code
stringlengths
31
1.05M
apis
list
extract_api
stringlengths
97
1.91M
from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys import math import random import logging import pickle import numpy as np import sklearn from data import FaceImageIter import mxnet as mx from mxnet import ndarray as nd import argparse import mxnet.optimizer as optimizer sys.path.append(os.path.join(os.path.dirname(__file__), 'common')) #import face_image import fresnet import fmobilenet logger = logging.getLogger() logger.setLevel(logging.INFO) AGE=100 args = None class AccMetric(mx.metric.EvalMetric): def __init__(self): self.axis = 1 super(AccMetric, self).__init__( 'acc', axis=self.axis, output_names=None, label_names=None) self.losses = [] self.count = 0 def update(self, labels, preds): self.count+=1 label = labels[0].asnumpy()[:,0:1] pred_label = preds[-1].asnumpy()[:,0:2] pred_label = np.argmax(pred_label, axis=self.axis) pred_label = pred_label.astype('int32').flatten() label = label.astype('int32').flatten() assert label.shape==pred_label.shape self.sum_metric += (pred_label.flat == label.flat).sum() self.num_inst += len(pred_label.flat) class LossValueMetric(mx.metric.EvalMetric): def __init__(self): self.axis = 1 super(LossValueMetric, self).__init__( 'lossvalue', axis=self.axis, output_names=None, label_names=None) self.losses = [] def update(self, labels, preds): loss = preds[-1].asnumpy()[0] self.sum_metric += loss self.num_inst += 1.0 gt_label = preds[-2].asnumpy() #print(gt_label) class MAEMetric(mx.metric.EvalMetric): def __init__(self): self.axis = 1 super(MAEMetric, self).__init__( 'MAE', axis=self.axis, output_names=None, label_names=None) self.losses = [] self.count = 0 def update(self, labels, preds): self.count+=1 label = labels[0].asnumpy() label_age = np.count_nonzero(label[:,1:], axis=1) pred_age = np.zeros( label_age.shape, dtype=np.int) #pred_age = np.zeros( label_age.shape, dtype=np.float32) pred = preds[-1].asnumpy() for i in range(AGE): _pred = pred[:,2+i*2:4+i*2] _pred = np.argmax(_pred, axis=1) #pred = pred[:,1] pred_age += _pred #pred_age = pred_age.astype(np.int) mae = np.mean(np.abs(label_age - pred_age)) self.sum_metric += mae self.num_inst += 1.0 class CUMMetric(mx.metric.EvalMetric): def __init__(self, n=5): self.axis = 1 self.n = n super(CUMMetric, self).__init__( 'CUM_%d'%n, axis=self.axis, output_names=None, label_names=None) self.losses = [] self.count = 0 def update(self, labels, preds): self.count+=1 label = labels[0].asnumpy() label_age = np.count_nonzero(label[:,1:], axis=1) pred_age = np.zeros( label_age.shape, dtype=np.int) pred = preds[-1].asnumpy() for i in range(AGE): _pred = pred[:,2+i*2:4+i*2] _pred = np.argmax(_pred, axis=1) #pred = pred[:,1] pred_age += _pred diff = np.abs(label_age - pred_age) cum = np.sum( (diff<self.n) ) self.sum_metric += cum self.num_inst += len(label_age) def parse_args(): parser = argparse.ArgumentParser(description='Train face network') # general parser.add_argument('--data-dir', default='', help='training set directory') parser.add_argument('--prefix', default='../model/model', help='directory to save model.') parser.add_argument('--pretrained', default='', help='pretrained model to load') parser.add_argument('--ckpt', type=int, default=1, help='checkpoint saving option. 0: discard saving. 1: save when necessary. 2: always save') parser.add_argument('--loss-type', type=int, default=4, help='loss type') parser.add_argument('--verbose', type=int, default=2000, help='do verification testing and model saving every verbose batches') parser.add_argument('--max-steps', type=int, default=0, help='max training batches') parser.add_argument('--end-epoch', type=int, default=100000, help='training epoch size.') parser.add_argument('--network', default='r50', help='specify network') parser.add_argument('--image-size', default='112,112', help='specify input image height and width') parser.add_argument('--version-input', type=int, default=1, help='network input config') parser.add_argument('--version-output', type=str, default='GAP', help='network embedding output config') parser.add_argument('--version-act', type=str, default='prelu', help='network activation config') parser.add_argument('--multiplier', type=float, default=1.0, help='') parser.add_argument('--lr', type=float, default=0.1, help='start learning rate') parser.add_argument('--lr-steps', type=str, default='', help='steps of lr changing') parser.add_argument('--wd', type=float, default=0.0005, help='weight decay') parser.add_argument('--bn-mom', type=float, default=0.9, help='bn mom') parser.add_argument('--mom', type=float, default=0.9, help='momentum') parser.add_argument('--per-batch-size', type=int, default=128, help='batch size in each context') parser.add_argument('--rand-mirror', type=int, default=1, help='if do random mirror in training') parser.add_argument('--cutoff', type=int, default=0, help='cut off aug') parser.add_argument('--color', type=int, default=0, help='color jittering aug') parser.add_argument('--ce-loss', default=False, action='store_true', help='if output ce loss') args = parser.parse_args() return args def get_symbol(args, arg_params, aux_params): data_shape = (args.image_channel,args.image_h,args.image_w) image_shape = ",".join([str(x) for x in data_shape]) margin_symbols = [] if args.network[0]=='m': fc1 = fmobilenet.get_symbol(AGE*2+2, multiplier = args.multiplier, version_input=args.version_input, version_output=args.version_output) else: fc1 = fresnet.get_symbol(AGE*2+2, args.num_layers, version_input=args.version_input, version_output=args.version_output) label = mx.symbol.Variable('softmax_label') gender_label = mx.symbol.slice_axis(data = label, axis=1, begin=0, end=1) gender_label = mx.symbol.reshape(gender_label, shape=(args.per_batch_size,)) gender_fc1 = mx.symbol.slice_axis(data = fc1, axis=1, begin=0, end=2) #gender_fc7 = mx.sym.FullyConnected(data=gender_fc1, num_hidden=2, name='gender_fc7') gender_softmax = mx.symbol.SoftmaxOutput(data=gender_fc1, label = gender_label, name='gender_softmax', normalization='valid', use_ignore=True, ignore_label = 9999) outs = [gender_softmax] for i in range(AGE): age_label = mx.symbol.slice_axis(data = label, axis=1, begin=i+1, end=i+2) age_label = mx.symbol.reshape(age_label, shape=(args.per_batch_size,)) age_fc1 = mx.symbol.slice_axis(data = fc1, axis=1, begin=2+i*2, end=4+i*2) #age_fc7 = mx.sym.FullyConnected(data=age_fc1, num_hidden=2, name='age_fc7_%i'%i) age_softmax = mx.symbol.SoftmaxOutput(data=age_fc1, label = age_label, name='age_softmax_%d'%i, normalization='valid', grad_scale=1) outs.append(age_softmax) outs.append(mx.sym.BlockGrad(fc1)) out = mx.symbol.Group(outs) return (out, arg_params, aux_params) def train_net(args): ctx = [] cvd = os.environ['CUDA_VISIBLE_DEVICES'].strip() if len(cvd)>0: for i in range(len(cvd.split(','))): ctx.append(mx.gpu(i)) if len(ctx)==0: ctx = [mx.cpu()] print('use cpu') else: print('gpu num:', len(ctx)) prefix = args.prefix prefix_dir = os.path.dirname(prefix) if not os.path.exists(prefix_dir): os.makedirs(prefix_dir) end_epoch = args.end_epoch args.ctx_num = len(ctx) args.num_layers = int(args.network[1:]) print('num_layers', args.num_layers) if args.per_batch_size==0: args.per_batch_size = 128 args.batch_size = args.per_batch_size*args.ctx_num args.rescale_threshold = 0 args.image_channel = 3 data_dir_list = args.data_dir.split(',') assert len(data_dir_list)==1 data_dir = data_dir_list[0] path_imgrec = None path_imglist = None image_size = [int(x) for x in args.image_size.split(',')] assert len(image_size)==2 assert image_size[0]==image_size[1] args.image_h = image_size[0] args.image_w = image_size[1] print('image_size', image_size) path_imgrec = os.path.join(data_dir, "train.rec") path_imgrec_val = os.path.join(data_dir, "val.rec") print('Called with argument:', args) data_shape = (args.image_channel,image_size[0],image_size[1]) mean = None begin_epoch = 0 base_lr = args.lr base_wd = args.wd base_mom = args.mom if len(args.pretrained)==0: arg_params = None aux_params = None sym, arg_params, aux_params = get_symbol(args, arg_params, aux_params) else: vec = args.pretrained.split(',') print('loading', vec) _, arg_params, aux_params = mx.model.load_checkpoint(vec[0], int(vec[1])) sym, arg_params, aux_params = get_symbol(args, arg_params, aux_params) #label_name = 'softmax_label' #label_shape = (args.batch_size,) model = mx.mod.Module( context = ctx, symbol = sym, ) val_dataiter = None train_dataiter = FaceImageIter( batch_size = args.batch_size, data_shape = data_shape, path_imgrec = path_imgrec, shuffle = True, rand_mirror = args.rand_mirror, mean = mean, cutoff = args.cutoff, color_jittering = args.color, ) val_dataiter = FaceImageIter( batch_size = args.batch_size, data_shape = data_shape, path_imgrec = path_imgrec_val, shuffle = False, rand_mirror = False, mean = mean, ) metric = mx.metric.CompositeEvalMetric([AccMetric(), MAEMetric(), CUMMetric()]) if args.network[0]=='r' or args.network[0]=='y': initializer = mx.init.Xavier(rnd_type='gaussian', factor_type="out", magnitude=2) #resnet style elif args.network[0]=='i' or args.network[0]=='x': initializer = mx.init.Xavier(rnd_type='gaussian', factor_type="in", magnitude=2) #inception else: initializer = mx.init.Xavier(rnd_type='uniform', factor_type="in", magnitude=2) _rescale = 1.0/args.ctx_num opt = optimizer.SGD(learning_rate=base_lr, momentum=base_mom, wd=base_wd, rescale_grad=_rescale) #opt = optimizer.Nadam(learning_rate=base_lr, wd=base_wd, rescale_grad=_rescale) som = 20 _cb = mx.callback.Speedometer(args.batch_size, som) lr_steps = [int(x) for x in args.lr_steps.split(',')] global_step = [0] def _batch_callback(param): _cb(param) global_step[0]+=1 mbatch = global_step[0] for _lr in lr_steps: if mbatch==_lr: opt.lr *= 0.1 print('lr change to', opt.lr) break if mbatch%1000==0: print('lr-batch-epoch:',opt.lr,param.nbatch,param.epoch) if mbatch==lr_steps[-1]: arg, aux = model.get_params() all_layers = model.symbol.get_internals() _sym = all_layers['fc1_output'] mx.model.save_checkpoint(args.prefix, 0, _sym, arg, aux) sys.exit(0) epoch_cb = None train_dataiter = mx.io.PrefetchingIter(train_dataiter) print('start fitting') model.fit(train_dataiter, begin_epoch = begin_epoch, num_epoch = end_epoch, eval_data = val_dataiter, eval_metric = metric, kvstore = 'device', optimizer = opt, #optimizer_params = optimizer_params, initializer = initializer, arg_params = arg_params, aux_params = aux_params, allow_missing = True, batch_end_callback = _batch_callback, epoch_end_callback = epoch_cb ) def main(): #time.sleep(3600*6.5) global args args = parse_args() train_net(args) if __name__ == '__main__': main()
[ "numpy.abs", "argparse.ArgumentParser", "numpy.sum", "numpy.argmax", "fresnet.get_symbol", "fmobilenet.get_symbol", "mxnet.io.PrefetchingIter", "mxnet.optimizer.SGD", "os.path.join", "mxnet.sym.BlockGrad", "mxnet.callback.Speedometer", "os.path.dirname", "os.path.exists", "mxnet.gpu", "mxnet.symbol.SoftmaxOutput", "mxnet.init.Xavier", "mxnet.symbol.Group", "mxnet.cpu", "sys.exit", "numpy.count_nonzero", "os.makedirs", "mxnet.model.save_checkpoint", "mxnet.mod.Module", "data.FaceImageIter", "numpy.zeros", "mxnet.symbol.Variable", "mxnet.symbol.reshape", "mxnet.symbol.slice_axis", "logging.getLogger" ]
[((484, 503), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (501, 503), False, 'import logging\n'), ((3241, 3298), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Train face network"""'}), "(description='Train face network')\n", (3264, 3298), False, 'import argparse\n'), ((6073, 6108), 'mxnet.symbol.Variable', 'mx.symbol.Variable', (['"""softmax_label"""'], {}), "('softmax_label')\n", (6091, 6108), True, 'import mxnet as mx\n'), ((6126, 6182), 'mxnet.symbol.slice_axis', 'mx.symbol.slice_axis', ([], {'data': 'label', 'axis': '(1)', 'begin': '(0)', 'end': '(1)'}), '(data=label, axis=1, begin=0, end=1)\n', (6146, 6182), True, 'import mxnet as mx\n'), ((6202, 6263), 'mxnet.symbol.reshape', 'mx.symbol.reshape', (['gender_label'], {'shape': '(args.per_batch_size,)'}), '(gender_label, shape=(args.per_batch_size,))\n', (6219, 6263), True, 'import mxnet as mx\n'), ((6279, 6333), 'mxnet.symbol.slice_axis', 'mx.symbol.slice_axis', ([], {'data': 'fc1', 'axis': '(1)', 'begin': '(0)', 'end': '(2)'}), '(data=fc1, axis=1, begin=0, end=2)\n', (6299, 6333), True, 'import mxnet as mx\n'), ((6443, 6595), 'mxnet.symbol.SoftmaxOutput', 'mx.symbol.SoftmaxOutput', ([], {'data': 'gender_fc1', 'label': 'gender_label', 'name': '"""gender_softmax"""', 'normalization': '"""valid"""', 'use_ignore': '(True)', 'ignore_label': '(9999)'}), "(data=gender_fc1, label=gender_label, name=\n 'gender_softmax', normalization='valid', use_ignore=True, ignore_label=9999\n )\n", (6466, 6595), True, 'import mxnet as mx\n'), ((7170, 7191), 'mxnet.symbol.Group', 'mx.symbol.Group', (['outs'], {}), '(outs)\n', (7185, 7191), True, 'import mxnet as mx\n'), ((7563, 7586), 'os.path.dirname', 'os.path.dirname', (['prefix'], {}), '(prefix)\n', (7578, 7586), False, 'import os\n'), ((8386, 8421), 'os.path.join', 'os.path.join', (['data_dir', '"""train.rec"""'], {}), "(data_dir, 'train.rec')\n", (8398, 8421), False, 'import os\n'), ((8444, 8477), 'os.path.join', 'os.path.join', (['data_dir', '"""val.rec"""'], {}), "(data_dir, 'val.rec')\n", (8456, 8477), False, 'import os\n'), ((9168, 9206), 'mxnet.mod.Module', 'mx.mod.Module', ([], {'context': 'ctx', 'symbol': 'sym'}), '(context=ctx, symbol=sym)\n', (9181, 9206), True, 'import mxnet as mx\n'), ((9293, 9493), 'data.FaceImageIter', 'FaceImageIter', ([], {'batch_size': 'args.batch_size', 'data_shape': 'data_shape', 'path_imgrec': 'path_imgrec', 'shuffle': '(True)', 'rand_mirror': 'args.rand_mirror', 'mean': 'mean', 'cutoff': 'args.cutoff', 'color_jittering': 'args.color'}), '(batch_size=args.batch_size, data_shape=data_shape,\n path_imgrec=path_imgrec, shuffle=True, rand_mirror=args.rand_mirror,\n mean=mean, cutoff=args.cutoff, color_jittering=args.color)\n', (9306, 9493), False, 'from data import FaceImageIter\n'), ((9678, 9820), 'data.FaceImageIter', 'FaceImageIter', ([], {'batch_size': 'args.batch_size', 'data_shape': 'data_shape', 'path_imgrec': 'path_imgrec_val', 'shuffle': '(False)', 'rand_mirror': '(False)', 'mean': 'mean'}), '(batch_size=args.batch_size, data_shape=data_shape,\n path_imgrec=path_imgrec_val, shuffle=False, rand_mirror=False, mean=mean)\n', (9691, 9820), False, 'from data import FaceImageIter\n'), ((10483, 10577), 'mxnet.optimizer.SGD', 'optimizer.SGD', ([], {'learning_rate': 'base_lr', 'momentum': 'base_mom', 'wd': 'base_wd', 'rescale_grad': '_rescale'}), '(learning_rate=base_lr, momentum=base_mom, wd=base_wd,\n rescale_grad=_rescale)\n', (10496, 10577), True, 'import mxnet.optimizer as optimizer\n'), ((10682, 10727), 'mxnet.callback.Speedometer', 'mx.callback.Speedometer', (['args.batch_size', 'som'], {}), '(args.batch_size, som)\n', (10705, 10727), True, 'import mxnet as mx\n'), ((11419, 11456), 'mxnet.io.PrefetchingIter', 'mx.io.PrefetchingIter', (['train_dataiter'], {}), '(train_dataiter)\n', (11440, 11456), True, 'import mxnet as mx\n'), ((383, 408), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (398, 408), False, 'import os\n'), ((945, 982), 'numpy.argmax', 'np.argmax', (['pred_label'], {'axis': 'self.axis'}), '(pred_label, axis=self.axis)\n', (954, 982), True, 'import numpy as np\n'), ((1971, 2009), 'numpy.count_nonzero', 'np.count_nonzero', (['label[:, 1:]'], {'axis': '(1)'}), '(label[:, 1:], axis=1)\n', (1987, 2009), True, 'import numpy as np\n'), ((2024, 2063), 'numpy.zeros', 'np.zeros', (['label_age.shape'], {'dtype': 'np.int'}), '(label_age.shape, dtype=np.int)\n', (2032, 2063), True, 'import numpy as np\n'), ((2803, 2841), 'numpy.count_nonzero', 'np.count_nonzero', (['label[:, 1:]'], {'axis': '(1)'}), '(label[:, 1:], axis=1)\n', (2819, 2841), True, 'import numpy as np\n'), ((2856, 2895), 'numpy.zeros', 'np.zeros', (['label_age.shape'], {'dtype': 'np.int'}), '(label_age.shape, dtype=np.int)\n', (2864, 2895), True, 'import numpy as np\n'), ((3085, 3113), 'numpy.abs', 'np.abs', (['(label_age - pred_age)'], {}), '(label_age - pred_age)\n', (3091, 3113), True, 'import numpy as np\n'), ((3124, 3145), 'numpy.sum', 'np.sum', (['(diff < self.n)'], {}), '(diff < self.n)\n', (3130, 3145), True, 'import numpy as np\n'), ((5759, 5895), 'fmobilenet.get_symbol', 'fmobilenet.get_symbol', (['(AGE * 2 + 2)'], {'multiplier': 'args.multiplier', 'version_input': 'args.version_input', 'version_output': 'args.version_output'}), '(AGE * 2 + 2, multiplier=args.multiplier,\n version_input=args.version_input, version_output=args.version_output)\n', (5780, 5895), False, 'import fmobilenet\n'), ((5932, 6055), 'fresnet.get_symbol', 'fresnet.get_symbol', (['(AGE * 2 + 2)', 'args.num_layers'], {'version_input': 'args.version_input', 'version_output': 'args.version_output'}), '(AGE * 2 + 2, args.num_layers, version_input=args.\n version_input, version_output=args.version_output)\n', (5950, 6055), False, 'import fresnet\n'), ((6655, 6719), 'mxnet.symbol.slice_axis', 'mx.symbol.slice_axis', ([], {'data': 'label', 'axis': '(1)', 'begin': '(i + 1)', 'end': '(i + 2)'}), '(data=label, axis=1, begin=i + 1, end=i + 2)\n', (6675, 6719), True, 'import mxnet as mx\n'), ((6734, 6792), 'mxnet.symbol.reshape', 'mx.symbol.reshape', (['age_label'], {'shape': '(args.per_batch_size,)'}), '(age_label, shape=(args.per_batch_size,))\n', (6751, 6792), True, 'import mxnet as mx\n'), ((6807, 6877), 'mxnet.symbol.slice_axis', 'mx.symbol.slice_axis', ([], {'data': 'fc1', 'axis': '(1)', 'begin': '(2 + i * 2)', 'end': '(4 + i * 2)'}), '(data=fc1, axis=1, begin=2 + i * 2, end=4 + i * 2)\n', (6827, 6877), True, 'import mxnet as mx\n'), ((6976, 7099), 'mxnet.symbol.SoftmaxOutput', 'mx.symbol.SoftmaxOutput', ([], {'data': 'age_fc1', 'label': 'age_label', 'name': "('age_softmax_%d' % i)", 'normalization': '"""valid"""', 'grad_scale': '(1)'}), "(data=age_fc1, label=age_label, name=\n 'age_softmax_%d' % i, normalization='valid', grad_scale=1)\n", (6999, 7099), True, 'import mxnet as mx\n'), ((7138, 7159), 'mxnet.sym.BlockGrad', 'mx.sym.BlockGrad', (['fc1'], {}), '(fc1)\n', (7154, 7159), True, 'import mxnet as mx\n'), ((7598, 7624), 'os.path.exists', 'os.path.exists', (['prefix_dir'], {}), '(prefix_dir)\n', (7612, 7624), False, 'import os\n'), ((7632, 7655), 'os.makedirs', 'os.makedirs', (['prefix_dir'], {}), '(prefix_dir)\n', (7643, 7655), False, 'import os\n'), ((10110, 10177), 'mxnet.init.Xavier', 'mx.init.Xavier', ([], {'rnd_type': '"""gaussian"""', 'factor_type': '"""out"""', 'magnitude': '(2)'}), "(rnd_type='gaussian', factor_type='out', magnitude=2)\n", (10124, 10177), True, 'import mxnet as mx\n'), ((2230, 2254), 'numpy.argmax', 'np.argmax', (['_pred'], {'axis': '(1)'}), '(_pred, axis=1)\n', (2239, 2254), True, 'import numpy as np\n'), ((2361, 2389), 'numpy.abs', 'np.abs', (['(label_age - pred_age)'], {}), '(label_age - pred_age)\n', (2367, 2389), True, 'import numpy as np\n'), ((3001, 3025), 'numpy.argmax', 'np.argmax', (['_pred'], {'axis': '(1)'}), '(_pred, axis=1)\n', (3010, 3025), True, 'import numpy as np\n'), ((7444, 7452), 'mxnet.cpu', 'mx.cpu', ([], {}), '()\n', (7450, 7452), True, 'import mxnet as mx\n'), ((10267, 10333), 'mxnet.init.Xavier', 'mx.init.Xavier', ([], {'rnd_type': '"""gaussian"""', 'factor_type': '"""in"""', 'magnitude': '(2)'}), "(rnd_type='gaussian', factor_type='in', magnitude=2)\n", (10281, 10333), True, 'import mxnet as mx\n'), ((10375, 10440), 'mxnet.init.Xavier', 'mx.init.Xavier', ([], {'rnd_type': '"""uniform"""', 'factor_type': '"""in"""', 'magnitude': '(2)'}), "(rnd_type='uniform', factor_type='in', magnitude=2)\n", (10389, 10440), True, 'import mxnet as mx\n'), ((11300, 11356), 'mxnet.model.save_checkpoint', 'mx.model.save_checkpoint', (['args.prefix', '(0)', '_sym', 'arg', 'aux'], {}), '(args.prefix, 0, _sym, arg, aux)\n', (11324, 11356), True, 'import mxnet as mx\n'), ((11365, 11376), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (11373, 11376), False, 'import sys\n'), ((7400, 7409), 'mxnet.gpu', 'mx.gpu', (['i'], {}), '(i)\n', (7406, 7409), True, 'import mxnet as mx\n')]
# from __future__ import division import timeit import time from math import sqrt from numpy import concatenate import matplotlib.pyplot as plt from pandas import read_csv from pandas import DataFrame from pandas import concat from sklearn.metrics import mean_squared_error from sklearn import preprocessing import numpy as np import pandas as pd import multiprocessing import matplotlib from IOHMM import UnSupervisedIOHMM from IOHMM import OLS, DiscreteMNL, CrossEntropyMNL from IOHMM import forward_backward from scipy.special import logsumexp import pickle from copy import deepcopy import random from sklearn.decomposition import PCA from sklearn.datasets import make_blobs from sklearn.cluster import KMeans from sklearn.metrics import silhouette_samples, silhouette_score import os import keras from keras.models import Sequential, load_model from keras.layers import Dense, Dropout, LSTM from keras.utils import to_categorical from keras import backend as K from tensorflow.keras import regularizers # with open ('data/individual_ID_list', 'rb') as fp: # individual_ID_list = pickle.load(fp) # num_of_test_samples=500 # individual_ID_list_test = [ day_list[i] for i in sorted(random.sample(range(len(day_list)), num_of_test_samples)) ] Accurate_duration = [] # filename1='data/activity_index_test.txt' # file1=open(filename1,'r') # activity_index_test=eval(file1.read()) activity_index_test = {} def process_data(data, test_proportion,Card_ID, test_last): #data['duration'] = np.log(data['duration']) # log for better modeling data.loc[data['duration_last'] == -1, 'duration_last'] = 0 # first activity, assign to 0 column_list = list(data.columns.values) location_list = [] hour_list = [] for ele in column_list: if 'location' in ele: location_list.append(ele) if 'hour' in ele: hour_list.append(ele) location_list.remove('location_o') location_list.remove('location') hour_list.remove('hour') # set covariates to this OLS model weather_list=['rain','heavy_rain','sun','cloud','Avrg_Temp','fengli'] Weekday_list=['Monday','Tuesday','Wednesday','Thursday','Friday','Saturday','Sunday'] holiday_list=['National_holiday','Observance'] last_activity=['duration_last','duration_trip'] previous_trips = ['Last_trip_time_yesterday','N_days_withtrip_past20', 'N_consec_days_no_trips','N_trips_yesterday'] Ut_list=weather_list + hour_list + Weekday_list+ location_list + holiday_list +last_activity + previous_trips # U1_list=Weekday_list+weather_list + holiday_list x_array = np.array(data.loc[:,Ut_list]) min_max_scaler = preprocessing.MinMaxScaler() x_array_minmax = min_max_scaler.fit_transform(x_array) print(x_array_minmax.shape) weather_list=['rain','heavy_rain','sun','cloud','Avrg_Temp','fengli'] Weekday_list=['Monday','Tuesday','Wednesday','Thursday','Friday','Saturday','Sunday'] holiday_list=['National_holiday','Observance'] last_activity=['duration_last','duration_trip'] previous_trips = ['Last_trip_time_yesterday','N_days_withtrip_past20', 'N_consec_days_no_trips','N_trips_yesterday'] Ut_list = weather_list + hour_list + Weekday_list + location_list + holiday_list + last_activity + previous_trips # U1_list=Weekday_list+weather_list + holiday_list data_array = np.array(data.loc[:, Ut_list]) min_max_scaler = preprocessing.MinMaxScaler() array_minmax = min_max_scaler.fit_transform(data_array) data.loc[:, Ut_list] = array_minmax total_days = data['seq_ID'].max() train_days = int(total_days - round(total_days*test_proportion)) # drop last #data = data.loc[data['if_last']!=1] if test_last: # last 30 days data_train = data.loc[data['seq_ID']<=train_days] data_test = data.loc[data['seq_ID']>train_days] else: random.seed(Card_ID) test_seq = random.sample(list(range(1,total_days+1)), total_days - train_days) data_train = data.loc[~data['seq_ID'].isin(test_seq)] data_test = data.loc[data['seq_ID'].isin(test_seq)] return min_max_scaler, data, data_train, data_test, Ut_list def gen_sequence(id_df, seq_length, seq_cols): ''' padding with zero ''' # for one id I put all the rows in a single matrix data_matrix = id_df[seq_cols].values num_elements = data_matrix.shape[0] # Iterate over two lists in parallel. # For example id1 have 192 rows and sequence_length is equal to 50 # so zip iterate over two following list of numbers (0,112),(50,192) # 0 50 -> from row 0 to row 50 # 1 51 -> from row 1 to row 51 # 2 52 -> from row 2 to row 52 # ... # 111 191 -> from row 111 to 191 for start, stop in zip(range(-seq_length+1, num_elements), range(1, num_elements+1)): if start<0: # padding with zero padding = np.zeros([-start, data_matrix.shape[1]]) used_data = data_matrix[0:stop, :] yield np.vstack([padding, used_data]) else: yield data_matrix[start:stop, :] def gen_labels(id_df, seq_length, label): # For one id I put all the labels in a single matrix. # For example: # [[1] # [4] # [1] # [5] # [9] # ... # [200]] data_matrix = id_df[label].values num_elements = data_matrix.shape[0] # I have to remove the first seq_length labels # because for one id the first sequence of seq_length size have as target # the last label (the previus ones are discarded). # All the next id's sequences will have associated step by step one label as target. return data_matrix[0:num_elements, :] def pre_process_to_LSTM(data_train, data_test, Ut_list, depend_var, sequence_length): # test = list(gen_sequence(data_train[data_train['seq_ID'] == 59], sequence_length, Ut_list)) seq_gen_train = (list(gen_sequence(data_train[data_train['seq_ID'] == idx], sequence_length, Ut_list)) for idx in data_train['seq_ID'].unique()) seq_gen_test = (list(gen_sequence(data_test[data_test['seq_ID'] == idx], sequence_length, Ut_list)) for idx in data_test['seq_ID'].unique()) seq_array_train = np.concatenate(list(seq_gen_train)).astype(np.float32) seq_array_test = np.concatenate(list(seq_gen_test)).astype(np.float32) # generate labels # val_label = gen_labels(data_train[data_train['seq_ID']==59], sequence_length, depend_var) data = data_train.append(data_test) # label_gen_train = [gen_labels(data_train[data_train['seq_ID']==idx], sequence_length, depend_var) # for idx in data_train['seq_ID'].unique()] # label_gen_test = [gen_labels(data_test[data_test['seq_ID']==idx], sequence_length, depend_var) # for idx in data_test['seq_ID'].unique()] dict_label = sorted(list(pd.unique(data.loc[:,depend_var[0]]))) dict_label2 = {} idx = 0 for key in dict_label: dict_label2[key] = idx idx += 1 data['new_dep'] = data[depend_var[0]].apply(lambda x: dict_label2[x]) label_gen = [gen_labels(data[data['seq_ID']==idx], sequence_length, ['new_dep']) for idx in data['seq_ID'].unique()] label_gen = np.concatenate(label_gen).astype(np.int32) label_gen = to_categorical(label_gen, num_classes=len(dict_label)) # label_array_train = np.concatenate(label_gen_train).astype(np.int32) # label_array_test = np.concatenate(label_gen_test).astype(np.int32) label_array_train = label_gen[0:len(data_train),:] label_array_test = label_gen[len(data_train):,:] return seq_array_train, seq_array_test, label_array_train, label_array_test, dict_label def Model(Card_ID, RE_RUN): file_name_test_results = data_path + 'results/result_Location_LSTM' + str(Card_ID) + 'test.csv' model_path = 'output/LSTM/' + 'model_Location_' + str(Card_ID) + '.h5' if not RE_RUN: if os.path.exists(file_name_test_results): print('Finish model', Card_ID) return # if Card_ID in activity_index_test: # print ('Running model', Card_ID) # return file_name_train = data_path + 'samples/sample_' + str(Card_ID) + '_201407_201408_all.csv' data = pd.read_csv(file_name_train) data = data.loc[data['if_last']==0,:] # drop the last one, it will distract the training (because it is manually added) test_proportion = 0.2 #========================= #data_preprocessing test_last = False scaler, data, data_train, data_test, Ut_list = process_data(data, test_proportion,Card_ID, test_last) data_train['duration_hour'] = round(data['duration'] / 3600).astype('int') # classification data_test['duration_hour'] = round(data['duration'] / 3600).astype('int') # classification depend_var = ['Next_tapin_station'] sequence_length = 2 # look back period, use 2 because most people only has 2 trips. seq_array_train, seq_array_test, label_array_train, label_array_test, dict_label = pre_process_to_LSTM(data_train, data_test, Ut_list, depend_var, sequence_length) # print(seq_array_train.shape, seq_array_test.shape, label_array_train.shape, label_array_test.shape) nb_features = seq_array_train.shape[2] nb_out = label_array_train.shape[1] #=========================== # design network model = Sequential() model.add(LSTM( input_shape=(sequence_length, nb_features), units=50, return_sequences=False, )) # model.add(Dropout(0.05)) # model.add(Dense(units=50, activation='relu')) # model.add(LSTM( # units=50, # return_sequences=False)) # model.add(Dropout(0.05)) # opt = keras.optimizers.SGD(lr=1e-2) model.add(Dense(units=nb_out, activation='sigmoid',name='output_rank')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # print(model.summary()) # fit the network history = model.fit(seq_array_train, label_array_train, epochs=200, batch_size=30, verbose=0, validation_data=(seq_array_test, label_array_test), callbacks=[ keras.callbacks.EarlyStopping(monitor='val_acc', min_delta=0, patience=50, verbose=0, mode='max'), keras.callbacks.ModelCheckpoint(model_path, monitor='val_acc', save_best_only=True, mode='max', verbose=0)] ) # history = model.fit(seq_array_train, label_array_train, epochs=200, batch_size=30, verbose=2, # validation_data=(seq_array_test, label_array_test) # ) #####################################plot history # fig_acc = plt.figure(figsize=(10, 10)) # plt.plot(history.history['acc']) # plt.plot(history.history['val_acc']) # plt.title('model accuracy') # plt.ylabel('accuracy') # plt.xlabel('epoch') # plt.legend(['train', 'test'], loc='upper left') # plt.show() # # # # summarize history for Loss # fig_loss = plt.figure(figsize=(10, 10)) # plt.plot(history.history['loss']) # plt.plot(history.history['val_loss']) # plt.title('model loss') # plt.ylabel('loss') # plt.xlabel('epoch') # plt.legend(['train', 'test'], loc='upper left') # plt.show() # ######################### # test if os.path.isfile(model_path): estimator = load_model(model_path) get_last_layer_output = K.function([estimator.layers[0].input], [estimator.get_layer('output_rank').output]) layer_output = get_last_layer_output([seq_array_test])[0] top_N = np.min([20, nb_out]) idx_top_N = np.argsort(-layer_output, axis = 1) # use negative because from small to large idx_top_N = idx_top_N[:,0:top_N] results = data_test.loc[:,['ID',depend_var[0],'act_ID']] results['Card_ID'] = Card_ID results = results.reset_index(drop=True) predict_topN = [np.array(dict_label)[row_index.astype('int')] for row_index in idx_top_N] pred_col = ['Predict' + str(i + 1) for i in range(top_N)] results_predict = pd.DataFrame(predict_topN, columns= pred_col) results = pd.concat([results, results_predict],axis=1) results = results.rename(columns = {depend_var[0]:'Ground_truth','act_ID':'activity_index'}) results['Correct'] = 0 results.loc[results['Predict1'] == results['Ground_truth'],'Correct'] = 1 test_acc = sum(results['Correct'])/len(results) if top_N < 20: for k in range(top_N+1,20+1): results['Predict'+str(k)] = -1 file_name_test_results = data_path + 'results/result_Location_LSTM' + str(Card_ID) + 'test.csv' results.to_csv(file_name_test_results, columns=['ID','Card_ID'] + ['Predict' + str(i + 1) for i in range(20)] + ['Ground_truth', 'Correct', 'activity_index'],index=False) # train get_last_layer_output = K.function([model.layers[0].input], [model.get_layer('output_rank').output]) layer_output = get_last_layer_output([seq_array_train])[0] idx_top_N = np.argsort(-layer_output, axis = 1) # use negative because from small to large idx_top_N = idx_top_N[:,0:top_N] results = data_train.loc[:,['ID',depend_var[0],'act_ID']] results['Card_ID'] = Card_ID results = results.reset_index(drop=True) predict_topN = [np.array(dict_label)[row_index.astype('int')] for row_index in idx_top_N] pred_col = ['Predict' + str(i + 1) for i in range(top_N)] results_predict = pd.DataFrame(predict_topN, columns= pred_col) results = pd.concat([results, results_predict],axis=1) results = results.rename(columns = {depend_var[0]:'Ground_truth','act_ID':'activity_index'}) results['Correct'] = 0 results.loc[results['Predict1'] == results['Ground_truth'],'Correct'] = 1 train_acc = sum(results['Correct']) / len(results) print('Train accuracy', train_acc) if top_N < 20: for k in range(top_N+1,20+1): results['Predict'+str(k)] = -1 file_name_train_results = data_path + 'results/result_Location_LSTM' + str(Card_ID) + 'train.csv' results.to_csv(file_name_train_results,columns=['ID','Card_ID'] + ['Predict' + str(i + 1) for i in range(20)] + ['Ground_truth', 'Correct', 'activity_index'],index=False) return test_acc def calculate_accuracy(result_df): N_first = result_df['Correct'].loc[result_df['activity_index']==0].count() Accuracy_first = result_df['Correct'].loc[(result_df['Correct']==1)& (result_df['activity_index']==0)].count()/N_first N_middle = result_df['Correct'].loc[result_df['activity_index']!=0].count() Accuracy_middle = result_df['Correct'].loc[(result_df['Correct']==1)& (result_df['activity_index']!=0)].count()/N_middle N_all = result_df['Correct'].count() Accuracy_all = result_df['Correct'].loc[result_df['Correct']==1].count()/N_all return Accuracy_first, Accuracy_middle, Accuracy_all, N_first, N_middle, N_all if __name__ == '__main__': # card_ID = 954394568 # individual_ID_list_test = [958999238] data_path = '../data/' # with open(data_path + 'individual_ID_list_test', 'rb') as fp: # individual_ID_list_test = pickle.load(fp) SHOW_BASELINE = False SKIP_RUNNED_MODEL = True num_ind = 1000 with open(data_path + 'individual_ID_list_test_' + str(num_ind) + '.pickle', 'rb') as fp: individual_ID_list_test = pickle.load(fp) individual_ID_list_test = individual_ID_list_test[0:500] count = 0 RE_RUN = True tic = time.time() for Card_ID in individual_ID_list_test: count+=1 print('Current Card ID',Card_ID,'count',count, 'total',len(individual_ID_list_test)) file_name_test_ = data_path + 'results/result_Location_LSTM' + str(Card_ID) + 'test.csv' if SKIP_RUNNED_MODEL: if os.path.exists(file_name_test_): print ('Finish model', Card_ID) continue test_acc = Model(Card_ID,RE_RUN) if test_acc is None: result_df = pd.read_csv(data_path + 'results/result_Location_LSTM' + str(Card_ID) + 'test.csv') _, _, test_acc, _, _, _ = calculate_accuracy(result_df) if SHOW_BASELINE: result_df_MC = pd.read_csv(data_path + 'results/result_Location_MC' + str(Card_ID) + '.csv') _, _, Accuracy_MC, _, _, _ = calculate_accuracy(result_df_MC) result_df_IOHMM = pd.read_csv(data_path + 'results/result_Location_' + str(Card_ID) + 'test.csv') _, _, Accuracy_IOHMM, _, _, _ = calculate_accuracy(result_df_IOHMM) else: Accuracy_MC = -1 Accuracy_IOHMM = -1 print ('Num_people_processed', count) print(Card_ID, 'Total Testing Accuracy:', test_acc) print(Card_ID, 'Base Total Testing Accuracy:', Accuracy_MC) print(Card_ID, 'IOHMM Total Testing Accuracy:', Accuracy_IOHMM) print('Elapsed time', time.time() - tic) print('------****------') # pool = multiprocessing.Pool(processes=3) print('Total time', time.time() - tic) # pool.map(Model, individual_ID_list_test) # pool.close() # print ('Accurate_duration',sum(Accurate_duration)/len(Accurate_duration)) # filename1='data/activity_index_test.txt' # file1=open(filename1,'r') # activity_index_test=eval(file1.read())
[ "keras.models.load_model", "pandas.read_csv", "sklearn.preprocessing.MinMaxScaler", "numpy.argsort", "os.path.isfile", "pickle.load", "pandas.DataFrame", "os.path.exists", "random.seed", "pandas.concat", "keras.callbacks.ModelCheckpoint", "keras.layers.Dropout", "numpy.min", "numpy.concatenate", "numpy.vstack", "keras.layers.LSTM", "numpy.zeros", "pandas.unique", "time.time", "keras.layers.Dense", "numpy.array", "keras.callbacks.EarlyStopping", "keras.models.Sequential" ]
[((2622, 2652), 'numpy.array', 'np.array', (['data.loc[:, Ut_list]'], {}), '(data.loc[:, Ut_list])\n', (2630, 2652), True, 'import numpy as np\n'), ((2673, 2701), 'sklearn.preprocessing.MinMaxScaler', 'preprocessing.MinMaxScaler', ([], {}), '()\n', (2699, 2701), False, 'from sklearn import preprocessing\n'), ((3394, 3424), 'numpy.array', 'np.array', (['data.loc[:, Ut_list]'], {}), '(data.loc[:, Ut_list])\n', (3402, 3424), True, 'import numpy as np\n'), ((3446, 3474), 'sklearn.preprocessing.MinMaxScaler', 'preprocessing.MinMaxScaler', ([], {}), '()\n', (3472, 3474), False, 'from sklearn import preprocessing\n'), ((8264, 8292), 'pandas.read_csv', 'pd.read_csv', (['file_name_train'], {}), '(file_name_train)\n', (8275, 8292), True, 'import pandas as pd\n'), ((9373, 9385), 'keras.models.Sequential', 'Sequential', ([], {}), '()\n', (9383, 9385), False, 'from keras.models import Sequential, load_model\n'), ((11517, 11543), 'os.path.isfile', 'os.path.isfile', (['model_path'], {}), '(model_path)\n', (11531, 11543), False, 'import os\n'), ((11813, 11833), 'numpy.min', 'np.min', (['[20, nb_out]'], {}), '([20, nb_out])\n', (11819, 11833), True, 'import numpy as np\n'), ((11851, 11884), 'numpy.argsort', 'np.argsort', (['(-layer_output)'], {'axis': '(1)'}), '(-layer_output, axis=1)\n', (11861, 11884), True, 'import numpy as np\n'), ((12284, 12328), 'pandas.DataFrame', 'pd.DataFrame', (['predict_topN'], {'columns': 'pred_col'}), '(predict_topN, columns=pred_col)\n', (12296, 12328), True, 'import pandas as pd\n'), ((12344, 12389), 'pandas.concat', 'pd.concat', (['[results, results_predict]'], {'axis': '(1)'}), '([results, results_predict], axis=1)\n', (12353, 12389), True, 'import pandas as pd\n'), ((13256, 13289), 'numpy.argsort', 'np.argsort', (['(-layer_output)'], {'axis': '(1)'}), '(-layer_output, axis=1)\n', (13266, 13289), True, 'import numpy as np\n'), ((13690, 13734), 'pandas.DataFrame', 'pd.DataFrame', (['predict_topN'], {'columns': 'pred_col'}), '(predict_topN, columns=pred_col)\n', (13702, 13734), True, 'import pandas as pd\n'), ((13750, 13795), 'pandas.concat', 'pd.concat', (['[results, results_predict]'], {'axis': '(1)'}), '([results, results_predict], axis=1)\n', (13759, 13795), True, 'import pandas as pd\n'), ((15743, 15754), 'time.time', 'time.time', ([], {}), '()\n', (15752, 15754), False, 'import time\n'), ((3913, 3933), 'random.seed', 'random.seed', (['Card_ID'], {}), '(Card_ID)\n', (3924, 3933), False, 'import random\n'), ((7964, 8002), 'os.path.exists', 'os.path.exists', (['file_name_test_results'], {}), '(file_name_test_results)\n', (7978, 8002), False, 'import os\n'), ((9400, 9487), 'keras.layers.LSTM', 'LSTM', ([], {'input_shape': '(sequence_length, nb_features)', 'units': '(50)', 'return_sequences': '(False)'}), '(input_shape=(sequence_length, nb_features), units=50, return_sequences\n =False)\n', (9404, 9487), False, 'from keras.layers import Dense, Dropout, LSTM\n'), ((9535, 9548), 'keras.layers.Dropout', 'Dropout', (['(0.05)'], {}), '(0.05)\n', (9542, 9548), False, 'from keras.layers import Dense, Dropout, LSTM\n'), ((9766, 9827), 'keras.layers.Dense', 'Dense', ([], {'units': 'nb_out', 'activation': '"""sigmoid"""', 'name': '"""output_rank"""'}), "(units=nb_out, activation='sigmoid', name='output_rank')\n", (9771, 9827), False, 'from keras.layers import Dense, Dropout, LSTM\n'), ((11565, 11587), 'keras.models.load_model', 'load_model', (['model_path'], {}), '(model_path)\n', (11575, 11587), False, 'from keras.models import Sequential, load_model\n'), ((15623, 15638), 'pickle.load', 'pickle.load', (['fp'], {}), '(fp)\n', (15634, 15638), False, 'import pickle\n'), ((4923, 4963), 'numpy.zeros', 'np.zeros', (['[-start, data_matrix.shape[1]]'], {}), '([-start, data_matrix.shape[1]])\n', (4931, 4963), True, 'import numpy as np\n'), ((6886, 6923), 'pandas.unique', 'pd.unique', (['data.loc[:, depend_var[0]]'], {}), '(data.loc[:, depend_var[0]])\n', (6895, 6923), True, 'import pandas as pd\n'), ((7261, 7286), 'numpy.concatenate', 'np.concatenate', (['label_gen'], {}), '(label_gen)\n', (7275, 7286), True, 'import numpy as np\n'), ((12126, 12146), 'numpy.array', 'np.array', (['dict_label'], {}), '(dict_label)\n', (12134, 12146), True, 'import numpy as np\n'), ((13532, 13552), 'numpy.array', 'np.array', (['dict_label'], {}), '(dict_label)\n', (13540, 13552), True, 'import numpy as np\n'), ((16051, 16082), 'os.path.exists', 'os.path.exists', (['file_name_test_'], {}), '(file_name_test_)\n', (16065, 16082), False, 'import os\n'), ((17279, 17290), 'time.time', 'time.time', ([], {}), '()\n', (17288, 17290), False, 'import time\n'), ((5029, 5060), 'numpy.vstack', 'np.vstack', (['[padding, used_data]'], {}), '([padding, used_data])\n', (5038, 5060), True, 'import numpy as np\n'), ((10209, 10310), 'keras.callbacks.EarlyStopping', 'keras.callbacks.EarlyStopping', ([], {'monitor': '"""val_acc"""', 'min_delta': '(0)', 'patience': '(50)', 'verbose': '(0)', 'mode': '"""max"""'}), "(monitor='val_acc', min_delta=0, patience=50,\n verbose=0, mode='max')\n", (10238, 10310), False, 'import keras\n'), ((10394, 10504), 'keras.callbacks.ModelCheckpoint', 'keras.callbacks.ModelCheckpoint', (['model_path'], {'monitor': '"""val_acc"""', 'save_best_only': '(True)', 'mode': '"""max"""', 'verbose': '(0)'}), "(model_path, monitor='val_acc',\n save_best_only=True, mode='max', verbose=0)\n", (10425, 10504), False, 'import keras\n'), ((17151, 17162), 'time.time', 'time.time', ([], {}), '()\n', (17160, 17162), False, 'import time\n')]
# This code is written at BigVision LLC. It is based on the OpenCV project. It is subject to the license terms in the LICENSE file found in this distribution and at http://opencv.org/license.html # Usage example: python3 object_detection_yolo.py --video=run.mp4 --device 'cpu' # python3 object_detection_yolo.py --video=run.mp4 --device 'gpu' # python3 object_detection_yolo.py --image=office.jpg --device 'cpu' # python3 object_detection_yolo.py --image=bird.jpg --device 'gpu' import cv2 as cv import argparse import sys import numpy as np import os.path import telebot import datetime import random import bisect import threading import requests import requests import sqlite3 import sys import MySQLdb import psycopg2 import pyautogui import win32gui import time from ftplib import FTP import os import calendar print(calendar.day_abbr[datetime.date(2019, 2, 2).weekday()]) d_day_to_cat = {'Fri':'20211112', 'Sat':'20211113', 'Sun':'20211114', 'Mon': '20211115', 'Tue': '20211116', 'Wed': '20211117', 'Thu': '20211118'} # Initialize the parameters not_worked_time = 0 time0 = '0:0' time1 = '0:0' time0_flag = 0 time1_flag = 0 worked_time_v2 = 0 fl_newtime = 0 bot = telebot.TeleBot('2002045567:AAFBWxp3Fpxf9OdhRFm8HxCUMvAhuZVLwq4') ch_id = '' api_token = '2002045567:AAFBWxp3Fpxf9OdhRFm8HxCUMv<PASSWORD>' flag_of_sent_msg = 0 global ft time_a = 0 time_t = 0 ftp = FTP('172.16.58.3', user='taxiuser', passwd='<PASSWORD>') def send_telegram(text, tpe): token = '<KEY>' url = "https://api.telegram.org/bot" channel_id = "-1001668840613" url += token method = url + "/sendMessage" if tpe == 1: tx = 'Рабочее время: ' + str(text[0]) + ' часов, ' + str(text[1]) + ' минут.' elif tpe == 2: tx = 'Работал 1 человек' + str(text[0]) + ' часов, ' + str(text[1]) + ' минут.' else: tx = 'Работало более 1 человека' + str(text[0]) + ' часов, ' + str(text[1]) + ' минут.' r = requests.post(method, data={ "chat_id": channel_id, "text": tx }) if r.status_code != 200: raise Exception("post_text error") def screenshot(window_title='InternetExplorer'): if window_title: hwnd = win32gui.FindWindow(None, window_title) if hwnd: win32gui.SetForegroundWindow(hwnd) x, y, x1, y1 = win32gui.GetClientRect(hwnd) x, y = win32gui.ClientToScreen(hwnd, (x, y)) x1, y1 = win32gui.ClientToScreen(hwnd, (x1 - x, y1 - y)) im = pyautogui.screenshot(region=(x, y, x1, y1)) return im else: print('Window not found!') else: im = pyautogui.screenshot() return im def gettime1(time): global time1 global time1_flag global time0_flag global worked_time_v2 time1 = time time1_flag = 1 time0_flag = 0 worked_time_v2 += 2 print(worked_time_v2) def gettime0(time): global time0 global time1 global time1_flag global time0_flag global not_worked_time if time0_flag == 0: time0 = time time0_flag = 1 time1_flag = 0 print(time0, time1) time_ms_1 = [int(i) for i in str(time1).split(':')[:2]] time_ms_0 = [int(i) for i in str(time0).split(':')[:2]] sum_time1 = (time_ms_1[0] * 60) + time_ms_1[1] sum_time0 = (time_ms_0[0] * 60) + time_ms_0[1] not_worked_time += sum_time0 - sum_time1 print(str(time0).split(':'), str(time1).split(':'), not_worked_time) def new_time_counter(): global fl_newtime global worked_time_v2 if fl_newtime == 0: worked_time_v2 += 2 fl_newtime = 1 def time_alone(): global time_a time_a += 2 def time_two(): global time_t time_t += 2 def image_analis(): confThreshold = 0.5 #Confidence threshold nmsThreshold = 0.4 #Non-maximum suppression threshold inpWidth = 416 #Width of network's input image inpHeight = 416 #Height of network's input image ms_label_list = [] parser = argparse.ArgumentParser(description='Object Detection using YOLO in OPENCV') parser.add_argument('--device', default='cpu', help="Device to perform inference on 'cpu' or 'gpu'.") parser.add_argument('--image', help='office.jpg') parser.add_argument('--video', help='Path to video file.') args = parser.parse_args() # Load names of classes classesFile = "coco.names" classes = None with open(classesFile, 'rt') as f: classes = f.read().rstrip('\n').split('\n') # Give the configuration and weight files for the model and load the network using them. modelConfiguration = "yolov3.cfg" modelWeights = "yolov3.weights" net = cv.dnn.readNetFromDarknet(modelConfiguration, modelWeights) if(args.device == 'cpu'): net.setPreferableBackend(cv.dnn.DNN_BACKEND_OPENCV) net.setPreferableTarget(cv.dnn.DNN_TARGET_CPU) print('Using CPU device.') elif(args.device == 'gpu'): net.setPreferableBackend(cv.dnn.DNN_BACKEND_CUDA) net.setPreferableTarget(cv.dnn.DNN_TARGET_CUDA) print('Using GPU device.') # Get the names of the output layers def getOutputsNames(net): # Get the names of all the layers in the network layersNames = net.getLayerNames() # Get the names of the output layers, i.e. the layers with unconnected outputs return [layersNames[i[0] - 1] for i in net.getUnconnectedOutLayers()] # Draw the predicted bounding box def drawPred(classId, conf, left, top, right, bottom): # Draw a bounding box. cv.rectangle(frame, (left, top), (right, bottom), (255, 178, 50), 3) label = '%.2f' % conf # Get the label for the class name and its confidence if classes: assert(classId < len(classes)) label = '%s:%s' % (classes[classId], label) ms_label_list.append(label.split(':')[0]) #Display the label at the top of the bounding box labelSize, baseLine = cv.getTextSize(label, cv.FONT_HERSHEY_SIMPLEX, 0.5, 1) top = max(top, labelSize[1]) cv.rectangle(frame, (left, top - round(1.5*labelSize[1])), (left + round(1.5*labelSize[0]), top + baseLine), (255, 255, 255), cv.FILLED) cv.putText(frame, label, (left, top), cv.FONT_HERSHEY_SIMPLEX, 0.75, (0,0,0), 1) # Remove the bounding boxes with low confidence using non-maxima suppression def postprocess(frame, outs): frameHeight = frame.shape[0] frameWidth = frame.shape[1] # Scan through all the bounding boxes output from the network and keep only the # ones with high confidence scores. Assign the box's class label as the class with the highest score. classIds = [] confidences = [] boxes = [] for out in outs: for detection in out: scores = detection[5:] classId = np.argmax(scores) confidence = scores[classId] if confidence > confThreshold: center_x = int(detection[0] * frameWidth) center_y = int(detection[1] * frameHeight) width = int(detection[2] * frameWidth) height = int(detection[3] * frameHeight) left = int(center_x - width / 2) top = int(center_y - height / 2) classIds.append(classId) confidences.append(float(confidence)) boxes.append([left, top, width, height]) # Perform non maximum suppression to eliminate redundant overlapping boxes with # lower confidences. indices = cv.dnn.NMSBoxes(boxes, confidences, confThreshold, nmsThreshold) for i in indices: i = i[0] box = boxes[i] left = box[0] top = box[1] width = box[2] height = box[3] drawPred(classIds[i], confidences[i], left, top, left + width, top + height) # Process inputs winName = 'Deep learning object detection in OpenCV' cv.namedWindow(winName, cv.WINDOW_NORMAL) outputFile = "yolo_out_py.avi" if (True): # Open the image file if not os.path.isfile('office.jpg'): print("Input image file ", args.image, " doesn't exist") sys.exit(1) cap = cv.VideoCapture('office.jpg') outputFile = 'off' + '_yolo_out_py.jpg' """elif (args.video): # Open the video file if not os.path.isfile(args.video): print("Input video file ", args.video, " doesn't exist") sys.exit(1) cap = cv.VideoCapture(args.video) outputFile = args.video[:-4]+'_yolo_out_py.avi' else: # Webcam input cap = cv.VideoCapture(0)""" # Get the video writer initialized to save the output video #if (not args.image): # vid_writer = cv.VideoWriter(outputFile, cv.VideoWriter_fourcc('M','J','P','G'), 30, (round(cap.get(cv.CAP_PROP_FRAME_WIDTH)),round(cap.get(cv.CAP_PROP_FRAME_HEIGHT)))) while cv.waitKey(1) < 0: # get frame from the video hasFrame, frame = cap.read() # Stop the program if reached end of video if not hasFrame: print("Done processing !!!") print("Output file is stored as ", outputFile) cv.waitKey(3000) # Release device cap.release() break # Create a 4D blob from a frame. blob = cv.dnn.blobFromImage(frame, 1/255, (inpWidth, inpHeight), [0,0,0], 1, crop=False) # Sets the input to the network net.setInput(blob) # Runs the forward pass to get output of the output layers outs = net.forward(getOutputsNames(net)) # Remove the bounding boxes with low confidence postprocess(frame, outs) # Put efficiency information. The function getPerfProfile returns the overall time for inference(t) and the timings for each of the layers(in layersTimes) t, _ = net.getPerfProfile() label = 'Inference time: %.2f ms' % (t * 1000.0 / cv.getTickFrequency()) cv.putText(frame, label, (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255)) # Write the frame with the detection boxes if (True): cv.imwrite(outputFile, frame.astype(np.uint8)) else: vid_writer.write(frame.astype(np.uint8)) cv.imshow(winName, frame) print(ms_label_list) is_two = (ms_label_list.count('person') >= 2) is_one = (1 == ms_label_list.count('person')) if is_one: return 1 elif is_two: return 2 return 0 image_analis() b_time_sender = [] lst = ftp.nlst('20211114') print('llll', len(lst)) while True: dt_now = datetime.datetime.now() m_d = str(dt_now).split(' ')[0].split('-') if ''.join(str(datetime.datetime.now().time()).split(':')[:2]) == '0801': flag_of_sent_msg = 0 if ''.join(str(datetime.datetime.now().time()).split(':')[:2]) == '0800': print('вход') worked_time = 1440 - not_worked_time actual_time_hours = str(worked_time_v2 // 60) actual_time_minutes = str(worked_time_v2 % 60) time_a_hours = str(time_a // 60) time_a_minutes = str(time_a % 60) time_t_hours = str(time_t // 60) time_t_minutes = str(time_t % 60) b_time_sender = [actual_time_hours, actual_time_minutes] b_time_sender_a = [time_a_hours, time_a_minutes] b_time_sender_t = [time_t_hours, time_t_minutes] b_dop_time_sender = [] if flag_of_sent_msg == 0: send_telegram(b_time_sender, 1) send_telegram(b_time_sender_a, 2) send_telegram(b_time_sender_t, 3) flag_of_sent_msg = 1 not_worked_time = 0 time0 = '0:0' time1 = '0:0' time0_flag = '0:0' time1_flag = '0:0' worked_time_v2 = 0 if int(''.join(str(datetime.datetime.now().time()).split(':')[1])) % 2 == 1: fl_newtime = 0 if int(''.join(str(datetime.datetime.now().time()).split(':')[1])) % 2 == 0: print(worked_time_v2) out = 'office.jpg' print("получил изображение") lst = ftp.nlst(d_day_to_cat[calendar.day_abbr[datetime.date(int(m_d[0]), int(m_d[1]), int(m_d[2])).weekday()]]) print(lst[-1], d_day_to_cat[calendar.day_abbr[datetime.date(int(m_d[0]), int(m_d[1]), int(m_d[2])).weekday()]]) with open(out, 'wb') as f: ftp.retrbinary('RETR ' + f'{lst[-1]}', f.write) result = image_analis() if result != 0: if result == 1: time_alone() if result == 2: time_two() print("попало в 1") new_time_counter() elif result == 0: print('прошло в 0') gettime0(datetime.datetime.now().time())
[ "win32gui.ClientToScreen", "argparse.ArgumentParser", "cv2.dnn.NMSBoxes", "numpy.argmax", "pyautogui.screenshot", "os.path.isfile", "cv2.rectangle", "win32gui.SetForegroundWindow", "requests.post", "cv2.imshow", "telebot.TeleBot", "cv2.getTickFrequency", "cv2.dnn.blobFromImage", "datetime.datetime.now", "cv2.waitKey", "datetime.date", "cv2.dnn.readNetFromDarknet", "sys.exit", "cv2.putText", "cv2.getTextSize", "win32gui.GetClientRect", "win32gui.FindWindow", "cv2.VideoCapture", "ftplib.FTP", "cv2.namedWindow" ]
[((1220, 1285), 'telebot.TeleBot', 'telebot.TeleBot', (['"""2002045567:AAFBWxp3Fpxf9OdhRFm8HxCUMvAhuZVLwq4"""'], {}), "('2002045567:AAFBWxp3Fpxf9OdhRFm8HxCUMvAhuZVLwq4')\n", (1235, 1285), False, 'import telebot\n'), ((1418, 1474), 'ftplib.FTP', 'FTP', (['"""172.16.58.3"""'], {'user': '"""taxiuser"""', 'passwd': '"""<PASSWORD>"""'}), "('172.16.58.3', user='taxiuser', passwd='<PASSWORD>')\n", (1421, 1474), False, 'from ftplib import FTP\n'), ((1977, 2040), 'requests.post', 'requests.post', (['method'], {'data': "{'chat_id': channel_id, 'text': tx}"}), "(method, data={'chat_id': channel_id, 'text': tx})\n", (1990, 2040), False, 'import requests\n'), ((4072, 4148), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Object Detection using YOLO in OPENCV"""'}), "(description='Object Detection using YOLO in OPENCV')\n", (4095, 4148), False, 'import argparse\n'), ((4751, 4810), 'cv2.dnn.readNetFromDarknet', 'cv.dnn.readNetFromDarknet', (['modelConfiguration', 'modelWeights'], {}), '(modelConfiguration, modelWeights)\n', (4776, 4810), True, 'import cv2 as cv\n'), ((8150, 8191), 'cv2.namedWindow', 'cv.namedWindow', (['winName', 'cv.WINDOW_NORMAL'], {}), '(winName, cv.WINDOW_NORMAL)\n', (8164, 8191), True, 'import cv2 as cv\n'), ((10839, 10862), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (10860, 10862), False, 'import datetime\n'), ((2231, 2270), 'win32gui.FindWindow', 'win32gui.FindWindow', (['None', 'window_title'], {}), '(None, window_title)\n', (2250, 2270), False, 'import win32gui\n'), ((2676, 2698), 'pyautogui.screenshot', 'pyautogui.screenshot', ([], {}), '()\n', (2696, 2698), False, 'import pyautogui\n'), ((5646, 5714), 'cv2.rectangle', 'cv.rectangle', (['frame', '(left, top)', '(right, bottom)', '(255, 178, 50)', '(3)'], {}), '(frame, (left, top), (right, bottom), (255, 178, 50), 3)\n', (5658, 5714), True, 'import cv2 as cv\n'), ((6068, 6122), 'cv2.getTextSize', 'cv.getTextSize', (['label', 'cv.FONT_HERSHEY_SIMPLEX', '(0.5)', '(1)'], {}), '(label, cv.FONT_HERSHEY_SIMPLEX, 0.5, 1)\n', (6082, 6122), True, 'import cv2 as cv\n'), ((6313, 6399), 'cv2.putText', 'cv.putText', (['frame', 'label', '(left, top)', 'cv.FONT_HERSHEY_SIMPLEX', '(0.75)', '(0, 0, 0)', '(1)'], {}), '(frame, label, (left, top), cv.FONT_HERSHEY_SIMPLEX, 0.75, (0, 0,\n 0), 1)\n', (6323, 6399), True, 'import cv2 as cv\n'), ((7733, 7797), 'cv2.dnn.NMSBoxes', 'cv.dnn.NMSBoxes', (['boxes', 'confidences', 'confThreshold', 'nmsThreshold'], {}), '(boxes, confidences, confThreshold, nmsThreshold)\n', (7748, 7797), True, 'import cv2 as cv\n'), ((8425, 8454), 'cv2.VideoCapture', 'cv.VideoCapture', (['"""office.jpg"""'], {}), "('office.jpg')\n", (8440, 8454), True, 'import cv2 as cv\n'), ((9141, 9154), 'cv2.waitKey', 'cv.waitKey', (['(1)'], {}), '(1)\n', (9151, 9154), True, 'import cv2 as cv\n'), ((9569, 9658), 'cv2.dnn.blobFromImage', 'cv.dnn.blobFromImage', (['frame', '(1 / 255)', '(inpWidth, inpHeight)', '[0, 0, 0]', '(1)'], {'crop': '(False)'}), '(frame, 1 / 255, (inpWidth, inpHeight), [0, 0, 0], 1,\n crop=False)\n', (9589, 9658), True, 'import cv2 as cv\n'), ((10215, 10291), 'cv2.putText', 'cv.putText', (['frame', 'label', '(0, 15)', 'cv.FONT_HERSHEY_SIMPLEX', '(0.5)', '(0, 0, 255)'], {}), '(frame, label, (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))\n', (10225, 10291), True, 'import cv2 as cv\n'), ((10498, 10523), 'cv2.imshow', 'cv.imshow', (['winName', 'frame'], {}), '(winName, frame)\n', (10507, 10523), True, 'import cv2 as cv\n'), ((2300, 2334), 'win32gui.SetForegroundWindow', 'win32gui.SetForegroundWindow', (['hwnd'], {}), '(hwnd)\n', (2328, 2334), False, 'import win32gui\n'), ((2362, 2390), 'win32gui.GetClientRect', 'win32gui.GetClientRect', (['hwnd'], {}), '(hwnd)\n', (2384, 2390), False, 'import win32gui\n'), ((2410, 2447), 'win32gui.ClientToScreen', 'win32gui.ClientToScreen', (['hwnd', '(x, y)'], {}), '(hwnd, (x, y))\n', (2433, 2447), False, 'import win32gui\n'), ((2469, 2516), 'win32gui.ClientToScreen', 'win32gui.ClientToScreen', (['hwnd', '(x1 - x, y1 - y)'], {}), '(hwnd, (x1 - x, y1 - y))\n', (2492, 2516), False, 'import win32gui\n'), ((2534, 2577), 'pyautogui.screenshot', 'pyautogui.screenshot', ([], {'region': '(x, y, x1, y1)'}), '(region=(x, y, x1, y1))\n', (2554, 2577), False, 'import pyautogui\n'), ((8288, 8316), 'os.path.isfile', 'os.path.isfile', (['"""office.jpg"""'], {}), "('office.jpg')\n", (8302, 8316), False, 'import os\n'), ((8399, 8410), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (8407, 8410), False, 'import sys\n'), ((9422, 9438), 'cv2.waitKey', 'cv.waitKey', (['(3000)'], {}), '(3000)\n', (9432, 9438), True, 'import cv2 as cv\n'), ((890, 915), 'datetime.date', 'datetime.date', (['(2019)', '(2)', '(2)'], {}), '(2019, 2, 2)\n', (903, 915), False, 'import datetime\n'), ((6972, 6989), 'numpy.argmax', 'np.argmax', (['scores'], {}), '(scores)\n', (6981, 6989), True, 'import numpy as np\n'), ((10184, 10205), 'cv2.getTickFrequency', 'cv.getTickFrequency', ([], {}), '()\n', (10203, 10205), True, 'import cv2 as cv\n'), ((12923, 12946), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (12944, 12946), False, 'import datetime\n'), ((10929, 10952), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (10950, 10952), False, 'import datetime\n'), ((11036, 11059), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (11057, 11059), False, 'import datetime\n'), ((12022, 12045), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (12043, 12045), False, 'import datetime\n'), ((12126, 12149), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (12147, 12149), False, 'import datetime\n')]
import netCDF4 import bisect import warnings from collections import OrderedDict import numpy as np from kid_readout.roach.tools import ntone_power_correction import kid_readout.analysis.timeseries.fftfilt from kid_readout.measurement.io.data_block import lpf import kid_readout.roach.tools class TimestreamGroup(object): def __init__(self,ncgroup, parent=None): self.parent = parent keys = ncgroup.variables.keys() keys.remove('data') keys.remove('dt') keys.remove('fs') keys.remove('tone') keys.remove('nsamp') for key in keys: setattr(self,key,ncgroup.variables[key][:]) required_keys = ['wavenorm', 'sweep_index'] for key in required_keys: if key not in keys: setattr(self,key,None) # self.epoch = ncgroup.variables['epoch'][:] self.tonebin = ncgroup.variables['tone'][:] self.tone_nsamp = ncgroup.variables['nsamp'][:] # self.fftbin = ncgroup.variables['fftbin'][:] # self.nfft = ncgroup.variables['nfft'][:] # self.dt = ncgroup.variables['dt'][:] # the dt property is actually misleading at this point, so leaving it out self.adc_sampling_freq = ncgroup.variables['fs'][:] self.baseband_measurement_freq = self.adc_sampling_freq*self.tonebin/(1.0*self.tone_nsamp) if self.parent.heterodyne: self.baseband_measurement_freq = np.where(self.baseband_measurement_freq>=self.adc_sampling_freq/2, self.baseband_measurement_freq-self.adc_sampling_freq, self.baseband_measurement_freq) self.measurement_freq = self.lo + self.baseband_measurement_freq self.sample_rate = self.adc_sampling_freq*1e6/(self.nfft) else: self.measurement_freq = self.baseband_measurement_freq self.sample_rate = self.adc_sampling_freq*1e6/(2*self.nfft) # if ncgroup.variables.has_key('wavenorm'): # self.wavenorm = ncgroup.variables['wavenorm'][:] # else: # self.wavenorm = None # if ncgroup.variables.has_key('sweep_index'): # self.sweep_index = ncgroup.variables['sweep_index'][:] # else: # self.sweep_index = None if self.parent is not None: self.modulation_duty_cycle = np.zeros_like(self.epoch) self.modulation_phase = np.zeros_like(self.epoch) self.modulation_freq = np.zeros_like(self.epoch) self.modulation_period_samples = np.zeros_like(self.epoch) for index in range(len(self.epoch)): out, rate = self.parent.get_modulation_state_at(self.epoch[index]) if out == 2: self.modulation_duty_cycle[index] = 0.5 self.modulation_freq[index] = self.sample_rate[index]/2.**rate self.modulation_period_samples[index] = 2.**rate else: self.modulation_duty_cycle[index] = out self.modulation_freq[index] = 0.0 self.modulation_period_samples[index] = 0.0 self._data = ncgroup.variables['data'] self.num_data_samples = self._data.shape[1] self.data_len_seconds = self.num_data_samples/self.sample_rate self._datacache = None @property def data(self): if self._datacache is None: if self.wavenorm is None: wavenorm = 1.0 warnings.warn("wave normalization not found, time series will not match sweep") else: wavenorm = self.wavenorm[:,None] self._datacache = self._data[:].view(self._data.datatype.name)*wavenorm return self._datacache def get_data_index(self,index): if self._datacache is None: if self.wavenorm is None: wavenorm = 1.0 warnings.warn("wave normalization not found, time series will not match sweep") else: wavenorm = self.wavenorm[index] return self._data[index].view(self._data.datatype.name)*wavenorm else: return self._datacache[index] class SweepGroup(object): def __init__(self,ncgroup, parent=None): self.parent = parent self.frequency = ncgroup.variables['frequency'][:] self.s21 = ncgroup.variables['s21'][:].view(ncgroup.variables['s21'].datatype.name) self.index = ncgroup.variables['index'][:] self.timestream_group = TimestreamGroup(ncgroup.groups['datablocks'], parent=parent) self.start_epoch = self.timestream_group.epoch.min() self.end_epoch = self.timestream_group.epoch.max() @property def errors(self): return self._get_errors() def _get_errors(self,mask = None): if self.timestream_group.wavenorm is None: wavenorm = 1 else: wavenorm = self.timestream_group.wavenorm[0] if mask is None: indexes_to_calculate = np.arange(self.timestream_group.data.shape[0],dtype='int') else: indexes_to_calculate = np.flatnonzero(mask) errors = np.zeros(indexes_to_calculate.shape[0], dtype='complex') for output_index,input_index in enumerate(indexes_to_calculate): filtered = kid_readout.analysis.timeseries.fftfilt.fftfilt(lpf, self.timestream_group.data[input_index, :])[len(lpf):] # the standard deviation is scaled by the number of independent samples # to compute the error on the mean. error_scaling = np.sqrt(float(len(filtered))/len(lpf)) real_error = filtered.real.std()/error_scaling imag_error = filtered.imag.std()/error_scaling errors[output_index] = real_error + 1j*imag_error return errors def select_by_index(self,index): mask = self.index == index freq,s21,errors = self.frequency[mask], self.s21[mask], self._get_errors(mask) order = freq.argsort() return freq[order], s21[order], errors[order] def select_by_frequency(self,freq): findex = np.argmin(abs(self.frequency - freq)) index = self.index[findex] return self.select_by_index(index) class ReadoutNetCDF(object): def __init__(self,filename): self.filename = filename self.ncroot = netCDF4.Dataset(filename,mode='r') hwgroup = self.ncroot.groups['hw_state'] self.hardware_state_epoch = hwgroup.variables['epoch'][:] self.adc_atten = hwgroup.variables['adc_atten'][:] self.dac_atten = hwgroup.variables['dac_atten'][:] try: self.heterodyne = bool(self.ncroot.heterodyne) except AttributeError: self.heterodyne = False if 'ntones' in hwgroup.variables: self.num_tones = hwgroup.variables['ntones'][:] else: self.num_tones = None for key in ['modulation_rate', 'modulation_output']: if key in hwgroup.variables: self.__setattr__(key,hwgroup.variables[key][:]) else: self.__setattr__(key,None) try: self.gitinfo = self.ncroot.gitinfo except AttributeError: self.gitinfo = '' try: self.boffile = self.ncroot.boffile except AttributeError: self.boffile = '' try: self.mmw_atten_turns = self.ncroot.mmw_atten_turns except AttributeError: self.mmw_atten_turns = (np.nan,np.nan) self.sweeps_dict = OrderedDict() self.timestreams_dict = OrderedDict() for name,group in self.ncroot.groups['sweeps'].groups.items(): self.sweeps_dict[name] = SweepGroup(group, parent=self) self.__setattr__(name,self.sweeps_dict[name]) self.sweeps = self.sweeps_dict.values() for name,group in self.ncroot.groups['timestreams'].groups.items(): self.timestreams_dict[name] = TimestreamGroup(group, parent=self) self.__setattr__(name,self.timestreams_dict[name]) self.timestreams = self.timestreams_dict.values() def close(self): self.ncroot.close() def get_delay_estimate(self): if self.boffile == '': try: nfft = self.sweeps[0].timestream_group.nfft[0] except IndexError: raise Exception("could not find any means to estimate the delay for %s" % self.filename) return kid_readout.roach.tools.get_delay_estimate_for_nfft(nfft) else: return kid_readout.roach.tools.get_delay_estimate_for_boffile(self.boffile) def _get_hwstate_index_at(self,epoch): """ Find the index of the hardware state arrays corresponding to the hardware state at a given epoch :param epoch: unix timestamp :return: """ index = bisect.bisect_left(self.hardware_state_epoch, epoch) # find the index of the epoch immediately preceding the desired epoch index = index - 1 if index < 0: index = 0 return index def get_effective_dac_atten_at(self,epoch): """ Get the dac attenuator value and total signal attenuation at a given time :param epoch: unix timestamp :return: dac attenuator in dB, total attenuation in dB """ index = self._get_hwstate_index_at(epoch) dac_atten = self.dac_atten[index] if self.num_tones is not None: ntones = self.num_tones[index] else: ntones = 1 warnings.warn("ntones parameter not found in data file %s, assuming 1. The effective power level may be wrong" % self.filename) total = dac_atten + ntone_power_correction(ntones) return dac_atten, total def get_modulation_state_at(self,epoch): """ Get the source modulation TTL output state at a given time :param epoch: unix timestamp :return: modulation output state: 0 -> low, 1 -> high, 2 -> modulated modulation rate parameter: FIXME """ if self.modulation_rate is None: return 0,0 index = self._get_hwstate_index_at(epoch) modulation_rate = self.modulation_rate[index] modulation_output = self.modulation_output[index] return modulation_output, modulation_rate
[ "netCDF4.Dataset", "numpy.zeros_like", "numpy.flatnonzero", "numpy.zeros", "kid_readout.roach.tools.ntone_power_correction", "numpy.where", "numpy.arange", "collections.OrderedDict", "warnings.warn", "bisect.bisect_left" ]
[((5280, 5336), 'numpy.zeros', 'np.zeros', (['indexes_to_calculate.shape[0]'], {'dtype': '"""complex"""'}), "(indexes_to_calculate.shape[0], dtype='complex')\n", (5288, 5336), True, 'import numpy as np\n'), ((6564, 6599), 'netCDF4.Dataset', 'netCDF4.Dataset', (['filename'], {'mode': '"""r"""'}), "(filename, mode='r')\n", (6579, 6599), False, 'import netCDF4\n'), ((7792, 7805), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (7803, 7805), False, 'from collections import OrderedDict\n'), ((7838, 7851), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (7849, 7851), False, 'from collections import OrderedDict\n'), ((9125, 9177), 'bisect.bisect_left', 'bisect.bisect_left', (['self.hardware_state_epoch', 'epoch'], {}), '(self.hardware_state_epoch, epoch)\n', (9143, 9177), False, 'import bisect\n'), ((1438, 1607), 'numpy.where', 'np.where', (['(self.baseband_measurement_freq >= self.adc_sampling_freq / 2)', '(self.baseband_measurement_freq - self.adc_sampling_freq)', 'self.baseband_measurement_freq'], {}), '(self.baseband_measurement_freq >= self.adc_sampling_freq / 2, self\n .baseband_measurement_freq - self.adc_sampling_freq, self.\n baseband_measurement_freq)\n', (1446, 1607), True, 'import numpy as np\n'), ((2414, 2439), 'numpy.zeros_like', 'np.zeros_like', (['self.epoch'], {}), '(self.epoch)\n', (2427, 2439), True, 'import numpy as np\n'), ((2476, 2501), 'numpy.zeros_like', 'np.zeros_like', (['self.epoch'], {}), '(self.epoch)\n', (2489, 2501), True, 'import numpy as np\n'), ((2537, 2562), 'numpy.zeros_like', 'np.zeros_like', (['self.epoch'], {}), '(self.epoch)\n', (2550, 2562), True, 'import numpy as np\n'), ((2608, 2633), 'numpy.zeros_like', 'np.zeros_like', (['self.epoch'], {}), '(self.epoch)\n', (2621, 2633), True, 'import numpy as np\n'), ((5134, 5193), 'numpy.arange', 'np.arange', (['self.timestream_group.data.shape[0]'], {'dtype': '"""int"""'}), "(self.timestream_group.data.shape[0], dtype='int')\n", (5143, 5193), True, 'import numpy as np\n'), ((5242, 5262), 'numpy.flatnonzero', 'np.flatnonzero', (['mask'], {}), '(mask)\n', (5256, 5262), True, 'import numpy as np\n'), ((9817, 9954), 'warnings.warn', 'warnings.warn', (["('ntones parameter not found in data file %s, assuming 1. The effective power level may be wrong'\n % self.filename)"], {}), "(\n 'ntones parameter not found in data file %s, assuming 1. The effective power level may be wrong'\n % self.filename)\n", (9830, 9954), False, 'import warnings\n'), ((9973, 10003), 'kid_readout.roach.tools.ntone_power_correction', 'ntone_power_correction', (['ntones'], {}), '(ntones)\n', (9995, 10003), False, 'from kid_readout.roach.tools import ntone_power_correction\n'), ((3573, 3652), 'warnings.warn', 'warnings.warn', (['"""wave normalization not found, time series will not match sweep"""'], {}), "('wave normalization not found, time series will not match sweep')\n", (3586, 3652), False, 'import warnings\n'), ((3997, 4076), 'warnings.warn', 'warnings.warn', (['"""wave normalization not found, time series will not match sweep"""'], {}), "('wave normalization not found, time series will not match sweep')\n", (4010, 4076), False, 'import warnings\n')]
import os import csv from PIL import Image import numpy as np import torch import torch.utils.data as data from torchvision import datasets, transforms import params class COVID19_Dataset(Dataset): """ COVID-19 image data collection Dataset: https://github.com/ieee8023/covid-chestxray-dataset Paper: https://arxiv.org/abs/2003.11597 """ def __init__(self, imgpath=os.path.join(thispath, "covid-chestxray-dataset", "images"), csvpath=os.path.join(thispath, "covid-chestxray-dataset", "metadata.csv"), views=["PA", "AP"], transform=None, data_aug=None, nrows=None, seed=0, pure_labels=False, unique_patients=True): super(COVID19_Dataset, self).__init__() np.random.seed(seed) # Reset the seed so all runs are the same. self.imgpath = imgpath self.transform = transform self.data_aug = data_aug self.views = views # defined here to make the code easier to read pneumonias = ["COVID-19", "SARS", "MERS", "ARDS", "Streptococcus", "Pneumocystis", "Klebsiella", "Chlamydophila", "Legionella", "Influenza", "Mycoplasma", "Varicella", "Viral", "Bacterial", "Fungal", "Lipoid","E.Coli"] self.pathologies = ["Pneumonia","No Finding"] + pneumonias self.pathologies = sorted(self.pathologies) mapping = dict() mapping["Pneumonia"] = pneumonias mapping["Viral"] = ["COVID-19", "SARS", "MERS", "Influenza", "Varicella"] mapping["Bacterial"] = ["Streptococcus", "Klebsiella", "Chlamydophila", "Legionella", "Mycoplasma","E.Coli"] mapping["Fungal"] = ["Pneumocystis"] # Load data self.csvpath = csvpath self.csv = pd.read_csv(self.csvpath, nrows=nrows) self.MAXVAL = 255 # Range [0 255] # Keep only the frontal views. #idx_pa = self.csv["view"].isin(["PA", "AP", "AP Supine"]) idx_pa = self.csv["view"].isin(self.views) self.csv = self.csv[idx_pa] self.labels = [] for pathology in self.pathologies: mask = self.csv["finding"].str.contains(pathology) if pathology in mapping: for syn in mapping[pathology]: #print("mapping", syn) mask |= self.csv["finding"].str.contains(syn) self.labels.append(mask.values) self.labels = np.asarray(self.labels).T self.labels = self.labels.astype(np.float32) def __repr__(self): pprint.pprint(self.totals()) return self.__class__.__name__ + " num_samples={} views={}".format(len(self), self.views) def __len__(self): return len(self.labels) def __getitem__(self, idx): imgid = self.csv['filename'].iloc[idx] img_path = os.path.join(self.imgpath, imgid) #print(img_path) img = imread(img_path) img = normalize(img, self.MAXVAL) # Check that images are 2D arrays if len(img.shape) > 2: img = img[:, :, 0] if len(img.shape) < 2: print("error, dimension lower than 2 for image") # Add color channel img = img[None, :, :] if self.transform is not None: img = self.transform(img) if self.data_aug is not None: img = self.data_aug(img) return {"img":img, "lab":self.labels[idx], "idx":idx}
[ "numpy.random.seed", "numpy.asarray", "os.path.join" ]
[((422, 481), 'os.path.join', 'os.path.join', (['thispath', '"""covid-chestxray-dataset"""', '"""images"""'], {}), "(thispath, 'covid-chestxray-dataset', 'images')\n", (434, 481), False, 'import os\n'), ((509, 574), 'os.path.join', 'os.path.join', (['thispath', '"""covid-chestxray-dataset"""', '"""metadata.csv"""'], {}), "(thispath, 'covid-chestxray-dataset', 'metadata.csv')\n", (521, 574), False, 'import os\n'), ((870, 890), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (884, 890), True, 'import numpy as np\n'), ((2944, 2977), 'os.path.join', 'os.path.join', (['self.imgpath', 'imgid'], {}), '(self.imgpath, imgid)\n', (2956, 2977), False, 'import os\n'), ((2546, 2569), 'numpy.asarray', 'np.asarray', (['self.labels'], {}), '(self.labels)\n', (2556, 2569), True, 'import numpy as np\n')]
''' Created on Mar 13, 2012 .. codeauthor:: jhkwakkel <j.h.kwakkel (at) tudelft (dot) nl> ''' import unittest import numpy as np import pandas as pd from ema_workbench.analysis import prim from ema_workbench.analysis.prim import PrimBox from test import utilities from ema_workbench.analysis.scenario_discovery_util import RuleInductionType def flu_classify(data): #get the output for deceased population result = data['deceased population region 1'] #make an empty array of length equal to number of cases classes = np.zeros(result.shape[0]) #if deceased population is higher then 1.000.000 people, classify as 1 classes[result[:, -1] > 1000000] = 1 return classes def scarcity_classify(outcomes): outcome = outcomes['relative market price'] change = np.abs(outcome[:, 1::]-outcome[:, 0:-1]) neg_change = np.min(change, axis=1) pos_change = np.max(change, axis=1) logical = (neg_change > -0.6) & (pos_change > 0.6) classes = np.zeros(outcome.shape[0]) classes[logical] = 1 return classes class PrimBoxTestCase(unittest.TestCase): def test_init(self): x = pd.DataFrame([(0,1,2), (2,5,6), (3,2,1)], columns=['a', 'b', 'c']) y = {'y':np.array([0,1,2])} results = (x,y) prim_obj = prim.setup_prim(results, 'y', threshold=0.8) box = PrimBox(prim_obj, prim_obj.box_init, prim_obj.yi) self.assertEqual(box.peeling_trajectory.shape, (1,6)) def test_select(self): x = pd.DataFrame([(0,1,2), (2,5,6), (3,2,1)], columns=['a', 'b', 'c']) y = {'y':np.array([1,1,0])} results = (x,y) prim_obj = prim.setup_prim(results, 'y', threshold=0.8) box = PrimBox(prim_obj, prim_obj.box_init, prim_obj.yi) new_box_lim = pd.DataFrame([(0,1,1), (2,5,6)], columns=['a', 'b', 'c']) indices = np.array([0,1], dtype=np.int) box.update(new_box_lim, indices) box.select(0) self.assertTrue(np.all(box.yi==prim_obj.yi)) def test_inspect(self): x = pd.DataFrame([(0,1,2), (2,5,6), (3,2,1)], columns=['a', 'b', 'c']) y = np.array([1,1,0]) prim_obj = prim.Prim(x, y, threshold=0.8) box = PrimBox(prim_obj, prim_obj.box_init, prim_obj.yi) new_box_lim = pd.DataFrame([(0,1,1), (2,5,6)], columns=['a', 'b', 'c']) indices = np.array([0,1], dtype=np.int) box.update(new_box_lim, indices) box.inspect(1) box.inspect() box.inspect(style='graph') with self.assertRaises(ValueError): box.inspect(style='some unknown style') def test_show_ppt(self): x = pd.DataFrame([(0,1,2), (2,5,6), (3,2,1)], columns=['a', 'b', 'c']) y = np.array([1,1,0]) prim_obj = prim.Prim(x, y, threshold=0.8) box = PrimBox(prim_obj, prim_obj.box_init, prim_obj.yi) cols = ['mean', 'mass', 'coverage', 'density', 'res_dim'] data = np.zeros((100, 5)) data[:, 0:4] = np.random.rand(100, 4) data[:, 4] = np.random.randint(0, 5, size=(100, )) box.peeling_trajectory = pd.DataFrame(data, columns=cols) box.show_ppt() def test_show_tradeoff(self): x = pd.DataFrame([(0,1,2), (2,5,6), (3,2,1)], columns=['a', 'b', 'c']) y = np.array([1,1,0]) prim_obj = prim.Prim(x, y, threshold=0.8) box = PrimBox(prim_obj, prim_obj.box_init, prim_obj.yi) cols = ['mean', 'mass', 'coverage', 'density', 'res_dim'] data = np.zeros((100, 5)) data[:, 0:4] = np.random.rand(100, 4) data[:, 4] = np.random.randint(0, 5, size=(100, )) box.peeling_trajectory = pd.DataFrame(data, columns=cols) box.show_tradeoff() def test_update(self): x = pd.DataFrame([(0,1,2), (2,5,6), (3,2,1)], columns=['a', 'b', 'c']) y = {'y':np.array([1,1,0])} results = (x,y) prim_obj = prim.setup_prim(results, 'y', threshold=0.8) box = PrimBox(prim_obj, prim_obj.box_init, prim_obj.yi) new_box_lim = pd.DataFrame([(0,1,1), (2,5,6)], columns=['a', 'b', 'c']) indices = np.array([0,1], dtype=np.int) box.update(new_box_lim, indices) self.assertEqual(box.peeling_trajectory['mean'][1], 1) self.assertEqual(box.peeling_trajectory['coverage'][1], 1) self.assertEqual(box.peeling_trajectory['density'][1], 1) self.assertEqual(box.peeling_trajectory['res_dim'][1], 1) self.assertEqual(box.peeling_trajectory['mass'][1], 2/3) def test_drop_restriction(self): x = pd.DataFrame([(0,1,2), (2,5,6), (3,2,1)], columns=['a', 'b', 'c']) y = {'y':np.array([1,1,0])} results = (x,y) prim_obj = prim.setup_prim(results, 'y', threshold=0.8) box = PrimBox(prim_obj, prim_obj.box_init, prim_obj.yi) new_box_lim = pd.DataFrame([(0,1,1), (2,2,6)], columns=['a', 'b', 'c']) indices = np.array([0,1], dtype=np.int) box.update(new_box_lim, indices) box.drop_restriction('b') correct_box_lims = pd.DataFrame([(0,1,1), (2,5,6)], columns=['a', 'b', 'c']) box_lims = box.box_lims[-1] names = box_lims.columns for entry in names: lim_correct = correct_box_lims[entry] lim_box = box_lims[entry] for i in range(len(lim_correct)): self.assertEqual(lim_correct[i], lim_box[i]) self.assertEqual(box.peeling_trajectory['mean'][2], 1) self.assertEqual(box.peeling_trajectory['coverage'][2], 1) self.assertEqual(box.peeling_trajectory['density'][2], 1) self.assertEqual(box.peeling_trajectory['res_dim'][2], 1) self.assertEqual(box.peeling_trajectory['mass'][2], 2/3) def test_calculate_quasi_p(self): pass class PrimTestCase(unittest.TestCase): def test_setup_prim(self): self.results = utilities.load_flu_data() self.classify = flu_classify experiments, outcomes = self.results # test initialization, including t_coi calculation in case of searching # for results equal to or higher than the threshold outcomes['death toll'] = outcomes['deceased population region 1'][:, -1] results = experiments, outcomes threshold = 10000 prim_obj = prim.setup_prim(results, classify='death toll', threshold_type=prim.ABOVE, threshold=threshold) value = np.ones((experiments.shape[0],)) value = value[outcomes['death toll'] >= threshold].shape[0] self.assertTrue(prim_obj.t_coi==value) # test initialization, including t_coi calculation in case of searching # for results equal to or lower than the threshold threshold = 1000 prim_obj = prim.setup_prim(results, classify='death toll', threshold_type=prim.BELOW, threshold=threshold) value = np.ones((experiments.shape[0],)) value = value[outcomes['death toll'] <= threshold].shape[0] self.assertTrue(prim_obj.t_coi==value) prim.setup_prim(self.results, self.classify, threshold=prim.ABOVE) def test_boxes(self): x = pd.DataFrame([(0,1,2), (2,5,6), (3,2,1)], columns=['a', 'b', 'c']) y = {'y':np.array([0,1,2])} results = (x,y) prim_obj = prim.setup_prim(results, 'y', threshold=0.8) boxes = prim_obj.boxes self.assertEqual(len(boxes), 1, 'box length not correct') # real data test case prim_obj = prim.setup_prim(utilities.load_flu_data(), flu_classify, threshold=0.8) prim_obj.find_box() boxes = prim_obj.boxes self.assertEqual(len(boxes), 1, 'box length not correct') def test_prim_init_select(self): self.results = utilities.load_flu_data() self.classify = flu_classify experiments, outcomes = self.results unc = experiments.columns.values.tolist() # test initialization, including t_coi calculation in case of searching # for results equal to or higher than the threshold outcomes['death toll'] = outcomes['deceased population region 1'][:, -1] results = experiments, outcomes threshold = 10000 prim_obj = prim.setup_prim(results, classify='death toll', threshold_type=prim.ABOVE, threshold=threshold, incl_unc=unc) value = np.ones((experiments.shape[0],)) value = value[outcomes['death toll'] >= threshold].shape[0] self.assertTrue(prim_obj.t_coi==value) # test initialization, including t_coi calculation in case of searching # for results equal to or lower than the threshold threshold = 1000 prim_obj = prim.setup_prim(results, classify='death toll', threshold_type=prim.BELOW, threshold=threshold) value = np.ones((experiments.shape[0],)) value = value[outcomes['death toll'] <= threshold].shape[0] self.assertTrue(prim_obj.t_coi==value) prim.setup_prim(self.results, self.classify, threshold=prim.ABOVE) def test_quantile(self): data = pd.Series(np.arange(10)) self.assertTrue(prim.get_quantile(data, 0.9)==8.5) self.assertTrue(prim.get_quantile(data, 0.95)==8.5) self.assertTrue(prim.get_quantile(data, 0.1)==0.5) self.assertTrue(prim.get_quantile(data, 0.05)==0.5) data = pd.Series(1) self.assertTrue(prim.get_quantile(data, 0.9)==1) self.assertTrue(prim.get_quantile(data, 0.95)==1) self.assertTrue(prim.get_quantile(data, 0.1)==1) self.assertTrue(prim.get_quantile(data, 0.05)==1) data = pd.Series([1,1,2,3,4,5,6,7,8,9,9]) self.assertTrue(prim.get_quantile(data, 0.9)==8.5) self.assertTrue(prim.get_quantile(data, 0.95)==8.5) self.assertTrue(prim.get_quantile(data, 0.1)==1.5) self.assertTrue(prim.get_quantile(data, 0.05)==1.5) def test_box_init(self): # test init box without NANS x = pd.DataFrame([(0,1,2), (2,5,6), (3,2,7)], columns=['a', 'b', 'c']) y = np.array([0,1,2]) prim_obj = prim.Prim(x,y, threshold=0.5, mode=RuleInductionType.REGRESSION) box_init = prim_obj.box_init # some test on the box self.assertTrue(box_init.loc[0, 'a']==0) self.assertTrue(box_init.loc[1, 'a']==3) self.assertTrue(box_init.loc[0, 'b']==1) self.assertTrue(box_init.loc[1, 'b']==5) self.assertTrue(box_init.loc[0, 'c']==2) self.assertTrue(box_init.loc[1, 'c']==7) # heterogenous without NAN x = pd.DataFrame([[0.1, 0, 'a'], [0.2, 1, 'b'], [0.3, 2, 'a'], [0.4, 3, 'b'], [0.5, 4, 'a'], [0.6, 5, 'a'], [0.7, 6, 'b'], [0.8, 7, 'a'], [0.9, 8, 'b'], [1.0, 9, 'a']], columns=['a', 'b', 'c']) y = np.arange(0, x.shape[0]) prim_obj = prim.Prim(x,y, threshold=0.5, mode=RuleInductionType.REGRESSION) box_init = prim_obj.box_init # some test on the box self.assertTrue(box_init['a'][0]==0.1) self.assertTrue(box_init['a'][1]==1.0) self.assertTrue(box_init['b'][0]==0) self.assertTrue(box_init['b'][1]==9) self.assertTrue(box_init['c'][0]==set(['a','b'])) self.assertTrue(box_init['c'][1]==set(['a','b'])) def test_prim_exceptions(self): results = utilities.load_flu_data() x, outcomes = results y = outcomes['deceased population region 1'] self.assertRaises(prim.PrimException, prim.Prim, x, y, threshold=0.8, mode=RuleInductionType.REGRESSION) def test_find_box(self): results = utilities.load_flu_data() classify = flu_classify prim_obj = prim.setup_prim(results, classify, threshold=0.8) box_1 = prim_obj.find_box() prim_obj._update_yi_remaining(prim_obj) after_find = box_1.yi.shape[0] + prim_obj.yi_remaining.shape[0] self.assertEqual(after_find, prim_obj.y.shape[0]) box_2 = prim_obj.find_box() prim_obj._update_yi_remaining(prim_obj) after_find = box_1.yi.shape[0] +\ box_2.yi.shape[0] +\ prim_obj.yi_remaining.shape[0] self.assertEqual(after_find, prim_obj.y.shape[0]) def test_discrete_peel(self): x = pd.DataFrame(np.random.randint(0, 10, size=(100,), dtype=np.int), columns=['a']) y = np.zeros(100,) y[x.a > 5] = 1 primalg = prim.Prim(x, y, threshold=0.8) boxlims = primalg.box_init box = prim.PrimBox(primalg, boxlims, primalg.yi) peels = primalg._discrete_peel(box, 'a', 0, primalg.x_int) self.assertEqual(len(peels), 2) for peel in peels: self.assertEqual(len(peel), 2) indices, tempbox = peel self.assertTrue(isinstance(indices, np.ndarray)) self.assertTrue(isinstance(tempbox, pd.DataFrame)) # have modified boxlims as starting point primalg = prim.Prim(x, y, threshold=0.8) boxlims = primalg.box_init boxlims.a = [1,8] box = prim.PrimBox(primalg, boxlims, primalg.yi) peels = primalg._discrete_peel(box, 'a', 0, primalg.x_int) self.assertEqual(len(peels), 2) for peel in peels: self.assertEqual(len(peel), 2) indices, tempbox = peel self.assertTrue(isinstance(indices, np.ndarray)) self.assertTrue(isinstance(tempbox, pd.DataFrame)) # have modified boxlims as starting point x.a[x.a>5] = 5 primalg = prim.Prim(x, y, threshold=0.8) boxlims = primalg.box_init boxlims.a = [5,8] box = prim.PrimBox(primalg, boxlims, primalg.yi) peels = primalg._discrete_peel(box, 'a', 0, primalg.x_int) self.assertEqual(len(peels), 2) x.a[x.a<5] = 5 primalg = prim.Prim(x, y, threshold=0.8) boxlims = primalg.box_init boxlims.a = [5,8] box = prim.PrimBox(primalg, boxlims, primalg.yi) peels = primalg._discrete_peel(box, 'a', 0, primalg.x_int) self.assertEqual(len(peels), 2) def test_categorical_peel(self): x = pd.DataFrame(list(zip(np.random.rand(10,), ['a','b','a','b','a','a','b','a','b','a', ])), columns=['a', 'b']) y = np.random.randint(0,2, (10,)) y = y.astype(np.int) y = {'y':y} results = x, y classify = 'y' prim_obj = prim.setup_prim(results, classify, threshold=0.8) box_lims = pd.DataFrame([(0, set(['a','b'])), (1, set(['a','b']))], columns=['a', 'b'] ) box = prim.PrimBox(prim_obj, box_lims, prim_obj.yi) u = 'b' x = x.select_dtypes(exclude=np.number).values j = 0 peels = prim_obj._categorical_peel(box, u, j, x) self.assertEqual(len(peels), 2) for peel in peels: pl = peel[1][u] self.assertEqual(len(pl[0]), 1) self.assertEqual(len(pl[1]), 1) a = ('a',) b = ('b',) x = pd.DataFrame(list(zip(np.random.rand(10,), [a, b, a, b, a, a, b, a, b, a])), columns=['a', 'b']) y = np.random.randint(0,2, (10,)) y = y.astype(np.int) y = {'y':y} results = x, y classify = 'y' prim_obj = prim.setup_prim(results, classify, threshold=0.8) box_lims = prim_obj.box_init box = prim.PrimBox(prim_obj, box_lims, prim_obj.yi) u = 'b' x = x.select_dtypes(exclude=np.number).values j = 0 peels = prim_obj._categorical_peel(box, u, j, x) self.assertEqual(len(peels), 2) for peel in peels: pl = peel[1][u] self.assertEqual(len(pl[0]), 1) self.assertEqual(len(pl[1]), 1) def test_categorical_paste(self): a = np.random.rand(10,) b = ['a','b','a','b','a','a','b','a','b','a', ] x = pd.DataFrame(list(zip(a,b)), columns=['a', 'b']) x['b'] = x['b'].astype('category') y = np.random.randint(0,2, (10,)) y = y.astype(np.int) y = {'y':y} results = x,y classify = 'y' prim_obj = prim.setup_prim(results, classify, threshold=0.8) box_lims = pd.DataFrame([(0, set(['a',])), (1, set(['a',]))], columns=x.columns) yi = np.where(x.loc[:,'b']=='a') box = prim.PrimBox(prim_obj, box_lims, yi) u = 'b' pastes = prim_obj._categorical_paste(box, u, x, ['b']) self.assertEqual(len(pastes), 1) for paste in pastes: indices, box_lims = paste self.assertEqual(indices.shape[0], 10) self.assertEqual(box_lims[u][0], set(['a','b'])) if __name__ == '__main__': # ema_logging.log_to_stderr(ema_logging.INFO) unittest.main() # suite = unittest.TestSuite() # suite.addTest(PrimTestCase("test_write_boxes_to_stdout")) # unittest.TextTestRunner().run(suite)
[ "test.utilities.load_flu_data", "numpy.abs", "numpy.ones", "ema_workbench.analysis.prim.PrimBox", "numpy.random.randint", "numpy.arange", "unittest.main", "pandas.DataFrame", "ema_workbench.analysis.prim.Prim", "numpy.max", "ema_workbench.analysis.prim.setup_prim", "numpy.min", "pandas.Series", "numpy.all", "numpy.zeros", "numpy.where", "numpy.array", "ema_workbench.analysis.prim.get_quantile", "numpy.random.rand" ]
[((546, 571), 'numpy.zeros', 'np.zeros', (['result.shape[0]'], {}), '(result.shape[0])\n', (554, 571), True, 'import numpy as np\n'), ((813, 854), 'numpy.abs', 'np.abs', (['(outcome[:, 1:] - outcome[:, 0:-1])'], {}), '(outcome[:, 1:] - outcome[:, 0:-1])\n', (819, 854), True, 'import numpy as np\n'), ((876, 898), 'numpy.min', 'np.min', (['change'], {'axis': '(1)'}), '(change, axis=1)\n', (882, 898), True, 'import numpy as np\n'), ((916, 938), 'numpy.max', 'np.max', (['change'], {'axis': '(1)'}), '(change, axis=1)\n', (922, 938), True, 'import numpy as np\n'), ((1018, 1044), 'numpy.zeros', 'np.zeros', (['outcome.shape[0]'], {}), '(outcome.shape[0])\n', (1026, 1044), True, 'import numpy as np\n'), ((19557, 19572), 'unittest.main', 'unittest.main', ([], {}), '()\n', (19570, 19572), False, 'import unittest\n'), ((1175, 1247), 'pandas.DataFrame', 'pd.DataFrame', (['[(0, 1, 2), (2, 5, 6), (3, 2, 1)]'], {'columns': "['a', 'b', 'c']"}), "([(0, 1, 2), (2, 5, 6), (3, 2, 1)], columns=['a', 'b', 'c'])\n", (1187, 1247), True, 'import pandas as pd\n'), ((1409, 1453), 'ema_workbench.analysis.prim.setup_prim', 'prim.setup_prim', (['results', '"""y"""'], {'threshold': '(0.8)'}), "(results, 'y', threshold=0.8)\n", (1424, 1453), False, 'from ema_workbench.analysis import prim\n'), ((1468, 1517), 'ema_workbench.analysis.prim.PrimBox', 'PrimBox', (['prim_obj', 'prim_obj.box_init', 'prim_obj.yi'], {}), '(prim_obj, prim_obj.box_init, prim_obj.yi)\n', (1475, 1517), False, 'from ema_workbench.analysis.prim import PrimBox\n'), ((1625, 1697), 'pandas.DataFrame', 'pd.DataFrame', (['[(0, 1, 2), (2, 5, 6), (3, 2, 1)]'], {'columns': "['a', 'b', 'c']"}), "([(0, 1, 2), (2, 5, 6), (3, 2, 1)], columns=['a', 'b', 'c'])\n", (1637, 1697), True, 'import pandas as pd\n'), ((1859, 1903), 'ema_workbench.analysis.prim.setup_prim', 'prim.setup_prim', (['results', '"""y"""'], {'threshold': '(0.8)'}), "(results, 'y', threshold=0.8)\n", (1874, 1903), False, 'from ema_workbench.analysis import prim\n'), ((1918, 1967), 'ema_workbench.analysis.prim.PrimBox', 'PrimBox', (['prim_obj', 'prim_obj.box_init', 'prim_obj.yi'], {}), '(prim_obj, prim_obj.box_init, prim_obj.yi)\n', (1925, 1967), False, 'from ema_workbench.analysis.prim import PrimBox\n'), ((1991, 2052), 'pandas.DataFrame', 'pd.DataFrame', (['[(0, 1, 1), (2, 5, 6)]'], {'columns': "['a', 'b', 'c']"}), "([(0, 1, 1), (2, 5, 6)], columns=['a', 'b', 'c'])\n", (2003, 2052), True, 'import pandas as pd\n'), ((2140, 2170), 'numpy.array', 'np.array', (['[0, 1]'], {'dtype': 'np.int'}), '([0, 1], dtype=np.int)\n', (2148, 2170), True, 'import numpy as np\n'), ((2340, 2412), 'pandas.DataFrame', 'pd.DataFrame', (['[(0, 1, 2), (2, 5, 6), (3, 2, 1)]'], {'columns': "['a', 'b', 'c']"}), "([(0, 1, 2), (2, 5, 6), (3, 2, 1)], columns=['a', 'b', 'c'])\n", (2352, 2412), True, 'import pandas as pd\n'), ((2498, 2517), 'numpy.array', 'np.array', (['[1, 1, 0]'], {}), '([1, 1, 0])\n', (2506, 2517), True, 'import numpy as np\n'), ((2544, 2574), 'ema_workbench.analysis.prim.Prim', 'prim.Prim', (['x', 'y'], {'threshold': '(0.8)'}), '(x, y, threshold=0.8)\n', (2553, 2574), False, 'from ema_workbench.analysis import prim\n'), ((2589, 2638), 'ema_workbench.analysis.prim.PrimBox', 'PrimBox', (['prim_obj', 'prim_obj.box_init', 'prim_obj.yi'], {}), '(prim_obj, prim_obj.box_init, prim_obj.yi)\n', (2596, 2638), False, 'from ema_workbench.analysis.prim import PrimBox\n'), ((2662, 2723), 'pandas.DataFrame', 'pd.DataFrame', (['[(0, 1, 1), (2, 5, 6)]'], {'columns': "['a', 'b', 'c']"}), "([(0, 1, 1), (2, 5, 6)], columns=['a', 'b', 'c'])\n", (2674, 2723), True, 'import pandas as pd\n'), ((2811, 2841), 'numpy.array', 'np.array', (['[0, 1]'], {'dtype': 'np.int'}), '([0, 1], dtype=np.int)\n', (2819, 2841), True, 'import numpy as np\n'), ((3122, 3194), 'pandas.DataFrame', 'pd.DataFrame', (['[(0, 1, 2), (2, 5, 6), (3, 2, 1)]'], {'columns': "['a', 'b', 'c']"}), "([(0, 1, 2), (2, 5, 6), (3, 2, 1)], columns=['a', 'b', 'c'])\n", (3134, 3194), True, 'import pandas as pd\n'), ((3280, 3299), 'numpy.array', 'np.array', (['[1, 1, 0]'], {}), '([1, 1, 0])\n', (3288, 3299), True, 'import numpy as np\n'), ((3326, 3356), 'ema_workbench.analysis.prim.Prim', 'prim.Prim', (['x', 'y'], {'threshold': '(0.8)'}), '(x, y, threshold=0.8)\n', (3335, 3356), False, 'from ema_workbench.analysis import prim\n'), ((3371, 3420), 'ema_workbench.analysis.prim.PrimBox', 'PrimBox', (['prim_obj', 'prim_obj.box_init', 'prim_obj.yi'], {}), '(prim_obj, prim_obj.box_init, prim_obj.yi)\n', (3378, 3420), False, 'from ema_workbench.analysis.prim import PrimBox\n'), ((3520, 3538), 'numpy.zeros', 'np.zeros', (['(100, 5)'], {}), '((100, 5))\n', (3528, 3538), True, 'import numpy as np\n'), ((3562, 3584), 'numpy.random.rand', 'np.random.rand', (['(100)', '(4)'], {}), '(100, 4)\n', (3576, 3584), True, 'import numpy as np\n'), ((3606, 3642), 'numpy.random.randint', 'np.random.randint', (['(0)', '(5)'], {'size': '(100,)'}), '(0, 5, size=(100,))\n', (3623, 3642), True, 'import numpy as np\n'), ((3677, 3709), 'pandas.DataFrame', 'pd.DataFrame', (['data'], {'columns': 'cols'}), '(data, columns=cols)\n', (3689, 3709), True, 'import pandas as pd\n'), ((3801, 3873), 'pandas.DataFrame', 'pd.DataFrame', (['[(0, 1, 2), (2, 5, 6), (3, 2, 1)]'], {'columns': "['a', 'b', 'c']"}), "([(0, 1, 2), (2, 5, 6), (3, 2, 1)], columns=['a', 'b', 'c'])\n", (3813, 3873), True, 'import pandas as pd\n'), ((3959, 3978), 'numpy.array', 'np.array', (['[1, 1, 0]'], {}), '([1, 1, 0])\n', (3967, 3978), True, 'import numpy as np\n'), ((4005, 4035), 'ema_workbench.analysis.prim.Prim', 'prim.Prim', (['x', 'y'], {'threshold': '(0.8)'}), '(x, y, threshold=0.8)\n', (4014, 4035), False, 'from ema_workbench.analysis import prim\n'), ((4050, 4099), 'ema_workbench.analysis.prim.PrimBox', 'PrimBox', (['prim_obj', 'prim_obj.box_init', 'prim_obj.yi'], {}), '(prim_obj, prim_obj.box_init, prim_obj.yi)\n', (4057, 4099), False, 'from ema_workbench.analysis.prim import PrimBox\n'), ((4199, 4217), 'numpy.zeros', 'np.zeros', (['(100, 5)'], {}), '((100, 5))\n', (4207, 4217), True, 'import numpy as np\n'), ((4241, 4263), 'numpy.random.rand', 'np.random.rand', (['(100)', '(4)'], {}), '(100, 4)\n', (4255, 4263), True, 'import numpy as np\n'), ((4285, 4321), 'numpy.random.randint', 'np.random.randint', (['(0)', '(5)'], {'size': '(100,)'}), '(0, 5, size=(100,))\n', (4302, 4321), True, 'import numpy as np\n'), ((4356, 4388), 'pandas.DataFrame', 'pd.DataFrame', (['data'], {'columns': 'cols'}), '(data, columns=cols)\n', (4368, 4388), True, 'import pandas as pd\n'), ((4474, 4546), 'pandas.DataFrame', 'pd.DataFrame', (['[(0, 1, 2), (2, 5, 6), (3, 2, 1)]'], {'columns': "['a', 'b', 'c']"}), "([(0, 1, 2), (2, 5, 6), (3, 2, 1)], columns=['a', 'b', 'c'])\n", (4486, 4546), True, 'import pandas as pd\n'), ((4708, 4752), 'ema_workbench.analysis.prim.setup_prim', 'prim.setup_prim', (['results', '"""y"""'], {'threshold': '(0.8)'}), "(results, 'y', threshold=0.8)\n", (4723, 4752), False, 'from ema_workbench.analysis import prim\n'), ((4767, 4816), 'ema_workbench.analysis.prim.PrimBox', 'PrimBox', (['prim_obj', 'prim_obj.box_init', 'prim_obj.yi'], {}), '(prim_obj, prim_obj.box_init, prim_obj.yi)\n', (4774, 4816), False, 'from ema_workbench.analysis.prim import PrimBox\n'), ((4840, 4901), 'pandas.DataFrame', 'pd.DataFrame', (['[(0, 1, 1), (2, 5, 6)]'], {'columns': "['a', 'b', 'c']"}), "([(0, 1, 1), (2, 5, 6)], columns=['a', 'b', 'c'])\n", (4852, 4901), True, 'import pandas as pd\n'), ((4989, 5019), 'numpy.array', 'np.array', (['[0, 1]'], {'dtype': 'np.int'}), '([0, 1], dtype=np.int)\n', (4997, 5019), True, 'import numpy as np\n'), ((5450, 5522), 'pandas.DataFrame', 'pd.DataFrame', (['[(0, 1, 2), (2, 5, 6), (3, 2, 1)]'], {'columns': "['a', 'b', 'c']"}), "([(0, 1, 2), (2, 5, 6), (3, 2, 1)], columns=['a', 'b', 'c'])\n", (5462, 5522), True, 'import pandas as pd\n'), ((5684, 5728), 'ema_workbench.analysis.prim.setup_prim', 'prim.setup_prim', (['results', '"""y"""'], {'threshold': '(0.8)'}), "(results, 'y', threshold=0.8)\n", (5699, 5728), False, 'from ema_workbench.analysis import prim\n'), ((5743, 5792), 'ema_workbench.analysis.prim.PrimBox', 'PrimBox', (['prim_obj', 'prim_obj.box_init', 'prim_obj.yi'], {}), '(prim_obj, prim_obj.box_init, prim_obj.yi)\n', (5750, 5792), False, 'from ema_workbench.analysis.prim import PrimBox\n'), ((5816, 5877), 'pandas.DataFrame', 'pd.DataFrame', (['[(0, 1, 1), (2, 2, 6)]'], {'columns': "['a', 'b', 'c']"}), "([(0, 1, 1), (2, 2, 6)], columns=['a', 'b', 'c'])\n", (5828, 5877), True, 'import pandas as pd\n'), ((5965, 5995), 'numpy.array', 'np.array', (['[0, 1]'], {'dtype': 'np.int'}), '([0, 1], dtype=np.int)\n', (5973, 5995), True, 'import numpy as np\n'), ((6115, 6176), 'pandas.DataFrame', 'pd.DataFrame', (['[(0, 1, 1), (2, 5, 6)]'], {'columns': "['a', 'b', 'c']"}), "([(0, 1, 1), (2, 5, 6)], columns=['a', 'b', 'c'])\n", (6127, 6176), True, 'import pandas as pd\n'), ((7052, 7077), 'test.utilities.load_flu_data', 'utilities.load_flu_data', ([], {}), '()\n', (7075, 7077), False, 'from test import utilities\n'), ((7492, 7591), 'ema_workbench.analysis.prim.setup_prim', 'prim.setup_prim', (['results'], {'classify': '"""death toll"""', 'threshold_type': 'prim.ABOVE', 'threshold': 'threshold'}), "(results, classify='death toll', threshold_type=prim.ABOVE,\n threshold=threshold)\n", (7507, 7591), False, 'from ema_workbench.analysis import prim\n'), ((7643, 7675), 'numpy.ones', 'np.ones', (['(experiments.shape[0],)'], {}), '((experiments.shape[0],))\n', (7650, 7675), True, 'import numpy as np\n'), ((7992, 8091), 'ema_workbench.analysis.prim.setup_prim', 'prim.setup_prim', (['results'], {'classify': '"""death toll"""', 'threshold_type': 'prim.BELOW', 'threshold': 'threshold'}), "(results, classify='death toll', threshold_type=prim.BELOW,\n threshold=threshold)\n", (8007, 8091), False, 'from ema_workbench.analysis import prim\n'), ((8173, 8205), 'numpy.ones', 'np.ones', (['(experiments.shape[0],)'], {}), '((experiments.shape[0],))\n', (8180, 8205), True, 'import numpy as np\n'), ((8338, 8404), 'ema_workbench.analysis.prim.setup_prim', 'prim.setup_prim', (['self.results', 'self.classify'], {'threshold': 'prim.ABOVE'}), '(self.results, self.classify, threshold=prim.ABOVE)\n', (8353, 8404), False, 'from ema_workbench.analysis import prim\n'), ((8448, 8520), 'pandas.DataFrame', 'pd.DataFrame', (['[(0, 1, 2), (2, 5, 6), (3, 2, 1)]'], {'columns': "['a', 'b', 'c']"}), "([(0, 1, 2), (2, 5, 6), (3, 2, 1)], columns=['a', 'b', 'c'])\n", (8460, 8520), True, 'import pandas as pd\n'), ((8681, 8725), 'ema_workbench.analysis.prim.setup_prim', 'prim.setup_prim', (['results', '"""y"""'], {'threshold': '(0.8)'}), "(results, 'y', threshold=0.8)\n", (8696, 8725), False, 'from ema_workbench.analysis import prim\n'), ((9193, 9218), 'test.utilities.load_flu_data', 'utilities.load_flu_data', ([], {}), '()\n', (9216, 9218), False, 'from test import utilities\n'), ((9692, 9805), 'ema_workbench.analysis.prim.setup_prim', 'prim.setup_prim', (['results'], {'classify': '"""death toll"""', 'threshold_type': 'prim.ABOVE', 'threshold': 'threshold', 'incl_unc': 'unc'}), "(results, classify='death toll', threshold_type=prim.ABOVE,\n threshold=threshold, incl_unc=unc)\n", (9707, 9805), False, 'from ema_workbench.analysis import prim\n'), ((9886, 9918), 'numpy.ones', 'np.ones', (['(experiments.shape[0],)'], {}), '((experiments.shape[0],))\n', (9893, 9918), True, 'import numpy as np\n'), ((10235, 10334), 'ema_workbench.analysis.prim.setup_prim', 'prim.setup_prim', (['results'], {'classify': '"""death toll"""', 'threshold_type': 'prim.BELOW', 'threshold': 'threshold'}), "(results, classify='death toll', threshold_type=prim.BELOW,\n threshold=threshold)\n", (10250, 10334), False, 'from ema_workbench.analysis import prim\n'), ((10416, 10448), 'numpy.ones', 'np.ones', (['(experiments.shape[0],)'], {}), '((experiments.shape[0],))\n', (10423, 10448), True, 'import numpy as np\n'), ((10581, 10647), 'ema_workbench.analysis.prim.setup_prim', 'prim.setup_prim', (['self.results', 'self.classify'], {'threshold': 'prim.ABOVE'}), '(self.results, self.classify, threshold=prim.ABOVE)\n', (10596, 10647), False, 'from ema_workbench.analysis import prim\n'), ((10980, 10992), 'pandas.Series', 'pd.Series', (['(1)'], {}), '(1)\n', (10989, 10992), True, 'import pandas as pd\n'), ((11247, 11291), 'pandas.Series', 'pd.Series', (['[1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9]'], {}), '([1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9])\n', (11256, 11291), True, 'import pandas as pd\n'), ((11627, 11699), 'pandas.DataFrame', 'pd.DataFrame', (['[(0, 1, 2), (2, 5, 6), (3, 2, 7)]'], {'columns': "['a', 'b', 'c']"}), "([(0, 1, 2), (2, 5, 6), (3, 2, 7)], columns=['a', 'b', 'c'])\n", (11639, 11699), True, 'import pandas as pd\n'), ((11784, 11803), 'numpy.array', 'np.array', (['[0, 1, 2]'], {}), '([0, 1, 2])\n', (11792, 11803), True, 'import numpy as np\n'), ((11830, 11895), 'ema_workbench.analysis.prim.Prim', 'prim.Prim', (['x', 'y'], {'threshold': '(0.5)', 'mode': 'RuleInductionType.REGRESSION'}), '(x, y, threshold=0.5, mode=RuleInductionType.REGRESSION)\n', (11839, 11895), False, 'from ema_workbench.analysis import prim\n'), ((12346, 12545), 'pandas.DataFrame', 'pd.DataFrame', (["[[0.1, 0, 'a'], [0.2, 1, 'b'], [0.3, 2, 'a'], [0.4, 3, 'b'], [0.5, 4, 'a'],\n [0.6, 5, 'a'], [0.7, 6, 'b'], [0.8, 7, 'a'], [0.9, 8, 'b'], [1.0, 9, 'a']]"], {'columns': "['a', 'b', 'c']"}), "([[0.1, 0, 'a'], [0.2, 1, 'b'], [0.3, 2, 'a'], [0.4, 3, 'b'], [\n 0.5, 4, 'a'], [0.6, 5, 'a'], [0.7, 6, 'b'], [0.8, 7, 'a'], [0.9, 8, 'b'\n ], [1.0, 9, 'a']], columns=['a', 'b', 'c'])\n", (12358, 12545), True, 'import pandas as pd\n'), ((12809, 12833), 'numpy.arange', 'np.arange', (['(0)', 'x.shape[0]'], {}), '(0, x.shape[0])\n', (12818, 12833), True, 'import numpy as np\n'), ((12854, 12919), 'ema_workbench.analysis.prim.Prim', 'prim.Prim', (['x', 'y'], {'threshold': '(0.5)', 'mode': 'RuleInductionType.REGRESSION'}), '(x, y, threshold=0.5, mode=RuleInductionType.REGRESSION)\n', (12863, 12919), False, 'from ema_workbench.analysis import prim\n'), ((13385, 13410), 'test.utilities.load_flu_data', 'utilities.load_flu_data', ([], {}), '()\n', (13408, 13410), False, 'from test import utilities\n'), ((13716, 13741), 'test.utilities.load_flu_data', 'utilities.load_flu_data', ([], {}), '()\n', (13739, 13741), False, 'from test import utilities\n'), ((13802, 13851), 'ema_workbench.analysis.prim.setup_prim', 'prim.setup_prim', (['results', 'classify'], {'threshold': '(0.8)'}), '(results, classify, threshold=0.8)\n', (13817, 13851), False, 'from ema_workbench.analysis import prim\n'), ((14581, 14594), 'numpy.zeros', 'np.zeros', (['(100)'], {}), '(100)\n', (14589, 14594), True, 'import numpy as np\n'), ((14646, 14676), 'ema_workbench.analysis.prim.Prim', 'prim.Prim', (['x', 'y'], {'threshold': '(0.8)'}), '(x, y, threshold=0.8)\n', (14655, 14676), False, 'from ema_workbench.analysis import prim\n'), ((14726, 14768), 'ema_workbench.analysis.prim.PrimBox', 'prim.PrimBox', (['primalg', 'boxlims', 'primalg.yi'], {}), '(primalg, boxlims, primalg.yi)\n', (14738, 14768), False, 'from ema_workbench.analysis import prim\n'), ((15236, 15266), 'ema_workbench.analysis.prim.Prim', 'prim.Prim', (['x', 'y'], {'threshold': '(0.8)'}), '(x, y, threshold=0.8)\n', (15245, 15266), False, 'from ema_workbench.analysis import prim\n'), ((15342, 15384), 'ema_workbench.analysis.prim.PrimBox', 'prim.PrimBox', (['primalg', 'boxlims', 'primalg.yi'], {}), '(primalg, boxlims, primalg.yi)\n', (15354, 15384), False, 'from ema_workbench.analysis import prim\n'), ((15875, 15905), 'ema_workbench.analysis.prim.Prim', 'prim.Prim', (['x', 'y'], {'threshold': '(0.8)'}), '(x, y, threshold=0.8)\n', (15884, 15905), False, 'from ema_workbench.analysis import prim\n'), ((15981, 16023), 'ema_workbench.analysis.prim.PrimBox', 'prim.PrimBox', (['primalg', 'boxlims', 'primalg.yi'], {}), '(primalg, boxlims, primalg.yi)\n', (15993, 16023), False, 'from ema_workbench.analysis import prim\n'), ((16187, 16217), 'ema_workbench.analysis.prim.Prim', 'prim.Prim', (['x', 'y'], {'threshold': '(0.8)'}), '(x, y, threshold=0.8)\n', (16196, 16217), False, 'from ema_workbench.analysis import prim\n'), ((16293, 16335), 'ema_workbench.analysis.prim.PrimBox', 'prim.PrimBox', (['primalg', 'boxlims', 'primalg.yi'], {}), '(primalg, boxlims, primalg.yi)\n', (16305, 16335), False, 'from ema_workbench.analysis import prim\n'), ((16715, 16745), 'numpy.random.randint', 'np.random.randint', (['(0)', '(2)', '(10,)'], {}), '(0, 2, (10,))\n', (16732, 16745), True, 'import numpy as np\n'), ((16869, 16918), 'ema_workbench.analysis.prim.setup_prim', 'prim.setup_prim', (['results', 'classify'], {'threshold': '(0.8)'}), '(results, classify, threshold=0.8)\n', (16884, 16918), False, 'from ema_workbench.analysis import prim\n'), ((17096, 17141), 'ema_workbench.analysis.prim.PrimBox', 'prim.PrimBox', (['prim_obj', 'box_lims', 'prim_obj.yi'], {}), '(prim_obj, box_lims, prim_obj.yi)\n', (17108, 17141), False, 'from ema_workbench.analysis import prim\n'), ((17782, 17812), 'numpy.random.randint', 'np.random.randint', (['(0)', '(2)', '(10,)'], {}), '(0, 2, (10,))\n', (17799, 17812), True, 'import numpy as np\n'), ((17936, 17985), 'ema_workbench.analysis.prim.setup_prim', 'prim.setup_prim', (['results', 'classify'], {'threshold': '(0.8)'}), '(results, classify, threshold=0.8)\n', (17951, 17985), False, 'from ema_workbench.analysis import prim\n'), ((18037, 18082), 'ema_workbench.analysis.prim.PrimBox', 'prim.PrimBox', (['prim_obj', 'box_lims', 'prim_obj.yi'], {}), '(prim_obj, box_lims, prim_obj.yi)\n', (18049, 18082), False, 'from ema_workbench.analysis import prim\n'), ((18495, 18513), 'numpy.random.rand', 'np.random.rand', (['(10)'], {}), '(10)\n', (18509, 18513), True, 'import numpy as np\n'), ((18696, 18726), 'numpy.random.randint', 'np.random.randint', (['(0)', '(2)', '(10,)'], {}), '(0, 2, (10,))\n', (18713, 18726), True, 'import numpy as np\n'), ((18849, 18898), 'ema_workbench.analysis.prim.setup_prim', 'prim.setup_prim', (['results', 'classify'], {'threshold': '(0.8)'}), '(results, classify, threshold=0.8)\n', (18864, 18898), False, 'from ema_workbench.analysis import prim\n'), ((19043, 19073), 'numpy.where', 'np.where', (["(x.loc[:, 'b'] == 'a')"], {}), "(x.loc[:, 'b'] == 'a')\n", (19051, 19073), True, 'import numpy as np\n'), ((19094, 19130), 'ema_workbench.analysis.prim.PrimBox', 'prim.PrimBox', (['prim_obj', 'box_lims', 'yi'], {}), '(prim_obj, box_lims, yi)\n', (19106, 19130), False, 'from ema_workbench.analysis import prim\n'), ((1338, 1357), 'numpy.array', 'np.array', (['[0, 1, 2]'], {}), '([0, 1, 2])\n', (1346, 1357), True, 'import numpy as np\n'), ((1788, 1807), 'numpy.array', 'np.array', (['[1, 1, 0]'], {}), '([1, 1, 0])\n', (1796, 1807), True, 'import numpy as np\n'), ((2266, 2295), 'numpy.all', 'np.all', (['(box.yi == prim_obj.yi)'], {}), '(box.yi == prim_obj.yi)\n', (2272, 2295), True, 'import numpy as np\n'), ((4637, 4656), 'numpy.array', 'np.array', (['[1, 1, 0]'], {}), '([1, 1, 0])\n', (4645, 4656), True, 'import numpy as np\n'), ((5613, 5632), 'numpy.array', 'np.array', (['[1, 1, 0]'], {}), '([1, 1, 0])\n', (5621, 5632), True, 'import numpy as np\n'), ((8610, 8629), 'numpy.array', 'np.array', (['[0, 1, 2]'], {}), '([0, 1, 2])\n', (8618, 8629), True, 'import numpy as np\n'), ((8914, 8939), 'test.utilities.load_flu_data', 'utilities.load_flu_data', ([], {}), '()\n', (8937, 8939), False, 'from test import utilities\n'), ((10703, 10716), 'numpy.arange', 'np.arange', (['(10)'], {}), '(10)\n', (10712, 10716), True, 'import numpy as np\n'), ((14475, 14526), 'numpy.random.randint', 'np.random.randint', (['(0)', '(10)'], {'size': '(100,)', 'dtype': 'np.int'}), '(0, 10, size=(100,), dtype=np.int)\n', (14492, 14526), True, 'import numpy as np\n'), ((10742, 10770), 'ema_workbench.analysis.prim.get_quantile', 'prim.get_quantile', (['data', '(0.9)'], {}), '(data, 0.9)\n', (10759, 10770), False, 'from ema_workbench.analysis import prim\n'), ((10801, 10830), 'ema_workbench.analysis.prim.get_quantile', 'prim.get_quantile', (['data', '(0.95)'], {}), '(data, 0.95)\n', (10818, 10830), False, 'from ema_workbench.analysis import prim\n'), ((10861, 10889), 'ema_workbench.analysis.prim.get_quantile', 'prim.get_quantile', (['data', '(0.1)'], {}), '(data, 0.1)\n', (10878, 10889), False, 'from ema_workbench.analysis import prim\n'), ((10920, 10949), 'ema_workbench.analysis.prim.get_quantile', 'prim.get_quantile', (['data', '(0.05)'], {}), '(data, 0.05)\n', (10937, 10949), False, 'from ema_workbench.analysis import prim\n'), ((11017, 11045), 'ema_workbench.analysis.prim.get_quantile', 'prim.get_quantile', (['data', '(0.9)'], {}), '(data, 0.9)\n', (11034, 11045), False, 'from ema_workbench.analysis import prim\n'), ((11074, 11103), 'ema_workbench.analysis.prim.get_quantile', 'prim.get_quantile', (['data', '(0.95)'], {}), '(data, 0.95)\n', (11091, 11103), False, 'from ema_workbench.analysis import prim\n'), ((11132, 11160), 'ema_workbench.analysis.prim.get_quantile', 'prim.get_quantile', (['data', '(0.1)'], {}), '(data, 0.1)\n', (11149, 11160), False, 'from ema_workbench.analysis import prim\n'), ((11189, 11218), 'ema_workbench.analysis.prim.get_quantile', 'prim.get_quantile', (['data', '(0.05)'], {}), '(data, 0.05)\n', (11206, 11218), False, 'from ema_workbench.analysis import prim\n'), ((11306, 11334), 'ema_workbench.analysis.prim.get_quantile', 'prim.get_quantile', (['data', '(0.9)'], {}), '(data, 0.9)\n', (11323, 11334), False, 'from ema_workbench.analysis import prim\n'), ((11365, 11394), 'ema_workbench.analysis.prim.get_quantile', 'prim.get_quantile', (['data', '(0.95)'], {}), '(data, 0.95)\n', (11382, 11394), False, 'from ema_workbench.analysis import prim\n'), ((11425, 11453), 'ema_workbench.analysis.prim.get_quantile', 'prim.get_quantile', (['data', '(0.1)'], {}), '(data, 0.1)\n', (11442, 11453), False, 'from ema_workbench.analysis import prim\n'), ((11484, 11513), 'ema_workbench.analysis.prim.get_quantile', 'prim.get_quantile', (['data', '(0.05)'], {}), '(data, 0.05)\n', (11501, 11513), False, 'from ema_workbench.analysis import prim\n'), ((16546, 16564), 'numpy.random.rand', 'np.random.rand', (['(10)'], {}), '(10)\n', (16560, 16564), True, 'import numpy as np\n'), ((17592, 17610), 'numpy.random.rand', 'np.random.rand', (['(10)'], {}), '(10)\n', (17606, 17610), True, 'import numpy as np\n')]
import sys, os, glob import pandas as pd, numpy as np import ujson import datetime from ast import literal_eval from get_workflow_info import get_workflow_info, get_class_cols, translate_non_alphanumerics, get_short_slug ################################################################################ # Jailbreak question annotations from their JSON # (will partially jailbreak markings etc, but not fully) ################################################################################ def breakout_anno_q(row, workflow_info): # if you're doing this by iterating yourself and feeding it a row it needs # to be row[1]['anno_json'] because row[0] is the row index # but if you're calling this by a .apply(lambda ) it doesn't have that # because obviously why would you want them to have the same syntax why why why annotations = row['anno_json'] # I was trying this with numpy in hopes of saving time but that can lead to ordering problems # just saving it here in case I ever change my mind # # theclass = np.empty(len(d_cols), dtype=object) # the_cols = np.empty(len(d_cols), dtype=object) # # for thistask in annotations: # # the_cols[d_cols[workflow_info[thistask['task']+'_shorttext']]] = workflow_info[thistask['task']+'_shorttext'] # # try: # theclass[d_cols[workflow_info[thistask['task']+'_shorttext']]] = thistask['value'] # except: # # in case numpy doesn't want to accept a dict for the drawing task? # theclass[d_cols[workflow_info[thistask['task']+'_shorttext']]] = str(thistask['value']) theclass = {} for task in annotations: try: theclass[workflow_info[task['task']+'_shorttext']] = task['value'] except: theclass[workflow_info[task['task']+'_shorttext']] = str(task['value']) # if things are going very badly, uncomment these and pipe the output to a logfile # print("------------------------------------------------------------") # print(row) # print(theclass) # print(pd.Series(theclass)) # print("------------------------------------------------------------") return pd.Series(theclass) ################################################################################ # Jailbreak survey annotations from their JSON ################################################################################ def breakout_anno_survey(row, workflow_info, fp, classcols, thecols): annotations = row['anno_json'] #classcols = "classification_id created_at user_name user_id user_ip".split() printcols = classcols + thecols n_marks = 0 theclass = {} # fill the row with the basic classification information # theclass['classification_id'] = row.index # for col in "created_at user_name user_id user_ip".split(): # theclass[col] = row[col] # actually, let's assume we haven't set classification_id to be the index for col in classcols: theclass[col] = row[col] # create all the other relevant columns for col in thecols: theclass[col] = '' #print(workflow_info) for task in annotations: taskname = task['task'] tasktype = workflow_info[taskname]['type'] # for a survey we expect a survey task and a "shortcut" for e.g. # "Nothing Here", and they require different approaches # either way we'll write 1 row per mark to the file if tasktype == "survey": marks = task['value'] for mark in marks: n_marks += 1 # empty the dict of marks for col in thecols: theclass[col] = '' # fill in the dict theclass[taskname.lower()+'_choice'] = mark['choice'] for ans in mark['answers'].keys(): thelabel = workflow_info[taskname]['questions'][ans]['label_slug'] #thelabel = get_short_slug(ans) theclass[taskname.lower()+'_'+thelabel] = mark['answers'][ans] # not currently doing anything with "filters" # print the mark write_class_row(fp, theclass, printcols) elif tasktype == "shortcut": n_marks += 1 # empty the dict of marks for col in thecols: theclass[col] = '' # populate a default value for all the relevant columns for ans in workflow_info[taskname]['answers']: theclass[ans['label_slug']] = False # now populate the ones we have actual info for for ans_orig in task['value']: # get the index in the workflow answer map so we can fetch # the correct column label i_a = workflow_info[taskname]['answer_map'][ans_orig] ans = workflow_info[taskname]['answers'][i_a]['label_slug'] #ans = get_short_slug(ans_orig.lower()) theclass[ans] = True # now write the row to the file write_class_row(fp, theclass, printcols) return n_marks ################################################################################ # Write a dictionary to a csv using columns and order in thecols ################################################################################ def write_class_row(fp, theclass, thecols): # print the row for i in range(len(thecols)): entry = theclass[thecols[i]] if not i == 0: fp.write(",") try: if isinstance(entry, (list, tuple)): fp.write('"%s"' % str(entry)) else: fp.write(str(entry)) except: pass fp.write("\n") return ################################################################################ # Compute a vote fraction ################################################################################ def getfrac(row, colname, colcount): try: return float(row[colname])/float(row[colcount]) except: return 0.0 ################################################################################ # Aggregate question vote fractions based on a dictionary of tasks ################################################################################ def aggregate_questions(classifications, theqdict, verbose=True): by_subj = classifications.groupby(['subject_ids']) subj_ans = by_subj['count'].aggregate('sum') subj_ans.name = 'n_class_total' # this should set up with the index==subject_ids and the column name we've just specified class_counts = pd.DataFrame(subj_ans) # .items() is python 3, .iteritems() is python 2 for t, q in theqdict.iteritems(): if verbose: print("Aggregating task %s (%s)... %s" % (t, q, datetime.datetime.now().strftime('%H:%M:%S'))) colstem = t.lower()+'_'+q+'_' answers = classifications[q].unique() by_q_subj = classifications.groupby(['subject_ids', q]) q_subj_ans = by_q_subj['count'].aggregate('sum') subj_anscounts_df = pd.DataFrame(q_subj_ans).unstack().fillna(0.0) # the above ends up with multi-level column names, so let's fix that newcolnames = [] fraccolnames = [] for namepair in subj_anscounts_df.columns: # [0] should be 'count' because that's the column we summmed on # [1] is the text of each answer # let's make it label-friendly thisans = (translate_non_alphanumerics(namepair[1], translate_to=u'')).replace('\n', '_').replace(' ', '_').replace('__', '_').replace('__', '_').lower() # e.g. 't1_spiral_arms_attached_yes_count' thisnewcol = colstem + thisans + '_count' thisnewfrac = colstem + thisans + '_frac' newcolnames.append(thisnewcol) fraccolnames.append(thisnewfrac) class_counts[thisnewcol] = np.zeros_like(class_counts.n_class_total) subj_anscounts_df.columns = newcolnames class_counts[newcolnames] = subj_anscounts_df class_counts[colstem+'count'] = class_counts[newcolnames].apply(lambda row: sum(row), axis=1) for i, thecol in enumerate(newcolnames): thefraccol = fraccolnames[i] class_counts[thefraccol] = class_counts.apply(lambda row: getfrac(row, thecol, colstem+'count'), axis=1) # just some cleanup (replace NaNs with 0.0) class_counts.fillna(0.0, inplace=True) return class_counts ################################################################################ # Aggregate survey classifications based on a workflow definition dict ################################################################################ def aggregate_survey(grp, workflow_info): #workflow_info = wf_info # groupby() --> df because indexing etc is slightly different subj = pd.DataFrame(grp) # get the columns we'll be using based on the workflow info class_cols = get_class_cols(workflow_info) # initialize the dict that will hold the counts theclass = {} for col in class_cols: theclass[col] = 0.0 # count the number of classifications for this subject theclass['class_count'] = len(subj.classification_id.unique()) # now loop through tasks for task in workflow_info['tasknames']: # we will do something slightly different for the survey itself # versus the "unlinked" task(s) e.g. "Nothing Here" task_low = task.lower() if workflow_info[task]['type'] == "survey": # only deal with the choices we actually need for this subject choicecol = "%s_choice" % task_low choices = (subj[choicecol].unique()).tolist() # ignore if there are empties, which read here as NaN try: choices.remove(np.nan) except ValueError: # if there aren't any NaNs in the list, carry on pass # make sure this task isn't empty if (len(choices) > 0): # get the questions we're working with qcol = [] qmult = [] for i_q in range(len(workflow_info[task]['questionsOrder'])): q = workflow_info[task]['questionsOrder'][i_q] #qcol[i_q] = "%s_%s" % (task_low, workflow_info[task]['questions'][q]['label_slug']) qcol.append(workflow_info[task]['questions'][q]['label_slug']) qmult.append(workflow_info[task]['questions'][q]['multiple']) for choice in choices: # choice_slug will have the taskname prepended choice_slug = workflow_info[task]['choices'][choice]['label_slug'] # only deal with the annotations that indicated this choice this_choice = subj[subj[choicecol] == choice] # count 'em up choice_count = float(len(this_choice)) theclass["%s_count" % choice_slug] = choice_count # now deal with the questions for each choice for i_q in range(len(qcol)): q = workflow_info[task]['questionsOrder'][i_q] # the column we're saving to class_slug = "%s_%s" % (choice_slug, qcol[i_q]) # the column we're reading from col_slug = "%s_%s" % (task_low, workflow_info[task]['questions'][q]['label_slug']) # if this question requires a single answer, this is relatively easy if not qmult[i_q]: theclass["%s_count" % class_slug] = float(len(this_choice[col_slug])) by_ans = this_choice.groupby(col_slug) theans = this_choice[col_slug].unique() ans_count = by_ans['count'].aggregate('sum') for a in ans_count.index: a_str = a if not isinstance(a, basestring): a_str = str(int(a)) a_slug = workflow_info[task]['questions'][q]['answers'][a_str]['label_slug'] colname = "%s_%s_count" % (choice_slug, a_slug) theclass[colname] = ans_count[a] else: # we need to deal with questions that can have multiple answers # we stored them as a list, but stringified try: ans_list = [literal_eval(t) for t in this_choice[col_slug].values] list_all = [item for sublist in ans_list for item in sublist] except: ans_list = [t for t in this_choice[col_slug].values] list_all = ans_list # this will flatten the list of lists adf = pd.DataFrame(list_all) adf.columns = ['ans'] adf['count'] = np.ones_like(list_all, dtype=int) by_ans = adf.groupby('ans') ans_count = by_ans['count'].aggregate('sum') for a in ans_count.index: a_str = a if not isinstance(a, basestring): a_str = str(int(a)) a_slug = workflow_info[task]['questions'][q]['answers'][a_str]['label_slug'] colname = "%s_%s_count" % (choice_slug, a_slug) theclass[colname] = ans_count[a] elif workflow_info[task]['type'] == "shortcut": # what columns and possible answers are we working with here? #answers = [] #anno_cols = [] for q in workflow_info[task]['answers']: # the actual answer text #answers.append(q['label']) # the column name in the jailbroken annotations file #anno_cols.append(q['label_slug']) thecol = q['label_slug'] # the True values are already in there x = subj[thecol].fillna(False) thecount = float(sum(x)) theclass["%s_count" % thecol] = thecount theclass["%s_frac" % thecol] = thecount/theclass['class_count'] return pd.Series(theclass) #end
[ "pandas.DataFrame", "numpy.zeros_like", "get_workflow_info.get_class_cols", "numpy.ones_like", "get_workflow_info.translate_non_alphanumerics", "pandas.Series", "ast.literal_eval", "datetime.datetime.now" ]
[((2197, 2216), 'pandas.Series', 'pd.Series', (['theclass'], {}), '(theclass)\n', (2206, 2216), True, 'import pandas as pd, numpy as np\n'), ((6722, 6744), 'pandas.DataFrame', 'pd.DataFrame', (['subj_ans'], {}), '(subj_ans)\n', (6734, 6744), True, 'import pandas as pd, numpy as np\n'), ((9013, 9030), 'pandas.DataFrame', 'pd.DataFrame', (['grp'], {}), '(grp)\n', (9025, 9030), True, 'import pandas as pd, numpy as np\n'), ((9113, 9142), 'get_workflow_info.get_class_cols', 'get_class_cols', (['workflow_info'], {}), '(workflow_info)\n', (9127, 9142), False, 'from get_workflow_info import get_workflow_info, get_class_cols, translate_non_alphanumerics, get_short_slug\n'), ((14838, 14857), 'pandas.Series', 'pd.Series', (['theclass'], {}), '(theclass)\n', (14847, 14857), True, 'import pandas as pd, numpy as np\n'), ((8049, 8090), 'numpy.zeros_like', 'np.zeros_like', (['class_counts.n_class_total'], {}), '(class_counts.n_class_total)\n', (8062, 8090), True, 'import pandas as pd, numpy as np\n'), ((7199, 7223), 'pandas.DataFrame', 'pd.DataFrame', (['q_subj_ans'], {}), '(q_subj_ans)\n', (7211, 7223), True, 'import pandas as pd, numpy as np\n'), ((13304, 13326), 'pandas.DataFrame', 'pd.DataFrame', (['list_all'], {}), '(list_all)\n', (13316, 13326), True, 'import pandas as pd, numpy as np\n'), ((13420, 13453), 'numpy.ones_like', 'np.ones_like', (['list_all'], {'dtype': 'int'}), '(list_all, dtype=int)\n', (13432, 13453), True, 'import pandas as pd, numpy as np\n'), ((6917, 6940), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (6938, 6940), False, 'import datetime\n'), ((12881, 12896), 'ast.literal_eval', 'literal_eval', (['t'], {}), '(t)\n', (12893, 12896), False, 'from ast import literal_eval\n'), ((7613, 7671), 'get_workflow_info.translate_non_alphanumerics', 'translate_non_alphanumerics', (['namepair[1]'], {'translate_to': 'u""""""'}), "(namepair[1], translate_to=u'')\n", (7640, 7671), False, 'from get_workflow_info import get_workflow_info, get_class_cols, translate_non_alphanumerics, get_short_slug\n')]
# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Unitests for automatic variable tracing.""" import unittest import numpy as np import jax.numpy as jn import objax from objax.zoo.dnnet import DNNet global_w = objax.TrainVar(jn.zeros(5)) global_b = objax.TrainVar(jn.zeros(1)) global_m = objax.nn.Sequential([objax.nn.Conv2D(2, 4, 3), objax.nn.BatchNorm2D(4)]) class TestTracing(unittest.TestCase): """Unit tests for variable tracing using.""" def test_function_global_vars(self): def loss(x, y): pred = jn.dot(x, global_w.value) + global_b.value return 0.5 * ((y - pred) ** 2).mean() vc = objax.util.find_used_variables(loss) self.assertDictEqual(vc, {'global_w': global_w, 'global_b': global_b}) def test_function_global_module(self): def loss(x): return jn.sum(global_m(x, training=True)) vc = objax.util.find_used_variables(loss) self.assertDictEqual(vc, global_m.vars(scope='global_m.')) def test_function_closure_vars(self): w = objax.TrainVar(jn.zeros(5)) b = objax.TrainVar(jn.zeros(1)) def loss(x, y): pred = jn.dot(x, w.value) + b.value return 0.5 * ((y - pred) ** 2).mean() vc = objax.util.find_used_variables(loss) self.assertDictEqual(vc, {'w': w, 'b': b}) def test_function_closure_module(self): m = objax.nn.Sequential([objax.nn.Conv2D(1, 2, 3), objax.nn.BatchNorm2D(2)]) def loss(x): return jn.sum(m(x, training=True)) vc = objax.util.find_used_variables(loss) self.assertDictEqual(vc, m.vars(scope='m.')) def test_lambda_with_closure_vars(self): w = objax.TrainVar(jn.zeros(5)) b = objax.TrainVar(jn.zeros(1)) loss = lambda x, y: 0.5 * ((y - jn.dot(x, w.value) + b.value) ** 2).mean() vc = objax.util.find_used_variables(loss) self.assertDictEqual(vc, {'w': w, 'b': b}) def test_multiline_lambda_with_closure_vars(self): w = objax.TrainVar(jn.zeros(5)) b = objax.TrainVar(jn.zeros(1)) loss = lambda x, y: ( 0.5 * ((y - jn.dot(x, w.value) + b.value) ** 2).mean() ) vc = objax.util.find_used_variables(loss) self.assertDictEqual(vc, {'w': w, 'b': b}) def test_closure_overrides_global_vars(self): # Make sure that global variables are what we expect them to be np.testing.assert_allclose(global_w.value, np.zeros(5)) np.testing.assert_allclose(global_b.value, np.zeros(1)) def _do_test(): # define local variable with the same name as existing global global_w = objax.TrainVar(jn.ones(10)) # verify that global_w and global_b are what we expect them to be np.testing.assert_allclose(global_w.value, np.ones(10)) np.testing.assert_allclose(global_b.value, np.zeros(1)) # loss function which mixes closure vars, global vars and closure var hides global var def loss(x, y): pred = jn.dot(x, global_w.value) + global_b.value return 0.5 * ((y - pred) ** 2).mean() vc = objax.util.find_used_variables(loss) self.assertDictEqual(vc, {'global_w': global_w, 'global_b': global_b}) _do_test() # Make sure that global variables didn't change, in other words # that _do_test operated on local variables np.testing.assert_allclose(global_w.value, np.zeros(5)) np.testing.assert_allclose(global_b.value, np.zeros(1)) def test_typical_training_loop(self): # Define model and optimizer model = DNNet((32, 10), objax.functional.leaky_relu) opt = objax.optimizer.Momentum(model.vars(), nesterov=True) # Predict op predict_op = lambda x: objax.functional.softmax(model(x, training=False)) self.assertDictEqual(objax.util.find_used_variables(predict_op), model.vars(scope='model.')) # Loss function def loss(x, label): logit = model(x, training=True) xe_loss = objax.functional.loss.cross_entropy_logits_sparse(logit, label).mean() return xe_loss self.assertDictEqual(objax.util.find_used_variables(loss), model.vars(scope='model.')) # Gradients and loss function loss_gv = objax.GradValues(loss, objax.util.find_used_variables(loss)) def train_op(x, y, learning_rate): grads, loss = loss_gv(x, y) opt(learning_rate, grads) return loss self.assertDictEqual(objax.util.find_used_variables(train_op), {**model.vars(scope='loss_gv.model.'), **opt.vars(scope='opt.')}) def test_lambda_inside_function(self): m = objax.nn.Sequential([objax.nn.Conv2D(1, 2, 3), objax.nn.BatchNorm2D(2)]) def loss(x): get_logits = lambda inp: m(inp, training=True) return jn.sum(get_logits(x)) vc = objax.util.find_used_variables(loss) self.assertDictEqual(vc, m.vars(scope='m.')) if __name__ == '__main__': unittest.main()
[ "unittest.main", "jax.numpy.dot", "objax.zoo.dnnet.DNNet", "numpy.zeros", "numpy.ones", "objax.nn.Conv2D", "objax.nn.BatchNorm2D", "jax.numpy.ones", "jax.numpy.zeros", "objax.functional.loss.cross_entropy_logits_sparse", "objax.util.find_used_variables" ]
[((758, 769), 'jax.numpy.zeros', 'jn.zeros', (['(5)'], {}), '(5)\n', (766, 769), True, 'import jax.numpy as jn\n'), ((797, 808), 'jax.numpy.zeros', 'jn.zeros', (['(1)'], {}), '(1)\n', (805, 808), True, 'import jax.numpy as jn\n'), ((5718, 5733), 'unittest.main', 'unittest.main', ([], {}), '()\n', (5731, 5733), False, 'import unittest\n'), ((843, 867), 'objax.nn.Conv2D', 'objax.nn.Conv2D', (['(2)', '(4)', '(3)'], {}), '(2, 4, 3)\n', (858, 867), False, 'import objax\n'), ((869, 892), 'objax.nn.BatchNorm2D', 'objax.nn.BatchNorm2D', (['(4)'], {}), '(4)\n', (889, 892), False, 'import objax\n'), ((1176, 1212), 'objax.util.find_used_variables', 'objax.util.find_used_variables', (['loss'], {}), '(loss)\n', (1206, 1212), False, 'import objax\n'), ((1425, 1461), 'objax.util.find_used_variables', 'objax.util.find_used_variables', (['loss'], {}), '(loss)\n', (1455, 1461), False, 'import objax\n'), ((1789, 1825), 'objax.util.find_used_variables', 'objax.util.find_used_variables', (['loss'], {}), '(loss)\n', (1819, 1825), False, 'import objax\n'), ((2090, 2126), 'objax.util.find_used_variables', 'objax.util.find_used_variables', (['loss'], {}), '(loss)\n', (2120, 2126), False, 'import objax\n'), ((2404, 2440), 'objax.util.find_used_variables', 'objax.util.find_used_variables', (['loss'], {}), '(loss)\n', (2434, 2440), False, 'import objax\n'), ((2750, 2786), 'objax.util.find_used_variables', 'objax.util.find_used_variables', (['loss'], {}), '(loss)\n', (2780, 2786), False, 'import objax\n'), ((4209, 4253), 'objax.zoo.dnnet.DNNet', 'DNNet', (['(32, 10)', 'objax.functional.leaky_relu'], {}), '((32, 10), objax.functional.leaky_relu)\n', (4214, 4253), False, 'from objax.zoo.dnnet import DNNet\n'), ((5595, 5631), 'objax.util.find_used_variables', 'objax.util.find_used_variables', (['loss'], {}), '(loss)\n', (5625, 5631), False, 'import objax\n'), ((1599, 1610), 'jax.numpy.zeros', 'jn.zeros', (['(5)'], {}), '(5)\n', (1607, 1610), True, 'import jax.numpy as jn\n'), ((1639, 1650), 'jax.numpy.zeros', 'jn.zeros', (['(1)'], {}), '(1)\n', (1647, 1650), True, 'import jax.numpy as jn\n'), ((2253, 2264), 'jax.numpy.zeros', 'jn.zeros', (['(5)'], {}), '(5)\n', (2261, 2264), True, 'import jax.numpy as jn\n'), ((2293, 2304), 'jax.numpy.zeros', 'jn.zeros', (['(1)'], {}), '(1)\n', (2301, 2304), True, 'import jax.numpy as jn\n'), ((2575, 2586), 'jax.numpy.zeros', 'jn.zeros', (['(5)'], {}), '(5)\n', (2583, 2586), True, 'import jax.numpy as jn\n'), ((2615, 2626), 'jax.numpy.zeros', 'jn.zeros', (['(1)'], {}), '(1)\n', (2623, 2626), True, 'import jax.numpy as jn\n'), ((3012, 3023), 'numpy.zeros', 'np.zeros', (['(5)'], {}), '(5)\n', (3020, 3023), True, 'import numpy as np\n'), ((3076, 3087), 'numpy.zeros', 'np.zeros', (['(1)'], {}), '(1)\n', (3084, 3087), True, 'import numpy as np\n'), ((3720, 3756), 'objax.util.find_used_variables', 'objax.util.find_used_variables', (['loss'], {}), '(loss)\n', (3750, 3756), False, 'import objax\n'), ((4036, 4047), 'numpy.zeros', 'np.zeros', (['(5)'], {}), '(5)\n', (4044, 4047), True, 'import numpy as np\n'), ((4100, 4111), 'numpy.zeros', 'np.zeros', (['(1)'], {}), '(1)\n', (4108, 4111), True, 'import numpy as np\n'), ((4456, 4498), 'objax.util.find_used_variables', 'objax.util.find_used_variables', (['predict_op'], {}), '(predict_op)\n', (4486, 4498), False, 'import objax\n'), ((4804, 4840), 'objax.util.find_used_variables', 'objax.util.find_used_variables', (['loss'], {}), '(loss)\n', (4834, 4840), False, 'import objax\n'), ((4979, 5015), 'objax.util.find_used_variables', 'objax.util.find_used_variables', (['loss'], {}), '(loss)\n', (5009, 5015), False, 'import objax\n'), ((5193, 5233), 'objax.util.find_used_variables', 'objax.util.find_used_variables', (['train_op'], {}), '(train_op)\n', (5223, 5233), False, 'import objax\n'), ((1069, 1094), 'jax.numpy.dot', 'jn.dot', (['x', 'global_w.value'], {}), '(x, global_w.value)\n', (1075, 1094), True, 'import jax.numpy as jn\n'), ((1696, 1714), 'jax.numpy.dot', 'jn.dot', (['x', 'w.value'], {}), '(x, w.value)\n', (1702, 1714), True, 'import jax.numpy as jn\n'), ((1955, 1979), 'objax.nn.Conv2D', 'objax.nn.Conv2D', (['(1)', '(2)', '(3)'], {}), '(1, 2, 3)\n', (1970, 1979), False, 'import objax\n'), ((1981, 2004), 'objax.nn.BatchNorm2D', 'objax.nn.BatchNorm2D', (['(2)'], {}), '(2)\n', (2001, 2004), False, 'import objax\n'), ((3226, 3237), 'jax.numpy.ones', 'jn.ones', (['(10)'], {}), '(10)\n', (3233, 3237), True, 'import jax.numpy as jn\n'), ((3373, 3384), 'numpy.ones', 'np.ones', (['(10)'], {}), '(10)\n', (3380, 3384), True, 'import numpy as np\n'), ((3441, 3452), 'numpy.zeros', 'np.zeros', (['(1)'], {}), '(1)\n', (3449, 3452), True, 'import numpy as np\n'), ((5407, 5431), 'objax.nn.Conv2D', 'objax.nn.Conv2D', (['(1)', '(2)', '(3)'], {}), '(1, 2, 3)\n', (5422, 5431), False, 'import objax\n'), ((5433, 5456), 'objax.nn.BatchNorm2D', 'objax.nn.BatchNorm2D', (['(2)'], {}), '(2)\n', (5453, 5456), False, 'import objax\n'), ((3605, 3630), 'jax.numpy.dot', 'jn.dot', (['x', 'global_w.value'], {}), '(x, global_w.value)\n', (3611, 3630), True, 'import jax.numpy as jn\n'), ((4676, 4739), 'objax.functional.loss.cross_entropy_logits_sparse', 'objax.functional.loss.cross_entropy_logits_sparse', (['logit', 'label'], {}), '(logit, label)\n', (4725, 4739), False, 'import objax\n'), ((2347, 2365), 'jax.numpy.dot', 'jn.dot', (['x', 'w.value'], {}), '(x, w.value)\n', (2353, 2365), True, 'import jax.numpy as jn\n'), ((2683, 2701), 'jax.numpy.dot', 'jn.dot', (['x', 'w.value'], {}), '(x, w.value)\n', (2689, 2701), True, 'import jax.numpy as jn\n')]
import numpy as np from ..testing_utils import DummyConverter, DummyLoad, DummyNoise, DummyOdeSolver, DummyVoltageSupply, DummyElectricMotor,\ mock_instantiate, instantiate_dict from gym_electric_motor.physical_systems import physical_systems as ps, converters as cv, electric_motors as em,\ mechanical_loads as ml, voltage_supplies as vs, solvers as sv from gym.spaces import Box import pytest class TestSCMLSystem: """ Base Class to test all PhysicalSystems that derive from SCMLSystem """ class_to_test = ps.SCMLSystem def mock_build_state(self, motor_state, torque, u_in, u_sup): """Function to mock an arbitrary build_state function to test the SCMLSystem """ self.motor_state = motor_state self.torque = torque self.u_in = u_in self.u_sup = u_sup return np.concatenate(( self.motor_state[:len(DummyLoad.state_names)], [torque], self.motor_state[len(DummyLoad.state_names):], [u_sup] )) @pytest.fixture def scml_system(self, monkeypatch): """ Returns an instantiated SCMLSystem with Dummy Components and mocked abstract functions """ monkeypatch.setattr( self.class_to_test, '_build_state_names', lambda _: DummyLoad.state_names + ['torque'] + DummyElectricMotor.CURRENTS + DummyElectricMotor.VOLTAGES + ['u_sup'] ) monkeypatch.setattr( self.class_to_test, '_build_state_space', lambda _, state_names: Box( low=np.zeros_like(state_names, dtype=float), high=np.zeros_like(state_names, dtype=float) ) ) return self.class_to_test( converter=DummyConverter(), motor=DummyElectricMotor(), load=DummyLoad(), supply=DummyVoltageSupply(), ode_solver=DummyOdeSolver(), noise_generator=DummyNoise() ) def test_reset(self, scml_system): """Test the reset function in the physical system""" scml_system._t = 12 scml_system._k = 33 state_space = scml_system.state_space state_positions = scml_system.state_positions initial_state = scml_system.reset() target = (np.array([0, 0, 0, 0, 0, 0, 560]) + scml_system._noise_generator.reset()) / scml_system.limits assert np.all(initial_state == target), 'Initial states of the system are incorrect' assert scml_system._t == 0, 'Time of the system was not set to zero after reset' assert scml_system._k == 0, 'Episode step of the system was not set to zero after reset' assert scml_system.converter.reset_counter == scml_system.electrical_motor.reset_counter \ == scml_system.mechanical_load.reset_counter == scml_system.supply.reset_counter,\ 'The reset was not passed to all components of the SCMLSystem' assert scml_system._ode_solver.t == 0, 'The ode solver was not reset correctly' assert all(scml_system._ode_solver.y == np.zeros_like( scml_system.mechanical_load.state_names + scml_system.electrical_motor.CURRENTS, dtype=float )), ' The ode solver was not reset correctly' def test_system_equation(self, scml_system): """Tests the system equation function""" state = np.random.rand(4) currents = state[[2, 3]] torque = scml_system.electrical_motor.torque(currents) u_in = np.random.rand(2) t = np.random.rand() derivative = scml_system._system_equation(t, state, u_in) assert all( derivative == np.array([torque, -torque, currents[0] - u_in[0], currents[1] - u_in[1]]) ), 'The system equation return differs from the expected' assert scml_system.mechanical_load.t == t, 'The time t was not passed through to the mech. load equation' assert np.all(scml_system.mechanical_load.mechanical_state == state[:2]),\ 'The mech. state was not returned correctly' def test_simulate(self, scml_system): """Test the simulation function of the SCMLSystem""" # Reset the system and take a random action scml_system.reset() action = scml_system.action_space.sample() # Set a defined intitial state ode_state = np.array([3, 4, 5, 6]) scml_system._ode_solver.set_initial_value(ode_state) # Perform the action on the system next_state = scml_system.simulate(action) solver_state_me = scml_system._ode_solver.y[:len(DummyLoad.state_names)] solver_state_el = scml_system._ode_solver.y[len(DummyLoad.state_names):] torque = [scml_system.electrical_motor.torque(solver_state_el)] u_sup = [scml_system.supply.u_nominal] u_in = [u * u_sup[0] for u in scml_system.converter.u_in] # Calculate the next state desired_next_state = ( np.concatenate((solver_state_me, torque, solver_state_el, u_in, u_sup)) + scml_system._noise_generator.noise() ) / scml_system.limits # Assertions for correct simulation assert all(desired_next_state == next_state), 'The calculated next state differs from the expected one' assert scml_system.converter.action == action, 'The action was not passed correctly to the converter' assert scml_system.converter.action_set_time == 0, 'The action start time was passed incorrect to the converter' assert scml_system.converter.last_i_out == scml_system.electrical_motor.i_in(scml_system._ode_solver.last_y[2:]) def test_system_jacobian(self, scml_system): """Tests for the system jacobian function""" el_jac = np.arange(4).reshape(2, 2) el_over_omega = np.arange(4, 6) torque_over_el = np.arange(6, 8) # Set the el. jacobian returns to specified values scml_system.electrical_motor.electrical_jac_return = (el_jac, el_over_omega, torque_over_el) me_jac = np.arange(8, 12).reshape(2, 2) me_over_torque = np.arange(12, 14) # Set the mech. jabobian returns to specified values scml_system.mechanical_load.mechanical_jac_return = me_jac, me_over_torque sys_jac = scml_system._system_jacobian(0, np.array([0, 1, 2, 3]), [0, -1]) # assert np.all(sys_jac[-2:, -2:] == el_jac), 'The el. jacobian is false' assert np.all(sys_jac[:2, :2] == me_jac), 'The mech. jacobian is false' assert np.all(sys_jac[2:, 0] == el_over_omega), 'the derivative of the el.state over omega is false' assert np.all(sys_jac[2:, 1] == np.zeros(2)) assert np.all(sys_jac[:-2, 2:] == np.array([[72, 84], [78, 91]])), 'The derivative of the mech.state ' \ 'over the currents is false'
[ "numpy.zeros_like", "numpy.concatenate", "numpy.zeros", "numpy.array", "numpy.arange", "numpy.random.rand", "numpy.all" ]
[((2433, 2464), 'numpy.all', 'np.all', (['(initial_state == target)'], {}), '(initial_state == target)\n', (2439, 2464), True, 'import numpy as np\n'), ((3391, 3408), 'numpy.random.rand', 'np.random.rand', (['(4)'], {}), '(4)\n', (3405, 3408), True, 'import numpy as np\n'), ((3520, 3537), 'numpy.random.rand', 'np.random.rand', (['(2)'], {}), '(2)\n', (3534, 3537), True, 'import numpy as np\n'), ((3550, 3566), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (3564, 3566), True, 'import numpy as np\n'), ((3948, 4013), 'numpy.all', 'np.all', (['(scml_system.mechanical_load.mechanical_state == state[:2])'], {}), '(scml_system.mechanical_load.mechanical_state == state[:2])\n', (3954, 4013), True, 'import numpy as np\n'), ((4368, 4390), 'numpy.array', 'np.array', (['[3, 4, 5, 6]'], {}), '([3, 4, 5, 6])\n', (4376, 4390), True, 'import numpy as np\n'), ((5805, 5820), 'numpy.arange', 'np.arange', (['(4)', '(6)'], {}), '(4, 6)\n', (5814, 5820), True, 'import numpy as np\n'), ((5846, 5861), 'numpy.arange', 'np.arange', (['(6)', '(8)'], {}), '(6, 8)\n', (5855, 5861), True, 'import numpy as np\n'), ((6095, 6112), 'numpy.arange', 'np.arange', (['(12)', '(14)'], {}), '(12, 14)\n', (6104, 6112), True, 'import numpy as np\n'), ((6366, 6401), 'numpy.all', 'np.all', (['(sys_jac[-2:, -2:] == el_jac)'], {}), '(sys_jac[-2:, -2:] == el_jac)\n', (6372, 6401), True, 'import numpy as np\n'), ((6446, 6479), 'numpy.all', 'np.all', (['(sys_jac[:2, :2] == me_jac)'], {}), '(sys_jac[:2, :2] == me_jac)\n', (6452, 6479), True, 'import numpy as np\n'), ((6526, 6565), 'numpy.all', 'np.all', (['(sys_jac[2:, 0] == el_over_omega)'], {}), '(sys_jac[2:, 0] == el_over_omega)\n', (6532, 6565), True, 'import numpy as np\n'), ((6307, 6329), 'numpy.array', 'np.array', (['[0, 1, 2, 3]'], {}), '([0, 1, 2, 3])\n', (6315, 6329), True, 'import numpy as np\n'), ((2323, 2356), 'numpy.array', 'np.array', (['[0, 0, 0, 0, 0, 0, 560]'], {}), '([0, 0, 0, 0, 0, 0, 560])\n', (2331, 2356), True, 'import numpy as np\n'), ((3102, 3214), 'numpy.zeros_like', 'np.zeros_like', (['(scml_system.mechanical_load.state_names + scml_system.electrical_motor.\n CURRENTS)'], {'dtype': 'float'}), '(scml_system.mechanical_load.state_names + scml_system.\n electrical_motor.CURRENTS, dtype=float)\n', (3115, 3214), True, 'import numpy as np\n'), ((3679, 3752), 'numpy.array', 'np.array', (['[torque, -torque, currents[0] - u_in[0], currents[1] - u_in[1]]'], {}), '([torque, -torque, currents[0] - u_in[0], currents[1] - u_in[1]])\n', (3687, 3752), True, 'import numpy as np\n'), ((4970, 5041), 'numpy.concatenate', 'np.concatenate', (['(solver_state_me, torque, solver_state_el, u_in, u_sup)'], {}), '((solver_state_me, torque, solver_state_el, u_in, u_sup))\n', (4984, 5041), True, 'import numpy as np\n'), ((5754, 5766), 'numpy.arange', 'np.arange', (['(4)'], {}), '(4)\n', (5763, 5766), True, 'import numpy as np\n'), ((6039, 6055), 'numpy.arange', 'np.arange', (['(8)', '(12)'], {}), '(8, 12)\n', (6048, 6055), True, 'import numpy as np\n'), ((6660, 6671), 'numpy.zeros', 'np.zeros', (['(2)'], {}), '(2)\n', (6668, 6671), True, 'import numpy as np\n'), ((6715, 6745), 'numpy.array', 'np.array', (['[[72, 84], [78, 91]]'], {}), '([[72, 84], [78, 91]])\n', (6723, 6745), True, 'import numpy as np\n'), ((1600, 1639), 'numpy.zeros_like', 'np.zeros_like', (['state_names'], {'dtype': 'float'}), '(state_names, dtype=float)\n', (1613, 1639), True, 'import numpy as np\n'), ((1662, 1701), 'numpy.zeros_like', 'np.zeros_like', (['state_names'], {'dtype': 'float'}), '(state_names, dtype=float)\n', (1675, 1701), True, 'import numpy as np\n')]
#coding=utf-8 ''' Created on 2016年9月27日 @author: dengdan ''' import numpy as np import time import random rng = np.random.RandomState(int(time.time())) rand = np.random.rand """ Create an array of the given shape and populate it with random samples from a uniform distribution over [0, 1) """ def normal(shape, mu = 0, sigma_square = 1, dtype = np.float32): tensor = rng.normal(mu, np.sqrt(sigma_square), shape) return np.array(tensor, dtype = dtype) def randint(low = 2 ** 30, high = None, shape = None): """ low: the higher bound except when high is not None. high: when it is not none, low must be smaller than it shape: if not provided, a scalar will be returned """ return rng.randint(low = low, high = high, size = shape) def shuffle(lst): random.shuffle(lst) def sample(lst, n): return random.sample(lst, n) def prob(allow_zero = True): """ Generate a random value as probability """ return rand_val(low = 0, high = 1.0, allow_zero = allow_zero) def rand_val(low = 0, high = 1.0, allow_zero = True, range = None): if range is not None: low = range[0] high = range[1] val = rng.uniform(low = low, high = high) if not allow_zero: while not val: val = rng.uniform(low = low, high = high) return val
[ "random.sample", "random.shuffle", "time.time", "numpy.array", "numpy.sqrt" ]
[((433, 462), 'numpy.array', 'np.array', (['tensor'], {'dtype': 'dtype'}), '(tensor, dtype=dtype)\n', (441, 462), True, 'import numpy as np\n'), ((799, 818), 'random.shuffle', 'random.shuffle', (['lst'], {}), '(lst)\n', (813, 818), False, 'import random\n'), ((851, 872), 'random.sample', 'random.sample', (['lst', 'n'], {}), '(lst, n)\n', (864, 872), False, 'import random\n'), ((140, 151), 'time.time', 'time.time', ([], {}), '()\n', (149, 151), False, 'import time\n'), ((392, 413), 'numpy.sqrt', 'np.sqrt', (['sigma_square'], {}), '(sigma_square)\n', (399, 413), True, 'import numpy as np\n')]
# Import the libraries we need for this lab import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from torch.utils.data import Dataset, DataLoader # Plot the data def plot_decision_regions_2class(model,data_set): cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#00AAFF']) cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#00AAFF']) X = data_set.x.numpy() y = data_set.y.numpy() h = .02 x_min, x_max = X[:, 0].min() - 0.1 , X[:, 0].max() + 0.1 y_min, y_max = X[:, 1].min() - 0.1 , X[:, 1].max() + 0.1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h),np.arange(y_min, y_max, h)) XX = torch.Tensor(np.c_[xx.ravel(), yy.ravel()]) yhat = np.logical_not((model(XX)[:, 0] > 0.5).numpy()).reshape(xx.shape) plt.pcolormesh(xx, yy, yhat, cmap=cmap_light) plt.plot(X[y[:, 0] == 0, 0], X[y[:, 0] == 0, 1], 'o', label='y=0') plt.plot(X[y[:, 0] == 1, 0], X[y[:, 0] == 1, 1], 'ro', label='y=1') plt.title("decision region") plt.legend() # Calculate the accuracy def accuracy(model, data_set): return np.mean(data_set.y.view(-1).numpy() == (model(data_set.x)[:, 0] > 0.5).numpy()) # Define the class Net with one hidden layer class Net(nn.Module): # Constructor def __init__(self, D_in, H, D_out): super(Net, self).__init__() # hidden layer self.linear1 = nn.Linear(D_in, H) # output layer self.linear2 = nn.Linear(H, D_out) # Prediction def forward(self, x): x = torch.sigmoid(self.linear1(x)) x = torch.sigmoid(self.linear2(x)) return x # Define the train model def train(data_set, model, criterion, train_loader, optimizer, epochs=5): COST = [] ACC = [] for epoch in range(epochs): total = 0 for x, y in train_loader: optimizer.zero_grad() yhat = model(x) loss = criterion(yhat, y) optimizer.zero_grad() loss.backward() optimizer.step() # cumulative loss total += loss.item() ACC.append(accuracy(model, data_set)) COST.append(total) fig, ax1 = plt.subplots() color = 'tab:red' ax1.plot(COST, color=color) ax1.set_xlabel('epoch', color=color) ax1.set_ylabel('total loss', color=color) ax1.tick_params(axis='y', color=color) ax2 = ax1.twinx() color = 'tab:blue' ax2.set_ylabel('accuracy', color=color) # we already handled the x-label with ax1 ax2.plot(ACC, color=color) ax2.tick_params(axis='y', color=color) fig.tight_layout() # otherwise the right y-label is slightly clipped plt.show() return COST # Define the class XOR_Data class XOR_Data(Dataset): # Constructor def __init__(self, N_s=100): self.x = torch.zeros((N_s, 2)) self.y = torch.zeros((N_s, 1)) for i in range(N_s // 4): self.x[i, :] = torch.Tensor([0.0, 0.0]) self.y[i, 0] = torch.Tensor([0.0]) self.x[i + N_s // 4, :] = torch.Tensor([0.0, 1.0]) self.y[i + N_s // 4, 0] = torch.Tensor([1.0]) self.x[i + N_s // 2, :] = torch.Tensor([1.0, 0.0]) self.y[i + N_s // 2, 0] = torch.Tensor([1.0]) self.x[i + 3 * N_s // 4, :] = torch.Tensor([1.0, 1.0]) self.y[i + 3 * N_s // 4, 0] = torch.Tensor([0.0]) self.x = self.x + 0.01 * torch.randn((N_s, 2)) self.len = N_s # Getter def __getitem__(self, index): return self.x[index], self.y[index] # Get Length def __len__(self): return self.len # Plot the data def plot_stuff(self): plt.plot(self.x[self.y[:, 0] == 0, 0].numpy(), self.x[self.y[:, 0] == 0, 1].numpy(), 'o', label="y=0") plt.plot(self.x[self.y[:, 0] == 1, 0].numpy(), self.x[self.y[:, 0] == 1, 1].numpy(), 'ro', label="y=1") plt.legend() # Create dataset object data_set = XOR_Data() data_set.plot_stuff() # Train the model learning_rate = 0.001 criterion = nn.BCELoss() #optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate) train_loader = DataLoader(dataset=data_set, batch_size=1) #LOSS12 = train(data_set, model, criterion, train_loader, optimizer, epochs=500) #plot_decision_regions_2class(model, data_set) # Train the model learning_rate = 0.1 criterion = nn.BCELoss() #optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate) train_loader = DataLoader(dataset=data_set, batch_size=1) #LOSS12 = train(data_set, model, criterion, train_loader, optimizer, epochs=500) #plot_decision_regions_2class(model, data_set) # Practice: create a model with two neuron model = Net(2, 4, 1) # Type your code here # Train the model learning_rate = 0.1 criterion = nn.BCELoss() optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate) train_loader = DataLoader(dataset=data_set, batch_size=1) LOSS12 = train(data_set, model, criterion, train_loader, optimizer, epochs=500) plot_decision_regions_2class(model, data_set)
[ "matplotlib.pyplot.title", "matplotlib.pyplot.show", "torch.nn.BCELoss", "matplotlib.pyplot.plot", "torch.utils.data.DataLoader", "matplotlib.pyplot.legend", "torch.randn", "matplotlib.pyplot.subplots", "torch.Tensor", "numpy.arange", "matplotlib.pyplot.pcolormesh", "torch.nn.Linear", "torch.zeros", "matplotlib.colors.ListedColormap" ]
[((4111, 4123), 'torch.nn.BCELoss', 'nn.BCELoss', ([], {}), '()\n', (4121, 4123), True, 'import torch.nn as nn\n'), ((4206, 4248), 'torch.utils.data.DataLoader', 'DataLoader', ([], {'dataset': 'data_set', 'batch_size': '(1)'}), '(dataset=data_set, batch_size=1)\n', (4216, 4248), False, 'from torch.utils.data import Dataset, DataLoader\n'), ((4429, 4441), 'torch.nn.BCELoss', 'nn.BCELoss', ([], {}), '()\n', (4439, 4441), True, 'import torch.nn as nn\n'), ((4524, 4566), 'torch.utils.data.DataLoader', 'DataLoader', ([], {'dataset': 'data_set', 'batch_size': '(1)'}), '(dataset=data_set, batch_size=1)\n', (4534, 4566), False, 'from torch.utils.data import Dataset, DataLoader\n'), ((4834, 4846), 'torch.nn.BCELoss', 'nn.BCELoss', ([], {}), '()\n', (4844, 4846), True, 'import torch.nn as nn\n'), ((4928, 4970), 'torch.utils.data.DataLoader', 'DataLoader', ([], {'dataset': 'data_set', 'batch_size': '(1)'}), '(dataset=data_set, batch_size=1)\n', (4938, 4970), False, 'from torch.utils.data import Dataset, DataLoader\n'), ((344, 393), 'matplotlib.colors.ListedColormap', 'ListedColormap', (["['#FFAAAA', '#AAFFAA', '#00AAFF']"], {}), "(['#FFAAAA', '#AAFFAA', '#00AAFF'])\n", (358, 393), False, 'from matplotlib.colors import ListedColormap\n'), ((410, 459), 'matplotlib.colors.ListedColormap', 'ListedColormap', (["['#FF0000', '#00FF00', '#00AAFF']"], {}), "(['#FF0000', '#00FF00', '#00AAFF'])\n", (424, 459), False, 'from matplotlib.colors import ListedColormap\n'), ((863, 908), 'matplotlib.pyplot.pcolormesh', 'plt.pcolormesh', (['xx', 'yy', 'yhat'], {'cmap': 'cmap_light'}), '(xx, yy, yhat, cmap=cmap_light)\n', (877, 908), True, 'import matplotlib.pyplot as plt\n'), ((913, 979), 'matplotlib.pyplot.plot', 'plt.plot', (['X[y[:, 0] == 0, 0]', 'X[y[:, 0] == 0, 1]', '"""o"""'], {'label': '"""y=0"""'}), "(X[y[:, 0] == 0, 0], X[y[:, 0] == 0, 1], 'o', label='y=0')\n", (921, 979), True, 'import matplotlib.pyplot as plt\n'), ((984, 1051), 'matplotlib.pyplot.plot', 'plt.plot', (['X[y[:, 0] == 1, 0]', 'X[y[:, 0] == 1, 1]', '"""ro"""'], {'label': '"""y=1"""'}), "(X[y[:, 0] == 1, 0], X[y[:, 0] == 1, 1], 'ro', label='y=1')\n", (992, 1051), True, 'import matplotlib.pyplot as plt\n'), ((1056, 1084), 'matplotlib.pyplot.title', 'plt.title', (['"""decision region"""'], {}), "('decision region')\n", (1065, 1084), True, 'import matplotlib.pyplot as plt\n'), ((1089, 1101), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (1099, 1101), True, 'import matplotlib.pyplot as plt\n'), ((2250, 2264), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (2262, 2264), True, 'import matplotlib.pyplot as plt\n'), ((2735, 2745), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2743, 2745), True, 'import matplotlib.pyplot as plt\n'), ((673, 699), 'numpy.arange', 'np.arange', (['x_min', 'x_max', 'h'], {}), '(x_min, x_max, h)\n', (682, 699), True, 'import numpy as np\n'), ((700, 726), 'numpy.arange', 'np.arange', (['y_min', 'y_max', 'h'], {}), '(y_min, y_max, h)\n', (709, 726), True, 'import numpy as np\n'), ((1462, 1480), 'torch.nn.Linear', 'nn.Linear', (['D_in', 'H'], {}), '(D_in, H)\n', (1471, 1480), True, 'import torch.nn as nn\n'), ((1527, 1546), 'torch.nn.Linear', 'nn.Linear', (['H', 'D_out'], {}), '(H, D_out)\n', (1536, 1546), True, 'import torch.nn as nn\n'), ((2888, 2909), 'torch.zeros', 'torch.zeros', (['(N_s, 2)'], {}), '((N_s, 2))\n', (2899, 2909), False, 'import torch\n'), ((2927, 2948), 'torch.zeros', 'torch.zeros', (['(N_s, 1)'], {}), '((N_s, 1))\n', (2938, 2948), False, 'import torch\n'), ((3974, 3986), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (3984, 3986), True, 'import matplotlib.pyplot as plt\n'), ((3010, 3034), 'torch.Tensor', 'torch.Tensor', (['[0.0, 0.0]'], {}), '([0.0, 0.0])\n', (3022, 3034), False, 'import torch\n'), ((3062, 3081), 'torch.Tensor', 'torch.Tensor', (['[0.0]'], {}), '([0.0])\n', (3074, 3081), False, 'import torch\n'), ((3121, 3145), 'torch.Tensor', 'torch.Tensor', (['[0.0, 1.0]'], {}), '([0.0, 1.0])\n', (3133, 3145), False, 'import torch\n'), ((3184, 3203), 'torch.Tensor', 'torch.Tensor', (['[1.0]'], {}), '([1.0])\n', (3196, 3203), False, 'import torch\n'), ((3243, 3267), 'torch.Tensor', 'torch.Tensor', (['[1.0, 0.0]'], {}), '([1.0, 0.0])\n', (3255, 3267), False, 'import torch\n'), ((3306, 3325), 'torch.Tensor', 'torch.Tensor', (['[1.0]'], {}), '([1.0])\n', (3318, 3325), False, 'import torch\n'), ((3369, 3393), 'torch.Tensor', 'torch.Tensor', (['[1.0, 1.0]'], {}), '([1.0, 1.0])\n', (3381, 3393), False, 'import torch\n'), ((3436, 3455), 'torch.Tensor', 'torch.Tensor', (['[0.0]'], {}), '([0.0])\n', (3448, 3455), False, 'import torch\n'), ((3494, 3515), 'torch.randn', 'torch.randn', (['(N_s, 2)'], {}), '((N_s, 2))\n', (3505, 3515), False, 'import torch\n')]
import os import sys os.environ["OMP_NUM_THREADS"] = "1" import tensorflow as tf import numpy as np import time n = 8192 dtype = tf.float32 with tf.device("/gpu:0"): matrix1 = tf.Variable(tf.ones((n, n), dtype=dtype)) matrix2 = tf.Variable(tf.ones((n, n), dtype=dtype)) product = tf.matmul(matrix1, matrix2) # avoid optimizing away redundant nodes config = tf.ConfigProto(graph_options=tf.GraphOptions(optimizer_options=tf.OptimizerOptions(opt_level=tf.OptimizerOptions.L0))) sess = tf.Session(config=config) sess.run(tf.global_variables_initializer()) iters = 10 # pre-warming sess.run(product.op) start = time.time() for i in range(iters): sess.run(product.op) end = time.time() ops = n**3 + (n-1)*n**2 # n^2*(n-1) additions, n^3 multiplications elapsed = (end - start) rate = iters*ops/elapsed/10**9 print('\nGPU: %d x %d matmul took: %.2f sec, %.2f G ops/sec' % (n, n, elapsed/iters,rate,)) matrix1 = np.ones((n,n)) matrix2 = np.ones((n,n)) start = time.time() for i in range(iters): np.matmul(matrix1,matrix2) end = time.time() ops = n**3 + (n-1)*n**2 # n^2*(n-1) additions, n^3 multiplications elapsed = (end - start) rate = iters*ops/elapsed/10**9 print('\nCPU: %d x %d matmul took: %.2f sec, %.2f G ops/sec' % (n, n, elapsed/iters,rate,))
[ "tensorflow.ones", "tensorflow.global_variables_initializer", "tensorflow.device", "tensorflow.Session", "numpy.ones", "tensorflow.OptimizerOptions", "time.time", "tensorflow.matmul", "numpy.matmul" ]
[((500, 525), 'tensorflow.Session', 'tf.Session', ([], {'config': 'config'}), '(config=config)\n', (510, 525), True, 'import tensorflow as tf\n'), ((626, 637), 'time.time', 'time.time', ([], {}), '()\n', (635, 637), False, 'import time\n'), ((690, 701), 'time.time', 'time.time', ([], {}), '()\n', (699, 701), False, 'import time\n'), ((928, 943), 'numpy.ones', 'np.ones', (['(n, n)'], {}), '((n, n))\n', (935, 943), True, 'import numpy as np\n'), ((953, 968), 'numpy.ones', 'np.ones', (['(n, n)'], {}), '((n, n))\n', (960, 968), True, 'import numpy as np\n'), ((977, 988), 'time.time', 'time.time', ([], {}), '()\n', (986, 988), False, 'import time\n'), ((1047, 1058), 'time.time', 'time.time', ([], {}), '()\n', (1056, 1058), False, 'import time\n'), ((148, 167), 'tensorflow.device', 'tf.device', (['"""/gpu:0"""'], {}), "('/gpu:0')\n", (157, 167), True, 'import tensorflow as tf\n'), ((295, 322), 'tensorflow.matmul', 'tf.matmul', (['matrix1', 'matrix2'], {}), '(matrix1, matrix2)\n', (304, 322), True, 'import tensorflow as tf\n'), ((536, 569), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (567, 569), True, 'import tensorflow as tf\n'), ((1014, 1041), 'numpy.matmul', 'np.matmul', (['matrix1', 'matrix2'], {}), '(matrix1, matrix2)\n', (1023, 1041), True, 'import numpy as np\n'), ((195, 223), 'tensorflow.ones', 'tf.ones', (['(n, n)'], {'dtype': 'dtype'}), '((n, n), dtype=dtype)\n', (202, 223), True, 'import tensorflow as tf\n'), ((251, 279), 'tensorflow.ones', 'tf.ones', (['(n, n)'], {'dtype': 'dtype'}), '((n, n), dtype=dtype)\n', (258, 279), True, 'import tensorflow as tf\n'), ((437, 490), 'tensorflow.OptimizerOptions', 'tf.OptimizerOptions', ([], {'opt_level': 'tf.OptimizerOptions.L0'}), '(opt_level=tf.OptimizerOptions.L0)\n', (456, 490), True, 'import tensorflow as tf\n')]
# Modulos import numpy as np from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error np.set_printoptions(suppress=True) # Declaracion de clases class Adeline: def __init__(self, r, landa, training_type, iter): self.iter = iter self.training_type = training_type self.landa = landa self.r = r def function_transfer(self,x): return 1/ (1 + np.exp(-x)) def show(self, iter, x, y, up): print('ITERACION ACTUAL: {}\n'.format(iter)) print('Patron | __________ Salida __________\n') print('No | Deseada Calculada Error Abs\n') for i in range(0,self.p): if i < 12 or i >= self.p - 8: print('{} | {:.2f} {:.2f} {:.2f}'.format(i, y[i],up[i],abs(y[i]-up[i]))) elif i == 12: print('...') print('\n') def solve(self, x, y): self.p = x.shape[0] self.inputs = x.shape[1] self.W = np.random.uniform(low=-0.3, high=0.3,size=(1,self.inputs)) vectorjfw = [] jfwprev = 0 # self.W = np.zeros((1,self.inputs)) it = 0 while(it < self.iter): # for i in range(0,self.r): if self.training_type == "Lotes": deltaw = np.zeros((self.inputs, 1)) up = self.evaluation(x) vectorjfw.append(mean_squared_error(y,up)) print('Error promedio: {:.6f}'.format(sum(vectorjfw) / len(vectorjfw))) jw = (y - up) * (up) * (1 - up) self.show(it, x, y, up) for j in range(0,self.p): wri = self.landa*(jw[j])*np.transpose(x[j]) self.W = self.W + wri it = it + 1 def evaluation(self,x): up = sum(np.transpose(self.W*x) - 0.5) up = self.function_transfer(up) return up # Declaracion de operaciones def main(): ''' Cuerpo principal ''' x0 = np.random.uniform(0, 1) xn = [] xn.append(x0) for i in range(1,600): xn.append(4*xn[i-1]*(1-xn[i-1])) vcr = [] vcry = [] xn = xn[-100:] for i in range(0,len(xn[-100:])-2): vcr.append([xn[i],xn[i+1],xn[i]*xn[i],xn[i]*xn[i+1],xn[i+1]*xn[i+1]]) vcry.append(xn[i+2]) x = np.array(vcr) y = np.array(vcry) X_train, X_test, y_train, y_test = train_test_split( x, y, test_size=0.33, random_state=42) p = Adeline(1, 0.8,"PP",1000) print('Tipo de aprendizaje: Patron a patron\nFactor de aprendizaje: {}\nCantidad de iteraciones utilizadas: {}'.format(p.landa, p.iter)) p.solve(X_train,y_train) if __name__ == '__main__': main()
[ "numpy.random.uniform", "numpy.set_printoptions", "sklearn.model_selection.train_test_split", "numpy.zeros", "numpy.transpose", "numpy.array", "numpy.exp", "sklearn.metrics.mean_squared_error" ]
[((129, 163), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'suppress': '(True)'}), '(suppress=True)\n', (148, 163), True, 'import numpy as np\n'), ((1979, 2002), 'numpy.random.uniform', 'np.random.uniform', (['(0)', '(1)'], {}), '(0, 1)\n', (1996, 2002), True, 'import numpy as np\n'), ((2304, 2317), 'numpy.array', 'np.array', (['vcr'], {}), '(vcr)\n', (2312, 2317), True, 'import numpy as np\n'), ((2326, 2340), 'numpy.array', 'np.array', (['vcry'], {}), '(vcry)\n', (2334, 2340), True, 'import numpy as np\n'), ((2380, 2435), 'sklearn.model_selection.train_test_split', 'train_test_split', (['x', 'y'], {'test_size': '(0.33)', 'random_state': '(42)'}), '(x, y, test_size=0.33, random_state=42)\n', (2396, 2435), False, 'from sklearn.model_selection import train_test_split\n'), ((1014, 1074), 'numpy.random.uniform', 'np.random.uniform', ([], {'low': '(-0.3)', 'high': '(0.3)', 'size': '(1, self.inputs)'}), '(low=-0.3, high=0.3, size=(1, self.inputs))\n', (1031, 1074), True, 'import numpy as np\n'), ((434, 444), 'numpy.exp', 'np.exp', (['(-x)'], {}), '(-x)\n', (440, 444), True, 'import numpy as np\n'), ((1319, 1345), 'numpy.zeros', 'np.zeros', (['(self.inputs, 1)'], {}), '((self.inputs, 1))\n', (1327, 1345), True, 'import numpy as np\n'), ((1411, 1436), 'sklearn.metrics.mean_squared_error', 'mean_squared_error', (['y', 'up'], {}), '(y, up)\n', (1429, 1436), False, 'from sklearn.metrics import mean_squared_error\n'), ((1810, 1834), 'numpy.transpose', 'np.transpose', (['(self.W * x)'], {}), '(self.W * x)\n', (1822, 1834), True, 'import numpy as np\n'), ((1682, 1700), 'numpy.transpose', 'np.transpose', (['x[j]'], {}), '(x[j])\n', (1694, 1700), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- import pandas as pd # Read in track metadata with genre labels tracks = pd.read_csv('datasets/fma-rock-vs-hiphop.csv') # Read in track metrics with the features echonest_metrics = pd.read_json('datasets/echonest-metrics.json', precise_float=True) # Merge the relevant columns of tracks and echonest_metrics echo_tracks = echonest_metrics.merge(tracks[['genre_top', 'track_id']], on='track_id') # Inspect the resultant dataframe echo_tracks.info() # Create a correlation matrix corr_metrics = echo_tracks.corr() corr_metrics.style.background_gradient() # Define features features = echo_tracks.drop(['genre_top', 'track_id'], axis=1) # Define labels labels = echo_tracks['genre_top'] # Import the StandardScaler from sklearn.preprocessing import StandardScaler # Scale the features and set the values to a new variable scaler = StandardScaler() scaled_train_features = scaler.fit_transform(features) # Import plotting module, and PCA class import matplotlib.pyplot as plt from sklearn.decomposition import PCA # Get explained variance ratios from PCA using all features pca = PCA() pca.fit(scaled_train_features) exp_variance = pca.explained_variance_ratio_ # plot the explained variance using a barplot fig, ax = plt.subplots() print(pca.explained_variance_ratio_) print(pca.n_components_) ax.bar(range(pca.n_components_), exp_variance) ax.set_xlabel('Principal Component #') # Import numpy import numpy as np # Calculate the cumulative explained variance cum_exp_variance = np.cumsum(exp_variance) # Plot the cumulative explained variance and draw a dashed line at 0.85. fig, ax = plt.subplots() ax.plot(cum_exp_variance) ax.axhline(y=0.85, linestyle='--') # choose the n_components where about 85% of our variance can be explained n_components = 6 # Perform PCA with the chosen number of components and project data onto components pca = PCA(n_components, random_state=10) pca.fit(scaled_train_features) pca_projection = pca.transform(scaled_train_features) # Import train_test_split function and Decision tree classifier from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier # Split data train_features, test_features, train_labels, test_labels = train_test_split(pca_projection, labels, random_state=10) # Train decision tree tree = DecisionTreeClassifier(random_state=10) tree.fit(train_features, train_labels) # Predict the labels for the test data pred_labels_tree = tree.predict(test_features) # Import LogisticRegression from sklearn.linear_model import LogisticRegression # Train logistic regression and predict labels for the test set logreg = LogisticRegression(random_state=10) logreg.fit(train_features, train_labels) pred_labels_logit = logreg.predict(test_features) # Create the classification report for both models from sklearn.metrics import classification_report class_rep_tree = classification_report(test_labels, pred_labels_tree) class_rep_log = classification_report(test_labels, pred_labels_logit) print("Decision Tree: \n", class_rep_tree) print("Logistic Regression: \n", class_rep_log) # Balance data for greater performance # Subset only the hip-hop tracks, and then only the rock tracks hop_only = echo_tracks.loc[echo_tracks['genre_top'] == 'Hip-Hop'] rock_only = echo_tracks.loc[echo_tracks['genre_top'] == 'Rock'] # sample the rocks songs to be the same number as there are hip-hop songs rock_only = rock_only.sample(hop_only.shape[0], random_state=10) # concatenate the dataframes rock_only and hop_only rock_hop_bal = pd.concat([rock_only, hop_only]) # The features, labels, and pca projection are created for the balanced dataframe features = rock_hop_bal.drop(['genre_top', 'track_id'], axis=1) labels = rock_hop_bal['genre_top'] pca_projection = pca.fit_transform(scaler.fit_transform(features)) # Redefine the train and test set with the pca_projection from the balanced data train_features, test_features, train_labels, test_labels = train_test_split(pca_projection, labels, random_state=10) # Train decision tree on the balanced data tree = DecisionTreeClassifier(random_state=10) tree.fit(train_features, train_labels) pred_labels_tree = tree.predict(test_features) # Train logistic regression on the balanced data logreg = LogisticRegression(random_state=10) logreg.fit(train_features, train_labels) pred_labels_logit = logreg.predict(test_features) # Compare the models print("Decision Tree: \n", classification_report(test_labels, pred_labels_tree)) print("Logistic Regression: \n", classification_report(test_labels, pred_labels_logit)) # Using cross-validation to evaluate our models from sklearn.model_selection import KFold, cross_val_score # Set up K-fold cross-validation kf = KFold(n_splits=10) tree = DecisionTreeClassifier(random_state=10) logreg = LogisticRegression(random_state=10) # Train models using KFold cv tree_score = cross_val_score(tree, pca_projection, labels, cv = kf ) logit_score = cross_val_score(logreg, pca_projection, labels, cv = kf) # Print the mean of each array of scores print("Decision Tree:", np.mean(tree_score), "Logistic Regression:", np.mean(logit_score))
[ "sklearn.preprocessing.StandardScaler", "pandas.read_csv", "sklearn.model_selection.train_test_split", "sklearn.model_selection.cross_val_score", "pandas.read_json", "sklearn.tree.DecisionTreeClassifier", "sklearn.metrics.classification_report", "numpy.cumsum", "sklearn.linear_model.LogisticRegression", "sklearn.model_selection.KFold", "sklearn.decomposition.PCA", "numpy.mean", "matplotlib.pyplot.subplots", "pandas.concat" ]
[((98, 144), 'pandas.read_csv', 'pd.read_csv', (['"""datasets/fma-rock-vs-hiphop.csv"""'], {}), "('datasets/fma-rock-vs-hiphop.csv')\n", (109, 144), True, 'import pandas as pd\n'), ((207, 273), 'pandas.read_json', 'pd.read_json', (['"""datasets/echonest-metrics.json"""'], {'precise_float': '(True)'}), "('datasets/echonest-metrics.json', precise_float=True)\n", (219, 273), True, 'import pandas as pd\n'), ((864, 880), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (878, 880), False, 'from sklearn.preprocessing import StandardScaler\n'), ((1116, 1121), 'sklearn.decomposition.PCA', 'PCA', ([], {}), '()\n', (1119, 1121), False, 'from sklearn.decomposition import PCA\n'), ((1255, 1269), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (1267, 1269), True, 'import matplotlib.pyplot as plt\n'), ((1519, 1542), 'numpy.cumsum', 'np.cumsum', (['exp_variance'], {}), '(exp_variance)\n', (1528, 1542), True, 'import numpy as np\n'), ((1627, 1641), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (1639, 1641), True, 'import matplotlib.pyplot as plt\n'), ((1887, 1921), 'sklearn.decomposition.PCA', 'PCA', (['n_components'], {'random_state': '(10)'}), '(n_components, random_state=10)\n', (1890, 1921), False, 'from sklearn.decomposition import PCA\n'), ((2248, 2305), 'sklearn.model_selection.train_test_split', 'train_test_split', (['pca_projection', 'labels'], {'random_state': '(10)'}), '(pca_projection, labels, random_state=10)\n', (2264, 2305), False, 'from sklearn.model_selection import train_test_split\n'), ((2337, 2376), 'sklearn.tree.DecisionTreeClassifier', 'DecisionTreeClassifier', ([], {'random_state': '(10)'}), '(random_state=10)\n', (2359, 2376), False, 'from sklearn.tree import DecisionTreeClassifier\n'), ((2660, 2695), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {'random_state': '(10)'}), '(random_state=10)\n', (2678, 2695), False, 'from sklearn.linear_model import LogisticRegression\n'), ((2906, 2958), 'sklearn.metrics.classification_report', 'classification_report', (['test_labels', 'pred_labels_tree'], {}), '(test_labels, pred_labels_tree)\n', (2927, 2958), False, 'from sklearn.metrics import classification_report\n'), ((2975, 3028), 'sklearn.metrics.classification_report', 'classification_report', (['test_labels', 'pred_labels_logit'], {}), '(test_labels, pred_labels_logit)\n', (2996, 3028), False, 'from sklearn.metrics import classification_report\n'), ((3565, 3597), 'pandas.concat', 'pd.concat', (['[rock_only, hop_only]'], {}), '([rock_only, hop_only])\n', (3574, 3597), True, 'import pandas as pd\n'), ((3988, 4045), 'sklearn.model_selection.train_test_split', 'train_test_split', (['pca_projection', 'labels'], {'random_state': '(10)'}), '(pca_projection, labels, random_state=10)\n', (4004, 4045), False, 'from sklearn.model_selection import train_test_split\n'), ((4098, 4137), 'sklearn.tree.DecisionTreeClassifier', 'DecisionTreeClassifier', ([], {'random_state': '(10)'}), '(random_state=10)\n', (4120, 4137), False, 'from sklearn.tree import DecisionTreeClassifier\n'), ((4283, 4318), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {'random_state': '(10)'}), '(random_state=10)\n', (4301, 4318), False, 'from sklearn.linear_model import LogisticRegression\n'), ((4751, 4769), 'sklearn.model_selection.KFold', 'KFold', ([], {'n_splits': '(10)'}), '(n_splits=10)\n', (4756, 4769), False, 'from sklearn.model_selection import KFold, cross_val_score\n'), ((4778, 4817), 'sklearn.tree.DecisionTreeClassifier', 'DecisionTreeClassifier', ([], {'random_state': '(10)'}), '(random_state=10)\n', (4800, 4817), False, 'from sklearn.tree import DecisionTreeClassifier\n'), ((4827, 4862), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {'random_state': '(10)'}), '(random_state=10)\n', (4845, 4862), False, 'from sklearn.linear_model import LogisticRegression\n'), ((4908, 4960), 'sklearn.model_selection.cross_val_score', 'cross_val_score', (['tree', 'pca_projection', 'labels'], {'cv': 'kf'}), '(tree, pca_projection, labels, cv=kf)\n', (4923, 4960), False, 'from sklearn.model_selection import KFold, cross_val_score\n'), ((4978, 5032), 'sklearn.model_selection.cross_val_score', 'cross_val_score', (['logreg', 'pca_projection', 'labels'], {'cv': 'kf'}), '(logreg, pca_projection, labels, cv=kf)\n', (4993, 5032), False, 'from sklearn.model_selection import KFold, cross_val_score\n'), ((4459, 4511), 'sklearn.metrics.classification_report', 'classification_report', (['test_labels', 'pred_labels_tree'], {}), '(test_labels, pred_labels_tree)\n', (4480, 4511), False, 'from sklearn.metrics import classification_report\n'), ((4546, 4599), 'sklearn.metrics.classification_report', 'classification_report', (['test_labels', 'pred_labels_logit'], {}), '(test_labels, pred_labels_logit)\n', (4567, 4599), False, 'from sklearn.metrics import classification_report\n'), ((5101, 5120), 'numpy.mean', 'np.mean', (['tree_score'], {}), '(tree_score)\n', (5108, 5120), True, 'import numpy as np\n'), ((5147, 5167), 'numpy.mean', 'np.mean', (['logit_score'], {}), '(logit_score)\n', (5154, 5167), True, 'import numpy as np\n')]
import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from data_worker.data_worker import combine_batches, split_into_batches, \ unpickle, unpack_data, display_img from torch_lib.Interface import Interface from torch_lib.Nets import MediumNet from torch_lib.data_worker import suit4pytorch batches_names = [ 'data_batch_1', 'data_batch_2', 'data_batch_3', 'data_batch_4', 'data_batch_5'] if __name__ == '__main__': print('running main') saved_weights_file = 'saved_nets/saved_torch/version1.pth' data_batches = [ unpickle(f'datasets/cifar-10-batches-py/{batch_name}') for batch_name in batches_names] unpacked_batches = [ (unpack_data(data_batch)) for data_batch in data_batches] print(unpacked_batches[0][0].shape) X, Y = combine_batches(unpacked_batches) print(X.shape, Y.shape) batches = split_into_batches(X, Y, 3) torch_batches = [(suit4pytorch(X, Y)) for X, Y in batches] X_torch = torch_batches[0][0] Y_torch = torch_batches[0][1] net = MediumNet() net_interface = Interface(net) net_interface.train_net(torch_batches, 1, verbose=False, batch_size=None) net_interface.save_weights(saved_weights_file) preds = net_interface.predict_net(X_torch) preds = preds.detach().numpy() print(preds) print(np.argmax(preds, axis=1), Y_torch)
[ "data_worker.data_worker.unpack_data", "numpy.argmax", "data_worker.data_worker.unpickle", "data_worker.data_worker.combine_batches", "torch_lib.Interface.Interface", "torch_lib.data_worker.suit4pytorch", "torch_lib.Nets.MediumNet", "data_worker.data_worker.split_into_batches" ]
[((833, 866), 'data_worker.data_worker.combine_batches', 'combine_batches', (['unpacked_batches'], {}), '(unpacked_batches)\n', (848, 866), False, 'from data_worker.data_worker import combine_batches, split_into_batches, unpickle, unpack_data, display_img\n'), ((911, 938), 'data_worker.data_worker.split_into_batches', 'split_into_batches', (['X', 'Y', '(3)'], {}), '(X, Y, 3)\n', (929, 938), False, 'from data_worker.data_worker import combine_batches, split_into_batches, unpickle, unpack_data, display_img\n'), ((1083, 1094), 'torch_lib.Nets.MediumNet', 'MediumNet', ([], {}), '()\n', (1092, 1094), False, 'from torch_lib.Nets import MediumNet\n'), ((1115, 1129), 'torch_lib.Interface.Interface', 'Interface', (['net'], {}), '(net)\n', (1124, 1129), False, 'from torch_lib.Interface import Interface\n'), ((584, 638), 'data_worker.data_worker.unpickle', 'unpickle', (['f"""datasets/cifar-10-batches-py/{batch_name}"""'], {}), "(f'datasets/cifar-10-batches-py/{batch_name}')\n", (592, 638), False, 'from data_worker.data_worker import combine_batches, split_into_batches, unpickle, unpack_data, display_img\n'), ((715, 738), 'data_worker.data_worker.unpack_data', 'unpack_data', (['data_batch'], {}), '(data_batch)\n', (726, 738), False, 'from data_worker.data_worker import combine_batches, split_into_batches, unpickle, unpack_data, display_img\n'), ((962, 980), 'torch_lib.data_worker.suit4pytorch', 'suit4pytorch', (['X', 'Y'], {}), '(X, Y)\n', (974, 980), False, 'from torch_lib.data_worker import suit4pytorch\n'), ((1369, 1393), 'numpy.argmax', 'np.argmax', (['preds'], {'axis': '(1)'}), '(preds, axis=1)\n', (1378, 1393), True, 'import numpy as np\n')]
''' <NAME> 2012-2013 <<EMAIL>> ''' import numpy as np import scipy.io as sio def create_icosahedron(height=1.,payloadR=0.3): ''' Creates a tensegrity icosahedron ''' #create points points = np.zeros((3,2*6+2)) phi = (1+np.sqrt(5))*0.5 offest = 0.792 points[:,0] = (-phi,0,1*offest) points[:,1] = (phi,0,1*offest) points[:,2] = (-phi,0,-1*offest) points[:,3] = (phi,0,-1*offest) points[:,4] = (1*offest,-phi,0) points[:,5] = (1*offest,phi,0) points[:,6] = (-1*offest,-phi,0) points[:,7] = (-1*offest,phi,0) points[:,8] = (0,1*offest,-phi) points[:,9] = (0,1*offest,phi) points[:,10] = (0,-1*offest,-phi) points[:,11] = (0,-1*offest,phi) points[:,12] = (0,0,(payloadR/(height*0.62*0.5))) points[:,13] = (0,0,(-payloadR/(height*0.62*0.5))) #theta = -0.36486 #theta=-20.905 degrees #yRot = np.array([[np.cos(theta),0.,np.sin(theta)],[0.,1.,0.],[-np.sin(theta),0.,np.cos(theta)]]) #testPoints = np.dot(yRot,points) #print points #print testPoints #points = testPoints points *= (height*0.62)*0.5 #scale the tensegrity and center it #create bars bars = np.zeros((6+1,6*2+2)) bars[:,::2] = np.eye(6+1) bars[:,1::2] = -np.eye(6+1) #create springs springs = np.zeros((6*6,2*6+2)) springs[0,(0,6)] = (1,-1) springs[1,(0,7)] = (1,-1) springs[2,(0,9)] = (1,-1) springs[3,(0,11)] = (1,-1) springs[4,(1,4)] = (1,-1) springs[5,(1,5)] = (1,-1) springs[6,(1,9)] = (1,-1) springs[7,(1,11)] = (1,-1) springs[8,(2,6)] = (1,-1) springs[9,(2,7)] = (1,-1) springs[10,(2,8)] = (1,-1) springs[11,(2,10)] = (1,-1) springs[12,(3,4)] = (1,-1) springs[13,(3,5)] = (1,-1) springs[14,(3,8)] = (1,-1) springs[15,(3,10)] = (1,-1) springs[16,(4,10)] = (1,-1) springs[17,(4,11)] = (1,-1) springs[18,(5,8)] = (1,-1) springs[19,(5,9)] = (1,-1) springs[20,(6,10)] = (1,-1) springs[21,(6,11)] = (1,-1) springs[22,(7,8)] = (1,-1) springs[23,(7,9)] = (1,-1) springs[24,(0,12)] = (1,-1) springs[25,(1,12)] = (1,-1) springs[26,(2,13)] = (1,-1) springs[27,(3,13)] = (1,-1) springs[28,(6,13)] = (1,-1) springs[29,(5,13)] = (1,-1) springs[30,(4,12)] = (1,-1) springs[31,(7,12)] = (1,-1) springs[32,(8,13)] = (1,-1) springs[33,(9,12)] = (1,-1) springs[34,(10,13)] = (1,-1) springs[35,(11,12)] = (1,-1) # springs[:num_struts,:num_struts] = -np.eye(num_struts)+np.roll(np.eye(num_struts),1,1) #ground layer # springs[num_struts:2*num_struts,num_struts:] = -np.eye(num_struts)+np.roll(np.eye(num_struts),1,1) #top layer # springs[2*num_struts:,:num_struts] = -np.eye(num_struts) #connections between layers # springs[2*num_struts:,num_struts:] = np.roll(np.eye(num_struts),1,1) return points,bars,springs
[ "numpy.eye", "numpy.zeros", "numpy.sqrt" ]
[((214, 238), 'numpy.zeros', 'np.zeros', (['(3, 2 * 6 + 2)'], {}), '((3, 2 * 6 + 2))\n', (222, 238), True, 'import numpy as np\n'), ((1188, 1216), 'numpy.zeros', 'np.zeros', (['(6 + 1, 6 * 2 + 2)'], {}), '((6 + 1, 6 * 2 + 2))\n', (1196, 1216), True, 'import numpy as np\n'), ((1228, 1241), 'numpy.eye', 'np.eye', (['(6 + 1)'], {}), '(6 + 1)\n', (1234, 1241), True, 'import numpy as np\n'), ((1307, 1335), 'numpy.zeros', 'np.zeros', (['(6 * 6, 2 * 6 + 2)'], {}), '((6 * 6, 2 * 6 + 2))\n', (1315, 1335), True, 'import numpy as np\n'), ((1260, 1273), 'numpy.eye', 'np.eye', (['(6 + 1)'], {}), '(6 + 1)\n', (1266, 1273), True, 'import numpy as np\n'), ((247, 257), 'numpy.sqrt', 'np.sqrt', (['(5)'], {}), '(5)\n', (254, 257), True, 'import numpy as np\n')]
import numpy as np import pandas as pd def Preprc(raw_data: object, flag: object = 0) -> object: """ Function to compute the decoded values in motionsense HRV sensors and interploate the timestamps given the decoded sequence numbers :param raw_data: :param flag: :return: """ # process recieved arrays (data_arr1=data, data_arr2=time,seq) if not list(raw_data): return [] data_arr1, data_arr2, err_pkts = process_raw_PPG(raw_data) seq = np.copy(data_arr2[:, 1]) # make Sq no. ordered d = np.diff(seq) idx1 = np.where(d < -(1023 - 50))[0] idx1 = np.append(idx1, len(seq) - 1) for i in range(len(idx1) - 1): seq[idx1[i] + 1:idx1[i + 1] + 1] = seq[idx1[i] + 1:idx1[i + 1] + 1] - (i + 1) * d[idx1[i]] seq = (seq - seq[0]).astype(int).reshape((len(seq))) # print(seq) seq_max = max(seq) # just some heuristic to make ECG seq value 4 times arr1 = np.concatenate([seq.reshape((len(seq), 1)), data_arr1], axis=1) if raw_data.all != None: df1 = pd.DataFrame(arr1, columns=['Seq', 'AccX', 'AccY', 'AccZ', 'GyroX', 'GyroY', 'GyroZ', 'LED1', 'LED2', 'LED3']) else: return [] df1.drop_duplicates(subset=['Seq'], inplace=True) df2 = pd.DataFrame(np.array(range(seq_max + 1)), columns=['Seq']) itime = data_arr2[0, 0]; ftime = data_arr2[-1, 0] df3 = df2.merge(df1, how='left', on=['Seq']) df3['time'] = pd.to_datetime(np.linspace(itime, ftime, len(df2)), unit='ms') df3.set_index('time', inplace=True) df3.interpolate(method='time', axis=0, inplace=True) # filling missing data df3.dropna(inplace=True) df3['time_stamps'] = np.linspace(itime, ftime, len(df2)) return df3 def process_raw_PPG(raw_data: object) -> object: """ function to decode the values from raw byte arrays :rtype: object :param raw_data: :return: """ data = raw_data Vals = data[:, 2:] num_samples = Vals.shape[0] ts = data[:, 0] Accx = np.zeros((num_samples)); Accy = np.zeros((num_samples)) Accz = np.zeros((num_samples)); Gyrox = np.zeros((num_samples)) Gyroy = np.zeros((num_samples)); Gyroz = np.zeros((num_samples)) led1 = np.zeros((num_samples)); led2 = np.zeros((num_samples)) led3 = np.zeros((num_samples)); seq = np.zeros((num_samples)) time_stamps = np.zeros((num_samples)) n = 0; i = 0; s = 0; mis_pkts = 0 while (n) < (num_samples): time_stamps[i] = ts[n] Accx[i] = np.int16((np.uint8(Vals[n, 0]) << 8) | (np.uint8(Vals[n, 1]))) Accy[i] = np.int16((np.uint8(Vals[n, 2]) << 8) | (np.uint8(Vals[n, 3]))) Accz[i] = np.int16((np.uint8(Vals[n, 4]) << 8) | (np.uint8(Vals[n, 5]))) Gyrox[i] = np.int16((np.uint8(Vals[n, 6]) << 8) | (np.uint8(Vals[n, 7]))) Gyroy[i] = np.int16((np.uint8(Vals[n, 8]) << 8) | (np.uint8(Vals[n, 9]))) Gyroz[i] = np.int16((np.uint8(Vals[n, 10]) << 8) | (np.uint8(Vals[n, 11]))) led1[i] = (np.uint8(Vals[n, 12]) << 10) | (np.uint8(Vals[n, 13]) << 2) | \ ((np.uint8(Vals[n, 14]) & int('11000000', 2)) >> 6) led2[i] = ((np.uint8(Vals[n, 14]) & int('00111111', 2)) << 12) | \ (np.uint8(Vals[n, 15]) << 4) | \ ((np.uint8(Vals[n, 16]) & int('11110000', 2)) >> 4) led3[i] = ((np.uint8(Vals[n, 16]) & int('00001111', 2)) << 14) | \ (np.uint8(Vals[n, 17]) << 6) | \ ((np.uint8(Vals[n, 18]) & int('11111100', 2)) >> 2) seq[i] = ((np.uint8(Vals[n, 18]) & int('00000011', 2)) << 8) | \ (np.uint8(Vals[n, 19])) if i > 0: difer = int((seq[i] - seq[i - 1]) % 1024) if difer > 50: s = s + 1 # keep a record of how many such errors occured n = n + 1 continue mis_pkts = mis_pkts + (difer - 1) n = n + 1; i = i + 1 # removing any trailing zeros seq = seq[:i]; time_stamps = time_stamps[:i] Accx = Accx[:i]; Accy = Accy[:i]; Accz = Accz[:i] Gyrox = Gyrox[:i]; Gyroy = Gyroy[:i]; Gyroz = Gyroz[:i] led1 = led1[:i]; led2 = led2[:i]; led3 = led3[:i] # print('no. of unknown seq errors in PPG= ',s) # print('no. of missed packets= {}'.format(mis_pkts)) data_arr1 = np.stack((Accx, Accy, Accz, Gyrox, Gyroy, Gyroz, led1, led2, led3), axis=1) # print(np.shape(data_arr1)) data_arr2 = np.concatenate((time_stamps.reshape(1, -1), seq.reshape(1, -1))).T return data_arr1, data_arr2, (mis_pkts + s)
[ "numpy.stack", "pandas.DataFrame", "numpy.uint8", "numpy.copy", "numpy.zeros", "numpy.diff", "numpy.where" ]
[((493, 517), 'numpy.copy', 'np.copy', (['data_arr2[:, 1]'], {}), '(data_arr2[:, 1])\n', (500, 517), True, 'import numpy as np\n'), ((552, 564), 'numpy.diff', 'np.diff', (['seq'], {}), '(seq)\n', (559, 564), True, 'import numpy as np\n'), ((2056, 2077), 'numpy.zeros', 'np.zeros', (['num_samples'], {}), '(num_samples)\n', (2064, 2077), True, 'import numpy as np\n'), ((2092, 2113), 'numpy.zeros', 'np.zeros', (['num_samples'], {}), '(num_samples)\n', (2100, 2113), True, 'import numpy as np\n'), ((2127, 2148), 'numpy.zeros', 'np.zeros', (['num_samples'], {}), '(num_samples)\n', (2135, 2148), True, 'import numpy as np\n'), ((2164, 2185), 'numpy.zeros', 'np.zeros', (['num_samples'], {}), '(num_samples)\n', (2172, 2185), True, 'import numpy as np\n'), ((2200, 2221), 'numpy.zeros', 'np.zeros', (['num_samples'], {}), '(num_samples)\n', (2208, 2221), True, 'import numpy as np\n'), ((2237, 2258), 'numpy.zeros', 'np.zeros', (['num_samples'], {}), '(num_samples)\n', (2245, 2258), True, 'import numpy as np\n'), ((2272, 2293), 'numpy.zeros', 'np.zeros', (['num_samples'], {}), '(num_samples)\n', (2280, 2293), True, 'import numpy as np\n'), ((2308, 2329), 'numpy.zeros', 'np.zeros', (['num_samples'], {}), '(num_samples)\n', (2316, 2329), True, 'import numpy as np\n'), ((2343, 2364), 'numpy.zeros', 'np.zeros', (['num_samples'], {}), '(num_samples)\n', (2351, 2364), True, 'import numpy as np\n'), ((2378, 2399), 'numpy.zeros', 'np.zeros', (['num_samples'], {}), '(num_samples)\n', (2386, 2399), True, 'import numpy as np\n'), ((2420, 2441), 'numpy.zeros', 'np.zeros', (['num_samples'], {}), '(num_samples)\n', (2428, 2441), True, 'import numpy as np\n'), ((4419, 4494), 'numpy.stack', 'np.stack', (['(Accx, Accy, Accz, Gyrox, Gyroy, Gyroz, led1, led2, led3)'], {'axis': '(1)'}), '((Accx, Accy, Accz, Gyrox, Gyroy, Gyroz, led1, led2, led3), axis=1)\n', (4427, 4494), True, 'import numpy as np\n'), ((576, 602), 'numpy.where', 'np.where', (['(d < -(1023 - 50))'], {}), '(d < -(1023 - 50))\n', (584, 602), True, 'import numpy as np\n'), ((1052, 1166), 'pandas.DataFrame', 'pd.DataFrame', (['arr1'], {'columns': "['Seq', 'AccX', 'AccY', 'AccZ', 'GyroX', 'GyroY', 'GyroZ', 'LED1', 'LED2',\n 'LED3']"}), "(arr1, columns=['Seq', 'AccX', 'AccY', 'AccZ', 'GyroX', 'GyroY',\n 'GyroZ', 'LED1', 'LED2', 'LED3'])\n", (1064, 1166), True, 'import pandas as pd\n'), ((3683, 3704), 'numpy.uint8', 'np.uint8', (['Vals[n, 19]'], {}), '(Vals[n, 19])\n', (3691, 3704), True, 'import numpy as np\n'), ((2614, 2634), 'numpy.uint8', 'np.uint8', (['Vals[n, 1]'], {}), '(Vals[n, 1])\n', (2622, 2634), True, 'import numpy as np\n'), ((2695, 2715), 'numpy.uint8', 'np.uint8', (['Vals[n, 3]'], {}), '(Vals[n, 3])\n', (2703, 2715), True, 'import numpy as np\n'), ((2776, 2796), 'numpy.uint8', 'np.uint8', (['Vals[n, 5]'], {}), '(Vals[n, 5])\n', (2784, 2796), True, 'import numpy as np\n'), ((2858, 2878), 'numpy.uint8', 'np.uint8', (['Vals[n, 7]'], {}), '(Vals[n, 7])\n', (2866, 2878), True, 'import numpy as np\n'), ((2940, 2960), 'numpy.uint8', 'np.uint8', (['Vals[n, 9]'], {}), '(Vals[n, 9])\n', (2948, 2960), True, 'import numpy as np\n'), ((3023, 3044), 'numpy.uint8', 'np.uint8', (['Vals[n, 11]'], {}), '(Vals[n, 11])\n', (3031, 3044), True, 'import numpy as np\n'), ((2584, 2604), 'numpy.uint8', 'np.uint8', (['Vals[n, 0]'], {}), '(Vals[n, 0])\n', (2592, 2604), True, 'import numpy as np\n'), ((2665, 2685), 'numpy.uint8', 'np.uint8', (['Vals[n, 2]'], {}), '(Vals[n, 2])\n', (2673, 2685), True, 'import numpy as np\n'), ((2746, 2766), 'numpy.uint8', 'np.uint8', (['Vals[n, 4]'], {}), '(Vals[n, 4])\n', (2754, 2766), True, 'import numpy as np\n'), ((2828, 2848), 'numpy.uint8', 'np.uint8', (['Vals[n, 6]'], {}), '(Vals[n, 6])\n', (2836, 2848), True, 'import numpy as np\n'), ((2910, 2930), 'numpy.uint8', 'np.uint8', (['Vals[n, 8]'], {}), '(Vals[n, 8])\n', (2918, 2930), True, 'import numpy as np\n'), ((2992, 3013), 'numpy.uint8', 'np.uint8', (['Vals[n, 10]'], {}), '(Vals[n, 10])\n', (3000, 3013), True, 'import numpy as np\n'), ((3066, 3087), 'numpy.uint8', 'np.uint8', (['Vals[n, 12]'], {}), '(Vals[n, 12])\n', (3074, 3087), True, 'import numpy as np\n'), ((3098, 3119), 'numpy.uint8', 'np.uint8', (['Vals[n, 13]'], {}), '(Vals[n, 13])\n', (3106, 3119), True, 'import numpy as np\n'), ((3150, 3171), 'numpy.uint8', 'np.uint8', (['Vals[n, 14]'], {}), '(Vals[n, 14])\n', (3158, 3171), True, 'import numpy as np\n'), ((3294, 3315), 'numpy.uint8', 'np.uint8', (['Vals[n, 15]'], {}), '(Vals[n, 15])\n', (3302, 3315), True, 'import numpy as np\n'), ((3346, 3367), 'numpy.uint8', 'np.uint8', (['Vals[n, 16]'], {}), '(Vals[n, 16])\n', (3354, 3367), True, 'import numpy as np\n'), ((3490, 3511), 'numpy.uint8', 'np.uint8', (['Vals[n, 17]'], {}), '(Vals[n, 17])\n', (3498, 3511), True, 'import numpy as np\n'), ((3542, 3563), 'numpy.uint8', 'np.uint8', (['Vals[n, 18]'], {}), '(Vals[n, 18])\n', (3550, 3563), True, 'import numpy as np\n'), ((3611, 3632), 'numpy.uint8', 'np.uint8', (['Vals[n, 18]'], {}), '(Vals[n, 18])\n', (3619, 3632), True, 'import numpy as np\n'), ((3220, 3241), 'numpy.uint8', 'np.uint8', (['Vals[n, 14]'], {}), '(Vals[n, 14])\n', (3228, 3241), True, 'import numpy as np\n'), ((3416, 3437), 'numpy.uint8', 'np.uint8', (['Vals[n, 16]'], {}), '(Vals[n, 16])\n', (3424, 3437), True, 'import numpy as np\n')]
#/usr/bin/env python3 import numpy as np # Try importing matplotlib; if it works show a plot of generated data try: import matplotlib.pyplot as plt except ImportError: MAKE_PLOT = False else: MAKE_PLOT = True FILTERSIZE = 50 def smooth(x, window_len=11, window='hanning'): """smooth the data using a window with requested size. This method is based on the convolution of a scaled window with the signal. The signal is prepared by introducing reflected copies of the signal (with the window size) in both ends so that transient parts are minimized in the begining and end part of the output signal. input: x: the input signal window_len: the dimension of the smoothing window; should be an odd integer window: the type of window from 'flat', 'hanning', 'hamming', 'bartlett', 'blackman' flat window will produce a moving average smoothing. output: the smoothed signal example: t=linspace(-2,2,0.1) x=sin(t)+randn(len(t))*0.1 y=smooth(x) see also: np.hanning, np.hamming, np.bartlett, np.blackman, np.convolve scipy.signal.lfilter TODO: the window parameter could be the window itself if an array instead of a string NOTE: length(output) != length(input), to correct this: return y[(window_len/2-1):-(window_len/2)] instead of just y. """ if x.ndim != 1: raise ValueError("smooth only accepts 1 dimension arrays.") if x.size < window_len: raise ValueError("Input vector needs to be bigger than window size.") if window_len<3: return x if not window in ['flat', 'hanning', 'hamming', 'bartlett', 'blackman']: raise ValueError("Window is on of 'flat', 'hanning', 'hamming', 'bartlett', 'blackman'") s=np.r_[x[window_len-1:0:-1],x,x[-2:-window_len-1:-1]] if window == 'flat': #moving average w=np.ones(window_len,'d') else: w=eval('np.'+window+'(window_len)') y=np.convolve(w/w.sum(),s,mode='valid') return y def main(): samples = np.random.rand(360000) samples_smooth = smooth(samples, FILTERSIZE) if MAKE_PLOT: plt.plot(np.arange(len(samples)), samples) plt.plot(np.arange(len(samples_smooth)), samples_smooth) plt.xlim(0, len(samples)) plt.show() for s in samples: print(s, end=" ") if __name__ == "__main__": main()
[ "numpy.random.rand", "matplotlib.pyplot.show", "numpy.ones" ]
[((2053, 2075), 'numpy.random.rand', 'np.random.rand', (['(360000)'], {}), '(360000)\n', (2067, 2075), True, 'import numpy as np\n'), ((1890, 1914), 'numpy.ones', 'np.ones', (['window_len', '"""d"""'], {}), "(window_len, 'd')\n", (1897, 1914), True, 'import numpy as np\n'), ((2301, 2311), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2309, 2311), True, 'import matplotlib.pyplot as plt\n')]
from __future__ import annotations from typing import Tuple, NoReturn from ...base import BaseEstimator import numpy as np from itertools import product class DecisionStump(BaseEstimator): """ A decision stump classifier for {-1,1} labels according to the CART algorithm Attributes ---------- self.threshold_ : float The threshold by which the data is split self.j_ : int The index of the feature by which to split the data self.sign_: int The label to predict for samples where the value of the j'th feature is above the threshold """ def __init__(self) -> DecisionStump: """ Instantiate a Decision stump classifier """ super().__init__() self.threshold_, self.j_, self.sign_ = None, None, None def _fit(self, X: np.ndarray, y: np.ndarray) -> NoReturn: """ fits a decision stump to the given data Parameters ---------- X : ndarray of shape (n_samples, n_features) Input data to fit an estimator for y : ndarray of shape (n_samples, ) Responses of input data to fit to """ min_err = np.inf for i in range(X.shape[1]): thr_pos, thr_err_pos = self._find_threshold(X[:, i], y, 1) thr_neg, thr_err_neg = self._find_threshold(X[:, i], y, -1) if thr_err_pos < min_err: min_err = thr_err_pos self.threshold_ = thr_pos self.sign_ = 1 self.j_ = i if thr_err_neg < min_err: min_err = thr_err_neg self.threshold_ = thr_neg self.sign_ = -1 self.j_ = i def _predict(self, X: np.ndarray) -> np.ndarray: """ Predict responses for given samples using fitted estimator Parameters ---------- X : ndarray of shape (n_samples, n_features) Input data to predict responses for Returns ------- responses : ndarray of shape (n_samples, ) Predicted responses of given samples Notes ----- Feature values strictly below threshold are predicted as `-sign` whereas values which equal to or above the threshold are predicted as `sign` """ true_vec = X[:, self.j_] >= self.threshold_ res = np.full(X.shape[0], -1) res[true_vec] = 1 return res * self.sign_ def _find_threshold(self, values: np.ndarray, labels: np.ndarray, sign: int) -> Tuple[float, float]: """ Given a feature vector and labels, find a threshold by which to perform a split The threshold is found according to the value minimizing the misclassification error along this feature Parameters ---------- values: ndarray of shape (n_samples,) A feature vector to find a splitting threshold for labels: ndarray of shape (n_samples,) The labels to compare against sign: int Predicted label assigned to values equal to or above threshold Returns ------- thr: float Threshold by which to perform split thr_err: float between 0 and 1 Misclassificaiton error of returned threshold Notes ----- For every tested threshold, values strictly below threshold are predicted as `-sign` whereas values which equal to or above the threshold are predicted as `sign` """ size = labels.size new_idx = np.argsort(values) sorted_values = values[new_idx] sorted_labels = labels[new_idx] # create matrix of all possabilities mat = np.full((size, size + 1), -sign) iu = np.tril_indices(size) mat[iu] = sign res = sorted_labels @ mat max_idx = np.argmax(res) mis = float(np.sum((np.sign(sorted_labels) != np.sign(mat[:, max_idx])) * np.abs(sorted_labels))) if max_idx == 0: return -np.inf, mis if max_idx == size: return np.inf, mis return sorted_values[max_idx], mis def _loss(self, X: np.ndarray, y: np.ndarray) -> float: """ Evaluate performance under misclassification loss function Parameters ---------- X : ndarray of shape (n_samples, n_features) Test samples y : ndarray of shape (n_samples, ) True labels of test samples Returns ------- loss : float Performance under missclassification loss function """ return float(np.sum(self.predict(X) != y)) / y.size
[ "numpy.full", "numpy.tril_indices", "numpy.abs", "numpy.argmax", "numpy.argsort", "numpy.sign" ]
[((2399, 2422), 'numpy.full', 'np.full', (['X.shape[0]', '(-1)'], {}), '(X.shape[0], -1)\n', (2406, 2422), True, 'import numpy as np\n'), ((3600, 3618), 'numpy.argsort', 'np.argsort', (['values'], {}), '(values)\n', (3610, 3618), True, 'import numpy as np\n'), ((3758, 3790), 'numpy.full', 'np.full', (['(size, size + 1)', '(-sign)'], {}), '((size, size + 1), -sign)\n', (3765, 3790), True, 'import numpy as np\n'), ((3804, 3825), 'numpy.tril_indices', 'np.tril_indices', (['size'], {}), '(size)\n', (3819, 3825), True, 'import numpy as np\n'), ((3902, 3916), 'numpy.argmax', 'np.argmax', (['res'], {}), '(res)\n', (3911, 3916), True, 'import numpy as np\n'), ((4000, 4021), 'numpy.abs', 'np.abs', (['sorted_labels'], {}), '(sorted_labels)\n', (4006, 4021), True, 'import numpy as np\n'), ((3946, 3968), 'numpy.sign', 'np.sign', (['sorted_labels'], {}), '(sorted_labels)\n', (3953, 3968), True, 'import numpy as np\n'), ((3972, 3996), 'numpy.sign', 'np.sign', (['mat[:, max_idx]'], {}), '(mat[:, max_idx])\n', (3979, 3996), True, 'import numpy as np\n')]
import torch import torch.nn as nn from numpy.random import random_sample def make_rand_coords(input_size=(256,256,256), patch_size=(64,64,64)): return [get_dims(input_size[0] - patch_size[0]), \ get_dims(input_size[1] - patch_size[1]), \ get_dims(input_size[2] - patch_size[2])] def get_dims(upper): # Random value in the range [0, upper) return int(upper * random_sample()) def multi_gpu_check(gpu_map, l_name, *args): """ Can move computations to other GPUs if specified. The names of the layers and corresponding GPUs can be specified in GPU map. :param gpu_map: :param l_name: :param args: :return: """ args = list(args) if l_name in gpu_map.keys(): # print(l_name) for idx, l in enumerate(args): args[idx] = l.to(torch.device(gpu_map[l_name])) # print(args[idx].device, gpu_map[l_name]) if len(args)==1: return args[0] return args class RCVNet(nn.Module): """ Random Cropping VNet. Model is designed to extract patches randomly during feedforward pass unless specifically prevented by setting a random patch coordinate manually. Can also move operations for individual layers to different GPUs if specified in params Standard VNet Architecture """ def __init__(self, params): """ Standard VNet Architecture """ super(RCVNet, self).__init__() self.coords = None self.input_shape = params['input_shape'] self.patch_size = params['patch_size'] self.gen_random = params['gen_random'] # Choose sub model if params['sub_model_name'] == 'vnet': from model.VNet import EncoderBlock, BottleNeck, DecoderBlock elif params['sub_model_name'] == 'vnet_2d_3d': from model.VNet_2D_3D import EncoderBlock, BottleNeck, DecoderBlock elif params['sub_model_name'] == 'vnet_asym': from model.VNetAsym import EncoderBlock, BottleNeck, DecoderBlock elif params['sub_model_name'] == 'vnet_sym': from model.VNetSym import EncoderBlock, BottleNeck, DecoderBlock elif params['sub_model_name'] == 'vnet_denseadd': from model.VNetDenseAdd import EncoderBlock, BottleNeck, DecoderBlock elif params['sub_model_name'] == 'vnet_exclusion': from model.VNetExclusion import EncoderBlock, BottleNeck, DecoderBlock elif params['sub_model_name'] == 'vnet_se': from model.VNetSE import EncoderBlock, BottleNeck, DecoderBlock else: raise ValueError(f"{params['sub_model_name']} does not exist.") # Artefact from another file. Unfortunately was not removed and is a dangling layer in many of the saved models # i.e. registered as a parameter, but never used self.down_input_lower = nn.Sequential( nn.Conv3d(in_channels=params['in_channels'], out_channels=4*params['out_channels'], kernel_size=(4,4,4), padding=0, stride=4), nn.GroupNorm(num_groups=4, num_channels=4*params['out_channels']), nn.PReLU() ) # Start model creation # in_channels: 16, out_channels: 16 self.encoder_block_1 = EncoderBlock(params) params['input'] = False params['create_layer_1'] = True params['in_channels'] = params['out_channels'] * 2 # 32 params['out_channels'] = params['out_channels'] * 2 # 32 self.encoder_block_2 = EncoderBlock(params) params['create_layer_2'] = True params['in_channels'] = params['out_channels'] * 2 # 64 params['out_channels'] = params['out_channels'] * 2 # 64 self.encoder_block_3 = EncoderBlock(params) params['in_channels'] = params['out_channels'] * 2 # 128 params['out_channels'] = params['out_channels'] * 2 # 128 self.encoder_block_4 = EncoderBlock(params) params['in_channels'] = params['out_channels'] * 2 # 256 params['out_channels'] = int(params['out_channels'] * 2) # 256 self.bottleneck_block = BottleNeck(params) enc_channels = 128 params['in_channels'] = params['out_channels'] + enc_channels # 256 + 128 params['out_channels'] = params['out_channels'] # 256 self.decoder_block_4 = DecoderBlock(params) enc_channels = int(enc_channels/2) params['in_channels'] = int(params['out_channels']/2) + enc_channels # 128 + 64 params['out_channels'] = int(params['out_channels'] / 2) # 128 self.decoder_block_3 = DecoderBlock(params) enc_channels = int(enc_channels/2) params['in_channels'] = int(params['out_channels'] / 2) + enc_channels # 64 + 32 params['out_channels'] = int(params['out_channels'] / 2) # 64 params['create_layer_2'] = False self.decoder_block_2 = DecoderBlock(params) enc_channels = int(enc_channels/2) params['in_channels'] = int(params['out_channels'] / 2) + enc_channels # 32 + 16 params['out_channels'] = int(params['out_channels'] / 2) # 32 params['create_layer_1'] = False params['out'] = True self.decoder_block_1 = DecoderBlock(params) params['out'] = False self.output_block = nn.Conv3d(in_channels=params['out_channels'], out_channels=params['num_classes'], kernel_size = (1, 1, 1), stride = 1, padding = 0) self.gpu_map = params['gpu_map'] def forward(self, x): if self.training: return self.train_forward(x) else: return self.eval_forward(x) def train_forward(self, x): """ Standard VNet Architecture """ # Generate Random Coordinates if needed if self.gen_random: # For usage by QuadNet self.coords = make_rand_coords(self.input_shape, self.patch_size) assert self.coords is not None # Cropped Patch for the part of encoder x_upper = x[..., self.coords[0]:self.coords[0] + self.patch_size[0], self.coords[1]:self.coords[1] + self.patch_size[1], self.coords[2]:self.coords[2] + self.patch_size[2]] # Running Encoder side of network x_upper = multi_gpu_check(self.gpu_map, 'encoder_block_1', x_upper) x_upper_res_1, x_down_1 = self.encoder_block_1(x_upper) x_down_1 = multi_gpu_check(self.gpu_map, 'encoder_block_2', x_down_1) x_upper_res_2, x_down_2 = self.encoder_block_2(x_down_1) x_down_2 = multi_gpu_check(self.gpu_map, 'encoder_block_3', x_down_2) x_lower_res_3, x_down_3 = self.encoder_block_3(x_down_2) x_down_3 = multi_gpu_check(self.gpu_map, 'encoder_block_4', x_down_3) x_lower_res_4, x_down_4 = self.encoder_block_4(x_down_3) # Running bottleneck x_down_4 = multi_gpu_check(self.gpu_map, 'bottleneck_block', x_down_4) x_bottleneck = self.bottleneck_block(x_down_4) # Run decoder x_lower_res_4, x_bottleneck = multi_gpu_check(self.gpu_map, 'decoder_block_4', x_lower_res_4, x_bottleneck) x_up_4 = self.decoder_block_4(x_lower_res_4, x_bottleneck) x_lower_res_3, x_up_4 = multi_gpu_check(self.gpu_map, 'decoder_block_3', x_lower_res_3, x_up_4) x_up_3 = self.decoder_block_3(x_lower_res_3, x_up_4) x_upper_res_2, x_up_3 = multi_gpu_check(self.gpu_map, 'decoder_block_2', x_upper_res_2, x_up_3) x_up_2 = self.decoder_block_2(x_upper_res_2, x_up_3) x_upper_res_1, x_up_2 = multi_gpu_check(self.gpu_map, 'decoder_block_1', x_upper_res_1, x_up_2) x_last = self.decoder_block_1(x_upper_res_1, x_up_2) x_last = multi_gpu_check(self.gpu_map, 'output_block', x_last) out = self.output_block(x_last) return out def eval_forward(self, x): """ Standard VNet Architecture """ # Standard evaluation. No patch extraction x_upper = multi_gpu_check(self.gpu_map, 'encoder_block_1', x) x_upper_res_1, x_down_1 = self.encoder_block_1(x_upper) x_down_1 = multi_gpu_check(self.gpu_map, 'encoder_block_2', x_down_1) x_upper_res_2, x_down_2 = self.encoder_block_2(x_down_1) x_down_2 = multi_gpu_check(self.gpu_map, 'encoder_block_3', x_down_2) x_lower_res_3, x_down_3 = self.encoder_block_3(x_down_2) x_down_3 = multi_gpu_check(self.gpu_map, 'encoder_block_4', x_down_3) x_lower_res_4, x_down_4 = self.encoder_block_4(x_down_3) # Running bottlenext and decoder x_down_4 = multi_gpu_check(self.gpu_map, 'bottleneck_block', x_down_4) x_bottleneck = self.bottleneck_block(x_down_4) x_lower_res_4, x_bottleneck = multi_gpu_check(self.gpu_map, 'decoder_block_4', x_lower_res_4, x_bottleneck) x_up_4 = self.decoder_block_4(x_lower_res_4, x_bottleneck) x_lower_res_3, x_up_4 = multi_gpu_check(self.gpu_map, 'decoder_block_3', x_lower_res_3, x_up_4) x_up_3 = self.decoder_block_3(x_lower_res_3, x_up_4) x_upper_res_2, x_up_3 = multi_gpu_check(self.gpu_map, 'decoder_block_2', x_upper_res_2, x_up_3) x_up_2 = self.decoder_block_2(x_upper_res_2, x_up_3) x_upper_res_1, x_up_2 = multi_gpu_check(self.gpu_map, 'decoder_block_1', x_upper_res_1, x_up_2) x_last = self.decoder_block_1(x_upper_res_1, x_up_2) x_last = multi_gpu_check(self.gpu_map, 'output_block', x_last) out = self.output_block(x_last) return out class RCVNetAttention(RCVNet): def __init__(self, params): super(RCVNet, self).__init__() from model.VNetAttention import EncoderBlock as AttEncoderBlock, BottleNeck as AttBottleNeck, \ DecoderBlock as AttDecoderBlock self.coords = None self.input_shape = params['input_shape'] self.patch_size = params['patch_size'] self.gen_random = params['gen_random'] self.down_input_lower = nn.Sequential( nn.Conv3d(in_channels=params['in_channels'], out_channels=4*params['out_channels'], kernel_size=(4,4,4), padding=0, stride=4), nn.GroupNorm(num_groups=4, num_channels=4*params['out_channels']), nn.PReLU() ) # in_channels: 16, out_channels: 16 self.encoder_block_1 = AttEncoderBlock(params) params['input'] = False params['create_layer_1'] = True params['in_channels'] = params['out_channels'] * 2 # 32 params['out_channels'] = params['out_channels'] * 2 # 32 self.encoder_block_2 = AttEncoderBlock(params) params['create_layer_2'] = True params['in_channels'] = params['out_channels'] * 2 # 64 params['out_channels'] = params['out_channels'] * 2 # 64 self.encoder_block_3 = AttEncoderBlock(params) params['in_channels'] = params['out_channels'] * 2 # 128 params['out_channels'] = params['out_channels'] * 2 # 128 self.encoder_block_4 = AttEncoderBlock(params) params['in_channels'] = params['out_channels'] * 2 # 256 params['out_channels'] = int(params['out_channels'] * 2) # 256 self.bottleneck_block = AttBottleNeck(params) enc_channels = 128 params['in_channels'] = params['out_channels'] + enc_channels # 256 + 128 params['F_g'], params['F_l'], params['F_int'] = (256, 128, 128) params['out_channels'] = params['out_channels'] # 256 self.decoder_block_4 = AttDecoderBlock(params) enc_channels = int(enc_channels/2) params['in_channels'] = int(params['out_channels']/2) + enc_channels # 128 + 64 params['out_channels'] = int(params['out_channels'] / 2) # 128 params['F_g'], params['F_l'], params['F_int'] = (128, 64, 64) self.decoder_block_3 = AttDecoderBlock(params) enc_channels = int(enc_channels/2) params['in_channels'] = int(params['out_channels'] / 2) + enc_channels # 64 + 32 params['out_channels'] = int(params['out_channels'] / 2) # 64 params['F_g'], params['F_l'], params['F_int'] = (64, 32, 32) params['create_layer_2'] = False self.decoder_block_2 = AttDecoderBlock(params) enc_channels = int(enc_channels/2) params['in_channels'] = int(params['out_channels'] / 2) + enc_channels # 32 + 16 params['out_channels'] = int(params['out_channels'] / 2) # 32 params['F_g'], params['F_l'], params['F_int'] = (32, 16, 16) params['create_layer_1'] = False params['out'] = True self.decoder_block_1 = AttDecoderBlock(params) params['out'] = False self.output_block = nn.Conv3d(in_channels=params['out_channels'], out_channels=params['num_classes'], kernel_size = (1, 1, 1), stride = 1, padding = 0) if __name__ == "__main__": # TEST CODE [RUN THIS TO VERIFY MODELS] params = {'in_channels': 1, 'out_channels': 16, 'create_layer_1': False, 'create_layer_2': False, 'kernel_size': (5, 5, 5), 'input_shape': (64,64,64), 'patch_size': (64,64,64), 'num_classes': 40, 'out': False, 'input': True, # 'F_g': None, # 'F_l': None, # 'F_int': None 'gen_random' : True, 'gpu_map':{} } m = RCVNet(params=params).cuda() # m.eval() # m = CompetitiveEncoderBlockInput(params=params).cuda() try: from torchsummary import summary # print([l for l in m.named_children()]) summary(m, input_size=(1,64,64,64)) except ImportError: pass # # print([l for l in m.decoder_block_1.parameters()]) # print([l.device() for _, l in m.named_children()])
[ "torch.nn.PReLU", "numpy.random.random_sample", "torch.nn.Conv3d", "model.VNetAttention.EncoderBlock", "model.VNetAttention.BottleNeck", "torch.nn.GroupNorm", "model.VNetSE.DecoderBlock", "torchsummary.summary", "model.VNetSE.BottleNeck", "model.VNetSE.EncoderBlock", "torch.device", "model.VNetAttention.DecoderBlock" ]
[((3296, 3316), 'model.VNetSE.EncoderBlock', 'EncoderBlock', (['params'], {}), '(params)\n', (3308, 3316), False, 'from model.VNetSE import EncoderBlock, BottleNeck, DecoderBlock\n'), ((3550, 3570), 'model.VNetSE.EncoderBlock', 'EncoderBlock', (['params'], {}), '(params)\n', (3562, 3570), False, 'from model.VNetSE import EncoderBlock, BottleNeck, DecoderBlock\n'), ((3772, 3792), 'model.VNetSE.EncoderBlock', 'EncoderBlock', (['params'], {}), '(params)\n', (3784, 3792), False, 'from model.VNetSE import EncoderBlock, BottleNeck, DecoderBlock\n'), ((3956, 3976), 'model.VNetSE.EncoderBlock', 'EncoderBlock', (['params'], {}), '(params)\n', (3968, 3976), False, 'from model.VNetSE import EncoderBlock, BottleNeck, DecoderBlock\n'), ((4146, 4164), 'model.VNetSE.BottleNeck', 'BottleNeck', (['params'], {}), '(params)\n', (4156, 4164), False, 'from model.VNetSE import EncoderBlock, BottleNeck, DecoderBlock\n'), ((4368, 4388), 'model.VNetSE.DecoderBlock', 'DecoderBlock', (['params'], {}), '(params)\n', (4380, 4388), False, 'from model.VNetSE import EncoderBlock, BottleNeck, DecoderBlock\n'), ((4624, 4644), 'model.VNetSE.DecoderBlock', 'DecoderBlock', (['params'], {}), '(params)\n', (4636, 4644), False, 'from model.VNetSE import EncoderBlock, BottleNeck, DecoderBlock\n'), ((4921, 4941), 'model.VNetSE.DecoderBlock', 'DecoderBlock', (['params'], {}), '(params)\n', (4933, 4941), False, 'from model.VNetSE import EncoderBlock, BottleNeck, DecoderBlock\n'), ((5246, 5266), 'model.VNetSE.DecoderBlock', 'DecoderBlock', (['params'], {}), '(params)\n', (5258, 5266), False, 'from model.VNetSE import EncoderBlock, BottleNeck, DecoderBlock\n'), ((5326, 5456), 'torch.nn.Conv3d', 'nn.Conv3d', ([], {'in_channels': "params['out_channels']", 'out_channels': "params['num_classes']", 'kernel_size': '(1, 1, 1)', 'stride': '(1)', 'padding': '(0)'}), "(in_channels=params['out_channels'], out_channels=params[\n 'num_classes'], kernel_size=(1, 1, 1), stride=1, padding=0)\n", (5335, 5456), True, 'import torch.nn as nn\n'), ((10418, 10441), 'model.VNetAttention.EncoderBlock', 'AttEncoderBlock', (['params'], {}), '(params)\n', (10433, 10441), True, 'from model.VNetAttention import EncoderBlock as AttEncoderBlock, BottleNeck as AttBottleNeck, DecoderBlock as AttDecoderBlock\n'), ((10675, 10698), 'model.VNetAttention.EncoderBlock', 'AttEncoderBlock', (['params'], {}), '(params)\n', (10690, 10698), True, 'from model.VNetAttention import EncoderBlock as AttEncoderBlock, BottleNeck as AttBottleNeck, DecoderBlock as AttDecoderBlock\n'), ((10900, 10923), 'model.VNetAttention.EncoderBlock', 'AttEncoderBlock', (['params'], {}), '(params)\n', (10915, 10923), True, 'from model.VNetAttention import EncoderBlock as AttEncoderBlock, BottleNeck as AttBottleNeck, DecoderBlock as AttDecoderBlock\n'), ((11087, 11110), 'model.VNetAttention.EncoderBlock', 'AttEncoderBlock', (['params'], {}), '(params)\n', (11102, 11110), True, 'from model.VNetAttention import EncoderBlock as AttEncoderBlock, BottleNeck as AttBottleNeck, DecoderBlock as AttDecoderBlock\n'), ((11280, 11301), 'model.VNetAttention.BottleNeck', 'AttBottleNeck', (['params'], {}), '(params)\n', (11293, 11301), True, 'from model.VNetAttention import EncoderBlock as AttEncoderBlock, BottleNeck as AttBottleNeck, DecoderBlock as AttDecoderBlock\n'), ((11577, 11600), 'model.VNetAttention.DecoderBlock', 'AttDecoderBlock', (['params'], {}), '(params)\n', (11592, 11600), True, 'from model.VNetAttention import EncoderBlock as AttEncoderBlock, BottleNeck as AttBottleNeck, DecoderBlock as AttDecoderBlock\n'), ((11906, 11929), 'model.VNetAttention.DecoderBlock', 'AttDecoderBlock', (['params'], {}), '(params)\n', (11921, 11929), True, 'from model.VNetAttention import EncoderBlock as AttEncoderBlock, BottleNeck as AttBottleNeck, DecoderBlock as AttDecoderBlock\n'), ((12275, 12298), 'model.VNetAttention.DecoderBlock', 'AttDecoderBlock', (['params'], {}), '(params)\n', (12290, 12298), True, 'from model.VNetAttention import EncoderBlock as AttEncoderBlock, BottleNeck as AttBottleNeck, DecoderBlock as AttDecoderBlock\n'), ((12672, 12695), 'model.VNetAttention.DecoderBlock', 'AttDecoderBlock', (['params'], {}), '(params)\n', (12687, 12695), True, 'from model.VNetAttention import EncoderBlock as AttEncoderBlock, BottleNeck as AttBottleNeck, DecoderBlock as AttDecoderBlock\n'), ((12755, 12885), 'torch.nn.Conv3d', 'nn.Conv3d', ([], {'in_channels': "params['out_channels']", 'out_channels': "params['num_classes']", 'kernel_size': '(1, 1, 1)', 'stride': '(1)', 'padding': '(0)'}), "(in_channels=params['out_channels'], out_channels=params[\n 'num_classes'], kernel_size=(1, 1, 1), stride=1, padding=0)\n", (12764, 12885), True, 'import torch.nn as nn\n'), ((13741, 13779), 'torchsummary.summary', 'summary', (['m'], {'input_size': '(1, 64, 64, 64)'}), '(m, input_size=(1, 64, 64, 64))\n', (13748, 13779), False, 'from torchsummary import summary\n'), ((397, 412), 'numpy.random.random_sample', 'random_sample', ([], {}), '()\n', (410, 412), False, 'from numpy.random import random_sample\n'), ((2912, 3046), 'torch.nn.Conv3d', 'nn.Conv3d', ([], {'in_channels': "params['in_channels']", 'out_channels': "(4 * params['out_channels'])", 'kernel_size': '(4, 4, 4)', 'padding': '(0)', 'stride': '(4)'}), "(in_channels=params['in_channels'], out_channels=4 * params[\n 'out_channels'], kernel_size=(4, 4, 4), padding=0, stride=4)\n", (2921, 3046), True, 'import torch.nn as nn\n'), ((3081, 3148), 'torch.nn.GroupNorm', 'nn.GroupNorm', ([], {'num_groups': '(4)', 'num_channels': "(4 * params['out_channels'])"}), "(num_groups=4, num_channels=4 * params['out_channels'])\n", (3093, 3148), True, 'import torch.nn as nn\n'), ((3164, 3174), 'torch.nn.PReLU', 'nn.PReLU', ([], {}), '()\n', (3172, 3174), True, 'import torch.nn as nn\n'), ((10066, 10200), 'torch.nn.Conv3d', 'nn.Conv3d', ([], {'in_channels': "params['in_channels']", 'out_channels': "(4 * params['out_channels'])", 'kernel_size': '(4, 4, 4)', 'padding': '(0)', 'stride': '(4)'}), "(in_channels=params['in_channels'], out_channels=4 * params[\n 'out_channels'], kernel_size=(4, 4, 4), padding=0, stride=4)\n", (10075, 10200), True, 'import torch.nn as nn\n'), ((10235, 10302), 'torch.nn.GroupNorm', 'nn.GroupNorm', ([], {'num_groups': '(4)', 'num_channels': "(4 * params['out_channels'])"}), "(num_groups=4, num_channels=4 * params['out_channels'])\n", (10247, 10302), True, 'import torch.nn as nn\n'), ((10318, 10328), 'torch.nn.PReLU', 'nn.PReLU', ([], {}), '()\n', (10326, 10328), True, 'import torch.nn as nn\n'), ((828, 857), 'torch.device', 'torch.device', (['gpu_map[l_name]'], {}), '(gpu_map[l_name])\n', (840, 857), False, 'import torch\n')]
# Copyright (c) Microsoft. All rights reserved. # Licensed under the MIT license. See LICENSE.md file in the project root # for full license information. # ============================================================================== import pytest import numpy as np import scipy.sparse as sparse import cntk as C csr = sparse.csr_matrix from ..core import * from cntk.tests.test_utils import * from cntk.ops.tests.ops_test_utils import compare_lists_of_np_arrays, cntk_device from cntk import * from cntk.internal import _value_as_sequence_or_array from cntk import asarray, asvalue from cntk.tests.test_utils import _to_dense, _to_csr test_numbers = [4., 5, 6., 7., 8.] test_array = AA(test_numbers, dtype=np.float32) def _dense_value_to_ndarray_test(data, num_of_dynamic_axes, expected_value_shape, expected_array_shapes): shape = (5,) if num_of_dynamic_axes == 2: var = sequence.input(shape) elif num_of_dynamic_axes == 1: var = input(shape) else: var = input(shape, dynamic_axes=[]) # conversion array -> value val = asvalue(var, data) assert val.shape == expected_value_shape # conversion value -> array dense_result = _value_as_sequence_or_array(val, var) if isinstance(dense_result, list): result_shapes = [AA(v).shape for v in dense_result] else: result_shapes = dense_result.shape assert result_shapes == expected_array_shapes def _sparse_value_to_csr_test(data, num_of_dynamic_axes, expected_value_shape, expected_csr_shapes): shape = (3,) if num_of_dynamic_axes == 2: var = sequence.input(shape, is_sparse=True) elif num_of_dynamic_axes == 1: var = input(shape, is_sparse=True) else: var = input(shape, is_sparse=True, dynamic_axes=[]) # conversion csr array -> value val = asvalue(var, data) assert val.shape == expected_value_shape # conversion value -> csr array csr_result = val.as_sequences(var) csr_result_shapes = [v.shape for v in csr_result] assert csr_result_shapes == expected_csr_shapes DENSE_CONFIGURATIONS = [ # (dense data, num_of_dynamic_axes, expected_value_shape, expected_array_shapes) ([[test_array], [test_array, test_array]], 2, (2,2,5), [(1,5),(2,5)]), ([test_array, test_array], 2, (2, 1, 5), [(1,5), (1,5)]), ([[test_array], [test_array]], 2, (2, 1, 5), [(1,5), (1,5)]), (test_array, 2, (5,), [(), (), (), (), ()]), (AA([test_numbers], dtype=np.float32), 2, (1,5), [(5,)]), (AA([test_numbers, test_numbers], dtype=np.float32), 2, (2, 5), [(5,), (5,)]), ([test_array, test_array], 1, (2,1,5), (2,1,5)), ([[test_array], [test_array]], 1, (2,1,5), (2,1,5)), (AA([test_numbers, test_numbers], dtype=np.float32), 1, (2,5), (2,5)), (AA([test_numbers], dtype=np.float32), 1, (1,5), (1,5)), ([test_array, test_array], 0, (2,5), (2,5)), (AA([test_numbers, test_numbers], dtype=np.float32), 0, (2,5), (2,5)), (test_array, 0, (5,), (5,)), ] @pytest.mark.parametrize("data, num_of_dynamic_axes, expected_value_shape, expected_array_shapes", DENSE_CONFIGURATIONS) def test_dense_value_to_ndarray(data, num_of_dynamic_axes, expected_value_shape, expected_array_shapes): _dense_value_to_ndarray_test( data, num_of_dynamic_axes, expected_value_shape, expected_array_shapes) SPARSE_ARRAYS = [ # (sparse data, num_of_dynamic_axes, expected_value_shape, expected_array_shapes) ([csr([[1.,0.,2.], [2.,3.,0.]]), csr([5.,0.,1.])], 2, (2, 2, 3), [(2,3),(1,3)]), ([csr([1,0,2]), csr([5,0,1])], 2, (2, 1, 3),[(1,3),(1,3)]), ([csr([[1,0,2],[2,3,4]])], 2, (1, 2, 3), [(2,3)]), ([csr([1,0,2]), csr([5,0,1])], 1, (2, 1, 3), [(1,3),(1,3)]), ([csr([[1,0,2], [2,3,0]]), csr([[5,0,1], [2,3,0]])], 1, (2, 2, 3), [(2,3),(2,3)]), ([csr([[1,0,2],[2,3,4]])], 1, (1, 2, 3), [(2,3)]), (csr([1,0,2]), 0, (1, 3), [(1,3)]), ] @pytest.mark.parametrize("data, num_of_dynamic_axes, expected_value_shape, expected_csr_shapes", SPARSE_ARRAYS) def test_sparse_value_to_csr(data, num_of_dynamic_axes, expected_value_shape, expected_csr_shapes): _sparse_value_to_csr_test( data, num_of_dynamic_axes, expected_value_shape, expected_csr_shapes) DENSE_FAILING_CONFIGURATIONS = [ # (dense data, num_of_dynamic_axes, expected_value_shape, expected_array_shapes) ([[test_array], [test_array, test_array]], 0, (2,2,5), [(1,5),(2,5)]), # TODO: enable once check is implemented #([[test_array], # [test_array]], 0, (2, 1, 5), [(1, 5),(1, 5)]), #([[test_array], # [test_array, test_array]], 1, (2,2,5), [(1,5),(2,5)]), ] SPARSE_FAILING_CONFIGURATIONS = [ # (sparse data, num_of_dynamic_axes, expected_value_shape, expected_array_shapes) # TODO: Following configurations are not meant to fail as expected #(csr([[1,0,2], [2,3,0]]), 2, (1, 3), [(1,3)]), #(csr([[1,0,2],[2,3,4]]), 2, (2, 1, 3), [(1,3),(1,3)]), #(csr([[1,0,2], [2,3,0]]), 1, (1, 3), [(1,3)]), ([csr([[1,0,2],[2,3,4]])], 0, (1, 2, 3), [(2,3)]), ([csr([[1,0,2], [2,3,0]]), csr([5,0,1])], 0, (2, 2, 3), [(2,3),(1,3)]), ([csr([1,0,2])], 0, (1, 3), [(1,3)]), # TODO: enable once check is implemented #([csr([[1,0,2], [2,3,0]]), # csr([5,0,1])], 1, (2, 2, 3), [(2,3),(1,3)]), ] @pytest.mark.parametrize("data, num_of_dynamic_axes, expected_value_shape, expected_array_shapes", DENSE_FAILING_CONFIGURATIONS) def test_dense_failing_value_to_ndarray(data, num_of_dynamic_axes, expected_value_shape, expected_array_shapes): with pytest.raises(ValueError): _dense_value_to_ndarray_test( data, num_of_dynamic_axes, expected_value_shape, expected_array_shapes) @pytest.mark.parametrize("data, num_of_dynamic_axes, expected_value_shape, expected_csr_shapes", SPARSE_FAILING_CONFIGURATIONS) def test_sparse_failing_value_to_csr(data, num_of_dynamic_axes, expected_value_shape, expected_csr_shapes): with pytest.raises(ValueError): _sparse_value_to_csr_test( data, num_of_dynamic_axes, expected_value_shape, expected_csr_shapes) def test_asarray_method(): shape = (3,) var = sequence.input(shape, is_sparse=True) data = [csr([[1,0,2], [5,0,1]])] # conversion array -> value val = asvalue(var, data) as_csr = val.as_sequences(var) for a, d in zip(as_csr, data): assert (a==d).toarray().all() var = C.input(shape, is_sparse=True) data = csr([[1,0,2], [5,0,1]]) # conversion array -> value val = asvalue(var, data) for v in [ val, # Value super(Value, val), # cntk_py.Value val.data, # NDArrayView super(NDArrayView, val.data), # cntk_py.NDArrayView ]: as_csr = v.asarray() for a, d in zip(as_csr, data): assert (a==d).toarray().all() def test_value_properties(): ndav = NDArrayView((1, 2, 3), np.float32, device=C.cpu()) val = Value(batch=ndav) dev = val.device assert isinstance(dev, DeviceDescriptor) assert str(dev) == 'CPU' assert val.is_read_only == False assert val.is_sparse == False assert val.dtype == np.float32 def test_ndarray_properties(): ndav = NDArrayView((2, 3), np.float32, device=C.cpu()) dev = ndav.device assert isinstance(dev, DeviceDescriptor) assert str(dev) == 'CPU' assert ndav.is_read_only == False assert ndav.is_sparse == False assert ndav.dtype == np.float32 def test_ndarrayview_from_csr(device_id): dev = cntk_device(device_id) data = [[[0, 1, 1], [0, 1, 0]], [[1, 0, 0], [1, 0, 1]]] csr_data = _to_csr(data) ndarrayview = NDArrayView.from_csr(csr_data, shape=(2, 2, 3)) assert np.array_equal(_to_dense(ndarrayview), data) with pytest.raises(ValueError): ndarrayview = NDArrayView.from_csr(csr_data, shape=(3, 2, 3)) with pytest.raises(ValueError): ndarrayview = NDArrayView.from_csr(csr_data, shape=(2, 2, 4)) def test_2d_sparse_sequences_value(device_id): dev = cntk_device(device_id) seq1_data = [[[0, 1, 1], [0, 1, 0]], [[1, 0, 0], [1, 0, 1]]] csr_seq1 = _to_csr(seq1_data) ndarrayview1 = NDArrayView.from_csr(csr_seq1, shape=(2, 2, 3), device=cpu()) seq2_data = [[0, 1, 1], [1, 1, 0]] csr_seq2 = _to_csr(seq2_data) ndarrayview2 = NDArrayView.from_csr(csr_seq2, shape=(1, 2, 3), device=cpu()) x = sequence.input((2, 3)) sequence_value = Value.create(x, [ndarrayview1, ndarrayview2], device=dev) assert np.array_equal(_to_dense(sequence_value.data), [seq1_data, [seq2_data, [[0, 0, 0], [0, 0, 0]]]]) def test_as_shape_to_1d(device_id): dev = cntk_device(device_id) x = C.input(1) w_1d = C.parameter((1), device=dev) assert np.array_equal(w_1d.value, [0]) op = x * 0.1 value = op.eval({x:np.asarray([[1]], dtype=np.float32)}, as_numpy=False, device=dev) value = value.data.as_shape(value.data.shape[1:]) w_1d.value = value assert np.array_equal(w_1d.value, np.asarray([0.1], dtype=np.float32)) def test_is_valid(device_id): a = C.input((2,), needs_gradient=True) b = a*a a0 = np.array([1,2],dtype=np.float32) g = b.grad({a:a0}, as_numpy=False) g2 = b.grad({a:a0}, as_numpy=False) assert (g.is_valid == False) assert (g2.is_valid == True)
[ "cntk.ops.tests.ops_test_utils.cntk_device", "cntk.input", "cntk.asvalue", "cntk.tests.test_utils._to_csr", "numpy.asarray", "cntk.cpu", "cntk.parameter", "pytest.raises", "numpy.array", "cntk.tests.test_utils._to_dense", "numpy.array_equal", "pytest.mark.parametrize", "cntk.internal._value_as_sequence_or_array" ]
[((3041, 3169), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""data, num_of_dynamic_axes, expected_value_shape, expected_array_shapes"""', 'DENSE_CONFIGURATIONS'], {}), "(\n 'data, num_of_dynamic_axes, expected_value_shape, expected_array_shapes',\n DENSE_CONFIGURATIONS)\n", (3064, 3169), False, 'import pytest\n'), ((3964, 4083), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""data, num_of_dynamic_axes, expected_value_shape, expected_csr_shapes"""', 'SPARSE_ARRAYS'], {}), "(\n 'data, num_of_dynamic_axes, expected_value_shape, expected_csr_shapes',\n SPARSE_ARRAYS)\n", (3987, 4083), False, 'import pytest\n'), ((5356, 5492), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""data, num_of_dynamic_axes, expected_value_shape, expected_array_shapes"""', 'DENSE_FAILING_CONFIGURATIONS'], {}), "(\n 'data, num_of_dynamic_axes, expected_value_shape, expected_array_shapes',\n DENSE_FAILING_CONFIGURATIONS)\n", (5379, 5492), False, 'import pytest\n'), ((5757, 5892), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""data, num_of_dynamic_axes, expected_value_shape, expected_csr_shapes"""', 'SPARSE_FAILING_CONFIGURATIONS'], {}), "(\n 'data, num_of_dynamic_axes, expected_value_shape, expected_csr_shapes',\n SPARSE_FAILING_CONFIGURATIONS)\n", (5780, 5892), False, 'import pytest\n'), ((1078, 1096), 'cntk.asvalue', 'asvalue', (['var', 'data'], {}), '(var, data)\n', (1085, 1096), False, 'from cntk import asarray, asvalue\n'), ((1194, 1231), 'cntk.internal._value_as_sequence_or_array', '_value_as_sequence_or_array', (['val', 'var'], {}), '(val, var)\n', (1221, 1231), False, 'from cntk.internal import _value_as_sequence_or_array\n'), ((1836, 1854), 'cntk.asvalue', 'asvalue', (['var', 'data'], {}), '(var, data)\n', (1843, 1854), False, 'from cntk import asarray, asvalue\n'), ((6319, 6337), 'cntk.asvalue', 'asvalue', (['var', 'data'], {}), '(var, data)\n', (6326, 6337), False, 'from cntk import asarray, asvalue\n'), ((6457, 6487), 'cntk.input', 'C.input', (['shape'], {'is_sparse': '(True)'}), '(shape, is_sparse=True)\n', (6464, 6487), True, 'import cntk as C\n'), ((6566, 6584), 'cntk.asvalue', 'asvalue', (['var', 'data'], {}), '(var, data)\n', (6573, 6584), False, 'from cntk import asarray, asvalue\n'), ((7578, 7600), 'cntk.ops.tests.ops_test_utils.cntk_device', 'cntk_device', (['device_id'], {}), '(device_id)\n', (7589, 7600), False, 'from cntk.ops.tests.ops_test_utils import compare_lists_of_np_arrays, cntk_device\n'), ((7676, 7689), 'cntk.tests.test_utils._to_csr', '_to_csr', (['data'], {}), '(data)\n', (7683, 7689), False, 'from cntk.tests.test_utils import _to_dense, _to_csr\n'), ((8085, 8107), 'cntk.ops.tests.ops_test_utils.cntk_device', 'cntk_device', (['device_id'], {}), '(device_id)\n', (8096, 8107), False, 'from cntk.ops.tests.ops_test_utils import compare_lists_of_np_arrays, cntk_device\n'), ((8188, 8206), 'cntk.tests.test_utils._to_csr', '_to_csr', (['seq1_data'], {}), '(seq1_data)\n', (8195, 8206), False, 'from cntk.tests.test_utils import _to_dense, _to_csr\n'), ((8342, 8360), 'cntk.tests.test_utils._to_csr', '_to_csr', (['seq2_data'], {}), '(seq2_data)\n', (8349, 8360), False, 'from cntk.tests.test_utils import _to_dense, _to_csr\n'), ((8708, 8730), 'cntk.ops.tests.ops_test_utils.cntk_device', 'cntk_device', (['device_id'], {}), '(device_id)\n', (8719, 8730), False, 'from cntk.ops.tests.ops_test_utils import compare_lists_of_np_arrays, cntk_device\n'), ((8739, 8749), 'cntk.input', 'C.input', (['(1)'], {}), '(1)\n', (8746, 8749), True, 'import cntk as C\n'), ((8761, 8787), 'cntk.parameter', 'C.parameter', (['(1)'], {'device': 'dev'}), '(1, device=dev)\n', (8772, 8787), True, 'import cntk as C\n'), ((8801, 8832), 'numpy.array_equal', 'np.array_equal', (['w_1d.value', '[0]'], {}), '(w_1d.value, [0])\n', (8815, 8832), True, 'import numpy as np\n'), ((9132, 9166), 'cntk.input', 'C.input', (['(2,)'], {'needs_gradient': '(True)'}), '((2,), needs_gradient=True)\n', (9139, 9166), True, 'import cntk as C\n'), ((9188, 9222), 'numpy.array', 'np.array', (['[1, 2]'], {'dtype': 'np.float32'}), '([1, 2], dtype=np.float32)\n', (9196, 9222), True, 'import numpy as np\n'), ((5606, 5631), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (5619, 5631), False, 'import pytest\n'), ((6001, 6026), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (6014, 6026), False, 'import pytest\n'), ((7782, 7804), 'cntk.tests.test_utils._to_dense', '_to_dense', (['ndarrayview'], {}), '(ndarrayview)\n', (7791, 7804), False, 'from cntk.tests.test_utils import _to_dense, _to_csr\n'), ((7822, 7847), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (7835, 7847), False, 'import pytest\n'), ((7929, 7954), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (7942, 7954), False, 'import pytest\n'), ((8579, 8609), 'cntk.tests.test_utils._to_dense', '_to_dense', (['sequence_value.data'], {}), '(sequence_value.data)\n', (8588, 8609), False, 'from cntk.tests.test_utils import _to_dense, _to_csr\n'), ((9055, 9090), 'numpy.asarray', 'np.asarray', (['[0.1]'], {'dtype': 'np.float32'}), '([0.1], dtype=np.float32)\n', (9065, 9090), True, 'import numpy as np\n'), ((6980, 6987), 'cntk.cpu', 'C.cpu', ([], {}), '()\n', (6985, 6987), True, 'import cntk as C\n'), ((7305, 7312), 'cntk.cpu', 'C.cpu', ([], {}), '()\n', (7310, 7312), True, 'import cntk as C\n'), ((8874, 8909), 'numpy.asarray', 'np.asarray', (['[[1]]'], {'dtype': 'np.float32'}), '([[1]], dtype=np.float32)\n', (8884, 8909), True, 'import numpy as np\n')]
# MIT License # # Copyright (c) 2019-2021 Tskit Developers # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """ Test cases for generating genotypes/haplotypes. """ import itertools import random import textwrap import msprime import numpy as np import pytest import tests import tests.test_wright_fisher as wf import tests.tsutil as tsutil import tskit from tests.test_highlevel import get_example_tree_sequences from tskit import exceptions # ↑ See https://github.com/tskit-dev/tskit/issues/1804 for when # we can remove this. # TODO replace this with a call to # example_tree_sequences(discrete_genome=True, snps_only=True) @tests.cached_example def get_example_discrete_genome_tree_sequences(): ret = [] for ts in get_example_tree_sequences(): if ts.discrete_genome: snps = all(len(site.ancestral_state) == 1 for site in ts.sites()) and all( len(mut.derived_state) == 1 for mut in ts.mutations() ) if snps: ret.append(ts) return ret def naive_get_ancestral_haplotypes(ts): """ Simple implementation using tree traversals. Note that this definition won't work when we have topology that's not reachable from a root, but this seems more trouble than it's worth dealing with. """ A = np.zeros((ts.num_nodes, ts.num_sites), dtype=np.int8) A[:] = tskit.MISSING_DATA for t in ts.trees(): for site in t.sites(): alleles = {site.ancestral_state: 0} for u in t.nodes(): A[u, site.id] = 0 j = 1 for mutation in site.mutations: if mutation.derived_state not in alleles: alleles[mutation.derived_state] = j j += 1 for u in t.nodes(mutation.node): A[u, site.id] = alleles[mutation.derived_state] return A class TestGetAncestralHaplotypes: """ Tests for the engine to the actual ancestors from a simulation. """ def verify(self, ts): A = naive_get_ancestral_haplotypes(ts) # To detect missing data in ancestors we must set all nodes # to be samples tables = ts.dump_tables() nodes = tables.nodes flags = nodes.flags[:] flags[:] = 1 nodes.set_columns(time=nodes.time, flags=flags) ts = tables.tree_sequence() B = ts.genotype_matrix().T assert np.array_equal(A, B) def test_single_tree(self): ts = msprime.simulate(5, mutation_rate=1, random_seed=234) self.verify(ts) def test_many_trees(self): ts = msprime.simulate( 8, recombination_rate=10, mutation_rate=10, random_seed=234 ) assert ts.num_trees > 1 assert ts.num_sites > 1 self.verify(ts) def test_single_tree_jukes_cantor(self): ts = msprime.simulate(6, random_seed=1, mutation_rate=1) ts = tsutil.jukes_cantor(ts, 20, 1, seed=10) self.verify(ts) def test_single_tree_multichar_mutations(self): ts = msprime.simulate(6, random_seed=1, mutation_rate=1) ts = tsutil.insert_multichar_mutations(ts) self.verify(ts) def test_many_trees_infinite_sites(self): ts = msprime.simulate(6, recombination_rate=2, mutation_rate=2, random_seed=1) assert ts.num_sites > 0 assert ts.num_trees > 2 self.verify(ts) def test_wright_fisher_initial_generation(self): tables = wf.wf_sim( 6, 5, seed=3, deep_history=True, initial_generation_samples=True, num_loci=2 ) tables.sort() tables.simplify() ts = msprime.mutate(tables.tree_sequence(), rate=0.08, random_seed=2) assert ts.num_sites > 0 self.verify(ts) def test_wright_fisher_simplified(self): tables = wf.wf_sim( 9, 10, seed=1, deep_history=True, initial_generation_samples=False, num_loci=5, ) tables.sort() ts = tables.tree_sequence().simplify() ts = msprime.mutate(ts, rate=0.2, random_seed=1234) assert ts.num_sites > 0 self.verify(ts) def test_empty_ts(self): tables = tskit.TableCollection(1.0) for _ in range(10): tables.nodes.add_row(tskit.NODE_IS_SAMPLE, 0) ts = tables.tree_sequence() self.verify(ts) def isolated_samples_genotype_matrix(ts): """ Returns the genotype matrix for the specified tree sequence where isolated samples are marked with MISSING_DATA. """ G = ts.genotype_matrix() samples = ts.samples() sample_index_map = np.zeros(ts.num_nodes, dtype=int) - 1 for index, sample in enumerate(samples): sample_index_map[sample] = index for tree in ts.trees(): for site in tree.sites(): for root in tree.roots: # An isolated sample is any root that has no children. if tree.left_child(root) == -1: assert sample_index_map[root] != -1 G[site.id, sample_index_map[root]] = -1 return G class TestVariantGenerator: """ Tests the variants() method to ensure the output is consistent. """ def get_tree_sequence(self): ts = msprime.simulate( 10, length=10, recombination_rate=1, mutation_rate=10, random_seed=3 ) assert ts.get_num_mutations() > 10 return ts def test_as_bytes(self): ts = self.get_tree_sequence() n = ts.get_sample_size() m = ts.get_num_mutations() A = np.zeros((m, n), dtype="u1") B = np.zeros((m, n), dtype="u1") for variant in ts.variants(): A[variant.index] = variant.genotypes for variant in ts.variants(as_bytes=True): assert isinstance(variant.genotypes, bytes) B[variant.index] = np.frombuffer(variant.genotypes, np.uint8) - ord("0") assert np.all(A == B) bytes_variants = list(ts.variants(as_bytes=True)) for j, variant in enumerate(bytes_variants): assert j == variant.index row = np.frombuffer(variant.genotypes, np.uint8) - ord("0") assert np.all(A[j] == row) def test_as_bytes_fails(self): ts = tsutil.insert_multichar_mutations(self.get_tree_sequence()) with pytest.raises(ValueError): list(ts.variants(as_bytes=True)) def test_dtype(self): ts = self.get_tree_sequence() for var in ts.variants(): assert var.genotypes.dtype == np.int8 def test_dtype_conversion(self): # Check if we hit any issues if we assume the variants are uint8 # as they were prior to version 0.2.0 ts = self.get_tree_sequence() G = ts.genotype_matrix().astype(np.uint8) assert G.dtype == np.uint8 for var in ts.variants(): assert np.array_equal(G[var.index], var.genotypes) assert np.all(G[var.index] == var.genotypes) assert [var.alleles[g] for g in var.genotypes] == [ var.alleles[g] for g in G[var.index] ] G[var.index, :] = var.genotypes assert np.array_equal(G[var.index], var.genotypes) def test_multichar_alleles(self): ts = tsutil.insert_multichar_mutations(self.get_tree_sequence()) for var in ts.variants(): assert len(var.alleles) == 2 assert var.site.ancestral_state == var.alleles[0] assert var.site.mutations[0].derived_state == var.alleles[1] assert all(0 <= var.genotypes) assert all(var.genotypes <= 1) def test_many_alleles(self): ts = self.get_tree_sequence() tables = ts.dump_tables() tables.sites.clear() tables.mutations.clear() # This gives us a total of 360 permutations. alleles = list(map("".join, itertools.permutations("ABCDEF", 4))) assert len(alleles) > 127 tables.sites.add_row(0, alleles[0]) parent = -1 num_alleles = 1 for allele in alleles[1:]: ts = tables.tree_sequence() if num_alleles > 127: with pytest.raises(exceptions.LibraryError): next(ts.variants()) else: var = next(ts.variants()) assert not var.has_missing_data assert var.num_alleles == num_alleles assert len(var.alleles) == num_alleles assert list(var.alleles) == alleles[:num_alleles] assert var.alleles[var.genotypes[0]] == alleles[num_alleles - 1] for u in ts.samples(): if u != 0: assert var.alleles[var.genotypes[u]] == alleles[0] tables.mutations.add_row(0, 0, allele, parent=parent) parent += 1 num_alleles += 1 def test_many_alleles_missing_data(self): ts = self.get_tree_sequence() tables = ts.dump_tables() tables.sites.clear() tables.mutations.clear() # Add an isolated sample tables.nodes.add_row(flags=1, time=0) # This gives us a total of 360 permutations. alleles = list(map("".join, itertools.permutations("ABCDEF", 4))) assert len(alleles) > 127 tables.sites.add_row(0, alleles[0]) parent = -1 num_alleles = 1 for allele in alleles[1:]: ts = tables.tree_sequence() if num_alleles > 127: with pytest.raises(exceptions.LibraryError): next(ts.variants()) else: var = next(ts.variants()) assert var.has_missing_data assert var.num_alleles == num_alleles assert len(var.alleles) == num_alleles + 1 assert list(var.alleles)[:-1] == alleles[:num_alleles] assert var.alleles[-1] is None assert var.alleles[var.genotypes[0]] == alleles[num_alleles - 1] assert var.genotypes[-1] == -1 samples = ts.samples() for u in samples[:-1]: if u != 0: assert var.alleles[var.genotypes[u]] == alleles[0] tables.mutations.add_row(0, 0, allele, parent=parent) parent += 1 num_alleles += 1 def test_site_information(self): ts = self.get_tree_sequence() for site, variant in zip(ts.sites(), ts.variants()): assert site.position == variant.position assert site == variant.site def test_no_mutations(self): ts = msprime.simulate(10) assert ts.get_num_mutations() == 0 variants = list(ts.variants()) assert len(variants) == 0 def test_genotype_matrix(self): ts = self.get_tree_sequence() G = np.empty((ts.num_sites, ts.num_samples), dtype=np.int8) for v in ts.variants(): G[v.index, :] = v.genotypes G2 = ts.genotype_matrix() assert np.array_equal(G, G2) assert G2.dtype == np.int8 def test_recurrent_mutations_over_samples(self): ts = self.get_tree_sequence() tables = ts.dump_tables() tables.sites.clear() tables.mutations.clear() num_sites = 5 for j in range(num_sites): tables.sites.add_row( position=j * ts.sequence_length / num_sites, ancestral_state="0" ) for u in range(ts.sample_size): tables.mutations.add_row(site=j, node=u, derived_state="1") ts = tables.tree_sequence() variants = list(ts.variants()) assert len(variants) == num_sites for site, variant in zip(ts.sites(), variants): assert site.position == variant.position assert site == variant.site assert site.id == variant.index assert variant.alleles == ("0", "1") assert np.all(variant.genotypes == np.ones(ts.sample_size)) def test_silent_mutations(self): ts = self.get_tree_sequence() tree = next(ts.trees()) tables = ts.dump_tables() for u in tree.nodes(): for sample in tree.samples(u): if sample != u: tables.sites.clear() tables.mutations.clear() site = tables.sites.add_row(position=0, ancestral_state="0") tables.mutations.add_row(site=site, node=u, derived_state="1") tables.mutations.add_row(site=site, node=sample, derived_state="1") ts_new = tables.tree_sequence() assert all([v.genotypes[sample] == 1 for v in ts_new.variants()]) def test_zero_samples(self): ts = self.get_tree_sequence() for var1, var2 in zip(ts.variants(), ts.variants(samples=[])): assert var1.site == var2.site assert var1.alleles == var2.alleles assert var2.genotypes.shape[0] == 0 def test_samples(self): n = 4 ts = msprime.simulate( n, length=5, recombination_rate=1, mutation_rate=5, random_seed=2 ) assert ts.num_sites > 1 samples = list(range(n)) # Generate all possible sample lists. for j in range(n + 1): for s in itertools.permutations(samples, j): s = np.array(s, dtype=np.int32) count = 0 for var1, var2 in zip(ts.variants(), ts.variants(samples=s)): assert var1.site == var2.site assert var1.alleles == var2.alleles assert var2.genotypes.shape == (len(s),) assert np.array_equal(var1.genotypes[s], var2.genotypes) count += 1 assert count == ts.num_sites def test_samples_missing_data(self): n = 4 ts = msprime.simulate( n, length=5, recombination_rate=1, mutation_rate=5, random_seed=2 ) assert ts.num_sites > 1 tables = ts.dump_tables() tables.delete_intervals([[0.5, 0.6]]) tables.sites.add_row(0.5, ancestral_state="0") tables.sort() ts = tables.tree_sequence() samples = list(range(n)) # Generate all possible sample lists. for j in range(1, n + 1): for s in itertools.permutations(samples, j): s = np.array(s, dtype=np.int32) count = 0 for var1, var2 in zip(ts.variants(), ts.variants(samples=s)): assert var1.site == var2.site assert var1.alleles == var2.alleles assert var2.genotypes.shape == (len(s),) assert np.array_equal(var1.genotypes[s], var2.genotypes) count += 1 assert count == ts.num_sites def test_non_sample_samples(self): # We don't have to use sample nodes. This does make the terminology confusing # but it's probably still the best option. ts = msprime.simulate( 10, length=5, recombination_rate=1, mutation_rate=5, random_seed=2 ) tables = ts.dump_tables() tables.nodes.set_columns( flags=np.zeros_like(tables.nodes.flags) + tskit.NODE_IS_SAMPLE, time=tables.nodes.time, ) all_samples_ts = tables.tree_sequence() assert all_samples_ts.num_samples == ts.num_nodes count = 0 samples = range(ts.num_nodes) for var1, var2 in zip( all_samples_ts.variants(isolated_as_missing=False), ts.variants(samples=samples, isolated_as_missing=False), ): assert var1.site == var2.site assert var1.alleles == var2.alleles assert var2.genotypes.shape == (len(samples),) assert np.array_equal(var1.genotypes, var2.genotypes) count += 1 assert count == ts.num_sites def verify_jukes_cantor(self, ts): assert np.array_equal(ts.genotype_matrix(), ts.genotype_matrix()) tree = ts.first() for variant in ts.variants(): assert not variant.has_missing_data mutations = { mutation.node: mutation.derived_state for mutation in variant.site.mutations } for sample_index, u in enumerate(ts.samples()): while u not in mutations and u != tskit.NULL: u = tree.parent(u) state1 = mutations.get(u, variant.site.ancestral_state) state2 = variant.alleles[variant.genotypes[sample_index]] assert state1 == state2 def test_jukes_cantor_n5(self): ts = msprime.simulate(5, random_seed=2) ts = tsutil.jukes_cantor(ts, 5, 1, seed=2) self.verify_jukes_cantor(ts) def test_jukes_cantor_n20(self): ts = msprime.simulate(20, random_seed=2) ts = tsutil.jukes_cantor(ts, 5, 1, seed=2) self.verify_jukes_cantor(ts) def test_zero_edge_missing_data(self): ts = msprime.simulate(10, random_seed=2, mutation_rate=2) tables = ts.dump_tables() tables.keep_intervals([[0.25, 0.75]]) # add some sites in the deleted regions tables.sites.add_row(0.1, "A") tables.sites.add_row(0.2, "A") tables.sites.add_row(0.8, "A") tables.sites.add_row(0.9, "A") tables.sort() ts = tables.tree_sequence() Gnm = ts.genotype_matrix(isolated_as_missing=False) assert np.all(Gnm[0] == 0) assert np.all(Gnm[1] == 0) assert np.all(Gnm[-1] == 0) assert np.all(Gnm[-2] == 0) Gm = isolated_samples_genotype_matrix(ts) assert np.all(Gm[0] == -1) assert np.all(Gm[1] == -1) assert np.all(Gm[-1] == -1) assert np.all(Gm[-2] == -1) Gm2 = ts.genotype_matrix(isolated_as_missing=True) assert np.array_equal(Gm, Gm2) # Test deprecated param with pytest.warns(FutureWarning): Gi = ts.genotype_matrix(impute_missing_data=True) assert np.array_equal(Gnm, Gi) with pytest.warns(FutureWarning): Gni = ts.genotype_matrix(impute_missing_data=False) assert np.array_equal(Gm, Gni) with pytest.warns(FutureWarning): G = ts.genotype_matrix(isolated_as_missing=False, impute_missing_data=True) assert np.array_equal(Gnm, G) with pytest.warns(FutureWarning): G = ts.genotype_matrix(isolated_as_missing=True, impute_missing_data=False) assert np.array_equal(Gm, G) def test_empty_ts_missing_data(self): tables = tskit.TableCollection(1.0) tables.nodes.add_row(tskit.NODE_IS_SAMPLE, 0) tables.nodes.add_row(tskit.NODE_IS_SAMPLE, 0) tables.sites.add_row(0.5, "A") ts = tables.tree_sequence() variants = list(ts.variants()) assert len(variants) == 1 var = variants[0] assert var.alleles == ("A", None) assert var.num_alleles == 1 assert np.all(var.genotypes == -1) def test_empty_ts_incomplete_samples(self): # https://github.com/tskit-dev/tskit/issues/776 tables = tskit.TableCollection(1.0) tables.nodes.add_row(tskit.NODE_IS_SAMPLE, 0) tables.nodes.add_row(tskit.NODE_IS_SAMPLE, 0) tables.sites.add_row(0.5, "A") ts = tables.tree_sequence() variants = list(ts.variants(samples=[0])) assert list(variants[0].genotypes) == [-1] variants = list(ts.variants(samples=[1])) assert list(variants[0].genotypes) == [-1] def test_missing_data_samples(self): tables = tskit.TableCollection(1.0) tables.nodes.add_row(tskit.NODE_IS_SAMPLE, 0) tables.nodes.add_row(tskit.NODE_IS_SAMPLE, 0) tables.sites.add_row(0.5, "A") tables.mutations.add_row(0, 0, "T") ts = tables.tree_sequence() # If we have no samples we still get a list of variants. variants = list(ts.variants(samples=[])) assert len(variants[0].genotypes) == 0 assert not variants[0].has_missing_data assert variants[0].alleles == ("A", "T") # If we have a single sample that's not missing, there's no # missing data. variants = list(ts.variants(samples=[0])) assert len(variants[0].genotypes) == 1 assert variants[0].genotypes[0] == 1 assert not variants[0].has_missing_data assert variants[0].alleles == ("A", "T") # If we have a single sample that is missing, there is # missing data. variants = list(ts.variants(samples=[1])) assert len(variants[0].genotypes) == 1 assert variants[0].genotypes[0] == -1 assert variants[0].has_missing_data assert variants[0].alleles == ("A", "T", None) def test_mutation_over_isolated_sample_not_missing(self): tables = tskit.TableCollection(1.0) tables.nodes.add_row(tskit.NODE_IS_SAMPLE, 0) tables.nodes.add_row(tskit.NODE_IS_SAMPLE, 0) tables.sites.add_row(0.5, "A") tables.mutations.add_row(0, 0, "T") ts = tables.tree_sequence() variants = list(ts.variants()) assert len(variants) == 1 var = variants[0] assert var.alleles == ("A", "T", None) assert var.num_alleles == 2 assert list(var.genotypes) == [1, -1] def test_multiple_mutations_over_isolated_sample(self): tables = tskit.TableCollection(1.0) tables.nodes.add_row(tskit.NODE_IS_SAMPLE, 0) tables.nodes.add_row(tskit.NODE_IS_SAMPLE, 0) tables.sites.add_row(0.5, "A") tables.mutations.add_row(0, 0, "T") tables.mutations.add_row(0, 0, "G", parent=0) ts = tables.tree_sequence() variants = list(ts.variants()) assert len(variants) == 1 var = variants[0] assert var.alleles == ("A", "T", "G", None) assert var.num_alleles == 3 assert len(var.site.mutations) == 2 assert list(var.genotypes) == [2, -1] def test_snipped_tree_sequence_missing_data(self): ts = msprime.simulate( 10, length=10, recombination_rate=0.1, mutation_rate=10, random_seed=3 ) tables = ts.dump_tables() tables.delete_intervals([[4, 6]], simplify=False) tables.sites.add_row(4, ancestral_state="0") tables.sites.add_row(5, ancestral_state="0") tables.sites.add_row(5.999999, ancestral_state="0") tables.sort() ts = tables.tree_sequence() G = ts.genotype_matrix() num_missing = 0 for var in ts.variants(): if 4 <= var.site.position < 6: assert var.has_missing_data assert np.all(var.genotypes == tskit.MISSING_DATA) num_missing += 1 else: assert not var.has_missing_data assert np.all(var.genotypes != tskit.MISSING_DATA) assert np.array_equal(var.genotypes, G[var.site.id]) assert num_missing == 3 G = ts.genotype_matrix(isolated_as_missing=False) for var in ts.variants(isolated_as_missing=False): if 4 <= var.site.position < 6: assert not var.has_missing_data assert np.all(var.genotypes == 0) else: assert not var.has_missing_data assert np.all(var.genotypes != tskit.MISSING_DATA) assert np.array_equal(var.genotypes, G[var.site.id]) def test_snipped_tree_sequence_mutations_over_isolated(self): ts = msprime.simulate( 10, length=10, recombination_rate=0.1, mutation_rate=10, random_seed=3 ) tables = ts.dump_tables() tables.delete_intervals([[4, 6]], simplify=False) missing_site = tables.sites.add_row(4, ancestral_state="0") tables.mutations.add_row(missing_site, node=0, derived_state="1") # Add another site in which all the samples are marked with a mutation # to the ancestral state. Note: this would normally not be allowed because # there's not state change. However, this allows us to mark a sample # as not-missing, so it's an important feature. missing_site = tables.sites.add_row(5, ancestral_state="0") for u in range(10): tables.mutations.add_row(missing_site, node=u, derived_state="0") tables.sort() ts = tables.tree_sequence() G = ts.genotype_matrix() missing_found = False non_missing_found = False for var in ts.variants(): if var.site.position == 4: assert var.has_missing_data assert var.genotypes[0] == 1 assert np.all(var.genotypes[1:] == tskit.MISSING_DATA) missing_found += 1 elif var.site.position == 5: assert not var.has_missing_data assert np.all(var.genotypes == 0) non_missing_found = 1 else: assert not var.has_missing_data assert np.all(var.genotypes != tskit.MISSING_DATA) assert np.array_equal(var.genotypes, G[var.site.id]) assert non_missing_found assert missing_found class TestHaplotypeGenerator: """ Tests the haplotype generation code. """ def verify_haplotypes(self, n, haplotypes): """ Verify that the specified set of haplotypes is consistent. """ assert len(haplotypes) == n m = len(haplotypes[0]) for h in haplotypes: assert len(h) == m # Examine each column in H; we must have a mixture of 0s and 1s for k in range(m): zeros = 0 ones = 0 col = "" for j in range(n): b = haplotypes[j][k] zeros += b == "0" ones += b == "1" col += b assert zeros + ones == n def verify_tree_sequence(self, tree_sequence): n = tree_sequence.sample_size m = tree_sequence.num_sites haplotypes = list(tree_sequence.haplotypes()) A = np.zeros((n, m), dtype="u1") B = np.zeros((n, m), dtype="u1") for j, h in enumerate(haplotypes): assert len(h) == m A[j] = np.frombuffer(h.encode("ascii"), np.uint8) - ord("0") for variant in tree_sequence.variants(): B[:, variant.index] = variant.genotypes assert np.all(A == B) self.verify_haplotypes(n, haplotypes) def verify_simulation(self, n, m, r, theta): """ Verifies a simulation for the specified parameters. """ recomb_map = msprime.RecombinationMap.uniform_map(m, r, m) tree_sequence = msprime.simulate( n, recombination_map=recomb_map, mutation_rate=theta ) self.verify_tree_sequence(tree_sequence) def test_random_parameters(self): num_random_sims = 10 for _ in range(num_random_sims): n = random.randint(2, 50) m = random.randint(10, 200) r = random.random() theta = random.uniform(0, 2) self.verify_simulation(n, m, r, theta) def test_nonbinary_trees(self): bottlenecks = [ msprime.SimpleBottleneck(0.01, 0, proportion=0.05), msprime.SimpleBottleneck(0.02, 0, proportion=0.25), msprime.SimpleBottleneck(0.03, 0, proportion=1), ] ts = msprime.simulate( 10, length=100, recombination_rate=1, demographic_events=bottlenecks, random_seed=1, ) self.verify_tree_sequence(ts) def test_acgt_mutations(self): ts = msprime.simulate(10, mutation_rate=10) assert ts.num_sites > 0 tables = ts.tables sites = tables.sites mutations = tables.mutations sites.set_columns( position=sites.position, ancestral_state=np.zeros(ts.num_sites, dtype=np.int8) + ord("A"), ancestral_state_offset=np.arange(ts.num_sites + 1, dtype=np.uint32), ) mutations.set_columns( site=mutations.site, node=mutations.node, derived_state=np.zeros(ts.num_sites, dtype=np.int8) + ord("T"), derived_state_offset=np.arange(ts.num_sites + 1, dtype=np.uint32), ) tsp = tables.tree_sequence() H = [h.replace("0", "A").replace("1", "T") for h in ts.haplotypes()] assert H == list(tsp.haplotypes()) def test_fails_multiletter_mutations(self): ts = msprime.simulate(10, random_seed=2) tables = ts.tables tables.sites.add_row(0, "ACTG") tsp = tables.tree_sequence() with pytest.raises(TypeError): list(tsp.haplotypes()) def test_fails_deletion_mutations(self): ts = msprime.simulate(10, random_seed=2) tables = ts.tables tables.sites.add_row(0, "") tsp = tables.tree_sequence() with pytest.raises(TypeError): list(tsp.haplotypes()) def test_nonascii_mutations(self): ts = msprime.simulate(10, random_seed=2) tables = ts.tables tables.sites.add_row(0, chr(169)) # Copyright symbol tsp = tables.tree_sequence() with pytest.raises(TypeError): list(tsp.haplotypes()) def test_recurrent_mutations_over_samples(self): ts = msprime.simulate(10, random_seed=2) num_sites = 5 tables = ts.dump_tables() for j in range(num_sites): tables.sites.add_row( position=j * ts.sequence_length / num_sites, ancestral_state="0" ) for u in range(ts.sample_size): tables.mutations.add_row(site=j, node=u, derived_state="1") ts_new = tables.tree_sequence() ones = "1" * num_sites for h in ts_new.haplotypes(): assert ones == h def test_silent_mutations(self): ts = msprime.simulate(10, random_seed=2) tables = ts.dump_tables() tree = next(ts.trees()) for u in tree.children(tree.root): tables.sites.clear() tables.mutations.clear() site = tables.sites.add_row(position=0, ancestral_state="0") tables.mutations.add_row(site=site, node=u, derived_state="1") tables.mutations.add_row(site=site, node=tree.root, derived_state="1") ts_new = tables.tree_sequence() all(h == 1 for h in ts_new.haplotypes()) def test_back_mutations(self): base_ts = msprime.simulate(10, random_seed=2) for j in [1, 2, 3]: ts = tsutil.insert_branch_mutations(base_ts, mutations_per_branch=j) self.verify_tree_sequence(ts) def test_missing_data(self): tables = tskit.TableCollection(1.0) tables.nodes.add_row(tskit.NODE_IS_SAMPLE, 0) tables.nodes.add_row(tskit.NODE_IS_SAMPLE, 0) tables.sites.add_row(0.5, "A") ts = tables.tree_sequence() with pytest.raises(ValueError): list(ts.haplotypes(missing_data_character="A")) for c in ("-", ".", "a"): h = list(ts.haplotypes(missing_data_character=c)) assert h == [c, c] h = list(ts.haplotypes(isolated_as_missing=True)) assert h == ["N", "N"] h = list(ts.haplotypes(isolated_as_missing=False)) assert h == ["A", "A"] h = list(ts.haplotypes()) assert h == ["N", "N"] # Test deprecated method with pytest.warns(FutureWarning): h = list(ts.haplotypes(impute_missing_data=True)) assert h == ["A", "A"] with pytest.warns(FutureWarning): h = list(ts.haplotypes(impute_missing_data=False)) assert h == ["N", "N"] with pytest.warns(FutureWarning): h = list(ts.haplotypes(isolated_as_missing=True, impute_missing_data=True)) assert h == ["N", "N"] with pytest.warns(FutureWarning): h = list(ts.haplotypes(isolated_as_missing=True, impute_missing_data=False)) assert h == ["N", "N"] with pytest.warns(FutureWarning): h = list(ts.haplotypes(isolated_as_missing=False, impute_missing_data=True)) assert h == ["A", "A"] with pytest.warns(FutureWarning): h = list( ts.haplotypes(isolated_as_missing=False, impute_missing_data=False) ) assert h == ["A", "A"] class TestUserAlleles: """ Tests the functionality of providing a user-specified allele mapping. """ def test_simple_01(self): ts = msprime.simulate(10, mutation_rate=5, random_seed=2) assert ts.num_sites > 2 G1 = ts.genotype_matrix() G2 = ts.genotype_matrix(alleles=("0", "1")) assert np.array_equal(G1, G2) for v1, v2 in itertools.zip_longest( ts.variants(), ts.variants(alleles=("0", "1")) ): assert v1.alleles == v2.alleles assert v1.site == v2.site assert np.array_equal(v1.genotypes, v2.genotypes) def test_simple_01_trailing_alleles(self): ts = msprime.simulate(10, mutation_rate=5, random_seed=2) assert ts.num_sites > 2 G1 = ts.genotype_matrix() alleles = ("0", "1", "2", "xxxxx") G2 = ts.genotype_matrix(alleles=alleles) assert np.array_equal(G1, G2) for v1, v2 in itertools.zip_longest( ts.variants(), ts.variants(alleles=alleles) ): assert v2.alleles == alleles assert v1.site == v2.site assert np.array_equal(v1.genotypes, v2.genotypes) def test_simple_01_leading_alleles(self): ts = msprime.simulate(10, mutation_rate=5, random_seed=2) assert ts.num_sites > 2 G1 = ts.genotype_matrix() alleles = ("A", "B", "C", "0", "1") G2 = ts.genotype_matrix(alleles=alleles) assert np.array_equal(G1 + 3, G2) for v1, v2 in itertools.zip_longest( ts.variants(), ts.variants(alleles=alleles) ): assert v2.alleles == alleles assert v1.site == v2.site assert np.array_equal(v1.genotypes + 3, v2.genotypes) def test_simple_01_duplicate_alleles(self): ts = msprime.simulate(10, mutation_rate=5, random_seed=2) assert ts.num_sites > 2 G1 = ts.genotype_matrix() alleles = ("0", "0", "1") G2 = ts.genotype_matrix(alleles=alleles) index = np.where(G1 == 1) G1[index] = 2 assert np.array_equal(G1, G2) for v1, v2 in itertools.zip_longest( ts.variants(), ts.variants(alleles=alleles) ): assert v2.alleles == alleles assert v1.site == v2.site g = v1.genotypes index = np.where(g == 1) g[index] = 2 assert np.array_equal(g, v2.genotypes) def test_simple_acgt(self): ts = msprime.simulate(10, random_seed=2) ts = msprime.mutate( ts, rate=4, random_seed=2, model=msprime.InfiniteSites(msprime.NUCLEOTIDES) ) assert ts.num_sites > 2 alleles = tskit.ALLELES_ACGT G = ts.genotype_matrix(alleles=alleles) for v1, v2 in itertools.zip_longest( ts.variants(), ts.variants(alleles=alleles) ): assert v2.alleles == alleles assert v1.site == v2.site h1 = "".join(v1.alleles[g] for g in v1.genotypes) h2 = "".join(v2.alleles[g] for g in v2.genotypes) assert h1 == h2 assert np.array_equal(v2.genotypes, G[v1.site.id]) def test_missing_alleles(self): ts = msprime.simulate(10, random_seed=2) ts = msprime.mutate( ts, rate=4, random_seed=2, model=msprime.InfiniteSites(msprime.NUCLEOTIDES) ) assert ts.num_sites > 2 bad_allele_examples = [ tskit.ALLELES_01, tuple(["A"]), ("C", "T", "G"), ("AA", "C", "T", "G"), tuple(["ACTG"]), ] for bad_alleles in bad_allele_examples: with pytest.raises(exceptions.LibraryError): ts.genotype_matrix(alleles=bad_alleles) with pytest.raises(exceptions.LibraryError): list(ts.variants(alleles=bad_alleles)) def test_too_many_alleles(self): ts = msprime.simulate(10, mutation_rate=5, random_seed=2) for n in range(128, 138): bad_alleles = tuple(["0" for _ in range(n)]) with pytest.raises(exceptions.LibraryError): ts.genotype_matrix(alleles=bad_alleles) with pytest.raises(exceptions.LibraryError): list(ts.variants(alleles=bad_alleles)) def test_zero_allele(self): ts = msprime.simulate(10, mutation_rate=5, random_seed=2) with pytest.raises(ValueError): ts.genotype_matrix(alleles=tuple()) with pytest.raises(ValueError): list(ts.variants(alleles=tuple())) def test_missing_data(self): tables = tskit.TableCollection(1) tables.nodes.add_row(flags=tskit.NODE_IS_SAMPLE, time=0) tables.nodes.add_row(flags=tskit.NODE_IS_SAMPLE, time=0) tables.sites.add_row(0.5, "0") tables.mutations.add_row(0, 0, "1") ts = tables.tree_sequence() for isolated_as_missing in [True, False]: G1 = ts.genotype_matrix(isolated_as_missing=isolated_as_missing) G2 = ts.genotype_matrix( isolated_as_missing=isolated_as_missing, alleles=tskit.ALLELES_01 ) assert np.array_equal(G1, G2) vars1 = ts.variants(isolated_as_missing=isolated_as_missing) vars2 = ts.variants( isolated_as_missing=isolated_as_missing, alleles=tskit.ALLELES_01 ) for v1, v2 in itertools.zip_longest(vars1, vars2): assert v2.alleles == v1.alleles assert v1.site == v2.site assert np.array_equal(v1.genotypes, v2.genotypes) class TestUserAllelesRoundTrip: """ Tests that we correctly produce haplotypes in a variety of situations for the user specified allele map encoding. """ def verify(self, ts, alleles): for v1, v2 in itertools.zip_longest( ts.variants(), ts.variants(alleles=alleles) ): h1 = [v1.alleles[g] for g in v1.genotypes] h2 = [v2.alleles[g] for g in v2.genotypes] assert h1 == h2 def test_simple_01(self): ts = msprime.simulate(5, mutation_rate=2, random_seed=3) assert ts.num_sites > 3 valid_alleles = [ tskit.ALLELES_01, ("0", "1", "xry"), ("xry", "0", "1", "xry"), tuple([str(j) for j in range(127)]), tuple(["0" for j in range(126)] + ["1"]), ] for alleles in valid_alleles: self.verify(ts, alleles) def test_simple_acgt(self): ts = msprime.simulate(5, random_seed=3) ts = msprime.mutate( ts, rate=4, random_seed=3, model=msprime.InfiniteSites(msprime.NUCLEOTIDES) ) assert ts.num_sites > 3 valid_alleles = [ tskit.ALLELES_ACGT, ("A", "C", "T", "G", "AAAAAAAAAAAAAA"), ("AA", "CC", "TT", "GG", "A", "C", "T", "G"), ] for alleles in valid_alleles: self.verify(ts, alleles) def test_jukes_cantor(self): ts = msprime.simulate(6, random_seed=1, mutation_rate=1) ts = tsutil.jukes_cantor(ts, 20, 1, seed=10) valid_alleles = [ tskit.ALLELES_ACGT, ("A", "C", "T", "G", "AAAAAAAAAAAAAA"), ("AA", "CC", "TT", "GG", "A", "C", "T", "G"), ] for alleles in valid_alleles: self.verify(ts, alleles) def test_multichar_mutations(self): ts = msprime.simulate(6, random_seed=1, recombination_rate=2) ts = tsutil.insert_multichar_mutations(ts) assert ts.num_sites > 5 all_alleles = set() for var in ts.variants(): all_alleles.update(var.alleles) all_alleles = tuple(all_alleles) self.verify(ts, all_alleles) self.verify(ts, all_alleles[::-1]) def test_simple_01_missing_data(self): ts = msprime.simulate(6, mutation_rate=2, random_seed=3) tables = ts.dump_tables() # Add another sample node. This will be missing data everywhere. tables.nodes.add_row(flags=tskit.NODE_IS_SAMPLE, time=0) ts = tables.tree_sequence() assert ts.num_sites > 3 valid_alleles = [ tskit.ALLELES_01, ("0", "1", "xry"), ("xry", "0", "1", "xry"), tuple([str(j) for j in range(127)]), tuple(["0" for j in range(126)] + ["1"]), ] for alleles in valid_alleles: self.verify(ts, alleles) class TestBinaryTreeExample: # 2.00┊ 4 ┊ # ┊ ┏━┻┓ ┊ # 1.00┊ ┃ 3 ┊ # ┊ ┃ ┏┻┓ ┊ # 0.00┊ 0 1 2 ┊ # 0 10 # | | # pos 2 9 # anc A T @tests.cached_example def ts(self): ts = tskit.Tree.generate_balanced(3, span=10).tree_sequence tables = ts.dump_tables() tables.sites.add_row(2, ancestral_state="A") tables.sites.add_row(9, ancestral_state="T") tables.mutations.add_row(site=0, node=0, derived_state="G") tables.mutations.add_row(site=1, node=3, derived_state="C") return tables.tree_sequence() def test_haplotypes(self): H = list(self.ts().haplotypes()) assert H[0] == "GT" assert H[1] == "AC" assert H[2] == "AC" def test_genotypes(self): G = self.ts().genotype_matrix() Gp = [[1, 0, 0], [0, 1, 1]] np.testing.assert_array_equal(G, Gp) @pytest.mark.skip("Reference sequence not implemented #1888") def test_alignments_default(self): A = list(self.ts().alignments()) assert A[0] == "NNGNNNNNNT" assert A[1] == "NNANNNNNNC" assert A[2] == "NNANNNNNNC" @pytest.mark.skip("Reference sequence not implemented #1888") def test_alignments_missing_char(self): A = list(self.ts().alignments(missing_data_character="z")) assert A[0] == "zzGzzzzzzT" assert A[1] == "zzAzzzzzzC" assert A[2] == "zzAzzzzzzC" def test_alignments_reference_sequence(self): ref = "0123456789" A = list(self.ts().alignments(reference_sequence=ref)) assert A[0] == "01G345678T" assert A[1] == "01A345678C" assert A[2] == "01A345678C" def test_alignments_reference_sequence_embedded_null(self): # This is a total corner case, but just want to make sure # we do something sensible. ref = "0123" + "\0" + "56789" A = list(self.ts().alignments(reference_sequence=ref)) assert A[0] == "01G3\x005678T" assert A[1] == "01A3\x005678C" assert A[2] == "01A3\x005678C" def test_fasta_reference_sequence(self): ref = "0123456789" expected = textwrap.dedent( """\ >n0 01G345678T >n1 01A345678C >n2 01A345678C """ ) assert expected == self.ts().as_fasta(reference_sequence=ref) def test_nexus_reference_sequence(self): ref = "0123456789" expected = textwrap.dedent( """\ #NEXUS BEGIN TAXA; DIMENSIONS NTAX=3; TAXLABELS n0 n1 n2; END; BEGIN DATA; DIMENSIONS NCHAR=10; FORMAT DATATYPE=DNA; MATRIX n0 01G345678T n1 01A345678C n2 01A345678C ; END; BEGIN TREES; TREE t0^10 = [&R] (n0:2,(n1:1,n2:1):1); END; """ ) assert expected == self.ts().as_nexus(reference_sequence=ref) class TestMissingDataExample: # 2.00┊ 4 ┊ # ┊ ┏━┻┓ ┊ # 1.00┊ ┃ 3 ┊ # ┊ ┃ ┏┻┓ ┊ # 0.00┊ 0 1 2 5 ┊ # 0 10 # | | # pos 2 9 # anc A T @tests.cached_example def ts(self): ts = tskit.Tree.generate_balanced(3, span=10).tree_sequence tables = ts.dump_tables() tables.nodes.add_row(flags=tskit.NODE_IS_SAMPLE, time=0) tables.sites.add_row(2, ancestral_state="A") tables.sites.add_row(9, ancestral_state="T") tables.mutations.add_row(site=0, node=0, derived_state="G") tables.mutations.add_row(site=1, node=3, derived_state="C") return tables.tree_sequence() def test_haplotypes(self): H = list(self.ts().haplotypes()) assert H[0] == "GT" assert H[1] == "AC" assert H[2] == "AC" assert H[3] == "NN" def test_haplotypes_missing_data_char(self): H = list(self.ts().haplotypes(missing_data_character="?")) assert H[0] == "GT" assert H[1] == "AC" assert H[2] == "AC" assert H[3] == "??" def test_genotypes(self): G = self.ts().genotype_matrix() Gp = [[1, 0, 0, -1], [0, 1, 1, -1]] np.testing.assert_array_equal(G, Gp) @pytest.mark.skip("Reference sequence not implemented #1888") def test_alignments_default(self): A = list(self.ts().alignments()) assert A[0] == "NNGNNNNNNT" assert A[1] == "NNANNNNNNC" assert A[2] == "NNANNNNNNC" assert A[3] == "NNNNNNNNNN" def test_alignments_fails(self): # https://github.com/tskit-dev/tskit/issues/1896 ref = "N" * 10 with pytest.raises(ValueError, match="1896"): next(self.ts().alignments(reference_sequence=ref)) @pytest.mark.skip("Missing data in alignments: #1896") def test_alignments_impute_missing(self): ref = "N" * 10 A = list( self.ts().alignments(reference_sequence=ref, isolated_as_missing=False) ) assert A[0] == "NNGNNNNNNT" assert A[1] == "NNANNNNNNC" assert A[2] == "NNANNNNNNC" assert A[3] == "NNANNNNNNT" @pytest.mark.skip("Reference sequence not implemented #1888") def test_alignments_missing_char(self): A = list(self.ts().alignments(missing_data_character="z")) assert A[0] == "zzGzzzzzzT" assert A[1] == "zzAzzzzzzC" assert A[2] == "zzAzzzzzzC" assert A[3] == "zzzzzzzzzz" @pytest.mark.skip("Reference sequence not implemented #1888") def test_alignments_missing_char_ref(self): A = list(self.ts().alignments(missing_data_character="z")) assert A[0] == "NNGNNNNNNT" assert A[1] == "NNANNNNNNC" assert A[2] == "NNANNNNNNC" assert A[3] == "zzzzzzzzzz" @pytest.mark.skip("Missing data in alignments: #1896") def test_alignments_reference_sequence(self): ref = "0123456789" A = list(self.ts().alignments(reference_sequence=ref)) assert A[0] == "01G345678T" assert A[1] == "01A345678C" assert A[2] == "01A345678C" assert A[3] == "NNNNNNNNNN" @pytest.mark.skip("Missing data in alignments: #1896") def test_alignments_reference_sequence_missing_data_char(self): ref = "0123456789" A = list( self.ts().alignments(reference_sequence=ref, missing_data_character="Q") ) assert A[0] == "01G345678T" assert A[1] == "01A345678C" assert A[2] == "01A345678C" assert A[3] == "QQQQQQQQQQ" @pytest.mark.skip("Missing data in alignments: #1896") def test_fasta_reference_sequence(self): ref = "0123456789" expected = textwrap.dedent( """\ >n0 01G345678T >n1 01A345678C >n2 01A345678C >n5 NNNNNNNNNN """ ) assert expected == self.ts().as_fasta(reference_sequence=ref) @pytest.mark.skip("Missing data in alignments: #1896") def test_fasta_reference_sequence_missing_data_char(self): ref = "0123456789" expected = textwrap.dedent( """\ >n0 01G345678T >n1 01A345678C >n2 01A345678C >n5 QQQQQQQQQQ """ ) assert expected == self.ts().as_fasta( reference_sequence=ref, missing_data_character="Q" ) @pytest.mark.skip("Missing data in alignments: #1896") def test_fasta_impute_missing(self): ref = "N" * 10 expected = textwrap.dedent( """\ >n0 NNGNNNNNNT >n1 NNANNNNNNC >n2 NNANNNNNNC >n5 NNANNNNNNT """ ) assert expected == self.ts().as_fasta( reference_sequence=ref, isolated_as_missing=False ) # Note: the nexus tree output isn't compatible with our representation of # missing data as trees with isolated roots (newick parsers won't accept # this as valid input), so we set include_trees=False for these examples. @pytest.mark.skip("Missing data in alignments: #1896") def test_nexus_reference_sequence(self): ref = "0123456789" expected = textwrap.dedent( """\ #NEXUS BEGIN TAXA; DIMENSIONS NTAX=4; TAXLABELS n0 n1 n2 n5; END; BEGIN DATA; DIMENSIONS NCHAR=10; FORMAT DATATYPE=DNA MISSING=?; MATRIX n0 01G345678T n1 01A345678C n2 01A345678C n5 ?????????? ; END; """ ) assert expected == self.ts().as_nexus( reference_sequence=ref, include_trees=False ) @pytest.mark.skip("Missing data in alignments: #1896") def test_nexus_reference_sequence_missing_data_char(self): ref = "0123456789" expected = textwrap.dedent( """\ #NEXUS BEGIN TAXA; DIMENSIONS NTAX=4; TAXLABELS n0 n1 n2 n5; END; BEGIN DATA; DIMENSIONS NCHAR=10; FORMAT DATATYPE=DNA MISSING=Q; MATRIX n0 01G345678T n1 01A345678C n2 01A345678C n5 QQQQQQQQQQ ; END; """ ) assert expected == self.ts().as_nexus( reference_sequence=ref, missing_data_character="Q", include_trees=False, ) @pytest.mark.skip("Missing data in alignments: #1896") def test_nexus_impute_missing(self): ref = "0123456789" expected = textwrap.dedent( """\ #NEXUS BEGIN TAXA; DIMENSIONS NTAX=4; TAXLABELS n0 n1 n2 n5; END; BEGIN DATA; DIMENSIONS NCHAR=10; FORMAT DATATYPE=DNA MISSING=?; MATRIX n0 01G345678T n1 01A345678C n2 01A345678C n5 01A345678T ; END; """ ) assert expected == self.ts().as_nexus( reference_sequence=ref, isolated_as_missing=False, include_trees=False, ) class TestMultiRootExample: # 1.00┊ 4 5 ┊ # ┊ ┏┻┓ ┏┻┓ ┊ # 0.00┊ 0 1 2 3 ┊ # 0 10 # | | # pos 2 8 # anc G C @tests.cached_example def ts(self): tree = tskit.Tree.generate_balanced(4, arity=2, span=10) tables = tree.tree_sequence.dump_tables() edges = tables.edges.copy() tables.edges.clear() for edge in edges: if edge.parent != 6: tables.edges.append(edge) tables.sites.add_row(2, ancestral_state="G") tables.sites.add_row(8, ancestral_state="C") tables.mutations.add_row(site=0, node=0, derived_state="T") tables.mutations.add_row(site=1, node=5, derived_state="A") return tables.tree_sequence() def test_haplotypes(self): H = list(self.ts().haplotypes()) assert H[0] == "TC" assert H[1] == "GC" assert H[2] == "GA" assert H[3] == "GA" def test_genotypes(self): G = self.ts().genotype_matrix() Gp = [[1, 0, 0, 0], [0, 0, 1, 1]] np.testing.assert_array_equal(G, Gp) @pytest.mark.skip("Reference sequence not implemented #1888") def test_alignments_default(self): A = list(self.ts().alignments()) assert A[0] == "NNTNNNNNCN" assert A[1] == "NNGNNNNNCN" assert A[2] == "NNGNNNNNAN" assert A[3] == "NNGNNNNNAN" def test_alignments_N_ref(self): A = list(self.ts().alignments(reference_sequence="N" * 10)) assert A[0] == "NNTNNNNNCN" assert A[1] == "NNGNNNNNCN" assert A[2] == "NNGNNNNNAN" assert A[3] == "NNGNNNNNAN" def test_fasta_reference_sequence(self): ref = "0123456789" expected = textwrap.dedent( """\ >n0 01T34567C9 >n1 01G34567C9 >n2 01G34567A9 >n3 01G34567A9 """ ) assert expected == self.ts().as_fasta(reference_sequence=ref) class TestAlignmentsErrors: @tests.cached_example def simplest_ts(self): tables = tskit.TableCollection(1) tables.nodes.add_row(flags=1, time=0) return tables.tree_sequence() def test_non_discrete_genome(self): ts = tskit.TableCollection(1.1).tree_sequence() assert not ts.discrete_genome with pytest.raises(ValueError, match="defined for discrete genomes"): list(ts.alignments()) def test_no_reference(self): ts = tskit.TableCollection(1).tree_sequence() with pytest.raises(ValueError, match="1888"): list(ts.alignments()) @pytest.mark.parametrize("ref", ["", "xy"]) def test_reference_sequence_length_mismatch(self, ref): ts = self.simplest_ts() with pytest.raises(ValueError, match="same length"): list(ts.alignments(reference_sequence=ref)) @pytest.mark.parametrize("ref", ["À", "┃", "α"]) def test_non_ascii_references(self, ref): ts = self.simplest_ts() with pytest.raises(UnicodeEncodeError): list(ts.alignments(reference_sequence=ref)) @pytest.mark.skip("Missing data in alignments: #1896") @pytest.mark.parametrize("missing_data_char", ["À", "┃", "α"]) def test_non_ascii_missing_data_char(self, missing_data_char): ts = self.simplest_ts() with pytest.raises(UnicodeEncodeError): list( ts.alignments( reference_sequence="-", missing_data_character=missing_data_char ) ) class TestAlignmentExamples: @pytest.mark.skip("Reference sequence not implemented #1888") @pytest.mark.parametrize("ts", get_example_discrete_genome_tree_sequences()) def test_defaults(self, ts): A = list(ts.alignments()) assert len(A) == ts.num_samples H = list(ts.haplotypes()) pos = ts.tables.sites.position.astype(int) for a, h in map(np.array, zip(A, H)): last = 0 for j, x in enumerate(pos): assert a[last:x] == "-" * (x - last) assert a[x] == h[j] last = x + 1 @pytest.mark.parametrize("ts", get_example_discrete_genome_tree_sequences()) def test_reference_sequence(self, ts): ref = tskit.random_nucleotides(ts.sequence_length, seed=1234) if any(tree.num_roots > 1 for tree in ts.trees()): with pytest.raises(ValueError, match="1896"): list(ts.alignments(reference_sequence=ref)) else: A = list(ts.alignments(reference_sequence=ref)) assert len(A) == ts.num_samples H = list(ts.haplotypes()) pos = ts.tables.sites.position.astype(int) for a, h in map(np.array, zip(A, H)): last = 0 for j, x in enumerate(pos): assert a[last:x] == ref[last:x] assert a[x] == h[j] last = x + 1 assert a[last:] == ref[last:]
[ "msprime.RecombinationMap.uniform_map", "numpy.empty", "numpy.ones", "msprime.InfiniteSites", "numpy.arange", "pytest.mark.parametrize", "pytest.mark.skip", "numpy.zeros_like", "random.randint", "pytest.warns", "tskit.TableCollection", "itertools.permutations", "itertools.zip_longest", "pytest.raises", "tests.tsutil.jukes_cantor", "tskit.random_nucleotides", "numpy.testing.assert_array_equal", "tests.test_highlevel.get_example_tree_sequences", "numpy.frombuffer", "random.random", "msprime.simulate", "msprime.mutate", "numpy.all", "msprime.SimpleBottleneck", "textwrap.dedent", "tests.tsutil.insert_multichar_mutations", "random.uniform", "tests.test_wright_fisher.wf_sim", "numpy.zeros", "numpy.where", "numpy.array", "tests.tsutil.insert_branch_mutations", "numpy.array_equal", "tskit.Tree.generate_balanced" ]
[((1739, 1767), 'tests.test_highlevel.get_example_tree_sequences', 'get_example_tree_sequences', ([], {}), '()\n', (1765, 1767), False, 'from tests.test_highlevel import get_example_tree_sequences\n'), ((2312, 2365), 'numpy.zeros', 'np.zeros', (['(ts.num_nodes, ts.num_sites)'], {'dtype': 'np.int8'}), '((ts.num_nodes, ts.num_sites), dtype=np.int8)\n', (2320, 2365), True, 'import numpy as np\n'), ((43203, 43263), 'pytest.mark.skip', 'pytest.mark.skip', (['"""Reference sequence not implemented #1888"""'], {}), "('Reference sequence not implemented #1888')\n", (43219, 43263), False, 'import pytest\n'), ((43458, 43518), 'pytest.mark.skip', 'pytest.mark.skip', (['"""Reference sequence not implemented #1888"""'], {}), "('Reference sequence not implemented #1888')\n", (43474, 43518), False, 'import pytest\n'), ((46689, 46749), 'pytest.mark.skip', 'pytest.mark.skip', (['"""Reference sequence not implemented #1888"""'], {}), "('Reference sequence not implemented #1888')\n", (46705, 46749), False, 'import pytest\n'), ((47215, 47268), 'pytest.mark.skip', 'pytest.mark.skip', (['"""Missing data in alignments: #1896"""'], {}), "('Missing data in alignments: #1896')\n", (47231, 47268), False, 'import pytest\n'), ((47600, 47660), 'pytest.mark.skip', 'pytest.mark.skip', (['"""Reference sequence not implemented #1888"""'], {}), "('Reference sequence not implemented #1888')\n", (47616, 47660), False, 'import pytest\n'), ((47922, 47982), 'pytest.mark.skip', 'pytest.mark.skip', (['"""Reference sequence not implemented #1888"""'], {}), "('Reference sequence not implemented #1888')\n", (47938, 47982), False, 'import pytest\n'), ((48248, 48301), 'pytest.mark.skip', 'pytest.mark.skip', (['"""Missing data in alignments: #1896"""'], {}), "('Missing data in alignments: #1896')\n", (48264, 48301), False, 'import pytest\n'), ((48592, 48645), 'pytest.mark.skip', 'pytest.mark.skip', (['"""Missing data in alignments: #1896"""'], {}), "('Missing data in alignments: #1896')\n", (48608, 48645), False, 'import pytest\n'), ((49004, 49057), 'pytest.mark.skip', 'pytest.mark.skip', (['"""Missing data in alignments: #1896"""'], {}), "('Missing data in alignments: #1896')\n", (49020, 49057), False, 'import pytest\n'), ((49441, 49494), 'pytest.mark.skip', 'pytest.mark.skip', (['"""Missing data in alignments: #1896"""'], {}), "('Missing data in alignments: #1896')\n", (49457, 49494), False, 'import pytest\n'), ((49946, 49999), 'pytest.mark.skip', 'pytest.mark.skip', (['"""Missing data in alignments: #1896"""'], {}), "('Missing data in alignments: #1896')\n", (49962, 49999), False, 'import pytest\n'), ((50657, 50710), 'pytest.mark.skip', 'pytest.mark.skip', (['"""Missing data in alignments: #1896"""'], {}), "('Missing data in alignments: #1896')\n", (50673, 50710), False, 'import pytest\n'), ((51389, 51442), 'pytest.mark.skip', 'pytest.mark.skip', (['"""Missing data in alignments: #1896"""'], {}), "('Missing data in alignments: #1896')\n", (51405, 51442), False, 'import pytest\n'), ((52192, 52245), 'pytest.mark.skip', 'pytest.mark.skip', (['"""Missing data in alignments: #1896"""'], {}), "('Missing data in alignments: #1896')\n", (52208, 52245), False, 'import pytest\n'), ((54099, 54159), 'pytest.mark.skip', 'pytest.mark.skip', (['"""Reference sequence not implemented #1888"""'], {}), "('Reference sequence not implemented #1888')\n", (54115, 54159), False, 'import pytest\n'), ((55650, 55692), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""ref"""', "['', 'xy']"], {}), "('ref', ['', 'xy'])\n", (55673, 55692), False, 'import pytest\n'), ((55908, 55955), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""ref"""', "['À', '┃', 'α']"], {}), "('ref', ['À', '┃', 'α'])\n", (55931, 55955), False, 'import pytest\n'), ((56144, 56197), 'pytest.mark.skip', 'pytest.mark.skip', (['"""Missing data in alignments: #1896"""'], {}), "('Missing data in alignments: #1896')\n", (56160, 56197), False, 'import pytest\n'), ((56203, 56264), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""missing_data_char"""', "['À', '┃', 'α']"], {}), "('missing_data_char', ['À', '┃', 'α'])\n", (56226, 56264), False, 'import pytest\n'), ((56614, 56674), 'pytest.mark.skip', 'pytest.mark.skip', (['"""Reference sequence not implemented #1888"""'], {}), "('Reference sequence not implemented #1888')\n", (56630, 56674), False, 'import pytest\n'), ((3442, 3462), 'numpy.array_equal', 'np.array_equal', (['A', 'B'], {}), '(A, B)\n', (3456, 3462), True, 'import numpy as np\n'), ((3509, 3562), 'msprime.simulate', 'msprime.simulate', (['(5)'], {'mutation_rate': '(1)', 'random_seed': '(234)'}), '(5, mutation_rate=1, random_seed=234)\n', (3525, 3562), False, 'import msprime\n'), ((3632, 3709), 'msprime.simulate', 'msprime.simulate', (['(8)'], {'recombination_rate': '(10)', 'mutation_rate': '(10)', 'random_seed': '(234)'}), '(8, recombination_rate=10, mutation_rate=10, random_seed=234)\n', (3648, 3709), False, 'import msprime\n'), ((3879, 3930), 'msprime.simulate', 'msprime.simulate', (['(6)'], {'random_seed': '(1)', 'mutation_rate': '(1)'}), '(6, random_seed=1, mutation_rate=1)\n', (3895, 3930), False, 'import msprime\n'), ((3944, 3983), 'tests.tsutil.jukes_cantor', 'tsutil.jukes_cantor', (['ts', '(20)', '(1)'], {'seed': '(10)'}), '(ts, 20, 1, seed=10)\n', (3963, 3983), True, 'import tests.tsutil as tsutil\n'), ((4074, 4125), 'msprime.simulate', 'msprime.simulate', (['(6)'], {'random_seed': '(1)', 'mutation_rate': '(1)'}), '(6, random_seed=1, mutation_rate=1)\n', (4090, 4125), False, 'import msprime\n'), ((4139, 4176), 'tests.tsutil.insert_multichar_mutations', 'tsutil.insert_multichar_mutations', (['ts'], {}), '(ts)\n', (4172, 4176), True, 'import tests.tsutil as tsutil\n'), ((4261, 4334), 'msprime.simulate', 'msprime.simulate', (['(6)'], {'recombination_rate': '(2)', 'mutation_rate': '(2)', 'random_seed': '(1)'}), '(6, recombination_rate=2, mutation_rate=2, random_seed=1)\n', (4277, 4334), False, 'import msprime\n'), ((4494, 4585), 'tests.test_wright_fisher.wf_sim', 'wf.wf_sim', (['(6)', '(5)'], {'seed': '(3)', 'deep_history': '(True)', 'initial_generation_samples': '(True)', 'num_loci': '(2)'}), '(6, 5, seed=3, deep_history=True, initial_generation_samples=True,\n num_loci=2)\n', (4503, 4585), True, 'import tests.test_wright_fisher as wf\n'), ((4849, 4943), 'tests.test_wright_fisher.wf_sim', 'wf.wf_sim', (['(9)', '(10)'], {'seed': '(1)', 'deep_history': '(True)', 'initial_generation_samples': '(False)', 'num_loci': '(5)'}), '(9, 10, seed=1, deep_history=True, initial_generation_samples=\n False, num_loci=5)\n', (4858, 4943), True, 'import tests.test_wright_fisher as wf\n'), ((5104, 5150), 'msprime.mutate', 'msprime.mutate', (['ts'], {'rate': '(0.2)', 'random_seed': '(1234)'}), '(ts, rate=0.2, random_seed=1234)\n', (5118, 5150), False, 'import msprime\n'), ((5254, 5280), 'tskit.TableCollection', 'tskit.TableCollection', (['(1.0)'], {}), '(1.0)\n', (5275, 5280), False, 'import tskit\n'), ((5687, 5720), 'numpy.zeros', 'np.zeros', (['ts.num_nodes'], {'dtype': 'int'}), '(ts.num_nodes, dtype=int)\n', (5695, 5720), True, 'import numpy as np\n'), ((6318, 6408), 'msprime.simulate', 'msprime.simulate', (['(10)'], {'length': '(10)', 'recombination_rate': '(1)', 'mutation_rate': '(10)', 'random_seed': '(3)'}), '(10, length=10, recombination_rate=1, mutation_rate=10,\n random_seed=3)\n', (6334, 6408), False, 'import msprime\n'), ((6636, 6664), 'numpy.zeros', 'np.zeros', (['(m, n)'], {'dtype': '"""u1"""'}), "((m, n), dtype='u1')\n", (6644, 6664), True, 'import numpy as np\n'), ((6677, 6705), 'numpy.zeros', 'np.zeros', (['(m, n)'], {'dtype': '"""u1"""'}), "((m, n), dtype='u1')\n", (6685, 6705), True, 'import numpy as np\n'), ((7000, 7014), 'numpy.all', 'np.all', (['(A == B)'], {}), '(A == B)\n', (7006, 7014), True, 'import numpy as np\n'), ((11715, 11735), 'msprime.simulate', 'msprime.simulate', (['(10)'], {}), '(10)\n', (11731, 11735), False, 'import msprime\n'), ((11939, 11994), 'numpy.empty', 'np.empty', (['(ts.num_sites, ts.num_samples)'], {'dtype': 'np.int8'}), '((ts.num_sites, ts.num_samples), dtype=np.int8)\n', (11947, 11994), True, 'import numpy as np\n'), ((12116, 12137), 'numpy.array_equal', 'np.array_equal', (['G', 'G2'], {}), '(G, G2)\n', (12130, 12137), True, 'import numpy as np\n'), ((14159, 14246), 'msprime.simulate', 'msprime.simulate', (['n'], {'length': '(5)', 'recombination_rate': '(1)', 'mutation_rate': '(5)', 'random_seed': '(2)'}), '(n, length=5, recombination_rate=1, mutation_rate=5,\n random_seed=2)\n', (14175, 14246), False, 'import msprime\n'), ((15005, 15092), 'msprime.simulate', 'msprime.simulate', (['n'], {'length': '(5)', 'recombination_rate': '(1)', 'mutation_rate': '(5)', 'random_seed': '(2)'}), '(n, length=5, recombination_rate=1, mutation_rate=5,\n random_seed=2)\n', (15021, 15092), False, 'import msprime\n'), ((16168, 16256), 'msprime.simulate', 'msprime.simulate', (['(10)'], {'length': '(5)', 'recombination_rate': '(1)', 'mutation_rate': '(5)', 'random_seed': '(2)'}), '(10, length=5, recombination_rate=1, mutation_rate=5,\n random_seed=2)\n', (16184, 16256), False, 'import msprime\n'), ((17850, 17884), 'msprime.simulate', 'msprime.simulate', (['(5)'], {'random_seed': '(2)'}), '(5, random_seed=2)\n', (17866, 17884), False, 'import msprime\n'), ((17898, 17935), 'tests.tsutil.jukes_cantor', 'tsutil.jukes_cantor', (['ts', '(5)', '(1)'], {'seed': '(2)'}), '(ts, 5, 1, seed=2)\n', (17917, 17935), True, 'import tests.tsutil as tsutil\n'), ((18024, 18059), 'msprime.simulate', 'msprime.simulate', (['(20)'], {'random_seed': '(2)'}), '(20, random_seed=2)\n', (18040, 18059), False, 'import msprime\n'), ((18073, 18110), 'tests.tsutil.jukes_cantor', 'tsutil.jukes_cantor', (['ts', '(5)', '(1)'], {'seed': '(2)'}), '(ts, 5, 1, seed=2)\n', (18092, 18110), True, 'import tests.tsutil as tsutil\n'), ((18205, 18257), 'msprime.simulate', 'msprime.simulate', (['(10)'], {'random_seed': '(2)', 'mutation_rate': '(2)'}), '(10, random_seed=2, mutation_rate=2)\n', (18221, 18257), False, 'import msprime\n'), ((18675, 18694), 'numpy.all', 'np.all', (['(Gnm[0] == 0)'], {}), '(Gnm[0] == 0)\n', (18681, 18694), True, 'import numpy as np\n'), ((18710, 18729), 'numpy.all', 'np.all', (['(Gnm[1] == 0)'], {}), '(Gnm[1] == 0)\n', (18716, 18729), True, 'import numpy as np\n'), ((18745, 18765), 'numpy.all', 'np.all', (['(Gnm[-1] == 0)'], {}), '(Gnm[-1] == 0)\n', (18751, 18765), True, 'import numpy as np\n'), ((18781, 18801), 'numpy.all', 'np.all', (['(Gnm[-2] == 0)'], {}), '(Gnm[-2] == 0)\n', (18787, 18801), True, 'import numpy as np\n'), ((18867, 18886), 'numpy.all', 'np.all', (['(Gm[0] == -1)'], {}), '(Gm[0] == -1)\n', (18873, 18886), True, 'import numpy as np\n'), ((18902, 18921), 'numpy.all', 'np.all', (['(Gm[1] == -1)'], {}), '(Gm[1] == -1)\n', (18908, 18921), True, 'import numpy as np\n'), ((18937, 18957), 'numpy.all', 'np.all', (['(Gm[-1] == -1)'], {}), '(Gm[-1] == -1)\n', (18943, 18957), True, 'import numpy as np\n'), ((18973, 18993), 'numpy.all', 'np.all', (['(Gm[-2] == -1)'], {}), '(Gm[-2] == -1)\n', (18979, 18993), True, 'import numpy as np\n'), ((19068, 19091), 'numpy.array_equal', 'np.array_equal', (['Gm', 'Gm2'], {}), '(Gm, Gm2)\n', (19082, 19091), True, 'import numpy as np\n'), ((19245, 19268), 'numpy.array_equal', 'np.array_equal', (['Gnm', 'Gi'], {}), '(Gnm, Gi)\n', (19259, 19268), True, 'import numpy as np\n'), ((19390, 19413), 'numpy.array_equal', 'np.array_equal', (['Gm', 'Gni'], {}), '(Gm, Gni)\n', (19404, 19413), True, 'import numpy as np\n'), ((19560, 19582), 'numpy.array_equal', 'np.array_equal', (['Gnm', 'G'], {}), '(Gnm, G)\n', (19574, 19582), True, 'import numpy as np\n'), ((19728, 19749), 'numpy.array_equal', 'np.array_equal', (['Gm', 'G'], {}), '(Gm, G)\n', (19742, 19749), True, 'import numpy as np\n'), ((19810, 19836), 'tskit.TableCollection', 'tskit.TableCollection', (['(1.0)'], {}), '(1.0)\n', (19831, 19836), False, 'import tskit\n'), ((20212, 20239), 'numpy.all', 'np.all', (['(var.genotypes == -1)'], {}), '(var.genotypes == -1)\n', (20218, 20239), True, 'import numpy as np\n'), ((20362, 20388), 'tskit.TableCollection', 'tskit.TableCollection', (['(1.0)'], {}), '(1.0)\n', (20383, 20388), False, 'import tskit\n'), ((20833, 20859), 'tskit.TableCollection', 'tskit.TableCollection', (['(1.0)'], {}), '(1.0)\n', (20854, 20859), False, 'import tskit\n'), ((22088, 22114), 'tskit.TableCollection', 'tskit.TableCollection', (['(1.0)'], {}), '(1.0)\n', (22109, 22114), False, 'import tskit\n'), ((22648, 22674), 'tskit.TableCollection', 'tskit.TableCollection', (['(1.0)'], {}), '(1.0)\n', (22669, 22674), False, 'import tskit\n'), ((23302, 23394), 'msprime.simulate', 'msprime.simulate', (['(10)'], {'length': '(10)', 'recombination_rate': '(0.1)', 'mutation_rate': '(10)', 'random_seed': '(3)'}), '(10, length=10, recombination_rate=0.1, mutation_rate=10,\n random_seed=3)\n', (23318, 23394), False, 'import msprime\n'), ((24774, 24866), 'msprime.simulate', 'msprime.simulate', (['(10)'], {'length': '(10)', 'recombination_rate': '(0.1)', 'mutation_rate': '(10)', 'random_seed': '(3)'}), '(10, length=10, recombination_rate=0.1, mutation_rate=10,\n random_seed=3)\n', (24790, 24866), False, 'import msprime\n'), ((27356, 27384), 'numpy.zeros', 'np.zeros', (['(n, m)'], {'dtype': '"""u1"""'}), "((n, m), dtype='u1')\n", (27364, 27384), True, 'import numpy as np\n'), ((27397, 27425), 'numpy.zeros', 'np.zeros', (['(n, m)'], {'dtype': '"""u1"""'}), "((n, m), dtype='u1')\n", (27405, 27425), True, 'import numpy as np\n'), ((27689, 27703), 'numpy.all', 'np.all', (['(A == B)'], {}), '(A == B)\n', (27695, 27703), True, 'import numpy as np\n'), ((27905, 27950), 'msprime.RecombinationMap.uniform_map', 'msprime.RecombinationMap.uniform_map', (['m', 'r', 'm'], {}), '(m, r, m)\n', (27941, 27950), False, 'import msprime\n'), ((27975, 28045), 'msprime.simulate', 'msprime.simulate', (['n'], {'recombination_map': 'recomb_map', 'mutation_rate': 'theta'}), '(n, recombination_map=recomb_map, mutation_rate=theta)\n', (27991, 28045), False, 'import msprime\n'), ((28701, 28807), 'msprime.simulate', 'msprime.simulate', (['(10)'], {'length': '(100)', 'recombination_rate': '(1)', 'demographic_events': 'bottlenecks', 'random_seed': '(1)'}), '(10, length=100, recombination_rate=1, demographic_events=\n bottlenecks, random_seed=1)\n', (28717, 28807), False, 'import msprime\n'), ((28961, 28999), 'msprime.simulate', 'msprime.simulate', (['(10)'], {'mutation_rate': '(10)'}), '(10, mutation_rate=10)\n', (28977, 28999), False, 'import msprime\n'), ((29839, 29874), 'msprime.simulate', 'msprime.simulate', (['(10)'], {'random_seed': '(2)'}), '(10, random_seed=2)\n', (29855, 29874), False, 'import msprime\n'), ((30112, 30147), 'msprime.simulate', 'msprime.simulate', (['(10)'], {'random_seed': '(2)'}), '(10, random_seed=2)\n', (30128, 30147), False, 'import msprime\n'), ((30375, 30410), 'msprime.simulate', 'msprime.simulate', (['(10)'], {'random_seed': '(2)'}), '(10, random_seed=2)\n', (30391, 30410), False, 'import msprime\n'), ((30678, 30713), 'msprime.simulate', 'msprime.simulate', (['(10)'], {'random_seed': '(2)'}), '(10, random_seed=2)\n', (30694, 30713), False, 'import msprime\n'), ((31243, 31278), 'msprime.simulate', 'msprime.simulate', (['(10)'], {'random_seed': '(2)'}), '(10, random_seed=2)\n', (31259, 31278), False, 'import msprime\n'), ((31840, 31875), 'msprime.simulate', 'msprime.simulate', (['(10)'], {'random_seed': '(2)'}), '(10, random_seed=2)\n', (31856, 31875), False, 'import msprime\n'), ((32078, 32104), 'tskit.TableCollection', 'tskit.TableCollection', (['(1.0)'], {}), '(1.0)\n', (32099, 32104), False, 'import tskit\n'), ((33900, 33952), 'msprime.simulate', 'msprime.simulate', (['(10)'], {'mutation_rate': '(5)', 'random_seed': '(2)'}), '(10, mutation_rate=5, random_seed=2)\n', (33916, 33952), False, 'import msprime\n'), ((34086, 34108), 'numpy.array_equal', 'np.array_equal', (['G1', 'G2'], {}), '(G1, G2)\n', (34100, 34108), True, 'import numpy as np\n'), ((34429, 34481), 'msprime.simulate', 'msprime.simulate', (['(10)'], {'mutation_rate': '(5)', 'random_seed': '(2)'}), '(10, mutation_rate=5, random_seed=2)\n', (34445, 34481), False, 'import msprime\n'), ((34655, 34677), 'numpy.array_equal', 'np.array_equal', (['G1', 'G2'], {}), '(G1, G2)\n', (34669, 34677), True, 'import numpy as np\n'), ((34991, 35043), 'msprime.simulate', 'msprime.simulate', (['(10)'], {'mutation_rate': '(5)', 'random_seed': '(2)'}), '(10, mutation_rate=5, random_seed=2)\n', (35007, 35043), False, 'import msprime\n'), ((35218, 35244), 'numpy.array_equal', 'np.array_equal', (['(G1 + 3)', 'G2'], {}), '(G1 + 3, G2)\n', (35232, 35244), True, 'import numpy as np\n'), ((35564, 35616), 'msprime.simulate', 'msprime.simulate', (['(10)'], {'mutation_rate': '(5)', 'random_seed': '(2)'}), '(10, mutation_rate=5, random_seed=2)\n', (35580, 35616), False, 'import msprime\n'), ((35782, 35799), 'numpy.where', 'np.where', (['(G1 == 1)'], {}), '(G1 == 1)\n', (35790, 35799), True, 'import numpy as np\n'), ((35837, 35859), 'numpy.array_equal', 'np.array_equal', (['G1', 'G2'], {}), '(G1, G2)\n', (35851, 35859), True, 'import numpy as np\n'), ((36239, 36274), 'msprime.simulate', 'msprime.simulate', (['(10)'], {'random_seed': '(2)'}), '(10, random_seed=2)\n', (36255, 36274), False, 'import msprime\n'), ((36975, 37010), 'msprime.simulate', 'msprime.simulate', (['(10)'], {'random_seed': '(2)'}), '(10, random_seed=2)\n', (36991, 37010), False, 'import msprime\n'), ((37685, 37737), 'msprime.simulate', 'msprime.simulate', (['(10)'], {'mutation_rate': '(5)', 'random_seed': '(2)'}), '(10, mutation_rate=5, random_seed=2)\n', (37701, 37737), False, 'import msprime\n'), ((38100, 38152), 'msprime.simulate', 'msprime.simulate', (['(10)'], {'mutation_rate': '(5)', 'random_seed': '(2)'}), '(10, mutation_rate=5, random_seed=2)\n', (38116, 38152), False, 'import msprime\n'), ((38379, 38403), 'tskit.TableCollection', 'tskit.TableCollection', (['(1)'], {}), '(1)\n', (38400, 38403), False, 'import tskit\n'), ((39879, 39930), 'msprime.simulate', 'msprime.simulate', (['(5)'], {'mutation_rate': '(2)', 'random_seed': '(3)'}), '(5, mutation_rate=2, random_seed=3)\n', (39895, 39930), False, 'import msprime\n'), ((40322, 40356), 'msprime.simulate', 'msprime.simulate', (['(5)'], {'random_seed': '(3)'}), '(5, random_seed=3)\n', (40338, 40356), False, 'import msprime\n'), ((40816, 40867), 'msprime.simulate', 'msprime.simulate', (['(6)'], {'random_seed': '(1)', 'mutation_rate': '(1)'}), '(6, random_seed=1, mutation_rate=1)\n', (40832, 40867), False, 'import msprime\n'), ((40881, 40920), 'tests.tsutil.jukes_cantor', 'tsutil.jukes_cantor', (['ts', '(20)', '(1)'], {'seed': '(10)'}), '(ts, 20, 1, seed=10)\n', (40900, 40920), True, 'import tests.tsutil as tsutil\n'), ((41228, 41284), 'msprime.simulate', 'msprime.simulate', (['(6)'], {'random_seed': '(1)', 'recombination_rate': '(2)'}), '(6, random_seed=1, recombination_rate=2)\n', (41244, 41284), False, 'import msprime\n'), ((41298, 41335), 'tests.tsutil.insert_multichar_mutations', 'tsutil.insert_multichar_mutations', (['ts'], {}), '(ts)\n', (41331, 41335), True, 'import tests.tsutil as tsutil\n'), ((41652, 41703), 'msprime.simulate', 'msprime.simulate', (['(6)'], {'mutation_rate': '(2)', 'random_seed': '(3)'}), '(6, mutation_rate=2, random_seed=3)\n', (41668, 41703), False, 'import msprime\n'), ((43160, 43196), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['G', 'Gp'], {}), '(G, Gp)\n', (43189, 43196), True, 'import numpy as np\n'), ((44464, 44626), 'textwrap.dedent', 'textwrap.dedent', (['""" >n0\n 01G345678T\n >n1\n 01A345678C\n >n2\n 01A345678C\n """'], {}), '(\n """ >n0\n 01G345678T\n >n1\n 01A345678C\n >n2\n 01A345678C\n """\n )\n', (44479, 44626), False, 'import textwrap\n'), ((44803, 45309), 'textwrap.dedent', 'textwrap.dedent', (['""" #NEXUS\n BEGIN TAXA;\n DIMENSIONS NTAX=3;\n TAXLABELS n0 n1 n2;\n END;\n BEGIN DATA;\n DIMENSIONS NCHAR=10;\n FORMAT DATATYPE=DNA;\n MATRIX\n n0 01G345678T\n n1 01A345678C\n n2 01A345678C\n ;\n END;\n BEGIN TREES;\n TREE t0^10 = [&R] (n0:2,(n1:1,n2:1):1);\n END;\n """'], {}), '(\n """ #NEXUS\n BEGIN TAXA;\n DIMENSIONS NTAX=3;\n TAXLABELS n0 n1 n2;\n END;\n BEGIN DATA;\n DIMENSIONS NCHAR=10;\n FORMAT DATATYPE=DNA;\n MATRIX\n n0 01G345678T\n n1 01A345678C\n n2 01A345678C\n ;\n END;\n BEGIN TREES;\n TREE t0^10 = [&R] (n0:2,(n1:1,n2:1):1);\n END;\n """\n )\n', (44818, 45309), False, 'import textwrap\n'), ((46646, 46682), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['G', 'Gp'], {}), '(G, Gp)\n', (46675, 46682), True, 'import numpy as np\n'), ((49149, 49350), 'textwrap.dedent', 'textwrap.dedent', (['""" >n0\n 01G345678T\n >n1\n 01A345678C\n >n2\n 01A345678C\n >n5\n NNNNNNNNNN\n """'], {}), '(\n """ >n0\n 01G345678T\n >n1\n 01A345678C\n >n2\n 01A345678C\n >n5\n NNNNNNNNNN\n """\n )\n', (49164, 49350), False, 'import textwrap\n'), ((49604, 49805), 'textwrap.dedent', 'textwrap.dedent', (['""" >n0\n 01G345678T\n >n1\n 01A345678C\n >n2\n 01A345678C\n >n5\n QQQQQQQQQQ\n """'], {}), '(\n """ >n0\n 01G345678T\n >n1\n 01A345678C\n >n2\n 01A345678C\n >n5\n QQQQQQQQQQ\n """\n )\n', (49619, 49805), False, 'import textwrap\n'), ((50083, 50284), 'textwrap.dedent', 'textwrap.dedent', (['""" >n0\n NNGNNNNNNT\n >n1\n NNANNNNNNC\n >n2\n NNANNNNNNC\n >n5\n NNANNNNNNT\n """'], {}), '(\n """ >n0\n NNGNNNNNNT\n >n1\n NNANNNNNNC\n >n2\n NNANNNNNNC\n >n5\n NNANNNNNNT\n """\n )\n', (50098, 50284), False, 'import textwrap\n'), ((50802, 51255), 'textwrap.dedent', 'textwrap.dedent', (['""" #NEXUS\n BEGIN TAXA;\n DIMENSIONS NTAX=4;\n TAXLABELS n0 n1 n2 n5;\n END;\n BEGIN DATA;\n DIMENSIONS NCHAR=10;\n FORMAT DATATYPE=DNA MISSING=?;\n MATRIX\n n0 01G345678T\n n1 01A345678C\n n2 01A345678C\n n5 ??????????\n ;\n END;\n """'], {}), '(\n """ #NEXUS\n BEGIN TAXA;\n DIMENSIONS NTAX=4;\n TAXLABELS n0 n1 n2 n5;\n END;\n BEGIN DATA;\n DIMENSIONS NCHAR=10;\n FORMAT DATATYPE=DNA MISSING=?;\n MATRIX\n n0 01G345678T\n n1 01A345678C\n n2 01A345678C\n n5 ??????????\n ;\n END;\n """\n )\n', (50817, 51255), False, 'import textwrap\n'), ((51552, 52005), 'textwrap.dedent', 'textwrap.dedent', (['""" #NEXUS\n BEGIN TAXA;\n DIMENSIONS NTAX=4;\n TAXLABELS n0 n1 n2 n5;\n END;\n BEGIN DATA;\n DIMENSIONS NCHAR=10;\n FORMAT DATATYPE=DNA MISSING=Q;\n MATRIX\n n0 01G345678T\n n1 01A345678C\n n2 01A345678C\n n5 QQQQQQQQQQ\n ;\n END;\n """'], {}), '(\n """ #NEXUS\n BEGIN TAXA;\n DIMENSIONS NTAX=4;\n TAXLABELS n0 n1 n2 n5;\n END;\n BEGIN DATA;\n DIMENSIONS NCHAR=10;\n FORMAT DATATYPE=DNA MISSING=Q;\n MATRIX\n n0 01G345678T\n n1 01A345678C\n n2 01A345678C\n n5 QQQQQQQQQQ\n ;\n END;\n """\n )\n', (51567, 52005), False, 'import textwrap\n'), ((52333, 52786), 'textwrap.dedent', 'textwrap.dedent', (['""" #NEXUS\n BEGIN TAXA;\n DIMENSIONS NTAX=4;\n TAXLABELS n0 n1 n2 n5;\n END;\n BEGIN DATA;\n DIMENSIONS NCHAR=10;\n FORMAT DATATYPE=DNA MISSING=?;\n MATRIX\n n0 01G345678T\n n1 01A345678C\n n2 01A345678C\n n5 01A345678T\n ;\n END;\n """'], {}), '(\n """ #NEXUS\n BEGIN TAXA;\n DIMENSIONS NTAX=4;\n TAXLABELS n0 n1 n2 n5;\n END;\n BEGIN DATA;\n DIMENSIONS NCHAR=10;\n FORMAT DATATYPE=DNA MISSING=?;\n MATRIX\n n0 01G345678T\n n1 01A345678C\n n2 01A345678C\n n5 01A345678T\n ;\n END;\n """\n )\n', (52348, 52786), False, 'import textwrap\n'), ((53203, 53252), 'tskit.Tree.generate_balanced', 'tskit.Tree.generate_balanced', (['(4)'], {'arity': '(2)', 'span': '(10)'}), '(4, arity=2, span=10)\n', (53231, 53252), False, 'import tskit\n'), ((54056, 54092), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['G', 'Gp'], {}), '(G, Gp)\n', (54085, 54092), True, 'import numpy as np\n'), ((54726, 54927), 'textwrap.dedent', 'textwrap.dedent', (['""" >n0\n 01T34567C9\n >n1\n 01G34567C9\n >n2\n 01G34567A9\n >n3\n 01G34567A9\n """'], {}), '(\n """ >n0\n 01T34567C9\n >n1\n 01G34567C9\n >n2\n 01G34567A9\n >n3\n 01G34567A9\n """\n )\n', (54741, 54927), False, 'import textwrap\n'), ((55112, 55136), 'tskit.TableCollection', 'tskit.TableCollection', (['(1)'], {}), '(1)\n', (55133, 55136), False, 'import tskit\n'), ((57312, 57367), 'tskit.random_nucleotides', 'tskit.random_nucleotides', (['ts.sequence_length'], {'seed': '(1234)'}), '(ts.sequence_length, seed=1234)\n', (57336, 57367), False, 'import tskit\n'), ((7255, 7274), 'numpy.all', 'np.all', (['(A[j] == row)'], {}), '(A[j] == row)\n', (7261, 7274), True, 'import numpy as np\n'), ((7397, 7422), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (7410, 7422), False, 'import pytest\n'), ((7951, 7994), 'numpy.array_equal', 'np.array_equal', (['G[var.index]', 'var.genotypes'], {}), '(G[var.index], var.genotypes)\n', (7965, 7994), True, 'import numpy as np\n'), ((8014, 8051), 'numpy.all', 'np.all', (['(G[var.index] == var.genotypes)'], {}), '(G[var.index] == var.genotypes)\n', (8020, 8051), True, 'import numpy as np\n'), ((8246, 8289), 'numpy.array_equal', 'np.array_equal', (['G[var.index]', 'var.genotypes'], {}), '(G[var.index], var.genotypes)\n', (8260, 8289), True, 'import numpy as np\n'), ((14428, 14462), 'itertools.permutations', 'itertools.permutations', (['samples', 'j'], {}), '(samples, j)\n', (14450, 14462), False, 'import itertools\n'), ((15470, 15504), 'itertools.permutations', 'itertools.permutations', (['samples', 'j'], {}), '(samples, j)\n', (15492, 15504), False, 'import itertools\n'), ((16971, 17017), 'numpy.array_equal', 'np.array_equal', (['var1.genotypes', 'var2.genotypes'], {}), '(var1.genotypes, var2.genotypes)\n', (16985, 17017), True, 'import numpy as np\n'), ((19139, 19166), 'pytest.warns', 'pytest.warns', (['FutureWarning'], {}), '(FutureWarning)\n', (19151, 19166), False, 'import pytest\n'), ((19282, 19309), 'pytest.warns', 'pytest.warns', (['FutureWarning'], {}), '(FutureWarning)\n', (19294, 19309), False, 'import pytest\n'), ((19428, 19455), 'pytest.warns', 'pytest.warns', (['FutureWarning'], {}), '(FutureWarning)\n', (19440, 19455), False, 'import pytest\n'), ((19596, 19623), 'pytest.warns', 'pytest.warns', (['FutureWarning'], {}), '(FutureWarning)\n', (19608, 19623), False, 'import pytest\n'), ((24159, 24204), 'numpy.array_equal', 'np.array_equal', (['var.genotypes', 'G[var.site.id]'], {}), '(var.genotypes, G[var.site.id])\n', (24173, 24204), True, 'import numpy as np\n'), ((24648, 24693), 'numpy.array_equal', 'np.array_equal', (['var.genotypes', 'G[var.site.id]'], {}), '(var.genotypes, G[var.site.id])\n', (24662, 24693), True, 'import numpy as np\n'), ((26340, 26385), 'numpy.array_equal', 'np.array_equal', (['var.genotypes', 'G[var.site.id]'], {}), '(var.genotypes, G[var.site.id])\n', (26354, 26385), True, 'import numpy as np\n'), ((28242, 28263), 'random.randint', 'random.randint', (['(2)', '(50)'], {}), '(2, 50)\n', (28256, 28263), False, 'import random\n'), ((28280, 28303), 'random.randint', 'random.randint', (['(10)', '(200)'], {}), '(10, 200)\n', (28294, 28303), False, 'import random\n'), ((28320, 28335), 'random.random', 'random.random', ([], {}), '()\n', (28333, 28335), False, 'import random\n'), ((28356, 28376), 'random.uniform', 'random.uniform', (['(0)', '(2)'], {}), '(0, 2)\n', (28370, 28376), False, 'import random\n'), ((28501, 28551), 'msprime.SimpleBottleneck', 'msprime.SimpleBottleneck', (['(0.01)', '(0)'], {'proportion': '(0.05)'}), '(0.01, 0, proportion=0.05)\n', (28525, 28551), False, 'import msprime\n'), ((28565, 28615), 'msprime.SimpleBottleneck', 'msprime.SimpleBottleneck', (['(0.02)', '(0)'], {'proportion': '(0.25)'}), '(0.02, 0, proportion=0.25)\n', (28589, 28615), False, 'import msprime\n'), ((28629, 28676), 'msprime.SimpleBottleneck', 'msprime.SimpleBottleneck', (['(0.03)', '(0)'], {'proportion': '(1)'}), '(0.03, 0, proportion=1)\n', (28653, 28676), False, 'import msprime\n'), ((29992, 30016), 'pytest.raises', 'pytest.raises', (['TypeError'], {}), '(TypeError)\n', (30005, 30016), False, 'import pytest\n'), ((30261, 30285), 'pytest.raises', 'pytest.raises', (['TypeError'], {}), '(TypeError)\n', (30274, 30285), False, 'import pytest\n'), ((30550, 30574), 'pytest.raises', 'pytest.raises', (['TypeError'], {}), '(TypeError)\n', (30563, 30574), False, 'import pytest\n'), ((31921, 31984), 'tests.tsutil.insert_branch_mutations', 'tsutil.insert_branch_mutations', (['base_ts'], {'mutations_per_branch': 'j'}), '(base_ts, mutations_per_branch=j)\n', (31951, 31984), True, 'import tests.tsutil as tsutil\n'), ((32301, 32326), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (32314, 32326), False, 'import pytest\n'), ((32805, 32832), 'pytest.warns', 'pytest.warns', (['FutureWarning'], {}), '(FutureWarning)\n', (32817, 32832), False, 'import pytest\n'), ((32940, 32967), 'pytest.warns', 'pytest.warns', (['FutureWarning'], {}), '(FutureWarning)\n', (32952, 32967), False, 'import pytest\n'), ((33076, 33103), 'pytest.warns', 'pytest.warns', (['FutureWarning'], {}), '(FutureWarning)\n', (33088, 33103), False, 'import pytest\n'), ((33237, 33264), 'pytest.warns', 'pytest.warns', (['FutureWarning'], {}), '(FutureWarning)\n', (33249, 33264), False, 'import pytest\n'), ((33399, 33426), 'pytest.warns', 'pytest.warns', (['FutureWarning'], {}), '(FutureWarning)\n', (33411, 33426), False, 'import pytest\n'), ((33561, 33588), 'pytest.warns', 'pytest.warns', (['FutureWarning'], {}), '(FutureWarning)\n', (33573, 33588), False, 'import pytest\n'), ((34325, 34367), 'numpy.array_equal', 'np.array_equal', (['v1.genotypes', 'v2.genotypes'], {}), '(v1.genotypes, v2.genotypes)\n', (34339, 34367), True, 'import numpy as np\n'), ((34888, 34930), 'numpy.array_equal', 'np.array_equal', (['v1.genotypes', 'v2.genotypes'], {}), '(v1.genotypes, v2.genotypes)\n', (34902, 34930), True, 'import numpy as np\n'), ((35455, 35501), 'numpy.array_equal', 'np.array_equal', (['(v1.genotypes + 3)', 'v2.genotypes'], {}), '(v1.genotypes + 3, v2.genotypes)\n', (35469, 35501), True, 'import numpy as np\n'), ((36100, 36116), 'numpy.where', 'np.where', (['(g == 1)'], {}), '(g == 1)\n', (36108, 36116), True, 'import numpy as np\n'), ((36161, 36192), 'numpy.array_equal', 'np.array_equal', (['g', 'v2.genotypes'], {}), '(g, v2.genotypes)\n', (36175, 36192), True, 'import numpy as np\n'), ((36881, 36924), 'numpy.array_equal', 'np.array_equal', (['v2.genotypes', 'G[v1.site.id]'], {}), '(v2.genotypes, G[v1.site.id])\n', (36895, 36924), True, 'import numpy as np\n'), ((38166, 38191), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (38179, 38191), False, 'import pytest\n'), ((38254, 38279), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (38267, 38279), False, 'import pytest\n'), ((38933, 38955), 'numpy.array_equal', 'np.array_equal', (['G1', 'G2'], {}), '(G1, G2)\n', (38947, 38955), True, 'import numpy as np\n'), ((39184, 39219), 'itertools.zip_longest', 'itertools.zip_longest', (['vars1', 'vars2'], {}), '(vars1, vars2)\n', (39205, 39219), False, 'import itertools\n'), ((42519, 42559), 'tskit.Tree.generate_balanced', 'tskit.Tree.generate_balanced', (['(3)'], {'span': '(10)'}), '(3, span=10)\n', (42547, 42559), False, 'import tskit\n'), ((45675, 45715), 'tskit.Tree.generate_balanced', 'tskit.Tree.generate_balanced', (['(3)'], {'span': '(10)'}), '(3, span=10)\n', (45703, 45715), False, 'import tskit\n'), ((47105, 47144), 'pytest.raises', 'pytest.raises', (['ValueError'], {'match': '"""1896"""'}), "(ValueError, match='1896')\n", (47118, 47144), False, 'import pytest\n'), ((55369, 55432), 'pytest.raises', 'pytest.raises', (['ValueError'], {'match': '"""defined for discrete genomes"""'}), "(ValueError, match='defined for discrete genomes')\n", (55382, 55432), False, 'import pytest\n'), ((55569, 55608), 'pytest.raises', 'pytest.raises', (['ValueError'], {'match': '"""1888"""'}), "(ValueError, match='1888')\n", (55582, 55608), False, 'import pytest\n'), ((55798, 55844), 'pytest.raises', 'pytest.raises', (['ValueError'], {'match': '"""same length"""'}), "(ValueError, match='same length')\n", (55811, 55844), False, 'import pytest\n'), ((56047, 56080), 'pytest.raises', 'pytest.raises', (['UnicodeEncodeError'], {}), '(UnicodeEncodeError)\n', (56060, 56080), False, 'import pytest\n'), ((56377, 56410), 'pytest.raises', 'pytest.raises', (['UnicodeEncodeError'], {}), '(UnicodeEncodeError)\n', (56390, 56410), False, 'import pytest\n'), ((6931, 6973), 'numpy.frombuffer', 'np.frombuffer', (['variant.genotypes', 'np.uint8'], {}), '(variant.genotypes, np.uint8)\n', (6944, 6973), True, 'import numpy as np\n'), ((7182, 7224), 'numpy.frombuffer', 'np.frombuffer', (['variant.genotypes', 'np.uint8'], {}), '(variant.genotypes, np.uint8)\n', (7195, 7224), True, 'import numpy as np\n'), ((8955, 8990), 'itertools.permutations', 'itertools.permutations', (['"""ABCDEF"""', '(4)'], {}), "('ABCDEF', 4)\n", (8977, 8990), False, 'import itertools\n'), ((10302, 10337), 'itertools.permutations', 'itertools.permutations', (['"""ABCDEF"""', '(4)'], {}), "('ABCDEF', 4)\n", (10324, 10337), False, 'import itertools\n'), ((14484, 14511), 'numpy.array', 'np.array', (['s'], {'dtype': 'np.int32'}), '(s, dtype=np.int32)\n', (14492, 14511), True, 'import numpy as np\n'), ((15526, 15553), 'numpy.array', 'np.array', (['s'], {'dtype': 'np.int32'}), '(s, dtype=np.int32)\n', (15534, 15553), True, 'import numpy as np\n'), ((23930, 23973), 'numpy.all', 'np.all', (['(var.genotypes == tskit.MISSING_DATA)'], {}), '(var.genotypes == tskit.MISSING_DATA)\n', (23936, 23973), True, 'import numpy as np\n'), ((24096, 24139), 'numpy.all', 'np.all', (['(var.genotypes != tskit.MISSING_DATA)'], {}), '(var.genotypes != tskit.MISSING_DATA)\n', (24102, 24139), True, 'import numpy as np\n'), ((24469, 24495), 'numpy.all', 'np.all', (['(var.genotypes == 0)'], {}), '(var.genotypes == 0)\n', (24475, 24495), True, 'import numpy as np\n'), ((24585, 24628), 'numpy.all', 'np.all', (['(var.genotypes != tskit.MISSING_DATA)'], {}), '(var.genotypes != tskit.MISSING_DATA)\n', (24591, 24628), True, 'import numpy as np\n'), ((25928, 25975), 'numpy.all', 'np.all', (['(var.genotypes[1:] == tskit.MISSING_DATA)'], {}), '(var.genotypes[1:] == tskit.MISSING_DATA)\n', (25934, 25975), True, 'import numpy as np\n'), ((29302, 29346), 'numpy.arange', 'np.arange', (['(ts.num_sites + 1)'], {'dtype': 'np.uint32'}), '(ts.num_sites + 1, dtype=np.uint32)\n', (29311, 29346), True, 'import numpy as np\n'), ((29564, 29608), 'numpy.arange', 'np.arange', (['(ts.num_sites + 1)'], {'dtype': 'np.uint32'}), '(ts.num_sites + 1, dtype=np.uint32)\n', (29573, 29608), True, 'import numpy as np\n'), ((36349, 36391), 'msprime.InfiniteSites', 'msprime.InfiniteSites', (['msprime.NUCLEOTIDES'], {}), '(msprime.NUCLEOTIDES)\n', (36370, 36391), False, 'import msprime\n'), ((37085, 37127), 'msprime.InfiniteSites', 'msprime.InfiniteSites', (['msprime.NUCLEOTIDES'], {}), '(msprime.NUCLEOTIDES)\n', (37106, 37127), False, 'import msprime\n'), ((37426, 37464), 'pytest.raises', 'pytest.raises', (['exceptions.LibraryError'], {}), '(exceptions.LibraryError)\n', (37439, 37464), False, 'import pytest\n'), ((37539, 37577), 'pytest.raises', 'pytest.raises', (['exceptions.LibraryError'], {}), '(exceptions.LibraryError)\n', (37552, 37577), False, 'import pytest\n'), ((37846, 37884), 'pytest.raises', 'pytest.raises', (['exceptions.LibraryError'], {}), '(exceptions.LibraryError)\n', (37859, 37884), False, 'import pytest\n'), ((37959, 37997), 'pytest.raises', 'pytest.raises', (['exceptions.LibraryError'], {}), '(exceptions.LibraryError)\n', (37972, 37997), False, 'import pytest\n'), ((39334, 39376), 'numpy.array_equal', 'np.array_equal', (['v1.genotypes', 'v2.genotypes'], {}), '(v1.genotypes, v2.genotypes)\n', (39348, 39376), True, 'import numpy as np\n'), ((40431, 40473), 'msprime.InfiniteSites', 'msprime.InfiniteSites', (['msprime.NUCLEOTIDES'], {}), '(msprime.NUCLEOTIDES)\n', (40452, 40473), False, 'import msprime\n'), ((55275, 55301), 'tskit.TableCollection', 'tskit.TableCollection', (['(1.1)'], {}), '(1.1)\n', (55296, 55301), False, 'import tskit\n'), ((55515, 55539), 'tskit.TableCollection', 'tskit.TableCollection', (['(1)'], {}), '(1)\n', (55536, 55539), False, 'import tskit\n'), ((57444, 57483), 'pytest.raises', 'pytest.raises', (['ValueError'], {'match': '"""1896"""'}), "(ValueError, match='1896')\n", (57457, 57483), False, 'import pytest\n'), ((9245, 9283), 'pytest.raises', 'pytest.raises', (['exceptions.LibraryError'], {}), '(exceptions.LibraryError)\n', (9258, 9283), False, 'import pytest\n'), ((10592, 10630), 'pytest.raises', 'pytest.raises', (['exceptions.LibraryError'], {}), '(exceptions.LibraryError)\n', (10605, 10630), False, 'import pytest\n'), ((13073, 13096), 'numpy.ones', 'np.ones', (['ts.sample_size'], {}), '(ts.sample_size)\n', (13080, 13096), True, 'import numpy as np\n'), ((14810, 14859), 'numpy.array_equal', 'np.array_equal', (['var1.genotypes[s]', 'var2.genotypes'], {}), '(var1.genotypes[s], var2.genotypes)\n', (14824, 14859), True, 'import numpy as np\n'), ((15852, 15901), 'numpy.array_equal', 'np.array_equal', (['var1.genotypes[s]', 'var2.genotypes'], {}), '(var1.genotypes[s], var2.genotypes)\n', (15866, 15901), True, 'import numpy as np\n'), ((16361, 16394), 'numpy.zeros_like', 'np.zeros_like', (['tables.nodes.flags'], {}), '(tables.nodes.flags)\n', (16374, 16394), True, 'import numpy as np\n'), ((26123, 26149), 'numpy.all', 'np.all', (['(var.genotypes == 0)'], {}), '(var.genotypes == 0)\n', (26129, 26149), True, 'import numpy as np\n'), ((26277, 26320), 'numpy.all', 'np.all', (['(var.genotypes != tskit.MISSING_DATA)'], {}), '(var.genotypes != tskit.MISSING_DATA)\n', (26283, 26320), True, 'import numpy as np\n'), ((29217, 29254), 'numpy.zeros', 'np.zeros', (['ts.num_sites'], {'dtype': 'np.int8'}), '(ts.num_sites, dtype=np.int8)\n', (29225, 29254), True, 'import numpy as np\n'), ((29481, 29518), 'numpy.zeros', 'np.zeros', (['ts.num_sites'], {'dtype': 'np.int8'}), '(ts.num_sites, dtype=np.int8)\n', (29489, 29518), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ MIT License Copyright (c) 2020 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ # @file wrapper.py # @Author <NAME> (adityavaishampayan) # @copyright MIT # @brief main file that calls all other sub functions import sys # noinspection PyBroadException try: sys.path.remove('/opt/ros/kinetic/lib/python2.7/dist-packages') except BaseException: pass import cv2 import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import axes3d, Axes3D import argparse from scripts.LoadData import * from scripts.bdl_adjst import * from scripts.visibikity_matrx import * from scripts.NonLinearPnP import * from scripts.DrawCameras import camera_draw from scripts.ExtractCameraPose import extract_cam_pose from scripts.EssentialMatrixFromFundamentalMatrix import e_from_fundamental from scripts.NonLinearTriangulation import * from scripts.EstimateFundamentalMatrix import est_from_funda from scripts.PnPRANSAC import * from scripts.disambguate_camera_pose import * from scripts.LinearTriangulation import * K = np.array([[568.996140852, 0, 643.21055941], [0, 568.988362396, 477.982801038], [0, 0, 1]]) W = np.array([[0, -1, 0], [1, 0, 0], [0, 0, 1]]) n_images = 6 img1 = 1 img2 = 4 Parser = argparse.ArgumentParser() Parser.add_argument( '--DataPath', default="./Data/", help='Folder of Images') Parser.add_argument( '--Visualize', default=False, help='Show correspondences') Args = Parser.parse_args() DataPath = Args.DataPath visualize = Args.Visualize x_coord_matrix, y_coord_matrix, M, Color = LoadData(DataPath) M, outlier_indices = inlier_filter(x_coord_matrix, y_coord_matrix, M, n_images) recon_bin = np.zeros((M.shape[0], 1)) X_3D = np.zeros((M.shape[0], 3)) opt = np.logical_and(M[:, img1 - 1], M[:, img2 - 1]) outlier_idx = np.where(np.logical_and(outlier_indices[:, img1 - 1], outlier_indices[:, img2 - 1]) == True) indices, = np.where(opt == True) rgb_list = Color[indices] best_F = est_from_funda(np.float32(np.hstack((x_coord_matrix[indices, img1 - 1].reshape((-1, 1)), y_coord_matrix[indices, img1 - 1].reshape((-1, 1))))), np.float32(np.hstack((x_coord_matrix[indices, img2 - 1].reshape((-1, 1)), y_coord_matrix[indices, img2 - 1].reshape((-1, 1)))))) E = e_from_fundamental(best_F, K) R_set, C_set = extract_cam_pose(E, K) X_set = [] for n in range(0, 4): X1 = LinearTriangulation(K, np.zeros((3, 1)), np.identity(3), C_set[n].T, R_set[n], np.float32(np.hstack((x_coord_matrix[indices, img1 - 1].reshape((-1, 1)), y_coord_matrix[indices, img1 - 1].reshape((-1, 1))))), np.float32(np.hstack((x_coord_matrix[indices, img2 - 1].reshape((-1, 1)), y_coord_matrix[indices, img2 - 1].reshape((-1, 1)))))) X_set.append(X1) X, R, C = disambguate_camera_pose(C_set, R_set, X_set) recon_bin = np.zeros((M.shape[0], 1)) X_3D = np.zeros((M.shape[0], 3)) Visibility = np.zeros((M.shape[0], n_images)) X = NonLinearTriangulation(K, np.float32(np.hstack((x_coord_matrix[indices, img1 - 1].reshape((-1, 1)), y_coord_matrix[indices, img1 - 1].reshape((-1, 1))))), np.float32(np.hstack((x_coord_matrix[indices, img2 - 1].reshape((-1, 1)), y_coord_matrix[indices, img2 - 1].reshape((-1, 1))))), X, np.eye(3), np.zeros((3, 1)), R, C) recon_bin[indices] = 1 X_3D[indices, :] = X Visibility[indices, img1 - 1] = 1 Visibility[indices, img2 - 1] = 1 Cset = [] Rset = [] Cset.append(C) Rset.append(R) r_indx = [img1, img2] for i in range(0, n_images): if (np.isin(r_indx, i)[0]): continue opt = np.logical_and(recon_bin, M[:, i].reshape((-1, 1))) indices, _ = np.where(opt == True) if (len(indices) < 8): continue x = np.transpose([x_coord_matrix[indices, i], y_coord_matrix[indices, i]]) X = X_3D[indices, :] C, R = PnPRANSAC(X, x, K) C, R = NonLinearPnP(X, x, K, C, R) Cset.append(C) Rset.append(R) r_indx.append(i) Visibility[indices, i] = 1 for j in range(0, len(r_indx) - 1): opt = np.logical_and( np.logical_and(1 - recon_bin, M[:, r_indx[j]].reshape( (-1, 1))), M[:, i].reshape((-1, 1))) indices, _ = np.where(opt == True) if (len(indices) < 8): continue x1 = np.hstack((x_coord_matrix[indices, r_indx[j]].reshape((-1, 1)), y_coord_matrix[indices, r_indx[j]].reshape((-1, 1)))) x2 = np.hstack((x_coord_matrix[indices, i].reshape((-1, 1)), y_coord_matrix[indices, i].reshape((-1, 1)))) X = LinearTriangulation(K, Cset[j], Rset[j], C, R, x1, x2) X_3D[indices, :] = X recon_bin[indices] = 1 Visibility[indices, r_indx[j]] = 1 Visibility[indices, j] = 1 for o in range(len(X_3D)): if (X_3D[o, 2] < 0): Visibility[o, :] = 0 recon_bin[o] = 0 V_bundle = visibikity_matrx(Visibility, r_indx) point_indices, _ = np.where(recon_bin == 1) camera_indices = i * np.ones((len(point_indices), 1)) points_2d = np.hstack((x_coord_matrix[point_indices, i].reshape((-1, 1)), x_coord_matrix[point_indices, i].reshape((-1, 1)))) Rset, Cset, X_3D = bdl_adjst(Cset, Rset, X_3D, K, points_2d, camera_indices, recon_bin, V_bundle) ind, _ = np.where(recon_bin == 1) X_3D = X_3D[ind, :] Color = Color[ind, :] ax = plt.axes(projection='3d') ax.scatter3D( X_3D[:, 0], X_3D[:, 1], X_3D[:, 2], c=Color / 255.0, s=1) ax.set_xlabel('x') ax.set_ylabel('y') ax.set_zlabel('z') ax.set_xlim([-0.5, 1]) ax.set_ylim([-0.5, 1]) ax.set_zlim([0, 1.5]) plt.show() plt.scatter(X_3D[:, 0], X_3D[:, 2], c=Color / 255.0, s=1) camera_draw(C_set, R_set) ax1 = plt.gca() ax1.set_xlabel('x') ax1.set_ylabel('z') plt.show()
[ "numpy.isin", "sys.path.remove", "matplotlib.pyplot.show", "argparse.ArgumentParser", "numpy.logical_and", "scripts.DrawCameras.camera_draw", "matplotlib.pyplot.axes", "matplotlib.pyplot.scatter", "numpy.eye", "numpy.zeros", "numpy.transpose", "numpy.identity", "numpy.where", "numpy.array", "matplotlib.pyplot.gca", "scripts.ExtractCameraPose.extract_cam_pose", "scripts.EssentialMatrixFromFundamentalMatrix.e_from_fundamental" ]
[((2049, 2144), 'numpy.array', 'np.array', (['[[568.996140852, 0, 643.21055941], [0, 568.988362396, 477.982801038], [0, 0, 1]\n ]'], {}), '([[568.996140852, 0, 643.21055941], [0, 568.988362396, \n 477.982801038], [0, 0, 1]])\n', (2057, 2144), True, 'import numpy as np\n'), ((2240, 2284), 'numpy.array', 'np.array', (['[[0, -1, 0], [1, 0, 0], [0, 0, 1]]'], {}), '([[0, -1, 0], [1, 0, 0], [0, 0, 1]])\n', (2248, 2284), True, 'import numpy as np\n'), ((2358, 2383), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (2381, 2383), False, 'import argparse\n'), ((2787, 2812), 'numpy.zeros', 'np.zeros', (['(M.shape[0], 1)'], {}), '((M.shape[0], 1))\n', (2795, 2812), True, 'import numpy as np\n'), ((2821, 2846), 'numpy.zeros', 'np.zeros', (['(M.shape[0], 3)'], {}), '((M.shape[0], 3))\n', (2829, 2846), True, 'import numpy as np\n'), ((2854, 2900), 'numpy.logical_and', 'np.logical_and', (['M[:, img1 - 1]', 'M[:, img2 - 1]'], {}), '(M[:, img1 - 1], M[:, img2 - 1])\n', (2868, 2900), True, 'import numpy as np\n'), ((3058, 3079), 'numpy.where', 'np.where', (['(opt == True)'], {}), '(opt == True)\n', (3066, 3079), True, 'import numpy as np\n'), ((3544, 3573), 'scripts.EssentialMatrixFromFundamentalMatrix.e_from_fundamental', 'e_from_fundamental', (['best_F', 'K'], {}), '(best_F, K)\n', (3562, 3573), False, 'from scripts.EssentialMatrixFromFundamentalMatrix import e_from_fundamental\n'), ((3589, 3611), 'scripts.ExtractCameraPose.extract_cam_pose', 'extract_cam_pose', (['E', 'K'], {}), '(E, K)\n', (3605, 3611), False, 'from scripts.ExtractCameraPose import extract_cam_pose\n'), ((4271, 4296), 'numpy.zeros', 'np.zeros', (['(M.shape[0], 1)'], {}), '((M.shape[0], 1))\n', (4279, 4296), True, 'import numpy as np\n'), ((4304, 4329), 'numpy.zeros', 'np.zeros', (['(M.shape[0], 3)'], {}), '((M.shape[0], 3))\n', (4312, 4329), True, 'import numpy as np\n'), ((4343, 4375), 'numpy.zeros', 'np.zeros', (['(M.shape[0], n_images)'], {}), '((M.shape[0], n_images))\n', (4351, 4375), True, 'import numpy as np\n'), ((6976, 7000), 'numpy.where', 'np.where', (['(recon_bin == 1)'], {}), '(recon_bin == 1)\n', (6984, 7000), True, 'import numpy as np\n'), ((7051, 7076), 'matplotlib.pyplot.axes', 'plt.axes', ([], {'projection': '"""3d"""'}), "(projection='3d')\n", (7059, 7076), True, 'import matplotlib.pyplot as plt\n'), ((7290, 7300), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (7298, 7300), True, 'import matplotlib.pyplot as plt\n'), ((7302, 7359), 'matplotlib.pyplot.scatter', 'plt.scatter', (['X_3D[:, 0]', 'X_3D[:, 2]'], {'c': '(Color / 255.0)', 's': '(1)'}), '(X_3D[:, 0], X_3D[:, 2], c=Color / 255.0, s=1)\n', (7313, 7359), True, 'import matplotlib.pyplot as plt\n'), ((7361, 7386), 'scripts.DrawCameras.camera_draw', 'camera_draw', (['C_set', 'R_set'], {}), '(C_set, R_set)\n', (7372, 7386), False, 'from scripts.DrawCameras import camera_draw\n'), ((7394, 7403), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (7401, 7403), True, 'import matplotlib.pyplot as plt\n'), ((7447, 7457), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (7455, 7457), True, 'import matplotlib.pyplot as plt\n'), ((1284, 1347), 'sys.path.remove', 'sys.path.remove', (['"""/opt/ros/kinetic/lib/python2.7/dist-packages"""'], {}), "('/opt/ros/kinetic/lib/python2.7/dist-packages')\n", (1299, 1347), False, 'import sys\n'), ((4796, 4805), 'numpy.eye', 'np.eye', (['(3)'], {}), '(3)\n', (4802, 4805), True, 'import numpy as np\n'), ((4834, 4850), 'numpy.zeros', 'np.zeros', (['(3, 1)'], {}), '((3, 1))\n', (4842, 4850), True, 'import numpy as np\n'), ((5210, 5231), 'numpy.where', 'np.where', (['(opt == True)'], {}), '(opt == True)\n', (5218, 5231), True, 'import numpy as np\n'), ((5286, 5356), 'numpy.transpose', 'np.transpose', (['[x_coord_matrix[indices, i], y_coord_matrix[indices, i]]'], {}), '([x_coord_matrix[indices, i], y_coord_matrix[indices, i]])\n', (5298, 5356), True, 'import numpy as np\n'), ((6542, 6566), 'numpy.where', 'np.where', (['(recon_bin == 1)'], {}), '(recon_bin == 1)\n', (6550, 6566), True, 'import numpy as np\n'), ((2925, 2999), 'numpy.logical_and', 'np.logical_and', (['outlier_indices[:, img1 - 1]', 'outlier_indices[:, img2 - 1]'], {}), '(outlier_indices[:, img1 - 1], outlier_indices[:, img2 - 1])\n', (2939, 2999), True, 'import numpy as np\n'), ((3678, 3694), 'numpy.zeros', 'np.zeros', (['(3, 1)'], {}), '((3, 1))\n', (3686, 3694), True, 'import numpy as np\n'), ((3696, 3710), 'numpy.identity', 'np.identity', (['(3)'], {}), '(3)\n', (3707, 3710), True, 'import numpy as np\n'), ((5088, 5106), 'numpy.isin', 'np.isin', (['r_indx', 'i'], {}), '(r_indx, i)\n', (5095, 5106), True, 'import numpy as np\n'), ((5762, 5783), 'numpy.where', 'np.where', (['(opt == True)'], {}), '(opt == True)\n', (5770, 5783), True, 'import numpy as np\n')]
import numpy as _np from openpnm.utils import Docorator __all__ = ["pore_coords"] docstr = Docorator() @docstr.dedent def pore_coords(target): r""" Calculate throat centroid values by averaging adjacent pore coordinates Parameters ---------- %(models.target.parameters)s Returns ------- values : ndarray A numpy ndarray containing throat centroid values """ network = target.project.network Ts = network.throats(target.name) conns = network['throat.conns'] coords = network['pore.coords'] return _np.mean(coords[conns], axis=1)[Ts]
[ "numpy.mean", "openpnm.utils.Docorator" ]
[((93, 104), 'openpnm.utils.Docorator', 'Docorator', ([], {}), '()\n', (102, 104), False, 'from openpnm.utils import Docorator\n'), ((567, 598), 'numpy.mean', '_np.mean', (['coords[conns]'], {'axis': '(1)'}), '(coords[conns], axis=1)\n', (575, 598), True, 'import numpy as _np\n')]
import numpy as np from ldpc import bposd_decoder from panqec.codes import StabilizerCode from panqec.error_models import BaseErrorModel from panqec.decoders import BaseDecoder class BeliefPropagationOSDDecoder(BaseDecoder): label = 'BP-OSD decoder' def __init__(self, code: StabilizerCode, error_model: BaseErrorModel, error_rate: float, max_bp_iter: int = 1000, channel_update: bool = False, osd_order: int = 10, bp_method: str = 'msl'): super().__init__(code, error_model, error_rate) self._max_bp_iter = max_bp_iter self._channel_update = channel_update self._osd_order = osd_order self._bp_method = bp_method # Do not initialize the decoder until we call the decode method. # This is required because during analysis, there is no need to # initialize the decoder every time. self._initialized = False def get_probabilities(self): pi, px, py, pz = self.error_model.probability_distribution( self.code, self.error_rate ) return pi, px, py, pz def update_probabilities(self, correction: np.ndarray, px: np.ndarray, py: np.ndarray, pz: np.ndarray, direction: str = "x->z") -> np.ndarray: """Update X probabilities once a Z correction has been applied""" n_qubits = correction.shape[0] new_probs = np.zeros(n_qubits) if direction == "z->x": for i in range(n_qubits): if correction[i] == 1: if pz[i] + py[i] != 0: new_probs[i] = py[i] / (pz[i] + py[i]) else: new_probs[i] = px[i] / (1 - pz[i] - py[i]) elif direction == "x->z": for i in range(n_qubits): if correction[i] == 1: if px[i] + py[i] != 0: new_probs[i] = py[i] / (px[i] + py[i]) else: new_probs[i] = pz[i] / (1 - px[i] - py[i]) else: raise ValueError( f"Unrecognized direction {direction} when " "updating probabilities" ) return new_probs def initialize_decoders(self): is_css = self.code.is_css if is_css: self.z_decoder = bposd_decoder( self.code.Hx, error_rate=self.error_rate, max_iter=self._max_bp_iter, bp_method=self._bp_method, ms_scaling_factor=0, osd_method="osd_cs", # Choose from: "osd_e", "osd_cs", "osd0" osd_order=self._osd_order ) self.x_decoder = bposd_decoder( self.code.Hz, error_rate=self.error_rate, max_iter=self._max_bp_iter, bp_method=self._bp_method, ms_scaling_factor=0, osd_method="osd_cs", # Choose from: "osd_e", "osd_cs", "osd0" osd_order=self._osd_order ) else: self.decoder = bposd_decoder( self.code.stabilizer_matrix, error_rate=self.error_rate, max_iter=self._max_bp_iter, bp_method=self._bp_method, ms_scaling_factor=0, osd_method="osd_cs", # Choose from: "osd_e", "osd_cs", "osd0" osd_order=self._osd_order ) def decode(self, syndrome: np.ndarray, **kwargs) -> np.ndarray: """Get X and Z corrections given code and measured syndrome.""" if not self._initialized: self.initialize_decoders() is_css = self.code.is_css n_qubits = self.code.n syndrome = np.array(syndrome, dtype=int) if is_css: syndrome_z = self.code.extract_z_syndrome(syndrome) syndrome_x = self.code.extract_x_syndrome(syndrome) pi, px, py, pz = self.get_probabilities() probabilities_x = px + py probabilities_z = pz + py probabilities = np.hstack([probabilities_z, probabilities_x]) if is_css: # Update probabilities (in case the distribution is new at each # iteration) self.x_decoder.update_channel_probs(probabilities_x) self.z_decoder.update_channel_probs(probabilities_z) # Decode Z errors self.z_decoder.decode(syndrome_x) z_correction = self.z_decoder.osdw_decoding # Bayes update of the probability if self._channel_update: new_x_probs = self.update_probabilities( z_correction, px, py, pz, direction="z->x" ) self.x_decoder.update_channel_probs(new_x_probs) # Decode X errors self.x_decoder.decode(syndrome_z) x_correction = self.x_decoder.osdw_decoding correction = np.concatenate([x_correction, z_correction]) else: # Update probabilities (in case the distribution is new at each # iteration) self.decoder.update_channel_probs(probabilities) # Decode all errors self.decoder.decode(syndrome) correction = self.decoder.osdw_decoding correction = np.concatenate( [correction[n_qubits:], correction[:n_qubits]] ) return correction def test_decoder(): from panqec.codes import XCubeCode from panqec.error_models import PauliErrorModel import time rng = np.random.default_rng() L = 20 code = XCubeCode(L, L, L) error_rate = 0.5 r_x, r_y, r_z = [0.15, 0.15, 0.7] error_model = PauliErrorModel(r_x, r_y, r_z) print("Create stabilizer matrix") code.stabilizer_matrix print("Create Hx and Hz") code.Hx code.Hz print("Create logicals") code.logicals_x code.logicals_z print("Instantiate BP-OSD") decoder = BeliefPropagationOSDDecoder( code, error_model, error_rate, osd_order=0, max_bp_iter=1000 ) # Start timer start = time.time() n_iter = 1 accuracy = 0 for i in range(n_iter): print(f"\nRun {code.label} {i}...") print("Generate errors") error = error_model.generate(code, error_rate, rng=rng) print("Calculate syndrome") syndrome = code.measure_syndrome(error) print("Decode") correction = decoder.decode(syndrome) print("Get total error") total_error = (correction + error) % 2 codespace = code.in_codespace(total_error) success = not code.is_logical_error(total_error) and codespace print(success) accuracy += success accuracy /= n_iter print("Average time per iteration", (time.time() - start) / n_iter) print("Logical error rate", 1 - accuracy) if __name__ == '__main__': test_decoder()
[ "numpy.zeros", "time.time", "numpy.random.default_rng", "numpy.hstack", "numpy.array", "panqec.error_models.PauliErrorModel", "panqec.codes.XCubeCode", "ldpc.bposd_decoder", "numpy.concatenate" ]
[((5722, 5745), 'numpy.random.default_rng', 'np.random.default_rng', ([], {}), '()\n', (5743, 5745), True, 'import numpy as np\n'), ((5769, 5787), 'panqec.codes.XCubeCode', 'XCubeCode', (['L', 'L', 'L'], {}), '(L, L, L)\n', (5778, 5787), False, 'from panqec.codes import XCubeCode\n'), ((5866, 5896), 'panqec.error_models.PauliErrorModel', 'PauliErrorModel', (['r_x', 'r_y', 'r_z'], {}), '(r_x, r_y, r_z)\n', (5881, 5896), False, 'from panqec.error_models import PauliErrorModel\n'), ((6270, 6281), 'time.time', 'time.time', ([], {}), '()\n', (6279, 6281), False, 'import time\n'), ((1532, 1550), 'numpy.zeros', 'np.zeros', (['n_qubits'], {}), '(n_qubits)\n', (1540, 1550), True, 'import numpy as np\n'), ((3891, 3920), 'numpy.array', 'np.array', (['syndrome'], {'dtype': 'int'}), '(syndrome, dtype=int)\n', (3899, 3920), True, 'import numpy as np\n'), ((4214, 4259), 'numpy.hstack', 'np.hstack', (['[probabilities_z, probabilities_x]'], {}), '([probabilities_z, probabilities_x])\n', (4223, 4259), True, 'import numpy as np\n'), ((2460, 2648), 'ldpc.bposd_decoder', 'bposd_decoder', (['self.code.Hx'], {'error_rate': 'self.error_rate', 'max_iter': 'self._max_bp_iter', 'bp_method': 'self._bp_method', 'ms_scaling_factor': '(0)', 'osd_method': '"""osd_cs"""', 'osd_order': 'self._osd_order'}), "(self.code.Hx, error_rate=self.error_rate, max_iter=self.\n _max_bp_iter, bp_method=self._bp_method, ms_scaling_factor=0,\n osd_method='osd_cs', osd_order=self._osd_order)\n", (2473, 2648), False, 'from ldpc import bposd_decoder\n'), ((2838, 3026), 'ldpc.bposd_decoder', 'bposd_decoder', (['self.code.Hz'], {'error_rate': 'self.error_rate', 'max_iter': 'self._max_bp_iter', 'bp_method': 'self._bp_method', 'ms_scaling_factor': '(0)', 'osd_method': '"""osd_cs"""', 'osd_order': 'self._osd_order'}), "(self.code.Hz, error_rate=self.error_rate, max_iter=self.\n _max_bp_iter, bp_method=self._bp_method, ms_scaling_factor=0,\n osd_method='osd_cs', osd_order=self._osd_order)\n", (2851, 3026), False, 'from ldpc import bposd_decoder\n'), ((3228, 3430), 'ldpc.bposd_decoder', 'bposd_decoder', (['self.code.stabilizer_matrix'], {'error_rate': 'self.error_rate', 'max_iter': 'self._max_bp_iter', 'bp_method': 'self._bp_method', 'ms_scaling_factor': '(0)', 'osd_method': '"""osd_cs"""', 'osd_order': 'self._osd_order'}), "(self.code.stabilizer_matrix, error_rate=self.error_rate,\n max_iter=self._max_bp_iter, bp_method=self._bp_method,\n ms_scaling_factor=0, osd_method='osd_cs', osd_order=self._osd_order)\n", (3241, 3430), False, 'from ldpc import bposd_decoder\n'), ((5090, 5134), 'numpy.concatenate', 'np.concatenate', (['[x_correction, z_correction]'], {}), '([x_correction, z_correction])\n', (5104, 5134), True, 'import numpy as np\n'), ((5463, 5525), 'numpy.concatenate', 'np.concatenate', (['[correction[n_qubits:], correction[:n_qubits]]'], {}), '([correction[n_qubits:], correction[:n_qubits]])\n', (5477, 5525), True, 'import numpy as np\n'), ((6957, 6968), 'time.time', 'time.time', ([], {}), '()\n', (6966, 6968), False, 'import time\n')]
import numpy as np import pandas as pd import random from sklearn.model_selection import train_test_split class SVM: def __init__(self, max_iterations=1000, C=1, epsilon=0.001): self.max_iterations = max_iterations self.C = C self.epsilon = epsilon def fit(self, X, y): # Ensure X and y are numpy arrays X = np.array(X).astype('float') y = np.array(y).astype('int') # Initialize variables n, d = X.shape alpha = np.zeros(n) iterations = 0 # Calculate starting w & b values self.compute_w_b(y, alpha, X) for iteration in range(1, self.max_iterations + 1): # print('Iteration ', iteration) alpha_prev = np.copy(alpha) for i in range(0, n): # Get random j so that i != j j = random.randint(0, n - 2) if j >= i: j += 1 # Prepare variables x_i, y_i = X[i,:], y[i] x_j, y_j = X[j,:], y[j] # Calculate nu nu = np.dot(x_i, x_i) + np.dot(x_j, x_j) - np.dot(x_i, x_j) # Calculate lower and upper bounds L, H = self.L_H(alpha[i], alpha[j], y_i*y_j, self.C) if L == H: continue # Compute E values E_i = self.E(x_i, y_i, self.w, self.b) E_j = self.E(x_j, y_j, self.w, self.b) if nu == 0: continue """ if self.obj_func(nu, alpha[j], L, y_i, E_i, E_j) > self.obj_func(nu, alpha[j], H, y_i, E_i, E_j): new_alpha_j = L else: new_alpha_j = H """ else: # Compute E values E_i = self.E(x_i, y_i, self.w, self.b) E_j = self.E(x_j, y_j, self.w, self.b) # Compute new alpha j new_alpha_j = alpha[j] + y_j*(E_i - E_j)/nu new_alpha_j = max(min(new_alpha_j, H), L) # Compute new alpha i & deltas new_alpha_i = alpha[i] + y_i*y_j*(alpha[j] - new_alpha_j) delta_i = (new_alpha_i - alpha[i]) delta_j = (new_alpha_j - alpha[j]) # Update w self.w += delta_i*y_i*x_i + delta_j*y_j*x_j # Update b b_i = self.b - E_i - y_i*delta_i*np.dot(x_i, x_i) - y_j*delta_j*np.dot(x_i, x_j) b_j = self.b - E_i - y_i*delta_i*np.dot(x_i, x_i) - y_j*delta_j*np.dot(x_i, x_j) if 0 < new_alpha_i < self.C: self.b = b_i elif 0 < new_alpha_j < self.C: self.b = b_j else: self.b = (b_i + b_j)/2 # Update alphas alpha[i] = new_alpha_i alpha[j] = new_alpha_j """ print('i: ', i, 'j: ', j) print('f_i: ', self.f(x_i, self.w, self.b), 'y_i: ', y_i, 'f_j: ', self.f(x_j, self.w, self.b), 'y_j: ', y_j) print('L: ', L, 'H: ', H, 'E_i: ', E_i, 'E_j: ', E_j) print('New unbounded alpha j: ', new_alpha_j) print('New alpha j: ', alpha[j]) """ # End loop if convergence param is attained if np.linalg.norm(alpha - alpha_prev) < self.epsilon: break # Save support vectors self.train_iterations = iterations self.support_vectors = X[np.where(alpha > 0)[0], :] def score(self, X, y): if not self.b: print('SVM has not been trained yet') else: predictions = self.predict(X) return np.sum(y == predictions)/y.shape[0] def compute_w_b(self, y, alpha, X): self.w = np.matmul(y*alpha, X).T self.b = np.mean(y - np.matmul(self.w.T, X.T)) def f(self, x, w, b): return np.sign(np.matmul(x.astype('float'), w) + b).astype(int) def E(self, x, y, w, b): return self.f(x, w, b) - y def obj_func(self, nu, alpha_j, new_alpha_j, y_j, E_i, E_j): return 0.5*nu*new_alpha_j**2 + (y_j*(E_i - E_j) - nu*alpha_j)*new_alpha_j def L_H(self, alpha_i, alpha_j, s, C): if s == -1: return max(0, alpha_j - alpha_i), min(C, C + alpha_j - alpha_i) else: return max(0, alpha_i + alpha_j - C), min(C, alpha_i + alpha_j) def predict(self, features): return self.f(features, self.w, self.b) def test_svm(): # Read data from text file df = pd.read_csv('data/breast-cancer-wisconsin.data') df = df.replace('?', -99999999).drop(['id'], axis=1) # Prepare X and y inputs X = df.drop(['class'], axis=1) y = df['class'].replace(2, -1).replace(4, 1) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) # Train SVM classifier = SVM() classifier.fit(X_train, y_train) # Print Model parameters print('SVM parameters') print('w: ', classifier.w, 'b: ', classifier.b) print('Support vector count: ', len(classifier.support_vectors)) # Test SVM accuracy accuracy = classifier.score(X_test, y_test) print('SVM Accuracy: ', accuracy) # Predict random examples example_measures = np.array([[8,10,10,8,7,10,9,7,1], [6,1,1,1,2,1,3,1,1], [3,1,1,1,2,1,2,1,1]]) predictions = classifier.predict(example_measures) print('SVM Predictions: ', predictions, '; Actual: ', [1, -1, -1]) test_svm()
[ "numpy.sum", "random.randint", "numpy.copy", "pandas.read_csv", "sklearn.model_selection.train_test_split", "numpy.zeros", "numpy.where", "numpy.array", "numpy.linalg.norm", "numpy.matmul", "numpy.dot" ]
[((4792, 4840), 'pandas.read_csv', 'pd.read_csv', (['"""data/breast-cancer-wisconsin.data"""'], {}), "('data/breast-cancer-wisconsin.data')\n", (4803, 4840), True, 'import pandas as pd\n'), ((5051, 5088), 'sklearn.model_selection.train_test_split', 'train_test_split', (['X', 'y'], {'test_size': '(0.2)'}), '(X, y, test_size=0.2)\n', (5067, 5088), False, 'from sklearn.model_selection import train_test_split\n'), ((5510, 5615), 'numpy.array', 'np.array', (['[[8, 10, 10, 8, 7, 10, 9, 7, 1], [6, 1, 1, 1, 2, 1, 3, 1, 1], [3, 1, 1, 1, \n 2, 1, 2, 1, 1]]'], {}), '([[8, 10, 10, 8, 7, 10, 9, 7, 1], [6, 1, 1, 1, 2, 1, 3, 1, 1], [3, \n 1, 1, 1, 2, 1, 2, 1, 1]])\n', (5518, 5615), True, 'import numpy as np\n'), ((498, 509), 'numpy.zeros', 'np.zeros', (['n'], {}), '(n)\n', (506, 509), True, 'import numpy as np\n'), ((745, 759), 'numpy.copy', 'np.copy', (['alpha'], {}), '(alpha)\n', (752, 759), True, 'import numpy as np\n'), ((4014, 4037), 'numpy.matmul', 'np.matmul', (['(y * alpha)', 'X'], {}), '(y * alpha, X)\n', (4023, 4037), True, 'import numpy as np\n'), ((361, 372), 'numpy.array', 'np.array', (['X'], {}), '(X)\n', (369, 372), True, 'import numpy as np\n'), ((401, 412), 'numpy.array', 'np.array', (['y'], {}), '(y)\n', (409, 412), True, 'import numpy as np\n'), ((877, 901), 'random.randint', 'random.randint', (['(0)', '(n - 2)'], {}), '(0, n - 2)\n', (891, 901), False, 'import random\n'), ((3536, 3570), 'numpy.linalg.norm', 'np.linalg.norm', (['(alpha - alpha_prev)'], {}), '(alpha - alpha_prev)\n', (3550, 3570), True, 'import numpy as np\n'), ((3920, 3944), 'numpy.sum', 'np.sum', (['(y == predictions)'], {}), '(y == predictions)\n', (3926, 3944), True, 'import numpy as np\n'), ((4067, 4091), 'numpy.matmul', 'np.matmul', (['self.w.T', 'X.T'], {}), '(self.w.T, X.T)\n', (4076, 4091), True, 'import numpy as np\n'), ((1164, 1180), 'numpy.dot', 'np.dot', (['x_i', 'x_j'], {}), '(x_i, x_j)\n', (1170, 1180), True, 'import numpy as np\n'), ((3717, 3736), 'numpy.where', 'np.where', (['(alpha > 0)'], {}), '(alpha > 0)\n', (3725, 3736), True, 'import numpy as np\n'), ((1126, 1142), 'numpy.dot', 'np.dot', (['x_i', 'x_i'], {}), '(x_i, x_i)\n', (1132, 1142), True, 'import numpy as np\n'), ((1145, 1161), 'numpy.dot', 'np.dot', (['x_j', 'x_j'], {}), '(x_j, x_j)\n', (1151, 1161), True, 'import numpy as np\n'), ((2603, 2619), 'numpy.dot', 'np.dot', (['x_i', 'x_j'], {}), '(x_i, x_j)\n', (2609, 2619), True, 'import numpy as np\n'), ((2700, 2716), 'numpy.dot', 'np.dot', (['x_i', 'x_j'], {}), '(x_i, x_j)\n', (2706, 2716), True, 'import numpy as np\n'), ((2572, 2588), 'numpy.dot', 'np.dot', (['x_i', 'x_i'], {}), '(x_i, x_i)\n', (2578, 2588), True, 'import numpy as np\n'), ((2669, 2685), 'numpy.dot', 'np.dot', (['x_i', 'x_i'], {}), '(x_i, x_i)\n', (2675, 2685), True, 'import numpy as np\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Apr 4 14:13:34 2020 Testing out the ADS1115 ADC with the raspberry pi @author: nlourie """ import board import busio import time import matplotlib.pyplot as plt import matplotlib.animation as animation from datetime import datetime import numpy as np i2c = busio.I2C(board.SCL,board.SDA) import adafruit_ads1x15.ads1115 as ADS from adafruit_ads1x15.analog_in import AnalogIn ads = ADS.ADS1115(i2c) chan = AnalogIn(ads,ADS.P3) xs = [] ys = [] fig = plt.figure() ax = fig.add_subplot(111) i = 0 dt = 10 # ms T = 10 # seconds Nmax = np.int(T*100/dt) def animate(i,xs,ys): v = chan.voltage t = datetime.utcnow() xs.append(t) ys.append(v) # limit the number of items in the vectors xs = xs[-Nmax:] ys = ys[-Nmax:] # draw x and y lists ax.clear() ax.plot(xs,ys) # set up plot to call animate() function periodically ani = animation.FuncAnimation(fig,animate,fargs = (xs,ys),interval = dt) plt.show() """ while True: print('loop = ',i, chan.voltage) index.append(i) v.append(chan.voltage) ax.plot(index,v) fig.canvas.draw() #ax.set_xlim(left = max(0,i-50),right = i+50) time.sleep(0.1) i+=1 """
[ "adafruit_ads1x15.ads1115.ADS1115", "matplotlib.pyplot.show", "busio.I2C", "matplotlib.animation.FuncAnimation", "datetime.datetime.utcnow", "matplotlib.pyplot.figure", "numpy.int", "adafruit_ads1x15.analog_in.AnalogIn" ]
[((333, 364), 'busio.I2C', 'busio.I2C', (['board.SCL', 'board.SDA'], {}), '(board.SCL, board.SDA)\n', (342, 364), False, 'import busio\n'), ((460, 476), 'adafruit_ads1x15.ads1115.ADS1115', 'ADS.ADS1115', (['i2c'], {}), '(i2c)\n', (471, 476), True, 'import adafruit_ads1x15.ads1115 as ADS\n'), ((485, 506), 'adafruit_ads1x15.analog_in.AnalogIn', 'AnalogIn', (['ads', 'ADS.P3'], {}), '(ads, ADS.P3)\n', (493, 506), False, 'from adafruit_ads1x15.analog_in import AnalogIn\n'), ((530, 542), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (540, 542), True, 'import matplotlib.pyplot as plt\n'), ((614, 634), 'numpy.int', 'np.int', (['(T * 100 / dt)'], {}), '(T * 100 / dt)\n', (620, 634), True, 'import numpy as np\n'), ((950, 1016), 'matplotlib.animation.FuncAnimation', 'animation.FuncAnimation', (['fig', 'animate'], {'fargs': '(xs, ys)', 'interval': 'dt'}), '(fig, animate, fargs=(xs, ys), interval=dt)\n', (973, 1016), True, 'import matplotlib.animation as animation\n'), ((1017, 1027), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1025, 1027), True, 'import matplotlib.pyplot as plt\n'), ((683, 700), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (698, 700), False, 'from datetime import datetime\n')]
import sys import string from itertools import product import scipy.constants as co import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import LogNorm from scipy import stats import h5py plt.rc('text', usetex=True) plt.rc('text.latex', preamble=r'\usepackage[varg]{txfonts}') plt.rc('axes', titlesize=54) plt.rc('font', family='serif', size=12) FOUT = "wavelength.pdf" def main(): obs = 1 plt.figure(figsize=(8, 10)) plt.subplots_adjust(top=0.95, bottom=0.1) lst = list(product([10, 12], [10, 20])) + [[0, 20]] for i, (h, R) in enumerate(lst): ax = plt.subplot(5, 1, i + 1) if i == 4: move_down(ax) plot_panel(ax, h, R, letter=string.ascii_lowercase[i]) if i != 4: noxticks(ax) else: ax.set_xlabel("pixel") if i == 0: ax.legend(["777 nm", "337 nm"]) ax.set_ylabel("brightness (a.u.)") ax.set_xlim([472, 537]) ax.axvline(512, color='k', lw=0.75) ax.grid() plt.savefig(FOUT) #plt.show() def plot_panel(ax, h, R, letter): plot_line(ax, h, R, 777, color='#ff7777') plot_line(ax, h, R, 337, color='#7799bb') if h > 0: title = f"\\Large{{{{\\bf {letter}.}} {h} km, {R} µm}}" else: title = f"\\Large{{{{\\bf {letter}.}} 10-12 km, {R} µm}}" ax.text(0.02, 0.85, title, transform=plt.gca().transAxes) axins1 = ax.inset_axes([0.025, 0.1, 0.15, 0.6]) plot_map(axins1, h, R, 777) axins2 = ax.inset_axes([0.18, 0.1, 0.15, 0.6]) plot_map(axins2, h, R, 337) def plot_line(ax, h, R, lmbd, **kwargs): if h != 0: fname = f"wavelength_{lmbd}nm_{h}km_{R}um.h5" else: fname = f"wavelength_extended_{lmbd}nm_{R}um.h5" fp = h5py.File(fname, "r") obs = 1 # Note that the image is transposed wrt the julia array. img = np.array(fp[f"obs{obs:05d}/image"]) width, height = img.shape x, y = np.arange(width), np.arange(height) v = img[:, height // 2] ax.plot(x, v / np.amax(v), **kwargs) def plot_map(ax, h, R, lmbd): if h != 0: fname = f"wavelength_{lmbd}nm_{h}km_{R}um.h5" else: fname = f"wavelength_extended_{lmbd}nm_{R}um.h5" fp = h5py.File(fname, "r") obs = 1 # Note that the image is transposed wrt the julia array. img = np.array(fp[f"obs{obs:05d}/image"]) width, height = img.shape ax.pcolormesh(img[492:532, 492:532], cmap="gnuplot2", rasterized=True) noxticks(ax) noyticks(ax) ax.tick_params('both', length=2, width=0.5, which='major') ax.axhline(512 - 492, lw=0.75, c="#777777") ax.text(0.03, 0.05, f"\small{{{lmbd} nm}}", color="w", transform=ax.transAxes) def move_down(ax): [left, bottom, width, height] = ax.get_position().bounds ax.set_position([left, bottom - 0.05, width, height]) def noxticks(ax): """ Remove xticks from the plot. """ loc = ax.get_xticks() ax.set_xticklabels(['' for l in loc]) def noyticks(ax): """ Remove xticks from the plot. """ loc = ax.get_yticks() ax.set_yticklabels(['' for l in loc]) if __name__ == '__main__': main()
[ "matplotlib.pyplot.subplot", "h5py.File", "matplotlib.pyplot.gca", "numpy.amax", "matplotlib.pyplot.figure", "numpy.array", "matplotlib.pyplot.rc", "numpy.arange", "itertools.product", "matplotlib.pyplot.subplots_adjust", "matplotlib.pyplot.savefig" ]
[((218, 245), 'matplotlib.pyplot.rc', 'plt.rc', (['"""text"""'], {'usetex': '(True)'}), "('text', usetex=True)\n", (224, 245), True, 'from matplotlib import pyplot as plt\n'), ((246, 306), 'matplotlib.pyplot.rc', 'plt.rc', (['"""text.latex"""'], {'preamble': '"""\\\\usepackage[varg]{txfonts}"""'}), "('text.latex', preamble='\\\\usepackage[varg]{txfonts}')\n", (252, 306), True, 'from matplotlib import pyplot as plt\n'), ((307, 335), 'matplotlib.pyplot.rc', 'plt.rc', (['"""axes"""'], {'titlesize': '(54)'}), "('axes', titlesize=54)\n", (313, 335), True, 'from matplotlib import pyplot as plt\n'), ((336, 375), 'matplotlib.pyplot.rc', 'plt.rc', (['"""font"""'], {'family': '"""serif"""', 'size': '(12)'}), "('font', family='serif', size=12)\n", (342, 375), True, 'from matplotlib import pyplot as plt\n'), ((430, 457), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(8, 10)'}), '(figsize=(8, 10))\n', (440, 457), True, 'from matplotlib import pyplot as plt\n'), ((462, 503), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'top': '(0.95)', 'bottom': '(0.1)'}), '(top=0.95, bottom=0.1)\n', (481, 503), True, 'from matplotlib import pyplot as plt\n'), ((1091, 1108), 'matplotlib.pyplot.savefig', 'plt.savefig', (['FOUT'], {}), '(FOUT)\n', (1102, 1108), True, 'from matplotlib import pyplot as plt\n'), ((1846, 1867), 'h5py.File', 'h5py.File', (['fname', '"""r"""'], {}), "(fname, 'r')\n", (1855, 1867), False, 'import h5py\n'), ((1956, 1991), 'numpy.array', 'np.array', (["fp[f'obs{obs:05d}/image']"], {}), "(fp[f'obs{obs:05d}/image'])\n", (1964, 1991), True, 'import numpy as np\n'), ((2326, 2347), 'h5py.File', 'h5py.File', (['fname', '"""r"""'], {}), "(fname, 'r')\n", (2335, 2347), False, 'import h5py\n'), ((2436, 2471), 'numpy.array', 'np.array', (["fp[f'obs{obs:05d}/image']"], {}), "(fp[f'obs{obs:05d}/image'])\n", (2444, 2471), True, 'import numpy as np\n'), ((615, 639), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(5)', '(1)', '(i + 1)'], {}), '(5, 1, i + 1)\n', (626, 639), True, 'from matplotlib import pyplot as plt\n'), ((2034, 2050), 'numpy.arange', 'np.arange', (['width'], {}), '(width)\n', (2043, 2050), True, 'import numpy as np\n'), ((2052, 2069), 'numpy.arange', 'np.arange', (['height'], {}), '(height)\n', (2061, 2069), True, 'import numpy as np\n'), ((519, 546), 'itertools.product', 'product', (['[10, 12]', '[10, 20]'], {}), '([10, 12], [10, 20])\n', (526, 546), False, 'from itertools import product\n'), ((2122, 2132), 'numpy.amax', 'np.amax', (['v'], {}), '(v)\n', (2129, 2132), True, 'import numpy as np\n'), ((1460, 1469), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (1467, 1469), True, 'from matplotlib import pyplot as plt\n')]
# Copyright 2021 Sony Group Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import click import nnabla as nn import nnabla.functions as F from layers import * class ResidualBlock(object): def __init__(self, out_channels=None, scale_shift_norm=False, dropout=0, conv_shortcut=False): self.out_channels = out_channels self.scale_shift_norm = scale_shift_norm self.dropout = dropout self.conv_shortcut = conv_shortcut def in_layers(self, x): h = normalize(x, name='norm_in') h = nonlinearity(h) h = conv(h, self.out_channels, name='conv_in') return h def emb_layers(self, emb): out_channels = self.out_channels if self.scale_shift_norm: out_channels *= 2 return nin(emb, out_channels, name="emb_proj") def out_layers(self, h, emb): if self.scale_shift_norm: scale, shift = chunk(emb, num_chunk=2, axis=1) h = normalize(h, name="norm_out") * (scale + 1) + shift else: h += emb h = normalize(h, name="norm_out") h = nonlinearity(h) if self.dropout > 0: h = F.dropout(h, p=self.dropout) h = conv(h, self.out_channels, name="conv_out", zeroing_w=True) return h def shortcut(self, x): if self.out_channels == x.shape[1]: return x elif self.conv_shortcut: return conv(x, self.out_channels, name="conv_shortcut") else: return nin(x, self.out_channels, name="conv_shortcut") def __call__(self, x, temb, name): C = x.shape[1] if self.out_channels is None: self.out_channels = C with nn.parameter_scope(name): # first block h = self.in_layers(x) # embed emb = self.emb_layers(temb) # second block h = self.out_layers(h, emb) # add residual out = F.add2(h, self.shortcut(x), inplace=True) return out def attn_block(x, name, num_heads=4, fix_parameters=False): """Multihead attention block""" B, C, H, W = x.shape with nn.parameter_scope(name): # Get query, key, value h = normalize(x, name="norm") # nin(3 * C) -> split is faster? q = nin(h, C, name="q") k = nin(h, C, name="k") v = nin(h, C, name="v") # Attention w = F.batch_matmul(F.reshape(q, (B * num_heads, -1, H * W)), F.reshape(k, (B * num_heads, -1, H * W)), transpose_a=True) w = F.mul_scalar(w, int(C) ** (-0.5), inplace=True) assert w.shape == (B * num_heads, H * W, H * W) w = F.softmax(w, axis=-1) h = F.reshape(v, (B * num_heads, -1, H * W)) h = F.batch_matmul(h, w) h = F.reshape(h, (B, C, H, W)) # output projection h = nin(h, C, name='proj_out', zeroing_w=True) assert h.shape == x.shape return F.add2(h, x, inplace=True) class UNet(object): def __init__(self, num_classes, model_channels, output_channels, num_res_blocks, attention_resolutions, attention_num_heads, channel_mult=(1, 2, 4, 8), dropout=0., scale_shift_norm=False, conv_resample=True): self.num_classes = num_classes self.model_channels = model_channels self.output_channels = output_channels self.num_res_blocks = num_res_blocks self.attention_resolutions = attention_resolutions self.attention_num_heads = attention_num_heads self.channel_mult = channel_mult self.dropout = dropout self.scale_shift_norm = scale_shift_norm self.conv_resample = conv_resample def timestep_embedding(self, t): with nn.parameter_scope('timestep_embedding'): # sinusoidal embedding emb = sinusoidal_embedding(t, self.model_channels) # reshape to use conv rather than affine emb = F.reshape(emb, emb.shape + (1, 1)) # linear transforms emb = nin(emb, self.model_channels * 4, name='dense0') emb = nonlinearity(emb) emb = nin(emb, self.model_channels * 4, name='dense1') return emb def resblock_with_attention(self, h, emb, out_channels, name): with nn.parameter_scope(name): block = ResidualBlock(out_channels, scale_shift_norm=self.scale_shift_norm, dropout=self.dropout) h = block(h, emb, f"res_block") res = h.shape[-1] if self.attention_resolutions is not None and res in self.attention_resolutions: h = attn_block(h, f"attention", num_heads=self.attention_num_heads) return h def downsample_blocks(self, h, emb, out_channels, name): hs = [] with nn.parameter_scope(name): for i in range(self.num_res_blocks): h = self.resblock_with_attention( h, emb, out_channels, name=f"resblock_{i}") hs.append(h) return hs def upsample_blocks(self, h, emb, hs_down, out_channels, name): hs_up = [] with nn.parameter_scope(name): for i in range(self.num_res_blocks + 1): # concat skip h = F.concatenate(h, hs_down.pop(), axis=1) h = self.resblock_with_attention( h, emb, out_channels, name=f"resblock_{i}") hs_up.append(h) return hs_up def middle_block(self, h, emb): ch = h.shape[1] block = ResidualBlock( ch, scale_shift_norm=self.scale_shift_norm, dropout=self.dropout) h = block(h, emb, name="resblock_0") res = h.shape[-1] if self.attention_resolutions is not None and res in self.attention_resolutions: h = attn_block(h, f"attention", num_heads=self.attention_num_heads) h = block(h, emb, name="resblock_1") return h def output_block(self, h): h = normalize(h, "last_norm") h = nonlinearity(h) h = conv(h, self.output_channels, name="last_conv", zeroing_w=True) return h def get_intermediates(self, x, t, name=None): ret = dict() with nn.auto_forward(True): ch = self.model_channels with nn.parameter_scope('UNet' if name is None else name): h = conv(x, ch, name="first_conv") emb = self.timestep_embedding(t) ret["emb"] = emb emb = nonlinearity(emb) hs = [h] # downsample block with nn.parameter_scope("downsample_block"): for level, mult in enumerate(self.channel_mult): # apply resblock and attention for this resolution outs = self.downsample_blocks(h, emb, ch * mult, name=f"block_{level}") hs += outs h = outs[-1] # downsample to lower resolution except last if level < len(self.channel_mult) - 1: h = downsample(h, name=f"downsample_{level}", with_conv=self.conv_resample) hs.append(h) ret["down"] = hs.copy() # middle block with nn.parameter_scope("middle_block"): h = self.middle_block(h, emb) ret["middle"] = h # upsample block hs_up = [] with nn.parameter_scope("upsample_block"): for level, mult in enumerate(reversed(self.channel_mult)): # apply resblock and attention for this resolution outs = self.upsample_blocks(h, emb, hs, ch * mult, name=f"output_{level}") h = outs[-1] # downsample to lower resolution except last if level < len(self.channel_mult) - 1: h = upsample(h, name=f"upsample_{level}", with_conv=self.conv_resample) outs.pop() outs.append(h) hs_up += outs assert len(hs) == 0 ret["up"] = hs_up.copy() # output block with nn.parameter_scope("output_block"): out = self.output_block(h) ret["out"] = out assert out.shape == x.shape[:1] + \ (self.output_channels, ) + x.shape[2:] return ret def __call__(self, x, t, name=None): ch = self.model_channels with nn.parameter_scope('UNet' if name is None else name): h = conv(x, ch, name="first_conv") emb = self.timestep_embedding(t) emb = nonlinearity(emb) hs = [h] # downsample block with nn.parameter_scope("downsample_block"): for level, mult in enumerate(self.channel_mult): # apply resblock and attention for this resolution outs = self.downsample_blocks(h, emb, ch * mult, name=f"block_{level}") hs += outs h = outs[-1] # downsample to lower resolution except last if level < len(self.channel_mult) - 1: h = downsample(h, name=f"downsample_{level}", with_conv=self.conv_resample) hs.append(h) # middle block with nn.parameter_scope("middle_block"): h = self.middle_block(h, emb) # upsample block with nn.parameter_scope("upsample_block"): for level, mult in enumerate(reversed(self.channel_mult)): # apply resblock and attention for this resolution outs = self.upsample_blocks(h, emb, hs, ch * mult, name=f"output_{level}") h = outs[-1] # downsample to lower resolution except last if level < len(self.channel_mult) - 1: h = upsample(h, name=f"upsample_{level}", with_conv=self.conv_resample) assert len(hs) == 0 # output block with nn.parameter_scope("output_block"): out = self.output_block(h) assert out.shape == x.shape[:1] + \ (self.output_channels, ) + x.shape[2:] return out # Functions below are for dubugging UNet class. def test_simple_loop(): nn.clear_parameters() x = nn.Variable.from_numpy_array(np.random.randn(10, 3, 128, 128)) t = nn.Variable.from_numpy_array(np.random.randint(0, 100, (10, ))) unet = UNet(num_classes=1, model_channels=128, output_channels=3, num_res_blocks=2, attention_resolutions=(16, 8), attention_num_heads=4, channel_mult=(1, 1, 2, 2, 4, 4)) y = unet(x, t) loss = F.mean(F.squared_error(y, x)) import nnabla.solvers as S solver = S.Sgd() solver.set_parameters(nn.get_parameters()) from tqdm import trange tr = trange(100) for i in tr: loss.forward(clear_no_need_grad=True) solver.zero_grad() loss.backward(clear_buffer=True) solver.update() tr.set_description(f"diff: {loss.d.copy():.5f}") def test_intermediate(): import os os.environ["NNABLA_CUDNN_DETERMINISTIC"] = '1' nn.clear_parameters() x = nn.Variable.from_numpy_array(np.full((1, 3, 256, 256), 0.1)) t = nn.Variable.from_numpy_array([803]) unet = UNet(num_classes=1, model_channels=128, output_channels=3, num_res_blocks=3, attention_resolutions=(16, 8), attention_num_heads=4, channel_mult=(1, 1, 2, 2, 4, 4)) res = unet.get_intermediates(x, t) print("[emb]") dump(res["emb"]) print("") print("[down]") dump(res["down"]) print("") print("[middle]") dump(res["middle"]) print("") print("[up]") dump(res["up"]) print("") print("[out]") dump(res["out"]) print("") def dump(var): if isinstance(var, list): for x in var: dump(x) return arr = var.d mean = arr.mean() std = arr.std() abs_sum = np.abs(arr).sum() print("mean: {:-6.1g} std: {:-6.1g} abs_sum: {:-6.1g} size: {}".format(mean, std, abs_sum, arr.size)) @click.command() @click.option("--loop/--no-loop", default=True) @click.option("--intermediate/--no-intermediate", default=False) def test(loop, intermediate): # This function is for a unit test of UNet. from nnabla.ext_utils import get_extension_context ctx = get_extension_context("cudnn") nn.set_default_context(ctx) from nnabla.logger import logger if loop: logger.info("Test Unet by simple training loop.") test_simple_loop() if intermediate: logger.info("Test intermediate values of Unet.") test_intermediate() if __name__ == "__main__": test()
[ "numpy.abs", "nnabla.ext_utils.get_extension_context", "nnabla.Variable.from_numpy_array", "click.option", "nnabla.get_parameters", "numpy.random.randint", "nnabla.functions.add2", "nnabla.functions.dropout", "numpy.full", "nnabla.logger.logger.info", "numpy.random.randn", "nnabla.solvers.Sgd", "click.command", "nnabla.functions.reshape", "nnabla.functions.squared_error", "nnabla.functions.batch_matmul", "tqdm.trange", "nnabla.auto_forward", "nnabla.set_default_context", "nnabla.functions.softmax", "nnabla.parameter_scope", "nnabla.clear_parameters" ]
[((13790, 13805), 'click.command', 'click.command', ([], {}), '()\n', (13803, 13805), False, 'import click\n'), ((13807, 13853), 'click.option', 'click.option', (['"""--loop/--no-loop"""'], {'default': '(True)'}), "('--loop/--no-loop', default=True)\n", (13819, 13853), False, 'import click\n'), ((13855, 13918), 'click.option', 'click.option', (['"""--intermediate/--no-intermediate"""'], {'default': '(False)'}), "('--intermediate/--no-intermediate', default=False)\n", (13867, 13918), False, 'import click\n'), ((3583, 3609), 'nnabla.functions.add2', 'F.add2', (['h', 'x'], {'inplace': '(True)'}), '(h, x, inplace=True)\n', (3589, 3609), True, 'import nnabla.functions as F\n'), ((11851, 11872), 'nnabla.clear_parameters', 'nn.clear_parameters', ([], {}), '()\n', (11870, 11872), True, 'import nnabla as nn\n'), ((12363, 12370), 'nnabla.solvers.Sgd', 'S.Sgd', ([], {}), '()\n', (12368, 12370), True, 'import nnabla.solvers as S\n'), ((12456, 12467), 'tqdm.trange', 'trange', (['(100)'], {}), '(100)\n', (12462, 12467), False, 'from tqdm import trange\n'), ((12779, 12800), 'nnabla.clear_parameters', 'nn.clear_parameters', ([], {}), '()\n', (12798, 12800), True, 'import nnabla as nn\n'), ((12879, 12914), 'nnabla.Variable.from_numpy_array', 'nn.Variable.from_numpy_array', (['[803]'], {}), '([803])\n', (12907, 12914), True, 'import nnabla as nn\n'), ((14062, 14092), 'nnabla.ext_utils.get_extension_context', 'get_extension_context', (['"""cudnn"""'], {}), "('cudnn')\n", (14083, 14092), False, 'from nnabla.ext_utils import get_extension_context\n'), ((14097, 14124), 'nnabla.set_default_context', 'nn.set_default_context', (['ctx'], {}), '(ctx)\n', (14119, 14124), True, 'import nnabla as nn\n'), ((2770, 2794), 'nnabla.parameter_scope', 'nn.parameter_scope', (['name'], {}), '(name)\n', (2788, 2794), True, 'import nnabla as nn\n'), ((3309, 3330), 'nnabla.functions.softmax', 'F.softmax', (['w'], {'axis': '(-1)'}), '(w, axis=-1)\n', (3318, 3330), True, 'import nnabla.functions as F\n'), ((3344, 3384), 'nnabla.functions.reshape', 'F.reshape', (['v', '(B * num_heads, -1, H * W)'], {}), '(v, (B * num_heads, -1, H * W))\n', (3353, 3384), True, 'import nnabla.functions as F\n'), ((3397, 3417), 'nnabla.functions.batch_matmul', 'F.batch_matmul', (['h', 'w'], {}), '(h, w)\n', (3411, 3417), True, 'import nnabla.functions as F\n'), ((3430, 3456), 'nnabla.functions.reshape', 'F.reshape', (['h', '(B, C, H, W)'], {}), '(h, (B, C, H, W))\n', (3439, 3456), True, 'import nnabla.functions as F\n'), ((11911, 11943), 'numpy.random.randn', 'np.random.randn', (['(10)', '(3)', '(128)', '(128)'], {}), '(10, 3, 128, 128)\n', (11926, 11943), True, 'import numpy as np\n'), ((11982, 12014), 'numpy.random.randint', 'np.random.randint', (['(0)', '(100)', '(10,)'], {}), '(0, 100, (10,))\n', (11999, 12014), True, 'import numpy as np\n'), ((12295, 12316), 'nnabla.functions.squared_error', 'F.squared_error', (['y', 'x'], {}), '(y, x)\n', (12310, 12316), True, 'import nnabla.functions as F\n'), ((12397, 12416), 'nnabla.get_parameters', 'nn.get_parameters', ([], {}), '()\n', (12414, 12416), True, 'import nnabla as nn\n'), ((12839, 12869), 'numpy.full', 'np.full', (['(1, 3, 256, 256)', '(0.1)'], {}), '((1, 3, 256, 256), 0.1)\n', (12846, 12869), True, 'import numpy as np\n'), ((14185, 14234), 'nnabla.logger.logger.info', 'logger.info', (['"""Test Unet by simple training loop."""'], {}), "('Test Unet by simple training loop.')\n", (14196, 14234), False, 'from nnabla.logger import logger\n'), ((14292, 14340), 'nnabla.logger.logger.info', 'logger.info', (['"""Test intermediate values of Unet."""'], {}), "('Test intermediate values of Unet.')\n", (14303, 14340), False, 'from nnabla.logger import logger\n'), ((1770, 1798), 'nnabla.functions.dropout', 'F.dropout', (['h'], {'p': 'self.dropout'}), '(h, p=self.dropout)\n', (1779, 1798), True, 'import nnabla.functions as F\n'), ((2314, 2338), 'nnabla.parameter_scope', 'nn.parameter_scope', (['name'], {}), '(name)\n', (2332, 2338), True, 'import nnabla as nn\n'), ((3051, 3091), 'nnabla.functions.reshape', 'F.reshape', (['q', '(B * num_heads, -1, H * W)'], {}), '(q, (B * num_heads, -1, H * W))\n', (3060, 3091), True, 'import nnabla.functions as F\n'), ((3120, 3160), 'nnabla.functions.reshape', 'F.reshape', (['k', '(B * num_heads, -1, H * W)'], {}), '(k, (B * num_heads, -1, H * W))\n', (3129, 3160), True, 'import nnabla.functions as F\n'), ((4520, 4560), 'nnabla.parameter_scope', 'nn.parameter_scope', (['"""timestep_embedding"""'], {}), "('timestep_embedding')\n", (4538, 4560), True, 'import nnabla as nn\n'), ((4732, 4766), 'nnabla.functions.reshape', 'F.reshape', (['emb', '(emb.shape + (1, 1))'], {}), '(emb, emb.shape + (1, 1))\n', (4741, 4766), True, 'import nnabla.functions as F\n'), ((5072, 5096), 'nnabla.parameter_scope', 'nn.parameter_scope', (['name'], {}), '(name)\n', (5090, 5096), True, 'import nnabla as nn\n'), ((5669, 5693), 'nnabla.parameter_scope', 'nn.parameter_scope', (['name'], {}), '(name)\n', (5687, 5693), True, 'import nnabla as nn\n'), ((6007, 6031), 'nnabla.parameter_scope', 'nn.parameter_scope', (['name'], {}), '(name)\n', (6025, 6031), True, 'import nnabla as nn\n'), ((7098, 7119), 'nnabla.auto_forward', 'nn.auto_forward', (['(True)'], {}), '(True)\n', (7113, 7119), True, 'import nnabla as nn\n'), ((9760, 9812), 'nnabla.parameter_scope', 'nn.parameter_scope', (["('UNet' if name is None else name)"], {}), "('UNet' if name is None else name)\n", (9778, 9812), True, 'import nnabla as nn\n'), ((13653, 13664), 'numpy.abs', 'np.abs', (['arr'], {}), '(arr)\n', (13659, 13664), True, 'import numpy as np\n'), ((7175, 7227), 'nnabla.parameter_scope', 'nn.parameter_scope', (["('UNet' if name is None else name)"], {}), "('UNet' if name is None else name)\n", (7193, 7227), True, 'import nnabla as nn\n'), ((10012, 10050), 'nnabla.parameter_scope', 'nn.parameter_scope', (['"""downsample_block"""'], {}), "('downsample_block')\n", (10030, 10050), True, 'import nnabla as nn\n'), ((10740, 10774), 'nnabla.parameter_scope', 'nn.parameter_scope', (['"""middle_block"""'], {}), "('middle_block')\n", (10758, 10774), True, 'import nnabla as nn\n'), ((10869, 10905), 'nnabla.parameter_scope', 'nn.parameter_scope', (['"""upsample_block"""'], {}), "('upsample_block')\n", (10887, 10905), True, 'import nnabla as nn\n'), ((11565, 11599), 'nnabla.parameter_scope', 'nn.parameter_scope', (['"""output_block"""'], {}), "('output_block')\n", (11583, 11599), True, 'import nnabla as nn\n'), ((7485, 7523), 'nnabla.parameter_scope', 'nn.parameter_scope', (['"""downsample_block"""'], {}), "('downsample_block')\n", (7503, 7523), True, 'import nnabla as nn\n'), ((8306, 8340), 'nnabla.parameter_scope', 'nn.parameter_scope', (['"""middle_block"""'], {}), "('middle_block')\n", (8324, 8340), True, 'import nnabla as nn\n'), ((8509, 8545), 'nnabla.parameter_scope', 'nn.parameter_scope', (['"""upsample_block"""'], {}), "('upsample_block')\n", (8527, 8545), True, 'import nnabla as nn\n'), ((9415, 9449), 'nnabla.parameter_scope', 'nn.parameter_scope', (['"""output_block"""'], {}), "('output_block')\n", (9433, 9449), True, 'import nnabla as nn\n')]
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # Modified 2017 Microsoft Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Generic training script that trains a model using a given dataset.""" import tensorflow as tf import pandas as pd import numpy as np import os import functools from tensorflow.python.ops import control_flow_ops from deployment import model_deploy from nets import resnet_v1 # Needed to be modified, see https://github.com/tensorflow/models/issues/533 from tensorflow.contrib.training.python.training import evaluation slim = tf.contrib.slim ''' Enumerate the flags ''' tf.app.flags.DEFINE_string('train_dir', 'D:\\tf\\models', 'Directory where checkpoints and event logs are written to.') tf.app.flags.DEFINE_string('dataset_name', 'aerial', 'The name of the dataset to load.') tf.app.flags.DEFINE_string('dataset_dir', 'D:\\combined\\train_subsample', 'The directory where the dataset files are stored.') tf.app.flags.DEFINE_string('checkpoint_path', 'D:\\tf\\resnet_v1_50.ckpt', 'The path to a checkpoint from which to fine-tune.') tf.app.flags.DEFINE_string('checkpoint_exclude_scopes', 'resnet_v1_50/logits', 'Comma-separated list of scopes of variables to exclude when restoring ' 'from a checkpoint.') tf.app.flags.DEFINE_string('trainable_scopes', 'resnet_v1_50/logits', 'Comma-separated list of scopes to filter the set of variables to train.' 'By default, None would train all the variables.') tf.app.flags.DEFINE_integer('num_clones', 1, 'Number of model clones to deploy.') tf.app.flags.DEFINE_boolean('clone_on_cpu', False, 'Use CPUs to deploy clones.') tf.app.flags.DEFINE_integer('num_readers', 4, 'The number of parallel readers that read data from the dataset.') tf.app.flags.DEFINE_integer('num_preprocessing_threads', 4, 'The number of threads used to create the batches.') tf.app.flags.DEFINE_integer('log_every_n_steps', 10, 'The frequency with which logs are printed.') tf.app.flags.DEFINE_integer('save_summaries_secs', 600, 'The frequency with which summaries are saved, in seconds.') tf.app.flags.DEFINE_integer('save_interval_secs', 600, 'The frequency with which the model is saved, in seconds.') tf.app.flags.DEFINE_float('weight_decay', 0.00004, 'The weight decay on the model weights.') tf.app.flags.DEFINE_float('opt_epsilon', 1.0, 'Epsilon term for the optimizer.') tf.app.flags.DEFINE_float('rmsprop_momentum', 0.9, 'Momentum.') tf.app.flags.DEFINE_float('rmsprop_decay', 0.9, 'Decay term for RMSProp.') tf.app.flags.DEFINE_float('learning_rate', 0.02, 'Initial learning rate.') tf.app.flags.DEFINE_float('label_smoothing', 0.0, 'The amount of label smoothing.') tf.app.flags.DEFINE_float('learning_rate_decay_factor', 0.9, 'Learning rate decay factor.') tf.app.flags.DEFINE_float('num_epochs_per_decay', 2.0, 'Number of epochs after which learning rate decays.') tf.app.flags.DEFINE_integer('replicas_to_aggregate', 1, 'The number of gradients to collect before updating params.') tf.app.flags.DEFINE_integer('batch_size', 32, 'The number of samples in each batch.') tf.app.flags.DEFINE_integer('max_number_of_steps', 4000, 'The maximum number of training steps.') FLAGS = tf.app.flags.FLAGS def get_image_and_class_count(dataset_dir, split_name): df = pd.read_csv(os.path.join(dataset_dir, 'dataset_split_info.csv')) image_count = len(df.loc[df['split_name'] == split_name].index) class_count = len(df['class_name'].unique()) return(image_count, class_count) def read_label_file(dataset_dir, filename='labels.txt'): labels_filename = os.path.join(dataset_dir, filename) with tf.gfile.Open(labels_filename, 'r') as f: lines = f.read() lines = lines.split('\n') lines = filter(None, lines) labels_to_class_names = {} for line in lines: index = line.index(':') labels_to_class_names[line[:index]] = line[index+1:] return(labels_to_class_names) def mean_image_subtraction(image, means): if image.get_shape().ndims != 3: raise ValueError('Input must be of size [height, width, C>0]') num_channels = image.get_shape().as_list()[-1] if len(means) != num_channels: raise ValueError('len(means) must match the number of channels') channels = tf.split(axis=2, num_or_size_splits=num_channels, value=image) for i in range(num_channels): channels[i] -= means[i] return(tf.concat(axis=2, values=channels)) def get_preprocessing(): def preprocessing_fn(image, output_height=224, output_width=224): ''' Resize the image and subtract "mean" RGB values ''' _R_MEAN = 123.68 _G_MEAN = 116.78 _B_MEAN = 103.94 #image = tf.expand_dims(image, 0) temp_dim = np.random.randint(175, 223) distorted_image = tf.random_crop(image, [output_height, output_width, 3]) distorted_image = tf.expand_dims(distorted_image, 0) resized_image = tf.image.resize_bilinear(distorted_image, [output_height, output_width], align_corners=False) resized_image = tf.squeeze(resized_image) resized_image.set_shape([output_height, output_width, 3]) resized_image = tf.image.random_flip_left_right(resized_image) image = tf.to_float(resized_image) return(mean_image_subtraction(image, [_R_MEAN, _G_MEAN, _B_MEAN])) return(preprocessing_fn) def get_network_fn(num_classes, weight_decay=0.0): arg_scope = resnet_v1.resnet_arg_scope(weight_decay=weight_decay) func = resnet_v1.resnet_v1_50 @functools.wraps(func) def network_fn(images): with slim.arg_scope(arg_scope): return func(images, num_classes) if hasattr(func, 'default_image_size'): network_fn.default_image_size = func.default_image_size return(network_fn) def _add_variables_summaries(learning_rate): summaries = [] for variable in slim.get_model_variables(): summaries.append(tf.summary.image(variable.op.name, variable)) summaries.append(tf.summary.scalar(learning_rate, name='training/Learning Rate')) return(summaries) def _get_init_fn(): if (FLAGS.checkpoint_path is None) or (tf.train.latest_checkpoint(FLAGS.train_dir)): return None exclusions = [] if FLAGS.checkpoint_exclude_scopes: exclusions = [scope.strip() for scope in FLAGS.checkpoint_exclude_scopes.split(',')] variables_to_restore = [] for var in slim.get_model_variables(): excluded = False for exclusion in exclusions: if var.op.name.startswith(exclusion): excluded = True break if not excluded: variables_to_restore.append(var) if tf.gfile.IsDirectory(FLAGS.checkpoint_path): checkpoint_path = tf.train.latest_checkpoint(FLAGS.checkpoint_path) else: checkpoint_path = FLAGS.checkpoint_path tf.logging.info('Fine-tuning from {}'.format(checkpoint_path)) return(slim.assign_from_checkpoint_fn(checkpoint_path, variables_to_restore, ignore_missing_vars=False)) def _get_variables_to_train(): scopes = [scope.strip() for scope in FLAGS.trainable_scopes.split(',')] variables_to_train = [] for scope in scopes: variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope) variables_to_train.extend(variables) return(variables_to_train) def get_dataset(dataset_name, dataset_dir, image_count, class_count, split_name): slim = tf.contrib.slim items_to_descriptions = {'image': 'A color image.', 'label': 'An integer in range(0, class_count)'} file_pattern = os.path.join(dataset_dir, '{}_{}_*.tfrecord'.format(dataset_name, split_name)) reader = tf.TFRecordReader keys_to_features = {'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''), 'image/format': tf.FixedLenFeature((), tf.string, default_value='png'), 'image/class/label': tf.FixedLenFeature([], tf.int64, default_value=tf.zeros([], dtype=tf.int64))} items_to_handlers = {'image': slim.tfexample_decoder.Image(), 'label': slim.tfexample_decoder.Tensor('image/class/label')} decoder = slim.tfexample_decoder.TFExampleDecoder(keys_to_features, items_to_handlers) labels_to_names = read_label_file(dataset_dir) return(slim.dataset.Dataset(data_sources=file_pattern, reader=reader, decoder=decoder, num_samples=image_count, items_to_descriptions=items_to_descriptions, num_classes=class_count, labels_to_names=labels_to_names, shuffle=True)) def main(_): tf.logging.set_verbosity(tf.logging.INFO) with tf.Graph().as_default(): deploy_config = model_deploy.DeploymentConfig(num_clones=FLAGS.num_clones, clone_on_cpu=FLAGS.clone_on_cpu, replica_id=0, num_replicas=1, num_ps_tasks=0) with tf.device(deploy_config.variables_device()): global_step = slim.create_global_step() image_count, class_count = get_image_and_class_count(FLAGS.dataset_dir, 'train') dataset = get_dataset('aerial', FLAGS.dataset_dir, image_count, class_count, 'train') network_fn = get_network_fn(num_classes=(dataset.num_classes), weight_decay=FLAGS.weight_decay) image_preprocessing_fn = get_preprocessing() with tf.device(deploy_config.inputs_device()): provider = slim.dataset_data_provider.DatasetDataProvider(dataset, num_readers=FLAGS.num_readers, common_queue_capacity=20 * FLAGS.batch_size, common_queue_min=10 * FLAGS.batch_size) [image, label] = provider.get(['image', 'label']) image = image_preprocessing_fn(image, 224, 224) images, labels = tf.train.batch([image, label], batch_size=FLAGS.batch_size, num_threads=FLAGS.num_preprocessing_threads, capacity=5 * FLAGS.batch_size) labels = slim.one_hot_encoding(labels, dataset.num_classes) batch_queue = slim.prefetch_queue.prefetch_queue([images, labels], capacity=2 * deploy_config.num_clones) def clone_fn(batch_queue): images, labels = batch_queue.dequeue() logits, end_points = network_fn(images) logits = tf.squeeze(logits) # added -- does this help? slim.losses.softmax_cross_entropy(logits, labels, label_smoothing=FLAGS.label_smoothing, weights=1.0) return(end_points) summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES)) clones = model_deploy.create_clones(deploy_config, clone_fn, [batch_queue]) first_clone_scope = deploy_config.clone_scope(0) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, first_clone_scope) end_points = clones[0].outputs for end_point in end_points: x = end_points[end_point] summaries.add(tf.summary.histogram('activations/' + end_point, x)) summaries.add(tf.summary.scalar('sparsity/' + end_point, tf.nn.zero_fraction(x))) for loss in tf.get_collection(tf.GraphKeys.LOSSES, first_clone_scope): summaries.add(tf.summary.scalar('losses/%s' % loss.op.name, loss)) for variable in slim.get_model_variables(): summaries.add(tf.summary.histogram(variable.op.name, variable)) with tf.device(deploy_config.optimizer_device()): decay_steps = int(dataset.num_samples / FLAGS.batch_size * FLAGS.num_epochs_per_decay) learning_rate = tf.train.exponential_decay(FLAGS.learning_rate, global_step, decay_steps, FLAGS.learning_rate_decay_factor, staircase=True, name='exponential_decay_learning_rate') optimizer = tf.train.RMSPropOptimizer(learning_rate, decay=FLAGS.rmsprop_decay, momentum=FLAGS.rmsprop_momentum, epsilon=FLAGS.opt_epsilon) summaries.add(tf.summary.scalar('learning_rate', learning_rate)) variables_to_train = _get_variables_to_train() total_loss, clones_gradients = model_deploy.optimize_clones(clones, optimizer, var_list=variables_to_train) summaries.add(tf.summary.scalar('total_loss', total_loss)) grad_updates = optimizer.apply_gradients(clones_gradients, global_step=global_step) update_ops.append(grad_updates) update_op = tf.group(*update_ops) train_tensor = control_flow_ops.with_dependencies([update_op], total_loss, name='train_op') summaries |= set(tf.get_collection(tf.GraphKeys.SUMMARIES, first_clone_scope)) summary_op = tf.summary.merge(list(summaries), name='summary_op') slim.learning.train(train_tensor, logdir=FLAGS.train_dir, master='', is_chief=True, init_fn=_get_init_fn(), summary_op=summary_op, number_of_steps=FLAGS.max_number_of_steps, log_every_n_steps=FLAGS.log_every_n_steps, save_summaries_secs=FLAGS.save_summaries_secs, save_interval_secs=FLAGS.save_interval_secs, sync_optimizer=None) if __name__ == '__main__': tf.app.run()
[ "tensorflow.app.flags.DEFINE_float", "tensorflow.nn.zero_fraction", "tensorflow.get_collection", "tensorflow.train.RMSPropOptimizer", "tensorflow.logging.set_verbosity", "tensorflow.app.flags.DEFINE_boolean", "numpy.random.randint", "tensorflow.train.latest_checkpoint", "tensorflow.python.ops.control_flow_ops.with_dependencies", "tensorflow.split", "tensorflow.app.flags.DEFINE_integer", "os.path.join", "tensorflow.train.batch", "tensorflow.concat", "nets.resnet_v1.resnet_arg_scope", "tensorflow.summary.histogram", "tensorflow.to_float", "tensorflow.squeeze", "tensorflow.random_crop", "tensorflow.app.run", "deployment.model_deploy.DeploymentConfig", "tensorflow.summary.image", "tensorflow.summary.scalar", "tensorflow.gfile.IsDirectory", "tensorflow.image.random_flip_left_right", "tensorflow.group", "functools.wraps", "tensorflow.Graph", "tensorflow.train.exponential_decay", "tensorflow.expand_dims", "deployment.model_deploy.create_clones", "deployment.model_deploy.optimize_clones", "tensorflow.zeros", "tensorflow.app.flags.DEFINE_string", "tensorflow.FixedLenFeature", "tensorflow.gfile.Open", "tensorflow.image.resize_bilinear" ]
[((1201, 1324), 'tensorflow.app.flags.DEFINE_string', 'tf.app.flags.DEFINE_string', (['"""train_dir"""', '"""D:\\\\tf\\\\models"""', '"""Directory where checkpoints and event logs are written to."""'], {}), "('train_dir', 'D:\\\\tf\\\\models',\n 'Directory where checkpoints and event logs are written to.')\n", (1227, 1324), True, 'import tensorflow as tf\n'), ((1375, 1467), 'tensorflow.app.flags.DEFINE_string', 'tf.app.flags.DEFINE_string', (['"""dataset_name"""', '"""aerial"""', '"""The name of the dataset to load."""'], {}), "('dataset_name', 'aerial',\n 'The name of the dataset to load.')\n", (1401, 1467), True, 'import tensorflow as tf\n'), ((1464, 1595), 'tensorflow.app.flags.DEFINE_string', 'tf.app.flags.DEFINE_string', (['"""dataset_dir"""', '"""D:\\\\combined\\\\train_subsample"""', '"""The directory where the dataset files are stored."""'], {}), "('dataset_dir', 'D:\\\\combined\\\\train_subsample',\n 'The directory where the dataset files are stored.')\n", (1490, 1595), True, 'import tensorflow as tf\n'), ((1646, 1777), 'tensorflow.app.flags.DEFINE_string', 'tf.app.flags.DEFINE_string', (['"""checkpoint_path"""', '"""D:\\\\tf\\\\resnet_v1_50.ckpt"""', '"""The path to a checkpoint from which to fine-tune."""'], {}), "('checkpoint_path', 'D:\\\\tf\\\\resnet_v1_50.ckpt',\n 'The path to a checkpoint from which to fine-tune.')\n", (1672, 1777), True, 'import tensorflow as tf\n'), ((1829, 2012), 'tensorflow.app.flags.DEFINE_string', 'tf.app.flags.DEFINE_string', (['"""checkpoint_exclude_scopes"""', '"""resnet_v1_50/logits"""', '"""Comma-separated list of scopes of variables to exclude when restoring from a checkpoint."""'], {}), "('checkpoint_exclude_scopes',\n 'resnet_v1_50/logits',\n 'Comma-separated list of scopes of variables to exclude when restoring from a checkpoint.'\n )\n", (1855, 2012), True, 'import tensorflow as tf\n'), ((2057, 2257), 'tensorflow.app.flags.DEFINE_string', 'tf.app.flags.DEFINE_string', (['"""trainable_scopes"""', '"""resnet_v1_50/logits"""', '"""Comma-separated list of scopes to filter the set of variables to train.By default, None would train all the variables."""'], {}), "('trainable_scopes', 'resnet_v1_50/logits',\n 'Comma-separated list of scopes to filter the set of variables to train.By default, None would train all the variables.'\n )\n", (2083, 2257), True, 'import tensorflow as tf\n'), ((2307, 2392), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""num_clones"""', '(1)', '"""Number of model clones to deploy."""'], {}), "('num_clones', 1,\n 'Number of model clones to deploy.')\n", (2334, 2392), True, 'import tensorflow as tf\n'), ((2389, 2474), 'tensorflow.app.flags.DEFINE_boolean', 'tf.app.flags.DEFINE_boolean', (['"""clone_on_cpu"""', '(False)', '"""Use CPUs to deploy clones."""'], {}), "('clone_on_cpu', False, 'Use CPUs to deploy clones.'\n )\n", (2416, 2474), True, 'import tensorflow as tf\n'), ((2470, 2586), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""num_readers"""', '(4)', '"""The number of parallel readers that read data from the dataset."""'], {}), "('num_readers', 4,\n 'The number of parallel readers that read data from the dataset.')\n", (2497, 2586), True, 'import tensorflow as tf\n'), ((2583, 2699), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""num_preprocessing_threads"""', '(4)', '"""The number of threads used to create the batches."""'], {}), "('num_preprocessing_threads', 4,\n 'The number of threads used to create the batches.')\n", (2610, 2699), True, 'import tensorflow as tf\n'), ((2696, 2798), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""log_every_n_steps"""', '(10)', '"""The frequency with which logs are printed."""'], {}), "('log_every_n_steps', 10,\n 'The frequency with which logs are printed.')\n", (2723, 2798), True, 'import tensorflow as tf\n'), ((2795, 2915), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""save_summaries_secs"""', '(600)', '"""The frequency with which summaries are saved, in seconds."""'], {}), "('save_summaries_secs', 600,\n 'The frequency with which summaries are saved, in seconds.')\n", (2822, 2915), True, 'import tensorflow as tf\n'), ((2912, 3030), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""save_interval_secs"""', '(600)', '"""The frequency with which the model is saved, in seconds."""'], {}), "('save_interval_secs', 600,\n 'The frequency with which the model is saved, in seconds.')\n", (2939, 3030), True, 'import tensorflow as tf\n'), ((3028, 3122), 'tensorflow.app.flags.DEFINE_float', 'tf.app.flags.DEFINE_float', (['"""weight_decay"""', '(4e-05)', '"""The weight decay on the model weights."""'], {}), "('weight_decay', 4e-05,\n 'The weight decay on the model weights.')\n", (3053, 3122), True, 'import tensorflow as tf\n'), ((3121, 3206), 'tensorflow.app.flags.DEFINE_float', 'tf.app.flags.DEFINE_float', (['"""opt_epsilon"""', '(1.0)', '"""Epsilon term for the optimizer."""'], {}), "('opt_epsilon', 1.0, 'Epsilon term for the optimizer.'\n )\n", (3146, 3206), True, 'import tensorflow as tf\n'), ((3202, 3265), 'tensorflow.app.flags.DEFINE_float', 'tf.app.flags.DEFINE_float', (['"""rmsprop_momentum"""', '(0.9)', '"""Momentum."""'], {}), "('rmsprop_momentum', 0.9, 'Momentum.')\n", (3227, 3265), True, 'import tensorflow as tf\n'), ((3266, 3340), 'tensorflow.app.flags.DEFINE_float', 'tf.app.flags.DEFINE_float', (['"""rmsprop_decay"""', '(0.9)', '"""Decay term for RMSProp."""'], {}), "('rmsprop_decay', 0.9, 'Decay term for RMSProp.')\n", (3291, 3340), True, 'import tensorflow as tf\n'), ((3341, 3415), 'tensorflow.app.flags.DEFINE_float', 'tf.app.flags.DEFINE_float', (['"""learning_rate"""', '(0.02)', '"""Initial learning rate."""'], {}), "('learning_rate', 0.02, 'Initial learning rate.')\n", (3366, 3415), True, 'import tensorflow as tf\n'), ((3416, 3503), 'tensorflow.app.flags.DEFINE_float', 'tf.app.flags.DEFINE_float', (['"""label_smoothing"""', '(0.0)', '"""The amount of label smoothing."""'], {}), "('label_smoothing', 0.0,\n 'The amount of label smoothing.')\n", (3441, 3503), True, 'import tensorflow as tf\n'), ((3500, 3595), 'tensorflow.app.flags.DEFINE_float', 'tf.app.flags.DEFINE_float', (['"""learning_rate_decay_factor"""', '(0.9)', '"""Learning rate decay factor."""'], {}), "('learning_rate_decay_factor', 0.9,\n 'Learning rate decay factor.')\n", (3525, 3595), True, 'import tensorflow as tf\n'), ((3592, 3704), 'tensorflow.app.flags.DEFINE_float', 'tf.app.flags.DEFINE_float', (['"""num_epochs_per_decay"""', '(2.0)', '"""Number of epochs after which learning rate decays."""'], {}), "('num_epochs_per_decay', 2.0,\n 'Number of epochs after which learning rate decays.')\n", (3617, 3704), True, 'import tensorflow as tf\n'), ((3701, 3822), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""replicas_to_aggregate"""', '(1)', '"""The number of gradients to collect before updating params."""'], {}), "('replicas_to_aggregate', 1,\n 'The number of gradients to collect before updating params.')\n", (3728, 3822), True, 'import tensorflow as tf\n'), ((3819, 3908), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""batch_size"""', '(32)', '"""The number of samples in each batch."""'], {}), "('batch_size', 32,\n 'The number of samples in each batch.')\n", (3846, 3908), True, 'import tensorflow as tf\n'), ((3905, 4006), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""max_number_of_steps"""', '(4000)', '"""The maximum number of training steps."""'], {}), "('max_number_of_steps', 4000,\n 'The maximum number of training steps.')\n", (3932, 4006), True, 'import tensorflow as tf\n'), ((4396, 4431), 'os.path.join', 'os.path.join', (['dataset_dir', 'filename'], {}), '(dataset_dir, filename)\n', (4408, 4431), False, 'import os\n'), ((5078, 5140), 'tensorflow.split', 'tf.split', ([], {'axis': '(2)', 'num_or_size_splits': 'num_channels', 'value': 'image'}), '(axis=2, num_or_size_splits=num_channels, value=image)\n', (5086, 5140), True, 'import tensorflow as tf\n'), ((5218, 5252), 'tensorflow.concat', 'tf.concat', ([], {'axis': '(2)', 'values': 'channels'}), '(axis=2, values=channels)\n', (5227, 5252), True, 'import tensorflow as tf\n'), ((6243, 6296), 'nets.resnet_v1.resnet_arg_scope', 'resnet_v1.resnet_arg_scope', ([], {'weight_decay': 'weight_decay'}), '(weight_decay=weight_decay)\n', (6269, 6296), False, 'from nets import resnet_v1\n'), ((6336, 6357), 'functools.wraps', 'functools.wraps', (['func'], {}), '(func)\n', (6351, 6357), False, 'import functools\n'), ((7506, 7549), 'tensorflow.gfile.IsDirectory', 'tf.gfile.IsDirectory', (['FLAGS.checkpoint_path'], {}), '(FLAGS.checkpoint_path)\n', (7526, 7549), True, 'import tensorflow as tf\n'), ((9782, 9823), 'tensorflow.logging.set_verbosity', 'tf.logging.set_verbosity', (['tf.logging.INFO'], {}), '(tf.logging.INFO)\n', (9806, 9823), True, 'import tensorflow as tf\n'), ((15311, 15323), 'tensorflow.app.run', 'tf.app.run', ([], {}), '()\n', (15321, 15323), True, 'import tensorflow as tf\n'), ((4109, 4160), 'os.path.join', 'os.path.join', (['dataset_dir', '"""dataset_split_info.csv"""'], {}), "(dataset_dir, 'dataset_split_info.csv')\n", (4121, 4160), False, 'import os\n'), ((4441, 4476), 'tensorflow.gfile.Open', 'tf.gfile.Open', (['labels_filename', '"""r"""'], {}), "(labels_filename, 'r')\n", (4454, 4476), True, 'import tensorflow as tf\n'), ((5551, 5578), 'numpy.random.randint', 'np.random.randint', (['(175)', '(223)'], {}), '(175, 223)\n', (5568, 5578), True, 'import numpy as np\n'), ((5605, 5660), 'tensorflow.random_crop', 'tf.random_crop', (['image', '[output_height, output_width, 3]'], {}), '(image, [output_height, output_width, 3])\n', (5619, 5660), True, 'import tensorflow as tf\n'), ((5687, 5721), 'tensorflow.expand_dims', 'tf.expand_dims', (['distorted_image', '(0)'], {}), '(distorted_image, 0)\n', (5701, 5721), True, 'import tensorflow as tf\n'), ((5746, 5843), 'tensorflow.image.resize_bilinear', 'tf.image.resize_bilinear', (['distorted_image', '[output_height, output_width]'], {'align_corners': '(False)'}), '(distorted_image, [output_height, output_width],\n align_corners=False)\n', (5770, 5843), True, 'import tensorflow as tf\n'), ((5864, 5889), 'tensorflow.squeeze', 'tf.squeeze', (['resized_image'], {}), '(resized_image)\n', (5874, 5889), True, 'import tensorflow as tf\n'), ((5980, 6026), 'tensorflow.image.random_flip_left_right', 'tf.image.random_flip_left_right', (['resized_image'], {}), '(resized_image)\n', (6011, 6026), True, 'import tensorflow as tf\n'), ((6044, 6070), 'tensorflow.to_float', 'tf.to_float', (['resized_image'], {}), '(resized_image)\n', (6055, 6070), True, 'import tensorflow as tf\n'), ((6807, 6870), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['learning_rate'], {'name': '"""training/Learning Rate"""'}), "(learning_rate, name='training/Learning Rate')\n", (6824, 6870), True, 'import tensorflow as tf\n'), ((6958, 7001), 'tensorflow.train.latest_checkpoint', 'tf.train.latest_checkpoint', (['FLAGS.train_dir'], {}), '(FLAGS.train_dir)\n', (6984, 7001), True, 'import tensorflow as tf\n'), ((7577, 7626), 'tensorflow.train.latest_checkpoint', 'tf.train.latest_checkpoint', (['FLAGS.checkpoint_path'], {}), '(FLAGS.checkpoint_path)\n', (7603, 7626), True, 'import tensorflow as tf\n'), ((8128, 8186), 'tensorflow.get_collection', 'tf.get_collection', (['tf.GraphKeys.TRAINABLE_VARIABLES', 'scope'], {}), '(tf.GraphKeys.TRAINABLE_VARIABLES, scope)\n', (8145, 8186), True, 'import tensorflow as tf\n'), ((8676, 8727), 'tensorflow.FixedLenFeature', 'tf.FixedLenFeature', (['()', 'tf.string'], {'default_value': '""""""'}), "((), tf.string, default_value='')\n", (8694, 8727), True, 'import tensorflow as tf\n'), ((8769, 8823), 'tensorflow.FixedLenFeature', 'tf.FixedLenFeature', (['()', 'tf.string'], {'default_value': '"""png"""'}), "((), tf.string, default_value='png')\n", (8787, 8823), True, 'import tensorflow as tf\n'), ((9882, 10024), 'deployment.model_deploy.DeploymentConfig', 'model_deploy.DeploymentConfig', ([], {'num_clones': 'FLAGS.num_clones', 'clone_on_cpu': 'FLAGS.clone_on_cpu', 'replica_id': '(0)', 'num_replicas': '(1)', 'num_ps_tasks': '(0)'}), '(num_clones=FLAGS.num_clones, clone_on_cpu=\n FLAGS.clone_on_cpu, replica_id=0, num_replicas=1, num_ps_tasks=0)\n', (9911, 10024), False, 'from deployment import model_deploy\n'), ((12195, 12261), 'deployment.model_deploy.create_clones', 'model_deploy.create_clones', (['deploy_config', 'clone_fn', '[batch_queue]'], {}), '(deploy_config, clone_fn, [batch_queue])\n', (12221, 12261), False, 'from deployment import model_deploy\n'), ((12340, 12401), 'tensorflow.get_collection', 'tf.get_collection', (['tf.GraphKeys.UPDATE_OPS', 'first_clone_scope'], {}), '(tf.GraphKeys.UPDATE_OPS, first_clone_scope)\n', (12357, 12401), True, 'import tensorflow as tf\n'), ((12710, 12767), 'tensorflow.get_collection', 'tf.get_collection', (['tf.GraphKeys.LOSSES', 'first_clone_scope'], {}), '(tf.GraphKeys.LOSSES, first_clone_scope)\n', (12727, 12767), True, 'import tensorflow as tf\n'), ((14077, 14153), 'deployment.model_deploy.optimize_clones', 'model_deploy.optimize_clones', (['clones', 'optimizer'], {'var_list': 'variables_to_train'}), '(clones, optimizer, var_list=variables_to_train)\n', (14105, 14153), False, 'from deployment import model_deploy\n'), ((14375, 14396), 'tensorflow.group', 'tf.group', (['*update_ops'], {}), '(*update_ops)\n', (14383, 14396), True, 'import tensorflow as tf\n'), ((14420, 14496), 'tensorflow.python.ops.control_flow_ops.with_dependencies', 'control_flow_ops.with_dependencies', (['[update_op]', 'total_loss'], {'name': '"""train_op"""'}), "([update_op], total_loss, name='train_op')\n", (14454, 14496), False, 'from tensorflow.python.ops import control_flow_ops\n'), ((6740, 6784), 'tensorflow.summary.image', 'tf.summary.image', (['variable.op.name', 'variable'], {}), '(variable.op.name, variable)\n', (6756, 6784), True, 'import tensorflow as tf\n'), ((11300, 11440), 'tensorflow.train.batch', 'tf.train.batch', (['[image, label]'], {'batch_size': 'FLAGS.batch_size', 'num_threads': 'FLAGS.num_preprocessing_threads', 'capacity': '(5 * FLAGS.batch_size)'}), '([image, label], batch_size=FLAGS.batch_size, num_threads=\n FLAGS.num_preprocessing_threads, capacity=5 * FLAGS.batch_size)\n', (11314, 11440), True, 'import tensorflow as tf\n'), ((11918, 11936), 'tensorflow.squeeze', 'tf.squeeze', (['logits'], {}), '(logits)\n', (11928, 11936), True, 'import tensorflow as tf\n'), ((12134, 12175), 'tensorflow.get_collection', 'tf.get_collection', (['tf.GraphKeys.SUMMARIES'], {}), '(tf.GraphKeys.SUMMARIES)\n', (12151, 12175), True, 'import tensorflow as tf\n'), ((13162, 13334), 'tensorflow.train.exponential_decay', 'tf.train.exponential_decay', (['FLAGS.learning_rate', 'global_step', 'decay_steps', 'FLAGS.learning_rate_decay_factor'], {'staircase': '(True)', 'name': '"""exponential_decay_learning_rate"""'}), "(FLAGS.learning_rate, global_step, decay_steps,\n FLAGS.learning_rate_decay_factor, staircase=True, name=\n 'exponential_decay_learning_rate')\n", (13188, 13334), True, 'import tensorflow as tf\n'), ((13625, 13756), 'tensorflow.train.RMSPropOptimizer', 'tf.train.RMSPropOptimizer', (['learning_rate'], {'decay': 'FLAGS.rmsprop_decay', 'momentum': 'FLAGS.rmsprop_momentum', 'epsilon': 'FLAGS.opt_epsilon'}), '(learning_rate, decay=FLAGS.rmsprop_decay,\n momentum=FLAGS.rmsprop_momentum, epsilon=FLAGS.opt_epsilon)\n', (13650, 13756), True, 'import tensorflow as tf\n'), ((14176, 14219), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""total_loss"""', 'total_loss'], {}), "('total_loss', total_loss)\n", (14193, 14219), True, 'import tensorflow as tf\n'), ((14523, 14583), 'tensorflow.get_collection', 'tf.get_collection', (['tf.GraphKeys.SUMMARIES', 'first_clone_scope'], {}), '(tf.GraphKeys.SUMMARIES, first_clone_scope)\n', (14540, 14583), True, 'import tensorflow as tf\n'), ((8981, 9009), 'tensorflow.zeros', 'tf.zeros', (['[]'], {'dtype': 'tf.int64'}), '([], dtype=tf.int64)\n', (8989, 9009), True, 'import tensorflow as tf\n'), ((9833, 9843), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (9841, 9843), True, 'import tensorflow as tf\n'), ((12543, 12594), 'tensorflow.summary.histogram', 'tf.summary.histogram', (["('activations/' + end_point)", 'x'], {}), "('activations/' + end_point, x)\n", (12563, 12594), True, 'import tensorflow as tf\n'), ((12795, 12846), 'tensorflow.summary.scalar', 'tf.summary.scalar', (["('losses/%s' % loss.op.name)", 'loss'], {}), "('losses/%s' % loss.op.name, loss)\n", (12812, 12846), True, 'import tensorflow as tf\n'), ((12926, 12974), 'tensorflow.summary.histogram', 'tf.summary.histogram', (['variable.op.name', 'variable'], {}), '(variable.op.name, variable)\n', (12946, 12974), True, 'import tensorflow as tf\n'), ((13929, 13978), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""learning_rate"""', 'learning_rate'], {}), "('learning_rate', learning_rate)\n", (13946, 13978), True, 'import tensorflow as tf\n'), ((12665, 12687), 'tensorflow.nn.zero_fraction', 'tf.nn.zero_fraction', (['x'], {}), '(x)\n', (12684, 12687), True, 'import tensorflow as tf\n')]
import jieba import pandas as pd import numpy as np from sklearn import feature_extraction from sklearn.feature_extraction.text import TfidfTransformer from sklearn.feature_extraction.text import CountVectorizer import time import os import re def readExcel(url): df=pd.read_excel(url,na_values='') return df def writeExcel(df,url=''): write = pd.ExcelWriter(url) df.to_excel(write, sheet_name='Sheet1',merge_cells=False) write.save() def genDF(df_Base,df_IPC): columns=df_Base['合并后'].unique() index=df_IPC['NAME'].unique() return pd.DataFrame(None,index=index,columns=columns) pass def checkVect(df_Input,vectkey,vectipc): coripc=__ipc(df_Input['IPC']) corkey=__jiebabatch(df_Input['ABSTRACT']) matkey=vectkey.transform(corkey) matipc=vectipc.transform(coripc) matkey = np.where(matkey.toarray() > 0, 1, 0) matipc = np.where(matipc.toarray() > 0, 1, 0) return matkey,matipc def addNewPT(key,newkey,ipc,newipc,Cpy,Cat,df_result=[],s_Cat=[],corkeyNo=[]): '''输出两个:1. 公司各个行业属性的专利记录,2. 专利对应的属性''' if df_result==[]: df_result=pd.DataFrame(None,columns=['Company','Cat','Val']) for i in range(newkey.shape[0]): print('Processing--------------',i) onekey=newkey[i] oneipc=newipc[i] companyName=Cpy[i] mat=np.dot(key, onekey) * np.dot(ipc, oneipc) matcat=Cat[(mat-corkeyNo)>=0].unique() cat=[]#用于记录ip的属性 for j in matcat: df_result=df_result.append({'Company':companyName,'Cat':j,'Val':1},ignore_index=True) cat.append(j) s_Cat.append(' '.join(cat)) return df_result,s_Cat pass def __jiebabatch(summary): '''每行增加none,使得没有的也能匹配上''' cor=[] for j,i in enumerate(summary): if j%1000==0: print('ABSTRACT@----------',j) subcor = ['None'] if type(i)!=type(1.1): b=jieba.cut(i) for j in b: subcor.append(j) joint=' ' subcor=joint.join(subcor) else: subcor='None' cor.append(subcor) return cor pass def __ipc(ipc): '''每行增加none,使得没有的也能匹配上''' cor=[] lv0=re.compile(u'\D+[0-9]{1,3}') lv1=re.compile(u'\D+[0-9]{1,3}\D+') lv2=re.compile(u'\D+[0-9]{1,3}\D+[0-9]{1,3}') for j,i in enumerate(ipc): if j%1000==0:#todo print('IPC@---------',j) subcor=['none'] if type(i)!=type(1.1):#写入ipc三级域名 modified--0828 subcor.append(lv0.findall(i)[0]) subcor.append(lv1.findall(i)[0]) if lv2.findall(i): subcor.append(lv2.findall(i)[0]) a = i.split(sep='_') if len(a)>1: subcor.append(i) joint = ' ' subcor = joint.join(subcor) cor.append(subcor) return cor pass def addDict(df): '''根据分类标准在结巴分词中加入新关键词''' word=set(df['keywords'].unique()) word1=set(df['keywords1'].unique()) word2 = set(df['keyward2'].unique()) word3 = set(df['notkeywords'].unique()) word=word | word1 | word2 | word3 for i in word: jieba.add_word(str(i),freq=100) pass def getBaseCor(df): '''用于tdidf''' corkey=[] coripc = [] corkeyNo=[] for i in df.index: subcor=[] no=0 if type(df.loc[i,'keywords'])!=type(1.1): subcor.append(df.loc[i,'keywords']) no=no+1 if type(df.loc[i, 'keywords1']) != type(1.1): subcor.append(df.loc[i, 'keywords1']) no=no+1 else: subcor=['None'] no=1 joint=' ' subcor=joint.join(subcor) corkey.append(subcor) corkeyNo.append(no) subcor=[] if type(df.loc[i, 'IPC']) != type(1.1): subcor.append(df.loc[i, 'IPC']) # a=df.loc[i,'IPC'].split(sep='/') # if len(a)>1: # subcor.append(a[0]) else: subcor=['None'] joint=' ' subcor=joint.join(subcor) coripc.append(subcor) return corkey,coripc,np.array(corkeyNo) def TFtraintfidf(corkey,coripc): '''计算分词矩阵''' vectorizerkey = CountVectorizer(analyzer='word',token_pattern='(?<KEY>') #CountVectorizer(analyzer='word',token_pattern='(?<KEY>') key=vectorizerkey.fit_transform(corkey) vectorizeripc = CountVectorizer() ipc=vectorizeripc.fit_transform(coripc) return np.where(key.toarray()>0,1,0),vectorizerkey,np.where(ipc.toarray()>0,1,0),vectorizeripc def readFilesName(dir): name=[] for parent,dirnames,filenames in os.walk(dir): for filename in filenames: url=parent+filename name.append(url) return name if __name__=="__main__": #1.inial docdir = os.path.abspath('..') + '\\doc\\' name=readFilesName(docdir+'raw\\') IndustryFileName='industry_sep.xlsx' print('Initialize Finished')#todo #df_IPC=readExcel(docdir+IPCFileName) #2.read file for j,i in enumerate(name): df_Input=readExcel(i) df_Input['IPC']=df_Input['IPC'].str.replace('/','_') df_Base=readExcel(docdir+IndustryFileName) df_Base['IPC']=df_Base['IPC'].str.replace('/','_') addDict(df_Base) print('Data_Read_Finished')#todo #3.run start=time.clock() corkey, coripc,corkeyNo=getBaseCor(df_Base) print('Classify Finished')#todo key, vectkey, ipc, vectipc=TFtraintfidf(corkey,coripc) newkey,newipc=checkVect(df_Input,vectkey,vectipc) print('Analysising new input finished')#todo Cpy=df_Input['APPLICATION'] Cat=df_Base['合并后'] w,cat=addNewPT(key, newkey, ipc, newipc, Cpy, Cat, df_result=[],s_Cat=[],corkeyNo=corkeyNo) end=time.clock() dur=end-start df_f=w.groupby(['Company','Cat'])['Cat'].count() #4.export excel #for check df_Input['Cat']=cat writeExcel(df_Input, docdir + 're\\check0828' + str(j) + '.xlsx') writeExcel(df_f,docdir+'re\\result0828'+str(j)+'.xlsx') print(dur)
[ "pandas.DataFrame", "sklearn.feature_extraction.text.CountVectorizer", "os.path.abspath", "jieba.cut", "os.walk", "time.clock", "pandas.read_excel", "numpy.array", "numpy.dot", "pandas.ExcelWriter", "re.compile" ]
[((272, 304), 'pandas.read_excel', 'pd.read_excel', (['url'], {'na_values': '""""""'}), "(url, na_values='')\n", (285, 304), True, 'import pandas as pd\n'), ((358, 377), 'pandas.ExcelWriter', 'pd.ExcelWriter', (['url'], {}), '(url)\n', (372, 377), True, 'import pandas as pd\n'), ((566, 614), 'pandas.DataFrame', 'pd.DataFrame', (['None'], {'index': 'index', 'columns': 'columns'}), '(None, index=index, columns=columns)\n', (578, 614), True, 'import pandas as pd\n'), ((2190, 2219), 're.compile', 're.compile', (['u"""\\\\D+[0-9]{1,3}"""'], {}), "(u'\\\\D+[0-9]{1,3}')\n", (2200, 2219), False, 'import re\n'), ((2227, 2260), 're.compile', 're.compile', (['u"""\\\\D+[0-9]{1,3}\\\\D+"""'], {}), "(u'\\\\D+[0-9]{1,3}\\\\D+')\n", (2237, 2260), False, 'import re\n'), ((2267, 2310), 're.compile', 're.compile', (['u"""\\\\D+[0-9]{1,3}\\\\D+[0-9]{1,3}"""'], {}), "(u'\\\\D+[0-9]{1,3}\\\\D+[0-9]{1,3}')\n", (2277, 2310), False, 'import re\n'), ((4194, 4251), 'sklearn.feature_extraction.text.CountVectorizer', 'CountVectorizer', ([], {'analyzer': '"""word"""', 'token_pattern': '"""(?<KEY>"""'}), "(analyzer='word', token_pattern='(?<KEY>')\n", (4209, 4251), False, 'from sklearn.feature_extraction.text import CountVectorizer\n'), ((4377, 4394), 'sklearn.feature_extraction.text.CountVectorizer', 'CountVectorizer', ([], {}), '()\n', (4392, 4394), False, 'from sklearn.feature_extraction.text import CountVectorizer\n'), ((4612, 4624), 'os.walk', 'os.walk', (['dir'], {}), '(dir)\n', (4619, 4624), False, 'import os\n'), ((1106, 1159), 'pandas.DataFrame', 'pd.DataFrame', (['None'], {'columns': "['Company', 'Cat', 'Val']"}), "(None, columns=['Company', 'Cat', 'Val'])\n", (1118, 1159), True, 'import pandas as pd\n'), ((4104, 4122), 'numpy.array', 'np.array', (['corkeyNo'], {}), '(corkeyNo)\n', (4112, 4122), True, 'import numpy as np\n'), ((4790, 4811), 'os.path.abspath', 'os.path.abspath', (['""".."""'], {}), "('..')\n", (4805, 4811), False, 'import os\n'), ((5331, 5343), 'time.clock', 'time.clock', ([], {}), '()\n', (5341, 5343), False, 'import time\n'), ((5786, 5798), 'time.clock', 'time.clock', ([], {}), '()\n', (5796, 5798), False, 'import time\n'), ((1327, 1346), 'numpy.dot', 'np.dot', (['key', 'onekey'], {}), '(key, onekey)\n', (1333, 1346), True, 'import numpy as np\n'), ((1349, 1368), 'numpy.dot', 'np.dot', (['ipc', 'oneipc'], {}), '(ipc, oneipc)\n', (1355, 1368), True, 'import numpy as np\n'), ((1903, 1915), 'jieba.cut', 'jieba.cut', (['i'], {}), '(i)\n', (1912, 1915), False, 'import jieba\n')]
# ============================================================================ # 第十章 家電・調理 # Ver.04(エネルギー消費性能計算プログラム(住宅版)Ver.02~) # ============================================================================ import numpy as np from pyhees.section11_3 import load_schedule, get_schedule_app, get_schedule_cc # ============================================================================ # 5. 家電の一次エネルギー消費量 # ============================================================================ # ============================================================================ # 5.1 消費電力量 # ============================================================================ def calc_E_E_AP_d_t(n_p): """1 時間当たりの家電の消費電力量 Args: n_p(float): 仮想居住人数 仮想居住人数 Returns: ndarray: 1 時間当たりの家電の消費電力量 """ schedule = load_schedule() schedule_app = get_schedule_app(schedule) if 1 <= n_p and n_p <= 2: E_E_AP_1_d_t = get_E_E_AP_p_d_t(1, schedule_app) E_E_AP_2_d_t = get_E_E_AP_p_d_t(2, schedule_app) return E_E_AP_1_d_t * (2 - n_p) / (2 - 1) + E_E_AP_2_d_t * (n_p - 1) / (2 - 1) elif 2 <= n_p and n_p <= 3: E_E_AP_2_d_t = get_E_E_AP_p_d_t(2, schedule_app) E_E_AP_3_d_t = get_E_E_AP_p_d_t(3, schedule_app) return E_E_AP_2_d_t * (3 - n_p) / (3 - 2) + E_E_AP_3_d_t * (n_p - 2) / (3 - 2) elif 3 <= n_p and n_p <= 4: E_E_AP_3_d_t = get_E_E_AP_p_d_t(3, schedule_app) E_E_AP_4_d_t = get_E_E_AP_p_d_t(4, schedule_app) return E_E_AP_3_d_t * (4 - n_p) / (4 - 3) + E_E_AP_4_d_t * (n_p - 3) / (4 - 3) else: raise ValueError(n_p) # ============================================================================ # 5.2 ガス消費量 # ============================================================================ def get_E_G_AP_d_t(): """1 時間当たりの家電のガス消費量 Args: Returns: ndarray: 1 時間当たりの家電のガス消費量 """ return np.zeros(24 * 365) # ============================================================================ # 5.3 灯油消費量 # ============================================================================ def get_E_K_AP_d_t(): """1 時間当たりの家電の灯油消費量 Args: Returns: ndarray: 1 時間当たりの家電の灯油消費量 """ return np.zeros(24 * 365) # ============================================================================ # 5.4 その他の燃料による一次エネルギー消費量 # ============================================================================ def get_E_M_AP_d_t(): """1 時間当たりの家電のその他の燃料による一次エネルギー消費量 Args: Returns: ndarray: 1 時間当たりの家電のその他の燃料による一次エネルギー消費量 """ return np.zeros(24 * 365) # ============================================================================ # 6. 調理の一次エネルギー消費量 # ============================================================================ # ============================================================================ # 6.1 消費電力量 # ============================================================================ def get_E_E_CC_d_t(): """1 時間当たりの調理の消費電力量 Args: Returns: ndarray: 1 時間当たりの調理の消費電力量 """ return np.zeros(24 * 365) # ============================================================================ # 6.2 ガス消費量 # ============================================================================ def calc_E_G_CC_d_t(n_p): """1 時間当たりの調理のガス消費量 Args: n_p(float): 仮想居住人数 Returns: ndarray: 1 時間当たりの調理のガス消費量 """ schedule = load_schedule() schedule_cc = get_schedule_cc(schedule) if 1 <= n_p and n_p <= 2: E_G_CC_1_d_t = get_E_G_CC_p_d_t(1, schedule_cc) E_G_CC_2_d_t = get_E_G_CC_p_d_t(2, schedule_cc) return E_G_CC_1_d_t * (2 - n_p) / (2 - 1) + E_G_CC_2_d_t * (n_p - 1) / (2 - 1) elif 2 <= n_p and n_p <= 3: E_G_CC_2_d_t = get_E_G_CC_p_d_t(2, schedule_cc) E_G_CC_3_d_t = get_E_G_CC_p_d_t(3, schedule_cc) return E_G_CC_2_d_t * (3 - n_p) / (3 - 2) + E_G_CC_3_d_t * (n_p - 2) / (3 - 2) elif 3 <= n_p and n_p <= 4: E_G_CC_3_d_t = get_E_G_CC_p_d_t(3, schedule_cc) E_G_CC_4_d_t = get_E_G_CC_p_d_t(4, schedule_cc) return E_G_CC_3_d_t * (4 - n_p) / (4 - 3) + E_G_CC_4_d_t * (n_p - 3) / (4 - 3) else: raise ValueError(n_p) # ============================================================================ # 6.3 灯油消費量 # ============================================================================ def get_E_K_CC_d_t(): """1 時間当たりの調理の灯油消費量 Args: Returns: ndarray: 1 時間当たりの調理の灯油消費量 """ return np.zeros(24 * 365) # ============================================================================ # 6.4 その他の燃料による一次エネルギー消費量 # ============================================================================ def get_E_M_CC_d_t(): """1 時間当たりの調理のその他の燃料による一次エネルギー消費量 Args: Returns: ndarray: 1 時間当たりの調理のその他の燃料による一次エネルギー消費量 """ return np.zeros(24 * 365) # ============================================================================ # 付録 A 1 時間当たりのエネルギー消費量の計算方法 # ============================================================================ # ============================================================================ # A.1 家電による消費電力量 # ============================================================================ def get_E_E_AP_p_d_t(p, schedule_app): """1 時間当たりの居住人数がp人における家電の消費電力量 Args: p(float): 居住人数 schedule_app(ndarray): 家電スケジュール Returns: ndarray: 1 時間当たりの居住人数がp人における家電の消費電力量 """ # 平日 workday = np.tile([get_table_a_1()[i][(p - 1) * 3 + 0] for i in range(24)], 365) # 休日外出 holiday_out = np.tile([get_table_a_1()[i][(p - 1) * 3 + 1] for i in range(24)], 365) # 休日在宅 holiday_in = np.tile([get_table_a_1()[i][(p - 1) * 3 + 2] for i in range(24)], 365) # スケジュールを時間ごとに拡張 schedule = np.repeat(schedule_app, 24) return (workday * (schedule == '平日') + holiday_out * (schedule == '休日外') + holiday_in * (schedule == '休日在')) # ============================================================================ # A.2 調理によるガス消費量 # ============================================================================ def get_E_G_CC_p_d_t(p, schedule_cc): """1 時間当たりの居住人数がp人における調理のガス消費量 Args: p(float): 居住人数 schedule_cc(ndarray): 調理スケジュール Returns: ndarray: 1 時間当たりの居住人数がp人における調理のガス消費量 """ # 平日 workday = np.tile([get_table_a_2()[i][(p - 1) * 3 + 0] for i in range(24)], 365) # 休日外出 holiday_out = np.tile([get_table_a_2()[i][(p - 1) * 3 + 1] for i in range(24)], 365) # 休日在宅 holiday_in = np.tile([get_table_a_2()[i][(p - 1) * 3 + 2] for i in range(24)], 365) # スケジュールを時間ごとに拡張 schedule = np.repeat(schedule_cc, 24) return (workday * (schedule == '平日') + holiday_out * (schedule == '休日外') + holiday_in * (schedule == '休日在')) def get_table_a_1(): """表 A.1 家電による 1 時間当たりの消費電力量 Args: Returns: list: 表 A.1 家電による 1 時間当たりの消費電力量 """ table_a_1 = [ (0.1578, 0.1578, 0.1578, 0.1578, 0.1578, 0.1578, 0.1806, 0.1806, 0.1806, 0.1812, 0.1812, 0.1812), (0.0483, 0.0483, 0.0483, 0.0483, 0.0483, 0.0483, 0.0711, 0.0711, 0.0711, 0.0717, 0.0717, 0.0717), (0.0560, 0.0560, 0.0560, 0.0561, 0.0561, 0.0561, 0.0788, 0.0788, 0.0788, 0.0795, 0.0795, 0.0795), (0.0560, 0.0560, 0.0560, 0.0561, 0.0561, 0.0561, 0.0788, 0.0788, 0.0788, 0.0795, 0.0795, 0.0795), (0.0483, 0.0483, 0.0483, 0.0483, 0.0483, 0.0483, 0.0711, 0.0711, 0.0711, 0.0717, 0.0717, 0.0717), (0.0560, 0.0560, 0.0560, 0.0561, 0.0561, 0.0561, 0.0788, 0.0788, 0.0788, 0.0795, 0.0795, 0.0795), (0.1925, 0.0859, 0.0560, 0.2611, 0.1159, 0.0561, 0.3525, 0.1685, 0.0788, 0.3531, 0.1692, 0.0795), (0.1524, 0.2346, 0.1168, 0.2480, 0.2703, 0.1854, 0.3662, 0.3287, 0.2767, 0.3669, 0.3294, 0.2774), (0.1091, 0.2282, 0.2156, 0.1448, 0.3325, 0.2812, 0.2032, 0.4595, 0.3696, 0.2039, 0.4602, 0.3702), (0.3011, 0.0560, 0.2163, 0.3368, 0.0561, 0.2520, 0.3953, 0.0788, 0.3265, 0.3960, 0.0795, 0.3272), (0.0483, 0.0483, 0.1917, 0.0483, 0.0483, 0.2274, 0.0711, 0.0711, 0.3128, 0.0717, 0.0717, 0.3134), (0.0560, 0.0560, 0.1994, 0.0561, 0.0561, 0.2352, 0.0788, 0.0788, 0.3150, 0.0795, 0.0795, 0.3157), (0.1983, 0.0560, 0.1983, 0.2727, 0.0561, 0.2727, 0.3698, 0.0788, 0.3698, 0.3705, 0.0795, 0.3705), (0.0483, 0.0483, 0.0483, 0.0483, 0.0483, 0.0483, 0.0711, 0.0711, 0.0711, 0.0717, 0.0717, 0.0717), (0.0560, 0.0560, 0.0560, 0.0561, 0.0561, 0.0561, 0.0788, 0.0788, 0.0788, 0.0795, 0.0795, 0.0795), (0.0560, 0.0560, 0.0560, 0.0561, 0.0561, 0.0561, 0.0788, 0.0788, 0.0788, 0.0795, 0.0795, 0.0795), (0.0483, 0.0483, 0.2095, 0.0483, 0.0483, 0.2750, 0.0711, 0.0711, 0.3956, 0.0717, 0.0717, 0.5453), (0.1304, 0.0560, 0.2423, 0.2048, 0.0561, 0.2781, 0.3019, 0.0788, 0.3689, 0.3026, 0.0795, 0.5187), (0.3030, 0.0560, 0.1819, 0.3387, 0.0561, 0.2177, 0.3972, 0.0788, 0.2978, 0.5469, 0.0795, 0.4476), (0.0991, 0.0483, 0.0998, 0.1348, 0.0483, 0.1355, 0.1932, 0.0711, 0.2049, 0.1939, 0.0717, 0.2056), (0.0917, 0.1304, 0.0917, 0.1275, 0.2048, 0.1275, 0.2102, 0.3129, 0.2183, 0.2109, 0.4626, 0.2190), (0.1216, 0.1755, 0.1755, 0.1873, 0.2411, 0.2411, 0.2837, 0.3322, 0.3458, 0.2844, 0.4447, 0.3465), (0.1738, 0.0510, 0.1139, 0.1917, 0.0511, 0.1795, 0.2620, 0.0952, 0.3002, 0.2626, 0.0959, 0.3009), (0.1877, 0.1877, 0.1578, 0.2176, 0.2176, 0.1578, 0.2756, 0.2703, 0.1806, 0.2763, 0.2709, 0.1812), ] return table_a_1 def get_table_a_2(): """表 A.2 調理による 1 時間当たりのガス消費量 Args: Returns: list: 表 A.2 調理による 1 時間当たりのガス消費量 """ table_a_2 = [ (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 1.5935, 0, 0, 1.9235, 0, 0, 2.2536, 0, 0), (1.0672, 0, 0, 0, 1.116, 1.116, 0, 0, 0, 0, 0, 0), (0, 1.0672, 1.0672, 0, 0, 0, 0, 1.3472, 1.3472, 0, 1.5783, 1.5783), (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 1.1401, 1.3762, 0, 1.3762, 1.6123, 0, 1.6123), (0, 0, 1.0902, 1.1401, 0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 5.4175, 0, 0, 6.5395, 0, 0, 7.6615), (0, 0, 5.1806, 5.4175, 0, 0, 6.5395, 0, 0, 7.6615, 0, 0), (5.1806, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), ] return table_a_2
[ "pyhees.section11_3.get_schedule_cc", "pyhees.section11_3.get_schedule_app", "numpy.zeros", "pyhees.section11_3.load_schedule", "numpy.repeat" ]
[((823, 838), 'pyhees.section11_3.load_schedule', 'load_schedule', ([], {}), '()\n', (836, 838), False, 'from pyhees.section11_3 import load_schedule, get_schedule_app, get_schedule_cc\n'), ((858, 884), 'pyhees.section11_3.get_schedule_app', 'get_schedule_app', (['schedule'], {}), '(schedule)\n', (874, 884), False, 'from pyhees.section11_3 import load_schedule, get_schedule_app, get_schedule_cc\n'), ((1919, 1937), 'numpy.zeros', 'np.zeros', (['(24 * 365)'], {}), '(24 * 365)\n', (1927, 1937), True, 'import numpy as np\n'), ((2234, 2252), 'numpy.zeros', 'np.zeros', (['(24 * 365)'], {}), '(24 * 365)\n', (2242, 2252), True, 'import numpy as np\n'), ((2591, 2609), 'numpy.zeros', 'np.zeros', (['(24 * 365)'], {}), '(24 * 365)\n', (2599, 2609), True, 'import numpy as np\n'), ((3084, 3102), 'numpy.zeros', 'np.zeros', (['(24 * 365)'], {}), '(24 * 365)\n', (3092, 3102), True, 'import numpy as np\n'), ((3432, 3447), 'pyhees.section11_3.load_schedule', 'load_schedule', ([], {}), '()\n', (3445, 3447), False, 'from pyhees.section11_3 import load_schedule, get_schedule_app, get_schedule_cc\n'), ((3466, 3491), 'pyhees.section11_3.get_schedule_cc', 'get_schedule_cc', (['schedule'], {}), '(schedule)\n', (3481, 3491), False, 'from pyhees.section11_3 import load_schedule, get_schedule_app, get_schedule_cc\n'), ((4520, 4538), 'numpy.zeros', 'np.zeros', (['(24 * 365)'], {}), '(24 * 365)\n', (4528, 4538), True, 'import numpy as np\n'), ((4878, 4896), 'numpy.zeros', 'np.zeros', (['(24 * 365)'], {}), '(24 * 365)\n', (4886, 4896), True, 'import numpy as np\n'), ((5805, 5832), 'numpy.repeat', 'np.repeat', (['schedule_app', '(24)'], {}), '(schedule_app, 24)\n', (5814, 5832), True, 'import numpy as np\n'), ((6689, 6715), 'numpy.repeat', 'np.repeat', (['schedule_cc', '(24)'], {}), '(schedule_cc, 24)\n', (6698, 6715), True, 'import numpy as np\n')]
from __future__ import print_function, division import numpy as np import imgaug as ia from imgaug import augmenters as iaa def main(): quokka = ia.quokka(size=0.5) h, w = quokka.shape[0:2] heatmap = np.zeros((h, w), dtype=np.float32) heatmap[70:120, 90:150] = 0.1 heatmap[30:70, 50:65] = 0.5 heatmap[20:50, 55:85] = 1.0 heatmap[120:140, 0:20] = 0.75 heatmaps = ia.HeatmapsOnImage(heatmap[..., np.newaxis], quokka.shape) print("Affine...") aug = iaa.Affine(translate_px={"x": 20}, mode="constant", cval=128) quokka_aug = aug.augment_image(quokka) heatmaps_aug = aug.augment_heatmaps([heatmaps])[0] heatmaps_drawn = heatmaps.draw_on_image(quokka) heatmaps_aug_drawn = heatmaps_aug.draw_on_image(quokka_aug) ia.imshow( np.hstack([ heatmaps_drawn[0], heatmaps_aug_drawn[0] ]) ) print("Affine with mode=edge...") aug = iaa.Affine(translate_px={"x": 20}, mode="edge") quokka_aug = aug.augment_image(quokka) heatmaps_aug = aug.augment_heatmaps([heatmaps])[0] heatmaps_drawn = heatmaps.draw_on_image(quokka) heatmaps_aug_drawn = heatmaps_aug.draw_on_image(quokka_aug) ia.imshow( np.hstack([ heatmaps_drawn[0], heatmaps_aug_drawn[0] ]) ) print("PiecewiseAffine...") aug = iaa.PiecewiseAffine(scale=0.04) aug_det = aug.to_deterministic() quokka_aug = aug_det.augment_image(quokka) heatmaps_aug = aug_det.augment_heatmaps([heatmaps])[0] heatmaps_drawn = heatmaps.draw_on_image(quokka) heatmaps_aug_drawn = heatmaps_aug.draw_on_image(quokka_aug) ia.imshow( np.hstack([ heatmaps_drawn[0], heatmaps_aug_drawn[0] ]) ) print("PerspectiveTransform...") aug = iaa.PerspectiveTransform(scale=0.04) aug_det = aug.to_deterministic() quokka_aug = aug_det.augment_image(quokka) heatmaps_aug = aug_det.augment_heatmaps([heatmaps])[0] heatmaps_drawn = heatmaps.draw_on_image(quokka) heatmaps_aug_drawn = heatmaps_aug.draw_on_image(quokka_aug) ia.imshow( np.hstack([ heatmaps_drawn[0], heatmaps_aug_drawn[0] ]) ) print("ElasticTransformation alpha=3, sig=0.5...") aug = iaa.ElasticTransformation(alpha=3.0, sigma=0.5) aug_det = aug.to_deterministic() quokka_aug = aug_det.augment_image(quokka) heatmaps_aug = aug_det.augment_heatmaps([heatmaps])[0] heatmaps_drawn = heatmaps.draw_on_image(quokka) heatmaps_aug_drawn = heatmaps_aug.draw_on_image(quokka_aug) ia.imshow( np.hstack([ heatmaps_drawn[0], heatmaps_aug_drawn[0] ]) ) print("ElasticTransformation alpha=10, sig=3...") aug = iaa.ElasticTransformation(alpha=10.0, sigma=3.0) aug_det = aug.to_deterministic() quokka_aug = aug_det.augment_image(quokka) heatmaps_aug = aug_det.augment_heatmaps([heatmaps])[0] heatmaps_drawn = heatmaps.draw_on_image(quokka) heatmaps_aug_drawn = heatmaps_aug.draw_on_image(quokka_aug) ia.imshow( np.hstack([ heatmaps_drawn[0], heatmaps_aug_drawn[0] ]) ) print("CopAndPad mode=constant...") aug = iaa.CropAndPad(px=(-10, 10, 15, -15), pad_mode="constant", pad_cval=128) aug_det = aug.to_deterministic() quokka_aug = aug_det.augment_image(quokka) heatmaps_aug = aug_det.augment_heatmaps([heatmaps])[0] heatmaps_drawn = heatmaps.draw_on_image(quokka) heatmaps_aug_drawn = heatmaps_aug.draw_on_image(quokka_aug) ia.imshow( np.hstack([ heatmaps_drawn[0], heatmaps_aug_drawn[0] ]) ) print("CopAndPad mode=constant + percent...") aug = iaa.CropAndPad(percent=(-0.05, 0.05, 0.1, -0.1), pad_mode="constant", pad_cval=128) aug_det = aug.to_deterministic() quokka_aug = aug_det.augment_image(quokka) heatmaps_aug = aug_det.augment_heatmaps([heatmaps])[0] heatmaps_drawn = heatmaps.draw_on_image(quokka) heatmaps_aug_drawn = heatmaps_aug.draw_on_image(quokka_aug) ia.imshow( np.hstack([ heatmaps_drawn[0], heatmaps_aug_drawn[0] ]) ) print("CropAndPad mode=edge...") aug = iaa.CropAndPad(px=(-10, 10, 15, -15), pad_mode="edge") aug_det = aug.to_deterministic() quokka_aug = aug_det.augment_image(quokka) heatmaps_aug = aug_det.augment_heatmaps([heatmaps])[0] heatmaps_drawn = heatmaps.draw_on_image(quokka) heatmaps_aug_drawn = heatmaps_aug.draw_on_image(quokka_aug) ia.imshow( np.hstack([ heatmaps_drawn[0], heatmaps_aug_drawn[0] ]) ) print("Scale...") aug = iaa.Scale(0.5, interpolation="nearest") aug_det = aug.to_deterministic() quokka_aug = aug_det.augment_image(quokka) heatmaps_aug = aug_det.augment_heatmaps([heatmaps])[0] heatmaps_drawn = heatmaps.draw_on_image(quokka) heatmaps_aug_drawn = heatmaps_aug.draw_on_image(quokka_aug) ia.imshow(ia.draw_grid([heatmaps_drawn[0], heatmaps_aug_drawn[0]], cols=2)) print("Alpha...") aug = iaa.Alpha(0.7, iaa.Affine(rotate=20)) aug_det = aug.to_deterministic() quokka_aug = aug_det.augment_image(quokka) heatmaps_aug = aug_det.augment_heatmaps([heatmaps])[0] heatmaps_drawn = heatmaps.draw_on_image(quokka) heatmaps_aug_drawn = heatmaps_aug.draw_on_image(quokka_aug) ia.imshow( np.hstack([ heatmaps_drawn[0], heatmaps_aug_drawn[0] ]) ) if __name__ == "__main__": main()
[ "imgaug.HeatmapsOnImage", "imgaug.augmenters.ElasticTransformation", "imgaug.draw_grid", "imgaug.quokka", "numpy.zeros", "numpy.hstack", "imgaug.augmenters.Affine", "imgaug.augmenters.PerspectiveTransform", "imgaug.augmenters.CropAndPad", "imgaug.augmenters.Scale", "imgaug.augmenters.PiecewiseAffine" ]
[((153, 172), 'imgaug.quokka', 'ia.quokka', ([], {'size': '(0.5)'}), '(size=0.5)\n', (162, 172), True, 'import imgaug as ia\n'), ((216, 250), 'numpy.zeros', 'np.zeros', (['(h, w)'], {'dtype': 'np.float32'}), '((h, w), dtype=np.float32)\n', (224, 250), True, 'import numpy as np\n'), ((399, 457), 'imgaug.HeatmapsOnImage', 'ia.HeatmapsOnImage', (['heatmap[..., np.newaxis]', 'quokka.shape'], {}), '(heatmap[..., np.newaxis], quokka.shape)\n', (417, 457), True, 'import imgaug as ia\n'), ((492, 553), 'imgaug.augmenters.Affine', 'iaa.Affine', ([], {'translate_px': "{'x': 20}", 'mode': '"""constant"""', 'cval': '(128)'}), "(translate_px={'x': 20}, mode='constant', cval=128)\n", (502, 553), True, 'from imgaug import augmenters as iaa\n'), ((935, 982), 'imgaug.augmenters.Affine', 'iaa.Affine', ([], {'translate_px': "{'x': 20}", 'mode': '"""edge"""'}), "(translate_px={'x': 20}, mode='edge')\n", (945, 982), True, 'from imgaug import augmenters as iaa\n'), ((1358, 1389), 'imgaug.augmenters.PiecewiseAffine', 'iaa.PiecewiseAffine', ([], {'scale': '(0.04)'}), '(scale=0.04)\n', (1377, 1389), True, 'from imgaug import augmenters as iaa\n'), ((1815, 1851), 'imgaug.augmenters.PerspectiveTransform', 'iaa.PerspectiveTransform', ([], {'scale': '(0.04)'}), '(scale=0.04)\n', (1839, 1851), True, 'from imgaug import augmenters as iaa\n'), ((2295, 2342), 'imgaug.augmenters.ElasticTransformation', 'iaa.ElasticTransformation', ([], {'alpha': '(3.0)', 'sigma': '(0.5)'}), '(alpha=3.0, sigma=0.5)\n', (2320, 2342), True, 'from imgaug import augmenters as iaa\n'), ((2785, 2833), 'imgaug.augmenters.ElasticTransformation', 'iaa.ElasticTransformation', ([], {'alpha': '(10.0)', 'sigma': '(3.0)'}), '(alpha=10.0, sigma=3.0)\n', (2810, 2833), True, 'from imgaug import augmenters as iaa\n'), ((3262, 3334), 'imgaug.augmenters.CropAndPad', 'iaa.CropAndPad', ([], {'px': '(-10, 10, 15, -15)', 'pad_mode': '"""constant"""', 'pad_cval': '(128)'}), "(px=(-10, 10, 15, -15), pad_mode='constant', pad_cval=128)\n", (3276, 3334), True, 'from imgaug import augmenters as iaa\n'), ((3773, 3860), 'imgaug.augmenters.CropAndPad', 'iaa.CropAndPad', ([], {'percent': '(-0.05, 0.05, 0.1, -0.1)', 'pad_mode': '"""constant"""', 'pad_cval': '(128)'}), "(percent=(-0.05, 0.05, 0.1, -0.1), pad_mode='constant',\n pad_cval=128)\n", (3787, 3860), True, 'from imgaug import augmenters as iaa\n'), ((4282, 4336), 'imgaug.augmenters.CropAndPad', 'iaa.CropAndPad', ([], {'px': '(-10, 10, 15, -15)', 'pad_mode': '"""edge"""'}), "(px=(-10, 10, 15, -15), pad_mode='edge')\n", (4296, 4336), True, 'from imgaug import augmenters as iaa\n'), ((4747, 4786), 'imgaug.augmenters.Scale', 'iaa.Scale', (['(0.5)'], {'interpolation': '"""nearest"""'}), "(0.5, interpolation='nearest')\n", (4756, 4786), True, 'from imgaug import augmenters as iaa\n'), ((792, 845), 'numpy.hstack', 'np.hstack', (['[heatmaps_drawn[0], heatmaps_aug_drawn[0]]'], {}), '([heatmaps_drawn[0], heatmaps_aug_drawn[0]])\n', (801, 845), True, 'import numpy as np\n'), ((1221, 1274), 'numpy.hstack', 'np.hstack', (['[heatmaps_drawn[0], heatmaps_aug_drawn[0]]'], {}), '([heatmaps_drawn[0], heatmaps_aug_drawn[0]])\n', (1230, 1274), True, 'import numpy as np\n'), ((1673, 1726), 'numpy.hstack', 'np.hstack', (['[heatmaps_drawn[0], heatmaps_aug_drawn[0]]'], {}), '([heatmaps_drawn[0], heatmaps_aug_drawn[0]])\n', (1682, 1726), True, 'import numpy as np\n'), ((2135, 2188), 'numpy.hstack', 'np.hstack', (['[heatmaps_drawn[0], heatmaps_aug_drawn[0]]'], {}), '([heatmaps_drawn[0], heatmaps_aug_drawn[0]])\n', (2144, 2188), True, 'import numpy as np\n'), ((2626, 2679), 'numpy.hstack', 'np.hstack', (['[heatmaps_drawn[0], heatmaps_aug_drawn[0]]'], {}), '([heatmaps_drawn[0], heatmaps_aug_drawn[0]])\n', (2635, 2679), True, 'import numpy as np\n'), ((3117, 3170), 'numpy.hstack', 'np.hstack', (['[heatmaps_drawn[0], heatmaps_aug_drawn[0]]'], {}), '([heatmaps_drawn[0], heatmaps_aug_drawn[0]])\n', (3126, 3170), True, 'import numpy as np\n'), ((3618, 3671), 'numpy.hstack', 'np.hstack', (['[heatmaps_drawn[0], heatmaps_aug_drawn[0]]'], {}), '([heatmaps_drawn[0], heatmaps_aug_drawn[0]])\n', (3627, 3671), True, 'import numpy as np\n'), ((4140, 4193), 'numpy.hstack', 'np.hstack', (['[heatmaps_drawn[0], heatmaps_aug_drawn[0]]'], {}), '([heatmaps_drawn[0], heatmaps_aug_drawn[0]])\n', (4149, 4193), True, 'import numpy as np\n'), ((4620, 4673), 'numpy.hstack', 'np.hstack', (['[heatmaps_drawn[0], heatmaps_aug_drawn[0]]'], {}), '([heatmaps_drawn[0], heatmaps_aug_drawn[0]])\n', (4629, 4673), True, 'import numpy as np\n'), ((5061, 5125), 'imgaug.draw_grid', 'ia.draw_grid', (['[heatmaps_drawn[0], heatmaps_aug_drawn[0]]'], {'cols': '(2)'}), '([heatmaps_drawn[0], heatmaps_aug_drawn[0]], cols=2)\n', (5073, 5125), True, 'import imgaug as ia\n'), ((5175, 5196), 'imgaug.augmenters.Affine', 'iaa.Affine', ([], {'rotate': '(20)'}), '(rotate=20)\n', (5185, 5196), True, 'from imgaug import augmenters as iaa\n'), ((5481, 5534), 'numpy.hstack', 'np.hstack', (['[heatmaps_drawn[0], heatmaps_aug_drawn[0]]'], {}), '([heatmaps_drawn[0], heatmaps_aug_drawn[0]])\n', (5490, 5534), True, 'import numpy as np\n')]
import pytest import numpy as np import pclpy def test_eigen_vectorxf(): a = np.array([1, 1, 1, 1], "f") vec = pclpy.pcl.vectors.VectorXf(a) assert np.allclose(np.array(vec), a)
[ "numpy.array", "pclpy.pcl.vectors.VectorXf" ]
[((84, 111), 'numpy.array', 'np.array', (['[1, 1, 1, 1]', '"""f"""'], {}), "([1, 1, 1, 1], 'f')\n", (92, 111), True, 'import numpy as np\n'), ((122, 151), 'pclpy.pcl.vectors.VectorXf', 'pclpy.pcl.vectors.VectorXf', (['a'], {}), '(a)\n', (148, 151), False, 'import pclpy\n'), ((175, 188), 'numpy.array', 'np.array', (['vec'], {}), '(vec)\n', (183, 188), True, 'import numpy as np\n')]
"""StyleGAN. This module implements teh Generative Adversarial Network described in: A Style-Based Generator Architecture for Generative Adversarial Networks <NAME> (NVIDIA), <NAME> (NVIDIA), <NAME> (NVIDIA) http://stylegan.xyz/paper Code derived from: https://github.com/SsnL/stylegan """ import collections import os import re import numpy as np import torch import torch.nn as nn import torch.nn.functional as F DIM_Z = collections.defaultdict(lambda: 512) FULL_RESOLUTIONS = { 'lsun_car': (512, 384), 'ff_hq': (1024, 1024), 'celeba_hq': (1024, 1024), 'lsun_bedroom': (256, 256), 'lsun_cat': (256, 256), } RESOLUTIONS = { 'ff_hq': 1024, 'celeba_hq': 1024, 'lsun_bedroom': 256, 'lsun_car': 512, 'lsun_cat': 256, } ROOT_DIR = os.path.abspath(os.path.dirname(__file__)) root_url = 'http://pretorched-x.csail.mit.edu/gans/StyleGAN' model_urls = { 'celeba_hq': { 1024: { 'G': os.path.join(root_url, 'celeba_hq_1024x1024_G-c8acef81.pth'), }, }, 'ff_hq': { 1024: { 'G': os.path.join(root_url, 'ff_hq_1024x1024_G-21a7044d.pth'), } }, 'lsun_bedroom': { 256: { 'G': os.path.join(root_url, 'lsun_bedroom_256x256_G-da907d98.pth'), }, }, 'lsun_car': { 512: { 'G': os.path.join(root_url, 'lsun_car_512x384_G-d2188b0a.pth'), }, }, 'lsun_cat': { 256: { 'G': os.path.join(root_url, 'lsun_cat_256x256_G-384e9e73.pth'), }, }, } def stylegan(pretrained='ff_hq', resolution=None): if pretrained is not None: resolution = RESOLUTIONS.get(pretrained) if resolution is None else resolution url = model_urls[pretrained][resolution]['G'] state_dict = torch.hub.load_state_dict_from_url(url) net = G(out_res=resolution) net.load_state_dict(state_dict) else: assert resolution is not None, 'Must specify pretrained model or resolution!' net = G(out_res=max(resolution)) return net class NonLinearityMeta(type): def __call__(cls, *args, **kwargs): return cls.activate(*args, **kwargs) class NonLinearity(object, metaclass=NonLinearityMeta): gain = NotImplemented activate = NotImplemented class ReLU(NonLinearity): gain = np.sqrt(2) activate = F.relu class LeakyReLU(NonLinearity): gain = np.sqrt(2) @staticmethod def activate(x, inplace=False): return F.leaky_relu(x, negative_slope=0.2, inplace=inplace) class ScaledParamModule(nn.Module): # linear w: [ fan_out, fan_in ] # conv w: [ nc_out, nc_in, k1, k2 ] # convT w: [ nc_in, nc_out, k1, k2 ], but let's ignore this case because # (1) the tf impl doesn't special-case # (2) convT is only used for fusing Upsample & Conv2d, and in that case, the # weight should be done as if it is for a Conv2d. # # NB: in tf code, use_wscale has default value False, but for StyleGAN it is # True everywhere, so I changed it. def scale_weight(self, gain=np.sqrt(2), use_wscale=True, lrmul=1, new_name='_weight'): weight = self.weight assert isinstance(weight, nn.Parameter) fan_in = np.prod(weight.shape[1:]) he_std = gain / np.sqrt(fan_in) # He init # Equalized learning rate and custom learning rate multiplier. if use_wscale: init_std = 1.0 / lrmul runtime_coef = he_std * lrmul else: init_std = he_std / lrmul runtime_coef = lrmul # Init variable using He init. weight.data.normal_(0, init_std) # add scale hook self.add_scale_hook('weight', new_name, runtime_coef) def scale_bias(self, lrmul=1, new_name='_bias'): if self.bias is None: assert not hasattr(self, new_name) # do not delete so we don't have to restore in forward # del self.bias self.register_parameter(new_name, None) return bias = self.bias assert isinstance(bias, nn.Parameter) # zero out bias.data.zero_() # add scale hook self.add_scale_hook('bias', new_name, lrmul) def add_scale_hook(self, name, new_name, coef): param = getattr(self, name) assert isinstance(param, nn.Parameter) assert not hasattr(self, new_name) delattr(self, name) self.register_parameter(new_name, param) # Note that the following line uses `m` rather than `self`, and thus # doesn't maintaing the reference and allows for deep copying. self.register_forward_pre_hook(lambda m, inp: setattr(m, name, getattr(m, new_name) * coef)) class ScaledParamLinear(nn.Linear, ScaledParamModule): def __init__(self, *args, gain=np.sqrt(2), use_wscale=True, lrmul=1, **kwargs): super().__init__(*args, **kwargs) self.scale_weight(gain, use_wscale, lrmul) self.scale_bias(lrmul) def extra_repr(self): return 'in_features={}, out_features={}, bias={}'.format( self.in_features, self.out_features, self._bias is not None # use the _real param ) class ScaledParamConv2d(nn.Conv2d, ScaledParamModule): def __init__(self, *args, gain=np.sqrt(2), use_wscale=True, lrmul=1, **kwargs): super().__init__(*args, **kwargs) self.scale_weight(gain, use_wscale, lrmul) self.scale_bias(lrmul) def extra_repr(self): s = ('{in_channels}, {out_channels}, kernel_size={kernel_size}' ', stride={stride}') if self.padding != (0,) * len(self.padding): s += ', padding={padding}' if self.dilation != (1,) * len(self.dilation): s += ', dilation={dilation}' if self.output_padding != (0,) * len(self.output_padding): s += ', output_padding={output_padding}' if self.groups != 1: s += ', groups={groups}' if self._bias is None: # use the _real param s += ', bias=False' return s.format(**self.__dict__) class UpConv2d(ScaledParamConv2d): # Fuse Upsample 2x and Conv2d if desirable. # NOTE [ Fusing Nearest Neighbor Upsampling and Conv2d to a ConvTranspose2d ] # # For exact match, we should flip the kernel along the spatial # dimensions, e.g., with a `.flip(2, 3)`. # This is because we will calculate the sum combinations in kernel # and then apply convT with stride so that each input pixel hits the # exact same kernel values as it would with upsample + conv, but # now summed as a single value. In ConvT, kernel and input are in # reversed space, in the sense that the top-left input pixel sees # top-left kernel region in conv, but bottom-right in convT. # However, the tf code doesn't do this and this is also a problem in # tf, so to keep trained weights compatibility, we don't flip. def __init__(self, in_res, in_channels, out_channels, kernel_size, padding=0, bias=True, gain=np.sqrt(2), use_wscale=True, lrmul=1): super().__init__(in_channels, out_channels, kernel_size, padding=padding, bias=bias, gain=gain, use_wscale=use_wscale, lrmul=lrmul) self.do_fuse = in_res * 2 >= 128 def forward(self, x): if self.do_fuse: w = F.pad(self.weight.transpose(0, 1), (1, 1, 1, 1)) w = w[:, :, 1:, 1:] + w[:, :, 1:, :-1] + w[:, :, :-1, 1:] + w[:, :, :-1, :-1] return F.conv_transpose2d(x, w, self.bias, stride=(2, 2), padding=self.padding) else: return nn.Conv2d.forward(self, F.interpolate(x, scale_factor=2)) class Blur2d(nn.Module): def __init__(self, kernel=[1, 2, 1], padding=1, normalize=True, flip=False, stride=1): super().__init__() self.stride = stride self.padding = padding # build kernel kernel = torch.as_tensor(kernel, dtype=torch.get_default_dtype()) if kernel.dim() == 1: kernel = kernel[:, None] * kernel assert kernel.dim() == 2 if normalize: kernel /= kernel.sum() if flip: kernel = kernel.flip(0, 1) if kernel.numel() == 1 and kernel[0, 0].item() == 1: # No-op => early exit. self.no_conv = True else: self.no_conv = False # prepare for conv2d # use single channel (merge nc to batch dimension) self.register_buffer('kernel', kernel.expand(1, 1, -1, -1).contiguous()) def forward(self, x): if self.no_conv: if self.stride == 1: return x else: return x[:, :, ::self.stride, ::self.stride] else: b, nc, h, w = x.size() y = F.conv2d(x.reshape(-1, 1, h, w), self.kernel, bias=None, stride=self.stride, padding=self.padding) return y.view(b, nc, y.size(2), y.size(3)) class MappingG(nn.Module): def __init__(self, z_dim=512, w_dim=512, dim_latent=512, n_layers=8, nonlinearity=LeakyReLU, use_wscale=True, use_class_labels=False, nlabels=1, embed_size=0, lrmul=0.01): super().__init__() self.z_dim = z_dim self.w_dim = w_dim self.dim_latent = dim_latent assert n_layers >= 1 self.n_layers = n_layers self.act = nonlinearity scale_param_opt = dict(gain=self.act.gain, lrmul=lrmul, use_wscale=use_wscale) self.use_class_labels = use_class_labels if self.use_class_labels: self.embedding = nn.Embedding(nlabels, embed_size) dim = z_dim + embed_size if use_class_labels else z_dim self.fcs = nn.ModuleList() for i in range(n_layers): self.fcs.append( ScaledParamLinear(dim, dim_latent if i < (n_layers - 1) else w_dim, **scale_param_opt), ) dim = dim_latent def forward(self, z, y=None): if self.use_class_labels: yembed = self.embedding(y) yembed = yembed / torch.norm(yembed, p=2, dim=1, keepdim=True) z = torch.cat([z, yembed], dim=1) # NB: this is not z.norm(p=2, dim=1, keepdim=True)!!!! z = z * z.pow(2).mean(dim=1, keepdim=True).add_(1e-8).rsqrt() for fc in self.fcs: z = self.act(fc(z)) return z def __repr__(self): return '{}(z_dim={}, w_dim={}, dim_latent={}, n_layers={}, ...)'.format( self.__class__.__name__, self.z_dim, self.w_dim, self.dim_latent, self.n_layers) class SynthesisG(nn.Module): class AddNoise(ScaledParamModule): # `B` block + Noise in Fig1 def __init__(self, nc, res): super().__init__() self.res = res self.weight = nn.Parameter(torch.zeros(nc, 1, 1, requires_grad=True)) self.bias = nn.Parameter(torch.zeros(nc, 1, 1, requires_grad=True)) self.scale_bias(lrmul=1) def forward(self, x, noise=None): if noise is None: noise = torch.randn(x.size(0), 1, self.res, self.res, device=x.device, dtype=x.dtype) return x + noise * self.weight + self.bias class AffineStyle(nn.Module): # `A` block + AdaIN in Fig1 def __init__(self, w_dim, nc): super().__init__() self.nc = nc self.fc = ScaledParamLinear(w_dim, nc * 2, gain=1) def forward(self, x, w): normalized = F.instance_norm(x, weight=None, bias=None, eps=1e-8) affine_params = self.fc(w).view(-1, 2, self.nc, 1, 1) return normalized * (affine_params[:, 0].add_(1)) + affine_params[:, 1] class Block(nn.Module): def __init__(self, w_dim, in_res, in_nc, out_res, out_nc, blur_filter=[1, 2, 1], nonlinearity=LeakyReLU, use_wscale=True, lrmul=1, skip_first_layer=False): # skip_first_layer skips the upsample & first conv, used for first block super().__init__() self.skip_first_layer = skip_first_layer self.act = nonlinearity scale_param_opt = dict(gain=self.act.gain, lrmul=lrmul, use_wscale=use_wscale) # NB: the following (up)conv* layers have bias=False, because we # assume that we are always using noise, and the bias is applied # in noise* layers. This is still consistent with official tf # code. if not self.skip_first_layer: self.upconv1 = UpConv2d(in_res, in_nc, out_nc, 3, padding=1, bias=False, **scale_param_opt) assert len(blur_filter) % 2 == 1 self.blur1 = Blur2d(blur_filter, padding=(len(blur_filter) >> 1)) self.noise1 = SynthesisG.AddNoise(out_nc, out_res) self.style1 = SynthesisG.AffineStyle(w_dim, out_nc) self.conv2 = ScaledParamConv2d(out_nc, out_nc, 3, padding=1, bias=False, **scale_param_opt) self.noise2 = SynthesisG.AddNoise(out_nc, out_res) self.style2 = SynthesisG.AffineStyle(w_dim, out_nc) def forward(self, x, ws, noises=(None, None)): if not self.skip_first_layer: x = self.blur1(self.upconv1(x)) x = self.noise1(x, noises[0]) x = self.act(x) x = self.style1(x, ws[0]) x = self.conv2(x) x = self.noise2(x, noises[1]) x = self.act(x) x = self.style2(x, ws[1]) return x def __init__(self, w_dim=512, image_out_nc=3, image_out_res=1024, nc_base=8192, nc_decay=1.0, nc_max=512, nonlinearity=LeakyReLU, use_wscale=True, lrmul=1): super().__init__() self.out_res = image_out_res log_image_out_res = int(np.log2(image_out_res)) assert image_out_res == 2 ** log_image_out_res and image_out_res >= 4 # output nc of a block. # # log_res refers to the input to the block, which is immediately # upsampled. # # In the first block, there is no upsample, and input is directly 4x4, # but you should still treat as if it is upsampled from 2x2 and use # log_res=1. def get_out_nc(log_res): return min(int(nc_base / 2 ** (log_res * nc_decay)), nc_max) self.const = nn.Parameter(torch.ones(1, get_out_nc(1), 4, 4, requires_grad=True)) # start at 4x4 in_res = 2 in_nc = None # first shouldn't matter for in_log_res in range(1, log_image_out_res): out_res = in_res * 2 out_nc = get_out_nc(in_log_res) b = SynthesisG.Block( w_dim, in_res, in_nc, out_res, out_nc, skip_first_layer=(in_log_res == 1), nonlinearity=nonlinearity, use_wscale=use_wscale, lrmul=lrmul, ) self.add_module('{res}x{res}'.format(res=out_res), b) to_rgb = ScaledParamConv2d(out_nc, image_out_nc, 1, gain=1, use_wscale=use_wscale, lrmul=lrmul) out_log_res = in_log_res + 1 self.add_module('{res}x{res}_to_rgb_lod{lod}'.format( res=out_res, lod=(log_image_out_res - out_log_res)), to_rgb) in_res = out_res in_nc = out_nc assert in_res == image_out_res self.num_blocks = len(self.blocks) self.num_layers = self.num_blocks * 2 @property def blocks(self): blocks = [] children_dict = {} for name, module in self.named_children(): children_dict[name] = module log_out_res = int(np.log2(self.out_res)) out_res = 4 for _ in range(1, log_out_res): name = '{res}x{res}'.format(res=out_res) module = children_dict[name] blocks.append(module) out_res = out_res * 2 return blocks @property def rgb_convs(self): rgb_convs = [] children_dict = {} for name, module in self.named_children(): children_dict[name] = module log_out_res = int(np.log2(self.out_res)) out_res = 4 for in_log_res in range(1, log_out_res): out_log_res = in_log_res + 1 name = '{res}x{res}_to_rgb_lod{lod}'.format(res=out_res, lod=(log_out_res - out_log_res)) module = children_dict[name] rgb_convs.append(module) out_res = out_res * 2 return rgb_convs # allow taking in a list of W for style mixing def forward(self, ws, lod=0, alpha=1, noises=None): blocks = self.blocks rgb_convs = self.rgb_convs assert 0 <= lod < len(blocks) stop_after = len(blocks) - lod - 1 num_layers = (stop_after + 1) * 2 if isinstance(ws, torch.Tensor) and ws.dim() == 3: ws = ws.unbind(dim=1) # assuming its [batch x num_layer x w] if not isinstance(ws, collections.abc.Sequence): ws = [ws for _ in range(num_layers)] if not isinstance(noises, collections.abc.Sequence): noises = [noises for _ in range(num_layers)] x = self.const.expand(ws[0].size(0), -1, -1, -1) for i, b in enumerate(blocks): block_extra_inp_indices = slice(i * 2, i * 2 + 2) x = b(x, ws[block_extra_inp_indices], noises=noises[block_extra_inp_indices]) if i == stop_after - 1: y = F.interpolate(x, scale_factor=2) y = rgb_convs[stop_after - 1](y) if i == stop_after: x = rgb_convs[i](x) return x if stop_after == 0 else (1 - alpha) * y + alpha * x class G(nn.Module): def __init__(self, z_dim=512, w_dim=512, out_nc=3, out_res=1024, use_class_labels=False, w_avg_beta=0.995, # find moving average of w, in training style_mixing_prob=0.995, # prob of applying style mixing, in training truncation_psi=0.7, # mixing rate to w_avg for truncation, in eval truncation_cutoff=8, # layer cutoff index index for truncation, in eval nlabels=1, # number of classes (if using class labels) embed_size=256, # embedding size for encoding class label information nonlinearity=LeakyReLU, use_wscale=True, **kwargs): super().__init__() self.register_buffer('w_avg', torch.zeros(w_dim)) self.z_dim = z_dim self.w_dim = w_dim self.out_nc = out_nc self.out_res = out_res self.w_avg_beta = w_avg_beta self.style_mixing_prob = style_mixing_prob self.truncation_psi = truncation_psi self.truncation_cutoff = truncation_cutoff self.mapping = MappingG(z_dim, w_dim, nonlinearity=nonlinearity, use_wscale=use_wscale, use_class_labels=use_class_labels, nlabels=nlabels, embed_size=embed_size) self.synthesis = SynthesisG(w_dim, out_nc, out_res, nonlinearity=nonlinearity, use_wscale=use_wscale) def forward(self, z, y=None, lod=0, alpha=1, w=None, noises=None, get_w=False, w_avg_beta=None, style_mixing_prob=None, truncation_psi=None, truncation_cutoff=None): # really is the total number of layers for the synthesis network total_num_layers = self.synthesis.num_layers forward_num_layers = total_num_layers - lod * 2 if w is None: assert z is not None and z.dim() == 2 and z.size(1) == self.z_dim w = self.mapping(z, y) else: assert w.dim() == 2 and w.size(1) == self.w_dim if get_w: mapping_output_w = w.clone() ws = [w for _ in range(total_num_layers)] if self.training: # update moving average if w_avg_beta is None: w_avg_beta = self.w_avg_beta if w_avg_beta != 1: with torch.no_grad(): torch.lerp(w.mean(0), self.w_avg, self.w_avg_beta, out=self.w_avg) # style mixing if style_mixing_prob is None: style_mixing_prob = self.style_mixing_prob if style_mixing_prob > 0 and torch.rand((), device='cpu').item() < style_mixing_prob: w2 = self.mapping(torch.randn_like(z), y) cutoff = int(torch.randint(low=1, high=forward_num_layers, size=(), device='cpu').item()) # w for < cutoff; w2 for >= cutoff ws = ws[:cutoff] + [w2 for _ in range(forward_num_layers - cutoff)] else: # truncation if truncation_psi is None: truncation_psi = self.truncation_psi if truncation_cutoff is None: truncation_cutoff = self.truncation_cutoff # truncate for < cutoff if truncation_cutoff > 0 and truncation_psi != 1: expanded_avg_w = self.w_avg.expand_as(ws[0]) # in eval part, current code implies that ws is a list of the same w # tensor repeated many times since there is no style mixing, but # let's be general and detect before optimizing for that. if all(_w is w for _w in ws): truncate_w = torch.lerp(expanded_avg_w, w, truncation_psi) ws = [truncate_w for _ in range(truncation_cutoff)] + ws[:(forward_num_layers - truncation_cutoff)] else: for i in range(truncation_cutoff): # use out-of-place because these ws may be references to the # same tensor ws[i] = torch.lerp(expanded_avg_w, w[i], truncation_psi) ims = self.synthesis(ws, lod=lod, noises=noises, alpha=alpha) if get_w: return mapping_output_w, ims else: return ims def __repr__(self): return '{}(z_dim={}, w_dim={}, out_nc={}, out_res={}, ...)'.format( self.__class__.__name__, self.z_dim, self.w_dim, self.out_nc, self.out_res) def convert_tf_weights_to_state_dict(self, tf_net, device=torch.device('cpu')): # full of hacks state_dict = {} def raise_unexpected(tf_k, v): raise RuntimeError("Unexpected key '{}' with shape: {}".format(tf_k, v.size())) def transform_conv_w(v): # tf: [ k1, k2, nc_in, nc_out ] # pt: [ nc_out, nc_in, k1, k2 ] return v.permute(3, 2, 0, 1) def transform_fc_w(v): # tf: [ fan_in, fan_out ] # pt: [ fan_out, fan_in ] return v.t() def sub_synthesis(k, tf_k, v): k = k.replace('G_synthesis.', 'synthesis.') def replace_tail_if_match(pattern, new): nonlocal k if k.endswith(pattern): k = k[:-len(pattern)] + new return True return False # deal with the first block if k == 'synthesis.4x4.Const.const': return 'synthesis.const', v elif k.startswith('synthesis.4x4.'): if 'synthesis.4x4.Const' in k: k = k.replace('synthesis.4x4.Const', 'synthesis.4x4.Conv0_up') elif 'synthesis.4x4.Conv' in k: k = k.replace('synthesis.4x4.Conv', 'synthesis.4x4.Conv1') else: raise_unexpected(tf_k, v) if replace_tail_if_match('.Conv0_up.weight', '.upconv1._weight'): # noqa: E241, E202 return k, transform_conv_w(v) if replace_tail_if_match('.Conv0_up.Noise.weight', '.noise1.weight'): # noqa: E241, E202 return k, v.view(-1, 1, 1) if replace_tail_if_match('.Conv0_up.bias', '.noise1._bias'): # noqa: E241, E202 return k, v.view(-1, 1, 1) if replace_tail_if_match('.Conv0_up.StyleMod.weight', '.style1.fc._weight'): # noqa: E241, E202 return k, transform_fc_w(v) if replace_tail_if_match('.Conv0_up.StyleMod.bias', '.style1.fc._bias'): # noqa: E241, E202 return k, v if 'Conv0_up' in k: raise_unexpected(tf_k, v) if replace_tail_if_match('.Conv1.weight', '.conv2._weight'): # noqa: E241, E202 return k, transform_conv_w(v) if replace_tail_if_match('.Conv1.Noise.weight', '.noise2.weight'): # noqa: E241, E202 return k, v.view(-1, 1, 1) if replace_tail_if_match('.Conv1.bias', '.noise2._bias'): # noqa: E241, E202 return k, v.view(-1, 1, 1) if replace_tail_if_match('.Conv1.StyleMod.weight', '.style2.fc._weight'): # noqa: E241, E202 return k, transform_fc_w(v) if replace_tail_if_match('.Conv1.StyleMod.bias', '.style2.fc._bias'): # noqa: E241, E202 return k, v if 'Conv1' in k: raise_unexpected(tf_k, v) m = re.match(r'^synthesis\.ToRGB_lod(\d+)\.(weight|bias)$', k) if m: lod = int(m.group(1)) k = 'synthesis.{res}x{res}_to_rgb_lod{lod}._{name}'.format( res=int(self.out_res / 2 ** lod), lod=lod, name=m.group(2)) if m.group(2) == 'weight': v = transform_conv_w(v) return k, v raise_unexpected(tf_k, v) for tf_k, tf_v in tf_net.vars.items(): assert '.' not in tf_k k = tf_k.replace('/', '.') v = torch.as_tensor(tf_v.eval()) if k in {'lod', 'G_synthesis.lod'} or k.startswith('G_synthesis.noise'): # no input buffer continue elif k == 'dlatent_avg': k = 'w_avg' elif k.startswith('G_synthesis.'): k, v = sub_synthesis(k, tf_k, v) elif k.startswith('G_mapping.'): m = re.match(r'^G_mapping\.Dense(\d+)\.(weight|bias)$', k) if not m: raise_unexpected(tf_k, v) k = 'mapping.fcs.{}._{}'.format(m.group(1), m.group(2)) if m.group(2) == 'weight': v = transform_fc_w(v) else: raise_unexpected(tf_k, v) state_dict[k] = v # tf state dict doesn't have the blur kernels, but pytorch wants to see # them for k, v in self.state_dict().items(): if re.match(r'^synthesis\.\d+x\d+\.blur1\.kernel$', k): state_dict[k] = v.detach() # device & contiguity for k in state_dict: state_dict[k] = state_dict[k].to(device).contiguous() return state_dict @property def dim_z(self): return self.z_dim class D(nn.Module): # Discriminator from https://arxiv.org/pdf/1710.10196.pdf class MinibatchStddev(nn.Module): def __init__(self): super().__init__() def forward(self, x, group_size=4): ''' Implements the MinibatchStddevLayer from https://arxiv.org/pdf/1710.10196.pdf group size: int, must divide the batch size in: BS x C x H x W out: BS x (C + 1) x H x W ''' s = x.size() group_size = min(group_size, s[0]) y = x.view(group_size, -1, s[1], s[2], s[3]) y = y - torch.mean(y, 0, keepdim=True) y = (y**2).mean(0, keepdim=False) y = torch.sqrt(y + 10**-8) # y = y.mean((1, 2, 3), keepdim=True).expand_as(x) y = y.mean((1, 2, 3), keepdim=True).repeat(group_size, 1, s[2], s[3]) return torch.cat([x, y], 1) class ConvBlock(nn.Module): def __init__(self, in_nc, out_nc, last_layer=False, nonlinearity=LeakyReLU, use_wscale=True, lrmul=1.0): super().__init__() self.act = nonlinearity self.last_layer = last_layer scale_param_opt = dict(gain=self.act.gain, lrmul=lrmul, use_wscale=use_wscale) if not self.last_layer: self.blur = Blur2d(kernel=[1, 2, 1], normalize=True, stride=1, padding=1) self.pool = Blur2d(kernel=[0.5, 0.5], normalize=False, stride=2, padding=0) self.conv1 = ScaledParamConv2d(in_nc, in_nc, 3, padding=1, bias=True, **scale_param_opt) self.conv2 = ScaledParamConv2d(in_nc, out_nc, 3, padding=1, bias=True, **scale_param_opt) else: self.minibatch_stddev = D.MinibatchStddev() self.conv1 = ScaledParamConv2d(in_nc + 1, in_nc, 3, padding=1, bias=True, **scale_param_opt) self.conv2 = ScaledParamLinear(in_nc * 16, out_nc, bias=True, **scale_param_opt) def forward(self, x): if self.last_layer: x = self.minibatch_stddev(x) out = self.act(self.conv1(x)) if self.last_layer: out = out.view(out.size(0), -1) else: out = self.blur(out) # out = self.act(self.conv2(out)) #possible change in order out = self.conv2(out) if not self.last_layer: out = self.pool(out) return out def __init__(self, image_in_nc=3, out_res=1024, nc_base=16, nc_decay=1.0, nc_max=512, nonlinearity=LeakyReLU, use_wscale=True, use_class_labels=False, nlabels=None, lrmul=1, **kwargs): super().__init__() self.out_res = out_res log_out_res = int(np.log2(out_res)) assert out_res == 2 ** log_out_res and out_res >= 4 # output nc of a block. # # log_res refers to the input to the block, which is immediately # upsampled. # # In the first block, there is no upsample, and input is directly 4x4, # but you should still treat as if it is upsampled from 2x2 and use # log_res=1. def get_in_nc(log_res): return min(int(nc_base * 2**(log_res - 1)), nc_max) def get_out_nc(log_res): return min(int(nc_base * 2**log_res), nc_max) # plain list # we will register them using more meaningful names, mainly to be easier # loading tf weights, which are stored in namespaces alike 4x4, 16x16, # etc. # start at 4x4 in_res = 2 # first shouldn't matter for in_log_res in reversed(range(1, log_out_res)): out_res = in_res * 2 in_nc = get_in_nc(in_log_res) out_nc = get_out_nc(in_log_res) from_rgb = ScaledParamConv2d(image_in_nc, in_nc, kernel_size=1, gain=nonlinearity.gain, bias=True, use_wscale=use_wscale, lrmul=lrmul) b = D.ConvBlock(in_nc, out_nc, last_layer=(in_log_res == log_out_res - 1), nonlinearity=nonlinearity, use_wscale=use_wscale, lrmul=lrmul) self.add_module('{res}x{res}'.format(res=out_res), b) out_log_res = in_log_res + 1 self.add_module('{res}x{res}_from_rgb_lod{lod}'.format( res=out_res, lod=(out_log_res - 2)), from_rgb) in_res = out_res assert in_res == out_res self.num_blocks = len(self.blocks) self.num_layers = self.num_blocks * 2 self.use_class_labels = use_class_labels self.avgpool = Blur2d(kernel=[0.5, 0.5], normalize=False, stride=2, padding=0) if self.use_class_labels: self.fc = ScaledParamLinear(min(get_out_nc(log_out_res - 1), nc_max), nlabels, gain=1.0, bias=True, use_wscale=True, lrmul=lrmul) else: self.fc = ScaledParamLinear(min(get_out_nc(log_out_res - 1), nc_max), 1, gain=1.0, bias=True, use_wscale=True, lrmul=lrmul) @property def blocks(self): blocks = [] children_dict = {} for name, module in self.named_children(): children_dict[name] = module log_out_res = int(np.log2(self.out_res)) out_res = 4 for _ in reversed(range(1, log_out_res)): name = '{res}x{res}'.format(res=out_res) module = children_dict[name] blocks.append(module) out_res = out_res * 2 return blocks @property def rgb_convs(self): rgb_convs = [] children_dict = {} for name, module in self.named_children(): children_dict[name] = module log_out_res = int(np.log2(self.out_res)) out_res = 4 for in_log_res in reversed(range(1, log_out_res)): out_log_res = in_log_res + 1 name = '{res}x{res}_from_rgb_lod{lod}'.format(res=out_res, lod=(out_log_res - 2)) module = children_dict[name] rgb_convs.append(module) out_res = out_res * 2 return rgb_convs def forward(self, x, labels=None, lod=0, alpha=1): blocks = self.blocks rgb_convs = self.rgb_convs assert 0 <= lod < len(blocks) stop_after = len(blocks) - lod - 1 if stop_after != 0: y = self.avgpool(x) y = rgb_convs[stop_after - 1](y) x = rgb_convs[stop_after](x) x = blocks[stop_after](x) # x = alpha * x + (1 - alpha) * y x = torch.lerp(y, x, alpha) stop_after -= 1 else: x = rgb_convs[stop_after](x) for i, b in reversed(list(enumerate(blocks))): if i <= stop_after: x = b(x) x = x.view(x.size(0), -1) out = self.fc(x) if self.use_class_labels: if labels.dim() != 2: labels = labels.unsqueeze(1) out = out.gather(1, labels) # index = Variable(torch.LongTensor(range(out.size(0)))) # if labels.is_cuda: # index = index.cuda() # out = out[index, labels] return out def convert_tf_weights_to_state_dict(self, tf_net, device=torch.device('cpu')): # full of hacks state_dict = {} def raise_unexpected(tf_k, v): raise RuntimeError("Unexpected key '{}' with shape: {}".format(tf_k, v.size())) def transform_conv_w(v): # tf: [ k1, k2, nc_in, nc_out ] # pt: [ nc_out, nc_in, k1, k2 ] return v.permute(3, 2, 0, 1) def transform_fc_w(v): # tf: [ fan_in, fan_out ] # pt: [ fan_out, fan_in ] return v.t() def from_rgb(k, tf_k, v): m = re.match(r'^FromRGB_lod(\d+)\.(weight|bias)$', k) if m: lod = int(m.group(1)) k = '{res}x{res}_from_rgb_lod{lod}._{name}'.format( res=int(self.out_res / 2 ** lod), lod=lod, name=m.group(2)) if m.group(2) == 'weight': v = transform_conv_w(v) else: v = v.view(-1) return k, v def sub_synthesis(k, tf_k, v): def replace_tail_if_match(pattern, new): nonlocal k if k.endswith(pattern): k = k[:-len(pattern)] + new return True return False if k.startswith('4x4.'): if '4x4.Conv' in k: k = k.replace('4x4.Conv', '4x4.Conv0') elif '4x4.Dense0' in k: if k == '4x4.Dense0.weight': return '4x4.conv2._weight', transform_fc_w(v) if k == '4x4.Dense0.bias': return '4x4.conv2._bias', v.view(-1) raise_unexpected(tf_k, v) elif '4x4.Dense1' in k: k = k.replace('4x4.Dense1', 'fc') if k.endswith('weight'): k = k.replace('weight', '_weight') return k, transform_fc_w(v) if k.endswith('bias'): k = k.replace('bias', '_bias') return k, v raise_unexpected(tf_k, v) else: raise_unexpected(tf_k, v) if replace_tail_if_match('.Conv0.weight', '.conv1._weight'): # noqa: E241, E202 return k, transform_conv_w(v) if replace_tail_if_match('.Conv0.bias', '.conv1._bias'): # noqa: E241, E202 return k, v.view(-1) if 'Conv0' in k: raise_unexpected(tf_k, v) if replace_tail_if_match('.Conv1_down.weight', '.conv2._weight'): # noqa: E241, E202 return k, transform_conv_w(v) if replace_tail_if_match('.Conv1_down.bias', '.conv2._bias'): # noqa: E241, E202 return k, v.view(-1) if 'Conv1' in k: raise_unexpected(tf_k, v) raise_unexpected(tf_k, v) for tf_k, tf_v in tf_net.vars.items(): assert '.' not in tf_k k = tf_k.replace('/', '.') v = torch.as_tensor(tf_v.eval()) if k in {'lod'}: # no input buffer continue elif k.startswith('FromRGB'): k, v = from_rgb(k, tf_k, v) elif 'weight' in k or 'bias' in k: k, v = sub_synthesis(k, tf_k, v) else: raise_unexpected(tf_k, v) state_dict[k] = v # tf state dict doesn't have the blur kernels, but pytorch wants to see # them for k, v in self.state_dict().items(): if re.match(r'\d+x\d+\.blur\.kernel$', k): state_dict[k] = v.detach() if re.match(r'\d+x\d+\.pool\.kernel$', k): state_dict[k] = v.detach() if k == 'avgpool.kernel': state_dict[k] = v.detach() # device & contiguity for k in state_dict: state_dict[k] = state_dict[k].to(device).contiguous() return state_dict
[ "torch.sqrt", "torch.nn.Embedding", "torch.cat", "collections.defaultdict", "torch.nn.functional.leaky_relu", "torch.device", "torch.no_grad", "os.path.join", "numpy.prod", "os.path.dirname", "torch.lerp", "torch.zeros", "torch.hub.load_state_dict_from_url", "torch.mean", "torch.randint", "torch.randn_like", "torch.nn.ModuleList", "numpy.log2", "torch.norm", "re.match", "torch.rand", "torch.nn.functional.instance_norm", "torch.nn.functional.conv_transpose2d", "torch.nn.functional.interpolate", "torch.get_default_dtype", "numpy.sqrt" ]
[((428, 465), 'collections.defaultdict', 'collections.defaultdict', (['(lambda : 512)'], {}), '(lambda : 512)\n', (451, 465), False, 'import collections\n'), ((790, 815), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (805, 815), False, 'import os\n'), ((2324, 2334), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (2331, 2334), True, 'import numpy as np\n'), ((2401, 2411), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (2408, 2411), True, 'import numpy as np\n'), ((1786, 1825), 'torch.hub.load_state_dict_from_url', 'torch.hub.load_state_dict_from_url', (['url'], {}), '(url)\n', (1820, 1825), False, 'import torch\n'), ((2482, 2534), 'torch.nn.functional.leaky_relu', 'F.leaky_relu', (['x'], {'negative_slope': '(0.2)', 'inplace': 'inplace'}), '(x, negative_slope=0.2, inplace=inplace)\n', (2494, 2534), True, 'import torch.nn.functional as F\n'), ((3087, 3097), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (3094, 3097), True, 'import numpy as np\n'), ((3241, 3266), 'numpy.prod', 'np.prod', (['weight.shape[1:]'], {}), '(weight.shape[1:])\n', (3248, 3266), True, 'import numpy as np\n'), ((4836, 4846), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (4843, 4846), True, 'import numpy as np\n'), ((5299, 5309), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (5306, 5309), True, 'import numpy as np\n'), ((7067, 7077), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (7074, 7077), True, 'import numpy as np\n'), ((9766, 9781), 'torch.nn.ModuleList', 'nn.ModuleList', ([], {}), '()\n', (9779, 9781), True, 'import torch.nn as nn\n'), ((22423, 22442), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (22435, 22442), False, 'import torch\n'), ((34470, 34489), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (34482, 34489), False, 'import torch\n'), ((946, 1006), 'os.path.join', 'os.path.join', (['root_url', '"""celeba_hq_1024x1024_G-c8acef81.pth"""'], {}), "(root_url, 'celeba_hq_1024x1024_G-c8acef81.pth')\n", (958, 1006), False, 'import os\n'), ((1074, 1130), 'os.path.join', 'os.path.join', (['root_url', '"""ff_hq_1024x1024_G-21a7044d.pth"""'], {}), "(root_url, 'ff_hq_1024x1024_G-21a7044d.pth')\n", (1086, 1130), False, 'import os\n'), ((1203, 1264), 'os.path.join', 'os.path.join', (['root_url', '"""lsun_bedroom_256x256_G-da907d98.pth"""'], {}), "(root_url, 'lsun_bedroom_256x256_G-da907d98.pth')\n", (1215, 1264), False, 'import os\n'), ((1334, 1391), 'os.path.join', 'os.path.join', (['root_url', '"""lsun_car_512x384_G-d2188b0a.pth"""'], {}), "(root_url, 'lsun_car_512x384_G-d2188b0a.pth')\n", (1346, 1391), False, 'import os\n'), ((1461, 1518), 'os.path.join', 'os.path.join', (['root_url', '"""lsun_cat_256x256_G-384e9e73.pth"""'], {}), "(root_url, 'lsun_cat_256x256_G-384e9e73.pth')\n", (1473, 1518), False, 'import os\n'), ((3291, 3306), 'numpy.sqrt', 'np.sqrt', (['fan_in'], {}), '(fan_in)\n', (3298, 3306), True, 'import numpy as np\n'), ((7538, 7610), 'torch.nn.functional.conv_transpose2d', 'F.conv_transpose2d', (['x', 'w', 'self.bias'], {'stride': '(2, 2)', 'padding': 'self.padding'}), '(x, w, self.bias, stride=(2, 2), padding=self.padding)\n', (7556, 7610), True, 'import torch.nn.functional as F\n'), ((9647, 9680), 'torch.nn.Embedding', 'nn.Embedding', (['nlabels', 'embed_size'], {}), '(nlabels, embed_size)\n', (9659, 9680), True, 'import torch.nn as nn\n'), ((10191, 10220), 'torch.cat', 'torch.cat', (['[z, yembed]'], {'dim': '(1)'}), '([z, yembed], dim=1)\n', (10200, 10220), False, 'import torch\n'), ((11548, 11601), 'torch.nn.functional.instance_norm', 'F.instance_norm', (['x'], {'weight': 'None', 'bias': 'None', 'eps': '(1e-08)'}), '(x, weight=None, bias=None, eps=1e-08)\n', (11563, 11601), True, 'import torch.nn.functional as F\n'), ((13904, 13926), 'numpy.log2', 'np.log2', (['image_out_res'], {}), '(image_out_res)\n', (13911, 13926), True, 'import numpy as np\n'), ((15731, 15752), 'numpy.log2', 'np.log2', (['self.out_res'], {}), '(self.out_res)\n', (15738, 15752), True, 'import numpy as np\n'), ((16208, 16229), 'numpy.log2', 'np.log2', (['self.out_res'], {}), '(self.out_res)\n', (16215, 16229), True, 'import numpy as np\n'), ((18615, 18633), 'torch.zeros', 'torch.zeros', (['w_dim'], {}), '(w_dim)\n', (18626, 18633), False, 'import torch\n'), ((25326, 25386), 're.match', 're.match', (['"""^synthesis\\\\.ToRGB_lod(\\\\d+)\\\\.(weight|bias)$"""', 'k'], {}), "('^synthesis\\\\.ToRGB_lod(\\\\d+)\\\\.(weight|bias)$', k)\n", (25334, 25386), False, 'import re\n'), ((26828, 26883), 're.match', 're.match', (['"""^synthesis\\\\.\\\\d+x\\\\d+\\\\.blur1\\\\.kernel$"""', 'k'], {}), "('^synthesis\\\\.\\\\d+x\\\\d+\\\\.blur1\\\\.kernel$', k)\n", (26836, 26883), False, 'import re\n'), ((27855, 27879), 'torch.sqrt', 'torch.sqrt', (['(y + 10 ** -8)'], {}), '(y + 10 ** -8)\n', (27865, 27879), False, 'import torch\n'), ((28042, 28062), 'torch.cat', 'torch.cat', (['[x, y]', '(1)'], {}), '([x, y], 1)\n', (28051, 28062), False, 'import torch\n'), ((29917, 29933), 'numpy.log2', 'np.log2', (['out_res'], {}), '(out_res)\n', (29924, 29933), True, 'import numpy as np\n'), ((32466, 32487), 'numpy.log2', 'np.log2', (['self.out_res'], {}), '(self.out_res)\n', (32473, 32487), True, 'import numpy as np\n'), ((32954, 32975), 'numpy.log2', 'np.log2', (['self.out_res'], {}), '(self.out_res)\n', (32961, 32975), True, 'import numpy as np\n'), ((33778, 33801), 'torch.lerp', 'torch.lerp', (['y', 'x', 'alpha'], {}), '(y, x, alpha)\n', (33788, 33801), False, 'import torch\n'), ((35019, 35069), 're.match', 're.match', (['"""^FromRGB_lod(\\\\d+)\\\\.(weight|bias)$"""', 'k'], {}), "('^FromRGB_lod(\\\\d+)\\\\.(weight|bias)$', k)\n", (35027, 35069), False, 'import re\n'), ((38074, 38115), 're.match', 're.match', (['"""\\\\d+x\\\\d+\\\\.blur\\\\.kernel$"""', 'k'], {}), "('\\\\d+x\\\\d+\\\\.blur\\\\.kernel$', k)\n", (38082, 38115), False, 'import re\n'), ((38172, 38213), 're.match', 're.match', (['"""\\\\d+x\\\\d+\\\\.pool\\\\.kernel$"""', 'k'], {}), "('\\\\d+x\\\\d+\\\\.pool\\\\.kernel$', k)\n", (38180, 38213), False, 'import re\n'), ((7668, 7700), 'torch.nn.functional.interpolate', 'F.interpolate', (['x'], {'scale_factor': '(2)'}), '(x, scale_factor=2)\n', (7681, 7700), True, 'import torch.nn.functional as F\n'), ((7979, 8004), 'torch.get_default_dtype', 'torch.get_default_dtype', ([], {}), '()\n', (8002, 8004), False, 'import torch\n'), ((10130, 10174), 'torch.norm', 'torch.norm', (['yembed'], {'p': '(2)', 'dim': '(1)', 'keepdim': '(True)'}), '(yembed, p=2, dim=1, keepdim=True)\n', (10140, 10174), False, 'import torch\n'), ((10870, 10911), 'torch.zeros', 'torch.zeros', (['nc', '(1)', '(1)'], {'requires_grad': '(True)'}), '(nc, 1, 1, requires_grad=True)\n', (10881, 10911), False, 'import torch\n'), ((10950, 10991), 'torch.zeros', 'torch.zeros', (['nc', '(1)', '(1)'], {'requires_grad': '(True)'}), '(nc, 1, 1, requires_grad=True)\n', (10961, 10991), False, 'import torch\n'), ((17543, 17575), 'torch.nn.functional.interpolate', 'F.interpolate', (['x'], {'scale_factor': '(2)'}), '(x, scale_factor=2)\n', (17556, 17575), True, 'import torch.nn.functional as F\n'), ((27762, 27792), 'torch.mean', 'torch.mean', (['y', '(0)'], {'keepdim': '(True)'}), '(y, 0, keepdim=True)\n', (27772, 27792), False, 'import torch\n'), ((20213, 20228), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (20226, 20228), False, 'import torch\n'), ((20578, 20597), 'torch.randn_like', 'torch.randn_like', (['z'], {}), '(z)\n', (20594, 20597), False, 'import torch\n'), ((21556, 21601), 'torch.lerp', 'torch.lerp', (['expanded_avg_w', 'w', 'truncation_psi'], {}), '(expanded_avg_w, w, truncation_psi)\n', (21566, 21601), False, 'import torch\n'), ((21954, 22002), 'torch.lerp', 'torch.lerp', (['expanded_avg_w', 'w[i]', 'truncation_psi'], {}), '(expanded_avg_w, w[i], truncation_psi)\n', (21964, 22002), False, 'import torch\n'), ((20487, 20515), 'torch.rand', 'torch.rand', (['()'], {'device': '"""cpu"""'}), "((), device='cpu')\n", (20497, 20515), False, 'import torch\n'), ((20631, 20699), 'torch.randint', 'torch.randint', ([], {'low': '(1)', 'high': 'forward_num_layers', 'size': '()', 'device': '"""cpu"""'}), "(low=1, high=forward_num_layers, size=(), device='cpu')\n", (20644, 20699), False, 'import torch\n'), ((26293, 26349), 're.match', 're.match', (['"""^G_mapping\\\\.Dense(\\\\d+)\\\\.(weight|bias)$"""', 'k'], {}), "('^G_mapping\\\\.Dense(\\\\d+)\\\\.(weight|bias)$', k)\n", (26301, 26349), False, 'import re\n')]
# coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Tests for supcon.classification_head.""" from absl.testing import parameterized import numpy as np import tensorflow.compat.v1 as tf from supcon import classification_head class ClassificationHeadTest(tf.test.TestCase, parameterized.TestCase): @parameterized.named_parameters( ('rank_1', 1), ('rank_4', 4), ('rank_8', 8), ) def testIncorrectRank(self, rank): inputs = tf.compat.v1.placeholder(tf.float32, shape=[10] * rank) with self.assertRaisesRegex(ValueError, 'is expected to have rank 2'): classifier = classification_head.ClassificationHead(num_classes=10) classifier(inputs) @parameterized.named_parameters( ('float32', tf.float32), ('float64', tf.float64), ('float16', tf.float16), ) def testConstructClassificationHead(self, dtype): batch_size = 3 num_classes = 10 input_shape = [batch_size, 4] expected_output_shape = [batch_size, num_classes] inputs = tf.random.uniform(input_shape, seed=1, dtype=dtype) classifier = classification_head.ClassificationHead(num_classes=num_classes) output = classifier(inputs) self.assertListEqual(expected_output_shape, output.shape.as_list()) self.assertEqual(inputs.dtype, output.dtype) def testGradient(self): inputs = tf.random.uniform((3, 4), dtype=tf.float64, seed=1) classifier = classification_head.ClassificationHead(num_classes=10) output = classifier(inputs) gradient = tf.gradients(output, inputs) self.assertIsNotNone(gradient) def testCreateVariables(self): inputs = tf.random.uniform((3, 4), dtype=tf.float64, seed=1) classifier = classification_head.ClassificationHead(num_classes=10) classifier(inputs) self.assertLen( [var for var in tf.trainable_variables() if 'kernel' in var.name], 1) self.assertLen( [var for var in tf.trainable_variables() if 'bias' in var.name], 1) def testInputOutput(self): batch_size = 3 num_classes = 10 expected_output_shape = (batch_size, num_classes) inputs = tf.random.uniform((batch_size, 4), dtype=tf.float64, seed=1) classifier = classification_head.ClassificationHead(num_classes=num_classes) output_tensor = classifier(inputs) with self.cached_session() as sess: sess.run(tf.compat.v1.global_variables_initializer()) outputs = sess.run(output_tensor) # Make sure that there are no NaNs self.assertFalse(np.isnan(outputs).any()) self.assertEqual(outputs.shape, expected_output_shape) if __name__ == '__main__': tf.test.main()
[ "supcon.classification_head.ClassificationHead", "tensorflow.compat.v1.random.uniform", "numpy.isnan", "tensorflow.compat.v1.test.main", "tensorflow.compat.v1.gradients", "absl.testing.parameterized.named_parameters", "tensorflow.compat.v1.compat.v1.global_variables_initializer", "tensorflow.compat.v1.trainable_variables", "tensorflow.compat.v1.compat.v1.placeholder" ]
[((882, 957), 'absl.testing.parameterized.named_parameters', 'parameterized.named_parameters', (["('rank_1', 1)", "('rank_4', 4)", "('rank_8', 8)"], {}), "(('rank_1', 1), ('rank_4', 4), ('rank_8', 8))\n", (912, 957), False, 'from absl.testing import parameterized\n'), ((1265, 1375), 'absl.testing.parameterized.named_parameters', 'parameterized.named_parameters', (["('float32', tf.float32)", "('float64', tf.float64)", "('float16', tf.float16)"], {}), "(('float32', tf.float32), ('float64', tf.\n float64), ('float16', tf.float16))\n", (1295, 1375), False, 'from absl.testing import parameterized\n'), ((3175, 3189), 'tensorflow.compat.v1.test.main', 'tf.test.main', ([], {}), '()\n', (3187, 3189), True, 'import tensorflow.compat.v1 as tf\n'), ((1031, 1086), 'tensorflow.compat.v1.compat.v1.placeholder', 'tf.compat.v1.placeholder', (['tf.float32'], {'shape': '([10] * rank)'}), '(tf.float32, shape=[10] * rank)\n', (1055, 1086), True, 'import tensorflow.compat.v1 as tf\n'), ((1587, 1638), 'tensorflow.compat.v1.random.uniform', 'tf.random.uniform', (['input_shape'], {'seed': '(1)', 'dtype': 'dtype'}), '(input_shape, seed=1, dtype=dtype)\n', (1604, 1638), True, 'import tensorflow.compat.v1 as tf\n'), ((1656, 1719), 'supcon.classification_head.ClassificationHead', 'classification_head.ClassificationHead', ([], {'num_classes': 'num_classes'}), '(num_classes=num_classes)\n', (1694, 1719), False, 'from supcon import classification_head\n'), ((1913, 1964), 'tensorflow.compat.v1.random.uniform', 'tf.random.uniform', (['(3, 4)'], {'dtype': 'tf.float64', 'seed': '(1)'}), '((3, 4), dtype=tf.float64, seed=1)\n', (1930, 1964), True, 'import tensorflow.compat.v1 as tf\n'), ((1982, 2036), 'supcon.classification_head.ClassificationHead', 'classification_head.ClassificationHead', ([], {'num_classes': '(10)'}), '(num_classes=10)\n', (2020, 2036), False, 'from supcon import classification_head\n'), ((2084, 2112), 'tensorflow.compat.v1.gradients', 'tf.gradients', (['output', 'inputs'], {}), '(output, inputs)\n', (2096, 2112), True, 'import tensorflow.compat.v1 as tf\n'), ((2195, 2246), 'tensorflow.compat.v1.random.uniform', 'tf.random.uniform', (['(3, 4)'], {'dtype': 'tf.float64', 'seed': '(1)'}), '((3, 4), dtype=tf.float64, seed=1)\n', (2212, 2246), True, 'import tensorflow.compat.v1 as tf\n'), ((2264, 2318), 'supcon.classification_head.ClassificationHead', 'classification_head.ClassificationHead', ([], {'num_classes': '(10)'}), '(num_classes=10)\n', (2302, 2318), False, 'from supcon import classification_head\n'), ((2673, 2733), 'tensorflow.compat.v1.random.uniform', 'tf.random.uniform', (['(batch_size, 4)'], {'dtype': 'tf.float64', 'seed': '(1)'}), '((batch_size, 4), dtype=tf.float64, seed=1)\n', (2690, 2733), True, 'import tensorflow.compat.v1 as tf\n'), ((2751, 2814), 'supcon.classification_head.ClassificationHead', 'classification_head.ClassificationHead', ([], {'num_classes': 'num_classes'}), '(num_classes=num_classes)\n', (2789, 2814), False, 'from supcon import classification_head\n'), ((1181, 1235), 'supcon.classification_head.ClassificationHead', 'classification_head.ClassificationHead', ([], {'num_classes': '(10)'}), '(num_classes=10)\n', (1219, 1235), False, 'from supcon import classification_head\n'), ((2909, 2952), 'tensorflow.compat.v1.compat.v1.global_variables_initializer', 'tf.compat.v1.global_variables_initializer', ([], {}), '()\n', (2950, 2952), True, 'import tensorflow.compat.v1 as tf\n'), ((2386, 2410), 'tensorflow.compat.v1.trainable_variables', 'tf.trainable_variables', ([], {}), '()\n', (2408, 2410), True, 'import tensorflow.compat.v1 as tf\n'), ((2484, 2508), 'tensorflow.compat.v1.trainable_variables', 'tf.trainable_variables', ([], {}), '()\n', (2506, 2508), True, 'import tensorflow.compat.v1 as tf\n'), ((3058, 3075), 'numpy.isnan', 'np.isnan', (['outputs'], {}), '(outputs)\n', (3066, 3075), True, 'import numpy as np\n')]
# License: MIT # ref: https://github.com/thomas-young-2013/open-box/blob/master/openbox/surrogate/skrf.py import logging import typing import numpy as np from typing import List, Optional, Tuple, Union from xbbo.surrogate.base import BaseRF from xbbo.configspace.space import DenseConfigurationSpace from xbbo.utils.constants import MAXINT from xbbo.utils.util import get_types logger = logging.getLogger(__name__) class RandomForestSurrogate(BaseRF): def __init__( self, configspace: DenseConfigurationSpace, ensemble_size: int = 10, normalize_y: bool = True, instance_features: typing.Optional[np.ndarray] = None, pca_components: typing.Optional[int] = None, rng: np.random.RandomState = np.random.RandomState(42),types=None,bounds=None, **kwargs ): self.model_config = dict() self.model_config["n_estimators"] = 10 self.model_config["criterion"] = "mse" self.model_config["max_depth"] = 12 self.model_config["min_samples_split"] = 3 self.model_config["min_samples_leaf"] = 3 self.model_config["min_weight_fraction_leaf"] = 0. self.model_config["max_features"] = 5. / 6. self.model_config["max_leaf_nodes"] = None self.model_config["n_jobs"] = -1 # self.model_config["random_state"] = -1 # self.model_config["max_samples"] = 1. self.ensemble_size = ensemble_size self.models = list() self.configspace = configspace self.rng = rng self.random_seeds = self.rng.randint(low=1, high=MAXINT, size=self.ensemble_size) if types is None or bounds is None: types, bounds = get_types(configspace) super().__init__( configspace=configspace, types=types, bounds=bounds, instance_features=instance_features, pca_components=pca_components, **kwargs ) self.normalize_y = normalize_y self.is_trained = False def _train(self, X: np.ndarray, y: np.ndarray, **kwargs): """ Train a Random Forest Regression model on X and y Parameters ---------- X: np.ndarray (N, D) Input data points. The dimensionality of X is (N, D), with N as the number of points and D is the number of features. y: np.ndarray (N,) The corresponding target values. """ from sklearn.ensemble import RandomForestRegressor X = self._impute_inactive(X) if self.normalize_y: y = self._normalize_y(y) self.models = list() for i in range(self.ensemble_size): configs = self.model_config.copy() configs["random_state"] = self.random_seeds[i] rf_model = RandomForestRegressor(**configs) rf_model.fit(X, y) self.models.append(rf_model) self.is_trained = True return self def _predict(self, X_test: np.ndarray, **kwargs): r""" Returns the predictive mean and variance of the objective function Parameters ---------- X_test: np.ndarray (N, D) Input test points Returns ---------- np.array(N,) predictive mean np.array(N,) predictive variance """ if not self.is_trained: raise Exception('Model has to be trained first!') X_test = self._impute_inactive(X_test) predictions = list() for i, model in enumerate(self.models): pred = model.predict(X_test) # print(i) predictions.append(pred) m = np.mean(predictions, axis=0) v = np.var(predictions, axis=0) # Clip negative variances and set them to the smallest # positive float value if v.shape[0] == 1: v = np.clip(v, np.finfo(v.dtype).eps, np.inf) else: v = np.clip(v, np.finfo(v.dtype).eps, np.inf) v[np.where((v < np.finfo(v.dtype).eps) & (v > -np.finfo(v.dtype).eps))] = 0 if self.normalize_y: m, v = self._untransform_y(m, v) return m, v def _normalize_y(self, y: np.ndarray) -> np.ndarray: """Normalize data to zero mean unit standard deviation. """ self.mean_y_ = np.mean(y) self.std_y_ = np.std(y) if self.std_y_ == 0: self.std_y_ = 1 return (y - self.mean_y_) / self.std_y_ def _untransform_y( self, y: np.ndarray, var: Optional[np.ndarray] = None, ) -> Union[np.ndarray, Tuple[np.ndarray, np.ndarray]]: """Transform zeromean unit standard deviation data into the regular space. """ y = y * self.std_y_ + self.mean_y_ if var is not None: var = var * self.std_y_ ** 2 return y, var return y def _impute_inactive(self, X: np.ndarray) -> np.ndarray: X = X.copy() X[~np.isfinite(X)] = -1 return X
[ "numpy.std", "numpy.isfinite", "numpy.random.RandomState", "xbbo.utils.util.get_types", "sklearn.ensemble.RandomForestRegressor", "numpy.finfo", "numpy.mean", "numpy.var", "logging.getLogger" ]
[((390, 417), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (407, 417), False, 'import logging\n'), ((784, 809), 'numpy.random.RandomState', 'np.random.RandomState', (['(42)'], {}), '(42)\n', (805, 809), True, 'import numpy as np\n'), ((3751, 3779), 'numpy.mean', 'np.mean', (['predictions'], {'axis': '(0)'}), '(predictions, axis=0)\n', (3758, 3779), True, 'import numpy as np\n'), ((3792, 3819), 'numpy.var', 'np.var', (['predictions'], {'axis': '(0)'}), '(predictions, axis=0)\n', (3798, 3819), True, 'import numpy as np\n'), ((4414, 4424), 'numpy.mean', 'np.mean', (['y'], {}), '(y)\n', (4421, 4424), True, 'import numpy as np\n'), ((4447, 4456), 'numpy.std', 'np.std', (['y'], {}), '(y)\n', (4453, 4456), True, 'import numpy as np\n'), ((1738, 1760), 'xbbo.utils.util.get_types', 'get_types', (['configspace'], {}), '(configspace)\n', (1747, 1760), False, 'from xbbo.utils.util import get_types\n'), ((2863, 2895), 'sklearn.ensemble.RandomForestRegressor', 'RandomForestRegressor', ([], {}), '(**configs)\n', (2884, 2895), False, 'from sklearn.ensemble import RandomForestRegressor\n'), ((5081, 5095), 'numpy.isfinite', 'np.isfinite', (['X'], {}), '(X)\n', (5092, 5095), True, 'import numpy as np\n'), ((3970, 3987), 'numpy.finfo', 'np.finfo', (['v.dtype'], {}), '(v.dtype)\n', (3978, 3987), True, 'import numpy as np\n'), ((4042, 4059), 'numpy.finfo', 'np.finfo', (['v.dtype'], {}), '(v.dtype)\n', (4050, 4059), True, 'import numpy as np\n'), ((4101, 4118), 'numpy.finfo', 'np.finfo', (['v.dtype'], {}), '(v.dtype)\n', (4109, 4118), True, 'import numpy as np\n'), ((4132, 4149), 'numpy.finfo', 'np.finfo', (['v.dtype'], {}), '(v.dtype)\n', (4140, 4149), True, 'import numpy as np\n')]
from __future__ import division import numpy as np from pdb import set_trace class Counter: def __init__(self, before, after, indx): self.indx = indx self.actual = before self.predicted = after self.TP, self.TN, self.FP, self.FN = 0, 0, 0, 0 for a, b in zip(self.actual, self.predicted): if a == indx and b == indx: self.TP += 1 elif a == b and a != indx: self.TN += 1 elif a != indx and b == indx: self.FP += 1 elif a == indx and b != indx: self.FN += 1 elif a != indx and b != indx: pass def stats(self): try: Sen = self.TP / (self.TP + self.FN) Spec = self.TN / (self.TN + self.FP) Prec = self.TP / (self.TP + self.FP) # Acc = (self.TP + self.TN) / (self.TP + self.FN + self.TN + self.FP) F1 = 2 * (Prec * Sen) / (Prec + Sen) G = np.sqrt(Sen * Spec) # ED = np.sqrt(0.6*(1-Sen)**2+0.3*(1-Spec)**2) ED = 2 * Sen * Spec / (Sen + Spec) return Sen * 100, (1 - Spec) * 100, Prec * 100, Sen * 100, F1 * 100, ED * 100, G * 100 except ZeroDivisionError: return 0, 0, 0, 0, 0, 0, 0 class ABCD: """ Statistics Stuff, confusion matrix, all that jazz... """ def __init__(self, before, after): self.actual = before self.predicted = after def __call__(self): uniques = set(self.actual) for u in list(uniques): yield Counter(self.actual, self.predicted, indx=u)
[ "numpy.sqrt" ]
[((1004, 1023), 'numpy.sqrt', 'np.sqrt', (['(Sen * Spec)'], {}), '(Sen * Spec)\n', (1011, 1023), True, 'import numpy as np\n')]
''' Author : <NAME> Description : ------------- The following code lets you click on a set of points and then create a curve that fits the set of points. In order to execute this code, you need to install bokeh, ''' from bokeh.io import curdoc from bokeh.plotting import figure, output_file from bokeh.layouts import column,row from bokeh.models import ColumnDataSource from bokeh.models import PointDrawTool from bokeh.models import Button from bokeh.events import DoubleTap from scipy.spatial import ConvexHull import numpy as np from scipy import interpolate from os import sys from os import system print('START OF THE PROGRAM') try: print(sys.argv) if len(sys.argv)<=1: command='bokeh serve --show draggablepoints.py --args d1 d2 d3' if system(command) == 0: pass else: print('Error occured in running the program') exit() except: print('Error in system command (may be)') exit() finally: pass # Create a plot fig = figure( title="CAD/Curves/Curve Fit", plot_width=800, plot_height=500, x_range=(-5, 5), y_range=(-5, 5) ) fig.title.text_font_size='24pt' fig.title.text_color='blue' # Create some data sources xydict=dict(x=[],y=[]) psource = ColumnDataSource(data=xydict) csource = ColumnDataSource(data=xydict) hsource = ColumnDataSource(data=xydict) # Create some glyphs lines = fig.line('x', 'y', source=psource) vertices = fig.square('x', 'y', source=psource,size=10) curved = fig.line('x','y',source=csource, color='red') hullbnd = fig.patch('x','y', source=hsource, fill_color='red', fill_alpha=0.1) # curve fitting/interpolation def curvefit(): print('Interpolation') xarr=np.array(psource.data['x']) yarr=np.array(psource.data['y']) f=interpolate.interp1d(xarr,yarr,kind='cubic') x1arr=np.linspace(xarr.min(),xarr.max(),100) y1arr=f(x1arr) csource.data['x']=x1arr.tolist() csource.data['y']=y1arr.tolist() # constructing a convex hull def conhull(): xarr=np.array(psource.data['x']) yarr=np.array(psource.data['y']) pt=np.array([xarr,yarr]) hull=ConvexHull(pt.T) bnd=np.append(hull.vertices,hull.vertices[0]) hsource.data['x']=pt.T[bnd,0].tolist() hsource.data['y']=pt.T[bnd,1].tolist() # clear all def clearall(): psource.data['x']=[] psource.data['y']=[] csource.data['x']=[] csource.data['y']=[] hsource.data['x']=[] hsource.data['y']=[] ################################################################## def callback(event): curvefit() conhull() fig.on_event(DoubleTap,callback) ################################################################## xbutton=Button(label='Exit') def xbutton_func(): exit() xbutton.on_click(xbutton_func) ################################################################### cfitbutton=Button(label='Curve Fit') def cfit_func(): curvefit() cfitbutton.on_click(cfit_func) ######################################################### hullbutton=Button(label='Show Convex Hull') def hullbutton_func(): conhull() hullbutton.on_click(hullbutton_func) ########################################################## wipebutton=Button(label='Clear all points') def wipe_func(): clearall() wipebutton.on_click(wipe_func) ########################################################## brow1 = row(cfitbutton,hullbutton) brow2 = row(wipebutton,xbutton) layout = column(fig,brow1,brow2) pointdrawtool = PointDrawTool(renderers=[vertices,lines,curved,hullbnd]) fig.add_tools(pointdrawtool) curdoc().add_root(layout) ''' Example : --------- save the ''' ######################################################################## ######################################################################## # End of File
[ "bokeh.models.ColumnDataSource", "bokeh.models.PointDrawTool", "bokeh.plotting.figure", "bokeh.models.Button", "os.system", "numpy.append", "bokeh.io.curdoc", "numpy.array", "bokeh.layouts.column", "scipy.interpolate.interp1d", "scipy.spatial.ConvexHull", "bokeh.layouts.row" ]
[((1052, 1159), 'bokeh.plotting.figure', 'figure', ([], {'title': '"""CAD/Curves/Curve Fit"""', 'plot_width': '(800)', 'plot_height': '(500)', 'x_range': '(-5, 5)', 'y_range': '(-5, 5)'}), "(title='CAD/Curves/Curve Fit', plot_width=800, plot_height=500,\n x_range=(-5, 5), y_range=(-5, 5))\n", (1058, 1159), False, 'from bokeh.plotting import figure, output_file\n'), ((1360, 1389), 'bokeh.models.ColumnDataSource', 'ColumnDataSource', ([], {'data': 'xydict'}), '(data=xydict)\n', (1376, 1389), False, 'from bokeh.models import ColumnDataSource\n'), ((1401, 1430), 'bokeh.models.ColumnDataSource', 'ColumnDataSource', ([], {'data': 'xydict'}), '(data=xydict)\n', (1417, 1430), False, 'from bokeh.models import ColumnDataSource\n'), ((1442, 1471), 'bokeh.models.ColumnDataSource', 'ColumnDataSource', ([], {'data': 'xydict'}), '(data=xydict)\n', (1458, 1471), False, 'from bokeh.models import ColumnDataSource\n'), ((2941, 2961), 'bokeh.models.Button', 'Button', ([], {'label': '"""Exit"""'}), "(label='Exit')\n", (2947, 2961), False, 'from bokeh.models import Button\n'), ((3114, 3139), 'bokeh.models.Button', 'Button', ([], {'label': '"""Curve Fit"""'}), "(label='Curve Fit')\n", (3120, 3139), False, 'from bokeh.models import Button\n'), ((3289, 3321), 'bokeh.models.Button', 'Button', ([], {'label': '"""Show Convex Hull"""'}), "(label='Show Convex Hull')\n", (3295, 3321), False, 'from bokeh.models import Button\n'), ((3481, 3513), 'bokeh.models.Button', 'Button', ([], {'label': '"""Clear all points"""'}), "(label='Clear all points')\n", (3487, 3513), False, 'from bokeh.models import Button\n'), ((3671, 3698), 'bokeh.layouts.row', 'row', (['cfitbutton', 'hullbutton'], {}), '(cfitbutton, hullbutton)\n', (3674, 3698), False, 'from bokeh.layouts import column, row\n'), ((3707, 3731), 'bokeh.layouts.row', 'row', (['wipebutton', 'xbutton'], {}), '(wipebutton, xbutton)\n', (3710, 3731), False, 'from bokeh.layouts import column, row\n'), ((3741, 3766), 'bokeh.layouts.column', 'column', (['fig', 'brow1', 'brow2'], {}), '(fig, brow1, brow2)\n', (3747, 3766), False, 'from bokeh.layouts import column, row\n'), ((3784, 3843), 'bokeh.models.PointDrawTool', 'PointDrawTool', ([], {'renderers': '[vertices, lines, curved, hullbnd]'}), '(renderers=[vertices, lines, curved, hullbnd])\n', (3797, 3843), False, 'from bokeh.models import PointDrawTool\n'), ((1914, 1941), 'numpy.array', 'np.array', (["psource.data['x']"], {}), "(psource.data['x'])\n", (1922, 1941), True, 'import numpy as np\n'), ((1952, 1979), 'numpy.array', 'np.array', (["psource.data['y']"], {}), "(psource.data['y'])\n", (1960, 1979), True, 'import numpy as np\n'), ((1987, 2033), 'scipy.interpolate.interp1d', 'interpolate.interp1d', (['xarr', 'yarr'], {'kind': '"""cubic"""'}), "(xarr, yarr, kind='cubic')\n", (2007, 2033), False, 'from scipy import interpolate\n'), ((2242, 2269), 'numpy.array', 'np.array', (["psource.data['x']"], {}), "(psource.data['x'])\n", (2250, 2269), True, 'import numpy as np\n'), ((2280, 2307), 'numpy.array', 'np.array', (["psource.data['y']"], {}), "(psource.data['y'])\n", (2288, 2307), True, 'import numpy as np\n'), ((2316, 2338), 'numpy.array', 'np.array', (['[xarr, yarr]'], {}), '([xarr, yarr])\n', (2324, 2338), True, 'import numpy as np\n'), ((2348, 2364), 'scipy.spatial.ConvexHull', 'ConvexHull', (['pt.T'], {}), '(pt.T)\n', (2358, 2364), False, 'from scipy.spatial import ConvexHull\n'), ((2374, 2416), 'numpy.append', 'np.append', (['hull.vertices', 'hull.vertices[0]'], {}), '(hull.vertices, hull.vertices[0])\n', (2383, 2416), True, 'import numpy as np\n'), ((3876, 3884), 'bokeh.io.curdoc', 'curdoc', ([], {}), '()\n', (3882, 3884), False, 'from bokeh.io import curdoc\n'), ((797, 812), 'os.system', 'system', (['command'], {}), '(command)\n', (803, 812), False, 'from os import system\n')]
import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as colors from mpl_toolkits.axes_grid1 import make_axes_locatable from .GetDataAvailability import GetDataAvailability import DateTimeTools as TT months = ['J','F','M','A','M','J','J','A','S','O','N','D'] def PlotDataAvailability(Stations,Date,fig=None,maps=[1,1,0,0]): #get the data availability for each station ns = len(Stations) for i in range(0,ns): d,e = GetDataAvailability(Stations[i],Date) if i == 0: nd = d.size x = d grid = np.zeros((ns,nd),dtype='float32') grid[i] = np.float32(e) #Get the x-axis and y-axis xe = np.arange(nd+1)*1.0 ye = np.arange(ns+1)*1.0 xg,yg = np.meshgrid(xe,ye) #get axis limits xlim = [0,nd] ylim = [0,ns] #get all of the years and months yr,mn,dy = TT.DateSplit(x) #determine where the ticks go mtick = np.where((dy == 1))[0] ytick = np.where((dy == 1) & (mn == 1))[0] if ytick.size > 2: #use yearly ticks xticks = xe[ytick] xticklabels = ['{:04d}'.format(yr[yt]) for yt in ytick] else: xticks = xe[mtick] xticklabels = [] for i in range(0,mtick.size): if mn[mtick[i]] == 1: tmp = '{:s}\n{:04d}'.format(months[mn[mtick[i]]-1],yr[mtick[i]]) else: tmp = '{:s}'.format(months[mn[mtick[i]]-1]) xticklabels.append(tmp) yticks = ye yticklabels = ['']*(ns+1) #get the scale scale = [0.0,1.0] #set norm norm = colors.Normalize(vmin=scale[0],vmax=scale[1]) if fig is None: fig = plt fig.figure() if hasattr(fig,'Axes'): ax = fig.subplot2grid((maps[1],maps[0]),(maps[3],maps[2])) else: ax = fig sm = ax.pcolormesh(xg,yg,grid,cmap='RdYlGn',norm=norm,zorder=1.0) #set limits ax.set_xlim(xlim) ax.set_ylim(ylim) #set ticks ax.xaxis.set_ticks(xticks) ax.xaxis.set_ticklabels(xticklabels) ax.yaxis.set_ticks(yticks) ax.yaxis.set_ticklabels(yticklabels) for i in range(0,ns): ax.text(-0.03,(0.5 + i)/ns,Stations[i].upper(),ha='center',va='center',transform=ax.transAxes) #plot a grid #horizontal lines between stations ax.hlines(ye,xlim[0],xlim[1],color=[0.0,0.0,0.0],zorder=4) #vertical lines every year ax.vlines(xe[ytick],ylim[0],ylim[1],color=[0.0,0.0,0.0],zorder=4,lw=2.0) if ytick.size <= 5: #vertical lines every month ax.vlines(xe[mtick],ylim[0],ylim[1],color=[0.0,0.0,0.0],zorder=4,linestyle=':') return ax
[ "numpy.meshgrid", "matplotlib.colors.Normalize", "numpy.float32", "numpy.zeros", "numpy.where", "numpy.arange", "DateTimeTools.DateSplit" ]
[((684, 703), 'numpy.meshgrid', 'np.meshgrid', (['xe', 'ye'], {}), '(xe, ye)\n', (695, 703), True, 'import numpy as np\n'), ((800, 815), 'DateTimeTools.DateSplit', 'TT.DateSplit', (['x'], {}), '(x)\n', (812, 815), True, 'import DateTimeTools as TT\n'), ((1404, 1450), 'matplotlib.colors.Normalize', 'colors.Normalize', ([], {'vmin': 'scale[0]', 'vmax': 'scale[1]'}), '(vmin=scale[0], vmax=scale[1])\n', (1420, 1450), True, 'import matplotlib.colors as colors\n'), ((578, 591), 'numpy.float32', 'np.float32', (['e'], {}), '(e)\n', (588, 591), True, 'import numpy as np\n'), ((628, 645), 'numpy.arange', 'np.arange', (['(nd + 1)'], {}), '(nd + 1)\n', (637, 645), True, 'import numpy as np\n'), ((654, 671), 'numpy.arange', 'np.arange', (['(ns + 1)'], {}), '(ns + 1)\n', (663, 671), True, 'import numpy as np\n'), ((859, 876), 'numpy.where', 'np.where', (['(dy == 1)'], {}), '(dy == 1)\n', (867, 876), True, 'import numpy as np\n'), ((891, 922), 'numpy.where', 'np.where', (['((dy == 1) & (mn == 1))'], {}), '((dy == 1) & (mn == 1))\n', (899, 922), True, 'import numpy as np\n'), ((532, 567), 'numpy.zeros', 'np.zeros', (['(ns, nd)'], {'dtype': '"""float32"""'}), "((ns, nd), dtype='float32')\n", (540, 567), True, 'import numpy as np\n')]
# this script is based on ./examples/cars segmentation (camvid).ipynb # ========== loading data ========== ''' For this example, we will use PASCAL2012 dataset. It is a set of: - train images + instance segmentation masks - validation images + instance segmentation masks ''' import os os.environ['CUDA_VISIBLE_DEVICES'] = '0' # Will use only the first GPU device import numpy as np import cv2 from PIL import Image import matplotlib.pyplot as plt from matplotlib.colors import LogNorm from skimage.transform import resize from skimage.morphology import dilation, thin, binary_erosion from scipy.ndimage import measurements from tqdm import tqdm import math DATA_DIR = './data/voc/VOC2012/' x_dir = os.path.join(DATA_DIR, 'JPEGImages') y_dir = os.path.join(DATA_DIR, 'SegmentationObject') cls_dir = os.path.join(DATA_DIR, 'SegmentationClass') train_ids = os.path.join(DATA_DIR, 'ImageSets/Segmentation/train.txt') valid_ids = os.path.join(DATA_DIR, 'ImageSets/Segmentation/val.txt') # some useful constants dim = (256, 256) # resize all images to dim=(256, 256) background_centerness_const = 0 # gt val to indicate the pixel is a background # ========== visualization helper ========== def viz_centerness(y, id, folder_name): """Visualize centerness based on centerness scores Args: y: array of size [(1, H, W)], with the first dimension being centerness score Return: visualization plot """ # read in ground truth, display as background in plots im = plt.imread(os.path.join(DATA_DIR, 'SegmentationObject', id[:-3]+'.png')) im = np.where(im == 0, 255, im) # convert the background pixels to white (for visualization) res_im = resize(im, dim) mask = np.array(Image.open(os.path.join(DATA_DIR, 'SegmentationObject', id[:-3]+'.png')).resize(dim, resample=Image.NEAREST), dtype=int) mask = np.where(mask == 255, 0, mask) y = y.squeeze() # y = np.where(mask == 0, 0, y) # save centerness image plt.figure(figsize = (20, 20)) plt.xticks([]) plt.yticks([]) plt.imshow(y[:,:,None], cmap='gray_r', interpolation='nearest') plt.imshow(res_im, interpolation='nearest', alpha=0.4) plt.savefig('./' + folder_name + '/' + id + '.png', dpi=300, bbox_inches='tight') plt.close() # save modified mask modified_mask = np.zeros(mask.shape) for label in np.unique(mask): if label == 0: continue # perform morphological thinning and dilation cur_mask = np.array(mask == label, dtype=int) cur_mask = binary_erosion(cur_mask) cur_mask = dilation(cur_mask) modified_mask = modified_mask + cur_mask # save modified mask plt.figure(figsize = (20, 20)) plt.xticks([]) plt.yticks([]) plt.imshow(modified_mask[:,:,None], cmap='gray_r', interpolation='nearest') plt.imshow(res_im, interpolation='nearest', alpha=0.4) plt.savefig('./' + folder_name + '/' + id[:-3] + '.png', dpi=300, bbox_inches='tight') plt.close() # ========== data loader ========== ''' Writing helper class for data extraction, tranformation and preprocessing https://pytorch.org/docs/stable/data ''' from torch.utils.data import DataLoader from torch.utils.data import Dataset as BaseDataset class Dataset(BaseDataset): """PASCAL Dataset. Read images, apply augmentation and preprocessing transformations. Args: images_dir (str): path to images folder masks_dir (str): path to segmentation masks folder img_ids (str): path to the file containing image ids augmentation (albumentations.Compose): data transfromation pipeline (e.g. flip, scale, etc.) preprocessing (albumentations.Compose): data preprocessing (e.g. noralization, shape manipulation, etc.) """ def __init__( self, images_dir, masks_dir, img_ids, augmentation=None, preprocessing=None, ): with open(img_ids, 'r') as f: self.ids = [x.strip() for x in f.readlines()] print(img_ids + ': ' + str(len(self.ids)) + ' Images') self.images_fps = [os.path.join(images_dir, image_id + '.jpg') for image_id in self.ids] self.masks_fps = [os.path.join(masks_dir, image_id + '.png') for image_id in self.ids] self.augmentation = augmentation self.preprocessing = preprocessing def __getitem__(self, i): # read data image = np.array(Image.open(self.images_fps[i]).resize(dim, resample=Image.NEAREST)) mask = np.array(Image.open(self.masks_fps[i]).resize(dim, resample=Image.NEAREST), dtype=int) assert image.shape[:-1] == mask.shape # concat xy position info on image (RGBXY) # xx, yy = np.arange(image.shape[0]), np.arange(image.shape[1]) # grid_x, grid_y = np.meshgrid(xx, yy, indexing='ij') # image = np.concatenate((image, grid_x[:,:,None], grid_y[:,:,None]), axis=-1).astype('float') mask = np.where(mask == 255, 0, mask) # convert the void pixels to background # print(np.unique(mask)) centerness = np.zeros(mask.shape) weight = np.ones(mask.shape) eps = 0.0001 for label in np.unique(mask): if label == 0: continue # perform morphological thinning and dilation cur_mask = (mask == label) cur_mask = binary_erosion(cur_mask) cur_mask = dilation(cur_mask) if np.count_nonzero(cur_mask) == 0: # avoid empty object after erosion cur_mask = (mask == label) # compute the center coordinate by average all coordinates in the current object xx, yy = np.arange(mask.shape[0]), np.arange(mask.shape[1]) grid_x, grid_y = np.meshgrid(xx, yy, indexing='ij') grid_x = np.where(cur_mask == 1, grid_x, 0) grid_y = np.where(cur_mask == 1, grid_y, 0) center_x, center_y = np.sum(grid_x) / np.count_nonzero(grid_x), np.sum(grid_y) / np.count_nonzero(grid_y) # assign center-ness score (between 0 and 1) to each pixel of 'label' based on distance to center # const / distance x_sqr_diff = np.square(np.absolute(grid_x - center_x)) y_sqr_diff = np.square(np.absolute(grid_y - center_y)) dist = np.sqrt(x_sqr_diff + y_sqr_diff) + eps # prevent division by 0 scores = np.minimum(1, np.divide(10, dist)) scores = np.where(mask == label, scores, 0) # uniformly spread more weight to smaller objects (at least weight of a radius-10 circle) if np.sum(scores) >= 314: centerness = np.where(mask == label, scores, centerness) else: inc = (314 - np.sum(scores)) / np.sum(mask == label) centerness = np.where(mask == label, scores + inc, centerness) # update weight on pixels of current instance, used in loss computation # weight = np.where(mask == label, 10000 / np.sum(mask == label), weight) # weight = np.where(mask == label, (100 / np.sum(mask == label))**2, weight) weight = np.where(mask == label, 100 / math.sqrt(np.sum(mask == label)), weight) # sanity check assert np.all(centerness >= np.zeros(centerness.shape)) assert np.all(centerness[mask == 0] == 0) assert np.all(centerness[mask != 0] > 0) centerness = centerness[:,:,None].astype('float') weight = weight[:,:,None].astype('float') # apply augmentations if self.augmentation: sample = self.augmentation(image=image, mask=centerness) image, centerness = sample['image'], sample['mask'] # apply preprocessing if self.preprocessing: sample = self.preprocessing(image=image, mask=centerness) image, centerness = sample['image'], sample['mask'] return image, centerness, weight.transpose(2, 0, 1).astype('float32') def __len__(self): return len(self.ids) # look at the data we have # dataset = Dataset(x_dir, y_dir, train_ids) # image, centerness = dataset[14] # get some sample # with open(train_ids, 'r') as f: # ids = [x.strip() for x in f.readlines()] # print(ids[14]) # viz_centerness(centerness, 'plot2', '.') # ========== preprocess image ========== import albumentations as albu def to_tensor(x, **kwargs): return x.transpose(2, 0, 1).astype('float32') def get_preprocessing(preprocessing_fn): """Construct preprocessing transform Args: preprocessing_fn (callbale): data normalization function (can be specific for each pretrained neural network) Return: transform: albumentations.Compose """ _transform = [ albu.Lambda(image=preprocessing_fn), albu.Lambda(image=to_tensor, mask=to_tensor), ] return albu.Compose(_transform) # ========== create model and train ========== import torch import segmentation_models_pytorch as smp ENCODER = 'se_resnext50_32x4d' ENCODER_WEIGHTS = 'imagenet' pascal_class = ['background', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'] # 20 classes (excluding background) ACTIVATION = 'sigmoid' # for centerness head DEVICE = 'cuda' # create segmentation model with pretrained encoder model = smp.FPN( encoder_name=ENCODER, encoder_weights=ENCODER_WEIGHTS, classes=1, # centerness (1 output channels) activation=ACTIVATION, ) preprocessing_fn = smp.encoders.get_preprocessing_fn(ENCODER, ENCODER_WEIGHTS) train_dataset = Dataset( x_dir, y_dir, train_ids, preprocessing=get_preprocessing(preprocessing_fn), ) valid_dataset = Dataset( x_dir, y_dir, valid_ids, preprocessing=get_preprocessing(preprocessing_fn), ) train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True, num_workers=6) valid_loader = DataLoader(valid_dataset, batch_size=8, shuffle=False, num_workers=6) # Dice/F1 score - https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient # IoU/Jaccard score - https://en.wikipedia.org/wiki/Jaccard_index loss = smp.utils.losses.Weighted_MSELoss(ignore_val=background_centerness_const) # smp.utils.losses.L1Loss(ignore_val=background_centerness_const) # total loss computed on object pixels metrics = [ smp.utils.metrics.L1_centerness_object(), # per pixel score ] optimizer = torch.optim.Adam([ dict(params=model.parameters(), lr=0.0001), ]) # create epoch runners # it is a simple loop of iterating over dataloader`s samples train_epoch = smp.utils.train.TrainEpoch( model, loss=loss, metrics=metrics, optimizer=optimizer, device=DEVICE, verbose=True, ) valid_epoch = smp.utils.train.ValidEpoch( model, loss=loss, metrics=metrics, device=DEVICE, verbose=True, ) # # train model for 20 epochs # min_score = 100000 # '''plot the training and validation losses # sanity check if they are decreasing over epochs # ''' # train_loss, valid_loss = [], [] # l1_centerness = [] # epochs = range(0,20) # for i in range(0,20): # print('\nEpoch: {}'.format(i)) # train_logs = train_epoch.run(train_loader) # valid_logs = valid_epoch.run(valid_loader) # train_loss.append(train_logs['weighted_mse_loss']) # valid_loss.append(valid_logs['weighted_mse_loss']) # l1_centerness.append(valid_logs['L1_centerness_object']) # # do something (save model, change lr, etc.) # if valid_logs['L1_centerness_object'] < min_score: # min_score = valid_logs['L1_centerness_object'] # torch.save(model, './best_model_centerness_weightedL2_invsqrt.pth') # print('Model saved!') # # save the plots of training and validation losses # plt.plot(epochs, train_loss, label='training_loss', color='red') # plt.plot(epochs, valid_loss, label='validation_loss', color='blue') # plt.title('loss visualization', fontsize=12) # plt.legend(loc='upper left') # plt.xlabel('epochs', fontsize=12) # plt.ylabel('loss', fontsize=12) # plt.savefig('./loss.png', dpi=300, bbox_inches='tight') # plt.close() # ========== visualize predictions ========== # load best saved checkpoint best_model = torch.load('./best_model_centerness_weightedL2_invsqrt.pth')\ # with open(valid_ids, 'r') as f: # ids = [x.strip() for x in f.readlines()] # for idx in range(10): # i = idx # np.random.choice(len(valid_dataset)) # print(ids[i]) # image, gt_mask, weight = valid_dataset[i] # gt_mask = gt_mask.squeeze() # x_tensor = torch.from_numpy(image).to(DEVICE).unsqueeze(0) # centerness = best_model.predict(x_tensor) # centerness = (centerness.squeeze().cpu().numpy().round()) # # print(np.sum(centerness)) # # print(np.amax(centerness)) # # print(np.amin(centerness)) # viz_centerness(gt_mask, str(ids[i]) + '_gt', 'centerness_val_viz') # viz_centerness(centerness, str(ids[i]) + '_pr', 'centerness_val_viz') # with open(train_ids, 'r') as f: # ids = [x.strip() for x in f.readlines()] # for idx in [24, 121, 135, 431, 837, 871, 966, 1118, 1294, 1374]: # i = idx # np.random.choice(len(train_dataset)) # print(ids[i]) # image, gt_mask, weight = train_dataset[i] # gt_mask = gt_mask.squeeze() # x_tensor = torch.from_numpy(image).to(DEVICE).unsqueeze(0) # centerness = best_model.predict(x_tensor) # centerness = (centerness.squeeze().cpu().numpy().round()) # viz_centerness(gt_mask, str(ids[i]) + '_gt', 'centerness_train_viz') # viz_centerness(centerness, str(ids[i]) + '_pr', 'centerness_train_viz') # ========== other evaluations ========== # percentage of correct centers detected (on validation set) with open(valid_ids, 'r') as f: val_ids_arr = [x.strip() for x in f.readlines()] masks_fps = [os.path.join(y_dir, image_id + '.png') for image_id in val_ids_arr] semantic_fps = [os.path.join(cls_dir, image_id + '.png') for image_id in val_ids_arr] total_count = 0 evals = dict() for i in tqdm(range(len(val_ids_arr))): image, gt_mask, weight = valid_dataset[i] x_tensor = torch.from_numpy(image).to(DEVICE).unsqueeze(0) centerness = best_model.predict(x_tensor) # 1) threshold centerness scores centerness = (centerness.squeeze().cpu().numpy().round()) # 2) compute connected components labeled_array, num_features = measurements.label(centerness) obj_mask = np.array(Image.open(masks_fps[i]).resize(dim, resample=Image.NEAREST), dtype=int) cls_mask = np.array(Image.open(semantic_fps[i]).resize(dim, resample=Image.NEAREST), dtype=int) image = image.transpose(1, 2, 0) assert image.shape[:-1] == obj_mask.shape assert image.shape[:-1] == cls_mask.shape obj_mask = np.where(obj_mask == 255, 0, obj_mask) # convert the void pixels to background cls_mask = np.where(cls_mask == 255, 0, cls_mask) # 3) assign connected component to class it has the largest overlap with for component in np.unique(labeled_array): if component == 0: continue largest_overlap = 0 cls_belong = 0 for cur_cls in np.unique(cls_mask): if cur_cls == 0: continue overlap = np.count_nonzero(np.logical_and(labeled_array == component, cls_mask == cur_cls)) if overlap > largest_overlap: largest_overlap = overlap cls_belong = cur_cls pos = np.logical_and(labeled_array == component, cls_mask == cls_belong) labeled_array[labeled_array == component] = 0 labeled_array[pos] = component # 4) compute how many connected components fall inside each instance for label in np.unique(obj_mask): if label == 0: continue cur_centerness = np.where(obj_mask == label, labeled_array, 0) num_components = np.unique(cur_centerness) num_components = len(num_components[num_components != 0]) if num_components in evals: evals[num_components] += 1 else: evals[num_components] = 1 total_count += 1 # 5) compute precentages of connected components per instance print("====================") print("total number of instances in val set: " + str(total_count)) for num_components in evals: percentage = evals[num_components] / total_count print(str(num_components) + ' connected component(s): ' + str(percentage))
[ "numpy.absolute", "segmentation_models_pytorch.utils.train.ValidEpoch", "albumentations.Lambda", "numpy.sum", "scipy.ndimage.measurements.label", "numpy.ones", "segmentation_models_pytorch.utils.train.TrainEpoch", "matplotlib.pyplot.figure", "skimage.transform.resize", "numpy.arange", "segmentation_models_pytorch.utils.metrics.L1_centerness_object", "os.path.join", "numpy.unique", "skimage.morphology.dilation", "numpy.meshgrid", "torch.utils.data.DataLoader", "matplotlib.pyplot.imshow", "torch.load", "matplotlib.pyplot.yticks", "matplotlib.pyplot.close", "skimage.morphology.binary_erosion", "matplotlib.pyplot.xticks", "numpy.divide", "segmentation_models_pytorch.utils.losses.Weighted_MSELoss", "segmentation_models_pytorch.FPN", "numpy.all", "torch.from_numpy", "albumentations.Compose", "numpy.count_nonzero", "numpy.logical_and", "numpy.zeros", "PIL.Image.open", "numpy.where", "numpy.array", "segmentation_models_pytorch.encoders.get_preprocessing_fn", "matplotlib.pyplot.savefig", "numpy.sqrt" ]
[((702, 738), 'os.path.join', 'os.path.join', (['DATA_DIR', '"""JPEGImages"""'], {}), "(DATA_DIR, 'JPEGImages')\n", (714, 738), False, 'import os\n'), ((747, 791), 'os.path.join', 'os.path.join', (['DATA_DIR', '"""SegmentationObject"""'], {}), "(DATA_DIR, 'SegmentationObject')\n", (759, 791), False, 'import os\n'), ((802, 845), 'os.path.join', 'os.path.join', (['DATA_DIR', '"""SegmentationClass"""'], {}), "(DATA_DIR, 'SegmentationClass')\n", (814, 845), False, 'import os\n'), ((859, 917), 'os.path.join', 'os.path.join', (['DATA_DIR', '"""ImageSets/Segmentation/train.txt"""'], {}), "(DATA_DIR, 'ImageSets/Segmentation/train.txt')\n", (871, 917), False, 'import os\n'), ((930, 986), 'os.path.join', 'os.path.join', (['DATA_DIR', '"""ImageSets/Segmentation/val.txt"""'], {}), "(DATA_DIR, 'ImageSets/Segmentation/val.txt')\n", (942, 986), False, 'import os\n'), ((9628, 9728), 'segmentation_models_pytorch.FPN', 'smp.FPN', ([], {'encoder_name': 'ENCODER', 'encoder_weights': 'ENCODER_WEIGHTS', 'classes': '(1)', 'activation': 'ACTIVATION'}), '(encoder_name=ENCODER, encoder_weights=ENCODER_WEIGHTS, classes=1,\n activation=ACTIVATION)\n', (9635, 9728), True, 'import segmentation_models_pytorch as smp\n'), ((9797, 9856), 'segmentation_models_pytorch.encoders.get_preprocessing_fn', 'smp.encoders.get_preprocessing_fn', (['ENCODER', 'ENCODER_WEIGHTS'], {}), '(ENCODER, ENCODER_WEIGHTS)\n', (9830, 9856), True, 'import segmentation_models_pytorch as smp\n'), ((10117, 10185), 'torch.utils.data.DataLoader', 'DataLoader', (['train_dataset'], {'batch_size': '(8)', 'shuffle': '(True)', 'num_workers': '(6)'}), '(train_dataset, batch_size=8, shuffle=True, num_workers=6)\n', (10127, 10185), False, 'from torch.utils.data import DataLoader\n'), ((10201, 10270), 'torch.utils.data.DataLoader', 'DataLoader', (['valid_dataset'], {'batch_size': '(8)', 'shuffle': '(False)', 'num_workers': '(6)'}), '(valid_dataset, batch_size=8, shuffle=False, num_workers=6)\n', (10211, 10270), False, 'from torch.utils.data import DataLoader\n'), ((10433, 10506), 'segmentation_models_pytorch.utils.losses.Weighted_MSELoss', 'smp.utils.losses.Weighted_MSELoss', ([], {'ignore_val': 'background_centerness_const'}), '(ignore_val=background_centerness_const)\n', (10466, 10506), True, 'import segmentation_models_pytorch as smp\n'), ((10874, 10990), 'segmentation_models_pytorch.utils.train.TrainEpoch', 'smp.utils.train.TrainEpoch', (['model'], {'loss': 'loss', 'metrics': 'metrics', 'optimizer': 'optimizer', 'device': 'DEVICE', 'verbose': '(True)'}), '(model, loss=loss, metrics=metrics, optimizer=\n optimizer, device=DEVICE, verbose=True)\n', (10900, 10990), True, 'import segmentation_models_pytorch as smp\n'), ((11031, 11125), 'segmentation_models_pytorch.utils.train.ValidEpoch', 'smp.utils.train.ValidEpoch', (['model'], {'loss': 'loss', 'metrics': 'metrics', 'device': 'DEVICE', 'verbose': '(True)'}), '(model, loss=loss, metrics=metrics, device=DEVICE,\n verbose=True)\n', (11057, 11125), True, 'import segmentation_models_pytorch as smp\n'), ((12506, 12566), 'torch.load', 'torch.load', (['"""./best_model_centerness_weightedL2_invsqrt.pth"""'], {}), "('./best_model_centerness_weightedL2_invsqrt.pth')\n", (12516, 12566), False, 'import torch\n'), ((1587, 1613), 'numpy.where', 'np.where', (['(im == 0)', '(255)', 'im'], {}), '(im == 0, 255, im)\n', (1595, 1613), True, 'import numpy as np\n'), ((1688, 1703), 'skimage.transform.resize', 'resize', (['im', 'dim'], {}), '(im, dim)\n', (1694, 1703), False, 'from skimage.transform import resize\n'), ((1856, 1886), 'numpy.where', 'np.where', (['(mask == 255)', '(0)', 'mask'], {}), '(mask == 255, 0, mask)\n', (1864, 1886), True, 'import numpy as np\n'), ((1980, 2008), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(20, 20)'}), '(figsize=(20, 20))\n', (1990, 2008), True, 'import matplotlib.pyplot as plt\n'), ((2015, 2029), 'matplotlib.pyplot.xticks', 'plt.xticks', (['[]'], {}), '([])\n', (2025, 2029), True, 'import matplotlib.pyplot as plt\n'), ((2034, 2048), 'matplotlib.pyplot.yticks', 'plt.yticks', (['[]'], {}), '([])\n', (2044, 2048), True, 'import matplotlib.pyplot as plt\n'), ((2053, 2118), 'matplotlib.pyplot.imshow', 'plt.imshow', (['y[:, :, None]'], {'cmap': '"""gray_r"""', 'interpolation': '"""nearest"""'}), "(y[:, :, None], cmap='gray_r', interpolation='nearest')\n", (2063, 2118), True, 'import matplotlib.pyplot as plt\n'), ((2121, 2175), 'matplotlib.pyplot.imshow', 'plt.imshow', (['res_im'], {'interpolation': '"""nearest"""', 'alpha': '(0.4)'}), "(res_im, interpolation='nearest', alpha=0.4)\n", (2131, 2175), True, 'import matplotlib.pyplot as plt\n'), ((2180, 2266), 'matplotlib.pyplot.savefig', 'plt.savefig', (["('./' + folder_name + '/' + id + '.png')"], {'dpi': '(300)', 'bbox_inches': '"""tight"""'}), "('./' + folder_name + '/' + id + '.png', dpi=300, bbox_inches=\n 'tight')\n", (2191, 2266), True, 'import matplotlib.pyplot as plt\n'), ((2266, 2277), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (2275, 2277), True, 'import matplotlib.pyplot as plt\n'), ((2324, 2344), 'numpy.zeros', 'np.zeros', (['mask.shape'], {}), '(mask.shape)\n', (2332, 2344), True, 'import numpy as np\n'), ((2362, 2377), 'numpy.unique', 'np.unique', (['mask'], {}), '(mask)\n', (2371, 2377), True, 'import numpy as np\n'), ((2696, 2724), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(20, 20)'}), '(figsize=(20, 20))\n', (2706, 2724), True, 'import matplotlib.pyplot as plt\n'), ((2731, 2745), 'matplotlib.pyplot.xticks', 'plt.xticks', (['[]'], {}), '([])\n', (2741, 2745), True, 'import matplotlib.pyplot as plt\n'), ((2750, 2764), 'matplotlib.pyplot.yticks', 'plt.yticks', (['[]'], {}), '([])\n', (2760, 2764), True, 'import matplotlib.pyplot as plt\n'), ((2769, 2846), 'matplotlib.pyplot.imshow', 'plt.imshow', (['modified_mask[:, :, None]'], {'cmap': '"""gray_r"""', 'interpolation': '"""nearest"""'}), "(modified_mask[:, :, None], cmap='gray_r', interpolation='nearest')\n", (2779, 2846), True, 'import matplotlib.pyplot as plt\n'), ((2849, 2903), 'matplotlib.pyplot.imshow', 'plt.imshow', (['res_im'], {'interpolation': '"""nearest"""', 'alpha': '(0.4)'}), "(res_im, interpolation='nearest', alpha=0.4)\n", (2859, 2903), True, 'import matplotlib.pyplot as plt\n'), ((2908, 2998), 'matplotlib.pyplot.savefig', 'plt.savefig', (["('./' + folder_name + '/' + id[:-3] + '.png')"], {'dpi': '(300)', 'bbox_inches': '"""tight"""'}), "('./' + folder_name + '/' + id[:-3] + '.png', dpi=300,\n bbox_inches='tight')\n", (2919, 2998), True, 'import matplotlib.pyplot as plt\n'), ((2999, 3010), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (3008, 3010), True, 'import matplotlib.pyplot as plt\n'), ((9023, 9047), 'albumentations.Compose', 'albu.Compose', (['_transform'], {}), '(_transform)\n', (9035, 9047), True, 'import albumentations as albu\n'), ((10628, 10668), 'segmentation_models_pytorch.utils.metrics.L1_centerness_object', 'smp.utils.metrics.L1_centerness_object', ([], {}), '()\n', (10666, 10668), True, 'import segmentation_models_pytorch as smp\n'), ((14110, 14148), 'os.path.join', 'os.path.join', (['y_dir', "(image_id + '.png')"], {}), "(y_dir, image_id + '.png')\n", (14122, 14148), False, 'import os\n'), ((14194, 14234), 'os.path.join', 'os.path.join', (['cls_dir', "(image_id + '.png')"], {}), "(cls_dir, image_id + '.png')\n", (14206, 14234), False, 'import os\n'), ((14662, 14692), 'scipy.ndimage.measurements.label', 'measurements.label', (['centerness'], {}), '(centerness)\n', (14680, 14692), False, 'from scipy.ndimage import measurements\n'), ((15040, 15078), 'numpy.where', 'np.where', (['(obj_mask == 255)', '(0)', 'obj_mask'], {}), '(obj_mask == 255, 0, obj_mask)\n', (15048, 15078), True, 'import numpy as np\n'), ((15134, 15172), 'numpy.where', 'np.where', (['(cls_mask == 255)', '(0)', 'cls_mask'], {}), '(cls_mask == 255, 0, cls_mask)\n', (15142, 15172), True, 'import numpy as np\n'), ((15272, 15296), 'numpy.unique', 'np.unique', (['labeled_array'], {}), '(labeled_array)\n', (15281, 15296), True, 'import numpy as np\n'), ((15957, 15976), 'numpy.unique', 'np.unique', (['obj_mask'], {}), '(obj_mask)\n', (15966, 15976), True, 'import numpy as np\n'), ((1516, 1578), 'os.path.join', 'os.path.join', (['DATA_DIR', '"""SegmentationObject"""', "(id[:-3] + '.png')"], {}), "(DATA_DIR, 'SegmentationObject', id[:-3] + '.png')\n", (1528, 1578), False, 'import os\n'), ((2496, 2530), 'numpy.array', 'np.array', (['(mask == label)'], {'dtype': 'int'}), '(mask == label, dtype=int)\n', (2504, 2530), True, 'import numpy as np\n'), ((2550, 2574), 'skimage.morphology.binary_erosion', 'binary_erosion', (['cur_mask'], {}), '(cur_mask)\n', (2564, 2574), False, 'from skimage.morphology import dilation, thin, binary_erosion\n'), ((2594, 2612), 'skimage.morphology.dilation', 'dilation', (['cur_mask'], {}), '(cur_mask)\n', (2602, 2612), False, 'from skimage.morphology import dilation, thin, binary_erosion\n'), ((5052, 5082), 'numpy.where', 'np.where', (['(mask == 255)', '(0)', 'mask'], {}), '(mask == 255, 0, mask)\n', (5060, 5082), True, 'import numpy as np\n'), ((5177, 5197), 'numpy.zeros', 'np.zeros', (['mask.shape'], {}), '(mask.shape)\n', (5185, 5197), True, 'import numpy as np\n'), ((5215, 5234), 'numpy.ones', 'np.ones', (['mask.shape'], {}), '(mask.shape)\n', (5222, 5234), True, 'import numpy as np\n'), ((5278, 5293), 'numpy.unique', 'np.unique', (['mask'], {}), '(mask)\n', (5287, 5293), True, 'import numpy as np\n'), ((7430, 7464), 'numpy.all', 'np.all', (['(centerness[mask == 0] == 0)'], {}), '(centerness[mask == 0] == 0)\n', (7436, 7464), True, 'import numpy as np\n'), ((7480, 7513), 'numpy.all', 'np.all', (['(centerness[mask != 0] > 0)'], {}), '(centerness[mask != 0] > 0)\n', (7486, 7513), True, 'import numpy as np\n'), ((8915, 8950), 'albumentations.Lambda', 'albu.Lambda', ([], {'image': 'preprocessing_fn'}), '(image=preprocessing_fn)\n', (8926, 8950), True, 'import albumentations as albu\n'), ((8960, 9004), 'albumentations.Lambda', 'albu.Lambda', ([], {'image': 'to_tensor', 'mask': 'to_tensor'}), '(image=to_tensor, mask=to_tensor)\n', (8971, 9004), True, 'import albumentations as albu\n'), ((15408, 15427), 'numpy.unique', 'np.unique', (['cls_mask'], {}), '(cls_mask)\n', (15417, 15427), True, 'import numpy as np\n'), ((15706, 15772), 'numpy.logical_and', 'np.logical_and', (['(labeled_array == component)', '(cls_mask == cls_belong)'], {}), '(labeled_array == component, cls_mask == cls_belong)\n', (15720, 15772), True, 'import numpy as np\n'), ((16047, 16092), 'numpy.where', 'np.where', (['(obj_mask == label)', 'labeled_array', '(0)'], {}), '(obj_mask == label, labeled_array, 0)\n', (16055, 16092), True, 'import numpy as np\n'), ((16118, 16143), 'numpy.unique', 'np.unique', (['cur_centerness'], {}), '(cur_centerness)\n', (16127, 16143), True, 'import numpy as np\n'), ((4184, 4227), 'os.path.join', 'os.path.join', (['images_dir', "(image_id + '.jpg')"], {}), "(images_dir, image_id + '.jpg')\n", (4196, 4227), False, 'import os\n'), ((4280, 4322), 'os.path.join', 'os.path.join', (['masks_dir', "(image_id + '.png')"], {}), "(masks_dir, image_id + '.png')\n", (4292, 4322), False, 'import os\n'), ((5467, 5491), 'skimage.morphology.binary_erosion', 'binary_erosion', (['cur_mask'], {}), '(cur_mask)\n', (5481, 5491), False, 'from skimage.morphology import dilation, thin, binary_erosion\n'), ((5515, 5533), 'skimage.morphology.dilation', 'dilation', (['cur_mask'], {}), '(cur_mask)\n', (5523, 5533), False, 'from skimage.morphology import dilation, thin, binary_erosion\n'), ((5854, 5888), 'numpy.meshgrid', 'np.meshgrid', (['xx', 'yy'], {'indexing': '"""ij"""'}), "(xx, yy, indexing='ij')\n", (5865, 5888), True, 'import numpy as np\n'), ((5910, 5944), 'numpy.where', 'np.where', (['(cur_mask == 1)', 'grid_x', '(0)'], {}), '(cur_mask == 1, grid_x, 0)\n', (5918, 5944), True, 'import numpy as np\n'), ((5966, 6000), 'numpy.where', 'np.where', (['(cur_mask == 1)', 'grid_y', '(0)'], {}), '(cur_mask == 1, grid_y, 0)\n', (5974, 6000), True, 'import numpy as np\n'), ((6553, 6587), 'numpy.where', 'np.where', (['(mask == label)', 'scores', '(0)'], {}), '(mask == label, scores, 0)\n', (6561, 6587), True, 'import numpy as np\n'), ((5549, 5575), 'numpy.count_nonzero', 'np.count_nonzero', (['cur_mask'], {}), '(cur_mask)\n', (5565, 5575), True, 'import numpy as np\n'), ((5774, 5798), 'numpy.arange', 'np.arange', (['mask.shape[0]'], {}), '(mask.shape[0])\n', (5783, 5798), True, 'import numpy as np\n'), ((5800, 5824), 'numpy.arange', 'np.arange', (['mask.shape[1]'], {}), '(mask.shape[1])\n', (5809, 5824), True, 'import numpy as np\n'), ((6295, 6325), 'numpy.absolute', 'np.absolute', (['(grid_x - center_x)'], {}), '(grid_x - center_x)\n', (6306, 6325), True, 'import numpy as np\n'), ((6362, 6392), 'numpy.absolute', 'np.absolute', (['(grid_y - center_y)'], {}), '(grid_y - center_y)\n', (6373, 6392), True, 'import numpy as np\n'), ((6413, 6445), 'numpy.sqrt', 'np.sqrt', (['(x_sqr_diff + y_sqr_diff)'], {}), '(x_sqr_diff + y_sqr_diff)\n', (6420, 6445), True, 'import numpy as np\n'), ((6511, 6530), 'numpy.divide', 'np.divide', (['(10)', 'dist'], {}), '(10, dist)\n', (6520, 6530), True, 'import numpy as np\n'), ((6705, 6719), 'numpy.sum', 'np.sum', (['scores'], {}), '(scores)\n', (6711, 6719), True, 'import numpy as np\n'), ((6757, 6800), 'numpy.where', 'np.where', (['(mask == label)', 'scores', 'centerness'], {}), '(mask == label, scores, centerness)\n', (6765, 6800), True, 'import numpy as np\n'), ((6917, 6966), 'numpy.where', 'np.where', (['(mask == label)', '(scores + inc)', 'centerness'], {}), '(mask == label, scores + inc, centerness)\n', (6925, 6966), True, 'import numpy as np\n'), ((7387, 7413), 'numpy.zeros', 'np.zeros', (['centerness.shape'], {}), '(centerness.shape)\n', (7395, 7413), True, 'import numpy as np\n'), ((14722, 14746), 'PIL.Image.open', 'Image.open', (['masks_fps[i]'], {}), '(masks_fps[i])\n', (14732, 14746), False, 'from PIL import Image\n'), ((14819, 14846), 'PIL.Image.open', 'Image.open', (['semantic_fps[i]'], {}), '(semantic_fps[i])\n', (14829, 14846), False, 'from PIL import Image\n'), ((15506, 15569), 'numpy.logical_and', 'np.logical_and', (['(labeled_array == component)', '(cls_mask == cur_cls)'], {}), '(labeled_array == component, cls_mask == cur_cls)\n', (15520, 15569), True, 'import numpy as np\n'), ((1735, 1797), 'os.path.join', 'os.path.join', (['DATA_DIR', '"""SegmentationObject"""', "(id[:-3] + '.png')"], {}), "(DATA_DIR, 'SegmentationObject', id[:-3] + '.png')\n", (1747, 1797), False, 'import os\n'), ((4531, 4561), 'PIL.Image.open', 'Image.open', (['self.images_fps[i]'], {}), '(self.images_fps[i])\n', (4541, 4561), False, 'from PIL import Image\n'), ((4623, 4652), 'PIL.Image.open', 'Image.open', (['self.masks_fps[i]'], {}), '(self.masks_fps[i])\n', (4633, 4652), False, 'from PIL import Image\n'), ((6034, 6048), 'numpy.sum', 'np.sum', (['grid_x'], {}), '(grid_x)\n', (6040, 6048), True, 'import numpy as np\n'), ((6051, 6075), 'numpy.count_nonzero', 'np.count_nonzero', (['grid_x'], {}), '(grid_x)\n', (6067, 6075), True, 'import numpy as np\n'), ((6077, 6091), 'numpy.sum', 'np.sum', (['grid_y'], {}), '(grid_y)\n', (6083, 6091), True, 'import numpy as np\n'), ((6094, 6118), 'numpy.count_nonzero', 'np.count_nonzero', (['grid_y'], {}), '(grid_y)\n', (6110, 6118), True, 'import numpy as np\n'), ((6866, 6887), 'numpy.sum', 'np.sum', (['(mask == label)'], {}), '(mask == label)\n', (6872, 6887), True, 'import numpy as np\n'), ((14397, 14420), 'torch.from_numpy', 'torch.from_numpy', (['image'], {}), '(image)\n', (14413, 14420), False, 'import torch\n'), ((6848, 6862), 'numpy.sum', 'np.sum', (['scores'], {}), '(scores)\n', (6854, 6862), True, 'import numpy as np\n'), ((7287, 7308), 'numpy.sum', 'np.sum', (['(mask == label)'], {}), '(mask == label)\n', (7293, 7308), True, 'import numpy as np\n')]
import unittest.mock as umock from argparse import ArgumentTypeError import numpy as np import pytest from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, \ do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image test_array = np.array([[1, 1, 1], [1, 1, 1], [1, 1, 1]]) test_image = read_image("test_images/test_img.png") args_mock = umock.MagicMock() # zesvetleni a ztmaveni, TODO udelat aby mock vzdy vracel 50, pro pripad ze bude vic unit testu nez hodnot args_mock.darken = [50, 50, 50, 50, 80, 70, 80, 10, 80] # TODO mockovat veci v danem testu args_mock.lighten = [50, 50, 50, 50, 100, 70, 40, 50, 100] def test_read_image(): assert read_image("test_images/test_img.png").ndim > 0 # jakykoliv non fail vysledek je ok def test_image_fail(): with pytest.raises(FileNotFoundError): read_image("nonexistent_file_please_dont_create_file_named_like_this.pls") def test_do_embossing(): out = do_embossing(test_array) def test_do_edge_detection(): out = do_edge_detection(test_array) def test_do_blur_5x5(): out = do_blur_5x5(test_array) def test_do_blur_3x3(): out = do_blur_3x3(test_array) def test_do_sharpen(): out = do_sharpen(test_array) def test_do_bw(): out = do_bw(test_array) def test_do_inverse(): out = do_inverse(test_array) assert (out == 254).all() def test_do_darken(): out = do_darken(test_array, args_mock) assert np.all(out == 0.5) def test_do_lighten(): out = do_lighten(test_array, args_mock) assert np.all(out == 1.5) def test_do_mirror(): out = do_mirror(test_array) assert ((test_array == out).all()) # po zrcadleni musi byt identicke def test_do_rotate(): out = do_rotate(test_array) assert ((test_array == out).all()) # po rotaci musi byt identicke def test_percentage_invalid(): a = None with pytest.raises(ArgumentTypeError): percentage(-1) assert (a is None) def test_percentage_high_value(): a = None a = percentage(10000000) assert a == 10000000 def test_percentage_zero(): a = None a = percentage(0) assert a == 0 def test_rotation_identity(): # pokud otocime jeden obrazek 4x musi byt stejny jako puvodni out = do_rotate(test_image) out = do_rotate(out) out = do_rotate(out) final = do_rotate(out) assert (final == test_image).all() def test_mirror_identity(): out = do_mirror(test_image) final = do_mirror(out) assert (final == test_image).all() def test_multiple_bw(): # vicero pouzitych bw musi vracet stejnou hodnotu out = do_bw(test_image) second_out = do_bw(out) third_out = do_bw(second_out) assert np.logical_and((out == second_out).all(), (second_out == third_out).all()) def test_compare_rotate(): out = do_rotate(test_image) test_input = read_image("test_images/rotate.png") assert (out == test_input).all() def test_compare_mirror(): out = do_mirror(test_image) test_input = read_image("test_images/mirror.png") assert (out == test_input).all() def test_compare_inverse(): out = do_inverse(test_image) test_input = read_image("test_images/inverse.png") assert (out == test_input).all() # TODO before saving there are some slight data diference, that causes fail even if images are same def test_compare_bw(): out = do_bw(test_image) save_image(out, "test_images/bwOut.png") output = read_image("test_images/bwOut.png") test_input = read_image("test_images/bw.png") assert (output == test_input).all() # TODO before saving there are some slight data diference, that causes fail even if images are same def test_compare_lighten(): out = do_lighten(test_image, args_mock) save_image(out, "test_images/lightenOut.png") output = read_image("test_images/lightenOut.png") test_input = read_image("test_images/lighten.png") assert (output == test_input).all() # TODO before saving there are some slight data diference, that causes fail even if images are same def test_compare_darken(): out = do_darken(test_image, args_mock) save_image(out, "test_images/darkenOut.png") output = read_image("test_images/darkenOut.png") test_input = read_image("test_images/darken.png") assert (output == test_input).all() def test_argument_chaining_one_convolution(): # testuje funkcnost retezeni, vzajmne kompability a toho, ze si testy navzajem neznici file # kvuli casove narocnosti testujeme pouze jednu konvolucni fci (pouzivaji stejny kod, pouze kernel se meni) out = do_mirror(test_image) out = do_rotate(out) out = do_lighten(out, args_mock) out = do_inverse(out) out = do_darken(out, args_mock) out = do_bw(out) out = do_sharpen(out) out = do_mirror(test_image) out = do_rotate(out) out = do_lighten(out, args_mock) out = do_inverse(out) out = do_darken(out, args_mock) """ casove narocne testy def test_compare_sharpen(): out = do_sharpen(test_image) test_input = read_image("test_images/sharpen.png") assert (out == test_input).all() def test_compare_blur_3x3(): out = do_blur_3x3(test_image) test_input = read_image("test_images/blur3.png") assert (out == test_input).all() def test_compare_blur_5x5(): out = do_blur_5x5(test_image) test_input = read_image("test_images/blur5.png") assert (out == test_input).all() def test_compare_edge_detection(): out = do_edge_detection(test_image) test_input = read_image("test_images/edges.png") assert (out == test_input).all() def test_compare_embossing(): out = do_embossing(test_image) test_input = read_image("test_images/embossing.png") assert (out == test_input).all() """
[ "functions.do_bw", "functions.do_lighten", "unittest.mock.MagicMock", "functions.percentage", "functions.do_darken", "functions.do_inverse", "functions.do_blur_5x5", "numpy.all", "functions.do_rotate", "functions.do_embossing", "functions.save_image", "pytest.raises", "numpy.array", "functions.do_mirror", "functions.do_sharpen", "functions.read_image", "functions.do_blur_3x3", "functions.do_edge_detection" ]
[((316, 359), 'numpy.array', 'np.array', (['[[1, 1, 1], [1, 1, 1], [1, 1, 1]]'], {}), '([[1, 1, 1], [1, 1, 1], [1, 1, 1]])\n', (324, 359), True, 'import numpy as np\n'), ((374, 412), 'functions.read_image', 'read_image', (['"""test_images/test_img.png"""'], {}), "('test_images/test_img.png')\n", (384, 412), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((426, 443), 'unittest.mock.MagicMock', 'umock.MagicMock', ([], {}), '()\n', (441, 443), True, 'import unittest.mock as umock\n'), ((1011, 1035), 'functions.do_embossing', 'do_embossing', (['test_array'], {}), '(test_array)\n', (1023, 1035), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((1078, 1107), 'functions.do_edge_detection', 'do_edge_detection', (['test_array'], {}), '(test_array)\n', (1095, 1107), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((1144, 1167), 'functions.do_blur_5x5', 'do_blur_5x5', (['test_array'], {}), '(test_array)\n', (1155, 1167), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((1204, 1227), 'functions.do_blur_3x3', 'do_blur_3x3', (['test_array'], {}), '(test_array)\n', (1215, 1227), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((1263, 1285), 'functions.do_sharpen', 'do_sharpen', (['test_array'], {}), '(test_array)\n', (1273, 1285), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((1316, 1333), 'functions.do_bw', 'do_bw', (['test_array'], {}), '(test_array)\n', (1321, 1333), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((1369, 1391), 'functions.do_inverse', 'do_inverse', (['test_array'], {}), '(test_array)\n', (1379, 1391), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((1456, 1488), 'functions.do_darken', 'do_darken', (['test_array', 'args_mock'], {}), '(test_array, args_mock)\n', (1465, 1488), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((1500, 1518), 'numpy.all', 'np.all', (['(out == 0.5)'], {}), '(out == 0.5)\n', (1506, 1518), True, 'import numpy as np\n'), ((1554, 1587), 'functions.do_lighten', 'do_lighten', (['test_array', 'args_mock'], {}), '(test_array, args_mock)\n', (1564, 1587), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((1599, 1617), 'numpy.all', 'np.all', (['(out == 1.5)'], {}), '(out == 1.5)\n', (1605, 1617), True, 'import numpy as np\n'), ((1652, 1673), 'functions.do_mirror', 'do_mirror', (['test_array'], {}), '(test_array)\n', (1661, 1673), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((1782, 1803), 'functions.do_rotate', 'do_rotate', (['test_array'], {}), '(test_array)\n', (1791, 1803), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((2067, 2087), 'functions.percentage', 'percentage', (['(10000000)'], {}), '(10000000)\n', (2077, 2087), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((2164, 2177), 'functions.percentage', 'percentage', (['(0)'], {}), '(0)\n', (2174, 2177), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((2304, 2325), 'functions.do_rotate', 'do_rotate', (['test_image'], {}), '(test_image)\n', (2313, 2325), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((2336, 2350), 'functions.do_rotate', 'do_rotate', (['out'], {}), '(out)\n', (2345, 2350), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((2361, 2375), 'functions.do_rotate', 'do_rotate', (['out'], {}), '(out)\n', (2370, 2375), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((2388, 2402), 'functions.do_rotate', 'do_rotate', (['out'], {}), '(out)\n', (2397, 2402), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((2482, 2503), 'functions.do_mirror', 'do_mirror', (['test_image'], {}), '(test_image)\n', (2491, 2503), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((2516, 2530), 'functions.do_mirror', 'do_mirror', (['out'], {}), '(out)\n', (2525, 2530), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((2660, 2677), 'functions.do_bw', 'do_bw', (['test_image'], {}), '(test_image)\n', (2665, 2677), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((2695, 2705), 'functions.do_bw', 'do_bw', (['out'], {}), '(out)\n', (2700, 2705), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((2722, 2739), 'functions.do_bw', 'do_bw', (['second_out'], {}), '(second_out)\n', (2727, 2739), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((2866, 2887), 'functions.do_rotate', 'do_rotate', (['test_image'], {}), '(test_image)\n', (2875, 2887), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((2905, 2941), 'functions.read_image', 'read_image', (['"""test_images/rotate.png"""'], {}), "('test_images/rotate.png')\n", (2915, 2941), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((3018, 3039), 'functions.do_mirror', 'do_mirror', (['test_image'], {}), '(test_image)\n', (3027, 3039), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((3057, 3093), 'functions.read_image', 'read_image', (['"""test_images/mirror.png"""'], {}), "('test_images/mirror.png')\n", (3067, 3093), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((3171, 3193), 'functions.do_inverse', 'do_inverse', (['test_image'], {}), '(test_image)\n', (3181, 3193), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((3211, 3248), 'functions.read_image', 'read_image', (['"""test_images/inverse.png"""'], {}), "('test_images/inverse.png')\n", (3221, 3248), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((3421, 3438), 'functions.do_bw', 'do_bw', (['test_image'], {}), '(test_image)\n', (3426, 3438), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((3443, 3483), 'functions.save_image', 'save_image', (['out', '"""test_images/bwOut.png"""'], {}), "(out, 'test_images/bwOut.png')\n", (3453, 3483), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((3497, 3532), 'functions.read_image', 'read_image', (['"""test_images/bwOut.png"""'], {}), "('test_images/bwOut.png')\n", (3507, 3532), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((3550, 3582), 'functions.read_image', 'read_image', (['"""test_images/bw.png"""'], {}), "('test_images/bw.png')\n", (3560, 3582), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((3763, 3796), 'functions.do_lighten', 'do_lighten', (['test_image', 'args_mock'], {}), '(test_image, args_mock)\n', (3773, 3796), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((3801, 3846), 'functions.save_image', 'save_image', (['out', '"""test_images/lightenOut.png"""'], {}), "(out, 'test_images/lightenOut.png')\n", (3811, 3846), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((3860, 3900), 'functions.read_image', 'read_image', (['"""test_images/lightenOut.png"""'], {}), "('test_images/lightenOut.png')\n", (3870, 3900), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((3918, 3955), 'functions.read_image', 'read_image', (['"""test_images/lighten.png"""'], {}), "('test_images/lighten.png')\n", (3928, 3955), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((4135, 4167), 'functions.do_darken', 'do_darken', (['test_image', 'args_mock'], {}), '(test_image, args_mock)\n', (4144, 4167), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((4172, 4216), 'functions.save_image', 'save_image', (['out', '"""test_images/darkenOut.png"""'], {}), "(out, 'test_images/darkenOut.png')\n", (4182, 4216), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((4230, 4269), 'functions.read_image', 'read_image', (['"""test_images/darkenOut.png"""'], {}), "('test_images/darkenOut.png')\n", (4240, 4269), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((4287, 4323), 'functions.read_image', 'read_image', (['"""test_images/darken.png"""'], {}), "('test_images/darken.png')\n", (4297, 4323), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((4630, 4651), 'functions.do_mirror', 'do_mirror', (['test_image'], {}), '(test_image)\n', (4639, 4651), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((4662, 4676), 'functions.do_rotate', 'do_rotate', (['out'], {}), '(out)\n', (4671, 4676), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((4687, 4713), 'functions.do_lighten', 'do_lighten', (['out', 'args_mock'], {}), '(out, args_mock)\n', (4697, 4713), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((4724, 4739), 'functions.do_inverse', 'do_inverse', (['out'], {}), '(out)\n', (4734, 4739), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((4750, 4775), 'functions.do_darken', 'do_darken', (['out', 'args_mock'], {}), '(out, args_mock)\n', (4759, 4775), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((4786, 4796), 'functions.do_bw', 'do_bw', (['out'], {}), '(out)\n', (4791, 4796), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((4807, 4822), 'functions.do_sharpen', 'do_sharpen', (['out'], {}), '(out)\n', (4817, 4822), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((4833, 4854), 'functions.do_mirror', 'do_mirror', (['test_image'], {}), '(test_image)\n', (4842, 4854), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((4865, 4879), 'functions.do_rotate', 'do_rotate', (['out'], {}), '(out)\n', (4874, 4879), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((4890, 4916), 'functions.do_lighten', 'do_lighten', (['out', 'args_mock'], {}), '(out, args_mock)\n', (4900, 4916), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((4927, 4942), 'functions.do_inverse', 'do_inverse', (['out'], {}), '(out)\n', (4937, 4942), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((4953, 4978), 'functions.do_darken', 'do_darken', (['out', 'args_mock'], {}), '(out, args_mock)\n', (4962, 4978), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((857, 889), 'pytest.raises', 'pytest.raises', (['FileNotFoundError'], {}), '(FileNotFoundError)\n', (870, 889), False, 'import pytest\n'), ((899, 973), 'functions.read_image', 'read_image', (['"""nonexistent_file_please_dont_create_file_named_like_this.pls"""'], {}), "('nonexistent_file_please_dont_create_file_named_like_this.pls')\n", (909, 973), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((1930, 1962), 'pytest.raises', 'pytest.raises', (['ArgumentTypeError'], {}), '(ArgumentTypeError)\n', (1943, 1962), False, 'import pytest\n'), ((1972, 1986), 'functions.percentage', 'percentage', (['(-1)'], {}), '(-1)\n', (1982, 1986), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n'), ((738, 776), 'functions.read_image', 'read_image', (['"""test_images/test_img.png"""'], {}), "('test_images/test_img.png')\n", (748, 776), False, 'from functions import do_embossing, do_edge_detection, do_blur_5x5, do_blur_3x3, do_sharpen, do_bw, do_darken, do_inverse, do_lighten, do_mirror, do_rotate, percentage, read_image, save_image\n')]
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import sys import numpy as np import tensorflow as tf from tensorflow.python.platform import flags sys.path.append("../") from nmutant_util.utils_file import get_data_file from nmutant_data.data import get_data from nmutant_util.utils_imgproc import deprocess_image_1 FLAGS = flags.FLAGS def ass(datasets, model, samples_path): """ :param datasets :param model :param samples_path :return: """ tf.reset_default_graph() X_train, Y_train, X_test, Y_test = get_data(datasets) X_test = [deprocess_image_1(np.asarray([image])) for image in X_test] [image_list, image_files, real_labels, predicted_labels] = get_data_file(samples_path) if datasets=='cifar10': image_list = [(img*255).reshape(img.shape[0], img.shape[1], img.shape[2]) for img in image_list] else: image_list = [(img*255).reshape(img.shape[0], img.shape[1]) for img in image_list] result = 0 for i in range(len(image_list)): index = int(image_files[i].split('_')[-4]) result = result + ssim(np.asarray(image_list[i]), np.asarray(X_test[index])) result = result / len(image_list) print('average structural similarity is %.4f' % (result)) return result def ssim(adv, ori): #change to gray pic if 3 == len(adv.shape): adv = adv * np.asarray([0.3 , 0.59, 0.11]) adv = adv.sum(axis=2) ori = ori * np.asarray([0.3 , 0.59, 0.11]) ori = ori.sum(axis=2) adv = adv.reshape(-1) ori = ori.reshape(-1) c1 = (0.01 * 255) ** 2 c2 = (0.03 * 255) ** 2 c3 = c2 / 2 alpha = 1 beta = 1 gama = 1 miu_x = adv.mean() miu_y = ori.mean() theta_x = adv.std(ddof=1) theta_y = ori.std(ddof=1) theta_xy = sum((adv - miu_x) * (ori - miu_y)) / (len(adv) - 1) l = (2 * miu_x * miu_y + c1) / (miu_x ** 2 + miu_y ** 2 + c1) c = (2 * theta_x * theta_y + c2) / (theta_x ** 2 + theta_y ** 2 + c2) s = (theta_xy + c3) / (theta_x * theta_y + c3) return (l ** alpha) * (c ** beta) * (s ** gama) def main(argv=None): ass(datasets = FLAGS.datasets, model=FLAGS.model, samples_path=FLAGS.samples) if __name__ == '__main__': flags.DEFINE_string('datasets', 'mnist', 'The target datasets.') flags.DEFINE_string('model', 'lenet1', 'The name of model') flags.DEFINE_string('samples', '../mt_result/cifar10_jsma/adv_jsma', 'The path to load samples.') tf.app.run()
[ "sys.path.append", "tensorflow.python.platform.flags.DEFINE_string", "tensorflow.reset_default_graph", "nmutant_util.utils_file.get_data_file", "numpy.asarray", "nmutant_data.data.get_data", "tensorflow.app.run" ]
[((251, 273), 'sys.path.append', 'sys.path.append', (['"""../"""'], {}), "('../')\n", (266, 273), False, 'import sys\n'), ((577, 601), 'tensorflow.reset_default_graph', 'tf.reset_default_graph', ([], {}), '()\n', (599, 601), True, 'import tensorflow as tf\n'), ((641, 659), 'nmutant_data.data.get_data', 'get_data', (['datasets'], {}), '(datasets)\n', (649, 659), False, 'from nmutant_data.data import get_data\n'), ((798, 825), 'nmutant_util.utils_file.get_data_file', 'get_data_file', (['samples_path'], {}), '(samples_path)\n', (811, 825), False, 'from nmutant_util.utils_file import get_data_file\n'), ((2338, 2402), 'tensorflow.python.platform.flags.DEFINE_string', 'flags.DEFINE_string', (['"""datasets"""', '"""mnist"""', '"""The target datasets."""'], {}), "('datasets', 'mnist', 'The target datasets.')\n", (2357, 2402), False, 'from tensorflow.python.platform import flags\n'), ((2407, 2466), 'tensorflow.python.platform.flags.DEFINE_string', 'flags.DEFINE_string', (['"""model"""', '"""lenet1"""', '"""The name of model"""'], {}), "('model', 'lenet1', 'The name of model')\n", (2426, 2466), False, 'from tensorflow.python.platform import flags\n'), ((2471, 2572), 'tensorflow.python.platform.flags.DEFINE_string', 'flags.DEFINE_string', (['"""samples"""', '"""../mt_result/cifar10_jsma/adv_jsma"""', '"""The path to load samples."""'], {}), "('samples', '../mt_result/cifar10_jsma/adv_jsma',\n 'The path to load samples.')\n", (2490, 2572), False, 'from tensorflow.python.platform import flags\n'), ((2574, 2586), 'tensorflow.app.run', 'tf.app.run', ([], {}), '()\n', (2584, 2586), True, 'import tensorflow as tf\n'), ((692, 711), 'numpy.asarray', 'np.asarray', (['[image]'], {}), '([image])\n', (702, 711), True, 'import numpy as np\n'), ((1461, 1490), 'numpy.asarray', 'np.asarray', (['[0.3, 0.59, 0.11]'], {}), '([0.3, 0.59, 0.11])\n', (1471, 1490), True, 'import numpy as np\n'), ((1542, 1571), 'numpy.asarray', 'np.asarray', (['[0.3, 0.59, 0.11]'], {}), '([0.3, 0.59, 0.11])\n', (1552, 1571), True, 'import numpy as np\n'), ((1194, 1219), 'numpy.asarray', 'np.asarray', (['image_list[i]'], {}), '(image_list[i])\n', (1204, 1219), True, 'import numpy as np\n'), ((1221, 1246), 'numpy.asarray', 'np.asarray', (['X_test[index]'], {}), '(X_test[index])\n', (1231, 1246), True, 'import numpy as np\n')]
from datetime import datetime import traceback import numpy as np import face_recognition as fr import glob import datetime import os from stat import * from scipy.spatial.distance import cdist from sklearn.cluster import KMeans import cv2 import matplotlib.pyplot as plt import time import sys import re import dlib N_CLUSTERS = 8 BATCH_SIZE = 32 UPSAMPLE = 1 FRAME_START = 400 FRAME_END = 1300 FORMAT = '%-20s: %s' def isDir(path): mode = os.stat(path)[ST_MODE] return S_ISDIR(mode) def extractFaces(frame_paths): n = len(frame_paths) face_encodings = [] enc_to_loc = [] frame_batch = [] for frame_counter in range(n): frame = fr.load_image_file(frame_paths[frame_counter]) frame_batch.append(frame) if frame_counter != n - 1 and len(frame_batch) != BATCH_SIZE: continue loc_batch = fr.batch_face_locations(frame_batch, number_of_times_to_upsample=UPSAMPLE) for frame_number_in_batch, curr_locations in enumerate(loc_batch): curr_frame_number = frame_counter + 1 - len(frame_batch) + frame_number_in_batch curr_frame_path = frame_paths[curr_frame_number] curr_frame = frame_batch[frame_number_in_batch] m = ('%-20s %-6d %-3d' % (curr_frame_path, curr_frame_number, len(curr_locations))) print(FORMAT % ('proc_frame', m)) if len(curr_locations) == 0: continue curr_encodings = fr.face_encodings(curr_frame, known_face_locations=curr_locations) for k in range(len(curr_encodings)): enc = curr_encodings[k] loc = curr_locations[k] enc_to_loc.append({'frame': curr_frame_number, 'loc': loc}) face_encodings.append(enc) frame_batch = [] return (face_encodings, enc_to_loc) def detectSpeaker(frame_paths, face_encodings, enc_to_loc, vid_name): print(FORMAT % ('cluster_inp', len(face_encodings))) if len(face_encodings) < N_CLUSTERS: return enc_arr = np.asanyarray(face_encodings) k_means = KMeans(n_clusters=N_CLUSTERS).fit(enc_arr) preds = k_means.predict(enc_arr) dists = k_means.transform(enc_arr) largest_cluster = np.argmax(np.unique(preds, return_counts=True)[1]) closest_to_center = np.argmin(dists[:, largest_cluster]) face_loc = enc_to_loc[closest_to_center] top, right, bottom, left = face_loc['loc'] frame_number = face_loc['frame'] speaker_frame_path = frame_paths[frame_number] speaker_cluster_center = k_means.cluster_centers_[largest_cluster, :] speaker_cluster_size = dists[:, largest_cluster].shape[0] print(FORMAT % ('speaker_clsize', '%d' % (speaker_cluster_size))) print(FORMAT % ('speaker', '%s -> (%d, %d, %d, %d)' % \ (speaker_frame_path, top, right, bottom, left))) im = cv2.imread(speaker_frame_path) cv2.rectangle(im, (left, top), (right, bottom), (0, 255, 0), 3) cv2.imwrite(vid_name + '.jpg', im) np.save(vid_name + '.npy', speaker_cluster_center) return closest_to_center def clipPaths(paths): pat = re.compile(r'([0-9]+)\.jpg$') sorted_paths = ['' for i in range(len(paths))] for path in paths: m = pat.search(path) num = int(m.group(1)) sorted_paths[num-1] = path return sorted_paths[FRAME_START:FRAME_END] sep = ''.join(['='] * 70) def handlePaths(paths): for path in paths: if not isDir(path): continue tic = time.time() print(FORMAT % ('start_path', path)) frame_paths = clipPaths(glob.glob(path + '/*')) face_encodings, enc_to_loc = extractFaces(frame_paths) vid_name = re.sub(r'^.+\/', '', path) face_idx = detectSpeaker(frame_paths, face_encodings, enc_to_loc, vid_name) toc = time.time() print(FORMAT % ('duration', '%.5f s' % (toc-tic))) print(FORMAT % ('done', sep)) # Logger to give output to console as well as a file simultaneously. class Logger(object): def __init__(self): self.terminal = sys.stdout dt = str(datetime.datetime.now().date()) tm = str(datetime.datetime.now().time()) fname = 'detect_speaker_' + dt + '_' + tm.replace(':', '.') + '.log' self.log = open(fname, "a") # specify file name here def write(self, message): self.terminal.write(message) self.log.write(message) def flush(self): #this flush method is needed for python 3 compatibility. #this handles the flush command by doing nothing. #you might want to specify some extra behavior here. pass sys.stdout = Logger() sys.stderr = sys.stdout if __name__ == '__main__': if len(sys.argv) < 2: print('Incorrect usage. Needs paths to speaker frames directories.') sys.exit(1) paths = sys.argv[1:] print(FORMAT % ('all_devices', str(dlib.cuda.get_num_devices()))) print(FORMAT % ('gpu_device', str(dlib.cuda.get_device()))) try: handlePaths(paths) except Exception as e: print(FORMAT % ('error', traceback.format_exc()))
[ "numpy.argmin", "cv2.rectangle", "glob.glob", "numpy.unique", "cv2.imwrite", "face_recognition.face_encodings", "sklearn.cluster.KMeans", "traceback.format_exc", "datetime.datetime.now", "re.sub", "numpy.save", "os.stat", "face_recognition.batch_face_locations", "dlib.cuda.get_device", "sys.exit", "re.compile", "numpy.asanyarray", "dlib.cuda.get_num_devices", "time.time", "cv2.imread", "face_recognition.load_image_file" ]
[((2125, 2154), 'numpy.asanyarray', 'np.asanyarray', (['face_encodings'], {}), '(face_encodings)\n', (2138, 2154), True, 'import numpy as np\n'), ((2392, 2428), 'numpy.argmin', 'np.argmin', (['dists[:, largest_cluster]'], {}), '(dists[:, largest_cluster])\n', (2401, 2428), True, 'import numpy as np\n'), ((2963, 2993), 'cv2.imread', 'cv2.imread', (['speaker_frame_path'], {}), '(speaker_frame_path)\n', (2973, 2993), False, 'import cv2\n'), ((2999, 3062), 'cv2.rectangle', 'cv2.rectangle', (['im', '(left, top)', '(right, bottom)', '(0, 255, 0)', '(3)'], {}), '(im, (left, top), (right, bottom), (0, 255, 0), 3)\n', (3012, 3062), False, 'import cv2\n'), ((3068, 3102), 'cv2.imwrite', 'cv2.imwrite', (["(vid_name + '.jpg')", 'im'], {}), "(vid_name + '.jpg', im)\n", (3079, 3102), False, 'import cv2\n'), ((3108, 3158), 'numpy.save', 'np.save', (["(vid_name + '.npy')", 'speaker_cluster_center'], {}), "(vid_name + '.npy', speaker_cluster_center)\n", (3115, 3158), True, 'import numpy as np\n'), ((3227, 3256), 're.compile', 're.compile', (['"""([0-9]+)\\\\.jpg$"""'], {}), "('([0-9]+)\\\\.jpg$')\n", (3237, 3256), False, 'import re\n'), ((472, 485), 'os.stat', 'os.stat', (['path'], {}), '(path)\n', (479, 485), False, 'import os\n'), ((704, 750), 'face_recognition.load_image_file', 'fr.load_image_file', (['frame_paths[frame_counter]'], {}), '(frame_paths[frame_counter])\n', (722, 750), True, 'import face_recognition as fr\n'), ((904, 978), 'face_recognition.batch_face_locations', 'fr.batch_face_locations', (['frame_batch'], {'number_of_times_to_upsample': 'UPSAMPLE'}), '(frame_batch, number_of_times_to_upsample=UPSAMPLE)\n', (927, 978), True, 'import face_recognition as fr\n'), ((3630, 3641), 'time.time', 'time.time', ([], {}), '()\n', (3639, 3641), False, 'import time\n'), ((3829, 3855), 're.sub', 're.sub', (['"""^.+\\\\/"""', '""""""', 'path'], {}), "('^.+\\\\/', '', path)\n", (3835, 3855), False, 'import re\n'), ((3956, 3967), 'time.time', 'time.time', ([], {}), '()\n', (3965, 3967), False, 'import time\n'), ((4989, 5000), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (4997, 5000), False, 'import sys\n'), ((1522, 1588), 'face_recognition.face_encodings', 'fr.face_encodings', (['curr_frame'], {'known_face_locations': 'curr_locations'}), '(curr_frame, known_face_locations=curr_locations)\n', (1539, 1588), True, 'import face_recognition as fr\n'), ((2170, 2199), 'sklearn.cluster.KMeans', 'KMeans', ([], {'n_clusters': 'N_CLUSTERS'}), '(n_clusters=N_CLUSTERS)\n', (2176, 2199), False, 'from sklearn.cluster import KMeans\n'), ((2326, 2362), 'numpy.unique', 'np.unique', (['preds'], {'return_counts': '(True)'}), '(preds, return_counts=True)\n', (2335, 2362), True, 'import numpy as np\n'), ((3721, 3743), 'glob.glob', 'glob.glob', (["(path + '/*')"], {}), "(path + '/*')\n", (3730, 3743), False, 'import glob\n'), ((4243, 4266), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (4264, 4266), False, 'import datetime\n'), ((4293, 4316), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (4314, 4316), False, 'import datetime\n'), ((5069, 5096), 'dlib.cuda.get_num_devices', 'dlib.cuda.get_num_devices', ([], {}), '()\n', (5094, 5096), False, 'import dlib\n'), ((5139, 5161), 'dlib.cuda.get_device', 'dlib.cuda.get_device', ([], {}), '()\n', (5159, 5161), False, 'import dlib\n'), ((5267, 5289), 'traceback.format_exc', 'traceback.format_exc', ([], {}), '()\n', (5287, 5289), False, 'import traceback\n')]
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """To perform inference on test set given a trained model.""" import copy import os import random import re import time import json from tqdm import tqdm import math import numpy as np import tensorflow as tf import model as diag_model import model_helper from dialogue import SelfplayDialogue from utils import dialogue_utils from utils import misc_utils as utils from utils.dialogue_utils import task_SP_DISTRIBUTED def handle_summary(diag_mode, summary_writer, global_step, all_summary, summary_weight): """hanel all summary and combine them together.""" combined = {} for summary in all_summary: for key in summary: if key not in combined: combined[key] = [] combined[key].append(summary[key]) print('combined', combined) for key in combined: combined[key] = np.average(combined[key], weights=summary_weight) name = diag_mode + '_' + key utils.add_summary(summary_writer, global_step, name, combined[key]) def pred_action_to_obj(pred_action): action_obj = { 'name': ' '.join([pred_action[0], pred_action[1]]), 'flight': [''], 'status': '' } fl_match = re.match('<fl_(\d+)>', pred_action[2]) if fl_match: action_obj['flight'][0] = fl_match[0] status_match = re.match('<st_(\w+)>', pred_action[3]) if status_match: action_obj['status'] = status_match[0] return action_obj def utterance_to_dialogue(utt): stack = "" dialogue = [] for s in utt: if s == "<t1>" or s == "<t2>": if stack: dialogue.append(stack) stack = "" stack += "customer:" if s == "<t1>" else "agent:" elif s == "<eod>": break else: stack += " " + s if stack: dialogue.append(stack) return dialogue def output_generated_data(generated_data, eval_out): bs_intent, bs_pred_action, bs_truth_action, utt_arr, bs_kb = generated_data for intent, pred_action, true_action, utterance, kb in zip( bs_intent, bs_pred_action, bs_truth_action, utt_arr, bs_kb): generated_obj = { # 'intent': intent, 'pred_action': pred_action_to_obj(pred_action), # 'action': true_action, 'dialogue': utterance_to_dialogue(utterance), # 'kb': kb } # print('generated_obj', generated_obj) eval_out.write(json.dumps(generated_obj) + '\n') def single_worker_selfplay(mutable_model, immutable_model, mutable_sess, immutable_sess, selfplay_data_file, selfplay_kb_file, global_step, hparams, summary_writer): """selfplay with a single worker. This is preminarily used for self play evaluation. """ dialogue_mode = dialogue_utils.mode_self_play_dialogue_eval # Read self play data selfplay_data = dialogue_utils.load_data(selfplay_data_file) selfplay_kb = dialogue_utils.load_data(selfplay_kb_file) # construct dialogue object dialogue = SelfplayDialogue( mutable_model, immutable_model, mutable_sess, immutable_sess, hparams.max_dialogue_turns, hparams.train_threadhold, hparams.start_of_turn1, hparams.start_of_turn2, hparams.end_of_dialogue, summary_writer=summary_writer, dialogue_mode=dialogue_mode, hparams=hparams) batch_size = dialogue.self_play_eval_batch_size assert batch_size <= len(selfplay_data) loaded_mutable, _ = load_self_play_model( dialogue.mutable_model, dialogue.mutable_sess, 'mutable', hparams.self_play_pretrain_dir, hparams.out_dir) loaded_immutable, _ = load_self_play_model( dialogue.immutable_model, dialogue.immutable_sess, 'immutable', hparams.self_play_pretrain_dir, hparams.out_dir) worker_step = 0 all_summary = [] summary_weight = [] # used in combination with all_summary # max_eval_per_flip = 100000 # We flip the role of the agent for exactly two times. In the first iteration # when flip = 0, mutable model will be agent 1 and immutable model will be # agent 2. The other way around when flip = 1. start_time = time.time() num_flips_for_initial_speaker = 2 with tf.gfile.GFile(hparams.selfplay_eval_output_file, 'w') as selfplay_out: print('flip 1') for flip in range(num_flips_for_initial_speaker): # epoch = -1 i = len(selfplay_data) # force shuffling at the beginning agent1, agent2, _ = dialogue.flip_agent( (loaded_mutable, mutable_sess, dialogue.mutable_handles), (loaded_immutable, immutable_sess, dialogue.immutable_handles), flip) # only eval one epoch # while epoch <= 0: # print(i, max_eval_per_flip) # if i * batch_size >= len(selfplay_data): # reacehd the end input_data = list(zip(selfplay_data, selfplay_kb)) # we don't shuffle in evaluation # random.shuffle(input_data) # random shuffle input data # i = 0 selfplay_data, selfplay_kb = list(zip(*input_data)) # epoch += 1 ceil = int(math.ceil(len(selfplay_data) *1.0 / batch_size)) for i in tqdm(list(range(0, ceil))): start_ind = i * batch_size end_ind = min(i * batch_size + batch_size, len(selfplay_data)) batch_data = selfplay_data[start_ind:end_ind] batch_kb = selfplay_kb[start_ind:end_ind] # we indicate to let agent1 to talk first. Keep in mind that we will # swap between agent1 and agent2. speaker = flip % 2 generated_data, _, summary = dialogue.talk(hparams.max_dialogue_len, batch_data, batch_kb, agent1, agent2, worker_step, end_ind - start_ind, speaker) output_generated_data(generated_data, selfplay_out) all_summary.append(summary) # number of elements processed summary_weight.append(end_ind - start_ind) worker_step += 1 handle_summary(dialogue_mode, summary_writer, global_step, all_summary, summary_weight) end_time = time.time() print('finished') utils.add_summary(summary_writer, global_step, dialogue_mode + '_time', end_time - start_time) # step wise summary def load_self_play_model(model, sess, identity, supervised_learning_path, self_play_path): """This function loads the self-play model. It will first check the self play directory. If it's empty it will then load the pre-trained model from supervised learning. """ ckpt = tf.train.latest_checkpoint(self_play_path) # first try self_play out dir if ckpt: print('{0} restore from self_play path at {1}'.format( identity, self_play_path)) with model.graph.as_default(): model_helper.full_restore(sess, ckpt) # if model doesn't exist then load supervised learning model else: print('{0} restore from supervised learning at {1}'.format( identity, supervised_learning_path)) ckpt = tf.train.latest_checkpoint(supervised_learning_path) assert ckpt with model.graph.as_default(): # first do initialization to make sure that all variables are initialized sess.run(tf.global_variables_initializer()) sess.run(tf.tables_initializer()) model_helper.full_restore(sess, ckpt) return model, sess def self_play_eval_fn(hparams, identity, num_workers=1, jobid=0, scope=None, target_session=''): """This is the single worker self play. Mostly used for self play evaluation. identity is used here to distinguish between workers. """ model_creator = diag_model.Model mutable_model = model_helper.create_selfplay_model( model_creator, True, # mutable is True num_workers, jobid, hparams=hparams, scope=scope) immutable_model = model_helper.create_selfplay_model( model_creator, False, # mutable is False num_workers, jobid, hparams=hparams, scope=scope) mutable_sess = tf.Session( graph=mutable_model.graph, config=tf.ConfigProto( allow_soft_placement=True, device_count={'GPU': hparams.num_gpus})) immutable_sess = tf.Session( graph=immutable_model.graph, config=tf.ConfigProto( allow_soft_placement=True, device_count={'GPU': hparams.num_gpus})) # number of steps per external eval steps_per_external_eval = 10 # force conducting a self play at the beginning last_external_eval_step = -1 * steps_per_external_eval print('hparams.self_play_pretrain_dir=', hparams.self_play_pretrain_dir) print('steps_per_external_eval=', steps_per_external_eval) writer_path = os.path.join(hparams.out_dir, identity + hparams.task_type + '_log') summary_writer = tf.summary.FileWriter(writer_path, mutable_sess.graph) print('summary_writer estabilished at', writer_path) # waiting for checkpoints and loop forever latest_ckpt = None while True: latest_ckpt = tf.contrib.training.wait_for_new_checkpoint( hparams.out_dir, latest_ckpt) print('got checkpoint', latest_ckpt) # get the global_step variable first with mutable_model.graph.as_default(): # first initialize to avoid encountering missing component for adam optimizer _, global_step = model_helper.create_or_load_model( mutable_model.model, hparams.out_dir, mutable_sess, hparams.task_type) # valid evaluation step if (not hparams.eval_forever) or (global_step - last_external_eval_step >= steps_per_external_eval): # if eval_forever is disabled, we will do one selfplay evalation # otherwise, we will wait until certain number of timesteps are elapsed. last_external_eval_step = global_step print('do single worker evaluation') single_worker_selfplay(mutable_model, immutable_model, mutable_sess, immutable_sess, hparams.self_play_eval_data, hparams.self_play_eval_kb, global_step, hparams, summary_writer) else: print('Wait until steps_per_external_eval is reached.', global_step, last_external_eval_step, steps_per_external_eval) if not hparams.eval_forever: break # if eval_foever is disabled, we only evaluate once mutable_sess.close() immutable_sess.close() def multi_worker_selfplay(hparams, identity, scope=None, target_session='', is_chief=True, ps_tasks=0, num_workers=1, jobid=0, startup_delay_steps=0): """This is the multi worker selfplay, mostly used for self play distributed training. identity is used. """ immutable_model_reload_freq = hparams.immutable_model_reload_freq # 1. models and summary writer model_creator = diag_model.Model extra_args = model_helper.ExtraArgs( single_cell_fn=None, model_device_fn=tf.train.replica_device_setter(ps_tasks), attention_mechanism_fn=None) mutable_model = model_helper.create_selfplay_model( model_creator, is_mutable=True, num_workers=num_workers, jobid=jobid, hparams=hparams, scope=scope, extra_args=extra_args) immutable_hparams = copy.deepcopy(hparams) immutable_hparams.num_gpus = 0 immutable_model = model_helper.create_selfplay_model( model_creator, is_mutable=False, num_workers=num_workers, jobid=jobid, hparams=immutable_hparams, scope=scope) if hparams.self_play_immutable_gpu: print('using GPU for immutable') immutable_sess = tf.Session( graph=immutable_model.graph, config=tf.ConfigProto(allow_soft_placement=True)) else: print('not using GPU for immutable') immutable_sess = tf.Session( graph=immutable_model.graph, config=tf.ConfigProto( allow_soft_placement=True, device_count={'GPU': 0})) immutable_model, immutable_sess = load_self_play_model( immutable_model, immutable_sess, 'immutable', hparams.self_play_pretrain_dir, hparams.out_dir) global_step = immutable_model.model.global_step.eval(session=immutable_sess) if is_chief: ckpt = tf.train.latest_checkpoint(hparams.out_dir) if not ckpt: print('global_step, saving pretrain model to hparams.out_dir', global_step, hparams.out_dir) immutable_model.model.saver.save( # this is the prevent adam error immutable_sess, os.path.join(hparams.out_dir, 'dialogue.ckpt'), global_step=global_step) print('save finished') if is_chief: summary_writer_path = os.path.join(hparams.out_dir, identity + task_SP_DISTRIBUTED + '_log') summary_writer = tf.summary.FileWriter(summary_writer_path, mutable_model.graph) print('summary writer established at', summary_writer_path) else: summary_writer = None # 2. supervisor and sessions sv = tf.train.Supervisor( graph=mutable_model.graph, is_chief=is_chief, saver=mutable_model.model.saver, save_model_secs=0, # disable automatic save checkpoints summary_op=None, logdir=hparams.out_dir, checkpoint_basename='dialogue.ckpt') mutable_config = utils.get_config_proto( log_device_placement=hparams.log_device_placement, allow_soft_placement=True) mutable_config.device_count['GPU'] = hparams.num_gpus mutable_sess = sv.prepare_or_wait_for_session( target_session, config=mutable_config) # 3. additiona preparations global_step = mutable_model.model.global_step.eval(session=mutable_sess) while global_step < (jobid * (jobid + 1) * startup_delay_steps / 2): time.sleep(1) global_step = mutable_model.model.global_step.eval(session=mutable_sess) # save first model if is_chief: print('saving the first checkpoint to', hparams.out_dir) mutable_model.model.saver.save( mutable_sess, os.path.join(hparams.out_dir, 'dialogue.ckpt'), global_step=global_step) last_save_step = global_step # Read data selfplay_data = dialogue_utils.load_data(hparams.self_play_train_data) selfplay_kb = dialogue_utils.load_data(hparams.self_play_train_kb) dialogue = SelfplayDialogue( mutable_model, immutable_model, mutable_sess, immutable_sess, hparams.max_dialogue_turns, hparams.train_threadhold, hparams.start_of_turn1, hparams.start_of_turn2, hparams.end_of_dialogue, summary_writer=summary_writer, dialogue_mode=task_SP_DISTRIBUTED, hparams=hparams) # 4. main loop last_immmutable_model_reload = global_step last_save_step = global_step batch_size = dialogue.batch_size assert batch_size <= len(selfplay_data) # this is the start point of the self-play data. force shuffling at the beginning i = len(selfplay_data) train_stats = [0, 0] while global_step < hparams.num_self_play_train_steps + hparams.num_train_steps: # a. reload immutable model, muttable will be automated managed by supervisor if immutable_model_reload_freq > 0 and global_step - last_immmutable_model_reload > immutable_model_reload_freq: immutable_model, immutable_sess = load_self_play_model( immutable_model, immutable_sess, 'immutable', hparams.self_play_pretrain_dir, hparams.out_dir) last_immmutable_model_reload = global_step # b. possiblely flip between speakers (or roll out models), # based on either a random policy or by step counts agent1, agent2, mutable_agent_index = dialogue.flip_agent( (mutable_model, mutable_sess, dialogue.mutable_handles), (immutable_model, immutable_sess, dialogue.immutable_handles)) train_stats[mutable_agent_index] += 1 # read selfplay data start_time = time.time() if i * batch_size + batch_size > len(selfplay_data): # reached the end input_data = list(zip(selfplay_data, selfplay_kb)) random.shuffle(input_data) # random shuffle input data i = 0 selfplay_data, selfplay_kb = list(zip(*input_data)) start_ind, end_ind = i * batch_size, i * batch_size + batch_size batch_data, batch_kb = selfplay_data[start_ind:end_ind], selfplay_kb[ start_ind:end_ind] train_example, _, _ = dialogue.talk(hparams.max_dialogue_len, batch_data, batch_kb, agent1, agent2, global_step, batch_size) possible_global_step = dialogue.maybe_train( train_example, mutable_agent_index, global_step, force=True) if possible_global_step: global_step = possible_global_step if is_chief and global_step - last_save_step > hparams.self_play_dist_save_freq: mutable_model.model.saver.save( mutable_sess, os.path.join(hparams.out_dir, 'dialogue.ckpt'), global_step=global_step) last_save_step = global_step end_time = time.time() if is_chief: utils.add_summary(summary_writer, global_step, task_SP_DISTRIBUTED + '_' + 'time', end_time - start_time) utils.add_summary(summary_writer, global_step, task_SP_DISTRIBUTED + '_' + 'train_ratio', train_stats[0] * 1.0 / (train_stats[1] + 0.1)) i += 1 if is_chief: summary_writer.close() mutable_sess.close() immutable_sess.close()
[ "random.shuffle", "json.dumps", "tensorflow.ConfigProto", "tensorflow.train.latest_checkpoint", "tensorflow.tables_initializer", "os.path.join", "utils.misc_utils.add_summary", "tensorflow.summary.FileWriter", "tensorflow.contrib.training.wait_for_new_checkpoint", "copy.deepcopy", "numpy.average", "model_helper.create_or_load_model", "tensorflow.global_variables_initializer", "dialogue.SelfplayDialogue", "re.match", "time.sleep", "tensorflow.gfile.GFile", "tensorflow.train.replica_device_setter", "utils.dialogue_utils.load_data", "utils.misc_utils.get_config_proto", "model_helper.full_restore", "time.time", "tensorflow.train.Supervisor", "model_helper.create_selfplay_model" ]
[((1737, 1776), 're.match', 're.match', (['"""<fl_(\\\\d+)>"""', 'pred_action[2]'], {}), "('<fl_(\\\\d+)>', pred_action[2])\n", (1745, 1776), False, 'import re\n'), ((1858, 1897), 're.match', 're.match', (['"""<st_(\\\\w+)>"""', 'pred_action[3]'], {}), "('<st_(\\\\w+)>', pred_action[3])\n", (1866, 1897), False, 'import re\n'), ((3415, 3459), 'utils.dialogue_utils.load_data', 'dialogue_utils.load_data', (['selfplay_data_file'], {}), '(selfplay_data_file)\n', (3439, 3459), False, 'from utils import dialogue_utils\n'), ((3476, 3518), 'utils.dialogue_utils.load_data', 'dialogue_utils.load_data', (['selfplay_kb_file'], {}), '(selfplay_kb_file)\n', (3500, 3518), False, 'from utils import dialogue_utils\n'), ((3563, 3862), 'dialogue.SelfplayDialogue', 'SelfplayDialogue', (['mutable_model', 'immutable_model', 'mutable_sess', 'immutable_sess', 'hparams.max_dialogue_turns', 'hparams.train_threadhold', 'hparams.start_of_turn1', 'hparams.start_of_turn2', 'hparams.end_of_dialogue'], {'summary_writer': 'summary_writer', 'dialogue_mode': 'dialogue_mode', 'hparams': 'hparams'}), '(mutable_model, immutable_model, mutable_sess,\n immutable_sess, hparams.max_dialogue_turns, hparams.train_threadhold,\n hparams.start_of_turn1, hparams.start_of_turn2, hparams.end_of_dialogue,\n summary_writer=summary_writer, dialogue_mode=dialogue_mode, hparams=hparams\n )\n', (3579, 3862), False, 'from dialogue import SelfplayDialogue\n'), ((4699, 4710), 'time.time', 'time.time', ([], {}), '()\n', (4708, 4710), False, 'import time\n'), ((6698, 6709), 'time.time', 'time.time', ([], {}), '()\n', (6707, 6709), False, 'import time\n'), ((6732, 6831), 'utils.misc_utils.add_summary', 'utils.add_summary', (['summary_writer', 'global_step', "(dialogue_mode + '_time')", '(end_time - start_time)'], {}), "(summary_writer, global_step, dialogue_mode + '_time', \n end_time - start_time)\n", (6749, 6831), True, 'from utils import misc_utils as utils\n'), ((7180, 7222), 'tensorflow.train.latest_checkpoint', 'tf.train.latest_checkpoint', (['self_play_path'], {}), '(self_play_path)\n', (7206, 7222), True, 'import tensorflow as tf\n'), ((8377, 8486), 'model_helper.create_selfplay_model', 'model_helper.create_selfplay_model', (['model_creator', '(True)', 'num_workers', 'jobid'], {'hparams': 'hparams', 'scope': 'scope'}), '(model_creator, True, num_workers, jobid,\n hparams=hparams, scope=scope)\n', (8411, 8486), False, 'import model_helper\n'), ((8559, 8669), 'model_helper.create_selfplay_model', 'model_helper.create_selfplay_model', (['model_creator', '(False)', 'num_workers', 'jobid'], {'hparams': 'hparams', 'scope': 'scope'}), '(model_creator, False, num_workers, jobid,\n hparams=hparams, scope=scope)\n', (8593, 8669), False, 'import model_helper\n'), ((9396, 9464), 'os.path.join', 'os.path.join', (['hparams.out_dir', "(identity + hparams.task_type + '_log')"], {}), "(hparams.out_dir, identity + hparams.task_type + '_log')\n", (9408, 9464), False, 'import os\n'), ((9513, 9567), 'tensorflow.summary.FileWriter', 'tf.summary.FileWriter', (['writer_path', 'mutable_sess.graph'], {}), '(writer_path, mutable_sess.graph)\n', (9534, 9567), True, 'import tensorflow as tf\n'), ((11925, 12090), 'model_helper.create_selfplay_model', 'model_helper.create_selfplay_model', (['model_creator'], {'is_mutable': '(True)', 'num_workers': 'num_workers', 'jobid': 'jobid', 'hparams': 'hparams', 'scope': 'scope', 'extra_args': 'extra_args'}), '(model_creator, is_mutable=True,\n num_workers=num_workers, jobid=jobid, hparams=hparams, scope=scope,\n extra_args=extra_args)\n', (11959, 12090), False, 'import model_helper\n'), ((12148, 12170), 'copy.deepcopy', 'copy.deepcopy', (['hparams'], {}), '(hparams)\n', (12161, 12170), False, 'import copy\n'), ((12224, 12378), 'model_helper.create_selfplay_model', 'model_helper.create_selfplay_model', (['model_creator'], {'is_mutable': '(False)', 'num_workers': 'num_workers', 'jobid': 'jobid', 'hparams': 'immutable_hparams', 'scope': 'scope'}), '(model_creator, is_mutable=False,\n num_workers=num_workers, jobid=jobid, hparams=immutable_hparams, scope=\n scope)\n', (12258, 12378), False, 'import model_helper\n'), ((13909, 14114), 'tensorflow.train.Supervisor', 'tf.train.Supervisor', ([], {'graph': 'mutable_model.graph', 'is_chief': 'is_chief', 'saver': 'mutable_model.model.saver', 'save_model_secs': '(0)', 'summary_op': 'None', 'logdir': 'hparams.out_dir', 'checkpoint_basename': '"""dialogue.ckpt"""'}), "(graph=mutable_model.graph, is_chief=is_chief, saver=\n mutable_model.model.saver, save_model_secs=0, summary_op=None, logdir=\n hparams.out_dir, checkpoint_basename='dialogue.ckpt')\n", (13928, 14114), True, 'import tensorflow as tf\n'), ((14206, 14310), 'utils.misc_utils.get_config_proto', 'utils.get_config_proto', ([], {'log_device_placement': 'hparams.log_device_placement', 'allow_soft_placement': '(True)'}), '(log_device_placement=hparams.log_device_placement,\n allow_soft_placement=True)\n', (14228, 14310), True, 'from utils import misc_utils as utils\n'), ((15060, 15114), 'utils.dialogue_utils.load_data', 'dialogue_utils.load_data', (['hparams.self_play_train_data'], {}), '(hparams.self_play_train_data)\n', (15084, 15114), False, 'from utils import dialogue_utils\n'), ((15131, 15183), 'utils.dialogue_utils.load_data', 'dialogue_utils.load_data', (['hparams.self_play_train_kb'], {}), '(hparams.self_play_train_kb)\n', (15155, 15183), False, 'from utils import dialogue_utils\n'), ((15198, 15502), 'dialogue.SelfplayDialogue', 'SelfplayDialogue', (['mutable_model', 'immutable_model', 'mutable_sess', 'immutable_sess', 'hparams.max_dialogue_turns', 'hparams.train_threadhold', 'hparams.start_of_turn1', 'hparams.start_of_turn2', 'hparams.end_of_dialogue'], {'summary_writer': 'summary_writer', 'dialogue_mode': 'task_SP_DISTRIBUTED', 'hparams': 'hparams'}), '(mutable_model, immutable_model, mutable_sess,\n immutable_sess, hparams.max_dialogue_turns, hparams.train_threadhold,\n hparams.start_of_turn1, hparams.start_of_turn2, hparams.end_of_dialogue,\n summary_writer=summary_writer, dialogue_mode=task_SP_DISTRIBUTED,\n hparams=hparams)\n', (15214, 15502), False, 'from dialogue import SelfplayDialogue\n'), ((1399, 1448), 'numpy.average', 'np.average', (['combined[key]'], {'weights': 'summary_weight'}), '(combined[key], weights=summary_weight)\n', (1409, 1448), True, 'import numpy as np\n'), ((1486, 1553), 'utils.misc_utils.add_summary', 'utils.add_summary', (['summary_writer', 'global_step', 'name', 'combined[key]'], {}), '(summary_writer, global_step, name, combined[key])\n', (1503, 1553), True, 'from utils import misc_utils as utils\n'), ((4754, 4808), 'tensorflow.gfile.GFile', 'tf.gfile.GFile', (['hparams.selfplay_eval_output_file', '"""w"""'], {}), "(hparams.selfplay_eval_output_file, 'w')\n", (4768, 4808), True, 'import tensorflow as tf\n'), ((7630, 7682), 'tensorflow.train.latest_checkpoint', 'tf.train.latest_checkpoint', (['supervised_learning_path'], {}), '(supervised_learning_path)\n', (7656, 7682), True, 'import tensorflow as tf\n'), ((9722, 9795), 'tensorflow.contrib.training.wait_for_new_checkpoint', 'tf.contrib.training.wait_for_new_checkpoint', (['hparams.out_dir', 'latest_ckpt'], {}), '(hparams.out_dir, latest_ckpt)\n', (9765, 9795), True, 'import tensorflow as tf\n'), ((13098, 13141), 'tensorflow.train.latest_checkpoint', 'tf.train.latest_checkpoint', (['hparams.out_dir'], {}), '(hparams.out_dir)\n', (13124, 13141), True, 'import tensorflow as tf\n'), ((13534, 13604), 'os.path.join', 'os.path.join', (['hparams.out_dir', "(identity + task_SP_DISTRIBUTED + '_log')"], {}), "(hparams.out_dir, identity + task_SP_DISTRIBUTED + '_log')\n", (13546, 13604), False, 'import os\n'), ((13665, 13728), 'tensorflow.summary.FileWriter', 'tf.summary.FileWriter', (['summary_writer_path', 'mutable_model.graph'], {}), '(summary_writer_path, mutable_model.graph)\n', (13686, 13728), True, 'import tensorflow as tf\n'), ((14658, 14671), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (14668, 14671), False, 'import time\n'), ((16775, 16786), 'time.time', 'time.time', ([], {}), '()\n', (16784, 16786), False, 'import time\n'), ((17910, 17921), 'time.time', 'time.time', ([], {}), '()\n', (17919, 17921), False, 'import time\n'), ((7401, 7438), 'model_helper.full_restore', 'model_helper.full_restore', (['sess', 'ckpt'], {}), '(sess, ckpt)\n', (7426, 7438), False, 'import model_helper\n'), ((7910, 7947), 'model_helper.full_restore', 'model_helper.full_restore', (['sess', 'ckpt'], {}), '(sess, ckpt)\n', (7935, 7947), False, 'import model_helper\n'), ((8799, 8885), 'tensorflow.ConfigProto', 'tf.ConfigProto', ([], {'allow_soft_placement': '(True)', 'device_count': "{'GPU': hparams.num_gpus}"}), "(allow_soft_placement=True, device_count={'GPU': hparams.\n num_gpus})\n", (8813, 8885), True, 'import tensorflow as tf\n'), ((8972, 9058), 'tensorflow.ConfigProto', 'tf.ConfigProto', ([], {'allow_soft_placement': '(True)', 'device_count': "{'GPU': hparams.num_gpus}"}), "(allow_soft_placement=True, device_count={'GPU': hparams.\n num_gpus})\n", (8986, 9058), True, 'import tensorflow as tf\n'), ((10037, 10145), 'model_helper.create_or_load_model', 'model_helper.create_or_load_model', (['mutable_model.model', 'hparams.out_dir', 'mutable_sess', 'hparams.task_type'], {}), '(mutable_model.model, hparams.out_dir,\n mutable_sess, hparams.task_type)\n', (10070, 10145), False, 'import model_helper\n'), ((11829, 11869), 'tensorflow.train.replica_device_setter', 'tf.train.replica_device_setter', (['ps_tasks'], {}), '(ps_tasks)\n', (11859, 11869), True, 'import tensorflow as tf\n'), ((14913, 14959), 'os.path.join', 'os.path.join', (['hparams.out_dir', '"""dialogue.ckpt"""'], {}), "(hparams.out_dir, 'dialogue.ckpt')\n", (14925, 14959), False, 'import os\n'), ((16926, 16952), 'random.shuffle', 'random.shuffle', (['input_data'], {}), '(input_data)\n', (16940, 16952), False, 'import random\n'), ((17946, 18055), 'utils.misc_utils.add_summary', 'utils.add_summary', (['summary_writer', 'global_step', "(task_SP_DISTRIBUTED + '_' + 'time')", '(end_time - start_time)'], {}), "(summary_writer, global_step, task_SP_DISTRIBUTED + '_' +\n 'time', end_time - start_time)\n", (17963, 18055), True, 'from utils import misc_utils as utils\n'), ((18106, 18246), 'utils.misc_utils.add_summary', 'utils.add_summary', (['summary_writer', 'global_step', "(task_SP_DISTRIBUTED + '_' + 'train_ratio')", '(train_stats[0] * 1.0 / (train_stats[1] + 0.1))'], {}), "(summary_writer, global_step, task_SP_DISTRIBUTED + '_' +\n 'train_ratio', train_stats[0] * 1.0 / (train_stats[1] + 0.1))\n", (18123, 18246), True, 'from utils import misc_utils as utils\n'), ((2956, 2981), 'json.dumps', 'json.dumps', (['generated_obj'], {}), '(generated_obj)\n', (2966, 2981), False, 'import json\n'), ((7829, 7862), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (7860, 7862), True, 'import tensorflow as tf\n'), ((7879, 7902), 'tensorflow.tables_initializer', 'tf.tables_initializer', ([], {}), '()\n', (7900, 7902), True, 'import tensorflow as tf\n'), ((12568, 12609), 'tensorflow.ConfigProto', 'tf.ConfigProto', ([], {'allow_soft_placement': '(True)'}), '(allow_soft_placement=True)\n', (12582, 12609), True, 'import tensorflow as tf\n'), ((12745, 12811), 'tensorflow.ConfigProto', 'tf.ConfigProto', ([], {'allow_soft_placement': '(True)', 'device_count': "{'GPU': 0}"}), "(allow_soft_placement=True, device_count={'GPU': 0})\n", (12759, 12811), True, 'import tensorflow as tf\n'), ((13380, 13426), 'os.path.join', 'os.path.join', (['hparams.out_dir', '"""dialogue.ckpt"""'], {}), "(hparams.out_dir, 'dialogue.ckpt')\n", (13392, 13426), False, 'import os\n'), ((17777, 17823), 'os.path.join', 'os.path.join', (['hparams.out_dir', '"""dialogue.ckpt"""'], {}), "(hparams.out_dir, 'dialogue.ckpt')\n", (17789, 17823), False, 'import os\n')]
import logging import time import numpy as np from param_net.param_fcnet import ParamFCNetRegression from keras.losses import mean_squared_error from keras import backend as K from smac.tae.execute_func import ExecuteTAFuncDict from smac.scenario.scenario import Scenario from smac.facade.smac_facade import SMAC from mini_autonet.intensification.intensification import Intensifier from mini_autonet.tae.simple_tae import SimpleTAFunc from sklearn.preprocessing import StandardScaler from ConfigSpace.configuration_space import Configuration from ConfigSpace.util import fix_types class DNN(object): def __init__(self, num_layers_range:list=[1,4,10], use_dropout:bool=False, use_l2_regularization:bool=False): self.logger = logging.getLogger("AutoNet") self.num_layers_range = num_layers_range self.use_dropout = use_dropout self.use_l2_regularization = use_l2_regularization self.scalerX = StandardScaler() self.scalerY = StandardScaler() def fit(self, X, y, max_epochs:int, runcount_limit:int=100, wc_limit:int=60, config:Configuration=None, seed:int=12345): X_all = None y_all = None for idx, (X_q, y_q) in enumerate(zip(X,y)): if idx == 0: X_all = X_q y_all = y_q else: X_all = np.vstack([X_all, X_q]) y_all = np.hstack([y_all, y_q]) def obj_func(config, instance=None, seed=None, pc=None): # continuing training if pc is given # otherwise, construct new DNN models = [] losses = [] for model_idx, [train_idx, valid_idx] in enumerate([[0,3],[3,0],[1,2],[2,1]]): X_train = X[train_idx] y_train = y[train_idx] X_train = self.scalerX.fit_transform(X_train) y_train = np.log10(y_train) y_train = self.scalerY.fit_transform(y_train.reshape(-1, 1))[:,0] X_valid, y_valid = X_all, y_all X_valid = self.scalerX.transform(X_valid) y_valid = np.log10(y_valid) y_valid = self.scalerY.transform(y_valid.reshape(-1, 1))[:,0] if pc is None: if model_idx == 0: K.clear_session() model = ParamFCNetRegression(config=config, n_feat=X_train.shape[1], expected_num_epochs=max_epochs, n_outputs=1, verbose=1) else: model = pc[model_idx] history = model.train(X_train=X_train, y_train=y_train, X_valid=X_valid, y_valid=y_valid, n_epochs=1) models.append(model) final_loss = history["val_loss"][-1] losses.append(final_loss) return np.mean(losses), {"model": models} taf = SimpleTAFunc(obj_func) cs = ParamFCNetRegression.get_config_space(num_layers_range=self.num_layers_range, use_l2_regularization=self.use_l2_regularization, use_dropout=self.use_dropout) print(cs) ac_scenario = Scenario({"run_obj": "quality", # we optimize quality "runcount-limit": max_epochs*runcount_limit, "wallclock-limit": wc_limit, "cost_for_crash": 10, "cs": cs, "deterministic": "true", "abort_on_first_run_crash": False, "output-dir": "" }) intensifier = Intensifier(tae_runner=taf, stats=None, traj_logger=None, rng=np.random.RandomState(42), run_limit=100, max_epochs=max_epochs) if isinstance(config, dict): config = fix_types(configuration=dict, configuration_space=cs) config = Configuration(configuration_space=cs, values=config) elif runcount_limit==1: config = cs.get_default_configuration() else: smac = SMAC(scenario=ac_scenario, tae_runner=taf, rng=np.random.RandomState(seed), intensifier=intensifier) smac.solver.runhistory.overwrite_existing_runs = True config = smac.optimize() print("Final Incumbent") print(config) X_all = self.scalerX.fit_transform(X_all) y_all = np.log10(y_all) y_all = self.scalerY.fit_transform(y_all.reshape(-1, 1))[:,0] K.clear_session() start_time = time.time() model = ParamFCNetRegression(config=config, n_feat=X_all.shape[1], expected_num_epochs=max_epochs, n_outputs=1, verbose=1) history = model.train(X_train=X_all, y_train=y_all, X_valid=X_all, y_valid=y_all, n_epochs=max_epochs) print("Training Time: %f" %(time.time() - start_time)) self.model = model def predict(self, X_test): X_test = self.scalerX.transform(X_test) y_pred = self.model.predict(X_test) y_pred = self.scalerY.inverse_transform(y_pred) y_pred = 10**y_pred y_pred = np.maximum(0.0005,y_pred) return y_pred
[ "sklearn.preprocessing.StandardScaler", "keras.backend.clear_session", "numpy.maximum", "param_net.param_fcnet.ParamFCNetRegression", "mini_autonet.tae.simple_tae.SimpleTAFunc", "ConfigSpace.util.fix_types", "numpy.random.RandomState", "time.time", "param_net.param_fcnet.ParamFCNetRegression.get_config_space", "numpy.hstack", "smac.scenario.scenario.Scenario", "numpy.mean", "ConfigSpace.configuration_space.Configuration", "numpy.vstack", "numpy.log10", "logging.getLogger" ]
[((784, 812), 'logging.getLogger', 'logging.getLogger', (['"""AutoNet"""'], {}), "('AutoNet')\n", (801, 812), False, 'import logging\n'), ((1006, 1022), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (1020, 1022), False, 'from sklearn.preprocessing import StandardScaler\n'), ((1046, 1062), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (1060, 1062), False, 'from sklearn.preprocessing import StandardScaler\n'), ((3386, 3408), 'mini_autonet.tae.simple_tae.SimpleTAFunc', 'SimpleTAFunc', (['obj_func'], {}), '(obj_func)\n', (3398, 3408), False, 'from mini_autonet.tae.simple_tae import SimpleTAFunc\n'), ((3422, 3588), 'param_net.param_fcnet.ParamFCNetRegression.get_config_space', 'ParamFCNetRegression.get_config_space', ([], {'num_layers_range': 'self.num_layers_range', 'use_l2_regularization': 'self.use_l2_regularization', 'use_dropout': 'self.use_dropout'}), '(num_layers_range=self.\n num_layers_range, use_l2_regularization=self.use_l2_regularization,\n use_dropout=self.use_dropout)\n', (3459, 3588), False, 'from param_net.param_fcnet import ParamFCNetRegression\n'), ((3742, 3972), 'smac.scenario.scenario.Scenario', 'Scenario', (["{'run_obj': 'quality', 'runcount-limit': max_epochs * runcount_limit,\n 'wallclock-limit': wc_limit, 'cost_for_crash': 10, 'cs': cs,\n 'deterministic': 'true', 'abort_on_first_run_crash': False,\n 'output-dir': ''}"], {}), "({'run_obj': 'quality', 'runcount-limit': max_epochs *\n runcount_limit, 'wallclock-limit': wc_limit, 'cost_for_crash': 10, 'cs':\n cs, 'deterministic': 'true', 'abort_on_first_run_crash': False,\n 'output-dir': ''})\n", (3750, 3972), False, 'from smac.scenario.scenario import Scenario\n'), ((5197, 5212), 'numpy.log10', 'np.log10', (['y_all'], {}), '(y_all)\n', (5205, 5212), True, 'import numpy as np\n'), ((5308, 5325), 'keras.backend.clear_session', 'K.clear_session', ([], {}), '()\n', (5323, 5325), True, 'from keras import backend as K\n'), ((5356, 5367), 'time.time', 'time.time', ([], {}), '()\n', (5365, 5367), False, 'import time\n'), ((5393, 5511), 'param_net.param_fcnet.ParamFCNetRegression', 'ParamFCNetRegression', ([], {'config': 'config', 'n_feat': 'X_all.shape[1]', 'expected_num_epochs': 'max_epochs', 'n_outputs': '(1)', 'verbose': '(1)'}), '(config=config, n_feat=X_all.shape[1],\n expected_num_epochs=max_epochs, n_outputs=1, verbose=1)\n', (5413, 5511), False, 'from param_net.param_fcnet import ParamFCNetRegression\n'), ((6196, 6222), 'numpy.maximum', 'np.maximum', (['(0.0005)', 'y_pred'], {}), '(0.0005, y_pred)\n', (6206, 6222), True, 'import numpy as np\n'), ((4534, 4587), 'ConfigSpace.util.fix_types', 'fix_types', ([], {'configuration': 'dict', 'configuration_space': 'cs'}), '(configuration=dict, configuration_space=cs)\n', (4543, 4587), False, 'from ConfigSpace.util import fix_types\n'), ((4609, 4661), 'ConfigSpace.configuration_space.Configuration', 'Configuration', ([], {'configuration_space': 'cs', 'values': 'config'}), '(configuration_space=cs, values=config)\n', (4622, 4661), False, 'from ConfigSpace.configuration_space import Configuration\n'), ((1479, 1502), 'numpy.vstack', 'np.vstack', (['[X_all, X_q]'], {}), '([X_all, X_q])\n', (1488, 1502), True, 'import numpy as np\n'), ((1527, 1550), 'numpy.hstack', 'np.hstack', (['[y_all, y_q]'], {}), '([y_all, y_q])\n', (1536, 1550), True, 'import numpy as np\n'), ((2066, 2083), 'numpy.log10', 'np.log10', (['y_train'], {}), '(y_train)\n', (2074, 2083), True, 'import numpy as np\n'), ((2315, 2332), 'numpy.log10', 'np.log10', (['y_valid'], {}), '(y_valid)\n', (2323, 2332), True, 'import numpy as np\n'), ((3336, 3351), 'numpy.mean', 'np.mean', (['losses'], {}), '(losses)\n', (3343, 3351), True, 'import numpy as np\n'), ((4368, 4393), 'numpy.random.RandomState', 'np.random.RandomState', (['(42)'], {}), '(42)\n', (4389, 4393), True, 'import numpy as np\n'), ((2589, 2709), 'param_net.param_fcnet.ParamFCNetRegression', 'ParamFCNetRegression', ([], {'config': 'config', 'n_feat': 'X_train.shape[1]', 'expected_num_epochs': 'max_epochs', 'n_outputs': '(1)', 'verbose': '(1)'}), '(config=config, n_feat=X_train.shape[1],\n expected_num_epochs=max_epochs, n_outputs=1, verbose=1)\n', (2609, 2709), False, 'from param_net.param_fcnet import ParamFCNetRegression\n'), ((5872, 5883), 'time.time', 'time.time', ([], {}), '()\n', (5881, 5883), False, 'import time\n'), ((2543, 2560), 'keras.backend.clear_session', 'K.clear_session', ([], {}), '()\n', (2558, 2560), True, 'from keras import backend as K\n'), ((4867, 4894), 'numpy.random.RandomState', 'np.random.RandomState', (['seed'], {}), '(seed)\n', (4888, 4894), True, 'import numpy as np\n')]
import unittest import os import numpy as np from skimage.io import imsave import torch import neural_renderer as nr current_dir = os.path.dirname(os.path.realpath(__file__)) data_dir = os.path.join(current_dir, 'data') class TestCore(unittest.TestCase): def test_tetrahedron(self): vertices_ref = np.array( [ [1., 0., 0.], [0., 1., 0.], [0., 0., 1.], [0., 0., 0.]], 'float32') faces_ref = np.array( [ [1, 3, 2], [3, 1, 0], [2, 0, 1], [0, 2, 3]], 'int32') obj_file = os.path.join(data_dir, 'tetrahedron.obj') vertices, faces = nr.load_obj(obj_file, False) assert (torch.allclose(torch.from_numpy(vertices_ref).cuda(), vertices)) assert (torch.allclose(torch.from_numpy(faces_ref).cuda(), faces)) vertices, faces = nr.load_obj(obj_file, True) assert (torch.allclose(torch.from_numpy(vertices_ref).cuda() * 2 - 1.0, vertices)) assert (torch.allclose(torch.from_numpy(faces_ref).cuda(), faces)) def test_teapot(self): obj_file = os.path.join(data_dir, 'teapot.obj') vertices, faces = nr.load_obj(obj_file) assert (faces.shape[0] == 2464) assert (vertices.shape[0] == 1292) def test_texture(self): renderer = nr.Renderer(camera_mode='look_at') vertices, faces, textures = nr.load_obj( os.path.join(data_dir, '1cde62b063e14777c9152a706245d48/model.obj'), load_texture=True) renderer.eye = nr.get_points_from_angles(2, 15, 30) images, _, _ = renderer.render(vertices[None, :, :], faces[None, :, :], textures[None, :, :, :, :, :]) images = images.permute(0, 2, 3, 1).detach().cpu().numpy() imsave(os.path.join(data_dir, 'car.png'), images[0]) vertices, faces, textures = nr.load_obj( os.path.join(data_dir, '4e49873292196f02574b5684eaec43e9/model.obj'), load_texture=True, texture_size=16) renderer.eye = nr.get_points_from_angles(2, 15, -90) images, _, _ = renderer.render(vertices[None, :, :], faces[None, :, :], textures[None, :, :, :, :, :]) images = images.permute(0, 2, 3, 1).detach().cpu().numpy() imsave(os.path.join(data_dir, 'display.png'), images[0]) if __name__ == '__main__': unittest.main()
[ "unittest.main", "os.path.realpath", "neural_renderer.load_obj", "numpy.array", "neural_renderer.get_points_from_angles", "neural_renderer.Renderer", "os.path.join", "torch.from_numpy" ]
[((189, 222), 'os.path.join', 'os.path.join', (['current_dir', '"""data"""'], {}), "(current_dir, 'data')\n", (201, 222), False, 'import os\n'), ((150, 176), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (166, 176), False, 'import os\n'), ((2219, 2234), 'unittest.main', 'unittest.main', ([], {}), '()\n', (2232, 2234), False, 'import unittest\n'), ((309, 403), 'numpy.array', 'np.array', (['[[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0], [0.0, 0.0, 0.0]]', '"""float32"""'], {}), "([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0], [0.0, 0.0, 0.0\n ]], 'float32')\n", (317, 403), True, 'import numpy as np\n'), ((449, 512), 'numpy.array', 'np.array', (['[[1, 3, 2], [3, 1, 0], [2, 0, 1], [0, 2, 3]]', '"""int32"""'], {}), "([[1, 3, 2], [3, 1, 0], [2, 0, 1], [0, 2, 3]], 'int32')\n", (457, 512), True, 'import numpy as np\n'), ((579, 620), 'os.path.join', 'os.path.join', (['data_dir', '"""tetrahedron.obj"""'], {}), "(data_dir, 'tetrahedron.obj')\n", (591, 620), False, 'import os\n'), ((643, 671), 'neural_renderer.load_obj', 'nr.load_obj', (['obj_file', '(False)'], {}), '(obj_file, False)\n', (654, 671), True, 'import neural_renderer as nr\n'), ((842, 869), 'neural_renderer.load_obj', 'nr.load_obj', (['obj_file', '(True)'], {}), '(obj_file, True)\n', (853, 869), True, 'import neural_renderer as nr\n'), ((1071, 1107), 'os.path.join', 'os.path.join', (['data_dir', '"""teapot.obj"""'], {}), "(data_dir, 'teapot.obj')\n", (1083, 1107), False, 'import os\n'), ((1130, 1151), 'neural_renderer.load_obj', 'nr.load_obj', (['obj_file'], {}), '(obj_file)\n', (1141, 1151), True, 'import neural_renderer as nr\n'), ((1271, 1305), 'neural_renderer.Renderer', 'nr.Renderer', ([], {'camera_mode': '"""look_at"""'}), "(camera_mode='look_at')\n", (1282, 1305), True, 'import neural_renderer as nr\n'), ((1474, 1510), 'neural_renderer.get_points_from_angles', 'nr.get_points_from_angles', (['(2)', '(15)', '(30)'], {}), '(2, 15, 30)\n', (1499, 1510), True, 'import neural_renderer as nr\n'), ((1919, 1956), 'neural_renderer.get_points_from_angles', 'nr.get_points_from_angles', (['(2)', '(15)', '(-90)'], {}), '(2, 15, -90)\n', (1944, 1956), True, 'import neural_renderer as nr\n'), ((1362, 1429), 'os.path.join', 'os.path.join', (['data_dir', '"""1cde62b063e14777c9152a706245d48/model.obj"""'], {}), "(data_dir, '1cde62b063e14777c9152a706245d48/model.obj')\n", (1374, 1429), False, 'import os\n'), ((1692, 1725), 'os.path.join', 'os.path.join', (['data_dir', '"""car.png"""'], {}), "(data_dir, 'car.png')\n", (1704, 1725), False, 'import os\n'), ((1794, 1862), 'os.path.join', 'os.path.join', (['data_dir', '"""4e49873292196f02574b5684eaec43e9/model.obj"""'], {}), "(data_dir, '4e49873292196f02574b5684eaec43e9/model.obj')\n", (1806, 1862), False, 'import os\n'), ((2138, 2175), 'os.path.join', 'os.path.join', (['data_dir', '"""display.png"""'], {}), "(data_dir, 'display.png')\n", (2150, 2175), False, 'import os\n'), ((699, 729), 'torch.from_numpy', 'torch.from_numpy', (['vertices_ref'], {}), '(vertices_ref)\n', (715, 729), False, 'import torch\n'), ((776, 803), 'torch.from_numpy', 'torch.from_numpy', (['faces_ref'], {}), '(faces_ref)\n', (792, 803), False, 'import torch\n'), ((984, 1011), 'torch.from_numpy', 'torch.from_numpy', (['faces_ref'], {}), '(faces_ref)\n', (1000, 1011), False, 'import torch\n'), ((897, 927), 'torch.from_numpy', 'torch.from_numpy', (['vertices_ref'], {}), '(vertices_ref)\n', (913, 927), False, 'import torch\n')]
# Lint as: python3 # Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for waymo_ap_metric.""" from lingvo import compat as tf from lingvo.core import py_utils from lingvo.core import test_utils from lingvo.tasks.car.waymo import waymo_ap_metric from lingvo.tasks.car.waymo import waymo_metadata import numpy as np from waymo_open_dataset import label_pb2 FLAGS = tf.flags.FLAGS class APTest(test_utils.TestCase): def testWaymoAPConfig(self): metadata = waymo_metadata.WaymoMetadata() # Use 2D metric. config = waymo_ap_metric.BuildWaymoMetricConfig(metadata, '2d', []) vehicle_idx = label_pb2.Label.Type.Value('TYPE_VEHICLE') ped_idx = label_pb2.Label.Type.Value('TYPE_PEDESTRIAN') cyc_idx = label_pb2.Label.Type.Value('TYPE_CYCLIST') thresholds_meta = metadata.IoUThresholds() self.assertNear(config.iou_thresholds[vehicle_idx], thresholds_meta['Vehicle'], 1e-6) self.assertNear(config.iou_thresholds[ped_idx], thresholds_meta['Pedestrian'], 1e-6) self.assertNear(config.iou_thresholds[cyc_idx], thresholds_meta['Cyclist'], 1e-6) def testPerfectBox(self): metadata = waymo_metadata.WaymoMetadata() params = waymo_ap_metric.WaymoAPMetrics.Params(metadata) m = params.Instantiate() # Make one update with a perfect box. update_dict = py_utils.NestedMap( groundtruth_labels=np.array([1]), groundtruth_bboxes=np.ones(shape=(1, 7)), groundtruth_difficulties=np.zeros(shape=(1)), groundtruth_num_points=None, detection_scores=np.ones(shape=(5, 1)), detection_boxes=np.ones(shape=(5, 1, 7)), detection_heights_in_pixels=np.ones(shape=(5, 1))) m.Update('1234', update_dict) waymo_ap = m.value self.assertAllClose(waymo_ap, 1. / 3.) # Write a summary. summary = m.Summary('foo') # Check that both AP and APH are in the tags. tags = [v.tag for v in summary.value] self.assertIn('foo/Pedestrian/AP_LEVEL_1', tags) self.assertIn('foo/Pedestrian/APH_LEVEL_1', tags) self.assertIn('foo/Pedestrian/AP_LEVEL_2', tags) self.assertIn('foo/Pedestrian/APH_LEVEL_2', tags) def testWaymoBreakdowns(self): metadata = waymo_metadata.WaymoMetadata() params = waymo_ap_metric.WaymoAPMetrics.Params(metadata) params.waymo_breakdown_metrics = ['RANGE', 'VELOCITY'] m = params.Instantiate() # Make one update with a perfect box. update_dict = py_utils.NestedMap( groundtruth_labels=np.array([1]), groundtruth_bboxes=np.ones(shape=(1, 7)), groundtruth_difficulties=np.zeros(shape=(1)), groundtruth_num_points=None, groundtruth_speed=np.zeros(shape=(1, 2)), detection_scores=np.ones(shape=(5, 1)), detection_boxes=np.ones(shape=(5, 1, 7)), detection_heights_in_pixels=np.ones(shape=(5, 1))) m.Update('1234', update_dict) # Write a summary. summary = m.Summary('foo') # Check that the summary value for default ap and # a waymo breakdown version by range is the same. for v in summary.value: if v.tag == 'foo/Vehicle/AP_LEVEL_1': default_val = v.simple_value elif v.tag == 'foo/Vehicle/APH_LEVEL_1': aph_default_val = v.simple_value elif v.tag == 'foo_extra/AP_RANGE_TYPE_VEHICLE_[0, 30)_LEVEL_1': ap_bd_val_l1 = v.simple_value elif v.tag == 'foo_extra/AP_RANGE_TYPE_VEHICLE_[0, 30)_LEVEL_2': ap_bd_val_l2 = v.simple_value elif v.tag == 'foo_extra/APH_RANGE_TYPE_VEHICLE_[0, 30)_LEVEL_1': aph_bd_val_l1 = v.simple_value elif v.tag == 'foo_extra/APH_RANGE_TYPE_VEHICLE_[0, 30)_LEVEL_2': aph_bd_val_l2 = v.simple_value elif v.tag == 'foo_extra/AP_VELOCITY_TYPE_VEHICLE_STATIONARY_LEVEL_1': vbd_val_l1 = v.simple_value elif v.tag == 'foo_extra/AP_VELOCITY_TYPE_VEHICLE_STATIONARY_LEVEL_2': vbd_val_l2 = v.simple_value self.assertEqual(ap_bd_val_l1, default_val) self.assertEqual(ap_bd_val_l2, default_val) self.assertEqual(aph_bd_val_l1, aph_default_val) self.assertEqual(aph_bd_val_l2, aph_default_val) self.assertEqual(vbd_val_l1, default_val) self.assertEqual(vbd_val_l2, default_val) # Check that eval classes not evaluated are not present. tags = [v.tag for v in summary.value] self.assertNotIn('foo_extra/APH_RANGE_TYPE_SIGN_[0, 30)_LEVEL_1', tags) self.assertNotIn('foo_extra/APH_RANGE_TYPE_SIGN_[0, 30)_LEVEL_2', tags) if __name__ == '__main__': tf.test.main()
[ "lingvo.compat.test.main", "waymo_open_dataset.label_pb2.Label.Type.Value", "lingvo.tasks.car.waymo.waymo_ap_metric.WaymoAPMetrics.Params", "numpy.zeros", "numpy.ones", "lingvo.tasks.car.waymo.waymo_ap_metric.BuildWaymoMetricConfig", "numpy.array", "lingvo.tasks.car.waymo.waymo_metadata.WaymoMetadata" ]
[((5177, 5191), 'lingvo.compat.test.main', 'tf.test.main', ([], {}), '()\n', (5189, 5191), True, 'from lingvo import compat as tf\n'), ((1111, 1141), 'lingvo.tasks.car.waymo.waymo_metadata.WaymoMetadata', 'waymo_metadata.WaymoMetadata', ([], {}), '()\n', (1139, 1141), False, 'from lingvo.tasks.car.waymo import waymo_metadata\n'), ((1176, 1234), 'lingvo.tasks.car.waymo.waymo_ap_metric.BuildWaymoMetricConfig', 'waymo_ap_metric.BuildWaymoMetricConfig', (['metadata', '"""2d"""', '[]'], {}), "(metadata, '2d', [])\n", (1214, 1234), False, 'from lingvo.tasks.car.waymo import waymo_ap_metric\n'), ((1253, 1295), 'waymo_open_dataset.label_pb2.Label.Type.Value', 'label_pb2.Label.Type.Value', (['"""TYPE_VEHICLE"""'], {}), "('TYPE_VEHICLE')\n", (1279, 1295), False, 'from waymo_open_dataset import label_pb2\n'), ((1310, 1355), 'waymo_open_dataset.label_pb2.Label.Type.Value', 'label_pb2.Label.Type.Value', (['"""TYPE_PEDESTRIAN"""'], {}), "('TYPE_PEDESTRIAN')\n", (1336, 1355), False, 'from waymo_open_dataset import label_pb2\n'), ((1370, 1412), 'waymo_open_dataset.label_pb2.Label.Type.Value', 'label_pb2.Label.Type.Value', (['"""TYPE_CYCLIST"""'], {}), "('TYPE_CYCLIST')\n", (1396, 1412), False, 'from waymo_open_dataset import label_pb2\n'), ((1830, 1860), 'lingvo.tasks.car.waymo.waymo_metadata.WaymoMetadata', 'waymo_metadata.WaymoMetadata', ([], {}), '()\n', (1858, 1860), False, 'from lingvo.tasks.car.waymo import waymo_metadata\n'), ((1874, 1921), 'lingvo.tasks.car.waymo.waymo_ap_metric.WaymoAPMetrics.Params', 'waymo_ap_metric.WaymoAPMetrics.Params', (['metadata'], {}), '(metadata)\n', (1911, 1921), False, 'from lingvo.tasks.car.waymo import waymo_ap_metric\n'), ((2883, 2913), 'lingvo.tasks.car.waymo.waymo_metadata.WaymoMetadata', 'waymo_metadata.WaymoMetadata', ([], {}), '()\n', (2911, 2913), False, 'from lingvo.tasks.car.waymo import waymo_metadata\n'), ((2927, 2974), 'lingvo.tasks.car.waymo.waymo_ap_metric.WaymoAPMetrics.Params', 'waymo_ap_metric.WaymoAPMetrics.Params', (['metadata'], {}), '(metadata)\n', (2964, 2974), False, 'from lingvo.tasks.car.waymo import waymo_ap_metric\n'), ((2058, 2071), 'numpy.array', 'np.array', (['[1]'], {}), '([1])\n', (2066, 2071), True, 'import numpy as np\n'), ((2100, 2121), 'numpy.ones', 'np.ones', ([], {'shape': '(1, 7)'}), '(shape=(1, 7))\n', (2107, 2121), True, 'import numpy as np\n'), ((2156, 2173), 'numpy.zeros', 'np.zeros', ([], {'shape': '(1)'}), '(shape=1)\n', (2164, 2173), True, 'import numpy as np\n'), ((2239, 2260), 'numpy.ones', 'np.ones', ([], {'shape': '(5, 1)'}), '(shape=(5, 1))\n', (2246, 2260), True, 'import numpy as np\n'), ((2286, 2310), 'numpy.ones', 'np.ones', ([], {'shape': '(5, 1, 7)'}), '(shape=(5, 1, 7))\n', (2293, 2310), True, 'import numpy as np\n'), ((2348, 2369), 'numpy.ones', 'np.ones', ([], {'shape': '(5, 1)'}), '(shape=(5, 1))\n', (2355, 2369), True, 'import numpy as np\n'), ((3171, 3184), 'numpy.array', 'np.array', (['[1]'], {}), '([1])\n', (3179, 3184), True, 'import numpy as np\n'), ((3213, 3234), 'numpy.ones', 'np.ones', ([], {'shape': '(1, 7)'}), '(shape=(1, 7))\n', (3220, 3234), True, 'import numpy as np\n'), ((3269, 3286), 'numpy.zeros', 'np.zeros', ([], {'shape': '(1)'}), '(shape=1)\n', (3277, 3286), True, 'import numpy as np\n'), ((3353, 3375), 'numpy.zeros', 'np.zeros', ([], {'shape': '(1, 2)'}), '(shape=(1, 2))\n', (3361, 3375), True, 'import numpy as np\n'), ((3402, 3423), 'numpy.ones', 'np.ones', ([], {'shape': '(5, 1)'}), '(shape=(5, 1))\n', (3409, 3423), True, 'import numpy as np\n'), ((3449, 3473), 'numpy.ones', 'np.ones', ([], {'shape': '(5, 1, 7)'}), '(shape=(5, 1, 7))\n', (3456, 3473), True, 'import numpy as np\n'), ((3511, 3532), 'numpy.ones', 'np.ones', ([], {'shape': '(5, 1)'}), '(shape=(5, 1))\n', (3518, 3532), True, 'import numpy as np\n')]
import numpy as np import torch from scipy.special import comb class Metric: def __init__(self, **kwargs): self.requires = ['kmeans_cosine', 'kmeans_nearest_cosine', 'features_cosine', 'target_labels'] self.name = 'c_f1' def __call__(self, target_labels, computed_cluster_labels_cosine, features_cosine, centroids_cosine): if isinstance(features_cosine, torch.Tensor): features_cosine = features_cosine.detach().cpu().numpy() d = np.zeros(len(features_cosine)) for i in range(len(features_cosine)): d[i] = np.linalg.norm(features_cosine[i, :] - centroids_cosine[computed_cluster_labels_cosine[i], :]) labels_pred = np.zeros(len(features_cosine)) for i in np.unique(computed_cluster_labels_cosine): index = np.where(computed_cluster_labels_cosine == i)[0] ind = np.argmin(d[index]) cid = index[ind] labels_pred[index] = cid N = len(target_labels) # cluster n_labels avail_labels = np.unique(target_labels) n_labels = len(avail_labels) # count the number of objects in each cluster count_cluster = np.zeros(n_labels) for i in range(n_labels): count_cluster[i] = len(np.where(target_labels == avail_labels[i])[0]) # build a mapping from item_id to item index keys = np.unique(labels_pred) num_item = len(keys) values = range(num_item) item_map = dict() for i in range(len(keys)): item_map.update([(keys[i], values[i])]) # count the number of objects of each item count_item = np.zeros(num_item) for i in range(N): index = item_map[labels_pred[i]] count_item[index] = count_item[index] + 1 # compute True Positive (TP) plus False Positive (FP) # tp_fp = 0 tp_fp = comb(count_cluster, 2).sum() # for k in range(n_labels): # if count_cluster[k] > 1: # tp_fp = tp_fp + comb(count_cluster[k], 2) # compute True Positive (TP) tp = 0 for k in range(n_labels): member = np.where(target_labels == avail_labels[k])[0] member_ids = labels_pred[member] count = np.zeros(num_item) for j in range(len(member)): index = item_map[member_ids[j]] count[index] = count[index] + 1 # for i in range(num_item): # if count[i] > 1: # tp = tp + comb(count[i], 2) tp += comb(count, 2).sum() # False Positive (FP) fp = tp_fp - tp # Compute False Negative (FN) count = comb(count_item, 2).sum() # count = 0 # for j in range(num_item): # if count_item[j] > 1: # count = count + comb(count_item[j], 2) fn = count - tp # compute F measure P = tp / (tp + fp) R = tp / (tp + fn) beta = 1 F = (beta * beta + 1) * P * R / (beta * beta * P + R) return F
[ "scipy.special.comb", "numpy.zeros", "numpy.argmin", "numpy.where", "numpy.linalg.norm", "numpy.unique" ]
[((747, 788), 'numpy.unique', 'np.unique', (['computed_cluster_labels_cosine'], {}), '(computed_cluster_labels_cosine)\n', (756, 788), True, 'import numpy as np\n'), ((1046, 1070), 'numpy.unique', 'np.unique', (['target_labels'], {}), '(target_labels)\n', (1055, 1070), True, 'import numpy as np\n'), ((1187, 1205), 'numpy.zeros', 'np.zeros', (['n_labels'], {}), '(n_labels)\n', (1195, 1205), True, 'import numpy as np\n'), ((1391, 1413), 'numpy.unique', 'np.unique', (['labels_pred'], {}), '(labels_pred)\n', (1400, 1413), True, 'import numpy as np\n'), ((1662, 1680), 'numpy.zeros', 'np.zeros', (['num_item'], {}), '(num_item)\n', (1670, 1680), True, 'import numpy as np\n'), ((581, 680), 'numpy.linalg.norm', 'np.linalg.norm', (['(features_cosine[i, :] - centroids_cosine[computed_cluster_labels_cosine[i], :]\n )'], {}), '(features_cosine[i, :] - centroids_cosine[\n computed_cluster_labels_cosine[i], :])\n', (595, 680), True, 'import numpy as np\n'), ((877, 896), 'numpy.argmin', 'np.argmin', (['d[index]'], {}), '(d[index])\n', (886, 896), True, 'import numpy as np\n'), ((2289, 2307), 'numpy.zeros', 'np.zeros', (['num_item'], {}), '(num_item)\n', (2297, 2307), True, 'import numpy as np\n'), ((810, 855), 'numpy.where', 'np.where', (['(computed_cluster_labels_cosine == i)'], {}), '(computed_cluster_labels_cosine == i)\n', (818, 855), True, 'import numpy as np\n'), ((1906, 1928), 'scipy.special.comb', 'comb', (['count_cluster', '(2)'], {}), '(count_cluster, 2)\n', (1910, 1928), False, 'from scipy.special import comb\n'), ((2178, 2220), 'numpy.where', 'np.where', (['(target_labels == avail_labels[k])'], {}), '(target_labels == avail_labels[k])\n', (2186, 2220), True, 'import numpy as np\n'), ((2718, 2737), 'scipy.special.comb', 'comb', (['count_item', '(2)'], {}), '(count_item, 2)\n', (2722, 2737), False, 'from scipy.special import comb\n'), ((1275, 1317), 'numpy.where', 'np.where', (['(target_labels == avail_labels[i])'], {}), '(target_labels == avail_labels[i])\n', (1283, 1317), True, 'import numpy as np\n'), ((2588, 2602), 'scipy.special.comb', 'comb', (['count', '(2)'], {}), '(count, 2)\n', (2592, 2602), False, 'from scipy.special import comb\n')]
#right now, requires source /project/projectdirs/desi/software/desi_environment.sh master from astropy.table import Table import numpy as np import os import argparse import fitsio from desitarget.targetmask import zwarn_mask parser = argparse.ArgumentParser() parser.add_argument("--night", help="use this if you want to specify the night, rather than just use the last one",default=None) args = parser.parse_args() month = args.night[:6] #get the right tileids exps = Table.read('/global/cfs/cdirs/desi/spectro/redux/daily/exposure_tables/'+month+'/exposure_table_'+args.night+'.csv') print('number of exposures found:') print(len(exps)) #cut to dark tiles sel = exps['FAPRGRM']=='dark' print('number that are dark time:') print(len(exps[sel])) exps = exps[sel] #get the list of tileids observed on the last night tidl = np.unique(exps['TILEID']) #get total exposure time for tiles exptl = np.zeros(len(tidl)) for ii in range(0, len(tidl)): w = exps['TILEID'] == tidl[ii] expt = np.sum(exps[w]['EFFTIME_ETC']) exptl[ii] = expt #sel &= exps['EFFTIME_ETC'] > 850 #select only tiles that should be near completion sel = exptl > 850 tidl = tidl[sel] print('number dark tiles that have EFFTIME_ETC > 850 during the night:') print(len(tidl)) print('looking at LRG redshift results from the night '+str(args.night)) print('the tileids are:') print(tidl) #one list for each petal for total targets gz = np.zeros(10) tz = np.zeros(10) zdir = '/global/cfs/cdirs/desi/spectro/redux/daily/tiles/cumulative/' for tid in tidl: for pt in range(0,10): zmtlf = fitsio.read(zdir+str(tid)+'/'+args.night+'/zmtl-'+str(pt)+'-'+str(tid)+'-thru'+args.night+'.fits') nodata = zmtlf["ZWARN"] & zwarn_mask["NODATA"] != 0 num_nod = np.sum(nodata) print('looking at petal '+str(pt)+' on tile '+str(tid)) print('number with no data '+str(num_nod)) badqa = zmtlf["ZWARN"] & zwarn_mask.mask("BAD_SPECQA|BAD_PETALQA") != 0 num_badqa = np.sum(badqa) print('number with bad qa '+str(num_badqa)) nomtl = nodata | badqa wfqa = ~nomtl wlrg = (zmtlf['DESI_TARGET'] & 1) > 0 zlrg = zmtlf[wfqa&wlrg] if len(zlrg) > 0: wzwarn = zmtlf['ZWARN'] == 0 gzlrg = zmtlf[wzwarn&wlrg] print('The fraction of good LRGs is '+str(len(gzlrg)/len(zlrg))+' for '+str(len(zlrg))+' considered spectra') gz[pt] += len(gzlrg) tz[pt] += len(zlrg) else: print('no good lrg data') print('the total number of LRG considered per petal for the night is:') print(tz) tzs = gz/tz print('the total fraction of good LRG z per petal for the night is:') print(tzs)
[ "astropy.table.Table.read", "numpy.sum", "argparse.ArgumentParser", "desitarget.targetmask.zwarn_mask.mask", "numpy.zeros", "numpy.unique" ]
[((236, 261), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (259, 261), False, 'import argparse\n'), ((472, 600), 'astropy.table.Table.read', 'Table.read', (["('/global/cfs/cdirs/desi/spectro/redux/daily/exposure_tables/' + month +\n '/exposure_table_' + args.night + '.csv')"], {}), "('/global/cfs/cdirs/desi/spectro/redux/daily/exposure_tables/' +\n month + '/exposure_table_' + args.night + '.csv')\n", (482, 600), False, 'from astropy.table import Table\n'), ((829, 854), 'numpy.unique', 'np.unique', (["exps['TILEID']"], {}), "(exps['TILEID'])\n", (838, 854), True, 'import numpy as np\n'), ((1424, 1436), 'numpy.zeros', 'np.zeros', (['(10)'], {}), '(10)\n', (1432, 1436), True, 'import numpy as np\n'), ((1442, 1454), 'numpy.zeros', 'np.zeros', (['(10)'], {}), '(10)\n', (1450, 1454), True, 'import numpy as np\n'), ((997, 1027), 'numpy.sum', 'np.sum', (["exps[w]['EFFTIME_ETC']"], {}), "(exps[w]['EFFTIME_ETC'])\n", (1003, 1027), True, 'import numpy as np\n'), ((1764, 1778), 'numpy.sum', 'np.sum', (['nodata'], {}), '(nodata)\n', (1770, 1778), True, 'import numpy as np\n'), ((1994, 2007), 'numpy.sum', 'np.sum', (['badqa'], {}), '(badqa)\n', (2000, 2007), True, 'import numpy as np\n'), ((1927, 1968), 'desitarget.targetmask.zwarn_mask.mask', 'zwarn_mask.mask', (['"""BAD_SPECQA|BAD_PETALQA"""'], {}), "('BAD_SPECQA|BAD_PETALQA')\n", (1942, 1968), False, 'from desitarget.targetmask import zwarn_mask\n')]
#!/usr/bin/env python3 import numpy as np import random if __name__ == '__main__': nbViewpoint = 3 nbTileList = [1, 3*2, 6*4] #nbTileList = [1] #nbQuality = 4 nbQuality = 3 #nbChunk = 4*60 nbChunk = 256 #nbChunk = 60 nbBandwidth = 1 nbUser = 4 nbProcessedChunk = 32 #nbLagChunkList = [2,10] #nbLagChunkList = [2,3,4] nbLagChunkList = [2] optimalGap=0.03 nbThread=4 #averageLowBitrate = 5 #averageHighBitrate = 35 averageBitrateList = [5, 8, 16] avgBitrateList = [[5.00638565625, 8.00672046875, 16.01394303125], [5.0235795, 8.02069896875, 16.019751999999997], [5.0842264375, 8.08175678125, 16.080042812500004]] varBitrateList = [[0.05197598260550684, 0.13243587169603027, 0.5569402424963116], [0.013006378470749997, 0.043633303918936515, 0.3272058487585], [0.012634444530058589, 0.04158807113638965, 0.3401763092415898]] #averageLowQuality = 220 #averageHighQuality = 5 averageQualityList = [2.8642533333333335, 2.5503899999999997, 2.1635133333333334] varQualityList = [0.6041990998222223, 0.3490154629, 0.13785629982222222] #averageBandwidthList = [4, 7, 16, 24, 32, 48, 60] #averageBandwidthList = [4, 7, 10, 15, 20] #averageBandwidthList = [5, 10, 15, 20, 25, 30, 35, 40] #averageBandwidthList = [3, 4, 7, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60] #averageBandwidthList = [3, 4, 5, 7, 10, 15, 20, 25 ,30] averageBandwidthList = [3, 5, 7, 10, 15] #averageBandwidthList = [20, 25, 30, 35, 40, 45, 50, 55, 60] #averageBandwidthList = [4, 7, 10] #for i in range(15, 61): # averageBandwidthList.append(i) outputUser = dict() outputAdaptationSet = dict() for nbTile in nbTileList: outputUser[nbTile] = dict() for userId in range(nbUser): #if userId != 0: # outputUser[nbTile][userId] = 'scenarios/user_{nbViewpoint}_{nbTile}_{nbChunk}_{userId}.txt'.format(nbViewpoint=nbViewpoint, nbTile=nbTile, nbChunk=nbChunk, userId=userId) outputUser[nbTile][userId] = 'scenarios/user_{nbViewpoint}_{nbTile}_{nbChunk}_{userId}.txt'.format(nbViewpoint=nbViewpoint, nbTile=nbTile, nbChunk=nbChunk, userId=userId) #else: # outputUser[nbTile][userId] = 'scenarios/user_{nbViewpoint}_{nbTile}_{nbChunk}.txt'.format(nbViewpoint=nbViewpoint, nbTile=nbTile, nbChunk=nbChunk) outputAdaptationSet[nbTile] = 'scenarios/adaptationSet_{nbViewpoint}_{nbTile}_{nbChunk}_{nbQuality}.txt'.format(nbViewpoint=nbViewpoint, nbTile=nbTile, nbChunk=nbChunk, nbQuality=nbQuality) outputBandwidth = dict() for averageBandwidth in averageBandwidthList: outputBandwidth[averageBandwidth] = dict() for nbLagChunk in nbLagChunkList: outputBandwidth[averageBandwidth][nbLagChunk] = dict() for bandwidthId in range(nbBandwidth): outputBandwidth[averageBandwidth][nbLagChunk][bandwidthId] = 'scenarios/bandwdithFake_{nbChunk}_{nbLagChunk}_{averageBandwidth}Mbps_id{bandwidthId}.txt'.format(nbChunk=nbChunk, nbLagChunk=nbLagChunk, averageBandwidth=averageBandwidth, bandwidthId=bandwidthId) random.seed(42) np.random.seed(42) #Configuration file with open('Config.ini', 'w') as o: o.write('[Global]\nNbViewpoint={nbViewpoint}\nNbScenario={nbScenario}\noptimalGap={optimalGap}\nnbThread={nbThread}\n'.format(nbViewpoint=nbViewpoint, nbScenario=len(averageBandwidthList)*len(nbTileList)*len(nbLagChunkList), optimalGap=optimalGap, nbThread=nbThread)) counter = 0 #for scenarioId in reversed(range(len(averageBandwidthList))): for scenarioId in range(len(averageBandwidthList)): for nbTileId in range(len(nbTileList)): for nbLagChunkId in range(len(nbLagChunkList)): nbTile = nbTileList[nbTileId] nbLagChunk = nbLagChunkList[nbLagChunkId] o.write('Scenario{id}={name}\n'.format(id=counter, name='Test_{}_{}_{}_{}Mbps'.format(nbChunk, nbLagChunk, nbTile, averageBandwidthList[scenarioId]))) counter += 1 o.write('\n') #for scenarioId in reversed(range(len(averageBandwidthList))): for scenarioId in range(len(averageBandwidthList)): for nbTile in nbTileList: for nbLagChunk in nbLagChunkList: bandwidthConf = "" for bandwidthId in range(nbBandwidth): bandwidthConf += '{}../{}'.format(';' if bandwidthConf != "" else '', outputBandwidth[averageBandwidthList[scenarioId]][nbLagChunk][bandwidthId]) userConf = "" for userId in range(nbUser): userConf += '{}../{}'.format(';' if userConf != "" else '', outputUser[nbTile][userId]) o.write('[{name}]\nNbTile={nbTile}\nNbQuality={nbQuality}\nNbChunk={nbChunk}\nNbProcessedChunk={nbProcessedChunk}\nNbLagDownloadChunk={nbLagChunk}\nAdaptationSetConf=../{asName}\nBandwidthConf={bName}\nUserConf={uName}\n'.format(name='Test_{}_{}_{}_{}Mbps'.format(nbChunk, nbLagChunk, nbTile, averageBandwidthList[scenarioId]), nbTile=nbTile, nbChunk=nbChunk, nbProcessedChunk=nbProcessedChunk, nbQuality=nbQuality, nbLagChunk=nbLagChunk, asName=outputAdaptationSet[nbTile], uName=userConf, bName=bandwidthConf)) o.write('horizontalOptimal={}\n'.format('true'))# if averageBandwidthList[scenarioId] > 0.9*nbViewpoint*averageLowBitrate else 'false')) o.write('optimal={}\n'.format('true')) o.write('verticalOptimal={}\n'.format('true')) o.write('avgBandwidth={}\n'.format(averageBandwidthList[scenarioId])) o.write('\n') #Bandwidth file #bandwidthList = [max(0.1*averageBandwidthList[0], np.random.normal(averageBandwidthList[0], 0.15*averageBandwidthList[0])) for i in range(-nbLagChunk, nbChunk)] for averageBandwidth in averageBandwidthList: for nbLagChunk in nbLagChunkList: for bandwidthId in range(nbBandwidth): with open(outputBandwidth[averageBandwidth][nbLagChunk][bandwidthId], 'w') as ob: ob.write('#chunId,bandwidth\n') for chunId in range(-nbLagChunk, nbChunk): ob.write('{},{}\n'.format(chunId, np.random.normal(averageBandwidth, 0.05*averageBandwidth))) #ob.write('{},{}\n'.format(chunId, bandwidthList[chunId]*averageBandwidth/averageBandwidthList[0])) ##User: #for userId in range(nbUser): # viewpointList = list() # switchingTime = list() # lastViewpoint = None # for chunId in range(nbChunk): # if lastViewpoint is None: # currentViewpoint = random.randint(0,nbViewpoint-1) # else: # vList = [i for i in range(0, nbViewpoint)] # pList = list() # for v in vList: # if v == lastViewpoint: # pList.append(35) # else: # pList.append(1) # pList = np.array(pList)/sum(pList) # currentViewpoint = np.random.choice(vList, p=pList) # if lastViewpoint != currentViewpoint: # if lastViewpoint is not None: # switchingTime.append(np.random.uniform()) # print('Switch at',chunId, 'from',lastViewpoint,'to',currentViewpoint) # else: # switchingTime.append(-1) # lastViewpoint = currentViewpoint # viewpointList.append(currentViewpoint) # switchingTime.append(-1) # visibility = list() # for chunId in range(nbChunk): # visiList = list() # nbTile = 24 # totalVisi = 0 # for tileId in range(nbTile): # if tileId != nbTile-1: # visiList.append(random.randint(0,1000-totalVisi)/1000) # totalVisi += int(visiList[tileId]*1000) # else: # visiList.append(1-totalVisi/1000) # random.shuffle(visiList) # visibility.append(visiList) # for nbTile in nbTileList: # if userId != 0: # with open(outputUser[nbTile][userId], 'w') as ou: # ou.write('#chunkId,viewpointId,tileId,visibilityRatio,switchingDecisionTime\n') # for chunId in range(nbChunk): # currentViewpoint = viewpointList[chunId] # for viewpointId in range(nbViewpoint): # for tileId in range(nbTile): # if viewpointId != currentViewpoint: # ou.write('{},{},{},{},{}\n'.format(chunId, viewpointId, tileId, 0, switchingTime[chunId])) # else: # if nbTile == 24: # visi = visibility[chunId][tileId] # elif nbTile == 6: # if tileId == 5: # visi = round(10000*sum(visibility[chunId][tileId*6:(tileId+1)*6]))/10000 # else: # visi = round(1000*sum(visibility[chunId][tileId*6:(tileId+1)*6]))/1000 # elif nbTile == 1: # visi = round(1000*sum(visibility[chunId])/1000) # else: # raise 'NOT SUPPORTED TILE NUMBER' # ou.write('{},{},{},{}, {}\n'.format(chunId, viewpointId, tileId, visi, switchingTime[chunId])) #AdaptationSet #for nbTile in nbTileList: # with open(outputAdaptationSet[nbTile], 'w') as oas: # oas.write('#chunkId,viewpointId,tileId,qualityId,distortion,bitrate\n') # for chunId in range(nbChunk): # for viewpointId in range(nbViewpoint): # for tileId in range(nbTile): # for qualityId in range(nbQuality): # #avBitrate = (qualityId*(averageHighBitrate-averageLowBitrate)/(nbQuality-1) + averageLowBitrate)/nbTile # #avBitrate = averageBitrateList[qualityId]/nbTile # #avDistortion = (qualityId*(averageHighQuality-averageLowQuality)/(nbQuality-1) + averageLowQuality)**2 # #bitrate = np.random.normal(avBitrate, 0.05*avBitrate/nbTile) # bitrate = np.random.normal(avgBitrateList[nbTileList.index(nbTile)][qualityId], varBitrateList[nbTileList.index(nbTile)][qualityId])/nbTile # #distortion = np.random.normal(avDistortion, avDistortion*0.005) # distortion = np.random.normal(averageQualityList[qualityId], varQualityList[qualityId]) # #bitrate = max(bitrate, 0.05*avBitrate/nbTile) # distortion = min(255*255, max(0, distortion)) # oas.write('{},{},{},{},{},{}\n'.format(chunId, viewpointId, tileId, qualityId, distortion, bitrate))
[ "numpy.random.seed", "random.seed", "numpy.random.normal" ]
[((3166, 3181), 'random.seed', 'random.seed', (['(42)'], {}), '(42)\n', (3177, 3181), False, 'import random\n'), ((3186, 3204), 'numpy.random.seed', 'np.random.seed', (['(42)'], {}), '(42)\n', (3200, 3204), True, 'import numpy as np\n'), ((6374, 6433), 'numpy.random.normal', 'np.random.normal', (['averageBandwidth', '(0.05 * averageBandwidth)'], {}), '(averageBandwidth, 0.05 * averageBandwidth)\n', (6390, 6433), True, 'import numpy as np\n')]
# %matplotlib inline # + import os, sys import numpy as np import random import copy import torch import torch.autograd as autograd from torch.autograd import Variable import torch.optim as optim from torch.utils.data import DataLoader, Dataset, TensorDataset import torchvision.transforms as transforms import torchvision.datasets as datasets from torch.utils.data.sampler import SubsetRandomSampler from config import * from models import * from utils import * from datasets.celeba import CelebA from ops import exp_mov_avg #from torchsummary import summary from torchinfo import summary from tqdm import tqdm IMG_DIM = -1 NUM_CLASSES = -1 CLIP_BOUND = 1. SENSITIVITY = 2. DATA_ROOT = './../data' # + def master_hook_adder(module, grad_input, grad_output): ''' global hook :param module: :param grad_input: :param grad_output: :return: ''' global dynamic_hook_function return dynamic_hook_function(module, grad_input, grad_output) def dummy_hook(module, grad_input, grad_output): ''' dummy hook :param module: :param grad_input: :param grad_output: :return: ''' pass def modify_gradnorm_conv_hook(module, grad_input, grad_output): ''' gradient modification hook :param module: :param grad_input: :param grad_output: :return: ''' ### get grad wrt. input (image) grad_wrt_image = grad_input[0] grad_input_shape = grad_wrt_image.size() batchsize = grad_input_shape[0] clip_bound_ = CLIP_BOUND / batchsize # account for the 'sum' operation in GP grad_wrt_image = grad_wrt_image.view(batchsize, -1) grad_input_norm = torch.norm(grad_wrt_image, p=2, dim=1) ### clip clip_coef = clip_bound_ / (grad_input_norm + 1e-10) clip_coef = clip_coef.unsqueeze(-1) grad_wrt_image = clip_coef * grad_wrt_image grad_input = (grad_wrt_image.view(grad_input_shape), grad_input[1], grad_input[2]) return tuple(grad_input) def dp_conv_hook(module, grad_input, grad_output): ''' gradient modification + noise hook :param module: :param grad_input: :param grad_output: :return: ''' global noise_multiplier ### get grad wrt. input (image) grad_wrt_image = grad_input[0] grad_input_shape = grad_wrt_image.size() batchsize = grad_input_shape[0] clip_bound_ = CLIP_BOUND / batchsize grad_wrt_image = grad_wrt_image.view(batchsize, -1) grad_input_norm = torch.norm(grad_wrt_image, p=2, dim=1) ### clip clip_coef = clip_bound_ / (grad_input_norm + 1e-10) clip_coef = torch.min(clip_coef, torch.ones_like(clip_coef)) clip_coef = clip_coef.unsqueeze(-1) grad_wrt_image = clip_coef * grad_wrt_image ### add noise noise = clip_bound_ * noise_multiplier * SENSITIVITY * torch.randn_like(grad_wrt_image) grad_wrt_image = grad_wrt_image + noise grad_input_new = [grad_wrt_image.view(grad_input_shape)] for i in range(len(grad_input)-1): grad_input_new.append(grad_input[i+1]) return tuple(grad_input_new) FloatTensor = torch.cuda.FloatTensor LongTensor = torch.cuda.LongTensor def weights_init(m): classname = m.__class__.__name__ if classname.find('Conv2d') != -1: m.weight.data.normal_(0.0, 0.02) elif classname.find('BatchNorm') != -1: m.weight.data.normal_(1.0, 0.02) m.bias.data.fill_(0) # - def main(args): ### config global noise_multiplier dataset = args.dataset num_discriminators = args.num_discriminators noise_multiplier = args.noise_multiplier z_dim = args.z_dim if dataset == 'celeba': z_dim = 100 model_dim = args.model_dim batchsize = args.batchsize L_gp = args.L_gp L_epsilon = args.L_epsilon critic_iters = args.critic_iters latent_type = args.latent_type load_dir = args.load_dir save_dir = args.save_dir if_dp = (args.noise_multiplier > 0.) gen_arch = args.gen_arch num_gpus = args.num_gpus ### CUDA use_cuda = torch.cuda.is_available() devices = [torch.device("cuda:%d" % i if use_cuda else "cpu") for i in range(num_gpus)] device0 = devices[0] if use_cuda: torch.set_default_tensor_type('torch.cuda.FloatTensor') ### Random seed if args.random_seed == 1: args.random_seed = np.random.randint(10000, size=1)[0] print('random_seed: {}'.format(args.random_seed)) os.system('rm ' + os.path.join(save_dir, 'seed*')) os.system('touch ' + os.path.join(save_dir, 'seed=%s' % str(args.random_seed))) random.seed(args.random_seed) np.random.seed(args.random_seed) torch.manual_seed(args.random_seed) ### Set up models print('gen_arch:' + gen_arch) if dataset == 'celeba': ngpu = 1 netG = Generator_celeba(ngpu).to(device0) #netG.load_state_dict(torch.load('../results/celeba/main/d_1_2e-4_g_1_2e-4_SN_full/netG_15000.pth')) # Handle multi-gpu if desired if (device0.type == 'cuda') and (ngpu > 1): netG = nn.DataParallel(netG, list(range(ngpu))) # Apply the weights_init function to randomly initialize all weights # to mean=0, stdev=0.02. netG.apply(weights_init) netGS = copy.deepcopy(netG).to(device0) if dataset == 'celeba': ngpu = 1 netD = Discriminator_celeba(ngpu).to(device0) #netD.load_state_dict(torch.load('../results/celeba/main/d_1_2e-4_g_1_2e-4_SN_full/netD_15000.pth')) # Handle multi-gpu if desired if (device0.type == 'cuda') and (ngpu > 1): netD = nn.DataParallel(netD, list(range(ngpu))) # Apply the weights_init function to randomly initialize all weights # to mean=0, stdev=0.2. #netD.apply(weights_init) ### Set up optimizers optimizerD = optim.Adam(netD.parameters(), lr=2e-4, betas=(0.5, 0.99)) optimizerG = optim.Adam(netG.parameters(), lr=2e-4, betas=(0.5, 0.99)) ### Data loaders if dataset == 'celeba': transform_train = transforms.Compose([ transforms.Resize(64), transforms.CenterCrop(64), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ]) if dataset == 'celeba': IMG_DIM = 64*64*3 NUM_CLASSES = 2 trainset = CelebA(root=os.path.join('/work/u5366584/exp/datasets/celeba'), split='train', transform=transform_train, download=False)#, custom_subset=True) #trainset = CelebA(root=os.path.join('../data'), split='train', # transform=transform_train, download=False, custom_subset=True) else: raise NotImplementedError ###fix sub-training set (fix to 10000 training samples) if args.update_train_dataset: if dataset == 'mnist': indices_full = np.arange(60000) elif dataset == 'cifar_10': indices_full = np.arange(50000) elif dataset == 'celeba': indices_full = np.arange(len(trainset)) np.random.shuffle(indices_full) ''' #####ref indices = np.loadtxt('index_20k.txt', dtype=np.int_) remove_idx = [np.argwhere(indices_full==x) for x in indices] indices_ref = np.delete(indices_full, remove_idx) indices_slice = indices_ref[:20000] np.savetxt('index_20k_ref.txt', indices_slice, fmt='%i') ##ref index is disjoint to original index ''' ### growing dataset indices = np.loadtxt('index_20k.txt', dtype=np.int_) remove_idx = [np.argwhere(indices_full==x) for x in indices] indices_rest = np.delete(indices_full, remove_idx) indices_rest = indices_rest[:20000] indices_slice = np.concatenate((indices, indices_rest), axis=0) np.savetxt('index_40k.txt', indices_slice, fmt='%i') indices = np.loadtxt('index_100k.txt', dtype=np.int_) trainset = torch.utils.data.Subset(trainset, indices) print(len(trainset)) workers = 4 dataloader = torch.utils.data.DataLoader(trainset, batch_size=batchsize, shuffle=True, num_workers=workers) if if_dp: ### Register hook global dynamic_hook_function for netD in netD_list: netD.conv1.register_backward_hook(master_hook_adder) criterion = nn.BCELoss() real_label = 1. fake_label = 0. nz = 100 fixed_noise = torch.randn(100, nz, 1, 1, device=device0) iters = 0 num_epochs = 256 * 5 + 1 print("Starting Training Loop...") # For each epoch for epoch in range(num_epochs): # For each batch in the dataloader for i, (data,y) in enumerate(dataloader, 0): ############################ # (1) Update D network: maximize log(D(x)) + log(1 - D(G(z))) ########################### ## Train with all-real batch netD.zero_grad() # Format batch real_cpu = data.to(device0) b_size = real_cpu.size(0) label = torch.full((b_size,), real_label, dtype=torch.float, device=device0) # Forward pass real batch through D output = netD(real_cpu).view(-1) # Calculate loss on all-real batch errD_real = criterion(output, label) # Calculate gradients for D in backward pass errD_real.backward() D_x = output.mean().item() ## Train with all-fake batch # Generate batch of latent vectors noise = torch.randn(b_size, nz, 1, 1, device=device0) # Generate fake image batch with G fake = netG(noise) label.fill_(fake_label) # Classify all fake batch with D output = netD(fake.detach()).view(-1) # Calculate D's loss on the all-fake batch errD_fake = criterion(output, label) # Calculate the gradients for this batch, accumulated (summed) with previous gradients errD_fake.backward() D_G_z1 = output.mean().item() # Compute error of D as sum over the fake and the real batches errD = errD_real + errD_fake # Update D optimizerD.step() iters += 1 for iter_g in range(1): ############################ # Update G network ########################### if if_dp: ### Sanitize the gradients passed to the Generator dynamic_hook_function = dp_conv_hook else: ### Only modify the gradient norm, without adding noise dynamic_hook_function = modify_gradnorm_conv_hook ############################ # (2) Update G network: maximize log(D(G(z))) ########################### noise = torch.randn(b_size, nz, 1, 1, device=device0) fake = netG(noise) label = torch.full((b_size,), real_label, dtype=torch.float, device=device0) netG.zero_grad() label.fill_(real_label) # fake labels are real for generator cost # Since we just updated D, perform another forward pass of all-fake batch through D output = netD(fake).view(-1) # Calculate G's loss based on this output errG = criterion(output, label) # Calculate gradients for G errG.backward() D_G_z2 = output.mean().item() # Update G optimizerG.step() ### update the exponential moving average exp_mov_avg(netGS, netG, alpha=0.999, global_step=iters) ############################ ### Results visualization ############################ if iters % 10 ==0: print('iter:{}, G_cost:{:.2f}, D_cost:{:.2f}'.format(iters, errG.item(), errD.item(), )) if iters % args.vis_step == 0: if dataset == 'celeba': generate_image_celeba(str(iters+0), netGS, fixed_noise, save_dir, device0) if iters % args.save_step==0: ### save model torch.save(netGS.state_dict(), os.path.join(save_dir, 'netGS_%s.pth' % str(iters+0))) torch.save(netD.state_dict(), os.path.join(save_dir, 'netD_%s.pth' % str(iters+0))) torch.cuda.empty_cache() #if ((iters+1) % 500 == 0): # classify_training(netGS, dataset, iters+1) if __name__ == '__main__': args = parse_arguments() save_config(args) main(args)
[ "numpy.random.seed", "torch.randn", "torch.set_default_tensor_type", "torch.full", "numpy.random.randint", "numpy.arange", "torch.device", "torchvision.transforms.Normalize", "os.path.join", "torch.utils.data.DataLoader", "numpy.savetxt", "random.seed", "numpy.loadtxt", "torchvision.transforms.CenterCrop", "numpy.random.shuffle", "copy.deepcopy", "torch.randn_like", "torch.manual_seed", "torch.norm", "torch.cuda.is_available", "numpy.argwhere", "numpy.delete", "numpy.concatenate", "torchvision.transforms.Resize", "torch.utils.data.Subset", "torch.ones_like", "ops.exp_mov_avg", "torch.cuda.empty_cache", "torchvision.transforms.ToTensor" ]
[((1654, 1692), 'torch.norm', 'torch.norm', (['grad_wrt_image'], {'p': '(2)', 'dim': '(1)'}), '(grad_wrt_image, p=2, dim=1)\n', (1664, 1692), False, 'import torch\n'), ((2455, 2493), 'torch.norm', 'torch.norm', (['grad_wrt_image'], {'p': '(2)', 'dim': '(1)'}), '(grad_wrt_image, p=2, dim=1)\n', (2465, 2493), False, 'import torch\n'), ((4009, 4034), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (4032, 4034), False, 'import torch\n'), ((4544, 4573), 'random.seed', 'random.seed', (['args.random_seed'], {}), '(args.random_seed)\n', (4555, 4573), False, 'import random\n'), ((4578, 4610), 'numpy.random.seed', 'np.random.seed', (['args.random_seed'], {}), '(args.random_seed)\n', (4592, 4610), True, 'import numpy as np\n'), ((4615, 4650), 'torch.manual_seed', 'torch.manual_seed', (['args.random_seed'], {}), '(args.random_seed)\n', (4632, 4650), False, 'import torch\n'), ((7849, 7892), 'numpy.loadtxt', 'np.loadtxt', (['"""index_100k.txt"""'], {'dtype': 'np.int_'}), "('index_100k.txt', dtype=np.int_)\n", (7859, 7892), True, 'import numpy as np\n'), ((7908, 7950), 'torch.utils.data.Subset', 'torch.utils.data.Subset', (['trainset', 'indices'], {}), '(trainset, indices)\n', (7931, 7950), False, 'import torch\n'), ((8014, 8112), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', (['trainset'], {'batch_size': 'batchsize', 'shuffle': '(True)', 'num_workers': 'workers'}), '(trainset, batch_size=batchsize, shuffle=True,\n num_workers=workers)\n', (8041, 8112), False, 'import torch\n'), ((8433, 8475), 'torch.randn', 'torch.randn', (['(100)', 'nz', '(1)', '(1)'], {'device': 'device0'}), '(100, nz, 1, 1, device=device0)\n', (8444, 8475), False, 'import torch\n'), ((2601, 2627), 'torch.ones_like', 'torch.ones_like', (['clip_coef'], {}), '(clip_coef)\n', (2616, 2627), False, 'import torch\n'), ((2795, 2827), 'torch.randn_like', 'torch.randn_like', (['grad_wrt_image'], {}), '(grad_wrt_image)\n', (2811, 2827), False, 'import torch\n'), ((4050, 4100), 'torch.device', 'torch.device', (["('cuda:%d' % i if use_cuda else 'cpu')"], {}), "('cuda:%d' % i if use_cuda else 'cpu')\n", (4062, 4100), False, 'import torch\n'), ((4177, 4232), 'torch.set_default_tensor_type', 'torch.set_default_tensor_type', (['"""torch.cuda.FloatTensor"""'], {}), "('torch.cuda.FloatTensor')\n", (4206, 4232), False, 'import torch\n'), ((6999, 7030), 'numpy.random.shuffle', 'np.random.shuffle', (['indices_full'], {}), '(indices_full)\n', (7016, 7030), True, 'import numpy as np\n'), ((7486, 7528), 'numpy.loadtxt', 'np.loadtxt', (['"""index_20k.txt"""'], {'dtype': 'np.int_'}), "('index_20k.txt', dtype=np.int_)\n", (7496, 7528), True, 'import numpy as np\n'), ((7621, 7656), 'numpy.delete', 'np.delete', (['indices_full', 'remove_idx'], {}), '(indices_full, remove_idx)\n', (7630, 7656), True, 'import numpy as np\n'), ((7726, 7773), 'numpy.concatenate', 'np.concatenate', (['(indices, indices_rest)'], {'axis': '(0)'}), '((indices, indices_rest), axis=0)\n', (7740, 7773), True, 'import numpy as np\n'), ((7782, 7834), 'numpy.savetxt', 'np.savetxt', (['"""index_40k.txt"""', 'indices_slice'], {'fmt': '"""%i"""'}), "('index_40k.txt', indices_slice, fmt='%i')\n", (7792, 7834), True, 'import numpy as np\n'), ((12673, 12697), 'torch.cuda.empty_cache', 'torch.cuda.empty_cache', ([], {}), '()\n', (12695, 12697), False, 'import torch\n'), ((4311, 4343), 'numpy.random.randint', 'np.random.randint', (['(10000)'], {'size': '(1)'}), '(10000, size=1)\n', (4328, 4343), True, 'import numpy as np\n'), ((4423, 4454), 'os.path.join', 'os.path.join', (['save_dir', '"""seed*"""'], {}), "(save_dir, 'seed*')\n", (4435, 4454), False, 'import os, sys\n'), ((5221, 5240), 'copy.deepcopy', 'copy.deepcopy', (['netG'], {}), '(netG)\n', (5234, 5240), False, 'import copy\n'), ((6806, 6822), 'numpy.arange', 'np.arange', (['(60000)'], {}), '(60000)\n', (6815, 6822), True, 'import numpy as np\n'), ((7551, 7581), 'numpy.argwhere', 'np.argwhere', (['(indices_full == x)'], {}), '(indices_full == x)\n', (7562, 7581), True, 'import numpy as np\n'), ((9063, 9131), 'torch.full', 'torch.full', (['(b_size,)', 'real_label'], {'dtype': 'torch.float', 'device': 'device0'}), '((b_size,), real_label, dtype=torch.float, device=device0)\n', (9073, 9131), False, 'import torch\n'), ((9559, 9604), 'torch.randn', 'torch.randn', (['b_size', 'nz', '(1)', '(1)'], {'device': 'device0'}), '(b_size, nz, 1, 1, device=device0)\n', (9570, 9604), False, 'import torch\n'), ((11751, 11807), 'ops.exp_mov_avg', 'exp_mov_avg', (['netGS', 'netG'], {'alpha': '(0.999)', 'global_step': 'iters'}), '(netGS, netG, alpha=0.999, global_step=iters)\n', (11762, 11807), False, 'from ops import exp_mov_avg\n'), ((6039, 6060), 'torchvision.transforms.Resize', 'transforms.Resize', (['(64)'], {}), '(64)\n', (6056, 6060), True, 'import torchvision.transforms as transforms\n'), ((6070, 6095), 'torchvision.transforms.CenterCrop', 'transforms.CenterCrop', (['(64)'], {}), '(64)\n', (6091, 6095), True, 'import torchvision.transforms as transforms\n'), ((6105, 6126), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (6124, 6126), True, 'import torchvision.transforms as transforms\n'), ((6136, 6190), 'torchvision.transforms.Normalize', 'transforms.Normalize', (['(0.5, 0.5, 0.5)', '(0.5, 0.5, 0.5)'], {}), '((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))\n', (6156, 6190), True, 'import torchvision.transforms as transforms\n'), ((6313, 6363), 'os.path.join', 'os.path.join', (['"""/work/u5366584/exp/datasets/celeba"""'], {}), "('/work/u5366584/exp/datasets/celeba')\n", (6325, 6363), False, 'import os, sys\n'), ((6887, 6903), 'numpy.arange', 'np.arange', (['(50000)'], {}), '(50000)\n', (6896, 6903), True, 'import numpy as np\n'), ((10941, 10986), 'torch.randn', 'torch.randn', (['b_size', 'nz', '(1)', '(1)'], {'device': 'device0'}), '(b_size, nz, 1, 1, device=device0)\n', (10952, 10986), False, 'import torch\n'), ((11046, 11114), 'torch.full', 'torch.full', (['(b_size,)', 'real_label'], {'dtype': 'torch.float', 'device': 'device0'}), '((b_size,), real_label, dtype=torch.float, device=device0)\n', (11056, 11114), False, 'import torch\n')]
import open3d as o3d import glob, plyfile, numpy as np, multiprocessing as mp, torch import copy import numpy as np import json import pdb import os #CLASS_LABELS = ['cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window', 'bookshelf', 'picture', 'counter', 'desk', 'curtain', 'refrigerator', 'shower curtain', 'toilet', 'sink', 'bathtub', 'otherfurniture'] CLASS_LABELS = ['wall', 'floor', 'chair', 'table', 'desk', 'bed', 'bookshelf', 'sofa', 'sink', 'bathtub', 'toilet', 'curtain', 'counter', 'door', 'window', 'shower curtain', 'refrigerator', 'picture', 'cabinet', 'otherfurniture'] VALID_CLASS_IDS = np.array([1,2,3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34, 36, 39]) NYUID_TO_LABEL = {} LABEL_TO_NYUID = {} NYUID_TO_SEGID = {} for i in range(len(VALID_CLASS_IDS)): LABEL_TO_NYUID[CLASS_LABELS[i]] = VALID_CLASS_IDS[i] NYUID_TO_LABEL [VALID_CLASS_IDS[i]] = CLASS_LABELS[i] NYUID_TO_SEGID[VALID_CLASS_IDS[i]] = i SELECTED_LABEL_IDS = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34, 36, 39] LABEL_ID_TO_CLASS_ID = { # 9: 3 #force 'desk' to be the same class_id as 'table' } for i, label_id in enumerate(SELECTED_LABEL_IDS): if label_id not in LABEL_ID_TO_CLASS_ID: LABEL_ID_TO_CLASS_ID[label_id] = i UNKNOWN_ID = -100 MIN_INSTANCE_SIZE = 600 remapper=np.ones(500)*(-100) for i,x in enumerate([1,2,3,4,5,6,7,8,9,10,11,12,14,16,24,28,33,34,36,39]): remapper[x]=i ## read coordinates, color, semantic_labels, indices and dists of 2 nearest points def f(fn): # output_file = output_path + "/" + fn.rsplit("/", 1)[1][:-18]+'.pth' # if os.path.exists(output_file)==True: # print("exist:",output_file) # return 0 a=plyfile.PlyData().read(fn) v=np.array([list(x) for x in a.elements[0]]) coords=np.ascontiguousarray(v[:,:3]) colors=np.ascontiguousarray(v[:,3:6])/255.0 - 0.5 position=np.ascontiguousarray(v[:,8:10]) dis=np.ascontiguousarray(v[:,10:12]) # filter out very small segements and reassign instance labels w = np.zeros((len(coords),2), dtype = np.int32) w[:,:] = UNKNOWN_ID semantic_labels_ori = np.array(a.elements[0]['label']) instance_labels = np.array(a.elements[0]['instance_label']) semantic_labels = np.array(list( map(lambda label_id: LABEL_ID_TO_CLASS_ID[label_id] if label_id in LABEL_ID_TO_CLASS_ID else UNKNOWN_ID, semantic_labels_ori))) for id in range(instance_labels.max()+1): instance_indices = (instance_labels == id) instance_size = instance_indices.sum() # print(instance_size) if instance_size > MIN_INSTANCE_SIZE: w[instance_indices,0] = semantic_labels[instance_indices] w[instance_indices,1] = id # print(np.unique(w[:,0])) # print(np.unique(w[:,1])) # w[:,0] = remapper[] # w[:,1] = remapper[] json_file = open(fn[:-3]+'0.010000.segs.json') region = np.asarray(json.load(json_file)['segIndices']) all={ "coords":coords, "colors":colors, "w":w, 'region': region } # print("save to "+ output_file) # # pdb.set_trace() # torch.save((coords,colors,w1,w2,position,dis),output_file ) fileName = fn[:-4] + '_instance.pth' torch.save(all, fileName) print(fileName) print("avilable cpus: ", mp.cpu_count()) files = sorted(glob.glob('/media/hdd/zhengtian/Occuseg/data/scannet_partial/instance/partial_1/train/*.ply')) # print(files[0]) # f(files[0]) p = mp.Pool(processes=mp.cpu_count() - 4) p.map(f, files) p.close() p.join() files = sorted(glob.glob('/media/hdd/zhengtian/Occuseg/data/scannet_partial/instance/partial_1/val/*.ply')) p = mp.Pool(processes=mp.cpu_count() - 4) p.map(f, files) p.close() p.join() files = sorted(glob.glob('/media/hdd/zhengtian/Occuseg/data/scannet_partial/instance/partial_2/train/*.ply')) p = mp.Pool(processes=mp.cpu_count() - 4) p.map(f, files) p.close() p.join() files = sorted(glob.glob('/media/hdd/zhengtian/Occuseg/data/scannet_partial/instance/partial_2/val/*.ply')) p = mp.Pool(processes=mp.cpu_count() - 4) p.map(f, files) p.close() p.join() # # parallel # p = mp.Pool(processes=mp.cpu_count()) # p.map(f_gene_ply,files) # p.close() # p.join()
[ "json.load", "plyfile.PlyData", "numpy.ones", "torch.save", "numpy.array", "glob.glob", "numpy.ascontiguousarray", "multiprocessing.cpu_count" ]
[((613, 698), 'numpy.array', 'np.array', (['[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34, 36, 39]'], {}), '([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34, 36,\n 39])\n', (621, 698), True, 'import numpy as np\n'), ((1322, 1334), 'numpy.ones', 'np.ones', (['(500)'], {}), '(500)\n', (1329, 1334), True, 'import numpy as np\n'), ((1800, 1830), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['v[:, :3]'], {}), '(v[:, :3])\n', (1820, 1830), True, 'import numpy as np\n'), ((1908, 1940), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['v[:, 8:10]'], {}), '(v[:, 8:10])\n', (1928, 1940), True, 'import numpy as np\n'), ((1948, 1981), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['v[:, 10:12]'], {}), '(v[:, 10:12])\n', (1968, 1981), True, 'import numpy as np\n'), ((2159, 2191), 'numpy.array', 'np.array', (["a.elements[0]['label']"], {}), "(a.elements[0]['label'])\n", (2167, 2191), True, 'import numpy as np\n'), ((2214, 2255), 'numpy.array', 'np.array', (["a.elements[0]['instance_label']"], {}), "(a.elements[0]['instance_label'])\n", (2222, 2255), True, 'import numpy as np\n'), ((3279, 3304), 'torch.save', 'torch.save', (['all', 'fileName'], {}), '(all, fileName)\n', (3289, 3304), False, 'import glob, plyfile, numpy as np, multiprocessing as mp, torch\n'), ((3351, 3365), 'multiprocessing.cpu_count', 'mp.cpu_count', ([], {}), '()\n', (3363, 3365), True, 'import glob, plyfile, numpy as np, multiprocessing as mp, torch\n'), ((3383, 3486), 'glob.glob', 'glob.glob', (['"""/media/hdd/zhengtian/Occuseg/data/scannet_partial/instance/partial_1/train/*.ply"""'], {}), "(\n '/media/hdd/zhengtian/Occuseg/data/scannet_partial/instance/partial_1/train/*.ply'\n )\n", (3392, 3486), False, 'import glob, plyfile, numpy as np, multiprocessing as mp, torch\n'), ((3603, 3704), 'glob.glob', 'glob.glob', (['"""/media/hdd/zhengtian/Occuseg/data/scannet_partial/instance/partial_1/val/*.ply"""'], {}), "(\n '/media/hdd/zhengtian/Occuseg/data/scannet_partial/instance/partial_1/val/*.ply'\n )\n", (3612, 3704), False, 'import glob, plyfile, numpy as np, multiprocessing as mp, torch\n'), ((3789, 3892), 'glob.glob', 'glob.glob', (['"""/media/hdd/zhengtian/Occuseg/data/scannet_partial/instance/partial_2/train/*.ply"""'], {}), "(\n '/media/hdd/zhengtian/Occuseg/data/scannet_partial/instance/partial_2/train/*.ply'\n )\n", (3798, 3892), False, 'import glob, plyfile, numpy as np, multiprocessing as mp, torch\n'), ((3977, 4078), 'glob.glob', 'glob.glob', (['"""/media/hdd/zhengtian/Occuseg/data/scannet_partial/instance/partial_2/val/*.ply"""'], {}), "(\n '/media/hdd/zhengtian/Occuseg/data/scannet_partial/instance/partial_2/val/*.ply'\n )\n", (3986, 4078), False, 'import glob, plyfile, numpy as np, multiprocessing as mp, torch\n'), ((1713, 1730), 'plyfile.PlyData', 'plyfile.PlyData', ([], {}), '()\n', (1728, 1730), False, 'import glob, plyfile, numpy as np, multiprocessing as mp, torch\n'), ((1841, 1872), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['v[:, 3:6]'], {}), '(v[:, 3:6])\n', (1861, 1872), True, 'import numpy as np\n'), ((2965, 2985), 'json.load', 'json.load', (['json_file'], {}), '(json_file)\n', (2974, 2985), False, 'import json\n'), ((3532, 3546), 'multiprocessing.cpu_count', 'mp.cpu_count', ([], {}), '()\n', (3544, 3546), True, 'import glob, plyfile, numpy as np, multiprocessing as mp, torch\n'), ((3718, 3732), 'multiprocessing.cpu_count', 'mp.cpu_count', ([], {}), '()\n', (3730, 3732), True, 'import glob, plyfile, numpy as np, multiprocessing as mp, torch\n'), ((3906, 3920), 'multiprocessing.cpu_count', 'mp.cpu_count', ([], {}), '()\n', (3918, 3920), True, 'import glob, plyfile, numpy as np, multiprocessing as mp, torch\n'), ((4092, 4106), 'multiprocessing.cpu_count', 'mp.cpu_count', ([], {}), '()\n', (4104, 4106), True, 'import glob, plyfile, numpy as np, multiprocessing as mp, torch\n')]
import numpy as np import cv2 from skimage.io import imread, imsave from skimage.io import imshow # lifted from http://blog.christianperone.com/2015/01/real-time-drone-object-tracking-using-python-and-opencv/ def run_main(): cap = cv2.VideoCapture('upabove.mp4') # Read the first frame of the video ret, frame = cap.read() imsave("frame0001.png",cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) imshow(frame) # Set the ROI (Region of Interest). Actually, this is a # rectangle of the building that we're tracking c,r,w,h = 150,250,70,70 track_window = (c,r,w,h) # Create mask and normalized histogram roi = frame[r:r+h, c:c+w] hsv_roi = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV) mask = cv2.inRange(hsv_roi, np.array((0., 30.,32.)), np.array((180.,255.,255.))) roi_hist = cv2.calcHist([hsv_roi], [0], mask, [180], [0, 180]) cv2.normalize(roi_hist, roi_hist, 0, 255, cv2.NORM_MINMAX) term_crit = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 80, 1) while True: ret, frame = cap.read() if not ret: break hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) dst = cv2.calcBackProject([hsv], [0], roi_hist, [0,180], 1) ret, track_window = cv2.meanShift(dst, track_window, term_crit) x,y,w,h = track_window cv2.rectangle(frame, (x,y), (x+w,y+h), 255, 2) cv2.putText(frame, 'Tracked', (x-25,y-10), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,255,255), 2) cv2.imshow('Tracking', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows() if __name__ == "__main__": run_main()
[ "cv2.putText", "cv2.cvtColor", "cv2.calcHist", "cv2.waitKey", "cv2.imshow", "cv2.VideoCapture", "cv2.rectangle", "numpy.array", "cv2.calcBackProject", "skimage.io.imshow", "cv2.normalize", "cv2.destroyAllWindows", "cv2.meanShift" ]
[((237, 268), 'cv2.VideoCapture', 'cv2.VideoCapture', (['"""upabove.mp4"""'], {}), "('upabove.mp4')\n", (253, 268), False, 'import cv2\n'), ((411, 424), 'skimage.io.imshow', 'imshow', (['frame'], {}), '(frame)\n', (417, 424), False, 'from skimage.io import imshow\n'), ((683, 719), 'cv2.cvtColor', 'cv2.cvtColor', (['roi', 'cv2.COLOR_BGR2HSV'], {}), '(roi, cv2.COLOR_BGR2HSV)\n', (695, 719), False, 'import cv2\n'), ((820, 871), 'cv2.calcHist', 'cv2.calcHist', (['[hsv_roi]', '[0]', 'mask', '[180]', '[0, 180]'], {}), '([hsv_roi], [0], mask, [180], [0, 180])\n', (832, 871), False, 'import cv2\n'), ((876, 934), 'cv2.normalize', 'cv2.normalize', (['roi_hist', 'roi_hist', '(0)', '(255)', 'cv2.NORM_MINMAX'], {}), '(roi_hist, roi_hist, 0, 255, cv2.NORM_MINMAX)\n', (889, 934), False, 'import cv2\n'), ((1635, 1658), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (1656, 1658), False, 'import cv2\n'), ((366, 404), 'cv2.cvtColor', 'cv2.cvtColor', (['frame', 'cv2.COLOR_BGR2RGB'], {}), '(frame, cv2.COLOR_BGR2RGB)\n', (378, 404), False, 'import cv2\n'), ((752, 779), 'numpy.array', 'np.array', (['(0.0, 30.0, 32.0)'], {}), '((0.0, 30.0, 32.0))\n', (760, 779), True, 'import numpy as np\n'), ((777, 808), 'numpy.array', 'np.array', (['(180.0, 255.0, 255.0)'], {}), '((180.0, 255.0, 255.0))\n', (785, 808), True, 'import numpy as np\n'), ((1123, 1161), 'cv2.cvtColor', 'cv2.cvtColor', (['frame', 'cv2.COLOR_BGR2HSV'], {}), '(frame, cv2.COLOR_BGR2HSV)\n', (1135, 1161), False, 'import cv2\n'), ((1176, 1230), 'cv2.calcBackProject', 'cv2.calcBackProject', (['[hsv]', '[0]', 'roi_hist', '[0, 180]', '(1)'], {}), '([hsv], [0], roi_hist, [0, 180], 1)\n', (1195, 1230), False, 'import cv2\n'), ((1259, 1302), 'cv2.meanShift', 'cv2.meanShift', (['dst', 'track_window', 'term_crit'], {}), '(dst, track_window, term_crit)\n', (1272, 1302), False, 'import cv2\n'), ((1343, 1395), 'cv2.rectangle', 'cv2.rectangle', (['frame', '(x, y)', '(x + w, y + h)', '(255)', '(2)'], {}), '(frame, (x, y), (x + w, y + h), 255, 2)\n', (1356, 1395), False, 'import cv2\n'), ((1398, 1498), 'cv2.putText', 'cv2.putText', (['frame', '"""Tracked"""', '(x - 25, y - 10)', 'cv2.FONT_HERSHEY_SIMPLEX', '(1)', '(255, 255, 255)', '(2)'], {}), "(frame, 'Tracked', (x - 25, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 1,\n (255, 255, 255), 2)\n", (1409, 1498), False, 'import cv2\n'), ((1517, 1546), 'cv2.imshow', 'cv2.imshow', (['"""Tracking"""', 'frame'], {}), "('Tracking', frame)\n", (1527, 1546), False, 'import cv2\n'), ((1559, 1573), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (1570, 1573), False, 'import cv2\n')]
""" EfficientNet for ImageNet-1K, implemented in Keras. Original paper: 'EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,' https://arxiv.org/abs/1905.11946. """ __all__ = ['efficientnet_model', 'efficientnet_b0', 'efficientnet_b1', 'efficientnet_b2', 'efficientnet_b3', 'efficientnet_b4', 'efficientnet_b5', 'efficientnet_b6', 'efficientnet_b7', 'efficientnet_b0b', 'efficientnet_b1b', 'efficientnet_b2b', 'efficientnet_b3b'] import os import math from keras import layers as nn from keras.models import Model from .common import is_channels_first, conv1x1_block, conv3x3_block, dwconv3x3_block, dwconv5x5_block, se_block def calc_tf_padding(x, kernel_size, strides=1, dilation=1): """ Calculate TF-same like padding size. Parameters: ---------- x : tensor Input tensor. kernel_size : int Convolution window size. strides : int, default 1 Strides of the convolution. dilation : int, default 1 Dilation value for convolution layer. Returns ------- tuple of 4 int The size of the padding. """ height, width = x.shape[2:] oh = math.ceil(height / strides) ow = math.ceil(width / strides) pad_h = max((oh - 1) * strides + (kernel_size - 1) * dilation + 1 - height, 0) pad_w = max((ow - 1) * strides + (kernel_size - 1) * dilation + 1 - width, 0) return (pad_h // 2, pad_h - pad_h // 2), (pad_w // 2, pad_w - pad_w // 2) def round_channels(channels, factor, divisor=8): """ Round weighted channel number. Parameters: ---------- channels : int Original number of channels. factor : float Weight factor. divisor : int Alignment value. Returns ------- int Weighted number of channels. """ channels *= factor new_channels = max(int(channels + divisor / 2.0) // divisor * divisor, divisor) if new_channels < 0.9 * channels: new_channels += divisor return new_channels def effi_dws_conv_unit(x, in_channels, out_channels, strides, bn_epsilon, activation, tf_mode, name="effi_dws_conv_unit"): """ EfficientNet specific depthwise separable convolution block/unit with BatchNorms and activations at each convolution layers. Parameters: ---------- x : keras.backend tensor/variable/symbol Input tensor/variable/symbol. in_channels : int Number of input channels. out_channels : int Number of output channels. strides : int or tuple/list of 2 int Strides of the second convolution layer. bn_epsilon : float Small float added to variance in Batch norm. activation : str Name of activation function. tf_mode : bool Whether to use TF-like mode. name : str, default 'effi_dws_conv_unit' Block name. Returns ------- keras.backend tensor/variable/symbol Resulted tensor/variable/symbol. """ residual = (in_channels == out_channels) and (strides == 1) if residual: identity = x if tf_mode: x = nn.ZeroPadding2D( padding=calc_tf_padding(x, kernel_size=3), name=name + "/dw_conv_pad")(x) x = dwconv3x3_block( x=x, in_channels=in_channels, out_channels=in_channels, padding=(0 if tf_mode else 1), bn_epsilon=bn_epsilon, activation=activation, name=name + "/dw_conv") x = se_block( x=x, channels=in_channels, reduction=4, activation=activation, name=name + "/se") x = conv1x1_block( x=x, in_channels=in_channels, out_channels=out_channels, bn_epsilon=bn_epsilon, activation=None, name=name + "/pw_conv") if residual: x = nn.add([x, identity], name=name + "/add") return x def effi_inv_res_unit(x, in_channels, out_channels, kernel_size, strides, expansion_factor, bn_epsilon, activation, tf_mode, name="effi_inv_res_unit"): """ EfficientNet inverted residual unit. Parameters: ---------- x : keras.backend tensor/variable/symbol Input tensor/variable/symbol. in_channels : int Number of input channels. out_channels : int Number of output channels. kernel_size : int or tuple/list of 2 int Convolution window size. strides : int or tuple/list of 2 int Strides of the convolution. expansion_factor : int Factor for expansion of channels. bn_epsilon : float Small float added to variance in Batch norm. activation : str Name of activation function. tf_mode : bool Whether to use TF-like mode. name : str, default 'effi_inv_res_unit' Unit name. Returns ------- keras.backend tensor/variable/symbol Resulted tensor/variable/symbol. """ residual = (in_channels == out_channels) and (strides == 1) mid_channels = in_channels * expansion_factor dwconv_block_fn = dwconv3x3_block if kernel_size == 3 else (dwconv5x5_block if kernel_size == 5 else None) if residual: identity = x x = conv1x1_block( x=x, in_channels=in_channels, out_channels=mid_channels, bn_epsilon=bn_epsilon, activation=activation, name=name + "/conv1") if tf_mode: x = nn.ZeroPadding2D( padding=calc_tf_padding(x, kernel_size=kernel_size, strides=strides), name=name + "/conv2_pad")(x) x = dwconv_block_fn( x=x, in_channels=mid_channels, out_channels=mid_channels, strides=strides, padding=(0 if tf_mode else (kernel_size // 2)), bn_epsilon=bn_epsilon, activation=activation, name=name + "/conv2") x = se_block( x=x, channels=mid_channels, reduction=24, activation=activation, name=name + "/se") x = conv1x1_block( x=x, in_channels=mid_channels, out_channels=out_channels, bn_epsilon=bn_epsilon, activation=None, name=name + "/conv3") if residual: x = nn.add([x, identity], name=name + "/add") return x def effi_init_block(x, in_channels, out_channels, bn_epsilon, activation, tf_mode, name="effi_init_block"): """ EfficientNet specific initial block. Parameters: ---------- x : keras.backend tensor/variable/symbol Input tensor/variable/symbol. in_channels : int Number of input channels. out_channels : int Number of output channels. bn_epsilon : float Small float added to variance in Batch norm. activation : str Name of activation function. tf_mode : bool Whether to use TF-like mode. name : str, default 'effi_init_block' Block name. Returns ------- keras.backend tensor/variable/symbol Resulted tensor/variable/symbol. """ if tf_mode: x = nn.ZeroPadding2D( padding=calc_tf_padding(x, kernel_size=3, strides=2), name=name + "/conv_pad")(x) x = conv3x3_block( x=x, in_channels=in_channels, out_channels=out_channels, strides=2, padding=(0 if tf_mode else 1), bn_epsilon=bn_epsilon, activation=activation, name=name + "/conv") return x def efficientnet_model(channels, init_block_channels, final_block_channels, kernel_sizes, strides_per_stage, expansion_factors, dropout_rate=0.2, tf_mode=False, bn_epsilon=1e-5, in_channels=3, in_size=(224, 224), classes=1000): """ EfficientNet(-B0) model from 'EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,' https://arxiv.org/abs/1905.11946. Parameters: ---------- channels : list of list of int Number of output channels for each unit. init_block_channels : list of 2 int Numbers of output channels for the initial unit. final_block_channels : int Number of output channels for the final block of the feature extractor. kernel_sizes : list of list of int Number of kernel sizes for each unit. strides_per_stage : list int Stride value for the first unit of each stage. expansion_factors : list of list of int Number of expansion factors for each unit. dropout_rate : float, default 0.2 Fraction of the input units to drop. Must be a number between 0 and 1. tf_mode : bool, default False Whether to use TF-like mode. bn_epsilon : float, default 1e-5 Small float added to variance in Batch norm. in_channels : int, default 3 Number of input channels. in_size : tuple of two ints, default (224, 224) Spatial size of the expected input image. classes : int, default 1000 Number of classification classes. """ input_shape = (in_channels, in_size[0], in_size[1]) if is_channels_first() else\ (in_size[0], in_size[1], in_channels) input = nn.Input(shape=input_shape) activation = "swish" x = effi_init_block( x=input, in_channels=in_channels, out_channels=init_block_channels, bn_epsilon=bn_epsilon, activation=activation, tf_mode=tf_mode, name="features/init_block") in_channels = init_block_channels for i, channels_per_stage in enumerate(channels): kernel_sizes_per_stage = kernel_sizes[i] expansion_factors_per_stage = expansion_factors[i] for j, out_channels in enumerate(channels_per_stage): kernel_size = kernel_sizes_per_stage[j] expansion_factor = expansion_factors_per_stage[j] strides = strides_per_stage[i] if (j == 0) else 1 if i == 0: x = effi_dws_conv_unit( x=x, in_channels=in_channels, out_channels=out_channels, strides=strides, bn_epsilon=bn_epsilon, activation=activation, tf_mode=tf_mode, name="features/stage{}/unit{}".format(i + 1, j + 1)) else: x = effi_inv_res_unit( x=x, in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, strides=strides, expansion_factor=expansion_factor, bn_epsilon=bn_epsilon, activation=activation, tf_mode=tf_mode, name="features/stage{}/unit{}".format(i + 1, j + 1)) in_channels = out_channels x = conv1x1_block( x=x, in_channels=in_channels, out_channels=final_block_channels, bn_epsilon=bn_epsilon, activation=activation, name="features/final_block") in_channels = final_block_channels x = nn.GlobalAveragePooling2D( name="features/final_pool")(x) if dropout_rate > 0.0: x = nn.Dropout( rate=dropout_rate, name="output/dropout")(x) x = nn.Dense( units=classes, input_dim=in_channels, name="output/fc")(x) model = Model(inputs=input, outputs=x) model.in_size = in_size model.classes = classes return model def get_efficientnet(version, in_size, tf_mode=False, bn_epsilon=1e-5, model_name=None, pretrained=False, root=os.path.join("~", ".keras", "models"), **kwargs): """ Create EfficientNet model with specific parameters. Parameters: ---------- version : str Version of EfficientNet ('b0'...'b7'). in_size : tuple of two ints Spatial size of the expected input image. tf_mode : bool, default False Whether to use TF-like mode. bn_epsilon : float, default 1e-5 Small float added to variance in Batch norm. model_name : str or None, default None Model name for loading pretrained model. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.keras/models' Location for keeping the model parameters. """ if version == "b0": assert (in_size == (224, 224)) depth_factor = 1.0 width_factor = 1.0 dropout_rate = 0.2 elif version == "b1": assert (in_size == (240, 240)) depth_factor = 1.1 width_factor = 1.0 dropout_rate = 0.2 elif version == "b2": assert (in_size == (260, 260)) depth_factor = 1.2 width_factor = 1.1 dropout_rate = 0.3 elif version == "b3": assert (in_size == (300, 300)) depth_factor = 1.4 width_factor = 1.2 dropout_rate = 0.3 elif version == "b4": assert (in_size == (380, 380)) depth_factor = 1.8 width_factor = 1.4 dropout_rate = 0.4 elif version == "b5": assert (in_size == (456, 456)) depth_factor = 2.2 width_factor = 1.6 dropout_rate = 0.4 elif version == "b6": assert (in_size == (528, 528)) depth_factor = 2.6 width_factor = 1.8 dropout_rate = 0.5 elif version == "b7": assert (in_size == (600, 600)) depth_factor = 3.1 width_factor = 2.0 dropout_rate = 0.5 else: raise ValueError("Unsupported EfficientNet version {}".format(version)) init_block_channels = 32 layers = [1, 2, 2, 3, 3, 4, 1] downsample = [1, 1, 1, 1, 0, 1, 0] channels_per_layers = [16, 24, 40, 80, 112, 192, 320] expansion_factors_per_layers = [1, 6, 6, 6, 6, 6, 6] kernel_sizes_per_layers = [3, 3, 5, 3, 5, 5, 3] strides_per_stage = [1, 2, 2, 2, 1, 2, 1] final_block_channels = 1280 layers = [int(math.ceil(li * depth_factor)) for li in layers] channels_per_layers = [round_channels(ci, width_factor) for ci in channels_per_layers] from functools import reduce channels = reduce(lambda x, y: x + [[y[0]] * y[1]] if y[2] != 0 else x[:-1] + [x[-1] + [y[0]] * y[1]], zip(channels_per_layers, layers, downsample), []) kernel_sizes = reduce(lambda x, y: x + [[y[0]] * y[1]] if y[2] != 0 else x[:-1] + [x[-1] + [y[0]] * y[1]], zip(kernel_sizes_per_layers, layers, downsample), []) expansion_factors = reduce(lambda x, y: x + [[y[0]] * y[1]] if y[2] != 0 else x[:-1] + [x[-1] + [y[0]] * y[1]], zip(expansion_factors_per_layers, layers, downsample), []) strides_per_stage = reduce(lambda x, y: x + [[y[0]] * y[1]] if y[2] != 0 else x[:-1] + [x[-1] + [y[0]] * y[1]], zip(strides_per_stage, layers, downsample), []) strides_per_stage = [si[0] for si in strides_per_stage] init_block_channels = round_channels(init_block_channels, width_factor) if width_factor > 1.0: assert (int(final_block_channels * width_factor) == round_channels(final_block_channels, width_factor)) final_block_channels = round_channels(final_block_channels, width_factor) net = efficientnet_model( channels=channels, init_block_channels=init_block_channels, final_block_channels=final_block_channels, kernel_sizes=kernel_sizes, strides_per_stage=strides_per_stage, expansion_factors=expansion_factors, dropout_rate=dropout_rate, tf_mode=tf_mode, bn_epsilon=bn_epsilon, in_size=in_size, **kwargs) if pretrained: if (model_name is None) or (not model_name): raise ValueError("Parameter `model_name` should be properly initialized for loading pretrained model.") from .model_store import download_model download_model( net=net, model_name=model_name, local_model_store_dir_path=root) return net def efficientnet_b0(in_size=(224, 224), **kwargs): """ EfficientNet-B0 model from 'EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,' https://arxiv.org/abs/1905.11946. Parameters: ---------- in_size : tuple of two ints, default (224, 224) Spatial size of the expected input image. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.keras/models' Location for keeping the model parameters. """ return get_efficientnet(version="b0", in_size=in_size, model_name="efficientnet_b0", **kwargs) def efficientnet_b1(in_size=(240, 240), **kwargs): """ EfficientNet-B1 model from 'EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,' https://arxiv.org/abs/1905.11946. Parameters: ---------- in_size : tuple of two ints, default (240, 240) Spatial size of the expected input image. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.keras/models' Location for keeping the model parameters. """ return get_efficientnet(version="b1", in_size=in_size, model_name="efficientnet_b1", **kwargs) def efficientnet_b2(in_size=(260, 260), **kwargs): """ EfficientNet-B2 model from 'EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,' https://arxiv.org/abs/1905.11946. Parameters: ---------- in_size : tuple of two ints, default (260, 260) Spatial size of the expected input image. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.keras/models' Location for keeping the model parameters. """ return get_efficientnet(version="b2", in_size=in_size, model_name="efficientnet_b2", **kwargs) def efficientnet_b3(in_size=(300, 300), **kwargs): """ EfficientNet-B3 model from 'EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,' https://arxiv.org/abs/1905.11946. Parameters: ---------- in_size : tuple of two ints, default (300, 300) Spatial size of the expected input image. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.keras/models' Location for keeping the model parameters. """ return get_efficientnet(version="b3", in_size=in_size, model_name="efficientnet_b3", **kwargs) def efficientnet_b4(in_size=(380, 380), **kwargs): """ EfficientNet-B4 model from 'EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,' https://arxiv.org/abs/1905.11946. Parameters: ---------- in_size : tuple of two ints, default (380, 380) Spatial size of the expected input image. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.keras/models' Location for keeping the model parameters. """ return get_efficientnet(version="b4", in_size=in_size, model_name="efficientnet_b4", **kwargs) def efficientnet_b5(in_size=(456, 456), **kwargs): """ EfficientNet-B5 model from 'EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,' https://arxiv.org/abs/1905.11946. Parameters: ---------- in_size : tuple of two ints, default (456, 456) Spatial size of the expected input image. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.keras/models' Location for keeping the model parameters. """ return get_efficientnet(version="b5", in_size=in_size, model_name="efficientnet_b5", **kwargs) def efficientnet_b6(in_size=(528, 528), **kwargs): """ EfficientNet-B6 model from 'EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,' https://arxiv.org/abs/1905.11946. Parameters: ---------- in_size : tuple of two ints, default (528, 528) Spatial size of the expected input image. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.keras/models' Location for keeping the model parameters. """ return get_efficientnet(version="b6", in_size=in_size, model_name="efficientnet_b6", **kwargs) def efficientnet_b7(in_size=(600, 600), **kwargs): """ EfficientNet-B7 model from 'EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,' https://arxiv.org/abs/1905.11946. Parameters: ---------- in_size : tuple of two ints, default (600, 600) Spatial size of the expected input image. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.keras/models' Location for keeping the model parameters. """ return get_efficientnet(version="b7", in_size=in_size, model_name="efficientnet_b7", **kwargs) def efficientnet_b0b(in_size=(224, 224), **kwargs): """ EfficientNet-B0-b (like TF-implementation) model from 'EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,' https://arxiv.org/abs/1905.11946. Parameters: ---------- in_size : tuple of two ints, default (224, 224) Spatial size of the expected input image. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.keras/models' Location for keeping the model parameters. """ return get_efficientnet(version="b0", in_size=in_size, tf_mode=True, bn_epsilon=1e-3, model_name="efficientnet_b0b", **kwargs) def efficientnet_b1b(in_size=(240, 240), **kwargs): """ EfficientNet-B1-b (like TF-implementation) model from 'EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,' https://arxiv.org/abs/1905.11946. Parameters: ---------- in_size : tuple of two ints, default (240, 240) Spatial size of the expected input image. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.keras/models' Location for keeping the model parameters. """ return get_efficientnet(version="b1", in_size=in_size, tf_mode=True, bn_epsilon=1e-3, model_name="efficientnet_b1b", **kwargs) def efficientnet_b2b(in_size=(260, 260), **kwargs): """ EfficientNet-B2-b (like TF-implementation) model from 'EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,' https://arxiv.org/abs/1905.11946. Parameters: ---------- in_size : tuple of two ints, default (260, 260) Spatial size of the expected input image. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.keras/models' Location for keeping the model parameters. """ return get_efficientnet(version="b2", in_size=in_size, tf_mode=True, bn_epsilon=1e-3, model_name="efficientnet_b2b", **kwargs) def efficientnet_b3b(in_size=(300, 300), **kwargs): """ EfficientNet-B3-b (like TF-implementation) model from 'EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,' https://arxiv.org/abs/1905.11946. Parameters: ---------- in_size : tuple of two ints, default (300, 300) Spatial size of the expected input image. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.keras/models' Location for keeping the model parameters. """ return get_efficientnet(version="b3", in_size=in_size, tf_mode=True, bn_epsilon=1e-3, model_name="efficientnet_b3b", **kwargs) def _test(): import numpy as np import keras pretrained = False models = [ efficientnet_b0, efficientnet_b1, efficientnet_b2, efficientnet_b3, efficientnet_b4, efficientnet_b5, efficientnet_b6, efficientnet_b7, efficientnet_b0b, efficientnet_b1b, efficientnet_b2b, efficientnet_b3b, ] for model in models: net = model(pretrained=pretrained) # net.summary() weight_count = keras.utils.layer_utils.count_params(net.trainable_weights) print("m={}, {}".format(model.__name__, weight_count)) assert (model != efficientnet_b0 or weight_count == 5288548) assert (model != efficientnet_b1 or weight_count == 7794184) assert (model != efficientnet_b2 or weight_count == 9109994) assert (model != efficientnet_b3 or weight_count == 12233232) assert (model != efficientnet_b4 or weight_count == 19341616) assert (model != efficientnet_b5 or weight_count == 30389784) assert (model != efficientnet_b6 or weight_count == 43040704) assert (model != efficientnet_b7 or weight_count == 66347960) assert (model != efficientnet_b0b or weight_count == 5288548) assert (model != efficientnet_b1b or weight_count == 7794184) assert (model != efficientnet_b2b or weight_count == 9109994) assert (model != efficientnet_b3b or weight_count == 12233232) if is_channels_first(): x = np.zeros((1, 3, net.in_size[0], net.in_size[1]), np.float32) else: x = np.zeros((1, net.in_size[0], net.in_size[1], 3), np.float32) y = net.predict(x) assert (y.shape == (1, 1000)) if __name__ == "__main__": _test()
[ "math.ceil", "keras.layers.Dropout", "keras.layers.add", "numpy.zeros", "keras.models.Model", "keras.layers.GlobalAveragePooling2D", "keras.layers.Dense", "keras.utils.layer_utils.count_params", "keras.layers.Input", "os.path.join" ]
[((1245, 1272), 'math.ceil', 'math.ceil', (['(height / strides)'], {}), '(height / strides)\n', (1254, 1272), False, 'import math\n'), ((1282, 1308), 'math.ceil', 'math.ceil', (['(width / strides)'], {}), '(width / strides)\n', (1291, 1308), False, 'import math\n'), ((9902, 9929), 'keras.layers.Input', 'nn.Input', ([], {'shape': 'input_shape'}), '(shape=input_shape)\n', (9910, 9929), True, 'from keras import layers as nn\n'), ((12152, 12182), 'keras.models.Model', 'Model', ([], {'inputs': 'input', 'outputs': 'x'}), '(inputs=input, outputs=x)\n', (12157, 12182), False, 'from keras.models import Model\n'), ((12495, 12532), 'os.path.join', 'os.path.join', (['"""~"""', '""".keras"""', '"""models"""'], {}), "('~', '.keras', 'models')\n", (12507, 12532), False, 'import os\n'), ((4100, 4141), 'keras.layers.add', 'nn.add', (['[x, identity]'], {'name': "(name + '/add')"}), "([x, identity], name=name + '/add')\n", (4106, 4141), True, 'from keras import layers as nn\n'), ((6651, 6692), 'keras.layers.add', 'nn.add', (['[x, identity]'], {'name': "(name + '/add')"}), "([x, identity], name=name + '/add')\n", (6657, 6692), True, 'from keras import layers as nn\n'), ((11851, 11904), 'keras.layers.GlobalAveragePooling2D', 'nn.GlobalAveragePooling2D', ([], {'name': '"""features/final_pool"""'}), "(name='features/final_pool')\n", (11876, 11904), True, 'from keras import layers as nn\n'), ((12046, 12110), 'keras.layers.Dense', 'nn.Dense', ([], {'units': 'classes', 'input_dim': 'in_channels', 'name': '"""output/fc"""'}), "(units=classes, input_dim=in_channels, name='output/fc')\n", (12054, 12110), True, 'from keras import layers as nn\n'), ((25474, 25533), 'keras.utils.layer_utils.count_params', 'keras.utils.layer_utils.count_params', (['net.trainable_weights'], {}), '(net.trainable_weights)\n', (25510, 25533), False, 'import keras\n'), ((11957, 12009), 'keras.layers.Dropout', 'nn.Dropout', ([], {'rate': 'dropout_rate', 'name': '"""output/dropout"""'}), "(rate=dropout_rate, name='output/dropout')\n", (11967, 12009), True, 'from keras import layers as nn\n'), ((14883, 14911), 'math.ceil', 'math.ceil', (['(li * depth_factor)'], {}), '(li * depth_factor)\n', (14892, 14911), False, 'import math\n'), ((26484, 26544), 'numpy.zeros', 'np.zeros', (['(1, 3, net.in_size[0], net.in_size[1])', 'np.float32'], {}), '((1, 3, net.in_size[0], net.in_size[1]), np.float32)\n', (26492, 26544), True, 'import numpy as np\n'), ((26575, 26635), 'numpy.zeros', 'np.zeros', (['(1, net.in_size[0], net.in_size[1], 3)', 'np.float32'], {}), '((1, net.in_size[0], net.in_size[1], 3), np.float32)\n', (26583, 26635), True, 'import numpy as np\n')]
# Copyright (c) ElementAI and its affiliates. # Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """Script to train DCGAN on MNIST, adaptted from https://github.com/pytorch/examples/blob/master/dcgan/main.py""" from __future__ import print_function import argparse import os import random import torch import torch.nn as nn import torch.nn.parallel import torch.optim as optim import torch.utils.data import torchvision.datasets as dset import torchvision.transforms as transforms import torchvision.utils as vutils from torch.nn.utils import spectral_norm from tensorboardX import SummaryWriter import json from gan_eval_metrics import mnist_inception_score from lib.optim import ExtraAdam import numpy as np from torch.utils.data import Subset from plot_path_tools import compute_path_stats, plot_path_stats, compute_eigenvalues,\ plot_eigenvalues import time import pickle from lib import models import torch.nn.functional as F def load_mnist(batchSize, imageSize=32, train=True, workers=2, dataroot='./data', subset=None): dataset = dset.MNIST(root=dataroot, train=train, download=True, transform=transforms.Compose([ transforms.Resize(imageSize), transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,)), ])) if subset is not None: idx = np.arange(len(dataset)) np.random.RandomState(123).shuffle(idx) dataset = Subset(dataset, idx[:subset]) dataloader = torch.utils.data.DataLoader(dataset, batch_size=batchSize, shuffle=True, num_workers=int(workers)) return dataloader def normalize_module2D(module, norm, dim): """ Applies normalization `norm` to `module`. Optionally uses `dim` Returns a list of modules. """ if norm == 'none': return [module] elif norm == 'batch': return [module, nn.BatchNorm2d(dim)] elif norm == 'instance': return [module, nn.InstanceNorm2d(dim)] elif norm == 'layer': return [module, nn.GroupNorm(1, dim)] elif norm == 'spectral': return [spectral_norm(module)] else: raise NotImplementedError('normalization [%s] is not found' % norm) class Generator(nn.Module): def __init__(self, ngpu, nc, ngf, nz): super(Generator, self).__init__() self.ngpu = ngpu self.main = nn.Sequential( nn.ConvTranspose2d(nz, ngf * 4, 4, 1, 0, bias=False), nn.BatchNorm2d(ngf * 4), nn.ReLU(True), nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf * 2), nn.ReLU(True), nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf), nn.ReLU(True), nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=True), nn.Tanh() ) def forward(self, input): if input.is_cuda and self.ngpu > 1: output = nn.parallel.data_parallel(self.main, input, range(self.ngpu)) else: output = self.main(input) return output class Discriminator(models.Discriminator): def __init__(self, ngpu, nc, ndf, norm='spectral', sigmoid=True): super(Discriminator, self).__init__() self.ngpu = ngpu self.norm = norm self.sigmoid = sigmoid # NOTE: made a special cose for BN because we don't normalize first layer # I kept it this way to be able to load pre-trained models if self.norm != 'batch': self.main = nn.Sequential( *normalize_module2D(nn.Conv2d(nc, ndf, 4, 2, 1, bias=True), norm, ndf), nn.LeakyReLU(0.2, inplace=True), *normalize_module2D(nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=True), norm, ndf * 2), nn.LeakyReLU(0.2, inplace=True), *normalize_module2D(nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=True), norm, ndf * 4), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf * 4, 1, 4, 1, 0, bias=True), ) else: self.main = nn.Sequential( nn.Conv2d(nc, ndf, 4, 2, 1, bias=True), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=True), nn.BatchNorm2d(ndf * 2), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=True), nn.BatchNorm2d(ndf * 4), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf * 4, 1, 4, 1, 0, bias=True), ) def forward(self, input): if input.is_cuda and self.ngpu > 1: output = nn.parallel.data_parallel(self.main, input, range(self.ngpu)) else: output = self.main(input) if self.sigmoid: output = torch.sigmoid(output) return output.view(-1, 1).squeeze(1) def weights_init(m): """ custom weights initialization called on netG and netD """ classname = m.__class__.__name__ if classname.find('Conv') != -1: m.weight.data.normal_(0.0, 0.02) elif classname.find('BatchNorm') != -1: m.weight.data.normal_(1.0, 0.02) m.bias.data.fill_(0) def define_model_loss(config): """returns dis/gen loss functions based on the model""" if config.model == 'dcgan': return dcgan_loss_dis, dcgan_loss_gen elif config.model in ['wgan', 'wgan_gp']: return wgan_loss_dis, wgan_loss_gen # elif config.model == 'wgan_gp': # return functools.partial(wgan_loss_dis, grad_penalty=True, gp_lambda=config.gp_lambda), wgan_loss_gen else: raise NotImplementedError('%s model is not implemented!' % config.model) # def dcgan_loss_dis(x_real, x_fake, netD, device): # p_real, p_gen = netD(x_real), netD(x_fake) # criterion = nn.BCELoss() # real_label = torch.full((p_real.size(0),), 1, device=device) # fake_label = torch.full((p_real.size(0),), 0, device=device) # errD_real = criterion(p_real, real_label) # errD_gen = criterion(p_gen, fake_label) # dis_loss = errD_real + errD_gen # return dis_loss, p_real, p_gen # def dcgan_loss_gen(x_fake, netD, device): # p_gen = netD(x_fake) # criterion = nn.BCELoss() # real_label = torch.full((p_gen.size(0),), 1, device=device) # gen_loss = criterion(p_gen, real_label) # return gen_loss, p_gen def dcgan_loss_dis(x_real, x_fake, netD, device): p_real, p_gen = netD(x_real), netD(x_fake) dis_loss = F.softplus(-p_real).mean() + F.softplus(p_gen).mean() return dis_loss, p_real, p_gen def dcgan_loss_gen(x_fake, netD, device): p_gen = netD(x_fake) gen_loss = F.softplus(-p_gen).mean() return gen_loss, p_gen def wgan_loss_gen(x_fake, netD, device): score_gen = netD(x_fake) gen_loss = -score_gen.mean() return gen_loss, score_gen def wgan_loss_dis(x_real, x_fake, netD, device): score_real, score_gen = netD(x_real), netD(x_fake) dis_loss = score_gen.mean() - score_real.mean() # if grad_penalty: # dis_loss += gp_lambda * netD.get_penalty(x_real.detach(), x_fake.detach()) return dis_loss, score_real, score_gen def main(config): print("Hyper-params:") print(config) # create exp folder and save config exp_dir = os.path.join(config.exp_dir, config.exp_name) if not os.path.exists(exp_dir): os.makedirs(exp_dir) plots_dir = os.path.join(exp_dir, 'extra_plots') if not os.path.exists(plots_dir): os.makedirs(plots_dir) if config.manualSeed is None: config.manualSeed = random.randint(1, 10000) print("Random Seed: ", config.manualSeed) random.seed(config.manualSeed) torch.manual_seed(config.manualSeed) np.random.seed(config.manualSeed) if torch.cuda.is_available(): torch.cuda.manual_seed(config.manualSeed) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print("Using device {0!s}".format(device)) dataloader = load_mnist(config.batchSize) eval_dataloader = load_mnist(config.batchSize, subset=5000) eig_dataloader = load_mnist(1000, train=True, subset=1000) fixed_noise = torch.randn(64, config.nz, 1, 1, device=device) # define the model netG = Generator(config.ngpu, config.nc, config.ngf, config.nz).to(device) netG.apply(weights_init) if config.netG != '': print('loading generator from %s' % config.netG) netG.load_state_dict(torch.load(config.netG)['state_gen']) print(netG) # sigmoid = config.model == 'dcgan' sigmoid = False netD = Discriminator(config.ngpu, config.nc, config.ndf, config.dnorm, sigmoid).to(device) netD.apply(weights_init) if config.netD != '': print('loading discriminator from %s' % config.netD) netD.load_state_dict(torch.load(config.netD)['state_dis']) print(netD) # evaluation G and D evalG = Generator(config.ngpu, config.nc, config.ngf, config.nz).to(device) evalG.apply(weights_init) evalD = Discriminator(config.ngpu, config.nc, config.ndf, config.dnorm, sigmoid).to(device) evalD.apply(weights_init) # defining the loss function model_loss_dis, model_loss_gen = define_model_loss(config) # # defining learning rates based on the model # if config.model in ['wgan', 'wgan_gp']: # config.lrG = config.lrD / config.n_critic # warnings.warn('modifying learning rates to lrD=%f, lrG=%f' % (config.lrD, config.lrG)) if config.lrG is None: config.lrG = config.lrD # setup optimizer if config.optimizer == 'adam': optimizerD = optim.Adam(netD.parameters(), lr=config.lrD, betas=(config.beta1, config.beta2)) optimizerG = optim.Adam(netG.parameters(), lr=config.lrG, betas=(config.beta1, config.beta2)) elif config.optimizer == 'extraadam': optimizerD = ExtraAdam(netD.parameters(), lr=config.lrD) optimizerG = ExtraAdam(netG.parameters(), lr=config.lrG) elif config.optimizer == 'rmsprop': optimizerD = optim.RMSprop(netD.parameters(), lr=config.lrD) optimizerG = optim.RMSprop(netG.parameters(), lr=config.lrG) elif config.optimizer == 'sgd': optimizerD = optim.SGD(netD.parameters(), lr=config.lrD, momentum=config.beta1) optimizerG = optim.SGD(netG.parameters(), lr=config.lrG, momentum=config.beta1) else: raise ValueError('Optimizer %s not supported' % config.optimizer) with open(os.path.join(exp_dir, 'config.json'), 'w') as f: json.dump(vars(config), f, indent=4) summary_writer = SummaryWriter(log_dir=exp_dir) global_step = 0 torch.save({'state_gen': netG.state_dict(), 'state_dis': netD.state_dict()}, '%s/checkpoint_step_%06d.pth' % (exp_dir, global_step)) # compute and save eigen values function def comp_and_save_eigs(step, n_eigs=20): eig_checkpoint = torch.load('%s/checkpoint_step_%06d.pth' % (exp_dir, step), map_location=device) evalG.load_state_dict(eig_checkpoint['state_gen']) evalD.load_state_dict(eig_checkpoint['state_dis']) gen_eigs, dis_eigs, game_eigs = \ compute_eigenvalues(evalG, evalD, eig_dataloader, config, model_loss_gen, model_loss_dis, device, verbose=True, n_eigs=n_eigs) np.savez(os.path.join(plots_dir, 'eigenvalues_%d' % step), gen_eigs=gen_eigs, dis_eigs=dis_eigs, game_eigs=game_eigs) return gen_eigs, dis_eigs, game_eigs if config.compute_eig: # eigenvalues of initialization gen_eigs_init, dis_eigs_init, game_eigs_init = comp_and_save_eigs(0) for epoch in range(config.niter): for i, data in enumerate(dataloader, 0): global_step += 1 ############################ # (1) Update D network: maximize log(D(x)) + log(1 - D(G(z))) ########################### # train with real netD.zero_grad() x_real = data[0].to(device) batch_size = x_real.size(0) noise = torch.randn(batch_size, config.nz, 1, 1, device=device) x_fake = netG(noise) errD, D_x, D_G_z1 = model_loss_dis(x_real, x_fake.detach(), netD, device) # gradient penalty if config.model == 'wgan_gp': errD += config.gp_lambda * netD.get_penalty(x_real.detach(), x_fake.detach()) errD.backward() D_x = D_x.mean().item() D_G_z1 = D_G_z1.mean().item() if config.optimizer == "extraadam": if i % 2 == 0: optimizerD.extrapolation() else: optimizerD.step() else: optimizerD.step() # weight clipping if config.model == 'wgan': for p in netD.parameters(): p.data.clamp_(-config.clip, config.clip) ############################ # (2) Update G network: maximize log(D(G(z))) ########################### if config.model == 'dcgan' or (config.model in ['wgan', 'wgan_gp'] and i % config.n_critic == 0): netG.zero_grad() errG, D_G_z2 = model_loss_gen(x_fake, netD, device) errG.backward() D_G_z2 = D_G_z2.mean().item() if config.optimizer == "extraadam": if i % 2 == 0: optimizerG.extrapolation() else: optimizerG.step() else: optimizerG.step() if global_step % config.printFreq == 0: print('[%d/%d][%d/%d] Loss_D: %.4f Loss_G: %.4f D(x): %.4f D(G(z)): %.4f / %.4f' % (epoch, config.niter, i, len(dataloader), errD.item(), errG.item(), D_x, D_G_z1, D_G_z2)) summary_writer.add_scalar("loss/D", errD.item(), global_step) summary_writer.add_scalar("loss/G", errG.item(), global_step) summary_writer.add_scalar("output/D_real", D_x, global_step) summary_writer.add_scalar("output/D_fake", D_G_z1, global_step) # every epoch save samples fake = netG(fixed_noise) # vutils.save_image(fake.detach(), # '%s/fake_samples_step-%06d.png' % (exp_dir, global_step), # normalize=True) fake_grid = vutils.make_grid(fake.detach(), normalize=True) summary_writer.add_image("G_samples", fake_grid, global_step) # generate samples for IS evaluation IS_fake = [] for i in range(10): noise = torch.randn(500, config.nz, 1, 1, device=device) IS_fake.append(netG(noise)) IS_fake = torch.cat(IS_fake) IS_mean, IS_std = mnist_inception_score(IS_fake, device) print("IS score: mean=%.4f, std=%.4f" % (IS_mean, IS_std)) summary_writer.add_scalar("IS_mean", IS_mean, global_step) # do checkpointing checkpoint = {'state_gen': netG.state_dict(), 'state_dis': netD.state_dict()} torch.save(checkpoint, '%s/checkpoint_step_%06d.pth' % (exp_dir, global_step)) last_chkpt = '%s/checkpoint_step_%06d.pth' % (exp_dir, global_step) if epoch == 0: # last_chkpt = '%s/checkpoint_step_%06d.pth' % (exp_dir, 0) # for now checkpoint_1 = torch.load(last_chkpt, map_location=device) if config.compute_eig: # compute eigenvalues for epoch 1, just in case gen_eigs_curr, dis_eigs_curr, game_eigs_curr = comp_and_save_eigs(global_step) # if (epoch + 1) % 10 == 0: if global_step > 30000 and epoch % 5 == 0: checkpoint_2 = torch.load(last_chkpt, map_location=device) print("Computing path statistics...") t = time.time() hist = compute_path_stats(evalG, evalD, checkpoint_1, checkpoint_2, eval_dataloader, config, model_loss_gen, model_loss_dis, device, verbose=True) with open("%s/hist_%d.pkl" % (plots_dir, global_step), 'wb') as f: pickle.dump(hist, f) plot_path_stats(hist, plots_dir, summary_writer, global_step) print("Took %.2f minutes" % ((time.time() - t) / 60.)) if config.compute_eig and global_step > 30000 and epoch % 10 == 0: # compute eigenvalues and save them gen_eigs_curr, dis_eigs_curr, game_eigs_curr = comp_and_save_eigs(global_step) plot_eigenvalues([gen_eigs_init, gen_eigs_curr], [dis_eigs_init, dis_eigs_curr], [game_eigs_init, game_eigs_curr], ['init', 'step_%d' % global_step], plots_dir, summary_writer, step=global_step) class Config(object): def __init__(self): parser = argparse.ArgumentParser() parser.add_argument('--dataroot', default='./data', help='path to dataset') parser.add_argument('--workers', type=int, default=2, help='number of data loading workers') parser.add_argument('--batchSize', type=int, default=100, help='input batch size') parser.add_argument('--printFreq', type=int, default=50, help='# updates before each print') parser.add_argument('--model', type=str, default='dcgan', choices=['dcgan', 'wgan', 'wgan_gp'], help='model type of GAN model') parser.add_argument('--n_critic', type=int, default=5, help='number of critic updates per generator update (wgan/wgan_gp)') parser.add_argument('--gp_lambda', type=int, default=10, help='weight for gradient penalty (wgan_gp)') parser.add_argument('--clip', type=float, default=0.01, help='weight clip range (wgan)') parser.add_argument('--nz', type=int, default=100, help='size of the latent z vector') parser.add_argument('--ngf', type=int, default=64) parser.add_argument('--ndf', type=int, default=64) parser.add_argument('--nc', type=int, default=1) parser.add_argument('--niter', type=int, default=200, help='number of epochs to train for') parser.add_argument('--lrD', type=float, default=0.0001, help='learning rate, default=0.0002') parser.add_argument('--lrG', type=float, default=None, help='learning rate, default=0.0002 -- same as lrD') parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for adam. default=0.5') parser.add_argument('--beta2', type=float, default=0.999, help='beta1 for adam. default=0.999') parser.add_argument('--optimizer', type=str, default='adam', choices=['adam', 'extraadam', 'sgd', 'rmsprop'], help='training optimizer') parser.add_argument('--ngpu', type=int, default=1, help='number of GPUs to use') parser.add_argument('--netG', default='', help="path to netG (to continue training)") parser.add_argument('--netD', default='', help="path to netD (to continue training)") parser.add_argument('--dnorm', default='spectral', choices=['batch', 'spectral', 'none', 'instance', 'layer'], help="Discriminator normalization") parser.add_argument('--exp_dir', type=str, default='EXP', help='directory of experiment') parser.add_argument('--exp_name', type=str, default='debug', help='directory of experiment') parser.add_argument('--manualSeed', type=int, help='manual seed') parser.add_argument('--compute_eig', type=int, choices=[0, 1], default=0) self.parser = parser def parse_args(self): return self.parser.parse_args() if __name__ == "__main__": main(Config().parse_args())
[ "pickle.dump", "numpy.random.seed", "argparse.ArgumentParser", "torch.randn", "torch.cat", "torch.nn.InstanceNorm2d", "torch.nn.GroupNorm", "torchvision.transforms.Normalize", "os.path.join", "random.randint", "plot_path_tools.plot_eigenvalues", "torch.load", "os.path.exists", "numpy.random.RandomState", "torchvision.transforms.ToTensor", "random.seed", "gan_eval_metrics.mnist_inception_score", "torch.nn.Tanh", "torch.manual_seed", "torch.nn.Conv2d", "torch.cuda.manual_seed", "torch.nn.BatchNorm2d", "plot_path_tools.plot_path_stats", "torch.cuda.is_available", "torch.nn.LeakyReLU", "torchvision.transforms.Resize", "torch.utils.data.Subset", "tensorboardX.SummaryWriter", "torch.nn.ReLU", "os.makedirs", "torch.nn.ConvTranspose2d", "torch.nn.utils.spectral_norm", "time.time", "torch.save", "torch.sigmoid", "plot_path_tools.compute_eigenvalues", "torch.nn.functional.softplus", "plot_path_tools.compute_path_stats" ]
[((7565, 7610), 'os.path.join', 'os.path.join', (['config.exp_dir', 'config.exp_name'], {}), '(config.exp_dir, config.exp_name)\n', (7577, 7610), False, 'import os\n'), ((7693, 7729), 'os.path.join', 'os.path.join', (['exp_dir', '"""extra_plots"""'], {}), "(exp_dir, 'extra_plots')\n", (7705, 7729), False, 'import os\n'), ((7937, 7967), 'random.seed', 'random.seed', (['config.manualSeed'], {}), '(config.manualSeed)\n', (7948, 7967), False, 'import random\n'), ((7972, 8008), 'torch.manual_seed', 'torch.manual_seed', (['config.manualSeed'], {}), '(config.manualSeed)\n', (7989, 8008), False, 'import torch\n'), ((8013, 8046), 'numpy.random.seed', 'np.random.seed', (['config.manualSeed'], {}), '(config.manualSeed)\n', (8027, 8046), True, 'import numpy as np\n'), ((8054, 8079), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (8077, 8079), False, 'import torch\n'), ((8445, 8492), 'torch.randn', 'torch.randn', (['(64)', 'config.nz', '(1)', '(1)'], {'device': 'device'}), '(64, config.nz, 1, 1, device=device)\n', (8456, 8492), False, 'import torch\n'), ((10854, 10884), 'tensorboardX.SummaryWriter', 'SummaryWriter', ([], {'log_dir': 'exp_dir'}), '(log_dir=exp_dir)\n', (10867, 10884), False, 'from tensorboardX import SummaryWriter\n'), ((1623, 1652), 'torch.utils.data.Subset', 'Subset', (['dataset', 'idx[:subset]'], {}), '(dataset, idx[:subset])\n', (1629, 1652), False, 'from torch.utils.data import Subset\n'), ((7622, 7645), 'os.path.exists', 'os.path.exists', (['exp_dir'], {}), '(exp_dir)\n', (7636, 7645), False, 'import os\n'), ((7655, 7675), 'os.makedirs', 'os.makedirs', (['exp_dir'], {}), '(exp_dir)\n', (7666, 7675), False, 'import os\n'), ((7741, 7766), 'os.path.exists', 'os.path.exists', (['plots_dir'], {}), '(plots_dir)\n', (7755, 7766), False, 'import os\n'), ((7776, 7798), 'os.makedirs', 'os.makedirs', (['plots_dir'], {}), '(plots_dir)\n', (7787, 7798), False, 'import os\n'), ((7862, 7886), 'random.randint', 'random.randint', (['(1)', '(10000)'], {}), '(1, 10000)\n', (7876, 7886), False, 'import random\n'), ((8089, 8130), 'torch.cuda.manual_seed', 'torch.cuda.manual_seed', (['config.manualSeed'], {}), '(config.manualSeed)\n', (8111, 8130), False, 'import torch\n'), ((11190, 11275), 'torch.load', 'torch.load', (["('%s/checkpoint_step_%06d.pth' % (exp_dir, step))"], {'map_location': 'device'}), "('%s/checkpoint_step_%06d.pth' % (exp_dir, step), map_location=device\n )\n", (11200, 11275), False, 'import torch\n'), ((11479, 11609), 'plot_path_tools.compute_eigenvalues', 'compute_eigenvalues', (['evalG', 'evalD', 'eig_dataloader', 'config', 'model_loss_gen', 'model_loss_dis', 'device'], {'verbose': '(True)', 'n_eigs': 'n_eigs'}), '(evalG, evalD, eig_dataloader, config, model_loss_gen,\n model_loss_dis, device, verbose=True, n_eigs=n_eigs)\n', (11498, 11609), False, 'from plot_path_tools import compute_path_stats, plot_path_stats, compute_eigenvalues, plot_eigenvalues\n'), ((15201, 15219), 'torch.cat', 'torch.cat', (['IS_fake'], {}), '(IS_fake)\n', (15210, 15219), False, 'import torch\n'), ((15247, 15285), 'gan_eval_metrics.mnist_inception_score', 'mnist_inception_score', (['IS_fake', 'device'], {}), '(IS_fake, device)\n', (15268, 15285), False, 'from gan_eval_metrics import mnist_inception_score\n'), ((15564, 15642), 'torch.save', 'torch.save', (['checkpoint', "('%s/checkpoint_step_%06d.pth' % (exp_dir, global_step))"], {}), "(checkpoint, '%s/checkpoint_step_%06d.pth' % (exp_dir, global_step))\n", (15574, 15642), False, 'import torch\n'), ((17362, 17387), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (17385, 17387), False, 'import argparse\n'), ((2610, 2662), 'torch.nn.ConvTranspose2d', 'nn.ConvTranspose2d', (['nz', '(ngf * 4)', '(4)', '(1)', '(0)'], {'bias': '(False)'}), '(nz, ngf * 4, 4, 1, 0, bias=False)\n', (2628, 2662), True, 'import torch.nn as nn\n'), ((2676, 2699), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['(ngf * 4)'], {}), '(ngf * 4)\n', (2690, 2699), True, 'import torch.nn as nn\n'), ((2713, 2726), 'torch.nn.ReLU', 'nn.ReLU', (['(True)'], {}), '(True)\n', (2720, 2726), True, 'import torch.nn as nn\n'), ((2741, 2798), 'torch.nn.ConvTranspose2d', 'nn.ConvTranspose2d', (['(ngf * 4)', '(ngf * 2)', '(4)', '(2)', '(1)'], {'bias': '(False)'}), '(ngf * 4, ngf * 2, 4, 2, 1, bias=False)\n', (2759, 2798), True, 'import torch.nn as nn\n'), ((2812, 2835), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['(ngf * 2)'], {}), '(ngf * 2)\n', (2826, 2835), True, 'import torch.nn as nn\n'), ((2849, 2862), 'torch.nn.ReLU', 'nn.ReLU', (['(True)'], {}), '(True)\n', (2856, 2862), True, 'import torch.nn as nn\n'), ((2877, 2930), 'torch.nn.ConvTranspose2d', 'nn.ConvTranspose2d', (['(ngf * 2)', 'ngf', '(4)', '(2)', '(1)'], {'bias': '(False)'}), '(ngf * 2, ngf, 4, 2, 1, bias=False)\n', (2895, 2930), True, 'import torch.nn as nn\n'), ((2944, 2963), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['ngf'], {}), '(ngf)\n', (2958, 2963), True, 'import torch.nn as nn\n'), ((2977, 2990), 'torch.nn.ReLU', 'nn.ReLU', (['(True)'], {}), '(True)\n', (2984, 2990), True, 'import torch.nn as nn\n'), ((3005, 3052), 'torch.nn.ConvTranspose2d', 'nn.ConvTranspose2d', (['ngf', 'nc', '(4)', '(2)', '(1)'], {'bias': '(True)'}), '(ngf, nc, 4, 2, 1, bias=True)\n', (3023, 3052), True, 'import torch.nn as nn\n'), ((3066, 3075), 'torch.nn.Tanh', 'nn.Tanh', ([], {}), '()\n', (3073, 3075), True, 'import torch.nn as nn\n'), ((5086, 5107), 'torch.sigmoid', 'torch.sigmoid', (['output'], {}), '(output)\n', (5099, 5107), False, 'import torch\n'), ((6944, 6962), 'torch.nn.functional.softplus', 'F.softplus', (['(-p_gen)'], {}), '(-p_gen)\n', (6954, 6962), True, 'import torch.nn.functional as F\n'), ((8168, 8193), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (8191, 8193), False, 'import torch\n'), ((10738, 10774), 'os.path.join', 'os.path.join', (['exp_dir', '"""config.json"""'], {}), "(exp_dir, 'config.json')\n", (10750, 10774), False, 'import os\n'), ((11687, 11735), 'os.path.join', 'os.path.join', (['plots_dir', "('eigenvalues_%d' % step)"], {}), "(plots_dir, 'eigenvalues_%d' % step)\n", (11699, 11735), False, 'import os\n'), ((12435, 12490), 'torch.randn', 'torch.randn', (['batch_size', 'config.nz', '(1)', '(1)'], {'device': 'device'}), '(batch_size, config.nz, 1, 1, device=device)\n', (12446, 12490), False, 'import torch\n'), ((15094, 15142), 'torch.randn', 'torch.randn', (['(500)', 'config.nz', '(1)', '(1)'], {'device': 'device'}), '(500, config.nz, 1, 1, device=device)\n', (15105, 15142), False, 'import torch\n'), ((15853, 15896), 'torch.load', 'torch.load', (['last_chkpt'], {'map_location': 'device'}), '(last_chkpt, map_location=device)\n', (15863, 15896), False, 'import torch\n'), ((16207, 16250), 'torch.load', 'torch.load', (['last_chkpt'], {'map_location': 'device'}), '(last_chkpt, map_location=device)\n', (16217, 16250), False, 'import torch\n'), ((16317, 16328), 'time.time', 'time.time', ([], {}), '()\n', (16326, 16328), False, 'import time\n'), ((16349, 16496), 'plot_path_tools.compute_path_stats', 'compute_path_stats', (['evalG', 'evalD', 'checkpoint_1', 'checkpoint_2', 'eval_dataloader', 'config', 'model_loss_gen', 'model_loss_dis', 'device'], {'verbose': '(True)'}), '(evalG, evalD, checkpoint_1, checkpoint_2,\n eval_dataloader, config, model_loss_gen, model_loss_dis, device,\n verbose=True)\n', (16367, 16496), False, 'from plot_path_tools import compute_path_stats, plot_path_stats, compute_eigenvalues, plot_eigenvalues\n'), ((16657, 16718), 'plot_path_tools.plot_path_stats', 'plot_path_stats', (['hist', 'plots_dir', 'summary_writer', 'global_step'], {}), '(hist, plots_dir, summary_writer, global_step)\n', (16672, 16718), False, 'from plot_path_tools import compute_path_stats, plot_path_stats, compute_eigenvalues, plot_eigenvalues\n'), ((17015, 17217), 'plot_path_tools.plot_eigenvalues', 'plot_eigenvalues', (['[gen_eigs_init, gen_eigs_curr]', '[dis_eigs_init, dis_eigs_curr]', '[game_eigs_init, game_eigs_curr]', "['init', 'step_%d' % global_step]", 'plots_dir', 'summary_writer'], {'step': 'global_step'}), "([gen_eigs_init, gen_eigs_curr], [dis_eigs_init,\n dis_eigs_curr], [game_eigs_init, game_eigs_curr], ['init', 'step_%d' %\n global_step], plots_dir, summary_writer, step=global_step)\n", (17031, 17217), False, 'from plot_path_tools import compute_path_stats, plot_path_stats, compute_eigenvalues, plot_eigenvalues\n'), ((1565, 1591), 'numpy.random.RandomState', 'np.random.RandomState', (['(123)'], {}), '(123)\n', (1586, 1591), True, 'import numpy as np\n'), ((2099, 2118), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['dim'], {}), '(dim)\n', (2113, 2118), True, 'import torch.nn as nn\n'), ((3885, 3916), 'torch.nn.LeakyReLU', 'nn.LeakyReLU', (['(0.2)'], {'inplace': '(True)'}), '(0.2, inplace=True)\n', (3897, 3916), True, 'import torch.nn as nn\n'), ((4032, 4063), 'torch.nn.LeakyReLU', 'nn.LeakyReLU', (['(0.2)'], {'inplace': '(True)'}), '(0.2, inplace=True)\n', (4044, 4063), True, 'import torch.nn as nn\n'), ((4183, 4214), 'torch.nn.LeakyReLU', 'nn.LeakyReLU', (['(0.2)'], {'inplace': '(True)'}), '(0.2, inplace=True)\n', (4195, 4214), True, 'import torch.nn as nn\n'), ((4233, 4274), 'torch.nn.Conv2d', 'nn.Conv2d', (['(ndf * 4)', '(1)', '(4)', '(1)', '(0)'], {'bias': '(True)'}), '(ndf * 4, 1, 4, 1, 0, bias=True)\n', (4242, 4274), True, 'import torch.nn as nn\n'), ((4359, 4397), 'torch.nn.Conv2d', 'nn.Conv2d', (['nc', 'ndf', '(4)', '(2)', '(1)'], {'bias': '(True)'}), '(nc, ndf, 4, 2, 1, bias=True)\n', (4368, 4397), True, 'import torch.nn as nn\n'), ((4415, 4446), 'torch.nn.LeakyReLU', 'nn.LeakyReLU', (['(0.2)'], {'inplace': '(True)'}), '(0.2, inplace=True)\n', (4427, 4446), True, 'import torch.nn as nn\n'), ((4465, 4508), 'torch.nn.Conv2d', 'nn.Conv2d', (['ndf', '(ndf * 2)', '(4)', '(2)', '(1)'], {'bias': '(True)'}), '(ndf, ndf * 2, 4, 2, 1, bias=True)\n', (4474, 4508), True, 'import torch.nn as nn\n'), ((4526, 4549), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['(ndf * 2)'], {}), '(ndf * 2)\n', (4540, 4549), True, 'import torch.nn as nn\n'), ((4567, 4598), 'torch.nn.LeakyReLU', 'nn.LeakyReLU', (['(0.2)'], {'inplace': '(True)'}), '(0.2, inplace=True)\n', (4579, 4598), True, 'import torch.nn as nn\n'), ((4617, 4664), 'torch.nn.Conv2d', 'nn.Conv2d', (['(ndf * 2)', '(ndf * 4)', '(4)', '(2)', '(1)'], {'bias': '(True)'}), '(ndf * 2, ndf * 4, 4, 2, 1, bias=True)\n', (4626, 4664), True, 'import torch.nn as nn\n'), ((4682, 4705), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['(ndf * 4)'], {}), '(ndf * 4)\n', (4696, 4705), True, 'import torch.nn as nn\n'), ((4723, 4754), 'torch.nn.LeakyReLU', 'nn.LeakyReLU', (['(0.2)'], {'inplace': '(True)'}), '(0.2, inplace=True)\n', (4735, 4754), True, 'import torch.nn as nn\n'), ((4773, 4814), 'torch.nn.Conv2d', 'nn.Conv2d', (['(ndf * 4)', '(1)', '(4)', '(1)', '(0)'], {'bias': '(True)'}), '(ndf * 4, 1, 4, 1, 0, bias=True)\n', (4782, 4814), True, 'import torch.nn as nn\n'), ((6771, 6790), 'torch.nn.functional.softplus', 'F.softplus', (['(-p_real)'], {}), '(-p_real)\n', (6781, 6790), True, 'import torch.nn.functional as F\n'), ((6800, 6817), 'torch.nn.functional.softplus', 'F.softplus', (['p_gen'], {}), '(p_gen)\n', (6810, 6817), True, 'import torch.nn.functional as F\n'), ((8737, 8760), 'torch.load', 'torch.load', (['config.netG'], {}), '(config.netG)\n', (8747, 8760), False, 'import torch\n'), ((9093, 9116), 'torch.load', 'torch.load', (['config.netD'], {}), '(config.netD)\n', (9103, 9116), False, 'import torch\n'), ((16623, 16643), 'pickle.dump', 'pickle.dump', (['hist', 'f'], {}), '(hist, f)\n', (16634, 16643), False, 'import pickle\n'), ((1314, 1342), 'torchvision.transforms.Resize', 'transforms.Resize', (['imageSize'], {}), '(imageSize)\n', (1331, 1342), True, 'import torchvision.transforms as transforms\n'), ((1373, 1394), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (1392, 1394), True, 'import torchvision.transforms as transforms\n'), ((1425, 1461), 'torchvision.transforms.Normalize', 'transforms.Normalize', (['(0.5,)', '(0.5,)'], {}), '((0.5,), (0.5,))\n', (1445, 1461), True, 'import torchvision.transforms as transforms\n'), ((2173, 2195), 'torch.nn.InstanceNorm2d', 'nn.InstanceNorm2d', (['dim'], {}), '(dim)\n', (2190, 2195), True, 'import torch.nn as nn\n'), ((2247, 2267), 'torch.nn.GroupNorm', 'nn.GroupNorm', (['(1)', 'dim'], {}), '(1, dim)\n', (2259, 2267), True, 'import torch.nn as nn\n'), ((3817, 3855), 'torch.nn.Conv2d', 'nn.Conv2d', (['nc', 'ndf', '(4)', '(2)', '(1)'], {'bias': '(True)'}), '(nc, ndf, 4, 2, 1, bias=True)\n', (3826, 3855), True, 'import torch.nn as nn\n'), ((3955, 3998), 'torch.nn.Conv2d', 'nn.Conv2d', (['ndf', '(ndf * 2)', '(4)', '(2)', '(1)'], {'bias': '(True)'}), '(ndf, ndf * 2, 4, 2, 1, bias=True)\n', (3964, 3998), True, 'import torch.nn as nn\n'), ((4102, 4149), 'torch.nn.Conv2d', 'nn.Conv2d', (['(ndf * 2)', '(ndf * 4)', '(4)', '(2)', '(1)'], {'bias': '(True)'}), '(ndf * 2, ndf * 4, 4, 2, 1, bias=True)\n', (4111, 4149), True, 'import torch.nn as nn\n'), ((2314, 2335), 'torch.nn.utils.spectral_norm', 'spectral_norm', (['module'], {}), '(module)\n', (2327, 2335), False, 'from torch.nn.utils import spectral_norm\n'), ((16762, 16773), 'time.time', 'time.time', ([], {}), '()\n', (16771, 16773), False, 'import time\n')]
from pathlib import Path import matplotlib.pyplot as plt import numpy as np from src.system import System def plot(): data = { "hp": { "cop": 3.0 }, "swhe": { "pipe": { "outer-dia": 0.02667, "inner-dia": 0.0215392, "length": 100, "density": 950, "conductivity": 0.4 }, "diameter": 1.2, "horizontal-spacing": 0.05, "vertical-spacing": 0.05, }, "fluid": { "fluid-name": "PG", "concentration": 20 } } system = System(data) x = np.arange(-3000, 3000, 200) y_a = [system.simulate(m, 0.1, 15) for m in x] y_b = [system.simulate(m, 0.25, 15) for m in x] y_c = [system.simulate(m, 1.0, 15) for m in x] fig, ax = plt.subplots() ax.plot(x, y_a, label=r"$T_{appr}$ $\dot{m}=0.10$ [kg/s]") ax.plot(x, y_b, label=r"$T_{appr}$ $\dot{m}=0.25$ [kg/s]", linestyle="--") ax.plot(x, y_c, label=r"$T_{appr}$ $\dot{m}=1.00$ [kg/s]", linestyle=":") ax.set_xlabel(r"$\dot{q}_{zone}$ [W]") ax.set_ylabel(r"$T_{appr}$ [C]") ax.legend() ax.grid() f_name = Path(__file__).parent / "_system_approach_temp.png" plt.savefig(f_name, bbox_inches="tight") if __name__ == "__main__": plot()
[ "src.system.System", "pathlib.Path", "numpy.arange", "matplotlib.pyplot.subplots", "matplotlib.pyplot.savefig" ]
[((648, 660), 'src.system.System', 'System', (['data'], {}), '(data)\n', (654, 660), False, 'from src.system import System\n'), ((670, 697), 'numpy.arange', 'np.arange', (['(-3000)', '(3000)', '(200)'], {}), '(-3000, 3000, 200)\n', (679, 697), True, 'import numpy as np\n'), ((866, 880), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (878, 880), True, 'import matplotlib.pyplot as plt\n'), ((1281, 1321), 'matplotlib.pyplot.savefig', 'plt.savefig', (['f_name'], {'bbox_inches': '"""tight"""'}), "(f_name, bbox_inches='tight')\n", (1292, 1321), True, 'import matplotlib.pyplot as plt\n'), ((1225, 1239), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (1229, 1239), False, 'from pathlib import Path\n')]
# analyze binom_test to each pair # for further analyze ANOVA # gt/-our gt/-nerf -our/gt -our/nerf -nerf/gt nerf/-our # 40 1 38 77 1 75 # 78 78 78 78 78 78 from scipy import stats import numpy as np # choose us, or nerf is no us choose = [64, 110, 111] stimuli = ["our-gt", "our-nerf", "nerf-gt"] total = 60*2 binresult = [] for eachChoose in choose: prob = stats.binom_test(eachChoose, n=total, p=0.5, alternative="greater") print(prob) binresult.append(prob) np.savetxt("bintest.csv", binresult)
[ "numpy.savetxt", "scipy.stats.binom_test" ]
[((525, 561), 'numpy.savetxt', 'np.savetxt', (['"""bintest.csv"""', 'binresult'], {}), "('bintest.csv', binresult)\n", (535, 561), True, 'import numpy as np\n'), ((413, 480), 'scipy.stats.binom_test', 'stats.binom_test', (['eachChoose'], {'n': 'total', 'p': '(0.5)', 'alternative': '"""greater"""'}), "(eachChoose, n=total, p=0.5, alternative='greater')\n", (429, 480), False, 'from scipy import stats\n')]
"""Plots (and/or saves) the graphical trading data using Matplotlib""" import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.ticker as ticker from models.Trading import TechnicalAnalysis import datetime, re, sys sys.path.append('.') class TradingGraphs(): def __init__(self, technicalAnalysis): """Trading Graphs object model Parameters ---------- technicalAnalysis : object TechnicalAnalysis object to provide the trading data to visualise """ # validates the technicalAnalysis object if not isinstance(technicalAnalysis, TechnicalAnalysis): raise TypeError('Coinbase Pro model required.') # only one figure can be open at a time, close all open figures plt.close('all') self.technicalAnalysis = technicalAnalysis # stores the pandas dataframe from technicalAnalysis object self.df = technicalAnalysis.getDataFrame() # stores the support and resistance levels from technicalAnalysis object self.levels = technicalAnalysis.supportResistanceLevels() # seaborn style plots plt.style.use('seaborn') def renderBuySellSignalEMA1226(self, saveFile='', saveOnly=False): """Render the EMA12 and EMA26 buy and sell signals Parameters ---------- saveFile : str, optional Save the figure saveOnly : bool Save the figure without displaying it """ buysignals = self.df[self.df.ema12gtema26co == True] sellsignals = self.df[self.df.ema12ltema26co == True] plt.subplot(111) plt.plot(self.df.close, label="price", color="royalblue") plt.plot(self.df.ema12, label="ema12", color="orange") plt.plot(self.df.ema26, label="ema26", color="purple") plt.ylabel('Price') for idx in buysignals.index.tolist(): plt.axvline(x=idx, color='green') for idx in sellsignals.index.tolist(): plt.axvline(x=idx, color='red') plt.xticks(rotation=90) plt.tight_layout() plt.legend() try: if saveFile != '': plt.savefig(saveFile) except OSError: raise SystemExit('Unable to save: ', saveFile) if saveOnly == False: plt.show() def renderBuySellSignalEMA1226MACD(self, saveFile='', saveOnly=False): """Render the EMA12, EMA26 and MACD buy and sell signals Parameters ---------- saveFile : str, optional Save the figure saveOnly : bool Save the figure without displaying it """ buysignals = ((self.df.ema12gtema26co == True) & (self.df.macdgtsignal == True) & (self.df.obv_pc >= 2)) | ((self.df.ema12gtema26 == True) & (self.df.macdgtsignal == True) & (self.df.obv_pc >= 5)) sellsignals = ((self.df.ema12ltema26co == True) & (self.df.macdltsignal == True)) | ((self.df.ema12gtema26 == True) & (self.df.macdltsignal == True) & (self.df.obv_pc < 0)) df_signals = self.df[(buysignals) | (sellsignals)] ax1 = plt.subplot(211) plt.plot(self.df.close, label="price", color="royalblue") plt.plot(self.df.ema12, label="ema12", color="orange") plt.plot(self.df.ema26, label="ema26", color="purple") plt.ylabel('Price') action = '' last_action = '' for idx, row in df_signals.iterrows(): if row['ema12gtema26co'] == True and row['macdgtsignal'] == True and last_action != 'buy': action = 'buy' plt.axvline(x=idx, color='green') elif row['ema12ltema26'] == True and row['macdltsignal'] == True and action == 'buy': action = 'sell' plt.axvline(x=idx, color='red') last_action = action plt.xticks(rotation=90) plt.subplot(212, sharex=ax1) plt.plot(self.df.macd, label="macd") plt.plot(self.df.signal, label="signal") plt.legend() plt.ylabel('Divergence') plt.xticks(rotation=90) plt.tight_layout() plt.legend() try: if saveFile != '': plt.savefig(saveFile) except OSError: raise SystemExit('Unable to save: ', saveFile) if saveOnly == False: plt.show() def renderPriceEMA12EMA26(self, saveFile='', saveOnly=False): """Render the price, EMA12 and EMA26 Parameters ---------- saveFile : str, optional Save the figure saveOnly : bool Save the figure without displaying it """ plt.subplot(111) plt.plot(self.df.close, label="price") plt.plot(self.df.ema12, label="ema12") plt.plot(self.df.ema26, label="ema26") plt.legend() plt.ylabel('Price') plt.xticks(rotation=90) plt.tight_layout() try: if saveFile != '': plt.savefig(saveFile) except OSError: raise SystemExit('Unable to save: ', saveFile) if saveOnly == False: plt.show() def renderPriceSupportResistance(self, saveFile='', saveOnly=False): """Render the price, support and resistance levels Parameters ---------- saveFile : str, optional Save the figure saveOnly : bool Save the figure without displaying it """ plt.subplot(111) plt.plot(self.df.close) plt.ylabel('Price') for level in self.levels: plt.axhline(y=level, color='grey') plt.xticks(rotation=90) plt.tight_layout() try: if saveFile != '': plt.savefig(saveFile) except OSError: raise SystemExit('Unable to save: ', saveFile) if saveOnly == False: plt.show() def renderEMAandMACD(self, period=30, saveFile='', saveOnly=False): """Render the price, EMA12, EMA26 and MACD Parameters ---------- saveFile : str, optional Save the figure saveOnly : bool Save the figure without displaying it """ if not isinstance(period, int): raise TypeError('Period parameter is not perioderic.') if period < 1 or period > len(self.df): raise ValueError('Period is out of range') df_subset = self.df.iloc[-period::] date = pd.to_datetime(df_subset.index).to_pydatetime() df_subset_length = len(df_subset) indices = np.arange(df_subset_length) # the evenly spaced plot indices def format_date(x, pos=None): #pylint: disable=unused-argument thisind = np.clip(int(x + 0.5), 0, df_subset_length - 1) return date[thisind].strftime('%Y-%m-%d %H:%M:%S') fig, (ax1, ax2) = plt.subplots(nrows=2, figsize=(12, 6)) fig.suptitle(df_subset.iloc[0]['market'] + ' | ' + str(df_subset.iloc[0]['granularity']), fontsize=16) plt.style.use('seaborn') plt.xticks(rotation=90) #plt.tight_layout() indices = np.arange(len(df_subset)) ax1.plot(indices, df_subset['close'], label='price', color='royalblue') ax1.plot(indices, df_subset['ema12'], label='ema12', color='orange') ax1.plot(indices, df_subset['ema26'], label='ema26', color='purple') ax1.xaxis.set_major_formatter(ticker.FuncFormatter(format_date)) ax1.set_title('Price, EMA12 and EMA26') ax1.set_ylabel('Price') ax1.legend() fig.autofmt_xdate() ax2.plot(indices, df_subset.macd, label='macd') ax2.plot(indices, df_subset.signal, label='signal') ax2.xaxis.set_major_formatter(ticker.FuncFormatter(format_date)) ax2.set_title('MACD') ax2.set_ylabel('Divergence') ax2.legend() fig.autofmt_xdate() try: if saveFile != '': plt.savefig(saveFile) except OSError: raise SystemExit('Unable to save: ', saveFile) if saveOnly == False: plt.show() def renderSeasonalARIMAModel(self, saveFile='', saveOnly=False): """Render the seasonal ARIMA model Parameters ---------- saveFile : str, optional Save the figure saveOnly : bool Save the figure without displaying it """ fittedValues = self.technicalAnalysis.seasonalARIMAModelFittedValues() plt.plot(self.df['close'], label='original') plt.plot(fittedValues, color='red', label='fitted') plt.title('RSS: %.4f' % sum((fittedValues-self.df['close'])**2)) plt.legend() plt.ylabel('Price') plt.xticks(rotation=90) plt.tight_layout() try: if saveFile != '': plt.savefig(saveFile) except OSError: raise SystemExit('Unable to save: ', saveFile) if saveOnly == False: plt.show() def renderSeasonalARIMAModelPredictionDays(self, days=30, saveFile='', saveOnly=False): """Render the seasonal ARIMA model prediction Parameters ---------- days : int Number of days to predict saveFile : str, optional Save the figure saveOnly : bool Save the figure without displaying it """ results_ARIMA = self.technicalAnalysis.seasonalARIMAModel() df = pd.DataFrame(self.df['close']) start_date = df.last_valid_index() end_date = start_date + datetime.timedelta(days=days) pred = results_ARIMA.predict(start=str(start_date), end=str(end_date), dynamic=True) plt.plot(pred, label='prediction') plt.ylabel('Price') plt.xlabel('Days') plt.xticks(rotation=90) plt.tight_layout() try: if saveFile != '': plt.savefig(saveFile) except OSError: raise SystemExit('Unable to save: ', saveFile) if saveOnly == False: plt.show() def renderSMAandMACD(self, saveFile='', saveOnly=False): """Render the price, SMA20, SMA50, and SMA200 Parameters ---------- saveFile : str, optional Save the figure saveOnly : bool Save the figure without displaying it """ ax1 = plt.subplot(211) plt.plot(self.df.close, label="price") plt.plot(self.df.sma20, label="sma20") plt.plot(self.df.sma50, label="sma50") plt.plot(self.df.sma200, label="sma200") plt.legend() plt.ylabel('Price') plt.xticks(rotation=90) plt.subplot(212, sharex=ax1) plt.plot(self.df.macd, label="macd") plt.plot(self.df.signal, label="signal") plt.legend() plt.ylabel('Price') plt.xlabel('Days') plt.xticks(rotation=90) plt.tight_layout() try: if saveFile != '': plt.savefig(saveFile) except OSError: raise SystemExit('Unable to save: ', saveFile) if saveOnly == False: plt.show() def renderEMA12EMA26CloseCandles(self, period=30, outputpng=''): if not isinstance(period, int): raise TypeError('Period parameter is not perioderic.') if period < 1 or period > len(self.df): raise ValueError('Period is out of range') df_subset = self.df.iloc[-period::] fig, axes = plt.subplots(ncols=1, figsize=(12, 6)) #pylint: disable=unused-variable fig.autofmt_xdate() ax1 = plt.subplot(111) ax1.set_title(df_subset.iloc[0]['market'] + ' | ' + str(df_subset.iloc[0]['granularity'])) plt.style.use('seaborn') plt.plot(df_subset['close'], label='price', color='royalblue') plt.plot(df_subset['ema12'], label='ema12', color='orange') plt.plot(df_subset['ema26'], label='ema26', color='purple') plt.tick_params( axis='x', # changes apply to the x-axis which='both', # both major and minor ticks are affected bottom=False, # ticks along the bottom edge are off top=False, # ticks along the top edge are off labelbottom=False) # labels along the bottom edge are off df_candlestick = self.df[self.df['three_white_soldiers'] == True] df_candlestick_in_range = df_candlestick[df_candlestick.index >= np.min(df_subset.index)] for idx in df_candlestick_in_range.index.tolist(): plt.plot(idx, df_candlestick_in_range.loc[idx]['close'], 'gx') df_candlestick = self.df[self.df['three_black_crows'] == True] df_candlestick_in_range = df_candlestick[df_candlestick.index >= np.min(df_subset.index)] for idx in df_candlestick_in_range.index.tolist(): plt.plot(idx, df_candlestick_in_range.loc[idx]['close'], 'rx') df_candlestick = self.df[self.df['inverted_hammer'] == True] df_candlestick_in_range = df_candlestick[df_candlestick.index >= np.min(df_subset.index)] for idx in df_candlestick_in_range.index.tolist(): plt.plot(idx, df_candlestick_in_range.loc[idx]['close'], 'g^') df_candlestick = self.df[self.df['hammer'] == True] df_candlestick_in_range = df_candlestick[df_candlestick.index >= np.min(df_subset.index)] for idx in df_candlestick_in_range.index.tolist(): plt.plot(idx, df_candlestick_in_range.loc[idx]['close'], 'rv') df_candlestick = self.df[self.df['hanging_man'] == True] df_candlestick_in_range = df_candlestick[df_candlestick.index >= np.min(df_subset.index)] for idx in df_candlestick_in_range.index.tolist(): plt.plot(idx, df_candlestick_in_range.loc[idx]['close'], 'go') df_candlestick = self.df[self.df['shooting_star'] == True] df_candlestick_in_range = df_candlestick[df_candlestick.index >= np.min(df_subset.index)] for idx in df_candlestick_in_range.index.tolist(): plt.plot(idx, df_candlestick_in_range.loc[idx]['close'], 'r*') df_candlestick = self.df[self.df['doji'] == True] df_candlestick_in_range = df_candlestick[df_candlestick.index >= np.min(df_subset.index)] for idx in df_candlestick_in_range.index.tolist(): plt.plot(idx, df_candlestick_in_range.loc[idx]['close'], 'yd') df_candlestick = self.df[self.df['three_line_strike'] == True] df_candlestick_in_range = df_candlestick[df_candlestick.index >= np.min(df_subset.index)] for idx in df_candlestick_in_range.index.tolist(): plt.plot(idx, df_candlestick_in_range.loc[idx]['close'], 'y^') df_candlestick = self.df[self.df['two_black_gapping'] == True] df_candlestick_in_range = df_candlestick[df_candlestick.index >= np.min(df_subset.index)] for idx in df_candlestick_in_range.index.tolist(): plt.plot(idx, df_candlestick_in_range.loc[idx]['close'], 'yv') df_candlestick = self.df[self.df['evening_star'] == True] df_candlestick_in_range = df_candlestick[df_candlestick.index >= np.min(df_subset.index)] for idx in df_candlestick_in_range.index.tolist(): plt.plot(idx, df_candlestick_in_range.loc[idx]['close'], 'mv') df_candlestick = self.df[self.df['abandoned_baby'] == True] df_candlestick_in_range = df_candlestick[df_candlestick.index >= np.min(df_subset.index)] for idx in df_candlestick_in_range.index.tolist(): plt.plot(idx, df_candlestick_in_range.loc[idx]['close'], 'm^') plt.ylabel('Price') plt.xticks(rotation=90) plt.tight_layout() plt.legend() if outputpng != '': plt.savefig(outputpng) plt.show()
[ "matplotlib.pyplot.style.use", "numpy.arange", "matplotlib.pyplot.tick_params", "matplotlib.pyplot.tight_layout", "sys.path.append", "pandas.DataFrame", "matplotlib.pyplot.axvline", "matplotlib.pyplot.close", "datetime.timedelta", "matplotlib.pyplot.xticks", "matplotlib.pyplot.subplots", "matplotlib.pyplot.axhline", "matplotlib.pyplot.show", "matplotlib.pyplot.legend", "numpy.min", "matplotlib.ticker.FuncFormatter", "pandas.to_datetime", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.subplot", "matplotlib.pyplot.plot", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.savefig" ]
[((248, 268), 'sys.path.append', 'sys.path.append', (['"""."""'], {}), "('.')\n", (263, 268), False, 'import datetime, re, sys\n'), ((799, 815), 'matplotlib.pyplot.close', 'plt.close', (['"""all"""'], {}), "('all')\n", (808, 815), True, 'import matplotlib.pyplot as plt\n'), ((1175, 1199), 'matplotlib.pyplot.style.use', 'plt.style.use', (['"""seaborn"""'], {}), "('seaborn')\n", (1188, 1199), True, 'import matplotlib.pyplot as plt\n'), ((1659, 1675), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(111)'], {}), '(111)\n', (1670, 1675), True, 'import matplotlib.pyplot as plt\n'), ((1684, 1741), 'matplotlib.pyplot.plot', 'plt.plot', (['self.df.close'], {'label': '"""price"""', 'color': '"""royalblue"""'}), "(self.df.close, label='price', color='royalblue')\n", (1692, 1741), True, 'import matplotlib.pyplot as plt\n'), ((1750, 1804), 'matplotlib.pyplot.plot', 'plt.plot', (['self.df.ema12'], {'label': '"""ema12"""', 'color': '"""orange"""'}), "(self.df.ema12, label='ema12', color='orange')\n", (1758, 1804), True, 'import matplotlib.pyplot as plt\n'), ((1813, 1867), 'matplotlib.pyplot.plot', 'plt.plot', (['self.df.ema26'], {'label': '"""ema26"""', 'color': '"""purple"""'}), "(self.df.ema26, label='ema26', color='purple')\n", (1821, 1867), True, 'import matplotlib.pyplot as plt\n'), ((1876, 1895), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Price"""'], {}), "('Price')\n", (1886, 1895), True, 'import matplotlib.pyplot as plt\n'), ((2090, 2113), 'matplotlib.pyplot.xticks', 'plt.xticks', ([], {'rotation': '(90)'}), '(rotation=90)\n', (2100, 2113), True, 'import matplotlib.pyplot as plt\n'), ((2122, 2140), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (2138, 2140), True, 'import matplotlib.pyplot as plt\n'), ((2149, 2161), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (2159, 2161), True, 'import matplotlib.pyplot as plt\n'), ((3189, 3205), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(211)'], {}), '(211)\n', (3200, 3205), True, 'import matplotlib.pyplot as plt\n'), ((3214, 3271), 'matplotlib.pyplot.plot', 'plt.plot', (['self.df.close'], {'label': '"""price"""', 'color': '"""royalblue"""'}), "(self.df.close, label='price', color='royalblue')\n", (3222, 3271), True, 'import matplotlib.pyplot as plt\n'), ((3280, 3334), 'matplotlib.pyplot.plot', 'plt.plot', (['self.df.ema12'], {'label': '"""ema12"""', 'color': '"""orange"""'}), "(self.df.ema12, label='ema12', color='orange')\n", (3288, 3334), True, 'import matplotlib.pyplot as plt\n'), ((3343, 3397), 'matplotlib.pyplot.plot', 'plt.plot', (['self.df.ema26'], {'label': '"""ema26"""', 'color': '"""purple"""'}), "(self.df.ema26, label='ema26', color='purple')\n", (3351, 3397), True, 'import matplotlib.pyplot as plt\n'), ((3406, 3425), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Price"""'], {}), "('Price')\n", (3416, 3425), True, 'import matplotlib.pyplot as plt\n'), ((3924, 3947), 'matplotlib.pyplot.xticks', 'plt.xticks', ([], {'rotation': '(90)'}), '(rotation=90)\n', (3934, 3947), True, 'import matplotlib.pyplot as plt\n'), ((3957, 3985), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(212)'], {'sharex': 'ax1'}), '(212, sharex=ax1)\n', (3968, 3985), True, 'import matplotlib.pyplot as plt\n'), ((3994, 4030), 'matplotlib.pyplot.plot', 'plt.plot', (['self.df.macd'], {'label': '"""macd"""'}), "(self.df.macd, label='macd')\n", (4002, 4030), True, 'import matplotlib.pyplot as plt\n'), ((4039, 4079), 'matplotlib.pyplot.plot', 'plt.plot', (['self.df.signal'], {'label': '"""signal"""'}), "(self.df.signal, label='signal')\n", (4047, 4079), True, 'import matplotlib.pyplot as plt\n'), ((4088, 4100), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (4098, 4100), True, 'import matplotlib.pyplot as plt\n'), ((4109, 4133), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Divergence"""'], {}), "('Divergence')\n", (4119, 4133), True, 'import matplotlib.pyplot as plt\n'), ((4142, 4165), 'matplotlib.pyplot.xticks', 'plt.xticks', ([], {'rotation': '(90)'}), '(rotation=90)\n', (4152, 4165), True, 'import matplotlib.pyplot as plt\n'), ((4175, 4193), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (4191, 4193), True, 'import matplotlib.pyplot as plt\n'), ((4202, 4214), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (4212, 4214), True, 'import matplotlib.pyplot as plt\n'), ((4760, 4776), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(111)'], {}), '(111)\n', (4771, 4776), True, 'import matplotlib.pyplot as plt\n'), ((4785, 4823), 'matplotlib.pyplot.plot', 'plt.plot', (['self.df.close'], {'label': '"""price"""'}), "(self.df.close, label='price')\n", (4793, 4823), True, 'import matplotlib.pyplot as plt\n'), ((4832, 4870), 'matplotlib.pyplot.plot', 'plt.plot', (['self.df.ema12'], {'label': '"""ema12"""'}), "(self.df.ema12, label='ema12')\n", (4840, 4870), True, 'import matplotlib.pyplot as plt\n'), ((4879, 4917), 'matplotlib.pyplot.plot', 'plt.plot', (['self.df.ema26'], {'label': '"""ema26"""'}), "(self.df.ema26, label='ema26')\n", (4887, 4917), True, 'import matplotlib.pyplot as plt\n'), ((4926, 4938), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (4936, 4938), True, 'import matplotlib.pyplot as plt\n'), ((4947, 4966), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Price"""'], {}), "('Price')\n", (4957, 4966), True, 'import matplotlib.pyplot as plt\n'), ((4975, 4998), 'matplotlib.pyplot.xticks', 'plt.xticks', ([], {'rotation': '(90)'}), '(rotation=90)\n', (4985, 4998), True, 'import matplotlib.pyplot as plt\n'), ((5007, 5025), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (5023, 5025), True, 'import matplotlib.pyplot as plt\n'), ((5583, 5599), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(111)'], {}), '(111)\n', (5594, 5599), True, 'import matplotlib.pyplot as plt\n'), ((5608, 5631), 'matplotlib.pyplot.plot', 'plt.plot', (['self.df.close'], {}), '(self.df.close)\n', (5616, 5631), True, 'import matplotlib.pyplot as plt\n'), ((5640, 5659), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Price"""'], {}), "('Price')\n", (5650, 5659), True, 'import matplotlib.pyplot as plt\n'), ((5751, 5774), 'matplotlib.pyplot.xticks', 'plt.xticks', ([], {'rotation': '(90)'}), '(rotation=90)\n', (5761, 5774), True, 'import matplotlib.pyplot as plt\n'), ((5783, 5801), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (5799, 5801), True, 'import matplotlib.pyplot as plt\n'), ((6733, 6760), 'numpy.arange', 'np.arange', (['df_subset_length'], {}), '(df_subset_length)\n', (6742, 6760), True, 'import numpy as np\n'), ((7026, 7064), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'nrows': '(2)', 'figsize': '(12, 6)'}), '(nrows=2, figsize=(12, 6))\n', (7038, 7064), True, 'import matplotlib.pyplot as plt\n'), ((7184, 7208), 'matplotlib.pyplot.style.use', 'plt.style.use', (['"""seaborn"""'], {}), "('seaborn')\n", (7197, 7208), True, 'import matplotlib.pyplot as plt\n'), ((7217, 7240), 'matplotlib.pyplot.xticks', 'plt.xticks', ([], {'rotation': '(90)'}), '(rotation=90)\n', (7227, 7240), True, 'import matplotlib.pyplot as plt\n'), ((8684, 8728), 'matplotlib.pyplot.plot', 'plt.plot', (["self.df['close']"], {'label': '"""original"""'}), "(self.df['close'], label='original')\n", (8692, 8728), True, 'import matplotlib.pyplot as plt\n'), ((8737, 8788), 'matplotlib.pyplot.plot', 'plt.plot', (['fittedValues'], {'color': '"""red"""', 'label': '"""fitted"""'}), "(fittedValues, color='red', label='fitted')\n", (8745, 8788), True, 'import matplotlib.pyplot as plt\n'), ((8870, 8882), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (8880, 8882), True, 'import matplotlib.pyplot as plt\n'), ((8891, 8910), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Price"""'], {}), "('Price')\n", (8901, 8910), True, 'import matplotlib.pyplot as plt\n'), ((8919, 8942), 'matplotlib.pyplot.xticks', 'plt.xticks', ([], {'rotation': '(90)'}), '(rotation=90)\n', (8929, 8942), True, 'import matplotlib.pyplot as plt\n'), ((8951, 8969), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (8967, 8969), True, 'import matplotlib.pyplot as plt\n'), ((9685, 9715), 'pandas.DataFrame', 'pd.DataFrame', (["self.df['close']"], {}), "(self.df['close'])\n", (9697, 9715), True, 'import pandas as pd\n'), ((9923, 9957), 'matplotlib.pyplot.plot', 'plt.plot', (['pred'], {'label': '"""prediction"""'}), "(pred, label='prediction')\n", (9931, 9957), True, 'import matplotlib.pyplot as plt\n'), ((9966, 9985), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Price"""'], {}), "('Price')\n", (9976, 9985), True, 'import matplotlib.pyplot as plt\n'), ((9994, 10012), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Days"""'], {}), "('Days')\n", (10004, 10012), True, 'import matplotlib.pyplot as plt\n'), ((10021, 10044), 'matplotlib.pyplot.xticks', 'plt.xticks', ([], {'rotation': '(90)'}), '(rotation=90)\n', (10031, 10044), True, 'import matplotlib.pyplot as plt\n'), ((10053, 10071), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (10069, 10071), True, 'import matplotlib.pyplot as plt\n'), ((10626, 10642), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(211)'], {}), '(211)\n', (10637, 10642), True, 'import matplotlib.pyplot as plt\n'), ((10651, 10689), 'matplotlib.pyplot.plot', 'plt.plot', (['self.df.close'], {'label': '"""price"""'}), "(self.df.close, label='price')\n", (10659, 10689), True, 'import matplotlib.pyplot as plt\n'), ((10698, 10736), 'matplotlib.pyplot.plot', 'plt.plot', (['self.df.sma20'], {'label': '"""sma20"""'}), "(self.df.sma20, label='sma20')\n", (10706, 10736), True, 'import matplotlib.pyplot as plt\n'), ((10745, 10783), 'matplotlib.pyplot.plot', 'plt.plot', (['self.df.sma50'], {'label': '"""sma50"""'}), "(self.df.sma50, label='sma50')\n", (10753, 10783), True, 'import matplotlib.pyplot as plt\n'), ((10792, 10832), 'matplotlib.pyplot.plot', 'plt.plot', (['self.df.sma200'], {'label': '"""sma200"""'}), "(self.df.sma200, label='sma200')\n", (10800, 10832), True, 'import matplotlib.pyplot as plt\n'), ((10841, 10853), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (10851, 10853), True, 'import matplotlib.pyplot as plt\n'), ((10862, 10881), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Price"""'], {}), "('Price')\n", (10872, 10881), True, 'import matplotlib.pyplot as plt\n'), ((10890, 10913), 'matplotlib.pyplot.xticks', 'plt.xticks', ([], {'rotation': '(90)'}), '(rotation=90)\n', (10900, 10913), True, 'import matplotlib.pyplot as plt\n'), ((10922, 10950), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(212)'], {'sharex': 'ax1'}), '(212, sharex=ax1)\n', (10933, 10950), True, 'import matplotlib.pyplot as plt\n'), ((10959, 10995), 'matplotlib.pyplot.plot', 'plt.plot', (['self.df.macd'], {'label': '"""macd"""'}), "(self.df.macd, label='macd')\n", (10967, 10995), True, 'import matplotlib.pyplot as plt\n'), ((11004, 11044), 'matplotlib.pyplot.plot', 'plt.plot', (['self.df.signal'], {'label': '"""signal"""'}), "(self.df.signal, label='signal')\n", (11012, 11044), True, 'import matplotlib.pyplot as plt\n'), ((11053, 11065), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (11063, 11065), True, 'import matplotlib.pyplot as plt\n'), ((11074, 11093), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Price"""'], {}), "('Price')\n", (11084, 11093), True, 'import matplotlib.pyplot as plt\n'), ((11102, 11120), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Days"""'], {}), "('Days')\n", (11112, 11120), True, 'import matplotlib.pyplot as plt\n'), ((11129, 11152), 'matplotlib.pyplot.xticks', 'plt.xticks', ([], {'rotation': '(90)'}), '(rotation=90)\n', (11139, 11152), True, 'import matplotlib.pyplot as plt\n'), ((11161, 11179), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (11177, 11179), True, 'import matplotlib.pyplot as plt\n'), ((11748, 11786), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'ncols': '(1)', 'figsize': '(12, 6)'}), '(ncols=1, figsize=(12, 6))\n', (11760, 11786), True, 'import matplotlib.pyplot as plt\n'), ((11862, 11878), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(111)'], {}), '(111)\n', (11873, 11878), True, 'import matplotlib.pyplot as plt\n'), ((11986, 12010), 'matplotlib.pyplot.style.use', 'plt.style.use', (['"""seaborn"""'], {}), "('seaborn')\n", (11999, 12010), True, 'import matplotlib.pyplot as plt\n'), ((12019, 12081), 'matplotlib.pyplot.plot', 'plt.plot', (["df_subset['close']"], {'label': '"""price"""', 'color': '"""royalblue"""'}), "(df_subset['close'], label='price', color='royalblue')\n", (12027, 12081), True, 'import matplotlib.pyplot as plt\n'), ((12090, 12149), 'matplotlib.pyplot.plot', 'plt.plot', (["df_subset['ema12']"], {'label': '"""ema12"""', 'color': '"""orange"""'}), "(df_subset['ema12'], label='ema12', color='orange')\n", (12098, 12149), True, 'import matplotlib.pyplot as plt\n'), ((12158, 12217), 'matplotlib.pyplot.plot', 'plt.plot', (["df_subset['ema26']"], {'label': '"""ema26"""', 'color': '"""purple"""'}), "(df_subset['ema26'], label='ema26', color='purple')\n", (12166, 12217), True, 'import matplotlib.pyplot as plt\n'), ((12227, 12314), 'matplotlib.pyplot.tick_params', 'plt.tick_params', ([], {'axis': '"""x"""', 'which': '"""both"""', 'bottom': '(False)', 'top': '(False)', 'labelbottom': '(False)'}), "(axis='x', which='both', bottom=False, top=False,\n labelbottom=False)\n", (12242, 12314), True, 'import matplotlib.pyplot as plt\n'), ((15911, 15930), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Price"""'], {}), "('Price')\n", (15921, 15930), True, 'import matplotlib.pyplot as plt\n'), ((15939, 15962), 'matplotlib.pyplot.xticks', 'plt.xticks', ([], {'rotation': '(90)'}), '(rotation=90)\n', (15949, 15962), True, 'import matplotlib.pyplot as plt\n'), ((15971, 15989), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (15987, 15989), True, 'import matplotlib.pyplot as plt\n'), ((15998, 16010), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (16008, 16010), True, 'import matplotlib.pyplot as plt\n'), ((16092, 16102), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (16100, 16102), True, 'import matplotlib.pyplot as plt\n'), ((1955, 1988), 'matplotlib.pyplot.axvline', 'plt.axvline', ([], {'x': 'idx', 'color': '"""green"""'}), "(x=idx, color='green')\n", (1966, 1988), True, 'import matplotlib.pyplot as plt\n'), ((2049, 2080), 'matplotlib.pyplot.axvline', 'plt.axvline', ([], {'x': 'idx', 'color': '"""red"""'}), "(x=idx, color='red')\n", (2060, 2080), True, 'import matplotlib.pyplot as plt\n'), ((2372, 2382), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2380, 2382), True, 'import matplotlib.pyplot as plt\n'), ((4425, 4435), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4433, 4435), True, 'import matplotlib.pyplot as plt\n'), ((5236, 5246), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5244, 5246), True, 'import matplotlib.pyplot as plt\n'), ((5707, 5741), 'matplotlib.pyplot.axhline', 'plt.axhline', ([], {'y': 'level', 'color': '"""grey"""'}), "(y=level, color='grey')\n", (5718, 5741), True, 'import matplotlib.pyplot as plt\n'), ((6012, 6022), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6020, 6022), True, 'import matplotlib.pyplot as plt\n'), ((7588, 7621), 'matplotlib.ticker.FuncFormatter', 'ticker.FuncFormatter', (['format_date'], {}), '(format_date)\n', (7608, 7621), True, 'import matplotlib.ticker as ticker\n'), ((7907, 7940), 'matplotlib.ticker.FuncFormatter', 'ticker.FuncFormatter', (['format_date'], {}), '(format_date)\n', (7927, 7940), True, 'import matplotlib.ticker as ticker\n'), ((8268, 8278), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (8276, 8278), True, 'import matplotlib.pyplot as plt\n'), ((9180, 9190), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (9188, 9190), True, 'import matplotlib.pyplot as plt\n'), ((9791, 9820), 'datetime.timedelta', 'datetime.timedelta', ([], {'days': 'days'}), '(days=days)\n', (9809, 9820), False, 'import datetime, re, sys\n'), ((10282, 10292), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (10290, 10292), True, 'import matplotlib.pyplot as plt\n'), ((11390, 11400), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (11398, 11400), True, 'import matplotlib.pyplot as plt\n'), ((12827, 12889), 'matplotlib.pyplot.plot', 'plt.plot', (['idx', "df_candlestick_in_range.loc[idx]['close']", '"""gx"""'], {}), "(idx, df_candlestick_in_range.loc[idx]['close'], 'gx')\n", (12835, 12889), True, 'import matplotlib.pyplot as plt\n'), ((13131, 13193), 'matplotlib.pyplot.plot', 'plt.plot', (['idx', "df_candlestick_in_range.loc[idx]['close']", '"""rx"""'], {}), "(idx, df_candlestick_in_range.loc[idx]['close'], 'rx')\n", (13139, 13193), True, 'import matplotlib.pyplot as plt\n'), ((13435, 13497), 'matplotlib.pyplot.plot', 'plt.plot', (['idx', "df_candlestick_in_range.loc[idx]['close']", '"""g^"""'], {}), "(idx, df_candlestick_in_range.loc[idx]['close'], 'g^')\n", (13443, 13497), True, 'import matplotlib.pyplot as plt\n'), ((13729, 13791), 'matplotlib.pyplot.plot', 'plt.plot', (['idx', "df_candlestick_in_range.loc[idx]['close']", '"""rv"""'], {}), "(idx, df_candlestick_in_range.loc[idx]['close'], 'rv')\n", (13737, 13791), True, 'import matplotlib.pyplot as plt\n'), ((14027, 14089), 'matplotlib.pyplot.plot', 'plt.plot', (['idx', "df_candlestick_in_range.loc[idx]['close']", '"""go"""'], {}), "(idx, df_candlestick_in_range.loc[idx]['close'], 'go')\n", (14035, 14089), True, 'import matplotlib.pyplot as plt\n'), ((14328, 14390), 'matplotlib.pyplot.plot', 'plt.plot', (['idx', "df_candlestick_in_range.loc[idx]['close']", '"""r*"""'], {}), "(idx, df_candlestick_in_range.loc[idx]['close'], 'r*')\n", (14336, 14390), True, 'import matplotlib.pyplot as plt\n'), ((14621, 14683), 'matplotlib.pyplot.plot', 'plt.plot', (['idx', "df_candlestick_in_range.loc[idx]['close']", '"""yd"""'], {}), "(idx, df_candlestick_in_range.loc[idx]['close'], 'yd')\n", (14629, 14683), True, 'import matplotlib.pyplot as plt\n'), ((14927, 14989), 'matplotlib.pyplot.plot', 'plt.plot', (['idx', "df_candlestick_in_range.loc[idx]['close']", '"""y^"""'], {}), "(idx, df_candlestick_in_range.loc[idx]['close'], 'y^')\n", (14935, 14989), True, 'import matplotlib.pyplot as plt\n'), ((15233, 15295), 'matplotlib.pyplot.plot', 'plt.plot', (['idx', "df_candlestick_in_range.loc[idx]['close']", '"""yv"""'], {}), "(idx, df_candlestick_in_range.loc[idx]['close'], 'yv')\n", (15241, 15295), True, 'import matplotlib.pyplot as plt\n'), ((15534, 15596), 'matplotlib.pyplot.plot', 'plt.plot', (['idx', "df_candlestick_in_range.loc[idx]['close']", '"""mv"""'], {}), "(idx, df_candlestick_in_range.loc[idx]['close'], 'mv')\n", (15542, 15596), True, 'import matplotlib.pyplot as plt\n'), ((15837, 15899), 'matplotlib.pyplot.plot', 'plt.plot', (['idx', "df_candlestick_in_range.loc[idx]['close']", '"""m^"""'], {}), "(idx, df_candlestick_in_range.loc[idx]['close'], 'm^')\n", (15845, 15899), True, 'import matplotlib.pyplot as plt\n'), ((16052, 16074), 'matplotlib.pyplot.savefig', 'plt.savefig', (['outputpng'], {}), '(outputpng)\n', (16063, 16074), True, 'import matplotlib.pyplot as plt\n'), ((2223, 2244), 'matplotlib.pyplot.savefig', 'plt.savefig', (['saveFile'], {}), '(saveFile)\n', (2234, 2244), True, 'import matplotlib.pyplot as plt\n'), ((3669, 3702), 'matplotlib.pyplot.axvline', 'plt.axvline', ([], {'x': 'idx', 'color': '"""green"""'}), "(x=idx, color='green')\n", (3680, 3702), True, 'import matplotlib.pyplot as plt\n'), ((4276, 4297), 'matplotlib.pyplot.savefig', 'plt.savefig', (['saveFile'], {}), '(saveFile)\n', (4287, 4297), True, 'import matplotlib.pyplot as plt\n'), ((5087, 5108), 'matplotlib.pyplot.savefig', 'plt.savefig', (['saveFile'], {}), '(saveFile)\n', (5098, 5108), True, 'import matplotlib.pyplot as plt\n'), ((5863, 5884), 'matplotlib.pyplot.savefig', 'plt.savefig', (['saveFile'], {}), '(saveFile)\n', (5874, 5884), True, 'import matplotlib.pyplot as plt\n'), ((6624, 6655), 'pandas.to_datetime', 'pd.to_datetime', (['df_subset.index'], {}), '(df_subset.index)\n', (6638, 6655), True, 'import pandas as pd\n'), ((8119, 8140), 'matplotlib.pyplot.savefig', 'plt.savefig', (['saveFile'], {}), '(saveFile)\n', (8130, 8140), True, 'import matplotlib.pyplot as plt\n'), ((9031, 9052), 'matplotlib.pyplot.savefig', 'plt.savefig', (['saveFile'], {}), '(saveFile)\n', (9042, 9052), True, 'import matplotlib.pyplot as plt\n'), ((10133, 10154), 'matplotlib.pyplot.savefig', 'plt.savefig', (['saveFile'], {}), '(saveFile)\n', (10144, 10154), True, 'import matplotlib.pyplot as plt\n'), ((11241, 11262), 'matplotlib.pyplot.savefig', 'plt.savefig', (['saveFile'], {}), '(saveFile)\n', (11252, 11262), True, 'import matplotlib.pyplot as plt\n'), ((12731, 12754), 'numpy.min', 'np.min', (['df_subset.index'], {}), '(df_subset.index)\n', (12737, 12754), True, 'import numpy as np\n'), ((13035, 13058), 'numpy.min', 'np.min', (['df_subset.index'], {}), '(df_subset.index)\n', (13041, 13058), True, 'import numpy as np\n'), ((13339, 13362), 'numpy.min', 'np.min', (['df_subset.index'], {}), '(df_subset.index)\n', (13345, 13362), True, 'import numpy as np\n'), ((13633, 13656), 'numpy.min', 'np.min', (['df_subset.index'], {}), '(df_subset.index)\n', (13639, 13656), True, 'import numpy as np\n'), ((13931, 13954), 'numpy.min', 'np.min', (['df_subset.index'], {}), '(df_subset.index)\n', (13937, 13954), True, 'import numpy as np\n'), ((14232, 14255), 'numpy.min', 'np.min', (['df_subset.index'], {}), '(df_subset.index)\n', (14238, 14255), True, 'import numpy as np\n'), ((14525, 14548), 'numpy.min', 'np.min', (['df_subset.index'], {}), '(df_subset.index)\n', (14531, 14548), True, 'import numpy as np\n'), ((14831, 14854), 'numpy.min', 'np.min', (['df_subset.index'], {}), '(df_subset.index)\n', (14837, 14854), True, 'import numpy as np\n'), ((15137, 15160), 'numpy.min', 'np.min', (['df_subset.index'], {}), '(df_subset.index)\n', (15143, 15160), True, 'import numpy as np\n'), ((15438, 15461), 'numpy.min', 'np.min', (['df_subset.index'], {}), '(df_subset.index)\n', (15444, 15461), True, 'import numpy as np\n'), ((15741, 15764), 'numpy.min', 'np.min', (['df_subset.index'], {}), '(df_subset.index)\n', (15747, 15764), True, 'import numpy as np\n'), ((3849, 3880), 'matplotlib.pyplot.axvline', 'plt.axvline', ([], {'x': 'idx', 'color': '"""red"""'}), "(x=idx, color='red')\n", (3860, 3880), True, 'import matplotlib.pyplot as plt\n')]
import h5py import numpy as np import math import matplotlib.pyplot as plt # multiple h5 files? f = h5py.File('shockwave.h5', 'r') dset2 = f['2'] # fourier k_density_re = dset2['k_density_re'][...] k_density_im = dset2['k_density_im'][...] kx = dset2['kx'][...] tk = dset2['t'][...] k_density = k_density_re + 1j * k_density_im dset4 = f['4'] # constants R = dset4['radius'][...] Omega = dset4['omega'][...] delta = dset4['d_omega'][...] L = dset4['length'][...] N = dset4['no_atoms'][...] phi = dset4['phi'][...] g = dset4['non_lin'][...] A_psi = dset4['amplitude_psi'][...] w_psi = dset4['width_psi'][...] A = dset4['amplitude'][...] w = dset4['width'][...] T_imag = dset4['t_imag'][...] T_evo = dset4['t_evo'][...] def find_zero_gradient(f_mag, t, k_index): f_2k = np.abs(f_mag[..., k_index]) max_indices = [] f_grad = np.gradient(f_2k) for i in range(1, f_grad.shape[0] - 1): if (abs(f_grad[i - 1]) > abs(f_grad[i]) < abs(f_grad[i + 1])) and (f_grad[i - 1] > 0 > f_grad[i + 1]): max_indices.append(i) return max_indices # samples imag_samples = 0 evo_samples = 1000 t_imag_start = 0 t_imag_end = t_imag_start + imag_samples t_evo_start = 0 t_evo_end = t_evo_start + evo_samples - 1 k_dom = 4 k_half = int(kx.shape[0]/2) k_index = k_half + k_dom max_indices = find_zero_gradient(k_density, tk, k_index) t_max = [] f_max = [] f_plats = [] for index in max_indices: t_max.append(tk[index]) f_max.append(np.abs(k_density[index, k_index])) f_plats.append(np.angle(k_density[index, k_index])) start_index = 0 t_plat = [] plat_vals = [] for i in range(start_index, len(t_max)): t_plat.append(t_max[i]) if f_plats[i] < 0: plat_vals.append(f_plats[i] + math.pi) else: plat_vals.append(f_plats[i]) # plot fourier mag peaks matching plateaus fig, (ax1, ax2) = plt.subplots(2, sharex=True) fig.suptitle('Fourier transform (2k={}, '.format(str(round(kx[k_index], 4))) + r'$\Omega$' + '={})'.format(Omega)) ax1.plot(tk - T_imag, np.abs(k_density[..., k_index])) ax1.plot(t_max - T_imag, f_max, 'r.') ax1.set_ylabel(r'$|F_{2k}|$') ax2.plot(tk - T_imag, np.angle(k_density[..., k_index]), label='phase') ax2.plot(tk - T_imag, np.angle(k_density[..., k_index]) + math.pi, label='phase + ' + r'$\pi$') ax2.plot(t_plat - T_imag, plat_vals, 'r.') ax2.set_ylabel(r'$arg(F_{2k})$') ax2.set_ylim([-math.pi, math.pi]) ax2.legend(loc='lower right') ax2.set_yticks([-math.pi, -math.pi/2, 0, math.pi/2, math.pi]) ax2.set_yticklabels([r'$-\pi$', r'$-\frac{\pi}{2}$', '0', r'$\frac{\pi}{2}$', r'$\pi$']) plt.xlabel('t') fig.savefig('fourier_combined.png') def phase_adjust(k): phase = np.angle(k_density[..., k_half + k]) grad = np.gradient(phase) t_phase = [] if not k % 2 == 0: # shift odd wavenumbers phase = phase - math.pi/2 adjusted = [] for i in range(len(phase)): if abs(grad[i]) < 0.005: # gradient threshold if phase[i] < 0: phase[i] += math.pi if 0.1 < phase[i] < 2: adjusted.append(phase[i]) t_phase.append(tk[i] - T_imag) return t_phase, adjusted # plot plateaus for different k fig, ax = plt.subplots() ax.plot(phase_adjust(2)[0], phase_adjust(2)[1], label='2k=2') ax.plot(phase_adjust(3)[0], phase_adjust(3)[1], label='2k=3') ax.plot(phase_adjust(4)[0], phase_adjust(4)[1], label='2k=4') ax.plot(phase_adjust(5)[0], phase_adjust(5)[1], label='2k=5') ax.plot(phase_adjust(6)[0], phase_adjust(6)[1], label='2k=6') ax.set_xlabel('t') ax.set_ylabel(r'$arg(F_{2k})$') ax.set_ylim([0, math.pi]) ax.set_title('Fourier density phase (' + r'$\Omega$' + '={})'.format(Omega)) ax.legend() plt.yticks([0, math.pi/4, math.pi/2, 3*math.pi/4, math.pi], ['0', r'$\frac{\pi}{4}$', r'$\frac{\pi}{2}$', r'$\frac{3\pi}{4}$', r'$\pi$']) fig.savefig('fourier_phase.png') fig, ax = plt.subplots() ax.plot(tk - T_imag, np.abs(k_density[..., k_index])) ax.plot(t_max - T_imag, f_max, 'r.') ax.set_ylim([0, 1]) fig.savefig('fourier_peaks.png')
[ "h5py.File", "numpy.abs", "numpy.angle", "matplotlib.pyplot.yticks", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.subplots", "numpy.gradient" ]
[((101, 131), 'h5py.File', 'h5py.File', (['"""shockwave.h5"""', '"""r"""'], {}), "('shockwave.h5', 'r')\n", (110, 131), False, 'import h5py\n'), ((1842, 1870), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(2)'], {'sharex': '(True)'}), '(2, sharex=True)\n', (1854, 1870), True, 'import matplotlib.pyplot as plt\n'), ((2568, 2583), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""t"""'], {}), "('t')\n", (2578, 2583), True, 'import matplotlib.pyplot as plt\n'), ((3184, 3198), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (3196, 3198), True, 'import matplotlib.pyplot as plt\n'), ((3675, 3827), 'matplotlib.pyplot.yticks', 'plt.yticks', (['[0, math.pi / 4, math.pi / 2, 3 * math.pi / 4, math.pi]', "['0', '$\\\\frac{\\\\pi}{4}$', '$\\\\frac{\\\\pi}{2}$', '$\\\\frac{3\\\\pi}{4}$', '$\\\\pi$']"], {}), "([0, math.pi / 4, math.pi / 2, 3 * math.pi / 4, math.pi], ['0',\n '$\\\\frac{\\\\pi}{4}$', '$\\\\frac{\\\\pi}{2}$', '$\\\\frac{3\\\\pi}{4}$', '$\\\\pi$'])\n", (3685, 3827), True, 'import matplotlib.pyplot as plt\n'), ((3857, 3871), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (3869, 3871), True, 'import matplotlib.pyplot as plt\n'), ((776, 803), 'numpy.abs', 'np.abs', (['f_mag[..., k_index]'], {}), '(f_mag[..., k_index])\n', (782, 803), True, 'import numpy as np\n'), ((838, 855), 'numpy.gradient', 'np.gradient', (['f_2k'], {}), '(f_2k)\n', (849, 855), True, 'import numpy as np\n'), ((2008, 2039), 'numpy.abs', 'np.abs', (['k_density[..., k_index]'], {}), '(k_density[..., k_index])\n', (2014, 2039), True, 'import numpy as np\n'), ((2131, 2164), 'numpy.angle', 'np.angle', (['k_density[..., k_index]'], {}), '(k_density[..., k_index])\n', (2139, 2164), True, 'import numpy as np\n'), ((2654, 2690), 'numpy.angle', 'np.angle', (['k_density[..., k_half + k]'], {}), '(k_density[..., k_half + k])\n', (2662, 2690), True, 'import numpy as np\n'), ((2702, 2720), 'numpy.gradient', 'np.gradient', (['phase'], {}), '(phase)\n', (2713, 2720), True, 'import numpy as np\n'), ((3893, 3924), 'numpy.abs', 'np.abs', (['k_density[..., k_index]'], {}), '(k_density[..., k_index])\n', (3899, 3924), True, 'import numpy as np\n'), ((1459, 1492), 'numpy.abs', 'np.abs', (['k_density[index, k_index]'], {}), '(k_density[index, k_index])\n', (1465, 1492), True, 'import numpy as np\n'), ((1513, 1548), 'numpy.angle', 'np.angle', (['k_density[index, k_index]'], {}), '(k_density[index, k_index])\n', (1521, 1548), True, 'import numpy as np\n'), ((2203, 2236), 'numpy.angle', 'np.angle', (['k_density[..., k_index]'], {}), '(k_density[..., k_index])\n', (2211, 2236), True, 'import numpy as np\n')]
import os import time import numpy as np import pandas as pd import normalizedDistance from pprint import pprint from recourse.builder import RecourseBuilder from recourse.builder import ActionSet def genExp(model_trained, factual_sample, norm_type, dataset_obj): start_time = time.time() # SIMPLE HACK!! # ActionSet() construction demands that all variables have a range to them. In # the case of one-hot ordinal variables (e.g., x2_ord_0, x2_ord_1, x2_ord_2)), # the first sub-category (i.e., x2_ord_0) will always have range(1,1), failing # the requirements of ActionSet(). Therefore, we add a DUMMY ROW to the data- # frame, which is a copy of another row (so not to throw off the range of other # attributes), but setting a 0 value to all _ord_ variables. (might as well do # this for all _cat_ variables as well). tmp_df = dataset_obj.data_frame_kurz sample_row = tmp_df.loc[0].to_dict() for attr_name_kurz in dataset_obj.getOneHotAttributesNames('kurz'): sample_row[attr_name_kurz] = 0 tmp_df = tmp_df.append(pd.Series(sample_row), ignore_index=True) df = tmp_df X = df.loc[:, df.columns != 'y'] # Enforce binary, categorical (including ordinal) variables only take on 2 values custom_bounds = {attr_name_kurz: (0, 100, 'p') for attr_name_kurz in np.union1d( dataset_obj.getOneHotAttributesNames('kurz'), dataset_obj.getBinaryAttributeNames('kurz') )} action_set = ActionSet(X = X, custom_bounds = custom_bounds) # action_set['x1'].mutable = False # x1 = 'Race' # In the current implementation, we only supports any/none actionability for attr_name_kurz in dataset_obj.getInputAttributeNames('kurz'): attr_obj = dataset_obj.attributes_kurz[attr_name_kurz] if attr_obj.actionability == 'none': action_set[attr_name_kurz].mutable = False elif attr_obj.actionability == 'any': continue # do nothing else: raise ValueError(f'Actionable Recourse does not support actionability type {attr_obj.actionability}') # Enforce search over integer-based grid for integer-based variables for attr_name_kurz in np.union1d( dataset_obj.getIntegerBasedAttributeNames('kurz'), dataset_obj.getBinaryAttributeNames('kurz'), ): action_set[attr_name_kurz].step_type = "absolute" action_set[attr_name_kurz].step_size = 1 coefficients = model_trained.coef_[0] intercept = model_trained.intercept_[0] if norm_type == 'one_norm': mip_cost_type = 'total' elif norm_type == 'infty_norm': mip_cost_type = 'max' else: raise ValueError(f'Actionable Recourse does not support norm_type {norm_type}') factual_sample_values = list(factual_sample.values()) # p = .8 rb = RecourseBuilder( optimizer="cplex", coefficients=coefficients, intercept=intercept, # - (np.log(p / (1. - p))), action_set=action_set, x=factual_sample_values, mip_cost_type=mip_cost_type ) output = rb.fit() counterfactual_sample_values = np.add(factual_sample_values, output['actions']) counterfactual_sample = dict(zip(factual_sample.keys(), counterfactual_sample_values)) # factual_sample['y'] = False # counterfactual_sample['y'] = True counterfactual_sample['y'] = not factual_sample['y'] counterfactual_plausible = True # IMPORTANT: no need to check for integer-based / binary-based plausibility, # because those were set above when we said step_type = absolute! Just round! for attr_name_kurz in np.union1d( dataset_obj.getOneHotAttributesNames('kurz'), dataset_obj.getBinaryAttributeNames('kurz') ): try: assert np.isclose( counterfactual_sample[attr_name_kurz], np.round(counterfactual_sample[attr_name_kurz]) ) counterfactual_sample[attr_name_kurz] = np.round(counterfactual_sample[attr_name_kurz]) except: distance = -1 counterfactual_plausible = False # return counterfactual_sample, distance # Perform plausibility-data-type check! Remember, all ordinal variables # have already been converted to categorical variables. It is important now # to check that 1 (and only 1) sub-category is activated in the resulting # counterfactual sample. already_considered = [] for attr_name_kurz in dataset_obj.getOneHotAttributesNames('kurz'): if attr_name_kurz not in already_considered: siblings_kurz = dataset_obj.getSiblingsFor(attr_name_kurz) activations_for_category = [ counterfactual_sample[attr_name_kurz] for attr_name_kurz in siblings_kurz ] sum_activations_for_category = np.sum(activations_for_category) if 'cat' in dataset_obj.attributes_kurz[attr_name_kurz].attr_type: if sum_activations_for_category == 1: continue else: # print('not plausible, fixing..', end='') # TODO: don't actually return early! Instead see the actual distance, # fingers crossed that we can say that not only is their method giving # counterfactuals are larger distances, but in a lot of cases they are # not data-type plausible # INSTEAD, do below: # Convert to correct categorical/ordinal activations so we can # compute the distance using already written function. # Turns out we need to do nothing, because the distance between # [0,1,0] and anything other than itself, (e.g., [1,1,0] or [1,0,1]) # is always 1 :) # continue distance = -1 counterfactual_plausible = False # return counterfactual_sample, distance elif 'ord' in dataset_obj.attributes_kurz[attr_name_kurz].attr_type: # TODO: assert activations are in order... # if not, repeat as above... for idx in range(int(sum_activations_for_category)): if activations_for_category[idx] != 1: # Convert to correct categorical/ordinal activations so we can # compute the distance using already written function. # Find the max index of 1 in the array, and set everything before that to 1 # print('not plausible, fixing..', end='') # max_index_of_1 = np.where(np.array(activations_for_category) == 1)[0][-1] # for idx2 in range(max_index_of_1 + 1): # counterfactual_sample[siblings_kurz[idx2]] = 1 # break distance = -1 counterfactual_plausible = False # return counterfactual_sample, distance else: raise Exception(f'{attr_name_kurz} must include either `cat` or `ord`.') already_considered.extend(siblings_kurz) # TODO: convert to correct categorical/ordinal activations so we can compute # distance = output['cost'] # TODO: this must change / be verified!??? distance = normalizedDistance.getDistanceBetweenSamples( factual_sample, counterfactual_sample, norm_type, dataset_obj ) # # TODO: post-feasibible needed???? NO # # make plausible by rounding all non-numeric-real attributes to # # nearest value in range # for idx, elem in enumerate(es_instance): # attr_name_kurz = dataset_obj.getInputAttributeNames('kurz')[idx] # attr_obj = dataset_obj.attributes_kurz[attr_name_kurz] # if attr_obj.attr_type != 'numeric-real': # # round() might give a value that is NOT in plausible. # # instead find the nearest plausible value # es_instance[idx] = min( # list(range(int(attr_obj.lower_bound), int(attr_obj.upper_bound) + 1)), # key = lambda x : abs(x - es_instance[idx]) # ) end_time = time.time() return { 'factual_sample': factual_sample, 'cfe_sample': counterfactual_sample, 'cfe_found': True, # TODO? 'cfe_plausible': counterfactual_plausible, 'cfe_distance': distance, 'cfe_time': end_time - start_time, }
[ "numpy.sum", "time.time", "normalizedDistance.getDistanceBetweenSamples", "recourse.builder.ActionSet", "pandas.Series", "numpy.add", "recourse.builder.RecourseBuilder", "numpy.round" ]
[((282, 293), 'time.time', 'time.time', ([], {}), '()\n', (291, 293), False, 'import time\n'), ((1428, 1471), 'recourse.builder.ActionSet', 'ActionSet', ([], {'X': 'X', 'custom_bounds': 'custom_bounds'}), '(X=X, custom_bounds=custom_bounds)\n', (1437, 1471), False, 'from recourse.builder import ActionSet\n'), ((2692, 2860), 'recourse.builder.RecourseBuilder', 'RecourseBuilder', ([], {'optimizer': '"""cplex"""', 'coefficients': 'coefficients', 'intercept': 'intercept', 'action_set': 'action_set', 'x': 'factual_sample_values', 'mip_cost_type': 'mip_cost_type'}), "(optimizer='cplex', coefficients=coefficients, intercept=\n intercept, action_set=action_set, x=factual_sample_values,\n mip_cost_type=mip_cost_type)\n", (2707, 2860), False, 'from recourse.builder import RecourseBuilder\n'), ((2986, 3034), 'numpy.add', 'np.add', (['factual_sample_values', "output['actions']"], {}), "(factual_sample_values, output['actions'])\n", (2992, 3034), True, 'import numpy as np\n'), ((6797, 6908), 'normalizedDistance.getDistanceBetweenSamples', 'normalizedDistance.getDistanceBetweenSamples', (['factual_sample', 'counterfactual_sample', 'norm_type', 'dataset_obj'], {}), '(factual_sample,\n counterfactual_sample, norm_type, dataset_obj)\n', (6841, 6908), False, 'import normalizedDistance\n'), ((7628, 7639), 'time.time', 'time.time', ([], {}), '()\n', (7637, 7639), False, 'import time\n'), ((1050, 1071), 'pandas.Series', 'pd.Series', (['sample_row'], {}), '(sample_row)\n', (1059, 1071), True, 'import pandas as pd\n'), ((3774, 3821), 'numpy.round', 'np.round', (['counterfactual_sample[attr_name_kurz]'], {}), '(counterfactual_sample[attr_name_kurz])\n', (3782, 3821), True, 'import numpy as np\n'), ((4568, 4600), 'numpy.sum', 'np.sum', (['activations_for_category'], {}), '(activations_for_category)\n', (4574, 4600), True, 'import numpy as np\n'), ((3672, 3719), 'numpy.round', 'np.round', (['counterfactual_sample[attr_name_kurz]'], {}), '(counterfactual_sample[attr_name_kurz])\n', (3680, 3719), True, 'import numpy as np\n')]
#!/usr/bin/env python # coding=utf8 import os import matplotlib as mpl import numpy as np import path import pytest from triflow import Model, Simulation, display_fields, display_probe # noqa if os.environ.get('DISPLAY', '') == '': print('no display found. Using non-interactive Agg backend') mpl.use('Agg') @pytest.fixture def heat_model(): model = Model(differential_equations="k * dxxT", dependent_variables="T", parameters="k", compiler="numpy") return model @pytest.fixture def simul(heat_model): x, dx = np.linspace(0, 10, 50, retstep=True, endpoint=False) T = np.cos(x * 2 * np.pi / 10) initial_fields = heat_model.fields_template(x=x, T=T) parameters = dict(periodic=True, k=1) simul = Simulation(heat_model, initial_fields, parameters, dt=.5, tmax=2, tol=1E-1) return simul def test_display_fields(simul): display_fields(simul) simul.run() def test_display_probes(simul): display_probe(simul, function=lambda simul: simul.timer.total) simul.run() def test_display_mul(simul): display_fields(simul) * display_fields(simul) display_fields(simul) * display_fields(simul).hv_curve def test_display_add(simul): display_fields(simul) + display_fields(simul) display_fields(simul) + display_fields(simul).hv_curve @pytest.mark.parametrize("fmt", ["png", "svg", "pdf"]) def test_display_fields_on_disk(simul, fmt): with path.tempdir() as d: display = display_fields(simul, on_disk=d, fmt=fmt) simul.run() [process.join() for process in display._writers] assert len(d.glob("*.%s" % fmt)) == 5 @pytest.mark.parametrize("fmt", ["png", "svg", "pdf"]) def test_display_probles_on_disk(simul, fmt): with path.tempdir() as d: display = display_probe(simul, function=lambda simul: simul.timer.total, on_disk=d, fmt=fmt) simul.run() [process.join() for process in display._writers] assert len(d.glob("*.%s" % fmt)) == 5 def test_display_api(simul): display = display_fields(simul) display.hv_curve
[ "triflow.Model", "triflow.display_probe", "path.tempdir", "os.environ.get", "triflow.display_fields", "matplotlib.use", "triflow.Simulation", "numpy.linspace", "numpy.cos", "pytest.mark.parametrize" ]
[((1367, 1420), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""fmt"""', "['png', 'svg', 'pdf']"], {}), "('fmt', ['png', 'svg', 'pdf'])\n", (1390, 1420), False, 'import pytest\n'), ((1707, 1760), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""fmt"""', "['png', 'svg', 'pdf']"], {}), "('fmt', ['png', 'svg', 'pdf'])\n", (1730, 1760), False, 'import pytest\n'), ((200, 229), 'os.environ.get', 'os.environ.get', (['"""DISPLAY"""', '""""""'], {}), "('DISPLAY', '')\n", (214, 229), False, 'import os\n'), ((306, 320), 'matplotlib.use', 'mpl.use', (['"""Agg"""'], {}), "('Agg')\n", (313, 320), True, 'import matplotlib as mpl\n'), ((369, 472), 'triflow.Model', 'Model', ([], {'differential_equations': '"""k * dxxT"""', 'dependent_variables': '"""T"""', 'parameters': '"""k"""', 'compiler': '"""numpy"""'}), "(differential_equations='k * dxxT', dependent_variables='T',\n parameters='k', compiler='numpy')\n", (374, 472), False, 'from triflow import Model, Simulation, display_fields, display_probe\n'), ((575, 627), 'numpy.linspace', 'np.linspace', (['(0)', '(10)', '(50)'], {'retstep': '(True)', 'endpoint': '(False)'}), '(0, 10, 50, retstep=True, endpoint=False)\n', (586, 627), True, 'import numpy as np\n'), ((636, 662), 'numpy.cos', 'np.cos', (['(x * 2 * np.pi / 10)'], {}), '(x * 2 * np.pi / 10)\n', (642, 662), True, 'import numpy as np\n'), ((775, 850), 'triflow.Simulation', 'Simulation', (['heat_model', 'initial_fields', 'parameters'], {'dt': '(0.5)', 'tmax': '(2)', 'tol': '(0.1)'}), '(heat_model, initial_fields, parameters, dt=0.5, tmax=2, tol=0.1)\n', (785, 850), False, 'from triflow import Model, Simulation, display_fields, display_probe\n'), ((929, 950), 'triflow.display_fields', 'display_fields', (['simul'], {}), '(simul)\n', (943, 950), False, 'from triflow import Model, Simulation, display_fields, display_probe\n'), ((1005, 1067), 'triflow.display_probe', 'display_probe', (['simul'], {'function': '(lambda simul: simul.timer.total)'}), '(simul, function=lambda simul: simul.timer.total)\n', (1018, 1067), False, 'from triflow import Model, Simulation, display_fields, display_probe\n'), ((2195, 2216), 'triflow.display_fields', 'display_fields', (['simul'], {}), '(simul)\n', (2209, 2216), False, 'from triflow import Model, Simulation, display_fields, display_probe\n'), ((1119, 1140), 'triflow.display_fields', 'display_fields', (['simul'], {}), '(simul)\n', (1133, 1140), False, 'from triflow import Model, Simulation, display_fields, display_probe\n'), ((1143, 1164), 'triflow.display_fields', 'display_fields', (['simul'], {}), '(simul)\n', (1157, 1164), False, 'from triflow import Model, Simulation, display_fields, display_probe\n'), ((1169, 1190), 'triflow.display_fields', 'display_fields', (['simul'], {}), '(simul)\n', (1183, 1190), False, 'from triflow import Model, Simulation, display_fields, display_probe\n'), ((1259, 1280), 'triflow.display_fields', 'display_fields', (['simul'], {}), '(simul)\n', (1273, 1280), False, 'from triflow import Model, Simulation, display_fields, display_probe\n'), ((1283, 1304), 'triflow.display_fields', 'display_fields', (['simul'], {}), '(simul)\n', (1297, 1304), False, 'from triflow import Model, Simulation, display_fields, display_probe\n'), ((1309, 1330), 'triflow.display_fields', 'display_fields', (['simul'], {}), '(simul)\n', (1323, 1330), False, 'from triflow import Model, Simulation, display_fields, display_probe\n'), ((1500, 1514), 'path.tempdir', 'path.tempdir', ([], {}), '()\n', (1512, 1514), False, 'import path\n'), ((1539, 1580), 'triflow.display_fields', 'display_fields', (['simul'], {'on_disk': 'd', 'fmt': 'fmt'}), '(simul, on_disk=d, fmt=fmt)\n', (1553, 1580), False, 'from triflow import Model, Simulation, display_fields, display_probe\n'), ((1841, 1855), 'path.tempdir', 'path.tempdir', ([], {}), '()\n', (1853, 1855), False, 'import path\n'), ((1880, 1966), 'triflow.display_probe', 'display_probe', (['simul'], {'function': '(lambda simul: simul.timer.total)', 'on_disk': 'd', 'fmt': 'fmt'}), '(simul, function=lambda simul: simul.timer.total, on_disk=d,\n fmt=fmt)\n', (1893, 1966), False, 'from triflow import Model, Simulation, display_fields, display_probe\n'), ((1193, 1214), 'triflow.display_fields', 'display_fields', (['simul'], {}), '(simul)\n', (1207, 1214), False, 'from triflow import Model, Simulation, display_fields, display_probe\n'), ((1333, 1354), 'triflow.display_fields', 'display_fields', (['simul'], {}), '(simul)\n', (1347, 1354), False, 'from triflow import Model, Simulation, display_fields, display_probe\n')]
# # -*- coding: utf-8 -*- # # Copyright (c) 2021 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # import time import sys import numpy as np import unicodedata import six import re import tensorflow as tf from absl import app from argparse import ArgumentParser import pandas as pd from utils import tokenizer from utils.tokenizer import Subtokenizer from utils import metrics flags = tf.compat.v1.flags FLAGS = flags.FLAGS flags.DEFINE_integer("batch_size", 64, "run batch size") flags.DEFINE_string("input_graph", None, "The path of input model file.") flags.DEFINE_string("inputs_file", None, "File saved to an output file.") flags.DEFINE_string("reference_file", None, "File containing reference translation.") flags.DEFINE_string("vocab_file", None, "Path to subtoken vocabulary file.") flags.DEFINE_string("config", None, "Config json file") flags.DEFINE_string("output_model", None, "The output model of the quantized model.") flags.DEFINE_string("mode", "tune", "One of three options: 'benchmark'/'accuracy'/'tune'.") flags.DEFINE_integer("iters", -1, "The iteration used for benchmark.") class UnicodeRegex(object): def __init__(self): punctuation = self.property_chars("P") self.nondigit_punct_re = re.compile(r"([^\d])([" + punctuation + r"])") self.punct_nondigit_re = re.compile(r"([" + punctuation + r"])([^\d])") self.symbol_re = re.compile("([" + self.property_chars("S") + "])") def property_chars(self, prefix): return "".join(six.unichr(x) for x in range(sys.maxunicode) if unicodedata.category(six.unichr(x)).startswith(prefix)) uregex = UnicodeRegex() def bleu_tokenize(string): string = uregex.nondigit_punct_re.sub(r"\1 \2 ", string) string = uregex.punct_nondigit_re.sub(r" \1 \2", string) string = uregex.symbol_re.sub(r" \1 ", string) return string.split() class bleu(object): def __init__(self): self.translations = [] self.labels = [] def reset(self): self.translations = [] self.labels = [] def update(self, pred, label): if len(label) != len(pred): raise ValueError("Reference and translation files have different number " "of lines. If training only a few steps (100-200), the " "translation may be empty.") label = [x.lower() for x in label] pred = [x.lower() for x in pred] label = [bleu_tokenize(x) for x in label] pred = [bleu_tokenize(x) for x in pred] self.labels.extend(label) self.translations.extend(pred) def result(self): return metrics.compute_bleu(self.labels, self.translations) * 100 def collate_fn(batch): """Puts each data field into a pd frame with outer dimension batch size""" elem = batch[0] if isinstance(elem, tuple): batch = zip(*batch) return [collate_fn(samples) for samples in batch] elif isinstance(elem, np.ndarray): return [list(elem) for elem in batch] elif isinstance(elem, str): return batch else: return pd.DataFrame(batch).fillna(0).values.astype(np.int32) def load_graph(file_name): tf.compat.v1.logging.info('Loading graph from: ' + file_name) with tf.io.gfile.GFile(file_name, "rb") as f: graph_def = tf.compat.v1.GraphDef() graph_def.ParseFromString(f.read()) with tf.Graph().as_default() as graph: tf.import_graph_def(graph_def, name='') return graph def eval_func(infer_graph, iteration=-1): if isinstance(infer_graph, tf.compat.v1.GraphDef): graph = tf.Graph() with graph.as_default(): tf.import_graph_def(infer_graph, name='') infer_graph = graph subtokenizer = Subtokenizer(FLAGS.vocab_file) input_tensor = infer_graph.get_tensor_by_name('input_tensor:0') output_tensor = infer_graph.get_tensor_by_name(\ 'model/Transformer/strided_slice_19:0') ds = Dataset(FLAGS.inputs_file, FLAGS.reference_file, FLAGS.vocab_file) from neural_compressor.data import DATALOADERS dataloader = DATALOADERS['tensorflow'](ds, batch_size=FLAGS.batch_size, collate_fn=collate_fn) config = tf.compat.v1.ConfigProto() config.use_per_session_threads = 1 config.inter_op_parallelism_threads = 1 sess = tf.compat.v1.Session(graph=infer_graph, config=config) time_list = [] bleu_eval = bleu() predictions = [] labels = [] warmup = 10 if iteration != -1: assert iteration >= warmup, 'iteration must be larger than warmup' for idx, (input_data, label) in enumerate(dataloader): if idx < iteration or iteration == -1: time_start = time.time() out = sess.run([output_tensor], {input_tensor: input_data}) duration = time.time() - time_start time_list.append(duration) predictions.append(out) labels.extend(label) else: break latency = np.array(time_list[warmup: ]).mean() / FLAGS.batch_size print('Batch size = {}'.format(FLAGS.batch_size)) print('Latency: {:.3f} ms'.format(latency * 1000)) print('Throughput: {:.3f} items/sec'.format(1./ latency)) # only calculate accuracy when running out all predictions if iteration == -1: decode = [] for i,tr in enumerate(predictions): for j,itr in enumerate(tr): for k, otr in enumerate(itr): try: index = list(otr).index(tokenizer.EOS_ID) decode.append(subtokenizer.decode(otr[:index])) except: decode.append(subtokenizer.decode(otr)) bleu_eval.update(decode, labels) print('Accuracy is {:.3f}'.format(bleu_eval.result())) return bleu_eval.result() class Dataset(object): def __init__(self, inputs_file, reference_file, vocab_file): with tf.io.gfile.GFile(inputs_file) as f: records = f.read().split("\n") inputs = [record.strip() for record in records] if not inputs[-1]: inputs.pop() self.ref_lines = tokenizer.native_to_unicode( tf.io.gfile.GFile(reference_file).read()).strip().splitlines() subtokenizer = Subtokenizer(vocab_file) self.batch = [] token_lens=[] for i, line in enumerate(inputs): enc = subtokenizer.encode(line, add_eos=True) token_lens.append((i, len(enc))) sorted_by_token_input_lens = sorted(token_lens, key=lambda x: x[1], reverse=True) sorted_inputs = [None] * len(sorted_by_token_input_lens) sorted_keys = [0] * len(sorted_by_token_input_lens) lines = [] for i, (index, _) in enumerate(sorted_by_token_input_lens): sorted_inputs[i] = inputs[index] sorted_keys[index] = i enc=subtokenizer.encode(sorted_inputs[i], add_eos=True) lines.append([enc]) for i in sorted_keys: self.batch.append(lines[i]) def __getitem__(self, index): data = self.batch[index] label = self.ref_lines[index] return data[0], label def __len__(self): return len(self.batch) def main(_): graph = load_graph(FLAGS.input_graph) if FLAGS.mode == 'tune': from neural_compressor.experimental import Quantization, common quantizer = Quantization(FLAGS.config) ds = Dataset(FLAGS.inputs_file, FLAGS.reference_file, FLAGS.vocab_file) quantizer.calib_dataloader = common.DataLoader(ds, collate_fn=collate_fn, \ batch_size=FLAGS.batch_size) quantizer.model = common.Model(graph) quantizer.eval_func = eval_func q_model = quantizer.fit() try: q_model.save(FLAGS.output_model) except Exception as e: print("Failed to save model due to {}".format(str(e))) elif FLAGS.mode == 'benchmark': eval_func(graph, FLAGS.iters) elif FLAGS.mode == 'accuracy': eval_func(graph, -1) if __name__ == "__main__": tf.compat.v1.app.run()
[ "pandas.DataFrame", "neural_compressor.experimental.Quantization", "tensorflow.io.gfile.GFile", "utils.tokenizer.Subtokenizer", "six.unichr", "tensorflow.compat.v1.logging.info", "time.time", "tensorflow.compat.v1.Session", "neural_compressor.experimental.common.Model", "numpy.array", "tensorflow.compat.v1.ConfigProto", "tensorflow.Graph", "utils.metrics.compute_bleu", "tensorflow.import_graph_def", "tensorflow.compat.v1.GraphDef", "neural_compressor.experimental.common.DataLoader", "tensorflow.compat.v1.app.run", "re.compile" ]
[((3905, 3966), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (["('Loading graph from: ' + file_name)"], {}), "('Loading graph from: ' + file_name)\n", (3930, 3966), True, 'import tensorflow as tf\n'), ((4475, 4505), 'utils.tokenizer.Subtokenizer', 'Subtokenizer', (['FLAGS.vocab_file'], {}), '(FLAGS.vocab_file)\n', (4487, 4505), False, 'from utils.tokenizer import Subtokenizer\n'), ((4958, 4984), 'tensorflow.compat.v1.ConfigProto', 'tf.compat.v1.ConfigProto', ([], {}), '()\n', (4982, 4984), True, 'import tensorflow as tf\n'), ((5079, 5133), 'tensorflow.compat.v1.Session', 'tf.compat.v1.Session', ([], {'graph': 'infer_graph', 'config': 'config'}), '(graph=infer_graph, config=config)\n', (5099, 5133), True, 'import tensorflow as tf\n'), ((8950, 8972), 'tensorflow.compat.v1.app.run', 'tf.compat.v1.app.run', ([], {}), '()\n', (8970, 8972), True, 'import tensorflow as tf\n'), ((1941, 1986), 're.compile', 're.compile', (["('([^\\\\d])([' + punctuation + '])')"], {}), "('([^\\\\d])([' + punctuation + '])')\n", (1951, 1986), False, 'import re\n'), ((2021, 2066), 're.compile', 're.compile', (["('([' + punctuation + '])([^\\\\d])')"], {}), "('([' + punctuation + '])([^\\\\d])')\n", (2031, 2066), False, 'import re\n'), ((3976, 4010), 'tensorflow.io.gfile.GFile', 'tf.io.gfile.GFile', (['file_name', '"""rb"""'], {}), "(file_name, 'rb')\n", (3993, 4010), True, 'import tensorflow as tf\n'), ((4037, 4060), 'tensorflow.compat.v1.GraphDef', 'tf.compat.v1.GraphDef', ([], {}), '()\n', (4058, 4060), True, 'import tensorflow as tf\n'), ((4156, 4195), 'tensorflow.import_graph_def', 'tf.import_graph_def', (['graph_def'], {'name': '""""""'}), "(graph_def, name='')\n", (4175, 4195), True, 'import tensorflow as tf\n'), ((4327, 4337), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (4335, 4337), True, 'import tensorflow as tf\n'), ((7076, 7100), 'utils.tokenizer.Subtokenizer', 'Subtokenizer', (['vocab_file'], {}), '(vocab_file)\n', (7088, 7100), False, 'from utils.tokenizer import Subtokenizer\n'), ((8227, 8253), 'neural_compressor.experimental.Quantization', 'Quantization', (['FLAGS.config'], {}), '(FLAGS.config)\n', (8239, 8253), False, 'from neural_compressor.experimental import Quantization, common\n'), ((8371, 8444), 'neural_compressor.experimental.common.DataLoader', 'common.DataLoader', (['ds'], {'collate_fn': 'collate_fn', 'batch_size': 'FLAGS.batch_size'}), '(ds, collate_fn=collate_fn, batch_size=FLAGS.batch_size)\n', (8388, 8444), False, 'from neural_compressor.experimental import Quantization, common\n'), ((8522, 8541), 'neural_compressor.experimental.common.Model', 'common.Model', (['graph'], {}), '(graph)\n', (8534, 8541), False, 'from neural_compressor.experimental import Quantization, common\n'), ((3356, 3408), 'utils.metrics.compute_bleu', 'metrics.compute_bleu', (['self.labels', 'self.translations'], {}), '(self.labels, self.translations)\n', (3376, 3408), False, 'from utils import metrics\n'), ((4384, 4425), 'tensorflow.import_graph_def', 'tf.import_graph_def', (['infer_graph'], {'name': '""""""'}), "(infer_graph, name='')\n", (4403, 4425), True, 'import tensorflow as tf\n'), ((5459, 5470), 'time.time', 'time.time', ([], {}), '()\n', (5468, 5470), False, 'import time\n'), ((6710, 6740), 'tensorflow.io.gfile.GFile', 'tf.io.gfile.GFile', (['inputs_file'], {}), '(inputs_file)\n', (6727, 6740), True, 'import tensorflow as tf\n'), ((2206, 2219), 'six.unichr', 'six.unichr', (['x'], {}), '(x)\n', (2216, 2219), False, 'import six\n'), ((4114, 4124), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (4122, 4124), True, 'import tensorflow as tf\n'), ((5566, 5577), 'time.time', 'time.time', ([], {}), '()\n', (5575, 5577), False, 'import time\n'), ((5745, 5773), 'numpy.array', 'np.array', (['time_list[warmup:]'], {}), '(time_list[warmup:])\n', (5753, 5773), True, 'import numpy as np\n'), ((2295, 2308), 'six.unichr', 'six.unichr', (['x'], {}), '(x)\n', (2305, 2308), False, 'import six\n'), ((3819, 3838), 'pandas.DataFrame', 'pd.DataFrame', (['batch'], {}), '(batch)\n', (3831, 3838), True, 'import pandas as pd\n'), ((6981, 7014), 'tensorflow.io.gfile.GFile', 'tf.io.gfile.GFile', (['reference_file'], {}), '(reference_file)\n', (6998, 7014), True, 'import tensorflow as tf\n')]
import argparse import torch import os import numpy as np import datasets.crowd as crowd from models import vgg19 def run(): torch.multiprocessing.freeze_support() parser = argparse.ArgumentParser(description='Test ') parser.add_argument('--device', default='0', help='assign device') parser.add_argument('--crop-size', type=int, default=512, help='the crop size of the train image') parser.add_argument('--model-path', type=str, default='', help='saved model path') parser.add_argument('--data-path', type=str, default='data/ShanghaiTech/part_A/', help='saved model path') parser.add_argument('--dataset', type=str, default='sha', help='dataset name: sha, shb') parser.add_argument('--pred-density-map-path', type=str, default='', help='save predicted density maps when pred-density-map-path is not empty.') args = parser.parse_args() os.environ['CUDA_VISIBLE_DEVICES'] = args.device # set vis gpu device = torch.device('cuda') model_path = args.model_path crop_size = args.crop_size data_path = args.data_path if args.dataset.lower() == 'sha' or args.dataset.lower() == 'shb': dataset = crowd.Crowd_sh(os.path.join(data_path, 'test_data'), crop_size, 8, method='val') else: raise NotImplementedError dataloader = torch.utils.data.DataLoader(dataset, 1, shuffle=False, num_workers=1, pin_memory=True) if args.pred_density_map_path: import cv2 if not os.path.exists(args.pred_density_map_path): os.makedirs(args.pred_density_map_path) model = vgg19() model.to(device) model.load_state_dict(torch.load(model_path, device)) model.eval() image_errs = [] print(dataloader) for inputs, count, name in dataloader: inputs = inputs.to(device) assert inputs.size(0) == 1, 'the batch size should equal to 1' with torch.set_grad_enabled(False): outputs, _ = model(inputs) img_err = count[0].item() - torch.sum(outputs).item() image_errs.append(img_err) if args.pred_density_map_path: vis_img = outputs[0, 0].cpu().numpy() # normalize density map values from 0 to 1, then map it to 0-255. vis_img = (vis_img - vis_img.min()) / (vis_img.max() - vis_img.min() + 1e-5) vis_img = (vis_img * 255).astype(np.uint8) vis_img = cv2.applyColorMap(vis_img, cv2.COLORMAP_JET) cv2.imwrite(os.path.join(args.pred_density_map_path, str(name[0]) + '.png'), vis_img) image_errs = np.array(image_errs) mse = np.sqrt(np.mean(np.square(image_errs))) mae = np.mean(np.abs(image_errs)) print('{}: mae {}, mse {}\n'.format(model_path, mae, mse)) if __name__ == '__main__': run()
[ "numpy.abs", "argparse.ArgumentParser", "torch.utils.data.DataLoader", "os.makedirs", "torch.sum", "torch.load", "torch.set_grad_enabled", "os.path.exists", "numpy.square", "models.vgg19", "torch.multiprocessing.freeze_support", "numpy.array", "cv2.applyColorMap", "torch.device", "os.path.join" ]
[((130, 168), 'torch.multiprocessing.freeze_support', 'torch.multiprocessing.freeze_support', ([], {}), '()\n', (166, 168), False, 'import torch\n'), ((183, 227), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Test """'}), "(description='Test ')\n", (206, 227), False, 'import argparse\n'), ((1102, 1122), 'torch.device', 'torch.device', (['"""cuda"""'], {}), "('cuda')\n", (1114, 1122), False, 'import torch\n'), ((1451, 1541), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', (['dataset', '(1)'], {'shuffle': '(False)', 'num_workers': '(1)', 'pin_memory': '(True)'}), '(dataset, 1, shuffle=False, num_workers=1,\n pin_memory=True)\n', (1478, 1541), False, 'import torch\n'), ((1762, 1769), 'models.vgg19', 'vgg19', ([], {}), '()\n', (1767, 1769), False, 'from models import vgg19\n'), ((2733, 2753), 'numpy.array', 'np.array', (['image_errs'], {}), '(image_errs)\n', (2741, 2753), True, 'import numpy as np\n'), ((1817, 1847), 'torch.load', 'torch.load', (['model_path', 'device'], {}), '(model_path, device)\n', (1827, 1847), False, 'import torch\n'), ((2822, 2840), 'numpy.abs', 'np.abs', (['image_errs'], {}), '(image_errs)\n', (2828, 2840), True, 'import numpy as np\n'), ((1324, 1360), 'os.path.join', 'os.path.join', (['data_path', '"""test_data"""'], {}), "(data_path, 'test_data')\n", (1336, 1360), False, 'import os\n'), ((1653, 1695), 'os.path.exists', 'os.path.exists', (['args.pred_density_map_path'], {}), '(args.pred_density_map_path)\n', (1667, 1695), False, 'import os\n'), ((1709, 1748), 'os.makedirs', 'os.makedirs', (['args.pred_density_map_path'], {}), '(args.pred_density_map_path)\n', (1720, 1748), False, 'import os\n'), ((2070, 2099), 'torch.set_grad_enabled', 'torch.set_grad_enabled', (['(False)'], {}), '(False)\n', (2092, 2099), False, 'import torch\n'), ((2572, 2616), 'cv2.applyColorMap', 'cv2.applyColorMap', (['vis_img', 'cv2.COLORMAP_JET'], {}), '(vis_img, cv2.COLORMAP_JET)\n', (2589, 2616), False, 'import cv2\n'), ((2780, 2801), 'numpy.square', 'np.square', (['image_errs'], {}), '(image_errs)\n', (2789, 2801), True, 'import numpy as np\n'), ((2176, 2194), 'torch.sum', 'torch.sum', (['outputs'], {}), '(outputs)\n', (2185, 2194), False, 'import torch\n')]
# coding=utf-8 # Copyright 2020 The uncertainty_metrics Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Tests for calibration metrics.""" import numpy as np import tensorflow.compat.v2 as tf import uncertainty_metrics as um class ExpectedCalibrationErrorTest(tf.test.TestCase): def testBinaryClassification(self): num_bins = 10 pred_probs = np.array([0.51, 0.45, 0.39, 0.66, 0.68, 0.29, 0.81, 0.85]) # max_pred_probs: [0.51, 0.55, 0.61, 0.66, 0.68, 0.71, 0.81, 0.85] # pred_class: [1, 0, 0, 1, 1, 0, 1, 1] labels = np.array([0., 0., 0., 1., 0., 1., 1., 1.]) n = len(pred_probs) # Bins for the max predicted probabilities are (0, 0.1), [0.1, 0.2), ..., # [0.9, 1) and are numbered starting at zero. bin_counts = np.array([0, 0, 0, 0, 0, 2, 3, 1, 2, 0]) bin_correct_sums = np.array([0, 0, 0, 0, 0, 1, 2, 0, 2, 0]) bin_prob_sums = np.array([0, 0, 0, 0, 0, 0.51 + 0.55, 0.61 + 0.66 + 0.68, 0.71, 0.81 + 0.85, 0]) correct_ece = 0. bin_accs = np.array([0.] * num_bins) bin_confs = np.array([0.] * num_bins) for i in range(num_bins): if bin_counts[i] > 0: bin_accs[i] = bin_correct_sums[i] / bin_counts[i] bin_confs[i] = bin_prob_sums[i] / bin_counts[i] correct_ece += bin_counts[i] / n * abs(bin_accs[i] - bin_confs[i]) metric = um.ExpectedCalibrationError( num_bins, name='ECE', dtype=tf.float64) self.assertEqual(len(metric.variables), 3) ece1 = metric(labels, pred_probs) self.assertAllClose(ece1, correct_ece) actual_bin_counts = tf.convert_to_tensor(metric.counts) actual_bin_correct_sums = tf.convert_to_tensor(metric.correct_sums) actual_bin_prob_sums = tf.convert_to_tensor(metric.prob_sums) self.assertAllEqual(bin_counts, actual_bin_counts) self.assertAllEqual(bin_correct_sums, actual_bin_correct_sums) self.assertAllClose(bin_prob_sums, actual_bin_prob_sums) # Test various types of input shapes. metric.reset_states() metric.update_state(labels[:2], pred_probs[:2]) metric.update_state(labels[2:6].reshape(2, 2), pred_probs[2:6].reshape(2, 2)) metric.update_state(labels[6:7], pred_probs[6:7]) ece2 = metric(labels[7:, np.newaxis], pred_probs[7:, np.newaxis]) ece3 = metric.result() self.assertAllClose(ece2, ece3) self.assertAllClose(ece3, correct_ece) actual_bin_counts = tf.convert_to_tensor(metric.counts) actual_bin_correct_sums = tf.convert_to_tensor(metric.correct_sums) actual_bin_prob_sums = tf.convert_to_tensor(metric.prob_sums) self.assertAllEqual(bin_counts, actual_bin_counts) self.assertAllEqual(bin_correct_sums, actual_bin_correct_sums) self.assertAllClose(bin_prob_sums, actual_bin_prob_sums) def testBinaryClassificationKerasModel(self): num_bins = 10 pred_probs = np.array([0.51, 0.45, 0.39, 0.66, 0.68, 0.29, 0.81, 0.85]) # max_pred_probs: [0.51, 0.55, 0.61, 0.66, 0.68, 0.71, 0.81, 0.85] # pred_class: [1, 0, 0, 1, 1, 0, 1, 1] labels = np.array([0., 0., 0., 1., 0., 1., 1., 1.]) n = len(pred_probs) # Bins for the max predicted probabilities are (0, 0.1), [0.1, 0.2), ..., # [0.9, 1) and are numbered starting at zero. bin_counts = [0, 0, 0, 0, 0, 2, 3, 1, 2, 0] bin_correct_sums = [0, 0, 0, 0, 0, 1, 2, 0, 2, 0] bin_prob_sums = [0, 0, 0, 0, 0, 0.51 + 0.55, 0.61 + 0.66 + 0.68, 0.71, 0.81 + 0.85, 0] correct_ece = 0. bin_accs = [0.] * num_bins bin_confs = [0.] * num_bins for i in range(num_bins): if bin_counts[i] > 0: bin_accs[i] = bin_correct_sums[i] / bin_counts[i] bin_confs[i] = bin_prob_sums[i] / bin_counts[i] correct_ece += bin_counts[i] / n * abs(bin_accs[i] - bin_confs[i]) metric = um.ExpectedCalibrationError(num_bins, name='ECE') self.assertEqual(len(metric.variables), 3) model = tf.keras.models.Sequential([tf.keras.layers.Lambda(lambda x: 1*x)]) model.compile(loss='binary_crossentropy', optimizer='sgd', metrics=[metric]) outputs = model.predict(pred_probs) self.assertAllClose(pred_probs.reshape([n, 1]), outputs) _, ece = model.evaluate(pred_probs, labels) self.assertAllClose(ece, correct_ece) actual_bin_counts = tf.convert_to_tensor(metric.counts) actual_bin_correct_sums = tf.convert_to_tensor(metric.correct_sums) actual_bin_prob_sums = tf.convert_to_tensor(metric.prob_sums) self.assertAllEqual(bin_counts, actual_bin_counts) self.assertAllEqual(bin_correct_sums, actual_bin_correct_sums) self.assertAllClose(bin_prob_sums, actual_bin_prob_sums) def testMulticlassClassification(self): num_bins = 10 pred_probs = [ [0.31, 0.32, 0.27], [0.37, 0.33, 0.30], [0.30, 0.31, 0.39], [0.61, 0.38, 0.01], [0.10, 0.65, 0.25], [0.91, 0.05, 0.04], ] # max_pred_probs: [0.32, 0.37, 0.39, 0.61, 0.65, 0.91] # pred_class: [1, 0, 2, 0, 1, 0] labels = [1., 0, 0., 1., 0., 0.] n = len(pred_probs) # Bins for the max predicted probabilities are (0, 0.1), [0.1, 0.2), ..., # [0.9, 1) and are numbered starting at zero. bin_counts = [0, 0, 0, 3, 0, 0, 2, 0, 0, 1] bin_correct_sums = [0, 0, 0, 2, 0, 0, 0, 0, 0, 1] bin_prob_sums = [0, 0, 0, 0.32 + 0.37 + 0.39, 0, 0, 0.61 + 0.65, 0, 0, 0.91] correct_ece = 0. bin_accs = [0.] * num_bins bin_confs = [0.] * num_bins for i in range(num_bins): if bin_counts[i] > 0: bin_accs[i] = bin_correct_sums[i] / bin_counts[i] bin_confs[i] = bin_prob_sums[i] / bin_counts[i] correct_ece += bin_counts[i] / n * abs(bin_accs[i] - bin_confs[i]) metric = um.ExpectedCalibrationError( num_bins, name='ECE', dtype=tf.float64) self.assertEqual(len(metric.variables), 3) metric.update_state(labels[:4], pred_probs[:4]) ece1 = metric(labels[4:], pred_probs[4:]) ece2 = metric.result() self.assertAllClose(ece1, ece2) self.assertAllClose(ece2, correct_ece) actual_bin_counts = tf.convert_to_tensor(metric.counts) actual_bin_correct_sums = tf.convert_to_tensor(metric.correct_sums) actual_bin_prob_sums = tf.convert_to_tensor(metric.prob_sums) self.assertAllEqual(bin_counts, actual_bin_counts) self.assertAllEqual(bin_correct_sums, actual_bin_correct_sums) self.assertAllClose(bin_prob_sums, actual_bin_prob_sums) if __name__ == '__main__': tf.enable_v2_behavior() tf.test.main()
[ "tensorflow.compat.v2.keras.layers.Lambda", "tensorflow.compat.v2.test.main", "tensorflow.compat.v2.enable_v2_behavior", "tensorflow.compat.v2.convert_to_tensor", "numpy.array", "uncertainty_metrics.ExpectedCalibrationError" ]
[((6981, 7004), 'tensorflow.compat.v2.enable_v2_behavior', 'tf.enable_v2_behavior', ([], {}), '()\n', (7002, 7004), True, 'import tensorflow.compat.v2 as tf\n'), ((7007, 7021), 'tensorflow.compat.v2.test.main', 'tf.test.main', ([], {}), '()\n', (7019, 7021), True, 'import tensorflow.compat.v2 as tf\n'), ((884, 942), 'numpy.array', 'np.array', (['[0.51, 0.45, 0.39, 0.66, 0.68, 0.29, 0.81, 0.85]'], {}), '([0.51, 0.45, 0.39, 0.66, 0.68, 0.29, 0.81, 0.85])\n', (892, 942), True, 'import numpy as np\n'), ((1070, 1120), 'numpy.array', 'np.array', (['[0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 1.0]'], {}), '([0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 1.0])\n', (1078, 1120), True, 'import numpy as np\n'), ((1283, 1323), 'numpy.array', 'np.array', (['[0, 0, 0, 0, 0, 2, 3, 1, 2, 0]'], {}), '([0, 0, 0, 0, 0, 2, 3, 1, 2, 0])\n', (1291, 1323), True, 'import numpy as np\n'), ((1347, 1387), 'numpy.array', 'np.array', (['[0, 0, 0, 0, 0, 1, 2, 0, 2, 0]'], {}), '([0, 0, 0, 0, 0, 1, 2, 0, 2, 0])\n', (1355, 1387), True, 'import numpy as np\n'), ((1408, 1493), 'numpy.array', 'np.array', (['[0, 0, 0, 0, 0, 0.51 + 0.55, 0.61 + 0.66 + 0.68, 0.71, 0.81 + 0.85, 0]'], {}), '([0, 0, 0, 0, 0, 0.51 + 0.55, 0.61 + 0.66 + 0.68, 0.71, 0.81 + 0.85, 0]\n )\n', (1416, 1493), True, 'import numpy as np\n'), ((1556, 1582), 'numpy.array', 'np.array', (['([0.0] * num_bins)'], {}), '([0.0] * num_bins)\n', (1564, 1582), True, 'import numpy as np\n'), ((1598, 1624), 'numpy.array', 'np.array', (['([0.0] * num_bins)'], {}), '([0.0] * num_bins)\n', (1606, 1624), True, 'import numpy as np\n'), ((1885, 1952), 'uncertainty_metrics.ExpectedCalibrationError', 'um.ExpectedCalibrationError', (['num_bins'], {'name': '"""ECE"""', 'dtype': 'tf.float64'}), "(num_bins, name='ECE', dtype=tf.float64)\n", (1912, 1952), True, 'import uncertainty_metrics as um\n'), ((2116, 2151), 'tensorflow.compat.v2.convert_to_tensor', 'tf.convert_to_tensor', (['metric.counts'], {}), '(metric.counts)\n', (2136, 2151), True, 'import tensorflow.compat.v2 as tf\n'), ((2182, 2223), 'tensorflow.compat.v2.convert_to_tensor', 'tf.convert_to_tensor', (['metric.correct_sums'], {}), '(metric.correct_sums)\n', (2202, 2223), True, 'import tensorflow.compat.v2 as tf\n'), ((2251, 2289), 'tensorflow.compat.v2.convert_to_tensor', 'tf.convert_to_tensor', (['metric.prob_sums'], {}), '(metric.prob_sums)\n', (2271, 2289), True, 'import tensorflow.compat.v2 as tf\n'), ((2955, 2990), 'tensorflow.compat.v2.convert_to_tensor', 'tf.convert_to_tensor', (['metric.counts'], {}), '(metric.counts)\n', (2975, 2990), True, 'import tensorflow.compat.v2 as tf\n'), ((3021, 3062), 'tensorflow.compat.v2.convert_to_tensor', 'tf.convert_to_tensor', (['metric.correct_sums'], {}), '(metric.correct_sums)\n', (3041, 3062), True, 'import tensorflow.compat.v2 as tf\n'), ((3090, 3128), 'tensorflow.compat.v2.convert_to_tensor', 'tf.convert_to_tensor', (['metric.prob_sums'], {}), '(metric.prob_sums)\n', (3110, 3128), True, 'import tensorflow.compat.v2 as tf\n'), ((3396, 3454), 'numpy.array', 'np.array', (['[0.51, 0.45, 0.39, 0.66, 0.68, 0.29, 0.81, 0.85]'], {}), '([0.51, 0.45, 0.39, 0.66, 0.68, 0.29, 0.81, 0.85])\n', (3404, 3454), True, 'import numpy as np\n'), ((3582, 3632), 'numpy.array', 'np.array', (['[0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 1.0]'], {}), '([0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 1.0])\n', (3590, 3632), True, 'import numpy as np\n'), ((4338, 4387), 'uncertainty_metrics.ExpectedCalibrationError', 'um.ExpectedCalibrationError', (['num_bins'], {'name': '"""ECE"""'}), "(num_bins, name='ECE')\n", (4365, 4387), True, 'import uncertainty_metrics as um\n'), ((4813, 4848), 'tensorflow.compat.v2.convert_to_tensor', 'tf.convert_to_tensor', (['metric.counts'], {}), '(metric.counts)\n', (4833, 4848), True, 'import tensorflow.compat.v2 as tf\n'), ((4879, 4920), 'tensorflow.compat.v2.convert_to_tensor', 'tf.convert_to_tensor', (['metric.correct_sums'], {}), '(metric.correct_sums)\n', (4899, 4920), True, 'import tensorflow.compat.v2 as tf\n'), ((4948, 4986), 'tensorflow.compat.v2.convert_to_tensor', 'tf.convert_to_tensor', (['metric.prob_sums'], {}), '(metric.prob_sums)\n', (4968, 4986), True, 'import tensorflow.compat.v2 as tf\n'), ((6239, 6306), 'uncertainty_metrics.ExpectedCalibrationError', 'um.ExpectedCalibrationError', (['num_bins'], {'name': '"""ECE"""', 'dtype': 'tf.float64'}), "(num_bins, name='ECE', dtype=tf.float64)\n", (6266, 6306), True, 'import uncertainty_metrics as um\n'), ((6593, 6628), 'tensorflow.compat.v2.convert_to_tensor', 'tf.convert_to_tensor', (['metric.counts'], {}), '(metric.counts)\n', (6613, 6628), True, 'import tensorflow.compat.v2 as tf\n'), ((6659, 6700), 'tensorflow.compat.v2.convert_to_tensor', 'tf.convert_to_tensor', (['metric.correct_sums'], {}), '(metric.correct_sums)\n', (6679, 6700), True, 'import tensorflow.compat.v2 as tf\n'), ((6728, 6766), 'tensorflow.compat.v2.convert_to_tensor', 'tf.convert_to_tensor', (['metric.prob_sums'], {}), '(metric.prob_sums)\n', (6748, 6766), True, 'import tensorflow.compat.v2 as tf\n'), ((4476, 4515), 'tensorflow.compat.v2.keras.layers.Lambda', 'tf.keras.layers.Lambda', (['(lambda x: 1 * x)'], {}), '(lambda x: 1 * x)\n', (4498, 4515), True, 'import tensorflow.compat.v2 as tf\n')]
# Copyright (c) 2021, TU Wien, Department of Geodesy and Geoinformation # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of TU Wien, Department of Geodesy and Geoinformation # nor the names of its contributors may be used to endorse or promote # products derived from this software without specific prior written # permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL TU WIEN DEPARTMENT OF GEODESY AND # GEOINFORMATION BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ Readers for ASCAT Level 1b in HDF5 format. """ from collections import OrderedDict import h5py import numpy as np import xarray as xr from ascat.read_native.eps_native import set_flags class AscatL1bHdf5File: """ Read ASCAT Level 1b file in HDF5 format. """ def __init__(self, filename): """ Initialize AscatL1bHdf5File. Parameters ---------- filename : str Filename. """ self.filename = filename def read(self, generic=False, to_xarray=False): """ Read ASCAT Level 1b data. Parameters ---------- generic : bool, optional 'True' reading and converting into generic format or 'False' reading original field names (default: False). to_xarray : bool, optional 'True' return data as xarray.Dataset 'False' return data as numpy.ndarray (default: False). Returns ------- ds : xarray.Dataset, numpy.ndarray ASCAT Level 1b data. """ data = {} metadata = {} root = 'U-MARF/EPS/ASCA_SZF_1B/' mdr_path = root + 'DATA/MDR_1B_FULL_ASCA_Level_1_ARRAY_000001' mdr_descr_path = root + 'DATA/MDR_1B_FULL_ASCA_Level_1_DESCR' metadata_path = root + 'METADATA' with h5py.File(self.filename, mode='r') as fid: mdr = fid[mdr_path] mdr_descr = fid[mdr_descr_path] mdr_metadata = fid[metadata_path] var_names = list(mdr.dtype.names) for var_name in var_names: data[var_name.lower()] = mdr[var_name] if var_name.encode() in mdr_descr['EntryName']: pos = mdr_descr['EntryName'] == var_name.encode() scale = mdr_descr['Scale Factor'][pos][0].decode() if scale != 'n/a': data[var_name.lower()] = (data[ var_name.lower()] / (10. ** float(scale))).astype( np.float32) fields = ['SPACECRAFT_ID', 'ORBIT_START', 'PROCESSOR_MAJOR_VERSION', 'PROCESSOR_MINOR_VERSION', 'FORMAT_MAJOR_VERSION', 'FORMAT_MINOR_VERSION'] for f in fields: pos = np.core.defchararray.startswith( mdr_metadata['MPHR/MPHR_TABLE']['EntryName'], f.encode()) var = mdr_metadata['MPHR/MPHR_TABLE']['EntryValue'][ pos][0].decode() if f == 'SPACECRAFT_ID': var = var[-1] metadata[f.lower()] = int(var) # modify longitudes [0, 360] to [-180, 180] mask = data['longitude_full'] > 180 data['longitude_full'][mask] += -360. data['time'] = np.datetime64('2000-01-01') + data[ 'utc_localisation-days'].astype('timedelta64[D]') + data[ 'utc_localisation-milliseconds'].astype('timedelta64[ms]') # modify azimuth angles to [0, 360] if 'azi_angle_full' in var_names: mask = data['azi_angle_full'] < 0 data['azi_angle_full'][mask] += 360 rename_coords = {'longitude_full': ('lon', np.float32), 'latitude_full': ('lat', np.float32)} for var_name, (new_name, new_dtype) in rename_coords.items(): data[new_name] = data.pop(var_name).astype(new_dtype) if generic: data = conv_hdf5l1b_generic(data, metadata) # 1 Left Fore Antenna, 2 Left Mid Antenna 3 Left Aft Antenna # 4 Right Fore Antenna, 5 Right Mid Antenna, 6 Right Aft Antenna antennas = ['lf', 'lm', 'la', 'rf', 'rm', 'ra'] ds = OrderedDict() for i, antenna in enumerate(antennas): subset = data['beam_number'] == i+1 metadata['beam_number'] = i+1 metadata['beam_name'] = antenna # convert dict to xarray.Dataset or numpy.ndarray if to_xarray: sub_data = {} for var_name in data.keys(): if var_name == 'beam_number' and generic: continue if len(data[var_name].shape) == 1: dim = ['obs'] elif len(data[var_name].shape) == 2: dim = ['obs', 'echo'] sub_data[var_name] = (dim, data[var_name][subset]) coords = {} coords_fields = ['lon', 'lat', 'time'] for cf in coords_fields: coords[cf] = sub_data.pop(cf) ds[antenna] = xr.Dataset(sub_data, coords=coords, attrs=metadata) else: # collect dtype info dtype = [] for var_name in data.keys(): if len(data[var_name][subset].shape) == 1: dtype.append( (var_name, data[var_name][subset].dtype.str)) elif len(data[var_name][subset].shape) > 1: dtype.append((var_name, data[var_name][ subset].dtype.str, data[var_name][ subset].shape[1:])) ds[antenna] = np.empty( data['time'][subset].size, dtype=np.dtype(dtype)) for var_name in data.keys(): if var_name == 'beam_number' and generic: continue ds[antenna][var_name] = data[var_name][subset] return ds def close(self): """ Close file. """ pass def conv_hdf5l1b_generic(data, metadata): """ Rename and convert data types of dataset. Parameters ---------- data : dict of numpy.ndarray Original dataset. metadata : dict Metadata. Returns ------- data : dict of numpy.ndarray Converted dataset. """ # convert spacecraft_id to internal sat_id sat_id = np.array([4, 3, 5]) metadata['sat_id'] = sat_id[metadata['spacecraft_id']-1] # compute ascending/descending direction data['as_des_pass'] = ( data['sat_track_azi'] < 270).astype(np.uint8) flags = {'flagfield_rf1': np.tile(data['flagfield_rf1'], 192), 'flagfield_rf2': np.tile(data['flagfield_rf2'], 192), 'flagfield_pl': np.tile(data['flagfield_pl'], 192), 'flagfield_gen1': data['flagfield_gen1'].flatten(), 'flagfield_gen2': data['flagfield_gen2'].flatten()} data['f_usable'] = set_flags(flags) data['f_usable'] = data['f_usable'].reshape(-1, 192) data['swath_indicator'] = np.int8(data['beam_number'].flatten() > 3) skip_fields = ['utc_localisation-days', 'utc_localisation-milliseconds', 'degraded_inst_mdr', 'degraded_proc_mdr', 'flagfield_rf1', 'flagfield_rf2', 'flagfield_pl', 'flagfield_gen1', 'flagfield_gen2'] gen_fields_lut = {'inc_angle_full': ('inc', np.float32), 'azi_angle_full': ('azi', np.float32), 'sigma0_full': ('sig', np.float32)} for var_name in skip_fields: if var_name in data: data.pop(var_name) num_cells = data['lat'].shape[1] for var_name in data.keys(): if len(data[var_name].shape) == 1: data[var_name] = np.repeat(data[var_name], num_cells) if len(data[var_name].shape) == 2: data[var_name] = data[var_name].flatten() if var_name in gen_fields_lut.items(): new_name = gen_fields_lut[var_name][0] new_dtype = gen_fields_lut[var_name][1] data[new_name] = data.pop(var_name).astype(new_dtype) return data
[ "h5py.File", "numpy.datetime64", "numpy.dtype", "xarray.Dataset", "numpy.array", "numpy.tile", "numpy.repeat", "collections.OrderedDict", "ascat.read_native.eps_native.set_flags" ]
[((7767, 7786), 'numpy.array', 'np.array', (['[4, 3, 5]'], {}), '([4, 3, 5])\n', (7775, 7786), True, 'import numpy as np\n'), ((8330, 8346), 'ascat.read_native.eps_native.set_flags', 'set_flags', (['flags'], {}), '(flags)\n', (8339, 8346), False, 'from ascat.read_native.eps_native import set_flags\n'), ((5399, 5412), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (5410, 5412), False, 'from collections import OrderedDict\n'), ((8007, 8042), 'numpy.tile', 'np.tile', (["data['flagfield_rf1']", '(192)'], {}), "(data['flagfield_rf1'], 192)\n", (8014, 8042), True, 'import numpy as np\n'), ((8074, 8109), 'numpy.tile', 'np.tile', (["data['flagfield_rf2']", '(192)'], {}), "(data['flagfield_rf2'], 192)\n", (8081, 8109), True, 'import numpy as np\n'), ((8140, 8174), 'numpy.tile', 'np.tile', (["data['flagfield_pl']", '(192)'], {}), "(data['flagfield_pl'], 192)\n", (8147, 8174), True, 'import numpy as np\n'), ((2991, 3025), 'h5py.File', 'h5py.File', (['self.filename'], {'mode': '"""r"""'}), "(self.filename, mode='r')\n", (3000, 3025), False, 'import h5py\n'), ((9160, 9196), 'numpy.repeat', 'np.repeat', (['data[var_name]', 'num_cells'], {}), '(data[var_name], num_cells)\n', (9169, 9196), True, 'import numpy as np\n'), ((4483, 4510), 'numpy.datetime64', 'np.datetime64', (['"""2000-01-01"""'], {}), "('2000-01-01')\n", (4496, 4510), True, 'import numpy as np\n'), ((6332, 6383), 'xarray.Dataset', 'xr.Dataset', (['sub_data'], {'coords': 'coords', 'attrs': 'metadata'}), '(sub_data, coords=coords, attrs=metadata)\n', (6342, 6383), True, 'import xarray as xr\n'), ((7065, 7080), 'numpy.dtype', 'np.dtype', (['dtype'], {}), '(dtype)\n', (7073, 7080), True, 'import numpy as np\n')]
''' Functions similar to blocks.graph ''' import logging import numpy import theano from theano import tensor from theano.sandbox.rng_mrg import MRG_RandomStreams from blocks.config import config from blocks.bricks.base import Brick, application from picklable_itertools.extras import equizip from blocks.graph import ComputationGraph from collections import OrderedDict logger = logging.getLogger(__name__) class NoiseBrick(Brick): """ A brick to hold parameters introducd by adaptive noise. For each model parameter, adaptive noise adds its standard deviations. These new parameters will be held by this brick. Do not use this brick directly! Its main purpose is to hold noise parameters and to wrap the new cost. """ def __init__(self): super(NoiseBrick, self).__init__(name='adaptive_noise') self.parameters = [] self.allocated = True self.initialized = True @application(inputs=['train_cost', 'model_cost', 'model_prior_mean', 'model_prior_variance'], outputs=['total_cost']) def apply(self, application_call, train_cost, model_cost, model_prior_mean, model_prior_variance): # We need to add those as auxiliary variables, as they are not # used to compute the output, and therefore are lost application_call.add_auxiliary_variable(model_prior_mean.copy(), name='model_prior_mean') application_call.add_auxiliary_variable(model_prior_variance.copy(), name='model_prior_variance') total_cost = train_cost + model_cost total_cost.name = 'total_cost' return total_cost def __get_name(param): brick = None for annotation in param.tag.annotations: if isinstance(annotation, Brick): brick = annotation break brick_hierarchy = [brick] while brick_hierarchy[-1].parents: brick_hierarchy.append(brick_hierarchy[-1].parents[0]) name = "{}.{}".format('/'.join((b.name for b in brick_hierarchy[::-1])), param.name) return name def apply_adaptive_noise(computation_graph, cost, variables, num_examples, parameters=None, init_sigma=1e-6, model_cost_coefficient=1.0, seed=None, gradients=None, ): """Add adaptive noise to parameters of a model. Each of the given variables will be replaced by a normal distribution with learned mean and standard deviation. A model cost is computed based on the precision of the the distributions associated with each variable. It is added to the given cost used to train the model. See: <NAME> "Practical Variational Inference for Neural Networks", NIPS 2011 Parameters ---------- computation_graph : instance of :class:`ComputationGraph` The computation graph. cost : :class:`~tensor.TensorVariable` The cost without weight noise. It should be a member of the computation_graph. variables : :class:`~tensor.TensorVariable` Variables to add noise to. num_examples : int Number of training examples. The cost of the model is divided by the number of training examples, please see <NAME> "Practical Variational Inference for Neural Networks" for justification parameters : list of :class:`~tensor.TensorVariable` parameters of the model, if gradients are given the list will not be used. Otherwise, it will be used to compute the gradients init_sigma : float, initial standard deviation of noise variables model_cost_coefficient : float, the weight of the model cost seed : int, optional The seed with which :class:`~theano.sandbox.rng_mrg.MRG_RandomStreams` is initialized, is set to 1 by default. gradients : dict, optional Adaptive weight noise introduces new parameters for which new cost and gradients must be computed. Unless the gradients paramter is given, it will use theano.grad to get the gradients Returns ------- cost : :class:`~tensor.TensorVariable` The new cost computation_graph : instance of :class:`ComputationGraph` new graph with added noise. gradients : dict a dictionary of gradients for all parameters: the original ones and the adaptive noise ones noise_brick : :class:~lvsr.graph.NoiseBrick the brick that holds all noise parameters and whose .apply method can be used to find variables added by adaptive noise """ if not seed: seed = config.default_seed rng = MRG_RandomStreams(seed) try: cost_index = computation_graph.outputs.index(cost) except ValueError: raise ValueError("cost is not part of the computation_graph") if gradients is None: if parameters is None: raise ValueError("Either gradients or parameters must be given") logger.info("Taking the cost gradient") gradients = dict(equizip(parameters, tensor.grad(cost, parameters))) else: if parameters is not None: logger.warn("Both gradients and parameters given, will ignore" "parameters") parameters = gradients.keys() gradients = OrderedDict(gradients) log_sigma_scale = 2048.0 P_noisy = variables # We will add noise to these Beta = [] # will hold means, log_stdev and stdevs P_with_noise = [] # will hold parames with added noise # These don't change P_clean = list(set(parameters).difference(P_noisy)) noise_brick = NoiseBrick() for p in P_noisy: p_u = p p_val = p.get_value(borrow=True) p_ls2 = theano.shared((numpy.zeros_like(p_val) + numpy.log(init_sigma) * 2. / log_sigma_scale ).astype(dtype=numpy.float32)) p_ls2.name = __get_name(p_u) noise_brick.parameters.append(p_ls2) p_s2 = tensor.exp(p_ls2 * log_sigma_scale) Beta.append((p_u, p_ls2, p_s2)) p_noisy = p_u + rng.normal(size=p_val.shape) * tensor.sqrt(p_s2) p_noisy = tensor.patternbroadcast(p_noisy, p.type.broadcastable) P_with_noise.append(p_noisy) # compute the prior mean and variation temp_sum = 0.0 temp_param_count = 0.0 for p_u, unused_p_ls2, unused_p_s2 in Beta: temp_sum = temp_sum + p_u.sum() temp_param_count = temp_param_count + p_u.shape.prod() prior_u = tensor.cast(temp_sum / temp_param_count, 'float32') temp_sum = 0.0 for p_u, unused_ls2, p_s2 in Beta: temp_sum = temp_sum + (p_s2).sum() + (((p_u-prior_u)**2).sum()) prior_s2 = tensor.cast(temp_sum/temp_param_count, 'float32') # convert everything to use the noisy parameters full_computation_graph = ComputationGraph(computation_graph.outputs + gradients.values()) full_computation_graph = full_computation_graph.replace( dict(zip(P_noisy, P_with_noise))) LC = 0.0 # model cost for p_u, p_ls2, p_s2 in Beta: LC = (LC + 0.5 * ((tensor.log(prior_s2) - p_ls2 * log_sigma_scale).sum()) + 1.0 / (2.0 * prior_s2) * (((p_u - prior_u)**2) + p_s2 - prior_s2 ).sum() ) LC = LC / num_examples * model_cost_coefficient train_cost = noise_brick.apply( full_computation_graph.outputs[cost_index].copy(), LC, prior_u, prior_s2) gradients = OrderedDict( zip(gradients.keys(), full_computation_graph.outputs[-len(gradients):])) # # Delete the gradients form the computational graph # del full_computation_graph.outputs[-len(gradients):] new_grads = {p: gradients.pop(p) for p in P_clean} # # Warning!!! # This only works for batch size 1 (we want that the sum of squares # be the square of the sum! # diag_hessian_estimate = {p: g**2 for p, g in gradients.iteritems()} for p_u, p_ls2, p_s2 in Beta: p_grad = gradients[p_u] p_u_grad = (model_cost_coefficient * (p_u - prior_u) / (num_examples*prior_s2) + p_grad) p_ls2_grad = (numpy.float32(model_cost_coefficient * 0.5 / num_examples * log_sigma_scale) * (p_s2/prior_s2 - 1.0) + (0.5*log_sigma_scale) * p_s2 * diag_hessian_estimate[p_u] ) new_grads[p_u] = p_u_grad new_grads[p_ls2] = p_ls2_grad return train_cost, full_computation_graph, new_grads, noise_brick
[ "theano.tensor.log", "numpy.zeros_like", "numpy.log", "theano.tensor.exp", "theano.tensor.cast", "numpy.float32", "blocks.bricks.base.application", "theano.tensor.patternbroadcast", "theano.tensor.grad", "theano.sandbox.rng_mrg.MRG_RandomStreams", "theano.tensor.sqrt", "collections.OrderedDict", "logging.getLogger" ]
[((387, 414), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (404, 414), False, 'import logging\n'), ((945, 1065), 'blocks.bricks.base.application', 'application', ([], {'inputs': "['train_cost', 'model_cost', 'model_prior_mean', 'model_prior_variance']", 'outputs': "['total_cost']"}), "(inputs=['train_cost', 'model_cost', 'model_prior_mean',\n 'model_prior_variance'], outputs=['total_cost'])\n", (956, 1065), False, 'from blocks.bricks.base import Brick, application\n'), ((4942, 4965), 'theano.sandbox.rng_mrg.MRG_RandomStreams', 'MRG_RandomStreams', (['seed'], {}), '(seed)\n', (4959, 4965), False, 'from theano.sandbox.rng_mrg import MRG_RandomStreams\n'), ((5634, 5656), 'collections.OrderedDict', 'OrderedDict', (['gradients'], {}), '(gradients)\n', (5645, 5656), False, 'from collections import OrderedDict\n'), ((6860, 6911), 'theano.tensor.cast', 'tensor.cast', (['(temp_sum / temp_param_count)', '"""float32"""'], {}), "(temp_sum / temp_param_count, 'float32')\n", (6871, 6911), False, 'from theano import tensor\n'), ((7059, 7110), 'theano.tensor.cast', 'tensor.cast', (['(temp_sum / temp_param_count)', '"""float32"""'], {}), "(temp_sum / temp_param_count, 'float32')\n", (7070, 7110), False, 'from theano import tensor\n'), ((6343, 6378), 'theano.tensor.exp', 'tensor.exp', (['(p_ls2 * log_sigma_scale)'], {}), '(p_ls2 * log_sigma_scale)\n', (6353, 6378), False, 'from theano import tensor\n'), ((6511, 6565), 'theano.tensor.patternbroadcast', 'tensor.patternbroadcast', (['p_noisy', 'p.type.broadcastable'], {}), '(p_noisy, p.type.broadcastable)\n', (6534, 6565), False, 'from theano import tensor\n'), ((5389, 5418), 'theano.tensor.grad', 'tensor.grad', (['cost', 'parameters'], {}), '(cost, parameters)\n', (5400, 5418), False, 'from theano import tensor\n'), ((6475, 6492), 'theano.tensor.sqrt', 'tensor.sqrt', (['p_s2'], {}), '(p_s2)\n', (6486, 6492), False, 'from theano import tensor\n'), ((8608, 8684), 'numpy.float32', 'numpy.float32', (['(model_cost_coefficient * 0.5 / num_examples * log_sigma_scale)'], {}), '(model_cost_coefficient * 0.5 / num_examples * log_sigma_scale)\n', (8621, 8684), False, 'import numpy\n'), ((6082, 6105), 'numpy.zeros_like', 'numpy.zeros_like', (['p_val'], {}), '(p_val)\n', (6098, 6105), False, 'import numpy\n'), ((6139, 6160), 'numpy.log', 'numpy.log', (['init_sigma'], {}), '(init_sigma)\n', (6148, 6160), False, 'import numpy\n'), ((7510, 7530), 'theano.tensor.log', 'tensor.log', (['prior_s2'], {}), '(prior_s2)\n', (7520, 7530), False, 'from theano import tensor\n')]
# -*- coding: utf-8 -*- """ =============================================================================== Generating pulse trains =============================================================================== This example shows how to use :py:class:`~pulse2percept.stimuli.PulseTrain` and its variants. Biphasic pulse trains --------------------- A series of biphasic pulses can be created with the :py:class:`~pulse2percept.stimuli.BiphasicPulseTrain` class. You have the same options as when setting up a single :py:class:`~pulse2percept.stimuli.BiphasicPulse`, in addition to specifying a pulse train frequency (``freq``) and total stimulus duration (``stim_dur``). For example, a 20 Hz pulse train lasting 200 ms and made from anodic-first biphasic pulses (30 uA, 2 ms pulse duration, no interphase gap) can be created as follows: """ # sphinx_gallery_thumbnail_number = 4 from pulse2percept.stimuli import BiphasicPulseTrain pt = BiphasicPulseTrain(20, 30, 2, stim_dur=200, cathodic_first=False) pt.plot() ############################################################################### # You can also limit the number of pulses in the train, but still make the # stimulus last 200 ms: pt = BiphasicPulseTrain(20, 30, 2, n_pulses=3, stim_dur=200, cathodic_first=False) pt.plot() ############################################################################### # Asymmetric biphasic pulse trains # -------------------------------- # # To create a 20 Hz pulse train lasting 200 ms created from asymmetric biphasic # pulses, use :py:class:`~pulse2percept.stimuli.AsymmetricBiphasicPulseTrain`: from pulse2percept.stimuli import AsymmetricBiphasicPulseTrain # First pulse: amp1 = 10 phase_dur1 = 2 # Second pulse amp2 = 2 phase_dur2 = 10 pt = AsymmetricBiphasicPulseTrain(20, amp1, amp2, phase_dur1, phase_dur2, stim_dur=200) pt.plot() ############################################################################### # Biphasic triplet trains # ----------------------- # # To create a train of pulse triplets, use # :py:class:`~pulse2percept.stimuli.BiphasicTripletTrain`: from pulse2percept.stimuli import BiphasicTripletTrain amp = 15 phase_dur = 2 pt = BiphasicTripletTrain(20, amp, phase_dur, stim_dur=200) pt.plot() ############################################################################### # Generic pulse trains # -------------------- # # Finally, you can concatenate any :py:class:`~pulse2percept.stimuli.Stimulus` # object into a pulse train. # # For example, let's define a single ramp stimulus: import numpy as np from pulse2percept.stimuli import Stimulus, PulseTrain # Single ramp: dt = 1e-3 ramp = Stimulus([[0, 0, 1, 1, 2, 2, 0, 0]], time=[0, 1, 1 + dt, 2, 2 + dt, 3, 3 + dt, 5 - dt]) ramp.plot() # Ramp train: PulseTrain(20, ramp, stim_dur=200).plot() # Biphasic ramp: biphasic_ramp = Stimulus(np.concatenate((ramp.data, -ramp.data), axis=1), time=np.concatenate((ramp.time, ramp.time + 5))) biphasic_ramp.plot() # Biphasic ramp train: PulseTrain(20, biphasic_ramp, stim_dur=200).plot()
[ "pulse2percept.stimuli.BiphasicTripletTrain", "pulse2percept.stimuli.BiphasicPulseTrain", "pulse2percept.stimuli.PulseTrain", "pulse2percept.stimuli.Stimulus", "pulse2percept.stimuli.AsymmetricBiphasicPulseTrain", "numpy.concatenate" ]
[((945, 1010), 'pulse2percept.stimuli.BiphasicPulseTrain', 'BiphasicPulseTrain', (['(20)', '(30)', '(2)'], {'stim_dur': '(200)', 'cathodic_first': '(False)'}), '(20, 30, 2, stim_dur=200, cathodic_first=False)\n', (963, 1010), False, 'from pulse2percept.stimuli import BiphasicPulseTrain\n'), ((1207, 1284), 'pulse2percept.stimuli.BiphasicPulseTrain', 'BiphasicPulseTrain', (['(20)', '(30)', '(2)'], {'n_pulses': '(3)', 'stim_dur': '(200)', 'cathodic_first': '(False)'}), '(20, 30, 2, n_pulses=3, stim_dur=200, cathodic_first=False)\n', (1225, 1284), False, 'from pulse2percept.stimuli import BiphasicPulseTrain\n'), ((1783, 1869), 'pulse2percept.stimuli.AsymmetricBiphasicPulseTrain', 'AsymmetricBiphasicPulseTrain', (['(20)', 'amp1', 'amp2', 'phase_dur1', 'phase_dur2'], {'stim_dur': '(200)'}), '(20, amp1, amp2, phase_dur1, phase_dur2,\n stim_dur=200)\n', (1811, 1869), False, 'from pulse2percept.stimuli import AsymmetricBiphasicPulseTrain\n'), ((2233, 2287), 'pulse2percept.stimuli.BiphasicTripletTrain', 'BiphasicTripletTrain', (['(20)', 'amp', 'phase_dur'], {'stim_dur': '(200)'}), '(20, amp, phase_dur, stim_dur=200)\n', (2253, 2287), False, 'from pulse2percept.stimuli import BiphasicTripletTrain\n'), ((2697, 2788), 'pulse2percept.stimuli.Stimulus', 'Stimulus', (['[[0, 0, 1, 1, 2, 2, 0, 0]]'], {'time': '[0, 1, 1 + dt, 2, 2 + dt, 3, 3 + dt, 5 - dt]'}), '([[0, 0, 1, 1, 2, 2, 0, 0]], time=[0, 1, 1 + dt, 2, 2 + dt, 3, 3 +\n dt, 5 - dt])\n', (2705, 2788), False, 'from pulse2percept.stimuli import Stimulus, PulseTrain\n'), ((2913, 2960), 'numpy.concatenate', 'np.concatenate', (['(ramp.data, -ramp.data)'], {'axis': '(1)'}), '((ramp.data, -ramp.data), axis=1)\n', (2927, 2960), True, 'import numpy as np\n'), ((2828, 2862), 'pulse2percept.stimuli.PulseTrain', 'PulseTrain', (['(20)', 'ramp'], {'stim_dur': '(200)'}), '(20, ramp, stim_dur=200)\n', (2838, 2862), False, 'from pulse2percept.stimuli import Stimulus, PulseTrain\n'), ((2992, 3034), 'numpy.concatenate', 'np.concatenate', (['(ramp.time, ramp.time + 5)'], {}), '((ramp.time, ramp.time + 5))\n', (3006, 3034), True, 'import numpy as np\n'), ((3081, 3124), 'pulse2percept.stimuli.PulseTrain', 'PulseTrain', (['(20)', 'biphasic_ramp'], {'stim_dur': '(200)'}), '(20, biphasic_ramp, stim_dur=200)\n', (3091, 3124), False, 'from pulse2percept.stimuli import Stimulus, PulseTrain\n')]
"""This module implements the RYGate.""" from __future__ import annotations import numpy as np from bqskit.ir.gates.qubitgate import QubitGate from bqskit.qis.unitary.differentiable import DifferentiableUnitary from bqskit.qis.unitary.optimizable import LocallyOptimizableUnitary from bqskit.qis.unitary.unitary import RealVector from bqskit.qis.unitary.unitarymatrix import UnitaryMatrix from bqskit.utils.cachedclass import CachedClass class RYGate( QubitGate, DifferentiableUnitary, LocallyOptimizableUnitary, CachedClass, ): """ A gate representing an arbitrary rotation around the Y axis. It is given by the following parameterized unitary: .. math:: \\begin{pmatrix} \\cos{\\frac{\\theta}{2}} & -\\sin{\\frac{\\theta}{2}} \\\\ \\sin{\\frac{\\theta}{2}} & \\cos{\\frac{\\theta}{2}} \\\\ \\end{pmatrix} """ _num_qudits = 1 _num_params = 1 _qasm_name = 'ry' def get_unitary(self, params: RealVector = []) -> UnitaryMatrix: """Return the unitary for this gate, see :class:`Unitary` for more.""" self.check_parameters(params) cos = np.cos(params[0] / 2) sin = np.sin(params[0] / 2) return UnitaryMatrix( [ [cos, -sin], [sin, cos], ], ) def get_grad(self, params: RealVector = []) -> np.ndarray: """ Return the gradient for this gate. See :class:`DifferentiableUnitary` for more info. """ self.check_parameters(params) dcos = -np.sin(params[0] / 2) / 2 dsin = np.cos(params[0] / 2) / 2 return np.array( [ [ [dcos, -dsin], [dsin, dcos], ], ], dtype=np.complex128, ) def optimize(self, env_matrix: np.ndarray) -> list[float]: """ Return the optimal parameters with respect to an environment matrix. See :class:`LocallyOptimizableUnitary` for more info. """ self.check_env_matrix(env_matrix) a = np.real(env_matrix[0, 0] + env_matrix[1, 1]) b = np.real(env_matrix[1, 0] - env_matrix[0, 1]) theta = 2 * np.arccos(a / np.sqrt(a ** 2 + b ** 2)) theta *= -1 if b > 0 else 1 return [theta]
[ "bqskit.qis.unitary.unitarymatrix.UnitaryMatrix", "numpy.sin", "numpy.array", "numpy.real", "numpy.cos", "numpy.sqrt" ]
[((1151, 1172), 'numpy.cos', 'np.cos', (['(params[0] / 2)'], {}), '(params[0] / 2)\n', (1157, 1172), True, 'import numpy as np\n'), ((1187, 1208), 'numpy.sin', 'np.sin', (['(params[0] / 2)'], {}), '(params[0] / 2)\n', (1193, 1208), True, 'import numpy as np\n'), ((1225, 1265), 'bqskit.qis.unitary.unitarymatrix.UnitaryMatrix', 'UnitaryMatrix', (['[[cos, -sin], [sin, cos]]'], {}), '([[cos, -sin], [sin, cos]])\n', (1238, 1265), False, 'from bqskit.qis.unitary.unitarymatrix import UnitaryMatrix\n'), ((1664, 1726), 'numpy.array', 'np.array', (['[[[dcos, -dsin], [dsin, dcos]]]'], {'dtype': 'np.complex128'}), '([[[dcos, -dsin], [dsin, dcos]]], dtype=np.complex128)\n', (1672, 1726), True, 'import numpy as np\n'), ((2122, 2166), 'numpy.real', 'np.real', (['(env_matrix[0, 0] + env_matrix[1, 1])'], {}), '(env_matrix[0, 0] + env_matrix[1, 1])\n', (2129, 2166), True, 'import numpy as np\n'), ((2179, 2223), 'numpy.real', 'np.real', (['(env_matrix[1, 0] - env_matrix[0, 1])'], {}), '(env_matrix[1, 0] - env_matrix[0, 1])\n', (2186, 2223), True, 'import numpy as np\n'), ((1622, 1643), 'numpy.cos', 'np.cos', (['(params[0] / 2)'], {}), '(params[0] / 2)\n', (1628, 1643), True, 'import numpy as np\n'), ((1581, 1602), 'numpy.sin', 'np.sin', (['(params[0] / 2)'], {}), '(params[0] / 2)\n', (1587, 1602), True, 'import numpy as np\n'), ((2258, 2282), 'numpy.sqrt', 'np.sqrt', (['(a ** 2 + b ** 2)'], {}), '(a ** 2 + b ** 2)\n', (2265, 2282), True, 'import numpy as np\n')]
#!/usr/bin/env python3 import logging import numpy as np import copy import crosstalk import gates import predistortion import pulses import qubits import readout import tomography # Allow logging to Labber's instrument log log = logging.getLogger('LabberDriver') # TODO Reduce calc of CZ by finding all unique TwoQubitGates in seq and calc. # TODO Make I(width=None) have the width of the longest gate in the step # TODO Add checks so that not both t0 and dt are given # TODO Two composite gates should be able to be parallell # TODO check number of qubits in seq and in gate added to seq # TODO Remove pulse from I gates class GateOnQubit: def __init__(self, gate, qubit, pulse=None): self.gate = gate self.qubit = qubit self.pulse = pulse if pulse is None: self.duration = 0 else: self.duration = pulse.total_duration() def __str__(self): return "Gate {} on qubit {}".format(self.gate, self.qubit) def __repr__(self): return self.__str__() class Step: """Represent one step in a sequence. Parameters ---------- n_qubit : int Number of qubits in the sequece. t0 : float Center of the sequence in seconds (the default is None). dt : float Spacing to previous pulse in seconds (the default is None). Use only either t0 or dt. align : str {'left', 'center', 'right'} The alignment of pulses if they have different lengths, (the default is 'center'). Attributes ---------- gates : list of :dict: The different gates in the step. """ def __init__(self, t0=None, dt=None, align='center'): self.gates = [] self.align = align self.t0 = t0 self.dt = dt self.t_start = None self.t_end = None def add_gate(self, qubit, gate): """Add the given gate to the specified qubit(s). The number of gates must equal the number of qubits. If the number of qubits given are less than the number of qubits in the step, I gates are added to the other qubits. Parameters ---------- qubit : int or list of int The qubit indices. gate : :obj:`BaseGate` The gate(s). """ if gate.number_of_qubits() > 1 and not isinstance(qubit, list): raise ValueError( "Provide a list of qubits for gates with more than one qubit") if gate.number_of_qubits() > 1 and not gate.number_of_qubits() == len( qubit): raise ValueError( """Number of qubits in the gate must equal the number of qubit indices given""") if gate.number_of_qubits() == 1 and not isinstance(qubit, int): raise ValueError("Provide qubit as int for gates with one qubit") if isinstance(qubit, int): if self._qubit_in_step(qubit): raise ValueError("Qubit {} already in step.".format(qubit)) else: for n in qubit: if self._qubit_in_step(n): raise ValueError("Qubit {} already in step.".format(n)) self.gates.append(GateOnQubit(gate, qubit)) def time_shift(self, shift): """Shift the timings of the step. Parameters ---------- shift : float The amount of shift to apply in seconds. """ self.t_start += shift self.t0 += shift self.t_end += shift def _qubit_in_step(self, qubit): """Returns whatever the given qubit is in the step or not. """ if not isinstance(qubit, int): raise ValueError("Qubit index should be int.") def _in(input_list, n): flat_list = [] for sublist_or_el in input_list: if isinstance(sublist_or_el, list): if _in(sublist_or_el, n) is True: return True elif sublist_or_el == n: return True return False return _in([x.qubit for x in self.gates], qubit) def __str__(self): return str(self.gates) def __repr__(self): return str(self.gates) class Sequence: """A multi qubit seqence. Parameters ---------- n_qubit : type The number of qubits in the sequence. Attributes ---------- sequences : list of :obj:`Step` Holds the steps of the sequence. perform_process_tomography : bool Flag for performing process tomography. perform_state_tomography : bool Flag for performing state tomography. readout_delay : float Delay time between last pulse and readout, in seconds. n_qubit """ def __init__(self, n_qubit): self.n_qubit = n_qubit # log.info('initiating empty seqence list') self.sequence_list = [] # process tomography self.perform_process_tomography = False self._process_tomography = tomography.ProcessTomography() # state tomography self.perform_state_tomography = False self._state_tomography = tomography.StateTomography() # readout self.readout_delay = 0.0 # Public methods def generate_sequence(self, config): """Generate sequence by adding gates/pulses to waveforms. Parameters ---------- config : dict Configuration as defined by Labber driver configuration window. """ raise NotImplementedError() def get_sequence(self, config): """Compile sequence and return it. Parameters ---------- config : dict Labber instrument configuration. Returns ------- list of :obj:`Step` The compiled qubit sequence. """ self.sequence_list = [] if self.perform_process_tomography: self._process_tomography.add_pulses(self) self.generate_sequence(config) if self.perform_state_tomography: self._state_tomography.add_pulses(self) if self.readout_delay > 0: delay = gates.IdentityGate(width=self.readout_delay) self.add_gate_to_all(delay, dt=0) self.add_gate_to_all(gates.ReadoutGate(), dt=0, align='left') return self # Public methods for adding pulses and gates to the sequence. def add_single_pulse(self, qubit, pulse, t0=None, dt=None, align_left=False): """Add single qubit pulse to specified qubit. This function still exist to not break existing funcationallity. You should really use the add_gate method. t0 or dt can be used to override the global pulse spacing. Parameters ---------- qubit : int Qubit number, indexed from 0. pulse : :obj:`Pulse` Definition of pulse to add. t0 : float, optional Absolute pulse position. dt : float, optional Pulse spacing, referenced to the previous pulse. align_left: bool, optional If True, aligns the pulse to the left. Defaults to False. """ gate = gates.CustomGate(pulse) if align_left is True: self.add_gate(qubit, gate, t0, dt, 'left') else: self.add_gate(qubit, gate, t0, dt, 'center') def add_single_gate(self, qubit, gate, t0=None, dt=None, align_left=False): """Add single gate to specified qubit sequence. Note, this function still exist is to not break existing funcationallity. You should really use the add_gate method. t0 or dt can be used to override the global pulse spacing. Parameters ---------- qubit : int Qubit number, indexed from 0. gate : :obj:`Gate` Definition of gate to add. t0 : float, optional Absolute pulse position. dt : float, optional Pulse spacing, referenced to the previous pulse. align_left : boolean, optional If True, t0 is the start of the pulse, otherwise it is the center of the pulse. False is the default. """ if align_left is True: self.add_gate(qubit, gate, t0, dt, 'left') else: self.add_gate(qubit, gate, t0, dt, 'center') def add_gate(self, qubit, gate, t0=None, dt=None, align='center', index=None): """Add a set of gates to the given qubit sequences. For the qubits with no specificied gate, an IdentityGate will be given. The length of the step is given by the longest pulse. Parameters ---------- qubit : int or list of int The qubit(s) to add the gate(s) to. gate : :obj:`BaseGate` or list of :obj:`BaseGate` The gate(s) to add. t0 : float, optional Absolute gate position (the default is None). dt : float, optional Gate spacing, referenced to the previous pulse (the default is None). align : str, optional If two or more qubits have differnt pulse lengths, `align` specifies how those pulses should be aligned. 'Left' aligns the start, 'center' aligns the centers, and 'right' aligns the end, (the default is 'center'). index : int, optional Where in the sequence to insert the new gate. """ step = Step(t0=t0, dt=dt, align=align) if isinstance(gate, list): if not isinstance(qubit, list): raise ValueError( """Provide qubit indices as a list when adding more than one gate.""") if len(gate) != len(qubit): raise ValueError( "Length of gate list must equal length of qubit list.") for q, g in zip(qubit, gate): step.add_gate(q, g) else: if gate.number_of_qubits() > 1: if not isinstance(qubit, list): raise ValueError( "Provide qubit list for gates with more than one qubit" ) else: if not isinstance(qubit, int): raise ValueError( "For single gates, give qubit as int (not list).") step.add_gate(qubit, gate) # log.info('adding gate {} to {}. 2qb gate: {}'.format(gate, qubit, isinstance(gate, gates.TwoQubitGate))) if index is None: self.sequence_list.append(step) # log.info('adding step to sequence list') # log.info('sequence len is {}'.format(len(self.sequence_list))) else: self.sequence_list.insert(index + 1, step) # log.info('inserting step in sequence list') # log.info('sequence len is {}'.format(len(self.sequence_list))) def add_gate_to_all(self, gate, t0=None, dt=None, align='center'): """Add a single gate to all qubits. Pulses are added at the end of the sequence, with the gate spacing set by either the spacing parameter or the aboslut position. """ if isinstance(gate, list): raise ValueError("Only single gates allowed.") if isinstance(gate, (gates.BaseGate, gates.CompositeGate)): if gate.number_of_qubits() > 1: raise ValueError( "Not clear how to add multi-qubit gates to all qubits.") qubit = list(range((self.n_qubit))) gate = [gate for n in range(self.n_qubit)] self.add_gate(qubit, gate, t0=t0, dt=dt, align=align) def add_gates(self, gates): """Add multiple gates to the qubit waveform. Pulses are added at the end of the sequence, with the gate spacing set by the spacing parameter. Examples -------- Add three gates to a two-qubit sequence, first a positive pi-pulse around X to qubit 1, then a negative pi/2-pulse to qubit 2, finally simultaneous positive pi-pulses to qubits 1 and 2. >>> add_gates([[gates.Xp, None ], [None, gates.Y2m], [gates.Xp, gates.Xp]]) Parameters ---------- gates : list of list of :obj:`BaseGate` List of lists defining gates to add. The innermost list should have the same length as number of qubits in the sequence. """ # make sure we have correct input if not isinstance(gates, (list, tuple)): raise Exception('The input must be a list of list with gates') if len(gates) == 0: return if not isinstance(gates[0], (list, tuple)): raise Exception('The input must be a list of list with gates') # add gates sequence to waveforms for gate in gates: # add gate to specific qubit waveform qubit = list(range(len(gate))) self.add_gate(qubit, gate) def set_parameters(self, config={}): """Set base parameters using config from from Labber driver. Parameters ---------- config : dict Configuration as defined by Labber driver configuration window """ # sequence parameters d = dict( Zero=0, One=1, Two=2, Three=3, Four=4, Five=5, Six=6, Seven=7, Eight=8, Nine=9) # If the number of qubits changed, we need to re-init if self.n_qubit != d[config.get('Number of qubits')]: self.__init__(d[config.get('Number of qubits')]) # Readout self.readout_delay = config.get('Readout delay') # process tomography prepulses self.perform_process_tomography = \ config.get('Generate process tomography prepulse', False) self._process_tomography.set_parameters(config) # state tomography self.perform_state_tomography = config.get( 'Generate state tomography postpulse', False) self._state_tomography.set_parameters(config) class SequenceToWaveforms: """Compile a multi qubit sequence into waveforms. Parameters ---------- n_qubit : type The maximum number of qubits. Attributes ---------- dt : float Pulse spacing, in seconds. local_xy : bool If False, collate all waveforms into one. simultaneous_pulses : bool If False, seperate all pulses in time. sample_rate : float AWG Sample rate. n_pts : float Number of points in the waveforms. first_delay : float Delay between start of waveform and start of the first pulse. trim_to_sequence : bool If True, adjust `n_points` to just fit the sequence. align_to_end : bool Align the whole sequence to the end of the waveforms. Only relevant if `trim_to_sequence` is False. sequences : list of :obj:`Step` The qubit sequences. qubits : list of :obj:`Qubit` Parameters of each qubit. wave_xy_delays : list of float Indiviudal delays for the XY waveforms. wave_z_delays : list of float Indiviudal delays for the Z waveforms. n_qubit """ def __init__(self, n_qubit): self.n_qubit = n_qubit self.dt = 10E-9 self.local_xy = True self.simultaneous_pulses = True # waveform parameter self.sample_rate = 1.2E9 self.n_pts = 240E3 self.first_delay = 100E-9 self.trim_to_sequence = True self.align_to_end = False self.sequence_list = [] self.qubits = [qubits.Qubit() for n in range(self.n_qubit)] # waveforms self._wave_xy = [ np.zeros(0, dtype=np.complex) for n in range(self.n_qubit) ] # log.info('_wave_z initiated to 0s') self._wave_z = [np.zeros(0) for n in range(self.n_qubit)] self._wave_gate = [np.zeros(0) for n in range(self.n_qubit)] # waveform delays self.wave_xy_delays = np.zeros(self.n_qubit) self.wave_z_delays = np.zeros(self.n_qubit) # define pulses self.pulses_1qb_xy = [None for n in range(self.n_qubit)] self.pulses_1qb_z = [None for n in range(self.n_qubit)] self.pulses_2qb = [None for n in range(self.n_qubit - 1)] self.pulses_readout = [None for n in range(self.n_qubit)] # cross-talk self.compensate_crosstalk = False self._crosstalk = crosstalk.Crosstalk() # predistortion self.perform_predistortion = False self._predistortions = [ predistortion.Predistortion(n) for n in range(self.n_qubit) ] self._predistortions_z = [ predistortion.ExponentialPredistortion(n) for n in range(self.n_qubit) ] # gate switch waveform self.generate_gate_switch = False self.uniform_gate = False self.gate_delay = 0.0 self.gate_overlap = 20E-9 self.minimal_gate_time = 20E-9 # filters self.use_gate_filter = False self.use_z_filter = False # readout trig settings self.readout_trig_generate = False # readout wave object and settings self.readout = readout.Demodulation(self.n_qubit) self.readout_trig = np.array([], dtype=float) self.readout_iq = np.array([], dtype=np.complex) def get_waveforms(self, sequence): """Compile the given sequence into waveforms. Parameters ---------- sequences : list of :obj:`Step` The qubit sequence to be compiled. Returns ------- type Description of returned object. """ self.sequence = sequence self.sequence_list = sequence.sequence_list # log.info('Start of get_waveforms. Len sequence list: {}'.format(len(self.sequence_list))) # log.info('Point 1: Sequence_list[3].gates = {}'.format(self.sequence_list[3].gates)) if not self.simultaneous_pulses: self._seperate_gates() # log.info('Point 2: Sequence_list[6].gates = {}'.format(self.sequence_list[6].gates)) self._explode_composite_gates() # log.info('Point 3: Sequence_list[6].gates = {}'.format(self.sequence_list[6].gates)) self._add_pulses_and_durations() # log.info('Point 4: Sequence_list[6].gates = {}'.format(self.sequence_list[6].gates)) self._add_timings() # log.info('Point 5: Sequence_list[6].gates = {}'.format(self.sequence_list[6].gates)) self._init_waveforms() # log.info('Point 6: Sequence_list[6].gates = {}'.format(self.sequence_list[6].gates)) if self.align_to_end: shift = self._round((self.n_pts - 2) / self.sample_rate - self.sequence_list[-1].t_end) for step in self.sequence_list: step.time_shift(shift) self._perform_virtual_z() self._generate_waveforms() # collapse all xy pulses to one waveform if no local XY control if not self.local_xy: # sum all waveforms to first one self._wave_xy[0] = np.sum(self._wave_xy[:self.n_qubit], 0) # clear other waveforms for n in range(1, self.n_qubit): self._wave_xy[n][:] = 0.0 # log.info('before predistortion, _wave_z max is {}'.format(np.max(self._wave_z))) # if self.compensate_crosstalk: # self._perform_crosstalk_compensation() if self.perform_predistortion: self._predistort_xy_waveforms() if self.perform_predistortion_z: self._predistort_z_waveforms() if self.readout_trig_generate: self._add_readout_trig() if self.generate_gate_switch: self._add_microwave_gate() self._filter_output_waveforms() # Apply offsets self.readout_iq += self.readout_i_offset + 1j * self.readout_q_offset # create and return dictionary with waveforms waveforms = dict() waveforms['xy'] = self._wave_xy waveforms['z'] = self._wave_z waveforms['gate'] = self._wave_gate waveforms['readout_trig'] = self.readout_trig waveforms['readout_iq'] = self.readout_iq # log.info('returning z waveforms in get_waveforms. Max is {}'.format(np.max(waveforms['z']))) return waveforms def _seperate_gates(self): new_sequences = [] for step in self.sequence_list: if any( isinstance(gate, (gates.ReadoutGate, gates.IdentityGate)) for gate in step.gates): # Don't seperate I gates or readouts since we do # multiplexed readout new_sequences.append(step) continue for gate in step.gates: # log.info('In seperate gates, handling gate {}'.format(gate)) if gate.gate is not None: new_step = Step( t0=step.t_start, dt=step.dt, align=step.align) new_step.add_gate(gate.qubit, gate.gate) new_sequences.append(new_step) # log.info('New sequence [6] is {}'.format(new_sequences[6].gates)) self.sequence_list = new_sequences def _add_timings(self): t_start = 0 for step in self.sequence_list: if step.dt is None and step.t0 is None: # Use global pulse spacing step.dt = self.dt # Find longest gate in sequence max_duration = np.max([x.duration for x in step.gates]) if step.t0 is None: step.t_start = self._round(t_start + step.dt) step.t0 = self._round(step.t_start + max_duration / 2) else: step.t_start = self._round(step.t0 - max_duration / 2) step.t_end = self._round(step.t_start + max_duration) t_start = step.t_end # Next step starts where this one ends # Avoid double spacing for steps with 0 duration if max_duration == 0: t_start = t_start - step.dt # Make sure that the sequence is sorted chronologically. # self.sequence_list.sort(key=lambda x: x.t_start) # TODO Fix this # Make sure that sequnce starts on first delay time_diff = self._round(self.first_delay - self.sequence_list[0].t_start) for step in self.sequence_list: step.time_shift(time_diff) def _add_pulses_and_durations(self): for step in self.sequence_list: for gate in step.gates: if gate.pulse is None: gate.pulse = self._get_pulse_for_gate(gate) if gate.pulse is None: gate.duration = 0 else: gate.duration = gate.pulse.total_duration() def _get_pulse_for_gate(self, gate): qubit = gate.qubit gate = gate.gate # Virtual Z is special since it has no length if isinstance(gate, gates.VirtualZGate): pulse = None # Get the corresponding pulse for other gates elif isinstance(gate, gates.SingleQubitXYRotation): pulse = gate.get_adjusted_pulse(self.pulses_1qb_xy[qubit]) elif isinstance(gate, gates.SingleQubitZRotation): pulse = gate.get_adjusted_pulse(self.pulses_1qb_z[qubit]) elif isinstance(gate, gates.IdentityGate): pulse = gate.get_adjusted_pulse(self.pulses_1qb_xy[qubit]) elif isinstance(gate, gates.TwoQubitGate): pulse = gate.get_adjusted_pulse(self.pulses_2qb[qubit[0]]) elif isinstance(gate, gates.ReadoutGate): pulse = gate.get_adjusted_pulse(self.pulses_readout[qubit]) elif isinstance(gate, gates.CustomGate): pulse = gate.get_adjusted_pulse(gate.pulse) else: raise ValueError('Please provide a pulse for {}'.format(gate)) return pulse def _predistort_xy_waveforms(self): """Pre-distort the waveforms.""" # go through and predistort all xy waveforms n_wave = self.n_qubit if self.local_xy else 1 for n in range(n_wave): self._wave_xy[n] = self._predistortions[n].predistort( self._wave_xy[n]) def _predistort_z_waveforms(self): # go through and predistort all waveforms for n in range(self.n_qubit): self._wave_z[n] = self._predistortions_z[n].predistort( self._wave_z[n]) def _perform_crosstalk_compensation(self): """Compensate for Z-control crosstalk.""" self._wave_z = self._crosstalk.compensate(self._wave_z) def _explode_composite_gates(self): # Loop through the sequence until all CompositeGates are removed # Note that there could be nested CompositeGates n = 0 while n < len(self.sequence_list): step = self.sequence_list[n] i = 0 while i < len(step.gates): gate = step.gates[i] if isinstance(gate.gate, gates.CompositeGate): # # log.info('In exploded composite, handling composite gate {} at step {}'.format(gate, n)) for m, g in enumerate(gate.gate.sequence): new_gate = [x.gate for x in g.gates] # Single gates shouldn't be lists if len(new_gate) == 1: new_gate = new_gate[0] # Translate gate qubit number to device qubit number new_qubit = [x.qubit for x in g.gates] for j, q in enumerate(new_qubit): if isinstance(q, int): if isinstance(gate.qubit, int): new_qubit[j] = gate.qubit continue new_qubit[j] = gate.qubit[q] else: new_qubit[j] = [] for k in q: new_qubit[j].append(gate.qubit[k]) # Single qubit shouldn't be lists if len(new_qubit) == 1: new_qubit = new_qubit[0] # # log.info('In explode composite; modifying {} by adding gate {} at index {}'.format(gate, new_gate, n+m)) self.sequence.add_gate( new_qubit, new_gate, index=n + m) del step.gates[i] # # log.info('In composite gates, removing step {}', i) continue i = i + 1 n = n + 1 # Remove any empty steps where the composite gates were i = 0 while i < len(self.sequence_list): step = self.sequence_list[i] if len(step.gates) == 0: del self.sequence_list[i] # log.info('In composite gates, removing step {}', i) continue i = i + 1 # for i, step in enumerate(self.sequence_list): # log.info('At end of explode, step {} is {}'.format(i, step.gates)) def _perform_virtual_z(self): """Shifts the phase of pulses subsequent to virtual z gates.""" for qubit in range(self.n_qubit): phase = 0 for step in self.sequence_list: for gate in step.gates: gate_obj = None if qubit == gate.qubit: # TODO Allow for 2 qb gate_obj = gate.gate if isinstance(gate_obj, gates.VirtualZGate): phase += gate_obj.theta continue if (isinstance(gate_obj, gates.SingleQubitXYRotation) and phase != 0): gate.gate = copy.copy(gate_obj) gate.gate.phi += phase # Need to recomput the pulse gate.pulse = self._get_pulse_for_gate(gate) def _add_microwave_gate(self): """Create waveform for gating microwave switch.""" n_wave = self.n_qubit if self.local_xy else 1 # go through all waveforms for n, wave in enumerate(self._wave_xy[:n_wave]): if self.uniform_gate: # the uniform gate is all ones gate = np.ones_like(wave) # if creating readout trig, turn off gate during readout if self.readout_trig_generate: gate[-int((self.readout_trig_duration - self.gate_overlap - self.gate_delay) * self.sample_rate):] = 0.0 else: # non-uniform gate, find non-zero elements gate = np.array(np.abs(wave) > 0.0, dtype=float) # fix gate overlap n_overlap = int(np.round(self.gate_overlap * self.sample_rate)) diff_gate = np.diff(gate) indx_up = np.nonzero(diff_gate > 0.0)[0] indx_down = np.nonzero(diff_gate < 0.0)[0] # add extra elements to left and right for overlap for indx in indx_up: gate[max(0, indx - n_overlap):(indx + 1)] = 1.0 for indx in indx_down: gate[indx:(indx + n_overlap + 1)] = 1.0 # fix gaps in gate shorter than min (look for 1>0) diff_gate = np.diff(gate) indx_up = np.nonzero(diff_gate > 0.0)[0] indx_down = np.nonzero(diff_gate < 0.0)[0] # ignore first transition if starting in zero if gate[0] == 0: indx_up = indx_up[1:] n_down_up = min(len(indx_down), len(indx_up)) len_down = indx_up[:n_down_up] - indx_down[:n_down_up] # find short gaps short_gaps = np.nonzero( len_down < (self.minimal_gate_time * self.sample_rate))[0] for indx in short_gaps: gate[indx_down[indx]:(1 + indx_up[indx])] = 1.0 # shift gate in time n_shift = int(np.round(self.gate_delay * self.sample_rate)) if n_shift < 0: n_shift = abs(n_shift) gate = np.r_[gate[n_shift:], np.zeros((n_shift, ))] elif n_shift > 0: gate = np.r_[np.zeros((n_shift, )), gate[:(-n_shift)]] # make sure gate starts/ends in 0 gate[0] = 0.0 gate[-1] = 0.0 # store results self._wave_gate[n] = gate def _filter_output_waveforms(self): """Filter output waveforms""" # start with gate if self.use_gate_filter and self.gate_filter_size > 1: # prepare filter window = self._get_filter_window( self.gate_filter_size, self.gate_filter, self.gate_filter_kaiser_beta) # apply filter to all output waveforms n_wave = self.n_qubit if self.local_xy else 1 for n in range(n_wave): self._wave_gate[n] = self._apply_window_filter( self._wave_gate[n], window) # make sure gate starts/ends in 0 self._wave_gate[n][0] = 0.0 self._wave_gate[n][-1] = 0.0 # same for z waveforms if self.use_z_filter and self.z_filter_size > 1: # prepare filter window = self._get_filter_window( self.z_filter_size, self.z_filter, self.z_filter_kaiser_beta) # apply filter to all output waveforms for n in range(self.n_qubit): self._wave_z[n] = self._apply_window_filter( self._wave_z[n], window) def _get_filter_window(self, size=11, window='Kaiser', kaiser_beta=14.0): """Get filter for waveform convolution""" if window == 'Rectangular': w = np.ones(size) elif window == 'Bartlett': # for filters that start/end in zeros, add 2 points and truncate w = np.bartlett(max(1, size+2)) w = w[1:-1] elif window == 'Blackman': w = np.blackman(size + 2) w = w[1:-1] elif window == 'Hamming': w = np.hamming(size) elif window == 'Hanning': w = np.hanning(size + 2) w = w[1:-1] elif window == 'Kaiser': w = np.kaiser(size, kaiser_beta) else: raise('Unknown filter windows function %s.' % str(window)) return w/w.sum() def _apply_window_filter(self, x, window): """Apply window filter to input waveform Parameters ---------- x: np.array Input waveform. window: np.array Filter waveform. Returns ------- np.array Filtered waveform. """ # buffer waveform to avoid wrapping effects at boundaries n = len(window) s = np.r_[2*x[0] - x[n-1::-1], x, 2*x[-1] - x[-1:-n:-1]] # apply convolution y = np.convolve(s, window, mode='same') return y[n:-n+1] def _round(self, t, acc=1E-12): """Round the time `t` with a certain accuarcy `acc`. Parameters ---------- t : float The time to be rounded. acc : float The accuarcy (the default is 1E-12). Returns ------- float The rounded time. """ return int(np.round(t / acc)) * acc def _add_readout_trig(self): """Create waveform for readout trigger.""" trig = np.zeros_like(self.readout_iq) start = (np.abs(self.readout_iq) > 0.0).nonzero()[0][0] end = int( np.min((start + self.readout_trig_duration * self.sample_rate, self.n_pts_readout))) trig[start:end] = self.readout_trig_amplitude # make sure trig starts and ends in 0. trig[0] = 0.0 trig[-1] = 0.0 self.readout_trig = trig def _init_waveforms(self): """Initialize waveforms according to sequence settings.""" # To keep the first pulse delay, use the smallest delay as reference. min_delay = np.min([ self.wave_xy_delays[:self.n_qubit], self.wave_z_delays[:self.n_qubit] ]) self.wave_xy_delays -= min_delay self.wave_z_delays -= min_delay max_delay = np.max([ self.wave_xy_delays[:self.n_qubit], self.wave_z_delays[:self.n_qubit] ]) # find the end of the sequence # only include readout in size estimate if all waveforms have same size if self.readout_match_main_size: if len(self.sequence_list) == 0: end = max_delay else: end = np.max( [s.t_end for s in self.sequence_list]) + max_delay else: if len(self.sequence_list) <= 1: end = max_delay else: end = np.max( [s.t_end for s in self.sequence_list[0:-1]]) + max_delay # create empty waveforms of the correct size if self.trim_to_sequence: self.n_pts = int(np.ceil(end * self.sample_rate)) + 1 if self.n_pts % 2 == 1: # Odd n_pts give spectral leakage in FFT self.n_pts += 1 for n in range(self.n_qubit): self._wave_xy[n] = np.zeros(self.n_pts, dtype=np.complex) # log.info('wave z {} initiated to 0'.format(n)) self._wave_z[n] = np.zeros(self.n_pts, dtype=float) self._wave_gate[n] = np.zeros(self.n_pts, dtype=float) # Waveform time vector self.t = np.arange(self.n_pts) / self.sample_rate # readout trig and i/q waveforms if self.readout_match_main_size: # same number of points for readout and main waveform self.n_pts_readout = self.n_pts else: # different number of points for readout and main waveform self.n_pts_readout = 1 + int( np.ceil(self.sample_rate * (self.sequence_list[-1].t_end - self.sequence_list[-1].t_start))) if self.n_pts_readout % 2 == 1: # Odd n_pts give spectral leakage in FFT self.n_pts_readout += 1 self.readout_trig = np.zeros(self.n_pts_readout, dtype=float) self.readout_iq = np.zeros(self.n_pts_readout, dtype=np.complex) def _generate_waveforms(self): """Generate the waveforms corresponding to the sequence.""" # log.info('generating waveform from sequence. Len is {}'.format(len(self.sequence_list))) for step in self.sequence_list: # log.info('Generating gates {}'.format(step.gates)) for gate in step.gates: qubit = gate.qubit if isinstance(qubit, list): qubit = qubit[0] gate_obj = gate.gate if isinstance(gate_obj, (gates.IdentityGate, gates.VirtualZGate)): continue elif isinstance(gate_obj, gates.SingleQubitZRotation): waveform = self._wave_z[qubit] delay = self.wave_z_delays[qubit] if self.compensate_crosstalk: crosstalk = self._crosstalk.compensation_matrix[:, qubit] elif isinstance(gate_obj, gates.TwoQubitGate): # log.info('adding 2qb gate waveforms') waveform = self._wave_z[qubit] delay = self.wave_z_delays[qubit] if self.compensate_crosstalk: crosstalk = self._crosstalk.compensation_matrix[:, qubit] elif isinstance(gate_obj, gates.SingleQubitXYRotation): waveform = self._wave_xy[qubit] delay = self.wave_xy_delays[qubit] elif isinstance(gate_obj, gates.ReadoutGate): waveform = self.readout_iq delay = 0 else: raise ValueError( "Don't know which waveform to add {} to.".format( gate_obj)) # get the range of indices in use if (isinstance(gate_obj, gates.ReadoutGate) and not self.readout_match_main_size): # special case for readout if not matching main wave size start = 0.0 end = self._round(step.t_end - step.t_start) else: start = self._round(step.t_start + delay) end = self._round(step.t_end + delay) if (self.compensate_crosstalk and isinstance(gate_obj, (gates.SingleQubitZRotation, gates.TwoQubitGate))): for q in range(self.n_qubit): waveform = self._wave_z[q] delay = self.wave_z_delays[q] start = self._round(step.t_start + delay) end = self._round(step.t_end + delay) indices = np.arange( max(np.floor(start * self.sample_rate), 0), min( np.ceil(end * self.sample_rate), len(waveform)), dtype=int) # return directly if no indices if len(indices) == 0: continue # calculate time values for the pulse indices t = indices / self.sample_rate max_duration = end - start middle = end - max_duration / 2 if step.align == 'center': t0 = middle elif step.align == 'left': t0 = middle - (max_duration - gate.duration) / 2 elif step.align == 'right': t0 = middle + (max_duration - gate.duration) / 2 scaling_factor = float(crosstalk[q, 0]) if q != qubit: scaling_factor = -scaling_factor waveform[indices] += ( scaling_factor * gate.pulse.calculate_waveform(t0, t)) else: # calculate the pulse waveform for the selected indices indices = np.arange( max(np.floor(start * self.sample_rate), 0), min(np.ceil(end * self.sample_rate), len(waveform)), dtype=int) # return directly if no indices if len(indices) == 0: continue # calculate time values for the pulse indices t = indices / self.sample_rate max_duration = end - start middle = end - max_duration / 2 if step.align == 'center': t0 = middle elif step.align == 'left': t0 = middle - (max_duration - gate.duration) / 2 elif step.align == 'right': t0 = middle + (max_duration - gate.duration) / 2 waveform[indices] += gate.pulse.calculate_waveform(t0, t) def set_parameters(self, config={}): """Set base parameters using config from from Labber driver. Parameters ---------- config : dict Configuration as defined by Labber driver configuration window """ # sequence parameters d = dict( Zero=0, One=1, Two=2, Three=3, Four=4, Five=5, Six=6, Seven=7, Eight=8, Nine=9) # If the number of qubits changed, re-init to update pulses etc if self.n_qubit != d[config.get('Number of qubits')]: self.__init__(d[config.get('Number of qubits')]) self.dt = config.get('Pulse spacing') self.local_xy = config.get('Local XY control') # default for simultaneous pulses is true, only option for benchmarking self.simultaneous_pulses = config.get('Simultaneous pulses', True) # waveform parameters self.sample_rate = config.get('Sample rate') self.n_pts = int(config.get('Number of points', 0)) self.first_delay = config.get('First pulse delay') self.trim_to_sequence = config.get('Trim waveform to sequence') self.trim_start = config.get('Trim both start and end') self.align_to_end = config.get('Align pulses to end of waveform') # qubit spectra for n in range(self.n_qubit): m = n + 1 # pulses are indexed from 1 in Labber qubit = qubits.Transmon( config.get('f01 max #{}'.format(m)), config.get('f01 min #{}'.format(m)), config.get('Ec #{}'.format(m)), config.get('Vperiod #{}'.format(m)), config.get('Voffset #{}'.format(m)), config.get('V0 #{}'.format(m)), ) self.qubits[n] = qubit # single-qubit pulses XY for n, pulse in enumerate(self.pulses_1qb_xy): m = n + 1 # pulses are indexed from 1 in Labber pulse = (getattr(pulses, config.get('Pulse type'))(complex=True)) # global parameters pulse.truncation_range = config.get('Truncation range') pulse.start_at_zero = config.get('Start at zero') pulse.use_drag = config.get('Use DRAG') # pulse shape if config.get('Uniform pulse shape'): pulse.width = config.get('Width') pulse.plateau = config.get('Plateau') else: pulse.width = config.get('Width #%d' % m) pulse.plateau = config.get('Plateau #%d' % m) if config.get('Uniform amplitude'): pulse.amplitude = config.get('Amplitude') else: pulse.amplitude = config.get('Amplitude #%d' % m) # pulse-specific parameters pulse.frequency = config.get('Frequency #%d' % m) pulse.drag_coefficient = config.get('DRAG scaling #%d' % m) pulse.drag_detuning = config.get('DRAG frequency detuning #%d' % m) self.pulses_1qb_xy[n] = pulse # single-qubit pulses Z for n, pulse in enumerate(self.pulses_1qb_z): # pulses are indexed from 1 in Labber m = n + 1 # global parameters pulse = (getattr(pulses, config.get('Pulse type, Z'))(complex=False)) pulse.truncation_range = config.get('Truncation range, Z') pulse.start_at_zero = config.get('Start at zero, Z') # pulse shape if config.get('Uniform pulse shape, Z'): pulse.width = config.get('Width, Z') pulse.plateau = config.get('Plateau, Z') else: pulse.width = config.get('Width #%d, Z' % m) pulse.plateau = config.get('Plateau #%d, Z' % m) if config.get('Uniform amplitude, Z'): pulse.amplitude = config.get('Amplitude, Z') else: pulse.amplitude = config.get('Amplitude #%d, Z' % m) self.pulses_1qb_z[n] = pulse # two-qubit pulses for n, pulse in enumerate(self.pulses_2qb): # pulses are indexed from 1 in Labber s = ' #%d%d' % (n + 1, n + 2) # global parameters pulse = (getattr(pulses, config.get('Pulse type, 2QB'))(complex=False)) if config.get('Pulse type, 2QB') in ['CZ', 'NetZero']: pulse.F_Terms = d[config.get('Fourier terms, 2QB')] if config.get('Uniform 2QB pulses'): pulse.width = config.get('Width, 2QB') pulse.plateau = config.get('Plateau, 2QB') else: pulse.width = config.get('Width, 2QB' + s) pulse.plateau = config.get('Plateau, 2QB') # spectra if config.get('Assume linear dependence' + s, True): pulse.qubit = None else: pulse.qubit = self.qubits[n] # Get Fourier values if d[config.get('Fourier terms, 2QB')] == 4: pulse.Lcoeff = np.array([ config.get('L1, 2QB' + s), config.get('L2, 2QB' + s), config.get('L3, 2QB' + s), config.get('L4, 2QB' + s) ]) elif d[config.get('Fourier terms, 2QB')] == 3: pulse.Lcoeff = np.array([ config.get('L1, 2QB' + s), config.get('L2, 2QB' + s), config.get('L3, 2QB' + s) ]) elif d[config.get('Fourier terms, 2QB')] == 2: pulse.Lcoeff = np.array( [config.get('L1, 2QB' + s), config.get('L2, 2QB' + s)]) elif d[config.get('Fourier terms, 2QB')] == 1: pulse.Lcoeff = np.array([config.get('L1, 2QB' + s)]) pulse.Coupling = config.get('Coupling, 2QB' + s) pulse.Offset = config.get('f11-f20 initial, 2QB' + s) pulse.amplitude = config.get('f11-f20 final, 2QB' + s) pulse.dfdV = config.get('df/dV, 2QB' + s) pulse.negative_amplitude = config.get('Negative amplitude' + s) pulse.calculate_cz_waveform() else: pulse.truncation_range = config.get('Truncation range, 2QB') pulse.start_at_zero = config.get('Start at zero, 2QB') # pulse shape if config.get('Uniform 2QB pulses'): pulse.width = config.get('Width, 2QB') pulse.plateau = config.get('Plateau, 2QB') else: pulse.width = config.get('Width, 2QB' + s) pulse.plateau = config.get('Plateau, 2QB' + s) # pulse-specific parameters pulse.amplitude = config.get('Amplitude, 2QB' + s) gates.CZ.new_angles( config.get('QB1 Phi 2QB #12'), config.get('QB2 Phi 2QB #12')) gates.CR.update_params(config.get('CR amplitude'), config.get('CR phase'), config.get('CR frequency'), 0, config.get('CR length'), config.get('CR cancelation amplitude'), config.get('CR cancelation phase'), np.pi/2, 0, np.pi/2) self.pulses_2qb[n] = pulse # predistortion self.perform_predistortion = config.get('Predistort waveforms', False) # update all predistorting objects for p in self._predistortions: p.set_parameters(config) # Z predistortion self.perform_predistortion_z = config.get('Predistort Z') for p in self._predistortions_z: p.set_parameters(config) # crosstalk self.compensate_crosstalk = config.get('Compensate cross-talk', False) self._crosstalk.set_parameters(config) # gate switch waveform self.generate_gate_switch = config.get('Generate gate') self.uniform_gate = config.get('Uniform gate') self.gate_delay = config.get('Gate delay') self.gate_overlap = config.get('Gate overlap') self.minimal_gate_time = config.get('Minimal gate time') # filters self.use_gate_filter = config.get('Filter gate waveforms', False) self.gate_filter = config.get('Gate filter', 'Kaiser') self.gate_filter_size = int(config.get('Gate - Filter size', 5)) self.gate_filter_kaiser_beta = config.get( 'Gate - Kaiser beta', 14.0) self.use_z_filter = config.get('Filter Z waveforms', False) self.z_filter = config.get('Z filter', 'Kaiser') self.z_filter_size = int(config.get('Z - Filter size', 5)) self.z_filter_kaiser_beta = config.get( 'Z - Kaiser beta', 14.0) # readout self.readout_match_main_size = config.get( 'Match main sequence waveform size') self.readout_i_offset = config.get('Readout offset - I') self.readout_q_offset = config.get('Readout offset - Q') self.readout_trig_generate = config.get('Generate readout trig') self.readout_trig_amplitude = config.get('Readout trig amplitude') self.readout_trig_duration = config.get('Readout trig duration') self.readout_predistort = config.get('Predistort readout waveform') self.readout.set_parameters(config) # get readout pulse parameters phases = 2 * np.pi * np.array([ 0.8847060, 0.2043214, 0.9426104, 0.6947334, 0.8752361, 0.2246747, 0.6503154, 0.7305004, 0.1309068 ]) for n, pulse in enumerate(self.pulses_readout): # pulses are indexed from 1 in Labber m = n + 1 pulse = (getattr(pulses, config.get('Readout pulse type'))(complex=True)) pulse.truncation_range = config.get('Readout truncation range') pulse.start_at_zero = config.get('Readout start at zero') pulse.iq_skew = config.get('Readout IQ skew') * np.pi / 180 pulse.iq_ratio = config.get('Readout I/Q ratio') if config.get('Distribute readout phases'): pulse.phase = phases[n] else: pulse.phase = 0 if config.get('Uniform readout pulse shape'): pulse.width = config.get('Readout width') pulse.plateau = config.get('Readout duration') else: pulse.width = config.get('Readout width #%d' % m) pulse.plateau = config.get('Readout duration #%d' % m) if config.get('Uniform readout amplitude') is True: pulse.amplitude = config.get('Readout amplitude') else: pulse.amplitude = config.get('Readout amplitude #%d' % (n + 1)) pulse.frequency = config.get('Readout frequency #%d' % m) self.pulses_readout[n] = pulse # Delays self.wave_xy_delays = np.zeros(self.n_qubit) self.wave_z_delays = np.zeros(self.n_qubit) for n in range(self.n_qubit): m = n + 1 self.wave_xy_delays[n] = config.get('Qubit %d XY Delay' % m) self.wave_z_delays[n] = config.get('Qubit %d Z Delay' % m) if __name__ == '__main__': pass
[ "numpy.kaiser", "numpy.sum", "readout.Demodulation", "numpy.abs", "numpy.floor", "numpy.ones", "numpy.arange", "numpy.convolve", "numpy.round", "predistortion.Predistortion", "tomography.StateTomography", "numpy.zeros_like", "crosstalk.Crosstalk", "numpy.max", "tomography.ProcessTomography", "gates.ReadoutGate", "numpy.hanning", "numpy.ones_like", "numpy.ceil", "gates.IdentityGate", "numpy.hamming", "gates.CustomGate", "numpy.min", "predistortion.ExponentialPredistortion", "numpy.blackman", "qubits.Qubit", "numpy.zeros", "copy.copy", "numpy.nonzero", "numpy.diff", "numpy.array", "logging.getLogger" ]
[((232, 265), 'logging.getLogger', 'logging.getLogger', (['"""LabberDriver"""'], {}), "('LabberDriver')\n", (249, 265), False, 'import logging\n'), ((5054, 5084), 'tomography.ProcessTomography', 'tomography.ProcessTomography', ([], {}), '()\n', (5082, 5084), False, 'import tomography\n'), ((5192, 5220), 'tomography.StateTomography', 'tomography.StateTomography', ([], {}), '()\n', (5218, 5220), False, 'import tomography\n'), ((7377, 7400), 'gates.CustomGate', 'gates.CustomGate', (['pulse'], {}), '(pulse)\n', (7393, 7400), False, 'import gates\n'), ((16514, 16536), 'numpy.zeros', 'np.zeros', (['self.n_qubit'], {}), '(self.n_qubit)\n', (16522, 16536), True, 'import numpy as np\n'), ((16566, 16588), 'numpy.zeros', 'np.zeros', (['self.n_qubit'], {}), '(self.n_qubit)\n', (16574, 16588), True, 'import numpy as np\n'), ((16965, 16986), 'crosstalk.Crosstalk', 'crosstalk.Crosstalk', ([], {}), '()\n', (16984, 16986), False, 'import crosstalk\n'), ((17754, 17788), 'readout.Demodulation', 'readout.Demodulation', (['self.n_qubit'], {}), '(self.n_qubit)\n', (17774, 17788), False, 'import readout\n'), ((17817, 17842), 'numpy.array', 'np.array', (['[]'], {'dtype': 'float'}), '([], dtype=float)\n', (17825, 17842), True, 'import numpy as np\n'), ((17869, 17899), 'numpy.array', 'np.array', (['[]'], {'dtype': 'np.complex'}), '([], dtype=np.complex)\n', (17877, 17899), True, 'import numpy as np\n'), ((33956, 33991), 'numpy.convolve', 'np.convolve', (['s', 'window'], {'mode': '"""same"""'}), "(s, window, mode='same')\n", (33967, 33991), True, 'import numpy as np\n'), ((34511, 34541), 'numpy.zeros_like', 'np.zeros_like', (['self.readout_iq'], {}), '(self.readout_iq)\n', (34524, 34541), True, 'import numpy as np\n'), ((35119, 35198), 'numpy.min', 'np.min', (['[self.wave_xy_delays[:self.n_qubit], self.wave_z_delays[:self.n_qubit]]'], {}), '([self.wave_xy_delays[:self.n_qubit], self.wave_z_delays[:self.n_qubit]])\n', (35125, 35198), True, 'import numpy as np\n'), ((35334, 35413), 'numpy.max', 'np.max', (['[self.wave_xy_delays[:self.n_qubit], self.wave_z_delays[:self.n_qubit]]'], {}), '([self.wave_xy_delays[:self.n_qubit], self.wave_z_delays[:self.n_qubit]])\n', (35340, 35413), True, 'import numpy as np\n'), ((37333, 37374), 'numpy.zeros', 'np.zeros', (['self.n_pts_readout'], {'dtype': 'float'}), '(self.n_pts_readout, dtype=float)\n', (37341, 37374), True, 'import numpy as np\n'), ((37401, 37447), 'numpy.zeros', 'np.zeros', (['self.n_pts_readout'], {'dtype': 'np.complex'}), '(self.n_pts_readout, dtype=np.complex)\n', (37409, 37447), True, 'import numpy as np\n'), ((54003, 54025), 'numpy.zeros', 'np.zeros', (['self.n_qubit'], {}), '(self.n_qubit)\n', (54011, 54025), True, 'import numpy as np\n'), ((54055, 54077), 'numpy.zeros', 'np.zeros', (['self.n_qubit'], {}), '(self.n_qubit)\n', (54063, 54077), True, 'import numpy as np\n'), ((6211, 6255), 'gates.IdentityGate', 'gates.IdentityGate', ([], {'width': 'self.readout_delay'}), '(width=self.readout_delay)\n', (6229, 6255), False, 'import gates\n'), ((6331, 6350), 'gates.ReadoutGate', 'gates.ReadoutGate', ([], {}), '()\n', (6348, 6350), False, 'import gates\n'), ((16103, 16117), 'qubits.Qubit', 'qubits.Qubit', ([], {}), '()\n', (16115, 16117), False, 'import qubits\n'), ((16207, 16236), 'numpy.zeros', 'np.zeros', (['(0)'], {'dtype': 'np.complex'}), '(0, dtype=np.complex)\n', (16215, 16236), True, 'import numpy as np\n'), ((16346, 16357), 'numpy.zeros', 'np.zeros', (['(0)'], {}), '(0)\n', (16354, 16357), True, 'import numpy as np\n'), ((16415, 16426), 'numpy.zeros', 'np.zeros', (['(0)'], {}), '(0)\n', (16423, 16426), True, 'import numpy as np\n'), ((17100, 17130), 'predistortion.Predistortion', 'predistortion.Predistortion', (['n'], {}), '(n)\n', (17127, 17130), False, 'import predistortion\n'), ((17217, 17258), 'predistortion.ExponentialPredistortion', 'predistortion.ExponentialPredistortion', (['n'], {}), '(n)\n', (17255, 17258), False, 'import predistortion\n'), ((19695, 19734), 'numpy.sum', 'np.sum', (['self._wave_xy[:self.n_qubit]', '(0)'], {}), '(self._wave_xy[:self.n_qubit], 0)\n', (19701, 19734), True, 'import numpy as np\n'), ((22141, 22181), 'numpy.max', 'np.max', (['[x.duration for x in step.gates]'], {}), '([x.duration for x in step.gates])\n', (22147, 22181), True, 'import numpy as np\n'), ((32788, 32801), 'numpy.ones', 'np.ones', (['size'], {}), '(size)\n', (32795, 32801), True, 'import numpy as np\n'), ((34637, 34725), 'numpy.min', 'np.min', (['(start + self.readout_trig_duration * self.sample_rate, self.n_pts_readout)'], {}), '((start + self.readout_trig_duration * self.sample_rate, self.\n n_pts_readout))\n', (34643, 34725), True, 'import numpy as np\n'), ((36369, 36407), 'numpy.zeros', 'np.zeros', (['self.n_pts'], {'dtype': 'np.complex'}), '(self.n_pts, dtype=np.complex)\n', (36377, 36407), True, 'import numpy as np\n'), ((36499, 36532), 'numpy.zeros', 'np.zeros', (['self.n_pts'], {'dtype': 'float'}), '(self.n_pts, dtype=float)\n', (36507, 36532), True, 'import numpy as np\n'), ((36566, 36599), 'numpy.zeros', 'np.zeros', (['self.n_pts'], {'dtype': 'float'}), '(self.n_pts, dtype=float)\n', (36574, 36599), True, 'import numpy as np\n'), ((36649, 36670), 'numpy.arange', 'np.arange', (['self.n_pts'], {}), '(self.n_pts)\n', (36658, 36670), True, 'import numpy as np\n'), ((52464, 52577), 'numpy.array', 'np.array', (['[0.884706, 0.2043214, 0.9426104, 0.6947334, 0.8752361, 0.2246747, 0.6503154,\n 0.7305004, 0.1309068]'], {}), '([0.884706, 0.2043214, 0.9426104, 0.6947334, 0.8752361, 0.2246747, \n 0.6503154, 0.7305004, 0.1309068])\n', (52472, 52577), True, 'import numpy as np\n'), ((29150, 29168), 'numpy.ones_like', 'np.ones_like', (['wave'], {}), '(wave)\n', (29162, 29168), True, 'import numpy as np\n'), ((29730, 29743), 'numpy.diff', 'np.diff', (['gate'], {}), '(gate)\n', (29737, 29743), True, 'import numpy as np\n'), ((30227, 30240), 'numpy.diff', 'np.diff', (['gate'], {}), '(gate)\n', (30234, 30240), True, 'import numpy as np\n'), ((34386, 34403), 'numpy.round', 'np.round', (['(t / acc)'], {}), '(t / acc)\n', (34394, 34403), True, 'import numpy as np\n'), ((29654, 29700), 'numpy.round', 'np.round', (['(self.gate_overlap * self.sample_rate)'], {}), '(self.gate_overlap * self.sample_rate)\n', (29662, 29700), True, 'import numpy as np\n'), ((29770, 29797), 'numpy.nonzero', 'np.nonzero', (['(diff_gate > 0.0)'], {}), '(diff_gate > 0.0)\n', (29780, 29797), True, 'import numpy as np\n'), ((29829, 29856), 'numpy.nonzero', 'np.nonzero', (['(diff_gate < 0.0)'], {}), '(diff_gate < 0.0)\n', (29839, 29856), True, 'import numpy as np\n'), ((30267, 30294), 'numpy.nonzero', 'np.nonzero', (['(diff_gate > 0.0)'], {}), '(diff_gate > 0.0)\n', (30277, 30294), True, 'import numpy as np\n'), ((30326, 30353), 'numpy.nonzero', 'np.nonzero', (['(diff_gate < 0.0)'], {}), '(diff_gate < 0.0)\n', (30336, 30353), True, 'import numpy as np\n'), ((30690, 30754), 'numpy.nonzero', 'np.nonzero', (['(len_down < self.minimal_gate_time * self.sample_rate)'], {}), '(len_down < self.minimal_gate_time * self.sample_rate)\n', (30700, 30754), True, 'import numpy as np\n'), ((30957, 31001), 'numpy.round', 'np.round', (['(self.gate_delay * self.sample_rate)'], {}), '(self.gate_delay * self.sample_rate)\n', (30965, 31001), True, 'import numpy as np\n'), ((33033, 33054), 'numpy.blackman', 'np.blackman', (['(size + 2)'], {}), '(size + 2)\n', (33044, 33054), True, 'import numpy as np\n'), ((35726, 35771), 'numpy.max', 'np.max', (['[s.t_end for s in self.sequence_list]'], {}), '([s.t_end for s in self.sequence_list])\n', (35732, 35771), True, 'import numpy as np\n'), ((35936, 35987), 'numpy.max', 'np.max', (['[s.t_end for s in self.sequence_list[0:-1]]'], {}), '([s.t_end for s in self.sequence_list[0:-1]])\n', (35942, 35987), True, 'import numpy as np\n'), ((36138, 36169), 'numpy.ceil', 'np.ceil', (['(end * self.sample_rate)'], {}), '(end * self.sample_rate)\n', (36145, 36169), True, 'import numpy as np\n'), ((37026, 37122), 'numpy.ceil', 'np.ceil', (['(self.sample_rate * (self.sequence_list[-1].t_end - self.sequence_list[-1].\n t_start))'], {}), '(self.sample_rate * (self.sequence_list[-1].t_end - self.\n sequence_list[-1].t_start))\n', (37033, 37122), True, 'import numpy as np\n'), ((28616, 28635), 'copy.copy', 'copy.copy', (['gate_obj'], {}), '(gate_obj)\n', (28625, 28635), False, 'import copy\n'), ((29554, 29566), 'numpy.abs', 'np.abs', (['wave'], {}), '(wave)\n', (29560, 29566), True, 'import numpy as np\n'), ((33129, 33145), 'numpy.hamming', 'np.hamming', (['size'], {}), '(size)\n', (33139, 33145), True, 'import numpy as np\n'), ((31127, 31147), 'numpy.zeros', 'np.zeros', (['(n_shift,)'], {}), '((n_shift,))\n', (31135, 31147), True, 'import numpy as np\n'), ((33196, 33216), 'numpy.hanning', 'np.hanning', (['(size + 2)'], {}), '(size + 2)\n', (33206, 33216), True, 'import numpy as np\n'), ((34559, 34582), 'numpy.abs', 'np.abs', (['self.readout_iq'], {}), '(self.readout_iq)\n', (34565, 34582), True, 'import numpy as np\n'), ((41886, 41920), 'numpy.floor', 'np.floor', (['(start * self.sample_rate)'], {}), '(start * self.sample_rate)\n', (41894, 41920), True, 'import numpy as np\n'), ((41954, 41985), 'numpy.ceil', 'np.ceil', (['(end * self.sample_rate)'], {}), '(end * self.sample_rate)\n', (41961, 41985), True, 'import numpy as np\n'), ((31217, 31237), 'numpy.zeros', 'np.zeros', (['(n_shift,)'], {}), '((n_shift,))\n', (31225, 31237), True, 'import numpy as np\n'), ((33290, 33318), 'numpy.kaiser', 'np.kaiser', (['size', 'kaiser_beta'], {}), '(size, kaiser_beta)\n', (33299, 33318), True, 'import numpy as np\n'), ((40450, 40484), 'numpy.floor', 'np.floor', (['(start * self.sample_rate)'], {}), '(start * self.sample_rate)\n', (40458, 40484), True, 'import numpy as np\n'), ((40555, 40586), 'numpy.ceil', 'np.ceil', (['(end * self.sample_rate)'], {}), '(end * self.sample_rate)\n', (40562, 40586), True, 'import numpy as np\n')]
# # @file plotter.py # @package openmoc.plotter # @brief The plotter module provides utility functions to plot data from # OpenMOCs C++ classes, in particular, the geomery, including Material, # Cells and flat source regions, and fluxes and pin powers. # @author <NAME> (<EMAIL>) # @date March 10, 2013 import os import sys import numpy as np import numpy.random import matplotlib # force headless backend, or set 'backend' to 'Agg' # in your ~/.matplotlib/matplotlibrc matplotlib.use('Agg') import matplotlib.pyplot as plt import matplotlib.colors as colors import matplotlib.cm as cmx import openmoc # For Python 2.X.X if (sys.version_info[0] == 2): from log import * from process import * # For Python 3.X.X else: from openmoc.log import * from openmoc.process import * # Force non-interactive mode, or set 'interactive' to False # in your ~/.matplotlib/matplotlibrc plt.ioff() ## A static variable for the output directory in which to save plots subdirectory = "/plots/" TINY_MOVE = openmoc.TINY_MOVE ## # @brief Plots the characteristic tracks from an OpenMOC simulation. # @details This method requires that Tracks have been generated by a # TrackGenerator object. A user may invoke this function from # an OpenMOC Python file as follows: # # @code # openmoc.plotter.plot_tracks(track_generator) # @endcode # # @param track_generator the TrackGenerator which has generated Tracks def plot_tracks(track_generator): global subdirectory directory = openmoc.get_output_directory() + subdirectory # Make directory if it does not exist if not os.path.exists(directory): os.makedirs(directory) # Error checking if not 'TrackGenerator' in str(type(track_generator)): py_printf('ERROR', 'Unable to plot Tracks since %s was input rather ' + \ 'than a TrackGenerator', str(type(track_generator))) if not track_generator.containsTracks(): py_printf('ERROR', 'Unable to plot Tracks since the track ' + \ 'generator has not yet generated tracks') py_printf('NORMAL', 'Plotting the tracks...') # Retrieve data from TrackGenerator vals_per_track = openmoc.NUM_VALUES_PER_RETRIEVED_TRACK num_azim = track_generator.getNumAzim() spacing = track_generator.getTrackSpacing() num_tracks = track_generator.getNumTracks() coords = track_generator.retrieveTrackCoords(num_tracks*vals_per_track) # Convert data to NumPy arrays coords = np.array(coords) x = coords[0::vals_per_track/2] y = coords[1::vals_per_track/2] # Make figure of line segments for each Track fig = plt.figure() for i in range(num_tracks): plt.plot([x[i*2], x[i*2+1]], [y[i*2], y[i*2+1]], 'b-') plt.xlim([x.min(), x.max()]) plt.ylim([y.min(), y.max()]) title = 'Tracks for ' + str(num_azim) + ' angles and ' + str(spacing) + \ ' cm spacing' plt.title(title) filename = directory + 'tracks-' + str(num_azim) + '-angles-' + \ str(spacing) + '-spacing.png' fig.savefig(filename, bbox_inches='tight') plt.close(fig) ## # @brief Plots the characteristic Track segments from an OpenMOC simulation. # @details This method requires that tracks have been generated by a # TrackGenerator object. Each segment is colored by the ID of the # unique flat flat source region it is within. A user may invoke # this function from an OpenMOC Python file as follows: # # @code # openmoc.plotter.plot_segments(track_generator) # @endcode # # @param track_generator the TrackGenerator which has generated Tracks def plot_segments(track_generator): global subdirectory directory = openmoc.get_output_directory() + subdirectory # Make directory if it does not exist if not os.path.exists(directory): os.makedirs(directory) # Error checking if not 'TrackGenerator' in str(type(track_generator)): py_printf('ERROR', 'Unable to plot Track segments since %s was input ' + \ 'rather than a TrackGenerator', str(type(track_generator))) if not track_generator.containsTracks(): py_printf('ERROR', 'Unable to plot Track segments since the ' + \ 'TrackGenerator has not yet generated Tracks.') py_printf('NORMAL', 'Plotting the track segments...') # Retrieve data from TrackGenerator vals_per_segment = openmoc.NUM_VALUES_PER_RETRIEVED_SEGMENT num_azim = track_generator.getNumAzim() spacing = track_generator.getTrackSpacing() num_segments = track_generator.getNumSegments() num_fsrs = track_generator.getGeometry().getNumFSRs() coords = track_generator.retrieveSegmentCoords(num_segments*vals_per_segment) # Convert data to NumPy arrays coords = np.array(coords) x = numpy.zeros(num_segments*2) y = numpy.zeros(num_segments*2) z = numpy.zeros(num_segments*2) fsrs = numpy.zeros(num_segments) for i in range(num_segments): fsrs[i] = coords[i*vals_per_segment] x[i*2] = coords[i*vals_per_segment+1] y[i*2] = coords[i*vals_per_segment+2] z[i*2] = coords[i*vals_per_segment+3] x[i*2+1] = coords[i*vals_per_segment+4] y[i*2+1] = coords[i*vals_per_segment+5] z[i*2+1] = coords[i*vals_per_segment+6] # Create array of equally spaced randomized floats as a color map for plots # Seed the NumPy random number generator to ensure reproducible color maps numpy.random.seed(1) color_map = np.linspace(0., 1., num_fsrs, endpoint=False) numpy.random.shuffle(color_map) # Make figure of line segments for each track fig = plt.figure() for i in range(num_segments): # Create a color map corresponding to FSR IDs jet = cm = plt.get_cmap('jet') cNorm = colors.Normalize(vmin=0, vmax=max(color_map)) scalarMap = cmx.ScalarMappable(norm=cNorm) color = scalarMap.to_rgba(color_map[fsrs[i] % num_fsrs]) plt.plot([x[i*2], x[i*2+1]], [y[i*2], y[i*2+1]], c=color) plt.xlim([x.min(), x.max()]) plt.ylim([y.min(), y.max()]) suptitle = 'Segments for ' + str(num_azim) + ' angles, and ' + str(spacing) + \ ' cm spacing' title = 'z = ' + str(z[0]) plt.suptitle(suptitle) plt.title(title) filename = directory + 'segments-' + str(num_azim) + '-angles-' + \ str(spacing) + '-spacing-z-' + str(z[0]) + '.png' fig.savefig(filename, bbox_inches='tight') plt.close(fig) ## # @brief This method takes in a Geometry object and plots a color-coded 2D # surface plot representing the Materials in the Geometry. # @details The Geometry object must be initialized with Materials, Cells, # Universes and lattices before being passed into this method. A user # may invoke this function from an OpenMOC Python file as follows: # # @code # openmoc.plotter.plot_materials(geometry) # @endcode # # @param geometry a geometry object which has been initialized with Materials, # Cells, Universes and Lattices # @param gridsize an optional number of grid cells for the plot # @param xlim optional list/tuple of the minimim/maximum x-coordinates # @param ylim optional list/tuple of the minimim/maximum y-coordinates # @param zcoord optional the z coordinate (default is 0.0) def plot_materials(geometry, gridsize=250, xlim=None, ylim=None, zcoord=None): global subdirectory directory = openmoc.get_output_directory() + subdirectory # Make directory if it does not exist if not os.path.exists(directory): os.makedirs(directory) # Error checking if not 'Geometry' in str(type(geometry)): py_printf('ERROR', 'Unable to plot the Materials since ' + \ 'input was not a geometry class object') if not is_integer(gridsize): py_printf('ERROR', 'Unable to plot the Materials since ' + \ 'the gridsize %d is not an integer', gridsize) if gridsize <= 0: py_printf('ERROR', 'Unable to plot the Materials ' + \ 'with a negative gridsize (%d)', gridsize) # If zcoord was not set, set the zcoord to 0.0 if zcoord is None: zcoord = 0.0 # Check z-coord check_zcoord(geometry, zcoord) py_printf('NORMAL', 'Plotting the materials...') # Initialize a NumPy array for the surface colors surface = numpy.zeros((gridsize, gridsize), numpy.int64) # Retrieve the pixel coordinates coords = get_pixel_coords(geometry, gridsize, xlim, ylim) # Find the <aterial IDs for each grid point for i in range(gridsize): for j in range(gridsize): x = coords['x'][i] y = coords['y'][j] point = openmoc.LocalCoords(x, y, zcoord) point.setUniverse(geometry.getRootUniverse()) cell = geometry.findCellContainingCoords(point) # If we did not find a Cell for this region, use a -1 "bad" number color if cell is None: surface[j][i] = -1 else: surface[j][i] = cell.getFillMaterial().getId() # Get the number of Materials in the Geometry materials = geometry.getAllMaterials() num_materials = len(materials) # Create array of all Material IDs and randomly (but reproducibly) permute it material_ids = [material_id for material_id in materials] numpy.random.seed(1) numpy.random.shuffle(material_ids) # Create an array of the colors (array indices) for each value in the surface colors = np.zeros((gridsize, gridsize)) for material_id in np.unique(surface): index = material_ids.index(material_id) indices = np.where(surface == material_id) colors[indices] = index # Make Matplotlib color "bad" numbers (ie, NaN, INF) with transparent pixels cmap = plt.get_cmap('spectral') cmap.set_bad(alpha=0.0) # Plot a 2D color map of the Materials fig = plt.figure() colors = np.flipud(colors) plt.imshow(colors, extent=coords['bounds'], interpolation='nearest', cmap=cmap, vmin=0, vmax=num_materials) plt.suptitle('Materials') plt.title('z = ' + str(zcoord)) filename = directory + 'materials-z-' + str(zcoord) + '.png' fig.savefig(filename, bbox_inches='tight') plt.close(fig) ## # @brief This method takes in a Geometry object and plots a color-coded 2D # surface plot representing the Cells in the Geometry. # @details The geometry object must be initialized with Materials, Cells, # Universes and Lattices before being passed into this method. A user # may invoke this function from an OpenMOC Python file as follows: # # @code # openmoc.plotter.plot_cells(geometry) # @endcode # # @param geometry a Geometry object which has been initialized with Materials, # Cells, Universes and Lattices # @param gridsize an optional number of grid cells for the plot # @param xlim optional list/tuple of the minimim/maximum x-coordinates # @param ylim optional list/tuple of the minimim/maximum y-coordinates # @param zcoord optional the z coordinate (default is 0.0) def plot_cells(geometry, gridsize=250, xlim=None, ylim=None, zcoord=None): global subdirectory directory = openmoc.get_output_directory() + subdirectory # Make directory if it does not exist if not os.path.exists(directory): os.makedirs(directory) # Error checking if not 'Geometry' in str(type(geometry)): py_printf('ERROR', 'Unable to plot the Cells since ' + \ 'input was not a Geometry class object') if not is_integer(gridsize): py_printf('ERROR', 'Unable to plot the Cells since ' + \ 'the gridsize %d is not an integer', gridsize) if gridsize <= 0: py_printf('ERROR', 'Unable to plot the Cells ' + \ 'with a negative gridsize (%d)', gridsize) if zcoord is None: zcoord = 0.0 # Check z-coord check_zcoord(geometry, zcoord) py_printf('NORMAL', 'Plotting the cells...') # Initialize a NumPy array for the surface colors surface = np.zeros((gridsize, gridsize), numpy.int64) # Retrieve the pixel coordinates coords = get_pixel_coords(geometry, gridsize, xlim, ylim) # Find the Cell IDs for each grid point for i in range(gridsize): for j in range(gridsize): x = coords['x'][i] y = coords['y'][j] point = openmoc.LocalCoords(x, y, zcoord) point.setUniverse(geometry.getRootUniverse()) cell = geometry.findCellContainingCoords(point) # If we did not find a Cell for this region, use a -1 "bad" number color if cell is None: surface[j][i] = -1 else: surface[j][i] = cell.getId() # Get the number of Material Cells in the Geometry material_cells = geometry.getAllMaterialCells() num_cells = len(material_cells) # Create array of all Cell IDs and randomly (but reproducibly) permute it cell_ids = [cell_id for cell_id in material_cells] numpy.random.seed(1) numpy.random.shuffle(cell_ids) # Create an array of the colors (array indices) for each value in the surface colors = np.zeros((gridsize, gridsize)) for cell_id in np.unique(surface): index = cell_ids.index(cell_id) indices = np.where(surface == cell_id) colors[indices] = index # Make Matplotlib color "bad" numbers (ie, NaN, INF) with transparent pixels cmap = plt.get_cmap('spectral') cmap.set_bad(alpha=0.0) # Plot a 2D color map of the Cells fig = plt.figure() colors = np.flipud(colors) plt.imshow(colors, extent=coords['bounds'], interpolation='nearest', cmap=cmap, vmin=0, vmax=num_cells) plt.suptitle('Cells') plt.title('z = ' + str(zcoord)) filename = directory + 'cells-z-' + str(zcoord) + '.png' fig.savefig(filename, bbox_inches='tight') plt.close(fig) ## # @brief This method takes in a Geometry object and plots a color-coded 2D # surface plot representing the flat source regions in the Geometry. # The FSR centroids are plotted as black circles on top of the FSRs if # the centroids boolean is set to True. # @details The Geometry object must be initialized with Materials, Cells, # Universes and Lattices before being passed into this method. A user # may invoke this function from an OpenMOC Python file as follows: # # @code # openmoc.plotter.plot_flat_source_regions(geometry) # @endcode # # @param geometry a geometry object which has been initialized with Materials, # Cells, Universes and Lattices # @param gridsize an optional number of grid cells for the plot # @param xlim optional list/tuple of the minimim/maximum x-coordinates # @param ylim optional list/tuple of the minimim/maximum y-coordinates # @param centroids optional boolean to plot the FSR centroids # @param marker_type optional string to set the centroids marker type # @param marker_size optional int/float to set the centroids marker size def plot_flat_source_regions(geometry, gridsize=250, xlim=None, ylim=None, \ centroids=False, marker_type='o', marker_size=2): global subdirectory directory = openmoc.get_output_directory() + subdirectory # Make directory if it does not exist if not os.path.exists(directory): os.makedirs(directory) # Error checking if not 'Geometry' in str(type(geometry)): py_printf('ERROR', 'Unable to plot the flat source regions since ' + \ 'input was not a geometry class object') if not is_integer(gridsize): py_printf('ERROR', 'Unable to plot the flat source regions since ' + \ 'the gridsize %d is not an integer', gridsize) if gridsize <= 0: py_printf('ERROR', 'Unable to plot the flat source regions ' + \ 'with a negative gridsize (%d)', gridsize) if not isinstance(centroids, bool): py_printf('ERROR', 'Unable to plot the flat source regions since ' + \ 'centroids is not a boolean') if not isinstance(marker_type, str): py_printf('ERROR', 'Unable to plot the flat source regions since ' + \ 'marker_type is a string') if marker_type not in matplotlib.markers.MarkerStyle().markers.keys(): py_printf('ERROR', 'Unable to plot the flat source regions since ' + \ 'marker_type is not a valid marker (%d)', marker_type) if not is_float(marker_size) and not is_integer(marker_size): py_printf('ERROR', 'Unable to plot the flat source regions since ' + \ 'marker_size is not an int or float', marker_size) if marker_size <= 0: py_printf('ERROR', 'Unable to plot the flat source regions ' + \ 'with a negative marker_size (%d)', marker_size) py_printf('NORMAL', 'Plotting the flat source regions...') # Get the number of flat source regions num_fsrs = geometry.getNumFSRs() if num_fsrs == 0: py_printf('ERROR', 'Unable to plot the flat source regions ' + \ 'since no tracks have been generated.') # Initialize a NumPy array for the surface colors surface = numpy.zeros((gridsize, gridsize), dtype=np.int64) # Retrieve the pixel coordinates coords = get_pixel_coords(geometry, gridsize, xlim, ylim) # Get the Geometry's z-coord zcoord = geometry.getFSRPoint(0).getZ() # Find the flat source region IDs for each grid point for i in range(gridsize): for j in range(gridsize): x = coords['x'][i] y = coords['y'][j] local_coords = openmoc.LocalCoords(x, y, zcoord) local_coords.setUniverse(geometry.getRootUniverse()) geometry.findCellContainingCoords(local_coords) fsr_id = geometry.getFSRId(local_coords) # If we did not find a region for this region, use a -1 "bad" number color if fsr_id is None: surface[j][i] = -1 else: surface[j][i] = fsr_id del local_coords # Replace each Cell ID with a random (but reproducible) color ID # NOTE: This color coding scheme only works for FSRs and CMFD cells and not # for Materials and Cells. The reason is that FSRs and CMFD cells are by # definition a sequence of consecutive, monotonically increasing integers. # Material and Cell IDs however may be any sequence of positive integers. all_ids = np.arange(num_fsrs, dtype=np.int64) id_colors = np.arange(num_fsrs, dtype=np.int64) numpy.random.seed(1) np.random.shuffle(id_colors) ids_to_colors = np.arange(num_fsrs, dtype=np.int64) ids_to_colors[all_ids] = id_colors colors = ids_to_colors.take(surface) # Make Matplotlib color "bad" numbers (ie, NaN, INF) with transparent pixels cmap = plt.get_cmap('spectral') cmap.set_bad(alpha=0.0) # Plot a 2D color map of the flat source regions fig = plt.figure() colors = np.flipud(colors) plt.imshow(colors, extent=coords['bounds'], interpolation='nearest', cmap=cmap, vmin=0, vmax=num_fsrs) # Plot centroids on top of 2D FSR color map if centroids: centroids_x = [] centroids_y = [] for r in range(geometry.getNumFSRs()): point = geometry.getFSRCentroid(r) centroids_x.append(point.getX()) centroids_y.append(point.getY()) plt.scatter(centroids_x, centroids_y, color='k', marker=marker_type, \ s=marker_size) # Matplotlib likes to add a buffer around scatter plots, so we will # manually set the plot bounds plt.xlim(min(coords['x']), max(coords['x'])) plt.ylim(min(coords['y']), max(coords['y'])) # Set the plot title and save the figure plt.suptitle('Flat Source Regions') plt.title('z = ' + str(zcoord)) filename = directory + 'flat-source-regions-z-' + str(zcoord) + '.png' fig.savefig(filename, bbox_inches='tight') plt.close(fig) ## # @brief This method takes in a Geometry and Cmfd object and plots a # color-coded 2D surface plot representing the CMFD cells in a geometry. # @details The Geometry object must be initialized with Materials, Cells, # Universes and Lattices before being passed into this method. # Plotting the CMFD cells requires that segments must have been # created for the geometry and FSR IDs assigned to regions. A user # may invoke this function from an OpenMOC Python file as follows: # # @code # openmoc.plotter.plot_cmfd_cells(geometry, cmfd) # @endcode # # @param geometry a geometry object which has been initialized with Materials, # Cells, Universes and Lattices. Segments must have been created or # extracted from a file. # @param cmfd a Cmfd object which has been used with the geometry in # generating segments. The Cmfd object must have the _overlay_mesh # flag set to true; otherwise, the map linking FSR IDs to CMFD cells # would not have been created. # @param gridsize an optional number of grid cells for the plot # @param xlim optional list/tuple of the minimim/maximum x-coordinates # @param ylim optional list/tuple of the minimim/maximum y-coordinates def plot_cmfd_cells(geometry, cmfd, gridsize=250, xlim=None, ylim=None): global subdirectory directory = openmoc.get_output_directory() + subdirectory # Make directory if it does not exist if not os.path.exists(directory): os.makedirs(directory) # Error checking if not 'Geometry' in str(type(geometry)): py_printf('ERROR', 'Unable to plot the CMFD cells since ' + \ 'input was not a geometry class object') if not 'Cmfd' in str(type(cmfd)): py_printf('ERROR', 'Unable to plot the CMFD cells since ' + \ 'input was not a CMFD class object') if not is_integer(gridsize): py_printf('ERROR', 'Unable to plot the CMFD cells since ' + \ 'the gridsize %s is not an integer', str(gridsize)) if gridsize <= 0: py_printf('ERROR', 'Unable to plot the CMFD cells ' + \ 'with a negative gridsize (%d)', gridsize) py_printf('NORMAL', 'Plotting the CMFD cells...') # Initialize a NumPy array for the surface colors surface = numpy.zeros((gridsize, gridsize), numpy.int64) # Retrieve the pixel coordinates coords = get_pixel_coords(geometry, gridsize, xlim, ylim) # Get the Geometry's z-coord zcoord = geometry.getFSRPoint(0).getZ() # Find the CMFD cell ID for each grid point for i in range(gridsize): for j in range(gridsize): x = coords['x'][i] y = coords['y'][j] local_coords = openmoc.LocalCoords(x, y, zcoord) local_coords.setUniverse(geometry.getRootUniverse()) geometry.findCellContainingCoords(local_coords) fsr_id = geometry.getFSRId(local_coords) cell_id = cmfd.convertFSRIdToCmfdCell(fsr_id) # If we did not find a cell for this point, use a -1 "bad" number color if np.isnan(cell_id): surface[j][i] = -1 else: surface[j][i] = cell_id # Get the number of CMFD cells num_cmfd_cells = cmfd.getNumCells() # Replace each Cell ID with a random (but reproducible) color ID # NOTE: This color coding scheme only works for FSRs and CMFD cells and not # for Materials and Cells. The reason is that FSRs and CMFD cells are by # definition a sequence of consecutive, monotonically increasing integers. # Material and Cell IDs however may be any sequence of positive integers. all_ids = np.arange(num_cmfd_cells, dtype=np.int64) id_colors = np.arange(num_cmfd_cells, dtype=np.int64) numpy.random.seed(1) np.random.shuffle(id_colors) ids_to_colors = np.arange(num_cmfd_cells, dtype=np.int64) ids_to_colors[all_ids] = id_colors colors = ids_to_colors.take(surface) # Make Matplotlib color "bad" numbers (ie, NaN, INF) with transparent pixels cmap = plt.get_cmap('spectral') cmap.set_bad(alpha=0.0) # Plot a 2D color map of the CMFD cells fig = plt.figure() colors = np.flipud(colors) plt.imshow(colors, extent=coords['bounds'], interpolation='nearest', cmap=cmap) plt.title('CMFD cells') filename = directory + 'cmfd-cells.png' fig.savefig(filename, bbox_inches='tight') ## # @brief This method takes in a Solver object and plots a color-coded 2D # surface plot representing the flat source region scalar fluxes. # @details The Solver must have converged the flat source sources prior to # calling this routine. A user may invoke this function from an # OpenMOC Python file as follows: # # @code # openmoc.plotter.plot_spatial_fluxes(solver, energy_groups=[1,7]) # @endcode # # @param solver a Solver object that has converged the source for the Geometry # @param energy_groups a Python list of integer energy groups to plot # @param gridsize an optional number of grid cells for the plot # @param xlim optional list/tuple of the minimim/maximum x-coordinates # @param ylim optional list/tuple of the minimim/maximum y-coordinates def plot_spatial_fluxes(solver, energy_groups=[1], gridsize=250, xlim=None, ylim=None): global subdirectory directory = openmoc.get_output_directory() + subdirectory # Make directory if it does not exist if not os.path.exists(directory): os.makedirs(directory) if not 'Solver' in str(type(solver)): py_printf('ERROR', 'Unable to plot the FSR flux since the ' + \ 'input did not contain a solver class object') geometry = solver.getGeometry() num_groups = geometry.getNumEnergyGroups() if isinstance(energy_groups, (list, tuple, np.ndarray)): for group in energy_groups: if not is_integer(group): py_printf('ERROR', 'Unable to plot the FSR flux since the ' + \ 'energy_groups contains %s which is not a number', str(group)) elif group <= 0: py_printf('ERROR', 'Unable to plot the FSR flux since the ' + \ 'energy_groups contains %d which is less than the ' + \ 'index for all energy groups', group) elif group > num_groups: py_printf('ERROR', 'Unable to plot the FSR flux since the ' + \ 'energy_groups contains %d which is greater than ' + \ 'the index for all energy groups', group) else: py_printf('ERROR', 'Unable to plot the FSR flux since the ' + \ 'energy_groups is not a Python tuple/list or NumPy array') if not is_integer(gridsize): py_printf('ERROR', 'Unable to plot the FSR flux since the ' + \ 'gridsize %s is not an integer', str(gridsize)) if gridsize <= 0: py_printf('ERROR', 'Unable to plot the FSR flux with a ' + \ 'negative gridsize (%d)', gridsize) py_printf('NORMAL', 'Plotting the FSR scalar fluxes...') # Initialize a numpy array for the groupwise scalar fluxes fluxes = numpy.zeros((len(energy_groups), gridsize, gridsize)) # Retrieve the pixel coordinates coords = get_pixel_coords(geometry, gridsize, xlim, ylim) # Get the Geometry's z-coord zcoord = geometry.getFSRPoint(0).getZ() for i in range(gridsize): for j in range(gridsize): # Find the flat source region IDs for each grid point x = coords['x'][i] y = coords['y'][j] point = openmoc.LocalCoords(x, y, zcoord) point.setUniverse(geometry.getRootUniverse()) geometry.findCellContainingCoords(point) fsr_id = geometry.getFSRId(point) # If we did not find a region for this region, use a -1 "bad" number color if np.isnan(fsr_id): fluxes[:,j,i] = -1 # Get the scalar flux for each energy group in this FSR else: for index, group in enumerate(energy_groups): fluxes[index,j,i] = solver.getFlux(fsr_id, group) # Loop over all energy group and create a plot for index, group in enumerate(energy_groups): # Plot a 2D color map of the flat source regions fig = plt.figure() plt.imshow(np.flipud(fluxes[index,:,:]), extent=coords['bounds']) plt.colorbar() plt.suptitle('FSR Scalar Flux (Group {0})'.format(group)) plt.title('z = ' + str(zcoord)) filename = directory + 'fsr-flux-group-' + str(group) + '-z-' + \ str(zcoord) + '.png' fig.savefig(filename, bbox_inches='tight') plt.close(fig) ## # @brief This method takes in a Solver object and plots the scalar # flux vs. energy for one or more flat source regions. # @details The Solver must have converged the flat source sources prior to # calling this routine. The routine will generate a step plot of the # flat flux across each energy group. # # An optional parameter for the energy group bounds may be input. # The group bounds should be input in increasing order of energy. # If group bounds are not specified, the routine will use equal # width steps for each energy group. # # A user may invoke this function from an OpenMOC Python file # as follows: # # @code # openmoc.plotter.plot_energy_fluxes(solver, fsrs=[1,5,20], # group_bounds=[0., 0.625, 2e7]) # @endcode # # @param solver a Solver object that has converged the source for the Geometry # @param fsrs the flat source region IDs of interest # @param group_bounds an optional Python list of the energy group bounds (eV) # @param norm a boolean indicating whether to normalize the flux # @param loglog boolean indicating whether to plot use a log-log scale def plot_energy_fluxes(solver, fsrs, group_bounds=None, norm=True, loglog=True): global subdirectory directory = openmoc.get_output_directory() + subdirectory # Make directory if it does not exist if not os.path.exists(directory): os.makedirs(directory) if not 'Solver' in str(type(solver)): py_printf('ERROR', 'Unable to plot the flux vs. energy ' + \ 'since input did not contain a Solver class object') geometry = solver.getGeometry() num_fsrs = geometry.getNumFSRs() num_groups = geometry.getNumEnergyGroups() if isinstance(fsrs, (tuple, list, np.ndarray)): for fsr in fsrs: if not is_integer(fsr): py_printf('ERROR', 'Unable to plot the flux vs. energy since ' + \ 'the fsrs contains %s which is not an int', str(fsr)) elif fsr < 0: py_printf('ERROR', 'Unable to plot the flux vs. energy since ' + \ 'the fsrs contains %d which is less than zero', fsr) elif fsr >= num_fsrs: py_printf('ERROR', 'Unable to plot the flux vs. energy since ' + \ 'the fsrs contains %d which is greater than the ' + \ 'total number of FSRs %d', fsr, num_fsrs) else: py_printf('ERROR', 'Unable to plot the flux vs. energy since ' + \ 'the fsrs is not a Python tuple, list or NumPy array') if isinstance(group_bounds, (tuple, list, np.ndarray)): if not all(low < up for low, up in zip(group_bounds, group_bounds[1:])): py_printf('ERROR', 'Unable to plot the flux vs. energy since the ' + \ 'energy group bounds are not monotonically increasing') elif len(group_bounds) != geometry.getNumEnergyGroups()+1: py_printf('ERROR', 'Unable to plot the flux vs. energy since the ' + \ 'group bounds does not correspond to %d groups', num_groups) for bound in group_bounds: if not is_integer(bound) and not is_float(bound): py_printf('ERROR', 'Unable to plot the flux vs. energy since the ' + \ 'group bounds contains %s which is not a number', str(fsr)) elif bound < 0: py_printf('ERROR', 'Unable to plot the flux vs. energy since the ' + \ 'group bounds contains %f which is less than zero', bound) elif group_bounds is None: group_bounds = np.arange(num_groups+1, dtype=np.int) loglog = False else: py_printf('ERROR', 'Unable to plot the flux vs. energy since ' + \ 'the group bounds is not a Python tuple, list or NumPy array') py_printf('NORMAL', 'Plotting the scalar fluxes vs. energy...') # Compute difference in energy bounds for each group group_deltas = np.ediff1d(group_bounds) group_bounds = np.flipud(group_bounds) group_deltas = np.flipud(group_deltas) # Iterate over all flat source regions for fsr in fsrs: # Allocate memory for an array of this FSR's fluxes fluxes = np.zeros(num_groups, dtype=np.float) # Extract the flux in each energy group for group in range(num_groups): fluxes[group] = solver.getFlux(fsr, group+1) # Normalize fluxes to the total integrated flux if norm: fluxes /= np.sum(group_deltas * fluxes) # Initialize a separate plot for this FSR's fluxes fig = plt.figure() # Draw horizontal/vertical lines on the plot for each energy group for group in range(num_groups): # Horizontal line if loglog: plt.loglog(group_bounds[group:group+2], [fluxes[group]]*2, linewidth=3, c='b', label='openmoc', linestyle='-') else: plt.plot(group_bounds[group:group+2], [fluxes[group]]*2, linewidth=3, c='b', label='openmoc', linestyle='-') # Vertical lines if group < num_groups - 1: if loglog: plt.loglog([group_bounds[group+1]]*2, fluxes[group:group+2], c='b', linestyle='--') else: plt.plot([group_bounds[group+1]]*2, fluxes[group:group+2], c='b', linestyle='--') plt.xlabel('Energy') plt.ylabel('Flux') plt.xlim((min(group_bounds), max(group_bounds))) plt.grid() plt.title('FSR {0} Flux ({1} groups)'.format(fsr, num_groups)) filename = directory + 'flux-fsr-' + str(fsr) + '.png' plt.savefig(filename, bbox_inches='tight') plt.close(fig) ## # @brief This method plots a color-coded 2D surface plot representing the # FSR fission rates in the Geometry. # @details The Solver must have converged the flat source sources prior to # calling this routine. A user may invoke this function from an # OpenMOC Python file as follows: # # @code # openmoc.plotter.plot_fission_rates(solver) # @endcode # # @param solver a Solver object that has converged the source for the Geometry # @param gridsize an optional number of grid cells for the plot # @param xlim optional list/tuple of the minimim/maximum x-coordinates # @param ylim optional list/tuple of the minimim/maximum y-coordinates def plot_fission_rates(solver, gridsize=250, xlim=None, ylim=None): global subdirectory directory = openmoc.get_output_directory() + subdirectory # Make directory if it does not exist if not os.path.exists(directory): os.makedirs(directory) if not 'Solver' in str(type(solver)): py_printf('ERROR', 'Unable to plot the fission rates ' + \ 'since input did not contain a solver class object') if not is_integer(gridsize): py_printf('ERROR', 'Unable to plot the fission rates ' + \ 'since the gridsize %s is not an integer', str(gridsize)) if gridsize <= 0: py_printf('ERROR', 'Unable to plot the fission rates ' + \ 'with a negative gridsize (%d)', gridsize) py_printf('NORMAL', 'Plotting the flat source region fission rates...') # Get geometry geometry = solver.getGeometry() # Compute the volume-weighted fission rates for each FSR fission_rates = solver.computeFSRFissionRates(geometry.getNumFSRs()) # Initialize a numpy array of fission rates surface = numpy.zeros((gridsize, gridsize)) # Retrieve the pixel coordinates coords = get_pixel_coords(geometry, gridsize, xlim, ylim) # Get the Geometry's z-coord zcoord = geometry.getFSRPoint(0).getZ() for i in range(gridsize): for j in range(gridsize): # Find the flat source region IDs for each grid point x = coords['y'][i] y = coords['x'][j] point = openmoc.LocalCoords(x, y, zcoord) point.setUniverse(geometry.getRootUniverse()) geometry.findCellContainingCoords(point) fsr_id = geometry.getFSRId(point) # If we did not find a region for this region, use a -1 "bad" number color if np.isnan(fsr_id): surface[j][i] = -1 # Get the fission rate in this FSR else: surface[j][i] = fission_rates[fsr_id] # Plot a 2D color map of the flat source regions fission rates fig = plt.figure() plt.imshow(np.flipud(surface), extent=coords['bounds']) plt.colorbar() plt.suptitle('Flat Source Region Fission Rates') plt.title('z = ' + str(zcoord)) filename = directory + 'fission-rates-z-' + str(zcoord) + '.png' fig.savefig(filename, bbox_inches='tight') ## # @brief This method plots a color-coded 2D surface plot representing the # FSR scalar fluxes for various eigenmodes from an IRAMSolver. # @details The IRAMSolver must have computed the eigenmodes prior to # calling this routine. A user may invoke this function from # an OpenMOC Python file as follows: # # @code # openmoc.plotter.plot_eigenmode_fluxes(iramsolver, energy_groups=[1,7]) # @endcode # # @param iramsolver an IRAMSolver object that has computed the eigenmodes # @param eigenmodes a Python list of integer eigenmodes to plot # @param energy_groups a Python list of integer energy groups to plot # @param gridsize an optional number of grid cells for the plot # @param xlim optional list/tuple of the minimim/maximum x-coordinates # @param ylim optional list/tuple of the minimim/maximum y-coordinates def plot_eigenmode_fluxes(iramsolver, eigenmodes=[], energy_groups=[1], gridsize=250, xlim=None, ylim=None): global subdirectory directory = openmoc.get_output_directory() + subdirectory # Make directory if it does not exist if not os.path.exists(directory): os.makedirs(directory) if not 'IRAMSolver' in str(type(iramsolver)): py_printf('ERROR', 'Unable to plot the eigenmode fluxes ' + \ 'since input did not contain an IRAMSolver class object') if isinstance(eigenmodes, (list, tuple, np.ndarray)): # If eigenmodes parameters is empty list, plot all eigenmodes if len(eigenmodes) == 0: eigenmodes = np.arange(1, iramsolver._num_modes+1) for mode in eigenmodes: if not is_integer(mode): py_printf('ERROR', 'Unable to plot the eigenmode flux since the ' + \ 'eigenmodes contains %s which is not a number', str(mode)) elif mode <= 0: py_printf('ERROR', 'Unable to plot the eigenmode flux since the ' + \ 'eigenmodes contains %d which is negative', mode) elif mode > iramsolver._num_modes: py_printf('ERROR', 'Unable to plot the eigenmode flux since the ' + \ 'eigenmodes contains %d but the IRAMSolver only ' + \ 'computed %d modes', mode) else: py_printf('ERROR', 'Unable to plot the eigenmode flux since the ' + \ 'eigenmodes is not a Python tuple/list or NumPy array') py_printf('NORMAL', 'Plotting the eigenmode fluxes...') # Extract the MOC Solver from the IRAMSolver moc_solver = iramsolver._moc_solver # Loop over each eigenmode for mode in eigenmodes: # Extract the eigenvector for this eigenmode from the IRAMSolver eigenvec = iramsolver._eigenvectors[:,mode-1] # Convert it into a form that SWIG will be happy with eigenvec = np.squeeze(np.ascontiguousarray(eigenvec)) eigenvec = np.real(eigenvec).astype(iramsolver._precision) # Ensure the primary eigenvector is positive if(mode-1 == 0): eigenvec = np.abs(eigenvec) # Insert eigenvector into MOC Solver object moc_solver.setFluxes(eigenvec) # Set subdirectory folder for this eigenmode num_digits = len(str(max(eigenmodes))) subdirectory = '/plots/eig-{0}-flux/'.format(str(mode).zfill(num_digits)) # Plot this eigenmode's spatial fluxes plot_spatial_fluxes(moc_solver, energy_groups, gridsize, xlim, ylim) # Reset global subdirectory subdirectory = '/plots/' ## # @brief This is a helper method to define coordinates for a plotting window. # @details This routine builds a coordinate surface map for the plotting # window defined for by the user. If no window was defined, then # this routine uses the outer bounding box around the geometry as # the plotting window. # @param geometry a Geometry object which has been initialized with Materials, # Cells, Universes and Lattices # @param gridsize an optional number of grid cells for the plot # @param xlim optional list/tuple of the minimim/maximum x-coordinates # @param ylim optional list/tuple of the minimim/maximum y-coordinates # @return a dictionary with the plotting window map and bounding box def get_pixel_coords(geometry, gridsize, xlim, ylim): # initialize variables to be returned bounds = [geometry.getMinX() + TINY_MOVE, geometry.getMaxX() - TINY_MOVE, geometry.getMinY() + TINY_MOVE, geometry.getMaxY() - TINY_MOVE] xcoords = None ycoords = None coords = dict() if not xlim is None: bounds[0] = xlim[0] bounds[1] = xlim[1] if not ylim is None: bounds[2] = ylim[0] bounds[3] = ylim[1] xcoords = np.linspace(bounds[0], bounds[1], gridsize) ycoords = np.linspace(bounds[2], bounds[3], gridsize) # add attributes to coords dictionary coords['x'] = xcoords coords['y'] = ycoords coords['bounds'] = bounds return coords ## # @brief This is a helper method to check that z-coord falls within the bounds # of the geometry. # @param geometry a Geometry object which has been initialized with Materials, # Cells, Universes and Lattices # @param zcoord the z coordinate def check_zcoord(geometry, zcoord): if not is_float(zcoord): py_printf('ERROR', 'Unable to produce plot since ' + \ 'the z-coord %d is not a float', zcoord) elif zcoord < geometry.getMinZ() or zcoord > geometry.getMaxZ(): py_printf('ERROR', 'Unable to produce plot since ' + \ 'the z-coord %d is outside the geometry z-bounds (%d, %d)', \ geometry.getMinZ(), geometry.getMaxZ())
[ "matplotlib.pyplot.title", "matplotlib.pyplot.loglog", "numpy.sum", "numpy.abs", "matplotlib.pyplot.suptitle", "numpy.isnan", "matplotlib.pyplot.figure", "numpy.arange", "numpy.unique", "openmoc.get_output_directory", "matplotlib.pyplot.close", "matplotlib.pyplot.imshow", "matplotlib.cm.ScalarMappable", "os.path.exists", "matplotlib.pyplot.colorbar", "numpy.linspace", "numpy.real", "numpy.random.shuffle", "matplotlib.markers.MarkerStyle", "matplotlib.pyplot.get_cmap", "numpy.flipud", "matplotlib.use", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.grid", "os.makedirs", "matplotlib.pyplot.ioff", "matplotlib.pyplot.plot", "matplotlib.pyplot.scatter", "numpy.zeros", "numpy.where", "numpy.array", "matplotlib.pyplot.xlabel", "numpy.ascontiguousarray", "openmoc.LocalCoords", "matplotlib.pyplot.savefig", "numpy.ediff1d" ]
[((486, 507), 'matplotlib.use', 'matplotlib.use', (['"""Agg"""'], {}), "('Agg')\n", (500, 507), False, 'import matplotlib\n'), ((898, 908), 'matplotlib.pyplot.ioff', 'plt.ioff', ([], {}), '()\n', (906, 908), True, 'import matplotlib.pyplot as plt\n'), ((2455, 2471), 'numpy.array', 'np.array', (['coords'], {}), '(coords)\n', (2463, 2471), True, 'import numpy as np\n'), ((2597, 2609), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (2607, 2609), True, 'import matplotlib.pyplot as plt\n'), ((2868, 2884), 'matplotlib.pyplot.title', 'plt.title', (['title'], {}), '(title)\n', (2877, 2884), True, 'import matplotlib.pyplot as plt\n'), ((3038, 3052), 'matplotlib.pyplot.close', 'plt.close', (['fig'], {}), '(fig)\n', (3047, 3052), True, 'import matplotlib.pyplot as plt\n'), ((4676, 4692), 'numpy.array', 'np.array', (['coords'], {}), '(coords)\n', (4684, 4692), True, 'import numpy as np\n'), ((5355, 5402), 'numpy.linspace', 'np.linspace', (['(0.0)', '(1.0)', 'num_fsrs'], {'endpoint': '(False)'}), '(0.0, 1.0, num_fsrs, endpoint=False)\n', (5366, 5402), True, 'import numpy as np\n'), ((5492, 5504), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (5502, 5504), True, 'import matplotlib.pyplot as plt\n'), ((6053, 6075), 'matplotlib.pyplot.suptitle', 'plt.suptitle', (['suptitle'], {}), '(suptitle)\n', (6065, 6075), True, 'import matplotlib.pyplot as plt\n'), ((6078, 6094), 'matplotlib.pyplot.title', 'plt.title', (['title'], {}), '(title)\n', (6087, 6094), True, 'import matplotlib.pyplot as plt\n'), ((6270, 6284), 'matplotlib.pyplot.close', 'plt.close', (['fig'], {}), '(fig)\n', (6279, 6284), True, 'import matplotlib.pyplot as plt\n'), ((9196, 9226), 'numpy.zeros', 'np.zeros', (['(gridsize, gridsize)'], {}), '((gridsize, gridsize))\n', (9204, 9226), True, 'import numpy as np\n'), ((9249, 9267), 'numpy.unique', 'np.unique', (['surface'], {}), '(surface)\n', (9258, 9267), True, 'import numpy as np\n'), ((9477, 9501), 'matplotlib.pyplot.get_cmap', 'plt.get_cmap', (['"""spectral"""'], {}), "('spectral')\n", (9489, 9501), True, 'import matplotlib.pyplot as plt\n'), ((9578, 9590), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (9588, 9590), True, 'import matplotlib.pyplot as plt\n'), ((9602, 9619), 'numpy.flipud', 'np.flipud', (['colors'], {}), '(colors)\n', (9611, 9619), True, 'import numpy as np\n'), ((9622, 9734), 'matplotlib.pyplot.imshow', 'plt.imshow', (['colors'], {'extent': "coords['bounds']", 'interpolation': '"""nearest"""', 'cmap': 'cmap', 'vmin': '(0)', 'vmax': 'num_materials'}), "(colors, extent=coords['bounds'], interpolation='nearest', cmap=\n cmap, vmin=0, vmax=num_materials)\n", (9632, 9734), True, 'import matplotlib.pyplot as plt\n'), ((9745, 9770), 'matplotlib.pyplot.suptitle', 'plt.suptitle', (['"""Materials"""'], {}), "('Materials')\n", (9757, 9770), True, 'import matplotlib.pyplot as plt\n'), ((9915, 9929), 'matplotlib.pyplot.close', 'plt.close', (['fig'], {}), '(fig)\n', (9924, 9929), True, 'import matplotlib.pyplot as plt\n'), ((11688, 11731), 'numpy.zeros', 'np.zeros', (['(gridsize, gridsize)', 'numpy.int64'], {}), '((gridsize, gridsize), numpy.int64)\n', (11696, 11731), True, 'import numpy as np\n'), ((12730, 12760), 'numpy.zeros', 'np.zeros', (['(gridsize, gridsize)'], {}), '((gridsize, gridsize))\n', (12738, 12760), True, 'import numpy as np\n'), ((12779, 12797), 'numpy.unique', 'np.unique', (['surface'], {}), '(surface)\n', (12788, 12797), True, 'import numpy as np\n'), ((12995, 13019), 'matplotlib.pyplot.get_cmap', 'plt.get_cmap', (['"""spectral"""'], {}), "('spectral')\n", (13007, 13019), True, 'import matplotlib.pyplot as plt\n'), ((13092, 13104), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (13102, 13104), True, 'import matplotlib.pyplot as plt\n'), ((13116, 13133), 'numpy.flipud', 'np.flipud', (['colors'], {}), '(colors)\n', (13125, 13133), True, 'import numpy as np\n'), ((13136, 13244), 'matplotlib.pyplot.imshow', 'plt.imshow', (['colors'], {'extent': "coords['bounds']", 'interpolation': '"""nearest"""', 'cmap': 'cmap', 'vmin': '(0)', 'vmax': 'num_cells'}), "(colors, extent=coords['bounds'], interpolation='nearest', cmap=\n cmap, vmin=0, vmax=num_cells)\n", (13146, 13244), True, 'import matplotlib.pyplot as plt\n'), ((13255, 13276), 'matplotlib.pyplot.suptitle', 'plt.suptitle', (['"""Cells"""'], {}), "('Cells')\n", (13267, 13276), True, 'import matplotlib.pyplot as plt\n'), ((13418, 13432), 'matplotlib.pyplot.close', 'plt.close', (['fig'], {}), '(fig)\n', (13427, 13432), True, 'import matplotlib.pyplot as plt\n'), ((17840, 17875), 'numpy.arange', 'np.arange', (['num_fsrs'], {'dtype': 'np.int64'}), '(num_fsrs, dtype=np.int64)\n', (17849, 17875), True, 'import numpy as np\n'), ((17891, 17926), 'numpy.arange', 'np.arange', (['num_fsrs'], {'dtype': 'np.int64'}), '(num_fsrs, dtype=np.int64)\n', (17900, 17926), True, 'import numpy as np\n'), ((17952, 17980), 'numpy.random.shuffle', 'np.random.shuffle', (['id_colors'], {}), '(id_colors)\n', (17969, 17980), True, 'import numpy as np\n'), ((18000, 18035), 'numpy.arange', 'np.arange', (['num_fsrs'], {'dtype': 'np.int64'}), '(num_fsrs, dtype=np.int64)\n', (18009, 18035), True, 'import numpy as np\n'), ((18202, 18226), 'matplotlib.pyplot.get_cmap', 'plt.get_cmap', (['"""spectral"""'], {}), "('spectral')\n", (18214, 18226), True, 'import matplotlib.pyplot as plt\n'), ((18313, 18325), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (18323, 18325), True, 'import matplotlib.pyplot as plt\n'), ((18337, 18354), 'numpy.flipud', 'np.flipud', (['colors'], {}), '(colors)\n', (18346, 18354), True, 'import numpy as np\n'), ((18357, 18464), 'matplotlib.pyplot.imshow', 'plt.imshow', (['colors'], {'extent': "coords['bounds']", 'interpolation': '"""nearest"""', 'cmap': 'cmap', 'vmin': '(0)', 'vmax': 'num_fsrs'}), "(colors, extent=coords['bounds'], interpolation='nearest', cmap=\n cmap, vmin=0, vmax=num_fsrs)\n", (18367, 18464), True, 'import matplotlib.pyplot as plt\n'), ((19099, 19134), 'matplotlib.pyplot.suptitle', 'plt.suptitle', (['"""Flat Source Regions"""'], {}), "('Flat Source Regions')\n", (19111, 19134), True, 'import matplotlib.pyplot as plt\n'), ((19289, 19303), 'matplotlib.pyplot.close', 'plt.close', (['fig'], {}), '(fig)\n', (19298, 19303), True, 'import matplotlib.pyplot as plt\n'), ((22857, 22898), 'numpy.arange', 'np.arange', (['num_cmfd_cells'], {'dtype': 'np.int64'}), '(num_cmfd_cells, dtype=np.int64)\n', (22866, 22898), True, 'import numpy as np\n'), ((22914, 22955), 'numpy.arange', 'np.arange', (['num_cmfd_cells'], {'dtype': 'np.int64'}), '(num_cmfd_cells, dtype=np.int64)\n', (22923, 22955), True, 'import numpy as np\n'), ((22981, 23009), 'numpy.random.shuffle', 'np.random.shuffle', (['id_colors'], {}), '(id_colors)\n', (22998, 23009), True, 'import numpy as np\n'), ((23029, 23070), 'numpy.arange', 'np.arange', (['num_cmfd_cells'], {'dtype': 'np.int64'}), '(num_cmfd_cells, dtype=np.int64)\n', (23038, 23070), True, 'import numpy as np\n'), ((23237, 23261), 'matplotlib.pyplot.get_cmap', 'plt.get_cmap', (['"""spectral"""'], {}), "('spectral')\n", (23249, 23261), True, 'import matplotlib.pyplot as plt\n'), ((23339, 23351), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (23349, 23351), True, 'import matplotlib.pyplot as plt\n'), ((23363, 23380), 'numpy.flipud', 'np.flipud', (['colors'], {}), '(colors)\n', (23372, 23380), True, 'import numpy as np\n'), ((23383, 23462), 'matplotlib.pyplot.imshow', 'plt.imshow', (['colors'], {'extent': "coords['bounds']", 'interpolation': '"""nearest"""', 'cmap': 'cmap'}), "(colors, extent=coords['bounds'], interpolation='nearest', cmap=cmap)\n", (23393, 23462), True, 'import matplotlib.pyplot as plt\n'), ((23478, 23501), 'matplotlib.pyplot.title', 'plt.title', (['"""CMFD cells"""'], {}), "('CMFD cells')\n", (23487, 23501), True, 'import matplotlib.pyplot as plt\n'), ((31604, 31628), 'numpy.ediff1d', 'np.ediff1d', (['group_bounds'], {}), '(group_bounds)\n', (31614, 31628), True, 'import numpy as np\n'), ((31646, 31669), 'numpy.flipud', 'np.flipud', (['group_bounds'], {}), '(group_bounds)\n', (31655, 31669), True, 'import numpy as np\n'), ((31687, 31710), 'numpy.flipud', 'np.flipud', (['group_deltas'], {}), '(group_deltas)\n', (31696, 31710), True, 'import numpy as np\n'), ((35871, 35883), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (35881, 35883), True, 'import matplotlib.pyplot as plt\n'), ((35944, 35958), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {}), '()\n', (35956, 35958), True, 'import matplotlib.pyplot as plt\n'), ((35961, 36009), 'matplotlib.pyplot.suptitle', 'plt.suptitle', (['"""Flat Source Region Fission Rates"""'], {}), "('Flat Source Region Fission Rates')\n", (35973, 36009), True, 'import matplotlib.pyplot as plt\n'), ((40738, 40781), 'numpy.linspace', 'np.linspace', (['bounds[0]', 'bounds[1]', 'gridsize'], {}), '(bounds[0], bounds[1], gridsize)\n', (40749, 40781), True, 'import numpy as np\n'), ((40794, 40837), 'numpy.linspace', 'np.linspace', (['bounds[2]', 'bounds[3]', 'gridsize'], {}), '(bounds[2], bounds[3], gridsize)\n', (40805, 40837), True, 'import numpy as np\n'), ((1516, 1546), 'openmoc.get_output_directory', 'openmoc.get_output_directory', ([], {}), '()\n', (1544, 1546), False, 'import openmoc\n'), ((1612, 1637), 'os.path.exists', 'os.path.exists', (['directory'], {}), '(directory)\n', (1626, 1637), False, 'import os\n'), ((1643, 1665), 'os.makedirs', 'os.makedirs', (['directory'], {}), '(directory)\n', (1654, 1665), False, 'import os\n'), ((2644, 2710), 'matplotlib.pyplot.plot', 'plt.plot', (['[x[i * 2], x[i * 2 + 1]]', '[y[i * 2], y[i * 2 + 1]]', '"""b-"""'], {}), "([x[i * 2], x[i * 2 + 1]], [y[i * 2], y[i * 2 + 1]], 'b-')\n", (2652, 2710), True, 'import matplotlib.pyplot as plt\n'), ((3643, 3673), 'openmoc.get_output_directory', 'openmoc.get_output_directory', ([], {}), '()\n', (3671, 3673), False, 'import openmoc\n'), ((3739, 3764), 'os.path.exists', 'os.path.exists', (['directory'], {}), '(directory)\n', (3753, 3764), False, 'import os\n'), ((3770, 3792), 'os.makedirs', 'os.makedirs', (['directory'], {}), '(directory)\n', (3781, 3792), False, 'import os\n'), ((5604, 5623), 'matplotlib.pyplot.get_cmap', 'plt.get_cmap', (['"""jet"""'], {}), "('jet')\n", (5616, 5623), True, 'import matplotlib.pyplot as plt\n'), ((5699, 5729), 'matplotlib.cm.ScalarMappable', 'cmx.ScalarMappable', ([], {'norm': 'cNorm'}), '(norm=cNorm)\n', (5717, 5729), True, 'import matplotlib.cm as cmx\n'), ((5795, 5864), 'matplotlib.pyplot.plot', 'plt.plot', (['[x[i * 2], x[i * 2 + 1]]', '[y[i * 2], y[i * 2 + 1]]'], {'c': 'color'}), '([x[i * 2], x[i * 2 + 1]], [y[i * 2], y[i * 2 + 1]], c=color)\n', (5803, 5864), True, 'import matplotlib.pyplot as plt\n'), ((7235, 7265), 'openmoc.get_output_directory', 'openmoc.get_output_directory', ([], {}), '()\n', (7263, 7265), False, 'import openmoc\n'), ((7331, 7356), 'os.path.exists', 'os.path.exists', (['directory'], {}), '(directory)\n', (7345, 7356), False, 'import os\n'), ((7362, 7384), 'os.makedirs', 'os.makedirs', (['directory'], {}), '(directory)\n', (7373, 7384), False, 'import os\n'), ((9327, 9359), 'numpy.where', 'np.where', (['(surface == material_id)'], {}), '(surface == material_id)\n', (9335, 9359), True, 'import numpy as np\n'), ((10867, 10897), 'openmoc.get_output_directory', 'openmoc.get_output_directory', ([], {}), '()\n', (10895, 10897), False, 'import openmoc\n'), ((10963, 10988), 'os.path.exists', 'os.path.exists', (['directory'], {}), '(directory)\n', (10977, 10988), False, 'import os\n'), ((10994, 11016), 'os.makedirs', 'os.makedirs', (['directory'], {}), '(directory)\n', (11005, 11016), False, 'import os\n'), ((12849, 12877), 'numpy.where', 'np.where', (['(surface == cell_id)'], {}), '(surface == cell_id)\n', (12857, 12877), True, 'import numpy as np\n'), ((14751, 14781), 'openmoc.get_output_directory', 'openmoc.get_output_directory', ([], {}), '()\n', (14779, 14781), False, 'import openmoc\n'), ((14847, 14872), 'os.path.exists', 'os.path.exists', (['directory'], {}), '(directory)\n', (14861, 14872), False, 'import os\n'), ((14878, 14900), 'os.makedirs', 'os.makedirs', (['directory'], {}), '(directory)\n', (14889, 14900), False, 'import os\n'), ((18745, 18833), 'matplotlib.pyplot.scatter', 'plt.scatter', (['centroids_x', 'centroids_y'], {'color': '"""k"""', 'marker': 'marker_type', 's': 'marker_size'}), "(centroids_x, centroids_y, color='k', marker=marker_type, s=\n marker_size)\n", (18756, 18833), True, 'import matplotlib.pyplot as plt\n'), ((20672, 20702), 'openmoc.get_output_directory', 'openmoc.get_output_directory', ([], {}), '()\n', (20700, 20702), False, 'import openmoc\n'), ((20768, 20793), 'os.path.exists', 'os.path.exists', (['directory'], {}), '(directory)\n', (20782, 20793), False, 'import os\n'), ((20799, 20821), 'os.makedirs', 'os.makedirs', (['directory'], {}), '(directory)\n', (20810, 20821), False, 'import os\n'), ((24535, 24565), 'openmoc.get_output_directory', 'openmoc.get_output_directory', ([], {}), '()\n', (24563, 24565), False, 'import openmoc\n'), ((24631, 24656), 'os.path.exists', 'os.path.exists', (['directory'], {}), '(directory)\n', (24645, 24656), False, 'import os\n'), ((24662, 24684), 'os.makedirs', 'os.makedirs', (['directory'], {}), '(directory)\n', (24673, 24684), False, 'import os\n'), ((27325, 27337), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (27335, 27337), True, 'import matplotlib.pyplot as plt\n'), ((27412, 27426), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {}), '()\n', (27424, 27426), True, 'import matplotlib.pyplot as plt\n'), ((27682, 27696), 'matplotlib.pyplot.close', 'plt.close', (['fig'], {}), '(fig)\n', (27691, 27696), True, 'import matplotlib.pyplot as plt\n'), ((29034, 29064), 'openmoc.get_output_directory', 'openmoc.get_output_directory', ([], {}), '()\n', (29062, 29064), False, 'import openmoc\n'), ((29130, 29155), 'os.path.exists', 'os.path.exists', (['directory'], {}), '(directory)\n', (29144, 29155), False, 'import os\n'), ((29161, 29183), 'os.makedirs', 'os.makedirs', (['directory'], {}), '(directory)\n', (29172, 29183), False, 'import os\n'), ((31843, 31879), 'numpy.zeros', 'np.zeros', (['num_groups'], {'dtype': 'np.float'}), '(num_groups, dtype=np.float)\n', (31851, 31879), True, 'import numpy as np\n'), ((32192, 32204), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (32202, 32204), True, 'import matplotlib.pyplot as plt\n'), ((32968, 32988), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Energy"""'], {}), "('Energy')\n", (32978, 32988), True, 'import matplotlib.pyplot as plt\n'), ((32993, 33011), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Flux"""'], {}), "('Flux')\n", (33003, 33011), True, 'import matplotlib.pyplot as plt\n'), ((33069, 33079), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (33077, 33079), True, 'import matplotlib.pyplot as plt\n'), ((33210, 33252), 'matplotlib.pyplot.savefig', 'plt.savefig', (['filename'], {'bbox_inches': '"""tight"""'}), "(filename, bbox_inches='tight')\n", (33221, 33252), True, 'import matplotlib.pyplot as plt\n'), ((33257, 33271), 'matplotlib.pyplot.close', 'plt.close', (['fig'], {}), '(fig)\n', (33266, 33271), True, 'import matplotlib.pyplot as plt\n'), ((34055, 34085), 'openmoc.get_output_directory', 'openmoc.get_output_directory', ([], {}), '()\n', (34083, 34085), False, 'import openmoc\n'), ((34151, 34176), 'os.path.exists', 'os.path.exists', (['directory'], {}), '(directory)\n', (34165, 34176), False, 'import os\n'), ((34182, 34204), 'os.makedirs', 'os.makedirs', (['directory'], {}), '(directory)\n', (34193, 34204), False, 'import os\n'), ((35897, 35915), 'numpy.flipud', 'np.flipud', (['surface'], {}), '(surface)\n', (35906, 35915), True, 'import numpy as np\n'), ((37184, 37214), 'openmoc.get_output_directory', 'openmoc.get_output_directory', ([], {}), '()\n', (37212, 37214), False, 'import openmoc\n'), ((37280, 37305), 'os.path.exists', 'os.path.exists', (['directory'], {}), '(directory)\n', (37294, 37305), False, 'import os\n'), ((37311, 37333), 'os.makedirs', 'os.makedirs', (['directory'], {}), '(directory)\n', (37322, 37333), False, 'import os\n'), ((8443, 8476), 'openmoc.LocalCoords', 'openmoc.LocalCoords', (['x', 'y', 'zcoord'], {}), '(x, y, zcoord)\n', (8462, 8476), False, 'import openmoc\n'), ((11995, 12028), 'openmoc.LocalCoords', 'openmoc.LocalCoords', (['x', 'y', 'zcoord'], {}), '(x, y, zcoord)\n', (12014, 12028), False, 'import openmoc\n'), ((17060, 17093), 'openmoc.LocalCoords', 'openmoc.LocalCoords', (['x', 'y', 'zcoord'], {}), '(x, y, zcoord)\n', (17079, 17093), False, 'import openmoc\n'), ((21976, 22009), 'openmoc.LocalCoords', 'openmoc.LocalCoords', (['x', 'y', 'zcoord'], {}), '(x, y, zcoord)\n', (21995, 22009), False, 'import openmoc\n'), ((22310, 22327), 'numpy.isnan', 'np.isnan', (['cell_id'], {}), '(cell_id)\n', (22318, 22327), True, 'import numpy as np\n'), ((26665, 26698), 'openmoc.LocalCoords', 'openmoc.LocalCoords', (['x', 'y', 'zcoord'], {}), '(x, y, zcoord)\n', (26684, 26698), False, 'import openmoc\n'), ((26929, 26945), 'numpy.isnan', 'np.isnan', (['fsr_id'], {}), '(fsr_id)\n', (26937, 26945), True, 'import numpy as np\n'), ((27353, 27383), 'numpy.flipud', 'np.flipud', (['fluxes[index, :, :]'], {}), '(fluxes[index, :, :])\n', (27362, 27383), True, 'import numpy as np\n'), ((31250, 31289), 'numpy.arange', 'np.arange', (['(num_groups + 1)'], {'dtype': 'np.int'}), '(num_groups + 1, dtype=np.int)\n', (31259, 31289), True, 'import numpy as np\n'), ((32096, 32125), 'numpy.sum', 'np.sum', (['(group_deltas * fluxes)'], {}), '(group_deltas * fluxes)\n', (32102, 32125), True, 'import numpy as np\n'), ((35390, 35423), 'openmoc.LocalCoords', 'openmoc.LocalCoords', (['x', 'y', 'zcoord'], {}), '(x, y, zcoord)\n', (35409, 35423), False, 'import openmoc\n'), ((35654, 35670), 'numpy.isnan', 'np.isnan', (['fsr_id'], {}), '(fsr_id)\n', (35662, 35670), True, 'import numpy as np\n'), ((37693, 37732), 'numpy.arange', 'np.arange', (['(1)', '(iramsolver._num_modes + 1)'], {}), '(1, iramsolver._num_modes + 1)\n', (37702, 37732), True, 'import numpy as np\n'), ((38913, 38943), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['eigenvec'], {}), '(eigenvec)\n', (38933, 38943), True, 'import numpy as np\n'), ((39096, 39112), 'numpy.abs', 'np.abs', (['eigenvec'], {}), '(eigenvec)\n', (39102, 39112), True, 'import numpy as np\n'), ((32367, 32485), 'matplotlib.pyplot.loglog', 'plt.loglog', (['group_bounds[group:group + 2]', '([fluxes[group]] * 2)'], {'linewidth': '(3)', 'c': '"""b"""', 'label': '"""openmoc"""', 'linestyle': '"""-"""'}), "(group_bounds[group:group + 2], [fluxes[group]] * 2, linewidth=3,\n c='b', label='openmoc', linestyle='-')\n", (32377, 32485), True, 'import matplotlib.pyplot as plt\n'), ((32518, 32635), 'matplotlib.pyplot.plot', 'plt.plot', (['group_bounds[group:group + 2]', '([fluxes[group]] * 2)'], {'linewidth': '(3)', 'c': '"""b"""', 'label': '"""openmoc"""', 'linestyle': '"""-"""'}), "(group_bounds[group:group + 2], [fluxes[group]] * 2, linewidth=3, c\n ='b', label='openmoc', linestyle='-')\n", (32526, 32635), True, 'import matplotlib.pyplot as plt\n'), ((38960, 38977), 'numpy.real', 'np.real', (['eigenvec'], {}), '(eigenvec)\n', (38967, 38977), True, 'import numpy as np\n'), ((15749, 15781), 'matplotlib.markers.MarkerStyle', 'matplotlib.markers.MarkerStyle', ([], {}), '()\n', (15779, 15781), False, 'import matplotlib\n'), ((32731, 32824), 'matplotlib.pyplot.loglog', 'plt.loglog', (['([group_bounds[group + 1]] * 2)', 'fluxes[group:group + 2]'], {'c': '"""b"""', 'linestyle': '"""--"""'}), "([group_bounds[group + 1]] * 2, fluxes[group:group + 2], c='b',\n linestyle='--')\n", (32741, 32824), True, 'import matplotlib.pyplot as plt\n'), ((32861, 32952), 'matplotlib.pyplot.plot', 'plt.plot', (['([group_bounds[group + 1]] * 2)', 'fluxes[group:group + 2]'], {'c': '"""b"""', 'linestyle': '"""--"""'}), "([group_bounds[group + 1]] * 2, fluxes[group:group + 2], c='b',\n linestyle='--')\n", (32869, 32952), True, 'import matplotlib.pyplot as plt\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Determine screen gamma using motion-nulling method of <NAME> Smith, 1994, Vision Research, 34, 2727-2740 A similar system had been used early for chromatic isoluminance: Anstis SM, <NAME>. A minimum motion technique for judging equiluminance. In: Sharpe MJD & LT Colour vision: Psychophysics and physiology. London: Academic Press; 1983. pp. 66-77. Instructions: on each trial press the up/down cursor keys depending on the apparent direction of motion of the bars. """ from __future__ import absolute_import, division, print_function from builtins import next from builtins import range from psychopy import visual, core, event, gui, data from psychopy.tools.filetools import fromFile, toFile from psychopy.visual import filters import numpy as num import time try: # try to load previous info info = fromFile('info_gamma.pickle') print(info) except Exception: # if no file use some defaults info = {} info['lumModNoise'] = 0.5 info['lumModLum'] = 0.1 info['contrastModNoise'] = 1.0 info['observer'] = '' info['highGamma'] = 3.0 info['lowGamma'] = 0.8 info['nTrials'] = 50 dlg = gui.DlgFromDict(info) # save to a file for future use (ie storing as defaults) if dlg.OK: toFile('info_gamma.pickle', info) else: core.quit() # user cancelled. quit print(info) info['timeStr']=time.strftime("%b_%d_%H%M", time.localtime()) nFrames = 3 cyclesTime = 2 cyclesSpace = 2 pixels = 128 win = visual.Window((1024, 768), units='pix', allowGUI=True, bitsMode=None) visual.TextStim(win, text='building stimuli').draw() win.flip() globalClock = core.Clock() # for luminance modulated noise noiseMatrix = num.random.randint(0, 2, [pixels, pixels]) # * noiseContrast noiseMatrix = noiseMatrix * 2.0-1 # into range -1: 1 stimFrames = []; lumGratings=[] # create the 4 frames of the sequence (luminance and contrast modulated noise in quadrature) lumGratings.append(filters.makeGrating(pixels, 0, cyclesSpace, phase=0)) stimFrames.append(visual.GratingStim(win, texRes=pixels, mask='circle', size=pixels * 2, sf=1.0 / pixels, ori=90, tex= (noiseMatrix * info['lumModNoise'] + lumGratings[0] * info['lumModLum']) )) lumGratings.append(filters.makeGrating(pixels, 0, cyclesSpace, phase=90) / 2.0 + 0.5) stimFrames.append(visual.GratingStim(win, texRes=pixels, mask='circle', size=pixels * 2, sf=1.0/pixels, ori=90, tex= (noiseMatrix * info['contrastModNoise'] * lumGratings[1]) )) lumGratings.append(filters.makeGrating(pixels, 0, cyclesSpace, phase=180)) stimFrames.append(visual.GratingStim(win, texRes=pixels, mask='circle', size=pixels * 2, sf=1.0/pixels, ori=90, tex= (noiseMatrix * info['lumModNoise'] + lumGratings[2] * info['lumModLum']) )) lumGratings.append(filters.makeGrating(pixels, 0, cyclesSpace, phase=270) / 2.0 + 0.5) stimFrames.append(visual.GratingStim(win, texRes=pixels, mask='circle', size=pixels * 2, sf=1.0/pixels, ori=90, tex= (noiseMatrix * info['contrastModNoise'] * lumGratings[3]) )) stairCases = [] # two staircases - one from the top, one from below - to average stairCases.append(data.StairHandler(startVal=info['highGamma'], nTrials=info['nTrials'], stepSizes=[0.5, 0.5, 0.1, 0.1, 0.1, 0.1, 0.05, 0.05], stepType='lin', nUp=1, nDown=1)) stairCases.append(data.StairHandler(startVal=info['lowGamma'], nTrials=info['nTrials'], stepSizes=[0.5, 0.5, 0.1, 0.1, 0.1, 0.1, 0.05, 0.05], stepType='lin', nUp=1, nDown=1)) def getResponse(direction): """if subject said up when direction was up ( + 1) then increase gamma Otherwise, decrease gamma""" event.clearEvents() # clear the event buffer to start with while 1: # forever until we return for key in event.getKeys(): # quit if key in ['escape', 'q']: win.close() # win.bits.reset() core.quit() # valid response - check to see if correct elif key in ['down', 'up']: if ((key in ['down'] and direction == -1) or (key in ['up'] and direction == +1)): return 0 else: return 1 else: print("hit DOWN or UP (or Esc) (You hit %s)" %key) def presentStimulus(direction): """Present stimulus drifting in a given direction (for low gamma) where: direction = + 1(up) or -1(down) """ win.fps() startPhase = num.random.random() if direction == 1: frameIndices = num.arange(0, 4) else: frameIndices = num.arange(3, -1, -1) for cycles in range(cyclesTime): # cycle through the 4 frames for ii in frameIndices: thisStim = stimFrames[ii] thisStim.setPhase(startPhase) for n in range(nFrames): # present for several constant frames (TF) thisStim.draw() win.flip() # then blank the screen win.flip() # run the staircase for trialN in range(info['nTrials']): for stairCase in stairCases: thisGamma = next(stairCase) t = globalClock.getTime() win.gamma = [thisGamma, thisGamma, thisGamma] direction = num.random.randint(0, 2) * 2-1 # a random number -1 or 1 presentStimulus(direction) ans = getResponse(direction) stairCase.addData(ans) win.flip() core.wait(0.5) win.close() # save data fileName = gui.fileSaveDlg('.', '%s_%s' %(info['observer'], info['timeStr'])) stairCases[1].saveAsPickle(fileName + 'hi') stairCases[1].saveAsText(fileName + 'hi') stairCases[0].saveAsPickle(fileName + 'lo') stairCases[0].saveAsText(fileName + 'lo') print('That took %.1fmins' % (globalClock.getTime() / 60.0)) core.quit() # The contents of this file are in the public domain.
[ "numpy.random.randint", "numpy.arange", "psychopy.tools.filetools.toFile", "psychopy.event.clearEvents", "psychopy.gui.DlgFromDict", "builtins.range", "psychopy.event.getKeys", "psychopy.tools.filetools.fromFile", "builtins.next", "psychopy.visual.Window", "psychopy.core.quit", "time.localtime", "psychopy.data.StairHandler", "psychopy.gui.fileSaveDlg", "psychopy.core.Clock", "psychopy.core.wait", "psychopy.visual.TextStim", "psychopy.visual.GratingStim", "numpy.random.random", "psychopy.visual.filters.makeGrating" ]
[((1183, 1204), 'psychopy.gui.DlgFromDict', 'gui.DlgFromDict', (['info'], {}), '(info)\n', (1198, 1204), False, 'from psychopy import visual, core, event, gui, data\n'), ((1495, 1564), 'psychopy.visual.Window', 'visual.Window', (['(1024, 768)'], {'units': '"""pix"""', 'allowGUI': '(True)', 'bitsMode': 'None'}), "((1024, 768), units='pix', allowGUI=True, bitsMode=None)\n", (1508, 1564), False, 'from psychopy import visual, core, event, gui, data\n'), ((1645, 1657), 'psychopy.core.Clock', 'core.Clock', ([], {}), '()\n', (1655, 1657), False, 'from psychopy import visual, core, event, gui, data\n'), ((1705, 1747), 'numpy.random.randint', 'num.random.randint', (['(0)', '(2)', '[pixels, pixels]'], {}), '(0, 2, [pixels, pixels])\n', (1723, 1747), True, 'import numpy as num\n'), ((5136, 5158), 'builtins.range', 'range', (["info['nTrials']"], {}), "(info['nTrials'])\n", (5141, 5158), False, 'from builtins import range\n'), ((5512, 5526), 'psychopy.core.wait', 'core.wait', (['(0.5)'], {}), '(0.5)\n', (5521, 5526), False, 'from psychopy import visual, core, event, gui, data\n'), ((5564, 5631), 'psychopy.gui.fileSaveDlg', 'gui.fileSaveDlg', (['"""."""', "('%s_%s' % (info['observer'], info['timeStr']))"], {}), "('.', '%s_%s' % (info['observer'], info['timeStr']))\n", (5579, 5631), False, 'from psychopy import visual, core, event, gui, data\n'), ((5866, 5877), 'psychopy.core.quit', 'core.quit', ([], {}), '()\n', (5875, 5877), False, 'from psychopy import visual, core, event, gui, data\n'), ((865, 894), 'psychopy.tools.filetools.fromFile', 'fromFile', (['"""info_gamma.pickle"""'], {}), "('info_gamma.pickle')\n", (873, 894), False, 'from psychopy.tools.filetools import fromFile, toFile\n'), ((1277, 1310), 'psychopy.tools.filetools.toFile', 'toFile', (['"""info_gamma.pickle"""', 'info'], {}), "('info_gamma.pickle', info)\n", (1283, 1310), False, 'from psychopy.tools.filetools import fromFile, toFile\n'), ((1321, 1332), 'psychopy.core.quit', 'core.quit', ([], {}), '()\n', (1330, 1332), False, 'from psychopy import visual, core, event, gui, data\n'), ((1414, 1430), 'time.localtime', 'time.localtime', ([], {}), '()\n', (1428, 1430), False, 'import time\n'), ((1966, 2018), 'psychopy.visual.filters.makeGrating', 'filters.makeGrating', (['pixels', '(0)', 'cyclesSpace'], {'phase': '(0)'}), '(pixels, 0, cyclesSpace, phase=0)\n', (1985, 2018), False, 'from psychopy.visual import filters\n'), ((2038, 2219), 'psychopy.visual.GratingStim', 'visual.GratingStim', (['win'], {'texRes': 'pixels', 'mask': '"""circle"""', 'size': '(pixels * 2)', 'sf': '(1.0 / pixels)', 'ori': '(90)', 'tex': "(noiseMatrix * info['lumModNoise'] + lumGratings[0] * info['lumModLum'])"}), "(win, texRes=pixels, mask='circle', size=pixels * 2, sf=\n 1.0 / pixels, ori=90, tex=noiseMatrix * info['lumModNoise'] + \n lumGratings[0] * info['lumModLum'])\n", (2056, 2219), False, 'from psychopy import visual, core, event, gui, data\n'), ((2343, 2508), 'psychopy.visual.GratingStim', 'visual.GratingStim', (['win'], {'texRes': 'pixels', 'mask': '"""circle"""', 'size': '(pixels * 2)', 'sf': '(1.0 / pixels)', 'ori': '(90)', 'tex': "(noiseMatrix * info['contrastModNoise'] * lumGratings[1])"}), "(win, texRes=pixels, mask='circle', size=pixels * 2, sf=\n 1.0 / pixels, ori=90, tex=noiseMatrix * info['contrastModNoise'] *\n lumGratings[1])\n", (2361, 2508), False, 'from psychopy import visual, core, event, gui, data\n'), ((2546, 2600), 'psychopy.visual.filters.makeGrating', 'filters.makeGrating', (['pixels', '(0)', 'cyclesSpace'], {'phase': '(180)'}), '(pixels, 0, cyclesSpace, phase=180)\n', (2565, 2600), False, 'from psychopy.visual import filters\n'), ((2620, 2801), 'psychopy.visual.GratingStim', 'visual.GratingStim', (['win'], {'texRes': 'pixels', 'mask': '"""circle"""', 'size': '(pixels * 2)', 'sf': '(1.0 / pixels)', 'ori': '(90)', 'tex': "(noiseMatrix * info['lumModNoise'] + lumGratings[2] * info['lumModLum'])"}), "(win, texRes=pixels, mask='circle', size=pixels * 2, sf=\n 1.0 / pixels, ori=90, tex=noiseMatrix * info['lumModNoise'] + \n lumGratings[2] * info['lumModLum'])\n", (2638, 2801), False, 'from psychopy import visual, core, event, gui, data\n'), ((2924, 3089), 'psychopy.visual.GratingStim', 'visual.GratingStim', (['win'], {'texRes': 'pixels', 'mask': '"""circle"""', 'size': '(pixels * 2)', 'sf': '(1.0 / pixels)', 'ori': '(90)', 'tex': "(noiseMatrix * info['contrastModNoise'] * lumGratings[3])"}), "(win, texRes=pixels, mask='circle', size=pixels * 2, sf=\n 1.0 / pixels, ori=90, tex=noiseMatrix * info['contrastModNoise'] *\n lumGratings[3])\n", (2942, 3089), False, 'from psychopy import visual, core, event, gui, data\n'), ((3208, 3372), 'psychopy.data.StairHandler', 'data.StairHandler', ([], {'startVal': "info['highGamma']", 'nTrials': "info['nTrials']", 'stepSizes': '[0.5, 0.5, 0.1, 0.1, 0.1, 0.1, 0.05, 0.05]', 'stepType': '"""lin"""', 'nUp': '(1)', 'nDown': '(1)'}), "(startVal=info['highGamma'], nTrials=info['nTrials'],\n stepSizes=[0.5, 0.5, 0.1, 0.1, 0.1, 0.1, 0.05, 0.05], stepType='lin',\n nUp=1, nDown=1)\n", (3225, 3372), False, 'from psychopy import visual, core, event, gui, data\n'), ((3400, 3563), 'psychopy.data.StairHandler', 'data.StairHandler', ([], {'startVal': "info['lowGamma']", 'nTrials': "info['nTrials']", 'stepSizes': '[0.5, 0.5, 0.1, 0.1, 0.1, 0.1, 0.05, 0.05]', 'stepType': '"""lin"""', 'nUp': '(1)', 'nDown': '(1)'}), "(startVal=info['lowGamma'], nTrials=info['nTrials'],\n stepSizes=[0.5, 0.5, 0.1, 0.1, 0.1, 0.1, 0.05, 0.05], stepType='lin',\n nUp=1, nDown=1)\n", (3417, 3563), False, 'from psychopy import visual, core, event, gui, data\n'), ((3714, 3733), 'psychopy.event.clearEvents', 'event.clearEvents', ([], {}), '()\n', (3731, 3733), False, 'from psychopy import visual, core, event, gui, data\n'), ((4577, 4596), 'numpy.random.random', 'num.random.random', ([], {}), '()\n', (4594, 4596), True, 'import numpy as num\n'), ((4734, 4751), 'builtins.range', 'range', (['cyclesTime'], {}), '(cyclesTime)\n', (4739, 4751), False, 'from builtins import range\n'), ((1565, 1610), 'psychopy.visual.TextStim', 'visual.TextStim', (['win'], {'text': '"""building stimuli"""'}), "(win, text='building stimuli')\n", (1580, 1610), False, 'from psychopy import visual, core, event, gui, data\n'), ((3834, 3849), 'psychopy.event.getKeys', 'event.getKeys', ([], {}), '()\n', (3847, 3849), False, 'from psychopy import visual, core, event, gui, data\n'), ((4643, 4659), 'numpy.arange', 'num.arange', (['(0)', '(4)'], {}), '(0, 4)\n', (4653, 4659), True, 'import numpy as num\n'), ((4693, 4714), 'numpy.arange', 'num.arange', (['(3)', '(-1)', '(-1)'], {}), '(3, -1, -1)\n', (4703, 4714), True, 'import numpy as num\n'), ((5213, 5228), 'builtins.next', 'next', (['stairCase'], {}), '(stairCase)\n', (5217, 5228), False, 'from builtins import next\n'), ((2258, 2311), 'psychopy.visual.filters.makeGrating', 'filters.makeGrating', (['pixels', '(0)', 'cyclesSpace'], {'phase': '(90)'}), '(pixels, 0, cyclesSpace, phase=90)\n', (2277, 2311), False, 'from psychopy.visual import filters\n'), ((2838, 2892), 'psychopy.visual.filters.makeGrating', 'filters.makeGrating', (['pixels', '(0)', 'cyclesSpace'], {'phase': '(270)'}), '(pixels, 0, cyclesSpace, phase=270)\n', (2857, 2892), False, 'from psychopy.visual import filters\n'), ((4923, 4937), 'builtins.range', 'range', (['nFrames'], {}), '(nFrames)\n', (4928, 4937), False, 'from builtins import range\n'), ((3988, 3999), 'psychopy.core.quit', 'core.quit', ([], {}), '()\n', (3997, 3999), False, 'from psychopy import visual, core, event, gui, data\n'), ((5338, 5362), 'numpy.random.randint', 'num.random.randint', (['(0)', '(2)'], {}), '(0, 2)\n', (5356, 5362), True, 'import numpy as num\n')]
''' Code of 'Searching Central Difference Convolutional Networks for Face Anti-Spoofing' By <NAME> & <NAME>, 2019 If you use the code, please cite: @inproceedings{yu2020searching, title={Searching Central Difference Convolutional Networks for Face Anti-Spoofing}, author={<NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME>}, booktitle= {CVPR}, year = {2020} } Only for research purpose, and commercial use is not allowed. MIT License Copyright (c) 2020 ''' import os import numpy as np import torch import shutil import torchvision.transforms as transforms from torch.autograd import Variable import sklearn from sklearn import metrics from sklearn.metrics import roc_curve, auc import pdb def get_file_list(read_path): ''' 获取文件夹下图片的地址 :param read_path: :return: ''' path = read_path dirs = os.listdir(path) floder_len = len(dirs) file_name_list = [] for i in range(floder_len): # 设置路径 floder = dirs[i] floder_path = path + "/" + floder # 如果路径下是文件,那么就再次读取 if os.path.isdir(floder_path): file_one = os.listdir(floder_path) file_len_one = len(file_one) for j in range(file_len_one): # 读取视频 floder_path_one = floder_path + "/" + file_one[j] if os.path.isdir(floder_path_one): file_two = os.listdir(floder_path_one) file_len_two = len(file_two) for k in range(file_len_two): floder_path_two = floder_path_one + "/" + file_two[k] if os.path.isdir(floder_path_two): file_three = os.listdir(floder_path_two) file_len_three = len(file_three) for m in range(file_len_three): floder_path_three = floder_path_two + "/" + file_three[m] file_name_list.append(floder_path_three) else: file_name_list.append(floder_path_two) else: file_name_list.append(floder_path_one) # 如果路径下,没有文件夹,直接是文件,就加入进来 else: file_name_list.append(floder_path) return file_name_list class AvgrageMeter(object): def __init__(self): self.reset() def reset(self): self.avg = 0 self.sum = 0 self.cnt = 0 def update(self, val, n=1): self.sum += val * n self.cnt += n self.avg = self.sum / self.cnt def accuracy(output, target, topk=(1,)): maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0) res.append(correct_k.mul_(100.0 / batch_size)) return res def get_threshold(score_file): with open(score_file, 'r') as file: lines = file.readlines() data = [] count = 0.0 num_real = 0.0 num_fake = 0.0 for line in lines: count += 1 tokens = line.split() angle = float(tokens[0]) # pdb.set_trace() type = int(tokens[1]) data.append({'map_score': angle, 'label': type}) if type == 1: num_real += 1 else: num_fake += 1 min_error = count # account ACER (or ACC) min_threshold = 0.0 min_ACC = 0.0 min_ACER = 0.0 min_APCER = 0.0 min_BPCER = 0.0 for d in data: threshold = d['map_score'] type1 = len([s for s in data if s['map_score'] <= threshold and s['label'] == 1]) type2 = len([s for s in data if s['map_score'] > threshold and s['label'] == 0]) ACC = 1 - (type1 + type2) / count APCER = type2 / num_fake BPCER = type1 / num_real ACER = (APCER + BPCER) / 2.0 if ACER < min_error: min_error = ACER min_threshold = threshold min_ACC = ACC min_ACER = ACER min_APCER = APCER min_BPCER = min_BPCER # print(min_error, min_threshold) return min_threshold, min_ACC, min_APCER, min_BPCER, min_ACER def test_threshold_based(threshold, score_file): with open(score_file, 'r') as file: lines = file.readlines() data = [] count = 0.0 num_real = 0.0 num_fake = 0.0 for line in lines: count += 1 tokens = line.split() angle = float(tokens[0]) type = int(tokens[1]) data.append({'map_score': angle, 'label': type}) if type == 1: num_real += 1 else: num_fake += 1 type1 = len([s for s in data if s['map_score'] <= threshold and s['label'] == 1]) type2 = len([s for s in data if s['map_score'] > threshold and s['label'] == 0]) ACC = 1 - (type1 + type2) / count APCER = type2 / num_fake BPCER = type1 / num_real ACER = (APCER + BPCER) / 2.0 return ACC, APCER, BPCER, ACER def get_err_threhold(fpr, tpr, threshold): RightIndex = (tpr + (1 - fpr) - 1); right_index = np.argmax(RightIndex) best_th = threshold[right_index] err = fpr[right_index] differ_tpr_fpr_1 = tpr + fpr - 1.0 right_index = np.argmin(np.abs(differ_tpr_fpr_1)) best_th = threshold[right_index] err = fpr[right_index] # print(err, best_th) return err, best_th # def performances(dev_scores, dev_labels, test_scores, test_labels): def performances(map_score_test_filename): val_threshold = 0.4 # test with open(map_score_test_filename, 'r') as file2: lines = file2.readlines() test_scores = [] test_labels = [] data = [] count = 0.0 num_real = 0.0 num_fake = 0.0 for line in lines: count += 1 tokens = line.split() score = tokens[0] score = score[:-1] score = score[1:] score = float(score) label = tokens[1] label = label[:-1] label = label[1:] label = int(label) test_scores.append(score) test_labels.append(label) data.append({'map_score': score, 'label': label}) if label == 1: num_real += 1 else: num_fake += 1 # test based on val_threshold type1 = len([s for s in data if s['map_score'] <= val_threshold and s['label'] == 1]) type2 = len([s for s in data if s['map_score'] > val_threshold and s['label'] == 0]) test_ACC = 1 - (type1 + type2) / count test_APCER = type2 / num_fake test_BPCER = type1 / num_real test_ACER = (test_APCER + test_BPCER) / 2.0 # test based on test_threshold fpr_test, tpr_test, threshold_test = roc_curve(test_labels, test_scores, pos_label=1) err_test, best_test_threshold = get_err_threhold(fpr_test, tpr_test, threshold_test) type1 = len([s for s in data if s['map_score'] <= best_test_threshold and s['label'] == 1]) type2 = len([s for s in data if s['map_score'] > best_test_threshold and s['label'] == 0]) test_threshold_ACC = 1 - (type1 + type2) / count test_threshold_APCER = type2 / num_fake test_threshold_BPCER = type1 / num_real test_threshold_ACER = (test_threshold_APCER + test_threshold_BPCER) / 2.0 return test_ACC, test_APCER, test_BPCER, test_ACER, test_threshold_ACER def performances_SiW_EER(map_score_val_filename): # val with open(map_score_val_filename, 'r') as file: lines = file.readlines() val_scores = [] val_labels = [] data = [] count = 0.0 num_real = 0.0 num_fake = 0.0 for line in lines: count += 1 tokens = line.split() score = float(tokens[0]) label = int(tokens[1]) val_scores.append(score) val_labels.append(label) data.append({'map_score': score, 'label': label}) if label == 1: num_real += 1 else: num_fake += 1 fpr, tpr, threshold = roc_curve(val_labels, val_scores, pos_label=1) val_err, val_threshold = get_err_threhold(fpr, tpr, threshold) type1 = len([s for s in data if s['map_score'] <= val_threshold and s['label'] == 1]) type2 = len([s for s in data if s['map_score'] > val_threshold and s['label'] == 0]) val_ACC = 1 - (type1 + type2) / count val_APCER = type2 / num_fake val_BPCER = type1 / num_real val_ACER = (val_APCER + val_BPCER) / 2.0 return val_threshold, val_ACC, val_APCER, val_BPCER, val_ACER def performances_SiWM_EER(map_score_val_filename): # val with open(map_score_val_filename, 'r') as file: lines = file.readlines() val_scores = [] val_labels = [] data = [] count = 0.0 num_real = 0.0 num_fake = 0.0 for line in lines: count += 1 tokens = line.split() score = float(tokens[0]) label = int(tokens[1]) val_scores.append(score) val_labels.append(label) data.append({'map_score': score, 'label': label}) if label == 1: num_real += 1 else: num_fake += 1 fpr, tpr, threshold = roc_curve(val_labels, val_scores, pos_label=1) val_err, val_threshold = get_err_threhold(fpr, tpr, threshold) type1 = len([s for s in data if s['map_score'] <= val_threshold and s['label'] == 1]) type2 = len([s for s in data if s['map_score'] > val_threshold and s['label'] == 0]) val_ACC = 1 - (type1 + type2) / count val_APCER = type2 / num_fake val_BPCER = type1 / num_real val_ACER = (val_APCER + val_BPCER) / 2.0 return val_threshold, val_err, val_ACC, val_APCER, val_BPCER, val_ACER def get_err_threhold_CASIA_Replay(fpr, tpr, threshold): RightIndex = (tpr + (1 - fpr) - 1); right_index = np.argmax(RightIndex) best_th = threshold[right_index] err = fpr[right_index] differ_tpr_fpr_1 = tpr + fpr - 1.0 right_index = np.argmin(np.abs(differ_tpr_fpr_1)) best_th = threshold[right_index] err = fpr[right_index] # print(err, best_th) return err, best_th, right_index def performances_CASIA_Replay(map_score_val_filename): # val with open(map_score_val_filename, 'r') as file: lines = file.readlines() val_scores = [] val_labels = [] data = [] count = 0.0 num_real = 0.0 num_fake = 0.0 for line in lines: count += 1 tokens = line.split() score = tokens[0] score = score[:-1] score = score[1:] score = float(score) label = tokens[1] label = label[:-1] label = label[1:] label = int(label) val_scores.append(score) val_labels.append(label) data.append({'map_score': score, 'label': label}) if label == 1: num_real += 1 else: num_fake += 1 fpr, tpr, threshold = roc_curve(val_labels, val_scores, pos_label=1) val_err, val_threshold, right_index = get_err_threhold_CASIA_Replay(fpr, tpr, threshold) type1 = len([s for s in data if s['map_score'] <= val_threshold and s['label'] == 1]) type2 = len([s for s in data if s['map_score'] > val_threshold and s['label'] == 0]) val_ACC = 1 - (type1 + type2) / count FRR = 1 - tpr # FRR = 1 - TPR HTER = (fpr + FRR) / 2.0 # error recognition rate & reject recognition rate return val_ACC, fpr[right_index], FRR[right_index], HTER[right_index] def performances_ZeroShot(map_score_val_filename): # val with open(map_score_val_filename, 'r') as file: lines = file.readlines() val_scores = [] val_labels = [] data = [] count = 0.0 num_real = 0.0 num_fake = 0.0 for line in lines: count += 1 tokens = line.split() score = float(tokens[0]) label = int(tokens[1]) val_scores.append(score) val_labels.append(label) data.append({'map_score': score, 'label': label}) if label == 1: num_real += 1 else: num_fake += 1 fpr, tpr, threshold = roc_curve(val_labels, val_scores, pos_label=1) auc_val = metrics.auc(fpr, tpr) val_err, val_threshold, right_index = get_err_threhold_CASIA_Replay(fpr, tpr, threshold) type1 = len([s for s in data if s['map_score'] <= val_threshold and s['label'] == 1]) type2 = len([s for s in data if s['map_score'] > val_threshold and s['label'] == 0]) val_ACC = 1 - (type1 + type2) / count FRR = 1 - tpr # FRR = 1 - TPR HTER = (fpr + FRR) / 2.0 # error recognition rate & reject recognition rate return val_ACC, auc_val, HTER[right_index] def count_parameters_in_MB(model): return np.sum(np.prod(v.size()) for name, v in model.named_parameters() if "auxiliary" not in name) / 1e6 def save_checkpoint(state, is_best, save): filename = os.path.join(save, 'checkpoint.pth.tar') torch.save(state, filename) if is_best: best_filename = os.path.join(save, 'model_best.pth.tar') shutil.copyfile(filename, best_filename) def save(model, model_path): torch.save(model.state_dict(), model_path) def load(model, model_path): model.load_state_dict(torch.load(model_path)) def drop_path(x, drop_prob): if drop_prob > 0.: keep_prob = 1. - drop_prob mask = Variable(torch.cuda.FloatTensor(x.size(0), 1, 1, 1, 1).bernoulli_(keep_prob)) x.div_(keep_prob) x.mul_(mask) return x def create_exp_dir(path, scripts_to_save=None): if not os.path.exists(path): os.mkdir(path) print('Experiment dir : {}'.format(path)) if scripts_to_save is not None: os.mkdir(os.path.join(path, 'scripts')) for script in scripts_to_save: dst_file = os.path.join(path, 'scripts', os.path.basename(script)) shutil.copyfile(script, dst_file)
[ "os.mkdir", "numpy.abs", "sklearn.metrics.roc_curve", "numpy.argmax", "os.path.isdir", "os.path.basename", "torch.load", "os.path.exists", "torch.save", "sklearn.metrics.auc", "shutil.copyfile", "os.path.join", "os.listdir" ]
[((876, 892), 'os.listdir', 'os.listdir', (['path'], {}), '(path)\n', (886, 892), False, 'import os\n'), ((5255, 5276), 'numpy.argmax', 'np.argmax', (['RightIndex'], {}), '(RightIndex)\n', (5264, 5276), True, 'import numpy as np\n'), ((6862, 6910), 'sklearn.metrics.roc_curve', 'roc_curve', (['test_labels', 'test_scores'], {'pos_label': '(1)'}), '(test_labels, test_scores, pos_label=1)\n', (6871, 6910), False, 'from sklearn.metrics import roc_curve, auc\n'), ((8120, 8166), 'sklearn.metrics.roc_curve', 'roc_curve', (['val_labels', 'val_scores'], {'pos_label': '(1)'}), '(val_labels, val_scores, pos_label=1)\n', (8129, 8166), False, 'from sklearn.metrics import roc_curve, auc\n'), ((9267, 9313), 'sklearn.metrics.roc_curve', 'roc_curve', (['val_labels', 'val_scores'], {'pos_label': '(1)'}), '(val_labels, val_scores, pos_label=1)\n', (9276, 9313), False, 'from sklearn.metrics import roc_curve, auc\n'), ((9907, 9928), 'numpy.argmax', 'np.argmax', (['RightIndex'], {}), '(RightIndex)\n', (9916, 9928), True, 'import numpy as np\n'), ((11002, 11048), 'sklearn.metrics.roc_curve', 'roc_curve', (['val_labels', 'val_scores'], {'pos_label': '(1)'}), '(val_labels, val_scores, pos_label=1)\n', (11011, 11048), False, 'from sklearn.metrics import roc_curve, auc\n'), ((12191, 12237), 'sklearn.metrics.roc_curve', 'roc_curve', (['val_labels', 'val_scores'], {'pos_label': '(1)'}), '(val_labels, val_scores, pos_label=1)\n', (12200, 12237), False, 'from sklearn.metrics import roc_curve, auc\n'), ((12252, 12273), 'sklearn.metrics.auc', 'metrics.auc', (['fpr', 'tpr'], {}), '(fpr, tpr)\n', (12263, 12273), False, 'from sklearn import metrics\n'), ((12965, 13005), 'os.path.join', 'os.path.join', (['save', '"""checkpoint.pth.tar"""'], {}), "(save, 'checkpoint.pth.tar')\n", (12977, 13005), False, 'import os\n'), ((13010, 13037), 'torch.save', 'torch.save', (['state', 'filename'], {}), '(state, filename)\n', (13020, 13037), False, 'import torch\n'), ((1098, 1124), 'os.path.isdir', 'os.path.isdir', (['floder_path'], {}), '(floder_path)\n', (1111, 1124), False, 'import os\n'), ((5410, 5434), 'numpy.abs', 'np.abs', (['differ_tpr_fpr_1'], {}), '(differ_tpr_fpr_1)\n', (5416, 5434), True, 'import numpy as np\n'), ((10062, 10086), 'numpy.abs', 'np.abs', (['differ_tpr_fpr_1'], {}), '(differ_tpr_fpr_1)\n', (10068, 10086), True, 'import numpy as np\n'), ((13078, 13118), 'os.path.join', 'os.path.join', (['save', '"""model_best.pth.tar"""'], {}), "(save, 'model_best.pth.tar')\n", (13090, 13118), False, 'import os\n'), ((13127, 13167), 'shutil.copyfile', 'shutil.copyfile', (['filename', 'best_filename'], {}), '(filename, best_filename)\n', (13142, 13167), False, 'import shutil\n'), ((13303, 13325), 'torch.load', 'torch.load', (['model_path'], {}), '(model_path)\n', (13313, 13325), False, 'import torch\n'), ((13630, 13650), 'os.path.exists', 'os.path.exists', (['path'], {}), '(path)\n', (13644, 13650), False, 'import os\n'), ((13660, 13674), 'os.mkdir', 'os.mkdir', (['path'], {}), '(path)\n', (13668, 13674), False, 'import os\n'), ((1149, 1172), 'os.listdir', 'os.listdir', (['floder_path'], {}), '(floder_path)\n', (1159, 1172), False, 'import os\n'), ((13775, 13804), 'os.path.join', 'os.path.join', (['path', '"""scripts"""'], {}), "(path, 'scripts')\n", (13787, 13804), False, 'import os\n'), ((13936, 13969), 'shutil.copyfile', 'shutil.copyfile', (['script', 'dst_file'], {}), '(script, dst_file)\n', (13951, 13969), False, 'import shutil\n'), ((1364, 1394), 'os.path.isdir', 'os.path.isdir', (['floder_path_one'], {}), '(floder_path_one)\n', (1377, 1394), False, 'import os\n'), ((13898, 13922), 'os.path.basename', 'os.path.basename', (['script'], {}), '(script)\n', (13914, 13922), False, 'import os\n'), ((1427, 1454), 'os.listdir', 'os.listdir', (['floder_path_one'], {}), '(floder_path_one)\n', (1437, 1454), False, 'import os\n'), ((1659, 1689), 'os.path.isdir', 'os.path.isdir', (['floder_path_two'], {}), '(floder_path_two)\n', (1672, 1689), False, 'import os\n'), ((1732, 1759), 'os.listdir', 'os.listdir', (['floder_path_two'], {}), '(floder_path_two)\n', (1742, 1759), False, 'import os\n')]
import numpy as _np import pandas as _pd import matplotlib.pyplot as _plt from src.plot_helpers.matplotlib_helpers\ import range_axis_ticks as _range_axis_ticks def plot_value_by_element(df, xaxis, element_col, value_col, ax, cmap, alpha=1.0, lw=1.0, x_intervals=None, x_fmt=None): ''' Plot values by each element in the column element_col in df on ax. Can specify linewidth (lw), alpha of lines and colormap to use (cmap). The number of x-axis intervals can be specified, it it is, provide x_fmt Will only plot where value > 0 for given datetime Args: df: DataFrane xaxis: xaxis column name in df element_col: element column name in df value_col: value column name in df ax: matplotlib Axes object cmap: matplotlib.pyplot.cm colourmap object alpha (float, 0-1): plot alpha lw (float): linewidth of line plots x_intervals (int, optional, need x_fmt): number of x-axis intervals x_fmt (matplotlib Formatter, optional, need x_intervals): formatter Returns: Axis with plot of elements ''' unique_elements = df[element_col].drop_duplicates() cmap = iter(cmap(_np.linspace(0, 1, len(unique_elements)))) for element, colour in zip(unique_elements, cmap): filtered_val = df.loc[df[element_col] == element, [xaxis, value_col]] if abs(filtered_val[value_col].sum()) > 0: ax.plot(filtered_val[xaxis], filtered_val[value_col], label=element, alpha=alpha, linewidth=lw, color=colour) if x_intervals is not None: ax = _range_axis_ticks(ax, 'x', x_intervals, fmt=x_fmt) ax.tick_params(axis='x', labelrotation=90, labelsize=8) return ax def find_nonzero_category(df, category_col, value_col): ''' Returns a unique list of categories in category col. Each category returned has a non-zero sum in the value_col. Args: df (pandas DataFrame): DataFrame to use category_col (str): col within df to use to find non-zero categories value_col (str): col within df to assess whether category is non-zero Returns: Sorted list of categories ''' cat_types = set(df[category_col]) plot_types = [] for cat in cat_types: df_cat_val = df.loc[df[category_col] == cat, value_col] if df_cat_val.sum() > 0: plot_types.append(cat) return sorted(plot_types) def plot_nonzero_elements_by_category(ax, df, xaxis_col, yaxis_col, element_col, category, category_col, cmap=None, lw=1.0, alpha=1.0): ''' Plot x and y axis cols on ax for each unique element that satisfies a given category value. Args: ax (matplotlib Axes object): axis to plot on df (pandas DataFrame): dataframe to use xaxis_col (str): x-axis col name yaxis_col (str): y-axis col name element_col (str): col name used to identify individual elements category (str): isolate elements that are under this category category_col (str): col name in df used to filter on category cmap (matplotlib.pyplot.cm, optional): colormap lw (float, optional): linewidth alpha (float, optional): plot alpha Returns: Axis with plotted elements tha meet category criteria Dataframe with categories filtered ''' category_df = df.loc[df[category_col] == category, :] elements = set(category_df[element_col]) if cmap is not None: colors = iter(cmap(_np.linspace(0, 1, len(elements)))) else: colors = iter(_plt.cm.tab10(0, 1, len(elements))) # plot line for each element where yaxis_col > 0 for datetime range for element, color in zip(sorted(elements), colors): element_df = category_df.loc[category_df[element_col] == element, :] if element_df[yaxis_col].sum() > 0: ax.plot(element_df[xaxis_col], element_df[yaxis_col], label=element, color=color, linewidth=lw) return ax, category_df def nofb(df, datetime_col=None): ''' Creates two series with the limits of the NEM normal operating frequency band. Args: df (pandas DataFrame): DataFrame length to copy for NOFB series datetime_col (str, optional): default is to assume DatetimeIndex, if this is not the case, supply datetime_col Returns: Tuple of Series corresponding to (upper NOFB, lower NOFB) ''' if datetime_col: lower = _np.ones(df[datetime_col].shape) * 49.85 upper = _np.ones(df[datetime_col].shape) * 50.15 index = df[datetime_col] else: lower = _np.ones(df.index.shape) * 49.85 upper = _np.ones(df.index.shape) * 50.15 index = df.index return (_pd.Series(data=upper, index=index), _pd.Series(data=lower, index=index)) def nofb_plot(nofb_function, axis, lw=1.0, alpha=1.0, style='y--'): ''' Plots NOFB. Adds label to one of the plotted series. Args: nofb_function (func): nofb function with args supplied axis (matplotlib Axes): Axis to plot on lw (float, optional): plot linewidth alpha(float, optional): plot alpha style (str): matplotlib style, refer to pyplot.plot docs Returns: Axis with NOFB plotted ''' upper, lower = nofb_function axis.plot(upper, style, label='NOFB', linewidth=lw, alpha=alpha) axis.plot(lower, style, linewidth=lw, alpha=alpha) return axis def stacked_bar_subplots(df, figsize, cmap, xaxis_col, values_col, subplots_list, subplot_col, stacked_list, stacked_col, label_add, ax_title_add): ''' Plot stacked bar charts across a range of subplots Args: df (pd.DataFrame): DataFrame to plot, with releveant *_cols figsize (tuple): size in inches for figure cmap (plt.cmap): object to determine color palette for stacked elements xaxis_col (str): name of col in df to use as xticks values_col (str): name of col in df to plot values subplots_list (list): list to use as basis for separating subplots subplot_col (str); name of col in df to separate data for each subplot stacked_list (list): list of elements to stack in each subplot stacked_col (str): name of col in df to obtain series to stack label_add (str): generic str to add to the end of each stacked el label ax_title_add (str): generic str to add to end of ax title Returns: Fig, Ax ''' fig, ax = _plt.subplots(len(subplots_list), 1, figsize=figsize, sharex=True) x_labels = df[xaxis_col].drop_duplicates().tolist() x_tix = _np.arange(len(x_labels)) colormap = _plt.get_cmap(cmap) colors = colormap(_np.linspace(0, 1, len(stacked_list))) plot_colors = {el: colors[i] for i, el in enumerate(stacked_list)} for i, subplot_el in enumerate(subplots_list): y_base = _np.zeros_like(x_tix) subplot_df = df.query(f'{subplot_col}==@subplot_el') for el in stacked_list: rev = subplot_df.query(f'{stacked_col}==@el') ax[i].bar(x_tix, rev[values_col], bottom=y_base, color=plot_colors[el], label=f'{el} {label_add}') y_base = _np.add(y_base, rev[values_col].tolist()) ax[i].set_title(f'{subplot_el} {ax_title_add}') return fig, ax
[ "numpy.zeros_like", "matplotlib.pyplot.get_cmap", "numpy.ones", "src.plot_helpers.matplotlib_helpers.range_axis_ticks", "pandas.Series" ]
[((7095, 7114), 'matplotlib.pyplot.get_cmap', '_plt.get_cmap', (['cmap'], {}), '(cmap)\n', (7108, 7114), True, 'import matplotlib.pyplot as _plt\n'), ((1726, 1776), 'src.plot_helpers.matplotlib_helpers.range_axis_ticks', '_range_axis_ticks', (['ax', '"""x"""', 'x_intervals'], {'fmt': 'x_fmt'}), "(ax, 'x', x_intervals, fmt=x_fmt)\n", (1743, 1776), True, 'from src.plot_helpers.matplotlib_helpers import range_axis_ticks as _range_axis_ticks\n'), ((5031, 5066), 'pandas.Series', '_pd.Series', ([], {'data': 'upper', 'index': 'index'}), '(data=upper, index=index)\n', (5041, 5066), True, 'import pandas as _pd\n'), ((5080, 5115), 'pandas.Series', '_pd.Series', ([], {'data': 'lower', 'index': 'index'}), '(data=lower, index=index)\n', (5090, 5115), True, 'import pandas as _pd\n'), ((7316, 7337), 'numpy.zeros_like', '_np.zeros_like', (['x_tix'], {}), '(x_tix)\n', (7330, 7337), True, 'import numpy as _np\n'), ((4754, 4786), 'numpy.ones', '_np.ones', (['df[datetime_col].shape'], {}), '(df[datetime_col].shape)\n', (4762, 4786), True, 'import numpy as _np\n'), ((4811, 4843), 'numpy.ones', '_np.ones', (['df[datetime_col].shape'], {}), '(df[datetime_col].shape)\n', (4819, 4843), True, 'import numpy as _np\n'), ((4911, 4935), 'numpy.ones', '_np.ones', (['df.index.shape'], {}), '(df.index.shape)\n', (4919, 4935), True, 'import numpy as _np\n'), ((4960, 4984), 'numpy.ones', '_np.ones', (['df.index.shape'], {}), '(df.index.shape)\n', (4968, 4984), True, 'import numpy as _np\n')]
""" This files only purpose is to pretty print the given map. Input to printer is a map, the path the robot took and a planned path if there is no path the robot took or planned path, they args can be left printer(map, rob_path, planned_path) result is nothing. is saves the file in this folder. the name is by default test.png (this two things could be changed if wanted. """ import numpy as np from PIL import Image def printer(m, rob_path=[], planned_path=[]): maxV = m.maxV() minV = m.lowestV() x_range = maxV[0] + abs(minV[0]) y_range = maxV[1] + abs(minV[1]) arr = np.zeros([x_range +1,y_range + 1]) for i in m.d: if(m.d[i]): arr[(i[0]+ abs(minV[0]), i[1] + abs(minV[1]))] = 255 else: arr[(i[0]+ abs(minV[0]), i[1] + abs(minV[1]))] = 125 image = Image.fromarray(arr) image = image.convert("L") pixels = image.load() for i in rob_path: pixels[i] = 0 for i in planned_path: pixels[i] = (50) #if image.size[0] >= int(m.rob.x_pos.value) + m.lowX and image.size[1] >= int(m.rob.y_pos.value) + m.lowY : #pixels[(int(m.rob.x_pos.value) + m.lowX , int(m.rob.y_pos.value) + m.lowY)] = 200 image = image.resize([350,350],Image.NEAREST) filename = "test.png" image.save(filename)
[ "PIL.Image.fromarray", "numpy.zeros" ]
[((600, 636), 'numpy.zeros', 'np.zeros', (['[x_range + 1, y_range + 1]'], {}), '([x_range + 1, y_range + 1])\n', (608, 636), True, 'import numpy as np\n'), ((831, 851), 'PIL.Image.fromarray', 'Image.fromarray', (['arr'], {}), '(arr)\n', (846, 851), False, 'from PIL import Image\n')]
#%% Import import sys import re import math import string import time from pathlib import Path import numpy as np import pandas as pd import string import pickle from scipy.sparse import hstack from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.ensemble import RandomForestClassifier from sklearn.metrics.pairwise import cosine_distances import spacy from gensim.models import KeyedVectors from nltk.tokenize import word_tokenize #%% Constants PATH_PROJ = Path(__file__).parent PATH_DATA = PATH_PROJ / 'lib' / 'data' PATH_MODELS = PATH_PROJ / 'lib' / 'models' sys.path.append(str(PATH_PROJ)) # timer start_time = time.time() print("Start loading...") #%% Load # list of punctuation marks punctuations = string.punctuation # Create spacy word2vec and list of stopwords nlp = spacy.load('en_core_web_sm') stop_words = spacy.lang.en.stop_words.STOP_WORDS # load classifier with open(str(PATH_MODELS/"RFClassifier.pkl"), 'rb') as f: clf = pickle.load(f) # load vectorizer with open(str(PATH_MODELS/'TFIDFVectorizer_lemma.pkl'), 'rb') as f: v_lemma = pickle.load(f) with open(str(PATH_MODELS/'TFIDFVectorizer_keyword.pkl'), 'rb') as f: v_keyword = pickle.load(f) with open(str(PATH_MODELS/'TFIDFVectorizer_noun.pkl'), 'rb') as f: v_noun = pickle.load(f) with open(str(PATH_MODELS/'TFIDFVectorizer_verb.pkl'), 'rb') as f: v_verb = pickle.load(f) # load intent list with open(str(PATH_MODELS/'intent_list.pkl'), 'rb') as f: intent_list = pickle.load(f) # load clustering centres with open(str(PATH_MODELS/'dict_cluster.pkl'), 'rb') as f: dict_cluster = pickle.load(f) # load idf with open(str(PATH_MODELS/'idf.pkl'), 'rb') as f: idf = pickle.load(f) # load intent2index with open(str(PATH_MODELS/'intent2index.pkl'), 'rb') as f: intent2index = pickle.load(f) # load keyword_list_lemma with open(str(PATH_MODELS/'keyword_list_lemma.pkl'), 'rb') as f: keyword_list_lemma = pickle.load(f) EMBEDDING_FILE = str(PATH_MODELS / 'GoogleNews-vectors-negative300.bin.gz') word2vec = KeyedVectors.load_word2vec_format(EMBEDDING_FILE, binary=True) duration= time.time() - start_time print(f"all pickles loaded, using {duration} sec") #%% Pipeline def get_intent_nlp_clustering(query): """ return a dataframe df columns: pred_seq, intent_class, intent_string, pred_prob rows: top 3 prediciton, example for first row: 1, 0, Promotions, 0.66 """ # setup timer start = time.time() #%% pipeline # convert question to dataframe df = pd.DataFrame() df = pd.DataFrame(columns=['query']) df.loc[0] = [query] # preprocessing test query df['query'] = df['query'].apply(clean_text) df['query'] = df['query'].apply(nltk_tokenize) df['query'] = df['query'].apply(lambda x:' '.join([token.lemma_ for token in nlp(x) if token.lemma_ not in stop_words])) df['query'] = df['query'].str.lower() # get nlp features df = get_nlp_features(df, keyword_list_lemma) # get clustering matrix df_cluster = get_distance_matrix_idf(df, intent_list, dict_cluster, word2vec, idf) # get top 3 clusters top_3 = get_top_3(df_cluster, intent_list) # print(top_3) # get inputs for RF classifier top_clusters_cols = ['clusters_1', 'clusters_2', 'clusters_3'] # get input vector for RFClassifier X_in = add_nlp_vec(top_3, v_lemma, v_keyword, v_noun, v_verb, top_clusters_cols) # get prediction proba probs = clf.predict_proba(X_in) # get index for top 3 prediction by proba ind = np.argsort(probs, axis=1)[:,-3:] # save probability proba = probs[0][ind[0]] # save predicitons as dataframe best_3 = pd.DataFrame(ind,columns=['top3','top2','top1']) best_3['top1'] = clf.classes_[best_3['top1']] best_3['top2'] = clf.classes_[best_3['top2']] best_3['top3'] = clf.classes_[best_3['top3']] best_3['top3_prob'] = proba[0] best_3['top2_prob'] = proba[1] best_3['top1_prob'] = proba[2] # get index to intent dictionary from intent2index index2intent = {y:x for x,y in intent2index.items()} # get class name of top predictions best_3['top1_name'] = best_3['top1'].apply(get_target_name, index2intent=index2intent) best_3['top2_name'] = best_3['top2'].apply(get_target_name, index2intent=index2intent) best_3['top3_name'] = best_3['top3'].apply(get_target_name, index2intent=index2intent) # output prediction top1 = best_3.at[0,'top1_name'] top2 = best_3.at[0,'top2_name'] top3 = best_3.at[0,'top3_name'] top1_prob = best_3.at[0,'top1_prob'] top2_prob = best_3.at[0,'top2_prob'] top3_prob = best_3.at[0,'top3_prob'] # print(f'For sentence:\n{query}\n') # print(f'Top 1 prediction intent is {top1} with probability {100*top1_prob:.2f}%') # print(f'Top 2 prediction intent is {top2} with probability {100*top2_prob:.2f}%') # print(f'Top 3 prediction intent is {top3} with probability {100*top3_prob:.2f}%') top1_class = best_3.at[0,'top1'] top2_class = best_3.at[0,'top2'] top3_class = best_3.at[0,'top3'] # convert to output df = pd.DataFrame([ [1, top1_class, top1, top1_prob], [2, top2_class, top2, top2_prob], [3, top3_class, top3, top3_prob] ], columns=['pred_seq', 'intent_class', 'intent', 'pred_prob']) inference_time = time.time() - start print("inference_time", inference_time) output = process_output(df) return output def process_output(df): """ Process DataFrame to output format Return: internal_model_results = {'intent': [1,2,3]} """ result_list = [] # get mapping df_map = pd.read_csv(str(PATH_DATA/'intent_index.csv')) dict_map = df_map.set_index('Intent')['Label'].to_dict() # get list of intents for i in range(1,4): intent = df.loc[df['pred_seq'] == i]['intent'].values[0] intent_label = dict_map[intent] result_list.append(intent_label) return result_list #%% utilities def get_nlp_features(df, keyword_list_lemma): """ Get keyword features from dataframe """ data = df.copy() data['lemma'] = data['query'].apply(lambda x:' '.join([token.lemma_ for token in nlp(x) if token.lemma_ not in stop_words])) data['keyword'] = data['lemma'].apply(lambda x: list(set([token.lemma_ for token in nlp(x) if token.lemma_ in keyword_list_lemma]))) data['noun'] = data['query'].apply(lambda x: list(set([token.lemma_ for token in nlp(x) if token.pos_ in ['NOUN','PROPN'] and token.lemma_ not in stop_words]))) data['verb'] = data['query'].apply(lambda x: list(set([token.lemma_ for token in nlp(x) if token.pos_ in ['VERB'] and token.lemma_ not in stop_words]))) data['noun'] = data['noun'].apply(lambda x: ' '.join([w for w in x])) data['verb'] = data['verb'].apply(lambda x: ' '.join([w for w in x])) data['keyword'] = data['keyword'].apply(lambda x: ' '.join([w for w in x])) return data def get_distance_matrix_idf(df_test, intent_list, dict_cluster, word2vec, idf): """ Get distance for each query to every intent center Args: df_test (pd.DataFrame): input test dataframe with intent and query intent_list (list): list of intents to loop through dict_cluster (dict): dictionary of cluster centres word2vec (dict): word embeddings dictionary idf (dict): idf of each words Returns: result (pd.DataFrame): distance matrix for each query, lowest distance intent idealy should match label """ df = df_test.copy() for intent in intent_list: # distance = cosine_similarity(sentence embedding, intent cluster centre embedding) df[intent] = df['query'].apply(lambda x: cosine_distances(get_sentence_vec(x, word2vec, idf).reshape(1,-1), dict_cluster[intent].reshape(1,-1)).item()) return df def get_sentence_vec(sentence, word2vec, idf=None): """ Get embedding of sentence by using word2vec embedding of words If idf is provided, the sentence is the weighted embedding by SUM( embedding[word] x idf[word] ) Args: sentence (str): input sentence word2vec (dict): loaded word2vec model from Gensim idf (dict, optional): inverse document frequency of words in all queries Returns: emb (np.array): 300-dimentions embedding of sentence """ words = sentence.split() words = [word for word in words if word in word2vec.vocab] # if no word in word2vec vocab, return 0x300 embedding if len(words)==0: return np.zeros((300,), dtype='float32') # use mean if no idf provided if idf is None: emb = word2vec[words].mean(axis=0) else: # get all idf of words, if new word is not in idf, assign 0.0 weights idf_series = np.array([idf.get(word, 0.0) for word in words]) # change shape to 1 x num_of_words idf_series = idf_series.reshape(1, -1) # use matrix multiplication to get weighted word vector sum for sentence embeddings emb = np.matmul(idf_series, word2vec[words]).reshape(-1) return emb def clean_text(text): """ Basic text cleaning 1. lowercase 2. remove special characters """ text = text.lower() text = re.sub(r'[^a-z0-9\s]', '', text) return text def nltk_tokenize(text): """ tokenize text using NLTK and join back as sentence""" # import nltk # nltk.download('punkt') return ' '.join(word_tokenize(text)) def get_top_3(data, intent_list): data = data.copy() cluster_cols = intent_list.copy() data['clusters_top3'] = data.apply(lambda x: np.argsort(x[cluster_cols].values)[:3].tolist(), axis=1) top_clusters_cols = pd.DataFrame(data['clusters_top3'].values.tolist(),columns = ['clusters_1','clusters_2','clusters_3']).reset_index(drop=True) data = data.reset_index(drop=True) data = pd.concat([data,top_clusters_cols], axis=1) data.drop(columns = 'clusters_top3', inplace=True) data.drop(columns = cluster_cols, inplace=True) # print(data.head()) return data def add_nlp_vec(df, v_lemma, v_keyword, v_noun, v_verb, top_clusters_cols): """ Transform NLP features to vector for input X using TFIDF """ x_test_lemma = v_lemma.transform(df['lemma']) x_test_keyword = v_keyword.transform(df['keyword']) x_test_noun = v_noun.transform(df['noun']) x_test_verb = v_verb.transform(df['verb']) # combine all features x_test_combined = hstack((x_test_lemma, x_test_keyword, x_test_noun, x_test_verb, df[top_clusters_cols].values),format='csr') x_test_combined_columns = v_lemma.get_feature_names()+\ v_keyword.get_feature_names()+\ v_noun.get_feature_names()+\ v_verb.get_feature_names()+\ top_clusters_cols x_test_combined = pd.DataFrame(x_test_combined.toarray()) x_test_combined.columns = x_test_combined_columns return x_test_combined def get_target_name(index, index2intent): return index2intent[index]
[ "pandas.DataFrame", "numpy.zeros", "time.time", "numpy.argsort", "spacy.load", "pathlib.Path", "pickle.load", "scipy.sparse.hstack", "gensim.models.KeyedVectors.load_word2vec_format", "numpy.matmul", "re.sub", "pandas.concat", "nltk.tokenize.word_tokenize" ]
[((644, 655), 'time.time', 'time.time', ([], {}), '()\n', (653, 655), False, 'import time\n'), ((806, 834), 'spacy.load', 'spacy.load', (['"""en_core_web_sm"""'], {}), "('en_core_web_sm')\n", (816, 834), False, 'import spacy\n'), ((2050, 2112), 'gensim.models.KeyedVectors.load_word2vec_format', 'KeyedVectors.load_word2vec_format', (['EMBEDDING_FILE'], {'binary': '(True)'}), '(EMBEDDING_FILE, binary=True)\n', (2083, 2112), False, 'from gensim.models import KeyedVectors\n'), ((486, 500), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (490, 500), False, 'from pathlib import Path\n'), ((972, 986), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (983, 986), False, 'import pickle\n'), ((1088, 1102), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (1099, 1102), False, 'import pickle\n'), ((1189, 1203), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (1200, 1203), False, 'import pickle\n'), ((1284, 1298), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (1295, 1298), False, 'import pickle\n'), ((1379, 1393), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (1390, 1393), False, 'import pickle\n'), ((1490, 1504), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (1501, 1504), False, 'import pickle\n'), ((1610, 1624), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (1621, 1624), False, 'import pickle\n'), ((1697, 1711), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (1708, 1711), False, 'import pickle\n'), ((1811, 1825), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (1822, 1825), False, 'import pickle\n'), ((1943, 1957), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (1954, 1957), False, 'import pickle\n'), ((2124, 2135), 'time.time', 'time.time', ([], {}), '()\n', (2133, 2135), False, 'import time\n'), ((2472, 2483), 'time.time', 'time.time', ([], {}), '()\n', (2481, 2483), False, 'import time\n'), ((2547, 2561), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (2559, 2561), True, 'import pandas as pd\n'), ((2571, 2602), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': "['query']"}), "(columns=['query'])\n", (2583, 2602), True, 'import pandas as pd\n'), ((3696, 3747), 'pandas.DataFrame', 'pd.DataFrame', (['ind'], {'columns': "['top3', 'top2', 'top1']"}), "(ind, columns=['top3', 'top2', 'top1'])\n", (3708, 3747), True, 'import pandas as pd\n'), ((5135, 5320), 'pandas.DataFrame', 'pd.DataFrame', (['[[1, top1_class, top1, top1_prob], [2, top2_class, top2, top2_prob], [3,\n top3_class, top3, top3_prob]]'], {'columns': "['pred_seq', 'intent_class', 'intent', 'pred_prob']"}), "([[1, top1_class, top1, top1_prob], [2, top2_class, top2,\n top2_prob], [3, top3_class, top3, top3_prob]], columns=['pred_seq',\n 'intent_class', 'intent', 'pred_prob'])\n", (5147, 5320), True, 'import pandas as pd\n'), ((9397, 9429), 're.sub', 're.sub', (['"""[^a-z0-9\\\\s]"""', '""""""', 'text'], {}), "('[^a-z0-9\\\\s]', '', text)\n", (9403, 9429), False, 'import re\n'), ((10026, 10070), 'pandas.concat', 'pd.concat', (['[data, top_clusters_cols]'], {'axis': '(1)'}), '([data, top_clusters_cols], axis=1)\n', (10035, 10070), True, 'import pandas as pd\n'), ((10625, 10738), 'scipy.sparse.hstack', 'hstack', (['(x_test_lemma, x_test_keyword, x_test_noun, x_test_verb, df[\n top_clusters_cols].values)'], {'format': '"""csr"""'}), "((x_test_lemma, x_test_keyword, x_test_noun, x_test_verb, df[\n top_clusters_cols].values), format='csr')\n", (10631, 10738), False, 'from scipy.sparse import hstack\n'), ((3560, 3585), 'numpy.argsort', 'np.argsort', (['probs'], {'axis': '(1)'}), '(probs, axis=1)\n', (3570, 3585), True, 'import numpy as np\n'), ((5381, 5392), 'time.time', 'time.time', ([], {}), '()\n', (5390, 5392), False, 'import time\n'), ((8680, 8713), 'numpy.zeros', 'np.zeros', (['(300,)'], {'dtype': '"""float32"""'}), "((300,), dtype='float32')\n", (8688, 8713), True, 'import numpy as np\n'), ((9601, 9620), 'nltk.tokenize.word_tokenize', 'word_tokenize', (['text'], {}), '(text)\n', (9614, 9620), False, 'from nltk.tokenize import word_tokenize\n'), ((9170, 9208), 'numpy.matmul', 'np.matmul', (['idf_series', 'word2vec[words]'], {}), '(idf_series, word2vec[words])\n', (9179, 9208), True, 'import numpy as np\n'), ((9768, 9802), 'numpy.argsort', 'np.argsort', (['x[cluster_cols].values'], {}), '(x[cluster_cols].values)\n', (9778, 9802), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- # ============================================================================= # 2mmn40 week 3 report # version 2017-12-03 afternoon # BA # # # for BA: Make sure to run in directory # C:\Users\20165263\Dropbox\tue\2mmn40\src # # ============================================================================= import numpy as np import matplotlib.pyplot as plt # Objective: simulate a diatomic bond. So we're just integrating f=ma over t. # To integrate f=ma, we need f, m, v0 and q0. # f is obtained from potentials. f = -grad u # m, v0, x0 are all given. # Data structure required: molecule geometry. So, a list of lists of molecules. # Each molecule needs to have a mass, an x0, a v0, and explicitly ### part 1: diatomic molecule #molecule parameters bondList = [[1],[0]] kbond = 1.0 rbond = 1.0 m = np.array([1.0, 1.0]) #simulation parameters: choice of integrator # 0 - forward euler # 1 - verlet # 2 - velocity verlet integrator = 0 maxsteps = 1000 # take a small enough timestep dt = min(np.sqrt( kbond/m )) /100 #initial values q0 = np.array([[0.0, 0.1, -0.1], [1.01, 0.9, 0.95]]) v0 = np.array([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]) #initialize system state q = q0.copy() v = v0.copy() #find distance: r and dr dr = q - q[:, np.newaxis] r = np.linalg.norm(dr, axis=2) # find bond forces # will throw a RuntimeWarning due to the dividing by zero along diagonal elements of r. # However, nan_to_num converts those nan's to zero in the result, so ignore the warning. # A particle cannot exert a force on itself, so that makes sense fbond = np.nan_to_num( -kbond * dr * (rbond - r[:,:,np.newaxis]) / r[:,:,np.newaxis]) ftotal = np.sum(fbond,axis=1) #integrate a single step: if integrator == 0: q += dt*v + dt**2 /(2*m[:,np.newaxis]) *ftotal v += dt/m[:,np.newaxis] *ftotal elif integrator == 1: #Verlet integration step q += 0 elif integrator == 2: #Velocity Verlect integration step q += 0 else: raise ('Unkown integrator selected')
[ "numpy.sum", "numpy.nan_to_num", "numpy.linalg.norm", "numpy.array", "numpy.sqrt" ]
[((836, 856), 'numpy.array', 'np.array', (['[1.0, 1.0]'], {}), '([1.0, 1.0])\n', (844, 856), True, 'import numpy as np\n'), ((1078, 1125), 'numpy.array', 'np.array', (['[[0.0, 0.1, -0.1], [1.01, 0.9, 0.95]]'], {}), '([[0.0, 0.1, -0.1], [1.01, 0.9, 0.95]])\n', (1086, 1125), True, 'import numpy as np\n'), ((1147, 1191), 'numpy.array', 'np.array', (['[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]'], {}), '([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]])\n', (1155, 1191), True, 'import numpy as np\n'), ((1318, 1344), 'numpy.linalg.norm', 'np.linalg.norm', (['dr'], {'axis': '(2)'}), '(dr, axis=2)\n', (1332, 1344), True, 'import numpy as np\n'), ((1615, 1700), 'numpy.nan_to_num', 'np.nan_to_num', (['(-kbond * dr * (rbond - r[:, :, np.newaxis]) / r[:, :, np.newaxis])'], {}), '(-kbond * dr * (rbond - r[:, :, np.newaxis]) / r[:, :, np.newaxis]\n )\n', (1628, 1700), True, 'import numpy as np\n'), ((1702, 1723), 'numpy.sum', 'np.sum', (['fbond'], {'axis': '(1)'}), '(fbond, axis=1)\n', (1708, 1723), True, 'import numpy as np\n'), ((1031, 1049), 'numpy.sqrt', 'np.sqrt', (['(kbond / m)'], {}), '(kbond / m)\n', (1038, 1049), True, 'import numpy as np\n')]
""" Heuristic agents for various OpenAI Gym environments. The agent policies, in this case, are deterministic functions, and often handcrafted or found by non-gradient optimization algorithms, such as evolutionary strategies. Many of the heuristic policies were adapted from the following source: ``` @book{xiao2022, title = {Reinforcement Learning: Theory and {Python} Implementation}, author = {<NAME>} publisher = {Springer Nature}, } ``` """ from typing import Dict import numpy as np import torch from ilpyt.agents.base_agent import BaseAgent class LunarLanderContinuousHeuristicAgent(BaseAgent): """ Heuristic policy for the OpenAI Gym LunarLanderContinuous-v2 environment. Adapted from the OpenAI Gym repository: https://github.com/openai/gym/blob/master/gym/envs/box2d/lunar_lander.py """ def initialize(self) -> None: """ Pass. Heuristic agents do not require any initialization." """ pass def step(self, state: torch.Tensor) -> np.ndarray: """ Find best action for the given state. Parameters ---------- state: torch.Tensor state tensor, of size (batch_size, 8) with attributes [horizontal coordinate, vertical coordinate, horizontal speed, vertical speed, angle, angular speed, first leg contact, second leg contact] Returns ------- np.ndarray: selected actions, of size (batch_size, 2) """ batch_size = len(state) angle_targ = ( state[:, 0] * 0.5 + state[:, 2] * 1.0 ) # angle point towards center angle_targ = torch.clip(angle_targ, -0.4, 0.4) hover_targ = 0.55 * torch.abs(state[:, 0]) # target y proportional to # horizontal offset angle = (angle_targ - state[:, 4]) * 0.5 - (state[:, 5]) * 1.0 hover = (hover_targ - state[:, 1]) * 0.5 - (state[:, 3]) * 0.5 for i in range(batch_size): if state[i, 6] or state[i, 7]: # legs have contact angle[i] = 0 hover[i] = -(state[i, 3]) * 0.5 # override to reduce fall speed a = torch.stack([hover * 20 - 1, -angle * 20], dim=-1) a = torch.clamp(a, -1, +1) return a.cpu().numpy() def update(self, batch: Dict[str, torch.Tensor]) -> Dict[str, float]: """ Pass. Heuristic agents do not update their agent policies. """ return {} class LunarLanderHeuristicAgent(BaseAgent): """ Heuristic policy for the OpenAI Gym LunarLander-v2 environment. Adapted from the book 'Reinforcement Learning: Theory and Python Implementation': https://github.com/openai/gym/blob/master/gym/envs/box2d/lunar_lander.py """ def initialize(self): """ Pass. Heuristic agents do not require any initialization." """ pass def step(self, state: torch.Tensor): """ Find best action for the given state. Parameters ---------- state (torch.Tensor): state tensor, of size (batch_size, 8) with attributes [horizontal coordinate, vertical coordinate, horizontal speed, vertical speed, angle, angular speed, first leg contact, second leg contact] Returns ------- np.ndarray: selected actions, of size (batch_size, action_shape) """ batch_size = len(state) angle_targ = ( state[:, 0] * 0.5 + state[:, 2] * 1.0 ) # angle point towards center angle_targ = torch.clip(angle_targ, -0.4, 0.4) hover_targ = 0.55 * torch.abs(state[:, 0]) # target y proportional to # horizontal offset angle = (angle_targ - state[:, 4]) * 0.5 - (state[:, 5]) * 1.0 hover = (hover_targ - state[:, 1]) * 0.5 - (state[:, 3]) * 0.5 for i in range(batch_size): if state[i, 6] or state[i, 7]: # legs have contact angle[i] = 0 hover[i] = -(state[i, 3]) * 0.5 # override to reduce fall speed a = np.zeros(batch_size, dtype=np.uint8) for i in range(batch_size): if hover[i] > torch.abs(angle[i]) and hover[i] > 0.05: a[i] = 2 elif angle[i] < -0.05: a[i] = 3 elif angle[i] > +0.05: a[i] = 1 return a def update(self, batch: Dict[str, torch.Tensor]) -> Dict[str, float]: """ Pass. Heuristic agents do not update their agent policies. """ return {} class CartPoleHeuristicAgent(BaseAgent): """ Heuristic agent for the OpenAI Gym CartPole-v0 environment. Adapted from the book 'Reinforcement Learning: Theory and Python Implementation': https://github.com/ZhiqingXiao/OpenAIGymSolution """ def initialize(self): """ Pass. Heuristic agents do not require any initialization." """ pass def step(self, state: torch.Tensor) -> np.ndarray: """ Find best action for the given state. The overall policy followed by the CartPole agent: push right when 3*angle + angle_velocity > 0. Parameters ---------- state: torch.Tensor state tensor of size (batch_size, 4) with attributes [cart position, cart velocity, pole angle, pole velocity at tip] Returns ------- np.ndarray: action, of shape (batch_size, ) where 0= push cart to left, 1 = push cart to right """ angle, angle_velocity = state[:, 2], state[:, 3] a = (3 * angle + angle_velocity) > 0 return a.cpu().long().numpy() def update(self, batch: Dict[str, torch.Tensor]) -> Dict[str, float]: """ Pass. Heuristic agents do not update their agent policies. """ return {} class MountainCarHeuristicAgent(BaseAgent): """ Fixed deterministic policy for the OpenAI gym MountainCar-v0 environment. Adapted from the book 'Reinforcement Learning: Theory and Python Implementation': https://github.com/ZhiqingXiao/OpenAIGymSolution """ def initialize(self): """ Pass. Heuristic agents do not require any initialization." """ pass def step(self, state: torch.Tensor) -> np.ndarray: """ Find best action for the given state. Push right when satisfying a certain condition; otherwise push left. Parameters ---------- state: torch.Tensor state tensor of size (batch_size, 2) with attributes [position, velocity] Returns ------- np.ndarray: discrete action of shape (batch_size, ) where 0 = push left, 1 = no push, 2 = push right """ actions = [] positions, velocities = state[:, 0], state[:, 1] for (position, velocity) in zip(positions, velocities): lb = min( -0.09 * (position + 0.25) ** 2 + 0.03, 0.3 * (position + 0.9) ** 4 - 0.008, ) ub = -0.07 * (position + 0.38) ** 2 + 0.07 if lb < velocity < ub: action = 2 # push right else: action = 0 # push left actions.append(action) return actions def update(self, batch: Dict[str, torch.Tensor]) -> Dict[str, float]: """ Pass. Heuristic agents do not update their agent policies. """ return {} class MountainCarContinuousHeuristicAgent(BaseAgent): """ Heuristic agent for the OpenAI Gym MountainCarContinuous-v0 environment. Adapted from the book 'Reinforcement Learning: Theory and Python Implementation': https://github.com/ZhiqingXiao/OpenAIGymSolution """ def initialize(self): """ Pass. Heuristic agents do not require any initialization." """ pass def step(self, state: torch.Tensor) -> np.ndarray: """ Find best action for the given state. Push right when satisfying a certain condition; otherwise push left. Parameters ---------- state: torch.Tensor state tensor of size (batch_size, 2) with attributes [position, velocity] Returns ------- np.ndarray: continuous action of shape (batch_size, ) - pushing the car to the left or to the right """ positions, velocities = state[:, 0], state[:, 1] actions = [] for (position, velocity) in zip(positions, velocities): if position > -4 * velocity or position < 13 * velocity - 0.6: force = 1.0 else: force = -1.0 actions.append( [ force, ] ) return actions def update(self, batch: Dict[str, torch.Tensor]) -> Dict[str, float]: """ Pass. Heuristic agents do not update their agent policies. """ return {}
[ "torch.stack", "numpy.zeros", "torch.clip", "torch.clamp", "torch.abs" ]
[((1686, 1719), 'torch.clip', 'torch.clip', (['angle_targ', '(-0.4)', '(0.4)'], {}), '(angle_targ, -0.4, 0.4)\n', (1696, 1719), False, 'import torch\n'), ((2194, 2244), 'torch.stack', 'torch.stack', (['[hover * 20 - 1, -angle * 20]'], {'dim': '(-1)'}), '([hover * 20 - 1, -angle * 20], dim=-1)\n', (2205, 2244), False, 'import torch\n'), ((2257, 2279), 'torch.clamp', 'torch.clamp', (['a', '(-1)', '(+1)'], {}), '(a, -1, +1)\n', (2268, 2279), False, 'import torch\n'), ((3630, 3663), 'torch.clip', 'torch.clip', (['angle_targ', '(-0.4)', '(0.4)'], {}), '(angle_targ, -0.4, 0.4)\n', (3640, 3663), False, 'import torch\n'), ((4138, 4174), 'numpy.zeros', 'np.zeros', (['batch_size'], {'dtype': 'np.uint8'}), '(batch_size, dtype=np.uint8)\n', (4146, 4174), True, 'import numpy as np\n'), ((1748, 1770), 'torch.abs', 'torch.abs', (['state[:, 0]'], {}), '(state[:, 0])\n', (1757, 1770), False, 'import torch\n'), ((3692, 3714), 'torch.abs', 'torch.abs', (['state[:, 0]'], {}), '(state[:, 0])\n', (3701, 3714), False, 'import torch\n'), ((4237, 4256), 'torch.abs', 'torch.abs', (['angle[i]'], {}), '(angle[i])\n', (4246, 4256), False, 'import torch\n')]
import numpy as np import tensorflow as tf from baselines.a2c.utils import conv, fc, conv_to_fc, batch_to_seq, seq_to_batch, lstm, lnlstm, sample class CnnPolicy(object): def __init__(self, sess, ob_space, ac_space, nenv, nsteps, nstack, reuse=False): nbatch = nenv*nsteps #nh, nw, nc = ob_space.shape nh,nw,nc = 1,1,2 ob_shape = (nbatch, nh, nw, nc*nstack) nact = ac_space.n X = tf.placeholder(tf.uint8, shape=[nbatch,nh,nw,nc*nstack]) #obs with tf.variable_scope("model", reuse=reuse): h = conv(tf.cast(X, tf.float32)/255., 'c1', nf=32, rf=1, stride=1, init_scale=np.sqrt(2)) h2 = conv(h, 'c2', nf=64, rf=1, stride=1, init_scale=np.sqrt(2)) h3 = conv(h2, 'c3', nf=64, rf=1, stride=1, init_scale=np.sqrt(2)) h3 = conv_to_fc(h3) h4 = fc(h3, 'fc1', nh=512, init_scale=np.sqrt(2)) pi = fc(h4, 'pi', nact, act=lambda x:x) vf = fc(h4, 'v', 1, act=lambda x:x) """ The part of the model that predicts the progress through the environment we don't actually have to predict the number of frames. Could just have a monotonically increasing prediction. This is enough to enforce that the model learns an order to the states that corresponds to progress.""" progressf = fc(h4, 'progress', 1, act=lambda x:x) # default act is relu v0 = vf[:, 0] progress0 = progressf[:, 0] a0 = sample(pi) self.initial_state = [] #not stateful def step(ob, *_args, **_kwargs): a, v, p = sess.run([a0, v0, progress0], {X:ob}) return a, v, [], p #[] is a dummy state def value(ob, *_args, **_kwargs): return sess.run(v0, {X:ob}) self.X = X self.pi = pi self.vf = vf self.step = step self.value = value self.progress = progress0
[ "baselines.a2c.utils.sample", "tensorflow.variable_scope", "tensorflow.placeholder", "tensorflow.cast", "baselines.a2c.utils.conv_to_fc", "baselines.a2c.utils.fc", "numpy.sqrt" ]
[((435, 496), 'tensorflow.placeholder', 'tf.placeholder', (['tf.uint8'], {'shape': '[nbatch, nh, nw, nc * nstack]'}), '(tf.uint8, shape=[nbatch, nh, nw, nc * nstack])\n', (449, 496), True, 'import tensorflow as tf\n'), ((1515, 1525), 'baselines.a2c.utils.sample', 'sample', (['pi'], {}), '(pi)\n', (1521, 1525), False, 'from baselines.a2c.utils import conv, fc, conv_to_fc, batch_to_seq, seq_to_batch, lstm, lnlstm, sample\n'), ((510, 549), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""model"""'], {'reuse': 'reuse'}), "('model', reuse=reuse)\n", (527, 549), True, 'import tensorflow as tf\n'), ((825, 839), 'baselines.a2c.utils.conv_to_fc', 'conv_to_fc', (['h3'], {}), '(h3)\n', (835, 839), False, 'from baselines.a2c.utils import conv, fc, conv_to_fc, batch_to_seq, seq_to_batch, lstm, lnlstm, sample\n'), ((919, 954), 'baselines.a2c.utils.fc', 'fc', (['h4', '"""pi"""', 'nact'], {'act': '(lambda x: x)'}), "(h4, 'pi', nact, act=lambda x: x)\n", (921, 954), False, 'from baselines.a2c.utils import conv, fc, conv_to_fc, batch_to_seq, seq_to_batch, lstm, lnlstm, sample\n'), ((972, 1003), 'baselines.a2c.utils.fc', 'fc', (['h4', '"""v"""', '(1)'], {'act': '(lambda x: x)'}), "(h4, 'v', 1, act=lambda x: x)\n", (974, 1003), False, 'from baselines.a2c.utils import conv, fc, conv_to_fc, batch_to_seq, seq_to_batch, lstm, lnlstm, sample\n'), ((1383, 1421), 'baselines.a2c.utils.fc', 'fc', (['h4', '"""progress"""', '(1)'], {'act': '(lambda x: x)'}), "(h4, 'progress', 1, act=lambda x: x)\n", (1385, 1421), False, 'from baselines.a2c.utils import conv, fc, conv_to_fc, batch_to_seq, seq_to_batch, lstm, lnlstm, sample\n'), ((572, 594), 'tensorflow.cast', 'tf.cast', (['X', 'tf.float32'], {}), '(X, tf.float32)\n', (579, 594), True, 'import tensorflow as tf\n'), ((641, 651), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (648, 651), True, 'import numpy as np\n'), ((718, 728), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (725, 728), True, 'import numpy as np\n'), ((796, 806), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (803, 806), True, 'import numpy as np\n'), ((890, 900), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (897, 900), True, 'import numpy as np\n')]
# Copyright (C) 2018-2021 Intel Corporation # SPDX-License-Identifier: Apache-2.0 import unittest import numpy as np from openvino.tools.mo.middle.dequantize_linear_resolver import DequantizeLinearResolver from openvino.tools.mo.front.common.partial_infer.utils import int64_array from openvino.tools.mo.utils.ir_engine.compare_graphs import compare_graphs from unit_tests.utils.graph import build_graph from generator import generator, generate nodes1_attributes = { 'input': {'kind': 'op', 'op': 'AnyOp'}, 'input_data': {'kind': 'data', 'shape': None}, 'dequantize': {'kind': 'op', 'op': 'DequantizeLinear', 'axis': 1}, 'dequantize_data': {'kind': 'data', 'shape': None}, 'scale_param_dq': {'kind': 'op', 'type': 'Const', 'op': 'Const'}, 'scale_param_dq_data': {'kind': 'data', 'shape': None}, 'zerop_param_dq': {'kind': 'op', 'type': 'Const', 'op': 'Const'}, 'zerop_param_dq_data': {'kind': 'data', 'shape': None}, 'out': {'kind': 'op', 'op': 'AnyOp'}, 'out_data': {'kind': 'data', 'shape': None}, 'result': {'kind': 'op', 'op': 'Result'}, } nodes_ref_attributes = { 'input': {'kind': 'op', 'op': 'AnyOp'}, 'input_data': {'kind': 'data', 'shape': None}, 'cast': {'kind': 'op', 'op': 'Cast', 'type': 'Convert'}, 'cast_data': {'kind': 'data', 'shape': None}, 'sub': {'kind': 'op', 'op': 'Sub', 'type': 'Subtract'}, 'sub_data': {'kind': 'data', 'shape': None}, 'mul': {'kind': 'op', 'op': 'Mul', 'type': 'Multiply'}, 'mul_data': {'kind': 'data', 'shape': None}, 'scale_param_dq': {'kind': 'op', 'type': 'Const', 'op': 'Const'}, 'scale_param_dq_data': {'kind': 'data', 'shape': None}, 'zerop_param_dq': {'kind': 'op', 'type': 'Const', 'op': 'Const'}, 'zerop_param_dq_data': {'kind': 'data', 'shape': None}, 'out': {'kind': 'op', 'op': 'AnyOp'}, 'out_data': {'kind': 'data', 'shape': None}, 'result': {'kind': 'op', 'op': 'Result'}, 'sub_reshape_const': {'kind': 'op', 'type': 'Const', 'op': 'Const'}, 'sub_reshape_const_data': {'kind': 'data', 'shape': None}, 'sub_reshape': {'kind': 'op', 'type': 'Reshape', 'op': 'Reshape'}, 'sub_reshape_data': {'kind': 'data', 'shape': None}, 'mul_reshape_const': {'kind': 'op', 'type': 'Const', 'op': 'Const'}, 'mul_reshape_const_data': {'kind': 'data', 'shape': None}, 'mul_reshape': {'kind': 'op', 'type': 'Reshape', 'op': 'Reshape'}, 'mul_reshape_data': {'kind': 'data', 'shape': None}, } class TestDequantizeLinearResolver(unittest.TestCase): def test_dequantize(self): graph = build_graph(nodes1_attributes, [('input', 'input_data'), ('input_data', 'dequantize'), ('dequantize', 'dequantize_data'), ('scale_param_dq', 'scale_param_dq_data'), ('zerop_param_dq', 'zerop_param_dq_data'), ('scale_param_dq_data', 'dequantize'), ('zerop_param_dq_data', 'dequantize'), ('dequantize_data', 'out'), ('out', 'out_data'), ('out_data', 'result'), ], {'input_data': {'shape': int64_array([1, 3, 224, 224])}, 'scale_param_dq': {'shape': np.array([]), 'value': np.float32(1.0 / 255)}, 'scale_param_dq_data': {'shape': np.array([]), 'value': np.float32(1.0 / 255)}, 'zerop_param_dq': {'shape': np.array([]), 'value': np.uint8(0)}, 'zerop_param_dq_data': {'shape': np.array([]), 'value': np.uint8(0)}, }, nodes_with_edges_only=True) graph_ref = build_graph(nodes_ref_attributes, [('input', 'input_data'), ('input_data', 'cast'), ('cast', 'cast_data'), ('cast_data', 'sub'), ('zerop_param_dq', 'zerop_param_dq_data'), ('zerop_param_dq_data', 'sub'), ('sub', 'sub_data'), ('sub_data', 'mul'), ('scale_param_dq', 'scale_param_dq_data'), ('scale_param_dq_data', 'mul'), ('mul', 'mul_data'), ('mul_data', 'out'), ('out', 'out_data'), ('out_data', 'result'), ], {'input_data': {'shape': int64_array([1, 3, 224, 224])}, 'scale_param_dq': {'shape': np.array([]), 'value': np.float32(1.0 / 255)}, 'scale_param_dq_data': {'shape': np.array([]), 'value': np.float32(1.0 / 255)}, 'zerop_param_dq': {'shape': np.array([]), 'value': np.uint8(0)}, 'zerop_param_dq_data': {'shape': np.array([]), 'value': np.uint8(0)}, }, nodes_with_edges_only=True) graph.stage = 'middle' DequantizeLinearResolver().find_and_replace_pattern(graph) (flag, resp) = compare_graphs(graph, graph_ref, 'out', check_op_attrs=True) self.assertTrue(flag, resp) def test_dequantize_no_zerop(self): graph = build_graph(nodes1_attributes, [('input', 'input_data'), ('input_data', 'dequantize'), ('dequantize', 'dequantize_data'), ('scale_param_dq', 'scale_param_dq_data'), ('scale_param_dq_data', 'dequantize'), ('dequantize', 'dequantize_data'), ('dequantize_data', 'out'), ('out', 'out_data'), ('out_data', 'result'), ], {'input_data': {'shape': int64_array([1, 3, 224, 224])}, 'scale_param_dq': {'shape': np.array([]), 'value': np.float32(1.0 / 255)}, 'scale_param_dq_data': {'shape': np.array([]), 'value': np.float32(1.0 / 255)}, }, nodes_with_edges_only=True) graph_ref = build_graph(nodes_ref_attributes, [('input', 'input_data'), ('input_data', 'cast'), ('cast', 'cast_data'), ('cast_data', 'mul'), ('scale_param_dq', 'scale_param_dq_data'), ('scale_param_dq_data', 'mul'), ('mul', 'mul_data'), ('mul_data', 'out'), ('out', 'out_data'), ('out_data', 'result'), ], {'input_data': {'shape': int64_array([1, 3, 224, 224])}, 'scale_param_dq': {'shape': np.array([]), 'value': np.float32(1.0 / 255)}, 'scale_param_dq_data': {'shape': np.array([]), 'value': np.float32(1.0 / 255)}, }, nodes_with_edges_only=True) graph.stage = 'middle' DequantizeLinearResolver().find_and_replace_pattern(graph) (flag, resp) = compare_graphs(graph, graph_ref, 'out', check_op_attrs=True) self.assertTrue(flag, resp) @generator class TestDequantizeWithAxis(unittest.TestCase): @generate(*[(int64_array([1, 3, 4, 4]), np.array([2, 3, 4, 5], dtype=np.float32), np.array([2, 3, 4, 5], dtype=np.uint8), int64_array([1, 1, 4, 1]), 2), (int64_array([1, 3, 4, 4]), int64_array([2, 3, 4, 5]), np.array([2, 3, 4, 5], dtype=np.uint8), int64_array([1, 3, 1, 1]), 1), (int64_array([2, 3, 4, 4]), int64_array([2, 3, 4, 5]), np.array([2, 3, 4, 5], dtype=np.uint8), int64_array([2, 1, 1, 1]), 0), (int64_array([1, 3, 4, 4]), int64_array([2, 3, 4, 5]), np.array([2, 3, 4, 5], dtype=np.uint8), int64_array([1, 1, 4, 1]), -2), (int64_array([1, 3, 4, 4]), int64_array([2, 3, 4, 5]), np.array([2, 3, 4, 5], dtype=np.uint8), int64_array([1, 1, 1, 4]), -1), (int64_array([1, 3, 4, 4]), int64_array([2, 3, 4, 5]), np.array([2, 3, 4, 5], dtype=np.int32), int64_array([1, 1, 4, 1]), 2), (int64_array([1, 3, 4, 4]), int64_array([2, 3, 4, 5]), np.array([2, 3, 4, 5], dtype=np.int32), int64_array([1, 3, 1, 1]), 1), (int64_array([2, 3, 4, 4]), int64_array([2, 3, 4, 5]), np.array([2, 3, 4, 5], dtype=np.int32), int64_array([2, 1, 1, 1]), 0), ]) def test_dequantize_with_axis(self, input_shape, scale_param_value, zero_param_value, target_shape, axis): graph = build_graph(nodes1_attributes, [('input', 'input_data'), ('input_data', 'dequantize'), ('dequantize', 'dequantize_data'), ('scale_param_dq', 'scale_param_dq_data'), ('zerop_param_dq', 'zerop_param_dq_data'), ('scale_param_dq_data', 'dequantize'), ('zerop_param_dq_data', 'dequantize'), ('dequantize_data', 'out'), ('out', 'out_data'), ('out_data', 'result'), ], {'input_data': {'shape': input_shape}, 'dequantize': {'axis': axis}, 'scale_param_dq': {'shape': scale_param_value.shape, 'value': scale_param_value}, 'scale_param_dq_data': {'shape': scale_param_value.shape, 'value': scale_param_value}, 'zerop_param_dq': {'shape': zero_param_value.shape, 'value': zero_param_value}, 'zerop_param_dq_data': {'shape': zero_param_value.shape, 'value': zero_param_value}, }, nodes_with_edges_only=True) graph_ref = build_graph(nodes_ref_attributes, [('input', 'input_data'), ('input_data', 'cast'), ('cast', 'cast_data'), ('cast_data', 'sub'), ('zerop_param_dq', 'zerop_param_dq_data'), ('zerop_param_dq_data', 'sub_reshape'), ('sub_reshape_const', 'sub_reshape_const_data'), ('sub_reshape_const_data', 'sub_reshape'), ('sub_reshape', 'sub_reshape_data'), ('sub_reshape_data', 'sub'), ('sub', 'sub_data'), ('sub_data', 'mul'), ('scale_param_dq', 'scale_param_dq_data'), ('scale_param_dq_data', 'mul_reshape'), ('mul_reshape_const', 'mul_reshape_const_data'), ('mul_reshape_const_data', 'mul_reshape'), ('mul_reshape', 'mul_reshape_data'), ('mul_reshape_data', 'mul'), ('mul', 'mul_data'), ('mul_data', 'out'), ('out', 'out_data'), ('out_data', 'result'), ], {'input_data': {'shape': input_shape}, 'scale_param_dq': {'shape': scale_param_value.shape, 'value': scale_param_value}, 'scale_param_dq_data': {'shape': scale_param_value.shape, 'value': scale_param_value}, 'zerop_param_dq': {'shape': zero_param_value.shape, 'value': zero_param_value}, 'zerop_param_dq_data': {'shape': zero_param_value.shape, 'value': zero_param_value}, 'sub_reshape_const_data': {'shape': target_shape.shape, 'value': target_shape}, 'mul_reshape_const_data': {'shape': target_shape.shape, 'value': target_shape}, }, nodes_with_edges_only=True) graph.stage = 'middle' DequantizeLinearResolver().find_and_replace_pattern(graph) (flag, resp) = compare_graphs(graph, graph_ref, 'out', check_op_attrs=True) self.assertTrue(flag, resp)
[ "openvino.tools.mo.front.common.partial_infer.utils.int64_array", "numpy.uint8", "openvino.tools.mo.utils.ir_engine.compare_graphs.compare_graphs", "unit_tests.utils.graph.build_graph", "numpy.float32", "openvino.tools.mo.middle.dequantize_linear_resolver.DequantizeLinearResolver", "numpy.array" ]
[((5432, 5492), 'openvino.tools.mo.utils.ir_engine.compare_graphs.compare_graphs', 'compare_graphs', (['graph', 'graph_ref', '"""out"""'], {'check_op_attrs': '(True)'}), "(graph, graph_ref, 'out', check_op_attrs=True)\n", (5446, 5492), False, 'from openvino.tools.mo.utils.ir_engine.compare_graphs import compare_graphs\n'), ((7722, 7782), 'openvino.tools.mo.utils.ir_engine.compare_graphs.compare_graphs', 'compare_graphs', (['graph', 'graph_ref', '"""out"""'], {'check_op_attrs': '(True)'}), "(graph, graph_ref, 'out', check_op_attrs=True)\n", (7736, 7782), False, 'from openvino.tools.mo.utils.ir_engine.compare_graphs import compare_graphs\n'), ((9315, 10156), 'unit_tests.utils.graph.build_graph', 'build_graph', (['nodes1_attributes', "[('input', 'input_data'), ('input_data', 'dequantize'), ('dequantize',\n 'dequantize_data'), ('scale_param_dq', 'scale_param_dq_data'), (\n 'zerop_param_dq', 'zerop_param_dq_data'), ('scale_param_dq_data',\n 'dequantize'), ('zerop_param_dq_data', 'dequantize'), (\n 'dequantize_data', 'out'), ('out', 'out_data'), ('out_data', 'result')]", "{'input_data': {'shape': input_shape}, 'dequantize': {'axis': axis},\n 'scale_param_dq': {'shape': scale_param_value.shape, 'value':\n scale_param_value}, 'scale_param_dq_data': {'shape': scale_param_value.\n shape, 'value': scale_param_value}, 'zerop_param_dq': {'shape':\n zero_param_value.shape, 'value': zero_param_value},\n 'zerop_param_dq_data': {'shape': zero_param_value.shape, 'value':\n zero_param_value}}"], {'nodes_with_edges_only': '(True)'}), "(nodes1_attributes, [('input', 'input_data'), ('input_data',\n 'dequantize'), ('dequantize', 'dequantize_data'), ('scale_param_dq',\n 'scale_param_dq_data'), ('zerop_param_dq', 'zerop_param_dq_data'), (\n 'scale_param_dq_data', 'dequantize'), ('zerop_param_dq_data',\n 'dequantize'), ('dequantize_data', 'out'), ('out', 'out_data'), (\n 'out_data', 'result')], {'input_data': {'shape': input_shape},\n 'dequantize': {'axis': axis}, 'scale_param_dq': {'shape':\n scale_param_value.shape, 'value': scale_param_value},\n 'scale_param_dq_data': {'shape': scale_param_value.shape, 'value':\n scale_param_value}, 'zerop_param_dq': {'shape': zero_param_value.shape,\n 'value': zero_param_value}, 'zerop_param_dq_data': {'shape':\n zero_param_value.shape, 'value': zero_param_value}},\n nodes_with_edges_only=True)\n", (9326, 10156), False, 'from unit_tests.utils.graph import build_graph\n'), ((10854, 12237), 'unit_tests.utils.graph.build_graph', 'build_graph', (['nodes_ref_attributes', "[('input', 'input_data'), ('input_data', 'cast'), ('cast', 'cast_data'), (\n 'cast_data', 'sub'), ('zerop_param_dq', 'zerop_param_dq_data'), (\n 'zerop_param_dq_data', 'sub_reshape'), ('sub_reshape_const',\n 'sub_reshape_const_data'), ('sub_reshape_const_data', 'sub_reshape'), (\n 'sub_reshape', 'sub_reshape_data'), ('sub_reshape_data', 'sub'), ('sub',\n 'sub_data'), ('sub_data', 'mul'), ('scale_param_dq',\n 'scale_param_dq_data'), ('scale_param_dq_data', 'mul_reshape'), (\n 'mul_reshape_const', 'mul_reshape_const_data'), (\n 'mul_reshape_const_data', 'mul_reshape'), ('mul_reshape',\n 'mul_reshape_data'), ('mul_reshape_data', 'mul'), ('mul', 'mul_data'),\n ('mul_data', 'out'), ('out', 'out_data'), ('out_data', 'result')]", "{'input_data': {'shape': input_shape}, 'scale_param_dq': {'shape':\n scale_param_value.shape, 'value': scale_param_value},\n 'scale_param_dq_data': {'shape': scale_param_value.shape, 'value':\n scale_param_value}, 'zerop_param_dq': {'shape': zero_param_value.shape,\n 'value': zero_param_value}, 'zerop_param_dq_data': {'shape':\n zero_param_value.shape, 'value': zero_param_value},\n 'sub_reshape_const_data': {'shape': target_shape.shape, 'value':\n target_shape}, 'mul_reshape_const_data': {'shape': target_shape.shape,\n 'value': target_shape}}"], {'nodes_with_edges_only': '(True)'}), "(nodes_ref_attributes, [('input', 'input_data'), ('input_data',\n 'cast'), ('cast', 'cast_data'), ('cast_data', 'sub'), ('zerop_param_dq',\n 'zerop_param_dq_data'), ('zerop_param_dq_data', 'sub_reshape'), (\n 'sub_reshape_const', 'sub_reshape_const_data'), (\n 'sub_reshape_const_data', 'sub_reshape'), ('sub_reshape',\n 'sub_reshape_data'), ('sub_reshape_data', 'sub'), ('sub', 'sub_data'),\n ('sub_data', 'mul'), ('scale_param_dq', 'scale_param_dq_data'), (\n 'scale_param_dq_data', 'mul_reshape'), ('mul_reshape_const',\n 'mul_reshape_const_data'), ('mul_reshape_const_data', 'mul_reshape'), (\n 'mul_reshape', 'mul_reshape_data'), ('mul_reshape_data', 'mul'), ('mul',\n 'mul_data'), ('mul_data', 'out'), ('out', 'out_data'), ('out_data',\n 'result')], {'input_data': {'shape': input_shape}, 'scale_param_dq': {\n 'shape': scale_param_value.shape, 'value': scale_param_value},\n 'scale_param_dq_data': {'shape': scale_param_value.shape, 'value':\n scale_param_value}, 'zerop_param_dq': {'shape': zero_param_value.shape,\n 'value': zero_param_value}, 'zerop_param_dq_data': {'shape':\n zero_param_value.shape, 'value': zero_param_value},\n 'sub_reshape_const_data': {'shape': target_shape.shape, 'value':\n target_shape}, 'mul_reshape_const_data': {'shape': target_shape.shape,\n 'value': target_shape}}, nodes_with_edges_only=True)\n", (10865, 12237), False, 'from unit_tests.utils.graph import build_graph\n'), ((13527, 13587), 'openvino.tools.mo.utils.ir_engine.compare_graphs.compare_graphs', 'compare_graphs', (['graph', 'graph_ref', '"""out"""'], {'check_op_attrs': '(True)'}), "(graph, graph_ref, 'out', check_op_attrs=True)\n", (13541, 13587), False, 'from openvino.tools.mo.utils.ir_engine.compare_graphs import compare_graphs\n'), ((5349, 5375), 'openvino.tools.mo.middle.dequantize_linear_resolver.DequantizeLinearResolver', 'DequantizeLinearResolver', ([], {}), '()\n', (5373, 5375), False, 'from openvino.tools.mo.middle.dequantize_linear_resolver import DequantizeLinearResolver\n'), ((7639, 7665), 'openvino.tools.mo.middle.dequantize_linear_resolver.DequantizeLinearResolver', 'DequantizeLinearResolver', ([], {}), '()\n', (7663, 7665), False, 'from openvino.tools.mo.middle.dequantize_linear_resolver import DequantizeLinearResolver\n'), ((13444, 13470), 'openvino.tools.mo.middle.dequantize_linear_resolver.DequantizeLinearResolver', 'DequantizeLinearResolver', ([], {}), '()\n', (13468, 13470), False, 'from openvino.tools.mo.middle.dequantize_linear_resolver import DequantizeLinearResolver\n'), ((3310, 3339), 'openvino.tools.mo.front.common.partial_infer.utils.int64_array', 'int64_array', (['[1, 3, 224, 224]'], {}), '([1, 3, 224, 224])\n', (3321, 3339), False, 'from openvino.tools.mo.front.common.partial_infer.utils import int64_array\n'), ((3399, 3411), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (3407, 3411), True, 'import numpy as np\n'), ((3422, 3443), 'numpy.float32', 'np.float32', (['(1.0 / 255)'], {}), '(1.0 / 255)\n', (3432, 3443), True, 'import numpy as np\n'), ((3508, 3520), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (3516, 3520), True, 'import numpy as np\n'), ((3531, 3552), 'numpy.float32', 'np.float32', (['(1.0 / 255)'], {}), '(1.0 / 255)\n', (3541, 3552), True, 'import numpy as np\n'), ((3612, 3624), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (3620, 3624), True, 'import numpy as np\n'), ((3635, 3646), 'numpy.uint8', 'np.uint8', (['(0)'], {}), '(0)\n', (3643, 3646), True, 'import numpy as np\n'), ((3711, 3723), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (3719, 3723), True, 'import numpy as np\n'), ((3734, 3745), 'numpy.uint8', 'np.uint8', (['(0)'], {}), '(0)\n', (3742, 3745), True, 'import numpy as np\n'), ((4791, 4820), 'openvino.tools.mo.front.common.partial_infer.utils.int64_array', 'int64_array', (['[1, 3, 224, 224]'], {}), '([1, 3, 224, 224])\n', (4802, 4820), False, 'from openvino.tools.mo.front.common.partial_infer.utils import int64_array\n'), ((4884, 4896), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (4892, 4896), True, 'import numpy as np\n'), ((4907, 4928), 'numpy.float32', 'np.float32', (['(1.0 / 255)'], {}), '(1.0 / 255)\n', (4917, 4928), True, 'import numpy as np\n'), ((4997, 5009), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (5005, 5009), True, 'import numpy as np\n'), ((5020, 5041), 'numpy.float32', 'np.float32', (['(1.0 / 255)'], {}), '(1.0 / 255)\n', (5030, 5041), True, 'import numpy as np\n'), ((5105, 5117), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (5113, 5117), True, 'import numpy as np\n'), ((5128, 5139), 'numpy.uint8', 'np.uint8', (['(0)'], {}), '(0)\n', (5136, 5139), True, 'import numpy as np\n'), ((5208, 5220), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (5216, 5220), True, 'import numpy as np\n'), ((5231, 5242), 'numpy.uint8', 'np.uint8', (['(0)'], {}), '(0)\n', (5239, 5242), True, 'import numpy as np\n'), ((6243, 6272), 'openvino.tools.mo.front.common.partial_infer.utils.int64_array', 'int64_array', (['[1, 3, 224, 224]'], {}), '([1, 3, 224, 224])\n', (6254, 6272), False, 'from openvino.tools.mo.front.common.partial_infer.utils import int64_array\n'), ((6332, 6344), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (6340, 6344), True, 'import numpy as np\n'), ((6355, 6376), 'numpy.float32', 'np.float32', (['(1.0 / 255)'], {}), '(1.0 / 255)\n', (6365, 6376), True, 'import numpy as np\n'), ((6441, 6453), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (6449, 6453), True, 'import numpy as np\n'), ((6464, 6485), 'numpy.float32', 'np.float32', (['(1.0 / 255)'], {}), '(1.0 / 255)\n', (6474, 6485), True, 'import numpy as np\n'), ((7282, 7311), 'openvino.tools.mo.front.common.partial_infer.utils.int64_array', 'int64_array', (['[1, 3, 224, 224]'], {}), '([1, 3, 224, 224])\n', (7293, 7311), False, 'from openvino.tools.mo.front.common.partial_infer.utils import int64_array\n'), ((7375, 7387), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (7383, 7387), True, 'import numpy as np\n'), ((7398, 7419), 'numpy.float32', 'np.float32', (['(1.0 / 255)'], {}), '(1.0 / 255)\n', (7408, 7419), True, 'import numpy as np\n'), ((7488, 7500), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (7496, 7500), True, 'import numpy as np\n'), ((7511, 7532), 'numpy.float32', 'np.float32', (['(1.0 / 255)'], {}), '(1.0 / 255)\n', (7521, 7532), True, 'import numpy as np\n'), ((7897, 7922), 'openvino.tools.mo.front.common.partial_infer.utils.int64_array', 'int64_array', (['[1, 3, 4, 4]'], {}), '([1, 3, 4, 4])\n', (7908, 7922), False, 'from openvino.tools.mo.front.common.partial_infer.utils import int64_array\n'), ((7924, 7964), 'numpy.array', 'np.array', (['[2, 3, 4, 5]'], {'dtype': 'np.float32'}), '([2, 3, 4, 5], dtype=np.float32)\n', (7932, 7964), True, 'import numpy as np\n'), ((7983, 8021), 'numpy.array', 'np.array', (['[2, 3, 4, 5]'], {'dtype': 'np.uint8'}), '([2, 3, 4, 5], dtype=np.uint8)\n', (7991, 8021), True, 'import numpy as np\n'), ((8023, 8048), 'openvino.tools.mo.front.common.partial_infer.utils.int64_array', 'int64_array', (['[1, 1, 4, 1]'], {}), '([1, 1, 4, 1])\n', (8034, 8048), False, 'from openvino.tools.mo.front.common.partial_infer.utils import int64_array\n'), ((8071, 8096), 'openvino.tools.mo.front.common.partial_infer.utils.int64_array', 'int64_array', (['[1, 3, 4, 4]'], {}), '([1, 3, 4, 4])\n', (8082, 8096), False, 'from openvino.tools.mo.front.common.partial_infer.utils import int64_array\n'), ((8098, 8123), 'openvino.tools.mo.front.common.partial_infer.utils.int64_array', 'int64_array', (['[2, 3, 4, 5]'], {}), '([2, 3, 4, 5])\n', (8109, 8123), False, 'from openvino.tools.mo.front.common.partial_infer.utils import int64_array\n'), ((8142, 8180), 'numpy.array', 'np.array', (['[2, 3, 4, 5]'], {'dtype': 'np.uint8'}), '([2, 3, 4, 5], dtype=np.uint8)\n', (8150, 8180), True, 'import numpy as np\n'), ((8182, 8207), 'openvino.tools.mo.front.common.partial_infer.utils.int64_array', 'int64_array', (['[1, 3, 1, 1]'], {}), '([1, 3, 1, 1])\n', (8193, 8207), False, 'from openvino.tools.mo.front.common.partial_infer.utils import int64_array\n'), ((8230, 8255), 'openvino.tools.mo.front.common.partial_infer.utils.int64_array', 'int64_array', (['[2, 3, 4, 4]'], {}), '([2, 3, 4, 4])\n', (8241, 8255), False, 'from openvino.tools.mo.front.common.partial_infer.utils import int64_array\n'), ((8257, 8282), 'openvino.tools.mo.front.common.partial_infer.utils.int64_array', 'int64_array', (['[2, 3, 4, 5]'], {}), '([2, 3, 4, 5])\n', (8268, 8282), False, 'from openvino.tools.mo.front.common.partial_infer.utils import int64_array\n'), ((8301, 8339), 'numpy.array', 'np.array', (['[2, 3, 4, 5]'], {'dtype': 'np.uint8'}), '([2, 3, 4, 5], dtype=np.uint8)\n', (8309, 8339), True, 'import numpy as np\n'), ((8341, 8366), 'openvino.tools.mo.front.common.partial_infer.utils.int64_array', 'int64_array', (['[2, 1, 1, 1]'], {}), '([2, 1, 1, 1])\n', (8352, 8366), False, 'from openvino.tools.mo.front.common.partial_infer.utils import int64_array\n'), ((8389, 8414), 'openvino.tools.mo.front.common.partial_infer.utils.int64_array', 'int64_array', (['[1, 3, 4, 4]'], {}), '([1, 3, 4, 4])\n', (8400, 8414), False, 'from openvino.tools.mo.front.common.partial_infer.utils import int64_array\n'), ((8416, 8441), 'openvino.tools.mo.front.common.partial_infer.utils.int64_array', 'int64_array', (['[2, 3, 4, 5]'], {}), '([2, 3, 4, 5])\n', (8427, 8441), False, 'from openvino.tools.mo.front.common.partial_infer.utils import int64_array\n'), ((8460, 8498), 'numpy.array', 'np.array', (['[2, 3, 4, 5]'], {'dtype': 'np.uint8'}), '([2, 3, 4, 5], dtype=np.uint8)\n', (8468, 8498), True, 'import numpy as np\n'), ((8500, 8525), 'openvino.tools.mo.front.common.partial_infer.utils.int64_array', 'int64_array', (['[1, 1, 4, 1]'], {}), '([1, 1, 4, 1])\n', (8511, 8525), False, 'from openvino.tools.mo.front.common.partial_infer.utils import int64_array\n'), ((8549, 8574), 'openvino.tools.mo.front.common.partial_infer.utils.int64_array', 'int64_array', (['[1, 3, 4, 4]'], {}), '([1, 3, 4, 4])\n', (8560, 8574), False, 'from openvino.tools.mo.front.common.partial_infer.utils import int64_array\n'), ((8576, 8601), 'openvino.tools.mo.front.common.partial_infer.utils.int64_array', 'int64_array', (['[2, 3, 4, 5]'], {}), '([2, 3, 4, 5])\n', (8587, 8601), False, 'from openvino.tools.mo.front.common.partial_infer.utils import int64_array\n'), ((8620, 8658), 'numpy.array', 'np.array', (['[2, 3, 4, 5]'], {'dtype': 'np.uint8'}), '([2, 3, 4, 5], dtype=np.uint8)\n', (8628, 8658), True, 'import numpy as np\n'), ((8660, 8685), 'openvino.tools.mo.front.common.partial_infer.utils.int64_array', 'int64_array', (['[1, 1, 1, 4]'], {}), '([1, 1, 1, 4])\n', (8671, 8685), False, 'from openvino.tools.mo.front.common.partial_infer.utils import int64_array\n'), ((8709, 8734), 'openvino.tools.mo.front.common.partial_infer.utils.int64_array', 'int64_array', (['[1, 3, 4, 4]'], {}), '([1, 3, 4, 4])\n', (8720, 8734), False, 'from openvino.tools.mo.front.common.partial_infer.utils import int64_array\n'), ((8736, 8761), 'openvino.tools.mo.front.common.partial_infer.utils.int64_array', 'int64_array', (['[2, 3, 4, 5]'], {}), '([2, 3, 4, 5])\n', (8747, 8761), False, 'from openvino.tools.mo.front.common.partial_infer.utils import int64_array\n'), ((8780, 8818), 'numpy.array', 'np.array', (['[2, 3, 4, 5]'], {'dtype': 'np.int32'}), '([2, 3, 4, 5], dtype=np.int32)\n', (8788, 8818), True, 'import numpy as np\n'), ((8820, 8845), 'openvino.tools.mo.front.common.partial_infer.utils.int64_array', 'int64_array', (['[1, 1, 4, 1]'], {}), '([1, 1, 4, 1])\n', (8831, 8845), False, 'from openvino.tools.mo.front.common.partial_infer.utils import int64_array\n'), ((8868, 8893), 'openvino.tools.mo.front.common.partial_infer.utils.int64_array', 'int64_array', (['[1, 3, 4, 4]'], {}), '([1, 3, 4, 4])\n', (8879, 8893), False, 'from openvino.tools.mo.front.common.partial_infer.utils import int64_array\n'), ((8895, 8920), 'openvino.tools.mo.front.common.partial_infer.utils.int64_array', 'int64_array', (['[2, 3, 4, 5]'], {}), '([2, 3, 4, 5])\n', (8906, 8920), False, 'from openvino.tools.mo.front.common.partial_infer.utils import int64_array\n'), ((8939, 8977), 'numpy.array', 'np.array', (['[2, 3, 4, 5]'], {'dtype': 'np.int32'}), '([2, 3, 4, 5], dtype=np.int32)\n', (8947, 8977), True, 'import numpy as np\n'), ((8979, 9004), 'openvino.tools.mo.front.common.partial_infer.utils.int64_array', 'int64_array', (['[1, 3, 1, 1]'], {}), '([1, 3, 1, 1])\n', (8990, 9004), False, 'from openvino.tools.mo.front.common.partial_infer.utils import int64_array\n'), ((9027, 9052), 'openvino.tools.mo.front.common.partial_infer.utils.int64_array', 'int64_array', (['[2, 3, 4, 4]'], {}), '([2, 3, 4, 4])\n', (9038, 9052), False, 'from openvino.tools.mo.front.common.partial_infer.utils import int64_array\n'), ((9054, 9079), 'openvino.tools.mo.front.common.partial_infer.utils.int64_array', 'int64_array', (['[2, 3, 4, 5]'], {}), '([2, 3, 4, 5])\n', (9065, 9079), False, 'from openvino.tools.mo.front.common.partial_infer.utils import int64_array\n'), ((9098, 9136), 'numpy.array', 'np.array', (['[2, 3, 4, 5]'], {'dtype': 'np.int32'}), '([2, 3, 4, 5], dtype=np.int32)\n', (9106, 9136), True, 'import numpy as np\n'), ((9138, 9163), 'openvino.tools.mo.front.common.partial_infer.utils.int64_array', 'int64_array', (['[2, 1, 1, 1]'], {}), '([2, 1, 1, 1])\n', (9149, 9163), False, 'from openvino.tools.mo.front.common.partial_infer.utils import int64_array\n')]
import numpy as np import imageio import matplotlib.pyplot as plt import random import sys import argparse from numba import jit,jitclass,prange from numba import int64,float64 ''' Suceptible-Infected-Removed (SIR) [012] ''' def press(event,obj): sys.stdout.flush() if event.key == 'q': if obj.save: imageio.mimsave(obj.save_dir+obj.save_name, obj.images,fps=30) sys.exit(0) spec = [('sizGrid',int64[:]),('spdConstant',float64), ('sizHuman',float64),('simTime',int64),('infR',float64), ('infP',float64),('rmT',int64),('rmP',float64), ('loc',float64[:]),('spd',float64[:]),('state',int64[:])] @jitclass(spec) class model: def __init__(self,sizGrid=10,spdK=.15, sizHuman=100,simT=1000000, infR=.2,infP=.05,rmT=50,rmP=.1, save=False,save_dir=None,save_name=None): # Constant self.sizGrid = sizGrid self.spdConstant = spdK self.sizHuman = sizHuman self.simTime = simT self.infR,self.infP = infR,infP self.rmT,self.rmP = rmT,rmP # Location and Speed self.loc = self.sizGrid*np.random.uniform(0,1, (self.sizHuman,2)) self.spd = self.spdConstant*np.random.normal(0,1, (self.sizHuman,2)) # Infect and Remove Record # 1st: Infect (bol), 2nd: Remove (bol), 3rd: Infect Period self.state = np.zeros((self.sizHuman,3)) self.state[np.random.randint(0,self.sizHuman),0] = 1 # Plot attribute self.fig = plt.figure(figsize=(10,5)) self.fig.canvas.mpl_connect('key_press_event',lambda event:press(event,self)) plt.ion() self.t = 0 # store SIR self.sS,self.sI,self.sR = [],[],[] # images self.images = [] self.save,self.save_dir,self.save_name = save,save_dir,save_name def updatePlot(self): ax = plt.gca(); ax.clear() ax1 = plt.subplot(1,2,1) ax1.clear() rmvBol = self.state[:,1]==1 ax1.scatter(self.loc[rmvBol,0],self.loc[rmvBol,1],c='b') infectBol = [False if rmvBol[i]==True else (self.state[i,0]==1) for i in range(self.state.shape[0])] ax1.scatter(self.loc[infectBol,0],self.loc[infectBol,1],c='r') susceptBol = (self.state[:,0]==0)&(self.state[:,1]==0) ax1.scatter(self.loc[susceptBol==1,0],self.loc[susceptBol==1,1],c='g') plt.xlim([0,self.sizGrid]) plt.ylim([0,self.sizGrid]) plt.title('Iteration {}'.format(self.t)) ax2 = plt.subplot(1,2,2) ax2.clear() S,I,R = np.sum(susceptBol),np.sum(infectBol),np.sum(rmvBol) self.sS.append(S); self.sI.append(I); self.sR.append(R) ax2.plot(self.sS,'g',label='susceptible') ax2.annotate('{}'.format(S),(self.t,S)) ax2.plot(self.sI,'r',label='infectious') ax2.annotate('{}'.format(I),(self.t,I)) ax2.plot(self.sR,'b',label='recovered') ax2.annotate('{}'.format(R),(self.t,R)) plt.ylabel('Number') plt.xlabel('Iterations') ax2.legend(loc='upper center', bbox_to_anchor=(0.5, -0.05),shadow=True, ncol=3) plt.show() self.fig.canvas.draw() image = np.frombuffer(self.fig.canvas.tostring_rgb(),dtype='uint8') image = image.reshape(self.fig.canvas.get_width_height()[::-1]+(3,)) self.fig.canvas.flush_events() return image def updateLocSpd(self): self.t+=1 self.loc += self.spd flipx = (self.loc[:,0]<=0) | (self.loc[:,0]>=self.sizGrid) flipy = (self.loc[:,1]<=0) | (self.loc[:,1]>=self.sizGrid) self.spd[:,0][flipx] *= -1 self.spd[:,1][flipy] *= -1 def updateInfect(self): infect = self.state[:,0]==1 rmv = self.state[:,1]==1 infectLoc = self.loc[infect,:] for i in range(infectLoc.shape[0]): tmpdist = np.linalg.norm(self.loc-infectLoc[i,:],axis=1) potential = (tmpdist<=self.infR) potentialP = np.random.uniform(0,1,self.sizHuman) newInfectbol = potential*potentialP >= (1-self.infP) infect[newInfectbol] = 1 for i in range(len(infect)): if rmv[i] == True: infect[i] = False self.state[:,0] = infect self.state[:,2][infect==1] += 1 def updateRemove(self): infect = self.state[:,0]==1 infectPeriodbol = self.state[:,2]*infect >= self.rmT potentialP = np.random.uniform(0,1,self.sizHuman) newRmvbol = potentialP*infectPeriodbol >= (1-self.rmP) self.state[:,0][newRmvbol] = 0 self.state[:,1][newRmvbol] = 1 def simulate(self): while self.t < self.simTime: if self.t%1 == 0: image = self.updatePlot() if self.save: self.images.append(image) self.updateLocSpd() self.updateInfect() self.updateRemove() if __name__ == '__main__': parser = argparse.ArgumentParser(description='Suceptible-Infectious-Removed Model') parser.add_argument('--infR',type=float,default=.2,help='Infectious Radius') parser.add_argument('--infP',type=float,default=.05,help='Infectious Probability') parser.add_argument('--rmT',type=int,default=50,help='Recovered Period') parser.add_argument('--rmP',type=float,default=.1,help='Recovered probability') parser.add_argument('--simT',type=int,default=100000,help='simulation epochs') parser.add_argument('--save',type=bool,default=False,help='save mode') parser.add_argument('--save-dir',type=str,default='/home/yui/Documents/outputs/',help='save path') parser.add_argument('--save-name',type=str,default='SIR.gif',help='save gif name') args = parser.parse_args() model_kwargs = { 'infR':args.infR,'infP':args.infP, 'rmT':args.rmT,'rmP':args.rmP,'simT':args.simT} modelCov = model(**model_kwargs) modelCov.simulate()
[ "numpy.sum", "argparse.ArgumentParser", "matplotlib.pyplot.figure", "numpy.random.randint", "sys.stdout.flush", "numpy.linalg.norm", "numpy.random.normal", "matplotlib.pyplot.gca", "imageio.mimsave", "matplotlib.pyplot.show", "numba.jitclass", "matplotlib.pyplot.ylim", "matplotlib.pyplot.ion", "matplotlib.pyplot.ylabel", "sys.exit", "matplotlib.pyplot.subplot", "matplotlib.pyplot.xlim", "numpy.random.uniform", "numpy.zeros", "matplotlib.pyplot.xlabel" ]
[((674, 688), 'numba.jitclass', 'jitclass', (['spec'], {}), '(spec)\n', (682, 688), False, 'from numba import jit, jitclass, prange\n'), ((251, 269), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (267, 269), False, 'import sys\n'), ((5019, 5093), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Suceptible-Infectious-Removed Model"""'}), "(description='Suceptible-Infectious-Removed Model')\n", (5042, 5093), False, 'import argparse\n'), ((419, 430), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (427, 430), False, 'import sys\n'), ((1436, 1464), 'numpy.zeros', 'np.zeros', (['(self.sizHuman, 3)'], {}), '((self.sizHuman, 3))\n', (1444, 1464), True, 'import numpy as np\n'), ((1569, 1596), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 5)'}), '(figsize=(10, 5))\n', (1579, 1596), True, 'import matplotlib.pyplot as plt\n'), ((1690, 1699), 'matplotlib.pyplot.ion', 'plt.ion', ([], {}), '()\n', (1697, 1699), True, 'import matplotlib.pyplot as plt\n'), ((1936, 1945), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (1943, 1945), True, 'import matplotlib.pyplot as plt\n'), ((1981, 2001), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(2)', '(1)'], {}), '(1, 2, 1)\n', (1992, 2001), True, 'import matplotlib.pyplot as plt\n'), ((2451, 2478), 'matplotlib.pyplot.xlim', 'plt.xlim', (['[0, self.sizGrid]'], {}), '([0, self.sizGrid])\n', (2459, 2478), True, 'import matplotlib.pyplot as plt\n'), ((2486, 2513), 'matplotlib.pyplot.ylim', 'plt.ylim', (['[0, self.sizGrid]'], {}), '([0, self.sizGrid])\n', (2494, 2513), True, 'import matplotlib.pyplot as plt\n'), ((2577, 2597), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(2)', '(2)'], {}), '(1, 2, 2)\n', (2588, 2597), True, 'import matplotlib.pyplot as plt\n'), ((3047, 3067), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Number"""'], {}), "('Number')\n", (3057, 3067), True, 'import matplotlib.pyplot as plt\n'), ((3076, 3100), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Iterations"""'], {}), "('Iterations')\n", (3086, 3100), True, 'import matplotlib.pyplot as plt\n'), ((3197, 3207), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3205, 3207), True, 'import matplotlib.pyplot as plt\n'), ((4495, 4533), 'numpy.random.uniform', 'np.random.uniform', (['(0)', '(1)', 'self.sizHuman'], {}), '(0, 1, self.sizHuman)\n', (4512, 4533), True, 'import numpy as np\n'), ((328, 393), 'imageio.mimsave', 'imageio.mimsave', (['(obj.save_dir + obj.save_name)', 'obj.images'], {'fps': '(30)'}), '(obj.save_dir + obj.save_name, obj.images, fps=30)\n', (343, 393), False, 'import imageio\n'), ((1162, 1205), 'numpy.random.uniform', 'np.random.uniform', (['(0)', '(1)', '(self.sizHuman, 2)'], {}), '(0, 1, (self.sizHuman, 2))\n', (1179, 1205), True, 'import numpy as np\n'), ((1256, 1298), 'numpy.random.normal', 'np.random.normal', (['(0)', '(1)', '(self.sizHuman, 2)'], {}), '(0, 1, (self.sizHuman, 2))\n', (1272, 1298), True, 'import numpy as np\n'), ((2632, 2650), 'numpy.sum', 'np.sum', (['susceptBol'], {}), '(susceptBol)\n', (2638, 2650), True, 'import numpy as np\n'), ((2651, 2668), 'numpy.sum', 'np.sum', (['infectBol'], {}), '(infectBol)\n', (2657, 2668), True, 'import numpy as np\n'), ((2669, 2683), 'numpy.sum', 'np.sum', (['rmvBol'], {}), '(rmvBol)\n', (2675, 2683), True, 'import numpy as np\n'), ((3933, 3983), 'numpy.linalg.norm', 'np.linalg.norm', (['(self.loc - infectLoc[i, :])'], {'axis': '(1)'}), '(self.loc - infectLoc[i, :], axis=1)\n', (3947, 3983), True, 'import numpy as np\n'), ((4050, 4088), 'numpy.random.uniform', 'np.random.uniform', (['(0)', '(1)', 'self.sizHuman'], {}), '(0, 1, self.sizHuman)\n', (4067, 4088), True, 'import numpy as np\n'), ((1483, 1518), 'numpy.random.randint', 'np.random.randint', (['(0)', 'self.sizHuman'], {}), '(0, self.sizHuman)\n', (1500, 1518), True, 'import numpy as np\n')]
import numpy as np def custom_image_generator(generator, directory, class_names, batch_size=16, target_size=(512, 512), color_mode="grayscale", class_mode="binary", mean=None, std=None, cam=False, verbose=0): """ In paper chap 3.1: we downscale the images to 1024x1024 and normalize based on the mean and standard deviation of images in the ImageNet training set """ if mean is None: mean = np.mean(np.array([0.485, 0.456, 0.406])) if std is None: std = np.mean(np.array([0.229, 0.1024, 0.225])) iterator = generator.flow_from_directory(directory=directory, target_size=target_size, color_mode=color_mode, class_mode=class_mode, batch_size=batch_size) # class index -> xxxx|xxxx class_indices_reversed = dict((v, k) for k, v in iterator.class_indices.items()) #print(iterator.class_indices) stepi = 1 for batch_x, batch_y in iterator: batch_y_multilabel = [] if(verbose > 0): print("** Generating batch for step {} {}".format(stepi, batch_y)) stepi += 1 for i in range(batch_y.shape[0]): # class index -> xxxx|xxxx -> one hot one_hot_vec = label2vec(class_indices_reversed[batch_y[i]], class_names) if(verbose > 1): print(one_hot_vec) batch_y_multilabel.append(one_hot_vec) # now shape is (batch#, 14) batch_y_multilabel = np.array(batch_y_multilabel) # make the output [y1, y2, y3 ... y14] where yx shape is (batch#, 1) if cam: yield (batch_x - mean) / std, [np.array(y) for y in batch_y_multilabel.T.tolist()], batch_x else: yield (batch_x - mean) / std, [np.array(y) for y in batch_y_multilabel.T.tolist()] def label2vec(label, class_names): vec = np.zeros(len(class_names)) if label == "No Finding": return vec labels = label.split("|") for l in labels: vec[class_names.index(l)] = 1 return vec
[ "numpy.array" ]
[((1637, 1665), 'numpy.array', 'np.array', (['batch_y_multilabel'], {}), '(batch_y_multilabel)\n', (1645, 1665), True, 'import numpy as np\n'), ((465, 496), 'numpy.array', 'np.array', (['[0.485, 0.456, 0.406]'], {}), '([0.485, 0.456, 0.406])\n', (473, 496), True, 'import numpy as np\n'), ((540, 572), 'numpy.array', 'np.array', (['[0.229, 0.1024, 0.225]'], {}), '([0.229, 0.1024, 0.225])\n', (548, 572), True, 'import numpy as np\n'), ((1802, 1813), 'numpy.array', 'np.array', (['y'], {}), '(y)\n', (1810, 1813), True, 'import numpy as np\n'), ((1920, 1931), 'numpy.array', 'np.array', (['y'], {}), '(y)\n', (1928, 1931), True, 'import numpy as np\n')]
import numpy as np import Levenshtein as Lev def cer_calculate(s1, s2, no_spaces=False): """ Computes the Character Error Rate, defined as the edit distance. Arguments: s1 (string): space-separated sentence s2 (string): space-separated sentence """ if no_spaces: s1, s2, = s1.replace(' ', ''), s2.replace(' ', '') return min(len(s1), Lev.distance(s1, s2)) / len(s1) def compute_accuracy(ground_truth, predictions, mode='full_sequence'): """ Computes accuracy :param ground_truth: :param predictions: :param display: Whether to print values to stdout :param mode: if 'per_char' is selected then single_label_accuracy = correct_predicted_char_nums_of_single_sample / single_label_char_nums avg_label_accuracy = sum(single_label_accuracy) / label_nums if 'full_sequence' is selected then single_label_accuracy = 1 if the prediction result is exactly the same as label else 0 avg_label_accuracy = sum(single_label_accuracy) / label_nums :return: avg_label_accuracy """ avg_accuracy = 0 if mode == 'per_char': accuracy = [] for index, label in enumerate(ground_truth): prediction = predictions[index] total_count = len(label) correct_count = 0 try: for i, tmp in enumerate(label): if tmp == prediction[i]: correct_count += 1 except IndexError: continue finally: try: accuracy.append(correct_count / total_count) except ZeroDivisionError: if len(prediction) == 0: accuracy.append(1) else: accuracy.append(0) avg_accuracy = np.mean(np.array(accuracy).astype(np.float32), axis=0) elif mode == 'full_sequence': try: correct_count = 0 for index, label in enumerate(ground_truth): prediction = predictions[index] if prediction == label: correct_count += 1 avg_accuracy = correct_count / len(ground_truth) except ZeroDivisionError: if not predictions: avg_accuracy = 1 else: avg_accuracy = 0 elif mode == 'CER': cer_list = [] for index, label in enumerate(ground_truth): prediction = predictions[index] cer = cer_calculate(label, prediction) cer_list.append(cer) avg_accuracy = np.mean(np.array(cer_list).astype(np.float32), axis=0) else: raise NotImplementedError('Other accuracy compute mode has not been implemented') return avg_accuracy
[ "Levenshtein.distance", "numpy.array" ]
[((384, 404), 'Levenshtein.distance', 'Lev.distance', (['s1', 's2'], {}), '(s1, s2)\n', (396, 404), True, 'import Levenshtein as Lev\n'), ((1917, 1935), 'numpy.array', 'np.array', (['accuracy'], {}), '(accuracy)\n', (1925, 1935), True, 'import numpy as np\n'), ((2694, 2712), 'numpy.array', 'np.array', (['cer_list'], {}), '(cer_list)\n', (2702, 2712), True, 'import numpy as np\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Dec 10 10:43:18 2019 @author: nevalaio """ import ee import time import datetime import satelliteTools as st import pandas as pd from geetools import batch, tools import numpy as np ee.Initialize() #----------------- Sentinel-2 ------------------------------------- def S2_getBandData_within_bbox_single_feature(S2_timseries_dataframe, aoi_shp, AOI_id_property,AOI_id, bufferdist, datestart, dateend): bands= ['B3', 'B4','B5','B6','B7','B8A','B11','B12'] #] # properties = ['cos(View_Zenith)', 'cos(Sun_Zenith)', 'cos(Rel_Azimuth)'] start = time.time() image_list = {} crs_list = {} key = AOI_id full_assetids = "COPERNICUS/S2_SR/" + S2_timseries_dataframe[key]['assetid'] image_list[key] = [ee.Image(a) for a in full_assetids] crs_list[key] = [crs for crs in S2_timseries_dataframe[key]['crs']][0] attributes = st.getShapeAtrrtibutesWithIdentifier(aoi_shp, AOI_id_property) feature = ee.Feature(ee.Geometry.Polygon(st.wkt2coordinates(attributes[key]['geometry'])),\ {'name':key, 'image_list':image_list[key], 'crs':crs_list[key]}) if bufferdist: bbox = ee.Feature(feature.geometry().buffer(bufferdist).bounds(0.1,feature.get("crs"))) else: bbox = ee.Feature(feature.geometry().bounds(0.1,feature.get("crs"))) imageCollection = ee.ImageCollection.fromImages(feature.get("image_list"))\ .filterBounds(bbox.geometry())\ .filterDate(datestart,dateend)\ .select(bands) # imageCollection = imageCollection.map(S2_addNDVI) #lisää ja laske indeksejä tässä? def S2_getBandData_image_single_feature(img): img = img.clip(bbox.geometry()) productid = img.get('PRODUCT_ID') assetid = img.get('assetid') tileid = img.get('MGRS_TILE') system_index = img.get('system:index') sun_azimuth = img.get('MEAN_SOLAR_AZIMUTH_ANGLE') sun_zenith = img.get('MEAN_SOLAR_ZENITH_ANGLE') view_azimuth = ee.Array([img.get('MEAN_INCIDENCE_AZIMUTH_ANGLE_%s'%b) for b in bands]).reduce(ee.Reducer.mean(), [0]).get([0]) view_zenith = ee.Array([img.get('MEAN_INCIDENCE_ZENITH_ANGLE_%s'%b) for b in bands]).reduce(ee.Reducer.mean(), [0]).get([0]) img = img.resample('bilinear').reproject(crs=feature.get("crs"), scale=10) # get the lat lon and add the ndvi image_grid = ee.Image.pixelCoordinates(ee.Projection(feature.get("crs")))\ .addBands([img.select(b) for b in bands]) # apply reducer to list image_grid = image_grid.reduceRegion( reducer=ee.Reducer.toList(), geometry=bbox.geometry(), maxPixels=1e8, scale=10) # get data into arrays x_coords = ee.Array(image_grid.get("x")) y_coords = ee.Array(image_grid.get("y")) # band_data = [] # [band_data.extend(b,ee.Array(image_grid.get("%s"%b))) for b in bands[:-1]] band_data = {b:ee.Array(image_grid.get("%s"%b)) for b in bands} # NDVI_array = ee.Array(image_grid.get("NDVI")) # B6_array = ee.Array(image_grid.get("B6")) # perform LAI et al. computation possibly here! tmpfeature = ee.Feature(ee.Geometry.Point([0,0]))\ .set('productid', productid)\ .set('system_index',system_index)\ .set('assetid', assetid)\ .set('tileid', tileid)\ .set('crs', feature.get("crs"))\ .set('sun_zenith',sun_zenith)\ .set('sun_azimuth',sun_azimuth)\ .set('view_zenith',view_zenith)\ .set('view_azimuth',view_azimuth)\ .set('x_coords', x_coords)\ .set('y_coords', y_coords)\ .set(band_data) return tmpfeature S2_single_feature_data = imageCollection.map(S2_getBandData_image_single_feature).getInfo() end = time.time() total_time = end - start print ("Processsing time in seconds %s"%total_time) return S2_single_feature_data def S2_getBandData_within_aoi_single_feature(S2_timseries_dataframe, aoi_shp, AOI_id_property,AOI_id, datestart, dateend): bands= ['B3', 'B4','B5','B6','B7','B8A','B11','B12'] #] # properties = ['cos(View_Zenith)', 'cos(Sun_Zenith)', 'cos(Rel_Azimuth)'] start = time.time() image_list = {} crs_list = {} key = AOI_id full_assetids = "COPERNICUS/S2_SR/" + S2_timseries_dataframe[key]['assetid'] image_list[key] = [ee.Image(a) for a in full_assetids] crs_list[key] = [crs for crs in S2_timseries_dataframe[key]['crs']][0] attributes = st.getShapeAtrrtibutesWithIdentifier(aoi_shp, AOI_id_property) feature = ee.Feature(ee.Geometry.Polygon(st.wkt2coordinates(attributes[key]['geometry'])),\ {'name':key, 'image_list':image_list[key], 'crs':crs_list[key]}) geom = feature.geometry(0.1,feature.get("crs")) imageCollection = ee.ImageCollection.fromImages(feature.get("image_list"))\ .filterBounds(geom)\ .filterDate(datestart,dateend)\ .select(bands) # imageCollection = imageCollection.map(S2_addNDVI) #lisää ja laske indeksejä tässä? def S2_getBandData_image_single_feature(img): img = img.clip(geom) productid = img.get('PRODUCT_ID') assetid = img.get('assetid') tileid = img.get('MGRS_TILE') system_index = img.get('system:index') sun_azimuth = img.get('MEAN_SOLAR_AZIMUTH_ANGLE') sun_zenith = img.get('MEAN_SOLAR_ZENITH_ANGLE') view_azimuth = ee.Array([img.get('MEAN_INCIDENCE_AZIMUTH_ANGLE_%s'%b) for b in bands]).reduce(ee.Reducer.mean(), [0]).get([0]) view_zenith = ee.Array([img.get('MEAN_INCIDENCE_ZENITH_ANGLE_%s'%b) for b in bands]).reduce(ee.Reducer.mean(), [0]).get([0]) img = img.resample('bilinear').reproject(crs=feature.get("crs"), scale=10) # get the lat lon and add the ndvi image_grid = ee.Image.pixelCoordinates(ee.Projection(feature.get("crs")))\ .addBands([img.select(b) for b in bands]) # apply reducer to list image_grid = image_grid.reduceRegion( reducer=ee.Reducer.toList(), geometry=geom, maxPixels=1e8, scale=10) # get data into arrays x_coords = ee.Array(image_grid.get("x")) y_coords = ee.Array(image_grid.get("y")) # band_data = [] # [band_data.extend(b,ee.Array(image_grid.get("%s"%b))) for b in bands[:-1]] band_data = {b:ee.Array(image_grid.get("%s"%b)) for b in bands} # NDVI_array = ee.Array(image_grid.get("NDVI")) # B6_array = ee.Array(image_grid.get("B6")) # perform LAI et al. computation possibly here! tmpfeature = ee.Feature(ee.Geometry.Point([0,0]))\ .set('productid', productid)\ .set('system_index',system_index)\ .set('assetid', assetid)\ .set('tileid', tileid)\ .set('crs', feature.get("crs"))\ .set('sun_zenith',sun_zenith)\ .set('sun_azimuth',sun_azimuth)\ .set('view_zenith',view_zenith)\ .set('view_azimuth',view_azimuth)\ .set('x_coords', x_coords)\ .set('y_coords', y_coords)\ .set(band_data) return tmpfeature S2_single_feature_data = imageCollection.map(S2_getBandData_image_single_feature).getInfo() end = time.time() total_time = end - start print ("Processsing time in seconds %s"%total_time) return S2_single_feature_data def S2_getBandData_single_feature_to_dict(featureDict): featureCollection_dict = {} for farm, featureCollection in featureDict.items(): featureCollection_dict[farm]= {'Date': []} featureCollection_dict[farm].update({prop:[] for prop in featureCollection['features'][0]['properties'].keys()}) for featnum in range(len(featureCollection['features'])): productid = featureCollection['features'][featnum]['properties']['productid'] date = st.sentinelTitle2Datetime(productid) featureCollection_dict[farm]['Date'].append(date) for prop in featureCollection['features'][featnum]['properties'].keys(): if prop is not 'Date': featureCollection_dict[farm][prop].append(featureCollection['features'][featnum]['properties'][prop]) return featureCollection_dict def featureCollection_dict_to_dataframes(featureCollection_dict,props): dataframes = {} for key, item in featureCollection_dict.items(): # dataframes[key] = pd.DataFrame({'Date': item['Date'], # 'lai': list(np.mean(np.array(item['lai']), axis = 1)) , # 'lai_std': list(np.std(np.array(item['lai']), axis = 1)) }) dataframes[key] = pd.DataFrame({'Date': item['Date']}) for prop in props: dataframes[key][prop] = list(np.mean(np.array(item[prop]), axis = 1)) dataframes[key][prop+'_std'] = list(np.std(np.array(item['lai']), axis = 1)) return dataframes def S2_getBandData(S2_timseries_dataframe, aoi_shp, AOI_id_property, bufferdist, datestart, dateend): bands= ['B3', 'B4','B5','B6','B7','B8A','B11','B12'] #] # properties = ['cos(View_Zenith)', 'cos(Sun_Zenith)', 'cos(Rel_Azimuth)'] start = time.time() image_list = {} crs_list = {} for key, item in S2_timseries_dataframe.items(): full_assetids = "COPERNICUS/S2_SR/" + item['assetid'] image_list[key] = [ee.Image(a) for a in full_assetids] crs_list[key] = [crs for crs in item['crs']][0] attributes = st.getShapeAtrrtibutesWithIdentifier(aoi_shp, AOI_id_property) features = [ee.Feature(ee.Geometry.Polygon(st.wkt2coordinates(attributes[key]['geometry'])),\ {'name':key, 'image_list':image_list[key], 'crs':crs_list[key]}) for key,item in S2_timseries_dataframe.items()] featureCollection = ee.FeatureCollection(features) def S2_getBandData_feature(feature): if bufferdist: bbox = ee.Feature(feature.geometry().buffer(bufferdist).bounds(0.1,feature.get("crs"))) else: bbox = ee.Feature(feature.geometry().bounds(0.1,feature.get("crs"))) imageCollection = ee.ImageCollection.fromImages(feature.get("image_list"))\ .filterBounds(bbox.geometry())\ .filterDate(datestart,dateend)\ .select(bands) # imageCollection = imageCollection.map(S2_addNDVI) #lisää ja laske indeksejä tässä? def S2_getBandData_image(img): img = img.clip(bbox.geometry()) productid = img.get('PRODUCT_ID') assetid = img.get('assetid') tileid = img.get('MGRS_TILE') system_index = img.get('system:index') sun_azimuth = img.get('MEAN_SOLAR_AZIMUTH_ANGLE') sun_zenith = img.get('MEAN_SOLAR_ZENITH_ANGLE') view_azimuth = ee.Array([img.get('MEAN_INCIDENCE_AZIMUTH_ANGLE_%s'%b) for b in bands]).reduce(ee.Reducer.mean(), [0]) view_zenith = ee.Array([img.get('MEAN_INCIDENCE_ZENITH_ANGLE_%s'%b) for b in bands]).reduce(ee.Reducer.mean(), [0]) img = img.resample('bilinear').reproject(crs=feature.get("crs"), scale=10) # get the lat lon and add the ndvi image_grid = ee.Image.pixelCoordinates(ee.Projection(feature.get("crs")))\ .addBands([img.select(b) for b in bands]) # apply reducer to list image_grid = image_grid.reduceRegion( reducer=ee.Reducer.toList(), geometry=bbox.geometry(), maxPixels=1e8, scale=10) # get data into arrays x_coords = ee.Array(image_grid.get("x")) y_coords = ee.Array(image_grid.get("y")) # band_data = [] # [band_data.extend(b,ee.Array(image_grid.get("%s"%b))) for b in bands[:-1]] band_data = {b:ee.Array(image_grid.get("%s"%b)) for b in bands} # NDVI_array = ee.Array(image_grid.get("NDVI")) # B6_array = ee.Array(image_grid.get("B6")) # perform LAI et al. computation possibly here! tmpfeature = ee.Feature(ee.Geometry.Point([0,0]))\ .set('productid', productid)\ .set('system_index',system_index)\ .set('assetid', assetid)\ .set('tileid', tileid)\ .set('crs', feature.get("crs"))\ .set('sun_zenith',sun_zenith)\ .set('sun_azimuth',sun_azimuth)\ .set('view_zenith',view_zenith)\ .set('view_azimuth',view_azimuth)\ .set('x_coords', x_coords)\ .set('y_coords', y_coords)\ .set(band_data) return tmpfeature S2_image_data = imageCollection.map(S2_getBandData_image) return feature.set('productid',S2_image_data.aggregate_array('productid'))\ .set('system_index', S2_image_data.aggregate_array('system_index'))\ .set('assetid',S2_image_data.aggregate_array('assetid'))\ .set('tileid',S2_image_data.aggregate_array('tileid'))\ .set('crs',S2_image_data.aggregate_array('crs'))\ .set('x_coords',S2_image_data.aggregate_array('x_coords'))\ .set('y_coords',S2_image_data.aggregate_array('y_coords'))\ .set('sun_zenith',S2_image_data.aggregate_array('sun_zenith'))\ .set('sun_azimuth',S2_image_data.aggregate_array('sun_azimuth'))\ .set('view_zenith',S2_image_data.aggregate_array('view_zenith'))\ .set('view_azimuth',S2_image_data.aggregate_array('view_azimuth'))\ .set({b:S2_image_data.aggregate_array(b) for b in bands}) featureCollection = featureCollection.map(S2_getBandData_feature).getInfo() end = time.time() total_time = end - start print ("Processsing time in seconds %s"%total_time) return featureCollection def S2_addNDVI(image): ndvi = image.normalizedDifference(['B8', 'B4']).rename('NDVI') return image.addBands(ndvi) def S2_computeNDVItimeseries(AOI_shp,AOI_id_property,datestart, dateend): start = time.time() #aoi_shp = "/home/nevalaio/Dropbox/Työura/FMI/CARBO/analysis/ruukki_blocks_wgs84.shp" attributes = st.getShapeAtrrtibutesWithIdentifier(AOI_shp,AOI_id_property) features = [ee.Feature(ee.Geometry.Polygon(st.wkt2coordinates(item['geometry'])), {'name':key}) for key,item in attributes.items()] featureCollection = ee.FeatureCollection(features) def S2_computeNDVItimeseries_feature(feature): area = feature.geometry() collection = ee.ImageCollection("COPERNICUS/S2_SR").filterBounds(area)\ .filterDate(datestart,dateend)\ .select(['B8','B4','SCL']) collection = collection.map(S2_addNDVI) def S2_computeNDVItimeseries_image(img): # ndvi = ee.Image(img.select(['NDVI'])) # scl = ee.Image(img.select(['SCL'])) productid = img.get('PRODUCT_ID') assetid = img.id() tileid = img.get('MGRS_TILE') system_index = img.get('system:index') proj = img.select("B8").projection() # get the lat lon and add the ndvi # latlon = ee.Image.pixelLonLat().addBands([scl,ndvi]) # apply reducer to list img = img.reduceRegion( reducer=ee.Reducer.toList(), geometry=area, maxPixels=1e8, scale=10) # get data into arrays classdata = ee.Array(ee.Algorithms.If(img.get("SCL"),ee.Array(img.get("SCL")),ee.Array([0]))) ndvidata = ee.Array(ee.Algorithms.If(img.get("NDVI"),ee.Array(img.get("NDVI")),ee.Array([-9999]))) classmask = classdata.eq(0).add(classdata.eq(1).add(classdata.eq(3).add(classdata.eq(7)\ .add(classdata.eq(8).add(classdata.eq(9)\ .add(classdata.eq(10).add(classdata.eq(11)\ ))))))) badcount = classmask.reduce(ee.Reducer.sum(),[0]) totalcount = classmask.length() goodcount = totalcount.get([0]) # ndvidata_masked = ndvidata.mask(classmask.Not()) mean = ndvidata.reduce(ee.Reducer.mean(),[0]).get([0]) std = ndvidata.reduce(ee.Reducer.stdDev(),[0]).get([0]) qualityUncertainty = badcount.divide(totalcount).get([0]) tmpfeature = ee.Feature(ee.Geometry.Point([0,0]))\ .set('productid', productid)\ .set('system_index',system_index)\ .set('assetid', assetid)\ .set('tileid', tileid)\ .set('projection', proj)\ .set('sample_n', goodcount)\ .set('ndvi_mean',mean)\ .set('ndvi_std',std)\ .set('quality_uncertainty',qualityUncertainty) return tmpfeature ndvi_timeseries = collection.map(S2_computeNDVItimeseries_image) return feature.set('productid',ndvi_timeseries.aggregate_array('productid'))\ .set('system_index', ndvi_timeseries.aggregate_array('system_index'))\ .set('assetid',ndvi_timeseries.aggregate_array('assetid'))\ .set('tileid',ndvi_timeseries.aggregate_array('tileid'))\ .set('projection',ndvi_timeseries.aggregate_array('projection'))\ .set('sample_n',ndvi_timeseries.aggregate_array('sample_n'))\ .set('ndvi_mean',ndvi_timeseries.aggregate_array('ndvi_mean'))\ .set('ndvi_std',ndvi_timeseries.aggregate_array('ndvi_std'))\ .set('quality_uncertainty',ndvi_timeseries.aggregate_array('quality_uncertainty')) featureCollection = featureCollection.map(S2_computeNDVItimeseries_feature).getInfo() end = time.time() total_time = end - start print ("Processsing time in seconds %s"%total_time) return featureCollection def S2_getTimeseriesQualityInformation(AOI_shp,AOI_id_property,datestart, dateend): start = time.time() attributes = st.getShapeAtrrtibutesWithIdentifier(AOI_shp,AOI_id_property) features = [ee.Feature(ee.Geometry.Polygon(st.wkt2coordinates(item['geometry'])), {'name':key}) for key,item in attributes.items()] featureCollection = ee.FeatureCollection(features) def S2_getTimeseriesQualityInformation_feature(feature): area = feature.geometry() collection = ee.ImageCollection("COPERNICUS/S2_SR").filterBounds(area)\ .filterDate(datestart,dateend)\ .select(['SCL']) def S2_getTimeseriesQualityInformation_image(img): productid = img.get('PRODUCT_ID') assetid = img.id() tileid = img.get('MGRS_TILE') system_index = img.get('system:index') proj = img.select("SCL").projection() # apply reducer to list img = img.reduceRegion( reducer=ee.Reducer.toList(), geometry=area, maxPixels=1e8, scale=10) # get data into arrays classdata = ee.Array(ee.Algorithms.If(img.get("SCL"),ee.Array(img.get("SCL")),ee.Array([0]))) classmask = classdata.eq(0).add(classdata.eq(1).add(classdata.eq(3).add(classdata.eq(7)\ .add(classdata.eq(8).add(classdata.eq(9)\ .add(classdata.eq(10).add(classdata.eq(11)\ ))))))) badcount = classmask.reduce(ee.Reducer.sum(),[0]) totalcount = classmask.length() goodcount = totalcount.get([0]) qualityUncertainty = badcount.divide(totalcount).get([0]) tmpfeature = ee.Feature(ee.Geometry.Point([0,0]))\ .set('productid', productid)\ .set('system_index',system_index)\ .set('assetid', assetid)\ .set('tileid', tileid)\ .set('projection', proj)\ .set('sample_n', goodcount)\ .set('quality_uncertainty',qualityUncertainty) return tmpfeature QI_timeseries = collection.map(S2_getTimeseriesQualityInformation_image) return feature.set('productid',QI_timeseries.aggregate_array('productid'))\ .set('system_index', QI_timeseries.aggregate_array('system_index'))\ .set('assetid',QI_timeseries.aggregate_array('assetid'))\ .set('tileid',QI_timeseries.aggregate_array('tileid'))\ .set('projection',QI_timeseries.aggregate_array('projection'))\ .set('sample_n',QI_timeseries.aggregate_array('sample_n'))\ .set('quality_uncertainty',QI_timeseries.aggregate_array('quality_uncertainty')) featureCollection = featureCollection.map(S2_getTimeseriesQualityInformation_feature).getInfo() end = time.time() total_time = end - start print ("Processsing time in seconds %s"%total_time) return featureCollection def S2_featureCollection2Dataframe(featureCollection): dataframes = {} for featnum in range(len(featureCollection['features'])): featureCollection_dict = {} key = featureCollection['features'][featnum]['properties']['name'] productid = featureCollection['features'][featnum]['properties']['productid'] projections = featureCollection['features'][featnum]['properties']['projection'] crs = [d['crs'] for d in projections] dates = [st.sentinelTitle2Datetime(d) for d in productid] featureCollection_dict.update({'Date': dates, 'crs': crs}) for prop, data in featureCollection['features'][featnum]['properties'].items(): if prop not in ['Date','crs','projection']: featureCollection_dict.update({prop: data}) dataframes[key] = pd.DataFrame(featureCollection_dict) return dataframes def S2_NDVIfeatureCollection2Dataframe(featureCollection): dataframes = {} for featnum in range(len(featureCollection['features'])): key = featureCollection['features'][featnum]['properties']['name'] productid = featureCollection['features'][featnum]['properties']['productid'] # dates = [datetime.datetime.strptime(d.split('_')[1], '%Y%m%dT%H%M%S') for d in dataid] projections = featureCollection['features'][featnum]['properties']['projection'] crs = [d['crs'] for d in projections] dates = [st.sentinelTitle2Datetime(d) for d in productid] featureCollection_dict= {'Date': dates, 'productid': productid, 'system_index': featureCollection['features'][featnum]['properties']['system_index'], 'assetid': featureCollection['features'][featnum]['properties']['assetid'], 'tileid': featureCollection['features'][featnum]['properties']['tileid'], 'crs': crs, 'sample_n': featureCollection['features'][featnum]['properties']['sample_n'], 'ndvi_mean': featureCollection['features'][featnum]['properties']['ndvi_mean'], 'ndvi_std': featureCollection['features'][featnum]['properties']['ndvi_std'], 'quality_uncertainty': featureCollection['features'][featnum]['properties']['quality_uncertainty'] } dataframes[key] = pd.DataFrame(featureCollection_dict, columns= ['Date','productid','system_index','assetid','tileid','crs','sample_n','ndvi_mean','ndvi_std','quality_uncertainty']) return dataframes def S2_exportImageCollection(assetIDs, aoi): assetIDs = ["COPERNICUS/S2_SR/" + a for a in assetIDs] images = [ee.Image(assetid) for assetid in assetIDs] imageCollection = ee.ImageCollection(images) aoi = ee.Feature(ee.Geometry.Polygon(st.wkt2coordinates(aoi))) batch.imagecollection.toDrive(imageCollection, 'FOLDER', region=tools.geometry.getRegion(aoi), scale=10, verbose=True) #----------------- LANDSAT-8 ------------------------------------- def L8_addNDVI(image): ndvi = image.normalizedDifference(['B5', 'B4']).rename('NDVI') return image.addBands(ndvi) def L8_computeNDVItimeseries(AOI_shp,AOI_id_property,datestart, dateend): start = time.time() attributes = st.getShapeAtrrtibutesWithIdentifier(AOI_shp,AOI_id_property) features = [ee.Feature(ee.Geometry.Polygon(st.wkt2coordinates(item['geometry'])), {'name':key}) for key,item in attributes.items()] featureCollection = ee.FeatureCollection(features) def L8_comuteNDVItimeseries_feature(feature): area = feature.geometry() collection = ee.ImageCollection("LANDSAT/LC08/C01/T1_SR").filterBounds(area)\ .filterDate(datestart,dateend)\ .select(['B5','B4','pixel_qa']) collection = collection.map(L8_addNDVI) def L8_computeNDVItimeseries_image(img): # ndvi = ee.Image(img.select(['NDVI'])) dataid = img.get('LANDSAT_ID') sensingtime = img.get('SENSING_TIME') # qa = ee.Image(img.select(['pixel_qa'])) # get the lat lon and add the ndvi # latlon = ee.Image.pixelLonLat().addBands([qa, ndvi]) # apply reducer to list img = img.reduceRegion( reducer=ee.Reducer.toList(), geometry=area, maxPixels=1e8, scale=30); # get data into arrays classdata = ee.Array(ee.Algorithms.If(img.get("pixel_qa"),ee.Array(img.get("pixel_qa")),ee.Array([0]))) ndvidata = ee.Array(ee.Algorithms.If(img.get("NDVI"),ee.Array(img.get("NDVI")),ee.Array([-9999]))) # classdata = ee.Array(latlon.get("pixel_qa")) # ndvidata = ee.Array(latlon.get("NDVI")) mean = ndvidata.reduce(ee.Reducer.mean(),[0]).get([0]) std = ndvidata.reduce(ee.Reducer.stdDev(),[0]).get([0]) classmask = classdata.eq(322).Or(classdata.eq(386)).Not() badcount = classmask.reduce(ee.Reducer.sum(),[0]) totalcount = classmask.length() qualityUncertainty = badcount.divide(totalcount).get([0]) tmpfeature = ee.Feature(ee.Geometry.Point([0,0]))\ .set('dataid',dataid)\ .set('sensing_time', sensingtime)\ .set('ndvi_mean',mean)\ .set('ndvi_std',std)\ .set('quality_uncertainty',qualityUncertainty) return tmpfeature ndvi_timeseries = collection.map(L8_computeNDVItimeseries_image) return feature.set('dataid',ndvi_timeseries.aggregate_array('dataid'))\ .set('sensing_time',ndvi_timeseries.aggregate_array('sensing_time'))\ .set('ndvi_mean',ndvi_timeseries.aggregate_array('ndvi_mean'))\ .set('ndvi_std',ndvi_timeseries.aggregate_array('ndvi_std'))\ .set('quality_uncertainty',ndvi_timeseries.aggregate_array('quality_uncertainty')) featureCollection = featureCollection.map(L8_comuteNDVItimeseries_feature).getInfo() end = time.time() total_time = end - start print ("Processsing time in seconds %s"%total_time) return featureCollection def L8_featureCollection2Dataframe(L8_featureCollection): dataframes = {} for featnum in range(len(L8_featureCollection['features'])): key = L8_featureCollection['features'][featnum]['properties']['name'] dataid = L8_featureCollection['features'][featnum]['properties']['dataid'] dates = [datetime.datetime.strptime(d.split('.')[0], '%Y-%m-%dT%H:%M:%S') for d in L8_featureCollection['features'][featnum]['properties']['sensing_time']] featureCollection_dict= {'Date': dates, 'dataid':dataid, 'ndvi_mean':L8_featureCollection['features'][featnum]['properties']['ndvi_mean'], 'ndvi_std':L8_featureCollection['features'][featnum]['properties']['ndvi_std'], 'quality_uncertainty':L8_featureCollection['features'][featnum]['properties']['quality_uncertainty'] } dataframes[key] = pd.DataFrame(featureCollection_dict, columns= ['Date','dataid','ndvi_mean','ndvi_std','quality_uncertainty']) return dataframes
[ "pandas.DataFrame", "satelliteTools.sentinelTitle2Datetime", "ee.Reducer.stdDev", "satelliteTools.getShapeAtrrtibutesWithIdentifier", "satelliteTools.wkt2coordinates", "ee.Reducer.toList", "ee.FeatureCollection", "ee.ImageCollection", "ee.Image", "time.time", "geetools.tools.geometry.getRegion", "ee.Reducer.mean", "ee.Array", "numpy.array", "ee.Geometry.Point", "ee.Reducer.sum", "ee.Initialize" ]
[((249, 264), 'ee.Initialize', 'ee.Initialize', ([], {}), '()\n', (262, 264), False, 'import ee\n'), ((625, 636), 'time.time', 'time.time', ([], {}), '()\n', (634, 636), False, 'import time\n'), ((930, 992), 'satelliteTools.getShapeAtrrtibutesWithIdentifier', 'st.getShapeAtrrtibutesWithIdentifier', (['aoi_shp', 'AOI_id_property'], {}), '(aoi_shp, AOI_id_property)\n', (966, 992), True, 'import satelliteTools as st\n'), ((4186, 4197), 'time.time', 'time.time', ([], {}), '()\n', (4195, 4197), False, 'import time\n'), ((4596, 4607), 'time.time', 'time.time', ([], {}), '()\n', (4605, 4607), False, 'import time\n'), ((4901, 4963), 'satelliteTools.getShapeAtrrtibutesWithIdentifier', 'st.getShapeAtrrtibutesWithIdentifier', (['aoi_shp', 'AOI_id_property'], {}), '(aoi_shp, AOI_id_property)\n', (4937, 4963), True, 'import satelliteTools as st\n'), ((7975, 7986), 'time.time', 'time.time', ([], {}), '()\n', (7984, 7986), False, 'import time\n'), ((9929, 9940), 'time.time', 'time.time', ([], {}), '()\n', (9938, 9940), False, 'import time\n'), ((10244, 10306), 'satelliteTools.getShapeAtrrtibutesWithIdentifier', 'st.getShapeAtrrtibutesWithIdentifier', (['aoi_shp', 'AOI_id_property'], {}), '(aoi_shp, AOI_id_property)\n', (10280, 10306), True, 'import satelliteTools as st\n'), ((10569, 10599), 'ee.FeatureCollection', 'ee.FeatureCollection', (['features'], {}), '(features)\n', (10589, 10599), False, 'import ee\n'), ((14843, 14854), 'time.time', 'time.time', ([], {}), '()\n', (14852, 14854), False, 'import time\n'), ((15176, 15187), 'time.time', 'time.time', ([], {}), '()\n', (15185, 15187), False, 'import time\n'), ((15300, 15362), 'satelliteTools.getShapeAtrrtibutesWithIdentifier', 'st.getShapeAtrrtibutesWithIdentifier', (['AOI_shp', 'AOI_id_property'], {}), '(AOI_shp, AOI_id_property)\n', (15336, 15362), True, 'import satelliteTools as st\n'), ((15527, 15557), 'ee.FeatureCollection', 'ee.FeatureCollection', (['features'], {}), '(features)\n', (15547, 15557), False, 'import ee\n'), ((19171, 19182), 'time.time', 'time.time', ([], {}), '()\n', (19180, 19182), False, 'import time\n'), ((19405, 19416), 'time.time', 'time.time', ([], {}), '()\n', (19414, 19416), False, 'import time\n'), ((19439, 19501), 'satelliteTools.getShapeAtrrtibutesWithIdentifier', 'st.getShapeAtrrtibutesWithIdentifier', (['AOI_shp', 'AOI_id_property'], {}), '(AOI_shp, AOI_id_property)\n', (19475, 19501), True, 'import satelliteTools as st\n'), ((19661, 19691), 'ee.FeatureCollection', 'ee.FeatureCollection', (['features'], {}), '(features)\n', (19681, 19691), False, 'import ee\n'), ((22558, 22569), 'time.time', 'time.time', ([], {}), '()\n', (22567, 22569), False, 'import time\n'), ((25674, 25700), 'ee.ImageCollection', 'ee.ImageCollection', (['images'], {}), '(images)\n', (25692, 25700), False, 'import ee\n'), ((26172, 26183), 'time.time', 'time.time', ([], {}), '()\n', (26181, 26183), False, 'import time\n'), ((26201, 26263), 'satelliteTools.getShapeAtrrtibutesWithIdentifier', 'st.getShapeAtrrtibutesWithIdentifier', (['AOI_shp', 'AOI_id_property'], {}), '(AOI_shp, AOI_id_property)\n', (26237, 26263), True, 'import satelliteTools as st\n'), ((26423, 26453), 'ee.FeatureCollection', 'ee.FeatureCollection', (['features'], {}), '(features)\n', (26443, 26453), False, 'import ee\n'), ((29227, 29238), 'time.time', 'time.time', ([], {}), '()\n', (29236, 29238), False, 'import time\n'), ((796, 807), 'ee.Image', 'ee.Image', (['a'], {}), '(a)\n', (804, 807), False, 'import ee\n'), ((4767, 4778), 'ee.Image', 'ee.Image', (['a'], {}), '(a)\n', (4775, 4778), False, 'import ee\n'), ((9396, 9432), 'pandas.DataFrame', 'pd.DataFrame', (["{'Date': item['Date']}"], {}), "({'Date': item['Date']})\n", (9408, 9432), True, 'import pandas as pd\n'), ((23551, 23587), 'pandas.DataFrame', 'pd.DataFrame', (['featureCollection_dict'], {}), '(featureCollection_dict)\n', (23563, 23587), True, 'import pandas as pd\n'), ((25303, 25482), 'pandas.DataFrame', 'pd.DataFrame', (['featureCollection_dict'], {'columns': "['Date', 'productid', 'system_index', 'assetid', 'tileid', 'crs',\n 'sample_n', 'ndvi_mean', 'ndvi_std', 'quality_uncertainty']"}), "(featureCollection_dict, columns=['Date', 'productid',\n 'system_index', 'assetid', 'tileid', 'crs', 'sample_n', 'ndvi_mean',\n 'ndvi_std', 'quality_uncertainty'])\n", (25315, 25482), True, 'import pandas as pd\n'), ((25609, 25626), 'ee.Image', 'ee.Image', (['assetid'], {}), '(assetid)\n', (25617, 25626), False, 'import ee\n'), ((30415, 30531), 'pandas.DataFrame', 'pd.DataFrame', (['featureCollection_dict'], {'columns': "['Date', 'dataid', 'ndvi_mean', 'ndvi_std', 'quality_uncertainty']"}), "(featureCollection_dict, columns=['Date', 'dataid', 'ndvi_mean',\n 'ndvi_std', 'quality_uncertainty'])\n", (30427, 30531), True, 'import pandas as pd\n'), ((1038, 1085), 'satelliteTools.wkt2coordinates', 'st.wkt2coordinates', (["attributes[key]['geometry']"], {}), "(attributes[key]['geometry'])\n", (1056, 1085), True, 'import satelliteTools as st\n'), ((5009, 5056), 'satelliteTools.wkt2coordinates', 'st.wkt2coordinates', (["attributes[key]['geometry']"], {}), "(attributes[key]['geometry'])\n", (5027, 5056), True, 'import satelliteTools as st\n'), ((8609, 8645), 'satelliteTools.sentinelTitle2Datetime', 'st.sentinelTitle2Datetime', (['productid'], {}), '(productid)\n', (8634, 8645), True, 'import satelliteTools as st\n'), ((10126, 10137), 'ee.Image', 'ee.Image', (['a'], {}), '(a)\n', (10134, 10137), False, 'import ee\n'), ((23188, 23216), 'satelliteTools.sentinelTitle2Datetime', 'st.sentinelTitle2Datetime', (['d'], {}), '(d)\n', (23213, 23216), True, 'import satelliteTools as st\n'), ((24175, 24203), 'satelliteTools.sentinelTitle2Datetime', 'st.sentinelTitle2Datetime', (['d'], {}), '(d)\n', (24200, 24203), True, 'import satelliteTools as st\n'), ((25742, 25765), 'satelliteTools.wkt2coordinates', 'st.wkt2coordinates', (['aoi'], {}), '(aoi)\n', (25760, 25765), True, 'import satelliteTools as st\n'), ((25836, 25865), 'geetools.tools.geometry.getRegion', 'tools.geometry.getRegion', (['aoi'], {}), '(aoi)\n', (25860, 25865), False, 'from geetools import batch, tools\n'), ((2818, 2837), 'ee.Reducer.toList', 'ee.Reducer.toList', ([], {}), '()\n', (2835, 2837), False, 'import ee\n'), ((6618, 6637), 'ee.Reducer.toList', 'ee.Reducer.toList', ([], {}), '()\n', (6635, 6637), False, 'import ee\n'), ((10354, 10401), 'satelliteTools.wkt2coordinates', 'st.wkt2coordinates', (["attributes[key]['geometry']"], {}), "(attributes[key]['geometry'])\n", (10372, 10401), True, 'import satelliteTools as st\n'), ((11785, 11802), 'ee.Reducer.mean', 'ee.Reducer.mean', ([], {}), '()\n', (11800, 11802), False, 'import ee\n'), ((11913, 11930), 'ee.Reducer.mean', 'ee.Reducer.mean', ([], {}), '()\n', (11928, 11930), False, 'import ee\n'), ((15414, 15450), 'satelliteTools.wkt2coordinates', 'st.wkt2coordinates', (["item['geometry']"], {}), "(item['geometry'])\n", (15432, 15450), True, 'import satelliteTools as st\n'), ((17340, 17356), 'ee.Reducer.sum', 'ee.Reducer.sum', ([], {}), '()\n', (17354, 17356), False, 'import ee\n'), ((19548, 19584), 'satelliteTools.wkt2coordinates', 'st.wkt2coordinates', (["item['geometry']"], {}), "(item['geometry'])\n", (19566, 19584), True, 'import satelliteTools as st\n'), ((21113, 21129), 'ee.Reducer.sum', 'ee.Reducer.sum', ([], {}), '()\n', (21127, 21129), False, 'import ee\n'), ((26310, 26346), 'satelliteTools.wkt2coordinates', 'st.wkt2coordinates', (["item['geometry']"], {}), "(item['geometry'])\n", (26328, 26346), True, 'import satelliteTools as st\n'), ((28132, 28148), 'ee.Reducer.sum', 'ee.Reducer.sum', ([], {}), '()\n', (28146, 28148), False, 'import ee\n'), ((2261, 2278), 'ee.Reducer.mean', 'ee.Reducer.mean', ([], {}), '()\n', (2276, 2278), False, 'import ee\n'), ((2394, 2411), 'ee.Reducer.mean', 'ee.Reducer.mean', ([], {}), '()\n', (2409, 2411), False, 'import ee\n'), ((6061, 6078), 'ee.Reducer.mean', 'ee.Reducer.mean', ([], {}), '()\n', (6076, 6078), False, 'import ee\n'), ((6194, 6211), 'ee.Reducer.mean', 'ee.Reducer.mean', ([], {}), '()\n', (6209, 6211), False, 'import ee\n'), ((9509, 9529), 'numpy.array', 'np.array', (['item[prop]'], {}), '(item[prop])\n', (9517, 9529), True, 'import numpy as np\n'), ((9597, 9618), 'numpy.array', 'np.array', (["item['lai']"], {}), "(item['lai'])\n", (9605, 9618), True, 'import numpy as np\n'), ((12364, 12383), 'ee.Reducer.toList', 'ee.Reducer.toList', ([], {}), '()\n', (12381, 12383), False, 'import ee\n'), ((16530, 16549), 'ee.Reducer.toList', 'ee.Reducer.toList', ([], {}), '()\n', (16547, 16549), False, 'import ee\n'), ((16779, 16792), 'ee.Array', 'ee.Array', (['[0]'], {}), '([0])\n', (16787, 16792), False, 'import ee\n'), ((16886, 16903), 'ee.Array', 'ee.Array', (['[-9999]'], {}), '([-9999])\n', (16894, 16903), False, 'import ee\n'), ((20414, 20433), 'ee.Reducer.toList', 'ee.Reducer.toList', ([], {}), '()\n', (20431, 20433), False, 'import ee\n'), ((20663, 20676), 'ee.Array', 'ee.Array', (['[0]'], {}), '([0])\n', (20671, 20676), False, 'import ee\n'), ((27384, 27403), 'ee.Reducer.toList', 'ee.Reducer.toList', ([], {}), '()\n', (27401, 27403), False, 'import ee\n'), ((27623, 27636), 'ee.Array', 'ee.Array', (['[0]'], {}), '([0])\n', (27631, 27636), False, 'import ee\n'), ((27730, 27747), 'ee.Array', 'ee.Array', (['[-9999]'], {}), '([-9999])\n', (27738, 27747), False, 'import ee\n'), ((17548, 17565), 'ee.Reducer.mean', 'ee.Reducer.mean', ([], {}), '()\n', (17563, 17565), False, 'import ee\n'), ((17614, 17633), 'ee.Reducer.stdDev', 'ee.Reducer.stdDev', ([], {}), '()\n', (17631, 17633), False, 'import ee\n'), ((27922, 27939), 'ee.Reducer.mean', 'ee.Reducer.mean', ([], {}), '()\n', (27937, 27939), False, 'import ee\n'), ((27988, 28007), 'ee.Reducer.stdDev', 'ee.Reducer.stdDev', ([], {}), '()\n', (28005, 28007), False, 'import ee\n'), ((15674, 15712), 'ee.ImageCollection', 'ee.ImageCollection', (['"""COPERNICUS/S2_SR"""'], {}), "('COPERNICUS/S2_SR')\n", (15692, 15712), False, 'import ee\n'), ((19818, 19856), 'ee.ImageCollection', 'ee.ImageCollection', (['"""COPERNICUS/S2_SR"""'], {}), "('COPERNICUS/S2_SR')\n", (19836, 19856), False, 'import ee\n'), ((26578, 26622), 'ee.ImageCollection', 'ee.ImageCollection', (['"""LANDSAT/LC08/C01/T1_SR"""'], {}), "('LANDSAT/LC08/C01/T1_SR')\n", (26596, 26622), False, 'import ee\n'), ((28317, 28342), 'ee.Geometry.Point', 'ee.Geometry.Point', (['[0, 0]'], {}), '([0, 0])\n', (28334, 28342), False, 'import ee\n'), ((21343, 21368), 'ee.Geometry.Point', 'ee.Geometry.Point', (['[0, 0]'], {}), '([0, 0])\n', (21360, 21368), False, 'import ee\n'), ((17767, 17792), 'ee.Geometry.Point', 'ee.Geometry.Point', (['[0, 0]'], {}), '([0, 0])\n', (17784, 17792), False, 'import ee\n'), ((3522, 3547), 'ee.Geometry.Point', 'ee.Geometry.Point', (['[0, 0]'], {}), '([0, 0])\n', (3539, 3547), False, 'import ee\n'), ((7311, 7336), 'ee.Geometry.Point', 'ee.Geometry.Point', (['[0, 0]'], {}), '([0, 0])\n', (7328, 7336), False, 'import ee\n'), ((13116, 13141), 'ee.Geometry.Point', 'ee.Geometry.Point', (['[0, 0]'], {}), '([0, 0])\n', (13133, 13141), False, 'import ee\n')]
import torch import torch.nn as nn import numpy as np import torch.nn.functional as F """In this script are all modules required for the generator and discriminator""" ### Helper Functions ### def make_mlp(dim_list, activation_list, batch_norm=False, dropout=0): """ Generates MLP network: Parameters ---------- dim_list : list, list of number for each layer activation_list : list, list containing activation function for each layer batch_norm : boolean, use batchnorm at each layer, default: False dropout : float [0, 1], dropout probability applied on each layer (except last layer) Returns ------- nn.Sequential with layers """ layers = [] index = 0 for dim_in, dim_out in zip(dim_list[:-1], dim_list[1:]): activation = activation_list[index] layers.append(nn.Linear(dim_in, dim_out)) if batch_norm: layers.append(nn.BatchNorm1d(dim_out)) if activation == 'relu': layers.append(nn.ReLU()) elif activation == 'tanh': layers.append(nn.Tanh()) elif activation == 'leakyrelu': layers.append(nn.LeakyReLU()) elif activation == 'sigmoid': layers.append(nn.Sigmoid()) if dropout > 0 and index < len(dim_list) - 2: layers.append(nn.Dropout(p=dropout)) index += 1 return nn.Sequential(*layers) ### Convolutional Blocks and U-NET CNN ### class Conv_Blocks(nn.Module): def __init__(self, input_dim, output_dim, filter_size=3, batch_norm=False, non_lin="tanh", dropout=0., first_block=False, last_block=False, skip_connection=False): super(Conv_Blocks, self).__init__() self.skip_connection = skip_connection self.last_block = last_block self.first_block = first_block self.Block = nn.Sequential() self.Block.add_module("Conv_1", nn.Conv2d(input_dim, output_dim, filter_size, 1, 1)) if batch_norm: self.Block.add_module("BN_1", nn.BatchNorm2d(output_dim)) if non_lin == "tanh": self.Block.add_module("NonLin_1", nn.Tanh()) elif non_lin == "relu": self.Block.add_module("NonLin_1", nn.ReLU()) elif non_lin == "leakyrelu": self.Block.add_module("NonLin_1", nn.LeakyReLU()) else: assert False, "non_lin = {} not valid: 'tanh', 'relu', 'leakyrelu'".format(non_lin) self.Block.add_module("Pool", nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)) if dropout > 0: self.Block.add_module("Drop", nn.Dropout2d(dropout)) def forward(self, x, ): if self.skip_connection: if not self.first_block: x, skip_con_list = x else: skip_con_list = [] x = self.Block(x) if self.skip_connection: if not self.last_block: skip_con_list.append(x) x = [x, skip_con_list] return x class UpConv_Blocks(nn.Module): def __init__(self, input_dim, output_dim, filter=4, padding=1, first_block=False, last_block=False, batch_norm=False, non_lin="relu", dropout=0, skip_connection=False): super(UpConv_Blocks, self).__init__() self.Block = nn.Sequential() self.skip_connection = skip_connection self.first_block = first_block self.last_block = last_block if self.skip_connection and not self.first_block: ouput_dim_conv = input_dim input_dim *= 2 else: ouput_dim_conv = output_dim self.Block.add_module("UpConv", nn.ConvTranspose2d(input_dim, output_dim, filter, 2, padding)) if not last_block: if batch_norm: self.Block.add_module("BN_up", nn.BatchNorm2d(output_dim)) if non_lin == "tanh": self.Block.add_module("NonLin_up", nn.Tanh()) elif non_lin == "relu": self.Block.add_module("NonLin_up", nn.ReLU()) elif non_lin == "leakyrelu": self.Block.add_module("NonLin_up", nn.LeakyReLU()) if dropout > 0: self.Block.add_module("Drop_up", nn.Dropout2d(dropout)) def forward(self, x, ): if self.skip_connection: x, skip_con_list = x if not self.first_block: x = torch.cat((x, skip_con_list.pop(-1)), -3) x = self.Block(x) if self.skip_connection and not self.last_block: x = [x, skip_con_list] return x class CNN(nn.Module): def __init__(self, social_pooling=False, channels_cnn=4, mlp=32, encoder_h_dim=16, insert_trajectory=False, need_decoder=False, PhysFeature=False, grid_size_in=32, grid_size_out=32, num_layers=3, dropout=0., batch_norm=False, non_lin_cnn="tanh", in_channels=3, skip_connection=False, ): super(CNN, self).__init__() self.__dict__.update(locals()) self.bottleneck_dim = int(grid_size_in / 2 ** (num_layers - 1)) ** 2 num_layers_dec = int(num_layers + ((grid_size_out - grid_size_in) / grid_size_out)) self.encoder = nn.Sequential() layer_out = channels_cnn self.encoder.add_module("ConvBlock_1", Conv_Blocks(in_channels, channels_cnn, dropout=dropout, batch_norm=batch_norm, non_lin=self.non_lin_cnn, first_block=True, skip_connection=self.skip_connection )) layer_in = layer_out for layer in np.arange(2, num_layers + 1): if layer != num_layers: layer_out = layer_in * 2 last_block = False else: layer_out = layer_in last_block = True self.encoder.add_module("ConvBlock_%s" % layer, Conv_Blocks(layer_in, layer_out, dropout=dropout, batch_norm=batch_norm, non_lin=self.non_lin_cnn, skip_connection=self.skip_connection, last_block=last_block )) layer_in = layer_out self.bootleneck_channel = layer_out if self.need_decoder: self.decoder = nn.Sequential() layer_in = layer_out for layer in range(1, num_layers_dec + 1): first_block = False extra_d = 0 layer_in = layer_out last_block = False filter = 4 padding = 1 if layer == 1: if self.insert_trajectory: extra_d = 1 first_block = True layer_out = layer_in else: layer_out = int(layer_in / 2.) if layer == num_layers_dec: layer_out = 1 last_block = True padding = 0 filter = 3 self.decoder.add_module("UpConv_%s" % layer, UpConv_Blocks(int(layer_in + extra_d), layer_out, first_block=first_block, filter=filter, padding=padding, dropout=dropout, batch_norm=batch_norm, non_lin=self.non_lin_cnn, skip_connection=self.skip_connection, last_block=last_block)) if self.insert_trajectory: self.traj2cnn = make_mlp( dim_list=[encoder_h_dim, mlp, self.bottleneck_dim], activation_list=["tanh", "tanh"], ) self.init_weights() def init_weights(self): def init_kaiming(m): if type(m) in [nn.Conv2d, nn.ConvTranspose2d]: torch.nn.init.kaiming_normal_(m.weight, mode='fan_in') m.bias.data.fill_(0.01) # if type(m) in [nn.ConvTranspose2d]: # torch.nn.init.kaiming_normal_(m.weight, mode='fan_in') # m.bias.data.fill_(50) def init_xavier(m): if type(m) == [nn.Conv2d, nn.ConvTranspose2d]: torch.nn.init.xavier_uniform(m.weight) m.bias.data.fill_(0.01) if self.non_lin_cnn in ['relu', 'leakyrelu']: self.apply(init_kaiming) elif self.non_lin_cnn == "tanh": self.apply(init_xavier) else: assert False, "non_lin not valid for initialisation" def forward(self, image, traj_h=torch.empty(1), pool_h=torch.empty(1)): output = {} enc = self.encoder(image) if self.PhysFeature: # enc_out = self.leakyrelu(self.encoder_out(enc)) # enc_out = enc_out.permute(1, 0, 2, 3).view(1, enc_out.size(0), -1) output.update(Features=enc) if self.need_decoder: if self.skip_connection: batch, c, w, h = enc[0].size() in_decoder, skip_con_list = enc else: batch, c, w, h = enc.size() in_decoder = enc if self.insert_trajectory: traj_enc = self.traj2cnn(traj_h) traj_enc = traj_enc.view(batch, 1, w, h) in_decoder = torch.cat((traj_enc, in_decoder), 1) if self.social_pooling: social_enc = self.social_states(pool_h) social_enc = social_enc.view(batch, 1, w, h) in_decoder = torch.cat((social_enc, in_decoder), 1) if self.skip_connection: in_decoder = [in_decoder, skip_con_list] dec = self.decoder(in_decoder) output.update(PosMap=dec) return output class MotionEncoder(nn.Module): """MotionEncoder extracts dynamic features of the past trajectory and consists of an encoding LSTM network""" def __init__(self, encoder_h_dim=64, input_dim=2, embedding_dim=16, dropout=0.0): """ Initialize MotionEncoder. Parameters. encoder_h_dim (int) - - dimensionality of hidden state input_dim (int) - - input dimensionality of spatial coordinates embedding_dim (int) - - dimensionality spatial embedding dropout (float) - - dropout in LSTM layer """ super(MotionEncoder, self).__init__() self.encoder_h_dim = encoder_h_dim self.embedding_dim = embedding_dim self.input_dim = input_dim if embedding_dim: self.spatial_embedding = nn.Linear(input_dim, embedding_dim) self.encoder = nn.LSTM(embedding_dim, encoder_h_dim) else: self.encoder = nn.LSTM(input_dim, encoder_h_dim) def init_hidden(self, batch, obs_traj): return ( torch.zeros(1, batch, self.encoder_h_dim).to(obs_traj), torch.zeros(1, batch, self.encoder_h_dim).to(obs_traj) ) def forward(self, obs_traj, state_tuple=None): """ Calculates forward pass of MotionEncoder Parameters: obs_traj (tensor) - - Tensor of shape (obs_len, batch, 2) state_tuple (tuple of tensors) - - Tuple with hidden state (1, batch, encoder_h_dim) and cell state tensor (1, batch, encoder_h_dim) Returns: output (tensor) - - Output of LSTM netwok for all time steps (obs_len, batch, encoder_h_dim) final_h (tensor) - - Final hidden state of LSTM network (1, batch, encoder_h_dim) """ # Encode observed Trajectory batch = obs_traj.size(1) if not state_tuple: state_tuple = self.init_hidden(batch, obs_traj) if self.embedding_dim: obs_traj = self.spatial_embedding(obs_traj) output, state = self.encoder(obs_traj, state_tuple) final_h = state[0] return output, final_h class VisualNetwork(nn.Module): """VisualNetwork is the parent class for the attention and goal networks generating the CNN""" def __init__(self, decoder_h_dim=128, dropout=0.0, batch_norm=False, mlp_dim=32, img_scaling=0.25, final_embedding_dim=4, grid_size_in=16, grid_size_out=16, num_layers=1, batch_norm_cnn=True, non_lin_cnn="relu", img_type="local_image", skip_connection=False, channels_cnn=4, social_pooling=False, **kwargs): super(VisualNetwork, self).__init__() self.__dict__.update(locals()) def init_cnn(self): self.CNN = CNN(social_pooling=self.social_pooling, channels_cnn=self.channels_cnn, encoder_h_dim=self.decoder_h_dim, mlp=self.mlp_dim, insert_trajectory=True, need_decoder=self.need_decoder, PhysFeature=self.PhysFeature, grid_size_in=self.grid_size_in, grid_size_out=self.grid_size_out, dropout=self.dropout, batch_norm=self.batch_norm_cnn, non_lin_cnn=self.non_lin_cnn, num_layers=self.num_layers, in_channels=4, skip_connection=self.skip_connection ) ### Visual Attention ### class AttentionNetwork(VisualNetwork): def __init__(self, noise_attention_dim=8, **kwargs ): super(AttentionNetwork, self).__init__() VisualNetwork.__init__(self, **kwargs) self.__dict__.update(locals()) self.PhysFeature = True self.skip_connection = False self.need_decoder = False self.init_cnn() self.final_embedding = self.CNN.bottleneck_dim + self.noise_attention_dim attention_dims = [self.CNN.bootleneck_channel, self.mlp_dim, 1] activation = ['leakyrelu', None] self.cnn_attention = make_mlp( attention_dims, activation_list=activation, ) def get_noise(self, batch_size, type="gauss"): """ Create noise vector: Parameters ---------- batchsize : int, length of noise vector noise_type: str, 'uniform' or 'gaussian' noise Returns ------- Random noise vector """ if type == "gauss": return torch.randn((1, batch_size, self.noise_attention_dim)) elif type == "uniform": rand_num = torch.rand((1, batch_size, self.noise_attention_dim)) return rand_num else: raise ValueError('Unrecognized noise type "%s"' % noise_type) class AttentionRoutingModule(AttentionNetwork): def __init__(self, **kwargs): super(AttentionNetwork, self).__init__() AttentionNetwork.__init__(self, **kwargs) self.__dict__.update(locals()) self.img_patch = Patch_gen(img_scaling=self.img_scaling, grid_size=self.grid_size_in, type_img=self.img_type) self.init_cnn() def forward(self, scene_img, last_pos, h, noise=torch.Tensor()): img_patch = self.img_patch.get_patch(scene_img, last_pos) visual_features = self.CNN(img_patch, h)["Features"].permute(0, 2, 3, 1) batch_size, hh, w, c = visual_features.size() visual_features = visual_features.view(batch_size, -1, c) attention_scores = self.cnn_attention(visual_features) attention_vec = attention_scores.softmax(dim=1).squeeze(2).unsqueeze(0) if self.noise_attention_dim > 0: if len(noise) == 0: noise = self.get_noise(batch_size) else: assert noise.size(-1) != self.noise_attention_dim, "dimension of noise {} not valid".format( noise.size()) x = torch.cat((attention_vec, noise.to(attention_vec)), dim=2) return x, attention_vec, img_patch, noise class AttentionGlobal(AttentionNetwork): """Alternative Visual Attention to GoalModule""" def __init__(self, **kwargs): super(AttentionNetwork, self).__init__() AttentionNetwork.__init__(self, **kwargs) self.__dict__.update(locals()) self.init_cnn() def forward(self, features, h, noise=torch.Tensor()): visual_features = self.CNN(features, h)["Features"].permute(0, 2, 3, 1) batch_size, hh, w, c = visual_features.size() visual_features = visual_features.view(batch_size, -1, c) attention_scores = self.cnn_attention(visual_features) attention_vec = attention_scores.softmax(dim=1).squeeze(2).unsqueeze(0) if self.noise_attention_dim > 0: if len(noise) == 0: noise = self.get_noise(batch_size) else: assert noise.size(-1) != self.noise_attention_dim, "dimension of noise {} not valid".format( noise.size()) x = torch.cat((attention_vec, noise.to(attention_vec)), dim=2) return x, attention_vec, noise ### GOAL Module ### class GoalGlobal(VisualNetwork): def __init__(self, temperature=1, # temperature of the gumbel sampling force_hard=True, # mode of the gumbel sampling **kwargs): super(GoalGlobal, self).__init__() VisualNetwork.__init__(self, **kwargs) self.__dict__.update(locals()) self.PhysFeature = False self.need_decoder = True self.init_cnn() self.gumbelsampler = GumbelSampler( temp=self.temperature, grid_size_out=self.grid_size_out, force_hard=force_hard, scaling=self.img_scaling) def forward(self, features, h, pool_h=torch.empty(1)): cnn_out = self.CNN(features, h, pool_h) final_pos, final_pos_map_decoder, final_pos_map, y_softmax, y_scores = self.gumbelsampler(cnn_out) return final_pos, final_pos_map_decoder, final_pos_map, y_softmax, y_scores class RoutingModule(nn.Module): """RoutingModule is part of TrajectoryGenerator and generates the prediction for each time step. The MotionDecoder consists of a LSTM network and a local goal network or attention network""" def __init__( self, seq_len=12, input_dim=2, decoder_h_dim=128, embedding_dim=64, dropout=0.0, batch_norm=False, mlp_dim=32, img_scaling_local=0.25, final_embedding_dim_rm=4, rm_vis_type="attention", grid_size_rm=8, dropout_cnn_rm=0.0, num_layers_rm=3, non_lin_cnn_rm="relu", force_hard_rm=True, temperature_rm=1, batch_norm_cnn_rm=False, noise_attention_dim_rm=True, skip_connection_rm=False, channels_cnn_rm=4, global_vis_type="goal"): """Initialise Motion Decoder network Parameters. seq_len (int) - - Prediction length of trajectory input_dim (int) - - input / output dimensionality of spatial coordinates decoder_h_dim (int) - - hidden state dimenstion of decoder LSTM embedding_dim (int) - - dimensionality spatial embedding dropout (float) - - dropout final_embedding_dim (int) - - embedding for final position estimate mlp_dim (int) - - bottleneck dimensionality of mlp networks PhysAtt (bool) - - depreciated. should not be used device (torch.device) - - Choose device: cpu or gpu (cuda) batch_norm (bool) - - if true, applies batch norm in mlp networks img_scaling (float) - - ratio [m/px] between real and pixel space grid_size (int) - - defines size of image path in goal / attention network (grid size is 2xgrid_size +1 ) decoder_type ("goal", "attention", none) - - """ super(RoutingModule, self).__init__() self.__dict__.update(locals()) if self.rm_vis_type: if self.rm_vis_type == "attention": self.rm_attention = AttentionRoutingModule( channels_cnn=self.channels_cnn_rm, decoder_h_dim=self.decoder_h_dim, dropout=self.dropout_cnn_rm, mlp_dim=self.mlp_dim, img_scaling=self.img_scaling_local, grid_size_in=self.grid_size_rm, grid_size_out=self.grid_size_rm, num_layers=self.num_layers_rm, batch_norm_cnn=self.batch_norm_cnn_rm, non_lin_cnn=self.non_lin_cnn_rm, final_embedding_dim=final_embedding_dim_rm, noise_attention_dim=self.noise_attention_dim_rm, skip_connection=self.skip_connection_rm) self.final_embedding_dim_rm = self.rm_attention.final_embedding self.output_dim = self.decoder_h_dim + self.final_embedding_dim_rm elif not self.rm_vis_type: self.output_dim = self.decoder_h_dim else: assert False, "`{}` not valid for `decoder_type`: Choose `goal`, 'attention`, or none".format(decoder_type) self.final_output = make_mlp( [self.output_dim, self.mlp_dim, self.input_dim], activation_list=["relu", None], dropout=dropout, batch_norm=self.batch_norm) self.spatial_embedding = nn.Linear(self.input_dim, self.embedding_dim) if self.global_vis_type == "goal": self.input_dim_decoder = self.self.embedding_dim * 2 + 1 else: self.input_dim_decoder = self.embedding_dim self.decoder = nn.LSTM(self.input_dim_decoder, self.decoder_h_dim) def forward(self, last_pos, rel_pos, state_tuple, dist_to_goal=0, scene_img=None): """ Calculates forward pass of MotionDecoder Parameters: obs_traj (tensor) - - Tensor of shape (obs_len, batch, 2) state_tuple (tuple of tensors) - - Tuple with hidden state (1, batch, encoder_h_dim) and cell state tensor (1, batch, encoder_h_dim) Returns: output (tensor) - - Output of LSTM netwok for all time steps (obs_len, batch, encoder_h_dim) final_h (tensor) - - Final hidden state of LSTM network (1, batch, encoder_h_dim) """ batch_size = rel_pos.size(0) pred_traj_fake_rel = [] pred_traj_fake = [] softmax_list = [] final_pos_list = [] img_patch_list = [] final_pos_map_decoder_list = [] for t in range(self.seq_len): decoder_input = self.spatial_embedding(rel_pos) decoder_input = decoder_input.view(1, batch_size, self.embedding_dim) if self.global_vis_type != "none": distance_embeding = self.spatial_embedding(dist_to_goal) time_tensor = -1 + 2 * torch.ones(1, decoder_input.size(1), 1) * t / self.seq_len time_tensor = time_tensor.to(decoder_input) decoder_input = torch.cat((decoder_input, distance_embeding, time_tensor), -1) output, state_tuple = self.decoder(decoder_input, state_tuple) if self.rm_vis_type == "attention": final_emb, y_softmax, img_patch, noise = self.rm_attention(scene_img, last_pos, state_tuple[0]) else: final_emb = torch.Tensor([]).to(state_tuple[0]) img_patch = [] input_final = torch.cat((state_tuple[0], final_emb), 2) img_patch_list.append(img_patch) # rel_pos = final_pos[0] rel_pos = self.final_output(input_final) rel_pos = rel_pos.squeeze(0) curr_pos = rel_pos + last_pos dist_to_goal = dist_to_goal - rel_pos pred_traj_fake_rel.append(rel_pos.clone().view(batch_size, -1)) pred_traj_fake.append(curr_pos.clone().view(batch_size, -1)) last_pos = curr_pos pred_traj_fake_rel = torch.stack(pred_traj_fake_rel, dim=0) pred_traj_fake = torch.stack(pred_traj_fake, dim=0) output = {"out_xy": pred_traj_fake, "out_dxdy": pred_traj_fake_rel, "h": state_tuple[0]} if self.rm_vis_type == "attention": output.update({"image_patches": torch.stack(img_patch_list, dim=0)}) return output class EncoderPrediction(nn.Module): """Part of Discriminator""" def __init__( self, input_dim=2, encoder_h_dim_d=128, embedding_dim=64, dropout=0.0, channels_cnn=4, grid_size=16, num_layers_cnn=2, batch_norm_cnn=True, batch_norm=False, dropout_cnn=0, mlp_dim=32, image_scaling=0.5, non_lin_cnn='tanh', visual_features = False): super().__init__() self.__dict__.update(locals()) del self.self self.bottleneck_dim = int(grid_size / 2 ** (num_layers_cnn - 1)) ** 2 * channels_cnn * 2 ** (num_layers_cnn - 2) activation = ['leakyrelu', None] in_channels = 4 self.bottleneck_dim = int(grid_size / 2 ** (num_layers_cnn - 1)) ** 2 self.encoder_out = nn.Conv2d(channels_cnn * 2 ** (num_layers_cnn - 2), 1, kernel_size=(1, 1), stride=1) self.leakyrelu = nn.LeakyReLU() self.inputFeatures = make_mlp( [self.embedding_dim + self.bottleneck_dim, mlp_dim, self.embedding_dim], activation_list=['leakyrelu', None], dropout=dropout) self.encoder = nn.LSTM(self.embedding_dim, self.encoder_h_dim_d, dropout=dropout) if self.visual_features: self.CNN = CNN(channels_cnn=self.channels_cnn, encoder_h_dim=self.encoder_h_dim_d, mlp=self.mlp_dim, need_decoder=False, PhysFeature=True, insert_trajectory=False, grid_size_in=self.grid_size, num_layers=self.num_layers_cnn, dropout=self.dropout_cnn, batch_norm=batch_norm_cnn, non_lin_cnn=self.non_lin_cnn, in_channels=in_channels, ) self.spatial_embedding = nn.Linear(2, self.embedding_dim) real_classifier_dims = [self.encoder_h_dim_d, mlp_dim, 1] self.real_classifier = make_mlp( real_classifier_dims, activation_list=activation, dropout=dropout) def init_hidden(self, batch, obs_traj): return (torch.zeros(1, batch, self.encoder_h_dim_d).to(obs_traj), torch.zeros(1, batch, self.encoder_h_dim_d).to(obs_traj)) def forward(self, dxdy, img_patch, state_tuple): """ Inputs: - last_pos: Tensor of shape (batch, 2) - last_pos_rel: Tensor of shape (batch, 2) - state_tuple: (hh, ch) each tensor of shape (num_layers, batch, h_dim) Output: - pred_traj_fake_rel: tensor of shape (self.seq_len, batch, 2) - pred_traj_fake: tensor of shape (self.seq_len, batch, 2) - state_tuple[0]: final hidden state """ embedded_pos = self.spatial_embedding(dxdy) if self.visual_features: l, batch, c, x, y = img_patch.size() img_patch = img_patch.reshape(l * batch, c, x, y) cnn_out = self.CNN(img_patch) visual_features = self.leakyrelu(self.encoder_out(cnn_out["Features"])) visual_features = visual_features.view(l, batch, -1) encoder_input = torch.cat((embedded_pos, visual_features), -1) encoder_input = self.inputFeatures(encoder_input) else: encoder_input = embedded_pos output, input_classifier = self.encoder(encoder_input, state_tuple) dynamic_score = self.real_classifier(input_classifier[0]) return dynamic_score class get_gumbel_map(nn.Module): def __init__(self, grid_size): super(get_gumbel_map, self).__init__() x = torch.arange(0, grid_size * 2 + 1) x = x.unsqueeze(1) X = x.repeat(1, grid_size * 2 + 1) x1 = X - grid_size x2 = x1.T x1 = x1.unsqueeze(2) x2 = x2.unsqueeze(2) self.gumbel_map = torch.cat((x2, x1), 2).view(1, -1, 2) def forward(self, batch_size): gumbel_map = self.gumbel_map.repeat(batch_size, 1, 1).float() gumbel_map = gumbel_map + torch.rand_like(gumbel_map) return gumbel_map ### Gumbel Sampling ### class GumbelSampler(nn.Module): def __init__(self, temp=1, grid_size_out=16, scaling=0.5, force_hard=True, ): super(GumbelSampler, self).__init__() self.temp = temp self.grid_size_out = grid_size_out self.scaling = scaling self.gumbelsoftmax = GumbelSoftmax(temp=self.temp) self.gumbel_map = get_gumbel_map(grid_size=self.grid_size_out) self.force_hard = force_hard def forward(self, cnn_out): """ :param cnn_out: :type cnn_out: :return: final_pos: Tensor with probability for each position final_pos_map: final_pos tensor reshaped y_softmax_gumbel: tensor with gumbel probabilities y_softmax: tensor with probabilites :rtype: """ batch_size, c, hh, w = cnn_out["PosMap"].size() gumbel_map = self.gumbel_map(batch_size).to(cnn_out["PosMap"]) y_scores = cnn_out["PosMap"].view(batch_size, -1) final_pos_map, y_softmax_gumbel, y_softmax = self.gumbelsoftmax(y_scores, force_hard=self.force_hard) final_pos = torch.sum(gumbel_map * final_pos_map.unsqueeze(2), 1).unsqueeze(0) final_pos_map = final_pos_map.view(batch_size, c, hh, w) y_softmax_gumbel = y_softmax_gumbel.view(batch_size, c, hh, w) y_softmax = y_softmax.view(batch_size, c, hh, w) final_pos = final_pos * self.scaling return final_pos, final_pos_map, y_softmax_gumbel, y_softmax, y_scores class Patch_gen(): def __init__(self, img_scaling=0.5, grid_size=16, type_img="small_image", ): self.__dict__.update(locals()) def get_patch(self, scene_image, last_pos): scale = 1. / self.img_scaling last_pos_np = last_pos.detach().cpu().numpy() image_list = [] for k in range(len(scene_image)): image = scene_image[k][self.type_img] center = last_pos_np[k] * scale x_center, y_center = center.astype(int) cropped_img = image.crop( (int(x_center - self.grid_size), int(y_center - self.grid_size), int(x_center + self.grid_size + 1), int(y_center + self.grid_size + 1))) cropped_img = -1 + torch.from_numpy(np.array(cropped_img) * 1.) * 2. / 256 position = torch.zeros((1, self.grid_size * 2 + 1, self.grid_size * 2 + 1, 1)) position[0, self.grid_size, self.grid_size, 0] = 1. image = torch.cat((cropped_img.float().unsqueeze(0), position), dim=3) image = image.permute(0, 3, 1, 2) image_list.append(image.clone()) img = torch.cat(image_list) img = img.to(last_pos) return img """ Gumbel Softmax Sampler Requires 2D input [batchsize, number of categories] Does not support sinlge binary category. Use two dimensions with softmax instead. """ class GumbelSoftmax(nn.Module): def __init__(self, hard=False, temp=None): super(GumbelSoftmax, self).__init__() self.hard = hard self.gpu = False self.temp = temp def cuda(self): self.gpu = True def cpu(self): self.gpu = False def sample_gumbel(self, shape, eps=1e-10): """Sample from Gumbel(0, 1)""" noise = torch.rand(shape) noise.add_(eps).log_().neg_() noise.add_(eps).log_().neg_() if self.gpu: return Variable(noise).cuda() else: return Variable(noise) def sample_gumbel_like(self, template_tensor, eps=1e-10): uniform_samples_tensor = template_tensor.clone().uniform_() gumble_samples_tensor = - torch.log(eps - torch.log(uniform_samples_tensor + eps)) return gumble_samples_tensor def gumbel_softmax_sample(self, alpha, temperature, eps=1e-10): """ Draw a sample from the Gumbel-Softmax distribution""" dim = len(alpha.size()) - 1 gumble_samples_tensor = self.sample_gumbel_like(alpha.data) gumble_trick_log_prob_samples = alpha + gumble_samples_tensor gumble_log_temp = gumble_trick_log_prob_samples / temperature max_gumble, _ = gumble_log_temp.max(1) soft_samples_gumble = F.softmax(gumble_log_temp - max_gumble.unsqueeze(1), dim) soft_samples_gumble = torch.max(soft_samples_gumble, torch.ones_like(soft_samples_gumble).to(alpha) * eps) soft_samples = F.softmax(alpha, dim) return soft_samples_gumble, soft_samples def gumbel_softmax(self, logits, temperature, hard=False): """Sample from the Gumbel-Softmax distribution and optionally discretize. Args: logits: [batch_size, n_class] unnormalized log-probs temperature: non-negative scalar hard: if True, take argmax, but differentiate w.r.t. soft sample y Returns: [batch_size, n_class] sample from the Gumbel-Softmax distribution. If hard=True, then the returned sample will be one-hot, otherwise it will be a probabilitiy distribution that sums to 1 across classes """ soft_samples_gumble, soft_samples = self.gumbel_softmax_sample(logits, temperature) if hard: _, max_value_indexes = soft_samples_gumble.data.max(1, keepdim=True) y_hard = logits.data.clone().zero_().scatter_(1, max_value_indexes, 1) y = y_hard - soft_samples_gumble.data + soft_samples_gumble else: y = soft_samples_gumble return y, soft_samples_gumble, soft_samples def forward(self, alpha, temp=None, force_hard=False): if not temp: if self.temp: temp = self.temp else: temp = 1 if self.training and not force_hard: return self.gumbel_softmax(alpha, temperature=temp, hard=False) else: return self.gumbel_softmax(alpha, temperature=temp, hard=True) if __name__ == "__main__": print("Test Encoder") print(MotionEncoder()) print("Test Decoder") print(RoutingModule()) print("Test AttentionRoutingModule") print(AttentionRoutingModule()) print("Test AttentionGlobal") print(AttentionGlobal()) print("Test GoalGlobal") print(GoalGlobal() ) print("Test Encoder Discriminator") print(EncoderPrediction())
[ "torch.nn.Dropout", "torch.empty", "torch.cat", "torch.randn", "torch.rand_like", "numpy.arange", "torch.arange", "torch.nn.init.kaiming_normal_", "torch.nn.init.xavier_uniform", "torch.Tensor", "torch.nn.Linear", "torch.zeros", "torch.nn.LSTM", "torch.log", "torch.nn.Dropout2d", "torch.nn.Tanh", "torch.nn.Conv2d", "torch.nn.BatchNorm1d", "torch.nn.BatchNorm2d", "torch.rand", "torch.nn.MaxPool2d", "torch.nn.LeakyReLU", "torch.nn.Sigmoid", "torch.ones_like", "torch.nn.ReLU", "torch.stack", "torch.nn.ConvTranspose2d", "torch.nn.Sequential", "torch.nn.functional.softmax", "numpy.array" ]
[((1379, 1401), 'torch.nn.Sequential', 'nn.Sequential', (['*layers'], {}), '(*layers)\n', (1392, 1401), True, 'import torch.nn as nn\n'), ((1850, 1865), 'torch.nn.Sequential', 'nn.Sequential', ([], {}), '()\n', (1863, 1865), True, 'import torch.nn as nn\n'), ((3321, 3336), 'torch.nn.Sequential', 'nn.Sequential', ([], {}), '()\n', (3334, 3336), True, 'import torch.nn as nn\n'), ((5461, 5476), 'torch.nn.Sequential', 'nn.Sequential', ([], {}), '()\n', (5474, 5476), True, 'import torch.nn as nn\n'), ((6126, 6154), 'numpy.arange', 'np.arange', (['(2)', '(num_layers + 1)'], {}), '(2, num_layers + 1)\n', (6135, 6154), True, 'import numpy as np\n'), ((9693, 9707), 'torch.empty', 'torch.empty', (['(1)'], {}), '(1)\n', (9704, 9707), False, 'import torch\n'), ((9716, 9730), 'torch.empty', 'torch.empty', (['(1)'], {}), '(1)\n', (9727, 9730), False, 'import torch\n'), ((16600, 16614), 'torch.Tensor', 'torch.Tensor', ([], {}), '()\n', (16612, 16614), False, 'import torch\n'), ((17771, 17785), 'torch.Tensor', 'torch.Tensor', ([], {}), '()\n', (17783, 17785), False, 'import torch\n'), ((19230, 19244), 'torch.empty', 'torch.empty', (['(1)'], {}), '(1)\n', (19241, 19244), False, 'import torch\n'), ((23135, 23180), 'torch.nn.Linear', 'nn.Linear', (['self.input_dim', 'self.embedding_dim'], {}), '(self.input_dim, self.embedding_dim)\n', (23144, 23180), True, 'import torch.nn as nn\n'), ((23389, 23440), 'torch.nn.LSTM', 'nn.LSTM', (['self.input_dim_decoder', 'self.decoder_h_dim'], {}), '(self.input_dim_decoder, self.decoder_h_dim)\n', (23396, 23440), True, 'import torch.nn as nn\n'), ((25747, 25785), 'torch.stack', 'torch.stack', (['pred_traj_fake_rel'], {'dim': '(0)'}), '(pred_traj_fake_rel, dim=0)\n', (25758, 25785), False, 'import torch\n'), ((25811, 25845), 'torch.stack', 'torch.stack', (['pred_traj_fake'], {'dim': '(0)'}), '(pred_traj_fake, dim=0)\n', (25822, 25845), False, 'import torch\n'), ((27024, 27112), 'torch.nn.Conv2d', 'nn.Conv2d', (['(channels_cnn * 2 ** (num_layers_cnn - 2))', '(1)'], {'kernel_size': '(1, 1)', 'stride': '(1)'}), '(channels_cnn * 2 ** (num_layers_cnn - 2), 1, kernel_size=(1, 1),\n stride=1)\n', (27033, 27112), True, 'import torch.nn as nn\n'), ((27134, 27148), 'torch.nn.LeakyReLU', 'nn.LeakyReLU', ([], {}), '()\n', (27146, 27148), True, 'import torch.nn as nn\n'), ((27376, 27442), 'torch.nn.LSTM', 'nn.LSTM', (['self.embedding_dim', 'self.encoder_h_dim_d'], {'dropout': 'dropout'}), '(self.embedding_dim, self.encoder_h_dim_d, dropout=dropout)\n', (27383, 27442), True, 'import torch.nn as nn\n'), ((28181, 28213), 'torch.nn.Linear', 'nn.Linear', (['(2)', 'self.embedding_dim'], {}), '(2, self.embedding_dim)\n', (28190, 28213), True, 'import torch.nn as nn\n'), ((29977, 30011), 'torch.arange', 'torch.arange', (['(0)', '(grid_size * 2 + 1)'], {}), '(0, grid_size * 2 + 1)\n', (29989, 30011), False, 'import torch\n'), ((33247, 33268), 'torch.cat', 'torch.cat', (['image_list'], {}), '(image_list)\n', (33256, 33268), False, 'import torch\n'), ((33884, 33901), 'torch.rand', 'torch.rand', (['shape'], {}), '(shape)\n', (33894, 33901), False, 'import torch\n'), ((35002, 35023), 'torch.nn.functional.softmax', 'F.softmax', (['alpha', 'dim'], {}), '(alpha, dim)\n', (35011, 35023), True, 'import torch.nn.functional as F\n'), ((842, 868), 'torch.nn.Linear', 'nn.Linear', (['dim_in', 'dim_out'], {}), '(dim_in, dim_out)\n', (851, 868), True, 'import torch.nn as nn\n'), ((1906, 1957), 'torch.nn.Conv2d', 'nn.Conv2d', (['input_dim', 'output_dim', 'filter_size', '(1)', '(1)'], {}), '(input_dim, output_dim, filter_size, 1, 1)\n', (1915, 1957), True, 'import torch.nn as nn\n'), ((2477, 2563), 'torch.nn.MaxPool2d', 'nn.MaxPool2d', ([], {'kernel_size': '(2, 2)', 'stride': '(2, 2)', 'dilation': '(1, 1)', 'ceil_mode': '(False)'}), '(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=\n False)\n', (2489, 2563), True, 'import torch.nn as nn\n'), ((3679, 3740), 'torch.nn.ConvTranspose2d', 'nn.ConvTranspose2d', (['input_dim', 'output_dim', 'filter', '(2)', 'padding'], {}), '(input_dim, output_dim, filter, 2, padding)\n', (3697, 3740), True, 'import torch.nn as nn\n'), ((7040, 7055), 'torch.nn.Sequential', 'nn.Sequential', ([], {}), '()\n', (7053, 7055), True, 'import torch.nn as nn\n'), ((11713, 11748), 'torch.nn.Linear', 'nn.Linear', (['input_dim', 'embedding_dim'], {}), '(input_dim, embedding_dim)\n', (11722, 11748), True, 'import torch.nn as nn\n'), ((11776, 11813), 'torch.nn.LSTM', 'nn.LSTM', (['embedding_dim', 'encoder_h_dim'], {}), '(embedding_dim, encoder_h_dim)\n', (11783, 11813), True, 'import torch.nn as nn\n'), ((11855, 11888), 'torch.nn.LSTM', 'nn.LSTM', (['input_dim', 'encoder_h_dim'], {}), '(input_dim, encoder_h_dim)\n', (11862, 11888), True, 'import torch.nn as nn\n'), ((15813, 15867), 'torch.randn', 'torch.randn', (['(1, batch_size, self.noise_attention_dim)'], {}), '((1, batch_size, self.noise_attention_dim))\n', (15824, 15867), False, 'import torch\n'), ((25222, 25263), 'torch.cat', 'torch.cat', (['(state_tuple[0], final_emb)', '(2)'], {}), '((state_tuple[0], final_emb), 2)\n', (25231, 25263), False, 'import torch\n'), ((29511, 29557), 'torch.cat', 'torch.cat', (['(embedded_pos, visual_features)', '(-1)'], {}), '((embedded_pos, visual_features), -1)\n', (29520, 29557), False, 'import torch\n'), ((30392, 30419), 'torch.rand_like', 'torch.rand_like', (['gumbel_map'], {}), '(gumbel_map)\n', (30407, 30419), False, 'import torch\n'), ((32925, 32992), 'torch.zeros', 'torch.zeros', (['(1, self.grid_size * 2 + 1, self.grid_size * 2 + 1, 1)'], {}), '((1, self.grid_size * 2 + 1, self.grid_size * 2 + 1, 1))\n', (32936, 32992), False, 'import torch\n'), ((919, 942), 'torch.nn.BatchNorm1d', 'nn.BatchNorm1d', (['dim_out'], {}), '(dim_out)\n', (933, 942), True, 'import torch.nn as nn\n'), ((1003, 1012), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (1010, 1012), True, 'import torch.nn as nn\n'), ((1326, 1347), 'torch.nn.Dropout', 'nn.Dropout', ([], {'p': 'dropout'}), '(p=dropout)\n', (1336, 1347), True, 'import torch.nn as nn\n'), ((2024, 2050), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['output_dim'], {}), '(output_dim)\n', (2038, 2050), True, 'import torch.nn as nn\n'), ((2128, 2137), 'torch.nn.Tanh', 'nn.Tanh', ([], {}), '()\n', (2135, 2137), True, 'import torch.nn as nn\n'), ((2626, 2647), 'torch.nn.Dropout2d', 'nn.Dropout2d', (['dropout'], {}), '(dropout)\n', (2638, 2647), True, 'import torch.nn as nn\n'), ((8975, 9029), 'torch.nn.init.kaiming_normal_', 'torch.nn.init.kaiming_normal_', (['m.weight'], {'mode': '"""fan_in"""'}), "(m.weight, mode='fan_in')\n", (9004, 9029), False, 'import torch\n'), ((9329, 9367), 'torch.nn.init.xavier_uniform', 'torch.nn.init.xavier_uniform', (['m.weight'], {}), '(m.weight)\n', (9357, 9367), False, 'import torch\n'), ((10438, 10474), 'torch.cat', 'torch.cat', (['(traj_enc, in_decoder)', '(1)'], {}), '((traj_enc, in_decoder), 1)\n', (10447, 10474), False, 'import torch\n'), ((10659, 10697), 'torch.cat', 'torch.cat', (['(social_enc, in_decoder)', '(1)'], {}), '((social_enc, in_decoder), 1)\n', (10668, 10697), False, 'import torch\n'), ((15924, 15977), 'torch.rand', 'torch.rand', (['(1, batch_size, self.noise_attention_dim)'], {}), '((1, batch_size, self.noise_attention_dim))\n', (15934, 15977), False, 'import torch\n'), ((24782, 24844), 'torch.cat', 'torch.cat', (['(decoder_input, distance_embeding, time_tensor)', '(-1)'], {}), '((decoder_input, distance_embeding, time_tensor), -1)\n', (24791, 24844), False, 'import torch\n'), ((30214, 30236), 'torch.cat', 'torch.cat', (['(x2, x1)', '(2)'], {}), '((x2, x1), 2)\n', (30223, 30236), False, 'import torch\n'), ((1075, 1084), 'torch.nn.Tanh', 'nn.Tanh', ([], {}), '()\n', (1082, 1084), True, 'import torch.nn as nn\n'), ((2217, 2226), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (2224, 2226), True, 'import torch.nn as nn\n'), ((3843, 3869), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['output_dim'], {}), '(output_dim)\n', (3857, 3869), True, 'import torch.nn as nn\n'), ((3956, 3965), 'torch.nn.Tanh', 'nn.Tanh', ([], {}), '()\n', (3963, 3965), True, 'import torch.nn as nn\n'), ((4250, 4271), 'torch.nn.Dropout2d', 'nn.Dropout2d', (['dropout'], {}), '(dropout)\n', (4262, 4271), True, 'import torch.nn as nn\n'), ((11964, 12005), 'torch.zeros', 'torch.zeros', (['(1)', 'batch', 'self.encoder_h_dim'], {}), '(1, batch, self.encoder_h_dim)\n', (11975, 12005), False, 'import torch\n'), ((12032, 12073), 'torch.zeros', 'torch.zeros', (['(1)', 'batch', 'self.encoder_h_dim'], {}), '(1, batch, self.encoder_h_dim)\n', (12043, 12073), False, 'import torch\n'), ((26069, 26103), 'torch.stack', 'torch.stack', (['img_patch_list'], {'dim': '(0)'}), '(img_patch_list, dim=0)\n', (26080, 26103), False, 'import torch\n'), ((28486, 28529), 'torch.zeros', 'torch.zeros', (['(1)', 'batch', 'self.encoder_h_dim_d'], {}), '(1, batch, self.encoder_h_dim_d)\n', (28497, 28529), False, 'import torch\n'), ((28560, 28603), 'torch.zeros', 'torch.zeros', (['(1)', 'batch', 'self.encoder_h_dim_d'], {}), '(1, batch, self.encoder_h_dim_d)\n', (28571, 28603), False, 'import torch\n'), ((34271, 34310), 'torch.log', 'torch.log', (['(uniform_samples_tensor + eps)'], {}), '(uniform_samples_tensor + eps)\n', (34280, 34310), False, 'import torch\n'), ((1152, 1166), 'torch.nn.LeakyReLU', 'nn.LeakyReLU', ([], {}), '()\n', (1164, 1166), True, 'import torch.nn as nn\n'), ((2311, 2325), 'torch.nn.LeakyReLU', 'nn.LeakyReLU', ([], {}), '()\n', (2323, 2325), True, 'import torch.nn as nn\n'), ((4054, 4063), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (4061, 4063), True, 'import torch.nn as nn\n'), ((25128, 25144), 'torch.Tensor', 'torch.Tensor', (['[]'], {}), '([])\n', (25140, 25144), False, 'import torch\n'), ((34925, 34961), 'torch.ones_like', 'torch.ones_like', (['soft_samples_gumble'], {}), '(soft_samples_gumble)\n', (34940, 34961), False, 'import torch\n'), ((1232, 1244), 'torch.nn.Sigmoid', 'nn.Sigmoid', ([], {}), '()\n', (1242, 1244), True, 'import torch.nn as nn\n'), ((4157, 4171), 'torch.nn.LeakyReLU', 'nn.LeakyReLU', ([], {}), '()\n', (4169, 4171), True, 'import torch.nn as nn\n'), ((32862, 32883), 'numpy.array', 'np.array', (['cropped_img'], {}), '(cropped_img)\n', (32870, 32883), True, 'import numpy as np\n')]
"""Tools for generating maps from a text search.""" import geopy as gp import numpy as np import matplotlib.pyplot as plt import warnings from .tile import howmany, bounds2raster, bounds2img, _sm2ll, _calculate_zoom from .plotting import INTERPOLATION, ZOOM, add_attribution from . import providers from ._providers import TileProvider # Set user ID for Nominatim _val = np.random.randint(1000000) _default_user_agent = f"contextily_user_{_val}" class Place(object): """Geocode a place by name and get its map. This allows you to search for a name (e.g., city, street, country) and grab map and location data from the internet. Parameters ---------- search : string The location to be searched. zoom : int or None [Optional. Default: None] The level of detail to include in the map. Higher levels mean more tiles and thus longer download time. If None, the zoom level will be automatically determined. path : str or None [Optional. Default: None] Path to a raster file that will be created after getting the place map. If None, no raster file will be downloaded. zoom_adjust : int or None [Optional. Default: None] The amount to adjust a chosen zoom level if it is chosen automatically. source : contextily.providers object or str [Optional. Default: Stamen Terrain web tiles] The tile source: web tile provider or path to local file. The web tile provider can be in the form of a `contextily.providers` object or a URL. The placeholders for the XYZ in the URL need to be `{x}`, `{y}`, `{z}`, respectively. For local file paths, the file is read with `rasterio` and all bands are loaded into the basemap. IMPORTANT: tiles are assumed to be in the Spherical Mercator projection (EPSG:3857), unless the `crs` keyword is specified. url : str [DEPRECATED] [Optional. Default: 'http://tile.stamen.com/terrain/{z}/{x}/{y}.png'] Source url for web tiles, or path to local file. If local, the file is read with `rasterio` and all bands are loaded into the basemap. geocoder : geopy.geocoders [Optional. Default: geopy.geocoders.Nominatim()] Geocoder method to process `search` Attributes ---------- geocode : geopy object The result of calling ``geopy.geocoders.Nominatim`` with ``search`` as input. s : float The southern bbox edge. n : float The northern bbox edge. e : float The eastern bbox edge. w : float The western bbox edge. im : ndarray The image corresponding to the map of ``search``. bbox : list The bounding box of the returned image, expressed in lon/lat, with the following order: [minX, minY, maxX, maxY] bbox_map : tuple The bounding box of the returned image, expressed in Web Mercator, with the following order: [minX, minY, maxX, maxY] """ def __init__( self, search, zoom=None, path=None, zoom_adjust=None, source=None, url=None, geocoder=gp.geocoders.Nominatim(user_agent=_default_user_agent), ): self.path = path if url is not None and source is None: warnings.warn( 'The "url" option is deprecated. Please use the "source"' " argument instead.", FutureWarning, stacklevel=2, ) source = url elif url is not None and source is not None: warnings.warn( 'The "url" argument is deprecated. Please use the "source"' ' argument. Do not supply a "url" argument. It will be ignored.', FutureWarning, stacklevel=2, ) if source is None: source = providers.Stamen.Terrain self.source = source self.zoom_adjust = zoom_adjust # Get geocoded values resp = geocoder.geocode(search) bbox = np.array([float(ii) for ii in resp.raw["boundingbox"]]) if "display_name" in resp.raw.keys(): place = resp.raw["display_name"] elif "address" in resp.raw.keys(): place = resp.raw["address"] else: place = search self.place = place self.search = search self.s, self.n, self.w, self.e = bbox self.bbox = [self.w, self.s, self.e, self.n] # So bbox is standard self.latitude = resp.latitude self.longitude = resp.longitude self.geocode = resp # Get map params self.zoom = ( _calculate_zoom(self.w, self.s, self.e, self.n) if zoom is None else zoom ) self.zoom = int(self.zoom) if self.zoom_adjust is not None: self.zoom += zoom_adjust self.n_tiles = howmany(self.w, self.s, self.e, self.n, self.zoom, verbose=False) # Get the map self._get_map() def _get_map(self): kwargs = {"ll": True} if self.source is not None: kwargs["source"] = self.source try: if isinstance(self.path, str): im, bbox = bounds2raster( self.w, self.s, self.e, self.n, self.path, zoom=self.zoom, **kwargs ) else: im, bbox = bounds2img( self.w, self.s, self.e, self.n, self.zoom, **kwargs ) except Exception as err: raise ValueError( "Could not retrieve map with parameters: {}, {}, {}, {}, zoom={}\n{}\nError: {}".format( self.w, self.s, self.e, self.n, self.zoom, kwargs, err ) ) self.im = im self.bbox_map = bbox return im, bbox def plot(self, ax=None, zoom=ZOOM, interpolation=INTERPOLATION, attribution=None): """ Plot a `Place` object ... Parameters ---------- ax : AxesSubplot Matplotlib axis with `x_lim` and `y_lim` set in Web Mercator (EPSG=3857). If not provided, a new 12x12 figure will be set and the name of the place will be added as title zoom : int/'auto' [Optional. Default='auto'] Level of detail for the basemap. If 'auto', if calculates it automatically. Ignored if `source` is a local file. interpolation : str [Optional. Default='bilinear'] Interpolation algorithm to be passed to `imshow`. See `matplotlib.pyplot.imshow` for further details. attribution : str [Optional. Defaults to attribution specified by the source of the map tiles] Text to be added at the bottom of the axis. This defaults to the attribution of the provider specified in `source` if available. Specify False to not automatically add an attribution, or a string to pass a custom attribution. Returns ------- ax : AxesSubplot Matplotlib axis with `x_lim` and `y_lim` set in Web Mercator (EPSG=3857) containing the basemap Examples -------- >>> lvl = ctx.Place('Liverpool') >>> lvl.plot() """ im = self.im bbox = self.bbox_map title = None axisoff = False if ax is None: fig, ax = plt.subplots(figsize=(12, 12)) title = self.place axisoff = True ax.imshow(im, extent=bbox, interpolation=interpolation) ax.set(xlabel="X", ylabel="Y") if isinstance(self.source, (dict, TileProvider)) and attribution is None: attribution = self.source.get("attribution") if attribution: add_attribution(ax, attribution) if title is not None: ax.set(title=title) if axisoff: ax.set_axis_off() return ax def __repr__(self): s = "Place : {} | n_tiles: {} | zoom : {} | im : {}".format( self.place, self.n_tiles, self.zoom, self.im.shape[:2] ) return s def plot_map( place, bbox=None, title=None, ax=None, axis_off=True, latlon=True, attribution=None ): """Plot a map of the given place. Parameters ---------- place : instance of Place or ndarray The map to plot. If an ndarray, this must be an image corresponding to a map. If an instance of ``Place``, the extent of the image and name will be inferred from the bounding box. ax : instance of matplotlib Axes object or None The axis on which to plot. If None, one will be created. axis_off : bool Whether to turn off the axis border and ticks before plotting. attribution : str [Optional. Default to standard `ATTRIBUTION`] Text to be added at the bottom of the axis. Returns ------- ax : instance of matplotlib Axes object or None The axis on the map is plotted. """ warnings.warn( ( "The method `plot_map` is deprecated and will be removed from the" " library in future versions. Please use either `add_basemap` or" " the internal method `Place.plot`" ), DeprecationWarning, ) if not isinstance(place, Place): im = place bbox = bbox title = title else: im = place.im if bbox is None: bbox = place.bbox_map if latlon is True: # Convert w, s, e, n into lon/lat w, e, s, n = bbox w, s = _sm2ll(w, s) e, n = _sm2ll(e, n) bbox = [w, e, s, n] title = place.place if title is None else title if ax is None: fig, ax = plt.subplots(figsize=(15, 15)) ax.imshow(im, extent=bbox) ax.set(xlabel="X", ylabel="Y") if title is not None: ax.set(title=title) if attribution: add_attribution(ax, attribution) if axis_off is True: ax.set_axis_off() return ax
[ "warnings.warn", "numpy.random.randint", "matplotlib.pyplot.subplots", "geopy.geocoders.Nominatim" ]
[((373, 399), 'numpy.random.randint', 'np.random.randint', (['(1000000)'], {}), '(1000000)\n', (390, 399), True, 'import numpy as np\n'), ((9145, 9352), 'warnings.warn', 'warnings.warn', (['"""The method `plot_map` is deprecated and will be removed from the library in future versions. Please use either `add_basemap` or the internal method `Place.plot`"""', 'DeprecationWarning'], {}), "(\n 'The method `plot_map` is deprecated and will be removed from the library in future versions. Please use either `add_basemap` or the internal method `Place.plot`'\n , DeprecationWarning)\n", (9158, 9352), False, 'import warnings\n'), ((3185, 3239), 'geopy.geocoders.Nominatim', 'gp.geocoders.Nominatim', ([], {'user_agent': '_default_user_agent'}), '(user_agent=_default_user_agent)\n', (3207, 3239), True, 'import geopy as gp\n'), ((9927, 9957), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(15, 15)'}), '(figsize=(15, 15))\n', (9939, 9957), True, 'import matplotlib.pyplot as plt\n'), ((3332, 3461), 'warnings.warn', 'warnings.warn', (['"""The "url" option is deprecated. Please use the "source" argument instead."""', 'FutureWarning'], {'stacklevel': '(2)'}), '(\n \'The "url" option is deprecated. Please use the "source" argument instead.\'\n , FutureWarning, stacklevel=2)\n', (3345, 3461), False, 'import warnings\n'), ((7541, 7571), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(12, 12)'}), '(figsize=(12, 12))\n', (7553, 7571), True, 'import matplotlib.pyplot as plt\n'), ((3624, 3799), 'warnings.warn', 'warnings.warn', (['"""The "url" argument is deprecated. Please use the "source" argument. Do not supply a "url" argument. It will be ignored."""', 'FutureWarning'], {'stacklevel': '(2)'}), '(\n \'The "url" argument is deprecated. Please use the "source" argument. Do not supply a "url" argument. It will be ignored.\'\n , FutureWarning, stacklevel=2)\n', (3637, 3799), False, 'import warnings\n')]
#!/usr/bin/env python # Copyright (c) 2017, DIANA-HEP # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import copy import numbers import functools import numpy import oamap.generator import oamap.operations import oamap.proxy import oamap.schema import oamap.util class SingleThreadExecutor(object): class PseudoFuture(object): def __init__(self, result): self._result = result def result(self, timeout=None): return self._result def done(self): return True def exception(self, timeout=None): raise NotImplementedError def traceback(self, timeout=None): raise NotImplementedError def submit(self, fcn, *args, **kwargs): args = tuple(x.result() if isinstance(x, self.PseudoFuture) else x for x in args) kwargs = dict((n, x.result() if isinstance(x, self.PseudoFuture) else x) for n, x in kwargs.items()) return self.PseudoFuture(fcn(*args, **kwargs)) class Operation(object): def __init__(self, name, args, kwargs, function): self._name = name self._args = args self._kwargs = kwargs self._function = function def __repr__(self): return "<{0} {1} {2} {3}>".format(self.__class__.__name__, self._name, repr(self._args), repr(self._kwargs)) def __str__(self): return ".{0}({1}{2})".format(self._name, ", ".join(repr(x) for x in self._args), "".join(", {0}={1}".format(n, repr(x)) for n, x in self._kwargs.items())) @property def name(self): return self._name @property def args(self): return self._args @property def kwargs(self): return self._kwargs @property def function(self): return self._function def apply(self, data): return self._function(*((data,) + self._args), **self._kwargs) class Recasting(Operation): pass class Transformation(Operation): pass class Action(Operation): pass class Operable(object): def __init__(self): self._operations = () @staticmethod def update_operations(): def newrecasting(name, function): @functools.wraps(function) def recasting(self, *args, **kwargs): out = self.__class__.__new__(self.__class__) Operable.__init__(out) out.__dict__ = self.__dict__.copy() out._operations = self._operations + (Recasting(name, args, kwargs, function),) return out return recasting def newtransformation(name, function): @functools.wraps(function) def transformation(self, *args, **kwargs): out = self.__class__.__new__(self.__class__) Operable.__init__(out) out.__dict__ = self.__dict__.copy() out._operations = self._operations + (Transformation(name, args, kwargs, function),) return out return transformation def newaction(name, function): @functools.wraps(function) def action(self, *args, **kwargs): try: combiner = kwargs.pop("combiner") except KeyError: combiner = function.combiner out = self.__class__.__new__(self.__class__) Operable.__init__(out) out.__dict__ = self.__dict__.copy() out._operations = self._operations + (Action(name, args, kwargs, function),) return out.act(combiner) return action for n, x in oamap.operations.recastings.items(): setattr(Operable, n, oamap.util.MethodType(newrecasting(n, x), None, Operable)) for n, x in oamap.operations.transformations.items(): setattr(Operable, n, oamap.util.MethodType(newtransformation(n, x), None, Operable)) for n, x in oamap.operations.actions.items(): setattr(Operable, n, oamap.util.MethodType(newaction(n, x), None, Operable)) def _nooperations(self): return len(self._operations) == 0 def _notransformations(self): return all(isinstance(x, Recasting) for x in self._operations) Operable.update_operations() class _Data(Operable): def __init__(self, name, schema, backends, executor, extension=None, packing=None, doc=None, metadata=None): super(_Data, self).__init__() self._name = name self._schema = schema self._backends = backends self._executor = executor self._extension = extension self._packing = packing self._doc = doc self._metadata = metadata self._cachedobject = None def __repr__(self): return "<Data {0}>{1}".format(repr(self._name), "".join(str(x) for x in self._operations)) def __str__(self): return "<Data {0}>{1}".format(repr(self._name), "".join("\n " + str(x) for x in self._operations)) @property def name(self): return self._name @property def schema(self): return self._schema.deepcopy() @property def extension(self): return self._extension @property def packing(self): return self._packing @property def doc(self): return self._doc @property def metadata(self): return self._metadata def arrays(self): return DataArrays(self._backends) def transform(self, name, namespace, update): if self._nooperations(): return [SingleThreadExecutor.PseudoFuture(update(self))] elif self._notransformations(): result = self() for operation in self._operations: result = operation.apply(result) if isinstance(result, oamap.proxy.ListProxy): out = Dataset(name, result._generator.schema, self._backends, self._executor, [0, len(result)], extension=self._extension, packing=None, doc=self._doc, metadata=self._metadata) else: out = Data(name, result._generator.schema, self._backends, self._executor, extension=self._extension, packing=None, doc=self._doc, metadata=self._metadata) return [SingleThreadExecutor.PseudoFuture(update(out))] else: def task(name, dataset, namespace, update): result = dataset() for operation in dataset._operations: result = operation.apply(result) backend = dataset._backends[namespace] schema, roles2arrays = oamap.operations._DualSource.collect(result._generator.namedschema(), result._arrays, namespace, backend.prefix(name), backend.delimiter()) active = backend.instantiate(0) if hasattr(active, "putall"): active.putall(roles2arrays) else: for n, x in roles2arrays.items(): active[str(n)] = x if isinstance(result, oamap.proxy.ListProxy): out = Dataset(name, schema, dataset._backends, dataset._executor, [0, len(result)], extension=dataset._extension, packing=None, doc=dataset._doc, metadata=dataset._metadata) else: out = Data(name, schema, dataset._backends, dataset._executor, extension=dataset._extension, packing=None, doc=dataset._doc, metadata=dataset._metadata) return update(out) return [self._executor.submit(task, name, self, namespace, update)] def act(self, combiner): def task(dataset): result = dataset() for operation in dataset._operations: result = operation.apply(result) return result return combiner([self._executor.submit(task, self)]) class Data(_Data): def __call__(self): if self._cachedobject is None: if self._extension is None: extension = oamap.util.import_module("oamap.extension.common") elif isinstance(self._extension, basestring): extension = oamap.util.import_module(self._extension) else: extension = [oamap.util.import_module(x) for x in self._extension] self._cachedobject = self._schema(self.arrays(), extension=extension, packing=self._packing) return self._cachedobject class DataArrays(object): def __init__(self, backends): self._backends = backends self._active = {} self._partitionid = 0 def _toplevel(self, out, filtered): return filtered def getall(self, roles): out = {} for namespace, backend in self._backends.items(): filtered = self._toplevel(out, [x for x in roles if x.namespace == namespace]) if len(filtered) > 0: active = self._active.get(namespace, None) if active is None: active = self._active[namespace] = backend.instantiate(self._partitionid) if hasattr(active, "getall"): out.update(active.getall(filtered)) else: for x in roles: out[x] = active[str(x)] return out def close(self): for namespace, active in self._active.items(): if hasattr(active, "close"): active.close() self._active[namespace] = None class Dataset(_Data): def __init__(self, name, schema, backends, executor, offsets, extension=None, packing=None, doc=None, metadata=None): if not isinstance(schema, oamap.schema.List): raise TypeError("Dataset must have a list schema, not\n\n {0}".format(schema.__repr__(indent=" "))) super(Dataset, self).__init__(name, schema, backends, executor, extension=extension, packing=packing, doc=doc, metadata=metadata) if not isinstance(offsets, numpy.ndarray): try: if not all(isinstance(x, (numbers.Integral, numpy.integer)) and x >= 0 for x in offsets): raise TypeError except TypeError: raise TypeError("offsets must be an iterable of non-negative integers") offsets = numpy.array(offsets, dtype=numpy.int64) if len(offsets.shape) != 1: raise ValueError("offsets must be one-dimensional") if len(offsets) < 2 or offsets[0] != 0: raise ValueError("offsets must have at least two items, and the first one must be zero") if not numpy.all(offsets[:-1] <= offsets[1:]): raise ValueError("offsets must be monotonically increasing") self._offsets = offsets self._cachedpartition = None def __repr__(self): return "<Dataset {0} {1} partitions {2} entries>{3}".format(repr(self._name), self.numpartitions, self.numentries, "".join(str(x) for x in self._operations)) def __str__(self): return "<Dataset {0} {1} partitions {2} entries>{3}".format(repr(self._name), self.numpartitions, self.numentries, "".join("\n " + str(x) for x in self._operations)) @property def offsets(self): return self._offsets.tolist() @property def starts(self): return self._offsets[:-1].tolist() @property def stops(self): return self._offsets[1:].tolist() @property def partitions(self): return zip(self.start, self.stop) @property def numpartitions(self): return len(self._offsets) - 1 @property def numentries(self): return int(self._offsets[-1]) def partition(self, partitionid): if self._cachedpartition != partitionid: self._cachedpartition = partitionid if self._extension is None: extension = oamap.util.import_module("oamap.extension.common") elif isinstance(self._extension, basestring): extension = oamap.util.import_module(self._extension) else: extension = [oamap.util.import_module(x) for x in self._extension] self._cachedobject = self._schema(self.arrays(partitionid), extension=extension, packing=self._packing) return self._cachedobject def __iter__(self): for partitionid in range(self.numpartitions): for i in range(self._offsets[partitionid], self._offsets[partitionid + 1]): yield self[i] def __getitem__(self, index): if isinstance(index, slice): start, stop, step = oamap.util.slice2sss(index, self.numentries) partitionid = max(0, min(numpy.searchsorted(self._offsets, start, side="right") - 1, self.numpartitions - 1)) localstart = start - self._offsets[partitionid] localstop = stop - self._offsets[partitionid] if localstop < -1 or localstop > (self._offsets[partitionid + 1] - self._offsets[partitionid]): raise IndexError("slice spans multiple partitions") out = self.partition(partitionid) out._whence = localstart out._stride = step # out._length = int(math.ceil(float(abs(localstop - localstart)) / abs(step))) d, m = divmod(abs(localstart - localstop), abs(step)) out._length = d + (1 if m != 0 else 0) return out else: normindex = index if index >= 0 else index + self.numentries if not 0 <= normindex < self.numentries: raise IndexError("index {0} out of range for {1} entries".format(index, self.numentries)) partitionid = numpy.searchsorted(self._offsets, normindex, side="right") - 1 localindex = normindex - self._offsets[partitionid] return self.partition(partitionid)[localindex] def arrays(self, partitionid): normid = partitionid if partitionid >= 0 else partitionid + self.numpartitions if not 0 <= normid < self.numpartitions: raise IndexError("partitionid {0} out of range for {1} partitions".format(partitionid, self.numpartitions)) startsrole = oamap.generator.StartsRole(self._schema._get_starts("object", "-"), self._schema.namespace, None) stopsrole = oamap.generator.StopsRole(self._schema._get_stops("object", "-"), self._schema.namespace, None) startsrole.stops = stopsrole stopsrole.starts = startsrole return DatasetArrays(normid, startsrole, stopsrole, self._offsets[normid + 1] - self._offsets[normid], self._backends) def transform(self, name, namespace, update): if self._nooperations(): return [SingleThreadExecutor.PseudoFuture(update(self))] elif self._notransformations(): result = self.partition(0) for operation in self._operations: result = operation.apply(result) if isinstance(result, oamap.proxy.ListProxy): out = Dataset(name, result._generator.schema, self._backends, self._executor, self._offsets, extension=self._extension, packing=None, doc=self._doc, metadata=self._metadata) else: out = Data(name, result._generator.schema, self._backends, self._executor, extension=self._extension, packing=None, doc=self._doc, metadata=self._metadata) return [SingleThreadExecutor.PseudoFuture(update(out))] else: def task(name, dataset, namespace, partitionid): result = dataset.partition(partitionid) for operation in dataset._operations: result = operation.apply(result) backend = dataset._backends[namespace] schema, roles2arrays = oamap.operations._DualSource.collect(result._generator.namedschema(), result._arrays, namespace, backend.prefix(name), backend.delimiter()) active = backend.instantiate(partitionid) if hasattr(active, "putall"): active.putall(roles2arrays) else: for n, x in roles2arrays.items(): active[str(n)] = x if isinstance(result, oamap.proxy.ListProxy): return schema, len(result) else: return schema, 1 tasks = [self._executor.submit(task, name, self, namespace, i) for i in range(self.numpartitions)] def collect(name, dataset, results, update): if isinstance(results[0], tuple) and len(results[0]) == 2 and isinstance(results[0][0], oamap.schema.Schema): offsets = numpy.cumsum([0] + [numentries for schema, numentries in results], dtype=numpy.int64) schema = results[0][0] else: offsets = numpy.cumsum([0] + [x.result()[1] for x in results], dtype=numpy.int64) schema = results[0].result()[0] if isinstance(schema, oamap.schema.List): out = Dataset(name, schema, dataset._backends, dataset._executor, offsets, extension=dataset._extension, packing=None, doc=dataset._doc, metadata=dataset._metadata) else: out = Data(name, schema, dataset._backends, dataset._executor, extension=dataset._extension, packing=None, doc=dataset._doc, metadata=dataset._metadata) return update(out) tasks.append(self._executor.submit(collect, name, self, tuple(tasks), update)) return tasks def act(self, combiner): def task(dataset, partitionid): result = dataset.partition(partitionid) for operation in dataset._operations: result = operation.apply(result) return result return combiner([self._executor.submit(task, self, i) for i in range(self.numpartitions)]) class DatasetArrays(DataArrays): def __init__(self, partitionid, startsrole, stopsrole, numentries, backends): super(DatasetArrays, self).__init__(backends) self._partitionid = partitionid self._startsrole = startsrole self._stopsrole = stopsrole self._numentries = numentries def _toplevel(self, out, filtered): try: index = filtered.index(self._startsrole) except ValueError: pass else: del filtered[index] out[self._startsrole] = numpy.array([0], dtype=oamap.generator.ListGenerator.posdtype) try: index = filtered.index(self._stopsrole) except ValueError: pass else: del filtered[index] out[self._stopsrole] = numpy.array([self._numentries], dtype=oamap.generator.ListGenerator.posdtype) return filtered
[ "numpy.searchsorted", "numpy.cumsum", "numpy.array", "functools.wraps", "numpy.all" ]
[((3620, 3645), 'functools.wraps', 'functools.wraps', (['function'], {}), '(function)\n', (3635, 3645), False, 'import functools\n'), ((4061, 4086), 'functools.wraps', 'functools.wraps', (['function'], {}), '(function)\n', (4076, 4086), False, 'import functools\n'), ((4509, 4534), 'functools.wraps', 'functools.wraps', (['function'], {}), '(function)\n', (4524, 4534), False, 'import functools\n'), ((11761, 11800), 'numpy.array', 'numpy.array', (['offsets'], {'dtype': 'numpy.int64'}), '(offsets, dtype=numpy.int64)\n', (11772, 11800), False, 'import numpy\n'), ((12065, 12103), 'numpy.all', 'numpy.all', (['(offsets[:-1] <= offsets[1:])'], {}), '(offsets[:-1] <= offsets[1:])\n', (12074, 12103), False, 'import numpy\n'), ((19925, 19987), 'numpy.array', 'numpy.array', (['[0]'], {'dtype': 'oamap.generator.ListGenerator.posdtype'}), '([0], dtype=oamap.generator.ListGenerator.posdtype)\n', (19936, 19987), False, 'import numpy\n'), ((20179, 20256), 'numpy.array', 'numpy.array', (['[self._numentries]'], {'dtype': 'oamap.generator.ListGenerator.posdtype'}), '([self._numentries], dtype=oamap.generator.ListGenerator.posdtype)\n', (20190, 20256), False, 'import numpy\n'), ((15136, 15194), 'numpy.searchsorted', 'numpy.searchsorted', (['self._offsets', 'normindex'], {'side': '"""right"""'}), "(self._offsets, normindex, side='right')\n", (15154, 15194), False, 'import numpy\n'), ((14137, 14191), 'numpy.searchsorted', 'numpy.searchsorted', (['self._offsets', 'start'], {'side': '"""right"""'}), "(self._offsets, start, side='right')\n", (14155, 14191), False, 'import numpy\n'), ((18127, 18217), 'numpy.cumsum', 'numpy.cumsum', (['([0] + [numentries for schema, numentries in results])'], {'dtype': 'numpy.int64'}), '([0] + [numentries for schema, numentries in results], dtype=\n numpy.int64)\n', (18139, 18217), False, 'import numpy\n')]
def load_data(logfile=None): import datetime import time import numpy as np import csv from datetime import datetime from keras.preprocessing.sequence import pad_sequences vocabulary = list() csvfile = open(logfile, 'r') if "receipt" in logfile: # For Receipt Dataset logreader = csv.reader(csvfile, delimiter=',') elif "helpdesk" in logfile: logreader = csv.reader(csvfile, delimiter=';') # For Helpdesk Dataset next(logreader, None) # skip the headers lastcase = '' casestarttime = None lasteventtime = None firstLine = True lines = [] #these are all the activity seq timeseqs = [] #time sequences (differences between two events) trace_start_list = [] numcases = 0 max_length = 0 trace_start_index = 0 for row in logreader: if "receipt" in logfile: # For Receipt Dataset t = datetime.strptime(row[2], "%Y-%m-%d %H:%M:%S.%f") elif "helpdesk" in logfile: t = datetime.strptime(row[2], "%d.%m.%Y-%H:%M:%S") # For Helpdesk Dataset if row[0]!=lastcase: #'lastcase' is to save the last executed case for the loop casestarttime = t lasteventtime = t lastcase = row[0] if not firstLine: lines.append(line) timeseqs.append(times) if len(line) > max_length: max_length = len(line) line = [] times = [] numcases += 1 if trace_start_index != 0: trace_start_index-=1 # To remove index for last case which is not counted as a prefix trace_start_list.append(trace_start_index) elif trace_start_index == 0: trace_start_list.append(trace_start_index) if row[1] not in vocabulary: vocabulary.append(row[1]) line.append(row[1]) timesincelastevent = t - lasteventtime timediff = 86400 * timesincelastevent.days + timesincelastevent.seconds + timesincelastevent.microseconds/1000000 # +1 avoid zero times.append(timediff+1) lasteventtime = t firstLine = False trace_start_index+=1 lines.append(line) timeseqs.append(times) vocabulary = {key: idx for idx, key in enumerate(vocabulary)} divisor = np.mean([item for sublist in timeseqs for item in sublist]) #average time between events numcases += 1 print("Num cases: ", numcases) elems_per_fold = int(round(numcases/3)) if len(line) > max_length: max_length = len(line) X = [] X1 = [] y = [] y_t = [] categorical_features_name = [] categorical_features_time = [] max_length = 0 prefix_sizes = [] seqs = 0 vocab = set() count = 0 for seq, time in zip(lines, timeseqs): code = [] code.append(vocabulary[seq[0]]) code1 = [] code1.append(np.log(time[0]+1)) vocab.add(seq[0]) for i in range(1,len(seq)): prefix_sizes.append(len(code)) if len(code)>max_length: max_length = len(code) # Building Activity Names and Time from Index for Explainability part sub_feature_name = [] sub_feature_time = [] vocabulary_clone = vocabulary.copy() for j in code[:]: for name, index in vocabulary_clone.items(): if index == j: sub_feature_name.append(name) sub_feature_time.append("Time corresponding to "+name) categorical_features_name.append(sub_feature_name) categorical_features_time.append(sub_feature_time) X.append(code[:]) X1.append(code1[:]) y.append(vocabulary[seq[i]]) y_t.append(time[i]/divisor) code.append(vocabulary[seq[i]]) code1.append(np.log(time[i]+1)) seqs += 1 vocab.add(seq[i]) prefix_sizes = np.array(prefix_sizes) print("Num sequences:", seqs) vocab_size = len(vocab) X = np.array(X) X1 = np.array(X1) y = np.array(y) y_t = np.array(y_t) categorical_features_name = np.array(categorical_features_name) categorical_features_time = np.array(categorical_features_time) y_unique = np.unique(y) dict_y = {} i = 0 for el in y_unique: dict_y[el] = i i += 1 for i in range(len(y)): y[i] = dict_y[y[i]] y_unique = np.unique(y, return_counts=True) print("Classes: ", y_unique) n_classes = y_unique[0].shape[0] # Establishing vocabulary for classes by removing non-predicatable class from vocabulary (For Helpdesk Dataset) rebel = int vocabulary_class = {} # Finding where the class occurs which is not to be predicted for key,value in enumerate(dict_y): if (key!=value): rebel = key break # deleting that class from dictionary for name in vocabulary_clone.copy(): if (vocabulary_clone[name] == rebel): vocabulary_clone.pop(name) vocabulary_class = vocabulary_clone.copy() for index,name in enumerate(vocabulary_class.copy()): vocabulary_class[name] = index # padding padded_X = pad_sequences(X, maxlen=max_length, padding='pre', dtype='float64') padded_X1 = pad_sequences(X1, maxlen=max_length, padding='pre', dtype='float64') padded_features = pad_sequences(categorical_features_name, maxlen=max_length, padding='pre', dtype=object, value="Zero Padded Feature") #Padding feature name for Padded feature padded_features_time = pad_sequences(categorical_features_time, maxlen=max_length, padding='pre', dtype=object, value="Zero Padded Feature") #Padding feature time for Padded feature return ( (padded_X, padded_X1), (y, y_t), vocab_size, max_length, n_classes, divisor, prefix_sizes, vocabulary, vocabulary_class, padded_features, padded_features_time, categorical_features_name, trace_start_list)
[ "csv.reader", "numpy.log", "keras.preprocessing.sequence.pad_sequences", "datetime.datetime.strptime", "numpy.mean", "numpy.array", "numpy.unique" ]
[((2377, 2436), 'numpy.mean', 'np.mean', (['[item for sublist in timeseqs for item in sublist]'], {}), '([item for sublist in timeseqs for item in sublist])\n', (2384, 2436), True, 'import numpy as np\n'), ((4099, 4121), 'numpy.array', 'np.array', (['prefix_sizes'], {}), '(prefix_sizes)\n', (4107, 4121), True, 'import numpy as np\n'), ((4193, 4204), 'numpy.array', 'np.array', (['X'], {}), '(X)\n', (4201, 4204), True, 'import numpy as np\n'), ((4214, 4226), 'numpy.array', 'np.array', (['X1'], {}), '(X1)\n', (4222, 4226), True, 'import numpy as np\n'), ((4235, 4246), 'numpy.array', 'np.array', (['y'], {}), '(y)\n', (4243, 4246), True, 'import numpy as np\n'), ((4257, 4270), 'numpy.array', 'np.array', (['y_t'], {}), '(y_t)\n', (4265, 4270), True, 'import numpy as np\n'), ((4304, 4339), 'numpy.array', 'np.array', (['categorical_features_name'], {}), '(categorical_features_name)\n', (4312, 4339), True, 'import numpy as np\n'), ((4372, 4407), 'numpy.array', 'np.array', (['categorical_features_time'], {}), '(categorical_features_time)\n', (4380, 4407), True, 'import numpy as np\n'), ((4424, 4436), 'numpy.unique', 'np.unique', (['y'], {}), '(y)\n', (4433, 4436), True, 'import numpy as np\n'), ((4596, 4628), 'numpy.unique', 'np.unique', (['y'], {'return_counts': '(True)'}), '(y, return_counts=True)\n', (4605, 4628), True, 'import numpy as np\n'), ((5384, 5451), 'keras.preprocessing.sequence.pad_sequences', 'pad_sequences', (['X'], {'maxlen': 'max_length', 'padding': '"""pre"""', 'dtype': '"""float64"""'}), "(X, maxlen=max_length, padding='pre', dtype='float64')\n", (5397, 5451), False, 'from keras.preprocessing.sequence import pad_sequences\n'), ((5468, 5536), 'keras.preprocessing.sequence.pad_sequences', 'pad_sequences', (['X1'], {'maxlen': 'max_length', 'padding': '"""pre"""', 'dtype': '"""float64"""'}), "(X1, maxlen=max_length, padding='pre', dtype='float64')\n", (5481, 5536), False, 'from keras.preprocessing.sequence import pad_sequences\n'), ((5559, 5680), 'keras.preprocessing.sequence.pad_sequences', 'pad_sequences', (['categorical_features_name'], {'maxlen': 'max_length', 'padding': '"""pre"""', 'dtype': 'object', 'value': '"""Zero Padded Feature"""'}), "(categorical_features_name, maxlen=max_length, padding='pre',\n dtype=object, value='Zero Padded Feature')\n", (5572, 5680), False, 'from keras.preprocessing.sequence import pad_sequences\n'), ((5745, 5866), 'keras.preprocessing.sequence.pad_sequences', 'pad_sequences', (['categorical_features_time'], {'maxlen': 'max_length', 'padding': '"""pre"""', 'dtype': 'object', 'value': '"""Zero Padded Feature"""'}), "(categorical_features_time, maxlen=max_length, padding='pre',\n dtype=object, value='Zero Padded Feature')\n", (5758, 5866), False, 'from keras.preprocessing.sequence import pad_sequences\n'), ((331, 365), 'csv.reader', 'csv.reader', (['csvfile'], {'delimiter': '""","""'}), "(csvfile, delimiter=',')\n", (341, 365), False, 'import csv\n'), ((420, 454), 'csv.reader', 'csv.reader', (['csvfile'], {'delimiter': '""";"""'}), "(csvfile, delimiter=';')\n", (430, 454), False, 'import csv\n'), ((919, 968), 'datetime.datetime.strptime', 'datetime.strptime', (['row[2]', '"""%Y-%m-%d %H:%M:%S.%f"""'], {}), "(row[2], '%Y-%m-%d %H:%M:%S.%f')\n", (936, 968), False, 'from datetime import datetime\n'), ((2975, 2994), 'numpy.log', 'np.log', (['(time[0] + 1)'], {}), '(time[0] + 1)\n', (2981, 2994), True, 'import numpy as np\n'), ((1022, 1068), 'datetime.datetime.strptime', 'datetime.strptime', (['row[2]', '"""%d.%m.%Y-%H:%M:%S"""'], {}), "(row[2], '%d.%m.%Y-%H:%M:%S')\n", (1039, 1068), False, 'from datetime import datetime\n'), ((3995, 4014), 'numpy.log', 'np.log', (['(time[i] + 1)'], {}), '(time[i] + 1)\n', (4001, 4014), True, 'import numpy as np\n')]
from path import Path import cv2 from tqdm import tqdm import numpy as np import matplotlib.pyplot as plt root =Path('/home/roit/aws/aprojects/xdr94_mono2/mc_test_gt') out_p = Path('./plasma_gt') out_p.mkdir_p() files = root.files() def main(): cnt=0 for item in tqdm(files): img = cv2.imread(item) img =255- cv2.cvtColor(img,cv2.COLOR_RGB2GRAY) img = img/np.mean(img) plt.imsave(out_p/item.stem+'.png',img,cmap='plasma') cnt+=1 pass if __name__ == '__main__': main()
[ "tqdm.tqdm", "cv2.cvtColor", "cv2.imread", "path.Path", "numpy.mean", "matplotlib.pyplot.imsave" ]
[((112, 167), 'path.Path', 'Path', (['"""/home/roit/aws/aprojects/xdr94_mono2/mc_test_gt"""'], {}), "('/home/roit/aws/aprojects/xdr94_mono2/mc_test_gt')\n", (116, 167), False, 'from path import Path\n'), ((176, 195), 'path.Path', 'Path', (['"""./plasma_gt"""'], {}), "('./plasma_gt')\n", (180, 195), False, 'from path import Path\n'), ((273, 284), 'tqdm.tqdm', 'tqdm', (['files'], {}), '(files)\n', (277, 284), False, 'from tqdm import tqdm\n'), ((301, 317), 'cv2.imread', 'cv2.imread', (['item'], {}), '(item)\n', (311, 317), False, 'import cv2\n'), ((412, 470), 'matplotlib.pyplot.imsave', 'plt.imsave', (["(out_p / item.stem + '.png')", 'img'], {'cmap': '"""plasma"""'}), "(out_p / item.stem + '.png', img, cmap='plasma')\n", (422, 470), True, 'import matplotlib.pyplot as plt\n'), ((336, 373), 'cv2.cvtColor', 'cv2.cvtColor', (['img', 'cv2.COLOR_RGB2GRAY'], {}), '(img, cv2.COLOR_RGB2GRAY)\n', (348, 373), False, 'import cv2\n'), ((391, 403), 'numpy.mean', 'np.mean', (['img'], {}), '(img)\n', (398, 403), True, 'import numpy as np\n')]
""" General purpose rational polynomial tools """ __classification__ = "UNCLASSIFIED" __author__ = "<NAME>" import logging from typing import List, Sequence import numpy from numpy.polynomial import polynomial from scipy.linalg import lstsq, LinAlgError from sarpy.compliance import SarpyError logger = logging.getLogger(__name__) class SarpyRatPolyError(SarpyError): """A custom exception class for rational polynomial fitting errors.""" ################# # helper functions def _get_num_variables(coeff_list): """ Determine the number of variables by inspection of the coefficient list Parameters ---------- coeff_list : Sequence Returns ------- int """ variables = None for entry in coeff_list: if isinstance(entry, int): if variables is None: variables = 1 elif variables != 1: raise ValueError('Entry order mismatch') else: if variables is None: variables = len(entry) elif variables != len(entry): raise ValueError('Entry order mismatch') if variables is None: raise ValueError('Unable to determine the number of variables') return variables def _map_list_to_poly_matrix(coeffs, coeff_list): """ Maps the coefficients and coefficient listing to corresponding numpy polynomial coefficient matrix. Parameters ---------- coeffs : Sequence coeff_list : Sequence Returns ------- coefficient_array : numpy.ndarray """ variables = _get_num_variables(coeff_list) matrix_shape = [] for i in range(variables): matrix_shape.append(max(entry[i] for entry in coeff_list)+1) coefficient_array = numpy.zeros(tuple(matrix_shape), dtype='float64') for i, entry in enumerate(coeff_list): coefficient_array[entry] = coeffs[i] return coefficient_array def get_default_coefficient_ordering(variables, order): """ Gets a sensible coefficient ordering of a polynomial of given number of variables and order. Parameters ---------- variables : int order : int Returns ------- coefficient_list : List[tuple] List of the form `[(exponent 0, exponent 1, ...)]`, determining the ordering of monomial terms in the associated multivariable polynomial. """ variables = int(variables) order = int(order) if variables < 1: raise ValueError('variables must be at least 1') if order < 1: raise ValueError('order must be at least 1') shape_details = tuple([order + 1 for _ in range(variables)]) coefficient_list = [] for index in numpy.ndindex(shape_details): total_exponent = sum(index) if total_exponent <= order: coefficient_list.append(index) return coefficient_list ################### # base rational polynomial fitting functions def rational_poly_fit_1d(x, data, coeff_list, cond=None): """ Fits a one variable rational polynomial according to the input coefficient listing order. Parameters ---------- x : numpy.ndarray data : numpy.ndarray coeff_list : List cond : None|float Passed through to :func:`scipy.linalg.lstsq`. """ if coeff_list[0] not in [0, (0, )]: raise ValueError( 'The first entry of coeff_list is required to be the constant term `0`') if not (x.size == data.size): raise ValueError('Size mismatch among data entries') x = x.flatten() data = data.flatten() # Enforcing that the denominator has constant term 1, # P(x)/(1 + Q(x)) = d -> # P(x) - d*Q(x) = d # This can be formulated as a strictly linear problem A*t = d A = numpy.empty((x.size, 2*len(coeff_list) - 1), dtype=numpy.float64) for i, entry in enumerate(coeff_list): if not (isinstance(entry, int) or (isinstance(entry, tuple) and len(entry) == 1 and isinstance(entry[0], int))): raise TypeError('coeff_list must be a list of integers or length 1 tuples of ints') if isinstance(entry, tuple): entry = entry[0] u = 1 if entry > 0: u *= numpy.power(x, entry) A[:, i] = u if i > 0: A[:, i+len(coeff_list) - 1] = -u*data # perform least squares fit try: sol, residuals, rank, sing_values = lstsq(A, data, cond=cond) except LinAlgError as e: raise SarpyRatPolyError(str(e)) #if len(residuals) != 0: residuals /= float(x.size) logger.info( 'Performed rational polynomial fit, got\n\t' 'residuals {}\n\t' 'rank {}\n\t' 'singular values {}'.format(residuals, rank, sing_values)) numerator = numpy.zeros((len(coeff_list), ), dtype='float64') denominator = numpy.zeros((len(coeff_list), ), dtype='float64') denominator[0] = 1.0 numerator[:] = sol[:len(coeff_list)] denominator[1:] = sol[len(coeff_list):] return numerator, denominator def rational_poly_fit_2d(x, y, data, coeff_list, cond=None): """ Fits a two variable rational polynomial according to the input coefficient listing order. Parameters ---------- x : numpy.ndarray y : numpy.ndarray data : numpy.ndarray coeff_list : List cond : None|float Passed through to :func:`scipy.linalg.lstsq`. """ if coeff_list[0] != (0, 0): raise ValueError( 'The first entry of coeff_list is required to be the constant term `(0, 0)`') if not (x.size == y.size and x.size == data.size): raise ValueError('Size mismatch among data entries') x = x.flatten() y = y.flatten() data = data.flatten() # Enforcing that the denominator has constant term 1, # P(x, y)/(1 + Q(x, y)) = d -> # P(x, y) - d*Q(x, y) = d # This can be formulated as a strictly linear problem A*t = d A = numpy.empty((x.size, 2 * len(coeff_list) - 1), dtype=numpy.float64) for i, entry in enumerate(coeff_list): if len(entry) != 2: raise TypeError('coeff_list must be a list of tuples of length 2') u = 1 if entry[0] > 0: u *= numpy.power(x, entry[0]) if entry[1] > 0: u *= numpy.power(y, entry[1]) A[:, i] = u if i > 0: A[:, i + len(coeff_list) - 1] = -u*data # perform least squares fit try: sol, residuals, rank, sing_values = lstsq(A, data, cond=cond) except LinAlgError as e: raise SarpyRatPolyError(str(e)) # if len(residuals) != 0: residuals /= float(x.size) logger.info( 'Performed rational polynomial fit, got\n\t' 'residuals {}\n\t' 'rank {}\n\t' 'singular values {}'.format(residuals, rank, sing_values)) numerator = numpy.zeros((len(coeff_list),), dtype='float64') denominator = numpy.zeros((len(coeff_list),), dtype='float64') denominator[0] = 1.0 numerator[:] = sol[:len(coeff_list)] denominator[1:] = sol[len(coeff_list):] return numerator, denominator def rational_poly_fit_3d(x, y, z, data, coeff_list, cond=None): """ Fits a three variable rational polynomial according to the input coefficient listing order. Parameters ---------- x : numpy.ndarray y : numpy.ndarray z : numpy.ndarray data : numpy.ndarray coeff_list : List cond : None|float Passed through to :func:`scipy.linalg.lstsq`. """ if coeff_list[0] != (0, 0, 0): raise ValueError( 'The first entry of coeff_list is required to be the constant term `(0, 0, 0)`') if not (x.size == y.size and x.size == z.size and x.size == data.size): raise ValueError('Size mismatch among data entries') x = x.flatten() y = y.flatten() z = z.flatten() data = data.flatten() # Enforcing that the denominator has constant term 1, # P(x, y, z)/(1 + Q(x, y, z)) = d -> # P(x, y, z) - d*Q(x, y, z) = d # This can be formulated as a strictly linear problem A*t = d A = numpy.empty((x.size, 2*len(coeff_list) - 1), dtype=numpy.float64) for i, entry in enumerate(coeff_list): if len(entry) != 3: raise TypeError('coeff_list must be a list of tuples of length 3') u = 1 if entry[0] > 0: u *= numpy.power(x, entry[0]) if entry[1] > 0: u *= numpy.power(y, entry[1]) if entry[2] > 0: u *= numpy.power(z, entry[2]) A[:, i] = u if i > 0: A[:, i + len(coeff_list) - 1] = -u*data # perform least squares fit try: sol, residuals, rank, sing_values = lstsq(A, data, cond=cond) except LinAlgError as e: raise SarpyRatPolyError(str(e)) #if len(residuals) != 0: residuals /= float(x.size) logger.info( 'Performed rational polynomial fit, got\n\t' 'residuals {}\n\t' 'rank {}\n\t' 'singular values {}'.format(residuals, rank, sing_values)) numerator = numpy.zeros((len(coeff_list),), dtype='float64') denominator = numpy.zeros((len(coeff_list),), dtype='float64') denominator[0] = 1.0 numerator[:] = sol[:len(coeff_list)] denominator[1:] = sol[len(coeff_list):] return numerator, denominator #################### # rational polynomial definition class RationalPolynomial(object): r""" A basic rational polynomial implementation. This assumes the data model `input_data -> output_data` via the relation .. math:: X = (x, y, ...) & = (input\_data - input\_offset)/input\_scale \\ (output\_data - output\_offset)/output\_scale & = Data = numerator(X)/denominator(X) \\ output\_data & = (numerator(X)/denominator(X))*output_scale + output\_offset This object is callable, and acts as the evaluation function after construction. That is, suppose we have .. code:: rational_poly = RationalPolynomial(...) # suppose constructed as 2 variables output_0 = rational_poly([x, y]) # pass in the two variables as a single array output_1 = rational_poly(x, y) # pass in the two variables individually # output_0 and output_1 should be identical output_fail = rational_poly(x, y, z) # this raises an exception for mismatch with the number of variables """ __slots__ = ( '_numerator', '_denominator', '_coeff_list', '_variables', '_input_offsets', '_input_scales', '_output_offset', '_output_scale', '_numerator_array', '_denominator_array') def __init__(self, numerator, denominator, coeff_list, input_offsets, input_scales, output_offset, output_scale): """ Parameters ---------- numerator : Sequence|numpy.ndarray denominator : Sequence|numpy.ndarray coeff_list : Sequence input_offsets : Sequence input_scales : Sequence output_offset : float output_scale : float """ self._coeff_list = coeff_list self._variables = _get_num_variables(coeff_list) if self._variables not in [1, 2, 3]: raise ValueError('Functionality allows only 1, 2, or 3 variables.') if len(numerator) != len(self._coeff_list): raise ValueError('numerator must be the same length as coeff_list') self._numerator = numerator if len(denominator) != len(self._coeff_list): raise ValueError('denominator must be the same length as coeff_list') self._denominator = denominator if len(input_offsets) != self._variables: raise ValueError('The input_offsets must be the same length as the number of variables') self._input_offsets = input_offsets if len(input_scales) != self._variables: raise ValueError('The input_scale must be the same length as the number of variables') self._input_scales = input_scales self._output_offset = float(output_offset) self._output_scale = float(output_scale) self._numerator_array = _map_list_to_poly_matrix(numerator, coeff_list) self._denominator_array = _map_list_to_poly_matrix(denominator, coeff_list) @property def variables(self): """ The number of independent variables. Returns ------- int """ return self._variables @property def coefficient_list(self): """ The coefficient list. Returns ------- Sequence """ return self._coeff_list @property def numerator(self): """ The numerator coefficients. Returns ------- Sequence """ return self._numerator @property def denominator(self): """ The denominator coefficients. Returns ------- Sequence """ return self._denominator def __call__(self, *input_variables): def ensure_the_type(data): if isinstance(data, (numpy.number, int, float, numpy.ndarray)): return data else: return numpy.array(data) if len(input_variables) not in [1, self.variables]: raise ValueError('Got an unexpected number of input arguments') if len(input_variables) == 1: separate = False inp_vars = ensure_the_type(input_variables[0]) else: separate = True inp_vars = [ensure_the_type(entry) for entry in input_variables] # todo: should we evaluate the viability of the input? if self.variables == 1: x = (inp_vars - self._input_offsets[0])/self._input_scales[0] value = polynomial.polyval(x, self._numerator_array) / \ polynomial.polyval(x, self._denominator_array) elif self.variables == 2: if separate: x = (inp_vars[0] - self._input_offsets[0])/self._input_scales[0] y = (inp_vars[1] - self._input_offsets[1])/self._input_scales[1] else: if inp_vars.shape[-1] != 2: raise ValueError( 'Final dimension of input data ({}) must match the number ' 'of variables ({}).'.format(inp_vars.shape, self.variables)) x = (inp_vars[..., 0] - self._input_offsets[0])/self._input_scales[0] y = (inp_vars[..., 1] - self._input_offsets[1])/self._input_scales[1] value = polynomial.polyval2d(x, y, self._numerator_array) / \ polynomial.polyval2d(x, y, self._denominator_array) elif self.variables == 3: if separate: x = (inp_vars[0] - self._input_offsets[0])/self._input_scales[0] y = (inp_vars[1] - self._input_offsets[1])/self._input_scales[1] z = (inp_vars[2] - self._input_offsets[2])/self._input_scales[2] else: if inp_vars.shape[-1] != 3: raise ValueError( 'Final dimension of input data ({}) must match the number ' 'of variables ({}).'.format(inp_vars.shape, self.variables)) x = (inp_vars[..., 0] - self._input_offsets[0])/self._input_scales[0] y = (inp_vars[..., 1] - self._input_offsets[1])/self._input_scales[1] z = (inp_vars[..., 2] - self._input_offsets[2]) / self._input_scales[2] value = polynomial.polyval3d(x, y, z, self._numerator_array) / \ polynomial.polyval3d(x, y, z, self._denominator_array) else: raise ValueError('More than 3 variables is unsupported') return value*self._output_scale + self._output_offset def _get_scale_and_offset(array): # type: (numpy.ndarray) -> (float, float) min_value = numpy.min(array) max_value = numpy.max(array) scale_value = 0.5*(max_value - min_value) offset_value = 0.5*(max_value + min_value) return offset_value, scale_value def get_rational_poly_1d(x, data, coeff_list=None, order=None, cond=None): """ Gets the RationalPolynomial instance that comes from fitting the provided data. Parameters ---------- x : numpy.ndarray data : numpy.ndarray coeff_list : None|Sequence order : None|int cond : None|float Passed through to :func:`scipy.linalg.lstsq`. """ if (coeff_list is None and order is None) or \ (coeff_list is not None and order is not None): raise ValueError('Exact one of coeff_list and order must be provided.') if order is not None: coeff_list = get_default_coefficient_ordering(1, int(order)) if _get_num_variables(coeff_list) != 1: raise ValueError('The number of variables defined by the coefficient list must be 1.') scale_x, offset_x = _get_scale_and_offset(x) scale_data, offset_data = _get_scale_and_offset(data) numerator, denominator = rational_poly_fit_1d( (x-offset_x)/scale_x, (data-offset_data)/scale_data, coeff_list, cond=cond) return RationalPolynomial( numerator, denominator, coeff_list, (offset_x, ), (scale_x, ), offset_data, scale_data) def get_rational_poly_2d(x, y, data, coeff_list=None, order=None, cond=None): """ Gets the RationalPolynomial instance that comes from fitting the provided data. Parameters ---------- x : numpy.ndarray y : numpy.ndarray data : numpy.ndarray coeff_list : None|Sequence order : None|int cond : None|float Passed through to :func:`scipy.linalg.lstsq`. """ if (coeff_list is None and order is None) or \ (coeff_list is not None and order is not None): raise ValueError('Exact one of coeff_list and order must be provided.') if order is not None: coeff_list = get_default_coefficient_ordering(2, int(order)) if _get_num_variables(coeff_list) != 2: raise ValueError('The number of variables defined by the coefficient list must be 2.') scale_x, offset_x = _get_scale_and_offset(x) scale_y, offset_y = _get_scale_and_offset(y) scale_data, offset_data = _get_scale_and_offset(data) numerator, denominator = rational_poly_fit_2d( (x-offset_x)/scale_x, (y-offset_y)/scale_y, (data-offset_data)/scale_data, coeff_list, cond=cond) return RationalPolynomial( numerator, denominator, coeff_list, (offset_x, offset_y), (scale_x, scale_y), offset_data, scale_data) def get_rational_poly_3d(x, y, z, data, coeff_list=None, order=None, cond=None): """ Gets the RationalPolynomial instance that comes from fitting the provided data. Parameters ---------- x : numpy.ndarray y : numpy.ndarray z : numpy.ndarray data : numpy.ndarray coeff_list : None|Sequence order : None|int cond : None|float Passed through to :func:`scipy.linalg.lstsq`. """ if (coeff_list is None and order is None) or \ (coeff_list is not None and order is not None): raise ValueError('Exact one of coeff_list and order must be provided.') if order is not None: coeff_list = get_default_coefficient_ordering(3, int(order)) if _get_num_variables(coeff_list) != 3: raise ValueError('The number of variables defined by the coefficient list must be 3.') scale_x, offset_x = _get_scale_and_offset(x) scale_y, offset_y = _get_scale_and_offset(y) scale_z, offset_z = _get_scale_and_offset(z) scale_data, offset_data = _get_scale_and_offset(data) numerator, denominator = rational_poly_fit_3d( (x-offset_x)/scale_x, (y-offset_y)/scale_y, (z-offset_z)/scale_z, (data-offset_data)/scale_data, coeff_list, cond=cond) return RationalPolynomial( numerator, denominator, coeff_list, (offset_x, offset_y, offset_z), (scale_x, scale_y, scale_z), offset_data, scale_data) #################### # collective rational polynomial function class CombinedRationalPolynomial(object): """ Assemble a collection of RationalPolynomial objects with the same number of variables into a single multi-variable output object. """ __slots__ = ('_collection', ) def __init__(self, *collection): if len(collection) == 1 and isinstance(collection[0], (list, tuple)): collection = collection[0] if len(collection) < 2: raise ValueError('This requires more than a single input') coll = [] variables = None for entry in collection: if not isinstance(entry, RationalPolynomial): raise TypeError( 'Every input must be an instance of RationalPolynomial,\n\t' 'got type `{}`'.format(type(entry))) if variables is None: variables = entry.variables elif variables != entry.variables: raise TypeError( 'Every input must be an instance of RationalPolynomial with\n\t' 'the same number of variables, got type `{}` and `{}`'.format(variables, entry.variables)) coll.append(entry) self._collection = tuple(coll) def __call__(self, *args, combine=True): out = tuple([entry(*args) for entry in self._collection]) if combine: return numpy.stack(out, axis=-1) else: return out
[ "numpy.stack", "numpy.ndindex", "numpy.power", "numpy.polynomial.polynomial.polyval2d", "numpy.polynomial.polynomial.polyval3d", "numpy.max", "numpy.min", "numpy.array", "numpy.polynomial.polynomial.polyval", "scipy.linalg.lstsq", "logging.getLogger" ]
[((308, 335), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (325, 335), False, 'import logging\n'), ((2705, 2733), 'numpy.ndindex', 'numpy.ndindex', (['shape_details'], {}), '(shape_details)\n', (2718, 2733), False, 'import numpy\n'), ((15941, 15957), 'numpy.min', 'numpy.min', (['array'], {}), '(array)\n', (15950, 15957), False, 'import numpy\n'), ((15974, 15990), 'numpy.max', 'numpy.max', (['array'], {}), '(array)\n', (15983, 15990), False, 'import numpy\n'), ((4421, 4446), 'scipy.linalg.lstsq', 'lstsq', (['A', 'data'], {'cond': 'cond'}), '(A, data, cond=cond)\n', (4426, 4446), False, 'from scipy.linalg import lstsq, LinAlgError\n'), ((6495, 6520), 'scipy.linalg.lstsq', 'lstsq', (['A', 'data'], {'cond': 'cond'}), '(A, data, cond=cond)\n', (6500, 6520), False, 'from scipy.linalg import lstsq, LinAlgError\n'), ((8719, 8744), 'scipy.linalg.lstsq', 'lstsq', (['A', 'data'], {'cond': 'cond'}), '(A, data, cond=cond)\n', (8724, 8744), False, 'from scipy.linalg import lstsq, LinAlgError\n'), ((4225, 4246), 'numpy.power', 'numpy.power', (['x', 'entry'], {}), '(x, entry)\n', (4236, 4246), False, 'import numpy\n'), ((6227, 6251), 'numpy.power', 'numpy.power', (['x', 'entry[0]'], {}), '(x, entry[0])\n', (6238, 6251), False, 'import numpy\n'), ((6294, 6318), 'numpy.power', 'numpy.power', (['y', 'entry[1]'], {}), '(y, entry[1])\n', (6305, 6318), False, 'import numpy\n'), ((8384, 8408), 'numpy.power', 'numpy.power', (['x', 'entry[0]'], {}), '(x, entry[0])\n', (8395, 8408), False, 'import numpy\n'), ((8451, 8475), 'numpy.power', 'numpy.power', (['y', 'entry[1]'], {}), '(y, entry[1])\n', (8462, 8475), False, 'import numpy\n'), ((8518, 8542), 'numpy.power', 'numpy.power', (['z', 'entry[2]'], {}), '(z, entry[2])\n', (8529, 8542), False, 'import numpy\n'), ((21516, 21541), 'numpy.stack', 'numpy.stack', (['out'], {'axis': '(-1)'}), '(out, axis=-1)\n', (21527, 21541), False, 'import numpy\n'), ((13213, 13230), 'numpy.array', 'numpy.array', (['data'], {}), '(data)\n', (13224, 13230), False, 'import numpy\n'), ((13803, 13847), 'numpy.polynomial.polynomial.polyval', 'polynomial.polyval', (['x', 'self._numerator_array'], {}), '(x, self._numerator_array)\n', (13821, 13847), False, 'from numpy.polynomial import polynomial\n'), ((13868, 13914), 'numpy.polynomial.polynomial.polyval', 'polynomial.polyval', (['x', 'self._denominator_array'], {}), '(x, self._denominator_array)\n', (13886, 13914), False, 'from numpy.polynomial import polynomial\n'), ((14597, 14646), 'numpy.polynomial.polynomial.polyval2d', 'polynomial.polyval2d', (['x', 'y', 'self._numerator_array'], {}), '(x, y, self._numerator_array)\n', (14617, 14646), False, 'from numpy.polynomial import polynomial\n'), ((14667, 14718), 'numpy.polynomial.polynomial.polyval2d', 'polynomial.polyval2d', (['x', 'y', 'self._denominator_array'], {}), '(x, y, self._denominator_array)\n', (14687, 14718), False, 'from numpy.polynomial import polynomial\n'), ((15570, 15622), 'numpy.polynomial.polynomial.polyval3d', 'polynomial.polyval3d', (['x', 'y', 'z', 'self._numerator_array'], {}), '(x, y, z, self._numerator_array)\n', (15590, 15622), False, 'from numpy.polynomial import polynomial\n'), ((15643, 15697), 'numpy.polynomial.polynomial.polyval3d', 'polynomial.polyval3d', (['x', 'y', 'z', 'self._denominator_array'], {}), '(x, y, z, self._denominator_array)\n', (15663, 15697), False, 'from numpy.polynomial import polynomial\n')]
import math import numpy as np from download_mnist import load import operator import time # classify using kNN # x_train = np.load('../x_train.npy') # y_train = np.load('../y_train.npy') # x_test = np.load('../x_test.npy') # y_test = np.load('../y_test.npy') x_train, y_train, x_test, y_test = load() x_train = x_train.reshape(60000,28,28) x_test = x_test.reshape(10000,28,28) x_train = x_train.astype(float) x_test = x_test.astype(float) # print(y_test[0:10]) def kNNClassify(newInput, dataSet, labels, k): result=[] ######################## # Input your code here # ######################## test_len = len(newInput) train_len= len(dataSet) dist=np.zeros((test_len,train_len)) for i in range(test_len): for j in range(train_len): d= np.linalg.norm(dataSet[j]-newInput[i]) dist[i,j] = d # print(dist) # print(labels) for i in range(test_len): votes = np.zeros(10) x= np.argsort(dist[i])[:k] # print(x) for i in range(len(x)): num_label = labels[x[i]] # print(num_label) votes[num_label]+=1 # print(votes) result.append(np.argmax(votes)) #################### # End of your code # #################### return result start_time = time.time() outputlabels=kNNClassify(x_test[0:20],x_train,y_train,12) print(outputlabels) result = y_test[0:20] - outputlabels result = (1 - np.count_nonzero(result)/len(outputlabels)) print ("---classification accuracy for knn on mnist: %s ---" %result) print ("---execution time: %s seconds ---" % (time.time() - start_time))
[ "numpy.count_nonzero", "numpy.argmax", "download_mnist.load", "numpy.zeros", "time.time", "numpy.argsort", "numpy.linalg.norm" ]
[((311, 317), 'download_mnist.load', 'load', ([], {}), '()\n', (315, 317), False, 'from download_mnist import load\n'), ((1385, 1396), 'time.time', 'time.time', ([], {}), '()\n', (1394, 1396), False, 'import time\n'), ((709, 740), 'numpy.zeros', 'np.zeros', (['(test_len, train_len)'], {}), '((test_len, train_len))\n', (717, 740), True, 'import numpy as np\n'), ((989, 1001), 'numpy.zeros', 'np.zeros', (['(10)'], {}), '(10)\n', (997, 1001), True, 'import numpy as np\n'), ((1530, 1554), 'numpy.count_nonzero', 'np.count_nonzero', (['result'], {}), '(result)\n', (1546, 1554), True, 'import numpy as np\n'), ((823, 863), 'numpy.linalg.norm', 'np.linalg.norm', (['(dataSet[j] - newInput[i])'], {}), '(dataSet[j] - newInput[i])\n', (837, 863), True, 'import numpy as np\n'), ((1014, 1033), 'numpy.argsort', 'np.argsort', (['dist[i]'], {}), '(dist[i])\n', (1024, 1033), True, 'import numpy as np\n'), ((1247, 1263), 'numpy.argmax', 'np.argmax', (['votes'], {}), '(votes)\n', (1256, 1263), True, 'import numpy as np\n'), ((1692, 1703), 'time.time', 'time.time', ([], {}), '()\n', (1701, 1703), False, 'import time\n')]
import argparse import os import random import sys from pathlib import Path import numpy as np import toml import torch import torch.distributed as dist from torch.utils.data import DataLoader, DistributedSampler sys.path.append(os.path.abspath(os.path.join(__file__, "..", "..", ".."))) # without installation, add /path/to/Audio-ZEN import audio_zen.loss as loss from audio_zen.utils import initialize_module def entry(rank, config, resume, only_validation): torch.manual_seed(config["meta"]["seed"]) # For both CPU and GPU np.random.seed(config["meta"]["seed"]) random.seed(config["meta"]["seed"]) torch.cuda.set_device(rank) # Initialize the process group # The environment variables necessary to initialize a Torch process group are provided to you by this module, # and no need for you to pass ``RANK`` manually. torch.distributed.init_process_group(backend="nccl") print(f"{rank + 1} process initialized.") # The DistributedSampler will split the dataset into the several cross-process parts. # On the contrary, setting "Sampler=None, shuffle=True", each GPU will get all data in the whole dataset. train_dataset = initialize_module(config["train_dataset"]["path"], args=config["train_dataset"]["args"]) sampler = DistributedSampler(dataset=train_dataset, rank=rank, shuffle=True) train_dataloader = DataLoader( dataset=train_dataset, sampler=sampler, shuffle=False, **config["train_dataset"]["dataloader"], ) valid_dataloader = DataLoader( dataset=initialize_module(config["validation_dataset"]["path"], args=config["validation_dataset"]["args"]), num_workers=0, batch_size=1 ) model = initialize_module(config["model"]["path"], args=config["model"]["args"]) optimizer = torch.optim.Adam( params=model.parameters(), lr=config["optimizer"]["lr"], betas=(config["optimizer"]["beta1"], config["optimizer"]["beta2"]) ) loss_function = getattr(loss, config["loss_function"]["name"])(**config["loss_function"]["args"]) trainer_class = initialize_module(config["trainer"]["path"], initialize=False) trainer = trainer_class( dist=dist, rank=rank, config=config, resume=resume, only_validation=only_validation, model=model, loss_function=loss_function, optimizer=optimizer, train_dataloader=train_dataloader, validation_dataloader=valid_dataloader ) trainer.train() if __name__ == '__main__': parser = argparse.ArgumentParser(description="FullSubNet") parser.add_argument("-C", "--configuration", required=True, default="recipes/etri_drone1/fullsubnet/train.toml", type=str, help="Configuration (*.toml).") parser.add_argument("-R", "--resume", action="store_true", help="Resume the experiment from latest checkpoint.") parser.add_argument("-V", "--only_validation", action="store_true", help="Only run validation, which is used for debugging.") parser.add_argument("-P", "--preloaded_model_path", type=str, help="Path of the *.pth file of a model.") args = parser.parse_args() local_rank = int(os.environ["LOCAL_RANK"]) #local_rank = 0 if args.preloaded_model_path: assert not args.resume, "The 'resume' conflicts with the 'preloaded_model_path'." config_path = Path(args.configuration).expanduser().absolute() configuration = toml.load(config_path.as_posix()) # append the parent dir of the config path to python's context # /path/to/recipes/dns_interspeech_2020/exp/' sys.path.append(config_path.parent.as_posix()) configuration["meta"]["experiment_name"], _ = os.path.splitext(os.path.basename(args.configuration)) configuration["meta"]["config_path"] = args.configuration configuration["meta"]["preloaded_model_path"] = args.preloaded_model_path entry(local_rank, configuration, args.resume, args.only_validation)
[ "numpy.random.seed", "torch.distributed.init_process_group", "torch.utils.data.DataLoader", "argparse.ArgumentParser", "os.path.basename", "torch.manual_seed", "torch.utils.data.DistributedSampler", "pathlib.Path", "random.seed", "audio_zen.utils.initialize_module", "torch.cuda.set_device", "os.path.join" ]
[((470, 511), 'torch.manual_seed', 'torch.manual_seed', (["config['meta']['seed']"], {}), "(config['meta']['seed'])\n", (487, 511), False, 'import torch\n'), ((540, 578), 'numpy.random.seed', 'np.random.seed', (["config['meta']['seed']"], {}), "(config['meta']['seed'])\n", (554, 578), True, 'import numpy as np\n'), ((583, 618), 'random.seed', 'random.seed', (["config['meta']['seed']"], {}), "(config['meta']['seed'])\n", (594, 618), False, 'import random\n'), ((623, 650), 'torch.cuda.set_device', 'torch.cuda.set_device', (['rank'], {}), '(rank)\n', (644, 650), False, 'import torch\n'), ((858, 910), 'torch.distributed.init_process_group', 'torch.distributed.init_process_group', ([], {'backend': '"""nccl"""'}), "(backend='nccl')\n", (894, 910), False, 'import torch\n'), ((1178, 1271), 'audio_zen.utils.initialize_module', 'initialize_module', (["config['train_dataset']['path']"], {'args': "config['train_dataset']['args']"}), "(config['train_dataset']['path'], args=config[\n 'train_dataset']['args'])\n", (1195, 1271), False, 'from audio_zen.utils import initialize_module\n'), ((1281, 1347), 'torch.utils.data.DistributedSampler', 'DistributedSampler', ([], {'dataset': 'train_dataset', 'rank': 'rank', 'shuffle': '(True)'}), '(dataset=train_dataset, rank=rank, shuffle=True)\n', (1299, 1347), False, 'from torch.utils.data import DataLoader, DistributedSampler\n'), ((1372, 1483), 'torch.utils.data.DataLoader', 'DataLoader', ([], {'dataset': 'train_dataset', 'sampler': 'sampler', 'shuffle': '(False)'}), "(dataset=train_dataset, sampler=sampler, shuffle=False, **config[\n 'train_dataset']['dataloader'])\n", (1382, 1483), False, 'from torch.utils.data import DataLoader, DistributedSampler\n'), ((1733, 1805), 'audio_zen.utils.initialize_module', 'initialize_module', (["config['model']['path']"], {'args': "config['model']['args']"}), "(config['model']['path'], args=config['model']['args'])\n", (1750, 1805), False, 'from audio_zen.utils import initialize_module\n'), ((2119, 2181), 'audio_zen.utils.initialize_module', 'initialize_module', (["config['trainer']['path']"], {'initialize': '(False)'}), "(config['trainer']['path'], initialize=False)\n", (2136, 2181), False, 'from audio_zen.utils import initialize_module\n'), ((2583, 2632), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""FullSubNet"""'}), "(description='FullSubNet')\n", (2606, 2632), False, 'import argparse\n'), ((247, 287), 'os.path.join', 'os.path.join', (['__file__', '""".."""', '""".."""', '""".."""'], {}), "(__file__, '..', '..', '..')\n", (259, 287), False, 'import os\n'), ((3731, 3767), 'os.path.basename', 'os.path.basename', (['args.configuration'], {}), '(args.configuration)\n', (3747, 3767), False, 'import os\n'), ((1570, 1673), 'audio_zen.utils.initialize_module', 'initialize_module', (["config['validation_dataset']['path']"], {'args': "config['validation_dataset']['args']"}), "(config['validation_dataset']['path'], args=config[\n 'validation_dataset']['args'])\n", (1587, 1673), False, 'from audio_zen.utils import initialize_module\n'), ((3391, 3415), 'pathlib.Path', 'Path', (['args.configuration'], {}), '(args.configuration)\n', (3395, 3415), False, 'from pathlib import Path\n')]
# ----------------------------------------------------------------------------- # @author: # <NAME> # @brief: # generate the videos into the same directory # ----------------------------------------------------------------------------- import env_wrapper import numpy as np import argparse import glob import cv2 import os # import matplotlib.pyplot as plt if __name__ == '__main__': ''' @brief: Either plot the directory, or simply one npy file ''' parser = argparse.ArgumentParser(description="Plot results from a dir") parser.add_argument( "-i", "--file_name", type=str, required=True, help="The directory of the summary file" ) parser.add_argument( "-s", "--size", type=int, required=False, default=480 ) args = parser.parse_args() # file list if args.file_name.endswith('.npy'): candidate_list = [args.file_name] else: candidate_list = glob.glob(os.path.join(args.file_name, '*.npy')) # make the environment env_name = os.path.abspath(candidate_list[0]).split('/')[-2].split('_20')[0] args.task = env_name.replace('IM', '') # use the original environment env, is_deepmind_env = env_wrapper.make_env( args=args, rand_seed=1, allow_monitor=0 ) for candidate in candidate_list: # process each environment data = np.load(candidate) if os.path.exists(candidate.replace('.npy', '.mp4')): continue video = cv2.VideoWriter( candidate.replace('.npy', '.mp4'), cv2.VideoWriter_fourcc(*'mp4v'), 40, (args.size * 2, args.size) ) env.reset() for i_frame in range(len(data)): with env.env.physics.reset_context(): if 'fish' in args.task: # set the target position env.env.physics.named.model.geom_pos['target', 'x'] = \ data[i_frame][-2] env.env.physics.named.model.geom_pos['target', 'y'] = \ data[i_frame][-1] env.env.physics.data.qpos[:] = data[i_frame][:-2] else: env.env.physics.data.qpos[:] = data[i_frame] image = np.hstack( [env.env.physics.render(args.size, args.size, camera_id=0), env.env.physics.render(args.size, args.size, camera_id=1)] ) # rgb to bgr image = image[:, :, [2, 1, 0]] video.write(image) video.release()
[ "numpy.load", "os.path.abspath", "argparse.ArgumentParser", "cv2.VideoWriter_fourcc", "env_wrapper.make_env", "os.path.join" ]
[((509, 571), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Plot results from a dir"""'}), "(description='Plot results from a dir')\n", (532, 571), False, 'import argparse\n'), ((1282, 1343), 'env_wrapper.make_env', 'env_wrapper.make_env', ([], {'args': 'args', 'rand_seed': '(1)', 'allow_monitor': '(0)'}), '(args=args, rand_seed=1, allow_monitor=0)\n', (1302, 1343), False, 'import env_wrapper\n'), ((1446, 1464), 'numpy.load', 'np.load', (['candidate'], {}), '(candidate)\n', (1453, 1464), True, 'import numpy as np\n'), ((1032, 1069), 'os.path.join', 'os.path.join', (['args.file_name', '"""*.npy"""'], {}), "(args.file_name, '*.npy')\n", (1044, 1069), False, 'import os\n'), ((1641, 1672), 'cv2.VideoWriter_fourcc', 'cv2.VideoWriter_fourcc', (["*'mp4v'"], {}), "(*'mp4v')\n", (1663, 1672), False, 'import cv2\n'), ((1114, 1148), 'os.path.abspath', 'os.path.abspath', (['candidate_list[0]'], {}), '(candidate_list[0])\n', (1129, 1148), False, 'import os\n')]
import copy import itertools import re from typing import Any, Callable, Dict, Generator, Iterator, List, Optional, Union import numpy as np import torch from omegaconf import DictConfig from torch.nn.utils.rnn import pad_sequence from torch.utils.data import IterableDataset from classy.data.data_drivers import ClassySample, DataDriver from classy.utils.commons import add_noise_to_value, chunks, flatten from classy.utils.log import get_project_logger from classy.utils.vocabulary import Vocabulary logger = get_project_logger(__name__) def batchify(tensors: List[torch.Tensor], padding_value: int) -> torch.Tensor: return pad_sequence(tensors, batch_first=True, padding_value=padding_value) def batchify_matrices(tensors: List[torch.Tensor], padding_value: int) -> torch.Tensor: x = max([t.shape[0] for t in tensors]) y = max([t.shape[1] for t in tensors]) out_matrix = torch.zeros((len(tensors), x, y)) out_matrix += padding_value for i, tensor in enumerate(tensors): out_matrix[i][0 : tensor.shape[0], 0 : tensor.shape[1]] = tensor return out_matrix class BaseDataset(IterableDataset): @staticmethod def requires_vocab() -> bool: return True @staticmethod def fit_vocabulary(samples: Iterator[ClassySample]) -> Vocabulary: raise NotImplementedError @classmethod def adapt_dataset_from(cls, training_dataset: DictConfig, setting: str): if setting == "validation": validation_dataset = copy.deepcopy(training_dataset) validation_dataset["materialize"] = True validation_dataset["for_inference"] = True return validation_dataset elif setting == "prediction": prediction_dataset = copy.deepcopy(training_dataset) prediction_dataset["_target_"] = re.sub( ".from_file$", ".from_samples", prediction_dataset["_target_"] ) prediction_dataset["min_length"] = -1 prediction_dataset["max_length"] = -1 prediction_dataset["for_inference"] = True return prediction_dataset else: raise ValueError( f"Setting {setting} not supported. Choose between [validation, prediction] or change config." ) @classmethod def from_file( cls, path: Union[str, Dict[str, DataDriver]], data_driver: Optional[DataDriver] = None, vocabulary: Vocabulary = None, **kwargs, ) -> "BaseDataset": dataset_bundle: Dict[str, Any] = ( {path: data_driver} if type(path) == str else path ) if vocabulary is None and cls.requires_vocab(): # vocabulary fitting here logger.info("Fitting vocabulary") vocabulary = cls.fit_vocabulary( itertools.chain( *[dd.read_from_path(p) for p, dd in dataset_bundle.items()] ) ) logger.info("Vocabulary fitting completed") return cls( samples_iterator=lambda: itertools.chain( *[dd.read_from_path(p) for p, dd in dataset_bundle.items()] ), vocabulary=vocabulary, **kwargs, ) @classmethod def from_samples( cls, samples: Iterator[ClassySample], vocabulary: Vocabulary, **kwargs, ): return cls(samples_iterator=lambda: samples, vocabulary=vocabulary, **kwargs) def __init__( self, samples_iterator: Callable[[], Iterator[ClassySample]], vocabulary: Vocabulary, fields_batchers: Optional[Dict[str, Union[None, Callable[[list], Any]]]], for_inference: bool, batch_size: Optional[int] = None, tokens_per_batch: Optional[int] = None, max_batch_size: Optional[int] = None, batching_fields: Optional[List[str]] = None, section_size: Optional[int] = None, prebatch: bool = False, materialize: bool = False, drop_last: bool = False, min_length: int = -1, max_length: int = -1, ): super().__init__() self.samples_iterator = samples_iterator self.vocabulary = vocabulary self.fields_batcher = fields_batchers self.prebatch, self.section_size = prebatch, section_size self.materialize = materialize self.drop_last = drop_last self.min_length, self.max_length = min_length, max_length self.for_inference = for_inference self.batch_size = batch_size self.tokens_per_batch, self.max_batch_size, self.batching_fields = ( tokens_per_batch, max_batch_size, batching_fields, ) assert bool(self.batch_size is not None) or bool( self.tokens_per_batch is not None ), f"Either batch_size or tokens_per_batch must be provided, but found {batch_size} and {tokens_per_batch}" if self.batch_size is not None: if max_batch_size is not None: logger.warning( f"max_batch_size has no meaning when not using token batching" ) else: assert len(batching_fields) > 0, "At least 1 batching field is required" if self.tokens_per_batch < self.max_length: logger.warning( f"Token batch size {self.tokens_per_batch} < max length {self.max_length}. This might result in batches with only 1 sample that contain more token than the specified token batch size" ) # used to store the materialized dataset self._dataset_store = None if materialize: logger.warning("Materializing dataset.") self.materialize_dataset() def dataset_iterator_func(self): raise NotImplementedError def prebatch_elements(self, dataset_elements: List): sorting_fn = ( lambda elem: add_noise_to_value( sum(len(elem[k]) for k in self.batching_fields), noise_param=0.1 ) if not self.for_inference else sum(len(elem[k]) for k in self.batching_fields) ) dataset_elements = sorted(dataset_elements, key=sorting_fn) ds = list(chunks(dataset_elements, 512)) np.random.shuffle(ds) return flatten(ds) def materialize_dataset(self) -> None: if self._dataset_store is not None: logger.info("The dataset is already materialized skipping materialization") return logger.info("Starting dataset materialization") self._dataset_store = list(self.dataset_iterator_func()) logger.info("Materialization completed") def materialize_batches( self, dataset_elements: List[Dict[str, Any]] ) -> Generator[Dict[str, Any], None, None]: if self.prebatch: dataset_elements = self.prebatch_elements(dataset_elements) current_batch = [] # function that creates a batch from the 'current_batch' list def output_batch() -> Dict[str, Any]: batch_dict = dict() de_values_by_field = { fn: [de[fn] for de in current_batch if fn in de] for fn in self.fields_batcher } # in case you provide fields batchers but in the batch there are no elements for that field de_values_by_field = { fn: fvs for fn, fvs in de_values_by_field.items() if len(fvs) > 0 } assert len(set([len(v) for v in de_values_by_field.values()])) # todo: maybe we should report the user about possible fields filtering due to "None" instances de_values_by_field = { fn: fvs for fn, fvs in de_values_by_field.items() if all([fv is not None for fv in fvs]) } for field_name, field_values in de_values_by_field.items(): field_batch = ( self.fields_batcher[field_name](field_values) if self.fields_batcher[field_name] is not None else field_values ) batch_dict[field_name] = field_batch return batch_dict max_len_discards, min_len_discards = 0, 0 should_token_batch = self.batch_size is None for de in dataset_elements: if ( should_token_batch and self.max_batch_size != -1 and len(current_batch) == self.max_batch_size ) or (not should_token_batch and len(current_batch) == self.batch_size): yield output_batch() current_batch = [] # todo support max length (and min length) as dicts too_long_fields = [ k for k in de if self.max_length != -1 and torch.is_tensor(de[k]) and len(de[k]) > self.max_length ] if len(too_long_fields) > 0: max_len_discards += 1 continue too_short_fields = [ k for k in de if self.min_length != -1 and torch.is_tensor(de[k]) and len(de[k]) < self.min_length ] if len(too_short_fields) > 0: min_len_discards += 1 continue if should_token_batch: de_len = sum(len(de[k]) for k in self.batching_fields) future_max_len = max( de_len, max( [ sum(len(bde[k]) for k in self.batching_fields) for bde in current_batch ], default=0, ), ) future_tokens_per_batch = future_max_len * (len(current_batch) + 1) if ( len(current_batch) > 0 and future_tokens_per_batch >= self.tokens_per_batch ): yield output_batch() current_batch = [] current_batch.append(de) if len(current_batch) != 0 and not self.drop_last: yield output_batch() if max_len_discards > 0: if self.for_inference: logger.warning( f"WARNING: Inference mode is True but {max_len_discards} samples longer than max length were " f"found. The {max_len_discards} samples will be DISCARDED. If you are doing some kind of evaluation" f", this can INVALIDATE results. This might happen if the max length was not set to -1 or if the " f"sample length exceeds the maximum length supported by the current model." ) else: logger.warning( f"During iteration, {max_len_discards} elements were " f"discarded since longer than max length {self.max_length}" ) if min_len_discards > 0: if self.for_inference: logger.warning( f"WARNING: Inference mode is True but {min_len_discards} samples shorter than min length were " f"found. The {min_len_discards} samples will be DISCARDED. If you are doing some kind of evaluation" f", this can INVALIDATE results. This might happen if the min length was not set to -1 or if the " f"sample length is shorter than the minimum length supported by the current model." ) else: logger.warning( f"During iteration, {min_len_discards} elements were " f"discarded since shorter than min length {self.min_length}" ) def __iter__(self): dataset_iterator = ( self.dataset_iterator_func() if self._dataset_store is None else self._dataset_store ) current_dataset_elements = [] i = None for i, dataset_elem in enumerate(dataset_iterator, start=1): if ( self.section_size is not None and len(current_dataset_elements) == self.section_size ): for batch in self.materialize_batches(current_dataset_elements): yield batch current_dataset_elements = [] current_dataset_elements.append(dataset_elem) if i % 50_000 == 0: logger.info(f"Processed: {i} number of elements") if len(current_dataset_elements) != 0: for batch in self.materialize_batches(current_dataset_elements): yield batch if i is not None: logger.info(f"Dataset finished: {i} number of elements processed") else: logger.warning("Dataset empty")
[ "copy.deepcopy", "classy.utils.commons.flatten", "classy.utils.commons.chunks", "re.sub", "torch.nn.utils.rnn.pad_sequence", "torch.is_tensor", "classy.utils.log.get_project_logger", "numpy.random.shuffle" ]
[((514, 542), 'classy.utils.log.get_project_logger', 'get_project_logger', (['__name__'], {}), '(__name__)\n', (532, 542), False, 'from classy.utils.log import get_project_logger\n'), ((635, 703), 'torch.nn.utils.rnn.pad_sequence', 'pad_sequence', (['tensors'], {'batch_first': '(True)', 'padding_value': 'padding_value'}), '(tensors, batch_first=True, padding_value=padding_value)\n', (647, 703), False, 'from torch.nn.utils.rnn import pad_sequence\n'), ((6329, 6350), 'numpy.random.shuffle', 'np.random.shuffle', (['ds'], {}), '(ds)\n', (6346, 6350), True, 'import numpy as np\n'), ((6366, 6377), 'classy.utils.commons.flatten', 'flatten', (['ds'], {}), '(ds)\n', (6373, 6377), False, 'from classy.utils.commons import add_noise_to_value, chunks, flatten\n'), ((1497, 1528), 'copy.deepcopy', 'copy.deepcopy', (['training_dataset'], {}), '(training_dataset)\n', (1510, 1528), False, 'import copy\n'), ((6290, 6319), 'classy.utils.commons.chunks', 'chunks', (['dataset_elements', '(512)'], {}), '(dataset_elements, 512)\n', (6296, 6319), False, 'from classy.utils.commons import add_noise_to_value, chunks, flatten\n'), ((1746, 1777), 'copy.deepcopy', 'copy.deepcopy', (['training_dataset'], {}), '(training_dataset)\n', (1759, 1777), False, 'import copy\n'), ((1823, 1893), 're.sub', 're.sub', (['""".from_file$"""', '""".from_samples"""', "prediction_dataset['_target_']"], {}), "('.from_file$', '.from_samples', prediction_dataset['_target_'])\n", (1829, 1893), False, 'import re\n'), ((8963, 8985), 'torch.is_tensor', 'torch.is_tensor', (['de[k]'], {}), '(de[k])\n', (8978, 8985), False, 'import torch\n'), ((9294, 9316), 'torch.is_tensor', 'torch.is_tensor', (['de[k]'], {}), '(de[k])\n', (9309, 9316), False, 'import torch\n')]
#!/usr/bin/env python # coding: utf-8 # In[1]: import numpy as np # In[2]: from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.model_selection import KFold from sklearn.metrics import accuracy_score # In[3]: def process_kfold(model, X_titanic_df, y_titanic_df, folds=5): kfold = KFold(n_splits=folds) scores = [] for iter_count , (train_index, test_index) in enumerate(kfold.split(X_titanic_df)): X_train, X_test = X_titanic_df.values[train_index], X_titanic_df.values[test_index] y_train, y_test = y_titanic_df.values[train_index], y_titanic_df.values[test_index] model.fit(X_train, y_train) predictions = model.predict(X_test) accuracy = accuracy_score(y_test, predictions) scores.append(accuracy) print("KFold {0} Accuracy: {1:.4f}".format(iter_count, accuracy)) mean_score = np.mean(scores) print("Average Accuracy: {0:.4f}".format(mean_score)) # In[4]: def processing(X_train, X_test, y_train, X_titanic_df, y_titanic_df, algorithm='dtc'): predict_ret = np.empty([1, 1]) if algorithm == 'dtc': dtc = DecisionTreeClassifier() dtc.fit(X_train, y_train) predict_ret = dtc.predict(X_test) # process_kfold(dtc, X_titanic_df, y_titanic_df) elif algorithm == 'rfc': rfc = RandomForestClassifier() rfc.fit(X_train, y_train) predict_ret = rfc.predict(X_test) # process_kfold(rfc, X_titanic_df, y_titanic_df) elif algorithm == 'lr': lr = RandomForestClassifier() lr.fit(X_train, y_train) predict_ret = lr.predict(X_test) # process_kfold(lr, X_titanic_df, y_titanic_df) return predict_ret # In[ ]:
[ "sklearn.ensemble.RandomForestClassifier", "numpy.empty", "sklearn.metrics.accuracy_score", "sklearn.model_selection.KFold", "sklearn.tree.DecisionTreeClassifier", "numpy.mean" ]
[((408, 429), 'sklearn.model_selection.KFold', 'KFold', ([], {'n_splits': 'folds'}), '(n_splits=folds)\n', (413, 429), False, 'from sklearn.model_selection import KFold\n'), ((986, 1001), 'numpy.mean', 'np.mean', (['scores'], {}), '(scores)\n', (993, 1001), True, 'import numpy as np\n'), ((1184, 1200), 'numpy.empty', 'np.empty', (['[1, 1]'], {}), '([1, 1])\n', (1192, 1200), True, 'import numpy as np\n'), ((821, 856), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['y_test', 'predictions'], {}), '(y_test, predictions)\n', (835, 856), False, 'from sklearn.metrics import accuracy_score\n'), ((1247, 1271), 'sklearn.tree.DecisionTreeClassifier', 'DecisionTreeClassifier', ([], {}), '()\n', (1269, 1271), False, 'from sklearn.tree import DecisionTreeClassifier\n'), ((1448, 1472), 'sklearn.ensemble.RandomForestClassifier', 'RandomForestClassifier', ([], {}), '()\n', (1470, 1472), False, 'from sklearn.ensemble import RandomForestClassifier\n'), ((1647, 1671), 'sklearn.ensemble.RandomForestClassifier', 'RandomForestClassifier', ([], {}), '()\n', (1669, 1671), False, 'from sklearn.ensemble import RandomForestClassifier\n')]
from PIL import Image import pandas as pd import numpy as np import time import os import random import inspect currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) import warnings warnings.simplefilter(action='ignore', category=FutureWarning) from config import CONFIG def parse_config(): assets_path = os.path.join(currentdir, 'assets') for layer in CONFIG: layer_path = os.path.join(assets_path, layer['directory']) traits = sorted([trait for trait in os.listdir(layer_path) if trait[0] != '.']) # 如果不需要图层,请在特性数组的开头添加一个“None” if not layer['required']: traits = [None] + traits if layer['rarity_weights'] is None: rarities = [1 for x in traits] elif layer['rarity_weights'] == 'random': rarities = [random.random() for x in traits] elif type(layer['rarity_weights'] == 'list'): assert len(traits) == len(layer['rarity_weights']), "确保您拥有当前数量的稀有权重" rarities = layer['rarity_weights'] else: raise ValueError("稀有权重无效") rarities = get_weighted_rarities(rarities) layer['rarity_weights'] = rarities layer['cum_rarity_weights'] = np.cumsum(rarities) print( layer['cum_rarity_weights']) layer['traits'] = traits def get_weighted_rarities(arr): return np.array(arr)/ sum(arr) def generate_single_image(filepaths, output_filename=None): bg = Image.open(os.path.join(currentdir, 'assets', filepaths[0])) for filepath in filepaths[1:]: img = Image.open(os.path.join(currentdir, 'assets', filepath)) bg.paste(img, (0,0), img) if output_filename is not None: bg.save(output_filename) else: if not os.path.exists(os.path.join('output', 'single_images')): os.makedirs(os.path.join('output', 'single_images')) bg.save(os.path.join('output', 'single_images', str(int(time.time())) + '.png')) def get_total_combinations(): total = 1 for layer in CONFIG: total = total * len(layer['traits']) return total def select_index(cum_rarities, rand): cum_rarities = [0] + list(cum_rarities) for i in range(len(cum_rarities) - 1): if rand >= cum_rarities[i] and rand <= cum_rarities[i+1]: return i return None def generate_trait_set_from_config(): trait_set = [] trait_paths = [] for layer in CONFIG: traits, cum_rarities = layer['traits'], layer['cum_rarity_weights'] print(layer['id'],traits, layer['rarity_weights']) rand_num = random.random() idx = select_index(cum_rarities, rand_num) trait_set.append(traits[idx]) if traits[idx] is not None: trait_path = os.path.join(layer['directory'], traits[idx]) trait_paths.append(trait_path) return trait_set, trait_paths def generate_images(edition, count, drop_dup=True): rarity_table = {} for layer in CONFIG: rarity_table[layer['name']] = [] op_path = os.path.join('output', 'edition ' + str(edition), 'images') zfill_count = len(str(count - 1)) if not os.path.exists(op_path): os.makedirs(op_path) for n in range(count): image_name = str(n).zfill(zfill_count) + '.png' trait_sets, trait_paths = generate_trait_set_from_config() generate_single_image(trait_paths, os.path.join(op_path, image_name)) for idx, trait in enumerate(trait_sets): if trait is not None: rarity_table[CONFIG[idx]['name']].append(trait[: -1 * len('.png')]) else: rarity_table[CONFIG[idx]['name']].append('none') rarity_table = pd.DataFrame(rarity_table).drop_duplicates() print("生成第 %i 张图片, %i张不同" % (count, rarity_table.shape[0])) if drop_dup: img_tb_removed = sorted(list(set(range(count)) - set(rarity_table.index))) print("移除 %i 张图片..." % (len(img_tb_removed))) for i in img_tb_removed: os.remove(os.path.join(op_path, str(i).zfill(zfill_count) + '.png')) for idx, img in enumerate(sorted(os.listdir(op_path))): os.rename(os.path.join(op_path, img), os.path.join(op_path, str(idx).zfill(zfill_count) + '.png')) rarity_table = rarity_table.reset_index() rarity_table = rarity_table.drop('index', axis=1) return rarity_table def main(): print("检查素材...") parse_config() tot_comb = get_total_combinations() print("您可以创建总共%i个不同的NFT" % (tot_comb)) print("您希望创建多少个NFT?输入一个大于0的数字:") while True: num_avatars = int(input()) if num_avatars > 0: break print("您想把这些NFT命名为:") edition_name = input() print("开始生成...") rt = generate_images(edition_name, num_avatars) print("保存元数据...") rt.to_csv(os.path.join('output', 'edition ' + str(edition_name), 'metadata.csv')) print("生成成功!") # Run the main function main()
[ "pandas.DataFrame", "warnings.simplefilter", "os.makedirs", "os.path.exists", "time.time", "numpy.cumsum", "random.random", "numpy.array", "inspect.currentframe", "os.path.join", "os.listdir" ]
[((216, 278), 'warnings.simplefilter', 'warnings.simplefilter', ([], {'action': '"""ignore"""', 'category': 'FutureWarning'}), "(action='ignore', category=FutureWarning)\n", (237, 278), False, 'import warnings\n'), ((346, 380), 'os.path.join', 'os.path.join', (['currentdir', '"""assets"""'], {}), "(currentdir, 'assets')\n", (358, 380), False, 'import os\n'), ((427, 472), 'os.path.join', 'os.path.join', (['assets_path', "layer['directory']"], {}), "(assets_path, layer['directory'])\n", (439, 472), False, 'import os\n'), ((1232, 1251), 'numpy.cumsum', 'np.cumsum', (['rarities'], {}), '(rarities)\n', (1241, 1251), True, 'import numpy as np\n'), ((1373, 1386), 'numpy.array', 'np.array', (['arr'], {}), '(arr)\n', (1381, 1386), True, 'import numpy as np\n'), ((1479, 1527), 'os.path.join', 'os.path.join', (['currentdir', '"""assets"""', 'filepaths[0]'], {}), "(currentdir, 'assets', filepaths[0])\n", (1491, 1527), False, 'import os\n'), ((2611, 2626), 'random.random', 'random.random', ([], {}), '()\n', (2624, 2626), False, 'import random\n'), ((3182, 3205), 'os.path.exists', 'os.path.exists', (['op_path'], {}), '(op_path)\n', (3196, 3205), False, 'import os\n'), ((3215, 3235), 'os.makedirs', 'os.makedirs', (['op_path'], {}), '(op_path)\n', (3226, 3235), False, 'import os\n'), ((173, 195), 'inspect.currentframe', 'inspect.currentframe', ([], {}), '()\n', (193, 195), False, 'import inspect\n'), ((1589, 1633), 'os.path.join', 'os.path.join', (['currentdir', '"""assets"""', 'filepath'], {}), "(currentdir, 'assets', filepath)\n", (1601, 1633), False, 'import os\n'), ((2780, 2825), 'os.path.join', 'os.path.join', (["layer['directory']", 'traits[idx]'], {}), "(layer['directory'], traits[idx])\n", (2792, 2825), False, 'import os\n'), ((3430, 3463), 'os.path.join', 'os.path.join', (['op_path', 'image_name'], {}), '(op_path, image_name)\n', (3442, 3463), False, 'import os\n'), ((3734, 3760), 'pandas.DataFrame', 'pd.DataFrame', (['rarity_table'], {}), '(rarity_table)\n', (3746, 3760), True, 'import pandas as pd\n'), ((1778, 1817), 'os.path.join', 'os.path.join', (['"""output"""', '"""single_images"""'], {}), "('output', 'single_images')\n", (1790, 1817), False, 'import os\n'), ((1844, 1883), 'os.path.join', 'os.path.join', (['"""output"""', '"""single_images"""'], {}), "('output', 'single_images')\n", (1856, 1883), False, 'import os\n'), ((4157, 4176), 'os.listdir', 'os.listdir', (['op_path'], {}), '(op_path)\n', (4167, 4176), False, 'import os\n'), ((4202, 4228), 'os.path.join', 'os.path.join', (['op_path', 'img'], {}), '(op_path, img)\n', (4214, 4228), False, 'import os\n'), ((517, 539), 'os.listdir', 'os.listdir', (['layer_path'], {}), '(layer_path)\n', (527, 539), False, 'import os\n'), ((832, 847), 'random.random', 'random.random', ([], {}), '()\n', (845, 847), False, 'import random\n'), ((1949, 1960), 'time.time', 'time.time', ([], {}), '()\n', (1958, 1960), False, 'import time\n')]
import common as com import matplotlib.pyplot as plt import os import numpy as np def get_xy(file): import csv import numpy as np x = [] y = [] with open(file, 'r') as fh: open_file = csv.reader(fh, delimiter='\t') for line in open_file: x_ = line[0] y_ = line[1] x_ = float(x_) y_ = float(y_) x.append(x_) y.append(y_) return x, y def get_errors(file): import csv import numpy as np err = [] with open(file, 'r') as fh: open_file = csv.reader(fh, delimiter='\t') for line in open_file: err_ = line[2] err_ = float(err_) err.append(err_) return err def make_plot(plt, x, y, format_, config, hysteresis=False): if hysteresis: try: hyst_legend = config['legend'] except: hyst_legend = True com.plot_hysteresis(plt, x, y, format=format_, legend=hyst_legend) else: plt.plot(x, y, format_) if __name__ == '__main__': com.print_running_message(__file__) import argparse parser = argparse.ArgumentParser() parser.add_argument('-i', '--input', action='store', dest='input', help='input path') parser.add_argument('-c', '--config', action='store', dest='config', help='config path') parser.add_argument('-o', '--output', action='store', dest='output', help='output path') args = parser.parse_args() # input input_path = args.input if input_path is None: input_path = com.get_path('Input') if not os.path.isfile(input_path): print('{} is not a valid input file.'.format(input_path)) input_path = com.get_path('Input') input_file = input_path input_dir = os.path.split(input_file)[0] # output output_path = args.output if output_path is None: output_path = input_dir # config config_path = args.config if config_path is None: config_path = com.get_path('Config') if not os.path.isfile(config_path): print('{} is not a valid config file.'.format(config_path)) config_path = com.get_path('Config') config = com.read_yaml(config_path) # read data x, y = get_xy(input_file) try: normalize = config['norm'] if normalize: print('Normalizing data.') y = np.asarray(y) y = com.normalize(y) except: pass # # dummy data # x = range(0,10) # y = np.asarray(x) ** 3 # plotting plt.figure(1) try: format_ = config['format'] except: format_ = '-' try: hysteresis = config['hysteresis'] except: hysteresis = False make_plot(plt, x, y, format_, config, hysteresis=hysteresis) try: plottwo = config['plottwo'] except: plottwo = False if plottwo: try: input_file2 = config['plottwofp'] except: input_file2 = None if input_file2 is None: input_file2 = com.get_path('Second input') x2, y2 = get_xy(input_file2) make_plot(plt, x2, y2, format_, config, hysteresis=hysteresis) # TODO: Combine these statements to fix color try: error_provided_in_file = config['errorprovided'] except: error_provided_in_file = False if error_provided_in_file: errors = get_errors(input_file) plt.errorbar(x, y, yerr=errors, fmt='b{}'.format(format_)) if plottwo: errors2 = get_errors(input_file2) plt.errorbar(x2, y2, yerr=errors2, fmt='b{}'.format(format_)) try: yerror = config['yerror'] except: yerror = None if yerror is not None: # TODO: Allow x error plt.errorbar(x, y, yerr=yerror, fmt='b{}'.format(format_)) # FORMATTING try: grid = config['grid'] if grid: plt.grid(b=True, which='major', color='0.50', linestyle='-') plt.grid(b=True, which='minor', color='0.25', linestyle='--') except: pass try: biglabels = config['biglabels'] except: biglabels = False if biglabels: from matplotlib import rc font = {'size': 20} rc('font', **font) try: title = config['title'] except: title = None if title is not None: plt.title(title) try: xlabel = config['xlabel'] except: xlabel = None if xlabel is not None: plt.xlabel(xlabel) try: ylabel = config['ylabel'] except: ylabel = None if ylabel is not None: plt.ylabel(ylabel) try: fitline = config['fitline'] except: fitline = False if fitline: # include line try: a_ = config['a'] b_ = config['b'] x0, xspan = config['linerange'] except: a_ = None b_ = None x0 = None xspan = None print('Could not fit line. Please provide `a` and `b` for y = ax + b in `config.yaml`.') if a_ is not None and b_ is not None: if x0 is None: x0 = 0 if xspan is None: xspan = 100 x_ = range(x0, xspan, 1) x_ = np.asarray(x_) y_ = a_ * x_ + b_ plt.plot(x_, y_, color='b') plt.axvline(0, color='k') try: fitline2 = config['fitline2'] except: fitline2 = False if fitline2: # include line try: a2_ = config['a2'] b2_ = config['b2'] x20, x2span = config['linerange2'] except: a2_ = None b2_ = None x20 = None x2span = None print('Could not fit line. Please provide `a2` and `b2` for y2 = a2x2 + b2 in `config.yaml`.') if a2_ is not None and b2_ is not None: if x20 is None: x20 = 0 if x2span is None: x2span = 100 x2_ = range(x20, x2span, 1) x2_ = np.asarray(x2_) y2_ = a2_ * x2_ + b2_ plt.plot(x2_, y2_, color='b') plt.axvline(0, color='k') # fit exponential try: fitexp = config['fitexp'] except: fitexp = False if fitexp: try: a_ = config['a'] b_ = config['b'] x0, xspan = config['linerange'] except: a_ = None b_ = None x0 = None xspan = None print('Could not fit line. Please provide `a` and `b` for y = ax + b in `config.yaml`.') if a_ is not None and b_ is not None: if x0 is None: x0 = 0 if xspan is None: xspan = 100 x_ = range(x0, xspan, 1) x_ = np.asarray(x_) y_ = a_ * np.exp(b_ * x_) plt.plot(x_, y_, color='b') plt.axvline(0, color='k') # output try: outname = config['outname'] outexts = config['outexts'] except: outname = 'graph' outexts = ['.png', '.svg'] for ext in outexts: outfile = '{}{}'.format(outname, ext) com.saveplot(plt, output_path, outfile, printmessage=True) plt.show()
[ "matplotlib.pyplot.title", "matplotlib.rc", "csv.reader", "argparse.ArgumentParser", "matplotlib.pyplot.figure", "os.path.isfile", "numpy.exp", "common.plot_hysteresis", "matplotlib.pyplot.axvline", "common.saveplot", "common.get_path", "matplotlib.pyplot.show", "common.normalize", "common.read_yaml", "numpy.asarray", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.grid", "matplotlib.pyplot.plot", "common.print_running_message", "matplotlib.pyplot.xlabel", "os.path.split" ]
[((1114, 1149), 'common.print_running_message', 'com.print_running_message', (['__file__'], {}), '(__file__)\n', (1139, 1149), True, 'import common as com\n'), ((1187, 1212), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (1210, 1212), False, 'import argparse\n'), ((2263, 2289), 'common.read_yaml', 'com.read_yaml', (['config_path'], {}), '(config_path)\n', (2276, 2289), True, 'import common as com\n'), ((2641, 2654), 'matplotlib.pyplot.figure', 'plt.figure', (['(1)'], {}), '(1)\n', (2651, 2654), True, 'import matplotlib.pyplot as plt\n'), ((7590, 7600), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (7598, 7600), True, 'import matplotlib.pyplot as plt\n'), ((224, 254), 'csv.reader', 'csv.reader', (['fh'], {'delimiter': '"""\t"""'}), "(fh, delimiter='\\t')\n", (234, 254), False, 'import csv\n'), ((597, 627), 'csv.reader', 'csv.reader', (['fh'], {'delimiter': '"""\t"""'}), "(fh, delimiter='\\t')\n", (607, 627), False, 'import csv\n'), ((966, 1032), 'common.plot_hysteresis', 'com.plot_hysteresis', (['plt', 'x', 'y'], {'format': 'format_', 'legend': 'hyst_legend'}), '(plt, x, y, format=format_, legend=hyst_legend)\n', (985, 1032), True, 'import common as com\n'), ((1053, 1076), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y', 'format_'], {}), '(x, y, format_)\n', (1061, 1076), True, 'import matplotlib.pyplot as plt\n'), ((1618, 1639), 'common.get_path', 'com.get_path', (['"""Input"""'], {}), "('Input')\n", (1630, 1639), True, 'import common as com\n'), ((1652, 1678), 'os.path.isfile', 'os.path.isfile', (['input_path'], {}), '(input_path)\n', (1666, 1678), False, 'import os\n'), ((1769, 1790), 'common.get_path', 'com.get_path', (['"""Input"""'], {}), "('Input')\n", (1781, 1790), True, 'import common as com\n'), ((1837, 1862), 'os.path.split', 'os.path.split', (['input_file'], {}), '(input_file)\n', (1850, 1862), False, 'import os\n'), ((2070, 2092), 'common.get_path', 'com.get_path', (['"""Config"""'], {}), "('Config')\n", (2082, 2092), True, 'import common as com\n'), ((2105, 2132), 'os.path.isfile', 'os.path.isfile', (['config_path'], {}), '(config_path)\n', (2119, 2132), False, 'import os\n'), ((2226, 2248), 'common.get_path', 'com.get_path', (['"""Config"""'], {}), "('Config')\n", (2238, 2248), True, 'import common as com\n'), ((4402, 4420), 'matplotlib.rc', 'rc', (['"""font"""'], {}), "('font', **font)\n", (4404, 4420), False, 'from matplotlib import rc\n'), ((4535, 4551), 'matplotlib.pyplot.title', 'plt.title', (['title'], {}), '(title)\n', (4544, 4551), True, 'import matplotlib.pyplot as plt\n'), ((4670, 4688), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['xlabel'], {}), '(xlabel)\n', (4680, 4688), True, 'import matplotlib.pyplot as plt\n'), ((4807, 4825), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['ylabel'], {}), '(ylabel)\n', (4817, 4825), True, 'import matplotlib.pyplot as plt\n'), ((7524, 7582), 'common.saveplot', 'com.saveplot', (['plt', 'output_path', 'outfile'], {'printmessage': '(True)'}), '(plt, output_path, outfile, printmessage=True)\n', (7536, 7582), True, 'import common as com\n'), ((2468, 2481), 'numpy.asarray', 'np.asarray', (['y'], {}), '(y)\n', (2478, 2481), True, 'import numpy as np\n'), ((2499, 2515), 'common.normalize', 'com.normalize', (['y'], {}), '(y)\n', (2512, 2515), True, 'import common as com\n'), ((3169, 3197), 'common.get_path', 'com.get_path', (['"""Second input"""'], {}), "('Second input')\n", (3181, 3197), True, 'import common as com\n'), ((4056, 4116), 'matplotlib.pyplot.grid', 'plt.grid', ([], {'b': '(True)', 'which': '"""major"""', 'color': '"""0.50"""', 'linestyle': '"""-"""'}), "(b=True, which='major', color='0.50', linestyle='-')\n", (4064, 4116), True, 'import matplotlib.pyplot as plt\n'), ((4130, 4191), 'matplotlib.pyplot.grid', 'plt.grid', ([], {'b': '(True)', 'which': '"""minor"""', 'color': '"""0.25"""', 'linestyle': '"""--"""'}), "(b=True, which='minor', color='0.25', linestyle='--')\n", (4138, 4191), True, 'import matplotlib.pyplot as plt\n'), ((5500, 5514), 'numpy.asarray', 'np.asarray', (['x_'], {}), '(x_)\n', (5510, 5514), True, 'import numpy as np\n'), ((5559, 5586), 'matplotlib.pyplot.plot', 'plt.plot', (['x_', 'y_'], {'color': '"""b"""'}), "(x_, y_, color='b')\n", (5567, 5586), True, 'import matplotlib.pyplot as plt\n'), ((5600, 5625), 'matplotlib.pyplot.axvline', 'plt.axvline', (['(0)'], {'color': '"""k"""'}), "(0, color='k')\n", (5611, 5625), True, 'import matplotlib.pyplot as plt\n'), ((6331, 6346), 'numpy.asarray', 'np.asarray', (['x2_'], {}), '(x2_)\n', (6341, 6346), True, 'import numpy as np\n'), ((6395, 6424), 'matplotlib.pyplot.plot', 'plt.plot', (['x2_', 'y2_'], {'color': '"""b"""'}), "(x2_, y2_, color='b')\n", (6403, 6424), True, 'import matplotlib.pyplot as plt\n'), ((6438, 6463), 'matplotlib.pyplot.axvline', 'plt.axvline', (['(0)'], {'color': '"""k"""'}), "(0, color='k')\n", (6449, 6463), True, 'import matplotlib.pyplot as plt\n'), ((7133, 7147), 'numpy.asarray', 'np.asarray', (['x_'], {}), '(x_)\n', (7143, 7147), True, 'import numpy as np\n'), ((7200, 7227), 'matplotlib.pyplot.plot', 'plt.plot', (['x_', 'y_'], {'color': '"""b"""'}), "(x_, y_, color='b')\n", (7208, 7227), True, 'import matplotlib.pyplot as plt\n'), ((7241, 7266), 'matplotlib.pyplot.axvline', 'plt.axvline', (['(0)'], {'color': '"""k"""'}), "(0, color='k')\n", (7252, 7266), True, 'import matplotlib.pyplot as plt\n'), ((7171, 7186), 'numpy.exp', 'np.exp', (['(b_ * x_)'], {}), '(b_ * x_)\n', (7177, 7186), True, 'import numpy as np\n')]
""" Tests of noise input. """ import unittest import numpy as np from chspy import CubicHermiteSpline from neurolib.models.aln import ALNModel from neurolib.utils.stimulus import ( ConcatenatedStimulus, ExponentialInput, LinearRampInput, OrnsteinUhlenbeckProcess, RectifiedInput, SinusoidalInput, SquareInput, StepInput, SummedStimulus, WienerProcess, ZeroInput, ) TESTING_TIME = 5.3 DURATION = 10 DT = 0.1 STIM_START = 2 STIM_END = 8 SHAPE = (2, int(DURATION / DT)) class TestCubicSplines(unittest.TestCase): RESULT_SPLINES = np.array([-0.214062, -0.215043]) RESULT_ARRAY = np.array([0.193429, 0.073445]) def test_splines(self): dW = WienerProcess(n=2, seed=42).as_cubic_splines(duration=DURATION, dt=DT) self.assertTrue(isinstance(dW, CubicHermiteSpline)) np.testing.assert_allclose(self.RESULT_SPLINES, dW.get_state(TESTING_TIME), atol=1e-05) def test_arrays(self): dW = WienerProcess(n=2, seed=42).as_array(duration=DURATION, dt=DT) self.assertTrue(isinstance(dW, np.ndarray)) time_idx = np.around(TESTING_TIME / DT).astype(int) np.testing.assert_allclose(self.RESULT_ARRAY, dW[:, time_idx], atol=1e-05) def test_shift_start_time(self): SHIFT = 5.0 dW = WienerProcess(n=2, seed=42).as_cubic_splines(duration=DURATION, dt=DT, shift_start_time=SHIFT) self.assertTrue(isinstance(dW, CubicHermiteSpline)) self.assertEqual(dW[0].time, SHIFT + DT) np.testing.assert_allclose(self.RESULT_SPLINES, dW.get_state(TESTING_TIME + SHIFT), atol=1e-05) class TestToModel(unittest.TestCase): def test_single_node(self): model = ALNModel() model.params["duration"] = 2 * 1000 stim = SinusoidalInput(amplitude=1.0, frequency=1.0) model_stim = stim.to_model(model) model.params["ext_exc_current"] = model_stim model.run() self.assertTrue(isinstance(model_stim, np.ndarray)) self.assertTupleEqual(model_stim.shape, (1, int(model.params["duration"] / model.params["dt"]))) def test_multi_node_multi_stim(self): model = ALNModel(Cmat=np.random.rand(5, 5), Dmat=np.zeros((5, 5))) model.params["duration"] = 2 * 1000 stim = SinusoidalInput(amplitude=1.0, frequency=1.0) model_stim = stim.to_model(model) model.params["ext_exc_current"] = model_stim model.run() self.assertTrue(isinstance(model_stim, np.ndarray)) self.assertTupleEqual(model_stim.shape, (5, int(model.params["duration"] / model.params["dt"]))) class TestZeroInput(unittest.TestCase): def test_generate_input(self): nn = ZeroInput(n=2, seed=42).generate_input(duration=DURATION, dt=DT) self.assertTrue(isinstance(nn, np.ndarray)) self.assertTupleEqual(nn.shape, SHAPE) np.testing.assert_allclose(nn, np.zeros(SHAPE)) def test_get_params(self): nn = ZeroInput(n=2, seed=42) params = nn.get_params() params.pop("type") self.assertDictEqual(params, {"n": 2, "seed": 42}) def test_set_params(self): nn = ZeroInput(n=2, seed=42) UPDATE = {"seed": 635} nn.update_params(UPDATE) params = nn.get_params() params.pop("type") self.assertDictEqual(params, {"n": 2, "seed": 42, **UPDATE}) class TestWienerProcess(unittest.TestCase): def test_generate_input(self): dW = WienerProcess(n=2, seed=42).generate_input(duration=DURATION, dt=DT) self.assertTrue(isinstance(dW, np.ndarray)) self.assertTupleEqual(dW.shape, SHAPE) def test_get_params(self): dW = WienerProcess(n=2, seed=42) params = dW.get_params() params.pop("type") self.assertDictEqual(params, {"n": 2, "seed": 42}) def test_set_params(self): dW = WienerProcess(n=2, seed=42) UPDATE = {"seed": 6152, "n": 5} dW.update_params(UPDATE) params = dW.get_params() params.pop("type") self.assertDictEqual(params, {"n": 2, "seed": 42, **UPDATE}) class TestOrnsteinUhlenbeckProcess(unittest.TestCase): def test_generate_input(self): ou = OrnsteinUhlenbeckProcess( mu=3.0, sigma=0.1, tau=2 * DT, n=2, seed=42, ).generate_input(duration=DURATION, dt=DT) self.assertTrue(isinstance(ou, np.ndarray)) self.assertTupleEqual(ou.shape, SHAPE) def test_get_params(self): ou = OrnsteinUhlenbeckProcess( mu=3.0, sigma=0.1, tau=2 * DT, n=2, seed=42, ) params = ou.get_params() params.pop("type") self.assertDictEqual(params, {"n": 2, "seed": 42, "mu": 3.0, "sigma": 0.1, "tau": 2 * DT}) def test_set_params(self): ou = OrnsteinUhlenbeckProcess( mu=3.0, sigma=0.1, tau=2 * DT, n=2, seed=42, ) UPDATE = {"mu": 2.3, "seed": 12} ou.update_params(UPDATE) params = ou.get_params() params.pop("type") self.assertDictEqual(params, {"n": 2, "seed": 42, "mu": 3.0, "sigma": 0.1, "tau": 2 * DT, **UPDATE}) class TestStepInput(unittest.TestCase): STEP_SIZE = 2.3 def test_generate_input(self): step = StepInput( step_size=self.STEP_SIZE, n=2, seed=42, ).generate_input(duration=DURATION, dt=DT) self.assertTrue(isinstance(step, np.ndarray)) self.assertTupleEqual(step.shape, SHAPE) np.testing.assert_allclose(step, self.STEP_SIZE) def test_start_end_input(self): step = StepInput( start=STIM_START, end=STIM_END, step_size=self.STEP_SIZE, n=2, seed=42, ).as_array(duration=DURATION, dt=DT) np.testing.assert_allclose(step[:, : int(STIM_START / DT)], 0.0) np.testing.assert_allclose(step[:, int(STIM_END / DT) :], 0.0) class TestSinusoidalInput(unittest.TestCase): AMPLITUDE = 2.3 FREQUENCY = 1000.0 def test_generate_input(self): sin = SinusoidalInput( amplitude=self.AMPLITUDE, frequency=self.FREQUENCY, n=2, seed=42, dc_bias=True ).generate_input(duration=DURATION, dt=DT) self.assertTrue(isinstance(sin, np.ndarray)) self.assertTupleEqual(sin.shape, SHAPE) np.testing.assert_almost_equal(np.mean(sin, axis=1), np.array(2 * [self.AMPLITUDE])) def test_start_end_input(self): sin = SinusoidalInput( start=STIM_START, end=STIM_END, amplitude=self.AMPLITUDE, frequency=self.FREQUENCY, n=2, seed=42, ).as_array(duration=DURATION, dt=DT) np.testing.assert_allclose(sin[:, : int(STIM_START / DT)], 0.0) np.testing.assert_allclose(sin[:, int(STIM_END / DT) :], 0.0) def test_get_params(self): sin = SinusoidalInput( start=STIM_START, end=STIM_END, amplitude=self.AMPLITUDE, frequency=self.FREQUENCY, n=2, seed=42, ) params = sin.get_params() params.pop("type") self.assertDictEqual( params, { "n": 2, "seed": 42, "frequency": self.FREQUENCY, "amplitude": self.AMPLITUDE, "start": STIM_START, "dc_bias": False, "end": STIM_END, }, ) def test_set_params(self): sin = SinusoidalInput( start=STIM_START, end=STIM_END, amplitude=self.AMPLITUDE, frequency=self.FREQUENCY, n=2, seed=42, ) UPDATE = {"amplitude": 43.0, "seed": 12, "start": "None"} sin.update_params(UPDATE) params = sin.get_params() params.pop("type") self.assertDictEqual( params, { "n": 2, "seed": 42, "frequency": self.FREQUENCY, "amplitude": self.AMPLITUDE, "dc_bias": False, "end": STIM_END, **UPDATE, "start": None, }, ) class TestSquareInput(unittest.TestCase): AMPLITUDE = 2.3 FREQUENCY = 20.0 def test_generate_input(self): sq = SquareInput( amplitude=self.AMPLITUDE, frequency=self.FREQUENCY, n=2, seed=42, ).generate_input(duration=DURATION, dt=DT) self.assertTrue(isinstance(sq, np.ndarray)) self.assertTupleEqual(sq.shape, SHAPE) np.testing.assert_almost_equal(np.mean(sq, axis=1), np.array(2 * [self.AMPLITUDE])) def test_start_end_input(self): sq = SquareInput( start=STIM_START, end=STIM_END, amplitude=self.AMPLITUDE, frequency=self.FREQUENCY, n=2, seed=42, ).as_array(duration=DURATION, dt=DT) np.testing.assert_allclose(sq[:, : int(STIM_START / DT)], 0.0) np.testing.assert_allclose(sq[:, int(STIM_END / DT) :], 0.0) def test_get_params(self): sq = SquareInput( start=STIM_START, end=STIM_END, amplitude=self.AMPLITUDE, frequency=self.FREQUENCY, n=2, seed=42, ) params = sq.get_params() params.pop("type") self.assertDictEqual( params, { "n": 2, "seed": 42, "frequency": self.FREQUENCY, "amplitude": self.AMPLITUDE, "start": STIM_START, "end": STIM_END, "dc_bias": False, }, ) def test_set_params(self): sq = SquareInput( start=STIM_START, end=STIM_END, amplitude=self.AMPLITUDE, frequency=self.FREQUENCY, n=2, seed=42, ) UPDATE = {"amplitude": 43.0, "seed": 12, "start": "None"} sq.update_params(UPDATE) params = sq.get_params() params.pop("type") self.assertDictEqual( params, { "n": 2, "seed": 42, "frequency": self.FREQUENCY, "amplitude": self.AMPLITUDE, "end": STIM_END, "dc_bias": False, **UPDATE, "start": None, }, ) class TestLinearRampInput(unittest.TestCase): INP_MAX = 5.0 RAMP_LENGTH = 2.0 def test_generate_input(self): ramp = LinearRampInput( inp_max=self.INP_MAX, ramp_length=self.RAMP_LENGTH, n=2, seed=42, ).generate_input(duration=DURATION, dt=DT) self.assertTrue(isinstance(ramp, np.ndarray)) self.assertTupleEqual(ramp.shape, SHAPE) np.testing.assert_equal(np.max(ramp, axis=1), np.array(2 * [self.INP_MAX])) np.testing.assert_equal(np.min(ramp, axis=1), np.array(2 * [0.25])) def test_start_end_input(self): ramp = LinearRampInput( start=STIM_START, end=STIM_END, inp_max=self.INP_MAX, ramp_length=self.RAMP_LENGTH, n=2, seed=42, ).as_array(duration=DURATION, dt=DT) np.testing.assert_allclose(ramp[:, : int(STIM_START / DT)], 0.0) np.testing.assert_allclose(ramp[:, int(STIM_END / DT) :], 0.0) def test_get_params(self): ramp = LinearRampInput( start=STIM_START, end=STIM_END, inp_max=self.INP_MAX, ramp_length=self.RAMP_LENGTH, n=2, seed=42, ) params = ramp.get_params() params.pop("type") self.assertDictEqual( params, { "n": 2, "seed": 42, "inp_max": self.INP_MAX, "ramp_length": self.RAMP_LENGTH, "start": STIM_START, "end": STIM_END, }, ) def test_set_params(self): ramp = LinearRampInput( start=STIM_START, end=STIM_END, inp_max=self.INP_MAX, ramp_length=self.RAMP_LENGTH, n=2, seed=42, ) UPDATE = {"inp_max": 41.0, "seed": 12} ramp.update_params(UPDATE) params = ramp.get_params() params.pop("type") self.assertDictEqual( params, { "n": 2, "seed": 42, "inp_max": self.INP_MAX, "ramp_length": self.RAMP_LENGTH, "start": STIM_START, "end": STIM_END, **UPDATE, }, ) class TestExponentialInput(unittest.TestCase): INP_MAX = 5.0 EXP_COEF = 30.0 EXP_TYPE = "rise" def test_generate_input_rise(self): exp_rise = ExponentialInput( inp_max=self.INP_MAX, exp_type="rise", n=2, seed=42, ).generate_input(duration=DURATION, dt=DT) self.assertTrue(isinstance(exp_rise, np.ndarray)) self.assertTupleEqual(exp_rise.shape, SHAPE) np.testing.assert_almost_equal(np.max(exp_rise, axis=1), np.array(2 * [self.INP_MAX])) self.assertTrue(np.all(np.diff(exp_rise) >= 0)) def test_generate_input_decay(self): exp_decay = ExponentialInput( inp_max=self.INP_MAX, exp_type="decay", n=2, seed=42, ).generate_input(duration=DURATION, dt=DT) self.assertTrue(isinstance(exp_decay, np.ndarray)) self.assertTupleEqual(exp_decay.shape, SHAPE) self.assertTrue(np.all(np.diff(exp_decay) <= 0)) def test_start_end_input(self): exp_rise = ExponentialInput( start=STIM_START, end=STIM_END, inp_max=self.INP_MAX, n=2, seed=42, ).as_array(duration=DURATION, dt=DT) np.testing.assert_allclose(exp_rise[:, : int(STIM_START / DT)], 0.0) np.testing.assert_allclose(exp_rise[:, int(STIM_END / DT) :], 0.0) def test_get_params(self): exp_rise = ExponentialInput( start=STIM_START, end=STIM_END, inp_max=self.INP_MAX, n=2, seed=42, ) params = exp_rise.get_params() params.pop("type") self.assertDictEqual( params, { "n": 2, "seed": 42, "inp_max": self.INP_MAX, "exp_coef": self.EXP_COEF, "exp_type": self.EXP_TYPE, "start": STIM_START, "end": STIM_END, }, ) def test_set_params(self): exp_rise = ExponentialInput( start=STIM_START, end=STIM_END, inp_max=self.INP_MAX, n=2, seed=42, ) UPDATE = {"inp_max": 41.0, "seed": 12} exp_rise.update_params(UPDATE) params = exp_rise.get_params() params.pop("type") self.assertDictEqual( params, { "n": 2, "seed": 42, "inp_max": self.INP_MAX, "exp_coef": self.EXP_COEF, "exp_type": self.EXP_TYPE, "start": STIM_START, "end": STIM_END, **UPDATE, }, ) class TestSummedStimulus(unittest.TestCase): def _create_input(self): ou = OrnsteinUhlenbeckProcess(mu=0.1, sigma=0.02, tau=2.0, n=2) sq = SquareInput(amplitude=0.2, frequency=50, n=2, start=5) sin = SinusoidalInput(amplitude=0.1, frequency=100, n=2, start=2) step = StepInput(step_size=0.5, n=2, start=7) return sq + (sin + step + ou) def test_init(self): summed = self._create_input() self.assertEqual(len(summed), 4) self.assertTrue(isinstance(summed, SummedStimulus)) self.assertEqual(summed.n, 2) self.assertEqual(len(summed.inputs), 4) def test_set_n(self): summed = self._create_input() self.assertEqual(summed.n, 2) ts = summed.as_array(duration=DURATION, dt=DT) self.assertEqual(ts.shape[0], 2) summed.n = 5 self.assertEqual(summed.n, 5) ts = summed.as_array(duration=DURATION, dt=DT) self.assertEqual(ts.shape[0], 5) def test_generate_input(self): summed = self._create_input() ts = summed.as_array(duration=DURATION, dt=DT) self.assertTrue(isinstance(ts, np.ndarray)) self.assertTupleEqual(ts.shape, SHAPE) ts = summed.as_cubic_splines(duration=DURATION, dt=DT) self.assertTrue(isinstance(ts, CubicHermiteSpline)) def test_get_params(self): summed = self._create_input() params = summed.get_params() self.assertTrue(isinstance(params, dict)) self.assertEqual(len(params), 1 + len(summed.inputs)) for i, process in enumerate(summed): self.assertDictEqual(process.get_params(), params[f"input_{i}"]) def test_update_params(self): summed = self._create_input() UPDATE_DICT = {f"input_{i}": {"n": 3} for i in range(len(summed))} summed.update_params(UPDATE_DICT) self.assertEqual(summed.n, 3) class TestConcatenatedStimulus(unittest.TestCase): def _create_input(self): ou = OrnsteinUhlenbeckProcess(mu=0.1, sigma=0.02, tau=2.0, n=2) sq = SquareInput(amplitude=0.2, frequency=20.0, n=2) sin = SinusoidalInput(amplitude=0.1, frequency=10.0, n=2) step = StepInput(step_size=0.5, n=2) return ou & (sq & sin & step) def test_init(self): conc = self._create_input() self.assertEqual(len(conc), 4) self.assertTrue(isinstance(conc, ConcatenatedStimulus)) self.assertEqual(conc.n, 2) self.assertEqual(len(conc.inputs), 4) def test_set_n(self): conc = self._create_input() self.assertEqual(conc.n, 2) ts = conc.as_array(duration=DURATION, dt=DT) self.assertEqual(ts.shape[0], 2) conc.n = 5 self.assertEqual(conc.n, 5) ts = conc.as_array(duration=DURATION, dt=DT) self.assertEqual(ts.shape[0], 5) def test_generate_input(self): conc = self._create_input() ts = conc.as_array(duration=DURATION, dt=DT) self.assertTrue(isinstance(ts, np.ndarray)) self.assertTupleEqual(ts.shape, SHAPE) ts = conc.as_cubic_splines(duration=DURATION, dt=DT) self.assertTrue(isinstance(ts, CubicHermiteSpline)) def test_get_params(self): conc = self._create_input() params = conc.get_params() self.assertTrue(isinstance(params, dict)) self.assertEqual(len(params), 1 + len(conc.inputs)) for i, process in enumerate(conc): self.assertDictEqual(process.get_params(), params[f"input_{i}"]) def test_update_params(self): conc = self._create_input() UPDATE_DICT = {f"input_{i}": {"n": 3} for i in range(len(conc))} conc.update_params(UPDATE_DICT) self.assertEqual(conc.n, 3) class TestBeastInput(unittest.TestCase): def _create_input(self): ou = OrnsteinUhlenbeckProcess(mu=0.1, sigma=0.02, tau=2.0, n=2) sq = SquareInput(amplitude=0.2, frequency=20.0, n=2) sin = SinusoidalInput(amplitude=0.1, frequency=10.0, n=2) step = StepInput(step_size=0.5, n=2) return (sq + sin) & (step + ou) def test_init(self): beast = self._create_input() self.assertEqual(len(beast), 2) self.assertTrue(isinstance(beast, ConcatenatedStimulus)) for process in beast: self.assertTrue(isinstance(process, SummedStimulus)) self.assertEqual(beast.n, 2) def test_set_n(self): beast = self._create_input() self.assertEqual(beast.n, 2) ts = beast.as_array(duration=DURATION, dt=DT) self.assertEqual(ts.shape[0], 2) beast.n = 5 self.assertEqual(beast.n, 5) ts = beast.as_array(duration=DURATION, dt=DT) self.assertEqual(ts.shape[0], 5) def test_generate_input(self): beast = self._create_input() ts = beast.as_array(duration=DURATION, dt=DT) self.assertTrue(isinstance(ts, np.ndarray)) self.assertTupleEqual(ts.shape, SHAPE) ts = beast.as_cubic_splines(duration=DURATION, dt=DT) self.assertTrue(isinstance(ts, CubicHermiteSpline)) def test_get_params(self): beast = self._create_input() params = beast.get_params() self.assertTrue(isinstance(params, dict)) self.assertEqual(len(params), 1 + len(beast.inputs)) for i, process in enumerate(beast): self.assertDictEqual(process.get_params(), params[f"input_{i}"]) class TestRectifiedInput(unittest.TestCase): def test_init(self): rect = RectifiedInput(0.2, n=2) self.assertTrue(isinstance(rect, ConcatenatedStimulus)) self.assertEqual(len(rect), 5) self.assertEqual(rect.n, 2) def test_generate(self): rect = RectifiedInput(0.2, n=2) ts = rect.as_array(DURATION, DT) self.assertTrue(isinstance(ts, np.ndarray)) self.assertTupleEqual(ts.shape, SHAPE) ts = rect.as_cubic_splines(duration=DURATION, dt=DT) self.assertTrue(isinstance(ts, CubicHermiteSpline)) if __name__ == "__main__": unittest.main()
[ "neurolib.utils.stimulus.RectifiedInput", "neurolib.utils.stimulus.StepInput", "neurolib.utils.stimulus.SinusoidalInput", "neurolib.utils.stimulus.OrnsteinUhlenbeckProcess", "numpy.around", "numpy.mean", "neurolib.utils.stimulus.LinearRampInput", "unittest.main", "neurolib.utils.stimulus.ExponentialInput", "numpy.max", "neurolib.utils.stimulus.WienerProcess", "numpy.testing.assert_allclose", "numpy.min", "neurolib.models.aln.ALNModel", "neurolib.utils.stimulus.ZeroInput", "neurolib.utils.stimulus.SquareInput", "numpy.zeros", "numpy.diff", "numpy.array", "numpy.random.rand" ]
[((580, 612), 'numpy.array', 'np.array', (['[-0.214062, -0.215043]'], {}), '([-0.214062, -0.215043])\n', (588, 612), True, 'import numpy as np\n'), ((632, 662), 'numpy.array', 'np.array', (['[0.193429, 0.073445]'], {}), '([0.193429, 0.073445])\n', (640, 662), True, 'import numpy as np\n'), ((21803, 21818), 'unittest.main', 'unittest.main', ([], {}), '()\n', (21816, 21818), False, 'import unittest\n'), ((1156, 1230), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['self.RESULT_ARRAY', 'dW[:, time_idx]'], {'atol': '(1e-05)'}), '(self.RESULT_ARRAY, dW[:, time_idx], atol=1e-05)\n', (1182, 1230), True, 'import numpy as np\n'), ((1698, 1708), 'neurolib.models.aln.ALNModel', 'ALNModel', ([], {}), '()\n', (1706, 1708), False, 'from neurolib.models.aln import ALNModel\n'), ((1768, 1813), 'neurolib.utils.stimulus.SinusoidalInput', 'SinusoidalInput', ([], {'amplitude': '(1.0)', 'frequency': '(1.0)'}), '(amplitude=1.0, frequency=1.0)\n', (1783, 1813), False, 'from neurolib.utils.stimulus import ConcatenatedStimulus, ExponentialInput, LinearRampInput, OrnsteinUhlenbeckProcess, RectifiedInput, SinusoidalInput, SquareInput, StepInput, SummedStimulus, WienerProcess, ZeroInput\n'), ((2271, 2316), 'neurolib.utils.stimulus.SinusoidalInput', 'SinusoidalInput', ([], {'amplitude': '(1.0)', 'frequency': '(1.0)'}), '(amplitude=1.0, frequency=1.0)\n', (2286, 2316), False, 'from neurolib.utils.stimulus import ConcatenatedStimulus, ExponentialInput, LinearRampInput, OrnsteinUhlenbeckProcess, RectifiedInput, SinusoidalInput, SquareInput, StepInput, SummedStimulus, WienerProcess, ZeroInput\n'), ((2952, 2975), 'neurolib.utils.stimulus.ZeroInput', 'ZeroInput', ([], {'n': '(2)', 'seed': '(42)'}), '(n=2, seed=42)\n', (2961, 2975), False, 'from neurolib.utils.stimulus import ConcatenatedStimulus, ExponentialInput, LinearRampInput, OrnsteinUhlenbeckProcess, RectifiedInput, SinusoidalInput, SquareInput, StepInput, SummedStimulus, WienerProcess, ZeroInput\n'), ((3140, 3163), 'neurolib.utils.stimulus.ZeroInput', 'ZeroInput', ([], {'n': '(2)', 'seed': '(42)'}), '(n=2, seed=42)\n', (3149, 3163), False, 'from neurolib.utils.stimulus import ConcatenatedStimulus, ExponentialInput, LinearRampInput, OrnsteinUhlenbeckProcess, RectifiedInput, SinusoidalInput, SquareInput, StepInput, SummedStimulus, WienerProcess, ZeroInput\n'), ((3664, 3691), 'neurolib.utils.stimulus.WienerProcess', 'WienerProcess', ([], {'n': '(2)', 'seed': '(42)'}), '(n=2, seed=42)\n', (3677, 3691), False, 'from neurolib.utils.stimulus import ConcatenatedStimulus, ExponentialInput, LinearRampInput, OrnsteinUhlenbeckProcess, RectifiedInput, SinusoidalInput, SquareInput, StepInput, SummedStimulus, WienerProcess, ZeroInput\n'), ((3856, 3883), 'neurolib.utils.stimulus.WienerProcess', 'WienerProcess', ([], {'n': '(2)', 'seed': '(42)'}), '(n=2, seed=42)\n', (3869, 3883), False, 'from neurolib.utils.stimulus import ConcatenatedStimulus, ExponentialInput, LinearRampInput, OrnsteinUhlenbeckProcess, RectifiedInput, SinusoidalInput, SquareInput, StepInput, SummedStimulus, WienerProcess, ZeroInput\n'), ((4517, 4586), 'neurolib.utils.stimulus.OrnsteinUhlenbeckProcess', 'OrnsteinUhlenbeckProcess', ([], {'mu': '(3.0)', 'sigma': '(0.1)', 'tau': '(2 * DT)', 'n': '(2)', 'seed': '(42)'}), '(mu=3.0, sigma=0.1, tau=2 * DT, n=2, seed=42)\n', (4541, 4586), False, 'from neurolib.utils.stimulus import ConcatenatedStimulus, ExponentialInput, LinearRampInput, OrnsteinUhlenbeckProcess, RectifiedInput, SinusoidalInput, SquareInput, StepInput, SummedStimulus, WienerProcess, ZeroInput\n'), ((4862, 4931), 'neurolib.utils.stimulus.OrnsteinUhlenbeckProcess', 'OrnsteinUhlenbeckProcess', ([], {'mu': '(3.0)', 'sigma': '(0.1)', 'tau': '(2 * DT)', 'n': '(2)', 'seed': '(42)'}), '(mu=3.0, sigma=0.1, tau=2 * DT, n=2, seed=42)\n', (4886, 4931), False, 'from neurolib.utils.stimulus import ConcatenatedStimulus, ExponentialInput, LinearRampInput, OrnsteinUhlenbeckProcess, RectifiedInput, SinusoidalInput, SquareInput, StepInput, SummedStimulus, WienerProcess, ZeroInput\n'), ((5608, 5656), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['step', 'self.STEP_SIZE'], {}), '(step, self.STEP_SIZE)\n', (5634, 5656), True, 'import numpy as np\n'), ((7006, 7123), 'neurolib.utils.stimulus.SinusoidalInput', 'SinusoidalInput', ([], {'start': 'STIM_START', 'end': 'STIM_END', 'amplitude': 'self.AMPLITUDE', 'frequency': 'self.FREQUENCY', 'n': '(2)', 'seed': '(42)'}), '(start=STIM_START, end=STIM_END, amplitude=self.AMPLITUDE,\n frequency=self.FREQUENCY, n=2, seed=42)\n', (7021, 7123), False, 'from neurolib.utils.stimulus import ConcatenatedStimulus, ExponentialInput, LinearRampInput, OrnsteinUhlenbeckProcess, RectifiedInput, SinusoidalInput, SquareInput, StepInput, SummedStimulus, WienerProcess, ZeroInput\n'), ((7645, 7762), 'neurolib.utils.stimulus.SinusoidalInput', 'SinusoidalInput', ([], {'start': 'STIM_START', 'end': 'STIM_END', 'amplitude': 'self.AMPLITUDE', 'frequency': 'self.FREQUENCY', 'n': '(2)', 'seed': '(42)'}), '(start=STIM_START, end=STIM_END, amplitude=self.AMPLITUDE,\n frequency=self.FREQUENCY, n=2, seed=42)\n', (7660, 7762), False, 'from neurolib.utils.stimulus import ConcatenatedStimulus, ExponentialInput, LinearRampInput, OrnsteinUhlenbeckProcess, RectifiedInput, SinusoidalInput, SquareInput, StepInput, SummedStimulus, WienerProcess, ZeroInput\n'), ((9325, 9438), 'neurolib.utils.stimulus.SquareInput', 'SquareInput', ([], {'start': 'STIM_START', 'end': 'STIM_END', 'amplitude': 'self.AMPLITUDE', 'frequency': 'self.FREQUENCY', 'n': '(2)', 'seed': '(42)'}), '(start=STIM_START, end=STIM_END, amplitude=self.AMPLITUDE,\n frequency=self.FREQUENCY, n=2, seed=42)\n', (9336, 9438), False, 'from neurolib.utils.stimulus import ConcatenatedStimulus, ExponentialInput, LinearRampInput, OrnsteinUhlenbeckProcess, RectifiedInput, SinusoidalInput, SquareInput, StepInput, SummedStimulus, WienerProcess, ZeroInput\n'), ((9958, 10071), 'neurolib.utils.stimulus.SquareInput', 'SquareInput', ([], {'start': 'STIM_START', 'end': 'STIM_END', 'amplitude': 'self.AMPLITUDE', 'frequency': 'self.FREQUENCY', 'n': '(2)', 'seed': '(42)'}), '(start=STIM_START, end=STIM_END, amplitude=self.AMPLITUDE,\n frequency=self.FREQUENCY, n=2, seed=42)\n', (9969, 10071), False, 'from neurolib.utils.stimulus import ConcatenatedStimulus, ExponentialInput, LinearRampInput, OrnsteinUhlenbeckProcess, RectifiedInput, SinusoidalInput, SquareInput, StepInput, SummedStimulus, WienerProcess, ZeroInput\n'), ((11725, 11842), 'neurolib.utils.stimulus.LinearRampInput', 'LinearRampInput', ([], {'start': 'STIM_START', 'end': 'STIM_END', 'inp_max': 'self.INP_MAX', 'ramp_length': 'self.RAMP_LENGTH', 'n': '(2)', 'seed': '(42)'}), '(start=STIM_START, end=STIM_END, inp_max=self.INP_MAX,\n ramp_length=self.RAMP_LENGTH, n=2, seed=42)\n', (11740, 11842), False, 'from neurolib.utils.stimulus import ConcatenatedStimulus, ExponentialInput, LinearRampInput, OrnsteinUhlenbeckProcess, RectifiedInput, SinusoidalInput, SquareInput, StepInput, SummedStimulus, WienerProcess, ZeroInput\n'), ((12332, 12449), 'neurolib.utils.stimulus.LinearRampInput', 'LinearRampInput', ([], {'start': 'STIM_START', 'end': 'STIM_END', 'inp_max': 'self.INP_MAX', 'ramp_length': 'self.RAMP_LENGTH', 'n': '(2)', 'seed': '(42)'}), '(start=STIM_START, end=STIM_END, inp_max=self.INP_MAX,\n ramp_length=self.RAMP_LENGTH, n=2, seed=42)\n', (12347, 12449), False, 'from neurolib.utils.stimulus import ConcatenatedStimulus, ExponentialInput, LinearRampInput, OrnsteinUhlenbeckProcess, RectifiedInput, SinusoidalInput, SquareInput, StepInput, SummedStimulus, WienerProcess, ZeroInput\n'), ((14454, 14542), 'neurolib.utils.stimulus.ExponentialInput', 'ExponentialInput', ([], {'start': 'STIM_START', 'end': 'STIM_END', 'inp_max': 'self.INP_MAX', 'n': '(2)', 'seed': '(42)'}), '(start=STIM_START, end=STIM_END, inp_max=self.INP_MAX, n=2,\n seed=42)\n', (14470, 14542), False, 'from neurolib.utils.stimulus import ConcatenatedStimulus, ExponentialInput, LinearRampInput, OrnsteinUhlenbeckProcess, RectifiedInput, SinusoidalInput, SquareInput, StepInput, SummedStimulus, WienerProcess, ZeroInput\n'), ((15065, 15153), 'neurolib.utils.stimulus.ExponentialInput', 'ExponentialInput', ([], {'start': 'STIM_START', 'end': 'STIM_END', 'inp_max': 'self.INP_MAX', 'n': '(2)', 'seed': '(42)'}), '(start=STIM_START, end=STIM_END, inp_max=self.INP_MAX, n=2,\n seed=42)\n', (15081, 15153), False, 'from neurolib.utils.stimulus import ConcatenatedStimulus, ExponentialInput, LinearRampInput, OrnsteinUhlenbeckProcess, RectifiedInput, SinusoidalInput, SquareInput, StepInput, SummedStimulus, WienerProcess, ZeroInput\n'), ((15826, 15884), 'neurolib.utils.stimulus.OrnsteinUhlenbeckProcess', 'OrnsteinUhlenbeckProcess', ([], {'mu': '(0.1)', 'sigma': '(0.02)', 'tau': '(2.0)', 'n': '(2)'}), '(mu=0.1, sigma=0.02, tau=2.0, n=2)\n', (15850, 15884), False, 'from neurolib.utils.stimulus import ConcatenatedStimulus, ExponentialInput, LinearRampInput, OrnsteinUhlenbeckProcess, RectifiedInput, SinusoidalInput, SquareInput, StepInput, SummedStimulus, WienerProcess, ZeroInput\n'), ((15898, 15952), 'neurolib.utils.stimulus.SquareInput', 'SquareInput', ([], {'amplitude': '(0.2)', 'frequency': '(50)', 'n': '(2)', 'start': '(5)'}), '(amplitude=0.2, frequency=50, n=2, start=5)\n', (15909, 15952), False, 'from neurolib.utils.stimulus import ConcatenatedStimulus, ExponentialInput, LinearRampInput, OrnsteinUhlenbeckProcess, RectifiedInput, SinusoidalInput, SquareInput, StepInput, SummedStimulus, WienerProcess, ZeroInput\n'), ((15967, 16026), 'neurolib.utils.stimulus.SinusoidalInput', 'SinusoidalInput', ([], {'amplitude': '(0.1)', 'frequency': '(100)', 'n': '(2)', 'start': '(2)'}), '(amplitude=0.1, frequency=100, n=2, start=2)\n', (15982, 16026), False, 'from neurolib.utils.stimulus import ConcatenatedStimulus, ExponentialInput, LinearRampInput, OrnsteinUhlenbeckProcess, RectifiedInput, SinusoidalInput, SquareInput, StepInput, SummedStimulus, WienerProcess, ZeroInput\n'), ((16042, 16080), 'neurolib.utils.stimulus.StepInput', 'StepInput', ([], {'step_size': '(0.5)', 'n': '(2)', 'start': '(7)'}), '(step_size=0.5, n=2, start=7)\n', (16051, 16080), False, 'from neurolib.utils.stimulus import ConcatenatedStimulus, ExponentialInput, LinearRampInput, OrnsteinUhlenbeckProcess, RectifiedInput, SinusoidalInput, SquareInput, StepInput, SummedStimulus, WienerProcess, ZeroInput\n'), ((17740, 17798), 'neurolib.utils.stimulus.OrnsteinUhlenbeckProcess', 'OrnsteinUhlenbeckProcess', ([], {'mu': '(0.1)', 'sigma': '(0.02)', 'tau': '(2.0)', 'n': '(2)'}), '(mu=0.1, sigma=0.02, tau=2.0, n=2)\n', (17764, 17798), False, 'from neurolib.utils.stimulus import ConcatenatedStimulus, ExponentialInput, LinearRampInput, OrnsteinUhlenbeckProcess, RectifiedInput, SinusoidalInput, SquareInput, StepInput, SummedStimulus, WienerProcess, ZeroInput\n'), ((17812, 17859), 'neurolib.utils.stimulus.SquareInput', 'SquareInput', ([], {'amplitude': '(0.2)', 'frequency': '(20.0)', 'n': '(2)'}), '(amplitude=0.2, frequency=20.0, n=2)\n', (17823, 17859), False, 'from neurolib.utils.stimulus import ConcatenatedStimulus, ExponentialInput, LinearRampInput, OrnsteinUhlenbeckProcess, RectifiedInput, SinusoidalInput, SquareInput, StepInput, SummedStimulus, WienerProcess, ZeroInput\n'), ((17874, 17925), 'neurolib.utils.stimulus.SinusoidalInput', 'SinusoidalInput', ([], {'amplitude': '(0.1)', 'frequency': '(10.0)', 'n': '(2)'}), '(amplitude=0.1, frequency=10.0, n=2)\n', (17889, 17925), False, 'from neurolib.utils.stimulus import ConcatenatedStimulus, ExponentialInput, LinearRampInput, OrnsteinUhlenbeckProcess, RectifiedInput, SinusoidalInput, SquareInput, StepInput, SummedStimulus, WienerProcess, ZeroInput\n'), ((17941, 17970), 'neurolib.utils.stimulus.StepInput', 'StepInput', ([], {'step_size': '(0.5)', 'n': '(2)'}), '(step_size=0.5, n=2)\n', (17950, 17970), False, 'from neurolib.utils.stimulus import ConcatenatedStimulus, ExponentialInput, LinearRampInput, OrnsteinUhlenbeckProcess, RectifiedInput, SinusoidalInput, SquareInput, StepInput, SummedStimulus, WienerProcess, ZeroInput\n'), ((19582, 19640), 'neurolib.utils.stimulus.OrnsteinUhlenbeckProcess', 'OrnsteinUhlenbeckProcess', ([], {'mu': '(0.1)', 'sigma': '(0.02)', 'tau': '(2.0)', 'n': '(2)'}), '(mu=0.1, sigma=0.02, tau=2.0, n=2)\n', (19606, 19640), False, 'from neurolib.utils.stimulus import ConcatenatedStimulus, ExponentialInput, LinearRampInput, OrnsteinUhlenbeckProcess, RectifiedInput, SinusoidalInput, SquareInput, StepInput, SummedStimulus, WienerProcess, ZeroInput\n'), ((19654, 19701), 'neurolib.utils.stimulus.SquareInput', 'SquareInput', ([], {'amplitude': '(0.2)', 'frequency': '(20.0)', 'n': '(2)'}), '(amplitude=0.2, frequency=20.0, n=2)\n', (19665, 19701), False, 'from neurolib.utils.stimulus import ConcatenatedStimulus, ExponentialInput, LinearRampInput, OrnsteinUhlenbeckProcess, RectifiedInput, SinusoidalInput, SquareInput, StepInput, SummedStimulus, WienerProcess, ZeroInput\n'), ((19716, 19767), 'neurolib.utils.stimulus.SinusoidalInput', 'SinusoidalInput', ([], {'amplitude': '(0.1)', 'frequency': '(10.0)', 'n': '(2)'}), '(amplitude=0.1, frequency=10.0, n=2)\n', (19731, 19767), False, 'from neurolib.utils.stimulus import ConcatenatedStimulus, ExponentialInput, LinearRampInput, OrnsteinUhlenbeckProcess, RectifiedInput, SinusoidalInput, SquareInput, StepInput, SummedStimulus, WienerProcess, ZeroInput\n'), ((19783, 19812), 'neurolib.utils.stimulus.StepInput', 'StepInput', ([], {'step_size': '(0.5)', 'n': '(2)'}), '(step_size=0.5, n=2)\n', (19792, 19812), False, 'from neurolib.utils.stimulus import ConcatenatedStimulus, ExponentialInput, LinearRampInput, OrnsteinUhlenbeckProcess, RectifiedInput, SinusoidalInput, SquareInput, StepInput, SummedStimulus, WienerProcess, ZeroInput\n'), ((21274, 21298), 'neurolib.utils.stimulus.RectifiedInput', 'RectifiedInput', (['(0.2)'], {'n': '(2)'}), '(0.2, n=2)\n', (21288, 21298), False, 'from neurolib.utils.stimulus import ConcatenatedStimulus, ExponentialInput, LinearRampInput, OrnsteinUhlenbeckProcess, RectifiedInput, SinusoidalInput, SquareInput, StepInput, SummedStimulus, WienerProcess, ZeroInput\n'), ((21483, 21507), 'neurolib.utils.stimulus.RectifiedInput', 'RectifiedInput', (['(0.2)'], {'n': '(2)'}), '(0.2, n=2)\n', (21497, 21507), False, 'from neurolib.utils.stimulus import ConcatenatedStimulus, ExponentialInput, LinearRampInput, OrnsteinUhlenbeckProcess, RectifiedInput, SinusoidalInput, SquareInput, StepInput, SummedStimulus, WienerProcess, ZeroInput\n'), ((2890, 2905), 'numpy.zeros', 'np.zeros', (['SHAPE'], {}), '(SHAPE)\n', (2898, 2905), True, 'import numpy as np\n'), ((6481, 6501), 'numpy.mean', 'np.mean', (['sin'], {'axis': '(1)'}), '(sin, axis=1)\n', (6488, 6501), True, 'import numpy as np\n'), ((6503, 6533), 'numpy.array', 'np.array', (['(2 * [self.AMPLITUDE])'], {}), '(2 * [self.AMPLITUDE])\n', (6511, 6533), True, 'import numpy as np\n'), ((8809, 8828), 'numpy.mean', 'np.mean', (['sq'], {'axis': '(1)'}), '(sq, axis=1)\n', (8816, 8828), True, 'import numpy as np\n'), ((8830, 8860), 'numpy.array', 'np.array', (['(2 * [self.AMPLITUDE])'], {}), '(2 * [self.AMPLITUDE])\n', (8838, 8860), True, 'import numpy as np\n'), ((11122, 11142), 'numpy.max', 'np.max', (['ramp'], {'axis': '(1)'}), '(ramp, axis=1)\n', (11128, 11142), True, 'import numpy as np\n'), ((11144, 11172), 'numpy.array', 'np.array', (['(2 * [self.INP_MAX])'], {}), '(2 * [self.INP_MAX])\n', (11152, 11172), True, 'import numpy as np\n'), ((11206, 11226), 'numpy.min', 'np.min', (['ramp'], {'axis': '(1)'}), '(ramp, axis=1)\n', (11212, 11226), True, 'import numpy as np\n'), ((11228, 11248), 'numpy.array', 'np.array', (['(2 * [0.25])'], {}), '(2 * [0.25])\n', (11236, 11248), True, 'import numpy as np\n'), ((13489, 13513), 'numpy.max', 'np.max', (['exp_rise'], {'axis': '(1)'}), '(exp_rise, axis=1)\n', (13495, 13513), True, 'import numpy as np\n'), ((13515, 13543), 'numpy.array', 'np.array', (['(2 * [self.INP_MAX])'], {}), '(2 * [self.INP_MAX])\n', (13523, 13543), True, 'import numpy as np\n'), ((705, 732), 'neurolib.utils.stimulus.WienerProcess', 'WienerProcess', ([], {'n': '(2)', 'seed': '(42)'}), '(n=2, seed=42)\n', (718, 732), False, 'from neurolib.utils.stimulus import ConcatenatedStimulus, ExponentialInput, LinearRampInput, OrnsteinUhlenbeckProcess, RectifiedInput, SinusoidalInput, SquareInput, StepInput, SummedStimulus, WienerProcess, ZeroInput\n'), ((973, 1000), 'neurolib.utils.stimulus.WienerProcess', 'WienerProcess', ([], {'n': '(2)', 'seed': '(42)'}), '(n=2, seed=42)\n', (986, 1000), False, 'from neurolib.utils.stimulus import ConcatenatedStimulus, ExponentialInput, LinearRampInput, OrnsteinUhlenbeckProcess, RectifiedInput, SinusoidalInput, SquareInput, StepInput, SummedStimulus, WienerProcess, ZeroInput\n'), ((1107, 1135), 'numpy.around', 'np.around', (['(TESTING_TIME / DT)'], {}), '(TESTING_TIME / DT)\n', (1116, 1135), True, 'import numpy as np\n'), ((1302, 1329), 'neurolib.utils.stimulus.WienerProcess', 'WienerProcess', ([], {'n': '(2)', 'seed': '(42)'}), '(n=2, seed=42)\n', (1315, 1329), False, 'from neurolib.utils.stimulus import ConcatenatedStimulus, ExponentialInput, LinearRampInput, OrnsteinUhlenbeckProcess, RectifiedInput, SinusoidalInput, SquareInput, StepInput, SummedStimulus, WienerProcess, ZeroInput\n'), ((2167, 2187), 'numpy.random.rand', 'np.random.rand', (['(5)', '(5)'], {}), '(5, 5)\n', (2181, 2187), True, 'import numpy as np\n'), ((2194, 2210), 'numpy.zeros', 'np.zeros', (['(5, 5)'], {}), '((5, 5))\n', (2202, 2210), True, 'import numpy as np\n'), ((2687, 2710), 'neurolib.utils.stimulus.ZeroInput', 'ZeroInput', ([], {'n': '(2)', 'seed': '(42)'}), '(n=2, seed=42)\n', (2696, 2710), False, 'from neurolib.utils.stimulus import ConcatenatedStimulus, ExponentialInput, LinearRampInput, OrnsteinUhlenbeckProcess, RectifiedInput, SinusoidalInput, SquareInput, StepInput, SummedStimulus, WienerProcess, ZeroInput\n'), ((3451, 3478), 'neurolib.utils.stimulus.WienerProcess', 'WienerProcess', ([], {'n': '(2)', 'seed': '(42)'}), '(n=2, seed=42)\n', (3464, 3478), False, 'from neurolib.utils.stimulus import ConcatenatedStimulus, ExponentialInput, LinearRampInput, OrnsteinUhlenbeckProcess, RectifiedInput, SinusoidalInput, SquareInput, StepInput, SummedStimulus, WienerProcess, ZeroInput\n'), ((4191, 4260), 'neurolib.utils.stimulus.OrnsteinUhlenbeckProcess', 'OrnsteinUhlenbeckProcess', ([], {'mu': '(3.0)', 'sigma': '(0.1)', 'tau': '(2 * DT)', 'n': '(2)', 'seed': '(42)'}), '(mu=3.0, sigma=0.1, tau=2 * DT, n=2, seed=42)\n', (4215, 4260), False, 'from neurolib.utils.stimulus import ConcatenatedStimulus, ExponentialInput, LinearRampInput, OrnsteinUhlenbeckProcess, RectifiedInput, SinusoidalInput, SquareInput, StepInput, SummedStimulus, WienerProcess, ZeroInput\n'), ((5359, 5408), 'neurolib.utils.stimulus.StepInput', 'StepInput', ([], {'step_size': 'self.STEP_SIZE', 'n': '(2)', 'seed': '(42)'}), '(step_size=self.STEP_SIZE, n=2, seed=42)\n', (5368, 5408), False, 'from neurolib.utils.stimulus import ConcatenatedStimulus, ExponentialInput, LinearRampInput, OrnsteinUhlenbeckProcess, RectifiedInput, SinusoidalInput, SquareInput, StepInput, SummedStimulus, WienerProcess, ZeroInput\n'), ((5709, 5794), 'neurolib.utils.stimulus.StepInput', 'StepInput', ([], {'start': 'STIM_START', 'end': 'STIM_END', 'step_size': 'self.STEP_SIZE', 'n': '(2)', 'seed': '(42)'}), '(start=STIM_START, end=STIM_END, step_size=self.STEP_SIZE, n=2,\n seed=42)\n', (5718, 5794), False, 'from neurolib.utils.stimulus import ConcatenatedStimulus, ExponentialInput, LinearRampInput, OrnsteinUhlenbeckProcess, RectifiedInput, SinusoidalInput, SquareInput, StepInput, SummedStimulus, WienerProcess, ZeroInput\n'), ((6182, 6281), 'neurolib.utils.stimulus.SinusoidalInput', 'SinusoidalInput', ([], {'amplitude': 'self.AMPLITUDE', 'frequency': 'self.FREQUENCY', 'n': '(2)', 'seed': '(42)', 'dc_bias': '(True)'}), '(amplitude=self.AMPLITUDE, frequency=self.FREQUENCY, n=2,\n seed=42, dc_bias=True)\n', (6197, 6281), False, 'from neurolib.utils.stimulus import ConcatenatedStimulus, ExponentialInput, LinearRampInput, OrnsteinUhlenbeckProcess, RectifiedInput, SinusoidalInput, SquareInput, StepInput, SummedStimulus, WienerProcess, ZeroInput\n'), ((6586, 6703), 'neurolib.utils.stimulus.SinusoidalInput', 'SinusoidalInput', ([], {'start': 'STIM_START', 'end': 'STIM_END', 'amplitude': 'self.AMPLITUDE', 'frequency': 'self.FREQUENCY', 'n': '(2)', 'seed': '(42)'}), '(start=STIM_START, end=STIM_END, amplitude=self.AMPLITUDE,\n frequency=self.FREQUENCY, n=2, seed=42)\n', (6601, 6703), False, 'from neurolib.utils.stimulus import ConcatenatedStimulus, ExponentialInput, LinearRampInput, OrnsteinUhlenbeckProcess, RectifiedInput, SinusoidalInput, SquareInput, StepInput, SummedStimulus, WienerProcess, ZeroInput\n'), ((8493, 8570), 'neurolib.utils.stimulus.SquareInput', 'SquareInput', ([], {'amplitude': 'self.AMPLITUDE', 'frequency': 'self.FREQUENCY', 'n': '(2)', 'seed': '(42)'}), '(amplitude=self.AMPLITUDE, frequency=self.FREQUENCY, n=2, seed=42)\n', (8504, 8570), False, 'from neurolib.utils.stimulus import ConcatenatedStimulus, ExponentialInput, LinearRampInput, OrnsteinUhlenbeckProcess, RectifiedInput, SinusoidalInput, SquareInput, StepInput, SummedStimulus, WienerProcess, ZeroInput\n'), ((8912, 9025), 'neurolib.utils.stimulus.SquareInput', 'SquareInput', ([], {'start': 'STIM_START', 'end': 'STIM_END', 'amplitude': 'self.AMPLITUDE', 'frequency': 'self.FREQUENCY', 'n': '(2)', 'seed': '(42)'}), '(start=STIM_START, end=STIM_END, amplitude=self.AMPLITUDE,\n frequency=self.FREQUENCY, n=2, seed=42)\n', (8923, 9025), False, 'from neurolib.utils.stimulus import ConcatenatedStimulus, ExponentialInput, LinearRampInput, OrnsteinUhlenbeckProcess, RectifiedInput, SinusoidalInput, SquareInput, StepInput, SummedStimulus, WienerProcess, ZeroInput\n'), ((10805, 10890), 'neurolib.utils.stimulus.LinearRampInput', 'LinearRampInput', ([], {'inp_max': 'self.INP_MAX', 'ramp_length': 'self.RAMP_LENGTH', 'n': '(2)', 'seed': '(42)'}), '(inp_max=self.INP_MAX, ramp_length=self.RAMP_LENGTH, n=2,\n seed=42)\n', (10820, 10890), False, 'from neurolib.utils.stimulus import ConcatenatedStimulus, ExponentialInput, LinearRampInput, OrnsteinUhlenbeckProcess, RectifiedInput, SinusoidalInput, SquareInput, StepInput, SummedStimulus, WienerProcess, ZeroInput\n'), ((11302, 11419), 'neurolib.utils.stimulus.LinearRampInput', 'LinearRampInput', ([], {'start': 'STIM_START', 'end': 'STIM_END', 'inp_max': 'self.INP_MAX', 'ramp_length': 'self.RAMP_LENGTH', 'n': '(2)', 'seed': '(42)'}), '(start=STIM_START, end=STIM_END, inp_max=self.INP_MAX,\n ramp_length=self.RAMP_LENGTH, n=2, seed=42)\n', (11317, 11419), False, 'from neurolib.utils.stimulus import ConcatenatedStimulus, ExponentialInput, LinearRampInput, OrnsteinUhlenbeckProcess, RectifiedInput, SinusoidalInput, SquareInput, StepInput, SummedStimulus, WienerProcess, ZeroInput\n'), ((13169, 13238), 'neurolib.utils.stimulus.ExponentialInput', 'ExponentialInput', ([], {'inp_max': 'self.INP_MAX', 'exp_type': '"""rise"""', 'n': '(2)', 'seed': '(42)'}), "(inp_max=self.INP_MAX, exp_type='rise', n=2, seed=42)\n", (13185, 13238), False, 'from neurolib.utils.stimulus import ConcatenatedStimulus, ExponentialInput, LinearRampInput, OrnsteinUhlenbeckProcess, RectifiedInput, SinusoidalInput, SquareInput, StepInput, SummedStimulus, WienerProcess, ZeroInput\n'), ((13663, 13733), 'neurolib.utils.stimulus.ExponentialInput', 'ExponentialInput', ([], {'inp_max': 'self.INP_MAX', 'exp_type': '"""decay"""', 'n': '(2)', 'seed': '(42)'}), "(inp_max=self.INP_MAX, exp_type='decay', n=2, seed=42)\n", (13679, 13733), False, 'from neurolib.utils.stimulus import ConcatenatedStimulus, ExponentialInput, LinearRampInput, OrnsteinUhlenbeckProcess, RectifiedInput, SinusoidalInput, SquareInput, StepInput, SummedStimulus, WienerProcess, ZeroInput\n'), ((14060, 14148), 'neurolib.utils.stimulus.ExponentialInput', 'ExponentialInput', ([], {'start': 'STIM_START', 'end': 'STIM_END', 'inp_max': 'self.INP_MAX', 'n': '(2)', 'seed': '(42)'}), '(start=STIM_START, end=STIM_END, inp_max=self.INP_MAX, n=2,\n seed=42)\n', (14076, 14148), False, 'from neurolib.utils.stimulus import ConcatenatedStimulus, ExponentialInput, LinearRampInput, OrnsteinUhlenbeckProcess, RectifiedInput, SinusoidalInput, SquareInput, StepInput, SummedStimulus, WienerProcess, ZeroInput\n'), ((13576, 13593), 'numpy.diff', 'np.diff', (['exp_rise'], {}), '(exp_rise)\n', (13583, 13593), True, 'import numpy as np\n'), ((13978, 13996), 'numpy.diff', 'np.diff', (['exp_decay'], {}), '(exp_decay)\n', (13985, 13996), True, 'import numpy as np\n')]
import os import cv2 import sys import time import collections import torch import argparse import numpy as np import torch.nn as nn import torch.nn.functional as F from config import * from torch.autograd import Variable from torch.utils import data from dataLoader import TestLoader import fpn_resnet as models #import fpn_resnet_dcn as models # c++ version pse based on opencv 3+ from pse import pse # python pse # from pypse import pse as pypse import glob import shutil #import onnx USE_TF = False class Detector(): def __init__(self, model_path): # init Model #self._model = torch.jit.load(model_path) #self._model = onnx.load(model_path) self._model = models.resnet50(pretrained=True, num_classes=7, scale=1) print(len(list(self._model.parameters()))) print(self._model.conv1.weight) return for param in self._model.parameters(): param.requires_grad = False if torch.cuda.is_available() and GPU: self._model = self._model.cuda() else: self._model = self._model.cpu() if os.path.isfile(model_path): checkpoint = torch.load(model_path, map_location=lambda storage, loc: storage) d = collections.OrderedDict() for key, value in checkpoint['state_dict'].items(): tmp = key[7:] d[tmp] = value self._model.load_state_dict(d) else: print("No checkpoint found at '{}'".format(model_path)) self._model.eval() example = torch.rand(1, 3, 800, 800) example = Variable(example.cuda()) #torch.onnx.export(self._model, example, "model.proto", verbose=True) traced_script_module = torch.jit.trace(self._model, (example)) traced_script_module.save("./model.pt") def detect(self, img): startTime0 = time.time() self.bboxes = [] data_loader = TestLoader(img, long_size=DETE_IMG_SIZE) test_loader = torch.utils.data.DataLoader( data_loader, batch_size=1, shuffle=False, num_workers=2, drop_last=True) for idx, (scale, img) in enumerate(test_loader): if torch.cuda.is_available() and GPU: #img = Variable(img.cuda(), volatile=True) img = Variable(img.cuda()) else: #img = Variable(img.cpu(), volatile=True) img = Variable(img.cpu()) #org_img = org_img.numpy().astype('uint8')[0] #text_box = org_img.copy() outputs = self._model(img) score = torch.sigmoid(outputs[:, 0, :, :]) outputs = (torch.sign(outputs - DETE_BINARY_TH) + 1) / 2 text = outputs[:, 0, :, :] kernels = outputs[:, 0:7, :, :] * text score = score.data.cpu().numpy()[0].astype(np.float32) text = text.data.cpu().numpy()[0].astype(np.uint8) kernels = kernels.data.cpu().numpy()[0].astype(np.uint8) cv2.imwrite("./7.jpg", kernels[0]*255) #cv2.imwrite("./6.jpg", kernels[1]*255) #cv2.imwrite("./5.jpg", kernels[2]*255) #cv2.imwrite("./4.jpg", kernels[3]*255) #cv2.imwrite("./3.jpg", kernels[4]*255) #cv2.imwrite("./2.jpg", kernels[5]*255) #cv2.imwrite("./1.jpg", kernels[6]*255) if USE_TF: mask_res, label_values = pse(kernels, 5.0) mask_res = np.array(mask_res) mask_res_resized = cv2.resize(mask_res, (mask_res.shape[1], mask_res.shape[0]), interpolation=cv2.INTER_NEAREST) boxes = [] for label_value in label_values: #(y,x) points = np.argwhere(mask_res_resized==label_value) points = points[:, (1,0)] rect = cv2.minAreaRect(points) box = cv2.boxPoints(rect) / (scale, scale) box = box.astype('int32') self.bboxes.append(box.reshape(-1)) return # c++ version pse pred = pse(kernels, 5.0) # python version pse # pred = pypse(kernels, 5.0) if(len(pred) == 0): continue self.bboxes = pred #print(self.bboxes, scale) #self.bboxes = self.bboxes / scale #self.bboxes = self.bboxes.astype('int32').tolist() # label = pred # label_num = np.max(label) + 1 # whereup = 0 # startTime = time.time() # for i in range(1, label_num): # startTime1 = time.time() # points = np.array(np.where(label == i)).transpose((1, 0))[:, ::-1] # whereup = whereup + time.time() - startTime1 # if points.shape[0] < DETE_MIN_AREA: # continue # score_i = np.mean(score[label == i]) # if score_i < DETE_MIN_SCORE: # continue # #if i == 2: # #print(points) # rect = cv2.minAreaRect(points) # bbox = cv2.boxPoints(rect) / (scale/2, scale/2) # bbox = bbox.astype('int32') # self.bboxes.append(bbox.reshape(-1)) print("Later:", time.time() - startTime) print("Total:", time.time() - startTime0) #print(bboxes) def draw_bbox(img, bboxes, output_path): for bbox in bboxes: cv2.drawContours(img, [bbox.reshape(4, 2)], -1, (0, 255, 0), 2) cv2.imwrite(output_path, img) if __name__ == '__main__': output_Path = "./TestResult/" if os.path.exists(output_Path): shutil.rmtree(output_Path) os.makedirs(output_Path) model_path = "./checkpoints/checkpoint.pth.tar" #model_path = "./model.pt" dete_line = Detector(model_path) imgList = glob.glob(os.path.join("./TestImgs/", "*.jpg")) startTime = time.time() for img_path in imgList: print(img_path) img = cv2.imread(img_path) if torch.cuda.is_available() and GPU: torch.cuda.synchronize() start = time.time() dete_line.detect(img) fileSave = output_Path + os.path.split(img_path)[1] draw_bbox(img, dete_line.bboxes, fileSave) if torch.cuda.is_available() and GPU: torch.cuda.synchronize() end = time.time() print("Time is {0}s".format(end - start)) print("Total is {0}s".format(time.time() - startTime))
[ "torch.cuda.synchronize", "os.path.isfile", "cv2.boxPoints", "cv2.minAreaRect", "shutil.rmtree", "os.path.join", "torch.utils.data.DataLoader", "cv2.imwrite", "torch.load", "os.path.exists", "torch.sign", "cv2.resize", "torch.jit.trace", "fpn_resnet.resnet50", "torch.cuda.is_available", "torch.rand", "numpy.argwhere", "os.makedirs", "dataLoader.TestLoader", "time.time", "cv2.imread", "torch.sigmoid", "numpy.array", "pse.pse", "collections.OrderedDict", "os.path.split" ]
[((5724, 5753), 'cv2.imwrite', 'cv2.imwrite', (['output_path', 'img'], {}), '(output_path, img)\n', (5735, 5753), False, 'import cv2\n'), ((5827, 5854), 'os.path.exists', 'os.path.exists', (['output_Path'], {}), '(output_Path)\n', (5841, 5854), False, 'import os\n'), ((5895, 5919), 'os.makedirs', 'os.makedirs', (['output_Path'], {}), '(output_Path)\n', (5906, 5919), False, 'import os\n'), ((6128, 6139), 'time.time', 'time.time', ([], {}), '()\n', (6137, 6139), False, 'import time\n'), ((698, 754), 'fpn_resnet.resnet50', 'models.resnet50', ([], {'pretrained': '(True)', 'num_classes': '(7)', 'scale': '(1)'}), '(pretrained=True, num_classes=7, scale=1)\n', (713, 754), True, 'import fpn_resnet as models\n'), ((1110, 1136), 'os.path.isfile', 'os.path.isfile', (['model_path'], {}), '(model_path)\n', (1124, 1136), False, 'import os\n'), ((1575, 1601), 'torch.rand', 'torch.rand', (['(1)', '(3)', '(800)', '(800)'], {}), '(1, 3, 800, 800)\n', (1585, 1601), False, 'import torch\n'), ((1754, 1791), 'torch.jit.trace', 'torch.jit.trace', (['self._model', 'example'], {}), '(self._model, example)\n', (1769, 1791), False, 'import torch\n'), ((1904, 1915), 'time.time', 'time.time', ([], {}), '()\n', (1913, 1915), False, 'import time\n'), ((1963, 2003), 'dataLoader.TestLoader', 'TestLoader', (['img'], {'long_size': 'DETE_IMG_SIZE'}), '(img, long_size=DETE_IMG_SIZE)\n', (1973, 2003), False, 'from dataLoader import TestLoader\n'), ((2026, 2130), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', (['data_loader'], {'batch_size': '(1)', 'shuffle': '(False)', 'num_workers': '(2)', 'drop_last': '(True)'}), '(data_loader, batch_size=1, shuffle=False,\n num_workers=2, drop_last=True)\n', (2053, 2130), False, 'import torch\n'), ((5864, 5890), 'shutil.rmtree', 'shutil.rmtree', (['output_Path'], {}), '(output_Path)\n', (5877, 5890), False, 'import shutil\n'), ((6074, 6110), 'os.path.join', 'os.path.join', (['"""./TestImgs/"""', '"""*.jpg"""'], {}), "('./TestImgs/', '*.jpg')\n", (6086, 6110), False, 'import os\n'), ((6207, 6227), 'cv2.imread', 'cv2.imread', (['img_path'], {}), '(img_path)\n', (6217, 6227), False, 'import cv2\n'), ((6340, 6351), 'time.time', 'time.time', ([], {}), '()\n', (6349, 6351), False, 'import time\n'), ((6596, 6607), 'time.time', 'time.time', ([], {}), '()\n', (6605, 6607), False, 'import time\n'), ((960, 985), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (983, 985), False, 'import torch\n'), ((1163, 1228), 'torch.load', 'torch.load', (['model_path'], {'map_location': '(lambda storage, loc: storage)'}), '(model_path, map_location=lambda storage, loc: storage)\n', (1173, 1228), False, 'import torch\n'), ((1245, 1270), 'collections.OrderedDict', 'collections.OrderedDict', ([], {}), '()\n', (1268, 1270), False, 'import collections\n'), ((2674, 2708), 'torch.sigmoid', 'torch.sigmoid', (['outputs[:, 0, :, :]'], {}), '(outputs[:, 0, :, :])\n', (2687, 2708), False, 'import torch\n'), ((3081, 3121), 'cv2.imwrite', 'cv2.imwrite', (['"""./7.jpg"""', '(kernels[0] * 255)'], {}), "('./7.jpg', kernels[0] * 255)\n", (3092, 3121), False, 'import cv2\n'), ((4219, 4236), 'pse.pse', 'pse', (['kernels', '(5.0)'], {}), '(kernels, 5.0)\n', (4222, 4236), False, 'from pse import pse\n'), ((6248, 6273), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (6271, 6273), False, 'import torch\n'), ((6299, 6323), 'torch.cuda.synchronize', 'torch.cuda.synchronize', ([], {}), '()\n', (6321, 6323), False, 'import torch\n'), ((6506, 6531), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (6529, 6531), False, 'import torch\n'), ((6557, 6581), 'torch.cuda.synchronize', 'torch.cuda.synchronize', ([], {}), '()\n', (6579, 6581), False, 'import torch\n'), ((2261, 2286), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (2284, 2286), False, 'import torch\n'), ((3496, 3513), 'pse.pse', 'pse', (['kernels', '(5.0)'], {}), '(kernels, 5.0)\n', (3499, 3513), False, 'from pse import pse\n'), ((3541, 3559), 'numpy.array', 'np.array', (['mask_res'], {}), '(mask_res)\n', (3549, 3559), True, 'import numpy as np\n'), ((3595, 3693), 'cv2.resize', 'cv2.resize', (['mask_res', '(mask_res.shape[1], mask_res.shape[0])'], {'interpolation': 'cv2.INTER_NEAREST'}), '(mask_res, (mask_res.shape[1], mask_res.shape[0]), interpolation=\n cv2.INTER_NEAREST)\n', (3605, 3693), False, 'import cv2\n'), ((6416, 6439), 'os.path.split', 'os.path.split', (['img_path'], {}), '(img_path)\n', (6429, 6439), False, 'import os\n'), ((6691, 6702), 'time.time', 'time.time', ([], {}), '()\n', (6700, 6702), False, 'import time\n'), ((2732, 2768), 'torch.sign', 'torch.sign', (['(outputs - DETE_BINARY_TH)'], {}), '(outputs - DETE_BINARY_TH)\n', (2742, 2768), False, 'import torch\n'), ((3821, 3865), 'numpy.argwhere', 'np.argwhere', (['(mask_res_resized == label_value)'], {}), '(mask_res_resized == label_value)\n', (3832, 3865), True, 'import numpy as np\n'), ((3937, 3960), 'cv2.minAreaRect', 'cv2.minAreaRect', (['points'], {}), '(points)\n', (3952, 3960), False, 'import cv2\n'), ((5466, 5477), 'time.time', 'time.time', ([], {}), '()\n', (5475, 5477), False, 'import time\n'), ((5519, 5530), 'time.time', 'time.time', ([], {}), '()\n', (5528, 5530), False, 'import time\n'), ((3987, 4006), 'cv2.boxPoints', 'cv2.boxPoints', (['rect'], {}), '(rect)\n', (4000, 4006), False, 'import cv2\n')]
# ===================================================================================== # # Module for solving Ising models exactly. # # Distributed with ConIII. # # NOTE: This code needs cleanup. # # Author : <NAME>, <EMAIL> # ===================================================================================== # # # MIT License # # Copyright (c) 2019 <NAME>, <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import numpy as np import mpmath as mp import scipy.special as ss from itertools import combinations import sys np.set_printoptions(threshold=sys.maxsize) def write_eqns(n, sym, corrTermsIx, suffix='', high_prec=False): """Create strings for writing out the equations and then write them to file. TODO: This code needs some cleanup. Parameters ---------- n : int number of spins sym : int value of 1 will use {-1,1} formulation, 0 means {0,1} corrTermsIx : list of ndarrays Allows specification of arbitrary correlations to constrain using an index based structure. These should be index arrays as would be returned by np.where that specify which correlations to write down. Each consecutive array should specify a matrix of sequentially increasing dimension. [Nx1, NxN, NxNxN, ...] suffix : str, '' high_prec : bool, False """ import re assert sym in [0,1], "sym argument must be 0 or 1." abc = '<KEY>' expterms = [] # 2**N exponential corrTermsIx binstates = [] # all binary states as strings signs = [] # coefficient for all numerator terms when computing correlations br = "[]" ix0 = 0 # default suffix for high precision files if high_prec: suffix += '_hp' # Collect all corrTermsIx in the partition function. for state in range(2**n): binstates.append("{0:b}".format(state)) if len(binstates[state])<n: binstates[state] = "0"*(n-len(binstates[state])) + binstates[state] expterms.append( '' ) # Get corrTermsIx corresponding to each of the ith order term. if sym: for i in range(len(corrTermsIx)): expterms[state] += get_terms11(corrTermsIx[i], abc[i], binstates[state], br, ix0) else: for i in range(len(corrTermsIx)): expterms[state] += get_terms01(corrTermsIx[i], abc[i], binstates[state], br, ix0) expterms[state] = re.sub(r'\+0\+','+', expterms[state]) expterms[state] = re.sub(r'\)\+0',')', expterms[state]) expterms[state] += ', ' # Collect all terms with corresponding prefix in the equation to solve. for state in range(2**n): for i in range(len(corrTermsIx)): if state==0: signs.append([]) # Get corrTermsIx corresponding to each of the ith order term. if sym: signs_ = _compute_signs(corrTermsIx[i], expterms[state], binstates[state]) else: signs_ = _compute_signs(corrTermsIx[i], expterms[state], binstates[state], False) # expand the length of signs if we haven't reached those constraints yet before if len(signs[i])<signs_.size: for j in range(signs_.size-len(signs[i])): signs[i].append(np.zeros(0, dtype=int)) for j in range(signs_.size): signs[i][j] = np.append(signs[i][j], signs_[j]) Z = ''.join(expterms) # Account for fact that symmetric Python had inverted the order of the states. if sym: extra = '\n Pout = Pout[::-1]' else: extra = '' # write to files write_py(n, sym, corrTermsIx, signs, expterms, Z, extra=extra, suffix=suffix, high_prec=high_prec) def write_py(n, sym, contraintTermsIx, signs, expterms, Z, extra='', suffix='', high_prec=False): """ Write out Ising equations for Python. Parameters ---------- n : int System size. contraintTermsIx : list of str signs : list of ndarray Sign for each term in the numerator when computing correlations. expterms : list of str Every single energy term. Z : str Energies for all states that will be put into partition function. extra : str, '' any extra lines to add at the end suffix : str, '' high_prec : bool, False If True, write version that uses mpmath for high precision calculations. """ import time import os abc = 'HJKLMNOPQRSTUVWXYZABCDE' fname = 'ising_eqn/ising_eqn_%d%s.py'%(n,suffix) print("Generating file ./%s"%fname) if not os.path.isdir('./ising_eqn'): os.makedirs('./ising_eqn') f = open(fname,'w') # insert license try: license = open('LICENSE.txt','r').readlines() for el in license: el = '# '+el f.write(el) f.write('\n') except FileNotFoundError: print("License file not found...") f.write("# Equations for %d-spin Ising model.\n\n"%n) f.write("# ") f.write(time.strftime("Written on %Y/%m/%d.")+"\n") if high_prec: f.write("from numpy import zeros, array, prod\n") f.write("from ..enumerate import mp_fast_logsumexp as fast_logsumexp\n") f.write("from mpmath import exp, isnan\n\n") else: f.write("from numpy import zeros, exp, array, prod, isnan\n") f.write("from ..enumerate import fast_logsumexp\n\n") # Keep these as string because they need to grow in the loop and then can just be # added all at once at the end. fargs = "def calc_observables(params):\n" if high_prec: vardec = ' Cout = zeros(('+str(sum([len(i) for i in signs]))+'), dtype=object)\n' # string of variable declarations else: vardec = ' Cout = zeros(('+str(sum([len(i) for i in signs]))+'))\n' # string of variable declarations eqns = '' # string of equations to compute ix = np.hstack(( 0, np.cumsum([len(i) for i in signs]) )) for i in range(len(contraintTermsIx)): vardec += ' '+abc[i]+' = params['+str(ix[i])+':'+str(ix[i+1])+']\n' if sym: k = 0 for i in range(len(contraintTermsIx)): for j in range(len(signs[i])): eqns += (" num = fast_logsumexp(energyTerms, "+ str(signs[i][j]).replace('1 ','1,').replace('1\n','1,\n')+ ")\n Cout["+str(k)+"] = exp( num[0] - logZ ) * num[1]\n") k += 1 else: k = 0 for i in range(len(contraintTermsIx)): for j in range(len(signs[i])): eqns += (" num = fast_logsumexp(energyTerms, "+ str(signs[i][j]).replace('0 ','0,').replace('1 ','1,').replace('0\n','0,\n').replace('1\n','1,\n')+ ")\n Cout["+str(k)+"] = exp( num[0] - logZ ) * num[1]\n") k += 1 # Write out correlation terms f.write(fargs) f.write((" \"\"\"\n Give all parameters concatenated into one array from lowest to highest order.\n"+ " Returns all correlations.\n \"\"\"\n")) f.write(vardec) _write_energy_terms(f, Z) f.write(eqns) if high_prec: f.write(" for i in range(Cout.size):\n if isnan(Cout[i]):\n Cout[i] = 0.\n") else: f.write(" Cout[isnan(Cout)] = 0.\n") f.write(" return(Cout)\n\n") # Write equations for probabilities of all states. #f.write("def p("+string.join([i+"," for i in abc[:len(contraintTermsIx)]])+"):\n") f.write("def p(params):\n") f.write((" \"\"\"\n Give all parameters concatenated into one array from lowest to highest order.\n"+ " Returns probabilities of all configurations.\n \"\"\"\n")) f.write(vardec) # Output variable decs and put params into explicit parameters. ix = np.hstack(( 0, np.cumsum([len(i) for i in signs]) )) vardec = '' for i in range(len(contraintTermsIx)): vardec += ' '+abc[i]+' = params['+str(ix[i])+':'+str(ix[i+1])+']\n' if high_prec: vardec += ' Pout = zeros(('+str(2**n)+'), dtype=object)\n' # string of variable declarations else: vardec += ' Pout = zeros(('+str(2**n)+'))\n' # string of variable declarations f.write(vardec) _write_energy_terms(f, Z) # each probability equation for i in range(len(expterms)): f.write(' Pout['+str(i)+'] = exp( '+expterms[i][:-2]+' - logZ )\n') f.write(extra) f.write("\n return(Pout)\n") f.close() def _write_energy_terms(f, Z): """Split expression for energy terms for each term in Z into multiple lines and write out nicely into file. Parameters ---------- f : file Z : list of str Energy terms to write out. """ f.write(' energyTerms = array([') i=0 while i<len(Z): iend=i+100 # end line on a + while iend<len(Z) and Z[iend-1]!='+': iend+=1 if iend>=len(Z): # ignore comma at end of line f.write(' '+Z[i:-1]+'])\n logZ = fast_logsumexp(energyTerms)[0]\n') else: f.write(' '+Z[i:iend]+'\n') i=iend def _compute_signs(subix, expterm, binstate, sym=True): """Iterate through terms that belong in the numerator for each constraint and keep track of the sign of those terms. Parameters ---------- subix : list expterm : list of str binstate : list of str sym : bool, True Returns ------- ndarray Sign of each exponential term in numerator. """ if len(subix)==0: return if sym: downSpin = -1 signs = np.ones(len(subix[0]), dtype=int) for i in range(len(subix[0])): if np.mod( sum([binstate[k[i]]=="1" for k in subix]),2 ): signs[i] = downSpin else: downSpin = 0 signs = np.ones(len(subix[0]), dtype=int) for i in range(len(subix[0])): if np.mod( any([binstate[k[i]]=="0" for k in subix]),2 ): signs[i] = downSpin return signs def get_terms11(subix, prefix, binstate, br, ix0): """ Specific to {-1,1}. """ j = 0 s = '' if len(subix)==0: return s for i in range(len(subix[0])): if np.mod( sum([binstate[k[j]]=="1" for k in subix]),2 ): s += '-' else: s += '+' s += prefix+br[0]+str(j+ix0)+br[1] j += 1 return s def get_terms01(subix, prefix, binstate, br, ix0): """ Specific to {0,1}. """ j = 0 s = '' if len(subix)==0: return s for i in range(len(subix[0])): if np.all( [binstate[k[j]]=="1" for k in subix] ): s += '+'+prefix+br[0]+str(j+ix0)+br[1] j += 1 if s=='': s = '+0' return s def get_terms(subix, prefix, binstate, br, ix0): """ Spins are put in explicitly """ j = 0 s = '' if len(subix)==0: return s for i in range(len(subix[0])): s += '+'+prefix+br[0]+str(j+ix0)+br[1] for k in range(len(subix)): s += '*s'+br[0]+str(subix[k][i])+br[1] j += 1 if s=='': s = '+0' return s def get_3idx(n): """Get binary 3D matrix with truth values where index values correspond to the index of all possible ijk parameters. We can do this by recognizing that the pattern along each plane in the third dimension is like the upper triangle pattern that just moves up and over by one block each cut lower into the box. """ b = np.zeros((n,n,n)) c = np.triu(np.ones((n-1,n-1))==1,1) for i in range(n-1): # shunt this diagonal matrix over every descent into a lower plane in the box # the plane xz if i==0: b[i,(1+i):,(1+i):] = c else: b[i,(1+i):,(1+i):] = c[:-i,:-i] return b def get_nidx(k, n): """ Get the kth order indices corresponding to all the states in which k elements are firing up out of n spins. The ordering correspond to that returned by bin_states(). One can check this code for correctness by comparing with get_3idx() >>>>> print where(exact.get_3idx(4)) print where(exact.get_nidx(3,4)) <<<<< """ if k==n: return np.reshape(list(range(n)),(n,1)) elif k<n: allStates = bin_states(n) statesix = np.sum(allStates,1)==k ix = [] for s in allStates[statesix,:]: j = 0 for i in np.argwhere(s==1).flatten(): if len(ix)<(j+1): ix.append([]) ix[j].append(i) j += 1 return np.array(ix)[:,::-1] # make sure last idx increases first def pairwise(n, sym=0, **kwargs): """Wrapper for writing pairwise maxent model (Ising) files. Parameters ---------- n : int System size. sym : int, 0 Can be 0 or 1. **kwargs Returns ------- None """ assert sym==0 or sym==1 print("Writing equations for pairwise Ising model with %d spins."%n) if sym: write_eqns(n, sym, [np.where(np.ones((n))==1), np.where(np.triu(np.ones((n,n)),k=1)==1)], suffix='_sym', **kwargs) else: write_eqns(n, sym, [np.where(np.ones((n))==1), np.where(np.triu(np.ones((n,n)),k=1)==1)], **kwargs) def triplet(n, sym=0, **kwargs): """Wrapper for writing triplet-order maxent model. Parameters ---------- n : int System size. sym : int, 0 Can be 0 or 1. **kwargs Returns ------- None """ assert sym==0 or sym==1 print("Writing equations for Ising model with triplet interactions and %d spins."%n) if sym: write_eqns(n,sym,[(range(n),), list(zip(*list(combinations(range(n),2)))), list(zip(*list(combinations(range(n),3))))], suffix='_sym_triplet', **kwargs) else: write_eqns(n,sym,[(range(n),), list(zip(*list(combinations(range(n),2)))), list(zip(*list(combinations(range(n),3))))], suffix='_triplet', **kwargs) def _write_matlab(n, terms, fitterms, expterms, Z, suffix=''): """ DEPRECATED: code here for future referencing Write out equations to solve for matlab. """ import time abc = 'HJKLMNOPQRSTUVWXYZABCDE' vardec = '' # Write function to solve to file. f = open('ising_eqn_%d%s.m'%(n,suffix),'w') f.write("% Equations of %d-spin Ising model.\n\n"%n) f.write(time.strftime("%Y/%m/%d")+"\n") f.write("% Give each set of parameters concatenated into one array.\n\n") # Keep these as string because they need to grow in the loop and then can just be # added all at once at the end. f.write("function Cout = calc_observables(params)\n") f.write('\tCout = zeros('+str(sum([len(i) for i in fitterms]))+',1);\n') # string of variable declarations eqns = '' # string of equations to compute ix = np.hstack(( 0,np.cumsum([len(i) for i in fitterms]) ))+1 for i in range(len(terms)): vardec += '\t'+abc[i]+' = params('+str(ix[i])+':'+str(ix[i+1]-1)+');\n' k = 0 for i in range(len(terms)): for j in range(len(fitterms[i])): eqns += "\tCout("+str(k+1)+") = ("+fitterms[i][j]+")/Z;\n" k += 1 f.write(vardec) f.write("\tZ = "+Z+";\n") f.write(eqns) f.close() g = open('probs'+str(n)+'.m','w') g.write("% File for getting the probabilities of Ising model.\n% ") g.write(time.strftime("%Y/%m/%d")+"\n") # Write equations for probabilities of all states. g.write("function Pout = p(params)\n") g.write(vardec) g.write(' Pout = zeros('+str(2**n)+',1);\n') # string of variable declarations g.write(' Z = '+Z+';\n') for i in range(len(expterms)): g.write(' Pout('+str(i+1)+') = '+expterms[i]+'/Z;\n') g.close() def fast_logsumexp(X, coeffs=None): """Simplified version of logsumexp to do correlation calculation in Ising equation files. Scipy's logsumexp can be around 10x slower in comparison. Parameters ---------- X : ndarray Terms inside logs. coeffs : ndarray Factors in front of exponentials. Returns ------- float Value of magnitude of quantity inside log (the sum of exponentials). float Sign. """ Xmx = max(X) if coeffs is None: y = np.exp(X-Xmx).sum() else: y = np.exp(X-Xmx).dot(coeffs) if y<0: return np.log(np.abs(y))+Xmx, -1. return np.log(y)+Xmx, 1. def mp_fast_logsumexp(X, coeffs=None): """fast_logsumexp for high precision numbers using mpmath. Parameters ---------- X : ndarray Terms inside logs. coeffs : ndarray Factors in front of exponentials. Returns ------- float Value of magnitude of quantity inside log (the sum of exponentials). float Sign. """ Xmx = max(X) if coeffs is None: y = sum(map(mp.exp, X-Xmx)) else: y = np.array(coeffs).dot(list(map(mp.exp, X-Xmx))) if y<0: return mp.log(abs(y))+Xmx, -1. return mp.log(y)+Xmx, 1. if __name__=='__main__': """When run with Python, this will write the equations for the Ising model into file ising_eqn_[n][_sym] where n will be replaced by the system size and the suffix '_sym' is included if the equations are written in the {-1,+1} basis. To write the Ising model equations for a system of size 3 in the {0,1} basis, call >>> python enumerate.py 3 For the {-1,1} basis, call >>> python enumerate.py 3 1 To include triplet order interactions, include a 3 at the very end >>> python enumerate.py 3 0 3 To write high precision, include an '-hp=true' as the last argument. >>> python enumerate.py 3 0 3 -hp=true """ import sys args = [i for i in sys.argv if '-'!=i[0]] kwargs = [i for i in sys.argv if '-'==i[0]] n = int(args[1]) if len(args)==2: sym = 0 order = 2 elif len(args)==3: sym = int(args[2]) assert sym==0 or sym==1 order = 2 elif len(args)==4: sym = int(args[2]) order = int(args[3]) else: raise Exception("Unrecognized arguments.") # parse kwargs if len(kwargs): if '-hp='==kwargs[0][:4]: if kwargs[0][4:].lower()=='true': high_prec = True elif kwargs[0][4:].lower()=='false': high_prec = False else: raise Exception("Unrecognized value for hp.") else: high_prec = False else: # default kwargs high_prec = False if order==2: pairwise(n, sym, high_prec=high_prec) elif order==3: triplet(n, sym, high_prec=high_prec) else: raise NotImplementedError("Only order up to 3 implemented for this convenient interface.")
[ "numpy.set_printoptions", "numpy.sum", "os.makedirs", "numpy.log", "numpy.abs", "os.path.isdir", "mpmath.log", "numpy.zeros", "time.strftime", "numpy.ones", "numpy.append", "numpy.array", "numpy.exp", "numpy.argwhere", "re.sub", "numpy.all" ]
[((1545, 1587), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'threshold': 'sys.maxsize'}), '(threshold=sys.maxsize)\n', (1564, 1587), True, 'import numpy as np\n'), ((12751, 12770), 'numpy.zeros', 'np.zeros', (['(n, n, n)'], {}), '((n, n, n))\n', (12759, 12770), True, 'import numpy as np\n'), ((3451, 3490), 're.sub', 're.sub', (['"""\\\\+0\\\\+"""', '"""+"""', 'expterms[state]'], {}), "('\\\\+0\\\\+', '+', expterms[state])\n", (3457, 3490), False, 'import re\n'), ((3515, 3554), 're.sub', 're.sub', (['"""\\\\)\\\\+0"""', '""")"""', 'expterms[state]'], {}), "('\\\\)\\\\+0', ')', expterms[state])\n", (3521, 3554), False, 'import re\n'), ((5717, 5745), 'os.path.isdir', 'os.path.isdir', (['"""./ising_eqn"""'], {}), "('./ising_eqn')\n", (5730, 5745), False, 'import os\n'), ((5755, 5781), 'os.makedirs', 'os.makedirs', (['"""./ising_eqn"""'], {}), "('./ising_eqn')\n", (5766, 5781), False, 'import os\n'), ((11838, 11886), 'numpy.all', 'np.all', (["[(binstate[k[j]] == '1') for k in subix]"], {}), "([(binstate[k[j]] == '1') for k in subix])\n", (11844, 11886), True, 'import numpy as np\n'), ((6150, 6187), 'time.strftime', 'time.strftime', (['"""Written on %Y/%m/%d."""'], {}), "('Written on %Y/%m/%d.')\n", (6163, 6187), False, 'import time\n'), ((12785, 12808), 'numpy.ones', 'np.ones', (['(n - 1, n - 1)'], {}), '((n - 1, n - 1))\n', (12792, 12808), True, 'import numpy as np\n'), ((15954, 15979), 'time.strftime', 'time.strftime', (['"""%Y/%m/%d"""'], {}), "('%Y/%m/%d')\n", (15967, 15979), False, 'import time\n'), ((16962, 16987), 'time.strftime', 'time.strftime', (['"""%Y/%m/%d"""'], {}), "('%Y/%m/%d')\n", (16975, 16987), False, 'import time\n'), ((18012, 18021), 'numpy.log', 'np.log', (['y'], {}), '(y)\n', (18018, 18021), True, 'import numpy as np\n'), ((18628, 18637), 'mpmath.log', 'mp.log', (['y'], {}), '(y)\n', (18634, 18637), True, 'import mpmath as mp\n'), ((4419, 4452), 'numpy.append', 'np.append', (['signs[i][j]', 'signs_[j]'], {}), '(signs[i][j], signs_[j])\n', (4428, 4452), True, 'import numpy as np\n'), ((13581, 13601), 'numpy.sum', 'np.sum', (['allStates', '(1)'], {}), '(allStates, 1)\n', (13587, 13601), True, 'import numpy as np\n'), ((13866, 13878), 'numpy.array', 'np.array', (['ix'], {}), '(ix)\n', (13874, 13878), True, 'import numpy as np\n'), ((17878, 17893), 'numpy.exp', 'np.exp', (['(X - Xmx)'], {}), '(X - Xmx)\n', (17884, 17893), True, 'import numpy as np\n'), ((17920, 17935), 'numpy.exp', 'np.exp', (['(X - Xmx)'], {}), '(X - Xmx)\n', (17926, 17935), True, 'import numpy as np\n'), ((18518, 18534), 'numpy.array', 'np.array', (['coeffs'], {}), '(coeffs)\n', (18526, 18534), True, 'import numpy as np\n'), ((17981, 17990), 'numpy.abs', 'np.abs', (['y'], {}), '(y)\n', (17987, 17990), True, 'import numpy as np\n'), ((4324, 4346), 'numpy.zeros', 'np.zeros', (['(0)'], {'dtype': 'int'}), '(0, dtype=int)\n', (4332, 4346), True, 'import numpy as np\n'), ((13699, 13718), 'numpy.argwhere', 'np.argwhere', (['(s == 1)'], {}), '(s == 1)\n', (13710, 13718), True, 'import numpy as np\n'), ((14342, 14352), 'numpy.ones', 'np.ones', (['n'], {}), '(n)\n', (14349, 14352), True, 'import numpy as np\n'), ((14541, 14551), 'numpy.ones', 'np.ones', (['n'], {}), '(n)\n', (14548, 14551), True, 'import numpy as np\n'), ((14405, 14420), 'numpy.ones', 'np.ones', (['(n, n)'], {}), '((n, n))\n', (14412, 14420), True, 'import numpy as np\n'), ((14604, 14619), 'numpy.ones', 'np.ones', (['(n, n)'], {}), '((n, n))\n', (14611, 14619), True, 'import numpy as np\n')]