0)', 'width': 'wid', 'height': 'heig'}), "(bg='#ffffff', relief=FLAT,\n highlightthickness=0, width=wid, height=heig)\n", (48267, 48344), False, 'import Globals\n'), ((48379, 48405), 'tkinter.Canvas', 'tk.Canvas', (['doseplan_canvas'], {}), '(doseplan_canvas)\n', (48388, 48405), True, 'import tkinter as tk\n'), ((48770, 48815), 'PIL.ImageTk.PhotoImage', 'ImageTk.PhotoImage', ([], {'image': 'scaled_image_visual'}), '(image=scaled_image_visual)\n', (48788, 48815), False, 'from PIL import Image, ImageTk\n'), ((48980, 49076), 'Globals.DVH_doseplan_write_image.create_image', 'Globals.DVH_doseplan_write_image.create_image', (['(0)', '(0)'], {'image': 'scaled_image_visual', 'anchor': '"""nw"""'}), "(0, 0, image=\n scaled_image_visual, anchor='nw')\n", (49025, 49076), False, 'import Globals\n'), ((49485, 49537), 'Globals.DVH_doseplan_dataset_ROI_several.append', 'Globals.DVH_doseplan_dataset_ROI_several.append', (['img'], {}), '(img)\n', (49532, 49537), False, 'import Globals\n'), ((50738, 50848), 'tkinter.messagebox.askokcancel', 'messagebox.askokcancel', (['"""Dose summation"""', '"""You did not upload the full doseplan. Do you want to continue?"""'], {}), "('Dose summation',\n 'You did not upload the full doseplan. Do you want to continue?')\n", (50760, 50848), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((51249, 51342), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Error"""', '"""The resolution in doseplan must be 1x1x1, 2x2x2 or 3x3x3"""'], {}), "('Error',\n 'The resolution in doseplan must be 1x1x1, 2x2x2 or 3x3x3')\n", (51269, 51342), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((51828, 51979), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Error"""', '"""The Image Orientation (Patient) must be parallel to one of the main axis and perpendicular to the two others."""'], {}), "('Error',\n 'The Image Orientation (Patient) must be parallel to one of the main axis and perpendicular to the two others.'\n )\n", (51848, 51979), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((53106, 53163), 'Globals.DVH_upload_button_doseplan.config', 'Globals.DVH_upload_button_doseplan.config', ([], {'state': 'DISABLED'}), '(state=DISABLED)\n', (53147, 53163), False, 'import Globals\n'), ((53257, 53320), 'tkinter.Text', 'tk.Text', (['Globals.DVH_doseplans_scroll_frame'], {'width': '(30)', 'height': '(1)'}), '(Globals.DVH_doseplans_scroll_frame, width=30, height=1)\n', (53264, 53320), True, 'import tkinter as tk\n'), ((53617, 53728), 'Globals.DVH_doseplans_scroll_frame.grid_columnconfigure', 'Globals.DVH_doseplans_scroll_frame.grid_columnconfigure', (['Globals.DVH_doseplans_grid_config_count'], {'weight': '(0)'}), '(Globals.\n DVH_doseplans_grid_config_count, weight=0)\n', (53672, 53728), False, 'import Globals\n'), ((53732, 53840), 'Globals.DVH_doseplans_scroll_frame.grid_rowconfigure', 'Globals.DVH_doseplans_scroll_frame.grid_rowconfigure', (['Globals.DVH_doseplans_grid_config_count'], {'weight': '(0)'}), '(Globals.\n DVH_doseplans_grid_config_count, weight=0)\n', (53784, 53840), False, 'import Globals\n'), ((53844, 53900), 'Globals.DVH_doseplans_filenames.append', 'Globals.DVH_doseplans_filenames.append', (['textbox_filename'], {}), '(textbox_filename)\n', (53882, 53900), False, 'import Globals\n'), ((53980, 54042), 'tkinter.Text', 'tk.Text', (['Globals.DVH_doseplans_scroll_frame'], {'width': '(6)', 'height': '(1)'}), '(Globals.DVH_doseplans_scroll_frame, width=6, height=1)\n', (53987, 54042), True, 'import tkinter as tk\n'), ((54340, 54451), 'Globals.DVH_doseplans_scroll_frame.grid_columnconfigure', 'Globals.DVH_doseplans_scroll_frame.grid_columnconfigure', (['Globals.DVH_doseplans_grid_config_count'], {'weight': '(0)'}), '(Globals.\n DVH_doseplans_grid_config_count, weight=0)\n', (54395, 54451), False, 'import Globals\n'), ((54455, 54563), 'Globals.DVH_doseplans_scroll_frame.grid_rowconfigure', 'Globals.DVH_doseplans_scroll_frame.grid_rowconfigure', (['Globals.DVH_doseplans_grid_config_count'], {'weight': '(0)'}), '(Globals.\n DVH_doseplans_grid_config_count, weight=0)\n', (54507, 54563), False, 'import Globals\n'), ((54567, 54623), 'Globals.DVH_doseplans_factor_text.append', 'Globals.DVH_doseplans_factor_text.append', (['textbox_factor'], {}), '(textbox_factor)\n', (54607, 54623), False, 'import Globals\n'), ((54709, 54752), 'tkinter.Text', 'tk.Text', (['Globals.DVH_doseplans_scroll_frame'], {}), '(Globals.DVH_doseplans_scroll_frame)\n', (54716, 54752), True, 'import tkinter as tk\n'), ((55045, 55156), 'Globals.DVH_doseplans_scroll_frame.grid_columnconfigure', 'Globals.DVH_doseplans_scroll_frame.grid_columnconfigure', (['Globals.DVH_doseplans_grid_config_count'], {'weight': '(0)'}), '(Globals.\n DVH_doseplans_grid_config_count, weight=0)\n', (55100, 55156), False, 'import Globals\n'), ((55160, 55268), 'Globals.DVH_doseplans_scroll_frame.grid_rowconfigure', 'Globals.DVH_doseplans_scroll_frame.grid_rowconfigure', (['Globals.DVH_doseplans_grid_config_count'], {'weight': '(0)'}), '(Globals.\n DVH_doseplans_grid_config_count, weight=0)\n', (55212, 55268), False, 'import Globals\n'), ((55272, 55335), 'Globals.DVH_doseplans_factor_input.append', 'Globals.DVH_doseplans_factor_input.append', (['textbox_factor_input'], {}), '(textbox_factor_input)\n', (55313, 55335), False, 'import Globals\n'), ((59396, 59411), 'numpy.max', 'np.max', (['img_ROI'], {}), '(img_ROI)\n', (59402, 59411), True, 'import numpy as np\n'), ((59683, 59722), 'tkinter.Canvas', 'tk.Canvas', (['Globals.DVH_film_panedwindow'], {}), '(Globals.DVH_film_panedwindow)\n', (59692, 59722), True, 'import tkinter as tk\n'), ((60278, 60304), 'tkinter.Canvas', 'tk.Canvas', (['doseplan_canvas'], {}), '(doseplan_canvas)\n', (60287, 60304), True, 'import tkinter as tk\n'), ((60313, 60389), 'Globals.DVH_doseplan_write_image.grid', 'Globals.DVH_doseplan_write_image.grid', ([], {'row': '(0)', 'column': '(1)', 'sticky': '(N + S + W + E)'}), '(row=0, column=1, sticky=N + S + W + E)\n', (60350, 60389), False, 'import Globals\n'), ((60390, 60506), 'Globals.DVH_doseplan_write_image.config', 'Globals.DVH_doseplan_write_image.config', ([], {'bg': '"""#ffffff"""', 'relief': 'FLAT', 'highlightthickness': '(0)', 'width': 'wid', 'height': 'heig'}), "(bg='#ffffff', relief=FLAT,\n highlightthickness=0, width=wid, height=heig)\n", (60429, 60506), False, 'import Globals\n'), ((60541, 60567), 'tkinter.Canvas', 'tk.Canvas', (['doseplan_canvas'], {}), '(doseplan_canvas)\n', (60550, 60567), True, 'import tkinter as tk\n'), ((60932, 60977), 'PIL.ImageTk.PhotoImage', 'ImageTk.PhotoImage', ([], {'image': 'scaled_image_visual'}), '(image=scaled_image_visual)\n', (60950, 60977), False, 'from PIL import Image, ImageTk\n'), ((61142, 61238), 'Globals.DVH_doseplan_write_image.create_image', 'Globals.DVH_doseplan_write_image.create_image', (['(0)', '(0)'], {'image': 'scaled_image_visual', 'anchor': '"""nw"""'}), "(0, 0, image=\n scaled_image_visual, anchor='nw')\n", (61187, 61238), False, 'import Globals\n'), ((61554, 61611), 'Globals.DVH_upload_button_doseplan.config', 'Globals.DVH_upload_button_doseplan.config', ([], {'state': 'DISABLED'}), '(state=DISABLED)\n', (61595, 61611), False, 'import Globals\n'), ((65887, 66032), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Error"""', '"""Fidora does only support patient positions: \n HFS, HFP, HFDR, HFDL, FFP, FFS, FFDR, FFDL"""'], {}), '(\'Error\',\n """Fidora does only support patient positions: \n HFS, HFP, HFDR, HFDL, FFP, FFS, FFDR, FFDL"""\n )\n', (65907, 66032), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((75001, 75051), 'Globals.DVH_mark_reference_point_oval.append', 'Globals.DVH_mark_reference_point_oval.append', (['oval'], {}), '(oval)\n', (75045, 75051), False, 'import Globals\n'), ((78799, 78890), 'Globals.DVH_ROI_coords.append', 'Globals.DVH_ROI_coords.append', (['[rectangle_top_corner[0][0], rectangle_top_corner[0][1]]'], {}), '([rectangle_top_corner[0][0],\n rectangle_top_corner[0][1]])\n', (78828, 78890), False, 'import Globals\n'), ((78895, 78989), 'Globals.DVH_ROI_coords.append', 'Globals.DVH_ROI_coords.append', (['[rectangle_bottom_corner[0][0], rectangle_top_corner[0][1]]'], {}), '([rectangle_bottom_corner[0][0],\n rectangle_top_corner[0][1]])\n', (78924, 78989), False, 'import Globals\n'), ((78994, 79088), 'Globals.DVH_ROI_coords.append', 'Globals.DVH_ROI_coords.append', (['[rectangle_top_corner[0][0], rectangle_bottom_corner[0][1]]'], {}), '([rectangle_top_corner[0][0],\n rectangle_bottom_corner[0][1]])\n', (79023, 79088), False, 'import Globals\n'), ((79093, 79190), 'Globals.DVH_ROI_coords.append', 'Globals.DVH_ROI_coords.append', (['[rectangle_bottom_corner[0][0], rectangle_bottom_corner[0][1]]'], {}), '([rectangle_bottom_corner[0][0],\n rectangle_bottom_corner[0][1]])\n', (79122, 79190), False, 'import Globals\n'), ((79427, 79470), 'Globals.DVH_mark_ROI_rectangle.append', 'Globals.DVH_mark_ROI_rectangle.append', (['rect'], {}), '(rect)\n', (79464, 79470), False, 'import Globals\n'), ((80132, 80166), 'Globals.DVH_film_orientation.get', 'Globals.DVH_film_orientation.get', ([], {}), '()\n', (80164, 80166), False, 'import Globals\n'), ((80184, 80282), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Missing parameter"""', '"""Film orientation missing \n (Code: UploadFilm)"""'], {}), '(\'Missing parameter\',\n """Film orientation missing \n (Code: UploadFilm)""")\n', (80204, 80282), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((80298, 80348), 'Globals.DVH_film_factor_input.get', 'Globals.DVH_film_factor_input.get', (['"""1.0"""', '"""end-1c"""'], {}), "('1.0', 'end-1c')\n", (80331, 80348), False, 'import Globals\n'), ((80788, 80799), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (80797, 80799), False, 'import os\n'), ((80817, 80838), 'os.path.dirname', 'os.path.dirname', (['file'], {}), '(file)\n', (80832, 80838), False, 'import os\n'), ((80847, 80863), 'os.chdir', 'os.chdir', (['parent'], {}), '(parent)\n', (80855, 80863), False, 'import os\n'), ((80878, 80894), 'PIL.Image.open', 'Image.open', (['file'], {}), '(file)\n', (80888, 80894), False, 'from PIL import Image, ImageTk\n'), ((81060, 81085), 'cv2.medianBlur', 'cv2.medianBlur', (['cv2Img', '(5)'], {}), '(cv2Img, 5)\n', (81074, 81085), False, 'import cv2\n'), ((82056, 82080), 'os.chdir', 'os.chdir', (['current_folder'], {}), '(current_folder)\n', (82064, 82080), False, 'import os\n'), ((82219, 82278), 'Globals.DVH_film_orientation_menu.configure', 'Globals.DVH_film_orientation_menu.configure', ([], {'state': 'DISABLED'}), '(state=DISABLED)\n', (82262, 82278), False, 'import Globals\n'), ((82287, 82339), 'Globals.DVH_film_factor_input.config', 'Globals.DVH_film_factor_input.config', ([], {'state': 'DISABLED'}), '(state=DISABLED)\n', (82323, 82339), False, 'import Globals\n'), ((82405, 82430), 'tkinter.Toplevel', 'tk.Toplevel', (['Globals.tab5'], {}), '(Globals.tab5)\n', (82416, 82430), True, 'import tkinter as tk\n'), ((82548, 82587), 'tkinter.Frame', 'tk.Frame', (['new_window'], {'bd': '(0)', 'relief': 'FLAT'}), '(new_window, bd=0, relief=FLAT)\n', (82556, 82587), True, 'import tkinter as tk\n'), ((82625, 82658), 'tkinter.Canvas', 'Canvas', (['new_window_over_all_frame'], {}), '(new_window_over_all_frame)\n', (82631, 82658), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((82692, 82794), 'tkinter.Scrollbar', 'Scrollbar', (['new_window_over_all_frame'], {'orient': 'HORIZONTAL', 'command': 'new_window_over_all_canvas.xview'}), '(new_window_over_all_frame, orient=HORIZONTAL, command=\n new_window_over_all_canvas.xview)\n', (82701, 82794), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((82822, 82900), 'tkinter.Scrollbar', 'Scrollbar', (['new_window_over_all_frame'], {'command': 'new_window_over_all_canvas.yview'}), '(new_window_over_all_frame, command=new_window_over_all_canvas.yview)\n', (82831, 82900), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((82936, 82973), 'tkinter.ttk.Frame', 'ttk.Frame', (['new_window_over_all_canvas'], {}), '(new_window_over_all_canvas)\n', (82945, 82973), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((84212, 84265), 'tkinter.Text', 'tk.Text', (['new_window_scroll_frame'], {'height': '(3)', 'width': '(120)'}), '(new_window_scroll_frame, height=3, width=120)\n', (84219, 84265), True, 'import tkinter as tk\n'), ((85251, 85288), 'tkinter.ttk.Notebook', 'ttk.Notebook', (['new_window_scroll_frame'], {}), '(new_window_scroll_frame)\n', (85263, 85288), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((85601, 85631), 'tkinter.ttk.Frame', 'ttk.Frame', (['new_window_notebook'], {}), '(new_window_notebook)\n', (85610, 85631), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((85749, 85779), 'tkinter.ttk.Frame', 'ttk.Frame', (['new_window_notebook'], {}), '(new_window_notebook)\n', (85758, 85779), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((85902, 85932), 'tkinter.ttk.Frame', 'ttk.Frame', (['new_window_notebook'], {}), '(new_window_notebook)\n', (85911, 85932), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((86031, 86066), 'tkinter.Canvas', 'tk.Canvas', (['new_window_isocenter_tab'], {}), '(new_window_isocenter_tab)\n', (86040, 86066), True, 'import tkinter as tk\n'), ((86657, 86698), 'tkinter.Canvas', 'tk.Canvas', (['new_window_reference_point_tab'], {}), '(new_window_reference_point_tab)\n', (86666, 86698), True, 'import tkinter as tk\n'), ((87376, 87429), 'tkinter.Text', 'tk.Text', (['new_window_isocenter_tab'], {'width': '(55)', 'height': '(7)'}), '(new_window_isocenter_tab, width=55, height=7)\n', (87383, 87429), True, 'import tkinter as tk\n'), ((88334, 88393), 'tkinter.Text', 'tk.Text', (['new_window_reference_point_tab'], {'width': '(55)', 'height': '(5)'}), '(new_window_reference_point_tab, width=55, height=5)\n', (88341, 88393), True, 'import tkinter as tk\n'), ((89215, 89249), 'tkinter.Frame', 'tk.Frame', (['new_window_isocenter_tab'], {}), '(new_window_isocenter_tab)\n', (89223, 89249), True, 'import tkinter as tk\n'), ((90132, 90172), 'tkinter.Frame', 'tk.Frame', (['new_window_reference_point_tab'], {}), '(new_window_reference_point_tab)\n', (90140, 90172), True, 'import tkinter as tk\n'), ((91097, 91156), 'tkinter.Text', 'tk.Text', (['new_window_reference_point_tab'], {'width': '(55)', 'height': '(3)'}), '(new_window_reference_point_tab, width=55, height=3)\n', (91104, 91156), True, 'import tkinter as tk\n'), ((91835, 91894), 'tkinter.Text', 'tk.Text', (['new_window_reference_point_tab'], {'width': '(12)', 'height': '(1)'}), '(new_window_reference_point_tab, width=12, height=1)\n', (91842, 91894), True, 'import tkinter as tk\n'), ((92336, 92394), 'tkinter.Text', 'tk.Text', (['new_window_reference_point_tab'], {'width': '(5)', 'height': '(1)'}), '(new_window_reference_point_tab, width=5, height=1)\n', (92343, 92394), True, 'import tkinter as tk\n'), ((92403, 92461), 'Globals.DVH_input_lateral_displacement.insert', 'Globals.DVH_input_lateral_displacement.insert', (['INSERT', '""" """'], {}), "(INSERT, ' ')\n", (92448, 92461), False, 'import Globals\n'), ((92470, 92592), 'Globals.DVH_input_lateral_displacement.config', 'Globals.DVH_input_lateral_displacement.config', ([], {'bg': '"""#E5f9ff"""', 'relief': 'GROOVE', 'bd': '(2)', 'state': 'NORMAL', 'font': "('calibri', '11')"}), "(bg='#E5f9ff', relief=GROOVE,\n bd=2, state=NORMAL, font=('calibri', '11'))\n", (92515, 92592), False, 'import Globals\n'), ((92597, 92690), 'Globals.DVH_input_lateral_displacement.grid', 'Globals.DVH_input_lateral_displacement.grid', ([], {'row': '(5)', 'column': '(3)', 'padx': '(0, 285)', 'pady': '(35, 0)'}), '(row=5, column=3, padx=(0, 285),\n pady=(35, 0))\n', (92640, 92690), False, 'import Globals\n'), ((92859, 92918), 'tkinter.Text', 'tk.Text', (['new_window_reference_point_tab'], {'width': '(12)', 'height': '(1)'}), '(new_window_reference_point_tab, width=12, height=1)\n', (92866, 92918), True, 'import tkinter as tk\n'), ((93363, 93421), 'tkinter.Text', 'tk.Text', (['new_window_reference_point_tab'], {'width': '(4)', 'height': '(1)'}), '(new_window_reference_point_tab, width=4, height=1)\n', (93370, 93421), True, 'import tkinter as tk\n'), ((93430, 93489), 'Globals.DVH_input_vertical_displacement.insert', 'Globals.DVH_input_vertical_displacement.insert', (['INSERT', '""" """'], {}), "(INSERT, ' ')\n", (93476, 93489), False, 'import Globals\n'), ((93498, 93621), 'Globals.DVH_input_vertical_displacement.config', 'Globals.DVH_input_vertical_displacement.config', ([], {'bg': '"""#E5f9ff"""', 'relief': 'GROOVE', 'bd': '(2)', 'state': 'NORMAL', 'font': "('calibri', '11')"}), "(bg='#E5f9ff', relief=GROOVE,\n bd=2, state=NORMAL, font=('calibri', '11'))\n", (93544, 93621), False, 'import Globals\n'), ((93626, 93719), 'Globals.DVH_input_vertical_displacement.grid', 'Globals.DVH_input_vertical_displacement.grid', ([], {'row': '(5)', 'column': '(3)', 'padx': '(0, 25)', 'pady': '(35, 0)'}), '(row=5, column=3, padx=(0, 25),\n pady=(35, 0))\n', (93670, 93719), False, 'import Globals\n'), ((93887, 93946), 'tkinter.Text', 'tk.Text', (['new_window_reference_point_tab'], {'width': '(12)', 'height': '(1)'}), '(new_window_reference_point_tab, width=12, height=1)\n', (93894, 93946), True, 'import tkinter as tk\n'), ((94389, 94447), 'tkinter.Text', 'tk.Text', (['new_window_reference_point_tab'], {'width': '(5)', 'height': '(1)'}), '(new_window_reference_point_tab, width=5, height=1)\n', (94396, 94447), True, 'import tkinter as tk\n'), ((94456, 94519), 'Globals.DVH_input_longitudinal_displacement.insert', 'Globals.DVH_input_longitudinal_displacement.insert', (['INSERT', '""" """'], {}), "(INSERT, ' ')\n", (94506, 94519), False, 'import Globals\n'), ((94528, 94656), 'Globals.DVH_input_longitudinal_displacement.config', 'Globals.DVH_input_longitudinal_displacement.config', ([], {'bg': '"""#E5f9ff"""', 'relief': 'GROOVE', 'bd': '(2)', 'state': 'NORMAL', 'font': "('calibri', '11')"}), "(bg='#E5f9ff', relief=\n GROOVE, bd=2, state=NORMAL, font=('calibri', '11'))\n", (94578, 94656), False, 'import Globals\n'), ((94660, 94758), 'Globals.DVH_input_longitudinal_displacement.grid', 'Globals.DVH_input_longitudinal_displacement.grid', ([], {'row': '(5)', 'column': '(3)', 'padx': '(240, 0)', 'pady': '(35, 0)'}), '(row=5, column=3, padx=(240,\n 0), pady=(35, 0))\n', (94708, 94758), False, 'import Globals\n'), ((94938, 94991), 'tkinter.Text', 'tk.Text', (['new_window_isocenter_tab'], {'width': '(55)', 'height': '(7)'}), '(new_window_isocenter_tab, width=55, height=7)\n', (94945, 94991), True, 'import tkinter as tk\n'), ((95830, 95889), 'tkinter.Text', 'tk.Text', (['new_window_reference_point_tab'], {'width': '(55)', 'height': '(5)'}), '(new_window_reference_point_tab, width=55, height=5)\n', (95837, 95889), True, 'import tkinter as tk\n'), ((96767, 96801), 'tkinter.Frame', 'tk.Frame', (['new_window_isocenter_tab'], {}), '(new_window_isocenter_tab)\n', (96775, 96801), True, 'import tkinter as tk\n'), ((97615, 97668), 'tkinter.Text', 'tk.Text', (['new_window_isocenter_tab'], {'width': '(25)', 'height': '(1)'}), '(new_window_isocenter_tab, width=25, height=1)\n', (97622, 97668), True, 'import tkinter as tk\n'), ((98081, 98133), 'tkinter.Text', 'tk.Text', (['new_window_isocenter_tab'], {'width': '(8)', 'height': '(1)'}), '(new_window_isocenter_tab, width=8, height=1)\n', (98088, 98133), True, 'import tkinter as tk\n'), ((98142, 98217), 'Globals.DVH_slice_offset.grid', 'Globals.DVH_slice_offset.grid', ([], {'row': '(9)', 'column': '(3)', 'padx': '(110, 10)', 'pady': '(0, 0)'}), '(row=9, column=3, padx=(110, 10), pady=(0, 0))\n', (98171, 98217), False, 'import Globals\n'), ((98224, 98268), 'Globals.DVH_slice_offset.insert', 'Globals.DVH_slice_offset.insert', (['INSERT', '""" """'], {}), "(INSERT, ' ')\n", (98255, 98268), False, 'import Globals\n'), ((98277, 98370), 'Globals.DVH_slice_offset.config', 'Globals.DVH_slice_offset.config', ([], {'state': 'NORMAL', 'font': "('calibri', '10')", 'bd': '(2)', 'bg': '"""#ffffff"""'}), "(state=NORMAL, font=('calibri', '10'), bd=2,\n bg='#ffffff')\n", (98308, 98370), False, 'import Globals\n'), ((98549, 98589), 'tkinter.Frame', 'tk.Frame', (['new_window_reference_point_tab'], {}), '(new_window_reference_point_tab)\n', (98557, 98589), True, 'import tkinter as tk\n'), ((115356, 115390), 'tkinter.Frame', 'tk.Frame', (['new_window_isocenter_tab'], {}), '(new_window_isocenter_tab)\n', (115364, 115390), True, 'import tkinter as tk\n'), ((115905, 115957), 'Globals.DVH_done_button.pack', 'Globals.DVH_done_button.pack', ([], {'expand': '(True)', 'fill': 'BOTH'}), '(expand=True, fill=BOTH)\n', (115933, 115957), False, 'import Globals\n'), ((115966, 116092), 'Globals.DVH_done_button.config', 'Globals.DVH_done_button.config', ([], {'bg': '"""#ffffff"""', 'activebackground': '"""#ffffff"""', 'activeforeground': '"""#ffffff"""', 'highlightthickness': '(0)'}), "(bg='#ffffff', activebackground='#ffffff',\n activeforeground='#ffffff', highlightthickness=0)\n", (115996, 116092), False, 'import Globals\n'), ((116198, 116238), 'tkinter.Frame', 'tk.Frame', (['new_window_reference_point_tab'], {}), '(new_window_reference_point_tab)\n', (116206, 116238), True, 'import tkinter as tk\n'), ((116827, 116895), 'Globals.DVH_done_button_reference_point.pack', 'Globals.DVH_done_button_reference_point.pack', ([], {'expand': '(True)', 'fill': 'BOTH'}), '(expand=True, fill=BOTH)\n', (116871, 116895), False, 'import Globals\n'), ((116904, 117050), 'Globals.DVH_done_button_reference_point.config', 'Globals.DVH_done_button_reference_point.config', ([], {'bg': '"""#ffffff"""', 'activebackground': '"""#ffffff"""', 'activeforeground': '"""#ffffff"""', 'highlightthickness': '(0)'}), "(bg='#ffffff',\n activebackground='#ffffff', activeforeground='#ffffff',\n highlightthickness=0)\n", (116950, 117050), False, 'import Globals\n'), ((1482, 1603), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Error"""', '"""Could not read the vertical displacements\n (Code: displacements to integer)"""'], {}), '(\'Error\',\n """Could not read the vertical displacements\n (Code: displacements to integer)"""\n )\n', (1502, 1603), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((1691, 1811), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Error"""', '"""Could not read the lateral displacements\n (Code: displacements to integer)"""'], {}), '(\'Error\',\n """Could not read the lateral displacements\n (Code: displacements to integer)"""\n )\n', (1711, 1811), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((1909, 2034), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Error"""', '"""Could not read the longitudinal displacements\n (Code: displacements to integer)"""'], {}), '(\'Error\',\n """Could not read the longitudinal displacements\n (Code: displacements to integer)"""\n )\n', (1929, 2034), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((3905, 3924), 'numpy.round', 'np.round', (['(iso_1 / 2)'], {}), '(iso_1 / 2)\n', (3913, 3924), True, 'import numpy as np\n'), ((3949, 3968), 'numpy.round', 'np.round', (['(iso_2 / 2)'], {}), '(iso_2 / 2)\n', (3957, 3968), True, 'import numpy as np\n'), ((3993, 4012), 'numpy.round', 'np.round', (['(iso_3 / 2)'], {}), '(iso_3 / 2)\n', (4001, 4012), True, 'import numpy as np\n'), ((4916, 4937), 'numpy.round', 'np.round', (['(lateral / 2)'], {}), '(lateral / 2)\n', (4924, 4937), True, 'import numpy as np\n'), ((4958, 4980), 'numpy.round', 'np.round', (['(vertical / 2)'], {}), '(vertical / 2)\n', (4966, 4980), True, 'import numpy as np\n'), ((4999, 5019), 'numpy.round', 'np.round', (['(longit / 2)'], {}), '(longit / 2)\n', (5007, 5019), True, 'import numpy as np\n'), ((5089, 5144), 'numpy.round', 'np.round', (['(Globals.DVH_doseplan_lateral_displacement / 2)'], {}), '(Globals.DVH_doseplan_lateral_displacement / 2)\n', (5097, 5144), True, 'import numpy as np\n'), ((5189, 5245), 'numpy.round', 'np.round', (['(Globals.DVH_doseplan_vertical_displacement / 2)'], {}), '(Globals.DVH_doseplan_vertical_displacement / 2)\n', (5197, 5245), True, 'import numpy as np\n'), ((5294, 5354), 'numpy.round', 'np.round', (['(Globals.DVH_doseplan_longitudianl_displacement / 2)'], {}), '(Globals.DVH_doseplan_longitudianl_displacement / 2)\n', (5302, 5354), True, 'import numpy as np\n'), ((5446, 5465), 'numpy.round', 'np.round', (['(iso_1 / 3)'], {}), '(iso_1 / 3)\n', (5454, 5465), True, 'import numpy as np\n'), ((5490, 5509), 'numpy.round', 'np.round', (['(iso_2 / 3)'], {}), '(iso_2 / 3)\n', (5498, 5509), True, 'import numpy as np\n'), ((5534, 5553), 'numpy.round', 'np.round', (['(iso_3 / 3)'], {}), '(iso_3 / 3)\n', (5542, 5553), True, 'import numpy as np\n'), ((6457, 6478), 'numpy.round', 'np.round', (['(lateral / 3)'], {}), '(lateral / 3)\n', (6465, 6478), True, 'import numpy as np\n'), ((6499, 6521), 'numpy.round', 'np.round', (['(vertical / 3)'], {}), '(vertical / 3)\n', (6507, 6521), True, 'import numpy as np\n'), ((6540, 6560), 'numpy.round', 'np.round', (['(longit / 3)'], {}), '(longit / 3)\n', (6548, 6560), True, 'import numpy as np\n'), ((6630, 6685), 'numpy.round', 'np.round', (['(Globals.DVH_doseplan_lateral_displacement / 3)'], {}), '(Globals.DVH_doseplan_lateral_displacement / 3)\n', (6638, 6685), True, 'import numpy as np\n'), ((6730, 6786), 'numpy.round', 'np.round', (['(Globals.DVH_doseplan_vertical_displacement / 3)'], {}), '(Globals.DVH_doseplan_vertical_displacement / 3)\n', (6738, 6786), True, 'import numpy as np\n'), ((6835, 6895), 'numpy.round', 'np.round', (['(Globals.DVH_doseplan_longitudianl_displacement / 3)'], {}), '(Globals.DVH_doseplan_longitudianl_displacement / 3)\n', (6843, 6895), True, 'import numpy as np\n'), ((10493, 10527), 'Globals.DVH_film_orientation.get', 'Globals.DVH_film_orientation.get', ([], {}), '()\n', (10525, 10527), False, 'import Globals\n'), ((10571, 10630), 'numpy.swapaxes', 'np.swapaxes', (['Globals.DVH_dataset_doseplan.pixel_array', '(0)', '(1)'], {}), '(Globals.DVH_dataset_doseplan.pixel_array, 0, 1)\n', (10582, 10630), True, 'import numpy as np\n'), ((24937, 24996), 'cv2.resize', 'cv2.resize', (['img'], {'dsize': '(img.shape[1] * 5, img.shape[0] * 5)'}), '(img, dsize=(img.shape[1] * 5, img.shape[0] * 5))\n', (24947, 24996), False, 'import cv2\n'), ((29952, 29971), 'numpy.round', 'np.round', (['(iso_1 / 2)'], {}), '(iso_1 / 2)\n', (29960, 29971), True, 'import numpy as np\n'), ((30041, 30060), 'numpy.round', 'np.round', (['(iso_2 / 2)'], {}), '(iso_2 / 2)\n', (30049, 30060), True, 'import numpy as np\n'), ((30130, 30149), 'numpy.round', 'np.round', (['(iso_3 / 2)'], {}), '(iso_3 / 2)\n', (30138, 30149), True, 'import numpy as np\n'), ((31045, 31064), 'numpy.round', 'np.round', (['(iso_1 / 3)'], {}), '(iso_1 / 3)\n', (31053, 31064), True, 'import numpy as np\n'), ((31134, 31153), 'numpy.round', 'np.round', (['(iso_2 / 3)'], {}), '(iso_2 / 3)\n', (31142, 31153), True, 'import numpy as np\n'), ((31223, 31242), 'numpy.round', 'np.round', (['(iso_3 / 3)'], {}), '(iso_3 / 3)\n', (31231, 31242), True, 'import numpy as np\n'), ((32645, 32679), 'Globals.DVH_film_orientation.get', 'Globals.DVH_film_orientation.get', ([], {}), '()\n', (32677, 32679), False, 'import Globals\n'), ((32723, 32782), 'numpy.swapaxes', 'np.swapaxes', (['Globals.DVH_dataset_doseplan.pixel_array', '(0)', '(1)'], {}), '(Globals.DVH_dataset_doseplan.pixel_array, 0, 1)\n', (32734, 32782), True, 'import numpy as np\n'), ((40739, 40767), 'numpy.round', 'np.round', (['Globals.DVH_offset'], {}), '(Globals.DVH_offset)\n', (40747, 40767), True, 'import numpy as np\n'), ((46878, 46937), 'cv2.resize', 'cv2.resize', (['img'], {'dsize': '(img.shape[1] * 5, img.shape[0] * 5)'}), '(img, dsize=(img.shape[1] * 5, img.shape[0] * 5))\n', (46888, 46937), False, 'import cv2\n'), ((50238, 50300), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Error"""', '"""The file must be a *.dcm file"""'], {}), "('Error', 'The file must be a *.dcm file')\n", (50258, 50300), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((50535, 50672), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Error"""', '"""Could not upload the doseplan correctly. Try again or another file.\n (Code: dose summation)"""'], {}), '(\'Error\',\n """Could not upload the doseplan correctly. Try again or another file.\n (Code: dose summation)"""\n )\n', (50555, 50672), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((52147, 52254), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Error"""', '"""Resolution of the doseplans must be equal. \n(Code: UploadDoseplan)"""'], {}), '(\'Error\',\n """Resolution of the doseplans must be equal. \n(Code: UploadDoseplan)""")\n', (52167, 52254), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((52370, 52489), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Error"""', '"""Dose grid scaling of the doseplans must be equal. \n(Code: UploadDoseplan)"""'], {}), '(\'Error\',\n """Dose grid scaling of the doseplans must be equal. \n(Code: UploadDoseplan)"""\n )\n', (52390, 52489), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((53214, 53228), 'os.path.normpath', 'normpath', (['file'], {}), '(file)\n', (53222, 53228), False, 'from os.path import normpath, basename\n'), ((58410, 58470), 'tkinter.messagebox.showinfo', 'messagebox.showinfo', (['"""INFO"""', '"""No doseplan has been uploaded"""'], {}), "('INFO', 'No doseplan has been uploaded')\n", (58429, 58470), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((63748, 63810), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Error"""', '"""The file must be a *.dcm file"""'], {}), "('Error', 'The file must be a *.dcm file')\n", (63768, 63810), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((64273, 64420), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Error"""', '"""Could not read the RT plan file. Try again or try another file.\n (Code: isocenter reading)"""'], {}), '(\'Error\',\n """Could not read the RT plan file. Try again or try another file.\n (Code: isocenter reading)"""\n )\n', (64293, 64420), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((64575, 64733), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Error"""', '"""Could not read the RT plan file. Try again or try another file. \n (Code: vertical table displacement)"""'], {}), '(\'Error\',\n """Could not read the RT plan file. Try again or try another file. \n (Code: vertical table displacement)"""\n )\n', (64595, 64733), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((64871, 65027), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Error"""', '"""Could not read the RT plan file. Try again or try another file-\n (Code: lateral table displacement)"""'], {}), '(\'Error\',\n """Could not read the RT plan file. Try again or try another file-\n (Code: lateral table displacement)"""\n )\n', (64891, 65027), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((65175, 65335), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Error"""', '"""Could not read the RT plan file. Try again or try another file\n (Code: longitudinal table displacement)"""'], {}), '(\'Error\',\n """Could not read the RT plan file. Try again or try another file\n (Code: longitudinal table displacement)"""\n )\n', (65195, 65335), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((65496, 65641), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Error"""', '"""Could not read the RT plan file. Try again or try another file\n (Code: Patient position)"""'], {}), '(\'Error\',\n """Could not read the RT plan file. Try again or try another file\n (Code: Patient position)"""\n )\n', (65516, 65641), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((69654, 69709), 'Globals.DVH_iscoenter_coords.append', 'Globals.DVH_iscoenter_coords.append', (['[event.x, event.y]'], {}), '([event.x, event.y])\n', (69689, 69709), False, 'import Globals\n'), ((75259, 75319), 'Globals.DVH_done_button_reference_point.config', 'Globals.DVH_done_button_reference_point.config', ([], {'state': 'ACTIVE'}), '(state=ACTIVE)\n', (75305, 75319), False, 'import Globals\n'), ((81126, 81235), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Error"""', '"""Something has gone wrong. Check that the filename does not contain Æ,Ø,Å"""'], {}), "('Error',\n 'Something has gone wrong. Check that the filename does not contain Æ,Ø,Å')\n", (81146, 81235), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((81952, 82028), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Error"""', '"""The uploaded image need to be in RGB-format"""'], {}), "('Error', 'The uploaded image need to be in RGB-format')\n", (81972, 82028), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((82131, 82190), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Error"""', '"""Dpi in image has to be 127"""'], {}), "('Error', 'Dpi in image has to be 127')\n", (82151, 82190), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((99572, 99619), 'Globals.DVH_slice_offset.config', 'Globals.DVH_slice_offset.config', ([], {'state': 'DISABLED'}), '(state=DISABLED)\n', (99603, 99619), False, 'import Globals\n'), ((102285, 102314), 'tkinter.Frame', 'tk.Frame', (['choose_batch_window'], {}), '(choose_batch_window)\n', (102293, 102314), True, 'import tkinter as tk\n'), ((108381, 108409), 'tkinter.Frame', 'tk.Frame', (['choose_batch_frame'], {}), '(choose_batch_frame)\n', (108389, 108409), True, 'import tkinter as tk\n'), ((108748, 108920), 'tkinter.Button', 'tk.Button', (['set_batch_button_frame'], {'text': '"""OK"""', 'image': 'Globals.done_button_image', 'cursor': '"""hand2"""', 'font': "('calibri', '14')", 'relief': 'FLAT', 'state': 'ACTIVE', 'command': 'set_batch'}), "(set_batch_button_frame, text='OK', image=Globals.\n done_button_image, cursor='hand2', font=('calibri', '14'), relief=FLAT,\n state=ACTIVE, command=set_batch)\n", (108757, 108920), True, 'import tkinter as tk\n'), ((109707, 109730), 'numpy.zeros', 'np.zeros', (['img_ROI.shape'], {}), '(img_ROI.shape)\n', (109715, 109730), True, 'import numpy as np\n'), ((109895, 109930), 'PIL.Image.fromarray', 'Image.fromarray', (['PIL_img_ROI', '"""RGB"""'], {}), "(PIL_img_ROI, 'RGB')\n", (109910, 109930), False, 'from PIL import Image, ImageTk\n'), ((110201, 110240), 'tkinter.Canvas', 'tk.Canvas', (['Globals.DVH_film_panedwindow'], {}), '(Globals.DVH_film_panedwindow)\n', (110210, 110240), True, 'import tkinter as tk\n'), ((110834, 110873), 'tkinter.Canvas', 'tk.Canvas', (['Globals.DVH_film_panedwindow'], {}), '(Globals.DVH_film_panedwindow)\n', (110843, 110873), True, 'import tkinter as tk\n'), ((111476, 111504), 'tkinter.Canvas', 'tk.Canvas', (['film_image_canvas'], {}), '(film_image_canvas)\n', (111485, 111504), True, 'import tkinter as tk\n'), ((111517, 111589), 'Globals.DVH_film_write_image.grid', 'Globals.DVH_film_write_image.grid', ([], {'row': '(0)', 'column': '(1)', 'sticky': '(N + S + W + E)'}), '(row=0, column=1, sticky=N + S + W + E)\n', (111550, 111589), False, 'import Globals\n'), ((111594, 111706), 'Globals.DVH_film_write_image.config', 'Globals.DVH_film_write_image.config', ([], {'bg': '"""#ffffff"""', 'relief': 'FLAT', 'highlightthickness': '(0)', 'width': 'wid', 'height': 'heig'}), "(bg='#ffffff', relief=FLAT,\n highlightthickness=0, width=wid, height=heig)\n", (111629, 111706), False, 'import Globals\n'), ((111764, 111791), 'tkinter.Canvas', 'tk.Canvas', (['film_dose_canvas'], {}), '(film_dose_canvas)\n', (111773, 111791), True, 'import tkinter as tk\n'), ((111804, 111881), 'Globals.DVH_film_dose_write_image.grid', 'Globals.DVH_film_dose_write_image.grid', ([], {'row': '(0)', 'column': '(1)', 'sticky': '(N + S + W + E)'}), '(row=0, column=1, sticky=N + S + W + E)\n', (111842, 111881), False, 'import Globals\n'), ((111886, 112003), 'Globals.DVH_film_dose_write_image.config', 'Globals.DVH_film_dose_write_image.config', ([], {'bg': '"""#ffffff"""', 'relief': 'FLAT', 'highlightthickness': '(0)', 'width': 'wid', 'height': 'heig'}), "(bg='#ffffff', relief=FLAT,\n highlightthickness=0, width=wid, height=heig)\n", (111926, 112003), False, 'import Globals\n'), ((112055, 112083), 'tkinter.Canvas', 'tk.Canvas', (['film_image_canvas'], {}), '(film_image_canvas)\n', (112064, 112083), True, 'import tkinter as tk\n'), ((112441, 112468), 'tkinter.Canvas', 'tk.Canvas', (['film_dose_canvas'], {}), '(film_dose_canvas)\n', (112450, 112468), True, 'import tkinter as tk\n'), ((112864, 112909), 'PIL.ImageTk.PhotoImage', 'ImageTk.PhotoImage', ([], {'image': 'scaled_image_visual'}), '(image=scaled_image_visual)\n', (112882, 112909), False, 'from PIL import Image, ImageTk\n'), ((112923, 112980), 'Globals.DVH_upload_button_doseplan.config', 'Globals.DVH_upload_button_doseplan.config', ([], {'state': 'DISABLED'}), '(state=DISABLED)\n', (112964, 112980), False, 'import Globals\n'), ((112993, 113046), 'Globals.DVH_upload_button_rtplan.config', 'Globals.DVH_upload_button_rtplan.config', ([], {'state': 'ACTIVE'}), '(state=ACTIVE)\n', (113032, 113046), False, 'import Globals\n'), ((113059, 113112), 'Globals.DVH_upload_button_film.config', 'Globals.DVH_upload_button_film.config', ([], {'state': 'DISABLED'}), '(state=DISABLED)\n', (113096, 113112), False, 'import Globals\n'), ((117178, 117240), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Error"""', '"""The file must be a *.tif file"""'], {}), "('Error', 'The file must be a *.tif file')\n", (117198, 117240), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((2599, 2655), 'numpy.round', 'np.round', (['Globals.DVH_distance_reference_point_ROI[0][0]'], {}), '(Globals.DVH_distance_reference_point_ROI[0][0])\n', (2607, 2655), True, 'import numpy as np\n'), ((2670, 2726), 'numpy.round', 'np.round', (['Globals.DVH_distance_reference_point_ROI[0][1]'], {}), '(Globals.DVH_distance_reference_point_ROI[0][1])\n', (2678, 2726), True, 'import numpy as np\n'), ((2789, 2845), 'numpy.round', 'np.round', (['Globals.DVH_distance_reference_point_ROI[1][0]'], {}), '(Globals.DVH_distance_reference_point_ROI[1][0])\n', (2797, 2845), True, 'import numpy as np\n'), ((2860, 2916), 'numpy.round', 'np.round', (['Globals.DVH_distance_reference_point_ROI[1][1]'], {}), '(Globals.DVH_distance_reference_point_ROI[1][1])\n', (2868, 2916), True, 'import numpy as np\n'), ((2979, 3035), 'numpy.round', 'np.round', (['Globals.DVH_distance_reference_point_ROI[2][0]'], {}), '(Globals.DVH_distance_reference_point_ROI[2][0])\n', (2987, 3035), True, 'import numpy as np\n'), ((3050, 3106), 'numpy.round', 'np.round', (['Globals.DVH_distance_reference_point_ROI[2][1]'], {}), '(Globals.DVH_distance_reference_point_ROI[2][1])\n', (3058, 3106), True, 'import numpy as np\n'), ((3169, 3225), 'numpy.round', 'np.round', (['Globals.DVH_distance_reference_point_ROI[3][0]'], {}), '(Globals.DVH_distance_reference_point_ROI[3][0])\n', (3177, 3225), True, 'import numpy as np\n'), ((3240, 3296), 'numpy.round', 'np.round', (['Globals.DVH_distance_reference_point_ROI[3][1]'], {}), '(Globals.DVH_distance_reference_point_ROI[3][1])\n', (3248, 3296), True, 'import numpy as np\n'), ((10779, 10813), 'Globals.DVH_film_orientation.get', 'Globals.DVH_film_orientation.get', ([], {}), '()\n', (10811, 10813), False, 'import Globals\n'), ((10858, 10917), 'numpy.swapaxes', 'np.swapaxes', (['Globals.DVH_dataset_doseplan.pixel_array', '(0)', '(2)'], {}), '(Globals.DVH_dataset_doseplan.pixel_array, 0, 2)\n', (10869, 10917), True, 'import numpy as np\n'), ((11578, 11612), 'Globals.DVH_film_orientation.get', 'Globals.DVH_film_orientation.get', ([], {}), '()\n', (11610, 11612), False, 'import Globals\n'), ((25075, 25136), 'cv2.resize', 'cv2.resize', (['img'], {'dsize': '(img.shape[1] * 10, img.shape[0] * 10)'}), '(img, dsize=(img.shape[1] * 10, img.shape[0] * 10))\n', (25085, 25136), False, 'import cv2\n'), ((25164, 25225), 'cv2.resize', 'cv2.resize', (['img'], {'dsize': '(img.shape[1] * 15, img.shape[0] * 15)'}), '(img, dsize=(img.shape[1] * 15, img.shape[0] * 15))\n', (25174, 25225), False, 'import cv2\n'), ((26591, 26635), 'Globals.profiles_doseplan_text_image.width', 'Globals.profiles_doseplan_text_image.width', ([], {}), '()\n', (26633, 26635), False, 'import Globals\n'), ((26644, 26689), 'Globals.profiles_doseplan_text_image.height', 'Globals.profiles_doseplan_text_image.height', ([], {}), '()\n', (26687, 26689), False, 'import Globals\n'), ((27695, 27754), 'cv2.resize', 'cv2.resize', (['img'], {'dsize': '(img.shape[1] * 5, img.shape[0] * 5)'}), '(img, dsize=(img.shape[1] * 5, img.shape[0] * 5))\n', (27705, 27754), False, 'import cv2\n'), ((29208, 29258), 'numpy.round', 'np.round', (['Globals.DVH_distance_isocenter_ROI[0][0]'], {}), '(Globals.DVH_distance_isocenter_ROI[0][0])\n', (29216, 29258), True, 'import numpy as np\n'), ((29273, 29323), 'numpy.round', 'np.round', (['Globals.DVH_distance_isocenter_ROI[0][1]'], {}), '(Globals.DVH_distance_isocenter_ROI[0][1])\n', (29281, 29323), True, 'import numpy as np\n'), ((29386, 29436), 'numpy.round', 'np.round', (['Globals.DVH_distance_isocenter_ROI[1][0]'], {}), '(Globals.DVH_distance_isocenter_ROI[1][0])\n', (29394, 29436), True, 'import numpy as np\n'), ((29451, 29501), 'numpy.round', 'np.round', (['Globals.DVH_distance_isocenter_ROI[1][1]'], {}), '(Globals.DVH_distance_isocenter_ROI[1][1])\n', (29459, 29501), True, 'import numpy as np\n'), ((29564, 29614), 'numpy.round', 'np.round', (['Globals.DVH_distance_isocenter_ROI[2][0]'], {}), '(Globals.DVH_distance_isocenter_ROI[2][0])\n', (29572, 29614), True, 'import numpy as np\n'), ((29629, 29679), 'numpy.round', 'np.round', (['Globals.DVH_distance_isocenter_ROI[2][1]'], {}), '(Globals.DVH_distance_isocenter_ROI[2][1])\n', (29637, 29679), True, 'import numpy as np\n'), ((29742, 29792), 'numpy.round', 'np.round', (['Globals.DVH_distance_isocenter_ROI[3][0]'], {}), '(Globals.DVH_distance_isocenter_ROI[3][0])\n', (29750, 29792), True, 'import numpy as np\n'), ((29807, 29857), 'numpy.round', 'np.round', (['Globals.DVH_distance_isocenter_ROI[3][1]'], {}), '(Globals.DVH_distance_isocenter_ROI[3][1])\n', (29815, 29857), True, 'import numpy as np\n'), ((32931, 32965), 'Globals.DVH_film_orientation.get', 'Globals.DVH_film_orientation.get', ([], {}), '()\n', (32963, 32965), False, 'import Globals\n'), ((33010, 33069), 'numpy.swapaxes', 'np.swapaxes', (['Globals.DVH_dataset_doseplan.pixel_array', '(0)', '(2)'], {}), '(Globals.DVH_dataset_doseplan.pixel_array, 0, 2)\n', (33021, 33069), True, 'import numpy as np\n'), ((33697, 33731), 'Globals.DVH_film_orientation.get', 'Globals.DVH_film_orientation.get', ([], {}), '()\n', (33729, 33731), False, 'import Globals\n'), ((40923, 40955), 'numpy.round', 'np.round', (['(Globals.DVH_offset / 2)'], {}), '(Globals.DVH_offset / 2)\n', (40931, 40955), True, 'import numpy as np\n'), ((41057, 41089), 'numpy.round', 'np.round', (['(Globals.DVH_offset / 3)'], {}), '(Globals.DVH_offset / 3)\n', (41065, 41089), True, 'import numpy as np\n'), ((47016, 47077), 'cv2.resize', 'cv2.resize', (['img'], {'dsize': '(img.shape[1] * 10, img.shape[0] * 10)'}), '(img, dsize=(img.shape[1] * 10, img.shape[0] * 10))\n', (47026, 47077), False, 'import cv2\n'), ((47105, 47166), 'cv2.resize', 'cv2.resize', (['img'], {'dsize': '(img.shape[1] * 15, img.shape[0] * 15)'}), '(img, dsize=(img.shape[1] * 15, img.shape[0] * 15))\n', (47115, 47166), False, 'import cv2\n'), ((48588, 48632), 'Globals.profiles_doseplan_text_image.width', 'Globals.profiles_doseplan_text_image.width', ([], {}), '()\n', (48630, 48632), False, 'import Globals\n'), ((48641, 48686), 'Globals.profiles_doseplan_text_image.height', 'Globals.profiles_doseplan_text_image.height', ([], {}), '()\n', (48684, 48686), False, 'import Globals\n'), ((49688, 49747), 'cv2.resize', 'cv2.resize', (['img'], {'dsize': '(img.shape[1] * 5, img.shape[0] * 5)'}), '(img, dsize=(img.shape[1] * 5, img.shape[0] * 5))\n', (49698, 49747), False, 'import cv2\n'), ((50107, 50129), 'os.path.splitext', 'os.path.splitext', (['file'], {}), '(file)\n', (50123, 50129), False, 'import os\n'), ((52969, 53067), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Error"""', '"""Something went wrong. Try again.\n (Code: processDoseplan)"""'], {}), '(\'Error\',\n """Something went wrong. Try again.\n (Code: processDoseplan)""")\n', (52989, 53067), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((60750, 60794), 'Globals.profiles_doseplan_text_image.width', 'Globals.profiles_doseplan_text_image.width', ([], {}), '()\n', (60792, 60794), False, 'import Globals\n'), ((60803, 60848), 'Globals.profiles_doseplan_text_image.height', 'Globals.profiles_doseplan_text_image.height', ([], {}), '()\n', (60846, 60848), False, 'import Globals\n'), ((63617, 63639), 'os.path.splitext', 'os.path.splitext', (['file'], {}), '(file)\n', (63633, 63639), False, 'import os\n'), ((69838, 69893), 'Globals.DVH_iscoenter_coords.append', 'Globals.DVH_iscoenter_coords.append', (['[event.x, event.y]'], {}), '([event.x, event.y])\n', (69873, 69893), False, 'import Globals\n'), ((70740, 70800), 'Globals.DVH_mark_isocenter_up_down_line.append', 'Globals.DVH_mark_isocenter_up_down_line.append', (['up_down_line'], {}), '(up_down_line)\n', (70786, 70800), False, 'import Globals\n'), ((70813, 70879), 'Globals.DVH_mark_isocenter_right_left_line.append', 'Globals.DVH_mark_isocenter_right_left_line.append', (['right_left_line'], {}), '(right_left_line)\n', (70862, 70879), False, 'import Globals\n'), ((70892, 70936), 'Globals.DVH_mark_isocenter_oval.append', 'Globals.DVH_mark_isocenter_oval.append', (['oval'], {}), '(oval)\n', (70930, 70936), False, 'import Globals\n'), ((79624, 79684), 'Globals.DVH_done_button_reference_point.config', 'Globals.DVH_done_button_reference_point.config', ([], {'state': 'ACTIVE'}), '(state=ACTIVE)\n', (79670, 79684), False, 'import Globals\n'), ((79801, 79845), 'Globals.DVH_done_button.config', 'Globals.DVH_done_button.config', ([], {'state': 'ACTIVE'}), '(state=ACTIVE)\n', (79831, 79845), False, 'import Globals\n'), ((80460, 80510), 'Globals.DVH_film_factor_input.get', 'Globals.DVH_film_factor_input.get', (['"""1.0"""', '"""end-1c"""'], {}), "('1.0', 'end-1c')\n", (80493, 80510), False, 'import Globals\n'), ((80540, 80641), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Missing parameter"""', '"""Film factor invalid format. \n (Code: UploadFilm)"""'], {}), '(\'Missing parameter\',\n """Film factor invalid format. \n (Code: UploadFilm)""")\n', (80560, 80641), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((80705, 80727), 'os.path.splitext', 'os.path.splitext', (['file'], {}), '(file)\n', (80721, 80727), False, 'import os\n'), ((80983, 80997), 'os.path.normpath', 'normpath', (['file'], {}), '(file)\n', (80991, 80997), False, 'from os.path import normpath, basename\n'), ((81440, 81465), 'numpy.clip', 'np.clip', (['cv2Img', '(0)', '(65535)'], {}), '(cv2Img, 0, 65535)\n', (81447, 81465), True, 'import numpy as np\n'), ((81491, 81510), 'cv2.flip', 'cv2.flip', (['cv2Img', '(1)'], {}), '(cv2Img, 1)\n', (81499, 81510), False, 'import cv2\n'), ((81608, 81644), 'PIL.ImageTk.PhotoImage', 'ImageTk.PhotoImage', ([], {'image': 'img_scaled'}), '(image=img_scaled)\n', (81626, 81644), False, 'from PIL import Image, ImageTk\n'), ((81816, 81907), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Error"""', '"""The resolution of the image is not consistent with dpi"""'], {}), "('Error',\n 'The resolution of the image is not consistent with dpi')\n", (81836, 81907), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((101224, 101286), 'Globals.DVH_input_vertical_displacement.config', 'Globals.DVH_input_vertical_displacement.config', ([], {'state': 'DISABLED'}), '(state=DISABLED)\n', (101270, 101286), False, 'import Globals\n'), ((101303, 101369), 'Globals.DVH_input_longitudinal_displacement.config', 'Globals.DVH_input_longitudinal_displacement.config', ([], {'state': 'DISABLED'}), '(state=DISABLED)\n', (101353, 101369), False, 'import Globals\n'), ((101386, 101447), 'Globals.DVH_input_lateral_displacement.config', 'Globals.DVH_input_lateral_displacement.config', ([], {'state': 'DISABLED'}), '(state=DISABLED)\n', (101431, 101447), False, 'import Globals\n'), ((102011, 102054), 'tkinter.Toplevel', 'tk.Toplevel', (['new_window_reference_point_tab'], {}), '(new_window_reference_point_tab)\n', (102022, 102054), True, 'import tkinter as tk\n'), ((102111, 102148), 'tkinter.Toplevel', 'tk.Toplevel', (['new_window_isocenter_tab'], {}), '(new_window_isocenter_tab)\n', (102122, 102148), True, 'import tkinter as tk\n'), ((102814, 102861), 'tkinter.Text', 'tk.Text', (['choose_batch_frame'], {'width': '(10)', 'height': '(1)'}), '(choose_batch_frame, width=10, height=1)\n', (102821, 102861), True, 'import tkinter as tk\n'), ((103332, 103379), 'tkinter.Text', 'tk.Text', (['choose_batch_frame'], {'width': '(20)', 'height': '(1)'}), '(choose_batch_frame, width=20, height=1)\n', (103339, 103379), True, 'import tkinter as tk\n'), ((103833, 103879), 'tkinter.Text', 'tk.Text', (['choose_batch_frame'], {'width': '(8)', 'height': '(1)'}), '(choose_batch_frame, width=8, height=1)\n', (103840, 103879), True, 'import tkinter as tk\n'), ((104350, 104397), 'tkinter.Text', 'tk.Text', (['choose_batch_frame'], {'width': '(30)', 'height': '(1)'}), '(choose_batch_frame, width=30, height=1)\n', (104357, 104397), True, 'import tkinter as tk\n'), ((105813, 105930), 'numpy.zeros', 'np.zeros', (['(Globals.DVH_film_dataset_ROI_red_channel.shape[0], Globals.\n DVH_film_dataset_ROI_red_channel.shape[1])'], {}), '((Globals.DVH_film_dataset_ROI_red_channel.shape[0], Globals.\n DVH_film_dataset_ROI_red_channel.shape[1]))\n', (105821, 105930), True, 'import numpy as np\n'), ((106485, 106594), 'numpy.zeros', 'np.zeros', (['(Globals.DVH_film_dataset_red_channel.shape[0], Globals.\n DVH_film_dataset_red_channel.shape[1])'], {}), '((Globals.DVH_film_dataset_red_channel.shape[0], Globals.\n DVH_film_dataset_red_channel.shape[1]))\n', (106493, 106594), True, 'import numpy as np\n'), ((107089, 107180), 'Globals.DVH_film_write_image.create_image', 'Globals.DVH_film_write_image.create_image', (['(0)', '(0)'], {'image': 'scaled_image_visual', 'anchor': '"""nw"""'}), "(0, 0, image=scaled_image_visual,\n anchor='nw')\n", (107130, 107180), False, 'import Globals\n'), ((107273, 107326), 'numpy.max', 'np.max', (['Globals.DVH_film_dataset_ROI_red_channel_dose'], {}), '(Globals.DVH_film_dataset_ROI_red_channel_dose)\n', (107279, 107326), True, 'import numpy as np\n'), ((107623, 107661), 'PIL.ImageTk.PhotoImage', 'ImageTk.PhotoImage', ([], {'image': 'PIL_img_film'}), '(image=PIL_img_film)\n', (107641, 107661), False, 'from PIL import Image, ImageTk\n'), ((107678, 107780), 'Globals.DVH_film_dose_write_image.create_image', 'Globals.DVH_film_dose_write_image.create_image', (['(0)', '(0)'], {'image': 'scaled_image_visual_film', 'anchor': '"""nw"""'}), "(0, 0, image=\n scaled_image_visual_film, anchor='nw')\n", (107724, 107780), False, 'import Globals\n'), ((113348, 113559), 'Globals.DVH_distance_reference_point_ROI.append', 'Globals.DVH_distance_reference_point_ROI.append', (['[(Globals.DVH_film_reference_point[0] - Globals.DVH_ROI_coords[0][0]) * 0.2,\n (Globals.DVH_film_reference_point[1] - Globals.DVH_ROI_coords[0][1]) * 0.2]'], {}), '([(Globals.\n DVH_film_reference_point[0] - Globals.DVH_ROI_coords[0][0]) * 0.2, (\n Globals.DVH_film_reference_point[1] - Globals.DVH_ROI_coords[0][1]) * 0.2])\n', (113395, 113559), False, 'import Globals\n'), ((113581, 113792), 'Globals.DVH_distance_reference_point_ROI.append', 'Globals.DVH_distance_reference_point_ROI.append', (['[(Globals.DVH_film_reference_point[0] - Globals.DVH_ROI_coords[1][0]) * 0.2,\n (Globals.DVH_film_reference_point[1] - Globals.DVH_ROI_coords[1][1]) * 0.2]'], {}), '([(Globals.\n DVH_film_reference_point[0] - Globals.DVH_ROI_coords[1][0]) * 0.2, (\n Globals.DVH_film_reference_point[1] - Globals.DVH_ROI_coords[1][1]) * 0.2])\n', (113628, 113792), False, 'import Globals\n'), ((113816, 114027), 'Globals.DVH_distance_reference_point_ROI.append', 'Globals.DVH_distance_reference_point_ROI.append', (['[(Globals.DVH_film_reference_point[0] - Globals.DVH_ROI_coords[2][0]) * 0.2,\n (Globals.DVH_film_reference_point[1] - Globals.DVH_ROI_coords[2][1]) * 0.2]'], {}), '([(Globals.\n DVH_film_reference_point[0] - Globals.DVH_ROI_coords[2][0]) * 0.2, (\n Globals.DVH_film_reference_point[1] - Globals.DVH_ROI_coords[2][1]) * 0.2])\n', (113863, 114027), False, 'import Globals\n'), ((114051, 114262), 'Globals.DVH_distance_reference_point_ROI.append', 'Globals.DVH_distance_reference_point_ROI.append', (['[(Globals.DVH_film_reference_point[0] - Globals.DVH_ROI_coords[3][0]) * 0.2,\n (Globals.DVH_film_reference_point[1] - Globals.DVH_ROI_coords[3][1]) * 0.2]'], {}), '([(Globals.\n DVH_film_reference_point[0] - Globals.DVH_ROI_coords[3][0]) * 0.2, (\n Globals.DVH_film_reference_point[1] - Globals.DVH_ROI_coords[3][1]) * 0.2])\n', (114098, 114262), False, 'import Globals\n'), ((114392, 114583), 'Globals.DVH_distance_isocenter_ROI.append', 'Globals.DVH_distance_isocenter_ROI.append', (['[(Globals.DVH_film_isocenter[0] - Globals.DVH_ROI_coords[0][0]) * 0.2, (\n Globals.DVH_film_isocenter[1] - Globals.DVH_ROI_coords[0][1]) * 0.2]'], {}), '([(Globals.DVH_film_isocenter[0] -\n Globals.DVH_ROI_coords[0][0]) * 0.2, (Globals.DVH_film_isocenter[1] -\n Globals.DVH_ROI_coords[0][1]) * 0.2])\n', (114433, 114583), False, 'import Globals\n'), ((114607, 114798), 'Globals.DVH_distance_isocenter_ROI.append', 'Globals.DVH_distance_isocenter_ROI.append', (['[(Globals.DVH_film_isocenter[0] - Globals.DVH_ROI_coords[1][0]) * 0.2, (\n Globals.DVH_film_isocenter[1] - Globals.DVH_ROI_coords[1][1]) * 0.2]'], {}), '([(Globals.DVH_film_isocenter[0] -\n Globals.DVH_ROI_coords[1][0]) * 0.2, (Globals.DVH_film_isocenter[1] -\n Globals.DVH_ROI_coords[1][1]) * 0.2])\n', (114648, 114798), False, 'import Globals\n'), ((114824, 115015), 'Globals.DVH_distance_isocenter_ROI.append', 'Globals.DVH_distance_isocenter_ROI.append', (['[(Globals.DVH_film_isocenter[0] - Globals.DVH_ROI_coords[2][0]) * 0.2, (\n Globals.DVH_film_isocenter[1] - Globals.DVH_ROI_coords[2][1]) * 0.2]'], {}), '([(Globals.DVH_film_isocenter[0] -\n Globals.DVH_ROI_coords[2][0]) * 0.2, (Globals.DVH_film_isocenter[1] -\n Globals.DVH_ROI_coords[2][1]) * 0.2])\n', (114865, 115015), False, 'import Globals\n'), ((115041, 115232), 'Globals.DVH_distance_isocenter_ROI.append', 'Globals.DVH_distance_isocenter_ROI.append', (['[(Globals.DVH_film_isocenter[0] - Globals.DVH_ROI_coords[3][0]) * 0.2, (\n Globals.DVH_film_isocenter[1] - Globals.DVH_ROI_coords[3][1]) * 0.2]'], {}), '([(Globals.DVH_film_isocenter[0] -\n Globals.DVH_ROI_coords[3][0]) * 0.2, (Globals.DVH_film_isocenter[1] -\n Globals.DVH_ROI_coords[3][1]) * 0.2])\n', (115082, 115232), False, 'import Globals\n'), ((4141, 4201), 'numpy.round', 'np.round', (['(Globals.DVH_distance_reference_point_ROI[0][0] / 2)'], {}), '(Globals.DVH_distance_reference_point_ROI[0][0] / 2)\n', (4149, 4201), True, 'import numpy as np\n'), ((4216, 4276), 'numpy.round', 'np.round', (['(Globals.DVH_distance_reference_point_ROI[0][1] / 2)'], {}), '(Globals.DVH_distance_reference_point_ROI[0][1] / 2)\n', (4224, 4276), True, 'import numpy as np\n'), ((4339, 4399), 'numpy.round', 'np.round', (['(Globals.DVH_distance_reference_point_ROI[1][0] / 2)'], {}), '(Globals.DVH_distance_reference_point_ROI[1][0] / 2)\n', (4347, 4399), True, 'import numpy as np\n'), ((4414, 4474), 'numpy.round', 'np.round', (['(Globals.DVH_distance_reference_point_ROI[1][1] / 2)'], {}), '(Globals.DVH_distance_reference_point_ROI[1][1] / 2)\n', (4422, 4474), True, 'import numpy as np\n'), ((4537, 4597), 'numpy.round', 'np.round', (['(Globals.DVH_distance_reference_point_ROI[2][0] / 2)'], {}), '(Globals.DVH_distance_reference_point_ROI[2][0] / 2)\n', (4545, 4597), True, 'import numpy as np\n'), ((4612, 4672), 'numpy.round', 'np.round', (['(Globals.DVH_distance_reference_point_ROI[2][1] / 2)'], {}), '(Globals.DVH_distance_reference_point_ROI[2][1] / 2)\n', (4620, 4672), True, 'import numpy as np\n'), ((4735, 4795), 'numpy.round', 'np.round', (['(Globals.DVH_distance_reference_point_ROI[3][0] / 2)'], {}), '(Globals.DVH_distance_reference_point_ROI[3][0] / 2)\n', (4743, 4795), True, 'import numpy as np\n'), ((4810, 4870), 'numpy.round', 'np.round', (['(Globals.DVH_distance_reference_point_ROI[3][1] / 2)'], {}), '(Globals.DVH_distance_reference_point_ROI[3][1] / 2)\n', (4818, 4870), True, 'import numpy as np\n'), ((5682, 5742), 'numpy.round', 'np.round', (['(Globals.DVH_distance_reference_point_ROI[0][0] / 3)'], {}), '(Globals.DVH_distance_reference_point_ROI[0][0] / 3)\n', (5690, 5742), True, 'import numpy as np\n'), ((5757, 5817), 'numpy.round', 'np.round', (['(Globals.DVH_distance_reference_point_ROI[0][1] / 3)'], {}), '(Globals.DVH_distance_reference_point_ROI[0][1] / 3)\n', (5765, 5817), True, 'import numpy as np\n'), ((5880, 5940), 'numpy.round', 'np.round', (['(Globals.DVH_distance_reference_point_ROI[1][0] / 3)'], {}), '(Globals.DVH_distance_reference_point_ROI[1][0] / 3)\n', (5888, 5940), True, 'import numpy as np\n'), ((5955, 6015), 'numpy.round', 'np.round', (['(Globals.DVH_distance_reference_point_ROI[1][1] / 3)'], {}), '(Globals.DVH_distance_reference_point_ROI[1][1] / 3)\n', (5963, 6015), True, 'import numpy as np\n'), ((6078, 6138), 'numpy.round', 'np.round', (['(Globals.DVH_distance_reference_point_ROI[2][0] / 3)'], {}), '(Globals.DVH_distance_reference_point_ROI[2][0] / 3)\n', (6086, 6138), True, 'import numpy as np\n'), ((6153, 6213), 'numpy.round', 'np.round', (['(Globals.DVH_distance_reference_point_ROI[2][1] / 3)'], {}), '(Globals.DVH_distance_reference_point_ROI[2][1] / 3)\n', (6161, 6213), True, 'import numpy as np\n'), ((6276, 6336), 'numpy.round', 'np.round', (['(Globals.DVH_distance_reference_point_ROI[3][0] / 3)'], {}), '(Globals.DVH_distance_reference_point_ROI[3][0] / 3)\n', (6284, 6336), True, 'import numpy as np\n'), ((6351, 6411), 'numpy.round', 'np.round', (['(Globals.DVH_distance_reference_point_ROI[3][1] / 3)'], {}), '(Globals.DVH_distance_reference_point_ROI[3][1] / 3)\n', (6359, 6411), True, 'import numpy as np\n'), ((11066, 11100), 'Globals.DVH_film_orientation.get', 'Globals.DVH_film_orientation.get', ([], {}), '()\n', (11098, 11100), False, 'import Globals\n'), ((11209, 11272), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Error"""', '"""Something has gone wrong here."""'], {}), "('Error', 'Something has gone wrong here.')\n", (11229, 11272), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((11710, 11744), 'Globals.DCH_film_orientation.get', 'Globals.DCH_film_orientation.get', ([], {}), '()\n', (11742, 11744), False, 'import Globals\n'), ((11789, 11848), 'numpy.swapaxes', 'np.swapaxes', (['Globals.DVH_dataset_doseplan.pixel_array', '(0)', '(2)'], {}), '(Globals.DVH_dataset_doseplan.pixel_array, 0, 2)\n', (11800, 11848), True, 'import numpy as np\n'), ((12014, 12048), 'numpy.swapaxes', 'np.swapaxes', (['dataset_swapped', '(1)', '(2)'], {}), '(dataset_swapped, 1, 2)\n', (12025, 12048), True, 'import numpy as np\n'), ((12858, 12892), 'Globals.DVH_film_orientation.get', 'Globals.DVH_film_orientation.get', ([], {}), '()\n', (12890, 12892), False, 'import Globals\n'), ((12936, 12995), 'numpy.swapaxes', 'np.swapaxes', (['Globals.DVH_dataset_doseplan.pixel_array', '(0)', '(2)'], {}), '(Globals.DVH_dataset_doseplan.pixel_array, 0, 2)\n', (12947, 12995), True, 'import numpy as np\n'), ((13161, 13195), 'numpy.swapaxes', 'np.swapaxes', (['dataset_swapped', '(1)', '(2)'], {}), '(dataset_swapped, 1, 2)\n', (13172, 13195), True, 'import numpy as np\n'), ((25399, 25414), 'matplotlib.cm.viridis', 'cm.viridis', (['img'], {}), '(img)\n', (25409, 25414), False, 'from matplotlib import cm\n'), ((25715, 25760), 'Globals.profiles_doseplan_text_image.height', 'Globals.profiles_doseplan_text_image.height', ([], {}), '()\n', (25758, 25760), False, 'import Globals\n'), ((25793, 25837), 'Globals.profiles_doseplan_text_image.width', 'Globals.profiles_doseplan_text_image.width', ([], {}), '()\n', (25835, 25837), False, 'import Globals\n'), ((25950, 25995), 'Globals.profiles_doseplan_text_image.height', 'Globals.profiles_doseplan_text_image.height', ([], {}), '()\n', (25993, 25995), False, 'import Globals\n'), ((26028, 26072), 'Globals.profiles_doseplan_text_image.width', 'Globals.profiles_doseplan_text_image.width', ([], {}), '()\n', (26070, 26072), False, 'import Globals\n'), ((27859, 27920), 'cv2.resize', 'cv2.resize', (['img'], {'dsize': '(img.shape[1] * 10, img.shape[0] * 10)'}), '(img, dsize=(img.shape[1] * 10, img.shape[0] * 10))\n', (27869, 27920), False, 'import cv2\n'), ((27974, 28035), 'cv2.resize', 'cv2.resize', (['img'], {'dsize': '(img.shape[1] * 15, img.shape[0] * 15)'}), '(img, dsize=(img.shape[1] * 15, img.shape[0] * 15))\n', (27984, 28035), False, 'import cv2\n'), ((30324, 30378), 'numpy.round', 'np.round', (['(Globals.DVH_distance_isocenter_ROI[0][0] / 2)'], {}), '(Globals.DVH_distance_isocenter_ROI[0][0] / 2)\n', (30332, 30378), True, 'import numpy as np\n'), ((30393, 30447), 'numpy.round', 'np.round', (['(Globals.DVH_distance_isocenter_ROI[0][1] / 2)'], {}), '(Globals.DVH_distance_isocenter_ROI[0][1] / 2)\n', (30401, 30447), True, 'import numpy as np\n'), ((30510, 30564), 'numpy.round', 'np.round', (['(Globals.DVH_distance_isocenter_ROI[1][0] / 2)'], {}), '(Globals.DVH_distance_isocenter_ROI[1][0] / 2)\n', (30518, 30564), True, 'import numpy as np\n'), ((30579, 30633), 'numpy.round', 'np.round', (['(Globals.DVH_distance_isocenter_ROI[1][1] / 2)'], {}), '(Globals.DVH_distance_isocenter_ROI[1][1] / 2)\n', (30587, 30633), True, 'import numpy as np\n'), ((30696, 30750), 'numpy.round', 'np.round', (['(Globals.DVH_distance_isocenter_ROI[2][0] / 2)'], {}), '(Globals.DVH_distance_isocenter_ROI[2][0] / 2)\n', (30704, 30750), True, 'import numpy as np\n'), ((30765, 30819), 'numpy.round', 'np.round', (['(Globals.DVH_distance_isocenter_ROI[2][1] / 2)'], {}), '(Globals.DVH_distance_isocenter_ROI[2][1] / 2)\n', (30773, 30819), True, 'import numpy as np\n'), ((30882, 30936), 'numpy.round', 'np.round', (['(Globals.DVH_distance_isocenter_ROI[3][0] / 2)'], {}), '(Globals.DVH_distance_isocenter_ROI[3][0] / 2)\n', (30890, 30936), True, 'import numpy as np\n'), ((30951, 31005), 'numpy.round', 'np.round', (['(Globals.DVH_distance_isocenter_ROI[3][1] / 2)'], {}), '(Globals.DVH_distance_isocenter_ROI[3][1] / 2)\n', (30959, 31005), True, 'import numpy as np\n'), ((31409, 31463), 'numpy.round', 'np.round', (['(Globals.DVH_distance_isocenter_ROI[0][0] / 3)'], {}), '(Globals.DVH_distance_isocenter_ROI[0][0] / 3)\n', (31417, 31463), True, 'import numpy as np\n'), ((31478, 31532), 'numpy.round', 'np.round', (['(Globals.DVH_distance_isocenter_ROI[0][1] / 3)'], {}), '(Globals.DVH_distance_isocenter_ROI[0][1] / 3)\n', (31486, 31532), True, 'import numpy as np\n'), ((31595, 31649), 'numpy.round', 'np.round', (['(Globals.DVH_distance_isocenter_ROI[1][0] / 3)'], {}), '(Globals.DVH_distance_isocenter_ROI[1][0] / 3)\n', (31603, 31649), True, 'import numpy as np\n'), ((31664, 31718), 'numpy.round', 'np.round', (['(Globals.DVH_distance_isocenter_ROI[1][1] / 3)'], {}), '(Globals.DVH_distance_isocenter_ROI[1][1] / 3)\n', (31672, 31718), True, 'import numpy as np\n'), ((31781, 31835), 'numpy.round', 'np.round', (['(Globals.DVH_distance_isocenter_ROI[2][0] / 3)'], {}), '(Globals.DVH_distance_isocenter_ROI[2][0] / 3)\n', (31789, 31835), True, 'import numpy as np\n'), ((31850, 31904), 'numpy.round', 'np.round', (['(Globals.DVH_distance_isocenter_ROI[2][1] / 3)'], {}), '(Globals.DVH_distance_isocenter_ROI[2][1] / 3)\n', (31858, 31904), True, 'import numpy as np\n'), ((31967, 32021), 'numpy.round', 'np.round', (['(Globals.DVH_distance_isocenter_ROI[3][0] / 3)'], {}), '(Globals.DVH_distance_isocenter_ROI[3][0] / 3)\n', (31975, 32021), True, 'import numpy as np\n'), ((32036, 32090), 'numpy.round', 'np.round', (['(Globals.DVH_distance_isocenter_ROI[3][1] / 3)'], {}), '(Globals.DVH_distance_isocenter_ROI[3][1] / 3)\n', (32044, 32090), True, 'import numpy as np\n'), ((33218, 33252), 'Globals.DVH_film_orientation.get', 'Globals.DVH_film_orientation.get', ([], {}), '()\n', (33250, 33252), False, 'import Globals\n'), ((33361, 33424), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Error"""', '"""Something has gone wrong here."""'], {}), "('Error', 'Something has gone wrong here.')\n", (33381, 33424), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((33829, 33863), 'Globals.DVH_film_orientation.get', 'Globals.DVH_film_orientation.get', ([], {}), '()\n', (33861, 33863), False, 'import Globals\n'), ((33908, 33967), 'numpy.swapaxes', 'np.swapaxes', (['Globals.DVH_dataset_doseplan.pixel_array', '(0)', '(2)'], {}), '(Globals.DVH_dataset_doseplan.pixel_array, 0, 2)\n', (33919, 33967), True, 'import numpy as np\n'), ((34133, 34167), 'numpy.swapaxes', 'np.swapaxes', (['dataset_swapped', '(1)', '(2)'], {}), '(dataset_swapped, 1, 2)\n', (34144, 34167), True, 'import numpy as np\n'), ((34944, 34978), 'Globals.DVH_film_orientation.get', 'Globals.DVH_film_orientation.get', ([], {}), '()\n', (34976, 34978), False, 'import Globals\n'), ((35022, 35081), 'numpy.swapaxes', 'np.swapaxes', (['Globals.DVH_dataset_doseplan.pixel_array', '(0)', '(2)'], {}), '(Globals.DVH_dataset_doseplan.pixel_array, 0, 2)\n', (35033, 35081), True, 'import numpy as np\n'), ((35247, 35281), 'numpy.swapaxes', 'np.swapaxes', (['dataset_swapped', '(1)', '(2)'], {}), '(dataset_swapped, 1, 2)\n', (35258, 35281), True, 'import numpy as np\n'), ((47396, 47411), 'matplotlib.cm.viridis', 'cm.viridis', (['img'], {}), '(img)\n', (47406, 47411), False, 'from matplotlib import cm\n'), ((47712, 47757), 'Globals.profiles_doseplan_text_image.height', 'Globals.profiles_doseplan_text_image.height', ([], {}), '()\n', (47755, 47757), False, 'import Globals\n'), ((47790, 47834), 'Globals.profiles_doseplan_text_image.width', 'Globals.profiles_doseplan_text_image.width', ([], {}), '()\n', (47832, 47834), False, 'import Globals\n'), ((47947, 47992), 'Globals.profiles_doseplan_text_image.height', 'Globals.profiles_doseplan_text_image.height', ([], {}), '()\n', (47990, 47992), False, 'import Globals\n'), ((48025, 48069), 'Globals.profiles_doseplan_text_image.width', 'Globals.profiles_doseplan_text_image.width', ([], {}), '()\n', (48067, 48069), False, 'import Globals\n'), ((49852, 49913), 'cv2.resize', 'cv2.resize', (['img'], {'dsize': '(img.shape[1] * 10, img.shape[0] * 10)'}), '(img, dsize=(img.shape[1] * 10, img.shape[0] * 10))\n', (49862, 49913), False, 'import cv2\n'), ((49967, 50028), 'cv2.resize', 'cv2.resize', (['img'], {'dsize': '(img.shape[1] * 15, img.shape[0] * 15)'}), '(img, dsize=(img.shape[1] * 15, img.shape[0] * 15))\n', (49977, 50028), False, 'import cv2\n'), ((59554, 59573), 'matplotlib.cm.viridis', 'cm.viridis', (['img_ROI'], {}), '(img_ROI)\n', (59564, 59573), False, 'from matplotlib import cm\n'), ((59874, 59919), 'Globals.profiles_doseplan_text_image.height', 'Globals.profiles_doseplan_text_image.height', ([], {}), '()\n', (59917, 59919), False, 'import Globals\n'), ((59952, 59996), 'Globals.profiles_doseplan_text_image.width', 'Globals.profiles_doseplan_text_image.width', ([], {}), '()\n', (59994, 59996), False, 'import Globals\n'), ((60109, 60154), 'Globals.profiles_doseplan_text_image.height', 'Globals.profiles_doseplan_text_image.height', ([], {}), '()\n', (60152, 60154), False, 'import Globals\n'), ((60187, 60231), 'Globals.profiles_doseplan_text_image.width', 'Globals.profiles_doseplan_text_image.width', ([], {}), '()\n', (60229, 60231), False, 'import Globals\n'), ((71126, 71170), 'Globals.DVH_done_button.config', 'Globals.DVH_done_button.config', ([], {'state': 'ACTIVE'}), '(state=ACTIVE)\n', (71156, 71170), False, 'import Globals\n'), ((112287, 112337), 'Globals.profiles_scanned_image_text_image.height', 'Globals.profiles_scanned_image_text_image.height', ([], {}), '()\n', (112335, 112337), False, 'import Globals\n'), ((112345, 112394), 'Globals.profiles_scanned_image_text_image.width', 'Globals.profiles_scanned_image_text_image.width', ([], {}), '()\n', (112392, 112394), False, 'import Globals\n'), ((112674, 112724), 'Globals.profiles_film_dose_map_text_image.height', 'Globals.profiles_film_dose_map_text_image.height', ([], {}), '()\n', (112722, 112724), False, 'import Globals\n'), ((112732, 112781), 'Globals.profiles_film_dose_map_text_image.width', 'Globals.profiles_film_dose_map_text_image.width', ([], {}), '()\n', (112779, 112781), False, 'import Globals\n'), ((12197, 12231), 'Globals.DVH_film_orientation.get', 'Globals.DVH_film_orientation.get', ([], {}), '()\n', (12229, 12231), False, 'import Globals\n'), ((12273, 12332), 'numpy.swapaxes', 'np.swapaxes', (['Globals.DVH_dataset_doseplan.pixel_array', '(0)', '(1)'], {}), '(Globals.DVH_dataset_doseplan.pixel_array, 0, 1)\n', (12284, 12332), True, 'import numpy as np\n'), ((12494, 12552), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Error"""', '"""Something has gone wrong."""'], {}), "('Error', 'Something has gone wrong.')\n", (12514, 12552), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((13344, 13378), 'Globals.DVH_film_orientation.get', 'Globals.DVH_film_orientation.get', ([], {}), '()\n', (13376, 13378), False, 'import Globals\n'), ((13423, 13482), 'numpy.swapaxes', 'np.swapaxes', (['Globals.DVH_dataset_doseplan.pixel_array', '(0)', '(1)'], {}), '(Globals.DVH_dataset_doseplan.pixel_array, 0, 1)\n', (13434, 13482), True, 'import numpy as np\n'), ((13648, 13682), 'numpy.swapaxes', 'np.swapaxes', (['dataset_swapped', '(1)', '(2)'], {}), '(dataset_swapped, 1, 2)\n', (13659, 13682), True, 'import numpy as np\n'), ((14492, 14526), 'Globals.DVH_film_orientation.get', 'Globals.DVH_film_orientation.get', ([], {}), '()\n', (14524, 14526), False, 'import Globals\n'), ((14570, 14629), 'numpy.swapaxes', 'np.swapaxes', (['Globals.DVH_dataset_doseplan.pixel_array', '(0)', '(2)'], {}), '(Globals.DVH_dataset_doseplan.pixel_array, 0, 2)\n', (14581, 14629), True, 'import numpy as np\n'), ((34316, 34350), 'Globals.DVH_film_orientation.get', 'Globals.DVH_film_orientation.get', ([], {}), '()\n', (34348, 34350), False, 'import Globals\n'), ((34392, 34451), 'numpy.swapaxes', 'np.swapaxes', (['Globals.DVH_dataset_doseplan.pixel_array', '(0)', '(1)'], {}), '(Globals.DVH_dataset_doseplan.pixel_array, 0, 1)\n', (34403, 34451), True, 'import numpy as np\n'), ((34613, 34671), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Error"""', '"""Something has gone wrong."""'], {}), "('Error', 'Something has gone wrong.')\n", (34633, 34671), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((35430, 35464), 'Globals.DVH_film_orientation.get', 'Globals.DVH_film_orientation.get', ([], {}), '()\n', (35462, 35464), False, 'import Globals\n'), ((35509, 35568), 'numpy.swapaxes', 'np.swapaxes', (['Globals.DVH_dataset_doseplan.pixel_array', '(0)', '(1)'], {}), '(Globals.DVH_dataset_doseplan.pixel_array, 0, 1)\n', (35520, 35568), True, 'import numpy as np\n'), ((35734, 35768), 'numpy.swapaxes', 'np.swapaxes', (['dataset_swapped', '(1)', '(2)'], {}), '(dataset_swapped, 1, 2)\n', (35745, 35768), True, 'import numpy as np\n'), ((36545, 36579), 'Globals.DVH_film_orientation.get', 'Globals.DVH_film_orientation.get', ([], {}), '()\n', (36577, 36579), False, 'import Globals\n'), ((36623, 36682), 'numpy.swapaxes', 'np.swapaxes', (['Globals.DVH_dataset_doseplan.pixel_array', '(0)', '(2)'], {}), '(Globals.DVH_dataset_doseplan.pixel_array, 0, 2)\n', (36634, 36682), True, 'import numpy as np\n'), ((58848, 58950), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Error"""', '"""Invalid factor. Must be number.\n (Code: closeUploadDoseplans)"""'], {}), '(\'Error\',\n """Invalid factor. Must be number.\n (Code: closeUploadDoseplans)""")\n', (58868, 58950), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((99669, 99728), 'Globals.DVH_input_lateral_displacement.get', 'Globals.DVH_input_lateral_displacement.get', (['"""1.0"""', '"""end-1c"""'], {}), "('1.0', 'end-1c')\n", (99711, 99728), False, 'import Globals\n'), ((100179, 100243), 'Globals.DVH_input_longitudinal_displacement.get', 'Globals.DVH_input_longitudinal_displacement.get', (['"""1.0"""', '"""end-1c"""'], {}), "('1.0', 'end-1c')\n", (100226, 100243), False, 'import Globals\n'), ((100715, 100775), 'Globals.DVH_input_vertical_displacement.get', 'Globals.DVH_input_vertical_displacement.get', (['"""1.0"""', '"""end-1c"""'], {}), "('1.0', 'end-1c')\n", (100758, 100775), False, 'import Globals\n'), ((101489, 101534), 'Globals.DVH_slice_offset.get', 'Globals.DVH_slice_offset.get', (['"""1.0"""', '"""end-1c"""'], {}), "('1.0', 'end-1c')\n", (101517, 101534), False, 'import Globals\n'), ((104853, 105002), 'tkinter.Radiobutton', 'Radiobutton', (['choose_batch_frame'], {'text': '""""""', 'bg': '"""#ffffff"""', 'cursor': '"""hand2"""', 'font': "('calibri', '14')", 'variable': 'Globals.DVH_film_batch', 'value': 'batch_cnt'}), "(choose_batch_frame, text='', bg='#ffffff', cursor='hand2', font\n =('calibri', '14'), variable=Globals.DVH_film_batch, value=batch_cnt)\n", (104864, 105002), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((110406, 110456), 'Globals.profiles_scanned_image_text_image.height', 'Globals.profiles_scanned_image_text_image.height', ([], {}), '()\n', (110454, 110456), False, 'import Globals\n'), ((110493, 110542), 'Globals.profiles_scanned_image_text_image.width', 'Globals.profiles_scanned_image_text_image.width', ([], {}), '()\n', (110540, 110542), False, 'import Globals\n'), ((110664, 110714), 'Globals.profiles_scanned_image_text_image.height', 'Globals.profiles_scanned_image_text_image.height', ([], {}), '()\n', (110712, 110714), False, 'import Globals\n'), ((110751, 110800), 'Globals.profiles_scanned_image_text_image.width', 'Globals.profiles_scanned_image_text_image.width', ([], {}), '()\n', (110798, 110800), False, 'import Globals\n'), ((111037, 111087), 'Globals.profiles_film_dose_map_text_image.height', 'Globals.profiles_film_dose_map_text_image.height', ([], {}), '()\n', (111085, 111087), False, 'import Globals\n'), ((111124, 111173), 'Globals.profiles_film_dose_map_text_image.width', 'Globals.profiles_film_dose_map_text_image.width', ([], {}), '()\n', (111171, 111173), False, 'import Globals\n'), ((111294, 111344), 'Globals.profiles_film_dose_map_text_image.height', 'Globals.profiles_film_dose_map_text_image.height', ([], {}), '()\n', (111342, 111344), False, 'import Globals\n'), ((111381, 111430), 'Globals.profiles_film_dose_map_text_image.width', 'Globals.profiles_film_dose_map_text_image.width', ([], {}), '()\n', (111428, 111430), False, 'import Globals\n'), ((13831, 13865), 'Globals.DVH_film_orientation.get', 'Globals.DVH_film_orientation.get', ([], {}), '()\n', (13863, 13865), False, 'import Globals\n'), ((13907, 13966), 'numpy.swapaxes', 'np.swapaxes', (['Globals.DVH_dataset_doseplan.pixel_array', '(1)', '(2)'], {}), '(Globals.DVH_dataset_doseplan.pixel_array, 1, 2)\n', (13918, 13966), True, 'import numpy as np\n'), ((14128, 14186), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Error"""', '"""Something has gone wrong."""'], {}), "('Error', 'Something has gone wrong.')\n", (14148, 14186), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((14778, 14812), 'Globals.DVH_film_orientation.get', 'Globals.DVH_film_orientation.get', ([], {}), '()\n', (14810, 14812), False, 'import Globals\n'), ((14857, 14916), 'numpy.swapaxes', 'np.swapaxes', (['Globals.DVH_dataset_doseplan.pixel_array', '(1)', '(2)'], {}), '(Globals.DVH_dataset_doseplan.pixel_array, 1, 2)\n', (14868, 14916), True, 'import numpy as np\n'), ((15926, 15960), 'Globals.DVH_film_orientation.get', 'Globals.DVH_film_orientation.get', ([], {}), '()\n', (15958, 15960), False, 'import Globals\n'), ((16004, 16063), 'numpy.swapaxes', 'np.swapaxes', (['Globals.DVH_dataset_doseplan.pixel_array', '(1)', '(2)'], {}), '(Globals.DVH_dataset_doseplan.pixel_array, 1, 2)\n', (16015, 16063), True, 'import numpy as np\n'), ((18395, 18453), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Error"""', '"""Something has gone wrong."""'], {}), "('Error', 'Something has gone wrong.')\n", (18415, 18453), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((35917, 35951), 'Globals.DVH_film_orientation.get', 'Globals.DVH_film_orientation.get', ([], {}), '()\n', (35949, 35951), False, 'import Globals\n'), ((35993, 36052), 'numpy.swapaxes', 'np.swapaxes', (['Globals.DVH_dataset_doseplan.pixel_array', '(1)', '(2)'], {}), '(Globals.DVH_dataset_doseplan.pixel_array, 1, 2)\n', (36004, 36052), True, 'import numpy as np\n'), ((36214, 36272), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Error"""', '"""Something has gone wrong."""'], {}), "('Error', 'Something has gone wrong.')\n", (36234, 36272), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((36831, 36865), 'Globals.DVH_film_orientation.get', 'Globals.DVH_film_orientation.get', ([], {}), '()\n', (36863, 36865), False, 'import Globals\n'), ((36910, 36969), 'numpy.swapaxes', 'np.swapaxes', (['Globals.DVH_dataset_doseplan.pixel_array', '(1)', '(2)'], {}), '(Globals.DVH_dataset_doseplan.pixel_array, 1, 2)\n', (36921, 36969), True, 'import numpy as np\n'), ((37946, 37980), 'Globals.DVH_film_orientation.get', 'Globals.DVH_film_orientation.get', ([], {}), '()\n', (37978, 37980), False, 'import Globals\n'), ((38024, 38083), 'numpy.swapaxes', 'np.swapaxes', (['Globals.DVH_dataset_doseplan.pixel_array', '(1)', '(2)'], {}), '(Globals.DVH_dataset_doseplan.pixel_array, 1, 2)\n', (38035, 38083), True, 'import numpy as np\n'), ((40382, 40440), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Error"""', '"""Something has gone wrong."""'], {}), "('Error', 'Something has gone wrong.')\n", (40402, 40440), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((99798, 99857), 'Globals.DVH_input_lateral_displacement.get', 'Globals.DVH_input_lateral_displacement.get', (['"""1.0"""', '"""end-1c"""'], {}), "('1.0', 'end-1c')\n", (99840, 99857), False, 'import Globals\n'), ((99961, 100065), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Error"""', '"""The displacements must be numbers\n (Code: lateral displacement)"""'], {}), '(\'Error\',\n """The displacements must be numbers\n (Code: lateral displacement)""")\n', (99981, 100065), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((100313, 100377), 'Globals.DVH_input_longitudinal_displacement.get', 'Globals.DVH_input_longitudinal_displacement.get', (['"""1.0"""', '"""end-1c"""'], {}), "('1.0', 'end-1c')\n", (100360, 100377), False, 'import Globals\n'), ((100487, 100596), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Error"""', '"""The displacements must be numbers\n (Code: longitudinal displacement)"""'], {}), '(\'Error\',\n """The displacements must be numbers\n (Code: longitudinal displacement)""")\n', (100507, 100596), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((100845, 100905), 'Globals.DVH_input_vertical_displacement.get', 'Globals.DVH_input_vertical_displacement.get', (['"""1.0"""', '"""end-1c"""'], {}), "('1.0', 'end-1c')\n", (100888, 100905), False, 'import Globals\n'), ((101011, 101116), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Error"""', '"""The displacements must be numbers\n (Code: vertical displacement)"""'], {}), '(\'Error\',\n """The displacements must be numbers\n (Code: vertical displacement)""")\n', (101031, 101116), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((101604, 101649), 'Globals.DVH_slice_offset.get', 'Globals.DVH_slice_offset.get', (['"""1.0"""', '"""end-1c"""'], {}), "('1.0', 'end-1c')\n", (101632, 101649), False, 'import Globals\n'), ((101754, 101857), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Error"""', '"""Slice offset must be a number \n(Code: finishFilmMarkers(false)"""'], {}), '(\'Error\',\n """Slice offset must be a number \n(Code: finishFilmMarkers(false)""")\n', (101774, 101857), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((105510, 105538), 'Globals.DVH_film_batch.get', 'Globals.DVH_film_batch.get', ([], {}), '()\n', (105536, 105538), False, 'import Globals\n'), ((107552, 107572), 'matplotlib.cm.viridis', 'cm.viridis', (['img_film'], {}), '(img_film)\n', (107562, 107572), False, 'from matplotlib import cm\n'), ((15065, 15099), 'Globals.DVH_film_orientation.get', 'Globals.DVH_film_orientation.get', ([], {}), '()\n', (15097, 15099), False, 'import Globals\n'), ((15141, 15200), 'numpy.swapaxes', 'np.swapaxes', (['Globals.DVH_dataset_doseplan.pixel_array', '(0)', '(1)'], {}), '(Globals.DVH_dataset_doseplan.pixel_array, 0, 1)\n', (15152, 15200), True, 'import numpy as np\n'), ((15366, 15400), 'numpy.swapaxes', 'np.swapaxes', (['dataset_swapped', '(1)', '(2)'], {}), '(dataset_swapped, 1, 2)\n', (15377, 15400), True, 'import numpy as np\n'), ((15562, 15620), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Error"""', '"""Something has gone wrong."""'], {}), "('Error', 'Something has gone wrong.')\n", (15582, 15620), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((16212, 16246), 'Globals.DVH_film_orientation.get', 'Globals.DVH_film_orientation.get', ([], {}), '()\n', (16244, 16246), False, 'import Globals\n'), ((16291, 16350), 'numpy.swapaxes', 'np.swapaxes', (['Globals.DVH_dataset_doseplan.pixel_array', '(0)', '(1)'], {}), '(Globals.DVH_dataset_doseplan.pixel_array, 0, 1)\n', (16302, 16350), True, 'import numpy as np\n'), ((17360, 17394), 'Globals.DVH_film_orientation.get', 'Globals.DVH_film_orientation.get', ([], {}), '()\n', (17392, 17394), False, 'import Globals\n'), ((17438, 17497), 'numpy.swapaxes', 'np.swapaxes', (['Globals.DVH_dataset_doseplan.pixel_array', '(0)', '(2)'], {}), '(Globals.DVH_dataset_doseplan.pixel_array, 0, 2)\n', (17449, 17497), True, 'import numpy as np\n'), ((17663, 17697), 'numpy.swapaxes', 'np.swapaxes', (['dataset_swapped', '(0)', '(1)'], {}), '(dataset_swapped, 0, 1)\n', (17674, 17697), True, 'import numpy as np\n'), ((37118, 37152), 'Globals.DVH_film_orientation.get', 'Globals.DVH_film_orientation.get', ([], {}), '()\n', (37150, 37152), False, 'import Globals\n'), ((37194, 37253), 'numpy.swapaxes', 'np.swapaxes', (['Globals.DVH_dataset_doseplan.pixel_array', '(0)', '(1)'], {}), '(Globals.DVH_dataset_doseplan.pixel_array, 0, 1)\n', (37205, 37253), True, 'import numpy as np\n'), ((37419, 37453), 'numpy.swapaxes', 'np.swapaxes', (['dataset_swapped', '(1)', '(2)'], {}), '(dataset_swapped, 1, 2)\n', (37430, 37453), True, 'import numpy as np\n'), ((37615, 37673), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Error"""', '"""Something has gone wrong."""'], {}), "('Error', 'Something has gone wrong.')\n", (37635, 37673), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((38232, 38266), 'Globals.DVH_film_orientation.get', 'Globals.DVH_film_orientation.get', ([], {}), '()\n', (38264, 38266), False, 'import Globals\n'), ((38311, 38370), 'numpy.swapaxes', 'np.swapaxes', (['Globals.DVH_dataset_doseplan.pixel_array', '(0)', '(1)'], {}), '(Globals.DVH_dataset_doseplan.pixel_array, 0, 1)\n', (38322, 38370), True, 'import numpy as np\n'), ((39347, 39381), 'Globals.DVH_film_orientation.get', 'Globals.DVH_film_orientation.get', ([], {}), '()\n', (39379, 39381), False, 'import Globals\n'), ((39425, 39484), 'numpy.swapaxes', 'np.swapaxes', (['Globals.DVH_dataset_doseplan.pixel_array', '(0)', '(2)'], {}), '(Globals.DVH_dataset_doseplan.pixel_array, 0, 2)\n', (39436, 39484), True, 'import numpy as np\n'), ((39650, 39684), 'numpy.swapaxes', 'np.swapaxes', (['dataset_swapped', '(0)', '(1)'], {}), '(dataset_swapped, 0, 1)\n', (39661, 39684), True, 'import numpy as np\n'), ((16499, 16533), 'Globals.DVH_film_orientation.get', 'Globals.DVH_film_orientation.get', ([], {}), '()\n', (16531, 16533), False, 'import Globals\n'), ((16575, 16634), 'numpy.swapaxes', 'np.swapaxes', (['Globals.DVH_dataset_doseplan.pixel_array', '(0)', '(1)'], {}), '(Globals.DVH_dataset_doseplan.pixel_array, 0, 1)\n', (16586, 16634), True, 'import numpy as np\n'), ((16800, 16834), 'numpy.swapaxes', 'np.swapaxes', (['dataset_swapped', '(0)', '(2)'], {}), '(dataset_swapped, 0, 2)\n', (16811, 16834), True, 'import numpy as np\n'), ((16996, 17054), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Error"""', '"""Something has gone wrong."""'], {}), "('Error', 'Something has gone wrong.')\n", (17016, 17054), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((17846, 17880), 'Globals.DVH_film_orientation.get', 'Globals.DVH_film_orientation.get', ([], {}), '()\n', (17878, 17880), False, 'import Globals\n'), ((38519, 38553), 'Globals.DVH_film_orientation.get', 'Globals.DVH_film_orientation.get', ([], {}), '()\n', (38551, 38553), False, 'import Globals\n'), ((38595, 38654), 'numpy.swapaxes', 'np.swapaxes', (['Globals.DVH_dataset_doseplan.pixel_array', '(0)', '(1)'], {}), '(Globals.DVH_dataset_doseplan.pixel_array, 0, 1)\n', (38606, 38654), True, 'import numpy as np\n'), ((38820, 38854), 'numpy.swapaxes', 'np.swapaxes', (['dataset_swapped', '(0)', '(2)'], {}), '(dataset_swapped, 0, 2)\n', (38831, 38854), True, 'import numpy as np\n'), ((39016, 39074), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Error"""', '"""Something has gone wrong."""'], {}), "('Error', 'Something has gone wrong.')\n", (39036, 39074), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((39833, 39867), 'Globals.DVH_film_orientation.get', 'Globals.DVH_film_orientation.get', ([], {}), '()\n', (39865, 39867), False, 'import Globals\n'), ((17979, 18013), 'Globals.DCH_film_orientation.get', 'Globals.DCH_film_orientation.get', ([], {}), '()\n', (18011, 18013), False, 'import Globals\n'), ((18055, 18114), 'numpy.swapaxes', 'np.swapaxes', (['Globals.DVH_dataset_doseplan.pixel_array', '(0)', '(2)'], {}), '(Globals.DVH_dataset_doseplan.pixel_array, 0, 2)\n', (18066, 18114), True, 'import numpy as np\n'), ((18276, 18334), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Error"""', '"""Something has gone wrong."""'], {}), "('Error', 'Something has gone wrong.')\n", (18296, 18334), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n'), ((39966, 40000), 'Globals.DVH_film_orientation.get', 'Globals.DVH_film_orientation.get', ([], {}), '()\n', (39998, 40000), False, 'import Globals\n'), ((40042, 40101), 'numpy.swapaxes', 'np.swapaxes', (['Globals.DVH_dataset_doseplan.pixel_array', '(0)', '(2)'], {}), '(Globals.DVH_dataset_doseplan.pixel_array, 0, 2)\n', (40053, 40101), True, 'import numpy as np\n'), ((40263, 40321), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Error"""', '"""Something has gone wrong."""'], {}), "('Error', 'Something has gone wrong.')\n", (40283, 40321), False, 'from tkinter import filedialog, INSERT, DISABLED, messagebox, NORMAL, simpledialog, PhotoImage, BOTH, Canvas, N, S, W, E, ALL, Frame, SUNKEN, Radiobutton, GROOVE, ACTIVE, FLAT, END, Scrollbar, HORIZONTAL, VERTICAL, ttk, TOP, RIGHT, LEFT, ttk\n')]
import numpy as np import sys import pandas as pd import matplotlib.pyplot as plt # read in csv as data frame data_val = pd.read_csv('val_event.csv',delimiter=' ') data_mu = pd.read_csv('ylength_mu_michel.csv',delimiter=' ') data_pi = pd.read_csv('ylength_pi.csv',delimiter=' ') mergedmu = data_val.merge(data_mu, on=['Subrun','Event','Type']) mergedpi = data_val.merge(data_pi, on=['Subrun','Event','Type']) # make histogram plt.figure(); ''' Subtracting the probability from the prediction give a probability of being a muon from 0 to 1 I tried to match the color scheme of the hist you sent me, but you can change to whatever you want :) ''' # first plot pions # everything in [] are the conditions for how you select rows in pandas and the data.<whatever> is the column you select in data plt.hist(np.abs(mergedpi.Pred[mergedpi.Type == 'Pion'] - mergedpi.Prob[mergedpi.Type == 'Pion']),bins=np.linspace(0,1,20),color='red',alpha=0.6,label='Pions'); # then plot muons plt.hist(np.abs(mergedmu.Pred[mergedmu.Type == 'Muon'] - mergedmu.Prob[mergedmu.Type == 'Muon']),bins=np.linspace(0,1,20),color='blue',alpha=0.6,label='Muons'); plt.xlabel('Probability'); plt.ylabel('Event'); plt.legend(loc='upper center',frameon=False); # uncomment to save plt.savefig("probhist_primary.png")
[ "numpy.abs", "pandas.read_csv", "matplotlib.pyplot.legend", "matplotlib.pyplot.figure", "numpy.linspace", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.savefig" ]
[((123, 166), 'pandas.read_csv', 'pd.read_csv', (['"""val_event.csv"""'], {'delimiter': '""" """'}), "('val_event.csv', delimiter=' ')\n", (134, 166), True, 'import pandas as pd\n'), ((177, 228), 'pandas.read_csv', 'pd.read_csv', (['"""ylength_mu_michel.csv"""'], {'delimiter': '""" """'}), "('ylength_mu_michel.csv', delimiter=' ')\n", (188, 228), True, 'import pandas as pd\n'), ((239, 283), 'pandas.read_csv', 'pd.read_csv', (['"""ylength_pi.csv"""'], {'delimiter': '""" """'}), "('ylength_pi.csv', delimiter=' ')\n", (250, 283), True, 'import pandas as pd\n'), ((432, 444), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (442, 444), True, 'import matplotlib.pyplot as plt\n'), ((1140, 1165), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Probability"""'], {}), "('Probability')\n", (1150, 1165), True, 'import matplotlib.pyplot as plt\n'), ((1167, 1186), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Event"""'], {}), "('Event')\n", (1177, 1186), True, 'import matplotlib.pyplot as plt\n'), ((1188, 1233), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""upper center"""', 'frameon': '(False)'}), "(loc='upper center', frameon=False)\n", (1198, 1233), True, 'import matplotlib.pyplot as plt\n'), ((1255, 1290), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""probhist_primary.png"""'], {}), "('probhist_primary.png')\n", (1266, 1290), True, 'import matplotlib.pyplot as plt\n'), ((809, 900), 'numpy.abs', 'np.abs', (["(mergedpi.Pred[mergedpi.Type == 'Pion'] - mergedpi.Prob[mergedpi.Type ==\n 'Pion'])"], {}), "(mergedpi.Pred[mergedpi.Type == 'Pion'] - mergedpi.Prob[mergedpi.Type ==\n 'Pion'])\n", (815, 900), True, 'import numpy as np\n'), ((987, 1078), 'numpy.abs', 'np.abs', (["(mergedmu.Pred[mergedmu.Type == 'Muon'] - mergedmu.Prob[mergedmu.Type ==\n 'Muon'])"], {}), "(mergedmu.Pred[mergedmu.Type == 'Muon'] - mergedmu.Prob[mergedmu.Type ==\n 'Muon'])\n", (993, 1078), True, 'import numpy as np\n'), ((902, 923), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(20)'], {}), '(0, 1, 20)\n', (913, 923), True, 'import numpy as np\n'), ((1080, 1101), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(20)'], {}), '(0, 1, 20)\n', (1091, 1101), True, 'import numpy as np\n')]
#!/usr/bin/python """The primary script to execute the tensorflow models.""" from __future__ import print_function from munch import munchify from six.moves import cPickle from config.arguments import parser """ Default model """ from model.model import Model from utils.processor import BatchLoader, DataLoader, eval_loader from utils.strings import FILES import utils.adaptive as adaptive import numpy as np import tensorflow as tf import json import logging import os import sys import time import yaml tf.reset_default_graph() def main(): """The main method of script.""" args = parser.parse_args() with open(args.config_file, 'r') as stream: args.config = munchify(yaml.load(stream)) args.save_dir = os.path.join(args.save_dir, args.job_id) args.best_dir = os.path.join(args.best_dir, args.job_id) if not os.path.exists(args.save_dir): os.makedirs(args.save_dir) if not os.path.exists(args.best_dir): os.makedirs(args.best_dir) print(args) if args.mode == 'train': train(args) elif args.mode == 'test' or args.mode == 'valid': test(args) elif args.mode == 'generate': generate(args) def generate(args): args.config.timesteps = 1 data_loader = DataLoader(args) with tf.Session() as sess: initializer = tf.random_uniform_initializer(-0.05, 0.05) with tf.variable_scope("model", reuse=None, initializer=initializer): model = Model(args, args.config.batch_size, mode='train') steps_done = initialize_weights(sess, model, args, mode='test') with tf.variable_scope("model", reuse=True, initializer=initializer): model = Model(args, batch_size=1, mode='eval') print("Loaded %d completed steps", steps_done) states = sess.run(model.initial_states) # First feed in the prior letters probs = None for i in args.line.split(): feed = { model.input_data: np.array([[data_loader.vocab[i]]]), model.initial_states: states } [states, probs] = sess.run([model.final_states, model.probs], feed) # Now, time to begin the sampling process def weighted_pick(weights): t = np.cumsum(weights) s = np.sum(weights) return(int(np.searchsorted(t, np.random.rand(1) * s))) # Weird construct to optimize code prior_length = len(args.line.split()) output = [' '] * (args.words + prior_length) for i in range(prior_length): output[i] = args.line.split()[i] for i in range(args.words): if i % 100 == 0: print("%d out of %d generated" % (i, args.words)) token = weighted_pick(np.squeeze(probs)) if token == len(np.squeeze(probs)): token = token - 1 output[i + prior_length] = data_loader.rev_vocab[token] feed = { model.input_data: np.array([[token]]), model.initial_states: states } [states, probs] = sess.run([model.final_states, model.probs], feed) output = ' '.join(output) output = output.replace('</s>', '\n') output = output + "\n" # with open(os.path.join(args.save_dir, "generate_{0}.txt".format(args.job_id)), 'w') as f: # f.write(output) print(output) def initialize_weights(sess, model, args, mode): ckpt = tf.train.get_checkpoint_state(args.save_dir) ckpt_best = tf.train.get_checkpoint_state(args.best_dir) if mode == 'test' and ckpt_best: print("Reading best model parameters from %s", ckpt_best.model_checkpoint_path) model.saver.restore(sess, ckpt_best.model_checkpoint_path) steps_done = int(ckpt_best.model_checkpoint_path.split('-')[-1]) # Since local variables are not saved sess.run([ tf.local_variables_initializer() ]) elif mode == 'train' and ckpt: print("Reading model parameters from %s", ckpt.model_checkpoint_path) model.saver.restore(sess, ckpt.model_checkpoint_path) steps_done = int(ckpt.model_checkpoint_path.split('-')[-1]) # Since local variables are not saved sess.run([ tf.local_variables_initializer() ]) else: steps_done = 0 sess.run([ tf.global_variables_initializer(), tf.local_variables_initializer() ]) return steps_done def evaluate(sess, model, eval_data, args, calculate_prob=False, rev_vocab=None): """Calculate perplexity after every epoch.""" states = sess.run(model.initial_states) total_loss = 0.0 prob_output = "" eval_x, eval_y, eval_len = eval_data['x'], eval_data['y'], eval_data['len'] for i in range(eval_x.shape[0]): # Need to pass L1 to get evaluation perplexity feed = { model.input_data: eval_x[i:i + 1, :], model.targets: eval_y[i:i + 1, :], model.initial_states: states } if calculate_prob is True: [states, loss, probs] = sess.run([model.final_states, model.loss, model.probs], feed) total_loss += loss.sum() for j in range(len(probs)): position = i * args.config.timesteps + j if position >= eval_len - 1: continue token = eval_y[i][j] prob_output += rev_vocab[token] + " " + str(probs[j, token]) + "\n" else: [states, loss] = sess.run([model.final_states, model.loss], feed) total_loss += loss.sum() # need to subtract off loss from padding tokens extra_tokens = (args.config.timesteps - eval_len % args.config.timesteps) % args.config.timesteps + 1 total_loss -= loss[-extra_tokens:].sum() avg_entropy = total_loss / eval_len ppl = np.exp(avg_entropy) if calculate_prob is True: return ppl, prob_output else: return ppl def test(args): data_loader = DataLoader(args) if args.device == "gpu": cfg_proto = tf.ConfigProto(intra_op_parallelism_threads=2) cfg_proto.gpu_options.allow_growth = True else: cfg_proto = None with tf.Session(config=cfg_proto) as sess: initializer = tf.random_uniform_initializer(-0.05, 0.05) with tf.variable_scope("model", reuse=None, initializer=initializer): model = Model(args, args.config.batch_size, mode='train') steps_done = initialize_weights(sess, model, args, mode='test') with tf.variable_scope("model", reuse=True, initializer=initializer): model_eval = Model(args, batch_size=1, mode='eval') print("loaded %d completed steps", steps_done) test_data = {} test_data['x'], test_data['y'], test_data['len'] = eval_loader(args, data_loader.vocab, split=args.mode) ppl, prob_output = evaluate( sess, model_eval, test_data, args, calculate_prob=True, rev_vocab=data_loader.rev_vocab ) with open(os.path.join(args.save_dir, "probs_{0}_{1}.txt".format(args.mode,args.job_id)), 'w') as f: f.write(prob_output) print("Perplexity is %.4f", ppl) def train(args): """Prepare the data and begins training.""" # Load the text and vocabulary data_loader = DataLoader(args) # Prepare batches for training batch_loader = BatchLoader(args, data_loader) if args.device == "gpu": cfg_proto = tf.ConfigProto(intra_op_parallelism_threads=2) cfg_proto.gpu_options.allow_growth = True else: cfg_proto = None with tf.Session(config=cfg_proto) as sess: # Build training model, load old weights initializer = tf.random_uniform_initializer(-0.05, 0.05) with tf.variable_scope("model", reuse=None, initializer=initializer): model = Model(args, args.config.batch_size, mode='train') steps_done = initialize_weights(sess, model, args, mode='train') print("loaded %d completed steps", steps_done) # Reusing weights for evaluation model with tf.variable_scope("model", reuse=True, initializer=initializer): model_eval = Model(args, batch_size=1, mode='eval') valid_data = {} valid_data['x'], valid_data['y'], valid_data['len'] = eval_loader(args, data_loader.vocab, split='valid') batch_loader.eval_data = valid_data train_writer = tf.summary.FileWriter(args.save_dir + '/logs/', tf.get_default_graph()) # Making the graph read-only to prevent memory leaks # https://stackoverflow.com/documentation/tensorflow/3883/how-to-debug-a-memory-leak-in-tensorflow/13426/use-graph-finalize-to-catch-nodes-being-added-to-the-graph#t=201612280201558374055 sess.graph.finalize() start_epoch = model.epoch.eval() for epoch in range(start_epoch, args.config.num_epochs): run_epoch(sess, model, model_eval, args, batch_loader, epoch) def run_epoch(sess, model, model_eval, args, batch_loader, epoch): """Run one epoch of training.""" best_ppl = model.best_ppl.eval() last_ppl_update = model.last_ppl_update.eval() margin_ppl = model.margin_ppl.eval() adaptive_loss = getattr(adaptive, args.loss_mode) # Reset batch pointer back to zero batch_loader.reset_batch_pointer() # Start from an empty RNN state states = sess.run(model.initial_states) start_batch = model.global_step.eval() % batch_loader.num_batches if start_batch != 0: print("Starting from batch %d / %d", start_batch, batch_loader.num_batches) batch_loader.pointer += start_batch for b in range(start_batch, batch_loader.num_batches): start = time.time() l1 = adaptive_loss(epoch, b, args=args) sess.run(model.l1_assign, feed_dict={model.l1_new: l1}) time1 = time.time() x, y, ngram = batch_loader.next_batch(l1) time2 = time.time() print("Time for loading ngram distribution - %.2f", time2 - time1) # With probability 0.01 feed the initial state if np.random.randint(1, 101) <= 1: states = sess.run(model.initial_states) feed = {model.input_data: x, model.targets: y, model.ngram: ngram, model.initial_states: states} time3 = time.time() train_loss, l1, states, _ = sess.run([model.final_cost, model.cost, model.final_states, model.train_op], feed) end = time.time() # print the result so far on terminal batch_num = epoch * batch_loader.num_batches + b total_num = args.config.num_epochs * batch_loader.num_batches print("Time for TensorFlow calculations - %.2f", end - time3) print("Epoch %d, %d / %d. Loss - %.4f, Time - %.2f", epoch, batch_num, total_num, train_loss, end - start) # Save after `args.eval_freq` batches or at the very end if batch_num != 0 and (batch_num % args.config.eval_freq == 0 or b == batch_loader.num_batches - 1): ppl = evaluate(sess, model_eval, batch_loader.eval_data, args) print("Perplexity after %d steps - %.4f", batch_num, ppl) # Update rules for best_ppl / training schedule print("Best ppl is %.4f, ppl < best_ppl is %s", model.best_ppl.eval(), str(ppl < best_ppl)) if ppl < best_ppl: print("Saving Best Model") # Storing perplexity and in TensorFlow variable and Python variable best_ppl = ppl sess.run(model.best_ppl_assign, feed_dict={model.best_ppl_new: ppl}) if margin_ppl - ppl > args.config.margin_ppl: # In the case there has been a perplexity change of more than `margin_ppl` # update the `last_ppl_update` and `margin_ppl` values # This indicates a "significant" change in ppl print("Updating margin_ppl, Change of %.4f", margin_ppl - ppl) last_ppl_update = batch_num margin_ppl = ppl sess.run(model.last_ppl_update_assign, feed_dict={model.last_ppl_update_new: batch_num}) sess.run(model.margin_ppl_assign, feed_dict={model.margin_ppl_new: ppl}) # Saving the best model checkpoint_path = os.path.join(args.best_dir, "lm.ckpt") model.best_saver.save(sess, checkpoint_path, global_step=model.global_step, write_meta_graph=False) else: # Decay learning rate whenever ppl is greater than best_ppl so far sess.run(model.lr_decay) print("decaying lr after %d epochs to %.4f" % (model.epoch.eval(), model.lr.eval())) checkpoint_path = os.path.join(args.save_dir, "lm.ckpt") model.saver.save(sess, checkpoint_path, global_step=model.global_step, write_meta_graph=False) sess.run(model.epoch_incr) if __name__ == '__main__': main()
[ "yaml.load", "numpy.sum", "tensorflow.reset_default_graph", "tensorflow.local_variables_initializer", "tensorflow.ConfigProto", "numpy.random.randint", "config.arguments.parser.parse_args", "numpy.exp", "tensorflow.get_default_graph", "os.path.join", "tensorflow.random_uniform_initializer", "utils.processor.eval_loader", "os.path.exists", "tensorflow.variable_scope", "model.model.Model", "numpy.cumsum", "utils.processor.DataLoader", "tensorflow.train.get_checkpoint_state", "tensorflow.global_variables_initializer", "tensorflow.Session", "utils.processor.BatchLoader", "numpy.squeeze", "os.makedirs", "time.time", "numpy.array", "numpy.random.rand" ]
[((513, 537), 'tensorflow.reset_default_graph', 'tf.reset_default_graph', ([], {}), '()\n', (535, 537), True, 'import tensorflow as tf\n'), ((593, 612), 'config.arguments.parser.parse_args', 'parser.parse_args', ([], {}), '()\n', (610, 612), False, 'from config.arguments import parser\n'), ((719, 759), 'os.path.join', 'os.path.join', (['args.save_dir', 'args.job_id'], {}), '(args.save_dir, args.job_id)\n', (731, 759), False, 'import os\n'), ((777, 817), 'os.path.join', 'os.path.join', (['args.best_dir', 'args.job_id'], {}), '(args.best_dir, args.job_id)\n', (789, 817), False, 'import os\n'), ((1183, 1199), 'utils.processor.DataLoader', 'DataLoader', (['args'], {}), '(args)\n', (1193, 1199), False, 'from utils.processor import BatchLoader, DataLoader, eval_loader\n'), ((3054, 3098), 'tensorflow.train.get_checkpoint_state', 'tf.train.get_checkpoint_state', (['args.save_dir'], {}), '(args.save_dir)\n', (3083, 3098), True, 'import tensorflow as tf\n'), ((3112, 3156), 'tensorflow.train.get_checkpoint_state', 'tf.train.get_checkpoint_state', (['args.best_dir'], {}), '(args.best_dir)\n', (3141, 3156), True, 'import tensorflow as tf\n'), ((5150, 5169), 'numpy.exp', 'np.exp', (['avg_entropy'], {}), '(avg_entropy)\n', (5156, 5169), True, 'import numpy as np\n'), ((5278, 5294), 'utils.processor.DataLoader', 'DataLoader', (['args'], {}), '(args)\n', (5288, 5294), False, 'from utils.processor import BatchLoader, DataLoader, eval_loader\n'), ((6456, 6472), 'utils.processor.DataLoader', 'DataLoader', (['args'], {}), '(args)\n', (6466, 6472), False, 'from utils.processor import BatchLoader, DataLoader, eval_loader\n'), ((6521, 6551), 'utils.processor.BatchLoader', 'BatchLoader', (['args', 'data_loader'], {}), '(args, data_loader)\n', (6532, 6551), False, 'from utils.processor import BatchLoader, DataLoader, eval_loader\n'), ((826, 855), 'os.path.exists', 'os.path.exists', (['args.save_dir'], {}), '(args.save_dir)\n', (840, 855), False, 'import os\n'), ((859, 885), 'os.makedirs', 'os.makedirs', (['args.save_dir'], {}), '(args.save_dir)\n', (870, 885), False, 'import os\n'), ((894, 923), 'os.path.exists', 'os.path.exists', (['args.best_dir'], {}), '(args.best_dir)\n', (908, 923), False, 'import os\n'), ((927, 953), 'os.makedirs', 'os.makedirs', (['args.best_dir'], {}), '(args.best_dir)\n', (938, 953), False, 'import os\n'), ((1206, 1218), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (1216, 1218), True, 'import tensorflow as tf\n'), ((1245, 1287), 'tensorflow.random_uniform_initializer', 'tf.random_uniform_initializer', (['(-0.05)', '(0.05)'], {}), '(-0.05, 0.05)\n', (1274, 1287), True, 'import tensorflow as tf\n'), ((5335, 5381), 'tensorflow.ConfigProto', 'tf.ConfigProto', ([], {'intra_op_parallelism_threads': '(2)'}), '(intra_op_parallelism_threads=2)\n', (5349, 5381), True, 'import tensorflow as tf\n'), ((5458, 5486), 'tensorflow.Session', 'tf.Session', ([], {'config': 'cfg_proto'}), '(config=cfg_proto)\n', (5468, 5486), True, 'import tensorflow as tf\n'), ((5513, 5555), 'tensorflow.random_uniform_initializer', 'tf.random_uniform_initializer', (['(-0.05)', '(0.05)'], {}), '(-0.05, 0.05)\n', (5542, 5555), True, 'import tensorflow as tf\n'), ((6003, 6056), 'utils.processor.eval_loader', 'eval_loader', (['args', 'data_loader.vocab'], {'split': 'args.mode'}), '(args, data_loader.vocab, split=args.mode)\n', (6014, 6056), False, 'from utils.processor import BatchLoader, DataLoader, eval_loader\n'), ((6593, 6639), 'tensorflow.ConfigProto', 'tf.ConfigProto', ([], {'intra_op_parallelism_threads': '(2)'}), '(intra_op_parallelism_threads=2)\n', (6607, 6639), True, 'import tensorflow as tf\n'), ((6716, 6744), 'tensorflow.Session', 'tf.Session', ([], {'config': 'cfg_proto'}), '(config=cfg_proto)\n', (6726, 6744), True, 'import tensorflow as tf\n'), ((6813, 6855), 'tensorflow.random_uniform_initializer', 'tf.random_uniform_initializer', (['(-0.05)', '(0.05)'], {}), '(-0.05, 0.05)\n', (6842, 6855), True, 'import tensorflow as tf\n'), ((7348, 7399), 'utils.processor.eval_loader', 'eval_loader', (['args', 'data_loader.vocab'], {'split': '"""valid"""'}), "(args, data_loader.vocab, split='valid')\n", (7359, 7399), False, 'from utils.processor import BatchLoader, DataLoader, eval_loader\n'), ((8647, 8658), 'time.time', 'time.time', ([], {}), '()\n', (8656, 8658), False, 'import time\n'), ((8769, 8780), 'time.time', 'time.time', ([], {}), '()\n', (8778, 8780), False, 'import time\n'), ((8835, 8846), 'time.time', 'time.time', ([], {}), '()\n', (8844, 8846), False, 'import time\n'), ((9167, 9178), 'time.time', 'time.time', ([], {}), '()\n', (9176, 9178), False, 'import time\n'), ((9336, 9347), 'time.time', 'time.time', ([], {}), '()\n', (9345, 9347), False, 'import time\n'), ((683, 700), 'yaml.load', 'yaml.load', (['stream'], {}), '(stream)\n', (692, 700), False, 'import yaml\n'), ((1295, 1358), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""model"""'], {'reuse': 'None', 'initializer': 'initializer'}), "('model', reuse=None, initializer=initializer)\n", (1312, 1358), True, 'import tensorflow as tf\n'), ((1371, 1420), 'model.model.Model', 'Model', (['args', 'args.config.batch_size'], {'mode': '"""train"""'}), "(args, args.config.batch_size, mode='train')\n", (1376, 1420), False, 'from model.model import Model\n'), ((1494, 1557), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""model"""'], {'reuse': '(True)', 'initializer': 'initializer'}), "('model', reuse=True, initializer=initializer)\n", (1511, 1557), True, 'import tensorflow as tf\n'), ((1570, 1608), 'model.model.Model', 'Model', (['args'], {'batch_size': '(1)', 'mode': '"""eval"""'}), "(args, batch_size=1, mode='eval')\n", (1575, 1608), False, 'from model.model import Model\n'), ((2043, 2061), 'numpy.cumsum', 'np.cumsum', (['weights'], {}), '(weights)\n', (2052, 2061), True, 'import numpy as np\n'), ((2069, 2084), 'numpy.sum', 'np.sum', (['weights'], {}), '(weights)\n', (2075, 2084), True, 'import numpy as np\n'), ((5563, 5626), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""model"""'], {'reuse': 'None', 'initializer': 'initializer'}), "('model', reuse=None, initializer=initializer)\n", (5580, 5626), True, 'import tensorflow as tf\n'), ((5639, 5688), 'model.model.Model', 'Model', (['args', 'args.config.batch_size'], {'mode': '"""train"""'}), "(args, args.config.batch_size, mode='train')\n", (5644, 5688), False, 'from model.model import Model\n'), ((5763, 5826), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""model"""'], {'reuse': '(True)', 'initializer': 'initializer'}), "('model', reuse=True, initializer=initializer)\n", (5780, 5826), True, 'import tensorflow as tf\n'), ((5844, 5882), 'model.model.Model', 'Model', (['args'], {'batch_size': '(1)', 'mode': '"""eval"""'}), "(args, batch_size=1, mode='eval')\n", (5849, 5882), False, 'from model.model import Model\n'), ((6863, 6926), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""model"""'], {'reuse': 'None', 'initializer': 'initializer'}), "('model', reuse=None, initializer=initializer)\n", (6880, 6926), True, 'import tensorflow as tf\n'), ((6939, 6988), 'model.model.Model', 'Model', (['args', 'args.config.batch_size'], {'mode': '"""train"""'}), "(args, args.config.batch_size, mode='train')\n", (6944, 6988), False, 'from model.model import Model\n'), ((7154, 7217), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""model"""'], {'reuse': '(True)', 'initializer': 'initializer'}), "('model', reuse=True, initializer=initializer)\n", (7171, 7217), True, 'import tensorflow as tf\n'), ((7235, 7273), 'model.model.Model', 'Model', (['args'], {'batch_size': '(1)', 'mode': '"""eval"""'}), "(args, batch_size=1, mode='eval')\n", (7240, 7273), False, 'from model.model import Model\n'), ((7503, 7525), 'tensorflow.get_default_graph', 'tf.get_default_graph', ([], {}), '()\n', (7523, 7525), True, 'import tensorflow as tf\n'), ((8970, 8995), 'numpy.random.randint', 'np.random.randint', (['(1)', '(101)'], {}), '(1, 101)\n', (8987, 8995), True, 'import numpy as np\n'), ((11280, 11318), 'os.path.join', 'os.path.join', (['args.save_dir', '"""lm.ckpt"""'], {}), "(args.save_dir, 'lm.ckpt')\n", (11292, 11318), False, 'import os\n'), ((1816, 1850), 'numpy.array', 'np.array', (['[[data_loader.vocab[i]]]'], {}), '([[data_loader.vocab[i]]])\n', (1824, 1850), True, 'import numpy as np\n'), ((2466, 2483), 'numpy.squeeze', 'np.squeeze', (['probs'], {}), '(probs)\n', (2476, 2483), True, 'import numpy as np\n'), ((2639, 2658), 'numpy.array', 'np.array', (['[[token]]'], {}), '([[token]])\n', (2647, 2658), True, 'import numpy as np\n'), ((3457, 3489), 'tensorflow.local_variables_initializer', 'tf.local_variables_initializer', ([], {}), '()\n', (3487, 3489), True, 'import tensorflow as tf\n'), ((10917, 10955), 'os.path.join', 'os.path.join', (['args.best_dir', '"""lm.ckpt"""'], {}), "(args.best_dir, 'lm.ckpt')\n", (10929, 10955), False, 'import os\n'), ((2504, 2521), 'numpy.squeeze', 'np.squeeze', (['probs'], {}), '(probs)\n', (2514, 2521), True, 'import numpy as np\n'), ((3773, 3805), 'tensorflow.local_variables_initializer', 'tf.local_variables_initializer', ([], {}), '()\n', (3803, 3805), True, 'import tensorflow as tf\n'), ((3851, 3884), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (3882, 3884), True, 'import tensorflow as tf\n'), ((3889, 3921), 'tensorflow.local_variables_initializer', 'tf.local_variables_initializer', ([], {}), '()\n', (3919, 3921), True, 'import tensorflow as tf\n'), ((2118, 2135), 'numpy.random.rand', 'np.random.rand', (['(1)'], {}), '(1)\n', (2132, 2135), True, 'import numpy as np\n')]
####################################################### #This script is for evaluating for the task of SLR # ####################################################### import argparse import time import collections import os import sys import torch import torch.nn from torch.autograd import Variable import torch.nn as nn import numpy as np import datetime as dt import _pickle as pickle from collections import OrderedDict import cv2 from transformer_slr import make_model as TRANSFORMER from dataloader_slr import loader #For SLR from utils import path_data, Batch, greedy_decode #Progress bar to visualize training progress import progressbar import matplotlib.pyplot as plt #Evaluation metrics from bleu import compute_bleu from rouge import rouge from beam_search import beam_decode from nltk.translate.bleu_score import sentence_bleu, corpus_bleu #https://pypi.org/project/py-rouge/ #import rouge #Lavenshtein distance (WER) from jiwer import wer import tensorflow.compat.v1 as tf tf.enable_eager_execution() ### # Arg parsing ############## parser = argparse.ArgumentParser(description='Evaluation') parser.add_argument('--data', type=str, default=os.path.join('data','phoenix-2014.v3', 'phoenix2014-release','phoenix-2014-multisigner'), help='location of the test data corpus') parser.add_argument('--model_path', type=str, default=os.path.join("EXPERIMENTATIONS"), help='location of the entire trained model') parser.add_argument('--lookup_table', type=str, default=os.path.join('data','slr_lookup.txt'), help='location of the words lookup table') parser.add_argument('--rescale', type=int, default=224, help='rescale data images. NOTE: use same image size as the training or else you get worse results.') #Put to 0 to avoid memory segementation fault parser.add_argument('--num_workers', type=int, default=0, help='NOTE: put num of workers to 0 to avoid memory saturation.') parser.add_argument('--image_type', type=str, default='rgb', help='Evaluate on rgb/grayscale images') parser.add_argument('--show_sample', action='store_true', help='Show a sample a preprocessed data.') parser.add_argument('--batch_size', type=int, default=1, help='size of one minibatch') parser.add_argument('--save', action='store_true', help='save the results of the evaluation') parser.add_argument('--hand_query', action='store_true', help='Set hand cropped image as a query for transformer network.') parser.add_argument('--data_stats', type=str, default='data_stats.pt', help='Normalize images using the dataset stats (mean/std).') parser.add_argument('--hand_stats', type=str, default='hand_stats.pt', help='Normalize images using the dataset stats (mean/std).') parser.add_argument('--emb_type', type=str, default='2d', help='Type of image embeddings 2d or 3d.') parser.add_argument('--emb_network', type=str, default='mb2', help='Image embeddings network: mb2/mb2-ssd/rcnn') parser.add_argument('--decoding', type=str, default='greedy', help='Decoding method (greedy/beam).') parser.add_argument('--n_beam', type=int, default=4, help='Beam width when using bean search for decoding.') parser.add_argument('--rel_window', type=int, default=None) parser.add_argument('--bleu', action='store_true', help='Use bleu for evaluation.') parser.add_argument('--rouge', action='store_true', help='Use rouge for evaluation.') parser.add_argument('--txt', type=str, default=None, help='Run evaluation from txt files.') parser.add_argument('--heatmap', action='store_true', help='produce heatmap.') #---------------------------------------------------------------------------------------- #Same seed for reproducibility) parser.add_argument('--seed', type=int, default=1111, help='random seed') #Save folder with the date start_date = dt.datetime.now().strftime("%Y-%m-%d-%H.%M") print ("Start Time: "+start_date) args = parser.parse_args() #Set the random seed manually for reproducibility. torch.manual_seed(args.seed) #experiment_path = PureWindowsPath('EXPERIMENTATIONS\\' + start_date) save_path = os.path.join('EVALUATION', start_date) # Creates an experimental directory and dumps all the args to a text file if(args.save): if(os.path.exists(save_path)): print('Evaluation already exists..') else: os.makedirs(save_path) print ("\nPutting log in EVALUATION/%s"%start_date) #Dump all configurations/hyperparameters in txt with open (os.path.join(save_path,'eval_config.txt'), 'w') as f: f.write('Experimentation done at: '+ str(start_date)+' with current configurations:\n') for arg in vars(args): f.write(arg+' : '+str(getattr(args, arg))+'\n') #------------------------------------------------------------------------------- train_path, valid_path, test_path = path_data(data_path=args.data, task='SLR', hand_query=args.hand_query) #Load stats if(args.data_stats): args.data_stats = torch.load(args.data_stats, map_location=torch.device('cpu')) if(args.hand_stats): args.hand_stats = torch.load(args.hand_stats, map_location=torch.device('cpu')) if (args.image_type == 'rgb'): channels = 3 elif(args.image_type == 'grayscale'): channels = 1 else: print('Image type is not supported!') quit(0) #No data augmentation for test data test_dataloader, test_size = loader(csv_file=test_path[1], root_dir=test_path[0], lookup=args.lookup_table, rescale = args.rescale, augmentation = None, batch_size = args.batch_size, num_workers = args.num_workers, show_sample = args.show_sample, istrain=False, hand_dir=test_path[2], data_stats=args.data_stats, hand_stats=args.hand_stats, channels=channels ) #No data augmentation for test data valid_dataloader, valid_size = loader(csv_file=valid_path[1], root_dir=valid_path[0], lookup=args.lookup_table, rescale = args.rescale, augmentation = None, batch_size = args.batch_size, num_workers = args.num_workers, show_sample = args.show_sample, istrain=False, hand_dir=valid_path[2], data_stats=args.data_stats, hand_stats=args.hand_stats, channels=channels ) print('Test dataset size: '+str(test_size)) print('Valid dataset size: '+str(valid_size)) #Retrieve size of target vocab with open(args.lookup_table, 'rb') as pickle_file: vocab = pickle.load(pickle_file) vocab_size = len(vocab) #Switch keys and values of vocab to easily look for words vocab = {y:x for x,y in vocab.items()} print('vocabulary size:' + str(vocab_size)) #Loop through test and val sets dataloaders = [valid_dataloader, test_dataloader] sizes = [valid_size, test_size] dataset = ['valid', 'test'] #Blank token index blank_index = 1232 #------------------------------------------------------------------------------- #Run evaluation from txt files if(args.txt): for d in range(len(dataset)): print(dataset[d]) #Hypotheses file with open(os.path.join(args.txt,'simpl_translations_'+dataset[d]+'.txt')) as f: hyp = f.read().splitlines() #Reference file with open(os.path.join(args.txt,'simpl_references_'+dataset[d]+'.txt')) as f: ref = f.read().splitlines() assert len(hyp) == len(ref) total_wer_score = 0.0 count = 0 #Measuring WER for i in range(len(ref)): total_wer_score += wer(ref[i], hyp[i], standardize=True) count += 1 print(total_wer_score/count) quit(0) #------------------------------------------------------------------------------- #Run on GPU if torch.cuda.is_available(): print("Using GPU") device = torch.device("cuda:0") else: #Run on CPU print("WARNING: You are about to run on cpu, and this will likely run out \ of memory. \n You can try setting batch_size=1 to reduce memory usage") device = torch.device("cpu") #------------------------------------------------------------------------------- #Load the whole model with state dict model = TRANSFORMER(tgt_vocab=vocab_size, n_stacks=2, n_units=1280, n_heads=10, d_ff=2048, dropout=0.3, image_size=224, emb_type='2d', emb_network='mb2') model.load_state_dict(torch.load(args.model_path)['state_dict']) #Load entire model w/ weights #model = torch.load(args.model_path, map_location=device) model = model.to(device) print("Model successfully loaded") model.eval() # Set model to evaluate mode print ("Evaluating..") start_time = time.time() for d in range(len(sizes)): dataloader = dataloaders[d] size = sizes[d] print(dataset[d]) #For progress bar bar = progressbar.ProgressBar(maxval=size, widgets=[progressbar.Bar('=', '[', ']'), ' ', progressbar.Percentage()]) bar.start() i = 0 count = 0 #Save translation and reference sentences translation_corpus = [] reference_corpus = [] total_wer_score = 0.0 count = 0 #Loop over minibatches for step, (x, x_lengths, y, y_lengths, hand_regions, hand_lengths, name) in enumerate(dataloader): #Update progress bar with every iter i += len(x) bar.update(i) if(args.hand_query): hand_regions = hand_regions.to(device) else: hand_regions = None y = torch.from_numpy(y).to(device) x = x.to(device) batch = Batch(x_lengths, y_lengths, hand_lengths, trg=None, DEVICE=device, emb_type=args.emb_type, fixed_padding=None, rel_window=args.rel_window) #with torch.no_grad(): output, output_context, output_hand = model.forward(x, batch.src_mask, batch.rel_mask, hand_regions) #CTC loss expects (Seq, batch, vocab) if(args.hand_query): output = output.transpose(0,1) output_context = output_context.transpose(0,1) output_hand = output_hand.transpose(0,1) else: output = output_context.transpose(0,1) #Predicted words with highest prob _, pred = torch.max(output, dim=-1) #Remove <BLANK> #pred = pred[pred != blank_index] if(args.heatmap): output[17, 0, pred[17].item()].backward(retain_graph=True) # pull the gradients out of the images feature map #They should have same shape gradients = model.get_activations_gradient() activations = model.get_activations().detach() # pool the gradients across the channels pooled_gradients = torch.mean(gradients, dim=[2, 3]) # weight the channels by corresponding gradients for i in range(57): for j in range(1280): activations[i, j, :, :] = activations[i, j, :, :] * pooled_gradients[i, j] # average the channels of the activations heatmap = torch.mean(activations, dim=1).squeeze() maxi = torch.max(heatmap) # relu on top of the heatmap heatmap = np.maximum(heatmap.cpu().numpy(), 0) # normalize the heatmap heatmap /= maxi.cpu().numpy() for i in range(heatmap.shape[0]): #Get image img = cv2.imread(os.path.join(args.data, 'keyfeatures/fullFrame-210x260px/dev/10January_2011_Monday_tagesschau_default-7', 'images'+'{:04d}'.format(i+1)+'.png')) img = cv2.resize(img, (args.rescale, args.rescale)) h = heatmap[i] h = cv2.resize(h, (args.rescale, args.rescale)) h = np.uint8(255 * h) h = cv2.applyColorMap(h, cv2.COLORMAP_JET) assert img.shape == h.shape #h = h*0.4 + img h = cv2.addWeighted(h, 0.5, img, 0.8, 0) cv2.imwrite("samples/heatmap"+str(i)+".png", h) x_lengths = torch.IntTensor(x_lengths) y_lengths = torch.IntTensor(y_lengths) decodes, _ = tf.nn.ctc_beam_search_decoder(inputs=output.cpu().detach().numpy(), sequence_length=x_lengths.cpu().detach().numpy(), merge_repeated=False, beam_width=10, top_paths=1) pred = decodes[0] pred = tf.sparse.to_dense(pred).numpy() #Loop over translations and references for j in range(len(y)): ys = y[j, :y_lengths[j]] p = pred[j] #Remove <UNK> token p = p[p != 0] ys = ys[ys != 0] hyp = (' '.join([vocab[x.item()] for x in p])) gt = (' '.join([vocab[x.item()] for x in ys])) total_wer_score += wer(gt, hyp, standardize=True) count += 1 #Convert index tokens to words translation_corpus.append(hyp) reference_corpus.append(gt) #Free some memory #NOTE: this helps alot in avoiding cuda out of memory del x, y, batch assert len(translation_corpus) == len(reference_corpus) print('WER score:'+str(total_wer_score/count)) if(args.save): #Save results in txt files with open(os.path.join(save_path, 'translations_'+dataset[d]+'.txt') ,'w') as trans_file: trans_file.write("\n".join(translation_corpus)) with open(os.path.join(save_path, 'references_'+dataset[d]+'.txt'), 'w') as ref_file: ref_file.write("\n".join(reference_corpus)) if(args.bleu): #Default return #NOTE: bleu score of camgoz results is slightly better than ntlk -> use it instead #bleu_4 = corpus_bleu(reference_corpus, translation_corpus) bleu_4, _, _, _, _, _ = compute_bleu(references_corpus, translation_corpus, max_order=4) #weights = (1.0/1.0, ) bleu_1, _, _, _, _, _ = compute_bleu(references_corpus, translation_corpus, max_order=1) #weights = (1.0/2.0, 1.0/2.0, ) #bleu_2 = corpus_bleu(reference_corpus, translation_corpus, weights) bleu_2, _, _, _, _, _ = compute_bleu(references_corpus, translation_corpus, max_order=2) #weights = (1.0/3.0, 1.0/3.0, 1.0/3.0,) #bleu_3 = corpus_bleu(reference_corpus, translation_corpus, weights) bleu_3, _, _, _, _, _ = compute_bleu(references_corpus, translation_corpus, max_order=3) log_str = 'Bleu Evaluation: ' + '\t' \ + 'Bleu_1: ' + str(bleu_1) + '\t' \ + 'Bleu_2: ' + str(bleu_2) + '\t' \ + 'Bleu_3: ' + str(bleu_3) + '\t' \ + 'Bleu_4: ' + str(bleu_4) print(log_str) if(args.save): #Save evaluation results in a log file with open(os.path.join(args.save_path, 'log.txt'), 'a') as f: f.write(log_str+'\n') if(args.rouge): reference_corpus = [" ".join(reference) for reference in reference_corpus] translation_corpus = [" ".join(hypothesis) for hypothesis in translation_corpus] score = rouge(translation_corpus, reference_corpus) print(score["rouge_l/f_score"]) log_str = 'Rouge Evaluation: ' + '\t' print(log_str) if(args.save): #Save evaluation results in a log file with open(os.path.join(args.save_path, 'log.txt'), 'a') as f: f.write(log_str+'\n')
[ "argparse.ArgumentParser", "progressbar.Percentage", "torch.device", "os.path.join", "_pickle.load", "torch.load", "os.path.exists", "progressbar.Bar", "dataloader_slr.loader", "tensorflow.compat.v1.sparse.to_dense", "utils.Batch", "datetime.datetime.now", "cv2.resize", "torch.mean", "transformer_slr.make_model", "numpy.uint8", "tensorflow.compat.v1.enable_eager_execution", "torch.manual_seed", "cv2.addWeighted", "bleu.compute_bleu", "torch.cuda.is_available", "torch.max", "torch.IntTensor", "cv2.applyColorMap", "utils.path_data", "torch.from_numpy", "rouge.rouge", "os.makedirs", "time.time", "jiwer.wer" ]
[((997, 1024), 'tensorflow.compat.v1.enable_eager_execution', 'tf.enable_eager_execution', ([], {}), '()\n', (1022, 1024), True, 'import tensorflow.compat.v1 as tf\n'), ((1070, 1119), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Evaluation"""'}), "(description='Evaluation')\n", (1093, 1119), False, 'import argparse\n'), ((4318, 4346), 'torch.manual_seed', 'torch.manual_seed', (['args.seed'], {}), '(args.seed)\n', (4335, 4346), False, 'import torch\n'), ((4430, 4468), 'os.path.join', 'os.path.join', (['"""EVALUATION"""', 'start_date'], {}), "('EVALUATION', start_date)\n", (4442, 4468), False, 'import os\n'), ((5166, 5236), 'utils.path_data', 'path_data', ([], {'data_path': 'args.data', 'task': '"""SLR"""', 'hand_query': 'args.hand_query'}), "(data_path=args.data, task='SLR', hand_query=args.hand_query)\n", (5175, 5236), False, 'from utils import path_data, Batch, greedy_decode\n'), ((5692, 6030), 'dataloader_slr.loader', 'loader', ([], {'csv_file': 'test_path[1]', 'root_dir': 'test_path[0]', 'lookup': 'args.lookup_table', 'rescale': 'args.rescale', 'augmentation': 'None', 'batch_size': 'args.batch_size', 'num_workers': 'args.num_workers', 'show_sample': 'args.show_sample', 'istrain': '(False)', 'hand_dir': 'test_path[2]', 'data_stats': 'args.data_stats', 'hand_stats': 'args.hand_stats', 'channels': 'channels'}), '(csv_file=test_path[1], root_dir=test_path[0], lookup=args.\n lookup_table, rescale=args.rescale, augmentation=None, batch_size=args.\n batch_size, num_workers=args.num_workers, show_sample=args.show_sample,\n istrain=False, hand_dir=test_path[2], data_stats=args.data_stats,\n hand_stats=args.hand_stats, channels=channels)\n', (5698, 6030), False, 'from dataloader_slr import loader\n'), ((6300, 6641), 'dataloader_slr.loader', 'loader', ([], {'csv_file': 'valid_path[1]', 'root_dir': 'valid_path[0]', 'lookup': 'args.lookup_table', 'rescale': 'args.rescale', 'augmentation': 'None', 'batch_size': 'args.batch_size', 'num_workers': 'args.num_workers', 'show_sample': 'args.show_sample', 'istrain': '(False)', 'hand_dir': 'valid_path[2]', 'data_stats': 'args.data_stats', 'hand_stats': 'args.hand_stats', 'channels': 'channels'}), '(csv_file=valid_path[1], root_dir=valid_path[0], lookup=args.\n lookup_table, rescale=args.rescale, augmentation=None, batch_size=args.\n batch_size, num_workers=args.num_workers, show_sample=args.show_sample,\n istrain=False, hand_dir=valid_path[2], data_stats=args.data_stats,\n hand_stats=args.hand_stats, channels=channels)\n', (6306, 6641), False, 'from dataloader_slr import loader\n'), ((8284, 8309), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (8307, 8309), False, 'import torch\n'), ((8710, 8859), 'transformer_slr.make_model', 'TRANSFORMER', ([], {'tgt_vocab': 'vocab_size', 'n_stacks': '(2)', 'n_units': '(1280)', 'n_heads': '(10)', 'd_ff': '(2048)', 'dropout': '(0.3)', 'image_size': '(224)', 'emb_type': '"""2d"""', 'emb_network': '"""mb2"""'}), "(tgt_vocab=vocab_size, n_stacks=2, n_units=1280, n_heads=10,\n d_ff=2048, dropout=0.3, image_size=224, emb_type='2d', emb_network='mb2')\n", (8721, 8859), True, 'from transformer_slr import make_model as TRANSFORMER\n'), ((9236, 9247), 'time.time', 'time.time', ([], {}), '()\n', (9245, 9247), False, 'import time\n'), ((4566, 4591), 'os.path.exists', 'os.path.exists', (['save_path'], {}), '(save_path)\n', (4580, 4591), False, 'import os\n'), ((7028, 7052), '_pickle.load', 'pickle.load', (['pickle_file'], {}), '(pickle_file)\n', (7039, 7052), True, 'import _pickle as pickle\n'), ((8347, 8369), 'torch.device', 'torch.device', (['"""cuda:0"""'], {}), "('cuda:0')\n", (8359, 8369), False, 'import torch\n'), ((8559, 8578), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (8571, 8578), False, 'import torch\n'), ((1170, 1264), 'os.path.join', 'os.path.join', (['"""data"""', '"""phoenix-2014.v3"""', '"""phoenix2014-release"""', '"""phoenix-2014-multisigner"""'], {}), "('data', 'phoenix-2014.v3', 'phoenix2014-release',\n 'phoenix-2014-multisigner')\n", (1182, 1264), False, 'import os\n'), ((1376, 1408), 'os.path.join', 'os.path.join', (['"""EXPERIMENTATIONS"""'], {}), "('EXPERIMENTATIONS')\n", (1388, 1408), False, 'import os\n'), ((1533, 1571), 'os.path.join', 'os.path.join', (['"""data"""', '"""slr_lookup.txt"""'], {}), "('data', 'slr_lookup.txt')\n", (1545, 1571), False, 'import os\n'), ((4159, 4176), 'datetime.datetime.now', 'dt.datetime.now', ([], {}), '()\n', (4174, 4176), True, 'import datetime as dt\n'), ((4657, 4679), 'os.makedirs', 'os.makedirs', (['save_path'], {}), '(save_path)\n', (4668, 4679), False, 'import os\n'), ((8961, 8988), 'torch.load', 'torch.load', (['args.model_path'], {}), '(args.model_path)\n', (8971, 8988), False, 'import torch\n'), ((10112, 10255), 'utils.Batch', 'Batch', (['x_lengths', 'y_lengths', 'hand_lengths'], {'trg': 'None', 'DEVICE': 'device', 'emb_type': 'args.emb_type', 'fixed_padding': 'None', 'rel_window': 'args.rel_window'}), '(x_lengths, y_lengths, hand_lengths, trg=None, DEVICE=device, emb_type\n =args.emb_type, fixed_padding=None, rel_window=args.rel_window)\n', (10117, 10255), False, 'from utils import path_data, Batch, greedy_decode\n'), ((10751, 10776), 'torch.max', 'torch.max', (['output'], {'dim': '(-1)'}), '(output, dim=-1)\n', (10760, 10776), False, 'import torch\n'), ((12578, 12604), 'torch.IntTensor', 'torch.IntTensor', (['x_lengths'], {}), '(x_lengths)\n', (12593, 12604), False, 'import torch\n'), ((12625, 12651), 'torch.IntTensor', 'torch.IntTensor', (['y_lengths'], {}), '(y_lengths)\n', (12640, 12651), False, 'import torch\n'), ((14334, 14398), 'bleu.compute_bleu', 'compute_bleu', (['references_corpus', 'translation_corpus'], {'max_order': '(4)'}), '(references_corpus, translation_corpus, max_order=4)\n', (14346, 14398), False, 'from bleu import compute_bleu\n'), ((14463, 14527), 'bleu.compute_bleu', 'compute_bleu', (['references_corpus', 'translation_corpus'], {'max_order': '(1)'}), '(references_corpus, translation_corpus, max_order=1)\n', (14475, 14527), False, 'from bleu import compute_bleu\n'), ((14678, 14742), 'bleu.compute_bleu', 'compute_bleu', (['references_corpus', 'translation_corpus'], {'max_order': '(2)'}), '(references_corpus, translation_corpus, max_order=2)\n', (14690, 14742), False, 'from bleu import compute_bleu\n'), ((14901, 14965), 'bleu.compute_bleu', 'compute_bleu', (['references_corpus', 'translation_corpus'], {'max_order': '(3)'}), '(references_corpus, translation_corpus, max_order=3)\n', (14913, 14965), False, 'from bleu import compute_bleu\n'), ((15603, 15646), 'rouge.rouge', 'rouge', (['translation_corpus', 'reference_corpus'], {}), '(translation_corpus, reference_corpus)\n', (15608, 15646), False, 'from rouge import rouge\n'), ((4805, 4847), 'os.path.join', 'os.path.join', (['save_path', '"""eval_config.txt"""'], {}), "(save_path, 'eval_config.txt')\n", (4817, 4847), False, 'import os\n'), ((5335, 5354), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (5347, 5354), False, 'import torch\n'), ((5441, 5460), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (5453, 5460), False, 'import torch\n'), ((8072, 8109), 'jiwer.wer', 'wer', (['ref[i]', 'hyp[i]'], {'standardize': '(True)'}), '(ref[i], hyp[i], standardize=True)\n', (8075, 8109), False, 'from jiwer import wer\n'), ((11248, 11281), 'torch.mean', 'torch.mean', (['gradients'], {'dim': '[2, 3]'}), '(gradients, dim=[2, 3])\n', (11258, 11281), False, 'import torch\n'), ((11645, 11663), 'torch.max', 'torch.max', (['heatmap'], {}), '(heatmap)\n', (11654, 11663), False, 'import torch\n'), ((13327, 13357), 'jiwer.wer', 'wer', (['gt', 'hyp'], {'standardize': '(True)'}), '(gt, hyp, standardize=True)\n', (13330, 13357), False, 'from jiwer import wer\n'), ((7637, 7704), 'os.path.join', 'os.path.join', (['args.txt', "('simpl_translations_' + dataset[d] + '.txt')"], {}), "(args.txt, 'simpl_translations_' + dataset[d] + '.txt')\n", (7649, 7704), False, 'import os\n'), ((7790, 7855), 'os.path.join', 'os.path.join', (['args.txt', "('simpl_references_' + dataset[d] + '.txt')"], {}), "(args.txt, 'simpl_references_' + dataset[d] + '.txt')\n", (7802, 7855), False, 'import os\n'), ((9432, 9462), 'progressbar.Bar', 'progressbar.Bar', (['"""="""', '"""["""', '"""]"""'], {}), "('=', '[', ']')\n", (9447, 9462), False, 'import progressbar\n'), ((9469, 9493), 'progressbar.Percentage', 'progressbar.Percentage', ([], {}), '()\n', (9491, 9493), False, 'import progressbar\n'), ((10039, 10058), 'torch.from_numpy', 'torch.from_numpy', (['y'], {}), '(y)\n', (10055, 10058), False, 'import torch\n'), ((12118, 12163), 'cv2.resize', 'cv2.resize', (['img', '(args.rescale, args.rescale)'], {}), '(img, (args.rescale, args.rescale))\n', (12128, 12163), False, 'import cv2\n'), ((12215, 12258), 'cv2.resize', 'cv2.resize', (['h', '(args.rescale, args.rescale)'], {}), '(h, (args.rescale, args.rescale))\n', (12225, 12258), False, 'import cv2\n'), ((12279, 12296), 'numpy.uint8', 'np.uint8', (['(255 * h)'], {}), '(255 * h)\n', (12287, 12296), True, 'import numpy as np\n'), ((12317, 12355), 'cv2.applyColorMap', 'cv2.applyColorMap', (['h', 'cv2.COLORMAP_JET'], {}), '(h, cv2.COLORMAP_JET)\n', (12334, 12355), False, 'import cv2\n'), ((12455, 12491), 'cv2.addWeighted', 'cv2.addWeighted', (['h', '(0.5)', 'img', '(0.8)', '(0)'], {}), '(h, 0.5, img, 0.8, 0)\n', (12470, 12491), False, 'import cv2\n'), ((12913, 12937), 'tensorflow.compat.v1.sparse.to_dense', 'tf.sparse.to_dense', (['pred'], {}), '(pred)\n', (12931, 12937), True, 'import tensorflow.compat.v1 as tf\n'), ((13807, 13869), 'os.path.join', 'os.path.join', (['save_path', "('translations_' + dataset[d] + '.txt')"], {}), "(save_path, 'translations_' + dataset[d] + '.txt')\n", (13819, 13869), False, 'import os\n'), ((13966, 14026), 'os.path.join', 'os.path.join', (['save_path', "('references_' + dataset[d] + '.txt')"], {}), "(save_path, 'references_' + dataset[d] + '.txt')\n", (13978, 14026), False, 'import os\n'), ((11585, 11615), 'torch.mean', 'torch.mean', (['activations'], {'dim': '(1)'}), '(activations, dim=1)\n', (11595, 11615), False, 'import torch\n'), ((15302, 15341), 'os.path.join', 'os.path.join', (['args.save_path', '"""log.txt"""'], {}), "(args.save_path, 'log.txt')\n", (15314, 15341), False, 'import os\n'), ((15854, 15893), 'os.path.join', 'os.path.join', (['args.save_path', '"""log.txt"""'], {}), "(args.save_path, 'log.txt')\n", (15866, 15893), False, 'import os\n')]
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import numpy as np import paddle import pandas as pd import yaml from paddle import nn from paddle.io import DataLoader from sklearn.metrics import classification_report from sklearn.metrics import precision_recall_fscore_support from yacs.config import CfgNode from paddlespeech.text.models.ernie_linear import ErnieLinear from paddlespeech.text.models.ernie_linear import PuncDataset from paddlespeech.text.models.ernie_linear import PuncDatasetFromErnieTokenizer DefinedClassifier = { 'ErnieLinear': ErnieLinear, } DefinedLoss = { "ce": nn.CrossEntropyLoss, } DefinedDataset = { 'Punc': PuncDataset, 'Ernie': PuncDatasetFromErnieTokenizer, } def evaluation(y_pred, y_test): precision, recall, f1, _ = precision_recall_fscore_support( y_test, y_pred, average=None, labels=[1, 2, 3]) overall = precision_recall_fscore_support( y_test, y_pred, average='macro', labels=[1, 2, 3]) result = pd.DataFrame( np.array([precision, recall, f1]), columns=list(['O', 'COMMA', 'PERIOD', 'QUESTION'])[1:], index=['Precision', 'Recall', 'F1']) result['OVERALL'] = overall[:3] return result def test(args): with open(args.config) as f: config = CfgNode(yaml.safe_load(f)) print("========Args========") print(yaml.safe_dump(vars(args))) print("========Config========") print(config) test_dataset = DefinedDataset[config["dataset_type"]]( train_path=config["test_path"], **config["data_params"]) test_loader = DataLoader( test_dataset, batch_size=config.batch_size, shuffle=False, drop_last=False) model = DefinedClassifier[config["model_type"]](**config["model"]) state_dict = paddle.load(args.checkpoint) model.set_state_dict(state_dict["main_params"]) model.eval() punc_list = [] for i in range(len(test_loader.dataset.id2punc)): punc_list.append(test_loader.dataset.id2punc[i]) test_total_label = [] test_total_predict = [] for i, batch in enumerate(test_loader): input, label = batch label = paddle.reshape(label, shape=[-1]) y, logit = model(input) pred = paddle.argmax(logit, axis=1) test_total_label.extend(label.numpy().tolist()) test_total_predict.extend(pred.numpy().tolist()) t = classification_report( test_total_label, test_total_predict, target_names=punc_list) print(t) t2 = evaluation(test_total_label, test_total_predict) print('=========================================================') print(t2) def main(): # parse args and config and redirect to train_sp parser = argparse.ArgumentParser(description="Test a ErnieLinear model.") parser.add_argument("--config", type=str, help="ErnieLinear config file.") parser.add_argument("--checkpoint", type=str, help="snapshot to load.") parser.add_argument( "--ngpu", type=int, default=1, help="if ngpu=0, use cpu.") args = parser.parse_args() if args.ngpu == 0: paddle.set_device("cpu") elif args.ngpu > 0: paddle.set_device("gpu") else: print("ngpu should >= 0 !") test(args) if __name__ == "__main__": main()
[ "argparse.ArgumentParser", "paddle.load", "paddle.reshape", "paddle.argmax", "sklearn.metrics.classification_report", "numpy.array", "yaml.safe_load", "paddle.set_device", "paddle.io.DataLoader", "sklearn.metrics.precision_recall_fscore_support" ]
[((1357, 1436), 'sklearn.metrics.precision_recall_fscore_support', 'precision_recall_fscore_support', (['y_test', 'y_pred'], {'average': 'None', 'labels': '[1, 2, 3]'}), '(y_test, y_pred, average=None, labels=[1, 2, 3])\n', (1388, 1436), False, 'from sklearn.metrics import precision_recall_fscore_support\n'), ((1460, 1546), 'sklearn.metrics.precision_recall_fscore_support', 'precision_recall_fscore_support', (['y_test', 'y_pred'], {'average': '"""macro"""', 'labels': '[1, 2, 3]'}), "(y_test, y_pred, average='macro', labels=[1,\n 2, 3])\n", (1491, 1546), False, 'from sklearn.metrics import precision_recall_fscore_support\n'), ((2149, 2239), 'paddle.io.DataLoader', 'DataLoader', (['test_dataset'], {'batch_size': 'config.batch_size', 'shuffle': '(False)', 'drop_last': '(False)'}), '(test_dataset, batch_size=config.batch_size, shuffle=False,\n drop_last=False)\n', (2159, 2239), False, 'from paddle.io import DataLoader\n'), ((2357, 2385), 'paddle.load', 'paddle.load', (['args.checkpoint'], {}), '(args.checkpoint)\n', (2368, 2385), False, 'import paddle\n'), ((2962, 3050), 'sklearn.metrics.classification_report', 'classification_report', (['test_total_label', 'test_total_predict'], {'target_names': 'punc_list'}), '(test_total_label, test_total_predict, target_names=\n punc_list)\n', (2983, 3050), False, 'from sklearn.metrics import classification_report\n'), ((3291, 3355), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Test a ErnieLinear model."""'}), "(description='Test a ErnieLinear model.')\n", (3314, 3355), False, 'import argparse\n'), ((1587, 1620), 'numpy.array', 'np.array', (['[precision, recall, f1]'], {}), '([precision, recall, f1])\n', (1595, 1620), True, 'import numpy as np\n'), ((2731, 2764), 'paddle.reshape', 'paddle.reshape', (['label'], {'shape': '[-1]'}), '(label, shape=[-1])\n', (2745, 2764), False, 'import paddle\n'), ((2812, 2840), 'paddle.argmax', 'paddle.argmax', (['logit'], {'axis': '(1)'}), '(logit, axis=1)\n', (2825, 2840), False, 'import paddle\n'), ((3667, 3691), 'paddle.set_device', 'paddle.set_device', (['"""cpu"""'], {}), "('cpu')\n", (3684, 3691), False, 'import paddle\n'), ((1861, 1878), 'yaml.safe_load', 'yaml.safe_load', (['f'], {}), '(f)\n', (1875, 1878), False, 'import yaml\n'), ((3724, 3748), 'paddle.set_device', 'paddle.set_device', (['"""gpu"""'], {}), "('gpu')\n", (3741, 3748), False, 'import paddle\n')]
import os import glob from segmentation import * from utils.image_io import prepare_image import numpy as np from cv2.ximgproc import guidedFilter from matplotlib import pyplot as plt from _utils import * image_dir = '../double_dip/images' prior_hint_dir_fg = '../double_dip/saliency/output_fg' prior_hint_dir_bg = '../double_dip/saliency/output_bg' saliency_dir_fg = '../double_dip/saliency/output_fg' saliency_dir_bg = '../double_dip/saliency/output_bg' def _clear_output(): os.system('rm -rf output/*') def _make_dir(image_name): os.system('mkdir output/{}'.format(image_name)) def _copy_output_to_dir(image_name): os.system('mv output/*{}* output/{}/'.format(image_name, image_name)) def _plot_learning_curve(image_name, s_obj, title): fig, ax1 = plt.subplots() color = 'tab:red' ax1.set_xlabel('epochs') ax1.set_ylabel('loss', color=color) ax1.plot(s_obj.learning_curve, color=color) ax1.tick_params(axis='y', labelcolor=color) ax2 = ax1.twinx() color = 'tab:blue' ax2.set_ylabel('PSNR', color=color) ax2.plot(s_obj.psnr_learning_curve, color=color) ax2.tick_params(axis='y', labelcolor=color) fig.tight_layout() plt.title(title) fig.savefig('output/{}_{}.jpg'.format( image_name.split('.')[0], '_'.join(title.split(' ')))) def _compare_learning_curve(image_name, s_obj_1, s_obj_2, title, legend): fig = plt.figure() plt.plot(s_obj_1.psnr_learning_curve) plt.plot(s_obj_2.psnr_learning_curve) plt.legend(legend) plt.title(title) fig.savefig('output/{}_{}.jpg'.format( image_name.split('.')[0], '_'.join(title.split(' ')))) _clear_output() for input_path in glob.glob(image_dir + '/*'): image_name = os.path.basename(input_path).split('.')[0] print('----> started training on image << {} >>'.format(image_name)) if image_name == 'eagle': continue ###!!! _make_dir(image_name) im = prepare_image(os.path.join(image_dir, image_name + '.jpg')) orig_fg = prepare_image(os.path.join(saliency_dir_fg, image_name + '.jpg')) orig_bg = prepare_image(os.path.join(saliency_dir_bg, image_name + '.jpg')) prior_hint_name = image_name.split('.')[0] + '_cluster_hint' + '.jpg' prior_fg = prepare_image(os.path.join(prior_hint_dir_fg, prior_hint_name)) prior_bg = prepare_image(os.path.join(prior_hint_dir_bg, prior_hint_name)) # Configs stage_1_iter = 500 stage_2_iter = 500 show_every = 200 # Original training s = Segmentation( "{}_orig".format(image_name), im, bg_hint=orig_bg, fg_hint=orig_fg, plot_during_training=True, show_every=show_every, first_step_iter_num=stage_1_iter, second_step_iter_num=stage_2_iter) s.optimize() s.finalize() _plot_learning_curve(image_name, s, 'original learning curve') # Prior-based hint training s_prior = Segmentation( "{}_prior".format(image_name), im, bg_hint=prior_bg, fg_hint=prior_fg, plot_during_training=True, show_every=show_every, first_step_iter_num=stage_1_iter, second_step_iter_num=stage_2_iter) s_prior.optimize() s_prior.finalize() _plot_learning_curve(image_name, s_prior, 'prior hint learning curve') _compare_learning_curve( image_name, s, s_prior, 'orig vs prior hint learning curve', ['orig', 'with_prior']) # Debug mask def _fix_mask(src_image, learned_mask): """ fixing the masks using soft matting :return: """ new_mask = guidedFilter( src_image.transpose(1, 2, 0).astype(np.float32), learned_mask[0].astype(np.float32), radius=7, eps=1e-4) def to_bin(x): v = np.zeros_like(x) v[x > 0.5] = 1 return v return to_bin(np.array([new_mask])) src_image = s_prior.images[0] learned_mask_np = torch_to_np(s_prior.mask_net_outputs[0]) fixed_mask_np = s_prior.fixed_masks[0] better_mask_np = _fix_mask(src_image, learned_mask_np) better_mask = np_to_pil(better_mask_np) better_mask.save('output/{}_better_mask_prior.jpg'.format(image_name)) src_image = s.images[0] learned_mask_np = torch_to_np(s.mask_net_outputs[0]) fixed_mask_np = s.fixed_masks[0] better_mask_np = _fix_mask(src_image, learned_mask_np) better_mask = np_to_pil(better_mask_np) better_mask.save('output/{}_better_mask_orig.jpg'.format(image_name)) _copy_output_to_dir(image_name)
[ "matplotlib.pyplot.title", "numpy.zeros_like", "os.path.join", "matplotlib.pyplot.plot", "os.path.basename", "matplotlib.pyplot.legend", "os.system", "matplotlib.pyplot.figure", "numpy.array", "glob.glob", "matplotlib.pyplot.subplots" ]
[((1711, 1738), 'glob.glob', 'glob.glob', (["(image_dir + '/*')"], {}), "(image_dir + '/*')\n", (1720, 1738), False, 'import glob\n'), ((486, 514), 'os.system', 'os.system', (['"""rm -rf output/*"""'], {}), "('rm -rf output/*')\n", (495, 514), False, 'import os\n'), ((787, 801), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (799, 801), True, 'from matplotlib import pyplot as plt\n'), ((1208, 1224), 'matplotlib.pyplot.title', 'plt.title', (['title'], {}), '(title)\n', (1217, 1224), True, 'from matplotlib import pyplot as plt\n'), ((1416, 1428), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (1426, 1428), True, 'from matplotlib import pyplot as plt\n'), ((1433, 1470), 'matplotlib.pyplot.plot', 'plt.plot', (['s_obj_1.psnr_learning_curve'], {}), '(s_obj_1.psnr_learning_curve)\n', (1441, 1470), True, 'from matplotlib import pyplot as plt\n'), ((1475, 1512), 'matplotlib.pyplot.plot', 'plt.plot', (['s_obj_2.psnr_learning_curve'], {}), '(s_obj_2.psnr_learning_curve)\n', (1483, 1512), True, 'from matplotlib import pyplot as plt\n'), ((1517, 1535), 'matplotlib.pyplot.legend', 'plt.legend', (['legend'], {}), '(legend)\n', (1527, 1535), True, 'from matplotlib import pyplot as plt\n'), ((1540, 1556), 'matplotlib.pyplot.title', 'plt.title', (['title'], {}), '(title)\n', (1549, 1556), True, 'from matplotlib import pyplot as plt\n'), ((1996, 2040), 'os.path.join', 'os.path.join', (['image_dir', "(image_name + '.jpg')"], {}), "(image_dir, image_name + '.jpg')\n", (2008, 2040), False, 'import os\n'), ((2071, 2121), 'os.path.join', 'os.path.join', (['saliency_dir_fg', "(image_name + '.jpg')"], {}), "(saliency_dir_fg, image_name + '.jpg')\n", (2083, 2121), False, 'import os\n'), ((2151, 2201), 'os.path.join', 'os.path.join', (['saliency_dir_bg', "(image_name + '.jpg')"], {}), "(saliency_dir_bg, image_name + '.jpg')\n", (2163, 2201), False, 'import os\n'), ((2309, 2357), 'os.path.join', 'os.path.join', (['prior_hint_dir_fg', 'prior_hint_name'], {}), '(prior_hint_dir_fg, prior_hint_name)\n', (2321, 2357), False, 'import os\n'), ((2388, 2436), 'os.path.join', 'os.path.join', (['prior_hint_dir_bg', 'prior_hint_name'], {}), '(prior_hint_dir_bg, prior_hint_name)\n', (2400, 2436), False, 'import os\n'), ((3917, 3933), 'numpy.zeros_like', 'np.zeros_like', (['x'], {}), '(x)\n', (3930, 3933), True, 'import numpy as np\n'), ((4005, 4025), 'numpy.array', 'np.array', (['[new_mask]'], {}), '([new_mask])\n', (4013, 4025), True, 'import numpy as np\n'), ((1758, 1786), 'os.path.basename', 'os.path.basename', (['input_path'], {}), '(input_path)\n', (1774, 1786), False, 'import os\n')]
import json import pickle import sys from datetime import datetime from json import JSONEncoder import numpy as np import pandas as pd import watchdog.events import watchdog.observers import time import tensorflow as tf import configparser import os from kafka import KafkaProducer tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) from tensorflow.python.keras.models import load_model sys.path.append(sys.path[0] + '/..') from mmt.readerMMT import eventsToFeatures import warnings warnings.filterwarnings('ignore') conf_path = './config.config' max_message_size = 104857600 #bytes # ndarray json encoder class NumpyArrayEncoder(JSONEncoder): def default(self, obj): if isinstance(obj, np.ndarray): return obj.tolist() return JSONEncoder.default(self, obj) # Kafka Producer producer = KafkaProducer(bootstrap_servers=['localhost:9092'],max_request_size=max_message_size) # value_serializer=serializer # Watchdog part for monitoring creation of csv files from mmt class Handler(watchdog.events.PatternMatchingEventHandler): def __init__(self): # Watch for new csvs from mmt probe folder (./server/csv/) watchdog.events.PatternMatchingEventHandler.__init__(self, patterns=['*_1__data.csv'], ## Monitoring csv repot files (_1_) with name with _data ignore_directories=True, case_sensitive=False) def on_closed(self, event): print("Closing action on csv - % s." % event.src_path) start_time = time.time() mmt_csv = event.src_path ips, x_features = eventsToFeatures(mmt_csv) # if there are more ips then grouped samples from features (i.e. there is an ip but no features for the ip) -> we delete the ip from ip list ips = pd.merge(ips, x_features, how='inner', on=['ip.session_id', 'meta.direction']) ips = ips[['ip.session_id', 'meta.direction', 'ip']] x_features.drop(columns=['ip.session_id', 'meta.direction'], inplace=True) print("Prediction - test") # rescaling with scaler used with trained model x_test = np.asarray(x_features, np.float32) x_test = scaler.transform(x_test) # prediction y_pred = model.predict(x_test) y_pred = np.transpose(np.round(y_pred)).reshape(y_pred.shape[0], ) preds = np.array([y_pred]).T # adding predictions to features as last column res = np.append(x_features, preds, axis=1) res = np.append(ips, res, axis=1) # print(res.nbytes) # results json encoding j_res = json.dumps(res, cls=NumpyArrayEncoder).encode('utf-8') print(f'Producing message @ {datetime.now()} | Message') # = {str(j_res)}') psend = producer.send('predictions', j_res) # print(psend) producer.flush() # pd.DataFrame(res).to_csv(f"{predictions_dir}predictions_{classification_id}.csv", index=False, # header=prediction_names) print("--- %s seconds ---" % (time.time() - start_time)) y_pred = None res = None features = None if __name__ == "__main__": config = configparser.ConfigParser() config.read(conf_path) mmt_csv_dir = config['DEFAULT']['mmt_probe_csv_dir'] model_path = config['DEFAULT']['model_path'] scaler_path = config['DEFAULT']['scaler_path'] print(f'{mmt_csv_dir},{model_path},{scaler_path}') if not mmt_csv_dir or not model_path or not scaler_path: exit('Config does not contain all needed paths') print("Loading model...") model = load_model(model_path) print("Model loaded.\nLoading scaler...") scaler = pickle.load(open(scaler_path, 'rb')) # "./saved_scalers/scaler_2022-03-02_10-37-27.pkl" print("Scaler loaded.") res=np.ndarray(shape=(2,2), dtype=float, order='F') j_res = json.dumps(res, cls=NumpyArrayEncoder).encode('utf-8') print(f'Producing message @ {datetime.now()} | Message') # = {str(j_res)}') asd = producer.send('messages', j_res) # asd = producer.send('messages', 'j_res') print(asd) producer.flush() event_handler = Handler() observer = watchdog.observers.Observer() print("Starting watchdog.") observer.schedule(event_handler, path=mmt_csv_dir, recursive=True) observer.start() try: while True: time.sleep(1) except KeyboardInterrupt: observer.stop() observer.join()
[ "sys.path.append", "tensorflow.python.keras.models.load_model", "warnings.filterwarnings", "pandas.merge", "numpy.asarray", "kafka.KafkaProducer", "json.dumps", "time.time", "time.sleep", "numpy.append", "datetime.datetime.now", "tensorflow.compat.v1.logging.set_verbosity", "numpy.array", "numpy.round", "mmt.readerMMT.eventsToFeatures", "configparser.ConfigParser", "numpy.ndarray", "json.JSONEncoder.default" ]
[((284, 346), 'tensorflow.compat.v1.logging.set_verbosity', 'tf.compat.v1.logging.set_verbosity', (['tf.compat.v1.logging.ERROR'], {}), '(tf.compat.v1.logging.ERROR)\n', (318, 346), True, 'import tensorflow as tf\n'), ((402, 438), 'sys.path.append', 'sys.path.append', (["(sys.path[0] + '/..')"], {}), "(sys.path[0] + '/..')\n", (417, 438), False, 'import sys\n'), ((499, 532), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (522, 532), False, 'import warnings\n'), ((837, 928), 'kafka.KafkaProducer', 'KafkaProducer', ([], {'bootstrap_servers': "['localhost:9092']", 'max_request_size': 'max_message_size'}), "(bootstrap_servers=['localhost:9092'], max_request_size=\n max_message_size)\n", (850, 928), False, 'from kafka import KafkaProducer\n'), ((3257, 3284), 'configparser.ConfigParser', 'configparser.ConfigParser', ([], {}), '()\n', (3282, 3284), False, 'import configparser\n'), ((3686, 3708), 'tensorflow.python.keras.models.load_model', 'load_model', (['model_path'], {}), '(model_path)\n', (3696, 3708), False, 'from tensorflow.python.keras.models import load_model\n'), ((3894, 3942), 'numpy.ndarray', 'np.ndarray', ([], {'shape': '(2, 2)', 'dtype': 'float', 'order': '"""F"""'}), "(shape=(2, 2), dtype=float, order='F')\n", (3904, 3942), True, 'import numpy as np\n'), ((776, 806), 'json.JSONEncoder.default', 'JSONEncoder.default', (['self', 'obj'], {}), '(self, obj)\n', (795, 806), False, 'from json import JSONEncoder\n'), ((1607, 1618), 'time.time', 'time.time', ([], {}), '()\n', (1616, 1618), False, 'import time\n'), ((1678, 1703), 'mmt.readerMMT.eventsToFeatures', 'eventsToFeatures', (['mmt_csv'], {}), '(mmt_csv)\n', (1694, 1703), False, 'from mmt.readerMMT import eventsToFeatures\n'), ((1868, 1946), 'pandas.merge', 'pd.merge', (['ips', 'x_features'], {'how': '"""inner"""', 'on': "['ip.session_id', 'meta.direction']"}), "(ips, x_features, how='inner', on=['ip.session_id', 'meta.direction'])\n", (1876, 1946), True, 'import pandas as pd\n'), ((2200, 2234), 'numpy.asarray', 'np.asarray', (['x_features', 'np.float32'], {}), '(x_features, np.float32)\n', (2210, 2234), True, 'import numpy as np\n'), ((2522, 2558), 'numpy.append', 'np.append', (['x_features', 'preds'], {'axis': '(1)'}), '(x_features, preds, axis=1)\n', (2531, 2558), True, 'import numpy as np\n'), ((2573, 2600), 'numpy.append', 'np.append', (['ips', 'res'], {'axis': '(1)'}), '(ips, res, axis=1)\n', (2582, 2600), True, 'import numpy as np\n'), ((2430, 2448), 'numpy.array', 'np.array', (['[y_pred]'], {}), '([y_pred])\n', (2438, 2448), True, 'import numpy as np\n'), ((3954, 3992), 'json.dumps', 'json.dumps', (['res'], {'cls': 'NumpyArrayEncoder'}), '(res, cls=NumpyArrayEncoder)\n', (3964, 3992), False, 'import json\n'), ((4458, 4471), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (4468, 4471), False, 'import time\n'), ((2678, 2716), 'json.dumps', 'json.dumps', (['res'], {'cls': 'NumpyArrayEncoder'}), '(res, cls=NumpyArrayEncoder)\n', (2688, 2716), False, 'import json\n'), ((4043, 4057), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (4055, 4057), False, 'from datetime import datetime\n'), ((2368, 2384), 'numpy.round', 'np.round', (['y_pred'], {}), '(y_pred)\n', (2376, 2384), True, 'import numpy as np\n'), ((2771, 2785), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (2783, 2785), False, 'from datetime import datetime\n'), ((3123, 3134), 'time.time', 'time.time', ([], {}), '()\n', (3132, 3134), False, 'import time\n')]
import os import sys import numpy as np import pandas as pd import logging import gc import tqdm import pickle import time gc.enable() cwd = os.getcwd() train_path = os.path.join(cwd, 'train_artifact') test_path = os.path.join(cwd, 'test_artifact') input_path = os.path.join(cwd, 'input_artifact') embed_path = os.path.join(cwd, 'embed_artifact') def initiate_logger(log_path): """ Initialize a logger with file handler and stream handler """ logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) formatter = logging.Formatter('%(asctime)s %(levelname)-s: %(message)s', datefmt='%H:%M:%S') fh = logging.FileHandler(log_path) fh.setLevel(logging.INFO) fh.setFormatter(formatter) logger.addHandler(fh) sh = logging.StreamHandler(sys.stdout) sh.setLevel(logging.INFO) sh.setFormatter(formatter) logger.addHandler(sh) logger.info('===================================') logger.info('Begin executing at {}'.format(time.ctime())) logger.info('===================================') return logger def rough_split(logger=None): """ Split training data (900,000) records into training file and validation file using ratio 9:1. """ for npy_path in ['train_idx_shuffle.npy', 'train_age.npy', 'train_gender.npy']: with open(os.path.join(input_path, npy_path), 'rb') as f: npy = np.load(f) with open(os.path.join(input_path, '{}_tra.npy'.format(npy_path.split('.')[0])), 'wb') as f: np.save(f, npy[:810000]) with open(os.path.join(input_path, '{}_val.npy'.format(npy_path.split('.')[0])), 'wb') as f: np.save(f, npy[810000:]) if logger: logger.info('{} splitted'.format(npy_path)) for pkl_path in ['train_creative_id_seq.pkl', 'train_ad_id_seq.pkl', 'train_advertiser_id_seq.pkl', 'train_product_id_seq.pkl']: with open(os.path.join(input_path, pkl_path), 'rb') as f: pkl = pickle.load(f) with open(os.path.join(input_path, '{}_tra.pkl'.format(pkl_path.split('.')[0])), 'wb') as f: pickle.dump(pkl[:810000], f) with open(os.path.join(input_path, '{}_val.pkl'.format(pkl_path.split('.')[0])), 'wb') as f: pickle.dump(pkl[810000:], f) if logger: logger.info('{} splitted'.format(pkl_path)) def fine_split(logger=None): """ Split train data (900,000 records) into 10 files Split test data (1,000,000 records) into 10 files """ input_split_path = os.path.join(cwd, 'input_split_artifact') if not os.path.isdir(input_split_path): os.mkdir(input_split_path) for npy_path in ['train_idx_shuffle.npy', 'train_age.npy', 'train_gender.npy']: with open(os.path.join(input_path, npy_path), 'rb') as f: npy = np.load(f) for i in range(10): with open(os.path.join(input_split_path, '{}_{}.npy'.format(npy_path.split('.')[0], i+1)), 'wb') as f: np.save(f, npy[i*90000:(i+1)*90000]) if logger: logger.info('{} splitted'.format(npy_path)) for pkl_path in ['train_creative_id_seq.pkl', 'train_ad_id_seq.pkl', 'train_advertiser_id_seq.pkl', 'train_product_id_seq.pkl',]: with open(os.path.join(input_path, pkl_path), 'rb') as f: pkl = pickle.load(f) for i in range(10): with open(os.path.join(input_split_path, '{}_{}.pkl'.format(pkl_path.split('.')[0], i+1)), 'wb') as f: pickle.dump(pkl[i*90000:(i+1)*90000], f) if logger: logger.info('{} splitted'.format(pkl_path)) for npy_path in ['test_idx_shuffle.npy']: with open(os.path.join(input_path, npy_path), 'rb') as f: npy = np.load(f) for i in range(10): with open(os.path.join(input_split_path, '{}_{}.npy'.format(npy_path.split('.')[0], i+1)), 'wb') as f: np.save(f, npy[i*100000:(i+1)*100000]) if logger: logger.info('{} splitted'.format(npy_path)) for pkl_path in ['test_creative_id_seq.pkl', 'test_ad_id_seq.pkl', 'test_advertiser_id_seq.pkl', 'test_product_id_seq.pkl',]: with open(os.path.join(input_path, pkl_path), 'rb') as f: pkl = pickle.load(f) for i in range(10): with open(os.path.join(input_split_path, '{}_{}.pkl'.format(pkl_path.split('.')[0], i+1)), 'wb') as f: pickle.dump(pkl[i*100000:(i+1)*100000], f) if logger: logger.info('{} splitted'.format(pkl_path)) if __name__=='__main__': logger = initiate_logger('input_split.log') if len(sys.argv)==1: rough_split(logger=logger) else: fine_split(logger=logger)
[ "os.mkdir", "numpy.load", "numpy.save", "pickle.dump", "os.path.join", "logging.FileHandler", "os.getcwd", "os.path.isdir", "logging.StreamHandler", "time.ctime", "logging.Formatter", "pickle.load", "gc.enable", "logging.getLogger" ]
[((125, 136), 'gc.enable', 'gc.enable', ([], {}), '()\n', (134, 136), False, 'import gc\n'), ((143, 154), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (152, 154), False, 'import os\n'), ((168, 203), 'os.path.join', 'os.path.join', (['cwd', '"""train_artifact"""'], {}), "(cwd, 'train_artifact')\n", (180, 203), False, 'import os\n'), ((216, 250), 'os.path.join', 'os.path.join', (['cwd', '"""test_artifact"""'], {}), "(cwd, 'test_artifact')\n", (228, 250), False, 'import os\n'), ((264, 299), 'os.path.join', 'os.path.join', (['cwd', '"""input_artifact"""'], {}), "(cwd, 'input_artifact')\n", (276, 299), False, 'import os\n'), ((313, 348), 'os.path.join', 'os.path.join', (['cwd', '"""embed_artifact"""'], {}), "(cwd, 'embed_artifact')\n", (325, 348), False, 'import os\n'), ((459, 486), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (476, 486), False, 'import logging\n'), ((531, 616), 'logging.Formatter', 'logging.Formatter', (['"""%(asctime)s %(levelname)-s: %(message)s"""'], {'datefmt': '"""%H:%M:%S"""'}), "('%(asctime)s %(levelname)-s: %(message)s', datefmt='%H:%M:%S'\n )\n", (548, 616), False, 'import logging\n'), ((618, 647), 'logging.FileHandler', 'logging.FileHandler', (['log_path'], {}), '(log_path)\n', (637, 647), False, 'import logging\n'), ((732, 765), 'logging.StreamHandler', 'logging.StreamHandler', (['sys.stdout'], {}), '(sys.stdout)\n', (753, 765), False, 'import logging\n'), ((2308, 2349), 'os.path.join', 'os.path.join', (['cwd', '"""input_split_artifact"""'], {}), "(cwd, 'input_split_artifact')\n", (2320, 2349), False, 'import os\n'), ((2358, 2389), 'os.path.isdir', 'os.path.isdir', (['input_split_path'], {}), '(input_split_path)\n', (2371, 2389), False, 'import os\n'), ((2391, 2417), 'os.mkdir', 'os.mkdir', (['input_split_path'], {}), '(input_split_path)\n', (2399, 2417), False, 'import os\n'), ((940, 952), 'time.ctime', 'time.ctime', ([], {}), '()\n', (950, 952), False, 'import time\n'), ((1308, 1318), 'numpy.load', 'np.load', (['f'], {}), '(f)\n', (1315, 1318), True, 'import numpy as np\n'), ((1417, 1441), 'numpy.save', 'np.save', (['f', 'npy[:810000]'], {}), '(f, npy[:810000])\n', (1424, 1441), True, 'import numpy as np\n'), ((1540, 1564), 'numpy.save', 'np.save', (['f', 'npy[810000:]'], {}), '(f, npy[810000:])\n', (1547, 1564), True, 'import numpy as np\n'), ((1821, 1835), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (1832, 1835), False, 'import pickle\n'), ((1934, 1962), 'pickle.dump', 'pickle.dump', (['pkl[:810000]', 'f'], {}), '(pkl[:810000], f)\n', (1945, 1962), False, 'import pickle\n'), ((2061, 2089), 'pickle.dump', 'pickle.dump', (['pkl[810000:]', 'f'], {}), '(pkl[810000:], f)\n', (2072, 2089), False, 'import pickle\n'), ((2570, 2580), 'numpy.load', 'np.load', (['f'], {}), '(f)\n', (2577, 2580), True, 'import numpy as np\n'), ((3007, 3021), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (3018, 3021), False, 'import pickle\n'), ((3365, 3375), 'numpy.load', 'np.load', (['f'], {}), '(f)\n', (3372, 3375), True, 'import numpy as np\n'), ((3800, 3814), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (3811, 3814), False, 'import pickle\n'), ((1251, 1285), 'os.path.join', 'os.path.join', (['input_path', 'npy_path'], {}), '(input_path, npy_path)\n', (1263, 1285), False, 'import os\n'), ((1764, 1798), 'os.path.join', 'os.path.join', (['input_path', 'pkl_path'], {}), '(input_path, pkl_path)\n', (1776, 1798), False, 'import os\n'), ((2513, 2547), 'os.path.join', 'os.path.join', (['input_path', 'npy_path'], {}), '(input_path, npy_path)\n', (2525, 2547), False, 'import os\n'), ((2713, 2755), 'numpy.save', 'np.save', (['f', 'npy[i * 90000:(i + 1) * 90000]'], {}), '(f, npy[i * 90000:(i + 1) * 90000])\n', (2720, 2755), True, 'import numpy as np\n'), ((2950, 2984), 'os.path.join', 'os.path.join', (['input_path', 'pkl_path'], {}), '(input_path, pkl_path)\n', (2962, 2984), False, 'import os\n'), ((3154, 3200), 'pickle.dump', 'pickle.dump', (['pkl[i * 90000:(i + 1) * 90000]', 'f'], {}), '(pkl[i * 90000:(i + 1) * 90000], f)\n', (3165, 3200), False, 'import pickle\n'), ((3308, 3342), 'os.path.join', 'os.path.join', (['input_path', 'npy_path'], {}), '(input_path, npy_path)\n', (3320, 3342), False, 'import os\n'), ((3508, 3552), 'numpy.save', 'np.save', (['f', 'npy[i * 100000:(i + 1) * 100000]'], {}), '(f, npy[i * 100000:(i + 1) * 100000])\n', (3515, 3552), True, 'import numpy as np\n'), ((3743, 3777), 'os.path.join', 'os.path.join', (['input_path', 'pkl_path'], {}), '(input_path, pkl_path)\n', (3755, 3777), False, 'import os\n'), ((3947, 3995), 'pickle.dump', 'pickle.dump', (['pkl[i * 100000:(i + 1) * 100000]', 'f'], {}), '(pkl[i * 100000:(i + 1) * 100000], f)\n', (3958, 3995), False, 'import pickle\n')]
from typing import Union, List, Dict, Optional, Callable, Set from skdecide.builders.solver.policy import DeterministicPolicies, UncertainPolicies from skdecide import Domain, Solver from skdecide.builders.scheduling.modes import SingleMode from skdecide.builders.scheduling.scheduling_domains_modelling import State, SchedulingAction, SchedulingActionEnum from skdecide.builders.scheduling.scheduling_domains import SchedulingDomain, D, MultiModeRCPSP, SingleModeRCPSP from skdecide import rollout_episode from skdecide.hub.solver.sgs_policies.sgs_policies import PolicyMethodParams, BasePolicyMethod, PolicyRCPSP from skdecide.hub.solver.do_solver.do_solver_scheduling import PolicyRCPSP, DOSolver, PolicyMethodParams, BasePolicyMethod, SolvingMethod from skdecide.builders.discrete_optimization.rcpsp.solver.cpm import CPM from skdecide.hub.solver.do_solver.sk_to_do_binding import build_do_domain from skdecide.builders.discrete_optimization.rcpsp.rcpsp_model import RCPSPSolution from enum import Enum from deap.gp import PrimitiveSet, PrimitiveTree, genHalfAndHalf from deap import gp from deap import algorithms from deap.base import Toolbox, Fitness from deap import creator from deap import tools import operator import itertools import numpy as np import random from scipy import stats from scipy.spatial import distance def if_then_else(input, output1, output2): if input: return output1 else: return output2 def protected_div(left, right): if right != 0.: return left/right else: return 1. def max_operator(left, right): return max(left, right) def min_operator(left, right): return min(left, right) def feature_task_duration(domain: SchedulingDomain, cpm, cpm_esd, task_id: int, **kwargs): return domain.sample_task_duration(task_id) def feature_total_n_res(domain: SchedulingDomain, cpm, cpm_esd, task_id: int, **kwargs): val = 0 mode_consumption = domain.get_task_modes(task_id)[1] for res in mode_consumption.get_ressource_names(): val += mode_consumption.get_resource_need(res) return val def feature_n_successors(domain: SchedulingDomain, cpm, cpm_esd, task_id: int, **kwargs): return len(domain.get_successors_task(task_id))/ len(domain.get_tasks_ids()) def feature_n_predecessors(domain: SchedulingDomain, cpm, cpm_esd, task_id: int, **kwargs): return len(domain.get_predecessors_task(task_id))/ len(domain.get_tasks_ids()) def get_resource_requirements_across_duration(domain: SchedulingDomain, task_id: int, **kwargs): values = [] mode_consumption = domain.get_task_modes(task_id)[1] duration = domain.get_latest_sampled_duration(task_id, 1, 0.) if duration > 0: for res in mode_consumption.get_ressource_names(): tmp = 0 for t in range(duration): need = domain.get_task_modes(task_id)[1].get_resource_need_at_time(res, t) total = domain.sample_quantity_resource(res, t) tmp += need / total values.append(tmp/duration) else: values = [0.] # print(task_id,':', values) return values def feature_average_resource_requirements(domain: SchedulingDomain, cpm, cpm_esd, task_id: int, **kwargs): values = get_resource_requirements_across_duration(domain=domain, task_id=task_id) val = np.mean(values) return val def feature_minimum_resource_requirements(domain: SchedulingDomain, cpm, cpm_esd, task_id: int, **kwargs): values = get_resource_requirements_across_duration(domain=domain, task_id=task_id) val = np.min(values) return val def feature_non_zero_minimum_resource_requirements(domain: SchedulingDomain, cpm, cpm_esd, task_id: int, **kwargs): values = get_resource_requirements_across_duration(domain=domain, task_id=task_id) if np.sum(values) > 0.: val = np.min([x for x in values if x > 0.]) else: val = np.min(values) return val def feature_maximum_resource_requirements(domain: SchedulingDomain, cpm, cpm_esd, task_id: int, **kwargs): values = get_resource_requirements_across_duration(domain=domain, task_id=task_id) val = np.max(values) return val def feature_resource_requirements(domain: SchedulingDomain, cpm, cpm_esd, task_id: int, **kwargs): values = get_resource_requirements_across_duration(domain=domain, task_id=task_id) val = len([x for x in values if x > 0.]) / len(values) return val def feature_all_descendants(domain: SchedulingDomain, cpm, cpm_esd, task_id: int, **kwargs): return len(domain.full_successors[task_id]) / len(domain.get_tasks_ids()) def feature_precedence_done(domain: SchedulingDomain, cpm, cpm_esd, task_id: int, state: State, **kwargs): return task_id in domain.task_possible_to_launch_precedence(state=state) def compute_cpm(do_domain): cpm_solver = CPM(do_domain) path = cpm_solver.run_classic_cpm() cpm = cpm_solver.map_node cpm_esd = cpm[path[-1]]._ESD # to normalize... return cpm, cpm_esd def feature_esd(domain: SchedulingDomain, cpm, cpm_esd, task_id: int, **kwargs): """ Will only work if you store cpm results into the object. dirty trick""" return cpm[task_id]._ESD/cpm_esd def feature_lsd(domain: SchedulingDomain, cpm, cpm_esd, task_id: int, **kwargs): """ Will only work if you store cpm results into the object. dirty trick""" return cpm[task_id]._LSD/cpm_esd def feature_efd(domain: SchedulingDomain, cpm, cpm_esd, task_id: int, **kwargs): """ Will only work if you store cpm results into the object. dirty trick""" return cpm[task_id]._EFD/cpm_esd def feature_lfd(domain: SchedulingDomain, cpm, cpm_esd, task_id: int, **kwargs): """ Will only work if you store cpm results into the object. dirty trick""" return cpm[task_id]._LFD/cpm_esd class D(SchedulingDomain, SingleMode): pass class FeatureEnum(Enum): TASK_DURATION = "task_duration" RESSOURCE_TOTAL = "total_nres" N_SUCCESSORS = "n_successors" N_PREDECESSORS = "n_predecessors" RESSOURCE_REQUIRED = "res_requ" RESSOURCE_AVG = "avg_res_requ" RESSOURCE_MIN = "min_res_requ" RESSOURCE_NZ_MIN = "nz_min_res_requ" RESSOURCE_MAX = "max_res_requ" ALL_DESCENDANTS = "all_descendants" PRECEDENCE_DONE = "precedence_done" EARLIEST_START_DATE = "ESD" LATEST_START_DATE = "LSD" EARLIEST_FINISH_DATE = "EFD" LATEST_FINISH_DATE = "LFD" feature_function_map = {FeatureEnum.TASK_DURATION: feature_task_duration, FeatureEnum.RESSOURCE_TOTAL: feature_total_n_res, FeatureEnum.N_SUCCESSORS: feature_n_successors, FeatureEnum.N_PREDECESSORS: feature_n_predecessors, # FeatureEnum.RESSOURCE_REQUIRED: feature_resource_requirements, # FeatureEnum.RESSOURCE_AVG: feature_average_resource_requirements, # FeatureEnum.RESSOURCE_MIN: feature_minimum_resource_requirements, # FeatureEnum.RESSOURCE_NZ_MIN: feature_non_zero_minimum_resource_requirements, # FeatureEnum.RESSOURCE_MAX: feature_maximum_resource_requirements, # FeatureEnum.ALL_DESCENDANTS: feature_all_descendants, # FeatureEnum.PRECEDENCE_DONE: feature_precedence_done, FeatureEnum.EARLIEST_START_DATE: feature_esd, # FeatureEnum.EARLIEST_FINISH_DATE: feature_efd, # FeatureEnum.LATEST_START_DATE: feature_lsd, # FeatureEnum.LATEST_FINISH_DATE: feature_lfd} # feature_static_map = {FeatureEnum.TASK_DURATION: True, FeatureEnum.RESSOURCE_TOTAL: True, FeatureEnum.N_SUCCESSORS: True, FeatureEnum.N_PREDECESSORS: True, # FeatureEnum.RESSOURCE_REQUIRED: True, # FeatureEnum.RESSOURCE_AVG: True, # FeatureEnum.RESSOURCE_MIN: True, # FeatureEnum.RESSOURCE_NZ_MIN: True, # FeatureEnum.RESSOURCE_MAX: True, # FeatureEnum.ALL_DESCENDANTS: True, # FeatureEnum.PRECEDENCE_DONE: False, FeatureEnum.EARLIEST_START_DATE: True, # FeatureEnum.EARLIEST_FINISH_DATE: True, # FeatureEnum.LATEST_START_DATE: True, # FeatureEnum.LATEST_FINISH_DATE: True} # class EvaluationGPHH(Enum): SGS = 0 PERMUTATION_DISTANCE = 1 # SGS_DEVIATION = 2 class PermutationDistance(Enum): KTD = 0 HAMMING = 1 KTD_HAMMING = 2 class ParametersGPHH: set_feature: Set[FeatureEnum] = None set_primitves: PrimitiveSet = None tournament_ratio: float = None pop_size: int = None n_gen: int = None min_tree_depth: int = None max_tree_depth: int = None crossover_rate: float = None mutation_rate: float = None base_policy_method = None delta_index_freedom: int = None delta_time_freedom: int = None deap_verbose: bool = None evaluation: EvaluationGPHH = None permutation_distance = PermutationDistance.KTD def __init__(self, set_feature, set_primitves, tournament_ratio, pop_size, n_gen, min_tree_depth, max_tree_depth, crossover_rate, mutation_rate, base_policy_method, delta_index_freedom, delta_time_freedom, deap_verbose, evaluation, permutation_distance ): self.set_feature = set_feature self.set_primitves = set_primitves self.tournament_ratio = tournament_ratio self.pop_size = pop_size self.n_gen = n_gen self.min_tree_depth = min_tree_depth self.max_tree_depth = max_tree_depth self.crossover_rate = crossover_rate self.mutation_rate = mutation_rate self.base_policy_method = base_policy_method self.delta_index_freedom = delta_index_freedom self.delta_time_freedom = delta_time_freedom self.deap_verbose = deap_verbose self.evaluation = evaluation self.permutation_distance = permutation_distance @staticmethod def default(): set_feature = {FeatureEnum.EARLIEST_FINISH_DATE, FeatureEnum.EARLIEST_START_DATE, FeatureEnum.LATEST_FINISH_DATE, FeatureEnum.LATEST_START_DATE, FeatureEnum.N_PREDECESSORS, FeatureEnum.N_SUCCESSORS, FeatureEnum.ALL_DESCENDANTS, FeatureEnum.RESSOURCE_REQUIRED, FeatureEnum.RESSOURCE_AVG, FeatureEnum.RESSOURCE_MAX, # FeatureEnum.RESSOURCE_MIN FeatureEnum.RESSOURCE_NZ_MIN } pset = PrimitiveSet("main", len(set_feature)) pset.addPrimitive(operator.add, 2) pset.addPrimitive(operator.sub, 2) pset.addPrimitive(operator.mul, 2) pset.addPrimitive(protected_div, 2) pset.addPrimitive(max_operator, 2) pset.addPrimitive(min_operator, 2) pset.addPrimitive(operator.neg, 1) return ParametersGPHH( set_feature=set_feature, set_primitves=pset, tournament_ratio=0.1, pop_size=40, n_gen=100, min_tree_depth=1, max_tree_depth=4, crossover_rate=0.7, mutation_rate=0.3, base_policy_method=BasePolicyMethod.FOLLOW_GANTT, delta_index_freedom=0, delta_time_freedom=0, deap_verbose=True, # evaluation=EvaluationGPHH.PERMUTATION_DISTANCE, evaluation=EvaluationGPHH.SGS, permutation_distance=PermutationDistance.KTD) @staticmethod def fast_test(): set_feature = {FeatureEnum.EARLIEST_FINISH_DATE, FeatureEnum.EARLIEST_START_DATE, FeatureEnum.LATEST_FINISH_DATE, FeatureEnum.LATEST_START_DATE, FeatureEnum.N_PREDECESSORS, FeatureEnum.N_SUCCESSORS, FeatureEnum.ALL_DESCENDANTS, FeatureEnum.RESSOURCE_REQUIRED, FeatureEnum.RESSOURCE_AVG, FeatureEnum.RESSOURCE_MAX, # FeatureEnum.RESSOURCE_MIN FeatureEnum.RESSOURCE_NZ_MIN } pset = PrimitiveSet("main", len(set_feature)) pset.addPrimitive(operator.add, 2) pset.addPrimitive(operator.sub, 2) pset.addPrimitive(operator.mul, 2) pset.addPrimitive(protected_div, 2) pset.addPrimitive(max_operator, 2) pset.addPrimitive(min_operator, 2) pset.addPrimitive(operator.neg, 1) return ParametersGPHH( set_feature=set_feature, set_primitves=pset, tournament_ratio=0.1, pop_size=10, n_gen=2, min_tree_depth=1, max_tree_depth=4, crossover_rate=0.7, mutation_rate=0.3, base_policy_method=BasePolicyMethod.FOLLOW_GANTT, delta_index_freedom=0, delta_time_freedom=0, deap_verbose=True, evaluation=EvaluationGPHH.SGS, # evaluation=EvaluationGPHH.PERMUTATION_DISTANCE, permutation_distance=PermutationDistance.KTD) @staticmethod def default_for_set_features(set_feature: Set[FeatureEnum]): pset = PrimitiveSet("main", len(set_feature)) pset.addPrimitive(operator.add, 2) pset.addPrimitive(operator.sub, 2) pset.addPrimitive(operator.mul, 2) # pset.addPrimitive(protected_div, 2) pset.addPrimitive(max_operator, 2) pset.addPrimitive(min_operator, 2) pset.addPrimitive(operator.neg, 1) return ParametersGPHH( set_feature=set_feature, set_primitves=pset, tournament_ratio=0.25, pop_size=20, n_gen=20, min_tree_depth=1, max_tree_depth=4, crossover_rate=0.7, mutation_rate=0.1, base_policy_method=BasePolicyMethod.SGS_READY, delta_index_freedom=0, delta_time_freedom=0, deap_verbose=True, evaluation=EvaluationGPHH.PERMUTATION_DISTANCE, permutation_distance=PermutationDistance.KTD) class GPHH(Solver, DeterministicPolicies): T_domain = D training_domains: List[T_domain] verbose: bool weight: int pset: PrimitiveSet toolbox: Toolbox policy: DeterministicPolicies params_gphh: ParametersGPHH # policy: GPHHPolicy evaluation_method: EvaluationGPHH reference_permutations: Dict permutation_distance: PermutationDistance def __init__(self, training_domains: List[T_domain], domain_model: SchedulingDomain, weight: int, # set_feature: Set[FeatureEnum]=None, params_gphh: ParametersGPHH=ParametersGPHH.default(), reference_permutations=None, # reference_makespans=None, training_domains_names=None, verbose: bool=False): self.training_domains = training_domains self.domain_model = domain_model self.params_gphh = params_gphh # self.set_feature = set_feature self.set_feature = self.params_gphh.set_feature print('self.set_feature: ', self.set_feature) print('Evaluation: ', self.params_gphh.evaluation) # if set_feature is None: # self.set_feature = {FeatureEnum.RESSOURCE_TOTAL, # FeatureEnum.TASK_DURATION, # FeatureEnum.N_SUCCESSORS, # FeatureEnum.N_SUCCESSORS, # FeatureEnum.RESSOURCE_AVG} self.list_feature = list(self.set_feature) self.verbose = verbose self.pset = self.init_primitives(self.params_gphh.set_primitves) self.weight = weight self.evaluation_method = self.params_gphh.evaluation self.initialize_cpm_data_for_training() if self.evaluation_method == EvaluationGPHH.PERMUTATION_DISTANCE: self.init_reference_permutations(reference_permutations, training_domains_names) self.permutation_distance = self.params_gphh.permutation_distance # if self.evaluation_method == EvaluationGPHH.SGS_DEVIATION: # self.init_reference_makespans(reference_makespans, training_domains_names) def init_reference_permutations(self, reference_permutations={}, training_domains_names=[]) -> None: self.reference_permutations = {} for i in range(len(self.training_domains)): td = self.training_domains[i] td_name = training_domains_names[i] if td_name not in reference_permutations.keys(): # Run CP td.set_inplace_environment(False) solver = DOSolver(policy_method_params=PolicyMethodParams(base_policy_method=BasePolicyMethod.SGS_PRECEDENCE, delta_index_freedom=0, delta_time_freedom=0), method=SolvingMethod.CP) solver.solve(domain_factory=lambda: td) raw_permutation = solver.best_solution.rcpsp_permutation full_permutation = [x+2 for x in raw_permutation] full_permutation.insert(0, 1) full_permutation.append(np.max(full_permutation)+1) print('full_perm: ', full_permutation) self.reference_permutations[td] = full_permutation else: self.reference_permutations[td] = reference_permutations[td_name] # def init_reference_makespans(self, reference_makespans={}, training_domains_names=[]) -> None: # self.reference_makespans = {} # for i in range(len(self.training_domains)): # td = self.training_domains[i] # td_name = training_domains_names[i] # # for td in self.training_domains: # print('td:',td) # if td_name not in reference_makespans.keys(): # # Run CP # td.set_inplace_environment(False) # solver = DOSolver(policy_method_params=PolicyMethodParams(base_policy_method=BasePolicyMethod.FOLLOW_GANTT, # delta_index_freedom=0, # delta_time_freedom=0), # method=SolvingMethod.CP) # solver.solve(domain_factory=lambda: td) # # state = td.get_initial_state() # states, actions, values = rollout_episode(domain=td, # max_steps=1000, # solver=solver, # from_memory=state, # verbose=False, # outcome_formatter=lambda # o: f'{o.observation} - cost: {o.value.cost:.2f}') # # makespan = sum([v.cost for v in values]) # self.reference_makespans[td] = makespan # else: # self.reference_makespans[td] = reference_makespans[td_name] def _solve_domain(self, domain_factory: Callable[[], D]) -> None: self.domain = domain_factory() tournament_ratio = self.params_gphh.tournament_ratio pop_size = self.params_gphh.pop_size n_gen = self.params_gphh.n_gen min_tree_depth = self.params_gphh.min_tree_depth max_tree_depth = self.params_gphh.max_tree_depth crossover_rate = self.params_gphh.crossover_rate mutation_rate = self.params_gphh.mutation_rate creator.create("FitnessMin", Fitness, weights=(self.weight,)) creator.create("Individual", PrimitiveTree, fitness=creator.FitnessMin) self.toolbox = Toolbox() self.toolbox.register("expr", genHalfAndHalf, pset=self.pset, min_=min_tree_depth, max_=max_tree_depth) self.toolbox.register("individual", tools.initIterate, creator.Individual, self.toolbox.expr) self.toolbox.register("population", tools.initRepeat, list, self.toolbox.individual) self.toolbox.register("compile", gp.compile, pset=self.pset) if self.evaluation_method == EvaluationGPHH.SGS: self.toolbox.register("evaluate", self.evaluate_heuristic, domains=self.training_domains) # if self.evaluation_method == EvaluationGPHH.SGS_DEVIATION: # self.toolbox.register("evaluate", self.evaluate_heuristic_sgs_deviation, domains=self.training_domains) elif self.evaluation_method == EvaluationGPHH.PERMUTATION_DISTANCE: self.toolbox.register("evaluate", self.evaluate_heuristic_permutation, domains=self.training_domains) # self.toolbox.register("evaluate", self.evaluate_heuristic, domains=[self.training_domains[1]]) self.toolbox.register("select", tools.selTournament, tournsize=int(tournament_ratio * pop_size)) self.toolbox.register("mate", gp.cxOnePoint) self.toolbox.register("expr_mut", gp.genFull, min_=0, max_=max_tree_depth) self.toolbox.register("mutate", gp.mutUniform, expr=self.toolbox.expr_mut, pset=self.pset) self.toolbox.decorate("mate", gp.staticLimit(key=operator.attrgetter("height"), max_value=17)) self.toolbox.decorate("mutate", gp.staticLimit(key=operator.attrgetter("height"), max_value=17)) stats_fit = tools.Statistics(lambda ind: ind.fitness.values) stats_size = tools.Statistics(len) mstats = tools.MultiStatistics(fitness=stats_fit, size=stats_size) mstats.register("avg", np.mean) mstats.register("std", np.std) mstats.register("min", np.min) mstats.register("max", np.max) pop = self.toolbox.population(n=pop_size) hof = tools.HallOfFame(1) self.hof = hof pop, log = algorithms.eaSimple(pop, self.toolbox, crossover_rate, mutation_rate, n_gen, stats=mstats, halloffame=hof, verbose=True) self.best_heuristic = hof[0] print('best_heuristic: ', self.best_heuristic) self.func_heuristic = self.toolbox.compile(expr=self.best_heuristic) self.policy = GPHHPolicy(self.domain, self.domain_model, self.func_heuristic, features=self.list_feature, params_gphh=self.params_gphh, recompute_cpm=True) def _get_next_action(self, observation: D.T_agent[D.T_observation]) -> D.T_agent[D.T_concurrency[D.T_event]]: action = self.policy.sample_action(observation) # print('action_1: ', action.action) return action def _is_policy_defined_for(self, observation: D.T_agent[D.T_observation]) -> bool: return True def init_primitives(self, pset) -> PrimitiveSet: for i in range(len(self.list_feature)): pset.renameArguments(**{"ARG"+str(i): self.list_feature[i].value}) return pset def evaluate_heuristic(self, individual, domains) -> float: vals = [] func_heuristic = self.toolbox.compile(expr=individual) # print('individual', individual) for domain in domains: ### initial_state = domain.get_initial_state() do_model = build_do_domain(domain) modes = [initial_state.tasks_mode.get(j, 1) for j in sorted(domain.get_tasks_ids())] modes = modes[1:-1] cpm = self.cpm_data[domain]['cpm'] cpm_esd = self.cpm_data[domain]['cpm_esd'] raw_values = [] for task_id in domain.get_available_tasks(initial_state): input_features = [feature_function_map[lf](domain=domain, cpm=cpm, cpm_esd=cpm_esd, task_id=task_id, state=initial_state) for lf in self.list_feature] output_value = func_heuristic(*input_features) raw_values.append(output_value) normalized_values = [x + 1 for x in sorted(range(len(raw_values)), key=lambda k: raw_values[k], reverse=False)] normalized_values_for_do = [normalized_values[i] - 2 for i in range(len(normalized_values)) if normalized_values[i] not in {1, len(normalized_values)}] solution = RCPSPSolution(problem=do_model, rcpsp_permutation=normalized_values_for_do, rcpsp_modes=modes, ) last_activity = max(list(solution.rcpsp_schedule.keys())) do_makespan = solution.rcpsp_schedule[last_activity]['end_time'] vals.append(do_makespan) fitness = [np.mean(vals)] # fitness = [np.max(vals)] return fitness # def evaluate_heuristic_sgs_deviation(self, individual, domains) -> float: # vals = [] # func_heuristic = self.toolbox.compile(expr=individual) # # selected_domains = random.sample(domains, 3) # selected_domains = domains # # for domain in selected_domains: # policy = GPHHPolicy(domain, domain, # func_heuristic, # features=self.list_feature, # params_gphh=self.params_gphh, recompute_cpm=False, cpm_data=self.cpm_data # ) # state = domain.get_initial_state().copy() # domain.set_inplace_environment(True) # we can use True because we don't use the value # # states, actions, values = rollout_episode(domain=domain, # max_steps=10000, # solver=policy, # from_memory=state, # verbose=False, # outcome_formatter=lambda # o: f'{o.observation} - cost: {o.value.cost:.2f}') # # makespan = states[-1].t # ref_makespan = self.reference_makespans[domain] # makespan_deviation = (makespan - ref_makespan) / ref_makespan # # print('mk: ', makespan, ' - mk_dev: ', makespan_deviation, ' - ref: ', ref_makespan) # vals.append(makespan_deviation) # # # fitness = [np.mean(vals)] # fitness = [np.mean(vals)] # return fitness def initialize_cpm_data_for_training(self): self.cpm_data = {} for domain in self.training_domains: do_model = build_do_domain(domain) cpm, cpm_esd = compute_cpm(do_model) self.cpm_data[domain] = {'cpm': cpm, 'cpm_esd': cpm_esd} def evaluate_heuristic_permutation(self, individual, domains) -> float: vals = [] func_heuristic = self.toolbox.compile(expr=individual) # print('individual', individual) for domain in domains: raw_values = [] initial_state = domain.get_initial_state() regenerate_cpm = False if regenerate_cpm: do_model = build_do_domain(domain) cpm, cpm_esd = compute_cpm(do_model) else: cpm = self.cpm_data[domain]['cpm'] cpm_esd = self.cpm_data[domain]['cpm_esd'] for task_id in domain.get_available_tasks(state=initial_state): input_features = [feature_function_map[lf](domain=domain, cpm = cpm, cpm_esd=cpm_esd, task_id=task_id, state=initial_state) for lf in self.list_feature] output_value = func_heuristic(*input_features) raw_values.append(output_value) most_common_raw_val = max(raw_values, key=raw_values.count) most_common_count = raw_values.count(most_common_raw_val) heuristic_permutation = [x + 1 for x in sorted(range(len(raw_values)), key=lambda k: raw_values[k], reverse=False)] if self.permutation_distance == PermutationDistance.KTD: dist, p_value = stats.kendalltau(heuristic_permutation, self.reference_permutations[domain]) dist = -dist if self.permutation_distance == PermutationDistance.HAMMING: dist = distance.hamming(heuristic_permutation, self.reference_permutations[domain]) if self.permutation_distance == PermutationDistance.KTD_HAMMING: ktd, _ = stats.kendalltau(heuristic_permutation, self.reference_permutations[domain]) dist = -ktd + distance.hamming(heuristic_permutation, self.reference_permutations[domain]) penalty = most_common_count / len(raw_values) # penalty = 0. penalized_distance = dist + penalty vals.append(penalized_distance) fitness = [np.mean(vals)] # fitness = [np.max(vals)] return fitness def test_features(self, domain, task_id, observation): for f in FeatureEnum: print('feature: ', f) calculated_feature = feature_function_map[f](domain=domain, task_id=task_id, state=observation) print('\tcalculated_feature: ',calculated_feature) def set_domain(self, domain): self.domain = domain if self.policy is not None: self.policy.domain = domain class GPHHPolicy(DeterministicPolicies): def __init__(self, domain: SchedulingDomain, domain_model: SchedulingDomain, func_heuristic, features: List[FeatureEnum]=None, params_gphh=None, recompute_cpm=True, cpm_data=None): self.domain = domain self.domain_model = domain_model self.func_heuristic = func_heuristic self.list_feature = features self.params_gphh = params_gphh self.recompute_cpm = recompute_cpm self.cpm_data = cpm_data def reset(self): pass def _get_next_action(self, observation: D.T_agent[D.T_observation]) -> D.T_agent[D.T_concurrency[D.T_event]]: run_sgs = True cheat_mode = False do_model = build_do_domain(self.domain_model) modes = [observation.tasks_mode.get(j, 1) for j in sorted(self.domain.get_tasks_ids())] modes = modes[1:-1] if run_sgs: scheduled_tasks_start_times = {} for j in observation.tasks_details.keys(): if observation.tasks_details[j].start is not None: scheduled_tasks_start_times[j] = observation.tasks_details[j].start do_model.mode_details[j][1]['duration'] = observation.tasks_details[j].sampled_duration # do_model = build_do_domain(self.domain) # modes = [observation.tasks_mode.get(j, 1) for j in sorted(self.domain.get_tasks_ids())] # modes = modes[1:-1] # # if run_sgs: # scheduled_tasks_start_times = {} # for j in observation.tasks_details.keys(): # if observation.tasks_details[j].start is not None: # scheduled_tasks_start_times[j] = observation.tasks_details[j].start # else: # if not cheat_mode: # do_model.mode_details[j][1]['duration'] = self.domain_model.sample_task_duration(j, 1, 0.) if self.recompute_cpm: cpm, cpm_esd = compute_cpm(do_model) else: cpm = self.cpm_data[self.domain]['cpm'] cpm_esd = self.cpm_data[self.domain]['cpm_esd'] t = observation.t raw_values = [] for task_id in self.domain.get_available_tasks(observation): input_features = [feature_function_map[lf](domain=self.domain, cpm = cpm, cpm_esd=cpm_esd, task_id=task_id, state=observation) for lf in self.list_feature] output_value = self.func_heuristic(*input_features) raw_values.append(output_value) normalized_values = [x+1 for x in sorted(range(len(raw_values)), key=lambda k: raw_values[k], reverse=False)] normalized_values_for_do = [normalized_values[i] - 2 for i in range(len(normalized_values)) if normalized_values[i] not in {1, len(normalized_values)}] # print(t, ': ', normalized_values) # print('normalized_values_for_do: ', normalized_values_for_do) modes_dictionnary = {} for i in range(len(normalized_values)): modes_dictionnary[i+1] = 1 if run_sgs: solution = RCPSPSolution(problem=do_model, rcpsp_permutation=normalized_values_for_do, rcpsp_modes=modes, ) solution.generate_schedule_from_permutation_serial_sgs_2(current_t=t, completed_tasks= {j: observation.tasks_details[j] for j in observation.tasks_complete}, scheduled_tasks_start_times=scheduled_tasks_start_times) schedule = solution.rcpsp_schedule else: schedule = None sgs_policy = PolicyRCPSP(domain=self.domain, schedule=schedule, policy_method_params=PolicyMethodParams( # base_policy_method=BasePolicyMethod.SGS_PRECEDENCE, # base_policy_method=BasePolicyMethod.SGS_READY, base_policy_method=self.params_gphh.base_policy_method, delta_index_freedom=self.params_gphh.delta_index_freedom, delta_time_freedom=self.params_gphh.delta_time_freedom), permutation_task=normalized_values, modes_dictionnary=modes_dictionnary) action: SchedulingAction = sgs_policy.sample_action(observation) # print('action_2: ', action.action) return action def _is_policy_defined_for(self, observation: D.T_agent[D.T_observation]) -> bool: return True class PoolAggregationMethod(Enum): MEAN = "mean" MEDIAN = "median" RANDOM = "random" class PooledGPHHPolicy(DeterministicPolicies): def __init__(self, domain: SchedulingDomain, domain_model: SchedulingDomain, func_heuristics, pool_aggregation_method: PoolAggregationMethod = PoolAggregationMethod.MEAN, remove_extremes_values:int = 0, features: List[FeatureEnum]=None, params_gphh=None): self.domain = domain self.domain_model = domain_model self.func_heuristics = func_heuristics self.list_feature = features self.params_gphh = params_gphh self.pool_aggregation_method = pool_aggregation_method self.remove_extremes_values = remove_extremes_values def reset(self): pass def _get_next_action(self, observation: D.T_agent[D.T_observation]) -> D.T_agent[D.T_concurrency[D.T_event]]: run_sgs = True cheat_mode = False regenerate_cpm = True do_model = build_do_domain(self.domain_model) modes = [observation.tasks_mode.get(j, 1) for j in sorted(self.domain.get_tasks_ids())] modes = modes[1:-1] if run_sgs: scheduled_tasks_start_times = {} for j in observation.tasks_details.keys(): if observation.tasks_details[j].start is not None: scheduled_tasks_start_times[j] = observation.tasks_details[j].start do_model.mode_details[j][1]['duration'] = observation.tasks_details[j].sampled_duration # do_model = build_do_domain(self.domain) # modes = [observation.tasks_mode.get(j, 1) for j in sorted(self.domain.get_tasks_ids())] # modes = modes[1:-1] # # if run_sgs: # scheduled_tasks_start_times = {} # for j in observation.tasks_details.keys(): # # schedule[j] = {} # if observation.tasks_details[j].start is not None: # # schedule[j]["start_time"] = observation.tasks_details[j].start # scheduled_tasks_start_times[j] = observation.tasks_details[j].start # # if observation.tasks_details[j].end is not None: # # schedule[j]["end_time"] = observation.tasks_details[j].end # else: # if not cheat_mode: # do_model.mode_details[j][1]['duration'] = self.domain_model.sample_task_duration(j, 1, 0.) if regenerate_cpm: cpm, cpm_esd = compute_cpm(do_model) t = observation.t raw_values = [] for task_id in self.domain.get_available_tasks(observation): input_features = [feature_function_map[lf]( domain=self.domain, cpm = cpm, cpm_esd=cpm_esd, task_id=task_id, state=observation) for lf in self.list_feature] output_values = [] for f in self.func_heuristics: output_value = f(*input_features) output_values.append(output_value) # print('output_values: ', output_values) if self.remove_extremes_values > 0: the_median = float(np.median(output_values)) tmp = {} for i in range(len(output_values)): tmp[i] = abs(output_values[i] - the_median) tmp = sorted(tmp.items(), key=lambda x: x[1], reverse=True) to_remove = [tmp[i][0] for i in range(self.remove_extremes_values)] output_values = list(np.delete(output_values, to_remove)) # print('output_values filtered: ', output_values) if self.pool_aggregation_method == PoolAggregationMethod.MEAN: agg_value = np.mean(output_values) elif self.pool_aggregation_method == PoolAggregationMethod.MEDIAN: agg_value = np.median(output_values) elif self.pool_aggregation_method == PoolAggregationMethod.RANDOM: index = random.randint(len(output_values)) agg_value = output_values[index] # print('agg_value: ', agg_value) raw_values.append(agg_value) normalized_values = [x+1 for x in sorted(range(len(raw_values)), key=lambda k: raw_values[k], reverse=False)] normalized_values_for_do = [normalized_values[i] - 2 for i in range(len(normalized_values)) if normalized_values[i] not in {1, len(normalized_values)}] # print('normalized_values: ', normalized_values) # print('normalized_values_for_do: ', normalized_values_for_do) modes_dictionnary = {} for i in range(len(normalized_values)): modes_dictionnary[i+1] = 1 if run_sgs: solution = RCPSPSolution(problem=do_model, rcpsp_permutation=normalized_values_for_do, rcpsp_modes=modes, ) solution.generate_schedule_from_permutation_serial_sgs_2(current_t=t, completed_tasks= {j: observation.tasks_details[j] for j in observation.tasks_complete}, scheduled_tasks_start_times=scheduled_tasks_start_times) schedule = solution.rcpsp_schedule else: schedule = None sgs_policy = PolicyRCPSP(domain=self.domain, schedule=schedule, policy_method_params=PolicyMethodParams( # base_policy_method=BasePolicyMethod.SGS_PRECEDENCE, # base_policy_method=BasePolicyMethod.SGS_READY, base_policy_method=self.params_gphh.base_policy_method, delta_index_freedom=self.params_gphh.delta_index_freedom, delta_time_freedom=self.params_gphh.delta_time_freedom), permutation_task=normalized_values, modes_dictionnary=modes_dictionnary) action: SchedulingAction = sgs_policy.sample_action(observation) # print('action_2: ', action.action) return action def _is_policy_defined_for(self, observation: D.T_agent[D.T_observation]) -> bool: return True class FixedPermutationPolicy(DeterministicPolicies): def __init__(self, domain: SchedulingDomain, domain_model: SchedulingDomain, fixed_perm): self.domain = domain self.domain_model = domain_model self.fixed_perm = fixed_perm def reset(self): pass def _get_next_action(self, observation: D.T_agent[D.T_observation]) -> D.T_agent[D.T_concurrency[D.T_event]]: run_sgs = True cheat_mode = False do_model = build_do_domain(self.domain_model) modes = [observation.tasks_mode.get(j, 1) for j in sorted(self.domain.get_tasks_ids())] modes = modes[1:-1] if run_sgs: scheduled_tasks_start_times = {} for j in observation.tasks_details.keys(): if observation.tasks_details[j].start is not None: scheduled_tasks_start_times[j] = observation.tasks_details[j].start do_model.mode_details[j][1]['duration'] = observation.tasks_details[j].sampled_duration # do_model = build_do_domain(self.domain) # modes = [observation.tasks_mode.get(j, 1) for j in sorted(self.domain.get_tasks_ids())] # modes = modes[1:-1] # # if run_sgs: # scheduled_tasks_start_times = {} # for j in observation.tasks_details.keys(): # # schedule[j] = {} # if observation.tasks_details[j].start is not None: # # schedule[j]["start_time"] = observation.tasks_details[j].start # scheduled_tasks_start_times[j] = observation.tasks_details[j].start # # if observation.tasks_details[j].end is not None: # # schedule[j]["end_time"] = observation.tasks_details[j].end # else: # if not cheat_mode: # # print('do_model: ', do_model) # do_model.mode_details[j][1]['duration'] = self.domain_model.sample_task_duration(j, 1, 0.) normalized_values = self.fixed_perm normalized_values_for_do = [normalized_values[i] - 2 for i in range(len(normalized_values)) if normalized_values[i] not in {1, len(normalized_values)}] # print('normalized_values: ', normalized_values) # print('normalized_values_for_do: ', normalized_values_for_do) t = observation.t modes_dictionnary = {} for i in range(len(normalized_values)): modes_dictionnary[i+1] = 1 if run_sgs: solution = RCPSPSolution(problem=do_model, rcpsp_permutation=normalized_values_for_do, rcpsp_modes=modes, ) solution.generate_schedule_from_permutation_serial_sgs_2(current_t=t, completed_tasks= {j: observation.tasks_details[j] for j in observation.tasks_complete}, scheduled_tasks_start_times=scheduled_tasks_start_times) schedule = solution.rcpsp_schedule else: schedule = None sgs_policy = PolicyRCPSP(domain=self.domain, schedule=schedule, policy_method_params=PolicyMethodParams( # base_policy_method=BasePolicyMethod.SGS_PRECEDENCE, # base_policy_method=BasePolicyMethod.SGS_READY, base_policy_method=BasePolicyMethod.FOLLOW_GANTT, # delta_index_freedom=self.params_gphh.delta_index_freedom, # delta_time_freedom=self.params_gphh.delta_time_freedom ), permutation_task=normalized_values, modes_dictionnary=modes_dictionnary) action: SchedulingAction = sgs_policy.sample_action(observation) # print('action_2: ', action.action) return action def _is_policy_defined_for(self, observation: D.T_agent[D.T_observation]) -> bool: return True
[ "numpy.sum", "numpy.mean", "scipy.stats.kendalltau", "deap.tools.HallOfFame", "deap.base.Toolbox", "numpy.max", "skdecide.builders.discrete_optimization.rcpsp.solver.cpm.CPM", "skdecide.hub.solver.do_solver.sk_to_do_binding.build_do_domain", "deap.algorithms.eaSimple", "numpy.median", "operator.attrgetter", "numpy.min", "deap.creator.create", "skdecide.builders.discrete_optimization.rcpsp.rcpsp_model.RCPSPSolution", "numpy.delete", "skdecide.hub.solver.do_solver.do_solver_scheduling.PolicyMethodParams", "deap.tools.MultiStatistics", "deap.tools.Statistics", "scipy.spatial.distance.hamming" ]
[((3338, 3353), 'numpy.mean', 'np.mean', (['values'], {}), '(values)\n', (3345, 3353), True, 'import numpy as np\n'), ((3576, 3590), 'numpy.min', 'np.min', (['values'], {}), '(values)\n', (3582, 3590), True, 'import numpy as np\n'), ((4153, 4167), 'numpy.max', 'np.max', (['values'], {}), '(values)\n', (4159, 4167), True, 'import numpy as np\n'), ((4854, 4868), 'skdecide.builders.discrete_optimization.rcpsp.solver.cpm.CPM', 'CPM', (['do_domain'], {}), '(do_domain)\n', (4857, 4868), False, 'from skdecide.builders.discrete_optimization.rcpsp.solver.cpm import CPM\n'), ((3819, 3833), 'numpy.sum', 'np.sum', (['values'], {}), '(values)\n', (3825, 3833), True, 'import numpy as np\n'), ((3854, 3892), 'numpy.min', 'np.min', (['[x for x in values if x > 0.0]'], {}), '([x for x in values if x > 0.0])\n', (3860, 3892), True, 'import numpy as np\n'), ((3916, 3930), 'numpy.min', 'np.min', (['values'], {}), '(values)\n', (3922, 3930), True, 'import numpy as np\n'), ((20446, 20507), 'deap.creator.create', 'creator.create', (['"""FitnessMin"""', 'Fitness'], {'weights': '(self.weight,)'}), "('FitnessMin', Fitness, weights=(self.weight,))\n", (20460, 20507), False, 'from deap import creator\n'), ((20516, 20587), 'deap.creator.create', 'creator.create', (['"""Individual"""', 'PrimitiveTree'], {'fitness': 'creator.FitnessMin'}), "('Individual', PrimitiveTree, fitness=creator.FitnessMin)\n", (20530, 20587), False, 'from deap import creator\n'), ((20612, 20621), 'deap.base.Toolbox', 'Toolbox', ([], {}), '()\n', (20619, 20621), False, 'from deap.base import Toolbox, Fitness\n'), ((22211, 22259), 'deap.tools.Statistics', 'tools.Statistics', (['(lambda ind: ind.fitness.values)'], {}), '(lambda ind: ind.fitness.values)\n', (22227, 22259), False, 'from deap import tools\n'), ((22281, 22302), 'deap.tools.Statistics', 'tools.Statistics', (['len'], {}), '(len)\n', (22297, 22302), False, 'from deap import tools\n'), ((22320, 22377), 'deap.tools.MultiStatistics', 'tools.MultiStatistics', ([], {'fitness': 'stats_fit', 'size': 'stats_size'}), '(fitness=stats_fit, size=stats_size)\n', (22341, 22377), False, 'from deap import tools\n'), ((22600, 22619), 'deap.tools.HallOfFame', 'tools.HallOfFame', (['(1)'], {}), '(1)\n', (22616, 22619), False, 'from deap import tools\n'), ((22662, 22786), 'deap.algorithms.eaSimple', 'algorithms.eaSimple', (['pop', 'self.toolbox', 'crossover_rate', 'mutation_rate', 'n_gen'], {'stats': 'mstats', 'halloffame': 'hof', 'verbose': '(True)'}), '(pop, self.toolbox, crossover_rate, mutation_rate, n_gen,\n stats=mstats, halloffame=hof, verbose=True)\n', (22681, 22786), False, 'from deap import algorithms\n'), ((31789, 31823), 'skdecide.hub.solver.do_solver.sk_to_do_binding.build_do_domain', 'build_do_domain', (['self.domain_model'], {}), '(self.domain_model)\n', (31804, 31823), False, 'from skdecide.hub.solver.do_solver.sk_to_do_binding import build_do_domain\n'), ((37295, 37329), 'skdecide.hub.solver.do_solver.sk_to_do_binding.build_do_domain', 'build_do_domain', (['self.domain_model'], {}), '(self.domain_model)\n', (37310, 37329), False, 'from skdecide.hub.solver.do_solver.sk_to_do_binding import build_do_domain\n'), ((43716, 43750), 'skdecide.hub.solver.do_solver.sk_to_do_binding.build_do_domain', 'build_do_domain', (['self.domain_model'], {}), '(self.domain_model)\n', (43731, 43750), False, 'from skdecide.hub.solver.do_solver.sk_to_do_binding import build_do_domain\n'), ((24151, 24174), 'skdecide.hub.solver.do_solver.sk_to_do_binding.build_do_domain', 'build_do_domain', (['domain'], {}), '(domain)\n', (24166, 24174), False, 'from skdecide.hub.solver.do_solver.sk_to_do_binding import build_do_domain\n'), ((25462, 25560), 'skdecide.builders.discrete_optimization.rcpsp.rcpsp_model.RCPSPSolution', 'RCPSPSolution', ([], {'problem': 'do_model', 'rcpsp_permutation': 'normalized_values_for_do', 'rcpsp_modes': 'modes'}), '(problem=do_model, rcpsp_permutation=normalized_values_for_do,\n rcpsp_modes=modes)\n', (25475, 25560), False, 'from skdecide.builders.discrete_optimization.rcpsp.rcpsp_model import RCPSPSolution\n'), ((25874, 25887), 'numpy.mean', 'np.mean', (['vals'], {}), '(vals)\n', (25881, 25887), True, 'import numpy as np\n'), ((27854, 27877), 'skdecide.hub.solver.do_solver.sk_to_do_binding.build_do_domain', 'build_do_domain', (['domain'], {}), '(domain)\n', (27869, 27877), False, 'from skdecide.hub.solver.do_solver.sk_to_do_binding import build_do_domain\n'), ((30463, 30476), 'numpy.mean', 'np.mean', (['vals'], {}), '(vals)\n', (30470, 30476), True, 'import numpy as np\n'), ((34488, 34586), 'skdecide.builders.discrete_optimization.rcpsp.rcpsp_model.RCPSPSolution', 'RCPSPSolution', ([], {'problem': 'do_model', 'rcpsp_permutation': 'normalized_values_for_do', 'rcpsp_modes': 'modes'}), '(problem=do_model, rcpsp_permutation=normalized_values_for_do,\n rcpsp_modes=modes)\n', (34501, 34586), False, 'from skdecide.builders.discrete_optimization.rcpsp.rcpsp_model import RCPSPSolution\n'), ((41410, 41508), 'skdecide.builders.discrete_optimization.rcpsp.rcpsp_model.RCPSPSolution', 'RCPSPSolution', ([], {'problem': 'do_model', 'rcpsp_permutation': 'normalized_values_for_do', 'rcpsp_modes': 'modes'}), '(problem=do_model, rcpsp_permutation=normalized_values_for_do,\n rcpsp_modes=modes)\n', (41423, 41508), False, 'from skdecide.builders.discrete_optimization.rcpsp.rcpsp_model import RCPSPSolution\n'), ((45812, 45910), 'skdecide.builders.discrete_optimization.rcpsp.rcpsp_model.RCPSPSolution', 'RCPSPSolution', ([], {'problem': 'do_model', 'rcpsp_permutation': 'normalized_values_for_do', 'rcpsp_modes': 'modes'}), '(problem=do_model, rcpsp_permutation=normalized_values_for_do,\n rcpsp_modes=modes)\n', (45825, 45910), False, 'from skdecide.builders.discrete_optimization.rcpsp.rcpsp_model import RCPSPSolution\n'), ((28444, 28467), 'skdecide.hub.solver.do_solver.sk_to_do_binding.build_do_domain', 'build_do_domain', (['domain'], {}), '(domain)\n', (28459, 28467), False, 'from skdecide.hub.solver.do_solver.sk_to_do_binding import build_do_domain\n'), ((29699, 29775), 'scipy.stats.kendalltau', 'stats.kendalltau', (['heuristic_permutation', 'self.reference_permutations[domain]'], {}), '(heuristic_permutation, self.reference_permutations[domain])\n', (29715, 29775), False, 'from scipy import stats\n'), ((29902, 29978), 'scipy.spatial.distance.hamming', 'distance.hamming', (['heuristic_permutation', 'self.reference_permutations[domain]'], {}), '(heuristic_permutation, self.reference_permutations[domain])\n', (29918, 29978), False, 'from scipy.spatial import distance\n'), ((30082, 30158), 'scipy.stats.kendalltau', 'stats.kendalltau', (['heuristic_permutation', 'self.reference_permutations[domain]'], {}), '(heuristic_permutation, self.reference_permutations[domain])\n', (30098, 30158), False, 'from scipy import stats\n'), ((35451, 35647), 'skdecide.hub.solver.do_solver.do_solver_scheduling.PolicyMethodParams', 'PolicyMethodParams', ([], {'base_policy_method': 'self.params_gphh.base_policy_method', 'delta_index_freedom': 'self.params_gphh.delta_index_freedom', 'delta_time_freedom': 'self.params_gphh.delta_time_freedom'}), '(base_policy_method=self.params_gphh.base_policy_method,\n delta_index_freedom=self.params_gphh.delta_index_freedom,\n delta_time_freedom=self.params_gphh.delta_time_freedom)\n', (35469, 35647), False, 'from skdecide.hub.solver.do_solver.do_solver_scheduling import PolicyRCPSP, DOSolver, PolicyMethodParams, BasePolicyMethod, SolvingMethod\n'), ((40320, 40342), 'numpy.mean', 'np.mean', (['output_values'], {}), '(output_values)\n', (40327, 40342), True, 'import numpy as np\n'), ((42373, 42569), 'skdecide.hub.solver.do_solver.do_solver_scheduling.PolicyMethodParams', 'PolicyMethodParams', ([], {'base_policy_method': 'self.params_gphh.base_policy_method', 'delta_index_freedom': 'self.params_gphh.delta_index_freedom', 'delta_time_freedom': 'self.params_gphh.delta_time_freedom'}), '(base_policy_method=self.params_gphh.base_policy_method,\n delta_index_freedom=self.params_gphh.delta_index_freedom,\n delta_time_freedom=self.params_gphh.delta_time_freedom)\n', (42391, 42569), False, 'from skdecide.hub.solver.do_solver.do_solver_scheduling import PolicyRCPSP, DOSolver, PolicyMethodParams, BasePolicyMethod, SolvingMethod\n'), ((46775, 46843), 'skdecide.hub.solver.do_solver.do_solver_scheduling.PolicyMethodParams', 'PolicyMethodParams', ([], {'base_policy_method': 'BasePolicyMethod.FOLLOW_GANTT'}), '(base_policy_method=BasePolicyMethod.FOLLOW_GANTT)\n', (46793, 46843), False, 'from skdecide.hub.solver.do_solver.do_solver_scheduling import PolicyRCPSP, DOSolver, PolicyMethodParams, BasePolicyMethod, SolvingMethod\n'), ((22039, 22068), 'operator.attrgetter', 'operator.attrgetter', (['"""height"""'], {}), "('height')\n", (22058, 22068), False, 'import operator\n'), ((22144, 22173), 'operator.attrgetter', 'operator.attrgetter', (['"""height"""'], {}), "('height')\n", (22163, 22173), False, 'import operator\n'), ((30189, 30265), 'scipy.spatial.distance.hamming', 'distance.hamming', (['heuristic_permutation', 'self.reference_permutations[domain]'], {}), '(heuristic_permutation, self.reference_permutations[domain])\n', (30205, 30265), False, 'from scipy.spatial import distance\n'), ((39752, 39776), 'numpy.median', 'np.median', (['output_values'], {}), '(output_values)\n', (39761, 39776), True, 'import numpy as np\n'), ((40116, 40151), 'numpy.delete', 'np.delete', (['output_values', 'to_remove'], {}), '(output_values, to_remove)\n', (40125, 40151), True, 'import numpy as np\n'), ((40450, 40474), 'numpy.median', 'np.median', (['output_values'], {}), '(output_values)\n', (40459, 40474), True, 'import numpy as np\n'), ((17350, 17469), 'skdecide.hub.solver.do_solver.do_solver_scheduling.PolicyMethodParams', 'PolicyMethodParams', ([], {'base_policy_method': 'BasePolicyMethod.SGS_PRECEDENCE', 'delta_index_freedom': '(0)', 'delta_time_freedom': '(0)'}), '(base_policy_method=BasePolicyMethod.SGS_PRECEDENCE,\n delta_index_freedom=0, delta_time_freedom=0)\n', (17368, 17469), False, 'from skdecide.hub.solver.do_solver.do_solver_scheduling import PolicyRCPSP, DOSolver, PolicyMethodParams, BasePolicyMethod, SolvingMethod\n'), ((17931, 17955), 'numpy.max', 'np.max', (['full_permutation'], {}), '(full_permutation)\n', (17937, 17955), True, 'import numpy as np\n')]
from machin.utils.media import ( show_image, create_video, create_video_subproc, create_image, create_image_subproc ) from os.path import join import os import pytest import numpy as np @pytest.fixture(scope="function") def images(): images = [ np.random.randint(0, 255, size=[128, 128], dtype=np.uint8) for _ in range(120) ] return images @pytest.fixture(scope="function") def images_f(): images = [ np.random.rand(128, 128) for _ in range(120) ] return images def test_show_image(images): show_image(images[0], show_normalized=True) show_image(images[0], show_normalized=False) def test_create_video(images, tmpdir): tmp_dir = str(tmpdir.make_numbered_dir()) create_video(images, tmp_dir, "vid", extension=".gif") assert os.path.exists(join(tmp_dir, "vid.gif")) create_video(images, tmp_dir, "vid", extension=".mp4") assert os.path.exists(join(tmp_dir, "vid.mp4")) def test_create_video_float(images_f, tmpdir): tmp_dir = str(tmpdir.make_numbered_dir()) create_video(images_f, tmp_dir, "vid", extension=".gif") assert os.path.exists(join(tmp_dir, "vid.gif")) create_video(images_f, tmp_dir, "vid", extension=".mp4") assert os.path.exists(join(tmp_dir, "vid.mp4")) def test_create_video_subproc(images, tmpdir): tmp_dir = str(tmpdir.make_numbered_dir()) create_video_subproc([], tmp_dir, "empty", extension=".gif")() create_video_subproc(images, tmp_dir, "vid", extension=".gif")() assert os.path.exists(join(tmp_dir, "vid.gif")) def test_create_image(images, tmpdir): tmp_dir = str(tmpdir.make_numbered_dir()) create_image(images[0], tmp_dir, "img", extension=".png") assert os.path.exists(join(tmp_dir, "img.png")) def test_create_image_float(images_f, tmpdir): tmp_dir = str(tmpdir.make_numbered_dir()) create_image(images_f[0], tmp_dir, "img", extension=".png") assert os.path.exists(join(tmp_dir, "img.png")) def test_create_image_subproc(images, tmpdir): tmp_dir = str(tmpdir.make_numbered_dir()) create_image_subproc(images[0], tmp_dir, "img", extension=".png")() assert os.path.exists(join(tmp_dir, "img.png"))
[ "machin.utils.media.create_video_subproc", "machin.utils.media.create_image", "machin.utils.media.create_image_subproc", "pytest.fixture", "numpy.random.randint", "numpy.random.rand", "machin.utils.media.create_video", "os.path.join", "machin.utils.media.show_image" ]
[((197, 229), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""function"""'}), "(scope='function')\n", (211, 229), False, 'import pytest\n'), ((381, 413), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""function"""'}), "(scope='function')\n", (395, 413), False, 'import pytest\n'), ((565, 608), 'machin.utils.media.show_image', 'show_image', (['images[0]'], {'show_normalized': '(True)'}), '(images[0], show_normalized=True)\n', (575, 608), False, 'from machin.utils.media import show_image, create_video, create_video_subproc, create_image, create_image_subproc\n'), ((613, 657), 'machin.utils.media.show_image', 'show_image', (['images[0]'], {'show_normalized': '(False)'}), '(images[0], show_normalized=False)\n', (623, 657), False, 'from machin.utils.media import show_image, create_video, create_video_subproc, create_image, create_image_subproc\n'), ((749, 803), 'machin.utils.media.create_video', 'create_video', (['images', 'tmp_dir', '"""vid"""'], {'extension': '""".gif"""'}), "(images, tmp_dir, 'vid', extension='.gif')\n", (761, 803), False, 'from machin.utils.media import show_image, create_video, create_video_subproc, create_image, create_image_subproc\n'), ((860, 914), 'machin.utils.media.create_video', 'create_video', (['images', 'tmp_dir', '"""vid"""'], {'extension': '""".mp4"""'}), "(images, tmp_dir, 'vid', extension='.mp4')\n", (872, 914), False, 'from machin.utils.media import show_image, create_video, create_video_subproc, create_image, create_image_subproc\n'), ((1066, 1122), 'machin.utils.media.create_video', 'create_video', (['images_f', 'tmp_dir', '"""vid"""'], {'extension': '""".gif"""'}), "(images_f, tmp_dir, 'vid', extension='.gif')\n", (1078, 1122), False, 'from machin.utils.media import show_image, create_video, create_video_subproc, create_image, create_image_subproc\n'), ((1179, 1235), 'machin.utils.media.create_video', 'create_video', (['images_f', 'tmp_dir', '"""vid"""'], {'extension': '""".mp4"""'}), "(images_f, tmp_dir, 'vid', extension='.mp4')\n", (1191, 1235), False, 'from machin.utils.media import show_image, create_video, create_video_subproc, create_image, create_image_subproc\n'), ((1662, 1719), 'machin.utils.media.create_image', 'create_image', (['images[0]', 'tmp_dir', '"""img"""'], {'extension': '""".png"""'}), "(images[0], tmp_dir, 'img', extension='.png')\n", (1674, 1719), False, 'from machin.utils.media import show_image, create_video, create_video_subproc, create_image, create_image_subproc\n'), ((1871, 1930), 'machin.utils.media.create_image', 'create_image', (['images_f[0]', 'tmp_dir', '"""img"""'], {'extension': '""".png"""'}), "(images_f[0], tmp_dir, 'img', extension='.png')\n", (1883, 1930), False, 'from machin.utils.media import show_image, create_video, create_video_subproc, create_image, create_image_subproc\n'), ((267, 325), 'numpy.random.randint', 'np.random.randint', (['(0)', '(255)'], {'size': '[128, 128]', 'dtype': 'np.uint8'}), '(0, 255, size=[128, 128], dtype=np.uint8)\n', (284, 325), True, 'import numpy as np\n'), ((453, 477), 'numpy.random.rand', 'np.random.rand', (['(128)', '(128)'], {}), '(128, 128)\n', (467, 477), True, 'import numpy as np\n'), ((830, 854), 'os.path.join', 'join', (['tmp_dir', '"""vid.gif"""'], {}), "(tmp_dir, 'vid.gif')\n", (834, 854), False, 'from os.path import join\n'), ((941, 965), 'os.path.join', 'join', (['tmp_dir', '"""vid.mp4"""'], {}), "(tmp_dir, 'vid.mp4')\n", (945, 965), False, 'from os.path import join\n'), ((1149, 1173), 'os.path.join', 'join', (['tmp_dir', '"""vid.gif"""'], {}), "(tmp_dir, 'vid.gif')\n", (1153, 1173), False, 'from os.path import join\n'), ((1262, 1286), 'os.path.join', 'join', (['tmp_dir', '"""vid.mp4"""'], {}), "(tmp_dir, 'vid.mp4')\n", (1266, 1286), False, 'from os.path import join\n'), ((1387, 1447), 'machin.utils.media.create_video_subproc', 'create_video_subproc', (['[]', 'tmp_dir', '"""empty"""'], {'extension': '""".gif"""'}), "([], tmp_dir, 'empty', extension='.gif')\n", (1407, 1447), False, 'from machin.utils.media import show_image, create_video, create_video_subproc, create_image, create_image_subproc\n'), ((1454, 1516), 'machin.utils.media.create_video_subproc', 'create_video_subproc', (['images', 'tmp_dir', '"""vid"""'], {'extension': '""".gif"""'}), "(images, tmp_dir, 'vid', extension='.gif')\n", (1474, 1516), False, 'from machin.utils.media import show_image, create_video, create_video_subproc, create_image, create_image_subproc\n'), ((1545, 1569), 'os.path.join', 'join', (['tmp_dir', '"""vid.gif"""'], {}), "(tmp_dir, 'vid.gif')\n", (1549, 1569), False, 'from os.path import join\n'), ((1746, 1770), 'os.path.join', 'join', (['tmp_dir', '"""img.png"""'], {}), "(tmp_dir, 'img.png')\n", (1750, 1770), False, 'from os.path import join\n'), ((1957, 1981), 'os.path.join', 'join', (['tmp_dir', '"""img.png"""'], {}), "(tmp_dir, 'img.png')\n", (1961, 1981), False, 'from os.path import join\n'), ((2082, 2147), 'machin.utils.media.create_image_subproc', 'create_image_subproc', (['images[0]', 'tmp_dir', '"""img"""'], {'extension': '""".png"""'}), "(images[0], tmp_dir, 'img', extension='.png')\n", (2102, 2147), False, 'from machin.utils.media import show_image, create_video, create_video_subproc, create_image, create_image_subproc\n'), ((2176, 2200), 'os.path.join', 'join', (['tmp_dir', '"""img.png"""'], {}), "(tmp_dir, 'img.png')\n", (2180, 2200), False, 'from os.path import join\n')]
# ########################################################################### # # CLOUDERA APPLIED MACHINE LEARNING PROTOTYPE (AMP) # (C) Cloudera, Inc. 2020 # All rights reserved. # # Applicable Open Source License: Apache 2.0 # # NOTE: Cloudera open source products are modular software products # made up of hundreds of individual components, each of which was # individually copyrighted. Each Cloudera open source product is a # collective work under U.S. Copyright Law. Your license to use the # collective work is as provided in your written agreement with # Cloudera. Used apart from the collective work, this file is # licensed for your use pursuant to the open source license # identified above. # # This code is provided to you pursuant a written agreement with # (i) Cloudera, Inc. or (ii) a third-party authorized to distribute # this code. If you do not have a written agreement with Cloudera nor # with an authorized and properly licensed third party, you do not # have any rights to access nor to use this code. # # Absent a written agreement with Cloudera, Inc. (“Cloudera”) to the # contrary, A) CLOUDERA PROVIDES THIS CODE TO YOU WITHOUT WARRANTIES OF ANY # KIND; (B) CLOUDERA DISCLAIMS ANY AND ALL EXPRESS AND IMPLIED # WARRANTIES WITH RESPECT TO THIS CODE, INCLUDING BUT NOT LIMITED TO # IMPLIED WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY AND # FITNESS FOR A PARTICULAR PURPOSE; (C) CLOUDERA IS NOT LIABLE TO YOU, # AND WILL NOT DEFEND, INDEMNIFY, NOR HOLD YOU HARMLESS FOR ANY CLAIMS # ARISING FROM OR RELATED TO THE CODE; AND (D)WITH RESPECT TO YOUR EXERCISE # OF ANY RIGHTS GRANTED TO YOU FOR THE CODE, CLOUDERA IS NOT LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, PUNITIVE OR # CONSEQUENTIAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES # RELATED TO LOST REVENUE, LOST PROFITS, LOSS OF INCOME, LOSS OF # BUSINESS ADVANTAGE OR UNAVAILABILITY, OR LOSS OR CORRUPTION OF # DATA. # # ########################################################################### import datetime import numpy as np import pandas as pd from sts.models.prophet import ( add_season_weekday_indicators, seasonal_daily_prophet_model ) from sts.data.loader import load_california_electricity_demand # Load all available data for training df = load_california_electricity_demand() # Take log transform for fully multiplicative model df['y'] = df.y.apply(np.log) # Fit best current model model = seasonal_daily_prophet_model(df) # Make predictions for one year ahead of most recent training data future = add_season_weekday_indicators( model.make_future_dataframe(periods=24*365, freq='H') ) forecast = model.predict(future) samples = model.predictive_samples(future) # Reverse log transform predictions = np.exp(samples['yhat']) prediction_df = ( future .merge(pd.DataFrame(predictions), left_index=True, right_index=True) .drop(['winter_weekday', 'winter_weekend', 'summer_weekday', 'summer_weekend'], axis='columns') .tail(24*365) # keep one year of hourly predictions from most recent training date ) # Save predictions prediction_df.to_csv('data/forecast.csv', index=False)
[ "pandas.DataFrame", "sts.data.loader.load_california_electricity_demand", "numpy.exp", "sts.models.prophet.seasonal_daily_prophet_model" ]
[((2318, 2354), 'sts.data.loader.load_california_electricity_demand', 'load_california_electricity_demand', ([], {}), '()\n', (2352, 2354), False, 'from sts.data.loader import load_california_electricity_demand\n'), ((2473, 2505), 'sts.models.prophet.seasonal_daily_prophet_model', 'seasonal_daily_prophet_model', (['df'], {}), '(df)\n', (2501, 2505), False, 'from sts.models.prophet import add_season_weekday_indicators, seasonal_daily_prophet_model\n'), ((2793, 2816), 'numpy.exp', 'np.exp', (["samples['yhat']"], {}), "(samples['yhat'])\n", (2799, 2816), True, 'import numpy as np\n'), ((2858, 2883), 'pandas.DataFrame', 'pd.DataFrame', (['predictions'], {}), '(predictions)\n', (2870, 2883), True, 'import pandas as pd\n')]
from __future__ import print_function import argparse import gzip import json import logging import os import traceback import numpy as np import tensorflow as tf from tensorflow.keras import Model from tensorflow.keras.layers import Conv2D, Dense, Flatten logging.basicConfig(level=logging.DEBUG) # Define the model object class SmallConv(Model): def __init__(self): super(SmallConv, self).__init__() self.conv1 = Conv2D(32, 3, activation="relu") self.flatten = Flatten() self.d1 = Dense(128, activation="relu") self.d2 = Dense(10) def call(self, x): x = self.conv1(x) x = self.flatten(x) x = self.d1(x) return self.d2(x) # Decode and preprocess data def convert_to_numpy(data_dir, images_file, labels_file): """Byte string to numpy arrays""" with gzip.open(os.path.join(data_dir, images_file), "rb") as f: images = np.frombuffer(f.read(), np.uint8, offset=16).reshape(-1, 28, 28) with gzip.open(os.path.join(data_dir, labels_file), "rb") as f: labels = np.frombuffer(f.read(), np.uint8, offset=8) return (images, labels) def mnist_to_numpy(data_dir, train): """Load raw MNIST data into numpy array Args: data_dir (str): directory of MNIST raw data. This argument can be accessed via SM_CHANNEL_TRAINING train (bool): use training data Returns: tuple of images and labels as numpy array """ if train: images_file = "train-images-idx3-ubyte.gz" labels_file = "train-labels-idx1-ubyte.gz" else: images_file = "t10k-images-idx3-ubyte.gz" labels_file = "t10k-labels-idx1-ubyte.gz" return convert_to_numpy(data_dir, images_file, labels_file) def normalize(x, axis): eps = np.finfo(float).eps mean = np.mean(x, axis=axis, keepdims=True) # avoid division by zero std = np.std(x, axis=axis, keepdims=True) + eps return (x - mean) / std # Training logic def train(args): # create data loader from the train / test channels x_train, y_train = mnist_to_numpy(data_dir=args.train, train=True) x_test, y_test = mnist_to_numpy(data_dir=args.test, train=False) x_train, x_test = x_train.astype(np.float32), x_test.astype(np.float32) # normalize the inputs to mean 0 and std 1 x_train, x_test = normalize(x_train, (1, 2)), normalize(x_test, (1, 2)) # expand channel axis # tf uses depth minor convention x_train, x_test = np.expand_dims(x_train, axis=3), np.expand_dims(x_test, axis=3) # normalize the data to mean 0 and std 1 train_loader = ( tf.data.Dataset.from_tensor_slices((x_train, y_train)) .shuffle(len(x_train)) .batch(args.batch_size) ) test_loader = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(args.batch_size) model = SmallConv() model.compile() loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) optimizer = tf.keras.optimizers.Adam( learning_rate=args.learning_rate, beta_1=args.beta_1, beta_2=args.beta_2 ) train_loss = tf.keras.metrics.Mean(name="train_loss") train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name="train_accuracy") test_loss = tf.keras.metrics.Mean(name="test_loss") test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name="test_accuracy") @tf.function def train_step(images, labels): with tf.GradientTape() as tape: predictions = model(images, training=True) loss = loss_fn(labels, predictions) grad = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(grad, model.trainable_variables)) train_loss(loss) train_accuracy(labels, predictions) return @tf.function def test_step(images, labels): predictions = model(images, training=False) t_loss = loss_fn(labels, predictions) test_loss(t_loss) test_accuracy(labels, predictions) return print("Training starts ...") for epoch in range(args.epochs): train_loss.reset_states() train_accuracy.reset_states() test_loss.reset_states() test_accuracy.reset_states() for batch, (images, labels) in enumerate(train_loader): train_step(images, labels) for images, labels in test_loader: test_step(images, labels) print( f"Epoch {epoch + 1}, " f"Loss: {train_loss.result()}, " f"Accuracy: {train_accuracy.result() * 100}, " f"Test Loss: {test_loss.result()}, " f"Test Accuracy: {test_accuracy.result() * 100}" ) # Save the model # A version number is needed for the serving container # to load the model version = "00000000" ckpt_dir = os.path.join(args.model_dir, version) if not os.path.exists(ckpt_dir): os.makedirs(ckpt_dir) model.save(ckpt_dir) return def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--batch-size", type=int, default=32) parser.add_argument("--epochs", type=int, default=1) parser.add_argument("--learning-rate", type=float, default=1e-3) parser.add_argument("--beta_1", type=float, default=0.9) parser.add_argument("--beta_2", type=float, default=0.999) # Environment variables given by the training image parser.add_argument("--model-dir", type=str, default=os.environ["SM_MODEL_DIR"]) parser.add_argument("--train", type=str, default=os.environ["SM_CHANNEL_TRAINING"]) parser.add_argument("--test", type=str, default=os.environ["SM_CHANNEL_TESTING"]) parser.add_argument("--current-host", type=str, default=os.environ["SM_CURRENT_HOST"]) parser.add_argument("--hosts", type=list, default=json.loads(os.environ["SM_HOSTS"])) return parser.parse_args() if __name__ == "__main__": args = parse_args() train(args)
[ "argparse.ArgumentParser", "tensorflow.keras.layers.Dense", "tensorflow.keras.metrics.Mean", "numpy.mean", "os.path.join", "tensorflow.keras.layers.Flatten", "tensorflow.keras.losses.SparseCategoricalCrossentropy", "json.loads", "numpy.std", "os.path.exists", "numpy.finfo", "tensorflow.keras.optimizers.Adam", "tensorflow.keras.layers.Conv2D", "os.makedirs", "logging.basicConfig", "numpy.expand_dims", "tensorflow.data.Dataset.from_tensor_slices", "tensorflow.keras.metrics.SparseCategoricalAccuracy", "tensorflow.GradientTape" ]
[((260, 300), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.DEBUG'}), '(level=logging.DEBUG)\n', (279, 300), False, 'import logging\n'), ((1832, 1868), 'numpy.mean', 'np.mean', (['x'], {'axis': 'axis', 'keepdims': '(True)'}), '(x, axis=axis, keepdims=True)\n', (1839, 1868), True, 'import numpy as np\n'), ((2916, 2979), 'tensorflow.keras.losses.SparseCategoricalCrossentropy', 'tf.keras.losses.SparseCategoricalCrossentropy', ([], {'from_logits': '(True)'}), '(from_logits=True)\n', (2961, 2979), True, 'import tensorflow as tf\n'), ((2996, 3099), 'tensorflow.keras.optimizers.Adam', 'tf.keras.optimizers.Adam', ([], {'learning_rate': 'args.learning_rate', 'beta_1': 'args.beta_1', 'beta_2': 'args.beta_2'}), '(learning_rate=args.learning_rate, beta_1=args.\n beta_1, beta_2=args.beta_2)\n', (3020, 3099), True, 'import tensorflow as tf\n'), ((3127, 3167), 'tensorflow.keras.metrics.Mean', 'tf.keras.metrics.Mean', ([], {'name': '"""train_loss"""'}), "(name='train_loss')\n", (3148, 3167), True, 'import tensorflow as tf\n'), ((3189, 3254), 'tensorflow.keras.metrics.SparseCategoricalAccuracy', 'tf.keras.metrics.SparseCategoricalAccuracy', ([], {'name': '"""train_accuracy"""'}), "(name='train_accuracy')\n", (3231, 3254), True, 'import tensorflow as tf\n'), ((3272, 3311), 'tensorflow.keras.metrics.Mean', 'tf.keras.metrics.Mean', ([], {'name': '"""test_loss"""'}), "(name='test_loss')\n", (3293, 3311), True, 'import tensorflow as tf\n'), ((3332, 3396), 'tensorflow.keras.metrics.SparseCategoricalAccuracy', 'tf.keras.metrics.SparseCategoricalAccuracy', ([], {'name': '"""test_accuracy"""'}), "(name='test_accuracy')\n", (3374, 3396), True, 'import tensorflow as tf\n'), ((4867, 4904), 'os.path.join', 'os.path.join', (['args.model_dir', 'version'], {}), '(args.model_dir, version)\n', (4879, 4904), False, 'import os\n'), ((5041, 5066), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (5064, 5066), False, 'import argparse\n'), ((441, 473), 'tensorflow.keras.layers.Conv2D', 'Conv2D', (['(32)', '(3)'], {'activation': '"""relu"""'}), "(32, 3, activation='relu')\n", (447, 473), False, 'from tensorflow.keras.layers import Conv2D, Dense, Flatten\n'), ((497, 506), 'tensorflow.keras.layers.Flatten', 'Flatten', ([], {}), '()\n', (504, 506), False, 'from tensorflow.keras.layers import Conv2D, Dense, Flatten\n'), ((525, 554), 'tensorflow.keras.layers.Dense', 'Dense', (['(128)'], {'activation': '"""relu"""'}), "(128, activation='relu')\n", (530, 554), False, 'from tensorflow.keras.layers import Conv2D, Dense, Flatten\n'), ((573, 582), 'tensorflow.keras.layers.Dense', 'Dense', (['(10)'], {}), '(10)\n', (578, 582), False, 'from tensorflow.keras.layers import Conv2D, Dense, Flatten\n'), ((1800, 1815), 'numpy.finfo', 'np.finfo', (['float'], {}), '(float)\n', (1808, 1815), True, 'import numpy as np\n'), ((1908, 1943), 'numpy.std', 'np.std', (['x'], {'axis': 'axis', 'keepdims': '(True)'}), '(x, axis=axis, keepdims=True)\n', (1914, 1943), True, 'import numpy as np\n'), ((2499, 2530), 'numpy.expand_dims', 'np.expand_dims', (['x_train'], {'axis': '(3)'}), '(x_train, axis=3)\n', (2513, 2530), True, 'import numpy as np\n'), ((2532, 2562), 'numpy.expand_dims', 'np.expand_dims', (['x_test'], {'axis': '(3)'}), '(x_test, axis=3)\n', (2546, 2562), True, 'import numpy as np\n'), ((4916, 4940), 'os.path.exists', 'os.path.exists', (['ckpt_dir'], {}), '(ckpt_dir)\n', (4930, 4940), False, 'import os\n'), ((4950, 4971), 'os.makedirs', 'os.makedirs', (['ckpt_dir'], {}), '(ckpt_dir)\n', (4961, 4971), False, 'import os\n'), ((856, 891), 'os.path.join', 'os.path.join', (['data_dir', 'images_file'], {}), '(data_dir, images_file)\n', (868, 891), False, 'import os\n'), ((1007, 1042), 'os.path.join', 'os.path.join', (['data_dir', 'labels_file'], {}), '(data_dir, labels_file)\n', (1019, 1042), False, 'import os\n'), ((2781, 2833), 'tensorflow.data.Dataset.from_tensor_slices', 'tf.data.Dataset.from_tensor_slices', (['(x_test, y_test)'], {}), '((x_test, y_test))\n', (2815, 2833), True, 'import tensorflow as tf\n'), ((3464, 3481), 'tensorflow.GradientTape', 'tf.GradientTape', ([], {}), '()\n', (3479, 3481), True, 'import tensorflow as tf\n'), ((5842, 5876), 'json.loads', 'json.loads', (["os.environ['SM_HOSTS']"], {}), "(os.environ['SM_HOSTS'])\n", (5852, 5876), False, 'import json\n'), ((2638, 2692), 'tensorflow.data.Dataset.from_tensor_slices', 'tf.data.Dataset.from_tensor_slices', (['(x_train, y_train)'], {}), '((x_train, y_train))\n', (2672, 2692), True, 'import tensorflow as tf\n')]
import pathlib import numpy import pytest import helpers import meshio @pytest.mark.parametrize( "mesh", [helpers.tri_mesh, helpers.quad_mesh, helpers.tri_quad_mesh] ) def test_obj(mesh): def writer(*args, **kwargs): return meshio.obj.write(*args, **kwargs) for k, c in enumerate(mesh.cells): mesh.cells[k] = meshio.CellBlock(c.type, c.data.astype(numpy.int32)) helpers.write_read(writer, meshio.obj.read, mesh, 1.0e-12) @pytest.mark.parametrize( "filename, ref_sum, ref_num_cells", [("elephav.obj", 3.678372172450000e05, 1148)] ) def test_reference_file(filename, ref_sum, ref_num_cells): this_dir = pathlib.Path(__file__).resolve().parent filename = this_dir / "meshes" / "obj" / filename mesh = meshio.read(filename) tol = 1.0e-5 s = numpy.sum(mesh.points) assert abs(s - ref_sum) < tol * abs(ref_sum) assert mesh.cells[0].type == "triangle" assert len(mesh.cells[0].data) == ref_num_cells
[ "numpy.sum", "meshio.read", "pathlib.Path", "meshio.obj.write", "pytest.mark.parametrize", "helpers.write_read" ]
[((76, 173), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""mesh"""', '[helpers.tri_mesh, helpers.quad_mesh, helpers.tri_quad_mesh]'], {}), "('mesh', [helpers.tri_mesh, helpers.quad_mesh,\n helpers.tri_quad_mesh])\n", (99, 173), False, 'import pytest\n'), ((462, 565), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""filename, ref_sum, ref_num_cells"""', "[('elephav.obj', 367837.217245, 1148)]"], {}), "('filename, ref_sum, ref_num_cells', [('elephav.obj',\n 367837.217245, 1148)])\n", (485, 565), False, 'import pytest\n'), ((400, 456), 'helpers.write_read', 'helpers.write_read', (['writer', 'meshio.obj.read', 'mesh', '(1e-12)'], {}), '(writer, meshio.obj.read, mesh, 1e-12)\n', (418, 456), False, 'import helpers\n'), ((755, 776), 'meshio.read', 'meshio.read', (['filename'], {}), '(filename)\n', (766, 776), False, 'import meshio\n'), ((802, 824), 'numpy.sum', 'numpy.sum', (['mesh.points'], {}), '(mesh.points)\n', (811, 824), False, 'import numpy\n'), ((244, 277), 'meshio.obj.write', 'meshio.obj.write', (['*args'], {}), '(*args, **kwargs)\n', (260, 277), False, 'import meshio\n'), ((649, 671), 'pathlib.Path', 'pathlib.Path', (['__file__'], {}), '(__file__)\n', (661, 671), False, 'import pathlib\n')]
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Directed graph object for representing coupling between physical qubits. The nodes of the graph correspond to physical qubits (represented as integers) and the directed edges indicate which physical qubits are coupled and the permitted direction of CNOT gates. The object has a distance function that can be used to map quantum circuits onto a device with this coupling. """ import io import warnings import numpy as np import retworkx as rx from qiskit.transpiler.exceptions import CouplingError from qiskit.exceptions import MissingOptionalLibraryError class CouplingMap: """ Directed graph specifying fixed coupling. Nodes correspond to physical qubits (integers) and directed edges correspond to permitted CNOT gates """ __slots__ = ("description", "graph", "_dist_matrix", "_qubit_list", "_size", "_is_symmetric") def __init__(self, couplinglist=None, description=None): """ Create coupling graph. By default, the generated coupling has no nodes. Args: couplinglist (list or None): An initial coupling graph, specified as an adjacency list containing couplings, e.g. [[0,1], [0,2], [1,2]]. It is required that nodes are contiguously indexed starting at 0. Missed nodes will be added as isolated nodes in the coupling map. description (str): A string to describe the coupling map. """ self.description = description # the coupling map graph self.graph = rx.PyDiGraph() # a dict of dicts from node pairs to distances self._dist_matrix = None # a sorted list of physical qubits (integers) in this coupling map self._qubit_list = None # number of qubits in the graph self._size = None self._is_symmetric = None if couplinglist is not None: self.graph.extend_from_edge_list([tuple(x) for x in couplinglist]) def size(self): """Return the number of physical qubits in this graph.""" if self._size is None: self._size = len(self.graph) return self._size def get_edges(self): """ Gets the list of edges in the coupling graph. Returns: Tuple(int,int): Each edge is a pair of physical qubits. """ return self.graph.edge_list() def add_physical_qubit(self, physical_qubit): """Add a physical qubit to the coupling graph as a node. physical_qubit (int): An integer representing a physical qubit. Raises: CouplingError: if trying to add duplicate qubit """ if not isinstance(physical_qubit, int): raise CouplingError("Physical qubits should be integers.") if physical_qubit in self.physical_qubits: raise CouplingError( "The physical qubit %s is already in the coupling graph" % physical_qubit ) self.graph.add_node(physical_qubit) self._dist_matrix = None # invalidate self._qubit_list = None # invalidate self._size = None # invalidate def add_edge(self, src, dst): """ Add directed edge to coupling graph. src (int): source physical qubit dst (int): destination physical qubit """ if src not in self.physical_qubits: self.add_physical_qubit(src) if dst not in self.physical_qubits: self.add_physical_qubit(dst) self.graph.add_edge(src, dst, None) self._dist_matrix = None # invalidate self._is_symmetric = None # invalidate def subgraph(self, nodelist): """Return a CouplingMap object for a subgraph of self. nodelist (list): list of integer node labels """ warnings.warn( "The .subgraph() method is deprecated and will be removed in a " "future release. Instead the .reduce() method should be used " "instead which does the same thing but preserves nodelist order.", DeprecationWarning, stacklevel=2, ) subcoupling = CouplingMap() subcoupling.graph = self.graph.subgraph(nodelist) return subcoupling @property def physical_qubits(self): """Returns a sorted list of physical_qubits""" if self._qubit_list is None: self._qubit_list = self.graph.node_indexes() return self._qubit_list def is_connected(self): """ Test if the graph is connected. Return True if connected, False otherwise """ try: return rx.is_weakly_connected(self.graph) except rx.NullGraph: return False def neighbors(self, physical_qubit): """Return the nearest neighbors of a physical qubit. Directionality matters, i.e. a neighbor must be reachable by going one hop in the direction of an edge. """ return self.graph.neighbors(physical_qubit) @property def distance_matrix(self): """Return the distance matrix for the coupling map.""" self.compute_distance_matrix() return self._dist_matrix def compute_distance_matrix(self): """Compute the full distance matrix on pairs of nodes. The distance map self._dist_matrix is computed from the graph using all_pairs_shortest_path_length. This is normally handled internally by the :attr:`~qiskit.transpiler.CouplingMap.distance_matrix` attribute or the :meth:`~qiskit.transpiler.CouplingMap.distance` method but can be called if you're accessing the distance matrix outside of those or want to pre-generate it. """ if self._dist_matrix is None: if not self.is_connected(): raise CouplingError("coupling graph not connected") self._dist_matrix = rx.digraph_distance_matrix(self.graph, as_undirected=True) def distance(self, physical_qubit1, physical_qubit2): """Returns the undirected distance between physical_qubit1 and physical_qubit2. Args: physical_qubit1 (int): A physical qubit physical_qubit2 (int): Another physical qubit Returns: int: The undirected distance Raises: CouplingError: if the qubits do not exist in the CouplingMap """ if physical_qubit1 >= self.size(): raise CouplingError("%s not in coupling graph" % physical_qubit1) if physical_qubit2 >= self.size(): raise CouplingError("%s not in coupling graph" % physical_qubit2) self.compute_distance_matrix() return int(self._dist_matrix[physical_qubit1, physical_qubit2]) def shortest_undirected_path(self, physical_qubit1, physical_qubit2): """Returns the shortest undirected path between physical_qubit1 and physical_qubit2. Args: physical_qubit1 (int): A physical qubit physical_qubit2 (int): Another physical qubit Returns: List: The shortest undirected path Raises: CouplingError: When there is no path between physical_qubit1, physical_qubit2. """ paths = rx.digraph_dijkstra_shortest_paths( self.graph, source=physical_qubit1, target=physical_qubit2, as_undirected=True ) if not paths: raise CouplingError( f"Nodes {str(physical_qubit1)} and {str(physical_qubit2)} are not connected" ) return paths[physical_qubit2] @property def is_symmetric(self): """ Test if the graph is symmetric. Return True if symmetric, False otherwise """ if self._is_symmetric is None: self._is_symmetric = self._check_symmetry() return self._is_symmetric def make_symmetric(self): """ Convert uni-directional edges into bi-directional. """ edges = self.get_edges() for src, dest in edges: if (dest, src) not in edges: self.add_edge(dest, src) self._dist_matrix = None # invalidate self._is_symmetric = None # invalidate def _check_symmetry(self): """ Calculates symmetry Returns: Bool: True if symmetric, False otherwise """ return self.graph.is_symmetric() def reduce(self, mapping): """Returns a reduced coupling map that corresponds to the subgraph of qubits selected in the mapping. Args: mapping (list): A mapping of reduced qubits to device qubits. Returns: CouplingMap: A reduced coupling_map for the selected qubits. Raises: CouplingError: Reduced coupling map must be connected. """ from scipy.sparse import coo_matrix, csgraph reduced_qubits = len(mapping) inv_map = [None] * (max(mapping) + 1) for idx, val in enumerate(mapping): inv_map[val] = idx reduced_cmap = [] for edge in self.get_edges(): if edge[0] in mapping and edge[1] in mapping: reduced_cmap.append([inv_map[edge[0]], inv_map[edge[1]]]) # Verify coupling_map is connected rows = np.array([edge[0] for edge in reduced_cmap], dtype=int) cols = np.array([edge[1] for edge in reduced_cmap], dtype=int) data = np.ones_like(rows) mat = coo_matrix((data, (rows, cols)), shape=(reduced_qubits, reduced_qubits)).tocsr() if csgraph.connected_components(mat)[0] != 1: raise CouplingError("coupling_map must be connected.") return CouplingMap(reduced_cmap) @classmethod def from_full(cls, num_qubits, bidirectional=True) -> "CouplingMap": """Return a fully connected coupling map on n qubits.""" cmap = cls(description="full") if bidirectional: cmap.graph = rx.generators.directed_mesh_graph(num_qubits) else: edge_list = [] for i in range(num_qubits): for j in range(i): edge_list.append((j, i)) cmap.graph.extend_from_edge_list(edge_list) return cmap @classmethod def from_line(cls, num_qubits, bidirectional=True) -> "CouplingMap": """Return a coupling map of n qubits connected in a line.""" cmap = cls(description="line") cmap.graph = rx.generators.directed_path_graph(num_qubits, bidirectional=bidirectional) return cmap @classmethod def from_ring(cls, num_qubits, bidirectional=True) -> "CouplingMap": """Return a coupling map of n qubits connected to each of their neighbors in a ring.""" cmap = cls(description="ring") cmap.graph = rx.generators.directed_cycle_graph(num_qubits, bidirectional=bidirectional) return cmap @classmethod def from_grid(cls, num_rows, num_columns, bidirectional=True) -> "CouplingMap": """Return a coupling map of qubits connected on a grid of num_rows x num_columns.""" cmap = cls(description="grid") cmap.graph = rx.generators.directed_grid_graph( num_rows, num_columns, bidirectional=bidirectional ) return cmap @classmethod def from_heavy_hex(cls, distance, bidirectional=True) -> "CouplingMap": """Return a heavy hexagon graph coupling map. A heavy hexagon graph is described in: https://journals.aps.org/prx/abstract/10.1103/PhysRevX.10.011022 Args: distance (int): The code distance for the generated heavy hex graph. The value for distance can be any odd positive integer. The distance relates to the number of qubits by: :math:`n = \\frac{5d^2 - 2d - 1}{2}` where :math:`n` is the number of qubits and :math:`d` is the ``distance`` parameter. bidirectional (bool): Whether the edges in the output coupling graph are bidirectional or not. By default this is set to ``True`` Returns: CouplingMap: A heavy hex coupling graph """ cmap = cls(description="heavy-hex") cmap.graph = rx.generators.directed_heavy_hex_graph(distance, bidirectional=bidirectional) return cmap @classmethod def from_heavy_square(cls, distance, bidirectional=True) -> "CouplingMap": """Return a heavy square graph coupling map. A heavy square graph is described in: https://journals.aps.org/prx/abstract/10.1103/PhysRevX.10.011022 Args: distance (int): The code distance for the generated heavy square graph. The value for distance can be any odd positive integer. The distance relates to the number of qubits by: :math:`n = 3d^2 - 2d` where :math:`n` is the number of qubits and :math:`d` is the ``distance`` parameter. bidirectional (bool): Whether the edges in the output coupling graph are bidirectional or not. By default this is set to ``True`` Returns: CouplingMap: A heavy square coupling graph """ cmap = cls(description="heavy-square") cmap.graph = rx.generators.directed_heavy_square_graph( distance, bidirectional=bidirectional ) return cmap @classmethod def from_hexagonal_lattice(cls, rows, cols, bidirectional=True) -> "CouplingMap": """Return a hexagonal lattice graph coupling map. Args: rows (int): The number of rows to generate the graph with. cols (int): The number of columns to generate the graph with. bidirectional (bool): Whether the edges in the output coupling graph are bidirectional or not. By default this is set to ``True`` Returns: CouplingMap: A hexagonal lattice coupling graph """ cmap = cls(description="hexagonal-lattice") cmap.graph = rx.generators.directed_hexagonal_lattice_graph( rows, cols, bidirectional=bidirectional ) return cmap def largest_connected_component(self): """Return a set of qubits in the largest connected component.""" return max(rx.weakly_connected_components(self.graph), key=len) def __str__(self): """Return a string representation of the coupling graph.""" string = "" if self.get_edges(): string += "[" string += ", ".join([f"[{src}, {dst}]" for (src, dst) in self.get_edges()]) string += "]" return string def draw(self): """Draws the coupling map. This function needs `pydot <https://github.com/erocarrera/pydot>`_, which in turn needs `Graphviz <https://www.graphviz.org/>`_ to be installed. Additionally, `pillow <https://python-pillow.org/>`_ will need to be installed. Returns: PIL.Image: Drawn coupling map. Raises: MissingOptionalLibraryError: when pydot or pillow are not installed. """ try: import pydot except ImportError as ex: raise MissingOptionalLibraryError( libname="pydot", name="coupling map drawer", pip_install="pip install pydot", ) from ex try: from PIL import Image except ImportError as ex: raise MissingOptionalLibraryError( libname="pillow", name="coupling map drawer", pip_install="pip install pillow", ) from ex dot_str = self.graph.to_dot() dot = pydot.graph_from_dot_data(dot_str)[0] png = dot.create_png(prog="neato") return Image.open(io.BytesIO(png))
[ "retworkx.generators.directed_grid_graph", "scipy.sparse.csgraph.connected_components", "retworkx.is_weakly_connected", "qiskit.transpiler.exceptions.CouplingError", "retworkx.digraph_distance_matrix", "qiskit.exceptions.MissingOptionalLibraryError", "retworkx.PyDiGraph", "scipy.sparse.coo_matrix", "retworkx.generators.directed_path_graph", "io.BytesIO", "retworkx.digraph_dijkstra_shortest_paths", "numpy.ones_like", "retworkx.generators.directed_heavy_square_graph", "retworkx.weakly_connected_components", "retworkx.generators.directed_heavy_hex_graph", "retworkx.generators.directed_mesh_graph", "retworkx.generators.directed_cycle_graph", "pydot.graph_from_dot_data", "numpy.array", "warnings.warn", "retworkx.generators.directed_hexagonal_lattice_graph" ]
[((2012, 2026), 'retworkx.PyDiGraph', 'rx.PyDiGraph', ([], {}), '()\n', (2024, 2026), True, 'import retworkx as rx\n'), ((4287, 4533), 'warnings.warn', 'warnings.warn', (['"""The .subgraph() method is deprecated and will be removed in a future release. Instead the .reduce() method should be used instead which does the same thing but preserves nodelist order."""', 'DeprecationWarning'], {'stacklevel': '(2)'}), "(\n 'The .subgraph() method is deprecated and will be removed in a future release. Instead the .reduce() method should be used instead which does the same thing but preserves nodelist order.'\n , DeprecationWarning, stacklevel=2)\n", (4300, 4533), False, 'import warnings\n'), ((7735, 7853), 'retworkx.digraph_dijkstra_shortest_paths', 'rx.digraph_dijkstra_shortest_paths', (['self.graph'], {'source': 'physical_qubit1', 'target': 'physical_qubit2', 'as_undirected': '(True)'}), '(self.graph, source=physical_qubit1,\n target=physical_qubit2, as_undirected=True)\n', (7769, 7853), True, 'import retworkx as rx\n'), ((9843, 9898), 'numpy.array', 'np.array', (['[edge[0] for edge in reduced_cmap]'], {'dtype': 'int'}), '([edge[0] for edge in reduced_cmap], dtype=int)\n', (9851, 9898), True, 'import numpy as np\n'), ((9914, 9969), 'numpy.array', 'np.array', (['[edge[1] for edge in reduced_cmap]'], {'dtype': 'int'}), '([edge[1] for edge in reduced_cmap], dtype=int)\n', (9922, 9969), True, 'import numpy as np\n'), ((9985, 10003), 'numpy.ones_like', 'np.ones_like', (['rows'], {}), '(rows)\n', (9997, 10003), True, 'import numpy as np\n'), ((11013, 11087), 'retworkx.generators.directed_path_graph', 'rx.generators.directed_path_graph', (['num_qubits'], {'bidirectional': 'bidirectional'}), '(num_qubits, bidirectional=bidirectional)\n', (11046, 11087), True, 'import retworkx as rx\n'), ((11355, 11430), 'retworkx.generators.directed_cycle_graph', 'rx.generators.directed_cycle_graph', (['num_qubits'], {'bidirectional': 'bidirectional'}), '(num_qubits, bidirectional=bidirectional)\n', (11389, 11430), True, 'import retworkx as rx\n'), ((11706, 11796), 'retworkx.generators.directed_grid_graph', 'rx.generators.directed_grid_graph', (['num_rows', 'num_columns'], {'bidirectional': 'bidirectional'}), '(num_rows, num_columns, bidirectional=\n bidirectional)\n', (11739, 11796), True, 'import retworkx as rx\n'), ((12811, 12888), 'retworkx.generators.directed_heavy_hex_graph', 'rx.generators.directed_heavy_hex_graph', (['distance'], {'bidirectional': 'bidirectional'}), '(distance, bidirectional=bidirectional)\n', (12849, 12888), True, 'import retworkx as rx\n'), ((13881, 13966), 'retworkx.generators.directed_heavy_square_graph', 'rx.generators.directed_heavy_square_graph', (['distance'], {'bidirectional': 'bidirectional'}), '(distance, bidirectional=bidirectional\n )\n', (13922, 13966), True, 'import retworkx as rx\n'), ((14662, 14754), 'retworkx.generators.directed_hexagonal_lattice_graph', 'rx.generators.directed_hexagonal_lattice_graph', (['rows', 'cols'], {'bidirectional': 'bidirectional'}), '(rows, cols, bidirectional=\n bidirectional)\n', (14708, 14754), True, 'import retworkx as rx\n'), ((3196, 3248), 'qiskit.transpiler.exceptions.CouplingError', 'CouplingError', (['"""Physical qubits should be integers."""'], {}), "('Physical qubits should be integers.')\n", (3209, 3248), False, 'from qiskit.transpiler.exceptions import CouplingError\n'), ((3318, 3410), 'qiskit.transpiler.exceptions.CouplingError', 'CouplingError', (["('The physical qubit %s is already in the coupling graph' % physical_qubit)"], {}), "('The physical qubit %s is already in the coupling graph' %\n physical_qubit)\n", (3331, 3410), False, 'from qiskit.transpiler.exceptions import CouplingError\n'), ((5125, 5159), 'retworkx.is_weakly_connected', 'rx.is_weakly_connected', (['self.graph'], {}), '(self.graph)\n', (5147, 5159), True, 'import retworkx as rx\n'), ((6398, 6456), 'retworkx.digraph_distance_matrix', 'rx.digraph_distance_matrix', (['self.graph'], {'as_undirected': '(True)'}), '(self.graph, as_undirected=True)\n', (6424, 6456), True, 'import retworkx as rx\n'), ((6951, 7010), 'qiskit.transpiler.exceptions.CouplingError', 'CouplingError', (["('%s not in coupling graph' % physical_qubit1)"], {}), "('%s not in coupling graph' % physical_qubit1)\n", (6964, 7010), False, 'from qiskit.transpiler.exceptions import CouplingError\n'), ((7072, 7131), 'qiskit.transpiler.exceptions.CouplingError', 'CouplingError', (["('%s not in coupling graph' % physical_qubit2)"], {}), "('%s not in coupling graph' % physical_qubit2)\n", (7085, 7131), False, 'from qiskit.transpiler.exceptions import CouplingError\n'), ((10173, 10221), 'qiskit.transpiler.exceptions.CouplingError', 'CouplingError', (['"""coupling_map must be connected."""'], {}), "('coupling_map must be connected.')\n", (10186, 10221), False, 'from qiskit.transpiler.exceptions import CouplingError\n'), ((10510, 10555), 'retworkx.generators.directed_mesh_graph', 'rx.generators.directed_mesh_graph', (['num_qubits'], {}), '(num_qubits)\n', (10543, 10555), True, 'import retworkx as rx\n'), ((14928, 14970), 'retworkx.weakly_connected_components', 'rx.weakly_connected_components', (['self.graph'], {}), '(self.graph)\n', (14958, 14970), True, 'import retworkx as rx\n'), ((16367, 16401), 'pydot.graph_from_dot_data', 'pydot.graph_from_dot_data', (['dot_str'], {}), '(dot_str)\n', (16392, 16401), False, 'import pydot\n'), ((16475, 16490), 'io.BytesIO', 'io.BytesIO', (['png'], {}), '(png)\n', (16485, 16490), False, 'import io\n'), ((6320, 6365), 'qiskit.transpiler.exceptions.CouplingError', 'CouplingError', (['"""coupling graph not connected"""'], {}), "('coupling graph not connected')\n", (6333, 6365), False, 'from qiskit.transpiler.exceptions import CouplingError\n'), ((10019, 10091), 'scipy.sparse.coo_matrix', 'coo_matrix', (['(data, (rows, cols))'], {'shape': '(reduced_qubits, reduced_qubits)'}), '((data, (rows, cols)), shape=(reduced_qubits, reduced_qubits))\n', (10029, 10091), False, 'from scipy.sparse import coo_matrix, csgraph\n'), ((10112, 10145), 'scipy.sparse.csgraph.connected_components', 'csgraph.connected_components', (['mat'], {}), '(mat)\n', (10140, 10145), False, 'from scipy.sparse import coo_matrix, csgraph\n'), ((15859, 15968), 'qiskit.exceptions.MissingOptionalLibraryError', 'MissingOptionalLibraryError', ([], {'libname': '"""pydot"""', 'name': '"""coupling map drawer"""', 'pip_install': '"""pip install pydot"""'}), "(libname='pydot', name='coupling map drawer',\n pip_install='pip install pydot')\n", (15886, 15968), False, 'from qiskit.exceptions import MissingOptionalLibraryError\n'), ((16136, 16247), 'qiskit.exceptions.MissingOptionalLibraryError', 'MissingOptionalLibraryError', ([], {'libname': '"""pillow"""', 'name': '"""coupling map drawer"""', 'pip_install': '"""pip install pillow"""'}), "(libname='pillow', name='coupling map drawer',\n pip_install='pip install pillow')\n", (16163, 16247), False, 'from qiskit.exceptions import MissingOptionalLibraryError\n')]
import numpy as np import pandas as pd import pytest from rayml.data_checks import ( DataCheckActionCode, DataCheckActionOption, DataCheckMessageCode, DataCheckWarning, IDColumnsDataCheck, ) id_data_check_name = IDColumnsDataCheck.name def test_id_cols_data_check_init(): id_cols_check = IDColumnsDataCheck() assert id_cols_check.id_threshold == 1.0 id_cols_check = IDColumnsDataCheck(id_threshold=0.0) assert id_cols_check.id_threshold == 0 id_cols_check = IDColumnsDataCheck(id_threshold=0.5) assert id_cols_check.id_threshold == 0.5 id_cols_check = IDColumnsDataCheck(id_threshold=1.0) assert id_cols_check.id_threshold == 1.0 with pytest.raises( ValueError, match="id_threshold must be a float between 0 and 1, inclusive." ): IDColumnsDataCheck(id_threshold=-0.1) with pytest.raises( ValueError, match="id_threshold must be a float between 0 and 1, inclusive." ): IDColumnsDataCheck(id_threshold=1.1) def test_id_columns_warning(): X_dict = { "col_1_id": [0, 1, 2, 3], "col_2": [2, 3, 4, 5], "col_3_id": [1, 1, 2, 3], "Id": [3, 1, 2, 0], "col_5": [0, 0, 1, 2], "col_6": [0.1, 0.2, 0.3, 0.4], } X = pd.DataFrame.from_dict(X_dict) id_cols_check = IDColumnsDataCheck(id_threshold=0.95) assert id_cols_check.validate(X) == [ DataCheckWarning( message="Columns 'Id', 'col_1_id', 'col_2', 'col_3_id' are 95.0% or more likely to be an ID column", data_check_name=id_data_check_name, message_code=DataCheckMessageCode.HAS_ID_COLUMN, details={"columns": ["Id", "col_1_id", "col_2", "col_3_id"]}, action_options=[ DataCheckActionOption( DataCheckActionCode.DROP_COL, data_check_name=id_data_check_name, metadata={"columns": ["Id", "col_1_id", "col_2", "col_3_id"]}, ) ], ).to_dict(), ] X = pd.DataFrame.from_dict(X_dict) id_cols_check = IDColumnsDataCheck(id_threshold=1.0) assert id_cols_check.validate(X) == [ DataCheckWarning( message="Columns 'Id', 'col_1_id' are 100.0% or more likely to be an ID column", data_check_name=id_data_check_name, message_code=DataCheckMessageCode.HAS_ID_COLUMN, details={"columns": ["Id", "col_1_id"]}, action_options=[ DataCheckActionOption( DataCheckActionCode.DROP_COL, data_check_name=id_data_check_name, metadata={"columns": ["Id", "col_1_id"]}, ) ], ).to_dict(), ] def test_id_columns_strings(): X_dict = { "col_1_id": ["a", "b", "c", "d"], "col_2": ["w", "x", "y", "z"], "col_3_id": [ "123456789012345", "234567890123456", "3456789012345678", "45678901234567", ], "Id": ["z", "y", "x", "a"], "col_5": ["0", "0", "1", "2"], "col_6": [0.1, 0.2, 0.3, 0.4], } X = pd.DataFrame.from_dict(X_dict) X.ww.init( logical_types={ "col_1_id": "categorical", "col_2": "categorical", "Id": "categorical", "col_5": "categorical", } ) id_cols_check = IDColumnsDataCheck(id_threshold=0.95) assert id_cols_check.validate(X) == [ DataCheckWarning( message="Columns 'Id', 'col_1_id', 'col_2', 'col_3_id' are 95.0% or more likely to be an ID column", data_check_name=id_data_check_name, message_code=DataCheckMessageCode.HAS_ID_COLUMN, details={"columns": ["Id", "col_1_id", "col_2", "col_3_id"]}, action_options=[ DataCheckActionOption( DataCheckActionCode.DROP_COL, data_check_name=id_data_check_name, metadata={"columns": ["Id", "col_1_id", "col_2", "col_3_id"]}, ) ], ).to_dict(), ] id_cols_check = IDColumnsDataCheck(id_threshold=1.0) assert id_cols_check.validate(X) == [ DataCheckWarning( message="Columns 'Id', 'col_1_id' are 100.0% or more likely to be an ID column", data_check_name=id_data_check_name, message_code=DataCheckMessageCode.HAS_ID_COLUMN, details={"columns": ["Id", "col_1_id"]}, action_options=[ DataCheckActionOption( DataCheckActionCode.DROP_COL, data_check_name=id_data_check_name, metadata={"columns": ["Id", "col_1_id"]}, ) ], ).to_dict(), ] def test_id_cols_data_check_input_formats(): id_cols_check = IDColumnsDataCheck(id_threshold=0.8) # test empty pd.DataFrame assert id_cols_check.validate(pd.DataFrame()) == [] # test Woodwork ww_input = pd.DataFrame(np.array([[0, 1], [1, 2], [2, 3], [3, 4], [4, 5]])) ww_input.ww.init() assert id_cols_check.validate(ww_input) == [ DataCheckWarning( message="Columns '0', '1' are 80.0% or more likely to be an ID column", data_check_name=id_data_check_name, message_code=DataCheckMessageCode.HAS_ID_COLUMN, details={"columns": [0, 1]}, action_options=[ DataCheckActionOption( DataCheckActionCode.DROP_COL, data_check_name=id_data_check_name, metadata={"columns": [0, 1]}, ) ], ).to_dict(), ] # test 2D list assert id_cols_check.validate([[0, 1], [1, 2], [2, 3], [3, 4], [4, 5]]) == [ DataCheckWarning( message="Columns '0', '1' are 80.0% or more likely to be an ID column", data_check_name=id_data_check_name, message_code=DataCheckMessageCode.HAS_ID_COLUMN, details={"columns": [0, 1]}, action_options=[ DataCheckActionOption( DataCheckActionCode.DROP_COL, data_check_name=id_data_check_name, metadata={"columns": [0, 1]}, ) ], ).to_dict(), ] # test np.array assert id_cols_check.validate( np.array([[0, 1], [1, 2], [2, 3], [3, 4], [4, 5]]) ) == [ DataCheckWarning( message="Columns '0', '1' are 80.0% or more likely to be an ID column", data_check_name=id_data_check_name, message_code=DataCheckMessageCode.HAS_ID_COLUMN, details={"columns": [0, 1]}, action_options=[ DataCheckActionOption( DataCheckActionCode.DROP_COL, data_check_name=id_data_check_name, metadata={"columns": [0, 1]}, ) ], ).to_dict(), ]
[ "pandas.DataFrame", "rayml.data_checks.DataCheckActionOption", "pandas.DataFrame.from_dict", "pytest.raises", "numpy.array", "rayml.data_checks.IDColumnsDataCheck" ]
[((316, 336), 'rayml.data_checks.IDColumnsDataCheck', 'IDColumnsDataCheck', ([], {}), '()\n', (334, 336), False, 'from rayml.data_checks import DataCheckActionCode, DataCheckActionOption, DataCheckMessageCode, DataCheckWarning, IDColumnsDataCheck\n'), ((403, 439), 'rayml.data_checks.IDColumnsDataCheck', 'IDColumnsDataCheck', ([], {'id_threshold': '(0.0)'}), '(id_threshold=0.0)\n', (421, 439), False, 'from rayml.data_checks import DataCheckActionCode, DataCheckActionOption, DataCheckMessageCode, DataCheckWarning, IDColumnsDataCheck\n'), ((504, 540), 'rayml.data_checks.IDColumnsDataCheck', 'IDColumnsDataCheck', ([], {'id_threshold': '(0.5)'}), '(id_threshold=0.5)\n', (522, 540), False, 'from rayml.data_checks import DataCheckActionCode, DataCheckActionOption, DataCheckMessageCode, DataCheckWarning, IDColumnsDataCheck\n'), ((607, 643), 'rayml.data_checks.IDColumnsDataCheck', 'IDColumnsDataCheck', ([], {'id_threshold': '(1.0)'}), '(id_threshold=1.0)\n', (625, 643), False, 'from rayml.data_checks import DataCheckActionCode, DataCheckActionOption, DataCheckMessageCode, DataCheckWarning, IDColumnsDataCheck\n'), ((1272, 1302), 'pandas.DataFrame.from_dict', 'pd.DataFrame.from_dict', (['X_dict'], {}), '(X_dict)\n', (1294, 1302), True, 'import pandas as pd\n'), ((1323, 1360), 'rayml.data_checks.IDColumnsDataCheck', 'IDColumnsDataCheck', ([], {'id_threshold': '(0.95)'}), '(id_threshold=0.95)\n', (1341, 1360), False, 'from rayml.data_checks import DataCheckActionCode, DataCheckActionOption, DataCheckMessageCode, DataCheckWarning, IDColumnsDataCheck\n'), ((2051, 2081), 'pandas.DataFrame.from_dict', 'pd.DataFrame.from_dict', (['X_dict'], {}), '(X_dict)\n', (2073, 2081), True, 'import pandas as pd\n'), ((2102, 2138), 'rayml.data_checks.IDColumnsDataCheck', 'IDColumnsDataCheck', ([], {'id_threshold': '(1.0)'}), '(id_threshold=1.0)\n', (2120, 2138), False, 'from rayml.data_checks import DataCheckActionCode, DataCheckActionOption, DataCheckMessageCode, DataCheckWarning, IDColumnsDataCheck\n'), ((3172, 3202), 'pandas.DataFrame.from_dict', 'pd.DataFrame.from_dict', (['X_dict'], {}), '(X_dict)\n', (3194, 3202), True, 'import pandas as pd\n'), ((3422, 3459), 'rayml.data_checks.IDColumnsDataCheck', 'IDColumnsDataCheck', ([], {'id_threshold': '(0.95)'}), '(id_threshold=0.95)\n', (3440, 3459), False, 'from rayml.data_checks import DataCheckActionCode, DataCheckActionOption, DataCheckMessageCode, DataCheckWarning, IDColumnsDataCheck\n'), ((4162, 4198), 'rayml.data_checks.IDColumnsDataCheck', 'IDColumnsDataCheck', ([], {'id_threshold': '(1.0)'}), '(id_threshold=1.0)\n', (4180, 4198), False, 'from rayml.data_checks import DataCheckActionCode, DataCheckActionOption, DataCheckMessageCode, DataCheckWarning, IDColumnsDataCheck\n'), ((4885, 4921), 'rayml.data_checks.IDColumnsDataCheck', 'IDColumnsDataCheck', ([], {'id_threshold': '(0.8)'}), '(id_threshold=0.8)\n', (4903, 4921), False, 'from rayml.data_checks import DataCheckActionCode, DataCheckActionOption, DataCheckMessageCode, DataCheckWarning, IDColumnsDataCheck\n'), ((699, 795), 'pytest.raises', 'pytest.raises', (['ValueError'], {'match': '"""id_threshold must be a float between 0 and 1, inclusive."""'}), "(ValueError, match=\n 'id_threshold must be a float between 0 and 1, inclusive.')\n", (712, 795), False, 'import pytest\n'), ((814, 851), 'rayml.data_checks.IDColumnsDataCheck', 'IDColumnsDataCheck', ([], {'id_threshold': '(-0.1)'}), '(id_threshold=-0.1)\n', (832, 851), False, 'from rayml.data_checks import DataCheckActionCode, DataCheckActionOption, DataCheckMessageCode, DataCheckWarning, IDColumnsDataCheck\n'), ((861, 957), 'pytest.raises', 'pytest.raises', (['ValueError'], {'match': '"""id_threshold must be a float between 0 and 1, inclusive."""'}), "(ValueError, match=\n 'id_threshold must be a float between 0 and 1, inclusive.')\n", (874, 957), False, 'import pytest\n'), ((976, 1012), 'rayml.data_checks.IDColumnsDataCheck', 'IDColumnsDataCheck', ([], {'id_threshold': '(1.1)'}), '(id_threshold=1.1)\n', (994, 1012), False, 'from rayml.data_checks import DataCheckActionCode, DataCheckActionOption, DataCheckMessageCode, DataCheckWarning, IDColumnsDataCheck\n'), ((5059, 5109), 'numpy.array', 'np.array', (['[[0, 1], [1, 2], [2, 3], [3, 4], [4, 5]]'], {}), '([[0, 1], [1, 2], [2, 3], [3, 4], [4, 5]])\n', (5067, 5109), True, 'import numpy as np\n'), ((4987, 5001), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (4999, 5001), True, 'import pandas as pd\n'), ((6437, 6487), 'numpy.array', 'np.array', (['[[0, 1], [1, 2], [2, 3], [3, 4], [4, 5]]'], {}), '([[0, 1], [1, 2], [2, 3], [3, 4], [4, 5]])\n', (6445, 6487), True, 'import numpy as np\n'), ((1770, 1929), 'rayml.data_checks.DataCheckActionOption', 'DataCheckActionOption', (['DataCheckActionCode.DROP_COL'], {'data_check_name': 'id_data_check_name', 'metadata': "{'columns': ['Id', 'col_1_id', 'col_2', 'col_3_id']}"}), "(DataCheckActionCode.DROP_COL, data_check_name=\n id_data_check_name, metadata={'columns': ['Id', 'col_1_id', 'col_2',\n 'col_3_id']})\n", (1791, 1929), False, 'from rayml.data_checks import DataCheckActionCode, DataCheckActionOption, DataCheckMessageCode, DataCheckWarning, IDColumnsDataCheck\n'), ((2507, 2641), 'rayml.data_checks.DataCheckActionOption', 'DataCheckActionOption', (['DataCheckActionCode.DROP_COL'], {'data_check_name': 'id_data_check_name', 'metadata': "{'columns': ['Id', 'col_1_id']}"}), "(DataCheckActionCode.DROP_COL, data_check_name=\n id_data_check_name, metadata={'columns': ['Id', 'col_1_id']})\n", (2528, 2641), False, 'from rayml.data_checks import DataCheckActionCode, DataCheckActionOption, DataCheckMessageCode, DataCheckWarning, IDColumnsDataCheck\n'), ((3869, 4028), 'rayml.data_checks.DataCheckActionOption', 'DataCheckActionOption', (['DataCheckActionCode.DROP_COL'], {'data_check_name': 'id_data_check_name', 'metadata': "{'columns': ['Id', 'col_1_id', 'col_2', 'col_3_id']}"}), "(DataCheckActionCode.DROP_COL, data_check_name=\n id_data_check_name, metadata={'columns': ['Id', 'col_1_id', 'col_2',\n 'col_3_id']})\n", (3890, 4028), False, 'from rayml.data_checks import DataCheckActionCode, DataCheckActionOption, DataCheckMessageCode, DataCheckWarning, IDColumnsDataCheck\n'), ((4567, 4701), 'rayml.data_checks.DataCheckActionOption', 'DataCheckActionOption', (['DataCheckActionCode.DROP_COL'], {'data_check_name': 'id_data_check_name', 'metadata': "{'columns': ['Id', 'col_1_id']}"}), "(DataCheckActionCode.DROP_COL, data_check_name=\n id_data_check_name, metadata={'columns': ['Id', 'col_1_id']})\n", (4588, 4701), False, 'from rayml.data_checks import DataCheckActionCode, DataCheckActionOption, DataCheckMessageCode, DataCheckWarning, IDColumnsDataCheck\n'), ((5488, 5610), 'rayml.data_checks.DataCheckActionOption', 'DataCheckActionOption', (['DataCheckActionCode.DROP_COL'], {'data_check_name': 'id_data_check_name', 'metadata': "{'columns': [0, 1]}"}), "(DataCheckActionCode.DROP_COL, data_check_name=\n id_data_check_name, metadata={'columns': [0, 1]})\n", (5509, 5610), False, 'from rayml.data_checks import DataCheckActionCode, DataCheckActionOption, DataCheckMessageCode, DataCheckWarning, IDColumnsDataCheck\n'), ((6134, 6256), 'rayml.data_checks.DataCheckActionOption', 'DataCheckActionOption', (['DataCheckActionCode.DROP_COL'], {'data_check_name': 'id_data_check_name', 'metadata': "{'columns': [0, 1]}"}), "(DataCheckActionCode.DROP_COL, data_check_name=\n id_data_check_name, metadata={'columns': [0, 1]})\n", (6155, 6256), False, 'from rayml.data_checks import DataCheckActionCode, DataCheckActionOption, DataCheckMessageCode, DataCheckWarning, IDColumnsDataCheck\n'), ((6804, 6926), 'rayml.data_checks.DataCheckActionOption', 'DataCheckActionOption', (['DataCheckActionCode.DROP_COL'], {'data_check_name': 'id_data_check_name', 'metadata': "{'columns': [0, 1]}"}), "(DataCheckActionCode.DROP_COL, data_check_name=\n id_data_check_name, metadata={'columns': [0, 1]})\n", (6825, 6926), False, 'from rayml.data_checks import DataCheckActionCode, DataCheckActionOption, DataCheckMessageCode, DataCheckWarning, IDColumnsDataCheck\n')]
# coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Tests for non_semantic_speech_benchmark.eval_embedding.sklearn.sklearn_utils.""" import os from absl.testing import absltest from absl.testing import parameterized import numpy as np import tensorflow.compat.v1 as tf from non_semantic_speech_benchmark.eval_embedding.sklearn import sklearn_utils class SklearnUtilsTest(tf.test.TestCase, parameterized.TestCase): @parameterized.parameters( {'l2_normalization': True}, {'l2_normalization': False}, ) def test_tfexample_to_nps(self, l2_normalization): path = os.path.join(absltest.get_default_test_tmpdir(), 'dummy_tfrecords') embedding_name = 'fake_emb' label_name = 'label/fake_lbl' label_list = ['yes', 'no'] np.random.seed(10) # Generate fake embeddings and labels. fake_data = [ (np.random.rand(100), 1), (np.random.rand(100), 0), (np.random.rand(100), 1), ] def _emb_lbl_i_to_tfexample(emb, label_index): """Package fake data as a tf.Example.""" ex = tf.train.Example() ex.features.feature[ f'embedding/{embedding_name}'].float_list.value.extend(emb) ex.features.feature[label_name].bytes_list.value.append( label_list[label_index].encode('utf-8')) return ex # Write TFRecord of tf.Examples to disk. with tf.python_io.TFRecordWriter(path) as writer: for emb, label_index in fake_data: ex = _emb_lbl_i_to_tfexample(emb, label_index) writer.write(ex.SerializeToString()) # Convert them back. npx, npy, _ = sklearn_utils.tfexamples_to_nps(path, embedding_name, label_name, label_list, l2_normalization) # Check that output is correct. expected_embs = np.array([d[0] for d in fake_data], np.float32) if l2_normalization: expected_embs /= np.linalg.norm(expected_embs, axis=1, ord=2, keepdims=True) self.assertAllEqual(npx, expected_embs) self.assertAllEqual(npy, (1, 0, 1)) def test_speaker_normalization(self): original_embeddings = np.array( [ [0.5, 2.1], [0.5, 0.6], [-.5, 2.1], ], np.float32) speaker_ids = np.array( [ 'id1', 'id2', 'id1', ], np.str) expected_normalized_embeddings = np.array( [ [1.0, 0.0], [0.0, 0.0], [-1., 0.0], ], np.float32) normalized_embeddings = sklearn_utils._speaker_normalization( original_embeddings, speaker_ids) self.assertAllEqual(normalized_embeddings, expected_normalized_embeddings) if __name__ == '__main__': tf.test.main()
[ "non_semantic_speech_benchmark.eval_embedding.sklearn.sklearn_utils.tfexamples_to_nps", "numpy.random.seed", "tensorflow.compat.v1.train.Example", "absl.testing.absltest.get_default_test_tmpdir", "tensorflow.compat.v1.python_io.TFRecordWriter", "absl.testing.parameterized.parameters", "tensorflow.compat.v1.test.main", "numpy.array", "numpy.linalg.norm", "numpy.random.rand", "non_semantic_speech_benchmark.eval_embedding.sklearn.sklearn_utils._speaker_normalization" ]
[((999, 1085), 'absl.testing.parameterized.parameters', 'parameterized.parameters', (["{'l2_normalization': True}", "{'l2_normalization': False}"], {}), "({'l2_normalization': True}, {'l2_normalization': \n False})\n", (1023, 1085), False, 'from absl.testing import parameterized\n'), ((3382, 3396), 'tensorflow.compat.v1.test.main', 'tf.test.main', ([], {}), '()\n', (3394, 3396), True, 'import tensorflow.compat.v1 as tf\n'), ((1332, 1350), 'numpy.random.seed', 'np.random.seed', (['(10)'], {}), '(10)\n', (1346, 1350), True, 'import numpy as np\n'), ((2161, 2260), 'non_semantic_speech_benchmark.eval_embedding.sklearn.sklearn_utils.tfexamples_to_nps', 'sklearn_utils.tfexamples_to_nps', (['path', 'embedding_name', 'label_name', 'label_list', 'l2_normalization'], {}), '(path, embedding_name, label_name,\n label_list, l2_normalization)\n', (2192, 2260), False, 'from non_semantic_speech_benchmark.eval_embedding.sklearn import sklearn_utils\n'), ((2414, 2461), 'numpy.array', 'np.array', (['[d[0] for d in fake_data]', 'np.float32'], {}), '([d[0] for d in fake_data], np.float32)\n', (2422, 2461), True, 'import numpy as np\n'), ((2759, 2818), 'numpy.array', 'np.array', (['[[0.5, 2.1], [0.5, 0.6], [-0.5, 2.1]]', 'np.float32'], {}), '([[0.5, 2.1], [0.5, 0.6], [-0.5, 2.1]], np.float32)\n', (2767, 2818), True, 'import numpy as np\n'), ((2900, 2939), 'numpy.array', 'np.array', (["['id1', 'id2', 'id1']", 'np.str'], {}), "(['id1', 'id2', 'id1'], np.str)\n", (2908, 2939), True, 'import numpy as np\n'), ((3041, 3100), 'numpy.array', 'np.array', (['[[1.0, 0.0], [0.0, 0.0], [-1.0, 0.0]]', 'np.float32'], {}), '([[1.0, 0.0], [0.0, 0.0], [-1.0, 0.0]], np.float32)\n', (3049, 3100), True, 'import numpy as np\n'), ((3192, 3262), 'non_semantic_speech_benchmark.eval_embedding.sklearn.sklearn_utils._speaker_normalization', 'sklearn_utils._speaker_normalization', (['original_embeddings', 'speaker_ids'], {}), '(original_embeddings, speaker_ids)\n', (3228, 3262), False, 'from non_semantic_speech_benchmark.eval_embedding.sklearn import sklearn_utils\n'), ((1175, 1209), 'absl.testing.absltest.get_default_test_tmpdir', 'absltest.get_default_test_tmpdir', ([], {}), '()\n', (1207, 1209), False, 'from absl.testing import absltest\n'), ((1630, 1648), 'tensorflow.compat.v1.train.Example', 'tf.train.Example', ([], {}), '()\n', (1646, 1648), True, 'import tensorflow.compat.v1 as tf\n'), ((1931, 1964), 'tensorflow.compat.v1.python_io.TFRecordWriter', 'tf.python_io.TFRecordWriter', (['path'], {}), '(path)\n', (1958, 1964), True, 'import tensorflow.compat.v1 as tf\n'), ((2510, 2569), 'numpy.linalg.norm', 'np.linalg.norm', (['expected_embs'], {'axis': '(1)', 'ord': '(2)', 'keepdims': '(True)'}), '(expected_embs, axis=1, ord=2, keepdims=True)\n', (2524, 2569), True, 'import numpy as np\n'), ((1422, 1441), 'numpy.random.rand', 'np.random.rand', (['(100)'], {}), '(100)\n', (1436, 1441), True, 'import numpy as np\n'), ((1456, 1475), 'numpy.random.rand', 'np.random.rand', (['(100)'], {}), '(100)\n', (1470, 1475), True, 'import numpy as np\n'), ((1490, 1509), 'numpy.random.rand', 'np.random.rand', (['(100)'], {}), '(100)\n', (1504, 1509), True, 'import numpy as np\n')]
import numpy as np import matplotlib.pyplot as plt import cv2 import sys # read the image image = cv2.imread(sys.argv[1]) # convert to grayscale grayscale = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # perform edge detection edges = cv2.Canny(grayscale, 30, 100) # detect lines in the image using hough lines technique lines = cv2.HoughLinesP(edges, 1, np.pi/180, 60, np.array([]), 50, 5) # iterate over the output lines and draw them for line in lines: for x1, y1, x2, y2 in line: cv2.line(image, (x1, y1), (x2, y2), color=(20, 220, 20), thickness=3) # show the image plt.imshow(image) plt.show()
[ "cv2.line", "cv2.Canny", "matplotlib.pyplot.show", "cv2.cvtColor", "matplotlib.pyplot.imshow", "cv2.imread", "numpy.array" ]
[((105, 128), 'cv2.imread', 'cv2.imread', (['sys.argv[1]'], {}), '(sys.argv[1])\n', (115, 128), False, 'import cv2\n'), ((168, 207), 'cv2.cvtColor', 'cv2.cvtColor', (['image', 'cv2.COLOR_BGR2GRAY'], {}), '(image, cv2.COLOR_BGR2GRAY)\n', (180, 207), False, 'import cv2\n'), ((245, 274), 'cv2.Canny', 'cv2.Canny', (['grayscale', '(30)', '(100)'], {}), '(grayscale, 30, 100)\n', (254, 274), False, 'import cv2\n'), ((605, 622), 'matplotlib.pyplot.imshow', 'plt.imshow', (['image'], {}), '(image)\n', (615, 622), True, 'import matplotlib.pyplot as plt\n'), ((624, 634), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (632, 634), True, 'import matplotlib.pyplot as plt\n'), ((384, 396), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (392, 396), True, 'import numpy as np\n'), ((514, 583), 'cv2.line', 'cv2.line', (['image', '(x1, y1)', '(x2, y2)'], {'color': '(20, 220, 20)', 'thickness': '(3)'}), '(image, (x1, y1), (x2, y2), color=(20, 220, 20), thickness=3)\n', (522, 583), False, 'import cv2\n')]
import tensorflow from tensorflow.keras.datasets import cifar10 from tensorflow import keras import numpy as np num_classes = 10 class EvalDataset(object): def __init__(self, batch_size=100): (x_train, y_train), (x_test, y_test) = cifar10.load_data() x_train = x_train.astype('float32') / 255 x_test = x_test.astype('float32') / 255 # If subtract pixel mean is enabled x_train_mean = np.mean(x_train, axis=0) x_train -= x_train_mean x_test -= x_train_mean # Convert class vectors to binary class matrices. y_train = tensorflow.keras.utils.to_categorical(y_train, num_classes) y_test = tensorflow.keras.utils.to_categorical(y_test, num_classes) self.test_images = x_test self.test_labels = y_test def __len__(self): return len(self.test_images) def __getitem__(self, idx): return self.test_images[idx], self.test_labels[idx] from neural_compressor.experimental import Benchmark, common evaluator = Benchmark('benchmark.yaml') evaluator.model = common.Model('./baseline_model') evaluator.b_dataloader = common.DataLoader(EvalDataset()) evaluator('performance')
[ "tensorflow.keras.utils.to_categorical", "neural_compressor.experimental.Benchmark", "tensorflow.keras.datasets.cifar10.load_data", "neural_compressor.experimental.common.Model", "numpy.mean" ]
[((1031, 1058), 'neural_compressor.experimental.Benchmark', 'Benchmark', (['"""benchmark.yaml"""'], {}), "('benchmark.yaml')\n", (1040, 1058), False, 'from neural_compressor.experimental import Benchmark, common\n'), ((1077, 1109), 'neural_compressor.experimental.common.Model', 'common.Model', (['"""./baseline_model"""'], {}), "('./baseline_model')\n", (1089, 1109), False, 'from neural_compressor.experimental import Benchmark, common\n'), ((246, 265), 'tensorflow.keras.datasets.cifar10.load_data', 'cifar10.load_data', ([], {}), '()\n', (263, 265), False, 'from tensorflow.keras.datasets import cifar10\n'), ((433, 457), 'numpy.mean', 'np.mean', (['x_train'], {'axis': '(0)'}), '(x_train, axis=0)\n', (440, 457), True, 'import numpy as np\n'), ((598, 657), 'tensorflow.keras.utils.to_categorical', 'tensorflow.keras.utils.to_categorical', (['y_train', 'num_classes'], {}), '(y_train, num_classes)\n', (635, 657), False, 'import tensorflow\n'), ((675, 733), 'tensorflow.keras.utils.to_categorical', 'tensorflow.keras.utils.to_categorical', (['y_test', 'num_classes'], {}), '(y_test, num_classes)\n', (712, 733), False, 'import tensorflow\n')]
import ast, gast import inspect import numpy as np import sys import typing from chainer_compiler.elichika.typing import types from chainer_compiler.elichika.typing.type_inference import InferenceEngine from chainer_compiler.elichika.typing.utils import node_description, is_expr from chainer_compiler.elichika.parser import utils class IDAssignor(gast.NodeVisitor): def __init__(self): self.counter = 0 self.node2id = {} def visit(self, node): self.node2id[node] = self.counter self.counter += 1 return super().visit(node) def run(self, node, subroutine_node): self.visit(node) for ns in subroutine_node.values(): for n in ns: self.visit(n) return self.node2id def generate_node2id(tree, subroutine_node): a = IDAssignor() node2id = a.run(tree, subroutine_node) return node2id def generate_id2node(node2id): id2node = {} for n, i in node2id.items(): id2node[i] = n return id2node def generate_node2type(tree, args, is_debug=False, module=None, type_hints={}): reset_state() tc = InferenceEngine(is_debug=is_debug, module=module) func_body = tree.body[0] # XXX: only checks first function try: node2type = tc.infer_function_value_args(func_body, args, type_hints=type_hints) return node2type, tc.subroutine_node except Exception as e: tc.dump_tyenv() raise e def generate_id2type(node2type, node2id): id2type = {} for n, t in node2type.items(): if n not in node2id.keys(): continue # user-defined modules in nn.Sequential id2type[node2id[n]] = t return id2type def generate_assertion(type_table_name, id2type, id2node, ofile=None): for i, t in sorted(id2type.items()): node = id2node[i] if not is_expr(node): if not isinstance(node, gast.FunctionDef): continue output = " # === function {} ===".format(node.name) else: comment = "\t# " + node_description(node) output = " self.assertEqual(str({}[{}]), \"{}\"){}".format( \ type_table_name, i, t, comment) if ofile is None: print(output) else: ofile.write(output + '\n') # For testing def generate_id2type_from_forward(model, args, is_debug=False): code = utils.clip_head(inspect.getsource(model.forward)) tree = gast.ast_to_gast(ast.parse(code)) module = sys.modules[model.forward.__module__] node2type, subroutine_node = generate_node2type( tree, (model,) + args, is_debug=is_debug, module=module, type_hints=typing.get_type_hints(model.forward)) node2id = generate_node2id(tree, subroutine_node) id2type = generate_id2type(node2type, node2id) return id2type # For debug def generate_type_inference_results(model, forward_args, is_debug=True): code = utils.clip_head(inspect.getsource(model.forward)) node = gast.ast_to_gast(ast.parse(code)) # node = Canonicalizer().visit(node) module = sys.modules[model.forward.__module__] node2type, subroutine_node = generate_node2type( node, (model,) + forward_args, is_debug=is_debug, module=module, type_hints=typing.get_type_hints(model.forward)) node2id = generate_node2id(node, subroutine_node) id2type = generate_id2type(node2type, node2id) id2node = generate_id2node(node2id) return id2type, id2node def reset_state(): np.random.seed(42) types.var_counter = 0 if __name__ == '__main__': import argparse import numpy as np import chainer import chainer.functions as F import chainer.links as L from tests.elichika_typing.EspNet_test import * from tests.elichika_typing.Models_test import * parser = argparse.ArgumentParser() parser.add_argument("-e", help="Execute the script", action="store_true") parser.add_argument("-o", help="Specify file name to output the assertions", type=str) args = parser.parse_args() class Test(): def forward(self): x = np.zeros((1, 1)).astype('float32') y = F.pad_sequence([x], length=5) return y # model, forward_args = gen_MLP_model() model, forward_args = gen_GoogLeNet_model() # model, forward_args = gen_AttDot_model() # model, forward_args = gen_AttLoc_model() # model, forward_args = gen_BLSTM_model() # model, forward_args = gen_VGG2L_model() # model, forward_args = gen_StatelessLSTM_model() # model, forward_args = gen_Decoder_model() # model, forward_args = gen_E2E_model() # model, forward_args = Test(), () if args.e: model.forward(*forward_args) else: id2type, id2node = generate_type_inference_results(model, forward_args) if args.o: ofile = open(args.o, 'w') generate_assertion("id2type", id2type, id2node, ofile)
[ "chainer_compiler.elichika.typing.type_inference.InferenceEngine", "numpy.random.seed", "argparse.ArgumentParser", "chainer_compiler.elichika.typing.utils.is_expr", "typing.get_type_hints", "numpy.zeros", "inspect.getsource", "chainer.functions.pad_sequence", "ast.parse", "chainer_compiler.elichika.typing.utils.node_description" ]
[((1137, 1186), 'chainer_compiler.elichika.typing.type_inference.InferenceEngine', 'InferenceEngine', ([], {'is_debug': 'is_debug', 'module': 'module'}), '(is_debug=is_debug, module=module)\n', (1152, 1186), False, 'from chainer_compiler.elichika.typing.type_inference import InferenceEngine\n'), ((3532, 3550), 'numpy.random.seed', 'np.random.seed', (['(42)'], {}), '(42)\n', (3546, 3550), True, 'import numpy as np\n'), ((3852, 3877), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (3875, 3877), False, 'import argparse\n'), ((2429, 2461), 'inspect.getsource', 'inspect.getsource', (['model.forward'], {}), '(model.forward)\n', (2446, 2461), False, 'import inspect\n'), ((2491, 2506), 'ast.parse', 'ast.parse', (['code'], {}), '(code)\n', (2500, 2506), False, 'import ast, gast\n'), ((2980, 3012), 'inspect.getsource', 'inspect.getsource', (['model.forward'], {}), '(model.forward)\n', (2997, 3012), False, 'import inspect\n'), ((3042, 3057), 'ast.parse', 'ast.parse', (['code'], {}), '(code)\n', (3051, 3057), False, 'import ast, gast\n'), ((1850, 1863), 'chainer_compiler.elichika.typing.utils.is_expr', 'is_expr', (['node'], {}), '(node)\n', (1857, 1863), False, 'from chainer_compiler.elichika.typing.utils import node_description, is_expr\n'), ((2704, 2740), 'typing.get_type_hints', 'typing.get_type_hints', (['model.forward'], {}), '(model.forward)\n', (2725, 2740), False, 'import typing\n'), ((3296, 3332), 'typing.get_type_hints', 'typing.get_type_hints', (['model.forward'], {}), '(model.forward)\n', (3317, 3332), False, 'import typing\n'), ((4204, 4233), 'chainer.functions.pad_sequence', 'F.pad_sequence', (['[x]'], {'length': '(5)'}), '([x], length=5)\n', (4218, 4233), True, 'import chainer.functions as F\n'), ((2061, 2083), 'chainer_compiler.elichika.typing.utils.node_description', 'node_description', (['node'], {}), '(node)\n', (2077, 2083), False, 'from chainer_compiler.elichika.typing.utils import node_description, is_expr\n'), ((4153, 4169), 'numpy.zeros', 'np.zeros', (['(1, 1)'], {}), '((1, 1))\n', (4161, 4169), True, 'import numpy as np\n')]
#!/usr/bin/env python # # Copyright (c) 2015 10X Genomics, Inc. All rights reserved. # import cPickle from collections import defaultdict from itertools import izip import json import numpy as np import cellranger.constants as cr_constants import cellranger.library_constants as lib_constants from cellranger.molecule_counter import MoleculeCounter import cellranger.rna.library as rna_library import cellranger.utils as cr_utils import tenkit.safe_json as tk_safe_json import tenkit.stats as tk_stats __MRO__ = """ stage SUBSAMPLE_READS( in h5 molecule_info, in csv filtered_barcodes, out json summary, src py "stages/counter/subsample_reads", ) split using ( in int chunk_start, in int chunk_len, in map[] subsample_info, out pickle metrics, ) """ def get_cell_associated_barcodes(genomes, filtered_barcodes_csv): """ Get cell-associated barcodes by genome. Args: genomes (list of str): Genome names. filtered_barcodes_csv (str): Path to CSV file. Returns: dict of (str, set): Map genome to list of cell-assoc barcodes. Empty-string key is for all genomes.""" cell_bcs = {} for genome in genomes: # Get all cell-assoc barcodes (ignoring genome) for the "" (blank) genome string cell_bcs[genome] = cr_utils.get_cell_associated_barcode_set(filtered_barcodes_csv, genome) # All cell-associated barcodes cell_bcs[''] = reduce(lambda x,y: x | y, cell_bcs.itervalues(), set()) return cell_bcs def split(args): # Get required info from the mol info mc = MoleculeCounter.open(args.molecule_info, 'r') genomes = sorted(set(f.tags.get('genome', '') for f in mc.feature_reference.feature_defs)) cell_bcs_by_genome = get_cell_associated_barcodes(genomes, args.filtered_barcodes) # Get cell counts per gem group n_cells_per_gg = defaultdict(int) for bc in cell_bcs_by_genome['']: _, gem_group = cr_utils.split_barcode_seq(bc) n_cells_per_gg[gem_group] += 1 # Assign gem group cell counts to their constituent libraries # TODO FIXME: Need to allow for per-library cell counts # because some feature types might only have a subset of the GEX cell-assoc barcodes. n_cells_per_lib = np.zeros(len(mc.library_info), dtype=int) for lib_idx, lib in enumerate(mc.library_info): n_cells_per_lib[lib_idx] = n_cells_per_gg[lib['gem_group']] if n_cells_per_lib.sum() == 0: return {'chunks': []} library_info = mc.library_info raw_count_per_lib = np.array(mc.get_raw_read_pairs_per_library()) raw_rppc_per_lib = raw_count_per_lib.astype(float) / n_cells_per_lib usable_count_per_lib = np.array(mc.get_usable_read_pairs_per_library()) subsamplings = list() # track subsample info definitions library_types = sorted(set(lib['library_type'] for lib in library_info)) for library_type in library_types: # All libraries w/ this type lib_indexes = np.array([i for i,lib in enumerate(library_info) if lib['library_type'] == library_type]) # For plotting, we want a series of target depths that exist for all # libraries w/ the same library type. When there's a single library # per type (the common case), this is trivial - split it into deciles. # But if there are multiple libraries with different depths, (e.g., # because gem-group-aggregation was used to increase cell numbers), # we need to find depths that are achievable for all libraries. # For now, let the lowest-depth library for a given type dictate this. min_raw_rppc = np.min(raw_rppc_per_lib[lib_indexes]) # Use deciles of the raw read pairs per cell. deciles = np.arange(0.1, 1.1, 0.1) plot_targets = map(round, min_raw_rppc * deciles) # TODO: separate this work (internal + non) raw_targets = cr_constants.SUBSAMPLE_READS_PER_CELL + \ plot_targets # TODO: separate this work (internal + non) usable_targets = cr_constants.SUBSAMPLE_READS_PER_CELL + \ plot_targets for targets, depth_type in \ ((raw_targets, cr_constants.RAW_SUBSAMPLE_TYPE), \ ((usable_targets, cr_constants.MAPPED_SUBSAMPLE_TYPE)),): targets = sorted(list(set(map(int, targets)))) for target_rppc in targets: if depth_type == cr_constants.RAW_SUBSAMPLE_TYPE: # Infer the usable depth required to achieve this raw depth usable_read_fracs = usable_count_per_lib.astype(float) / raw_count_per_lib target_usable_counts = target_rppc * n_cells_per_lib * usable_read_fracs else: target_usable_counts = target_rppc * n_cells_per_lib # Zero out libraries of the other types rates = np.zeros(len(library_info), dtype=float) rates[lib_indexes] = target_usable_counts[lib_indexes].astype(float) \ / usable_count_per_lib[lib_indexes] # Clamp rates that are close to 1 to 1 rates[np.absolute(rates - 1) < 1e-3] = 1 # Zero out the libraries for which we have fewer reads than the target rates[rates > 1] = 0.0 enough_data = np.any((rates > 0) & (rates <= 1)) if not enough_data: rates = np.zeros(len(rates)) subsamplings.append({ 'library_type': library_type, 'subsample_type': depth_type, 'target_read_pairs_per_cell': int(target_rppc), 'library_subsample_rates': list(map(float, rates)), }) # Each chunk needs to store a piece of the mol info h5 tgt_chunk_len = cr_constants.NUM_MOLECULE_INFO_ENTRIES_PER_CHUNK # Split the molecule info h5 into equi-RAM chunks chunks = [] for chunk_start, chunk_len in mc.get_chunks(tgt_chunk_len, preserve_boundaries=True): chunks.append({ 'chunk_start': chunk_start, 'chunk_len': chunk_len, 'subsample_info': subsamplings, # The estimate_mem_gb only count the memory usage for the MoleculeCounter object, which is # under-estimated the actual memory usage. # Based on memory profiling with test case fuzzer_114, actual memory usageis ~4x more # than estimate_mem_gb (without cap), here set scale = 6. '__mem_gb': MoleculeCounter.estimate_mem_gb(chunk_len, scale=6), }) join = { '__mem_gb': 6, } mc.close() # TODO: is this really necessary w/ martian 3 if len(chunks) == 0: chunks.append({ 'chunk_start': str(0), 'chunk_len': str(0), 'subsample_info': [], }) return {'chunks': chunks, 'join': join} def main(args, outs): np.random.seed(0) mc = MoleculeCounter.open(args.molecule_info, 'r') # Get cell-associated barcodes genomes = sorted(set(f.tags.get('genome', '') for f in mc.feature_reference.feature_defs)) cell_bcs_by_genome = get_cell_associated_barcodes(genomes, args.filtered_barcodes) # Load chunk of relevant data from the mol_info chunk = slice(int(args.chunk_start), int(args.chunk_start) + int(args.chunk_len)) mol_library_idx = mc.get_column_lazy('library_idx')[chunk] mol_read_pairs = mc.get_column_lazy('count')[chunk] mol_gem_group = mc.get_column_lazy('gem_group')[chunk] mol_barcode_idx = mc.get_column_lazy('barcode_idx')[chunk] mol_feature_idx = mc.get_column_lazy('feature_idx')[chunk] barcodes = mc.get_ref_column('barcodes') # Give each cell-associated barcode an integer index cell_bcs = sorted(list(cell_bcs_by_genome[''])) cell_bc_to_int = {bc: i for i, bc in enumerate(cell_bcs)} # Give each genome an integer index genome_to_int = {g: i for i, g in enumerate(genomes)} feature_int_to_genome_int = np.fromiter((genome_to_int[f.tags.get('genome', '')] for f in mc.feature_reference.feature_defs), dtype=int) mol_genome_idx = feature_int_to_genome_int[mol_feature_idx] # determine which (library type, genome) pairs have any associated reads lib_types = sorted(set(lib['library_type'] for lib in mc.library_info)) lib_type_to_int = {l: i for i, l in enumerate(lib_types)} lib_idx_to_lib_type_idx = np.fromiter((lib_type_to_int[lib['library_type']] for lib in mc.library_info), dtype=np.int) lib_type_genome_any_reads = np.zeros((len(lib_types), len(genomes)), dtype=np.bool) lib_genome_idx_pairs = set(izip(mol_library_idx[mol_read_pairs > 0], mol_genome_idx[mol_read_pairs > 0])) for (lib_idx, genome_idx) in lib_genome_idx_pairs: lib_type_idx = lib_idx_to_lib_type_idx[lib_idx] lib_type_genome_any_reads[lib_type_idx, genome_idx] = True # Run each subsampling task on this chunk of data n_tasks = len(args.subsample_info) n_genomes = len(genomes) n_cells = len(cell_bcs) umis_per_bc = np.zeros((n_tasks, n_genomes, n_cells)) features_det_per_bc = np.zeros((n_tasks, n_genomes, n_cells)) read_pairs_per_task = np.zeros((n_tasks, n_genomes)) umis_per_task = np.zeros((n_tasks, n_genomes)) for task_idx, task in enumerate(args.subsample_info): # Per-library subsampling rates rates_per_library = np.array(task['library_subsample_rates'], dtype=float) if np.count_nonzero(rates_per_library) == 0: continue mol_rate = rates_per_library[mol_library_idx] # Subsampled read pairs per molecule new_read_pairs = np.random.binomial(mol_read_pairs, mol_rate) # Compute tallies for each barcode group_keys = (mol_gem_group, mol_barcode_idx) group_values = (mol_feature_idx, mol_genome_idx, new_read_pairs) for (gg, bc_idx), (feature_idx, genome_idx, read_pairs) in \ cr_utils.numpy_groupby(group_values, group_keys): barcode = cr_utils.format_barcode_seq(barcodes[bc_idx], gg) cell_idx = cell_bc_to_int.get(barcode) for this_genome_idx in xrange(len(genomes)): umis = np.flatnonzero((read_pairs > 0) & (genome_idx == this_genome_idx)) this_genome_read_pairs = np.sum(read_pairs[genome_idx == this_genome_idx]) # Tally UMIs and median features detected if barcode in cell_bcs_by_genome[genomes[this_genome_idx]]: # This is a cell-associated barcode for this genome umis_per_bc[task_idx, this_genome_idx, cell_idx] = len(umis) features_det_per_bc[task_idx, this_genome_idx, cell_idx] = np.count_nonzero(np.bincount(feature_idx[umis])) # Tally numbers for duplicate fraction read_pairs_per_task[task_idx, this_genome_idx] += np.sum(this_genome_read_pairs) umis_per_task[task_idx, this_genome_idx] += len(umis) with open(outs.metrics, 'w') as f: data = { 'umis_per_bc': umis_per_bc, 'features_det_per_bc': features_det_per_bc, 'read_pairs': read_pairs_per_task, 'umis': umis_per_task, 'lib_type_genome_any_reads': lib_type_genome_any_reads, } cPickle.dump(data, f, protocol = cPickle.HIGHEST_PROTOCOL) def make_metric_name(name, library_type, genome, ss_type, ss_depth): lt_prefix = rna_library.get_library_type_metric_prefix(library_type) return '%s%s_%s_%s_%s' % (lt_prefix, genome, ss_type, ss_depth, name) def compute_dup_frac(read_pairs, umis): return tk_stats.robust_divide(read_pairs - umis, read_pairs) if read_pairs > 0 else 0.0 def join(args, outs, chunk_defs, chunk_outs): # Merge tallies data = None for chunk in chunk_outs: with open(chunk.metrics) as f: chunk_data = cPickle.load(f) if data is None: data = chunk_data else: for k,v in data.iteritems(): data[k] += chunk_data[k] # Compute metrics for each subsampling rate summary = {} with MoleculeCounter.open(args.molecule_info, 'r') as mc: genomes = sorted(set(f.tags.get('genome', '') for f in mc.feature_reference.feature_defs)) lib_types = sorted(set(lib['library_type'] for lib in mc.library_info)) lib_type_map = dict((lt, idx) for (idx, lt) in enumerate(lib_types)) cell_bcs_by_genome = get_cell_associated_barcodes(genomes, args.filtered_barcodes) # Give each cell-associated barcode an integer index cell_bcs = sorted(list(cell_bcs_by_genome[''])) cell_bc_to_int = {bc: i for i, bc in enumerate(cell_bcs)} subsample_info = chunk_defs[0].subsample_info if len(chunk_defs) > 0 else [] for i, task in enumerate(subsample_info): lib_type = task['library_type'] lib_type_idx = lib_type_map[lib_type] ss_type = task['subsample_type'] ss_depth = task['target_read_pairs_per_cell'] if rna_library.has_genomes(lib_type): genome_ints = list(range(data['umis_per_bc'].shape[1])) else: genome_ints = [0] # Per-genome metrics for g in genome_ints: if not data['lib_type_genome_any_reads'][lib_type_idx, g]: continue genome = genomes[g] # Only compute on cell-associated barcodes for this genome. # This only matters when there are multiple genomes present. cell_inds = np.array(sorted(cell_bc_to_int[bc] for bc in cell_bcs_by_genome[genome])) median_umis_per_cell = np.median(data['umis_per_bc'][i,g,cell_inds]) summary[make_metric_name('subsampled_filtered_bcs_median_counts', lib_type, genome, ss_type, ss_depth)] = median_umis_per_cell median_features_per_cell = np.median(data['features_det_per_bc'][i,g,cell_inds]) summary[make_metric_name('subsampled_filtered_bcs_median_unique_genes_detected', lib_type, genome, ss_type, ss_depth)] = median_features_per_cell dup_frac = compute_dup_frac(data['read_pairs'][i,g], data['umis'][i,g]) summary[make_metric_name('subsampled_duplication_frac', lib_type, genome, ss_type, ss_depth)] = dup_frac # Whole-dataset duplication frac all_read_pairs = np.sum(data['read_pairs'][i,:]) all_umis = np.sum(data['umis'][i,:]) dup_frac = compute_dup_frac(all_read_pairs, all_umis) summary[make_metric_name('subsampled_duplication_frac', lib_type, lib_constants.MULTI_REFS_PREFIX, ss_type, ss_depth)] = dup_frac with open(outs.summary, 'w') as f: json.dump(tk_safe_json.json_sanitize(summary), f, indent=4, sort_keys=True)
[ "numpy.absolute", "numpy.random.seed", "numpy.sum", "cPickle.load", "collections.defaultdict", "cellranger.molecule_counter.MoleculeCounter.estimate_mem_gb", "numpy.arange", "numpy.fromiter", "cellranger.molecule_counter.MoleculeCounter.open", "cellranger.rna.library.get_library_type_metric_prefix", "cellranger.utils.numpy_groupby", "numpy.bincount", "tenkit.stats.robust_divide", "cellranger.utils.format_barcode_seq", "numpy.random.binomial", "numpy.median", "cellranger.utils.get_cell_associated_barcode_set", "numpy.min", "tenkit.safe_json.json_sanitize", "numpy.count_nonzero", "cellranger.utils.split_barcode_seq", "numpy.flatnonzero", "numpy.zeros", "numpy.any", "cPickle.dump", "cellranger.rna.library.has_genomes", "numpy.array", "itertools.izip" ]
[((1651, 1696), 'cellranger.molecule_counter.MoleculeCounter.open', 'MoleculeCounter.open', (['args.molecule_info', '"""r"""'], {}), "(args.molecule_info, 'r')\n", (1671, 1696), False, 'from cellranger.molecule_counter import MoleculeCounter\n'), ((1938, 1954), 'collections.defaultdict', 'defaultdict', (['int'], {}), '(int)\n', (1949, 1954), False, 'from collections import defaultdict\n'), ((7077, 7094), 'numpy.random.seed', 'np.random.seed', (['(0)'], {}), '(0)\n', (7091, 7094), True, 'import numpy as np\n'), ((7105, 7150), 'cellranger.molecule_counter.MoleculeCounter.open', 'MoleculeCounter.open', (['args.molecule_info', '"""r"""'], {}), "(args.molecule_info, 'r')\n", (7125, 7150), False, 'from cellranger.molecule_counter import MoleculeCounter\n'), ((8627, 8724), 'numpy.fromiter', 'np.fromiter', (["(lib_type_to_int[lib['library_type']] for lib in mc.library_info)"], {'dtype': 'np.int'}), "((lib_type_to_int[lib['library_type']] for lib in mc.\n library_info), dtype=np.int)\n", (8638, 8724), True, 'import numpy as np\n'), ((9346, 9385), 'numpy.zeros', 'np.zeros', (['(n_tasks, n_genomes, n_cells)'], {}), '((n_tasks, n_genomes, n_cells))\n', (9354, 9385), True, 'import numpy as np\n'), ((9412, 9451), 'numpy.zeros', 'np.zeros', (['(n_tasks, n_genomes, n_cells)'], {}), '((n_tasks, n_genomes, n_cells))\n', (9420, 9451), True, 'import numpy as np\n'), ((9478, 9508), 'numpy.zeros', 'np.zeros', (['(n_tasks, n_genomes)'], {}), '((n_tasks, n_genomes))\n', (9486, 9508), True, 'import numpy as np\n'), ((9529, 9559), 'numpy.zeros', 'np.zeros', (['(n_tasks, n_genomes)'], {}), '((n_tasks, n_genomes))\n', (9537, 9559), True, 'import numpy as np\n'), ((11760, 11816), 'cellranger.rna.library.get_library_type_metric_prefix', 'rna_library.get_library_type_metric_prefix', (['library_type'], {}), '(library_type)\n', (11802, 11816), True, 'import cellranger.rna.library as rna_library\n'), ((1312, 1383), 'cellranger.utils.get_cell_associated_barcode_set', 'cr_utils.get_cell_associated_barcode_set', (['filtered_barcodes_csv', 'genome'], {}), '(filtered_barcodes_csv, genome)\n', (1352, 1383), True, 'import cellranger.utils as cr_utils\n'), ((2016, 2046), 'cellranger.utils.split_barcode_seq', 'cr_utils.split_barcode_seq', (['bc'], {}), '(bc)\n', (2042, 2046), True, 'import cellranger.utils as cr_utils\n'), ((3710, 3747), 'numpy.min', 'np.min', (['raw_rppc_per_lib[lib_indexes]'], {}), '(raw_rppc_per_lib[lib_indexes])\n', (3716, 3747), True, 'import numpy as np\n'), ((3821, 3845), 'numpy.arange', 'np.arange', (['(0.1)', '(1.1)', '(0.1)'], {}), '(0.1, 1.1, 0.1)\n', (3830, 3845), True, 'import numpy as np\n'), ((8882, 8959), 'itertools.izip', 'izip', (['mol_library_idx[mol_read_pairs > 0]', 'mol_genome_idx[mol_read_pairs > 0]'], {}), '(mol_library_idx[mol_read_pairs > 0], mol_genome_idx[mol_read_pairs > 0])\n', (8886, 8959), False, 'from itertools import izip\n'), ((9687, 9741), 'numpy.array', 'np.array', (["task['library_subsample_rates']"], {'dtype': 'float'}), "(task['library_subsample_rates'], dtype=float)\n", (9695, 9741), True, 'import numpy as np\n'), ((9943, 9987), 'numpy.random.binomial', 'np.random.binomial', (['mol_read_pairs', 'mol_rate'], {}), '(mol_read_pairs, mol_rate)\n', (9961, 9987), True, 'import numpy as np\n'), ((10240, 10288), 'cellranger.utils.numpy_groupby', 'cr_utils.numpy_groupby', (['group_values', 'group_keys'], {}), '(group_values, group_keys)\n', (10262, 10288), True, 'import cellranger.utils as cr_utils\n'), ((11614, 11670), 'cPickle.dump', 'cPickle.dump', (['data', 'f'], {'protocol': 'cPickle.HIGHEST_PROTOCOL'}), '(data, f, protocol=cPickle.HIGHEST_PROTOCOL)\n', (11626, 11670), False, 'import cPickle\n'), ((11943, 11996), 'tenkit.stats.robust_divide', 'tk_stats.robust_divide', (['(read_pairs - umis)', 'read_pairs'], {}), '(read_pairs - umis, read_pairs)\n', (11965, 11996), True, 'import tenkit.stats as tk_stats\n'), ((12443, 12488), 'cellranger.molecule_counter.MoleculeCounter.open', 'MoleculeCounter.open', (['args.molecule_info', '"""r"""'], {}), "(args.molecule_info, 'r')\n", (12463, 12488), False, 'from cellranger.molecule_counter import MoleculeCounter\n'), ((13333, 13366), 'cellranger.rna.library.has_genomes', 'rna_library.has_genomes', (['lib_type'], {}), '(lib_type)\n', (13356, 13366), True, 'import cellranger.rna.library as rna_library\n'), ((14766, 14798), 'numpy.sum', 'np.sum', (["data['read_pairs'][i, :]"], {}), "(data['read_pairs'][i, :])\n", (14772, 14798), True, 'import numpy as np\n'), ((14817, 14843), 'numpy.sum', 'np.sum', (["data['umis'][i, :]"], {}), "(data['umis'][i, :])\n", (14823, 14843), True, 'import numpy as np\n'), ((9754, 9789), 'numpy.count_nonzero', 'np.count_nonzero', (['rates_per_library'], {}), '(rates_per_library)\n', (9770, 9789), True, 'import numpy as np\n'), ((10313, 10362), 'cellranger.utils.format_barcode_seq', 'cr_utils.format_barcode_seq', (['barcodes[bc_idx]', 'gg'], {}), '(barcodes[bc_idx], gg)\n', (10340, 10362), True, 'import cellranger.utils as cr_utils\n'), ((12200, 12215), 'cPickle.load', 'cPickle.load', (['f'], {}), '(f)\n', (12212, 12215), False, 'import cPickle\n'), ((13948, 13995), 'numpy.median', 'np.median', (["data['umis_per_bc'][i, g, cell_inds]"], {}), "(data['umis_per_bc'][i, g, cell_inds])\n", (13957, 13995), True, 'import numpy as np\n'), ((14210, 14265), 'numpy.median', 'np.median', (["data['features_det_per_bc'][i, g, cell_inds]"], {}), "(data['features_det_per_bc'][i, g, cell_inds])\n", (14219, 14265), True, 'import numpy as np\n'), ((15135, 15170), 'tenkit.safe_json.json_sanitize', 'tk_safe_json.json_sanitize', (['summary'], {}), '(summary)\n', (15161, 15170), True, 'import tenkit.safe_json as tk_safe_json\n'), ((5467, 5501), 'numpy.any', 'np.any', (['((rates > 0) & (rates <= 1))'], {}), '((rates > 0) & (rates <= 1))\n', (5473, 5501), True, 'import numpy as np\n'), ((6669, 6720), 'cellranger.molecule_counter.MoleculeCounter.estimate_mem_gb', 'MoleculeCounter.estimate_mem_gb', (['chunk_len'], {'scale': '(6)'}), '(chunk_len, scale=6)\n', (6700, 6720), False, 'from cellranger.molecule_counter import MoleculeCounter\n'), ((10496, 10562), 'numpy.flatnonzero', 'np.flatnonzero', (['((read_pairs > 0) & (genome_idx == this_genome_idx))'], {}), '((read_pairs > 0) & (genome_idx == this_genome_idx))\n', (10510, 10562), True, 'import numpy as np\n'), ((10604, 10653), 'numpy.sum', 'np.sum', (['read_pairs[genome_idx == this_genome_idx]'], {}), '(read_pairs[genome_idx == this_genome_idx])\n', (10610, 10653), True, 'import numpy as np\n'), ((11192, 11222), 'numpy.sum', 'np.sum', (['this_genome_read_pairs'], {}), '(this_genome_read_pairs)\n', (11198, 11222), True, 'import numpy as np\n'), ((5274, 5296), 'numpy.absolute', 'np.absolute', (['(rates - 1)'], {}), '(rates - 1)\n', (5285, 5296), True, 'import numpy as np\n'), ((11038, 11068), 'numpy.bincount', 'np.bincount', (['feature_idx[umis]'], {}), '(feature_idx[umis])\n', (11049, 11068), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- # @Author: <NAME> # @Date: 2018-09-18 13:25:04 # @Last Modified by: <NAME> # @Last Modified time: 2018-09-18 13:35:04 """ CUSTOM ESTIMATOR AS DECORATORS for Scikit-Learn Pipelines """ from sklearn.base import BaseEstimator, TransformerMixin, ClassifierMixin import pandas as pd class SKTransform(BaseEstimator, TransformerMixin): """Sklearn Custom Transformer Decorator""" def __init__(self, f): self.transform_func = f def __call__(self, X): return self.transform_func(X) def __iter__(self): return (i for i in [self.transform_func.__name__, self]) def __getitem__(self, i): return [self.transform_func.__name__, self][i] def fit(self, X, y=None): return self def transform(self, X): if isinstance(X, pd.DataFrame): return self.transform_func(X.values) return self.transform_func(X) class SKClassify(BaseEstimator, ClassifierMixin): """Sklearn Custom Classifier Decorator""" def __init__(self, f): self.predict_func = f def __call__(self, X): return self.predict_func(X) def __iter__(self): return (i for i in [self.predict_func.__name__, self]) def __getitem__(self, i): return [self.predict_func.__name__, self][i] def fit(self, X, y=None): return self def fit_predict(self, X, y=None): return self.predict(X) def predict(self, X, y=None): if isinstance(X, pd.DataFrame): return self.predict_func(X.values) return self.predict_func(X) if __name__ == '__main__': from sklearn.pipeline import Pipeline import numpy as np @SKTransform def power2(x): return x**2 @SKClassify def lessThan50(x): return x < 50 ppl = Pipeline([ power2, lessThan50, ]) print('Prediction:\n', ppl.predict(np.array([3, 6, 8, 10])))
[ "sklearn.pipeline.Pipeline", "numpy.array" ]
[((1813, 1843), 'sklearn.pipeline.Pipeline', 'Pipeline', (['[power2, lessThan50]'], {}), '([power2, lessThan50])\n', (1821, 1843), False, 'from sklearn.pipeline import Pipeline\n'), ((1906, 1929), 'numpy.array', 'np.array', (['[3, 6, 8, 10]'], {}), '([3, 6, 8, 10])\n', (1914, 1929), True, 'import numpy as np\n')]
# vim: expandtab:ts=4:sw=4 from __future__ import absolute_import import numpy as np import pdb from . import kf_2d, kf_3d, double_measurement_kf, imm from . import linear_assignment from . import iou_matching from .track import Track from . import JPDA_matching from . import tracking_utils import math from nn_matching import NearestNeighborDistanceMetric import cv2 class Tracker: """ This is the multi-target tracker. Parameters ---------- metric : nn_matching.NearestNeighborDistanceMetric A distance metric for measurement-to-track association. max_age : int Maximum number of missed misses before a track is deleted. n_init : int Number of consecutive detections before the track is confirmed. The track state is set to `Deleted` if a miss occurs within the first `n_init` frames. Attributes ---------- metric : nn_matching.NearestNeighborDistanceMetric The distance metric used for measurement to track association. max_age : int Maximum number of missed misses before a track is deleted. n_init : int Number of frames that a track remains in initialization phase. kf : EKF.KalmanFilter A Kalman filter to filter target trajectories in image space. tracks : List[Track] The list of active tracks at the current time step. """ def __init__(self, max_age=5, n_init=3, JPDA=False, m_best_sol=1, assn_thresh=0.0, matching_strategy=None, kf_appearance_feature=None, gate_full_state=False, lstm = None, cuda = False, appearance_model = None, calib = None, kf_vel_params=(1./20, 1./160, 1, 1, 2), dummy_node_cost_iou=0.4, dummy_node_cost_app=0.2, nn_budget = None, use_imm=False, kf_walk_params=(1./20, 1./160, 1, 1, 2), markov=(0.9, 0.7), uncertainty_limit=1.8, optical_flow=False, gate_limit=400): self.max_age = max_age self.n_init = n_init self.metric = NearestNeighborDistanceMetric("euclidean", nn_budget) if not use_imm: self.kf = kf_2d.KalmanFilter2D(*kf_vel_params, gate_limit) self.use_imm = False else: self.kf = imm.IMMFilter2D(kf_vel_params, kf_walk_params, markov=markov) self.use_imm = True self.tracks = [] self._next_id = 1 self.JPDA = JPDA self.m_best_sol = m_best_sol self.assn_thresh = assn_thresh self.matching_strategy = matching_strategy self.kf_appearance_feature = kf_appearance_feature self.gate_only_position = not gate_full_state self.lstm = lstm self.cuda = cuda self.dummy_node_cost_app = dummy_node_cost_app self.dummy_node_cost_iou = dummy_node_cost_iou self.appearance_model = appearance_model self.prev_frame = None self.uncertainty_limit = uncertainty_limit self.optical_flow = optical_flow # @profile def gated_metric(self, tracks, dets, track_indices, detection_indices, compare_2d = False): targets = np.array([tracks[i].track_id for i in track_indices]) if not compare_2d and self.metric.check_samples(targets): compare_2d = True if compare_2d: features = np.array([dets[i].appearance_feature for i in detection_indices]) else: features = np.array([dets[i].feature for i in detection_indices]) #cost_matrix = self.metric.distance(features, targets, compare_2d) cost_matrix_appearance = self.metric.distance_torch(features, targets, compare_2d) cost_matrix_iou = iou_matching.iou_cost(tracks, dets, track_indices, detection_indices) gate_mask = linear_assignment.gate_cost_matrix( self.kf, tracks, dets, track_indices, detection_indices, only_position=self.gate_only_position) cost_matrix = np.dstack((cost_matrix_appearance, cost_matrix_iou)) return cost_matrix, gate_mask def predict(self): """Propagate track state distributions one time step forward. This function should be called once every time step, before `update`. """ for track in self.tracks: track.predict(self.kf) # @profile def update(self, cur_frame, detections, compare_2d = False): """Perform measurement update and track management. Parameters ---------- detections : List[deep_sort.detection.Detection] A list of detections at the current time step. """ self.cur_frame = cv2.cvtColor((255*cur_frame).permute(1,2,0).cpu().numpy(), cv2.COLOR_BGR2GRAY) matches, unmatched_tracks, unmatched_detections = \ self._match(detections, compare_2d) # update filter for each assigned track # Only do this for non-JPDA because in JPDA the kf states are updated # during the matching process if not self.JPDA: # Map matched tracks to detections track_detection_map = {t:d for (t,d) in matches} # Map unmatched tracks to -1 for no detection for t in unmatched_tracks: track_detection_map[t] = -1 for track_idx, detection_idx in matches: self.tracks[track_idx].update(self.kf, detections, detection_idx=detection_idx, JPDA=self.JPDA, cur_frame = self.cur_frame, appearance_model = self.appearance_model, lstm = self.lstm) # update track state for unmatched tracks for track_idx in unmatched_tracks: self.tracks[track_idx].mark_missed() # create new tracks self.prune_tracks() flow = None if unmatched_detections: if self.optical_flow and self.prev_frame is not None: flow = cv2.calcOpticalFlowFarneback(self.prev_frame, self.cur_frame, None, 0.5, 3, 15, 3, 5, 1.2, 0) for detection_idx in unmatched_detections: self._initiate_track(detections[detection_idx], flow) # Update distance metric. active_targets = [t.track_id for t in self.tracks] features, features_2d, targets, targets_2d = [], [], [], [] for track in self.tracks: features += track.features features_2d += track.features_2d targets += [track.track_id for _ in track.features] targets_2d += [track.track_id for _ in track.features_2d] track.features = [] track.features_2d = [] self.metric.partial_fit( np.asarray(features), np.asarray(features_2d), np.asarray(targets), np.asarray(targets_2d), active_targets) self.prev_frame = self.cur_frame # @profile def _match(self, detections, compare_2d): # Associate all tracks using combined cost matrices. if self.JPDA: # Run JPDA on all tracks marginalizations = \ linear_assignment.JPDA(self.gated_metric, self.dummy_node_cost_app, self.dummy_node_cost_iou, self.tracks, \ detections, m=self.m_best_sol, compare_2d = compare_2d) # for track in self.tracks: #TODO: REMOVE # print(track.track_id) # print(marginalizations) jpda_matcher = JPDA_matching.Matcher( detections, marginalizations, range(len(self.tracks)), self.matching_strategy, assignment_threshold=self.assn_thresh) matches_a, unmatched_tracks_a, unmatched_detections = jpda_matcher.match() # Map matched tracks to detections # Map matched tracks to detections track_detection_map = {t:d for (t,d) in matches_a} # Map unmatched tracks to -1 for no detection for t in unmatched_tracks_a: track_detection_map[t] = -1 # update Kalman state if marginalizations.shape[0] > 0: for i in range(len(self.tracks)): self.tracks[i].update(self.kf, detections, marginalization=marginalizations[i,:], detection_idx=track_detection_map[i], JPDA=self.JPDA, cur_frame = self.cur_frame, appearance_model = self.appearance_model, lstm = self.lstm) else: confirmed_tracks = [i for i, t in enumerate(self.tracks) if t.is_confirmed()] matches_a, unmatched_tracks_a, unmatched_detections = \ linear_assignment.matching_cascade( self.gated_metric, self.dummy_node_cost_iou, self.max_age, self.tracks, detections, confirmed_tracks, compare_2d = compare_2d) return matches_a, unmatched_tracks_a, unmatched_detections def _initiate_track(self, detection, flow=None): if self.use_imm: mean, covariance, model_probabilities = self.kf.initiate(detection.to_xywh(), flow) else: mean, covariance = self.kf.initiate(detection.to_xywh(), flow) model_probabilities = None self.tracks.append(Track( mean, covariance, model_probabilities, self._next_id, self.n_init, self.max_age, kf_appearance_feature = self.kf_appearance_feature, feature=detection.feature, appearance_feature = detection.appearance_feature, cuda = self.cuda, lstm = self.lstm, last_det = detection)) self._next_id += 1 def prune_tracks(self): h, w = self.cur_frame.shape for track in self.tracks: # Check if track is leaving if self.use_imm: predicted_mean, predicted_cov = self.kf.combine_states(track.mean, track.covariance, track.model_probabilities) #TODO: This doesn't predict. Mean should def predict else: predicted_mean = self.kf.predict_mean(track.mean) predicted_cov = track.covariance predicted_pos = predicted_mean[:2] predicted_vel = predicted_mean[4:6] predicted_pos[0] -= w/2 predicted_pos[1] -= h/2 cos_theta = np.dot(predicted_pos, predicted_vel)/(np.linalg.norm(predicted_pos)* np.linalg.norm(predicted_vel) + 1e-6) predicted_pos[0] += w/2 predicted_pos[1] += h/2 # Thresholds for deciding whether track is outside image BORDER_VALUE = 0 if (cos_theta > 0 and (predicted_pos[0] - track.mean[2]/2<= BORDER_VALUE or predicted_pos[0] + track.mean[2]/2 >= w - BORDER_VALUE)): if track.is_exiting() and not track.matched: track.delete_track() else: track.mark_exiting() # Check if track is too uncertain # cov_axis,_ = np.linalg.eigh(predicted_cov) # if np.abs(np.sqrt(cov_axis[-1]))*6 > self.uncertainty_limit*np.linalg.norm(predicted_mean[2:4]): # track.delete_track() self.tracks = [t for t in self.tracks if not t.is_deleted()]
[ "numpy.dstack", "nn_matching.NearestNeighborDistanceMetric", "numpy.asarray", "numpy.array", "numpy.linalg.norm", "cv2.calcOpticalFlowFarneback", "numpy.dot" ]
[((2036, 2089), 'nn_matching.NearestNeighborDistanceMetric', 'NearestNeighborDistanceMetric', (['"""euclidean"""', 'nn_budget'], {}), "('euclidean', nn_budget)\n", (2065, 2089), False, 'from nn_matching import NearestNeighborDistanceMetric\n'), ((3126, 3179), 'numpy.array', 'np.array', (['[tracks[i].track_id for i in track_indices]'], {}), '([tracks[i].track_id for i in track_indices])\n', (3134, 3179), True, 'import numpy as np\n'), ((3941, 3993), 'numpy.dstack', 'np.dstack', (['(cost_matrix_appearance, cost_matrix_iou)'], {}), '((cost_matrix_appearance, cost_matrix_iou))\n', (3950, 3993), True, 'import numpy as np\n'), ((3322, 3387), 'numpy.array', 'np.array', (['[dets[i].appearance_feature for i in detection_indices]'], {}), '([dets[i].appearance_feature for i in detection_indices])\n', (3330, 3387), True, 'import numpy as np\n'), ((3425, 3479), 'numpy.array', 'np.array', (['[dets[i].feature for i in detection_indices]'], {}), '([dets[i].feature for i in detection_indices])\n', (3433, 3479), True, 'import numpy as np\n'), ((6679, 6699), 'numpy.asarray', 'np.asarray', (['features'], {}), '(features)\n', (6689, 6699), True, 'import numpy as np\n'), ((6701, 6724), 'numpy.asarray', 'np.asarray', (['features_2d'], {}), '(features_2d)\n', (6711, 6724), True, 'import numpy as np\n'), ((6726, 6745), 'numpy.asarray', 'np.asarray', (['targets'], {}), '(targets)\n', (6736, 6745), True, 'import numpy as np\n'), ((6747, 6769), 'numpy.asarray', 'np.asarray', (['targets_2d'], {}), '(targets_2d)\n', (6757, 6769), True, 'import numpy as np\n'), ((5940, 6037), 'cv2.calcOpticalFlowFarneback', 'cv2.calcOpticalFlowFarneback', (['self.prev_frame', 'self.cur_frame', 'None', '(0.5)', '(3)', '(15)', '(3)', '(5)', '(1.2)', '(0)'], {}), '(self.prev_frame, self.cur_frame, None, 0.5, 3,\n 15, 3, 5, 1.2, 0)\n', (5968, 6037), False, 'import cv2\n'), ((10200, 10236), 'numpy.dot', 'np.dot', (['predicted_pos', 'predicted_vel'], {}), '(predicted_pos, predicted_vel)\n', (10206, 10236), True, 'import numpy as np\n'), ((10238, 10267), 'numpy.linalg.norm', 'np.linalg.norm', (['predicted_pos'], {}), '(predicted_pos)\n', (10252, 10267), True, 'import numpy as np\n'), ((10321, 10350), 'numpy.linalg.norm', 'np.linalg.norm', (['predicted_vel'], {}), '(predicted_vel)\n', (10335, 10350), True, 'import numpy as np\n')]
"""PhoSim Instance Catalog""" from __future__ import absolute_import, division, print_function import numpy as np from lsst.sims.catUtils.exampleCatalogDefinitions import (PhoSimCatalogZPoint, PhoSimCatalogPoint, PhoSimCatalogSersic2D, PhoSimCatalogSN) from .twinklesVariabilityMixins import VariabilityTwinkles from lsst.sims.catUtils.mixins import VariabilityAGN, PhotometryGalaxies from lsst.sims.catUtils.exampleCatalogDefinitions.phoSimCatalogExamples import PhoSimSpecMap as psmp from lsst.sims.catalogs.definitions import CompoundInstanceCatalog from lsst.sims.catalogs.db import CompoundCatalogDBObject #__all__ = ['TwinklesCatalogZPoint', 'TwinklesPhoSimCatalogSN'] __all__ = ["TwinklesCatalogPoint", "TwinklesCatalogSersic2D", "TwinklesCatalogZPoint", "TwinklesCatalogSN", "TwinklesCompoundInstanceCatalog"] twinkles_sn_sed_dir = 'spectra_files' twinkles_spec_map = psmp twinkles_spec_map.subdir_map['(^specFile_)'] = twinkles_sn_sed_dir class TwinklesCatalogPoint(PhoSimCatalogPoint): specFileMap = twinkles_spec_map class TwinklesCatalogSersic2D(PhoSimCatalogSersic2D): specFileMap = twinkles_spec_map class TwinklesCatalogZPoint(PhoSimCatalogZPoint, VariabilityTwinkles, VariabilityAGN): """ PhoSim Instance Catalog Class for strongly lensed (and therefore time-delayed) AGN """ specFileMap = twinkles_spec_map catalog_type = 'twinkles_catalog_ZPOINT' class TwinklesCatalogSN(PhoSimCatalogSN): """ Modification of the PhoSimCatalogSN mixin to provide shorter sedFileNames by leaving out the parts of the directory name """ def get_shorterFileNames(self): fnames = self.column_by_name('sedFilepath') sep = 'spectra_files/specFile_' split_names = [] for fname in fnames: if 'None' not in fname: fname = sep + fname.split(sep)[-1] else: fname = 'None' split_names.append(fname) return np.array(split_names) # column_outputs = PhoSimCatalogSN.column_outputs # column_outputs[PhoSimCatalogSN.column_outputs.index('sedFilepath')] = \ # 'shorterFileNames' column_outputs = ['prefix', 'uniqueId', 'raPhoSim', 'decPhoSim', 'phoSimMagNorm', 'shorterFileNames', 'redshift', 'gamma1', 'gamma2', 'kappa', 'raOffset', 'decOffset', 'spatialmodel', 'internalExtinctionModel', 'galacticExtinctionModel', 'galacticAv', 'galacticRv'] cannot_be_null = ['x0', 't0', 'z', 'shorterFileNames'] class TwinklesCompoundInstanceCatalog(CompoundInstanceCatalog): use_spec_map = twinkles_spec_map def write_catalog(self, filename, chunk_size=None, write_header=True, write_mode='w'): """ Write the stored list of InstanceCatalogs to a single ASCII output catalog. @param [in] filename is the name of the file to be written @param [in] chunk_size is an optional parameter telling the CompoundInstanceCatalog to query the database in manageable chunks (in case returning the whole catalog takes too much memory) @param [in] write_header a boolean specifying whether or not to add a header to the output catalog (Note: only one header will be written; there will not be a header for each InstanceCatalog in the CompoundInstanceCatalog; default True) @param [in] write_mode is 'w' if you want to overwrite the output file or 'a' if you want to append to an existing output file (default: 'w') """ instantiated_ic_list = [None]*len(self._ic_list) # first, loop over all of the InstanceCatalog and CatalogDBObject classes, pre-processing # them (i.e. verifying that they have access to all of the columns they need) for ix, (icClass, dboClass) in enumerate(zip(self._ic_list, self._dbo_list)): dbo = dboClass() ic = icClass(dbo, obs_metadata=self._obs_metadata) # assign all non-private member variables of the CompoundInstanceCatalog # to the instantiated InstanceCatalogs for kk in self.__dict__: if kk[0] != '_' and not hasattr(self.__dict__[kk], '__call__'): setattr(ic, kk, self.__dict__[kk]) for kk in self.__class__.__dict__: if kk[0] != '_' and not hasattr(self.__class__.__dict__[kk], '__call__'): setattr(ic, kk, self.__class__.__dict__[kk]) ic._write_pre_process() instantiated_ic_list[ix] = ic for row in self._dbObjectGroupList: if len(row) == 1: ic = instantiated_ic_list[row[0]] ic._query_and_write(filename, chunk_size=chunk_size, write_header=write_header, write_mode=write_mode, obs_metadata=self._obs_metadata, constraint=self._constraint) write_mode = 'a' write_header = False default_compound_dbo = None if self._compoundDBclass is not None: if not hasattr(self._compoundDBclass, '__getitem__'): default_compound_dbo = CompoundCatalogDBObject else: for dbo in self._compoundDBclass: if dbo._table_restriction is None: default_compound_dbo = dbo break if default_compound_dbo is None: default_compound_dbo is CompoundCatalogDBObject for row in self._dbObjectGroupList: if len(row) > 1: dbObjClassList = [self._dbo_list[ix] for ix in row] catList = [instantiated_ic_list[ix] for ix in row] for cat in catList: cat._pre_screen = True if self._compoundDBclass is None: compound_dbo = CompoundCatalogDBObject(dbObjClassList) elif not hasattr(self._compoundDBclass, '__getitem__'): # if self._compoundDBclass is not a list try: compound_dbo = self._compoundDBclass(dbObjClassList) except: compound_dbo = default_compound_dbo(dbObjClassList) else: compound_dbo = None for candidate in self._compoundDBclass: use_it = True if False in [candidate._table_restriction is not None and dbo.tableid in candidate._table_restriction for dbo in dbObjClassList]: use_it = False if use_it: compound_dbo = candidate(dbObjClassList) break if compound_dbo is None: compound_dbo = default_compound_dbo(dbObjClassList) compound_dbo.mjd = self._obs_metadata.mjd.TAI compound_dbo.specFileMap = self.use_spec_map self._write_compound(catList, compound_dbo, filename, chunk_size=chunk_size, write_header=write_header, write_mode=write_mode) write_mode = 'a' write_header = False
[ "lsst.sims.catalogs.db.CompoundCatalogDBObject", "numpy.array" ]
[((2155, 2176), 'numpy.array', 'np.array', (['split_names'], {}), '(split_names)\n', (2163, 2176), True, 'import numpy as np\n'), ((6160, 6199), 'lsst.sims.catalogs.db.CompoundCatalogDBObject', 'CompoundCatalogDBObject', (['dbObjClassList'], {}), '(dbObjClassList)\n', (6183, 6199), False, 'from lsst.sims.catalogs.db import CompoundCatalogDBObject\n')]
# more or less the same simulation, but split up in to chunks that fit into memory # for large states (CA, IA, KS, OK, TX) # chunks of size 2000 (2000 locations in one part calculated and create temporary file) location_chunk = 2000 import argparse import datetime import glob import math import numpy as np import os import rasterio import statsmodels.api as sm import pandas as pd import statsmodels.api as sm import time import xarray as xr import sys sys.path.append('../') from functools import reduce from matplotlib import pyplot as plt from scipy.interpolate import interp1d from utils import windpower_simulation_era5_large from dask.diagnostics import ProgressBar ProgressBar().register() from paths_usa import * # get state and GWA version parser = argparse.ArgumentParser(description='Insert state and optionally GWA') parser.add_argument('-state') parser.add_argument('-GWA') args = parser.parse_args() state = args.state if(args.GWA == None): GWA = "3" else: GWA = args.GWA if GWA == "2": results_path = results_path + '/results_GWA2' if not os.path.exists(results_path): os.mkdir(results_path) startGWA = '1987' endGWA = '2016' else: startGWA = '2008' endGWA = '2017' # define start date for simulation startyearmonth = '2000-12' outfile = results_path + '/windpower_??_ERA5_GWA.nc' if results_path + '/windpower_' + state + '_ERA5_GWA.nc' not in glob.glob(outfile): wind = xr.open_mfdataset(era_path + "/eff_ws/era5_wind_USA_*.nc", chunks = {'time': 38}) alpha = xr.open_mfdataset(era_path + "/eff_ws/era5_alpha_USA_*.nc", chunks = {'time': 38}) # with GWA turbine_data_era_gwa = pd.read_csv(usa_path + '/turbine_data_era_gwa' + GWA + '.csv', parse_dates=['commissioning']) if GWA == "3": if state == 'PR': GWA = xr.open_rasterio(usa_path+'/GWA/GWA3_PR100m.tif') else: GWA = xr.open_rasterio(usa_path+'/GWA/GWA3_USA100m.tif') else: if state == 'AK': GWA = xr.open_rasterio(usa_path+'/GWA/GWA_AK100m.tif') elif state == 'HI': GWA = xr.open_rasterio(usa_path+'/GWA/GWA_HI100m.tif') elif state == 'PR': GWA = xr.open_rasterio(usa_path+'/GWA/GWA_PR100m.tif') else: GWA = xr.open_rasterio(usa_path+'/GWA/GWA_USA100m.tif') ind = turbine_data_era_gwa.state == state print('calculating ERA5 ' + state + ' GWA') t1 = time.time() # number of locations in state dat_len = sum(ind) numit = round(dat_len/location_chunk+0.5) # number of necessary iterations i1 = 0 i2 = i1 + location_chunk for it in range(numit): outfile_temp = results_path + "/wp_"+state+"_ERA5_GWA_temp" + str(it+1) +".nc" if i2 > dat_len: i2 = dat_len if outfile_temp not in glob.glob(results_path + "/wp_"+state+"_ERA5_GWA_temp*.nc"): wps = windpower_simulation_era5_large(wind.wh100, alpha.alpha, turbine_data_era_gwa.height[ind].values[i1:i2], turbine_data_era_gwa.capacity[ind].values[i1:i2], turbine_data_era_gwa.sp[ind].values[i1:i2], turbine_data_era_gwa.lon[ind].values[i1:i2], turbine_data_era_gwa.lat[ind].values[i1:i2], pd.to_datetime(turbine_data_era_gwa.commissioning[ind].values[i1:i2]).year.values, startyearmonth, GWA, startGWA, endGWA) # adapt numbers of locations in dataset wps = wps.assign_coords(location = np.arange(i1,i2)) # save temporary file print('saving to '+results_path + "/wp_"+state+"_ERA5_GWA_temp" + str(it+1) +".nc") wps.to_dataset(name='wp').to_netcdf(results_path + "/wp_"+state+"_ERA5_GWA_temp" + str(it+1) +".nc") print('saved to '+results_path + "/wp_"+state+"_ERA5_GWA_temp" + str(it+1) +".nc") wps.close() del(wps) i1 = i2 i2 = i2 + location_chunk print(round(i1/dat_len,3)*100,'% done in ',state) # merge and delete temporary files wps = xr.open_mfdataset(results_path + "/wp_"+state+"_ERA5_GWA_temp*.nc", chunks = {'time': 100}) print('saving to'+results_path + "/windpower_"+state+"_ERA5_GWA.nc") wps.drop(['x','y']).to_netcdf(results_path + "/windpower_"+state+"_ERA5_GWA.nc") print('saved to '+results_path + "/windpower_"+state+"_ERA5_GWA.nc") t2 = time.time() # remove temporary files for file in glob.glob(results_path + "/wp_"+state+"_ERA5_GWA_temp*.nc"): os.remove(file) print(t2-t1)
[ "sys.path.append", "os.mkdir", "os.remove", "argparse.ArgumentParser", "pandas.read_csv", "xarray.open_rasterio", "os.path.exists", "time.time", "dask.diagnostics.ProgressBar", "numpy.arange", "pandas.to_datetime", "glob.glob", "xarray.open_mfdataset" ]
[((457, 479), 'sys.path.append', 'sys.path.append', (['"""../"""'], {}), "('../')\n", (472, 479), False, 'import sys\n'), ((766, 836), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Insert state and optionally GWA"""'}), "(description='Insert state and optionally GWA')\n", (789, 836), False, 'import argparse\n'), ((1410, 1428), 'glob.glob', 'glob.glob', (['outfile'], {}), '(outfile)\n', (1419, 1428), False, 'import glob\n'), ((1442, 1521), 'xarray.open_mfdataset', 'xr.open_mfdataset', (["(era_path + '/eff_ws/era5_wind_USA_*.nc')"], {'chunks': "{'time': 38}"}), "(era_path + '/eff_ws/era5_wind_USA_*.nc', chunks={'time': 38})\n", (1459, 1521), True, 'import xarray as xr\n'), ((1536, 1621), 'xarray.open_mfdataset', 'xr.open_mfdataset', (["(era_path + '/eff_ws/era5_alpha_USA_*.nc')"], {'chunks': "{'time': 38}"}), "(era_path + '/eff_ws/era5_alpha_USA_*.nc', chunks={'time': 38}\n )\n", (1553, 1621), True, 'import xarray as xr\n'), ((1661, 1759), 'pandas.read_csv', 'pd.read_csv', (["(usa_path + '/turbine_data_era_gwa' + GWA + '.csv')"], {'parse_dates': "['commissioning']"}), "(usa_path + '/turbine_data_era_gwa' + GWA + '.csv', parse_dates=\n ['commissioning'])\n", (1672, 1759), True, 'import pandas as pd\n'), ((2431, 2442), 'time.time', 'time.time', ([], {}), '()\n', (2440, 2442), False, 'import time\n'), ((4574, 4671), 'xarray.open_mfdataset', 'xr.open_mfdataset', (["(results_path + '/wp_' + state + '_ERA5_GWA_temp*.nc')"], {'chunks': "{'time': 100}"}), "(results_path + '/wp_' + state + '_ERA5_GWA_temp*.nc',\n chunks={'time': 100})\n", (4591, 4671), True, 'import xarray as xr\n'), ((4926, 4937), 'time.time', 'time.time', ([], {}), '()\n', (4935, 4937), False, 'import time\n'), ((4988, 5051), 'glob.glob', 'glob.glob', (["(results_path + '/wp_' + state + '_ERA5_GWA_temp*.nc')"], {}), "(results_path + '/wp_' + state + '_ERA5_GWA_temp*.nc')\n", (4997, 5051), False, 'import glob\n'), ((678, 691), 'dask.diagnostics.ProgressBar', 'ProgressBar', ([], {}), '()\n', (689, 691), False, 'from dask.diagnostics import ProgressBar\n'), ((1079, 1107), 'os.path.exists', 'os.path.exists', (['results_path'], {}), '(results_path)\n', (1093, 1107), False, 'import os\n'), ((1117, 1139), 'os.mkdir', 'os.mkdir', (['results_path'], {}), '(results_path)\n', (1125, 1139), False, 'import os\n'), ((5057, 5072), 'os.remove', 'os.remove', (['file'], {}), '(file)\n', (5066, 5072), False, 'import os\n'), ((1818, 1869), 'xarray.open_rasterio', 'xr.open_rasterio', (["(usa_path + '/GWA/GWA3_PR100m.tif')"], {}), "(usa_path + '/GWA/GWA3_PR100m.tif')\n", (1834, 1869), True, 'import xarray as xr\n'), ((1900, 1952), 'xarray.open_rasterio', 'xr.open_rasterio', (["(usa_path + '/GWA/GWA3_USA100m.tif')"], {}), "(usa_path + '/GWA/GWA3_USA100m.tif')\n", (1916, 1952), True, 'import xarray as xr\n'), ((2005, 2055), 'xarray.open_rasterio', 'xr.open_rasterio', (["(usa_path + '/GWA/GWA_AK100m.tif')"], {}), "(usa_path + '/GWA/GWA_AK100m.tif')\n", (2021, 2055), True, 'import xarray as xr\n'), ((2816, 2879), 'glob.glob', 'glob.glob', (["(results_path + '/wp_' + state + '_ERA5_GWA_temp*.nc')"], {}), "(results_path + '/wp_' + state + '_ERA5_GWA_temp*.nc')\n", (2825, 2879), False, 'import glob\n'), ((2100, 2150), 'xarray.open_rasterio', 'xr.open_rasterio', (["(usa_path + '/GWA/GWA_HI100m.tif')"], {}), "(usa_path + '/GWA/GWA_HI100m.tif')\n", (2116, 2150), True, 'import xarray as xr\n'), ((2195, 2245), 'xarray.open_rasterio', 'xr.open_rasterio', (["(usa_path + '/GWA/GWA_PR100m.tif')"], {}), "(usa_path + '/GWA/GWA_PR100m.tif')\n", (2211, 2245), True, 'import xarray as xr\n'), ((2276, 2327), 'xarray.open_rasterio', 'xr.open_rasterio', (["(usa_path + '/GWA/GWA_USA100m.tif')"], {}), "(usa_path + '/GWA/GWA_USA100m.tif')\n", (2292, 2327), True, 'import xarray as xr\n'), ((3955, 3972), 'numpy.arange', 'np.arange', (['i1', 'i2'], {}), '(i1, i2)\n', (3964, 3972), True, 'import numpy as np\n'), ((3534, 3603), 'pandas.to_datetime', 'pd.to_datetime', (['turbine_data_era_gwa.commissioning[ind].values[i1:i2]'], {}), '(turbine_data_era_gwa.commissioning[ind].values[i1:i2])\n', (3548, 3603), True, 'import pandas as pd\n')]
"""OVK learning, unit tests. The :mod:`sklearn.tests.test_semisuo` tests semisup module. """ import operalib as ovk import numpy as np def test_semisup_linop(): """Test ovk.semisup.SemisupLinop.""" np.random.seed() n = 100 p = 5 lbda2 = .1 # supervised indices B = np.random.randint(2, size=(n)).astype(np.bool) # Graph Laplacian n_unsup = np.sum(~B) L = np.random.randn(n_unsup, n_unsup) L = np.dot(L, L.T) U, J = ovk.ridge._SemisupLinop(lbda2, B, L, p).gen() y = np.random.randn(n, p) # lbda2 * np.dot(L, y[~B, :]).ravel() # print(np.concatenate((y[B, :].ravel(), # lbda2 * np.dot(L, y[~B, :]).ravel()))) res = np.empty((n, p)) res[B, :] = y[B, :] res[~B] = 0 assert np.allclose(J * y.ravel(), res.ravel()) res = np.empty((n, p)) res[B, :] = y[B, :] res[~B] = lbda2 * np.dot(L, y[~B, :]) assert np.allclose(U * y.ravel(), res.ravel())
[ "numpy.random.seed", "numpy.sum", "numpy.random.randn", "numpy.empty", "numpy.random.randint", "numpy.dot", "operalib.ridge._SemisupLinop" ]
[((210, 226), 'numpy.random.seed', 'np.random.seed', ([], {}), '()\n', (224, 226), True, 'import numpy as np\n'), ((383, 393), 'numpy.sum', 'np.sum', (['(~B)'], {}), '(~B)\n', (389, 393), True, 'import numpy as np\n'), ((402, 435), 'numpy.random.randn', 'np.random.randn', (['n_unsup', 'n_unsup'], {}), '(n_unsup, n_unsup)\n', (417, 435), True, 'import numpy as np\n'), ((444, 458), 'numpy.dot', 'np.dot', (['L', 'L.T'], {}), '(L, L.T)\n', (450, 458), True, 'import numpy as np\n'), ((526, 547), 'numpy.random.randn', 'np.random.randn', (['n', 'p'], {}), '(n, p)\n', (541, 547), True, 'import numpy as np\n'), ((713, 729), 'numpy.empty', 'np.empty', (['(n, p)'], {}), '((n, p))\n', (721, 729), True, 'import numpy as np\n'), ((832, 848), 'numpy.empty', 'np.empty', (['(n, p)'], {}), '((n, p))\n', (840, 848), True, 'import numpy as np\n'), ((895, 914), 'numpy.dot', 'np.dot', (['L', 'y[~B, :]'], {}), '(L, y[~B, :])\n', (901, 914), True, 'import numpy as np\n'), ((299, 327), 'numpy.random.randint', 'np.random.randint', (['(2)'], {'size': 'n'}), '(2, size=n)\n', (316, 327), True, 'import numpy as np\n'), ((471, 510), 'operalib.ridge._SemisupLinop', 'ovk.ridge._SemisupLinop', (['lbda2', 'B', 'L', 'p'], {}), '(lbda2, B, L, p)\n', (494, 510), True, 'import operalib as ovk\n')]
# /usr/bin/env python3 import numpy as np def operadores(): a=np.random.randint(3,10,size=10) b=np.random.randint(4,78,size=10) print(np.add(a,b)) print(np.subtract(b,a)) print(np.negative(a,b)) print(np.multiply(a,b)) print(np.divide(a,b)) print(np.floor_divide(b,a)) print(np.power(b,a)) print(np.mod(b,a)) #funion abs #abs() : integrada en python #np.abs() o np.absolute() : integrada en numpy if __name__=="__main__": operadores()
[ "numpy.divide", "numpy.multiply", "numpy.subtract", "numpy.floor_divide", "numpy.power", "numpy.negative", "numpy.mod", "numpy.random.randint", "numpy.add" ]
[((69, 102), 'numpy.random.randint', 'np.random.randint', (['(3)', '(10)'], {'size': '(10)'}), '(3, 10, size=10)\n', (86, 102), True, 'import numpy as np\n'), ((108, 141), 'numpy.random.randint', 'np.random.randint', (['(4)', '(78)'], {'size': '(10)'}), '(4, 78, size=10)\n', (125, 141), True, 'import numpy as np\n'), ((151, 163), 'numpy.add', 'np.add', (['a', 'b'], {}), '(a, b)\n', (157, 163), True, 'import numpy as np\n'), ((175, 192), 'numpy.subtract', 'np.subtract', (['b', 'a'], {}), '(b, a)\n', (186, 192), True, 'import numpy as np\n'), ((204, 221), 'numpy.negative', 'np.negative', (['a', 'b'], {}), '(a, b)\n', (215, 221), True, 'import numpy as np\n'), ((233, 250), 'numpy.multiply', 'np.multiply', (['a', 'b'], {}), '(a, b)\n', (244, 250), True, 'import numpy as np\n'), ((262, 277), 'numpy.divide', 'np.divide', (['a', 'b'], {}), '(a, b)\n', (271, 277), True, 'import numpy as np\n'), ((289, 310), 'numpy.floor_divide', 'np.floor_divide', (['b', 'a'], {}), '(b, a)\n', (304, 310), True, 'import numpy as np\n'), ((322, 336), 'numpy.power', 'np.power', (['b', 'a'], {}), '(b, a)\n', (330, 336), True, 'import numpy as np\n'), ((348, 360), 'numpy.mod', 'np.mod', (['b', 'a'], {}), '(b, a)\n', (354, 360), True, 'import numpy as np\n')]
"""This module creates a new dataframe with a movie id and its corresponding mean sentiment score. Mean sentiment score is computed by taking the average of the sentiment scores for all the movie's comments """ from os import listdir import os.path as op import pandas as pd import numpy as np from .analyze_comments_tblob import analyze_comments import movie_analysis as mv data_path = op.join(mv.__path__[0], 'data/movie_comments') def get_sentiment_score(): """This function makes a new df with the movie_id and sentiment score as columns """ final_df = pd.DataFrame(columns=['movie_id', 'sentiment_score']) filenames2 = find_csv_filenames(data_path) for name in filenames2: new_name = data_path+"/"+name df = pd.read_csv(new_name, encoding='latin1') sentiment_df = pd.DataFrame(data=df) sentiment_df.columns = ["comment"] if not sentiment_df.empty: sentiment_df = analyze_comments(sentiment_df) if name.endswith('.csv'): name = name[:-4] sentiment_score = np.asarray(sentiment_df.iloc[:, 1], dtype=np.float).mean() final_df = add_row(name, sentiment_score, final_df) # final_df.to_csv("sentiment_scores.csv", encoding='latin1') return final_df def find_csv_filenames(path_to_dir, suffix=".csv"): """This function returns a list of all the filenames that end with '.csv' """ filenames = listdir(path_to_dir) return [filename for filename in filenames if filename.endswith(suffix)] def add_row(movie_id, mean_score, final_df): """This function adds a row to the data frame with the movie_id and corresponding sentiment_score values """ df2 = pd.DataFrame([[movie_id, mean_score]], columns=['movie_id', 'sentiment_score']) final_df = final_df.append(df2, ignore_index=True) return final_df
[ "pandas.DataFrame", "pandas.read_csv", "numpy.asarray", "os.path.join", "os.listdir" ]
[((389, 435), 'os.path.join', 'op.join', (['mv.__path__[0]', '"""data/movie_comments"""'], {}), "(mv.__path__[0], 'data/movie_comments')\n", (396, 435), True, 'import os.path as op\n'), ((577, 630), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': "['movie_id', 'sentiment_score']"}), "(columns=['movie_id', 'sentiment_score'])\n", (589, 630), True, 'import pandas as pd\n'), ((1444, 1464), 'os.listdir', 'listdir', (['path_to_dir'], {}), '(path_to_dir)\n', (1451, 1464), False, 'from os import listdir\n'), ((1720, 1799), 'pandas.DataFrame', 'pd.DataFrame', (['[[movie_id, mean_score]]'], {'columns': "['movie_id', 'sentiment_score']"}), "([[movie_id, mean_score]], columns=['movie_id', 'sentiment_score'])\n", (1732, 1799), True, 'import pandas as pd\n'), ((757, 797), 'pandas.read_csv', 'pd.read_csv', (['new_name'], {'encoding': '"""latin1"""'}), "(new_name, encoding='latin1')\n", (768, 797), True, 'import pandas as pd\n'), ((821, 842), 'pandas.DataFrame', 'pd.DataFrame', ([], {'data': 'df'}), '(data=df)\n', (833, 842), True, 'import pandas as pd\n'), ((1080, 1131), 'numpy.asarray', 'np.asarray', (['sentiment_df.iloc[:, 1]'], {'dtype': 'np.float'}), '(sentiment_df.iloc[:, 1], dtype=np.float)\n', (1090, 1131), True, 'import numpy as np\n')]
from datetime import datetime import numpy as np import warnings __author__ = '<NAME>' __email__ = '<EMAIL>' __created__ = datetime(2008, 8, 15) __modified__ = datetime(2015, 7, 25) __version__ = "1.5" __status__ = "Development" ''' Various vertical coordinates Presently, only ocean s-coordinates are supported. Future plans will be to include all of the vertical coordinate systems defined by the CF conventions. vgrid.py function copied from https://github.com/kshedstrom/pyroms (Frederic Castruccio) ''' def calculateVgrid(self): print(("--->Setting up vertical coordinates using self.vtransform: %s self.vstretching: %s"%(self.vtransform,self.vstretching))) if self.vtransform == 1: vgrid = s_coordinate(self.h, self.theta_b, self.theta_s, self.tcline, self.nlevels, self.vtransform, self.vstretching, zeta=None) elif self.vtransform == 2 and self.vstretching == 2: vgrid = s_coordinate_2(self.h, self.theta_b, self.theta_s, self.tcline, self.nlevels, self.vtransform, self.vstretching, zeta=None) elif self.vtransform == 2 and self.vstretching == 4: vgrid = s_coordinate_4(self.h, self.theta_b, self.theta_s, self.tcline, self.nlevels, self.vtransform, self.vstretching, zeta=None) else: raise Warning('Unknow vertical transformation Vtrans') self.z_r = vgrid.z_r[0,:] self.z_w = vgrid.z_w[0,:] self.Cs_rho = vgrid.Cs_r self.Cs_w = vgrid.Cs_w self.s_rho = vgrid.s_rho self.s_w = vgrid.s_w class s_coordinate(object): """ Song and Haidvogel (1994) vertical coordinate transformation (Vtransform=1) and stretching functions (Vstretching=1). return an object that can be indexed to return depths s = s_coordinate(h, theta_b, theta_s, Tcline, N) """ def __init__(self, h, theta_b, theta_s, tcline, N, vtransform, vstretching, zeta=None): self.h = np.asarray(h) self.hmin = h.min() self.theta_b = theta_b self.theta_s = theta_s self.tcline = tcline self.N = int(N) self.Np = self.N+1 self.vtransform = vtransform self.vstretching = vstretching self.hc = min(self.hmin, self.tcline) self.Vtrans = 1 if self.vtransform==1: if (self.tcline > self.hmin): warnings.warn('Vertical transformation parameters are not defined correctly in either gridid.txt or in the history files: \n Tcline = %d and hmin = %d. \n You need to make sure that Tcline <= hmin when using transformation 1.' %(self.Tcline,self.hmin)) self.c1 = 1.0 self.c2 = 2.0 self.p5 = 0.5 if zeta is None: self.zeta = np.zeros(h.shape) else: self.zeta = zeta self._get_s_rho() self._get_s_w() self._get_Cs_r() self._get_Cs_w() self.z_r = z_r(self.h, self.hc, self.N, self.s_rho, self.Cs_r, self.zeta, self.Vtrans) self.z_w = z_w(self.h, self.hc, self.Np, self.s_w, self.Cs_w, self.zeta, self.Vtrans) def _get_s_rho(self): lev = np.arange(1,self.N+1,1) ds = 1.0 / self.N self.s_rho = -self.c1 + (lev - self.p5) * ds def _get_s_w(self): lev = np.arange(0,self.Np,1) ds = 1.0 / (self.Np-1) self.s_w = -self.c1 + lev * ds def _get_Cs_r(self): if (self.theta_s >= 0): Ptheta = np.sinh(self.theta_s * self.s_rho) / np.sinh(self.theta_s) Rtheta = np.tanh(self.theta_s * (self.s_rho + self.p5)) / \ (self.c2 * np.tanh(self.p5 * self.theta_s)) - self.p5 self.Cs_r = (self.c1 - self.theta_b) * Ptheta + self.theta_b * Rtheta else: self.Cs_r = self.s_rho def _get_Cs_w(self): if (self.theta_s >= 0): Ptheta = np.sinh(self.theta_s * self.s_w) / np.sinh(self.theta_s) Rtheta = np.tanh(self.theta_s * (self.s_w + self.p5)) / \ (self.c2 * np.tanh(self.p5 * self.theta_s)) - self.p5 self.Cs_w = (self.c1 - self.theta_b) * Ptheta + self.theta_b * Rtheta else: self.Cs_w = self.s_w class s_coordinate_2(s_coordinate): """ <NAME> (2005) UCLA-ROMS vertical coordinate transformation (Vtransform=2) and stretching functions (Vstretching=2). return an object that can be indexed to return depths s = s_coordinate_2(h, theta_b, theta_s, Tcline, N) """ def __init__(self, h, theta_b, theta_s, tcline, N, vtransform, vstretching, zeta=None): self.h = np.asarray(h) self.hmin = h.min() self.theta_b = theta_b self.theta_s = theta_s self.tcline = tcline self.N = int(N) self.Np = self.N+1 self.vtransform = vtransform self.vstretching = vstretching self.hc = self.tcline self.Vtrans = 2 self.Aweight = 1.0 self.Bweight = 1.0 self.c1 = 1.0 self.c2 = 2.0 self.p5 = 0.5 if zeta is None: self.zeta = np.zeros(h.shape) else: self.zeta = zeta self._get_s_rho() self._get_s_w() self._get_Cs_r() self._get_Cs_w() self.z_r = z_r(self.h, self.hc, self.N, self.s_rho, self.Cs_r, self.zeta, self.Vtrans) self.z_w = z_w(self.h, self.hc, self.Np, self.s_w, self.Cs_w, self.zeta, self.Vtrans) def _get_s_rho(self): super(s_coordinate_2, self)._get_s_rho() def _get_s_w(self): super(s_coordinate_2, self)._get_s_w() def _get_Cs_r(self): if (self.theta_s >= 0): Csur = (self.c1 - np.cosh(self.theta_s * self.s_rho)) / \ (np.cosh(self.theta_s) - self.c1) if (self.theta_b >= 0): Cbot = np.sinh(self.theta_b * (self.s_rho + self.c1)) / \ np.sinh(self.theta_b) - self.c1 Cweight = (self.s_rho + self.c1)**self.Aweight * \ (self.c1 + (self.Aweight / self.Bweight) * \ (self.c1 - (self.s_rho + self.c1)**self.Bweight)) self.Cs_r = Cweight * Csur + (self.c1 - Cweight) * Cbot else: self.Cs_r = Csur else: self.Cs_r = self.s_rho def _get_Cs_w(self): if (self.theta_s >= 0): Csur = (self.c1 - np.cosh(self.theta_s * self.s_w)) / \ (np.cosh(self.theta_s) - self.c1) if (self.theta_b >= 0): Cbot = np.sinh(self.theta_b * (self.s_w + self.c1)) / \ np.sinh(self.theta_b) - self.c1 Cweight = (self.s_w + self.c1)**self.Aweight * \ (self.c1 + (self.Aweight / self.Bweight) * \ (self.c1 - (self.s_w + self.c1)**self.Bweight)) self.Cs_w = Cweight * Csur + (self.c1 - Cweight) * Cbot else: self.Cs_w = Csur else: self.Cs_w = self.s_w class s_coordinate_4(s_coordinate): """ <NAME> (2005) UCLA-ROMS vertical coordinate transformation (Vtransform=2) and stretching functions (Vstretching=4). return an object that can be indexed to return depths s = s_coordinate_4(h, theta_b, theta_s, Tcline, N) """ def __init__(self, h, theta_b, theta_s, tcline, N, vtransform, vstretching, zeta=None): self.h = np.asarray(h) self.hmin = h.min() self.theta_b = theta_b self.theta_s = theta_s self.tcline = tcline self.N = int(N) self.Np = self.N+1 self.vtransform = vtransform self.vstretching = vstretching self.hc = self.tcline self.Vtrans = 4 self.c1 = 1.0 self.c2 = 2.0 self.p5 = 0.5 if zeta is None: self.zeta = np.zeros(h.shape) else: self.zeta = zeta self._get_s_rho() self._get_s_w() self._get_Cs_r() self._get_Cs_w() self.z_r = z_r(self.h, self.hc, self.N, self.s_rho, self.Cs_r, self.zeta, self.Vtrans) self.z_w = z_w(self.h, self.hc, self.Np, self.s_w, self.Cs_w, self.zeta, self.Vtrans) def _get_s_rho(self): super(s_coordinate_4, self)._get_s_rho() def _get_s_w(self): super(s_coordinate_4, self)._get_s_w() def _get_Cs_r(self): if (self.theta_s > 0): Csur = (self.c1 - np.cosh(self.theta_s * self.s_rho)) / \ (np.cosh(self.theta_s) - self.c1) else: Csur = -self.s_rho**2 if (self.theta_b > 0): Cbot = (np.exp(self.theta_b * Csur) - self.c1 ) / \ (self.c1 - np.exp(-self.theta_b)) self.Cs_r = Cbot else: self.Cs_r = Csur def _get_Cs_w(self): if (self.theta_s > 0): Csur = (self.c1 - np.cosh(self.theta_s * self.s_w)) / \ (np.cosh(self.theta_s) - self.c1) else: Csur = -self.s_w**2 if (self.theta_b > 0): Cbot = (np.exp(self.theta_b * Csur) - self.c1 ) / \ ( self.c1 - np.exp(-self.theta_b) ) self.Cs_w = Cbot else: self.Cs_w = Csur class z_r(object): """ return an object that can be indexed to return depths of rho point z_r = z_r(h, hc, N, s_rho, Cs_r, zeta, Vtrans) """ def __init__(self, h, hc, N, s_rho, Cs_r, zeta, Vtrans): self.h = h self.hc = hc self.N = N self.s_rho = s_rho self.Cs_r = Cs_r self.zeta = zeta self.Vtrans = Vtrans def __getitem__(self, key): if isinstance(key, tuple) and len(self.zeta.shape) > len(self.h.shape): zeta = self.zeta[key[0]] res_index = (slice(None),) + key[1:] elif len(self.zeta.shape) > len(self.h.shape): zeta = self.zeta[key] res_index = slice(None) else: zeta = self.zeta res_index = key if self.h.ndim == zeta.ndim: # Assure a time-dimension exists zeta = zeta[np.newaxis, :] ti = zeta.shape[0] z_r = np.empty((ti, self.N) + self.h.shape, 'd') if self.Vtrans == 1: for n in range(ti): for k in range(self.N): z0 = self.hc * self.s_rho[k] + (self.h - self.hc) * self.Cs_r[k] z_r[n,k,:] = z0 + zeta[n,:] * (1.0 + z0 / self.h) elif self.Vtrans == 2 or self.Vtrans == 4: for n in range(ti): for k in range(self.N): z0 = (self.hc * self.s_rho[k] + self.h * self.Cs_r[k]) / \ (self.hc + self.h) z_r[n,k,:] = zeta[n,:] + (zeta[n,:] + self.h) * z0 return np.squeeze(z_r[res_index]) class z_w(object): """ return an object that can be indexed to return depths of w point z_w = z_w(h, hc, Np, s_w, Cs_w, zeta, Vtrans) """ def __init__(self, h, hc, Np, s_w, Cs_w, zeta, Vtrans): self.h = h self.hc = hc self.Np = Np self.s_w = s_w self.Cs_w = Cs_w self.zeta = zeta self.Vtrans = Vtrans def __getitem__(self, key): if isinstance(key, tuple) and len(self.zeta.shape) > len(self.h.shape): zeta = self.zeta[key[0]] res_index = (slice(None),) + key[1:] elif len(self.zeta.shape) > len(self.h.shape): zeta = self.zeta[key] res_index = slice(None) else: zeta = self.zeta res_index = key if self.h.ndim == zeta.ndim: # Assure a time-dimension exists zeta = zeta[np.newaxis, :] ti = zeta.shape[0] z_w = np.empty((ti, self.Np) + self.h.shape, 'd') if self.Vtrans == 1: for n in range(ti): for k in range(self.Np): z0 = self.hc * self.s_w[k] + (self.h - self.hc) * self.Cs_w[k] z_w[n,k,:] = z0 + zeta[n,:] * (1.0 + z0 / self.h) elif self.Vtrans == 2 or self.Vtrans == 4: for n in range(ti): for k in range(self.Np): z0 = (self.hc * self.s_w[k] + self.h * self.Cs_w[k]) / \ (self.hc + self.h) z_w[n,k,:] = zeta[n,:] + (zeta[n,:] + self.h) * z0 return np.squeeze(z_w[res_index]) def get_z_levels(self): """ Get a list of all the variables contained in netCDF file "filename" """ self.z_r=-self.h if len(self.z_r)==0: print(("No depth matrix found in file %s"%(self.selffilename)))
[ "numpy.tanh", "numpy.empty", "numpy.asarray", "numpy.zeros", "datetime.datetime", "numpy.arange", "numpy.exp", "numpy.squeeze", "warnings.warn", "numpy.cosh", "numpy.sinh" ]
[((131, 152), 'datetime.datetime', 'datetime', (['(2008)', '(8)', '(15)'], {}), '(2008, 8, 15)\n', (139, 152), False, 'from datetime import datetime\n'), ((168, 189), 'datetime.datetime', 'datetime', (['(2015)', '(7)', '(25)'], {}), '(2015, 7, 25)\n', (176, 189), False, 'from datetime import datetime\n'), ((1891, 1904), 'numpy.asarray', 'np.asarray', (['h'], {}), '(h)\n', (1901, 1904), True, 'import numpy as np\n'), ((3091, 3118), 'numpy.arange', 'np.arange', (['(1)', '(self.N + 1)', '(1)'], {}), '(1, self.N + 1, 1)\n', (3100, 3118), True, 'import numpy as np\n'), ((3233, 3257), 'numpy.arange', 'np.arange', (['(0)', 'self.Np', '(1)'], {}), '(0, self.Np, 1)\n', (3242, 3257), True, 'import numpy as np\n'), ((4563, 4576), 'numpy.asarray', 'np.asarray', (['h'], {}), '(h)\n', (4573, 4576), True, 'import numpy as np\n'), ((7425, 7438), 'numpy.asarray', 'np.asarray', (['h'], {}), '(h)\n', (7435, 7438), True, 'import numpy as np\n'), ((10228, 10270), 'numpy.empty', 'np.empty', (['((ti, self.N) + self.h.shape)', '"""d"""'], {}), "((ti, self.N) + self.h.shape, 'd')\n", (10236, 10270), True, 'import numpy as np\n'), ((10863, 10889), 'numpy.squeeze', 'np.squeeze', (['z_r[res_index]'], {}), '(z_r[res_index])\n', (10873, 10889), True, 'import numpy as np\n'), ((11836, 11879), 'numpy.empty', 'np.empty', (['((ti, self.Np) + self.h.shape)', '"""d"""'], {}), "((ti, self.Np) + self.h.shape, 'd')\n", (11844, 11879), True, 'import numpy as np\n'), ((12470, 12496), 'numpy.squeeze', 'np.squeeze', (['z_w[res_index]'], {}), '(z_w[res_index])\n', (12480, 12496), True, 'import numpy as np\n'), ((2689, 2706), 'numpy.zeros', 'np.zeros', (['h.shape'], {}), '(h.shape)\n', (2697, 2706), True, 'import numpy as np\n'), ((5051, 5068), 'numpy.zeros', 'np.zeros', (['h.shape'], {}), '(h.shape)\n', (5059, 5068), True, 'import numpy as np\n'), ((7858, 7875), 'numpy.zeros', 'np.zeros', (['h.shape'], {}), '(h.shape)\n', (7866, 7875), True, 'import numpy as np\n'), ((2312, 2578), 'warnings.warn', 'warnings.warn', (['("""Vertical transformation parameters are not defined correctly in either gridid.txt or in the history files: \n Tcline = %d and hmin = %d. \n You need to make sure that Tcline <= hmin when using transformation 1."""\n % (self.Tcline, self.hmin))'], {}), '(\n """Vertical transformation parameters are not defined correctly in either gridid.txt or in the history files: \n Tcline = %d and hmin = %d. \n You need to make sure that Tcline <= hmin when using transformation 1."""\n % (self.Tcline, self.hmin))\n', (2325, 2578), False, 'import warnings\n'), ((3405, 3439), 'numpy.sinh', 'np.sinh', (['(self.theta_s * self.s_rho)'], {}), '(self.theta_s * self.s_rho)\n', (3412, 3439), True, 'import numpy as np\n'), ((3442, 3463), 'numpy.sinh', 'np.sinh', (['self.theta_s'], {}), '(self.theta_s)\n', (3449, 3463), True, 'import numpy as np\n'), ((3822, 3854), 'numpy.sinh', 'np.sinh', (['(self.theta_s * self.s_w)'], {}), '(self.theta_s * self.s_w)\n', (3829, 3854), True, 'import numpy as np\n'), ((3857, 3878), 'numpy.sinh', 'np.sinh', (['self.theta_s'], {}), '(self.theta_s)\n', (3864, 3878), True, 'import numpy as np\n'), ((3485, 3531), 'numpy.tanh', 'np.tanh', (['(self.theta_s * (self.s_rho + self.p5))'], {}), '(self.theta_s * (self.s_rho + self.p5))\n', (3492, 3531), True, 'import numpy as np\n'), ((3900, 3944), 'numpy.tanh', 'np.tanh', (['(self.theta_s * (self.s_w + self.p5))'], {}), '(self.theta_s * (self.s_w + self.p5))\n', (3907, 3944), True, 'import numpy as np\n'), ((5640, 5674), 'numpy.cosh', 'np.cosh', (['(self.theta_s * self.s_rho)'], {}), '(self.theta_s * self.s_rho)\n', (5647, 5674), True, 'import numpy as np\n'), ((5702, 5723), 'numpy.cosh', 'np.cosh', (['self.theta_s'], {}), '(self.theta_s)\n', (5709, 5723), True, 'import numpy as np\n'), ((6381, 6413), 'numpy.cosh', 'np.cosh', (['(self.theta_s * self.s_w)'], {}), '(self.theta_s * self.s_w)\n', (6388, 6413), True, 'import numpy as np\n'), ((6441, 6462), 'numpy.cosh', 'np.cosh', (['self.theta_s'], {}), '(self.theta_s)\n', (6448, 6462), True, 'import numpy as np\n'), ((8454, 8488), 'numpy.cosh', 'np.cosh', (['(self.theta_s * self.s_rho)'], {}), '(self.theta_s * self.s_rho)\n', (8461, 8488), True, 'import numpy as np\n'), ((8516, 8537), 'numpy.cosh', 'np.cosh', (['self.theta_s'], {}), '(self.theta_s)\n', (8523, 8537), True, 'import numpy as np\n'), ((8648, 8675), 'numpy.exp', 'np.exp', (['(self.theta_b * Csur)'], {}), '(self.theta_b * Csur)\n', (8654, 8675), True, 'import numpy as np\n'), ((8722, 8743), 'numpy.exp', 'np.exp', (['(-self.theta_b)'], {}), '(-self.theta_b)\n', (8728, 8743), True, 'import numpy as np\n'), ((8913, 8945), 'numpy.cosh', 'np.cosh', (['(self.theta_s * self.s_w)'], {}), '(self.theta_s * self.s_w)\n', (8920, 8945), True, 'import numpy as np\n'), ((8973, 8994), 'numpy.cosh', 'np.cosh', (['self.theta_s'], {}), '(self.theta_s)\n', (8980, 8994), True, 'import numpy as np\n'), ((9103, 9130), 'numpy.exp', 'np.exp', (['(self.theta_b * Csur)'], {}), '(self.theta_b * Csur)\n', (9109, 9130), True, 'import numpy as np\n'), ((9178, 9199), 'numpy.exp', 'np.exp', (['(-self.theta_b)'], {}), '(-self.theta_b)\n', (9184, 9199), True, 'import numpy as np\n'), ((3569, 3600), 'numpy.tanh', 'np.tanh', (['(self.p5 * self.theta_s)'], {}), '(self.p5 * self.theta_s)\n', (3576, 3600), True, 'import numpy as np\n'), ((3982, 4013), 'numpy.tanh', 'np.tanh', (['(self.p5 * self.theta_s)'], {}), '(self.p5 * self.theta_s)\n', (3989, 4013), True, 'import numpy as np\n'), ((5794, 5840), 'numpy.sinh', 'np.sinh', (['(self.theta_b * (self.s_rho + self.c1))'], {}), '(self.theta_b * (self.s_rho + self.c1))\n', (5801, 5840), True, 'import numpy as np\n'), ((5868, 5889), 'numpy.sinh', 'np.sinh', (['self.theta_b'], {}), '(self.theta_b)\n', (5875, 5889), True, 'import numpy as np\n'), ((6533, 6577), 'numpy.sinh', 'np.sinh', (['(self.theta_b * (self.s_w + self.c1))'], {}), '(self.theta_b * (self.s_w + self.c1))\n', (6540, 6577), True, 'import numpy as np\n'), ((6605, 6626), 'numpy.sinh', 'np.sinh', (['self.theta_b'], {}), '(self.theta_b)\n', (6612, 6626), True, 'import numpy as np\n')]
import sys import pytest import numpy as np from numpy.testing import assert_array_equal, IS_PYPY class TestDLPack: @pytest.mark.skipif(IS_PYPY, reason="PyPy can't get refcounts.") def test_dunder_dlpack_refcount(self): x = np.arange(5) y = x.__dlpack__() assert sys.getrefcount(x) == 3 del y assert sys.getrefcount(x) == 2 def test_dunder_dlpack_stream(self): x = np.arange(5) x.__dlpack__(stream=None) with pytest.raises(RuntimeError): x.__dlpack__(stream=1) def test_strides_not_multiple_of_itemsize(self): dt = np.dtype([('int', np.int32), ('char', np.int8)]) y = np.zeros((5,), dtype=dt) z = y['int'] with pytest.raises(RuntimeError): np._from_dlpack(z) @pytest.mark.skipif(IS_PYPY, reason="PyPy can't get refcounts.") def test_from_dlpack_refcount(self): x = np.arange(5) y = np._from_dlpack(x) assert sys.getrefcount(x) == 3 del y assert sys.getrefcount(x) == 2 @pytest.mark.parametrize("dtype", [ np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64, np.float16, np.float32, np.float64, np.complex64, np.complex128 ]) def test_dtype_passthrough(self, dtype): x = np.arange(5, dtype=dtype) y = np._from_dlpack(x) assert y.dtype == x.dtype assert_array_equal(x, y) def test_invalid_dtype(self): x = np.asarray(np.datetime64('2021-05-27')) with pytest.raises(TypeError): np._from_dlpack(x) def test_invalid_byte_swapping(self): dt = np.dtype('=i8').newbyteorder() x = np.arange(5, dtype=dt) with pytest.raises(TypeError): np._from_dlpack(x) def test_non_contiguous(self): x = np.arange(25).reshape((5, 5)) y1 = x[0] assert_array_equal(y1, np._from_dlpack(y1)) y2 = x[:, 0] assert_array_equal(y2, np._from_dlpack(y2)) y3 = x[1, :] assert_array_equal(y3, np._from_dlpack(y3)) y4 = x[1] assert_array_equal(y4, np._from_dlpack(y4)) y5 = np.diagonal(x).copy() assert_array_equal(y5, np._from_dlpack(y5)) @pytest.mark.parametrize("ndim", range(33)) def test_higher_dims(self, ndim): shape = (1,) * ndim x = np.zeros(shape, dtype=np.float64) assert shape == np._from_dlpack(x).shape def test_dlpack_device(self): x = np.arange(5) assert x.__dlpack_device__() == (1, 0) y = np._from_dlpack(x) assert y.__dlpack_device__() == (1, 0) z = y[::2] assert z.__dlpack_device__() == (1, 0) def dlpack_deleter_exception(self): x = np.arange(5) _ = x.__dlpack__() raise RuntimeError def test_dlpack_destructor_exception(self): with pytest.raises(RuntimeError): self.dlpack_deleter_exception() def test_readonly(self): x = np.arange(5) x.flags.writeable = False with pytest.raises(TypeError): x.__dlpack__() def test_ndim0(self): x = np.array(1.0) y = np._from_dlpack(x) assert_array_equal(x, y) def test_size1dims_arrays(self): x = np.ndarray(dtype='f8', shape=(10, 5, 1), strides=(8, 80, 4), buffer=np.ones(1000, dtype=np.uint8), order='F') y = np._from_dlpack(x) assert_array_equal(x, y)
[ "numpy.datetime64", "numpy.testing.assert_array_equal", "numpy.dtype", "numpy.zeros", "numpy.ones", "sys.getrefcount", "pytest.raises", "pytest.mark.skipif", "numpy.arange", "numpy._from_dlpack", "numpy.array", "pytest.mark.parametrize", "numpy.diagonal" ]
[((124, 187), 'pytest.mark.skipif', 'pytest.mark.skipif', (['IS_PYPY'], {'reason': '"""PyPy can\'t get refcounts."""'}), '(IS_PYPY, reason="PyPy can\'t get refcounts.")\n', (142, 187), False, 'import pytest\n'), ((808, 871), 'pytest.mark.skipif', 'pytest.mark.skipif', (['IS_PYPY'], {'reason': '"""PyPy can\'t get refcounts."""'}), '(IS_PYPY, reason="PyPy can\'t get refcounts.")\n', (826, 871), False, 'import pytest\n'), ((1067, 1258), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""dtype"""', '[np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.\n uint64, np.float16, np.float32, np.float64, np.complex64, np.complex128]'], {}), "('dtype', [np.int8, np.int16, np.int32, np.int64, np\n .uint8, np.uint16, np.uint32, np.uint64, np.float16, np.float32, np.\n float64, np.complex64, np.complex128])\n", (1090, 1258), False, 'import pytest\n'), ((243, 255), 'numpy.arange', 'np.arange', (['(5)'], {}), '(5)\n', (252, 255), True, 'import numpy as np\n'), ((429, 441), 'numpy.arange', 'np.arange', (['(5)'], {}), '(5)\n', (438, 441), True, 'import numpy as np\n'), ((621, 669), 'numpy.dtype', 'np.dtype', (["[('int', np.int32), ('char', np.int8)]"], {}), "([('int', np.int32), ('char', np.int8)])\n", (629, 669), True, 'import numpy as np\n'), ((682, 706), 'numpy.zeros', 'np.zeros', (['(5,)'], {'dtype': 'dt'}), '((5,), dtype=dt)\n', (690, 706), True, 'import numpy as np\n'), ((925, 937), 'numpy.arange', 'np.arange', (['(5)'], {}), '(5)\n', (934, 937), True, 'import numpy as np\n'), ((950, 968), 'numpy._from_dlpack', 'np._from_dlpack', (['x'], {}), '(x)\n', (965, 968), True, 'import numpy as np\n'), ((1344, 1369), 'numpy.arange', 'np.arange', (['(5)'], {'dtype': 'dtype'}), '(5, dtype=dtype)\n', (1353, 1369), True, 'import numpy as np\n'), ((1382, 1400), 'numpy._from_dlpack', 'np._from_dlpack', (['x'], {}), '(x)\n', (1397, 1400), True, 'import numpy as np\n'), ((1444, 1468), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['x', 'y'], {}), '(x, y)\n', (1462, 1468), False, 'from numpy.testing import assert_array_equal, IS_PYPY\n'), ((1726, 1748), 'numpy.arange', 'np.arange', (['(5)'], {'dtype': 'dt'}), '(5, dtype=dt)\n', (1735, 1748), True, 'import numpy as np\n'), ((2403, 2436), 'numpy.zeros', 'np.zeros', (['shape'], {'dtype': 'np.float64'}), '(shape, dtype=np.float64)\n', (2411, 2436), True, 'import numpy as np\n'), ((2534, 2546), 'numpy.arange', 'np.arange', (['(5)'], {}), '(5)\n', (2543, 2546), True, 'import numpy as np\n'), ((2606, 2624), 'numpy._from_dlpack', 'np._from_dlpack', (['x'], {}), '(x)\n', (2621, 2624), True, 'import numpy as np\n'), ((2791, 2803), 'numpy.arange', 'np.arange', (['(5)'], {}), '(5)\n', (2800, 2803), True, 'import numpy as np\n'), ((3039, 3051), 'numpy.arange', 'np.arange', (['(5)'], {}), '(5)\n', (3048, 3051), True, 'import numpy as np\n'), ((3191, 3204), 'numpy.array', 'np.array', (['(1.0)'], {}), '(1.0)\n', (3199, 3204), True, 'import numpy as np\n'), ((3217, 3235), 'numpy._from_dlpack', 'np._from_dlpack', (['x'], {}), '(x)\n', (3232, 3235), True, 'import numpy as np\n'), ((3244, 3268), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['x', 'y'], {}), '(x, y)\n', (3262, 3268), False, 'from numpy.testing import assert_array_equal, IS_PYPY\n'), ((3464, 3482), 'numpy._from_dlpack', 'np._from_dlpack', (['x'], {}), '(x)\n', (3479, 3482), True, 'import numpy as np\n'), ((3491, 3515), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['x', 'y'], {}), '(x, y)\n', (3509, 3515), False, 'from numpy.testing import assert_array_equal, IS_PYPY\n'), ((298, 316), 'sys.getrefcount', 'sys.getrefcount', (['x'], {}), '(x)\n', (313, 316), False, 'import sys\n'), ((351, 369), 'sys.getrefcount', 'sys.getrefcount', (['x'], {}), '(x)\n', (366, 369), False, 'import sys\n'), ((490, 517), 'pytest.raises', 'pytest.raises', (['RuntimeError'], {}), '(RuntimeError)\n', (503, 517), False, 'import pytest\n'), ((742, 769), 'pytest.raises', 'pytest.raises', (['RuntimeError'], {}), '(RuntimeError)\n', (755, 769), False, 'import pytest\n'), ((783, 801), 'numpy._from_dlpack', 'np._from_dlpack', (['z'], {}), '(z)\n', (798, 801), True, 'import numpy as np\n'), ((984, 1002), 'sys.getrefcount', 'sys.getrefcount', (['x'], {}), '(x)\n', (999, 1002), False, 'import sys\n'), ((1037, 1055), 'sys.getrefcount', 'sys.getrefcount', (['x'], {}), '(x)\n', (1052, 1055), False, 'import sys\n'), ((1527, 1554), 'numpy.datetime64', 'np.datetime64', (['"""2021-05-27"""'], {}), "('2021-05-27')\n", (1540, 1554), True, 'import numpy as np\n'), ((1570, 1594), 'pytest.raises', 'pytest.raises', (['TypeError'], {}), '(TypeError)\n', (1583, 1594), False, 'import pytest\n'), ((1608, 1626), 'numpy._from_dlpack', 'np._from_dlpack', (['x'], {}), '(x)\n', (1623, 1626), True, 'import numpy as np\n'), ((1763, 1787), 'pytest.raises', 'pytest.raises', (['TypeError'], {}), '(TypeError)\n', (1776, 1787), False, 'import pytest\n'), ((1801, 1819), 'numpy._from_dlpack', 'np._from_dlpack', (['x'], {}), '(x)\n', (1816, 1819), True, 'import numpy as np\n'), ((1948, 1967), 'numpy._from_dlpack', 'np._from_dlpack', (['y1'], {}), '(y1)\n', (1963, 1967), True, 'import numpy as np\n'), ((2022, 2041), 'numpy._from_dlpack', 'np._from_dlpack', (['y2'], {}), '(y2)\n', (2037, 2041), True, 'import numpy as np\n'), ((2096, 2115), 'numpy._from_dlpack', 'np._from_dlpack', (['y3'], {}), '(y3)\n', (2111, 2115), True, 'import numpy as np\n'), ((2167, 2186), 'numpy._from_dlpack', 'np._from_dlpack', (['y4'], {}), '(y4)\n', (2182, 2186), True, 'import numpy as np\n'), ((2255, 2274), 'numpy._from_dlpack', 'np._from_dlpack', (['y5'], {}), '(y5)\n', (2270, 2274), True, 'import numpy as np\n'), ((2924, 2951), 'pytest.raises', 'pytest.raises', (['RuntimeError'], {}), '(RuntimeError)\n', (2937, 2951), False, 'import pytest\n'), ((3099, 3123), 'pytest.raises', 'pytest.raises', (['TypeError'], {}), '(TypeError)\n', (3112, 3123), False, 'import pytest\n'), ((1683, 1698), 'numpy.dtype', 'np.dtype', (['"""=i8"""'], {}), "('=i8')\n", (1691, 1698), True, 'import numpy as np\n'), ((1868, 1881), 'numpy.arange', 'np.arange', (['(25)'], {}), '(25)\n', (1877, 1881), True, 'import numpy as np\n'), ((2202, 2216), 'numpy.diagonal', 'np.diagonal', (['x'], {}), '(x)\n', (2213, 2216), True, 'import numpy as np\n'), ((2462, 2480), 'numpy._from_dlpack', 'np._from_dlpack', (['x'], {}), '(x)\n', (2477, 2480), True, 'import numpy as np\n'), ((3410, 3439), 'numpy.ones', 'np.ones', (['(1000)'], {'dtype': 'np.uint8'}), '(1000, dtype=np.uint8)\n', (3417, 3439), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ Created on Sat Apr 4 07:10:55 2020 @author: sj """ import numpy as np # left corner as (0,0), US in West and Asia in East # only validated in Asia, North and East #x as latitude (180), y as longitude (360), # x = 114288 # latitude, filepath # y = 214078 # longitude, filename # z = zoom level # x,y,z = 114288,214078,18 def g2latlng(x,y,z=18,vbs=0): x,y = x+0.5,y+0.5 # to center n = np.power(2,z) lng = y / n * 360.0 - 180.0 lat_rad = np.arctan(np.sinh(np.pi * (1 - 2 * x / n))) lat = lat_rad * 180.0 / np.pi if vbs: print(x,lat,y,lng) return lat,lng def to60(lat,lng,vbs=0): lat0 = np.floor(lat) tmp = (lat - lat0) * 60 lat1 = np.floor(tmp) lat2 = (tmp - lat1) * 60 lat = int(lat0),int(lat1),lat2 lng0 = np.floor(lng) tmp = (lng - lng0) * 60 lng1 = np.floor(tmp) lng2 = (tmp - lng1) * 60 lng = int(lng0),int(lng1),lng2 if vbs: print(lat,lng) return lat,lng if __name__ == '__main__': if True: x,y,z = 114453,213769,18 lat,lng = g2latlng(x,y,z,vbs=1) to60(lat,lng,vbs=1)
[ "numpy.power", "numpy.floor", "numpy.sinh" ]
[((444, 458), 'numpy.power', 'np.power', (['(2)', 'z'], {}), '(2, z)\n', (452, 458), True, 'import numpy as np\n'), ((686, 699), 'numpy.floor', 'np.floor', (['lat'], {}), '(lat)\n', (694, 699), True, 'import numpy as np\n'), ((741, 754), 'numpy.floor', 'np.floor', (['tmp'], {}), '(tmp)\n', (749, 754), True, 'import numpy as np\n'), ((843, 856), 'numpy.floor', 'np.floor', (['lng'], {}), '(lng)\n', (851, 856), True, 'import numpy as np\n'), ((898, 911), 'numpy.floor', 'np.floor', (['tmp'], {}), '(tmp)\n', (906, 911), True, 'import numpy as np\n'), ((516, 548), 'numpy.sinh', 'np.sinh', (['(np.pi * (1 - 2 * x / n))'], {}), '(np.pi * (1 - 2 * x / n))\n', (523, 548), True, 'import numpy as np\n')]
from PIL import Image import numpy as np import sys, os from progress_bar import ProgressBar def get_bit(pos, img): # avoids modifying thumbnail size = img.shape[0]*img.shape[1] - 4096 rgb = pos//size if rgb > 2: raise IndexError("Position is too large") pos = pos % size + 4096 x,y = pos // img.shape[1], pos % img.shape[1] return img[x][y][rgb] & 1 with Image.open(sys.argv[1]) as img: with open(sys.argv[2], "w+") as out: arrimg = np.array(img) pos = 0 cur_char = '' size_str = "" while cur_char != "|": ord_chr = 0 for i in range(8): bit = get_bit(pos, arrimg) pos += 1 ord_chr = ord_chr | bit << i cur_char = chr(ord_chr) size_str += cur_char size = int(size_str[:-1]) pb = ProgressBar(size) pb.begin() for i in range(size): ord_chr = 0 for i in range(8): bit = get_bit(pos, arrimg) pos += 1 ord_chr = ord_chr | bit << i out.write(chr(ord_chr)) pb.add_progress()
[ "progress_bar.ProgressBar", "numpy.array", "PIL.Image.open" ]
[((395, 418), 'PIL.Image.open', 'Image.open', (['sys.argv[1]'], {}), '(sys.argv[1])\n', (405, 418), False, 'from PIL import Image\n'), ((485, 498), 'numpy.array', 'np.array', (['img'], {}), '(img)\n', (493, 498), True, 'import numpy as np\n'), ((874, 891), 'progress_bar.ProgressBar', 'ProgressBar', (['size'], {}), '(size)\n', (885, 891), False, 'from progress_bar import ProgressBar\n')]
# Iterative Conway's game of life in Python / CUDA C # this version is meant to illustrate the use of shared kernel memory in CUDA. # written by <NAME> for "Hands on GPU Programming with Python and CUDA" import pycuda.autoinit import pycuda.driver as drv from pycuda import gpuarray from pycuda.compiler import SourceModule import numpy as np import matplotlib.pyplot as plt from time import time shared_ker = SourceModule(""" #define _iters 1000000 #define _X ( threadIdx.x + blockIdx.x * blockDim.x ) #define _Y ( threadIdx.y + blockIdx.y * blockDim.y ) #define _WIDTH ( blockDim.x * gridDim.x ) #define _HEIGHT ( blockDim.y * gridDim.y ) #define _XM(x) ( (x + _WIDTH) % _WIDTH ) #define _YM(y) ( (y + _HEIGHT) % _HEIGHT ) #define _INDEX(x,y) ( _XM(x) + _YM(y) * _WIDTH ) // return the number of living neighbors for a given cell __device__ int nbrs(int x, int y, int * in) { return ( in[ _INDEX(x -1, y+1) ] + in[ _INDEX(x-1, y) ] + in[ _INDEX(x-1, y-1) ] \ + in[ _INDEX(x, y+1)] + in[_INDEX(x, y - 1)] \ + in[ _INDEX(x+1, y+1) ] + in[ _INDEX(x+1, y) ] + in[ _INDEX(x+1, y-1) ] ); } // p_lattice will now be the pointer to the global lattice, lattice to the shared __global__ void conway_ker_shared(int * p_lattice, int iters) { // x, y are the appropriate values for the cell covered by this thread int x = _X, y = _Y; __shared__ int lattice[32*32]; lattice[_INDEX(x,y)] = p_lattice[_INDEX(x,y)]; __syncthreads(); // each thread copies its own value into the shared lattice, we need to wait for them to finisch for (int i = 0; i < iters; i++) { // count the number of neighbors around the current cell int n = nbrs(x, y, lattice); int cell_value; // if the current cell is alive, then determine if it lives or dies for the next generation. if ( lattice[_INDEX(x,y)] == 1) switch(n) { // if the cell is alive: it remains alive only if it has 2 or 3 neighbors. case 2: case 3: cell_value = 1; break; default: cell_value = 0; } else if( lattice[_INDEX(x,y)] == 0 ) switch(n) { // a dead cell comes to life only if it has 3 neighbors that are alive. case 3: cell_value = 1; break; default: cell_value = 0; } __syncthreads(); lattice[_INDEX(x,y)] = cell_value; __syncthreads(); } __syncthreads(); p_lattice[_INDEX(x,y)] = lattice[_INDEX(x,y)]; __syncthreads(); } """) conway_ker_shared = shared_ker.get_function("conway_ker_shared") if __name__ == '__main__': # set lattice size N = 32 lattice = np.int32( np.random.choice([1,0], N*N, p=[0.25, 0.75]).reshape(N, N) ) lattice_gpu = gpuarray.to_gpu(lattice) time1 = time() conway_ker_shared(lattice_gpu, np.int32(1e6), grid=(1,1,1), block=(32,32,1)) print("calc needed", (time() - time1)*1000, "ms") fig = plt.figure(1) plt.imshow(lattice_gpu.get()) plt.show()
[ "numpy.random.choice", "pycuda.compiler.SourceModule", "matplotlib.pyplot.show", "time.time", "matplotlib.pyplot.figure", "numpy.int32", "pycuda.gpuarray.to_gpu" ]
[((417, 2837), 'pycuda.compiler.SourceModule', 'SourceModule', (['""" \n#define _iters 1000000 \n\n#define _X ( threadIdx.x + blockIdx.x * blockDim.x )\n#define _Y ( threadIdx.y + blockIdx.y * blockDim.y )\n\n#define _WIDTH ( blockDim.x * gridDim.x )\n#define _HEIGHT ( blockDim.y * gridDim.y )\n\n#define _XM(x) ( (x + _WIDTH) % _WIDTH )\n#define _YM(y) ( (y + _HEIGHT) % _HEIGHT )\n\n#define _INDEX(x,y) ( _XM(x) + _YM(y) * _WIDTH )\n\n// return the number of living neighbors for a given cell \n__device__ int nbrs(int x, int y, int * in)\n{\n return ( in[ _INDEX(x -1, y+1) ] + in[ _INDEX(x-1, y) ] + in[ _INDEX(x-1, y-1) ] + in[ _INDEX(x, y+1)] + in[_INDEX(x, y - 1)] + in[ _INDEX(x+1, y+1) ] + in[ _INDEX(x+1, y) ] + in[ _INDEX(x+1, y-1) ] );\n}\n\n// p_lattice will now be the pointer to the global lattice, lattice to the shared\n__global__ void conway_ker_shared(int * p_lattice, int iters)\n{\n // x, y are the appropriate values for the cell covered by this thread\n int x = _X, y = _Y;\n __shared__ int lattice[32*32];\n \n \n lattice[_INDEX(x,y)] = p_lattice[_INDEX(x,y)];\n __syncthreads(); // each thread copies its own value into the shared lattice, we need to wait for them to finisch\n\n for (int i = 0; i < iters; i++)\n {\n \n // count the number of neighbors around the current cell\n int n = nbrs(x, y, lattice);\n \n int cell_value;\n \n \n // if the current cell is alive, then determine if it lives or dies for the next generation.\n if ( lattice[_INDEX(x,y)] == 1)\n switch(n)\n {\n // if the cell is alive: it remains alive only if it has 2 or 3 neighbors.\n case 2:\n case 3: cell_value = 1;\n break;\n default: cell_value = 0; \n }\n else if( lattice[_INDEX(x,y)] == 0 )\n switch(n)\n {\n // a dead cell comes to life only if it has 3 neighbors that are alive.\n case 3: cell_value = 1;\n break;\n default: cell_value = 0; \n }\n \n __syncthreads();\n lattice[_INDEX(x,y)] = cell_value;\n __syncthreads();\n \n }\n \n __syncthreads();\n p_lattice[_INDEX(x,y)] = lattice[_INDEX(x,y)];\n __syncthreads();\n \n}\n"""'], {}), '(\n """ \n#define _iters 1000000 \n\n#define _X ( threadIdx.x + blockIdx.x * blockDim.x )\n#define _Y ( threadIdx.y + blockIdx.y * blockDim.y )\n\n#define _WIDTH ( blockDim.x * gridDim.x )\n#define _HEIGHT ( blockDim.y * gridDim.y )\n\n#define _XM(x) ( (x + _WIDTH) % _WIDTH )\n#define _YM(y) ( (y + _HEIGHT) % _HEIGHT )\n\n#define _INDEX(x,y) ( _XM(x) + _YM(y) * _WIDTH )\n\n// return the number of living neighbors for a given cell \n__device__ int nbrs(int x, int y, int * in)\n{\n return ( in[ _INDEX(x -1, y+1) ] + in[ _INDEX(x-1, y) ] + in[ _INDEX(x-1, y-1) ] + in[ _INDEX(x, y+1)] + in[_INDEX(x, y - 1)] + in[ _INDEX(x+1, y+1) ] + in[ _INDEX(x+1, y) ] + in[ _INDEX(x+1, y-1) ] );\n}\n\n// p_lattice will now be the pointer to the global lattice, lattice to the shared\n__global__ void conway_ker_shared(int * p_lattice, int iters)\n{\n // x, y are the appropriate values for the cell covered by this thread\n int x = _X, y = _Y;\n __shared__ int lattice[32*32];\n \n \n lattice[_INDEX(x,y)] = p_lattice[_INDEX(x,y)];\n __syncthreads(); // each thread copies its own value into the shared lattice, we need to wait for them to finisch\n\n for (int i = 0; i < iters; i++)\n {\n \n // count the number of neighbors around the current cell\n int n = nbrs(x, y, lattice);\n \n int cell_value;\n \n \n // if the current cell is alive, then determine if it lives or dies for the next generation.\n if ( lattice[_INDEX(x,y)] == 1)\n switch(n)\n {\n // if the cell is alive: it remains alive only if it has 2 or 3 neighbors.\n case 2:\n case 3: cell_value = 1;\n break;\n default: cell_value = 0; \n }\n else if( lattice[_INDEX(x,y)] == 0 )\n switch(n)\n {\n // a dead cell comes to life only if it has 3 neighbors that are alive.\n case 3: cell_value = 1;\n break;\n default: cell_value = 0; \n }\n \n __syncthreads();\n lattice[_INDEX(x,y)] = cell_value;\n __syncthreads();\n \n }\n \n __syncthreads();\n p_lattice[_INDEX(x,y)] = lattice[_INDEX(x,y)];\n __syncthreads();\n \n}\n"""\n )\n', (429, 2837), False, 'from pycuda.compiler import SourceModule\n'), ((3074, 3098), 'pycuda.gpuarray.to_gpu', 'gpuarray.to_gpu', (['lattice'], {}), '(lattice)\n', (3089, 3098), False, 'from pycuda import gpuarray\n'), ((3120, 3126), 'time.time', 'time', ([], {}), '()\n', (3124, 3126), False, 'from time import time\n'), ((3281, 3294), 'matplotlib.pyplot.figure', 'plt.figure', (['(1)'], {}), '(1)\n', (3291, 3294), True, 'import matplotlib.pyplot as plt\n'), ((3333, 3343), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3341, 3343), True, 'import matplotlib.pyplot as plt\n'), ((3162, 3181), 'numpy.int32', 'np.int32', (['(1000000.0)'], {}), '(1000000.0)\n', (3170, 3181), True, 'import numpy as np\n'), ((2995, 3042), 'numpy.random.choice', 'np.random.choice', (['[1, 0]', '(N * N)'], {'p': '[0.25, 0.75]'}), '([1, 0], N * N, p=[0.25, 0.75])\n', (3011, 3042), True, 'import numpy as np\n'), ((3234, 3240), 'time.time', 'time', ([], {}), '()\n', (3238, 3240), False, 'from time import time\n')]
#!/usr/bin/env python '''====================================================== Created by: <NAME> and <NAME> Last updated: March 2015 File name: DF_Plots.py Organization: RISC Lab, Utah State University ======================================================''' import roslib; roslib.load_manifest('risc_msgs') import rospy import numpy as np import matplotlib as mpl from mpl_toolkits.mplot3d import Axes3D import pylab as p import matplotlib.pyplot as plt import time #=======================# # Messages Needed # #=======================# from risc_msgs.msg import * # states,controls,trajectory from sensor_msgs.msg import Joy #========================# # Globals # #========================# rate = 20 # Hz states = Cortex() traj = Trajectories() ctrl = Controls() start_time = 0 euler_max = 45*np.pi/180 Button_pushed = False plot_button = 3 #===================================# # Plotting Variables # #===================================# states_of_interest = 16 storage_mat = np.asmatrix(np.zeros((1,states_of_interest))) index = [0] name = ['Initial'] #==================# # Get States # #==================# def GetStates(I): global states states = I #=========================# # Get Joystick Data # #=========================# def GetJoy(I): global Button_pushed Button_pushed = I.buttons[plot_button] #======================# # Get Trajectory # #======================# def GetTrajectory(I): global traj traj = I #====================# # Get Controls # #====================# def GetControls(I): global ctrl ctrl = I def Plots(): global storage_mat, index, name if len(index) > 2: for i in range(len(index)-1): # assign data vectors f = index[i+1] if i+2 == len(index): b = -1 else: b = index[i+2] x_act = storage_mat[f:b,0] y_act = storage_mat[f:b,1] z_act = storage_mat[f:b,2] x_des = storage_mat[f:b,3] y_des = storage_mat[f:b,4] z_des = storage_mat[f:b,5] phi_des = storage_mat[f:b,6] theta_des = storage_mat[f:b,7] psi_des = storage_mat[f:b,8] phi_act = storage_mat[f:b,9] theta_act = storage_mat[f:b,10] psi_act = storage_mat[f:b,11] xdot_err = storage_mat[f:b,12] ydot_err = storage_mat[f:b,13] zdot_err = storage_mat[f:b,14] t = storage_mat[f:b,15] # 3d plot plot3d(name[i+1],x_act,y_act,z_act,x_des,y_des,z_des) # Roll plot2d(name[i+1] + ' Roll',phi_act,phi_des,t,'Time (s)','Angle (Deg)') # Pitch plot2d(name[i+1] + ' Pitch',theta_act,theta_des,t,'Time (s)','Angle (Deg)') # Errors plot3err(name[i+1] + ' Position Errors',x_des-x_act,y_des-y_act,z_des-z_act,t,'Time (s)', 'Error (m)', 'x', 'y', 'z') plot3err(name[i+1] + ' Velocity Errors',xdot_err,ydot_err,zdot_err,t,'Time (s)', 'Error (m/s)', 'xdot', 'ydot', 'zdot') plt.show(block=False) else: rospy.loginfo("insufficient data") #==========================# # Plotting Functions # #==========================# def plot3d(Traj_name,x_act,y_act,z_act,x_des,y_des,z_des): x_act=list(np.array(x_act).reshape(-1)) y_act=list(np.array(y_act).reshape(-1)) z_act=list(np.array(z_act).reshape(-1)) x_des=list(np.array(x_des).reshape(-1)) y_des=list(np.array(y_des).reshape(-1)) z_des=list(np.array(z_des).reshape(-1)) fig = plt.figure(Traj_name) ax = fig.gca(projection='3d') ax.plot(x_act, y_act, z_act,'k-', label='Actual') ax.plot(x_des, y_des, z_des,'r-', label='Desired') ax.legend() ax.set_title(Traj_name + ' Trajectory', fontsize=16) ax.set_xlabel(r'X (m)', fontsize=14) ax.set_ylabel(r'Y (m)', fontsize=14) ax.set_zlabel(r'Z (m)', fontsize=14) ax.set_xlim([-2, 2]) ax.set_ylim([-2, 2]) ax.set_zlim([0, 2]) def plot3err(plot_name,err1,err2,err3,time,xaxis_label, yaxis_label,label1, label2, label3): Err1 = list(np.array(err1).reshape(-1)) Err2 = list(np.array(err2).reshape(-1)) Err3 = list(np.array(err3).reshape(-1)) time = list(np.array(time).reshape(-1)) fig = plt.figure(plot_name) plt.plot(time, Err1,'b-', label=label1) plt.plot(time, Err2,'k-', label=label2) plt.plot(time, Err3,'r-', label=label3) plt.legend() plt.title(plot_name, fontsize=16) plt.xlabel(xaxis_label, fontsize=14) plt.ylabel(yaxis_label, fontsize=14) plt.xlim((time[0],time[-1])) y_min = min([min(Err1),min(Err2),min(Err3)]) y_min = y_min - .2*abs(y_min) y_max = max([max(Err1),max(Err2),max(Err3)]) y_max = y_max + .2*abs(y_max) plt.ylim((y_min,y_max)) def plot2d(plot_name,actual_data,commanded_data,time,xaxis_label, yaxis_label): actual_data = list(np.array(actual_data).reshape(-1)) commanded_data = list(np.array(commanded_data).reshape(-1)) time = list(np.array(time).reshape(-1)) fig = plt.figure(plot_name) plt.plot(time, actual_data, 'b-', label='actual') plt.plot(time, commanded_data,'r:', label='Commanded') plt.legend() plt.title(plot_name, fontsize=16) plt.xlabel(xaxis_label, fontsize=14) plt.ylabel(yaxis_label, fontsize=14) plt.xlim((time[0],time[-1])) y_min = min([min(actual_data),min(commanded_data)]) y_min = y_min - .2*abs(y_min) y_max = max([max(actual_data),max(commanded_data)]) y_max = y_max + .2*abs(y_max) plt.ylim((y_min,y_max)) #==================# # Datalogger # #==================# def Datalogger(): global start_time,states,ctrl, traj, euler_max #======================================================# # If all states of interest are present log data # #======================================================# if len(traj.Obj) > 0 and len(states.Obj) > 0 and len(ctrl.Obj) > 0: global storage_mat rospy.loginfo("logging data...") x_act = states.Obj[0].x y_act = states.Obj[0].y z_act = states.Obj[0].z x_des = traj.Obj[0].x y_des = traj.Obj[0].y z_des = traj.Obj[0].z phi_traj = ctrl.Obj[0].phi*euler_max*180/np.pi theta_traj = ctrl.Obj[0].theta*euler_max*180/np.pi psi_traj = traj.Obj[0].psi*180/np.pi phi_cort = states.Obj[0].phi theta_cort = states.Obj[0].theta psi_cort = states.Obj[0].psi u_cort_err = traj.Obj[0].xdot - states.Obj[0].u v_cort_err = traj.Obj[0].ydot - states.Obj[0].v w_cort_err = traj.Obj[0].zdot - states.Obj[0].w t = float(rospy.get_time() - start_time) new_stack = np.asmatrix(np.array([x_act, y_act, z_act, z_des, y_des, z_des,\ phi_traj, theta_traj, psi_traj, phi_cort, theta_cort, psi_cort,\ u_cort_err, v_cort_err, w_cort_err,t])) storage_mat = np.append(storage_mat,new_stack,0) #==========================================================================# # If there is a new trajectory store the index and trajectory name # #==========================================================================# global storage_mat, states_of_interest,name,index if len(traj.Obj) > 0 and name[-1] != traj.Obj[0].name: name.append(traj.Obj[0].name) index.append(storage_mat.shape[0] -1) start_time = rospy.get_time() #===================# # Main # #===================# if __name__=='__main__': rospy.init_node('DF_Plotter') start_time = rospy.get_time() euler_max = float(rospy.get_param("euler_angle_max", ".78537")) #in radians plot_button = int(rospy.get_param("plot_button", "3")) #=====================================# # Set up Publish/Subscribe Loop # #=====================================# r = rospy.Rate(rate) while not rospy.is_shutdown(): sub_states = rospy.Subscriber('/cortex_raw' , Cortex, GetStates) sub_traj = rospy.Subscriber('/trajectory',Trajectories, GetTrajectory) sub_cntrl = rospy.Subscriber('/controls' , Controls, GetControls) sub_joy = rospy.Subscriber('/joy' , Joy, GetJoy) Datalogger() if Button_pushed: Plots() answer = raw_input('Erase plots and reset datalogger?') if answer == 'y' or answer == 'yes' or answer == 'I guess' or answer == 'sure': rospy.loginfo("Resetting datalogger and erasing plots...") plt.clf() start_time = rospy.get_time() storage_mat = np.asmatrix(np.zeros((1,states_of_interest))) plt.close('all') else: plt.clf() plt.close('all') rospy.signal_shutdown(0) r.sleep()
[ "matplotlib.pyplot.title", "rospy.Subscriber", "matplotlib.pyplot.clf", "matplotlib.pyplot.figure", "roslib.load_manifest", "matplotlib.pyplot.close", "rospy.Rate", "rospy.signal_shutdown", "numpy.append", "rospy.is_shutdown", "rospy.init_node", "rospy.get_time", "matplotlib.pyplot.show", "matplotlib.pyplot.ylim", "matplotlib.pyplot.legend", "rospy.loginfo", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlim", "matplotlib.pyplot.plot", "numpy.zeros", "rospy.get_param", "numpy.array", "matplotlib.pyplot.xlabel" ]
[((301, 334), 'roslib.load_manifest', 'roslib.load_manifest', (['"""risc_msgs"""'], {}), "('risc_msgs')\n", (321, 334), False, 'import roslib\n'), ((1180, 1213), 'numpy.zeros', 'np.zeros', (['(1, states_of_interest)'], {}), '((1, states_of_interest))\n', (1188, 1213), True, 'import numpy as np\n'), ((3923, 3944), 'matplotlib.pyplot.figure', 'plt.figure', (['Traj_name'], {}), '(Traj_name)\n', (3933, 3944), True, 'import matplotlib.pyplot as plt\n'), ((4651, 4672), 'matplotlib.pyplot.figure', 'plt.figure', (['plot_name'], {}), '(plot_name)\n', (4661, 4672), True, 'import matplotlib.pyplot as plt\n'), ((4677, 4717), 'matplotlib.pyplot.plot', 'plt.plot', (['time', 'Err1', '"""b-"""'], {'label': 'label1'}), "(time, Err1, 'b-', label=label1)\n", (4685, 4717), True, 'import matplotlib.pyplot as plt\n'), ((4721, 4761), 'matplotlib.pyplot.plot', 'plt.plot', (['time', 'Err2', '"""k-"""'], {'label': 'label2'}), "(time, Err2, 'k-', label=label2)\n", (4729, 4761), True, 'import matplotlib.pyplot as plt\n'), ((4765, 4805), 'matplotlib.pyplot.plot', 'plt.plot', (['time', 'Err3', '"""r-"""'], {'label': 'label3'}), "(time, Err3, 'r-', label=label3)\n", (4773, 4805), True, 'import matplotlib.pyplot as plt\n'), ((4809, 4821), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (4819, 4821), True, 'import matplotlib.pyplot as plt\n'), ((4826, 4859), 'matplotlib.pyplot.title', 'plt.title', (['plot_name'], {'fontsize': '(16)'}), '(plot_name, fontsize=16)\n', (4835, 4859), True, 'import matplotlib.pyplot as plt\n'), ((4864, 4900), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['xaxis_label'], {'fontsize': '(14)'}), '(xaxis_label, fontsize=14)\n', (4874, 4900), True, 'import matplotlib.pyplot as plt\n'), ((4905, 4941), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['yaxis_label'], {'fontsize': '(14)'}), '(yaxis_label, fontsize=14)\n', (4915, 4941), True, 'import matplotlib.pyplot as plt\n'), ((4946, 4975), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(time[0], time[-1])'], {}), '((time[0], time[-1]))\n', (4954, 4975), True, 'import matplotlib.pyplot as plt\n'), ((5146, 5170), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(y_min, y_max)'], {}), '((y_min, y_max))\n', (5154, 5170), True, 'import matplotlib.pyplot as plt\n'), ((5441, 5462), 'matplotlib.pyplot.figure', 'plt.figure', (['plot_name'], {}), '(plot_name)\n', (5451, 5462), True, 'import matplotlib.pyplot as plt\n'), ((5467, 5516), 'matplotlib.pyplot.plot', 'plt.plot', (['time', 'actual_data', '"""b-"""'], {'label': '"""actual"""'}), "(time, actual_data, 'b-', label='actual')\n", (5475, 5516), True, 'import matplotlib.pyplot as plt\n'), ((5521, 5576), 'matplotlib.pyplot.plot', 'plt.plot', (['time', 'commanded_data', '"""r:"""'], {'label': '"""Commanded"""'}), "(time, commanded_data, 'r:', label='Commanded')\n", (5529, 5576), True, 'import matplotlib.pyplot as plt\n'), ((5580, 5592), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (5590, 5592), True, 'import matplotlib.pyplot as plt\n'), ((5597, 5630), 'matplotlib.pyplot.title', 'plt.title', (['plot_name'], {'fontsize': '(16)'}), '(plot_name, fontsize=16)\n', (5606, 5630), True, 'import matplotlib.pyplot as plt\n'), ((5635, 5671), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['xaxis_label'], {'fontsize': '(14)'}), '(xaxis_label, fontsize=14)\n', (5645, 5671), True, 'import matplotlib.pyplot as plt\n'), ((5676, 5712), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['yaxis_label'], {'fontsize': '(14)'}), '(yaxis_label, fontsize=14)\n', (5686, 5712), True, 'import matplotlib.pyplot as plt\n'), ((5717, 5746), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(time[0], time[-1])'], {}), '((time[0], time[-1]))\n', (5725, 5746), True, 'import matplotlib.pyplot as plt\n'), ((5931, 5955), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(y_min, y_max)'], {}), '((y_min, y_max))\n', (5939, 5955), True, 'import matplotlib.pyplot as plt\n'), ((8031, 8060), 'rospy.init_node', 'rospy.init_node', (['"""DF_Plotter"""'], {}), "('DF_Plotter')\n", (8046, 8060), False, 'import rospy\n'), ((8078, 8094), 'rospy.get_time', 'rospy.get_time', ([], {}), '()\n', (8092, 8094), False, 'import rospy\n'), ((8379, 8395), 'rospy.Rate', 'rospy.Rate', (['rate'], {}), '(rate)\n', (8389, 8395), False, 'import rospy\n'), ((3441, 3475), 'rospy.loginfo', 'rospy.loginfo', (['"""insufficient data"""'], {}), "('insufficient data')\n", (3454, 3475), False, 'import rospy\n'), ((6395, 6427), 'rospy.loginfo', 'rospy.loginfo', (['"""logging data..."""'], {}), "('logging data...')\n", (6408, 6427), False, 'import rospy\n'), ((7407, 7443), 'numpy.append', 'np.append', (['storage_mat', 'new_stack', '(0)'], {}), '(storage_mat, new_stack, 0)\n', (7416, 7443), True, 'import numpy as np\n'), ((7905, 7921), 'rospy.get_time', 'rospy.get_time', ([], {}), '()\n', (7919, 7921), False, 'import rospy\n'), ((8120, 8164), 'rospy.get_param', 'rospy.get_param', (['"""euler_angle_max"""', '""".78537"""'], {}), "('euler_angle_max', '.78537')\n", (8135, 8164), False, 'import rospy\n'), ((8201, 8236), 'rospy.get_param', 'rospy.get_param', (['"""plot_button"""', '"""3"""'], {}), "('plot_button', '3')\n", (8216, 8236), False, 'import rospy\n'), ((8410, 8429), 'rospy.is_shutdown', 'rospy.is_shutdown', ([], {}), '()\n', (8427, 8429), False, 'import rospy\n'), ((8453, 8503), 'rospy.Subscriber', 'rospy.Subscriber', (['"""/cortex_raw"""', 'Cortex', 'GetStates'], {}), "('/cortex_raw', Cortex, GetStates)\n", (8469, 8503), False, 'import rospy\n'), ((8527, 8587), 'rospy.Subscriber', 'rospy.Subscriber', (['"""/trajectory"""', 'Trajectories', 'GetTrajectory'], {}), "('/trajectory', Trajectories, GetTrajectory)\n", (8543, 8587), False, 'import rospy\n'), ((8609, 8661), 'rospy.Subscriber', 'rospy.Subscriber', (['"""/controls"""', 'Controls', 'GetControls'], {}), "('/controls', Controls, GetControls)\n", (8625, 8661), False, 'import rospy\n'), ((8685, 8722), 'rospy.Subscriber', 'rospy.Subscriber', (['"""/joy"""', 'Joy', 'GetJoy'], {}), "('/joy', Joy, GetJoy)\n", (8701, 8722), False, 'import rospy\n'), ((3401, 3422), 'matplotlib.pyplot.show', 'plt.show', ([], {'block': '(False)'}), '(block=False)\n', (3409, 3422), True, 'import matplotlib.pyplot as plt\n'), ((7184, 7347), 'numpy.array', 'np.array', (['[x_act, y_act, z_act, z_des, y_des, z_des, phi_traj, theta_traj, psi_traj,\n phi_cort, theta_cort, psi_cort, u_cort_err, v_cort_err, w_cort_err, t]'], {}), '([x_act, y_act, z_act, z_des, y_des, z_des, phi_traj, theta_traj,\n psi_traj, phi_cort, theta_cort, psi_cort, u_cort_err, v_cort_err,\n w_cort_err, t])\n', (7192, 7347), True, 'import numpy as np\n'), ((3663, 3678), 'numpy.array', 'np.array', (['x_act'], {}), '(x_act)\n', (3671, 3678), True, 'import numpy as np\n'), ((3707, 3722), 'numpy.array', 'np.array', (['y_act'], {}), '(y_act)\n', (3715, 3722), True, 'import numpy as np\n'), ((3751, 3766), 'numpy.array', 'np.array', (['z_act'], {}), '(z_act)\n', (3759, 3766), True, 'import numpy as np\n'), ((3795, 3810), 'numpy.array', 'np.array', (['x_des'], {}), '(x_des)\n', (3803, 3810), True, 'import numpy as np\n'), ((3839, 3854), 'numpy.array', 'np.array', (['y_des'], {}), '(y_des)\n', (3847, 3854), True, 'import numpy as np\n'), ((3883, 3898), 'numpy.array', 'np.array', (['z_des'], {}), '(z_des)\n', (3891, 3898), True, 'import numpy as np\n'), ((4471, 4485), 'numpy.array', 'np.array', (['err1'], {}), '(err1)\n', (4479, 4485), True, 'import numpy as np\n'), ((4518, 4532), 'numpy.array', 'np.array', (['err2'], {}), '(err2)\n', (4526, 4532), True, 'import numpy as np\n'), ((4565, 4579), 'numpy.array', 'np.array', (['err3'], {}), '(err3)\n', (4573, 4579), True, 'import numpy as np\n'), ((4612, 4626), 'numpy.array', 'np.array', (['time'], {}), '(time)\n', (4620, 4626), True, 'import numpy as np\n'), ((5277, 5298), 'numpy.array', 'np.array', (['actual_data'], {}), '(actual_data)\n', (5285, 5298), True, 'import numpy as np\n'), ((5338, 5362), 'numpy.array', 'np.array', (['commanded_data'], {}), '(commanded_data)\n', (5346, 5362), True, 'import numpy as np\n'), ((5402, 5416), 'numpy.array', 'np.array', (['time'], {}), '(time)\n', (5410, 5416), True, 'import numpy as np\n'), ((7121, 7137), 'rospy.get_time', 'rospy.get_time', ([], {}), '()\n', (7135, 7137), False, 'import rospy\n'), ((8973, 9031), 'rospy.loginfo', 'rospy.loginfo', (['"""Resetting datalogger and erasing plots..."""'], {}), "('Resetting datalogger and erasing plots...')\n", (8986, 9031), False, 'import rospy\n'), ((9049, 9058), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (9056, 9058), True, 'import matplotlib.pyplot as plt\n'), ((9089, 9105), 'rospy.get_time', 'rospy.get_time', ([], {}), '()\n', (9103, 9105), False, 'import rospy\n'), ((9200, 9216), 'matplotlib.pyplot.close', 'plt.close', (['"""all"""'], {}), "('all')\n", (9209, 9216), True, 'import matplotlib.pyplot as plt\n'), ((9253, 9262), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (9260, 9262), True, 'import matplotlib.pyplot as plt\n'), ((9280, 9296), 'matplotlib.pyplot.close', 'plt.close', (['"""all"""'], {}), "('all')\n", (9289, 9296), True, 'import matplotlib.pyplot as plt\n'), ((9314, 9338), 'rospy.signal_shutdown', 'rospy.signal_shutdown', (['(0)'], {}), '(0)\n', (9335, 9338), False, 'import rospy\n'), ((9149, 9182), 'numpy.zeros', 'np.zeros', (['(1, states_of_interest)'], {}), '((1, states_of_interest))\n', (9157, 9182), True, 'import numpy as np\n')]
import numpy as np import anndata as ad # ------------------------------------------------------------------------------- # Some test data # ------------------------------------------------------------------------------- X_list = [ # data matrix of shape n_obs x n_vars [1, 2, 3], [4, 5, 6], [7, 8, 9]] obs_dict = { # annotation of observations / rows 'row_names': ['name1', 'name2', 'name3'], # row annotation 'oanno1': ['cat1', 'cat2', 'cat2'], # categorical annotation 'oanno2': ['o1', 'o2', 'o3'], # string annotation 'oanno3': [2.1, 2.2, 2.3]} # float annotation var_dict = { # annotation of variables / columns 'vanno1': [3.1, 3.2, 3.3]} uns_dict = { # unstructured annotation 'oanno1_colors': ['#000000', '#FFFFFF'], 'uns2': ['some annotation']} # ------------------------------------------------------------------------------- # The test functions # ------------------------------------------------------------------------------- def test_views(): X = np.array(X_list) adata = ad.AnnData(X, obs=obs_dict, var=var_dict, uns=uns_dict, dtype='int32') assert adata[:, 0].isview assert adata[:, 0].X.tolist() == [1, 4, 7] adata[:2, 0].X = [0, 0] assert adata[:, 0].X.tolist() == [0, 0, 7] adata_subset = adata[:2, [0, 1]] assert adata_subset.isview # now transition to actual object adata_subset.obs['foo'] = range(2) assert not adata_subset.isview assert adata_subset.obs['foo'].tolist() == list(range(2)) def test_slice_copy(): adata = ad.AnnData(np.empty((100, 100))) adata.obsm['o'] = np.empty((100, 50)) adata = adata[:50] adata.obsm['o'] = np.ones((50, 20))
[ "anndata.AnnData", "numpy.empty", "numpy.array", "numpy.ones" ]
[((1049, 1065), 'numpy.array', 'np.array', (['X_list'], {}), '(X_list)\n', (1057, 1065), True, 'import numpy as np\n'), ((1078, 1148), 'anndata.AnnData', 'ad.AnnData', (['X'], {'obs': 'obs_dict', 'var': 'var_dict', 'uns': 'uns_dict', 'dtype': '"""int32"""'}), "(X, obs=obs_dict, var=var_dict, uns=uns_dict, dtype='int32')\n", (1088, 1148), True, 'import anndata as ad\n'), ((1641, 1660), 'numpy.empty', 'np.empty', (['(100, 50)'], {}), '((100, 50))\n', (1649, 1660), True, 'import numpy as np\n'), ((1707, 1724), 'numpy.ones', 'np.ones', (['(50, 20)'], {}), '((50, 20))\n', (1714, 1724), True, 'import numpy as np\n'), ((1597, 1617), 'numpy.empty', 'np.empty', (['(100, 100)'], {}), '((100, 100))\n', (1605, 1617), True, 'import numpy as np\n')]
import cv2 import glob import numpy as np from keras.models import Sequential from keras.layers import Conv2D, Flatten, Dense, MaxPooling2D, Dropout from keras.utils.np_utils import to_categorical from keras import losses, optimizers, regularizers X_train = [] x_label = [] for img_class, directory in enumerate(['Red', 'Yellow', 'Green', 'NoTrafficLight']): for i, file_name in enumerate(glob.glob("simulator_lights/{}/*.png".format(directory))): # for i, file_name in enumerate(glob.glob("/home/andcircle/FunDriving/Term3/Final_Proj/tl_classifier_exceptsmall/real/{}/*.png".format(directory))): img = cv2.imread(file_name) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB); resized = cv2.resize(img, (32,64)) X_train.append(resized/255.) x_label.append(img_class) X_train = np.array(X_train) x_label = np.array(x_label) categorical_labels = to_categorical(x_label) num_classes = 4 model = Sequential() model.add(Conv2D(32, (3, 3), input_shape=(64, 32, 3), padding='same', activation='relu', kernel_initializer='random_uniform', kernel_regularizer=regularizers.l2(0.01))) model.add(MaxPooling2D(2,2)) Dropout(0.5) model.add(Conv2D(32, (3, 3), padding='same', activation='relu', kernel_initializer='random_uniform', kernel_regularizer=regularizers.l2(0.01))) model.add(MaxPooling2D(2,2)) Dropout(0.5) model.add(Flatten()) model.add(Dense(8, activation='relu', kernel_initializer='random_uniform', kernel_regularizer=regularizers.l2(0.01))) model.add(Dense(num_classes, activation='softmax')) loss = losses.categorical_crossentropy optimizer = optimizers.Adam() model.compile(loss=loss, optimizer=optimizer, metrics=['accuracy']) model.fit(X_train, categorical_labels, batch_size=32, epochs=10, verbose=True, validation_split=0.1, shuffle=True) score = model.evaluate(X_train, categorical_labels, verbose=0) print(score) model.save('tl_classifier_simulator.h5') # model.save('tl_classifier_real.h5') #--------------------------------------------------------------- model.summary()
[ "keras.regularizers.l2", "cv2.cvtColor", "keras.layers.Dropout", "keras.optimizers.Adam", "keras.layers.Flatten", "cv2.imread", "keras.utils.np_utils.to_categorical", "keras.layers.Dense", "numpy.array", "keras.models.Sequential", "keras.layers.MaxPooling2D", "cv2.resize" ]
[((832, 849), 'numpy.array', 'np.array', (['X_train'], {}), '(X_train)\n', (840, 849), True, 'import numpy as np\n'), ((860, 877), 'numpy.array', 'np.array', (['x_label'], {}), '(x_label)\n', (868, 877), True, 'import numpy as np\n'), ((902, 925), 'keras.utils.np_utils.to_categorical', 'to_categorical', (['x_label'], {}), '(x_label)\n', (916, 925), False, 'from keras.utils.np_utils import to_categorical\n'), ((956, 968), 'keras.models.Sequential', 'Sequential', ([], {}), '()\n', (966, 968), False, 'from keras.models import Sequential\n'), ((1167, 1179), 'keras.layers.Dropout', 'Dropout', (['(0.5)'], {}), '(0.5)\n', (1174, 1179), False, 'from keras.layers import Conv2D, Flatten, Dense, MaxPooling2D, Dropout\n'), ((1353, 1365), 'keras.layers.Dropout', 'Dropout', (['(0.5)'], {}), '(0.5)\n', (1360, 1365), False, 'from keras.layers import Conv2D, Flatten, Dense, MaxPooling2D, Dropout\n'), ((1614, 1631), 'keras.optimizers.Adam', 'optimizers.Adam', ([], {}), '()\n', (1629, 1631), False, 'from keras import losses, optimizers, regularizers\n'), ((1148, 1166), 'keras.layers.MaxPooling2D', 'MaxPooling2D', (['(2)', '(2)'], {}), '(2, 2)\n', (1160, 1166), False, 'from keras.layers import Conv2D, Flatten, Dense, MaxPooling2D, Dropout\n'), ((1334, 1352), 'keras.layers.MaxPooling2D', 'MaxPooling2D', (['(2)', '(2)'], {}), '(2, 2)\n', (1346, 1352), False, 'from keras.layers import Conv2D, Flatten, Dense, MaxPooling2D, Dropout\n'), ((1376, 1385), 'keras.layers.Flatten', 'Flatten', ([], {}), '()\n', (1383, 1385), False, 'from keras.layers import Conv2D, Flatten, Dense, MaxPooling2D, Dropout\n'), ((1518, 1558), 'keras.layers.Dense', 'Dense', (['num_classes'], {'activation': '"""softmax"""'}), "(num_classes, activation='softmax')\n", (1523, 1558), False, 'from keras.layers import Conv2D, Flatten, Dense, MaxPooling2D, Dropout\n'), ((622, 643), 'cv2.imread', 'cv2.imread', (['file_name'], {}), '(file_name)\n', (632, 643), False, 'import cv2\n'), ((661, 697), 'cv2.cvtColor', 'cv2.cvtColor', (['img', 'cv2.COLOR_BGR2RGB'], {}), '(img, cv2.COLOR_BGR2RGB)\n', (673, 697), False, 'import cv2\n'), ((717, 742), 'cv2.resize', 'cv2.resize', (['img', '(32, 64)'], {}), '(img, (32, 64))\n', (727, 742), False, 'import cv2\n'), ((1114, 1135), 'keras.regularizers.l2', 'regularizers.l2', (['(0.01)'], {}), '(0.01)\n', (1129, 1135), False, 'from keras import losses, optimizers, regularizers\n'), ((1300, 1321), 'keras.regularizers.l2', 'regularizers.l2', (['(0.01)'], {}), '(0.01)\n', (1315, 1321), False, 'from keras import losses, optimizers, regularizers\n'), ((1484, 1505), 'keras.regularizers.l2', 'regularizers.l2', (['(0.01)'], {}), '(0.01)\n', (1499, 1505), False, 'from keras import losses, optimizers, regularizers\n')]
import torch from sklearn.model_selection import train_test_split import torch.nn.functional as F import torch.nn as nn import torch.optim as optim import random import numpy as np import Read_Data import Confusion_Matrix def getdata(): features, target = Read_Data.read_data3('mushrooms_data.csv') X_train, X_test, y_train, y_test = train_test_split(features, target, test_size=0.20) return X_train.values, X_test.values, y_train.values, y_test.values class NN(nn.Module,): def __init__(self,input_size): super().__init__() self.fc1 = nn.Linear(input_size, 50) self.fc2 = nn.Linear(50, 40) self.fc3 = nn.Linear(40, 20) self.fc4 = nn.Linear(20,9) self.dropout = nn.Dropout(0.15) def forward(self,x): x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = F.relu(self.fc3(x)) x = self.fc4(x) return x def train(epoch, net, train_x, train_y, optimizer): for e in range(epoch): optimizer.zero_grad() output = net(train_x) loss = F.cross_entropy(output, train_y) loss.backward() optimizer.step() return net def predict(model, test_x): pred = [] with torch.no_grad(): for data in test_x: output = model(data) predict = np.argmax(output) pred.append(int(predict)) return pred def random_state(seed_val): np.random.seed(seed_val) random.seed(seed_val) torch.manual_seed(seed_val) # if you are using GPU torch.cuda.manual_seed(seed_val) torch.cuda.manual_seed_all(seed_val) def main(train_x,test_x,train_y,test_y,input_size): random_state(100) train_x = train_x test_x = test_x train_y = train_y test_y = test_y train_x_tensor = torch.from_numpy(train_x).float() train_y_tensor = torch.from_numpy(train_y).long() test_x_tensor = torch.from_numpy(test_x).float() net = NN(input_size=input_size) lr = 0.1 m = 0.9 optimizer = optim.SGD(net.parameters(), lr=lr, momentum=m) my_net = train(100,net,train_x_tensor,train_y_tensor,optimizer) predicted = predict(my_net, test_x_tensor) actual = test_y f1, recall, accuracy = Confusion_Matrix.main(actual, predicted,"Confusion Matrix: Neural Network") return f1, recall, accuracy
[ "torch.nn.Dropout", "numpy.random.seed", "Read_Data.read_data3", "numpy.argmax", "torch.manual_seed", "sklearn.model_selection.train_test_split", "torch.cuda.manual_seed", "torch.nn.functional.cross_entropy", "torch.cuda.manual_seed_all", "Confusion_Matrix.main", "random.seed", "torch.nn.Linear", "torch.no_grad", "torch.from_numpy" ]
[((274, 316), 'Read_Data.read_data3', 'Read_Data.read_data3', (['"""mushrooms_data.csv"""'], {}), "('mushrooms_data.csv')\n", (294, 316), False, 'import Read_Data\n'), ((357, 406), 'sklearn.model_selection.train_test_split', 'train_test_split', (['features', 'target'], {'test_size': '(0.2)'}), '(features, target, test_size=0.2)\n', (373, 406), False, 'from sklearn.model_selection import train_test_split\n'), ((1483, 1507), 'numpy.random.seed', 'np.random.seed', (['seed_val'], {}), '(seed_val)\n', (1497, 1507), True, 'import numpy as np\n'), ((1513, 1534), 'random.seed', 'random.seed', (['seed_val'], {}), '(seed_val)\n', (1524, 1534), False, 'import random\n'), ((1540, 1567), 'torch.manual_seed', 'torch.manual_seed', (['seed_val'], {}), '(seed_val)\n', (1557, 1567), False, 'import torch\n'), ((1601, 1633), 'torch.cuda.manual_seed', 'torch.cuda.manual_seed', (['seed_val'], {}), '(seed_val)\n', (1623, 1633), False, 'import torch\n'), ((1639, 1675), 'torch.cuda.manual_seed_all', 'torch.cuda.manual_seed_all', (['seed_val'], {}), '(seed_val)\n', (1665, 1675), False, 'import torch\n'), ((2307, 2383), 'Confusion_Matrix.main', 'Confusion_Matrix.main', (['actual', 'predicted', '"""Confusion Matrix: Neural Network"""'], {}), "(actual, predicted, 'Confusion Matrix: Neural Network')\n", (2328, 2383), False, 'import Confusion_Matrix\n'), ((592, 617), 'torch.nn.Linear', 'nn.Linear', (['input_size', '(50)'], {}), '(input_size, 50)\n', (601, 617), True, 'import torch.nn as nn\n'), ((638, 655), 'torch.nn.Linear', 'nn.Linear', (['(50)', '(40)'], {}), '(50, 40)\n', (647, 655), True, 'import torch.nn as nn\n'), ((676, 693), 'torch.nn.Linear', 'nn.Linear', (['(40)', '(20)'], {}), '(40, 20)\n', (685, 693), True, 'import torch.nn as nn\n'), ((714, 730), 'torch.nn.Linear', 'nn.Linear', (['(20)', '(9)'], {}), '(20, 9)\n', (723, 730), True, 'import torch.nn as nn\n'), ((754, 770), 'torch.nn.Dropout', 'nn.Dropout', (['(0.15)'], {}), '(0.15)\n', (764, 770), True, 'import torch.nn as nn\n'), ((1106, 1138), 'torch.nn.functional.cross_entropy', 'F.cross_entropy', (['output', 'train_y'], {}), '(output, train_y)\n', (1121, 1138), True, 'import torch.nn.functional as F\n'), ((1266, 1281), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (1279, 1281), False, 'import torch\n'), ((1369, 1386), 'numpy.argmax', 'np.argmax', (['output'], {}), '(output)\n', (1378, 1386), True, 'import numpy as np\n'), ((1866, 1891), 'torch.from_numpy', 'torch.from_numpy', (['train_x'], {}), '(train_x)\n', (1882, 1891), False, 'import torch\n'), ((1922, 1947), 'torch.from_numpy', 'torch.from_numpy', (['train_y'], {}), '(train_y)\n', (1938, 1947), False, 'import torch\n'), ((1976, 2000), 'torch.from_numpy', 'torch.from_numpy', (['test_x'], {}), '(test_x)\n', (1992, 2000), False, 'import torch\n')]
# -*- coding: utf-8 -*- import numpy as np from scipy import stats from scipy import interpolate as spin import pandas as pd import os import warnings from datetime import datetime, timedelta import calendar import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.ticker as pltick import matplotlib.dates as mdates import matplotlib.cbook as mcbook import matplotlib.colors as mcolors import matplotlib.legend as mlegend from matplotlib import gridspec from matplotlib.patches import Polygon if os.path.isdir('/Applications/anaconda/share/proj'): # needed for Basemap import on my machine, but probably not yours os.environ['PROJ_LIB'] = '/Applications/anaconda/share/proj' from mpl_toolkits.basemap import Basemap from collections import OrderedDict warnings.filterwarnings('ignore','.*is_string_like function.*') # MatplotlibDeprecationWarning upon cmocean import import cmocean import gsw from Circles.circles import circle # from https://github.com/urschrei/Circles import time_tools as tt import geo_tools as gt import load_product as ldp def sea_ice_argo_spatial(data_dir,date,sic_grid,sic,float_data,plot_argo_locs_not_trajs, title,save_as,results_dir,width,height,lat_center,lon_center, open_sic=0,max_sic=100,which_ice_cmap=4,extend_cmap='neither',rasterized=True, plot_floats=True,polynya_grid=None,label_traj_dates=True, as_subplot=False,create_subplot=True,subplot_fig_size=(11,6), first_subplot=False,last_subplot=False,which_subplot=[1,1,1], subplot_add_colorbar=False,bathy_contours=np.arange(-3500,-100,500), grid_lats=np.arange(-80,60,5),grid_lons=np.arange(-80,50,10), subplot_lon_labels=[0,0,0,0],subplot_lat_labels=[0,0,0,0],subplot_labelsize=None, cmap_bad_color='w',cmap_ocean_color='#5bcfff',grid_color='.2',continent_color='0.7', boundary_width=2,coastline_width=1,pad=0.25,spacing=0.2,cbar_bottom=0.125, return_basemap=False,return_pcolor=False,include_year_in_date=False,save_png=False): """ Plots Argo profile locations on regional map with background of sea ice concentration and bathymetry. """ warnings.filterwarnings('ignore', category=mcbook.mplDeprecation) if plot_argo_locs_not_trajs is True: floats_linger = 14 # let floats linger on the map for N days after most recent profile (if no new profile) if as_subplot: cross_lonx = 100000/2; cross_laty = 100000/2; cross_width = 1.25; text_offset = 0.03 else: cross_lonx = 100000/4; cross_laty = 100000/4; cross_width = 2.5; text_offset = 0.015 if which_ice_cmap == 1: ice_cmap = plt.cm.CMRmap elif which_ice_cmap == 2: ice_cmap = plt.cm.inferno elif which_ice_cmap == 3: ice_cmap = plt.cm.gist_ncar elif which_ice_cmap == 4: # custom colormap similar to cm.CMRmap: cmap_colors = ['#79CDFA','#79CDFA','#87C3EC','#628eac','#1E1952', '#4630B8','#E85A33','#E1C047','#F2F1C4','#FBFBEE','#FFFFFF'] ice_cmap = mcolors.LinearSegmentedColormap.from_list(name=None,colors=cmap_colors,N=250,gamma=1.3) elif which_ice_cmap == 5: # alternate version of cmap 4 above, with less vibrant ocean blue cmap_colors = ['#bce6fc','#bce6fc','#87C3EC','#628eac','#1E1952', '#4630B8','#E85A33','#E1C047','#F2F1C4','#FBFBEE','#FFFFFF'] ice_cmap = mcolors.LinearSegmentedColormap.from_list(name=None,colors=cmap_colors,N=250,gamma=1.3) if not as_subplot: fig, m = blank_inset_basemap(width,height,lat_center,lon_center,lon_labels=[0,0,0,1],lat_labels=[1,0,0,0], grid_lats=grid_lats,grid_lons=grid_lons,labelsize=subplot_labelsize) if as_subplot: if create_subplot: if first_subplot: master_fig = plt.figure(figsize=subplot_fig_size) plt.gcf().add_subplot(*which_subplot) master_fig, m = blank_inset_basemap(width,height,lat_center,lon_center,create_new_fig=False, lon_labels=subplot_lon_labels,lat_labels=subplot_lat_labels, grid_lats=grid_lats,grid_lons=grid_lons, labelsize=subplot_labelsize,grid_color=grid_color, fill_continent_color=continent_color, boundary_width=boundary_width,coastline_width=coastline_width) xlims = plt.gca().get_xlim() ylims = plt.gca().get_ylim() lonx, laty = m(sic_grid['lons'], sic_grid['lats']) sic_nan_masked = np.ma.masked_where(np.isnan(sic), sic) sic_lon_edge_to_center = 0.5*np.mean([np.mean(np.diff(lonx[0,:])), np.mean(np.diff(lonx[-1,:]))]) sic_lat_edge_to_center = 0.5*np.mean([np.mean(np.diff(laty[0,:])),np.mean(np.diff(laty[-1,:]))]) pcm = plt.pcolormesh(lonx-sic_lon_edge_to_center, laty-sic_lat_edge_to_center, sic_nan_masked, cmap=ice_cmap, edgecolors='None', rasterized=rasterized, zorder=1, alpha=1.0, vmin=open_sic, vmax=max_sic) # norm=mcolors.PowerNorm(gamma=0.4,vmin=open_sic,vmax=100,clip=False) pcm.cmap.set_over('w') pcm.cmap.set_bad(cmap_bad_color) pcm.cmap.set_under(cmap_ocean_color) # '#5bcfff' is sea blue (previously #f0ffff, very light blue) if not as_subplot: cbar = plt.colorbar(pad=0.05, shrink=0.65, format='%.0f%%', extend=extend_cmap) cbar.ax.tick_params(labelsize=12) cbar.set_label('Sea ice concentration',size=12) if polynya_grid is not None: plt.contour(lonx,laty,polynya_grid,levels=[0.999],colors='#00FF00',linewidths=0.7,alpha=0.8, zorder=2) if len(bathy_contours) > 0: etopo_lons, etopo_lats, etopo = ldp.load_bathy(data_dir) retopolons, retopolats = m(*np.meshgrid(etopo_lons, etopo_lats)) olevels = bathy_contours # check etopo.ravel().min() m.contour(retopolons, retopolats, etopo, olevels, linewidths=0.5, linestyles='solid', colors='#808080', alpha=0.5, zorder=3) if plot_floats: for f in range(len(float_data)): wmoid = float_data[f][0] float_lons = float_data[f][1] float_lats = float_data[f][2] position_flags = float_data[f][3] float_datetimes = float_data[f][4] float_dates = (float_data[f][4]/1000000).astype(int) prof_nums = float_data[f][5] date_int = tt.convert_tuple_to_8_int(date) if plot_argo_locs_not_trajs: if sum((float_dates - date_int) == 0) >= 1: this_day_index = np.where((float_dates - date_int) == 0)[0][0] lonx, laty = m(float_lons[this_day_index], float_lats[this_day_index]) if not (xlims[0] <= lonx <= xlims[1]) or not (ylims[0] <= laty <= ylims[1]): continue if position_flags[this_day_index] == 1: c='m' edgecolor='k' else: c='#15178F' edgecolor='k' plt.plot([lonx-cross_lonx,lonx+cross_lonx],[laty,laty],color=c,linestyle='solid',linewidth=cross_width,zorder=4) plt.plot([lonx,lonx],[laty-cross_laty,laty+cross_laty],color=c,linestyle='solid',linewidth=cross_width,zorder=4) plt.scatter(lonx,laty,s=14,c=c,edgecolors=edgecolor,alpha=0.9,zorder=5) if subplot_labelsize is None: float_fontsize = 8 else: float_fontsize = subplot_labelsize plt.text(lonx + text_offset*width,laty - 3*text_offset*height,str(wmoid) + ' (' + str(prof_nums[this_day_index]) + ')',fontsize=float_fontsize,color=c,clip_on=False,zorder=6) elif date_int > float_dates[0]: recent_day_index = np.where((float_dates - date_int) < 0)[0][-1] days_since_last_profile = tt.days_between(tt.convert_8_int_to_tuple(float_dates[recent_day_index]),date) if days_since_last_profile <= floats_linger: lonx, laty = m(float_lons[recent_day_index], float_lats[recent_day_index]) if not (xlims[0] <= lonx <= xlims[1]) or not (ylims[0] <= laty <= ylims[1]): continue # alpha = (0.75-0.25) + 0.25*(1 - days_since_last_profile/floats_linger) if position_flags[recent_day_index] == 1: c = 'm' else: c = '#15178F' plt.plot([lonx-cross_lonx,lonx+cross_lonx],[laty,laty],color=c,linestyle='solid',linewidth=cross_width,zorder=4) plt.plot([lonx,lonx],[laty-cross_laty,laty+cross_laty],color=c,linestyle='solid',linewidth=cross_width,zorder=4) # plt.scatter(lonx,laty,s=18,c=c,edgecolors='none',alpha=0.7,zorder=5) elif not plot_argo_locs_not_trajs: flonx,flaty = m(float_lons,float_lats) plt.plot(flonx[position_flags != 9],flaty[position_flags != 9],color='#15178F',linewidth=1.25,zorder=4) plt.scatter(flonx[position_flags == 2],flaty[position_flags == 2],s=10,c='m',edgecolors='none',zorder=5) plt.scatter(flonx[position_flags == 1],flaty[position_flags == 1],s=10,c='#15178F',edgecolors='none', zorder=6) if len(float_data) == 1 or label_traj_dates == True: datetime_tuples = [tt.convert_14_to_tuple(float_datetimes[n]) for n in range(len(float_datetimes))] mo_yr_strings = [str(datetime_tuples[n][1]) + '/' + '{0:02d}'.format(datetime_tuples[n][0] - 2000) for n in range(len(datetime_tuples))] unique_mo_yr_strings,unique_indices = np.unique(mo_yr_strings,return_index=True) unique_indices = np.sort(unique_indices) # to undo undesired sort by 'unique' mo_yr_strings_to_label = [mo_yr_strings[n] for n in unique_indices] lonx_to_label = [flonx[n] for n in unique_indices] laty_to_label = [flaty[n] for n in unique_indices] for pt in np.arange(0,len(mo_yr_strings_to_label),6): plt.text(lonx_to_label[pt] + 0.000625 * width,laty_to_label[pt] - 0.026 * height, mo_yr_strings_to_label[pt],fontsize=7,color='#15178F') for pt in np.arange(3,len(mo_yr_strings_to_label),6): plt.text(lonx_to_label[pt] + 0.000625 * width,laty_to_label[pt] + 0.017 * height, mo_yr_strings_to_label[pt],fontsize=7,color='#15178F') if len(float_data) != 1: plt.annotate(str(wmoid),fontsize=10,color='#15178F',xy=(flonx[len(flonx) - 1], flaty[len(flaty) - 1]), xytext=(flonx[len(flonx) - 1] - 0.25 * width,flaty[len(flaty) - 1] + 0.2 * height), arrowprops=dict(arrowstyle='->',color='#15178F',alpha=0.5)) if not as_subplot: if title is not None: plt.title(title,fontsize=16) plt.tight_layout() if save_png: plt.savefig(results_dir + save_as + '.png',dpi=150) else: plt.savefig(results_dir + save_as + '.pdf') plt.close() elif as_subplot: if create_subplot: if subplot_labelsize is None: baseline_date_fontsize = 7 else: baseline_date_fontsize = subplot_labelsize if include_year_in_date: day_string = '{0}-{1:02d}-{2:02d}'.format(*date) date_fontsize = baseline_date_fontsize + 1 else: day_string = '{1}-{2:02}'.format(*date) date_fontsize = baseline_date_fontsize + 3 plt.text(0.05,0.95,day_string,fontsize=date_fontsize,fontweight='bold', horizontalalignment='left',verticalalignment='top',transform=plt.gca().transAxes) if not create_subplot and subplot_add_colorbar: # deprecated? cbar = plt.gcf().colorbar(pcm,ticks=np.arange(open_sic,101,10),format='%.0f%%',extend=extend_cmap, orientation='vertical',fraction=0.03,aspect=30) cbar.ax.tick_params(labelsize=subplot_labelsize,left=True,right=False,labelleft=True,labelright=False) cbar.outline.set_linewidth(boundary_width) if last_subplot: plt.tight_layout(h_pad=pad,w_pad=pad,rect=(0.02,0.02,0.98,0.98)) if subplot_add_colorbar: if spacing is not None: hspace = spacing*width/height else: hspace = None plt.gcf().subplots_adjust(bottom=0.05,wspace=spacing,hspace=hspace) cbar_ax = plt.gcf().add_axes([0.2,cbar_bottom,0.6,0.015]) cbar = plt.gcf().colorbar(pcm,format='%.0f%%',extend=extend_cmap,orientation='horizontal',cax=cbar_ax) cbar.ax.tick_params(labelsize=subplot_labelsize+2) cbar.outline.set_linewidth(boundary_width) plt.savefig(results_dir + save_as + '.pdf') plt.close() if return_basemap and not return_pcolor: return m elif return_basemap and return_pcolor: return m, pcm def section(wmoid,results_dir,save_as,float_data,params='all',depth_lim=(0,1700),fixed_ylim=True,vert_res=10,toi=None, mld=True,mld_ref_depth=10,mld_sigma_theta_crit=0.03,show_ice_bars=True,sea_ice_grids=None, sea_ice_data_avail=None,show_prof_bars=False,show_prof_ticks=True,add_date_bars=None,cmap_level_mods=None, cmap_color_mods=None,cmap_gamma_mods=None,cmap_freq_mods=None,trim_xlim=False, create_new_figs=True,new_figsize=(8,6),add_title=True,facecolor='k',grid=True, years_only=False,plot_ylabel=True,plot_xticklabels=True,plot_cbar=True,condensed_cbar_label=None, smaller_text=False,force_label_size=None,density_coor=False,density_lim=(27.75,27.85),density_power_scale=15, density_depth_contours=None,density_depth_labels=True,explicit_yticks=None, drift_temps=None,drift_temp_baseline=None,drift_temp_depth=None): """ Hydrographic depth section plots. Args: wmoid: int params: 'all' to plot standard set of parameters listed below, or list of specific param_abbrev (if available) depth_lim: tuple/list of bounding depths (ylim[1] will default to shallowest observation ≤ depth_lim[1]) fixed_ylim: True or False (force depth range to <<depth_lim>> [True], or set to deepest observation [False]) vert_res: vertical resolution of section (in meters); note that plot size scales inversely with this toi: None or tuple/list of bounding times of interest (in 14-digit integer format) mld: plot mixed-layer depth mld_ref_depth: see gt.mld() (applies only if 'mld' is True) mld_sigma_theta_crit: see gt.mld() (applies only if 'mld' is True) show_ice_bars: plot bars estimating when float was under sea ice note: calculates average SIC within a box 2° longitude x 1° latitude around the given or interpolated float location (uses AMSR if available, then GSFC) sea_ice_grids: created by ldp.sea_ice_data_prep(), only needed if show_ice_bars is True sea_ice_data_avail: created by ldp.sea_ice_data_prep(), only needed if show_ice_bars is True show_prof_bars: plot each profile as thin gray line on section show_prof_ticks: plot each profile as small tick on top x-axis add_date_bars: None or list of Datetimes to add vertical black bars, e.g. denoting start and end of some event cmap_level_mods: None or dict with param_abbrevs as keys to lists of colormap levels to replace defaults cmap_color_mods: None or dict with param_abbrevs as keys to lists of color sequences to replace defaults cmap_gamma_mods: None or dict with param_abbrevs as keys to colormap shift parameter to replace defaults note: gamma=1.0 is even spacing; gamma>1.0 stretches colors upwards; gamma<1.0 downwards cmap_freq_mods: None or dict with param_abbrevs as keys to multiplier for adding additional color levels between those specified in 'cmap_levels' (e.g. 3 for 3 levels between) trim_xlim: trim xlim (time axis) to match range of data for each parameter (otherwise trim to time range of GDAC temperature data) create_new_figs: True to save each sections as an individual new figure (with dimensions of new_figsize) False to plot each section to the currently active plot axes (for this, pass a single param_abbrev) new_figsize: figure dimensions in inches: (width,height), e.g. (8,6) note: only used if create_new_figs is True facecolor: 'k' or other color for plot background (i.e. where data is missing or invalid) grid: True or False to add faint x- and y-grid at locations of major time and depth/density ticks years_only: True or False (only label years on x-axis, instead of automatic month labeling) plot_ylabel: True or False plot_xticklabels: True or False plot_cbar: True or False condensed_cbar_label: None or string to replace default colorbar parameter label smaller_text: True or False (use smaller font sizes, e.g. for subplot) force_label_size: None or fontsize for labels (smaller_text should be True) density_coor: True or False (if True, use sigma_theta as y-coordinate; if False, use depth as y-coordinate) density_lim: tuple/list of bounding sigma_theta values (only used if density_coor is True) density_power_scale: power exponent to stretch deeper density levels / condense near-surface levels density_depth_contours: None or list of depths to contour and label when plotting with density y-coordinate density_depth_labels: False or True (label the depth contours described above) NOTE: this requires manual input (click and Return) to position contour labels explicit_yticks: None or list/array of ytick locations (depths or sigma_theta values) drift_temps: None or dict containing float drift-depth temperature time series with keys 'datetime' and 'temp' drift_temp_baseline: None or potential temperature value to use as baseline from which to plot drift_temps drift_temp_depth: None or depth to use as baseline from which to plot drift_temps """ if params == 'all': param_abbrevs = np.array(['ptmp','psal','Nsquared','PV','destab','Oxygen','OxygenSat','pHinsitu','Nitrate', 'Chl_a']) # full list of parameters below; implement custom colormaps as needed: # param_abbrevs = np.array(['ptmp', 'psal', 'Nsquared', 'PV', 'destab', 'Oxygen', 'OxygenSat', 'Nitrate', # 'Chl_a', 'pHinsitu', 'pH25C', 'TALK_LIAR', 'DIC_LIAR', 'pCO2_LIAR']) else: param_abbrevs = params cmap_levels = {} cmap_levels['ptmp'] = [0.0,0.2,0.4,0.6,0.8,1.0,1.2] cmap_levels['psal'] = [34.66,34.67,34.68,34.69,34.70] cmap_levels['Oxygen'] = [190,195,200,205,210,215,220] cmap_levels['OxygenSat'] = [54,55,56,57,58,59,60,61,62,63,64,65,70,80,90,100,110] cmap_levels['Nsquared'] = [0,5,10,15,20,25,50,100,500,1000] cmap_levels['PV'] = [0,5,10,25,50,100,250,500,1000,5000] cmap_levels['sigma_theta'] = [27.0,27.78,27.79,27.80,27.81,27.82,27.83,27.84,27.85] cmap_levels['destab'] = [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7] # same range but even spacing cmap_levels['pHinsitu'] = np.arange(7.84,8.16,0.04) cmap_levels['Nitrate'] = np.arange(20.0,34.01,1.0) cmap_levels['Chl_a_corr'] = np.arange(0.0,2.0,0.25) cmap_extend = {} cmap_extend['ptmp'] = 'both' cmap_extend['psal'] = 'both' cmap_extend['Oxygen'] = 'both' cmap_extend['OxygenSat'] = 'both' cmap_extend['Nsquared'] = 'both' cmap_extend['PV'] = 'both' cmap_extend['sigma_theta'] = 'both' cmap_extend['destab'] = 'max' cmap_extend['pHinsitu'] = 'both' cmap_extend['Nitrate'] = 'both' cmap_extend['Chl_a_corr'] = 'both' cmap_under_over = {} cmap_under_over['ptmp'] = ['#252766','#62001d'] # darker purple/blue, darker red cmap_under_over['psal'] = ['#271E6A','#fcf6d1'] # darker purple/blue, lighter cream cmap_under_over['Oxygen'] = ['0.9','#660000'] # light grey-white, darker version of 'maroon' cmap_under_over['Nsquared'] = ['#000099','0.3'] # darker version of 'blue', dark grey cmap_under_over['PV'] = ['#000099','0.3'] # same as above cmap_under_over['destab'] = [None,'#2d004e'] # darker version of 'indigo' cmap_colors = {} # useful resources for color picking: https://matplotlib.org/examples/color/named_colors.html # http://www.color-hex.com/ cmap_colors['ptmp'] = ['#353992','#7294C2','#A5C4DD','#F9FCCF','#F2CF85','#CB533B','#8D002A'] cmap_colors['psal'] = ['#252A83','#22369C','#215091','#306489','#3F7687','#569487', '#6EB380','#87C574','#B4D56D','#DCE184','#FAEDA3'] cmap_colors['Oxygen'] = ['white','maroon'] # previously ended with 'teal', started with '0.7' cmap_colors['OxygenSat'] = ['0.7','white','maroon','teal'] cmap_colors['Nsquared'] = ['blue','#ffe34c','firebrick'] # ffe34c is lighter version of 'gold' cmap_colors['PV'] = ['blue','gold','firebrick'] cmap_colors['sigma_theta'] = ['seagreen','white','coral','0.2'] cmap_colors['destab'] = ['yellow','#9366b4','indigo'] #9366b4 is lighter indigo cmap_colors['pHinsitu'] = ['green','white','red','blue','orange'] cmap_colors['Nitrate'] = ['orange','blue','red','white','green'] cmap_colors['Chl_a_corr'] = ['#11114e','white','palegoldenrod','#005000'] cmap_gamma = {} cmap_gamma['ptmp'] = 0.9 cmap_gamma['psal'] = 0.7 cmap_gamma['Oxygen'] = 1.75 cmap_gamma['OxygenSat'] = 0.5 cmap_gamma['Nsquared'] = 1.1 cmap_gamma['PV'] = 0.7 cmap_gamma['sigma_theta'] = 0.6 # colorbar is reversed below cmap_gamma['destab'] = 0.7 # colorbar is reversed below cmap_gamma['pHinsitu'] = 1.0 cmap_gamma['Nitrate'] = 1.0 cmap_gamma['Chl_a_corr'] = 1.0 cmap_freq = {} cmap_freq['ptmp'] = 2 cmap_freq['psal'] = 3 cmap_freq['Oxygen'] = 2 cmap_freq['OxygenSat'] = 2 cmap_freq['Nsquared'] = 1 cmap_freq['PV'] = 1 cmap_freq['sigma_theta'] = 4 cmap_freq['destab'] = 2 cmap_freq['pHinsitu'] = 8 cmap_freq['Nitrate'] = 8 cmap_freq['Chl_a_corr'] = 5 if cmap_level_mods is not None: for param in cmap_level_mods.keys(): cmap_levels[param] = cmap_level_mods[param] if cmap_color_mods is not None: for param in cmap_color_mods.keys(): cmap_colors[param] = cmap_color_mods[param] if cmap_gamma_mods is not None: for param in cmap_gamma_mods.keys(): cmap_gamma[param] = cmap_gamma_mods[param] if cmap_freq_mods is not None: for param in cmap_freq_mods.keys(): cmap_freq[param] = cmap_freq_mods[param] prof_match = np.zeros(len(float_data['profiles'])).astype(bool) for p in np.arange(len(prof_match)): if toi is not None: if toi[0] <= float_data['profiles'][p]['datetime'] <= toi[1]: prof_match[p] = True else: prof_match[p] = True prof_indices_to_plot = np.where(prof_match)[0] if mld or show_ice_bars: datetime_coord_profs = [] datetime_coord_as_tuples = [] mld_data = [] prof_lats = [] prof_lons = [] for pi in prof_indices_to_plot: datetime_tuple_format = tt.convert_14_to_tuple(float_data['profiles'][pi]['datetime']) datetime_coord_as_tuples.append(datetime_tuple_format) datetime_coord_profs.append(tt.convert_tuple_to_datetime(datetime_tuple_format)) this_mld = gt.mld(float_data['profiles'][pi],ref_depth=mld_ref_depth, sigma_theta_crit=mld_sigma_theta_crit,verbose_warn=False) if density_coor: # actually a density value: this_mld = gt.vert_prof_eval(float_data['profiles'][pi],'sigma_theta',this_mld,extrap='nearest') # convert to power-scaled density; ignore MLDs outside plotting range if this_mld < density_lim[0]: this_mld = np.NaN this_mld = (this_mld - density_lim[0])**density_power_scale mld_data.append(this_mld) prof_lats.append(float_data['profiles'][pi]['lat']) prof_lons.append(float_data['profiles'][pi]['lon']) def DatetimeToTimestampForInterp(dt): return calendar.timegm(dt.timetuple()) if show_ice_bars: date_coord_daily = tt.dates_in_range(datetime_coord_as_tuples[0][0:3],datetime_coord_as_tuples[-1][0:3]) datetime_coord_daily = [tt.convert_tuple_to_datetime(date_tuple) for date_tuple in date_coord_daily] timestamp_coord_daily = [DatetimeToTimestampForInterp(dt) for dt in datetime_coord_daily] timestamp_coord_profs = [DatetimeToTimestampForInterp(dt) for dt in datetime_coord_profs] specific_lat_coord_for_ice = np.interp(timestamp_coord_daily,timestamp_coord_profs,prof_lats) specific_lon_coord_for_ice = np.interp(timestamp_coord_daily,timestamp_coord_profs,prof_lons) lat_coord_for_ice = [] lon_coord_for_ice = [] for pos_idx in range(len(specific_lat_coord_for_ice)): lat_coord_for_ice.append([specific_lat_coord_for_ice[pos_idx] - 0.5, specific_lat_coord_for_ice[pos_idx] + 0.5]) lon_coord_for_ice.append([specific_lon_coord_for_ice[pos_idx] - 1.0, specific_lon_coord_for_ice[pos_idx] + 1.0]) sic_coord = ldp.sea_ice_concentration_along_track(date_coord_daily,lat_coord_for_ice,lon_coord_for_ice, sea_ice_grids,sea_ice_data_avail) for param_index, param_abbrev in enumerate(param_abbrevs): param_skip = True for pi in prof_indices_to_plot: if param_abbrev in float_data['profiles'][pi].keys(): param_skip = False if param_skip: continue datetime_coord = [] section_data = [] if density_coor: depth_data = [] obs_range = [] for pi in prof_indices_to_plot: if param_abbrev in float_data['profiles'][pi].keys(): if float_data['profiles'][pi][param_abbrev]['data'].size == 0: continue z_vec, data_vec = gt.vert_prof_even_spacing(float_data['profiles'][pi],param_abbrev,z_coor='depth', spacing=vert_res,interp_method='linear',extrap='NaN', top=depth_lim[0],bottom=depth_lim[1],verbose_error=True) if density_coor: obs_param = data_vec obs_depth, obs_sigma_theta \ = gt.vert_prof_even_spacing(float_data['profiles'][pi],'sigma_theta',z_coor='depth', spacing=vert_res,interp_method='linear',extrap='NaN', top=depth_lim[0],bottom=depth_lim[1],verbose_error=True) obs_good_mask = ~np.logical_or(np.isnan(obs_param),np.isnan(obs_sigma_theta)) obs_sort_order = obs_sigma_theta[obs_good_mask].argsort() sorted_sigma_theta = obs_sigma_theta[obs_good_mask][obs_sort_order] sorted_param = obs_param[obs_good_mask][obs_sort_order] sorted_depth = obs_depth[obs_good_mask][obs_sort_order] z_vec = density_lim[0] \ + (np.arange(0, (density_lim[1]-density_lim[0])**density_power_scale, ((density_lim[1]-density_lim[0])**density_power_scale)/200)) \ ** (1.0/density_power_scale) data_vec = gt.profile_interp(sorted_param,sorted_sigma_theta,z_vec, method='linear',out_of_bounds='NaN') depth_vec = gt.profile_interp(sorted_depth,sorted_sigma_theta,z_vec, method='linear',out_of_bounds='NaN') depth_data.append(depth_vec) z_vec[z_vec < density_lim[0]] = np.NaN z_vec = (z_vec - density_lim[0])**density_power_scale section_data.append(data_vec) datetime_coord.append(tt.convert_tuple_to_datetime(tt.convert_14_to_tuple(float_data['profiles'] [pi]['datetime']))) obs_range.append([np.min(z_vec[np.isfinite(data_vec)]), np.max(z_vec[np.isfinite(data_vec)])]) param_name_for_cbar = float_data['profiles'][pi][param_abbrev]['name'] param_units_for_cbar = float_data['profiles'][pi][param_abbrev]['units'] section_data = np.ma.masked_invalid(np.array(section_data).T) if density_coor: depth_data = np.ma.masked_invalid(np.array(depth_data).T) if create_new_figs: plt.figure(figsize=new_figsize) specified_levels = np.array(cmap_levels[param_abbrev]) more_levels = np.interp(np.arange(len(specified_levels),step=1.0/cmap_freq[param_abbrev]), np.arange(len(specified_levels)),specified_levels,right=np.NaN) more_levels = more_levels[~np.isnan(more_levels)] N_colors = len(more_levels) - 1 contourf_cmap = mcolors.LinearSegmentedColormap.from_list(name=None,colors=cmap_colors[param_abbrev], N=N_colors,gamma=cmap_gamma[param_abbrev]) if param_abbrev in cmap_under_over: if cmap_under_over[param_abbrev][0] is not None: contourf_cmap.set_under(cmap_under_over[param_abbrev][0]) if cmap_under_over[param_abbrev][1] is not None: contourf_cmap.set_over(cmap_under_over[param_abbrev][1]) normalization = mcolors.BoundaryNorm(more_levels,ncolors=N_colors,clip=False) # set facecolor as black (or other given color) if density_coor: plt.gca().axhspan((density_lim[1]-density_lim[0])**density_power_scale,0, facecolor=facecolor,zorder=1) else: plt.gca().axhspan(depth_lim[0],depth_lim[1],facecolor=facecolor,zorder=1) contour_handle = plt.contourf(datetime_coord,z_vec,section_data, vmin=np.min(more_levels),vmax=np.max(more_levels), levels=more_levels,norm=normalization,cmap=contourf_cmap, extend=cmap_extend[param_abbrev],zorder=2) if plot_cbar: if show_ice_bars: shrink_cbar = 1650/(1650+175) else: shrink_cbar = 1.0 if np.max(np.abs(specified_levels)) >= 1000: formatter = pltick.FuncFormatter(lambda x, p: format(x, ',')) else: formatter = None cbar = plt.colorbar(ticks=specified_levels,spacing='uniform',shrink=shrink_cbar,format=formatter) if condensed_cbar_label is not None: cbar_label = condensed_cbar_label else: cbar_label = '{0}\n({1})'.format(param_name_for_cbar, param_units_for_cbar) if smaller_text: if force_label_size is not None: cbar_labelsize = force_label_size - 1 cbar_titlesize = force_label_size else: cbar_labelsize = 6 cbar_titlesize = 8 cbar.ax.tick_params(labelsize=cbar_labelsize) cbar.set_label(label=cbar_label,rotation=90,labelpad=9,size=cbar_titlesize) else: cbar.set_label(label=cbar_label,rotation=90,labelpad=11) # subtracted 9 cbar.ax.set_title(param_units_for_cbar,fontsize=8) if param_abbrev == 'destab' or param_abbrev == 'sigma_theta': cbar.ax.invert_yaxis() if show_prof_bars: for obs_idx, obs_dt in enumerate(datetime_coord): plt.plot([obs_dt,obs_dt],obs_range[obs_idx],color='0.5',linewidth=0.5,zorder=3) if add_date_bars is not None: for dt in add_date_bars: if not density_coor: plt.plot([dt,dt],[*depth_lim],color='0.2',linewidth=0.8,zorder=3) else: plt.plot([dt,dt],[*(np.array(density_lim)-density_lim[0])**density_power_scale], color='0.2',linewidth=0.8,zorder=3) if (drift_temps is not None) and (not density_coor): # sorry, can't plot drift temps in density space plt.plot(drift_temps['datetime'], drift_temp_depth + (depth_lim[1]-depth_lim[0])*(drift_temp_baseline-drift_temps['temp']), 'k-',linewidth=0.01,alpha=0.5,zorder=4) if trim_xlim: plt.xlim([datetime_coord[0],datetime_coord[-1]]) else: start_date = tt.convert_tuple_to_datetime(tt.convert_14_to_tuple(float_data['profiles'][0]['datetime'])) end_date = tt.convert_tuple_to_datetime(tt.convert_14_to_tuple(float_data['profiles'][-1]['datetime'])) plt.xlim([start_date,end_date]) if mld or show_ice_bars: mld_xlim_mask = np.logical_and(np.array(datetime_coord_profs) >= datetime_coord[0], np.array(datetime_coord_profs) <= datetime_coord[-1]) if mld: plt.plot(np.array(datetime_coord_profs)[mld_xlim_mask],np.array(mld_data)[mld_xlim_mask], 'w-',linewidth=1.0,zorder=4) if density_coor and density_depth_contours is not None: depth_contours = plt.contour(datetime_coord,z_vec,depth_data,levels=density_depth_contours, linewidths=0.5,alpha=0.75,colors='k',zorder=5) if force_label_size: depth_contour_fontsize = force_label_size-1 else: depth_contour_fontsize = 8 if density_depth_labels: print('>>> Waiting for manual input.\n' '>>> Click to position contours, hit Return when done.\n' '>>> Note: do not change figure size.') clabels = plt.clabel(depth_contours,fmt='%d m',fontsize=depth_contour_fontsize,manual=True, inline=True,inline_spacing=25) # removed zorder=5 for label in clabels: label.set_rotation(0) if fixed_ylim and not density_coor: max_ylim = depth_lim[1] else: max_ylim = np.max(np.array(obs_range)) if show_ice_bars: sic_xlim_mask = np.logical_and(np.array(datetime_coord_daily) >= datetime_coord[0], np.array(datetime_coord_daily) <= datetime_coord[-1]) if not smaller_text: sic_norm = -35 # meters equivalent elif depth_lim[1] <= 300: sic_norm = -35 # hackish temp solution for upper-ocean-only sections else: sic_norm = -175 if not density_coor: sic_baseline = depth_lim[0] # top of section (probably 0 m, but not necessarily) else: sic_norm = (sic_norm/1700)*((density_lim[1]-density_lim[0])**density_power_scale) sic_baseline = 0 plt.gca().fill_between(np.array(datetime_coord_daily)[sic_xlim_mask], sic_baseline + (sic_norm * np.array(sic_coord)[sic_xlim_mask]),sic_baseline, color='k',linewidth=0,zorder=5) # or #8aacb8 for blue plt.plot([datetime_coord_daily[0],datetime_coord_daily[-1]],[sic_baseline,sic_baseline],'k-',linewidth=0.5) if not density_coor: plt.ylim([sic_baseline + 1.2*sic_norm,max_ylim]) else: plt.ylim(sic_baseline + 1.2*sic_norm, (density_lim[1]-density_lim[0])**density_power_scale) else: if not density_coor: plt.ylim([depth_lim[0],max_ylim]) else: plt.ylim(*(np.array(density_lim)-density_lim[0])**density_power_scale) plt.gca().invert_yaxis() if not density_coor: if explicit_yticks is not None: plt.yticks(explicit_yticks) plt.gca().get_yaxis().set_major_formatter(pltick.FuncFormatter(lambda x, loc: "{:,}".format(x))) else: plt.yticks((np.array(explicit_yticks)-density_lim[0])**density_power_scale) plt.gca().set_yticklabels(explicit_yticks) if show_ice_bars and not density_coor: # NOTE: weird numbers display when using this in density coordinates current_yticks = plt.yticks()[0] plt.yticks([sic_baseline+sic_norm,sic_baseline,*current_yticks[1:]], ['100%','0%',*["{:,}".format(yt) for yt in current_yticks[1:]]]) if smaller_text: if force_label_size is not None: ysize = force_label_size else: ysize = 8 else: ysize = None if not plot_ylabel: plt.gca().yaxis.set_ticklabels([]) else: plt.gca().tick_params(axis='y',which='major',labelsize=ysize) if plot_ylabel: if not density_coor: plt.ylabel('Depth (m)',size=ysize) else: plt.ylabel(r'$\sigma_\theta$ (kg/m$^3$)',size=ysize) if show_ice_bars: plt.ylabel('Depth (m) ',size=ysize) plt.text(-0.14,0.93,'SIC',fontsize=ysize,rotation=0,transform=plt.gca().transAxes, horizontalalignment='right',verticalalignment='center') years = mdates.YearLocator() months = mdates.MonthLocator() if not years_only: xaxis_formatter = mdates.DateFormatter("%b") plt.gca().xaxis.set_major_locator(months) plt.gca().xaxis.set_major_formatter(xaxis_formatter) else: xaxis_formatter = mdates.DateFormatter("%Y") plt.gca().xaxis.set_major_locator(years) plt.gca().xaxis.set_major_formatter(xaxis_formatter) plt.gca().xaxis.set_minor_locator(months) plt.xticks(rotation=45) if not plot_xticklabels: plt.gca().xaxis.set_ticklabels([]) elif force_label_size is not None: plt.gca().tick_params(axis='x',which='major',labelsize=force_label_size) if grid: plt.grid(which='major',axis='both',color='0.6',linewidth=0.25,alpha=0.6) plt.gca().set_axisbelow(False) # True (grid below all), 'line' (below lines), False (grid above all) if show_prof_ticks: top_xaxis = plt.gca().twiny() top_xaxis.set_xlim([datetime_coord[0],datetime_coord[-1]]) top_xaxis.xaxis.set_ticks_position('top') top_xaxis.xaxis.set_tick_params(width=0.5) top_xaxis.set_xticks(datetime_coord) top_xaxis.xaxis.set_ticklabels([]) if create_new_figs: if add_title: plt.title('Float {0}'.format(wmoid)) plt.tight_layout() plt.savefig(results_dir + save_as + param_abbrev + '.pdf') plt.close() def section_compiler(wmoids,data_dir,results_dir,save_as,float_data,params,figsize=(8.5,11),depth_lim=(0,1000), fixed_ylim=True,mld=True,sea_ice_grids=None,sea_ice_data_avail=None,add_date_bars=None, condensed_cbar_labels=None,width_ratios=None,height_ratios=None,all_trajs=None, traj_plot_params=None,show_ice_bars=True,density_coor=False,density_lim=None, density_power_scale=None,density_depth_contours=None,plot_title=True,force_label_size=None, explicit_yticks=None,w_pad=0.0,drift_temps=None,drift_temp_baseline=None,drift_temp_depth=None, years_only=None): """ Arrange multiple hydrographic sections and float trajectories on a single plot. Wrapper method for pt.section(). """ plt.figure(figsize=figsize) if all_trajs is not None: params = ['__trajectories__',*params] if condensed_cbar_labels is not None: condensed_cbar_labels = ['__trajectories__',*condensed_cbar_labels] first_param_idx = 1 else: first_param_idx = 0 subplot_grid = gridspec.GridSpec(len(params),len(wmoids),width_ratios=width_ratios,height_ratios=height_ratios) for float_idx, wmoid in enumerate(wmoids): for param_idx, param in enumerate(params): plt.subplot(subplot_grid[len(wmoids)*param_idx + float_idx]) if param_idx == 0 and plot_title: plt.title('Float {0}'.format(wmoid),size=8,fontweight='bold') if param == '__trajectories__': argo_traj(data_dir,None,all_trajs[float_idx],*traj_plot_params[float_idx],label_dates=True, save_as=None,label_placement=(0.04,-0.25),boundary_width=1,labelsize=4, label_dates_12mo_only=True) if float_idx+1 == len(wmoids): plt.gca().set_anchor('W') continue if param_idx == first_param_idx: ice_bars_yes_no = show_ice_bars; show_prof_ticks = True else: ice_bars_yes_no = False; show_prof_ticks = False if float_idx == 0: plot_ylabel = True; density_depth_labels = True else: plot_ylabel = False; density_depth_labels = False if float_idx == len(wmoids)-1: plot_cbar = True else: plot_cbar = False if param_idx == len(params)-1: plot_xticklabels = True; dd_contours = density_depth_contours else: plot_xticklabels = False; dd_contours = None if param == 'ptmp' and drift_temps is not None: dt = drift_temps[wmoid]; dtb = drift_temp_baseline; dtd = drift_temp_depth else: dt = None; dtb = None; dtd = None section(wmoid,None,None,float_data[float_idx],params=[param],depth_lim=depth_lim,fixed_ylim=fixed_ylim, mld=mld,show_ice_bars=ice_bars_yes_no,sea_ice_grids=sea_ice_grids,sea_ice_data_avail=sea_ice_data_avail, show_prof_ticks=show_prof_ticks,add_date_bars=add_date_bars,trim_xlim=False,create_new_figs=False, plot_ylabel=plot_ylabel,plot_xticklabels=plot_xticklabels,years_only=years_only[float_idx],plot_cbar=plot_cbar, condensed_cbar_label=condensed_cbar_labels[param_idx],smaller_text=True,density_coor=density_coor, density_lim=density_lim,density_power_scale=density_power_scale,force_label_size=force_label_size, density_depth_contours=dd_contours,density_depth_labels=density_depth_labels, explicit_yticks=explicit_yticks,drift_temps=dt,drift_temp_baseline=dtb,drift_temp_depth=dtd) plt.tight_layout(h_pad=0.2,w_pad=w_pad) # can go negative if necessary plt.savefig(results_dir + save_as + '.pdf') plt.close() def prof_locations_map(results_dir,data_dir,compiled_obs,map_dimensions, toi_range=[datetime(1900,1,1),datetime.today()],bathy_cmap='Greys_r', seasons=[[1,3],[4,6],[7,9],[10,12]],season_colors=['orange','cyan','orchid','lime'], season_labels=['Jan-Mar','Apr-Jun','Jul-Sep','Oct-Dec'], manual_list_of_types=None,manual_labels_for_types=None, manual_markers_for_types=None,manual_marker_open_for_types=None, grid_lats=np.arange(-80,60,5),grid_lons=np.arange(-80,50,10), lon_labels=[0,0,1,0],lat_labels=[1,0,0,0],label_contours=False, add_epoch_title=None,fontsize=5,fontsize_extra_for_epoch=2, add_rect_patch=None,add_circ_patch=None,add_legend=False,legend_pos='outside_bottom', create_new_fig=False,use_existing_basemap=None,return_basemap=False,save_as=None): """ Plot locations of hydrographic observations, as compiled by ldp.compile_hydrographic_obs(), by season and type (source) for a given epoch. Args: add_rect_patch: None or [lon_W,lon_E,lat_S,lat_N] add_circ_patch: None or [[lon_cent,lat_cent,radius_in_km], etc.], i.e. a list of params for multiple circles legend_pos: 'outside_bottom' or 'outside_right' """ if use_existing_basemap is None: fig,m = bathy_basemap(data_dir,*map_dimensions,create_new_fig=create_new_fig,figsize=(9,9), boundary_width=1,labelsize=fontsize,grid_color='.2', grid_lats=grid_lats,grid_lons=grid_lons,force_lon_labels=lon_labels,force_lat_labels=lat_labels, label_contours=label_contours,cmap=bathy_cmap) else: m = use_existing_basemap if add_rect_patch is not None: ap = add_rect_patch patch_lons = np.concatenate((np.linspace(ap[0],ap[1],100),np.linspace(ap[1],ap[1],100), np.linspace(ap[1],ap[0],100),np.linspace(ap[0],ap[0],100))) patch_lats = np.concatenate((np.linspace(ap[3],ap[3],100),np.linspace(ap[3],ap[2],100), np.linspace(ap[2],ap[2],100),np.linspace(ap[2],ap[3],100))) plonx,platy = m(patch_lons,patch_lats) patchxy = list(zip(plonx,platy)) poly = Polygon(patchxy,facecolor='white',alpha=0.1) plt.gca().add_patch(poly) if add_circ_patch is not None: for circ in add_circ_patch: circle_tuples = circle(m,*circ) poly = Polygon(list(circle_tuples),facecolor='white',alpha=0.1) plt.gca().add_patch(poly) toi_mask_base = np.logical_and(np.array(compiled_obs['datetimes']) >= toi_range[0], np.array(compiled_obs['datetimes']) <= toi_range[1]) dt_months = np.array([dt.month for dt in compiled_obs['datetimes']]) if manual_list_of_types is None: obs_types = np.unique(compiled_obs['types'][toi_mask_base]) else: obs_types = manual_list_of_types if manual_labels_for_types is None: obs_type_labels = obs_types else: obs_type_labels = manual_labels_for_types if manual_markers_for_types is None: obs_type_markers = ['o','s','^','v','<','>','p','*','+','d'] # etc. else: obs_type_markers = manual_markers_for_types if manual_marker_open_for_types is None: obs_type_markers_open = np.tile(False,len(obs_type_markers)) else: obs_type_markers_open = manual_marker_open_for_types for s_idx, season_months in enumerate(seasons): toi_mask = np.logical_and(toi_mask_base,np.logical_and(dt_months >= season_months[0], dt_months <= season_months[1])) for t_idx, obs_type in enumerate(obs_types): final_mask = np.logical_and(toi_mask,np.array(compiled_obs['types']) == obs_type) if sum(final_mask) > 0: lonx,laty = m(np.array(compiled_obs['lons'])[final_mask],np.array(compiled_obs['lats'])[final_mask]) if obs_type_markers_open[t_idx]: plt.scatter(lonx,laty,s=4.0,marker=obs_type_markers[t_idx], facecolor='none',edgecolors=season_colors[s_idx], linewidths=0.5) else: plt.scatter(lonx,laty,s=4.0,marker=obs_type_markers[t_idx], facecolor=season_colors[s_idx],edgecolors='none') if add_epoch_title is not None: plt.text(0.05,0.95,add_epoch_title,color='w',fontsize=fontsize+fontsize_extra_for_epoch,fontweight='bold', horizontalalignment='left',verticalalignment='top',transform=plt.gca().transAxes) if add_legend: for s_idx, season_months in enumerate(seasons): plt.plot([0,0],[np.nan,np.nan],lw=0,c=season_colors[s_idx],marker='o',ms=4,label=season_labels[s_idx]) for t_idx, obs_type in enumerate(obs_types): if obs_type_markers_open[t_idx]: plt.plot([0,0],[np.nan,np.nan],lw=0,marker=obs_type_markers[t_idx],ms=4, markerfacecolor='none',markeredgecolor='k',markeredgewidth=0.5,label=obs_type_labels[t_idx]) else: plt.plot([0,0],[np.nan,np.nan],lw=0,marker=obs_type_markers[t_idx],ms=4, markerfacecolor='k',markeredgecolor='none',label=obs_type_labels[t_idx]) if legend_pos == 'outside_bottom': ncol = len(seasons)+len(obs_types) loc = 'upper right' bbox_to_anchor = [0.5,-0.05] handletextpad = 0.05 columnspacing = 1.5 labelspacing = None elif legend_pos == 'outside_right': ncol = 2 loc = 'center left' bbox_to_anchor = [1.15,0.5] handletextpad = 0.25 columnspacing = 1.5 labelspacing = 1.5 plt.legend(ncol=ncol,fontsize=fontsize,loc=loc,bbox_to_anchor=bbox_to_anchor,frameon=False, handletextpad=handletextpad,columnspacing=columnspacing,labelspacing=labelspacing) if save_as is not None: plt.tight_layout() plt.savefig(results_dir + save_as + '.pdf') plt.close() elif return_basemap: return m def era_field(data_dir,results_dir,save_as,data,datetime_range,width,height,lat_center,lon_center,bathy_contours=[], contour=True,contour_lims=None,n_contours=21,use_cmap=None,add_cbar=True, existing_canvas=None,return_pcm=False, add_wind_vectors=None,wind_vector_downsample=[5,2],wind_vector_scale=50, add_wind_vector_key=True,wind_vector_key=20,wind_vector_key_loc=[0.8,-0.25],wind_vector_key_fontsize=8, add_sic_contours=None,sic_contours=[50], add_date=None,date_string_loc=[0.05,0.95],date_string_size=8, date_string_valign='top',date_string_halign='left',average_daily=True,add_patch_lons_lats=None): """ Plotting routine for daily ECMWF fields. Args: data_dir: data directory (for bathymetry files) results_dir: None to plot on existing canvas, or directory to save plot save_as: None (to not save figure) or filename, without extension data: xarray DataArray containing reanalysis parameter, e.g. erai_daily['u10'] datetime_range: single datetime to plot, or range of datetimes ([start,end]) to average for plot note: if <<average_daily>> is True, averages over all hours during a given day, from hour 0 to 23 width: Basemap plot width height: Basemap plot height lat_center: Basemap plot latitude center location lon_center: Basemap plot longitude center location bathy_contours: list of depths to add bathymetric contours contour: True or False to draw filled contour plot of <<data>> contour_lims: None or [min,max] to specify contour color limits n_contours: number of contour levels to plot, if contour_lims is specified (default = 21) add_cbar: plot colorbar? True or False existing_canvas: None or handle of Basemap instance (m) to plot onto return_pcm: return handle ('pcm') to pcolormesh of field add_wind_vectors: None or xarray DataArrays for [u,v] to plot wind vectors from fields note: assumes lats and lons are same as for main 'data' DataArray above wind_vector_downsample: [i,j] to plot every ith u-wind and jth v-wind vector wind_vector_scale: length of wind vectors (larger numbers are smaller vectors) add_wind_vector_key: add quiver key next to plot, representing size of [N] m/s wind vector wind_vector_key: depict a [N] m/s vector key wind_vector_key_loc: location of wind vector in axes coordinates from bottom left (x, y) wind_vector_key_fontsize: fontsize of 'N m/s' key text add_sic_contours: None or list of [sic_grid['lons'],sic_grid['lats'],sic_field] sic_contours: [50] or list of other SIC % levels to contour add_date: None or formatted date string to add as text date_string_loc: location in axes coordinates (x,y) from bottom left for date string date_string_size: fontsize for date string date_string_valign: vertical alignment of date string location ('top' or 'bottom') date_string_halign: horizontal alignment of date string location ('left' or 'right') average_daily: if True, ignores hour value(s) of <<datetime_range>> and averages over day if False, keeps hour value(s) of <<datetime_range>> add_patch_lons_lats: None or box coordinates to plot as shaded patch: [lon_W,lon_E,lat_S,lat_N] """ if contour_lims is not None: contour_levs = np.linspace(contour_lims[0],contour_lims[1],n_contours) else: contour_levs = None if not isinstance(datetime_range,list) and not isinstance(datetime_range,tuple): dtr = [datetime_range,datetime_range] # i.e. if only single datetime specified else: dtr = datetime_range if average_daily: # if not average_daily, interpret datetime_range exactly and slice accordingly dtr[0] = datetime(dtr[0].year,dtr[0].month,dtr[0].day,0) dtr[1] = datetime(dtr[1].year,dtr[1].month,dtr[1].day,23,59,59) data = data.sel(time=slice(*dtr)).mean(dim='time',keep_attrs=True) if add_wind_vectors is not None: u_data = add_wind_vectors[0].sel(time=slice(*dtr)).mean(dim='time',keep_attrs=True) v_data = add_wind_vectors[1].sel(time=slice(*dtr)).mean(dim='time',keep_attrs=True) if existing_canvas is None: fig, m = lambert_basemap(width,height,lat_center,lon_center, boundary_width=1,lon_labels_on_top=True,resolution='i') else: fig = plt.gcf() m = existing_canvas lon_grid, lat_grid = np.meshgrid(data['lons'],data['lats']) rlons, rlats = m(lon_grid, lat_grid) if contour: if use_cmap is None: if contour_lims is not None: if contour_lims[1] == abs(contour_lims[0]): cmap = 'PRGn' else: cmap = 'viridis' else: cmap = 'viridis' else: cmap = use_cmap with warnings.catch_warnings(): # ignore Dask true_divide warning upon evaluating data warnings.simplefilter('ignore') pcm = m.contourf(rlons,rlats,data,levels=contour_levs,cmap=cmap,extend='both') if add_cbar: cbar = plt.colorbar() cbar.set_label('{0} ({1})'.format(data.attrs['long_name'],data.attrs['units']),rotation=-90,labelpad=15) if add_wind_vectors: [i,j] = wind_vector_downsample Q = plt.quiver(rlons[::j,::i],rlats[::j,::i],u_data[::j,::i],v_data[::j,::i], units='width',scale=wind_vector_scale,width=0.01,zorder=10) if add_wind_vector_key: plt.quiverkey(Q,*wind_vector_key_loc,wind_vector_key, r'{0} '.format(wind_vector_key) + r'm s$^{-1}$', fontproperties={'size':wind_vector_key_fontsize}) if add_sic_contours is not None: sic_lonx,sic_laty = m(add_sic_contours[0],add_sic_contours[1]) plt.contour(sic_lonx,sic_laty,add_sic_contours[2],levels=sic_contours, colors='k',linewidths=0.5,alpha=0.8,zorder=5) if len(bathy_contours) > 0: etopo_lons,etopo_lats,etopo = ldp.load_bathy(data_dir) retopolons,retopolats = m(*np.meshgrid(etopo_lons,etopo_lats)) olevels = bathy_contours # check etopo.ravel().min() m.contour(retopolons,retopolats,etopo,olevels,linewidths=0.5,linestyles='solid',colors='#808080', alpha=0.5,zorder=4) if add_patch_lons_lats is not None: pll = add_patch_lons_lats patch_lons = np.concatenate((np.linspace(pll[0],pll[1],100),np.linspace(pll[1],pll[1],100), np.linspace(pll[1],pll[0],100),np.linspace(pll[0],pll[0],100))) patch_lats = np.concatenate((np.linspace(pll[3],pll[3],100),np.linspace(pll[3],pll[2],100), np.linspace(pll[2],pll[2],100),np.linspace(pll[2],pll[3],100))) plonx,platy = m(patch_lons,patch_lats) patchxy = list(zip(plonx,platy)) poly = Polygon(patchxy,facecolor='white',alpha=0.25,zorder=3) plt.gca().add_patch(poly) if add_date is not None: plt.text(*date_string_loc,add_date,fontsize=date_string_size,fontweight='bold', horizontalalignment=date_string_halign,verticalalignment=date_string_valign, transform=plt.gca().transAxes) if save_as is not None: plt.savefig(results_dir + save_as + '.pdf') plt.close() if return_pcm and contour: return pcm ############# AUXILIARY (INTERNAL) FUNCTIONS ################ def lambert_basemap(width,height,lat_center,lon_center,boundary_width=2,create_new_fig=True,figsize=None,resolution='i', draw_grid=True,lon_labels_on_top=False,grid_color='0.2',meridians=np.arange(-80,50,20)): """ Creates basic figure on a Lambert azimuthal equal-area projection. """ warnings.filterwarnings('ignore', category=mcbook.mplDeprecation) if create_new_fig: fig = plt.figure(figsize=figsize) else: fig = plt.gcf() m = Basemap(width=width, height=height, resolution=resolution, projection='laea', lat_ts=lat_center, lat_0=lat_center, lon_0=lon_center) m.drawcoastlines(color='k') m.drawmapboundary(linewidth=boundary_width) m.fillcontinents() if draw_grid: if lon_labels_on_top: lon_labels = [0,0,1,0] else: lon_labels = [0,0,0,1] m.drawmeridians(meridians, linewidth=0.5, color=grid_color, labels=lon_labels) m.drawmeridians(np.arange(-80, 50, 10), linewidth=0.5, color=grid_color) m.drawparallels(np.arange(-80, 60, 5), linewidth=0.5, color=grid_color, labels=[1, 0, 0, 0]) return fig, m def bathy_basemap(data_dir,width,height,lat_center,lon_center,create_new_fig=True,figsize=None, labelsize=None,lon_labels_on_top=False,force_lon_labels=None,force_lat_labels=[1,0,0,0], boundary_width=2,grid_color='0.2',grid_lats=np.arange(-80,60,5),grid_lons=np.arange(-80,50,10), label_contours=False,cmap=cmocean.cm.deep_r,bathy_alpha=1.0): """ Draws bathymetry on LAEA (Lambert) basemap. Currently the figure parameters are not entirely defined through arguments above. This could be remedied. """ fig, m = lambert_basemap(width,height,lat_center,lon_center,create_new_fig=create_new_fig,figsize=figsize, draw_grid=False,boundary_width=boundary_width) lons, lats, etopo = ldp.load_bathy(data_dir) rlons, rlats = m(*np.meshgrid(lons, lats)) olevels = np.arange(-7000, 760, 750) # check etopo.ravel().min() cf = m.contourf(rlons, rlats, etopo, olevels, cmap=cmap, alpha=bathy_alpha, zorder=1) if label_contours: if cmap == 'Greys_r': contour_line_cmap = 'Greys_r' else: contour_line_cmap = None co = m.contour(rlons,rlats,-1*etopo,[2500,3250,4000,4750],linewidths=0.0,alpha=0.5,cmap=contour_line_cmap,zorder=1) print('>>> Waiting for manual input.\n' '>>> Click to position contours, hit Return when done.\n' '>>> Note: do not change figure size.') if cmap == 'Greys_r': clabel_single_color = 'k' # or change to None to use reversed grayscale cmap else: clabel_single_color = 'w' plt.clabel(co,colors=clabel_single_color,fmt='%d',fontsize=labelsize-1,manual=True,inline=True) if lon_labels_on_top: lon_labels = [0, 0, 1, 0] else: lon_labels = [0, 0, 0, 1] lat_labels = [1,0,0,0] if force_lon_labels is not None: lon_labels = force_lon_labels if force_lat_labels is not None: lat_labels = force_lat_labels m.drawmeridians(grid_lons,color=grid_color,linewidth=0.5,labels=lon_labels,fontsize=labelsize,zorder=2) m.drawparallels(grid_lats,color=grid_color,linewidth=0.5,labels=lat_labels,fontsize=labelsize,zorder=2) return fig, m def blank_inset_basemap(width,height,lat_center,lon_center,create_new_fig=True, boundary_width=2,coastline_width=1,lon_labels=[0,0,0,0],lat_labels=[0,0,0,0], grid_lats=np.arange(-80,60,5),grid_lons=np.arange(-80,50,10),labelsize=None,grid_color='0.2', fill_continent_zorder=None,lat_lon_line_zorder=None,fill_continent_color='0.8', resolution='i'): """ Creates figure with regional Lambert basemap, to be filled elsewhere with a plot. """ if create_new_fig: fig = plt.figure(figsize=(9, 7)) else: fig = plt.gcf() m = Basemap(width=width, height=height, resolution=resolution, projection='laea', lat_ts=lat_center, lat_0=lat_center, lon_0=lon_center) m.drawcoastlines(linewidth=coastline_width,color='k',zorder=fill_continent_zorder) m.drawmapboundary(linewidth=boundary_width, fill_color='#f0ffff') m.fillcontinents(color=fill_continent_color,zorder=fill_continent_zorder) if create_new_fig: print('Temporary warning from pt.blank_inset_basemap(): ' 'explicit setting of lat/lon labels is turned off; make sure this is okay') # lon_labels = [0, 0, 0, 1] # lat_labels = [1, 0, 0, 0] m.drawmeridians(grid_lons, color=grid_color, linewidth=0.5, labels=lon_labels, fontsize=labelsize, zorder=lat_lon_line_zorder) m.drawparallels(grid_lats, color=grid_color, linewidth=0.5, labels=lat_labels, fontsize=labelsize, zorder=lat_lon_line_zorder) return fig, m
[ "matplotlib.pyplot.title", "matplotlib.dates.MonthLocator", "numpy.abs", "time_tools.convert_tuple_to_8_int", "matplotlib.pyplot.quiver", "load_product.sea_ice_concentration_along_track", "numpy.isnan", "matplotlib.patches.Polygon", "matplotlib.pyplot.figure", "numpy.arange", "matplotlib.pyplot.contour", "geo_tools.mld", "matplotlib.pyplot.gca", "numpy.interp", "matplotlib.pyplot.tight_layout", "numpy.unique", "time_tools.convert_14_to_tuple", "load_product.load_bathy", "matplotlib.colors.LinearSegmentedColormap.from_list", "numpy.meshgrid", "time_tools.convert_8_int_to_tuple", "warnings.simplefilter", "time_tools.dates_in_range", "matplotlib.pyplot.close", "matplotlib.pyplot.yticks", "numpy.isfinite", "matplotlib.pyplot.colorbar", "geo_tools.profile_interp", "matplotlib.dates.DateFormatter", "numpy.max", "warnings.catch_warnings", "numpy.linspace", "matplotlib.pyplot.xticks", "time_tools.convert_tuple_to_datetime", "Circles.circles.circle", "datetime.datetime.today", "matplotlib.pyplot.ylim", "matplotlib.pyplot.legend", "datetime.datetime", "matplotlib.pyplot.text", "numpy.sort", "numpy.min", "matplotlib.pyplot.pcolormesh", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.gcf", "matplotlib.pyplot.grid", "matplotlib.pyplot.xlim", "matplotlib.pyplot.clabel", "geo_tools.vert_prof_eval", "matplotlib.pyplot.plot", "warnings.filterwarnings", "os.path.isdir", "numpy.logical_and", "matplotlib.colors.BoundaryNorm", "matplotlib.pyplot.scatter", "geo_tools.vert_prof_even_spacing", "numpy.where", "numpy.array", "numpy.diff", "matplotlib.dates.YearLocator", "mpl_toolkits.basemap.Basemap", "matplotlib.pyplot.savefig" ]
[((515, 565), 'os.path.isdir', 'os.path.isdir', (['"""/Applications/anaconda/share/proj"""'], {}), "('/Applications/anaconda/share/proj')\n", (528, 565), False, 'import os\n'), ((775, 839), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""', '""".*is_string_like function.*"""'], {}), "('ignore', '.*is_string_like function.*')\n", (798, 839), False, 'import warnings\n'), ((1679, 1706), 'numpy.arange', 'np.arange', (['(-3500)', '(-100)', '(500)'], {}), '(-3500, -100, 500)\n', (1688, 1706), True, 'import numpy as np\n'), ((1741, 1762), 'numpy.arange', 'np.arange', (['(-80)', '(60)', '(5)'], {}), '(-80, 60, 5)\n', (1750, 1762), True, 'import numpy as np\n'), ((1771, 1793), 'numpy.arange', 'np.arange', (['(-80)', '(50)', '(10)'], {}), '(-80, 50, 10)\n', (1780, 1793), True, 'import numpy as np\n'), ((2343, 2408), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {'category': 'mcbook.mplDeprecation'}), "('ignore', category=mcbook.mplDeprecation)\n", (2366, 2408), False, 'import warnings\n'), ((5041, 5248), 'matplotlib.pyplot.pcolormesh', 'plt.pcolormesh', (['(lonx - sic_lon_edge_to_center)', '(laty - sic_lat_edge_to_center)', 'sic_nan_masked'], {'cmap': 'ice_cmap', 'edgecolors': '"""None"""', 'rasterized': 'rasterized', 'zorder': '(1)', 'alpha': '(1.0)', 'vmin': 'open_sic', 'vmax': 'max_sic'}), "(lonx - sic_lon_edge_to_center, laty - sic_lat_edge_to_center,\n sic_nan_masked, cmap=ice_cmap, edgecolors='None', rasterized=rasterized,\n zorder=1, alpha=1.0, vmin=open_sic, vmax=max_sic)\n", (5055, 5248), True, 'import matplotlib.pyplot as plt\n'), ((20185, 20212), 'numpy.arange', 'np.arange', (['(7.84)', '(8.16)', '(0.04)'], {}), '(7.84, 8.16, 0.04)\n', (20194, 20212), True, 'import numpy as np\n'), ((20240, 20267), 'numpy.arange', 'np.arange', (['(20.0)', '(34.01)', '(1.0)'], {}), '(20.0, 34.01, 1.0)\n', (20249, 20267), True, 'import numpy as np\n'), ((20298, 20323), 'numpy.arange', 'np.arange', (['(0.0)', '(2.0)', '(0.25)'], {}), '(0.0, 2.0, 0.25)\n', (20307, 20323), True, 'import numpy as np\n'), ((41350, 41377), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': 'figsize'}), '(figsize=figsize)\n', (41360, 41377), True, 'import matplotlib.pyplot as plt\n'), ((44324, 44364), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {'h_pad': '(0.2)', 'w_pad': 'w_pad'}), '(h_pad=0.2, w_pad=w_pad)\n', (44340, 44364), True, 'import matplotlib.pyplot as plt\n'), ((44399, 44442), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(results_dir + save_as + '.pdf')"], {}), "(results_dir + save_as + '.pdf')\n", (44410, 44442), True, 'import matplotlib.pyplot as plt\n'), ((44447, 44458), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (44456, 44458), True, 'import matplotlib.pyplot as plt\n'), ((45015, 45036), 'numpy.arange', 'np.arange', (['(-80)', '(60)', '(5)'], {}), '(-80, 60, 5)\n', (45024, 45036), True, 'import numpy as np\n'), ((45045, 45067), 'numpy.arange', 'np.arange', (['(-80)', '(50)', '(10)'], {}), '(-80, 50, 10)\n', (45054, 45067), True, 'import numpy as np\n'), ((47380, 47436), 'numpy.array', 'np.array', (["[dt.month for dt in compiled_obs['datetimes']]"], {}), "([dt.month for dt in compiled_obs['datetimes']])\n", (47388, 47436), True, 'import numpy as np\n'), ((55688, 55727), 'numpy.meshgrid', 'np.meshgrid', (["data['lons']", "data['lats']"], {}), "(data['lons'], data['lats'])\n", (55699, 55727), True, 'import numpy as np\n'), ((58995, 59017), 'numpy.arange', 'np.arange', (['(-80)', '(50)', '(20)'], {}), '(-80, 50, 20)\n', (59004, 59017), True, 'import numpy as np\n'), ((59106, 59171), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {'category': 'mcbook.mplDeprecation'}), "('ignore', category=mcbook.mplDeprecation)\n", (59129, 59171), False, 'import warnings\n'), ((59278, 59415), 'mpl_toolkits.basemap.Basemap', 'Basemap', ([], {'width': 'width', 'height': 'height', 'resolution': 'resolution', 'projection': '"""laea"""', 'lat_ts': 'lat_center', 'lat_0': 'lat_center', 'lon_0': 'lon_center'}), "(width=width, height=height, resolution=resolution, projection=\n 'laea', lat_ts=lat_center, lat_0=lat_center, lon_0=lon_center)\n", (59285, 59415), False, 'from mpl_toolkits.basemap import Basemap\n'), ((60210, 60231), 'numpy.arange', 'np.arange', (['(-80)', '(60)', '(5)'], {}), '(-80, 60, 5)\n', (60219, 60231), True, 'import numpy as np\n'), ((60240, 60262), 'numpy.arange', 'np.arange', (['(-80)', '(50)', '(10)'], {}), '(-80, 50, 10)\n', (60249, 60262), True, 'import numpy as np\n'), ((60731, 60755), 'load_product.load_bathy', 'ldp.load_bathy', (['data_dir'], {}), '(data_dir)\n', (60745, 60755), True, 'import load_product as ldp\n'), ((60817, 60843), 'numpy.arange', 'np.arange', (['(-7000)', '(760)', '(750)'], {}), '(-7000, 760, 750)\n', (60826, 60843), True, 'import numpy as np\n'), ((62385, 62406), 'numpy.arange', 'np.arange', (['(-80)', '(60)', '(5)'], {}), '(-80, 60, 5)\n', (62394, 62406), True, 'import numpy as np\n'), ((62415, 62437), 'numpy.arange', 'np.arange', (['(-80)', '(50)', '(10)'], {}), '(-80, 50, 10)\n', (62424, 62437), True, 'import numpy as np\n'), ((62821, 62958), 'mpl_toolkits.basemap.Basemap', 'Basemap', ([], {'width': 'width', 'height': 'height', 'resolution': 'resolution', 'projection': '"""laea"""', 'lat_ts': 'lat_center', 'lat_0': 'lat_center', 'lon_0': 'lon_center'}), "(width=width, height=height, resolution=resolution, projection=\n 'laea', lat_ts=lat_center, lat_0=lat_center, lon_0=lon_center)\n", (62828, 62958), False, 'from mpl_toolkits.basemap import Basemap\n'), ((4808, 4821), 'numpy.isnan', 'np.isnan', (['sic'], {}), '(sic)\n', (4816, 4821), True, 'import numpy as np\n'), ((5562, 5634), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {'pad': '(0.05)', 'shrink': '(0.65)', 'format': '"""%.0f%%"""', 'extend': 'extend_cmap'}), "(pad=0.05, shrink=0.65, format='%.0f%%', extend=extend_cmap)\n", (5574, 5634), True, 'import matplotlib.pyplot as plt\n'), ((5774, 5886), 'matplotlib.pyplot.contour', 'plt.contour', (['lonx', 'laty', 'polynya_grid'], {'levels': '[0.999]', 'colors': '"""#00FF00"""', 'linewidths': '(0.7)', 'alpha': '(0.8)', 'zorder': '(2)'}), "(lonx, laty, polynya_grid, levels=[0.999], colors='#00FF00',\n linewidths=0.7, alpha=0.8, zorder=2)\n", (5785, 5886), True, 'import matplotlib.pyplot as plt\n'), ((5949, 5973), 'load_product.load_bathy', 'ldp.load_bathy', (['data_dir'], {}), '(data_dir)\n', (5963, 5973), True, 'import load_product as ldp\n'), ((11471, 11489), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (11487, 11489), True, 'import matplotlib.pyplot as plt\n'), ((11636, 11647), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (11645, 11647), True, 'import matplotlib.pyplot as plt\n'), ((19095, 19208), 'numpy.array', 'np.array', (["['ptmp', 'psal', 'Nsquared', 'PV', 'destab', 'Oxygen', 'OxygenSat',\n 'pHinsitu', 'Nitrate', 'Chl_a']"], {}), "(['ptmp', 'psal', 'Nsquared', 'PV', 'destab', 'Oxygen', 'OxygenSat',\n 'pHinsitu', 'Nitrate', 'Chl_a'])\n", (19103, 19208), True, 'import numpy as np\n'), ((24064, 24084), 'numpy.where', 'np.where', (['prof_match'], {}), '(prof_match)\n', (24072, 24084), True, 'import numpy as np\n'), ((25445, 25535), 'time_tools.dates_in_range', 'tt.dates_in_range', (['datetime_coord_as_tuples[0][0:3]', 'datetime_coord_as_tuples[-1][0:3]'], {}), '(datetime_coord_as_tuples[0][0:3],\n datetime_coord_as_tuples[-1][0:3])\n', (25462, 25535), True, 'import time_tools as tt\n'), ((25873, 25939), 'numpy.interp', 'np.interp', (['timestamp_coord_daily', 'timestamp_coord_profs', 'prof_lats'], {}), '(timestamp_coord_daily, timestamp_coord_profs, prof_lats)\n', (25882, 25939), True, 'import numpy as np\n'), ((25975, 26041), 'numpy.interp', 'np.interp', (['timestamp_coord_daily', 'timestamp_coord_profs', 'prof_lons'], {}), '(timestamp_coord_daily, timestamp_coord_profs, prof_lons)\n', (25984, 26041), True, 'import numpy as np\n'), ((26511, 26643), 'load_product.sea_ice_concentration_along_track', 'ldp.sea_ice_concentration_along_track', (['date_coord_daily', 'lat_coord_for_ice', 'lon_coord_for_ice', 'sea_ice_grids', 'sea_ice_data_avail'], {}), '(date_coord_daily, lat_coord_for_ice,\n lon_coord_for_ice, sea_ice_grids, sea_ice_data_avail)\n', (26548, 26643), True, 'import load_product as ldp\n'), ((30138, 30173), 'numpy.array', 'np.array', (['cmap_levels[param_abbrev]'], {}), '(cmap_levels[param_abbrev])\n', (30146, 30173), True, 'import numpy as np\n'), ((30492, 30627), 'matplotlib.colors.LinearSegmentedColormap.from_list', 'mcolors.LinearSegmentedColormap.from_list', ([], {'name': 'None', 'colors': 'cmap_colors[param_abbrev]', 'N': 'N_colors', 'gamma': 'cmap_gamma[param_abbrev]'}), '(name=None, colors=cmap_colors[\n param_abbrev], N=N_colors, gamma=cmap_gamma[param_abbrev])\n', (30533, 30627), True, 'import matplotlib.colors as mcolors\n'), ((30993, 31056), 'matplotlib.colors.BoundaryNorm', 'mcolors.BoundaryNorm', (['more_levels'], {'ncolors': 'N_colors', 'clip': '(False)'}), '(more_levels, ncolors=N_colors, clip=False)\n', (31013, 31056), True, 'import matplotlib.colors as mcolors\n'), ((38993, 39013), 'matplotlib.dates.YearLocator', 'mdates.YearLocator', ([], {}), '()\n', (39011, 39013), True, 'import matplotlib.dates as mdates\n'), ((39031, 39052), 'matplotlib.dates.MonthLocator', 'mdates.MonthLocator', ([], {}), '()\n', (39050, 39052), True, 'import matplotlib.dates as mdates\n'), ((39507, 39530), 'matplotlib.pyplot.xticks', 'plt.xticks', ([], {'rotation': '(45)'}), '(rotation=45)\n', (39517, 39530), True, 'import matplotlib.pyplot as plt\n'), ((44568, 44588), 'datetime.datetime', 'datetime', (['(1900)', '(1)', '(1)'], {}), '(1900, 1, 1)\n', (44576, 44588), False, 'from datetime import datetime, timedelta\n'), ((44587, 44603), 'datetime.datetime.today', 'datetime.today', ([], {}), '()\n', (44601, 44603), False, 'from datetime import datetime, timedelta\n'), ((46878, 46924), 'matplotlib.patches.Polygon', 'Polygon', (['patchxy'], {'facecolor': '"""white"""', 'alpha': '(0.1)'}), "(patchxy, facecolor='white', alpha=0.1)\n", (46885, 46924), False, 'from matplotlib.patches import Polygon\n'), ((47487, 47534), 'numpy.unique', 'np.unique', (["compiled_obs['types'][toi_mask_base]"], {}), "(compiled_obs['types'][toi_mask_base])\n", (47496, 47534), True, 'import numpy as np\n'), ((50667, 50856), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'ncol': 'ncol', 'fontsize': 'fontsize', 'loc': 'loc', 'bbox_to_anchor': 'bbox_to_anchor', 'frameon': '(False)', 'handletextpad': 'handletextpad', 'columnspacing': 'columnspacing', 'labelspacing': 'labelspacing'}), '(ncol=ncol, fontsize=fontsize, loc=loc, bbox_to_anchor=\n bbox_to_anchor, frameon=False, handletextpad=handletextpad,\n columnspacing=columnspacing, labelspacing=labelspacing)\n', (50677, 50856), True, 'import matplotlib.pyplot as plt\n'), ((50898, 50916), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (50914, 50916), True, 'import matplotlib.pyplot as plt\n'), ((50925, 50968), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(results_dir + save_as + '.pdf')"], {}), "(results_dir + save_as + '.pdf')\n", (50936, 50968), True, 'import matplotlib.pyplot as plt\n'), ((50977, 50988), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (50986, 50988), True, 'import matplotlib.pyplot as plt\n'), ((54553, 54610), 'numpy.linspace', 'np.linspace', (['contour_lims[0]', 'contour_lims[1]', 'n_contours'], {}), '(contour_lims[0], contour_lims[1], n_contours)\n', (54564, 54610), True, 'import numpy as np\n'), ((54996, 55046), 'datetime.datetime', 'datetime', (['dtr[0].year', 'dtr[0].month', 'dtr[0].day', '(0)'], {}), '(dtr[0].year, dtr[0].month, dtr[0].day, 0)\n', (55004, 55046), False, 'from datetime import datetime, timedelta\n'), ((55061, 55120), 'datetime.datetime', 'datetime', (['dtr[1].year', 'dtr[1].month', 'dtr[1].day', '(23)', '(59)', '(59)'], {}), '(dtr[1].year, dtr[1].month, dtr[1].day, 23, 59, 59)\n', (55069, 55120), False, 'from datetime import datetime, timedelta\n'), ((55624, 55633), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (55631, 55633), True, 'import matplotlib.pyplot as plt\n'), ((56580, 56727), 'matplotlib.pyplot.quiver', 'plt.quiver', (['rlons[::j, ::i]', 'rlats[::j, ::i]', 'u_data[::j, ::i]', 'v_data[::j, ::i]'], {'units': '"""width"""', 'scale': 'wind_vector_scale', 'width': '(0.01)', 'zorder': '(10)'}), "(rlons[::j, ::i], rlats[::j, ::i], u_data[::j, ::i], v_data[::j,\n ::i], units='width', scale=wind_vector_scale, width=0.01, zorder=10)\n", (56590, 56727), True, 'import matplotlib.pyplot as plt\n'), ((57131, 57257), 'matplotlib.pyplot.contour', 'plt.contour', (['sic_lonx', 'sic_laty', 'add_sic_contours[2]'], {'levels': 'sic_contours', 'colors': '"""k"""', 'linewidths': '(0.5)', 'alpha': '(0.8)', 'zorder': '(5)'}), "(sic_lonx, sic_laty, add_sic_contours[2], levels=sic_contours,\n colors='k', linewidths=0.5, alpha=0.8, zorder=5)\n", (57142, 57257), True, 'import matplotlib.pyplot as plt\n'), ((57339, 57363), 'load_product.load_bathy', 'ldp.load_bathy', (['data_dir'], {}), '(data_dir)\n', (57353, 57363), True, 'import load_product as ldp\n'), ((58221, 58278), 'matplotlib.patches.Polygon', 'Polygon', (['patchxy'], {'facecolor': '"""white"""', 'alpha': '(0.25)', 'zorder': '(3)'}), "(patchxy, facecolor='white', alpha=0.25, zorder=3)\n", (58228, 58278), False, 'from matplotlib.patches import Polygon\n'), ((58607, 58650), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(results_dir + save_as + '.pdf')"], {}), "(results_dir + save_as + '.pdf')\n", (58618, 58650), True, 'import matplotlib.pyplot as plt\n'), ((58659, 58670), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (58668, 58670), True, 'import matplotlib.pyplot as plt\n'), ((59202, 59229), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': 'figsize'}), '(figsize=figsize)\n', (59212, 59229), True, 'import matplotlib.pyplot as plt\n'), ((59259, 59268), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (59266, 59268), True, 'import matplotlib.pyplot as plt\n'), ((61571, 61677), 'matplotlib.pyplot.clabel', 'plt.clabel', (['co'], {'colors': 'clabel_single_color', 'fmt': '"""%d"""', 'fontsize': '(labelsize - 1)', 'manual': '(True)', 'inline': '(True)'}), "(co, colors=clabel_single_color, fmt='%d', fontsize=labelsize - 1,\n manual=True, inline=True)\n", (61581, 61677), True, 'import matplotlib.pyplot as plt\n'), ((62746, 62772), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(9, 7)'}), '(figsize=(9, 7))\n', (62756, 62772), True, 'import matplotlib.pyplot as plt\n'), ((62802, 62811), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (62809, 62811), True, 'import matplotlib.pyplot as plt\n'), ((4659, 4668), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (4666, 4668), True, 'import matplotlib.pyplot as plt\n'), ((4692, 4701), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (4699, 4701), True, 'import matplotlib.pyplot as plt\n'), ((6665, 6696), 'time_tools.convert_tuple_to_8_int', 'tt.convert_tuple_to_8_int', (['date'], {}), '(date)\n', (6690, 6696), True, 'import time_tools as tt\n'), ((11434, 11463), 'matplotlib.pyplot.title', 'plt.title', (['title'], {'fontsize': '(16)'}), '(title, fontsize=16)\n', (11443, 11463), True, 'import matplotlib.pyplot as plt\n'), ((11511, 11563), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(results_dir + save_as + '.png')"], {'dpi': '(150)'}), "(results_dir + save_as + '.png', dpi=150)\n", (11522, 11563), True, 'import matplotlib.pyplot as plt\n'), ((11584, 11627), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(results_dir + save_as + '.pdf')"], {}), "(results_dir + save_as + '.pdf')\n", (11595, 11627), True, 'import matplotlib.pyplot as plt\n'), ((24334, 24396), 'time_tools.convert_14_to_tuple', 'tt.convert_14_to_tuple', (["float_data['profiles'][pi]['datetime']"], {}), "(float_data['profiles'][pi]['datetime'])\n", (24356, 24396), True, 'import time_tools as tt\n'), ((24580, 24702), 'geo_tools.mld', 'gt.mld', (["float_data['profiles'][pi]"], {'ref_depth': 'mld_ref_depth', 'sigma_theta_crit': 'mld_sigma_theta_crit', 'verbose_warn': '(False)'}), "(float_data['profiles'][pi], ref_depth=mld_ref_depth,\n sigma_theta_crit=mld_sigma_theta_crit, verbose_warn=False)\n", (24586, 24702), True, 'import geo_tools as gt\n'), ((25563, 25603), 'time_tools.convert_tuple_to_datetime', 'tt.convert_tuple_to_datetime', (['date_tuple'], {}), '(date_tuple)\n', (25591, 25603), True, 'import time_tools as tt\n'), ((30078, 30109), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': 'new_figsize'}), '(figsize=new_figsize)\n', (30088, 30109), True, 'import matplotlib.pyplot as plt\n'), ((32065, 32162), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {'ticks': 'specified_levels', 'spacing': '"""uniform"""', 'shrink': 'shrink_cbar', 'format': 'formatter'}), "(ticks=specified_levels, spacing='uniform', shrink=shrink_cbar,\n format=formatter)\n", (32077, 32162), True, 'import matplotlib.pyplot as plt\n'), ((33849, 34029), 'matplotlib.pyplot.plot', 'plt.plot', (["drift_temps['datetime']", "(drift_temp_depth + (depth_lim[1] - depth_lim[0]) * (drift_temp_baseline -\n drift_temps['temp']))", '"""k-"""'], {'linewidth': '(0.01)', 'alpha': '(0.5)', 'zorder': '(4)'}), "(drift_temps['datetime'], drift_temp_depth + (depth_lim[1] -\n depth_lim[0]) * (drift_temp_baseline - drift_temps['temp']), 'k-',\n linewidth=0.01, alpha=0.5, zorder=4)\n", (33857, 34029), True, 'import matplotlib.pyplot as plt\n'), ((34090, 34139), 'matplotlib.pyplot.xlim', 'plt.xlim', (['[datetime_coord[0], datetime_coord[-1]]'], {}), '([datetime_coord[0], datetime_coord[-1]])\n', (34098, 34139), True, 'import matplotlib.pyplot as plt\n'), ((34398, 34430), 'matplotlib.pyplot.xlim', 'plt.xlim', (['[start_date, end_date]'], {}), '([start_date, end_date])\n', (34406, 34430), True, 'import matplotlib.pyplot as plt\n'), ((34919, 35051), 'matplotlib.pyplot.contour', 'plt.contour', (['datetime_coord', 'z_vec', 'depth_data'], {'levels': 'density_depth_contours', 'linewidths': '(0.5)', 'alpha': '(0.75)', 'colors': '"""k"""', 'zorder': '(5)'}), "(datetime_coord, z_vec, depth_data, levels=\n density_depth_contours, linewidths=0.5, alpha=0.75, colors='k', zorder=5)\n", (34930, 35051), True, 'import matplotlib.pyplot as plt\n'), ((36897, 37013), 'matplotlib.pyplot.plot', 'plt.plot', (['[datetime_coord_daily[0], datetime_coord_daily[-1]]', '[sic_baseline, sic_baseline]', '"""k-"""'], {'linewidth': '(0.5)'}), "([datetime_coord_daily[0], datetime_coord_daily[-1]], [sic_baseline,\n sic_baseline], 'k-', linewidth=0.5)\n", (36905, 37013), True, 'import matplotlib.pyplot as plt\n'), ((39110, 39136), 'matplotlib.dates.DateFormatter', 'mdates.DateFormatter', (['"""%b"""'], {}), "('%b')\n", (39130, 39136), True, 'import matplotlib.dates as mdates\n'), ((39300, 39326), 'matplotlib.dates.DateFormatter', 'mdates.DateFormatter', (['"""%Y"""'], {}), "('%Y')\n", (39320, 39326), True, 'import matplotlib.dates as mdates\n'), ((39769, 39845), 'matplotlib.pyplot.grid', 'plt.grid', ([], {'which': '"""major"""', 'axis': '"""both"""', 'color': '"""0.6"""', 'linewidth': '(0.25)', 'alpha': '(0.6)'}), "(which='major', axis='both', color='0.6', linewidth=0.25, alpha=0.6)\n", (39777, 39845), True, 'import matplotlib.pyplot as plt\n'), ((40406, 40424), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (40422, 40424), True, 'import matplotlib.pyplot as plt\n'), ((40437, 40495), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(results_dir + save_as + param_abbrev + '.pdf')"], {}), "(results_dir + save_as + param_abbrev + '.pdf')\n", (40448, 40495), True, 'import matplotlib.pyplot as plt\n'), ((40508, 40519), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (40517, 40519), True, 'import matplotlib.pyplot as plt\n'), ((47057, 47073), 'Circles.circles.circle', 'circle', (['m', '*circ'], {}), '(m, *circ)\n', (47063, 47073), False, 'from Circles.circles import circle\n'), ((47223, 47258), 'numpy.array', 'np.array', (["compiled_obs['datetimes']"], {}), "(compiled_obs['datetimes'])\n", (47231, 47258), True, 'import numpy as np\n'), ((47311, 47346), 'numpy.array', 'np.array', (["compiled_obs['datetimes']"], {}), "(compiled_obs['datetimes'])\n", (47319, 47346), True, 'import numpy as np\n'), ((48254, 48330), 'numpy.logical_and', 'np.logical_and', (['(dt_months >= season_months[0])', '(dt_months <= season_months[1])'], {}), '(dt_months >= season_months[0], dt_months <= season_months[1])\n', (48268, 48330), True, 'import numpy as np\n'), ((49551, 49665), 'matplotlib.pyplot.plot', 'plt.plot', (['[0, 0]', '[np.nan, np.nan]'], {'lw': '(0)', 'c': 'season_colors[s_idx]', 'marker': '"""o"""', 'ms': '(4)', 'label': 'season_labels[s_idx]'}), "([0, 0], [np.nan, np.nan], lw=0, c=season_colors[s_idx], marker='o',\n ms=4, label=season_labels[s_idx])\n", (49559, 49665), True, 'import matplotlib.pyplot as plt\n'), ((56112, 56137), 'warnings.catch_warnings', 'warnings.catch_warnings', ([], {}), '()\n', (56135, 56137), False, 'import warnings\n'), ((56207, 56238), 'warnings.simplefilter', 'warnings.simplefilter', (['"""ignore"""'], {}), "('ignore')\n", (56228, 56238), False, 'import warnings\n'), ((56371, 56385), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {}), '()\n', (56383, 56385), True, 'import matplotlib.pyplot as plt\n'), ((59765, 59787), 'numpy.arange', 'np.arange', (['(-80)', '(50)', '(10)'], {}), '(-80, 50, 10)\n', (59774, 59787), True, 'import numpy as np\n'), ((59846, 59867), 'numpy.arange', 'np.arange', (['(-80)', '(60)', '(5)'], {}), '(-80, 60, 5)\n', (59855, 59867), True, 'import numpy as np\n'), ((60778, 60801), 'numpy.meshgrid', 'np.meshgrid', (['lons', 'lats'], {}), '(lons, lats)\n', (60789, 60801), True, 'import numpy as np\n'), ((3985, 4021), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': 'subplot_fig_size'}), '(figsize=subplot_fig_size)\n', (3995, 4021), True, 'import matplotlib.pyplot as plt\n'), ((6010, 6045), 'numpy.meshgrid', 'np.meshgrid', (['etopo_lons', 'etopo_lats'], {}), '(etopo_lons, etopo_lats)\n', (6021, 6045), True, 'import numpy as np\n'), ((12806, 12875), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {'h_pad': 'pad', 'w_pad': 'pad', 'rect': '(0.02, 0.02, 0.98, 0.98)'}), '(h_pad=pad, w_pad=pad, rect=(0.02, 0.02, 0.98, 0.98))\n', (12822, 12875), True, 'import matplotlib.pyplot as plt\n'), ((13447, 13490), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(results_dir + save_as + '.pdf')"], {}), "(results_dir + save_as + '.pdf')\n", (13458, 13490), True, 'import matplotlib.pyplot as plt\n'), ((13503, 13514), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (13512, 13514), True, 'import matplotlib.pyplot as plt\n'), ((24504, 24555), 'time_tools.convert_tuple_to_datetime', 'tt.convert_tuple_to_datetime', (['datetime_tuple_format'], {}), '(datetime_tuple_format)\n', (24532, 24555), True, 'import time_tools as tt\n'), ((24827, 24919), 'geo_tools.vert_prof_eval', 'gt.vert_prof_eval', (["float_data['profiles'][pi]", '"""sigma_theta"""', 'this_mld'], {'extrap': '"""nearest"""'}), "(float_data['profiles'][pi], 'sigma_theta', this_mld,\n extrap='nearest')\n", (24844, 24919), True, 'import geo_tools as gt\n'), ((27289, 27497), 'geo_tools.vert_prof_even_spacing', 'gt.vert_prof_even_spacing', (["float_data['profiles'][pi]", 'param_abbrev'], {'z_coor': '"""depth"""', 'spacing': 'vert_res', 'interp_method': '"""linear"""', 'extrap': '"""NaN"""', 'top': 'depth_lim[0]', 'bottom': 'depth_lim[1]', 'verbose_error': '(True)'}), "(float_data['profiles'][pi], param_abbrev, z_coor=\n 'depth', spacing=vert_res, interp_method='linear', extrap='NaN', top=\n depth_lim[0], bottom=depth_lim[1], verbose_error=True)\n", (27314, 27497), True, 'import geo_tools as gt\n'), ((29940, 29962), 'numpy.array', 'np.array', (['section_data'], {}), '(section_data)\n', (29948, 29962), True, 'import numpy as np\n'), ((30404, 30425), 'numpy.isnan', 'np.isnan', (['more_levels'], {}), '(more_levels)\n', (30412, 30425), True, 'import numpy as np\n'), ((31499, 31518), 'numpy.min', 'np.min', (['more_levels'], {}), '(more_levels)\n', (31505, 31518), True, 'import numpy as np\n'), ((31524, 31543), 'numpy.max', 'np.max', (['more_levels'], {}), '(more_levels)\n', (31530, 31543), True, 'import numpy as np\n'), ((33266, 33354), 'matplotlib.pyplot.plot', 'plt.plot', (['[obs_dt, obs_dt]', 'obs_range[obs_idx]'], {'color': '"""0.5"""', 'linewidth': '(0.5)', 'zorder': '(3)'}), "([obs_dt, obs_dt], obs_range[obs_idx], color='0.5', linewidth=0.5,\n zorder=3)\n", (33274, 33354), True, 'import matplotlib.pyplot as plt\n'), ((34207, 34268), 'time_tools.convert_14_to_tuple', 'tt.convert_14_to_tuple', (["float_data['profiles'][0]['datetime']"], {}), "(float_data['profiles'][0]['datetime'])\n", (34229, 34268), True, 'import time_tools as tt\n'), ((34322, 34384), 'time_tools.convert_14_to_tuple', 'tt.convert_14_to_tuple', (["float_data['profiles'][-1]['datetime']"], {}), "(float_data['profiles'][-1]['datetime'])\n", (34344, 34384), True, 'import time_tools as tt\n'), ((35480, 35600), 'matplotlib.pyplot.clabel', 'plt.clabel', (['depth_contours'], {'fmt': '"""%d m"""', 'fontsize': 'depth_contour_fontsize', 'manual': '(True)', 'inline': '(True)', 'inline_spacing': '(25)'}), "(depth_contours, fmt='%d m', fontsize=depth_contour_fontsize,\n manual=True, inline=True, inline_spacing=25)\n", (35490, 35600), True, 'import matplotlib.pyplot as plt\n'), ((35842, 35861), 'numpy.array', 'np.array', (['obs_range'], {}), '(obs_range)\n', (35850, 35861), True, 'import numpy as np\n'), ((37038, 37089), 'matplotlib.pyplot.ylim', 'plt.ylim', (['[sic_baseline + 1.2 * sic_norm, max_ylim]'], {}), '([sic_baseline + 1.2 * sic_norm, max_ylim])\n', (37046, 37089), True, 'import matplotlib.pyplot as plt\n'), ((37120, 37221), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(sic_baseline + 1.2 * sic_norm)', '((density_lim[1] - density_lim[0]) ** density_power_scale)'], {}), '(sic_baseline + 1.2 * sic_norm, (density_lim[1] - density_lim[0]) **\n density_power_scale)\n', (37128, 37221), True, 'import matplotlib.pyplot as plt\n'), ((37301, 37335), 'matplotlib.pyplot.ylim', 'plt.ylim', (['[depth_lim[0], max_ylim]'], {}), '([depth_lim[0], max_ylim])\n', (37309, 37335), True, 'import matplotlib.pyplot as plt\n'), ((37447, 37456), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (37454, 37456), True, 'import matplotlib.pyplot as plt\n'), ((37545, 37572), 'matplotlib.pyplot.yticks', 'plt.yticks', (['explicit_yticks'], {}), '(explicit_yticks)\n', (37555, 37572), True, 'import matplotlib.pyplot as plt\n'), ((37985, 37997), 'matplotlib.pyplot.yticks', 'plt.yticks', ([], {}), '()\n', (37995, 37997), True, 'import matplotlib.pyplot as plt\n'), ((38588, 38623), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Depth (m)"""'], {'size': 'ysize'}), "('Depth (m)', size=ysize)\n", (38598, 38623), True, 'import matplotlib.pyplot as plt\n'), ((38656, 38710), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""$\\\\sigma_\\\\theta$ (kg/m$^3$)"""'], {'size': 'ysize'}), "('$\\\\sigma_\\\\theta$ (kg/m$^3$)', size=ysize)\n", (38666, 38710), True, 'import matplotlib.pyplot as plt\n'), ((38755, 38796), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Depth (m) """'], {'size': 'ysize'}), "('Depth (m) ', size=ysize)\n", (38765, 38796), True, 'import matplotlib.pyplot as plt\n'), ((46426, 46456), 'numpy.linspace', 'np.linspace', (['ap[0]', 'ap[1]', '(100)'], {}), '(ap[0], ap[1], 100)\n', (46437, 46456), True, 'import numpy as np\n'), ((46455, 46485), 'numpy.linspace', 'np.linspace', (['ap[1]', 'ap[1]', '(100)'], {}), '(ap[1], ap[1], 100)\n', (46466, 46485), True, 'import numpy as np\n'), ((46522, 46552), 'numpy.linspace', 'np.linspace', (['ap[1]', 'ap[0]', '(100)'], {}), '(ap[1], ap[0], 100)\n', (46533, 46552), True, 'import numpy as np\n'), ((46551, 46581), 'numpy.linspace', 'np.linspace', (['ap[0]', 'ap[0]', '(100)'], {}), '(ap[0], ap[0], 100)\n', (46562, 46581), True, 'import numpy as np\n'), ((46619, 46649), 'numpy.linspace', 'np.linspace', (['ap[3]', 'ap[3]', '(100)'], {}), '(ap[3], ap[3], 100)\n', (46630, 46649), True, 'import numpy as np\n'), ((46648, 46678), 'numpy.linspace', 'np.linspace', (['ap[3]', 'ap[2]', '(100)'], {}), '(ap[3], ap[2], 100)\n', (46659, 46678), True, 'import numpy as np\n'), ((46715, 46745), 'numpy.linspace', 'np.linspace', (['ap[2]', 'ap[2]', '(100)'], {}), '(ap[2], ap[2], 100)\n', (46726, 46745), True, 'import numpy as np\n'), ((46744, 46774), 'numpy.linspace', 'np.linspace', (['ap[2]', 'ap[3]', '(100)'], {}), '(ap[2], ap[3], 100)\n', (46755, 46774), True, 'import numpy as np\n'), ((46931, 46940), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (46938, 46940), True, 'import matplotlib.pyplot as plt\n'), ((49768, 49951), 'matplotlib.pyplot.plot', 'plt.plot', (['[0, 0]', '[np.nan, np.nan]'], {'lw': '(0)', 'marker': 'obs_type_markers[t_idx]', 'ms': '(4)', 'markerfacecolor': '"""none"""', 'markeredgecolor': '"""k"""', 'markeredgewidth': '(0.5)', 'label': 'obs_type_labels[t_idx]'}), "([0, 0], [np.nan, np.nan], lw=0, marker=obs_type_markers[t_idx], ms\n =4, markerfacecolor='none', markeredgecolor='k', markeredgewidth=0.5,\n label=obs_type_labels[t_idx])\n", (49776, 49951), True, 'import matplotlib.pyplot as plt\n'), ((49993, 50156), 'matplotlib.pyplot.plot', 'plt.plot', (['[0, 0]', '[np.nan, np.nan]'], {'lw': '(0)', 'marker': 'obs_type_markers[t_idx]', 'ms': '(4)', 'markerfacecolor': '"""k"""', 'markeredgecolor': '"""none"""', 'label': 'obs_type_labels[t_idx]'}), "([0, 0], [np.nan, np.nan], lw=0, marker=obs_type_markers[t_idx], ms\n =4, markerfacecolor='k', markeredgecolor='none', label=obs_type_labels[\n t_idx])\n", (50001, 50156), True, 'import matplotlib.pyplot as plt\n'), ((57399, 57434), 'numpy.meshgrid', 'np.meshgrid', (['etopo_lons', 'etopo_lats'], {}), '(etopo_lons, etopo_lats)\n', (57410, 57434), True, 'import numpy as np\n'), ((57753, 57785), 'numpy.linspace', 'np.linspace', (['pll[0]', 'pll[1]', '(100)'], {}), '(pll[0], pll[1], 100)\n', (57764, 57785), True, 'import numpy as np\n'), ((57784, 57816), 'numpy.linspace', 'np.linspace', (['pll[1]', 'pll[1]', '(100)'], {}), '(pll[1], pll[1], 100)\n', (57795, 57816), True, 'import numpy as np\n'), ((57853, 57885), 'numpy.linspace', 'np.linspace', (['pll[1]', 'pll[0]', '(100)'], {}), '(pll[1], pll[0], 100)\n', (57864, 57885), True, 'import numpy as np\n'), ((57884, 57916), 'numpy.linspace', 'np.linspace', (['pll[0]', 'pll[0]', '(100)'], {}), '(pll[0], pll[0], 100)\n', (57895, 57916), True, 'import numpy as np\n'), ((57954, 57986), 'numpy.linspace', 'np.linspace', (['pll[3]', 'pll[3]', '(100)'], {}), '(pll[3], pll[3], 100)\n', (57965, 57986), True, 'import numpy as np\n'), ((57985, 58017), 'numpy.linspace', 'np.linspace', (['pll[3]', 'pll[2]', '(100)'], {}), '(pll[3], pll[2], 100)\n', (57996, 58017), True, 'import numpy as np\n'), ((58054, 58086), 'numpy.linspace', 'np.linspace', (['pll[2]', 'pll[2]', '(100)'], {}), '(pll[2], pll[2], 100)\n', (58065, 58086), True, 'import numpy as np\n'), ((58085, 58117), 'numpy.linspace', 'np.linspace', (['pll[2]', 'pll[3]', '(100)'], {}), '(pll[2], pll[3], 100)\n', (58096, 58117), True, 'import numpy as np\n'), ((58284, 58293), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (58291, 58293), True, 'import matplotlib.pyplot as plt\n'), ((3202, 3297), 'matplotlib.colors.LinearSegmentedColormap.from_list', 'mcolors.LinearSegmentedColormap.from_list', ([], {'name': 'None', 'colors': 'cmap_colors', 'N': '(250)', 'gamma': '(1.3)'}), '(name=None, colors=cmap_colors, N=\n 250, gamma=1.3)\n', (3243, 3297), True, 'import matplotlib.colors as mcolors\n'), ((4034, 4043), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (4041, 4043), True, 'import matplotlib.pyplot as plt\n'), ((4878, 4897), 'numpy.diff', 'np.diff', (['lonx[0, :]'], {}), '(lonx[0, :])\n', (4885, 4897), True, 'import numpy as np\n'), ((4907, 4927), 'numpy.diff', 'np.diff', (['lonx[-1, :]'], {}), '(lonx[-1, :])\n', (4914, 4927), True, 'import numpy as np\n'), ((4980, 4999), 'numpy.diff', 'np.diff', (['laty[0, :]'], {}), '(laty[0, :])\n', (4987, 4999), True, 'import numpy as np\n'), ((5008, 5028), 'numpy.diff', 'np.diff', (['laty[-1, :]'], {}), '(laty[-1, :])\n', (5015, 5028), True, 'import numpy as np\n'), ((7327, 7454), 'matplotlib.pyplot.plot', 'plt.plot', (['[lonx - cross_lonx, lonx + cross_lonx]', '[laty, laty]'], {'color': 'c', 'linestyle': '"""solid"""', 'linewidth': 'cross_width', 'zorder': '(4)'}), "([lonx - cross_lonx, lonx + cross_lonx], [laty, laty], color=c,\n linestyle='solid', linewidth=cross_width, zorder=4)\n", (7335, 7454), True, 'import matplotlib.pyplot as plt\n'), ((7460, 7587), 'matplotlib.pyplot.plot', 'plt.plot', (['[lonx, lonx]', '[laty - cross_laty, laty + cross_laty]'], {'color': 'c', 'linestyle': '"""solid"""', 'linewidth': 'cross_width', 'zorder': '(4)'}), "([lonx, lonx], [laty - cross_laty, laty + cross_laty], color=c,\n linestyle='solid', linewidth=cross_width, zorder=4)\n", (7468, 7587), True, 'import matplotlib.pyplot as plt\n'), ((7593, 7670), 'matplotlib.pyplot.scatter', 'plt.scatter', (['lonx', 'laty'], {'s': '(14)', 'c': 'c', 'edgecolors': 'edgecolor', 'alpha': '(0.9)', 'zorder': '(5)'}), '(lonx, laty, s=14, c=c, edgecolors=edgecolor, alpha=0.9, zorder=5)\n', (7604, 7670), True, 'import matplotlib.pyplot as plt\n'), ((9277, 9389), 'matplotlib.pyplot.plot', 'plt.plot', (['flonx[position_flags != 9]', 'flaty[position_flags != 9]'], {'color': '"""#15178F"""', 'linewidth': '(1.25)', 'zorder': '(4)'}), "(flonx[position_flags != 9], flaty[position_flags != 9], color=\n '#15178F', linewidth=1.25, zorder=4)\n", (9285, 9389), True, 'import matplotlib.pyplot as plt\n'), ((9397, 9511), 'matplotlib.pyplot.scatter', 'plt.scatter', (['flonx[position_flags == 2]', 'flaty[position_flags == 2]'], {'s': '(10)', 'c': '"""m"""', 'edgecolors': '"""none"""', 'zorder': '(5)'}), "(flonx[position_flags == 2], flaty[position_flags == 2], s=10, c\n ='m', edgecolors='none', zorder=5)\n", (9408, 9511), True, 'import matplotlib.pyplot as plt\n'), ((9518, 9638), 'matplotlib.pyplot.scatter', 'plt.scatter', (['flonx[position_flags == 1]', 'flaty[position_flags == 1]'], {'s': '(10)', 'c': '"""#15178F"""', 'edgecolors': '"""none"""', 'zorder': '(6)'}), "(flonx[position_flags == 1], flaty[position_flags == 1], s=10, c\n ='#15178F', edgecolors='none', zorder=6)\n", (9529, 9638), True, 'import matplotlib.pyplot as plt\n'), ((27751, 27960), 'geo_tools.vert_prof_even_spacing', 'gt.vert_prof_even_spacing', (["float_data['profiles'][pi]", '"""sigma_theta"""'], {'z_coor': '"""depth"""', 'spacing': 'vert_res', 'interp_method': '"""linear"""', 'extrap': '"""NaN"""', 'top': 'depth_lim[0]', 'bottom': 'depth_lim[1]', 'verbose_error': '(True)'}), "(float_data['profiles'][pi], 'sigma_theta', z_coor\n ='depth', spacing=vert_res, interp_method='linear', extrap='NaN', top=\n depth_lim[0], bottom=depth_lim[1], verbose_error=True)\n", (27776, 27960), True, 'import geo_tools as gt\n'), ((28802, 28902), 'geo_tools.profile_interp', 'gt.profile_interp', (['sorted_param', 'sorted_sigma_theta', 'z_vec'], {'method': '"""linear"""', 'out_of_bounds': '"""NaN"""'}), "(sorted_param, sorted_sigma_theta, z_vec, method='linear',\n out_of_bounds='NaN')\n", (28819, 28902), True, 'import geo_tools as gt\n'), ((28977, 29077), 'geo_tools.profile_interp', 'gt.profile_interp', (['sorted_depth', 'sorted_sigma_theta', 'z_vec'], {'method': '"""linear"""', 'out_of_bounds': '"""NaN"""'}), "(sorted_depth, sorted_sigma_theta, z_vec, method='linear',\n out_of_bounds='NaN')\n", (28994, 29077), True, 'import geo_tools as gt\n'), ((30025, 30045), 'numpy.array', 'np.array', (['depth_data'], {}), '(depth_data)\n', (30033, 30045), True, 'import numpy as np\n'), ((31137, 31146), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (31144, 31146), True, 'import matplotlib.pyplot as plt\n'), ((31309, 31318), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (31316, 31318), True, 'import matplotlib.pyplot as plt\n'), ((31875, 31899), 'numpy.abs', 'np.abs', (['specified_levels'], {}), '(specified_levels)\n', (31881, 31899), True, 'import numpy as np\n'), ((33459, 33529), 'matplotlib.pyplot.plot', 'plt.plot', (['[dt, dt]', '[*depth_lim]'], {'color': '"""0.2"""', 'linewidth': '(0.8)', 'zorder': '(3)'}), "([dt, dt], [*depth_lim], color='0.2', linewidth=0.8, zorder=3)\n", (33467, 33529), True, 'import matplotlib.pyplot as plt\n'), ((34507, 34537), 'numpy.array', 'np.array', (['datetime_coord_profs'], {}), '(datetime_coord_profs)\n', (34515, 34537), True, 'import numpy as np\n'), ((34603, 34633), 'numpy.array', 'np.array', (['datetime_coord_profs'], {}), '(datetime_coord_profs)\n', (34611, 34633), True, 'import numpy as np\n'), ((34694, 34724), 'numpy.array', 'np.array', (['datetime_coord_profs'], {}), '(datetime_coord_profs)\n', (34702, 34724), True, 'import numpy as np\n'), ((34740, 34758), 'numpy.array', 'np.array', (['mld_data'], {}), '(mld_data)\n', (34748, 34758), True, 'import numpy as np\n'), ((35932, 35962), 'numpy.array', 'np.array', (['datetime_coord_daily'], {}), '(datetime_coord_daily)\n', (35940, 35962), True, 'import numpy as np\n'), ((36028, 36058), 'numpy.array', 'np.array', (['datetime_coord_daily'], {}), '(datetime_coord_daily)\n', (36036, 36058), True, 'import numpy as np\n'), ((36614, 36623), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (36621, 36623), True, 'import matplotlib.pyplot as plt\n'), ((36637, 36667), 'numpy.array', 'np.array', (['datetime_coord_daily'], {}), '(datetime_coord_daily)\n', (36645, 36667), True, 'import numpy as np\n'), ((37796, 37805), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (37803, 37805), True, 'import matplotlib.pyplot as plt\n'), ((38469, 38478), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (38476, 38478), True, 'import matplotlib.pyplot as plt\n'), ((39854, 39863), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (39861, 39863), True, 'import matplotlib.pyplot as plt\n'), ((40008, 40017), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (40015, 40017), True, 'import matplotlib.pyplot as plt\n'), ((47161, 47170), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (47168, 47170), True, 'import matplotlib.pyplot as plt\n'), ((48497, 48528), 'numpy.array', 'np.array', (["compiled_obs['types']"], {}), "(compiled_obs['types'])\n", (48505, 48528), True, 'import numpy as np\n'), ((48744, 48878), 'matplotlib.pyplot.scatter', 'plt.scatter', (['lonx', 'laty'], {'s': '(4.0)', 'marker': 'obs_type_markers[t_idx]', 'facecolor': '"""none"""', 'edgecolors': 'season_colors[s_idx]', 'linewidths': '(0.5)'}), "(lonx, laty, s=4.0, marker=obs_type_markers[t_idx], facecolor=\n 'none', edgecolors=season_colors[s_idx], linewidths=0.5)\n", (48755, 48878), True, 'import matplotlib.pyplot as plt\n'), ((49041, 49159), 'matplotlib.pyplot.scatter', 'plt.scatter', (['lonx', 'laty'], {'s': '(4.0)', 'marker': 'obs_type_markers[t_idx]', 'facecolor': 'season_colors[s_idx]', 'edgecolors': '"""none"""'}), "(lonx, laty, s=4.0, marker=obs_type_markers[t_idx], facecolor=\n season_colors[s_idx], edgecolors='none')\n", (49052, 49159), True, 'import matplotlib.pyplot as plt\n'), ((49442, 49451), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (49449, 49451), True, 'import matplotlib.pyplot as plt\n'), ((58549, 58558), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (58556, 58558), True, 'import matplotlib.pyplot as plt\n'), ((3563, 3658), 'matplotlib.colors.LinearSegmentedColormap.from_list', 'mcolors.LinearSegmentedColormap.from_list', ([], {'name': 'None', 'colors': 'cmap_colors', 'N': '(250)', 'gamma': '(1.3)'}), '(name=None, colors=cmap_colors, N=\n 250, gamma=1.3)\n', (3604, 3658), True, 'import matplotlib.colors as mcolors\n'), ((10100, 10143), 'numpy.unique', 'np.unique', (['mo_yr_strings'], {'return_index': '(True)'}), '(mo_yr_strings, return_index=True)\n', (10109, 10143), True, 'import numpy as np\n'), ((10180, 10203), 'numpy.sort', 'np.sort', (['unique_indices'], {}), '(unique_indices)\n', (10187, 10203), True, 'import numpy as np\n'), ((12421, 12430), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (12428, 12430), True, 'import matplotlib.pyplot as plt\n'), ((12450, 12478), 'numpy.arange', 'np.arange', (['open_sic', '(101)', '(10)'], {}), '(open_sic, 101, 10)\n', (12459, 12478), True, 'import numpy as np\n'), ((29418, 29480), 'time_tools.convert_14_to_tuple', 'tt.convert_14_to_tuple', (["float_data['profiles'][pi]['datetime']"], {}), "(float_data['profiles'][pi]['datetime'])\n", (29440, 29480), True, 'import time_tools as tt\n'), ((37720, 37745), 'numpy.array', 'np.array', (['explicit_yticks'], {}), '(explicit_yticks)\n', (37728, 37745), True, 'import numpy as np\n'), ((38406, 38415), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (38413, 38415), True, 'import matplotlib.pyplot as plt\n'), ((39149, 39158), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (39156, 39158), True, 'import matplotlib.pyplot as plt\n'), ((39203, 39212), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (39210, 39212), True, 'import matplotlib.pyplot as plt\n'), ((39339, 39348), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (39346, 39348), True, 'import matplotlib.pyplot as plt\n'), ((39392, 39401), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (39399, 39401), True, 'import matplotlib.pyplot as plt\n'), ((39457, 39466), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (39464, 39466), True, 'import matplotlib.pyplot as plt\n'), ((39576, 39585), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (39583, 39585), True, 'import matplotlib.pyplot as plt\n'), ((39666, 39675), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (39673, 39675), True, 'import matplotlib.pyplot as plt\n'), ((48608, 48638), 'numpy.array', 'np.array', (["compiled_obs['lons']"], {}), "(compiled_obs['lons'])\n", (48616, 48638), True, 'import numpy as np\n'), ((48651, 48681), 'numpy.array', 'np.array', (["compiled_obs['lats']"], {}), "(compiled_obs['lats'])\n", (48659, 48681), True, 'import numpy as np\n'), ((6836, 6873), 'numpy.where', 'np.where', (['(float_dates - date_int == 0)'], {}), '(float_dates - date_int == 0)\n', (6844, 6873), True, 'import numpy as np\n'), ((8238, 8294), 'time_tools.convert_8_int_to_tuple', 'tt.convert_8_int_to_tuple', (['float_dates[recent_day_index]'], {}), '(float_dates[recent_day_index])\n', (8263, 8294), True, 'import time_tools as tt\n'), ((8814, 8941), 'matplotlib.pyplot.plot', 'plt.plot', (['[lonx - cross_lonx, lonx + cross_lonx]', '[laty, laty]'], {'color': 'c', 'linestyle': '"""solid"""', 'linewidth': 'cross_width', 'zorder': '(4)'}), "([lonx - cross_lonx, lonx + cross_lonx], [laty, laty], color=c,\n linestyle='solid', linewidth=cross_width, zorder=4)\n", (8822, 8941), True, 'import matplotlib.pyplot as plt\n'), ((8951, 9078), 'matplotlib.pyplot.plot', 'plt.plot', (['[lonx, lonx]', '[laty - cross_laty, laty + cross_laty]'], {'color': 'c', 'linestyle': '"""solid"""', 'linewidth': 'cross_width', 'zorder': '(4)'}), "([lonx, lonx], [laty - cross_laty, laty + cross_laty], color=c,\n linestyle='solid', linewidth=cross_width, zorder=4)\n", (8959, 9078), True, 'import matplotlib.pyplot as plt\n'), ((9767, 9809), 'time_tools.convert_14_to_tuple', 'tt.convert_14_to_tuple', (['float_datetimes[n]'], {}), '(float_datetimes[n])\n', (9789, 9809), True, 'import time_tools as tt\n'), ((10569, 10712), 'matplotlib.pyplot.text', 'plt.text', (['(lonx_to_label[pt] + 0.000625 * width)', '(laty_to_label[pt] - 0.026 * height)', 'mo_yr_strings_to_label[pt]'], {'fontsize': '(7)', 'color': '"""#15178F"""'}), "(lonx_to_label[pt] + 0.000625 * width, laty_to_label[pt] - 0.026 *\n height, mo_yr_strings_to_label[pt], fontsize=7, color='#15178F')\n", (10577, 10712), True, 'import matplotlib.pyplot as plt\n'), ((10837, 10980), 'matplotlib.pyplot.text', 'plt.text', (['(lonx_to_label[pt] + 0.000625 * width)', '(laty_to_label[pt] + 0.017 * height)', 'mo_yr_strings_to_label[pt]'], {'fontsize': '(7)', 'color': '"""#15178F"""'}), "(lonx_to_label[pt] + 0.000625 * width, laty_to_label[pt] + 0.017 *\n height, mo_yr_strings_to_label[pt], fontsize=7, color='#15178F')\n", (10845, 10980), True, 'import matplotlib.pyplot as plt\n'), ((12310, 12319), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (12317, 12319), True, 'import matplotlib.pyplot as plt\n'), ((13048, 13057), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (13055, 13057), True, 'import matplotlib.pyplot as plt\n'), ((13142, 13151), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (13149, 13151), True, 'import matplotlib.pyplot as plt\n'), ((13213, 13222), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (13220, 13222), True, 'import matplotlib.pyplot as plt\n'), ((28100, 28119), 'numpy.isnan', 'np.isnan', (['obs_param'], {}), '(obs_param)\n', (28108, 28119), True, 'import numpy as np\n'), ((28120, 28145), 'numpy.isnan', 'np.isnan', (['obs_sigma_theta'], {}), '(obs_sigma_theta)\n', (28128, 28145), True, 'import numpy as np\n'), ((28541, 28680), 'numpy.arange', 'np.arange', (['(0)', '((density_lim[1] - density_lim[0]) ** density_power_scale)', '((density_lim[1] - density_lim[0]) ** density_power_scale / 200)'], {}), '(0, (density_lim[1] - density_lim[0]) ** density_power_scale, (\n density_lim[1] - density_lim[0]) ** density_power_scale / 200)\n', (28550, 28680), True, 'import numpy as np\n'), ((36746, 36765), 'numpy.array', 'np.array', (['sic_coord'], {}), '(sic_coord)\n', (36754, 36765), True, 'import numpy as np\n'), ((37585, 37594), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (37592, 37594), True, 'import matplotlib.pyplot as plt\n'), ((38874, 38883), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (38881, 38883), True, 'import matplotlib.pyplot as plt\n'), ((42400, 42409), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (42407, 42409), True, 'import matplotlib.pyplot as plt\n'), ((8130, 8166), 'numpy.where', 'np.where', (['(float_dates - date_int < 0)'], {}), '(float_dates - date_int < 0)\n', (8138, 8166), True, 'import numpy as np\n'), ((29621, 29642), 'numpy.isfinite', 'np.isfinite', (['data_vec'], {}), '(data_vec)\n', (29632, 29642), True, 'import numpy as np\n'), ((29693, 29714), 'numpy.isfinite', 'np.isfinite', (['data_vec'], {}), '(data_vec)\n', (29704, 29714), True, 'import numpy as np\n'), ((37379, 37400), 'numpy.array', 'np.array', (['density_lim'], {}), '(density_lim)\n', (37387, 37400), True, 'import numpy as np\n'), ((33582, 33603), 'numpy.array', 'np.array', (['density_lim'], {}), '(density_lim)\n', (33590, 33603), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ Created on Wed Dec 27 14:24:54 2017 @author: IACJ """ import os from os import path from os.path import expanduser from numpy import genfromtxt import numpy as np from numpy import array, zeros, argmin, inf from numpy import * from US_DTW import US_DTW # classify using kNN def kNNClassify_ED(newInput, dataSet, labels, k): numSamples = dataSet.shape[0] # shape[0] stands for the num of row ## step 1: calculate Euclidean distance diff = tile(newInput, (numSamples, 1)) - dataSet # Subtract element-wise squaredDiff = diff ** 2 # squared for the subtract squaredDist = sum(squaredDiff, axis = 1) # sum is performed by row distance = squaredDist ** 0.5 ## step 2: sort the distance # argsort() returns the indices that would sort an array in a ascending order sortedDistIndices = argsort(distance) classCount = {} # define a dictionary (can be append element) for i in range(k): ## step 3: choose the min k distance voteLabel = labels[sortedDistIndices[i]] ## step 4: count the times labels occur classCount[voteLabel] = classCount.get(voteLabel, 0) + 1 ## step 5: the max voted class will return maxCount = 0 for key, value in classCount.items(): if value > maxCount: maxCount = value maxIndex = key return maxIndex def kNNClassify_DTW(newInput, dataSet, labels, k): numSamples = dataSet.shape[0] # shape[0] stands for the num of row ## step 1: calculate Euclidean distance distance = np.zeros(numSamples) for i in range(numSamples): distance[i] = dtw(newInput,dataSet[i]) ## step 2: sort the distance # argsort() returns the indices that would sort an array in a ascending order sortedDistIndices = argsort(distance) classCount = {} # define a dictionary (can be append element) for i in range(k): ## step 3: choose the min k distance voteLabel = labels[sortedDistIndices[i]] ## step 4: count the times labels occur classCount[voteLabel] = classCount.get(voteLabel, 0) + 1 ## step 5: the max voted class will return maxCount = 0 for key, value in classCount.items(): if value > maxCount: maxCount = value maxIndex = key return maxIndex def kNNClassify_US_DTW(newInput, dataSet, labels, k): numSamples = dataSet.shape[0] # shape[0] stands for the num of row ## step 1: calculate Euclidean distance distance = np.zeros(numSamples) for i in range(numSamples): us_dtw = US_DTW(newInput,dataSet[i]) print(i,len(us_dtw.paths)) distance[i] = us_dtw.resultDistance ## step 2: sort the distance # argsort() returns the indices that would sort an array in a ascending order sortedDistIndices = argsort(distance) classCount = {} # define a dictionary (can be append element) for i in range(k): ## step 3: choose the min k distance voteLabel = labels[sortedDistIndices[i]] ## step 4: count the times labels occur classCount[voteLabel] = classCount.get(voteLabel, 0) + 1 ## step 5: the max voted class will return maxCount = 0 for key, value in classCount.items(): if value > maxCount: maxCount = value maxIndex = key return maxIndex def dtw(x, y ): """ Computes Dynamic Time Warping (DTW) of two sequences. :param array x: N1*M array :param array y: N2*M array :param func dist: distance used as cost measure Returns the minimum distance, the cost matrix, the accumulated cost matrix, and the wrap path. """ assert len(x) assert len(y) r, c = len(x), len(y) D0 = zeros((r + 1, c + 1)) D0[0, 1:] = inf D0[1:, 0] = inf D1 = D0[1:, 1:] # view for i in range(r): for j in range(c): D1[i, j] = abs(x[i]-y[j]) C = D1.copy() for i in range(r): for j in range(c): D1[i, j] += min(D0[i, j], D0[i, j+1], D0[i+1, j]) return D1[-1, -1] # 加载 UCR 数据集的函数 def load_dataset(dataset_name, dataset_folder): dataset_path = path.join(dataset_folder, dataset_name) train_file_path = path.join(dataset_path, '{}_TRAIN'.format(dataset_name)) test_file_path = path.join(dataset_path, '{}_TEST'.format(dataset_name)) # training data train_raw_arr = genfromtxt(train_file_path, delimiter=',') train_data = train_raw_arr[:, 1:] train_labels = train_raw_arr[:, 0] - 1 # one was subtracted to change the labels to 0 and 1 instead of 1 and 2 # test_data test_raw_arr = genfromtxt(test_file_path, delimiter=',') test_data = test_raw_arr[:, 1:] test_labels = test_raw_arr[:, 0] - 1 return train_data, train_labels, test_data, test_labels if __name__ == '__main__': print("Program Begin") ########## 使用 UCR 数据集 ############### ucr_dataset_base_folder = expanduser('~/UCR_TS_Archive_2015') dirs = os.listdir(ucr_dataset_base_folder) for dir in dirs: print (dir,end=" : \t") ucr_dataset_name = dir train_data, train_labels, test_data, test_labels = load_dataset(ucr_dataset_name,ucr_dataset_base_folder) print(train_data.shape,train_labels.shape,test_data.shape,test_labels.shape) ########## 使用 1NN_ED ################### Trues = 0 Falses = 0 for i in range (test_data.shape[0]): x = test_data[i] y = test_labels[i] outputLabel = kNNClassify_ED(x, train_data, train_labels, 1) # print (i,":\tpredict : ", outputLabel,"\tGroundTruth : ",y,"\t",outputLabel==y) if (outputLabel==y): Trues += 1 else : Falses += 1 print ("1NN_ED :",Trues/(Trues+Falses)) ######################################### train_data = np.tile(train_data,2) ########## 使用 1NN_US-DTW ################### Trues = 0 Falses = 0 for i in range (test_data.shape[0]): x = test_data[i] y = test_labels[i] outputLabel = kNNClassify_US_DTW(x, train_data, train_labels, 1) print (i,":\tpredict : ", outputLabel,"\tGroundTruth : ",y,"\t",outputLabel==y) if (outputLabel==y): Trues += 1 else : Falses += 1 print ("1NN_DTW :",Trues/(Trues+Falses)) ################ ########## 使用 1NN_DTW ################### Trues = 0 Falses = 0 for i in range (test_data.shape[0]): x = test_data[i] y = test_labels[i] outputLabel = kNNClassify_DTW(x, train_data, train_labels, 1) # print (i,":\tpredict : ", outputLabel,"\tGroundTruth : ",y,"\t",outputLabel==y) if (outputLabel==y): Trues += 1 else : Falses += 1 print ("1NN_DTW :",Trues/(Trues+Falses)) ######################################### print()
[ "os.path.join", "numpy.zeros", "numpy.genfromtxt", "numpy.tile", "US_DTW.US_DTW", "os.path.expanduser", "os.listdir" ]
[((1638, 1658), 'numpy.zeros', 'np.zeros', (['numSamples'], {}), '(numSamples)\n', (1646, 1658), True, 'import numpy as np\n'), ((2650, 2670), 'numpy.zeros', 'np.zeros', (['numSamples'], {}), '(numSamples)\n', (2658, 2670), True, 'import numpy as np\n'), ((3916, 3937), 'numpy.zeros', 'zeros', (['(r + 1, c + 1)'], {}), '((r + 1, c + 1))\n', (3921, 3937), False, 'from numpy import array, zeros, argmin, inf\n'), ((4330, 4369), 'os.path.join', 'path.join', (['dataset_folder', 'dataset_name'], {}), '(dataset_folder, dataset_name)\n', (4339, 4369), False, 'from os import path\n'), ((4567, 4609), 'numpy.genfromtxt', 'genfromtxt', (['train_file_path'], {'delimiter': '""","""'}), "(train_file_path, delimiter=',')\n", (4577, 4609), False, 'from numpy import genfromtxt\n'), ((4803, 4844), 'numpy.genfromtxt', 'genfromtxt', (['test_file_path'], {'delimiter': '""","""'}), "(test_file_path, delimiter=',')\n", (4813, 4844), False, 'from numpy import genfromtxt\n'), ((5126, 5161), 'os.path.expanduser', 'expanduser', (['"""~/UCR_TS_Archive_2015"""'], {}), "('~/UCR_TS_Archive_2015')\n", (5136, 5161), False, 'from os.path import expanduser\n'), ((5179, 5214), 'os.listdir', 'os.listdir', (['ucr_dataset_base_folder'], {}), '(ucr_dataset_base_folder)\n', (5189, 5214), False, 'import os\n'), ((2720, 2748), 'US_DTW.US_DTW', 'US_DTW', (['newInput', 'dataSet[i]'], {}), '(newInput, dataSet[i])\n', (2726, 2748), False, 'from US_DTW import US_DTW\n'), ((6111, 6133), 'numpy.tile', 'np.tile', (['train_data', '(2)'], {}), '(train_data, 2)\n', (6118, 6133), True, 'import numpy as np\n')]
import html from unittest.mock import Mock import numpy as np import pytest from napari.utils import nbscreenshot def test_nbscreenshot(make_napari_viewer): """Test taking a screenshot.""" viewer = make_napari_viewer() np.random.seed(0) data = np.random.random((10, 15)) viewer.add_image(data) rich_display_object = nbscreenshot(viewer) assert hasattr(rich_display_object, '_repr_png_') # Trigger method that would run in jupyter notebook cell automatically rich_display_object._repr_png_() assert rich_display_object.image is not None @pytest.mark.parametrize( "alt_text_input, expected_alt_text", [ (None, None), ("Good alt text", "Good alt text"), # Naughty strings https://github.com/minimaxir/big-list-of-naughty-strings # ASCII punctuation (r",./;'[]\-=", ',./;&#x27;[]\\-='), # noqa: W605 ('>?:"{}|_+', '&gt;?:&quot;{}|_+'), # ASCII punctuation 2 ("!@#$%^&*()`~", '!@#$%^&amp;*()`~'), # ASCII punctuation 3 # # Emjoi ("😍", "😍"), # emoji 1 ("👨‍🦰 👨🏿‍🦰 👨‍🦱 👨🏿‍🦱 🦹🏿‍♂️", "👨‍🦰 👨🏿‍🦰 👨‍🦱 👨🏿‍🦱 🦹🏿‍♂️"), # emoji 2 (r"¯\_(ツ)_/¯", '¯\\_(ツ)_/¯'), # Japanese emoticon # noqa: W605 # # Special characters ("田中さんにあげて下さい", "田中さんにあげて下さい"), # two-byte characters ("表ポあA鷗ŒéB逍Üߪąñ丂㐀𠀀", "表ポあA鷗ŒéB逍Üߪąñ丂㐀𠀀"), # special unicode chars ("گچپژ", "گچپژ"), # Persian special characters # # Script injection ("<script>alert(0)</script>", None), # script injection 1 ("&lt;script&gt;alert(&#39;1&#39;);&lt;/script&gt;", None), ("<svg><script>123<1>alert(3)</script>", None), ], ) def test_safe_alt_text(alt_text_input, expected_alt_text): display_obj = nbscreenshot(Mock(), alt_text=alt_text_input) if not expected_alt_text: assert not display_obj.alt_text else: assert html.escape(display_obj.alt_text) == expected_alt_text
[ "numpy.random.seed", "napari.utils.nbscreenshot", "unittest.mock.Mock", "numpy.random.random", "pytest.mark.parametrize", "html.escape" ]
[((585, 1229), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""alt_text_input, expected_alt_text"""', '[(None, None), (\'Good alt text\', \'Good alt text\'), (",./;\'[]\\\\-=",\n \',./;&#x27;[]\\\\-=\'), (\'>?:"{}|_+\', \'&gt;?:&quot;{}|_+\'), (\n \'!@#$%^&*()`~\', \'!@#$%^&amp;*()`~\'), (\'😍\', \'😍\'), (\n \'👨\\u200d🦰 👨🏿\\u200d🦰 👨\\u200d🦱 👨🏿\\u200d🦱 🦹🏿\\u200d♂️\',\n \'👨\\u200d🦰 👨🏿\\u200d🦰 👨\\u200d🦱 👨🏿\\u200d🦱 🦹🏿\\u200d♂️\'), (\'¯\\\\_(ツ)_/¯\',\n \'¯\\\\_(ツ)_/¯\'), (\'田中さんにあげて下さい\', \'田中さんにあげて下さい\'), (\'表ポあA鷗ŒéB逍Üߪąñ丂㐀𠀀\',\n \'表ポあA鷗ŒéB逍Üߪąñ丂㐀𠀀\'), (\'گچپژ\', \'گچپژ\'), (\'<script>alert(0)</script>\',\n None), (\'&lt;script&gt;alert(&#39;1&#39;);&lt;/script&gt;\', None), (\n \'<svg><script>123<1>alert(3)</script>\', None)]'], {}), '(\'alt_text_input, expected_alt_text\', [(None, None),\n (\'Good alt text\', \'Good alt text\'), (",./;\'[]\\\\-=", \',./;&#x27;[]\\\\-=\'),\n (\'>?:"{}|_+\', \'&gt;?:&quot;{}|_+\'), (\'!@#$%^&*()`~\', \'!@#$%^&amp;*()`~\'\n ), (\'😍\', \'😍\'), (\'👨\\u200d🦰 👨🏿\\u200d🦰 👨\\u200d🦱 👨🏿\\u200d🦱 🦹🏿\\u200d♂️\',\n \'👨\\u200d🦰 👨🏿\\u200d🦰 👨\\u200d🦱 👨🏿\\u200d🦱 🦹🏿\\u200d♂️\'), (\'¯\\\\_(ツ)_/¯\',\n \'¯\\\\_(ツ)_/¯\'), (\'田中さんにあげて下さい\', \'田中さんにあげて下さい\'), (\'表ポあA鷗ŒéB逍Üߪąñ丂㐀𠀀\',\n \'表ポあA鷗ŒéB逍Üߪąñ丂㐀𠀀\'), (\'گچپژ\', \'گچپژ\'), (\'<script>alert(0)</script>\',\n None), (\'&lt;script&gt;alert(&#39;1&#39;);&lt;/script&gt;\', None), (\n \'<svg><script>123<1>alert(3)</script>\', None)])\n', (608, 1229), False, 'import pytest\n'), ((236, 253), 'numpy.random.seed', 'np.random.seed', (['(0)'], {}), '(0)\n', (250, 253), True, 'import numpy as np\n'), ((265, 291), 'numpy.random.random', 'np.random.random', (['(10, 15)'], {}), '((10, 15))\n', (281, 291), True, 'import numpy as np\n'), ((346, 366), 'napari.utils.nbscreenshot', 'nbscreenshot', (['viewer'], {}), '(viewer)\n', (358, 366), False, 'from napari.utils import nbscreenshot\n'), ((1772, 1778), 'unittest.mock.Mock', 'Mock', ([], {}), '()\n', (1776, 1778), False, 'from unittest.mock import Mock\n'), ((1900, 1933), 'html.escape', 'html.escape', (['display_obj.alt_text'], {}), '(display_obj.alt_text)\n', (1911, 1933), False, 'import html\n')]
import numpy as np def random_sum(*dimensions): return np.random.rand(*dimensions).sum()
[ "numpy.random.rand" ]
[((61, 88), 'numpy.random.rand', 'np.random.rand', (['*dimensions'], {}), '(*dimensions)\n', (75, 88), True, 'import numpy as np\n')]
import numpy as np import time import sys from ServoMotor import * from fns import * # Initialize motor control library & USB Port filename = "/dev/ttyUSB0" motor = ServoMotor(filename) IO = motor.IO_Init() if IO < 0: print('IO exit') sys.exit() # Call corresponding function to convert sim2real/real2sim def convFns(pos, convType): conv = [left_armpit, left_elbow, left_shoulder, right_armpit, right_elbow, right_shoulder, left_armpit, left_elbow, left_shoulder, right_armpit, right_elbow, right_shoulder] targ = np.zeros(12) for i in range(len(pos)): if i==0: targ[i] = conv[i](pos[i], convType, "front") elif i==6: targ[i] = conv[i](pos[i], convType, "back") else: targ[i] = conv[i](pos[i], convType) return targ ''' # Return target position def act_shoulders&armpits(t, a, b, c, d, e): # Calculate desired position desired_p = np.zeros(12) # Positive pos_v_shoulder = a * np.sin(t * e) + b pos_v_elbow = c * np.sin(t * e) + d pos_shoulder = [2, 11] pos_elbow = [1, 10] # Negative neg_v_shoulder = -a * np.sin(t * e) + b neg_v_elbow = -c * np.sin(t * e) + d neg_shoulder = [5, 8] neg_elbow = [4, 7] # Zero zero = [0, 3, 6, 9] # Assign desired_p[pos_shoulder] = pos_v_shoulder desired_p[pos_elbow] = pos_v_elbow desired_p[neg_shoulder] = neg_v_shoulder desired_p[neg_elbow] = neg_v_elbow desired_p[zero] = 0 # Return desired new position return convFns(desired_p, "sim2real") ''' # Front and back legs diff # Return target position def act(t, a, b, c, d, e, f): # Calculate desired position f_pos = a * np.sin(t * e) + b f_neg = -a * np.sin(t * e) + b b_pos = c * np.sin(t * e + f) + d b_neg = -c * np.sin(t * e + f) + d # Assign desired_p = [0, f_pos, f_pos, 0, f_neg, f_neg, 0, b_pos, b_pos, 0, b_neg, b_neg] # Return desired new position return convFns(desired_p, "sim2real") # Return position to take def get_action(steps): params = np.array(np.load('params/ROB/best_overall-2.npy')) params[4]-=22 #params = np.array([0.24495851730947005, 0.18187873796178136, 0.2020333429029758, -0.3852743697870839, -0.2094960812992037]) # Trained sin_gait 7, Oct 11 19:01 #params = np.array([0.2980418533307479, 0.01878523690431866, 0.022546654023646796, -0.2685025304630598, -0.2080157428428239]) # Trained sin_gait 5, Oct 12 13:21 #params = np.array([0.15, 0.0, 0.2, 0.15, 0.2]) # Smooth Criminal #params = np.array([0.15, 0.0, 0.19, 0.2, 0.23, 2.05]) return act(steps, *params) # MOVE MOTOR TO GIVEN POSITION def walk(pos): h = 0 real_pos = [] for j in range(1,5): u = 10*j r = range(u, u+3) for i in r: real_pos.append(motor.readPosition(i)) motor.move(i, int(pos[h]), 0) h+=1 time.sleep(0.005) return real_pos # Initialize motors as servos and set offset offsets = [30, 0, 64, 0, 70, 50, 26, 100, 55, 80, 90, 35] h = 0 # Set servo mode to all servos with their offset for j in range(1,5): u = 10*j r = range(u, u+3) for i in r: motor.setServoMode(i) if offsets[h]!=0: motor.setPositionOffset(i,offsets[h]) h+=1 # RESET position and stand down & up before walking pos = [500, 500, 500, 500, 500, 500, 500, 500, 500, 500, 500, 500] h = 0 for j in range(1,5): u = 10*j r = range(u, u+3) for i in r: motor.move(i, int(pos[h]), 1500) h+=1 time.sleep(3) pos = [500, 750, 583, 500, 250, 417, 500, 750, 583, 500, 250, 417] #pos = get_action(0) h = 0 for j in range(1,5): u = 10*j r = range(u, u+3) for i in r: if h>5: motor.move(i, int(pos[h]), 1000) else: motor.move(i, int(pos[h]), 1500) h+=1 time.sleep(3) ''' # Determine need to smoothen transition to first position pos_prev = [500, 750, 583, 500, 250, 417, 500, 750, 583, 500, 250, 417] pos = get_action(0) delta_pos = abs(pos-pos_prev) steps = int(max(delta_pos)/15) m = [] for i in range(len(pos)): m.append(np.linspace(pos_prev[i], pos[i], steps)) m_t = np.array(m).T.tolist() for i in range(len(m_t)): for j in range(len(m_t[0])): m_t[i][j] = int(round(m_t[i][j])) # If smoothing is needed, perform actions for i in m_t: real_pos = walk(i) # WALK j = 1 while j < 100: # Get target position pos = get_action(j) # Move robot to target position real_pos = walk(pos) j += 1 ''' # RESET position and stand down & up before walking pos = [500, 500, 500, 500, 500, 500, 500, 500, 500, 500, 500, 500] h = 0 for j in range(1,5): u = 10*j r = range(u, u+3) for i in r: motor.move(i, int(pos[h]), 1500) h+=1
[ "numpy.load", "numpy.zeros", "time.sleep", "numpy.sin", "sys.exit" ]
[((3246, 3259), 'time.sleep', 'time.sleep', (['(3)'], {}), '(3)\n', (3256, 3259), False, 'import time\n'), ((3514, 3527), 'time.sleep', 'time.sleep', (['(3)'], {}), '(3)\n', (3524, 3527), False, 'import time\n'), ((238, 248), 'sys.exit', 'sys.exit', ([], {}), '()\n', (246, 248), False, 'import sys\n'), ((524, 536), 'numpy.zeros', 'np.zeros', (['(12)'], {}), '(12)\n', (532, 536), True, 'import numpy as np\n'), ((1914, 1954), 'numpy.load', 'np.load', (['"""params/ROB/best_overall-2.npy"""'], {}), "('params/ROB/best_overall-2.npy')\n", (1921, 1954), True, 'import numpy as np\n'), ((2666, 2683), 'time.sleep', 'time.sleep', (['(0.005)'], {}), '(0.005)\n', (2676, 2683), False, 'import time\n'), ((1559, 1572), 'numpy.sin', 'np.sin', (['(t * e)'], {}), '(t * e)\n', (1565, 1572), True, 'import numpy as np\n'), ((1591, 1604), 'numpy.sin', 'np.sin', (['(t * e)'], {}), '(t * e)\n', (1597, 1604), True, 'import numpy as np\n'), ((1622, 1639), 'numpy.sin', 'np.sin', (['(t * e + f)'], {}), '(t * e + f)\n', (1628, 1639), True, 'import numpy as np\n'), ((1658, 1675), 'numpy.sin', 'np.sin', (['(t * e + f)'], {}), '(t * e + f)\n', (1664, 1675), True, 'import numpy as np\n')]
import json import jsonschema from jsonschema import validate import abc import error as error from Estimator import Estimator import sys import numpy as np # vectors and matrices import pandas as pd # tables and data manipulations from dateutil.relativedelta import relativedelta # working with dates with style from scipy.optimize import minimize # for function minimization import statsmodels.formula.api as smf # statistics and econometrics import statsmodels.tsa.api as smt import statsmodels.api as sm import scipy.stats as scs from itertools import product # some useful functions from tqdm import tqdm_notebook import warnings # `do not disturbe` mode warnings.filterwarnings('ignore') # Describe what kind of json you expect. tripleESSchema = { "type": "object", "properties": { "estimator": { "type": "string" }, "season_length": { "type": "number" }, "scaling_factor": { "type": "number" } }, "required": ["estimator", "season_length"], "additionalProperties": False } class TripleES(Estimator): def __init__(self, jsonData): super().__init__() self.nick = 'TripleES' try: validate(instance=jsonData, schema=tripleESSchema) except jsonschema.exceptions.ValidationError as err: template = "An exception of type {0} occurred. Arguments: {1!r}" message = template.format(type(err).__name__, err.args) print(message) raise ValueError(error.errors['tripleES_config']) self.parse(jsonData) self.estimator = self def parse(self, jsonData): self.is_regr = True if 'scaling_factor' in jsonData: self.scaling_factor = jsonData['scaling_factor'] else: self.scaling_factor = 1.96 self.season_length = jsonData['season_length'] sys.path.insert(1, 'output') import TripleES_OM self.output_manager = TripleES_OM.TripleES_OM(self) def process(self, prep, cv, X_train, y_train): # initializing model parameters alpha, beta and gamma x = [0, 0, 0] # Minimizing the loss function from scipy.optimize import minimize from sklearn.metrics import mean_squared_error, mean_squared_log_error #leggiamo cv.metrics, a seconda del suo valore stringa gli passo l'oggetto corrispondente if 'mean_squared_log_error' in cv.metrics: abg = minimize(timeseriesCVscore, x0=x, args=(X_train, cv.cv, mean_squared_log_error, self.season_length), method="TNC", bounds = ((0, 1), (0, 1), (0, 1)) ) elif 'mean_squared_error' in cv.metrics: #usable also for rootMSE abg = minimize(timeseriesCVscore, x0=x, args=(X_train, cv.cv, mean_squared_error, self.season_length), method="TNC", bounds = ((0, 1), (0, 1), (0, 1)) ) else: template = "An exception of type {0} occurred. Arguments: {1!r}" message = template.format('Wrong metrics configuration parameter', cv.metrics) raise ValueError(message) # Take optimal values... #best_estimator = abg.x self.alpha = abg.x[0] self.beta = abg.x[1] self.gamma = abg.x[2] self.X_train = X_train #return best_estimator # stimatore deve restituire alpha, beta e gamma return self def predict(self, X_test): self.model = HoltWinters(self.X_train, self.season_length, self.alpha, self.beta, self.gamma, len(X_test), self.scaling_factor) self.model.triple_exponential_smoothing() predictions = self.model.result[-len(X_test):] return predictions def predict_from_series(self, series, n_preds): res = [] for i in range(len(series)): if len(series[i])-2*self.season_length<0: print(f'Skipped series nr. {i}, as too short. A series should be long at least two times the season length') continue self.model = HoltWinters(series[i], self.season_length, self.alpha, self.beta, self.gamma, n_preds, self.scaling_factor) self.model.triple_exponential_smoothing() predictions = self.model.result[-n_preds:] res.append(predictions) return res class HoltWinters: """ Holt-Winters model with the anomalies detection using Brutlag method # series - initial time series # slen - length of a season <- parametro da mettere nel json est_tscv # alpha, beta, gamma - Holt-Winters model coefficients <- output paramas # n_preds - predictions horizon <- parametro def a priori # scaling_factor - sets the width of the confidence interval by Brutlag (usually takes values from 2 to 3) <- ? può essere hyperparmas per CV """ def __init__(self, series, slen, alpha, beta, gamma, n_preds, scaling_factor=1.96): self.series = series self.slen = slen self.alpha = alpha self.beta = beta self.gamma = gamma self.n_preds = n_preds self.scaling_factor = scaling_factor def initial_trend(self): sum = 0.0 for i in range(self.slen): sum += float(self.series[i+self.slen] - self.series[i]) / self.slen return sum / self.slen def initial_seasonal_components(self): seasonals = {} season_averages = [] n_seasons = int(len(self.series)/self.slen) # let's calculate season averages for j in range(n_seasons): season_averages.append(sum(self.series[self.slen*j:self.slen*j+self.slen])/float(self.slen)) # let's calculate initial values for i in range(self.slen): sum_of_vals_over_avg = 0.0 for j in range(n_seasons): sum_of_vals_over_avg += self.series[self.slen*j+i]-season_averages[j] seasonals[i] = sum_of_vals_over_avg/n_seasons return seasonals def triple_exponential_smoothing(self): self.result = [] self.Smooth = [] self.Season = [] self.Trend = [] self.PredictedDeviation = [] seasonals = self.initial_seasonal_components() for i in range(len(self.series)+self.n_preds): if i == 0: # components initialization smooth = self.series[0] trend = self.initial_trend() self.result.append(self.series[0]) self.Smooth.append(smooth) self.Trend.append(trend) self.Season.append(seasonals[i%self.slen]) self.PredictedDeviation.append(0) continue if i >= len(self.series): # predicting m = i - len(self.series) + 1 self.result.append((smooth + m*trend) + seasonals[i%self.slen]) # when predicting we increase uncertainty on each step self.PredictedDeviation.append(self.PredictedDeviation[-1]*1.01) else: val = self.series[i] last_smooth, smooth = smooth, self.alpha*(val-seasonals[i%self.slen]) + (1-self.alpha)*(smooth+trend) trend = self.beta * (smooth-last_smooth) + (1-self.beta)*trend seasonals[i%self.slen] = self.gamma*(val-smooth) + (1-self.gamma)*seasonals[i%self.slen] self.result.append(smooth+trend+seasonals[i%self.slen]) # Deviation is calculated according to Brutlag algorithm. self.PredictedDeviation.append(self.gamma * np.abs(self.series[i] - self.result[i]) + (1-self.gamma)*self.PredictedDeviation[-1]) self.Smooth.append(smooth) self.Trend.append(trend) self.Season.append(seasonals[i%self.slen]) from sklearn.model_selection import TimeSeriesSplit from sklearn.metrics import mean_squared_error def timeseriesCVscore(params, series, cv, loss_function, slen): """ Returns error on CV params - vector of parameters for optimization series - dataset with timeseries slen - season length for Holt-Winters model """ # errors array errors_arr = [] values = series.values alpha, beta, gamma = params # set the number of folds for cross-validation tscv = TimeSeriesSplit(n_splits=cv) # iterating over folds, train model on each, forecast and calculate error for train, test in tscv.split(values): try: n=len(train)-2*slen assert n > 0 except AssertionError as err: template = "An exception of type {0} occurred" message = template.format(type(err).__name__) print(message) raise ValueError(error.errors['tripleES_wrong_nsplits']) model = HoltWinters(series=values[train], slen=slen, alpha=alpha, beta=beta, gamma=gamma, n_preds=len(test)) model.triple_exponential_smoothing() predictions = model.result[-len(test):] actual = values[test] error_arr = loss_function(predictions, actual) errors_arr.append(error_arr) return np.mean(np.array(errors_arr))
[ "jsonschema.validate", "scipy.optimize.minimize", "numpy.abs", "warnings.filterwarnings", "sys.path.insert", "sklearn.model_selection.TimeSeriesSplit", "numpy.array", "TripleES_OM.TripleES_OM" ]
[((802, 835), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (825, 835), False, 'import warnings\n'), ((8825, 8853), 'sklearn.model_selection.TimeSeriesSplit', 'TimeSeriesSplit', ([], {'n_splits': 'cv'}), '(n_splits=cv)\n', (8840, 8853), False, 'from sklearn.model_selection import TimeSeriesSplit\n'), ((2094, 2122), 'sys.path.insert', 'sys.path.insert', (['(1)', '"""output"""'], {}), "(1, 'output')\n", (2109, 2122), False, 'import sys\n'), ((2180, 2209), 'TripleES_OM.TripleES_OM', 'TripleES_OM.TripleES_OM', (['self'], {}), '(self)\n', (2203, 2209), False, 'import TripleES_OM\n'), ((9712, 9732), 'numpy.array', 'np.array', (['errors_arr'], {}), '(errors_arr)\n', (9720, 9732), True, 'import numpy as np\n'), ((1384, 1434), 'jsonschema.validate', 'validate', ([], {'instance': 'jsonData', 'schema': 'tripleESSchema'}), '(instance=jsonData, schema=tripleESSchema)\n', (1392, 1434), False, 'from jsonschema import validate\n'), ((2680, 2836), 'scipy.optimize.minimize', 'minimize', (['timeseriesCVscore'], {'x0': 'x', 'args': '(X_train, cv.cv, mean_squared_log_error, self.season_length)', 'method': '"""TNC"""', 'bounds': '((0, 1), (0, 1), (0, 1))'}), "(timeseriesCVscore, x0=x, args=(X_train, cv.cv,\n mean_squared_log_error, self.season_length), method='TNC', bounds=((0, \n 1), (0, 1), (0, 1)))\n", (2688, 2836), False, 'from scipy.optimize import minimize\n'), ((2972, 3119), 'scipy.optimize.minimize', 'minimize', (['timeseriesCVscore'], {'x0': 'x', 'args': '(X_train, cv.cv, mean_squared_error, self.season_length)', 'method': '"""TNC"""', 'bounds': '((0, 1), (0, 1), (0, 1))'}), "(timeseriesCVscore, x0=x, args=(X_train, cv.cv, mean_squared_error,\n self.season_length), method='TNC', bounds=((0, 1), (0, 1), (0, 1)))\n", (2980, 3119), False, 'from scipy.optimize import minimize\n'), ((7999, 8038), 'numpy.abs', 'np.abs', (['(self.series[i] - self.result[i])'], {}), '(self.series[i] - self.result[i])\n', (8005, 8038), True, 'import numpy as np\n')]
''' Future Update Notes: 1) Non-supervisor mode is not coded. 2) Controller functions should be updated. 3) robot_creator function takes too much arguments and more argument necessary for options like robot tags, data transfer between real robot and player, etc. New structure might be necessary. 4) Codes modified for admin-permissions in Windows, in Linux they should be arranged. 5) Robot tag creation not included. 6) Collaboration of game manager and world creator is still not considered. 7) Controller paths should be arranged according to Linux system and webots configuration. ''' import numpy as np from decimal import Decimal import math from pathlib import Path import ctypes, sys #for Windows only def is_admin():# Windows Admin Permissions try: return ctypes.windll.shell32.IsUserAnAdmin() except: return False def grid_material(no): ''' New texture may be added easily with location of texture file(should be in jpg format) only corresponding number will assigned to texture in the function. ''' if no == 0: return 0 if no == 1: return 'textures/earth_texture.jpg' if no == 2: return 'textures/water_texture.jpg' if no == 3: return 'textures/desert_texture.jpg' if no == 4: return 'textures/cell_texture.jpg' def floor_text(x,z,i,grid_length,material,world_text): ''' Creates script of every floor element of floor matrix. ''' world_text.append('Floor {\n') world_text.append(' translation {0} 0 {1}\n'.format(x,z)) world_text.append(' name "floor({0})"\n'.format(i)) world_text.append(' size {0} {0}\n'.format(grid_length)) world_text.append(' tileSize {0} {0}\n'.format(grid_length)) world_text.append(' appearance Appearance {\n') world_text.append(' texture ImageTexture {\n') world_text.append(' url [\n') world_text.append(' "{}"\n'.format(material)) world_text.append(' ]\n') world_text.append(' filtering 0\n') world_text.append(' }}}\n') def arena_creator(floor_matrix, grid_length,world_text): ''' floor_matrix is a matrix and it decides shape of the arena, number of grids, grid colors. Each matrix element is a grid texture. Corresponding element number will be defined. Value of grid_length in meters. For example: A = [1 3] Element value: 0 = box obstacle, 1 = earth, 2 = water, [3 4] 3 = sand, 4 = cell ''' i = 0 for ix,iz in np.ndindex(floor_matrix.shape): x = (grid_length / 2) + (iz * grid_length) z = (grid_length / 2) + (ix * grid_length) material = grid_material(floor_matrix[ix,iz]) if material != 0: floor_text(x,z,i,grid_length,material,world_text) if material == 0: obstacle(x,z,i,grid_length,world_text) i += 1 def distance_sensor(r_no,s_no,x,z,r,cov,res,s,body,world_text,main,loop): ''' x, z and r are x-coordinate, z-coordinate and direction(rotation around y axis), repectively. Values of x, z, r should calculated w.r.t. robot body. cov(Coverage) is range of the sensor and res(resolution) tells smallest change in distance a sensor can detect. x, z, r and coverage in meters. Body is imaginary body of sensor device and value of body can be True or False. r_no and s_no are id of the robot that carries sensor and id of sensor(there might be multiple sensor on a robot, they must identified distinctly), repectively. Imaginary body is black as default. r is in degrees. s is for supervisor mode of the robot(True or False). main and loop are main and loop part of the controller. ''' pi_5f = float("{:.5f}".format(math.pi)) r = r / 180 * pi_5f world_text.append(' DistanceSensor {\n') world_text.append(' translation {0} 0 {1}\n'.format(x,z)) world_text.append(' rotation 0 1 0 {}\n'.format(r)) if body == True: world_text.append(' children [\n') world_text.append(' Shape {\n') world_text.append(' appearance PBRAppearance {\n') world_text.append(' baseColor 0 0 0\n') world_text.append(' roughness 1\n') world_text.append(' metalness 0\n') world_text.append(' }\n') world_text.append(' geometry Box {\n') world_text.append(' size 0.001 0.001 0.001\n') world_text.append(' }}]\n') world_text.append(' name "ds_{0}_{1}"\n'.format(r_no,s_no)) world_text.append(' lookupTable [\n') world_text.append(' 0 0 0\n') world_text.append(' {0} {1} 0\n'.format(cov,res)) world_text.append(' ]}\n') #Controller Part if s == True: main.append('ds_1 = supervisor.getDistanceSensor("ds_{0}_{1}")\n'.format(r_no,s_no)) main.append('ds_1.enable(timeStep)\n') main.append('ds.append(ds_1)\n') #if s == False: def robot_controller(r_no,supervisor,main,loop): ''' r_no is robot no. main and loop are part of controller scripts which necessary for devices and sensors. ''' robot_controller_main = [] # main function of robot controller robot_controller_loop = [] # loop function of robot controller robot_controller_main.append('import json\n') robot_controller_main.append('from pathlib import Path\n') robot_controller_main.append('from controller import *\n') robot_controller_main.append('\n') robot_controller_main.append('timeStep = 32\n')#Default robot_controller_main.append('ds = []\n') robot_controller_main.append('file_to_open = Path("C:/Users/Korcan/Desktop/ME462/l_r_of_Robot_1.txt")\n') #EDIT THISSS if supervisor == True: robot_controller_main.append('supervisor = Supervisor()\n') robot_controller_main.append('robot_node = supervisor.getFromDef("Robot_{}")\n'.format(r_no)) robot_controller_main.append('trans_field = robot_node.getField("translation")\n') robot_controller_main.append('rot_field = robot_node.getField("rotation")\n') robot_controller_main.append('\n') robot_controller_loop.append('while supervisor.step(timeStep) != -1:\n') robot_controller_loop.append(' val_translation = trans_field.getSFVec3f()\n') robot_controller_loop.append(' val_rotation = rot_field.getSFRotation()\n') robot_controller_loop.append(" f = open(file_to_open, mode='r')\n") robot_controller_loop.append(' data_as_string = f.readlines()\n') robot_controller_loop.append(' f.close()\n') robot_controller_loop.append(' try:\n') robot_controller_loop.append(' if len(data_as_string[{}]) != 0:\n'.format(r_no-1)) robot_controller_loop.append(' data = json.loads(data_as_string[{}])\n'.format(r_no-1)) robot_controller_loop.append(' trans_field.setSFVec3f(data[0])\n') robot_controller_loop.append(' rot_field.setSFRotation(data[1])\n') robot_controller_loop.append(' except IndexError:\n') robot_controller_loop.append(' pass\n') robot_controller_loop.append('\n') loop.append(' for e in ds:\n') loop.append(' print(e.getValue())\n') #if super == False: robot_controller_main = robot_controller_main + main robot_controller_loop = robot_controller_loop + loop final_controller = robot_controller_main + robot_controller_loop location = "C:/Program Files/Webots/projects/default/controllers/Robot_{}".format(r_no)# EDIT THISSS if is_admin():#Windows admin permissions inside of this if part of the program Path(location).mkdir(parents=False, exist_ok=True) [f.unlink() for f in Path(location).glob("*") if f.is_file()] f = open(location + "/Robot_{}.py".format(r_no), "w") f.writelines(final_controller) f.close() else: # Re-run the program with admin rights ctypes.windll.shell32.ShellExecuteW(None, "runas", sys.executable, " ".join(sys.argv), None, 1) def robot_creator(x,z,r_no,supervisor,world_text): ''' Value of supervisor can be True or False. If value is False than motors are enabled. r_no is id of the robot. x and z are start coordinates of robot. r_no should not be 0, 0 is used for Arena Top Camera. ''' main = [] loop = [] world_text.append('DEF Robot_{} Robot '.format(r_no)) world_text.append('{\n') world_text.append(' translation {0} 0.03 {1}\n'.format(x,z)) world_text.append(' children [\n') #Below lines for robot body world_text.append(' DEF robot_{}_body Shape '.format(r_no)) world_text.append('{\n') world_text.append(' appearance PBRAppearance {\n') world_text.append(' baseColor 0.917647 0.145098 0.145098\n') world_text.append(' roughness 1\n') world_text.append(' metalness 0\n') world_text.append(' }\n') world_text.append(' geometry Box {\n') world_text.append(' size 0.09 0.06 0.07\n') world_text.append(' }}\n') #Below lines for sensor distance_sensor(r_no,1,0.045,0,0,0.1,100,supervisor,False,world_text,main,loop) distance_sensor(r_no,2,-0.045,0,180,0.1,100,supervisor,False,world_text,main,loop) distance_sensor(r_no,3,0,0.035,-90,0.1,100,supervisor,False,world_text,main,loop) distance_sensor(r_no,4,0,-0.035,90,0.1,100,supervisor,False,world_text,main,loop) #Below lines for motor when no real robots exist if supervisor == False: motor() world_text.append(' ]\n') #end of the children of robot world_text.append(' name "robot_{}"\n'.format(r_no)) world_text.append(' boundingObject USE robot_{}_body\n'.format(r_no)) world_text.append(' controller "Robot_{}"\n'.format(r_no)) if supervisor == True: world_text.append(' supervisor TRUE\n') world_text.append('}\n') #controller of robot robot_controller(r_no,supervisor,main,loop) def motor(x,z): ''' x, y are coordinates are w.r.t the robot body and x, y values are in meters. ''' def obstacle(x,z,i,a,world_text): ''' Cubic obstacle with side size a in meters. x, y are coordinate values of obstacle w.r.t general coordinate axis. Base color is the color of the obstacle and it made black as default. ''' world_text.append('Solid {\n') world_text.append(' translation {0} {1} {2}\n'.format(x,a/2,z)) world_text.append(' children [\n') world_text.append(' DEF obstacle_{0} Shape '.format(i)) world_text.append('{\n') world_text.append(' appearance PBRAppearance {\n') world_text.append(' baseColor 0 0 0\n') world_text.append(' roughness 1\n') world_text.append(' metalness 0\n') world_text.append(' }\n') world_text.append(' geometry Box {\n') world_text.append(' size {0} {0} {0}\n'.format(a)) world_text.append(' }}]\n') world_text.append(' name "obstacle_{}"\n'.format(i)) world_text.append(' boundingObject USE obstacle_{}\n'.format(i)) world_text.append('}\n') def arena_top_cam(a,grid_length,y,width,height,world_text): ''' x, z coordinates of middle point of the arena and can be found by arena matrix(a) with grid_length. Value of y should be proper perpendicular distance from the floor and y value in meters. Values of width and height are resolution of camera and values are in pixels. ''' x = a.shape[0] x = x / 2 * grid_length z = a.shape[1] z = z / 2 * grid_length y = y * (width / height) #Assumed width > height world_text.append('DEF Arena_Cam Robot {\n') world_text.append(' translation {0} {1} {2}\n'.format(x,y,z)) world_text.append(' rotation -1 0 0 1.5708\n') world_text.append(' children [\n') world_text.append(' Camera {\n') world_text.append(' name "Arena_Top_Cam"\n') world_text.append(' width {}\n'.format(width)) world_text.append(' height {}\n'.format(height)) world_text.append(' }]\n') world_text.append(' name "robot_0"\n') world_text.append(' controller "arena_top_cam"\n') world_text.append(' supervisor TRUE\n') world_text.append('}\n') def world_creator(floor_matrix,grid_length,basic_time_step): ''' floor_matrix is a matrix and it decides shape of the arena, number of grids, grid colors. Each matrix element is a grid texture. Corresponding element number will be defined. Value of grid_length in meters. basic_time_step is the time step increament used by Webots and expressed in milliseconds. Default value of basic time step in Webots is 32ms. ''' contents = [] a = floor_matrix.shape m = a[0] n = a[1] x = m / 2 * grid_length z = n / 2 * grid_length max_length = max(m,n) * grid_length y = max_length / 0.748 #Field of view calculations #Main contents of world contents.append('#VRML_SIM R2020a utf8\n') contents.append('WorldInfo {\n') contents.append(' basicTimeStep {}\n'.format(basic_time_step)) contents.append('}\n') contents.append('Viewpoint {\n') contents.append(' orientation -1 0 0 1.5708\n') contents.append(' position {0} {1} {2}\n'.format(x,2*y,z)) contents.append('}\n') contents.append('TexturedBackground {\n') contents.append('}\n') contents.append('TexturedBackgroundLight {\n') contents.append('}\n') #Element of world: Arena, Robots, Top Camera arena_creator(floor_matrix, grid_length,contents) robot_creator(-grid_length,grid_length,1,True,contents) robot_creator(-grid_length,3*grid_length,2,True,contents) arena_top_cam(floor_matrix,grid_length,y,1280,720,contents) f = open("sample_world.wbt", "w") f.writelines(contents) f.close() a = np.random.randint(0,5,size=(10,10)) print(a) print(a.shape) world_creator(a, 0.15, 32)
[ "numpy.ndindex", "numpy.random.randint", "ctypes.windll.shell32.IsUserAnAdmin", "pathlib.Path" ]
[((13388, 13426), 'numpy.random.randint', 'np.random.randint', (['(0)', '(5)'], {'size': '(10, 10)'}), '(0, 5, size=(10, 10))\n', (13405, 13426), True, 'import numpy as np\n'), ((2466, 2496), 'numpy.ndindex', 'np.ndindex', (['floor_matrix.shape'], {}), '(floor_matrix.shape)\n', (2476, 2496), True, 'import numpy as np\n'), ((820, 857), 'ctypes.windll.shell32.IsUserAnAdmin', 'ctypes.windll.shell32.IsUserAnAdmin', ([], {}), '()\n', (855, 857), False, 'import ctypes, sys\n'), ((7421, 7435), 'pathlib.Path', 'Path', (['location'], {}), '(location)\n', (7425, 7435), False, 'from pathlib import Path\n'), ((7496, 7510), 'pathlib.Path', 'Path', (['location'], {}), '(location)\n', (7500, 7510), False, 'from pathlib import Path\n')]
""" This package includes my constraints/utilities/etc for cpmpy. This cpmpy model was written by <NAME> (<EMAIL>) See also my cpmpy page: http://hakank.org/cpmpy/ """ import sys, math, re import itertools import numpy as np from functools import reduce from cpmpy import * from cpmpy.expressions.globalconstraints import GlobalConstraint from cpmpy.solvers import * from ortools.sat.python import cp_model as ort from cpmpy.transformations.flatten_model import flatten_constraint, flatten_model from cpmpy.transformations.get_variables import print_variables def AllDifferent_except_0(args): """ Ensure that all arguments that are != 0 must have distinct values. """ # Note: The parenthesis around (var1 != 0) are needed! return [ ((var1!= 0) & (var2 != 0)).implies(var1 != var2) for var1, var2 in all_pairs(args)] def all_different_except_0(args): """ Alias for AllDifferent_except_0(args). """ return AllDifferent_except_0(args) def to_num(a,n,base): """ to_num(a, n, base) Ensure that the digits in array `a` corresponds to the number `n` in base `base`. """ tlen = len(a) return n == sum([(base ** (tlen - i - 1)) * a[i] for i in range(tlen)]) def increasing(args): """ Ensure that the values in args are increasing. """ return [args[i-1] <= args[i] for i in range(1,len(args))] def increasing_strict(args): """ Ensure that the values in args are strict increasing. """ return [args[i-1] < args[i] for i in range(1,len(args))] def decreasing(args): """ Ensure that the values in args are decreasing. """ return [args[i-1] >= args[i] for i in range(1,len(args))] def decreasing_strict(args): """ Ensure that the values in args are strict decreasing. """ return [args[i-1] >= args[i] for i in range(1,len(args))] def all_pairs(args): """ Generate all pairs from the list of lists args. (stolen from cmppy/globalconstraints.py) """ return list(itertools.combinations(args, 2)) def get_different_solution(m,x): """ Add the current solution (x) in the model to generate other solutions. Usage: # ... ss = CPM_ortools(model) if ss.solve(): print(x.value()) get_different_solution(ss, x) Note: The array in x must be a flattened array. If there are many decision variables, use flatten_lists(a) to flatten out the array. E.g. # ... ss = CPM_ortools(model) while ss.solve(): print(x.value()) # an array print(y.value()) # a variable print(z.value()) # another variable get_different_solution(ss,flatten_lists([x,[y,z]]) Note that this might be slow for larger models or models with many solutions. If so, try to use - ortools_wrapper() or the simple solution printers such as - ORT_simple_printer - ORT_arrays_printer - ORT_simple_printer_matrix - ORT_simple_function_printer or define a similiar solution printer. """ # n = len(x) # m += [any([x[i].value() != x[i] for i in range(n)])] m += [any([t.value() != t for t in x])] def flatten_lists(a): """ Flatten a list of lists. Note: a must be an array of arrays (list of lists). See get_different_solution for examples. """ return [item for sublist in a for item in sublist] class ORT_simple_printer(ort.CpSolverSolutionCallback): """ A simple printer callback for single array printing. """ def __init__(self, varmap, a, num_solutions=0): super().__init__() self.solcount = 0 self.varmap = varmap self.vars = (a) self.num_solutions=num_solutions def on_solution_callback(self): self.solcount += 1 # I always start at 1. :-) # populate values before printing # For array of arrays (Tias' original) # for wm in self.vars: # for cpm_var in wm: # cpm_var._value = self.Value(self.varmap[cpm_var]) # For single arrays: for cpm_var in self.vars: cpm_var._value = self.Value(self.varmap[cpm_var]) (a) = self.vars print(f"#{self.solcount}: {a.value()}") if self.num_solutions > 0 and self.solcount >= self.num_solutions: self.StopSearch() class ORT_arrays_printer(ort.CpSolverSolutionCallback): """ A simple printer callback for array of arrays. """ def __init__(self, varmap, a, num_solutions=0): super().__init__() self.solcount = 0 self.varmap = varmap self.vars = (a) self.num_solutions=num_solutions def on_solution_callback(self): self.solcount += 1 # I always start at 1. :-) # populate values before printing # For array of arrays (Tias' original) for wm in self.vars: for cpm_var in wm: cpm_var._value = self.Value(self.varmap[cpm_var]) # For single arrays: for cpm_var in self.vars: cpm_var._value = self.Value(self.varmap[cpm_var]) (a) = self.vars print(f"#{self.solcount}: {a.value()}") if self.num_solutions > 0 and self.solcount >= self.num_solutions: self.StopSearch() class ORT_simple_printer_matrix(ort.CpSolverSolutionCallback): """ A simple printer callback for printing a matrix. """ def __init__(self, varmap, a, rows,cols, num_solutions=0): super().__init__() self.solcount = 0 self.varmap = varmap self.vars = (a) self.rows = rows self.cols = cols self.num_solutions=num_solutions def on_solution_callback(self): self.solcount += 1 for cpm_var in self.vars: cpm_var._value = self.Value(self.varmap[cpm_var]) (a) = self.vars print(f"#{self.solcount}:") for i in range(self.rows): for j in range(self.cols): print("%3d" % a[i*self.cols+j].value(), end=" ") print() print() if self.num_solutions > 0 and self.solcount >= self.num_solutions: self.StopSearch() class ORT_simple_function_printer(ort.CpSolverSolutionCallback): """ A printer callback with a callback (cb_fun) for printing the array a, which should be structured by the user and including .value() for the variables. Note that the data array a must be a flattening array to be used with this printer callback. Example of a printer function: def f(a): print(a[0].value(),"+",a[1].value(),"=",a[2].value()) which will print a solution such as 2 + 3 = 5 """ def __init__(self, varmap, a, cb_fun,num_solutions=0): super().__init__() self.solcount = 0 self.varmap = varmap self.vars = (a) self.cb_fun = cb_fun self.num_solutions=num_solutions def on_solution_callback(self): self.solcount += 1 # For single arrays: for cpm_var in self.vars: cpm_var._value = self.Value(self.varmap[cpm_var]) (a) = self.vars print(f"\n#{self.solcount}:") self.cb_fun(a) if self.num_solutions > 0 and self.solcount >= self.num_solutions: self.StopSearch() class ORT_simple_solution_counter(ort.CpSolverSolutionCallback): """ This is a solution 'printer' that just count the solutions. """ def __init__(self, varmap, a): super().__init__() self.solcount = 0 self.varmap = varmap self.vars = (a) def on_solution_callback(self): self.solcount += 1 for wm in self.vars: for cpm_var in wm: cpm_var._value = self.Value(self.varmap[cpm_var]) (a) = self.vars class ORT_function_printer_arrays(ort.CpSolverSolutionCallback): """ A printer callback with a callback (cb_fun) for printing the array of arrays a, which should be structured by the user and including .value() for the variables. This version t prints solution number. Example of a printer function: def print_solution(a): print('x:', a[0].value()) print('y:', a[1].value()) """ def __init__(self, varmap, a, cb_fun,num_solutions=0): super().__init__() self.solcount = 0 self.varmap = varmap self.vars = (a) self.cb_fun = cb_fun self.num_solutions=num_solutions def on_solution_callback(self): self.solcount += 1 for wm in self.vars: for cpm_var in wm: cpm_var._value = self.Value(self.varmap[cpm_var]) (a) = self.vars print(f"sol #{self.solcount}") self.cb_fun(a) print() if self.num_solutions > 0 and self.solcount >= self.num_solutions: self.StopSearch() class ORT_function_printer_arrays2(ort.CpSolverSolutionCallback): """ A printer callback with a callback (cb_fun) for printing the array of arrays a, which should be structured by the user and including .value() for the variables. This version don't print solution number. Example of a printer function: def print_solution(a): print('x:', a[0].value()) print('y:', a[1].value()) """ def __init__(self, varmap, a, cb_fun,num_solutions=0): super().__init__() self.solcount = 0 self.varmap = varmap self.vars = (a) self.cb_fun = cb_fun self.num_solutions=num_solutions def on_solution_callback(self): self.solcount += 1 for wm in self.vars: for cpm_var in wm: cpm_var._value = self.Value(self.varmap[cpm_var]) (a) = self.vars self.cb_fun(a) if self.num_solutions > 0 and self.solcount >= self.num_solutions: self.StopSearch() def print_solution(a): """ print_solution(a) Default callback method for printing the solution in a printer callback. Note: a must be an array of arrays to be used with ortools_wrapper (defined below). """ for x in a: print(x.value()) def ortools_wrapper(model,var_array,print_solution=print_solution,num_sols=0): """ ortools_wrapper((model,var_array,print_solution=print_solution,num_sols=0) This is a simple wrapper for printing the solutions of a model and tends to be (significantly) faster than using ss = CPM_ortools(model) while ss.solve(): # ... get_different_solution(ss,flatten_lists(var_array)) Parameters: - model : the model - var_array: the array of arrays of the decision variables to be printed with print_solution(var_array) - print_solution: the method used to do the actual printing of the solution. Default is print_solution(a) defined above. The function can be overwritten / defined in the current constraint model. - num_sols : number of solutions. Default 0, all solutions. Note: For optimality problems, use ortools_wrapper_opt(.) instead. """ ss = CPM_ortools(model) cb = ORT_function_printer_arrays(ss.varmap,var_array,print_solution,num_sols) # Flags to experiment with # ss.ort_solver.parameters.num_search_workers = 8 # Don't work together with SearchForAllSolutions # ss.ort_solver.parameters.search_branching = ort.PORTFOLIO_SEARCH # ss.ort_solver.parameters.cp_model_presolve = False ss.ort_solver.parameters.linearization_level = 0 ss.ort_solver.parameters.cp_model_probing_level = 0 ort_status = ss.ort_solver.SearchForAllSolutions(ss.ort_model, cb) ss._after_solve(ort_status) print(ss.status()) print("Nr solutions:", cb.solcount) print("Num conflicts:", ss.ort_solver.NumConflicts()) print("NumBranches:", ss.ort_solver.NumBranches()) print("WallTime:", ss.ort_solver.WallTime()) print() def ortools_wrapper2(model,var_array,print_solution=print_solution,num_sols=0): """ ortools_wrapper((model,var_array,print_solution=print_solution,num_sols=0) This is a simple wrapper for printing the solutions of a model and tends to be (significantly) faster than using ss = CPM_ortools(model) while ss.solve(): # ... get_different_solution(ss,flatten_lists(var_array)) This version don't print the solution number. Parameters: - model : the model - var_array: the array of arrays of the decision variables to be printed with print_solution(var_array) - print_solution: the method used to do the actual printing of the solution. Default is print_solution(a) defined above. The function can be overwritten / defined in the current constraint model. - num_sols : number of solutions. Default 0, all solutions. Note: For optimality problems, use ortools_wrapper_opt(.) instead. """ ss = CPM_ortools(model) cb = ORT_function_printer_arrays2(ss.varmap,var_array,print_solution,num_sols) # Flags to experiment with # ss.ort_solver.parameters.num_search_workers = 8 # Don't work together with SearchForAllSolutions # ss.ort_solver.parameters.search_branching = ort.PORTFOLIO_SEARCH # ss.ort_solver.parameters.cp_model_presolve = False ss.ort_solver.parameters.linearization_level = 0 ss.ort_solver.parameters.cp_model_probing_level = 0 ort_status = ss.ort_solver.SearchForAllSolutions(ss.ort_model, cb) print() ss._after_solve(ort_status) # post-process after solve() call... print(ss.status()) print("Nr solutions:", cb.solcount) print("Num conflicts:", ss.ort_solver.NumConflicts()) print("NumBranches:", ss.ort_solver.NumBranches()) print("WallTime:", ss.ort_solver.WallTime()) print() def ortools_wrapper_opt(model,var_array,print_solution=print_solution,num_sols=1,num_procs=1): """ ortools_wrapper_opt((model,var_array,print_solution=print_solution,num_sols=0) This is a simple wrapper for printing the _optimal_ solution of a model. This tends to be (significantly) faster than using if model.solve(): # ... Parameters: - model : the model - var_array: the array of arrays of the decision variables to be printed with print_solution(var_array) - print_solution: the method used to do the actual printing of the solution. Default is print_solution(a) defined above. The function can be overwritten / defined in the current constraint model. - num_sols : number of solutions. Default 0, all solutions. """ ss = CPM_ortools(model) cb = ORT_function_printer_arrays(ss.varmap,var_array,print_solution,1) # Flags to experiment with if num_procs > 1: ss.ort_solver.parameters.num_search_workers = num_procs # ss.ort_solver.parameters.search_branching = ort.PORTFOLIO_SEARCH # ss.ort_solver.parameters.cp_model_presolve = False ss.ort_solver.parameters.linearization_level = 0 ss.ort_solver.parameters.cp_model_probing_level = 0 # Note: This is the real difference between this method and ortool_wrapper. # For optimal problems one cannot use SearchForAllSolutions. Instead # one must use ss.ort_solver.Solve(,) # ort_status = ss.ort_solver.SearchForAllSolutions(ss.ort_model, cb) ort_status = ss.ort_solver.Solve(ss.ort_model, cb) ss._after_solve(ort_status) # post-process after solve() call... print(ss.status()) print("Nr solutions:", cb.solcount) print("Num conflicts:", ss.ort_solver.NumConflicts()) print("NumBranches:", ss.ort_solver.NumBranches()) print("WallTime:", ss.ort_solver.WallTime()) print() def ortools_wrapper_count_solutions(model,var_array): """ ortools_wrapper((model,var_array,print_solution=print_solution,num_sols=0) This is a simple wrapper for just counting the solutions of a model. Parameters: - model : the model - var_array: the array of arrays of the decision variables to be printed with print_solution(var_array) """ ss = CPM_ortools(model) cb = ORT_simple_solution_counter(ss.varmap,var_array) # Flags to experiment with # ss.ort_solver.parameters.num_search_workers = 8 # Don't work together with SearchForAllSolutions # ss.ort_solver.parameters.search_branching = ort.PORTFOLIO_SEARCH # ss.ort_solver.parameters.cp_model_presolve = False ss.ort_solver.parameters.linearization_level = 0 ss.ort_solver.parameters.cp_model_probing_level = 0 ort_status = ss.ort_solver.SearchForAllSolutions(ss.ort_model, cb) ss._after_solve(ort_status) return cb.solcount def base_array(n): """ Returns an array of length `n` with base coefficients. Example: `base_array(4)` returns the array [1000,100,10,1] """ return np.array([10**i for i in range(n-1,-1,-1)]) def scalar_product(a,b): """ `scalar_product(a,b)` Returns the scalar product of the arrays `a` and `b`. Assumption: `len(a) == len(b)` """ assert len(a) == len(a), f"len(a) == len(b)" # return np.dot(a,b) return sum(a*b) def scalar_product1(a): """ `scalar_product1(a)` Returns the scalar product of the array `a` and a base_array of appropriate length. Assumption: `len(a) == len(b)` """ assert len(a) == len(a), f"len(a) == len(b)" # return np.dot(a,base_array(len(a))) return sum(a*base_array(len(a))) def my_circuit(x): """ circuit(x) Exsures that x is a circuit. Note: This assumes that x is has the domain 0..len(x)-1, i.e. 0-based. """ assert x[0].lb == 0, f"circuit: lb is {x[0].lb}, but must be 0" n = len(x) z = intvar(0, n-1,shape=n,name='z') constraints = [ AllDifferent(x), AllDifferent(z), # put the orbit of x[0] in in z[1..n] z[0] == x[0], [ z[i] == x[z[i-1]] for i in range(1, n-1)], # may not be 0 for i < n-1 [ z[i] != 0 for i in range(1, n-1)], # when i = n-1 it must be 0 z[n-1] == 0 ] return constraints def my_circuit_path(x,z): """ circuit(x,z) Ensures that x is an circuit and z is the path. Note: This assumes that x is has the domain 0..len(x)-1, i.e. 0-based. """ assert x[0].lb == 0, f"circuit: x[0].lb is {x[0].lb}, but must be 0" n = len(x) constraints = [ AllDifferent(x), AllDifferent(z), # put the orbit of x[0] in in z[1..n] z[0] == x[0], [ z[i] == x[z[i-1]] for i in range(1, n-1)], # may not be 0 for i < n-1 [ z[i] != 0 for i in range(1, n-1)], # when i = n-1 it must be 0 z[n-1] == 0 ] return constraints def count(a,val,c): """ count(a,val,c) c is the number of occurrences of val in array a. """ return [c == sum([a[i] == val for i in range(len(a))]) ] def atmost(a,val,c): """ atmost(a,val,c) Ensure that the number of occurrences of val in a is atmost c. """ return [sum([a[i] == val for i in range(len(a))]) <= c] def atleast(a,val,c): """ atleast(a,val,c) Ensure that the number of occurrences of val in a is atmost c. """ return [sum([a[i] == val for i in range(len(a))]) >= c] def exactly(a,val,c): """ exactly(a,val,c) Ensure that the number of occurrences of val in a is exactly c. """ return [sum([a[i] == val for i in range(len(a))]) == c] def global_cardinality_count(a,gcc): """ global_cardinality_count(a,gcc) Global cardinality count: Collect the number of occurrences of each value 0..a.ub in gcc. The array gcc must be of length 0..ub. """ n = len(a) ub = max([a[i].ub for i in range(n)]) constraints = [] for i in range(ub+1): constraints += [count(a,i,gcc[i])] return constraints def inverse(x,y): """ inverse(x,y) Ensures that: x[i] == j #<=> y[j] == i Note: inverse(x,y) is sometimes called assignment(x,y). There is an alternative version: inverse(x) which can be simulated by inverse(x,x) """ n = len(x) assert n == len(y), "x and y must be of equal length" constraints = [] for i in range(n): for j in range(n): constraints += [(x[i] == j) == (y[j] == i)] return constraints def my_cumulative(s, d, r, b): """ Decompositon of cumulative. Inspired by the MiniZinc implementation. The MiniZinc decomposition is discussed in the paper: <NAME>, <NAME>, <NAME>, and <NAME>. 'Why cumulative decomposition is not as bad as it sounds.' Parameters: s: start_times assumption: array of varint d: durations assumption: array of int r: resources assumption: array of int b: resource limit assumption: varint or int """ constraints = [] max_d = max(d) tasks = [i for i in range(len(s)) if r[i] > 0 and d[i] > 0] times_min = min([s[i].lb for i in tasks]) times_max = max([s[i].ub + max_d for i in tasks]) for t in range(times_min, times_max + 1): constraints += [ b >= sum([((s[i] <= t) & (t < s[i] + d[i])) * r[i] for i in tasks])] # Somewhat experimental: # This constraint is needed to contrain the upper limit of b. if not isinstance(b, int): constraints += [b <= sum(r)] return constraints def member_of(x, val): """ member_of(x, val) Ensures that the value `val` is in the array `x`. """ n = len(x) # cc = intvar(0,n) # constraints = [count(x, val, cc), cc > 0] constraints = [sum([x[i] == val for i in range(n)]) > 0] return constraints def regular(x, Q, S, d, q0, F): """ Global constraint regular This is a translation of MiniZinc's regular constraint (defined in lib/zinc/globals.mzn), via the Comet code refered above. All comments are from the MiniZinc code. ''' The sequence of values in array 'x' (which must all be in the range 1..S) is accepted by the DFA of 'Q' states with input 1..S and transition function 'd' (which maps (1..Q, 1..S) -> 0..Q)) and initial state 'q0' (which must be in 1..Q) and accepting states 'F' (which all must be in 1..Q). We reserve state 0 to be an always failing state. ''' x : IntVar array Q : number of states S : input_max d : transition matrix q0: initial state F : accepting states Note: As mentioned above the states must start at 1 since 0 is represents a failed state. Note: Compare with regular_table which use the Table constraints instead of Element constraint in the main loop. """ assert Q > 0, 'regular: "Q" must be greater than zero' assert S > 0, 'regular: "S" must be greater than zero' # d2 is the same as d, except we add one extra transition for # each possible input; each extra transition is from state zero # to state zero. This allows us to continue even if we hit a # non-accepted input. d2 = [] for i in range(Q + 1): row = [] for j in range(S): if i == 0: row.append(0) else: row.append(d[i - 1][j]) d2.append(row) d2_flatten = [d2[i][j] for i in range(Q + 1) for j in range(S)] # If x has index set m..n, then a[m-1] holds the initial state # (q0), and a[i+1] holds the state we're in after processing # x[i]. If a[n] is in F, then we succeed (ie. accept the # string). x_range = list(range(0, len(x))) m = 0 n = len(x) a = [intvar(0, Q + 1) for i in range(m, n + 1)] constraints = [] # Check that the final state is in F constraints += [member_of(F,a[-1])] # First state is q0 constraints += [a[m] == q0] for i in x_range: constraints += [x[i] >= 1] constraints += [x[i] <= S] # Determine a[i+1]: a[i+1] == d2[a[i], x[i]] constraints += [ a[i + 1] == Element(d2_flatten,(a[i]) * S + (x[i] - 1)) ] return constraints def regular_table(x, Q, S, d, q0, F): """ Global constraint regular_table This is a translation of MiniZinc's regular constraint (defined in lib/zinc/globals.mzn), via the Comet code refered above. All comments are from the MiniZinc code. ''' The sequence of values in array 'x' (which must all be in the range 1..S) is accepted by the DFA of 'Q' states with input 1..S and transition function 'd' (which maps (1..Q, 1..S) -> 0..Q)) and initial state 'q0' (which must be in 1..Q) and accepting states 'F' (which all must be in 1..Q). We reserve state 0 to be an always failing state. ''' x : IntVar array Q : number of states S : input_max d : transition matrix q0: initial state F : accepting states Note: As mentioned above the states must start at 1 since 0 is represents a failed state. The difference between this version (regular_table) and regular is that this version use Table constraint instead of Element constraint. """ assert Q > 0, 'regular: "Q" must be greater than zero' assert S > 0, 'regular: "S" must be greater than zero' # d2 is the same as d, except we add one extra transition for # each possible input; each extra transition is from state zero # to state zero. This allows us to continue even if we hit a # non-accepted input. d2 = [] for i in range(Q + 1): row = [] for j in range(S): if i == 0: # This is different from regular(.) row.append((0,j,0)) else: # This is different from regular(.) row.append((i,j, d[i - 1][j])) d2.append(row) d2_flatten = [d2[i][j] for i in range(Q + 1) for j in range(S)] # If x has index set m..n, then a[m-1] holds the initial state # (q0), and a[i+1] holds the state we're in after processing # x[i]. If a[n] is in F, then we succeed (ie. accept the # string). x_range = list(range(0, len(x))) m = 0 n = len(x) a = [intvar(0, Q + 1) for i in range(m, n + 1)] constraints = [] # Check that the final state is in F constraints += [member_of(F,a[-1])] # First state is q0 constraints += [a[m] == q0] x_lb, x_ub = get_min_max_domain(x) for i in x_range: constraints += [x[i] >= 1] constraints += [x[i] <= S] # Determine a[i+1]: a[i+1] == d2[a[i], x[i]] xi1 = intvar(0,x_ub) constraints += [ # These two constraints are different # from regular(.) xi1 == x[i]-1, Table((a[i], xi1, a[i + 1]), d2_flatten) ] return constraints def lex_less(x,y): """ lex_less(x,y) Ensures that the array 'x' is strictly lexicographically less than array 'y'. Compares them from first to last element, regardless of indices This is a port of MiniZinc's definition lex_less_int https://github.com/MiniZinc/libminizinc/blob/master/share/minizinc/std/fzn_lex_less_int.mzn Note that we simplify the calculation of lx and ly since cpmpy has start index 0 (in MiniZinc the start index can be user defined). """ xlen = len(x) ylen = len(y) ux = xlen uy = ylen size = min([ux,uy]) # Do not name variables in global constraints # since then the variables are not unique. # b = boolvar(shape=size+1,name="b") b = boolvar(shape=size+1) constraints = [] constraints += [b[0] == 1 ] for i in range(size): constraints += [b[i] == ((x[i] <= y[i]) & ((x[i] < y[i]) | (b[i+1] == 1)) )] constraints += [b[size] == (ux < uy)] return constraints def lex_greater(x,y): """ lex_greater(x,y) Ensures that the array 'x' is strictly lexicographically greater than array 'y'. Compares them from first to last element, regardless of indices. This constraint is defined by lex_less(y,x) defined above . """ return lex_less(y,x) def lex2(x): """ lex2(x) Ensures that the rows and columns in the matrix `x` are increasing, using lex_less. """ x_t = x.transpose() return [[lex_less(x[i],x[i+1]) for i in range(len(x)-1)], [lex_less(x_t[i],x_t[i+1]) for i in range(len(x_t)-1)]] # # Somewhat general definition of knapsack. # def knapsack(values, weights, n): """ knapsack(values, weights, n) Creates a model for the knapsack problem with the values, weights and limit n. See knapsack.py for usage of this. """ z = intvar(0, 10000,name="z") x = intvar(0,1,shape=len(values),name="x") model = Model( [ z >= 0, z == sum(x*values), sum(x*weights) <= n, ], maximize=z ) return [model, x, z] def my_abs(x,y,d): """ A decomposition of abs() for experimentation. """ constraints = [] b = boolvar() constraints += [b == (x >= y)] constraints += [(b).implies(d == x - y)] constraints += [(~b).implies(d == y - x)] return constraints def my_abs2(x,y): """ A decomposition of abs() for experimentation. """ constraints = [] b = boolvar() d = intvar(0,1000000) constraints += [b == (x >= y)] constraints += [(b).implies(d == x - y)] constraints += [(~b).implies(d == y - x)] return d def prod(x,res): """ prod(x,res) res is the product of the values in x. """ return [reduce(lambda a, b: a * b, x) == res] def prod1(x): """ prod1(x) return the product of the values in x. """ return reduce(lambda a, b: a * b, x) def among(m,x,v): """ among(m,x,v) Requires exactly m variables in x to take one of the values in v. """ return [m == sum([x[i] == j for i in range(len(x)) for j in v])] # # Symmetry breaking # # From # http://en.wikipedia.org/wiki/Fr#C3#A9nicle_standard_form # """ # A magic square is in Frénicle standard form, named for # <NAME>, if the following two conditions apply: # - the element at position [1,1] (top left corner) is the smallest # of the four corner elements; and # - the element at position [1,2] (top edge, second from left) is # smaller than the element in [2,1]. # """ # def frenicle(x,n): constraints = [x[(0,0)] == min([x[0,0], x[0,n-1], x[n-1,0], x[n-1,n-1]])] constraints += [x[0,1] < x[1,0]] return constraints def distribute(card, value, base): """ distribute(card, value, base) Requires that 'card[i]' is the number of occurences of 'value[i]' in 'base'. Note: card, value, and base are assumed to be intvar arrays. """ card_len = len(card) value_len = len(value) assert card_len == value_len, "`card` and `value` must have the same length" base_len = len(base) constraints = [] constraints += [AllDifferent(value)] for i in range(card_len): constraints += [ card[i] == sum([value[i] == base[j] for j in range(base_len)]) ] return constraints def fill_array(x,x_val): """ fill_array(x,x_val) If x_val[i] != None then x[i] == x_val[i]. """ constraints = [] for i in range(len(x)): if x_val[i] != None: constraints += [x[i] == x_val[i]] return constraints def all_different_pairs(a, s): """ all_different_pairs(a, s) all pairs must be different """ return [AllDifferent([p for p in pairs(a,s)])] def increasing_pairs(a, s): """ increasing_pairs(a, s) Ensure that the pairs are in increasing order. """ return [increasing(pairs(a,s))] def decreasing_pairs(a, s): """ decreasing_pairs(a, s) Ensure that the pairs are in decreasing order. """ return [decreasing(pairs(a,s))] def pairs(a, s): """ return the pairs of a in the 'integer representation': a[k,0]*(n-1) + a[k,1] s is the size of max value of n """ n = len(a) return [ a[(k,0)]*(s-1) + a[(k,1)] for k in range(n)] def all_min_dist(min_dist, x, n): """ all_min_dist(min_dist, x, n) Ensures that the differences of all pairs (i !=j) are >= min_dist. """ constraints = [] for i in range(n): for j in range(i): constraints += [abs(x[i]-x[j]) >= min_dist] # Nope! return constraints def all_different_on_intersection(x, y): """ all_different_on_intersection(x, y) Ensure that the values that are common in x and y are distinct (in each array). """ return [count_a_in_b(x,y), count_a_in_b(y,x)] def count_a_in_b(ass,bss): """ count_a_in_b(ass,bss) helper for all_different_on_intersection """ constraints = [] for a in ass: constraints += [sum([a == b for b in bss]) <= 1] return constraints def all_different_modulo(x, m): """ all_different_modulo(x, m) Ensure that all elements in x (modulo m) are distinct """ print("x2:",x) n = len(x) constraints = [] mods = intvar(0,m-1,shape=n) for i in range(n): constraints += [mods[i] == x[i] % m] constraints += [AllDifferent(mods)] return constraints def all_different_cst(xs, cst): """ all_different_cst(xs, cst) Ensure that all elements in xs + cst are distinct """ return [AllDifferent([(x + c) for (x,c) in zip(xs,cst)])] def arith(x, relop, val): """ arith(x, relop, val) Ensure that all elements in x are <relop> val. """ constraints = [] for i in range(len(x)): constraints += [arith_relop(x[i],relop, val)] return constraints def arith_relop(a, t, b): """ arith_relop(a, t, b) This is (arguably) a hack. Represents each function as an integer 0..5. """ return [(t == 0).implies(a < b), (t == 1).implies(a <= b), (t == 2).implies(a == b), (t == 3).implies(a >= b), (t == 4).implies(a > b), (t == 5).implies(a != b) ] # # diffn ported from MiniZinc's fzn_diffn: # def diffn(x,y,dx,dy): """ diffn(x,y,dx,dy) Constrains rectangles i, given by their origins x[i], y[i]) and sizes (dx[i], dy[i]), to be non-overlapping. Zero-width rectangles can still not overlap with any other rectangle. """ n = len(x) constraints = [] for i in range(n): for j in range(i+1,n): constraints += [(x[i] + dx[i] <= x[j]) | (y[i] + dy[i] <= y[j]) | (x[j] + dx[j] <= x[i]) | (y[j] + dy[j] <= y[i]) ] return constraints def nvalue(m, x): """ nvalue(m, x) Requires that there is exactly m distinct values in x (min_val and max_val are the minimum and maximum value in x, respectively) """ n = len(x) min_val = min([x[i].lb for i in range(n)]) max_val = max([x[i].ub for i in range(n)]) return (m == sum([ sum([ x[j] == i for j in range(n)]) > 0 for i in range(min_val, max_val+1)])) # # nvalues(x,op,n) # # Requires that the number of distinct values in the array x is # op n # where # op is either one of # =, <m, =<, >=, > # def nvalues(x, op, n): xlen = len(x) m = intvar(1,xlen) return [nvalue(m,x), arith_relop(m,op,n) ] def clique(g, clique, card): """ clique(g, clique, card) Ensure that the boolean array 'clique' (of Integer Array type) represents a clique in the graph g with the cardinality card. Note: This is kind of backward, but it is the whole thing: If there is a connection between nodes I and J (I != J) then there should be a node from I to J in G. If it's not then both c1 and c2 is not in the clique. """ n = len(g) constraints = [] constraints += [card == sum([clique[i] for i in range(n)])] for (c1,i) in zip(clique, range(n)): for (c2,j) in zip(clique, range(n)): if i != j and g[i][j] == 0: constraints += [(c1 == 0) | (c2 == 0)] return constraints def assignment_model(cost, tasks=None,people=None,print_solution=None,opt="min"): """ assignment_model(cost, rows, cols, tasks=None,people=None,print_solution=None,opt='min'): Fairly general implementation of the assignment problem: Minimize total cost of assign all task to one person given the cost of assigning a person to the tasks. For problems were 'task' and 'people' does not applies, a used-defined method 'print_solution' can be used. For maximization problems, use opt='max'. """ rows = len(cost) cols = len(cost[0]) max_cost = np.sum(np.array(cost)) total_cost = intvar(0,max_cost,name='cost') x = boolvar(shape=(rows,cols),name="x") model = Model( total_cost >= 0, total_cost == np.sum([ x_row*cost_row for (x_row, cost_row) in zip(x, cost)]), # exacly one assignment per row, all rows (tasks) must be assigned. [sum(row) == 1 for row in x], # zero or one assignments per column (people) [sum(col) <= 1 for col in x.transpose()], ) if opt == "max": model.maximize(total_cost) else: model.minimize(total_cost) ss = CPM_ortools(model) if ss.solve(): print("total_cost: ", total_cost.value()) print("x:") print(x.value()) print() if tasks == None and people == None: for i in range(rows): print("Task", i, end="") for j in range(cols): if x[i][j].value() == 1: print(" is done by ", j) print() else: if print_solution != None: print_solution(x.value(),tasks,people) else: for i in range(rows): print("Task", tasks[i], end="") for j in range(cols): if x[i][j].value() == 1: print(" is done by", people[j]) print() def latin_square(x): """ latin_square(x) The matrix x is a Latin square. """ return [[AllDifferent(row) for row in x], [AllDifferent(col) for col in x.transpose()]] # # reverses an array from -> to # def reverse(xfrom, xto): """ reverse(xfrom, xto) xto is reverse of xfrom. """ n = len(xfrom) return [xto[i] == xfrom[n-i-1] for i in range(n)] def print_model_and_variables(model): """ print_model_and_variables(model) Prints the following: - the unflattened model (via print(model)) - the flattened model - the variables and the domains in the flattened model (From <NAME> when he debugged one of my models. Thanks, Tias!) """ print("Model:") print(model) print("\nFlattened model and variables:") mf = flatten_model(model) print_variables(mf) print(mf) print() def argmax(x,p): """ argmax(x,p) Ensure that p is the argmax, i.e. the position of the maximum value in x. Note: If there are many maximum values then argmax(x,p) will find all these values. """ n = len(x) constraints = [] for i in range(n): constraints += [(p != i).implies(x[p] > x[i]) ] return constraints def argmin(x,p): """ argmin(x,p) Ensure that p is the argmin, i.e. the position of the minimum value in x. Note: If there are many minimum values then argmin(x,p) will find all these values. """ n = len(x) constraints = [] for i in range(n): constraints += [(p != i).implies(x[p] < x[i]) ] return constraints def argmin_except_c(x,p,c): """ argmin_except_c(x,p,c) Ensure that p is the argmin, i.e. the position of the minimum value in x, but ignores any value of c. Note: - If there are many minimum values then argmin_except_c(x,p,c) will find all these values. - We assume that there are at least one value != c. """ n = len(x) constraints = [x[p] != c] for i in range(n): constraints += [(p != i).implies((x[i] == c) | (x[p] < x[i])) ] return constraints def argmin_except_0(x,p): """ argmin_except_0(x,p) Ensure that p is the argmin, i.e. the position of the minimum value in x, but ignores any value of 0. Note: - If there are many minimum values then argmin_except_0(x,p) will find all these values. - We assume that there are at least one value > 0. """ return argmin_except_c(x,p,0) def argmax_except_c(x,p,c): """ argmax_except_c(x,p,c) Ensure that p is the argmax, i.e. the position of the minimum value in x, but ignores any value of c. Note: - If there are many maximum values then argmax_except_c(x,p,c) will find all these values. - We assume that there are at least one value != c. """ n = len(x) constraints = [x[p] != c] for i in range(n): constraints += [(p != i).implies((x[i] == c) | (x[p] > x[i])) ] return constraints def permutation3(x,p,y): """ permutation(x,p,y) Ensure that the array y is a permutation of array x with the permutation operations in array p. Example: x = [2,0,1,3] p = [2,1,3,0] What is y? y[0] = x[p[0]] = x[2] = 1 y[1] = x[p[1]] = x[1] = 0 y[2] = x[p[2]] = x[3] = 3 y[3] = x[p[3]] = x[0] = 2 Thus: y = [1,0,3,2] Assumptions: - We assume that x, p, and y has distinct values, i.e. constrained by AllDifferent. We check that: - p has the domain of 0..len(p)-1 """ n = len(x) assert n == len(p) and n == len(y), f"Length of x, p, and y must be the same" p_lb, p_ub = get_min_max_domain(p) assert p_lb == 0 and p_ub == n-1, "Domain value of p must be 0..n-1" constraints = [] for i in range(n): constraints += [y[i] == x[p[i]] ] return constraints def permutation(x,y): """ permutation(x,y) Ensure that the array y is a permutation of array x, connected with some unknown permutation. permutation3(x,p,y) is used (which see). """ n = len(x) p = intvar(0,n-1,shape=n) return permutation3(x,p,y) def get_min_max_domain(x): """ get_min_max_domain(x) Return the minimum and maximum domain of an array x. """ n = len(x) x_lb = min([x[i].lb for i in range(n)]) x_ub = max([x[i].ub for i in range(n)]) return [x_lb,x_ub] def chain(op,x): """ chain(op,x) Ensure that all elements pairwise satisfies the binary operator op. Note: In order for this to work the operator must be from the operator library, e.g. operator.lt, operator.ne, e.g: chain(operator.lt,x) Note: Many of the binary operator.* has a definition already, e.g. (from cpmpy_hakank.py): increasing, increasing_strict, decreasing, descreasing_strict and AllDifferent, AllEqual """ n = len(x) constraints = [] for i in range(1,n): constraints += [ op(x[i-1], x[i]) ] return constraints def minimum_except_c(x,min_val,c,allow_all_c=False): """ minimum_except_c(x,min_val,c,allow_all_c) Ensures that min_val is the minimum value in array x, ignoring the value of c. The flag allow_all_c: - If True: allow an array with only c values: min_val is thus c. - If False: assume that there is at least one non c value. min_val must be != c. """ n = len(x) ix = intvar(0,n-1) # Ensure that min_val is in x constraints = [min_val == x[ix]] for j in range(n): constraints += [(min_val <= x[j]) | (x[j] == 0)] if allow_all_c: max_val = max(x) # To be able to handle the case when there is only 0s constraints += [(max_val == c)==(min_val == c)] else: constraints += [min_val != c] return constraints def minimum_except_0(x,min_val,allow_all_0s=False): """ minimum_except_0(x,min_val,allow_all_0s) Ensures that min_val is the minimum value in array x, ignoring 0s. The flag allow_all_0s: - If True: allow an array with only 0 values: min_val is thus 0. - If False: assume that there is at least one non 0 value. min_val must be != 0. """ return minimum_except_c(x,min_val,0,False) def value_precede(s,t,x): """ value_precede(s,t, x) Ensures that the (first occurrence) of the value s precedes the (first occurrence) of the value t in array x if both s and t are in x. This means that for t to occur in x then s has to precede t. This definition is inspired by MiniZinc's definition value_precede.mzn """ n = len(x) bs = boolvar(shape=n+1) constraints = [] for i in range(n): xis = boolvar() constraints += [(xis ==1)==(x[i] == s), (xis ==1).implies(bs[i+1]==1), (xis == 0).implies(bs[i]==bs[i+1]), (bs[i] == 0).implies(x[i] != t) ] constraints += [bs[0] == 0] return constraints def value_precede_chain(c,x): """ value_precede_chain(c, x) Ensures that the value c[i-1] precedes the value c[i] is the array x if both c[i-1] and c[i] are in x. See value_precede(). """ n=len(c) constraints = [] for i in range(1,n): constraints += [value_precede(c[i-1],c[i],x)] return constraints def sliding_sum(low, up, seq, x): """ sliding_sum(low, up, seq, x) Ensure that all sequences of length seq in x sums to between low and up. """ vlen = len(x) constraints = [] for i in range(vlen-seq+1): s = intvar(low,up) constraints += [s == sum([x[j] for j in range(i,i+seq)])] return constraints def no_overlap(s1, d1, s2, d2): """ no_overlap(s1, d1, s2, d2) Ensures that task 1 (start time s1 with duration d1) does not overlap with task2 (start time s2 with duration d2) """ return [(s1 + d1 <= s2) | (s2 + d2 <= s1)] def is_prime(n): """ is_prime(n) Returns True if the number n is a prime number, otherwise return False. """ if n < 2: return False if n == 2: return True if not n & 1: return False for i in range(3, 1+int(math.sqrt(n)), 2): if n % i == 0: return False return True def primes(limit): """ primes(limit) Returns the prime numbers below limit. """ primes = [2] i = 3 for i in range(3, limit, 2): if is_prime(i): primes.append(i) return primes def all_different_reif(x,b): """ all_different_reif(x,b) b == 1 if all values in x are different, else 0. """ n = len(x) m = intvar(1,n) return [nvalue(m,x), (m==n)==(b==1) ] def all_different_reif_m(model,x): """ all_different_reif(x,b) b == 1 if all values in x are different, else 0. This version returns b. Note that the model is a parameter so it must be created first: x = intvar(...) b = boolvar() model = Model(...) model += [b == all_different_reif_m(model,x)] """ n = len(x) m = intvar(1,n) b = boolvar() model += [nvalue(m,x), (m==n)==(b==1)] return b def lex_chain_less(x): """ lex_chain_less(x) Require that all the rows are lexicographically sorted (but not the columns as in lex2). See: http://www.emn.fr/z-info/sdemasse/gccat/Clex_chain_less.html """ n = len(x) m = len(x[0]) constraints = [] for i in range(1,n): constraints += [lex_less([x[i-1,j] for j in range(m)], [x[i,j] for j in range(m)])] return constraints def soft_alldifferent(x,p): """ soft_alldifferent(x,p) p is the number of pairs that have the same value. See http://www.emn.fr/z-info/sdemasse/gccat/Csoft_alldifferent_ctr.html """ n = len(x) return [p == sum([x[i] == x[j] for i in range(n) for j in range(i+1,n)])] def among_seq(low,high,seqlen,x,v): """ among_seq(low, high, seqlen, x, v) Ensures that all sequences of length SeqLen in the list X contains at least Low and atmost High occurrences of V. """ n = len(x) size = n-seqlen+1 constraints = [] for i in range(size): seq = [x[j] for j in range(i,i+seqlen)] constraints += [among_range(low, high, seq, v)] return constraints def among_range(low, high,x,v): """ among_range(low, high, x, v) Ensures that the list x contains at least low and atmost high occurrences of v. Used by among_seq. """ xs = intvar(0,len(x)) vlen = len(v) return [ xs == sum([sum([el == v[i] for i in range(vlen)])>0 for el in x]), xs >= low, xs <= high] def sequence(x,seq_length, lbound,ubound): """ sequence(,length,lbound,ubound) Ensures that all sums of every subsequence of length length in array x is between lbound and ubound """ n = len(x) xs = intvar(lbound.lb,ubound.ub) constraints = [] for i in range(n-seq_length+1): constraints += [xs == sum([x[j] for j in range(i,i+seq_length)]), xs >= lbound, xs <= ubound ] return constraints
[ "math.sqrt", "itertools.combinations", "numpy.array", "functools.reduce", "cpmpy.transformations.flatten_model.flatten_model", "cpmpy.transformations.get_variables.print_variables" ]
[((29382, 29411), 'functools.reduce', 'reduce', (['(lambda a, b: a * b)', 'x'], {}), '(lambda a, b: a * b, x)\n', (29388, 29411), False, 'from functools import reduce\n'), ((38373, 38393), 'cpmpy.transformations.flatten_model.flatten_model', 'flatten_model', (['model'], {}), '(model)\n', (38386, 38393), False, 'from cpmpy.transformations.flatten_model import flatten_constraint, flatten_model\n'), ((38396, 38415), 'cpmpy.transformations.get_variables.print_variables', 'print_variables', (['mf'], {}), '(mf)\n', (38411, 38415), False, 'from cpmpy.transformations.get_variables import print_variables\n'), ((1950, 1981), 'itertools.combinations', 'itertools.combinations', (['args', '(2)'], {}), '(args, 2)\n', (1972, 1981), False, 'import itertools\n'), ((36209, 36223), 'numpy.array', 'np.array', (['cost'], {}), '(cost)\n', (36217, 36223), True, 'import numpy as np\n'), ((29255, 29284), 'functools.reduce', 'reduce', (['(lambda a, b: a * b)', 'x'], {}), '(lambda a, b: a * b, x)\n', (29261, 29284), False, 'from functools import reduce\n'), ((45503, 45515), 'math.sqrt', 'math.sqrt', (['n'], {}), '(n)\n', (45512, 45515), False, 'import sys, math, re\n')]
# -------------- # Importing header files import numpy as np import warnings warnings.filterwarnings('ignore') #New record new_record=[[50, 9, 4, 1, 0, 0, 40, 0]] #Reading file data = np.genfromtxt(path, delimiter=",", skip_header=1) print(data) #Code starts here census = np.concatenate((new_record,data),axis=0) print(census) age = np.array(census[0:,0]) print(age) max_age = np.max(age) min_age = np.min(age) age_mean = age.mean() age_std = np.std(age) print(max_age,min_age,age_mean,age_std, sep='\n') race = np.array(census[0:,2]) race_0=census[census[:,2]==0] race_1=census[census[:,2]==1] race_2=census[census[:,2]==2] race_3=census[census[:,2]==3] race_4=census[census[:,2]==4] len_0=len(race_0) len_1=len(race_1) len_2=len(race_2) len_3=len(race_3) len_4=len(race_4) print(len_0,len_1,len_2,len_3,len_4) minority_race = min(len_0,len_1,len_2,len_3,len_4) print(minority_race) senior_citizens =census[census[:,0]>60] #working_hours_sum = 0 working_hours = np.array(senior_citizens[0:,6]) working_hours_sum= np.sum(working_hours) #for i in range(0,len(senior_citizens)): # working_hours_sum = working_hours_sum + senior_citizens[i][6] print(working_hours_sum) print(len(senior_citizens)) avg_working_hours = np.mean(working_hours) print(avg_working_hours) high=census[census[:,1]>10] low=census[census[:,1]<=10] avg_pay_high = np.mean(np.array(high[0:,7])) avg_pay_low = np.mean(np.array(low[0:,7])) if(avg_pay_high>avg_pay_low): print("yaa good edu mean good pay") else: print("no good edu don mean good pay")
[ "numpy.sum", "warnings.filterwarnings", "numpy.std", "numpy.genfromtxt", "numpy.max", "numpy.min", "numpy.array", "numpy.mean", "numpy.concatenate" ]
[((82, 115), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (105, 115), False, 'import warnings\n'), ((203, 252), 'numpy.genfromtxt', 'np.genfromtxt', (['path'], {'delimiter': '""","""', 'skip_header': '(1)'}), "(path, delimiter=',', skip_header=1)\n", (216, 252), True, 'import numpy as np\n'), ((295, 337), 'numpy.concatenate', 'np.concatenate', (['(new_record, data)'], {'axis': '(0)'}), '((new_record, data), axis=0)\n', (309, 337), True, 'import numpy as np\n'), ((358, 381), 'numpy.array', 'np.array', (['census[0:, 0]'], {}), '(census[0:, 0])\n', (366, 381), True, 'import numpy as np\n'), ((404, 415), 'numpy.max', 'np.max', (['age'], {}), '(age)\n', (410, 415), True, 'import numpy as np\n'), ((427, 438), 'numpy.min', 'np.min', (['age'], {}), '(age)\n', (433, 438), True, 'import numpy as np\n'), ((473, 484), 'numpy.std', 'np.std', (['age'], {}), '(age)\n', (479, 484), True, 'import numpy as np\n'), ((544, 567), 'numpy.array', 'np.array', (['census[0:, 2]'], {}), '(census[0:, 2])\n', (552, 567), True, 'import numpy as np\n'), ((1023, 1055), 'numpy.array', 'np.array', (['senior_citizens[0:, 6]'], {}), '(senior_citizens[0:, 6])\n', (1031, 1055), True, 'import numpy as np\n'), ((1075, 1096), 'numpy.sum', 'np.sum', (['working_hours'], {}), '(working_hours)\n', (1081, 1096), True, 'import numpy as np\n'), ((1287, 1309), 'numpy.mean', 'np.mean', (['working_hours'], {}), '(working_hours)\n', (1294, 1309), True, 'import numpy as np\n'), ((1422, 1443), 'numpy.array', 'np.array', (['high[0:, 7]'], {}), '(high[0:, 7])\n', (1430, 1443), True, 'import numpy as np\n'), ((1467, 1487), 'numpy.array', 'np.array', (['low[0:, 7]'], {}), '(low[0:, 7])\n', (1475, 1487), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- from setuptools import setup, find_packages import sys try: from Cython.Distutils import build_ext except ImportError: def build_ext(*args, **kwargs): from Cython.Distutils import build_ext return build_ext(*args, **kwargs) class lazy_extlist(list): def __init__(self, callback): self._list, self.callback = None, callback def c_list(self): if self._list is None: self._list = self.callback() return self._list def __iter__(self): for e in self.c_list(): yield e def __getitem__(self, ii): return self.c_list()[ii] def __len__(self): return len(self.c_list()) def extensions(): __builtins__.__NUMPY_SETUP__ = False from Cython.Distutils import Extension import numpy as np extra_compile_args = ["-O3"] extra_link_args = [] if sys.platform == "darwin": extra_compile_args.append("-mmacosx-version-min=10.9") extra_compile_args.append('-stdlib=libc++') extra_link_args.append('-stdlib=libc++') return [Extension( 'pydtw.dtw', ["pydtw/dtw.pyx"], cython_directives={'language_level': sys.version_info[0]}, extra_compile_args=extra_compile_args, extra_link_args=extra_link_args, include_dirs=[np.get_include()], language="c++") ] setup( name="pydtw", description='Fast Implementation of Dynamic Time Warping', version="2.0.3", long_description=open('README.rst').read(), packages=find_packages(), setup_requires=["numpy", 'cython'], ext_modules=lazy_extlist(extensions), cmdclass={'build_ext': build_ext}, author='<NAME>', author_email="<EMAIL>", url='https://github.com/shunsukeaihara/pydtw', license="MIT License", include_package_data=True, test_suite='nose.collector', tests_require=['nose', 'numpy', 'cython'], classifiers=[ "Programming Language :: Python", "Programming Language :: Python :: 3", "Programming Language :: Python :: 2", ] )
[ "Cython.Distutils.build_ext", "numpy.get_include", "setuptools.find_packages" ]
[((1559, 1574), 'setuptools.find_packages', 'find_packages', ([], {}), '()\n', (1572, 1574), False, 'from setuptools import setup, find_packages\n'), ((247, 273), 'Cython.Distutils.build_ext', 'build_ext', (['*args'], {}), '(*args, **kwargs)\n', (256, 273), False, 'from Cython.Distutils import build_ext\n'), ((1338, 1354), 'numpy.get_include', 'np.get_include', ([], {}), '()\n', (1352, 1354), True, 'import numpy as np\n')]
import openpnm as op import numpy as np import matplotlib.pyplot as plt pn = op.network.Cubic(shape=[10, 10, 10], spacing=1e-4) geo = op.geometry.SpheresAndCylinders(network=pn, pores=pn.Ps, throats=pn.Ts) air = op.phases.Air(network=pn, name='air') water = op.phases.Water(network=pn, name='h2o') phys_air = op.physics.Standard(network=pn, phase=air, geometry=geo) phys_water = op.physics.Standard(network=pn, phase=water, geometry=geo) ip = op.algorithms.InvasionPercolation(network=pn, phase=water) ip.set_inlets(pores=pn.pores('left')) ip.run() Krel = [] for s in np.linspace(0, pn.Nt, 10): inv = ip['throat.invasion_sequence'] < s phys_air['throat.hydraulic_conductance'][inv] *= 1e-5 perm_a = op.algorithms.StokesFlow(network=pn, phase=air) perm_a.set_value_BC(pores=pn.pores('top'), values=1) perm_a.set_value_BC(pores=pn.pores('bottom'), values=0) perm_a.run() Krel.append(perm_a.rate(pores=pn.pores('top'))) plt.plot(np.linspace(0, pn.Nt, 10)/pn.Nt, Krel) # Export to Statoil format. # Add reservoir pores on each end op.io.Statoil.add_reservoir_pore(network=pn, pores=pn.pores('left'), offset=0.25) op.io.Statoil.add_reservoir_pore(network=pn, pores=pn.pores('right'), offset=0.25) op.io.Statoil.export_data(network=pn, shape=[10, 10, 10])
[ "openpnm.algorithms.InvasionPercolation", "openpnm.phases.Air", "openpnm.network.Cubic", "openpnm.algorithms.StokesFlow", "openpnm.geometry.SpheresAndCylinders", "openpnm.physics.Standard", "openpnm.phases.Water", "numpy.linspace", "openpnm.io.Statoil.export_data" ]
[((78, 130), 'openpnm.network.Cubic', 'op.network.Cubic', ([], {'shape': '[10, 10, 10]', 'spacing': '(0.0001)'}), '(shape=[10, 10, 10], spacing=0.0001)\n', (94, 130), True, 'import openpnm as op\n'), ((135, 206), 'openpnm.geometry.SpheresAndCylinders', 'op.geometry.SpheresAndCylinders', ([], {'network': 'pn', 'pores': 'pn.Ps', 'throats': 'pn.Ts'}), '(network=pn, pores=pn.Ps, throats=pn.Ts)\n', (166, 206), True, 'import openpnm as op\n'), ((213, 250), 'openpnm.phases.Air', 'op.phases.Air', ([], {'network': 'pn', 'name': '"""air"""'}), "(network=pn, name='air')\n", (226, 250), True, 'import openpnm as op\n'), ((259, 298), 'openpnm.phases.Water', 'op.phases.Water', ([], {'network': 'pn', 'name': '"""h2o"""'}), "(network=pn, name='h2o')\n", (274, 298), True, 'import openpnm as op\n'), ((310, 366), 'openpnm.physics.Standard', 'op.physics.Standard', ([], {'network': 'pn', 'phase': 'air', 'geometry': 'geo'}), '(network=pn, phase=air, geometry=geo)\n', (329, 366), True, 'import openpnm as op\n'), ((380, 438), 'openpnm.physics.Standard', 'op.physics.Standard', ([], {'network': 'pn', 'phase': 'water', 'geometry': 'geo'}), '(network=pn, phase=water, geometry=geo)\n', (399, 438), True, 'import openpnm as op\n'), ((446, 504), 'openpnm.algorithms.InvasionPercolation', 'op.algorithms.InvasionPercolation', ([], {'network': 'pn', 'phase': 'water'}), '(network=pn, phase=water)\n', (479, 504), True, 'import openpnm as op\n'), ((573, 598), 'numpy.linspace', 'np.linspace', (['(0)', 'pn.Nt', '(10)'], {}), '(0, pn.Nt, 10)\n', (584, 598), True, 'import numpy as np\n'), ((1358, 1415), 'openpnm.io.Statoil.export_data', 'op.io.Statoil.export_data', ([], {'network': 'pn', 'shape': '[10, 10, 10]'}), '(network=pn, shape=[10, 10, 10])\n', (1383, 1415), True, 'import openpnm as op\n'), ((716, 763), 'openpnm.algorithms.StokesFlow', 'op.algorithms.StokesFlow', ([], {'network': 'pn', 'phase': 'air'}), '(network=pn, phase=air)\n', (740, 763), True, 'import openpnm as op\n'), ((959, 984), 'numpy.linspace', 'np.linspace', (['(0)', 'pn.Nt', '(10)'], {}), '(0, pn.Nt, 10)\n', (970, 984), True, 'import numpy as np\n')]
import torch import numpy as np from torchvision import models from utils.misc import * from utils.process_fp import process_inputs_fp def compute_features(tg_model, free_model, tg_feature_model, is_start_iteration, evalloader, num_samples, num_features, device=None): if device is None: device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") tg_feature_model.eval() tg_model.eval() if free_model is not None: free_model.eval() features = np.zeros([num_samples, num_features]) start_idx = 0 with torch.no_grad(): for inputs, targets in evalloader: inputs = inputs.to(device) if is_start_iteration: the_feature = tg_feature_model(inputs) else: the_feature = process_inputs_fp(tg_model, free_model, inputs, feature_mode=True) features[start_idx:start_idx+inputs.shape[0], :] = np.squeeze(the_feature.cpu().numpy()) start_idx = start_idx+inputs.shape[0] assert(start_idx==num_samples) return features
[ "utils.process_fp.process_inputs_fp", "torch.no_grad", "numpy.zeros", "torch.cuda.is_available" ]
[((493, 530), 'numpy.zeros', 'np.zeros', (['[num_samples, num_features]'], {}), '([num_samples, num_features])\n', (501, 530), True, 'import numpy as np\n'), ((558, 573), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (571, 573), False, 'import torch\n'), ((335, 360), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (358, 360), False, 'import torch\n'), ((795, 861), 'utils.process_fp.process_inputs_fp', 'process_inputs_fp', (['tg_model', 'free_model', 'inputs'], {'feature_mode': '(True)'}), '(tg_model, free_model, inputs, feature_mode=True)\n', (812, 861), False, 'from utils.process_fp import process_inputs_fp\n')]
"Unit tests for Constraint, MonomialEquality and SignomialInequality" import unittest import numpy as np from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable from gpkit.nomials import SignomialInequality, PosynomialInequality from gpkit.nomials import MonomialEquality from gpkit import Model, ConstraintSet from gpkit.constraints.costed import CostedConstraintSet from gpkit.constraints.tight import Tight from gpkit.constraints.loose import Loose from gpkit.tests.helpers import run_tests from gpkit.exceptions import (InvalidGPConstraint, PrimalInfeasible, DimensionalityError) from gpkit.constraints.relax import (ConstraintsRelaxed, ConstantsRelaxed, ConstraintsRelaxedEqually) from gpkit.constraints.bounded import Bounded from gpkit.globals import NamedVariables import gpkit class TestConstraint(unittest.TestCase): "Tests for Constraint class" def test_uninited_element(self): x = Variable("x") class SelfPass(Model): "A model which contains itself!" def setup(self): ConstraintSet([self, x <= 1]) self.assertRaises(ValueError, SelfPass) def test_bad_elements(self): x = Variable("x") with self.assertRaises(ValueError): _ = Model(x, [x == "A"]) with self.assertRaises(ValueError): _ = Model(x, [x >= 1, x == "A"]) with self.assertRaises(ValueError): _ = Model(x, [x >= 1, x == "A", x >= 1, ]) with self.assertRaises(ValueError): _ = Model(x, [x == "A", x >= 1]) v = VectorVariable(2, "v") with self.assertRaises(ValueError): _ = Model(x, [v == "A"]) with self.assertRaises(TypeError): _ = Model(x, [v <= ["A", "B"]]) with self.assertRaises(TypeError): _ = Model(x, [v >= ["A", "B"]]) def test_evalfn(self): x = Variable("x") x2 = Variable("x^2", evalfn=lambda solv: solv[x]**2) m = Model(x, [x >= 2]) m.unique_varkeys = set([x2.key]) sol = m.solve(verbosity=0) self.assertAlmostEqual(sol(x2), sol(x)**2) def test_relax_list(self): x = Variable("x") x_max = Variable("x_max", 1) x_min = Variable("x_min", 2) constraints = [x_min <= x, x <= x_max] ConstraintsRelaxed(constraints) ConstantsRelaxed(constraints) ConstraintsRelaxedEqually(constraints) def test_relax_linked(self): x = Variable("x") x_max = Variable("x_max", 1) x_min = Variable("x_min", lambda c: 2*c[x_max]) zero = Variable("zero", lambda c: 0*c[x_max]) constraints = ConstraintSet([x_min + zero <= x, x + zero <= x_max]) _ = ConstantsRelaxed(constraints) NamedVariables.reset_modelnumbers() include_min = ConstantsRelaxed(constraints, include_only=["x_min"]) NamedVariables.reset_modelnumbers() exclude_max = ConstantsRelaxed(constraints, exclude=["x_max"]) self.assertEqual(str(include_min), str(exclude_max)) def test_equality_relaxation(self): x = Variable("x") m = Model(x, [x == 3, x == 4]) rc = ConstraintsRelaxed(m) m2 = Model(rc.relaxvars.prod() * x**0.01, rc) self.assertAlmostEqual(m2.solve(verbosity=0)(x), 3, places=3) def test_constraintget(self): x = Variable("x") x_ = Variable("x", lineage=[("_", 0)]) xv = VectorVariable(2, "x") xv_ = VectorVariable(2, "x", lineage=[("_", 0)]) self.assertEqual(Model(x, [x >= 1])["x"], x) with self.assertRaises(ValueError): _ = Model(x, [x >= 1, x_ >= 1])["x"] with self.assertRaises(ValueError): _ = Model(x, [x >= 1, xv >= 1])["x"] self.assertTrue(all(Model(xv.prod(), [xv >= 1])["x"] == xv)) with self.assertRaises(ValueError): _ = Model(xv.prod(), [xv >= 1, xv_ >= 1])["x"] with self.assertRaises(ValueError): _ = Model(xv.prod(), [xv >= 1, x_ >= 1])["x"] def test_additive_scalar(self): "Make sure additive scalars simplify properly" x = Variable('x') c1 = 1 >= 10*x c2 = 1 >= 5*x + 0.5 self.assertEqual(type(c1), PosynomialInequality) self.assertEqual(type(c2), PosynomialInequality) c1hmap, = c1.as_hmapslt1({}) c2hmap, = c2.as_hmapslt1({}) self.assertEqual(c1hmap, c2hmap) def test_additive_scalar_gt1(self): "1 can't be greater than (1 + something positive)" x = Variable('x') def constr(): "method that should raise a ValueError" return 1 >= 5*x + 1.1 self.assertRaises(PrimalInfeasible, constr) def test_init(self): "Test Constraint __init__" x = Variable('x') y = Variable('y') c = PosynomialInequality(x, ">=", y**2) self.assertEqual(c.as_hmapslt1({}), [(y**2/x).hmap]) self.assertEqual(c.left, x) self.assertEqual(c.right, y**2) c = PosynomialInequality(x, "<=", y**2) self.assertEqual(c.as_hmapslt1({}), [(x/y**2).hmap]) self.assertEqual(c.left, x) self.assertEqual(c.right, y**2) self.assertEqual(type((1 >= x).latex()), str) def test_oper_overload(self): "Test Constraint initialization by operator overloading" x = Variable('x') y = Variable('y') c = (y >= 1 + x**2) self.assertEqual(c.as_hmapslt1({}), [(1/y + x**2/y).hmap]) self.assertEqual(c.left, y) self.assertEqual(c.right, 1 + x**2) # same constraint, switched operator direction c2 = (1 + x**2 <= y) # same as c self.assertEqual(c2.as_hmapslt1({}), c.as_hmapslt1({})) def test_sub_tol(self): " Test PosyIneq feasibility tolerance under substitutions" x = Variable('x') y = Variable('y') z = Variable('z') PosynomialInequality.feastol = 1e-5 m = Model(z, [x == z, x >= y], {x: 1, y: 1.0001}) self.assertRaises(PrimalInfeasible, m.solve, verbosity=0) PosynomialInequality.feastol = 1e-3 self.assertEqual(m.substitutions('x'), m.solve(verbosity=0)('x')) class TestCostedConstraint(unittest.TestCase): "Tests for Costed Constraint class" def test_vector_cost(self): x = VectorVariable(2, "x") self.assertRaises(ValueError, CostedConstraintSet, x, []) _ = CostedConstraintSet(np.array(x[0]), []) class TestMonomialEquality(unittest.TestCase): "Test monomial equality constraint class" def test_init(self): "Test initialization via both operator overloading and __init__" x = Variable('x') y = Variable('y') mono = y**2/x # operator overloading mec = (x == y**2) # __init__ mec2 = MonomialEquality(x, y**2) self.assertTrue(mono.hmap in mec.as_hmapslt1({})) self.assertTrue(mono.hmap in mec2.as_hmapslt1({})) x = Variable("x", "ft") y = Variable("y") if gpkit.units: self.assertRaises(DimensionalityError, MonomialEquality, x, y) self.assertRaises(DimensionalityError, MonomialEquality, y, x) def test_vector(self): "Monomial Equalities with VectorVariables" x = VectorVariable(3, "x") self.assertFalse(x == 3) self.assertTrue(x == x) # pylint: disable=comparison-with-itself def test_inheritance(self): "Make sure MonomialEquality inherits from the right things" F = Variable('F') m = Variable('m') a = Variable('a') mec = (F == m*a) self.assertTrue(isinstance(mec, MonomialEquality)) def test_non_monomial(self): "Try to initialize a MonomialEquality with non-monomial args" x = Variable('x') y = Variable('y') def constr(): "method that should raise a TypeError" MonomialEquality(x*y, x+y) self.assertRaises(TypeError, constr) def test_str(self): "Test that MonomialEquality.__str__ returns a string" x = Variable('x') y = Variable('y') mec = (x == y) self.assertEqual(type(mec.str_without()), str) def test_united_dimensionless(self): "Check dimensionless unit-ed variables work" x = Variable('x') y = Variable('y', 'hr/day') c = MonomialEquality(x, y) self.assertTrue(isinstance(c, MonomialEquality)) class TestSignomialInequality(unittest.TestCase): "Test Signomial constraints" def test_becomes_posy_sensitivities(self): # pylint: disable=invalid-name # model from #1165 ujet = Variable("ujet") PK = Variable("PK") Dp = Variable("Dp", 0.662) fBLI = Variable("fBLI", 0.4) fsurf = Variable("fsurf", 0.836) mdot = Variable("mdot", 1/0.7376) with SignomialsEnabled(): m = Model(PK, [mdot*ujet + fBLI*Dp >= 1, PK >= 0.5*mdot*ujet*(2 + ujet) + fBLI*fsurf*Dp]) var_senss = m.solve(verbosity=0)["sensitivities"]["variables"] self.assertAlmostEqual(var_senss[Dp], -0.16, 2) self.assertAlmostEqual(var_senss[fBLI], -0.16, 2) self.assertAlmostEqual(var_senss[fsurf], 0.19, 2) self.assertAlmostEqual(var_senss[mdot], -0.17, 2) # Linked variable Dp = Variable("Dp", 0.662) mDp = Variable("-Dp", lambda c: -c[Dp]) fBLI = Variable("fBLI", 0.4) fsurf = Variable("fsurf", 0.836) mdot = Variable("mdot", 1/0.7376) m = Model(PK, [mdot*ujet >= 1 + fBLI*mDp, PK >= 0.5*mdot*ujet*(2 + ujet) + fBLI*fsurf*Dp]) var_senss = m.solve(verbosity=0)["sensitivities"]["variables"] self.assertAlmostEqual(var_senss[Dp], -0.16, 2) self.assertAlmostEqual(var_senss[fBLI], -0.16, 2) self.assertAlmostEqual(var_senss[fsurf], 0.19, 2) self.assertAlmostEqual(var_senss[mdot], -0.17, 2) # fixed negative variable Dp = Variable("Dp", 0.662) mDp = Variable("-Dp", -0.662) fBLI = Variable("fBLI", 0.4) fsurf = Variable("fsurf", 0.836) mdot = Variable("mdot", 1/0.7376) m = Model(PK, [mdot*ujet >= 1 + fBLI*mDp, PK >= 0.5*mdot*ujet*(2 + ujet) + fBLI*fsurf*Dp]) var_senss = m.solve(verbosity=0)["sensitivities"]["variables"] self.assertAlmostEqual(var_senss[Dp] + var_senss[mDp], -0.16, 2) self.assertAlmostEqual(var_senss[fBLI], -0.16, 2) self.assertAlmostEqual(var_senss[fsurf], 0.19, 2) self.assertAlmostEqual(var_senss[mdot], -0.17, 2) def test_init(self): "Test initialization and types" D = Variable('D', units="N") x1, x2, x3 = (Variable("x_%s" % i, units="N") for i in range(3)) with self.assertRaises(TypeError): sc = (D >= x1 + x2 - x3) with SignomialsEnabled(): sc = (D >= x1 + x2 - x3) self.assertTrue(isinstance(sc, SignomialInequality)) self.assertFalse(isinstance(sc, Posynomial)) def test_posyslt1(self): x = Variable("x") y = Variable("y") with SignomialsEnabled(): sc = (x + y >= x*y) # make sure that the error type doesn't change on our users with self.assertRaises(InvalidGPConstraint): _ = sc.as_hmapslt1({}) class TestLoose(unittest.TestCase): "Test loose constraint set" def test_raiseerror(self): x = Variable('x') x_min = Variable('x_{min}', 2) m = Model(x, [Loose([x >= x_min]), x >= 1]) Loose.raiseerror = True self.assertRaises(RuntimeWarning, m.solve, verbosity=0) Loose.raiseerror = False def test_posyconstr_in_gp(self): "Tests loose constraint set with solve()" x = Variable('x') x_min = Variable('x_{min}', 2) m = Model(x, [Loose([x >= x_min]), x >= 1]) sol = m.solve(verbosity=0) warndata = sol["warnings"]["Unexpectedly Tight Constraints"][0][1] self.assertIs(warndata[-1], m[0][0]) self.assertAlmostEqual(warndata[0], +1, 3) m.substitutions[x_min] = 0.5 self.assertAlmostEqual(m.solve(verbosity=0)["cost"], 1) def test_posyconstr_in_sp(self): x = Variable('x') y = Variable('y') x_min = Variable('x_min', 1) y_min = Variable('y_min', 2) with SignomialsEnabled(): sig_constraint = (x + y >= 3.5) m = Model(x*y, [Loose([x >= y]), x >= x_min, y >= y_min, sig_constraint]) sol = m.localsolve(verbosity=0) warndata = sol["warnings"]["Unexpectedly Tight Constraints"][0][1] self.assertIs(warndata[-1], m[0][0]) self.assertAlmostEqual(warndata[0], +1, 3) m.substitutions[x_min] = 2 m.substitutions[y_min] = 1 self.assertAlmostEqual(m.localsolve(verbosity=0)["cost"], 2.5, 5) class TestTight(unittest.TestCase): "Test tight constraint set" def test_posyconstr_in_gp(self): "Tests tight constraint set with solve()" x = Variable('x') x_min = Variable('x_{min}', 2) m = Model(x, [Tight([x >= 1]), x >= x_min]) sol = m.solve(verbosity=0) warndata = sol["warnings"]["Unexpectedly Loose Constraints"][0][1] self.assertIs(warndata[-1], m[0][0]) self.assertAlmostEqual(warndata[0], 1, 3) m.substitutions[x_min] = 0.5 self.assertAlmostEqual(m.solve(verbosity=0)["cost"], 1) def test_posyconstr_in_sp(self): x = Variable('x') y = Variable('y') with SignomialsEnabled(): sig_constraint = (x + y >= 0.1) m = Model(x*y, [Tight([x >= y]), x >= 2, y >= 1, sig_constraint]) sol = m.localsolve(verbosity=0) warndata = sol["warnings"]["Unexpectedly Loose Constraints"][0][1] self.assertIs(warndata[-1], m[0][0]) self.assertAlmostEqual(warndata[0], 1, 3) m.pop(1) self.assertAlmostEqual(m.localsolve(verbosity=0)["cost"], 1, 5) def test_sigconstr_in_sp(self): "Tests tight constraint set with localsolve()" x = Variable('x') y = Variable('y') x_min = Variable('x_{min}', 2) y_max = Variable('y_{max}', 0.5) with SignomialsEnabled(): m = Model(x, [Tight([x + y >= 1]), x >= x_min, y <= y_max]) sol = m.localsolve(verbosity=0) warndata = sol["warnings"]["Unexpectedly Loose Constraints"][0][1] self.assertIs(warndata[-1], m[0][0]) self.assertGreater(warndata[0], 0.5) m.substitutions[x_min] = 0.5 self.assertAlmostEqual(m.localsolve(verbosity=0)["cost"], 0.5, 5) class TestBounded(unittest.TestCase): "Test bounded constraint set" def test_substitution_issue905(self): x = Variable("x") y = Variable("y") m = Model(x, [x >= y], {"y": 1}) bm = Model(m.cost, Bounded(m)) sol = bm.solve(verbosity=0) self.assertAlmostEqual(sol["cost"], 1.0) bm = Model(m.cost, Bounded(m, lower=1e-10)) sol = bm.solve(verbosity=0) self.assertAlmostEqual(sol["cost"], 1.0) bm = Model(m.cost, Bounded(m, upper=1e10)) sol = bm.solve(verbosity=0) self.assertAlmostEqual(sol["cost"], 1.0) TESTS = [TestConstraint, TestMonomialEquality, TestSignomialInequality, TestTight, TestLoose, TestBounded, TestCostedConstraint] if __name__ == "__main__": # pragma: no cover run_tests(TESTS)
[ "gpkit.VectorVariable", "gpkit.constraints.loose.Loose", "gpkit.ConstraintSet", "gpkit.constraints.relax.ConstraintsRelaxedEqually", "gpkit.globals.NamedVariables.reset_modelnumbers", "gpkit.nomials.PosynomialInequality", "gpkit.tests.helpers.run_tests", "gpkit.constraints.relax.ConstantsRelaxed", "gpkit.Model", "gpkit.constraints.bounded.Bounded", "gpkit.constraints.tight.Tight", "numpy.array", "gpkit.constraints.relax.ConstraintsRelaxed", "gpkit.SignomialsEnabled", "gpkit.Variable", "gpkit.nomials.MonomialEquality" ]
[((15753, 15769), 'gpkit.tests.helpers.run_tests', 'run_tests', (['TESTS'], {}), '(TESTS)\n', (15762, 15769), False, 'from gpkit.tests.helpers import run_tests\n'), ((997, 1010), 'gpkit.Variable', 'Variable', (['"""x"""'], {}), "('x')\n", (1005, 1010), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((1258, 1271), 'gpkit.Variable', 'Variable', (['"""x"""'], {}), "('x')\n", (1266, 1271), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((1642, 1664), 'gpkit.VectorVariable', 'VectorVariable', (['(2)', '"""v"""'], {}), "(2, 'v')\n", (1656, 1664), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((1960, 1973), 'gpkit.Variable', 'Variable', (['"""x"""'], {}), "('x')\n", (1968, 1973), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((1987, 2036), 'gpkit.Variable', 'Variable', (['"""x^2"""'], {'evalfn': '(lambda solv: solv[x] ** 2)'}), "('x^2', evalfn=lambda solv: solv[x] ** 2)\n", (1995, 2036), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((2047, 2065), 'gpkit.Model', 'Model', (['x', '[x >= 2]'], {}), '(x, [x >= 2])\n', (2052, 2065), False, 'from gpkit import Model, ConstraintSet\n'), ((2237, 2250), 'gpkit.Variable', 'Variable', (['"""x"""'], {}), "('x')\n", (2245, 2250), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((2267, 2287), 'gpkit.Variable', 'Variable', (['"""x_max"""', '(1)'], {}), "('x_max', 1)\n", (2275, 2287), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((2304, 2324), 'gpkit.Variable', 'Variable', (['"""x_min"""', '(2)'], {}), "('x_min', 2)\n", (2312, 2324), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((2380, 2411), 'gpkit.constraints.relax.ConstraintsRelaxed', 'ConstraintsRelaxed', (['constraints'], {}), '(constraints)\n', (2398, 2411), False, 'from gpkit.constraints.relax import ConstraintsRelaxed, ConstantsRelaxed, ConstraintsRelaxedEqually\n'), ((2420, 2449), 'gpkit.constraints.relax.ConstantsRelaxed', 'ConstantsRelaxed', (['constraints'], {}), '(constraints)\n', (2436, 2449), False, 'from gpkit.constraints.relax import ConstraintsRelaxed, ConstantsRelaxed, ConstraintsRelaxedEqually\n'), ((2458, 2496), 'gpkit.constraints.relax.ConstraintsRelaxedEqually', 'ConstraintsRelaxedEqually', (['constraints'], {}), '(constraints)\n', (2483, 2496), False, 'from gpkit.constraints.relax import ConstraintsRelaxed, ConstantsRelaxed, ConstraintsRelaxedEqually\n'), ((2543, 2556), 'gpkit.Variable', 'Variable', (['"""x"""'], {}), "('x')\n", (2551, 2556), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((2573, 2593), 'gpkit.Variable', 'Variable', (['"""x_max"""', '(1)'], {}), "('x_max', 1)\n", (2581, 2593), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((2610, 2651), 'gpkit.Variable', 'Variable', (['"""x_min"""', '(lambda c: 2 * c[x_max])'], {}), "('x_min', lambda c: 2 * c[x_max])\n", (2618, 2651), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((2665, 2705), 'gpkit.Variable', 'Variable', (['"""zero"""', '(lambda c: 0 * c[x_max])'], {}), "('zero', lambda c: 0 * c[x_max])\n", (2673, 2705), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((2726, 2779), 'gpkit.ConstraintSet', 'ConstraintSet', (['[x_min + zero <= x, x + zero <= x_max]'], {}), '([x_min + zero <= x, x + zero <= x_max])\n', (2739, 2779), False, 'from gpkit import Model, ConstraintSet\n'), ((2792, 2821), 'gpkit.constraints.relax.ConstantsRelaxed', 'ConstantsRelaxed', (['constraints'], {}), '(constraints)\n', (2808, 2821), False, 'from gpkit.constraints.relax import ConstraintsRelaxed, ConstantsRelaxed, ConstraintsRelaxedEqually\n'), ((2830, 2865), 'gpkit.globals.NamedVariables.reset_modelnumbers', 'NamedVariables.reset_modelnumbers', ([], {}), '()\n', (2863, 2865), False, 'from gpkit.globals import NamedVariables\n'), ((2888, 2941), 'gpkit.constraints.relax.ConstantsRelaxed', 'ConstantsRelaxed', (['constraints'], {'include_only': "['x_min']"}), "(constraints, include_only=['x_min'])\n", (2904, 2941), False, 'from gpkit.constraints.relax import ConstraintsRelaxed, ConstantsRelaxed, ConstraintsRelaxedEqually\n'), ((2950, 2985), 'gpkit.globals.NamedVariables.reset_modelnumbers', 'NamedVariables.reset_modelnumbers', ([], {}), '()\n', (2983, 2985), False, 'from gpkit.globals import NamedVariables\n'), ((3008, 3056), 'gpkit.constraints.relax.ConstantsRelaxed', 'ConstantsRelaxed', (['constraints'], {'exclude': "['x_max']"}), "(constraints, exclude=['x_max'])\n", (3024, 3056), False, 'from gpkit.constraints.relax import ConstraintsRelaxed, ConstantsRelaxed, ConstraintsRelaxedEqually\n'), ((3171, 3184), 'gpkit.Variable', 'Variable', (['"""x"""'], {}), "('x')\n", (3179, 3184), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((3197, 3223), 'gpkit.Model', 'Model', (['x', '[x == 3, x == 4]'], {}), '(x, [x == 3, x == 4])\n', (3202, 3223), False, 'from gpkit import Model, ConstraintSet\n'), ((3237, 3258), 'gpkit.constraints.relax.ConstraintsRelaxed', 'ConstraintsRelaxed', (['m'], {}), '(m)\n', (3255, 3258), False, 'from gpkit.constraints.relax import ConstraintsRelaxed, ConstantsRelaxed, ConstraintsRelaxedEqually\n'), ((3430, 3443), 'gpkit.Variable', 'Variable', (['"""x"""'], {}), "('x')\n", (3438, 3443), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((3457, 3490), 'gpkit.Variable', 'Variable', (['"""x"""'], {'lineage': "[('_', 0)]"}), "('x', lineage=[('_', 0)])\n", (3465, 3490), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((3504, 3526), 'gpkit.VectorVariable', 'VectorVariable', (['(2)', '"""x"""'], {}), "(2, 'x')\n", (3518, 3526), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((3541, 3583), 'gpkit.VectorVariable', 'VectorVariable', (['(2)', '"""x"""'], {'lineage': "[('_', 0)]"}), "(2, 'x', lineage=[('_', 0)])\n", (3555, 3583), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((4201, 4214), 'gpkit.Variable', 'Variable', (['"""x"""'], {}), "('x')\n", (4209, 4214), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((4607, 4620), 'gpkit.Variable', 'Variable', (['"""x"""'], {}), "('x')\n", (4615, 4620), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((4855, 4868), 'gpkit.Variable', 'Variable', (['"""x"""'], {}), "('x')\n", (4863, 4868), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((4881, 4894), 'gpkit.Variable', 'Variable', (['"""y"""'], {}), "('y')\n", (4889, 4894), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((4907, 4944), 'gpkit.nomials.PosynomialInequality', 'PosynomialInequality', (['x', '""">="""', '(y ** 2)'], {}), "(x, '>=', y ** 2)\n", (4927, 4944), False, 'from gpkit.nomials import SignomialInequality, PosynomialInequality\n'), ((5092, 5129), 'gpkit.nomials.PosynomialInequality', 'PosynomialInequality', (['x', '"""<="""', '(y ** 2)'], {}), "(x, '<=', y ** 2)\n", (5112, 5129), False, 'from gpkit.nomials import SignomialInequality, PosynomialInequality\n'), ((5431, 5444), 'gpkit.Variable', 'Variable', (['"""x"""'], {}), "('x')\n", (5439, 5444), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((5457, 5470), 'gpkit.Variable', 'Variable', (['"""y"""'], {}), "('y')\n", (5465, 5470), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((5915, 5928), 'gpkit.Variable', 'Variable', (['"""x"""'], {}), "('x')\n", (5923, 5928), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((5941, 5954), 'gpkit.Variable', 'Variable', (['"""y"""'], {}), "('y')\n", (5949, 5954), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((5967, 5980), 'gpkit.Variable', 'Variable', (['"""z"""'], {}), "('z')\n", (5975, 5980), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((6037, 6082), 'gpkit.Model', 'Model', (['z', '[x == z, x >= y]', '{x: 1, y: 1.0001}'], {}), '(z, [x == z, x >= y], {x: 1, y: 1.0001})\n', (6042, 6082), False, 'from gpkit import Model, ConstraintSet\n'), ((6400, 6422), 'gpkit.VectorVariable', 'VectorVariable', (['(2)', '"""x"""'], {}), "(2, 'x')\n", (6414, 6422), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((6746, 6759), 'gpkit.Variable', 'Variable', (['"""x"""'], {}), "('x')\n", (6754, 6759), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((6772, 6785), 'gpkit.Variable', 'Variable', (['"""y"""'], {}), "('y')\n", (6780, 6785), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((6899, 6926), 'gpkit.nomials.MonomialEquality', 'MonomialEquality', (['x', '(y ** 2)'], {}), '(x, y ** 2)\n', (6915, 6926), False, 'from gpkit.nomials import MonomialEquality\n'), ((7054, 7073), 'gpkit.Variable', 'Variable', (['"""x"""', '"""ft"""'], {}), "('x', 'ft')\n", (7062, 7073), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((7086, 7099), 'gpkit.Variable', 'Variable', (['"""y"""'], {}), "('y')\n", (7094, 7099), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((7365, 7387), 'gpkit.VectorVariable', 'VectorVariable', (['(3)', '"""x"""'], {}), "(3, 'x')\n", (7379, 7387), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((7608, 7621), 'gpkit.Variable', 'Variable', (['"""F"""'], {}), "('F')\n", (7616, 7621), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((7634, 7647), 'gpkit.Variable', 'Variable', (['"""m"""'], {}), "('m')\n", (7642, 7647), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((7660, 7673), 'gpkit.Variable', 'Variable', (['"""a"""'], {}), "('a')\n", (7668, 7673), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((7874, 7887), 'gpkit.Variable', 'Variable', (['"""x"""'], {}), "('x')\n", (7882, 7887), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((7900, 7913), 'gpkit.Variable', 'Variable', (['"""y"""'], {}), "('y')\n", (7908, 7913), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((8171, 8184), 'gpkit.Variable', 'Variable', (['"""x"""'], {}), "('x')\n", (8179, 8184), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((8197, 8210), 'gpkit.Variable', 'Variable', (['"""y"""'], {}), "('y')\n", (8205, 8210), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((8396, 8409), 'gpkit.Variable', 'Variable', (['"""x"""'], {}), "('x')\n", (8404, 8409), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((8422, 8445), 'gpkit.Variable', 'Variable', (['"""y"""', '"""hr/day"""'], {}), "('y', 'hr/day')\n", (8430, 8445), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((8458, 8480), 'gpkit.nomials.MonomialEquality', 'MonomialEquality', (['x', 'y'], {}), '(x, y)\n', (8474, 8480), False, 'from gpkit.nomials import MonomialEquality\n'), ((8752, 8768), 'gpkit.Variable', 'Variable', (['"""ujet"""'], {}), "('ujet')\n", (8760, 8768), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((8782, 8796), 'gpkit.Variable', 'Variable', (['"""PK"""'], {}), "('PK')\n", (8790, 8796), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((8810, 8831), 'gpkit.Variable', 'Variable', (['"""Dp"""', '(0.662)'], {}), "('Dp', 0.662)\n", (8818, 8831), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((8847, 8868), 'gpkit.Variable', 'Variable', (['"""fBLI"""', '(0.4)'], {}), "('fBLI', 0.4)\n", (8855, 8868), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((8885, 8909), 'gpkit.Variable', 'Variable', (['"""fsurf"""', '(0.836)'], {}), "('fsurf', 0.836)\n", (8893, 8909), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((8925, 8953), 'gpkit.Variable', 'Variable', (['"""mdot"""', '(1 / 0.7376)'], {}), "('mdot', 1 / 0.7376)\n", (8933, 8953), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((9456, 9477), 'gpkit.Variable', 'Variable', (['"""Dp"""', '(0.662)'], {}), "('Dp', 0.662)\n", (9464, 9477), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((9492, 9525), 'gpkit.Variable', 'Variable', (['"""-Dp"""', '(lambda c: -c[Dp])'], {}), "('-Dp', lambda c: -c[Dp])\n", (9500, 9525), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((9541, 9562), 'gpkit.Variable', 'Variable', (['"""fBLI"""', '(0.4)'], {}), "('fBLI', 0.4)\n", (9549, 9562), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((9579, 9603), 'gpkit.Variable', 'Variable', (['"""fsurf"""', '(0.836)'], {}), "('fsurf', 0.836)\n", (9587, 9603), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((9619, 9647), 'gpkit.Variable', 'Variable', (['"""mdot"""', '(1 / 0.7376)'], {}), "('mdot', 1 / 0.7376)\n", (9627, 9647), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((9658, 9762), 'gpkit.Model', 'Model', (['PK', '[mdot * ujet >= 1 + fBLI * mDp, PK >= 0.5 * mdot * ujet * (2 + ujet) + fBLI *\n fsurf * Dp]'], {}), '(PK, [mdot * ujet >= 1 + fBLI * mDp, PK >= 0.5 * mdot * ujet * (2 +\n ujet) + fBLI * fsurf * Dp])\n', (9663, 9762), False, 'from gpkit import Model, ConstraintSet\n'), ((10117, 10138), 'gpkit.Variable', 'Variable', (['"""Dp"""', '(0.662)'], {}), "('Dp', 0.662)\n", (10125, 10138), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((10153, 10176), 'gpkit.Variable', 'Variable', (['"""-Dp"""', '(-0.662)'], {}), "('-Dp', -0.662)\n", (10161, 10176), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((10192, 10213), 'gpkit.Variable', 'Variable', (['"""fBLI"""', '(0.4)'], {}), "('fBLI', 0.4)\n", (10200, 10213), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((10230, 10254), 'gpkit.Variable', 'Variable', (['"""fsurf"""', '(0.836)'], {}), "('fsurf', 0.836)\n", (10238, 10254), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((10270, 10298), 'gpkit.Variable', 'Variable', (['"""mdot"""', '(1 / 0.7376)'], {}), "('mdot', 1 / 0.7376)\n", (10278, 10298), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((10309, 10413), 'gpkit.Model', 'Model', (['PK', '[mdot * ujet >= 1 + fBLI * mDp, PK >= 0.5 * mdot * ujet * (2 + ujet) + fBLI *\n fsurf * Dp]'], {}), '(PK, [mdot * ujet >= 1 + fBLI * mDp, PK >= 0.5 * mdot * ujet * (2 +\n ujet) + fBLI * fsurf * Dp])\n', (10314, 10413), False, 'from gpkit import Model, ConstraintSet\n'), ((10815, 10839), 'gpkit.Variable', 'Variable', (['"""D"""'], {'units': '"""N"""'}), "('D', units='N')\n", (10823, 10839), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((11220, 11233), 'gpkit.Variable', 'Variable', (['"""x"""'], {}), "('x')\n", (11228, 11233), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((11246, 11259), 'gpkit.Variable', 'Variable', (['"""y"""'], {}), "('y')\n", (11254, 11259), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((11596, 11609), 'gpkit.Variable', 'Variable', (['"""x"""'], {}), "('x')\n", (11604, 11609), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((11626, 11648), 'gpkit.Variable', 'Variable', (['"""x_{min}"""', '(2)'], {}), "('x_{min}', 2)\n", (11634, 11648), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((11952, 11965), 'gpkit.Variable', 'Variable', (['"""x"""'], {}), "('x')\n", (11960, 11965), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((11982, 12004), 'gpkit.Variable', 'Variable', (['"""x_{min}"""', '(2)'], {}), "('x_{min}', 2)\n", (11990, 12004), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((12436, 12449), 'gpkit.Variable', 'Variable', (['"""x"""'], {}), "('x')\n", (12444, 12449), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((12462, 12475), 'gpkit.Variable', 'Variable', (['"""y"""'], {}), "('y')\n", (12470, 12475), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((12492, 12512), 'gpkit.Variable', 'Variable', (['"""x_min"""', '(1)'], {}), "('x_min', 1)\n", (12500, 12512), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((12529, 12549), 'gpkit.Variable', 'Variable', (['"""y_min"""', '(2)'], {}), "('y_min', 2)\n", (12537, 12549), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((13259, 13272), 'gpkit.Variable', 'Variable', (['"""x"""'], {}), "('x')\n", (13267, 13272), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((13289, 13311), 'gpkit.Variable', 'Variable', (['"""x_{min}"""', '(2)'], {}), "('x_{min}', 2)\n", (13297, 13311), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((13742, 13755), 'gpkit.Variable', 'Variable', (['"""x"""'], {}), "('x')\n", (13750, 13755), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((13768, 13781), 'gpkit.Variable', 'Variable', (['"""y"""'], {}), "('y')\n", (13776, 13781), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((14361, 14374), 'gpkit.Variable', 'Variable', (['"""x"""'], {}), "('x')\n", (14369, 14374), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((14387, 14400), 'gpkit.Variable', 'Variable', (['"""y"""'], {}), "('y')\n", (14395, 14400), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((14417, 14439), 'gpkit.Variable', 'Variable', (['"""x_{min}"""', '(2)'], {}), "('x_{min}', 2)\n", (14425, 14439), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((14456, 14480), 'gpkit.Variable', 'Variable', (['"""y_{max}"""', '(0.5)'], {}), "('y_{max}', 0.5)\n", (14464, 14480), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((15084, 15097), 'gpkit.Variable', 'Variable', (['"""x"""'], {}), "('x')\n", (15092, 15097), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((15110, 15123), 'gpkit.Variable', 'Variable', (['"""y"""'], {}), "('y')\n", (15118, 15123), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((15136, 15164), 'gpkit.Model', 'Model', (['x', '[x >= y]', "{'y': 1}"], {}), "(x, [x >= y], {'y': 1})\n", (15141, 15164), False, 'from gpkit import Model, ConstraintSet\n'), ((1332, 1352), 'gpkit.Model', 'Model', (['x', "[x == 'A']"], {}), "(x, [x == 'A'])\n", (1337, 1352), False, 'from gpkit import Model, ConstraintSet\n'), ((1413, 1441), 'gpkit.Model', 'Model', (['x', "[x >= 1, x == 'A']"], {}), "(x, [x >= 1, x == 'A'])\n", (1418, 1441), False, 'from gpkit import Model, ConstraintSet\n'), ((1502, 1538), 'gpkit.Model', 'Model', (['x', "[x >= 1, x == 'A', x >= 1]"], {}), "(x, [x >= 1, x == 'A', x >= 1])\n", (1507, 1538), False, 'from gpkit import Model, ConstraintSet\n'), ((1601, 1629), 'gpkit.Model', 'Model', (['x', "[x == 'A', x >= 1]"], {}), "(x, [x == 'A', x >= 1])\n", (1606, 1629), False, 'from gpkit import Model, ConstraintSet\n'), ((1725, 1745), 'gpkit.Model', 'Model', (['x', "[v == 'A']"], {}), "(x, [v == 'A'])\n", (1730, 1745), False, 'from gpkit import Model, ConstraintSet\n'), ((1805, 1832), 'gpkit.Model', 'Model', (['x', "[v <= ['A', 'B']]"], {}), "(x, [v <= ['A', 'B']])\n", (1810, 1832), False, 'from gpkit import Model, ConstraintSet\n'), ((1892, 1919), 'gpkit.Model', 'Model', (['x', "[v >= ['A', 'B']]"], {}), "(x, [v >= ['A', 'B']])\n", (1897, 1919), False, 'from gpkit import Model, ConstraintSet\n'), ((6521, 6535), 'numpy.array', 'np.array', (['x[0]'], {}), '(x[0])\n', (6529, 6535), True, 'import numpy as np\n'), ((8000, 8030), 'gpkit.nomials.MonomialEquality', 'MonomialEquality', (['(x * y)', '(x + y)'], {}), '(x * y, x + y)\n', (8016, 8030), False, 'from gpkit.nomials import MonomialEquality\n'), ((8965, 8984), 'gpkit.SignomialsEnabled', 'SignomialsEnabled', ([], {}), '()\n', (8982, 8984), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((9002, 9105), 'gpkit.Model', 'Model', (['PK', '[mdot * ujet + fBLI * Dp >= 1, PK >= 0.5 * mdot * ujet * (2 + ujet) + fBLI *\n fsurf * Dp]'], {}), '(PK, [mdot * ujet + fBLI * Dp >= 1, PK >= 0.5 * mdot * ujet * (2 +\n ujet) + fBLI * fsurf * Dp])\n', (9007, 9105), False, 'from gpkit import Model, ConstraintSet\n'), ((10862, 10893), 'gpkit.Variable', 'Variable', (["('x_%s' % i)"], {'units': '"""N"""'}), "('x_%s' % i, units='N')\n", (10870, 10893), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((11006, 11025), 'gpkit.SignomialsEnabled', 'SignomialsEnabled', ([], {}), '()\n', (11023, 11025), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((11273, 11292), 'gpkit.SignomialsEnabled', 'SignomialsEnabled', ([], {}), '()\n', (11290, 11292), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((12563, 12582), 'gpkit.SignomialsEnabled', 'SignomialsEnabled', ([], {}), '()\n', (12580, 12582), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((13795, 13814), 'gpkit.SignomialsEnabled', 'SignomialsEnabled', ([], {}), '()\n', (13812, 13814), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((14494, 14513), 'gpkit.SignomialsEnabled', 'SignomialsEnabled', ([], {}), '()\n', (14511, 14513), False, 'from gpkit import Variable, SignomialsEnabled, Posynomial, VectorVariable\n'), ((15192, 15202), 'gpkit.constraints.bounded.Bounded', 'Bounded', (['m'], {}), '(m)\n', (15199, 15202), False, 'from gpkit.constraints.bounded import Bounded\n'), ((15316, 15339), 'gpkit.constraints.bounded.Bounded', 'Bounded', (['m'], {'lower': '(1e-10)'}), '(m, lower=1e-10)\n', (15323, 15339), False, 'from gpkit.constraints.bounded import Bounded\n'), ((15453, 15484), 'gpkit.constraints.bounded.Bounded', 'Bounded', (['m'], {'upper': '(10000000000.0)'}), '(m, upper=10000000000.0)\n', (15460, 15484), False, 'from gpkit.constraints.bounded import Bounded\n'), ((1133, 1162), 'gpkit.ConstraintSet', 'ConstraintSet', (['[self, x <= 1]'], {}), '([self, x <= 1])\n', (1146, 1162), False, 'from gpkit import Model, ConstraintSet\n'), ((3609, 3627), 'gpkit.Model', 'Model', (['x', '[x >= 1]'], {}), '(x, [x >= 1])\n', (3614, 3627), False, 'from gpkit import Model, ConstraintSet\n'), ((3697, 3724), 'gpkit.Model', 'Model', (['x', '[x >= 1, x_ >= 1]'], {}), '(x, [x >= 1, x_ >= 1])\n', (3702, 3724), False, 'from gpkit import Model, ConstraintSet\n'), ((3790, 3817), 'gpkit.Model', 'Model', (['x', '[x >= 1, xv >= 1]'], {}), '(x, [x >= 1, xv >= 1])\n', (3795, 3817), False, 'from gpkit import Model, ConstraintSet\n'), ((11671, 11690), 'gpkit.constraints.loose.Loose', 'Loose', (['[x >= x_min]'], {}), '([x >= x_min])\n', (11676, 11690), False, 'from gpkit.constraints.loose import Loose\n'), ((12027, 12046), 'gpkit.constraints.loose.Loose', 'Loose', (['[x >= x_min]'], {}), '([x >= x_min])\n', (12032, 12046), False, 'from gpkit.constraints.loose import Loose\n'), ((12652, 12667), 'gpkit.constraints.loose.Loose', 'Loose', (['[x >= y]'], {}), '([x >= y])\n', (12657, 12667), False, 'from gpkit.constraints.loose import Loose\n'), ((13334, 13349), 'gpkit.constraints.tight.Tight', 'Tight', (['[x >= 1]'], {}), '([x >= 1])\n', (13339, 13349), False, 'from gpkit.constraints.tight import Tight\n'), ((13884, 13899), 'gpkit.constraints.tight.Tight', 'Tight', (['[x >= y]'], {}), '([x >= y])\n', (13889, 13899), False, 'from gpkit.constraints.tight import Tight\n'), ((14541, 14560), 'gpkit.constraints.tight.Tight', 'Tight', (['[x + y >= 1]'], {}), '([x + y >= 1])\n', (14546, 14560), False, 'from gpkit.constraints.tight import Tight\n')]
from bokeh.models import ColumnDataSource, HoverTool, Range1d, Plot, LinearAxis, Grid, Paragraph,TapTool,Div from bokeh.plotting import figure, show, output_file from bokeh.io import curdoc from bokeh.layouts import widgetbox , layout from bokeh.models.widgets import Select, Slider, Button import dim_reduction import numpy as np import clustering import random import sys import os import pickle from bokeh.models.glyphs import ImageURL import re from bokeh.models.callbacks import CustomJS from sklearn.preprocessing import MinMaxScaler src_path = os.path.abspath("./src/") if src_path not in sys.path: sys.path.insert(0, src_path) import data_format from wcloud_standalone import get_wcloud import heatmap as hmap from lrp import get_lrp_timedata def button_callback(): text_review,words,word_embeddings = get_rawText_data(rawInput_selections.value,keys_raw,data_raw,testX,embed_mat) text_banner.text = text_review def get_wc_colourGroups(rawInput_source): words = np.array(rawInput_source.data['w']) colors = rawInput_source.data['z'] color_dict = dict() for color in sorted(data_format.list_duplicates(colors)): color_dict[color[0]] = list(words[color[1]]) return color_dict def get_selections(): gates = ["IN - what to add on","NOT IMPORTANT - what to drop off","IMPORTANT - where to focus on"] select_gate = Select(title="Gate", value="IN - what to add on", options=gates) if select_gate.value == "IN - what to add on": select_gate.value = "input_gate" elif select_gate.value == "NOT IMPORTANT - what to drop off": select_gate.value = "forget_gate" elif select_gate.value == "IMPORTANT - where to focus on": select_gate.value = "output_gate" return select_gate def get_clustering_selections(algorithms_neurons): algorithm_select_neuron = Select(value="KMeans - selected gate",title="Select clustering option for neurons:",width=250, options=algorithms_neurons) cluster_slider = Slider(title="Number of clusters (use in kmeans,hierarchical clustering)",value=2.0,start=2.0,end=4.0,step=1,width=400) return (algorithm_select_neuron,cluster_slider) def get_rawInput_selections(keys_raw): review = [str(r) for r in list(keys_raw)] select_rawInput = Select(title="Input review", value=review[0], options=review) return select_rawInput def get_projection_selections(algorithms): algorithm_select = Select(value="PCA",title="Select projection algorithm:",width=250, options=algorithms) return algorithm_select def get_rawText_data(rawInput_selections,keys_raw,data_raw,feed,embed_mat): text_review = np.array_str(data_raw[int(rawInput_selections)]) txt_rev = text_review.replace('<UNK>','UNK') words = text_review.split() word_embeddings = [embed_mat[i,:] for i in list(feed[int(rawInput_selections),:].astype(int))] return txt_rev,words,word_embeddings """ ------------------------------------------------------------------------------------------------------- UPDATE SOURCE ------------------------------------------------------------------------------------------------------- """ def update_source(attrname, old, new): gate_value = gate_selections.value if gate_value == "IN - what to add on": gate_value = "input_gate" elif gate_value == "NOT IMPORTANT - what to drop off": gate_value = "forget_gate" elif gate_value == "IMPORTANT - where to focus on": gate_value = "output_gate" x = data[lstm_layer_name][gate_value] text_review,words,word_embeddings = get_rawText_data(rawInput_selections.value,keys_raw,data_raw,testX,embed_mat) #update raw input text_banner.text = text_review text_banner2.text = text_review label_banner.text = "Network decision : POSITIVE" if predicted_tgs[int(rawInput_selections.value)][0] == 0 else "Network decision : NEGATIVE" #update dimension reduction source algorithm = projection_selections.value knn = 5 x_pr,performance_metric = dim_reduction.project(x, algorithm, knn, labels) #update clustering algorithm_cl_neurons = clustering_selections[0].value n_clusters = int(clustering_selections[1].value) if algorithm_cl_neurons=="Internal state clustering (LSTM's outputs)": text_set.text = "Internal state clustering - selected review: Clusters representation of input review at every timestep as learned by the LSTM layer." lstm_hidVal = np.array(lstm_hidden[int(rawInput_selections.value)]) x_pr,performance_metric = dim_reduction.project(np.transpose(lstm_hidVal), algorithm, knn, labels) cluster_labels, colors, _ = clustering.apply_cluster(data=np.transpose(lstm_hidVal),algorithm=algorithm_cl_neurons,n_clusters=n_clusters,review=None,neuronData=None,mode="nn") elif algorithm_cl_neurons=="DBSCAN - all reviews" or algorithm_cl_neurons== "AgglomerativeClustering - all reviews": if algorithm_cl_neurons=="DBSCAN - all reviews": text_set.text = "DBSCAN - all reviews: Clusters neurons based on how related their most activating words are. List of activating words generated from all reviews." elif algorithm_cl_neurons== "AgglomerativeClustering - all reviews": text_set.text = "AgglomerativeClustering - all reviews: Hierarchical clustering of neurons based on how related their most activating words are. List of activating words generated from all reviews." neuronData = similarityMatrix_AllReviews cluster_labels, colors, _ = clustering.apply_cluster(x,algorithm_cl_neurons,n_clusters,review=rawInput_selections.value,neuronData=neuronData,mode="nn") elif algorithm_cl_neurons=="Positive-Negative neuron clustering (LSTM's predictions)": text_set.text = "Positive-Negative neuron clustering: Clusters neurons based on how much they contributed to classifying the review as positive or negative." neuronData = neuron_types cluster_labels, colors, spectr = clustering.apply_cluster(x,algorithm_cl_neurons,n_clusters,review=rawInput_selections.value,neuronData=neuronData,mode="nn") neutral = tuple(int((spectr[0].lstrip('#'))[i:i+2], 16) for i in (0, 2 ,4)) positive = tuple(int((spectr[1].lstrip('#'))[i:i+2], 16) for i in (0, 2 ,4)) negative = tuple(int((spectr[2].lstrip('#'))[i:i+2], 16) for i in (0, 2 ,4)) neu = "<span style='background-color: rgb("+str(neutral[0])+","+str(neutral[1])+","+str(neutral[2])+")'>Neutral</span>" pos = "<span style='background-color: rgb("+str(positive[0])+","+str(positive[1])+","+str(positive[2])+")'>Positive</span>" neg = "<span style='background-color: rgb("+str(negative[0])+","+str(negative[1])+","+str(negative[2])+")'>Negative</span>" text_set.text = "Positive-Negative neuron clustering: Clusters neurons based on how much they contributed to classifying the review as positive or negative:"+neu+" "+pos+" "+neg else: if algorithm_cl_neurons=="KMeans - selected gate": text_set.text = "KMeans: Clusters neurons based on their gate values after training." elif algorithm_cl_neurons=="DBSCAN - selected review": text_set.text = "DBSCAN - selected review: Clusters neurons based on how related their most activating words are. List of activating words generated from selected review." neuronData = similarityMatrix_PerReview cluster_labels, colors, _ = clustering.apply_cluster(x,algorithm_cl_neurons,n_clusters,review=int(rawInput_selections.value),neuronData=neuronData,mode="nn") proj_source.data = dict(x=x_pr[:, 0], y=x_pr[:, 1], z=colors) w2v_labels, w2v_colors, _ = clustering.apply_cluster(np.array(word_embeddings),"KMeans - selected gate",n_clusters,mode="wc") rawInput_source.data = dict(z=w2v_colors, w=words) color_dict = get_wc_colourGroups(rawInput_source) if gate_value=="input_gate": wc_filename,wc_img,wc_words = get_wcloud(LRP,int(rawInput_selections.value),load_dir,color_dict=color_dict,gate="in",text=text_banner.text) elif gate_value=="forget_gate": wc_filename,wc_img,wc_words = get_wcloud(LRP,int(rawInput_selections.value),load_dir,color_dict=color_dict,gate="forget") elif gate_value=="output_gate": wc_filename,wc_img,wc_words = get_wcloud(LRP,int(rawInput_selections.value),load_dir,color_dict=color_dict,gate="out") words_to_be_highlighted = list(set(wc_words).intersection(totalLRP[int(rawInput_selections.value)]['words'])) lrp_source.data['lrp'] = scaler.fit_transform(np.array(totalLRP[int(rawInput_selections.value)]['lrp'].tolist()).reshape(-1,1)) tap_source.data['wc_words'] = words_to_be_highlighted wc_plot.add_glyph(img_source, ImageURL(url=dict(value=load_dir+wc_filename), x=0, y=0, anchor="bottom_left")) """ ------------------------------------------------------------------------------------------------------------------------ MAIN APP CODE ------------------------------------------------------------------------------------------------------------------------ """ # Provide data paths and files load_dir = "./bokeh_vis/static/" lstm_layer_name = "lstm" #Get trained model parameters: weights and gate values keys,data = data_format.get_data(load_dir+"model.json") #Get raw input keys_raw,data_raw = data_format.get_data(load_dir+"test_data_text.pickle") #Load auxiliary data with open(load_dir+"lstm_predictions.pickle","rb") as handle: predicted_tgs = pickle.load(handle) with open(load_dir+"exploratoryDataFull.pickle", 'rb') as f: (testX,embed_mat,excitingWords_fullSet,similarityMatrix_AllReviews,similarityMatrix_PerReview,neuron_types,totalLRP,LRP) = pickle.load(f) _,lstm_hidden = data_format.get_data(load_dir+"test_model_internals_lstm_hidden.pickle") #Get preset buttons' selections #LSTM gates gate_selections = get_selections() #Dimensionality reduction projection_selections = get_projection_selections(dim_reduction.get_dimReduction_algorithms()) #Clustering algorithm_neurons = clustering.get_cluster_algorithms() clustering_selections = get_clustering_selections(algorithm_neurons) #Raw input clustering rawInput_selections = get_rawInput_selections(keys_raw) tools = "pan,wheel_zoom,box_zoom,reset" #Dimensionality reduction labels = None data_pr = data[lstm_layer_name][gate_selections.value] X, performance_metric = dim_reduction.project(data_pr, "PCA", n_neighbors=5, labels=labels) X_cluster_labels, X_colors, _ = clustering.apply_cluster(data_pr,algorithm=clustering_selections[0].value,n_clusters=int(clustering_selections[1].value),mode="nn") proj_source = ColumnDataSource(dict(x=X[:,0],y=X[:,1],z=X_colors)) project_plot = figure(title=projection_selections.value,tools=tools,plot_width=300, plot_height=300) scatter_tap = project_plot.scatter('x', 'y', marker='circle', size=10, fill_color='z', alpha=0.5, source=proj_source, legend=None) project_plot.xaxis.axis_label = 'Dim 1' project_plot.yaxis.axis_label = 'Dim 2' taptool = TapTool() project_plot.add_tools(taptool) #Input text text_review,words,word_embeddings = get_rawText_data(rawInput_selections.value,keys_raw,data_raw,testX,embed_mat) w2v_labels, w2v_colors, _ = clustering.apply_cluster(np.array(word_embeddings),algorithm="KMeans - selected gate",n_clusters=int(clustering_selections[1].value),mode="wc") rawInput_source = ColumnDataSource(dict(z=w2v_colors,w=words)) text_banner = Div(text=text_review, width=1300, height=100) text_banner2 = Div(text=text_review, width=1300, height=100) label_banner = Paragraph(text="Network decision : POSITIVE" if predicted_tgs[int(rawInput_selections.value)][0] == 0 else "Network decision : NEGATIVE", width=200, height=30) button = Button(label="Reset text") button.on_click(button_callback) #WordCloud color_dict = get_wc_colourGroups(rawInput_source) #Colors based on similarity in embedding space wc_filename,wc_img,wc_words = get_wcloud(LRP,int(rawInput_selections.value),load_dir,color_dict=color_dict,gate="in",text=text_banner.text) words_to_be_highlighted = list(set(wc_words).intersection(totalLRP[int(rawInput_selections.value)]['words'])) highlight_source = ColumnDataSource(dict(scores=[])) tap_source = ColumnDataSource(dict(wc_words=words_to_be_highlighted)) scaler = MinMaxScaler(copy=True, feature_range=(-1, 1)) lrp_source = ColumnDataSource(dict(lrp=scaler.fit_transform(np.array(totalLRP[int(rawInput_selections.value)]['lrp'].tolist()).reshape(-1,1)))) #totalLRP : how relevant is each LSTM neuron taptool.callback = CustomJS(args=dict(source=tap_source,lrp=lrp_source,high=highlight_source,div=text_banner,div_orig=text_banner2), code=""" cell = cb_obj.selected['1d']['indices'][0] var d = high.data; d['scores'] = [] for(var i=0; i<source.data['wc_words'].length; i++){ d['scores'].push(lrp.data['lrp'][cell]) } high.change.emit(); ws = div_orig.text.split(" "); ws_out = []; for(var j=0; j<ws.length; j++){ w_idx = source.data['wc_words'].indexOf(ws[j]) if (w_idx>=0){ if (d['scores'][w_idx]>0){ ws_out.push("<span style='background-color: rgba(255,0,0,"+d['scores'][w_idx]+")'>"+ws[j]+"</span>") } else if (d['scores'][w_idx]<0){ ws_out.push("<span style='background-color: rgba(0,255,0,"+Math.abs(d['scores'][w_idx])+")'>"+ws[j]+"</span>") } } else { ws_out.push(ws[j]) } } div.text = ws_out.join(" ") console.log(ws_out) """) img_source = ColumnDataSource(dict(url = [load_dir+wc_filename])) xdr = Range1d(start=0, end=600) ydr = Range1d(start=0, end=600) wc_plot = Plot(title=None, x_range=xdr, y_range=ydr, plot_width=500, plot_height=550, min_border=0) image = ImageURL(url=dict(value=load_dir+wc_filename), x=0, y=0, anchor="bottom_left", retry_attempts=3, retry_timeout=1000) wc_plot.add_glyph(img_source, image) text_0 = Paragraph(text="Clustering option:", width=200, height=20) text_set = Div(text="KMeans: Clusters neurons based on their gate values after training.", width=250, height=100) lrp_timedata = get_lrp_timedata(LRP) time = [i for i in range(len(lrp_timedata))] lrptime_source = ColumnDataSource(dict(lrptime = lrp_timedata,time=time)) lrp_plot = figure(title="Network focus per timestep",plot_width=300, plot_height=50) lrp_plot.scatter('time','lrptime', marker='circle', size=5, alpha=0.5, source=lrptime_source) lrp_plot.xaxis.axis_label = 'Time' lrp_plot.yaxis.axis_label = 'Normalized relevance score' #Layout gate_selections.on_change('value', update_source) projection_selections.on_change('value', update_source) for attr in clustering_selections: attr.on_change('value', update_source) rawInput_selections.on_change('value', update_source) gp = layout([project_plot, wc_plot, widgetbox(rawInput_selections,gate_selections,projection_selections,clustering_selections[0],clustering_selections[1],text_0,text_set,label_banner,button)], [lrp_plot], [text_banner], responsive=True) curdoc().add_root(gp) curdoc().title = "tRustNN"
[ "bokeh.models.Plot", "bokeh.layouts.widgetbox", "sklearn.preprocessing.MinMaxScaler", "dim_reduction.project", "pickle.load", "data_format.get_data", "bokeh.models.widgets.Slider", "bokeh.models.widgets.Select", "os.path.abspath", "numpy.transpose", "bokeh.io.curdoc", "bokeh.models.Div", "clustering.get_cluster_algorithms", "dim_reduction.get_dimReduction_algorithms", "bokeh.models.Range1d", "data_format.list_duplicates", "bokeh.models.widgets.Button", "bokeh.models.Paragraph", "bokeh.models.TapTool", "bokeh.plotting.figure", "lrp.get_lrp_timedata", "sys.path.insert", "clustering.apply_cluster", "numpy.array" ]
[((552, 577), 'os.path.abspath', 'os.path.abspath', (['"""./src/"""'], {}), "('./src/')\n", (567, 577), False, 'import os\n'), ((9359, 9404), 'data_format.get_data', 'data_format.get_data', (["(load_dir + 'model.json')"], {}), "(load_dir + 'model.json')\n", (9379, 9404), False, 'import data_format\n'), ((9438, 9494), 'data_format.get_data', 'data_format.get_data', (["(load_dir + 'test_data_text.pickle')"], {}), "(load_dir + 'test_data_text.pickle')\n", (9458, 9494), False, 'import data_format\n'), ((9837, 9911), 'data_format.get_data', 'data_format.get_data', (["(load_dir + 'test_model_internals_lstm_hidden.pickle')"], {}), "(load_dir + 'test_model_internals_lstm_hidden.pickle')\n", (9857, 9911), False, 'import data_format\n'), ((10152, 10187), 'clustering.get_cluster_algorithms', 'clustering.get_cluster_algorithms', ([], {}), '()\n', (10185, 10187), False, 'import clustering\n'), ((10496, 10563), 'dim_reduction.project', 'dim_reduction.project', (['data_pr', '"""PCA"""'], {'n_neighbors': '(5)', 'labels': 'labels'}), "(data_pr, 'PCA', n_neighbors=5, labels=labels)\n", (10517, 10563), False, 'import dim_reduction\n'), ((10810, 10901), 'bokeh.plotting.figure', 'figure', ([], {'title': 'projection_selections.value', 'tools': 'tools', 'plot_width': '(300)', 'plot_height': '(300)'}), '(title=projection_selections.value, tools=tools, plot_width=300,\n plot_height=300)\n', (10816, 10901), False, 'from bokeh.plotting import figure, show, output_file\n'), ((11117, 11126), 'bokeh.models.TapTool', 'TapTool', ([], {}), '()\n', (11124, 11126), False, 'from bokeh.models import ColumnDataSource, HoverTool, Range1d, Plot, LinearAxis, Grid, Paragraph, TapTool, Div\n'), ((11536, 11581), 'bokeh.models.Div', 'Div', ([], {'text': 'text_review', 'width': '(1300)', 'height': '(100)'}), '(text=text_review, width=1300, height=100)\n', (11539, 11581), False, 'from bokeh.models import ColumnDataSource, HoverTool, Range1d, Plot, LinearAxis, Grid, Paragraph, TapTool, Div\n'), ((11597, 11642), 'bokeh.models.Div', 'Div', ([], {'text': 'text_review', 'width': '(1300)', 'height': '(100)'}), '(text=text_review, width=1300, height=100)\n', (11600, 11642), False, 'from bokeh.models import ColumnDataSource, HoverTool, Range1d, Plot, LinearAxis, Grid, Paragraph, TapTool, Div\n'), ((11828, 11854), 'bokeh.models.widgets.Button', 'Button', ([], {'label': '"""Reset text"""'}), "(label='Reset text')\n", (11834, 11854), False, 'from bokeh.models.widgets import Select, Slider, Button\n'), ((12380, 12426), 'sklearn.preprocessing.MinMaxScaler', 'MinMaxScaler', ([], {'copy': '(True)', 'feature_range': '(-1, 1)'}), '(copy=True, feature_range=(-1, 1))\n', (12392, 12426), False, 'from sklearn.preprocessing import MinMaxScaler\n'), ((13737, 13762), 'bokeh.models.Range1d', 'Range1d', ([], {'start': '(0)', 'end': '(600)'}), '(start=0, end=600)\n', (13744, 13762), False, 'from bokeh.models import ColumnDataSource, HoverTool, Range1d, Plot, LinearAxis, Grid, Paragraph, TapTool, Div\n'), ((13769, 13794), 'bokeh.models.Range1d', 'Range1d', ([], {'start': '(0)', 'end': '(600)'}), '(start=0, end=600)\n', (13776, 13794), False, 'from bokeh.models import ColumnDataSource, HoverTool, Range1d, Plot, LinearAxis, Grid, Paragraph, TapTool, Div\n'), ((13805, 13898), 'bokeh.models.Plot', 'Plot', ([], {'title': 'None', 'x_range': 'xdr', 'y_range': 'ydr', 'plot_width': '(500)', 'plot_height': '(550)', 'min_border': '(0)'}), '(title=None, x_range=xdr, y_range=ydr, plot_width=500, plot_height=550,\n min_border=0)\n', (13809, 13898), False, 'from bokeh.models import ColumnDataSource, HoverTool, Range1d, Plot, LinearAxis, Grid, Paragraph, TapTool, Div\n'), ((14068, 14126), 'bokeh.models.Paragraph', 'Paragraph', ([], {'text': '"""Clustering option:"""', 'width': '(200)', 'height': '(20)'}), "(text='Clustering option:', width=200, height=20)\n", (14077, 14126), False, 'from bokeh.models import ColumnDataSource, HoverTool, Range1d, Plot, LinearAxis, Grid, Paragraph, TapTool, Div\n'), ((14138, 14249), 'bokeh.models.Div', 'Div', ([], {'text': '"""KMeans: Clusters neurons based on their gate values after training."""', 'width': '(250)', 'height': '(100)'}), "(text=\n 'KMeans: Clusters neurons based on their gate values after training.',\n width=250, height=100)\n", (14141, 14249), False, 'from bokeh.models import ColumnDataSource, HoverTool, Range1d, Plot, LinearAxis, Grid, Paragraph, TapTool, Div\n'), ((14258, 14279), 'lrp.get_lrp_timedata', 'get_lrp_timedata', (['LRP'], {}), '(LRP)\n', (14274, 14279), False, 'from lrp import get_lrp_timedata\n'), ((14410, 14484), 'bokeh.plotting.figure', 'figure', ([], {'title': '"""Network focus per timestep"""', 'plot_width': '(300)', 'plot_height': '(50)'}), "(title='Network focus per timestep', plot_width=300, plot_height=50)\n", (14416, 14484), False, 'from bokeh.plotting import figure, show, output_file\n'), ((611, 639), 'sys.path.insert', 'sys.path.insert', (['(0)', 'src_path'], {}), '(0, src_path)\n', (626, 639), False, 'import sys\n'), ((992, 1027), 'numpy.array', 'np.array', (["rawInput_source.data['w']"], {}), "(rawInput_source.data['w'])\n", (1000, 1027), True, 'import numpy as np\n'), ((1379, 1443), 'bokeh.models.widgets.Select', 'Select', ([], {'title': '"""Gate"""', 'value': '"""IN - what to add on"""', 'options': 'gates'}), "(title='Gate', value='IN - what to add on', options=gates)\n", (1385, 1443), False, 'from bokeh.models.widgets import Select, Slider, Button\n'), ((1858, 1992), 'bokeh.models.widgets.Select', 'Select', ([], {'value': '"""KMeans - selected gate"""', 'title': '"""Select clustering option for neurons:"""', 'width': '(250)', 'options': 'algorithms_neurons'}), "(value='KMeans - selected gate', title=\n 'Select clustering option for neurons:', width=250, options=\n algorithms_neurons)\n", (1864, 1992), False, 'from bokeh.models.widgets import Select, Slider, Button\n'), ((2002, 2130), 'bokeh.models.widgets.Slider', 'Slider', ([], {'title': '"""Number of clusters (use in kmeans,hierarchical clustering)"""', 'value': '(2.0)', 'start': '(2.0)', 'end': '(4.0)', 'step': '(1)', 'width': '(400)'}), "(title='Number of clusters (use in kmeans,hierarchical clustering)',\n value=2.0, start=2.0, end=4.0, step=1, width=400)\n", (2008, 2130), False, 'from bokeh.models.widgets import Select, Slider, Button\n'), ((2285, 2346), 'bokeh.models.widgets.Select', 'Select', ([], {'title': '"""Input review"""', 'value': 'review[0]', 'options': 'review'}), "(title='Input review', value=review[0], options=review)\n", (2291, 2346), False, 'from bokeh.models.widgets import Select, Slider, Button\n'), ((2444, 2536), 'bokeh.models.widgets.Select', 'Select', ([], {'value': '"""PCA"""', 'title': '"""Select projection algorithm:"""', 'width': '(250)', 'options': 'algorithms'}), "(value='PCA', title='Select projection algorithm:', width=250,\n options=algorithms)\n", (2450, 2536), False, 'from bokeh.models.widgets import Select, Slider, Button\n'), ((4087, 4135), 'dim_reduction.project', 'dim_reduction.project', (['x', 'algorithm', 'knn', 'labels'], {}), '(x, algorithm, knn, labels)\n', (4108, 4135), False, 'import dim_reduction\n'), ((9597, 9616), 'pickle.load', 'pickle.load', (['handle'], {}), '(handle)\n', (9608, 9616), False, 'import pickle\n'), ((9805, 9819), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (9816, 9819), False, 'import pickle\n'), ((10075, 10118), 'dim_reduction.get_dimReduction_algorithms', 'dim_reduction.get_dimReduction_algorithms', ([], {}), '()\n', (10116, 10118), False, 'import dim_reduction\n'), ((11339, 11364), 'numpy.array', 'np.array', (['word_embeddings'], {}), '(word_embeddings)\n', (11347, 11364), True, 'import numpy as np\n'), ((15214, 15222), 'bokeh.io.curdoc', 'curdoc', ([], {}), '()\n', (15220, 15222), False, 'from bokeh.io import curdoc\n'), ((1116, 1151), 'data_format.list_duplicates', 'data_format.list_duplicates', (['colors'], {}), '(colors)\n', (1143, 1151), False, 'import data_format\n'), ((7793, 7818), 'numpy.array', 'np.array', (['word_embeddings'], {}), '(word_embeddings)\n', (7801, 7818), True, 'import numpy as np\n'), ((14955, 15125), 'bokeh.layouts.widgetbox', 'widgetbox', (['rawInput_selections', 'gate_selections', 'projection_selections', 'clustering_selections[0]', 'clustering_selections[1]', 'text_0', 'text_set', 'label_banner', 'button'], {}), '(rawInput_selections, gate_selections, projection_selections,\n clustering_selections[0], clustering_selections[1], text_0, text_set,\n label_banner, button)\n', (14964, 15125), False, 'from bokeh.layouts import widgetbox, layout\n'), ((15192, 15200), 'bokeh.io.curdoc', 'curdoc', ([], {}), '()\n', (15198, 15200), False, 'from bokeh.io import curdoc\n'), ((4640, 4665), 'numpy.transpose', 'np.transpose', (['lstm_hidVal'], {}), '(lstm_hidVal)\n', (4652, 4665), True, 'import numpy as np\n'), ((5607, 5741), 'clustering.apply_cluster', 'clustering.apply_cluster', (['x', 'algorithm_cl_neurons', 'n_clusters'], {'review': 'rawInput_selections.value', 'neuronData': 'neuronData', 'mode': '"""nn"""'}), "(x, algorithm_cl_neurons, n_clusters, review=\n rawInput_selections.value, neuronData=neuronData, mode='nn')\n", (5631, 5741), False, 'import clustering\n'), ((4757, 4782), 'numpy.transpose', 'np.transpose', (['lstm_hidVal'], {}), '(lstm_hidVal)\n', (4769, 4782), True, 'import numpy as np\n'), ((6069, 6203), 'clustering.apply_cluster', 'clustering.apply_cluster', (['x', 'algorithm_cl_neurons', 'n_clusters'], {'review': 'rawInput_selections.value', 'neuronData': 'neuronData', 'mode': '"""nn"""'}), "(x, algorithm_cl_neurons, n_clusters, review=\n rawInput_selections.value, neuronData=neuronData, mode='nn')\n", (6093, 6203), False, 'import clustering\n')]
#!/usr/bin/env -S conda run -n tf python import numpy as np import cv2 import onnxruntime import json import requests from PIL import Image from tqdm import tqdm from pathlib import Path from fire import Fire from typing import List, Union, Tuple def preprocess_image( image_path, min_side = 800, max_side = 1333, ): image = read_image_bgr(image_path) image = _preprocess_image(image) image, scale = resize_image( image, min_side = min_side, max_side = max_side ) return image, scale def read_image_bgr(path): """ Read an image in BGR format. Args path: Path to the image. """ if isinstance(path, (str, Path)): image = np.array(Image.open(path).convert("RGB")) else: path = cv2.cvtColor(path, cv2.COLOR_BGR2RGB) image = np.array(Image.fromarray(path)) return image[:, :, ::-1] def _preprocess_image(x, mode = "caffe"): x = x.astype(np.float32) if mode == "tf": x /= 127.5 x -= 1.0 elif mode == "caffe": x -= np.array([103.939, 116.779, 123.68]) return x def compute_resize_scale(image_shape, min_side = 800, max_side = 1333): (rows, cols, _) = image_shape smallest_side = min(rows, cols) scale = min_side / smallest_side largest_side = max(rows, cols) if largest_side * scale > max_side: scale = max_side / largest_side return scale def resize_image(img, min_side = 800, max_side = 1333): scale = compute_resize_scale( img.shape, min_side = min_side, max_side = max_side ) img = cv2.resize(img, None, fx = scale, fy = scale) return img, scale def detect(model, classes, image_path, fast: bool = False) -> List[dict]: image, scale = preprocess_image(image_path) args_o = [s.name for s in model.get_outputs()] args_i = {model.get_inputs()[0].name: image[None, :, :, :]} boxes, labels, scores = model.run(args_o, args_i) boxes, labels, scores = boxes[0], labels[0], scores[0] min_prob = 0.6 boxes /= (image.shape[:2] * 2) results = [ dict( box = box.tolist(), score = score.item(), label = classes[label.item()], path = str(image_path), ) for box, score, label in zip(boxes, scores, labels) if score > min_prob ] return results def download_file(url: str, to: Union[str, Path])->None: to = Path(to) if to.exists(): print('using cached file', to) return tmp = to.with_suffix('.tmp') resp = requests.get(url, stream = True) block_size = 1024*1024 total_length = int(resp.headers.get('content-length', 0)) progress_bar = tqdm(total = total_length, unit = 'iB', unit_scale = True) with tmp.open('wb') as file: for data in resp.iter_content(block_size): progress_bar.update(len(data)) file.write(data) progress_bar.close() if progress_bar.n == total_length: tmp.rename(to) def prepare_weight(model_name: str) -> Tuple[str, List[str]]: root = Path.home() / '.NudeNet' url = 'https://github.com/notAI-tech/NudeNet/releases/download/v0' w = root / f'{model_name}_checkpoint.onnx' wurl = f'{url}/{w.name}' download_file(wurl, w) c = root / f'{model_name}_classes' curl = f'{url}/{c.name}' download_file(curl, c) return str(w), c.read_text().splitlines() def prepare_weights() -> Tuple[str, List[str]]: # prepare_weight('detector_v2_base') return prepare_weight('detector_v2_default') def main(file_or_dir: str = None, out: str = None): ckpt, classes = prepare_weights() model = onnxruntime.InferenceSession( ckpt, providers = [ 'CUDAExecutionProvider', # 'TensorrtExecutionProvider', 'CPUExecutionProvider', ] ) if file_or_dir is None: file_or_dir = 'whats.train/psed.a/3C49E51BF3B55D51B9582CE4735DDE3CDA0523C7-t.jpg' file_or_dir = Path(file_or_dir) if file_or_dir.is_file(): images = [file_or_dir] else: images = [ image for image in file_or_dir.rglob('*.*') if image.suffix.lower() in {'.jpg', '.jpeg', '.png'} ] if not out: out = file_or_dir.name out = Path(out).with_suffix('.json') out.parent.mkdir(parents = True, exist_ok = True) with out.open('w', encoding = 'utf-8') as out: for image_path in tqdm(images): for r in detect(model, classes, image_path): json.dump(r, out, ensure_ascii = False) out.write('\n') if __name__ == '__main__': # run as standalone script: # nu-detect.py --file_or_dir=... --out=... Fire(main)
[ "json.dump", "tqdm.tqdm", "fire.Fire", "pathlib.Path.home", "cv2.cvtColor", "PIL.Image.open", "onnxruntime.InferenceSession", "pathlib.Path", "numpy.array", "requests.get", "PIL.Image.fromarray", "cv2.resize" ]
[((1586, 1627), 'cv2.resize', 'cv2.resize', (['img', 'None'], {'fx': 'scale', 'fy': 'scale'}), '(img, None, fx=scale, fy=scale)\n', (1596, 1627), False, 'import cv2\n'), ((2423, 2431), 'pathlib.Path', 'Path', (['to'], {}), '(to)\n', (2427, 2431), False, 'from pathlib import Path\n'), ((2551, 2581), 'requests.get', 'requests.get', (['url'], {'stream': '(True)'}), '(url, stream=True)\n', (2563, 2581), False, 'import requests\n'), ((2693, 2745), 'tqdm.tqdm', 'tqdm', ([], {'total': 'total_length', 'unit': '"""iB"""', 'unit_scale': '(True)'}), "(total=total_length, unit='iB', unit_scale=True)\n", (2697, 2745), False, 'from tqdm import tqdm\n'), ((3657, 3756), 'onnxruntime.InferenceSession', 'onnxruntime.InferenceSession', (['ckpt'], {'providers': "['CUDAExecutionProvider', 'CPUExecutionProvider']"}), "(ckpt, providers=['CUDAExecutionProvider',\n 'CPUExecutionProvider'])\n", (3685, 3756), False, 'import onnxruntime\n'), ((3992, 4009), 'pathlib.Path', 'Path', (['file_or_dir'], {}), '(file_or_dir)\n', (3996, 4009), False, 'from pathlib import Path\n'), ((4725, 4735), 'fire.Fire', 'Fire', (['main'], {}), '(main)\n', (4729, 4735), False, 'from fire import Fire\n'), ((763, 800), 'cv2.cvtColor', 'cv2.cvtColor', (['path', 'cv2.COLOR_BGR2RGB'], {}), '(path, cv2.COLOR_BGR2RGB)\n', (775, 800), False, 'import cv2\n'), ((3071, 3082), 'pathlib.Path.home', 'Path.home', ([], {}), '()\n', (3080, 3082), False, 'from pathlib import Path\n'), ((4454, 4466), 'tqdm.tqdm', 'tqdm', (['images'], {}), '(images)\n', (4458, 4466), False, 'from tqdm import tqdm\n'), ((826, 847), 'PIL.Image.fromarray', 'Image.fromarray', (['path'], {}), '(path)\n', (841, 847), False, 'from PIL import Image\n'), ((1049, 1085), 'numpy.array', 'np.array', (['[103.939, 116.779, 123.68]'], {}), '([103.939, 116.779, 123.68])\n', (1057, 1085), True, 'import numpy as np\n'), ((4291, 4300), 'pathlib.Path', 'Path', (['out'], {}), '(out)\n', (4295, 4300), False, 'from pathlib import Path\n'), ((4541, 4578), 'json.dump', 'json.dump', (['r', 'out'], {'ensure_ascii': '(False)'}), '(r, out, ensure_ascii=False)\n', (4550, 4578), False, 'import json\n'), ((705, 721), 'PIL.Image.open', 'Image.open', (['path'], {}), '(path)\n', (715, 721), False, 'from PIL import Image\n')]
"""Visualize the Fibonacci sequence in binary. This script plots the Fibonacci sequence in binary form; the idea comes from https://mathworld.wolfram.com/FibonacciNumber.html and https://www.maa.org/editorial/mathgames This script depends on the dataset `fibonacci.dat`, which is hosted on Zenodo: https://zenodo.org/record/5187276/files/fibonacci.dat The instructions for downloading this file are specified in the `Snakefile` at the top level of the repository. """ import numpy as np import matplotlib.pyplot as plt import matplotlib from pathlib import Path # Path to the "data" directory DATA = Path(__file__).parents[1].absolute() / "data" # Read the Fibonacci numbers with open(DATA / "fibonacci.dat", "r") as f: n = [int(l) for l in f.readlines()] # The dimensions of the image we'll plot N = len(n) B = len("{:b}".format(n[-1])) # Cast each number to binary and then to an array of bits b = np.zeros((N, B), dtype=int) b[0] = np.zeros(B) b[1] = np.zeros(B) b[1, -1] = 1 for i in range(2, N): bi = list("{:b}".format(n[i])) b[i, -len(bi) :] = bi # Plot the Fibonacci sequence in binary; idea from # https://mathworld.wolfram.com/FibonacciNumber.html and # https://www.maa.org/editorial/mathgames fig, ax = plt.subplots(figsize=(6, 6)) cmap = matplotlib.colors.ListedColormap(["white", "C0"]) ax.imshow(b, interpolation="nearest", cmap=cmap, aspect="auto") ax.axis("off") fig.savefig("fibonacci.pdf", bbox_inches="tight")
[ "pathlib.Path", "numpy.zeros", "matplotlib.colors.ListedColormap", "matplotlib.pyplot.subplots" ]
[((916, 943), 'numpy.zeros', 'np.zeros', (['(N, B)'], {'dtype': 'int'}), '((N, B), dtype=int)\n', (924, 943), True, 'import numpy as np\n'), ((951, 962), 'numpy.zeros', 'np.zeros', (['B'], {}), '(B)\n', (959, 962), True, 'import numpy as np\n'), ((970, 981), 'numpy.zeros', 'np.zeros', (['B'], {}), '(B)\n', (978, 981), True, 'import numpy as np\n'), ((1239, 1267), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(6, 6)'}), '(figsize=(6, 6))\n', (1251, 1267), True, 'import matplotlib.pyplot as plt\n'), ((1275, 1324), 'matplotlib.colors.ListedColormap', 'matplotlib.colors.ListedColormap', (["['white', 'C0']"], {}), "(['white', 'C0'])\n", (1307, 1324), False, 'import matplotlib\n'), ((609, 623), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (613, 623), False, 'from pathlib import Path\n')]
""" obtain the static field from a set of charges and dipoles at polarizable points. """ import numpy from .tensor import T from .mulmom import MulMom as M def get_static_field_from_file(potential, filename): f = open(filename, 'r') field = [] for i, line in enumerate(f): d = line.split() if i == 0: continue else: field.append(list(map(float, d))) f.close() return numpy.ravel(field) def get_static_field(potential, **kwargs): """ """ verbose = kwargs.get('verbose', False) filename = kwargs.pop('filename', None) F_static = numpy.zeros(3 * potential.npols) if filename is not None: if verbose: print("Loading static field from file '{0}'".format(filename)) F_static = get_static_field_from_file(potential, filename) else: try: from .field import static_field ex = numpy.array([potential.exclusion_list[k] for k in range(len(potential.exclusion_list))]) q = numpy.zeros(potential.nsites) d = numpy.zeros((potential.nsites,3)) multipoles = potential.multipoles if 0 in multipoles.keys(): q = numpy.array([q[0] for q in multipoles[0]]) if 1 in multipoles.keys(): d = numpy.array([d for d in multipoles[1]]) F_static = static_field(potential.npols, potential.coordinates, potential.has_alpha, ex, q, d) except ModuleNotFoundError: if verbose: print("INFO: static field calculated using (slow) python version.") offset = 0 for isite in range(potential.nsites): itensor = potential.has_alpha[isite] is_polarizable_point = (itensor > -1) Ri = potential.coordinates[isite] if is_polarizable_point: iexclusion_list = potential.exclusion_list[isite] for jsite in range(potential.nsites): if jsite == isite: continue if jsite in iexclusion_list: continue jtensor = potential.has_alpha[jsite] js_polarizable_point = (jtensor > -1) Rj = potential.coordinates[jsite] dRij = Rj - Ri T1 = T(1, dRij) try: M0 = M(*potential.multipoles[0][jsite]) except KeyError: F0 = numpy.zeros(3) else: F0 = numpy.array(M0 * T1).ravel() finally: F_static[offset:offset + 3] -= F0 T2 = T(2, dRij) try: M1 = M(*potential.multipoles[1][jsite]) except KeyError: F1 = numpy.zeros(3) else: F1 = numpy.array(M1 * T2) finally: F_static[offset:offset + 3] += F1 T3 = T(3, dRij) try: M2 = M(*potential.multipoles[2][jsite]) except KeyError: F2 = numpy.zeros(3) else: F2 = numpy.array(M2 * T3) finally: F_static[offset:offset + 3] += F2 offset += 3 return F_static
[ "numpy.array", "numpy.zeros", "numpy.ravel" ]
[((441, 459), 'numpy.ravel', 'numpy.ravel', (['field'], {}), '(field)\n', (452, 459), False, 'import numpy\n'), ((625, 657), 'numpy.zeros', 'numpy.zeros', (['(3 * potential.npols)'], {}), '(3 * potential.npols)\n', (636, 657), False, 'import numpy\n'), ((1041, 1070), 'numpy.zeros', 'numpy.zeros', (['potential.nsites'], {}), '(potential.nsites)\n', (1052, 1070), False, 'import numpy\n'), ((1087, 1121), 'numpy.zeros', 'numpy.zeros', (['(potential.nsites, 3)'], {}), '((potential.nsites, 3))\n', (1098, 1121), False, 'import numpy\n'), ((1227, 1269), 'numpy.array', 'numpy.array', (['[q[0] for q in multipoles[0]]'], {}), '([q[0] for q in multipoles[0]])\n', (1238, 1269), False, 'import numpy\n'), ((1329, 1368), 'numpy.array', 'numpy.array', (['[d for d in multipoles[1]]'], {}), '([d for d in multipoles[1]])\n', (1340, 1368), False, 'import numpy\n'), ((3118, 3138), 'numpy.array', 'numpy.array', (['(M1 * T2)'], {}), '(M1 * T2)\n', (3129, 3138), False, 'import numpy\n'), ((3524, 3544), 'numpy.array', 'numpy.array', (['(M2 * T3)'], {}), '(M2 * T3)\n', (3535, 3544), False, 'import numpy\n'), ((2626, 2640), 'numpy.zeros', 'numpy.zeros', (['(3)'], {}), '(3)\n', (2637, 2640), False, 'import numpy\n'), ((3040, 3054), 'numpy.zeros', 'numpy.zeros', (['(3)'], {}), '(3)\n', (3051, 3054), False, 'import numpy\n'), ((3446, 3460), 'numpy.zeros', 'numpy.zeros', (['(3)'], {}), '(3)\n', (3457, 3460), False, 'import numpy\n'), ((2704, 2724), 'numpy.array', 'numpy.array', (['(M0 * T1)'], {}), '(M0 * T1)\n', (2715, 2724), False, 'import numpy\n')]
import sys import os import json import numpy as np import glob import argparse import pdb import f0dl_bernox def compute_f0_shift_curve(expt_dict, filter_key, filter_value, f0_min=80.0, f0_max=1e3): ''' ''' # Identify trials where filter_key = filter_value and stimulus is in f0 range indexes = expt_dict[filter_key] == filter_value indexes = np.logical_and(indexes, np.logical_and(expt_dict['f0'] >= f0_min, expt_dict['f0'] <= f0_max)) # Compute f0 shifts f0_shift = expt_dict['f0_shift'][indexes] f0_pred_shift = (expt_dict['f0_pred'][indexes] - expt_dict['f0'][indexes]) / expt_dict['f0'][indexes] # For each unique f0 shift, compute the mean, median, stddev predicted f0 shift f0_shift_unique = np.unique(f0_shift) f0_pred_shift_mean = np.zeros_like(f0_shift_unique) f0_pred_shift_median = np.zeros_like(f0_shift_unique) f0_pred_shift_stddev = np.zeros_like(f0_shift_unique) for idx, f0_shift_value in enumerate(f0_shift_unique): current_value_indexes = f0_shift == f0_shift_value f0_pred_shift_mean[idx] = np.mean(f0_pred_shift[current_value_indexes]) f0_pred_shift_median[idx] = np.median(f0_pred_shift[current_value_indexes]) f0_pred_shift_stddev[idx] = np.std(f0_pred_shift[current_value_indexes]) # Return results in dictionary (units converted to percent) sub_results_dict = { 'f0_shift': 100.0 * f0_shift_unique, 'f0_pred_shift_mean': 100.0 * f0_pred_shift_mean, 'f0_pred_shift_median': 100.0 * f0_pred_shift_median, 'f0_pred_shift_stddev': 100.0 * f0_pred_shift_stddev, } return sub_results_dict def run_f0experiment_freq_shifted(json_fn, filter_key='spectral_envelope_centered_harmonic', f0_label_pred_key='f0_label:labels_pred', f0_label_true_key='f0_label:labels_true', f0_label_prob_key='f0_label:probs_out', kwargs_f0_prior={}, f0_min=None, f0_max=None): ''' ''' # Load JSON file of model predictions into `expt_dict` metadata_key_list = [ 'f0', 'f0_shift', 'spectral_envelope_centered_harmonic', 'spectral_envelope_bandwidth_in_harmonics', ] expt_dict = f0dl_bernox.load_f0_expt_dict_from_json(json_fn, f0_label_true_key=f0_label_true_key, f0_label_pred_key=f0_label_pred_key, f0_label_prob_key=f0_label_prob_key, metadata_key_list=metadata_key_list) expt_dict = f0dl_bernox.add_f0_estimates_to_expt_dict(expt_dict, f0_label_true_key=f0_label_true_key, f0_label_pred_key=f0_label_pred_key, kwargs_f0_prior=kwargs_f0_prior) # Initialize dictionary to hold psychophysical results if f0_min is None: f0_min = np.min(expt_dict['f0']) if f0_max is None: f0_max = np.max(expt_dict['f0']) results_dict = {filter_key:{}, 'f0_min':f0_min, 'f0_max':f0_max} for filter_value in np.unique(expt_dict[filter_key]): results_dict[filter_key][int(filter_value)] = compute_f0_shift_curve(expt_dict, filter_key, filter_value, f0_min=f0_min, f0_max=f0_max) # Return dictionary of psychophysical experiment results return results_dict def main(json_eval_fn, json_results_dict_fn=None, save_results_to_file=False, filter_key='spectral_envelope_centered_harmonic', f0_label_pred_key='f0_label:labels_pred', f0_label_true_key='f0_label:labels_true', f0_label_prob_key='f0_label:probs_out', kwargs_f0_prior={}, f0_min=None, f0_max=None): ''' ''' # Run the Moore and Moore (2003) freq-shifted complexes experiment; results stored in results_dict results_dict = run_f0experiment_freq_shifted(json_eval_fn, filter_key=filter_key, f0_label_pred_key=f0_label_pred_key, f0_label_true_key=f0_label_true_key, f0_label_prob_key=f0_label_prob_key, kwargs_f0_prior=kwargs_f0_prior, f0_min=f0_min, f0_max=f0_max) results_dict['json_eval_fn'] = json_eval_fn results_dict['kwargs_f0_prior'] = kwargs_f0_prior # If specified, save results_dict to file if save_results_to_file: # Check filename for results_dict if json_results_dict_fn is None: json_results_dict_fn = json_eval_fn.replace('.json', '_results_dict.json') assert not json_results_dict_fn == json_eval_fn, "json_results_dict_fn must not overwrite json_eval_fn" # Define helper class to JSON serialize the results_dict class NumpyEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, np.ndarray): return obj.tolist() if isinstance(obj, np.int64): return int(obj) return json.JSONEncoder.default(self, obj) # Write results_dict to json_results_dict_fn with open(json_results_dict_fn, 'w') as f: json.dump(results_dict, f, cls=NumpyEncoder) print('[END] wrote results_dict to {}'.format(json_results_dict_fn)) return results_dict if __name__ == "__main__": ''' ''' parser = argparse.ArgumentParser(description="run Moore and Moore (2003) freq-shifted complexes experiment") parser.add_argument('-r', '--regex_json_eval_fn', type=str, default=None, help='regex that globs list of json_eval_fn to process') parser.add_argument('-j', '--job_idx', type=int, default=None, help='job index used to select json_eval_fn from list') parser.add_argument('-p', '--prior_range_in_octaves', type=float, default=0, help='sets octave_range in `kwargs_f0_prior`: [#, #]') parsed_args_dict = vars(parser.parse_args()) assert parsed_args_dict['regex_json_eval_fn'] is not None, "regex_json_eval_fn is a required argument" assert parsed_args_dict['job_idx'] is not None, "job_idx is a required argument" list_json_eval_fn = sorted(glob.glob(parsed_args_dict['regex_json_eval_fn'])) json_eval_fn = list_json_eval_fn[parsed_args_dict['job_idx']] print('Processing file {} of {}'.format(parsed_args_dict['job_idx'], len(list_json_eval_fn))) print('Processing file: {}'.format(json_eval_fn)) if parsed_args_dict['prior_range_in_octaves'] > 0: kwargs_f0_prior = { 'f0_label_prob_key': 'f0_label:probs_out', 'f0_prior_ref_key': 'f0', 'octave_range': [ -parsed_args_dict['prior_range_in_octaves'], parsed_args_dict['prior_range_in_octaves'] ], } else: kwargs_f0_prior = {} main(json_eval_fn, save_results_to_file=True, kwargs_f0_prior=kwargs_f0_prior)
[ "json.dump", "numpy.zeros_like", "f0dl_bernox.add_f0_estimates_to_expt_dict", "argparse.ArgumentParser", "numpy.logical_and", "numpy.median", "numpy.std", "numpy.min", "numpy.mean", "f0dl_bernox.load_f0_expt_dict_from_json", "numpy.max", "glob.glob", "json.JSONEncoder.default", "numpy.unique" ]
[((744, 763), 'numpy.unique', 'np.unique', (['f0_shift'], {}), '(f0_shift)\n', (753, 763), True, 'import numpy as np\n'), ((789, 819), 'numpy.zeros_like', 'np.zeros_like', (['f0_shift_unique'], {}), '(f0_shift_unique)\n', (802, 819), True, 'import numpy as np\n'), ((847, 877), 'numpy.zeros_like', 'np.zeros_like', (['f0_shift_unique'], {}), '(f0_shift_unique)\n', (860, 877), True, 'import numpy as np\n'), ((905, 935), 'numpy.zeros_like', 'np.zeros_like', (['f0_shift_unique'], {}), '(f0_shift_unique)\n', (918, 935), True, 'import numpy as np\n'), ((2375, 2580), 'f0dl_bernox.load_f0_expt_dict_from_json', 'f0dl_bernox.load_f0_expt_dict_from_json', (['json_fn'], {'f0_label_true_key': 'f0_label_true_key', 'f0_label_pred_key': 'f0_label_pred_key', 'f0_label_prob_key': 'f0_label_prob_key', 'metadata_key_list': 'metadata_key_list'}), '(json_fn, f0_label_true_key=\n f0_label_true_key, f0_label_pred_key=f0_label_pred_key,\n f0_label_prob_key=f0_label_prob_key, metadata_key_list=metadata_key_list)\n', (2414, 2580), False, 'import f0dl_bernox\n'), ((2812, 2981), 'f0dl_bernox.add_f0_estimates_to_expt_dict', 'f0dl_bernox.add_f0_estimates_to_expt_dict', (['expt_dict'], {'f0_label_true_key': 'f0_label_true_key', 'f0_label_pred_key': 'f0_label_pred_key', 'kwargs_f0_prior': 'kwargs_f0_prior'}), '(expt_dict, f0_label_true_key=\n f0_label_true_key, f0_label_pred_key=f0_label_pred_key, kwargs_f0_prior\n =kwargs_f0_prior)\n', (2853, 2981), False, 'import f0dl_bernox\n'), ((3410, 3442), 'numpy.unique', 'np.unique', (['expt_dict[filter_key]'], {}), '(expt_dict[filter_key])\n', (3419, 3442), True, 'import numpy as np\n'), ((6172, 6276), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""run Moore and Moore (2003) freq-shifted complexes experiment"""'}), "(description=\n 'run Moore and Moore (2003) freq-shifted complexes experiment')\n", (6195, 6276), False, 'import argparse\n'), ((391, 459), 'numpy.logical_and', 'np.logical_and', (["(expt_dict['f0'] >= f0_min)", "(expt_dict['f0'] <= f0_max)"], {}), "(expt_dict['f0'] >= f0_min, expt_dict['f0'] <= f0_max)\n", (405, 459), True, 'import numpy as np\n'), ((1088, 1133), 'numpy.mean', 'np.mean', (['f0_pred_shift[current_value_indexes]'], {}), '(f0_pred_shift[current_value_indexes])\n', (1095, 1133), True, 'import numpy as np\n'), ((1170, 1217), 'numpy.median', 'np.median', (['f0_pred_shift[current_value_indexes]'], {}), '(f0_pred_shift[current_value_indexes])\n', (1179, 1217), True, 'import numpy as np\n'), ((1254, 1298), 'numpy.std', 'np.std', (['f0_pred_shift[current_value_indexes]'], {}), '(f0_pred_shift[current_value_indexes])\n', (1260, 1298), True, 'import numpy as np\n'), ((3237, 3260), 'numpy.min', 'np.min', (["expt_dict['f0']"], {}), "(expt_dict['f0'])\n", (3243, 3260), True, 'import numpy as np\n'), ((3293, 3316), 'numpy.max', 'np.max', (["expt_dict['f0']"], {}), "(expt_dict['f0'])\n", (3299, 3316), True, 'import numpy as np\n'), ((7010, 7059), 'glob.glob', 'glob.glob', (["parsed_args_dict['regex_json_eval_fn']"], {}), "(parsed_args_dict['regex_json_eval_fn'])\n", (7019, 7059), False, 'import glob\n'), ((5968, 6012), 'json.dump', 'json.dump', (['results_dict', 'f'], {'cls': 'NumpyEncoder'}), '(results_dict, f, cls=NumpyEncoder)\n', (5977, 6012), False, 'import json\n'), ((5828, 5863), 'json.JSONEncoder.default', 'json.JSONEncoder.default', (['self', 'obj'], {}), '(self, obj)\n', (5852, 5863), False, 'import json\n')]
""" Base Class for Optimization Algorithms Implements problem instance loading, heuristic initialization function, and data plotting functions. """ # ---------------------------------------------------------- import tsplib95 as tsp from numpy.random import default_rng # plotting import matplotlib import matplotlib.pyplot as plt import matplotlib.lines as mlines from matplotlib import cm matplotlib.use("pgf") matplotlib.rcParams.update( { "pgf.texsystem": "pdflatex", "font.family": "serif", "text.usetex": True, "pgf.rcfonts": False, } ) from pathlib import Path from candidate_solution import CandidateSolution, weight # from agent import distance # ------------------------------------------------------------------------------ class OptimisationBase: """ Abstract base class for Optimisation Algorithms """ # Initialization and built-in function overriding def __init__(self, parameters, output_path): self.output_path = output_path self.size = parameters["size"] self.max_iterations = parameters["max_iterations"] self.heuristic_init = parameters["heuristic_init"] self.load_problem(parameters["problem_filename"]) self.iteration = 0 self.memory = [] self.quality_by_iteration = [] self.quality_overall = [] self.run_stats = {**parameters} def __repr__(self): return "<Optimization size:%s limit:%s problem:%s>" % ( self.size, self.max_iterations, self.problem.name, ) def __str__(self): return "Optimization: population size %s, limit %s, problem %s" % ( self.size, self.max_iterations, self.problem.name, ) def get_heuristic_tour(self): def d(a, b): return self.problem.get_weight(a, b) rng = default_rng() nodes = list(self.problem.get_nodes()) first = rng.choice(nodes) nodes.remove(first) tour = [] tour.append(first) while nodes: next_node = min([(node, d(tour[-1], node)) for node in nodes]) tour.append(next_node[0]) nodes.remove(next_node[0]) return tour def load_problem(self, problem_filename): """ Load problem from file, as well as opt.tour if available """ self.problem = tsp.load(problem_filename) CandidateSolution.set_problem(self.problem) self.optimum = None opt_tour = problem_filename[:-4] + ".opt.tour" try: self.optimum = CandidateSolution(tsp.load(opt_tour).tours[0]) except FileNotFoundError as err: print("FileNotFoundError: {0}".format(err)) else: pass # Output Methods ----------------------------------------------------------- def print_best(self): # make figure, axes plt.style.use("ggplot") plt.tight_layout() gs_kw = dict(width_ratios=[3, 2], height_ratios=[1]) fig, (ax1, ax2) = plt.subplots( figsize=(9, 4.5), ncols=2, nrows=1, gridspec_kw=gs_kw ) ax1.set(title="Optimisation Result", xlabel="x", ylabel="y") # ax1.set_aspect('equal', 'box') ax1.set_aspect("equal") ax2.set(title="Quality development", xlabel="iteration", ylabel="tour length") # AX1 Best Solution vs. Optimal Solution # Nodes xs, ys = zip(*self.problem.node_coords.values()) labels = self.problem.node_coords.keys() ax1.scatter(xs, ys, marker="o", color="dimgrey", zorder=10) for label, x, y in zip(labels, xs, ys): ax1.annotate(label, xy=(x, y), zorder=20) # xs,ys hold data for city coordinates xs, ys = zip(*self.problem.node_coords.values()) labels = self.problem.node_coords.keys() # plots best tour in self.memory best_tour = min(self.memory, key=lambda p: p.weight).tour xt = [] yt = [] for p in best_tour: coords = self.problem.node_coords[p] xt.append(coords[0]) yt.append(coords[1]) xt.append(xt[0]) yt.append(yt[0]) ax1.plot(xt, yt, alpha=1.0, color="darkred", linestyle="dashed", zorder=2) # plots optimum tour if given if self.optimum is not None: opt_tour = self.optimum.tour xt = [] yt = [] for p in opt_tour: coords = self.problem.node_coords[p] xt.append(coords[0]) yt.append(coords[1]) xt.append(xt[0]) yt.append(yt[0]) ax1.plot(xt, yt, alpha=0.4, color="yellowgreen", linewidth=5, zorder=1) # Labels redline = mlines.Line2D( [], [], color="darkred", linestyle="dashed", label="Overall Best Tour" ) yellowline = mlines.Line2D( [], [], color="yellowgreen", linewidth="5", label="Known Optimal Tour" ) grey_dot = mlines.Line2D( [], [], color="dimgrey", marker="o", linestyle="", label="Node" ) ax1.legend( handles=[redline, yellowline, grey_dot], loc="upper center", bbox_to_anchor=(0.5, -0.1), shadow=True, ncol=3, ) # AX2 - Stats ymax = max(max(self.quality_overall), max(self.quality_by_iteration)) if self.optimum is not None: ymin = self.optimum.weight else: ymin = min(min(self.quality_overall), min(self.quality_by_iteration)) margin = (ymax - ymin) * 0.5 ax2.set( xlim=(-0.5, self.max_iterations + 0.5), ylim=(ymin - margin, ymax + margin) ) iterations = list(range(0, self.iteration + 1)) ax2.plot(iterations, self.quality_by_iteration, marker="", color="red") ax2.plot(iterations, self.quality_overall, marker="", color="grey") if self.optimum is not None: ax2.axhline(y=self.optimum.weight, color="yellowgreen", linewidth=2) # Legend red_dot = mlines.Line2D([], [], color="red", marker="", label="Iteration best") grey_dot = mlines.Line2D([], [], color="grey", marker="", label="Overall best") ax2_handles = [red_dot, grey_dot] if self.optimum is not None: baseline = mlines.Line2D( [], [], color="yellowgreen", linewidth=2, label="Known Optimum" ) ax2_handles.append(baseline) ax2.legend( handles=ax2_handles, loc="upper center", bbox_to_anchor=(0.5, -0.1), shadow=True, ncol=2, ) fig.tight_layout() # Saving to specific directory and file out_path = "output/{}".format(self.output_path) Path(out_path).mkdir(parents=True, exist_ok=True) plt.savefig("{}/best.png".format(out_path), format="png") plt.savefig("{}/best.pgf".format(out_path), format="pgf") plt.close(fig) def print_map_only(self): # make figure, axes plt.style.use("ggplot") plt.tight_layout() gs_kw = dict(width_ratios=[1], height_ratios=[1]) fig, (ax1) = plt.subplots( figsize=(4.4, 5.9), ncols=1, nrows=1, gridspec_kw=gs_kw ) titel = f"eil51 - Iteration {self.iteration}" ax1.set(title=titel, xlabel="x", ylabel="y") ax1.set_aspect("equal") # AX1 Best Solution vs. Optimal Solution # Nodes xs, ys = zip(*self.problem.node_coords.values()) # labels = self.problem.node_coords.keys() ax1.scatter(xs, ys, marker="o", color="dimgrey", zorder=10) # for label, x, y in zip(labels, xs, ys): # ax1.annotate(label, xy=(x, y), zorder=20) # xs,ys hold data for city coordinates xs, ys = zip(*self.problem.node_coords.values()) labels = self.problem.node_coords.keys() # plots best tour in self.memory best_tour = min(self.memory, key=lambda p: p.weight).tour xt = [] yt = [] for p in best_tour: coords = self.problem.node_coords[p] xt.append(coords[0]) yt.append(coords[1]) xt.append(xt[0]) yt.append(yt[0]) ax1.plot(xt, yt, alpha=1.0, color="C1", linestyle="dashed", zorder=2) # plots optimum tour if given if self.optimum is not None: opt_tour = self.optimum.tour xt = [] yt = [] for p in opt_tour: coords = self.problem.node_coords[p] xt.append(coords[0]) yt.append(coords[1]) xt.append(xt[0]) yt.append(yt[0]) ax1.plot(xt, yt, alpha=0.4, color="C4", linewidth=5, zorder=1) # Labels redline = mlines.Line2D( [], [], color="C1", linestyle="dashed", label="Overall Best Tour" ) yellowline = mlines.Line2D( [], [], color="C4", linewidth="5", label="Known Optimal Tour" ) grey_dot = mlines.Line2D( [], [], color="dimgrey", marker="o", linestyle="", label="City" ) ax1.legend( handles=[redline, yellowline, grey_dot], loc="upper center", bbox_to_anchor=(0.5, -0.1), shadow=True, ncol=1, ) fig.tight_layout(rect=[0, 0, 1, 1]) # Saving to specific directory and file out_path = "output/{}".format(self.output_path) Path(out_path).mkdir(parents=True, exist_ok=True) plt.savefig("{}/best_{}.png".format(out_path, self.iteration), format="png") plt.savefig("{}/best_{}.pgf".format(out_path, self.iteration), format="pgf") plt.close(fig) def print_stats_only(self): # make figure, axes plt.style.use("ggplot") plt.tight_layout() gs_kw = dict(width_ratios=[1], height_ratios=[1]) fig, (ax2) = plt.subplots(figsize=(9, 4.5), ncols=1, nrows=1, gridspec_kw=gs_kw) ax2.set(title="Quality development", xlabel="iteration", ylabel="tour length") ymax = max(max(self.quality_overall), max(self.quality_by_iteration)) if self.optimum is not None: ymin = self.optimum.weight else: ymin = min(min(self.quality_overall), min(self.quality_by_iteration)) margin = (ymax - ymin) * 0.5 ax2.set( xlim=(-0.5, self.max_iterations + 0.5), ylim=(ymin - margin, ymax + margin) ) iterations = list(range(0, self.iteration + 1)) ax2.plot(iterations, self.quality_by_iteration, marker="", color="red") ax2.plot(iterations, self.quality_overall, marker="", color="grey") if self.optimum is not None: ax2.axhline(y=self.optimum.weight, color="yellowgreen", linewidth=2) # Legend red_dot = mlines.Line2D([], [], color="red", marker="", label="Iteration best") grey_dot = mlines.Line2D([], [], color="grey", marker="", label="Overall best") ax2_handles = [red_dot, grey_dot] if self.optimum is not None: baseline = mlines.Line2D( [], [], color="yellowgreen", linewidth=2, label="Known Optimum" ) ax2_handles.append(baseline) ax2.legend(handles=ax2_handles, loc="upper right", shadow=True) # Saving to specific directory and file out_path = "output/{}".format(self.output_path) Path(out_path).mkdir(parents=True, exist_ok=True) plt.savefig("{}/stats.png".format(out_path), format="png") plt.savefig("{}/stats.pgf".format(out_path), format="pgf") plt.close(fig) def print_state(self, population): """ Print State of Optimization with Coordinate System of tours and stats, default: only latest addition to the memory is plottet a population given by list of tours is additionally plottet if provided """ # make figure, axes # plt.style.use('seaborn-whitegrid') plt.style.use("ggplot") gs_kw = dict(width_ratios=[3, 2], height_ratios=[1]) fig, (ax1, ax2) = plt.subplots( figsize=(9, 4.5), ncols=2, nrows=1, gridspec_kw=gs_kw ) plt.tight_layout() ax1.set(title="Optimisation State", xlabel="x", ylabel="y") ax1.set_aspect("equal") ax2.set(title="Quality development", xlabel="iteration", ylabel="tour length") # AX1 - Coordinate System # Nodes xs, ys = zip(*self.problem.node_coords.values()) labels = self.problem.node_coords.keys() ax1.scatter(xs, ys, marker="o", color="dimgrey", zorder=10) for label, x, y in zip(labels, xs, ys): ax1.annotate(label, xy=(x, y), zorder=20) # Tours (in current population) for _ in range(0, len(population)): for agent in population: xt = [] yt = [] for p in agent.tour: coords = self.problem.node_coords[p] xt.append(coords[0]) yt.append(coords[1]) xt.append(xt[0]) yt.append(yt[0]) ax1.plot(xt, yt, alpha=0.1, color="goldenrod", linewidth=5) # Best Tour in Population best_agent = self.memory[self.iteration] best_tour = best_agent.tour xt = [] yt = [] for p in best_tour: coords = self.problem.node_coords[p] xt.append(coords[0]) yt.append(coords[1]) xt.append(xt[0]) yt.append(yt[0]) ax1.plot(xt, yt, alpha=1.0, color="darkred", linestyle="dashed") # LABELS redline = mlines.Line2D( [], [], color="darkred", linestyle="dashed", label="Best Tour in Iteration" ) yellowline = mlines.Line2D( [], [], color="goldenrod", linewidth="5", label="Other Tours in Iteration" ) grey_dot = mlines.Line2D( [], [], color="dimgrey", marker="o", linestyle="", label="Node" ) ax1.legend( handles=[grey_dot, yellowline, redline], loc="upper center", bbox_to_anchor=(0.5, -0.1), shadow=True, ncol=3, ) # AX2 - Stats ax2.set(xlim=(0 - 0.5, self.max_iterations + 0.5)) iterations = list(range(0, self.iteration + 1)) ax2.plot( iterations, self.quality_by_iteration, marker="o", color="red", linestyle="" ) ax2.plot( iterations, self.quality_overall, marker="x", color="grey", linestyle="" ) # LABELS red_dot = mlines.Line2D( [], [], color="red", marker="o", label="Iteration best", linestyle="" ) grey_dot = mlines.Line2D( [], [], color="grey", marker="x", label="Overall best", linestyle="" ) ax2.legend( handles=[red_dot, grey_dot], loc="upper center", bbox_to_anchor=(0.5, -0.1), shadow=True, ncol=2, ) fig.tight_layout() # Saving to specific directory and file out_path = "output/{}".format(self.output_path) Path(out_path).mkdir(parents=True, exist_ok=True) plt.savefig( "{}/iteration_{:03d}.png".format(out_path, self.iteration), format="png" ) plt.savefig( "{}/iteration_{:03d}.pgf".format(out_path, self.iteration), format="pgf" ) plt.close(fig)
[ "matplotlib.lines.Line2D", "matplotlib.pyplot.close", "matplotlib.rcParams.update", "tsplib95.load", "matplotlib.pyplot.subplots", "numpy.random.default_rng", "candidate_solution.CandidateSolution.set_problem", "matplotlib.pyplot.style.use", "matplotlib.use", "pathlib.Path", "matplotlib.pyplot.tight_layout" ]
[((396, 417), 'matplotlib.use', 'matplotlib.use', (['"""pgf"""'], {}), "('pgf')\n", (410, 417), False, 'import matplotlib\n'), ((418, 546), 'matplotlib.rcParams.update', 'matplotlib.rcParams.update', (["{'pgf.texsystem': 'pdflatex', 'font.family': 'serif', 'text.usetex': True,\n 'pgf.rcfonts': False}"], {}), "({'pgf.texsystem': 'pdflatex', 'font.family':\n 'serif', 'text.usetex': True, 'pgf.rcfonts': False})\n", (444, 546), False, 'import matplotlib\n'), ((1908, 1921), 'numpy.random.default_rng', 'default_rng', ([], {}), '()\n', (1919, 1921), False, 'from numpy.random import default_rng\n'), ((2428, 2454), 'tsplib95.load', 'tsp.load', (['problem_filename'], {}), '(problem_filename)\n', (2436, 2454), True, 'import tsplib95 as tsp\n'), ((2463, 2506), 'candidate_solution.CandidateSolution.set_problem', 'CandidateSolution.set_problem', (['self.problem'], {}), '(self.problem)\n', (2492, 2506), False, 'from candidate_solution import CandidateSolution, weight\n'), ((2951, 2974), 'matplotlib.pyplot.style.use', 'plt.style.use', (['"""ggplot"""'], {}), "('ggplot')\n", (2964, 2974), True, 'import matplotlib.pyplot as plt\n'), ((2983, 3001), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (2999, 3001), True, 'import matplotlib.pyplot as plt\n'), ((3090, 3157), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(9, 4.5)', 'ncols': '(2)', 'nrows': '(1)', 'gridspec_kw': 'gs_kw'}), '(figsize=(9, 4.5), ncols=2, nrows=1, gridspec_kw=gs_kw)\n', (3102, 3157), True, 'import matplotlib.pyplot as plt\n'), ((4815, 4905), 'matplotlib.lines.Line2D', 'mlines.Line2D', (['[]', '[]'], {'color': '"""darkred"""', 'linestyle': '"""dashed"""', 'label': '"""Overall Best Tour"""'}), "([], [], color='darkred', linestyle='dashed', label=\n 'Overall Best Tour')\n", (4828, 4905), True, 'import matplotlib.lines as mlines\n'), ((4944, 5034), 'matplotlib.lines.Line2D', 'mlines.Line2D', (['[]', '[]'], {'color': '"""yellowgreen"""', 'linewidth': '"""5"""', 'label': '"""Known Optimal Tour"""'}), "([], [], color='yellowgreen', linewidth='5', label=\n 'Known Optimal Tour')\n", (4957, 5034), True, 'import matplotlib.lines as mlines\n'), ((5071, 5149), 'matplotlib.lines.Line2D', 'mlines.Line2D', (['[]', '[]'], {'color': '"""dimgrey"""', 'marker': '"""o"""', 'linestyle': '""""""', 'label': '"""Node"""'}), "([], [], color='dimgrey', marker='o', linestyle='', label='Node')\n", (5084, 5149), True, 'import matplotlib.lines as mlines\n'), ((6167, 6236), 'matplotlib.lines.Line2D', 'mlines.Line2D', (['[]', '[]'], {'color': '"""red"""', 'marker': '""""""', 'label': '"""Iteration best"""'}), "([], [], color='red', marker='', label='Iteration best')\n", (6180, 6236), True, 'import matplotlib.lines as mlines\n'), ((6256, 6324), 'matplotlib.lines.Line2D', 'mlines.Line2D', (['[]', '[]'], {'color': '"""grey"""', 'marker': '""""""', 'label': '"""Overall best"""'}), "([], [], color='grey', marker='', label='Overall best')\n", (6269, 6324), True, 'import matplotlib.lines as mlines\n'), ((7092, 7106), 'matplotlib.pyplot.close', 'plt.close', (['fig'], {}), '(fig)\n', (7101, 7106), True, 'import matplotlib.pyplot as plt\n'), ((7175, 7198), 'matplotlib.pyplot.style.use', 'plt.style.use', (['"""ggplot"""'], {}), "('ggplot')\n", (7188, 7198), True, 'import matplotlib.pyplot as plt\n'), ((7207, 7225), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (7223, 7225), True, 'import matplotlib.pyplot as plt\n'), ((7306, 7375), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(4.4, 5.9)', 'ncols': '(1)', 'nrows': '(1)', 'gridspec_kw': 'gs_kw'}), '(figsize=(4.4, 5.9), ncols=1, nrows=1, gridspec_kw=gs_kw)\n', (7318, 7375), True, 'import matplotlib.pyplot as plt\n'), ((8935, 9020), 'matplotlib.lines.Line2D', 'mlines.Line2D', (['[]', '[]'], {'color': '"""C1"""', 'linestyle': '"""dashed"""', 'label': '"""Overall Best Tour"""'}), "([], [], color='C1', linestyle='dashed', label='Overall Best Tour'\n )\n", (8948, 9020), True, 'import matplotlib.lines as mlines\n'), ((9059, 9135), 'matplotlib.lines.Line2D', 'mlines.Line2D', (['[]', '[]'], {'color': '"""C4"""', 'linewidth': '"""5"""', 'label': '"""Known Optimal Tour"""'}), "([], [], color='C4', linewidth='5', label='Known Optimal Tour')\n", (9072, 9135), True, 'import matplotlib.lines as mlines\n'), ((9177, 9255), 'matplotlib.lines.Line2D', 'mlines.Line2D', (['[]', '[]'], {'color': '"""dimgrey"""', 'marker': '"""o"""', 'linestyle': '""""""', 'label': '"""City"""'}), "([], [], color='dimgrey', marker='o', linestyle='', label='City')\n", (9190, 9255), True, 'import matplotlib.lines as mlines\n'), ((9864, 9878), 'matplotlib.pyplot.close', 'plt.close', (['fig'], {}), '(fig)\n', (9873, 9878), True, 'import matplotlib.pyplot as plt\n'), ((9949, 9972), 'matplotlib.pyplot.style.use', 'plt.style.use', (['"""ggplot"""'], {}), "('ggplot')\n", (9962, 9972), True, 'import matplotlib.pyplot as plt\n'), ((9981, 9999), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (9997, 9999), True, 'import matplotlib.pyplot as plt\n'), ((10080, 10147), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(9, 4.5)', 'ncols': '(1)', 'nrows': '(1)', 'gridspec_kw': 'gs_kw'}), '(figsize=(9, 4.5), ncols=1, nrows=1, gridspec_kw=gs_kw)\n', (10092, 10147), True, 'import matplotlib.pyplot as plt\n'), ((11009, 11078), 'matplotlib.lines.Line2D', 'mlines.Line2D', (['[]', '[]'], {'color': '"""red"""', 'marker': '""""""', 'label': '"""Iteration best"""'}), "([], [], color='red', marker='', label='Iteration best')\n", (11022, 11078), True, 'import matplotlib.lines as mlines\n'), ((11098, 11166), 'matplotlib.lines.Line2D', 'mlines.Line2D', (['[]', '[]'], {'color': '"""grey"""', 'marker': '""""""', 'label': '"""Overall best"""'}), "([], [], color='grey', marker='', label='Overall best')\n", (11111, 11166), True, 'import matplotlib.lines as mlines\n'), ((11798, 11812), 'matplotlib.pyplot.close', 'plt.close', (['fig'], {}), '(fig)\n', (11807, 11812), True, 'import matplotlib.pyplot as plt\n'), ((12181, 12204), 'matplotlib.pyplot.style.use', 'plt.style.use', (['"""ggplot"""'], {}), "('ggplot')\n", (12194, 12204), True, 'import matplotlib.pyplot as plt\n'), ((12293, 12360), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(9, 4.5)', 'ncols': '(2)', 'nrows': '(1)', 'gridspec_kw': 'gs_kw'}), '(figsize=(9, 4.5), ncols=2, nrows=1, gridspec_kw=gs_kw)\n', (12305, 12360), True, 'import matplotlib.pyplot as plt\n'), ((12391, 12409), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (12407, 12409), True, 'import matplotlib.pyplot as plt\n'), ((13868, 13963), 'matplotlib.lines.Line2D', 'mlines.Line2D', (['[]', '[]'], {'color': '"""darkred"""', 'linestyle': '"""dashed"""', 'label': '"""Best Tour in Iteration"""'}), "([], [], color='darkred', linestyle='dashed', label=\n 'Best Tour in Iteration')\n", (13881, 13963), True, 'import matplotlib.lines as mlines\n'), ((14002, 14096), 'matplotlib.lines.Line2D', 'mlines.Line2D', (['[]', '[]'], {'color': '"""goldenrod"""', 'linewidth': '"""5"""', 'label': '"""Other Tours in Iteration"""'}), "([], [], color='goldenrod', linewidth='5', label=\n 'Other Tours in Iteration')\n", (14015, 14096), True, 'import matplotlib.lines as mlines\n'), ((14133, 14211), 'matplotlib.lines.Line2D', 'mlines.Line2D', (['[]', '[]'], {'color': '"""dimgrey"""', 'marker': '"""o"""', 'linestyle': '""""""', 'label': '"""Node"""'}), "([], [], color='dimgrey', marker='o', linestyle='', label='Node')\n", (14146, 14211), True, 'import matplotlib.lines as mlines\n'), ((14840, 14928), 'matplotlib.lines.Line2D', 'mlines.Line2D', (['[]', '[]'], {'color': '"""red"""', 'marker': '"""o"""', 'label': '"""Iteration best"""', 'linestyle': '""""""'}), "([], [], color='red', marker='o', label='Iteration best',\n linestyle='')\n", (14853, 14928), True, 'import matplotlib.lines as mlines\n'), ((14966, 15053), 'matplotlib.lines.Line2D', 'mlines.Line2D', (['[]', '[]'], {'color': '"""grey"""', 'marker': '"""x"""', 'label': '"""Overall best"""', 'linestyle': '""""""'}), "([], [], color='grey', marker='x', label='Overall best',\n linestyle='')\n", (14979, 15053), True, 'import matplotlib.lines as mlines\n'), ((15693, 15707), 'matplotlib.pyplot.close', 'plt.close', (['fig'], {}), '(fig)\n', (15702, 15707), True, 'import matplotlib.pyplot as plt\n'), ((6428, 6506), 'matplotlib.lines.Line2D', 'mlines.Line2D', (['[]', '[]'], {'color': '"""yellowgreen"""', 'linewidth': '(2)', 'label': '"""Known Optimum"""'}), "([], [], color='yellowgreen', linewidth=2, label='Known Optimum')\n", (6441, 6506), True, 'import matplotlib.lines as mlines\n'), ((11270, 11348), 'matplotlib.lines.Line2D', 'mlines.Line2D', (['[]', '[]'], {'color': '"""yellowgreen"""', 'linewidth': '(2)', 'label': '"""Known Optimum"""'}), "([], [], color='yellowgreen', linewidth=2, label='Known Optimum')\n", (11283, 11348), True, 'import matplotlib.lines as mlines\n'), ((6901, 6915), 'pathlib.Path', 'Path', (['out_path'], {}), '(out_path)\n', (6905, 6915), False, 'from pathlib import Path\n'), ((9636, 9650), 'pathlib.Path', 'Path', (['out_path'], {}), '(out_path)\n', (9640, 9650), False, 'from pathlib import Path\n'), ((11606, 11620), 'pathlib.Path', 'Path', (['out_path'], {}), '(out_path)\n', (11610, 11620), False, 'from pathlib import Path\n'), ((15402, 15416), 'pathlib.Path', 'Path', (['out_path'], {}), '(out_path)\n', (15406, 15416), False, 'from pathlib import Path\n'), ((2648, 2666), 'tsplib95.load', 'tsp.load', (['opt_tour'], {}), '(opt_tour)\n', (2656, 2666), True, 'import tsplib95 as tsp\n')]
from emto_input_generator import * import numpy as np folder = os.getcwd() # Get current working directory. emtopath = folder+"/L11_CuPt" # Folder where the calculations will be performed. latpath = emtopath # L11 CuPt prims = np.array([[1.0,0.5,0.5], [0.5,1.0,0.5], [0.5,0.5,1.0]]) basis = np.array([[0.0,0.0,0.0], [0.5,0.5,0.5]]) species = ["Cu","Pt"] species_cpa = [["cu","pt"],["cu","pt"]] input_creator = EMTO(folder=emtopath) input_creator.init_structure(latpath=latpath, prims=prims, basis=basis, species=species, latname='L11') input_creator.init_bulk(atoms_cpa=species_cpa) sws_range = np.linspace(2,3,6) #input_creator.write_bmdl_kstr_shape_input() #input_creator.write_kgrn_kfcd_input() input_creator.write_kgrn_kfcd_swsrange(sws=sws_range) #input_creator.draw_structure('standard_conv')
[ "numpy.array", "numpy.linspace" ]
[((240, 301), 'numpy.array', 'np.array', (['[[1.0, 0.5, 0.5], [0.5, 1.0, 0.5], [0.5, 0.5, 1.0]]'], {}), '([[1.0, 0.5, 0.5], [0.5, 1.0, 0.5], [0.5, 0.5, 1.0]])\n', (248, 301), True, 'import numpy as np\n'), ((343, 387), 'numpy.array', 'np.array', (['[[0.0, 0.0, 0.0], [0.5, 0.5, 0.5]]'], {}), '([[0.0, 0.0, 0.0], [0.5, 0.5, 0.5]])\n', (351, 387), True, 'import numpy as np\n'), ((786, 806), 'numpy.linspace', 'np.linspace', (['(2)', '(3)', '(6)'], {}), '(2, 3, 6)\n', (797, 806), True, 'import numpy as np\n')]
import numpy as np import cv2 import math from PIL import Image, ImageStat import sys from os import listdir import pymeanshift as pms import os.path # path1 = "/Users/caijieyang/Desktop/allgoodthinghere/" # files= listdir(path1) avg_recall=[] avg_pre=[] hsl_acc_list=[] manual_acc_list=[] file = sys.argv[1] file = str(file) # print (file) origin = Image.open(file) width, height = origin.size area = (0, 0, width, 0.5*height) image = origin.crop(area) # crop top half of the image image.save(file+"_cropped.png") original_image = cv2.imread(file+"_cropped.png") (segmented_image, label_image, number_regions) = pms.segment(original_image, spatial_radius=7, range_radius=8, min_density=300) counterclass_all={} for j in range(0,len(label_image[0])): for i in range(0,len(label_image)): if label_image[i,j] in counterclass_all: counterclass_all[label_image[i,j]] +=1 else: counterclass_all[label_image[i,j]] = 1 max=0 for i in counterclass_all: if counterclass_all[i]>max: max=counterclass_all[i] most_common_colour=i origin=cv2.imread(file) data = np.asarray(origin,dtype="int32") RED = 2 GREEN = 1 BLUE = 0 for i in range (len(original_image)): for j in range (len(original_image[0])): if label_image[i][j] == most_common_colour: data[i, j, GREEN] = 0 data[i, j, RED] = 0 data[i, j, BLUE] = 255 else: continue result = Image.fromarray(data.astype(np.uint8)) b, g, r = result.split() result = Image.merge("RGB", (r, g, b)) result.save(file+"ms_sky_mark.png") ms = Image.fromarray(segmented_image) b, g, r = ms.split() im = Image.merge("RGB", (r, g, b)) im.save(file+"ms_cluster_mark.png") tempfile = file.replace('.png',' - Copy.png') if os.path.isfile(tempfile): marked_pixel_values = cv2.imread(tempfile) true_po_list=[] precision_list=[] true_sky_counter=0 true_positive_counter=0 false_positive_counter=0 # print (marked_pixel_values[0,0]) # print (int(len(marked_pixel_values)/2+1)) for i in range(int(len(marked_pixel_values)/2+1)): for j in range(len(marked_pixel_values[0])): if marked_pixel_values[i][j][0] == 255 and marked_pixel_values[i][j][1] == 0 and marked_pixel_values[i][j][2] == 0 : true_sky_counter+=1 if data[i][j][0] == 255 and data[i][j][1] == 0 and data[i][j][2] == 0: true_positive_counter+=1 else: if data[i][j][0] == 255 and data[i][j][1] == 0 and data[i][j][2] == 0: false_positive_counter+=1 avg_recall.append(true_positive_counter/true_sky_counter) avg_pre.append(true_positive_counter/(true_positive_counter+false_positive_counter)) hsl_acc_list.append((true_positive_counter+false_positive_counter)/((len(marked_pixel_values)/2+1)*len(marked_pixel_values[0]))) manual_acc_list.append(true_sky_counter/((len(marked_pixel_values)/2+1)*len(marked_pixel_values[0]))) print ("meanshift program marked proportion:", (true_positive_counter+false_positive_counter)/((len(marked_pixel_values)/2+1)*len(marked_pixel_values[0]))) print ("manually marked proportion:",true_sky_counter/((len(marked_pixel_values)/2+1)*len(marked_pixel_values[0]))) # print ("recall: ", avg_recall) # print ("precision: " , avg_pre) # print ("recall: ", np.mean(avg_recall)) # print ("precision: " , np.mean(avg_pre)) # print (hsl_acc_list) # print (manual_acc_list)
[ "numpy.asarray", "PIL.Image.open", "pymeanshift.segment", "cv2.imread", "PIL.Image.fromarray", "PIL.Image.merge" ]
[((351, 367), 'PIL.Image.open', 'Image.open', (['file'], {}), '(file)\n', (361, 367), False, 'from PIL import Image, ImageStat\n'), ((534, 567), 'cv2.imread', 'cv2.imread', (["(file + '_cropped.png')"], {}), "(file + '_cropped.png')\n", (544, 567), False, 'import cv2\n'), ((616, 694), 'pymeanshift.segment', 'pms.segment', (['original_image'], {'spatial_radius': '(7)', 'range_radius': '(8)', 'min_density': '(300)'}), '(original_image, spatial_radius=7, range_radius=8, min_density=300)\n', (627, 694), True, 'import pymeanshift as pms\n'), ((1143, 1159), 'cv2.imread', 'cv2.imread', (['file'], {}), '(file)\n', (1153, 1159), False, 'import cv2\n'), ((1168, 1201), 'numpy.asarray', 'np.asarray', (['origin'], {'dtype': '"""int32"""'}), "(origin, dtype='int32')\n", (1178, 1201), True, 'import numpy as np\n'), ((1548, 1577), 'PIL.Image.merge', 'Image.merge', (['"""RGB"""', '(r, g, b)'], {}), "('RGB', (r, g, b))\n", (1559, 1577), False, 'from PIL import Image, ImageStat\n'), ((1621, 1653), 'PIL.Image.fromarray', 'Image.fromarray', (['segmented_image'], {}), '(segmented_image)\n', (1636, 1653), False, 'from PIL import Image, ImageStat\n'), ((1680, 1709), 'PIL.Image.merge', 'Image.merge', (['"""RGB"""', '(r, g, b)'], {}), "('RGB', (r, g, b))\n", (1691, 1709), False, 'from PIL import Image, ImageStat\n'), ((1845, 1865), 'cv2.imread', 'cv2.imread', (['tempfile'], {}), '(tempfile)\n', (1855, 1865), False, 'import cv2\n')]
#!/usr/bin/env python # # fix_settling_shifts.py # # Author: <NAME>, STScI, February 2022 # # Script to fix shifts between groups introduced by settling issue. # # Input arguments: # required: image filename (single "uncal.fits" file) # optional: boxpeaksize (box size for searching central peak; default=20 pixels) # optional: boxfitsize (box size for fitting central peak; default=200 pixels) # # Output: Level-2 calibrated file ("cal.fits" file) # # # Example of how to run it - from the unix command line: # # $ fix_settling_shifts.py jw01143001001_02101_00001_nrcalong_uncal.fits # # which produces: # jw01143001001_02101_00001_nrcalong_cal.fits import argparse, os, sys from glob import glob import astropy from astropy.io import ascii as asc from astropy.io import fits from astropy import stats from astropy import nddata from astropy.nddata import block_reduce from astropy.modeling import models, fitting import jwst from jwst.pipeline import calwebb_detector1 from jwst.pipeline import Detector1Pipeline from jwst.pipeline import Image2Pipeline from jwst.jump import JumpStep from jwst.ramp_fitting import RampFitStep from jwst.gain_scale import GainScaleStep import scipy from scipy.ndimage import gaussian_filter, median_filter from scipy import signal import numpy as np def crosscorfit(data_template,data_to_be_shifted,corrboxpeak,corrboxfit): # corr = scipy.signal.fftconvolve(data_template,data_to_be_shifted[::-1,::-1],mode='same') # xcen,ycen = int(float(corr.shape[0])/2.),int(float(corr.shape[1])/2.) # box2 = int(float(corrboxpeak)/2.) # ypeak,xpeak = np.unravel_index(np.argmax(corr[ycen-box2:ycen+box2,xcen-box2:xcen+box2]),(corrboxpeak,corrboxpeak)) # x0,y0 = xcen-box2+xpeak,ycen-box2+ypeak # ampl = corr[y0,x0] # x_stddev0,y_stddev0 = 2.,2. # corrboxfit2 = float(corrboxfit)/2. # x1,y1 = xcen-int(corrboxfit2),ycen-int(corrboxfit2) x2,y2 = x1+corrboxfit,y1+corrboxfit # corr_fit = corr[y1:y2,x1:x2] # x0fit,y0fit = x0-x1,y0-y1 # y_array_2d,x_array_2d = np.mgrid[:corrboxfit,:corrboxfit] # gfit_init = models.Gaussian2D(amplitude=ampl,x_mean=x0fit,y_mean=y0fit,x_stddev=x_stddev0,y_stddev=y_stddev0,theta=0.) gfit_init.theta.fixed = True # gfit_model = fitting.LevMarLSQFitter() gfit_results = gfit_model(gfit_init,x_array_2d,y_array_2d,corr_fit) # amplfit = gfit_results.amplitude.value thetafit = gfit_results.theta.value xfit,yfit = gfit_results.x_mean.value,gfit_results.y_mean.value xsigma,ysigma = gfit_results.x_stddev.value,gfit_results.y_stddev.value dx,dy = xfit-corrboxfit2,yfit-corrboxfit2 # print('fit1 results: %s %3i %3i %5i %5i %8.3f %8.3f %8.3f %8.3f %14.1f %14.1f %8.3f %8.3f %8.3f' % (uncalfile,ni+1,ng+1,x0fit,y0fit,xfit,yfit,dx,dy,ampl,amplfit,thetafit,xsigma,ysigma)) # # sigma_new = np.min([xsigma,ysigma]) # gfit_init2 = models.Gaussian2D(amplitude=ampl,x_mean=x0fit,y_mean=y0fit,x_stddev=sigma_new,y_stddev=sigma_new,theta=0.) gfit_init2.x_stddev.fixed = True gfit_init2.y_stddev.fixed = True gfit_init2.theta.fixed = True # gfit_model2 = fitting.LevMarLSQFitter() gfit_results2 = gfit_model2(gfit_init2,x_array_2d,y_array_2d,corr_fit) # amplfit = gfit_results2.amplitude.value thetafit = gfit_results2.theta.value xfit,yfit = gfit_results2.x_mean.value,gfit_results2.y_mean.value xsigma,ysigma = gfit_results2.x_stddev.value,gfit_results2.y_stddev.value dx,dy = xfit-corrboxfit2,yfit-corrboxfit2 # print('fit2 results: %s %3i %3i %5i %5i %8.3f %8.3f %8.3f %8.3f %14.1f %14.1f %8.3f %8.3f %8.3f' % (uncalfile,ni+1,ng+1,x0fit,y0fit,xfit,yfit,dx,dy,ampl,amplfit,thetafit,xsigma,ysigma)) # if ((xpeak in [0,corrboxpeak]) or (ypeak in [0,corrboxpeak])): exit_need_adjustment('xpeak, ypeak = '+repr(xpeak)+', '+repr(ypeak)+'; corrboxpeak = '+repr(corrboxpeak)) if ((xsigma > box2) or (ysigma > box2)): exit_need_adjustment('xsigma, ysigma = '+repr(xsigma)+', '+repr(ysigma)+'; box2 = '+repr(box2)) # return dx,dy def apply_shift(data_to_be_shifted,dx,dy,bkgd): # dxi,dyi = round(dx),round(dy) # ny,nx = data_to_be_shifted.shape # if (dxi >= 0): x1old,x2old = 0,nx-dxi x1new,x2new = dxi,nx else: x1old,x2old = -dxi,nx x1new,x2new = 0,nx+dxi # if (dyi >= 0): y1old,y2old = 0,ny-dyi y1new,y2new = dyi,ny else: y1old,y2old = -dyi,ny y1new,y2new = 0,ny+dyi # data_to_be_shifted_new = np.full(data_to_be_shifted.shape,bkgd,dtype=np.float32) data_to_be_shifted_new[y1new:y2new,x1new:x2new] = data_to_be_shifted[y1old:y2old,x1old:x2old] # return data_to_be_shifted_new def exit_need_adjustment(err_info): # print(''' *** *** ERROR - The code has encountered potentially problematic results, and is therefore exiting. ***''') print(' *** Error info is: ',err_info) print(''' *** *** *** Please contact the author (<NAME>) to discuss how to run it on this dataset. *** ''') sys.exit() if __name__ == '__main__': # print(''' *** ----------------------------------------------------------------------------------- *** *** fix_settling_shifts.py *** *** Author: <NAME>, STScI, February 2022 *** *** Script to fix shifts between groups introduced by settling issue. *** *** Input arguments: *** required: image filename (single "uncal.fits" file) *** optional: boxpeaksize (box size for searching central peak; default=20 pixels) *** optional: boxfitsize (box size for fitting central peak; default=200 pixels) *** *** Output: Level-2 calibrated file ("cal.fits" file) *** *** *** Example of how to run it - from the unix command line: *** *** $ fix_settling_shifts.py jw01143001001_02101_00001_nrcalong_uncal.fits *** *** which produces: *** jw01143001001_02101_00001_nrcalong_cal.fits *** *** ----------------------------------------------------------------------------------- ''') # parser = argparse.ArgumentParser(description='Fix shifts between groups introduced by settling issue.') parser.add_argument('image', default='NONE', type=str, help='Input uncal.fits filename') parser.add_argument('-bp','--boxpeaksize',default=20, type=int, help='Box size for searching central peak') parser.add_argument('-bf','--boxfitsize',default=200, type=int, help='Box size for fitting central peak') # options = parser.parse_args() uncalfile = options.image corrboxpeak = options.boxpeaksize corrboxfit = options.boxfitsize # parameter_dict = {'jump': {'skip': True}, 'ramp_fit': {'skip': True}, 'gain_scale': {'skip': True}} # rampfile = uncalfile.replace('_uncal.fits', '_ramp.fits') # if (not os.path.exists(rampfile)): rampdata = calwebb_detector1.Detector1Pipeline.call(uncalfile, steps=parameter_dict, save_results=True) # hdr0 = fits.getheader(uncalfile,0) n_ints = hdr0['NINTS'] n_grps_per_int = hdr0['NGROUPS'] # data = fits.getdata(uncalfile,1) # ramp_cube_aligned = np.zeros(data.shape).astype(np.float32) # first_group = True for ni in range(n_ints): # for ng in range(n_grps_per_int): # if (ng != 0): data_intgrp_prev = data_intgrp # data_intgrp = fits.getdata(rampfile,1)[ni,ng,:,:] # if (ng == 0): # data_diff = data_intgrp # else: # data_diff = data_intgrp - data_intgrp_prev # mean,med,rms = stats.sigma_clipped_stats(data_diff, maxiters=10, sigma_lower=6., sigma_upper=4) # print('n_int = ',ni+1,'; n_grp = ',ng+1,'; mean, med, rms = ',mean,med,rms) # data_diff_med = scipy.ndimage.median_filter(input=data_diff, size=3, mode='constant', cval=0.) # data_diff_sub = data_diff_med - med # data_diff_sub[np.where(data_diff_sub < (5.*rms))] = 0. # data_diff_sub_gauss = gaussian_filter(data_diff_sub, sigma=1.0, truncate=5., order=0, mode='constant', cval=0.).astype(np.float32) # if (first_group): # first_group = False # group_template = data_diff_sub_gauss # ramp_cube_aligned[0,0,:,:] = data_diff # else: # dx,dy = crosscorfit(group_template,data_diff_sub_gauss,corrboxpeak,corrboxfit) # data_diff_sub_gauss_shifted = apply_shift(data_diff_sub_gauss,dx,dy,0.) # dx_check,dy_check = crosscorfit(group_template,data_diff_sub_gauss_shifted,corrboxpeak,corrboxfit) # print('shift results: %s %3i %3i %5i %5i %8.3f %8.3f %8.3f %8.3f' % (uncalfile,ni+1,ng+1,round(dx),round(dy),dx,dy,dx_check,dy_check)) # data_diff_shifted = apply_shift(data_diff,dx,dy,med) # if (ng == 0): # ramp_cube_aligned[ni,ng,:,:] = data_diff_shifted # else: # ramp_cube_aligned[ni,ng,:,:] = ramp_cube_aligned[ni,ng-1,:,:] + data_diff_shifted rampfile_aligned = rampfile[:-10] + '_aligned_ramp.fits' # a = os.system('/bin/rm -f '+rampfile_aligned) a = os.system('/bin/cp -p '+rampfile+' '+rampfile_aligned) # f = fits.open(rampfile_aligned,'update') # f[1].data = ramp_cube_aligned # f.flush() f.close() # caldetector1_output_jumpstep = JumpStep.call(rampfile_aligned, save_results=False) caldetector1_output_rampfit = RampFitStep.call(caldetector1_output_jumpstep, save_results=False) caldetector1_output_gainscale0 = GainScaleStep.call(caldetector1_output_rampfit[0], save_results=False) caldetector1_output_gainscale1 = GainScaleStep.call(caldetector1_output_rampfit[1], save_results=False) # calimage2_output0 = Image2Pipeline.call(caldetector1_output_gainscale0, save_results=True) calimage2_output1 = Image2Pipeline.call(caldetector1_output_gainscale1, save_results=True)
[ "argparse.ArgumentParser", "numpy.argmax", "astropy.stats.sigma_clipped_stats", "jwst.ramp_fitting.RampFitStep.call", "scipy.signal.fftconvolve", "scipy.ndimage.median_filter", "numpy.full", "jwst.pipeline.calwebb_detector1.Detector1Pipeline.call", "jwst.pipeline.Image2Pipeline.call", "astropy.io.fits.getdata", "scipy.ndimage.gaussian_filter", "os.path.exists", "os.system", "numpy.min", "astropy.io.fits.open", "jwst.gain_scale.GainScaleStep.call", "sys.exit", "astropy.modeling.models.Gaussian2D", "jwst.jump.JumpStep.call", "numpy.zeros", "astropy.io.fits.getheader", "astropy.modeling.fitting.LevMarLSQFitter", "numpy.where" ]
[((1422, 1510), 'scipy.signal.fftconvolve', 'scipy.signal.fftconvolve', (['data_template', 'data_to_be_shifted[::-1, ::-1]'], {'mode': '"""same"""'}), "(data_template, data_to_be_shifted[::-1, ::-1],\n mode='same')\n", (1446, 1510), False, 'import scipy\n'), ((2132, 2249), 'astropy.modeling.models.Gaussian2D', 'models.Gaussian2D', ([], {'amplitude': 'ampl', 'x_mean': 'x0fit', 'y_mean': 'y0fit', 'x_stddev': 'x_stddev0', 'y_stddev': 'y_stddev0', 'theta': '(0.0)'}), '(amplitude=ampl, x_mean=x0fit, y_mean=y0fit, x_stddev=\n x_stddev0, y_stddev=y_stddev0, theta=0.0)\n', (2149, 2249), False, 'from astropy.modeling import models, fitting\n'), ((2291, 2316), 'astropy.modeling.fitting.LevMarLSQFitter', 'fitting.LevMarLSQFitter', ([], {}), '()\n', (2314, 2316), False, 'from astropy.modeling import models, fitting\n'), ((2871, 2895), 'numpy.min', 'np.min', (['[xsigma, ysigma]'], {}), '([xsigma, ysigma])\n', (2877, 2895), True, 'import numpy as np\n'), ((2914, 3031), 'astropy.modeling.models.Gaussian2D', 'models.Gaussian2D', ([], {'amplitude': 'ampl', 'x_mean': 'x0fit', 'y_mean': 'y0fit', 'x_stddev': 'sigma_new', 'y_stddev': 'sigma_new', 'theta': '(0.0)'}), '(amplitude=ampl, x_mean=x0fit, y_mean=y0fit, x_stddev=\n sigma_new, y_stddev=sigma_new, theta=0.0)\n', (2931, 3031), False, 'from astropy.modeling import models, fitting\n'), ((3145, 3170), 'astropy.modeling.fitting.LevMarLSQFitter', 'fitting.LevMarLSQFitter', ([], {}), '()\n', (3168, 3170), False, 'from astropy.modeling import models, fitting\n'), ((4472, 4529), 'numpy.full', 'np.full', (['data_to_be_shifted.shape', 'bkgd'], {'dtype': 'np.float32'}), '(data_to_be_shifted.shape, bkgd, dtype=np.float32)\n', (4479, 4529), True, 'import numpy as np\n'), ((4993, 5003), 'sys.exit', 'sys.exit', ([], {}), '()\n', (5001, 5003), False, 'import argparse, os, sys\n'), ((6005, 6104), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Fix shifts between groups introduced by settling issue."""'}), "(description=\n 'Fix shifts between groups introduced by settling issue.')\n", (6028, 6104), False, 'import argparse, os, sys\n'), ((6927, 6955), 'astropy.io.fits.getheader', 'fits.getheader', (['uncalfile', '(0)'], {}), '(uncalfile, 0)\n', (6941, 6955), False, 'from astropy.io import fits\n'), ((7036, 7062), 'astropy.io.fits.getdata', 'fits.getdata', (['uncalfile', '(1)'], {}), '(uncalfile, 1)\n', (7048, 7062), False, 'from astropy.io import fits\n'), ((9114, 9157), 'os.system', 'os.system', (["('/bin/rm -f ' + rampfile_aligned)"], {}), "('/bin/rm -f ' + rampfile_aligned)\n", (9123, 9157), False, 'import argparse, os, sys\n'), ((9162, 9222), 'os.system', 'os.system', (["('/bin/cp -p ' + rampfile + ' ' + rampfile_aligned)"], {}), "('/bin/cp -p ' + rampfile + ' ' + rampfile_aligned)\n", (9171, 9222), False, 'import argparse, os, sys\n'), ((9227, 9264), 'astropy.io.fits.open', 'fits.open', (['rampfile_aligned', '"""update"""'], {}), "(rampfile_aligned, 'update')\n", (9236, 9264), False, 'from astropy.io import fits\n'), ((9367, 9418), 'jwst.jump.JumpStep.call', 'JumpStep.call', (['rampfile_aligned'], {'save_results': '(False)'}), '(rampfile_aligned, save_results=False)\n', (9380, 9418), False, 'from jwst.jump import JumpStep\n'), ((9473, 9539), 'jwst.ramp_fitting.RampFitStep.call', 'RampFitStep.call', (['caldetector1_output_jumpstep'], {'save_results': '(False)'}), '(caldetector1_output_jumpstep, save_results=False)\n', (9489, 9539), False, 'from jwst.ramp_fitting import RampFitStep\n'), ((9579, 9649), 'jwst.gain_scale.GainScaleStep.call', 'GainScaleStep.call', (['caldetector1_output_rampfit[0]'], {'save_results': '(False)'}), '(caldetector1_output_rampfit[0], save_results=False)\n', (9597, 9649), False, 'from jwst.gain_scale import GainScaleStep\n'), ((9685, 9755), 'jwst.gain_scale.GainScaleStep.call', 'GainScaleStep.call', (['caldetector1_output_rampfit[1]'], {'save_results': '(False)'}), '(caldetector1_output_rampfit[1], save_results=False)\n', (9703, 9755), False, 'from jwst.gain_scale import GainScaleStep\n'), ((9782, 9852), 'jwst.pipeline.Image2Pipeline.call', 'Image2Pipeline.call', (['caldetector1_output_gainscale0'], {'save_results': '(True)'}), '(caldetector1_output_gainscale0, save_results=True)\n', (9801, 9852), False, 'from jwst.pipeline import Image2Pipeline\n'), ((9875, 9945), 'jwst.pipeline.Image2Pipeline.call', 'Image2Pipeline.call', (['caldetector1_output_gainscale1'], {'save_results': '(True)'}), '(caldetector1_output_gainscale1, save_results=True)\n', (9894, 9945), False, 'from jwst.pipeline import Image2Pipeline\n'), ((1657, 1722), 'numpy.argmax', 'np.argmax', (['corr[ycen - box2:ycen + box2, xcen - box2:xcen + box2]'], {}), '(corr[ycen - box2:ycen + box2, xcen - box2:xcen + box2])\n', (1666, 1722), True, 'import numpy as np\n'), ((6779, 6803), 'os.path.exists', 'os.path.exists', (['rampfile'], {}), '(rampfile)\n', (6793, 6803), False, 'import argparse, os, sys\n'), ((6821, 6917), 'jwst.pipeline.calwebb_detector1.Detector1Pipeline.call', 'calwebb_detector1.Detector1Pipeline.call', (['uncalfile'], {'steps': 'parameter_dict', 'save_results': '(True)'}), '(uncalfile, steps=parameter_dict,\n save_results=True)\n', (6861, 6917), False, 'from jwst.pipeline import calwebb_detector1\n'), ((7088, 7108), 'numpy.zeros', 'np.zeros', (['data.shape'], {}), '(data.shape)\n', (7096, 7108), True, 'import numpy as np\n'), ((7530, 7615), 'astropy.stats.sigma_clipped_stats', 'stats.sigma_clipped_stats', (['data_diff'], {'maxiters': '(10)', 'sigma_lower': '(6.0)', 'sigma_upper': '(4)'}), '(data_diff, maxiters=10, sigma_lower=6.0,\n sigma_upper=4)\n', (7555, 7615), False, 'from astropy import stats\n'), ((7733, 7812), 'scipy.ndimage.median_filter', 'scipy.ndimage.median_filter', ([], {'input': 'data_diff', 'size': '(3)', 'mode': '"""constant"""', 'cval': '(0.0)'}), "(input=data_diff, size=3, mode='constant', cval=0.0)\n", (7760, 7812), False, 'import scipy\n'), ((7312, 7337), 'astropy.io.fits.getdata', 'fits.getdata', (['rampfile', '(1)'], {}), '(rampfile, 1)\n', (7324, 7337), False, 'from astropy.io import fits\n'), ((7890, 7925), 'numpy.where', 'np.where', (['(data_diff_sub < 5.0 * rms)'], {}), '(data_diff_sub < 5.0 * rms)\n', (7898, 7925), True, 'import numpy as np\n'), ((7967, 8063), 'scipy.ndimage.gaussian_filter', 'gaussian_filter', (['data_diff_sub'], {'sigma': '(1.0)', 'truncate': '(5.0)', 'order': '(0)', 'mode': '"""constant"""', 'cval': '(0.0)'}), "(data_diff_sub, sigma=1.0, truncate=5.0, order=0, mode=\n 'constant', cval=0.0)\n", (7982, 8063), False, 'from scipy.ndimage import gaussian_filter, median_filter\n')]
""" Unit tests for the atom ID filter """ from __future__ import absolute_import from __future__ import unicode_literals import unittest import numpy as np from ....system import lattice from .. import atomIdFilter from .. import base ################################################################################ class TestAtomId(unittest.TestCase): """ Test atom ID filter """ def setUp(self): """ Called before each test """ # generate lattice self.lattice = lattice.Lattice() self.lattice.addAtom("Au", [0,0,0], 0.0) self.lattice.addAtom("Au", [1,0,0], 0.0) self.lattice.addAtom("Au", [0,1,0], 0.0) self.lattice.addAtom("Au", [0,0,1], 0.0) self.lattice.addAtom("Au", [1,1,0], 0.0) self.lattice.addAtom("Au", [0,1,1], 0.0) self.lattice.addAtom("Au", [1,1,1], 0.0) self.lattice.addAtom("Au", [2,0,0], 0.0) self.lattice.addAtom("Au", [0,2,0], 0.0) self.lattice.addAtom("Au", [0,0,2], 0.0) # filter self.filter = atomIdFilter.AtomIdFilter("Atom ID") def tearDown(self): """ Called after each test """ # remove refs self.lattice = None self.filter = None def test_atomID(self): """ Atom ID filter """ # settings settings = atomIdFilter.AtomIdFilterSettings() settings.updateSetting("filterString", "0") # set PBC self.lattice.PBC[:] = 1 # filter input filterInput = base.FilterInput() filterInput.inputState = self.lattice visibleAtoms = np.arange(self.lattice.NAtoms, dtype=np.int32) filterInput.visibleAtoms = visibleAtoms filterInput.NScalars = 0 filterInput.fullScalars = np.empty(0, np.float64) filterInput.NVectors = 0 filterInput.fullVectors = np.empty(0, np.float64) filterInput.ompNumThreads = 1 # call filter result = self.filter.apply(filterInput, settings) self.assertIsInstance(result, base.FilterResult) # make sure num visible is correct self.assertEqual(len(visibleAtoms), 1) # check position is correct self.assertListEqual(list(self.lattice.atomPos(visibleAtoms[0])), [0,0,0]) # settings settings = atomIdFilter.AtomIdFilterSettings() settings.updateSetting("filterString", "1-3, 8") # set PBC self.lattice.PBC[:] = 1 # filter input filterInput = base.FilterInput() filterInput.inputState = self.lattice visibleAtoms = np.arange(self.lattice.NAtoms, dtype=np.int32) filterInput.visibleAtoms = visibleAtoms filterInput.NScalars = 0 filterInput.fullScalars = np.empty(0, np.float64) filterInput.NVectors = 0 filterInput.fullVectors = np.empty(0, np.float64) filterInput.ompNumThreads = 1 # call filter result = self.filter.apply(filterInput, settings) self.assertIsInstance(result, base.FilterResult) # make sure num visible is correct self.assertEqual(len(visibleAtoms), 4) # check position is correct self.assertListEqual(list(self.lattice.atomPos(visibleAtoms[0])), [1,0,0]) self.assertListEqual(list(self.lattice.atomPos(visibleAtoms[1])), [0,1,0]) self.assertListEqual(list(self.lattice.atomPos(visibleAtoms[2])), [0,0,1]) self.assertListEqual(list(self.lattice.atomPos(visibleAtoms[3])), [0,2,0])
[ "numpy.empty", "numpy.arange" ]
[((1719, 1765), 'numpy.arange', 'np.arange', (['self.lattice.NAtoms'], {'dtype': 'np.int32'}), '(self.lattice.NAtoms, dtype=np.int32)\n', (1728, 1765), True, 'import numpy as np\n'), ((1881, 1904), 'numpy.empty', 'np.empty', (['(0)', 'np.float64'], {}), '(0, np.float64)\n', (1889, 1904), True, 'import numpy as np\n'), ((1972, 1995), 'numpy.empty', 'np.empty', (['(0)', 'np.float64'], {}), '(0, np.float64)\n', (1980, 1995), True, 'import numpy as np\n'), ((2748, 2794), 'numpy.arange', 'np.arange', (['self.lattice.NAtoms'], {'dtype': 'np.int32'}), '(self.lattice.NAtoms, dtype=np.int32)\n', (2757, 2794), True, 'import numpy as np\n'), ((2910, 2933), 'numpy.empty', 'np.empty', (['(0)', 'np.float64'], {}), '(0, np.float64)\n', (2918, 2933), True, 'import numpy as np\n'), ((3001, 3024), 'numpy.empty', 'np.empty', (['(0)', 'np.float64'], {}), '(0, np.float64)\n', (3009, 3024), True, 'import numpy as np\n')]
""" Filename: cartesian.py Authors: <NAME> Implements cartesian products and regular cartesian grids. """ import numpy from numba import njit def cartesian(nodes, order="C"): """Cartesian product of a list of arrays Parameters: ----------- nodes: (list of 1d-arrays) order: ('C' or 'F') order in which the product is enumerated Returns: -------- out: (2d-array) each line corresponds to one point of the product space """ nodes = [numpy.array(e) for e in nodes] shapes = [e.shape[0] for e in nodes] n = len(nodes) l = numpy.prod(shapes) out = numpy.zeros((l, n)) if order == "C": repetitions = numpy.cumprod([1] + shapes[:-1]) else: shapes.reverse() sh = [1] + shapes[:-1] repetitions = numpy.cumprod(sh) repetitions = repetitions.tolist() repetitions.reverse() for i in range(n): _repeat_1d(nodes[i], repetitions[i], out[:, i]) return out def mlinspace(a, b, nums, order="C"): """Constructs a regular cartesian grid Parameters: ----------- a: (1d-array) lower bounds in each dimension b: (1d-array) upper bounds in each dimension nums: (1d-array) number of nodes along each dimension order: ('C' or 'F') order in which the product is enumerated Returns: -------- out: (2d-array) each line corresponds to one point of the product space """ a = numpy.array(a, dtype="float64") b = numpy.array(b, dtype="float64") nums = numpy.array(nums, dtype="int64") nodes = [numpy.linspace(a[i], b[i], nums[i]) for i in range(len(nums))] return cartesian(nodes, order=order) @njit(cache=True) def _repeat_1d(x, K, out): """Repeats each element of a vector many times and repeats the whole result many times Parameters ---------- x: (1d array) vector to be repeated K: (int) number of times each element of x is repeated (inner iterations) out: (1d array) placeholder for the result Returns ------- None """ N = x.shape[0] L = out.shape[0] // (K * N) # number of outer iterations # K # number of inner iterations # the result out should enumerate in C-order the elements # of a 3-dimensional array T of dimensions (K,N,L) # such that for all k,n,l, we have T[k,n,l] == x[n] for n in range(N): val = x[n] for k in range(K): for l in range(L): ind = k * N * L + n * L + l out[ind] = val
[ "numpy.cumprod", "numba.njit", "numpy.zeros", "numpy.array", "numpy.linspace", "numpy.prod" ]
[((1674, 1690), 'numba.njit', 'njit', ([], {'cache': '(True)'}), '(cache=True)\n', (1678, 1690), False, 'from numba import njit\n'), ((579, 597), 'numpy.prod', 'numpy.prod', (['shapes'], {}), '(shapes)\n', (589, 597), False, 'import numpy\n'), ((608, 627), 'numpy.zeros', 'numpy.zeros', (['(l, n)'], {}), '((l, n))\n', (619, 627), False, 'import numpy\n'), ((1437, 1468), 'numpy.array', 'numpy.array', (['a'], {'dtype': '"""float64"""'}), "(a, dtype='float64')\n", (1448, 1468), False, 'import numpy\n'), ((1477, 1508), 'numpy.array', 'numpy.array', (['b'], {'dtype': '"""float64"""'}), "(b, dtype='float64')\n", (1488, 1508), False, 'import numpy\n'), ((1520, 1552), 'numpy.array', 'numpy.array', (['nums'], {'dtype': '"""int64"""'}), "(nums, dtype='int64')\n", (1531, 1552), False, 'import numpy\n'), ((479, 493), 'numpy.array', 'numpy.array', (['e'], {}), '(e)\n', (490, 493), False, 'import numpy\n'), ((672, 704), 'numpy.cumprod', 'numpy.cumprod', (['([1] + shapes[:-1])'], {}), '([1] + shapes[:-1])\n', (685, 704), False, 'import numpy\n'), ((793, 810), 'numpy.cumprod', 'numpy.cumprod', (['sh'], {}), '(sh)\n', (806, 810), False, 'import numpy\n'), ((1566, 1601), 'numpy.linspace', 'numpy.linspace', (['a[i]', 'b[i]', 'nums[i]'], {}), '(a[i], b[i], nums[i])\n', (1580, 1601), False, 'import numpy\n')]
""" ------------------------------------------- Author: <NAME> Date: 7/3/19 ------------------------------------------- """ # common packages, most likely already installed import scipy import math import pandas as pd import networkx as nx import numpy as np import matplotlib.pyplot as plt import scipy.stats import sys from scipy.special import ndtr # uncommon packages required for this analysis import seaborn as sns # pip install seaborn # -------------------- LOCALIZATION ---------------------------------# def localization(Gint, focal_genes, num_reps = 10, sample_frac = 0.8, method = 'numedges', plot = True, print_counter = False, background_list=None): """ Function to calculate localization of an input set of genes (focal_genes) on a background network (Gint). Option to compute number of edges (method = 'numedges') or largest connected component (method = 'LLC') localization analysis. Calculates by sampling sub-sections of the focal genes/random set. Percentage to sample is set by sample_frac. Option to plot the distributions of random and focal gene localizaiton. Args: Gint: Networkx Graph, background network to randomly sample from focal_genes: List, set of genes to calculate localization of num_reps: Int, number of times to randomly sample sample_frac: Float, percent of sampled genes method: String, to decide which type of localization analysis to run. Options: 'numedges', 'LLC', or 'both'. plot: Bool, whether to plot the distributions in the output jupyter notebook cell print_counter: Bool, whether to print a counter that tells you which iteration you are on (every 25 iterations). Useful when the num_reps is very high. background_list: list of background genes to sample from. If none, jsut use all interactome genes Returns: numedges_list: List, the number of edges calculated for each rep, sampling over focal genes. Empty if method = 'LLC'. numedges_rand: List, the number of edges calculated for each rep, sampling over random genes of similar degree in the background network. Empty if method = 'LLC'. LCC_list: List, the size of the largest connected component, calculated for each rep, sampling over focal genes. Empty if method = 'numedges'. LCC_rand: List, the size of the largest connected component, calculated for each rep, sampling over random genes of similar degree in the background network. Empty if method = 'numedges'. """ # Create degree bins to sample from bins = get_degree_binning(Gint, 10) min_degree, max_degree, genes_binned = zip(*bins) bin_df = pd.DataFrame({'min_degree':min_degree, 'max_degree':max_degree, 'genes_binned':genes_binned}) # create a lookup table for degree and index actual_degree_to_bin_df_idx = {} for i in range(0, bin_df['max_degree'].max() + 1): idx_temp = bin_df[ (bin_df['min_degree'].lt(i + 1)) & (bin_df['max_degree'].gt(i - 1)) ].index.tolist() if len(idx_temp) > 0: # there are some degrees which aren't represented in the graph actual_degree_to_bin_df_idx[i] = idx_temp[0] focal_genes = list(np.intersect1d(focal_genes, Gint.nodes())) # only use focal_genes which are in Gint numedges_list = [] numedges_rand = [] LCC_list = [] LCC_rand = [] if background_list==None: background_list=Gint.nodes() for r in range(num_reps): if print_counter == True: # so user knows how far along the process is if (r % 25) == 0: print(r) focal_80 = focal_genes np.random.shuffle(focal_80) focal_80 = focal_80[:int(len(focal_80)*sample_frac)] # find genes with similar degrees to focal gene degree seed_random = [] for g in focal_80: degree_temp = nx.degree(Gint,g) genes_temp = bin_df.loc[actual_degree_to_bin_df_idx[degree_temp]]['genes_binned'] # use the lookup table for speed np.random.shuffle(genes_temp) # shuffle them while (genes_temp[0] in seed_random) or (genes_temp[0] not in background_list): # make sure the gene isn't already in the list, but is in the background_list np.random.shuffle(genes_temp) # shuffle them seed_random.append(genes_temp[0]) # build the seed_D1_random list #print(len(focal_80)) #print(len(seed_random)) #print(len(np.unique(seed_random))) if (method == 'numedges') or (method == 'both'): # number edges calc on focal set numedges_temp = len(nx.subgraph(Gint,focal_80).edges()) numedges_list.append(numedges_temp) # number edges calc on random sample numedges_temp_rand = len(nx.subgraph(Gint,seed_random).edges()) numedges_rand.append(numedges_temp_rand) if (method == 'LCC') or (method == 'both'): # LLC calc on focal set G_sub_temp = nx.Graph(nx.subgraph(Gint, focal_80)) G_sub_temp = max(nx.connected_component_subgraphs(G_sub_temp), key = len) LCC_list.append(len(G_sub_temp.nodes())) # LLC calc on random sample G_sub_temp = nx.Graph(nx.subgraph(Gint, seed_random)) G_sub_temp = max(nx.connected_component_subgraphs(G_sub_temp), key=len) LCC_rand.append(len(G_sub_temp.nodes())) if plot == True: if (method == 'numedges') or (method == 'both'): fig, ax = plt.subplots(figsize = (12, 7)) sns.distplot(numedges_list, ax = ax, hist = True, label = 'focal genes') sns.distplot(numedges_rand, ax = ax, hist = True, label = 'random set') plt.ylabel('frequency', fontsize = 16) plt.xlabel('number of edges', fontsize = 16) plt.title('Number of Edges Localization', fontsize = 18) plt.legend(loc = 'upper right', fontsize = 14) if (method == 'LCC') or (method == 'both'): fig, ax = plt.subplots(figsize = (12, 7)) sns.distplot(LCC_list, ax = ax, hist = True, label = 'focal genes') sns.distplot(LCC_rand, ax = ax, hist = True, label = 'random set') plt.ylabel('frequency', fontsize = 16) plt.xlabel('largest connected component size', fontsize = 16) plt.title('Largest Connected Component Localization', fontsize = 18) plt.legend(loc = 'upper right', fontsize = 14) return numedges_list, numedges_rand, LCC_list, LCC_rand def localization_full(Gint, focal_genes, num_reps = 200, method = 'LCC', print_counter = False, label = 'focal genes', line_height = 0.1, legend_loc = 'upper left'): """ Function to calculate localization of an input set of genes (focal_genes) on a background network (Gint). Option to compute number of edges (method = 'numedges') or largest connected component (method = 'LLC') localization analysis. DOes no sub-sampling. Plots the distribution of random gene localizaiton, and marks the focal set localization on distribution. Includes p-value of focal set localization. Args: Gint: Networkx Graph, background network to randomly sample from focal_genes: List, set of genes to calculate localization of num_reps: Int, number of times to randomly sample method: String, to decide which type of localization analysis to run. Options: 'numedges', 'LLC', or 'both'. print_counter: Bool, whether to print a counter that tells you which iteration you are on (every 25 iterations). Useful when the num_reps is very high. label: String, label for focal genes in graph legend line_height: Float, the height of the red line that marks the focal gene localization legend_loc: String, relative position of legend in graph. Something similar to 'upper left'. Returns: numedges_list: List, the number of edges calculated for each rep, over focal genes. Empty if method = 'LLC'. numedges_rand: List, the number of edges calculated for each rep, over random genes of similar degree in the background network. Empty if method = 'LLC'. LCC_list: List, the size of the largest connected component, calculated for each rep, over focal genes. Empty if method = 'numedges'. LCC_rand: List, the size of the largest connected component, calculated for each rep, over random genes of similar degree in the background network. Empty if method = 'numedges'. """ numedges_list, numedges_rand, LCC_list, LCC_rand = localization(Gint, focal_genes, num_reps, sample_frac = 1, method = method, plot = False, print_counter = print_counter) if method == 'numedges': analysis_list = numedges_list analysis_rand = numedges_rand title = 'number of edges' else: analysis_list = LCC_list analysis_rand = LCC_rand title = 'largest connected component' # plot distributions for non-sampled case fig, ax = plt.subplots(figsize = (12, 7)) sns.set_style('white') plt.vlines(np.mean(analysis_list), ymin = 0, ymax = line_height, color = 'r', lw = 2, label = label) sns.kdeplot(analysis_rand, ax = ax, color = 'k', lw = 2, alpha = 0.5, shade = True, label = 'random') plt.legend(loc = legend_loc, fontsize = 12) plt.ylabel('frequency', fontsize = 16) plt.xlabel(title, fontsize = 16) # print the z-score and fdr analysis_z = (np.mean(analysis_list) - np.mean(analysis_rand))/float(np.std(analysis_rand)) print(1 - ndtr(analysis_z)) plt.title('permutation p = ' + str(1 - ndtr(analysis_z))) return numedges_list, numedges_rand, LCC_list, LCC_rand def get_degree_binning(g, bin_size, lengths = None): """ Helper function for localization(). This function comes from network_utilities.py of emregtoobox. https://github.com/emreg00/toolbox """ degree_to_nodes = {} if sys.version_info >= (3, 0): for node, degree in dict(g.degree()).items(): if lengths is not None and node not in lengths: continue degree_to_nodes.setdefault(degree, []).append(node) else: for node, degree in dict(g.degree()).iteritems(): if lengths is not None and node not in lengths: continue degree_to_nodes.setdefault(degree, []).append(node) values = list(degree_to_nodes.keys()) values.sort() bins = [] i = 0 while i < len(values): low = values[i] val = degree_to_nodes[values[i]] while len(val) < bin_size: i += 1 if i == len(values): break val.extend(degree_to_nodes[values[i]]) if i == len(values): i -= 1 high = values[i] i += 1 #print low, high, len(val) if len(val) < bin_size: low_, high_, val_ = bins[-1] bins[-1] = (low_, high, val_ + val) else: bins.append((low, high, val)) return bins
[ "pandas.DataFrame", "seaborn.set_style", "matplotlib.pyplot.title", "seaborn.kdeplot", "networkx.degree", "numpy.std", "matplotlib.pyplot.legend", "scipy.special.ndtr", "numpy.mean", "seaborn.distplot", "networkx.subgraph", "matplotlib.pyplot.ylabel", "networkx.connected_component_subgraphs", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.subplots", "numpy.random.shuffle" ]
[((2872, 2972), 'pandas.DataFrame', 'pd.DataFrame', (["{'min_degree': min_degree, 'max_degree': max_degree, 'genes_binned':\n genes_binned}"], {}), "({'min_degree': min_degree, 'max_degree': max_degree,\n 'genes_binned': genes_binned})\n", (2884, 2972), True, 'import pandas as pd\n'), ((10006, 10035), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(12, 7)'}), '(figsize=(12, 7))\n', (10018, 10035), True, 'import matplotlib.pyplot as plt\n'), ((10042, 10064), 'seaborn.set_style', 'sns.set_style', (['"""white"""'], {}), "('white')\n", (10055, 10064), True, 'import seaborn as sns\n'), ((10175, 10268), 'seaborn.kdeplot', 'sns.kdeplot', (['analysis_rand'], {'ax': 'ax', 'color': '"""k"""', 'lw': '(2)', 'alpha': '(0.5)', 'shade': '(True)', 'label': '"""random"""'}), "(analysis_rand, ax=ax, color='k', lw=2, alpha=0.5, shade=True,\n label='random')\n", (10186, 10268), True, 'import seaborn as sns\n'), ((10281, 10320), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': 'legend_loc', 'fontsize': '(12)'}), '(loc=legend_loc, fontsize=12)\n', (10291, 10320), True, 'import matplotlib.pyplot as plt\n'), ((10329, 10365), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""frequency"""'], {'fontsize': '(16)'}), "('frequency', fontsize=16)\n", (10339, 10365), True, 'import matplotlib.pyplot as plt\n'), ((10372, 10402), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['title'], {'fontsize': '(16)'}), '(title, fontsize=16)\n', (10382, 10402), True, 'import matplotlib.pyplot as plt\n'), ((3864, 3891), 'numpy.random.shuffle', 'np.random.shuffle', (['focal_80'], {}), '(focal_80)\n', (3881, 3891), True, 'import numpy as np\n'), ((10081, 10103), 'numpy.mean', 'np.mean', (['analysis_list'], {}), '(analysis_list)\n', (10088, 10103), True, 'import numpy as np\n'), ((4095, 4113), 'networkx.degree', 'nx.degree', (['Gint', 'g'], {}), '(Gint, g)\n', (4104, 4113), True, 'import networkx as nx\n'), ((4252, 4281), 'numpy.random.shuffle', 'np.random.shuffle', (['genes_temp'], {}), '(genes_temp)\n', (4269, 4281), True, 'import numpy as np\n'), ((5839, 5868), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(12, 7)'}), '(figsize=(12, 7))\n', (5851, 5868), True, 'import matplotlib.pyplot as plt\n'), ((5883, 5949), 'seaborn.distplot', 'sns.distplot', (['numedges_list'], {'ax': 'ax', 'hist': '(True)', 'label': '"""focal genes"""'}), "(numedges_list, ax=ax, hist=True, label='focal genes')\n", (5895, 5949), True, 'import seaborn as sns\n'), ((5968, 6033), 'seaborn.distplot', 'sns.distplot', (['numedges_rand'], {'ax': 'ax', 'hist': '(True)', 'label': '"""random set"""'}), "(numedges_rand, ax=ax, hist=True, label='random set')\n", (5980, 6033), True, 'import seaborn as sns\n'), ((6052, 6088), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""frequency"""'], {'fontsize': '(16)'}), "('frequency', fontsize=16)\n", (6062, 6088), True, 'import matplotlib.pyplot as plt\n'), ((6103, 6145), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""number of edges"""'], {'fontsize': '(16)'}), "('number of edges', fontsize=16)\n", (6113, 6145), True, 'import matplotlib.pyplot as plt\n'), ((6160, 6214), 'matplotlib.pyplot.title', 'plt.title', (['"""Number of Edges Localization"""'], {'fontsize': '(18)'}), "('Number of Edges Localization', fontsize=18)\n", (6169, 6214), True, 'import matplotlib.pyplot as plt\n'), ((6229, 6271), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""upper right"""', 'fontsize': '(14)'}), "(loc='upper right', fontsize=14)\n", (6239, 6271), True, 'import matplotlib.pyplot as plt\n'), ((6367, 6396), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(12, 7)'}), '(figsize=(12, 7))\n', (6379, 6396), True, 'import matplotlib.pyplot as plt\n'), ((6411, 6472), 'seaborn.distplot', 'sns.distplot', (['LCC_list'], {'ax': 'ax', 'hist': '(True)', 'label': '"""focal genes"""'}), "(LCC_list, ax=ax, hist=True, label='focal genes')\n", (6423, 6472), True, 'import seaborn as sns\n'), ((6491, 6551), 'seaborn.distplot', 'sns.distplot', (['LCC_rand'], {'ax': 'ax', 'hist': '(True)', 'label': '"""random set"""'}), "(LCC_rand, ax=ax, hist=True, label='random set')\n", (6503, 6551), True, 'import seaborn as sns\n'), ((6570, 6606), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""frequency"""'], {'fontsize': '(16)'}), "('frequency', fontsize=16)\n", (6580, 6606), True, 'import matplotlib.pyplot as plt\n'), ((6621, 6680), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""largest connected component size"""'], {'fontsize': '(16)'}), "('largest connected component size', fontsize=16)\n", (6631, 6680), True, 'import matplotlib.pyplot as plt\n'), ((6695, 6761), 'matplotlib.pyplot.title', 'plt.title', (['"""Largest Connected Component Localization"""'], {'fontsize': '(18)'}), "('Largest Connected Component Localization', fontsize=18)\n", (6704, 6761), True, 'import matplotlib.pyplot as plt\n'), ((6776, 6818), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""upper right"""', 'fontsize': '(14)'}), "(loc='upper right', fontsize=14)\n", (6786, 6818), True, 'import matplotlib.pyplot as plt\n'), ((10456, 10478), 'numpy.mean', 'np.mean', (['analysis_list'], {}), '(analysis_list)\n', (10463, 10478), True, 'import numpy as np\n'), ((10481, 10503), 'numpy.mean', 'np.mean', (['analysis_rand'], {}), '(analysis_rand)\n', (10488, 10503), True, 'import numpy as np\n'), ((10511, 10532), 'numpy.std', 'np.std', (['analysis_rand'], {}), '(analysis_rand)\n', (10517, 10532), True, 'import numpy as np\n'), ((10549, 10565), 'scipy.special.ndtr', 'ndtr', (['analysis_z'], {}), '(analysis_z)\n', (10553, 10565), False, 'from scipy.special import ndtr\n'), ((4483, 4512), 'numpy.random.shuffle', 'np.random.shuffle', (['genes_temp'], {}), '(genes_temp)\n', (4500, 4512), True, 'import numpy as np\n'), ((5310, 5337), 'networkx.subgraph', 'nx.subgraph', (['Gint', 'focal_80'], {}), '(Gint, focal_80)\n', (5321, 5337), True, 'import networkx as nx\n'), ((5368, 5412), 'networkx.connected_component_subgraphs', 'nx.connected_component_subgraphs', (['G_sub_temp'], {}), '(G_sub_temp)\n', (5400, 5412), True, 'import networkx as nx\n'), ((5565, 5595), 'networkx.subgraph', 'nx.subgraph', (['Gint', 'seed_random'], {}), '(Gint, seed_random)\n', (5576, 5595), True, 'import networkx as nx\n'), ((5626, 5670), 'networkx.connected_component_subgraphs', 'nx.connected_component_subgraphs', (['G_sub_temp'], {}), '(G_sub_temp)\n', (5658, 5670), True, 'import networkx as nx\n'), ((10611, 10627), 'scipy.special.ndtr', 'ndtr', (['analysis_z'], {}), '(analysis_z)\n', (10615, 10627), False, 'from scipy.special import ndtr\n'), ((4887, 4914), 'networkx.subgraph', 'nx.subgraph', (['Gint', 'focal_80'], {}), '(Gint, focal_80)\n', (4898, 4914), True, 'import networkx as nx\n'), ((5070, 5100), 'networkx.subgraph', 'nx.subgraph', (['Gint', 'seed_random'], {}), '(Gint, seed_random)\n', (5081, 5100), True, 'import networkx as nx\n')]
import os import numpy as np import scipy.io as sio import skimage as sk #from osgeo import gdal from sklearn.metrics import f1_score, precision_score, recall_score, accuracy_score, confusion_matrix import sklearn import warnings def save_as_mat(data, name): sio.savemat(name, {name: data}) def Read_TIFF_Image(Path): img =[] #gdal_header = gdal.Open(Path) #img = gdal_header.ReadAsArray() return img def Compute_NDVI_Band(Image): Image = Image.astype(np.float32) nir_band = Image[4, :, :] red_band = Image[3, :, :] ndvi = np.zeros((Image.shape[1] , Image.shape[2] , 1)) ndvi[ : , : , 0] = np.divide((nir_band-red_band),(nir_band+red_band)) return ndvi def compute_metrics(true_labels, predicted_labels): conf_mat = confusion_matrix(true_labels, predicted_labels) accuracy = 100*accuracy_score(true_labels, predicted_labels) with warnings.catch_warnings(): warnings.filterwarnings("error") try: precision = 100*precision_score(true_labels, predicted_labels) except Warning as e: if isinstance(e, sklearn.exceptions.UndefinedMetricWarning): precision = np.nan else: raise e try: recall = 100*recall_score(true_labels, predicted_labels) except Warning as e: if isinstance(e, sklearn.exceptions.UndefinedMetricWarning): recall = np.nan else: raise e try: f1score = 100*f1_score(true_labels, predicted_labels) except Warning as e: if isinstance(e, sklearn.exceptions.UndefinedMetricWarning): f1score = np.nan else: raise e return accuracy, f1score, recall, precision, conf_mat def Data_Augmentation_Definition(corners_coordinates): num_sample = np.size(corners_coordinates , 0) data_cols = np.size(corners_coordinates , 1) corners_coordinates_augmented = np.zeros((3 * num_sample, data_cols + 1)) counter = 0 for s in range(num_sample): corners_coordinates_0 = corners_coordinates[s] # central_pixels_coor_augmented[counter, 0 : 2] = central_pixels_coor_x_0 # central_pixels_coor_augmented[counter, 2] = 0 # labels_augmented[counter, :] = labels_y_0 # counter += 1 corners_coordinates_augmented[counter, 0 : 4] = corners_coordinates_0 corners_coordinates_augmented[counter, 4] = 1 counter += 1 corners_coordinates_augmented[counter, 0 : 4] = corners_coordinates_0 corners_coordinates_augmented[counter, 4] = 2 counter += 1 corners_coordinates_augmented[counter, 0 : 4] = corners_coordinates_0 corners_coordinates_augmented[counter, 4] = 3 counter += 1 return corners_coordinates_augmented def Data_Augmentation_Execution(data, transformation_indexs): data_rows = np.size(data , 1) data_cols = np.size(data , 2) data_depth = np.size(data , 3) num_sample = np.size(data , 0) data_transformed = np.zeros((num_sample, data_rows, data_cols, data_depth)) counter = 0 for s in range(num_sample): data_x_0 = data[s, :, :, :] transformation_index = transformation_indexs[s] #Rotating if transformation_index == 0: data_transformed[s, :, :, :] = data_x_0 if transformation_index == 1: data_transformed[s, :, :, :] = np.rot90(data_x_0) if transformation_index == 2: data_transformed[s, :, :, :] = np.flip(data_x_0, 0) if transformation_index == 3: data_transformed[s, :, :, :] = np.flip(data_x_0, 1) return data_transformed def Patch_Extraction(data, corners_coordinates, patch_size): data_depth = np.size(data, 2) num_samp = np.size(corners_coordinates , 0) patches_cointainer = np.zeros((num_samp, patch_size, patch_size, data_depth)) for i in range(num_samp): patches_cointainer[i, :, :, :] = data[int(corners_coordinates[i , 0]) : int(corners_coordinates[i , 2]) , int(corners_coordinates[i , 1]) : int(corners_coordinates[i , 3]) , :] return patches_cointainer def mask_creation(mask_row, mask_col, num_patch_row, num_patch_col, Train_tiles, Valid_tiles, Undesired_tiles): train_index = 1 teste_index = 2 valid_index = 3 undesired_index = 4 patch_dim_row = mask_row//num_patch_row patch_dim_col = mask_col//num_patch_col mask_array = 2 * np.ones((mask_row, mask_col)) train_mask = np.ones((patch_dim_row, patch_dim_col)) valid_mask = 3 * np.ones((patch_dim_row, patch_dim_col)) undesired_mask = 4 * np.ones((patch_dim_row, patch_dim_col)) counter_r = 1 counter = 1 for i in range(0, mask_row, patch_dim_row): for j in range(0 , mask_col, patch_dim_col): train = np.size(np.where(Train_tiles == counter),1) valid = np.size(np.where(Valid_tiles == counter),1) undesired = np.size(np.where(Undesired_tiles == counter), 1) if train == 1: mask_array[i : i + patch_dim_row, j : j + patch_dim_col] = train_mask if counter_r == num_patch_row: mask_array[i : mask_row, j : j + patch_dim_col] = np.ones((mask_row - i, patch_dim_col)) if valid == 1: mask_array[i : i + patch_dim_row, j : j + patch_dim_col] = valid_mask if counter_r == num_patch_row: mask_array[i : mask_row, j : j + patch_dim_col] = 3 * np.ones((mask_row - i, patch_dim_col)) if undesired == 1: mask_array[i : i + patch_dim_row, j : j + patch_dim_col] = undesired_mask if counter_r == num_patch_row: mask_array[i : mask_row, j : j + patch_dim_col] = 4 * np.ones((mask_row - i, patch_dim_col)) counter += 1 counter_r += 1 return mask_array def Corner_Coordinates_Definition_Training(mask, last_reference, actual_reference, patch_dimension, overlap_percent, percent_of_positive_pixels_in_actual_reference): mask_rows = np.size(mask, 0) mask_cols = np.size(mask, 1) # Correcting the references for convenience last_reference[actual_reference == 2] = 1 actual_reference[actual_reference == 2] = 0 # Computing the overlaps and other things to extract patches overlap = round(patch_dimension * overlap_percent) overlap -= overlap % 2 stride = patch_dimension - overlap step_row = (stride - mask_rows % stride) % stride step_col = (stride - mask_cols % stride) % stride k1, k2 = (mask_rows + step_row)//stride, (mask_cols + step_col)//stride #Taking the initial coordinates coordinates = np.zeros((k1 * k2 , 4)) counter = 0 for i in range(k1): for j in range(k2): coordinates[counter, 0] = i * stride coordinates[counter, 1] = j * stride coordinates[counter, 2] = i * stride + patch_dimension coordinates[counter, 3] = j * stride + patch_dimension counter += 1 pad_tuple = ((overlap//2, overlap//2 + step_row) , (overlap//2, overlap//2 + step_col)) # Making the padding procedure # into the mask mask_padded = np.pad(mask, pad_tuple, mode='symmetric') # into the past deforestation reference last_reference_padded = np.pad(last_reference, pad_tuple, mode='symmetric') # into the actual deforestation reference actual_reference_padded = np.pad(actual_reference, pad_tuple, mode='symmetric') #Initializing the central pixels coordinates containers corners_coordinates_tr = [] corners_coordinates_vl = [] class_weights = [] pad_tuple = ((overlap//2, overlap//2 + step_row) , (overlap//2, overlap//2 + step_col), (0 , 0)) # Refine the central pixels coordinates counter_tr = 0 counter_vl = 0 positive_percent_accumulated = 0 for i in range(np.size(coordinates , 0)): mask_reference_value = mask_padded[int(coordinates[i , 0]) : int(coordinates[i , 2]) , int(coordinates[i , 1]) : int(coordinates[i , 3])] last_reference_value = last_reference_padded[int(coordinates[i , 0]) : int(coordinates[i , 2]) , int(coordinates[i , 1]) : int(coordinates[i , 3])] actual_reference_value = actual_reference_padded[int(coordinates[i , 0]) : int(coordinates[i , 2]) , int(coordinates[i , 1]) : int(coordinates[i , 3])] # Looking for a test pixels in the mask reference test_pixels_indexs = np.transpose(np.array(np.where(mask_reference_value == 2))) if np.size(test_pixels_indexs,0) == 0: number_positives_actual_reference = np.sum(actual_reference_value) percent_of_positive_pixels_in_actual_reference_i = (number_positives_actual_reference/(patch_dimension * patch_dimension)) * 100 if percent_of_positive_pixels_in_actual_reference_i > percent_of_positive_pixels_in_actual_reference: positive_percent_accumulated += percent_of_positive_pixels_in_actual_reference_i train_pixels_indexs = np.transpose(np.array(np.where(mask_reference_value == 1))) percent_of_training_pixels = (train_pixels_indexs.shape[0]/(patch_dimension * patch_dimension)) * 100 if percent_of_training_pixels > 70: corners_coordinates_tr.append(coordinates[i , :]) counter_tr += 1 if percent_of_positive_pixels_in_actual_reference_i > 3: valid_pixels_indexs = np.transpose(np.array(np.where(mask_reference_value == 3))) percent_of_validation_pixels = (valid_pixels_indexs.shape[0]/(patch_dimension * patch_dimension)) * 100 if percent_of_validation_pixels > 70: corners_coordinates_vl.append(coordinates[i , :]) mean_positive_percent = positive_percent_accumulated/counter_tr class_weights.append(mean_positive_percent/100) class_weights.append(1 - (mean_positive_percent/100)) return corners_coordinates_tr, corners_coordinates_vl, last_reference_padded, actual_reference_padded, pad_tuple, class_weights def Corner_Coordinates_Definition_Testing(mask, patch_dimension, overlap_percent): mask_rows = np.size(mask, 0) mask_cols = np.size(mask, 1) # Computing the overlaps and other things to extract patches overlap = round(patch_dimension * overlap_percent) overlap -= overlap % 2 stride = patch_dimension - overlap step_row = (stride - mask_rows % stride) % stride step_col = (stride - mask_cols % stride) % stride k1, k2 = (mask_rows + step_row)//stride, (mask_cols + step_col)//stride #Taking the initial coordinates coordinates = np.zeros((k1 * k2 , 4)) counter = 0 for i in range(k1): for j in range(k2): coordinates[counter, 0] = i * stride coordinates[counter, 1] = j * stride coordinates[counter, 2] = i * stride + patch_dimension coordinates[counter, 3] = j * stride + patch_dimension counter += 1 pad_tuple = ((overlap//2, overlap//2 + step_row) , (overlap//2, overlap//2 + step_col), (0 , 0)) return coordinates, pad_tuple, k1, k2, step_row, step_col, stride, overlap def Classification_Maps(Predicted_labels, True_labels, central_pixels_coordinates, hit_map): Classification_Map = np.zeros((hit_map.shape[0], hit_map.shape[1], 3)) TP_counter = 0 FP_counter = 0 for i in range(central_pixels_coordinates.shape[0]): T_label = True_labels[i] P_label = Predicted_labels[i] if T_label == 1: if P_label == T_label: TP_counter += 1 #True positve Classification_Map[int(central_pixels_coordinates[i , 0]),int(central_pixels_coordinates[i , 1]),0] = 0 Classification_Map[int(central_pixels_coordinates[i , 0]),int(central_pixels_coordinates[i , 1]),1] = 255 Classification_Map[int(central_pixels_coordinates[i , 0]),int(central_pixels_coordinates[i , 1]),2] = 0 else: #False Negative Classification_Map[int(central_pixels_coordinates[i , 0]),int(central_pixels_coordinates[i , 1]),0] = 255 Classification_Map[int(central_pixels_coordinates[i , 0]),int(central_pixels_coordinates[i , 1]),1] = 255 Classification_Map[int(central_pixels_coordinates[i , 0]),int(central_pixels_coordinates[i , 1]),2] = 0 if T_label == 0: if P_label == T_label: #True Negative Classification_Map[int(central_pixels_coordinates[i , 0]),int(central_pixels_coordinates[i , 1]),0] = 255 Classification_Map[int(central_pixels_coordinates[i , 0]),int(central_pixels_coordinates[i , 1]),1] = 255 Classification_Map[int(central_pixels_coordinates[i , 0]),int(central_pixels_coordinates[i , 1]),2] = 255 else: #False Positive FP_counter += 1 Classification_Map[int(central_pixels_coordinates[i , 0]),int(central_pixels_coordinates[i , 1]),0] = 255 Classification_Map[int(central_pixels_coordinates[i , 0]),int(central_pixels_coordinates[i , 1]),1] = 0 Classification_Map[int(central_pixels_coordinates[i , 0]),int(central_pixels_coordinates[i , 1]),2] = 0 return Classification_Map, TP_counter, FP_counter def plot_embedding(X, y, d, title=None): """Plot an embedding X with the class label y colored by the domain d.""" x_min, x_max = np.min(X, 0), np.max(X, 0) X = (X - x_min) / (x_max - x_min) # Plot colors numbers plt.figure(figsize=(10,10)) ax = plt.subplot(111) for i in range(X.shape[0]): # plot colored number plt.text(X[i, 0], X[i, 1], str(y[i]), color=plt.cm.bwr(d[i] / 1.), fontdict={'weight': 'bold', 'size': 9}) plt.xticks([]), plt.yticks([]) if title is not None: plt.title(title)
[ "numpy.sum", "sklearn.metrics.accuracy_score", "numpy.ones", "sklearn.metrics.f1_score", "numpy.rot90", "numpy.pad", "numpy.max", "warnings.catch_warnings", "numpy.divide", "numpy.size", "sklearn.metrics.recall_score", "numpy.min", "numpy.flip", "warnings.filterwarnings", "numpy.zeros", "scipy.io.savemat", "numpy.where", "sklearn.metrics.precision_score", "sklearn.metrics.confusion_matrix" ]
[((265, 296), 'scipy.io.savemat', 'sio.savemat', (['name', '{name: data}'], {}), '(name, {name: data})\n', (276, 296), True, 'import scipy.io as sio\n'), ((563, 608), 'numpy.zeros', 'np.zeros', (['(Image.shape[1], Image.shape[2], 1)'], {}), '((Image.shape[1], Image.shape[2], 1))\n', (571, 608), True, 'import numpy as np\n'), ((634, 685), 'numpy.divide', 'np.divide', (['(nir_band - red_band)', '(nir_band + red_band)'], {}), '(nir_band - red_band, nir_band + red_band)\n', (643, 685), True, 'import numpy as np\n'), ((769, 816), 'sklearn.metrics.confusion_matrix', 'confusion_matrix', (['true_labels', 'predicted_labels'], {}), '(true_labels, predicted_labels)\n', (785, 816), False, 'from sklearn.metrics import f1_score, precision_score, recall_score, accuracy_score, confusion_matrix\n'), ((1775, 1806), 'numpy.size', 'np.size', (['corners_coordinates', '(0)'], {}), '(corners_coordinates, 0)\n', (1782, 1806), True, 'import numpy as np\n'), ((1824, 1855), 'numpy.size', 'np.size', (['corners_coordinates', '(1)'], {}), '(corners_coordinates, 1)\n', (1831, 1855), True, 'import numpy as np\n'), ((1902, 1943), 'numpy.zeros', 'np.zeros', (['(3 * num_sample, data_cols + 1)'], {}), '((3 * num_sample, data_cols + 1))\n', (1910, 1943), True, 'import numpy as np\n'), ((2880, 2896), 'numpy.size', 'np.size', (['data', '(1)'], {}), '(data, 1)\n', (2887, 2896), True, 'import numpy as np\n'), ((2914, 2930), 'numpy.size', 'np.size', (['data', '(2)'], {}), '(data, 2)\n', (2921, 2930), True, 'import numpy as np\n'), ((2949, 2965), 'numpy.size', 'np.size', (['data', '(3)'], {}), '(data, 3)\n', (2956, 2965), True, 'import numpy as np\n'), ((2984, 3000), 'numpy.size', 'np.size', (['data', '(0)'], {}), '(data, 0)\n', (2991, 3000), True, 'import numpy as np\n'), ((3030, 3086), 'numpy.zeros', 'np.zeros', (['(num_sample, data_rows, data_cols, data_depth)'], {}), '((num_sample, data_rows, data_cols, data_depth))\n', (3038, 3086), True, 'import numpy as np\n'), ((3774, 3790), 'numpy.size', 'np.size', (['data', '(2)'], {}), '(data, 2)\n', (3781, 3790), True, 'import numpy as np\n'), ((3806, 3837), 'numpy.size', 'np.size', (['corners_coordinates', '(0)'], {}), '(corners_coordinates, 0)\n', (3813, 3837), True, 'import numpy as np\n'), ((3864, 3920), 'numpy.zeros', 'np.zeros', (['(num_samp, patch_size, patch_size, data_depth)'], {}), '((num_samp, patch_size, patch_size, data_depth))\n', (3872, 3920), True, 'import numpy as np\n'), ((4553, 4592), 'numpy.ones', 'np.ones', (['(patch_dim_row, patch_dim_col)'], {}), '((patch_dim_row, patch_dim_col))\n', (4560, 4592), True, 'import numpy as np\n'), ((6212, 6228), 'numpy.size', 'np.size', (['mask', '(0)'], {}), '(mask, 0)\n', (6219, 6228), True, 'import numpy as np\n'), ((6245, 6261), 'numpy.size', 'np.size', (['mask', '(1)'], {}), '(mask, 1)\n', (6252, 6261), True, 'import numpy as np\n'), ((6843, 6865), 'numpy.zeros', 'np.zeros', (['(k1 * k2, 4)'], {}), '((k1 * k2, 4))\n', (6851, 6865), True, 'import numpy as np\n'), ((7363, 7404), 'numpy.pad', 'np.pad', (['mask', 'pad_tuple'], {'mode': '"""symmetric"""'}), "(mask, pad_tuple, mode='symmetric')\n", (7369, 7404), True, 'import numpy as np\n'), ((7477, 7528), 'numpy.pad', 'np.pad', (['last_reference', 'pad_tuple'], {'mode': '"""symmetric"""'}), "(last_reference, pad_tuple, mode='symmetric')\n", (7483, 7528), True, 'import numpy as np\n'), ((7605, 7658), 'numpy.pad', 'np.pad', (['actual_reference', 'pad_tuple'], {'mode': '"""symmetric"""'}), "(actual_reference, pad_tuple, mode='symmetric')\n", (7611, 7658), True, 'import numpy as np\n'), ((10385, 10401), 'numpy.size', 'np.size', (['mask', '(0)'], {}), '(mask, 0)\n', (10392, 10401), True, 'import numpy as np\n'), ((10418, 10434), 'numpy.size', 'np.size', (['mask', '(1)'], {}), '(mask, 1)\n', (10425, 10434), True, 'import numpy as np\n'), ((10874, 10896), 'numpy.zeros', 'np.zeros', (['(k1 * k2, 4)'], {}), '((k1 * k2, 4))\n', (10882, 10896), True, 'import numpy as np\n'), ((11541, 11590), 'numpy.zeros', 'np.zeros', (['(hit_map.shape[0], hit_map.shape[1], 3)'], {}), '((hit_map.shape[0], hit_map.shape[1], 3))\n', (11549, 11590), True, 'import numpy as np\n'), ((836, 881), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['true_labels', 'predicted_labels'], {}), '(true_labels, predicted_labels)\n', (850, 881), False, 'from sklearn.metrics import f1_score, precision_score, recall_score, accuracy_score, confusion_matrix\n'), ((891, 916), 'warnings.catch_warnings', 'warnings.catch_warnings', ([], {}), '()\n', (914, 916), False, 'import warnings\n'), ((926, 958), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""error"""'], {}), "('error')\n", (949, 958), False, 'import warnings\n'), ((4501, 4530), 'numpy.ones', 'np.ones', (['(mask_row, mask_col)'], {}), '((mask_row, mask_col))\n', (4508, 4530), True, 'import numpy as np\n'), ((4614, 4653), 'numpy.ones', 'np.ones', (['(patch_dim_row, patch_dim_col)'], {}), '((patch_dim_row, patch_dim_col))\n', (4621, 4653), True, 'import numpy as np\n'), ((4679, 4718), 'numpy.ones', 'np.ones', (['(patch_dim_row, patch_dim_col)'], {}), '((patch_dim_row, patch_dim_col))\n', (4686, 4718), True, 'import numpy as np\n'), ((8054, 8077), 'numpy.size', 'np.size', (['coordinates', '(0)'], {}), '(coordinates, 0)\n', (8061, 8077), True, 'import numpy as np\n'), ((13777, 13789), 'numpy.min', 'np.min', (['X', '(0)'], {}), '(X, 0)\n', (13783, 13789), True, 'import numpy as np\n'), ((13791, 13803), 'numpy.max', 'np.max', (['X', '(0)'], {}), '(X, 0)\n', (13797, 13803), True, 'import numpy as np\n'), ((3416, 3434), 'numpy.rot90', 'np.rot90', (['data_x_0'], {}), '(data_x_0)\n', (3424, 3434), True, 'import numpy as np\n'), ((3516, 3536), 'numpy.flip', 'np.flip', (['data_x_0', '(0)'], {}), '(data_x_0, 0)\n', (3523, 3536), True, 'import numpy as np\n'), ((3618, 3638), 'numpy.flip', 'np.flip', (['data_x_0', '(1)'], {}), '(data_x_0, 1)\n', (3625, 3638), True, 'import numpy as np\n'), ((8701, 8731), 'numpy.size', 'np.size', (['test_pixels_indexs', '(0)'], {}), '(test_pixels_indexs, 0)\n', (8708, 8731), True, 'import numpy as np\n'), ((8785, 8815), 'numpy.sum', 'np.sum', (['actual_reference_value'], {}), '(actual_reference_value)\n', (8791, 8815), True, 'import numpy as np\n'), ((1000, 1046), 'sklearn.metrics.precision_score', 'precision_score', (['true_labels', 'predicted_labels'], {}), '(true_labels, predicted_labels)\n', (1015, 1046), False, 'from sklearn.metrics import f1_score, precision_score, recall_score, accuracy_score, confusion_matrix\n'), ((1232, 1275), 'sklearn.metrics.recall_score', 'recall_score', (['true_labels', 'predicted_labels'], {}), '(true_labels, predicted_labels)\n', (1244, 1275), False, 'from sklearn.metrics import f1_score, precision_score, recall_score, accuracy_score, confusion_matrix\n'), ((1459, 1498), 'sklearn.metrics.f1_score', 'f1_score', (['true_labels', 'predicted_labels'], {}), '(true_labels, predicted_labels)\n', (1467, 1498), False, 'from sklearn.metrics import f1_score, precision_score, recall_score, accuracy_score, confusion_matrix\n'), ((4894, 4926), 'numpy.where', 'np.where', (['(Train_tiles == counter)'], {}), '(Train_tiles == counter)\n', (4902, 4926), True, 'import numpy as np\n'), ((4958, 4990), 'numpy.where', 'np.where', (['(Valid_tiles == counter)'], {}), '(Valid_tiles == counter)\n', (4966, 4990), True, 'import numpy as np\n'), ((5026, 5062), 'numpy.where', 'np.where', (['(Undesired_tiles == counter)'], {}), '(Undesired_tiles == counter)\n', (5034, 5062), True, 'import numpy as np\n'), ((8652, 8687), 'numpy.where', 'np.where', (['(mask_reference_value == 2)'], {}), '(mask_reference_value == 2)\n', (8660, 8687), True, 'import numpy as np\n'), ((5297, 5335), 'numpy.ones', 'np.ones', (['(mask_row - i, patch_dim_col)'], {}), '((mask_row - i, patch_dim_col))\n', (5304, 5335), True, 'import numpy as np\n'), ((5570, 5608), 'numpy.ones', 'np.ones', (['(mask_row - i, patch_dim_col)'], {}), '((mask_row - i, patch_dim_col))\n', (5577, 5608), True, 'import numpy as np\n'), ((5851, 5889), 'numpy.ones', 'np.ones', (['(mask_row - i, patch_dim_col)'], {}), '((mask_row - i, patch_dim_col))\n', (5858, 5889), True, 'import numpy as np\n'), ((9228, 9263), 'numpy.where', 'np.where', (['(mask_reference_value == 1)'], {}), '(mask_reference_value == 1)\n', (9236, 9263), True, 'import numpy as np\n'), ((9680, 9715), 'numpy.where', 'np.where', (['(mask_reference_value == 3)'], {}), '(mask_reference_value == 3)\n', (9688, 9715), True, 'import numpy as np\n')]
import warnings warnings.filterwarnings("ignore") import yfinance as yf import numpy as np import pandas as pd import matplotlib import matplotlib as mpl matplotlib.use("Agg") from matplotlib import style from matplotlib import pyplot as plt plt.style.use("ggplot") import seaborn as sns plt.style.use("seaborn") sns.set_palette("cubehelix") plt.rcParams["figure.figsize"] = [18, 10] plt.rcParams["figure.dpi"] = 150 sm, med, lg = 10, 15, 20 plt.rc("font", size=sm) # controls default text sizes plt.rc("axes", titlesize=med) # fontsize of the axes title plt.rc("axes", labelsize=med) # fontsize of the x & y labels plt.rc("xtick", labelsize=sm) # fontsize of the tick labels plt.rc("ytick", labelsize=sm) # fontsize of the tick labels plt.rc("legend", fontsize=sm) # legend fontsize plt.rc("figure", titlesize=lg) # fontsize of the figure title plt.rc("axes", linewidth=2) # linewidth of plot lines import streamlit as st from pathlib import Path path = str(Path.cwd()) + "/" from datetime import datetime today = str(datetime.now())[:10] # * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * # * * * * * * * * * * * * * * * * * * * * * # * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * class The_Efficient_Frontier(object): def __init__(self, RISKY_ASSETS): self.RISKY_ASSETS = RISKY_ASSETS self.prices_df = yf.download(self.RISKY_ASSETS, start="2020-01-01")["Adj Close"] self.N_PORTFOLIOS = 10 ** 5 self.N_DAYS = 252 self.n_assets = len(self.RISKY_ASSETS) self.string = "" for r in self.RISKY_ASSETS: self.string += r + "_" def ef_setup(self): self.returns_df = self.prices_df.pct_change().dropna() self.avg_returns = self.returns_df.mean() * self.N_DAYS self.cov_mat = self.returns_df.cov() * self.N_DAYS # simulate random portfolio weights: np.random.seed(42) self.weights = np.random.random(size=(self.N_PORTFOLIOS, self.n_assets)) self.weights /= np.sum(self.weights, axis=1)[:, np.newaxis] # calculate portfolio metrics: self.portf_rtns = np.dot(self.weights, self.avg_returns) self.portf_vol = [] for i in range(0, len(self.weights)): self.portf_vol.append( np.sqrt( np.dot(self.weights[i].T, np.dot(self.cov_mat, self.weights[i])) ) ) self.portf_vol = np.array(self.portf_vol) self.portf_sharpe_ratio = self.portf_rtns / self.portf_vol # create joint dataframe with all data: self.portf_results_df = pd.DataFrame( { "returns": self.portf_rtns, "volatility": self.portf_vol, "sharpe_ratio": self.portf_sharpe_ratio, } ) # locate points creating efficient frontier: self.N_POINTS = 100 self.portf_vol_ef = [] self.indices_to_skip = [] self.portf_rtns_ef = np.linspace( self.portf_results_df.returns.min(), self.portf_results_df.returns.max(), self.N_POINTS, ) self.portf_rtns_ef = np.round(self.portf_rtns_ef, 2) self.portf_rtns = np.round(self.portf_rtns, 2) for point_index in range(self.N_POINTS): if self.portf_rtns_ef[point_index] not in self.portf_rtns: self.indices_to_skip.append(point_index) continue self.matched_ind = np.where( self.portf_rtns == self.portf_rtns_ef[point_index] ) self.portf_vol_ef.append(np.min(self.portf_vol[self.matched_ind])) self.portf_rtns_ef = np.delete(self.portf_rtns_ef, self.indices_to_skip) def results_maxSharpeRatio(self): self.ef_setup() self.max_sharpe_ind = np.argmax(self.portf_results_df.sharpe_ratio) self.max_sharpe_portf = self.portf_results_df.loc[self.max_sharpe_ind] self.min_vol_ind = np.argmin(self.portf_results_df.volatility) self.min_vol_portf = self.portf_results_df.loc[self.min_vol_ind] st.header("- - - Maximum Sharpe Ratio portfolio - - -") st.subheader("Performance:") for index, value in self.max_sharpe_portf.items(): st.write(f"{index}: {100 * value:.2f}% ", end="", flush=True) st.subheader("\nWeights") for x, y in zip( self.RISKY_ASSETS, self.weights[np.argmax(self.portf_results_df.sharpe_ratio)], ): st.write(f"{x}: {100*y:.2f}% ", end="", flush=True) def results_minVolatility(self): self.results_maxSharpeRatio() st.header("- - - Minimum Volatility portfolio - - -") st.subheader("Performance:") for index, value in self.min_vol_portf.items(): st.write(f"{index}: {100 * value:.2f}% ", end="", flush=True) st.subheader("\nWeights") for x, y in zip( self.RISKY_ASSETS, self.weights[np.argmin(self.portf_results_df.volatility)] ): st.write(f"{x}: {100*y:.2f}% ", end="", flush=True) def final_plot(self): self.results_minVolatility() fig, ax = plt.subplots() self.portf_results_df.plot( kind="scatter", x="volatility", y="returns", c="sharpe_ratio", cmap="RdYlGn", edgecolors="black", ax=ax, ) ax.scatter( x=self.max_sharpe_portf.volatility, y=self.max_sharpe_portf.returns, c="black", marker="X", s=175, label="Max Sharpe Ratio", ) ax.scatter( x=self.min_vol_portf.volatility, y=self.min_vol_portf.returns, c="black", marker="P", s=175, label="Min Volatility", ) self.portf_results_df.plot( kind="scatter", x="volatility", y="returns", c="sharpe_ratio", cmap="RdYlGn", edgecolors="black", ax=ax, ) ax.set( xlabel="Volatility", ylabel="Expected Returns", title="Efficient Frontier" ) ax.plot(self.portf_vol_ef, self.portf_rtns_ef, "b--") for asset_index in range(self.n_assets): ax.scatter( x=np.sqrt(self.cov_mat.iloc[asset_index, asset_index]), y=self.avg_returns[asset_index], # marker=self.MARKS[asset_index], s=100, color="black", label=self.RISKY_ASSETS[asset_index], ) ax.set( xlabel="Volatility", ylabel="Expected Returns", title=f"Efficient Frontier", # {self.string}", ) for label in ax.get_xticklabels() + ax.get_yticklabels(): label.set_fontsize(15) ax.grid(True, color="k", linestyle="-", linewidth=1, alpha=0.3) ax.legend(loc="best", prop={"size": 16}) plt.tight_layout() st.pyplot(fig) # * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * # * * * * * * * * * * * * * * * * * * * * * # * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * if __name__ == "__main__": RISKY_ASSETS = [] manys = [2, 4, 6, 8, 10, 12, 14] how_many = int( st.sidebar.selectbox("Select Number Of Securities For Portfolio:", manys) ) # how_many = int(input('How Many Stocks In Your Portfolio? (up to 14): ')) for i in range(1, how_many + 1): tic = input(f"Enter Stock {i}: ") RISKY_ASSETS.append(tic) RISKY_ASSETS.sort() marks0 = ["o", "^", "s", "p", "h", "8", "*", "d", ">", "v", "<", "1", "2", "3", "4"] mark = marks0[: len(RISKY_ASSETS) + 1] The_Efficient_Frontier(RISKY_ASSETS).final_plot() # * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * # * * * * * * * * * * * * * * * * * * * * * # * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
[ "numpy.random.seed", "numpy.sum", "numpy.argmax", "numpy.argmin", "matplotlib.pyplot.style.use", "streamlit.sidebar.selectbox", "numpy.round", "matplotlib.pyplot.tight_layout", "pandas.DataFrame", "streamlit.subheader", "yfinance.download", "matplotlib.pyplot.rc", "matplotlib.pyplot.subplots", "datetime.datetime.now", "streamlit.header", "numpy.min", "matplotlib.use", "streamlit.pyplot", "numpy.dot", "seaborn.set_palette", "numpy.delete", "warnings.filterwarnings", "streamlit.write", "numpy.random.random", "numpy.array", "numpy.where", "pathlib.Path.cwd", "numpy.sqrt" ]
[((17, 50), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (40, 50), False, 'import warnings\n'), ((157, 178), 'matplotlib.use', 'matplotlib.use', (['"""Agg"""'], {}), "('Agg')\n", (171, 178), False, 'import matplotlib\n'), ((246, 269), 'matplotlib.pyplot.style.use', 'plt.style.use', (['"""ggplot"""'], {}), "('ggplot')\n", (259, 269), True, 'from matplotlib import pyplot as plt\n'), ((293, 317), 'matplotlib.pyplot.style.use', 'plt.style.use', (['"""seaborn"""'], {}), "('seaborn')\n", (306, 317), True, 'from matplotlib import pyplot as plt\n'), ((318, 346), 'seaborn.set_palette', 'sns.set_palette', (['"""cubehelix"""'], {}), "('cubehelix')\n", (333, 346), True, 'import seaborn as sns\n'), ((448, 471), 'matplotlib.pyplot.rc', 'plt.rc', (['"""font"""'], {'size': 'sm'}), "('font', size=sm)\n", (454, 471), True, 'from matplotlib import pyplot as plt\n'), ((503, 532), 'matplotlib.pyplot.rc', 'plt.rc', (['"""axes"""'], {'titlesize': 'med'}), "('axes', titlesize=med)\n", (509, 532), True, 'from matplotlib import pyplot as plt\n'), ((563, 592), 'matplotlib.pyplot.rc', 'plt.rc', (['"""axes"""'], {'labelsize': 'med'}), "('axes', labelsize=med)\n", (569, 592), True, 'from matplotlib import pyplot as plt\n'), ((625, 654), 'matplotlib.pyplot.rc', 'plt.rc', (['"""xtick"""'], {'labelsize': 'sm'}), "('xtick', labelsize=sm)\n", (631, 654), True, 'from matplotlib import pyplot as plt\n'), ((686, 715), 'matplotlib.pyplot.rc', 'plt.rc', (['"""ytick"""'], {'labelsize': 'sm'}), "('ytick', labelsize=sm)\n", (692, 715), True, 'from matplotlib import pyplot as plt\n'), ((747, 776), 'matplotlib.pyplot.rc', 'plt.rc', (['"""legend"""'], {'fontsize': 'sm'}), "('legend', fontsize=sm)\n", (753, 776), True, 'from matplotlib import pyplot as plt\n'), ((796, 826), 'matplotlib.pyplot.rc', 'plt.rc', (['"""figure"""'], {'titlesize': 'lg'}), "('figure', titlesize=lg)\n", (802, 826), True, 'from matplotlib import pyplot as plt\n'), ((859, 886), 'matplotlib.pyplot.rc', 'plt.rc', (['"""axes"""'], {'linewidth': '(2)'}), "('axes', linewidth=2)\n", (865, 886), True, 'from matplotlib import pyplot as plt\n'), ((976, 986), 'pathlib.Path.cwd', 'Path.cwd', ([], {}), '()\n', (984, 986), False, 'from pathlib import Path\n'), ((1037, 1051), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1049, 1051), False, 'from datetime import datetime\n'), ((2110, 2128), 'numpy.random.seed', 'np.random.seed', (['(42)'], {}), '(42)\n', (2124, 2128), True, 'import numpy as np\n'), ((2152, 2209), 'numpy.random.random', 'np.random.random', ([], {'size': '(self.N_PORTFOLIOS, self.n_assets)'}), '(size=(self.N_PORTFOLIOS, self.n_assets))\n', (2168, 2209), True, 'import numpy as np\n'), ((2343, 2381), 'numpy.dot', 'np.dot', (['self.weights', 'self.avg_returns'], {}), '(self.weights, self.avg_returns)\n', (2349, 2381), True, 'import numpy as np\n'), ((2658, 2682), 'numpy.array', 'np.array', (['self.portf_vol'], {}), '(self.portf_vol)\n', (2666, 2682), True, 'import numpy as np\n'), ((2830, 2947), 'pandas.DataFrame', 'pd.DataFrame', (["{'returns': self.portf_rtns, 'volatility': self.portf_vol, 'sharpe_ratio':\n self.portf_sharpe_ratio}"], {}), "({'returns': self.portf_rtns, 'volatility': self.portf_vol,\n 'sharpe_ratio': self.portf_sharpe_ratio})\n", (2842, 2947), True, 'import pandas as pd\n'), ((3381, 3412), 'numpy.round', 'np.round', (['self.portf_rtns_ef', '(2)'], {}), '(self.portf_rtns_ef, 2)\n', (3389, 3412), True, 'import numpy as np\n'), ((3439, 3467), 'numpy.round', 'np.round', (['self.portf_rtns', '(2)'], {}), '(self.portf_rtns, 2)\n', (3447, 3467), True, 'import numpy as np\n'), ((3900, 3951), 'numpy.delete', 'np.delete', (['self.portf_rtns_ef', 'self.indices_to_skip'], {}), '(self.portf_rtns_ef, self.indices_to_skip)\n', (3909, 3951), True, 'import numpy as np\n'), ((4045, 4090), 'numpy.argmax', 'np.argmax', (['self.portf_results_df.sharpe_ratio'], {}), '(self.portf_results_df.sharpe_ratio)\n', (4054, 4090), True, 'import numpy as np\n'), ((4197, 4240), 'numpy.argmin', 'np.argmin', (['self.portf_results_df.volatility'], {}), '(self.portf_results_df.volatility)\n', (4206, 4240), True, 'import numpy as np\n'), ((4322, 4377), 'streamlit.header', 'st.header', (['"""- - - Maximum Sharpe Ratio portfolio - - -"""'], {}), "('- - - Maximum Sharpe Ratio portfolio - - -')\n", (4331, 4377), True, 'import streamlit as st\n'), ((4386, 4414), 'streamlit.subheader', 'st.subheader', (['"""Performance:"""'], {}), "('Performance:')\n", (4398, 4414), True, 'import streamlit as st\n'), ((4556, 4581), 'streamlit.subheader', 'st.subheader', (['"""\nWeights"""'], {}), "('\\nWeights')\n", (4568, 4581), True, 'import streamlit as st\n'), ((4870, 4923), 'streamlit.header', 'st.header', (['"""- - - Minimum Volatility portfolio - - -"""'], {}), "('- - - Minimum Volatility portfolio - - -')\n", (4879, 4923), True, 'import streamlit as st\n'), ((4932, 4960), 'streamlit.subheader', 'st.subheader', (['"""Performance:"""'], {}), "('Performance:')\n", (4944, 4960), True, 'import streamlit as st\n'), ((5099, 5124), 'streamlit.subheader', 'st.subheader', (['"""\nWeights"""'], {}), "('\\nWeights')\n", (5111, 5124), True, 'import streamlit as st\n'), ((5396, 5410), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (5408, 5410), True, 'from matplotlib import pyplot as plt\n'), ((7256, 7274), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (7272, 7274), True, 'from matplotlib import pyplot as plt\n'), ((7283, 7297), 'streamlit.pyplot', 'st.pyplot', (['fig'], {}), '(fig)\n', (7292, 7297), True, 'import streamlit as st\n'), ((7789, 7862), 'streamlit.sidebar.selectbox', 'st.sidebar.selectbox', (['"""Select Number Of Securities For Portfolio:"""', 'manys'], {}), "('Select Number Of Securities For Portfolio:', manys)\n", (7809, 7862), True, 'import streamlit as st\n'), ((1576, 1626), 'yfinance.download', 'yf.download', (['self.RISKY_ASSETS'], {'start': '"""2020-01-01"""'}), "(self.RISKY_ASSETS, start='2020-01-01')\n", (1587, 1626), True, 'import yfinance as yf\n'), ((2234, 2262), 'numpy.sum', 'np.sum', (['self.weights'], {'axis': '(1)'}), '(self.weights, axis=1)\n', (2240, 2262), True, 'import numpy as np\n'), ((3701, 3761), 'numpy.where', 'np.where', (['(self.portf_rtns == self.portf_rtns_ef[point_index])'], {}), '(self.portf_rtns == self.portf_rtns_ef[point_index])\n', (3709, 3761), True, 'import numpy as np\n'), ((4486, 4547), 'streamlit.write', 'st.write', (['f"""{index}: {100 * value:.2f}% """'], {'end': '""""""', 'flush': '(True)'}), "(f'{index}: {100 * value:.2f}% ', end='', flush=True)\n", (4494, 4547), True, 'import streamlit as st\n'), ((4734, 4787), 'streamlit.write', 'st.write', (['f"""{x}: {100 * y:.2f}% """'], {'end': '""""""', 'flush': '(True)'}), "(f'{x}: {100 * y:.2f}% ', end='', flush=True)\n", (4742, 4787), True, 'import streamlit as st\n'), ((5029, 5090), 'streamlit.write', 'st.write', (['f"""{index}: {100 * value:.2f}% """'], {'end': '""""""', 'flush': '(True)'}), "(f'{index}: {100 * value:.2f}% ', end='', flush=True)\n", (5037, 5090), True, 'import streamlit as st\n'), ((5262, 5315), 'streamlit.write', 'st.write', (['f"""{x}: {100 * y:.2f}% """'], {'end': '""""""', 'flush': '(True)'}), "(f'{x}: {100 * y:.2f}% ', end='', flush=True)\n", (5270, 5315), True, 'import streamlit as st\n'), ((3829, 3869), 'numpy.min', 'np.min', (['self.portf_vol[self.matched_ind]'], {}), '(self.portf_vol[self.matched_ind])\n', (3835, 3869), True, 'import numpy as np\n'), ((4663, 4708), 'numpy.argmax', 'np.argmax', (['self.portf_results_df.sharpe_ratio'], {}), '(self.portf_results_df.sharpe_ratio)\n', (4672, 4708), True, 'import numpy as np\n'), ((5194, 5237), 'numpy.argmin', 'np.argmin', (['self.portf_results_df.volatility'], {}), '(self.portf_results_df.volatility)\n', (5203, 5237), True, 'import numpy as np\n'), ((6593, 6645), 'numpy.sqrt', 'np.sqrt', (['self.cov_mat.iloc[asset_index, asset_index]'], {}), '(self.cov_mat.iloc[asset_index, asset_index])\n', (6600, 6645), True, 'import numpy as np\n'), ((2562, 2599), 'numpy.dot', 'np.dot', (['self.cov_mat', 'self.weights[i]'], {}), '(self.cov_mat, self.weights[i])\n', (2568, 2599), True, 'import numpy as np\n')]
from stl import mesh import math import numpy # Create 3 faces of a cube data = numpy.zeros(6, dtype=mesh.Mesh.dtype) # Top of the cube data['vectors'][0] = numpy.array([[0, 1, 1], [1, 0, 1], [0, 0, 1]]) data['vectors'][1] = numpy.array([[1, 0, 1], [0, 1, 1], [1, 1, 1]]) # Front face data['vectors'][2] = numpy.array([[1, 0, 0], [1, 0, 1], [1, 1, 0]]) data['vectors'][3] = numpy.array([[1, 1, 1], [1, 0, 1], [1, 1, 0]]) # Left face data['vectors'][4] = numpy.array([[0, 0, 0], [1, 0, 0], [1, 0, 1]]) data['vectors'][5] = numpy.array([[0, 0, 0], [0, 0, 1], [1, 0, 1]]) # Since the cube faces are from 0 to 1 we can move it to the middle by # substracting .5 data['vectors'] -= .5 # Generate 4 different meshes so we can rotate them later meshes = [mesh.Mesh(data.copy()) for _ in range(4)] # Rotate 90 degrees over the Y axis meshes[0].rotate([0.0, 0.5, 0.0], math.radians(90)) # Translate 2 points over the X axis meshes[1].x += 2 # Rotate 90 degrees over the X axis meshes[2].rotate([0.5, 0.0, 0.0], math.radians(90)) # Translate 2 points over the X and Y points meshes[2].x += 2 meshes[2].y += 2 # Rotate 90 degrees over the X and Y axis meshes[3].rotate([0.5, 0.0, 0.0], math.radians(90)) meshes[3].rotate([0.0, 0.5, 0.0], math.radians(90)) # Translate 2 points over the Y axis meshes[3].y += 2 # Optionally render the rotated cube faces from matplotlib import pyplot from mpl_toolkits import mplot3d # Create a new plot figure = pyplot.figure() axes = mplot3d.Axes3D(figure) # Render the cube faces for m in meshes: axes.add_collection3d(mplot3d.art3d.Poly3DCollection(m.vectors)) # Auto scale to the mesh size scale = numpy.concatenate([m.points for m in meshes]).flatten(-1) axes.auto_scale_xyz(scale, scale, scale) # Show the plot to the screen pyplot.show()
[ "matplotlib.pyplot.show", "mpl_toolkits.mplot3d.Axes3D", "math.radians", "numpy.zeros", "mpl_toolkits.mplot3d.art3d.Poly3DCollection", "matplotlib.pyplot.figure", "numpy.array", "numpy.concatenate" ]
[((81, 118), 'numpy.zeros', 'numpy.zeros', (['(6)'], {'dtype': 'mesh.Mesh.dtype'}), '(6, dtype=mesh.Mesh.dtype)\n', (92, 118), False, 'import numpy\n'), ((159, 205), 'numpy.array', 'numpy.array', (['[[0, 1, 1], [1, 0, 1], [0, 0, 1]]'], {}), '([[0, 1, 1], [1, 0, 1], [0, 0, 1]])\n', (170, 205), False, 'import numpy\n'), ((295, 341), 'numpy.array', 'numpy.array', (['[[1, 0, 1], [0, 1, 1], [1, 1, 1]]'], {}), '([[1, 0, 1], [0, 1, 1], [1, 1, 1]])\n', (306, 341), False, 'import numpy\n'), ((444, 490), 'numpy.array', 'numpy.array', (['[[1, 0, 0], [1, 0, 1], [1, 1, 0]]'], {}), '([[1, 0, 0], [1, 0, 1], [1, 1, 0]])\n', (455, 490), False, 'import numpy\n'), ((580, 626), 'numpy.array', 'numpy.array', (['[[1, 1, 1], [1, 0, 1], [1, 1, 0]]'], {}), '([[1, 1, 1], [1, 0, 1], [1, 1, 0]])\n', (591, 626), False, 'import numpy\n'), ((728, 774), 'numpy.array', 'numpy.array', (['[[0, 0, 0], [1, 0, 0], [1, 0, 1]]'], {}), '([[0, 0, 0], [1, 0, 0], [1, 0, 1]])\n', (739, 774), False, 'import numpy\n'), ((864, 910), 'numpy.array', 'numpy.array', (['[[0, 0, 0], [0, 0, 1], [1, 0, 1]]'], {}), '([[0, 0, 0], [0, 0, 1], [1, 0, 1]])\n', (875, 910), False, 'import numpy\n'), ((1853, 1868), 'matplotlib.pyplot.figure', 'pyplot.figure', ([], {}), '()\n', (1866, 1868), False, 'from matplotlib import pyplot\n'), ((1876, 1898), 'mpl_toolkits.mplot3d.Axes3D', 'mplot3d.Axes3D', (['figure'], {}), '(figure)\n', (1890, 1898), False, 'from mpl_toolkits import mplot3d\n'), ((2179, 2192), 'matplotlib.pyplot.show', 'pyplot.show', ([], {}), '()\n', (2190, 2192), False, 'from matplotlib import pyplot\n'), ((1273, 1289), 'math.radians', 'math.radians', (['(90)'], {}), '(90)\n', (1285, 1289), False, 'import math\n'), ((1417, 1433), 'math.radians', 'math.radians', (['(90)'], {}), '(90)\n', (1429, 1433), False, 'import math\n'), ((1591, 1607), 'math.radians', 'math.radians', (['(90)'], {}), '(90)\n', (1603, 1607), False, 'import math\n'), ((1643, 1659), 'math.radians', 'math.radians', (['(90)'], {}), '(90)\n', (1655, 1659), False, 'import math\n'), ((1967, 2008), 'mpl_toolkits.mplot3d.art3d.Poly3DCollection', 'mplot3d.art3d.Poly3DCollection', (['m.vectors'], {}), '(m.vectors)\n', (1997, 2008), False, 'from mpl_toolkits import mplot3d\n'), ((2049, 2094), 'numpy.concatenate', 'numpy.concatenate', (['[m.points for m in meshes]'], {}), '([m.points for m in meshes])\n', (2066, 2094), False, 'import numpy\n')]
# # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np from arch.api import federation from arch.api.utils import log_utils from federatedml.logistic_regression.hetero_logistic_regression.hetero_lr_base import HeteroLRBase from federatedml.optim.gradient import HeteroLogisticGradient from federatedml.secureprotol import EncryptModeCalculator from federatedml.statistic.data_overview import rubbish_clear from federatedml.util import consts from federatedml.statistic import data_overview LOGGER = log_utils.getLogger() class HeteroLRHost(HeteroLRBase): def __init__(self): super(HeteroLRHost, self).__init__() self.batch_num = None self.batch_index_list = [] self.role = consts.HOST def compute_forward(self, data_instances, coef_, intercept_, batch_index=-1): """ Compute W * X + b and (W * X + b)^2, where X is the input data, W is the coefficient of lr, and b is the interception Parameters ---------- data_instances: DTable of Instance, input data coef_: list, coefficient of lr intercept_: float, the interception of lr """ wx = self.compute_wx(data_instances, coef_, intercept_) en_wx = self.encrypted_calculator[batch_index].encrypt(wx) wx_square = wx.mapValues(lambda v: np.square(v)) en_wx_square = self.encrypted_calculator[batch_index].encrypt(wx_square) host_forward = en_wx.join(en_wx_square, lambda wx, wx_square: (wx, wx_square)) # temporary resource recovery and will be removed in the future rubbish_list = [wx, en_wx, wx_square, en_wx_square ] rubbish_clear(rubbish_list) return host_forward def fit(self, data_instances): """ Train lr model of role host Parameters ---------- data_instances: DTable of Instance, input data """ LOGGER.info("Enter hetero_lr host") self._abnormal_detection(data_instances) self.header = self.get_header(data_instances) public_key = federation.get(name=self.transfer_variable.paillier_pubkey.name, tag=self.transfer_variable.generate_transferid( self.transfer_variable.paillier_pubkey), idx=0) LOGGER.info("Get public_key from arbiter:{}".format(public_key)) self.encrypt_operator.set_public_key(public_key) batch_info = federation.get(name=self.transfer_variable.batch_info.name, tag=self.transfer_variable.generate_transferid(self.transfer_variable.batch_info), idx=0) LOGGER.info("Get batch_info from guest:" + str(batch_info)) self.batch_size = batch_info["batch_size"] self.batch_num = batch_info["batch_num"] if self.batch_size < consts.MIN_BATCH_SIZE and self.batch_size != -1: raise ValueError( "Batch size get from guest should not less than 10, except -1, batch_size is {}".format( self.batch_size)) self.encrypted_calculator = [EncryptModeCalculator(self.encrypt_operator, self.encrypted_mode_calculator_param.mode, self.encrypted_mode_calculator_param.re_encrypted_rate) for _ in range(self.batch_num)] LOGGER.info("Start initialize model.") model_shape = self.get_features_shape(data_instances) if self.init_param_obj.fit_intercept: self.init_param_obj.fit_intercept = False if self.fit_intercept: self.fit_intercept = False self.coef_ = self.initializer.init_model(model_shape, init_params=self.init_param_obj) self.n_iter_ = 0 index_data_inst_map = {} while self.n_iter_ < self.max_iter: LOGGER.info("iter:" + str(self.n_iter_)) batch_index = 0 while batch_index < self.batch_num: LOGGER.info("batch:{}".format(batch_index)) # set batch_data if len(self.batch_index_list) < self.batch_num: batch_data_index = federation.get(name=self.transfer_variable.batch_data_index.name, tag=self.transfer_variable.generate_transferid( self.transfer_variable.batch_data_index, self.n_iter_, batch_index), idx=0) LOGGER.info("Get batch_index from Guest") self.batch_index_list.append(batch_data_index) else: batch_data_index = self.batch_index_list[batch_index] # Get mini-batch train data if len(index_data_inst_map) < self.batch_num: batch_data_inst = batch_data_index.join(data_instances, lambda g, d: d) index_data_inst_map[batch_index] = batch_data_inst else: batch_data_inst = index_data_inst_map[batch_index] LOGGER.info("batch_data_inst size:{}".format(batch_data_inst.count())) # transforms features of raw input 'batch_data_inst' into more representative features 'batch_feat_inst' batch_feat_inst = self.transform(batch_data_inst) # compute forward host_forward = self.compute_forward(batch_feat_inst, self.coef_, self.intercept_, batch_index) federation.remote(host_forward, name=self.transfer_variable.host_forward_dict.name, tag=self.transfer_variable.generate_transferid( self.transfer_variable.host_forward_dict, self.n_iter_, batch_index), role=consts.GUEST, idx=0) LOGGER.info("Remote host_forward to guest") # compute host gradient fore_gradient = federation.get(name=self.transfer_variable.fore_gradient.name, tag=self.transfer_variable.generate_transferid( self.transfer_variable.fore_gradient, self.n_iter_, batch_index), idx=0) LOGGER.info("Get fore_gradient from guest") if self.gradient_operator is None: self.gradient_operator = HeteroLogisticGradient(self.encrypt_operator) host_gradient = self.gradient_operator.compute_gradient(batch_feat_inst, fore_gradient, fit_intercept=False) # regulation if necessary if self.updater is not None: loss_regular = self.updater.loss_norm(self.coef_) en_loss_regular = self.encrypt_operator.encrypt(loss_regular) federation.remote(en_loss_regular, name=self.transfer_variable.host_loss_regular.name, tag=self.transfer_variable.generate_transferid( self.transfer_variable.host_loss_regular, self.n_iter_, batch_index), role=consts.GUEST, idx=0) LOGGER.info("Remote host_loss_regular to guest") federation.remote(host_gradient, name=self.transfer_variable.host_gradient.name, tag=self.transfer_variable.generate_transferid(self.transfer_variable.host_gradient, self.n_iter_, batch_index), role=consts.ARBITER, idx=0) LOGGER.info("Remote host_gradient to arbiter") # Get optimize host gradient and update model optim_host_gradient = federation.get(name=self.transfer_variable.host_optim_gradient.name, tag=self.transfer_variable.generate_transferid( self.transfer_variable.host_optim_gradient, self.n_iter_, batch_index), idx=0) LOGGER.info("Get optim_host_gradient from arbiter") LOGGER.info("update_model") self.update_model(optim_host_gradient) # update local model that transforms features of raw input 'batch_data_inst' training_info = {"iteration": self.n_iter_, "batch_index": batch_index} self.update_local_model(fore_gradient, batch_data_inst, self.coef_, **training_info) batch_index += 1 # temporary resource recovery and will be removed in the future rubbish_list = [host_forward, fore_gradient ] data_overview.rubbish_clear(rubbish_list) is_stopped = federation.get(name=self.transfer_variable.is_stopped.name, tag=self.transfer_variable.generate_transferid( self.transfer_variable.is_stopped, self.n_iter_, batch_index), idx=0) LOGGER.info("Get is_stop flag from arbiter:{}".format(is_stopped)) self.n_iter_ += 1 if is_stopped: LOGGER.info("Get stop signal from arbiter, model is converged, iter:{}".format(self.n_iter_)) break LOGGER.info("Reach max iter {}, train model finish!".format(self.max_iter)) def predict(self, data_instances): """ Prediction of lr Parameters ---------- data_instances:DTable of Instance, input data """ LOGGER.info("Start predict ...") data_features = self.transform(data_instances) prob_host = self.compute_wx(data_features, self.coef_, self.intercept_) federation.remote(prob_host, name=self.transfer_variable.host_prob.name, tag=self.transfer_variable.generate_transferid( self.transfer_variable.host_prob), role=consts.GUEST, idx=0) LOGGER.info("Remote probability to Guest")
[ "arch.api.utils.log_utils.getLogger", "numpy.square", "federatedml.statistic.data_overview.rubbish_clear", "federatedml.optim.gradient.HeteroLogisticGradient", "federatedml.secureprotol.EncryptModeCalculator" ]
[((1082, 1103), 'arch.api.utils.log_utils.getLogger', 'log_utils.getLogger', ([], {}), '()\n', (1101, 1103), False, 'from arch.api.utils import log_utils\n'), ((2325, 2352), 'federatedml.statistic.data_overview.rubbish_clear', 'rubbish_clear', (['rubbish_list'], {}), '(rubbish_list)\n', (2338, 2352), False, 'from federatedml.statistic.data_overview import rubbish_clear\n'), ((3846, 3999), 'federatedml.secureprotol.EncryptModeCalculator', 'EncryptModeCalculator', (['self.encrypt_operator', 'self.encrypted_mode_calculator_param.mode', 'self.encrypted_mode_calculator_param.re_encrypted_rate'], {}), '(self.encrypt_operator, self.\n encrypted_mode_calculator_param.mode, self.\n encrypted_mode_calculator_param.re_encrypted_rate)\n', (3867, 3999), False, 'from federatedml.secureprotol import EncryptModeCalculator\n'), ((1904, 1916), 'numpy.square', 'np.square', (['v'], {}), '(v)\n', (1913, 1916), True, 'import numpy as np\n'), ((10424, 10465), 'federatedml.statistic.data_overview.rubbish_clear', 'data_overview.rubbish_clear', (['rubbish_list'], {}), '(rubbish_list)\n', (10451, 10465), False, 'from federatedml.statistic import data_overview\n'), ((7519, 7564), 'federatedml.optim.gradient.HeteroLogisticGradient', 'HeteroLogisticGradient', (['self.encrypt_operator'], {}), '(self.encrypt_operator)\n', (7541, 7564), False, 'from federatedml.optim.gradient import HeteroLogisticGradient\n')]
import numpy as np import cv2 # Identify pixels above the threshold # Threshold of RGB > 160 does a nice job of identifying ground pixels only def color_thresh(img, rgb_thresh=(160, 160, 160),above = True): # Create an array of zeros same xy size as img, but single channel color_select = np.zeros_like(img[:,:,0]) # Require that each pixel be above all three threshold values in RGB # above_thresh will now contain a boolean array with "True" # where threshold was met above_thresh = (img[:,:,0] > rgb_thresh[0]) \ & (img[:,:,1] > rgb_thresh[1]) \ & (img[:,:,2] > rgb_thresh[2]) below_thresh = (img[:,:,0] < rgb_thresh[0]) \ & (img[:,:,1] < rgb_thresh[1]) \ & (img[:,:,2] < rgb_thresh[2]) # Index the array of zeros with the boolean array and set to 1 if above: color_select[above_thresh] = 1 else: color_select[below_thresh] = 1 # Return the binary image return color_select # Identify pixels within a range of threshold # Threshold of RGB > 160 does a nice job of identifying ground pixels only def color_thresh_range(img, rgb_thresh_max=(255, 255, 80), rgb_thresh_min=(140, 110, 0)): # Create an array of zeros same xy size as img, but single channel color_select = np.zeros_like(img[:,:,0]) # Require that each pixel be above all three threshold values in RGB # above_thresh will now contain a boolean array with "True" # where threshold was met thresh = (img[:,:,0] > rgb_thresh_min[0]) \ & (img[:,:,1] > rgb_thresh_min[1]) \ & (img[:,:,2] > rgb_thresh_min[2]) \ & (img[:,:,0] < rgb_thresh_max[0]) \ & (img[:,:,1] < rgb_thresh_max[1]) \ & (img[:,:,2] < rgb_thresh_max[2]) # Index the array of zeros with the boolean array and set to 1 color_select[thresh] = 1 # Return the binary image return color_select # Define a function to convert from image coords to rover coords def rover_coords(binary_img): # Identify nonzero pixels ypos, xpos = binary_img.nonzero() # Calculate pixel positions with reference to the rover position being at the # center bottom of the image. x_pixel = -(ypos - binary_img.shape[0]).astype(np.float) y_pixel = -(xpos - binary_img.shape[1]/2 ).astype(np.float) return x_pixel, y_pixel # Define a function to convert to radial coords in rover space def to_polar_coords(x_pixel, y_pixel): # Convert (x_pixel, y_pixel) to (distance, angle) # in polar coordinates in rover space # Calculate distance to each pixel dist = np.sqrt(x_pixel**2 + y_pixel**2) # Calculate angle away from vertical for each pixel angles = np.arctan2(y_pixel, x_pixel) return dist, angles # Define a function to map rover space pixels to world space def rotate_pix(xpix, ypix, yaw): # Convert yaw to radians yaw_rad = yaw * np.pi / 180 xpix_rotated = (xpix * np.cos(yaw_rad)) - (ypix * np.sin(yaw_rad)) ypix_rotated = (xpix * np.sin(yaw_rad)) + (ypix * np.cos(yaw_rad)) # Return the result return xpix_rotated, ypix_rotated def translate_pix(xpix_rot, ypix_rot, xpos, ypos, scale): # Apply a scaling and a translation xpix_translated = (xpix_rot / scale) + xpos ypix_translated = (ypix_rot / scale) + ypos # Return the result return xpix_translated, ypix_translated # Define a function to apply rotation and translation (and clipping) # Once you define the two functions above this function should work def pix_to_world(xpix, ypix, xpos, ypos, yaw, world_size, scale): # Apply rotation xpix_rot, ypix_rot = rotate_pix(xpix, ypix, yaw) # Apply translation xpix_tran, ypix_tran = translate_pix(xpix_rot, ypix_rot, xpos, ypos, scale) # Perform rotation, translation and clipping all at once x_pix_world = np.clip(np.int_(xpix_tran), 0, world_size - 1) y_pix_world = np.clip(np.int_(ypix_tran), 0, world_size - 1) # Return the result return x_pix_world, y_pix_world def get_sub_global_map(xpos, ypos, yaw, world_map, world_size, global_scale): # Apply rotation xpix = np.tile(np.arange(global_scale),global_scale) ypix = np.repeat(np.arange(global_scale)-global_scale/2, global_scale) xpix_rot, ypix_rot = rotate_pix(xpix, ypix, yaw) # Apply translation xpix_tran, ypix_tran = translate_pix(xpix_rot, ypix_rot, xpos, ypos, 1) # Perform rotation, translation and clipping all at once x_pix_world = np.clip(np.int_(xpix_tran), 0, world_size - 1) y_pix_world = np.clip(np.int_(ypix_tran), 0, world_size - 1) weights = world_map[y_pix_world, x_pix_world,:] # Return the result return xpix, ypix, weights # Define a function to perform a perspective transform def perspect_transform(img, src, dst): M = cv2.getPerspectiveTransform(src, dst) warped = cv2.warpPerspective(img, M, (img.shape[1], img.shape[0]))# keep same size as input image return warped # Apply the above functions in succession and update the Rover state accordingly def perception_step(Rover): # Perform perception steps to update Rover() # TODO: # NOTE: camera image is coming to you in Rover.img img = Rover.img # 1) Define source and destination points for perspective transform source = np.float32([[14, 140], [301 ,140],[200, 96], [118, 96]]) dst_size = 5 bottom_offset = 6 destination = np.float32([[img.shape[1]/2 - dst_size, img.shape[0] - bottom_offset], [img.shape[1]/2 + dst_size, img.shape[0] - bottom_offset], [img.shape[1]/2 + dst_size, img.shape[0] - 2*dst_size - bottom_offset], [img.shape[1]/2 - dst_size, img.shape[0] - 2*dst_size - bottom_offset], ]) # 2) Apply perspective transform warped = perspect_transform(img, source, destination) # 3) Apply color threshold to identify navigable terrain/obstacles/rock samples threshed = color_thresh(warped) # 4) Update Rover.vision_image (this will be displayed on left side of screen) # Example: Rover.vision_image[:,:,0] = obstacle color-thresholded binary image # Rover.vision_image[:,:,1] = rock_sample color-thresholded binary image # Rover.vision_image[:,:,2] = navigable terrain color-thresholded binary image Rover.vision_image[:,:, 0] = threshed # 5) Convert map image pixel values to rover-centric coords xpix, ypix = rover_coords(threshed) # 6) Convert rover-centric pixel values to world coordinates xpos = Rover.pos[0] ypos = Rover.pos[1] yaw = Rover.yaw world_size = 200 scale = 10 x_pix_world, y_pix_world = pix_to_world(xpix, ypix, xpos, ypos, yaw, world_size, scale) # 7) Update Rover worldmap (to be displayed on right side of screen) # Example: Rover.worldmap[obstacle_y_world, obstacle_x_world, 0] += 1 # Rover.worldmap[rock_y_world, rock_x_world, 1] += 1 # Rover.worldmap[navigable_y_world, navigable_x_world, 2] += 1 Rover.worldmap[y_pix_world, x_pix_world, 2] = np.clip(Rover.worldmap[y_pix_world, x_pix_world, 2]+1,0,255) threshed = color_thresh(warped, above = False) xpix_obs, ypix_obs = rover_coords(threshed) x_pix_world_obs, y_pix_world_obs = pix_to_world(xpix_obs, ypix_obs, xpos, ypos, yaw, world_size, scale) Rover.worldmap[y_pix_world_obs, x_pix_world_obs, 0] = np.clip(Rover.worldmap[y_pix_world_obs, x_pix_world_obs, 0]+1,0,255) threshed = color_thresh_range(warped) xpix_rock, ypix_rock = rover_coords(threshed) x_pix_world_rock, y_pix_world_rock = pix_to_world(xpix_rock, ypix_rock, xpos, ypos, yaw, world_size, scale) Rover.worldmap[y_pix_world_rock, x_pix_world_rock, 1] = np.clip(Rover.worldmap[y_pix_world_rock, x_pix_world_rock, 1]+1,0,255) # 8) Convert rover-centric pixel positions to polar coordinates # Update Rover pixel distances and angles # Rover.nav_dists = rover_centric_pixel_distances # Rover.nav_angles = rover_centric_angles dist, angles = to_polar_coords(xpix, ypix) Rover.nav_dists = dist Rover.nav_angles = angles global_scale = 30 xpix_sub_global, ypix_sub_global, weights_sub_global = get_sub_global_map(xpos, ypos, yaw, Rover.worldmap, world_size, global_scale) sub_global_map = weights_sub_global.reshape((global_scale,global_scale,3)) dis_sub_global, angles_sub_global = to_polar_coords(xpix_sub_global, ypix_sub_global) weights_sub_global = (255-np.abs(weights_sub_global[:,0]+weights_sub_global[:,2]))/255 weights_sub_global[weights_sub_global<0.95] = 0 if np.mean(weights_sub_global) == 0: mean_dir_sub_global = 0 elif np.mean(weights_sub_global) > 1: mean_dir_sub_global = 0 else: mean_dir_sub_global = np.sum(np.multiply(angles_sub_global,weights_sub_global))/np.sum(weights_sub_global) Rover.dir_global = mean_dir_sub_global return Rover
[ "cv2.warpPerspective", "numpy.zeros_like", "numpy.arctan2", "numpy.int_", "numpy.abs", "numpy.sum", "cv2.getPerspectiveTransform", "numpy.multiply", "numpy.float32", "numpy.clip", "numpy.mean", "numpy.arange", "numpy.sin", "numpy.cos", "numpy.sqrt" ]
[((298, 325), 'numpy.zeros_like', 'np.zeros_like', (['img[:, :, 0]'], {}), '(img[:, :, 0])\n', (311, 325), True, 'import numpy as np\n'), ((1314, 1341), 'numpy.zeros_like', 'np.zeros_like', (['img[:, :, 0]'], {}), '(img[:, :, 0])\n', (1327, 1341), True, 'import numpy as np\n'), ((2660, 2696), 'numpy.sqrt', 'np.sqrt', (['(x_pixel ** 2 + y_pixel ** 2)'], {}), '(x_pixel ** 2 + y_pixel ** 2)\n', (2667, 2696), True, 'import numpy as np\n'), ((2762, 2790), 'numpy.arctan2', 'np.arctan2', (['y_pixel', 'x_pixel'], {}), '(y_pixel, x_pixel)\n', (2772, 2790), True, 'import numpy as np\n'), ((4916, 4953), 'cv2.getPerspectiveTransform', 'cv2.getPerspectiveTransform', (['src', 'dst'], {}), '(src, dst)\n', (4943, 4953), False, 'import cv2\n'), ((4967, 5024), 'cv2.warpPerspective', 'cv2.warpPerspective', (['img', 'M', '(img.shape[1], img.shape[0])'], {}), '(img, M, (img.shape[1], img.shape[0]))\n', (4986, 5024), False, 'import cv2\n'), ((5412, 5469), 'numpy.float32', 'np.float32', (['[[14, 140], [301, 140], [200, 96], [118, 96]]'], {}), '([[14, 140], [301, 140], [200, 96], [118, 96]])\n', (5422, 5469), True, 'import numpy as np\n'), ((5527, 5828), 'numpy.float32', 'np.float32', (['[[img.shape[1] / 2 - dst_size, img.shape[0] - bottom_offset], [img.shape[1] /\n 2 + dst_size, img.shape[0] - bottom_offset], [img.shape[1] / 2 +\n dst_size, img.shape[0] - 2 * dst_size - bottom_offset], [img.shape[1] /\n 2 - dst_size, img.shape[0] - 2 * dst_size - bottom_offset]]'], {}), '([[img.shape[1] / 2 - dst_size, img.shape[0] - bottom_offset], [\n img.shape[1] / 2 + dst_size, img.shape[0] - bottom_offset], [img.shape[\n 1] / 2 + dst_size, img.shape[0] - 2 * dst_size - bottom_offset], [img.\n shape[1] / 2 - dst_size, img.shape[0] - 2 * dst_size - bottom_offset]])\n', (5537, 5828), True, 'import numpy as np\n'), ((7211, 7275), 'numpy.clip', 'np.clip', (['(Rover.worldmap[y_pix_world, x_pix_world, 2] + 1)', '(0)', '(255)'], {}), '(Rover.worldmap[y_pix_world, x_pix_world, 2] + 1, 0, 255)\n', (7218, 7275), True, 'import numpy as np\n'), ((7538, 7610), 'numpy.clip', 'np.clip', (['(Rover.worldmap[y_pix_world_obs, x_pix_world_obs, 0] + 1)', '(0)', '(255)'], {}), '(Rover.worldmap[y_pix_world_obs, x_pix_world_obs, 0] + 1, 0, 255)\n', (7545, 7610), True, 'import numpy as np\n'), ((7876, 7950), 'numpy.clip', 'np.clip', (['(Rover.worldmap[y_pix_world_rock, x_pix_world_rock, 1] + 1)', '(0)', '(255)'], {}), '(Rover.worldmap[y_pix_world_rock, x_pix_world_rock, 1] + 1, 0, 255)\n', (7883, 7950), True, 'import numpy as np\n'), ((3942, 3960), 'numpy.int_', 'np.int_', (['xpix_tran'], {}), '(xpix_tran)\n', (3949, 3960), True, 'import numpy as np\n'), ((4007, 4025), 'numpy.int_', 'np.int_', (['ypix_tran'], {}), '(ypix_tran)\n', (4014, 4025), True, 'import numpy as np\n'), ((4225, 4248), 'numpy.arange', 'np.arange', (['global_scale'], {}), '(global_scale)\n', (4234, 4248), True, 'import numpy as np\n'), ((4583, 4601), 'numpy.int_', 'np.int_', (['xpix_tran'], {}), '(xpix_tran)\n', (4590, 4601), True, 'import numpy as np\n'), ((4648, 4666), 'numpy.int_', 'np.int_', (['ypix_tran'], {}), '(ypix_tran)\n', (4655, 4666), True, 'import numpy as np\n'), ((8768, 8795), 'numpy.mean', 'np.mean', (['weights_sub_global'], {}), '(weights_sub_global)\n', (8775, 8795), True, 'import numpy as np\n'), ((2998, 3013), 'numpy.cos', 'np.cos', (['yaw_rad'], {}), '(yaw_rad)\n', (3004, 3013), True, 'import numpy as np\n'), ((3025, 3040), 'numpy.sin', 'np.sin', (['yaw_rad'], {}), '(yaw_rad)\n', (3031, 3040), True, 'import numpy as np\n'), ((3098, 3113), 'numpy.sin', 'np.sin', (['yaw_rad'], {}), '(yaw_rad)\n', (3104, 3113), True, 'import numpy as np\n'), ((3125, 3140), 'numpy.cos', 'np.cos', (['yaw_rad'], {}), '(yaw_rad)\n', (3131, 3140), True, 'import numpy as np\n'), ((4284, 4307), 'numpy.arange', 'np.arange', (['global_scale'], {}), '(global_scale)\n', (4293, 4307), True, 'import numpy as np\n'), ((8647, 8706), 'numpy.abs', 'np.abs', (['(weights_sub_global[:, 0] + weights_sub_global[:, 2])'], {}), '(weights_sub_global[:, 0] + weights_sub_global[:, 2])\n', (8653, 8706), True, 'import numpy as np\n'), ((8843, 8870), 'numpy.mean', 'np.mean', (['weights_sub_global'], {}), '(weights_sub_global)\n', (8850, 8870), True, 'import numpy as np\n'), ((9006, 9032), 'numpy.sum', 'np.sum', (['weights_sub_global'], {}), '(weights_sub_global)\n', (9012, 9032), True, 'import numpy as np\n'), ((8955, 9005), 'numpy.multiply', 'np.multiply', (['angles_sub_global', 'weights_sub_global'], {}), '(angles_sub_global, weights_sub_global)\n', (8966, 9005), True, 'import numpy as np\n')]
import tensorflow as tf from utils.util_class import WrongInputException def augmentation_factory(augment_probs=None): augment_probs = augment_probs if augment_probs else dict() augmenters = [] for key, prob in augment_probs.items(): if key is "CropAndResize": augm = CropAndResize(prob) elif key is "HorizontalFlip": augm = HorizontalFlip(prob) elif key is "ColorJitter": augm = ColorJitter(prob) else: raise WrongInputException(f"Wrong augmentation type: {key}") augmenters.append(augm) total_augment = TotalAugment(augmenters) return total_augment class TotalAugment: def __init__(self, augment_objects=None): self.augment_objects = augment_objects def __call__(self, features): feat_aug = self.preprocess(features) for augmenter in self.augment_objects: feat_aug = augmenter(feat_aug) feat_aug = self.postprocess(features, feat_aug) return feat_aug def preprocess(self, features): """ !!NOTE!! when changing input dict's key or value, you MUST copy a dict like feat_aug = {key: val for key, val in features.items()} """ # create a new feature dict feat_aug = {key: val for key, val in features.items() if "image5d" not in key} # to use tf.image functions, reshape to [batch*snippet, height, width, 3] batch, snippet, height, width, channels = features["image5d"].get_shape() imshape = (batch * snippet, height, width, channels) feat_aug["image5d"] = tf.reshape(features["image5d"], imshape) if "image5d_R" in features: feat_aug["image5d_R"] = tf.reshape(features["image5d_R"], imshape) return feat_aug def postprocess(self, features, feat_aug): image5d = features["image5d"] feat_aug["image5d"] = tf.reshape(feat_aug["image5d"], image5d.get_shape()) if "image5d_R" in feat_aug: feat_aug["image5d_R"] = tf.reshape(feat_aug["image5d_R"], image5d.get_shape()) return feat_aug class AugmentBase: def __init__(self, aug_prob=0.): self.aug_prob = aug_prob self.param = 0 def __call__(self, features): raise NotImplementedError() class CropAndResize(AugmentBase): """ randomly crop "image5d" and resize it to original size create "intrinsic_aug" as camera matrix for "image5d" """ def __init__(self, aug_prob=0.3): super().__init__(aug_prob) self.half_crop_ratio = 0.1 def __call__(self, features): nimage, height, width, _ = features["image5d"].get_shape() crop_size = tf.constant([height, width]) box_indices = tf.range(0, nimage) boxes = self.random_crop_boxes(nimage) self.param = boxes[0] features["image5d"] = tf.image.crop_and_resize(features["image5d"], boxes, box_indices, crop_size) features["intrinsic"] = self.adjust_intrinsic(features["intrinsic"], boxes, crop_size) if "image5d_R" in features: features["image5d_R"] = tf.image.crop_and_resize(features["image5d_R"], boxes, box_indices, crop_size) features["intrinsic_R"] = self.adjust_intrinsic(features["intrinsic_R"], boxes, crop_size) if "depth_gt" in features: batch = features["depth_gt"].get_shape()[0] features["depth_gt"] = tf.image.crop_and_resize(features["depth_gt"], boxes[:batch], box_indices[:batch], crop_size, method="nearest") return features def random_crop_boxes(self, num_box): # aug_prob : 1-aug_prob = half_crop_ratio : minval1 maxval1 = self.half_crop_ratio minval1 = -(1. - self.aug_prob) * self.half_crop_ratio / self.aug_prob y1x1 = tf.random.uniform((1, 2), minval1, maxval1) y1x1 = tf.clip_by_value(y1x1, 0, 1) minval2 = 1. - maxval1 maxval2 = 1. - minval1 y2x2 = tf.random.uniform((1, 2), minval2, maxval2) y2x2 = tf.clip_by_value(y2x2, 0, 1) assert (minval1 < maxval1) and (minval2 < maxval2) # boxes: [1, 4] boxes = tf.concat([y1x1, y2x2], axis=1) # boxes: [num_box, 4] boxes = tf.tile(boxes, [num_box, 1]) return boxes def adjust_intrinsic(self, intrinsic, boxes, imsize): """ :param intrinsic: [batch, 3, 3] :param boxes: (y1,x1,y2,x2) in range [0~1] [batch, 4] :param imsize: [height, width] [2] :return: adjusted intrinsic [batch, 3, 3] """ imsize = tf.cast(imsize, tf.float32) # size: [1, 3, 3], contents: [[0, 0, x1_ratio*width], [0, 0, y1_ratio*height], [0, 0, 0]] center_change = tf.stack([tf.stack([0., 0., boxes[0, 1]*imsize[1]], axis=0), tf.stack([0., 0., boxes[0, 0]*imsize[0]], axis=0), tf.stack([0., 0., 0.], axis=0)], axis=0) # cx'=cx-x1, cy'=cy-y1 intrin_crop = intrinsic - center_change # cx,fx *= W/(x2-x1), cy,fy *= H/(y2-y1) x_ratio = 1. / (boxes[0, 3] - boxes[0, 1]) y_ratio = 1. / (boxes[0, 2] - boxes[0, 0]) intrin_adj = tf.stack([intrin_crop[:, 0] * x_ratio, intrin_crop[:, 1] * y_ratio, intrin_crop[:, 2]], axis=1) return intrin_adj class HorizontalFlip(AugmentBase): """ randomly horizontally flip "image5d" by aug_prob """ def __init__(self, aug_prob=0.2): super().__init__(aug_prob) def __call__(self, features): rndval = tf.random.uniform(()) features = tf.cond(rndval < self.aug_prob, lambda: self.flip_features(features), lambda: features ) return features def flip_features(self, features): feat_aug = dict() feat_aug["image5d"] = tf.image.flip_left_right(features["image5d"]) if "image5d_R" in features: feat_aug["image5d_R"] = tf.image.flip_left_right(features["image5d_R"]) feat_aug["intrinsic"] = self.flip_intrinsic(features["intrinsic"], features["image5d"].get_shape()) if "intrinsic_R" in features: feat_aug["intrinsic_R"] = self.flip_intrinsic(features["intrinsic_R"], features["image5d"].get_shape()) if "pose_gt" in features: feat_aug["pose_gt"] = self.flip_gt_pose(features["pose_gt"]) if "pose_gt_R" in features: feat_aug["pose_gt_R"] = self.flip_gt_pose(features["pose_gt_R"]) if "stereo_T_LR" in features: feat_aug["stereo_T_LR"] = self.flip_stereo_pose(features["stereo_T_LR"]) feat_rest = {key: val for key, val in features.items() if key not in feat_aug} feat_aug.update(feat_rest) return feat_aug def flip_intrinsic(self, intrinsic, imshape): batch, height, width, _ = imshape intrin_wh = tf.constant([[[0, 0, width], [0, 0, 0], [0, 0, 0]]], dtype=tf.float32) intrin_flip = tf.abs(intrin_wh - intrinsic) return intrin_flip def flip_gt_pose(self, pose): T_flip = tf.constant([[[[-1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]]], dtype=tf.float32) # [batch, numsrc, 4, 4] = [1, 1, 4, 4] @ [batch, numsrc, 4, 4] @ [1, 1, 4, 4] pose_flip = T_flip @ pose @ tf.linalg.inv(T_flip) return pose_flip def flip_stereo_pose(self, pose): T_flip = tf.constant([[[-1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]], dtype=tf.float32) # [batch, 4, 4] = [1, 4, 4] @ [batch, 4, 4] @ [1, 4, 4] pose_flip = T_flip @ pose @ tf.linalg.inv(T_flip) return pose_flip class ColorJitter(AugmentBase): def __init__(self, aug_prob=0.2): super().__init__(aug_prob) def __call__(self, features): rndval = tf.random.uniform(()) gamma = tf.random.uniform((), minval=0.5, maxval=1.5) saturation = tf.random.uniform((), minval=0.5, maxval=1.5) features["image5d"], self.param = \ tf.cond(rndval < self.aug_prob, lambda: self.jitter_color(features["image5d"], gamma, saturation), lambda: (features["image5d"], tf.constant([0, 0], dtype=tf.float32)) ) if "image5d_R" in features: features["image5d_R"], self.param = \ tf.cond(rndval < self.aug_prob, lambda: self.jitter_color(features["image5d_R"], gamma, saturation), lambda: (features["image5d_R"], tf.constant([0, 0], dtype=tf.float32)) ) return features def jitter_color(self, image, gamma, saturation): # convert image -1 ~ 1 to 0 ~ 1 image = (image + 1.) / 2. image = tf.image.adjust_saturation(image, saturation) image = tf.image.adjust_gamma(image, gamma=gamma, gain=1.) # convert image 0 ~ 1 to -1 ~ 1 image = image * 2. - 1. param = tf.stack([gamma, saturation], axis=0) return image, param # --------------------------------- import numpy as np import utils.convert_pose as cp def test_random_crop_boxes(): print("===== test test_random_crop_boxes") cropper = CropAndResize() boxes = cropper.random_crop_boxes(4) print("boxes:", boxes) wh = boxes[:, 2:] - boxes[:, :2] assert (wh.numpy() > cropper.half_crop_ratio*2).all() print("!!! test_random_crop_boxes passed") def test_adjust_intrinsic(): print("===== test test_adjust_intrinsic") batch, height, width = 3, 200, 240 imsize = tf.constant([height, width], dtype=tf.float32) intrinsic = tf.constant([[[width/2, 0, width/2], [0, height/2, height/2], [0, 0, 1]]], dtype=tf.float32) intrinsic = tf.tile(intrinsic, [batch, 1, 1]) print("intrinsic original", intrinsic[0]) xcrop, ycrop = 0.05, 0.1 cropper = CropAndResize() boxes = tf.tile(tf.constant([[ycrop, xcrop, 1-ycrop, 1-xcrop]]), [batch, 1]) print("crop box:", boxes[0]) # EXECUTE intrin_adj = cropper.adjust_intrinsic(intrinsic, boxes, imsize) print("intrinsic adjusted", intrin_adj[0]) assert np.isclose(intrin_adj.numpy()[0], intrin_adj.numpy()[-1]).all() assert np.isclose(intrin_adj[0, 0, 0], width / 2 / (1 - 2*xcrop)), \ f"fx={intrin_adj[0, 0, 0]}, expected={width / 2 / (1 - 2*xcrop)}" assert np.isclose(intrin_adj[0, 0, 2], width / 2), \ f"cx={intrin_adj[0, 0, 2]}, expected={width / 2}" print("!!! test_adjust_intrinsic passed") def test_flip_pose_np(): print("===== test test_flip_pose_np") batch = 2 pose_vec = np.random.uniform(-2, 2, (batch, 6)) pose_mat = cp.pose_rvec2matr(pose_vec) flip = np.identity(4) flip[0, 0] = -1 flip = flip[np.newaxis, ...] pose_mat_flip = np.matmul(np.matmul(flip, pose_mat), np.linalg.inv(flip)) pose_vec_flip = cp.pose_matr2rvec(pose_mat_flip) print("pose vec:\n", pose_vec) print("pose mat:\n", pose_mat) print("pose mat flip:\n", pose_mat_flip) print("pose vec flip:\n", pose_vec_flip) print("pose vec rotation: (rad)\n", np.linalg.norm(pose_vec[:, 3:], axis=1)) print("pose vec flip rotation: (rad)\n", np.linalg.norm(pose_vec_flip[:, 3:], axis=1)) print("pose == pose_flip:\n", np.isclose(pose_vec, pose_vec_flip)) flip_vec = np.array([[-1, 1, 1, 1, -1, -1]], dtype=np.float32) assert np.isclose(pose_vec, pose_vec_flip*flip_vec).all() print("!!! test_flip_pose_np passed") def test_flip_pose_tf(): print("===== test test_flip_pose_tf") batch, numsrc = 2, 2 pose_vec = tf.random.uniform((batch, numsrc, 6), -2, 2) pose_mat = cp.pose_rvec2matr_batch_tf(pose_vec) flipper = HorizontalFlip() pose_mat_flip = flipper.flip_gt_pose(pose_mat) pose_vec_flip = cp.pose_matr2rvec_batch(pose_mat_flip) print("pose vec:\n", pose_vec[1]) print("pose mat:\n", pose_mat[1, 1]) print("pose mat flip:\n", pose_mat_flip[1, 1]) print("pose vec flip:\n", pose_vec_flip[1]) print("pose vec rotation [batch, numsrc]: (rad)\n", np.linalg.norm(pose_vec[:, :, 3:], axis=1)) print("pose vec flip rotation [batch, numsrc]: (rad)\n", np.linalg.norm(pose_vec_flip[:, :, 3:], axis=1)) print("pose == pose_flip:\n", np.isclose(pose_vec[1, 1], pose_vec_flip[1, 1])) flip_vec = tf.constant([[[[-1, 1, 1, 1, -1, -1]]]], dtype=tf.float32) assert np.isclose(pose_vec.numpy(), pose_vec_flip.numpy()*flip_vec, atol=1.e-3).all(), \ f"{pose_vec.numpy() - pose_vec_flip.numpy()*flip_vec}" print("!!! test_flip_pose_tf passed") def test_flip_intrinsic(): print("===== test test_flip_intrinsic") batch, height, width = 3, 200, 240 intrinsic = tf.random.uniform((batch, 3, 3), minval=100, maxval=200) print("intrinsic original", intrinsic[0]) imshape = (batch, height, width, 3) flipper = HorizontalFlip() # EXECUTE intrin_flip = flipper.flip_intrinsic(intrinsic, imshape) intrinsic = intrinsic.numpy() intrin_flip = intrin_flip.numpy() # fy, cy: SAME assert np.isclose(intrinsic[:, 1:], intrin_flip[:, 1:]).all(), \ f"original\n{intrinsic[:, 1:]}\nflipped\n{intrin_flip[:, 1:]}" # fx: SAME assert np.isclose(intrinsic[:, 0, :2], intrin_flip[:, 0, :2]).all(), \ f"original\n{intrinsic[:, 0, :2]}\nflipped\n{intrin_flip[:, 0, :2]}" # cx <- W - cx assert np.isclose(width - intrinsic[:, 0, 2], intrin_flip[:, 0, 2]).all(), \ f"original\n{intrinsic[:, 0, 2]}\nflipped\n{intrin_flip[:, 0, 2]}" print("horizontally flipped intrinsic\n", intrin_flip[0]) print("!!! test_flip_intrinsic passed") import os.path as op import cv2 from config import opts from tfrecords.tfrecord_reader import TfrecordReader from utils.util_funcs import to_uint8_image, multi_scale_depths from model.synthesize.synthesize_base import SynthesizeMultiScale from utils.convert_pose import pose_matr2rvec_batch def test_augmentations(): print("===== test test_augmentations") tfrgen = TfrecordReader(op.join(opts.DATAPATH_TFR, "kitti_raw_test"), shuffle=False) dataset = tfrgen.get_dataset() total_aug = TotalAugment() data_aug = {"CropAndResize": CropAndResize(aug_prob=0.5), "HorizontalFlip": HorizontalFlip(aug_prob=0.5), "ColorJitter": ColorJitter(aug_prob=0.5)} for bi, features in enumerate(dataset): print(f"\n!!~~~~~~~~~~ {bi}: new features ~~~~~~~~~~!!") images = [] feat_aug = total_aug.preprocess(features) img = show_result(feat_aug, "preprocess") images.append(img) for name, augment in data_aug.items(): feat_aug = augment(feat_aug) img = show_result(feat_aug, name, augment.param) images.append(img) feat_aug = total_aug.postprocess(features, feat_aug) source_image, synth_target = synthesize_target(feat_aug) images.append(synth_target) images.append(source_image) images = np.concatenate(images, axis=0) cv2.imshow("augmentation", images) ori_images = [] raw_image_u8 = to_uint8_image(features["image"]) ori_images.append(raw_image_u8[0, -opts.get_img_shape("H"):]) source_image, synth_target = synthesize_target(features) ori_images.append(synth_target) ori_images.append(source_image) ori_images = np.concatenate(ori_images, axis=0) cv2.imshow("original image", ori_images) key = cv2.waitKey() if key == ord('q'): break cv2.destroyAllWindows() def show_result(features, name, param=""): print(f"----- augmentation: {name}") print("parameter:", param) image_u8 = to_uint8_image(features["image5d"]) target_index = opts.SNIPPET_LEN - 1 target = image_u8[target_index].numpy() intrin = features["intrinsic"] print("intrinsic:\n", intrin[0].numpy()) pose = features["pose_gt"] print("pose:\n", pose[0, 0].numpy()) return target def synthesize_target(features): sources, target, intrinsic, depth_gt_ms, pose_gt = prep_synthesize(features) synth_target_ms = SynthesizeMultiScale()(sources, intrinsic, depth_gt_ms, pose_gt) synth_u8 = to_uint8_image(synth_target_ms[0]) synth_u8 = synth_u8[0, 0].numpy() source_u8 = to_uint8_image(sources) source_u8 = source_u8[0, 0].numpy() return source_u8, synth_u8 def prep_synthesize(features): image5d = features["image5d"] sources = image5d[:, :-1] target = image5d[:, -1] intrinsic = features["intrinsic"] pose_gt = features["pose_gt"] pose_gt = pose_matr2rvec_batch(pose_gt) depth_gt = features["depth_gt"] depth_gt_ms = multi_scale_depths(depth_gt, [1, 2, 4, 8]) return sources, target, intrinsic, depth_gt_ms, pose_gt def test_augmentation_factory(): print("===== test test_augmentations") tfrgen = TfrecordReader(op.join(opts.DATAPATH_TFR, "kitti_raw_test"), shuffle=False) dataset = tfrgen.get_dataset() augmenter = augmentation_factory(opts.AUGMENT_PROBS) for bi, features in enumerate(dataset): print(f"\n!!~~~~~~~~~~ {bi}: new features ~~~~~~~~~~!!") print(features.keys()) print("before augment features:") fkeys = list(features.keys()) for i in range(np.ceil(len(features.keys())/5.).astype(int)): print(fkeys[i*5:(i+1)*5]) feat_aug = augmenter(features) print("after augment features:") fkeys = list(feat_aug.keys()) for i in range(np.ceil(len(feat_aug.keys())/5.).astype(int)): print(fkeys[i*5:(i+1)*5]) image = to_uint8_image(features["image5d_R"][1]) image_aug = to_uint8_image(feat_aug["image5d_R"][1]) snippet, height, width, chann = image.get_shape() image = image.numpy().reshape(-1, width, chann) image_aug = image_aug.numpy().reshape(-1, width, chann) image = np.concatenate([image, image_aug], axis=1) cv2.imshow("image vs augmented", image) key = cv2.waitKey() if key == ord('q'): break cv2.destroyAllWindows() import utils.util_funcs as uf def test_stereo_augmentation(): print("===== test test_augmentations") tfrgen = TfrecordReader(op.join(opts.DATAPATH_TFR, "kitti_raw_test"), shuffle=False) dataset = tfrgen.get_dataset() augmenter = augmentation_factory(opts.AUGMENT_PROBS) batidx, sclidx = 0, 0 for bi, features in enumerate(dataset): print(f"\n!!~~~~~~~~~~ {bi} step ~~~~~~~~~~!!") view_imgs = dict() feat_aug = augmenter(features) pose_T_RL = tf.linalg.inv(feat_aug["stereo_T_LR"]) pose_T_RL = cp.pose_matr2rvec_batch(tf.expand_dims(pose_T_RL, 1)) right_target = tf.expand_dims(feat_aug["image5d_R"][:, -1], 1) depth_ms = uf.multi_scale_depths(feat_aug["depth_gt"], [1, 2, 4, 8]) synth_stereo_left = SynthesizeMultiScale()(source_image=right_target, intrinsic=feat_aug["intrinsic"], pred_depth_ms=depth_ms, pred_pose=pose_T_RL) view_imgs["raw_left_target"] = features["image5d"][batidx, -1] view_imgs["raw_right_target"] = features["image5d_R"][batidx, -1] view_imgs["aug_left_target_orig"] = feat_aug["image5d"][batidx, -1] view_imgs["aug_left_target_synt"] = synth_stereo_left[sclidx][batidx, 0] view_imgs["aug_right_target"] = feat_aug["image5d_R"][batidx, -1] view = uf.stack_titled_images(view_imgs) cv2.imshow("stereo synthesis", view) key = cv2.waitKey() if key == ord('q'): break cv2.destroyAllWindows() if __name__ == "__main__": test_random_crop_boxes() test_adjust_intrinsic() test_flip_pose_np() test_flip_pose_tf() test_flip_intrinsic() test_augmentations() test_augmentation_factory() test_stereo_augmentation()
[ "tensorflow.image.flip_left_right", "tensorflow.clip_by_value", "tensorflow.reshape", "tensorflow.image.crop_and_resize", "numpy.isclose", "tensorflow.linalg.inv", "numpy.linalg.norm", "utils.convert_pose.pose_rvec2matr_batch_tf", "cv2.imshow", "os.path.join", "tensorflow.abs", "tensorflow.random.uniform", "numpy.identity", "tensorflow.concat", "tensorflow.stack", "tensorflow.cast", "config.opts.get_img_shape", "cv2.destroyAllWindows", "tensorflow.image.adjust_saturation", "tensorflow.range", "utils.util_funcs.to_uint8_image", "cv2.waitKey", "tensorflow.constant", "tensorflow.tile", "model.synthesize.synthesize_base.SynthesizeMultiScale", "numpy.linalg.inv", "utils.convert_pose.pose_rvec2matr", "tensorflow.image.adjust_gamma", "utils.util_funcs.multi_scale_depths", "numpy.concatenate", "tensorflow.expand_dims", "numpy.random.uniform", "utils.util_funcs.stack_titled_images", "utils.convert_pose.pose_matr2rvec_batch", "utils.convert_pose.pose_matr2rvec", "numpy.array", "utils.util_class.WrongInputException", "numpy.matmul" ]
[((9665, 9711), 'tensorflow.constant', 'tf.constant', (['[height, width]'], {'dtype': 'tf.float32'}), '([height, width], dtype=tf.float32)\n', (9676, 9711), True, 'import tensorflow as tf\n'), ((9728, 9832), 'tensorflow.constant', 'tf.constant', (['[[[width / 2, 0, width / 2], [0, height / 2, height / 2], [0, 0, 1]]]'], {'dtype': 'tf.float32'}), '([[[width / 2, 0, width / 2], [0, height / 2, height / 2], [0, 0,\n 1]]], dtype=tf.float32)\n', (9739, 9832), True, 'import tensorflow as tf\n'), ((9837, 9870), 'tensorflow.tile', 'tf.tile', (['intrinsic', '[batch, 1, 1]'], {}), '(intrinsic, [batch, 1, 1])\n', (9844, 9870), True, 'import tensorflow as tf\n'), ((10308, 10368), 'numpy.isclose', 'np.isclose', (['intrin_adj[0, 0, 0]', '(width / 2 / (1 - 2 * xcrop))'], {}), '(intrin_adj[0, 0, 0], width / 2 / (1 - 2 * xcrop))\n', (10318, 10368), True, 'import numpy as np\n'), ((10458, 10500), 'numpy.isclose', 'np.isclose', (['intrin_adj[0, 0, 2]', '(width / 2)'], {}), '(intrin_adj[0, 0, 2], width / 2)\n', (10468, 10500), True, 'import numpy as np\n'), ((10709, 10745), 'numpy.random.uniform', 'np.random.uniform', (['(-2)', '(2)', '(batch, 6)'], {}), '(-2, 2, (batch, 6))\n', (10726, 10745), True, 'import numpy as np\n'), ((10761, 10788), 'utils.convert_pose.pose_rvec2matr', 'cp.pose_rvec2matr', (['pose_vec'], {}), '(pose_vec)\n', (10778, 10788), True, 'import utils.convert_pose as cp\n'), ((10800, 10814), 'numpy.identity', 'np.identity', (['(4)'], {}), '(4)\n', (10811, 10814), True, 'import numpy as np\n'), ((10966, 10998), 'utils.convert_pose.pose_matr2rvec', 'cp.pose_matr2rvec', (['pose_mat_flip'], {}), '(pose_mat_flip)\n', (10983, 10998), True, 'import utils.convert_pose as cp\n'), ((11418, 11469), 'numpy.array', 'np.array', (['[[-1, 1, 1, 1, -1, -1]]'], {'dtype': 'np.float32'}), '([[-1, 1, 1, 1, -1, -1]], dtype=np.float32)\n', (11426, 11469), True, 'import numpy as np\n'), ((11683, 11727), 'tensorflow.random.uniform', 'tf.random.uniform', (['(batch, numsrc, 6)', '(-2)', '(2)'], {}), '((batch, numsrc, 6), -2, 2)\n', (11700, 11727), True, 'import tensorflow as tf\n'), ((11743, 11779), 'utils.convert_pose.pose_rvec2matr_batch_tf', 'cp.pose_rvec2matr_batch_tf', (['pose_vec'], {}), '(pose_vec)\n', (11769, 11779), True, 'import utils.convert_pose as cp\n'), ((11882, 11920), 'utils.convert_pose.pose_matr2rvec_batch', 'cp.pose_matr2rvec_batch', (['pose_mat_flip'], {}), '(pose_mat_flip)\n', (11905, 11920), True, 'import utils.convert_pose as cp\n'), ((12408, 12466), 'tensorflow.constant', 'tf.constant', (['[[[[-1, 1, 1, 1, -1, -1]]]]'], {'dtype': 'tf.float32'}), '([[[[-1, 1, 1, 1, -1, -1]]]], dtype=tf.float32)\n', (12419, 12466), True, 'import tensorflow as tf\n'), ((12793, 12849), 'tensorflow.random.uniform', 'tf.random.uniform', (['(batch, 3, 3)'], {'minval': '(100)', 'maxval': '(200)'}), '((batch, 3, 3), minval=100, maxval=200)\n', (12810, 12849), True, 'import tensorflow as tf\n'), ((15635, 15658), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (15656, 15658), False, 'import cv2\n'), ((15791, 15826), 'utils.util_funcs.to_uint8_image', 'to_uint8_image', (["features['image5d']"], {}), "(features['image5d'])\n", (15805, 15826), False, 'from utils.util_funcs import to_uint8_image, multi_scale_depths\n'), ((16299, 16333), 'utils.util_funcs.to_uint8_image', 'to_uint8_image', (['synth_target_ms[0]'], {}), '(synth_target_ms[0])\n', (16313, 16333), False, 'from utils.util_funcs import to_uint8_image, multi_scale_depths\n'), ((16388, 16411), 'utils.util_funcs.to_uint8_image', 'to_uint8_image', (['sources'], {}), '(sources)\n', (16402, 16411), False, 'from utils.util_funcs import to_uint8_image, multi_scale_depths\n'), ((16694, 16723), 'utils.convert_pose.pose_matr2rvec_batch', 'pose_matr2rvec_batch', (['pose_gt'], {}), '(pose_gt)\n', (16714, 16723), False, 'from utils.convert_pose import pose_matr2rvec_batch\n'), ((16778, 16820), 'utils.util_funcs.multi_scale_depths', 'multi_scale_depths', (['depth_gt', '[1, 2, 4, 8]'], {}), '(depth_gt, [1, 2, 4, 8])\n', (16796, 16820), False, 'from utils.util_funcs import to_uint8_image, multi_scale_depths\n'), ((18180, 18203), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (18201, 18203), False, 'import cv2\n'), ((19828, 19851), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (19849, 19851), False, 'import cv2\n'), ((1624, 1664), 'tensorflow.reshape', 'tf.reshape', (["features['image5d']", 'imshape'], {}), "(features['image5d'], imshape)\n", (1634, 1664), True, 'import tensorflow as tf\n'), ((2708, 2736), 'tensorflow.constant', 'tf.constant', (['[height, width]'], {}), '([height, width])\n', (2719, 2736), True, 'import tensorflow as tf\n'), ((2759, 2778), 'tensorflow.range', 'tf.range', (['(0)', 'nimage'], {}), '(0, nimage)\n', (2767, 2778), True, 'import tensorflow as tf\n'), ((2887, 2963), 'tensorflow.image.crop_and_resize', 'tf.image.crop_and_resize', (["features['image5d']", 'boxes', 'box_indices', 'crop_size'], {}), "(features['image5d'], boxes, box_indices, crop_size)\n", (2911, 2963), True, 'import tensorflow as tf\n'), ((3872, 3915), 'tensorflow.random.uniform', 'tf.random.uniform', (['(1, 2)', 'minval1', 'maxval1'], {}), '((1, 2), minval1, maxval1)\n', (3889, 3915), True, 'import tensorflow as tf\n'), ((3931, 3959), 'tensorflow.clip_by_value', 'tf.clip_by_value', (['y1x1', '(0)', '(1)'], {}), '(y1x1, 0, 1)\n', (3947, 3959), True, 'import tensorflow as tf\n'), ((4037, 4080), 'tensorflow.random.uniform', 'tf.random.uniform', (['(1, 2)', 'minval2', 'maxval2'], {}), '((1, 2), minval2, maxval2)\n', (4054, 4080), True, 'import tensorflow as tf\n'), ((4096, 4124), 'tensorflow.clip_by_value', 'tf.clip_by_value', (['y2x2', '(0)', '(1)'], {}), '(y2x2, 0, 1)\n', (4112, 4124), True, 'import tensorflow as tf\n'), ((4224, 4255), 'tensorflow.concat', 'tf.concat', (['[y1x1, y2x2]'], {'axis': '(1)'}), '([y1x1, y2x2], axis=1)\n', (4233, 4255), True, 'import tensorflow as tf\n'), ((4302, 4330), 'tensorflow.tile', 'tf.tile', (['boxes', '[num_box, 1]'], {}), '(boxes, [num_box, 1])\n', (4309, 4330), True, 'import tensorflow as tf\n'), ((4647, 4674), 'tensorflow.cast', 'tf.cast', (['imsize', 'tf.float32'], {}), '(imsize, tf.float32)\n', (4654, 4674), True, 'import tensorflow as tf\n'), ((5270, 5369), 'tensorflow.stack', 'tf.stack', (['[intrin_crop[:, 0] * x_ratio, intrin_crop[:, 1] * y_ratio, intrin_crop[:, 2]]'], {'axis': '(1)'}), '([intrin_crop[:, 0] * x_ratio, intrin_crop[:, 1] * y_ratio,\n intrin_crop[:, 2]], axis=1)\n', (5278, 5369), True, 'import tensorflow as tf\n'), ((5623, 5644), 'tensorflow.random.uniform', 'tf.random.uniform', (['()'], {}), '(())\n', (5640, 5644), True, 'import tensorflow as tf\n'), ((5954, 5999), 'tensorflow.image.flip_left_right', 'tf.image.flip_left_right', (["features['image5d']"], {}), "(features['image5d'])\n", (5978, 5999), True, 'import tensorflow as tf\n'), ((6988, 7058), 'tensorflow.constant', 'tf.constant', (['[[[0, 0, width], [0, 0, 0], [0, 0, 0]]]'], {'dtype': 'tf.float32'}), '([[[0, 0, width], [0, 0, 0], [0, 0, 0]]], dtype=tf.float32)\n', (6999, 7058), True, 'import tensorflow as tf\n'), ((7081, 7110), 'tensorflow.abs', 'tf.abs', (['(intrin_wh - intrinsic)'], {}), '(intrin_wh - intrinsic)\n', (7087, 7110), True, 'import tensorflow as tf\n'), ((7190, 7286), 'tensorflow.constant', 'tf.constant', (['[[[[-1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]]]'], {'dtype': 'tf.float32'}), '([[[[-1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]]],\n dtype=tf.float32)\n', (7201, 7286), True, 'import tensorflow as tf\n'), ((7508, 7602), 'tensorflow.constant', 'tf.constant', (['[[[-1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]]'], {'dtype': 'tf.float32'}), '([[[-1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]],\n dtype=tf.float32)\n', (7519, 7602), True, 'import tensorflow as tf\n'), ((7906, 7927), 'tensorflow.random.uniform', 'tf.random.uniform', (['()'], {}), '(())\n', (7923, 7927), True, 'import tensorflow as tf\n'), ((7944, 7989), 'tensorflow.random.uniform', 'tf.random.uniform', (['()'], {'minval': '(0.5)', 'maxval': '(1.5)'}), '((), minval=0.5, maxval=1.5)\n', (7961, 7989), True, 'import tensorflow as tf\n'), ((8011, 8056), 'tensorflow.random.uniform', 'tf.random.uniform', (['()'], {'minval': '(0.5)', 'maxval': '(1.5)'}), '((), minval=0.5, maxval=1.5)\n', (8028, 8056), True, 'import tensorflow as tf\n'), ((8861, 8906), 'tensorflow.image.adjust_saturation', 'tf.image.adjust_saturation', (['image', 'saturation'], {}), '(image, saturation)\n', (8887, 8906), True, 'import tensorflow as tf\n'), ((8923, 8974), 'tensorflow.image.adjust_gamma', 'tf.image.adjust_gamma', (['image'], {'gamma': 'gamma', 'gain': '(1.0)'}), '(image, gamma=gamma, gain=1.0)\n', (8944, 8974), True, 'import tensorflow as tf\n'), ((9062, 9099), 'tensorflow.stack', 'tf.stack', (['[gamma, saturation]'], {'axis': '(0)'}), '([gamma, saturation], axis=0)\n', (9070, 9099), True, 'import tensorflow as tf\n'), ((9997, 10048), 'tensorflow.constant', 'tf.constant', (['[[ycrop, xcrop, 1 - ycrop, 1 - xcrop]]'], {}), '([[ycrop, xcrop, 1 - ycrop, 1 - xcrop]])\n', (10008, 10048), True, 'import tensorflow as tf\n'), ((10898, 10923), 'numpy.matmul', 'np.matmul', (['flip', 'pose_mat'], {}), '(flip, pose_mat)\n', (10907, 10923), True, 'import numpy as np\n'), ((10925, 10944), 'numpy.linalg.inv', 'np.linalg.inv', (['flip'], {}), '(flip)\n', (10938, 10944), True, 'import numpy as np\n'), ((11199, 11238), 'numpy.linalg.norm', 'np.linalg.norm', (['pose_vec[:, 3:]'], {'axis': '(1)'}), '(pose_vec[:, 3:], axis=1)\n', (11213, 11238), True, 'import numpy as np\n'), ((11285, 11329), 'numpy.linalg.norm', 'np.linalg.norm', (['pose_vec_flip[:, 3:]'], {'axis': '(1)'}), '(pose_vec_flip[:, 3:], axis=1)\n', (11299, 11329), True, 'import numpy as np\n'), ((11365, 11400), 'numpy.isclose', 'np.isclose', (['pose_vec', 'pose_vec_flip'], {}), '(pose_vec, pose_vec_flip)\n', (11375, 11400), True, 'import numpy as np\n'), ((12155, 12197), 'numpy.linalg.norm', 'np.linalg.norm', (['pose_vec[:, :, 3:]'], {'axis': '(1)'}), '(pose_vec[:, :, 3:], axis=1)\n', (12169, 12197), True, 'import numpy as np\n'), ((12260, 12307), 'numpy.linalg.norm', 'np.linalg.norm', (['pose_vec_flip[:, :, 3:]'], {'axis': '(1)'}), '(pose_vec_flip[:, :, 3:], axis=1)\n', (12274, 12307), True, 'import numpy as np\n'), ((12343, 12390), 'numpy.isclose', 'np.isclose', (['pose_vec[1, 1]', 'pose_vec_flip[1, 1]'], {}), '(pose_vec[1, 1], pose_vec_flip[1, 1])\n', (12353, 12390), True, 'import numpy as np\n'), ((14115, 14159), 'os.path.join', 'op.join', (['opts.DATAPATH_TFR', '"""kitti_raw_test"""'], {}), "(opts.DATAPATH_TFR, 'kitti_raw_test')\n", (14122, 14159), True, 'import os.path as op\n'), ((15079, 15109), 'numpy.concatenate', 'np.concatenate', (['images'], {'axis': '(0)'}), '(images, axis=0)\n', (15093, 15109), True, 'import numpy as np\n'), ((15118, 15152), 'cv2.imshow', 'cv2.imshow', (['"""augmentation"""', 'images'], {}), "('augmentation', images)\n", (15128, 15152), False, 'import cv2\n'), ((15201, 15234), 'utils.util_funcs.to_uint8_image', 'to_uint8_image', (["features['image']"], {}), "(features['image'])\n", (15215, 15234), False, 'from utils.util_funcs import to_uint8_image, multi_scale_depths\n'), ((15471, 15505), 'numpy.concatenate', 'np.concatenate', (['ori_images'], {'axis': '(0)'}), '(ori_images, axis=0)\n', (15485, 15505), True, 'import numpy as np\n'), ((15514, 15554), 'cv2.imshow', 'cv2.imshow', (['"""original image"""', 'ori_images'], {}), "('original image', ori_images)\n", (15524, 15554), False, 'import cv2\n'), ((15570, 15583), 'cv2.waitKey', 'cv2.waitKey', ([], {}), '()\n', (15581, 15583), False, 'import cv2\n'), ((16219, 16241), 'model.synthesize.synthesize_base.SynthesizeMultiScale', 'SynthesizeMultiScale', ([], {}), '()\n', (16239, 16241), False, 'from model.synthesize.synthesize_base import SynthesizeMultiScale\n'), ((16987, 17031), 'os.path.join', 'op.join', (['opts.DATAPATH_TFR', '"""kitti_raw_test"""'], {}), "(opts.DATAPATH_TFR, 'kitti_raw_test')\n", (16994, 17031), True, 'import os.path as op\n'), ((17714, 17754), 'utils.util_funcs.to_uint8_image', 'to_uint8_image', (["features['image5d_R'][1]"], {}), "(features['image5d_R'][1])\n", (17728, 17754), False, 'from utils.util_funcs import to_uint8_image, multi_scale_depths\n'), ((17775, 17815), 'utils.util_funcs.to_uint8_image', 'to_uint8_image', (["feat_aug['image5d_R'][1]"], {}), "(feat_aug['image5d_R'][1])\n", (17789, 17815), False, 'from utils.util_funcs import to_uint8_image, multi_scale_depths\n'), ((18010, 18052), 'numpy.concatenate', 'np.concatenate', (['[image, image_aug]'], {'axis': '(1)'}), '([image, image_aug], axis=1)\n', (18024, 18052), True, 'import numpy as np\n'), ((18061, 18100), 'cv2.imshow', 'cv2.imshow', (['"""image vs augmented"""', 'image'], {}), "('image vs augmented', image)\n", (18071, 18100), False, 'import cv2\n'), ((18115, 18128), 'cv2.waitKey', 'cv2.waitKey', ([], {}), '()\n', (18126, 18128), False, 'import cv2\n'), ((18341, 18385), 'os.path.join', 'op.join', (['opts.DATAPATH_TFR', '"""kitti_raw_test"""'], {}), "(opts.DATAPATH_TFR, 'kitti_raw_test')\n", (18348, 18385), True, 'import os.path as op\n'), ((18708, 18746), 'tensorflow.linalg.inv', 'tf.linalg.inv', (["feat_aug['stereo_T_LR']"], {}), "(feat_aug['stereo_T_LR'])\n", (18721, 18746), True, 'import tensorflow as tf\n'), ((18844, 18891), 'tensorflow.expand_dims', 'tf.expand_dims', (["feat_aug['image5d_R'][:, -1]", '(1)'], {}), "(feat_aug['image5d_R'][:, -1], 1)\n", (18858, 18891), True, 'import tensorflow as tf\n'), ((18911, 18968), 'utils.util_funcs.multi_scale_depths', 'uf.multi_scale_depths', (["feat_aug['depth_gt']", '[1, 2, 4, 8]'], {}), "(feat_aug['depth_gt'], [1, 2, 4, 8])\n", (18932, 18968), True, 'import utils.util_funcs as uf\n'), ((19670, 19703), 'utils.util_funcs.stack_titled_images', 'uf.stack_titled_images', (['view_imgs'], {}), '(view_imgs)\n', (19692, 19703), True, 'import utils.util_funcs as uf\n'), ((19712, 19748), 'cv2.imshow', 'cv2.imshow', (['"""stereo synthesis"""', 'view'], {}), "('stereo synthesis', view)\n", (19722, 19748), False, 'import cv2\n'), ((19763, 19776), 'cv2.waitKey', 'cv2.waitKey', ([], {}), '()\n', (19774, 19776), False, 'import cv2\n'), ((1737, 1779), 'tensorflow.reshape', 'tf.reshape', (["features['image5d_R']", 'imshape'], {}), "(features['image5d_R'], imshape)\n", (1747, 1779), True, 'import tensorflow as tf\n'), ((3131, 3209), 'tensorflow.image.crop_and_resize', 'tf.image.crop_and_resize', (["features['image5d_R']", 'boxes', 'box_indices', 'crop_size'], {}), "(features['image5d_R'], boxes, box_indices, crop_size)\n", (3155, 3209), True, 'import tensorflow as tf\n'), ((3440, 3556), 'tensorflow.image.crop_and_resize', 'tf.image.crop_and_resize', (["features['depth_gt']", 'boxes[:batch]', 'box_indices[:batch]', 'crop_size'], {'method': '"""nearest"""'}), "(features['depth_gt'], boxes[:batch], box_indices[:\n batch], crop_size, method='nearest')\n", (3464, 3556), True, 'import tensorflow as tf\n'), ((6072, 6119), 'tensorflow.image.flip_left_right', 'tf.image.flip_left_right', (["features['image5d_R']"], {}), "(features['image5d_R'])\n", (6096, 6119), True, 'import tensorflow as tf\n'), ((7405, 7426), 'tensorflow.linalg.inv', 'tf.linalg.inv', (['T_flip'], {}), '(T_flip)\n', (7418, 7426), True, 'import tensorflow as tf\n'), ((7699, 7720), 'tensorflow.linalg.inv', 'tf.linalg.inv', (['T_flip'], {}), '(T_flip)\n', (7712, 7720), True, 'import tensorflow as tf\n'), ((11481, 11527), 'numpy.isclose', 'np.isclose', (['pose_vec', '(pose_vec_flip * flip_vec)'], {}), '(pose_vec, pose_vec_flip * flip_vec)\n', (11491, 11527), True, 'import numpy as np\n'), ((13146, 13194), 'numpy.isclose', 'np.isclose', (['intrinsic[:, 1:]', 'intrin_flip[:, 1:]'], {}), '(intrinsic[:, 1:], intrin_flip[:, 1:])\n', (13156, 13194), True, 'import numpy as np\n'), ((13301, 13355), 'numpy.isclose', 'np.isclose', (['intrinsic[:, 0, :2]', 'intrin_flip[:, 0, :2]'], {}), '(intrinsic[:, 0, :2], intrin_flip[:, 0, :2])\n', (13311, 13355), True, 'import numpy as np\n'), ((13472, 13532), 'numpy.isclose', 'np.isclose', (['(width - intrinsic[:, 0, 2])', 'intrin_flip[:, 0, 2]'], {}), '(width - intrinsic[:, 0, 2], intrin_flip[:, 0, 2])\n', (13482, 13532), True, 'import numpy as np\n'), ((18791, 18819), 'tensorflow.expand_dims', 'tf.expand_dims', (['pose_T_RL', '(1)'], {}), '(pose_T_RL, 1)\n', (18805, 18819), True, 'import tensorflow as tf\n'), ((18997, 19019), 'model.synthesize.synthesize_base.SynthesizeMultiScale', 'SynthesizeMultiScale', ([], {}), '()\n', (19017, 19019), False, 'from model.synthesize.synthesize_base import SynthesizeMultiScale\n'), ((4807, 4860), 'tensorflow.stack', 'tf.stack', (['[0.0, 0.0, boxes[0, 1] * imsize[1]]'], {'axis': '(0)'}), '([0.0, 0.0, boxes[0, 1] * imsize[1]], axis=0)\n', (4815, 4860), True, 'import tensorflow as tf\n'), ((4892, 4945), 'tensorflow.stack', 'tf.stack', (['[0.0, 0.0, boxes[0, 0] * imsize[0]]'], {'axis': '(0)'}), '([0.0, 0.0, boxes[0, 0] * imsize[0]], axis=0)\n', (4900, 4945), True, 'import tensorflow as tf\n'), ((4977, 5010), 'tensorflow.stack', 'tf.stack', (['[0.0, 0.0, 0.0]'], {'axis': '(0)'}), '([0.0, 0.0, 0.0], axis=0)\n', (4985, 5010), True, 'import tensorflow as tf\n'), ((504, 558), 'utils.util_class.WrongInputException', 'WrongInputException', (['f"""Wrong augmentation type: {key}"""'], {}), "(f'Wrong augmentation type: {key}')\n", (523, 558), False, 'from utils.util_class import WrongInputException\n'), ((8283, 8320), 'tensorflow.constant', 'tf.constant', (['[0, 0]'], {'dtype': 'tf.float32'}), '([0, 0], dtype=tf.float32)\n', (8294, 8320), True, 'import tensorflow as tf\n'), ((8627, 8664), 'tensorflow.constant', 'tf.constant', (['[0, 0]'], {'dtype': 'tf.float32'}), '([0, 0], dtype=tf.float32)\n', (8638, 8664), True, 'import tensorflow as tf\n'), ((15278, 15301), 'config.opts.get_img_shape', 'opts.get_img_shape', (['"""H"""'], {}), "('H')\n", (15296, 15301), False, 'from config import opts\n')]
# contrast activity contrast back lr import os import mne from mne.io import read_raw_fif import numpy import numpy as np import matplotlib.pyplot as plt import os.path as op from operator import itemgetter from mne.io import Raw from mne.io import read_raw_ctf from mne.preprocessing import ICA from mne.viz import plot_evoked_topo from mne.minimum_norm import apply_inverse import math import matplotlib from mne.viz import topomap from mpl_toolkits.axes_grid1 import make_axes_locatable from mne.stats import permutation_t_test from mne.stats import permutation_cluster_1samp_test from mne.stats import (spatio_temporal_cluster_1samp_test, summarize_clusters_stc) from mne.viz import plot_topomap list_data_back = [] list_data_left = [] list_data_right = [] list_data_front = [] list_data_tfpc = [] list_data_ttpc = [] for ith_sub in list(range(2, 14)): temp_data_array = "/Users/boo/Desktop/MEG_data_script/PreProcessed_data/artefact_removed_sub" + str( ith_sub) + "_raw_100hz_sfre_100.fif" temp_event_array = "/Users/boo/Desktop/MEG_data_script/PreProcessed_data/events_post_resample_sub" + str( ith_sub) + "_100hz_sfre_100.npy" array_data = read_raw_fif(temp_data_array) array_event = numpy.load(temp_event_array) # pick channel all_chan = array_data.ch_names picks_mag = mne.pick_types(array_data.info, meg='mag') meg_channel = itemgetter(*picks_mag)(all_chan) meg_channel = meg_channel[29:301] pos = mne.channels.layout._find_topomap_coords(array_data.info, picks_mag[29:301]) # Compute epochs min_onset = -0.2 max_endpoint = 2 baseline = (min_onset, 0) event_id_back = {'back': 80} event_id_front = {'front': 90} event_id_left = {'left': 82} event_id_right = {'right': 84} event_id_tfpc = {'tfpc': 110} event_id_ttpc = {'ttpc': 100} epochs_back = mne.Epochs(array_data, array_event, picks=meg_channel, event_id=event_id_back, tmin=min_onset, tmax=max_endpoint, baseline=baseline) epochs_front = mne.Epochs(array_data, array_event, picks=meg_channel, event_id=event_id_front, tmin=min_onset, tmax=max_endpoint, baseline=baseline) epochs_left = mne.Epochs(array_data, array_event, picks=meg_channel, event_id=event_id_left, tmin=min_onset, tmax=max_endpoint, baseline=baseline) epochs_right = mne.Epochs(array_data, array_event, picks=meg_channel, event_id=event_id_right, tmin=min_onset, tmax=max_endpoint, baseline=baseline) epochs_tfpc = mne.Epochs(array_data, array_event, picks=meg_channel, event_id=event_id_tfpc, tmin=min_onset, tmax=max_endpoint, baseline=baseline) epochs_ttpc = mne.Epochs(array_data, array_event, picks=meg_channel, event_id=event_id_ttpc, tmin=min_onset, tmax=max_endpoint, baseline=baseline) epochs_back.load_data() epochs_front.load_data() epochs_left.load_data() epochs_right.load_data() epochs_tfpc.load_data() epochs_ttpc.load_data() evoke_back = epochs_back.average() evoke_front = epochs_front.average() evoke_left = epochs_left.average() evoke_right = epochs_right.average() evoke_tfpc = epochs_tfpc.average() evoke_ttpc = epochs_ttpc.average() # add into list list_data_back.append(evoke_back.data) list_data_front.append(evoke_front.data) list_data_left.append(evoke_left.data) list_data_right.append(evoke_right.data) list_data_tfpc.append(evoke_tfpc.data) list_data_ttpc.append(evoke_ttpc.data) array_back = np.array(list_data_back) array_left = np.array(list_data_left) array_right = np.array(list_data_right) array_front = np.array(list_data_front) array_tfpc = np.array(list_data_tfpc) array_ttpc = np.array(list_data_ttpc) onset_t = 0 end_point = 220 segm = 3 num_dp = np.shape(array_back)[2] resampled_ima_t_f = np.zeros([array_front.shape[0], array_front.shape[1], len(np.arange(onset_t, end_point, segm))]) resampled_ima_t_b = np.zeros([array_back.shape[0], array_back.shape[1], len(np.arange(onset_t, end_point, segm))]) resampled_ima_t_l = np.zeros([array_left.shape[0], array_left.shape[1], len(np.arange(onset_t, end_point, segm))]) resampled_ima_t_r = np.zeros([array_right.shape[0], array_right.shape[1], len(np.arange(onset_t, end_point, segm))]) resampled_ima_t_fpc = np.zeros([array_tfpc.shape[0], array_tfpc.shape[1], len(np.arange(onset_t, end_point, segm))]) resampled_ima_t_tpc = np.zeros([array_ttpc.shape[0], array_ttpc.shape[1], len(np.arange(onset_t, end_point, segm))]) for ind, ith_ts in enumerate(np.arange(onset_t, end_point, segm)): print(range(ith_ts, ith_ts + segm)) if ith_ts + segm < num_dp: resampled_ima_t_f[..., ind] = np.mean(array_front[..., range(ith_ts, ith_ts + segm)], axis=2) resampled_ima_t_b[..., ind] = np.mean(array_back[..., range(ith_ts, ith_ts + segm)], axis=2) resampled_ima_t_l[..., ind] = np.mean(array_left[..., range(ith_ts, ith_ts + segm)], axis=2) resampled_ima_t_r[..., ind] = np.mean(array_right[..., range(ith_ts, ith_ts + segm)], axis=2) resampled_ima_t_fpc[..., ind] = np.mean(array_tfpc[..., range(ith_ts, ith_ts + segm)], axis=2) resampled_ima_t_tpc[..., ind] = np.mean(array_ttpc[..., range(ith_ts, ith_ts + segm)], axis=2) the_data_set = (resampled_ima_t_l + resampled_ima_t_r)/2 - resampled_ima_t_b ########################## mean_curr_ima = tval_lr_b # plot fig = plt.figure(constrained_layout=False, figsize=[2, 2]) fig.subplots_adjust(left=0.02, right=0.9, bottom=0.02, top=0.98) num_row = 1 num_col = 1 gs = matplotlib.gridspec.GridSpec(nrows=num_row, ncols=num_col, figure=fig) images = [] for ax_row in list(range(num_row)): cur_ax = fig.add_subplot(gs[ax_row]) kwargs = dict(vmin=-5e-14, vmax=5e-14, sensors=False, res=64, names=None, show_names=False, mask_params={}, outlines='head', contours=6, image_interp='bilinear', show=False, extrapolate='box') tp, cn, interp = topomap._plot_topomap(mean_curr_ima, pos, axes=cur_ax, mask=mask, **kwargs) images.append(tp) cax = fig.add_subplot() cpos = cax.get_position() cpos.x0 = 0.94 cpos.x1 = 0.96 cpos.y0 = .15 cpos.y1 = .75 cax.set_position(cpos) cbar = fig.colorbar(images[-1], ax=cax, cax=cax) # cbar.set_ticks(cn.levels) cbar.ax.tick_params(labelsize=15) fig.savefig('/Users/boo/Desktop/example.png') plt.close()
[ "numpy.load", "mne.io.read_raw_fif", "mne.pick_types", "matplotlib.pyplot.close", "numpy.shape", "matplotlib.pyplot.figure", "mne.channels.layout._find_topomap_coords", "numpy.array", "mne.Epochs", "numpy.arange", "matplotlib.gridspec.GridSpec", "operator.itemgetter", "mne.viz.topomap._plot_topomap" ]
[((3639, 3663), 'numpy.array', 'np.array', (['list_data_back'], {}), '(list_data_back)\n', (3647, 3663), True, 'import numpy as np\n'), ((3677, 3701), 'numpy.array', 'np.array', (['list_data_left'], {}), '(list_data_left)\n', (3685, 3701), True, 'import numpy as np\n'), ((3716, 3741), 'numpy.array', 'np.array', (['list_data_right'], {}), '(list_data_right)\n', (3724, 3741), True, 'import numpy as np\n'), ((3756, 3781), 'numpy.array', 'np.array', (['list_data_front'], {}), '(list_data_front)\n', (3764, 3781), True, 'import numpy as np\n'), ((3795, 3819), 'numpy.array', 'np.array', (['list_data_tfpc'], {}), '(list_data_tfpc)\n', (3803, 3819), True, 'import numpy as np\n'), ((3833, 3857), 'numpy.array', 'np.array', (['list_data_ttpc'], {}), '(list_data_ttpc)\n', (3841, 3857), True, 'import numpy as np\n'), ((5524, 5576), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'constrained_layout': '(False)', 'figsize': '[2, 2]'}), '(constrained_layout=False, figsize=[2, 2])\n', (5534, 5576), True, 'import matplotlib.pyplot as plt\n'), ((5671, 5741), 'matplotlib.gridspec.GridSpec', 'matplotlib.gridspec.GridSpec', ([], {'nrows': 'num_row', 'ncols': 'num_col', 'figure': 'fig'}), '(nrows=num_row, ncols=num_col, figure=fig)\n', (5699, 5741), False, 'import matplotlib\n'), ((6542, 6553), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (6551, 6553), True, 'import matplotlib.pyplot as plt\n'), ((1180, 1209), 'mne.io.read_raw_fif', 'read_raw_fif', (['temp_data_array'], {}), '(temp_data_array)\n', (1192, 1209), False, 'from mne.io import read_raw_fif\n'), ((1228, 1256), 'numpy.load', 'numpy.load', (['temp_event_array'], {}), '(temp_event_array)\n', (1238, 1256), False, 'import numpy\n'), ((1328, 1370), 'mne.pick_types', 'mne.pick_types', (['array_data.info'], {'meg': '"""mag"""'}), "(array_data.info, meg='mag')\n", (1342, 1370), False, 'import mne\n'), ((1470, 1546), 'mne.channels.layout._find_topomap_coords', 'mne.channels.layout._find_topomap_coords', (['array_data.info', 'picks_mag[29:301]'], {}), '(array_data.info, picks_mag[29:301])\n', (1510, 1546), False, 'import mne\n'), ((1864, 2001), 'mne.Epochs', 'mne.Epochs', (['array_data', 'array_event'], {'picks': 'meg_channel', 'event_id': 'event_id_back', 'tmin': 'min_onset', 'tmax': 'max_endpoint', 'baseline': 'baseline'}), '(array_data, array_event, picks=meg_channel, event_id=\n event_id_back, tmin=min_onset, tmax=max_endpoint, baseline=baseline)\n', (1874, 2001), False, 'import mne\n'), ((2045, 2183), 'mne.Epochs', 'mne.Epochs', (['array_data', 'array_event'], {'picks': 'meg_channel', 'event_id': 'event_id_front', 'tmin': 'min_onset', 'tmax': 'max_endpoint', 'baseline': 'baseline'}), '(array_data, array_event, picks=meg_channel, event_id=\n event_id_front, tmin=min_onset, tmax=max_endpoint, baseline=baseline)\n', (2055, 2183), False, 'import mne\n'), ((2227, 2364), 'mne.Epochs', 'mne.Epochs', (['array_data', 'array_event'], {'picks': 'meg_channel', 'event_id': 'event_id_left', 'tmin': 'min_onset', 'tmax': 'max_endpoint', 'baseline': 'baseline'}), '(array_data, array_event, picks=meg_channel, event_id=\n event_id_left, tmin=min_onset, tmax=max_endpoint, baseline=baseline)\n', (2237, 2364), False, 'import mne\n'), ((2408, 2546), 'mne.Epochs', 'mne.Epochs', (['array_data', 'array_event'], {'picks': 'meg_channel', 'event_id': 'event_id_right', 'tmin': 'min_onset', 'tmax': 'max_endpoint', 'baseline': 'baseline'}), '(array_data, array_event, picks=meg_channel, event_id=\n event_id_right, tmin=min_onset, tmax=max_endpoint, baseline=baseline)\n', (2418, 2546), False, 'import mne\n'), ((2590, 2727), 'mne.Epochs', 'mne.Epochs', (['array_data', 'array_event'], {'picks': 'meg_channel', 'event_id': 'event_id_tfpc', 'tmin': 'min_onset', 'tmax': 'max_endpoint', 'baseline': 'baseline'}), '(array_data, array_event, picks=meg_channel, event_id=\n event_id_tfpc, tmin=min_onset, tmax=max_endpoint, baseline=baseline)\n', (2600, 2727), False, 'import mne\n'), ((2770, 2907), 'mne.Epochs', 'mne.Epochs', (['array_data', 'array_event'], {'picks': 'meg_channel', 'event_id': 'event_id_ttpc', 'tmin': 'min_onset', 'tmax': 'max_endpoint', 'baseline': 'baseline'}), '(array_data, array_event, picks=meg_channel, event_id=\n event_id_ttpc, tmin=min_onset, tmax=max_endpoint, baseline=baseline)\n', (2780, 2907), False, 'import mne\n'), ((3905, 3925), 'numpy.shape', 'np.shape', (['array_back'], {}), '(array_back)\n', (3913, 3925), True, 'import numpy as np\n'), ((4657, 4692), 'numpy.arange', 'np.arange', (['onset_t', 'end_point', 'segm'], {}), '(onset_t, end_point, segm)\n', (4666, 4692), True, 'import numpy as np\n'), ((6105, 6180), 'mne.viz.topomap._plot_topomap', 'topomap._plot_topomap', (['mean_curr_ima', 'pos'], {'axes': 'cur_ax', 'mask': 'mask'}), '(mean_curr_ima, pos, axes=cur_ax, mask=mask, **kwargs)\n', (6126, 6180), False, 'from mne.viz import topomap\n'), ((1389, 1411), 'operator.itemgetter', 'itemgetter', (['*picks_mag'], {}), '(*picks_mag)\n', (1399, 1411), False, 'from operator import itemgetter\n'), ((4008, 4043), 'numpy.arange', 'np.arange', (['onset_t', 'end_point', 'segm'], {}), '(onset_t, end_point, segm)\n', (4017, 4043), True, 'import numpy as np\n'), ((4123, 4158), 'numpy.arange', 'np.arange', (['onset_t', 'end_point', 'segm'], {}), '(onset_t, end_point, segm)\n', (4132, 4158), True, 'import numpy as np\n'), ((4238, 4273), 'numpy.arange', 'np.arange', (['onset_t', 'end_point', 'segm'], {}), '(onset_t, end_point, segm)\n', (4247, 4273), True, 'import numpy as np\n'), ((4355, 4390), 'numpy.arange', 'np.arange', (['onset_t', 'end_point', 'segm'], {}), '(onset_t, end_point, segm)\n', (4364, 4390), True, 'import numpy as np\n'), ((4472, 4507), 'numpy.arange', 'np.arange', (['onset_t', 'end_point', 'segm'], {}), '(onset_t, end_point, segm)\n', (4481, 4507), True, 'import numpy as np\n'), ((4589, 4624), 'numpy.arange', 'np.arange', (['onset_t', 'end_point', 'segm'], {}), '(onset_t, end_point, segm)\n', (4598, 4624), True, 'import numpy as np\n')]
import cv2 import numpy as np import pyautogui hand_hist = None traverse_point = [] total_rectangle = 9 hand_rect_one_x = None hand_rect_one_y = None hand_rect_two_x = None hand_rect_two_y = None def rescale_frame(frame, wpercent=130, hpercent=130): width = int(frame.shape[1] * wpercent / 100) height = int(frame.shape[0] * hpercent / 100) return cv2.resize(frame, (width, height), interpolation=cv2.INTER_AREA) def contours(hist_mask_image): gray_hist_mask_image = cv2.cvtColor(hist_mask_image, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(gray_hist_mask_image, 0, 255, 0) cont, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) return cont def draw_rect(frame): rows, cols, _ = frame.shape global total_rectangle, hand_rect_one_x, hand_rect_one_y, hand_rect_two_x, hand_rect_two_y hand_rect_one_x = np.array( [6 * rows / 20, 6 * rows / 20, 6 * rows / 20, 9 * rows / 20, 9 * rows / 20, 9 * rows / 20, 12 * rows / 20, 12 * rows / 20, 12 * rows / 20], dtype=np.uint32) hand_rect_one_y = np.array( [9 * cols / 20, 10 * cols / 20, 11 * cols / 20, 9 * cols / 20, 10 * cols / 20, 11 * cols / 20, 9 * cols / 20, 10 * cols / 20, 11 * cols / 20], dtype=np.uint32) hand_rect_two_x = hand_rect_one_x + 10 hand_rect_two_y = hand_rect_one_y + 10 for i in range(total_rectangle): cv2.rectangle(frame, (hand_rect_one_y[i], hand_rect_one_x[i]), (hand_rect_two_y[i], hand_rect_two_x[i]), (0, 255, 0), 1) return frame def hand_histogram(frame): global hand_rect_one_x, hand_rect_one_y hsv_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) roi = np.zeros([90, 10, 3], dtype=hsv_frame.dtype) for i in range(total_rectangle): roi[i * 10: i * 10 + 10, 0: 10] = hsv_frame[hand_rect_one_x[i]:hand_rect_one_x[i] + 10, hand_rect_one_y[i]:hand_rect_one_y[i] + 10] hand_hist = cv2.calcHist([roi], [0, 1], None, [180, 256], [0, 180, 0, 256]) return cv2.normalize(hand_hist, hand_hist, 0, 255, cv2.NORM_MINMAX) def hist_masking(frame, hist): hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) dst = cv2.calcBackProject([hsv], [0, 1], hist, [0, 180, 0, 256], 1) disc = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (31, 31)) cv2.filter2D(dst, -1, disc, dst) ret, thresh = cv2.threshold(dst, 150, 255, cv2.THRESH_BINARY) # thresh = cv2.dilate(thresh, None, iterations=5) thresh = cv2.merge((thresh, thresh, thresh)) return cv2.bitwise_and(frame, thresh) def centroid(max_contour): moment = cv2.moments(max_contour) if moment['m00'] != 0: cx = int(moment['m10'] / moment['m00']) cy = int(moment['m01'] / moment['m00']) return cx, cy else: return None def farthest_point(defects, contour, centroid): if defects is not None and centroid is not None: s = defects[:, 0][:, 0] cx, cy = centroid x = np.array(contour[s][:, 0][:, 0], dtype=np.float) y = np.array(contour[s][:, 0][:, 1], dtype=np.float) xp = cv2.pow(cv2.subtract(x, cx), 2) yp = cv2.pow(cv2.subtract(y, cy), 2) dist = cv2.sqrt(cv2.add(xp, yp)) dist_max_i = np.argmax(dist) if dist_max_i < len(s): farthest_defect = s[dist_max_i] farthest_point = tuple(contour[farthest_defect][0]) return farthest_point else: return None def draw_circles(frame, traverse_point): if traverse_point is not None: for i in range(len(traverse_point)): cv2.circle(frame, traverse_point[i], int(5 - (5 * i * 3) / 100), [0, 255, 255], -1) def manage_image_opr(frame, hand_hist): hist_mask_image = hist_masking(frame, hand_hist) hist_mask_image = cv2.erode(hist_mask_image, None, iterations=2) hist_mask_image = cv2.dilate(hist_mask_image, None, iterations=2) contour_list = contours(hist_mask_image) max_cont = max(contour_list, key=cv2.contourArea) cnt_centroid = centroid(max_cont) cv2.circle(frame, cnt_centroid, 5, [255, 0, 255], -1) if max_cont is not None: hull = cv2.convexHull(max_cont, returnPoints=False) defects = cv2.convexityDefects(max_cont, hull) far_point = farthest_point(defects, max_cont, cnt_centroid) print("Centroid : " + str(cnt_centroid) + ", farthest Point : " + str(far_point)) #usar farthest_point aqui para el mouse puntox=far_point[0]*(1920/640) if (far_point[1])<=235: puntoyf=(far_point[1]-(60*(1-((far_point[1]-60)/180))))*(1080/480) elif (far_point[1])>=245: puntoyf=(far_point[1]+(60*((far_point[1]-245)/175)))*(1080/480) else: puntoyf=(far_point[1])*(1080/480) pyautogui.moveTo(puntox,puntoyf) ####################################### cv2.circle(frame, far_point, 5, [0, 0, 255], -1) if len(traverse_point) < 20: traverse_point.append(far_point) else: traverse_point.pop(0) traverse_point.append(far_point) draw_circles(frame, traverse_point) def main(): global hand_hist is_hand_hist_created = False capture = cv2.VideoCapture(0) while capture.isOpened(): pressed_key = cv2.waitKey(1) _, frame = capture.read() frame = cv2.flip(frame, 1) if pressed_key & 0xFF == ord('z'): is_hand_hist_created = True hand_hist = hand_histogram(frame) if is_hand_hist_created: manage_image_opr(frame, hand_hist) else: frame = draw_rect(frame) cv2.imshow("Live Feed", rescale_frame(frame)) if pressed_key == 27: break cv2.destroyAllWindows() capture.release() if __name__ == '__main__': main()
[ "cv2.bitwise_and", "numpy.argmax", "cv2.rectangle", "cv2.normalize", "cv2.erode", "cv2.convexityDefects", "cv2.subtract", "cv2.filter2D", "cv2.dilate", "cv2.cvtColor", "cv2.calcBackProject", "cv2.destroyAllWindows", "cv2.resize", "cv2.circle", "cv2.waitKey", "cv2.calcHist", "cv2.convexHull", "cv2.flip", "cv2.merge", "cv2.add", "cv2.getStructuringElement", "cv2.threshold", "cv2.moments", "numpy.zeros", "cv2.VideoCapture", "numpy.array", "cv2.findContours", "pyautogui.moveTo" ]
[((364, 428), 'cv2.resize', 'cv2.resize', (['frame', '(width, height)'], {'interpolation': 'cv2.INTER_AREA'}), '(frame, (width, height), interpolation=cv2.INTER_AREA)\n', (374, 428), False, 'import cv2\n'), ((489, 538), 'cv2.cvtColor', 'cv2.cvtColor', (['hist_mask_image', 'cv2.COLOR_BGR2GRAY'], {}), '(hist_mask_image, cv2.COLOR_BGR2GRAY)\n', (501, 538), False, 'import cv2\n'), ((557, 603), 'cv2.threshold', 'cv2.threshold', (['gray_hist_mask_image', '(0)', '(255)', '(0)'], {}), '(gray_hist_mask_image, 0, 255, 0)\n', (570, 603), False, 'import cv2\n'), ((626, 690), 'cv2.findContours', 'cv2.findContours', (['thresh', 'cv2.RETR_TREE', 'cv2.CHAIN_APPROX_SIMPLE'], {}), '(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)\n', (642, 690), False, 'import cv2\n'), ((880, 1054), 'numpy.array', 'np.array', (['[6 * rows / 20, 6 * rows / 20, 6 * rows / 20, 9 * rows / 20, 9 * rows / 20,\n 9 * rows / 20, 12 * rows / 20, 12 * rows / 20, 12 * rows / 20]'], {'dtype': 'np.uint32'}), '([6 * rows / 20, 6 * rows / 20, 6 * rows / 20, 9 * rows / 20, 9 *\n rows / 20, 9 * rows / 20, 12 * rows / 20, 12 * rows / 20, 12 * rows / \n 20], dtype=np.uint32)\n', (888, 1054), True, 'import numpy as np\n'), ((1087, 1264), 'numpy.array', 'np.array', (['[9 * cols / 20, 10 * cols / 20, 11 * cols / 20, 9 * cols / 20, 10 * cols / \n 20, 11 * cols / 20, 9 * cols / 20, 10 * cols / 20, 11 * cols / 20]'], {'dtype': 'np.uint32'}), '([9 * cols / 20, 10 * cols / 20, 11 * cols / 20, 9 * cols / 20, 10 *\n cols / 20, 11 * cols / 20, 9 * cols / 20, 10 * cols / 20, 11 * cols / \n 20], dtype=np.uint32)\n', (1095, 1264), True, 'import numpy as np\n'), ((1680, 1718), 'cv2.cvtColor', 'cv2.cvtColor', (['frame', 'cv2.COLOR_BGR2HSV'], {}), '(frame, cv2.COLOR_BGR2HSV)\n', (1692, 1718), False, 'import cv2\n'), ((1729, 1773), 'numpy.zeros', 'np.zeros', (['[90, 10, 3]'], {'dtype': 'hsv_frame.dtype'}), '([90, 10, 3], dtype=hsv_frame.dtype)\n', (1737, 1773), True, 'import numpy as np\n'), ((2011, 2074), 'cv2.calcHist', 'cv2.calcHist', (['[roi]', '[0, 1]', 'None', '[180, 256]', '[0, 180, 0, 256]'], {}), '([roi], [0, 1], None, [180, 256], [0, 180, 0, 256])\n', (2023, 2074), False, 'import cv2\n'), ((2086, 2146), 'cv2.normalize', 'cv2.normalize', (['hand_hist', 'hand_hist', '(0)', '(255)', 'cv2.NORM_MINMAX'], {}), '(hand_hist, hand_hist, 0, 255, cv2.NORM_MINMAX)\n', (2099, 2146), False, 'import cv2\n'), ((2190, 2228), 'cv2.cvtColor', 'cv2.cvtColor', (['frame', 'cv2.COLOR_BGR2HSV'], {}), '(frame, cv2.COLOR_BGR2HSV)\n', (2202, 2228), False, 'import cv2\n'), ((2240, 2301), 'cv2.calcBackProject', 'cv2.calcBackProject', (['[hsv]', '[0, 1]', 'hist', '[0, 180, 0, 256]', '(1)'], {}), '([hsv], [0, 1], hist, [0, 180, 0, 256], 1)\n', (2259, 2301), False, 'import cv2\n'), ((2314, 2368), 'cv2.getStructuringElement', 'cv2.getStructuringElement', (['cv2.MORPH_ELLIPSE', '(31, 31)'], {}), '(cv2.MORPH_ELLIPSE, (31, 31))\n', (2339, 2368), False, 'import cv2\n'), ((2373, 2405), 'cv2.filter2D', 'cv2.filter2D', (['dst', '(-1)', 'disc', 'dst'], {}), '(dst, -1, disc, dst)\n', (2385, 2405), False, 'import cv2\n'), ((2425, 2472), 'cv2.threshold', 'cv2.threshold', (['dst', '(150)', '(255)', 'cv2.THRESH_BINARY'], {}), '(dst, 150, 255, cv2.THRESH_BINARY)\n', (2438, 2472), False, 'import cv2\n'), ((2542, 2577), 'cv2.merge', 'cv2.merge', (['(thresh, thresh, thresh)'], {}), '((thresh, thresh, thresh))\n', (2551, 2577), False, 'import cv2\n'), ((2590, 2620), 'cv2.bitwise_and', 'cv2.bitwise_and', (['frame', 'thresh'], {}), '(frame, thresh)\n', (2605, 2620), False, 'import cv2\n'), ((2663, 2687), 'cv2.moments', 'cv2.moments', (['max_contour'], {}), '(max_contour)\n', (2674, 2687), False, 'import cv2\n'), ((3867, 3913), 'cv2.erode', 'cv2.erode', (['hist_mask_image', 'None'], {'iterations': '(2)'}), '(hist_mask_image, None, iterations=2)\n', (3876, 3913), False, 'import cv2\n'), ((3936, 3983), 'cv2.dilate', 'cv2.dilate', (['hist_mask_image', 'None'], {'iterations': '(2)'}), '(hist_mask_image, None, iterations=2)\n', (3946, 3983), False, 'import cv2\n'), ((4127, 4180), 'cv2.circle', 'cv2.circle', (['frame', 'cnt_centroid', '(5)', '[255, 0, 255]', '(-1)'], {}), '(frame, cnt_centroid, 5, [255, 0, 255], -1)\n', (4137, 4180), False, 'import cv2\n'), ((5300, 5319), 'cv2.VideoCapture', 'cv2.VideoCapture', (['(0)'], {}), '(0)\n', (5316, 5319), False, 'import cv2\n'), ((5829, 5852), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (5850, 5852), False, 'import cv2\n'), ((1407, 1532), 'cv2.rectangle', 'cv2.rectangle', (['frame', '(hand_rect_one_y[i], hand_rect_one_x[i])', '(hand_rect_two_y[i], hand_rect_two_x[i])', '(0, 255, 0)', '(1)'], {}), '(frame, (hand_rect_one_y[i], hand_rect_one_x[i]), (\n hand_rect_two_y[i], hand_rect_two_x[i]), (0, 255, 0), 1)\n', (1420, 1532), False, 'import cv2\n'), ((3037, 3085), 'numpy.array', 'np.array', (['contour[s][:, 0][:, 0]'], {'dtype': 'np.float'}), '(contour[s][:, 0][:, 0], dtype=np.float)\n', (3045, 3085), True, 'import numpy as np\n'), ((3098, 3146), 'numpy.array', 'np.array', (['contour[s][:, 0][:, 1]'], {'dtype': 'np.float'}), '(contour[s][:, 0][:, 1], dtype=np.float)\n', (3106, 3146), True, 'import numpy as np\n'), ((3301, 3316), 'numpy.argmax', 'np.argmax', (['dist'], {}), '(dist)\n', (3310, 3316), True, 'import numpy as np\n'), ((4226, 4270), 'cv2.convexHull', 'cv2.convexHull', (['max_cont'], {'returnPoints': '(False)'}), '(max_cont, returnPoints=False)\n', (4240, 4270), False, 'import cv2\n'), ((4289, 4325), 'cv2.convexityDefects', 'cv2.convexityDefects', (['max_cont', 'hull'], {}), '(max_cont, hull)\n', (4309, 4325), False, 'import cv2\n'), ((4860, 4893), 'pyautogui.moveTo', 'pyautogui.moveTo', (['puntox', 'puntoyf'], {}), '(puntox, puntoyf)\n', (4876, 4893), False, 'import pyautogui\n'), ((4949, 4997), 'cv2.circle', 'cv2.circle', (['frame', 'far_point', '(5)', '[0, 0, 255]', '(-1)'], {}), '(frame, far_point, 5, [0, 0, 255], -1)\n', (4959, 4997), False, 'import cv2\n'), ((5373, 5387), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (5384, 5387), False, 'import cv2\n'), ((5438, 5456), 'cv2.flip', 'cv2.flip', (['frame', '(1)'], {}), '(frame, 1)\n', (5446, 5456), False, 'import cv2\n'), ((3169, 3188), 'cv2.subtract', 'cv2.subtract', (['x', 'cx'], {}), '(x, cx)\n', (3181, 3188), False, 'import cv2\n'), ((3214, 3233), 'cv2.subtract', 'cv2.subtract', (['y', 'cy'], {}), '(y, cy)\n', (3226, 3233), False, 'import cv2\n'), ((3262, 3277), 'cv2.add', 'cv2.add', (['xp', 'yp'], {}), '(xp, yp)\n', (3269, 3277), False, 'import cv2\n')]
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Softsign and SoftsignGrad.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.framework import constant_op from tensorflow.python.ops import gradient_checker from tensorflow.python.ops import nn_ops import tensorflow.python.ops.nn_grad # pylint: disable=unused-import from tensorflow.python.platform import test class SoftsignTest(test.TestCase): def _npSoftsign(self, np_features): return np_features / (1 + np.abs(np_features)) def _testSoftsign(self, np_features, use_gpu=False): np_softsign = self._npSoftsign(np_features) with self.cached_session(use_gpu=use_gpu): softsign = nn_ops.softsign(np_features) tf_softsign = self.evaluate(softsign) self.assertAllClose(np_softsign, tf_softsign) self.assertShapeEqual(np_softsign, softsign) def testNumbers(self): for t in [np.float, np.double]: self._testSoftsign( np.array([[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]]).astype(t), use_gpu=False) self._testSoftsign( np.array([[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]]).astype(t), use_gpu=True) def testGradient(self): with self.cached_session(): x = constant_op.constant( [-0.9, -0.7, -0.5, -0.3, -0.1, 0.1, 0.3, 0.5, 0.7, 0.9], shape=[2, 5], name="x") y = nn_ops.softsign(x, name="softsign") x_init = np.asarray( [[-0.9, -0.7, -0.5, -0.3, -0.1], [0.1, 0.3, 0.5, 0.7, 0.9]], dtype=np.float32, order="F") err = gradient_checker.compute_gradient_error( x, [2, 5], y, [2, 5], x_init_value=x_init) print("softsign (float) gradient err = ", err) self.assertLess(err, 1e-4) def testNoInts(self): with self.cached_session(): with self.assertRaisesRegexp( TypeError, "'features' has DataType int32 not in list of allowed values"): nn_ops.softsign(constant_op.constant(7)).eval() if __name__ == "__main__": test.main()
[ "tensorflow.python.platform.test.main", "tensorflow.python.ops.gradient_checker.compute_gradient_error", "numpy.abs", "numpy.asarray", "tensorflow.python.framework.constant_op.constant", "tensorflow.python.ops.nn_ops.softsign", "numpy.array" ]
[((2751, 2762), 'tensorflow.python.platform.test.main', 'test.main', ([], {}), '()\n', (2760, 2762), False, 'from tensorflow.python.platform import test\n'), ((1416, 1444), 'tensorflow.python.ops.nn_ops.softsign', 'nn_ops.softsign', (['np_features'], {}), '(np_features)\n', (1431, 1444), False, 'from tensorflow.python.ops import nn_ops\n'), ((1962, 2068), 'tensorflow.python.framework.constant_op.constant', 'constant_op.constant', (['[-0.9, -0.7, -0.5, -0.3, -0.1, 0.1, 0.3, 0.5, 0.7, 0.9]'], {'shape': '[2, 5]', 'name': '"""x"""'}), "([-0.9, -0.7, -0.5, -0.3, -0.1, 0.1, 0.3, 0.5, 0.7, 0.9\n ], shape=[2, 5], name='x')\n", (1982, 2068), False, 'from tensorflow.python.framework import constant_op\n'), ((2105, 2140), 'tensorflow.python.ops.nn_ops.softsign', 'nn_ops.softsign', (['x'], {'name': '"""softsign"""'}), "(x, name='softsign')\n", (2120, 2140), False, 'from tensorflow.python.ops import nn_ops\n'), ((2156, 2260), 'numpy.asarray', 'np.asarray', (['[[-0.9, -0.7, -0.5, -0.3, -0.1], [0.1, 0.3, 0.5, 0.7, 0.9]]'], {'dtype': 'np.float32', 'order': '"""F"""'}), "([[-0.9, -0.7, -0.5, -0.3, -0.1], [0.1, 0.3, 0.5, 0.7, 0.9]],\n dtype=np.float32, order='F')\n", (2166, 2260), True, 'import numpy as np\n'), ((2300, 2387), 'tensorflow.python.ops.gradient_checker.compute_gradient_error', 'gradient_checker.compute_gradient_error', (['x', '[2, 5]', 'y', '[2, 5]'], {'x_init_value': 'x_init'}), '(x, [2, 5], y, [2, 5], x_init_value=\n x_init)\n', (2339, 2387), False, 'from tensorflow.python.ops import gradient_checker\n'), ((1227, 1246), 'numpy.abs', 'np.abs', (['np_features'], {}), '(np_features)\n', (1233, 1246), True, 'import numpy as np\n'), ((1686, 1735), 'numpy.array', 'np.array', (['[[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]]'], {}), '([[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]])\n', (1694, 1735), True, 'import numpy as np\n'), ((1808, 1857), 'numpy.array', 'np.array', (['[[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]]'], {}), '([[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]])\n', (1816, 1857), True, 'import numpy as np\n'), ((2688, 2711), 'tensorflow.python.framework.constant_op.constant', 'constant_op.constant', (['(7)'], {}), '(7)\n', (2708, 2711), False, 'from tensorflow.python.framework import constant_op\n')]
#import cv2 import numpy as np #import os #import tensorflow as tf #from tensorflow import keras def calib_input(iter): X = np.load("features.npy") / 255.0 images = X[:100] return {"conv2d_input": images}
[ "numpy.load" ]
[((127, 150), 'numpy.load', 'np.load', (['"""features.npy"""'], {}), "('features.npy')\n", (134, 150), True, 'import numpy as np\n')]
import os import time import torch import numpy as np import utils import logging from options import * from model.hidden import Hidden from average_meter import AverageMeter def train(model: Hidden, device: torch.device, hidden_config: HiDDenConfiguration, train_options: TrainingOptions, this_run_folder: str, tb_logger): """ Trains the HiDDeN model :param model: The model :param device: torch.device object, usually this is GPU (if avaliable), otherwise CPU. :param hidden_config: The network configuration :param train_options: The training settings :param this_run_folder: The parent folder for the current training run to store training artifacts/results/logs. :param tb_logger: TensorBoardLogger object which is a thin wrapper for TensorboardX logger. Pass None to disable TensorboardX logging :return: """ train_data, val_data = utils.get_data_loaders(hidden_config, train_options) file_count = len(train_data.dataset) if file_count % train_options.batch_size == 0: steps_in_epoch = file_count // train_options.batch_size else: steps_in_epoch = file_count // train_options.batch_size + 1 print_each = 10 images_to_save = 8 saved_images_size = (512, 512) for epoch in range(train_options.start_epoch, train_options.number_of_epochs + 1): logging.info('\nStarting epoch {}/{}'.format(epoch, train_options.number_of_epochs)) logging.info('Batch size = {}\nSteps in epoch = {}'.format(train_options.batch_size, steps_in_epoch)) losses_accu = {} epoch_start = time.time() step = 1 for image, _ in train_data: image = image.to(device) message = torch.Tensor(np.random.choice([0, 1], (image.shape[0], hidden_config.message_length))).to(device) losses, _ = model.train_on_batch([image, message]) if not losses_accu: # dict is empty, initialize for name in losses: # losses_accu[name] = [] losses_accu[name] = AverageMeter() for name, loss in losses.items(): losses_accu[name].update(loss) if step % print_each == 0 or step == steps_in_epoch: logging.info( 'Epoch: {}/{} Step: {}/{}'.format(epoch, train_options.number_of_epochs, step, steps_in_epoch)) utils.log_progress(losses_accu) logging.info('-' * 40) step += 1 train_duration = time.time() - epoch_start logging.info('Epoch {} training duration {:.2f} sec'.format(epoch, train_duration)) logging.info('-' * 40) utils.write_losses(os.path.join(this_run_folder, 'train.csv'), losses_accu, epoch, train_duration) if tb_logger is not None: tb_logger.save_losses(losses_accu, epoch) tb_logger.save_grads(epoch) tb_logger.save_tensors(epoch) first_iteration = True logging.info('Running validation for epoch {}/{}'.format(epoch, train_options.number_of_epochs)) for image, _ in val_data: image = image.to(device) message = torch.Tensor(np.random.choice([0, 1], (image.shape[0], hidden_config.message_length))).to(device) losses, (encoded_images, noised_images, decoded_messages) = model.validate_on_batch([image, message]) if not losses_accu: # dict is empty, initialize for name in losses: losses_accu[name] = AverageMeter() for name, loss in losses.items(): losses_accu[name].update(loss) if first_iteration: if hidden_config.enable_fp16: image = image.float() encoded_images = encoded_images.float() utils.save_images(image.cpu()[:images_to_save, :, :, :], encoded_images[:images_to_save, :, :, :].cpu(), epoch, os.path.join(this_run_folder, 'images'), resize_to=saved_images_size) first_iteration = False utils.log_progress(losses_accu) logging.info('-' * 40) utils.save_checkpoint(model, train_options.experiment_name, epoch, os.path.join(this_run_folder, 'checkpoints')) utils.write_losses(os.path.join(this_run_folder, 'validation.csv'), losses_accu, epoch, time.time() - epoch_start) # if epoch % 10 == 0: # sleep_sec = 5 * 60 # logging.info(f'\nSleeping for {sleep_sec} seconds to cool down the GPU\n') # time.sleep(sleep_sec)
[ "utils.get_data_loaders", "average_meter.AverageMeter", "time.time", "logging.info", "numpy.random.choice", "os.path.join", "utils.log_progress" ]
[((952, 1004), 'utils.get_data_loaders', 'utils.get_data_loaders', (['hidden_config', 'train_options'], {}), '(hidden_config, train_options)\n', (974, 1004), False, 'import utils\n'), ((1656, 1667), 'time.time', 'time.time', ([], {}), '()\n', (1665, 1667), False, 'import time\n'), ((2704, 2726), 'logging.info', 'logging.info', (["('-' * 40)"], {}), "('-' * 40)\n", (2716, 2726), False, 'import logging\n'), ((4221, 4252), 'utils.log_progress', 'utils.log_progress', (['losses_accu'], {}), '(losses_accu)\n', (4239, 4252), False, 'import utils\n'), ((4261, 4283), 'logging.info', 'logging.info', (["('-' * 40)"], {}), "('-' * 40)\n", (4273, 4283), False, 'import logging\n'), ((2578, 2589), 'time.time', 'time.time', ([], {}), '()\n', (2587, 2589), False, 'import time\n'), ((2754, 2796), 'os.path.join', 'os.path.join', (['this_run_folder', '"""train.csv"""'], {}), "(this_run_folder, 'train.csv')\n", (2766, 2796), False, 'import os\n'), ((4359, 4403), 'os.path.join', 'os.path.join', (['this_run_folder', '"""checkpoints"""'], {}), "(this_run_folder, 'checkpoints')\n", (4371, 4403), False, 'import os\n'), ((4432, 4479), 'os.path.join', 'os.path.join', (['this_run_folder', '"""validation.csv"""'], {}), "(this_run_folder, 'validation.csv')\n", (4444, 4479), False, 'import os\n'), ((2459, 2490), 'utils.log_progress', 'utils.log_progress', (['losses_accu'], {}), '(losses_accu)\n', (2477, 2490), False, 'import utils\n'), ((2507, 2529), 'logging.info', 'logging.info', (["('-' * 40)"], {}), "('-' * 40)\n", (2519, 2529), False, 'import logging\n'), ((4528, 4539), 'time.time', 'time.time', ([], {}), '()\n', (4537, 4539), False, 'import time\n'), ((2123, 2137), 'average_meter.AverageMeter', 'AverageMeter', ([], {}), '()\n', (2135, 2137), False, 'from average_meter import AverageMeter\n'), ((3584, 3598), 'average_meter.AverageMeter', 'AverageMeter', ([], {}), '()\n', (3596, 3598), False, 'from average_meter import AverageMeter\n'), ((4102, 4141), 'os.path.join', 'os.path.join', (['this_run_folder', '"""images"""'], {}), "(this_run_folder, 'images')\n", (4114, 4141), False, 'import os\n'), ((1793, 1865), 'numpy.random.choice', 'np.random.choice', (['[0, 1]', '(image.shape[0], hidden_config.message_length)'], {}), '([0, 1], (image.shape[0], hidden_config.message_length))\n', (1809, 1865), True, 'import numpy as np\n'), ((3248, 3320), 'numpy.random.choice', 'np.random.choice', (['[0, 1]', '(image.shape[0], hidden_config.message_length)'], {}), '([0, 1], (image.shape[0], hidden_config.message_length))\n', (3264, 3320), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ Created on Wed Nov 14 14:28:11 2018 @author: <NAME> """ import numpy as np import numpy.random as rd import argparse from collections import deque import pickle import os from ddpg import Actor, Critic from make_env import make_env import torch dtype = torch.float device = torch.device("cuda") def ornsteinUhlenbeck(x_prev, mu, sigma = 0.3, theta = 0.15, dt = 0.01): mu = np.zeros_like(x_prev) n = np.size(x_prev) x = x_prev + theta*(mu - x_prev)*dt + sigma*np.sqrt(dt)*rd.normal(0, 1, n) return x def sample(buffer, N): if len(buffer) <= N: return buffer else: idx = rd.choice(len(buffer), N, replace = False) sample = [] for i in range(N): sample.append(buffer[idx[i]]) return sample def episode(n_episodes, buffer_size, N, learn, render, x0, mu, sigma, theta, dt, alpha, gamma, tau, init_actors = None, init_critics = None): actors, critics = [], [] for i in range(env.n): if init_actors is not None: actors = init_actors critics = init_critics else: actors.append(Actor(env.observation_space[i].shape[0], env.action_space[i].n)) critics.append(Critic(env.observation_space[i].shape[0], env.action_space[i].n, actors[i])) replay_buffer = deque() evolution = [] for ep in range(n_episodes): noise = x0 state = env.reset() ep_rewards = np.zeros(env.n) step_count = 0 done = np.array([False] * 4) while (not any(done) and step_count < 1000): if render: env.render() ###Choose an action and go to next state actions = [] for i in range(env.n): noise = ornsteinUhlenbeck(noise, mu, sigma, theta, dt) action = actors[i].forwardPass(state[i]).detach().numpy() actions.append(np.clip(action + noise, -2, 2)) next_state, rewards, done, _ = env.step(actions) rewards = np.asarray(rewards) - 500*np.asarray(done) ep_rewards += rewards if learn: ###Store in the replay buffer replay_buffer.append(np.array([state, actions, rewards, next_state])) if len(replay_buffer)>buffer_size: replay_buffer.popleft() ###Sample a minibatch from the buffer minibatch = sample(replay_buffer, N) ###Learn from this minibatch for i in range(env.n): critics[i].learn(minibatch, i) actors[i].learn(minibatch, i) ###Prepare for next step step_count +=1 state = next_state ep_rewards /= step_count print("Episode " + str(ep) + " : " + str(ep_rewards) + " in " + str(step_count) + " steps") evolution.append((ep_rewards, step_count)) return actors, critics, evolution if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--env', default='simple_tag_guided', type=str) parser.add_argument('--n_episodes', default=5000, type=int) parser.add_argument ('--learn', default=True, type=bool) parser.add_argument ('--render', default=False, type=bool) parser.add_argument ('--buffer_size', default=1000, type=int) parser.add_argument ('--minibatch_size', default=32, type=int) parser.add_argument ('--alpha', default=0.001, type=float) parser.add_argument ('--gamma', default=0.9, type=float) parser.add_argument ('--tau', default=0.01, type=float) parser.add_argument ('--ou_x0', default=0, type=float) parser.add_argument ('--ou_mu', default=0, type=float) parser.add_argument ('--ou_sigma', default=0.3, type=float) parser.add_argument ('--ou_theta', default=0.15, type=float) parser.add_argument ('--ou_dt', default=0.01, type=float) args = parser.parse_args() env = make_env(args.env) actors, critics, evolution = episode(n_episodes = args.n_episodes, buffer_size = args.buffer_size, N = args.minibatch_size, learn = args.learn, render = args.render, x0 = args.ou_x0 * np.ones(env.action_space[0].n), mu = args.ou_mu * np.ones(env.action_space[0].n), sigma = args.ou_sigma, theta = args.ou_theta, dt = args.ou_dt, alpha = args.alpha, gamma = args.gamma, tau = args.tau) pickle.dump(actors, open('actors','wb')) pickle.dump(critics, open('critics','wb')) pickle.dump(evolution, open('evolution','wb')) print(os.getcwd())
[ "numpy.size", "numpy.zeros_like", "make_env.make_env", "argparse.ArgumentParser", "os.getcwd", "numpy.asarray", "numpy.zeros", "numpy.ones", "numpy.clip", "numpy.array", "numpy.random.normal", "torch.device", "ddpg.Critic", "ddpg.Actor", "collections.deque", "numpy.sqrt" ]
[((307, 327), 'torch.device', 'torch.device', (['"""cuda"""'], {}), "('cuda')\n", (319, 327), False, 'import torch\n'), ((443, 464), 'numpy.zeros_like', 'np.zeros_like', (['x_prev'], {}), '(x_prev)\n', (456, 464), True, 'import numpy as np\n'), ((477, 492), 'numpy.size', 'np.size', (['x_prev'], {}), '(x_prev)\n', (484, 492), True, 'import numpy as np\n'), ((1429, 1436), 'collections.deque', 'deque', ([], {}), '()\n', (1434, 1436), False, 'from collections import deque\n'), ((3270, 3295), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (3293, 3295), False, 'import argparse\n'), ((4229, 4247), 'make_env.make_env', 'make_env', (['args.env'], {}), '(args.env)\n', (4237, 4247), False, 'from make_env import make_env\n'), ((1589, 1604), 'numpy.zeros', 'np.zeros', (['env.n'], {}), '(env.n)\n', (1597, 1604), True, 'import numpy as np\n'), ((1643, 1664), 'numpy.array', 'np.array', (['([False] * 4)'], {}), '([False] * 4)\n', (1651, 1664), True, 'import numpy as np\n'), ((4909, 4920), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (4918, 4920), False, 'import os\n'), ((557, 575), 'numpy.random.normal', 'rd.normal', (['(0)', '(1)', 'n'], {}), '(0, 1, n)\n', (566, 575), True, 'import numpy.random as rd\n'), ((545, 556), 'numpy.sqrt', 'np.sqrt', (['dt'], {}), '(dt)\n', (552, 556), True, 'import numpy as np\n'), ((1235, 1298), 'ddpg.Actor', 'Actor', (['env.observation_space[i].shape[0]', 'env.action_space[i].n'], {}), '(env.observation_space[i].shape[0], env.action_space[i].n)\n', (1240, 1298), False, 'from ddpg import Actor, Critic\n'), ((1327, 1402), 'ddpg.Critic', 'Critic', (['env.observation_space[i].shape[0]', 'env.action_space[i].n', 'actors[i]'], {}), '(env.observation_space[i].shape[0], env.action_space[i].n, actors[i])\n', (1333, 1402), False, 'from ddpg import Actor, Critic\n'), ((2196, 2215), 'numpy.asarray', 'np.asarray', (['rewards'], {}), '(rewards)\n', (2206, 2215), True, 'import numpy as np\n'), ((4514, 4544), 'numpy.ones', 'np.ones', (['env.action_space[0].n'], {}), '(env.action_space[0].n)\n', (4521, 4544), True, 'import numpy as np\n'), ((4576, 4606), 'numpy.ones', 'np.ones', (['env.action_space[0].n'], {}), '(env.action_space[0].n)\n', (4583, 4606), True, 'import numpy as np\n'), ((2081, 2111), 'numpy.clip', 'np.clip', (['(action + noise)', '(-2)', '(2)'], {}), '(action + noise, -2, 2)\n', (2088, 2111), True, 'import numpy as np\n'), ((2222, 2238), 'numpy.asarray', 'np.asarray', (['done'], {}), '(done)\n', (2232, 2238), True, 'import numpy as np\n'), ((2391, 2438), 'numpy.array', 'np.array', (['[state, actions, rewards, next_state]'], {}), '([state, actions, rewards, next_state])\n', (2399, 2438), True, 'import numpy as np\n')]
import numpy as np from yaml import safe_load import pandas as pd import glob from cricscraper.cricinfo import CricInfo from cricscraper.matchinfo import MatchInfo class CricSheet: innings_name = ["1st innings", "2nd innings", "3rd innings", "4th innings"] def __init__(self, files=None, folder=None): if folder: self.files = glob.glob("{}/*.yaml".format(folder)) else: self.files = files self.dataFrame = pd.DataFrame() self.__parser() @staticmethod def __get_fielders(wicket): if wicket != 0: try: return ", ".join(wicket.get('fielders')) except: return None return None def __parser(self): ordered_columns = ['match id', 'inning', 'delivery', 'over', 'batsman', 'non striker', 'bowler', 'runs off bat', 'extras', 'total', 'extra kind', 'wicket kind', 'player out', 'fielders', 'team1', 'team2', 'outcome', 'winner', 'by', 'win amount', 'player of match','toss winner', 'toss decision', 'match type', 'venue', 'city', 'gender', 'umpire1','umpire2'] for filename in self.files: with open(filename) as f_input: data = safe_load(f_input) innings = data['innings'] for i in range(len(innings)): dict_innings = {} try: inning = innings[i][CricSheet.innings_name[i]]['deliveries'] except: continue dict_innings["inning"] = np.ones(len(inning), dtype=int) * (i+1) dict_innings['delivery'] = [delivery for ball in inning for delivery in ball] dict_innings['batsman'] = [list(ball.values())[0].get("batsman") for ball in inning] dict_innings['non striker'] = [list(ball.values())[0].get("non_striker") for ball in inning] dict_innings['bowler'] = [list(ball.values())[0].get("bowler") for ball in inning] dict_innings["runs"] = [list(ball.values())[0].get('runs') for ball in inning] dict_innings["wicket"] = [list(ball.values())[0].get('wicket', 0) for ball in inning] dict_innings['extra kind1'] = [list(ball.values())[0].get('extras', 0) for ball in inning] frame = pd.DataFrame(dict_innings) dict_innings['runs off bat'] = frame['runs'].apply(lambda x: x.get('batsman')) dict_innings['extras'] = frame['runs'].apply(lambda x: x.get('extras')) dict_innings['total'] = frame['runs'].apply(lambda x: x.get('total')).cumsum() dict_innings['extra kind'] = frame['extra kind1'].apply(lambda x: next(iter(x.keys())) if x != 0 else None) dict_innings['over'] = frame['delivery'].apply(lambda x: np.ceil(x)) def fn(x): try: return x.get('kind') if x != 0 else None except: return None def fn1(x): try: return x.get('player_out') if x != 0 else None except: return None dict_innings['wicket kind'] = frame.wicket.apply(fn) dict_innings['player out'] = frame.wicket.apply(fn1) dict_innings['fielders'] = frame.wicket.apply(CricSheet.__get_fielders) # get match info from Info class match_info = MatchInfo(data["info"]) assign_info = match_info.dict_info() assign_info['match id'] = int(filename.split('.')[0].split('/')[-1]) frame = pd.DataFrame(dict_innings).assign(**assign_info) frame.drop(["runs", "wicket", "extra kind1"], axis=1, inplace=True) self.dataFrame = pd.concat([self.dataFrame, frame]) self.dataFrame.reset_index(inplace=True, drop=True) self.dataFrame = self.dataFrame[ordered_columns] def view(self): ''' Returns DataFrame. DataFrame can be used directly for required purposes. ''' return self.dataFrame def save(self, filename="output"): ''' Saves the converted csv file. Parameter: filename (string): name of the output csv file optional: True default: "output.csv" ''' if filename.endswith(".csv"): filename = filename.replace('.csv', '') filename += ".csv" print("File saved - {}".format(filename)) return self.dataFrame.to_csv(filename) def get_more_info(self): '''Returns dictionary of CricInfo object''' data = {} for file in self.files: match_id = int(file.split('.')[0].split('/')[-1]) data[str(match_id)] = CricInfo(match_id) return data
[ "pandas.DataFrame", "cricscraper.matchinfo.MatchInfo", "numpy.ceil", "cricscraper.cricinfo.CricInfo", "yaml.safe_load", "pandas.concat" ]
[((429, 443), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (441, 443), True, 'import pandas as pd\n'), ((4120, 4138), 'cricscraper.cricinfo.CricInfo', 'CricInfo', (['match_id'], {}), '(match_id)\n', (4128, 4138), False, 'from cricscraper.cricinfo import CricInfo\n'), ((1086, 1104), 'yaml.safe_load', 'safe_load', (['f_input'], {}), '(f_input)\n', (1095, 1104), False, 'from yaml import safe_load\n'), ((2014, 2040), 'pandas.DataFrame', 'pd.DataFrame', (['dict_innings'], {}), '(dict_innings)\n', (2026, 2040), True, 'import pandas as pd\n'), ((2962, 2985), 'cricscraper.matchinfo.MatchInfo', 'MatchInfo', (["data['info']"], {}), "(data['info'])\n", (2971, 2985), False, 'from cricscraper.matchinfo import MatchInfo\n'), ((3267, 3301), 'pandas.concat', 'pd.concat', (['[self.dataFrame, frame]'], {}), '([self.dataFrame, frame])\n', (3276, 3301), True, 'import pandas as pd\n'), ((2461, 2471), 'numpy.ceil', 'np.ceil', (['x'], {}), '(x)\n', (2468, 2471), True, 'import numpy as np\n'), ((3121, 3147), 'pandas.DataFrame', 'pd.DataFrame', (['dict_innings'], {}), '(dict_innings)\n', (3133, 3147), True, 'import pandas as pd\n')]
# Copyright (C) 2018-2021 Intel Corporation # SPDX-License-Identifier: Apache-2.0 import math import numpy as np from openvino.tools.mo.ops.ONNXResize10 import ONNXResize10 from openvino.tools.mo.ops.upsample import UpsampleOp from openvino.tools.mo.front.extractor import FrontExtractorOp from openvino.tools.mo.front.onnx.extractors.utils import onnx_attr, get_onnx_opset_version from openvino.tools.mo.utils.error import Error class UpsampleFrontExtractor(FrontExtractorOp): op = 'Upsample' enabled = True @classmethod def extract(cls, node): onnx_opset_version = get_onnx_opset_version(node) if onnx_opset_version is not None and onnx_opset_version >= 9: mode = onnx_attr(node, 'mode', 's', default='nearest', dst_type=lambda x: x.decode()) ONNXResize10.update_node_stat(node, {'mode': mode}) else: mode = onnx_attr(node, 'mode', 's', default='nearest', dst_type=lambda x: x.decode()) scales = onnx_attr(node, 'scales', 'floats', dst_type=lambda x: np.array(x, dtype=np.float32)) width_scale = onnx_attr(node, 'width_scale', 'f') height_scale = onnx_attr(node, 'height_scale', 'f') supported_modes = ['nearest', 'linear'] if mode not in supported_modes: raise Error( 'Error decoding Upsample node {}, mode = {} is not in the list of supported modes {}.', node.name, mode, supported_modes ) if scales is not None: if scales.shape != (4,): raise Error( 'Upsample scales attribute is wrong for node {}. Only 4D scales are supported.', node.name ) if math.fabs(scales[0] - 1) > 1e-5 or math.fabs(scales[1] - 1) > 1e-5: raise Error( 'Upsampling of batch and feature dimensions is not supported for node {}.', node.name ) height_scale = scales[2] width_scale = scales[3] if (width_scale is None or height_scale is None) and len(node.in_nodes()) != 2: raise Error( 'One/both of widths_scale = {} and height_scale = {} is not defined for Upsample node {}.', width_scale, height_scale, node.name ) UpsampleOp.update_node_stat(node, {'mode': mode, 'height_scale': height_scale, 'width_scale': width_scale}) return cls.enabled
[ "openvino.tools.mo.front.onnx.extractors.utils.onnx_attr", "openvino.tools.mo.front.onnx.extractors.utils.get_onnx_opset_version", "math.fabs", "openvino.tools.mo.ops.upsample.UpsampleOp.update_node_stat", "openvino.tools.mo.utils.error.Error", "numpy.array", "openvino.tools.mo.ops.ONNXResize10.ONNXResize10.update_node_stat" ]
[((597, 625), 'openvino.tools.mo.front.onnx.extractors.utils.get_onnx_opset_version', 'get_onnx_opset_version', (['node'], {}), '(node)\n', (619, 625), False, 'from openvino.tools.mo.front.onnx.extractors.utils import onnx_attr, get_onnx_opset_version\n'), ((807, 858), 'openvino.tools.mo.ops.ONNXResize10.ONNXResize10.update_node_stat', 'ONNXResize10.update_node_stat', (['node', "{'mode': mode}"], {}), "(node, {'mode': mode})\n", (836, 858), False, 'from openvino.tools.mo.ops.ONNXResize10 import ONNXResize10\n'), ((1104, 1139), 'openvino.tools.mo.front.onnx.extractors.utils.onnx_attr', 'onnx_attr', (['node', '"""width_scale"""', '"""f"""'], {}), "(node, 'width_scale', 'f')\n", (1113, 1139), False, 'from openvino.tools.mo.front.onnx.extractors.utils import onnx_attr, get_onnx_opset_version\n'), ((1167, 1203), 'openvino.tools.mo.front.onnx.extractors.utils.onnx_attr', 'onnx_attr', (['node', '"""height_scale"""', '"""f"""'], {}), "(node, 'height_scale', 'f')\n", (1176, 1203), False, 'from openvino.tools.mo.front.onnx.extractors.utils import onnx_attr, get_onnx_opset_version\n'), ((2539, 2650), 'openvino.tools.mo.ops.upsample.UpsampleOp.update_node_stat', 'UpsampleOp.update_node_stat', (['node', "{'mode': mode, 'height_scale': height_scale, 'width_scale': width_scale}"], {}), "(node, {'mode': mode, 'height_scale':\n height_scale, 'width_scale': width_scale})\n", (2566, 2650), False, 'from openvino.tools.mo.ops.upsample import UpsampleOp\n'), ((1323, 1460), 'openvino.tools.mo.utils.error.Error', 'Error', (['"""Error decoding Upsample node {}, mode = {} is not in the list of supported modes {}."""', 'node.name', 'mode', 'supported_modes'], {}), "(\n 'Error decoding Upsample node {}, mode = {} is not in the list of supported modes {}.'\n , node.name, mode, supported_modes)\n", (1328, 1460), False, 'from openvino.tools.mo.utils.error import Error\n'), ((2292, 2437), 'openvino.tools.mo.utils.error.Error', 'Error', (['"""One/both of widths_scale = {} and height_scale = {} is not defined for Upsample node {}."""', 'width_scale', 'height_scale', 'node.name'], {}), "(\n 'One/both of widths_scale = {} and height_scale = {} is not defined for Upsample node {}.'\n , width_scale, height_scale, node.name)\n", (2297, 2437), False, 'from openvino.tools.mo.utils.error import Error\n'), ((1652, 1759), 'openvino.tools.mo.utils.error.Error', 'Error', (['"""Upsample scales attribute is wrong for node {}. Only 4D scales are supported."""', 'node.name'], {}), "(\n 'Upsample scales attribute is wrong for node {}. Only 4D scales are supported.'\n , node.name)\n", (1657, 1759), False, 'from openvino.tools.mo.utils.error import Error\n'), ((1933, 2034), 'openvino.tools.mo.utils.error.Error', 'Error', (['"""Upsampling of batch and feature dimensions is not supported for node {}."""', 'node.name'], {}), "(\n 'Upsampling of batch and feature dimensions is not supported for node {}.',\n node.name)\n", (1938, 2034), False, 'from openvino.tools.mo.utils.error import Error\n'), ((1047, 1076), 'numpy.array', 'np.array', (['x'], {'dtype': 'np.float32'}), '(x, dtype=np.float32)\n', (1055, 1076), True, 'import numpy as np\n'), ((1839, 1863), 'math.fabs', 'math.fabs', (['(scales[0] - 1)'], {}), '(scales[0] - 1)\n', (1848, 1863), False, 'import math\n'), ((1874, 1898), 'math.fabs', 'math.fabs', (['(scales[1] - 1)'], {}), '(scales[1] - 1)\n', (1883, 1898), False, 'import math\n')]
# encoding: utf-8 from nose.tools import * import numpy as np from cmpy.inference import standardize_data from cmpy import machines from ..canonical import tmatrix from ..counts import path_counts, out_arrays def test_path_counts1(): # Test without state_path m = machines.Even() delta, nodes, symbols = tmatrix(m) prng = np.random.RandomState() prng.seed(0) d = m.symbols(20, prng=prng) d = standardize_data(d) counts, final, states = path_counts(delta, d) counts_ = [[[4, 8], [0, 8]], [[0, 4], [1, 4]]] assert_equal(counts.tolist(), counts_) final_ = [0, -1] assert_equal(final.tolist(), final_) assert_equal(states, None) def test_path_counts2(): # Test with node_path m = machines.Even() delta, nodes, symbols = tmatrix(m) prng = np.random.RandomState() prng.seed(0) d = m.symbols(20, prng=prng) d = standardize_data(d) counts, final, states = path_counts(delta, d, node_path=True) counts_ = [[[4, 8], [0, 8]], [[0, 4], [1, 4]]] assert_equal(counts.tolist(), counts_) final_ = [0, -1] assert_equal(final.tolist(), final_) states_ = [[0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0], [1, 0, 1, 0, 1, 0, 1, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]] assert_equal(states.tolist(), states_) def test_path_counts3(): # Test with node_path and preallocated arrays m = machines.Even() delta, nodes, symbols = tmatrix(m) prng = np.random.RandomState() prng.seed(0) d = m.symbols(20, prng=prng) d = standardize_data(d) counts, final, states = out_arrays(2, 2, 20, node_path=True) path_counts(delta, d, node_path=True, out_arrays=(counts, final, states)) counts_ = [[[4, 8], [0, 8]], [[0, 4], [1, 4]]] assert_equal(counts.tolist(), counts_) final_ = [0, -1] assert_equal(final.tolist(), final_) states_ = [[0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0], [1, 0, 1, 0, 1, 0, 1, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]] assert_equal(states.tolist(), states_)
[ "cmpy.inference.standardize_data", "numpy.random.RandomState", "cmpy.machines.Even" ]
[((277, 292), 'cmpy.machines.Even', 'machines.Even', ([], {}), '()\n', (290, 292), False, 'from cmpy import machines\n'), ((344, 367), 'numpy.random.RandomState', 'np.random.RandomState', ([], {}), '()\n', (365, 367), True, 'import numpy as np\n'), ((426, 445), 'cmpy.inference.standardize_data', 'standardize_data', (['d'], {}), '(d)\n', (442, 445), False, 'from cmpy.inference import standardize_data\n'), ((747, 762), 'cmpy.machines.Even', 'machines.Even', ([], {}), '()\n', (760, 762), False, 'from cmpy import machines\n'), ((814, 837), 'numpy.random.RandomState', 'np.random.RandomState', ([], {}), '()\n', (835, 837), True, 'import numpy as np\n'), ((896, 915), 'cmpy.inference.standardize_data', 'standardize_data', (['d'], {}), '(d)\n', (912, 915), False, 'from cmpy.inference import standardize_data\n'), ((1430, 1445), 'cmpy.machines.Even', 'machines.Even', ([], {}), '()\n', (1443, 1445), False, 'from cmpy import machines\n'), ((1497, 1520), 'numpy.random.RandomState', 'np.random.RandomState', ([], {}), '()\n', (1518, 1520), True, 'import numpy as np\n'), ((1579, 1598), 'cmpy.inference.standardize_data', 'standardize_data', (['d'], {}), '(d)\n', (1595, 1598), False, 'from cmpy.inference import standardize_data\n')]
import sys import gurobipy import math import numpy as np import time # Lies die Lösungsdatei ein und gib eine Liste der Mittelpunkte zurück # solutionFilePath = Pfad zur Lösungsdatei (string) # n = Dimension der Kugel (int, >= 1) def readSolution(solutionFilePath, n=3): solution = [] try: # Öffne die Lösungsdatei und lies die Lösung ein with open(solutionFilePath) as solutionFile: # Lies die Lösungsdatei zeilenweise, # konvertiere jede Zeile zu einem Koordinatentupel # und speichere die Koordinatentupel in der Liste solution ab for line in solutionFile: entries = line.split(";") try: solution.append(tuple(entries[i] for i in range(n))) except: print(f"Ungültige Zeile: {line}") except: print(f"Konnte die Datei {solutionFilePath} nicht öffnen.") sys.exit(-1) return solution # Überprüfe die übergebene Liste von Mittelpunkten, # ob die dort zentrierten Kappen die Sphäre vollständig überdecken # solution = Liste der Mittelpunkte der Kappen (List[tuple(n)]) # alpha = Öffnungswinkel der Kappen (float, >= 0, <= 360) # n = Dimension der Kugel (int, >= 1) def checkSolution(solution, alpha, n=3, printing=True): # Erzeuge ein Gurobi-Modell um zu überprüfen, # ob die Überdeckung vollständig ist # (Annahme: die Kappen sind "offen") model = gurobipy.Model() # Deaktiviere die Gurobi-Ausgabe model.setParam("OutputFlag", 0) # Aktiviere den nicht-konvexen Löser model.setParam("NonConvex", 2) # Erzeuge die Variablen und Nebenbedingungen # Die y-Variablen kodieren den gesuchten unüberdeckten Punkt y = {} for i in range(n): y[i] = model.addVar( lb=-gurobipy.GRB.INFINITY, ub=gurobipy.GRB.INFINITY, vtype=gurobipy.GRB.CONTINUOUS, name=f"y{i}", ) # Der Punkt muss auf der Sphäre liegen, also eine 2-Norm von Wert 1 haben. model.addQConstr(gurobipy.quicksum(y[i] * y[i] for i in range(n)) == 1, "Norm") # Der Punkt darf von keiner Kappe in der übergebenen Lösung überdeckt werden for j in range(len(solution)): x = solution[j] model.addConstr( gurobipy.quicksum(x[i] * y[i] for i in range(n)) <= math.cos((0.5 * alpha) / 180 * math.pi), f"Angle{j}", ) # Schreibe zum Debuggen eine LP-Datei heraus # model.write("Lösung.lp") # Löse das Modell und entscheide an Hand des Zulässigkeitsstatus, # ob die Überdeckung vollständig model.optimize() if model.status == 2: if printing: print( "Die Überdeckung ist nicht vollständig.\nDer folgende Punkt ist nicht überdeckt:" ) arr = np.array([0.0, 0.0, 0.0]) for i in range(n): if printing: print(f"y{i} = ", y[i].X) arr[i] = y[i].X return arr else: print("Die Überdeckung ist vollständig.") if __name__ == "__main__": try: # Lies den Pfad zur Lösungsdatei ein solutionFilePath = sys.argv[1] # Lies den Öffnungwinkel der Kappen ein alpha = float(sys.argv[2]) # Falls keine korrekten Parameter übergeben wurden, # gib den Benutzungshinweis aus und schließe das Programm except: print("Verwendung: ./checker.py {Lösungsdatei} {Öffnungswinkel}") sys.exit(-1) # Lies die Lösung ein solution = readSolution(solutionFilePath) # Überprüfe die Lösung checkSolution(solution, alpha) # Überprüfe die übergebene Liste von Mittelpunkten, # ob die dort zentrierten Kappen die Sphäre vollständig überdecken # Sammle dann so lange Punkte ein, bis eine vollständige Überdeckung erreicht wurde # solution = Liste der Mittelpunkte der Kappen (List[tuple(n)]) # alpha = Öffnungswinkel der Kappen (float, >= 0, <= 360) # n = Dimension der Kugel (int, >= 1) def collect_missing(solution, alpha, n=3, printer=None): # Erzeuge ein Gurobi-Modell um zu überprüfen, # ob die Überdeckung vollständig ist # (Annahme: die Kappen sind "offen") model = gurobipy.Model() # Deaktiviere die Gurobi-Ausgabe model.setParam("OutputFlag", 0) # Aktiviere den nicht-konvexen Löser model.setParam("NonConvex", 2) # Erzeuge die Variablen und Nebenbedingungen # Die y-Variablen kodieren den gesuchten unüberdeckten Punkt y = {} for i in range(n): y[i] = model.addVar( lb=-gurobipy.GRB.INFINITY, ub=gurobipy.GRB.INFINITY, vtype=gurobipy.GRB.CONTINUOUS, name=f"y{i}", ) # Der Punkt muss auf der Sphäre liegen, also eine 2-Norm von Wert 1 haben. model.addQConstr(gurobipy.quicksum(y[i] * y[i] for i in range(n)) == 1, "Norm") # Der Punkt darf von keiner Kappe in der übergebenen Lösung überdeckt werden for j in range(len(solution)): x = solution[j] model.addConstr( gurobipy.quicksum(x[i] * y[i] for i in range(n)) <= math.cos((0.5 * alpha) / 180 * math.pi), f"Angle{j}", ) added = [] # begining of do while starttime = time.time() model.optimize() while model.status == 2: x = np.array([0.0, 0.0, 0.0]) for i in range(n): x[i] = y[i].X added.append(x) model.addConstr( gurobipy.quicksum(x[i] * y[i] for i in range(n)) <= math.cos((0.5 * alpha) / 180 * math.pi), f"Angle{j}", ) if printer is not None: printed = printer(len(added), len(solution) + len(added), time.time() - starttime) if printed: starttime = time.time() pass # do while model.optimize() pass return added
[ "gurobipy.Model", "time.time", "numpy.array", "math.cos", "sys.exit" ]
[((1451, 1467), 'gurobipy.Model', 'gurobipy.Model', ([], {}), '()\n', (1465, 1467), False, 'import gurobipy\n'), ((4200, 4216), 'gurobipy.Model', 'gurobipy.Model', ([], {}), '()\n', (4214, 4216), False, 'import gurobipy\n'), ((5245, 5256), 'time.time', 'time.time', ([], {}), '()\n', (5254, 5256), False, 'import time\n'), ((2838, 2863), 'numpy.array', 'np.array', (['[0.0, 0.0, 0.0]'], {}), '([0.0, 0.0, 0.0])\n', (2846, 2863), True, 'import numpy as np\n'), ((5321, 5346), 'numpy.array', 'np.array', (['[0.0, 0.0, 0.0]'], {}), '([0.0, 0.0, 0.0])\n', (5329, 5346), True, 'import numpy as np\n'), ((936, 948), 'sys.exit', 'sys.exit', (['(-1)'], {}), '(-1)\n', (944, 948), False, 'import sys\n'), ((3485, 3497), 'sys.exit', 'sys.exit', (['(-1)'], {}), '(-1)\n', (3493, 3497), False, 'import sys\n'), ((2360, 2397), 'math.cos', 'math.cos', (['(0.5 * alpha / 180 * math.pi)'], {}), '(0.5 * alpha / 180 * math.pi)\n', (2368, 2397), False, 'import math\n'), ((5109, 5146), 'math.cos', 'math.cos', (['(0.5 * alpha / 180 * math.pi)'], {}), '(0.5 * alpha / 180 * math.pi)\n', (5117, 5146), False, 'import math\n'), ((5525, 5562), 'math.cos', 'math.cos', (['(0.5 * alpha / 180 * math.pi)'], {}), '(0.5 * alpha / 180 * math.pi)\n', (5533, 5562), False, 'import math\n'), ((5781, 5792), 'time.time', 'time.time', ([], {}), '()\n', (5790, 5792), False, 'import time\n'), ((5704, 5715), 'time.time', 'time.time', ([], {}), '()\n', (5713, 5715), False, 'import time\n')]
# -*- coding: utf-8 -*- import cv2, glob import numpy as np import pandas as pd from os import path from math import isnan from sklearn.metrics.pairwise import euclidean_distances from JPP_precision import load_JPP_ply from Modules.utils import get_parameter, get_args, figure_disappears, enum_test_files from Modules.features_labels import make_labels from Modules.coordinate_conversion import project_point_cloud def make_ground_truth(test_filename): n_joints = 19 ground_truth = np.ones((n_joints, 2)) label_img = cv2.imread("%s.png" % test_filename)[:, :, :3][:, :, ::-1] label_array = make_labels(label_img).reshape(label_img.shape[:2]) parts2joints_map = np.array((0, 0, 0, 0, 1, 2, 2, 3, 3, 4, 5, 18, 18, 18, 18, 6, 7, 8, 9, 10, 11, 18, 18, 18, 18, 12, 13, 14, 15, 16, 17, 18)) for j in range(n_joints): ground_truth[j, :] = np.mean(np.array(np.where(parts2joints_map[label_array] == j)), axis=1) return ground_truth[:-1, :] def JPP_precision(): args = get_args() discr_setting_type = args.discr_setting_type num_train_images = args.n_train_images data_path = args.data_path jpp_path = data_path + "Main/JointPositionPrediction/" jpp_gt_path = jpp_path + "GroundTruth/" jpp_out_path = jpp_path + "Output/" eval_path = jpp_path + "Evaluation/" test_path = args.test_path n_test_images = args.n_test_images device = "Kinect" if "SyntheticImages" in test_path else "Xtion" target_joint_names = ["Head", "neck", "Chest", "Waist", "rShoulder", "lShoulder", "rElbow", "lElbow", "rWrist", "lWrist", "rHand", "lHand", "rKnee", "lKnee", "rAnkle", "lAnkle", "rFoot", "lFoot"] n_joints = len(target_joint_names) test_filenames = enum_test_files(data_path, args.test_path, n_test_images) setting_str = "_" + str(num_train_images) + ("_%s" % discr_setting_type if discr_setting_type else "") average_error_path = eval_path + "JPP_average_error_px" + setting_str + ".csv" sum_prediction_error = np.zeros((n_joints+1,)) for test_filename in test_filenames: test_filename_id = "/".join(test_filename.split("/")[-2:]) print(test_filename_id) test_JPP_path = jpp_out_path + test_filename_id + setting_str + "_JPP.ply" test_gt_path = jpp_gt_path + test_filename_id + "_px_gt.csv" error_path = eval_path + test_filename_id + setting_str + "_JPP_error_px.csv" if path.exists(test_gt_path): gt_joint_positions = np.array(pd.read_csv(test_gt_path, header=None)) else: gt_joint_positions = make_ground_truth(test_filename) joint_positions_3d = load_JPP_ply(test_JPP_path) visible_joints = [] for j, joint_position in enumerate(joint_positions_3d): if joint_position != (0, 0): visible_joints.append(j) visible_joints = np.array(visible_joints) depth_img = cv2.imread(test_filename + " Z.png", flags=0) params = get_parameter(test_filename + "_param") _, joint_positions_2d = project_point_cloud(joint_positions_3d, depth_img, visible_joints, device) joint_positions_2d = np.array(joint_positions_2d).transpose() error_per_joint = np.zeros((18,)) for j, (gt, p) in enumerate(zip(gt_joint_positions, joint_positions_2d)): if ((not isnan(gt[0])) and (not isnan(gt[1]))) and (p[0] != 0 or p[1] != 0): error_per_joint[j] = euclidean_distances(gt.reshape((1, -1)), p.reshape((1, -1))) * joint_positions_3d[j, 2] / 200. elif (isnan(gt[0]) and isnan(gt[1])) and (p[0] == 0 and p[1] == 0): error_per_joint[j] = np.nan else: error_per_joint[j] = 20 * joint_positions_3d[j, 2] / 200. mean_error = np.nanmean(error_per_joint) prediction_error = np.r_[error_per_joint, mean_error] sum_prediction_error += prediction_error pd.DataFrame(prediction_error, index=target_joint_names+["Mean"]).to_csv(error_path, header=False) print("\tMean Error is %f" % mean_error) mean_errors = sum_prediction_error / n_test_images pd.DataFrame(mean_errors, index=target_joint_names+["Mean"]).to_csv(average_error_path, header=False) print("Mean error is %f" % mean_errors[-1]) if __name__ == "__main__": JPP_precision()
[ "pandas.DataFrame", "math.isnan", "Modules.coordinate_conversion.project_point_cloud", "pandas.read_csv", "JPP_precision.load_JPP_ply", "numpy.zeros", "numpy.ones", "os.path.exists", "Modules.features_labels.make_labels", "Modules.utils.get_args", "cv2.imread", "numpy.where", "numpy.array", "Modules.utils.get_parameter", "Modules.utils.enum_test_files", "numpy.nanmean" ]
[((494, 516), 'numpy.ones', 'np.ones', (['(n_joints, 2)'], {}), '((n_joints, 2))\n', (501, 516), True, 'import numpy as np\n'), ((687, 815), 'numpy.array', 'np.array', (['(0, 0, 0, 0, 1, 2, 2, 3, 3, 4, 5, 18, 18, 18, 18, 6, 7, 8, 9, 10, 11, 18, \n 18, 18, 18, 12, 13, 14, 15, 16, 17, 18)'], {}), '((0, 0, 0, 0, 1, 2, 2, 3, 3, 4, 5, 18, 18, 18, 18, 6, 7, 8, 9, 10, \n 11, 18, 18, 18, 18, 12, 13, 14, 15, 16, 17, 18))\n', (695, 815), True, 'import numpy as np\n'), ((1011, 1021), 'Modules.utils.get_args', 'get_args', ([], {}), '()\n', (1019, 1021), False, 'from Modules.utils import get_parameter, get_args, figure_disappears, enum_test_files\n'), ((1785, 1842), 'Modules.utils.enum_test_files', 'enum_test_files', (['data_path', 'args.test_path', 'n_test_images'], {}), '(data_path, args.test_path, n_test_images)\n', (1800, 1842), False, 'from Modules.utils import get_parameter, get_args, figure_disappears, enum_test_files\n'), ((2062, 2087), 'numpy.zeros', 'np.zeros', (['(n_joints + 1,)'], {}), '((n_joints + 1,))\n', (2070, 2087), True, 'import numpy as np\n'), ((2478, 2503), 'os.path.exists', 'path.exists', (['test_gt_path'], {}), '(test_gt_path)\n', (2489, 2503), False, 'from os import path\n'), ((2697, 2724), 'JPP_precision.load_JPP_ply', 'load_JPP_ply', (['test_JPP_path'], {}), '(test_JPP_path)\n', (2709, 2724), False, 'from JPP_precision import load_JPP_ply\n'), ((2924, 2948), 'numpy.array', 'np.array', (['visible_joints'], {}), '(visible_joints)\n', (2932, 2948), True, 'import numpy as np\n'), ((2969, 3014), 'cv2.imread', 'cv2.imread', (["(test_filename + ' Z.png')"], {'flags': '(0)'}), "(test_filename + ' Z.png', flags=0)\n", (2979, 3014), False, 'import cv2, glob\n'), ((3032, 3071), 'Modules.utils.get_parameter', 'get_parameter', (["(test_filename + '_param')"], {}), "(test_filename + '_param')\n", (3045, 3071), False, 'from Modules.utils import get_parameter, get_args, figure_disappears, enum_test_files\n'), ((3104, 3178), 'Modules.coordinate_conversion.project_point_cloud', 'project_point_cloud', (['joint_positions_3d', 'depth_img', 'visible_joints', 'device'], {}), '(joint_positions_3d, depth_img, visible_joints, device)\n', (3123, 3178), False, 'from Modules.coordinate_conversion import project_point_cloud\n'), ((3276, 3291), 'numpy.zeros', 'np.zeros', (['(18,)'], {}), '((18,))\n', (3284, 3291), True, 'import numpy as np\n'), ((3833, 3860), 'numpy.nanmean', 'np.nanmean', (['error_per_joint'], {}), '(error_per_joint)\n', (3843, 3860), True, 'import numpy as np\n'), ((534, 570), 'cv2.imread', 'cv2.imread', (["('%s.png' % test_filename)"], {}), "('%s.png' % test_filename)\n", (544, 570), False, 'import cv2, glob\n'), ((612, 634), 'Modules.features_labels.make_labels', 'make_labels', (['label_img'], {}), '(label_img)\n', (623, 634), False, 'from Modules.features_labels import make_labels\n'), ((4189, 4251), 'pandas.DataFrame', 'pd.DataFrame', (['mean_errors'], {'index': "(target_joint_names + ['Mean'])"}), "(mean_errors, index=target_joint_names + ['Mean'])\n", (4201, 4251), True, 'import pandas as pd\n'), ((888, 932), 'numpy.where', 'np.where', (['(parts2joints_map[label_array] == j)'], {}), '(parts2joints_map[label_array] == j)\n', (896, 932), True, 'import numpy as np\n'), ((2547, 2585), 'pandas.read_csv', 'pd.read_csv', (['test_gt_path'], {'header': 'None'}), '(test_gt_path, header=None)\n', (2558, 2585), True, 'import pandas as pd\n'), ((3208, 3236), 'numpy.array', 'np.array', (['joint_positions_2d'], {}), '(joint_positions_2d)\n', (3216, 3236), True, 'import numpy as np\n'), ((3981, 4048), 'pandas.DataFrame', 'pd.DataFrame', (['prediction_error'], {'index': "(target_joint_names + ['Mean'])"}), "(prediction_error, index=target_joint_names + ['Mean'])\n", (3993, 4048), True, 'import pandas as pd\n'), ((3395, 3407), 'math.isnan', 'isnan', (['gt[0]'], {}), '(gt[0])\n', (3400, 3407), False, 'from math import isnan\n'), ((3418, 3430), 'math.isnan', 'isnan', (['gt[1]'], {}), '(gt[1])\n', (3423, 3430), False, 'from math import isnan\n'), ((3613, 3625), 'math.isnan', 'isnan', (['gt[0]'], {}), '(gt[0])\n', (3618, 3625), False, 'from math import isnan\n'), ((3630, 3642), 'math.isnan', 'isnan', (['gt[1]'], {}), '(gt[1])\n', (3635, 3642), False, 'from math import isnan\n')]
import numpy as np import matplotlib import matplotlib.pyplot as plt x=np.arange(0,2*np.pi,0.1) y=np.exp(x) plt.plot(x,y) plt.show()
[ "numpy.arange", "numpy.exp", "matplotlib.pyplot.plot", "matplotlib.pyplot.show" ]
[((71, 99), 'numpy.arange', 'np.arange', (['(0)', '(2 * np.pi)', '(0.1)'], {}), '(0, 2 * np.pi, 0.1)\n', (80, 99), True, 'import numpy as np\n'), ((98, 107), 'numpy.exp', 'np.exp', (['x'], {}), '(x)\n', (104, 107), True, 'import numpy as np\n'), ((108, 122), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y'], {}), '(x, y)\n', (116, 122), True, 'import matplotlib.pyplot as plt\n'), ((122, 132), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (130, 132), True, 'import matplotlib.pyplot as plt\n')]
""" Copyright (c) 2019-present NAVER Corp. MIT License """ # -*- coding: utf-8 -*- import sys import os import time import argparse import torch import torch.nn as nn import torch.backends.cudnn as cudnn from torch.autograd import Variable from PIL import Image import cv2 from skimage import io import numpy as np import json import zipfile import tools.utils as utils import tools.dataset as dataset import tools.imgproc as imgproc import tools.craft_utils as craft_utils from models.craft import CRAFT from models.moran import MORAN import matplotlib.pyplot as plt from collections import OrderedDict def copyStateDict(state_dict): if list(state_dict.keys())[0].startswith("module"): start_idx = 1 else: start_idx = 0 new_state_dict = OrderedDict() for k, v in state_dict.items(): name = ".".join(k.split(".")[start_idx:]) new_state_dict[name] = v return new_state_dict def str2bool(v): return v.lower() in ("yes", "y", "true", "t", "1") def craft_net(net, image, text_threshold, link_threshold, low_text, cuda, poly, refine_net=None): t0 = time.time() # resize img_resized, target_ratio, size_heatmap = imgproc.resize_aspect_ratio(image, args.canvas_size, interpolation=cv2.INTER_LINEAR, mag_ratio=args.mag_ratio) ratio_h = ratio_w = 1 / target_ratio # preprocessing x = imgproc.normalizeMeanVariance(img_resized) x = torch.from_numpy(x).permute(2, 0, 1) # [h, w, c] to [c, h, w] x = Variable(x.unsqueeze(0)) # [c, h, w] to [b, c, h, w] if cuda: x = x.cuda() # forward pass with torch.no_grad(): y, feature = net(x) # make score and link map score_text = y[0,:,:,0].cpu().data.numpy() score_link = y[0,:,:,1].cpu().data.numpy() tmp1 = score_link.copy() tmp2 = score_text.copy() # Post-processing boxes, polys, rot_rects = craft_utils.getDetBoxes(score_text, score_link, text_threshold, link_threshold, low_text, False) # coordinate adjustment boxes = craft_utils.adjustResultCoordinates(boxes, ratio_w, ratio_h) rot_rects = craft_utils.adjustResultCoordinatesNew(rot_rects, ratio_w, ratio_h) # render results (optional) render_img = score_text.copy() render_img = np.hstack((render_img, score_link)) ret_score_text = imgproc.cvt2HeatmapImg(render_img) if args.show_time : print("\ninfer/postproc time : {:.3f}/{:.3f}".format(t0, t1)) return boxes, ret_score_text,rot_rects parser = argparse.ArgumentParser(description='CRAFT Text Detection') # CRAFT args parser.add_argument('--craft_trained_model', default='pretrained/craft_mlt_25k.pth', type=str, help='pretrained model') parser.add_argument('--img_path', default='test/1.jpg', type=str, help='folder path to input images') parser.add_argument('--text_threshold', default=0.7, type=float, help='text confidence threshold') parser.add_argument('--low_text', default=0.4, type=float, help='text low-bound score') parser.add_argument('--link_threshold', default=0.4, type=float, help='link confidence threshold') parser.add_argument('--cuda', default=True, type=str2bool, help='Use cuda for inference') parser.add_argument('--canvas_size', default=1280, type=int, help='image size for inference') parser.add_argument('--mag_ratio', default=1.5, type=float, help='image magnification ratio') parser.add_argument('--poly', default=False, action='store_true', help='enable polygon type') parser.add_argument('--show_time', default=False, action='store_true', help='show processing time') parser.add_argument('--refine', default=False, action='store_true', help='enable link refiner') parser.add_argument('--refiner_model', default='pretrained/craft_refiner_CTW1500.pth', type=str, help='pretrained refiner model') # moran parser.add_argument('--moran_path', default='pretrained/moran.pth', type=str, help='pretrained moran model') args = parser.parse_args() moran_path = args.moran_path alphabet = '0:1:2:3:4:5:6:7:8:9:a:b:c:d:e:f:g:h:i:j:k:l:m:n:o:p:q:r:s:t:u:v:w:x:y:z:$' if __name__ == '__main__': ################################################ # cv2 initialize ################################################ cap = cv2.VideoCapture(0) ################################################ # CRAFT loading part ################################################ # load net net = CRAFT() # initialize if args.cuda: net.load_state_dict(copyStateDict(torch.load(args.craft_trained_model))) else: net.load_state_dict(copyStateDict(torch.load(args.craft_trained_model, map_location='cpu'))) if args.cuda: net = net.cuda() net = torch.nn.DataParallel(net) cudnn.benchmark = False net.eval() ################################################ # MORAN loading part ################################################ cuda_flag = False if torch.cuda.is_available(): cuda_flag = True MORAN = MORAN(1, len(alphabet.split(':')), 256, 32, 100, BidirDecoder=True, CUDA=cuda_flag) MORAN = MORAN.cuda() else: MORAN = MORAN(1, len(alphabet.split(':')), 256, 32, 100, BidirDecoder=True, inputDataType='torch.FloatTensor', CUDA=cuda_flag) print('loading pretrained model from %s' % moran_path) if cuda_flag: state_dict = torch.load(moran_path) else: state_dict = torch.load(moran_path, map_location='cpu') MORAN_state_dict_rename = OrderedDict() for k, v in state_dict.items(): name = k.replace("module.", "") # remove `module.` MORAN_state_dict_rename[name] = v MORAN.load_state_dict(MORAN_state_dict_rename) for p in MORAN.parameters(): p.requires_grad = False MORAN.eval() while(cap.isOpened()): all_text = [] all_text_reverse = [] ################################################ # CRAFT processing part ################################################ # load data tik = time.time() ret, image = cap.read() # image = cv2.imread('test/1.jpg') image_raw = image.copy() bboxes, score_text,rot_rects = craft_net(net, image, args.text_threshold, args.link_threshold, args.low_text, args.cuda, args.poly) print("time1: ",time.time()-tik) # save text rectangles filename, file_ext = os.path.splitext(os.path.basename(args.img_path)) # 这个可以保存切分的图片 img_cuts = utils.saveSplitTextRects(image,rot_rects,save_file=False,save_prefix="rect_"+filename) print("time2: ",time.time()-tik) if not img_cuts: cv2.imshow('Capture', image) if cv2.waitKey(1) & 0xFF == ord('q'): break continue ############################################### # MORAN processing part ################################################ converter = utils.strLabelConverterForAttention(alphabet, ':') transformer = dataset.resizeNormalize((100, 32)) images = [transformer(Image.fromarray(img.astype('uint8')).convert('L')) for img in img_cuts] images = [Variable(img.view(1, *img.size())) for img in images] all_image = torch.cat(images,axis=0) if cuda_flag: all_image = all_image.cuda() text = torch.LongTensor(1 * 5) length = torch.IntTensor(1) text = Variable(text) length = Variable(length) # 从单张修改为多张,只需要改Length # 作者给的处理工具已经考虑了多个图片同时处理的情况 max_iter = 20 t, l = converter.encode('0'*max_iter) utils.loadData(text, t) utils.loadData(length, l) length = torch.ones(len(img_cuts))*20 length = length.int() output = MORAN(all_image, length, text, text, test=True, debug=False) preds, preds_reverse = output[0] _, preds = preds.max(1) _, preds_reverse = preds_reverse.max(1) sim_preds = converter.decode(preds.data, length.data) all_text = [v.strip().split('$')[0] for v in sim_preds] print(sim_preds) print("time3: ",time.time()-tik) result_img = utils.saveResult(args.img_path, image_raw[:,:,::-1], bboxes,save_file=False, texts=all_text) print("time4: ",time.time()-tik) print(all_text) cv2.imshow('Capture', result_img) if cv2.waitKey(1) & 0xFF == ord('q'): break
[ "argparse.ArgumentParser", "torch.cat", "tools.craft_utils.adjustResultCoordinates", "models.moran.MORAN.cuda", "torch.no_grad", "cv2.imshow", "models.moran.MORAN.eval", "torch.load", "models.craft.CRAFT", "tools.utils.strLabelConverterForAttention", "tools.utils.saveResult", "tools.utils.loadData", "torch.autograd.Variable", "os.path.basename", "cv2.waitKey", "numpy.hstack", "tools.imgproc.cvt2HeatmapImg", "torch.cuda.is_available", "tools.utils.saveSplitTextRects", "torch.IntTensor", "tools.craft_utils.adjustResultCoordinatesNew", "torch.from_numpy", "models.moran.MORAN", "torch.LongTensor", "tools.craft_utils.getDetBoxes", "tools.imgproc.normalizeMeanVariance", "time.time", "cv2.VideoCapture", "tools.dataset.resizeNormalize", "models.moran.MORAN.parameters", "tools.imgproc.resize_aspect_ratio", "models.moran.MORAN.load_state_dict", "collections.OrderedDict", "torch.nn.DataParallel" ]
[((2591, 2650), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""CRAFT Text Detection"""'}), "(description='CRAFT Text Detection')\n", (2614, 2650), False, 'import argparse\n'), ((812, 825), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (823, 825), False, 'from collections import OrderedDict\n'), ((1164, 1175), 'time.time', 'time.time', ([], {}), '()\n', (1173, 1175), False, 'import time\n'), ((1239, 1354), 'tools.imgproc.resize_aspect_ratio', 'imgproc.resize_aspect_ratio', (['image', 'args.canvas_size'], {'interpolation': 'cv2.INTER_LINEAR', 'mag_ratio': 'args.mag_ratio'}), '(image, args.canvas_size, interpolation=cv2.\n INTER_LINEAR, mag_ratio=args.mag_ratio)\n', (1266, 1354), True, 'import tools.imgproc as imgproc\n'), ((1424, 1466), 'tools.imgproc.normalizeMeanVariance', 'imgproc.normalizeMeanVariance', (['img_resized'], {}), '(img_resized)\n', (1453, 1466), True, 'import tools.imgproc as imgproc\n'), ((1979, 2079), 'tools.craft_utils.getDetBoxes', 'craft_utils.getDetBoxes', (['score_text', 'score_link', 'text_threshold', 'link_threshold', 'low_text', '(False)'], {}), '(score_text, score_link, text_threshold,\n link_threshold, low_text, False)\n', (2002, 2079), True, 'import tools.craft_utils as craft_utils\n'), ((2118, 2178), 'tools.craft_utils.adjustResultCoordinates', 'craft_utils.adjustResultCoordinates', (['boxes', 'ratio_w', 'ratio_h'], {}), '(boxes, ratio_w, ratio_h)\n', (2153, 2178), True, 'import tools.craft_utils as craft_utils\n'), ((2196, 2263), 'tools.craft_utils.adjustResultCoordinatesNew', 'craft_utils.adjustResultCoordinatesNew', (['rot_rects', 'ratio_w', 'ratio_h'], {}), '(rot_rects, ratio_w, ratio_h)\n', (2234, 2263), True, 'import tools.craft_utils as craft_utils\n'), ((2351, 2386), 'numpy.hstack', 'np.hstack', (['(render_img, score_link)'], {}), '((render_img, score_link))\n', (2360, 2386), True, 'import numpy as np\n'), ((2409, 2443), 'tools.imgproc.cvt2HeatmapImg', 'imgproc.cvt2HeatmapImg', (['render_img'], {}), '(render_img)\n', (2431, 2443), True, 'import tools.imgproc as imgproc\n'), ((4322, 4341), 'cv2.VideoCapture', 'cv2.VideoCapture', (['(0)'], {}), '(0)\n', (4338, 4341), False, 'import cv2\n'), ((4503, 4510), 'models.craft.CRAFT', 'CRAFT', ([], {}), '()\n', (4508, 4510), False, 'from models.craft import CRAFT\n'), ((5047, 5072), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (5070, 5072), False, 'import torch\n'), ((5611, 5624), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (5622, 5624), False, 'from collections import OrderedDict\n'), ((5770, 5816), 'models.moran.MORAN.load_state_dict', 'MORAN.load_state_dict', (['MORAN_state_dict_rename'], {}), '(MORAN_state_dict_rename)\n', (5791, 5816), False, 'from models.moran import MORAN\n'), ((5833, 5851), 'models.moran.MORAN.parameters', 'MORAN.parameters', ([], {}), '()\n', (5849, 5851), False, 'from models.moran import MORAN\n'), ((5891, 5903), 'models.moran.MORAN.eval', 'MORAN.eval', ([], {}), '()\n', (5901, 5903), False, 'from models.moran import MORAN\n'), ((1686, 1701), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (1699, 1701), False, 'import torch\n'), ((4804, 4830), 'torch.nn.DataParallel', 'torch.nn.DataParallel', (['net'], {}), '(net)\n', (4825, 4830), False, 'import torch\n'), ((5218, 5230), 'models.moran.MORAN.cuda', 'MORAN.cuda', ([], {}), '()\n', (5228, 5230), False, 'from models.moran import MORAN\n'), ((5481, 5503), 'torch.load', 'torch.load', (['moran_path'], {}), '(moran_path)\n', (5491, 5503), False, 'import torch\n'), ((5537, 5579), 'torch.load', 'torch.load', (['moran_path'], {'map_location': '"""cpu"""'}), "(moran_path, map_location='cpu')\n", (5547, 5579), False, 'import torch\n'), ((6183, 6194), 'time.time', 'time.time', ([], {}), '()\n', (6192, 6194), False, 'import time\n'), ((6644, 6740), 'tools.utils.saveSplitTextRects', 'utils.saveSplitTextRects', (['image', 'rot_rects'], {'save_file': '(False)', 'save_prefix': "('rect_' + filename)"}), "(image, rot_rects, save_file=False, save_prefix=\n 'rect_' + filename)\n", (6668, 6740), True, 'import tools.utils as utils\n'), ((7106, 7156), 'tools.utils.strLabelConverterForAttention', 'utils.strLabelConverterForAttention', (['alphabet', '""":"""'], {}), "(alphabet, ':')\n", (7141, 7156), True, 'import tools.utils as utils\n'), ((7180, 7214), 'tools.dataset.resizeNormalize', 'dataset.resizeNormalize', (['(100, 32)'], {}), '((100, 32))\n', (7203, 7214), True, 'import tools.dataset as dataset\n'), ((7412, 7437), 'torch.cat', 'torch.cat', (['images'], {'axis': '(0)'}), '(images, axis=0)\n', (7421, 7437), False, 'import torch\n'), ((7518, 7541), 'torch.LongTensor', 'torch.LongTensor', (['(1 * 5)'], {}), '(1 * 5)\n', (7534, 7541), False, 'import torch\n'), ((7560, 7578), 'torch.IntTensor', 'torch.IntTensor', (['(1)'], {}), '(1)\n', (7575, 7578), False, 'import torch\n'), ((7595, 7609), 'torch.autograd.Variable', 'Variable', (['text'], {}), '(text)\n', (7603, 7609), False, 'from torch.autograd import Variable\n'), ((7628, 7644), 'torch.autograd.Variable', 'Variable', (['length'], {}), '(length)\n', (7636, 7644), False, 'from torch.autograd import Variable\n'), ((7793, 7816), 'tools.utils.loadData', 'utils.loadData', (['text', 't'], {}), '(text, t)\n', (7807, 7816), True, 'import tools.utils as utils\n'), ((7826, 7851), 'tools.utils.loadData', 'utils.loadData', (['length', 'l'], {}), '(length, l)\n', (7840, 7851), True, 'import tools.utils as utils\n'), ((7948, 8008), 'models.moran.MORAN', 'MORAN', (['all_image', 'length', 'text', 'text'], {'test': '(True)', 'debug': '(False)'}), '(all_image, length, text, text, test=True, debug=False)\n', (7953, 8008), False, 'from models.moran import MORAN\n'), ((8353, 8453), 'tools.utils.saveResult', 'utils.saveResult', (['args.img_path', 'image_raw[:, :, ::-1]', 'bboxes'], {'save_file': '(False)', 'texts': 'all_text'}), '(args.img_path, image_raw[:, :, ::-1], bboxes, save_file=\n False, texts=all_text)\n', (8369, 8453), True, 'import tools.utils as utils\n'), ((8522, 8555), 'cv2.imshow', 'cv2.imshow', (['"""Capture"""', 'result_img'], {}), "('Capture', result_img)\n", (8532, 8555), False, 'import cv2\n'), ((1476, 1495), 'torch.from_numpy', 'torch.from_numpy', (['x'], {}), '(x)\n', (1492, 1495), False, 'import torch\n'), ((6568, 6599), 'os.path.basename', 'os.path.basename', (['args.img_path'], {}), '(args.img_path)\n', (6584, 6599), False, 'import os\n'), ((6812, 6840), 'cv2.imshow', 'cv2.imshow', (['"""Capture"""', 'image'], {}), "('Capture', image)\n", (6822, 6840), False, 'import cv2\n'), ((4590, 4626), 'torch.load', 'torch.load', (['args.craft_trained_model'], {}), '(args.craft_trained_model)\n', (4600, 4626), False, 'import torch\n'), ((4683, 4739), 'torch.load', 'torch.load', (['args.craft_trained_model'], {'map_location': '"""cpu"""'}), "(args.craft_trained_model, map_location='cpu')\n", (4693, 4739), False, 'import torch\n'), ((6472, 6483), 'time.time', 'time.time', ([], {}), '()\n', (6481, 6483), False, 'import time\n'), ((6756, 6767), 'time.time', 'time.time', ([], {}), '()\n', (6765, 6767), False, 'import time\n'), ((8314, 8325), 'time.time', 'time.time', ([], {}), '()\n', (8323, 8325), False, 'import time\n'), ((8471, 8482), 'time.time', 'time.time', ([], {}), '()\n', (8480, 8482), False, 'import time\n'), ((8568, 8582), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (8579, 8582), False, 'import cv2\n'), ((6857, 6871), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (6868, 6871), False, 'import cv2\n')]
# Author: <NAME> <<EMAIL>> # License: Simplified BSD from sklearn.metrics.pairwise import polynomial_kernel from sklearn.utils.extmath import safe_sparse_dot from scipy.sparse import issparse import numpy as np def safe_power(X, degree=2): """Element-wise power supporting both sparse and dense data. Parameters ---------- X : ndarray or sparse The array whose entries to raise to the power. degree : int, default: 2 The power to which to raise the elements. Returns ------- X_ret : ndarray or sparse Same shape as X, but (x_ret)_ij = (x)_ij ^ degree """ if issparse(X): if hasattr(X, 'power'): return X.power(degree) else: # old scipy X = X.copy() X.data **= degree return X else: return X ** degree def _D(X, P, degree=2): """The "replacement" part of the homogeneous polynomial kernel. D[i, j] = sum_k [(X_ik * P_jk) ** degree] """ return safe_sparse_dot(safe_power(X, degree), P.T ** degree) def homogeneous_kernel(X, P, degree=2): """Convenience alias for homogeneous polynomial kernel between X and P:: K_P(x, p) = <x, p> ^ degree Parameters ---------- X : ndarray of shape (n_samples_1, n_features) Y : ndarray of shape (n_samples_2, n_features) degree : int, default 2 Returns ------- Gram matrix : array of shape (n_samples_1, n_samples_2) """ return polynomial_kernel(X, P, degree=degree, gamma=1, coef0=0) def anova_kernel(X, P, degree=2): """ANOVA kernel between X and P:: K_A(x, p) = sum_i1>i2>...>id x_i1 p_i1 x_i2 p_i2 ... x_id p_id See <NAME> and <NAME>, Kernel Methods for Pattern Analysis section 9.2. Parameters ---------- X : ndarray of shape (n_samples_1, n_features) Y : ndarray of shape (n_samples_2, n_features) degree : int, default 2 Returns ------- Gram matrix : array of shape (n_samples_1, n_samples_2) """ if degree == 2: K = homogeneous_kernel(X, P, degree=2) K -= _D(X, P, degree=2) K /= 2 elif degree == 3: K = homogeneous_kernel(X, P, degree=3) K -= 3 * _D(X, P, degree=2) * _D(X, P, degree=1) K += 2 * _D(X, P, degree=3) K /= 6 else: raise NotImplementedError("ANOVA kernel for degree >= 4 not yet " "implemented efficiently.") return K def _poly_predict(X, P, lams, kernel, degree=2): if kernel == "anova": K = anova_kernel(X, P, degree) elif kernel == "poly": K = homogeneous_kernel(X, P, degree) else: raise ValueError(("Unsuppported kernel: {}. Use one " "of {{'anova'|'poly'}}").format(kernel)) return np.dot(K, lams)
[ "numpy.dot", "scipy.sparse.issparse", "sklearn.metrics.pairwise.polynomial_kernel" ]
[((630, 641), 'scipy.sparse.issparse', 'issparse', (['X'], {}), '(X)\n', (638, 641), False, 'from scipy.sparse import issparse\n'), ((1498, 1554), 'sklearn.metrics.pairwise.polynomial_kernel', 'polynomial_kernel', (['X', 'P'], {'degree': 'degree', 'gamma': '(1)', 'coef0': '(0)'}), '(X, P, degree=degree, gamma=1, coef0=0)\n', (1515, 1554), False, 'from sklearn.metrics.pairwise import polynomial_kernel\n'), ((2827, 2842), 'numpy.dot', 'np.dot', (['K', 'lams'], {}), '(K, lams)\n', (2833, 2842), True, 'import numpy as np\n')]
import numpy from noise import snoise2 from worldengine.model.world import Step from worldengine.simulations.basic import find_threshold_f from worldengine.simulations.hydrology import WatermapSimulation from worldengine.simulations.irrigation import IrrigationSimulation from worldengine.simulations.humidity import HumiditySimulation from worldengine.simulations.temperature import TemperatureSimulation from worldengine.simulations.permeability import PermeabilitySimulation from worldengine.simulations.erosion import ErosionSimulation from worldengine.simulations.precipitation import PrecipitationSimulation from worldengine.simulations.biome import BiomeSimulation from worldengine.simulations.icecap import IcecapSimulation from worldengine.common import anti_alias, get_verbose # ------------------ # Initial generation # ------------------ def center_land(world): """Translate the map horizontally and vertically to put as much ocean as possible at the borders. It operates on elevation and plates map""" y_sums = world.layers['elevation'].data.sum(1) # 1 == sum along x-axis y_with_min_sum = y_sums.argmin() if get_verbose(): print("geo.center_land: height complete") x_sums = world.layers['elevation'].data.sum(0) # 0 == sum along y-axis x_with_min_sum = x_sums.argmin() if get_verbose(): print("geo.center_land: width complete") latshift = 0 world.layers['elevation'].data = numpy.roll(numpy.roll(world.layers['elevation'].data, -y_with_min_sum + latshift, axis=0), - x_with_min_sum, axis=1) world.layers['plates'].data = numpy.roll(numpy.roll(world.layers['plates'].data, -y_with_min_sum + latshift, axis=0), - x_with_min_sum, axis=1) if get_verbose(): print("geo.center_land: width complete") def place_oceans_at_map_borders(world): """ Lower the elevation near the border of the map """ ocean_border = int(min(30, max(world.width / 5, world.height / 5))) def place_ocean(x, y, i): world.layers['elevation'].data[y, x] = \ (world.layers['elevation'].data[y, x] * i) / ocean_border for x in range(world.width): for i in range(ocean_border): place_ocean(x, i, i) place_ocean(x, world.height - i - 1, i) for y in range(world.height): for i in range(ocean_border): place_ocean(i, y, i) place_ocean(world.width - i - 1, y, i) def add_noise_to_elevation(world, seed): octaves = 8 freq = 16.0 * octaves for y in range(world.height): for x in range(world.width): n = snoise2(x / freq * 2, y / freq * 2, octaves, base=seed) world.layers['elevation'].data[y, x] += n def fill_ocean(elevation, sea_level):#TODO: Make more use of numpy? height, width = elevation.shape ocean = numpy.zeros(elevation.shape, dtype=bool) to_expand = [] for x in range(width):#handle top and bottom border of the map if elevation[0, x] <= sea_level: to_expand.append((x, 0)) if elevation[height - 1, x] <= sea_level: to_expand.append((x, height - 1)) for y in range(height):#handle left- and rightmost border of the map if elevation[y, 0] <= sea_level: to_expand.append((0, y)) if elevation[y, width - 1] <= sea_level: to_expand.append((width - 1, y)) for t in to_expand: tx, ty = t if not ocean[ty, tx]: ocean[ty, tx] = True for px, py in _around(tx, ty, width, height): if not ocean[py, px] and elevation[py, px] <= sea_level: to_expand.append((px, py)) return ocean def initialize_ocean_and_thresholds(world, ocean_level=1.0): """ Calculate the ocean, the sea depth and the elevation thresholds :param world: a world having elevation but not thresholds :param ocean_level: the elevation representing the ocean level :return: nothing, the world will be changed """ e = world.layers['elevation'].data ocean = fill_ocean(e, ocean_level) hl = find_threshold_f(e, 0.10) # the highest 10% of all (!) land are declared hills ml = find_threshold_f(e, 0.03) # the highest 3% are declared mountains e_th = [('sea', ocean_level), ('plain', hl), ('hill', ml), ('mountain', None)] harmonize_ocean(ocean, e, ocean_level) world.ocean = ocean world.elevation = (e, e_th) world.sea_depth = sea_depth(world, ocean_level) def harmonize_ocean(ocean, elevation, ocean_level): """ The goal of this function is to make the ocean floor less noisy. The underwater erosion should cause the ocean floor to be more uniform """ shallow_sea = ocean_level * 0.85 midpoint = shallow_sea / 2.0 ocean_points = numpy.logical_and(elevation < shallow_sea, ocean) shallow_ocean = numpy.logical_and(elevation < midpoint, ocean_points) elevation[shallow_ocean] = midpoint - ((midpoint - elevation[shallow_ocean]) / 5.0) deep_ocean = numpy.logical_and(elevation > midpoint, ocean_points) elevation[deep_ocean] = midpoint + ((elevation[deep_ocean] - midpoint) / 5.0) # ---- # Misc # ---- def sea_depth(world, sea_level): # a dynamic programming approach to gather how far the next land is # from a given coordinate up to a maximum distance of max_radius # result is 0 for land coordinates and -1 for coordinates further than # max_radius away from land # there might be even faster ways but it does the trick def next_land_dynamic(ocean, max_radius=5): next_land = numpy.full(ocean.shape, -1, int) # non ocean tiles are zero distance away from next land next_land[numpy.logical_not(ocean)]=0 height, width = ocean.shape for dist in range(max_radius): indices = numpy.transpose(numpy.where(next_land==dist)) for y, x in indices: for dy in range(-1, 2): ny = y + dy if 0 <= ny < height: for dx in range(-1, 2): nx = x + dx if 0 <= nx < width: if next_land[ny,nx] == -1: next_land[ny,nx] = dist + 1 return next_land # We want to multiply the raw sea_depth by one of these factors # depending on the distance from the next land # possible TODO: make this a parameter factors = [0.0, 0.3, 0.5, 0.7, 0.9] next_land = next_land_dynamic(world.layers['ocean'].data) sea_depth = sea_level - world.layers['elevation'].data for y in range(world.height): for x in range(world.width): dist_to_next_land = next_land[y,x] if dist_to_next_land > 0: sea_depth[y,x]*=factors[dist_to_next_land-1] sea_depth = anti_alias(sea_depth, 10) min_depth = sea_depth.min() max_depth = sea_depth.max() sea_depth = (sea_depth - min_depth) / (max_depth - min_depth) return sea_depth def _around(x, y, width, height): ps = [] for dx in range(-1, 2): nx = x + dx if 0 <= nx < width: for dy in range(-1, 2): ny = y + dy if 0 <= ny < height and (dx != 0 or dy != 0): ps.append((nx, ny)) return ps def generate_world(w, step): if isinstance(step, str): step = Step.get_by_name(step) if not step.include_precipitations: return w # Prepare sufficient seeds for the different steps of the generation rng = numpy.random.RandomState(w.seed) # create a fresh RNG in case the global RNG is compromised (i.e. has been queried an indefinite amount of times before generate_world() was called) sub_seeds = rng.randint(0, numpy.iinfo(numpy.int32).max, size=100) # choose lowest common denominator (32 bit Windows numpy cannot handle a larger value) seed_dict = { 'PrecipitationSimulation': sub_seeds[ 0], # after 0.19.0 do not ever switch out the seeds here to maximize seed-compatibility 'ErosionSimulation': sub_seeds[ 1], 'WatermapSimulation': sub_seeds[ 2], 'IrrigationSimulation': sub_seeds[ 3], 'TemperatureSimulation': sub_seeds[ 4], 'HumiditySimulation': sub_seeds[ 5], 'PermeabilitySimulation': sub_seeds[ 6], 'BiomeSimulation': sub_seeds[ 7], 'IcecapSimulation': sub_seeds[ 8], '': sub_seeds[99] } TemperatureSimulation().execute(w, seed_dict['TemperatureSimulation']) # Precipitation with thresholds PrecipitationSimulation().execute(w, seed_dict['PrecipitationSimulation']) if not step.include_erosion: return w ErosionSimulation().execute(w, seed_dict['ErosionSimulation']) # seed not currently used if get_verbose(): print("...erosion calculated") WatermapSimulation().execute(w, seed_dict['WatermapSimulation']) # seed not currently used # FIXME: create setters IrrigationSimulation().execute(w, seed_dict['IrrigationSimulation']) # seed not currently used HumiditySimulation().execute(w, seed_dict['HumiditySimulation']) # seed not currently used PermeabilitySimulation().execute(w, seed_dict['PermeabilitySimulation']) cm, biome_cm = BiomeSimulation().execute(w, seed_dict['BiomeSimulation']) # seed not currently used for cl in cm.keys(): count = cm[cl] if get_verbose(): print("%s = %i" % (str(cl), count)) if get_verbose(): print('') # empty line print('Biome obtained:') for cl in biome_cm.keys(): count = biome_cm[cl] if get_verbose(): print(" %30s = %7i" % (str(cl), count)) IcecapSimulation().execute(w, seed_dict['IcecapSimulation']) # makes use of temperature-map return w
[ "worldengine.simulations.basic.find_threshold_f", "worldengine.simulations.temperature.TemperatureSimulation", "numpy.iinfo", "worldengine.simulations.permeability.PermeabilitySimulation", "worldengine.simulations.biome.BiomeSimulation", "worldengine.simulations.hydrology.WatermapSimulation", "worldengine.simulations.precipitation.PrecipitationSimulation", "numpy.full", "numpy.logical_not", "numpy.random.RandomState", "noise.snoise2", "worldengine.simulations.erosion.ErosionSimulation", "worldengine.common.get_verbose", "worldengine.common.anti_alias", "numpy.roll", "worldengine.simulations.irrigation.IrrigationSimulation", "worldengine.simulations.icecap.IcecapSimulation", "worldengine.model.world.Step.get_by_name", "worldengine.simulations.humidity.HumiditySimulation", "numpy.logical_and", "numpy.zeros", "numpy.where" ]
[((1152, 1165), 'worldengine.common.get_verbose', 'get_verbose', ([], {}), '()\n', (1163, 1165), False, 'from worldengine.common import anti_alias, get_verbose\n'), ((1338, 1351), 'worldengine.common.get_verbose', 'get_verbose', ([], {}), '()\n', (1349, 1351), False, 'from worldengine.common import anti_alias, get_verbose\n'), ((1729, 1742), 'worldengine.common.get_verbose', 'get_verbose', ([], {}), '()\n', (1740, 1742), False, 'from worldengine.common import anti_alias, get_verbose\n'), ((2840, 2880), 'numpy.zeros', 'numpy.zeros', (['elevation.shape'], {'dtype': 'bool'}), '(elevation.shape, dtype=bool)\n', (2851, 2880), False, 'import numpy\n'), ((4099, 4123), 'worldengine.simulations.basic.find_threshold_f', 'find_threshold_f', (['e', '(0.1)'], {}), '(e, 0.1)\n', (4115, 4123), False, 'from worldengine.simulations.basic import find_threshold_f\n'), ((4188, 4213), 'worldengine.simulations.basic.find_threshold_f', 'find_threshold_f', (['e', '(0.03)'], {}), '(e, 0.03)\n', (4204, 4213), False, 'from worldengine.simulations.basic import find_threshold_f\n'), ((4830, 4879), 'numpy.logical_and', 'numpy.logical_and', (['(elevation < shallow_sea)', 'ocean'], {}), '(elevation < shallow_sea, ocean)\n', (4847, 4879), False, 'import numpy\n'), ((4901, 4954), 'numpy.logical_and', 'numpy.logical_and', (['(elevation < midpoint)', 'ocean_points'], {}), '(elevation < midpoint, ocean_points)\n', (4918, 4954), False, 'import numpy\n'), ((5061, 5114), 'numpy.logical_and', 'numpy.logical_and', (['(elevation > midpoint)', 'ocean_points'], {}), '(elevation > midpoint, ocean_points)\n', (5078, 5114), False, 'import numpy\n'), ((6918, 6943), 'worldengine.common.anti_alias', 'anti_alias', (['sea_depth', '(10)'], {}), '(sea_depth, 10)\n', (6928, 6943), False, 'from worldengine.common import anti_alias, get_verbose\n'), ((7642, 7674), 'numpy.random.RandomState', 'numpy.random.RandomState', (['w.seed'], {}), '(w.seed)\n', (7666, 7674), False, 'import numpy\n'), ((9024, 9037), 'worldengine.common.get_verbose', 'get_verbose', ([], {}), '()\n', (9035, 9037), False, 'from worldengine.common import anti_alias, get_verbose\n'), ((9714, 9727), 'worldengine.common.get_verbose', 'get_verbose', ([], {}), '()\n', (9725, 9727), False, 'from worldengine.common import anti_alias, get_verbose\n'), ((1468, 1546), 'numpy.roll', 'numpy.roll', (["world.layers['elevation'].data", '(-y_with_min_sum + latshift)'], {'axis': '(0)'}), "(world.layers['elevation'].data, -y_with_min_sum + latshift, axis=0)\n", (1478, 1546), False, 'import numpy\n'), ((1619, 1694), 'numpy.roll', 'numpy.roll', (["world.layers['plates'].data", '(-y_with_min_sum + latshift)'], {'axis': '(0)'}), "(world.layers['plates'].data, -y_with_min_sum + latshift, axis=0)\n", (1629, 1694), False, 'import numpy\n'), ((5637, 5669), 'numpy.full', 'numpy.full', (['ocean.shape', '(-1)', 'int'], {}), '(ocean.shape, -1, int)\n', (5647, 5669), False, 'import numpy\n'), ((7477, 7499), 'worldengine.model.world.Step.get_by_name', 'Step.get_by_name', (['step'], {}), '(step)\n', (7493, 7499), False, 'from worldengine.model.world import Step\n'), ((9643, 9656), 'worldengine.common.get_verbose', 'get_verbose', ([], {}), '()\n', (9654, 9656), False, 'from worldengine.common import anti_alias, get_verbose\n'), ((9866, 9879), 'worldengine.common.get_verbose', 'get_verbose', ([], {}), '()\n', (9877, 9879), False, 'from worldengine.common import anti_alias, get_verbose\n'), ((2611, 2666), 'noise.snoise2', 'snoise2', (['(x / freq * 2)', '(y / freq * 2)', 'octaves'], {'base': 'seed'}), '(x / freq * 2, y / freq * 2, octaves, base=seed)\n', (2618, 2666), False, 'from noise import snoise2\n'), ((5753, 5777), 'numpy.logical_not', 'numpy.logical_not', (['ocean'], {}), '(ocean)\n', (5770, 5777), False, 'import numpy\n'), ((7855, 7879), 'numpy.iinfo', 'numpy.iinfo', (['numpy.int32'], {}), '(numpy.int32)\n', (7866, 7879), False, 'import numpy\n'), ((8686, 8709), 'worldengine.simulations.temperature.TemperatureSimulation', 'TemperatureSimulation', ([], {}), '()\n', (8707, 8709), False, 'from worldengine.simulations.temperature import TemperatureSimulation\n'), ((8797, 8822), 'worldengine.simulations.precipitation.PrecipitationSimulation', 'PrecipitationSimulation', ([], {}), '()\n', (8820, 8822), False, 'from worldengine.simulations.precipitation import PrecipitationSimulation\n'), ((8927, 8946), 'worldengine.simulations.erosion.ErosionSimulation', 'ErosionSimulation', ([], {}), '()\n', (8944, 8946), False, 'from worldengine.simulations.erosion import ErosionSimulation\n'), ((9083, 9103), 'worldengine.simulations.hydrology.WatermapSimulation', 'WatermapSimulation', ([], {}), '()\n', (9101, 9103), False, 'from worldengine.simulations.hydrology import WatermapSimulation\n'), ((9208, 9230), 'worldengine.simulations.irrigation.IrrigationSimulation', 'IrrigationSimulation', ([], {}), '()\n', (9228, 9230), False, 'from worldengine.simulations.irrigation import IrrigationSimulation\n'), ((9308, 9328), 'worldengine.simulations.humidity.HumiditySimulation', 'HumiditySimulation', ([], {}), '()\n', (9326, 9328), False, 'from worldengine.simulations.humidity import HumiditySimulation\n'), ((9405, 9429), 'worldengine.simulations.permeability.PermeabilitySimulation', 'PermeabilitySimulation', ([], {}), '()\n', (9427, 9429), False, 'from worldengine.simulations.permeability import PermeabilitySimulation\n'), ((9498, 9515), 'worldengine.simulations.biome.BiomeSimulation', 'BiomeSimulation', ([], {}), '()\n', (9513, 9515), False, 'from worldengine.simulations.biome import BiomeSimulation\n'), ((9938, 9956), 'worldengine.simulations.icecap.IcecapSimulation', 'IcecapSimulation', ([], {}), '()\n', (9954, 9956), False, 'from worldengine.simulations.icecap import IcecapSimulation\n'), ((5896, 5926), 'numpy.where', 'numpy.where', (['(next_land == dist)'], {}), '(next_land == dist)\n', (5907, 5926), False, 'import numpy\n')]
#!/usr/bin/env python import copy import numpy as np from scipy import signal from edrixs.photon_transition import dipole_polvec_rixs from edrixs.utils import boltz_dist from edrixs.rixs_utils import scattering_mat if __name__ == "__main__": ''' Purpose: This example shows how to calculate RIXS spectrum. This example use purely python code. ''' # PARAMETERS #----------- # the parameters for the experimental RIXS geometry are taken from [PRL 117, 147401 (2016)] # the incident angle of X-ray thin, thout = 15/180.0*np.pi, 75/180.0*np.pi # azimuthal angle phi = 0.0 # core-hole life-time broadening gamma_n = 0.20 # resolution of RIXS excitations gamma_f = 0.10 # energy offset of the incident X-ray om_offset = 857.4 # set energy mesh of the incident X-ray (eV) # L3 edge om1, om2 = -5.9,-0.9 # L2 dege #om1, om2 = 10.9, 14.9 nom = 100 om_mesh = np.linspace(om1, om2, nom) # energy loss mesh neloss = 1000 eloss_mesh = np.linspace(-0.5, 5.0, neloss) # ground state list gs_list=list(range(0, 3)) # temperature T = 300 # END of PARAMETERS #------------------ # load data, the eigenvalues of the initial and the intermediate Hamiltonian, and the transition matrix data = np.loadtxt('eval_i.dat') eval_i = data[:,1] data = np.loadtxt('eval_n.dat') eval_n = data[:,1] ncfgs_n, ncfgs_i = len(eval_n), len(eval_i) # the transition operator for the absorption process data = np.loadtxt('trans_mat.dat') trans_mat_abs = data[:,3].reshape((3, ncfgs_n, ncfgs_i)) + 1j * data[:,4].reshape((3, ncfgs_n, ncfgs_i)) # the transition operator for the emission process trans_mat_emi = np.zeros((3, ncfgs_i, ncfgs_n), dtype=np.complex128) for i in range(3): trans_mat_emi[i] = np.conj(np.transpose(trans_mat_abs[i])) # We calculate RIXS for \pi-\pi, \pi-\sigma, \sigma-\pi, \sigma-\sigma polarizations rixs = np.zeros((4, neloss, nom), dtype=np.float64) gs_prob = boltz_dist([eval_i[i] for i in gs_list], T) polvec_list = [(0,0), (0,np.pi/2.0), (np.pi/2.0, 0), (np.pi/2.0, np.pi/2.0)] print("edrixs >>> calculating RIXS ...") for i, om_inc in enumerate(om_mesh): print(" incident X-ray energy: ", i, " ", om_inc) F_fi = scattering_mat(eval_i, eval_n, trans_mat_abs[:,:,gs_list], trans_mat_emi, om_inc, gamma_n) for j, (alpha, beta) in enumerate(polvec_list): ei, ef = dipole_polvec_rixs(thin, thout, phi, alpha, beta) F_magnitude = np.zeros((ncfgs_i, len(gs_list)), dtype=np.complex128) for m in range(3): for n in range(3): F_magnitude[:,:] += ef[m] * F_fi[m,n] * ei[n] for m in gs_list: for n in range(ncfgs_i): rixs[j, :, i] += np.abs(F_magnitude[n,m])**2 * gamma_f/np.pi / ( (eloss_mesh-(eval_i[n]-eval_i[m]))**2 + gamma_f**2 ) * gs_prob[m] # gaussian broadening inc_res = 0.17 emi_res = 0.12 gauss = np.zeros((neloss, nom)) mid_in = ( min(om_mesh) + max(om_mesh) ) /2.0 mid_out = ( min(eloss_mesh)+max(eloss_mesh)) /2.0 for i in range(nom): for j in range(neloss): gauss[j,i] = 1/(2.0*np.pi*inc_res*emi_res)*np.exp(-((mid_in-om_mesh[i])**2/(2*inc_res**2) + (mid_out-eloss_mesh[j])**2/(2*emi_res**2))) for i in range(4): rixs[i,:,:] = signal.fftconvolve(rixs[i,:,:], gauss, mode = 'same') print("edrixs >>> done !") f=open('rixs.dat', 'w') for i in range(neloss): for j in range(nom): str_form = "{:20.10f}"*6 +"\n" line=str_form.format(eloss_mesh[i], om_mesh[j]+om_offset, rixs[0,i,j], rixs[1,i,j], rixs[2,i,j], rixs[3,i,j]) f.write(line) f.close()
[ "edrixs.photon_transition.dipole_polvec_rixs", "numpy.abs", "scipy.signal.fftconvolve", "edrixs.utils.boltz_dist", "numpy.zeros", "numpy.transpose", "numpy.loadtxt", "numpy.linspace", "numpy.exp", "edrixs.rixs_utils.scattering_mat" ]
[((1002, 1028), 'numpy.linspace', 'np.linspace', (['om1', 'om2', 'nom'], {}), '(om1, om2, nom)\n', (1013, 1028), True, 'import numpy as np\n'), ((1087, 1117), 'numpy.linspace', 'np.linspace', (['(-0.5)', '(5.0)', 'neloss'], {}), '(-0.5, 5.0, neloss)\n', (1098, 1117), True, 'import numpy as np\n'), ((1372, 1396), 'numpy.loadtxt', 'np.loadtxt', (['"""eval_i.dat"""'], {}), "('eval_i.dat')\n", (1382, 1396), True, 'import numpy as np\n'), ((1432, 1456), 'numpy.loadtxt', 'np.loadtxt', (['"""eval_n.dat"""'], {}), "('eval_n.dat')\n", (1442, 1456), True, 'import numpy as np\n'), ((1598, 1625), 'numpy.loadtxt', 'np.loadtxt', (['"""trans_mat.dat"""'], {}), "('trans_mat.dat')\n", (1608, 1625), True, 'import numpy as np\n'), ((1810, 1862), 'numpy.zeros', 'np.zeros', (['(3, ncfgs_i, ncfgs_n)'], {'dtype': 'np.complex128'}), '((3, ncfgs_i, ncfgs_n), dtype=np.complex128)\n', (1818, 1862), True, 'import numpy as np\n'), ((2054, 2098), 'numpy.zeros', 'np.zeros', (['(4, neloss, nom)'], {'dtype': 'np.float64'}), '((4, neloss, nom), dtype=np.float64)\n', (2062, 2098), True, 'import numpy as np\n'), ((2113, 2156), 'edrixs.utils.boltz_dist', 'boltz_dist', (['[eval_i[i] for i in gs_list]', 'T'], {}), '([eval_i[i] for i in gs_list], T)\n', (2123, 2156), False, 'from edrixs.utils import boltz_dist\n'), ((3142, 3165), 'numpy.zeros', 'np.zeros', (['(neloss, nom)'], {}), '((neloss, nom))\n', (3150, 3165), True, 'import numpy as np\n'), ((2409, 2505), 'edrixs.rixs_utils.scattering_mat', 'scattering_mat', (['eval_i', 'eval_n', 'trans_mat_abs[:, :, gs_list]', 'trans_mat_emi', 'om_inc', 'gamma_n'], {}), '(eval_i, eval_n, trans_mat_abs[:, :, gs_list], trans_mat_emi,\n om_inc, gamma_n)\n', (2423, 2505), False, 'from edrixs.rixs_utils import scattering_mat\n'), ((3521, 3574), 'scipy.signal.fftconvolve', 'signal.fftconvolve', (['rixs[i, :, :]', 'gauss'], {'mode': '"""same"""'}), "(rixs[i, :, :], gauss, mode='same')\n", (3539, 3574), False, 'from scipy import signal\n'), ((1921, 1951), 'numpy.transpose', 'np.transpose', (['trans_mat_abs[i]'], {}), '(trans_mat_abs[i])\n', (1933, 1951), True, 'import numpy as np\n'), ((2579, 2628), 'edrixs.photon_transition.dipole_polvec_rixs', 'dipole_polvec_rixs', (['thin', 'thout', 'phi', 'alpha', 'beta'], {}), '(thin, thout, phi, alpha, beta)\n', (2597, 2628), False, 'from edrixs.photon_transition import dipole_polvec_rixs\n'), ((3383, 3499), 'numpy.exp', 'np.exp', (['(-((mid_in - om_mesh[i]) ** 2 / (2 * inc_res ** 2) + (mid_out - eloss_mesh[\n j]) ** 2 / (2 * emi_res ** 2)))'], {}), '(-((mid_in - om_mesh[i]) ** 2 / (2 * inc_res ** 2) + (mid_out -\n eloss_mesh[j]) ** 2 / (2 * emi_res ** 2)))\n', (3389, 3499), True, 'import numpy as np\n'), ((2950, 2975), 'numpy.abs', 'np.abs', (['F_magnitude[n, m]'], {}), '(F_magnitude[n, m])\n', (2956, 2975), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- import io import os import shutil import itertools import gzip import warnings import tempfile import atexit import zarr import h5py import numpy as np from numpy.testing import assert_array_equal, assert_array_almost_equal import pytest from pytest import approx from allel.io.vcf_read import (iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers) from allel.test.tools import compare_arrays # needed for PY2/PY3 consistent behaviour warnings.resetwarnings() warnings.simplefilter('always') # setup temp dir for testing tempdir = tempfile.mkdtemp() atexit.register(shutil.rmtree, tempdir) def fixture_path(fn): return os.path.join(os.path.dirname(__file__), os.pardir, 'data', fn) def test_read_vcf_chunks(): vcf_path = fixture_path('sample.vcf') fields, samples, headers, it = iter_vcf_chunks(vcf_path, fields='*', chunk_length=4, buffer_size=100) # check headers assert 'q10' in headers.filters assert 's50' in headers.filters assert 'AA' in headers.infos assert 'AC' in headers.infos assert 'AF' in headers.infos assert 'AN' in headers.infos assert 'DB' in headers.infos assert 'DP' in headers.infos assert 'H2' in headers.infos assert 'NS' in headers.infos assert 'DP' in headers.formats assert 'GQ' in headers.formats assert 'GT' in headers.formats assert 'HQ' in headers.formats assert ['NA00001', 'NA00002', 'NA00003'] == headers.samples assert ['NA00001', 'NA00002', 'NA00003'] == samples.tolist() assert '1' == headers.infos['AA']['Number'] assert 'String' == headers.infos['AA']['Type'] assert 'Ancestral Allele' == headers.infos['AA']['Description'] assert '2' == headers.formats['HQ']['Number'] assert 'Integer' == headers.formats['HQ']['Type'] assert 'Haplotype Quality' == headers.formats['HQ']['Description'] # check chunk lengths chunks = [chunk for chunk, _, _, _ in it] assert 3 == len(chunks) assert 4 == chunks[0]['variants/POS'].shape[0] assert 4 == chunks[1]['variants/POS'].shape[0] assert 1 == chunks[2]['variants/POS'].shape[0] # check chunk contents expected_fields = [ # fixed fields 'variants/CHROM', 'variants/POS', 'variants/ID', 'variants/REF', 'variants/ALT', 'variants/QUAL', 'variants/FILTER_PASS', 'variants/FILTER_q10', 'variants/FILTER_s50', # INFO fields 'variants/AA', 'variants/AC', 'variants/AF', 'variants/AN', 'variants/DB', 'variants/DP', 'variants/H2', 'variants/NS', # special computed fields 'variants/altlen', 'variants/numalt', 'variants/is_snp', # FORMAT fields 'calldata/GT', 'calldata/GQ', 'calldata/HQ', 'calldata/DP', ] for chunk in chunks: assert sorted(expected_fields) == sorted(chunk.keys()) def test_fields_all(): vcf_path = fixture_path('sample.vcf') callset = read_vcf(vcf_path, fields='*') expected_fields = [ 'samples', # fixed fields 'variants/CHROM', 'variants/POS', 'variants/ID', 'variants/REF', 'variants/ALT', 'variants/QUAL', 'variants/FILTER_PASS', 'variants/FILTER_q10', 'variants/FILTER_s50', # INFO fields 'variants/AA', 'variants/AC', 'variants/AF', 'variants/AN', 'variants/DB', 'variants/DP', 'variants/H2', 'variants/NS', # special computed fields 'variants/altlen', 'variants/numalt', 'variants/is_snp', # FORMAT fields 'calldata/GT', 'calldata/GQ', 'calldata/HQ', 'calldata/DP', ] assert sorted(expected_fields) == sorted(callset.keys()) def test_fields_exclude(): vcf_path = fixture_path('sample.vcf') exclude = ['variants/altlen', 'ID', 'calldata/DP'] callset = read_vcf(vcf_path, fields='*', exclude_fields=exclude) expected_fields = [ 'samples', # fixed fields 'variants/CHROM', 'variants/POS', 'variants/REF', 'variants/ALT', 'variants/QUAL', 'variants/FILTER_PASS', 'variants/FILTER_q10', 'variants/FILTER_s50', # INFO fields 'variants/AA', 'variants/AC', 'variants/AF', 'variants/AN', 'variants/DB', 'variants/DP', 'variants/H2', 'variants/NS', # special computed fields 'variants/numalt', 'variants/is_snp', # FORMAT fields 'calldata/GT', 'calldata/GQ', 'calldata/HQ', ] assert sorted(expected_fields) == sorted(callset.keys()) def test_fields_rename(): vcf_path = fixture_path('sample.vcf') rename = {'CHROM': 'variants/chromosome', 'variants/altlen': 'spam/eggs', 'calldata/GT': 'foo/bar'} callset = read_vcf(vcf_path, fields='*', rename_fields=rename) print(sorted(callset.keys())) expected_fields = [ 'samples', # fixed fields 'variants/chromosome', 'variants/POS', 'variants/ID', 'variants/REF', 'variants/ALT', 'variants/QUAL', 'variants/FILTER_PASS', 'variants/FILTER_q10', 'variants/FILTER_s50', # INFO fields 'variants/AA', 'variants/AC', 'variants/AF', 'variants/AN', 'variants/DB', 'variants/DP', 'variants/H2', 'variants/NS', # special computed fields 'spam/eggs', 'variants/numalt', 'variants/is_snp', # FORMAT fields 'foo/bar', 'calldata/DP', 'calldata/GQ', 'calldata/HQ', ] assert sorted(expected_fields) == sorted(callset.keys()) def test_fields_rename_clash(): vcf_path = fixture_path('sample.vcf') # rename two fields to the same path rename = {'CHROM': 'variants/chromosome', 'variants/altlen': 'spam/eggs', 'calldata/GT': 'spam/eggs'} with pytest.raises(ValueError): read_vcf(vcf_path, fields='*', rename_fields=rename) # rename two fields to the same path (case insensitive) rename = {'CHROM': 'variants/chromosome', 'variants/altlen': 'spam/eggs', 'calldata/GT': 'SPAM/EGGS'} with pytest.raises(ValueError): read_vcf(vcf_path, fields='*', rename_fields=rename) # parent clash rename = {'CHROM': 'variants/chromosome', 'variants/altlen': 'spam/eggs', 'calldata/GT': 'spam'} with pytest.raises(ValueError): read_vcf(vcf_path, fields='*', rename_fields=rename) # parent clash rename = {'CHROM': 'variants/chromosome', 'variants/altlen': 'spam/eggs', 'calldata/GT': 'SPAM'} with pytest.raises(ValueError): read_vcf(vcf_path, fields='*', rename_fields=rename) # parent clash rename = {'CHROM': 'variants/chromosome', 'variants/altlen': 'spam', 'calldata/GT': 'spam/eggs'} with pytest.raises(ValueError): read_vcf(vcf_path, fields='*', rename_fields=rename) # parent clash rename = {'CHROM': 'variants/chromosome', 'variants/altlen': 'spam', 'calldata/GT': 'SPAM/EGGS'} with pytest.raises(ValueError): read_vcf(vcf_path, fields='*', rename_fields=rename) def test_fields_default(): vcf_path = fixture_path('sample.vcf') callset = read_vcf(vcf_path) expected_fields = [ 'samples', 'variants/CHROM', 'variants/POS', 'variants/ID', 'variants/REF', 'variants/ALT', 'variants/QUAL', 'variants/FILTER_PASS', 'calldata/GT', ] assert sorted(expected_fields) == sorted(callset.keys()) def test_fields_all_variants(): vcf_path = fixture_path('sample.vcf') callset = read_vcf(vcf_path, fields='variants/*') expected_fields = [ # fixed fields 'variants/CHROM', 'variants/POS', 'variants/ID', 'variants/REF', 'variants/ALT', 'variants/QUAL', 'variants/FILTER_PASS', 'variants/FILTER_q10', 'variants/FILTER_s50', # INFO fields 'variants/AA', 'variants/AC', 'variants/AF', 'variants/AN', 'variants/DB', 'variants/DP', 'variants/H2', 'variants/NS', # special computed fields 'variants/altlen', 'variants/numalt', 'variants/is_snp', ] assert sorted(expected_fields) == sorted(callset.keys()) def test_fields_info(): vcf_path = fixture_path('sample.vcf') callset = read_vcf(vcf_path, fields='INFO') expected_fields = [ # INFO fields 'variants/AA', 'variants/AC', 'variants/AF', 'variants/AN', 'variants/DB', 'variants/DP', 'variants/H2', 'variants/NS', ] assert sorted(expected_fields) == sorted(callset.keys()) def test_fields_filter(): vcf_path = fixture_path('sample.vcf') callset1 = read_vcf(vcf_path, fields='FILTER') expected_fields = [ 'variants/FILTER_PASS', 'variants/FILTER_q10', 'variants/FILTER_s50', ] assert sorted(expected_fields) == sorted(callset1.keys()) # this has explicit PASS definition in header, shouldn't cause problems vcf_path = fixture_path('test16.vcf') callset2 = read_vcf(vcf_path, fields='FILTER') expected_fields = [ 'variants/FILTER_PASS', 'variants/FILTER_q10', 'variants/FILTER_s50', ] assert sorted(expected_fields) == sorted(callset2.keys()) for k in callset1.keys(): assert_array_equal(callset1[k], callset2[k]) def test_fields_all_calldata(): vcf_path = fixture_path('sample.vcf') callset = read_vcf(vcf_path, fields='calldata/*') expected_fields = [ 'calldata/GT', 'calldata/GQ', 'calldata/HQ', 'calldata/DP', ] assert sorted(expected_fields) == sorted(callset.keys()) def test_fields_selected(): vcf_path = fixture_path('sample.vcf') # without samples callset = read_vcf(vcf_path, fields=['CHROM', 'variants/POS', 'AC', 'variants/AF', 'GT', 'calldata/HQ', 'FILTER_q10', 'variants/numalt']) expected_fields = [ 'variants/CHROM', 'variants/POS', 'variants/FILTER_q10', 'variants/AC', 'variants/AF', 'variants/numalt', # FORMAT fields 'calldata/GT', 'calldata/HQ', ] assert sorted(expected_fields) == sorted(callset.keys()) # with samples callset = read_vcf(vcf_path, fields=['CHROM', 'variants/POS', 'AC', 'variants/AF', 'GT', 'calldata/HQ', 'FILTER_q10', 'variants/numalt', 'samples'], chunk_length=4, buffer_size=100) expected_fields = [ 'samples', 'variants/CHROM', 'variants/POS', 'variants/FILTER_q10', 'variants/AC', 'variants/AF', 'variants/numalt', # FORMAT fields 'calldata/GT', 'calldata/HQ', ] assert sorted(expected_fields) == sorted(callset.keys()) def test_fields_dups(): vcf_path = fixture_path('sample.vcf') # silently collapse dups callset = read_vcf(vcf_path, fields=['CHROM', 'variants/CHROM', 'variants/AF', 'variants/AF', 'numalt', 'variants/numalt']) expected_fields = [ 'variants/CHROM', 'variants/AF', 'variants/numalt' ] assert sorted(expected_fields) == sorted(callset.keys()) def test_fields_dups_case_insensitive(): vcf_path = fixture_path('altlen.vcf') # allow case-insensitive dups here (but not in vcf_to_zarr) callset = read_vcf(vcf_path, fields=['ALTLEN', 'altlen']) expected_fields = [ 'variants/ALTLEN', 'variants/altlen', ] assert sorted(expected_fields) == sorted(callset.keys()) def _test_read_vcf_content(vcf, chunk_length, buffer_size): # object dtype for strings if isinstance(vcf, str): input_file = vcf close = False else: input_file = vcf() close = True callset = read_vcf(input_file, fields='*', chunk_length=chunk_length, buffer_size=buffer_size, types={'calldata/DP': 'object'}) if close: input_file.close() # samples assert (3,) == callset['samples'].shape assert 'O' == callset['samples'].dtype.kind assert ['NA00001', 'NA00002', 'NA00003'] == callset['samples'].tolist() # fixed fields assert (9,) == callset['variants/CHROM'].shape assert np.dtype(object) == callset['variants/CHROM'].dtype assert '19' == callset['variants/CHROM'][0] assert (9,) == callset['variants/POS'].shape assert 111 == callset['variants/POS'][0] assert (9,) == callset['variants/ID'].shape assert np.dtype(object) == callset['variants/ID'].dtype assert 'rs6054257' == callset['variants/ID'][2] assert (9,) == callset['variants/REF'].shape assert np.dtype(object) == callset['variants/REF'].dtype assert 'A' == callset['variants/REF'][0] assert (9, 3) == callset['variants/ALT'].shape assert np.dtype(object) == callset['variants/ALT'].dtype assert 'ATG' == callset['variants/ALT'][8, 1] assert (9,) == callset['variants/QUAL'].shape assert 10.0 == callset['variants/QUAL'][1] assert (9,) == callset['variants/FILTER_PASS'].shape assert callset['variants/FILTER_PASS'][2] assert not callset['variants/FILTER_PASS'][3] assert (9,) == callset['variants/FILTER_q10'].shape assert callset['variants/FILTER_q10'][3] # INFO fields assert 3 == callset['variants/NS'][2] assert .5 == callset['variants/AF'][2, 0] assert callset['variants/DB'][2] assert (3, 1, -1) == tuple(callset['variants/AC'][6]) # test calldata content assert (9, 3, 2) == callset['calldata/GT'].shape assert (0, 0) == tuple(callset['calldata/GT'][0, 0]) assert (-1, -1) == tuple(callset['calldata/GT'][6, 2]) assert (-1, -1) == tuple(callset['calldata/GT'][7, 2]) assert (9, 3, 2) == callset['calldata/HQ'].shape assert (10, 15) == tuple(callset['calldata/HQ'][0, 0]) assert (9, 3) == callset['calldata/DP'].shape assert np.dtype(object) == callset['calldata/DP'].dtype assert ('4', '2', '3') == tuple(callset['calldata/DP'][6]) # String (S) dtype if isinstance(vcf, str): input_file = vcf close = False else: input_file = vcf() close = True types = {'CHROM': 'S12', 'ID': 'S20', 'REF': 'S20', 'ALT': 'S20', 'calldata/DP': 'S3', 'samples': 'S20'} callset = read_vcf(input_file, fields='*', chunk_length=chunk_length, buffer_size=buffer_size, types=types) if close: input_file.close() # samples assert (3,) == callset['samples'].shape assert 'S' == callset['samples'].dtype.kind assert [b'NA00001', b'NA00002', b'NA00003'] == callset['samples'].tolist() # fixed fields assert (9,) == callset['variants/CHROM'].shape assert 'S' == callset['variants/CHROM'].dtype.kind assert b'19' == callset['variants/CHROM'][0] assert (9,) == callset['variants/POS'].shape assert 111 == callset['variants/POS'][0] assert (9,) == callset['variants/ID'].shape assert 'S' == callset['variants/ID'].dtype.kind assert b'rs6054257' == callset['variants/ID'][2] assert (9,) == callset['variants/REF'].shape assert b'A' == callset['variants/REF'][0] assert 'S' == callset['variants/REF'].dtype.kind assert (9, 3) == callset['variants/ALT'].shape assert b'ATG' == callset['variants/ALT'][8, 1] assert 'S' == callset['variants/ALT'].dtype.kind assert (9,) == callset['variants/QUAL'].shape assert 10.0 == callset['variants/QUAL'][1] assert (9,) == callset['variants/FILTER_PASS'].shape assert callset['variants/FILTER_PASS'][2] assert not callset['variants/FILTER_PASS'][3] assert (9,) == callset['variants/FILTER_q10'].shape assert callset['variants/FILTER_q10'][3] # INFO fields assert 3 == callset['variants/NS'][2] assert .5 == callset['variants/AF'][2, 0] assert callset['variants/DB'][2] assert (3, 1, -1) == tuple(callset['variants/AC'][6]) # test calldata content assert (9, 3, 2) == callset['calldata/GT'].shape assert (0, 0) == tuple(callset['calldata/GT'][0, 0]) assert (-1, -1) == tuple(callset['calldata/GT'][6, 2]) assert (-1, -1) == tuple(callset['calldata/GT'][7, 2]) assert (9, 3, 2) == callset['calldata/HQ'].shape assert (10, 15) == tuple(callset['calldata/HQ'][0, 0]) assert (9, 3) == callset['calldata/DP'].shape assert 'S' == callset['calldata/DP'].dtype.kind assert (b'4', b'2', b'3') == tuple(callset['calldata/DP'][6]) def test_inputs(): vcf_path = fixture_path('sample.vcf') with open(vcf_path, mode='rb') as f: data = f.read(-1) inputs = (vcf_path, vcf_path + '.gz', lambda: open(vcf_path, mode='rb'), lambda: gzip.open(vcf_path + '.gz', mode='rb'), lambda: io.BytesIO(data), lambda: io.BytesIO(data.replace(b'\n', b'\r')), lambda: io.BytesIO(data.replace(b'\n', b'\r\n'))) chunk_length = 3 buffer_size = 10 for i in inputs: _test_read_vcf_content(i, chunk_length, buffer_size) def test_chunk_lengths(): vcf_path = fixture_path('sample.vcf') chunk_lengths = 1, 2, 3, 5, 10, 20 buffer_size = 10 for chunk_length in chunk_lengths: _test_read_vcf_content(vcf_path, chunk_length, buffer_size) def test_buffer_sizes(): vcf_path = fixture_path('sample.vcf') chunk_length = 3 buffer_sizes = 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 for buffer_size in buffer_sizes: _test_read_vcf_content(vcf_path, chunk_length, buffer_size) def test_utf8(): vcf_path = fixture_path('sample.utf8.vcf') callset = read_vcf(vcf_path, fields='*') # samples assert (3,) == callset['samples'].shape assert 'O' == callset['samples'].dtype.kind assert [u'NA00001', u'Γεια σου κόσμε!', u'NA00003'] == callset['samples'].tolist() # CHROM assert (9,) == callset['variants/CHROM'].shape assert np.dtype(object) == callset['variants/CHROM'].dtype assert '19' == callset['variants/CHROM'][0] assert u'Njatjeta Botë!' == callset['variants/CHROM'][-2] # POS assert (9,) == callset['variants/POS'].shape assert 111 == callset['variants/POS'][0] # ID assert (9,) == callset['variants/ID'].shape assert np.dtype(object) == callset['variants/ID'].dtype assert 'foo' == callset['variants/ID'][0] assert u'¡Hola mundo!' == callset['variants/ID'][1] # REF assert (9,) == callset['variants/REF'].shape assert np.dtype(object) == callset['variants/REF'].dtype assert 'A' == callset['variants/REF'][0] # ALT assert (9, 3) == callset['variants/ALT'].shape assert np.dtype(object) == callset['variants/ALT'].dtype assert 'ATG' == callset['variants/ALT'][8, 1] # QUAL assert (9,) == callset['variants/QUAL'].shape assert 10.0 == callset['variants/QUAL'][1] # FILTER assert (9,) == callset['variants/FILTER_PASS'].shape assert callset['variants/FILTER_PASS'][2] assert not callset['variants/FILTER_PASS'][5] assert (9,) == callset[u'variants/FILTER_Helló_világ!'].shape assert not callset[u'variants/FILTER_Helló_világ!'][0] assert callset[u'variants/FILTER_Helló_világ!'][5] # INFO fields assert u'foo' == callset['variants/TEXT'][0] assert u'こんにちは世界' == callset['variants/TEXT'][4] # calldata assert (9, 3, 2) == callset['calldata/GT'].shape assert (0, 0) == tuple(callset['calldata/GT'][0, 0]) assert (-1, -1) == tuple(callset['calldata/GT'][6, 2]) assert (-1, -1) == tuple(callset['calldata/GT'][7, 2]) assert (9, 3, 2) == callset['calldata/HQ'].shape assert (10, 15) == tuple(callset['calldata/HQ'][0, 0]) assert (9, 3) == callset['calldata/DP'].shape assert (4, 2, 3) == tuple(callset['calldata/DP'][6]) assert (u'foo', u'Hej Världen!', u'.') == tuple(callset['calldata/GTXT'][0]) def test_truncation_chrom(): input_data = (b"#CHROM\n" b"2L\n" b"2R\n") # with and without final line terminator for data in (input_data, input_data[:-1]): for string_type in 'S10', 'object': input_file = io.BytesIO(data) callset = read_vcf(input_file, fields=['CHROM', 'samples'], types={'CHROM': string_type}) # check fields expected_fields = ['variants/CHROM'] assert sorted(expected_fields) == sorted(callset.keys()) # check data content a = callset['variants/CHROM'] assert 2 == len(a) if string_type == 'S10': assert b'2L' == a[0] assert b'2R' == a[1] else: assert '2L' == a[0] assert '2R' == a[1] def test_truncation_pos(): input_data = (b"#CHROM\tPOS\n" b"2L\t12\n" b"2R\t34\n") # with and without final line terminator for data in (input_data, input_data[:-1]): input_file = io.BytesIO(data) callset = read_vcf(input_file, fields=['POS', 'samples']) # check fields expected_fields = ['variants/POS'] assert sorted(expected_fields) == sorted(callset.keys()) # check data content a = callset['variants/POS'] assert 2 == len(a) assert 12 == a[0] assert 34 == a[1] def test_truncation_id(): input_data = (b"#CHROM\tPOS\tID\n" b"2L\t12\tfoo\n" b"2R\t34\tbar\n") # with and without final line terminator for data in (input_data, input_data[:-1]): for string_type in 'S10', 'object': input_file = io.BytesIO(data) callset = read_vcf(input_file, fields=['ID', 'samples'], types={'ID': string_type}) # check fields expected_fields = ['variants/ID'] assert sorted(expected_fields) == sorted(callset.keys()) # check data content a = callset['variants/ID'] assert 2 == len(a) if string_type == 'S10': assert b'foo' == a[0] assert b'bar' == a[1] else: assert 'foo' == a[0] assert 'bar' == a[1] def test_truncation_ref(): input_data = (b"#CHROM\tPOS\tID\tREF\n" b"2L\t12\tfoo\tA\n" b"2R\t34\tbar\tC\n") # with and without final line terminator for data in (input_data, input_data[:-1]): for string_type in 'S10', 'object': input_file = io.BytesIO(data) callset = read_vcf(input_file, fields=['REF', 'samples'], types={'REF': string_type}) # check fields expected_fields = ['variants/REF'] assert sorted(expected_fields) == sorted(callset.keys()) # check data content a = callset['variants/REF'] assert 2 == len(a) if string_type == 'S10': assert b'A' == a[0] assert b'C' == a[1] else: assert 'A' == a[0] assert 'C' == a[1] def test_truncation_alt(): input_data = (b"#CHROM\tPOS\tID\tREF\tALT\n" b"2L\t12\tfoo\tA\tC\n" b"2R\t34\tbar\tC\tG\n") # with and without final line terminator for data in (input_data, input_data[:-1]): for string_type in 'S10', 'object': input_file = io.BytesIO(data) callset = read_vcf(input_file, fields=['ALT', 'samples'], numbers=dict(ALT=1), types={'ALT': string_type}) # check fields expected_fields = ['variants/ALT'] assert sorted(expected_fields) == sorted(callset.keys()) # check data content a = callset['variants/ALT'] assert 2 == len(a) if string_type == 'S10': assert b'C' == a[0] assert b'G' == a[1] else: assert 'C' == a[0] assert 'G' == a[1] def test_truncation_qual(): input_data = (b"#CHROM\tPOS\tID\tREF\tALT\tQUAL\n" b"2L\t12\tfoo\tA\tC\t1.2\n" b"2R\t34\tbar\tC\tG\t3.4\n") # with and without final line terminator for data in (input_data, input_data[:-1]): input_file = io.BytesIO(data) callset = read_vcf(input_file, fields=['QUAL', 'samples']) # check fields expected_fields = ['variants/QUAL'] assert sorted(expected_fields) == sorted(callset.keys()) # check data content a = callset['variants/QUAL'] assert 2 == len(a) assert approx(1.2) == a[0] assert approx(3.4) == a[1] def test_truncation_filter(): input_data = (b"#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\n" b"2L\t12\tfoo\tA\tC\t1.2\t.\n" b"2R\t34\tbar\tC\tG\t3.4\tPASS\n" b"2R\t56\tbaz\tG\tT\t56.77\tq10,s50\n") # with and without final line terminator for data in (input_data, input_data[:-1]): input_file = io.BytesIO(data) callset = read_vcf(input_file, fields=['FILTER_PASS', 'FILTER_q10', 'FILTER_s50', 'samples']) # check fields expected_fields = ['variants/FILTER_PASS', 'variants/FILTER_q10', 'variants/FILTER_s50'] assert sorted(expected_fields) == sorted(callset.keys()) # check data content a = callset['variants/FILTER_PASS'] assert 3 == len(a) assert [False, True, False] == a.tolist() a = callset['variants/FILTER_q10'] assert 3 == len(a) assert [False, False, True] == a.tolist() a = callset['variants/FILTER_s50'] assert 3 == len(a) assert [False, False, True] == a.tolist() def test_truncation_info(): input_data = (b"#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\n" b"2L\t12\tfoo\tA\tC\t1.2\t.\tfoo=42;bar=1.2\n" b"2R\t34\tbar\tC\tG\t3.4\tPASS\t.\n" b"2R\t56\tbaz\tG\tT\t56.77\tq10,s50\t\n") # with and without final line terminator for data in (input_data, input_data[:-1]): input_file = io.BytesIO(data) callset = read_vcf(input_file, fields=['foo', 'bar', 'samples'], types=dict(foo='Integer', bar='Float')) # check fields expected_fields = ['variants/foo', 'variants/bar'] assert sorted(expected_fields) == sorted(callset.keys()) # check data content a = callset['variants/foo'] assert 3 == len(a) assert 42 == a[0] assert -1 == a[1] assert -1 == a[2] a = callset['variants/bar'] assert 3 == len(a) assert approx(1.2) == a[0] assert np.isnan(a[1]) assert np.isnan(a[2]) def test_truncation_format(): input_data = (b"#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\n" b"2L\t12\tfoo\tA\tC\t1.2\t.\tfoo=42;bar=1.2\tGT:GQ\n" b"2R\t34\tbar\tC\tG\t3.4\tPASS\t.\t.\n" b"2R\t56\tbaz\tG\tT\t56.77\tq10,s50\t\t\n") # with and without final line terminator for data in (input_data, input_data[:-1]): input_file = io.BytesIO(data) callset = read_vcf(input_file, fields=['foo', 'bar', 'samples'], types=dict(foo='Integer', bar='Float')) # check fields expected_fields = ['variants/foo', 'variants/bar'] assert sorted(expected_fields) == sorted(callset.keys()) # check data content a = callset['variants/foo'] assert 3 == len(a) assert 42 == a[0] assert -1 == a[1] assert -1 == a[2] a = callset['variants/bar'] assert 3 == len(a) assert approx(1.2) == a[0] assert np.isnan(a[1]) assert np.isnan(a[2]) def test_truncation_calldata(): input_data = (b"#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\tS2\tS1\n" b"2L\t12\tfoo\tA\tC\t1.2\t.\tfoo=42;bar=1.2\tGT:GQ\t0/1:12\t1/2:34\n" b"2R\t34\tbar\tC\tG\t3.4\tPASS\t.\tGT\t./.\n" b"2R\t56\tbaz\tG\tT\t56.77\tq10,s50\t\n") # with and without final line terminator for data in (input_data, input_data[:-1]): input_file = io.BytesIO(data) callset = read_vcf(input_file, fields=['calldata/GT', 'calldata/GQ', 'samples'], types={'calldata/GT': 'i1', 'calldata/GQ': 'i2'}) # check fields expected_fields = ['calldata/GT', 'calldata/GQ', 'samples'] assert sorted(expected_fields) == sorted(callset.keys()) # check data content assert 2 == len(callset['samples']) assert ['S2', 'S1'] == callset['samples'].tolist() a = callset['calldata/GT'] assert (3, 2, 2) == a.shape assert (0, 1) == tuple(a[0, 0]) assert (1, 2) == tuple(a[0, 1]) assert (-1, -1) == tuple(a[1, 0]) assert (-1, -1) == tuple(a[1, 1]) assert (-1, -1) == tuple(a[2, 0]) assert (-1, -1) == tuple(a[2, 1]) a = callset['calldata/GQ'] assert (3, 2) == a.shape assert 12 == a[0, 0] assert 34 == a[0, 1] assert -1 == a[1, 0] assert -1 == a[1, 1] assert -1 == a[2, 0] assert -1 == a[2, 1] def test_info_types(): vcf_path = fixture_path('sample.vcf') for dtype in ('i1', 'i2', 'i4', 'i8', 'u1', 'u2', 'u4', 'u8', 'f4', 'f8', 'S10', 'object'): callset = read_vcf(vcf_path, fields=['variants/DP', 'variants/AC'], types={'variants/DP': dtype, 'variants/AC': dtype}, numbers={'variants/AC': 3}) assert np.dtype(dtype) == callset['variants/DP'].dtype assert (9,) == callset['variants/DP'].shape assert (9, 3) == callset['variants/AC'].shape def test_vcf_types(): input_data = ( b'##INFO=<ID=foo,Number=1,Type=String,Description="Testing 123.">\n' b"#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\n" b"2L\t12\t.\tA\tC\t.\t.\tfoo=bar\t.\n" ) callset = read_vcf(io.BytesIO(input_data), fields=['foo']) assert np.dtype(object) == callset['variants/foo'].dtype input_data = ( b'##INFO=<ID=foo,Number=1,Type=Integer,Description="Testing 123.">\n' b"#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\n" b"2L\t12\t.\tA\tC\t.\t.\tfoo=42\t.\n" ) callset = read_vcf(io.BytesIO(input_data), fields=['foo']) assert np.dtype('i4') == callset['variants/foo'].dtype input_data = ( b'##INFO=<ID=foo,Number=1,Type=Float,Description="Testing 123.">\n' b"#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\n" b"2L\t12\t.\tA\tC\t.\t.\tfoo=42.0\t.\n" ) callset = read_vcf(io.BytesIO(input_data), fields=['foo']) assert np.dtype('f4') == callset['variants/foo'].dtype input_data = ( b'##INFO=<ID=foo,Number=1,Type=Character,Description="Testing 123.">\n' b"#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\n" b"2L\t12\t.\tA\tC\t.\t.\tfoo=b\t.\n" ) callset = read_vcf(io.BytesIO(input_data), fields=['foo']) assert np.dtype('S1') == callset['variants/foo'].dtype def test_genotype_types(): vcf_path = fixture_path('sample.vcf') for dtype in 'i1', 'i2', 'i4', 'i8', 'u1', 'u2', 'u4', 'u8', 'S3', 'object': callset = read_vcf(vcf_path, fields=['GT'], types={'GT': dtype}, numbers={'GT': 2}) assert np.dtype(dtype) == callset['calldata/GT'].dtype assert (9, 3, 2) == callset['calldata/GT'].shape # non-GT field with genotype dtype input_data = ( b"#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\tS1\tS2\tS3\n" b"2L\t12\t.\tA\t.\t.\t.\t.\tCustomGT:CustomGQ\t0/0/0:11\t0/1/2:12\t././.:.\n" b"2L\t34\t.\tC\tT\t.\t.\t.\tCustomGT:CustomGQ\t0/1/2:22\t3/3/.:33\t.\n" b"3R\t45\t.\tG\tA,T\t.\t.\t.\tCustomGT:CustomGQ\t0/1:.\t5:12\t\n" ) callset = read_vcf(io.BytesIO(input_data), fields=['calldata/CustomGT', 'calldata/CustomGQ'], numbers={'calldata/CustomGT': 3, 'calldata/CustomGQ': 1}, types={'calldata/CustomGT': 'genotype/i1', 'calldata/CustomGQ': 'i2'}) e = np.array([[[0, 0, 0], [0, 1, 2], [-1, -1, -1]], [[0, 1, 2], [3, 3, -1], [-1, -1, -1]], [[0, 1, -1], [5, -1, -1], [-1, -1, -1]]], dtype='i1') a = callset['calldata/CustomGT'] assert_array_equal(e, a) assert e.dtype == a.dtype e = np.array([[11, 12, -1], [22, 33, -1], [-1, 12, -1]], dtype='i2') a = callset['calldata/CustomGQ'] assert_array_equal(e, a) assert e.dtype == a.dtype def test_calldata_types(): vcf_path = fixture_path('sample.vcf') for dtype in ('i1', 'i2', 'i4', 'i8', 'u1', 'u2', 'u4', 'u8', 'f4', 'f8', 'S10', 'object'): callset = read_vcf(vcf_path, fields=['HQ'], types={'HQ': dtype}, numbers={'HQ': 2}) assert np.dtype(dtype) == callset['calldata/HQ'].dtype assert (9, 3, 2) == callset['calldata/HQ'].shape def test_genotype_ploidy(): vcf_path = fixture_path('sample.vcf') callset = read_vcf(vcf_path, fields='GT', numbers=dict(GT=1)) gt = callset['calldata/GT'] assert (9, 3) == gt.shape assert (0, 0, 0) == tuple(gt[8, :]) callset = read_vcf(vcf_path, fields='GT', numbers=dict(GT=2)) gt = callset['calldata/GT'] assert (9, 3, 2) == gt.shape assert (0, -1) == tuple(gt[8, 0]) assert (0, 1) == tuple(gt[8, 1]) assert (0, 2) == tuple(gt[8, 2]) callset = read_vcf(vcf_path, fields='GT', numbers=dict(GT=3)) gt = callset['calldata/GT'] assert (9, 3, 3) == gt.shape assert (0, -1, -1) == tuple(gt[8, 0]) assert (0, 1, -1) == tuple(gt[8, 1]) assert (0, 2, -1) == tuple(gt[8, 2]) def test_fills_info(): vcf_path = fixture_path('sample.vcf') callset = read_vcf(vcf_path, fields='AN', numbers=dict(AN=1)) a = callset['variants/AN'] assert (9,) == a.shape assert -1 == a[0] assert -1 == a[1] assert -1 == a[2] callset = read_vcf(vcf_path, fields='AN', numbers=dict(AN=1), fills=dict(AN=-2)) a = callset['variants/AN'] assert (9,) == a.shape assert -2 == a[0] assert -2 == a[1] assert -2 == a[2] callset = read_vcf(vcf_path, fields='AN', numbers=dict(AN=1), fills=dict(AN=-1)) a = callset['variants/AN'] assert (9,) == a.shape assert -1 == a[0] assert -1 == a[1] assert -1 == a[2] def test_fills_genotype(): vcf_path = fixture_path('sample.vcf') callset = read_vcf(vcf_path, fields='GT', numbers=dict(GT=2)) gt = callset['calldata/GT'] assert (9, 3, 2) == gt.shape assert (0, -1) == tuple(gt[8, 0]) assert (0, 1) == tuple(gt[8, 1]) assert (0, 2) == tuple(gt[8, 2]) callset = read_vcf(vcf_path, fields='GT', numbers=dict(GT=2), fills=dict(GT=-2)) gt = callset['calldata/GT'] assert (9, 3, 2) == gt.shape assert (0, -2) == tuple(gt[8, 0]) assert (0, 1) == tuple(gt[8, 1]) assert (0, 2) == tuple(gt[8, 2]) callset = read_vcf(vcf_path, fields='GT', numbers=dict(GT=3), fills=dict(GT=-1)) gt = callset['calldata/GT'] assert (9, 3, 3) == gt.shape assert (0, -1, -1) == tuple(gt[8, 0]) assert (0, 1, -1) == tuple(gt[8, 1]) assert (0, 2, -1) == tuple(gt[8, 2]) def test_fills_calldata(): vcf_path = fixture_path('sample.vcf') callset = read_vcf(vcf_path, fields='HQ', numbers=dict(HQ=2)) a = callset['calldata/HQ'] assert (9, 3, 2) == a.shape assert (10, 15) == tuple(a[0, 0]) assert (-1, -1) == tuple(a[7, 0]) assert (-1, -1) == tuple(a[8, 0]) callset = read_vcf(vcf_path, fields='HQ', numbers=dict(HQ=2), fills=dict(HQ=-2)) a = callset['calldata/HQ'] assert (9, 3, 2) == a.shape assert (10, 15) == tuple(a[0, 0]) assert (-2, -2) == tuple(a[7, 0]) assert (-2, -2) == tuple(a[8, 0]) callset = read_vcf(vcf_path, fields='HQ', numbers=dict(HQ=2), fills=dict(HQ=-1)) a = callset['calldata/HQ'] assert (9, 3, 2) == a.shape assert (10, 15) == tuple(a[0, 0]) assert (-1, -1) == tuple(a[7, 0]) assert (-1, -1) == tuple(a[8, 0]) def test_numbers(): vcf_path = fixture_path('sample.vcf') callset = read_vcf(vcf_path, fields=['ALT'], numbers=dict(ALT=1)) a = callset['variants/ALT'] assert (9,) == a.shape assert 'A' == a[8] callset = read_vcf(vcf_path, fields=['ALT'], numbers=dict(ALT=2), types=dict(ALT='S4')) a = callset['variants/ALT'] assert (9, 2) == a.shape assert b'A' == a[8, 0] assert b'ATG' == a[8, 1] callset = read_vcf(vcf_path, fields=['ALT'], numbers=dict(ALT=3), types=dict(ALT='S4')) a = callset['variants/ALT'] assert (9, 3) == a.shape assert b'A' == a[8, 0] assert b'ATG' == a[8, 1] assert b'C' == a[8, 2] callset = read_vcf(vcf_path, fields=['AC'], numbers=dict(AC=0)) a = callset['variants/AC'] assert (9,) == a.shape assert not a[0] assert a[6] callset = read_vcf(vcf_path, fields=['AC'], numbers=dict(AC=1)) a = callset['variants/AC'] assert (9,) == a.shape assert -1 == a[0] assert 3 == a[6] callset = read_vcf(vcf_path, fields=['AC'], numbers=dict(AC=2)) a = callset['variants/AC'] assert (9, 2) == a.shape assert -1 == a[0, 0] assert -1 == a[0, 1] assert 3 == a[6, 0] assert 1 == a[6, 1] callset = read_vcf(vcf_path, fields='AF', numbers=dict(AF=1)) a = callset['variants/AF'] assert (9,) == a.shape assert 0.5 == a[2] assert approx(0.333) == a[4] callset = read_vcf(vcf_path, fields='AF', numbers=dict(AF=2)) a = callset['variants/AF'] assert (9, 2) == a.shape assert 0.5 == a[2, 0] assert np.isnan(a[2, 1]) assert approx(0.333) == a[4, 0] assert approx(0.667) == a[4, 1] callset = read_vcf(vcf_path, fields=['HQ'], numbers=dict(HQ=1)) a = callset['calldata/HQ'] assert (9, 3) == a.shape assert 10 == a[0, 0] assert 51 == a[2, 0] assert -1 == a[6, 0] callset = read_vcf(vcf_path, fields=['HQ'], numbers=dict(HQ=2)) a = callset['calldata/HQ'] assert (9, 3, 2) == a.shape assert (10, 15) == tuple(a[0, 0]) assert (51, 51) == tuple(a[2, 0]) assert (-1, -1) == tuple(a[6, 0]) def test_alt_number(): vcf_path = fixture_path('sample.vcf') callset = read_vcf(vcf_path, fields=['ALT', 'AC', 'AF'], alt_number=2) a = callset['variants/ALT'] assert (9, 2) == a.shape a = callset['variants/AC'] assert (9, 2) == a.shape a = callset['variants/AF'] assert (9, 2) == a.shape callset = read_vcf(vcf_path, fields=['ALT', 'AC', 'AF'], alt_number=1) a = callset['variants/ALT'] assert (9,) == a.shape a = callset['variants/AC'] assert (9,) == a.shape a = callset['variants/AF'] assert (9,) == a.shape callset = read_vcf(vcf_path, fields=['ALT', 'AC', 'AF'], alt_number=5) a = callset['variants/ALT'] assert (9, 5) == a.shape a = callset['variants/AC'] assert (9, 5) == a.shape a = callset['variants/AF'] assert (9, 5) == a.shape # can override callset = read_vcf(vcf_path, fields=['ALT', 'AC', 'AF'], alt_number=5, numbers={'ALT': 2, 'AC': 4}) a = callset['variants/ALT'] assert (9, 2) == a.shape a = callset['variants/AC'] assert (9, 4) == a.shape a = callset['variants/AF'] assert (9, 5) == a.shape def test_read_region(): for vcf_path in (fixture_path('sample.vcf.gz'), fixture_path('sample.vcf')): for tabix in 'tabix', None, 'foobar': region = '19' callset = read_vcf(vcf_path, region=region, tabix=tabix) chrom = callset['variants/CHROM'] pos = callset['variants/POS'] assert 2 == len(chrom) assert isinstance(chrom, np.ndarray) assert np.all(chrom == '19') assert 2 == len(pos) assert_array_equal([111, 112], pos) region = '20' callset = read_vcf(vcf_path, region=region, tabix=tabix) chrom = callset['variants/CHROM'] pos = callset['variants/POS'] assert 6 == len(chrom) assert isinstance(chrom, np.ndarray) assert np.all(chrom == '20') assert 6 == len(pos) assert_array_equal([14370, 17330, 1110696, 1230237, 1234567, 1235237], pos) region = 'X' callset = read_vcf(vcf_path, region=region, tabix=tabix) chrom = callset['variants/CHROM'] pos = callset['variants/POS'] assert 1 == len(chrom) assert isinstance(chrom, np.ndarray) assert np.all(chrom == 'X') assert 1 == len(pos) assert_array_equal([10], pos) region = 'Y' callset = read_vcf(vcf_path, region=region, tabix=tabix) assert callset is None region = '20:1-100000' callset = read_vcf(vcf_path, region=region, tabix=tabix) chrom = callset['variants/CHROM'] pos = callset['variants/POS'] assert 2 == len(chrom) assert isinstance(chrom, np.ndarray) assert np.all(chrom == '20') assert 2 == len(pos) assert_array_equal([14370, 17330], pos) region = '20:1000000-1233000' callset = read_vcf(vcf_path, region=region, tabix=tabix) chrom = callset['variants/CHROM'] pos = callset['variants/POS'] assert 2 == len(chrom) assert isinstance(chrom, np.ndarray) assert np.all(chrom == '20') assert 2 == len(pos) assert_array_equal([1110696, 1230237], pos) region = '20:1233000-2000000' callset = read_vcf(vcf_path, region=region, tabix=tabix) chrom = callset['variants/CHROM'] pos = callset['variants/POS'] assert 2 == len(chrom) assert isinstance(chrom, np.ndarray) assert np.all(chrom == '20') assert 2 == len(pos) assert_array_equal([1234567, 1235237], pos) def test_read_region_unsorted(): # Test behaviour when data are not sorted by chromosome or position and tabix is # not available. fn = fixture_path('unsorted.vcf') tabix = None region = '19' callset = read_vcf(fn, region=region, tabix=tabix) chrom = callset['variants/CHROM'] pos = callset['variants/POS'] assert 2 == len(chrom) assert isinstance(chrom, np.ndarray) assert np.all(chrom == '19') assert 2 == len(pos) assert_array_equal([111, 112], pos) region = '20' callset = read_vcf(fn, region=region, tabix=tabix) chrom = callset['variants/CHROM'] pos = callset['variants/POS'] assert 6 == len(chrom) assert isinstance(chrom, np.ndarray) assert np.all(chrom == '20') assert 6 == len(pos) assert_array_equal([14370, 1230237, 1234567, 1235237, 17330, 1110696], pos) region = 'X' callset = read_vcf(fn, region=region, tabix=tabix) chrom = callset['variants/CHROM'] pos = callset['variants/POS'] assert 1 == len(chrom) assert isinstance(chrom, np.ndarray) assert np.all(chrom == 'X') assert 1 == len(pos) assert_array_equal([10], pos) region = 'Y' callset = read_vcf(fn, region=region, tabix=tabix) assert callset is None region = '20:1-100000' callset = read_vcf(fn, region=region, tabix=tabix) chrom = callset['variants/CHROM'] pos = callset['variants/POS'] assert 2 == len(chrom) assert isinstance(chrom, np.ndarray) assert np.all(chrom == '20') assert 2 == len(pos) assert_array_equal([14370, 17330], pos) region = '20:1000000-1233000' callset = read_vcf(fn, region=region, tabix=tabix) chrom = callset['variants/CHROM'] pos = callset['variants/POS'] assert 2 == len(chrom) assert isinstance(chrom, np.ndarray) assert np.all(chrom == '20') assert 2 == len(pos) assert_array_equal([1230237, 1110696], pos) region = '20:1233000-2000000' callset = read_vcf(fn, region=region, tabix=tabix) chrom = callset['variants/CHROM'] pos = callset['variants/POS'] assert 2 == len(chrom) assert isinstance(chrom, np.ndarray) assert np.all(chrom == '20') assert 2 == len(pos) assert_array_equal([1234567, 1235237], pos) def test_read_samples(): vcf_path = fixture_path('sample.vcf') for samples in ['NA00001', 'NA00003'], [0, 2], ['NA00003', 'NA00001'], [2, 'NA00001']: callset = read_vcf(vcf_path, fields=['samples', 'GT'], samples=samples) assert ['NA00001', 'NA00003'] == callset['samples'].astype('U').tolist() gt = callset['calldata/GT'] assert (9, 2, 2) == gt.shape assert (0, 0) == tuple(gt[2, 0]) assert (1, 1) == tuple(gt[2, 1]) assert (1, 2) == tuple(gt[4, 0]) assert (2, 2) == tuple(gt[4, 1]) for samples in ['NA00002'], [1]: callset = read_vcf(vcf_path, fields=['samples', 'GT'], samples=samples) assert ['NA00002'] == callset['samples'].astype('U').tolist() gt = callset['calldata/GT'] assert (9, 1, 2) == gt.shape assert (1, 0) == tuple(gt[2, 0]) assert (2, 1) == tuple(gt[4, 0]) def test_read_empty(): vcf_path = fixture_path('empty.vcf') callset = read_vcf(vcf_path) assert callset is None def test_ann(): vcf_path = fixture_path('ann.vcf') # all ANN fields callset = read_vcf(vcf_path, fields=['ANN'], transformers=[ANNTransformer()]) expect_keys = sorted(['variants/ANN_Allele', 'variants/ANN_Annotation', 'variants/ANN_Annotation_Impact', 'variants/ANN_Gene_Name', 'variants/ANN_Gene_ID', 'variants/ANN_Feature_Type', 'variants/ANN_Feature_ID', 'variants/ANN_Transcript_BioType', 'variants/ANN_Rank', 'variants/ANN_HGVS_c', 'variants/ANN_HGVS_p', 'variants/ANN_cDNA_pos', 'variants/ANN_cDNA_length', 'variants/ANN_CDS_pos', 'variants/ANN_CDS_length', 'variants/ANN_AA_pos', 'variants/ANN_AA_length', 'variants/ANN_Distance']) assert expect_keys == sorted(callset.keys()) a = callset['variants/ANN_Allele'] assert (3,) == a.shape assert np.dtype('object') == a.dtype assert_array_equal(['T', '', 'T'], a) a = callset['variants/ANN_Annotation'] assert (3,) == a.shape assert np.dtype('object') == a.dtype assert_array_equal(['intergenic_region', '', 'missense_variant'], a) a = callset['variants/ANN_Annotation_Impact'] assert (3,) == a.shape assert np.dtype('object') == a.dtype assert_array_equal(['MODIFIER', '', 'MODERATE'], a) a = callset['variants/ANN_Gene_Name'] assert (3,) == a.shape assert np.dtype('object') == a.dtype assert_array_equal(['AGAP004677', '', 'AGAP005273'], a) a = callset['variants/ANN_Gene_ID'] assert (3,) == a.shape assert np.dtype('object') == a.dtype assert_array_equal(['AGAP004677', '', 'AGAP005273'], a) a = callset['variants/ANN_Feature_Type'] assert (3,) == a.shape assert np.dtype('object') == a.dtype assert_array_equal(['intergenic_region', '', 'transcript'], a) a = callset['variants/ANN_Feature_ID'] assert (3,) == a.shape assert np.dtype('object') == a.dtype assert_array_equal(['AGAP004677', '', 'AGAP005273-RA'], a) a = callset['variants/ANN_Transcript_BioType'] assert np.dtype('object') == a.dtype assert (3,) == a.shape assert_array_equal(['', '', 'VectorBase'], a) assert np.dtype('object') == a.dtype a = callset['variants/ANN_Rank'] assert (3,) == a.shape assert np.dtype('int8') == a.dtype assert_array_equal([-1, -1, 1], a[:]) a = callset['variants/ANN_HGVS_c'] assert (3,) == a.shape assert np.dtype('object') == a.dtype assert_array_equal(['', '', '17A>T'], a) a = callset['variants/ANN_HGVS_p'] assert (3,) == a.shape assert np.dtype('object') == a.dtype assert_array_equal(['', '', 'Asp6Val'], a) a = callset['variants/ANN_cDNA_pos'] assert (3,) == a.shape assert np.dtype('int32') == a.dtype assert_array_equal([-1, -1, 17], a) a = callset['variants/ANN_cDNA_length'] assert (3,) == a.shape assert np.dtype('int32') == a.dtype assert_array_equal([-1, -1, 4788], a) a = callset['variants/ANN_CDS_pos'] assert (3,) == a.shape assert np.dtype('int32') == a.dtype assert_array_equal([-1, -1, 17], a) a = callset['variants/ANN_CDS_length'] assert (3,) == a.shape assert np.dtype('int32') == a.dtype assert_array_equal([-1, -1, 4788], a) a = callset['variants/ANN_AA_pos'] assert (3,) == a.shape assert np.dtype('int32') == a.dtype assert_array_equal([-1, -1, 6], a) a = callset['variants/ANN_AA_length'] assert (3,) == a.shape assert np.dtype('int32') == a.dtype assert_array_equal([-1, -1, 1596], a) a = callset['variants/ANN_Distance'] assert (3,) == a.shape assert np.dtype('int32') == a.dtype assert_array_equal([3000, -1, -1], a) # numbers=2 callset = read_vcf(vcf_path, fields=['ANN'], numbers={'ANN': 2}, transformers=[ANNTransformer()]) a = callset['variants/ANN_Allele'] assert (3, 2) == a.shape assert np.dtype('object') == a.dtype assert_array_equal(['T', ''], a[0]) assert_array_equal(['', ''], a[1]) assert_array_equal(['T', 'G'], a[2]) a = callset['variants/ANN_cDNA_pos'] assert (3, 2) == a.shape assert np.dtype('int32') == a.dtype assert_array_equal([-1, -1, 17], a[:, 0]) assert_array_equal([-1, -1, 12], a[:, 1]) a = callset['variants/ANN_cDNA_length'] assert (3, 2) == a.shape assert np.dtype('int32') == a.dtype assert_array_equal([-1, -1, 4788], a[:, 0]) assert_array_equal([-1, -1, 4768], a[:, 1]) # choose fields and types transformers = [ ANNTransformer( fields=['Allele', 'ANN_HGVS_c', 'variants/ANN_cDNA_pos'], types={'Allele': 'S12', 'ANN_HGVS_c': 'S20', 'variants/ANN_cDNA_pos': 'i8'}) ] callset = read_vcf(vcf_path, fields=['ANN'], transformers=transformers) assert (sorted(['variants/ANN_Allele', 'variants/ANN_HGVS_c', 'variants/ANN_cDNA_pos']) == sorted(callset.keys())) a = callset['variants/ANN_Allele'] assert (3,) == a.shape assert np.dtype('S12') == a.dtype assert_array_equal([b'T', b'', b'T'], a) a = callset['variants/ANN_HGVS_c'] assert (3,) == a.shape assert np.dtype('S20') == a.dtype assert_array_equal([b'', b'', b'17A>T'], a) a = callset['variants/ANN_cDNA_pos'] assert (3,) == a.shape assert np.dtype('i8') == a.dtype assert_array_equal([-1, -1, 17], a) def test_format_inconsistencies(): input_data = ( b"#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\tS2\tS1\tS3\tS4\n" b"2L\t12\tfoo\tA\tC\t1.2\t.\t.\tGT:GQ\t0/1:12\t1/2\t2/3:34:67,89\t\n" b"2R\t34\tbar\tC\tG\t3.4\t.\t.\tGT\t./.\t\t3/3:45\t1/2:11:55,67\n" ) input_file = io.BytesIO(input_data) callset = read_vcf(input_file, fields=['calldata/GT', 'calldata/GQ']) gt = callset['calldata/GT'] assert (2, 4, 2) == gt.shape assert_array_equal([[0, 1], [1, 2], [2, 3], [-1, -1]], gt[0]) assert_array_equal([[-1, -1], [-1, -1], [3, 3], [1, 2]], gt[1]) gq = callset['calldata/GQ'] assert (2, 4) == gq.shape assert_array_equal([12, -1, 34, -1], gq[0]) assert_array_equal([-1, -1, -1, -1], gq[1]) # noinspection PyTypeChecker def test_warnings(): warnings.resetwarnings() warnings.simplefilter('error') # empty CHROM input_data = ( b"#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\tS2\tS1\tS3\tS4\n" b"\t12\t.\t.\t.\t.\t.\t.\t.\t.\t.\t.\t.\n" ) with pytest.warns(UserWarning): read_vcf(io.BytesIO(input_data)) # empty POS input_data = ( b"#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\tS2\tS1\tS3\tS4\n" b"2L\t\t.\t.\t.\t.\t.\t.\t.\t.\t.\t.\t.\n" ) with pytest.warns(UserWarning): read_vcf(io.BytesIO(input_data)) # dodgy POS input_data = ( b"#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\tS2\tS1\tS3\tS4\n" b"2L\taaa\t.\t.\t.\t.\t.\t.\t.\t.\t.\t.\t.\n" ) with pytest.warns(UserWarning): read_vcf(io.BytesIO(input_data)) # dodgy POS input_data = ( b"#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\tS2\tS1\tS3\tS4\n" b"2L\t12aaa\t.\t.\t.\t.\t.\t.\t.\t.\t.\t.\t.\n" ) with pytest.warns(UserWarning): read_vcf(io.BytesIO(input_data)) # dodgy QUAL input_data = ( b"#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\tS2\tS1\tS3\tS4\n" b"2L\t12\t.\t.\t.\taaa\t.\t.\t.\t.\t.\t.\t.\n" ) with pytest.warns(UserWarning): read_vcf(io.BytesIO(input_data)) # dodgy QUAL input_data = ( b"#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\tS2\tS1\tS3\tS4\n" b"2L\t12\t.\t.\t.\t1.2aaa\t.\t.\t.\t.\t.\t.\t.\n" ) with pytest.warns(UserWarning): read_vcf(io.BytesIO(input_data)) # empty QUAL - no warning input_data = ( b"#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\tS2\tS1\tS3\tS4\n" b"2L\t12\t.\t.\t.\t\t.\t.\t.\t.\t.\t.\t.\n" ) read_vcf(io.BytesIO(input_data)) # empty FILTER - no warning input_data = ( b"#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\tS2\tS1\tS3\tS4\n" b"2L\t12\t.\t.\t.\t.\t\t.\t.\t.\t.\t.\t.\n" ) read_vcf(io.BytesIO(input_data)) # empty INFO - no warning input_data = ( b"#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\tS2\tS1\tS3\tS4\n" b"2L\t12\t.\t.\t.\t.\t.\t\t.\t.\t.\t.\t.\n" ) read_vcf(io.BytesIO(input_data)) # empty FORMAT - no warning input_data = ( b"#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\tS2\tS1\tS3\tS4\n" b"2L\t12\t.\t.\t.\t.\t.\t.\t\t.\t.\t.\t.\n" ) read_vcf(io.BytesIO(input_data)) # dodgy calldata (integer) input_data = ( b'##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">\n' b"#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\tS2\tS1\tS3\tS4\n" b"2L\t12\t.\t.\t.\t.\t.\t.\tGT\t0/1\taa/bb\t.\t.\n" ) with pytest.warns(UserWarning): read_vcf(io.BytesIO(input_data), fields=['calldata/GT']) # dodgy calldata (integer) input_data = ( b'##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">\n' b"#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\tS2\tS1\tS3\tS4\n" b"2L\t12\t.\t.\t.\t.\t.\t.\tGT\t0/1\t12aa/22\t.\t.\n" ) with pytest.warns(UserWarning): read_vcf(io.BytesIO(input_data), fields=['calldata/GT']) # dodgy calldata (float) input_data = ( b'##FORMAT=<ID=MQ,Number=1,Type=Float,Description="Mapping Quality">\n' b"#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\tS2\tS1\tS3\tS4\n" b"2L\t12\t.\t.\t.\t.\t.\t.\tMQ\t.\t12.3\taaa\t.\n" ) with pytest.warns(UserWarning): read_vcf(io.BytesIO(input_data), fields=['calldata/MQ']) # dodgy calldata (float) input_data = ( b'##FORMAT=<ID=MQ,Number=1,Type=Float,Description="Mapping Quality">\n' b"#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\tS2\tS1\tS3\tS4\n" b"2L\t12\t.\t.\t.\t.\t.\t.\tMQ\t.\t12.3\t34.5aaa\t.\n" ) with pytest.warns(UserWarning): read_vcf(io.BytesIO(input_data), fields=['calldata/MQ']) # dodgy INFO (missing key) input_data = ( b'##INFO=<ID=MQ,Number=1,Type=Float,Description="Mapping Quality">\n' b"#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\tS2\tS1\tS3\tS4\n" b"2L\t12\t.\t.\t.\t.\t.\tfoo=qux;MQ=12\t.\t.\t.\t.\t.\n" b"2L\t34\t.\t.\t.\t.\t.\tfoo=bar;=34;baz\t.\t.\t.\t.\t.\n" ) with pytest.warns(UserWarning): read_vcf(io.BytesIO(input_data), fields=['variants/MQ']) # INFO not declared in header input_data = ( b"#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\tS2\tS1\tS3\tS4\n" b"2L\t12\tfoo\tA\tC,T\t12.3\tPASS\tfoo=bar\tGT:GQ\t0/0:99\t0/1:12\t./.:.\t.\n" ) with pytest.warns(UserWarning): read_vcf(io.BytesIO(input_data), fields=['variants/foo']) # FORMAT not declared in header input_data = ( b"#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\tS2\tS1\tS3\tS4\n" b"2L\t12\tfoo\tA\tC,T\t12.3\tPASS\tfoo=bar\tGT:GQ\t0/0:99\t0/1:12\t./.:.\t.\n" ) with pytest.warns(UserWarning): read_vcf(io.BytesIO(input_data), fields=['calldata/GT']) with pytest.warns(UserWarning): read_vcf(io.BytesIO(input_data), fields=['calldata/GQ']) warnings.resetwarnings() warnings.simplefilter('always') def test_missing_headers(): vcf_path = fixture_path('test14.vcf') # INFO DP not declared callset = read_vcf(vcf_path, fields=['DP'], types={'DP': 'String'}) a = callset['variants/DP'] assert '14' == a[2] # default type is string callset = read_vcf(vcf_path, fields=['DP'], types={'DP': 'Integer'}) a = callset['variants/DP'] assert 14 == a[2] # what about a field which isn't present at all? callset = read_vcf(vcf_path, fields=['FOO']) assert '' == callset['variants/FOO'][2] # default missing value for string field # FORMAT field DP not declared in VCF header callset = read_vcf(vcf_path, fields=['calldata/DP'], types={'calldata/DP': 'Integer'}) assert 1 == callset['calldata/DP'][2, 0] def test_extra_samples(): # more calldata samples than samples declared in header path = fixture_path('test48b.vcf') input_data = ( b"#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\tS2\tS1\tS3\tS4\n" b"2L\t12\t.\t.\t.\t.\t.\t.\tGT:GQ\t0/0:34\t0/1:45\t1/1:56\t1/2:99\t2/3:101\n" ) warnings.resetwarnings() warnings.simplefilter('error') with pytest.warns(UserWarning): read_vcf(path) with pytest.warns(UserWarning): read_vcf(io.BytesIO(input_data), fields=['calldata/GT', 'calldata/GQ']) warnings.resetwarnings() warnings.simplefilter('always') # try again without raising warnings to check data callset = read_vcf(io.BytesIO(input_data), fields=['calldata/GT', 'calldata/GQ']) assert (1, 4, 2) == callset['calldata/GT'].shape callset = read_vcf(path) assert (9, 2, 2) == callset['calldata/GT'].shape # noinspection PyTypeChecker def test_no_samples(): input_data = ( b"#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\n" b"2L\t12\tfoo\tA\tC,T\t12.3\tPASS\tfoo=bar\tGT:GQ\t0/0:99\t0/1:12\t./.:.\t.\n" ) callset = read_vcf(io.BytesIO(input_data), fields=['calldata/GT', 'calldata/GQ', 'samples', 'POS']) assert 'variants/POS' in callset assert 'samples' not in callset assert 'calldata/GT' not in callset assert 'calldata/GQ' not in callset h5_path = os.path.join(tempdir, 'sample.h5') if os.path.exists(h5_path): os.remove(h5_path) vcf_to_hdf5(io.BytesIO(input_data), h5_path, fields=['calldata/GT', 'calldata/GQ', 'samples', 'POS']) with h5py.File(h5_path, mode='r') as callset: assert 'variants/POS' in callset assert 'samples' not in callset assert 'calldata/GT' not in callset assert 'calldata/GQ' not in callset zarr_path = os.path.join(tempdir, 'sample.zarr') if os.path.exists(zarr_path): shutil.rmtree(zarr_path) vcf_to_zarr(io.BytesIO(input_data), zarr_path, fields=['calldata/GT', 'calldata/GQ', 'samples', 'POS']) callset = zarr.open_group(zarr_path, mode='r') assert 'variants/POS' in callset assert 'samples' not in callset assert 'calldata/GT' not in callset assert 'calldata/GQ' not in callset def test_computed_fields(): input_data = (b"#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\n" b"2L\t2\t.\t.\t.\t.\t.\t.\t.\n" b"2L\t4\t.\t.\tG\t.\t.\t.\t.\n" b"2L\t12\t.\tA\t.\t.\t.\t.\t.\n" b"2L\t34\t.\tC\tT\t.\t.\t.\t.\n" b"3R\t45\t.\tG\tA,T\t.\t.\t.\t.\n" b"3R\t47\t.\tG\tC,T,*\t.\t.\t.\t.\n" b"3R\t56\t.\tG\tA,GTAC\t.\t.\t.\t.\n" b"3R\t56\t.\tCATG\tC,GATG\t.\t.\t.\t.\n" b"3R\t56\t.\tGTAC\tATAC,GTACTACTAC,G,GTACA,GTA\t.\t.\t.\t.\n") for string_dtype in 'S20', 'object': callset = read_vcf(io.BytesIO(input_data), fields='*', numbers={'ALT': 5}, types={'REF': string_dtype, 'ALT': string_dtype}) a = callset['variants/ALT'] assert (9, 5) == a.shape e = np.array([[b'', b'', b'', b'', b''], [b'G', b'', b'', b'', b''], [b'', b'', b'', b'', b''], [b'T', b'', b'', b'', b''], [b'A', b'T', b'', b'', b''], [b'C', b'T', b'*', b'', b''], [b'A', b'GTAC', b'', b'', b''], [b'C', b'GATG', b'', b'', b''], [b'ATAC', b'GTACTACTAC', b'G', b'GTACA', b'GTA']]) if a.dtype.kind == 'O': e = e.astype('U').astype(object) assert_array_equal(e, a) a = callset['variants/numalt'] assert (9,) == a.shape assert_array_equal([0, 1, 0, 1, 2, 3, 2, 2, 5], a) a = callset['variants/altlen'] assert (9, 5) == a.shape e = np.array([[0, 0, 0, 0, 0], [1, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, -1, 0, 0], [0, 3, 0, 0, 0], [-3, 0, 0, 0, 0], [0, 6, -3, 1, -1]]) assert_array_equal(e, a) a = callset['variants/is_snp'] assert (9,) == a.shape assert np.dtype(bool) == a.dtype assert_array_equal([False, False, False, True, True, False, False, False, False], a) # test is_snp with reduced ALT number callset = read_vcf(io.BytesIO(input_data), fields='*', numbers={'ALT': 1}, types={'REF': string_dtype, 'ALT': string_dtype}) a = callset['variants/ALT'] assert (9,) == a.shape e = np.array([b'', b'G', b'', b'T', b'A', b'C', b'A', b'C', b'ATAC']) if a.dtype.kind == 'O': e = e.astype('U').astype(object) assert_array_equal(e, a) a = callset['variants/numalt'] assert (9,) == a.shape assert_array_equal([0, 1, 0, 1, 2, 3, 2, 2, 5], a) a = callset['variants/altlen'] assert (9,) == a.shape e = np.array([0, 1, 0, 0, 0, 0, 0, -3, 0]) assert_array_equal(e, a) a = callset['variants/is_snp'] assert (9,) == a.shape assert np.dtype(bool) == a.dtype assert_array_equal([False, False, False, True, True, False, False, False, False], a) def test_genotype_ac(): input_data = ( b"#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\tS1\tS2\tS3\n" b"2L\t12\t.\tA\t.\t.\t.\t.\tGT:GQ\t0/0/0:11\t0/1/2:12\t././.:.\n" b"2L\t34\t.\tC\tT\t.\t.\t.\tGT:GQ\t0/1/2:22\t3/3/.:33\t.\n" b"3R\t45\t.\tG\tA,T\t.\t.\t.\tGT:GQ\t0/1:.\t3:12\t\n" b"X\t55\t.\tG\tA,T\t.\t.\t.\tGT:GQ\t0/1/1/3/4:.\t1/1/2/2/4/4/5:12\t0/0/1/2/3/./4\n" ) for t in 'i1', 'i2', 'i4', 'i8', 'u1', 'u2', 'u4', 'u8': callset = read_vcf(io.BytesIO(input_data), fields=['calldata/GT'], numbers={'calldata/GT': 4}, types={'calldata/GT': 'genotype_ac/' + t}) e = np.array([[[3, 0, 0, 0], [1, 1, 1, 0], [0, 0, 0, 0]], [[1, 1, 1, 0], [0, 0, 0, 2], [0, 0, 0, 0]], [[1, 1, 0, 0], [0, 0, 0, 1], [0, 0, 0, 0]], [[1, 2, 0, 1], [0, 2, 2, 0], [2, 1, 1, 1]]], dtype=t) a = callset['calldata/GT'] assert e.dtype == a.dtype assert_array_equal(e, a) vcf_path = fixture_path('test63.vcf') callset = read_vcf(vcf_path, fields='GT', numbers={'GT': 3}, types={'GT': 'genotype_ac/i1'}) e = np.array([ [(2, 0, 0), (3, 0, 0), (1, 0, 0)], [(0, 1, 0), (1, 1, 0), (1, 1, 1)], [(0, 0, 0), (0, 0, 0), (0, 0, 0)], [(0, 0, 0), (0, 0, 0), (0, 0, 0)], ]) a = callset['calldata/GT'] assert_array_equal(e, a) def test_region_truncate(): vcf_path = fixture_path('test54.vcf.gz') for tabix in 'tabix', None: callset = read_vcf(vcf_path, region='chr1:10-100', tabix=tabix) pos = callset['variants/POS'] assert 2 == pos.shape[0] assert_array_equal([20, 30], pos) def test_errors(): # try to open a directory path = '.' with pytest.raises(OSError): read_vcf(path) # try to open a file that doesn't exist path = 'doesnotexist.vcf' with pytest.raises(FileNotFoundError): read_vcf(path) # try to open a file that doesn't exist path = 'doesnotexist.vcf.gz' with pytest.raises(FileNotFoundError): read_vcf(path) # file is nothing like a VCF (has no header) path = fixture_path('test48a.vcf') with pytest.raises(RuntimeError): read_vcf(path) def test_dup_headers(): warnings.resetwarnings() warnings.simplefilter('error') # dup FILTER input_data = b"""##fileformat=VCFv4.1 ##FILTER=<ID=s50,Description="Less than 50% of samples have data"> ##FILTER=<ID=s50,Description="Less than 50% of samples have data"> ##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth"> ##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype"> ##FORMAT=<ID=AD,Number=A,Type=Integer,Description="Allele Depths"> ##FORMAT=<ID=ZZ,Number=1,Type=String,Description="ZZ"> #CHROM POS ID REF ALT QUAL FILTER INFO FORMAT test1 test2 test3 test4 chr1 1 . A G . PASS DP=2 GT:AD 0:1,0 .:1,0 0:0,0 .:0,0 chr1 2 . A G . PASS DP=2 GT:AD:ZZ 0:1,0:dummy 0:1,0 0:0,0 .:0,0 chr1 3 . A G . PASS DP=2 GT:AD:ZZ 0:1,0:dummy 1:1,0 . ./. """ with pytest.warns(UserWarning): read_vcf(io.BytesIO(input_data)) # dup INFO input_data = b"""##fileformat=VCFv4.1 ##FILTER=<ID=s50,Description="Less than 50% of samples have data"> ##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth"> ##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth"> ##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype"> ##FORMAT=<ID=AD,Number=A,Type=Integer,Description="Allele Depths"> ##FORMAT=<ID=ZZ,Number=1,Type=String,Description="ZZ"> #CHROM POS ID REF ALT QUAL FILTER INFO FORMAT test1 test2 test3 test4 chr1 1 . A G . PASS DP=2 GT:AD 0:1,0 .:1,0 0:0,0 .:0,0 chr1 2 . A G . PASS DP=2 GT:AD:ZZ 0:1,0:dummy 0:1,0 0:0,0 .:0,0 chr1 3 . A G . PASS DP=2 GT:AD:ZZ 0:1,0:dummy 1:1,0 . ./. """ with pytest.warns(UserWarning): read_vcf(io.BytesIO(input_data)) # dup FORMAT input_data = b"""##fileformat=VCFv4.1 ##FILTER=<ID=s50,Description="Less than 50% of samples have data"> ##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth"> ##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype"> ##FORMAT=<ID=AD,Number=A,Type=Integer,Description="Allele Depths"> ##FORMAT=<ID=AD,Number=A,Type=Integer,Description="Allele Depths"> ##FORMAT=<ID=ZZ,Number=1,Type=String,Description="ZZ"> #CHROM POS ID REF ALT QUAL FILTER INFO FORMAT test1 test2 test3 test4 chr1 1 . A G . PASS DP=2 GT:AD 0:1,0 .:1,0 0:0,0 .:0,0 chr1 2 . A G . PASS DP=2 GT:AD:ZZ 0:1,0:dummy 0:1,0 0:0,0 .:0,0 chr1 3 . A G . PASS DP=2 GT:AD:ZZ 0:1,0:dummy 1:1,0 . ./. """ with pytest.warns(UserWarning): read_vcf(io.BytesIO(input_data)) warnings.resetwarnings() warnings.simplefilter('always') def test_override_vcf_type(): vcf_path = fixture_path('test4.vcf') callset = read_vcf(vcf_path, fields=['MQ0FractionTest']) assert 0 == callset['variants/MQ0FractionTest'][2] callset = read_vcf(vcf_path, fields=['MQ0FractionTest'], types={'MQ0FractionTest': 'Float'}) assert approx(0.03) == callset['variants/MQ0FractionTest'][2] def test_header_overrides_default_vcf_type(): vcf_path = fixture_path('test176.vcf') callset = read_vcf(vcf_path, fields='*') gq = callset['calldata/GQ'] assert 'f' == gq.dtype.kind assert np.isnan(gq[0, 0]) assert approx(48.2) == gq[2, 0] assert approx(48.1) == gq[2, 1] assert approx(43.9) == gq[2, 2] assert approx(49.) == gq[3, 0] assert approx(3.) == gq[3, 1] assert approx(41.) == gq[3, 2] def test_missing_calldata(): vcf_path = fixture_path('test1.vcf') callset = read_vcf(vcf_path, fields='calldata/*', numbers={'AD': 2}) gt = callset['calldata/GT'] ad = callset['calldata/AD'] assert (-1, -1) == tuple(gt[0, 1]) assert (1, 0) == tuple(ad[0, 1]) assert (-1, -1) == tuple(gt[2, 2]) assert (-1, -1) == tuple(ad[2, 2]) assert (-1, -1) == tuple(gt[2, 3]) assert (-1, -1) == tuple(ad[2, 3]) def test_calldata_cleared(): vcf_path = fixture_path('test32.vcf') callset = read_vcf(vcf_path, fields=['calldata/GT', 'calldata/DP', 'calldata/GQ']) gt = callset['calldata/GT'] dp = callset['calldata/DP'] gq = callset['calldata/GQ'] assert (0, 0) == tuple(gt[0, 3]) assert 8 == dp[0, 3] assert 3 == gq[0, 3] assert (-1, -1) == tuple(gt[1, 3]) assert -1 == dp[1, 3] assert -1 == gq[1, 3] def test_calldata_quirks(): vcf_path = fixture_path('test1.vcf') callset = read_vcf(vcf_path, fields=['AD', 'GT'], numbers={'AD': 2}) gt = callset['calldata/GT'] ad = callset['calldata/AD'] e = np.array([[-1, -1], [0, -1], [1, -1]]) assert_array_equal(e, gt[:, 1]) e = np.array([[1, 0], [1, 0], [1, 0]]) assert_array_equal(e, ad[:, 1]) def test_vcf_to_npz(): vcf_paths = [fixture_path(x) for x in ['sample.vcf', 'sample.vcf.gz']] npz_path = os.path.join(tempdir, 'sample.npz') region_values = None, '20', '20:10000-20000', 'Y' tabix_values = 'tabix', None samples_values = None, ['NA00001', 'NA00003'] string_type_values = 'S10', 'object' param_matrix = itertools.product(vcf_paths, region_values, tabix_values, samples_values, string_type_values) for vcf_path, region, tabix, samples, string_type in param_matrix: types = {'CHROM': string_type, 'ALT': string_type, 'samples': string_type} expected = read_vcf(vcf_path, fields='*', alt_number=2, region=region, tabix=tabix, samples=samples, types=types) if os.path.exists(npz_path): os.remove(npz_path) vcf_to_npz(vcf_path, npz_path, fields='*', chunk_length=2, alt_number=2, region=region, tabix=tabix, samples=samples, types=types) if expected is None: assert not os.path.exists(npz_path) else: actual = np.load(npz_path, allow_pickle=True) for key in expected.keys(): if expected[key].dtype.kind == 'f': assert_array_almost_equal(expected[key], actual[key]) else: assert_array_equal(expected[key], actual[key]) for key in actual.keys(): assert key in expected actual.close() def test_vcf_to_npz_exclude(): vcf_path = fixture_path('sample.vcf') npz_path = os.path.join(tempdir, 'sample.npz') exclude = ['variants/altlen', 'ID', 'calldata/DP'] expected = read_vcf(vcf_path, fields='*', exclude_fields=exclude) if os.path.exists(npz_path): os.remove(npz_path) vcf_to_npz(vcf_path, npz_path, fields='*', exclude_fields=exclude) actual = np.load(npz_path, allow_pickle=True) for key in expected.keys(): if expected[key].dtype.kind == 'f': assert_array_almost_equal(expected[key], actual[key]) else: assert_array_equal(expected[key], actual[key]) for key in actual.keys(): assert key in expected actual.close() def test_vcf_to_npz_rename(): vcf_path = fixture_path('sample.vcf') npz_path = os.path.join(tempdir, 'sample.npz') rename = {'CHROM': 'variants/chromosome', 'variants/altlen': 'spam/eggs', 'calldata/GT': 'foo/bar'} expected = read_vcf(vcf_path, fields='*', rename_fields=rename) if os.path.exists(npz_path): os.remove(npz_path) vcf_to_npz(vcf_path, npz_path, fields='*', rename_fields=rename) actual = np.load(npz_path, allow_pickle=True) for key in expected.keys(): if expected[key].dtype.kind == 'f': assert_array_almost_equal(expected[key], actual[key]) else: assert_array_equal(expected[key], actual[key]) for key in actual.keys(): assert key in expected actual.close() def test_vcf_to_zarr(): vcf_paths = [fixture_path(x) for x in ['sample.vcf', 'sample.vcf.gz']] zarr_path = os.path.join(tempdir, 'sample.zarr') region_values = None, '20', '20:10000-20000', 'Y' tabix_values = 'tabix', None samples_values = None, ['NA00001', 'NA00003'] string_type_values = 'S10', 'object' param_matrix = itertools.product(vcf_paths, region_values, tabix_values, samples_values, string_type_values) for vcf_path, region, tabix, samples, string_type in param_matrix: types = {'CHROM': string_type, 'ALT': string_type, 'samples': string_type} expected = read_vcf(vcf_path, fields='*', alt_number=2, region=region, tabix=tabix, samples=samples, types=types) if os.path.exists(zarr_path): shutil.rmtree(zarr_path) vcf_to_zarr(vcf_path, zarr_path, fields='*', alt_number=2, chunk_length=2, region=region, tabix=tabix, samples=samples, types=types) if expected is None: assert not os.path.exists(zarr_path) else: actual = zarr.open_group(zarr_path, mode='r') for key in expected.keys(): e = expected[key] a = actual[key][:] compare_arrays(e, a) assert (actual['variants/NS'].attrs['Description'] == 'Number of Samples With Data') assert (actual['calldata/GQ'].attrs['Description'] == 'Genotype Quality') for key in actual.keys(): if key not in {'variants', 'calldata'}: assert key in expected for key in actual['variants'].keys(): assert 'variants/' + key in expected for key in actual['calldata'].keys(): assert 'calldata/' + key in expected def test_vcf_to_zarr_exclude(): vcf_path = fixture_path('sample.vcf') zarr_path = os.path.join(tempdir, 'sample.zarr') exclude = ['variants/altlen', 'ID', 'calldata/DP'] expected = read_vcf(vcf_path, fields='*', exclude_fields=exclude) if os.path.exists(zarr_path): shutil.rmtree(zarr_path) vcf_to_zarr(vcf_path, zarr_path, fields='*', exclude_fields=exclude) actual = zarr.open_group(zarr_path, mode='r') for key in expected.keys(): e = expected[key] a = actual[key][:] compare_arrays(e, a) for key in actual.keys(): if key not in {'variants', 'calldata'}: assert key in expected for key in actual['variants'].keys(): assert 'variants/' + key in expected for key in actual['calldata'].keys(): assert 'calldata/' + key in expected def test_vcf_to_zarr_rename(): vcf_path = fixture_path('sample.vcf') zarr_path = os.path.join(tempdir, 'sample.zarr') rename = {'CHROM': 'variants/chromosome', 'variants/altlen': 'spam/eggs', 'calldata/GT': 'foo/bar'} expected = read_vcf(vcf_path, fields='*', rename_fields=rename) if os.path.exists(zarr_path): shutil.rmtree(zarr_path) vcf_to_zarr(vcf_path, zarr_path, fields='*', rename_fields=rename) actual = zarr.open_group(zarr_path, mode='r') for key in expected.keys(): e = expected[key] a = actual[key][:] compare_arrays(e, a) for key in actual['variants'].keys(): assert 'variants/' + key in expected for key in actual['calldata'].keys(): assert 'calldata/' + key in expected def test_vcf_to_zarr_rename_clash(): vcf_path = fixture_path('sample.vcf') zarr_path = os.path.join(tempdir, 'sample.zarr') # dup values rename = {'CHROM': 'variants/chromosome', 'variants/altlen': 'spam/eggs', 'calldata/GT': 'spam/eggs'} with pytest.raises(ValueError): vcf_to_zarr(vcf_path, zarr_path, fields='*', rename_fields=rename) # parent clash rename = {'CHROM': 'variants/chromosome', 'variants/altlen': 'spam/eggs', 'calldata/GT': 'spam'} with pytest.raises(ValueError): vcf_to_zarr(vcf_path, zarr_path, fields='*', rename_fields=rename) # parent clash rename = {'CHROM': 'variants/chromosome', 'variants/altlen': 'spam', 'calldata/GT': 'spam/eggs'} with pytest.raises(ValueError): vcf_to_zarr(vcf_path, zarr_path, fields='*', rename_fields=rename) def test_vcf_to_zarr_dup_fields_case_insensitive(): vcf_path = fixture_path('altlen.vcf') zarr_path = os.path.join(tempdir, 'sample.zarr') with pytest.raises(ValueError): vcf_to_zarr(vcf_path, zarr_path, fields=['ALTLEN', 'altlen']) with pytest.raises(ValueError): vcf_to_zarr(vcf_path, zarr_path, fields=['variants/ALTLEN', 'variants/altlen']) # should be fine if renamed vcf_to_zarr(vcf_path, zarr_path, fields=['ALTLEN', 'altlen'], rename_fields={'altlen': 'variants/spam'}) def test_vcf_to_zarr_group(): vcf_path = fixture_path('sample.vcf.gz') zarr_path = os.path.join(tempdir, 'sample.zarr') if os.path.exists(zarr_path): shutil.rmtree(zarr_path) chroms = ['19', '20', 'X'] for chrom in chroms: vcf_to_zarr(vcf_path, zarr_path, fields='*', alt_number=2, chunk_length=2, region=chrom, group=chrom) actual = zarr.open_group(zarr_path, mode='r') assert chroms == sorted(actual) for chrom in chroms: assert ['calldata', 'samples', 'variants'] == sorted(actual[chrom]) expect = read_vcf(vcf_path, fields='*', alt_number=2, region=chrom) for key in expect.keys(): e = expect[key] a = actual[chrom][key][:] compare_arrays(e, a) assert (actual[chrom]['variants/NS'].attrs['Description'] == 'Number of Samples With Data') assert (actual[chrom]['calldata/GQ'].attrs['Description'] == 'Genotype Quality') def test_vcf_to_zarr_string_codec(): vcf_path = fixture_path('sample.vcf') zarr_path = os.path.join(tempdir, 'sample.zarr') types = {'CHROM': object, 'ALT': object, 'samples': object} expect = read_vcf(vcf_path, fields='*', alt_number=2, types=types) if os.path.exists(zarr_path): shutil.rmtree(zarr_path) vcf_to_zarr(vcf_path, zarr_path, fields='*', alt_number=2, chunk_length=2, types=types) actual = zarr.open_group(zarr_path, mode='r') for key in expect.keys(): e = expect[key] a = actual[key][:] compare_arrays(e, a) def test_vcf_to_zarr_ann(): vcf_path = fixture_path('ann.vcf') zarr_path = os.path.join(tempdir, 'ann.zarr') for string_type in 'S10', 'object': types = {'CHROM': string_type, 'ALT': string_type, 'samples': string_type} transformers = [ANNTransformer(fields=['Allele', 'HGVS_c', 'AA'], types={'Allele': string_type, 'HGVS_c': string_type})] expected = read_vcf(vcf_path, fields='*', alt_number=2, types=types, transformers=transformers) if os.path.exists(zarr_path): shutil.rmtree(zarr_path) vcf_to_zarr(vcf_path, zarr_path, fields='*', alt_number=2, chunk_length=2, types=types, transformers=transformers) actual = zarr.open_group(zarr_path, mode='r') for key in expected.keys(): compare_arrays(expected[key], actual[key][:]) def test_vcf_to_zarr_empty(): vcf_path = fixture_path('empty.vcf') zarr_path = os.path.join(tempdir, 'empty.zarr') vcf_to_zarr(vcf_path, zarr_path) assert not os.path.exists(zarr_path) def test_vcf_to_hdf5(): vcf_paths = [fixture_path(x) for x in ['sample.vcf', 'sample.vcf.gz']] h5_path = os.path.join(tempdir, 'sample.h5') region_values = None, '20', '20:10000-20000', 'Y' tabix_values = 'tabix', None samples_values = None, ['NA00001', 'NA00003'] string_type_values = 'S10', 'object' param_matrix = itertools.product(vcf_paths, region_values, tabix_values, samples_values, string_type_values) for vcf_path, region, tabix, samples, string_type in param_matrix: types = {'CHROM': string_type, 'ALT': string_type, 'samples': string_type} expected = read_vcf(vcf_path, fields='*', alt_number=2, region=region, tabix=tabix, samples=samples, types=types) if os.path.exists(h5_path): os.remove(h5_path) vcf_to_hdf5(vcf_path, h5_path, fields='*', alt_number=2, chunk_length=2, region=region, tabix=tabix, samples=samples, types=types) if expected is None: assert not os.path.exists(h5_path) else: with h5py.File(h5_path, mode='r') as actual: for key in expected.keys(): compare_arrays(expected[key], actual[key][:]) assert (actual['variants/NS'].attrs['Description'] == 'Number of Samples With Data') assert (actual['calldata/GQ'].attrs['Description'] == 'Genotype Quality') for key in actual.keys(): if key not in {'variants', 'calldata'}: assert key in expected for key in actual['variants'].keys(): assert 'variants/' + key in expected for key in actual['calldata'].keys(): assert 'calldata/' + key in expected def test_vcf_to_hdf5_exclude(): vcf_path = fixture_path('sample.vcf') h5_path = os.path.join(tempdir, 'sample.h5') exclude = ['variants/altlen', 'ID', 'calldata/DP'] expected = read_vcf(vcf_path, fields='*', exclude_fields=exclude) if os.path.exists(h5_path): os.remove(h5_path) vcf_to_hdf5(vcf_path, h5_path, fields='*', exclude_fields=exclude) with h5py.File(h5_path, mode='r') as actual: for key in expected.keys(): compare_arrays(expected[key], actual[key][:]) for key in actual.keys(): if key not in {'variants', 'calldata'}: assert key in expected for key in actual['variants'].keys(): assert 'variants/' + key in expected for key in actual['calldata'].keys(): assert 'calldata/' + key in expected def test_vcf_to_hdf5_rename(): vcf_path = fixture_path('sample.vcf') h5_path = os.path.join(tempdir, 'sample.h5') rename = {'CHROM': 'variants/chromosome', 'variants/altlen': 'spam/eggs', 'calldata/GT': 'foo/bar'} expected = read_vcf(vcf_path, fields='*', rename_fields=rename) if os.path.exists(h5_path): os.remove(h5_path) vcf_to_hdf5(vcf_path, h5_path, fields='*', rename_fields=rename) with h5py.File(h5_path, mode='r') as actual: for key in expected.keys(): compare_arrays(expected[key], actual[key][:]) for key in actual['variants'].keys(): assert 'variants/' + key in expected for key in actual['calldata'].keys(): assert 'calldata/' + key in expected def test_vcf_to_hdf5_group(): vcf_path = fixture_path('sample.vcf.gz') h5_path = os.path.join(tempdir, 'sample.h5') if os.path.exists(h5_path): os.remove(h5_path) chroms = ['19', '20', 'X'] for chrom in chroms: vcf_to_hdf5(vcf_path, h5_path, fields='*', alt_number=2, chunk_length=2, region=chrom, group=chrom) with h5py.File(h5_path, mode='r') as actual: assert chroms == sorted(actual) for chrom in chroms: assert ['calldata', 'samples', 'variants'] == sorted(actual[chrom]) expect = read_vcf(vcf_path, fields='*', alt_number=2, region=chrom) for key in expect.keys(): e = expect[key] a = actual[chrom][key][:] compare_arrays(e, a) assert (actual[chrom]['variants/NS'].attrs['Description'] == 'Number of Samples With Data') assert (actual[chrom]['calldata/GQ'].attrs['Description'] == 'Genotype Quality') def test_vcf_to_hdf5_ann(): vcf_path = fixture_path('ann.vcf') h5_path = os.path.join(tempdir, 'ann.h5') for string_type in 'S10', 'object': types = {'CHROM': string_type, 'ALT': string_type, 'samples': string_type} transformers = [ANNTransformer(fields=['Allele', 'HGVS_c', 'AA'], types={'Allele': string_type, 'HGVS_c': string_type})] expected = read_vcf(vcf_path, fields='*', types=types, transformers=transformers) if os.path.exists(h5_path): os.remove(h5_path) vcf_to_hdf5(vcf_path, h5_path, fields='*', chunk_length=2, types=types, transformers=transformers) with h5py.File(h5_path, mode='r') as actual: for key in expected.keys(): compare_arrays(expected[key], actual[key][:]) def test_vcf_to_hdf5_vlen(): vcf_path = fixture_path('sample.vcf') h5_path = os.path.join(tempdir, 'sample.h5') fields = ['CHROM', 'ID', 'samples'] for string_type in 'S10', 'object': types = {'CHROM': string_type, 'ID': string_type, 'samples': string_type} expect = read_vcf(vcf_path, fields=fields, alt_number=2, types=types) if os.path.exists(h5_path): os.remove(h5_path) vcf_to_hdf5(vcf_path, h5_path, fields=fields, alt_number=2, chunk_length=3, types=types, vlen=False) with h5py.File(h5_path, mode='r') as actual: for key in expect.keys(): if expect[key].dtype.kind == 'f': assert_array_almost_equal(expect[key], actual[key][:]) elif expect[key].dtype.kind == 'O': # strings always stored as fixed length if vlen=False assert 'S' == actual[key].dtype.kind assert_array_equal(expect[key].astype('S'), actual[key][:]) else: assert_array_equal(expect[key], actual[key][:]) def test_vcf_to_hdf5_empty(): vcf_path = fixture_path('empty.vcf') h5_path = os.path.join(tempdir, 'empty.h5') vcf_to_hdf5(vcf_path, h5_path) assert not os.path.exists(h5_path) def to_pandas_expectation(e): # expect that all string fields end up as objects with nans for missing if e.dtype.kind == 'S': e = e.astype('U').astype(object) if e.dtype == object: e[e == ''] = np.nan return e def check_dataframe(callset, df): for k in callset: if k.startswith('variants/'): group, name = k.split('/') e = to_pandas_expectation(callset[k]) if e.ndim == 1: compare_arrays(e, df[name].values) elif e.ndim == 2: for i in range(e.shape[1]): compare_arrays(e[:, i], df['%s_%s' % (name, i + 1)]) def test_vcf_to_dataframe(): vcf_path = fixture_path('sample.vcf') fields = ['CHROM', 'POS', 'REF', 'ALT', 'DP', 'AC', 'GT'] numbers = {'AC': 3} for string_type in 'S10', 'object': types = {'CHROM': string_type, 'ALT': string_type} callset = read_vcf(vcf_path, fields=fields, alt_number=2, numbers=numbers, types=types) df = vcf_to_dataframe(vcf_path, fields=fields, alt_number=2, numbers=numbers, chunk_length=2, types=types) assert (['CHROM', 'POS', 'REF', 'ALT_1', 'ALT_2', 'DP', 'AC_1', 'AC_2', 'AC_3'] == df.columns.tolist()) # always convert strings to object dtype for pandas assert np.dtype(object) == df['CHROM'].dtype assert np.dtype(object) == df['ALT_1'].dtype check_dataframe(callset, df) def test_vcf_to_dataframe_all(): vcf_path = fixture_path('sample.vcf') fields = '*' numbers = {'AC': 3} for string_type in 'S10', 'object': types = {'CHROM': string_type, 'ALT': string_type} callset = read_vcf(vcf_path, fields=fields, alt_number=2, numbers=numbers, types=types) df = vcf_to_dataframe(vcf_path, fields=fields, alt_number=2, numbers=numbers, chunk_length=2, types=types) for k in ['CHROM', 'POS', 'ID', 'REF', 'ALT_1', 'ALT_2', 'DP', 'AC_1', 'AC_2', 'AC_3']: assert k in df.columns.tolist() # always convert strings to object dtype for pandas assert np.dtype(object) == df['CHROM'].dtype assert np.dtype(object) == df['ALT_1'].dtype check_dataframe(callset, df) def test_vcf_to_dataframe_exclude(): vcf_path = fixture_path('sample.vcf') fields = '*' exclude = ['ALT', 'ID'] df = vcf_to_dataframe(vcf_path, fields=fields, exclude_fields=exclude) for k in ['CHROM', 'POS', 'REF', 'DP', 'AC_1', 'AC_2', 'AC_3']: assert k in df.columns.tolist() for k in ['ALT_1', 'ALT_2', 'ID']: assert k not in df.columns.tolist() def test_vcf_to_dataframe_ann(): vcf_path = fixture_path('ann.vcf') fields = ['CHROM', 'POS', 'REF', 'ALT', 'ANN', 'DP', 'AC', 'GT'] numbers = {'AC': 2, 'ALT': 2} for string_type in 'S10', 'object': types = {'CHROM': string_type, 'ALT': string_type} transformers = [ANNTransformer(fields=['Allele', 'HGVS_c', 'AA'], types={'Allele': string_type, 'HGVS_c': string_type})] callset = read_vcf(vcf_path, fields=fields, numbers=numbers, types=types, transformers=transformers) df = vcf_to_dataframe(vcf_path, fields=fields, numbers=numbers, chunk_length=2, types=types, transformers=transformers) assert (['CHROM', 'POS', 'REF', 'ALT_1', 'ALT_2', 'ANN_Allele', 'ANN_HGVS_c', 'ANN_AA_pos', 'ANN_AA_length', 'DP', 'AC_1', 'AC_2'] == df.columns.tolist()) # always convert strings to object dtype for pandas assert np.dtype(object) == df['CHROM'].dtype assert np.dtype(object) == df['ALT_1'].dtype check_dataframe(callset, df) def test_vcf_to_csv(): vcf_path = fixture_path('sample.vcf') fields = ['CHROM', 'POS', 'REF', 'ALT', 'DP', 'AC', 'GT'] numbers = {'AC': 3} for string_type in 'S20', 'object': types = {'REF': string_type, 'ALT': string_type} df = vcf_to_dataframe(vcf_path, fields=fields, alt_number=2, numbers=numbers, types=types, chunk_length=2) csv_path = os.path.join(tempdir, 'test.csv') if os.path.exists(csv_path): os.remove(csv_path) vcf_to_csv(vcf_path, csv_path, fields=fields, alt_number=2, numbers=numbers, types=types, chunk_length=2) import pandas adf = pandas.read_csv(csv_path, na_filter=True) assert df.columns.tolist() == adf.columns.tolist() for k in df.columns: compare_arrays(df[k].values, adf[k].values) def test_vcf_to_csv_all(): vcf_path = fixture_path('sample.vcf') fields = '*' df = vcf_to_dataframe(vcf_path, fields=fields) csv_path = os.path.join(tempdir, 'test.csv') if os.path.exists(csv_path): os.remove(csv_path) vcf_to_csv(vcf_path, csv_path, fields=fields) import pandas adf = pandas.read_csv(csv_path, na_filter=True) assert df.columns.tolist() == adf.columns.tolist() for k in df.columns: compare_arrays(df[k].values, adf[k].values) def test_vcf_to_csv_exclude(): vcf_path = fixture_path('sample.vcf') fields = '*' exclude = ['ALT', 'ID'] df = vcf_to_dataframe(vcf_path, fields=fields, exclude_fields=exclude) csv_path = os.path.join(tempdir, 'test.csv') if os.path.exists(csv_path): os.remove(csv_path) vcf_to_csv(vcf_path, csv_path, fields=fields, exclude_fields=exclude) import pandas adf = pandas.read_csv(csv_path, na_filter=True) assert df.columns.tolist() == adf.columns.tolist() def test_vcf_to_csv_ann(): vcf_path = fixture_path('ann.vcf') fields = ['CHROM', 'POS', 'REF', 'ALT', 'DP', 'AC', 'ANN', 'GT'] numbers = {'AC': 2, 'ALT': 2} for string_type in 'S20', 'object': types = {'CHROM': string_type, 'REF': string_type, 'ALT': string_type} transformers = [ANNTransformer(fields=['Allele', 'HGVS_c', 'AA'], types={'Allele': string_type, 'HGVS_c': string_type})] df = vcf_to_dataframe(vcf_path, fields=fields, numbers=numbers, types=types, chunk_length=2, transformers=transformers) csv_path = os.path.join(tempdir, 'test.csv') if os.path.exists(csv_path): os.remove(csv_path) vcf_to_csv(vcf_path, csv_path, fields=fields, numbers=numbers, types=types, chunk_length=2, transformers=transformers) import pandas adf = pandas.read_csv(csv_path, na_filter=True) assert df.columns.tolist() == adf.columns.tolist() for k in df.columns: compare_arrays(df[k].values, adf[k].values) def test_vcf_to_recarray(): vcf_path = fixture_path('sample.vcf') fields = ['CHROM', 'POS', 'REF', 'ALT', 'DP', 'AC', 'GT'] numbers = {'AC': 3} for string_type in 'S20', 'object': types = {'CHROM': string_type, 'REF': string_type, 'ALT': string_type} callset = read_vcf(vcf_path, fields=fields, alt_number=2, numbers=numbers, types=types) a = vcf_to_recarray(vcf_path, fields=fields, alt_number=2, numbers=numbers, chunk_length=2, types=types) assert (['CHROM', 'POS', 'REF', 'ALT_1', 'ALT_2', 'DP', 'AC_1', 'AC_2', 'AC_3'] == list(a.dtype.names)) assert np.dtype(string_type) == a['CHROM'].dtype for k in callset: if k.startswith('variants/'): group, name = k.split('/') e = callset[k] if e.ndim == 1: assert_array_equal(e, a[name]) elif e.ndim == 2: for i in range(e.shape[1]): assert_array_equal(e[:, i], a['%s_%s' % (name, i + 1)]) else: assert False, (k, e.ndim) def test_vcf_to_recarray_all(): vcf_path = fixture_path('sample.vcf') fields = '*' numbers = {'AC': 3} for string_type in 'S20', 'object': types = {'CHROM': string_type, 'REF': string_type, 'ALT': string_type} callset = read_vcf(vcf_path, fields=fields, alt_number=2, numbers=numbers, types=types) a = vcf_to_recarray(vcf_path, fields=fields, alt_number=2, numbers=numbers, chunk_length=2, types=types) for k in ['CHROM', 'POS', 'ID', 'REF', 'ALT_1', 'ALT_2', 'DP', 'AC_1', 'AC_2', 'AC_3']: assert k in a.dtype.names assert np.dtype(string_type) == a['CHROM'].dtype for k in callset: if k.startswith('variants/'): group, name = k.split('/') e = callset[k] if e.ndim == 1: assert_array_equal(e, a[name]) elif e.ndim == 2: for i in range(e.shape[1]): assert_array_equal(e[:, i], a['%s_%s' % (name, i + 1)]) else: assert False, (k, e.ndim) def test_vcf_to_recarray_exclude(): vcf_path = fixture_path('sample.vcf') fields = '*' exclude = ['ALT', 'ID'] a = vcf_to_recarray(vcf_path, fields=fields, exclude_fields=exclude) for k in ['CHROM', 'POS', 'REF', 'DP', 'AC_1', 'AC_2', 'AC_3']: assert k in a.dtype.names for k in 'ALT_1', 'ALT_2', 'ALT', 'ID': assert k not in a.dtype.names def test_vcf_to_recarray_ann(): vcf_path = fixture_path('ann.vcf') fields = ['CHROM', 'POS', 'REF', 'ALT', 'ANN', 'DP', 'AC', 'GT'] numbers = {'AC': 2, 'ALT': 2} for string_type in 'S20', 'object': types = {'CHROM': string_type, 'REF': string_type, 'ALT': string_type} transformers = [ANNTransformer(fields=['Allele', 'HGVS_c', 'AA'], types={'Allele': string_type, 'HGVS_c': string_type})] callset = read_vcf(vcf_path, fields=fields, numbers=numbers, types=types, transformers=transformers) a = vcf_to_recarray(vcf_path, fields=fields, numbers=numbers, chunk_length=2, types=types, transformers=transformers) assert (['CHROM', 'POS', 'REF', 'ALT_1', 'ALT_2', 'ANN_Allele', 'ANN_HGVS_c', 'ANN_AA_pos', 'ANN_AA_length', 'DP', 'AC_1', 'AC_2'] == list(a.dtype.names)) assert np.dtype(string_type) == a['CHROM'].dtype assert np.dtype(string_type) == a['ALT_1'].dtype for k in callset: group, name = k.split('/') if group == 'variants': e = callset[k] if e.ndim == 1: assert_array_equal(e, a[name]) elif e.ndim == 2: for i in range(e.shape[1]): assert_array_equal(e[:, i], a['%s_%s' % (name, i + 1)]) else: assert False, (k, e.ndim) else: assert name not in a.dtype.names def test_read_vcf_headers(): vcf_path = fixture_path('sample.vcf') headers = read_vcf_headers(vcf_path) # check headers assert 'q10' in headers.filters assert 's50' in headers.filters assert 'AA' in headers.infos assert 'AC' in headers.infos assert 'AF' in headers.infos assert 'AN' in headers.infos assert 'DB' in headers.infos assert 'DP' in headers.infos assert 'H2' in headers.infos assert 'NS' in headers.infos assert 'DP' in headers.formats assert 'GQ' in headers.formats assert 'GT' in headers.formats assert 'HQ' in headers.formats assert ['NA00001', 'NA00002', 'NA00003'] == headers.samples assert '1' == headers.infos['AA']['Number'] assert 'String' == headers.infos['AA']['Type'] assert 'Ancestral Allele' == headers.infos['AA']['Description'] assert '2' == headers.formats['HQ']['Number'] assert 'Integer' == headers.formats['HQ']['Type'] assert 'Haplotype Quality' == headers.formats['HQ']['Description']
[ "atexit.register", "numpy.load", "os.remove", "pandas.read_csv", "numpy.isnan", "allel.io.vcf_read.read_vcf", "allel.io.vcf_read.vcf_to_dataframe", "shutil.rmtree", "numpy.testing.assert_array_almost_equal", "os.path.join", "zarr.open_group", "allel.io.vcf_read.vcf_to_csv", "allel.io.vcf_read.vcf_to_hdf5", "allel.io.vcf_read.vcf_to_recarray", "warnings.simplefilter", "pytest.warns", "os.path.dirname", "os.path.exists", "pytest.raises", "tempfile.mkdtemp", "itertools.product", "io.BytesIO", "h5py.File", "numpy.testing.assert_array_equal", "allel.io.vcf_read.iter_vcf_chunks", "allel.test.tools.compare_arrays", "allel.io.vcf_read.ANNTransformer", "pytest.approx", "allel.io.vcf_read.read_vcf_headers", "numpy.all", "gzip.open", "warnings.resetwarnings", "numpy.dtype", "allel.io.vcf_read.vcf_to_npz", "numpy.array", "allel.io.vcf_read.vcf_to_zarr" ]
[((617, 641), 'warnings.resetwarnings', 'warnings.resetwarnings', ([], {}), '()\n', (639, 641), False, 'import warnings\n'), ((642, 673), 'warnings.simplefilter', 'warnings.simplefilter', (['"""always"""'], {}), "('always')\n", (663, 673), False, 'import warnings\n'), ((715, 733), 'tempfile.mkdtemp', 'tempfile.mkdtemp', ([], {}), '()\n', (731, 733), False, 'import tempfile\n'), ((734, 773), 'atexit.register', 'atexit.register', (['shutil.rmtree', 'tempdir'], {}), '(shutil.rmtree, tempdir)\n', (749, 773), False, 'import atexit\n'), ((980, 1050), 'allel.io.vcf_read.iter_vcf_chunks', 'iter_vcf_chunks', (['vcf_path'], {'fields': '"""*"""', 'chunk_length': '(4)', 'buffer_size': '(100)'}), "(vcf_path, fields='*', chunk_length=4, buffer_size=100)\n", (995, 1050), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((3251, 3281), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': '"""*"""'}), "(vcf_path, fields='*')\n", (3259, 3281), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((4232, 4286), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': '"""*"""', 'exclude_fields': 'exclude'}), "(vcf_path, fields='*', exclude_fields=exclude)\n", (4240, 4286), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((5240, 5292), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': '"""*"""', 'rename_fields': 'rename'}), "(vcf_path, fields='*', rename_fields=rename)\n", (5248, 5292), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((7842, 7860), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {}), '(vcf_path)\n', (7850, 7860), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((8262, 8301), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': '"""variants/*"""'}), "(vcf_path, fields='variants/*')\n", (8270, 8301), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((9059, 9092), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': '"""INFO"""'}), "(vcf_path, fields='INFO')\n", (9067, 9092), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((9475, 9510), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': '"""FILTER"""'}), "(vcf_path, fields='FILTER')\n", (9483, 9510), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((9831, 9866), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': '"""FILTER"""'}), "(vcf_path, fields='FILTER')\n", (9839, 9866), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((10226, 10265), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': '"""calldata/*"""'}), "(vcf_path, fields='calldata/*')\n", (10234, 10265), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((10558, 10689), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': "['CHROM', 'variants/POS', 'AC', 'variants/AF', 'GT', 'calldata/HQ',\n 'FILTER_q10', 'variants/numalt']"}), "(vcf_path, fields=['CHROM', 'variants/POS', 'AC', 'variants/AF',\n 'GT', 'calldata/HQ', 'FILTER_q10', 'variants/numalt'])\n", (10566, 10689), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((11089, 11268), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': "['CHROM', 'variants/POS', 'AC', 'variants/AF', 'GT', 'calldata/HQ',\n 'FILTER_q10', 'variants/numalt', 'samples']", 'chunk_length': '(4)', 'buffer_size': '(100)'}), "(vcf_path, fields=['CHROM', 'variants/POS', 'AC', 'variants/AF',\n 'GT', 'calldata/HQ', 'FILTER_q10', 'variants/numalt', 'samples'],\n chunk_length=4, buffer_size=100)\n", (11097, 11268), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((11784, 11901), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': "['CHROM', 'variants/CHROM', 'variants/AF', 'variants/AF', 'numalt',\n 'variants/numalt']"}), "(vcf_path, fields=['CHROM', 'variants/CHROM', 'variants/AF',\n 'variants/AF', 'numalt', 'variants/numalt'])\n", (11792, 11901), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((12282, 12329), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': "['ALTLEN', 'altlen']"}), "(vcf_path, fields=['ALTLEN', 'altlen'])\n", (12290, 12329), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((12719, 12841), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['input_file'], {'fields': '"""*"""', 'chunk_length': 'chunk_length', 'buffer_size': 'buffer_size', 'types': "{'calldata/DP': 'object'}"}), "(input_file, fields='*', chunk_length=chunk_length, buffer_size=\n buffer_size, types={'calldata/DP': 'object'})\n", (12727, 12841), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((15297, 15399), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['input_file'], {'fields': '"""*"""', 'chunk_length': 'chunk_length', 'buffer_size': 'buffer_size', 'types': 'types'}), "(input_file, fields='*', chunk_length=chunk_length, buffer_size=\n buffer_size, types=types)\n", (15305, 15399), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((18622, 18652), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': '"""*"""'}), "(vcf_path, fields='*')\n", (18630, 18652), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((33588, 33732), 'numpy.array', 'np.array', (['[[[0, 0, 0], [0, 1, 2], [-1, -1, -1]], [[0, 1, 2], [3, 3, -1], [-1, -1, -1]\n ], [[0, 1, -1], [5, -1, -1], [-1, -1, -1]]]'], {'dtype': '"""i1"""'}), "([[[0, 0, 0], [0, 1, 2], [-1, -1, -1]], [[0, 1, 2], [3, 3, -1], [-1,\n -1, -1]], [[0, 1, -1], [5, -1, -1], [-1, -1, -1]]], dtype='i1')\n", (33596, 33732), True, 'import numpy as np\n'), ((33806, 33830), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['e', 'a'], {}), '(e, a)\n', (33824, 33830), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((33870, 33934), 'numpy.array', 'np.array', (['[[11, 12, -1], [22, 33, -1], [-1, 12, -1]]'], {'dtype': '"""i2"""'}), "([[11, 12, -1], [22, 33, -1], [-1, 12, -1]], dtype='i2')\n", (33878, 33934), True, 'import numpy as np\n'), ((34012, 34036), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['e', 'a'], {}), '(e, a)\n', (34030, 34036), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((39220, 39237), 'numpy.isnan', 'np.isnan', (['a[2, 1]'], {}), '(a[2, 1])\n', (39228, 39237), True, 'import numpy as np\n'), ((39842, 39902), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': "['ALT', 'AC', 'AF']", 'alt_number': '(2)'}), "(vcf_path, fields=['ALT', 'AC', 'AF'], alt_number=2)\n", (39850, 39902), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((40099, 40159), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': "['ALT', 'AC', 'AF']", 'alt_number': '(1)'}), "(vcf_path, fields=['ALT', 'AC', 'AF'], alt_number=1)\n", (40107, 40159), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((40350, 40410), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': "['ALT', 'AC', 'AF']", 'alt_number': '(5)'}), "(vcf_path, fields=['ALT', 'AC', 'AF'], alt_number=5)\n", (40358, 40410), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((40626, 40719), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': "['ALT', 'AC', 'AF']", 'alt_number': '(5)', 'numbers': "{'ALT': 2, 'AC': 4}"}), "(vcf_path, fields=['ALT', 'AC', 'AF'], alt_number=5, numbers={'ALT':\n 2, 'AC': 4})\n", (40634, 40719), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((43888, 43928), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['fn'], {'region': 'region', 'tabix': 'tabix'}), '(fn, region=region, tabix=tabix)\n', (43896, 43928), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((44080, 44101), 'numpy.all', 'np.all', (["(chrom == '19')"], {}), "(chrom == '19')\n", (44086, 44101), True, 'import numpy as np\n'), ((44131, 44166), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['[111, 112]', 'pos'], {}), '([111, 112], pos)\n', (44149, 44166), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((44200, 44240), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['fn'], {'region': 'region', 'tabix': 'tabix'}), '(fn, region=region, tabix=tabix)\n', (44208, 44240), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((44392, 44413), 'numpy.all', 'np.all', (["(chrom == '20')"], {}), "(chrom == '20')\n", (44398, 44413), True, 'import numpy as np\n'), ((44443, 44518), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['[14370, 1230237, 1234567, 1235237, 17330, 1110696]', 'pos'], {}), '([14370, 1230237, 1234567, 1235237, 17330, 1110696], pos)\n', (44461, 44518), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((44551, 44591), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['fn'], {'region': 'region', 'tabix': 'tabix'}), '(fn, region=region, tabix=tabix)\n', (44559, 44591), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((44743, 44763), 'numpy.all', 'np.all', (["(chrom == 'X')"], {}), "(chrom == 'X')\n", (44749, 44763), True, 'import numpy as np\n'), ((44793, 44822), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['[10]', 'pos'], {}), '([10], pos)\n', (44811, 44822), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((44855, 44895), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['fn'], {'region': 'region', 'tabix': 'tabix'}), '(fn, region=region, tabix=tabix)\n', (44863, 44895), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((44965, 45005), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['fn'], {'region': 'region', 'tabix': 'tabix'}), '(fn, region=region, tabix=tabix)\n', (44973, 45005), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((45157, 45178), 'numpy.all', 'np.all', (["(chrom == '20')"], {}), "(chrom == '20')\n", (45163, 45178), True, 'import numpy as np\n'), ((45208, 45247), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['[14370, 17330]', 'pos'], {}), '([14370, 17330], pos)\n', (45226, 45247), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((45297, 45337), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['fn'], {'region': 'region', 'tabix': 'tabix'}), '(fn, region=region, tabix=tabix)\n', (45305, 45337), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((45489, 45510), 'numpy.all', 'np.all', (["(chrom == '20')"], {}), "(chrom == '20')\n", (45495, 45510), True, 'import numpy as np\n'), ((45540, 45583), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['[1230237, 1110696]', 'pos'], {}), '([1230237, 1110696], pos)\n', (45558, 45583), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((45633, 45673), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['fn'], {'region': 'region', 'tabix': 'tabix'}), '(fn, region=region, tabix=tabix)\n', (45641, 45673), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((45825, 45846), 'numpy.all', 'np.all', (["(chrom == '20')"], {}), "(chrom == '20')\n", (45831, 45846), True, 'import numpy as np\n'), ((45876, 45919), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['[1234567, 1235237]', 'pos'], {}), '([1234567, 1235237], pos)\n', (45894, 45919), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((46902, 46920), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {}), '(vcf_path)\n', (46910, 46920), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((48208, 48245), 'numpy.testing.assert_array_equal', 'assert_array_equal', (["['T', '', 'T']", 'a'], {}), "(['T', '', 'T'], a)\n", (48226, 48245), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((48361, 48429), 'numpy.testing.assert_array_equal', 'assert_array_equal', (["['intergenic_region', '', 'missense_variant']", 'a'], {}), "(['intergenic_region', '', 'missense_variant'], a)\n", (48379, 48429), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((48552, 48603), 'numpy.testing.assert_array_equal', 'assert_array_equal', (["['MODIFIER', '', 'MODERATE']", 'a'], {}), "(['MODIFIER', '', 'MODERATE'], a)\n", (48570, 48603), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((48718, 48773), 'numpy.testing.assert_array_equal', 'assert_array_equal', (["['AGAP004677', '', 'AGAP005273']", 'a'], {}), "(['AGAP004677', '', 'AGAP005273'], a)\n", (48736, 48773), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((48886, 48941), 'numpy.testing.assert_array_equal', 'assert_array_equal', (["['AGAP004677', '', 'AGAP005273']", 'a'], {}), "(['AGAP004677', '', 'AGAP005273'], a)\n", (48904, 48941), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((49059, 49121), 'numpy.testing.assert_array_equal', 'assert_array_equal', (["['intergenic_region', '', 'transcript']", 'a'], {}), "(['intergenic_region', '', 'transcript'], a)\n", (49077, 49121), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((49237, 49295), 'numpy.testing.assert_array_equal', 'assert_array_equal', (["['AGAP004677', '', 'AGAP005273-RA']", 'a'], {}), "(['AGAP004677', '', 'AGAP005273-RA'], a)\n", (49255, 49295), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((49419, 49464), 'numpy.testing.assert_array_equal', 'assert_array_equal', (["['', '', 'VectorBase']", 'a'], {}), "(['', '', 'VectorBase'], a)\n", (49437, 49464), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((49613, 49650), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['[-1, -1, 1]', 'a[:]'], {}), '([-1, -1, 1], a[:])\n', (49631, 49650), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((49762, 49802), 'numpy.testing.assert_array_equal', 'assert_array_equal', (["['', '', '17A>T']", 'a'], {}), "(['', '', '17A>T'], a)\n", (49780, 49802), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((49914, 49956), 'numpy.testing.assert_array_equal', 'assert_array_equal', (["['', '', 'Asp6Val']", 'a'], {}), "(['', '', 'Asp6Val'], a)\n", (49932, 49956), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((50069, 50104), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['[-1, -1, 17]', 'a'], {}), '([-1, -1, 17], a)\n', (50087, 50104), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((50220, 50257), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['[-1, -1, 4788]', 'a'], {}), '([-1, -1, 4788], a)\n', (50238, 50257), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((50369, 50404), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['[-1, -1, 17]', 'a'], {}), '([-1, -1, 17], a)\n', (50387, 50404), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((50519, 50556), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['[-1, -1, 4788]', 'a'], {}), '([-1, -1, 4788], a)\n', (50537, 50556), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((50667, 50701), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['[-1, -1, 6]', 'a'], {}), '([-1, -1, 6], a)\n', (50685, 50701), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((50815, 50852), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['[-1, -1, 1596]', 'a'], {}), '([-1, -1, 1596], a)\n', (50833, 50852), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((50965, 51002), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['[3000, -1, -1]', 'a'], {}), '([3000, -1, -1], a)\n', (50983, 51002), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((51258, 51293), 'numpy.testing.assert_array_equal', 'assert_array_equal', (["['T', '']", 'a[0]'], {}), "(['T', ''], a[0])\n", (51276, 51293), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((51298, 51332), 'numpy.testing.assert_array_equal', 'assert_array_equal', (["['', '']", 'a[1]'], {}), "(['', ''], a[1])\n", (51316, 51332), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((51337, 51373), 'numpy.testing.assert_array_equal', 'assert_array_equal', (["['T', 'G']", 'a[2]'], {}), "(['T', 'G'], a[2])\n", (51355, 51373), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((51488, 51529), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['[-1, -1, 17]', 'a[:, 0]'], {}), '([-1, -1, 17], a[:, 0])\n', (51506, 51529), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((51534, 51575), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['[-1, -1, 12]', 'a[:, 1]'], {}), '([-1, -1, 12], a[:, 1])\n', (51552, 51575), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((51693, 51736), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['[-1, -1, 4788]', 'a[:, 0]'], {}), '([-1, -1, 4788], a[:, 0])\n', (51711, 51736), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((51741, 51784), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['[-1, -1, 4768]', 'a[:, 1]'], {}), '([-1, -1, 4768], a[:, 1])\n', (51759, 51784), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((52078, 52139), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': "['ANN']", 'transformers': 'transformers'}), "(vcf_path, fields=['ANN'], transformers=transformers)\n", (52086, 52139), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((52387, 52427), 'numpy.testing.assert_array_equal', 'assert_array_equal', (["[b'T', b'', b'T']", 'a'], {}), "([b'T', b'', b'T'], a)\n", (52405, 52427), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((52536, 52579), 'numpy.testing.assert_array_equal', 'assert_array_equal', (["[b'', b'', b'17A>T']", 'a'], {}), "([b'', b'', b'17A>T'], a)\n", (52554, 52579), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((52689, 52724), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['[-1, -1, 17]', 'a'], {}), '([-1, -1, 17], a)\n', (52707, 52724), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((53042, 53064), 'io.BytesIO', 'io.BytesIO', (['input_data'], {}), '(input_data)\n', (53052, 53064), False, 'import io\n'), ((53079, 53138), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['input_file'], {'fields': "['calldata/GT', 'calldata/GQ']"}), "(input_file, fields=['calldata/GT', 'calldata/GQ'])\n", (53087, 53138), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((53208, 53269), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['[[0, 1], [1, 2], [2, 3], [-1, -1]]', 'gt[0]'], {}), '([[0, 1], [1, 2], [2, 3], [-1, -1]], gt[0])\n', (53226, 53269), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((53274, 53337), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['[[-1, -1], [-1, -1], [3, 3], [1, 2]]', 'gt[1]'], {}), '([[-1, -1], [-1, -1], [3, 3], [1, 2]], gt[1])\n', (53292, 53337), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((53404, 53447), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['[12, -1, 34, -1]', 'gq[0]'], {}), '([12, -1, 34, -1], gq[0])\n', (53422, 53447), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((53452, 53495), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['[-1, -1, -1, -1]', 'gq[1]'], {}), '([-1, -1, -1, -1], gq[1])\n', (53470, 53495), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((53553, 53577), 'warnings.resetwarnings', 'warnings.resetwarnings', ([], {}), '()\n', (53575, 53577), False, 'import warnings\n'), ((53582, 53612), 'warnings.simplefilter', 'warnings.simplefilter', (['"""error"""'], {}), "('error')\n", (53603, 53612), False, 'import warnings\n'), ((58804, 58828), 'warnings.resetwarnings', 'warnings.resetwarnings', ([], {}), '()\n', (58826, 58828), False, 'import warnings\n'), ((58833, 58864), 'warnings.simplefilter', 'warnings.simplefilter', (['"""always"""'], {}), "('always')\n", (58854, 58864), False, 'import warnings\n'), ((58979, 59036), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': "['DP']", 'types': "{'DP': 'String'}"}), "(vcf_path, fields=['DP'], types={'DP': 'String'})\n", (58987, 59036), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((59132, 59190), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': "['DP']", 'types': "{'DP': 'Integer'}"}), "(vcf_path, fields=['DP'], types={'DP': 'Integer'})\n", (59140, 59190), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((59311, 59345), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': "['FOO']"}), "(vcf_path, fields=['FOO'])\n", (59319, 59345), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((59496, 59572), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': "['calldata/DP']", 'types': "{'calldata/DP': 'Integer'}"}), "(vcf_path, fields=['calldata/DP'], types={'calldata/DP': 'Integer'})\n", (59504, 59572), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((59967, 59991), 'warnings.resetwarnings', 'warnings.resetwarnings', ([], {}), '()\n', (59989, 59991), False, 'import warnings\n'), ((59996, 60026), 'warnings.simplefilter', 'warnings.simplefilter', (['"""error"""'], {}), "('error')\n", (60017, 60026), False, 'import warnings\n'), ((60207, 60231), 'warnings.resetwarnings', 'warnings.resetwarnings', ([], {}), '()\n', (60229, 60231), False, 'import warnings\n'), ((60236, 60267), 'warnings.simplefilter', 'warnings.simplefilter', (['"""always"""'], {}), "('always')\n", (60257, 60267), False, 'import warnings\n'), ((60476, 60490), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['path'], {}), '(path)\n', (60484, 60490), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((61075, 61109), 'os.path.join', 'os.path.join', (['tempdir', '"""sample.h5"""'], {}), "(tempdir, 'sample.h5')\n", (61087, 61109), False, 'import os\n'), ((61117, 61140), 'os.path.exists', 'os.path.exists', (['h5_path'], {}), '(h5_path)\n', (61131, 61140), False, 'import os\n'), ((61527, 61563), 'os.path.join', 'os.path.join', (['tempdir', '"""sample.zarr"""'], {}), "(tempdir, 'sample.zarr')\n", (61539, 61563), False, 'import os\n'), ((61571, 61596), 'os.path.exists', 'os.path.exists', (['zarr_path'], {}), '(zarr_path)\n', (61585, 61596), False, 'import os\n'), ((61769, 61805), 'zarr.open_group', 'zarr.open_group', (['zarr_path'], {'mode': '"""r"""'}), "(zarr_path, mode='r')\n", (61784, 61805), False, 'import zarr\n'), ((66499, 66585), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': '"""GT"""', 'numbers': "{'GT': 3}", 'types': "{'GT': 'genotype_ac/i1'}"}), "(vcf_path, fields='GT', numbers={'GT': 3}, types={'GT':\n 'genotype_ac/i1'})\n", (66507, 66585), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((66613, 66768), 'numpy.array', 'np.array', (['[[(2, 0, 0), (3, 0, 0), (1, 0, 0)], [(0, 1, 0), (1, 1, 0), (1, 1, 1)], [(0,\n 0, 0), (0, 0, 0), (0, 0, 0)], [(0, 0, 0), (0, 0, 0), (0, 0, 0)]]'], {}), '([[(2, 0, 0), (3, 0, 0), (1, 0, 0)], [(0, 1, 0), (1, 1, 0), (1, 1, \n 1)], [(0, 0, 0), (0, 0, 0), (0, 0, 0)], [(0, 0, 0), (0, 0, 0), (0, 0, 0)]])\n', (66621, 66768), True, 'import numpy as np\n'), ((66838, 66862), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['e', 'a'], {}), '(e, a)\n', (66856, 66862), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((67744, 67768), 'warnings.resetwarnings', 'warnings.resetwarnings', ([], {}), '()\n', (67766, 67768), False, 'import warnings\n'), ((67773, 67803), 'warnings.simplefilter', 'warnings.simplefilter', (['"""error"""'], {}), "('error')\n", (67794, 67803), False, 'import warnings\n'), ((70107, 70131), 'warnings.resetwarnings', 'warnings.resetwarnings', ([], {}), '()\n', (70129, 70131), False, 'import warnings\n'), ((70136, 70167), 'warnings.simplefilter', 'warnings.simplefilter', (['"""always"""'], {}), "('always')\n", (70157, 70167), False, 'import warnings\n'), ((70255, 70301), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': "['MQ0FractionTest']"}), "(vcf_path, fields=['MQ0FractionTest'])\n", (70263, 70301), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((70371, 70457), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': "['MQ0FractionTest']", 'types': "{'MQ0FractionTest': 'Float'}"}), "(vcf_path, fields=['MQ0FractionTest'], types={'MQ0FractionTest':\n 'Float'})\n", (70379, 70457), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((70648, 70678), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': '"""*"""'}), "(vcf_path, fields='*')\n", (70656, 70678), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((70754, 70772), 'numpy.isnan', 'np.isnan', (['gq[0, 0]'], {}), '(gq[0, 0])\n', (70762, 70772), True, 'import numpy as np\n'), ((71071, 71129), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': '"""calldata/*"""', 'numbers': "{'AD': 2}"}), "(vcf_path, fields='calldata/*', numbers={'AD': 2})\n", (71079, 71129), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((71513, 71585), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': "['calldata/GT', 'calldata/DP', 'calldata/GQ']"}), "(vcf_path, fields=['calldata/GT', 'calldata/DP', 'calldata/GQ'])\n", (71521, 71585), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((71945, 72003), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': "['AD', 'GT']", 'numbers': "{'AD': 2}"}), "(vcf_path, fields=['AD', 'GT'], numbers={'AD': 2})\n", (71953, 72003), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((72076, 72114), 'numpy.array', 'np.array', (['[[-1, -1], [0, -1], [1, -1]]'], {}), '([[-1, -1], [0, -1], [1, -1]])\n', (72084, 72114), True, 'import numpy as np\n'), ((72119, 72150), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['e', 'gt[:, 1]'], {}), '(e, gt[:, 1])\n', (72137, 72150), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((72159, 72193), 'numpy.array', 'np.array', (['[[1, 0], [1, 0], [1, 0]]'], {}), '([[1, 0], [1, 0], [1, 0]])\n', (72167, 72193), True, 'import numpy as np\n'), ((72198, 72229), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['e', 'ad[:, 1]'], {}), '(e, ad[:, 1])\n', (72216, 72229), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((72345, 72380), 'os.path.join', 'os.path.join', (['tempdir', '"""sample.npz"""'], {}), "(tempdir, 'sample.npz')\n", (72357, 72380), False, 'import os\n'), ((72578, 72675), 'itertools.product', 'itertools.product', (['vcf_paths', 'region_values', 'tabix_values', 'samples_values', 'string_type_values'], {}), '(vcf_paths, region_values, tabix_values, samples_values,\n string_type_values)\n', (72595, 72675), False, 'import itertools\n'), ((73838, 73873), 'os.path.join', 'os.path.join', (['tempdir', '"""sample.npz"""'], {}), "(tempdir, 'sample.npz')\n", (73850, 73873), False, 'import os\n'), ((73944, 73998), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': '"""*"""', 'exclude_fields': 'exclude'}), "(vcf_path, fields='*', exclude_fields=exclude)\n", (73952, 73998), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((74006, 74030), 'os.path.exists', 'os.path.exists', (['npz_path'], {}), '(npz_path)\n', (74020, 74030), False, 'import os\n'), ((74064, 74130), 'allel.io.vcf_read.vcf_to_npz', 'vcf_to_npz', (['vcf_path', 'npz_path'], {'fields': '"""*"""', 'exclude_fields': 'exclude'}), "(vcf_path, npz_path, fields='*', exclude_fields=exclude)\n", (74074, 74130), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((74144, 74180), 'numpy.load', 'np.load', (['npz_path'], {'allow_pickle': '(True)'}), '(npz_path, allow_pickle=True)\n', (74151, 74180), True, 'import numpy as np\n'), ((74565, 74600), 'os.path.join', 'os.path.join', (['tempdir', '"""sample.npz"""'], {}), "(tempdir, 'sample.npz')\n", (74577, 74600), False, 'import os\n'), ((74748, 74800), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': '"""*"""', 'rename_fields': 'rename'}), "(vcf_path, fields='*', rename_fields=rename)\n", (74756, 74800), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((74808, 74832), 'os.path.exists', 'os.path.exists', (['npz_path'], {}), '(npz_path)\n', (74822, 74832), False, 'import os\n'), ((74866, 74930), 'allel.io.vcf_read.vcf_to_npz', 'vcf_to_npz', (['vcf_path', 'npz_path'], {'fields': '"""*"""', 'rename_fields': 'rename'}), "(vcf_path, npz_path, fields='*', rename_fields=rename)\n", (74876, 74930), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((74944, 74980), 'numpy.load', 'np.load', (['npz_path'], {'allow_pickle': '(True)'}), '(npz_path, allow_pickle=True)\n', (74951, 74980), True, 'import numpy as np\n'), ((75393, 75429), 'os.path.join', 'os.path.join', (['tempdir', '"""sample.zarr"""'], {}), "(tempdir, 'sample.zarr')\n", (75405, 75429), False, 'import os\n'), ((75627, 75724), 'itertools.product', 'itertools.product', (['vcf_paths', 'region_values', 'tabix_values', 'samples_values', 'string_type_values'], {}), '(vcf_paths, region_values, tabix_values, samples_values,\n string_type_values)\n', (75644, 75724), False, 'import itertools\n'), ((77268, 77304), 'os.path.join', 'os.path.join', (['tempdir', '"""sample.zarr"""'], {}), "(tempdir, 'sample.zarr')\n", (77280, 77304), False, 'import os\n'), ((77375, 77429), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': '"""*"""', 'exclude_fields': 'exclude'}), "(vcf_path, fields='*', exclude_fields=exclude)\n", (77383, 77429), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((77437, 77462), 'os.path.exists', 'os.path.exists', (['zarr_path'], {}), '(zarr_path)\n', (77451, 77462), False, 'import os\n'), ((77501, 77569), 'allel.io.vcf_read.vcf_to_zarr', 'vcf_to_zarr', (['vcf_path', 'zarr_path'], {'fields': '"""*"""', 'exclude_fields': 'exclude'}), "(vcf_path, zarr_path, fields='*', exclude_fields=exclude)\n", (77512, 77569), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((77583, 77619), 'zarr.open_group', 'zarr.open_group', (['zarr_path'], {'mode': '"""r"""'}), "(zarr_path, mode='r')\n", (77598, 77619), False, 'import zarr\n'), ((78112, 78148), 'os.path.join', 'os.path.join', (['tempdir', '"""sample.zarr"""'], {}), "(tempdir, 'sample.zarr')\n", (78124, 78148), False, 'import os\n'), ((78296, 78348), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': '"""*"""', 'rename_fields': 'rename'}), "(vcf_path, fields='*', rename_fields=rename)\n", (78304, 78348), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((78356, 78381), 'os.path.exists', 'os.path.exists', (['zarr_path'], {}), '(zarr_path)\n', (78370, 78381), False, 'import os\n'), ((78420, 78486), 'allel.io.vcf_read.vcf_to_zarr', 'vcf_to_zarr', (['vcf_path', 'zarr_path'], {'fields': '"""*"""', 'rename_fields': 'rename'}), "(vcf_path, zarr_path, fields='*', rename_fields=rename)\n", (78431, 78486), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((78500, 78536), 'zarr.open_group', 'zarr.open_group', (['zarr_path'], {'mode': '"""r"""'}), "(zarr_path, mode='r')\n", (78515, 78536), False, 'import zarr\n'), ((78922, 78958), 'os.path.join', 'os.path.join', (['tempdir', '"""sample.zarr"""'], {}), "(tempdir, 'sample.zarr')\n", (78934, 78958), False, 'import os\n'), ((79854, 79890), 'os.path.join', 'os.path.join', (['tempdir', '"""sample.zarr"""'], {}), "(tempdir, 'sample.zarr')\n", (79866, 79890), False, 'import os\n'), ((80157, 80266), 'allel.io.vcf_read.vcf_to_zarr', 'vcf_to_zarr', (['vcf_path', 'zarr_path'], {'fields': "['ALTLEN', 'altlen']", 'rename_fields': "{'altlen': 'variants/spam'}"}), "(vcf_path, zarr_path, fields=['ALTLEN', 'altlen'], rename_fields\n ={'altlen': 'variants/spam'})\n", (80168, 80266), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((80371, 80407), 'os.path.join', 'os.path.join', (['tempdir', '"""sample.zarr"""'], {}), "(tempdir, 'sample.zarr')\n", (80383, 80407), False, 'import os\n'), ((80415, 80440), 'os.path.exists', 'os.path.exists', (['zarr_path'], {}), '(zarr_path)\n', (80429, 80440), False, 'import os\n'), ((80674, 80710), 'zarr.open_group', 'zarr.open_group', (['zarr_path'], {'mode': '"""r"""'}), "(zarr_path, mode='r')\n", (80689, 80710), False, 'import zarr\n'), ((81391, 81427), 'os.path.join', 'os.path.join', (['tempdir', '"""sample.zarr"""'], {}), "(tempdir, 'sample.zarr')\n", (81403, 81427), False, 'import os\n'), ((81505, 81562), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': '"""*"""', 'alt_number': '(2)', 'types': 'types'}), "(vcf_path, fields='*', alt_number=2, types=types)\n", (81513, 81562), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((81570, 81595), 'os.path.exists', 'os.path.exists', (['zarr_path'], {}), '(zarr_path)\n', (81584, 81595), False, 'import os\n'), ((81634, 81725), 'allel.io.vcf_read.vcf_to_zarr', 'vcf_to_zarr', (['vcf_path', 'zarr_path'], {'fields': '"""*"""', 'alt_number': '(2)', 'chunk_length': '(2)', 'types': 'types'}), "(vcf_path, zarr_path, fields='*', alt_number=2, chunk_length=2,\n types=types)\n", (81645, 81725), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((81751, 81787), 'zarr.open_group', 'zarr.open_group', (['zarr_path'], {'mode': '"""r"""'}), "(zarr_path, mode='r')\n", (81766, 81787), False, 'import zarr\n'), ((81983, 82016), 'os.path.join', 'os.path.join', (['tempdir', '"""ann.zarr"""'], {}), "(tempdir, 'ann.zarr')\n", (81995, 82016), False, 'import os\n'), ((82941, 82976), 'os.path.join', 'os.path.join', (['tempdir', '"""empty.zarr"""'], {}), "(tempdir, 'empty.zarr')\n", (82953, 82976), False, 'import os\n'), ((82981, 83013), 'allel.io.vcf_read.vcf_to_zarr', 'vcf_to_zarr', (['vcf_path', 'zarr_path'], {}), '(vcf_path, zarr_path)\n', (82992, 83013), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((83170, 83204), 'os.path.join', 'os.path.join', (['tempdir', '"""sample.h5"""'], {}), "(tempdir, 'sample.h5')\n", (83182, 83204), False, 'import os\n'), ((83402, 83499), 'itertools.product', 'itertools.product', (['vcf_paths', 'region_values', 'tabix_values', 'samples_values', 'string_type_values'], {}), '(vcf_paths, region_values, tabix_values, samples_values,\n string_type_values)\n', (83419, 83499), False, 'import itertools\n'), ((85020, 85054), 'os.path.join', 'os.path.join', (['tempdir', '"""sample.h5"""'], {}), "(tempdir, 'sample.h5')\n", (85032, 85054), False, 'import os\n'), ((85125, 85179), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': '"""*"""', 'exclude_fields': 'exclude'}), "(vcf_path, fields='*', exclude_fields=exclude)\n", (85133, 85179), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((85187, 85210), 'os.path.exists', 'os.path.exists', (['h5_path'], {}), '(h5_path)\n', (85201, 85210), False, 'import os\n'), ((85243, 85309), 'allel.io.vcf_read.vcf_to_hdf5', 'vcf_to_hdf5', (['vcf_path', 'h5_path'], {'fields': '"""*"""', 'exclude_fields': 'exclude'}), "(vcf_path, h5_path, fields='*', exclude_fields=exclude)\n", (85254, 85309), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((85857, 85891), 'os.path.join', 'os.path.join', (['tempdir', '"""sample.h5"""'], {}), "(tempdir, 'sample.h5')\n", (85869, 85891), False, 'import os\n'), ((86039, 86091), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': '"""*"""', 'rename_fields': 'rename'}), "(vcf_path, fields='*', rename_fields=rename)\n", (86047, 86091), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((86099, 86122), 'os.path.exists', 'os.path.exists', (['h5_path'], {}), '(h5_path)\n', (86113, 86122), False, 'import os\n'), ((86155, 86219), 'allel.io.vcf_read.vcf_to_hdf5', 'vcf_to_hdf5', (['vcf_path', 'h5_path'], {'fields': '"""*"""', 'rename_fields': 'rename'}), "(vcf_path, h5_path, fields='*', rename_fields=rename)\n", (86166, 86219), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((86644, 86678), 'os.path.join', 'os.path.join', (['tempdir', '"""sample.h5"""'], {}), "(tempdir, 'sample.h5')\n", (86656, 86678), False, 'import os\n'), ((86686, 86709), 'os.path.exists', 'os.path.exists', (['h5_path'], {}), '(h5_path)\n', (86700, 86709), False, 'import os\n'), ((87685, 87716), 'os.path.join', 'os.path.join', (['tempdir', '"""ann.h5"""'], {}), "(tempdir, 'ann.h5')\n", (87697, 87716), False, 'import os\n'), ((88580, 88614), 'os.path.join', 'os.path.join', (['tempdir', '"""sample.h5"""'], {}), "(tempdir, 'sample.h5')\n", (88592, 88614), False, 'import os\n'), ((89707, 89740), 'os.path.join', 'os.path.join', (['tempdir', '"""empty.h5"""'], {}), "(tempdir, 'empty.h5')\n", (89719, 89740), False, 'import os\n'), ((89745, 89775), 'allel.io.vcf_read.vcf_to_hdf5', 'vcf_to_hdf5', (['vcf_path', 'h5_path'], {}), '(vcf_path, h5_path)\n', (89756, 89775), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((92308, 92373), 'allel.io.vcf_read.vcf_to_dataframe', 'vcf_to_dataframe', (['vcf_path'], {'fields': 'fields', 'exclude_fields': 'exclude'}), '(vcf_path, fields=fields, exclude_fields=exclude)\n', (92324, 92373), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((94717, 94758), 'allel.io.vcf_read.vcf_to_dataframe', 'vcf_to_dataframe', (['vcf_path'], {'fields': 'fields'}), '(vcf_path, fields=fields)\n', (94733, 94758), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((94774, 94807), 'os.path.join', 'os.path.join', (['tempdir', '"""test.csv"""'], {}), "(tempdir, 'test.csv')\n", (94786, 94807), False, 'import os\n'), ((94815, 94839), 'os.path.exists', 'os.path.exists', (['csv_path'], {}), '(csv_path)\n', (94829, 94839), False, 'import os\n'), ((94873, 94918), 'allel.io.vcf_read.vcf_to_csv', 'vcf_to_csv', (['vcf_path', 'csv_path'], {'fields': 'fields'}), '(vcf_path, csv_path, fields=fields)\n', (94883, 94918), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((94947, 94988), 'pandas.read_csv', 'pandas.read_csv', (['csv_path'], {'na_filter': '(True)'}), '(csv_path, na_filter=True)\n', (94962, 94988), False, 'import pandas\n'), ((95250, 95315), 'allel.io.vcf_read.vcf_to_dataframe', 'vcf_to_dataframe', (['vcf_path'], {'fields': 'fields', 'exclude_fields': 'exclude'}), '(vcf_path, fields=fields, exclude_fields=exclude)\n', (95266, 95315), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((95331, 95364), 'os.path.join', 'os.path.join', (['tempdir', '"""test.csv"""'], {}), "(tempdir, 'test.csv')\n", (95343, 95364), False, 'import os\n'), ((95372, 95396), 'os.path.exists', 'os.path.exists', (['csv_path'], {}), '(csv_path)\n', (95386, 95396), False, 'import os\n'), ((95430, 95499), 'allel.io.vcf_read.vcf_to_csv', 'vcf_to_csv', (['vcf_path', 'csv_path'], {'fields': 'fields', 'exclude_fields': 'exclude'}), '(vcf_path, csv_path, fields=fields, exclude_fields=exclude)\n', (95440, 95499), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((95528, 95569), 'pandas.read_csv', 'pandas.read_csv', (['csv_path'], {'na_filter': '(True)'}), '(csv_path, na_filter=True)\n', (95543, 95569), False, 'import pandas\n'), ((99255, 99319), 'allel.io.vcf_read.vcf_to_recarray', 'vcf_to_recarray', (['vcf_path'], {'fields': 'fields', 'exclude_fields': 'exclude'}), '(vcf_path, fields=fields, exclude_fields=exclude)\n', (99270, 99319), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((101212, 101238), 'allel.io.vcf_read.read_vcf_headers', 'read_vcf_headers', (['vcf_path'], {}), '(vcf_path)\n', (101228, 101238), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((822, 847), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (837, 847), False, 'import os\n'), ((6393, 6418), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (6406, 6418), False, 'import pytest\n'), ((6428, 6480), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': '"""*"""', 'rename_fields': 'rename'}), "(vcf_path, fields='*', rename_fields=rename)\n", (6436, 6480), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((6685, 6710), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (6698, 6710), False, 'import pytest\n'), ((6720, 6772), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': '"""*"""', 'rename_fields': 'rename'}), "(vcf_path, fields='*', rename_fields=rename)\n", (6728, 6772), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((6931, 6956), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (6944, 6956), False, 'import pytest\n'), ((6966, 7018), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': '"""*"""', 'rename_fields': 'rename'}), "(vcf_path, fields='*', rename_fields=rename)\n", (6974, 7018), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((7177, 7202), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (7190, 7202), False, 'import pytest\n'), ((7212, 7264), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': '"""*"""', 'rename_fields': 'rename'}), "(vcf_path, fields='*', rename_fields=rename)\n", (7220, 7264), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((7423, 7448), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (7436, 7448), False, 'import pytest\n'), ((7458, 7510), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': '"""*"""', 'rename_fields': 'rename'}), "(vcf_path, fields='*', rename_fields=rename)\n", (7466, 7510), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((7669, 7694), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (7682, 7694), False, 'import pytest\n'), ((7704, 7756), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': '"""*"""', 'rename_fields': 'rename'}), "(vcf_path, fields='*', rename_fields=rename)\n", (7712, 7756), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((10091, 10135), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['callset1[k]', 'callset2[k]'], {}), '(callset1[k], callset2[k])\n', (10109, 10135), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((13235, 13251), 'numpy.dtype', 'np.dtype', (['object'], {}), '(object)\n', (13243, 13251), True, 'import numpy as np\n'), ((13488, 13504), 'numpy.dtype', 'np.dtype', (['object'], {}), '(object)\n', (13496, 13504), True, 'import numpy as np\n'), ((13649, 13665), 'numpy.dtype', 'np.dtype', (['object'], {}), '(object)\n', (13657, 13665), True, 'import numpy as np\n'), ((13806, 13822), 'numpy.dtype', 'np.dtype', (['object'], {}), '(object)\n', (13814, 13822), True, 'import numpy as np\n'), ((14889, 14905), 'numpy.dtype', 'np.dtype', (['object'], {}), '(object)\n', (14897, 14905), True, 'import numpy as np\n'), ((18922, 18938), 'numpy.dtype', 'np.dtype', (['object'], {}), '(object)\n', (18930, 18938), True, 'import numpy as np\n'), ((19258, 19274), 'numpy.dtype', 'np.dtype', (['object'], {}), '(object)\n', (19266, 19274), True, 'import numpy as np\n'), ((19480, 19496), 'numpy.dtype', 'np.dtype', (['object'], {}), '(object)\n', (19488, 19496), True, 'import numpy as np\n'), ((19648, 19664), 'numpy.dtype', 'np.dtype', (['object'], {}), '(object)\n', (19656, 19664), True, 'import numpy as np\n'), ((21992, 22008), 'io.BytesIO', 'io.BytesIO', (['data'], {}), '(data)\n', (22002, 22008), False, 'import io\n'), ((22027, 22074), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['input_file'], {'fields': "['POS', 'samples']"}), "(input_file, fields=['POS', 'samples'])\n", (22035, 22074), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((25388, 25404), 'io.BytesIO', 'io.BytesIO', (['data'], {}), '(data)\n', (25398, 25404), False, 'import io\n'), ((25423, 25471), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['input_file'], {'fields': "['QUAL', 'samples']"}), "(input_file, fields=['QUAL', 'samples'])\n", (25431, 25471), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((26139, 26155), 'io.BytesIO', 'io.BytesIO', (['data'], {}), '(data)\n', (26149, 26155), False, 'import io\n'), ((26174, 26261), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['input_file'], {'fields': "['FILTER_PASS', 'FILTER_q10', 'FILTER_s50', 'samples']"}), "(input_file, fields=['FILTER_PASS', 'FILTER_q10', 'FILTER_s50',\n 'samples'])\n", (26182, 26261), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((27284, 27300), 'io.BytesIO', 'io.BytesIO', (['data'], {}), '(data)\n', (27294, 27300), False, 'import io\n'), ((27900, 27914), 'numpy.isnan', 'np.isnan', (['a[1]'], {}), '(a[1])\n', (27908, 27914), True, 'import numpy as np\n'), ((27930, 27944), 'numpy.isnan', 'np.isnan', (['a[2]'], {}), '(a[2])\n', (27938, 27944), True, 'import numpy as np\n'), ((28362, 28378), 'io.BytesIO', 'io.BytesIO', (['data'], {}), '(data)\n', (28372, 28378), False, 'import io\n'), ((28978, 28992), 'numpy.isnan', 'np.isnan', (['a[1]'], {}), '(a[1])\n', (28986, 28992), True, 'import numpy as np\n'), ((29008, 29022), 'numpy.isnan', 'np.isnan', (['a[2]'], {}), '(a[2])\n', (29016, 29022), True, 'import numpy as np\n'), ((29470, 29486), 'io.BytesIO', 'io.BytesIO', (['data'], {}), '(data)\n', (29480, 29486), False, 'import io\n'), ((29505, 29629), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['input_file'], {'fields': "['calldata/GT', 'calldata/GQ', 'samples']", 'types': "{'calldata/GT': 'i1', 'calldata/GQ': 'i2'}"}), "(input_file, fields=['calldata/GT', 'calldata/GQ', 'samples'],\n types={'calldata/GT': 'i1', 'calldata/GQ': 'i2'})\n", (29513, 29629), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((30732, 30874), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': "['variants/DP', 'variants/AC']", 'types': "{'variants/DP': dtype, 'variants/AC': dtype}", 'numbers': "{'variants/AC': 3}"}), "(vcf_path, fields=['variants/DP', 'variants/AC'], types={\n 'variants/DP': dtype, 'variants/AC': dtype}, numbers={'variants/AC': 3})\n", (30740, 30874), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((31357, 31379), 'io.BytesIO', 'io.BytesIO', (['input_data'], {}), '(input_data)\n', (31367, 31379), False, 'import io\n'), ((31408, 31424), 'numpy.dtype', 'np.dtype', (['object'], {}), '(object)\n', (31416, 31424), True, 'import numpy as np\n'), ((31698, 31720), 'io.BytesIO', 'io.BytesIO', (['input_data'], {}), '(input_data)\n', (31708, 31720), False, 'import io\n'), ((31749, 31763), 'numpy.dtype', 'np.dtype', (['"""i4"""'], {}), "('i4')\n", (31757, 31763), True, 'import numpy as np\n'), ((32037, 32059), 'io.BytesIO', 'io.BytesIO', (['input_data'], {}), '(input_data)\n', (32047, 32059), False, 'import io\n'), ((32088, 32102), 'numpy.dtype', 'np.dtype', (['"""f4"""'], {}), "('f4')\n", (32096, 32102), True, 'import numpy as np\n'), ((32377, 32399), 'io.BytesIO', 'io.BytesIO', (['input_data'], {}), '(input_data)\n', (32387, 32399), False, 'import io\n'), ((32428, 32442), 'numpy.dtype', 'np.dtype', (['"""S1"""'], {}), "('S1')\n", (32436, 32442), True, 'import numpy as np\n'), ((32647, 32720), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': "['GT']", 'types': "{'GT': dtype}", 'numbers': "{'GT': 2}"}), "(vcf_path, fields=['GT'], types={'GT': dtype}, numbers={'GT': 2})\n", (32655, 32720), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((33276, 33298), 'io.BytesIO', 'io.BytesIO', (['input_data'], {}), '(input_data)\n', (33286, 33298), False, 'import io\n'), ((34271, 34344), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': "['HQ']", 'types': "{'HQ': dtype}", 'numbers': "{'HQ': 2}"}), "(vcf_path, fields=['HQ'], types={'HQ': dtype}, numbers={'HQ': 2})\n", (34279, 34344), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((39034, 39047), 'pytest.approx', 'approx', (['(0.333)'], {}), '(0.333)\n', (39040, 39047), False, 'from pytest import approx\n'), ((39249, 39262), 'pytest.approx', 'approx', (['(0.333)'], {}), '(0.333)\n', (39255, 39262), False, 'from pytest import approx\n'), ((39285, 39298), 'pytest.approx', 'approx', (['(0.667)'], {}), '(0.667)\n', (39291, 39298), False, 'from pytest import approx\n'), ((46099, 46160), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': "['samples', 'GT']", 'samples': 'samples'}), "(vcf_path, fields=['samples', 'GT'], samples=samples)\n", (46107, 46160), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((46535, 46596), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': "['samples', 'GT']", 'samples': 'samples'}), "(vcf_path, fields=['samples', 'GT'], samples=samples)\n", (46543, 46596), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((48174, 48192), 'numpy.dtype', 'np.dtype', (['"""object"""'], {}), "('object')\n", (48182, 48192), True, 'import numpy as np\n'), ((48327, 48345), 'numpy.dtype', 'np.dtype', (['"""object"""'], {}), "('object')\n", (48335, 48345), True, 'import numpy as np\n'), ((48518, 48536), 'numpy.dtype', 'np.dtype', (['"""object"""'], {}), "('object')\n", (48526, 48536), True, 'import numpy as np\n'), ((48684, 48702), 'numpy.dtype', 'np.dtype', (['"""object"""'], {}), "('object')\n", (48692, 48702), True, 'import numpy as np\n'), ((48852, 48870), 'numpy.dtype', 'np.dtype', (['"""object"""'], {}), "('object')\n", (48860, 48870), True, 'import numpy as np\n'), ((49025, 49043), 'numpy.dtype', 'np.dtype', (['"""object"""'], {}), "('object')\n", (49033, 49043), True, 'import numpy as np\n'), ((49203, 49221), 'numpy.dtype', 'np.dtype', (['"""object"""'], {}), "('object')\n", (49211, 49221), True, 'import numpy as np\n'), ((49358, 49376), 'numpy.dtype', 'np.dtype', (['"""object"""'], {}), "('object')\n", (49366, 49376), True, 'import numpy as np\n'), ((49476, 49494), 'numpy.dtype', 'np.dtype', (['"""object"""'], {}), "('object')\n", (49484, 49494), True, 'import numpy as np\n'), ((49581, 49597), 'numpy.dtype', 'np.dtype', (['"""int8"""'], {}), "('int8')\n", (49589, 49597), True, 'import numpy as np\n'), ((49728, 49746), 'numpy.dtype', 'np.dtype', (['"""object"""'], {}), "('object')\n", (49736, 49746), True, 'import numpy as np\n'), ((49880, 49898), 'numpy.dtype', 'np.dtype', (['"""object"""'], {}), "('object')\n", (49888, 49898), True, 'import numpy as np\n'), ((50036, 50053), 'numpy.dtype', 'np.dtype', (['"""int32"""'], {}), "('int32')\n", (50044, 50053), True, 'import numpy as np\n'), ((50187, 50204), 'numpy.dtype', 'np.dtype', (['"""int32"""'], {}), "('int32')\n", (50195, 50204), True, 'import numpy as np\n'), ((50336, 50353), 'numpy.dtype', 'np.dtype', (['"""int32"""'], {}), "('int32')\n", (50344, 50353), True, 'import numpy as np\n'), ((50486, 50503), 'numpy.dtype', 'np.dtype', (['"""int32"""'], {}), "('int32')\n", (50494, 50503), True, 'import numpy as np\n'), ((50634, 50651), 'numpy.dtype', 'np.dtype', (['"""int32"""'], {}), "('int32')\n", (50642, 50651), True, 'import numpy as np\n'), ((50782, 50799), 'numpy.dtype', 'np.dtype', (['"""int32"""'], {}), "('int32')\n", (50790, 50799), True, 'import numpy as np\n'), ((50932, 50949), 'numpy.dtype', 'np.dtype', (['"""int32"""'], {}), "('int32')\n", (50940, 50949), True, 'import numpy as np\n'), ((51224, 51242), 'numpy.dtype', 'np.dtype', (['"""object"""'], {}), "('object')\n", (51232, 51242), True, 'import numpy as np\n'), ((51455, 51472), 'numpy.dtype', 'np.dtype', (['"""int32"""'], {}), "('int32')\n", (51463, 51472), True, 'import numpy as np\n'), ((51660, 51677), 'numpy.dtype', 'np.dtype', (['"""int32"""'], {}), "('int32')\n", (51668, 51677), True, 'import numpy as np\n'), ((51845, 52003), 'allel.io.vcf_read.ANNTransformer', 'ANNTransformer', ([], {'fields': "['Allele', 'ANN_HGVS_c', 'variants/ANN_cDNA_pos']", 'types': "{'Allele': 'S12', 'ANN_HGVS_c': 'S20', 'variants/ANN_cDNA_pos': 'i8'}"}), "(fields=['Allele', 'ANN_HGVS_c', 'variants/ANN_cDNA_pos'],\n types={'Allele': 'S12', 'ANN_HGVS_c': 'S20', 'variants/ANN_cDNA_pos': 'i8'}\n )\n", (51859, 52003), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((52356, 52371), 'numpy.dtype', 'np.dtype', (['"""S12"""'], {}), "('S12')\n", (52364, 52371), True, 'import numpy as np\n'), ((52505, 52520), 'numpy.dtype', 'np.dtype', (['"""S20"""'], {}), "('S20')\n", (52513, 52520), True, 'import numpy as np\n'), ((52659, 52673), 'numpy.dtype', 'np.dtype', (['"""i8"""'], {}), "('i8')\n", (52667, 52673), True, 'import numpy as np\n'), ((53800, 53825), 'pytest.warns', 'pytest.warns', (['UserWarning'], {}), '(UserWarning)\n', (53812, 53825), False, 'import pytest\n'), ((54053, 54078), 'pytest.warns', 'pytest.warns', (['UserWarning'], {}), '(UserWarning)\n', (54065, 54078), False, 'import pytest\n'), ((54309, 54334), 'pytest.warns', 'pytest.warns', (['UserWarning'], {}), '(UserWarning)\n', (54321, 54334), False, 'import pytest\n'), ((54567, 54592), 'pytest.warns', 'pytest.warns', (['UserWarning'], {}), '(UserWarning)\n', (54579, 54592), False, 'import pytest\n'), ((54825, 54850), 'pytest.warns', 'pytest.warns', (['UserWarning'], {}), '(UserWarning)\n', (54837, 54850), False, 'import pytest\n'), ((55086, 55111), 'pytest.warns', 'pytest.warns', (['UserWarning'], {}), '(UserWarning)\n', (55098, 55111), False, 'import pytest\n'), ((55358, 55380), 'io.BytesIO', 'io.BytesIO', (['input_data'], {}), '(input_data)\n', (55368, 55380), False, 'import io\n'), ((55588, 55610), 'io.BytesIO', 'io.BytesIO', (['input_data'], {}), '(input_data)\n', (55598, 55610), False, 'import io\n'), ((55816, 55838), 'io.BytesIO', 'io.BytesIO', (['input_data'], {}), '(input_data)\n', (55826, 55838), False, 'import io\n'), ((56046, 56068), 'io.BytesIO', 'io.BytesIO', (['input_data'], {}), '(input_data)\n', (56056, 56068), False, 'import io\n'), ((56353, 56378), 'pytest.warns', 'pytest.warns', (['UserWarning'], {}), '(UserWarning)\n', (56365, 56378), False, 'import pytest\n'), ((56730, 56755), 'pytest.warns', 'pytest.warns', (['UserWarning'], {}), '(UserWarning)\n', (56742, 56755), False, 'import pytest\n'), ((57108, 57133), 'pytest.warns', 'pytest.warns', (['UserWarning'], {}), '(UserWarning)\n', (57120, 57133), False, 'import pytest\n'), ((57490, 57515), 'pytest.warns', 'pytest.warns', (['UserWarning'], {}), '(UserWarning)\n', (57502, 57515), False, 'import pytest\n'), ((57941, 57966), 'pytest.warns', 'pytest.warns', (['UserWarning'], {}), '(UserWarning)\n', (57953, 57966), False, 'import pytest\n'), ((58272, 58297), 'pytest.warns', 'pytest.warns', (['UserWarning'], {}), '(UserWarning)\n', (58284, 58297), False, 'import pytest\n'), ((58606, 58631), 'pytest.warns', 'pytest.warns', (['UserWarning'], {}), '(UserWarning)\n', (58618, 58631), False, 'import pytest\n'), ((58707, 58732), 'pytest.warns', 'pytest.warns', (['UserWarning'], {}), '(UserWarning)\n', (58719, 58732), False, 'import pytest\n'), ((60036, 60061), 'pytest.warns', 'pytest.warns', (['UserWarning'], {}), '(UserWarning)\n', (60048, 60061), False, 'import pytest\n'), ((60071, 60085), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['path'], {}), '(path)\n', (60079, 60085), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((60095, 60120), 'pytest.warns', 'pytest.warns', (['UserWarning'], {}), '(UserWarning)\n', (60107, 60120), False, 'import pytest\n'), ((60346, 60368), 'io.BytesIO', 'io.BytesIO', (['input_data'], {}), '(input_data)\n', (60356, 60368), False, 'import io\n'), ((60802, 60824), 'io.BytesIO', 'io.BytesIO', (['input_data'], {}), '(input_data)\n', (60812, 60824), False, 'import io\n'), ((61150, 61168), 'os.remove', 'os.remove', (['h5_path'], {}), '(h5_path)\n', (61159, 61168), False, 'import os\n'), ((61185, 61207), 'io.BytesIO', 'io.BytesIO', (['input_data'], {}), '(input_data)\n', (61195, 61207), False, 'import io\n'), ((61300, 61328), 'h5py.File', 'h5py.File', (['h5_path'], {'mode': '"""r"""'}), "(h5_path, mode='r')\n", (61309, 61328), False, 'import h5py\n'), ((61606, 61630), 'shutil.rmtree', 'shutil.rmtree', (['zarr_path'], {}), '(zarr_path)\n', (61619, 61630), False, 'import shutil\n'), ((61647, 61669), 'io.BytesIO', 'io.BytesIO', (['input_data'], {}), '(input_data)\n', (61657, 61669), False, 'import io\n'), ((62912, 63217), 'numpy.array', 'np.array', (["[[b'', b'', b'', b'', b''], [b'G', b'', b'', b'', b''], [b'', b'', b'', b'',\n b''], [b'T', b'', b'', b'', b''], [b'A', b'T', b'', b'', b''], [b'C',\n b'T', b'*', b'', b''], [b'A', b'GTAC', b'', b'', b''], [b'C', b'GATG',\n b'', b'', b''], [b'ATAC', b'GTACTACTAC', b'G', b'GTACA', b'GTA']]"], {}), "([[b'', b'', b'', b'', b''], [b'G', b'', b'', b'', b''], [b'', b'',\n b'', b'', b''], [b'T', b'', b'', b'', b''], [b'A', b'T', b'', b'', b''],\n [b'C', b'T', b'*', b'', b''], [b'A', b'GTAC', b'', b'', b''], [b'C',\n b'GATG', b'', b'', b''], [b'ATAC', b'GTACTACTAC', b'G', b'GTACA', b'GTA']])\n", (62920, 63217), True, 'import numpy as np\n'), ((63467, 63491), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['e', 'a'], {}), '(e, a)\n', (63485, 63491), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((63571, 63621), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['[0, 1, 0, 1, 2, 3, 2, 2, 5]', 'a'], {}), '([0, 1, 0, 1, 2, 3, 2, 2, 5], a)\n', (63589, 63621), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((63707, 63883), 'numpy.array', 'np.array', (['[[0, 0, 0, 0, 0], [1, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0,\n 0, 0, 0], [0, 0, -1, 0, 0], [0, 3, 0, 0, 0], [-3, 0, 0, 0, 0], [0, 6, -\n 3, 1, -1]]'], {}), '([[0, 0, 0, 0, 0], [1, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0\n ], [0, 0, 0, 0, 0], [0, 0, -1, 0, 0], [0, 3, 0, 0, 0], [-3, 0, 0, 0, 0],\n [0, 6, -3, 1, -1]])\n', (63715, 63883), True, 'import numpy as np\n'), ((64059, 64083), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['e', 'a'], {}), '(e, a)\n', (64077, 64083), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((64204, 64293), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['[False, False, False, True, True, False, False, False, False]', 'a'], {}), '([False, False, False, True, True, False, False, False, \n False], a)\n', (64222, 64293), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((64657, 64722), 'numpy.array', 'np.array', (["[b'', b'G', b'', b'T', b'A', b'C', b'A', b'C', b'ATAC']"], {}), "([b'', b'G', b'', b'T', b'A', b'C', b'A', b'C', b'ATAC'])\n", (64665, 64722), True, 'import numpy as np\n'), ((64808, 64832), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['e', 'a'], {}), '(e, a)\n', (64826, 64832), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((64912, 64962), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['[0, 1, 0, 1, 2, 3, 2, 2, 5]', 'a'], {}), '([0, 1, 0, 1, 2, 3, 2, 2, 5], a)\n', (64930, 64962), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((65046, 65084), 'numpy.array', 'np.array', (['[0, 1, 0, 0, 0, 0, 0, -3, 0]'], {}), '([0, 1, 0, 0, 0, 0, 0, -3, 0])\n', (65054, 65084), True, 'import numpy as np\n'), ((65093, 65117), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['e', 'a'], {}), '(e, a)\n', (65111, 65117), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((65238, 65327), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['[False, False, False, True, True, False, False, False, False]', 'a'], {}), '([False, False, False, True, True, False, False, False, \n False], a)\n', (65256, 65327), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((66078, 66282), 'numpy.array', 'np.array', (['[[[3, 0, 0, 0], [1, 1, 1, 0], [0, 0, 0, 0]], [[1, 1, 1, 0], [0, 0, 0, 2], [\n 0, 0, 0, 0]], [[1, 1, 0, 0], [0, 0, 0, 1], [0, 0, 0, 0]], [[1, 2, 0, 1],\n [0, 2, 2, 0], [2, 1, 1, 1]]]'], {'dtype': 't'}), '([[[3, 0, 0, 0], [1, 1, 1, 0], [0, 0, 0, 0]], [[1, 1, 1, 0], [0, 0,\n 0, 2], [0, 0, 0, 0]], [[1, 1, 0, 0], [0, 0, 0, 1], [0, 0, 0, 0]], [[1, \n 2, 0, 1], [0, 2, 2, 0], [2, 1, 1, 1]]], dtype=t)\n', (66086, 66282), True, 'import numpy as np\n'), ((66417, 66441), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['e', 'a'], {}), '(e, a)\n', (66435, 66441), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((66988, 67041), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'region': '"""chr1:10-100"""', 'tabix': 'tabix'}), "(vcf_path, region='chr1:10-100', tabix=tabix)\n", (66996, 67041), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((67121, 67154), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['[20, 30]', 'pos'], {}), '([20, 30], pos)\n', (67139, 67154), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((67231, 67253), 'pytest.raises', 'pytest.raises', (['OSError'], {}), '(OSError)\n', (67244, 67253), False, 'import pytest\n'), ((67263, 67277), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['path'], {}), '(path)\n', (67271, 67277), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((67362, 67394), 'pytest.raises', 'pytest.raises', (['FileNotFoundError'], {}), '(FileNotFoundError)\n', (67375, 67394), False, 'import pytest\n'), ((67404, 67418), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['path'], {}), '(path)\n', (67412, 67418), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((67506, 67538), 'pytest.raises', 'pytest.raises', (['FileNotFoundError'], {}), '(FileNotFoundError)\n', (67519, 67538), False, 'import pytest\n'), ((67548, 67562), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['path'], {}), '(path)\n', (67556, 67562), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((67661, 67688), 'pytest.raises', 'pytest.raises', (['RuntimeError'], {}), '(RuntimeError)\n', (67674, 67688), False, 'import pytest\n'), ((67698, 67712), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['path'], {}), '(path)\n', (67706, 67712), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((68504, 68529), 'pytest.warns', 'pytest.warns', (['UserWarning'], {}), '(UserWarning)\n', (68516, 68529), False, 'import pytest\n'), ((69266, 69291), 'pytest.warns', 'pytest.warns', (['UserWarning'], {}), '(UserWarning)\n', (69278, 69291), False, 'import pytest\n'), ((70034, 70059), 'pytest.warns', 'pytest.warns', (['UserWarning'], {}), '(UserWarning)\n', (70046, 70059), False, 'import pytest\n'), ((70488, 70500), 'pytest.approx', 'approx', (['(0.03)'], {}), '(0.03)\n', (70494, 70500), False, 'from pytest import approx\n'), ((70784, 70796), 'pytest.approx', 'approx', (['(48.2)'], {}), '(48.2)\n', (70790, 70796), False, 'from pytest import approx\n'), ((70820, 70832), 'pytest.approx', 'approx', (['(48.1)'], {}), '(48.1)\n', (70826, 70832), False, 'from pytest import approx\n'), ((70856, 70868), 'pytest.approx', 'approx', (['(43.9)'], {}), '(43.9)\n', (70862, 70868), False, 'from pytest import approx\n'), ((70892, 70904), 'pytest.approx', 'approx', (['(49.0)'], {}), '(49.0)\n', (70898, 70904), False, 'from pytest import approx\n'), ((70927, 70938), 'pytest.approx', 'approx', (['(3.0)'], {}), '(3.0)\n', (70933, 70938), False, 'from pytest import approx\n'), ((70961, 70973), 'pytest.approx', 'approx', (['(41.0)'], {}), '(41.0)\n', (70967, 70973), False, 'from pytest import approx\n'), ((72882, 72988), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': '"""*"""', 'alt_number': '(2)', 'region': 'region', 'tabix': 'tabix', 'samples': 'samples', 'types': 'types'}), "(vcf_path, fields='*', alt_number=2, region=region, tabix=tabix,\n samples=samples, types=types)\n", (72890, 72988), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((73024, 73048), 'os.path.exists', 'os.path.exists', (['npz_path'], {}), '(npz_path)\n', (73038, 73048), False, 'import os\n'), ((73090, 73224), 'allel.io.vcf_read.vcf_to_npz', 'vcf_to_npz', (['vcf_path', 'npz_path'], {'fields': '"""*"""', 'chunk_length': '(2)', 'alt_number': '(2)', 'region': 'region', 'tabix': 'tabix', 'samples': 'samples', 'types': 'types'}), "(vcf_path, npz_path, fields='*', chunk_length=2, alt_number=2,\n region=region, tabix=tabix, samples=samples, types=types)\n", (73100, 73224), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((74040, 74059), 'os.remove', 'os.remove', (['npz_path'], {}), '(npz_path)\n', (74049, 74059), False, 'import os\n'), ((74842, 74861), 'os.remove', 'os.remove', (['npz_path'], {}), '(npz_path)\n', (74851, 74861), False, 'import os\n'), ((75931, 76037), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': '"""*"""', 'alt_number': '(2)', 'region': 'region', 'tabix': 'tabix', 'samples': 'samples', 'types': 'types'}), "(vcf_path, fields='*', alt_number=2, region=region, tabix=tabix,\n samples=samples, types=types)\n", (75939, 76037), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((76073, 76098), 'os.path.exists', 'os.path.exists', (['zarr_path'], {}), '(zarr_path)\n', (76087, 76098), False, 'import os\n'), ((76145, 76281), 'allel.io.vcf_read.vcf_to_zarr', 'vcf_to_zarr', (['vcf_path', 'zarr_path'], {'fields': '"""*"""', 'alt_number': '(2)', 'chunk_length': '(2)', 'region': 'region', 'tabix': 'tabix', 'samples': 'samples', 'types': 'types'}), "(vcf_path, zarr_path, fields='*', alt_number=2, chunk_length=2,\n region=region, tabix=tabix, samples=samples, types=types)\n", (76156, 76281), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((77472, 77496), 'shutil.rmtree', 'shutil.rmtree', (['zarr_path'], {}), '(zarr_path)\n', (77485, 77496), False, 'import shutil\n'), ((77713, 77733), 'allel.test.tools.compare_arrays', 'compare_arrays', (['e', 'a'], {}), '(e, a)\n', (77727, 77733), False, 'from allel.test.tools import compare_arrays\n'), ((78391, 78415), 'shutil.rmtree', 'shutil.rmtree', (['zarr_path'], {}), '(zarr_path)\n', (78404, 78415), False, 'import shutil\n'), ((78630, 78650), 'allel.test.tools.compare_arrays', 'compare_arrays', (['e', 'a'], {}), '(e, a)\n', (78644, 78650), False, 'from allel.test.tools import compare_arrays\n'), ((79120, 79145), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (79133, 79145), False, 'import pytest\n'), ((79155, 79221), 'allel.io.vcf_read.vcf_to_zarr', 'vcf_to_zarr', (['vcf_path', 'zarr_path'], {'fields': '"""*"""', 'rename_fields': 'rename'}), "(vcf_path, zarr_path, fields='*', rename_fields=rename)\n", (79166, 79221), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((79380, 79405), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (79393, 79405), False, 'import pytest\n'), ((79415, 79481), 'allel.io.vcf_read.vcf_to_zarr', 'vcf_to_zarr', (['vcf_path', 'zarr_path'], {'fields': '"""*"""', 'rename_fields': 'rename'}), "(vcf_path, zarr_path, fields='*', rename_fields=rename)\n", (79426, 79481), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((79640, 79665), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (79653, 79665), False, 'import pytest\n'), ((79675, 79741), 'allel.io.vcf_read.vcf_to_zarr', 'vcf_to_zarr', (['vcf_path', 'zarr_path'], {'fields': '"""*"""', 'rename_fields': 'rename'}), "(vcf_path, zarr_path, fields='*', rename_fields=rename)\n", (79686, 79741), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((79900, 79925), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (79913, 79925), False, 'import pytest\n'), ((79935, 79996), 'allel.io.vcf_read.vcf_to_zarr', 'vcf_to_zarr', (['vcf_path', 'zarr_path'], {'fields': "['ALTLEN', 'altlen']"}), "(vcf_path, zarr_path, fields=['ALTLEN', 'altlen'])\n", (79946, 79996), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((80006, 80031), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (80019, 80031), False, 'import pytest\n'), ((80041, 80120), 'allel.io.vcf_read.vcf_to_zarr', 'vcf_to_zarr', (['vcf_path', 'zarr_path'], {'fields': "['variants/ALTLEN', 'variants/altlen']"}), "(vcf_path, zarr_path, fields=['variants/ALTLEN', 'variants/altlen'])\n", (80052, 80120), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((80450, 80474), 'shutil.rmtree', 'shutil.rmtree', (['zarr_path'], {}), '(zarr_path)\n', (80463, 80474), False, 'import shutil\n'), ((80539, 80644), 'allel.io.vcf_read.vcf_to_zarr', 'vcf_to_zarr', (['vcf_path', 'zarr_path'], {'fields': '"""*"""', 'alt_number': '(2)', 'chunk_length': '(2)', 'region': 'chrom', 'group': 'chrom'}), "(vcf_path, zarr_path, fields='*', alt_number=2, chunk_length=2,\n region=chrom, group=chrom)\n", (80550, 80644), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((80865, 80923), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': '"""*"""', 'alt_number': '(2)', 'region': 'chrom'}), "(vcf_path, fields='*', alt_number=2, region=chrom)\n", (80873, 80923), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((81605, 81629), 'shutil.rmtree', 'shutil.rmtree', (['zarr_path'], {}), '(zarr_path)\n', (81618, 81629), False, 'import shutil\n'), ((81877, 81897), 'allel.test.tools.compare_arrays', 'compare_arrays', (['e', 'a'], {}), '(e, a)\n', (81891, 81897), False, 'from allel.test.tools import compare_arrays\n'), ((82373, 82462), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': '"""*"""', 'alt_number': '(2)', 'types': 'types', 'transformers': 'transformers'}), "(vcf_path, fields='*', alt_number=2, types=types, transformers=\n transformers)\n", (82381, 82462), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((82497, 82522), 'os.path.exists', 'os.path.exists', (['zarr_path'], {}), '(zarr_path)\n', (82511, 82522), False, 'import os\n'), ((82569, 82687), 'allel.io.vcf_read.vcf_to_zarr', 'vcf_to_zarr', (['vcf_path', 'zarr_path'], {'fields': '"""*"""', 'alt_number': '(2)', 'chunk_length': '(2)', 'types': 'types', 'transformers': 'transformers'}), "(vcf_path, zarr_path, fields='*', alt_number=2, chunk_length=2,\n types=types, transformers=transformers)\n", (82580, 82687), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((82721, 82757), 'zarr.open_group', 'zarr.open_group', (['zarr_path'], {'mode': '"""r"""'}), "(zarr_path, mode='r')\n", (82736, 82757), False, 'import zarr\n'), ((83029, 83054), 'os.path.exists', 'os.path.exists', (['zarr_path'], {}), '(zarr_path)\n', (83043, 83054), False, 'import os\n'), ((83706, 83812), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': '"""*"""', 'alt_number': '(2)', 'region': 'region', 'tabix': 'tabix', 'samples': 'samples', 'types': 'types'}), "(vcf_path, fields='*', alt_number=2, region=region, tabix=tabix,\n samples=samples, types=types)\n", (83714, 83812), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((83848, 83871), 'os.path.exists', 'os.path.exists', (['h5_path'], {}), '(h5_path)\n', (83862, 83871), False, 'import os\n'), ((83912, 84046), 'allel.io.vcf_read.vcf_to_hdf5', 'vcf_to_hdf5', (['vcf_path', 'h5_path'], {'fields': '"""*"""', 'alt_number': '(2)', 'chunk_length': '(2)', 'region': 'region', 'tabix': 'tabix', 'samples': 'samples', 'types': 'types'}), "(vcf_path, h5_path, fields='*', alt_number=2, chunk_length=2,\n region=region, tabix=tabix, samples=samples, types=types)\n", (83923, 84046), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((85220, 85238), 'os.remove', 'os.remove', (['h5_path'], {}), '(h5_path)\n', (85229, 85238), False, 'import os\n'), ((85319, 85347), 'h5py.File', 'h5py.File', (['h5_path'], {'mode': '"""r"""'}), "(h5_path, mode='r')\n", (85328, 85347), False, 'import h5py\n'), ((86132, 86150), 'os.remove', 'os.remove', (['h5_path'], {}), '(h5_path)\n', (86141, 86150), False, 'import os\n'), ((86229, 86257), 'h5py.File', 'h5py.File', (['h5_path'], {'mode': '"""r"""'}), "(h5_path, mode='r')\n", (86238, 86257), False, 'import h5py\n'), ((86719, 86737), 'os.remove', 'os.remove', (['h5_path'], {}), '(h5_path)\n', (86728, 86737), False, 'import os\n'), ((86802, 86905), 'allel.io.vcf_read.vcf_to_hdf5', 'vcf_to_hdf5', (['vcf_path', 'h5_path'], {'fields': '"""*"""', 'alt_number': '(2)', 'chunk_length': '(2)', 'region': 'chrom', 'group': 'chrom'}), "(vcf_path, h5_path, fields='*', alt_number=2, chunk_length=2,\n region=chrom, group=chrom)\n", (86813, 86905), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((86931, 86959), 'h5py.File', 'h5py.File', (['h5_path'], {'mode': '"""r"""'}), "(h5_path, mode='r')\n", (86940, 86959), False, 'import h5py\n'), ((88073, 88143), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': '"""*"""', 'types': 'types', 'transformers': 'transformers'}), "(vcf_path, fields='*', types=types, transformers=transformers)\n", (88081, 88143), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((88155, 88178), 'os.path.exists', 'os.path.exists', (['h5_path'], {}), '(h5_path)\n', (88169, 88178), False, 'import os\n'), ((88219, 88321), 'allel.io.vcf_read.vcf_to_hdf5', 'vcf_to_hdf5', (['vcf_path', 'h5_path'], {'fields': '"""*"""', 'chunk_length': '(2)', 'types': 'types', 'transformers': 'transformers'}), "(vcf_path, h5_path, fields='*', chunk_length=2, types=types,\n transformers=transformers)\n", (88230, 88321), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((88794, 88854), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': 'fields', 'alt_number': '(2)', 'types': 'types'}), '(vcf_path, fields=fields, alt_number=2, types=types)\n', (88802, 88854), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((88866, 88889), 'os.path.exists', 'os.path.exists', (['h5_path'], {}), '(h5_path)\n', (88880, 88889), False, 'import os\n'), ((88930, 89034), 'allel.io.vcf_read.vcf_to_hdf5', 'vcf_to_hdf5', (['vcf_path', 'h5_path'], {'fields': 'fields', 'alt_number': '(2)', 'chunk_length': '(3)', 'types': 'types', 'vlen': '(False)'}), '(vcf_path, h5_path, fields=fields, alt_number=2, chunk_length=3,\n types=types, vlen=False)\n', (88941, 89034), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((89791, 89814), 'os.path.exists', 'os.path.exists', (['h5_path'], {}), '(h5_path)\n', (89805, 89814), False, 'import os\n'), ((90746, 90823), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': 'fields', 'alt_number': '(2)', 'numbers': 'numbers', 'types': 'types'}), '(vcf_path, fields=fields, alt_number=2, numbers=numbers, types=types)\n', (90754, 90823), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((90864, 90969), 'allel.io.vcf_read.vcf_to_dataframe', 'vcf_to_dataframe', (['vcf_path'], {'fields': 'fields', 'alt_number': '(2)', 'numbers': 'numbers', 'chunk_length': '(2)', 'types': 'types'}), '(vcf_path, fields=fields, alt_number=2, numbers=numbers,\n chunk_length=2, types=types)\n', (90880, 90969), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((91562, 91639), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': 'fields', 'alt_number': '(2)', 'numbers': 'numbers', 'types': 'types'}), '(vcf_path, fields=fields, alt_number=2, numbers=numbers, types=types)\n', (91570, 91639), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((91680, 91785), 'allel.io.vcf_read.vcf_to_dataframe', 'vcf_to_dataframe', (['vcf_path'], {'fields': 'fields', 'alt_number': '(2)', 'numbers': 'numbers', 'chunk_length': '(2)', 'types': 'types'}), '(vcf_path, fields=fields, alt_number=2, numbers=numbers,\n chunk_length=2, types=types)\n', (91696, 91785), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((93073, 93167), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': 'fields', 'numbers': 'numbers', 'types': 'types', 'transformers': 'transformers'}), '(vcf_path, fields=fields, numbers=numbers, types=types,\n transformers=transformers)\n', (93081, 93167), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((93204, 93322), 'allel.io.vcf_read.vcf_to_dataframe', 'vcf_to_dataframe', (['vcf_path'], {'fields': 'fields', 'numbers': 'numbers', 'chunk_length': '(2)', 'types': 'types', 'transformers': 'transformers'}), '(vcf_path, fields=fields, numbers=numbers, chunk_length=2,\n types=types, transformers=transformers)\n', (93220, 93322), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((94011, 94116), 'allel.io.vcf_read.vcf_to_dataframe', 'vcf_to_dataframe', (['vcf_path'], {'fields': 'fields', 'alt_number': '(2)', 'numbers': 'numbers', 'types': 'types', 'chunk_length': '(2)'}), '(vcf_path, fields=fields, alt_number=2, numbers=numbers,\n types=types, chunk_length=2)\n', (94027, 94116), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((94162, 94195), 'os.path.join', 'os.path.join', (['tempdir', '"""test.csv"""'], {}), "(tempdir, 'test.csv')\n", (94174, 94195), False, 'import os\n'), ((94207, 94231), 'os.path.exists', 'os.path.exists', (['csv_path'], {}), '(csv_path)\n', (94221, 94231), False, 'import os\n'), ((94273, 94382), 'allel.io.vcf_read.vcf_to_csv', 'vcf_to_csv', (['vcf_path', 'csv_path'], {'fields': 'fields', 'alt_number': '(2)', 'numbers': 'numbers', 'types': 'types', 'chunk_length': '(2)'}), '(vcf_path, csv_path, fields=fields, alt_number=2, numbers=numbers,\n types=types, chunk_length=2)\n', (94283, 94382), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((94434, 94475), 'pandas.read_csv', 'pandas.read_csv', (['csv_path'], {'na_filter': '(True)'}), '(csv_path, na_filter=True)\n', (94449, 94475), False, 'import pandas\n'), ((94849, 94868), 'os.remove', 'os.remove', (['csv_path'], {}), '(csv_path)\n', (94858, 94868), False, 'import os\n'), ((95077, 95120), 'allel.test.tools.compare_arrays', 'compare_arrays', (['df[k].values', 'adf[k].values'], {}), '(df[k].values, adf[k].values)\n', (95091, 95120), False, 'from allel.test.tools import compare_arrays\n'), ((95406, 95425), 'os.remove', 'os.remove', (['csv_path'], {}), '(csv_path)\n', (95415, 95425), False, 'import os\n'), ((96142, 96260), 'allel.io.vcf_read.vcf_to_dataframe', 'vcf_to_dataframe', (['vcf_path'], {'fields': 'fields', 'numbers': 'numbers', 'types': 'types', 'chunk_length': '(2)', 'transformers': 'transformers'}), '(vcf_path, fields=fields, numbers=numbers, types=types,\n chunk_length=2, transformers=transformers)\n', (96158, 96260), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((96306, 96339), 'os.path.join', 'os.path.join', (['tempdir', '"""test.csv"""'], {}), "(tempdir, 'test.csv')\n", (96318, 96339), False, 'import os\n'), ((96351, 96375), 'os.path.exists', 'os.path.exists', (['csv_path'], {}), '(csv_path)\n', (96365, 96375), False, 'import os\n'), ((96417, 96539), 'allel.io.vcf_read.vcf_to_csv', 'vcf_to_csv', (['vcf_path', 'csv_path'], {'fields': 'fields', 'numbers': 'numbers', 'types': 'types', 'chunk_length': '(2)', 'transformers': 'transformers'}), '(vcf_path, csv_path, fields=fields, numbers=numbers, types=types,\n chunk_length=2, transformers=transformers)\n', (96427, 96539), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((96591, 96632), 'pandas.read_csv', 'pandas.read_csv', (['csv_path'], {'na_filter': '(True)'}), '(csv_path, na_filter=True)\n', (96606, 96632), False, 'import pandas\n'), ((97072, 97149), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': 'fields', 'alt_number': '(2)', 'numbers': 'numbers', 'types': 'types'}), '(vcf_path, fields=fields, alt_number=2, numbers=numbers, types=types)\n', (97080, 97149), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((97189, 97293), 'allel.io.vcf_read.vcf_to_recarray', 'vcf_to_recarray', (['vcf_path'], {'fields': 'fields', 'alt_number': '(2)', 'numbers': 'numbers', 'chunk_length': '(2)', 'types': 'types'}), '(vcf_path, fields=fields, alt_number=2, numbers=numbers,\n chunk_length=2, types=types)\n', (97204, 97293), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((98212, 98289), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': 'fields', 'alt_number': '(2)', 'numbers': 'numbers', 'types': 'types'}), '(vcf_path, fields=fields, alt_number=2, numbers=numbers, types=types)\n', (98220, 98289), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((98329, 98433), 'allel.io.vcf_read.vcf_to_recarray', 'vcf_to_recarray', (['vcf_path'], {'fields': 'fields', 'alt_number': '(2)', 'numbers': 'numbers', 'chunk_length': '(2)', 'types': 'types'}), '(vcf_path, fields=fields, alt_number=2, numbers=numbers,\n chunk_length=2, types=types)\n', (98344, 98433), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((100031, 100125), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': 'fields', 'numbers': 'numbers', 'types': 'types', 'transformers': 'transformers'}), '(vcf_path, fields=fields, numbers=numbers, types=types,\n transformers=transformers)\n', (100039, 100125), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((100161, 100278), 'allel.io.vcf_read.vcf_to_recarray', 'vcf_to_recarray', (['vcf_path'], {'fields': 'fields', 'numbers': 'numbers', 'chunk_length': '(2)', 'types': 'types', 'transformers': 'transformers'}), '(vcf_path, fields=fields, numbers=numbers, chunk_length=2,\n types=types, transformers=transformers)\n', (100176, 100278), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((17719, 17757), 'gzip.open', 'gzip.open', (["(vcf_path + '.gz')"], {'mode': '"""rb"""'}), "(vcf_path + '.gz', mode='rb')\n", (17728, 17757), False, 'import gzip\n'), ((17781, 17797), 'io.BytesIO', 'io.BytesIO', (['data'], {}), '(data)\n', (17791, 17797), False, 'import io\n'), ((21147, 21163), 'io.BytesIO', 'io.BytesIO', (['data'], {}), '(data)\n', (21157, 21163), False, 'import io\n'), ((21186, 21265), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['input_file'], {'fields': "['CHROM', 'samples']", 'types': "{'CHROM': string_type}"}), "(input_file, fields=['CHROM', 'samples'], types={'CHROM': string_type})\n", (21194, 21265), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((22654, 22670), 'io.BytesIO', 'io.BytesIO', (['data'], {}), '(data)\n', (22664, 22670), False, 'import io\n'), ((22693, 22766), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['input_file'], {'fields': "['ID', 'samples']", 'types': "{'ID': string_type}"}), "(input_file, fields=['ID', 'samples'], types={'ID': string_type})\n", (22701, 22766), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((23564, 23580), 'io.BytesIO', 'io.BytesIO', (['data'], {}), '(data)\n', (23574, 23580), False, 'import io\n'), ((23603, 23678), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['input_file'], {'fields': "['REF', 'samples']", 'types': "{'REF': string_type}"}), "(input_file, fields=['REF', 'samples'], types={'REF': string_type})\n", (23611, 23678), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((24481, 24497), 'io.BytesIO', 'io.BytesIO', (['data'], {}), '(data)\n', (24491, 24497), False, 'import io\n'), ((25714, 25725), 'pytest.approx', 'approx', (['(1.2)'], {}), '(1.2)\n', (25720, 25725), False, 'from pytest import approx\n'), ((25749, 25760), 'pytest.approx', 'approx', (['(3.4)'], {}), '(3.4)\n', (25755, 25760), False, 'from pytest import approx\n'), ((27865, 27876), 'pytest.approx', 'approx', (['(1.2)'], {}), '(1.2)\n', (27871, 27876), False, 'from pytest import approx\n'), ((28943, 28954), 'pytest.approx', 'approx', (['(1.2)'], {}), '(1.2)\n', (28949, 28954), False, 'from pytest import approx\n'), ((30939, 30954), 'numpy.dtype', 'np.dtype', (['dtype'], {}), '(dtype)\n', (30947, 30954), True, 'import numpy as np\n'), ((32763, 32778), 'numpy.dtype', 'np.dtype', (['dtype'], {}), '(dtype)\n', (32771, 32778), True, 'import numpy as np\n'), ((34387, 34402), 'numpy.dtype', 'np.dtype', (['dtype'], {}), '(dtype)\n', (34395, 34402), True, 'import numpy as np\n'), ((41144, 41190), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'region': 'region', 'tabix': 'tabix'}), '(vcf_path, region=region, tabix=tabix)\n', (41152, 41190), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((41382, 41403), 'numpy.all', 'np.all', (["(chrom == '19')"], {}), "(chrom == '19')\n", (41388, 41403), True, 'import numpy as np\n'), ((41449, 41484), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['[111, 112]', 'pos'], {}), '([111, 112], pos)\n', (41467, 41484), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((41534, 41580), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'region': 'region', 'tabix': 'tabix'}), '(vcf_path, region=region, tabix=tabix)\n', (41542, 41580), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((41772, 41793), 'numpy.all', 'np.all', (["(chrom == '20')"], {}), "(chrom == '20')\n", (41778, 41793), True, 'import numpy as np\n'), ((41839, 41914), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['[14370, 17330, 1110696, 1230237, 1234567, 1235237]', 'pos'], {}), '([14370, 17330, 1110696, 1230237, 1234567, 1235237], pos)\n', (41857, 41914), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((41963, 42009), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'region': 'region', 'tabix': 'tabix'}), '(vcf_path, region=region, tabix=tabix)\n', (41971, 42009), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((42201, 42221), 'numpy.all', 'np.all', (["(chrom == 'X')"], {}), "(chrom == 'X')\n", (42207, 42221), True, 'import numpy as np\n'), ((42267, 42296), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['[10]', 'pos'], {}), '([10], pos)\n', (42285, 42296), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((42345, 42391), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'region': 'region', 'tabix': 'tabix'}), '(vcf_path, region=region, tabix=tabix)\n', (42353, 42391), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((42485, 42531), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'region': 'region', 'tabix': 'tabix'}), '(vcf_path, region=region, tabix=tabix)\n', (42493, 42531), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((42723, 42744), 'numpy.all', 'np.all', (["(chrom == '20')"], {}), "(chrom == '20')\n", (42729, 42744), True, 'import numpy as np\n'), ((42790, 42829), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['[14370, 17330]', 'pos'], {}), '([14370, 17330], pos)\n', (42808, 42829), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((42895, 42941), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'region': 'region', 'tabix': 'tabix'}), '(vcf_path, region=region, tabix=tabix)\n', (42903, 42941), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((43133, 43154), 'numpy.all', 'np.all', (["(chrom == '20')"], {}), "(chrom == '20')\n", (43139, 43154), True, 'import numpy as np\n'), ((43200, 43243), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['[1110696, 1230237]', 'pos'], {}), '([1110696, 1230237], pos)\n', (43218, 43243), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((43309, 43355), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'region': 'region', 'tabix': 'tabix'}), '(vcf_path, region=region, tabix=tabix)\n', (43317, 43355), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((43547, 43568), 'numpy.all', 'np.all', (["(chrom == '20')"], {}), "(chrom == '20')\n", (43553, 43568), True, 'import numpy as np\n'), ((43614, 43657), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['[1234567, 1235237]', 'pos'], {}), '([1234567, 1235237], pos)\n', (43632, 43657), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((53844, 53866), 'io.BytesIO', 'io.BytesIO', (['input_data'], {}), '(input_data)\n', (53854, 53866), False, 'import io\n'), ((54097, 54119), 'io.BytesIO', 'io.BytesIO', (['input_data'], {}), '(input_data)\n', (54107, 54119), False, 'import io\n'), ((54353, 54375), 'io.BytesIO', 'io.BytesIO', (['input_data'], {}), '(input_data)\n', (54363, 54375), False, 'import io\n'), ((54611, 54633), 'io.BytesIO', 'io.BytesIO', (['input_data'], {}), '(input_data)\n', (54621, 54633), False, 'import io\n'), ((54869, 54891), 'io.BytesIO', 'io.BytesIO', (['input_data'], {}), '(input_data)\n', (54879, 54891), False, 'import io\n'), ((55130, 55152), 'io.BytesIO', 'io.BytesIO', (['input_data'], {}), '(input_data)\n', (55140, 55152), False, 'import io\n'), ((56397, 56419), 'io.BytesIO', 'io.BytesIO', (['input_data'], {}), '(input_data)\n', (56407, 56419), False, 'import io\n'), ((56774, 56796), 'io.BytesIO', 'io.BytesIO', (['input_data'], {}), '(input_data)\n', (56784, 56796), False, 'import io\n'), ((57152, 57174), 'io.BytesIO', 'io.BytesIO', (['input_data'], {}), '(input_data)\n', (57162, 57174), False, 'import io\n'), ((57534, 57556), 'io.BytesIO', 'io.BytesIO', (['input_data'], {}), '(input_data)\n', (57544, 57556), False, 'import io\n'), ((57985, 58007), 'io.BytesIO', 'io.BytesIO', (['input_data'], {}), '(input_data)\n', (57995, 58007), False, 'import io\n'), ((58316, 58338), 'io.BytesIO', 'io.BytesIO', (['input_data'], {}), '(input_data)\n', (58326, 58338), False, 'import io\n'), ((58650, 58672), 'io.BytesIO', 'io.BytesIO', (['input_data'], {}), '(input_data)\n', (58660, 58672), False, 'import io\n'), ((58751, 58773), 'io.BytesIO', 'io.BytesIO', (['input_data'], {}), '(input_data)\n', (58761, 58773), False, 'import io\n'), ((60139, 60161), 'io.BytesIO', 'io.BytesIO', (['input_data'], {}), '(input_data)\n', (60149, 60161), False, 'import io\n'), ((62643, 62665), 'io.BytesIO', 'io.BytesIO', (['input_data'], {}), '(input_data)\n', (62653, 62665), False, 'import io\n'), ((64170, 64184), 'numpy.dtype', 'np.dtype', (['bool'], {}), '(bool)\n', (64178, 64184), True, 'import numpy as np\n'), ((64390, 64412), 'io.BytesIO', 'io.BytesIO', (['input_data'], {}), '(input_data)\n', (64400, 64412), False, 'import io\n'), ((65204, 65218), 'numpy.dtype', 'np.dtype', (['bool'], {}), '(bool)\n', (65212, 65218), True, 'import numpy as np\n'), ((65866, 65888), 'io.BytesIO', 'io.BytesIO', (['input_data'], {}), '(input_data)\n', (65876, 65888), False, 'import io\n'), ((68548, 68570), 'io.BytesIO', 'io.BytesIO', (['input_data'], {}), '(input_data)\n', (68558, 68570), False, 'import io\n'), ((69310, 69332), 'io.BytesIO', 'io.BytesIO', (['input_data'], {}), '(input_data)\n', (69320, 69332), False, 'import io\n'), ((70078, 70100), 'io.BytesIO', 'io.BytesIO', (['input_data'], {}), '(input_data)\n', (70088, 70100), False, 'import io\n'), ((73062, 73081), 'os.remove', 'os.remove', (['npz_path'], {}), '(npz_path)\n', (73071, 73081), False, 'import os\n'), ((73352, 73388), 'numpy.load', 'np.load', (['npz_path'], {'allow_pickle': '(True)'}), '(npz_path, allow_pickle=True)\n', (73359, 73388), True, 'import numpy as np\n'), ((74269, 74322), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['expected[key]', 'actual[key]'], {}), '(expected[key], actual[key])\n', (74294, 74322), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((74349, 74395), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['expected[key]', 'actual[key]'], {}), '(expected[key], actual[key])\n', (74367, 74395), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((75069, 75122), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['expected[key]', 'actual[key]'], {}), '(expected[key], actual[key])\n', (75094, 75122), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((75149, 75195), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['expected[key]', 'actual[key]'], {}), '(expected[key], actual[key])\n', (75167, 75195), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((76112, 76136), 'shutil.rmtree', 'shutil.rmtree', (['zarr_path'], {}), '(zarr_path)\n', (76125, 76136), False, 'import shutil\n'), ((76411, 76447), 'zarr.open_group', 'zarr.open_group', (['zarr_path'], {'mode': '"""r"""'}), "(zarr_path, mode='r')\n", (76426, 76447), False, 'import zarr\n'), ((81036, 81056), 'allel.test.tools.compare_arrays', 'compare_arrays', (['e', 'a'], {}), '(e, a)\n', (81050, 81056), False, 'from allel.test.tools import compare_arrays\n'), ((82164, 82271), 'allel.io.vcf_read.ANNTransformer', 'ANNTransformer', ([], {'fields': "['Allele', 'HGVS_c', 'AA']", 'types': "{'Allele': string_type, 'HGVS_c': string_type}"}), "(fields=['Allele', 'HGVS_c', 'AA'], types={'Allele':\n string_type, 'HGVS_c': string_type})\n", (82178, 82271), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((82536, 82560), 'shutil.rmtree', 'shutil.rmtree', (['zarr_path'], {}), '(zarr_path)\n', (82549, 82560), False, 'import shutil\n'), ((82806, 82851), 'allel.test.tools.compare_arrays', 'compare_arrays', (['expected[key]', 'actual[key][:]'], {}), '(expected[key], actual[key][:])\n', (82820, 82851), False, 'from allel.test.tools import compare_arrays\n'), ((83885, 83903), 'os.remove', 'os.remove', (['h5_path'], {}), '(h5_path)\n', (83894, 83903), False, 'import os\n'), ((85407, 85452), 'allel.test.tools.compare_arrays', 'compare_arrays', (['expected[key]', 'actual[key][:]'], {}), '(expected[key], actual[key][:])\n', (85421, 85452), False, 'from allel.test.tools import compare_arrays\n'), ((86317, 86362), 'allel.test.tools.compare_arrays', 'compare_arrays', (['expected[key]', 'actual[key][:]'], {}), '(expected[key], actual[key][:])\n', (86331, 86362), False, 'from allel.test.tools import compare_arrays\n'), ((87141, 87199), 'allel.io.vcf_read.read_vcf', 'read_vcf', (['vcf_path'], {'fields': '"""*"""', 'alt_number': '(2)', 'region': 'chrom'}), "(vcf_path, fields='*', alt_number=2, region=chrom)\n", (87149, 87199), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((87864, 87971), 'allel.io.vcf_read.ANNTransformer', 'ANNTransformer', ([], {'fields': "['Allele', 'HGVS_c', 'AA']", 'types': "{'Allele': string_type, 'HGVS_c': string_type}"}), "(fields=['Allele', 'HGVS_c', 'AA'], types={'Allele':\n string_type, 'HGVS_c': string_type})\n", (87878, 87971), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((88192, 88210), 'os.remove', 'os.remove', (['h5_path'], {}), '(h5_path)\n', (88201, 88210), False, 'import os\n'), ((88351, 88379), 'h5py.File', 'h5py.File', (['h5_path'], {'mode': '"""r"""'}), "(h5_path, mode='r')\n", (88360, 88379), False, 'import h5py\n'), ((88903, 88921), 'os.remove', 'os.remove', (['h5_path'], {}), '(h5_path)\n', (88912, 88921), False, 'import os\n'), ((89064, 89092), 'h5py.File', 'h5py.File', (['h5_path'], {'mode': '"""r"""'}), "(h5_path, mode='r')\n", (89073, 89092), False, 'import h5py\n'), ((91199, 91215), 'numpy.dtype', 'np.dtype', (['object'], {}), '(object)\n', (91207, 91215), True, 'import numpy as np\n'), ((91252, 91268), 'numpy.dtype', 'np.dtype', (['object'], {}), '(object)\n', (91260, 91268), True, 'import numpy as np\n'), ((92045, 92061), 'numpy.dtype', 'np.dtype', (['object'], {}), '(object)\n', (92053, 92061), True, 'import numpy as np\n'), ((92098, 92114), 'numpy.dtype', 'np.dtype', (['object'], {}), '(object)\n', (92106, 92114), True, 'import numpy as np\n'), ((92865, 92972), 'allel.io.vcf_read.ANNTransformer', 'ANNTransformer', ([], {'fields': "['Allele', 'HGVS_c', 'AA']", 'types': "{'Allele': string_type, 'HGVS_c': string_type}"}), "(fields=['Allele', 'HGVS_c', 'AA'], types={'Allele':\n string_type, 'HGVS_c': string_type})\n", (92879, 92972), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((93620, 93636), 'numpy.dtype', 'np.dtype', (['object'], {}), '(object)\n', (93628, 93636), True, 'import numpy as np\n'), ((93673, 93689), 'numpy.dtype', 'np.dtype', (['object'], {}), '(object)\n', (93681, 93689), True, 'import numpy as np\n'), ((94245, 94264), 'os.remove', 'os.remove', (['csv_path'], {}), '(csv_path)\n', (94254, 94264), False, 'import os\n'), ((94576, 94619), 'allel.test.tools.compare_arrays', 'compare_arrays', (['df[k].values', 'adf[k].values'], {}), '(df[k].values, adf[k].values)\n', (94590, 94619), False, 'from allel.test.tools import compare_arrays\n'), ((95939, 96046), 'allel.io.vcf_read.ANNTransformer', 'ANNTransformer', ([], {'fields': "['Allele', 'HGVS_c', 'AA']", 'types': "{'Allele': string_type, 'HGVS_c': string_type}"}), "(fields=['Allele', 'HGVS_c', 'AA'], types={'Allele':\n string_type, 'HGVS_c': string_type})\n", (95953, 96046), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((96389, 96408), 'os.remove', 'os.remove', (['csv_path'], {}), '(csv_path)\n', (96398, 96408), False, 'import os\n'), ((96733, 96776), 'allel.test.tools.compare_arrays', 'compare_arrays', (['df[k].values', 'adf[k].values'], {}), '(df[k].values, adf[k].values)\n', (96747, 96776), False, 'from allel.test.tools import compare_arrays\n'), ((97461, 97482), 'numpy.dtype', 'np.dtype', (['string_type'], {}), '(string_type)\n', (97469, 97482), True, 'import numpy as np\n'), ((98625, 98646), 'numpy.dtype', 'np.dtype', (['string_type'], {}), '(string_type)\n', (98633, 98646), True, 'import numpy as np\n'), ((99823, 99930), 'allel.io.vcf_read.ANNTransformer', 'ANNTransformer', ([], {'fields': "['Allele', 'HGVS_c', 'AA']", 'types': "{'Allele': string_type, 'HGVS_c': string_type}"}), "(fields=['Allele', 'HGVS_c', 'AA'], types={'Allele':\n string_type, 'HGVS_c': string_type})\n", (99837, 99930), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((100514, 100535), 'numpy.dtype', 'np.dtype', (['string_type'], {}), '(string_type)\n', (100522, 100535), True, 'import numpy as np\n'), ((100571, 100592), 'numpy.dtype', 'np.dtype', (['string_type'], {}), '(string_type)\n', (100579, 100592), True, 'import numpy as np\n'), ((47090, 47106), 'allel.io.vcf_read.ANNTransformer', 'ANNTransformer', ([], {}), '()\n', (47104, 47106), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((51126, 51142), 'allel.io.vcf_read.ANNTransformer', 'ANNTransformer', ([], {}), '()\n', (51140, 51142), False, 'from allel.io.vcf_read import iter_vcf_chunks, read_vcf, vcf_to_zarr, vcf_to_hdf5, vcf_to_npz, ANNTransformer, vcf_to_dataframe, vcf_to_csv, vcf_to_recarray, read_vcf_headers\n'), ((73292, 73316), 'os.path.exists', 'os.path.exists', (['npz_path'], {}), '(npz_path)\n', (73306, 73316), False, 'import os\n'), ((76350, 76375), 'os.path.exists', 'os.path.exists', (['zarr_path'], {}), '(zarr_path)\n', (76364, 76375), False, 'import os\n'), ((76573, 76593), 'allel.test.tools.compare_arrays', 'compare_arrays', (['e', 'a'], {}), '(e, a)\n', (76587, 76593), False, 'from allel.test.tools import compare_arrays\n'), ((84115, 84138), 'os.path.exists', 'os.path.exists', (['h5_path'], {}), '(h5_path)\n', (84129, 84138), False, 'import os\n'), ((84170, 84198), 'h5py.File', 'h5py.File', (['h5_path'], {'mode': '"""r"""'}), "(h5_path, mode='r')\n", (84179, 84198), False, 'import h5py\n'), ((87328, 87348), 'allel.test.tools.compare_arrays', 'compare_arrays', (['e', 'a'], {}), '(e, a)\n', (87342, 87348), False, 'from allel.test.tools import compare_arrays\n'), ((88447, 88492), 'allel.test.tools.compare_arrays', 'compare_arrays', (['expected[key]', 'actual[key][:]'], {}), '(expected[key], actual[key][:])\n', (88461, 88492), False, 'from allel.test.tools import compare_arrays\n'), ((90288, 90322), 'allel.test.tools.compare_arrays', 'compare_arrays', (['e', 'df[name].values'], {}), '(e, df[name].values)\n', (90302, 90322), False, 'from allel.test.tools import compare_arrays\n'), ((73501, 73554), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['expected[key]', 'actual[key]'], {}), '(expected[key], actual[key])\n', (73526, 73554), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((73597, 73643), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['expected[key]', 'actual[key]'], {}), '(expected[key], actual[key])\n', (73615, 73643), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((84274, 84319), 'allel.test.tools.compare_arrays', 'compare_arrays', (['expected[key]', 'actual[key][:]'], {}), '(expected[key], actual[key][:])\n', (84288, 84319), False, 'from allel.test.tools import compare_arrays\n'), ((89212, 89266), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['expect[key]', 'actual[key][:]'], {}), '(expect[key], actual[key][:])\n', (89237, 89266), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((97697, 97727), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['e', 'a[name]'], {}), '(e, a[name])\n', (97715, 97727), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((98861, 98891), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['e', 'a[name]'], {}), '(e, a[name])\n', (98879, 98891), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((100797, 100827), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['e', 'a[name]'], {}), '(e, a[name])\n', (100815, 100827), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((89572, 89619), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['expect[key]', 'actual[key][:]'], {}), '(expect[key], actual[key][:])\n', (89590, 89619), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((90417, 90469), 'allel.test.tools.compare_arrays', 'compare_arrays', (['e[:, i]', "df['%s_%s' % (name, i + 1)]"], {}), "(e[:, i], df['%s_%s' % (name, i + 1)])\n", (90431, 90469), False, 'from allel.test.tools import compare_arrays\n'), ((97834, 97889), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['e[:, i]', "a['%s_%s' % (name, i + 1)]"], {}), "(e[:, i], a['%s_%s' % (name, i + 1)])\n", (97852, 97889), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((98998, 99053), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['e[:, i]', "a['%s_%s' % (name, i + 1)]"], {}), "(e[:, i], a['%s_%s' % (name, i + 1)])\n", (99016, 99053), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n'), ((100934, 100989), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['e[:, i]', "a['%s_%s' % (name, i + 1)]"], {}), "(e[:, i], a['%s_%s' % (name, i + 1)])\n", (100952, 100989), False, 'from numpy.testing import assert_array_equal, assert_array_almost_equal\n')]
""" Tests module image_io # Author: <NAME> # $Id:$ """ from __future__ import unicode_literals from __future__ import print_function __version__ = "$Revision:$" from copy import copy, deepcopy import pickle import os.path import unittest import numpy import numpy.testing as np_test import scipy from pyto.io.image_io import ImageIO class TestImageIO(np_test.TestCase): """ Tests class ImageIO """ def setUp(self): """ Sets absolute path to this file directory and saves it as self.dir """ # set absolute path to current dir working_dir = os.getcwd() file_dir, name = os.path.split(__file__) self.dir = os.path.join(working_dir, file_dir) # make raw file self.raw_shape = (4,3,2) self.raw_dtype = 'int16' self.raw_data = numpy.arange( 24, dtype=self.raw_dtype).reshape(self.raw_shape) raw = ImageIO() self.raw_file_name = 'data.raw' raw.write(file=self.raw_file_name, data=self.raw_data) def testRead(self): """ Tests reading EM and MRC files """ # EM tomo em = ImageIO() em.read(file=os.path.join(self.dir, "bin-2.em")) expected = numpy.array([[-0.0242, -0.0250, 0.0883], [0.0640, 0.0071, -0.1300], [-0.0421, -0.0392, -0.0312]]) np_test.assert_almost_equal(em.data[50:53, 120:123, 40], expected, decimal=4) expected = numpy.array([[-0.0573, 0.0569, 0.0386], [0.1309, 0.1211, -0.0881], [-0.0110, -0.0240, 0.0347]]) np_test.assert_almost_equal(em.data[150:153, 20:23, 10], expected, decimal=4) np_test.assert_equal(em.byteOrder, '<') np_test.assert_equal(em.arrayOrder, 'F') np_test.assert_equal(em.dataType, 'float32') np_test.assert_equal(em.data.dtype, numpy.dtype('float32')) np_test.assert_equal(em.memmap, False) # EM tomo with memory map em.read(file=os.path.join(self.dir, "bin-2.em"), memmap=True) expected = numpy.array([[-0.0242, -0.0250, 0.0883], [0.0640, 0.0071, -0.1300], [-0.0421, -0.0392, -0.0312]]) np_test.assert_almost_equal(em.data[50:53, 120:123, 40], expected, decimal=4) expected = numpy.array([[-0.0573, 0.0569, 0.0386], [0.1309, 0.1211, -0.0881], [-0.0110, -0.0240, 0.0347]]) np_test.assert_almost_equal(em.data[150:153, 20:23, 10], expected, decimal=4) np_test.assert_equal(em.byteOrder, '<') np_test.assert_equal(em.arrayOrder, 'F') np_test.assert_equal(em.dataType, 'float32') np_test.assert_equal(em.data.dtype, numpy.dtype('float32')) np_test.assert_equal(em.memmap, True) # EM, big-endian em = ImageIO() em.read(file=os.path.join(self.dir, "mac-file.em")) np_test.assert_equal(em.byteOrder, '>') # EM, little-endian em = ImageIO() em.read(file=os.path.join(self.dir, "pc-file.em")) np_test.assert_equal(em.byteOrder, '<') em.read(file=os.path.join(self.dir, "pc-file.em"), memmap=True) np_test.assert_equal(em.byteOrder, '<') # MRC tomo mrc = ImageIO() mrc.read(file=os.path.join(self.dir, "bin-2.mrc")) expected = numpy.array([[-0.0242, -0.0250, 0.0883], [0.0640, 0.0071, -0.1300], [-0.0421, -0.0392, -0.0312]]) np_test.assert_almost_equal(mrc.data[50:53, 120:123, 40], expected, decimal=4) expected = numpy.array([[-0.0573, 0.0569, 0.0386], [0.1309, 0.1211, -0.0881], [-0.0110, -0.0240, 0.0347]]) np_test.assert_almost_equal(mrc.data[150:153, 20:23, 10], expected, decimal=4) np_test.assert_equal(mrc.byteOrder, '<') np_test.assert_equal(mrc.arrayOrder, 'F') np_test.assert_equal(mrc.dataType, 'float32') np_test.assert_equal(mrc.data.dtype, numpy.dtype('float32')) np_test.assert_equal(mrc.memmap, False) # MRC tomo with memmap mrc = ImageIO() mrc.read(file=os.path.join(self.dir, "bin-2.mrc"), memmap=True) expected = numpy.array([[-0.0242, -0.0250, 0.0883], [0.0640, 0.0071, -0.1300], [-0.0421, -0.0392, -0.0312]]) np_test.assert_almost_equal(mrc.data[50:53, 120:123, 40], expected, decimal=4) expected = numpy.array([[-0.0573, 0.0569, 0.0386], [0.1309, 0.1211, -0.0881], [-0.0110, -0.0240, 0.0347]]) np_test.assert_almost_equal(mrc.data[150:153, 20:23, 10], expected, decimal=4) np_test.assert_equal(mrc.byteOrder, '<') np_test.assert_equal(mrc.arrayOrder, 'F') np_test.assert_equal(mrc.dataType, 'float32') np_test.assert_equal(mrc.data.dtype, numpy.dtype('float32')) np_test.assert_equal(mrc.memmap, True) # MRC tomo with extended header mrc = ImageIO() mrc.read(file=os.path.join(self.dir, "bin-2_ext.mrc"), memmap=False) expected = numpy.array([[-0.0242, -0.0250, 0.0883], [0.0640, 0.0071, -0.1300], [-0.0421, -0.0392, -0.0312]]) np_test.assert_almost_equal(mrc.data[50:53, 120:123, 40], expected, decimal=4) expected = numpy.array([[-0.0573, 0.0569, 0.0386], [0.1309, 0.1211, -0.0881], [-0.0110, -0.0240, 0.0347]]) np_test.assert_almost_equal(mrc.data[150:153, 20:23, 10], expected, decimal=4) np_test.assert_equal(mrc.byteOrder, '<') np_test.assert_equal(mrc.arrayOrder, 'F') np_test.assert_equal(mrc.dataType, 'float32') np_test.assert_equal(mrc.data.dtype, numpy.dtype('float32')) np_test.assert_equal(mrc.memmap, False) np_test.assert_equal(mrc.extendedHeaderLength, 5120) # MRC tomo with extended header and with memmap mrc = ImageIO() mrc.read(file=os.path.join(self.dir, "bin-2_ext.mrc"), memmap=True) expected = numpy.array([[-0.0242, -0.0250, 0.0883], [0.0640, 0.0071, -0.1300], [-0.0421, -0.0392, -0.0312]]) np_test.assert_almost_equal(mrc.data[50:53, 120:123, 40], expected, decimal=4) expected = numpy.array([[-0.0573, 0.0569, 0.0386], [0.1309, 0.1211, -0.0881], [-0.0110, -0.0240, 0.0347]]) np_test.assert_almost_equal(mrc.data[150:153, 20:23, 10], expected, decimal=4) np_test.assert_equal(mrc.byteOrder, '<') np_test.assert_equal(mrc.arrayOrder, 'F') np_test.assert_equal(mrc.dataType, 'float32') np_test.assert_equal(mrc.data.dtype, numpy.dtype('float32')) np_test.assert_equal(mrc.memmap, True) np_test.assert_equal(mrc.extendedHeaderLength, 5120) # another MRC tomo (generated by and) mrc = ImageIO() mrc.read(file=os.path.join(self.dir, "and-tomo.mrc")) expected = numpy.array([[-0.0329, -0.0006, -0.0698], [-0.0101, -0.1196, -0.1295], [0.0844, -0.0400, -0.0716]]) np_test.assert_almost_equal(mrc.data[50:53, 120:123, 40], expected, decimal=4) expected = numpy.array([[-0.0019, -0.0085, 0.0036], [0.0781, 0.0279, -0.0365], [0.0210, -0.0193, -0.0355]]) np_test.assert_almost_equal(mrc.data[150:153, 20:23, 60], expected, decimal=4) np_test.assert_equal(mrc.dataType, 'float32') np_test.assert_equal(mrc.data.dtype, numpy.dtype('float32')) np_test.assert_equal(mrc.memmap, False) # another MRC tomo (generated by and) with memmap mrc = ImageIO() mrc.read(file=os.path.join(self.dir, "and-tomo.mrc"), memmap=True) expected = numpy.array([[-0.0329, -0.0006, -0.0698], [-0.0101, -0.1196, -0.1295], [0.0844, -0.0400, -0.0716]]) np_test.assert_almost_equal(mrc.data[50:53, 120:123, 40], expected, decimal=4) expected = numpy.array([[-0.0019, -0.0085, 0.0036], [0.0781, 0.0279, -0.0365], [0.0210, -0.0193, -0.0355]]) np_test.assert_almost_equal(mrc.data[150:153, 20:23, 60], expected, decimal=4) np_test.assert_equal(mrc.dataType, 'float32') np_test.assert_equal(mrc.data.dtype, numpy.dtype('float32')) np_test.assert_equal(mrc.memmap, True) # mrc with the opposite byte order mrc2 = ImageIO() mrc2.read(file=os.path.join(self.dir, "swapped_byte_order.mrc")) expected = numpy.array( [[ 0.000, 0.000], [-0.341, -6.702], [0.782, -11.780], [0.327, -14.298], [-0.691, -17.411], [-0.337, -18.076], [-0.669, -19.157], [-0.799, -20.400], [-0.793, -21.286], [-1.008, -21.386]]) np_test.assert_almost_equal(mrc2.data[:,:,0], expected, decimal=3) np_test.assert_equal(mrc2.memmap, False) raised = False try: mrc2.read( file=os.path.join(self.dir, "swapped_byte_order.mrc"), memmap=True) except ValueError: raised = True np_test.assert_equal(raised, True) np_test.assert_equal(mrc2.memmap, True) # new style header mrc mrc_new = ImageIO() mrc_new.read(file=os.path.join(self.dir, 'new-head_int16.mrc')) np_test.assert_equal(mrc_new.dataType, 'int16') np_test.assert_equal(mrc_new.data.dtype, numpy.dtype('int16')) np_test.assert_equal(mrc_new.byteOrder, '<') np_test.assert_equal(mrc_new.arrayOrder, 'F') np_test.assert_equal(mrc_new.shape, (40,30,20)) np_test.assert_equal(mrc_new.pixel, [0.4, 0.4, 0.4]) np_test.assert_equal(mrc_new.pixelsize, 0.4) np_test.assert_equal(mrc_new.data[14,8,10], -14) np_test.assert_equal(mrc_new.data[15,23,12], 10) np_test.assert_equal(mrc_new.data[23,29,16], 2) np_test.assert_equal(mrc_new.memmap, False) # new style header mrc mrc_new = ImageIO() mrc_new.read( file=os.path.join(self.dir, 'new-head_int16.mrc'), memmap=True) np_test.assert_equal(mrc_new.dataType, 'int16') np_test.assert_equal(mrc_new.data.dtype, numpy.dtype('int16')) np_test.assert_equal(mrc_new.byteOrder, '<') np_test.assert_equal(mrc_new.arrayOrder, 'F') np_test.assert_equal(mrc_new.shape, (40,30,20)) np_test.assert_equal(mrc_new.pixel, [0.4, 0.4, 0.4]) np_test.assert_equal(mrc_new.pixelsize, 0.4) np_test.assert_equal(mrc_new.data[14,8,10], -14) np_test.assert_equal(mrc_new.data[15,23,12], 10) np_test.assert_equal(mrc_new.data[23,29,16], 2) np_test.assert_equal(mrc_new.memmap, True) np_test.assert_equal(mrc_new.n_labels, 9) np_test.assert_equal(len(mrc_new.labels), 9) desired = ( b"COMBINEFFT: Combined FFT from two tomograms " + b"07-Oct-13 17:15:24" ) np_test.assert_equal(len(mrc_new.labels[3]), 80) np_test.assert_equal(mrc_new.labels[3][:len(desired)], desired) desired = ( b"NEWSTACK: Images copied 10-Oct-13 18:00:03") np_test.assert_equal(len(mrc_new.labels[6]), 80) np_test.assert_equal(mrc_new.labels[6][:len(desired)], desired) # test raw file raw = ImageIO() raw.read( file=self.raw_file_name, dataType=self.raw_dtype, shape=self.raw_shape) np_test.assert_equal(raw.data, self.raw_data) np_test.assert_equal(raw.memmap, False) # test raw file with memmap raw = ImageIO() raw.read( file=self.raw_file_name, dataType=self.raw_dtype, shape=self.raw_shape, memmap=True) np_test.assert_equal(raw.data, self.raw_data) np_test.assert_equal(raw.memmap, True) def testWrite(self): """ Tests write (and implicitly read), for em, mrc and raw format. """ # arrays ar_uint8 = numpy.array([54, 200, 5, 7, 45, 123], dtype='uint8').reshape((3,1,2)) ar_int8 = numpy.array([54, 2, -5, 7, 45, 123], dtype='uint8').reshape((3,1,2)) ar_uint16 = numpy.array([1034, 546, 248, 40000, 2345, 365, 4876, 563], dtype='uint16').reshape((2,2,2)) ar_int16 = numpy.array([1034, 546, -248, 156, 2345, 365, -4876, 563], dtype='int16').reshape((2,2,2)) ar_int32 = numpy.array([1034, 56546, -223448, 156, 2345, 2**31-10, -884876, 563], dtype='int32').reshape((2,2,2)) ar_uint32 = numpy.array([1034, 56546, 223448, 156, 2345, 365, 884876, 2**32-10], dtype='uint32').reshape((2,2,2)) ar_int8_2 = numpy.arange(24, dtype='int8').reshape((4,3,2)) ar_int16_2 = numpy.arange(24, dtype='int16').reshape((4,3,2)) ar2_int16 = numpy.array([1034, 546, -248, 156, 2345, 365, -4876, 563], dtype='int16').reshape((2,4)) ar_int16_f = numpy.array( [1034, 546, -248, 156, 2345, 365, -4876, 563], dtype='int16', order='F').reshape((2,2,2)) ar_int16_c = numpy.array( [1034, 546, -248, 156, 2345, 365, -4876, 563], dtype='int16', order='C').reshape((2,2,2)) # em uint8 file_out = ImageIO() file_out.write(file=os.path.join(self.dir, '_test.em'), data=ar_uint8) file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.em')) np_test.assert_equal(file_in.dataType, 'uint8') np_test.assert_equal(file_in.data, ar_uint8) # em uint16 file_out = ImageIO() file_out.write(file=os.path.join(self.dir, '_test.em'), data=ar_uint16) file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.em')) np_test.assert_equal(file_in.dataType, 'uint16') np_test.assert_equal(file_in.data, ar_uint16) # em int16 converted to int32, safe casting file_out = ImageIO() file_out.write( file=os.path.join(self.dir, '_test.em'), data=ar_int16, dataType='int32', casting='safe') file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.em')) np_test.assert_equal(file_in.dataType, 'int32') np_test.assert_equal(file_in.data, ar_int16) # em int16, safe casting file_out = ImageIO() np_test.assert_raises( TypeError, file_out.write, **{'file':os.path.join(self.dir, '_test.em'), 'data':ar_int16, 'casting':'safe'}) # em int16 converted to uint16, unsafe casting file_out = ImageIO() print("int16 to uint16") file_out.write(file=os.path.join(self.dir, '_test.em'), data=ar_int16, dataType='uint16', casting='unsafe') print("int16 to uint16 end") file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.em')) np_test.assert_equal(file_in.dataType, 'uint16') np_test.assert_equal(file_in.data.dtype, numpy.dtype('uint16')) np_test.assert_equal(file_in.data[0,1,0] == ar_int16[0,1,0], False) # em int16 to uint16, safe casting file_out = ImageIO() np_test.assert_raises( TypeError, file_out.write, **{'file':os.path.join(self.dir, '_test.em'), 'data':ar_int16, 'dataType':'uint16', 'casting':'safe'}) # em uint16 to int16, unsafe casting file_out = ImageIO() np_test.assert_raises( TypeError, file_out.write, **{'file':os.path.join(self.dir, '_test.em'), 'data':ar_uint16, 'dataType':'int16', 'casting':'unsafe'}) # em uint32 to int32, safe casting print("uint32 to int32 safe") file_out = ImageIO() np_test.assert_raises( TypeError, file_out.write, **{'file':os.path.join(self.dir, '_test.em'), 'data':ar_uint32, 'dataType':'int32', 'casting':'safe'}) # em uint32 converted to int32, unsafe casting print("uint32 to int32") file_out = ImageIO() file_out.write( file=os.path.join(self.dir, '_test.em'), data=ar_uint32, dataType='int32', casting='unsafe') file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.em')) np_test.assert_equal(file_in.dataType, 'int32') #np_test.assert_equal(file_in.data, ar_uint32) should fail np_test.assert_equal(file_in.data[0,0,0] == ar_uint32[0,0,0], True) np_test.assert_equal(file_in.data[1,1,1] == ar_uint32[1,1,1], False) # em uint32 to float32, safe casting file_out = ImageIO() np_test.assert_raises( TypeError, file_out.write, **{'file':os.path.join(self.dir, '_test.em'), 'data':ar_uint32, 'dataType':'float32', 'casting':'safe'}) # em uint32 to float32, unsafe casting file_out = ImageIO() file_out.write( file=os.path.join(self.dir, '_test.em'), data=ar_uint32, dataType='float32', casting='unsafe') file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.em')) np_test.assert_equal(file_in.dataType, 'float32') #np_test.assert_almost_equal(file_in.data, ar_uint32) should fail np_test.assert_equal( file_in.data[0,0,0] == ar_uint32[0,0,0], True) np_test.assert_equal( file_in.data[1,1,1] == ar_uint32[1,1,1], False) # em int32 to float32, unsafe casting file_out = ImageIO() file_out.write( file=os.path.join(self.dir, '_test.em'), data=ar_int32, dataType='float32', casting='unsafe') file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.em')) np_test.assert_equal(file_in.dataType, 'float32') #np_test.assert_almost_equal(file_in.data, ar_int32) should fail np_test.assert_equal( file_in.data[0,0,0] == ar_int32[0,0,0], True) np_test.assert_equal( file_in.data[1,0,1] == ar_int32[1,0,1], False) # em int32 to float64, safe casting file_out = ImageIO() file_out.write( file=os.path.join(self.dir, '_test.em'), data=ar_int32, dataType='float64', casting='safe') file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.em')) np_test.assert_equal(file_in.dataType, 'float64') np_test.assert_almost_equal(file_in.data, ar_int32) # mrc data type and shape from args file_out = ImageIO() file_out.write( file=os.path.join(self.dir, '_test.mrc'), data=ar_int8_2, shape=(2,3,4), dataType='int16') file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.mrc')) np_test.assert_equal(file_in.dataType, 'int16') np_test.assert_equal(file_in.shape, (2,3,4)) # mrc data type and shape from previously given data file_out = ImageIO() file_out.setData(ar_int16_2) file_out.write(file=os.path.join(self.dir, '_test.mrc')) file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.mrc')) np_test.assert_equal(file_in.dataType, 'int16') np_test.assert_equal(file_in.shape, (4,3,2)) # mrc data type and shape from attributes file_out = ImageIO() file_out.data = ar_int8_2 file_out.shape = (2,3,4) file_out.dataType = 'int16' file_out.write(file=os.path.join(self.dir, '_test.mrc')) file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.mrc')) np_test.assert_equal(file_in.dataType, 'int16') np_test.assert_equal(file_in.shape, (2,3,4)) # mrc data type and shape from data file_out = ImageIO() file_out.write(file=os.path.join(self.dir, '_test.mrc'), data=ar_int16_2) file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.mrc')) np_test.assert_equal(file_in.dataType, 'int16') np_test.assert_equal(file_in.shape, (4,3,2)) # mrc uint8, same as ubyte file_out = ImageIO() file_out.write(file=os.path.join(self.dir, '_test.mrc'), data=ar_uint8) file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.mrc')) np_test.assert_equal(file_in.dataType, 'ubyte') np_test.assert_almost_equal(file_in.data, ar_uint8) # mrc uint16 file_out = ImageIO() np_test.assert_raises( (KeyError, TypeError), file_out.write, **{'file':os.path.join(self.dir, '_test.mrc'), 'data':ar_uint16}) # mrc uint16 to int16, safe casting file_out = ImageIO() np_test.assert_raises( TypeError, file_out.write, **{'file':os.path.join(self.dir, '_test.mrc'), 'data':ar_uint16, 'dataType':'ubyte', 'casting':'safe'}) # mrc uint16 to int16, unsafe casting file_out = ImageIO() file_out.write( file=os.path.join(self.dir, '_test.mrc'), data=ar_uint16, dataType='int16', casting='unsafe') file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.mrc')) np_test.assert_equal(file_in.dataType, 'int16') #np_test.assert_almost_equal(file_in.data, ar_uint16) should fail np_test.assert_equal(file_in.data[0,0,0] == ar_uint16[0,0,0], True) np_test.assert_equal(file_in.data[0,1,1] == ar_uint16[0,1,1], False) # mrc int16 file_out = ImageIO() file_out.write( file=os.path.join(self.dir, '_test.mrc'), data=ar_int16, pixel=2.3) file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.mrc')) np_test.assert_equal(file_in.dataType, 'int16') np_test.assert_equal(file_in.data, ar_int16) np_test.assert_equal(file_in.pixel, [2.3, 2.3, 2.3]) np_test.assert_equal(file_in.pixelsize, 2.3) # mrc int16 2D file_out = ImageIO() file_out.write( file=os.path.join(self.dir, '_test.mrc'), data=ar2_int16, pixel=3.4) file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.mrc')) np_test.assert_equal(file_in.dataType, 'int16') np_test.assert_equal(file_in.data[:,:,0], ar2_int16) np_test.assert_equal(file_in.pixelsize, 3.4) # mrc int8 to int16 file_out = ImageIO() file_out.write( file=os.path.join(self.dir, '_test.mrc'), data=ar_int8, dataType='int16', casting='safe') file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.mrc')) np_test.assert_equal(file_in.dataType, 'int16') np_test.assert_equal(file_in.data, ar_int8) # mrc int32 file_out = ImageIO() np_test.assert_raises( (KeyError, TypeError), file_out.write, **{'file':os.path.join(self.dir, '_test.mrc'), 'data':ar_int32}) # mrc int32 to int16 file_out = ImageIO() np_test.assert_raises( TypeError, file_out.write, **{'file':os.path.join(self.dir, '_test.mrc'), 'data':ar_int32, 'dataType':'int16', 'casting':'safe'}) # mrc int32 to float32 file_out = ImageIO() np_test.assert_raises( TypeError, file_out.write, **{'file':os.path.join(self.dir, '_test.mrc'), 'data':ar_int32, 'dataType':'float32', 'casting':'safe'}) # mrc int32 to complex64 file_out = ImageIO() np_test.assert_raises( TypeError, file_out.write, **{'file':os.path.join(self.dir, '_test.mrc'), 'data':ar_int32, 'dataType':'complex64', 'casting':'safe'}) # raw int16 file_out = ImageIO() file_out.write(file=os.path.join(self.dir, '_test.raw'), data=ar_int16) file_in = ImageIO() file_in.read( file=os.path.join(self.dir, '_test.raw'), dataType='int16', shape=(2,2,2)) np_test.assert_equal(file_in.dataType, 'int16') np_test.assert_equal(file_in.data, ar_int16) # raw int8 to int16 file_out = ImageIO() file_out.write( file=os.path.join(self.dir, '_test.raw'), data=ar_int8, dataType='int16') file_in = ImageIO() file_in.read( file=os.path.join(self.dir, '_test.raw'), dataType='int16', shape=(3,1,2)) np_test.assert_equal(file_in.dataType, 'int16') np_test.assert_equal(file_in.data, ar_int8) # raw int16 to int8 file_out = ImageIO() np_test.assert_raises( TypeError, file_out.write, **{'file':os.path.join(self.dir, '_test.raw'), 'data':ar_int16, 'dataType':'int8', 'casting':'safe'}) # explain error messages printed before print("It's fine if few error messages were printed just before " + "this line, because they have been caught.") # shape param file_out = ImageIO() file_out.write( file=os.path.join(self.dir, '_test.mrc'), data=ar_int16, dataType='int16') file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.mrc'), dataType='int16') np_test.assert_equal(file_in.data.shape, (2,2,2)) file_out = ImageIO() file_out.write( file=os.path.join(self.dir, '_test.mrc'), data=ar_int16, dataType='int16', shape=(1,4,2)) file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.mrc'), dataType='int16') np_test.assert_equal(file_in.data.shape, (1,4,2)) file_out.write( file=os.path.join(self.dir, '_test.mrc'), data=ar_int16, dataType='int16', shape=(4,2)) file_in.readHeader(file=os.path.join(self.dir, '_test.mrc')) file_in.read(file=os.path.join(self.dir, '_test.mrc'), dataType='int16') np_test.assert_equal(file_in.data.shape, (4,2,1)) file_in.read( file=os.path.join(self.dir, '_test.mrc'), dataType='int16', shape=(2,2,2)) np_test.assert_equal(file_in.data.shape, (2,2,2)) # array order C, read write default (F) file_out = ImageIO() file_out.write( file=os.path.join(self.dir, '_test.mrc'), data=ar_int16_c) file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.mrc')) np_test.assert_equal(file_in.data, ar_int16_c) # array order C, read write C file_out = ImageIO() file_out.write( file=os.path.join(self.dir, '_test.mrc'), data=ar_int16_c, arrayOrder='C') file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.mrc'), arrayOrder='C') np_test.assert_equal(file_in.data, ar_int16_c) # array order F, read write default (F) file_out = ImageIO() file_out.write( file=os.path.join(self.dir, '_test.mrc'), data=ar_int16_f) file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.mrc')) np_test.assert_equal(file_in.data, ar_int16_f) # array order F, read write F file_out = ImageIO() file_out.write( file=os.path.join(self.dir, '_test.mrc'), data=ar_int16_f, arrayOrder='F') file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.mrc'), arrayOrder='F') np_test.assert_equal(file_in.data, ar_int16_f) def testPixelSize(self): """ Tests pixel size in read and write """ # arrays #ar_int8_2 = numpy.arange(24, dtype='int8').reshape((4,3,2)) ar_int16_2 = numpy.arange(24, dtype='int16').reshape((4,3,2)) # file_out = ImageIO() file_out.write( file=os.path.join(self.dir, '_test.mrc'), data=ar_int16_2, pixel=2.1) file_in = ImageIO() file_in.read(file=os.path.join(self.dir, '_test.mrc')) np_test.assert_almost_equal(file_in.pixel, 2.1) def tearDown(self): """ Remove temporary files """ try: os.remove(os.path.join(self.dir, '_test.em')) except OSError: pass try: os.remove(os.path.join(self.dir, '_test.mrc')) except OSError: pass try: os.remove(os.path.join(self.dir, '_test.raw')) except OSError: pass try: os.remove(os.path.join(self.dir, self.raw_file_name)) except OSError: pass if __name__ == '__main__': suite = unittest.TestLoader().loadTestsFromTestCase(TestImageIO) unittest.TextTestRunner(verbosity=2).run(suite)
[ "unittest.TextTestRunner", "numpy.testing.assert_almost_equal", "numpy.dtype", "pyto.io.image_io.ImageIO", "numpy.array", "unittest.TestLoader", "numpy.testing.assert_equal", "numpy.arange" ]
[((928, 937), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (935, 937), False, 'from pyto.io.image_io import ImageIO\n'), ((1170, 1179), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (1177, 1179), False, 'from pyto.io.image_io import ImageIO\n'), ((1256, 1354), 'numpy.array', 'numpy.array', (['[[-0.0242, -0.025, 0.0883], [0.064, 0.0071, -0.13], [-0.0421, -0.0392, -0.0312]\n ]'], {}), '([[-0.0242, -0.025, 0.0883], [0.064, 0.0071, -0.13], [-0.0421, -\n 0.0392, -0.0312]])\n', (1267, 1354), False, 'import numpy\n'), ((1440, 1517), 'numpy.testing.assert_almost_equal', 'np_test.assert_almost_equal', (['em.data[50:53, 120:123, 40]', 'expected'], {'decimal': '(4)'}), '(em.data[50:53, 120:123, 40], expected, decimal=4)\n', (1467, 1517), True, 'import numpy.testing as np_test\n'), ((1573, 1670), 'numpy.array', 'numpy.array', (['[[-0.0573, 0.0569, 0.0386], [0.1309, 0.1211, -0.0881], [-0.011, -0.024, 0.0347]\n ]'], {}), '([[-0.0573, 0.0569, 0.0386], [0.1309, 0.1211, -0.0881], [-0.011,\n -0.024, 0.0347]])\n', (1584, 1670), False, 'import numpy\n'), ((1757, 1834), 'numpy.testing.assert_almost_equal', 'np_test.assert_almost_equal', (['em.data[150:153, 20:23, 10]', 'expected'], {'decimal': '(4)'}), '(em.data[150:153, 20:23, 10], expected, decimal=4)\n', (1784, 1834), True, 'import numpy.testing as np_test\n'), ((1879, 1918), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['em.byteOrder', '"""<"""'], {}), "(em.byteOrder, '<')\n", (1899, 1918), True, 'import numpy.testing as np_test\n'), ((1927, 1967), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['em.arrayOrder', '"""F"""'], {}), "(em.arrayOrder, 'F')\n", (1947, 1967), True, 'import numpy.testing as np_test\n'), ((1976, 2020), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['em.dataType', '"""float32"""'], {}), "(em.dataType, 'float32')\n", (1996, 2020), True, 'import numpy.testing as np_test\n'), ((2097, 2135), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['em.memmap', '(False)'], {}), '(em.memmap, False)\n', (2117, 2135), True, 'import numpy.testing as np_test\n'), ((2260, 2358), 'numpy.array', 'numpy.array', (['[[-0.0242, -0.025, 0.0883], [0.064, 0.0071, -0.13], [-0.0421, -0.0392, -0.0312]\n ]'], {}), '([[-0.0242, -0.025, 0.0883], [0.064, 0.0071, -0.13], [-0.0421, -\n 0.0392, -0.0312]])\n', (2271, 2358), False, 'import numpy\n'), ((2444, 2521), 'numpy.testing.assert_almost_equal', 'np_test.assert_almost_equal', (['em.data[50:53, 120:123, 40]', 'expected'], {'decimal': '(4)'}), '(em.data[50:53, 120:123, 40], expected, decimal=4)\n', (2471, 2521), True, 'import numpy.testing as np_test\n'), ((2577, 2674), 'numpy.array', 'numpy.array', (['[[-0.0573, 0.0569, 0.0386], [0.1309, 0.1211, -0.0881], [-0.011, -0.024, 0.0347]\n ]'], {}), '([[-0.0573, 0.0569, 0.0386], [0.1309, 0.1211, -0.0881], [-0.011,\n -0.024, 0.0347]])\n', (2588, 2674), False, 'import numpy\n'), ((2761, 2838), 'numpy.testing.assert_almost_equal', 'np_test.assert_almost_equal', (['em.data[150:153, 20:23, 10]', 'expected'], {'decimal': '(4)'}), '(em.data[150:153, 20:23, 10], expected, decimal=4)\n', (2788, 2838), True, 'import numpy.testing as np_test\n'), ((2883, 2922), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['em.byteOrder', '"""<"""'], {}), "(em.byteOrder, '<')\n", (2903, 2922), True, 'import numpy.testing as np_test\n'), ((2931, 2971), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['em.arrayOrder', '"""F"""'], {}), "(em.arrayOrder, 'F')\n", (2951, 2971), True, 'import numpy.testing as np_test\n'), ((2980, 3024), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['em.dataType', '"""float32"""'], {}), "(em.dataType, 'float32')\n", (3000, 3024), True, 'import numpy.testing as np_test\n'), ((3101, 3138), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['em.memmap', '(True)'], {}), '(em.memmap, True)\n', (3121, 3138), True, 'import numpy.testing as np_test\n'), ((3178, 3187), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (3185, 3187), False, 'from pyto.io.image_io import ImageIO\n'), ((3256, 3295), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['em.byteOrder', '""">"""'], {}), "(em.byteOrder, '>')\n", (3276, 3295), True, 'import numpy.testing as np_test\n'), ((3338, 3347), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (3345, 3347), False, 'from pyto.io.image_io import ImageIO\n'), ((3415, 3454), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['em.byteOrder', '"""<"""'], {}), "(em.byteOrder, '<')\n", (3435, 3454), True, 'import numpy.testing as np_test\n'), ((3535, 3574), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['em.byteOrder', '"""<"""'], {}), "(em.byteOrder, '<')\n", (3555, 3574), True, 'import numpy.testing as np_test\n'), ((3609, 3618), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (3616, 3618), False, 'from pyto.io.image_io import ImageIO\n'), ((3697, 3795), 'numpy.array', 'numpy.array', (['[[-0.0242, -0.025, 0.0883], [0.064, 0.0071, -0.13], [-0.0421, -0.0392, -0.0312]\n ]'], {}), '([[-0.0242, -0.025, 0.0883], [0.064, 0.0071, -0.13], [-0.0421, -\n 0.0392, -0.0312]])\n', (3708, 3795), False, 'import numpy\n'), ((3881, 3959), 'numpy.testing.assert_almost_equal', 'np_test.assert_almost_equal', (['mrc.data[50:53, 120:123, 40]', 'expected'], {'decimal': '(4)'}), '(mrc.data[50:53, 120:123, 40], expected, decimal=4)\n', (3908, 3959), True, 'import numpy.testing as np_test\n'), ((4015, 4112), 'numpy.array', 'numpy.array', (['[[-0.0573, 0.0569, 0.0386], [0.1309, 0.1211, -0.0881], [-0.011, -0.024, 0.0347]\n ]'], {}), '([[-0.0573, 0.0569, 0.0386], [0.1309, 0.1211, -0.0881], [-0.011,\n -0.024, 0.0347]])\n', (4026, 4112), False, 'import numpy\n'), ((4199, 4277), 'numpy.testing.assert_almost_equal', 'np_test.assert_almost_equal', (['mrc.data[150:153, 20:23, 10]', 'expected'], {'decimal': '(4)'}), '(mrc.data[150:153, 20:23, 10], expected, decimal=4)\n', (4226, 4277), True, 'import numpy.testing as np_test\n'), ((4322, 4362), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['mrc.byteOrder', '"""<"""'], {}), "(mrc.byteOrder, '<')\n", (4342, 4362), True, 'import numpy.testing as np_test\n'), ((4371, 4412), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['mrc.arrayOrder', '"""F"""'], {}), "(mrc.arrayOrder, 'F')\n", (4391, 4412), True, 'import numpy.testing as np_test\n'), ((4421, 4466), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['mrc.dataType', '"""float32"""'], {}), "(mrc.dataType, 'float32')\n", (4441, 4466), True, 'import numpy.testing as np_test\n'), ((4544, 4583), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['mrc.memmap', '(False)'], {}), '(mrc.memmap, False)\n', (4564, 4583), True, 'import numpy.testing as np_test\n'), ((4630, 4639), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (4637, 4639), False, 'from pyto.io.image_io import ImageIO\n'), ((4731, 4829), 'numpy.array', 'numpy.array', (['[[-0.0242, -0.025, 0.0883], [0.064, 0.0071, -0.13], [-0.0421, -0.0392, -0.0312]\n ]'], {}), '([[-0.0242, -0.025, 0.0883], [0.064, 0.0071, -0.13], [-0.0421, -\n 0.0392, -0.0312]])\n', (4742, 4829), False, 'import numpy\n'), ((4915, 4993), 'numpy.testing.assert_almost_equal', 'np_test.assert_almost_equal', (['mrc.data[50:53, 120:123, 40]', 'expected'], {'decimal': '(4)'}), '(mrc.data[50:53, 120:123, 40], expected, decimal=4)\n', (4942, 4993), True, 'import numpy.testing as np_test\n'), ((5049, 5146), 'numpy.array', 'numpy.array', (['[[-0.0573, 0.0569, 0.0386], [0.1309, 0.1211, -0.0881], [-0.011, -0.024, 0.0347]\n ]'], {}), '([[-0.0573, 0.0569, 0.0386], [0.1309, 0.1211, -0.0881], [-0.011,\n -0.024, 0.0347]])\n', (5060, 5146), False, 'import numpy\n'), ((5233, 5311), 'numpy.testing.assert_almost_equal', 'np_test.assert_almost_equal', (['mrc.data[150:153, 20:23, 10]', 'expected'], {'decimal': '(4)'}), '(mrc.data[150:153, 20:23, 10], expected, decimal=4)\n', (5260, 5311), True, 'import numpy.testing as np_test\n'), ((5356, 5396), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['mrc.byteOrder', '"""<"""'], {}), "(mrc.byteOrder, '<')\n", (5376, 5396), True, 'import numpy.testing as np_test\n'), ((5405, 5446), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['mrc.arrayOrder', '"""F"""'], {}), "(mrc.arrayOrder, 'F')\n", (5425, 5446), True, 'import numpy.testing as np_test\n'), ((5455, 5500), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['mrc.dataType', '"""float32"""'], {}), "(mrc.dataType, 'float32')\n", (5475, 5500), True, 'import numpy.testing as np_test\n'), ((5578, 5616), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['mrc.memmap', '(True)'], {}), '(mrc.memmap, True)\n', (5598, 5616), True, 'import numpy.testing as np_test\n'), ((5672, 5681), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (5679, 5681), False, 'from pyto.io.image_io import ImageIO\n'), ((5778, 5876), 'numpy.array', 'numpy.array', (['[[-0.0242, -0.025, 0.0883], [0.064, 0.0071, -0.13], [-0.0421, -0.0392, -0.0312]\n ]'], {}), '([[-0.0242, -0.025, 0.0883], [0.064, 0.0071, -0.13], [-0.0421, -\n 0.0392, -0.0312]])\n', (5789, 5876), False, 'import numpy\n'), ((5962, 6040), 'numpy.testing.assert_almost_equal', 'np_test.assert_almost_equal', (['mrc.data[50:53, 120:123, 40]', 'expected'], {'decimal': '(4)'}), '(mrc.data[50:53, 120:123, 40], expected, decimal=4)\n', (5989, 6040), True, 'import numpy.testing as np_test\n'), ((6096, 6193), 'numpy.array', 'numpy.array', (['[[-0.0573, 0.0569, 0.0386], [0.1309, 0.1211, -0.0881], [-0.011, -0.024, 0.0347]\n ]'], {}), '([[-0.0573, 0.0569, 0.0386], [0.1309, 0.1211, -0.0881], [-0.011,\n -0.024, 0.0347]])\n', (6107, 6193), False, 'import numpy\n'), ((6280, 6358), 'numpy.testing.assert_almost_equal', 'np_test.assert_almost_equal', (['mrc.data[150:153, 20:23, 10]', 'expected'], {'decimal': '(4)'}), '(mrc.data[150:153, 20:23, 10], expected, decimal=4)\n', (6307, 6358), True, 'import numpy.testing as np_test\n'), ((6403, 6443), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['mrc.byteOrder', '"""<"""'], {}), "(mrc.byteOrder, '<')\n", (6423, 6443), True, 'import numpy.testing as np_test\n'), ((6452, 6493), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['mrc.arrayOrder', '"""F"""'], {}), "(mrc.arrayOrder, 'F')\n", (6472, 6493), True, 'import numpy.testing as np_test\n'), ((6502, 6547), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['mrc.dataType', '"""float32"""'], {}), "(mrc.dataType, 'float32')\n", (6522, 6547), True, 'import numpy.testing as np_test\n'), ((6625, 6664), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['mrc.memmap', '(False)'], {}), '(mrc.memmap, False)\n', (6645, 6664), True, 'import numpy.testing as np_test\n'), ((6673, 6725), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['mrc.extendedHeaderLength', '(5120)'], {}), '(mrc.extendedHeaderLength, 5120)\n', (6693, 6725), True, 'import numpy.testing as np_test\n'), ((6797, 6806), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (6804, 6806), False, 'from pyto.io.image_io import ImageIO\n'), ((6902, 7000), 'numpy.array', 'numpy.array', (['[[-0.0242, -0.025, 0.0883], [0.064, 0.0071, -0.13], [-0.0421, -0.0392, -0.0312]\n ]'], {}), '([[-0.0242, -0.025, 0.0883], [0.064, 0.0071, -0.13], [-0.0421, -\n 0.0392, -0.0312]])\n', (6913, 7000), False, 'import numpy\n'), ((7086, 7164), 'numpy.testing.assert_almost_equal', 'np_test.assert_almost_equal', (['mrc.data[50:53, 120:123, 40]', 'expected'], {'decimal': '(4)'}), '(mrc.data[50:53, 120:123, 40], expected, decimal=4)\n', (7113, 7164), True, 'import numpy.testing as np_test\n'), ((7220, 7317), 'numpy.array', 'numpy.array', (['[[-0.0573, 0.0569, 0.0386], [0.1309, 0.1211, -0.0881], [-0.011, -0.024, 0.0347]\n ]'], {}), '([[-0.0573, 0.0569, 0.0386], [0.1309, 0.1211, -0.0881], [-0.011,\n -0.024, 0.0347]])\n', (7231, 7317), False, 'import numpy\n'), ((7404, 7482), 'numpy.testing.assert_almost_equal', 'np_test.assert_almost_equal', (['mrc.data[150:153, 20:23, 10]', 'expected'], {'decimal': '(4)'}), '(mrc.data[150:153, 20:23, 10], expected, decimal=4)\n', (7431, 7482), True, 'import numpy.testing as np_test\n'), ((7527, 7567), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['mrc.byteOrder', '"""<"""'], {}), "(mrc.byteOrder, '<')\n", (7547, 7567), True, 'import numpy.testing as np_test\n'), ((7576, 7617), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['mrc.arrayOrder', '"""F"""'], {}), "(mrc.arrayOrder, 'F')\n", (7596, 7617), True, 'import numpy.testing as np_test\n'), ((7626, 7671), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['mrc.dataType', '"""float32"""'], {}), "(mrc.dataType, 'float32')\n", (7646, 7671), True, 'import numpy.testing as np_test\n'), ((7749, 7787), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['mrc.memmap', '(True)'], {}), '(mrc.memmap, True)\n', (7769, 7787), True, 'import numpy.testing as np_test\n'), ((7796, 7848), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['mrc.extendedHeaderLength', '(5120)'], {}), '(mrc.extendedHeaderLength, 5120)\n', (7816, 7848), True, 'import numpy.testing as np_test\n'), ((7910, 7919), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (7917, 7919), False, 'from pyto.io.image_io import ImageIO\n'), ((8001, 8103), 'numpy.array', 'numpy.array', (['[[-0.0329, -0.0006, -0.0698], [-0.0101, -0.1196, -0.1295], [0.0844, -0.04, \n -0.0716]]'], {}), '([[-0.0329, -0.0006, -0.0698], [-0.0101, -0.1196, -0.1295], [\n 0.0844, -0.04, -0.0716]])\n', (8012, 8103), False, 'import numpy\n'), ((8185, 8263), 'numpy.testing.assert_almost_equal', 'np_test.assert_almost_equal', (['mrc.data[50:53, 120:123, 40]', 'expected'], {'decimal': '(4)'}), '(mrc.data[50:53, 120:123, 40], expected, decimal=4)\n', (8212, 8263), True, 'import numpy.testing as np_test\n'), ((8319, 8418), 'numpy.array', 'numpy.array', (['[[-0.0019, -0.0085, 0.0036], [0.0781, 0.0279, -0.0365], [0.021, -0.0193, -\n 0.0355]]'], {}), '([[-0.0019, -0.0085, 0.0036], [0.0781, 0.0279, -0.0365], [0.021,\n -0.0193, -0.0355]])\n', (8330, 8418), False, 'import numpy\n'), ((8502, 8580), 'numpy.testing.assert_almost_equal', 'np_test.assert_almost_equal', (['mrc.data[150:153, 20:23, 60]', 'expected'], {'decimal': '(4)'}), '(mrc.data[150:153, 20:23, 60], expected, decimal=4)\n', (8529, 8580), True, 'import numpy.testing as np_test\n'), ((8625, 8670), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['mrc.dataType', '"""float32"""'], {}), "(mrc.dataType, 'float32')\n", (8645, 8670), True, 'import numpy.testing as np_test\n'), ((8748, 8787), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['mrc.memmap', '(False)'], {}), '(mrc.memmap, False)\n', (8768, 8787), True, 'import numpy.testing as np_test\n'), ((8861, 8870), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (8868, 8870), False, 'from pyto.io.image_io import ImageIO\n'), ((8965, 9067), 'numpy.array', 'numpy.array', (['[[-0.0329, -0.0006, -0.0698], [-0.0101, -0.1196, -0.1295], [0.0844, -0.04, \n -0.0716]]'], {}), '([[-0.0329, -0.0006, -0.0698], [-0.0101, -0.1196, -0.1295], [\n 0.0844, -0.04, -0.0716]])\n', (8976, 9067), False, 'import numpy\n'), ((9149, 9227), 'numpy.testing.assert_almost_equal', 'np_test.assert_almost_equal', (['mrc.data[50:53, 120:123, 40]', 'expected'], {'decimal': '(4)'}), '(mrc.data[50:53, 120:123, 40], expected, decimal=4)\n', (9176, 9227), True, 'import numpy.testing as np_test\n'), ((9283, 9382), 'numpy.array', 'numpy.array', (['[[-0.0019, -0.0085, 0.0036], [0.0781, 0.0279, -0.0365], [0.021, -0.0193, -\n 0.0355]]'], {}), '([[-0.0019, -0.0085, 0.0036], [0.0781, 0.0279, -0.0365], [0.021,\n -0.0193, -0.0355]])\n', (9294, 9382), False, 'import numpy\n'), ((9466, 9544), 'numpy.testing.assert_almost_equal', 'np_test.assert_almost_equal', (['mrc.data[150:153, 20:23, 60]', 'expected'], {'decimal': '(4)'}), '(mrc.data[150:153, 20:23, 60], expected, decimal=4)\n', (9493, 9544), True, 'import numpy.testing as np_test\n'), ((9589, 9634), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['mrc.dataType', '"""float32"""'], {}), "(mrc.dataType, 'float32')\n", (9609, 9634), True, 'import numpy.testing as np_test\n'), ((9712, 9750), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['mrc.memmap', '(True)'], {}), '(mrc.memmap, True)\n', (9732, 9750), True, 'import numpy.testing as np_test\n'), ((9810, 9819), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (9817, 9819), False, 'from pyto.io.image_io import ImageIO\n'), ((9912, 10112), 'numpy.array', 'numpy.array', (['[[0.0, 0.0], [-0.341, -6.702], [0.782, -11.78], [0.327, -14.298], [-0.691, \n -17.411], [-0.337, -18.076], [-0.669, -19.157], [-0.799, -20.4], [-\n 0.793, -21.286], [-1.008, -21.386]]'], {}), '([[0.0, 0.0], [-0.341, -6.702], [0.782, -11.78], [0.327, -14.298\n ], [-0.691, -17.411], [-0.337, -18.076], [-0.669, -19.157], [-0.799, -\n 20.4], [-0.793, -21.286], [-1.008, -21.386]])\n', (9923, 10112), False, 'import numpy\n'), ((10262, 10330), 'numpy.testing.assert_almost_equal', 'np_test.assert_almost_equal', (['mrc2.data[:, :, 0]', 'expected'], {'decimal': '(3)'}), '(mrc2.data[:, :, 0], expected, decimal=3)\n', (10289, 10330), True, 'import numpy.testing as np_test\n'), ((10337, 10377), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['mrc2.memmap', '(False)'], {}), '(mrc2.memmap, False)\n', (10357, 10377), True, 'import numpy.testing as np_test\n'), ((10599, 10633), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['raised', '(True)'], {}), '(raised, True)\n', (10619, 10633), True, 'import numpy.testing as np_test\n'), ((10642, 10681), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['mrc2.memmap', '(True)'], {}), '(mrc2.memmap, True)\n', (10662, 10681), True, 'import numpy.testing as np_test\n'), ((10733, 10742), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (10740, 10742), False, 'from pyto.io.image_io import ImageIO\n'), ((10823, 10870), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['mrc_new.dataType', '"""int16"""'], {}), "(mrc_new.dataType, 'int16')\n", (10843, 10870), True, 'import numpy.testing as np_test\n'), ((10950, 10994), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['mrc_new.byteOrder', '"""<"""'], {}), "(mrc_new.byteOrder, '<')\n", (10970, 10994), True, 'import numpy.testing as np_test\n'), ((11003, 11048), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['mrc_new.arrayOrder', '"""F"""'], {}), "(mrc_new.arrayOrder, 'F')\n", (11023, 11048), True, 'import numpy.testing as np_test\n'), ((11057, 11106), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['mrc_new.shape', '(40, 30, 20)'], {}), '(mrc_new.shape, (40, 30, 20))\n', (11077, 11106), True, 'import numpy.testing as np_test\n'), ((11113, 11165), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['mrc_new.pixel', '[0.4, 0.4, 0.4]'], {}), '(mrc_new.pixel, [0.4, 0.4, 0.4])\n', (11133, 11165), True, 'import numpy.testing as np_test\n'), ((11174, 11218), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['mrc_new.pixelsize', '(0.4)'], {}), '(mrc_new.pixelsize, 0.4)\n', (11194, 11218), True, 'import numpy.testing as np_test\n'), ((11227, 11277), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['mrc_new.data[14, 8, 10]', '(-14)'], {}), '(mrc_new.data[14, 8, 10], -14)\n', (11247, 11277), True, 'import numpy.testing as np_test\n'), ((11284, 11334), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['mrc_new.data[15, 23, 12]', '(10)'], {}), '(mrc_new.data[15, 23, 12], 10)\n', (11304, 11334), True, 'import numpy.testing as np_test\n'), ((11341, 11390), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['mrc_new.data[23, 29, 16]', '(2)'], {}), '(mrc_new.data[23, 29, 16], 2)\n', (11361, 11390), True, 'import numpy.testing as np_test\n'), ((11397, 11440), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['mrc_new.memmap', '(False)'], {}), '(mrc_new.memmap, False)\n', (11417, 11440), True, 'import numpy.testing as np_test\n'), ((11491, 11500), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (11498, 11500), False, 'from pyto.io.image_io import ImageIO\n'), ((11607, 11654), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['mrc_new.dataType', '"""int16"""'], {}), "(mrc_new.dataType, 'int16')\n", (11627, 11654), True, 'import numpy.testing as np_test\n'), ((11734, 11778), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['mrc_new.byteOrder', '"""<"""'], {}), "(mrc_new.byteOrder, '<')\n", (11754, 11778), True, 'import numpy.testing as np_test\n'), ((11787, 11832), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['mrc_new.arrayOrder', '"""F"""'], {}), "(mrc_new.arrayOrder, 'F')\n", (11807, 11832), True, 'import numpy.testing as np_test\n'), ((11841, 11890), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['mrc_new.shape', '(40, 30, 20)'], {}), '(mrc_new.shape, (40, 30, 20))\n', (11861, 11890), True, 'import numpy.testing as np_test\n'), ((11897, 11949), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['mrc_new.pixel', '[0.4, 0.4, 0.4]'], {}), '(mrc_new.pixel, [0.4, 0.4, 0.4])\n', (11917, 11949), True, 'import numpy.testing as np_test\n'), ((11958, 12002), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['mrc_new.pixelsize', '(0.4)'], {}), '(mrc_new.pixelsize, 0.4)\n', (11978, 12002), True, 'import numpy.testing as np_test\n'), ((12011, 12061), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['mrc_new.data[14, 8, 10]', '(-14)'], {}), '(mrc_new.data[14, 8, 10], -14)\n', (12031, 12061), True, 'import numpy.testing as np_test\n'), ((12068, 12118), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['mrc_new.data[15, 23, 12]', '(10)'], {}), '(mrc_new.data[15, 23, 12], 10)\n', (12088, 12118), True, 'import numpy.testing as np_test\n'), ((12125, 12174), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['mrc_new.data[23, 29, 16]', '(2)'], {}), '(mrc_new.data[23, 29, 16], 2)\n', (12145, 12174), True, 'import numpy.testing as np_test\n'), ((12181, 12223), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['mrc_new.memmap', '(True)'], {}), '(mrc_new.memmap, True)\n', (12201, 12223), True, 'import numpy.testing as np_test\n'), ((12232, 12273), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['mrc_new.n_labels', '(9)'], {}), '(mrc_new.n_labels, 9)\n', (12252, 12273), True, 'import numpy.testing as np_test\n'), ((12868, 12877), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (12875, 12877), False, 'from pyto.io.image_io import ImageIO\n'), ((13001, 13046), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['raw.data', 'self.raw_data'], {}), '(raw.data, self.raw_data)\n', (13021, 13046), True, 'import numpy.testing as np_test\n'), ((13055, 13094), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['raw.memmap', '(False)'], {}), '(raw.memmap, False)\n', (13075, 13094), True, 'import numpy.testing as np_test\n'), ((13146, 13155), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (13153, 13155), False, 'from pyto.io.image_io import ImageIO\n'), ((13292, 13337), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['raw.data', 'self.raw_data'], {}), '(raw.data, self.raw_data)\n', (13312, 13337), True, 'import numpy.testing as np_test\n'), ((13346, 13384), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['raw.memmap', '(True)'], {}), '(raw.memmap, True)\n', (13366, 13384), True, 'import numpy.testing as np_test\n'), ((15038, 15047), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (15045, 15047), False, 'from pyto.io.image_io import ImageIO\n'), ((15145, 15154), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (15152, 15154), False, 'from pyto.io.image_io import ImageIO\n'), ((15225, 15272), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['file_in.dataType', '"""uint8"""'], {}), "(file_in.dataType, 'uint8')\n", (15245, 15272), True, 'import numpy.testing as np_test\n'), ((15281, 15325), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['file_in.data', 'ar_uint8'], {}), '(file_in.data, ar_uint8)\n', (15301, 15325), True, 'import numpy.testing as np_test\n'), ((15366, 15375), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (15373, 15375), False, 'from pyto.io.image_io import ImageIO\n'), ((15474, 15483), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (15481, 15483), False, 'from pyto.io.image_io import ImageIO\n'), ((15554, 15602), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['file_in.dataType', '"""uint16"""'], {}), "(file_in.dataType, 'uint16')\n", (15574, 15602), True, 'import numpy.testing as np_test\n'), ((15611, 15656), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['file_in.data', 'ar_uint16'], {}), '(file_in.data, ar_uint16)\n', (15631, 15656), True, 'import numpy.testing as np_test\n'), ((15729, 15738), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (15736, 15738), False, 'from pyto.io.image_io import ImageIO\n'), ((15895, 15904), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (15902, 15904), False, 'from pyto.io.image_io import ImageIO\n'), ((15975, 16022), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['file_in.dataType', '"""int32"""'], {}), "(file_in.dataType, 'int32')\n", (15995, 16022), True, 'import numpy.testing as np_test\n'), ((16031, 16075), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['file_in.data', 'ar_int16'], {}), '(file_in.data, ar_int16)\n', (16051, 16075), True, 'import numpy.testing as np_test\n'), ((16130, 16139), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (16137, 16139), False, 'from pyto.io.image_io import ImageIO\n'), ((16406, 16415), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (16413, 16415), False, 'from pyto.io.image_io import ImageIO\n'), ((16643, 16652), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (16650, 16652), False, 'from pyto.io.image_io import ImageIO\n'), ((16723, 16771), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['file_in.dataType', '"""uint16"""'], {}), "(file_in.dataType, 'uint16')\n", (16743, 16771), True, 'import numpy.testing as np_test\n'), ((16852, 16923), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['(file_in.data[0, 1, 0] == ar_int16[0, 1, 0])', '(False)'], {}), '(file_in.data[0, 1, 0] == ar_int16[0, 1, 0], False)\n', (16872, 16923), True, 'import numpy.testing as np_test\n'), ((16984, 16993), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (16991, 16993), False, 'from pyto.io.image_io import ImageIO\n'), ((17272, 17281), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (17279, 17281), False, 'from pyto.io.image_io import ImageIO\n'), ((17598, 17607), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (17605, 17607), False, 'from pyto.io.image_io import ImageIO\n'), ((17928, 17937), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (17935, 17937), False, 'from pyto.io.image_io import ImageIO\n'), ((18097, 18106), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (18104, 18106), False, 'from pyto.io.image_io import ImageIO\n'), ((18177, 18224), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['file_in.dataType', '"""int32"""'], {}), "(file_in.dataType, 'int32')\n", (18197, 18224), True, 'import numpy.testing as np_test\n'), ((18300, 18371), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['(file_in.data[0, 0, 0] == ar_uint32[0, 0, 0])', '(True)'], {}), '(file_in.data[0, 0, 0] == ar_uint32[0, 0, 0], True)\n', (18320, 18371), True, 'import numpy.testing as np_test\n'), ((18376, 18448), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['(file_in.data[1, 1, 1] == ar_uint32[1, 1, 1])', '(False)'], {}), '(file_in.data[1, 1, 1] == ar_uint32[1, 1, 1], False)\n', (18396, 18448), True, 'import numpy.testing as np_test\n'), ((18511, 18520), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (18518, 18520), False, 'from pyto.io.image_io import ImageIO\n'), ((18802, 18811), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (18809, 18811), False, 'from pyto.io.image_io import ImageIO\n'), ((18973, 18982), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (18980, 18982), False, 'from pyto.io.image_io import ImageIO\n'), ((19053, 19102), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['file_in.dataType', '"""float32"""'], {}), "(file_in.dataType, 'float32')\n", (19073, 19102), True, 'import numpy.testing as np_test\n'), ((19186, 19257), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['(file_in.data[0, 0, 0] == ar_uint32[0, 0, 0])', '(True)'], {}), '(file_in.data[0, 0, 0] == ar_uint32[0, 0, 0], True)\n', (19206, 19257), True, 'import numpy.testing as np_test\n'), ((19275, 19347), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['(file_in.data[1, 1, 1] == ar_uint32[1, 1, 1])', '(False)'], {}), '(file_in.data[1, 1, 1] == ar_uint32[1, 1, 1], False)\n', (19295, 19347), True, 'import numpy.testing as np_test\n'), ((19423, 19432), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (19430, 19432), False, 'from pyto.io.image_io import ImageIO\n'), ((19593, 19602), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (19600, 19602), False, 'from pyto.io.image_io import ImageIO\n'), ((19673, 19722), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['file_in.dataType', '"""float32"""'], {}), "(file_in.dataType, 'float32')\n", (19693, 19722), True, 'import numpy.testing as np_test\n'), ((19805, 19875), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['(file_in.data[0, 0, 0] == ar_int32[0, 0, 0])', '(True)'], {}), '(file_in.data[0, 0, 0] == ar_int32[0, 0, 0], True)\n', (19825, 19875), True, 'import numpy.testing as np_test\n'), ((19893, 19964), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['(file_in.data[1, 0, 1] == ar_int32[1, 0, 1])', '(False)'], {}), '(file_in.data[1, 0, 1] == ar_int32[1, 0, 1], False)\n', (19913, 19964), True, 'import numpy.testing as np_test\n'), ((20038, 20047), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (20045, 20047), False, 'from pyto.io.image_io import ImageIO\n'), ((20206, 20215), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (20213, 20215), False, 'from pyto.io.image_io import ImageIO\n'), ((20286, 20335), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['file_in.dataType', '"""float64"""'], {}), "(file_in.dataType, 'float64')\n", (20306, 20335), True, 'import numpy.testing as np_test\n'), ((20344, 20395), 'numpy.testing.assert_almost_equal', 'np_test.assert_almost_equal', (['file_in.data', 'ar_int32'], {}), '(file_in.data, ar_int32)\n', (20371, 20395), True, 'import numpy.testing as np_test\n'), ((20460, 20469), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (20467, 20469), False, 'from pyto.io.image_io import ImageIO\n'), ((20627, 20636), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (20634, 20636), False, 'from pyto.io.image_io import ImageIO\n'), ((20708, 20755), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['file_in.dataType', '"""int16"""'], {}), "(file_in.dataType, 'int16')\n", (20728, 20755), True, 'import numpy.testing as np_test\n'), ((20764, 20810), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['file_in.shape', '(2, 3, 4)'], {}), '(file_in.shape, (2, 3, 4))\n', (20784, 20810), True, 'import numpy.testing as np_test\n'), ((20890, 20899), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (20897, 20899), False, 'from pyto.io.image_io import ImageIO\n'), ((21020, 21029), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (21027, 21029), False, 'from pyto.io.image_io import ImageIO\n'), ((21101, 21148), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['file_in.dataType', '"""int16"""'], {}), "(file_in.dataType, 'int16')\n", (21121, 21148), True, 'import numpy.testing as np_test\n'), ((21157, 21203), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['file_in.shape', '(4, 3, 2)'], {}), '(file_in.shape, (4, 3, 2))\n', (21177, 21203), True, 'import numpy.testing as np_test\n'), ((21272, 21281), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (21279, 21281), False, 'from pyto.io.image_io import ImageIO\n'), ((21468, 21477), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (21475, 21477), False, 'from pyto.io.image_io import ImageIO\n'), ((21549, 21596), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['file_in.dataType', '"""int16"""'], {}), "(file_in.dataType, 'int16')\n", (21569, 21596), True, 'import numpy.testing as np_test\n'), ((21605, 21651), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['file_in.shape', '(2, 3, 4)'], {}), '(file_in.shape, (2, 3, 4))\n', (21625, 21651), True, 'import numpy.testing as np_test\n'), ((21714, 21723), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (21721, 21723), False, 'from pyto.io.image_io import ImageIO\n'), ((21847, 21856), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (21854, 21856), False, 'from pyto.io.image_io import ImageIO\n'), ((21928, 21975), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['file_in.dataType', '"""int16"""'], {}), "(file_in.dataType, 'int16')\n", (21948, 21975), True, 'import numpy.testing as np_test\n'), ((21984, 22030), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['file_in.shape', '(4, 3, 2)'], {}), '(file_in.shape, (4, 3, 2))\n', (22004, 22030), True, 'import numpy.testing as np_test\n'), ((22084, 22093), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (22091, 22093), False, 'from pyto.io.image_io import ImageIO\n'), ((22192, 22201), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (22199, 22201), False, 'from pyto.io.image_io import ImageIO\n'), ((22273, 22320), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['file_in.dataType', '"""ubyte"""'], {}), "(file_in.dataType, 'ubyte')\n", (22293, 22320), True, 'import numpy.testing as np_test\n'), ((22329, 22380), 'numpy.testing.assert_almost_equal', 'np_test.assert_almost_equal', (['file_in.data', 'ar_uint8'], {}), '(file_in.data, ar_uint8)\n', (22356, 22380), True, 'import numpy.testing as np_test\n'), ((22423, 22432), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (22430, 22432), False, 'from pyto.io.image_io import ImageIO\n'), ((22669, 22678), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (22676, 22678), False, 'from pyto.io.image_io import ImageIO\n'), ((22958, 22967), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (22965, 22967), False, 'from pyto.io.image_io import ImageIO\n'), ((23128, 23137), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (23135, 23137), False, 'from pyto.io.image_io import ImageIO\n'), ((23209, 23256), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['file_in.dataType', '"""int16"""'], {}), "(file_in.dataType, 'int16')\n", (23229, 23256), True, 'import numpy.testing as np_test\n'), ((23340, 23411), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['(file_in.data[0, 0, 0] == ar_uint16[0, 0, 0])', '(True)'], {}), '(file_in.data[0, 0, 0] == ar_uint16[0, 0, 0], True)\n', (23360, 23411), True, 'import numpy.testing as np_test\n'), ((23416, 23488), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['(file_in.data[0, 1, 1] == ar_uint16[0, 1, 1])', '(False)'], {}), '(file_in.data[0, 1, 1] == ar_uint16[0, 1, 1], False)\n', (23436, 23488), True, 'import numpy.testing as np_test\n'), ((23525, 23534), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (23532, 23534), False, 'from pyto.io.image_io import ImageIO\n'), ((23657, 23666), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (23664, 23666), False, 'from pyto.io.image_io import ImageIO\n'), ((23738, 23785), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['file_in.dataType', '"""int16"""'], {}), "(file_in.dataType, 'int16')\n", (23758, 23785), True, 'import numpy.testing as np_test\n'), ((23794, 23838), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['file_in.data', 'ar_int16'], {}), '(file_in.data, ar_int16)\n', (23814, 23838), True, 'import numpy.testing as np_test\n'), ((23847, 23899), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['file_in.pixel', '[2.3, 2.3, 2.3]'], {}), '(file_in.pixel, [2.3, 2.3, 2.3])\n', (23867, 23899), True, 'import numpy.testing as np_test\n'), ((23908, 23952), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['file_in.pixelsize', '(2.3)'], {}), '(file_in.pixelsize, 2.3)\n', (23928, 23952), True, 'import numpy.testing as np_test\n'), ((23996, 24005), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (24003, 24005), False, 'from pyto.io.image_io import ImageIO\n'), ((24129, 24138), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (24136, 24138), False, 'from pyto.io.image_io import ImageIO\n'), ((24210, 24257), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['file_in.dataType', '"""int16"""'], {}), "(file_in.dataType, 'int16')\n", (24230, 24257), True, 'import numpy.testing as np_test\n'), ((24266, 24320), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['file_in.data[:, :, 0]', 'ar2_int16'], {}), '(file_in.data[:, :, 0], ar2_int16)\n', (24286, 24320), True, 'import numpy.testing as np_test\n'), ((24335, 24379), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['file_in.pixelsize', '(3.4)'], {}), '(file_in.pixelsize, 3.4)\n', (24355, 24379), True, 'import numpy.testing as np_test\n'), ((24428, 24437), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (24435, 24437), False, 'from pyto.io.image_io import ImageIO\n'), ((24594, 24603), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (24601, 24603), False, 'from pyto.io.image_io import ImageIO\n'), ((24675, 24722), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['file_in.dataType', '"""int16"""'], {}), "(file_in.dataType, 'int16')\n", (24695, 24722), True, 'import numpy.testing as np_test\n'), ((24731, 24774), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['file_in.data', 'ar_int8'], {}), '(file_in.data, ar_int8)\n', (24751, 24774), True, 'import numpy.testing as np_test\n'), ((24816, 24825), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (24823, 24825), False, 'from pyto.io.image_io import ImageIO\n'), ((25046, 25055), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (25053, 25055), False, 'from pyto.io.image_io import ImageIO\n'), ((25319, 25328), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (25326, 25328), False, 'from pyto.io.image_io import ImageIO\n'), ((25596, 25605), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (25603, 25605), False, 'from pyto.io.image_io import ImageIO\n'), ((25862, 25871), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (25869, 25871), False, 'from pyto.io.image_io import ImageIO\n'), ((25970, 25979), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (25977, 25979), False, 'from pyto.io.image_io import ImageIO\n'), ((26109, 26156), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['file_in.dataType', '"""int16"""'], {}), "(file_in.dataType, 'int16')\n", (26129, 26156), True, 'import numpy.testing as np_test\n'), ((26165, 26209), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['file_in.data', 'ar_int16'], {}), '(file_in.data, ar_int16)\n', (26185, 26209), True, 'import numpy.testing as np_test\n'), ((26258, 26267), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (26265, 26267), False, 'from pyto.io.image_io import ImageIO\n'), ((26408, 26417), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (26415, 26417), False, 'from pyto.io.image_io import ImageIO\n'), ((26547, 26594), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['file_in.dataType', '"""int16"""'], {}), "(file_in.dataType, 'int16')\n", (26567, 26594), True, 'import numpy.testing as np_test\n'), ((26603, 26646), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['file_in.data', 'ar_int8'], {}), '(file_in.data, ar_int8)\n', (26623, 26646), True, 'import numpy.testing as np_test\n'), ((26695, 26704), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (26702, 26704), False, 'from pyto.io.image_io import ImageIO\n'), ((27143, 27152), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (27150, 27152), False, 'from pyto.io.image_io import ImageIO\n'), ((27294, 27303), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (27301, 27303), False, 'from pyto.io.image_io import ImageIO\n'), ((27393, 27444), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['file_in.data.shape', '(2, 2, 2)'], {}), '(file_in.data.shape, (2, 2, 2))\n', (27413, 27444), True, 'import numpy.testing as np_test\n'), ((27462, 27471), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (27469, 27471), False, 'from pyto.io.image_io import ImageIO\n'), ((27628, 27637), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (27635, 27637), False, 'from pyto.io.image_io import ImageIO\n'), ((27727, 27778), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['file_in.data.shape', '(1, 4, 2)'], {}), '(file_in.data.shape, (1, 4, 2))\n', (27747, 27778), True, 'import numpy.testing as np_test\n'), ((28071, 28122), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['file_in.data.shape', '(4, 2, 1)'], {}), '(file_in.data.shape, (4, 2, 1))\n', (28091, 28122), True, 'import numpy.testing as np_test\n'), ((28250, 28301), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['file_in.data.shape', '(2, 2, 2)'], {}), '(file_in.data.shape, (2, 2, 2))\n', (28270, 28301), True, 'import numpy.testing as np_test\n'), ((28368, 28377), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (28375, 28377), False, 'from pyto.io.image_io import ImageIO\n'), ((28491, 28500), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (28498, 28500), False, 'from pyto.io.image_io import ImageIO\n'), ((28572, 28618), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['file_in.data', 'ar_int16_c'], {}), '(file_in.data, ar_int16_c)\n', (28592, 28618), True, 'import numpy.testing as np_test\n'), ((28677, 28686), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (28684, 28686), False, 'from pyto.io.image_io import ImageIO\n'), ((28828, 28837), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (28835, 28837), False, 'from pyto.io.image_io import ImageIO\n'), ((28925, 28971), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['file_in.data', 'ar_int16_c'], {}), '(file_in.data, ar_int16_c)\n', (28945, 28971), True, 'import numpy.testing as np_test\n'), ((29040, 29049), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (29047, 29049), False, 'from pyto.io.image_io import ImageIO\n'), ((29163, 29172), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (29170, 29172), False, 'from pyto.io.image_io import ImageIO\n'), ((29244, 29290), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['file_in.data', 'ar_int16_f'], {}), '(file_in.data, ar_int16_f)\n', (29264, 29290), True, 'import numpy.testing as np_test\n'), ((29349, 29358), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (29356, 29358), False, 'from pyto.io.image_io import ImageIO\n'), ((29500, 29509), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (29507, 29509), False, 'from pyto.io.image_io import ImageIO\n'), ((29597, 29643), 'numpy.testing.assert_equal', 'np_test.assert_equal', (['file_in.data', 'ar_int16_f'], {}), '(file_in.data, ar_int16_f)\n', (29617, 29643), True, 'import numpy.testing as np_test\n'), ((29928, 29937), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (29935, 29937), False, 'from pyto.io.image_io import ImageIO\n'), ((30074, 30083), 'pyto.io.image_io.ImageIO', 'ImageIO', ([], {}), '()\n', (30081, 30083), False, 'from pyto.io.image_io import ImageIO\n'), ((30155, 30202), 'numpy.testing.assert_almost_equal', 'np_test.assert_almost_equal', (['file_in.pixel', '(2.1)'], {}), '(file_in.pixel, 2.1)\n', (30182, 30202), True, 'import numpy.testing as np_test\n'), ((2065, 2087), 'numpy.dtype', 'numpy.dtype', (['"""float32"""'], {}), "('float32')\n", (2076, 2087), False, 'import numpy\n'), ((3069, 3091), 'numpy.dtype', 'numpy.dtype', (['"""float32"""'], {}), "('float32')\n", (3080, 3091), False, 'import numpy\n'), ((4512, 4534), 'numpy.dtype', 'numpy.dtype', (['"""float32"""'], {}), "('float32')\n", (4523, 4534), False, 'import numpy\n'), ((5546, 5568), 'numpy.dtype', 'numpy.dtype', (['"""float32"""'], {}), "('float32')\n", (5557, 5568), False, 'import numpy\n'), ((6593, 6615), 'numpy.dtype', 'numpy.dtype', (['"""float32"""'], {}), "('float32')\n", (6604, 6615), False, 'import numpy\n'), ((7717, 7739), 'numpy.dtype', 'numpy.dtype', (['"""float32"""'], {}), "('float32')\n", (7728, 7739), False, 'import numpy\n'), ((8716, 8738), 'numpy.dtype', 'numpy.dtype', (['"""float32"""'], {}), "('float32')\n", (8727, 8738), False, 'import numpy\n'), ((9680, 9702), 'numpy.dtype', 'numpy.dtype', (['"""float32"""'], {}), "('float32')\n", (9691, 9702), False, 'import numpy\n'), ((10920, 10940), 'numpy.dtype', 'numpy.dtype', (['"""int16"""'], {}), "('int16')\n", (10931, 10940), False, 'import numpy\n'), ((11704, 11724), 'numpy.dtype', 'numpy.dtype', (['"""int16"""'], {}), "('int16')\n", (11715, 11724), False, 'import numpy\n'), ((16821, 16842), 'numpy.dtype', 'numpy.dtype', (['"""uint16"""'], {}), "('uint16')\n", (16832, 16842), False, 'import numpy\n'), ((30782, 30803), 'unittest.TestLoader', 'unittest.TestLoader', ([], {}), '()\n', (30801, 30803), False, 'import unittest\n'), ((30843, 30879), 'unittest.TextTestRunner', 'unittest.TextTestRunner', ([], {'verbosity': '(2)'}), '(verbosity=2)\n', (30866, 30879), False, 'import unittest\n'), ((838, 876), 'numpy.arange', 'numpy.arange', (['(24)'], {'dtype': 'self.raw_dtype'}), '(24, dtype=self.raw_dtype)\n', (850, 876), False, 'import numpy\n'), ((13544, 13596), 'numpy.array', 'numpy.array', (['[54, 200, 5, 7, 45, 123]'], {'dtype': '"""uint8"""'}), "([54, 200, 5, 7, 45, 123], dtype='uint8')\n", (13555, 13596), False, 'import numpy\n'), ((13664, 13715), 'numpy.array', 'numpy.array', (['[54, 2, -5, 7, 45, 123]'], {'dtype': '"""uint8"""'}), "([54, 2, -5, 7, 45, 123], dtype='uint8')\n", (13675, 13715), False, 'import numpy\n'), ((13785, 13859), 'numpy.array', 'numpy.array', (['[1034, 546, 248, 40000, 2345, 365, 4876, 563]'], {'dtype': '"""uint16"""'}), "([1034, 546, 248, 40000, 2345, 365, 4876, 563], dtype='uint16')\n", (13796, 13859), False, 'import numpy\n'), ((13927, 14000), 'numpy.array', 'numpy.array', (['[1034, 546, -248, 156, 2345, 365, -4876, 563]'], {'dtype': '"""int16"""'}), "([1034, 546, -248, 156, 2345, 365, -4876, 563], dtype='int16')\n", (13938, 14000), False, 'import numpy\n'), ((14068, 14161), 'numpy.array', 'numpy.array', (['[1034, 56546, -223448, 156, 2345, 2 ** 31 - 10, -884876, 563]'], {'dtype': '"""int32"""'}), "([1034, 56546, -223448, 156, 2345, 2 ** 31 - 10, -884876, 563],\n dtype='int32')\n", (14079, 14161), False, 'import numpy\n'), ((14255, 14347), 'numpy.array', 'numpy.array', (['[1034, 56546, 223448, 156, 2345, 365, 884876, 2 ** 32 - 10]'], {'dtype': '"""uint32"""'}), "([1034, 56546, 223448, 156, 2345, 365, 884876, 2 ** 32 - 10],\n dtype='uint32')\n", (14266, 14347), False, 'import numpy\n'), ((14442, 14472), 'numpy.arange', 'numpy.arange', (['(24)'], {'dtype': '"""int8"""'}), "(24, dtype='int8')\n", (14454, 14472), False, 'import numpy\n'), ((14511, 14542), 'numpy.arange', 'numpy.arange', (['(24)'], {'dtype': '"""int16"""'}), "(24, dtype='int16')\n", (14523, 14542), False, 'import numpy\n'), ((14580, 14653), 'numpy.array', 'numpy.array', (['[1034, 546, -248, 156, 2345, 365, -4876, 563]'], {'dtype': '"""int16"""'}), "([1034, 546, -248, 156, 2345, 365, -4876, 563], dtype='int16')\n", (14591, 14653), False, 'import numpy\n'), ((14722, 14810), 'numpy.array', 'numpy.array', (['[1034, 546, -248, 156, 2345, 365, -4876, 563]'], {'dtype': '"""int16"""', 'order': '"""F"""'}), "([1034, 546, -248, 156, 2345, 365, -4876, 563], dtype='int16',\n order='F')\n", (14733, 14810), False, 'import numpy\n'), ((14870, 14958), 'numpy.array', 'numpy.array', (['[1034, 546, -248, 156, 2345, 365, -4876, 563]'], {'dtype': '"""int16"""', 'order': '"""C"""'}), "([1034, 546, -248, 156, 2345, 365, -4876, 563], dtype='int16',\n order='C')\n", (14881, 14958), False, 'import numpy\n'), ((29849, 29880), 'numpy.arange', 'numpy.arange', (['(24)'], {'dtype': '"""int16"""'}), "(24, dtype='int16')\n", (29861, 29880), False, 'import numpy\n')]
import networkx as nx import numpy as np import pickle G = nx.Graph() node1, node2 = np.loadtxt(graph_input, usecols=(0,1), unpack=True) for i in range(len(node1)): G.add_edge(node1[i], node2[i]) graph_num_node = G.number_of_nodes() print(f"This graph contains {graph_num_node} nodes. ") graph_num_edge = G.number_of_edges() print(f"This graph contains {graph_num_edge} edges. ") node_bet_central = nx.betweenness_centrality(G) pickle.dump(node_bet_central, open("node_betweeen_centrality.pkl", 'wb')) res = np.array([(int(key), node_bet_central[key]) for key in node_bet_central.keys() ]) res_sorted = res[res[:,0].argsort()] ax.xaxis.set_minor_locator(MultipleLocator(10)) pos = dict(zip(idx.astype(int), np.column_stack((x, y, z)))) pos = {} for i in range(len(idx)): pos[str(int(idx[i]))] = (x[i], y[i], z[i]) for key in pos.keys(): position[key] = {'posi': pos[key]} nx.set_node_attributes(G, poistion) pos = nx.get_node_attributes(G, 'posi') n = G.number_of_nodes() degrees = [val for (node, val) in G.degree()] edge_max = max(degrees) colors = [plt.cm.plasma(degrees[i]/edge_max) for i in range(n)] with plt.style.context(('ggplot')): fig = plt.figure(figsize=(10,7)) ax = Axes3D(fig) for key, value in pos.items(): xi = value[0] yi = value[1] zi = value[2] ax.scatter(xi, yi, zi, c=colors[key], s=20+20*G.degree(key), edgecolors='k', alpha=0.7) for i, j in enumerate(G.edges()): x = np.array((pos[j[0]][0], pos[j[1]][0])) y = np.array((pos[j[0]][1], pos[j[1]][1])) z = np.array((pos[j[0]][2], pos[j[1]][2])) ax.plot(x, y, z, c='black', alpha=0.5) ax.view_init(30, angle) ax.set_axis_off() plt.show() return
[ "networkx.set_node_attributes", "networkx.betweenness_centrality", "numpy.column_stack", "networkx.Graph", "numpy.loadtxt", "numpy.array", "networkx.get_node_attributes" ]
[((60, 70), 'networkx.Graph', 'nx.Graph', ([], {}), '()\n', (68, 70), True, 'import networkx as nx\n'), ((86, 138), 'numpy.loadtxt', 'np.loadtxt', (['graph_input'], {'usecols': '(0, 1)', 'unpack': '(True)'}), '(graph_input, usecols=(0, 1), unpack=True)\n', (96, 138), True, 'import numpy as np\n'), ((408, 436), 'networkx.betweenness_centrality', 'nx.betweenness_centrality', (['G'], {}), '(G)\n', (433, 436), True, 'import networkx as nx\n'), ((895, 930), 'networkx.set_node_attributes', 'nx.set_node_attributes', (['G', 'poistion'], {}), '(G, poistion)\n', (917, 930), True, 'import networkx as nx\n'), ((938, 971), 'networkx.get_node_attributes', 'nx.get_node_attributes', (['G', '"""posi"""'], {}), "(G, 'posi')\n", (960, 971), True, 'import networkx as nx\n'), ((719, 745), 'numpy.column_stack', 'np.column_stack', (['(x, y, z)'], {}), '((x, y, z))\n', (734, 745), True, 'import numpy as np\n'), ((1477, 1515), 'numpy.array', 'np.array', (['(pos[j[0]][0], pos[j[1]][0])'], {}), '((pos[j[0]][0], pos[j[1]][0]))\n', (1485, 1515), True, 'import numpy as np\n'), ((1528, 1566), 'numpy.array', 'np.array', (['(pos[j[0]][1], pos[j[1]][1])'], {}), '((pos[j[0]][1], pos[j[1]][1]))\n', (1536, 1566), True, 'import numpy as np\n'), ((1579, 1617), 'numpy.array', 'np.array', (['(pos[j[0]][2], pos[j[1]][2])'], {}), '((pos[j[0]][2], pos[j[1]][2]))\n', (1587, 1617), True, 'import numpy as np\n')]
"""Collection of tests for sorting functions.""" # global from hypothesis import given, strategies as st import numpy as np # local import ivy_tests.test_ivy.helpers as helpers import ivy.functional.backends.numpy as ivy_np # argsort @given( array_shape=helpers.lists( st.integers(1, 5), min_size="num_dims", max_size="num_dims", size_bounds=[1, 5] ), input_dtype=st.sampled_from(ivy_np.valid_dtypes), data=st.data(), as_variable=st.booleans(), with_out=st.booleans(), num_positional_args=helpers.num_positional_args(fn_name="argsort"), native_array=st.booleans(), container=st.booleans(), instance_method=st.booleans(), ) def test_argsort( array_shape, input_dtype, data, as_variable, with_out, num_positional_args, native_array, container, instance_method, fw, ): # smoke for torch if fw == "torch" and input_dtype in ["uint16", "uint32", "uint64"]: return # we do not want any nans x = data.draw( helpers.nph.arrays(shape=array_shape, dtype=input_dtype).filter( lambda x: not np.any(np.isnan(x)) ) ) ndim = len(x.shape) axis = data.draw(st.integers(-ndim, ndim - 1)) descending = data.draw(st.booleans()) stable = data.draw(st.booleans()) helpers.test_array_function( input_dtype, as_variable, with_out, num_positional_args, native_array, container, instance_method, fw, "argsort", x=x, axis=axis, descending=descending, stable=stable, ) # sort @given( array_shape=helpers.lists( st.integers(1, 5), min_size="num_dims", max_size="num_dims", size_bounds=[1, 5] ), input_dtype=st.sampled_from(ivy_np.valid_dtypes), data=st.data(), as_variable=st.booleans(), with_out=st.booleans(), num_positional_args=helpers.num_positional_args(fn_name="sort"), native_array=st.booleans(), container=st.booleans(), instance_method=st.booleans(), ) def test_sort( array_shape, input_dtype, data, as_variable, with_out, num_positional_args, native_array, container, instance_method, fw, ): # smoke for torch if fw == "torch" and input_dtype in ["uint16", "uint32", "uint64"]: return # we do not want any nans x = data.draw( helpers.nph.arrays(shape=array_shape, dtype=input_dtype).filter( lambda x: not np.any(np.isnan(x)) ) ) ndim = len(x.shape) axis = data.draw(st.integers(-ndim, ndim - 1)) descending = data.draw(st.booleans()) stable = data.draw(st.booleans()) helpers.test_array_function( input_dtype, as_variable, with_out, num_positional_args, native_array, container, instance_method, fw, "sort", x=x, axis=axis, descending=descending, stable=stable, )
[ "hypothesis.strategies.data", "ivy_tests.test_ivy.helpers.num_positional_args", "ivy_tests.test_ivy.helpers.test_array_function", "hypothesis.strategies.sampled_from", "numpy.isnan", "hypothesis.strategies.booleans", "hypothesis.strategies.integers", "ivy_tests.test_ivy.helpers.nph.arrays" ]
[((1313, 1516), 'ivy_tests.test_ivy.helpers.test_array_function', 'helpers.test_array_function', (['input_dtype', 'as_variable', 'with_out', 'num_positional_args', 'native_array', 'container', 'instance_method', 'fw', '"""argsort"""'], {'x': 'x', 'axis': 'axis', 'descending': 'descending', 'stable': 'stable'}), "(input_dtype, as_variable, with_out,\n num_positional_args, native_array, container, instance_method, fw,\n 'argsort', x=x, axis=axis, descending=descending, stable=stable)\n", (1340, 1516), True, 'import ivy_tests.test_ivy.helpers as helpers\n'), ((2698, 2898), 'ivy_tests.test_ivy.helpers.test_array_function', 'helpers.test_array_function', (['input_dtype', 'as_variable', 'with_out', 'num_positional_args', 'native_array', 'container', 'instance_method', 'fw', '"""sort"""'], {'x': 'x', 'axis': 'axis', 'descending': 'descending', 'stable': 'stable'}), "(input_dtype, as_variable, with_out,\n num_positional_args, native_array, container, instance_method, fw,\n 'sort', x=x, axis=axis, descending=descending, stable=stable)\n", (2725, 2898), True, 'import ivy_tests.test_ivy.helpers as helpers\n'), ((1198, 1226), 'hypothesis.strategies.integers', 'st.integers', (['(-ndim)', '(ndim - 1)'], {}), '(-ndim, ndim - 1)\n', (1209, 1226), True, 'from hypothesis import given, strategies as st\n'), ((1255, 1268), 'hypothesis.strategies.booleans', 'st.booleans', ([], {}), '()\n', (1266, 1268), True, 'from hypothesis import given, strategies as st\n'), ((1293, 1306), 'hypothesis.strategies.booleans', 'st.booleans', ([], {}), '()\n', (1304, 1306), True, 'from hypothesis import given, strategies as st\n'), ((388, 424), 'hypothesis.strategies.sampled_from', 'st.sampled_from', (['ivy_np.valid_dtypes'], {}), '(ivy_np.valid_dtypes)\n', (403, 424), True, 'from hypothesis import given, strategies as st\n'), ((435, 444), 'hypothesis.strategies.data', 'st.data', ([], {}), '()\n', (442, 444), True, 'from hypothesis import given, strategies as st\n'), ((462, 475), 'hypothesis.strategies.booleans', 'st.booleans', ([], {}), '()\n', (473, 475), True, 'from hypothesis import given, strategies as st\n'), ((490, 503), 'hypothesis.strategies.booleans', 'st.booleans', ([], {}), '()\n', (501, 503), True, 'from hypothesis import given, strategies as st\n'), ((529, 575), 'ivy_tests.test_ivy.helpers.num_positional_args', 'helpers.num_positional_args', ([], {'fn_name': '"""argsort"""'}), "(fn_name='argsort')\n", (556, 575), True, 'import ivy_tests.test_ivy.helpers as helpers\n'), ((594, 607), 'hypothesis.strategies.booleans', 'st.booleans', ([], {}), '()\n', (605, 607), True, 'from hypothesis import given, strategies as st\n'), ((623, 636), 'hypothesis.strategies.booleans', 'st.booleans', ([], {}), '()\n', (634, 636), True, 'from hypothesis import given, strategies as st\n'), ((658, 671), 'hypothesis.strategies.booleans', 'st.booleans', ([], {}), '()\n', (669, 671), True, 'from hypothesis import given, strategies as st\n'), ((2583, 2611), 'hypothesis.strategies.integers', 'st.integers', (['(-ndim)', '(ndim - 1)'], {}), '(-ndim, ndim - 1)\n', (2594, 2611), True, 'from hypothesis import given, strategies as st\n'), ((2640, 2653), 'hypothesis.strategies.booleans', 'st.booleans', ([], {}), '()\n', (2651, 2653), True, 'from hypothesis import given, strategies as st\n'), ((2678, 2691), 'hypothesis.strategies.booleans', 'st.booleans', ([], {}), '()\n', (2689, 2691), True, 'from hypothesis import given, strategies as st\n'), ((1779, 1815), 'hypothesis.strategies.sampled_from', 'st.sampled_from', (['ivy_np.valid_dtypes'], {}), '(ivy_np.valid_dtypes)\n', (1794, 1815), True, 'from hypothesis import given, strategies as st\n'), ((1826, 1835), 'hypothesis.strategies.data', 'st.data', ([], {}), '()\n', (1833, 1835), True, 'from hypothesis import given, strategies as st\n'), ((1853, 1866), 'hypothesis.strategies.booleans', 'st.booleans', ([], {}), '()\n', (1864, 1866), True, 'from hypothesis import given, strategies as st\n'), ((1881, 1894), 'hypothesis.strategies.booleans', 'st.booleans', ([], {}), '()\n', (1892, 1894), True, 'from hypothesis import given, strategies as st\n'), ((1920, 1963), 'ivy_tests.test_ivy.helpers.num_positional_args', 'helpers.num_positional_args', ([], {'fn_name': '"""sort"""'}), "(fn_name='sort')\n", (1947, 1963), True, 'import ivy_tests.test_ivy.helpers as helpers\n'), ((1982, 1995), 'hypothesis.strategies.booleans', 'st.booleans', ([], {}), '()\n', (1993, 1995), True, 'from hypothesis import given, strategies as st\n'), ((2011, 2024), 'hypothesis.strategies.booleans', 'st.booleans', ([], {}), '()\n', (2022, 2024), True, 'from hypothesis import given, strategies as st\n'), ((2046, 2059), 'hypothesis.strategies.booleans', 'st.booleans', ([], {}), '()\n', (2057, 2059), True, 'from hypothesis import given, strategies as st\n'), ((285, 302), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(5)'], {}), '(1, 5)\n', (296, 302), True, 'from hypothesis import given, strategies as st\n'), ((1676, 1693), 'hypothesis.strategies.integers', 'st.integers', (['(1)', '(5)'], {}), '(1, 5)\n', (1687, 1693), True, 'from hypothesis import given, strategies as st\n'), ((1025, 1081), 'ivy_tests.test_ivy.helpers.nph.arrays', 'helpers.nph.arrays', ([], {'shape': 'array_shape', 'dtype': 'input_dtype'}), '(shape=array_shape, dtype=input_dtype)\n', (1043, 1081), True, 'import ivy_tests.test_ivy.helpers as helpers\n'), ((2410, 2466), 'ivy_tests.test_ivy.helpers.nph.arrays', 'helpers.nph.arrays', ([], {'shape': 'array_shape', 'dtype': 'input_dtype'}), '(shape=array_shape, dtype=input_dtype)\n', (2428, 2466), True, 'import ivy_tests.test_ivy.helpers as helpers\n'), ((1123, 1134), 'numpy.isnan', 'np.isnan', (['x'], {}), '(x)\n', (1131, 1134), True, 'import numpy as np\n'), ((2508, 2519), 'numpy.isnan', 'np.isnan', (['x'], {}), '(x)\n', (2516, 2519), True, 'import numpy as np\n')]
import numpy as np from random import random from noneq_settings import BETA def hamming(s1, s2): """Calculate the Hamming distance between two bit lists""" assert len(s1) == len(s2) return sum(c1 != c2 for c1, c2 in zip(s1, s2)) def hamiltonian(state_vec, intxn_matrix): return -0.5 * reduce(np.dot, [state_vec.T, intxn_matrix, state_vec]) # plus some other field terms... do we care for these? ie. "-sum h_i*s_i" def internal_field(state, spin_idx, t, intxn_matrix): internal_field = np.dot(intxn_matrix[spin_idx,:], state[:,t]) return internal_field def glauber_dynamics_update(state, spin_idx, t, intxn_matrix, app_field=None, beta=BETA): r1 = random() total_field = internal_field(state, spin_idx, t, intxn_matrix) if app_field is not None: total_field += app_field[spin_idx] prob_on_after_timestep = 1 / (1 + np.exp(-2*beta*total_field)) # probability that site i will be "up" after the timestep #prob_on_after_timestep = 1 / (1 + np.exp(-BETA*total_field)) # (note remove factor of 2 because h = 0.5*J*s) probability that site i will be "up" after the timestep if prob_on_after_timestep > r1: #state[spin_idx, t + 1] = 1.0 state[spin_idx, t] = 1.0 else: #state[spin_idx, t + 1] = -1.0 state[spin_idx, t] = -1.0 return state def state_to_label(state): # Idea: assign integer label (0 to 2^N - 1) to the state # state acts like binary representation of integers # "0" corresponds to all -1 # 2^N - 1 corresponds to all +1 label = 0 bitlist = (1+np.array(state, dtype=int))/2 for bit in bitlist: label = (label << 1) | bit return label def label_to_state(label, N, use_neg=True): # n is the integer label of a set of spins bitlist = [1 if digit=='1' else 0 for digit in bin(label)[2:]] if len(bitlist) < N: tmp = bitlist bitlist = np.zeros(N, dtype=int) bitlist[-len(tmp):] = tmp[:] if use_neg: state = np.array(bitlist)*2 - 1 else: state = np.array(bitlist) return state def get_adjacent_labels(state): # TODO slow, how to speedup with permutation? N = len(state) labels = [0] * N tmp = np.zeros(N, dtype=int) for i in xrange(N): tmp[:] = state[:] tmp[i] = -1 * state[i] labels[i] = state_to_label(tmp) return labels
[ "numpy.zeros", "random.random", "numpy.array", "numpy.exp", "numpy.dot" ]
[((514, 560), 'numpy.dot', 'np.dot', (['intxn_matrix[spin_idx, :]', 'state[:, t]'], {}), '(intxn_matrix[spin_idx, :], state[:, t])\n', (520, 560), True, 'import numpy as np\n'), ((686, 694), 'random.random', 'random', ([], {}), '()\n', (692, 694), False, 'from random import random\n'), ((2226, 2248), 'numpy.zeros', 'np.zeros', (['N'], {'dtype': 'int'}), '(N, dtype=int)\n', (2234, 2248), True, 'import numpy as np\n'), ((1915, 1937), 'numpy.zeros', 'np.zeros', (['N'], {'dtype': 'int'}), '(N, dtype=int)\n', (1923, 1937), True, 'import numpy as np\n'), ((2057, 2074), 'numpy.array', 'np.array', (['bitlist'], {}), '(bitlist)\n', (2065, 2074), True, 'import numpy as np\n'), ((873, 904), 'numpy.exp', 'np.exp', (['(-2 * beta * total_field)'], {}), '(-2 * beta * total_field)\n', (879, 904), True, 'import numpy as np\n'), ((1584, 1610), 'numpy.array', 'np.array', (['state'], {'dtype': 'int'}), '(state, dtype=int)\n', (1592, 1610), True, 'import numpy as np\n'), ((2007, 2024), 'numpy.array', 'np.array', (['bitlist'], {}), '(bitlist)\n', (2015, 2024), True, 'import numpy as np\n')]
# Copyright 2020 The Magenta Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Generates stylized images with different strengths of a stylization. For each pair of the content and style images this script computes stylized images with different strengths of stylization (interpolates between the identity transform parameters and the style parameters for the style image) and saves them to the given output_dir. See run_interpolation_with_identity.sh for example usage. """ import ast import os from magenta.models.arbitrary_image_stylization import arbitrary_image_stylization_build_model as build_model from magenta.models.image_stylization import image_utils import numpy as np import tensorflow.compat.v1 as tf import tf_slim as slim flags = tf.flags flags.DEFINE_string('checkpoint', None, 'Path to the model checkpoint.') flags.DEFINE_string('style_images_paths', None, 'Paths to the style images' 'for evaluation.') flags.DEFINE_string('content_images_paths', None, 'Paths to the content images' 'for evaluation.') flags.DEFINE_string('output_dir', None, 'Output directory.') flags.DEFINE_integer('image_size', 256, 'Image size.') flags.DEFINE_boolean('content_square_crop', False, 'Whether to center crop' 'the content image to be a square or not.') flags.DEFINE_integer('style_image_size', 256, 'Style image size.') flags.DEFINE_boolean('style_square_crop', False, 'Whether to center crop' 'the style image to be a square or not.') flags.DEFINE_integer('maximum_styles_to_evaluate', 1024, 'Maximum number of' 'styles to evaluate.') flags.DEFINE_string('interpolation_weights', '[1.0]', 'List of weights' 'for interpolation between the parameters of the identity' 'transform and the style parameters of the style image. The' 'larger the weight is the strength of stylization is more.' 'Weight of 1.0 means the normal style transfer and weight' 'of 0.0 means identity transform.') FLAGS = flags.FLAGS def main(unused_argv=None): tf.logging.set_verbosity(tf.logging.INFO) if not tf.gfile.Exists(FLAGS.output_dir): tf.gfile.MkDir(FLAGS.output_dir) with tf.Graph().as_default(), tf.Session() as sess: # Defines place holder for the style image. style_img_ph = tf.placeholder(tf.float32, shape=[None, None, 3]) if FLAGS.style_square_crop: style_img_preprocessed = image_utils.center_crop_resize_image( style_img_ph, FLAGS.style_image_size) else: style_img_preprocessed = image_utils.resize_image(style_img_ph, FLAGS.style_image_size) # Defines place holder for the content image. content_img_ph = tf.placeholder(tf.float32, shape=[None, None, 3]) if FLAGS.content_square_crop: content_img_preprocessed = image_utils.center_crop_resize_image( content_img_ph, FLAGS.image_size) else: content_img_preprocessed = image_utils.resize_image( content_img_ph, FLAGS.image_size) # Defines the model. stylized_images, _, _, bottleneck_feat = build_model.build_model( content_img_preprocessed, style_img_preprocessed, trainable=False, is_training=False, inception_end_point='Mixed_6e', style_prediction_bottleneck=100, adds_losses=False) if tf.gfile.IsDirectory(FLAGS.checkpoint): checkpoint = tf.train.latest_checkpoint(FLAGS.checkpoint) else: checkpoint = FLAGS.checkpoint tf.logging.info('loading latest checkpoint file: {}'.format(checkpoint)) init_fn = slim.assign_from_checkpoint_fn(checkpoint, slim.get_variables_to_restore()) sess.run([tf.local_variables_initializer()]) init_fn(sess) # Gets the list of the input style images. style_img_list = tf.gfile.Glob(FLAGS.style_images_paths) if len(style_img_list) > FLAGS.maximum_styles_to_evaluate: np.random.seed(1234) style_img_list = np.random.permutation(style_img_list) style_img_list = style_img_list[:FLAGS.maximum_styles_to_evaluate] # Gets list of input content images. content_img_list = tf.gfile.Glob(FLAGS.content_images_paths) for content_i, content_img_path in enumerate(content_img_list): content_img_np = image_utils.load_np_image_uint8(content_img_path)[:, :, : 3] content_img_name = os.path.basename(content_img_path)[:-4] # Saves preprocessed content image. inp_img_croped_resized_np = sess.run( content_img_preprocessed, feed_dict={ content_img_ph: content_img_np }) image_utils.save_np_image(inp_img_croped_resized_np, os.path.join(FLAGS.output_dir, '%s.jpg' % (content_img_name))) # Computes bottleneck features of the style prediction network for the # identity transform. identity_params = sess.run( bottleneck_feat, feed_dict={style_img_ph: content_img_np}) for style_i, style_img_path in enumerate(style_img_list): if style_i > FLAGS.maximum_styles_to_evaluate: break style_img_name = os.path.basename(style_img_path)[:-4] style_image_np = image_utils.load_np_image_uint8(style_img_path)[:, :, : 3] if style_i % 10 == 0: tf.logging.info('Stylizing (%d) %s with (%d) %s' % (content_i, content_img_name, style_i, style_img_name)) # Saves preprocessed style image. style_img_croped_resized_np = sess.run( style_img_preprocessed, feed_dict={ style_img_ph: style_image_np }) image_utils.save_np_image(style_img_croped_resized_np, os.path.join(FLAGS.output_dir, '%s.jpg' % (style_img_name))) # Computes bottleneck features of the style prediction network for the # given style image. style_params = sess.run( bottleneck_feat, feed_dict={style_img_ph: style_image_np}) interpolation_weights = ast.literal_eval(FLAGS.interpolation_weights) # Interpolates between the parameters of the identity transform and # style parameters of the given style image. for interp_i, wi in enumerate(interpolation_weights): stylized_image_res = sess.run( stylized_images, feed_dict={ bottleneck_feat: identity_params * (1 - wi) + style_params * wi, content_img_ph: content_img_np }) # Saves stylized image. image_utils.save_np_image( stylized_image_res, os.path.join(FLAGS.output_dir, '%s_stylized_%s_%d.jpg' % (content_img_name, style_img_name, interp_i))) def console_entry_point(): tf.disable_v2_behavior() tf.app.run(main) if __name__ == '__main__': console_entry_point()
[ "numpy.random.seed", "magenta.models.arbitrary_image_stylization.arbitrary_image_stylization_build_model.build_model", "magenta.models.image_stylization.image_utils.load_np_image_uint8", "tensorflow.compat.v1.gfile.Exists", "magenta.models.image_stylization.image_utils.resize_image", "tensorflow.compat.v1.gfile.Glob", "os.path.join", "tensorflow.compat.v1.app.run", "tensorflow.compat.v1.placeholder", "tensorflow.compat.v1.logging.info", "tensorflow.compat.v1.Session", "tensorflow.compat.v1.train.latest_checkpoint", "os.path.basename", "tf_slim.get_variables_to_restore", "numpy.random.permutation", "tensorflow.compat.v1.gfile.MkDir", "magenta.models.image_stylization.image_utils.center_crop_resize_image", "tensorflow.compat.v1.disable_v2_behavior", "tensorflow.compat.v1.gfile.IsDirectory", "tensorflow.compat.v1.local_variables_initializer", "tensorflow.compat.v1.logging.set_verbosity", "ast.literal_eval", "tensorflow.compat.v1.Graph" ]
[((2656, 2697), 'tensorflow.compat.v1.logging.set_verbosity', 'tf.logging.set_verbosity', (['tf.logging.INFO'], {}), '(tf.logging.INFO)\n', (2680, 2697), True, 'import tensorflow.compat.v1 as tf\n'), ((7755, 7779), 'tensorflow.compat.v1.disable_v2_behavior', 'tf.disable_v2_behavior', ([], {}), '()\n', (7777, 7779), True, 'import tensorflow.compat.v1 as tf\n'), ((7782, 7798), 'tensorflow.compat.v1.app.run', 'tf.app.run', (['main'], {}), '(main)\n', (7792, 7798), True, 'import tensorflow.compat.v1 as tf\n'), ((2707, 2740), 'tensorflow.compat.v1.gfile.Exists', 'tf.gfile.Exists', (['FLAGS.output_dir'], {}), '(FLAGS.output_dir)\n', (2722, 2740), True, 'import tensorflow.compat.v1 as tf\n'), ((2746, 2778), 'tensorflow.compat.v1.gfile.MkDir', 'tf.gfile.MkDir', (['FLAGS.output_dir'], {}), '(FLAGS.output_dir)\n', (2760, 2778), True, 'import tensorflow.compat.v1 as tf\n'), ((2812, 2824), 'tensorflow.compat.v1.Session', 'tf.Session', ([], {}), '()\n', (2822, 2824), True, 'import tensorflow.compat.v1 as tf\n'), ((2901, 2950), 'tensorflow.compat.v1.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[None, None, 3]'}), '(tf.float32, shape=[None, None, 3])\n', (2915, 2950), True, 'import tensorflow.compat.v1 as tf\n'), ((3332, 3381), 'tensorflow.compat.v1.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[None, None, 3]'}), '(tf.float32, shape=[None, None, 3])\n', (3346, 3381), True, 'import tensorflow.compat.v1 as tf\n'), ((3715, 3916), 'magenta.models.arbitrary_image_stylization.arbitrary_image_stylization_build_model.build_model', 'build_model.build_model', (['content_img_preprocessed', 'style_img_preprocessed'], {'trainable': '(False)', 'is_training': '(False)', 'inception_end_point': '"""Mixed_6e"""', 'style_prediction_bottleneck': '(100)', 'adds_losses': '(False)'}), "(content_img_preprocessed, style_img_preprocessed,\n trainable=False, is_training=False, inception_end_point='Mixed_6e',\n style_prediction_bottleneck=100, adds_losses=False)\n", (3738, 3916), True, 'from magenta.models.arbitrary_image_stylization import arbitrary_image_stylization_build_model as build_model\n'), ((3974, 4012), 'tensorflow.compat.v1.gfile.IsDirectory', 'tf.gfile.IsDirectory', (['FLAGS.checkpoint'], {}), '(FLAGS.checkpoint)\n', (3994, 4012), True, 'import tensorflow.compat.v1 as tf\n'), ((4475, 4514), 'tensorflow.compat.v1.gfile.Glob', 'tf.gfile.Glob', (['FLAGS.style_images_paths'], {}), '(FLAGS.style_images_paths)\n', (4488, 4514), True, 'import tensorflow.compat.v1 as tf\n'), ((4804, 4845), 'tensorflow.compat.v1.gfile.Glob', 'tf.gfile.Glob', (['FLAGS.content_images_paths'], {}), '(FLAGS.content_images_paths)\n', (4817, 4845), True, 'import tensorflow.compat.v1 as tf\n'), ((3014, 3088), 'magenta.models.image_stylization.image_utils.center_crop_resize_image', 'image_utils.center_crop_resize_image', (['style_img_ph', 'FLAGS.style_image_size'], {}), '(style_img_ph, FLAGS.style_image_size)\n', (3050, 3088), False, 'from magenta.models.image_stylization import image_utils\n'), ((3141, 3203), 'magenta.models.image_stylization.image_utils.resize_image', 'image_utils.resize_image', (['style_img_ph', 'FLAGS.style_image_size'], {}), '(style_img_ph, FLAGS.style_image_size)\n', (3165, 3203), False, 'from magenta.models.image_stylization import image_utils\n'), ((3449, 3519), 'magenta.models.image_stylization.image_utils.center_crop_resize_image', 'image_utils.center_crop_resize_image', (['content_img_ph', 'FLAGS.image_size'], {}), '(content_img_ph, FLAGS.image_size)\n', (3485, 3519), False, 'from magenta.models.image_stylization import image_utils\n'), ((3574, 3632), 'magenta.models.image_stylization.image_utils.resize_image', 'image_utils.resize_image', (['content_img_ph', 'FLAGS.image_size'], {}), '(content_img_ph, FLAGS.image_size)\n', (3598, 3632), False, 'from magenta.models.image_stylization import image_utils\n'), ((4033, 4077), 'tensorflow.compat.v1.train.latest_checkpoint', 'tf.train.latest_checkpoint', (['FLAGS.checkpoint'], {}), '(FLAGS.checkpoint)\n', (4059, 4077), True, 'import tensorflow.compat.v1 as tf\n'), ((4306, 4337), 'tf_slim.get_variables_to_restore', 'slim.get_variables_to_restore', ([], {}), '()\n', (4335, 4337), True, 'import tf_slim as slim\n'), ((4584, 4604), 'numpy.random.seed', 'np.random.seed', (['(1234)'], {}), '(1234)\n', (4598, 4604), True, 'import numpy as np\n'), ((4628, 4665), 'numpy.random.permutation', 'np.random.permutation', (['style_img_list'], {}), '(style_img_list)\n', (4649, 4665), True, 'import numpy as np\n'), ((2787, 2797), 'tensorflow.compat.v1.Graph', 'tf.Graph', ([], {}), '()\n', (2795, 2797), True, 'import tensorflow.compat.v1 as tf\n'), ((4353, 4385), 'tensorflow.compat.v1.local_variables_initializer', 'tf.local_variables_initializer', ([], {}), '()\n', (4383, 4385), True, 'import tensorflow.compat.v1 as tf\n'), ((4938, 4987), 'magenta.models.image_stylization.image_utils.load_np_image_uint8', 'image_utils.load_np_image_uint8', (['content_img_path'], {}), '(content_img_path)\n', (4969, 4987), False, 'from magenta.models.image_stylization import image_utils\n'), ((5097, 5131), 'os.path.basename', 'os.path.basename', (['content_img_path'], {}), '(content_img_path)\n', (5113, 5131), False, 'import os\n'), ((5421, 5480), 'os.path.join', 'os.path.join', (['FLAGS.output_dir', "('%s.jpg' % content_img_name)"], {}), "(FLAGS.output_dir, '%s.jpg' % content_img_name)\n", (5433, 5480), False, 'import os\n'), ((6945, 6990), 'ast.literal_eval', 'ast.literal_eval', (['FLAGS.interpolation_weights'], {}), '(FLAGS.interpolation_weights)\n', (6961, 6990), False, 'import ast\n'), ((5899, 5931), 'os.path.basename', 'os.path.basename', (['style_img_path'], {}), '(style_img_path)\n', (5915, 5931), False, 'import os\n'), ((5962, 6009), 'magenta.models.image_stylization.image_utils.load_np_image_uint8', 'image_utils.load_np_image_uint8', (['style_img_path'], {}), '(style_img_path)\n', (5993, 6009), False, 'from magenta.models.image_stylization import image_utils\n'), ((6135, 6245), 'tensorflow.compat.v1.logging.info', 'tf.logging.info', (["('Stylizing (%d) %s with (%d) %s' % (content_i, content_img_name, style_i,\n style_img_name))"], {}), "('Stylizing (%d) %s with (%d) %s' % (content_i,\n content_img_name, style_i, style_img_name))\n", (6150, 6245), True, 'import tensorflow.compat.v1 as tf\n'), ((6591, 6648), 'os.path.join', 'os.path.join', (['FLAGS.output_dir', "('%s.jpg' % style_img_name)"], {}), "(FLAGS.output_dir, '%s.jpg' % style_img_name)\n", (6603, 6648), False, 'import os\n'), ((7593, 7699), 'os.path.join', 'os.path.join', (['FLAGS.output_dir', "('%s_stylized_%s_%d.jpg' % (content_img_name, style_img_name, interp_i))"], {}), "(FLAGS.output_dir, '%s_stylized_%s_%d.jpg' % (content_img_name,\n style_img_name, interp_i))\n", (7605, 7699), False, 'import os\n')]
#!/usr/bin/env python """ @package ion_functions.data.adcp_functions @file ion_functions/data/adcp_functions.py @author <NAME>, <NAME>, <NAME> @brief Module containing ADCP related data-calculations. """ import numpy as np from ion_functions.data.generic_functions import magnetic_declination from ion_functions.data.generic_functions import replace_fill_with_nan # instrument fill value unprocessed by CI # (bad beam velocity sentinel output by tRDI ADCP instruments) ADCP_FILLVALUE = -32768 """ **** For instruments programmed in beam coordinates: (ADCPS-I,K; ADCPT-B,D,E) adcp_beam_eastward -- calculates VELPROF-VLE_L1 adcp_beam_northward -- calculates VELPROF-VLN_L1 adcp_beam_vertical -- calculates VELPROF-VLU_L1 adcp_beam_error -- calculates VELPROF-ERR_L1 **** For instruments programmed in earth coordinates: (ADCPA; ADCPS-J,L,N; ADCPT-C,F,G,M) adcp_earth_eastward -- calculates VELPROF-VLE_L1 adcp_earth_northward -- calculates VELPROF-VLN_L1 adcp_earth_vertical -- calculates VELPROF-VLU_L1 adcp_earth_error -- calculates VELPROF-ERR_L1 **** For the VADCP programmed in beam coordinates: vadcp_beam_eastward -- calculates VELTURB-VLE_L1 vadcp_beam_northward -- calculates VELTURB-VLN_L1 vadcp_beam_vertical_true -- calculates VELTURB-VLU-5BM_L1 vadcp_beam_vertical_est -- calculates VELTURB-VLU-4BM_L1 vadcp_beam_error -- calculates VELTURB-ERR_L1 **** For all tRDI ADCP instruments: adcp_backscatter -- calculates ECHOINT-B1_L1, calculates ECHOINT-B2_L1, calculates ECHOINT-B3_L1, calculates ECHOINT-B4_L1. **** Base functions used by above functions adcp_beam2ins -- applies the beam to instrument transform using a 4 beam solution for instruments programmed in beam coordinates adcp_ins2earth -- applies the instrument to Earth transform for all instruments originally programmed in beam coordinates. magnetic_correction -- corrects horizontal velocities for the magnetic variation (declination) at the measurement location. **** Supplementary functions to calculate velocity bin depths: adcp_bin_depths -- calculates bin depths for the pd0 output format (virtually all tRDI ADCPs deployed by OOI); uses TEOS-10 functions p_from_z and enthalpy_SSO_0_p. adcp_bin_depths_pd8 -- calculates bin depths for the pd8 output format, assuming that (1) the ADCP operator recorded the necessary input variables and (2) these are somehow entered into the CI system. """ # Wrapper functions to create the VELPROF L1 data products for instruments # programmed in beam coordinates by RSN (ADCPS-I,K and ADCPT-B,D,E) def adcp_beam_eastward(b1, b2, b3, b4, h, p, r, vf, lat, lon, z, dt): """ Description: Wrapper function to compute the Eastward Velocity Profile (VELPROF-VLE) from beam coordinate transformed velocity profiles as defined in the Data Product Specification for Velocity Profile and Echo Intensity - DCN 1341-00750. Implemented by: 2013-04-10: <NAME>. Initial code. 2014-02-03: <NAME>. Formatting and adjusting to use magnetic declination values calculated use the WMM 2010. 2014-04-04: <NAME>. Optimized code performance by replacing the for loops previously used to calculate 2D and 3D vectorized coordinate transformations with calls to np.einsum (numpy Einstein summation function). 2014-06-25: <NAME>. Edited to account for units of heading, pitch, roll and depth 2015-06-10: <NAME>. (a) moved the conditioning of input beam velocities to adcp_beam2inst. (b) moved the conditioning of compass readings to adcp_inst2earth. (c) removed the depth dependence from the magnetic declination. Usage: uu_cor = adcp_beam_eastward(b1, b2, b3, b4, h, p, r, vf, lat, lon, z, dt) where uu_corr = east velocity profiles in Earth coordinates corrected for the magnetic declination (VELPROF-VLE_L1) [m s-1] b1 = "beam 1" velocity profiles in beam coordinates (VELPROF-B1_L0) [mm s-1] b2 = "beam 2" velocity profiles in beam coordinates (VELPROF-B2_L0) [mm s-1] b3 = "beam 3" velocity profiles in beam coordinates (VELPROF-B3_L0) [mm s-1] b4 = "beam 4" velocity profiles in beam coordinates (VELPROF-B4_L0) [mm s-1] h = instrument's uncorrected magnetic heading [cdegrees] p = instrument pitch [cdegrees] r = instrument roll [cdegrees] vf = instrument's vertical orientation (0 = downward looking and 1 = upward looking) lat = instrument's deployment latitude [decimal degrees] lon = instrument's deployment longitude [decimal degrees] z = instrument's pressure sensor reading (depth) [daPa] dt = sample date and time value [seconds since 1900-01-01] """ # force shapes of inputs to arrays of the correct dimensions #z = np.atleast_1d(z) / 1000. # scale daPa depth input to dbar #z = z * 1.019716 # use a simple approximation to calculate depth in m lat = np.atleast_1d(lat) lon = np.atleast_1d(lon) dt = np.atleast_1d(dt) # compute the beam to instrument transform u, v, w, eee = adcp_beam2ins(b1, b2, b3, b4) #print eee # compute the instrument to earth beam transform uu, vv, _ = adcp_ins2earth(u, v, w, h, p, r, vf) # compute the magnetic variation, and ... theta = magnetic_declination(lat, lon, dt) # ... correct for it uu_cor, _ = magnetic_correction(theta, uu, vv) # scale velocity to m/s uu_cor = uu_cor / 1000. # mm/s -> m/s # return the Eastward Velocity Profile return uu_cor def adcp_beam_northward(b1, b2, b3, b4, h, p, r, vf, lat, lon, z, dt): """ Description: Wrapper function to compute the Northward Velocity Profile (VELPROF-VLN) from beam coordinate transformed velocity profiles as defined in the Data Product Specification for Velocity Profile and Echo Intensity - DCN 1341-00750. Implemented by: 2013-04-10: <NAME>. Initial code. 2014-02-03: <NAME>. Formatting and adjusting to use magnetic declination values calculated use the WMM 2010. 2014-03-28: <NAME>iderio. Corrected documentation only. 2014-04-04: <NAME>. Optimized code performance by replacing the for loops previously used to calculate 2D and 3D vectorized coordinate transformations with calls to np.einsum (numpy Einstein summation function). 2014-06-25: Christopher Wingard. Edited to account for units of heading, pitch, roll and depth 2015-06-10: <NAME>. (a) moved the conditioning of input beam velocities to adcp_beam2inst. (b) moved the conditioning of compass readings to adcp_inst2earth. (c) removed the depth dependence from the magnetic declination. Usage: vv_cor = adcp_beam_northward(b1, b2, b3, b4, h, p, r, vf, lat, lon, z, dt) where vv_corr = north velocity profiles in Earth coordinates corrected for the magnetic declination (VELPROF-VLN_L1) [m s-1] b1 = "beam 1" velocity profiles in beam coordinates (VELPROF-B1_L0) [mm s-1] b2 = "beam 2" velocity profiles in beam coordinates (VELPROF-B2_L0) [mm s-1] b3 = "beam 3" velocity profiles in beam coordinates (VELPROF-B3_L0) [mm s-1] b4 = "beam 4" velocity profiles in beam coordinates (VELPROF-B4_L0) [mm s-1] h = instrument's uncorrected magnetic heading [cdegrees] p = instrument pitch [cdegrees] r = instrument roll [cdegrees] vf = instrument's vertical orientation (0 = downward looking and 1 = upward looking) lat = instrument's deployment latitude [decimal degrees] lon = instrument's deployment longitude [decimal degrees] z = instrument's pressure sensor reading (depth) [daPa] dt = sample date and time value [seconds since 1900-01-01] """ # force shapes of inputs to arrays of the correct dimensions #z = np.atleast_1d(z) / 1000. # scale daPa depth input to dbar #z = z * 1.019716 # use a simple approximation to calculate depth in m lat = np.atleast_1d(lat) lon = np.atleast_1d(lon) dt = np.atleast_1d(dt) # compute the beam to instrument transform u, v, w, _ = adcp_beam2ins(b1, b2, b3, b4) # compute the instrument to earth beam transform uu, vv, _ = adcp_ins2earth(u, v, w, h, p, r, vf) # compute the magnetic variation, and ... theta = magnetic_declination(lat, lon, dt) # ... correct for it _, vv_cor = magnetic_correction(theta, uu, vv) # scale velocity to m/s vv_cor = vv_cor / 1000. # mm/s -> m/s # return the Northward Velocity Profile return vv_cor def adcp_beam_vertical(b1, b2, b3, b4, h, p, r, vf): """ Description: Wrapper function to compute the Upward Velocity Profile (VELPROF-VLU) from beam coordinate transformed velocity profiles as defined in the Data Product Specification for Velocity Profile and Echo Intensity - DCN 1341-00750. Implemented by: 2013-04-10: <NAME>. Initial code. 2014-02-03: <NAME>. Formatting and adjusting to use magnetic declination values calculated using the WMM 2010. 2014-04-04: <NAME>. Optimized code performance by replacing the for loops previously used to calculate 2D and 3D vectorized coordinate transformations with calls to np.einsum (numpy Einstein summation function). 2014-06-25: <NAME>. Edited to account for units of heading, pitch, roll and depth 2015-06-10: <NAME>. (a) moved the conditioning of input beam velocities to adcp_beam2inst. (b) moved the conditioning of compass readings to adcp_inst2earth. Usage: ww_cor = adcp_beam_vertical(b1, b2, b3, b4, h, p, r, vf) where ww_cor = vertical velocity profiles (VELPROF-VLU_L1) [m s-1] b1 = "beam 1" velocity profiles in beam coordinates (VELPROF-B1_L0) [mm s-1] b2 = "beam 2" velocity profiles in beam coordinates (VELPROF-B2_L0) [mm s-1] b3 = "beam 3" velocity profiles in beam coordinates (VELPROF-B3_L0) [mm s-1] b4 = "beam 4" velocity profiles in beam coordinates (VELPROF-B4_L0) [mm s-1] h = instrument's uncorrected magnetic heading [cdegrees] p = instrument pitch [cdegrees] r = instrument roll [cdegrees] vf = instrument's vertical orientation (0 = downward looking and 1 = upward looking) """ # compute the beam to instrument transform u, v, w, _ = adcp_beam2ins(b1, b2, b3, b4) # compute the instrument to earth beam transform _, _, ww = adcp_ins2earth(u, v, w, h, p, r, vf) # scale upward velocity to m/s ww = ww / 1000. # mm/s -> m/s # return the Upward Velocity Profile return ww def adcp_beam_error(b1, b2, b3, b4): """ Description: Wrapper function to compute the Error Velocity Profile (VELPROF-ERR) from beam coordinate transformed velocity profiles as defined in the Data Product Specification for Velocity Profile and Echo Intensity - DCN 1341-00750. Implemented by: 2013-04-10: <NAME>. Initial code. 2015-06-10: <NAME>. Moved the conditioning of input beam velocities to adcp_beam2inst. Usage: ww_cor = adcp_beam_error(b1, b2, b3, b4) where e = Error velocity profiles (VELPROF-ERR_L1) [m s-1] b1 = "beam 1" velocity profiles in beam coordinates (VELPROF-B1_L0) [mm s-1] b2 = "beam 2" velocity profiles in beam coordinates (VELPROF-B2_L0) [mm s-1] b3 = "beam 3" velocity profiles in beam coordinates (VELPROF-B3_L0) [mm s-1] b4 = "beam 4" velocity profiles in beam coordinates (VELPROF-B4_L0) [mm s-1] """ # compute the beam to instrument transform _, _, _, e = adcp_beam2ins(b1, b2, b3, b4) # scale error velocity to m/s e = e / 1000. # mm/s # return the Error Velocity Profile return e # Wrapper functions to create the VELPROF L1 data products for instruments # programmed in Earth coordinates by CGSN (Pioneer and Endurance) (ADCPA, # ADCPS-J,L,N and ADCPT-C,F,G,M) def adcp_earth_eastward(u, v, z, lat, lon, dt): """ Description: Wrapper function to compute the Eastward Velocity Profile (VELPROF-VLE) from Earth coordinate transformed velocity profiles as defined in the Data Product Specification for Velocity Profile and Echo Intensity - DCN 1341-00750. Implemented by: 2013-04-10: <NAME>. Initial code. 2014-02-03: <NAME>. Formatting and adjusting to use magnetic declination values calculated use the WMM 2010. 2014-04-04: <NAME>. Optimized code performance by replacing the for loops previously used to calculate 2D and 3D vectorized coordinate transformations with calls to np.einsum (numpy Einstein summation function). 2014-06-25: <NAME>. Edited to account for units of heading, pitch, roll and depth 2015-06-10: <NAME>. Removed the depth dependence from the magnetic declination. 2015-06-25: <NAME>. Incorporated int fillvalue -> Nan. Usage: uu_cor = adcp_earth_eastward(u, v, z, lat, lon, dt) where uu_cor = eastward velocity profiles in Earth coordinates corrected for the magnetic declination (VELPROF-VLE_L1) [m s-1] u = Eastward velocity profiles (VELPROF-VLE_L0) [mm s-1] v = Northward velocity profiles (VELPROF-VLN_L0) [mm s-1] z = instrument's pressure sensor reading (depth) [daPa] lat = instrument's deployment latitude [decimal degrees] lon = instrument's deployment longitude [decimal degrees] dt = sample date and time value [seconds since 1900-01-01] """ # force shapes of inputs to arrays u = np.atleast_2d(u) v = np.atleast_2d(v) # on input, the elements of u and v are of type int. u, v = replace_fill_with_nan(ADCP_FILLVALUE, u, v) #z = np.atleast_1d(z) / 1000. # scale daPa depth input to dbar #z = z * 1.019716 # use a simple approximation to calculate depth in m lat = np.atleast_1d(lat) lon = np.atleast_1d(lon) dt = np.atleast_1d(dt) # compute the magnetic variation, and ... theta = magnetic_declination(lat, lon, dt) # ... correct for it uu_cor, _ = magnetic_correction(theta, u, v) # scale velocity to m/s uu_cor = uu_cor / 1000. # mm/s -> m/s # return the Eastward Velocity Profile return uu_cor def adcp_earth_northward(u, v, z, lat, lon, dt): """ Description: Wrapper function to compute the Northward Velocity Profile (VELPROF-VLN) from Earth coordinate transformed velocity profiles as defined in the Data Product Specification for Velocity Profile and Echo Intensity - DCN 1341-00750. Implemented by: 2013-04-10: <NAME>. Initial code. 2014-02-03: <NAME>. Formatting and adjusting to use magnetic declination values calculated use the WMM 2010. 2014-04-04: <NAME>. Optimized code performance by replacing the for loops previously used to calculate 2D and 3D vectorized coordinate transformations with calls to np.einsum (numpy Einstein summation function). 2014-06-25: <NAME>. Edited to account for units of heading, pitch, roll and depth 2015-06-10: <NAME>. Removed the depth dependence from the magnetic declination. 2015-06-25: <NAME>. Incorporated int fillvalue -> Nan. Usage: vv_cor = adcp_earth_northward(u, v, z, lat, lon, dt) where vv_cor = northward velocity profiles in Earth coordinates corrected for the magnetic declination (VELPROF-VLN_L1) [m s-1] u = Eastward velocity profiles (VELPROF-VLE_L0) [mm s-1] v = Northward velocity profiles (VELPROF-VLN_L0) [mm s-1] z = instrument's pressure sensor reading (depth) [daPa] lat = instrument's deployment latitude [decimal degrees] lon = instrument's deployment longitude [decimal degrees] dt = sample date and time value [seconds since 1900-01-01] """ # force shapes of inputs to arrays u = np.atleast_2d(u) v = np.atleast_2d(v) # on input, the elements of u and v are of type int. u, v = replace_fill_with_nan(ADCP_FILLVALUE, u, v) #z = np.atleast_1d(z) / 1000. # scale daPa depth input to dbar #z = z * 1.019716 # use a simple approximation to calculate depth in m lat = np.atleast_1d(lat) lon = np.atleast_1d(lon) dt = np.atleast_1d(dt) # compute the magnetic variation, and ... theta = magnetic_declination(lat, lon, dt) # ... correct for it _, vv_cor = magnetic_correction(theta, u, v) # scale velocity to m/s vv_cor = vv_cor / 1000. # mm/s -> m/s # return the Northward Velocity Profile return vv_cor def adcp_earth_vertical(w): """ Description: Wrapper function to compute the Upward Velocity Profile (VELPROF-VLU) from Earth coordinate transformed velocity profiles as defined in the Data Product Specification for Velocity Profile and Echo Intensity - DCN 1341-00750. Implemented by: 2014-06-25: <NAME>. Initial code. 2015-06-25: <NAME>. Incorporated int fillvalue -> Nan. Usage: w_scl = adcp_earth_vertical(w) where w_scl = scaled upward velocity profiles in Earth coordinates (VELPROF-VLN_L1) [m s-1] w = upward velocity profiles (VELPROF-VLU_L0) [mm s-1] """ w = replace_fill_with_nan(ADCP_FILLVALUE, w) # scale velocity to m/s w_scl = w / 1000. # mm/s -> m/s # return the Upward Velocity Profile return w_scl def adcp_earth_error(e): """ Description: Wrapper function to compute the Error Velocity Profile (VELPROF-ERR) from Earth coordinate transformed velocity profiles as defined in the Data Product Specification for Velocity Profile and Echo Intensity - DCN 1341-00750. Implemented by: 2014-06-25: <NAME>. Initial code. 2015-06-25: <NAME>. Incorporated int fillvalue -> Nan. Usage: e_scl = adcp_earth_vertical(w) where e_scl = scaled error velocity profiles in Earth coordinates (VELPROF-ERR_L1) [m s-1] e = error velocity profiles (VELPROF-ERR_L0) [mm s-1] """ e = replace_fill_with_nan(ADCP_FILLVALUE, e) # scale velocity to m/s e_scl = e / 1000. # mm/s -> m/s # return the scaled Error Velocity Profile return e_scl # Compute the VELTURB_L1 data products for the VADCP instrument deployed by RSN. def vadcp_beam_eastward(b1, b2, b3, b4, h, p, r, vf, lat, lon, z, dt): """ Description: Wrapper function to compute the Eastward Velocity Profile (VELTURB-VLE) from beam coordinate transformed velocity profiles as defined in the Data Product Specification for Turbulent Velocity Profile and Echo Intensity - DCN 1341-00760. Implemented by: 2014-06-25: <NAME>. Initial code, based on existing ADCP 2015-06-10: <NAME>. (a) moved the conditioning of input beam velocities to adcp_beam2inst. (b) moved the conditioning of compass readings to adcp_inst2earth. (c) removed the depth dependence from the magnetic declination. Usage: uu_cor = vadcp_beam_eastward(b1, b2, b3, b4, h, p, r, vf, lat, lon, z, dt) where uu_cor = east velocity profiles in Earth coordinates corrected for the magnetic declination (VELTURB-VLE_L1) [m s-1] b1 = "beam 1" velocity profiles in beam coordinates (VELTURB-B1_L0) [mm s-1] b2 = "beam 2" velocity profiles in beam coordinates (VELTURB-B2_L0) [mm s-1] b3 = "beam 3" velocity profiles in beam coordinates (VELTURB-B3_L0) [mm s-1] b4 = "beam 4" velocity profiles in beam coordinates (VELTURB-B4_L0) [mm s-1] h = instrument's uncorrected magnetic heading [cdegrees] p = instrument pitch [cdegrees] r = instrument roll [cdegrees] vf = instrument's vertical orientation (0 = downward looking and 1 = upward looking) lat = instrument's deployment latitude [decimal degrees] lon = instrument's deployment longitude [decimal degrees] z = instrument's pressure sensor reading (depth) [daPa] dt = sample date and time value [seconds since 1900-01-01] """ # force shapes of inputs to arrays of the correct dimensions #z = np.atleast_1d(z) / 1000. # scale daPa depth input to dbar #z = z * 1.019716 # use a simple approximation to calculate depth in m lat = np.atleast_1d(lat) lon = np.atleast_1d(lon) dt = np.atleast_1d(dt) # compute the beam to instrument transform u, v, w, _ = adcp_beam2ins(b1, b2, b3, b4) # compute the instrument to earth beam transform uu, vv, _ = adcp_ins2earth(u, v, w, h, p, r, vf) # compute the magnetic variation, and ... theta = magnetic_declination(lat, lon, dt) # ... correct for it uu_cor, _ = magnetic_correction(theta, uu, vv) # scale velocity to m/s uu_cor = uu_cor / 1000. # mm/s -> m/s # return the Eastward Velocity Profile return uu_cor def vadcp_beam_northward(b1, b2, b3, b4, h, p, r, vf, lat, lon, z, dt): """ Description: Wrapper function to compute the Northward Velocity Profile (VELTURB-VLN) from beam coordinate transformed velocity profiles as defined in the Data Product Specification for Turbulent Velocity Profile and Echo Intensity - DCN 1341-00760. Implemented by: 2014-06-25: <NAME>. Initial code, based on existing ADCP 2015-06-10: <NAME>. (a) moved the conditioning of input beam velocities to adcp_beam2inst. (b) moved the conditioning of compass readings to adcp_inst2earth. (c) removed the depth dependence from the magnetic declination. Usage: vv_cor = vadcp_beam_northward(b1, b2, b3, b4, h, p, r, vf, lat, lon, z, dt) where vv_cor = north velocity profiles in Earth coordinates corrected for the magnetic declination (VELTURB-VLN_L1) [m s-1] b1 = "beam 1" velocity profiles in beam coordinates (VELTURB-B1_L0) [mm s-1] b2 = "beam 2" velocity profiles in beam coordinates (VELTURB-B2_L0) [mm s-1] b3 = "beam 3" velocity profiles in beam coordinates (VELTURB-B3_L0) [mm s-1] b4 = "beam 4" velocity profiles in beam coordinates (VELTURB-B4_L0) [mm s-1] h = instrument's uncorrected magnetic heading [cdegrees] p = instrument pitch [cdegrees] r = instrument roll [cdegrees] vf = instrument's vertical orientation (0 = downward looking and 1 = upward looking) lat = instrument's deployment latitude [decimal degrees] lon = instrument's deployment longitude [decimal degrees] z = instrument's pressure sensor reading (depth) [dm] dt = sample date and time value [seconds since 1900-01-01] """ # force shapes of inputs to arrays of the correct dimensions #z = np.atleast_1d(z) / 1000. # scale daPa depth input to dbar #z = z * 1.019716 # use a simple approximation to calculate depth in m lat = np.atleast_1d(lat) lon = np.atleast_1d(lon) dt = np.atleast_1d(dt) # compute the beam to instrument transform u, v, w, _ = adcp_beam2ins(b1, b2, b3, b4) # compute the instrument to earth beam transform uu, vv, _ = adcp_ins2earth(u, v, w, h, p, r, vf) # compute the magnetic variation, and ... theta = magnetic_declination(lat, lon, dt) # ... corect for it _, vv_cor = magnetic_correction(theta, uu, vv) # scale velocity to m/s vv_cor = vv_cor / 1000. # mm/s -> m/s # return the Northward Velocity Profile return vv_cor def vadcp_beam_vertical_est(b1, b2, b3, b4, h, p, r, vf): """ Description: Wrapper function to compute the "estimated" Upward Velocity Profile (VELTURB-VLU-4BM) from the beam coordinate transformed velocity profiles as defined in the Data Product Specification for Turbulent Velocity Profile and Echo Intensity - DCN 1341-00760. This provides the traditional estimate of the vertical velocity component from a 4 beam solution, where each beam is facing outward at an angle (20 degrees) relative to the vertical. Implemented by: 2014-06-25: <NAME>. Initial code, based on existing ADCP 2015-06-10: <NAME>. (a) moved the conditioning of input beam velocities to adcp_beam2inst. (b) moved the conditioning of compass readings to adcp_inst2earth. 2015-06-22: <NAME>. Renamed this data product. Usage: ww_est = vadcp_beam_vertical_est(b1, b2, b3, b4, h, p, r, vf) where ww_est = estimated vertical velocity profiles in Earth coordinates (VELTURB-VLU-4BM_L1) [m s-1] b1 = "beam 1" velocity profiles in beam coordinates (VELTURB-B1_L0) [mm s-1] b2 = "beam 2" velocity profiles in beam coordinates (VELTURB-B2_L0) [mm s-1] b3 = "beam 3" velocity profiles in beam coordinates (VELTURB-B3_L0) [mm s-1] b4 = "beam 4" velocity profiles in beam coordinates (VELTURB-B4_L0) [mm s-1] h = instrument's uncorrected magnetic heading [cdegrees] p = instrument pitch [cdegrees] r = instrument roll [cdegrees] vf = instrument's vertical orientation (0 = downward looking and 1 = upward looking) """ # compute the beam to instrument transform u, v, w, _ = adcp_beam2ins(b1, b2, b3, b4) # compute the instrument to earth beam transform _, _, ww = adcp_ins2earth(u, v, w, h, p, r, vf) # scale upward velocity to m/s ww = ww / 1000. # mm/s -> m/s # return the estimated Upward Velocity Profile return ww def vadcp_beam_vertical_true(b1, b2, b3, b4, b5, h, p, r, vf): """ Description: Wrapper function to compute the "true" Upward Velocity Profile (VELTURB-VLU-5BM) from the beam coordinate transformed velocity profiles as defined in the Data Product Specification for Turbulent Velocity Profile and Echo Intensity - DCN 1341-00760. This is assumed to provide a better estimate of the true vertical velocity component, since beam 5 is pointing directly up. Implemented by: 2014-06-25: <NAME>. Initial code, based on existing ADCP 2015-06-10: <NAME>. (a) moved the conditioning of input beam velocities to adcp_beam2inst. (b) moved the conditioning of compass readings to adcp_inst2earth. 2015-06-22: <NAME>. Renamed this data product. 2015-06-25: <NAME>. Incorporated b5 int fillvalue -> Nan. Usage: ww_true = vadcp_beam_vertical_true(b1, b2, b3, b4, b5, h, p, r, vf) where ww_true = true vertical velocity profiles in Earth coordinates (VELTURB-VLU-5BM_L1) [m s-1] b1 = "beam 1" velocity profiles in beam coordinates (VELTURB-B1_L0) [mm s-1] b2 = "beam 2" velocity profiles in beam coordinates (VELTURB-B2_L0) [mm s-1] b3 = "beam 3" velocity profiles in beam coordinates (VELTURB-B3_L0) [mm s-1] b4 = "beam 4" velocity profiles in beam coordinates (VELTURB-B4_L0) [mm s-1] b5 = "beam 5" velocity profiles in beam coordinates (VELTURB-B5_L0) [mm s-1] h = instrument's uncorrected magnetic heading [cdegrees] p = instrument pitch [cdegrees] r = instrument roll [cdegrees] vf = instrument's vertical orientation (0 = downward looking and 1 = upward looking) """ # compute the beam to instrument transform # fill values in the 4 beams are checked for inside adcp_beam2ins u, v, _, _ = adcp_beam2ins(b1, b2, b3, b4) # check b5 for the presence of fill values b5 = replace_fill_with_nan(ADCP_FILLVALUE, b5) # compute the instrument to earth beam transform # fill values in the adcp orientation parameters are checked for inside adcp_ins2earth _, _, ww = adcp_ins2earth(u, v, b5, h, p, r, vf) # scale upward velocity to m/s ww = ww / 1000. # mm/s -> m/s # return the true Upward Velocity Profile return ww def vadcp_beam_error(b1, b2, b3, b4): """ Description: Wrapper function to compute the Error Velocity Profile (VELTURB-ERR) from the beam coordinate transformed velocity profiles as defined in the Data Product Specification for Turbulent Velocity Profile and Echo Intensity - DCN 1341-00760. Implemented by: 2014-06-25: <NAME>. Initial code, based on existing ADCP 2015-06-10: <NAME>. Moved the conditioning of input beam velocities to adcp_beam2inst. Usage: e = vadcp_beam_northward(b1, b2, b3, b4) where e = error velocity profiles (VELTURB-ERR_L1) [m s-1] b1 = "beam 1" velocity profiles in beam coordinates (VELTURB-B1_L0) [mm s-1] b2 = "beam 2" velocity profiles in beam coordinates (VELTURB-B2_L0) [mm s-1] b3 = "beam 3" velocity profiles in beam coordinates (VELTURB-B3_L0) [mm s-1] b4 = "beam 4" velocity profiles in beam coordinates (VELTURB-B4_L0) [mm s-1] """ # compute the beam to instrument transform _, _, _, e = adcp_beam2ins(b1, b2, b3, b4) # scale error velocity to m/s e = e / 1000. # mm/s # return the Error Velocity Profile return e # Calculates ECHOINT_L1 for all tRDI ADCPs def adcp_backscatter(raw, sfactor): """ Description: Converts the echo intensity data from counts to dB using a factory specified scale factor (nominally 0.45 dB/count for the Workhorse family of ADCPs and 0.61 dB/count for the ExplorerDVL family). As defined in the Data Product Specification for Velocity Profile and Echo Intensity - DCN 1341-00750. Implemented by: 2014-04-21: <NAME>. Initial code. 2015-06-25: <NAME>. Incorporated int fillvalue -> Nan. Usage: dB = adcp_backscatter(raw, sfactor) where dB = Relative Echo Intensity (ECHOINT_L1) [dB] raw = raw echo intensity (ECHOINT_L0) [count] sfactor = factory supplied scale factor, instrument and beam specific [dB/count] Notes: The ADCP outputs the raw echo intensity as a 1-byte integer, so the ADCP_FILLVALUE cannot apply (requires 2 bytes). References: OOI (2012). Data Product Specification for Velocity Profile and Echo Intensity. Document Control Number 1341-00750. https://alfresco.oceanobservatories.org/ (See: Company Home >> OOI >> Controlled >> 1000 System Level >> 1341-00050_Data_Product_SPEC_VELPROF_OOI.pdf) """ if np.isscalar(sfactor) is False: sfactor = sfactor.reshape(sfactor.shape[0], 1) # check raw for the presence of system fill values raw = replace_fill_with_nan(None, raw) dB = raw * sfactor return dB ##### ADCP Beam to Earth Transforms and Magnetic Variation Corrections def adcp_beam2ins(b1, b2, b3, b4): """ Description: This function converts the Beam Coordinate transformed velocity profiles to the instrument coordinate system. The calculations are defined in the Data Product Specification for Velocity Profile and Echo Intensity - DCN 1341-00750. Implemented by: 2013-04-10: <NAME>. Initial code. 2015-06-24: <NAME>. Incorporated int fillvalue -> Nan. Usage: u, v, w, e = adcp_beam2ins(b1, b2, b3, b4) where u = "east" velocity profiles in instrument coordinates [mm s-1] v = "north" velocity profiles in instrument coordinates [mm s-1] w = "vertical" velocity profiles in instrument coordinates [mm s-1] e = "error" velocity profiles [mm s-1] b1 = "beam 1" velocity profiles in beam coordinates [mm s-1] b2 = "beam 2" velocity profiles in beam coordinates [mm s-1] b3 = "beam 3" velocity profiles in beam coordinates [mm s-1] b4 = "beam 4" velocity profiles in beam coordinates [mm s-1] References: OOI (2012). Data Product Specification for Velocity Profile and Echo Intensity. Document Control Number 1341-00750. https://alfresco.oceanobservatories.org/ (See: Company Home >> OOI >> Controlled >> 1000 System Level >> 1341-00050_Data_Product_SPEC_VELPROF_OOI.pdf) """ b1 = np.atleast_2d(b1) b2 = np.atleast_2d(b2) b3 = np.atleast_2d(b3) b4 = np.atleast_2d(b4) b1, b2, b3, b4 = replace_fill_with_nan(ADCP_FILLVALUE, b1, b2, b3, b4) theta = 20.0 / 180.0 * np.pi a = 1.0 / (2.0 * np.sin(theta)) b = 1.0 / (4.0 * np.cos(theta)) c = 1.0 # +1.0 for convex transducer head, -1 for concave d = a / np.sqrt(2.0) u = c * a * (b1 - b2) v = c * a * (b4 - b3) w = b * (b1 + b2 + b3 + b4) e = d * (b1 + b2 - b3 - b4) return (u, v, w, e) def adcp_ins2earth(u, v, w, heading, pitch, roll, vertical): """ Description: This function converts the Instrument Coordinate transformed velocity profiles to the Earth coordinate system. The calculation is defined in the Data Product Specification for Velocity Profile and Echo Intensity - DCN 1341-00750. Implemented by: 2013-04-10: <NAME>. Initial code. 2014-04-04: <NAME>. Optimized code performance by replacing the for loops previously used to calculate vectorized matrix multiplication products with calls to np.einsum (numpy Einstein summation function). 2015-06-24: <NAME>. Changed implementation of 'vertical' in the roll calculation so that if these values are equal to the CI fill value (-999999999), when these fill values are replaced with nans, the nans will propagate through to the data product output. 2015-06-24: <NAME>. Incorporated int fillvalue -> Nan. Usage: uu, vu, ww = adcp_ins2earth(u, v, w, heading, pitch, roll, vertical) where uu = "east" velocity profiles in earth coordinates [mm s-1] vv = "north" velocity profiles in earth coordinates [mm s-1] ww = "vertical" velocity profiles in earth coordinates [mm s-1] u = east velocity profiles in instrument coordinates [mm s-1] v = north velocity profiles in instrument coordinates [mm s-1] w = vertical velocity profiles in instrument coordinates [mm s-1] heading = instrument's uncorrected magnetic heading [centidegrees] pitch = instrument pitch [centidegrees] roll = instrument roll [centidegrees] vertical = instrument's vertical orientation (0 = downward looking and 1 = upward looking) References: OOI (2012). Data Product Specification for Velocity Profile and Echo Intensity. Document Control Number 1341-00750. https://alfresco.oceanobservatories.org/ (See: Company Home >> OOI >> Controlled >> 1000 System Level >> 1341-00050_Data_Product_SPEC_VELPROF_OOI.pdf) """ ### the input beam data for adcp_ins2earth are always called using the output ### of adcp_beam2ins, so the following lines are not needed. # insure we are dealing with array inputs #u = np.atleast_2d(u) #v = np.atleast_2d(v) #w = np.atleast_2d(w) # check for CI fill values before changing units. # this function 'conditions' (np.atleast_1d) its inputs. # TRDI does not apply its ADCP fill/bad value sentinels to compass data. heading, pitch, roll, vertical = replace_fill_with_nan(None, heading, pitch, roll, vertical) # change units from centidegrees to degrees heading = heading / 100.0 pitch = pitch / 100.0 roll = roll / 100.0 # better way to calculate roll from the vertical orientation toggle; # this will propagate R as nans if the vertical variable is missing from the data. R = roll + vertical * 180.0 # roll Rrad = np.radians(R) cos_R = np.cos(Rrad) sin_R = np.sin(Rrad) # heading Hrad = np.radians(heading) cos_H = np.cos(Hrad) sin_H = np.sin(Hrad) # pitch t1rad = np.radians(pitch) t2rad = np.radians(roll) Prad = np.arctan(np.tan(t1rad) * np.cos(t2rad)) cos_P = np.cos(Prad) sin_P = np.sin(Prad) # determine array size n_packets = u.shape[0] n_uvw = u.shape[1] # initialize vectors to be used as matrix elements ones = np.ones(n_packets) zeros = ones * 0.0 # the rollaxis calls reorient the matrices so that their lead index is # the data packet index M1 = np.array([[cos_H, sin_H, zeros], [-sin_H, cos_H, zeros], [zeros, zeros, ones]]) M1 = np.rollaxis(M1, 2) M2 = np.array([[ones, zeros, zeros], [zeros, cos_P, -sin_P], [zeros, sin_P, cos_P]]) M2 = np.rollaxis(M2, 2) M3 = np.array([[cos_R, zeros, sin_R], [zeros, ones, zeros], [-sin_R, zeros, cos_R]]) M3 = np.rollaxis(M3, 2) # construct input array of coordinates (velocities) to be transformed. # the basis set is 3D (E,N,U) so that the middle dimension is sized at 3. uvw = np.zeros((n_packets, 3, n_uvw)) # pack the coordinates (velocities) to be transformed into the appropriate # slices. uvw[:, 0, :] = u uvw[:, 1, :] = v uvw[:, 2, :] = w # the Einstein summation is here configured to do the matrix # multiplication MM(i,l) = M1(i,j) * M2(j,k) * M3(k,l) on each slice h. MM = np.einsum('hij,hjk,hkl->hil', M1, M2, M3) # the Einstein summation is here configured to do the matrix # multiplication uvw_earth(i,m) = MM(i,l) * uvw(l,m) on each slice h. uvw_earth = np.einsum('hil,hlm->him', MM, uvw) # NOTE: # these last two executable statements run about a factor of 2 # faster in the 10000 data packet performance tests versus combining # these operations into the one statement: # uvw_earth = np.einsum('hij,hjk,hkl,hlm->him', M1, M2, M3, uvw) # break out the coordinate slices and return them uu = uvw_earth[:, 0, :] vv = uvw_earth[:, 1, :] ww = uvw_earth[:, 2, :] return (uu, vv, ww) def magnetic_correction(theta, u, v): """ Description: This function corrects velocity profiles for the magnetic variation (declination) at the measurement location. The magnetic declination is obtained from the 2010 World Magnetic Model (WMM2010) provided by NOAA (see wmm_declination). This version handles 'vectorized' input variables without using for loops. It was specifically written to handle the case of a 1D array of theta values, theta=f(i), with corresponding sets of 'u' and 'v' values such that u=f(i,j) and v=f(i,j), where there are j 'u' and 'v' values for each theta(i). Implemented by: 2014-04-04: <NAME>. Initial code. This function is used to calculate magnetic corrections by the functions contained in this module instead of the function magnetic_correction found in ion_functions.data.generic_functions. 2015-04-10: Russell Desiderio. Corrected a typo: uv = np.atleast_2d(u) -> u = np.atleast_2d(u) Usage: u_cor, v_cor = magnetic_correction(theta, u, v) where u_cor = eastward velocity profiles, in earth coordinates, with the correction for magnetic variation applied. v_cor = northward velocity profiles, in earth coordinates, with the correction for magnetic variation applied. theta = magnetic variation based on location (latitude, longitude and altitude) and date; units of theta are [degrees] u = uncorrected eastward velocity profiles in earth coordinates v = uncorrected northward velocity profiles in earth coordinates References: OOI (2012). Data Product Specification for Velocity Profile and Echo Intensity. Document Control Number 1341-00750. https://alfresco.oceanobservatories.org/ (See: Company Home >> OOI >> Controlled >> 1000 System Level >> 1341-00750_Data_Product_SPEC_VELPROF_OOI.pdf) OOI (2013). Data Product Specification for Turbulent Velocity Profile and Echo Intensity. Document Control Number 1341-00760. https://alfresco.oceanobservatories.org/ (See: Company Home >> OOI >> Controlled >> 1000 System Level >> 1341-00760_Data_Product_SPEC_VELPROF_OOI.pdf) """ # force shapes of inputs to arrays theta = np.atleast_1d(theta) u = np.atleast_2d(u) v = np.atleast_2d(v) theta_rad = np.radians(theta) cosT = np.cos(theta_rad) sinT = np.sin(theta_rad) M = np.array([[cosT, sinT], [-sinT, cosT]]) # roll axes so that the lead index represents data packet #. M = np.rollaxis(M, 2) # the coordinate system is 2D, so the middle dimension is sized at 2. uv = np.zeros((u.shape[0], 2, u.shape[1])) # pack the coordinates to be rotated into the appropriate slices uv[:, 0, :] = u uv[:, 1, :] = v # the Einstein summation is here configured to do the matrix # multiplication uv_cor(i,k) = M(i,j) * uv(j,k) on each slice h. uv_cor = np.einsum('hij,hjk->hik', M, uv) # the magnetically corrected u values are: u_cor = uv_cor[:, 0, :] # the magnetically corrected v values are: v_cor = uv_cor[:, 1, :] # return corrected u and v values return (u_cor, v_cor) def adcp_bin_depths_bar(dist_first_bin, bin_size, num_bins, pressure, adcp_orientation, latitude): """ Description: Calculates the center bin depths for PD0 and PD12 ADCP data. As defined in the Data Product Specification for Velocity Profile and Echo Intensity - DCN 1341-00750. Implemented by: 2015-01-29: <NAME>. Initial code. 2015-06-26: <NAME>. Fixed the handling of the pressure variables. Time-vectorized the code by finessing the conditional. 2015-06-30: <NAME>. Incorporated int fillvalue -> Nan. Usage: bin_depths = adcp_bin_depths(dist_first_bin, bin_size, num_bins, pressure, adcp_orientation, latitude) where bin_depths = [meters] dist_first_bin = distance to the first ADCP bin [centimeters] bin_size = depth of each ADCP bin [centimeters] num_bins = number of ADCP bins [unitless] pressure = pressure at the sensor head [bar] adcp_orientation = 1=upward looking or 0=downward looking [unitless] latitude = latitude of the instrument [degrees] References: OOI (2012). Data Product Specification for Velocity Profile and Echo Intensity. Document Control Number 1341-00750. https://alfresco.oceanobservatories.org/ (See: Company Home >> OOI >> Controlled >> 1000 System Level >> 1341-00050_Data_Product_SPEC_VELPROF_OOI.pdf) """ # check for CI fill values. pressure = replace_fill_with_nan(None, pressure) # Convert pressure from bar to decibar pressure_dbar = pressure * 10.0 # Calculate sensor depth using TEOS-10 toolbox z_from_p function # note change of sign to make the sensor_depth variable positive sensor_depth = -z_from_p(pressure_dbar, latitude) return adcp_bin_depths_meters(dist_first_bin, bin_size, num_bins, sensor_depth, adcp_orientation) def adcp_bin_depths_dapa(dist_first_bin, bin_size, num_bins, pressure, adcp_orientation, latitude): """ Description: Calculates the center bin depths for PD0 and PD12 ADCP data. As defined in the Data Product Specification for Velocity Profile and Echo Intensity - DCN 1341-00750. Implemented by: 2015-01-29: <NAME>. Initial code. 2015-06-26: <NAME>. Fixed the handling of the pressure variables. Time-vectorized the code by finessing the conditional. 2015-06-30: <NAME>. Incorporated int fillvalue -> Nan. Usage: bin_depths = adcp_bin_depths(dist_first_bin, bin_size, num_bins, pressure, adcp_orientation, latitude) where bin_depths = [meters] dist_first_bin = distance to the first ADCP bin [centimeters] bin_size = depth of each ADCP bin [centimeters] num_bins = number of ADCP bins [unitless] pressure = pressure at the sensor head [daPa] adcp_orientation = 1=upward looking or 0=downward looking [unitless] latitude = latitude of the instrument [degrees] References: OOI (2012). Data Product Specification for Velocity Profile and Echo Intensity. Document Control Number 1341-00750. https://alfresco.oceanobservatories.org/ (See: Company Home >> OOI >> Controlled >> 1000 System Level >> 1341-00050_Data_Product_SPEC_VELPROF_OOI.pdf) """ # check for CI fill values. pressure = replace_fill_with_nan(None, pressure) # Convert pressure from decaPascal to decibar pressure_dbar = pressure / 1000.0 # Calculate sensor depth using TEOS-10 toolbox z_from_p function # note change of sign to make the sensor_depth variable positive sensor_depth = -z_from_p(pressure_dbar, latitude) return adcp_bin_depths_meters(dist_first_bin, bin_size, num_bins, sensor_depth, adcp_orientation) def z_from_p(p, lat, geo_strf_dyn_height=0, sea_surface_geopotential=0): """Calculates height from sea pressure using the computationally-efficient 75-term expression for density in terms of SA, CT and p (Roquet et al., 2015). Dynamic height anomaly, geo_strf_dyn_height, if provided, must be computed with its p_ref=0 (the surface). Also if provided, sea_surface_geopotental is the geopotential at zero sea pressure. Calls a function which calculates enthalpy assuming standard ocean salinity and 0 degrees celsius. Parameters ---------- p : pressure [dbar] lat : latitude in decimal degrees north [-90..+90] geo_strf_dyn_height : dynamic height anomaly [m^2/s^2] sea_surface_geopotential : geopotential at zero sea pressure [ m^2/s^2 ] Returns ------- z : TEOS-10 height [m] : height is returned as a negative number; its absolute value is the depth below the sea surface. ################################################################# # Check values from TEOS-10 version 3.05 (matlab code): # # from http://www.teos-10.org/pubs/gsw/html/gsw_z_from_p.html # ################################################################# p = [10, 50, 125, 250, 600, 1000] lat = 4 z_from_p(p, lat) = [ -9.9445834469453, -49.7180897012550, -124.2726219409978, -248.4700576548589, -595.8253480356214, -992.0919060719987] Notes ----- At sea level z = 0, and since z (HEIGHT) is defined to be positive upwards, it follows that while z is positive in the atmosphere, it is NEGATIVE in the ocean. References ---------- IOC, SCOR and IAPSO, 2010: The international thermodynamic equation of seawater - 2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, UNESCO (English), 196 pp. Available from the TEOS-10 web site. <NAME>., <NAME>, <NAME> and <NAME>, 2003: Accurate and computationally efficient algorithms for potential temperature and density of seawater. J. Atmosph. Ocean. Tech., 20, pp. 730-741. Moritz, 2000: Goedetic reference system 1980. J. Geodesy, 74, 128-133. <NAME>., <NAME>, <NAME>, <NAME>, 2015: Accurate polynomial expressions for the density and specifc volume of seawater using the TEOS-10 standard. Ocean Modelling. <NAME>., 1981: Practical conversion of pressure to depth. Journal of Physical Oceanography, 11, 573-574. IMPLEMENTATION NOTES: <NAME>. 2015_07_01 versions 3.04 and 3.05 of the main function z_from_p are identical. z_from_p calls the subroutine enthalpy_SSO_0_p; this subroutine has been updated from ver 3.04 to 3.05. the check values above for z_from_p have been updated to incorporate this change using enthalpy_SSO_0_p ver 3.05. """ X = np.sin(np.deg2rad(lat)) sin2 = X ** 2 B = 9.780327 * (1.0 + (5.2792e-3 + (2.32e-5 * sin2)) * sin2) gamma = 2.26e-07 A = -0.5 * gamma * B C = enthalpy_SSO_0_p(p) - geo_strf_dyn_height return -2 * C / (B + np.sqrt(B ** 2 - 4 * A * C)) def enthalpy_SSO_0_p(p): """ This documentation and code is copy\pasted from the matlab coding of this function. %========================================================================== % This function calculates enthalpy at the Standard Ocean Salinity, SSO, % and at a Conservative Temperature of zero degrees C, as a function of % pressure, p, in dbar, using a streamlined version of the 76-term % computationally-efficient expression for specific volume, that is, a % streamlined version of the code "gsw_enthalpy(SA,CT,p)". % % VERSION NUMBER: 3.05 (27th January 2015) % % REFERENCES: % <NAME>., <NAME>, <NAME>, <NAME>, 2015: Accurate % polynomial expressions for the density and specifc volume of seawater % using the TEOS-10 standard. Ocean Modelling. % %========================================================================== IMPLEMENTATION NOTES: <NAME>. 2015_07_01. this subroutine has been updated from ver 3.04 to 3.05. """ z = p * 1e-4 h006 = -2.1078768810e-9 h007 = 2.8019291329e-10 dynamic_enthalpy_SSO_0_p = z * (9.726613854843870e-4 + z * (-2.252956605630465e-5 + z * ( 2.376909655387404e-6 + z * (-1.664294869986011e-7 + z * ( -5.988108894465758e-9 + z * (h006 + h007 * z)))))) enthalpy_SSO_0 = dynamic_enthalpy_SSO_0_p * 1.e8 # Note. 1e8 = db2Pa*1e4 return enthalpy_SSO_0 def adcp_bin_depths_meters(dist_first_bin, bin_size, num_bins, sensor_depth, adcp_orientation): """ Description: Calculates the center bin depths for PD0, PD8 and PD12 ADCP data. As defined in the Data Product Specification for Velocity Profile and Echo Intensity - DCN 1341-00750. Implemented by: 2015-01-30: <NAME>. Initial code. 2015-06-26: <NAME>. Time-vectorized the code by finessing the conditionals. 2015-06-30: <NAME>. Incorporated int fillvalue -> Nan. Usage: bin_depths_pd8 = adcp_bin_depths(dist_first_bin, bin_size, num_bins, sensor_depth, adcp_orientation) where bin_depths_pd8 = [meters] dist_first_bin = distance to the first ADCP bin [centimeters] bin_size = depth of each ADCP bin [centimeters] num_bins = number of ADCP bins [unitless] sensor_depth = estimated depth at the sensor head [meters] adcp_orientation = 1=upward looking or 0=downward looking [unitless] Notes: The PD8 output format is a very sparse format. Other than num_bins, it does *not* record any of the other input variables required by this DPA. Those must somehow be supplied "by hand". """ # check for CI fill values. # # Note that these input parameters will not come from an IDD driver (except for possibly # (num_bins) because the PD8 output format does not output them. Therefore, I don't know # if they will be of type integer or not. However, ndarrays composed of float types are # passed through the check-code unchanged, so run the inputs through in case they are of # type int and in case -999999999 fill values are somehow present. dist_first_bin, bin_size, num_bins, sensor_depth, adcp_orientation = replace_fill_with_nan( None, dist_first_bin, bin_size, num_bins, sensor_depth, adcp_orientation) # note, there is a CI problem not yet addressed if the time-vectorized values # in num_bins are not all the same!! For now, assume they are all the same: num_bins_constant = num_bins[0] # make bin_numbers a row vector bin_numbers = np.array([np.arange(num_bins_constant)]) # Convert from cm to meters # the input variables are type integer, so divide by a real number # to avoid truncation errors. dist_first_bin = dist_first_bin / 100.0 bin_size = bin_size / 100.0 # make sure sensor depth is positive sensor_depth = np.fabs(sensor_depth) # Following the PD0 convention where # adcp_orientation = 0 is downward looking, bindepths are added to sensor depth # = 1 is upward looking, bindepths are subtracted from sensor depth z_sign = 1.0 - 2.0 * adcp_orientation # to broadcast the vertical time dimension correctly with the horizontal bin_numbers dimension, # make all the 1D time arrays into column vectors to be processed with the bin_numbers row vector. sensor_depth = sensor_depth.reshape(-1, 1) z_sign = z_sign.reshape(-1, 1) dist_first_bin = dist_first_bin.reshape(-1, 1) bin_size = bin_size.reshape(-1, 1) # Calculate bin depths bin_depths_pd8 = sensor_depth + z_sign * (dist_first_bin + bin_size * bin_numbers) return bin_depths_pd8
[ "numpy.radians", "ion_functions.data.generic_functions.magnetic_declination", "ion_functions.data.generic_functions.replace_fill_with_nan", "numpy.isscalar", "numpy.deg2rad", "numpy.zeros", "numpy.ones", "numpy.einsum", "numpy.sin", "numpy.array", "numpy.fabs", "numpy.cos", "numpy.rollaxis", "numpy.tan", "numpy.arange", "numpy.atleast_1d", "numpy.sqrt", "numpy.atleast_2d" ]
[((5640, 5658), 'numpy.atleast_1d', 'np.atleast_1d', (['lat'], {}), '(lat)\n', (5653, 5658), True, 'import numpy as np\n'), ((5670, 5688), 'numpy.atleast_1d', 'np.atleast_1d', (['lon'], {}), '(lon)\n', (5683, 5688), True, 'import numpy as np\n'), ((5699, 5716), 'numpy.atleast_1d', 'np.atleast_1d', (['dt'], {}), '(dt)\n', (5712, 5716), True, 'import numpy as np\n'), ((6005, 6039), 'ion_functions.data.generic_functions.magnetic_declination', 'magnetic_declination', (['lat', 'lon', 'dt'], {}), '(lat, lon, dt)\n', (6025, 6039), False, 'from ion_functions.data.generic_functions import magnetic_declination\n'), ((8971, 8989), 'numpy.atleast_1d', 'np.atleast_1d', (['lat'], {}), '(lat)\n', (8984, 8989), True, 'import numpy as np\n'), ((9001, 9019), 'numpy.atleast_1d', 'np.atleast_1d', (['lon'], {}), '(lon)\n', (9014, 9019), True, 'import numpy as np\n'), ((9030, 9047), 'numpy.atleast_1d', 'np.atleast_1d', (['dt'], {}), '(dt)\n', (9043, 9047), True, 'import numpy as np\n'), ((9318, 9352), 'ion_functions.data.generic_functions.magnetic_declination', 'magnetic_declination', (['lat', 'lon', 'dt'], {}), '(lat, lon, dt)\n', (9338, 9352), False, 'from ion_functions.data.generic_functions import magnetic_declination\n'), ((15110, 15126), 'numpy.atleast_2d', 'np.atleast_2d', (['u'], {}), '(u)\n', (15123, 15126), True, 'import numpy as np\n'), ((15136, 15152), 'numpy.atleast_2d', 'np.atleast_2d', (['v'], {}), '(v)\n', (15149, 15152), True, 'import numpy as np\n'), ((15225, 15268), 'ion_functions.data.generic_functions.replace_fill_with_nan', 'replace_fill_with_nan', (['ADCP_FILLVALUE', 'u', 'v'], {}), '(ADCP_FILLVALUE, u, v)\n', (15246, 15268), False, 'from ion_functions.data.generic_functions import replace_fill_with_nan\n'), ((15428, 15446), 'numpy.atleast_1d', 'np.atleast_1d', (['lat'], {}), '(lat)\n', (15441, 15446), True, 'import numpy as np\n'), ((15458, 15476), 'numpy.atleast_1d', 'np.atleast_1d', (['lon'], {}), '(lon)\n', (15471, 15476), True, 'import numpy as np\n'), ((15487, 15504), 'numpy.atleast_1d', 'np.atleast_1d', (['dt'], {}), '(dt)\n', (15500, 15504), True, 'import numpy as np\n'), ((15567, 15601), 'ion_functions.data.generic_functions.magnetic_declination', 'magnetic_declination', (['lat', 'lon', 'dt'], {}), '(lat, lon, dt)\n', (15587, 15601), False, 'from ion_functions.data.generic_functions import magnetic_declination\n'), ((17653, 17669), 'numpy.atleast_2d', 'np.atleast_2d', (['u'], {}), '(u)\n', (17666, 17669), True, 'import numpy as np\n'), ((17679, 17695), 'numpy.atleast_2d', 'np.atleast_2d', (['v'], {}), '(v)\n', (17692, 17695), True, 'import numpy as np\n'), ((17768, 17811), 'ion_functions.data.generic_functions.replace_fill_with_nan', 'replace_fill_with_nan', (['ADCP_FILLVALUE', 'u', 'v'], {}), '(ADCP_FILLVALUE, u, v)\n', (17789, 17811), False, 'from ion_functions.data.generic_functions import replace_fill_with_nan\n'), ((17971, 17989), 'numpy.atleast_1d', 'np.atleast_1d', (['lat'], {}), '(lat)\n', (17984, 17989), True, 'import numpy as np\n'), ((18001, 18019), 'numpy.atleast_1d', 'np.atleast_1d', (['lon'], {}), '(lon)\n', (18014, 18019), True, 'import numpy as np\n'), ((18030, 18047), 'numpy.atleast_1d', 'np.atleast_1d', (['dt'], {}), '(dt)\n', (18043, 18047), True, 'import numpy as np\n'), ((18110, 18144), 'ion_functions.data.generic_functions.magnetic_declination', 'magnetic_declination', (['lat', 'lon', 'dt'], {}), '(lat, lon, dt)\n', (18130, 18144), False, 'from ion_functions.data.generic_functions import magnetic_declination\n'), ((19094, 19134), 'ion_functions.data.generic_functions.replace_fill_with_nan', 'replace_fill_with_nan', (['ADCP_FILLVALUE', 'w'], {}), '(ADCP_FILLVALUE, w)\n', (19115, 19134), False, 'from ion_functions.data.generic_functions import replace_fill_with_nan\n'), ((19990, 20030), 'ion_functions.data.generic_functions.replace_fill_with_nan', 'replace_fill_with_nan', (['ADCP_FILLVALUE', 'e'], {}), '(ADCP_FILLVALUE, e)\n', (20011, 20030), False, 'from ion_functions.data.generic_functions import replace_fill_with_nan\n'), ((22378, 22396), 'numpy.atleast_1d', 'np.atleast_1d', (['lat'], {}), '(lat)\n', (22391, 22396), True, 'import numpy as np\n'), ((22408, 22426), 'numpy.atleast_1d', 'np.atleast_1d', (['lon'], {}), '(lon)\n', (22421, 22426), True, 'import numpy as np\n'), ((22437, 22454), 'numpy.atleast_1d', 'np.atleast_1d', (['dt'], {}), '(dt)\n', (22450, 22454), True, 'import numpy as np\n'), ((22725, 22759), 'ion_functions.data.generic_functions.magnetic_declination', 'magnetic_declination', (['lat', 'lon', 'dt'], {}), '(lat, lon, dt)\n', (22745, 22759), False, 'from ion_functions.data.generic_functions import magnetic_declination\n'), ((25110, 25128), 'numpy.atleast_1d', 'np.atleast_1d', (['lat'], {}), '(lat)\n', (25123, 25128), True, 'import numpy as np\n'), ((25140, 25158), 'numpy.atleast_1d', 'np.atleast_1d', (['lon'], {}), '(lon)\n', (25153, 25158), True, 'import numpy as np\n'), ((25169, 25186), 'numpy.atleast_1d', 'np.atleast_1d', (['dt'], {}), '(dt)\n', (25182, 25186), True, 'import numpy as np\n'), ((25457, 25491), 'ion_functions.data.generic_functions.magnetic_declination', 'magnetic_declination', (['lat', 'lon', 'dt'], {}), '(lat, lon, dt)\n', (25477, 25491), False, 'from ion_functions.data.generic_functions import magnetic_declination\n'), ((29955, 29996), 'ion_functions.data.generic_functions.replace_fill_with_nan', 'replace_fill_with_nan', (['ADCP_FILLVALUE', 'b5'], {}), '(ADCP_FILLVALUE, b5)\n', (29976, 29996), False, 'from ion_functions.data.generic_functions import replace_fill_with_nan\n'), ((33163, 33195), 'ion_functions.data.generic_functions.replace_fill_with_nan', 'replace_fill_with_nan', (['None', 'raw'], {}), '(None, raw)\n', (33184, 33195), False, 'from ion_functions.data.generic_functions import replace_fill_with_nan\n'), ((34790, 34807), 'numpy.atleast_2d', 'np.atleast_2d', (['b1'], {}), '(b1)\n', (34803, 34807), True, 'import numpy as np\n'), ((34818, 34835), 'numpy.atleast_2d', 'np.atleast_2d', (['b2'], {}), '(b2)\n', (34831, 34835), True, 'import numpy as np\n'), ((34846, 34863), 'numpy.atleast_2d', 'np.atleast_2d', (['b3'], {}), '(b3)\n', (34859, 34863), True, 'import numpy as np\n'), ((34874, 34891), 'numpy.atleast_2d', 'np.atleast_2d', (['b4'], {}), '(b4)\n', (34887, 34891), True, 'import numpy as np\n'), ((34916, 34969), 'ion_functions.data.generic_functions.replace_fill_with_nan', 'replace_fill_with_nan', (['ADCP_FILLVALUE', 'b1', 'b2', 'b3', 'b4'], {}), '(ADCP_FILLVALUE, b1, b2, b3, b4)\n', (34937, 34969), False, 'from ion_functions.data.generic_functions import replace_fill_with_nan\n'), ((38103, 38162), 'ion_functions.data.generic_functions.replace_fill_with_nan', 'replace_fill_with_nan', (['None', 'heading', 'pitch', 'roll', 'vertical'], {}), '(None, heading, pitch, roll, vertical)\n', (38124, 38162), False, 'from ion_functions.data.generic_functions import replace_fill_with_nan\n'), ((38520, 38533), 'numpy.radians', 'np.radians', (['R'], {}), '(R)\n', (38530, 38533), True, 'import numpy as np\n'), ((38547, 38559), 'numpy.cos', 'np.cos', (['Rrad'], {}), '(Rrad)\n', (38553, 38559), True, 'import numpy as np\n'), ((38573, 38585), 'numpy.sin', 'np.sin', (['Rrad'], {}), '(Rrad)\n', (38579, 38585), True, 'import numpy as np\n'), ((38613, 38632), 'numpy.radians', 'np.radians', (['heading'], {}), '(heading)\n', (38623, 38632), True, 'import numpy as np\n'), ((38646, 38658), 'numpy.cos', 'np.cos', (['Hrad'], {}), '(Hrad)\n', (38652, 38658), True, 'import numpy as np\n'), ((38672, 38684), 'numpy.sin', 'np.sin', (['Hrad'], {}), '(Hrad)\n', (38678, 38684), True, 'import numpy as np\n'), ((38711, 38728), 'numpy.radians', 'np.radians', (['pitch'], {}), '(pitch)\n', (38721, 38728), True, 'import numpy as np\n'), ((38742, 38758), 'numpy.radians', 'np.radians', (['roll'], {}), '(roll)\n', (38752, 38758), True, 'import numpy as np\n'), ((38825, 38837), 'numpy.cos', 'np.cos', (['Prad'], {}), '(Prad)\n', (38831, 38837), True, 'import numpy as np\n'), ((38851, 38863), 'numpy.sin', 'np.sin', (['Prad'], {}), '(Prad)\n', (38857, 38863), True, 'import numpy as np\n'), ((39016, 39034), 'numpy.ones', 'np.ones', (['n_packets'], {}), '(n_packets)\n', (39023, 39034), True, 'import numpy as np\n'), ((39176, 39255), 'numpy.array', 'np.array', (['[[cos_H, sin_H, zeros], [-sin_H, cos_H, zeros], [zeros, zeros, ones]]'], {}), '([[cos_H, sin_H, zeros], [-sin_H, cos_H, zeros], [zeros, zeros, ones]])\n', (39184, 39255), True, 'import numpy as np\n'), ((39306, 39324), 'numpy.rollaxis', 'np.rollaxis', (['M1', '(2)'], {}), '(M1, 2)\n', (39317, 39324), True, 'import numpy as np\n'), ((39335, 39414), 'numpy.array', 'np.array', (['[[ones, zeros, zeros], [zeros, cos_P, -sin_P], [zeros, sin_P, cos_P]]'], {}), '([[ones, zeros, zeros], [zeros, cos_P, -sin_P], [zeros, sin_P, cos_P]])\n', (39343, 39414), True, 'import numpy as np\n'), ((39465, 39483), 'numpy.rollaxis', 'np.rollaxis', (['M2', '(2)'], {}), '(M2, 2)\n', (39476, 39483), True, 'import numpy as np\n'), ((39494, 39573), 'numpy.array', 'np.array', (['[[cos_R, zeros, sin_R], [zeros, ones, zeros], [-sin_R, zeros, cos_R]]'], {}), '([[cos_R, zeros, sin_R], [zeros, ones, zeros], [-sin_R, zeros, cos_R]])\n', (39502, 39573), True, 'import numpy as np\n'), ((39624, 39642), 'numpy.rollaxis', 'np.rollaxis', (['M3', '(2)'], {}), '(M3, 2)\n', (39635, 39642), True, 'import numpy as np\n'), ((39811, 39842), 'numpy.zeros', 'np.zeros', (['(n_packets, 3, n_uvw)'], {}), '((n_packets, 3, n_uvw))\n', (39819, 39842), True, 'import numpy as np\n'), ((40161, 40202), 'numpy.einsum', 'np.einsum', (['"""hij,hjk,hkl->hil"""', 'M1', 'M2', 'M3'], {}), "('hij,hjk,hkl->hil', M1, M2, M3)\n", (40170, 40202), True, 'import numpy as np\n'), ((40363, 40397), 'numpy.einsum', 'np.einsum', (['"""hil,hlm->him"""', 'MM', 'uvw'], {}), "('hil,hlm->him', MM, uvw)\n", (40372, 40397), True, 'import numpy as np\n'), ((43386, 43406), 'numpy.atleast_1d', 'np.atleast_1d', (['theta'], {}), '(theta)\n', (43399, 43406), True, 'import numpy as np\n'), ((43416, 43432), 'numpy.atleast_2d', 'np.atleast_2d', (['u'], {}), '(u)\n', (43429, 43432), True, 'import numpy as np\n'), ((43442, 43458), 'numpy.atleast_2d', 'np.atleast_2d', (['v'], {}), '(v)\n', (43455, 43458), True, 'import numpy as np\n'), ((43478, 43495), 'numpy.radians', 'np.radians', (['theta'], {}), '(theta)\n', (43488, 43495), True, 'import numpy as np\n'), ((43508, 43525), 'numpy.cos', 'np.cos', (['theta_rad'], {}), '(theta_rad)\n', (43514, 43525), True, 'import numpy as np\n'), ((43538, 43555), 'numpy.sin', 'np.sin', (['theta_rad'], {}), '(theta_rad)\n', (43544, 43555), True, 'import numpy as np\n'), ((43567, 43606), 'numpy.array', 'np.array', (['[[cosT, sinT], [-sinT, cosT]]'], {}), '([[cosT, sinT], [-sinT, cosT]])\n', (43575, 43606), True, 'import numpy as np\n'), ((43703, 43720), 'numpy.rollaxis', 'np.rollaxis', (['M', '(2)'], {}), '(M, 2)\n', (43714, 43720), True, 'import numpy as np\n'), ((43808, 43845), 'numpy.zeros', 'np.zeros', (['(u.shape[0], 2, u.shape[1])'], {}), '((u.shape[0], 2, u.shape[1]))\n', (43816, 43845), True, 'import numpy as np\n'), ((44112, 44144), 'numpy.einsum', 'np.einsum', (['"""hij,hjk->hik"""', 'M', 'uv'], {}), "('hij,hjk->hik', M, uv)\n", (44121, 44144), True, 'import numpy as np\n'), ((45996, 46033), 'ion_functions.data.generic_functions.replace_fill_with_nan', 'replace_fill_with_nan', (['None', 'pressure'], {}), '(None, pressure)\n', (46017, 46033), False, 'from ion_functions.data.generic_functions import replace_fill_with_nan\n'), ((48046, 48083), 'ion_functions.data.generic_functions.replace_fill_with_nan', 'replace_fill_with_nan', (['None', 'pressure'], {}), '(None, pressure)\n', (48067, 48083), False, 'from ion_functions.data.generic_functions import replace_fill_with_nan\n'), ((55207, 55306), 'ion_functions.data.generic_functions.replace_fill_with_nan', 'replace_fill_with_nan', (['None', 'dist_first_bin', 'bin_size', 'num_bins', 'sensor_depth', 'adcp_orientation'], {}), '(None, dist_first_bin, bin_size, num_bins,\n sensor_depth, adcp_orientation)\n', (55228, 55306), False, 'from ion_functions.data.generic_functions import replace_fill_with_nan\n'), ((55897, 55918), 'numpy.fabs', 'np.fabs', (['sensor_depth'], {}), '(sensor_depth)\n', (55904, 55918), True, 'import numpy as np\n'), ((33007, 33027), 'numpy.isscalar', 'np.isscalar', (['sfactor'], {}), '(sfactor)\n', (33018, 33027), True, 'import numpy as np\n'), ((35158, 35170), 'numpy.sqrt', 'np.sqrt', (['(2.0)'], {}), '(2.0)\n', (35165, 35170), True, 'import numpy as np\n'), ((51534, 51549), 'numpy.deg2rad', 'np.deg2rad', (['lat'], {}), '(lat)\n', (51544, 51549), True, 'import numpy as np\n'), ((35028, 35041), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (35034, 35041), True, 'import numpy as np\n'), ((35065, 35078), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (35071, 35078), True, 'import numpy as np\n'), ((38781, 38794), 'numpy.tan', 'np.tan', (['t1rad'], {}), '(t1rad)\n', (38787, 38794), True, 'import numpy as np\n'), ((38797, 38810), 'numpy.cos', 'np.cos', (['t2rad'], {}), '(t2rad)\n', (38803, 38810), True, 'import numpy as np\n'), ((51763, 51790), 'numpy.sqrt', 'np.sqrt', (['(B ** 2 - 4 * A * C)'], {}), '(B ** 2 - 4 * A * C)\n', (51770, 51790), True, 'import numpy as np\n'), ((55582, 55610), 'numpy.arange', 'np.arange', (['num_bins_constant'], {}), '(num_bins_constant)\n', (55591, 55610), True, 'import numpy as np\n')]
import numpy as np import os from scipy.io.wavfile import write as audio_write ### Generate data data = np.random.uniform(size=(10000)) # single example DATA = np.random.uniform(size=(10,10000)) # multi example wavfiles, numpyfiles = [], [] datafolder = 'data_intro/data' os.makedirs(datafolder,exist_ok=True) os.makedirs(datafolder + '_numpy',exist_ok=True) for k,D in enumerate(DATA): wavfiles.append(os.path.join(datafolder,str(k) + '.wav')) numpyfiles.append(os.path.join(datafolder + '_numpy',str(k) + '.npy')) np.save(numpyfiles[k], D) audio_write(wavfiles[k], rate=1, data=D) # ------------------------------------------------------------------------- ### Create an STFT, get mean and std over time from dabstract.dataprocessor import ProcessingChain from dabstract.dataprocessor.processors import * # create processing chain dp = ProcessingChain() dp.add(Framing(windowsize=10,stepsize=10,axis=0)) dp.add(FFT(axis=1)) dp.add(Aggregation(methods=['mean', 'std'], axis=0, combine='concatenate')) dp.summary() # apply processing chain to data # make sure to provide sampling frequency to dp. Kwargs are always accessible for # all processing layer. Therefore, you should make sure naming DOES NOT overlap output_data = dp(data, fs=1) print(output_data.shape) print('\n\n\n') # ------------------------------------------------------------------------- ### Create an STFT, get mean and std over time (alternative) from dabstract.dataprocessor import ProcessingChain from dabstract.dataprocessor.processors import * # create processing chain # in this example, fs is already set in the processing chain dp = ProcessingChain() dp.add(Framing(windowsize=10,stepsize=10,axis=0,fs=1)) dp.add(FFT(axis=1)) dp.add(Aggregation(methods=['mean', 'std'], axis=0, combine='concatenate')) dp.summary() # apply processing chain to data output_data = dp(data) print(output_data.shape) print('\n\n\n') # ------------------------------------------------------------------------- ### Create an STFT, get mean and std over time and fit this to normalization from dabstract.dataprocessor import ProcessingChain from dabstract.dataprocessor.processors import * # create processing chain dp = ProcessingChain() dp.add(Framing(windowsize=10,stepsize=10,axis=0)) dp.add(FFT(axis=1)) dp.add(Aggregation(methods=['mean', 'std'], axis=0, combine='concatenate')) dp.add(Normalizer(type='standard')) dp.summary() # fit processing chain as Normalizer contains a 'fit' method to init parameters dp.fit(DATA, fs=1) # apply processing chain to data output_data = dp(data, fs=1) print(output_data.shape) print('\n\n\n') # ------------------------------------------------------------------------- ### Same as before but the data is loaded from wav file ### As a consequence no extra fs information needs to be provided for processing. This read from the wav. from dabstract.dataprocessor import ProcessingChain from dabstract.dataprocessor.processors import * # define processing chain dp = ProcessingChain() dp.add(WavDatareader()) dp.add(Framing(windowsize=10,stepsize=10,axis=0)) dp.add(FFT(axis=1)) dp.add(Aggregation(methods=['mean', 'std'], axis=0, combine='concatenate')) dp.add(Normalizer(type='standard')) dp.summary() # fit to wavfiles dp.fit(wavfiles) #fit from wav files #dp.fit(['data_intro/data_numpy/0.wav', 'data_intro/data_numpy/1.wav', 'data_intro/data_numpy/3.wav', ...], fs=1) output_data = dp(wavfiles[2]) # process from wavfiles #output_data = dp('data_intro/data_numpy/2.wav',fs=1) print(output_data.shape) print('\n\n\n') # ------------------------------------------------------------------------- ### Same as before but the data is loaded from numpy file \ ### As a consequence extra fs information needs to be provided for processing. from dabstract.dataprocessor import ProcessingChain from dabstract.dataprocessor.processors import * # define processing chain dp = ProcessingChain() dp.add(NumpyDatareader()) dp.add(Framing(windowsize=10,stepsize=10,axis=0)) dp.add(FFT(axis=1)) dp.add(Aggregation(methods=['mean', 'std'], axis=0, combine='concatenate')) dp.add(Normalizer(type='standard')) # fit to numpy files dp.fit(numpyfiles, fs=1) #fit from npy files #dp.fit(['data_intro/data_numpy/0.npy', 'data_intro/data_numpy/1.npy', 'data_intro/data_numpy/3.npy', ...], fs=1) output_data = dp(numpyfiles[2],fs=1) #fit from npy files #output_data = dp('data_intro/data_numpy/2.npy',fs=1) print(output_data.shape) print('\n\n\n') # ------------------------------------------------------------------------- ### Create an STFT, get mean and std over time and fit this to normalization (created from hardcoded configuration) from dabstract.dataprocessor import ProcessingChain config = {'chain': [{'name': 'NumpyDatareader'}, {'name': 'Framing', 'parameters': {'axis': 0, 'stepsize': 10, 'windowsize': 10}}, {'name': 'FFT', 'parameters': {'axis': 1}}, {'name': 'Logarithm'}, {'name': 'Aggregation', 'parameters': {'axis': 0, 'combine': 'concatenate', 'methods': ['mean', 'std']}}, {'name': 'Normalizer', 'parameters': {'type': 'standard'}}]} dp = ProcessingChain(config) dp.summary() # OR # dp = ProcessingChain() # dp.add(config) dp.fit(numpyfiles, fs=1) #fit from npy files #dp.fit(['data_intro/data_numpy/0.npy', 'data_intro/data_numpy/1.npy', 'data_intro/data_numpy/3.npy', ...], fs=1) output_data = dp(numpyfiles[2],fs=1) #fit from npy files #output_data = dp('data_intro/data_numpy/2.npy',fs=1) print(output_data.shape) print('\n\n\n') # ------------------------------------------------------------------------- ### Create an STFT, get mean and std over time and fit this to normalization (created from yaml config) from dabstract.dataprocessor import ProcessingChain from dabstract.dataprocessor.processors import * from dabstract.utils import load_yaml_config # get yaml configuration config = load_yaml_config(filename='Readme_1_dp_config', path=os.path.join('configs','dp')) # create processing chain from the yaml config dp = ProcessingChain(config) # fit data dp.fit(DATA, fs=1) # process output_data = dp(data, fs=1) print(output_data.shape) print('\n\n\n') # ------------------------------------------------------------------------- ### Same as before, but now the yaml loading fct and feed to ProcessingChain() is available in a one-liner. from dabstract.dataprocessor import ProcessingChain from dabstract.dataprocessor.processors import * from dabstract.utils import load_yaml_config # get yaml configuration and process with ProcessingChain() dp = load_yaml_config(filename='Readme_1_dp_config', path=os.path.join('configs','dp'),post_process=ProcessingChain) # fit data dp.fit(DATA, fs=1) # process output_data = dp(data, fs=1) print(output_data.shape) print('\n\n\n') # ------------------------------------------------------------------------- ### Example on how to add a custom processing layer # -- processing chain from config BIS from dabstract.dataprocessor import ProcessingChain, Processor from dabstract.dataprocessor.processors import * from dabstract.utils import load_yaml_config # custom processor. # This is a minimal example of what a processor can do. class custom_processor(Processor): def process(self, data, **kwargs): return data * 100, {} # return data, information that can be propagated to consecutive layers # get yaml configuration and process with ProcessingChain() dp = load_yaml_config(filename='Readme_1_dp_config', path=os.path.join('configs','dp'),post_process=ProcessingChain) dp.summary() # add a custom processor to the dp.chain dp.add(custom_processor()) dp.summary() # Fit data to chain dp.fit(DATA, fs=1) # process0 output_data = dp(data, fs=1) print(output_data.shape) print('\n\n\n') # ------------------------------------------------------------------------- ### Example on how to add a custom processing with fit option # -- processing chain from config BIS from dabstract.dataprocessor import ProcessingChain, Processor from dabstract.dataprocessor.processors import * from dabstract.utils import load_yaml_config # custom processor. # This is a minimal example of what a processor can do. class custom_processor(Processor): def process(self, data, **kwargs): return (data - self.mean) * 100, {} # return data, information that can be propagated to consecutive layers def fit(self, data, info, **kwargs): self.mean = np.mean(data) # get yaml configuration and process with ProcessingChain() dp = load_yaml_config(filename='Readme_1_dp_config', path=os.path.join('configs','dp'),post_process=ProcessingChain) dp.summary() # add custom processor dp.add(custom_processor()) dp.summary() # fit data (it's recursive, so both the normalizer and the custom_processor are fit'ed on the data) dp.fit(DATA, fs=1) # process data output_data = dp(data, fs=1) print(output_data.shape) print('\n\n\n') # ------------------------------------------------------------------------- ### Example on how to use any function in a dabstract processing chain and still use info propagation # -- processing chain from config BIS from dabstract.dataprocessor import ProcessingChain from dabstract.dataprocessor.processors import * from dabstract.utils import load_yaml_config def custom_fct(data,**kwargs): return (data - 5) * 100 # get yaml configuration and process with ProcessingChain() dp = load_yaml_config(filename='Readme_1_dp_config', path=os.path.join('configs','dp'),post_process=ProcessingChain) dp.summary() # add custom processors dp.add(custom_fct) dp.add(lambda x: x*100) dp.summary() # fit data (it's recursive, so both the normalizer and the custom_processor are fit'ed on the data) dp.fit(DATA, fs=1) # process data output_data = dp(data, fs=1) print(output_data.shape) print('\n\n\n') # ------------------------------------------------------------------------- ### Example on how to add a custom processing layer within configuration using !class from dabstract.dataprocessor import ProcessingChain from dabstract.dataprocessor.processors import * from dabstract.utils import load_yaml_config # get yaml configuration and process with ProcessingChain() dp = load_yaml_config(filename='Readme_1_dp_config_custom', path=os.path.join('configs','dp'),post_process=ProcessingChain) # fit data (it's recursive, so both the normalizer and the custom_processor are fit'ed on the data) dp.fit(DATA, fs=1) # process data output_data = dp(data, fs=1) print(output_data.shape) print('\n\n\n') # ------------------------------------------------------------------------- ### Create a lazy data source from disk with additional processing ### Adds a lazy mapping function to DATA and allow multi-example indexing # -- processing chain for multiple examples from dabstract.dataprocessor import ProcessingChain from dabstract.dataprocessor.processors import * from dabstract.utils import load_yaml_config from dabstract.abstract.abstract import MapAbstract, DataAbstract # get yaml configuration and process with ProcessingChain() dp = load_yaml_config(filename='Readme_1_dp_config', path=os.path.join('configs','dp'),post_process=ProcessingChain) # Fit data dp.fit(DATA, fs=1) # Make and abstract data source # you can now access data as with typical indexing # e.g. datab[0], data[1] # in this way it accesses DATA[0] and DATA[1] respectively with the additional dp datab = MapAbstract(DATA,dp, fs=1) print(datab) # allow for multi indexing, e.g. data[:] or data[0,1] datab = DataAbstract(datab, fs=1) print(datab) print('\n\n\n') # ------------------------------------------------------------------------- ### Add multi-processing to lazy data source from dabstract.dataprocessor import ProcessingChain from dabstract.dataprocessor.processors import * from dabstract.utils import load_yaml_config # get yaml configuration and process with ProcessingChain() dp = load_yaml_config(filename='Readme_1_dp_config', path=os.path.join('configs','dp'),post_process=ProcessingChain) # Fit data dp.fit(DATA, fs=1) # Make and abstract data source # you can now access data as with typical indexing # e.g. datab[0], data[1] # in this way it accesses DATA[0] and DATA[1] respectively with the additional dp datab = MapAbstract(DATA,dp, fs = 1) print(datab) # allow for multi indexing, e.g. data[:] or data[0,1] # and allow for multiprocessing with the workers and buffer_len flag # indexing is paralellized, but also the iterator is datab = DataAbstract(datab, workers=2, buffer_len=2) print(datab) for k,d in enumerate(datab): print('Example ' + str(k)) print(d)
[ "numpy.random.uniform", "numpy.save", "os.makedirs", "scipy.io.wavfile.write", "dabstract.abstract.abstract.DataAbstract", "numpy.mean", "dabstract.abstract.abstract.MapAbstract", "os.path.join", "dabstract.dataprocessor.ProcessingChain" ]
[((105, 134), 'numpy.random.uniform', 'np.random.uniform', ([], {'size': '(10000)'}), '(size=10000)\n', (122, 134), True, 'import numpy as np\n'), ((161, 196), 'numpy.random.uniform', 'np.random.uniform', ([], {'size': '(10, 10000)'}), '(size=(10, 10000))\n', (178, 196), True, 'import numpy as np\n'), ((273, 311), 'os.makedirs', 'os.makedirs', (['datafolder'], {'exist_ok': '(True)'}), '(datafolder, exist_ok=True)\n', (284, 311), False, 'import os\n'), ((311, 360), 'os.makedirs', 'os.makedirs', (["(datafolder + '_numpy')"], {'exist_ok': '(True)'}), "(datafolder + '_numpy', exist_ok=True)\n", (322, 360), False, 'import os\n'), ((857, 874), 'dabstract.dataprocessor.ProcessingChain', 'ProcessingChain', ([], {}), '()\n', (872, 874), False, 'from dabstract.dataprocessor import ProcessingChain\n'), ((1631, 1648), 'dabstract.dataprocessor.ProcessingChain', 'ProcessingChain', ([], {}), '()\n', (1646, 1648), False, 'from dabstract.dataprocessor import ProcessingChain\n'), ((2197, 2214), 'dabstract.dataprocessor.ProcessingChain', 'ProcessingChain', ([], {}), '()\n', (2212, 2214), False, 'from dabstract.dataprocessor import ProcessingChain\n'), ((2984, 3001), 'dabstract.dataprocessor.ProcessingChain', 'ProcessingChain', ([], {}), '()\n', (2999, 3001), False, 'from dabstract.dataprocessor import ProcessingChain\n'), ((3888, 3905), 'dabstract.dataprocessor.ProcessingChain', 'ProcessingChain', ([], {}), '()\n', (3903, 3905), False, 'from dabstract.dataprocessor import ProcessingChain\n'), ((5318, 5341), 'dabstract.dataprocessor.ProcessingChain', 'ProcessingChain', (['config'], {}), '(config)\n', (5333, 5341), False, 'from dabstract.dataprocessor import ProcessingChain\n'), ((6210, 6233), 'dabstract.dataprocessor.ProcessingChain', 'ProcessingChain', (['config'], {}), '(config)\n', (6225, 6233), False, 'from dabstract.dataprocessor import ProcessingChain\n'), ((11558, 11585), 'dabstract.abstract.abstract.MapAbstract', 'MapAbstract', (['DATA', 'dp'], {'fs': '(1)'}), '(DATA, dp, fs=1)\n', (11569, 11585), False, 'from dabstract.abstract.abstract import MapAbstract, DataAbstract\n'), ((11660, 11685), 'dabstract.abstract.abstract.DataAbstract', 'DataAbstract', (['datab'], {'fs': '(1)'}), '(datab, fs=1)\n', (11672, 11685), False, 'from dabstract.abstract.abstract import MapAbstract, DataAbstract\n'), ((12389, 12416), 'dabstract.abstract.abstract.MapAbstract', 'MapAbstract', (['DATA', 'dp'], {'fs': '(1)'}), '(DATA, dp, fs=1)\n', (12400, 12416), False, 'from dabstract.abstract.abstract import MapAbstract, DataAbstract\n'), ((12615, 12659), 'dabstract.abstract.abstract.DataAbstract', 'DataAbstract', (['datab'], {'workers': '(2)', 'buffer_len': '(2)'}), '(datab, workers=2, buffer_len=2)\n', (12627, 12659), False, 'from dabstract.abstract.abstract import MapAbstract, DataAbstract\n'), ((529, 554), 'numpy.save', 'np.save', (['numpyfiles[k]', 'D'], {}), '(numpyfiles[k], D)\n', (536, 554), True, 'import numpy as np\n'), ((559, 599), 'scipy.io.wavfile.write', 'audio_write', (['wavfiles[k]'], {'rate': '(1)', 'data': 'D'}), '(wavfiles[k], rate=1, data=D)\n', (570, 599), True, 'from scipy.io.wavfile import write as audio_write\n'), ((6128, 6157), 'os.path.join', 'os.path.join', (['"""configs"""', '"""dp"""'], {}), "('configs', 'dp')\n", (6140, 6157), False, 'import os\n'), ((6794, 6823), 'os.path.join', 'os.path.join', (['"""configs"""', '"""dp"""'], {}), "('configs', 'dp')\n", (6806, 6823), False, 'import os\n'), ((7667, 7696), 'os.path.join', 'os.path.join', (['"""configs"""', '"""dp"""'], {}), "('configs', 'dp')\n", (7679, 7696), False, 'import os\n'), ((8610, 8623), 'numpy.mean', 'np.mean', (['data'], {}), '(data)\n', (8617, 8623), True, 'import numpy as np\n'), ((8743, 8772), 'os.path.join', 'os.path.join', (['"""configs"""', '"""dp"""'], {}), "('configs', 'dp')\n", (8755, 8772), False, 'import os\n'), ((9624, 9653), 'os.path.join', 'os.path.join', (['"""configs"""', '"""dp"""'], {}), "('configs', 'dp')\n", (9636, 9653), False, 'import os\n'), ((10415, 10444), 'os.path.join', 'os.path.join', (['"""configs"""', '"""dp"""'], {}), "('configs', 'dp')\n", (10427, 10444), False, 'import os\n'), ((11271, 11300), 'os.path.join', 'os.path.join', (['"""configs"""', '"""dp"""'], {}), "('configs', 'dp')\n", (11283, 11300), False, 'import os\n'), ((12102, 12131), 'os.path.join', 'os.path.join', (['"""configs"""', '"""dp"""'], {}), "('configs', 'dp')\n", (12114, 12131), False, 'import os\n')]
from operator import mul try: reduce except NameError: from functools import reduce import numpy as np def logit(x): return np.log(x) - np.log(1 - x) def logitsum(xs): total = 0 for x in xs: total += logit(x) return total def prod(*x): return reduce(mul, x, 1)
[ "functools.reduce", "numpy.log" ]
[((286, 303), 'functools.reduce', 'reduce', (['mul', 'x', '(1)'], {}), '(mul, x, 1)\n', (292, 303), False, 'from functools import reduce\n'), ((139, 148), 'numpy.log', 'np.log', (['x'], {}), '(x)\n', (145, 148), True, 'import numpy as np\n'), ((151, 164), 'numpy.log', 'np.log', (['(1 - x)'], {}), '(1 - x)\n', (157, 164), True, 'import numpy as np\n')]
import pytest import json from ..embedding.model import EmbeddingModel from ..feature_extraction import FeatureExtraction import numpy as np class TestFeatureExtraction(): @classmethod def setup_class(self): self.embedder_DE = EmbeddingModel(lang="de") self.embedder_EN = EmbeddingModel(lang="en") self.fe_DE = FeatureExtraction(self.embedder_DE, None) self.fe_EN = FeatureExtraction(self.embedder_EN, None) def test_mean_of_pairwise_cosine_distances(self): ems = np.array([ [-1,1,1], [-11,3,9], [22,0,8] ], dtype=float) assert abs(0.9770 - FeatureExtraction.mean_of_pairwise_cosine_distances(ems)) < 1e-4 def test_keywords_similarity_DE(self): keywords_sim = [ "Huhn", "Ei", "Vogel", "Geflügel" ] keywords_diff = [ "Code", "Geflügel", "Siebträger", "<NAME>" ] ss_sim = self.fe_DE.get_keywords_similarity(keywords_sim) ss_diff = self.fe_DE.get_keywords_similarity(keywords_diff) assert ss_sim < ss_diff def test_keywords_similarity_empty_DE(self): empty = [] ss = self.fe_DE.get_keywords_similarity(empty) assert ss == 0 def test_keywords_similarity_one_DE(self): empty = ["test"] ss = self.fe_DE.get_keywords_similarity(empty) assert ss == 0 def test_keywords_similarity_EN(self): keywords_sim = [ "Chicken", "Egg", "Bird", "Poultry" ] keywords_diff = [ "Code", "Poultry", "Portafilter", "Donald Trump" ] ss_sim = self.fe_EN.get_keywords_similarity(keywords_sim) ss_diff = self.fe_EN.get_keywords_similarity(keywords_diff) assert ss_sim < ss_diff def test_keywords_similarity_empty_EN(self): empty = [] ss = self.fe_EN.get_keywords_similarity(empty) assert ss == 0 def test_keywords_similarity_one_EN(self): empty = ["test"] ss = self.fe_EN.get_keywords_similarity(empty) assert ss == 0
[ "numpy.array" ]
[((518, 578), 'numpy.array', 'np.array', (['[[-1, 1, 1], [-11, 3, 9], [22, 0, 8]]'], {'dtype': 'float'}), '([[-1, 1, 1], [-11, 3, 9], [22, 0, 8]], dtype=float)\n', (526, 578), True, 'import numpy as np\n')]